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1. Abstract  
The tetraspan-transmembrane proteins of the M6-proteolipid proteolipid protein family are 

among the most abundant cell surface proteins in neurons. Their cellular function has 

remained largely speculative, also because their analysis has been limited to acute 

alterations of their abundance levels in vitro. Based on expression analyses I have 

hypothesized that neuronal M6 proteolipids have a role in neuronal development. Indeed, the 

results presented in this thesis show that M6A defines an F-actin-free structural compartment 

at the tip of axonal growth cones while its homolog M6B is mainly present at actin-rich 

neurite domains. For the analysis of neurite extension upon chronic deficiency of M6-

proteins, single-mutant M6Anull and M6Bnull mice and M6Anull*M6Bnull double-mutants were 

characterized. Importantly, lack of either neuronal M6-protein impaired the extension of 

neurites from cultured cortical neurons ex vivo. Mutant growth cones showed abnormal 

compartmentalization and did not display normal growth cone collapse upon ephrinA5-

application. The mechanism of action is likely to involve Eph-receptor signalling, as the 

abundance of the effector molecule ephexin-1 is considerably reduced in the absence of M6-

proteins. Preliminary analysis shows that the formation of neuronal processes is also 

impaired in vivo, at least affecting the long-projecting cortical neurons traversing the corpus 

callosum at an early postnatal stage. Together, M6-proteolipids contribute to the structural 

organization of neuronal growth cones that is prerequisite for normal reaction to guidance 

cues and neurite extension.  

 

The third member of the M6-proteolipid proteolipid protein family, termed PLP, is the most 

abundant protein of CNS myelin. It has been surprising that myelin biogenesis is not 

obviously impaired in PLPnull mice. In a candidate approach the structurally related tetraspan 

tetraspanin-2 (TSPAN2), a known low-abundant myelin protein, was identified as a candidate 

to compensate for PLP-deficiency because of its considerably increased abundance in 

PLPnull myelin. To investigate the role of TSPAN2 in myelination, I generated TSPAN2null 

mutant mice by homologous recombination in embryonic stem cells and TSPAN2null*PLPnull 

double-mutant mice were bred. These mice are viable and fertile. Interestingly, the initial 

examination shows that the abundance of the closely related tetraspanin CD81 is increased 

in TSPAN2null myelin, signifying a molecular change that may compensate for the absence of 

TSPAN2 function. Considering their spatio-temporal expression and that overexpression 

studies hint to a role of TSPAN2 and PLP in oligodendroglial processes formation it is likely 

that tetraspans of various protein families have overlapping and partially redundant functions 

as molecular facilitators of myelination.  
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2. Introduction 
All our behaviours are orchestrated by brain function, which is performed by neurons and the 

connections between them. The proper performance facilitates a very complex behaviour. 

Brain function enables simple motor activities like breathing, smiling and walking, but also 

very complex ones as emotional and cognitive activities like feeling, thinking or writing a PhD 

Thesis (Kandel et al., 2000).  

 

The cellular unit of the brain is the neuron. At the end of the nineteenth century, Ramón y 

Cajal proved that the nervous system is a network of single cells, leading to the “neuron 

doctrine”. He demonstrated that neurons are the basic signalling unit of the nervous system: 

each neuron is one defined cell, which contacts other neurons at specific interaction points, 

the synapses (Ramón y Cajal, 2008). There are two distinct classes of cells in the nervous 

system, neurons and their glial support cells. In the human brain there are about 1011 

neurons associated with over 1012 glial cells (Kandel et al., 2000; Gilbert, 2003). 

 

Neurons transmit electrical impulses form one region of the body to another. To prevent 

dispersion of the electrical signal and to facilitate its transmission to the target cells, the 

conducting part of large axons is insulated at intervals by oligodendrocytes (OL) in the 

central nervous system (CNS) and Schwann cells (SC) in the peripheral nervous system 

(PNS) (Sherman & Brophy, 2005). The OL wraps a process extension around the developing 

axon and produces a specialized plasma membrane called a myelin sheath. The myelin 

sheath is essential for fast nerve conduction. The axon has short non-myelinated segments 

that enable saltatory nerve impulse propagation, called the nodes of Ranvier (Sherman & 

Brophy, 2005). Myelin is indispensable for proper neural function, and demyelination of nerve 

fibres is associated with convulsions, paralysis and several debilitating or lethal afflictions 

(such as multiple sclerosis) (Gilbert, 2003). 

 

The nervous system can be subdivided into the CNS and the PNS. The CNS comprises the 

brain and spinal cord, while the PNS is made up of all the remaining ganglia and peripheral 

nerves. The PNS has a somatic component (the sensory neurons form the dorsal root and 

cranial nerves) as well as an autonomic one (the sympathetic, parasympathetic and enteric 

nervous system). The CNS and PNS are anatomically separated but functionally connected 

(Kandel et al., 2000).  
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2.1. Development of the central nervous system 

After gastrulation the mammalian embryo has three embryonic layers, namely (1) the 

endoderm that gives rise to the gut, liver and lungs, (2) the mesoderm form which originates 

the connective tissue, muscles and vascular system, and (3) the ectoderm, the outermost 

layer that will give rise to the major tissues of the CNS and PNS as well as the epidermis. 

These three layers are part of the neural plate. Inside the gastrula is also the notochord that 

induces the neurulation (Kandel et al., 2000; Gilbert, 2003).  

 

During the following neurulation, the neural plate undergoes the neural induction so that it 

folds until forming the neural tube, which is the embryonic precursor of the six brain regions. 

The neuroectoderm produces neural precursor cells that will give rise to the neurons and glia 

of the CNS. The neuroblasts will migrate into the nervous system and differentiate into the 

neurons of the brain and spinal cord, while the glial progenitors give rise to OLs and 

astrocytes (Jessel, 2000). Cells within the neuroectoderm give rise to the neural crest; a 

transient group of migratory cells that emerge form the dorsal region of the neural tube and 

rapidly disperse along different pathways. They will give rise e.g. to neurons and SCs of the 

sensory and autonomic nervous system (Gilbert, 2003). Cell differentiation depends on a 

series of signals that ultimately control the differential activation of gene sets; each distinct 

cell type expresses a different subset of genes (proved by Monod and Jacob, late 1950s, 

cited after Kandel et al., 2000). In the vertebrate neural development the cell-to-cell 

interactions are essential (Kandel et al., 2000).  

 

Subsequently the organogenesis occurs, in which the rostral segment of the neural tube 

gives rise to the brain and the caudal segment to the spinal cord. The rostral neural tube 

transforms initially into the three primary brain vesicles: forebrain, midbrain and hindbrain 

(Jessel, 2000), and with several flexures (cervical, cephalic and pontine) and further 

subdivision, the CNS is finally constituted of six main parts. From the forebrain arises (1) the 

telencephalon, which includes the cerebral hemispheres that are involved in perception and 

cognition and (2) the diencephalon that contains the thalamus and hypothalamus, integration 

centres, as well as the retina and optic nerves. The midbrain gives rise to (3) the 

mesenencephalon that controls sensory and motor functions like eye movement. The 

hindbrain forms (4) the metencephalon which includes the pons and the cerebellum, related 

to movement modulation and learning of motor skills, and (5) the myelencephalon that forms 

the medulla oblongata, involved e.g. in breathing. The caudal part of the neural tube stays 

undivided and becomes (6) the spinal cord that controls movements of the limbs and trunk 

and receives and processes sensory information from the skin, joints and muscles of these 

(Kandel et al., 2000; Squire et al., 2002; Gilbert, 2003). 
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2.1.1. Neurons 

Neurons are compartmentalized into three functionally different domains: the soma, where 

the cellular metabolism takes place, the dendrites and the axon. The dendrites receive 

signals from other neurons, which are conducted into the axon that transmits the signal to 

other neurons with an all-or-none propagating system, the action potential, a transient 

electrical signal. Axons may have up to one meter length, e.g. the pain sensing cells at the 

toes that transmit their impulses all the way to the spinal cord. The presynaptic terminal at 

the axon’s end transmits neurotransmitters to the adjacent neuron at the synapses (Kandel 

et al., 2000; Gilbert, 2003). 

 

Neurons are the signalling unit and their interconnection allows the processing of information. 

The functioning of the mature nervous system depends on the action of distinct neuronal 

circuits. The neuronal connections are established during development and in the CNS of 

vertebrates it is an intimidating complex system: millions of neurons project their axons 

throughout the brain and establish thousands of connections with different target neurons. 

The diversity of connections by one single neuron distinguishes it from other cells (Tessier-

Lavigne & Goodman, 1996; Kandel et al., 2000).  

 

The neurogenesis comprises several partially overlapping steps that include proliferation, 

migration, cell differentiation, maturation and cell death (Kandel et al., 2000). The migration 

pattern of neurons establishes the basic plan of the CNS. Neural stem cells in the ventricular 

zone of the neural tube divide and form precursor cells, the neuroblasts. These migrate from 

the proliferation site at the ventricular zones of the neuroectoderm to their final positions 

along a scaffold of radial glial cells. Different neuroblasts migrate at different stages, before 

or after extending their axons (Kandel et al., 2000; Squire et al., 2002; Gilbert, 2003). For 

example, in the cerebral cortex, neurons of different morphology and connections are orderly 

arranged into well-defined layers. The layering of cortical neurons is associated to the 

moment they emerged: neurons born at early stages of cortical development end up in the 

deepest cortical layers, and those born at later times end up in progressively more superficial 

layers. Meaning that later born neurons must migrate through the existing layers of neurons 

that have already reached their final position in the cortex. Cortical layer organization is 

thereby an inside-out sequence of neuronal differentiation (López-Bendito & Molnár, 2003). 

 

Once a neuron has migrated to its final position and sometimes even before, it begins to 

extend an axon. The axon extension takes place at its growing tip by means of the growth 

cones (GCs). Ramón y Cajal (1890) postulated that the axon was an outgrowth of the 

neuronal soma and described for the first time the growing tips of neuronal axons and named 
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them growth cones (Fig. 1). In a unique assumption based on morphological observations of 

fixed material he described their behaviour (Ramón y Cajal, 1890): 

 

“Desde el punto de vista funcional, puede estimarse el cono de crecimiento como una 

especie de mata ó ariete, dotado de exquisita sensibilidad química, de rápidos 

movimientos ameboides, y de cierta fuerza impulsiva, merced á la cual es susceptible 

de empujar y franquear los obstáculos hallado á su paso, forzando los intersticios 

celulares hasta arribar a su destino.” (Cited after Ramón y Cajal, 2008). 

 

[Translation of the citation of Ramón y Cajal, cited after Squire et al., 2002.] 

 “From the functional point of view, one might say that the growth cone is like a club or 

battering ram endowed with exquisite chemical sensitivity, rapid amoeboid movements, 

and a certain motive force allowing it to circumvent obstacles in its path, thus coursing 

between various cells until reaching its destination.”  

 

 
 

 

 

Figure 1. Growth cone drawings by Ramón y Cajal.  
Growth cones of chicken spinal cord embryos of four days of age, stained by the Golgi method. 
Depicted are growth cones of the gray matter (A), close to the anterior commissure (B) and of the 
white matter (C) (Taken from Ramón y Cajal, 2008).  

Hence, Ramón y Cajal suggested that the growth cones lead the advancing axon to its 

targets, thereby presenting the first instance of growth cones being involved in axon 

pathfinding. Two decades later, Harrison (1909) demonstrated the outgrowth theory. He 

observed living tissue in culture, deduced that growth of axons occurs by extension of the 

growth cones, and demonstrated the truth of Ramón y Cajal’s description of a highly motile, 

amoeboid specialization at the tips of growing axons (Kandel et al., 2000; Gilbert, 2003). 

Shortly after, Speidel (Squire et al., 2002) took advantage of the thinness and transparency 

of tadpole fins and examined living growth cones extending in situ. The pioneering studies of 

Ramón y Cajal, Harrison and Speidel identified the growth cone as the key decision-making 

component in the elaboration of axonal pathways.  
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The neuronal growth cones lead the neuron’s outgrowth by sensing environmental cues 

along the substrate. The force that extends the axon derives from changes that occur within 

the growth cone (reviewed in Dickson, 2002). Growth cones appear as an enlargement of the 

distal axon shaft, where the structural support is provided by microtubules (MT). In tissue 

culture growth cones are flattened into a thin fan-shaped sheet with many long, very thin 

spikes radiating forward. The veil-like extensions at the periphery of the growth cone are 

called lamellipodia, and the narrow cylindrical extensions capable of extending tens of 

microns from the periphery of the growth cone are called filopodia or microspikes. The 

lamellipodia are motile and give the growth cone its characteristic ruffled appearance. The 

filopodia (finger-like extensions) project form the growth cones, are highly motile and 

continually extend and retract. The sensitive capacity of the growth cones depends largely on 

the filopodia: by fanning out in front of them, each filopodium samples the microenvironment 

and sends signals back to the soma. Different second-messenger pathways are activated in 

growth cones by environmental signals and regulate their motility by modifying the structure 

or function of cytoskeletal and other proteins in the growth cone (reviewed in Dent & Gertler, 

2003). Lamellipodia and filopodia of growth cones contain a high density of filamentous (F-) 

actin, and there is evidence that the degree of actin polymerization regulates growth cone 

motility. Actin is mainly present in the growth cone periphery with filopodia containing mainly 

F-actin bundles and lamellipodia an F-actin meshwork (Dent et al., 2010). MTs are also 

present in growth cones, essentially in the axon shaft and the growth cone centre, and the 

regulation of the MT assembly also contributes to the extension and orientation of growth 

cone (Fig. 2). A bidirectional signalling between actin and MT is necessary for coordinating 

their polymerization for the directed axon growth from the growth cone, but is not required for 

axon extension per se (Dent & Kalil, 2001; Dent & Gertler, 2003).  

 

As the axon extends the surface of the neuronal membrane increases tremendously. New 

membrane is synthesized in the cell body and transported in vesicles along MT into the 

growth cone. There, vesicles fuse and are incorporated into the plasma membrane. Although 

the growth cones also recycle membrane via endocytosis, there is a net addition of new 

plasma membrane (Pfenninger, 2009). 
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Figure 2. Localization of F-actin and microtubules in axonal growth cones.  
Scheme representing the F-actin and MTs localization in an enlarged growth cone. MTs are 
present in the axon shaft and the central region of the growth cone and some tyrosinated-MTs 
extend into the lamellipodium and proximal domains of filopodia. F-actin is found in a mesh-like 
structure in the lamellipodium and as F-actin bundles in the filopodia. Note that filopodia are mainly 
formed by F-actin bundles (Taken from Dent & Kalil, 2001). 

 

The specificity of the neuronal connections is one of the most striking physical aspects of the 

nervous system. How do the axons of developing neurons reach their targets? The specificity 

of axonal pathfinding is largely attributable to Sperry (1940s and 1950s), who demonstrated 

the high degree of preciseness in the formation of synaptic connections (cited after Kandel et 

al., 2000). Axon guidance, the directed axonal growth early in development contributes to the 

specificity of neuronal connections, as the axons are guided from their origin to their 

appropriate destiny where they establish functionally appropriate connections with their 

synaptic partners. The selectivity of synaptic connections depends on the recognition of 

specific molecular cues in the vicinity of the target (Benson et al., 2001).  

 

Axons are guided along specific pathways by guidance molecules located in the extracellular 

space (Dickson, 2002). This takes place by the simultaneous and coordinated action of four 

types of guidance mechanism: contact attraction, chemoattraction, contact repulsion and 

chemorepulsion. A single growth cone might be “pushed” form behind by a chemorrepellent, 

“pulled” form in front by a chemoattractant and “hemmed in” by attractive and repulsive local 

cues. “Push, pull and hem: these forces get together to guarantee accurate guidance” (cited 

after Tessier-Lavigne & Goodman, 1996). Guidance cues include molecules that are soluble, 

membrane-bound or from the extracellular matrix. There are four major families of signalling 

molecules that contribute to axon guidance: netrins, Slits, semaphorins and ephrins 

(Dickson, 2002). Many guidance cues are multifunctional, as they can be attractive but also 
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repellent. The growth cone guides the axon by converting the positive and negative cues into 

orders that regulate the cytoskeleton and determine the trajectory and speed of the axon’s 

growth. Axon guidance specificity may depend on the balance between the attractive and 

repellent molecules (Tessier-Lavigne & Goodman, 1996; Dickson, 2002). Therefore, 

molecular gradients help axons to find their correct location within a target field, like opposing 

gradients of EphAs (ephrin receptors) and ephrin-As in the nasotemporal axis in the retina 

determine the final axon’s termination and topographic map of the developing retinotectal 

system (reviewed in Feldheim & O’Leary, 2010). The axonal pathfinding depends not only on 

the guidance molecules per se, but also on their precise spatiotemporal distribution. 

Moreover, axonal outgrowth may be controlled independently of the guidance cues 

themselves. For example, when no ephrin is bound, the Eph receptor recruits the guanine 

nucleotide exchange factor (GEF) ephexin to the plasma membrane, where it activates 

RhoGTPases like Cdc42, Rac or RhoA (Fig. 3). Thereby the receptor without the ligand 

leads to a balance in the GTPase activation, which promotes axonal growth. Once ephrin 

binds to its Eph receptor and provokes the assembly of several ligand-receptor units in a 

cluster, the tyrosine kinase of the Eph receptor phosphorylates ephexin, RhoA gets 

inactivated and acts on the F-actin disassembly (reviewed by Egea & Klein, 2007; Lowery & 

Van Vactor, 2009). Thus, not only the type of guidance cue is decisive for the neuronal 

growth, but also its presence or absence.  

 

Figure 3. Model of Eph receptors, ephexin and RhoA in growth cones. 
The Eph receptor recruits the guanine nucleotide exchange factor ephexin 
to the plasma membrane, where it will activate RhoGTPases like Cdc42, 
Rac or RhoA. When the GTPases are balanced in this manner axonal 
outgrowth is promoted (Taken from Egea & Klein, 2007). 

 

Axons have a non-constant growth rate as they often pause while they project to their 

targets. In decision regions, growth cones change their appearance, become more expanded 

and with a greater number of filopodia (Dent & Kalil, 2001). These changes have been 

suggested to reflect that the growth cone is actively searching for specific guidance cues. 

Once the immature neurons migrate from the germinal zones to their final position, the axons 

will form synaptic connections with a selected group of target cells. The initial synapse 

formation is often accurate, but some synapses are exuberant and superfluous and will be 

eliminated or modified partially during later stages of development, until the mature pattern of 

neural connections is completed (Innocenti & Price, 2005).   
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2.1.2. Oligodendrocytes and myelin  

Neuroglial cells were first recognized over a century ago as connective elements in the CNS 

that fill the space between nerve elements or glue the nerve elements together (Greek, glia 

=”glue”) (reviewed in Zhang, 2001). The three major glial cell types in the CNS are OLs, 

astrocytes and microglia. Many other types of glia cell are associated with them, 

evolutionarily or functionally. Astrocytes and oligodendrocytes both develop from the 

neuroectoderm, whereas the origin of microglia remains controversial, with the majority 

favouring a haematopoietic derivation. It is estimated that glial cells occupy half of the brain 

space, but outnumber neurons by ten to one (Zhang, 2001). Glial cells are involved in almost 

every aspect of neural function. During development, glia cells are implicated in guiding 

neuronal migration (radial glia), removing superfluous cells (microglia), myelinating axons 

(OLs) and forming the blood–brain barrier (pericytes). Under normal conditions, glial cells 

maintain the homeostatic environment for proper neuronal functions by storing energy, 

buffering pH, balancing ion concentrations and recycling neurotransmitters after neuronal 

excitation. Recent findings even indicate a synaptic communication with neurons, one of the 

hallmarks of neuronal identity. Under pathological conditions, glia cells act as a defence 

system collaborating with the immune system and producing trophic factors (Zhang, 2001).  

 

In general, gliogenesis begins after neurogenesis but overlaps with it in several brain 

regions, and persists long after neurogenesis has ceased (Lee et al., 2000). In the vertebrate 

CNS, OLs are derived from oligodendrocyte precursor cells (OPCs), which originate from the 

subventricular zone (Sherman & Brophy, 2005; Klämbt, 2009). The differentiation of OLs 

from their progenitors follows a stepwise morphological transformation from bipolar 

progenitors to pro-OLs bearing multiple processes (immature), membrane sheath-bearing 

mature OLs and, finally, to myelinating OLs. Accompanying this morphological change is a 

sequential expression of molecular markers (Zhang, 2001). The OPCs move as individual 

cells through the neural tube in a saltatory migration mode. Time-lapse imaging of cultured 

mammalian OPCs and in vivo imaging of developing zebrafish have shown that migrating 

OPCs have a rapidly remodelling tip that resembles an axonal growth cone. Interestingly, 

OPCs retract their processes upon contacting another OPC and change their migration 

direction. In addition to chemoattractants that are secreted by the target tissue and guide 

OPC’s migration, such repulsive interactions between OPCs eventually result in their even 

distribution in the brain tissue. OPCs also divide during their passage through the brain. 

Because of the contact inhibition described above, the two daughter cells usually grow away 

from each other. This migration behaviour continues in adults and ensures that brain areas 

lacking oligodendrocytes, such as lesioned areas, can be efficiently repopulated (reviewed in 

Klämbt, 2009). 
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Myelin is a multilamellar isolating membrane that is formed by OLs in the CNS. The OLs 

enwrap tightly the axon with their membranous processes in segments that are separated by 

the nodes of Ranvier. An OL may envelope up to 60 internodes (Sherman & Brophy, 2005). 

The myelin sheath reduces current flow across the axonal membrane by lowering its 

capacitance and increasing its transverse resistance, thereby allowing the fast, saltatory 

movement of nerve impulses from node to node. As a consequence, a large number of 

axons with high conduction velocities (up to 100-fold increase) could be placed in a limited 

space, a feature that permitted the development of more complex nervous systems (Arroyo & 

Scherer, 2000; Poliak & Peles, 2003). Myelin and the confinement of voltage-dependent 

sodium channels to the nodes of Ranvier allowed the fast saltatory conduction of action 

potentials (Hartline & Colman, 2007). In addition, saltatory conduction eliminates the need for 

regenerating the action potential at every point of the axonal membrane, therefore reducing 

the metabolic requirements for neuronal activity (Poliak & Peles, 2003). When the OLs 

ensheath the axon they cover them at intervals (the internodes) leaving bare gaps, the nodes 

of Ranvier (Fig. 4). The nodes are flanked on either side by the paranodes where myelin 

loops form septate-like junctions with the adjacent axonal membrane. The following 

juxtaparanodal domain, as well as the internodes, extends underneath the compact myelin. 

These domains have different protein composition and compaction level (Poliak & Peles, 

2003). 

 

 

 

A B

 
Figure 4. CNS myelination by oligodendrocytes. 
A) In the CNS OLs myelinate numerous axon segments by enwrapping them with several myelin 
sheath layers at the internodes. The gaps they leave are the nodes of Ranvier.  
B) Scheme of a longitudinal section of a node of Ranvier. At the nodes perinodal astrocytes 
contact the axon, and at the paranode the paranodal loops (PL) of the myelin sheaths end up. 
Following is the juxtaparanode that is beneath the compact myelin. The internode is also 
beneath the compact myelin and extends between two juxtaparanodal regions (Taken from 
Poliak & Peles, 2003).
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Myelin is not only essential for the fast conduction of the action potential but also for the 

maintenance of axonal integrity, function, protection and survival. Several mouse mutants 

deficient in oligodendroglial proteins like proteolipid protein (PLP) and 2’3’-cyclic nucleotide 

3’-phosphodiesterase (CNP) (Griffiths et al., 1998a; Lappe-Siefke et al., 2003) show normal 

myelination, but a secondary axonal loss, highlighting the importance of myelinating glia in 

the maintenance of axonal integrity. Myelinating glia communicates lifelong with axons and 

glia is required for the long-term integrity and survival of axons (Nave & Trapp, 2008; Nave, 

2010b). The clinical relevance of myelin is very considerable. Aberrant myelin is a central 

feature of several neurological disorders, including multiple sclerosis, inherited 

leukodystrophies of the CNS and various peripheral neuropathies. Apart from to the primary 

axonal degeneration that occurs in some forms of multiple sclerosis and neuropathies, it is 

the secondary axonal degeneration that seems to be the major cause of continuous clinical 

impairment. Minor myelin abnormalities appear to also contribute to more complex disorders 

like schizophrenia, where patients seems to have myelin and white matter alterations (Nave, 

2010a). 

 

There are several crucial stages during myelination and some of them occur partially 

simultaneously. A first glia-to-axon contact is set at which the selection of axons and initiation 

of cell–cell interactions takes place. After the establishment of stable intercellular contact the 

spiral enwrapping starts (with up to 50 membrane layers) and the nodes of Ranvier are 

assembled. Subsequently, a radial and longitudinal expansion of myelin occurs and myelin 

thickness is regulated by compaction. The glia-to-axon support will last lifelong (Sherman & 

Brophy, 2005). Myelination has its onset in humans around the forth intrauterine month and 

continues in the postnatal period, until nearly all the fibres are myelinated the moment the 

child starts to walk. Nonetheless, myelination is maximal at five years of age and still occurs 

in the fifth decade of life (Snell, 2001). In mice e.g. myelination starts early postnatal, making 

it an advantageous and excellent model organism for studying myelination. 

 

The CNS myelin has a particularly unique composition in comparison to other plasma 

membranes. Some myelin proteins are present in high abundance (Jahn et al., 2009), 

although the complexity of the myelin protein composition may not be below that of other 

membranes. Another prominent feature of myelin is the high enrichment of lipids that 

constitute about 70% to 80% of its dry weight (Norton, 1984), in contrast to most plasma 

membranes that show a lipid to protein ratio of around 1:1 (cited after Saher et al., 2011). 

One of the most abundant ones, cholesterol, has been shown to be rate-limiting for myelin 

membrane biogenesis (Saher et al., 2005). 
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The formation of myelin sheaths correlates with major changes of the gene expression 

profiles of differentiating glia in the CNS (Nielsen et al., 2006; Dugas et al., 2006). Only few 

ultrastructural features of compact myelin have been related to specific myelin proteins. 

Myelin is structured in compacted, concentric layers with a periodic ultrastructure. The 

compaction requires the abundant expression of structural proteins, such as PLP and myelin 

basic protein (MBP) in the CNS. Proteome analyses have revealed that the diversity of 

proteins in myelin is much more prominent than thought (Taylor et al., 2004; Vanrobaeys et 

al., 2005; Roth et al., 2006; Werner et al., 2007; Dhaunchak et al., 2010). A recent 

quantification of myelin protein abundance based on mass-spectrometry demonstrated that 

all the previously known myelin proteins account only for 35% of the total myelin. Thereby, 

65% of myelin corresponds to novel identified myelin-associated proteins. PLP and MBP that 

were thought to comprehend ~40% and ~30%, respectively, of total myelin protein, represent 

a still very high 17% and 8% of total CNS myelin protein (Jahn et al., 2009). The function of 

the recently identified myelin-associated proteins is not well understood. A fraction of these 

proteins may reflect intracellular biogenesis and transport of myelin components that have a 

slow turnover rate (Nave, 2010b).  

 

 

2.2. Proteolipids 

The proteolipids received their name because of their high hydrophobicity (Folch & Lees, 

1951), as a protein fraction that was isolated from white matter and that behaved like a lipid, 

being insoluble in water but soluble in organic solvents. The protein family of the proteolipid 

proteins includes the major CNS myelin protein proteolipid protein (PLP) and its smaller 

isoform DM20 (Nave et al., 1987), as well as the homologs M6A and M6B. All have four 

transmembrane-domains (Popot et al., 1991) and share a high similarity and homology at the 

nucleotide and amino acid level (Yan et al., 1993). The proteolipid PLP/DM20 is expressed in 

OLs, M6A in neurons and M6B in both neurons and glia (Yan et al., 1996). PLP, M6A and 

M6B are among the most abundantly expressed genes in brain (Huminiecki et al., 2003).  

 

The phylogeny of the proteolipids shows that orthologs do also exist in invertebrates like in 

the bilaterian groups of the platyhelminthes, molluscs, annelids and nematodes. They are 

also present in arthropods like the fruit fly Drosophila melanogaster (Möbius et al., 2009). It 

has been recently shown that the Drosophila M6, the only proteolipid family member present 

in Drosophila and ortholog to M6a, is essential in the follicular epithelium maintenance 

involving membrane remodelling during oogenesis (Zappia et al., 2011). In vertebrates PLP, 

M6A and M6B emerged in an ancestor of cartilaginous fish and are present in all non-

mammalian groups (reviewed in Möbius et al., 2009).  
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2.2.1. The oligodendroglial proteolipid protein PLP 

The proteolipid protein was discovered in a brain protein fraction isolation that behaved 

similarly to lipids (Folch & Lees, 1951). PLP is a four transmembrane domain protein (Popot 

et al., 1991) of 30 kDa (Nave et al., 1987), with two extracellular loops (EC), EC1 and EC2. 

There are two disulfide bridges in EC2 that are essential for the proper protein function 

(Dhaunchak & Nave, 2007). DM20, the smaller isoform of PLP, is produced by alternative 

splicing and has a 35 amino acids deletion in the intracellular loop, resulting in a 26.5 kDa 

protein (Nave et al., 1987). As previously mentioned, PLP is the most abundant protein in 

CNS myelin (Jahn et al., 2009). 

 

DM20 mRNA transcripts are expressed before the onset of myelination (Timsit et al., 1992). 

During the OL development, the expression of DM20 decreases and PLP’s increases largely, 

so that the presence of PLP defines the mature myelinating OL. In the myelinated CNS, PLP 

is found in the compact myelin sheets (reviewed in Griffiths et al., 1998a). This indicates a 

role of PLP in the early development of OLs as well as in myelination itself. It has been 

recently shown a novel function for DM20 in increasing filopodium formation by 

overexpression in COS7 cells (Fernández et al., 2010).  

 

PLP binds cholesterol and this is very important for the association of PLP with lipid rafts 

(Simons et al., 2000; Krämer-Albers et al., 2006). Lipid rafts are cholesterol- and 

sphingolipid-rich membrane domains that form platforms for concrete proteins and regulate 

thereby functions like e.g. intracellular membrane transport and cell signalling (Simons & 

Ikonen, 1997; Simons & Toomre, 2000). When PLP cannot bind cholesterol the proper 

sorting and assembly of myelin in OLs (Simons et al. 2002; Krämer-Albers et al., 2006) is 

distorted. PLP is as well palmitoylated and this is required for the sorting of PLP into myelin 

(Schneider et al., 2005). 

 

Since long PLP/DM20 has been proposed to act as an “adhesive strut” in myelin (cited after 

Kirschner et al., 1984, in Kitagawa et al., 1993), even though there were no indications for 

them being adhesion proteins. The analysis of the PLPnull mice at the ultrastructural level 

illustrated an altered membrane compaction in CNS myelin (Klugmann et al., 1997; 

Rosenbluth et al., 2006). But recently, it has been shown that this has been probably mainly 

a fixation artefact, to which the PLP-deficient myelin is particularly vulnerable. So, X-ray 

diffraction analysis on optic nerve of PLPnull mice suggested a normal compact myelin 

periodicity (Yin et al., 2006). Additionally, high-pressure freezing and freeze substitution, in 

which the in vivo morphology is better preserved, on PLPnull optic nerves has also not shown 

an altered periodicity in myelin (Möbius et al., 2009). Thereby, the suggested role of PLP as 
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an adhesive strut in myelin is still under debate. But PLPnull mice do show a progressive 

axonal degeneration, mainly in small diameter myelinated axons (Griffiths et al., 1998b), as 

well as an impaired fast retrograde and anterograde axonal transport (Edgar et al., 2004). 

This axonopathy demonstrates the importance of PLP in preserving integrity of CNS axons. 

The neuroprotective effect of PLP on CNS axons has also been proven when exchanging 

PLP and P0 in CNS myelin (Yin et al., 2006). P0, the major PNS myelin protein was 

evolutionary replaced by PLP in the CNS. All in all, PLP by its abundance, lipid-binding 

properties and axonal protective effects, does contribute to the proper myelin formation and 

maintenance.  

 

There are several natural Plp1-gene mutations that cause different degrees of 

dysmyelination. The rumpshaker mouse (Schneider et al., 1992) has a point mutation that 

leads to an amino acid substitution and shows a mild affection with tremors. But, e.g., in the 

jimpy mouse a point mutation at a splice site (Nave et al., 1986) leads to a deletion and 

thereby to an altered C-terminus of the PLP protein. The jimpy mice have a severe 

dysmyelination and die prematurely (reviewed in Griffith et al., 1998). The pathology of these 

mutant PLP mice is due to the toxicity of the misfolded mutated PLP protein (Klugmann et 

al., 1997). There have also been generated two-fold overexpressing Plp1 mice that show a 

severe hypomyelination and premature death (Readhead et al., 1994). This mouse models 

prove that alterations in the Plp1 gene lead to an aberrant myelination, thereby confirming 

again the importance of PLP in myelin biogenesis. There are as well several 

leukodystrophies due to the mutation of the X-linked gene encoding PLP in humans. The 

PLP-deficiency is observed in spastic paraplegia type 2 (SPG2, OMIM no. 312920) patients. 

While Pelizaeus–Merzbacher disease (PMD, OMIM no. 312080) is most commonly caused 

by duplications of the PLP1 gene, but also by deletions, triplications and point mutations. 

Both are CNS dysmyelinating pathologies, but with a broad clinical spectrum: from the mild 

SPG2 forms to the severe connatal PMD (reviewed in Garbern, 2006; Woodward, 2008).  

 

 

2.2.2. The oligodendroglial and neuronal glycoprotein M6B 

The glycoprotein M6B, and ortholog to PLP, with 2 potential N-linked glycosylation sites (Yan 

et al., 1993), was lately proven to be actually a glycosylated protein (Fünfschilling U., pers. 

comm.). The mammalian Gpm6b gene has a complex transcription and splice scheme and 

encodes eight different protein isoforms, differentially expressed. The subcellular localization 

depends on the N-termini and the presence of transmembrane domains (Werner et al., 

2001).  
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Abundant M6B expression has been detected in both neurons and OLs (Yan et al., 1993, 

1996; Werner et al., 2001) and its expression is throughout the brain and spinal cord (Yan et 

al., 1996). There are also faint expression levels of M6B mRNA in many non-neuronal 

tissues, including testis, liver, spleen, kidney, muscle, heart and lung (Werner et al., 2001; 

Isensse et al., 2008). During CNS development, M6B mRNA has first been detected in the 

ventricular zone; as early as at embryonic (E) day 10 (Yan et al., 1996), indicating its 

expression in proliferating and differentiating cells. 

 

M6B has been detected by immunoblotting in a myelin-enriched brain fraction (Klugmann et 

al., 1997), without presenting abundance differences between wild-type and PLPnull mice; 

and M6B represents approximately 1% of total CNS myelin proteins (citing Jahn et al., 2009, 

from Möbius et al., 2009). M6B is functionally redundant to PLP with respect to myelin 

biogenesis (Werner et al., pers. comm.).  

 

In primary cultures of hippocampal neurons the overexpression of M6B induces filopodia 

formation, similar to M6A (see below). Chronic restraint stress in mice leads to a decrease in 

M6B mRNA levels in the hippocampus (Fernández et al., 2010). 

 

Recently, it has been shown that M6B interacts with the serotonin transporter (SERT), a 

sodium- and chloride dependent transporter that mediates active re-uptake of the 

neurotransmitter serotonin at the synapses. Co-expression of SERT with M6B led to a 

reduced SERT expression at the cell surface and diminished the serotonin uptake in vitro 

(Fjorback et al., 2008). M6B may therefore regulate serotonin uptake by regulating the 

trafficking of the serotonin transporter.  

 

The human M6B gene (GPM6B) is located at Xp22.2 (Olinsky et al., 1996) and has been 

associated with a susceptibility locus for sickle cell anemia (OMIM no. 603903) (Sebastiani et 

al., 2008). GPM6B has also been considered a candidate to cause neurological diseases 

that have been mapped to the Xp22 region, but no GPM6B mutations were detected in 

analyses of patients with Rett syndrome (OMIM no. 312750) (Narayanan et al., 1998) or 

Xp22-linked recessive mental retardation (OMIM no. 309530) (Turner et al., 2003). It is also 

unlikely that mutations in GPM6B are involved in the Pelizaeus–Merzbacher-like disease 

(PMLD, OMIM no. 608804), a subgroup of human hypomyelination disorders (Henneke et 

al., 2004; Combes et al., 2006). PMLD is a leukodystrophy with diffuse hypomyelination. The 

patients have a clinical course very similar to PMD and represent about 20% of all cases with 

a clinical PMD phenotype, but lack PLP1 gene duplications or mutations (Henneke et al., 

2004). Nevertheless, it was recently found a decreased expression of the GPM6B gene in 
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male suicide completers in a population of French Canadians (Fiori et al., 2011). In female 

mammals most genes are silenced on one X chromosome as a result of the X-chromosome 

inactivation. However, some genes escape this and are then expressed in both, leading to 

potential sexual dimorphisms. The human GPM6B has been proven to escape this X-

inactivation (Carrel et al., 2005) and shows decreased expression in females (Isensse et al., 

2008).  

 

Together, it is known that M6B is important and partially functionally redundant to PLP in 

CNS compact myelin. Moreover, by its neuronal expression, it has been related mainly to 

filopodia formation in vitro and to the regulation of the SERT.  

 

 

2.2.3. The neuronal glycoprotein M6A 

M6A, also known as glycoprotein M6A (GPM6A), because of its N-glycosylation (Lagenauer 

et al., 1992; Baumrind et al., 1992) or edge membrane antigen (EMA) (Baumrind et al., 

1992), was cloned as the antigen of the monoclonal M6 antibody, and has 30 kDa (Yan et 

al., 1993). The human GPM6A gene is located at 4q34 (Olinsky et al., 1996) and there are 

two splice variants in rodents and humans: M6a-Ia and M6a-Ib, being M6a-Ib more 

predominantly expressed in the brain (Cooper et al., 2009). The two isoforms differ in their N-

terminal cytoplasmic domain (Werner et al., 2001). 

 

M6A is an abundant cell surface protein on postmitotic neurons in the CNS and is not 

present in OLs or glial precursors (Lagenauer et al., 1992; Baumrind et al., 1992). It is 

expressed already at E10 in postmitotic neurons of the developing neural tube and at E11 

M6A is detected throughout the brain (Baumrind et al., 1992) and spinal cord, where it is 

maintained throughout adult life (Lagenauer et al., 1992; Yan et al., 1996). M6A is also 

expressed in the retina of adult mice (Lagenauer et al., 1992). Immunohistochemistry reveals 

a wide expression in the CNS (Lagenauer et al., 1992; Baumrind et al., 1992). M6A is also 

expressed in cells of the epithelial layer of the choroid plexus and in renal proximal tubules, 

but not in PNS neurons (Lagenauer et al., 1992; Baumrind et al., 1992). The abundance of 

M6A augments strongly during neuronal differentiation, when the neurite outgrowth takes 

place in postmitotic neurons (Lund et al., 1986; Yan et al., 1996). During the maturation of 

the CNS the expression of M6A decreases, coinciding with myelination, in e.g. the pyramidal 

tract, corpus callosum, optic nerve and retina (Mi et al., 1998). However, it remains 

extensively in non-myelinated axons like cortical pyramidal neurons, cerebellar granule cells 

and glutamatergic presynaptic terminals (Lund et al., 1986; Cooper et al., 2008). 
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In the early 1990’s it was revealed in cultured cortical neurons (by immuno-fluorescence and 

freeze-etch immuno-electron microscopy) that although M6A is present on the plasma 

membrane of neuronal cell bodies and processes, it has an enriched and non-uniform 

distribution (Fig. 5) on lamellipodia and filopodia at the leading edges of the neuronal growth 

cones (Sheetz et al., 1990; Baumrind et al., 1992). 

 
 

 

 

 

Figure 5. M6A is enriched at the leading edge of growth cones.  
Freeze-etch immuno-electron micrograph revealing M6A labelling on neuronal growth cones. There 
is an enriched M6A labelling at the leading edge of lamellipodia and along filopodia. Scale bar = 0.2 
µm (Taken from Baumrind et al., 1992). 

At that time it was also realized that upon acute addition of the monoclonal M6 antibody, 

cultured cerebellar neurons experienced a reduced neurite extension, without altering the 

motility of the filopodia or lamellipodia from the growth cones and without presenting a 

growth cone collapse (Lagenauer et al., 1992). This result suggested for the first time that 

M6A could be involved in neurite elongation. In vitro studies overexpressing M6A in primary 

hippocampal neurons revealed an increased number of neurites (Alfonso et al., 2005). An 

augment in neurite outgrowth has also been shown in M6A overexpressing mouse retinal 

progenitor cells (Zhao et al., 2008). Thereby, by in vitro experiments, M6A seems to be 

involved in neurite outgrowth.  

 

Regarding filopodia, in vitro studies overexpressing M6A in primary hippocampal neurons 

revealed an increased number of filopodia (Alfonso et al., 2005) and an increased motility of 

them (Brocco et al., 2010). The loss-of-function experiment (with small interference RNA) 

decreased the number of filopodia (Alfonso et al., 2005). The importance of the glycosylation 
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status was investigated by Fuchsova et al. (2009) by overexpressing M6A with mutations 

that abolish the two N-glycosylation sites of the extracellular domain (EC) EC2 in the 

neuroblastoma cell line N2a. This did not alter the induction of filopodia nor cell surface 

expression of M6A. Recently it was shown that the Src and MAPK kinases seem to be 

involved in the filopodia formation after M6A overexpression (Scorticati et al., 2011). 

Consequently, it appears that M6A, as well as M6B, is involved in filopodia formation in in 

vitro systems.  

 

The suppression of M6A mRNA in mouse and human embryonic stem (ES) cells inhibits their 

differentiation and proliferation (Michibata et al., 2008, 2009). While the overexpression of 

the human M6A in human ES cell lines enhanced their differentiation and proliferation. 

Additionally, this overexpression led to an increased neuronal migration, and vice versa in 

the suppression (Michibata et al., 2009). This points to a role of M6A in differentiation and 

neuronal migration of neurons derived form ES cells. On the other hand, overexpression of 

M6A in mouse retinal progenitor cells did not affect their differentiation and proliferation 

(Zhao et al., 2008). 

 

The association of M6A and lipid rafts has been assessed in cultured hippocampal neurons 

(Scorticati et al., 2011) and it has also been shown to be palmitoylated (Kang et al., 2008). 

The involvement of lipid rafts and palmitoylation in proteolipid biology has also been 

described above PLP (see 2.2.1.), and could provide a link on the molecular functioning of 

this protein family.  

 

Also in primary hippocampal neurons the suppression of M6A mRNA decreased the density 

of synaptophysin-positive presynaptic clusters (Alfonso et al., 2005). And it seems that in 

hippocampal neurons the EC2 plays an important role in synaptogenesis (Fuchsova et al. 

2009). M6A has been detected in the presynaptic membrane and synaptic vesicles by 

immuno-electron microscopy (Roussel et al., 1998) and in a synaptosomal rat brain fraction 

by mass-spectrometry (Takamori et al., 2006). M6A affects endocytosis at the mature 

presynapses and subcellular sorting of G-protein-coupled receptors such as the µ-opioid 

receptor (Wu et al., 2007; Liang et al., 2008). M6A associates with the µ-opioid receptor and 

enhances its endocytosis and sorting into the recycling pathway. M6A also interacts with 

other G protein-coupled receptors such as the δ–opioid receptor, the cannabinoid type 1 

receptor and the somatostatin receptor sst2A (Wu et al., 2007).  

 

M6A mRNA levels were found to be significantly reduced in the adult hippocampus in 

response to chronic psychosocial and restrain stress, an effect that is conserved across 

 23



species and that can be prevented by antidepressant treatment. It has been shown before 

that stress can lead to disorders like depression (Alfonso et al., 2004, 2006; Cooper et al., 

2009). These experiments indicate a role of M6A in neuronal plasticity. An association of the 

GPM6A gene with a subgroup of schizophrenia patients with high levels of depression was 

found (Boks et al., 2008). This supports that M6A is involved in alterations that take place in 

the hippocampus upon stress induction, like in many psychiatric disorders as depression or 

schizophrenia.  

 

Although M6A and M6B seem to play significant roles in neuronal development and function, 

initial evaluation of the single-null mutant mice (Gpm6anull and Gpm6bnull) did not reveal any 

major differences in the CNS histology in mature animals. Also in Gpm6anull*Gpm6bnull mice, 

no abnormalities were found at the adult histological level. However, Gpm6anull*Gpm6bnull 

mice do show an increased mortality after weaning (of approximately 20%) and they have a 

reduced motor performance at the rotarod test at one month of age (Burzynska A., 

Fünfschilling U., Werner H., pers. comm.). This results show that there are some in vivo 

abnormalities when the neuronal M6 proteins lack chronically, but the involvement of the M6 

proteins in the CNS biology has to be further examined.  

 

 

2.3. Tetraspanins  

The tetraspanins also termed transmembrane four superfamily (TM4SF) members are small 

(20-30 kDa), membrane proteins that are expressed ubiquitously and are evolutionary highly 

conserved (Hemler, 2008).  

 

Tetraspanins comprise a large family of cell-surface proteins expressed in protozoan 

amoebae, some sponges, fungi, plants and metazoans. They seem to have an evolutionary 

role in the transition form uni- to multicellularity (Huang et al., 2005; Hemler, 2005). There are 

33 tetraspanins in humans, 35 in D. melanogaster and 20 in Caenorhabditis elegans (Garcia-

España et al., 2008). The Drosophila tetraspanin late bloomer (lbl) is expressed during 

development at the growth cones and terminal arbores of motor axons. It has been shown 

that it acts as a cell adhesion protein important for synapse formation at the neuromuscular 

junction (Kopczynski et al., 1996) and that other tetraspanins expressed on motor neurons 

have a redundant function and can compensate when Late Bloomer is absent (Fradkin et al., 

2002).  

 

Structurally, tetraspanins have four transmembrane domains with polar residues close to 

these and four to six conserved Cys residues in their EC2 (Stipp et al., 2003, Levy & 
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Shoham, 2005a) that lead to protein structure stabilizing disulfide bridges (Levy & Shoham, 

2005b) This structure is similar to the structure of proteolipids, where the two disulfide 

bridges have been proven e.g. to be essential for the proper PLP function (Dhaunchak & 

Nave, 2007). The polar charges of the transmembrane domains mediate hydrophobic 

tetraspanin-tetraspanin interactions (Kovalenko et al., 2005). Apart form these characteristics 

they possess a small EC1, a much larger EC2 with consensus N-glycosilation sites (Hemler, 

2005) and short N- and C-terminal termini (Stipp et al., 2003; Kovalenko et al., 2005). The 

EC2 is compartmentalized into two regions: the constant region (ABE α-helixes) and the 

variable region (CD α-helixes), the latter being essential for protein-protein interactions 

(Seigneuret et al., 2001; Stipp et al., 2003, reviewed in Hemler, 2005). The cytoplasmic 

domain is less conserved and there are sorting signals in some tetraspanins, which probably 

links them to cytoskeletal and signalling molecules. There are several highly conserved 

membrane-proximal palmitoylation sites that are required for the initial tetraspanin-

tetraspanin complex formation (Stipp et al., 2003; Levy & Shoham, 2005b). The S-

palmitoylation is reversible, increases the hydrophobicity of the proteins and was shown to 

influence the subcellular distribution and lateral associations of tetraspanins and their partner 

proteins (Levy & Shoham, 2005a). So, e.g., the tetraspanins tetraspanin2 (TSPAN2), CD9 

(cluster of differentiation 9) and CD81 have six possible palmitoylated Cys (Stipp et al., 

2003). 

 

Tetraspanins have been associated with a large number of biological processes such as the 

regulation of cell motility, invasion and fusion, proliferation and differentiation as well as 

signalling and protein trafficking (Hemler, 2008). They accomplish these functions e.g. during 

infectious diseases and fertilization and in the immune and nervous system (Hemler, 2008). 

The most distinct characteristic of the tetraspanins is the ability to organize multimolecular 

membrane complexes by establishing dynamic lateral associations with each other and 

multiple partner proteins and assembling them into the so called “tetraspanin web” 

(Rubinstein et al., 1996) or “tetraspanin-enriched microdomains” (TEMs), which are cell-type 

specific, regarding their exact molecular composition (Hemler, 2005). Unusually, they can 

also act as cell-surface receptors, like e.g. the tetraspanin CD81 that has been identified as 

the receptor for the hepatitis C virus envelope protein E2 (reviewed in Levy & Shoham, 

2005a). 

 

The levels of TEM interactions can be subdivided into different classes as a simplified 

approach to its complexity (this has been excellently reviewed by Hemler, 2005). The first 

level would consider the robust and direct homo and hetero protein-protein interactions that 

can take place extra- as well as intracellularly, as e.g. the CD9-CD9 interaction. These are 
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specific and soluble interactions (Hemler, 2005). The second level describes the indirect 

protein interactions in which several direct homophilic and heterophilic primary complexes 

assemble into a network of secondary interactions (Tarrant et al., 2003). Potential 

tetraspanin partners are e.g. integrins and members of the immunoglobulin superfamily. 

Through this mechanism, different partner proteins get recruited through tetraspanins into 

functionally important complexes. Palmitoylation seems to be very important for the 

maintenance of this type of interactions (Levy & Shoham, 2005a). It is specific for 

tetraspanins that they can take part in different protein-protein interaction according to the 

cell type (Levy & Shoham, 2005b). The class three interactions account for the formation of 

insoluble complexes, when milder non-ionic detergents are used and tetraspanin complexes 

begin to show partial insolubility. These last two types of interactions are potentially very 

relevant due to their dynamic status (Tarrant et al., 2003). Functionally, these interactions 

cluster in TEMs, enabling lateral dynamic organization in the membrane and the connection 

with intracellular signalling and cytoskeletal structures (Levy & Shoham, 2005a; Yáñez-Mó et 

al., 2009). Thereby the robust level one interaction represents specific functions for concrete 

tetraspanins, while level two and three interactions are weaker and embody the general 

function of tetraspanin in TEMs: acting as “molecular facilitators” (Maecker et al., 1997) that 

enable the lateral dynamical organization in the membrane and the cross-talk with 

intracellular signalling and cytoskeletal structures (Hemler, 2001). This complex and multiple 

levels of interaction explain how tetraspanins can be involved in this plethora of cell 

functions. 

 

Tetraspanins can also associate with three different types of lipids: cholesterol (Charrin et al., 

2003), gangliosides and palmitate (Levy & Shoham, 2005a, Hemler, 2005). Tetraspanin 

complexes are resistant to solubilisation by milder detergents, thereby they have been 

proposed to form membrane microdomains distinct form lipid rafts (Hemler, 2005; Israels & 

McMillan-Ward, 2007). In contrary to lipid rafts, TEMs are not disrupted at 37°C, they are 

resistant to cholesterol depletion, mostly soluble in non-ionic detergents and they do not 

comprehend GPI-linked proteins or caveolin (Hemler, 2005).  

 

 

2.3.1. Tetraspanins in myelin 

The tetraspanin proteins that are known today to be in CNS myelin are: TSPAN2 (Birling et 

al., 1999), CD9 (Tole & Patterson, 1993), CD81 (Sullivan & Geisert, 1998), CD82 (Jahn et 

al., 2009), OAP-1 (Bronstein et al., 2004), CD63 and CD151 (Baer et al., 2009).  
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CD63 and CD151 have, until now, only appeared in a CNS myelin blue native experiment 

(Baer et al., 2009), but there is no further literature explaining their role in OLs or myelin. 

CD63 was the first characterized tetraspanin and is abundant in late endosomes and 

lysosomes. As a tetraspanin it interacts with many proteins like integrins, kinases and also 

other tetraspanins like CD9, CD81, CD82 and CD151 (reviewed in Pols & Klumperman, 

2008). CD151 is present in most epithelial and fibroblastic cells and has been proven to act 

in an integrin-dependent manner on cell morphology, adhesion and motility (reviewed in 

Hemler, 2005). Until now, CD63 and CD151 have been vastly examined outside the nervous 

system and further studies involving neural cells will demonstrate the function of these 

proteins in the CNS.  

 

The myelin tetraspanins CD9, CD81 and CD82 have been all shown to directly interact with 

cholesterol (Charrin et al., 2003), what already gives a hint of their potential function and 

importance in myelination.  

 

Phylogenetic analysis has shown that CD9, CD81 and TSPAN2 form a cluster, thereby being 

all very closely related orthologs (Garcia-España et al., 2008). All the three members of this 

subgroup of tetraspanins contain two disulfide bridges in their EC2 (Charrin et al., 2009). By 

immunoprecipitation it was found out that CD9 interacts with β1integrin, CD81 and TSPAN2 

(Terada et al., 2002). And this stands again for a similar and partially simultaneous role of 

CD9, CD81 and TSPAN2 in the OL biology.  

 

During development CD9 (TSPAN29) is expressed in motorneurons (Tole & Patterson, 1993) 

and glia precursor cells (Deissler et al., 1996), but in the adult its expression is mainly in CNS 

and PNS glia (Tole & Patterson, 1993), and it seems that it is more abundant in the PNS 

than in the CNS (Ishibashi et al., 2004). CD9 is present in human CNS and PNS myelin 

(Nakamura et al., 1996) and in premyelinating OLs and mature myelinating OLs (Terada et 

al., 2002). In the course of CNS myelination, CD9 appears when myelination is very 

advanced, after PLP (Kagawa et al., 1997), and ultrastructural analysis have confirmed that 

in the CNS CD9 is detected at the outermost membrane of compact myelin (Nakamura et al., 

1996), in the PNS in non-compact regions (Tole & Patterson, 1993) and in both it is found as 

a paranodal protein (Ishibashi et al., 2004). By studying the CD9null mutant mice it was 

revealed that CD9 does have a role in organizing the paranode, but the CNS myelin showed 

no aberrant compaction and there was only a restricted hypermyelination in the PNS 

(Ishibashi et al., 2004). This demonstrate a different role and implication of CD9 in CNS Vs 

PNS myelination and indicates the possible function of CD9 being a tetraspanin in organizing 

the interaction with and of different proteins.  
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CD81 (TSPAN28) is expressed in the CNS by the major glia cell types: OLs, astrocytes and 

microglia (Geisert et al., 2002). CD81 has a very broad tissue expression (peripheral nerve, 

muscle, liver, kidney, skin, testicle, etc.), but it is particularly abundant in the brain. Its 

expression is upregulated during early postnatal development, at the time of glial 

development and maturation, and at P14 the levels approach those of the adult (Sullivan & 

Geisert, 1998). CD81null mutants encompass brain enlargement and augmentation in the 

number of astrocytes and microglia, while the number of OLs is unaltered. The general 

myelination pattern is similar to wild-type mice (Geisert et al., 2002).  

 

CD82 (TSPAN27) has been recently revealed to play a role in CNS myelination. Apart form 

the high expression of CD82 in mature OLs in vitro and in vivo, CD82 is an important factor 

in promoting the differentiation from pre-myelinating OLs to myelinating OLs (Mela & 

Goodman, 2009). Further studies will probably reveal that this function of CD82 relies on 

assembling protein networks, as most tetraspanins do.  

 

OAP-1 (OSP/claudin-11–associated protein 1 or TSPAN3) is an interaction partner of the 

tetraspan oligodendrocyte-specific protein (OSP)/ claudin-11, a main component of CNS 

myelin that forms tight junctions within myelin sheaths (Tiwari-Woodruff et al., 2001). It is N-

glycosilated and broadly expressed, e.g. spinal cord, brain, testes, skeletal muscle and heart, 

in neurons, astrocytes and OLs (Tiwari-Woodruff et al., 2001; Bronstein et al., 2004), and in 

all stages of OL development (Bronstein et al., 2004). In the CNS, its expression increases 

during development and OAP-1 is found in the germinal zones and is still broadly expressed 

in the adult, also in myelin (Bronstein et al., 2004). In vitro studies demonstrated a role of 

OAP-1 in OL proliferation and, through the complex of OAP-1/OSP/β1integrin, also in OL 

migration (Tiwari-Woodruff et al., 2001). The interaction of OAP-1 with OSP/claudin-11 and 

integrins points to a possible role in the fine-tuning of the interaction of different cells, with an 

involvement in migration and proliferation.  

 

 

2.3.2. Tetraspanin2: A role in myelination? 

The murine TSPAN2 is a nervous system specific protein that is present in OLs and CNS 

myelin. It has 24 kDa and one potential N-glycosilation site at EC2 (Birling et al., 1999). The 

mRNA expression commences just when myelination starts (at P3, before PLP) mainly in the 

hindbrain and increases caudorostrally until it peaks at P22, coinciding with the major 

myelination phase, and is than reduced to the adult level. TSPAN2 is found also in some 

neuronal subpopulation of cerebellar nuclei (Birling et al., 1999). The mRNA is found in brain 

tissue as well as in sciatic nerve (Birling et al., 1999), although the protein has not been 
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detected so far in the PNS (Werner H., pers. comm.). The TSPAN2 protein is found in the 

white matter tracts and in compact myelin of the CNS (Fig.6; Birling et al., 1999). 

 

 
 

 

 

 

 

Figure 6. Localization of TSPAN2 in brain sections. 
Confocal microscopy performed on sagital sections from P31 rat brain stained against TSPAN2. The 
expression is found in compact myelin as it colocalizes widely with MBP (marker for compact myelin). 
Depicted are cross-sections (arrows) and longitudinal sections (arrowheads) of individual axons 
surrounded by myelin. Scale bar = 5 µm (Taken from Birling et al., 1999). 

Different transcriptomic analyses have demonstrated an upregulation of TSPAN2 during OL 

differentiation (Nielsen et al., 2006; Dugas et al., 2006). And there has been shown an 

upregulation of cortical mRNA levels of TSPAN2 after the application of a traditional Chinese 

medicinal treatment (Huang-Lian-Jie-Du decoction) that improves learning and memory 

function in the senescence-accelerated mouse/prone 8 mice, a model for age-related 

learning and memory deficits (Yue et al., 2008). Additionally, OLs cultured under oxygen 

glucose deprivation conditions have a decrease in TSPAN2 mRNA. While OLs cultured 

under these conditions and treated with human umbilical cord blood cells that have a 

protective effect on white matter tracts, show an increase in their TSPAN2 mRNA expression 

levels (Rowe et al., 2010). 

 

Thereby, until now it is known that TSPAN2 is present during OL differentiation and in CNS 

compact myelin. But how TSPAN2 could act on OL differentiation as well as myelination or 

myelin maintenance is completely unidentified. Because of being a member of the 

tetraspanin family it is straightforward to speculate about an involvement in signalling and in 

coordinating and arranging interacting proteins in the OL plasma membranes and myelin 

sheaths.  

 

A surprising discovery was the drastic increase of the TSPAN2 levels in a CNS myelin-

enriched fraction of PLPnull mutant mice (Werner H., pers. comm.). As PLP and TSPAN2 are 

both structurally similar tetraspan proteins and expressed in OLs in a similar spatiotemporal 

pattern, this leads to the hypothesis that TSPAN2 could compensate for PLP in its absence.  
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2.4. Aim of the study 

Neuronal development involves the interplay of a large number of cell surface proteins. Two 

members of the M6-proteolipid protein family of tetraspan-transmembrane proteins are 

among the most abundant cell surface proteins in neurons, but their physiological role has 

remained largely obscure despite over 25 years of analysis. The majority of studies relied on 

acute reduction or augmentation of their abundance levels in vitro, and knowledge on their 

cellular function in vivo is entirely lacking. To achieve a better understanding of the function 

of M6 proteolipids (termed M6A, official gene name Gpm6a, and M6B, official gene name 

Gpm6b) during neuronal development I will analyse available GPM6Anull and GPM6Bnull 

mutant mice. Since both proteins are closely related orthologs, a partially redundant function 

has to be considered, and therefore GPM6Anull*GPM6Bnull double null mutant mice will be 

included. I will utilize an ex vivo cell culture system of primary cortical neurons in which both 

proteins are highly abundant. The study will involve life cell microscopy, 

immunocytochemistry, confocal analysis, as well as functional assays. Thereby I want to 

assess the detailed subcellular localization in neurons, as well as their functional involvement 

in neuronal development. Furthermore, I aim to investigate the consequences of the chronic 

lack of M6 proteins in long-projecting neurons at an early postnatal stage in vivo. 

 

A structurally related superfamily of tetraspan transmembrane proteins, the tetraspanins, has 

been related to various features of cell biology, including myelination of axons by the cellular 

processes of oligodendrocytes in the CNS. Tetraspanin-2 (TSPAN2) is particularly abundant 

at the onset of myelination and a constituent of mature compact CNS myelin, in which its 

abundance is very strongly increased in mutant mice that lack the most abundant myelin 

protein, proteolipid protein (PLP). I hypothesized that TSPAN2 can partially compensate for 

the absence of PLP in myelination, which would also explain that the abnormalities observed 

in PLPnull mutant mice are minor. To this aim I will generate TSPAN2null mutant mice by 

inactivating the Tspan2 gene using homologous recombination in embryonic stem cells. I will 

also generate TSPAN2null*PLPnull double null mutant with the aim to test for a possible 

cumulative effect of the lack of both tetraspan proteins in CNS myelin. The myelin protein 

composition will be characterized using biochemical methods.  

 

The aim of this thesis is to assess the role of the neuronal proteolipids M6A and M6B, as well 

as of the oligodendroglial proteolipid protein PLP and TSPAN2 in the growth of cellular 

processes in neurons and oligodendrocytes, respectively.  
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3. Materials and Methods 
 
 

3.1. Materials  

 
 

3.1.1. Kits, chemicals and protocol source  

All chemicals used were purchased from the Sigma-Aldrich and Merck unless stated 

otherwise and all molecular biology kits were purchased from Qiagen, Macherey-Nagel, 

Promega or Sigma-Aldrich, while cell culture and general laboratory material were purchased 

from Falcon, Nunc and Eppendorf.  

 

 

3.1.2. Molecular biology buffers  

DNA-sample buffer (6x)  
20 % glycerol in TAE buffer  

0.025 % bromophenol blue  

 
dNTP-stock solutions (100 mM)  
25 mM of each dATP, dCTP, dGTP, dTTP (Boehringer, Mannheim)  

 
Ethidiumbromide  
1 - 1.5 μg/ml for agarose gels in 1x TAE  

 
Modified Gitschier buffer (MGB, 10x)  
6.7 ml 1 M Tris-HCl (pH 8.8)  

1.66 ml 1 M (NH4)2SO4 

650 μl 1 M MgCl2 

add dH2O up to 10ml  

 
MGB buffer (1x, working solution)  
1 ml 10x MGB  

100 μl β-mercaptoethanol  

500 μl 10 % Triton X-100  

8.4 ml dH2O  
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TAE (50x, 1000ml)  
2 M Tris-acetate, pH 8.0  

50 mM EDTA  

57.1 ml glacial acetic acid  

add dH2O up to 1000ml  

 
TE (1x)  
10 mM Tris-HCl, pH 8.0  

1 mM EDTA 

 
 

3.1.3. Protein biochemistry buffers  

10x Phosphate buffered saline (PBS) 
1.7 M NaCl 

34 mM KCl 

40 mM Na2HPO4 x 2H2O 

18 mM K2HPO4 

Adjust pH 7.2 with 1N NaOH. 

 
Modified RIPA buffer (protein lysis buffer) 
50 mM Tris-HCl, pH 7.4 

150 mM NaCl 

1 mM EDTA 

0.1 % SDS 

1.0 % sodium deoxycholate 

1.0 % TritonX-100 

 

Solutions for CNS-myelin enriched fraction 
0.32 M sucrose  

0.85 M sucrose (filtered sterile) 

 

Complete Mini protease inhibitors (Roche) 1 tablet/10 ml of RIPA buffer 
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3.1.4. SDS-PAGE and Immunoblotting 

Separating SDS gel (for 4 gels, 12 %, 1.5 mm thickness)  
13 ml dH2O  

15 ml 30 % Acrylamide (BioRad, 29.1)  

9.4 ml 1.5 M Tris-HCl (pH 8.8)  

370 μl 10 % SDS  

125 μl 10 % APS (Ammonium persulfate)  

30 μl TEMED (BioRad)  

 
Stacking SDS gel (4 gels)  
6.1 ml dH2O  

1.3 ml 30 % Acrylamide (BioRad, 29.1)  

2.5 ml 0.5 M Tris-HCl (pH 6.8)  

100 μl 10 % SDS  

50 μl 10 % APS (Ammonium persulfate)  

10 μl TEMED  

SDS running buffer (Laemmli buffer, 1x)  

25 mM Tris-HCl  

192 mM Glycine  

1 % (w/v) SDS  

 
SDS sample buffer (6x)  
7 ml 0.5M Tris-HCl buffer (pH 6.8)  

3 ml Glycerol (30 % final concentration)  

1 g SDS  

1.2 ml 1 % Bromophenol blue  

0.2 - 2 % β-Mercaptoethanol (add fresh)  

 

Transfer buffer (1x)  
48 mM Tris base  

39 mM Glycine  

10-20 % Methanol  

 

Blocking Buffer  
5 % non-fat dry milk powder in TBS or PBS (1x)  
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Western blot stripping buffer  
0.2 M Glycine-HCl, pH 2.5  

0.1 % Tween-20  

 

Tris buffered saline (TBS, 20x)  
1 M Tris base  

3 M NaCl  

Adjust pH 7.4 (with HCl)  

 
TBS with Tween-20 (TBST, 1x)  
50 mM Tris-HCl (pH 7.4 - 7.6)  

150 mM NaCl  

0.05 % - 0.15 % Tween-20  

 
Enhanced Chemiluminescence (ECL) Western-blot detection kit 

Western Lightning™ Plus-ECL, Enhanced luminol reagent plus (Perkin Elmer Life Sciences, 

Inc.). 

ECL-Hyperfilms (Amersham Biosciences) 

PVDF membrane -Hybond P pore size 0.45 μm (Amersham) 
 
 

3.1.5. DNA and Protein markers  

GeneRuler 1 kb DNA ladder (Fermentas)  

GeneRuler 100 bp DNA ladder (Fermentas)  

Prestained Page Ruler Plus (Fermentas) 
 
 

3.1.6. Immunocytochemistry buffers  

4 % Paraformaldehyde in PBS/TBS 

100 ml 0.2 M NaH2PO4 (Sodiumdihydrogenphosphate)  

400 ml 0.2 M Na2HPO4 (di-Sodiumhydrogenphosphate)  

108 ml 37 % Formalin  

392 ml dH2O  

Filtered with a 500 ml Nalgene sterile filter unit  

 
 

 34



Blocking Buffer  
2 % BSA in PBS 

 
Mounting Agent  
Aqua polymount (Polysciences)  

 

 

3.1.7. Immunohistochemistry buffers  

Phosphate buffer (stock solution)  

0.2 M NaH2PO4  

0.2 M Na2HPO4  

 
Phosphate buffer (working solution, pH 7.4)  
20 ml 0.2 M NaH2PO4  

80 ml 0.2 M Na2HPO4  

100 ml dH2O  

 
Bovine Serum Albumin (PBS/BSA)  
20 ml 0.2 M NaH2PO4  

80 ml 0.2 M Na2HPO4  

1.8 g NaCl  

1 g BSA  

100 ml dH2O  

 
Citrate Buffer (stock solution, stored 4°C) 
0.1 M Citric acid (C6H8O7*H2O)  

0.1 M Sodium citrate (C6H5O7Na3*2H2O)  

 
Citrate Buffer (working solution, 0.01 M, pH 6.0, prepared freshly)  
9 ml 0.1 M Citric acid (C6H8O7*H2O)  

41 ml 0.1 M Sodium citrate (C6H5O7Na3*2H2O)  

450 ml dH2O  

 

Tris Buffer (stock solution, stored 4°C)  
0.5 M Tris base  

Adjust pH 7.6 with HCl  
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Tris Buffer (working solution, prepared freshly)  
100 ml 0.5M Tris base (pH 7.6)  

9 g NaCl  

Add up to 1000 ml with dH2O  

 

Blocking buffer (2 % milk powder in Tris Buffer)  
20 g of non-fat milk powder  

Add up to 1000 ml with Tris buffer  

 

 

3.1.8. Histological stains and reagents  

Mayer’s Haematoxylin solution  
1 g Haematoxylin (Merck) was dissolved in 1000 ml dH2O and 0.2 g sodium iodate and 50 g 

potassium aluminium sulphate (K2Al2(SO4)4*24H2O) was added under constant shaking. 

Finally, 50 g chloralhydrate and 1 g citric acid were added and the solution was filtered 

before use.  

 
Eosin solution  
Stock solution (10x)  

10 g of Eosin were dissolved in 100 ml of dH2O and left to mature.  

 
Working solution  
2.5 ml stock solution  

250 ml dH2O  

12 drops glacial acetic  

 
Scott’s solution  
2 g KHCO3 (potassiumhydrogencarbonate)  

20 g MgSO4 (magnesium sulphate)  

Add up to 1000 ml with dH2O  

 
HCl- Alcohol  
1.25 ml HCl  

350 ml Ethanol  

150 ml dH2O  
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3.1.9. Oligonucleotides  

Oligonucleotides were synthesized in the “DNA core Facility” of the Max-Planck-Institute of 

Experimental Medicine.  

 

Genotyping primers  
Nested external PCR:  
Forward: 5'-CTTCATCTTTGTCTCCAGTT -3' 

Reverse: 5'-GCAATCCATCTTGTTCAATGGC -3' 

 

Nested internal PCR: 

Forward: 5'-CTCCTTAATCTTCACAACTCTT -3' 

Reverse: 5'-CCATCTTGTTCAATGGCCGATC -3' 
Amplification product: 2.1 kn in control vector and 1.6 kb in homologous recombined ES cells 

 
TSPAN2null: 
Forward: 5'-CCATAGACACGCAGGATAACTTCAACCA -3' 
Reverse: 5'-GGCTTTTTGCTTCCTCTTGA -3' 

Reverse: 5'-GTTGGGAGGGGCGTGACCTGT -3' 
Amplification product: 196 bp for mutant and 286 bp for wild-type 

 
PLPnull: 
Forward: 5‘-TTG GCG GCG AAT GGG CTG AC-3‘ 
Forward: 5‘-GGA GAG GAG GAG GGA AAC GAG-3‘ 
Reverse: 5‘-TCT GTT TTG CGG CTG ACT TTG-3‘ 
Amplification product: 300 bp for mutant and 150 bp for wild-type 

 
GPM6Anull: 
Forward: 5´-TTGCTCTTCTACAGGGTGCT-3’ 

Reverse: 5´-CCTCCATCCTCTGTCATTCC-3’ 

Reverse: 5´-GCAATCCATCTTGTTCAATGGC-3’ 

Amplification product: 310 bp for mutant and 560 bp for wild-type 

 
GPM6Bnull: 
Forward: 5‘-CCAGGGAGGCATAGGGAACT-3‘ 

Reverse: 5‘-CCCTTTGCCTCCCAGTCAGTTG-3‘ 

Reverse: 5’-GCAATCCATCTTGTTCAATGGC-3‘ 

Amplification product: 700 bp for mutant and 400 bp for wild-type 
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3.1.10. Antibodies and recombinant proteins 

Primary antibodies for immunocytochemistry: 
M6A  Rat   1:1500  MBLInternational Corporation.  

M6B (#8547)  Rabbit    1:500  (Werner et al., 2001) 

Tuj1  Mouse  1:500  Sigma 

Primary antibodies for immunoblot: 
A431 (PLP)   Rabbit   1:5000  (Jung et al., 1996) 

Actin  Mouse  1:500   Sigma 

CD9   Rat  1:250  BD Pharmingen 

CD63   Mouse  1:1000  Calbiochem 

CD81  Hamster 1:2000  BD Pharmingen 

CD82  Rabbit  1:500  Novus Biologicals 

CNP  Mouse  1:1000  Sigma 

Ephexin-1 Rabbit  1:1000  ECM Biosciences 

Fyn   Rabbit  1:500  Santa Cruz 

MBP   Mouse  1:500  Chemicon 

RhoA   Rabbit  1:1000  Cell signalling 

TSPAN2  Rabbit  1:600  (Biriling et al., 1999) 

Tubulin  Mouse  1:5000  Sigma 

 

Primary antibodies for immunohistochemistry: 
TSPAN2  Rabbit  1:1000   (Biriling et al., 1999) 

 
Secondary antibodies:  
HRP-anti mouse  1:5000  Dianova 

HRP-anti rabbit  1:5000  Dianova 

HRP-anti rat   1:2000  Dianova 

HRP-anti hamster   1:2000  abcam 

Cy2-anti rat    1:100  Dianova  

Cy3-anti mouse   1:1000  Dianova 

Cy5-anti rat   1:1000  Dianova 

 

Others : 
Rhodamine-Phalloidin  1:100  Invitrogen  

 
Recombinant proteins for the ephrinA5 “growth cone collapse assay”: 
Recombinant human ephrin-A5/Fc Chimera, CF, R&D systems 
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Recombinant human IgG1 Fc, R&D systems 

Anti-human IgG; Fc specific, Sigma 

 
 

3.1.11. Enzymes  

CIP (alkaline phosphatase)   Roche 

DNase     Qiagen 

GoTaq polymerase    Promega 

Pfu high fidelity DNA polymerase  Stratagene 

Proteinase K     Roth 

REDTaqDNA polymerase   Sigma-Aldrich 

Restriction enzymes    New England Biolabs 

T4 DNA ligase    Promega 

 

 

3.1.12. Bacteria and bacterial culture media 

Bacterial strains 
Escherichia coli XL1-Blue (Stratagene) 

 
LB medium (Luria and Bertani medium) 
1 % Bacto-Pepton 

0.5 % Yeast extract 

1 % NaCl 

pH7.5, adjusted with 10 N NaOH and autoclaved. 

Selective LB media was supplemented with following antibiotics: 

100 μg/ml Ampicillin 

50 μg/ml Kanamycin 

 
LB-Agar plates 
1 % Bacto-Pepton 

0.5 % Yeast extract 

1 % NaCl 

1.2% Bacto-agar 

pH7.5, adjusted, autoclaved and left to cool to 55°C  

desired antibiotics are added. 
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3.1.13. Cell culture media  

Components were purchased from GIBCO or Lonza.  

 

Neurobasal complete medium for cortical neurons 
100ml Neurobasal medium  

2ml B27 Supplement  

1ml Glutamax 10x  

1ml 1 % Penicillin/Streptomycin  

 
Hank’s Balanced Salt Solution (HBSS+) for preparation of brains  
500 ml HBSS  

7.5 ml 10 % MgSO4  

 
DNAse in HBSS (0.05 %)  
Dilute 100 mg in 200 ml HBSS, Freeze aliquots at -20°C 

 

Papain in PBS (20U/ml) 
 

Cholesterol (C3045, Sigma) 
diluted in ethanol  

 
ES-cell medium (600 ml) 
474 ml DMEM (4,5 g Glucose/l)  

6 ml aminoacids (100x)  

6 ml Sodiumpyruvat (100x)  

6 ml Penicillin/Streptomycin (100x) 

6 ml L-Glutamin (100x) 

6 ml β-mercaptoethanol (10 mM in PBS) 

6 ml LIF (107 U/ml)  

90 ml FCS  

 

Gelatine (500 ml) 
0.5 mg gelatine  

500 ml dH2O, autoclaved 
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3.1.14. Mouse lines  

PLPnull mice (Klugmann et al., 1997)  

GPM6Anull mice (generated by Klugmann M.) 

GPM6Bnull mice (generated by Werner H.) 

 
 

3.2. Methods 

 
 

3.2.1. Molecular biolological methods 

 
 

3.2.1.1. Transformation of chemical competent E. coli (XL-1 blue) 

100 µl of chemical competent Escherichia coli (E.coli) were thawed on ice, transferred into 14 

ml Falcon tubes, 50 ng of plasmid DNA was added and incubated for 30 min on ice. A heat 

shock was performed at 42°C during 40 sec and than the bacteria were put back on ice for 2 

min. Afterwards, 800 µl of LB-medium without antibiotic was added to the tube and the 

bacteria were incubated under rotation at 37°C for 30 min. 50 to 200 µl of this culture were 

plated on LB plates with the appropriate antibiotic, and incubated ON at 37°C.  

 

 

3.2.1.2. DNA purification at small scale (“mini prep”) 

For preparing small amounts of plasmid DNA, the “QIAprep 8 Miniprep kit” (Qiagen) or 

“NucleoSpin Plasmid QuickPure kit” (Macherey-Nagel) were employed. The protocol is in 

accordance with the modified “alkaline lysis” protocol (Birnboim & Doly, 1979), in which the 

DNA binds to an anion-exchange resin and is subsequently washed and eluted. This occurs 

under specific pH levels and at low-salt conditions. Bacteria inoculated with a single 

transformed colony were grown ON at 37°C with gentle shacking in 3 ml LB medium with the 

appropriate antibiotic. 2 ml of these cultures were transferred into 2 ml microfuge tubes and 

centrifuged at 5000 rpm for 5 min, so that the bacteria were pelleted. The DNA of these 

bacteria was isolated according to the manufacturer’s protocol, and in the last step the DNA 

bound to an anion-exchange resin column was eluted in 100 µl of ddH2O.  
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3.2.1.3. DNA purification at large scale (“maxi preps”) 

For preparing large amounts of plasmid DNA, the “NucleoBond PC500 EF Maxi kit” 

(Macherey-Nagel) was used, which is based as well as the “mini preps” (3.2.1.2.) on the 

“alkaline lysis” protocol (Birnboim & Doly, 1979). The RNA and low-molecular weight 

contaminations were removed with medium salt washes. The plasmid DNA is as in the “mini 

prep” eluted from an anion-exchange resin column, than precipitated with isopropanol and 

washed several times to remove remaining salts from the elution buffer. For this procedure, 2 

ml of plasmid DNA grown ON in 3 ml LB-medium with the appropriate antibiotic were 

inoculated in 250 ml of LB-medium with again the appropriate antibiotic and grown ON at 

37°C with gentle shacking. Bacteria were pelleted by centrifugation at 6000g for 30 min at 

4°C (SLA-1500 rotor). The “maxi prep” protocol was applied and the DNA was finally 

resuspended in 250 µl of endotoxin free ddH2O.  

 

 

3.2.1.4. Murine genomic DNA preparation 

Murine genomic DNA was prepared for genotyping, out of 5 mm large tail biopsies. Each tail 

was carefully placed into microfuge tubes with 200 µl lysis buffer (180 µl of 1xMGB, 20 µl 

proteinase K (10 mg/ml)) and incubated at 55°C ON with strong shaking.  The proteinase K 

of the genomic DNA lysates was heat-inactivated (95°C, 15 min), and then the lysates were 

centrifuged at 5000 rpm for 10 min to pellet the non-lysed debris. The supernatant was used 

for the genotyping PCRs. 

 
 

3.2.1.5. DNA restriction digest 

The DNA restriction digest is performed with restriction endonucleases, which recognize 

specific dsDNA sequences and cut the DNA at those sites, leaving sticky or blunt ends. The 

resulting dsDNA with 5’ and 3’ sticky ends can be further ligated to other digested dsDNA 

fragments, what gives them their relevance as an essential tool in molecular biology. In 

general, in an analytical digest, in a 20 µl digestion reaction with approximately 500 ng of 

DNA, 1 to 10 units of restriction enzyme were added and incubated at 37°C for 1 hour. The 

restriction enzymes can be heat-inactivated (65°C, 20 min) or removed by electrophoretic gel 

extraction.  
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3.2.1.6. Digested DNA dephosphorylation 

By employing the calf intestinal phosphatase (CIP), 5’ phosphoryl groups were removed from 

digested DNA, to avoid their religation. 1 to 2 units of CIP were added to the digested DNA 

(with CIP buffer and the necessary ddH2O for a 1x concentration) and incubated at 37°C for 

30 min. The CIP is removed by DNA agarose gel extraction.  

 

 

3.2.1.7. DNA ligation  

The ligation of DNA fragments was performed in 10 µl reactions by mixing 25 to 50 ng of 

vector DNA, insert DNA in a 1:3 ratio, 0.5 µl of T4-ligase and 1 µl of 10x ligation buffer 

(Promega). It was incubated at RT for 1 hour, and the resulting product could be used 

directly for transformation.  

 

 

3.2.1.8. DNA gel-electrophoresis 

DNA gel electrophoresis was performed in order to separate DNA fragments, from 200 bp to 

6 kb, with gels containing 0.8 % to 2 % agarose concentration. The proper amount of 

agarose was dissolved in 1xTAE buffer and heated in a microwave. Once it had solved and 

cooled down ethidiumbromide was added (1 μg/ml) and the agarose was poured into 

custom-made gel trays and combs were placed in them to allow forming wells in the gel. 

Once the gel was solidified, it was transferred into a gel loading chamber and the DNA 

samples as well as standard DNA markers (100 bp or 1 kb ladder) (all containing sample 

buffer) were loaded. Gels were run under constant current (approximately 10 V/cm length) 

until the appropriate DNA band separation. For documentation, snapshots of UV-trans-

illuminated gels were taken. 

 

 

3.2.1.9. DNA extraction from agarose gels 

DNA fragments were excised under UV light from agarose gels according to the 

manufacturer’s protocols, and the “QIAquick Gel Extraction kit" (Qiagen) or “NucleoSpin 

Extract II kit” (Macherey-Nagel) were used. They are based on the DNA capacity to bind to 

silica-membranes under high-salt conditions at pH 7.5. At the last step, DNA was eluted in 25 

µl of ddH2O. 
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3.2.1.10. Determination of DNA concentrations 

The DNA concentrations were determined spectrophotometerically, according to the 

Lambert-Beer law, as a substance in solution is proportional to its absorption. The DNA was 

diluted 1:100 with water and the solution was pipetted into a cuvette and analysed in a UV 

spectrophotometer (Biophotometer, Eppendorf). The concentration was determined by 

measuring the absorbance at 260 nm, 280 nm and 320 nm. A ratio of A260/A280 between 

1.8 and 2 implies sufficient DNA purity.  

 

 

3.2.1.11. DNA sequencing 

16 µl of DNA samples (100 ng/µl in ddH2O) were sequenced at the “DNA core Facility” of the 

Max-Planck-Institute of Experimental Medicine. The resulting sequence was analyzed with 

the DNAStar (SeqMan) software package and verified on public domain databases such as 

the “National Centre for Biotechnology Information” (NCBI). 

 

 

3.2.1.12. Primer design 

The sense and antisense DNA primers were designed manually based on appropriate 

melting points (50°C to 65°C) and GC content. They were verified with the DNAStar 

(PrimerSelect, SeqMan, EditSeq) software package and synthesized at the “DNA core 

Facility” of the Max-Planck-Institute of Experimental Medicine. 

 

 

3.2.1.13. DNA amplification by employing polymerase chain reaction (PCR) 

The polymerase chain reaction permits the in vitro amplification of a specific DNA sequence 

(Mullis et al., 1986). DNA synthesis starts at two primers that flank the sequence to be 

amplified. One of them anneals to the sense and the other one to the antisense strand of the 

amplicon.  

The DNA polymerase of the thermophilic bacterium Thermus aquaticus (taq polymerase) 

catalyzes the reaction at 72°C and is stable at 95°C. DNA synthesis is carried out in a 

thermocycler (Thermocycler T3, Biometra) that changes temperatures between 95°C, the 

specific annealing temperature of the primers, and 72°C for the synthesis reaction. The 

reaction mixture contains the DNA template, primers dNTPs and the taq polymerase with 

corresponding salt and optimal pH conditions. Multiple reaction cycles are necessary to 
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obtain sufficient quantities of the DNA fragment for further studies. Standard PCR reactions 

were performed as following: 

 

1 µl DNA (100 pg to 100 ng) 

1 μl sense primer (10 pM) 

1 μl antisense primer (10 pM) 

2 μl dNTP mix (2 mM) 

2 μl 10x RedTaq buffer 

1 μl RedTaq polymerase (1 U/μl) 

12 μl ddH2O 

 

As the taq polymerase does not possess a 3’-5’ exonuclease activity (“proofreading”), and 

thereby introduces about 0.8 mismatches per 1 kb per amplification cycle. Therefore, the 

proofreading DNA polymerase of Pyrococcus furiosus (Pfu polymerase) was employed and 

the number of cycles was reduced, when necessary. To visualize the amplified PCR product, 

these were separated on an agarose gel. 

 

 

3.2.2. Generation of null-mutant mice 

 
 

3.2.2.1. DNA preparation for electroporation into embryonic stem cells 

150 µg of the targeting vector were linearized with the ClaI restriction enzyme ON at 37°C 

and this was confirmed by the electrophoretic separation of a little amount (5 µl) of the digest 

in a 0.8 % agarose gel. The linearized vector was purified by isopropanol precipitation and 

column filtration. In a 1:1 ratio the linearized vector and isopropanol were added, and the 

precipitated DNA fragments were pelleted by centrifugation at 13000 rpm for 10 min at RT. 

The resulting pellet was washed twice with 70 % ethanol, with a further centrifugation step 

between each washing. By air-drying the pellet at RT for 20 min, the traces of ethanol were 

removed, and then the pellet was dissolved in 80 μl of 10 mM Tris-HCl (pH 8.5) at 50ºC for 

30 min. The following column filtration purification was performed in C-30 columns (BioRad), 

according to the manufacturer’s protocol. The column tip had to be broken and then the 

columns were centrifuged at 2000 rpm for 3 min, to release the storage buffer. 80 μl of 

linearized DNA were added on the C-30 column and centrifuged at 2000 rpm for 3 min. The 

eluted fraction was collected in a microfuge tube. Than 40 μl of 10mM Tris-HCl (pH 8.5) were 

added onto the C-30 column and centrifuged at 2000 rpm for 3 min. The eluted fraction was 
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collected in the same microfuge tube as the previous. Finally to recover any remaining DNA, 

further 40 μl of 10mM Tris-HCl (pH 8.5) was added on the column and centrifuged at 2000 

rpm for 3 min. This fraction was collected in a clean microfuge tube and stored at -20ºC. The 

DNA concentration was measured spectrophotometrically and 1 μl was separated on a 0.8 % 

agarose gel to confirm the concentration and integrity of the DNA. Once that was assessed, 

the linearized fragment (~ 50 μg) was ready for the electroporation into ES cells. 

 

 

3.2.2.2. Electroporation and selection of ES cells 

One vial of frozen ES cells (5 · 106 cells) was plated on a 6 cm dish and incubated for 36 to 

48 hours at 37ºC and 5 % CO2. Cells were splitted on two 10 cm dishes and kept in culture 

for 2 to 3 days prior to electroporation. Thereby, sufficient cells 10 to 15 · 106 ES cells/plate 

(i.e. confluent plate) were available for various transfections. Several hours before the 

transfection, the culture medium was changed, as actively growing cells are a prerequisite for 

successful transfection. Cells were trypsinized (2 ml/dish) and spun down at 900 rpm for 5 

min. The cell pellet was resuspended in the medium, pre-plated on 10 cm dishes covered 

with gelatine, to get rid of feeders (fibroblast cells), and incubated at 37ºC for 45 min and 5 % 

CO2. The supernatant medium containing mainly ES cells, as feeders were attaching to the 

gelatin, was transferred to a 15 ml falcon tube. ES cells were spun down at 900 rpm for 5 min 

and the pellet was immediately resuspended in 1 ml of cold PBS. Cells were counted using a 

Neubauer chamber and the cell number was adjusted to about 10 to 14 · 106 cells/ml. From 

these ES cell suspension, 0.7 ml (i.e. 7 to 10 · 106 cells) was transferred to a microfuge tube 

and kept on ice. Then, 100 μl (0.5 μg/μl) of the linearized targeting vector DNA were added 

and mixed thoroughly. This mix was transferred to an electroporation cuvette (pre-cooled on 

ice) and was pulsed (240 V, 500 μF) with an electroporator (BioRad). After the pulse the 

cuvette was incubated on ice for 20 min. The cell suspension was then transferred to a fresh 

tube, 30 ml of ES cell medium were added and the cells were plated on three 10 cm dishes. 

After 24 hours the medium was changed and selection was started with G418 (f.c. 300 

μg/ml). Approximately at day 10 of selection large isolated ES cell clones were picked up. 

 

 

3.2.2.3. DNA isolation of ES cells 

When picking the ES clones, a fraction was kept for DNA recovery. These cells were pelleted 

by centrifugation at 13000 rpm for 10 to 15 min at RT, the supernatant was carefully 

aspirated out and the pellet was washed with 100 μl of sterile 1xDPBS. Cells were then 
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repelleted by centrifugation at 13000 rpm for 5 min at RT and the resulting pellet was 

resuspended in 50 μl of ddH2O. This cell suspension was kept at 95ºC for 10 min and 

centrifuged shortly to spin down the evaporated liquid. After cooling down on ice, cells were 

digested with 1 μl of proteinase K (20 μg/μl) at 56ºC for 30 min, with strong shaking. The 

lysed cells were then incubated at 95ºC for 15 min to heat inactivate the proteinase K, and 

were finally centrifuged shortly to evaporated liquid on the microfuge tube sides. 5 μl of these 

DNA preparations were used for PCR amplification. 

 

 

3.2.2.4. PCR amplification of ES cell DNA 

The ES cell DNA had to be amplified by PCR, for assessing if homologous recombination 

had taken place. Therefore, a nested PCR based screening strategy was employed. For 

establishing the primer pairs capable of efficient amplification of a homologous recombined 

target sequence and the PCR conditions, a control vector was used. This control vector had 

a homologous sequence 5’ to the short arm and lacked the 3’ long arm of the targeting 

vector. The nested PCR is a two-step reaction, were the amplification product of the outer 

primer pair is used as the template for the amplification reaction of the inner primer pair. The 

nested PCR amplification yielded a product of about 2.1 kb in the control vector and of 1.6 kb 

in homologous recombined ES cells, confirming that the homologous recombination had 

taken place. 

 

Nested external PCR: 

5 µl template ES cell DNA    94°C, 2 min 30 sec 

1.5 µl SE primer (10 pmol/μl)    56°C, 30 sec 

1.5 µl AS primer (10 pmol/μl)    72°C, 2 min 30 sec 

2 µl betain     94°C, 30 sec, 20 cycle repetition 

2 µl dNTP mix (2 mM)   56°C, 1 min 

4 µl 5xGoTaq buffer    72°C, 5min 

0.15 µl Go Taq polymerase   4°C  

0.1 µl Pfu turbo polymerase 

3.75 µl ddH2O 

 

Nested internal PCR: 

2 µl template of the external PCR reaction   94°C, 2 min 30 sec 

1.5 µl SE primer (10 pmol/μl)    56°C, 30 sec 

1.5 µl AS primer (10 pmol/μl)    72°C, 2 min 30 sec 

2 µl betain     94°C, 30 sec, 36 cycle repetitions 
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2 µl dNTP mix (2 mM)   56°C, 1 min 

4.4 µl 5xGoTaq buffer   72°C, 5 min 

0.15 µl Go Taq polymerase 

0.1 µl Pfu turbo polymerase 

8.35 µl ddH2O 

 

 

3.2.3. Protein biochemical methods 

 
 

3.2.3.1 Preparation of protein lysates from cell cultures 

Primary cortical neurons (plated ~1 · 106 cells) kept in culture for 2 DIV on 10 cm dishes were 

lysed in RIPA buffer to obtain proteins for subsequent immunoblot analysis. The dish was 

washed once with cold PBS, 200 μl of RIPA buffer was applied and cells were scraped from 

the dish with a cell-scraper. The obtained cells were placed into a microfuge tube and left on 

ice for 20 min to lyse. Cell lysates were centrifuged at 4ºC for 20 min at 13000rpm maximum 

speed, to pellet the undigested material. The supernatant containing the soluble proteins was 

transferred into a new tube and kept at -20ºC. The pellet containing the cell debris and 

unsolubilized material was as well stored at -20ºC.  

 

 

3.2.3.2. Preparation of a CNS-myelin enriched fraction 

Mice were sacrificed by spinal cord dislocation and decapitated. The brains were removed, 

collected and homogenated in 0.32 M sucrose. This preparation of the CNS-myelin enriched 

fraction was according to Norton & Poduslo (1973). All centrifugation steps were performed 

in a SW28 rotor in a Beckman ultracentrifuge. The brains were homogenated with an Ultra-

Turrax in 0.32 M sucrose and than layered over a 0.85 M sucrose solution in centrifuging 

tubes (Beckmann). It was then centrifuged at 23800 rpm for 30 min and the interphase was 

collected with a Pasteur pipette and put into a clean tube. Then the interphase was washed 

with dH2O, by filling the tubes with dH2O and centrifuging at 23800 rpm for 15 min. The 

supernatant was discarded, the pellet was resuspended in dH2O while vortexing. Then the 

first osmotic shock took place, by filling the tubes with dH2O, incubating for 10 min and 

centrifuging at 9500 rpm for 15 min. For the second osmotic shock, the resulting pellet was 

resuspended in dH2O and centrifuged again at 9500 rpm for 15 min. The pellet was than 

resuspended in 0.32 M sucrose and layered over 0.85 M sucrose in a clean centrifuge tube. 
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This was centrifuged at 23800 rpm for 30 min. The second interphase is collected than, and 

washed with water, by filling the tubes with dH2O and centrifuging at 23800 rpm for 15 min. 

The resulting pellet was the purified myelin fraction, which was resuspended in TBS with 

protease inhibitors, aliquoted and kept at -80°C until further use.  

 

 

3.2.3.3. Protein concentration measurement by Lowry assay 

The protein concentrations were assessed in 96-well plates (flat bottom) with the “DC Protein 

Assay kit” (BioRad) according to the manufacturer’s 'microplate assay' protocol, which is 

based on the Lowry assay (Lowry et al., 1951). The assay is based on two subsequent 

reactions between the proteins and a copper in alkaline medium, followed by the reduction of 

the Folin reagent that produces several reduced species of a characteristic blue colour with a 

maximum absorbance at 750 nm. The colour development is primarily due to the oxidation of 

the amino acids tyrosine and tryptophan, and to a lesser extent, cystine, cysteine, and 

histidine. The absorbance was measured at 650 nm in a microtitre plate reader. 

 

 

3.2.3.4. SDS-polyacrylamide gel electrophoresis  

The separation of proteins was performed using the discontinuous SDS-polyacrylamide gel 

electrophoresis (SDS-PAGE) of the Mini-Protean-3 system (BioRad), based on the 

description of Laemmli (1970). The chamber and gels were assembled as described by the 

manufactures protocol. A separating gel of desired thickness and percentage of acrylamide 

was layered with isobutanol. Before casting a stacking gel, the residual alcohol was removed 

and the future interphase between the two gels was rinsed twice with dH2O. 5 μl of 

prestained Page Ruler Plus (Fermentas) was loaded on each gel as a molecular weight 

standard and to monitor the electrophoresis. A maximum of 40 μl sample was loaded in a 

single pocket and the gels were run with a constant current of 30 mA per gel, and a 

maximum voltage of 150 V. Gels were subjected to immunoblotting, once the bromophenol 

blue  of the loading dye reached the lower end of the gel. 

 

 

3.2.3.5. Immunoblot 

The proteins were transferred from the SDS-gel onto a PVDF membrane (pore size 0.45 μm, 

Amersham/Millipore) by electrophoresis with the Invitrogen blotting apparatus (based on the 

original description of Towbin et al., 1979). PVDF membranes were activated for 30 sec in 
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methanol and incubated 5 to 15 min in transfer buffer. Blotting paper and blotting pads 

presoaked in transfer buffer were assembled according to the manufacturer’s protocol, 

although the blotting buffer differs from the manufacturers recommended. Proteins were 

transferred at a constant voltage of 38 V and a maximum current of 275 mA, for 1 hour at 

RT. Afterwards, the immunodetection of the proteins on PVDF membranes was performed. 

The membranes were rinsed briefly in TBS and blocked for at least 1 hour at RT in blocking 

buffer (5 % non-fat dry milk in TBS). Primary antibody diluted in blocking buffer was applied 

ON at 4°C. After four washes in TBS-T (0.05 % Tween-20 in TBS), HRP-conjugated 

secondary antibodies were applied for at least 1 hour, followed by four washes with TBS-T. 

Membranes were exposed using the Enhanced Chemiluminescence Detection kit 

(PerkinElmer), according to the manufacturer’s instructions. ECL photographic films 

(Hyperfilm™, Amersham Biosciences) were used to expose the membranes. The time of 

exposure varied depending on the signal intensity. To reprobe the same membrane with a 

second antibody, the membrane was incubated with stripping buffer for 1 hour at 55°C with 

rigorous shaking. After one wash with TBS-T, the membrane was incubated in blocking 

buffer for 30 min before probing with the second primary antibody.  

 
 

3.2.3.6. Silver staining 

The silver staining was performed according to the modified protocols of Blum et al. (1987) 

and Mortz et al. (2001). The proteins were separated by SDS-polyacrylamide gel 

electrophoresis (section 3.2.3.4.) and than the gel was incubated in different solutions. All 

steps were performed on a shaking table. The silver staining was performed according to the 

following incubation steps: fixed in 40 % ethanol, 10 % acetic acid for 1 hour, washed twice 

with 30 % ethanol for 20 min each, and once with dH2O for 20 min, sensitized in sodium 

thiosulfate for 1 min, rinsed trice with dH2O for 20 sec each, impreganated with 0.2 % silver 

nitrate, 0.05 % formaldehyde solution (37 %) for 20 min and rinsed again trice in dH2O for 20 

sec. Then the development took place, and this step needed to be performed under visual 

inspection for evaluating when the staining is sufficient. The gel was incubated with 3 % 

sodium carbonate, 0.05 % formaldehyde solution (37 %) for 2 to 10 min, and once the 

staining was prominent enough, the gel was rinsed in dH2O for 20 sec and the staining 

reaction was stopped by incubation with 5 % acetic acid for 10 min. Finally, the gel was 

washed trice with dH2O for 10 min each and could be stored without drying out for long time 

at RT.  

 

 

 50



3.2.4. Animal breeding 

The TSPAN2null mice were generated in C57BL/6 ES cells and a backcrossing was therefore 

not necessary. The PLPnull, GPM6Anull, GPM6Bnull, GPM6Anull*GPM6Bnull mice had already 

been bred into the C57BL/6 background for more than ten generations using mice from the 

breeding colony of the Max-Planck-Institute of Experimental Medicine. And consequently the 

TSPAN2null*PLPnull did also not require specific backcrossing. Wild-type animals were 

obtained from the breeding colony of the Max-Planck-Institute of Experimental Medicine. All 

animals used for this work were kept and treated in accordance with the guidelines for animal 

welfare of the Max-Planck-Institute of Experimental Medicine, approved by the German 

Federal State of Lower Saxony.  

 

 

3.2.5. Cell culture 

 
 

3.2.5.1. Primary cortical neuron cultures 

Primary cortical neurons were prepared form brain hemispheres of E15 to E17 embryos. 

Briefly, the dissect hemispheres were removed from their meninges on HBSS+ and 

transferred into a 15 ml Falcon tube with HBSS+. This medium was removed and 1 ml of a 

1:1:1 dilution of papain (20 U/ml), HBSS and DNase was added and incubated at RT for 6 

min. The reaction was stopped by adding 1 ml of 10 % FCS in HBSS. HBSS was added until 

reaching 10 ml and the cells were centrifuged at 900 rpm for 5 min. The supernatant was 

removed, 2 ml of Neurobasal complete medium were added and the cells were carefully 

dissociated with a fire-polished Pasteur pipette. A 1:10 dilution was performed to determine 

the cell number in a Neubauer chamber. The appropriate cell were plated onto 10 cm dishes 

(5 · 106 cells) or onto 24-well plates (5 · 104 cells/well) (Falcon) containing PLL-coated (0.2 

mg/ml, 37°C for at least 30 min) glass coverslips, and cultured at 37°C with 5 % CO2.  

 

 

3.2.5.2. Growth cone collapse assay 

The “growth cone collapse assay” was performed on primary cortical neurons, cultured for 2 

DIV of wild-type, GPM6Anull, GPM6Bnull and GPM6Anull*GPM6Bnull mice. The assay is based 

on the protocol applied by Knöll et al. (2006). Briefly, primary cortical neurons were cultured 

for 2 DIV with 500 µl medium in 24-well plates. The ephrin-A5-Fc (1 µg/ml) was preincubated 

with the anti-human IgG (10 µg/ml), as well as the recombinant Fc (1 µg/ml) with anti-human 
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IgG, which serves as a control condition, at RT for 30 min. These were added to the cultures, 

mixed carefully and incubated for 30 to 45 min at 37°C, 5 % CO2. When the increased 

ephrinA5 dose was applied, double amounts of ephrinA5 were preclustered to the anti-

human IgG. Than, cells had to be fixed with 4 % PFA including 10 % sucrose in a very fast 

manner, by adding the fixative directly to the side of the well and including no prior washing 

step, as these could abolish the effect of the collapse agents. After 5 min, the PFA/sucrose 

was refreshed, and 5 min later washed twice with PBS. The cortical neurons were than 

immunostained against tubulin and F-actin to visualize the collapse effect. The collapse was 

assessed on the axonal growth cones and defined as the absence of a lamellipodium. 

 

In order to quantitative assess the respond to the growth cone collapse assay, cortical 

neurons were randomly imaged with a Leica SP2 confocal microscope, with a 63x oil 

objective. For each genotype n = 3 was used and ~ 75 growth cones were quantified per 

condition. The images were analyzed using the ImageJ software. The collapse was 

assessed on the axonal growth cones and defined as the absence of a lamellipodium. The 

statistical significance of the differences between experimental groups was assessed by 

performing a Chi-square comparison, using the SPSS software package.  

 

 

3.2.6. Immunocytochemistry 

Immunostainings were carried out at the time mentioned in the experiment, and all steps 

were performed at RT. Cortical neurons grown on PLL-coated coverslips were washed once 

(unless other stated) with PBS and fixed for 10 min with 4 % PFA and 10 % sucrose. Cells 

were then washed trice for 10 min in PBS, permeabilized for 5 min with 0.1 % TritonX-100 in 

PBS and washed twice with PBS. They were than blocked for 30 min in blocking solution (2 

% BSA in PBS) and the primary antibody was applied for 1 hour in blocking solution. 

Afterwards they were washed trice with PBS and the fluorochrome-conjugated secondary 

antibody were applied and kept in darkness for 1 hour. When phalloidin-rhodamin was used, 

it was added to the secondary antibody dilution. After four washings, including 4',6’-

diamidino-2-phenylindole (DAPI) in the second-last one, the coverslips were rinsed in dH2O 

and mounted with AquaPolyMount (Polysciences, Warrington, PA) on glass slides. 
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3.2.7. Histology and immunohistochemistry 

 

 

3.2.7.1. Perfusion and fixation of mouse tissue  

Mice were deeply anaesthetized by injecting 2.5 % avertin (0.017 ml/g of body weight) 

intraperitoneally. Once anaesthetized, the mice were washed with 70 % ethanol on the 

stomach and the skin was removed from the ventral side. A transversal cut was made just 

below the diaphragm and slowly opened until the heart was visible. A 27-gauge needle was 

inserted into the left ventricle and, immediately after starting the perfusion, a small incision 

was made in the right auricle to allow the blood to flow out of the body. Perfusion was carried 

out with HBSS and changed from HBBS to fixative (4 % PFA in PB). The perfusion was 

carried out with ~ 50 ml of fixative. The brain were removed carefully and collected into vials 

with fixative and stored in it ON at 4°C and then in 1 % PFA/PBS until further use.  

 

 

3.2.7.2. Paraplast impregnation and embedding of the tissue  

After post-fixation, the tissue was washed 3 to 4 times with PBS, the brains were cut into half 

and transferred into plastic chambers for dehydration and paraplast impregnation. The 

dehydration consisted in incubating the brains in the following solutions: 50 % ethanol for 1 

hour, twice in 70 % ethanol for 2 hours, twice in 96 % ethanol for 1 hour and twice in 100 % 

ethanol for 1 hour each. Then, they were incubated in isopropanol for 1 hour, twice in xylol 

for 2 hours and the tissues were impregnated with paraplast at 60ºC for 2 hours. Finally, the 

tissue was embedded in molten paraplast and left to harden. Blocks were removed from the 

moulds and could be stored stably for years. 

 

 

3.2.7.3. Haematoxylin-Eosin (HE) staining  

From the paraffinized blocks, 7 μm thick sections were cut using a microtome. The sections 

were floated on a warm water bath (42°C), placed on positively charged glass slides and 

then dried ON at 37°C. The sections were then incubated at 60°C for 10 min before being 

deparaffinized and rehydrated in the following steps: twice in xylol and once in 

xylol/isopropanol (1:1) for 10 min each, then, 100 % - 90 % - 70 % - 50 % ethanol for 5 min 

each and were than rinsed in dH2O. The sections were incubated with 0.1 % haematoxylin 

for 5 min staining the basic cell nuclear compartment blue. After a wash with dH2O, the 
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sections were dipped in a HCl-alcohol solution once for 5 to 10 sec and then in Scott’s 

solution for 5 min. They were shortly rinsed with dH2O, counterstained with 0.1 % eosin for 3 

to 5 min and then rinsed with dH2O. Sections were dehydrated by incubating them in 

increasing alcohol concentrations (50 %, 70 %, 90 %, and 100 %) for 2 min each, then in 

xylol/isopropanol (1:1) and twice in xylol for 5 min. Finally, they were mounted with ‘Eukitt’ 

(Kindler GmbH).  

 

 

3.2.7.4. DAB-based immunodetection on paraffin sections  

The sections were processed as above (section 3.2.7.3.) until rehydration, when they were 

incubated for 5 min in citrate buffer before being “cooked” for 10 min in boiling citrate buffer 

in a microwave. After this, the sections were left in the citrate buffer for about 20 min to cool 

down and subsequently rinsed in Tris buffer/2 % milk for 5 min. Endogenous peroxidases 

were inactivated by incubating the sections with 100 μl of 3 % hydrogen peroxide for 5 min. 

Then, the sections were incubated with 100 μl of goat-serum diluted in PBS/BSA (1:5) for 20 

min at RT before proceeding with the 100 μl of the primary antibody diluted in PBS/BSA. 

After an ON incubation at 4°C, the sections were washed with Tris buffer/2 % milk and 

incubated with 100 μl of bridging antibody, i.e. biotinylated secondary antibody (Dako) for 10 

min. They were then rinsed with Tris buffer/2 % milk and probed with 100 μl of tertiary 

antibody, i.e. Horseradish Peroxidase streptavidin complex (Dako), by incubating the 

sections for 10 min. They were then rinsed with the Tris buffer and incubated with 100 μl of 

DAB for 10 min. Finally, the sections were rinsed twice with dH2O for 5 min each and 

counterstained for 30 sec with haematoxylin following the steps until mounting (section 

3.2.7.3). The enzymatic reaction between the HRP and DAB yielded a very a stable brown 

precipitate.  

 

 

3.2.8. Confocal and light microscopy  

The light microscopic observations were performed on a Zeiss Axiophot microscope using 

the following objectives: 4x (achroplan, 4x/0.10), 10x (achroplan, 10x/0.30) and 20x (plan-

neofluar, 20x/0.50) and the images were captured by a Kappa camera system (Kappa opto-

electronics GmbH, Gleichen, Germany). The images were taken with the Kappa Image Base 

Software (version 2.7.2.). 

 

Fluorescent images were captured on a Leica TCS-SP2 confocal microscope (Leica 

Microsystems Heidelberg Gmbh, Germany) with a 63x (plan-apochromat, 63x/1.4) oil 
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objective. For final analysis, captured Leica images were exported as TIF, and analysed and 

processed with the Leica Confocal Software (LCS, version 2.61) and ImageJ software 

(version 1.45). The plugin NeuronJ (version 1.4.1, Meijering E.) was employed for the neurite 

length quantification. 

 

 

3.2.8.1. In vivo imaging of cortical neuron growth cones 

For the in vivo imaging of cortical neuron growth cones, the cells were plated on 8-well glass 

slides (Ibidi GmbH) to allow the confocal imaging on them. Growth cones were imaged for 10 

min, taking one image every 3 sec, thereby resulting in a video of 201 frames. A 40x oil 

objective was used and the 633 nm laser was utilized for the reflection microscopy.  

The images were further analysed with the ImageJ software. The images were processed as 

following: a 2 pixel Gauss filter was applied, the images were thresholded and by differences 

in the intensity levels they areas were classified into “adhesive” and “non-adhesive”. For the 

motility evaluation, the analysis was performed as depicted in the following figure (Fig. 7): 

 

 
 

 
 

Figure 7. Evaluation of the in vivo motility of cortical neuron growth cones. 
In each movie of the neuronal growth cones, the first frame was subtracted from the second, the second from 
the third, etc. Thereby the retraction between each frame could be evaluated as positive values and the 
extension as negative values.  

In each movie, the first frame (binarized after subtracting the background) was subtracted 

from the second, the second from the third, etc. Thereby the retraction between each frame 

could be evaluated as positive values and the extension as negative values. This allowed 

assessing the motility of these growth cones.  

 
 

3.2.9. Statistical analysis 

The statistical analyses have been performed with the Microsoft Office Excel 2003 and the 

SPSS 13.0 software. Briefly, the Student’s t-tests were applied to compare the mean values 
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of quantitative variables. The chi-square tests were applied in order to determine whether the 

frequency counts en each category were equally distributed. The ANOVA and the ANOVA 

with repeated measurements were performed to compare the variances. In the case of the 

ANOVA with repeated measurements, the sphericity could not be assumed and thereby the 

Greenhouse-Geiser test was used.  
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4. Results 
 
 

4.1. M6 Proteolipids in neuronal cell process formation 

The neuronal proteolipids M6A and M6B are transmembrane proteins highly expressed in 

the neurons of the CNS (Huminiecki et al., 2003) and located throughout the brain (Baumrind 

et al., 1992; Yan et al., 1996). Acute antibody applications or over- and underexpression 

have implicated these proteins in neurite outgrowth (Lagenauer et al., 1992; Zhao et al., 

2008) and filopodia formation (Alfonso et al., 2005; Fernández et al., 2010), but little is known 

about their function in vivo or about the consequences of their chronic lack. 

 

 

4.1.1. Localization of M6A and M6B on cortical neurons 

To characterize the expression of M6A and M6B in the culture system that has been 

subsequently used for functional investigations, immunocytochemical analysis was 

performed on wild-type primary cortical neurons of embryonic day 17 (E17) old mice 

embryos at 3 days in vitro (DIV). The ex vivo culture system was chosen, because it allows a 

simplified approach to study the importance of neuronal proteolipids in the neuronal biology.  

 

The cortical neurons were immunostained using antibodies against M6A and M6B. The 

staining revealed the presence of a mixed population of cortical neurons expressing the 

neuronal proteolipids (Fig. 8). 
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Figure 8. Wild-type cortical neurons 
expressing M6A and M6B.  
Confocal image illustrating the 
immunocytochemical localization of 
M6A (red) and M6B (green) proteins in 
cultured cortical neurons prepared from 
E17 mice and maintained for 3 DIV. 
Most cortical neurons express both 
proteins, but their expression levels 
vary. Scale bar = 20 µm. 



 

 

Distinct neurons differ regarding their staining towards M6A and M6B (Fig.8). Most cortical 

neurons express both proteins (Fig. 9A), but their expression levels vary.  

 

 
 

 

 

 

Figure 9. Types of wild-type cortical neurons according to the M6-protein abundance.   
Mouse cortical neurons (E17) were cultured for 3 DIV, immunostained against M6A (red) and M6B (green) and 
confocal images were taken. There is a mixed population of neurons expressing the neuronal proteolipids. There 
are cells expressing similar levels of both proteins (A), others expressing mainly M6A (B) or M6B (C, D). There 
are two subtypes of cortical neurons regarding their M6B expression pattern, either M6B has an overall broad 
localization in the cell (C) or it localizes mainly to the outer plasma membrane (D). Scale bars = 15 µm.  
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Thereby there are cortical neurons that do express predominantly M6A (Fig. 9B) or M6B 

proteolipid protein. Interestingly, in the case of neurons expressing predominantly M6B, there 

are two subtypes of cortical neurons regarding this expression pattern: some neurons 

express M6B in a broad manner all over the cell (Fig. 9C), whereas in other neurons M6B is 

confined mainly to the external plasma membrane of the cell (Fig. 9D). In the cortical 

neurons that do express similar levels of both proteins, these co-localize extensively in axons 

and dendrites and partially in the somata, where M6B is more abundant (Fig. 9A). The M6A 

as well as the M6B staining demonstrates the presence of the neuronal proteolipids on all 

neurite processes, therefore in axons as well as in dendrites, with no difference in their 

expression levels between these. These results validate this culture system for the study of 

neuronal M6 proteins in neuronal development. 

 

 

4.1.2. Subcellular localization of M6A and M6B on cortical neurons 

To elucidate the localization of the neuronal proteolipids in more detail, co-localization 

studies were accomplished. It is known that tubulin as well as F-actin are major components 

of neurons, and that they define neuronal structures. Tubulin is mainly found in the axonal 

and dendritic shafts, while F-actin is mainly found in the peripheral growth cone regions 

(Dent et al., 2010).  

 

To investigate the subcellular localization of the neuronal proteolipids M6A and M6B, 

immunocytochemistry was performed to observe their co-localization regarding tubulin and 

F-actin. For these, the antibody Tuj-1 (against neuron-specific class III beta-tubulin) and the 

toxin phalloidin that binds to F-actin were used. These experiments were performed on wild-

type cortical neurons of E15 old mice embryos at 3 DIV.  

 

M6A as well as M6B are mainly expressed in tubulin rich compartments (Fig. 10A, B) 

including the axon and dendrites. When comparing their localization with F-actin, M6A co-

localizes with F-actin positive structures such as the neurite tips and growth cones, but is 

also prominently detected at F-actin free membrane extensions (Fig. 10C). The M6B 

expression is confined to F-actin-rich domains, but not outside these (Fig. 10D). Thereby, 

M6A and M6B show overlapping but non-identical localizations.  
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Figure 10. Subcellular localization of M6A and M6B on wild-type cortical neurons regarding tubulin 
and F-actin. 
Immunocytochemistry was performed on mouse cortical neurons (E15) at 3 DIV and confocal images were 
taken. M6A (A) and M6B (B) localization in contrast to neuron-specific class III beta-tubulin (Tuj1) revealed 
that M6A as well as M6B co-localize with tubulin-rich structures. M6A also co-localized with F-actin positive 
regions (C), but was also found on F-actin free membrane extensions (arrow). M6B was also found in F-
actin positive regions (D), but not extending into F-actin free membrane extensions (arrowhead). Images in 
false colour representation; scale bars = 50 µm; scale bars of inset = 5 µm.
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4.1.3. M6A defines F-actin free membrane protrusions 

To further investigate the localization of M6 proteins at F-actin free membrane extensions a 

more detailed analysis was performed. According to the current knowledge, lamellipodia and 

filopodia have a high content in F-actin, and filopodia contain by abundance mainly F-actin, 

which also gives them their finger-shaped structure (Dent et al., 2010). 

 

Wild-type cortical neurons of E17 old mice embryos were cultured, fixed at 2 DIV and cells 

were stained against M6A or M6B and against F-actin with the toxin phalloidin. Confocal 

imaging that included not only the conventional laser-driven signal, but also simultaneous 

reflection confocal microscopy was performed. This allowed the examination of the signals 

from the immunocytochemistry, as well as the membrane surface and outer membrane 

demarcation. This was essential for being able to define outer tubules and membrane 

extensions, on which the presence or absence of F-actin and M6A or M6B were analysed.  

 

On primary cortical neurons stained against M6A and F-actin co-localization was found on 

many tubular structures (filopodia) as well as on growth cone tips. However, there were 

frequent cases in which M6A was found in F-actin free outward tubules that clearly showed a 

membrane continuation at the reflection microscopy level, indicating that the M6A-positive F-

actin-negative outer membrane tips were in contact with the full cell membrane (Fig. 11). In 

some neurite tips the majority of the process tips were M6A-positive and F-actin-negative 

(Fig. 11A). However, there were also cells in which there was diversity regarding the type of 

neurite tips. Some were positive for M6A and F-actin (Fig. 11B star), while close by others 

lack F-actin all over the process (Fig. 11 open arrow). Additionally, there were cases in which 

M6A and F-actin were both present in one subcompartment, while in the other compartment 

there was M6A labelling in the absence of F-actin. Hence, in particular in small processes the 

presence of M6A was found (Fig. 11B arrow). In some cases, process-ending tips showed 

M6A labelling and no F-actin one, thereby M6A was defining the end of these tip (Fig. 11B 

arrowhead). M6A-positive F-actin-negative membrane extensions were various in length 

(Fig. 11A arrow, B arrow and open arrow). There were also cases in which the M6A-positive 

membrane process extended more than 10 µm without the presence of F-actin (Fig. 11C). 

Besides there were also neurons in which membrane flattened extensions lack F-actin but 

show a clear M6A presence (Fig. 11D).  
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Figure 11. M6A defines F-actin free membrane protrusions.
E17 mouse cortical neurons were immunostained at 2 DIV against M6A (cyan) and F-actin (phalloidin toxin, 
red). Confocal microscopy and simultaneous reflection microscopy (gray) were performed to visualize the 
immunocytochemistry and the outer cell membrane delimitation. M6A co-localizes with F-actin at membrane 
extensions and growth cone regions, but is also found at membrane extensions that lack F-actin. In some 
neurites all membrane outer tips are M6A-positive and F-actin-negative (A, arrow). While in other membrane 
extensions there are a variety of events: M6A and F-actin positive protrusions (B, star); M6A and F-actin-
positive extensions up to a position from which only M6A is present at the periphery, either at complete tips (B, 
arrow) or at final endpoints of the tip (B, arrowhead); as well as entire M6A-positive and F-actin negative 
processes (B, open arrow). The extension of the neurite tip at the absence of F-actin can extend more than 10 
µm (C, arrow). There are also flat membrane extensions that are M6A-positive and F-actin negative (D, arrow). 
Scale bars = 5 µm. 

Taken together, M6A defines a novel structure, as F-actin has been assumed “to compose 

the core of filopodia” (cited after Dent & Gertler, 2003). Consequently the M6A-rich domain in 

F-actin free membrane extensions of neuronal growth cones defines novel F-actin free M6A-

rich membrane protrusions.  
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On the other hand, this is not the case for M6B. M6B was always confined to F-actin-rich 

regions and did not define F-actin free domains at the cell tips (Fig. 12). Very seldom M6B 

seemed present in F-actin free membrane tips, but this could be excluded upon more careful 

microscopic assessment (Fig. 12A arrowhead). Occasionally there were membrane tips that 

lacked either M6B as well as F-actin staining (Fig. 12 arrow), most likely these protrusions 

were M6A-positive. In general the majority of the tips were positive for M6B as well as for F-

actin (Fig. 12 arrow).  

 

 
 

 

 

 

 

Figure 12. M6B does not define F-actin free membrane protrusions.
Mouse cortical neurons (E17) were immunostained at 2 DIV against M6B (green) and F-actin (phalloidin toxin, 
red). Conventional confocal microscopy and simultaneous reflection microscopy (gray) were preformed to 
visualize the staining and the outer cell membrane delimitation. M6B does co-localize with F-actin at membrane 
extensions and growth cone regions, but is not found at membrane extensions that lack F-actin. In some neurite 
tip M6B seemed present without an F-actin co-labelling, but upon more careful examination this was excluded 
(A, arrow). Some tips lack M6B as well as F-actin staining (B, arrow). Most of the membrane extensions were 
positive for M6B as well as for F-actin (C, arrow). Scale bars = 5 µm. 

 

Accordingly, M6A does define F-actin free membrane protrusions while M6B does not. And 

in wild-type cortical neurons, essentially all membrane protrusions express the neuronal M6 

proteolipid proteins.  
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4.1.4. Altered growth cone morphology in Gpm6anull*Gpm6bnull mice 

Actin and tubulin define two different compartments in neuronal growth cones. This 

compartmentalization is known since long. There are MTs (thereby tubulin) in the axon shaft 

as well as in the centre of the neuronal growth cone. In the growth cone periphery, the 

lamellipodia, there are only few MTs but mainly a network of F-actin filaments. Finally, at the 

growth cone tips, the filopodia, F-actin is found mostly in them, hence also defining them 

(see Fig. 2, Dent & Kalil, 2001; Dent & Gertler, 2003). Sometimes, in pausing growth cones, 

it can occur that tubulin reaches partially into the actin domain (Dent et al., 2010).  

 

As a high expression of the M6 proteins had already been observed in cortical neuronal 

growth cones as well as a distinct localization of the M6A proteolipid protein regarding F-

actin at the growth cone tip, an investigation involving the actin and tubulin 

compartmentalization was performed. For this purpose, primary cortical neurons of E17 wild-

type as well as Gpm6anull*Gpm6bnull mice were cultured and immunostained at 2 DIV against 

tubulin (Tuj1; Neuron-specific class III beta-tubulin) and F-actin (phalloidin). For each 

genotype (wild-type or Gpm6anull*Gpm6bnull mice) the analysis was performed on cortical 

neurons deriving form four different embryos (n = 4) at E17, with ≥ 15 neurons per individual. 

Overall 63 wild-type and 61 Gpm6anull*Gpm6bnull neurons were analysed, resulting, 

respectively, in a total of 167 and 137 analyzed growth cones.  

 

To evaluate the different localization of tubulin and F-actin, three categories were 

established: (1) tubulin and F-actin are together in one compartment, superimposed or 

partially superimposed, (2) tubulin and F-actin are separated into two compartments, as 

described in literature, being F-actin at the tips, and (3) tubulin is expressed at the end of the 

tips, beyond F-actin. For increased precision, it was distinguished between the growth cone 

or tip of the axon –or longest neurite in case of doubt– or the growth cone or tip of the 

remaining neurites. As expected, wild-type cortical neurites fell mainly into category two 

(Table 1). This is the case for the axonal growth cones (83 %) as well as for the tips of the 

remaining neurites (88 %). Some growth cones could be classified into the category of 

tubulin and F-actin being partially superimposed (17 % for axonal growth cone, 11 % for the 

remaining), while a localization of tubulin distal to F-actin is extremely unusual (0 - 1 %) in 

wild-type cortical neurons. Interestingly, this was very different in the cortical neurons of the 

Gpm6anull*Gpm6bnull mice (Table 1). Indeed, the majority of their growth cones were 

categorized into the group of tubulin being superimposed over F-actin (57 % in axonal growth 

cones, 56 % in remaining growth cones). Surprisingly, there were frequent growth cones in 

which tubulin defined the most distal point (11 %, 16 %).  
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  Axonal GC Remaining GCs All GCs 

Cat. WT dKO WT dKO WT dKO 

1 11 (17%) 35 (57%) 18 (11%) 77 (56%) 29 (13%) 112 (57%) 

2 52 (83%) 19 (31%) 147 (88%) 38 (28%) 199 (87%) 57 (29%) 

3 0 (0%)* 7 (11%) 2 (1%)* 22 (16%) 2 (1%)* 29 (15%) 

 

 

 

 

 

 

The following bar diagram (Fig. 13) shows the grouping of the growth cones of wild-type as 

well as Gpm6anull*Gpm6bnull mice according to the three categories (see above). There is an 

obvious difference regarding the distribution over the categories between the genotypes in all 

growth cones, no matter they belong to the axon or to a dendrite.  
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Table 1. Neuronal growth cones classification according to their F-actin and tubulin 
compartmentalization, into three categories. 
Proportion of wild-type (WT) and Gpm6anull*Gpm6bnull (dKO) growth cones of the axon (Axonal GC) as well as 
the remaining growth cones (Remaining GCs) and the totality of the growth cones (All GCs), according to three 
categories: (1) tubulin and F-actin in one compartment, (2) tubulin proximal to F-actin localization, and (3) 
tubulin distal to F-actin localization. Display of the absolute numbers and the percentages in parenthesis. The 
star designates categories that excluded a statistical analysis.  

Figure 13. Classification of the neuronal growth cones according to three categories. 
Evaluation of the tubulin and F-actin localization in 2 DIV cultured primary cortical neurons of E17 mice. 
Percentage of wild-type (WT) and Gpm6anull*Gpm6bnull (dKO) growth cones of the axon (Axonal GC) as well 
as the remaining growth cones (Remaining GCs) and the totality of the growth cones (All GCs), according to 
three categories: (1) tubulin and F-actin in one compartment, (2) tubulin proximal to F-actin localization, and 
(3) tubulin distal to F-actin localization.  

The fact that the third category of growth cones (with tubulin at the most distal endpoint) was 

only found in Gpm6anull*Gpm6bnull cortical neurons impeded a statistical analysis, as the data 

points were zero or one in the wild-type (Table 1, star), thereby not fulfilling the minimal 

requirement for a meaningful statistical analysis.  

Consequently, to perform a statistical analysis the categories were merged, so that there 

were two remaining groups: (1) tubulin and F-actin in one compartment, partially 

superimposed or tubulin at the distal endpoint of the tip, and (2) tubulin and F-actin in two 
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separated compartments (with F-actin at the distal end). Briefly, merging the prior category 

one with number three and maintaining number two. The resulting data are given in Table 2.  

 

 

  

 

 

 

Table 2. Neuronal growth cones classification according to their F-actin and tubulin 
compartmentalization. 
Proportion of wild-type (WT) and Gpm6anull*Gpm6bnull (dKO) growth cones of the axon (Axonal GC) as well as 
the remaining growth cones (Remaining GCs) and the totality of the growth cones (All GCs), according to two 
categories: (1) tubulin and F-actin in one compartment, superimposed or with tubulin at the distal endpoint, and 
(2) tubulin proximal to F-actin localization. Display of the absolute numbers and the percentages in parenthesis.  

 Axonal GC Remaining GC All GCs 

Cat. WT dKO WT dKO WT dKO 

1 11 (17%) 42 (69%) 20 (12%) 99 (72%) 31 (13%) 141 (71%) 

2 52 (83%) 19 (3%1) 147 (88%) 38 (28%) 199 (87%) 57 (29%) 

 

 

 

 

 

On this dataset it was possible to perform a chi-square test comparison of the frequencies of 

the growth cones being grouped into one category or the other (Table 3).  

 

 

 

 

 

 

Table 3. Chi-square comparison of frequencies of classification of neuronal growth cones according to 
their F-actin and tubulin compartmentalization. 
Representation of the result of the statistical analysis of the comparison of tubulin and F-actin localization on 
neuronal growth cones of wild-type and Gpm6anull*Gpm6bnull mice, according to two categories. Either tubulin 
and F-actin are in the same compartment, or into two different ones, with F-actin at the distal tip. Chi-square test 
performed on data resulting from n = 4 per genotype with ≥ 15 neurons per n, with a total of 167 and 137 growth 
cones, respectively. It is shown the Pearson Χ2 statistic (Pearson Χ2), the degrees of freedom (df) and the P-
value (P) for each comparison.  

 Pearson Χ2 df P 

Axonal GC 33.447 1 7.325 · 10-9 

Remaining GCs 114.825 1 8.597 · 10-27

All GCs 147.547 1 5.960 · 10-34

 

The result of the chi-square test demonstrates a very highly significant difference between 

wild-type and Gpm6anull*Gpm6bnull cortical neurons regarding the distribution of tubulin and F-

actin at the growth cones. No matter if the focus is on the growth cones or tips of the axons 

or the dendrites (Fig. 14). There is a very clear difference in all the neurite tips. In the 

Gpm6anull*Gpm6bnull cortical neurons it is significantly more frequent that tubulin is partially or 

totally superimposed over the F-actin compartment, or beyond the limits of the F-actin 

localization. This is a very profound breakage of the normal growth cone morphology, as 

tubulin and F-actin define the regions (morphologically and functionally) of the neuronal 

growth cone in a very distinctive manner.  
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Figure 14. Classification of the neuronal growth cones according to two categories. 
Evaluation of the tubulin and F-actin localization in 2 DIV cultured primary cortical neurons of E17 mice. 
Percentage of wild-type (WT) and Gpm6anull*Gpm6bnull (dKO) growth cones of the axon (Axonal GC) as well 
as the remaining growth cones (Remaining GCs) and the totality of the growth cones (All GCs), according to 
two categories: (1) tubulin and F-actin in one compartment superimposed or tubulin at the outer tip or (2) 
tubulin proximal to F-actin localization. There is a very highly significant difference (P<0.001) regarding this 
two categories between the WT and dKO growth cones of the axons, as well as the dendrites.  

An example of this altered growth cone morphology –defined by the localization of tubulin 

and F-actin– is given in figure 15.  

 

 
 

 

 

 

 

Figure 15. Altered growth cone morphology in Gpm6anull*Gpm6bnull mice. 
E17 cortical neurons were cultured for 2 DIV and stained against tubulin (Tuj1 antibody) and F-actin (Phalloidin 
toxin). The overview shows a normal F-actin-tubulin localization on the full cell level, but this is different when 
focusing at the growth cones. The wild-type (WT) growth cones (A) exhibit a defined and separated F-actin and 
tubulin localization. But the growth cones of the Gpm6anull*Gpm6bnull (dKO, B) show a strong overlap of tubulin 
and F-actin. Tubulin partially localizes to the F-actin domain, without having a complete overlap (arrow) with F-
actin. Some regions contain more tubulin, others more F-actin. Scale bars = 5 µm. 
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As depicted in the representative example of Fig. 15, in Gpm6anull*Gpm6bnull cortical neurons 

the extension of the tubulin compartment into the normally exclusive F-actin domains does 

not occur with an absolute overlap. Although tubulin covers the majority of the F-actin-

positive regions, it occurs in a specific and partially exclusive manner. There are tubulin-

positive processes that lack the same F-actin distribution (Fig. 15, arrow). This also provides 

evidence that this observation is not due to a microscopy artefact. 

 

Consequently, there is an alteration of the normal F-actin and tubulin compartmentalization in 

the growth cones of Gpm6anull*Gpm6bnull cortical neurons. This mislocalization is found in all 

neurite tips; no matter if they belong to the axons or to the dendrites. It is important to recall 

that M6A as well as M6B are expressed in basically all cortical neurons and that both 

neuronal proteolipids are present in axons as well as in dendrites. It is the absence of the 

M6-proteins in the neurites that leads to modified growth cone morphology. Thereby the M6 

neuronal proteolipids are required for the normal segregation of cytoskeletal proteins at the 

growth cones.  

 

 

4.1.5. M6A and M6B are required for normal reaction to ephrinA5 

To assess if there is a functional response to the altered growth cone morphology and actin-

tubulin compartmentalization it was chosen to realize a “growth cone collapse assay”. For the 

assay ephrinA5, widely known to act as a collapse agent on neurons, was chosen (Knöll et 

al., 2006; Pandithage et al., 2008). The collapse or non-collapse was defined as the absence 

or presence, respectively, of a lamellipodium or veil-like structure in the growth cones of the 

axon or longest neurite. The experiment was performed on primary cortical neurons of E17 

mice embryos that were cultured for 2 DIV.  

 

On the representative images (Fig. 16) it can be observed that there is a difference in the 

responsiveness to ephrinA5 in the Gpm6anull*Gpm6bnull cortical neurons, in comparison to the 

wild-type, Gpm6anull and Gpm6bnull single-mutant cortical neurons. These dKO neurons do 

not react to the commonly used amount of ephrinA5 (1 µg/ml) (Knöll et al., 2006; Pandithage 

et al., 2008), but they do react to it when it is doubled (2 µg/ml). 
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Figure 16. Responsiveness to ephrinA5 induced growth cone collapse assay. 
WT, Gpm6anull, Gpm6bnulland dKO cortical neurons from E17 mice were cultured and after 2 DIV a “growth 
cone collapse assay” with ephrinA5 was performed. Cells were then fixed and stained against Tuj1 (in green) 
and Phalloidin (in red). Examples for each given genotype with the control (recombinant Fc) and ephrinA5 
(recombinant ephrinA5/Fc chimera, 1 µg/ml or 2 µg/ml) treatment. The dKO cortical neurons do not react to 
ephrinA5 at the same extension as wild-type do. Scale bar = 15 µm; in inset scale bar = 5 µm. 
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The quantification of the “growth cone collapse assay” is given in table 4. There is a clear 

difference in the responsive behaviour of the dKO neurons as they don’t react to the growth 

cone collapse induction in the same manner than wild-type, Gpm6anull and Gpm6bnull single-

null mutant cortical neurons.  

 

 

 

 

 

Table 4. Quantification of the growth cone collapse assay induced by ephrinA5. 
Growth cone collapse assay performed on 2 DIV cultured WT, Gpm6anull, Gpm6bnulland dKO cortical neurons 
from E17 mice. dKO cortical neurons react differently to the ephrinA5 induced collapse assay at 1 µg/ml (star). 
The axonal growth cone was categorized as non-collapsed (Non C) or collapsed (C) regarding the presence or 
absence of a lamellipodium. The percentage of collapsed (%C) growth cones is given. The experiment was 
performed on n = 3 per genotype.  

Control Ephrin A5 [1 µg/ml] Ephrin A5 [2 µg/ml] 
 

Non C C %C Non C C %C Non C C %C 

WT 34 41 55 15 62 81 9 67 88 

Gpm6anull 49 28 36 18 57 76 19 58 75 

Gpm6bnull 57 43 43 12 64 84 16 59 79 

dKO 53 23 30 38 38 50* 15 60 80 

 

 

A chi-square pair wise comparison of the distributions of the cortical neurons regarding their 

status of being collapsed or non-collapsed under the different conditions was performed 

(Table 5). When comparing the reaction between the control situation and the standard 

ephrinA5 dose (1 µg/ml) it is clear that there is a very highly significant difference in the wild-

type, Gpm6anull and Gpm6bnull null mutant cortical neurons. Most of their growth cones do 

react to the ephrinA5 collapse induction. The dKO neurons react, but to a much lesser 

extend to this collapse. Moreover there is no alteration when comparing the responsiveness 

between the two concentrations of ephrinA5 (1 µg/ml Vs 2 µg/ml) in the wild-type, Gpm6anull 

and Gpm6bnull single-null mutant cortical neurons. However there is a very highly significant 

difference in the Gpm6anull*Gpm6bnull cortical neurons. Most of the axonal growth cones 

require the higher ephrinA5 dose to respond with an extensive collapse reaction (50 % of 

collapsed Vs 80 % of collapsed).  
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Table 5. Chi-square comparison of the growth cone collapse assay induced by ephrinA5. 
Growth cone collapse assay performed on 2 DIV cultured WT, Gpm6anull, Gpm6bnulland dKO cortical neurons 
from E17 mice. Chi-square pair-wise comparison (n = 3 per genotype; each ≥ 25 neurons) of ephrinA5 
response at 1 µg/ml and 2 µg/ml. dKO neurons required a two-fold increased dose of ephrinA5 to achieve a 
response comparable to wild-type, Gpm6anull and Gpm6bnull cortical neurons. The P-value is shown and in 
parenthesis the Pearson Chi-Square statistic with the degrees of freedom as subscript.  

 Ctrl Vs EphrinA5 [1 µg/ml] EphrinA5 [1 µg/ml] Vs [2 µg/ml] 

WT 8.999 · 10-4 (11.6251) 0.267 (1.5991) 

Gpm6anull 8.592 · 10-7 (24.2151) 1.000 (0.0091) 

Gpm6bnull 4.220 · 10-8 (29.2841) 0.539 (0.4871) 

dKO 0.013 (6.7331) 1.542 · 10-4 (14.9141) 

 

The result of this experiment is summarized in the diagram bar of figure 17. There is a 

notable difference in the behaviour of the Gpm6anull*Gpm6bnull cortical neurons towards the 

growth cone inducing agent ephrinA5. These neurons require a much higher dose to achieve 

comparable results as the wild-type and the Gpm6anull and Gpm6bnull single-null mutant 

cortical neurons. 
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Figure 17. Responsiveness to ephrinA5 induced growth cone collapse assay (diagram)  
WT, Gpm6anull, Gpm6bnulland dKO cortical neurons from E17 mice were cultured and after 2 DIV a “growth 
cone collapse assay” with ephrinA5 was performed and assessed on the axonal growth cone (n = 3). dKO-
neurons required a two-fold increased dose of ephrinA5 to achieve a response comparable to wild-type, 
Gpm6anull and Gpm6bnull cortical neurons. 

Examining the control group, there is a significant difference regarding the axonal growth 

cones. As the non-collapsed growth cone has been defined as the presence of a 

lamellipodium, one can observe that the dKO as well as the Gpm6anull cortical neurons have 

significantly more growth cones with lamellipodia than the wild-type or the Gpm6bnull cortical 

neurons (Table 6).  
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Table 6. Abundance of axonal growth cones with lamellipodia. 
WT, Gpm6anull, Gpm6bnulland dKO cortical neurons from E17 mice were cultured and after 2 DIV the presence 
or absence of a lamellipodium on the axonal growth cone (GC) was assessed. It is shown the percentage of 
axonal growth cones with a lamellipodium (GC + lamellipodium). dKO and Gpm6anull cortical neurons have 
more axonal growth cones with a lamellipodium than wild-type or Gpm6bnull cortical neurons. Chi-square pair 
wise comparison of the distribution of frequencies relative to wild-type neurons (n=3 animals per genotype; each 
≥ 25 neurons), shown the Pearson Χ2 statistic (Pearson Χ2), the degrees of freedom (df) and the P-value (P).

 GC + lamellipodium (%) Χ2 : WT Vs 

WT 45 Pearson Χ2 df P 

Gpm6anull 64 5.135 1 0.034 

Gpm6bnull 57 2.337 1 0.130 

dKO 70 9.880 1 0.003 

 

The difference between the Gpm6anull and the WT is significant (P = 0.0034) and it is highly 

significant between the Gpm6anull*Gpm6bnull cortical neurons and the wild-types (P = 0.003). 

There is no significant difference when comparing the other groups. This result demonstrates 

that in the absence of the neuronal proteolipid protein M6A (Gpm6anull and 

Gpm6anull*Gpm6bnull) the axonal growth cones of their cortical neurons show a significantly 

increased abundance in lamellipodia. And this effect is increased when the ortholog M6B is 

as well absent.  

This result is schematized in the following bar diagram (Fig. 18). 
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Figure 18. Abundance of axonal growth cones with lamellipodia. 
WT, Gpm6anull, Gpm6bnulland dKO cortical neurons from E17 mice were cultured and after 2 DIV the presence 
or absence of a lamellipodium on the axonal growth cone was assessed. In comparison to wild-type or 
Gpm6bnull, Gpm6anull and dKO cortical neurons have significantly more (*) and highly significantly more (**) 
axonal growth cones with a lamellipodium, respectively. Significance according to chi-square test (n = 3).  
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The increased number of neuronal growth cones regarding the presence of lamellipodia 

points once more to a role of M6 proteins in the normal morphology and function of neuronal 

growth cones.  

 

To further explain the observed altered behaviour of the Gpm6anull*Gpm6bnull cortical neurons 

regarding the ephrinA5 induced growth cone collapse assay, immunoblot analysis was 

performed on cortical neuron lysates at 2 DIV (from E17 embryos). It was tested whether 

ephexin-1 levels were altered. Ephexin-1 levels are in relationship with the abundance of Eph 

receptors (see section 2.1.2., reviewed by Egea & Klein, 2007). This simplified the approach 

to test if the abundance of Eph-receptors were altered, as ephrinA5 binds to EphA1-8 as well 

as EphB2 (reviewed by Pasquale, 2004).  

 

As can be observed on figure 19, the preliminary result of the immunoblot performed on the 

lysates of wild-type and Gpm6anull*Gpm6bnull cortical neurons show a decreased abundance 

of ephexin1 in the Gpm6anull*Gpm6bnull cortical neurons. This would argue for a decreased 

overall level of Eph-receptors in the dKO neurons, a likely explanation why these dKO 

neurons have an impaired response to the ephrinA5 induced growth cone collapse.  

 

Another downstream event to investigate was the levels of RhoA. RhoA is the key signalling 

molecule when referring to growth cone collapse (Wahl et al., 2000; reviewed in Hall & Lalli, 

2010). Upon its activation, it leads to collapse of the actin filaments. In the dKO cortical 

neuron lysates, the abundance of RhoA is slightly decreased. The lower levels would argue 

for less total cellular RhoA, regardless of its activation status. A lower abundance of RhoA 

may explain the delayed reactivity of the dKO cortical neurons towards ephrinA5.  

 

 
 

 

 

 

Figure 19. Immunoblot of cortical neuron lysates.
WT and Gpm6anull*Gpm6bnull cortical neurons from E17 mice were cultured and lysed after 2 DIV (n = 2 - 3).  
A) Immunoblot showing the levels of ephexin-1 and actin as a loading control. It seems that in the dKO cortical 
neuron lysates the abundance levels of ephexin1 are decreased. 
B) Immunoblot against total RhoA with tubulin as a loading control. The RhoA abundance levels seem to be 
moderately decreased in the dKO cortical neuron lysates.  
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The immunoblot demonstrates the importance of neuronal M6 proteolipid proteins in the 

proper function of the growth cone and its associated cytoskeleton proteins as well as the 

appropriate abundance (and possibly localization) of signalling receptors including Ephs.  

 

 

4.1.6. Impaired neurite outgrowth in the absence of M6 proteins 

Previous results have shown that upon application of the monoclonal M6 antibody against 

M6A there was a reduced neurite outgrowth of cultured cerebellar wild-type neurons 

(Lagenauer et al., 1992).  

 

To test if a similar effect exists in the chronic absence of this protein, as well as of the 

homologue M6B, primary cortical neurons of E15 mice were cultured for 3 DIV to assess 

their neurite length. This experiment was performed on wild-type, Gpm6anull, Gpm6bnull and 

Gpm6anull*Gpm6bnull cortical neurons (Fig. 20, with 4 individuals per genotype and three 

technical replicates each (34 - 47 neurons per individual). 

 

 

 

Gpm6bnullGpm6anull dKO WT 

 

 

 

Figure 20. Impaired neurite outgrowth of M6 mutant cortical neurons. 
WT, Gpm6anull, Gpm6bnulland dKO cortical neurons from E15 mice were cultured and after 3 DIV  the neurites 
were immunostained with the antibody Tuj1. Representative examples for each genotype. Scale bar = 25µm.  

 

The resulting data (Table 7) show a decreased neurite length in the cortical neurons lacking 

M6. A two-sided T-test was performed, and the resulting P-values demonstrate a very highly 

significant and decreased neurite length of the Gpm6anull, the Gpm6bnull and the 

Gpm6anull*Gpm6bnull cortical neurons in comparison to the wild-types. Gpm6anull and 

Gpm6anull*Gpm6bnull neurites are also significantly shorter than those of Gpm6bnull cortical 

neurons. This shows that the Gpm6bnull cortical neurons are affected in their neurite 

outgrowth by themselves, though more moderately.  
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Table 7. Impaired neurite outgrowth of M6 mutant cortical neurons. 
WT, Gpm6anull, Gpm6bnulland dKO cortical neurons from E15 mice were cultured and after 3 DIV the neurite 
length was measured according to the Tuj1 immunocytochemistry. It is exhibited the mean neurite length 
(Neurite length, in µm) and the P-value for the two-sided T-test for the different comparisons. The neurites of 
Gpm6anull, Gpm6bnulland dKO cortical neurons are shorter than those of the wild-type. Additionally the neurites 
of the Gpm6anull and dKO cortical neurons have a decreased length in comparison to the Gpm6bnull cortical 
neurons (n = 4, 3 technical replicates each, 163 - 183 cells were quantified per genotype). Shown T statistic with 
the degrees of freedom as subscript, and the P-value. 

P-value for T-test 
 

Neurite 

length 

(µm) WT Gpm6anull Gpm6bnull 

WT 235.253    

Gpm6anull 102.265 15.375240, 1.337 · 10-37   

Gpm6bnull 138.367 10.010309, 1.287 · 10-20 -5.162317, 4.330 · 10-7  

dKO 98.534 15.989232, 2.756 · 10-39 0.701359, 0.484 5.796305, 1.689 · 10-8 

 

Figure 21 shows a bar diagram of the mean neurite length of the four genotypes and the 

resulting significance levels according to the T-test. Categorizing the neurons regarding their 

neurite length allows a chi-square pair-wise comparison of all the distributions (Table 8) and 

this reveals a significantly different frequency distribution of the neurite length of any 

genotype against any other.  

 

 

 

 

 

Table 8. Impaired neurite outgrowth of M6 mutant cortical neurons. 
WT, Gpm6anull, Gpm6bnulland dKO cortical neurons from E15 mice were cultured and after 3 DIV the neurite 
length was measured according to the Tuj1 immunocytochemistry. It is represented the P-value for the chi-
square test and in parenthesis the Pearson Χ2 statistic and the degrees of freedom as subscript. There is a 
significant difference in the frequency distribution of the neurite length of every genotype towards every other.  

 WT Gpm6anull Gpm6bnull 

Gpm6anull 5.919 · 10-30 (157.2818)   

Gpm6bnull 1.161 · 10-14 (83.0988) 4.960 · 10-5 (31.5327)  

dKO 2.816 · 10-33 (173.1528) 0.025 (12.7875) 1.159 · 10-6 (40.1887) 

 

The following diagrams show the mean neurite length for each genotype and the resulting 

significance levels after the T-test (Fig. 21A) and the categorized distribution of the cortical 

neurites of each genotype along nine categories (Fig. 21B). 
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Figure 21. Impaired neurite outgrowth in M6 deficient cortical neurons.
A. Total neurite length analysis (mean ± SEM), showing a reduced neurite length as indicated (*** = P<0.001, 
T-test). n = 4 animals; 3 technical replicates per genotype.  
B. Neurite length distribution in the four genotypes. X2 pair-wise comparison determined a significantly 
different distribution of the neurite length between all genotypes (P<0.05). 

 

The reduced neurite outgrowth displays the requirement of the neuronal M6 proteolipid 

proteins in this process. The absence of M6B already induces a very significant decrease in 

the neurite length. However, the lack of M6A has even more drastic consequences. Thus, 

this evidence suggests that M6 proteins have an important role in the normal neuronal 

development, including neurite extension. 
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4.1.7. Neurite outgrowth and cholesterol 

As demonstrated above, neurons that lack M6 proteins do have impaired neurite outgrowth. 

It has been proven before that the oligodendroglial proteolipid protein PLP, ortholog to M6A 

and M6B, binds directly to cholesterol (Simons et al., 2000; Krämer-Albers et al., 2006). And 

this has also been shown for M6B (Werner H., pers. comm.).  

 

Cholesterol is essential for the proper neuron function, like e.g. for the maintenance of the 

plasma membrane itself, for locating ion channels and signalling proteins into lipid rafts, and 

for the functionality of the synaptic machinery (reviewed in Benarroch, 2008). To assess if 

there is a relationship between the neuronal proteolipids in their function related to neurite 

outgrowth and cholesterol, primary cortical neurons were cultured under different 

concentrations of cholesterol. Wild-type and Gpm6anull*Gpm6bnull cortical neurons of E15 

mice were cultured for 3 DIV. The experiment was performed with four embryos per 

genotype and three technical replicates per condition, resulting in 38 - 36 neurons evaluated 

per animal. The applied cholesterol concentrations were: 0 µg/µl, 0.1 µg/µl and 1 µg/µl of 

cholesterol and the neurite length was measured.  

 

As depicted in table 9, wild-type cortical neurons show a clear decrease in their neurite 

outgrowth length once the cholesterol concentration is above 0.1 µg/µl, and this decrease 

augments with an increasing dose (1 µg/µl). This is in congruence with prior results (Ko et al., 

2005) and also shows how critical cholesterol amounts are for proper neuronal function.  

It was surprising to observe that the dKO cortical neurons do not react to the modified 

cholesterol concentrations. They do have a significant reduction in their neurite length per se 

(as proven before), but this stays unaltered and at the same magnitude, no matter the 

different concentrations of cholesterol. Nonetheless, wild-type neurons have significantly 

larger neurites then dKO neurons under these conditions.  
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Table 9. Neurite outgrowth in cortical neurons upon cholesterol application. 
E15 mice cortical neurons were cultured for 3 DIV under different cholesterol concentrations and were stained 
with Tuj1. The neurite outgrowth was measured.  
A) Mean neurite length of WT and dKO cortical neurons under the different cholesterol concentrations.  
b) Statistical outcome of a T student test, showing the T statistic with the degrees of freedom as subscript, and 
the P-value. 

Mean neurite length (µm) 

 WT dKO 

0 µg/ml 146.817 77.331

0.1 µg/ml 136.822 86.685

1 µg/ml 112.580 84.041

 

T-test 
B 

A 

Vs Genotype Vs Cholesterol concentration 

 WT Vs dKO  WT dKo 

0 µg/ml 7.930318, 3.746 · 10-14 0 µg/ml Vs 0.1 µg/ml 1.061346, 0.289 -1.319357, 0.188

0.1 µg/ml 6.358342, 6.548 · 10-10 0 µg/ml Vs 1 µg/ml 3.694340, 2.573 · 10-4 -0.932354, 0.352

1 µg/ml 3.654344, 2.989 · 10-4 0.1 µg/ml Vs 1 µg/ml 2.868351, 4.387 · 10-3 0.368354, 0.713 

 

 

The figure 22 exposes this clear effect: the neurite length of wild-type cortical neurons 

decreases upon increasing the cholesterol concentrations, and the dKO cortical neurons 

behave unaltered, preserving their anyway significantly reduced neurite length.  

 

This result demonstrates that neuronal M6 proteins interact directly or indirectly with 

cholesterol and this relates to their involvement in neurite outgrowth. The lack of M6 proteins 

makes cortical neurons not respond in the normal manner, which would mean a reduction in 

their neurite extension capacities, but it seems to make them indifferent to an increasing 

cholesterol concentration. 
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Figure 22. Neurite outgrowth of cortical neurons upon cholesterol application. 
E15 mice cortical neurons were cultured for 3 DIV under different cholesterol concentrations and were 
immunostained with Tuj1. The neurite outgrowth was measured. 
A) Representative images of WT and Gpm6anull*Gpm6bnull (dKO) cortical neurons under the different cholesterol 
concentrations. Scale bars = 20 µm.  
B) Bar diagram representing the mean neurite length (with the SEM) of WT and dKO neurons in the different 
cholesterol concentration.  

 

 

4.1.8. Growth cone morphology, adhesiveness and motility 

An essential evaluation was to prove how the cortical neurons that lack M6 proteins do 

behave while being in culture, as the prior results demonstrated an altered behaviour of the 

neurons in their neurite outgrowth and in their growth cone function. Therefore, primary 

cortical neurons of E17 wild-type and Gpm6anull*Gpm6bnull mice were subjected to in vivo 

imaging after being cultured 2 DIV. The microscopy was performed on a confocal setup and 
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reflection microscopy was used. As M6 proteins seem to be especially important in the 

growth cone, the analysis focused on this structure. The individual growth cones were 

imaged during ten minutes and an image was acquired every three seconds, so that for 

every growth cones were 201 frames which were converted into a video (Fig. 23A). From the 

wild-type cortical neurons nine growth cones were imaged, and ten in the 

Gpm6anull*Gpm6bnull ones. The imaging acquisition was chosen to be of a period of ten 

minutes, as it had already been assessed that the Gpm6anull*Gpm6bnull cortical neurons have 

an impaired neurite extension, so that there would be no masking of the effect of the reduced 

neurite extension in their motility properties.  

 

 

 

 

 

Figure 23. Morphometry of in vivo imaged cortical neuron growth cones. 
A) Cortical neurons of E17 WT and Gpm6anull*Gpm6bnull (dKO) mice were cultured for 2 DIV. In vivo imaging of 
their growth cones during 10 min, performing one image every 3 seconds. Depicted is the first image for one 
growth cone of each genotype. Scale bars = 5 µm. 
B) Representation of the normalized mean ratio of the perimeter against the total area. No significant 
differences could be observed.  
C) Representation of the normalized mean total area. No significant differences could be observed.  

 

The first approach was to analyse the morphometrical properties. The perimeter of each 

growth cone in each frame was determined, as well as the total surface. When comparing 

the normalized values for the ratio of the perimeter against the total area (Fig. 23B), as well 
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as the total area per se (Fig. 23C), no difference could be assessed. This was proven by 

realizing an ANOVA with repeated measurements (Greenhouse-Geisser) (perimeter / total 

area: F = 1.287, P = 0.287; total area: F = 0.411, P = 0.758). Thus, growth cones of cortical 

neurons that lack M6 proteins do have the same morphometrical properties than wild-type 

ones.  

 

Because of employing reflection microscopy, the various levels of attachment to the glass 

slide could be differentiated. Thereby, the following analysis was based on the different 

adhesion levels. The area of the growth cones was divided into “adhesive” and “non 

adhesive” according to the intensity levels on each single image (Fig. 24A). When performing 

the ratio of the normalized data of the “adhesion area” Vs the “non adhesion area” no 

differences could be proven (Fig. 24B, C). This was confirmed by means of an ANOVA with 

repeated measurements (Greenhouse-Geisser) (adhesion area / total area: F = 1.150, P = 

0.340). Consequently, the adhesive properties are also not altered when analysing neuronal 

growth cones that lack chronically neuronal M6 proteins.   

 
 

 

Figure 24. Adhesiveness of in vivo imaged cortical neuron growth cones (cont.) 
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Figure 24. Adhesiveness of in vivo imaged cortical neuron growth cones (cont.).
A) Cortical neurons of E17 wild-type and Gpm6anull*Gpm6bnull (dKO) mice were cultured for 2 DIV. The growth 
cones were imaged in vivo during 10 min, achieving one image every 3 seconds. According to the intensity 
levels, the growth cone area was classified into “adhesion” (red) and “non adhesion” (green) areas. Depicted are 
four example images of each genotype, chosen every second frame from the first one on. The time passed is 
indicated on each image. Scale bars = 5 µm. 
B) Representation of the normalized ratio of the adhesive area against the total area. No significant differences 
could be observed.  
C) Representation of the normalized mean adhesive area against the total area. No significant differences could 
be observed.  

 

Furthermore, the examination of the videos was performed in such a manner that the motility 

of the growth cones could be investigated, as this is an essential factor of the growth cone 

functionality. Between each frame of each single video, the differences form one to the next 

frame were analysed in such a way that the extension and retraction areas could be 

assessed (See Fig. 7). As the areas occupied by the growth cone in one frame were 

subtracted form the prior one, extension was evaluated as values minor than zero and 

retraction as values larger than zero. If there would be no difference, the sum would be zero. 

When comparing the growth cones regarding the extension (Fig. 25A-B) and retraction (Fig. 

25C-D) levels no differences could be observed between wild-type and Gpm6anull*Gpm6bnull. 

This is obvious when observing the normalized mean alteration of the sum of the retraction 

and extension values (Fig. 25E), as it is basically identical for the growth cones of wild-type 

and Gpm6anull*Gpm6bnull cortical neurons. Additionally, when plotting the normalized 

differences of retraction and extension (Fig. 25F) no differences could be observed. An 

ANOVA with repeated measurements (Greenhouse-Geisser) was performed and validated 

this (retraction + extension:  = 0.992, P = 0.494; retraction-extension: F = 1.184, P = 0.286). 

Yet again, there is no difference of the in vivo behaviour of the Gpm6anull*Gpm6bnull cortical 

neuron growth cones. The way they retract and extend over a period of 10 minutes is 

equivalent.  
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Figure 25. Motility of in vivo imaged cortical neuron growth cones. 
Cortical neurons of E17 WT and Gpm6anull*Gpm6bnull (dKO) mice were cultured for 2 DIV. Growth cones were 
image in vivo during 10 min, performing one image every 3 seconds. The differences in area occupied by the 
growth cone were assessed between each frame of each single video, by subtracting the occupied area of one 
frame with the prior one. Thereby positive values measure retraction and negative values measure extension. If 
there is no net movement, the value would be zero.  
A-B) Representation of the normalized extension values for WT (A) and dKO (B) growth cones.  
C-D) Representation of the normalized retraction values for WT (A) and dKO (B) growth cones.  
E) Representation of the normalized mean sum of the retraction and extension values in WT (black) and dKO 
(red) growth cones.  
F) Representation of the normalized levels of retraction and extension values in WT (black) and dKO (red) 
growth cones. 

 

 

This in vivo analysis demonstrates that the short-term morphometry, adhesion and motility is 

not altered in the growth cones of Gpm6anull*Gpm6bnull cortical neurons.  
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4.1.9. Cortical development and corpus callosum width 

The corpus callosum is the largest commissure of the brain that connects most cortical areas 

of each cerebral hemisphere (Kandel et al., 2000). It was chosen for studying the possible in 

vivo consequences of the effect of the impaired neurite outgrowth and altered growth cone 

function proven before in cortical neurons that lack chronically neuronal M6 proteins.  

Therefore, brains of P5 wild-type (n = 4) and Gpm6anull*Gpm6bnull (n = 5) mice were fixed and 

coronal sections were stained with HE and the width of the corpus callosum was measured. 

The examination was divided into two regions in the caudorostral axis: sections comprising 

the corpus callosum anterior to the hippocampus or sections including the corpus callosum 

and the hippocampus (Fig. 26). 

 
 

 

 

 

Figure 26. Reduced corpus callosum width at P5 in Gpm6anull*Gpm6bnull mice.
P5 brain sections of wild-type (WT) and Gpm6anull*Gpm6bnull (dKO) mice were stained with HE and the corpus 
callosum width was measured. It was differentiated between sections anterior to the hippocampus (Anterior to Hc) 
or comprising the hippocampus (With Hc). 
A) Representative images of the corpus callosum for each genotype and each section level. Scale bar = 100 µm. 
B) Bar diagram representing the mean corpus callosum width. The SEM is shown, as well as the levels of 
significance differences (*, P<0.05; ***P>0.001) according to a student T-test. 
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The comparison between the two genotypes by means of a students T-test revealed a 

significant difference (Table 10), owing to a decreased corpus callosum width in the 

Gpm6anull*Gpm6bnull mice. This occurred in both analyzed section levels and the differences 

were more significant in the brain levels that comprise the corpus callosum and the 

hippocampus.  

 

 

 

 

 

Table 10. Decreased corpus callosum width at P5 in Gpm6anull*Gpm6bnull mice.
P5 brain of wild-type (n = 4) and Gpm6anull*Gpm6bnull (n = 5) mice were fixed, sectioned and stained with HE. 
The corpus callosum width was assessed in regions anterior to the hippocampus (Anterior to Hc) or in regions 
comprising the corpus callosum and the hippocampus (With Hc). Depicted is the mean corpus callosum width in 
µm, in parenthesis the number of counts per genotype and the T-statistic with the degrees of freedom as 
subscript, and the P-value.

Mean corpus callosum width (µm)
 

WT dKO 
Student T-test 

Anterior to Hc 116.300 (18) 102.727 (34) 2.28540, 0.028 

With Hc 143.405 (15) 121.776 (21) 4.16734, 2.002· 10-4 

 

This proves that neurons lacking neuronal M6 proteolipid proteins provoke a deficient 

formation of the major white matter tract in the brain. According to prior experiments this 

developmental defect in neuronal projections seems to be compensated at P30 (Fünfschilling 

U., Werner H., pers. comm.), but further investigations will assess this into more detail.  

Neuronal M6 proteolipid proteins are required for an efficient and normal development of 

axonal tracts in the white matter, as is the corpus callosum. 

 

 

4.2. Tetraspanin2 in CNS myelination 

 
 

4.2.1. Tetraspanin2 expression in myelin 

As a first step to study the function of TSPAN2 in the CNS myelin, P75 old wild-type and 

PLPnull mice were perfused, their brains sectioned and immunostained using an antibody 

against TSPAN2 (Birling et al., 1999). In wild-type brain sections the TSPAN2 antibody stains 

profusely white matter regions, containing myelin, like e.g. the corpus callosum or the 

striatum (Fig. 27). But on PLPnull mice sections, the TSPAN2 labelling reveals a much higher 

TSPAN2 abundance. This effect is found throughout the white matter tracts of the brain. 

Hence, it is in agreement with prior results obtained in immunoblots of CNS myelin-enriched 

fractions (Werner H., pers. comm.). This suggests that TSPAN2 could compensate for the 

 85



lack of PLP in its absence, as both are structurally similar tetraspan proteins found in CNS 

compact myelin. 

 
 

 

 

 

Figure 27. Tspan2 staining in the striatum of WT and PLPnull mice. 
P75 brain sections of the striatum of WT and PLPnull mice were immunostained using a TSPAN2 antibody.  
A) PLPnull mice have a higher abundance of TSPAN2 labelling. Scale bar = 50 µm. 
B) Magnification of A, demonstrating that the increased TSPAN2 labelling in PLPnull mice is due to the more 
profound staining of the white matter bundles, as well as of the OL of the surrounding gray matter (arrow). 
Scale bar = 25 µm. 

 

4.2.2. Targeted inactivation of the murine Tspan2 gene  

The early onset of the nervous system specific expression of TSPAN2 (Nielsen et al., 2006; 

Dugas et al., 2006), its distribution in CNS myelin (Birling et al., 1999), as well as its high 

abundance in PLPnull myelin suggests that TSPAN2 is an important protein for CNS 

myelination and maintenance. To elucidate the function of TSPAN2 in vivo, the generation of 

conventional TSPAN2null mice was pursued.  

 

Briefly, to generate TSPAN2null mice, the Tspan2 gene had to be modified by homologous 

recombination of a Tspan2 gene-comprising targeting vector in embryonic stem (ES) cells in 

vitro. ES cells that are positively targeted are microinjected into host blastocysts, and foster 

mothers will give rise to ES cell-chimeric mice. These chimeric mice can be distinguished by 

their spotted fur colour. When breeding chimeras with wild-type mice and with successful 
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germline transmission, the offspring will be heterozygous for the Tspan2 gene (represented 

in Fig. 28).  

 

 
 

 

 
 

Figure 28. Generation of a C57BL/6 null-mutant mouse by gene targeting
The gene of interest is targeted by homologous recombination (star) in ES cells and these are injected into host 
blastocysts to produce ES cell–mouse chimeras. When using ES cells derived form C57 black B6 mice and 
injecting into host blastocysts derived form C57BL/6J-Tyrc-2J albino mice, the chimeric offspring will be black-
white patched. After breeding these chimeras with albino-C57 mice, the offspring after the germline transmission 
(F1 generation) will be black, representing the fur colour of the original ES cell (Taken from Seong et al., 2004).  

 
The targeting vector comprised three distinct regions (generated by de Monasterio Schrader 

P., Werner H. & others): (1) a 5’ “short arm”, homologous to part of the 5’ UTR of the Tspan2 

gene as a template, flanked by XhoI/NotI restriction sites, (2) a neomycin resistance cassette 

flanked by two FRT sites, which gives upon its integration resistance to the neomycin-

analogue G418 (essential for the ES cell positive-selection), and (3) a 3’ “long arm” 

homologous to a sequence in intron 1 of the Tspan2 gene, flanked by SbfI/Sac2 restriction 

sites. The vector backbone was the pCom-True (kindly provided by Schwab M.). The 

targeting vector proper sequence was verified by PCR and sequencing (data not shown). 

The gene targeting vector replaced most of the 5’ UTR, the first coding exon, exon 1, and a 

large fragment of intron 1. This would, after homologous recombination, impede the Tspan2 

transcription, thereby giving rise to mice lacking TSPAN2.  

Following scheme represents the gene targeting strategy followed (Fig. 29).  
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Figure 29. Targeting strategy to inactivate the murine Tspan2 gene.
Genomic locus showing the 5’ UTR (gray box) and the two exons (black box). The pCom-True-Tspan2null 
targeting vector will excise at the 5’ side part of the 5’ UTR, and the first coding exon 1 (exon 1), and at the 3’ it 
will target the large intron 1. Therefore, the Tspan2null recombined allele will have a short initial segment of the 
5’ UTR followed by the neomycin resistance cassette. This will lead to no Tspan2 transcripts. On the 
TSPAN2null recombined allele are depicted primer locations that lead to identify homologous recombined ES 
cells (arrows). The PCR results for these are given in Fig. 30. 

For the gene targeting, ES cells derived form C57BL/6 mice were used. This was a relative 

novel technique, as until recently most ES cells used for homologous recombination were 

derived form SV-129 mice. But the usage of C57BL/6-derived ES cells has several 

advantages. On one hand it is the reference strain for the mouse genome and thereby all 

further genetic investigations are facilitated. As well the C57BL/6 strain is the reference strain 

used in most biological investigations. And by using C57BL/6-derived ES cells, no 

backcrossing is necessary after germline transmission, which saves months of breeding, but 

also close to the insertion sites of the target vector there will be no different remaining 

sequences from the original ES cell strain (reviewed by Seong et al., 2004). Therefore, 

C57BL/6-derived ES cells were chosen for the Tspan2 gene inactivation.   

 

Before the electroporation of the C57BL/6-derived ES cells, the targeted vector was 

linearized with ClaI. Nested PCR screening was performed to detect the ES cell clones 

containing the correct genomic target insertion. The “positive” clone (clone #5.3; 1 out of 48), 

where the gene targeted vector was inserted properly at the 5’ and 3’ ends of the Tspan2 

gene (Fig. 30A), was injected into C57BL/6J-Tyrc-2J albino derived blastocysts, which were 

carried out by foster mothers, and gave rise to chimeric offspring (Fig. 30B). By breeding the 

33 resulting chimeras with C57BL/6 mice, germline transmission was achieved in two cases 

(mice #580, #590; 2 out of 352, Fig. 30C) in the F1 generation. These mice were 

heterozygous for the Tspan2 gene (Fig. 31) and were bred to each other, to give rise to 

homozygous TSPAN2null mice.  
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Figure 30. Homologous recombination and germline transmission after Tspan2 gene targeting. 
A) PCR result of the ES clone #5.3 that showed a homologous recombination in the 5’ end (5’PCR) and in the 
3’ end (3’PCR), the primer pairs are depicted in figure 29, a control vector was used as a positive control.  
B) Chimeric animals resulting from the injection of the homologous targeted clone #5.3 into C57BL/6J-Tyrc-2J 
albino derived blastocysts. Note the black-white patched colour, representing the mosaic genetic properties of 
the mouse. 
C) PCR results demonstrating the germline transmission in the F1 generation. The top two PCR results verify 
the 5’ recombination, the lower one proves the 3’ recombination. PCR performed on genomic DNA of the F1 
offspring #580 and #590. 

 

 

As could already be observed from the F2, and confirmed by the posterior breeding 

behaviour, the TSPAN2null mice are good breeders and give rise to offspring with genotypes 

according to the Mendelian inheritance rules.   
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Figure 31. Germline transmission and first TSPAN2null mouse.
A) Genotyping PCR on genomic DNA of the F1 and F2 generation, demonstrated the two heterozygous mice 
for the recombined Tspan2 allele of the F1 (#580, #590) and their offspring, the F2. In the F2 appeared mice 
being homozygous for the wild-type allele (#751), heterozygous for the recombined allele (#750, #752, #753), 
and homozygous for the recombined allele (#754, star). This was the first complete TSPAN2null mouse.  
B) An image of the first TSPAN2null mouse (#764, star on the PCR). 

 

 

4.2.3. Characterization of TSPAN2null mice 

The TSPAN2null mice breed normally, and have no obvious phenotypic abnormalities at least 

in the first 10 month of age. The fact that there is no obvious phenotype could probably be 

explained by some compensatory mechanism of other myelin tetraspanins.  

 

To assess the absence of TSPAN2 protein in the TSPAN2null mice, immunoblot of CNS-

myelin enriched fractions was performed on P75 mice. The analysis included wild-type, 

TSPAN+/-, TSPAN2null and PLPnull mice. The TSPAN2 immunoblot revealed a clear band in 

the wild-type mice and, indeed, revealed no band in the TSPAN2null mice (Fig. 32). This 

demonstrates that the TSPAN2null mice do actually lack the TSPAN2 protein. There is a 

strong decrease in the intensity of the TSPAN2 band of the TSPAN+/- mice, proving that the 

heterozygous mice do actually have reduced levels of TSPAN2. Confirming prior results, the 

levels of TSPAN2 were prominently increased in the PLPnull mice. CNP was used as a 

loading control, as no differences could be observed in the levels of the non-compact myelin 

protein CNP in these genotypes.  
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The immunoblot against PLP/DM20 demonstrated the expected absence in the PLPnull mice 

and similar levels in the wild-type and TSPAN2null mice. It seemed that in the TSPAN+/- mice 

the levels of PLP/DM20 are reduced. CNP was used as a loading control and showed no 

differences. Surprisingly, there is an increase in the levels of MBP in the TSPAN2null mice. 

MBP is the second most abundant protein in compact CNS myelin (after PLP) and acts on 

compaction, as its positive charges attract the polar cytoplasmic membrane lipids, thereby 

putting the two membrane bilayers in close apposition (reviewed in Boggs, 2006). This 

increase in MBP could be a compensatory effect for a potential less compacted myelin in 

TSPAN2null mice. Further investigations will be needed to study the possible interaction of 

TSPAN2 and MBP. 

 

 
 

 

 

 

 

Figure 32. Characterization of TSPAN2null mice.
Immunoblot analysis was performed on P75 CNS-myelin enriched fraction of wild-type (WT), TSPAN+/-, 
TSPAN2null and PLPnull mice (n = 2). TSPAN2 was absent in the TSPAN2null mice, very decreased in the 
TSPAN+/- mice and highly increased in PLPnull mice, when comparing to WT. There was no positive signal of 
PLP/DM20 in the PLPnull mice (as expected) and the levels seemed to be reduced in the TSPAN+/- mice, when 
comparing to WT and TSPAN2null mice. Interestingly, the MBP levels were increased in the TSPAN2null mice. 
The non-compact CNS myelin protein CNP was used as a loading control. 
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4.2.4. Weight increase in TSPAN2null mice 

As TSPAN2 has been observed to be increased in PLPnull mice, the TSPAN2null*PLPnull mice 

were generated by cross-breeding the single-mutants, for permitting the in vivo study of the 

chronic absence of this two CNS myelin tetraspan proteins. These TSPAN2null*PLPnull mice 

do breed normally and have no obvious phenotypes, at least until 10 month of age.  

 

The weight increase was measured in wild-type, TSPAN2null, PLPnull and TSPAN2null*PLPnull 

mice, for assessing if the normal body weight increase during development was achieved. 

The weight was measured every second day between P2 and P30 (n = 16 - 23) in the four 

genotypes. An ANOVA with repeated measurements was performed and it demonstrated a 

significant effect of the genotypes on the weight increase. The post-hoc Bonferroni correction 

demonstrated that the weight increase in wild-type and TSPAN2null mice behaves equally, as 

well as in the PLPnull and TSPAN2null*PLPnull mice (Table 11). The latter two genotypes had 

significantly reduced weight increase levels between P2 and P30.  

 

 

 

 

Table 11. Reduced weight increase in PLPnull and TSPAN2null*PLPnull mice.
The weight increase was measured in wild-type (WT), TSPAN2null, PLPnull and TSPAN2null*PLPnull mice every 
second day between P2 and P30 (n = 16 – 23). The post-hoc Bonferroni correction (given the P-values) 
demonstrated that the weight increase is similar in (WT), TSPAN2null mice, while it is reduced in PLPnull and 
TSPAN2null*PLPnull mice, being equal between them. 

 WT TSPAN2null PLPnull 

TSPAN2null P = 0.230    

PLPnull P = 5.369 · 10-11 P = 7.918 · 10-7  

TSPAN2null*PLPnull P = 3.934 · 10-10 P = 1.192 · 10-5 P = 1.000 

 

 

The diagram in figure 33A, shows the weight increase above mentioned.  

 

The weight differences were also analysed statistically at P30 (Fig. 33B), and an ANOVA 

analysis proved a significant differences between the wild-type and the PLPnull and 

TSPAN2null*PLPnull mice (with higher weights in wild-type mice), and between TSPAN2null and 

PLPnull mice, with a reduced weight in PLPnull mice. This reveals, as in the P2 to P30 

evaluation, a similar weight in wild-type and TSPAN2null mice, and a reduced one in PLPnull 

and TSPAN2null*PLPnull mice.  

 

The weight was also assessed at ten month of age in these four genotypes (n = 6 - 13) and 

yet again wild-type and TSPAN2null mice show the same weight (Fig. 33C), while the PLPnull 

and TSPAN2null*PLPnull mice had significantly reduced weights. 
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Figure 33. Weight increase in wild-type, TSPAN2null, PLPnull and TSPAN2null*PLPnull mice. 
A) The weight increase was assessed every second day between P2 and P30. Wild-type (WT) and TSPAN2null 
mice showed similar weights, while PLPnull and TSPAN2null*PLPnull mice had a significant reduction.  
B) Diagram bar representing the weight at P30 (mean ± StDev). The table below depicts the result of the 
Bonferroni Post-hoc (P-value).  
C) Diagram bar representing the weight at 10 months of age (mean ± StDev). The table below depicts the 
result of the Bonferroni Post-hoc (P-value). 

 

 

Therefore, regarding their weight increase during early postnatal development and in 

adulthood, wild-type and TSPAN2null mice behaved in the same manner, while PLPnull and 

TSPAN2null*PLPnull mice showed reduced weights at the different time points evaluated.  

 

 

4.2.5. Protein composition in TSPAN2null mice 

To evaluate if the protein composition in CNS myelin was altered in the absence of TSPAN2, 

silver stainings were performed with CNS-myelin enriched fractions. At P30, no obvious 
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differences could be observed in the TSPAN2null mice (Fig. 34A), but in PLPnull and 

TSPAN2null*PLPnull mice the expected and prominent bands of PLP/DM20 (20 - 23 kDa) were 

absent. This was equivalent when performing the analysis at P75. Thus, in the absence of 

TSPAN2 no drastic protein level alteration could be found in the silvergel evaluations.  

 

 
 

 

  

 

Figure 34. Silver staining of TSPAN2null CNS myelin.
A CNS-myelin enriched fraction was analyzed by means of silver staining (n = 2). 
A) Analysis at P30 including wild-type (WT), TSPAN2null, PLPnull and TSPAN2null*PLPnull (dKO) CNS-myelin 
enriched fractions. PLP/DM20 is absent in the PLP-null mutations (as expected), no other major differences 
could be observed.  
B) Analysis at P75 including WT, TSPAN2+/-, TSPAN2null and PLPnull of CNS-myelin enriched fractions. No 
obvious differences could be observed, apart form the lack of PLP/DM20 in PLPnull mice.  

 

 

As, on the broad assessment level that a silvergel allows, no differences had been observed, 

the further evaluations were performed with immunoblots.  
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Therefore, immunoblots of CNS-enriched myelin fractions were performed on P30 wild-type, 

TSPAN2null, PLPnull and TSPAN2null*PLPnull mice (Fig. 35). The closely related to TSPAN2, 

tetraspanins CD9 and CD81 were assessed (See 2.3.1.). The paranodal protein CD9 

revealed no abundance differences in the four genotypes. But CD81 showed an increased 

abundance in TSPAN2null, PLPnull and TSPAN2null*PLPnull, and especially its smaller isoform 

was more abundant in PLPnull and TSPAN2null*PLPnull mice. CD81 seems to compensate for 

the absence of TSPAN2 and PLP. As suggested in the immunoblot of P75 CNS-myelin 

fractions (Fig. 32), the abundance of MBP was also increased at P30. The two smaller 

isoforms were more abundant in the TSPAN2null, PLPnull, and TSPAN2null*PLPnull mice, and 

the larger isoform in the two latter genotypes. Again, this increase in the MBP levels could 

argue for a manner of compensating for reduced CNS myelin compaction. On the other side, 

two other myelin tetraspanins, CD82 and CD63 showed no alterations, as well as the non-

compact myelin protein CNP.  

Fyn was tested, as tetraspanins are integrators and assemblers of signalling molecules, and 

the tyrosine kinase Fyn is known to be a key downstream signalling element in OLs 

maturation (reviewed in Krämer-Albers & White, 2011). Thus, TSPAN2 could be involved in 

the assembly of this kinase. However, the immunoblot did not reveal any differences when 

TSPAN2 is missing.  
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Figure 35. Immunoblot analysis of TSPAN2null mice.
Immunoblots were performed on CNS-myelin enriched fraction at P30 (n = 3) of wild-type (WT), TSPAN2null, 
PLPnull and TSPAN2null*PLPnull (dKO) mice. The tetraspanin CD9 showed no difference. The smaller isoform 
of the tetraspanin CD81 was more abundant in TSPAN2null, PLPnull and dKO mice. MBP showed an 
increased abundance in TSPAN2null, PLPnull and dKO mice, as already proven in P75 CNS myelin (Fig. 32), 
and its larger isoform was even more abundant in PLPnull and dKO mice. Probably, MBP compensates for a 
reduced myelin compaction. The other tested tetraspanins, CD82 and CD63, showed no differences, as well 
as the non-compact myelin protein CNP and the tyrosine kinase Fyn. 

 

Thus, the prominent signalling protein in OLs, Fyn, is not altered. Additional examinations of 

different tetraspanin-associated signalling proteins in OLs should be pursued. But the 

consistent (at P30 and P75) increased abundance of MBP does suggest that the myelin 

sheaths lacking TSPAN2 need an extra-compaction to be properly functional. This is also 

apparent, as in the PLPnull (known to have a myelin compaction deficiency; Klugmann et al., 

1997) and TSPAN2null*PLPnull mice the larger MBP isoform is additionally increased. The 

possible compaction deficit should be further assessed, as well as the role of MBP in 

TSPAN2null mice. Furthermore, it seems that CD81 is the tetraspanin that compensated for 

the chronic lack of TSPAN2. The role of CD81 in TSPAN2null mice ought to be evaluated in 

more detail.  
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5. Discussion 
 
 

5.1. Neuronal M6A and M6B proteolipids are abundant in cortical neurons  

The neuronal proteolipids M6A and M6B were known to be highly expressed throughout the 

neurons in the brain (Baumrind et al., 1992; Yan et al., 1996; Huminiecki et al., 2003), but it 

had to be proven that this was also the case in primary cortical neurons, the chosen ex vivo 

culture system. To define their exact localization, I immunostained primary cortical neurons 

with antibodies against M6A and M6B.  

 

Indeed, most neurons do express both proteolipids, but at different expression levels. On the 

whole, neurons express both M6 proteins in an equivalent manner, and some express 

majorly M6A or M6B. In the case of the predominant M6B expression, two types of neurons 

could be differentiated: some with a broad cellular expression and others with a more plasma 

membrane restricted expression. It could also be verified that M6A as well as M6B are 

evenly distributed on axons and dendrites. Hence, this demonstrated that the chosen ex vivo 

culture system is optimal for studying the role of neuronal proteolipids in the neuronal 

development.  

 

To reveal the precise localization of the neuronal proteolipids in the different neuronal 

domains, I performed co-localization studies. M6A or M6B were co-labelled with tubulin, a 

marker for the axonal and dendritic shafts (Dent & Gertler, 2003), and revealed a large 

expression of both M6 proteins in tubulin rich domains. The co-localization with F-actin, 

which is mainly present in distal regions like growth cones (Dent et al., 2010), proved that 

both proteins are found in F-actin rich compartments. But M6A was notably located at F-actin 

free membrane protrusions. Consequently, M6A and M6B are abundantly expressed in most 

primary cortical neurons and they share a broad distribution, but this is not identical.  

 

 

5.2. M6A defines F-actin free membrane protrusions 

As the localization of M6A had been observed on F-actin free membrane extensions, a more 

profound examination was pursued. Hence, I immunostained primary cortical neurons with 

an antibody against M6A and the F-actin binding toxin phalloidin. Detailed confocal analysis 

including reflection microscopy, allowed analysing the potential co-localization of M6A and F-

actin with the simultaneous confirmation of the outer plasma membrane extension. This was 
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indispensable as it enabled defining the outer membrane of the processes on which M6A 

and F-actin could be confined.  

 

This examination revealed that on many tubular processes (filopodia) M6A and F-actin co-

localize. However, oftentimes M6A has been found on F-actin free membrane extensions 

with intact and continuous membranes. There has been a diversity regarding this partial co-

localization: some tips are M6A and F-actin positive, while the neighbouring one would lack 

F-actin completely, and in some tips the proximal part could be labelled by both, but only 

M6A was found in the distal domains or even just at the distal tip end. Also the length of this 

extension varied, as M6A-positive F-actin-negative processes have been observed to be 

larger than 10 µm. Moreover, this prominent finding is not restricted to tubular processes, but 

has also been observed in flattened membrane extensions. Subsequently, as F-actin has 

been supposed “to compose the core of filopodia” (cited after Dent & Gertler, 2003), M6A 

defines novel F-actin free M6A-rich membrane protrusions.  

 

In the case of M6B, this distinct localization could not be observed. In most membrane tips, 

M6B has been found in the neuronal membrane extension at F-actin-positive domains. Some 

membrane extension lacked both M6B and F-actin, presumably being M6A-positive.  

 

Hence, membrane extensions on cortical neurons express both M6 proteolipids, and M6A 

defines F-actin free membrane protrusions whereas M6B does not.  

 

 

5.3. M6A and M6B are required for growth cone compartmentalization  

Since M6A and M6B had been located extensively on neuronal growth cones (Sheetz et al., 

1990; Baumrind et al., 1992; and current analysis) and especially M6A was found to have a 

very particular localization at F-actin free membrane protrusions, the examination continued 

by analysing the neuronal growth cones in the chronic absence of this proteins. The growth 

cone structure is mainly compartmentalized by MTs being present in the extending axon 

shaft and central growth cone regions, and F-actin concentrated in the peripheral growth 

cone regions, lamellipodia and filopodia (Dent & Kalil, 2001; Dent & Gertler, 2003). Wild-type 

and Gpm6anull*Gpm6bnull cortical neurons were immunostained against tubulin and F-actin. 

 

For the evaluation, initially three categories of tubulin and F-actin localization were 

established, where (1) tubulin and F-actin were overlapping in one compartment, (2) tubulin 

and F-actin were being in two distinct compartments and (3) tubulin was being present at the 

distal domain. Most wild-type cortical neurons, as expected, belonged to the second 
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category, with tubulin and F-actin in distinct domains, and tubulin was extremely seldom 

found in the distal regions. Intriguingly, most growth cones of Gpm6anull*Gpm6bnull cortical 

neurons fell into the category of tubulin and F-actin being superimposed. And even 

frequently, growth cones contained tubulin at their most distal domains. In both genotypes, 

this result was consistent no matter the growth cones of the axon or longest neurite or of the 

remaining neurites was assessed.  

 

The comparison was also evaluated after merging the two categories that involved unusual 

tubulin to F-actin localization, as no statistical analysis could be performed with the prior data 

set because of the data points being zero or one in wild-type neurons. This evaluation 

demonstrated significant differences in the distribution of tubulin and F-actin at the growth 

cones. Gpm6anull*Gpm6bnull cortical neurons have frequently tubulin partially superimposed to 

F-actin or even tubulin at the distal end of their growth cones, both on the axon or dendrites, 

while this is not the case for wild-type cortical neurons.  

 

Therefore, the normal F-actin and tubulin compartmentalization in the growth cones of 

Gpm6anull*Gpm6bnull cortical neurons is altered, and this occurred in all process endings, 

either axonal or dendritic. This mislocalization of tubulin and F-actin represents a very 

profound modification of the proper growth cone structure, as the localization of these two 

proteins mainly define distinct morphological and functional growth cone domains. M6A and 

M6B are expressed on most cortical neurons and located throughout the axon, dendrites and 

growth cones, and in their chronic absence, the tubulin to F-actin compartmentalization at the 

growth cones is altered. Hence, the neuronal proteolipids M6A and M6B are required for the 

proper separation of cytoskeletal proteins at the growth cones. 

 

 

5.4. M6A and M6B are required for normal reaction to ephrinA5 

Is there a functional consequence to the altered growth cone compartmentalization? To 

evaluate this, I performed a “growth cone collapse assay” induced by ephrinA5, a well-know 

collapse inducing agent (Knöll et al., 2006) and defined collapse or non-collapse as the 

absence or presence, respectively, of a lamellipodium in the growth cones of the axon or 

longest neurite.  

In wild-type, Gpm6anull and Gpm6bnull single-mutant cortical neurons ephrinA5 induced a 

significant collapse of their growth cones, with the same extend when applying the standard 

or the doubled dose. Surprisingly, the Gpm6anull*Gpm6bnull cortical neurons react differently, 

they react to a much lesser extend at the standard dose. But they undergo a highly 
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significant increase in the abundance of collapsed growth cones when applying the double 

concentration of ephrinA5. 

The present data suggest that although Gpm6anull*Gpm6bnull cortical neurons reacted to an 

ephrinA5 induced “growth cone collapse assay”, they required a greater dose to achieve 

equivalent effects as in the wild-type and the Gpm6anull and Gpm6bnull single-null mutant 

cortical neurons. Thereby, it seemed that M6 proteolipids are important for the proper growth 

cone function. 

 

Another significant difference could be observed when comparing the number of non-

collapsed (defined as presence of a lamellipodium) growth cones in the control group. 

Gpm6anull and even more the Gpm6anull*Gpm6bnull cortical neurons presented a significant 

increased abundance of growth cones with lamellipodia, in comparison to wild-type or 

Gpm6bnull cortical neurons. Therefore, the chronic absence of M6A lead to an increase in the 

number of growth cones presenting lamellipodia. This effect is more pronounced when M6A 

and M6B are missing in the cortical neurons. Once more, these involved the neuronal M6 

proteolipids in the maintenance of the proper growth cone morphology, and thereby function.  

 

To elucidate the reason of the altered responsiveness of Gpm6anull*Gpm6bnull cortical 

neurons to the ephrinA5 induced “growth cone collapse assay”, cortical neuron lysates were 

analysed with immunoblots. To simplify the approach for studying the Eph receptors that 

could bind to ephrinA5, as ephrinA5 binds to EphA1-8 and EphB2 (reviewed by Pasquale, 

2004), the levels of ephexin-1 were assessed, as they relate to the abundance of Eph 

receptors (reviewed by Egea & Klein, 2007). The initial result showed a moderately 

decreased abundance of ephexin-1 in Gpm6anull*Gpm6bnull cortical neurons, when compared 

to wild-type. This would signify a reduction in the overall Eph-receptor levels in the chronic 

absence of M6 proteins, and would thereby be a possible explanation to the altered 

responsiveness of these Gpm6anull*Gpm6bnull cortical neurons in the ephrinA5 induced 

growth cone collapse. 

 

RhoA, as key downstream element acting in growth cones collapse (Wahl et al., 2000; 

reviewed in Hall & Lalli, 2010), was investigated next. Preliminary results showed a slight 

decrease in the RhoA levels in cortical neuron lysates, which would mean that the total levels 

of RhoA would be decreased in the Gpm6anull*Gpm6bnull cortical neurons. Less RhoA could 

account for the delayed reactivity of the Gpm6anull*Gpm6bnull cortical neurons towards the 

ephrinA5 induced growth cone collapse. 
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Thus, the immunoblot analysis provides preliminary results for the significance of M6 proteins 

in growth cone function, potentially by associating to cytoskeleton proteins in lipid rafts and 

thereby regulating the localization and abundance of signalling receptors, like Ephs, and 

signalling proteins, like RhoA.  

 

 

5.5. M6A and M6B are required for neurite outgrowth 

The next step was to assess the functional relevance of the neuronal M6 proteolipids in 

neurite extension, a hallmark in neuronal development. It had been previously demonstrated 

an in vitro involvement of M6A, upon application of the monoclonal M6 antibody against M6A 

(Lagenauer et al., 1992) as well as in overexpression studies (Zhao et al., 2008), in neurite 

outgrowth. For this examination, the neurite length was measured on wild-type, Gpm6anull, 

Gpm6bnull and Gpm6anull*Gpm6bnull cortical neurons, so that the effect of the absence of M6A 

as well as M6B could be assessed.  

 

Interestingly, there is a very significant reduction in neurite length when the M6 proteolipids 

are missing, and this occurs in a gradient manner: from wild-type, to neurons lacking M6B, 

and to neurons lacking M6A or both M6A and M6B. When categorizing the neurons 

according to their neurite extension length, all four genotypes had a significant different 

frequency distribution pattern.  

 

The diminished neurite outgrowth revealed the need of M6 proteins in this important neuronal 

task. The absence of M6B generated a very significant decrease in the neurite length. 

Nevertheless, the neurite extension was even more reduced in the absence of M6A. Hence, 

this suggested an important role of both neuronal M6 proteolipids in the proper neuronal 

development, including neurite extension. 

 

 

5.6. M6A and M6B are required for the response to cholesterol in neurite outgrowth 

Cholesterol is essential for the neuronal function, including the maintenance of the plasma 

membrane and the extension of membrane processes during development (reviewed in 

Benarroch, 2008), plus PLP, ortholog to M6A and M6B, interacts directly with cholesterol 

(Simons et al., 2000; Krämer-Albers et al., 2006), as well as M6B itself (Werner H., pers. 

comm). Therefore, I hypothesized that the impact of the impaired neurite outgrowth in the 

absence of M6 proteins could be related to their potential cholesterol association.  
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To evaluate this, cortical neurons of wild-type and Gpm6anull*Gpm6bnull mice were cultured 

under increasing cholesterol concentrations and their neurite extension was measured. In 

agreement with prior results (Ko et al., 2005), wild-type cortical neurons show a decrease in 

their neurite length upon an increasing cholesterol dose. This confirmed the importance of 

the regulation of the cholesterol levels for proper neuronal function. Unexpectedly, the 

Gpm6anull*Gpm6bnull cortical neurons did not react to the increasing cholesterol amounts and 

preserved their reduced neurite extension (as described above) at the same levels. Even 

under this conditions, which reduced the length of the wild-type neurites, the 

Gpm6anull*Gpm6bnull neurons were still significantly more impaired in their neurite extension 

capacities. 

 

Hence, when cortical neurons lacked chronically M6 proteins they could not respond in the 

normal manner to alterations in the cholesterol concentration. Thus it seemed that M6 

proteins associate directly or indirectly with cholesterol and this relates to their role in neurite 

outgrowth.  

 

 

5.7. M6A and M6B are not required for growth cone morphology, adhesiveness and 
motility 

The prior observed differences in growth cone compartmentalization and function, and the 

impaired neurite extension in the chronic absence of neuronal M6 proteins, led to the 

hypothesis of an impaired in vivo behaviour. For that reason, wild-type and 

Gpm6anull*Gpm6bnull cortical neuron growth cones were imaged in vivo with confocal 

reflection microscopy in a short time-frame (10 min), to avoid camouflaging effects of the lack 

of M6 proteins in the overall neurite extension.  

 

When comparing the morphometrical properties like e.g. the perimeter in relation to the total 

growth cone area, as well as the total area itself, no significant differences could be 

observed. Thus, the absence of M6 proteins does not alter the growth cone morphometry in 

a short-time window. The evaluation of the adhesive area in relationship to the total area in 

the growth cones, demonstrated again no significant differences between wild-type and 

Gpm6anull*Gpm6bnull cortical neurons. The adhesiveness was not altered when neuronal 

growth cones lack chronically M6 proteins. As a next step, the motility of the growth cones 

was assessed, by evaluating the retraction and extension between each single image of the 

taken videos. Surprisingly, the motility of growth cones of wild-type and Gpm6anull*Gpm6bnull 

cortical neurons is essentially identical.  
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Thus, unexpectedly, the short-term in vivo analysis of the growth cones of cultured 

Gpm6anull*Gpm6bnull cortical neurons demonstrated similar morphometry, adhesion and 

motility as in wild-type neurons. Therefore, the investigations performed on the ex vivo 

cortical neuron culture system have proven that M6A and M6B are important for several 

aspects of neuronal development, including growth cone compartmentalization and function, 

neurite extension, and the response to the cholesterol levels in neurite extension. But they 

seemed not to be relevant for the short-term morphometry, adhesion and motility. 

 

 

5.8. M6A and M6B are required for proper corpus callosum formation  

To assess if the described alterations of cultured cortical neurons in the chronic absence of 

M6 proteins could be observed in vivo, the corpus callosum of wild-type and 

Gpm6anull*Gpm6bnull mice was analyzed, as it is the largest cortical brain commissure. The 

observed reduced neurite extension, as well as the altered growth cone 

compartmentalization and response to ephrinA5 in Gpm6anull*Gpm6bnull cortical neurons, led 

to the hypothesis of an impaired axonal pathfinding, and thereby a reduction in axons 

crossing the hemispheres at the corpus callosum. So, the corpus callosum width was 

measured at two regions, anterior to the hippocampus and containing the hippocampus.  

 

The comparison of wild-type and Gpm6anull*Gpm6bnull corpora callosa width demonstrated a 

significant reduction of the corpus callosum in Gpm6anull*Gpm6bnull mice. This was found at 

both analyzed levels, although it was even more prominent in the more caudal levels 

comprising the hippocampus. It seemed from prior investigations that in the young adult mice 

no developmental defects could be observed (Fünfschilling U., Werner H., pers. comm.), 

which would argue for a developmental delay in the absence of M6 proteins that is 

compensated throughout development. More detailed analysis in the adult mice should be 

performed, for clarifying if the developmental effect of reduced corpora callosa is actually 

compensated over time.  

 

In the current investigation, M6 proteins seemed to be important for the formation of the 

major white matter tract in the brain, the corpus callosum, thereby being required for the 

efficient and normal development of axonal tracts in the brain.  
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5.9. Tetraspanin2 in CNS myelin 

Tetraspanin2 has been shown to be present in CNS compact myelin (Birling et al., 1999) and 

was found to be enriched in PLPnull CNS-enriched myelin fractions by immunoblot analysis 

(Werner H., pers. comm.). Hence, the localization of TSPAN2 was assessed on brain 

sections. TSPAN2 appeared to be present in all white matter tracts in wild-type mice, and to 

some extent in OLs of the gray matter. In the PLPnull mice the levels of TSPAN2 were 

strongly increased, confirming the prior results. TSPAN2 is more abundant in the white 

matter tracts and much more in the OLs of the gray matter. This upregulation of TSPAN2 in 

the absence of PLP suggests that, as both are structurally similar tetraspan proteins found in 

CNS compact myelin, TSPAN2 could structurally and functionally compensate for PLP in its 

absence.  

 

 

5.10. Targeted inactivation of the murine Tspan2 gene  

The upregulation of TSPAN2 in PLPnull mice and its early onset of expression during OL 

development (Nielsen et al., 2006; Dugas et al., 2006), suggests that TSPAN2 could be a 

relevant protein for CNS myelination. To test this hypothesis, I successfully generated 

TSPAN2null mice by homologous recombination of the murine Tspan2 gene in ES cells. The 

absence of TSPAN2 was proven on the genomic DNA by PCR and on the protein level by 

immunoblot analysis. The TSPAN2null mice breed normally and give rise to offspring with 

genotypes according to the Mendelian inheritance rules. Until known so far, TSPAN2null mice 

showed no obvious phenotypic abnormalities. The fact that there is no obvious phenotype 

could probably be explained by some compensatory mechanism of other myelin 

tetraspanins. Therefore, it would be e.g. interesting to analyze the TSPAN2null*CD9null or the 

TSPAN2null*CD81null mice. 

 

Because the function or at least the abundance of TSPAN2 seemed to be correlating with the 

presence of PLP, TSPAN2null*PLPnull mice were generated by cross-breeding the single-

mutants. These mice were also included in the pursued studies to evaluate the in vivo 

consequence of the chronic lack of these two tetraspan proteins of compact CNS myelin. 

TSPAN2null*PLPnull mice do breed normally and have no obvious phenotypes, as known so 

far.   
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5.11. Weight increase in TSPAN2null mice 

To evaluate if the normal weight increase does occur during early postnatal development in 

the absence of TSPAN2, the weight increase was measured between P2 and P30 in wild-

type, TSPAN2null, PLPnull and TSPAN2null*PLPnull mice. During this period, TSPAN2null 

weighted similarly to wild-type mice, and both PLPnull and TSPAN2null*PLPnull mice had a 

reduced weight increase. This was also the case when assessing their weight at P30 and at 

ten months of age. Hence, TSPAN2 has no influence on the weight increase during 

development, as well as on the weight in adult mice. The reduced levels in PLPnull and 

TSPAN2null*PLPnull mice probably refer to a minor phenotype in the mice, not yet proven, as 

the weight is related to the overall health of the animals.  

 

 

5.12. Protein composition in TSPAN2null mice 

To assess if the lack of TSPAN2 altered the protein composition of CNS myelin, silver 

staining was performed. These demonstrated no major differences in the protein abundance 

in CNS-myelin enriched fractions, neither at P30 (TSPAN2+/- and TSPAN2null) nor at P75 

(TSPAN2null and TSPAN2null*PLPnull). PLP/DM20 was, as expected, absent in the lack of PLP 

(PLPnull and TSPAN2null*PLPnull).  

 

To perform an examination in more detail, immunoblots on P30 CNS-myelin enriched 

fractions of wild-type, TSPAN2null, PLPnull and TSPAN2null*PLPnull mice were performed. The 

most related myelin tetraspanin to TSPAN2, CD9, did not show, surprisingly, any abundance 

difference. This was an unexpected result, as CD9 was the primary candidate to potentially 

compensate for the absence of TSPAN2, as both are very similar structurally and are found 

in the same domains of CNS myelin (Birling et al., 1999; Ishibashi et al., 2004). However, the 

abundance of the myelin tetraspanin CD81, the next close related tetraspanin (Garcia-

España et al., 2008), was augmented in TSPAN2null, PLPnull and TSPAN2null*PLPnull mice. And 

the smaller isoform is additionally increased in PLPnull and TSPAN2null*PLPnull. Therefore, 

CD81 does seem to compensate for TSPAN2. The myelin tetraspanins CD82 and CD63 

revealed no differences at all. CD82 has been involved in the early stages of OL 

development (Mela & Goodman, 2009) and possibly its abundance levels could be regulated 

at earlier postnatal stages. CD63 is known to be in CNS myelin (Baer et al., 2009), but until 

now, the investigations have related CD63 mainly to exosomes and late lysosomes 

(reviewed in Pols & Klumperman, 2008) and it is unknown if CD63 is actually present at the 

compact CNS myelin. The two CNS myelin tetraspanins, CD151 and OAP-1 could not be 

assessed while performing this characterization. CD151 is an important regulator of cell 

morphology in an integrin-dependent manner (reviewed in Hemler, 2005), but there is no 
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evidence of its exact localization in the CNS myelin domains, as well as its function in the 

nervous system. And OAP-1 has been involved in OL proliferation (Tiwari-Woodruff et al., 

2001). It is very tempting to suggest that these two, CD151 and OAP-1, that are known to 

bind integrins (a typical characteristic of tetraspanins, Hemler, 2005), could compensate for 

the lack of TSPAN2 in the CNS myelin. Further investigation should assess this interesting 

question.  

 

In addition, the abundance of Fyn, a tyrosine kinase important in OL maturation (reviewed in 

Krämer-Albers & White, 2011) was also not altered. This was, yet again, an unexpected 

result, as tetraspanins assemble signalling molecules and Fyn was a major candidate to be 

regulated by TSPAN2.  

 

Beside, the non-compact myelin protein CNP has also no different abundance levels in the 

absence of TSPAN2 at P30 and at P75. However, the MBP levels demonstrated a notably 

augmented abundance in the CNS-myelin enriched fractions of TSPAN2null, PLPnull, and 

TSPAN2null*PLPnull mice. And in the latter two, the abundance of the larger isoform was as 

well increased. MBP is the second most abundant compact myelin protein and it is involved 

in myelin compaction and is essential for myelination (reviewed in Boggs, 2006). The 

augmented MBP levels suggested a compensation for an altered compaction in TSPAN2null, 

PLPnull, and TSPAN2null*PLPnull mice. This would be in accordance to the prior knowledge of 

PLPnull mice having a reduced CNS myelin compaction (Klugmann et al., 1997). This 

unexpected and promising result should be assessed in more detail, for understanding the 

manner TSPAN2 and MBP do possibly interact.  

 

Therefore, an obvious abundance difference was found regarding MBP, which is strongly 

increased in the absence of TSPAN2, at P30 and at P75. MBP could compensate for a 

reduced CNS compaction in the TSPAN2null mice. And it is the tetraspanin CD81 that 

seemed to compensate for the lack of TSPAN2. This altered regulation of MBP and CD81 

should be further assessed.  
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6. Summary and conclusions 
The neuronal tetraspan proteolipids M6A and M6B were previously characterized regarding 

their cellular expression, and by acute manipulation in vitro. However, little was known of 

their function during neuronal development in vivo. I have analysed primary cortical neurons 

of mice chronically lacking M6A, M6B, or both. The absence of M6-proteins led to an altered 

morphology of the axonal growth cones regarding actin/tubulin compartmentalization, and an 

augment in growth cones with lamellipodia. The latter feature was also apparent in growth 

cones lacking only M6A. Interestingly in this regard, M6A defines an F-actin free 

subcompartment of the growth cone filopodia. Importantly, M6-deficient growth cones did not 

collapse normally upon the application of the known collapsing agent ephrinA5, which can be 

explained by the finding that the abundance of the Eph-receptor signalling-mediator ephexin1 

is reduced in cortical neurons devoid of M6-proteolipids. By live-cell imaging I could assess 

that chronic lack of M6-proteins does not impair the normal adhesiveness or motility of 

neuronal growth cones. Nevertheless, cortical neurons lacking M6 proteins were impaired 

regarding neurite outgrowth, which cannot be ameliorated by the addition of cholesterol. In 

vivo, there is a reduced width of the corpus callosum, which connects most cortical areas of 

the two brain hemispheres, in GPM6Anull*GPM6Bnull double null mutant mice, at least during 

early postnatal development. Together, M6 proteins are required for normal growth cone 

morphology and function and for neurite outgrowth, but not for normal growth cone motility.  

 

The third member of the proteolipid protein family is proteolipid protein (PLP), the most 

abundant constituent of CNS myelin. Mice and humans lacking PLP are largely normally 

myelinated, which has been difficult to explain. In a candidate approach the low-abundant 

myelin tetraspan tetraspanin-2 (TSPAN2) has been identified as a candidate to compensate 

for PLP-deficiency because of its dramatically increased abundance in PLP-deficient myelin. 

To investigate the role of TSPAN2 in myelination, I generated TSPAN2null mutant mice by 

homologous recombination in embryonic stem cells. These mice are viable, breed normally 

and the initial evaluation at the protein level shows several alterations. The abundance of the 

closely related tetraspanin CD81 as well as that of the major myelin protein MBP is increased 

in myelin isolated from TSPAN2null mice, indicating molecular changes that may compensate 

for the absence of TSPAN2 function. Therefore, TSPAN2 seems to play a role at the 

oligodendrocyte early development. Further investigations will be necessary to elucidate the 

molecular mechanisms of how TSPAN2 acts during myelin biogenesis.  

 

Together, structurally related tetraspan proteins, including the neuronal proteolipids M6A and 

M6B, and the oligodendroglial PLP and TSPAN2, are required for the normal formation of 

cellular processes in neural cells.  
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