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Summary

Modeling a dependent variable as a linear combination of independent variables with

regression coefficients which vary between regimes is known as threshold regression. The

choice of regime is determined by a transition function which depends on a transition

variable as well as a threshold parameter. There is a wide range of different fields of

application of threshold regression models including agricultural economics, but also

economics in general, finance, sociology or biostatistics. In this thesis, the application of

price transmission analysis and the threshold vector error correction model (TVECM)

– a particular threshold regression model specification – as one of its standard tools are

the focus of interest.

Threshold parameters are typically estimated by maximizing the profile likelihood func-

tion. However, in certain settings, this estimator is biased and characterized by great

variance. Estimates are likely to be unreliable when the number of unknown model

parameters is large relative to the sample size, there is little difference in coefficients be-

tween adjoining regimes, or thresholds leave only few observations in one of the regimes.

In the latter case, the profile likelihood estimator can even be inconsistent as it depends

on an arbitrary trimming parameter imposing a minimum number of observations to fall

into each regime. This becomes critical when modeling spatial price transmission. The

framework of a TVECM for the study of price transmission processes is motivated by

dynamics resulting from the elimination of spatial arbitrage opportunities; these imply

that the situation that almost all of the observations are associated with a single regime

is very likely to occur in case of well-integrated markets. The aim of this thesis is to im-

prove threshold estimation, particularly in these difficult settings, in threshold regression

models in general, and ultimately to achieve this for the special case of TVECMs.

To this end, in a first paper (“Improved estimation in generalized threshold regression

models”) attention is limited to a simple generalized threshold regression model. In
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this setting, deficits of the profile likelihood estimator are analyzed and an alternative

estimator is developed. The idea of this regularized Bayesian estimator is to penalize

differences between regimes so as to keep them reasonably small when the data contain

little information. The strength of this regularizing penalty, which is fundamental to

the estimator, is determined in a data-driven manner employing the so-called empirical

Bayes paradigm. The estimator is developed in a Bayesian framework, the penalization a

result of the choice of priors. As an important consequence of the regularization, the new

estimator does not suffer from the need to choose a trimming parameter. A simulation

study shows that it clearly outperforms common estimators, especially in problematic

settings.

In a second paper (“The estimation of threshold models in price transmission analysis”),

the regularized Bayesian estimator is employed to estimate TVECMs. Even in this more

intricate model – contrary to the univariate generalized threshold regression model with

a single threshold, it is a multivariate model with multiple thresholds – the new estimator

produces better estimates than the profile likelihood estimator. Revisiting the seminal

article by Goodwin & Piggott (2001), which established TVECMs for price transmission

analysis, regularized Bayesian estimates turn out to be free of several anomalies that

characterize the profile likelihood estimates and corroborate Sephton’s (2003) doubts

that the TVECM with two thresholds is the accurate model specification for the data in

question. As a further empirical application, an investigation of spatial price transmis-

sion between German and Spanish pork markets is presented. Here, profile likelihood

estimates are determined by the trimming parameter and, hence, useless. The alterna-

tive estimator presents a method to obtain sensible estimates, and moreover, the new

estimating framework yields plausible estimates for the remaining unknown parameters.

Chapters three and four contain the respective manuscripts. To complete this the-

sis, chapter two, which contextualizes generalized threshold regression models and the

TVECM, precedes them. It provides an overview of different threshold regression mod-

els, classifies them in terms of asymptotic properties of threshold estimators, and char-

acterizes the TVECM with an emphasis on specifications which are important in price

transmission analysis. Chapter one introduces the reader to the research question, chap-

ter five concludes with a discussion of the results.
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1 Introduction

The starting point of this thesis is an estimation problem arising in price transmission

analysis. Price transmission refers to the propagation of price shocks between markets,

which typically differ in location, stage in the production process or commodity; another

important variant of price transmission analysis follows price shocks from the world

markets into local markets. Here, the focus is on spatial price transmission, that is, price

transmission between markets in different locations. This is a particularly interesting

variant of price transmission to study when looking at agricultural commodities. Since

these are expensive to transport compared to their own value, but tend to be produced

over a wide area, a complicated pattern of price dynamics in space arises (Fackler &

Goodwin, 2001).

Price transmission analysis is an important tool to assess market integration. In fact,

Fackler & Goodwin (2001) propose “that market integration is best thought of as a

measure of the degree to which demand and supply shocks arising in one region are

transmitted to another region.” The concept of market integration in turn has proven

relevant to answer a number of distinct questions. Fackler & Tastan (2008) point to

the definition of market boundaries, especially for antitrust regulation and international

trade conflicts, as well as the evaluation of the impact of market development and liber-

alization policies in developing countries. To illustrate this idea, consider interventionist

policies to prevent famines. Ravallion (1986) refers to India as an example for conflicting

views on the question of whether a government should adopt such a policy. He mentions

that the Indian government relied on the effect of the grain trader’s response to localized

scarcity during most of the nineteenth and beginning twentieth century; and cites the

local government of Madras, which during a food shortage in the 1870s put forward

that “if time were given to the market, the necessary grain would eventually come, but

time was what could not be given”. To emphasize the incertitude with respect to the
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1 Introduction

adequate position for the government to take, he then points to the fact that after inde-

pendence, the Indian government took on a strongly interventionist position. Ravallion

(1986) suggests an empirical analysis of market integration to offer a new perspective,

maybe even resolve the debate.

The current workhorse to investigate the transmission of price shocks between various

locations is the threshold vector error correction model (TVECM). Time series of prices

for the same commodity in different markets tend not to drift too far apart. Elimina-

tion of spatial arbitrage opportunities draws them towards an equilibrium. The error

correction model incorporates this dynamic by allowing for the correction of part of one

period’s disequilibrium in the subsequent period. Obviously, the possibility to profit

from spatial price differences only exists if these are greater than the transaction costs

incurred by moving goods between markets. Consequently, looking at the simplest case

of two markets, one of three different situations occurs. Traders carry goods from the

first to the second market to profit from spatial arbitrage (the price in the second market

exceeds that in the first by more than the transaction costs), no trade takes place (trans-

action costs exceed the difference in prices), or traders bring goods from the second to

the first market (the price in the first market exceeds that in the second by more than

the transaction costs). This is reflected by thresholds separating three (a larger number

when there is more than two markets involved) model regimes, which are determined by

relating the price difference to the transaction costs. In the outer regimes error correc-

tion is thought to take place, while prices move independently from another within the

middle band, that is, when spatial arbitrage opportunities are lacking.

Against this background, the estimation problem at the outset of this thesis can be

defined more precisely as the question how to best estimate the threshold parameters in

a TVECM. Histograms resembling the ones in figure 1.1 were the actual starting point.

They show the distribution of (the commonly used) profile likelihood threshold estimates

for a TVECM with three regimes. Clearly, the estimates tend to be drawn towards zero,

the lower threshold is often overestimated, the upper threshold underestimated.

What makes it difficult to estimate the threshold parameters in a TVECM? Challenges

are twofold. First, the thresholds are not the only model parameters. Especially when

the number of additional unknown parameters is high, the signal-to-noise-ratio tends

to be low and, accordingly, threshold estimation very difficult. Second, the TVECM
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Figure 1.1: Profile likelihood estimates for the lower (a) and upper (b) threshold of a
TVECM with three regimes. True values are −4 and 4, respectively.

features several nonregular aspects. The likelihood function is not differentiable with

respect to the threshold parameter; the threshold parameter space is not fixed, but

randomly increasing; identification becomes critical for certain choices of parameters.

More precisely, when there is no difference in coefficients between adjoining regimes

or the threshold is at the boundary of its domain, the TVECM turns linear and the

threshold parameter as well as part of the coefficients disappear, that is, cannot be

identified. When approaching either of these settings (that is, when differences between

regimes diminish or few observations are left in one of the regimes), estimation becomes

increasingly difficult. Such a situation is especially likely to occur in small samples and

when nuisance parameters abound. Clearly, when analyzing price transmission between

two well-integrated markets it is very likely that only few observations fall into the outer

regimes as spatial price differences exceeding transaction costs are corrected for quickly.

Thus, in price transmission analysis, settings in which estimation is complicated are not

rare artifacts, but quite frequent.

Confronted with the task to improve estimation in an intricate multivariate model with

multiple thresholds and a complicated structure of dependencies among observations,

3



1 Introduction

the natural approach is to first look for a simpler analogue to study. The set-up of

a basic univariate threshold regression model with a single breakpoint turns out to be

similar enough to share the deficits of commonly used estimators with the TVECM; yet

sufficiently simple to considerably facilitate analysis of the source of the difficulties of

commonly used estimators and allow to solve the estimation problem. Consequently, the

roadmap for this thesis is to improve threshold estimation (i) in so-called generalized

threshold regression models (GTRMs) and (ii) in TVCEMs. The idea is to achieve the

second aim by extending the strategy developed to reach the first.

The second chapter sets the stage for the investigation of the two models. As typical

of regression in general, threshold regression models relate a response variable to a lin-

ear combination of explanatory variables. Their defining characteristic are regression

coefficients which vary between regimes. The choice of regime is in turn determined by

a transition function which depends on a transition variable and a threshold parame-

ter. This vague wording indicates the wide range of models subsumed under the term

“threshold regression model”; the TVECM is one of them, the GTRM another. The

chapter provides a brief topography of threshold regression models to place these two

particular cases in context and clarify the use of the expression.

The third chapter is composed of the manuscript “Regularized Bayesian estimation in

generalized threshold regression models”. Within the framework of a GTRM, deficits of

the common estimators – the profile likelihood estimator and Bayesian estimators with

noninformative priors – are analyzed and conditions identified which exacerbate their

effect on the estimates. As alternative, the regularized Bayesian estimator is developed.

Its superior performance, especially in critical settings, is confirmed in a simulation

study. An illustration of the impact of the new estimator in two empirical applications,

one from economics, the other from ecology, completes the picture.

The fourth chapter comprises the manuscript “The estimation of threshold models in

price transmission analysis”. Here, the regularized Bayesian estimator is formulated for

the TVECM and its performance assessed for this more complex model. Resembling

the findings for GTRMs, regularized Bayesian threshold estimates for the TVECM are

clearly more reliable than common estimates. The seminal article by Goodwin & Pig-

gott (2001), which introduced threshold cointegration to price transmission analysis, is

revisited, that is, the original dataset is reestimated employing the regularized Bayesian
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estimator. The new estimates confirm Sephton’s (2003) finding that the two-threshold

TVECM is misspecified for the data in question. Moreover, transmission between Ger-

man and Spanish pork prices is explored. In this application, regularized Bayesian

estimates offer a more plausible interpretation of the data than their profile likelihood

counterparts. It becomes evident that the new estimator does indeed provide a differ-

ent perspective in empirical applications. The fifth chapter discusses the results and

concludes.

The two articles which form the core of this thesis are

- Greb, F., Krivobokova, T., Munk, A. and von Cramon-Taubadel, S. (2011). Regu-

larized Bayesian estimation in generalized threshold regression models. CRC-PEG

Discussion Paper No.99 (submitted to Bayesian Analysis)

- Greb, F., von Cramon-Taubadel, S., Krivobokova, T. and Munk, A. (2011). The

estimation of threshold models in price transmission analysis. CRC-PEG Discus-

sion Paper No.103 (submitted to American Journal of Agricultural Economics)

5



2 Threshold regression models

2.1 Characterization of threshold regression models

In this section, I define the threshold regression model, outline criteria to categorize

different model types and characterize the latter in terms of the limiting distributions of

threshold estimators. To complete the picture, I outline further extensions of the model

that have appeared in the literature.

2.1.1 Model definition and classification criteria

The term “threshold regression model” is associated with anything but a clearly defined

model. The fact that a variety of different labels is used synonymously or for specific

types of threshold regression models further complicates the situation. These include

change point models, structural change or breaks, two-phase regression, switching regres-

sion or threshold switching, time-trending regression, segmented regression, broken-line

regression and disequilibrium models.

Possibly the simplest example of a threshold regression model is a sequence of indepen-

dent normal random variables y1, . . . , yn with a change in mean,

yi =

µ1 + εi i ≤ ψ

µ2 + εi i > ψ
(2.1)

where µ1, µ2 ∈ R, σ2 ∈ R+, and εi ∼ N (0, σ2) independently for i = 1, . . . , n. One

classical dataset that lends itself to be described by this model consists of observa-

tions of annual volume of discharge from the Nile River at Aswan from 1871 until 1970

6



2 Threshold regression models

(figure 2.1). The measurements indicate an abrupt change in rainfall around the turn of

the century, which has been confirmed by records of tropical weather stations (Cobb,

1978). The estimated threshold ψ̂ = 1898 divides observations into two sets, {yi|i ≤ ψ̂}
and {yi|i > ψ̂}. Until the year 1898, observations yi are thought to have been generated

according to the mechanism governing the first regime, yi = µ1 +εi, thereafter according

to the one characterizing the second regime, yi = µ2 + εi. While model (2.1) illustrates

the idea of threshold regression, it is certainly degenerate in the sense that regressors

amount to a constant.
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Figure 2.1: Annual volume of discharge from the Nile River at Aswan. Solid black circles
represent observations in the first regime (years 1871 – 1898), grey circles
those in the second regime (years 1899 – 1971).

The extension of this simple example to a (non-degenerate) regression setting, which

in addition allows for a more flexible transition between regimes, arises naturally: A

threshold regression model describes the relationship among observations
(
yi,X

T
i , qi

)
∈

R× Rp × R, i = 1, . . . , n, if

yi = {1− T (qi, ψ)}XT
i β1 + T (qi, ψ)XT

i β2 + εi. (2.2)

T denotes the transition function, which depends both on the transition variable qi and

the threshold parameter ψ ∈ R and is bounded between zero and one, R 3 qi 7→ T (qi, ψ) ∈ [0, 1].
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2 Threshold regression models

β1 and β2 ∈ Rp are the regression coefficients and εi ∼ N (0, σ2), i = 1, . . . , n, are in-

dependent disturbances. Clearly, model (2.1) is covered by (2.2) with β1 = µ1 and

β2 = µ2, explanatory variable Xi = 1, transition variable qi = i, and transition function

T (i, ψ) = I(i > ψ); I(·) denotes the indicator function. It is sometimes advantageous to

parameterize the model in terms of the differences between regimes, δ = β2 − β1,

yi = {1− T (qi, ψ)}XT
i β1 + T (qi, ψ)XT

i β2 + εi = XT
i β1 + T (qi, ψ)XT

i δ + εi.

While the assumption of independent normal disturbances εi ∼ N (0, σ2), i = 1, . . . , n,

is often relaxed, i.e. to εi satisfying E(εi) = 0 and E(ε2
i ) < ∞, it allows to embed

model (2.2) in the framework of the generalized threshold regression model. This model

can be understood as a generalized linear model with a threshold in the “linear” predic-

tor: Observations
(
yi,X

T
i , qi

)
∈ R× Rp × R, i = 1, . . . , n, follow a generalized threshold

regression model (GTRM) if the corresponding random variables satisfy

µi = E
[
yi|XT

i , qi
]

= h(ηi), (2.3)

and

ηi = {1− T (qi, ψ)}XT
i β1 + T (qi, ψ)XT

i β2. (2.4)

h is a known one-to-one function, the inverse of the link function g = h−1. Moreover,

conditional on qi and the design vector X i, the response variables yi are assumed to be

drawn independently from an exponential family distribution with density

f(yi|ψ, φ, β1, β2) = exp

{
yiθi − b(θi)

φ
+ c(yi, φ)

}
, (2.5)

characterized by known functions b and c, a scale (or dispersion) parameter φ ∈ R+ and

the natural parameter θi = θ(µi).

There exists a vast literature on threshold regression models dating back as far as Quandt

(1958). A bibliography compiled three years ago (Khodadadi & Asgharian, 2008) lists

more than 600 papers – even though it is limited to a certain kind of threshold regres-

sion model (change point model). The variety of fields of application of these models is

remarkable. Hansen (2011) devotes an entire article to review the applications of one
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2 Threshold regression models

specific threshold regression model in different areas of economics. Beckman & Cook

(1979) mention per capita expenditure on police service, which first decreases with com-

munity size, but then suddenly jumps when policy services are added; release of myelin

basic protein into sheep’s spinal fluid; amino acid requirements for poultry. van de Geer

(1988) motivates her study with an application relating (logarithmic) lifetimes of plastic

pipes for transportation of fluids to the ratio of stress to absolute temperature and the

inverse of absolute temperature. “The idea is that at high stress and temperature the

pipes become brittle and break due to a mechanism different from the one at low stress

and temperature” (page 3). Dose-response models in toxicology present a famous ex-

emplar of non-normal threshold regression (Cox, 1987; Calabrese, Baldwin et al., 2003).

Ravallion, Chen & Sangraula (2009) determine a global poverty line on the basis of a

threshold regression model. Card, Mas & Rothstein (2008) employ a binary threshold

regression model to study extreme segregation; they examine the hypothesis that all

whites leave a neighborhood when the minority share surpasses a certain threshold level.

Worsley (1983) adds several examples including“growth in the number of local telephone

calls” and “pollen concentration in lake sediment cores”. And nearly any other article

on threshold regression opens with a similarly diverse list. Nevertheless, the literature

focuses almost exclusively on threshold models such as (2.2) with the identity as the

link function (or piecewise linear mean). A threshold regression model (2.3) – (2.5), in

which piecewise linearity is not necessarily limited to the mean, has only recently been

introduced by Samia & Chan (2011). However, they concentrate on a single type (char-

acterized by a specific transition function and variable) of GTRM and I am not aware

of other studies based on the broader framework (2.3) – (2.5). In contrast, numerous

model specifications have been studied in the Gaussian case. Hence, I will limit myself

to the latter set-up in the following classification of threshold regression models.

A first distinction in order to categorize different types of threshold regression models

is based on the transition function T . This thesis concentrates on models with a step

transition function R 3 qi 7→ I (qi > ψ) ∈ {0, 1}, i.e. equation (2.2) takes the form

yi = I(qi ≤ ψ)XT
i β1 + I(qi > ψ)XT

i β2 + εi = XT
i β1 + I(qi > ψ)XT

i δ + εi. (2.6)

Smooth transition functions – that is, monotonously increasing smooth functions bounded

between zero and one and satisfying lim
qi→−∞

T (qi, ψ) = 0 and lim
qi→∞

T (qi, ψ) = 1 for fixed

9



2 Threshold regression models

ψ – present a popular alternative. With reference to T , the respective models are called

smooth transition models. Typically, such T depends on an additional parameter γ ∈ R+

determining its smoothness. A logistic transition function

Tγ (qi, ψ) =
1

1 + exp {−γ (qi − ψ)}

is often a suitable choice of a smooth transition function. van Dijk, Teräsvirta &

Franses (2002) elaborate on this particular Tγ. They point out that Tγ approaches a

step function I (qi > ψ) as γ becomes large (figure 2.2). For γ −→ 0, the smooth tran-

sition model merges into a linear model since Tγ −→ T0 = 1/2; model (2.2) becomes

yi = XT
i (0.5β1 + 0.5β2) + εi for γ = 0. It is natural to call ψ a threshold parameter

in case of a transition function I(qi > ψ). However, it can also be considered as such

for the logistic transition function Tγ(qi, ψ), as this increases monotonically from zero

to one with qi and Tγ(ψ, ψ) = 0.5. Lubrano (2000, sections 4.2 and 5.2) treats smooth

transition functions in detail and provides further references. An extensive discussion

on smooth transition functions in Bacon & Watts (1971) complements these. It is based

on a different parameterization of (2.2), hence, puts forward different conditions for Tγ

to fulfill.

Focusing on step transition functions I(qi > ψ), a second division of threshold regression

models centers around the continuity of the regression function

I(qi ≤ ψ)XT
i β1 + I(qi > ψ)XT

i β2. (2.7)

It is called continuous if there is no jump at qi = ψ, more precisely, if XT
i (β1 − β2) =

0 for all X i such that qi = ψ. Obviously, the distinction between continuous and

discontinuous models is only meaningful if the transition variable qi is at the same time

one of the explanatory variables. Otherwise, continuity implies that XT
i (β1 − β2) = 0

holds for arbitrary X i, and hence, β1 = β2. The “threshold model” would be linear.

More explicitly, for XT
i = (1, qi, Xi,3, . . . , Xi,p), the continuity condition is equivalent to

requiring that β1,1 + β1,2ψ = β2,1 + β2,2ψ and β1,k = β2,k for k = 3, . . . , p. In this case,

(2.7) can be written as

I(qi ≤ ψ)(1, qi)

(
β1,1

β1,2

)
+ I(qi > ψ)(1, qi)

(
β2,1

β2,2

)
+ (Xi,3, . . . , Xi,p)(β1,3, . . . , β1,p)

T .

10
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Figure 2.2: (a) Logistic smooth transition function for ψ = 3 and γ = 10 (black line),
γ = 1 (darkgrey line), γ = 0.5 (lightgrey line). (b) Step transition function
for ψ = 3.

Threshold regression models are not only classified according to the transition function,

but also with respect to the transition variable. qi can be random or deterministic.

Models with a non-random transition variable qi = i are generally referred to as change

point models. I will adopt this terminology. Hence, in the following, a threshold model

is associated with a random variable qi as opposed to a change point model, for which

qi = i.

As threshold estimation is at the heart of this thesis, a more thorough consideration

of each of these four model types – discontinuous change point models, discontinuous

threshold models, continuous change point models and continuous threshold models –

will pay special attention to threshold estimators ψ̂, hence, characterize distinctions

between models in terms of the asymptotic properties of ψ̂. Before doing so, one clarifi-

cation: When dealing with change point problems, it is important to keep in mind that

analysis is based one of two fundamentally different data gathering procedures. In a

sequential setting, observations continue to arrive while statistical analysis is conducted,

whereas in a retrospective setting, the examination is based on a fixed set of observa-

11



2 Threshold regression models

tions gathered beforehand. In this thesis, all analysis is retrospective. The sequential

set-up will not be considered; see Lai (2001) for an overview on classical problems and

more recent developments. Asymptotic theory in the retrospective set-up is typically

based on the assumption that the true threshold ψ0 = [nλ0] for a proportion λ0 ∈ (0, 1)

and R 3 s 7→ [s] = max{m ∈ Z|m ≤ s} ∈ Z the greatest integer function. Clearly, this

implies that ψ0 varies with the number of observations n.

2.1.2 Discontinuous change point regression models

As outlined above, in case of a discontinuous change point model equation (2.2) can be

further characterized by

yi = I(i ≤ ψ)XT
i β1 + I(i > ψ)XT

i β2 + εi = XT
i β1 + I(i > ψ)XT

i δ + εi (2.8)

and XT
i δ 6= 0 for i = ψ. Model (2.1) is one example, figures 2.3 (a) and (b) visualize

another. Bai (1997b) develops the asymptotic theory for this model. He examines the

properties of the least squares estimators β̂1, δ̂ and ψ̂ under a suitable set of assumptions.

These guarantee that the change point ψ is bounded away from 1 and n, that there are

enough observations around ψ for it to be identifiable, and that the central limit theorem

holds, but are not too restrictive; they permit trending or lagged regressors. With β1 0, δ0

and ψ0 denoting the true parameter values, he shows that for uncorrelated disturbances

ε1, . . . , εn with variance σ2,

√
n

(
β̂1 − β1 0

δ̂ − δ0

)
d−→ N

(
0, σ2V −1

)

where
1

n


n∑
i=1

X iX
T
i

n∑
i=ψ0

X iX
T
i

n∑
i=ψ0

X iX
T
i

n∑
i=ψ0

X iX
T
i

 P−→ V ; for serially correlated and heteroscedastic

error terms ε1, . . . , εn,

√
n

(
β̂1 − β1 0

δ̂ − δ0

)
d−→ N

(
0, σ2V −1UV −1

)

12



2 Threshold regression models

whereU = lim
n−→∞

1

n


n∑

i,j≥1

E
(
X iX

T
j εiεj

) n∑
i,j≥ψ0

E
(
X iX

T
j εiεj

)
n∑

i,j≥ψ0

E
(
X iX

T
j εiεj

) n∑
i,j≥ψ0

E
(
X iX

T
j εiεj

)
. Regarding the change

point estimator ψ̂, he proves that

ψ̂ = ψ0 +OP

(
‖δ0‖−2)

and ψ̂ − ψ0
d−→ arg max

m∈Z
W (m) (2.9)

with

W (m) =


−δT0

m∑
i=1

X iX
T
i δ0 − 2δT0

m∑
i=1

X iεi m > 0

0 m = 0

−δT0
0∑

i=m+1

X iX
T
i δ0 + 2δT0

0∑
i=m+1

X iεi m < 0,

m ∈ Z, which is a two-sided random walk in case (X1, ε1), . . . , (Xn, εn) are independent.

For the special case of model (2.1), that is, Xi = 1,

W (m) =



m∑
i=1

zi m > 0

0 m = 0
0∑

i=m+1

zi m < 0,

(2.10)

m ∈ Z, where zi ∼ N
(
−δ0

2, 4δ0
2σ2
)
. Hinkley (1970) also looks at this simple situation

of a change in means (2.1) and states that ψ̂ − ψ0 converges towards the argument

maximizing a random walk with increments z̃i ∼ N (−2∆2, 4∆2) for ∆ = |δ0| /2σ. It is

easy to see that the two results are equivalent. Since arg max
m∈Z

W (m) = arg max
m∈Z

cW (m)

for any constant c ∈ R+, it holds in particular that arg max
m∈Z

W (m) = arg max
m∈Z

W̃ (m) for

W̃ (m) = W (m)/(2σ2); and W̃ is a two-sided random walk with normally distributed

increments with mean −2∆2 and variance 4∆2.

For an analysis of related models which complements the previous results with an exam-

ination of the speeds of estimation for the discontinuous change point model, not only

when the true model is discontinuous, but also when it is continuous see van de Geer

(1988, in particular examples 6.6 and 6.7).
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Figure 2.3: Simulated data for different types of threshold regression models. (a)–(d)
Discontinuous model yi = 10XiI(qi ≤ 20) +XiI(qi > 20) + εi, Xi ∼ N (0, 1),
and qi = i in (a)/(b), qi ∼ N (18, 8) in (c)/(d). (e)–(f) Continuous model
yi = (4− 5qi)I(qi ≤ 20) + (1 + 5qi)I(qi > 20) + εi, qi = i in (e), qi ∼ N (0, 5)
in (f). In all examples εi ∼ N (0, 1) and i = 1, . . . , 100.

Clearly, the asymptotic distribution of ψ̂ not only depends on the true difference be-

tween regimes δ0, but also on the distribution of the disturbances εi and the covariates

X i, which is usually unknown. A strategy to obtain a limiting distribution that is us-

able in practice is to assume a diminishing difference between regimes. The resulting

asymptotics can then be considered as an approximation for the case of a fixed shift. Bai

(1997b) traces this idea back to Picard (1985), Bhattacharya (1987), and Yao (1987),

who solved related problems, and transfers it to the discontinuous change point regres-

sion model. He develops the asymptotic distribution of the least squares estimator ψ̂

given differences that converge to zero with increasing sample size, more explicitly, given
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2 Threshold regression models

δn = δ0νn for νn ∈ R+ such that νn −→ 0 and n0.5−ρνn −→∞ for some ρ ∈ (0, 0.5) and

δ0 6= 0. In the literature, this setting is sometimes referred to as “contiguous change”.

He derives a consistency result,

ψ̂ = ψ0 +OP

(
‖δn‖−2) .

Under additional assumptions, which ensure a functional central limit theorem and sta-

tionarity of (X i, εi) within each regime, he proves that(
δTnΦ1δn

)2

δTnΩ1δn

(
ψ̂ − ψ0

)
d→ arg max

s∈R
Z(s) (2.11)

where

Z(s) =

B1(−s)− |s| /2 s ≤ 0
√
φB2(s)− ω |s| /2 s > 0,

with

φ =
(
δT0 Φ2δ0

)/ (
δT0 Φ1δ0

)
and ω =

(
δT0 Ω2δ0

)/ (
δT0 Ω1δ0

)
,

Φ1 = E(X iX
T
i ) for i = 1, . . . , ψ0, and Φ2 = E(X iX

T
i ) for i = ψ0 + 1, . . . , n,

Ω1 = lim
n→∞

E

(
1/
√
ψ0

ψ0∑
i=1

X iεi

)2

and Ω2 = lim
n→∞

E

(
1/
√
n− ψ0

n∑
i=ψ0+1

X iεi

)2

.

In addition, he underlines two special cases subsumed under the general statement (2.11).

If Φ1 = Φ2 and Ω1 = Ω2 (which implies φ = ω = 1) hold, the asymptotic distribution

reduces to (
δTnΦ1δn

)2

δTnΩ1δn

(
ψ̂ − ψ0

)
d−→ arg max

s∈R
{B(s)− |s| /2} ,

B(s) a two-sided Brownian motion, B(s) = B1(−s)I(s ≤ 0) + B2(s)I(s > 0). The

result furthers simplifies for uncorrelated errors ε1, . . . , εn with variance σ2. In this case

Ω1 = σ2Φ1, hence,

δTnΦ1δn
σ2

(
ψ̂ − ψ0

)
d−→ arg max

s∈R
{B(s)− |s| /2}

(see also Hušková, 1996). The distribution function of arg max
s∈R
{B(s)− |s| /2} is known
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(Bhattacharya & Brockwell, 1976).

While Bai (1997b) develops asymptotic theory for the least squares estimator, Bhat-

tacharya (1994) obtains analogous results for the maximum likelihood estimator. Hušková

& Antoch (2001) look at M-estimators in general. Both of these articles also assume

differences δn which approach zero for n → ∞ at a rate slower than
√
n. Although the

scaling factor is different, again convergence is towards arg max
s∈R
{B(s)− |s| /2} (Hušková

& Antoch, 2001, theorem 2.1).

2.1.3 Discontinuous threshold regression models

In contrast to the discontinuous change point model, the transition variable qi is a

random variable in the discontinuous threshold regression model. Hence, the latter can

be written as

yi = I(qi ≤ ψ)XT
i β1 + I(qi > ψ)XT

i β2 + εi = XT
i β1 + I(qi > ψ)XT

i δ + εi, (2.12)

where XT
i δ 6= 0 for qi = ψ, and qi is assumed to be a continuous random variable with

distribution G, X i ∼ G, and density g. Panels (c) and (d) of figure 2.3 depict a simple

example.

Yu (2012) derives consistency and presents the asymptotic distribution of the maximum

likelihood estimators β̂, β =
(
βT1 ,β

T
2

)T
, and ψ̂ for independently and identically dis-

tributed
(
y1,X

T
1 , q1

)
, . . . ,

(
yn,X

T
n , qn

)
. He presupposes a set of standard assumptions

in nonlinear parametric estimation (Yu, 2012, appendix A, remark 1), augmented by a

condition to ensure discontinuity. As an example, he points out that all of his assump-

tions are satisfied when εi is independent of (XT
i , qi) and εi ∼ N (0, 1), i = 1, . . . , n. He

shows that

β̂ = β0 +OP

(
n−1/2

)
(2.13)

and

√
n
(
β̂ − β0

)
d−→ N

(
0,J −1

)
, (2.14)
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with J the information matrix (of the regression coefficients β.) For the maximum

likelihood estimator of the threshold parameter, ψ̂, he derives consistency

ψ̂ = ψ0 +OP

(
n−1
)

(2.15)

and the asymptotic distribution

n
(
ψ̂ − ψ0

)
d−→M−, [M−,M+) = arg max

s
D(s). (2.16)

D(s) is defined via two compound Poisson processes,

D(s) =


P1(|s|)∑
i=1

z1i s ≤ 0

P2(s)∑
i=1

z2i s > 0.

Pk(s), k = 1, 2, are two independent Poisson processes with intensity g(ψ0). z1i and z2i

are random variables quantifying the impact of a threshold parameter ψ that is smaller or

larger than the true threshold ψ0, ψ < ψ0 or ψ > ψ0, respectively, on the likelihood ratio

process of the model: Denoting the density of the disturbances εi by f , random variables

z̄1i = log
{
f
(
yi −XT

i β2

)/
f
(
yi −XT

i β1

)}
and z̄2i = log

{
f
(
yi −XT

i β1

)/
f
(
yi −XT

i β2

)}
are defined. For ∆ > 0, z1i is then specified as a random variable following the limit-

ing conditional distribution of z̄1i given ψ0 −∆ < qi ≤ ψ0 when ∆ → 0; z2i in turn is

distributed as z̄2i given ψ0 < qi ≤ ψ0 + ∆ when ∆→ 0.

For a more restricted setting, i.e. for XT
i = (1, Xi2) and qi = Xi2, Koul & Qian

(2002) prove an analogous result. For this simpler model Koul, Qian & Surgailis (2003)

generalize findings to cover M-estimators. In a time-series setting, Chan (1993) shows

that the asymptotic distribution of the least squares estimator ψ̂ involves a compound

Poisson process. He considers the so-called self exciting threshold autoregressive model,

that is, random variables Xi, i ∈ Z, generated according to

Xi =

β10 + β11Xi−1 + · · ·+ β1pXi−p + εn Xi−d ≤ ψ

β20 + β21Xi−1 + · · ·+ β2pXi−p + εn Xn−d > ψ,
(2.17)

with βk = (βk0, . . . , βkp)
T ∈ Rp+1, k = 1, 2, ψ ∈ R, d ∈ N the parameter specifying the
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lag of the transition variable, and εi, i ∈ Z, a series of errors with zero mean and finite

variance. Qian (1998) develops the asymptotic theory for maximum likelihood estimators

in Chan’s (1993) modeling framework. As mentioned before, little attention has been

paid to the GTRM (2.3) - (2.5). However, the case of a discontinuous model with random

transition variable and step transition function has been investigated (Samia & Chan,

2011). Findings are analogous to (2.13) - (2.16).

As the discontinuous change point model (2.8) is closely related to the discontinuous

threshold model (2.12) with qi ∼ U [0, 1], it is interesting to establish the link between

the asymptotic distributions (2.9) and (2.16). Yu (2012, section 3.2) comments on this.

He argues that in a change point model “qi essentially follows the uniform distribution

on [0, 1] which is independent of (XT
i , εi), although its support is only a set of discrete

points qi ∈ {0, 1/n, . . . , (n− 1)/n, 1}”. From that he infers that i) for the change point

model z̄ki = zki and ii) the interarrival time τki of jumps in the Poisson processes Pk(s)
equals one for k = 1, 2 and i ∈ N. He explains the latter with the fact that the τki are

independently and identically exponentially distributed with mean 1/g(ψ0), i.e. with

mean one for the uniform density g = I ([0, 1]). With the interarrival time identical to

that of a random walk, it suffices to take a closer look at zki to see the correspondence

between (2.9) and (2.16). For the simplest case of model (2.1), that is, XT
i β1 = µ1,

XT
i β2 = µ2, and f the normal density (with mean zero and variance σ2)

z1i = log
{
f
(
yi −XT

i β2

)/
f
(
yi −XT

i β1

)}
= − 1

2σ2
(yi − µ2)2 +

1

2σ2
(yi − µ1)2

=
1

2σ2

{
2 (µ2 − µ1) yi + µ2

1 − µ2
2

}
,

which, taking into account that yi ∼ N (µ1, σ
2), means that

z1i ∼ N

(
1

2σ2

{
2 (µ2 − µ1)µ1 + µ2

1 − µ2
2

}
,
(µ2 − µ1)2

σ2

)
= N

(
−2∆2, 4∆2

)
for ∆ = |µ2 − µ1| /2σ. With analogous calculations for z2i, this yields Hinkley’s (1970)

findings (compare with (2.10)).

As in the case of the change point model (2.8) the asymptotic distribution (2.16) for
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a discontinuous threshold regression model (2.12) with fixed change between regimes

depends on the distributions of εi and X i as well as the unknown regression coefficients

β1 and β2. It is, thus, not very useful in practice. Seo & Linton (2007) suggest to

employ a smoothed estimator to cope with these difficulties. As an alternative to the

least squares estimator obtained as the argument maximizing the objective function

1

n

n∑
i=1

{
yi −XT

i β1 −XT
i δI(qi > ψ)

}2

=
1

n

n∑
i=1

(
yi −XT

i β1

)2
+

1

n

n∑
i=1

{(
XT

i δ
)2 − 2XT

i δ
(
yi −XT

i β1

)}
I(qi > ψ),

they consider an objective function

1

n

n∑
i=1

(
yi −XT

i β1

)2
+

1

n

n∑
i=1

{(
XT

i δ
)2 − 2XT

i δ
(
yi −XT

i β1

)}
K
(
qi − ψ
hn

)
. (2.18)

They propose to replace I(qi > ψ) by a smooth and bounded function R 3 s 7→ K(s) ∈ [a, b]

which satisfies lim
s→−∞

K(s) = 0 and lim
s→∞
K(s) = 1. K(s) = F (s)− sf(s), F and f the

standard normal cumulative distribution and density functions, respectively, is an ex-

ample for such K. hn ∈ R+ is a bandwidth parameter. Seo & Linton (2007, section

3) prove that this smoothed least squares estimator is consistent and asymptotically

normally distributed, hence, allows for standard inference techniques. The rate of con-

vergence for the smoothed estimator,
√
nh−1

n , is influenced by the bandwidth hn and

slower than n (as in (2.16)).

Another method to obtain a feasible asymptotic distribution for the threshold estimator

is to proceed as in section 2.1.2 and assume diminishing differences δn. Hansen (2000)

employs this paradigm. He assumes differences δn = δ0n
−ρ, δ0 6= 0 and 0 < ρ < 0.5.

For strictly stationary observations
(
y1,X

T
1 , q1

)
, . . . ,

(
yn,X

T
n , qn

)
with certain mixing

properties (hence, excluding integrated series or trending regressors, but still flexible

enough to include the threshold autoregressive model, for example) and continuously

distributed qi, he develops the asymptotic distribution of the least squares estimator ψ̂:

n1−2ρ

(
δT0 Φδ0

)2
g(ψ0)

δT0 Ωδ0

(
ψ̂ − ψ0

)
d−→ arg max

s
{B(s)− |s| /2} , (2.19)

19



2 Threshold regression models

where as above Bk(s), k = 1, 2, are two independent Brownian motions on [0,∞),

Bk(0) = 0, and B(s) = B1(−s)I(s ≤ 0) + B2(s)I(s > 0). Φ = E(X iX
T
i |qi = ψ0) and

Ω = E
(
X iX

T
i ε

2
i |qi = ψ0

)
.

Substituting δ0n
−ρ by δn and multiplying Ω by 1/n to create an “equivalent” to Ωk in

(2.11) makes the analogy between (2.11) and (2.19) even more evident,

n1−2ρ

(
δT0 Φδ0

)2
g(ψ0)

δT0 Ωδ0

=

(
δTnΦδn

)2
g(ψ0)

δTn (Ω/n) δn

As Hansen (2000) points out, “the difference is that the asymptotic precision of ψ̂ is pro-

portional to the matrix E
(
X iX

T
i |qi = ψ0

)
while in the change point case the asymptotic

precision is proportional to the unconditional moment matrix E
(
X iX

T
i

)
.” He further

notes that the asymptotic distribution of ψ̂ becomes less dispersed with larger g(ψ0), i.e.

with an increasing number of observations close to the true threshold, and δ0, i.e. when

the difference between regimes grows, which is very intuitive. Moreover, he underlines

the reduced rate of convergence compared with the case of fixed differences.

2.1.4 Continuous change point regression models

In a continuous change point regression model equation (2.2) takes the form

yi = I(i ≤ ψ) (β11 + β12i) + I(i > ψ) (β21 + β22i) + (Xi,3, . . . , Xi,p)(β1,3, . . . , β1,p)
T + εi,

ψ = (β11 − β21)
/

(β22 − β12). Ignoring the regressors not affected by the threshold,

Xi,3, . . . , Xi,p, the model simplifies to

yi = I(i ≤ ψ) (β11 + β12i) + I(i > ψ) (β21 + β22i) + εi, ψ =
β11 − β21

β22 − β12

. (2.20)

An example is visualized in figure 2.3 (e). The results of Feder’s (1975) examination of

the more general model

yni = I (i ≤ nψ) f1 (θ1, i/n) + I(i > nψ)f2 (θ2, i/n) + εi, i = 1, . . . , n
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where fk (θk, t) are functions that can be represented as fk (θk, t) =
p(k)∑
j

θkjfkj(t) for

θk ∈ Rp(k) and suitable [0, 1] 3 t 7→ fkj(t) ∈ R, j = 1, . . . , J(k) and k = 1, 2, with

f1 (θ1, ψ) = f2 (θ2, ψ) for continuity, apply to the piecewise linear model (2.20) in par-

ticular. When comparing this section’s findings with those stated in section 2.1.2, it is

important to keep in mind that here ψ has been rescaled by a factor 1/n. It is essentially

equal to the proportion λ ∈ (0, 1) defined by ψ = [nλ] in section 2.1.1. While now obser-

vations are taken at time points t = 1/n, . . . , (n− 1)/n, 1, that is ψ ∈ (0, 1), time ranges

from t = 1, . . . , n and ψ ∈ {1, . . . , n} in section 2.1.2 and accordingly ψ ∈ {1, . . . , n}.

Assuming appropriate identifiability conditions, Feder (1975) proves consistency for the

least squares estimators of the regression coefficients β = (β11, β12, β21, β22)T ,

β̂ = β0 +OP

(
n−1/2

√
log log n

)
,

and the threshold parameter ψ,

ψ̂ = ψ0 +OP

(
n−1/2

√
log log n

)
(Feder, 1975, theorem 3.18). He further states that

√
n
(
β̂ − β0

)
d−→ N

(
0,J −1

)
with J the information matrix,

J =
ψ0

σ2


1 ψ0/2 0 0

ψ0/2 ψ2
0/3 0 0

0 0 1 ψ0/2

0 0 ψ0/2 ψ2
0/3

 ,

and
√
n
(
ψ̂ − ψ0

)
d−→ N

(
0,γJ −1γT

)
,

where γ = (1, ψ0,−1,−ψ0)
/

(β22 − β12) (Feder, 1975, page 77). With reference to an

empirical investigation, Hinkley (1969a) remarks that this asymptotic distribution of ψ̂

does not present a good approximation in small samples and, consequently, discusses an
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alternative (see also Hinkley, 1969b).

2.1.5 Continuous threshold regression models

The specific version of equation (2.2)

yi = I(qi ≤ ψ) (β11 + β12qi) + I(qi > ψ) (β21 + β22qi)

+ (Xi,3, . . . , Xi,p)(β1,3, . . . , β1,p)
T + εi

characterizes a continuous threshold regression model when ψ = (β11 − β21)
/

(β22 − β12)

and qi ∼ G, i = 1, . . . , n, are random variables, which are continuously distributed

according to G. Figure 2.3 (f) illustrates the model for a simple example. I am not

aware of asymptotic results for this general model formulation. However, Chan & Tsay

(1998) study the special case of a continuous self exciting threshold autoregressive model

(2.17) restricted to satisfy XT
i (β1 − β2) = 0 if Xi−d = ψ. Since continuity implies that

β1j = β2j for j 6= d, it is in this case possible to express (2.17) as

Xi = β0 +

p∑
j=1,j 6=d

βjXi−j +

β1d (Xi−d − ψ) + εi Xi−d ≤ ψ

β2d (Xi−d − ψ) + εi Xi−d > ψ

for β0 = β10 + ψβ1d and βj = β1j, j 6= d. Chan & Tsay (1998, theorem 2.1) show that

the least squares estimators for β = (β0, β1, . . . , βd−1, β1d, β2d, βd+1, . . . , βp) and ψ are

strongly consistent, (
β̂, ψ̂

)
−→ (β0, ψ0) almost surely,

when β1d 6= β2d, Xi, i ∈ Z, is stationary and ergodic, has finite second moments and the

distribution of (X1, . . . , Xp)
T is stationary and positive everywhere.

In addition, they derive the asymptotic distribution of the estimators. Assuming that

Xi, i ∈ Z, is stationary, satisfies certain mixing criteria, has a density function that is

positive everywhere and bounded over a neighborhood of ψ0, E (|Xi|q) < ∞ for some

q > 2, and β1d 6= β2d, they show that

√
n
(
β̂, ψ̂

)
d−→ N

(
0, σ2J −1

)
,
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where J = E
(
SiS

T
i

)
and Si the vector of the derivatives of

Xi − β0 −
p∑

j=1,j 6=d

βjXi−j −

β1d (Xi−d − ψ) Xi−d ≤ ψ

β2d (Xi−d − ψ) Xi−d > ψ

with respect to (β, ψ), i.e.

Si =
{
− 1,−Xi−1, . . . ,−Xi−d+1,− (Xi−d − ψ)−,−(Xi−d − ψ)+, . . .

−Xi−p, β1dI(Xi−d ≤ ψ) + β2dI(Xi−d > ψ)
}T
.

Since the derivative with respect to ψ is not defined at Xi−d = ψ, it is by convention set

equal to β1d (Chan & Tsay, 1998, theorem 2.2).

2.1.6 Models with multiple thresholds

In this section, I comment on the extension of the models discussed in sections 2.1.2

through 2.1.5 to cover multiple instead of a single threshold. Bai & Perron (1998) study

a version of the change point model (2.8) with J breaks,

yi =
J∑
j=0

XT
i βjI(ψj ≤ i < ψj+1) + εi,

0 = ψ0 < ψ1 < . . . < ψJ < ψJ+1 = n. They prove a consistency result (Bai & Perron,

1998, proposition 1) and derive asymptotic normality for the least squares estimator of

the regression coefficients (proposition 3). Before analyzing the limiting distribution of

the least squares estimator ψ̂ = (ψ̂1, . . . , ψ̂J)T , they note that “as in the single break

case, the usual limiting distribution of the break dates obtained specifying fixed magni-

tudes of changes depends on the exact distribution of the pair (XT
i , εi)”. Consequently,

they propose to develop the asymptotic distribution within a framework of diminishing

differences between regimes with increasing sample size. In analogy to the case of two

regimes, for j = 1, . . . , J they assume that βn,j+1 − βn,j = δn,j = δ0,jνn for δ0,j inde-

pendent of n and νn ∈ R+ satisfying νn −→ 0 and n0.5−ρνn −→∞ for some ρ ∈ (0, 0.5).

For suitably defined Φj, φ1,j, φ2,j, ωj and two independent Wiener processes on [0,∞)

23



2 Threshold regression models

starting at zero, B
(j)
k (s), k = 1, 2 and j = 1, . . . , J , they form

Z(j)(s) =

φ1,jB
(j)
1 (−s)− |s| /2 s ≤ 0

φ2,j
√
ωjB

(j)
2 (s)− ωj |s| /2 s > 0,

and show that for each j

(
δT0,jΦjδ0,j

)
ν2
n

(
ψ̂j − ψ0,j

)
d→ arg max

s
Z(j)(s). (2.21)

Hence, the limiting distribution for the single change point case generalizes to the case

of multiple change points. Perron & Qu (2006) complement these findings proving that

imposing restrictions on the model (for example, that different nonadjacent regimes

are identical) does not affect the limiting distribution of the least squares estimator ψ̂.

However, they stress that all model parameters are estimated more efficiently in small

samples when restrictions are taken into account.

Since it can be computationally very expensive to estimate a large number of change

points simultaneously, Bai (1997a) investigates the idea of estimating them one at a

time. This procedure yields n-consistent estimates (Bai, 1997a, proposition 2). Perron

(2006, section 3.5) explains this as follows: “When estimating a single break model in

the presence of multiple breaks, the estimate of the break fraction will converge to one

of the true break fractions, the one that is dominant in the sense that taking it into

account allows for greatest reduction in the sum of squared residuals. Then, allowing

for a break at the estimated value, a second one break model can be applied which

will consistently estimate the second dominating break and so on.” Bai (1997a) finds

that the limiting distribution for the sequential estimators is distinct from that of the

simultaneous estimator. While the latter depends on the parameters characterizing

regimes j and j + 1 for the j-th change point, the limiting distribution of the j-th

sequentially estimated change point involves more model parameters. He suggests a re-

estimation strategy based on initial sequential estimates to overcome this problem (Bai,

1997a, section 6) and obtains the same limiting distribution as for the simultaneous

estimator employing this “repartition” method.

Multiple threshold versions of the discontinuous threshold regression model (2.12) have

been considered by Ciuperca & Dapzol (2008), Fujii (2008) and Chan & Kutoyants
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(2010b). Ciuperca & Dapzol (2008) study the piecewise linear model

yi =
J∑
j=0

(1, Xi)βjI(ψj ≤ Xi < ψj+1) + εi

with βj ∈ R2, 0 = ψ0 < ψ1 < . . . < ψJ < ψJ+1 = 1, and Xi ∼ G with continuous density

g on (0, 1). They impose discontinuity, i.e. require that βj,1 − βj−1,1 6= (βj−1,2 − βj,2)ψj

for j = 1, . . . , J . They prove consistency of the maximum likelihood estimator ψ̂ = (ψ̂1, . . . , ψ̂J)T ,

ψ̂ = ψ0 +OP

(
n−1
)
,

and show that the limit of the likelihood process amounts to a sum of J independent

random processes D(j)(s) = D
(j)
1 (−s)I(s ≤ 0) + D

(j)
2 (s)I(s > 0), j = 1, . . . , n. Here,

D
(j)
k (s), k = 1, 2, are independent compound Poisson processes with rate g(ψ0j) on

[0,∞), which start at zero (Ciuperca & Dapzol, 2008, theorems 3.2 and 3.5). As in the

case of a single threshold, the limiting distribution is

n
(
ψ̂ − ψ0

)
d−→M−. (2.22)

However, M− is now a vector, M− = (M1−, . . . ,MJ−), and Mj− defined by

[Mj−,Mj+) = arg max
s
D(j)(s).

Chan & Kutoyants (2010b, section 7) touch upon multiple thresholds in the context of

the J-regime self-exciting threshold autoregressive model. They outline how to deduce

the limit likelihood ratio and come up with a similar result as Ciuperca & Dapzol (2008)

involving J compound Poisson processes. While Ciuperca & Dapzol (2008) as well as

Chan & Kutoyants (2010b) develop asymptotic results assuming a fixed magnitude of

shift between regimes, Fujii (2008) also takes care of a magnitude of shift which converges

to zero. He examines the model

yi =
J+1∑
j=1

fj(Xi)I(ψj−1 ≤ Xi < ψj) + εi

where (0, 1) 3 t 7→ fj(t) ∈ R are known L2-integrable functions, and, as above,
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0 = ψ0 < ψ1 < . . . < ψJ < ψJ+1 = 1 while Xi ∼ G with continuous density g on (0, 1).

Although this model does not cover piecewise linear regression (unless all regression co-

efficients are known and there is a single explanatory variable apart from a constant), I

include Fujii’s (2008) findings to complete the picture. In addition to investigating fixed

differences between regimes and deriving an analogue of (2.22), he studies the limiting

distribution of the maximum likelihood estimator ψ̂ given a decreasing magnitude of

shifts with growing number of observations. Assuming that fj+1(t) = fj(t) + δ0,jνn for

constant δ0,j ∈ R and νn satisfying νn −→ 0 and nν2
n −→∞ as n→∞, he shows that

ψ̂j − ψ0j
d−→ arg max

s

{
B(j) (γjs)− γj |s| /2

}
. (2.23)

For j = 1, . . . , J , γj varies with δ0,j, g(ψ0j) and the distribution of εi, and

B(j)(s) = B
(j)
1 (−s)I(s ≤ 0) +B

(j)
2 (s)I(s > 0),

B
(j)
1 and B

(j)
2 two independent Brownian motions on [0,∞), B

(j)
1 (0) = B

(j)
2 (0) = 0.

Clearly, for discontinuous models both with deterministic and random transition vari-

able, asymptotic properties of the threshold estimator for models with a single threshold

generalize to the multiple threshold setting in a natural way. Regarding continuous

models, Feder (1975) actually develops his asymptotic results presented in section 2.1.4

for the multiple-regime model. Hence, asymptotic normality continuous to hold in case

of the continuous multiple change point model.

2.1.7 Further generalizations

This section contains brief remarks on regime-dependent heteroscedasticity, multivariate

threshold regression models and generalizations of the transition variable. The purpose

is solely to highlight different possibilities to generalize the above models that have been

explored in the literature; theoretical properties are not regarded.

One obvious generalization of a model

yi = I(qi ≤ ψ)XT
i β1 + I(qi > ψ)XT

i β2 + εi, εi ∼ N
(
0, σ2

)
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is to incorporate error terms whose distribution varies according to regime,

yi = I(qi ≤ ψ)
(
XT

i β1 + σ2
1εi
)

+ I(qi > ψ)
(
XT

i β2 + σ2
2εi
)
, εi ∼ N (0, 1) .

Several of the studies extensively drawn upon in the preceding sections allow for regime-

dependent heteroscedasticity (Yu, 2012; Bai, 1997b; Chan & Tsay, 1998), yet not all of

them (Hansen, 2000; Feder, 1975). There are also articles explicitly focusing on changes

in variance between regimes (Horváth, Hušková & Serbinowska, 1997).

Another natural idea is to try and extend results to cover multivariate models. The

most comprehensive treatment of a multivariate version of the discontinuous change

point regression model is delivered by Qu & Perron (2007). They look at the model

yi =
J∑
j=0

(
XT

i βj + εji
)
I(ψj ≤ i < ψj+1) (2.24)

and further specify the regressor matrix as XT
i =

(
Im ⊗ zTi

)
S. Here, yi and εji ∈ Rm,

zi ∈ Rq is the vector of regressors, Im ∈ Rm×m the identity matrix and S ∈ Rmq×p

the matrix selecting the regressors to enter each of the equations. Regime-dependent

parameters include βj ∈ Rp and the covariance matrix Σj of the errors. Qu & Per-

ron (2007) name vector autoregressive and linear panel data models as well as partial

structural change models as examples of (2.24) which also comply with their further as-

sumptions necessary to allow for a mathematical treatment. Their asymptotic results for

a (restricted) quasi maximum likelihood estimator (based on a Gaussian distribution of

the disturbances) are qualitatively similar to those seen above (equation (2.21), section

2.1.2). As an example, for differences between regimes of a fixed magnitude and given

Σj = σ2Im for j = 1, . . . , J ,

ψ̂j − ψ0j
d−→ arg max

m∈Z
W (j)(m)
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with

W (j)(m) =



−
ψ0j+m∑
i=ψ0j+1

(
δT0jX iX

T
i δ0j

)
/(2σ2) +

ψ0j+m∑
i=ψ0j+1

(
δT0jX iεji

)
/σ2 m > 0

0 m = 0

−
ψ0j∑

i=ψ0j+m

(
δT0jX iX

T
i δ0j

)
/(2σ2)−

ψ0j∑
i=ψ0j+m

(
δT0jX iεji

)
/σ2 m < 0,

m ∈ Z, δ0j = β0j − β0j+1, for j = 1, . . . , J . For diminishing change, they prove a

limiting distribution resembling (2.23). An important aspect of a multivariate modeling

framework is underlined by Perron (2006, section 3.6). He emphasizes potential efficiency

gains by examining a system of equations jointly: “The precision of a particular break

date in one equation can increase when the system includes other equations even if the

parameters of the latter are invariant across regimes. All that is needed is that the

correlation between errors is non-zero. While surprising, this result is ex-post fairly

intuitive since a poorly estimated break in one regression affects the likelihood function

through both the residual variance of that equation and the correlation with the rest

of the regressions. Hence, by including ancillary equations without breaks, additional

forces are in play to better pinpoint break dates.”

A different suggestion to go beyond model (2.6) concentrates on the transition variable qi.

Tishler & Zang (1979) analyze a model

yi =

XT
i β1 + εi qTi π ≤ 0

XT
i β2 + εi qTi π > 0,

(2.25)

that is, allow for an m-vector qi of transition variables instead of a single scalar variable

(apart from a constant). The switch between regimes is then determined by a linear

combination qTi π of these transition variables which depends on an unknown“threshold”

parameter π ∈ Rm. Cast this way, the original model (2.6) arises when the transition

variable is specified as (1, qi) and π = (−ψ, 1). Another example for the treatment

of such a more general model is Seo & Linton (2007). Bauwens, Lubrano & Richard

(1999, section 8.6) discuss a restricted version of (2.25), which appears in the economics

literature as “disequilibrium model”. First, regimes do not have common explanatory

variables. This means that for XT
i βk written as XT

i βk = XT
1iβk1 +XT

2iβk2, k = 1, 2,
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it is known that β12 = β21 = 0. Second, qTi π = XT
1iβ11 −XT

2iβ22. This special case of

model (2.25) can equivalently be expressed as

yi = min
(
XT

1iβ11,X
T
2iβ22

)
+ εi.

van de Geer (1988) further generalizes (2.25) to

yi =

XT
i β1 + εi X i ∈ A

XT
i β2 + εi X i /∈ A,

with A varying in a class A of subsets of Rp. She analyzes this model for non-random

X i and investigates conditions on A to guarantee consistency and asymptotic normality

of the least squares estimator β̂. Pole & Smith (1985) similarly allow for a more flexible

mechanism to switch between regimes by formulating a model

yi =

X
T
i β1 + εi g (π, qi) ≤ 0

XT
i β2 + εi g (π, qi) > 0

for some function g, Rq × Rm 3 (π, qi) 7→ g (π, qi) ∈ R.

When taking into account more than just a scalar transition variable, it is natural to think

of including both deterministic and random elements. van Dijk, Teräsvirta & Franses

(2002, section 3.2) comment on this idea in the context of threshold regression models

with smooth transition function (so-called smooth transition autoregressive models).

With respect to these time-series models, they point out that “despite a large amount of

evidence indicating that both nonlinearity [a random transition variable] and structural

change [a time index as transition variable] are relevant for many time series, to date

these features have mainly been analyzed in isolation. A reason for this dichotomy

may be that nonlinearity, and regime-switching behavior in particular, and structural

change can be regarded as competing alternatives to linearity and it might be difficult to

distinguish between the two.” Within the framework of smooth transition autoregression,

the TVSTAR (time-varying smooth transition autoregression) incorporates this type of

dynamic. Here, one of the transition variables is random, the other a time-index. van
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Dijk, Teräsvirta & Franses (2002) state this model as

yi = {1− T1 (qi, ψ1)}XT
i β1(i) + T1 (qi, ψ1)XT

i β2(i) + εi,

and

βk(i) = {1− T2 (i, ψ2)}βk1 + T2 (i, ψ2)βk2, k = 1, 2.

T1 and T2 are two transition functions. For a detailed analysis, they refer to Lundbergh,

Teräsvirta & Van Dijk (2003).

Lastly, the condition that transition variables be exogenous (which has not been explic-

itly discussed here, but is assumed in many important contributions such as Hansen,

2000, for example) might be relaxed. A recent article by Kourtellos, Stengos & Tan

(2011) examines this possibility.

Note that it is clear from the definition of a threshold regression model in this thesis, that

the transition variable qi is observed. An unobservable qi opens up a whole new domain

of models. Hidden Markov models are a famous example (Zucchini & MacDonald, 2009;

Cappé, Moulines & Rydén, 2005).

2.2 Threshold vector error correction model

The threshold vector error correction model is a rather intricate threshold regression

model, not only because it is multivariate and a time series model, but because the

threshold is only one of its ingredients, cointegration the other. Hence, I begin this

section with a brief account on cointegration and error correction. Thereafter, I introduce

the concept of threshold cointegration, define the threshold vector error error correction

model and comment on some versions of it which are often encountered in empirical

applications. Even though asymptotic theory is not a main concern in this section, a

remark on the limiting distribution of the threshold estimator is included to establish

the link to the first part of the chapter.
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2.2.1 Cointegration and error correction

Engle & Granger (1987) begin their seminal paper on cointegration and error correction

with the sentences “An individual economic variable, viewed as a time series, can wander

extensively and yet some pairs of series may be expected to move so that they do not

drift too far apart. Typically, economic theory will propose forces which tend to keep

such series together.” Prices for the same good observed at spatially different markets

are certainly an example of such series. Arbitrage is the mechanism theory suggests to

explain their co-movement: If the tomato price goes up in one village, traders from the

neighboring villages prefer to sell their tomatoes there. As a result, supply decreases at

home and increases in the village with the higher price. This in turn means that the

price at home moves up while the grown supply in the place that first experienced the

price shock causes it to become smaller again there. Hence, prices are drawn together.

To formalize this notion, Engle & Granger (1987) coin the term “cointegration”. In the

following, I will review some basic concepts used to analyze time series (cf. van der

Vaart, 2010) to set the stage for a precise definition of cointegration.

A time series Xt, t ∈ Z, that is, a sequence of random variables with the index interpreted

as time, is called (weakly) stationary if and only if

(i) there exists µ ∈ R such that E(Xt) = µ for all t ∈ Z,

(ii) there exists a function Z 3 τ 7→ γ(τ) ∈ R such that cov(Xt, Xt+τ ) = γ(τ) for all t

and τ ∈ Z.

An example of a stationary series is a sequence of independent, identically distributed

random variables εt, t ∈ Z, with var(εt) = σ2, in other words, with γ(τ) = σ2I (τ = 0). If

µ = 0, such a series is called white noise (see figure 2.4 (a)). Maybe the most important

class of time series models is that of autoregressive moving average models. These can

be perceived as linear regression transferred to a time series setting – the present value

of the series is expressed as a linear combination of previous values of the series itself

as well as the present and lagged values of a white noise series. More formally, a time

series Xt, t ∈ Z, is an autoregressive moving average series of order (p, q) (in short, an

ARMA(p, q) series) if there exist real numbers ϑ0, . . . , ϑp and π0, . . . , πq as well as a
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Figure 2.4: Simulated data for different types of times series. (a) Stationary series, (b)
integrated series of order 1, and (c) cointegrated series of order (1, 1).

white noise series εt, t ∈ Z, such that

p∑
i=0

ϑiXt−i =

q∑
i=0

πiεt−i.

van der Vaart (2010) remarks that this equation is meant to hold “pointwise almost

surely”. It is satisfied for almost every ω ∈ Ω, where (Ω,A, P ) is the probability

space on which the random variables Xt and εt are defined. ARMA(p, 0) series are

also called autoregressive series and abbreviated AR(p). For |ϑ| < 1, the AR(1) series

Xt = ϑXt−1 + εt, t ∈ Z, is another simple example of a stationary time series. An ARMA

series Xt is called invertible, if εt can be represented as

εt =
∞∑
i=0

ξiXt−i for a sequence ξi such that εt =
∞∑
i=0

|ξi| <∞.

Of course, extensively wandering prices typically cannot be described by stationary

ARMA models. However, it may be possible to express their increments as such se-

ries, that is, that the price series is I(1): A time series Xt, t ∈ Z, without deterministic

component is integrated of order d, Xt ∼ I(d), if it has a stationary, invertible, ARMA

representation after differencing d times. A random walk – an AR(1) series with ϑ = 1 –

is an example of an I(1) series. Figure 2.4 (b) visualizes a sample random walk. Granger
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(1986) nicely highlights the main differences between I(0) and I(1) series: “ An I(0) has

a mean and there is a tendency for the series to return to the mean, so that it tends to

fluctuate around the mean, crossing that value frequently and with extensive excursions.

Autocorrelations decline rapidly as lag increases and the process gives low weights to

events in the medium to distant past, and thus effectively has a finite memory. An I(1)

process without drift will be relatively smooth, will wander widely and will only rarely

return to an earlier value. In fact, for a random walk, for a fixed arbitrary value the

expected time until the process again passes through this value is infinite. This does not

mean that returns do not occur, but that the distribution of the time to return is very

long-tailed. Autocorrelations cor (Xt, Xt−τ ) are all near one in magnitude even for large

τ ; an innovation to the process affects all later values and the process has indefinitely

long memory.”

While I(d) captures the “wander extensively” in Engle and Granger’s (1987) first sen-

tence, the notion that they “do not drift too far apart” is at the heart of cointegration.

The components of a sequence of random k-vectors X t, t ∈ Z, are said to be cointegrated

of order (d, b) if

(i) all components of X t are I(d),

(ii) there exists a vector 0 6= γ ∈ Rk so that γTX t ∼ I(d− b), b > 0. The vector γ is

called the cointegrating vector

(Engle & Granger, 1987). A realization of a cointegrated time series is plotted in figure

2.4 (c). In the following, I concentrate on bivariate series and cointegrated series of order

(1, 1). In short, I assume tacitly that k = 2 and d = b = 1. As a simple example of a

cointegrated time series, consider X t = (Xt,1, Xt,2)T , t ∈ Z, specified by

Xt,1 = −γWt + (1− γ)zt and Xt,2 = Wt + zt (2.26)

for a random walk Wt, t ∈ Z, and stationary series zt, t ∈ Z. Since the sum of an I(0)

and an I(1) series is I(1), whereas the sum of two I(0) series is again I(0) (Engle &

Granger, 1991, page 6), both Xt,1 ∼ I(1) and Xt,2 ∼ I(1) while

∆Xt,1 = −γ∆Wt + (1− γ)∆zt ∼ I(0) and ∆Xt,2 = ∆Wt + ∆zt ∼ I(0).
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Moreover, Xt,1 + γXt,2 = zt ∼ I(0). Consequently, X t, t ∈ Z, is cointegrated with coin-

tegrating vector (1, γ)T . (To simplify notation, γ sometimes denotes the entire cointe-

grating vector, whereas when its first component is normalized, γ stands for the remain-

ing elements of the cointegrating vector.)

Cointegration is closely related to the concept of error correction. Its basic mechanism

can be described as follows: If an equilibrium is disturbed in one period, part of this

error will be corrected for in the subsequent period. Engle & Granger (1987) define a

sequence of random vectors X t, t ∈ Z, with values in R2 to have an error correction

representation if it can be stated as

∆X t = ργTX t−1 +
M∑
m=1

Θm∆X t−m + εt, (2.27)

where ρ,γ ∈ R2, γ 6= 0, Θm ∈ R2×2, m = 1, . . . ,M , and

∥∥∥∥ M∑
m=1

Θm

∥∥∥∥
max

< ∞; ‖·‖max

stands for the max norm. εt, t ∈ Z, denote bivariate stationary disturbances. (The

definition of a stationary time series naturally generalizes from the one-dimensional case

stated above to bivariate series; replace µ ∈ R by µ ∈ R2 and Z 3 τ 7→ cov(Xt, Xt+τ ) ∈ R
by Z 3 τ 7→ cov(X t,X t+τ ) ∈ R2×2.) γTX t is called the error correction term. It is as-

sociated with the equilibrium error. The strength of the adjustment after disequilibrium

is controlled by ρ. The Granger Representation Theorem establishes the link between

cointegration and error correction: For every cointegrated time series X t, t ∈ Z, there

exists an error correction representation (2.27).

It is easy to see that the cointegrated series X t, t ∈ Z, defined in (2.26) with Wt, t ∈ Z,
and zt, t ∈ Z, further specified by

zt = ϑzt−1 + νt, |ϑ| < 1, and Wt = Wt−1 + ηt, (2.28)

has an error correction representation

∆X t = (ϑ− 1)(1− γ, 1)T zt−1 + (−γ, 1)Tηt + (1− γ, 1)Tνt, (2.29)

that is, ∆X t = ρzt−1+εt where ρ = (ϑ−1)(1−γ, 1)T and εt = (−γ, 1)Tηt+(1−γ, 1)Tνt.
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2.2.2 Threshold cointegration and the threshold vector error

correction model

The reference to the elimination of spatial arbitrage opportunities appears to provide

compelling reasoning to model pairs of prices for the same good in spatially separated

markets as a cointegrated time series X t = (Xt,1, Xt,2)T , t ∈ Z. However, the specifica-

tion of the error correction term zt, t ∈ Z, as an AR(1) series (as in the example given

in (2.26) and (2.28)) is likely to be inadequate. In such a model the speed of adjustment

after a deviation from the equilibrium (of equal prices in different locations) does not

depend on the magnitude of the latter. It is determined by the parameter ϑ, which is

independent of |zt−1| = |Xt−1,1−Xt−1,2|. This is an implausible assumption. It is evident

that even if the tomato price in one village exceeds that in the other, there is no incen-

tive for traders to move goods between places unless the difference in prices surpasses

transportation costs ψ. Hence, if |zt−1| < ψ, prices are expected to move independently,

error correction is unlikely to occur, ϑ and |ρ| are anticipated to be close to one and

zero, respectively. In the opposite case, for large enough deviations from equilibrium, i.e.

|γTX t−1| > ψ, trade is expected to take place and prices to revert to their equilibrium.

Threshold cointegration captures this behavior.

Tong (1983) introduces threshold models to time series. They have since attracted

plenty of attention (Tong, 2011, for a recent review). I mentioned some asymptotic

results for the threshold autoregressive model in section 2.1 of this chapter (Chan, 1993;

Chan & Tsay, 1998; Qian, 1998). Balke & Fomby (1997) are the first to examine

threshold models in the context of cointegrated time series. They present the idea of

threshold cointegration considering a cointegrated time series with an error correction

term zt, t ∈ Z, characterized by an autoregressive series as in (2.28). However, instead

of fixed ϑ, they propose to allow ϑ to vary with zt−1. Recurring to the example of

tomatoes in spatially separated markets, while |zt−1| < ψ, prices are not expected to

return to the state of equilibrium, zt−1 = 0. Within this band, a random walk describes

the series zt, t ∈ Z; in other words, if |zt−1| < ψ, then ϑ = 1 and zt = zt−1 + εt. On the

contrary, outside this band deviations from the equilibrium are figured to be corrected

for. If |zt−1| ≥ ψ, then zt is expected to be zero and zt, t ∈ Z, to constitute a stationary

series, hence, |ϑ| < 1. More precisely, Balke & Fomby (1997) suggest to specify the error
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correction term as follows,

zt =

zt−1 + νt |zt−1| ≤ ψ

ϑzt−1 + νt |zt−1| > ψ,
(2.30)

for |ϑ| < 1, ψ > 0 the threshold parameter and νt, t ∈ Z, white noise. For the series

given by (2.26) and (2.28), incorporating a dependency of ϑ on the error correction term

as in (2.30), i.e. ϑ(zt−1) = ϑI(|zt−1| > ψ) + I(|zt−1| ≤ ψ), implies a representation

∆X t =

ρ1zt−1 + εt |zt−1| ≤ ψ

ρ2zt−1 + εt |zt−1| > ψ,

where ρT1 = (0, 0), ρT2 = (ϑ − 1)(1 − γ, 1) and εt = (−γ, 1)Tηt + (1 − γ, 1)Tνt, instead

of (2.29).

It is not hard to think of situations in which even more flexibility in the specification of

zt than incorporated through (2.30) is necessary to adequately resemble real dynamics.

Transportation costs depending on the direction of trade result in a middle band of no

error correction ψ1 ≤ γTX t−1 ≤ ψ2 for ψ1 < 0 < ψ2, for example. Thus, Balke & Fomby

(1997) put forward a very general model for the error correction term,

zt =



µ1 +
M+1∑
m=1

ϑ1mzt−m + ν1t zt−1 ≤ ψ1

µ2 +
M+1∑
m=1

ϑ2mzt−m + ν2t ψ1 < zt−1 ≤ ψ2

µ3 +
M+1∑
m=1

ϑ3mzt−m + ν3t ψ2 < zt−1,

(2.31)

with R 3 ψ1 < 0 < ψ2 ∈ R, µk, ϑkm ∈ R and νkt, t ∈ Z, series of white noise for k = 1, 2, 3

and m = 1, . . . ,M . A cointegrated series X t, t ∈ Z, with such an error correction

term zt = γ ′X t can be expressed in terms of a threshold vector error correction model
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(TVECM),

∆X t =



ρ1γ
TX t−1 + θ1 +

M∑
m=1

Θ1m∆X t−m + ε1t γTX t−1 ≤ ψ1

ρ2γ
TX t−1 + θ2 +

M∑
m=1

Θ2m∆X t−m + ε2t ψ1 < γ
TX t−1 ≤ ψ2

ρ3γ
TX t−1 + θ3 +

M∑
m=1

Θ3m∆X t−m + ε3t ψ2 < γ
TX t−1,

(2.32)

where ρk,θk ∈ R2, Θkm ∈ R2×2 and εkt, t ∈ Z, series of white noise for k = 1, 2, 3

and m = 1, . . . ,M . As exemplified by Balke & Fomby (1997) for a specific bivariate

series, a threshold model (2.31) can actually involve regime-dependent differences for

the TVECM (2.32) in the adjustment parameters ρ, the intercepts θ, the coefficient

matrices for the lagged terms Θ as well as the disturbances εt.

Of course, specifying an error correction term (2.31) entails the question of conditions

for such zt, t ∈ Z, to form a stationary series. To the best of my knowledge, a general

answer is still pending. Solutions for special cases include Chan, Petruccelli, Woolford

& Tong (1985) among others. For the case M = 1, Balke & Fomby (1997) emphasize

that “regardless of the behavior of zt in the interior regime (zt can display unit root

or explosive behavior in the interior) the nature of zt in the upper and lower regimes

determines whether it is stationary. Note that even if the autoregressive coefficient, ϑ,

is equal to one everywhere zt may still be stationary. So long as the drift parameters

act to push the series back towards the equilibrium band (i.e. µ1 > 0 and µ3 < 0) the

series is stationary even though it has a ‘unit root’. This suggests that, in general, just

examining the autoregressive parameters in the outer regimes is not enough to determine

whether the series is stationary.”

Two specifications of zt, t ∈ Z, which repeatedly occur in the literature are the equilib-

rium threshold autoregressive model (EQ-TAR) and the band threshold autoregressive

model (BAND-TAR). The EQ-TAR is given in (2.30), the BAND-TAR by

zt =


−ψ(1− ϑ) + ϑzt−1 + νt zt−1 < −ψ

zt−1 + νt |zt−1| ≤ ψ

ψ(1− ϑ) + ϑzt−1 + νt zt−1 > ψ

(2.33)
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When outside the band [−ψ, ψ], an error correction term following an EQ-TAR model

reverts to the equilibrium. In contrast, zt, t ∈ Z, given by a BAND-TAR model returns

to the boundary of this band; the regime-specific mean (if it exists) is −ψ for the lower

and ψ for the upper regime. Lo & Zivot (2001) emphasize that the BAND-TAR model

(2.33) is most often employed in empirical applications. They call (2.33) a continuous,

symmetric threshold, symmetric adjustment BAND-TAR model and point out that the

more general version

zt =


φ1(1− ϑ1) + ϑ1zt−1 + νt zt−1 < ψ1

zt−1 + νt ψ1 < zt−1 ≤ ψ2

φ3(1− ϑ3) + ϑ3zt−1 + νt zt−1 > ψ2

is implied by a BAND-TVECM model, which they define as a special case of the general

TVECM (2.32),

∆X t =


ρ1

(
γTX t−1 − λ1

)
+ εt γTX t−1 ≤ ψ1

εt ψ1 < γ
TX t−1 ≤ ψ2

ρ3

(
γTX t−1 − λ3

)
+ εt ψ2 < γ

TX t−1.

They further claim the continuous BAND-TVECM (λ1 = ψ1 and λ3 = ψ2), the sym-

metric BAND-TVECM (ψ1 = −ψ2) and the EQ-TVECM (λ1 = λ3 = 0) to be TVECMs

of special interest. Ihle (2010, table 2.1) lists further special cases of the TVECM (2.32)

which have been applied to analyze price transmission and provides the corresponding

references. In particular, he identifies the central and non-central AVECM in addition

to the models mentioned above.

It is beyond the scope of this thesis to give a detailed account of theoretical results

available for the TVECM. Hansen & Seo (2002) is certainly a milestone. Lange &

Rahbek (2009) provide an introduction and references; for a brief outline of developments

see Gaul et al. (2008, section 2.1). As it is a very complex model, findings are often

limited to hold under certain conditions only. Besides, some authors assume a single

cointegrating relationship, others allow for more; some concentrate on models with one,

others with multiple thresholds; some assume to know the cointegrating vector, others

do not. This results in a fragmented literature, which is hard to summarize. Estimation
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has only recently been studied systematically. Seo (2011) shows that given certain

assumptions (including discontinuity) the least squares estimator ψ̂ in a two regime

TVECM is consistent,

ψ̂ = ψ0 +OP (n−1).

He further looks at the smoothed least squares estimator (Seo & Linton, 2007) defined

via the (analog for the TVECM of the) objective function (2.18). He proves consistency

for this estimator and shows that – for known cointegrating vector – it converges to a

normal distribution with rate
√
nh−1

n (corollary 2). The asymptotic variance is specified

by a rather complicated expression depending (amongst others) on the density of the

error correction term at the threshold. I am not aware of any results for the limiting

distribution of the least squares or maximum likelihood threshold estimator. However,

in view of the results for simpler, but related models, I would expect it to depend on a

range of unknown parameters as well as the density of the covariates, and, hence, not to

be very useful in practice.

2.3 Summary

To briefly summarize the first part of this chapter, the main criteria to classify threshold

regression models are the nature of the transition function (smooth or step function),

the regression function (continuous or discontinuous), and the transition variable (ran-

dom or deterministic). The term “threshold regression model” refers both to any model

satisfying (2.2), and, when distinguishing between different kinds of models of this type,

to a model with a random transition variable as opposed to change point models, which

are characterized by a deterministic transition variable. This ambiguity is the cost

for coherence with the tradition in the literature. Assuming a step transition func-

tion, the maximum likelihood (least squares) estimator of the threshold parameter, ψ̂,

is asymptotically normally distributed for continuous models. For discontinuous mod-

els, it converges towards a functional of random walks (roughly speaking) in case of a

change point model; and a functional of compound Poisson processes in case of a model

with random transition variable. Since both of these limiting distributions depend on a

host of nuisance parameters including the distribution of the covariates, an alternative

framework of diminishing differences between regimes is considered for the limiting dis-
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tribution of the threshold estimator in discontinuous models. In this setting, ψ̂ converges

towards a functional of Brownian motions and the nuisance parameters disappear. The

asymptotic distribution of ψ̂ for models with multiple thresholds is analogous to that

of the estimator in the respective single threshold model. A number of extensions of

the specification of a threshold regression model in this thesis have been considered in

the literature. These include multivariate models, models featuring regime-dependent

heteroscedasticity and models with multi-dimensional transition variables which allow

for more flexible mechanisms to switch between regimes.

The second part of the chapter introduces the necessary terminology to formalize the

notion of time series that do not drift too far apart from each other as the existence of

a stationary linear combination; this is the essence of cointegration. Cointegrated time

series have an error correction representation. Such expression reveals the mechanism

that keeps the series together, the partial correction of one period’s equilibrium error

in the following period. Introducing a threshold in the error correction series on some

occasions – and price transmission analysis is one of them – allows to more adequately

model reality. This results in threshold cointegration and a model that can be repre-

sented as a TVECM. The EQ-TVECM and BAND-TVECM are particularly popular in

empirical applications.
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3 Regularized Bayesian estimation in
generalized threshold regression
models

Abstract

Estimation of threshold parameters in (generalized) threshold regression mod-

els is typically performed by maximizing the corresponding profile likelihood

function. Certain Bayesian techniques based on non-informative priors have

also been developed and are widely used. This article draws attention to

finite-sample settings (not rare in practice) in which these standard estima-

tors perform poorly or even fail. In particular, if estimation of the regression

coefficients is associated with high uncertainty, the profile likelihood for the

threshold parameters and thus the corresponding estimators can be strongly

affected. We suggest an alternative regularized Bayesian estimator that cir-

cumvents the deficiencies of standard estimators in small samples. The new

estimator can be obtained employing the empirical Bayes paradigm and,

hence, requires little additional numerical effort compared with commonly

used estimators. Simulations confirm excellent finite sample properties of

the suggested estimator, especially in the critical settings. The practical

relevance of our approach is illustrated by two real-data examples already

analyzed in the literature.

Key words and phrases: empirical Bayes, nuisance parameter, threshold es-

timation.
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3.1 Introduction

Modeling a response variable as a linear combination of some covariates with regression

coefficients that vary between (possibly several) regimes is known as threshold regression.

The choice of regime is determined by a transition function which depends on a transition

variable as well as a threshold parameter. Transition functions can be either smooth (van

Dijk, Teräsvirta & Franses, 2002, provide a comprehensive overview) or step functions.

In the following, we restrict attention to the latter. In principle, the response variable can

follow any distribution from the exponential family. However, such generalized threshold

regression models have only recently been formally introduced by Samia & Chan (2011)

and most of the literature on threshold regression deals with models with piecewise

linear mean. In this article we concentrate on generalized regression models with regimes

controlled by a step transition function and refer to such models as generalized threshold

regression models. Generalized threshold regression models are employed in a wide range

of different fields of application. Hansen (2011) provides an overview of the extensive

use of generalized threshold regression models in economic applications including e.g.

models of output growth, forecasting, and the term structure of interest rates or stock

returns. Samia, Chan & Stenseth (2007) employ a generalized threshold regression model

to analyze plague outbreaks and Lee, Seo & Shin (2011) complement these applications

with examples in finance, sociology, and biostatistics among others.

Threshold estimation in generalized threshold regression models is typically performed

in two stages: the estimation of the regression coefficients is followed by the maximiza-

tion of the profile likelihood for the threshold parameters using a grid search, as the

likelihood function is not differentiable with respect to the threshold parameter. This

estimation procedure has two intrinsic problems. First, the profile likelihood is not de-

fined for thresholds that leave fewer observations in one of the regimes than are necessary

to estimate the regression coefficients. Hence, in practice it is unavoidable to restrict

the domain of the threshold parameters depending on the dimension of the regression

coefficients. The literature offers arbitrary constraints including one observation per di-

mension of the regression coefficient (Samia & Chan, 2011) or 15% of the observations

(Andrews, 1993) to give just two examples. This restriction can be problematic in small

samples, especially if the true threshold is close to the boundary of its domain. The

second problem is due to the direct impact of the uncertainty inherent in the regression
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coefficients’ estimates on the profile likelihood for the threshold parameters. In an unfa-

vorable setting the profile likelihood becomes jagged with multiple extrema, increasing

the uncertainty of the threshold estimator. Large variance of the regression coefficients’

estimator is again likely to be found in small samples and for the true threshold at

the boundary of its domain, but also if the signal-to-noise ratio is low or the residual

variance is misspecified (overdispersion in the generalized regression setting). We are

not aware of any work that points out these deficiencies of the common threshold esti-

mator even though the problematic settings frequently occur in empirical applications.

Macro-economic data are often only available for a small sample, e.g. if observations

correspond to different countries. Spatial arbitrage modeling is another example (Greb,

von Cramon-Taubadel, Krivobokova & Munk, 2011).

Bayesian methods are also popular to estimate thresholds. In the literature, a Bayesian

threshold estimator is typically based on non-informative priors; we refer to it as the

non-informative Bayesian estimator. For the case of a threshold regression model with

piecewise linear mean, Yu (2012) shows that, regardless of the choice of priors, Bayesian

threshold estimators are asymptotically efficient among all estimators in the locally

asymptotically minimax sense. However, in the critical small sample settings described

above, the non-informative Bayesian estimator shares all the drawbacks of the profile

likelihood estimator and can completely fail in certain cases, as we discuss in section

3.3.2.

In this article, we suggest an alternative threshold estimator, which we call the regu-

larized Bayesian estimator. If regression coefficients were known, none of the problems

outlined above would exist. This suggests that stabilizing their estimates might help

to prevent them from distorting the threshold estimates. In addition, regularization

of regression coefficient estimates allows us to obtain a posterior density which is well-

defined on the entire domain of the threshold parameters. This is highlighted in the right

plot of figure 3.1, which contrasts three estimation techniques. Simulations confirm that

the regularized Bayesian estimator yields good results even in settings in which profile

likelihood and non-informative Bayesian estimator are highly susceptible to faults.

In this article, we suggest an alternative threshold estimator, which we call the regular-

ized Bayesian estimator. Contrary to previous work on estimation in threshold regression

(Samia & Chan, 2011; Yu, 2012), we focus on the estimator’s performance in critical
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small sample situations. Simulations confirm that it yields good results even in settings

in which profile likelihood and non-informative Bayesian estimator are highly suscep-

tible to faults. To summarize the intuition behind this new estimator: If regression

coefficients were known, none of the problems outlined above would exist. This suggests

that stabilizing their estimates might help to prevent them from distorting the thresh-

old estimates. In addition, regularization of regression coefficient estimates allows us to

obtain a posterior density which is well-defined on the entire domain of the threshold

parameters. We achieve regularization by a particular specification of priors. While it

proves to be beneficial in the critical small sample situations, the choice of priors does

not have an impact asymptotically (as Yu, 2012, shows for a threshold regression model

with piecewise linear mean and independent observations). We further derive an explicit

(approximate) expression of the posterior density, which allows us to utilize existing

functions for mixed models in standard software to easily compute the estimator.

The rest of this article is organized as follows. We specify the generalized threshold re-

gression model in the second section. In the third section, we review existing threshold

estimators and point out their deficiencies. The regularized Bayesian estimator is intro-

duced in the fourth section. In the fifth section, we briefly look at inference about the

threshold parameter. Simulation results are presented in the sixth section. We use the

last section to discuss two empirical applications. The appendix contains some technical

details.

3.2 Model

Observations
(
yi,X

T
i , qi

)
∈ R × Rp × R, i = 1, . . . , n, are assumed to be realizations

of random variables that follow a generalized threshold regression model with threshold

parameter ψ ∈ R, regression coefficients β1,β2 ∈ Rp and scale (or dispersion) parameter

φ ∈ R+, that is

µi = E
(
yi|XT

i , qi
)

= h(ηi) (3.1)
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where h is a known one-to-one function, the inverse of the link function g = h−1, and

ηi = I (qi ≤ ψ)XT
i β1 + I (qi > ψ)XT

i β2, (3.2)

with I(·) as the indicator function. Moreover, conditional on the design vector XT
i and

the transition variable qi, the response variables yi are independently drawn from an

exponential family distribution with density

f(yi|ψ, φ,β1,β2) = exp

{
yiθi − b(θi)

φ
+ c(yi, φ)

}
, (3.3)

characterized by known functions b and c together with the natural parameter θi = θ(µi).

Above and in the following, the same symbol denotes both a random variable and its

realization; the context should eliminate ambiguities. To use matrix notation, we define

vectors µ, η, y, q, I(q ≤ ψ) and I(q > ψ) by stacking µi, ηi, yi, qi, I(qi ≤ ψ) and

I(qi > ψ), respectively, and create an n× p matrix X with rows XT
i , i = 1, . . . , n. With

diag {I(·)} the diagonal matrix with entries I(·) along the diagonal and β = (βT1 ,β
T
2 )T ,

we can write

η = diag {I(q ≤ ψ)}Xβ1 + diag {I(q > ψ)}Xβ2 = X1β1 +X2β2 = Xψβ.

We consider generalized threshold regression models with one threshold to keep the expo-

sition simple; extension to generalized threshold regression models with more thresholds

is straightforward.

Naturally, our model covers yi = I (qi ≤ ψ)XT
i β1 + I (qi > ψ)XT

i β2 + εi, εi ∼ N (0, σ2)

and i = 1, . . . , n. This is by far the most frequently encountered generalized threshold

regression model in the literature. It is broad enough to comprise the popular threshold

autoregressive model in which the transition variable qi is an element of X i (Tong &

Lim, 1980; Tong, 2011, for a review of the development of the model).

Depending on the assumptions on the data generating process, model (3.1) – (3.3) can

have different asymptotic behavior. A first differentiation regards the transition variable

qi. Change point models are characterized by deterministic qi = i, while for thresh-

old models qi is a random variable which follows any continuous distribution. This is

reflected in distinct limit likelihood ratio processes and, hence, asymptotic behavior of
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the maximum likelihood estimators for ψ in the two models. The limiting likelihood

ratio process involves a functional of random walks for change point models and of com-

pound Poisson processes for threshold models. Check Bai (1997b) for more details on the

asymptotic properties in the former, and Samia & Chan (2011) for the limiting behav-

ior of the profile log-likelihood and the asymptotic distribution of the profile likelihood

threshold estimator in the latter case. If the transition variable coincides with one of

the covariates and the regression function is continuous at the threshold, least squares

estimates are known to be normally distributed (for threshold models see Chan & Tsay,

1998; Feder, 1975, treats change-point models), which simplifies inference. Clearly, once

the data is sampled, the estimation procedure in both change point and threshold mod-

els is the same. Referring to a threshold regression model with piecewise linear mean,

Hansen (2000) points out that “if the observed values of qi are distinct, the parameters

can be estimated by sorting the data based on qi, and then applying known methods for

change point problems”. However, as the focus of this article is on estimation problems

that arise in small samples, we do not further differentiate models. In the real-data

examples, we concentrate on discontinuous threshold models since they are frequently

encountered in applications and have not been studied as extensively as change point

models due to their more intricate limiting behavior.

3.3 Commonly used threshold estimators

3.3.1 The profile likelihood estimator

As noted in the introduction, the prevalent threshold estimator in the literature is the

profile likelihood estimator, see e.g. Samia & Chan (2011) or Hansen (2000). Split-

ting all model parameters into a parameter of interest and nuisance parameters, the

profile likelihood function Lp is constructed from the likelihood function L by replac-

ing nuisance parameters with their maximum likelihood estimates at given values of

the parameter of interest. In generalized threshold regression models, our parameter

of interest is the threshold parameter ψ and its domain is restricted to a random set

Ψ =
{
ψ ∈ R|q(1) ≤ ψ ≤ q(n)

}
⊆ R, where q(i) denotes the ith order statistics. The nui-

sance parameters are βT ∈ R2p and φ ∈ R. Hence, we work with the conditional profile
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likelihood function given X and q,

Lp(ψ) =
n∏
i=1

f(yi|ψ, φ̂ψ, β̂ψ) = exp

[
n∑
i=1

{
yiθ̂i − b(θ̂i)

φ̂ψ
+ c(yi, φ̂ψ)

}]
,

where θ̂i = θ ◦ h(η̂i) = θ ◦ h
{
I(qi ≤ ψ)XT

i β̂1ψ
+ I(qi > ψ)XT

i β̂2ψ

}
and β̂ψ and φ̂ψ are

maximum likelihood estimators at a fixed ψ. In the following, we assume a canonical

link, that is, θi = ηi. All developments still hold approximately if this assumption is not

given. We denote the profile log-likelihood with `p(ψ) = logLp(ψ).

To measure the proximity of a threshold ψ to the boundary of its domain Ψ, we introduce

d(ψ) = min(j, n− j)/p with j such that q(j) ≤ ψ < q(j+1). d(ψ) quantifies the distance

between ψ and Ψ’s boundary in terms of the number of observations between them

relative to the dimension of the regression coefficients, p = dim (βk), k = 1, 2. When

d(ψ) = 1, ψ assigns at least p observations to each of the regimes. The allocation of

5% of the observations into one of the regimes can be expressed as d(ψ) = 0.05 n/p.

Clearly, Lp(ψ) is not defined for d(ψ) < 1, since in this case ψ does not leave enough

observations for the estimation of βk in one of the regimes. Hence, in practice it is

inevitable to restrict Ψ to Ψ∗(c) = {Ψ| d(ψ) > c} for some c ≥ 1. In the literature

different heuristic suggestions for the choice of c have been proposed. For example,

Hansen & Seo (2002) propose c = 0.05 n/p, we find c = 0.15 n/p in Andrews (1993) and

Samia & Chan (2011) even use c = 0.25 n/p for their application.

The profile likelihood threshold estimator is then given by

ψ̂pL = argmax
ψ∈Ψ∗(c)

Lp(ψ).

This definition based on the restricted domain Ψ∗(c) immediately suggests that in set-

tings in which d (ψ0) < c for a true threshold ψ0, ψ̂pL is inconsistent. The left panel of

figure 3.1 illustrates this showing the profile log-likelihood for a sample run of a gener-

alized threshold regression model corresponding to the simulation setting 1C detailed in

section 3.6. If Ψ∗(1) = [0.3, 0.7] would be restricted any further, e.g. to be [0.31, 0.69],

then the true threshold ψ0 = 0.3 would be excluded from the threshold domain and ψ̂pL

would move to the next extremum. For small n, large p and ψ0 close to the boundary of

Ψ, d (ψ0) < c is likely to be the case. Altogether, subjective restriction of the threshold
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Figure 3.1: For a sample run corresponding to setting 1C of section 3.6, `p(ψ) is shown
on the left, log pnB(ψ|y,X, q) in the middle and log prB(ψ|y,X, q) on the
right.

domain is an undesirable property of threshold estimation based on the profile likelihood.

The same plot in figure 3.1 also exemplifies that in certain small-sample settings the

profile (log-)likelihood can be jagged and have multiple extrema, leading to a very vari-

able threshold estimator. To shed light on this behavior of `p(ψ), we contrast it with its

analogue for known β. Accordingly, we compare

−`p(ψ) ∝ − 2

φ̂ψ

n∑
i=1

{yiθ̂i − b(θ̂i)} ≈ (ẑ −Xψβ̂ψ)TW (ẑ −Xψβ̂ψ)

with its analogue for known β. Here, ẑ = Xψβ̂ψ +G(y − µ̂) is the working variable,

G = diag {g′(µi)} and W−1 = diag {φb′′(θi)g′(µi)2}. The estimated W for fixed ψ is

assumed to vary little or not at all as a function of the mean so we use W evaluated at

the true β directly. This is a typical assumption in the literature on generalized linear

models. The same applies toG. We focus on the case of ψ ≤ ψ0, but the same arguments

hold for ψ > ψ0. Denoting z = Xψβ + G(y − µ), X [ψ,ψ0] = diag{I(ψ < q ≤ ψ0)}X
and H = W 1/2X2(XT

2WX2)−1XT
2WX [ψ,ψ0], both of which disappear for ψ = ψ0, we
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find(
ẑ −Xψβ̂ψ

)T
W
(
ẑ −Xψβ̂ψ

)
= (z −Xψβ)T W (z −Xψβ) +Op(2p) (3.4)

+
{

(β1 − β2)THT − 2 (z −Xψβ)T W 1/2
}
H(β1 − β2) (3.5)

+
{

2(β1 − β2)THT − 2 (z −Xψβ)T W 1/2
}T
Op
(
W 1/2

√
varXψβ̂ψ

)
(3.6)

where Op (2p) is bounded in probability for fixed p and n → ∞; var(Xψβ̂ψ) is a row

vector containing the diagonal elements ofXψ(XT
ψWXψ)−1XT

ψ . Taking a closer look at

(ẑ−Xψβ̂ψ)TW (ẑ−Xψβ̂ψ) as a function of ψ, we note that replacing the true regression

coefficients β by their maximum likelihood estimators influences (z −Xψβ)TW (z −
Xψβ) in several ways. The Op-term in (3.4) is independent of ψ and simply shifts the

profile likelihood by a constant. The deterministic term in (3.5) equals zero for ψ = ψ0,

but starts growing as |ψ − ψ0| increases. That is, even if there is no uncertainty due to

estimation of β, that is, var(β̂ψ) = 0, the true least squares is inflated for ψ away from

ψ0, making the extremum less pronounced. The most important term is the last one

in (3.6). This random term depends on var
(
Xψβ̂ψ

)
and can have a strong deforming

effect on the true least squares even for ψ close to ψ0. Large variance of β̂ψ is associated

with settings characterized by small n relative to p, but can also be due to low signal-

to-noise ratio, model misspecifications (e.g. overdispersion) or if the threshold is close

to the boundary of its domain. This is exposed in the left as compared with the middle

plot of figure 3.2; the log-likelihoods depicted in these plots belong to models which only

differ in one aspect: in the plot on the left-hand side, the residual standard deviation

is 0.75, while in the middle plot it is 1.5. Clearly, the log-likelihood in the middle plot

is highly distorted over the whole range of Ψ, triggering multiple extrema and a highly

variable estimator for ψ. Moving the true threshold closer to the boundary, as shown in

the right plot of figure 3.2, leads to an even stronger deformation of the log-likelihood.

In summary, in small samples and particular settings exemplified above, the profile

likelihood threshold estimator can perform poorly, being very sensitive to inappropriate

estimates of the nuisance parameters and relying on a subjective restriction of its domain.
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Figure 3.2: Sample (log) profile likelihood functions `p(ψ) for different simulation
settings.

3.3.2 The Bayesian estimator

For threshold estimation in regression models with piecewise linear mean, there is a long

tradition of using Bayesian techniques in applied work beginning with Bacon & Watts

(1971) and including Geweke & Terui (1993) among many others. This popularity can

be at least partially attributed to practical advantages, since the Bayesian approach of-

fers a natural framework for inference and accounts for the variability of the nuisance

parameters. The theoretical properties of Bayesian threshold estimators in certain gen-

eralized threshold regression models have been investigated by Yu (2012). He shows that

for independently and identically distributed observations Bayesian threshold estimators

are asymptotically efficient among all estimators in the locally asymptotically minimax

sense and strictly more efficient than the maximum likelihood estimator. In a related

paper, Chan & Kutoyants (2010a) examine asymptotic properties of Bayesian estimators

in threshold autoregression models. They note that the limit variance of the Bayesian

estimator is smaller than that of the maximum likelihood estimator.

Without any prior knowledge of possible parameter values, it is natural to assume a

uniform prior for the threshold parameter and non-informative priors for the regression

coefficients; these choices are (almost) omnipresent in the Bayesian literature on gener-

alized threshold regression models with piecewise linear mean. While the priors do not

have an impact asymptotically, it turns out that they do affect the performance of the

Bayesian threshold estimator in finite samples. We show that non-informative priors can
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distort estimates, especially in small samples. It is straightforward to obtain an approx-

imation of a generalized threshold regression model’s posterior density pnB(ψ|φ,y,X, q)

associated with non-informative (improper) priors p(β) ∝ 1 and p(ψ|q) ∝ I(ψ ∈ Ψ)

based on a Laplace approximation (Shun & McCullagh, 1995; Severini, 2000) of the

integral for fixed p� n

∫
R2p

p(y|ψ, φ,β,X, q)dβ = Lp(ψ)(2π)p
∣∣∣∣− ∂2`

∂β∂βT

(
ψ, φ, β̂ψ

)∣∣∣∣−1/2

+O
(
n−1
)
,

with `(ψ, φ,β) = logL(ψ, φ,β). As
∣∣∣−∂2`

/
∂β∂βT

(
ψ, φ, β̂ψ

)∣∣∣ =
∣∣XT

ψWXψ

∣∣, we get

pnB(ψ|φ,y,X, q) = Lp(ψ)(2π)p
∣∣XT

ψWXψ

∣∣−1/2
I(ψ ∈ Ψ)/p(y) +O

(
n−1
)
.

With this, the prevalent Bayesian threshold estimator in the literature is the posterior

mean ψ̂nB =
∫

Ψ∗
ψpnB(ψ|φ,y,X, q)dψ. Comparing pnB(ψ|φ,y,X, q) with Lp(ψ), we note

that they differ by a term proportional to
∣∣XT

ψWXψ

∣∣−1/2
. In the case of Gaussian obser-

vations, W = In/σ
2. Since

∣∣XT
ψWXψ

∣∣ =
∣∣XT

1WX1

∣∣ · ∣∣XT
2WX2

∣∣→ 0 for d(ψ) → 0,

pnB(ψ|φ,y,X, q) becomes very large for ψ close to the boundary of Ψ. Moreover, as

the profile likelihood function requires d(ψ) ≥ 1 to be well-defined, so does the calcula-

tion of the posterior density. Again, the only solution in the literature is to restrict the

parameter space Ψ (which in our Bayesian framework is equivalent to working with a

uniform prior ψ ∼ U [Ψ∗] instead of ψ ∼ U [Ψ]). In this case, however, pnB(ψ|φ,y,X, q)

becomes largest exactly for values of ψ which are arbitrarily included or excluded from

Ψ∗ by varying c. Consequently, expanding or reducing Ψ∗ critically affects the Bayesian

threshold estimate, whether it is calculated as the posterior mode, mean or median. The

middle plot in figure 3.1 illustrates this problem.

3.4 The regularized Bayesian estimator

When rethinking the threshold estimator, there are good arguments for continuing to

pursue Bayesian options. In general, Bayesian estimators naturally incorporate the vari-

ability of nuisance parameters and there are reasons to expect them to be (at least
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asymptotically) the most efficient estimators, as discussed in section 3.3.2. Our idea

now is to exploit understanding of when reliable estimation becomes particularly diffi-

cult in order to regularize the posterior density. We observe that both profile likelihood

and posterior density become increasingly distorted as ψ approaches the boundary of Ψ

(or the farther it is away from the true threshold ψ0). Using the notation introduced in

section 3.2, we define

η = X1β1 +X2β2 = (X1 +X2)β1 +X2(β2 − β1) = Xβ1 +X2δ. (3.7)

While maintaining a non-informative constant prior for β1, we pick a normal prior with

zero mean for δ, δ ∼ N (0, σ2
δIp). When σ2

δ tends towards infinity, this prior becomes

non-informative. However, for small values σ2
δ , we introduce prior knowledge suggesting

that δ takes values close to zero. The most important characteristic of this new choice

of priors is that it regularizes the posterior density for ψ close to the boundary of Ψ.

Putting priors on σ2
δ (e.g. an inverse Gamma distribution) and ψ specifies a full Bayesian

model and allows for estimation with Markov chain Monte Carlo techniques.

Alternatively, we suggest to use a Laplace approximation to get the approximate pos-

terior p(ψ|φ, σ2
δ ,y,X, q). This accelerates estimation and enables us to illustrate the

regularizing effect. To evaluate the posterior density

p(ψ|φ, σ2
δ ,y,X, q) =

p(ψ|q)

p(y|φ, σ2
δ ,X, q)

∫
Rp

∫
Rp

p(y|β1, δ, ψ, φ, σ
2
δ ,X, q)p(δ|σ2

δ )dδdβ1,

we use a Laplace approximation and follow a line of reasoning closely resembling Breslow

& Clayton (1993) to obtain∫
Rp

∫
Rp

p(y|β1, δ, ψ, φ, σ
2
δ ,X, q)p(δ|σ2

δ )dδdβ1

= (2π)p/2 exp

{
−1

2
(z̃ −Xβ̂1)TV −1(z̃ −Xβ̂1) +

n∑
i=1

c(yi, φ)

}
(3.8)

·
∣∣σ2
δX

T
2WX2 + Ip

∣∣−1/2 ∣∣XTV −1X
∣∣−1/2

+O
(
n−1
)
,

with the working variable z̃ defined as z̃ = Xβ̂1 +X2δ̂ +G(y − µ), G = diag {g′(µi)},
and V = W−1 + σ2

δX2X
T
2 for W−1 = diag {φb′′(θi)g′(µi)2}. Here, µ, G, W and V are
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evaluated at the (approximate) posterior mode (β̂1, δ̂) = arg max
(β1,δ)∈R2p p(β1, δ|ψ, φ, σ2

δ ,y,X, q),

that is, β̂1 = (XTV −1X)−1XTV −1z̃ and δ̂ = σ2
δX

T
2V

−1(z̃ −Xβ̂1). Details on the

derivation of (3.8) are provided in the appendix. In contrast to the posterior based on

non-informative priors, the term |XT
ψWXψ| disappears, and with it the deteriorations

near the boundary of Ψ observed for pnB(ψ|φ,y,X, q). Moreover, p(ψ|φ, σ2
δ ,y,X, q)

is well-defined for all ψ ∈ Ψ, independent of d(ψ). It is easy to see that δ̂ → 0 and

β̂1 → (XTWX)−1XTWz̃ at the boundary of Ψ, for X2 = 0 or X2 = X. We do not

encounter the ill-posed problem of estimating p nuisance parameters from m < p ob-

servations, or calculating β̂ψ when d(ψ) < 1, as in profile likelihood or non-informative

Bayesian estimation. Consequently, there is no need to subjectively restrict the param-

eter space. Considering

δ̂ = σ2
δX

T
2V

−1(z̃ −Xβ̂1) = arg min
δ∈Rp

(z̃ −Xβ̂1 −X2δ)TW (z̃ −Xβ̂1 −X2δ) +
1

σ2
δ

δTδ,

(3.9)

it becomes evident that the proposed prior leads to the strategy of turning an ill-posed

into a well-posed problem tracing back to Tikhonov, Arsenin & John (1977). For

small values of the regularization parameter 1/σ2
δ , the first term of the functional to

be minimized in (3.9) will drive the resulting δ̂, for large values it is the latter. For

the nuisance parameter estimates β̂1 and β̂2 = β̂1 + δ̂, basic matrix algebra reveals

that β̂1 → (XT
1WX1)−1XT

1Wz̃ and β̂2 → (XT
2WX2)−1XT

2Wz̃ for σ2
δ →∞, while

for σ2
δ → 0, both β̂1 and β̂2 converge to (XTWX)−1XTWz̃.

Clearly, the choice of the regularization parameter σ2
δ is essential to any estimate based

on p(ψ|φ, σ2
δ ,y,X, q). It can naturally be estimated in the full Bayesian framework.

However, pursuing our approximate approach further we rather make use of the empirical

Bayes paradigm. In general, the empirical Bayes approach to modeling observations y

differs from the usual Bayesian setup in that the hyperparameters for the highest level

in the model’s hierarchy are replaced by their maximum likelihood estimates. In our

case, we obtain σ̂2
δ for fixed X, q and ψ by maximizing

p(y|ψ, φ, σ2
δ ,X, q) =

∫
Rp

∫
Rp

p(y|β1, δ, ψ, φ, σ
2
δ ,X, q)p(δ|σ2

δ )dδdβ1,
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so as to base threshold estimation on

prB(ψ|y,X, q) = p(ψ|y,X,q, φ̂ψ, σ̂
2
δ ) ∝

∣∣∣σ̂2
δX

T
2WX2 + Ip

∣∣∣−1/2∣∣∣XT V̂
−1
X
∣∣∣−1/2

· exp

{
−1

2
(z̃ −Xβ̂1)T V̂

−1
(z̃ −Xβ̂1) +

n∑
i=1

c
(
yi, φ̂ψ

)}
I(ψ ∈ Ψ),

with V̂ evaluated at σ̂2
δ . The right plot in figure 3.1 shows log of this posterior density

for a sample run corresponding to the simulation setting 1 C of section 3.6. It is clearly

well-defined over the whole domain of the threshold and its values are regularized at the

boundary regions, making the extremum more pronounced.

Once the posterior density is obtained, one can calculate ψ̂rB. We observed that in the

critical small-sample settings the posterior density is often characterized by multiple

modes. Thus, an estimate based on maximization (the posterior mode) is likely to suffer

from this. The posterior mean presents a more robust alternative. However, when the

true threshold is located close to the boundary of Ψ, the posterior distribution is skewed

towards this boundary. As a result, the posterior mean tends to be drawn towards the

middle of Ψ (Doodson, 1917; Kendall, 1943, page 35). Hence, we opt for the posterior

median as a compromise between the latter two. Accordingly, we suggest to calculate a

regularized Bayesian threshold estimator ψ̂rB as

ψ̂rB∫
q(1)

prB(ψ|y,X, q, φ)dψ = 0.5

assuming a prior p(ψ|q) ∝ I(ψ ∈ Ψ) for ψ.

By definition, the restricted (or residual) likelihood function (Harville, 1977) of a general-

ized linear mixed model is the approximate posterior (3.8). Hence, the function glmmPQL

in the R-package MASS readily provides us with the desired estimate σ̂2
δ . Moreover, the

function simultaneously produces an estimate φ̂ψ. For the Gaussian case, we can employ

the function lme directly (with its parameter method left at the default value REML). It is

part of the R-package nlme. This possibility to take advantage of existing functions im-

plemented for mixed models greatly facilitates computation of our proposed estimator,

which can be performed in seconds.
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3.5 Inference about the threshold parameter

In our Bayesian framework it is natural to form confidence regions for ψ as credible sets;

an equi-tailed credible set C of level 1− 2α is defined as

C =

qp (1−α)∫
qp (α)

p(ψ|y,X, q, φ)dψ, qp(α) = inf
x∈Ψ

x∣∣∣
∫
ψ≤x

p(ψ|y,X, q, φ)dψ ≥ α

 .

These credible sets are valid for change-point and threshold models, both continuous and

discontinuous. In the frequentist framework it is straightforward to obtain confidence

intervals for continuous models. For discontinuous models the asymptotic distribution

does not readily provide a feasible way to construct confidence intervals as it depends

on (a possibly large number of) nuisance parameters. As a strategy to circumvent this

problem, it has been suggested to base asymptotic developments on the assumption of

a diminishing difference in coefficients between regimes, that is, to work with δ = δ(n)

and δ(n)→ 0 as n→∞ (Hansen, 2000). However, this approach has only been applied

in the context of models with piecewise linear mean so far. To the best of our knowledge

there does not exist previous work on confidence sets for the threshold parameter in

discontinuous generalized threshold regression models with a non-identity link.

To test for a threshold effect, a natural approach is to take advantage of the link to

generalized linear mixed models. Understanding a threshold effect as the presence of a

random effect δ allows us to draw on existing methods for mixed models, more explicitly,

on tests for a zero random effect variance σ2
δ = 0. For the Gaussian case of a linear mixed

model, this theory has been developed by Crainiceanu & Ruppert (2004) and Scheipl,

Greven & Küchenhoff (2008), who also implemented the approach in the R package

RLRsim. An extension to generalized linear mixed models might possibly provide the

basis for a unified test in generalized threshold regression models. Yet, it is beyond the

scope of this paper to pursue this thought further.
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3.6 Simulations

To assess the performance of the suggested estimator ψ̂rB we performed a simulation

study. We report results for eight different settings, covering both situations in which

common estimators produce reliable results and others in which they are prone to be

distorted. The difference between setting 1 and setting 2 is in the conditional distri-

bution of yi: in the first case, yi|XT
i , qi is normally distributed, in the second case it

follows a Poisson distribution. The design matrix X is random, each entry xij ∼ U [0, 1]

for setting 1, xij ∼ U [0, 0.01] for setting 2. The transition variable follows a uniform

distribution qi ∼ U [0, 1]. As this implies pr {d (ψ0) < 1} ≈ 0.46 for setting C, we base

our simulations on a fixed sample of transition variables qi = i/n, i = 1, . . . , n. This

way, we ensure that d (ψ0) = 1, hence, that Lp (ψ0) is always well-defined. While set-

tings A and B differ from setting C in the threshold (ψ0 = 0.5 for A and B; ψ0 = 0.3

for C), setting A is distinct from settings B and C in the signal-to-noise-ratio, which

we control by the choice of δ = β2 − β1 relative to the variance of the observations.

For setting 1 A – C, the difference δ ∼ U [−0.5, 0.5] and random variables are simulated

with variances var(yi) = 0.752 (setting A) and var(yi) = 1.52 (settings B and C). For

Normal response (1)

A B C D

ψ0 0.5 0.5 0.3 0.3

δ U [−0.5, 0.5] U [−0.5, 0.5] U [−0.5, 0.5] U [−0.25, 0.25]

var(yi) 0.752 1.52 1.52 0.252

xij U [0, 1] U [0, 1] U [0, 1] U [0, 1]

p 30 30 30 10

Poisson response (2)

A B C D

ψ0 0.5 0.5 0.3 0.3

δ U [10, 20] U [0, 10] U [0, 10] U [10, 20]

xij U [0, 0.01] U [0, 0.01] U [0, 0.01] U [0, 0.01]

p 30 30 30 10

Table 3.1: Differences between simulation settings.
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setting 2 A the difference δ ∼ U [10, 20], whereas δ ∼ U [0, 10] for settings 2 B and C.

Setting D features less nuisance parameters than A – C; p = dim(β1) = dim(β2) = 10

for D, p = 30 for A – C. The sample size is n = 100. Table 3.1 sums up differences

between settings. Regression coefficients β1 are drawn from a Poisson distribution with

mean 10. To be unambiguous, parameters δ and β1 are fixed; we randomly generate

them once at the beginning of the simulation according to the distributions specified.

Our Monte Carlo sample contains 1000 replications.

All three estimators ψ̂pL, ψ̂nB and ψ̂rB perform well given a high signal-to-noise-ratio

and ψ0 in the middle of Ψ (setting A). Lowering the signal-to-noise-ratio (setting B)

alters the results: we observe nearly unbiased estimates ψ̂pL, ψ̂nB and ψ̂rB, but due to

its very small variance the latter stands out by its small mean square error. When we

bias mean square error

Setting ψ0 ψ̂pL ψ̂nB ψ̂rB ψ̂pL ψ̂nB ψ̂rB

1 A 0.5 -0.002 0.001 0.000 0.002 0.009 0.000

(0.045) (0.095) (0.000)

1 B 0.5 -0.003 -0.001 -0.001 0.010 0.023 0.006

(0.100) (0.152) (0.077)

1 C 0.3 0.110 0.087 0.031 0.024 0.024 0.008

(0.110) (0.126) (0.084)

1 D 0.3 0.064 0.080 0.059 0.036 0.066 0.017

(0.032) (0.060) (0.014)

2 A 0.5 0.001 0.026 0.000 0.000 0.001 0.000

(0.000) (0.000) (0.000)

2 B 0.5 0.004 −0.111 −0.004 0.003 0.029 0.001

(0.055) (0.126) (0.032)

2 C 0.3 0.054 0.049 −0.002 0.007 0.010 0.001

(0.071) (0.089) (0.032)

2 D 0.3 0.025 -0.045 0.015 0.013 0.032 0.003

(0.013) (0.030) (0.003)

Table 3.2: Simulation results. Standard errors are reported in parentheses below the
bias.
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Figure 3.3: Simulation results (boxplots). Dashed lines indicate the true threshold ψ0,
black lines in the boxes are sample means.

shift the true threshold towards the boundary of Ψ (setting C), ψ̂rB clearly outperforms

both ψ̂pL and ψ̂nB in terms of mean square error, bias and variance. The differences in

bias, variance and mean squared error are more pronounced with a greater number of

nuisance parameters p, but still visible in simulations with smaller ratio p/n (setting

D). Results are summarized in figure 4.1 and table 4.1. The effects of increasing the

signal-to-noise-ratio and shifting ψ0 on `p(ψ) are illustrated in figure 3.2. The mode of

`p(ψ) is less pronounced in setting 1B than in 1A. Further, the number of local maxima

rises and they become more distinctive as we move to setting 1B and then to 1C.

3.7 Applications

This work is originally motivated by the application of threshold vector error correction

models in price transmission analysis. Such models are rather involved and we refer

to Greb, von Cramon-Taubadel, Krivobokova & Munk (2011) for more details and two

more real data examples using our regularized Bayesian estimator.
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3 Regularized Bayesian estimation in generalized threshold regression models

3.7.1 Cross-country growth behaviour

As another application of the regularized Bayesian threshold estimator, we consider

the case of economic growth modeling. Durlauf & Johnson (1995) estimate a standard

growth model using cross-sectional data on a sample of 96 countries and investigate

whether the coefficients of this model differ across sub-sets of countries depending on

their initial conditions. Their analysis is based on the so-called regression tree methodol-

ogy (Breiman, Friedman, Olshen & Stone, 1984), which suggests three thresholds based

on two different transition variables for this application. Hansen (2000) revisits their

paper. Using the Durlauf and Johnson data he estimates a regression

log (GDP )i,1985 − log (GDP )i,1960

= ζ + β log (GDP )i,1960 + π1 log (INV )i + π2 log(ni + g + δ) + π3 log (SCHOOL)i + εi

which explains real GDP growth between 1960 and 1985 in country i, log (GDP )i,1985−
log (GDP )i,1960, using real GDP in 1960 GDPi,1960, the investment to GDP ratio INVi,

the growth rate of the working-age population ni, the rate of technological change g, the

rate of depreciation of physical and human capital stocks δ, and the fraction of working-

age population enrolled in secondary school (SCHOOL)i. With reference to Durlauf &

Johnson (1995), he sets g + δ = 0.05. He tests for a threshold effect based on either

one of transition variables they propose. He only finds evidence based on the transi-

tion variable log (GDP )i,1960 and calculates the profile likelihood (or, equivalently, least

squares) estimate as ψ̂pL = 6.76 together with an asymptotic 95% confidence interval

[6.39, 7.49]. This corresponds to an estimate of $863 per capita GDP in 1960 with an

associated confidence interval of [$594, $1794]. Hansen (2000) acknowledges that while

the confidence interval seems rather tight (given observations for GDPi,1960 ranging from

$383 to $12362), it effectively contains 40 of the 96 countries in the sample. This is in

line with the number of local maxima in the profile likelihood function which hints at

the uncertainty inherent in this method (figure 3.4). In addition, the fact that ψ̂pL leaves

only 18 observations in the first regime gives rise to concern that the threshold might

be located close to the boundary of Ψ. We know that the profile likelihood is typically

distorted if this is the case.

Hence, we reestimate the model with the regularized Bayesian estimator. The latter
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Figure 3.4: Profile likelihood and regularized posterior density for a threshold based on
the transition variable qi = log (GDP )i,1960.

depends on the parameterization of the transition variable. As log (GDP )i,1960 is an

explanatory variable, we choose the parameterization qi = log (GDP )i,1960. Figure 3.4

shows that the resulting posterior density differs considerably from the profile likelihood

function and that the location of the maximum shifts. This is not surprising given the

deformations often observed for the profile likelihood function close to the boundary of

the threshold parameter space. The posterior median is located at ψ̂rB = 7.37 compared

with Hansen’s (2000) ψ̂pL = 6.76. It implies that for the 43 poorest countries coefficients

for the growth model are distinct from the rest, whereas the profile likelihood estimate

implicates that this is only the case for the poorest 18 countries. While it is not possible

to state conclusively that the regularized Bayesian estimate is more appropriate from an

economic perspective, the shapes of the likelihoods in figure 3.4 and the fact that the

profile likelihood estimate is near the boundary of its domain suggests that the latter

may be distorted by the weaknesses of the profile likelihood method discussed above.

Comparing profile likelihood estimates for the regression coefficients with their regular-

ized Bayesian counterparts, we note that there is much less difference between regimes

according to regularized Bayesian than profile likelihood estimates (see table 3.7.1). The

difference between the two regimes as estimated within the regularized Bayesian frame-
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3 Regularized Bayesian estimation in generalized threshold regression models

work is negligible. This is in line with Hansen’s finding that the null hypothesis of no

threshold is not rejected at the 5%-level (Hansen, 2000, page 587). The example demon-

strates the effect of using the suggested regularized Bayesian estimator instead of the

profile likelihood estimator in small samples with a multi-modal profile likelihood and

high uncertainty attached to the estimate ψ̂pL obtained by maximizing it.

1st regime 2nd regime

ζ̂ β̂ π̂1 π̂2 π̂3 ζ̂ β̂ π̂1 π̂2 π̂3

pL
4.31 -0.66 0.23 -0.29 0.02 3.66 -0.32 0.50 -0.49 0.36

(3.21) (0.33) (0.14) (0.92) (0.11) (0.85) (0.07) (0.11) (0.30) (0.07)

rB
3.36 -0.41 0.47 -0.60 0.22 3.37 -0.38 0.47 -0.62 0.20

(0.85) (0.08) (0.09) (0.28) (0.06) (0.85) (0.07) (0.09) (0.28) (0.07)

Table 3.3: Regressions coefficient estimates. ”pL” refers to the profile likelihood, ”rB”
to the regularized Bayesian framework. Standard errors in parentheses below
the estimates.

3.7.2 Effects of climate on snowshoe hare survival

In addition, we study a famous dataset of snowshoe hare abundance in the main drainage

of Hudson Bay in Canada. It consists of annual observations starting in the 19th century.

A preeminent feature of the data is cyclical fluctuations in the hare population, see

figure 3.5. These have been ascribed to the predator-prey relationship between lynx

and snowshoe hares. Samia & Chan (2011) highlight selected references and further

investigate one strand of the discussion focusing on the effect of snow conditions on

hunting efficiency in different phases of the cylce. To this end, they estimate a generalized

threshold regression model with the hare count yt as a Poisson distributed response whose

mean is related to the explanatory variables via a log-link,

log(µt) = β0 + β1Dt +


3∑
i=1

β1,i log(yt−i + 1) + β1,4wt−1 yt−d ≤ ψ,

3∑
i=1

β2,i log(yt−i + 1) + β2,4wt−1 yt−d > ψ
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Figure 3.5: Annual hare abundance. Observations estimated to belong to the lower
regime are plotted as dots, observations estimated to belong to the upper
regime as triangles. The horizontal grey line indicates the location of the
estimated threshold, ψ̂rB = 22.

for the years t = 1844, . . . , 1904. Apart from the regression coefficients and the threshold,

the delay of the transition variable d is included as an additional parameter, d ∈ {1, 2, 3}.
As the count for the year t = 1863 is considered an outlier, the model contains a

dummy variableDt = I(t = 1863). The covariate wt denotes the detrended annual winter

climate index of the North Atlantic Oscillation. We follow them in estimating this model.

Our analysis is based on the series of hare abundance initially presented graphically by

MacLulich (1937), which we calibrate with data available online; it is included in the

supplementary material to this paper. We further use the North Atlantic Oscillation

index published at www.cru.uea.ac.uk/cru/data/nao.

The series of 61 observations is rather short and maximizing out regression coefficients

leaves us with a profile likelihood function for (d, ψ) which is characterized by various

local maxima; it is displayed in the upper row of figure 3.6 for d = 1, 2, 3 and ψ ∈ Ψ∗(1).

In addition, we cannot rule out overdispersion. Hence, we are confronted with a setting in

which the regularized Bayesian estimate can be more reliable than the profile likelihood

estimate. This becomes evident in the second row of figure 3.6, which shows the posterior

densities for ψ corresponding to d = 1, 2, 3. While we obtain a profile likelihood estimate

(d̂pL, ψ̂pL) = (3, 55), the regularized Bayesian estimator yields (d̂rB, ψ̂rB) = (2, 22) with

d̂rB calculated as the posterior median based on a flat prior on {1, 2, 3}.

When referring to Samia & Chan (2011) we have to keep in mind that their results diverge

slightly from ours and are not directly comparable as we were not able to obtain the data
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Figure 3.6: Log-likelihood functions (upper row) and log-posterior densities (lower row)
for different delays of the transition variable.

they used. Yet, their profile likelihood estimate is still very close, (d̂pL, ψ̂pL) = (3, 69).

However, they discard this estimate in favor of (d̂, ψ̂) = (2, 25), giving heuristic argu-

ments based on residual analysis. The latter also allows for a very plausible interpreta-

tion. Apparently, our regularized Bayesian estimate (d̂rB, ψ̂rB) = (2, 22) is close to the

preferred estimate in Samia & Chan (2011). In fact, the difference in estimated thresh-

olds only has implications for a single observation (t = 1869). Except for this, thresholds

induce identical allocations of observations to regimes (in the respective datasets), as is

clearly visible when comparing our figure 3.5 with figure 1 in Samia & Chan (2011).

Hence, the regularized Bayesian estimator enables us to attain a meaningful estimate

directly avoiding any arbitrary modification of the suggested estimation method as done

by Samia & Chan (2011). Coefficient estimates are similar in both modeling frameworks.
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3.8 Conclusions

In this work we describe settings in which estimation of generalized threshold regression

models can be problematic. We suggest a new regularized Bayesian estimator which out-

performs standard estimators. In particular, the suggested threshold estimator is defined

on the whole parameter space and thus circumvents the subjective and often misleading

restriction of the threshold domain which standard estimators require. Moreover, regu-

larizing the posterior density at the boundary of its domain helps to improve estimation,

especially if the true threshold is close to this boundary. Employing the empirical Bayes

approach, we can use built-in functions for generalized linear mixed models in statistics

software and obtain estimates with little additional numerical effort and without the

use of Markov chain Monte Carlo or other sampling techniques. Inference about the

estimated parameter can be carried out in the standard Bayesian manner. Simulation

studies and a real-data example confirm the effectiveness and relevance of our method.

Acknowledgements

The authors acknowledge the support of the German Research Foundation (Deutsche

Forschungsgemeinschaft) as part of the Institutional Strategy of the University of Göt-

tingen and FOR 916.

3.9 Appendix (technical details)

3.9.1 Derivation of equations (3.4) – (3.6)

We first approximate the profile likelihood,

−`p(ψ) ∝− 1

φ̂ψ

n∑
i=1

yiθ̂i − b(θ̂i) ≈
1

2

n∑
i=1

(yi − µ̂i)2

φ̂ψb′′(θ̂i)
=

1

2

n∑
i=1

{ẑi − (Xψ)iβ̂ψ}2

φ̂ψg′(µ̂i)2b′′(θ̂i)

=
1

2

(
ẑ −Xψβ̂ψ

)T
Ŵ
(
ẑ −Xψβ̂ψ

)
≈ 1

2

(
ẑ −Xψβ̂ψ

)T
W
(
ẑ −Xψβ̂ψ

)
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where

ẑ = Xψβ̂ψ + Ĝ (y − µ̂) , Ĝ = diag {g′(µ̂i)} and Ŵ = diag
{
φ̂ψb

′′(θ̂i)g
′(µ̂i)

2
}−1

.

The estimated Ŵ for fixed ψ is assumed to vary little or not at all as a function of the

mean so we use W evaluated at the true β directly. This is a typical assumption in the

literature on generalized linear models (e.g. Breslow & Clayton, 1993). We assume the

same for Ĝ.

To compare
(
ẑ −Xψβ̂ψ

)T
W
(
ẑ −Xψβ̂ψ

)
with (z −Xψβ)T W (z −Xψβ), where

z = Xψβ +G (y − µ), we then note that

bias
(
β̂ψ

)
= E

(
β̂ψ

)
− β =

{
0, (X ′2WX2)−1XT

[ψ,ψ0]WX [ψ,ψ0](β1 − β2)
}T

. (3.10)

To see this, we approximate β̂ψ via Fisher-scoring as β̂ψ =
(
XT

ψWXψ

)−1
XT

ψWẑ, then,

exploiting that ẑ is the working variable obtained in the last (m-th) iteration, calculate

E(ẑ) = E(zm) = E
{
Gm (y − µm) +Xψ(βψ)m

}
= Gm (E(y)− µm) +Xψ(βψ)m

= Gm {h(η)− h(ηm)}+Xψ(βψ)m ≈ Gm

[
∂h

∂η
(ηm)

{
Xψ0β −Xψ(βψ)m

}]
+Xψ(βψ)m

= GmG
−1
m

{
Xψ0β −Xψ(βψ)m

}
+Xψ(βψ)m

= Xψ0β,

and get

E
(
β̂ψ

)
= (XT

ψWXψ)−1XT
ψW E(ẑ) =

{
(XT

1WX1)−1 0

0 (XT
2WX2)−1

}
XT

ψW E(ẑ)

=

{
(XT

1WX1)−1XT
1W

(XT
2WX2)−1XT

2W

}{
(X1 +X [ψ,ψ0])β1 + (X2 −X [ψ,ψ0])β2

}
=

{
β1

β2 + (XT
2WX2)−1XT

2WX [ψ,ψ0](β1 − β2)

}
.
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It is helpful to further keep in mind that

E µ̂ = E
{
h
(
Xψβ̂ψ

)}
≈ E

{
h (Xψβ) +G−1

(
Xψβ̂ψ −Xψβ

)}
=h(Xψβ) +G−1Xψ E

(
β̂ψ − β

)
= h(Xψβ) +G−1Xψ bias β̂ψ

and

var µ̂ ≈ var
{
h (Xψβ) +G−1

(
Xψβ̂ψ −Xψβ

)}
=
(
G−1

)2
var
(
Xψβ̂ψ

)
,

consequently,

µ̂ = E µ̂+Op
(√

var µ̂
)
≈ h(Xψβ) +G−1Xψ bias β̂ψ +G−1Op

(√
varXψβ̂ψ

)
.

(3.11)

We now define H = W 1/2X2(XT
2WX2)−1XT

2WX [ψ,ψ0] and use (3.10) and (3.11) to

obtain

−`p(ψ) ∝
(
ẑ −Xψβ̂ψ

)T
W
(
ẑ −Xψβ̂ψ

)
≈ (y − µ̂)T GWG (y − µ̂)

= {y − h(Xψβ)}T GWG {y − h(Xψβ)}

+ 2 {y − h(Xψβ)}T GWG {h(Xψβ)− µ̂}+ {h(Xψβ)− µ̂}T GWG {h(Xψβ)− µ̂}

≈ (z −Xψβ)T W (z −Xψβ)

− 2 (z −Xψβ)T W

{
Xψ bias β̂ψ +Op

(√
varXψβ̂ψ

)}
+

{
Xψ bias β̂ψ +Op

(√
varXψβ̂ψ

)}T
W

{
Xψ bias β̂ψ +Op

(√
varXψβ̂ψ

)}
= (z −Xψβ)T W (z −Xψβ)

− 2 (z −Xψβ)T W

{
Xψ bias β̂ψ +Op

(√
varXψβ̂ψ

)}
+
(
Xψ bias β̂ψ

)T
W
(
Xψ bias β̂ψ

)
+ 2

(
Xψ bias β̂ψ

)T
WOp

(√
varXψβ̂ψ

)
+Op

(√
varXψβ̂ψ

)T
WOp

(√
varXψβ̂ψ

)
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= (z −Xψβ)T W (z −Xψβ)

+
{

(β1 − β2)THT − 2 (z −Xψβ)T W 1/2
}
H(β1 − β2)

+
{

2(β1 − β2)THT − 2 (z −Xψβ)T W 1/2
}T
Op
(
W 1/2

√
varXψβ̂ψ

)
+Op(2p),

3.9.2 Derivation of equation (3.8)

We obtain the approximate posterior (3.8) as follows. Laplace approximation produces∫
Rp

∫
Rp

p(y|β1, δ, ψ, φ, σ
2
δ ,X, q)p(δ|σ2

δ )dδdβ1

= (2π)−p/2|σ2
δIp|−1/2

∫
Rp

∫
Rp

exp {−κ (δ,β1)} dδdβ1

= (2π)p/2|σ2
δIp|−1/2 exp

{
−κ
(
δ̂, β̂1

)} ∣∣∣∣ ∂2κ

∂(δ,β1)∂(δ,β1)T
(δ̂, β̂1)

∣∣∣∣−1/2

+O
(
n−1
)

for κ (δ,β1) = −
n∑
i=1

yiθi − b(θi)
φ

−c(yi, φ)+
1

2σ2
δ

δTδ and
(
δ̂, β̂1

)
= argmax

(δ,β1)∈R2p

− κ (δ,β1).

Given the derivatives

∂κ

∂δ
(δ) = −

n∑
i=1

(yi − µi)(X2)i
φb′′(θi)g′(µi)

+
1

σ2
δ

δ = −XT
2WG(y − µ) +

1

σ2
δ

δ,

∂κ

∂β1

(β1) = −
n∑
i=1

(yi − µi)(X)i
φb′′(θi)g′(µi)

= −XTWG(y − µ),

and

∂2κ
/
∂(δ,β1)∂(δ,β1)T =

(
XT

2WX2 + (1/σ2
δ ) Ip XT

2WX

XTWX2 XTWX

)
(3.12)

for W−1 = diag {φb′′(θi)g′(µi)2} and G = diag {g′(µi)}, we obtain∣∣∣∂2κ
/
∂(δ,β1)∂(δ,β1)T

∣∣∣ =
∣∣∣XT

2WX2 +
(
1/σ2

δ

)
Ip

∣∣∣∣∣∣XTV −1X
∣∣∣
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using basic matrix algebra.

To find δ̂ and β̂1, we iteratively solve

XT
2WG(y − µ) =

1

σ2
δ

δ and XTWG(y − µ) = 0

via Fisher-scoring: Starting at δ̂ = δ0 and β̂1 = (β1)0, we solve

I(δm,βm)

(
δm+1

(β1)m+1

)
= I(δm,βm)

(
δm

(β1)m

)
+ s(δm, (β1)m),

I = ∂2κ
/
∂(δ,β1)∂(δ,β1)T and s = −∂κ

/
∂(δ,β1), or, more explicitely,

{
XT

2WmX2 +
1

σ2
δ

Ip

}
δm+1 +XT

2WmX(β1)m+1 = XTWmzm

and

XTWmX2δm+1 +XTWmX(β1)m+1 = XTWmzm,

where zm = X2δm +X(β1)m +Gm(y − µm). This yields

β̂1 =
(
XTV −1X

)−1
XTV −1z̃ and δ̂ = σ2

δX
T
2V

−1(z̃ −Xβ̂1),

where V = W−1 + σ2
δX2X

T
2 and z̃ = XT

2 δ̂ + Xβ̂1 + G(y − µ), with W , G and µ

evaluated at δ = δ̂ and β1 = β̂1 (Harville, 1977).

With this, we can now further simplify the posterior. Following Breslow & Clayton

(1993) in replacing

−2
n∑
i=1

{yiθi − b(θi)} by the chi-squared statistic
n∑
i=1

(yi − µi)2

b′′(θi)

we can exploit the identity

V −1
(
z̃ − β̂1

)
= W

(
z̃ −Xβ̂1 −X2δ̂

)
,

68



3 Regularized Bayesian estimation in generalized threshold regression models

which results in(
z̃ −Xβ̂1 −X2δ̂

)T
W
(
z̃ −Xβ̂1 −X2δ̂

)
=
(
z̃ − β̂1

)T
V −1

(
z̃ − β̂1

)
− 1

σ2
δ

δ̂
T
δ̂,

and, hence,

exp

{
n∑
i=1

yiθi − b(θi)
φ

+ c(yi, φ)− 1

2σ2
δ

δ̂
T
δ̂

}

≈ exp

{
−1

2

(
z̃ −Xβ̂1 −X2δ̂

)T
W
(
z̃ −Xβ̂1 −X2δ̂

)
+

n∑
i=1

c(yi, φ)− 1

2σ2
δ

δ̂
T
δ̂

}

= exp

{
−1

2

(
z̃ − β̂1

)T
V −1

(
z̃ − β̂1

)
+

n∑
i=1

c(yi, φ)

}
.

Alltogether, this leaves us with∫
Rp

∫
Rp

p(y|β1, δ,ψ, φ, σ
2
δ ,X, q)p(δ|σ2

δ )dδdβ1

=(2π)p/2|σ2
δIp|−1/2 exp

{
n∑
i=1

yiθi − b(θi)
φ

+ c(yi, φ)− 1

2σ2
δ

δ̂
T
δ̂

}∣∣∣XTV −1X
∣∣∣−1/2

·
∣∣∣XT

2WX2 +
(
1/σ2

δ

)
Ip

∣∣∣−1/2

+O
(
n−1
)

≈(2π)p/2 exp

{
−1

2

(
z̃ − β̂1

)T
V −1

(
z̃ − β̂1

)
+

n∑
i=1

c(yi, φ)

}∣∣∣XTV −1X
∣∣∣−1/2

·
∣∣∣σ2
δX

T
2WX2 + Ip

∣∣∣−1/2

+O
(
n−1
)
.
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Abstract

The threshold vector error correction model is a popular tool for the analysis

of spatial price transmission and market integration. In the literature, the

profile likelihood estimator is the preferred choice for estimating this model.

Yet, in certain settings this estimator performs poorly. In particular, if the

true thresholds are such that one or more regimes contain only a small num-

ber of observations, if unknown model parameters are numerous or if param-

eters differ little between regimes, the profile likelihood estimator displays

large bias and variance. Such settings are likely when studying price trans-

mission. For simpler, but related threshold models Greb, Krivobokova, Munk

& von Cramon-Taubadel (2011) have developed an alternative estimator, the

regularized Bayesian estimator, which does not exhibit these weaknesses. We

explore the properties of this estimator for threshold vector error correction

models. Simulation results show that it outperforms the profile likelihood

estimator, especially in situations in which the profile likelihood estimator

fails. Two empirical applications – a reassessment of the the seminal paper

by Goodwin & Piggott (2001), and an analysis of price transmission between

German and Spanish markets for pork – demonstrate the relevance of the

new approach for spatial price transmission analysis.

Key words and phrases. Bayesian estimator, market integration, spatial ar-

bitrage, TVECM.
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4.1 Introduction

When assessing the integration of spatially separated markets, agricultural economists

typically analyze the transmission of price shocks between these markets (Fackler &

Goodwin, 2001). The law of one price (LOP) states that prices for a homogeneous good

at different locations should differ by no more than the transaction costs of trading the

good between these locations. Otherwise traders will engage in spatial arbitrage, which

increases the price at the low-price location and reduces the price at the high-price

location until the LOP is restored. In spatial equilibrium, the manner in which price

shocks are transmitted between two locations will therefore depend on the magnitude

of the price difference between these locations (Goodwin & Piggott, 2001; Stephens,

Mabaya, Cramon-Taubadel & Barrett, 2011). Shocks that increase the price difference

so that it exceeds the costs of trade between the two locations will lead to arbitrage and

price transmission. However, if the price difference remains less than these transaction

costs, arbitrage will not be profitable and there will be no price transmission. The result

is referred to in the literature as ”regime-dependent” price transmission. Specifically,

the spatial equilibrium model described above will lead to three regimes delineated by

two threshold values that equal the transaction costs of trade in one and the other

direction, respectively. In the outer regimes where the price difference is greater than

the transaction costs of trade in the one or the other direction, arbitrage will lead to

the transmission of price shocks. If the price difference lies within the ”band of inaction”

between these transaction costs, prices can evolve independently of one another. The

costs of trade between two locations need not be symmetric; for example, river transport

might be more expensive going upstream than it is going downstream. Hence, the

thresholds that define the boundaries of the spatial price transmission regimes will have

opposite signs and possibly different magnitudes.

Threshold vector error correction models (TVECMs) are frequently used to model this

regime-dependent spatial price transmission process. TVECMs became popular with

Balke & Fomby’s (1997) article on threshold cointegration. Goodwin & Piggott’s (2001)

seminal paper established TVECMs in price transmission analysis, and dozens of ap-

plications have followed. As an indication of the ongoing popularity of the TVECM,

a search of the AgEconSearch website (www.ageconsearch.umn.edu) on November 15,

2011 with the keywords ”price transmission” and ”threshold” produced 11 papers posted
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in 2010 and 2011.

Typically, and as we explain in greater detail below, thresholds in TVECMs are esti-

mated by maximizing the profile likelihood (Hansen & Seo, 2002). However, in many

settings, this estimator is biased and has a high variance. Lo & Zivot (2001) as well

as Balcombe, Bailey & Brooks (2007) acknowledge this problem. Profile likelihood esti-

mates are especially prone to be unreliable in situations characterized by large numbers

of unknown model parameters besides the thresholds, when there is little difference

between adjoining regimes, and when the location of the thresholds leaves only few ob-

servations in one of the regimes (which is inevitable in small samples). These problems

are generic and emerge in many econometric settings, but they are particularly acute

when profile likelihood is used to estimate TVECMs. To cope with these shortcomings,

several strategies are proposed in the literature. Perhaps the most well-known of these

is the modified profile likelihood function introduced by Barndorff-Nielsen (1983). How-

ever, the proposed modifications are usually based on regularity assumptions that do

not hold for the TVECM. A further weakness of the profile likelihood estimator is that

it depends on an arbitrary trimming parameter that ensures that each regime contains

a minimum number of observations and, thus, that estimation of the model parameters

in that regime is possible. This can be a problematic restriction when modeling spatial

price transmission. If market integration is strong, differences in prices between two

locations that exceed the transaction cost thresholds – and therefore fall into one of the

outer regimes – will be corrected quickly. If this is the case, there will be few observa-

tions in the outer regimes, and a trimming parameter which forces more observations

into these regimes will inevitably lead to unreliable estimates of both the threshold val-

ues and the model parameters in each regime. Estimation is not necessarily easier if

the price data originate from markets that are poorly integrated because in this case

the weak price transmission displayed in the outer regimes may be observationally quite

similar to the independent price movements in the inner ”band of inaction”. Finally,

the non-differentiability of the TVECM’s likelihood function with respect to the thresh-

olds exacerbates computation of its maximum, which can also be a source of imprecise

estimates.

These problems with the profile likelihood estimator suggest that there is a need to

rethink the estimation of TVECMs in price transmission analysis. In this article we in-

vestigate the suitability of an alternative threshold estimator developed for generalized
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threshold regression models (Greb, Krivobokova, Munk & von Cramon-Taubadel, 2011).

Among its advantages, this alternative estimator does not require a trimming parameter.

We demonstrate using Monte Carlo experiments that this so-called regularized Bayesian

estimator clearly outperforms the profile likelihood estimator not only for generalized

threshold regression models, but also specifically for TVECMs, even in settings in which

the profile likelihood estimator is highly biased and variable. We also show that although

employing the regularized Bayesian estimator is technically easy, careful numerical im-

plementation – even if it is computationally intensive – can be decisive. Of course, it is

important to go beyond the demonstration of the superior statistical properties of the

regularized Bayesian threshold estimator, and to consider as well its implications for

empirical price transmission analysis using TVECMs. Here, it is crucial to interpret not

only the estimated threshold parameters, but also the parameters that describe the dy-

namics of price transmission within each regime. We draw on two empirical applications

to illustrate this.

The rest of this article is organized as follows. In the next section, we specify the

TVECM, discuss existing threshold estimators and their deficiencies, present the alter-

native estimator, and comment on computational pitfalls in threshold estimation. Sub-

sequently, we illustrate the performance of the new estimator by means of a simulation

study. As empirical applications we first revisit the analysis of spatial market integration

for four corn and soybean markets in North Carolina detailed in the seminal contribution

by Goodwin & Piggott (2001), and second analyze spatial price transmission between

German and Spanish pork markets. The last section concludes.

4.2 Theory

4.2.1 The model

Observations pt = (p1,t, p2,t)
T , t = 1 . . . n, of a two-dimensional time series generated by a

TVECM with three different regimes, which are characterized by parameters ρk,θk ∈ R2
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and Θkm ∈ R2×2 for k = 1, 2, 3 and m = 1, . . . ,M , can be written as

∆pt =



ρ1γ
Tpt−1 + θ1 +

M∑
m=1

Θ1m∆pt−m + εt , γTpt−1 ≤ ψ1 (Regime 1)

ρ2γ
Tpt−1 + θ2 +

M∑
m=1

Θ2m∆pt−m + εt , ψ1 < γ
Tpt−1 ≤ ψ2 (Regime 2)

ρ3γ
Tpt−1 + θ3 +

M∑
m=1

Θ3m∆pt−m + εt , ψ2 < γ
Tpt−1 (Regime 3).

(4.1)

We assume that pt forms an I(1) time series with cointegrating vector γ ∈ R2 and error-

correction term γTpt. We further assume that the errors denoted by εt have expected

value E (εt) = 0 and covariance matrix cov (εt) = σ2I2 ∈ (R+)
2×2

; I2 ∈ R2×2 denotes

the identity matrix. We call ψ1, ψ2 the threshold parameters and define the threshold

parameter space Ψ to include all ψ = (ψ1, ψ2) such that min(γTpt) < ψ1 < ψ2 <

max(γTpt). Although all of the coefficients in equation (4.1) can vary across regimes,

some of them can remain constant.

In the spatial equilibrium setting, p1,t and p2,t are prices at different locations and γ is

often taken to equal (1,−1)T so that the error correction term γTpt measures the differ-

ence between p1 and p2 at time t. The threshold ψ1 (ψ2) corresponds to the transaction

costs of trade from location 1 to location 2 (location 2 to location 1). Regimes 1 and 3

are the outer regimes in which the violation of spatial equilibrium leads to arbitrage and

price transmission, and regime 2 represents the inner ”band of inaction”. For economic

interpretation, not only the estimates of the threshold parameters are of interest. The

estimates of ρk (k = 1, 2, 3) (often referred to as the ”adjustment parameter”) are also of

interest as they measure the speed with which violations of spatial equilibrium between

two locations are corrected in the respective regimes.

To express the model in matrix notation, we define vectors ∆pi and εi by stacking the

ith components of ∆pt and εt, respectively; and I
(
γTp ≤ ψ1

)
, I
(
ψ1 < γ

Tp ≤ ψ2

)
, and

I
(
ψ2 < γ

Tp
)

by stacking I
(
γTpt−1 ≤ ψ1

)
, I
(
ψ1 < γ

Tpt−1 ≤ ψ2

)
and I

(
ψ2 < γ

Tpt−1

)
,

respectively. I(·) denotes the indicator function. For observations at n time points, an

n×d matrix X is constructed by stacking rows XT
t = (γTpt−1, 1,∆p

T
t−1, . . . ,∆p

T
t−M) of

length d = 2M +2. βi,k is the ith column of the matrix (ρk,θk,Θk1, . . . ,ΘkM)T , i = 1, 2

and k = 1, 2, 3. With diag {I(·)} defined as the diagonal matrix with entries I(·) in the
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diagonal, we can write

∆pi = diag
{
I
(
γTp ≤ ψ1

)}
Xβi,1 + diag

{
I
(
ψ1 < γ

Tp ≤ ψ2

)}
Xβi,2 (4.2)

+ diag
{
I
(
ψ1 < γ

Tp ≤ ψ2

)}
Xβi,3 + εi

= X1βi,1 +X2βi,2 +X3βi,3 + εi

for i = 1, 2. This leads to the a compact representation of model (4.1),

∆p =

(
∆p1

∆p2

)
=(I2 ⊗X1)β1 + (I2 ⊗X2)β2 + (I2 ⊗X3)β3 + ε, (4.3)

where βTk =
(
βT1,k,β

T
2,k

)
for k = 1, 2, 3, and X = X1 +X2 +X3.

A variety of modifications and restrictions of the general TVECM (4.1) have been im-

plemented in price transmission studies. Lo & Zivot (2001) and Ihle (2010, table 2.1)

provide details on a number of important specifications. We limit attention to the gen-

eral TVECM. Restrictions of the model imply further information about the parameters

(or relations between them) and, hence, facilitate estimation. The most general case

is thus the most challenging. Although the TVECM can be generalized to include r

thresholds and r + 1 regimes, we focus on a TVECM with two thresholds and three

regimes as this is the version of the TVECM that is grounded in spatial equilibrium

theory as outlined above. Generalization is straightforward.

4.2.2 Commonly used threshold estimators

The most frequently used threshold estimator in the econometrics literature is the profile

likelihood estimator (Hansen & Seo, 2002; Lo & Zivot, 2001). According to this method,

for each possible pair of the threshold parameters ψ = (ψ1, ψ2) the remaining parameters

in the likelihood function corresponding to (4.1) are replaced by their maximum likeli-

hood estimates. The pair of thresholds that maximizes the resulting profile likelihood

function is selected as the estimate. More precisely, denoting the log-likelihood function

of (4.1) by ` (ψ,β1,β2,β3, σ
2), the profile likelihood estimator is defined as

ψ̂pL = arg max `p(ψ) with `p(ψ) = `
(
ψ, β̂1, β̂2, β̂3, σ̂

2
)

(4.4)
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and β̂k and σ̂2 the maximum likelihood estimates of βk and σ2. Hence,

`p(ψ) ∝−
{

∆p− (I2 ⊗X1)β̂1 − (I2 ⊗X2)β̂2 − (I2 ⊗X3)β̂3

}T
{

∆p− (I2 ⊗X1)β̂1 − (I2 ⊗X2)β̂2 − (I2 ⊗X3)β̂3

} (4.5)

and β̂k =
{

(I2 ⊗Xk)
T (I2 ⊗Xk)

}−1
(I2 ⊗Xk)

T∆p, k = 1, 2, 3. Since the profile likeli-

hood function is not differentiable with respect to the threshold parameters, the thresh-

olds that maximize the profile likelihood are determined by calculating (4.5) for each

point on a two-dimensional grid of possible threshold values, which is why the literature

often refers to the ”grid search” method.

The bias and high variance of the profile likelihood threshold estimator are mentioned

but not further pursued in the literature on TVECMs (see table 4 and figure 1 in Lo

& Zivot, 2001). The simulation results we present below confirm the existence of these

weaknesses (see table 4.1 and figures 4.1 and 4.2). Greb, Krivobokova, Munk & von

Cramon-Taubadel (2011) provide a detailed analysis of the problems associated with

the profile likelihood approach to threshold estimation. In summary, there are two

principal problems: i) the dependence on an arbitrary trimming parameter; and ii) the

uncertainty inherent in the β̂k which are estimated for each combination of possible

threshold values. The problems can be very pronounced in small samples.

In spatial arbitrage modeling, the first issue can be decisive. ψ places each of the

observations into one of three regimes. In order to compute β̂k, it is essential that at

least d = dim(βi,k) observations fall into the k-th regime. To ensure this, ψ1 must be

greater than or equal to γTp(d), where γTp(1), . . . ,γ
Tp(n) is the ordered sequence of

error correction terms, and ψ2 must be correspondingly less than or equal to γTp(n−d).

The trimming parameter restricts ψ accordingly. A variety of trimming parameters

are suggested in the literature. Goodwin & Piggott (2001) specify that each regime

in the TVECM that they estimate must include at least 25 observations. Balcombe,

Bailey & Brooks (2007) impose the restriction that each regime must include at least

20% of the observations in their sample, while Andrews (1993) proposes a minimum

proportion of 15%. However, if markets are well-integrated, then arbitrage will lead

to rapid correction of any price differences that exceed the thresholds, and the outer

regimes will contain correspondingly few observations. Especially in small samples, this

76



4 The estimation of threshold models in price transmission analysis

can lead to a situation in which the outer regimes actually contain fewer observations

than imposed by the chosen trimming parameter. In this case, the resulting estimator

cannot be consistent as the threshold parameter space Ψ (and, hence, the grid that

is searched) excludes the true thresholds. Despite its potential impact on threshold

estimation, the literature only offers a variety of arbitrary suggestions for the trimming

parameter.

The second problem naturally becomes more pronounced as the number of parameters in

the model (i.e. the dimension of β̂k) increases. Each additional lag included in a bivariate

TVECM with three regimes adds 12 coefficients. Hence, the number of coefficients to

be estimated can grow rapidly relative to the potentially few observations in the outer

regimes. If there is also little difference in coefficients between regimes, pinpointing the

location of the thresholds becomes increasingly difficult.

As an alternative to profile likelihood, Bayesian estimators have been employed in some

price transmission studies (Balcombe, Bailey & Brooks, 2007; Balcombe & Rapso-

manikis, 2008). As explained in Greb, Krivobokova, Munk & von Cramon-Taubadel

(2011), the performance of a Bayesian estimator in generalized threshold regression mod-

els crucially depends on the selected priors. In the absence of any prior knowledge of

potential parameter values, so-called noninformative priors are the natural choice. How-

ever, these can distort estimates. In particular, the posterior density associated with

noninformative priors for the β̂k inherits the dependence on a trimming parameter from

the profile likelihood. Due to an extra term in the likelihood function, which grows

rapidly as fewer observations are left in one of the regimes, the posterior density takes

its largest values exactly for those threshold values that are arbitrarily included or ex-

cluded from the threshold parameter space Ψ when the trimming parameter is varied.

Consequently, the trimming parameter strongly affects the threshold estimate. Never-

theless, Balcombe, Bailey & Brooks (2007) and Balcombe & Rapsomanikis (2008) base

their Bayesian estimators on noninformative priors. Chen (1998) suggests a Bayesian

estimator based on a normal prior with known hyper-parameters for the β̂k and a uni-

form prior for the threshold parameter. However, she designs the latter to assign zero

probability to threshold values that do not leave a minimum number of observations in

each regime, which is equivalent to assuming an arbitrary trimming parameter.
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4.2.3 Regularized Bayesian estimator

Given the deficiencies of profile likelihood and Bayesian estimation with noninformative

priors, we explore the properties of an alternative threshold estimator (Greb, Krivobokova,

Munk & von Cramon-Taubadel, 2011) in the context of TVCEMs. This regularized

Bayesian estimator (RBE) was developed for univariate generalized threshold regression

models with one threshold. The idea of the estimator is to penalize differences between

regimes so as to keep these differences reasonably small when the data contain little

information. The strength of this regularizing penalty is fundamental to the estima-

tor. It is determined in a data-driven manner employing the so-called empirical Bayes

paradigm. The estimator is developed in a Bayesian framework and the penalization is

a result of the choice of priors. As an important consequence of the regularization, the

posterior density is well-defined on the entire threshold parameter space Ψ. Hence, there

is no need to choose a trimming parameter and no risk of excluding the true threshold

from Ψ. In the setting of generalized threshold regression models, the RBE outperforms

commonly used estimators, especially when the threshold leaves only few observations

in one of the regimes or there is little difference in coefficients between regimes.

Extension of the theory detailed in Greb, Krivobokova, Munk & von Cramon-Taubadel

(2011) to the TVECM with two thresholds in equation (4.1) is straightforward. It in-

volves reparametrizing the model in equation (4.3),

∆p = (I2 ⊗X1)β1 + (I2 ⊗X2)β2 + (I2 ⊗X3)β3 + ε (4.6)

= (I2 ⊗X1)(β1 − β2) + {(I2 ⊗X1) + (I2 ⊗X2) + (I2 ⊗X3)}β2

+ (I2 ⊗X3)(β3 − β2) + ε

= (I2 ⊗X1)(β1 − β2) + (I2 ⊗X)β2 + (I2 ⊗X3)(β3 − β2) + ε

= (I2 ⊗X1)δ1 + (I2 ⊗X)β2 + (I2 ⊗X3)δ3 + ε,

and specifying a noninformative constant prior for β2 and normal priors for δi, δi ∼ N (0, σ2
δi
I2d),

i = 1, 3. The empirical Bayes strategy amounts to replacing σ2, σ2
δ1

, and σ2
δ3

by their

maximum likelihood estimates σ̃2, σ̃2
δ1

, and σ̃2
δ3

. As illustrated in the appendix, this
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yields a log posterior density

p(ψ|∆p,X) ∝ −1

2

{
(2n− 2d) log σ̃2 + log |V |+ log |ZTV −1Z|

+
1

σ̃2
(∆p−Zβ̃2)TV −1(∆p−Zβ̃2)

} (4.7)

with β̃2 = (ZTV −1Z)−1ZTV −1∆p and V = I2n + σ̃2
δ1
/σ̃2Z1Z

T
1 + σ̃2

δ3
/σ̃2Z3Z

T
3 for

Z = I2 ⊗X, Z1 = I2 ⊗X1 and Z3 = I2 ⊗X3. A comparison of `p(ψ) in equation

(4.5) with p(ψ|∆p,X) in equation (4.7) shows that unlike the former, the latter does

not depend on β̂k, k = 1, 2, 3, which are not well-defined unless ψ leaves a minimum of d

observations in each regime. Accordingly, p(ψ|∆p,X) is defined on the entire threshold

parameter space Ψ =
{

(ψ1, ψ2) such that min(γTpt) < ψ1 < ψ2 < max(γTpt)
}

.

The regularized Bayesian threshold estimator ψ̂rB =
(
ψ̂1rB, ψ̂2rB

)
is computed as the

posterior median

ψ̂irB∫
min(γTpt)

p(ψi|∆p,X)dψi = 0.5, i = 1, 2, (4.8)

assuming a prior p(ψ|X) ∝ I(ψ ∈ Ψ) for ψ. Here, p(ψi|∆p,X) denotes the i-th thresh-

old’s marginal posterior density. We choose the median of the posterior distribution

because it is more robust than the mode and yields more reliable results than the mean

when this density is skewed (which tends to be the case when the true threshold is close

to the boundary of the threshold parameter space Ψ).

4.2.4 Computational aspects

Any two threshold values which produce the same allocation of observations into regimes

produce identical values of the profile likelihood function Lp(ψ). Hence, Lp(ψ) is a step

function and not differentiable. The same holds for the posterior density p(ψ|∆p,X).

However, searching a grid that includes all of the observed error-correction terms yields

the exact maximum of Lp(ψ) and also makes it possible to calculate the precise value

of the integral of p(ψ|∆p,X). Obviously, this can be computationally intensive in
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large samples. Hence, in practice, profile likelihood functions are often evaluated on a

coarser grid. For example, some authors (e.g. Goodwin & Piggott, 2001) employ evenly

spaced grids that divide the threshold parameter space Ψ into a chosen number of equal

steps and that therefore do not necessarily include each of the observed error-correction

terms. In the absence of local maxima and large jumps between subsequent steps,

such a simplified grid will provide a reasonable approximation of the maximum/integral.

However, when the dimension of β̂k is high or the thresholds leave few observations in

one of the regimes, Lp(ψ) and p(ψ|∆p,X) tend to be jagged and display several local

maxima. In such a case, even a fairly dense grid can produce a poor approximation of

the true maximum and, consequently, poor estimates, if it does not include all function

values. We demonstrate this effect of an inappropriate grid choice in one of the empirical

applications below.

Computation of the RBE is greatly simplified by taking advantage of functions for mixed

models available in statistical software packages. Again, we refer to Greb, Krivobokova,

Munk & von Cramon-Taubadel (2011) for details. R code for calculating RB estimates

(for the general TVECM in equation (4.1) and for restricted models such as the BAND-

TVECM) is available from the authors.

4.3 Simulations

In a simulation study, we generate data using model (4.1) with the following parameters:

thresholds are set to ψ1 = −4 and ψ2 = 4; adjustment coefficients ρ1 = ρ3 = (−0.25, 0)T

and ρ2 = (0, 0)T ; intercepts θ1 = (−1, 0)T , θ2 = (0, 0)T , θ3 = (1, 0)T ; and Θ11 = Θ31 =
(

0.2
0

0.2
0

)
,

Θ21 =
(

0
0

0
0

)
. The cointegrating vector γ = (1,−1)T is assumed to be known; this im-

plies an error correction term γTpt = p1,t − p2,t that is simply equal to the difference

between p1 and p2. Errors are normally distributed, εt ∼ N (0, σ2I2) with σ2 = 1. The

length of the series is n = 200. We have selected the parameters to take on values that

are plausible in real data applications. They imply that in most simulations about one

half of the data belongs to the inner and one fourth to each of the outer regimes.

We estimate thresholds by applying the profile likelihood and RB estimators to a Monte

Carlo sample of 300 replications of the data generating process defined above. We show

profile likelihood estimates for three different trimming parameters. These are, first,
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the least restrictive trimming parameter possible (d = 2M + 2, which ensures that

each regime contains at least exactly the minimum number of observations necessary

to estimate all model parameters), second, 15%, and third, 20% of the sample size.

Results are summarized in figures 4.1 and 4.2 together with table 4.1. The RBE clearly

outperforms the profile likelihood estimator. We observe a considerable reduction in

both bias and variance and, consequently, mean squared error. In contrast to the profile

likelihood estimates, the RB estimates are not drawn towards zero. The histograms

show that the distribution of the RB estimates is also less skewed. Further simulations

(including restricted models) confirm these findings. Altogether, the results indicate

that the RBE is not only superior for generalized threshold regression models, but also

for TVECMs specifically.
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Figure 4.1: Simulation results (boxplots). Note: The horizontal dashed gray line indi-
cates the true threshold. The dark lines in the shaded boxes are the re-
spective sample means. ”pL min”, ”pL 15%”, and ”pL 20%” denote profile
likelihood estimates with trimming parameters equal to the smallest possible
value (d = 2M + 2), 15% of the sample size, and 20% of the sample size,
respectively.
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Figure 4.2: Simulation results (histograms). Note: ”pL min”, ”pL 15%”, and ”pL 20%”
denote profile likelihood estimates with trimming parameters equal to the
smallest possible value (d = 2M + 2), 15% of the sample size, and 20% of
the sample size, respectively.

Regularized Bayesian estimator Profile likelihood estimator

lower threshold upper threshold lower threshold upper threshold

min 15% 20 % min 15% 20 %

true -4 4 -4 -4 -4 4 4 4

mean -3.63 3.72 -1.82 -1.22 -0.93 1.69 0.92 0.85

(2.23) (1.88) (3.40) (2.67) (2.45) (3.50) (2.79) (2.52)

MSE 5.10 3.62 16.31 14.86 15.40 17.57 17.21 16.24

Table 4.1: Simulation Results. Note: Standard errors are reported in parentheses below
the mean. ”min”, ”15%”, and ”20%” denote trimming parameters equal to the
smallest possible value (d = 2M + 2), 15% of the sample size, and 20% of the
sample size, respectively.
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4.4 Empirical applications

4.4.1 Goodwin & Piggott (2001) revisited

In the first empirical application, we revisit Goodwin & Piggott’s (2001) seminal analysis

of spatial price transmission with TVECMs. We apply the RBE to their dataset and

compare the results with their profile likelihood estimates. Goodwin & Piggott (2001)

explore daily corn and soybean prices at important North Carolina terminal markets (fig-

ure 4.3). These are Williamston, Candor, Cofield, and Kinston for corn, and Fayetteville,

Raleigh, Greenville, and Kinston for soybeans. Observations range from 2 January 1992

until 4 March 1999. For each commodity, Goodwin & Piggott (2001) evaluate pairs

consisting of a central market – Williamston for corn and Fayetteville for soybeans –

and each of the other markets in turn. They estimate the TVECM in equation (4.1)

with logarithmic prices by maximizing the profile likelihood function Lp(ψ) under the

assumption of Gaussian errors (or, equivalently, minimizing the sum of squared errors).

In accordance with spatial equilibrium theory they assume that ψ1 ≤ 0 and ψ2 ≥ 0

and search for the maximum of Lp(ψ) among those ψ that meet this condition. To

obtain comparable results, we also incorporate this information in the RBE; we specify

a prior on ψ which is zero for any ψ such that ψ1 > 0 or ψ2 < 0, and uniform otherwise.

Goodwin & Piggott (2001) evaluate the estimating function at 100 equally spaced grid

points for each threshold. In contrast, we compute the RB estimates exactly, that is,

the posterior density is evaluated on a complete grid (that includes all observed values

of the error-correction term).

We report RB estimates together with Goodwin & Piggott’s (2001) original profile likeli-

hood estimates in table 4.2. It is evident that relative to the profile likelihood estimates,

the RB estimates for both thresholds tend to be of greater magnitude. This is confirmed

by the results reported in the last three columns of the same table, which show (in

square brackets) for each pair of markets the number of observations assigned to each of

the three regimes by the respective estimation method. Since the thresholds estimated

by the regularized Bayesian method are farther from zero, this method assigns corre-

spondingly less (more) observations to the outer (inner) regimes. The only exceptions

are found in regime 3 for Cofield – Williamston (corn) and Greenville – Fayetteville

(soybeans).
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Figure 4.3: Daily corn (1) and soybean (2) (log)prices at four North Carolina terminal
markets. Source: Goodwin & Piggott (2001), who kindly made this data
available.

In the last three columns of table 4.2 we also illustrate the effect of using a complete

rather than a uniform grid on the allocation of observations into regimes. For the profile

likelihood results, the first number in square brackets is the number of observations

allocated to the respective regime when Goodwin and Piggott’s uniform grid is employed,

and the second number is the corresponding number of observations when a complete

grid is employed. If both grids lead to similar estimates of the thresholds ψ1 and ψ2,

then they will also lead to similar allocations of observations into regimes. While this

is the case for some market pairs, the cases of Raleigh – Fayetteville and Greenville –

Fayetteville in particular illustrate that a complete grid is necessary to ensure correct

identification of the global maximum of the likelihood function.

What are the economic implications of these results? Several points can be made. First,

the fact that the regularized Bayesian threshold estimates are father apart can be in-

terpreted as evidence of greater market integration. It implies that more observations

are in the inner ”band of inaction”, and correspondingly fewer are in the outer bands
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where spatial equilibrium is violated, triggering trade and price adjustments.1 However,

if thresholds are estimates of the transaction costs of trade between two locations, then

the RBE suggests that these costs are higher than indicated by the profile likelihood

estimates (see O’Connell & Wei, 2002). Hence, the regularized Bayesian threshold esti-

mates suggest that the markets in question are more integrated in the sense that they

display fewer violations of spatial equilibrium, but also that they are separated by higher

transactions costs which must be overcome before arbitrage becomes profitable.

Second, market integration is reflected not only in how often violations of spatial equi-

librium occur, but also in the speed with which such violations are corrected. According

to the two-market spatial equilibrium theory discussed above, the outer regimes should

be characterized by more rapid error correction than the inner regime, within which

prices can move independently and no error correction is expected. The profile like-

lihood and regularized Bayesian estimates of the adjustment parameters presented in

table 4.2 generally confirm this expectation. However, the profile likelihood estimates

are surprising in two cases. First, for corn in Kinston – Williamston, the estimated

adjustment parameters in regime 1 are both greater than one in magnitude, which is

implausible as it would suggest that errors are amplified and not corrected. The total

adjustment implied by these two parameters (−0.166 in the third to last column of table

4.2) is negative, which confirms that this regime is not consistent with error correction

and cointegration. This may be a reflection of the ”weaker” evidence for cointegration

between corn prices in Kinston and Williamston reported by Goodwin & Piggott (2001,

page 306). Second, total adjustment in the inner regime (regime 2) in the case of corn

in Candor and Williamston (−0.015 in the second to last column of table 4.2) is also

negative, which suggests that price differences in this regime will also be amplified rather

than corrected. This result is incompatible with spatial equilibrium theory, which does

not predict that prices will be driven apart in the inner regime. However, it is not in-

compatible with market integration between Candor and Williamston overall, because

outer bands for this pair of markets are characterized by error correction that will drive

prices back towards equilibrium whenever they leave the inner regime.

The regularized Bayesian estimates of the adjustment parameters presented in table 4.2

1The only major exception to this pattern is Fayetteville – Greenville, for which the inner regime is
more than twice as wide according to profile likelihood as it is according to the RBE. We discuss
this exception below.
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do not display any anomalies of this nature and therefore provide stronger evidence of

market integration. However, for many market pairs the adjustment coefficients in the

outer bands are smaller according to the RBE compared with profile likelihood. For

corn in Candor and Williamston, for example, total adjustment amounts to 0.130 in

regime 1 and 0.120 in regime 3 according to profile likelihood, compared with 0.043 in

both regimes according to the RBE. Hence, while 13% (12%) of any difference between

the two prices is corrected per period in regime 1 (3) according to the profile likelihood

results, only 4.3% is corrected in either regime according to the RBE.2 Hence, the RBE

results point to slower transmission of price shocks than the profile likelihood results.

One other aspect of the results in table 4.2 deserves mention. For one of the corn market

pairs (Candor – Williamston) and all three of the soybean market pairs, the regularized

Bayesian estimates of the adjustment parameters are very similar or identical across all

three regimes. These results might indicate that the two-threshold, three-regime model

of price transmission is misspecified. As data on trade in corn and soybeans between the

markets in question are not available, it is not clear whether a model with two thresholds,

which includes a regime for trade from market 1 to market 2, but also a regime for trade

in the opposite direction, is correctly specified. If trade only flows in one direction,

then a model with one threshold and two regimes would be more appropriate. Sephton

(2003), who also revisits the Goodwin & Piggott (2001) data, finds that a one-threshold

model is indicated for four of the six pairs, and that the pairs Raleigh-Fayetteville and

Greenville-Fayetteville display little evidence of any threshold effects whatsoever. Our

regularized Bayesian estimates of very similar or identical adjustment coefficients across

regimes for some market pairs appear to corroborate Sephton’s (2003) finding.

2While most of the adjustment coefficients reported in table 4.2 are quite small, regardless of the
method used to estimate them, they are estimated using daily prices. Hence, in most cases the
adjustment half-life is in the range of 1 – 2 weeks.
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Est. Dep.var. ρ1 σ (ρ1) ψ1 ρ2 σ (ρ2) ψ2 ρ3 σ (ρ3)
Total(ρ1) Total(ρ2) Total(ρ3)

[#obs.] [#obs.] [#obs.]

Corn: Candor-Williamston

PL
∆pCAN 0.003 (0.061)

-0.025
0.006 (0.053)

0.003
-0.030 (0.040) 0.130 -0.015 0.120

∆pWIL 0.133 (0.061) -0.009 (0.053) 0.090 (0.040) [295/298] [761/670] [716/797]

RBE
∆pCAN 0.008 (0.019) -0.069 0.002 (0.013) 0.030 0.002 (0.013) 0.043 0.043 0.043

∆pWIL 0.051 (0.019) (0.011) 0.045 (0.013) (0.016) 0.045 (0.013) [12] [1545] [208]

Corn: Cofield-Williamston

PL
∆pCOF -0.083 (0.063)

-0.057
0.028 (0.012)

0.065
-0.351 (0.558) 0.136 0.007 1.074

∆pWIL 0.053 (0.063) 0.035 (0.012) 0.723 (0.558) [69/68] [1669/1686] [35/11]

RBE
∆pCOF 0.007 (0.011) -0.056 0.024 (0.013) 0.034 0.020 (0.012) 0.045 0.022 0.024

∆pWIL 0.052 (0.011) (0.026) 0.046 (0.013) (0.021) 0.044 (0.012) [73] [1409] [283]

Corn: Kinston-Williamston

PL
∆pKIN -2.619 (0.773)

-0.013
0.162 (0.053)

0.0190
0.954 (0.686) -0.166 0.028 0.204

∆pWIL -2.785 (0.773) 0.190 (0.053) 1.158 (0.686) [249/197] [1469/1558] [55/10]

RBE
∆pKIN -0.011 (0.273) -0.020 0.092 (0.038) 0.0192 0.087 (0.041) 0.384 0.035 0.039

∆pWIL 0.373 (0.273) (0.004) 0.127 (0.038) (0.005) 0.126 (0.041) [7] [1753] [5]

Soybeans: Raleigh-Fayetteville

PL
∆pRAL -0.352 (0.277)

-0.001
-0.091 (0.108)

0.010
0.257 (0.465) 0.417 -0.002 0.095

∆pFAY 0.065 (0.277) -0.093 (0.108) 0.352 (0.465) [166/492] [1559/1226] [47/47]
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RBE
∆pRAL -0.090 (0.063) -0.022 -0.090 (0.063) 0.014 -0.090 (0.063) 0.128 0.123 0.123

∆pFAY 0.038 (0.063) (0.002) 0.033 (0.063) (0.003) 0.033 (0.063) [11] [1714] [40]

Soybeans: Greenville-Fayetteville

PL
∆pGRE -0.040 (0.048)

-0.009
0.042 (0.047)

0.012
0.083 (0.587) 0.064 0.029 0.370

∆pFAY 0.024 (0.048) 0.071 (0.047) 0.453 (0.587) [410/435] [1292/1026] [70/304]

RBE
∆pGRE 0.014 (0.022) -0.008 0.014 (0.022) 0.006 0.015 (0.022) 0.053 0.053 0.053

∆pFAY 0.067 (0.022) (0.026) 0.067 (0.022) (0.011) 0.068 (0.022) [462] [558] [745]

Soybeans: Kinston-Fayetteville

PL
∆pKIN -0.071 (0.043)

-0.006
0.029 (0.182)

0.007
-0.104 (0.093) 0.094 0.115 0.200

∆pFAY 0.023 (0.043) 0.144 (0.182) 0.096 (0.093) [544/550] [508/502] [721/713]

RBE
∆pKIN -0.008 (0.021) -0.097 -0.003 (0.022) 0.021 -0.003 (0.022) 0.070 0.064 0.064

∆pFAY 0.062 (0.021) (0.029) 0.061 (0.022) (0.010) 0.061 (0.022) [9] [1691] [65]

Table 4.2: Estimates for the Data in Figure 4.3 – TVECM with three Regimes. Notes:
- PL is the profile likelihood estimator; RBE is the regularized Bayesian estimator.
- Standard errors of the estimated adjustment parameters (ρk) are provided in brackets. These must be
interpreted with care because they are computed without accounting for the variability of the threshold
estimate. Estimates that are significant at the 10% level are in bold. Standard errors for regularized
Bayesian threshold estimates (in brackets below the estimate) are calculated in the customary Bayesian
manner as their posterior standard deviation. To the best of our knowledge, it is an open question how to
compute standard errors for PL threshold estimates in TVECMs.
- The error correction term is normalized so that the first adjustment parameter in each pair is expected to
be negative, and the second positive. For example, for soybeans, the market pair Kinston – Fayetteville, and
the profile likelihood (PL) estimator, the ρ1-values (-0.071 and 0.023) have the expected signs.
- Total(ρk) measures the total error-correction of price differences in regime k as the sum of the second
adjustment parameter in each pair minus the first. For example, for soybeans, the market pair Kinston –
Fayetteville, and the profile likelihood (PL) estimator, Total(ρ1) = 0.094 = 0.023-(-0.071).
- The number in square brackets below Total(ρk) is the estimated number of observations in regime k. For
PL, the first number corresponds to Goodwin & Piggot’s estimates, the second to PL estimates based on a
complete grid.
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4 The estimation of threshold models in price transmission analysis

4.4.2 Price transmission between German and Spanish pork prices

As a second empirical application, we analyze transmission between German and Spanish

pork prices. The analysis is carried out using the data presented in figure 4.4, which

are average weekly prices of grade E pig carcasses for Germany and Spain in Euro per

100 kg between May 21, 1989 and October 17, 2010 (1091 observations). We specify a

TVECM with three regimes,

∆pt =



ρ1γ
Tpt−1 + θ1 +

M∑
m=1

Θ1m∆pt−m + εt , γTpt−1 < ψ1 (Regime 1)

ρ2γ
Tpt−1 + θ2 +

M∑
m=1

Θ2m∆pt−m + εt , ψ1 ≤ γTpt−1 ≤ ψ2 (Regime 2)

ρ3γ
Tpt−1 + θ3 +

M∑
m=1

Θ3m∆pt−m + εt , ψ2 < γ
Tpt−1 (Regime 3).

(4.9)

with ∆pt =
(

∆pGermanyt ,∆pSpaint

)T
and M = 3. We apply profile likelihood and the

RBE with the error correction term γTpt−1 defined as the difference between the Spanish

and the German prices, γTpt = ∆pGermanyt −∆pSpaint .

We plot the profile likelihood for the upper threshold (ψ2) in figure 4.5. To generate this

figure, the lower threshold (ψ1) has been fixed at its profile likelihood estimate. We see

that the profile likelihood reaches its maximum at the boundary of the range defined

by the smallest possible trimming parameter (i.e. the requirement that each regime

contains at least one observation per parameter to be estimated). Hence, any more

restrictive trimming parameter (such as requiring that each regime contain at least 2.5

or 5% of all observations) strongly influences the profile likelihood estimate (see figure

4.5), rendering it arbitrary and unreliable. Compared with an estimate ψ̂2 = 26.07 for

the least restrictive trimming parameter, requiring 2.5% (5%) of the observations to fall

into each regime produces the estimate ψ̂2 = 21.83 (ψ̂2 = 14.01).

The RBE does not require an arbitrary trimming parameter. It produces threshold

estimates (−36.41, 34.76) that are considerably larger in magnitude than the profile

likelihood estimates (−27.80, 26.07). Furthermore, the RBE produces estimates of the

adjustment parameters that are more plausible than their profile likelihood counterparts

(table 4.3). In regime 1, where the difference between the German and Spanish prices
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Figure 4.4: Weekly prices for grade E pig carcasses in Germany and Spain (Euro per 100
kg). Source: European Commission: http://ec.europa.eu/agriculture/

markets/pig/porcs.pdf.

is less than the lower threshold value, the profile likelihood estimate of the adjustment

parameter for the Spanish price is significant and of relatively high magnitude (−0.665),

but with an implausible sign. Both magnitude and sign are implausible for the corre-

sponding parameter estimate in regime 3 (−1.193), where the difference between the

German and the Spanish prices exceeds the upper threshold. The corresponding esti-

mated adjustment parameters for the German price in regimes 1 and 3 (−0.198 and

−0.334) have the expected negative signs, but they are insignificant. Altogether, the

total adjustments for regimes 1 and 3 are negative according to the profile likelihood

method (see the third-to-last and last colums of table 4.3). Hence, the profile likeli-

hood estimates suggest that there is no mechanism that returns German and Spanish

prices to their long run equilibrium when shocks drive them apart. In comparison, the

regularized Bayesian estimates of the adjustment parameters make considerably more

sense. All of the regularized Bayesian estimates that are significant, have the expected

sign, and together they indicate that when the difference between the German and the

Spanish prices exceeds one of the thresholds, adjustments are triggered that return these

prices to their long run equilibrium (total adjustment equals 0.318 in regime 1 and 0.348

in regime 3).
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Figure 4.5: Profile likelihood function for the upper threshold, ψ2, estimated with the
pig price data in figure 4.4. The dashed vertical line indicates the profile
likelihood estimate for the upper threshold, ψ̂2, estimated using the least
restrictive possible trimming parameter. Solid grey lines indicate how the
threshold parameter space is restricted when 2.5% (5%) of the observations
are required to fall into each regime. The lower threshold is fixed at its profile
likelihood estimate, ψ̂1 = −27.8.

In summary, the empirical applications illustrate the advantages of the RBE in the

context of spatial price transmission analysis. The RBE does not depend on a trimming

parameter that arbitrarily influences the profile likelihood results in the application with

Spanish and German pork prices. Furthermore, in both applications the RB estimates

of the adjustment parameters are more plausible. In the application with the Goodwin

& Piggott (2001) data they appear to confirm Sephton’s (2003) finding that the two-

threshold TVECM is misspecified. In the application with Spanish and German pork

prices they are, unlike the profile likelihood estimates, consistent with spatial equilibrium

theory and price transmission between the markets in question.
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Est. Dep.var. ρ1 σ (ρ1) ψ1 ρ2 σ (ρ2) ψ2 ρ3 σ (ρ3)
Total(ρ1) Total(ρ2) Total(ρ3)

[#obs.] [#obs.] [#obs.]

PL
∆pGermany -0.198 (0.354)

-27.8
-0.028 (0.012)

26.1
-0.334 (1.498) -0.467 0.080 -0.859

∆pSpain -0.665 (0.354) 0.052 (0.012) -1.193 (1.498) [21] [1058] [8]

RBE
∆pGermany -0.286 (0.104) -36.4 -0.029 (0.011) 34.8 -0.355 (0.116) 0.318 0.092 0.348

∆pSpain 0.031 (0.104) (28.3) 0.063 (0.011) (149.9) -0.007 (0.116) [2] [1084] [1]

Table 4.3: Estimates for the Data in Figure 4.3 – TVECM with three Regimes. Note: The notes below table 4.2 apply.
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4.5 Conclusions

We discuss the estimation of TVCEMs in spatial price transmission analysis. We point

out shortcomings of the common (profile likelihood) estimation procedure and emphasize

the relevance of these problems for applied price transmission studies. As an alterna-

tive, we suggest employing a regularized Bayesian estimator (Greb, Krivobokova, Munk

& von Cramon-Taubadel, 2011), and we demonstrate this estimator’s superior perfor-

mance in a simulation study. Revisiting the empirical analysis in Goodwin & Piggott’s

(2001) influential paper on TVECMs in price transmission analysis, we find that the RB

estimates are free of several anomalies that characterise the profile likelihood estimates,

and appear to corroborate Sephton’s (2003) finding that the two-threshold, three-regime

TVECM is misspecified for the data in question. A second application, with German and

Spanish pork prices, confirms the advantages of the RBE in spatial price transmission

modeling, producing results that are more consistent with the theory of spatial equilib-

rium than the corresponding profile likelihood results. Future work could move beyond

the pairwise consideration of markets to study multivariate sets of prices and the more

complex multiple-threshold relationships that exist between them. Another extension

would be to investigate time-varying thresholds, since especially for longer time-series

the assumption of constant transaction costs is questionable.
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4.6 Appendix (technical details)

Our aim is to compute the posterior density p (ψ|∆p,X) for the model

∆p = (I2 ⊗X1)δ1 + (I2 ⊗X)β2 + (I2 ⊗X3)δ3 + ε, ε ∼ N (0, σ2I2n)
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with a normal prior δ1 ∼ N (0, σ2
δ1
I2d), where d = 2M + 2 with M the number of lags

included in the model; a uniform prior β2 ∼ U
(
R2d
)
; a normal prior δ3 ∼ N (0, σ2

δ3
I2d);

and a uniform prior ψ ∼ U(ψ ∈ Ψ).

To this end, we first calculate p (∆p|ψ,X), since

p (ψ|∆p,X) = p (∆p|ψ,X) p(ψ|X)
/
p(∆p|X) ∝ p (∆p|ψ,X)

given a constant prior p(ψ|X). Employing an empirical Bayes approach, it suffices to

compute p
(
∆p|ψ,X, σ2, σ2

δ1
, σ2

δ3

)
: parameters σ2, σ2

δ1
, and σ2

δ3
are replaced by their

maximum likelihood estimates σ̃2, σ̃2
δ1

, and σ̃2
δ3

. Given our specification of priors,

p
(
∆p|ψ,X, σ2, σ2

δ1
, σ2

δ3

)
=

∫
p
(
∆p,β2|ψ,X, σ2, σ2

δ1
, σ2

δ3

)
dβ2

=

∫
p
(
∆p|β2, ψ,X, σ2, σ2

δ1
, σ2

δ3

)
p
(
β2|ψ,X, σ2, σ2

δ1
, σ2

δ3

)
dβ2

=

∫
p
(
∆p|β2, ψ,X, σ2, σ2

δ1
, σ2

δ3

)
dβ2

and

∆p|β2, ψ,X, σ2,σ2
δ1
, σ2

δ3
∼

N
{

(I2 ⊗X)β2, σ
2I2n + σ2

δ1
(I2 ⊗X1)(I2 ⊗X1)T + σ2

δ3
(I2 ⊗X3)(I2 ⊗X3)T

}
.

To simplify notation, define Z = I2 ⊗X, Z1 = I2 ⊗X1, Z3 = I2 ⊗X3, and V =

I2n + σ2
δ1
/σ2Z1Z

T
1 + σ2

δ3
/σ2Z3Z

T
3 , and write

∆p|β2, ψ,X, σ2, σ2
δ1
, σ2

δ3
∼ N

(
Zβ2, σ

2V
)
.

Consequently,

p
(
∆p|ψ,X, σ2, σ2

δ1
, σ2

δ3

)
=

∫ (
1

2πσ2

)2n/2
1√
|V |

exp

{
− 1

2σ2
(∆p−Zβ2)TV −1(∆p−Zβ2)

}
dβ2
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=

(
1

2πσ2

)2n/2
1√
|V |

exp

{
− 1

2σ2
(∆p−Zβ̃2)TV −1(∆p−Zβ̃2)

}
·∫

exp

{
− 1

2σ2
(β2 − β̃2)TZTV −1Z(β2 − β̃2)

}
dβ2

=

(
1

2πσ2

)2n/2
1√
|V |

exp

{
− 1

2σ2
(∆p−Zβ̃2)TV −1(∆p−Zβ̃2)

}
(2πσ2)2d/2·

1√
|ZTV −1Z|

=

(
1

2πσ2

)2(n−d)/2
1√

|V ||ZTV −1Z|
exp

{
− 1

2σ2
(∆p−Zβ̃2)TV −1(∆p−Zβ̃2)

}

with β̃2 = (ZTV −1Z)−1ZTV −1∆p. Substituting σ̃2, σ̃2
δ1

, and σ̃2
δ3

for σ2, σ2
δ1

, and σ2
δ3

respectively yields a log posterior density

p(ψ|∆p,X) ∝ p (∆p|ψ,X) ∝ −1

2

{
(2n− 2d) log σ̃2 + log |V |+ log |ZTV −1Z|

+
1

σ̃2
(∆p−Zβ̃2)TV −1(∆p−Zβ̃2)

}
.

Note that for ease of notation we use the same letter V to denote the covariance matrix

based on σ̃2, σ̃2
δ1

, and σ̃2
δ3

or on σ2, σ2
δ1

, and σ2
δ3

. Here V = I2n + σ̃2
δ1
/σ̃2Z1Z

T
1 + σ̃2

δ3
/σ̃2Z3Z

T
3 .
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The introduction to this thesis puts forward the research question, contextualizes and

motivates it. It finishes with a rough sketch of the path suggested to resolve the problem.

This discussion forms its counterpart. It summarizes the solution, indicates in what sense

it goes beyond answering the original question and brings up issues which might merit

further investigation.

The analysis of the deficits of the commonly used profile likelihood estimator reveals

that it suffers from two drawbacks. First, it is necessary to restrict the domain of the

threshold parameter for the profile likelihood function to be well-defined. This is due

to identification issues. The literature offers no more than the ad hoc solution of an

arbitrary trimming parameter. Second, profile likelihood estimators generally do not

account for variability introduced by replacing nuisance parameters with estimators.

This becomes a serious problem in certain critical settings, namely, when differences

between regimes diminish or only few observations are left in one of them. Both a low

signal-to-noise-ratio and a small number of observations in one of the regimes cause the

variability of the nuisance parameters’ estimators to grow very large.

To put this latter issue into perspective – of course, likelihood estimation in the presence

of nuisance parameters is not a new problem. It has been discussed in the literature for

decades (Neyman & Scott, 1948; Lancaster, 2000, for a survey) and a variety of strategies

to correct the profile likelihood function for this deficiency have been suggested (Cox &

Reid, 1987; Kalbfleisch & Sprott, 1973; McCullagh & Tibshirani, 1990; Severini, 2007,

among others). The most well-known attempt is perhaps the modified profile likelihood

function introduced by Barndorff-Nielsen (1983). Yet, the proposed modifications are

usually based on insights drawn from an asymptotic expansion of the score function. As

the profile likelihood function of a threshold regression model (assuming a step transition

function) is not differentiable with respect to the threshold parameter, these corrections
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are not helpful. Hence, the interplay between the two features of the model blamed to

complicate threshold estimation – nuisance parameters and nonregularities – also hinders

ready application of available solutions.

Apart from the profile likelihood (or least squares) estimator Bayesian estimators with

noninformative priors are frequently used to estimate the threshold. However, since the

posterior density is proportional to the profile likelihood function, the former inherits

the shortcomings of the latter.

The alternative regularized Bayesian estimator is based on the idea of penalizing large

differences between regimes when little information is available. This regularization is

achieved within a Bayesian framework by means of an appropriate choice of priors. The

strength of the penalty is determined in a data-driven manner employing the empiri-

cal Bayes paradigm. This estimator does not depend on a trimming parameter. One

aspect of the new estimator which deserves to be accentuated is that it is elementary

to compute. As it is possible to take advantage of existing methods for mixed models

(which are already implemented in standard software packages), it takes barely more

effort to calculate the regularized Bayesian than the profile likelihood estimator. Given

that the estimation problem disappears asymptotically, simulation studies constitute the

adequate way to assess the performance of the regularized Bayesian estimator and com-

pare it with the profile likelihood estimator’s. For both the GTRM and the TVECM,

simulation results evidence superior quality of the newly developed estimator. Figure 5.1

shows the histograms for the regularized Bayesian threshold estimates for a TVECM, it

is figure 1.1’s counterpart.

The effect of using the regularized Bayesian estimator in empirical applications is ex-

emplified in four different cases. Novel estimates differ from conventional ones on all

occasions. However, in the instance of the study of the effects of climate on snowshoe

hare populations it furthermore occurs that, contrary to the profile likelihood estimator,

the regularized Bayesian estimator produces meaningful results without depending on

additional ad hoc arguments. Thus, there is a clear benefit to employing the latter esti-

mator. Likewise, when analyzing transmission between German and Spanish pork prices,

the profile likelihood estimates are entirely driven by the arbitrary trimming parame-

ter used to restrict the domain of the threshold parameter; hence, they are essentially

worthless. In contrast, the regularized Bayesian estimates are immune to this defect.
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Figure 5.1: Regularized Bayesian estimates for the lower (a) and upper (b) threshold of
a TVECM with three regimes. True values are −4 and 4, respectively.

Moreover, the associated estimates for the adjustment coefficients are considerably more

plausible than those obtained via the standard estimation procedure. Accordingly, this

application presents another example in which the use of the regularized Bayesian es-

timator has definite advantages. These examples confirm the practical relevance of the

new estimator.

Improving threshold estimation in GTRMs in some respect exceeds what is necessary to

solve the estimation problem for TVECMs. In the introduction, I present the GTRM

as a simplification of the TVECM; the idea is to emphasize the strategy of boiling the

problem down to its core by getting rid of complexities unrelated to the question at hand.

However, this is only half the truth. The GTRM is not a simplification in every respect.

The TVECM is characterized by a piecewise linear conditional mean structure, while the

GTRM allows for a link function – which is not necessarily the identity – to relate the

piecewise linear predictor to the mean of the observations. It further covers observations

following any distribution belonging to the exponential family, for example the Poisson

or the binomial distribution. In short, the GTRM goes beyond the essential reduction

in model complexity to the extent by which a generalized linear model broadens a linear
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model.

To appreciate the significance of the findings in chapter three detached from the context

of the TVECM it is helpful to bring to mind the prominence of the model. Limiting

attention only to the Gaussian threshold regression model (as in (2.6)), there exist

numerous applications in a host of different fields of science – a cross-country growth

regression is discussed in chapter three and the second chapter points to further examples

(see section 2.1.1). Statements like van de Geer’s (1988, page 3) “We shall take two-

phase regression models [...] as the major illustration of the theory we develop for general

regression models. In this way, we hope to provide some insight into the significance of

our results.” further establish the importance of the model. As the Gaussian threshold

regression model is but a particular GTRM, the latter is at least equally significant.

As a matter of fact, Samia & Chan (2011) stress that “nonnormal data are far more

abundant than normal ones, for example, time series of counts and positive time series”.

The threshold regression model’s popularity is generally attributed to a combination

of parsimony and flexibility in functional form without being susceptible to curse of

dimensionality (Kourtellos, Stengos & Tan, 2011). Samia & Chan (2011) add “relative

ease of tractability and interpretation”.

Which potential directions for further research open up during the course this thesis?

As touched upon in chapter three, it suggests itself to explore the possibility to create

a test based on the same idea as the estimator. The approximate regularized posterior

can be thought of as the restricted likelihood function of a generalized linear mixed

model, the difference between regimes interpreted as a random effect. Put into this

perspective, a test for a threshold translates into a test for a random effect. For the

Gaussian case of a linear mixed model, such test has been developed by Crainiceanu

& Ruppert (2004) and Scheipl, Greven & Küchenhoff (2008) and implemented in the

R package RLRsim. An extension to generalized linear mixed models might possibly

provide the basis for a unified test in GTRMs. The literature on tests for a threshold is

large (Davies, 1977; Davies, 1987; Andrews, 1993; Andrews & Ploberger, 1994; Hansen,

1996; Lee, Seo & Shin, 2011). However, resembling estimation, most tests concentrate on

Gaussian threshold regression models (or models with piecewise linear mean). Moreover,

a test within the mixed model setting might fare better than existing tests in the critical

situations of low signal-to-noise ratio and few observations in one of the regimes.
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Related to this the question arises whether it is even possible to exploit the idea of a test

for random effects in the more general situation of models with unidentified parameters

under the null hypothesis. Several of the articles cited above are actually based on

this broader framework. Hansen (1996), for example, focuses on regression models with

additive nonlinearity,

yi = XT
i β +H(Zi,γ)Tθ + εi

for observations (yi,X
T
i ,Z

T
i ) ∈ R× Rp × Rq, parameters β ∈ Rp, γ ∈ Rm, θ ∈ Rk, and

disturbances εi, with zero mean and finite variance, i = 1, . . . , n. The null hypothesis

of a model yi = XT
i β + εi, that is of θ = 0, is tested against the alternative that the

term H(Zi,γ)Tθ enters. The parameter γ is not identified under the null hypothesis.

Apart from tests for a threshold, that is, H(ZT
i , γ) = I(qi ≤ γ)X i for ZT

i = (qi,X
T
i ),

or a change point, that is H(XT
i , γ) = I(i/n ≤ γ)X i, Hansen (1996) enumerates “Box-

Cox transformations: H(Zi, γ) = (Zγ
i − 1)/γ; [. . .] Bierens’s (1990) consistent tests

of functional form: H(Zi,γ) = exp(γTZi); White’s (1989) neural network tests of

functional form: H(Zi, γ) = 1/ {1 + exp (γ − Zi)}”as further potential applications.

Another vague thought along these lines is to explore the connection between the problem

considered in this thesis and the embedded model problem (Smith, 1989; Cheng & Iles,

1990). Embedded models arise as limiting cases of an original model. In this context,

the idea of the difference between regimes as a random effect amounts to phrasing the

parameter θ as a random effect with mean µ if the embedded model emerges for θ → µ.

Not directly related to the findings of this thesis, but maybe still worth mentioning, an

observation regarding the literature summarized in chapter two. To my mind, the num-

ber of articles on the limiting properties of threshold estimators that cover models that

are only slightly distinct from one another (or even identical, but with estimators vary-

ing among least squares, maximum likelihood and M-estimators) is remarkable. Besides,

results closely resemble each other or are natural extensions of one another. Without

having studied the derivations of the limiting distributions in detail, it is apparently very

easy to generalized findings at times, whereas on other occasions the opposite is the case.

For example, Ciuperca & Dapzol (2008) omit the proof of their theorem 3.5 (see section

2.1.6), which establishes the limit likelihood process for a multiple-threshold regression

model as a sum of independent compound Poisson processes, for its similarity to the

single-threshold case derived by Koul & Qian (2002). Contrary to this, He & Severini
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(2010) who look at observations X i ∈ Rp drawn independently from a distribution

J+1∑
j=1

fj
(
θ, ξj;X i

)
I(ψj−1 + 1 ≤ i ≤ ψj),

where fj are continuous density functions characterized by a parameters θ ∈ Rm and

ξj ∈ Rq(j), j = 1, . . . , J , and ψ1 < . . . < ψJ ∈ N are the change points, ψ0 = 0 and

ψJ+1 = n, establish consistency of the maximum likelihood estimator of the change

points and determine its rate of convergence, but leave the limiting distribution for

further research. They remark that “unfortunately, there are problems in extending the

approach used in Hinkley (1970, 1972) to the setting considered here. The method used

in Hinkley (1970, 1972) is based on considering the relative locations of a candidate

change point and the true change point. When there is only a single change point,

there are only three possibilities: the candidate change point is either greater than,

less than or equal to the true change point. However, in models with J change points,

the relative positions of the candidate change points and the true change points can

become quite complicated and the simplicity and elegance of the single change point

argument is lost” (He & Severini, 2010, page 760). Similarly, Tsay (1998) notes that

extending results for the univariate continuous threshold regression model (Chan & Tsay,

1998) to a multivariate model “is yet to be rigorously investigated”, hence, apparently

not straightforward. van de Geer (1988) takes a unified approach by embedding the

two-phase regression model, which initiated her study, within the context of nonlinear

regression, but admits that she “did not succeed in avoiding ad hoc arguments for this

model”. Taking these statements into account, it might be an interesting endeavor to try

and identify the actual scope of the results regarding the limiting properties of threshold

estimators, which I outlined in chapter two.

With regard to the specific case of threshold estimation in TVECMs, and especially

when thinking of empirical applications of the latter in price transmission analysis, it

is disturbing to see how hard it can be to produce reliable estimates. Unlike in the

real world, in the Monte Carlo studies conducted, no errors are introduced through data

collection and a perfectly specified model is estimated – this is not likely to be the case in

empirical studies. Still, in some situations it is not easy to obtain trustworthy threshold

estimates. Obviously, the TVECM with two thresholds (and three regimes) suffers from
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some serious oversimplifications. The two most obvious are that (i) transaction costs

are assumed to be constant over time; (ii) while the reasoning for the model set-up is

very persuasive when considering just two markets in isolation, it is unclear whether

it is the appropriate model specification when they form part of a larger network of

interconnected markets. Thus, it is natural to try and incorporate more flexibility to

better represent real conditions. However, against the background that estimation can

already be problematic in the “simple” TVECM studied in this thesis, the question of

a proper balance between flexibility and feasibility of reliable estimation comes to the

fore. Increased model flexibility influences parameter estimators in two counteracting

ways. It means that there is a larger number of parameters to estimate, hence, the

estimators tend to have greater variability. However, at the same time it implies that

model misspecification is less likely, hence, facilitates adequate estimation. Consequently,

to my mind it would be interesting to examine the optimal balance of these competing

forces given constraints by the data available. Yet, an answer which goes beyond very

specific cases might be impossible to give.
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van de Geer, S. (1988). Regression analysis and empirical processes. Amsterdam.

Geweke, J. and Terui, N. (1993). Bayesian threshold autoregressive models for non-

linear time series. Journal of Time Series Analysis 14 (5), 441–454.

Goodwin, B. and Piggott, N. (2001). Spatial market integration in the presence of

threshold effects. American Journal of Agricultural Economics 83 (2), 302–317.

Granger, C. (1986). Developments in the study of cointegrated economic variables.

Oxford Bulletin of economics and statistics 48 (3), 213–228.

Greb, F., von Cramon-Taubadel, S., Krivobokova, T., and Munk, A. (2011). Threshold

estimation in price transmission analysis. CRC-PEG Discussion Paper No.103,

Courant Research Centre “Poverty, Equity and Growth in Developing Countries”,

Georg-August-Universität Göttingen.

Greb, F., Krivobokova, T., Munk, A., and von Cramon-Taubadel, S. (2011). Regu-

larized Bayesian estimation in generalized threshold regression models. CRC-PEG

Discussion Paper No.99, Courant Research Centre “Poverty, Equity and Growth

in Developing Countries”, Georg-August-Universität Göttingen.

Hansen, B. (2000). Sample splitting and threshold estimation. Econometrica 68 (3),

575–603.

Hansen, B. (2011). Threshold autoregression in economics. Statistics and Its Inter-

face 4 (2), 123–128.

Hansen, B. and Seo, B. (2002). Testing for two-regime threshold cointegration in vector

error-correction models. Journal of Econometrics 110 (2), 293–318.

Hansen, B. E. (1996). Inference when a nuisance parameter is not identified under the

null hypothesis. Econometrica 64 (2), 413–430.

Harville, D. (1977). Maximum likelihood approaches to variance component estimation

and to related problems. Journal of the American Statistical Association 72 (358),

320–338.

He, H. and Severini, T. (2010). Asymptotic properties of maximum likelihood estima-

tors in models with multiple change points. Bernoulli 16 (3), 759–779.

Hinkley, D. (1969a). Inference about the intersection in two-phase regression.

106



REFERENCES

Biometrika 56 (3), 495–504.

Hinkley, D. (1969b). On the ratio of two correlated normal random variables.

Biometrika 56 (3), 635–639.

Hinkley, D. (1970). Inference about the change-point in a sequence of random vari-

ables. Biometrika 57 (1), 1–17.

Hinkley, D. (1972). Time-ordered classification. Biometrika 59 (3), 509–523.
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