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 ABSTRACT 

There is a great demand for the development of highly fluorescent and specific 

probes that enable a sensitive and early detection of malignancies and a separation 

from healthy tissue in a non-invasive way by in vivo imaging. The main drawback of 

fluorescence imaging in vivo is the autofluorescence, which hampers the detection of 

probe-derived signals. In this study, two novel fluorescence probes were investigated 

concerning their suitability for visualization of tumors in mice: a pH-sensitive dye, 

CypHer5E conjugated to the tumor-specific antibody Herceptin (pH-Her) as well as 

polystyrene nanoparticles (PSNPs) of different sizes (15, 25, and 100 nm) and 

surface modifications (NH2, polyethylene glycol, and Herceptin) loaded with the 

broadband fluorophore Itrybe. For this purpose, time-domain near-infrared (NIR) 

fluorescence imaging was applied in nude mice bearing orthotopic HER2-positive 

(KPL-4) and HER2-negative (MDA-MB-231) breast tumor xenografts. The pH-

sensitivity and functionality of pH-Her was confirmed by spectroscopic measurements 

and in cell-based assays. In HER2-positive tumor-bearing mice, pH-Her, which 

increases fluorescence in the acidic environment of the tumor only, combined with 

subtraction of autofluorescence led to an increased contrast to noise ratio (CNR) and 

thereby an improved sensitivity of tumor detection, when compared to the always-on 

fluorescent conjugate Alexa Fluor 647-Herceptin (Alexa-Her). In contrast, LT-gated 

imaging with pH-Her and Alexa-Her did not improve tumor-detection sensitivity in 

vivo. The broad excitation and emission spectra of Itrybe enclosed in PSNPs enable 

excitation and sensitive detection of this dye at different wavelengths in the NIR 

region, in vivo. Furthermore, Herceptin-conjugated 100 nm NPs bind specifically to 

HER2 as demonstrated in immunoassays as well as on KPL-4 tumor cells and -

sections in vitro. However, a certain amount of unspecific binding/uptake was 

observed. In vivo accumulation of PEGylated NPs of all sizes was detected in MDA-

MB-231- but not in KPL-4 tumors as shown by ex vivo scans of excised tumors. 

Biodistribution analyses in healthy mice illustrated a high and rapid uptake of NPs of 

all sizes in the liver, accompanied by a fast elimination of NPs from the blood, 

thereby reducing efficient tumor accumulation. In conclusion, the pH-sensitive dye, 

CypHer5E in combination with tumor-specific ligands is highly suitable for sensitive in 

vivo monitoring of tumors and may also be a promising tool for the detection of weak 

signals deriving e.g. from small metastatic lesions.  Highly fluorescent Itrybe-loaded 

NPs have great potential for imaging applications as they provide 3D platforms for 

various modifications and thus help to address different biological questions in vivo. 

However, the bioavailability of Itrybe-loaded NPs has to be improved by modification 

of their surface or composition to enable efficient tumor targeting in vivo. 

Julia
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1. INTRODUCTION 

A considerable progress in the diagnostic and monitoring of cancer was the 

development of noninvasive imaging methods that enable detection and 

characterization of malignancies over time in living objects. For the anatomical 

illustration of tissue, structural imaging techniques are applied, like computed 

tomography (CT), ultra sonography (US), and magnetic resonance imaging (MRI). 

Characterization of cancerous tissue by its altered functionality, concerning e.g. 

irregular metabolic activity or altered expression of proteins is facilitated by 

functional imaging methods, such as positron emission tomography (PET), single 

photon emission computed tomography (SPECT) and optical imaging. Each technique 

has a combination of advantages and disadvantages affecting its selection for 

application in a particular study1. 

Optical imaging by the use of fluorescence light has become especially attractive due 

to its comparatively easy use and low costs as well as high sensitivity2. In addition 

and in contrast to most other imaging techniques, fluorescence imaging, enables the 

visualization of multiple target structures or biological processes in one model 

organism by simultaneously using different fluorescence labels3. While the current 

clinical use of fluorescence imaging is mainly limited to microscopic and 

(micro)endoscopic techniques for diagnostic purposes and during surgical 

procedures, the routine application of fluorescence methods in the clinic and preclinic 

is certain to increase1. In recent years the use of functional tumor-specific 

fluorescence probes has become focus of several studies that aimed to improve 

sensitivity of tumor detection in tumor-bearing mice4-8. However, the majority of 

these probes is still limited in their specificity and sensitivity, regarding penetration 

depth and real-time imaging of biological processes in vivo. 

Therefore, there is an ever growing demand for the development of highly 

fluorescent and specific as well as activatable probes that enable a sensitive and 

early detection of malignancies and metastatic lesions and a precise separation from 

healthy tissue in a non-invasive way in vivo.    

1.1. The principle of fluorescence imaging 

Fluorescence imaging relies on the detection of photons, emitted by a substance that 

has absorbed light of a distinct wavelength. Emission of fluorescence takes place 

when an orbital electron of an atom, molecule or nanostructure, after being excited 

to a higher quantum state, relaxes to its ground state, thereby emitting light.  
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Different techniques can be applied to measure fluorescence in living organisms. 

Most systems are based on planar measurements of fluorescence that are usually 

overlaid with photographic images of the surface of the scanned sample. Normally 

such devices consist of a multispectral light source or a laser for excitation of the 

fluorescent species, appropriate filters and a device for signal detection, like a CCD 

camera or a photo multiplier tube. Planar imaging can be performed in an epi-

illumination mode, known as fluorescence reflectance imaging (FRI), in which the 

excitation source and the detector are located on the same side thereby measuring 

the returning fluorescence response. When the excitation source and the detector are 

placed on the opposite sides of the scanned object, imaging is performed in a 

transillumination mode, in which the light penetrating the object is collected9. Recent 

developments in tomographic fluorescence imaging including fluorescence-mediated 

(-molecular) tomography (FMT) provide three-dimensional (3D) information about 

the fluorescence distribution, as well as probe concentration and depth1,9-11. 

The introduction of time-domain imaging has demonstrated a great improvement in 

fluorescence imaging as it allows the calculation of the fluorescence lifetime (LT)12. 

This parameter characterizes a fluorescence probe by describing the average time a 

fluorophore spends in its excited state before returning to the ground state. In this 

method FRI is applied with a pulsed laser diode as an excitation source. After each 

single excitation pulse the emitted photons are measured time-resolved using e.g. a 

photomultiplier tube, thereby allowing calculations of the LT13. As each fluorescence 

probe has a characteristic LT, the determination of LTs permits the identification of 

probe-derived signals, e.g. originating from different fluorescent probes14 and/or 

their separation from autofluorescence1,2,15,16. In vivo autofluorescence is defined as 

fluorescence that derives from unlabeled sources, like collagen, elastin, beta 

carotene, or oils, pigments, and proteins from ingested food17. This endogenous 

fluorescence poses one of the biggest problems in in vivo fluorescence imaging as it 

hampers the detection of probe-derived signals. This could be overcome by gating 

fluorescence intensity maps of scanned objects to the characteristic LT of the applied 

fluorescence probe, thereby only illustrating probe-derived signals. If the LT of the 

probe substantially differs from the LT of unspecific signals in this object, e.g. owing 

to autofluorescence, this method enables the selective illustration of only probe-

derived signals and thus might lead to an improved sensitivity in detection of the 

target.  

1.2. Fluorescence labels  

For optimal detection of fluorescence light in vivo it is important to consider 

fluorescence probes that are very bright, relatively photostable and require minimal 
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exposure to excitation light in order to sustain cell viability18-20. Of particular 

advantage for in vivo imaging are fluorophores absorbing and emitting in the near-

infrared (NIR) wavelength region of 650 to 900 nm. The benefits of this spectral 

range are not only a decreased autofluorescence but also less absorbance by 

haemoglobin, water and lipids, allowing an increased tissue penetration of up to 2 

cm1,21 (Figure 1). In addition, the considerably high absorption by melanin is 

decreasing towards longer wavelength1,21.  

 

 

Figure 1. Tissue optical 

window  

The absorption (illustrated as 

absorption coefficient) by major 

light absorbers in tissue is 

illustrated at distinct 

wavelengths. In the NIR optical 

window (700 to 900 nm; light 

blue) absorption by hemoglobin 

(Hb), oxygenated hemoglobin 

(HbO2), and water (H2O) is low. 

Picture was taken from Phan et 

al.22. 

 

Different types of fluorescence labels are applied for in vivo imaging and can be 

divided into endogenous fluorescence labels and exogenous fluorescence probes that 

can further be grouped in non-targeted contrast agents, target-specific fluorescence 

probes, and activatable probes. 

1.2.1. Endogenous fluorescence labels 

Endogenous fluorescent labels are produced by genetic manipulation of the model 

organism leading to the expression of a fluorescent protein in order to visualize 

distinct biological functions. A break-through in the application of fluorescence 

imaging was the identification of the first fluorescent protein, green fluorescent 

protein (GFP) that was isolated from jellyfish, and purified and characterized in the 

early 1970’s23. Today fluorescent proteins in many colors exist that fluoresce in the 

visible spectrum in colors of deep blue (~400 nm) to far red (~670 nm). In addition, 

NIR fluorescent proteins have been expressed in mammalian cells24,25. Such 

genetically encoded probes have been shown to be suitable for in vitro and in vivo 

fluorescence imaging in a variety of different cellular systems and transgenic 

organisms.  
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1.2.2. Exogenous fluorescence labels 

Most of the fluorescent probes are used to specifically target particular markers or 

molecular events in model organisms. Requirements for the efficient detection of 

exogenous labels are for instance, absorption- and emission-maxima in the NIR 

region, a high molar absorption coefficient at the excitation wavelength, a high 

fluorescence quantum yield, as well as sufficient thermal and photochemical 

stability19,20. Furthermore, suitable fluorescence dyes have to be soluble and stable in 

buffers and body fluids and the resulting fluorescence probe should show a good 

targeting efficiency with minimal nonspecific binding as well as a low toxicity20.  

There are few classes of near-infrared fluorescence (NIRF) dyes available for in vivo 

applications. Most of them are cyanine dyes, such as indocyanine green (ICG), 

cypate, Alexa Fluor-dyes, or Cy-, DY-, and IR-dyes19,26. Although a large variety of 

fluorescent probes is continuously developed and improved, ICG is the only dye 

approved by the FDA (Food and Drug Administration-USA) for use in patients27,28. 

To characterize or monitor malignancies in vivo by the use of fluorescence probes, 

appropriate model organisms have to be selected. In this regard, nude mice are very 

suitable. These hairless mice discovered in 196229 have a mutation in the forkhead 

box N1 (Foxn1) gene, leading to defective differentiation of hair and thymic 

disgenesis and therefore resulting in T cell deficiency and partial defects in B cell 

development30,31. As the immune system of these mice is compromised, they do not 

reject human tumor cells and thereby provide excellent model organisms to study 

tumor biology in vivo32. In addition, the lack of fur presents an advantage for in vivo 

fluorescence imaging as fur can cause scattering and absorption of light, hampering 

the detection of probe-derived signals. 

1.2.2.1. Non-targeted contrast agents 

Non-targeted contrast agents are designed to passively accumulate in the tissue of 

interest. Such probes are mainly applied for imaging of blood vessels and/or tumors. 

An important prerequisite for such probes is a sufficiently long blood circulation time, 

allowing their accumulation at the site of interest. Tumor imaging by non-targeted 

probes is enabled by the enhanced permeability and retention (EPR) effect, involving 

hyperpermeable and leaky vasculature, as well as suppression of lymphatic 

function33. 

1.2.2.2. Target-specific fluorescence probes 

Target-specific fluorescence probes are directed against molecular markers that are 

overexpressed or uniquely expressed on the target structure. The majority of such 
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probes consists of fluorescence dyes or nanomaterials conjugates to ligands, like 

whole IgG antibodies, antibody fragments, or small peptides, all targeting a tissue or 

disease specific marker. Numerous aspects have to be considered when choosing the 

right ligand for the design of target-specific probes. Most important, the ligand 

should show maximal targeting efficiency and minimal unspecific binding20. 

Furthermore, the biodistribution and pharmacokinetics of ligands are strongly 

influenced by their size. Molecules smaller than antibodies such as antibody 

fragments or peptides, can be advantageous for in vivo imaging due to a rapid 

clearance from blood, leading to a better signal to background contrast. However, if 

clearance is too fast, small ligands will have insufficient time to penetrate the target 

tissues before being cleared from the blood. In comparison, larger whole antibodies 

are cleared more slowly from the blood circulation and only slowly penetrate into 

tissues, which may result in a high background and subsequently a poor tissue to 

background contrast34. Furthermore, the so called “binding site barrier”, postulated 

by Weinstein in the early ‘90s35,36 can influence the diffusion of ligands into the target 

tissue. This may be caused by a (too) high affinity and/or interaction of a particular 

ligand for/with its antigen, which may result in a reduced or even inhibited tumor 

penetration35.  

1.2.2.3. Activatable fluorescence probes 

Activatable fluorescence probes (also termed “smart probes”) evolved to detect and 

monitor molecular events, such as the activity of enzymes, changes in pH, or oxygen 

concentration, either by switching their fluorescence “on” or “off” or due to shifts in 

fluorescence absorption and/or emission spectra in response to distinct molecular 

processes. Such probes may be applied to selectively illustrate target structures, 

such as tumor tissue, based on a selective activation at the targeted tumor site only, 

thereby circumventing background fluorescence caused by unbound probes in the 

blood stream. 

Probes based on the “on” and “off” principle require efficient quenching in the “off”-

state. The term quenching refers to processes which lead to a decrease of the 

fluorescence intensity of a given probe and can be achieved by distinct photochemical 

mechanisms, such as Förster (or fluorescence) resonance energy transfer (FRET), H-

dimer formation or photon induced electron transfer (PeT). 

FRET takes place between two molecules that are in close contact to each other. 

Here, a donor chromophore, initially in its electronic excited state, may transfer 

energy to an acceptor chromophore while dropping down to its ground state. FRET 

may occur between two fluorophores of the same type (homo-FRET) which absorb 
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energy from each other (self-quenching) that would have otherwise resulted in 

fluorescence37, or between an excited donor fluorophore and a quencher (hetero-

FRET) that absorbs the energy from the donor and gives it off as heat6,37. 

Furthermore, some fluorophores, like ICG tend to perform autoquenching after 

conjugation to antibodies, most likely occurring via a noncovalent interaction 

between the ICG and hydrophobic amino acids on the IgG7,37. In addition, some 

dyes, such as Xanthene derivates at high concentrations or protein-conjugated 

fluorophores when in close proximity to each other, like the rhodamin dye TAMRA, 

tend to form H-dimers5. This can lead to shifts of absorbance spectra resulting in 

quenched emission spectra5,37. In PeT, electron transfer from a PeT donor to an 

excited acceptor fluorophore, diminishes the fluorescence signal of the acceptor but 

when the donor is cleaved from the fluorophore, fluorescence occurs. Intramolecular 

PeT occurs when one molecule comprises an electron donor as well as an acceptor 

fluorophore37-39. 

Activatable NIR fluorophores are applied for instance for sensing of proteases, where 

signals are generated as a result of lysosomal protease activity after probe 

internalization in cells1,4. Furthermore, activatable probes are used as substrates for 

bacterial ß-d-galactosidase (ß-gal), thereby enabling the measurement of ß-gal 

activity in vivo1,40-42. In addition, activatable NIR probes can be applied for sensing of 

metal ions, such as calcium, mercury, and zinc or for sensing of nitric oxide43 as well 

as oxygen44,45. NIR fluorescent lanthanide-based complexes (e.g. Tb3+ or Eu3+) exist 

that may be applied as markers of cellular stress43. Another wide application area for 

activatable dyes is sensing of pH. 

1.3. pH-sensing with fluorescence dyes 

Although the detection of changes in pH is well established on tumor cells in vitro46, 

pH sensing in vivo remains challenging. A change in pH is a characteristic of 

numerous diseases like inflammation or cancer. So far only few NIR-emitting pH-

sensitive probes exist, but most of the pH probes consist of fluorophores with spectra 

in the visible region1,38. pH-activatable NIRF probes can be divided in two groups. The 

first group comprises NIRF dyes coupled to target specific proteins in either a low dye 

to protein (DP) ratio, resulting in autoquenching7 or in a high DP ratio resulting in 

self-quenching by homo FRET8. Such probes are activated by enzymatic cleavage of 

fluorophores, e.g. by degradation in the lysosome, allowing spatial separation from 

each other47. The second group consists of norcyanine- or norsquarine-based NIR pH 

probes which have a protonatable amine group within the fluorophore core. Examples 

are modified ICG, H-ICG43,48 or Square-650-pH49, and also CypHer5E, applied in this 

study. Accordingly, such dyes are fluorescent when protonated in an acidic 
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environment but fluorescence is greatly reduced when non-protonated. Here, 

initiation of fluorescence is reversible, in contrast to activation via enzymatic 

cleavage of protein-fluorophore conjugates.  

pH-responsive protonatable dyes may improve the sensitivity of detection and 

monitoring of acidic tumors in vivo. Following intravenous (i.v.) injection, always-on 

fluorescent probes systematically distribute in the entire object causing high 

background signals. Moreover, the tumor is undetectable until the fluorophore has 

concentrated in the tumor and the unbound probe is cleared from the object (Figure 

2a). In contrast, pH-activatable dyes are non-fluorescent after application, thereby 

causing no background fluorescence of unbound probe and only become fluorescent 

in the acidic tumor environment, resulting in a high tumor contrast even before the 

unbound (non-fluorescent) probe is cleared from the object (Figure 2b).  

 

 

Figure 2. Improvement of tumor-

detection sensitivity by the use of pH-

activatable probes 

a. Always-on fluorescence probes cause 

high background signals from the unbound 

probe when applied in vivo. After a certain 

time, following the probe’s accumulation at 

the tumor, fluorescence intensity at the 

tumor site increases while background 

fluorescence decreases due to systemic 

clearance of the probe. Due to a certain 

amount of unbound fluorescent probe, the 

tumor to background ratio is low, 

especially at early time points after probe 

application. b. pH-activatable probes may 

avoid background fluorescence after 

application in vivo and only activate at the 

tumor site. This would result in an early 

detection of the fluorescent tumor even 

before the circulating probe is cleared from 

the organism, leading to a high tumor to 

background ratio. c. A mechanism of 

activation of pH-sensitive probes at the 

tumor site is internalization of tumor-

specific ligands via receptor-mediated 

endocytosis, exemplified here for Trastuzumab (Herceptin). Here, the conjugated pH-sensitive 

fluorophores are activated in the acidic pH of the late endosome and lysosome. Figure was taken from 

Urano et al.38. 
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Activation of such pH-sensitive probes may also occur after internalization in the 

targeted tumor cell. This can be achieved, for example, by conjugation of the 

fluorophore to a tumor-specific antibody that binds to a receptor on the targeted 

tumor cell, followed by internalization of the antibody-conjugate receptor complex 

and localization in the endosomal and lysosomal compartments. There, the low pH of 

5 to 6 leads to activation of the dye, resulting in fluorescence (Figure 2c)38. 

1.3.1. CypHer5E for sensitive tumor imaging 

A promising candidate for in vivo imaging of tumors is the pH-activatable NIRF dye 

CypHer5 (1-(5-Carboxypentyl)-2-[1E,3E)-5-(3,3-Dimethyl-5-Sulfo-1,3-

Dihydro-2H-Indol-2-Vl idene)-1,3-Pentadienyl]-3,3-Dimethyl-3H 

Indol ium-5-Sulfonate(V)). CypHer5 is a pentamethine cyanine (CyTM 5) dye 

derivative that increases its fluorescence intensity with decreasing pH. In addition, 

CypHer5 has a reactive functional group (hydroxyl succinimidyl ester) allowing 

covalent linking of proteins, like antibodies, via aliphatic amino groups. Coupling of 

CypHer5 to an antibody and thereby following internalization of G-protein-coupled 

receptor from the cell membrane into the endolysosomes was the first report of an 

application of a NIR pH probe39,43. 

CypHer5 has been further developed to CypHer5E enhanced pH-sensitive dye (4-{2-

[(1E,3E,5E)-5-(3-{6-[(2,5-dioxopyrrol idin-1-yl)oxy]-6-oxohexyl is e-3-

methyl-5-sulfo-1,3 dihydro-2H-indol-2-yl idene)penta-1,3-dienyl]-3,3-

dimethyl-5-sulfo-3H-indol ium-1yl}butane-1-sulfonate) which is also 

commercially available. In comparison to CypHer5, CypHer5E comprises a better 

extinction coefficient resulting in increased excitability as well as an improved 

solubility by additional sulfonate groups. The structure of CypHer5E is shown in 

Figure 3. This pH-sensitive dye is capable of fluorescence emission when protonated 

at the nitrogen atom in an acidic environment but non-fluorescent in a basic to 

neutral environment when the amine group in not protonated. This deprotonation 

leads to a shift in the absorption maximum of the dye at 645 nm and subsequently to 

a decrease in fluorescence (Figure 4). As CypHer5E has a pKa in vitro of 7.3, it is 

perfectly suitable for pH sensing in a biological environment. CypHer5E has already 

been shown to be functional in cell assays for studying phagocytosis50, for 

quantification of internalization of cellular target molecules51,52, and for monitoring of 

synaptic vesicle recycling53. Although CypHer5E, having NIR spectra, a good water 

solubility, and functional groups for bioconjugation, is a promising candidate for in 

vivo imaging of structures with a low pH, like a tumor, so far no reports have been 

published about the use of this dye in in vivo imaging. 
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Figure 3. Chemical structure of CypHer5E 

In a basic to neutral solution, where the nitrogen atom of CypHer5E is not protonated, the dye is not 

fluorescent. When protonated in an acidic environment, the chromophore system of a classic cyanine dye 

is observed for CypHer5E, resulting in fluorescence. Picture was taken from GE website54. 

 

 

 
 

 

Figure 4. Absorption characteristics of CypHer5E at different pH 

CypHer5E has two absorption bands that peak in the range of 490 and 645 nm. Photon absorption around 

645 nm results in fluorescence emission with a peak intensity at 663 nm. The absorption band in the 

shorter wavelength region (~490 nm; not leading to fluorescence emission) increases with increasing pH 

of the PBS measurement solution, whereas the absorption band at longer wavelength (~645 nm) 

decreases resulting in decreased fluorescence. Image was provided by Jutta Pauli, BAM I.5, Berlin.  
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1.4. Nanoparticles as fluorescence probes  

Even though organic fluorophores compose the major group of fluorescence probes 

for in vivo applications they often suffer from limited sensitivity, a low fluorescence 

quantum yield, and low photostability. Moreover, organic dyes may form quenched 

aggregates and are sensitive to environmental changes in tissue or blood, influencing 

their spectroscopic properties. Furthermore, many of them possess a certain level of 

toxicity that hampers their application in vivo20.  

A promising possibility to generate fluorescent probes for in vivo applications is to 

enclose fluorophores in nanomaterials, such as polymeric nanoparticles (NPs), which 

can be generated from a number of materials in diverse compositions and labeled 

with various fluorophores. This has the benefit of improved stability of the 

fluorophores due to reduced interactions with the environment, e.g. with quenching 

agents, solvent molecules, or chemically reactive species55. In reverse, by 

enclosement in NPs, the environment can be protected against potentially toxic 

fluorophores. In most cases, enclosure in NPs does not alter the dye spectral 

characteristics, but it minimizes dye aggregation and subsequent dye quenching, and 

offers an improved photostability. As NPs are capable of carrying large numbers of 

fluorophores, very bright fluorescence probes can be produced, compared to a single 

dye molecule. NPs can further be applied for simultaneous imaging by different 

modalities, e.g. by generating NPs that are loaded with contrast agents for MRI and 

surface labeled with fluorescence dyes56,57.  

The core of NPs may be surrounded by a shell layer that insulates and protects the 

core and mediates solubility of NPs and/or linkage to bioligands58. NPs with many 

different configurations have been designed which, due to their large surface area 

can be easily modified with polymeric compounds such as polyethylene glycol (PEG) 

or various target-specific biomolecules, like peptides or antibodies, thereby creating 

highly fluorescent target-specific 3D probes for in vivo imaging59 (see Figure 5). 

Especially, PEGylation has a particular relevance as it can modify the 

pharmacokinetics of NPs by reducing their clearance through the mononuclear 

phagocytic system (MPS) and thereby not only increasing plasma half-lives of the 

NPs but also their stability and water solubility60-62. 

NPs of diverse compositions have been developed for imaging purposes. Most 

particles can be classified into two groups: NPs that are mostly composed of organic 

molecules, like dendrimers63,64, liposomes64,65, poly(lactic-co-glycolic acid) (PLGA)66, 

polystyrene (PS)67,68, or chitosan59,69. And those that mainly consist of inorganic 

materials, such as silica70, gold71, and semiconductor nanocristals, the so called 
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quantum dots (QDs) that comprise a core/shell structure, such as CdSe/ZnS, 

CdS/ZnS, or CdTe/ZnS72.  

 

 

Figure 5. Compositions and surface-

modifications of nanoparticles 

A. A scheme of NP components and possible 

configurations is shown. NPs can be 

composed of (i) a core directly surrounded 

by targeting biomolecules or (ii) surface 

ligands can be used to anchor the target 

molecules to the particle core. (iii) 

Biomolecules can also interact with a shell 

layer that surrounds the NP core or (iv) be 

anchored to the core/shell particle via 

intermediate ligands. On the other hand, (v) 

the targeting biomolecules can be located 

inside a porous NP core or (vi) be entrapped 

by a porous NP core surrounded by a shell 

layer. (vii) Furthermore, the NP core can be 

much smaller than the biomolecule and in 

addition (viii) be attached to the core by an 

intermediate ligand. B. A representative 

fluorophore-loaded NP, coated with a PEG 

layer is illustrated. Multiple target-specific 

molecules can be attached to the PEG chains 

in three dimensions. Specific targeting and 

detection of biomolecules by NPs may be 

achieved for instance via surface-conjugation 

with nucleic acids, target-specific small 

peptides, proteins, or antibodies. Figure was 

taken from Sapsford et al.58. 

 
 

The composition of the NPs should be selected according to the application purpose 

of the particle. NPs formulated from biodegradable substances, like liposomes are 

especially favorable for drug delivery and are already used as chemotherapeutic 

vehicles in different human tumors64. Such drug vehicles are advantageous as they 

especially enable the delivery of hydrophobic agents, like the anti-cancer drugs 

paclitaxel and docetaxel that are not soluble in aqueous environments64. In addition, 

other biodegradable NPs, composed of chitosan, gelatin, or PLGA are being 

investigated as non-viral gene-delivery systems73. On the other hand, the use of 

non-biodegradable NPs, like PS, may be advantageous for imaging purposes as 

enclosed fluorophores are prevented from release into the surrounding environment, 

where they could potentially cause unknown toxic effects. Instead they are excreted 
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from the body in the same composition as they were administered. Moreover, in the 

case of hydrophobic imaging agents, the incorporation in NPs enables these agents to 

be used in aqueous environments and consequently in vivo68.  

Despite the growing effort in the development of potent NPs for diagnosis and 

therapy of diseases, the biodistribution, behavior and risks of NPs in living organisms 

have to be examined further74. In particular, most NP formulations, such as QDs20, 

still suffer from potentially toxic effects or from a too rapid clearance from the body 

due to a low transport of relatively large particles across the endothelium and/or a 

rapid elimination of NPs by the MPS75.  

1.4.1. Polystyrene nanoparticles as potent imaging tools 

Polystyrene nanoparticles (PSNPs; Figure 6) are especially advantageous for in vivo 

imaging purposes, as they are commercially available in different sizes from 15 nm to 

several micrometers. Moreover, in general PSNPs are regarded to have no impact on 

the metabolic activity of cells and low levels of cytotoxicity. Nevertheless, as is the 

case for other NP formulations, this may depend on the used concentrations of NPs 

and incubation times, as well as on particle size, and surface charge76-79. A further 

advantage is that the loading of PSNPs with inorganic and organic fluorophores is well 

established, thereby enabling a simple and homogeneous production of bright 

fluorescent reporters for imaging applications68. As PSNPs are available with various 

surface chemistries, this further enables a simple and efficient modification of 

particles with target-specific biomolecules. 

 

 

Figure 6. Transmission electron microscopy image of 

100 nm PSNPs 

The morphology of 100 nm PSNPs is illustrated. Scale bar 

represents 0.2 µm. Image was taken from Liu et al.76.  
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1.4.2. Highly fluorescent nanoparticles loaded with Itrybe 

A very promising dye for imaging applications in combination with NPs is the 

broadband fluorophore Itrybe. This hydrophobic asymmetric cyanine dye has a broad 

absorption (450 to 750 nm) and emission spectrum (650 to 900 nm) in the NIR 

region making it especially favorable for in vivo imaging. Furthermore, compared to 

other NIR fluorophores, Itrybe has a large Strokes shift which is the difference 

between the positions of the band maxima of the absorption and emission spectra. 

This enables a good separation of excitation and emission light, using appropriate 

filter combinations. Due to the broad spectra of Itrybe it is also possible to achieve a 

high compatibility of the dye with many different imaging devices equipped with 

various laser and/or filter settings. In contrast, most other NIR dyes are 

characterized by a narrow absorption- and emission spectrum and a considerably 

smaller Strokes shift as well as highly overlapping absorption- and emission spectra. 

In contrast to other NIR fluorophores, Itrybe, does also not form quenched 

aggregates at high concentrations, which otherwise could result in decreased 

fluorescence. This allows the loading of high amounts of Itrybe molecules into solid 

matrices, like PS, leading to a significantly higher brightness of these probes. A 

further advantage of this dye as a potent imaging tool in combination with NPs, is its 

outstanding thermal and photochemical stability (Thomas Behnke, BAM I.5, Berlin, 

personal communication). 

On these grounds, a patent application has been submitted by the BAM in Berlin 

together with the Max-Planck-Institute for Experimental Medicine and the University 

Medicine in Göttingen on the application of Itrybe in combination with NPs for 

imaging purposes (see list of publications). 

1.5. Specific targeting of tumors 

NIRF imaging offers an inexpensive and safe alternative to imaging methods like PET 

and SPECT which use potentially harmful, highly energetic radiation. Therefore, NIRF 

imaging provides an attractive tool for preclinical studies of tumor development and 

progression and/or evaluation of cancer therapies in animal models. As cancer is the 

leading cause of death worldwide80 there is a continuous need for the development of 

novel improved probes for an early detection and characterization of tumors as well 

as for a better understanding of cancer onset and progression. Cancer development 

is a multistep process during which cells acquire several capabilities, enabling them 

to become tumorigenic and finally malignant. One emerging hallmark of potential 

generality of cancer is reprogramming of energy metabolism which is needed to 

promote tumor cell growth and division81. The tumor microenvironment is known to 
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be hypoxic, resulting from an inefficient perfusion due to a chaotic tumor 

vasculature. Under anaerobic conditions, cells favor glycolysis instead of energy 

production in the oxygen consuming mitochondria81. Otto Warburg first observed an 

abnormal behavior of energy metabolism in cancer cells, in that even in the presence 

of oxygen cancer cells can reprogram their energy metabolism to glycolysis82,83. The 

upregulation of glycolysis results in an increased acid production and subsequently in 

microenvironmental acidosis84. It is further known that the extracellular pH decreases 

with increasing tumor size and that gradients of interstitial pH exist in tumors. 

Moreover, the acidity can vary among different tumor types. For instance, the 

extracellular pH investigated in two breast cancer cell lines was determined to be 6.8 

in MDA-MB-435 cells and 7.1 in MCF-7 cells when grown in SCID mice to a 

comparable size85.  

The characteristic of an acidic environment, that most tumors possess, can be 

effectively used to increase tumor contrast by using pH-sensitive fluorescence probes 

that are selectively activated in the acidic tumor environment.    

1.5.1. The role of HER2 in cancer 

Imaging probes, such as free fluorophores or dye-loaded NPs, which are 

systematically applied in order to detect tumors, have to be functionalized to 

specifically bind to tumor associated antigens on cancer cells. Easily accessible target 

structures might be for example membrane-associated proteins, like receptors86, ion-

channels87, or cell-adhesion molecules, such as integrins2.  

In the case of breast cancer detection and monitoring, a well known biomarker is the 

human epithelial growth factor receptor 2 (HER2, also known as c-neu, Neu or ErbB-

2). HER2 is highly expressed on 25 to 30 % of all breast cancers88 but also in 10 to 

15 % of ovarian cancers89,90 and in 5 to 15 % of other tumor types like gastric, 

cervix, colon, oral, endometrial, esophageal, lung, and pancreatic cancers91. 

Therefore, HER2 has become not only an interesting target structure for therapy, but 

due to its localization at the cell membrane, making it easily accessible by 

exogenously applied ligands, also an attractive marker for the diagnosis and 

monitoring of cancer.  

HER2 is a member of the EGFR superfamily, also known as the ErbB protein family 

that form dimers upon ligand stimulation leading to activation of downstream 

signaling cascades associated with cell growth, proliferation, survival, cell motility, 

and angiogenesis91,92. HER2 is a 185 kDa transmembrane glycoprotein consisting of 

an extracellular binding domain, a transmembrane segment, and a tyrosine kinase 

domain with a regulatory carboxyl terminal segment91,93,94. In addition, a truncated 
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membrane-bound fragment of the HER2 protein, p95 exists that can be detected in 

breast tumors. p95 is generated after proteolytic cleavage of the extracellular domain 

of HER2 and is associated with an increased tyrosine kinase activity and thus an 

enhanced intracellular signaling95,96. An overexpression or amplification of HER2 

results in increased intracellular cell signaling, leading to a deregulation of cell 

proliferation and survival, which in turn may cause uncontrolled cell proliferation and 

subsequently malignancy91. The prolonged duration of intracellular signaling in HER2 

overexpressing cells is caused by a slowdown of the dissociation of ligand-receptor 

complexes which results in slower internalization of the complexes through clathrin-

coated pits and thereby slower degradation of the active receptors in lysosomes92. 

1.5.2. Targeting of HER2 by Herceptin 

Owing to its expression on the cell membrane of tumor cells, HER2 is an optimal 

target not only for therapy but also for tumor recognition. In this context a 

humanized monoclonal antibody, trastuzumab (Herceptin®, in the following referred 

to as Herceptin) was developed from the murine antibody 4D5. Herceptin was 

approved by the FDA in 1998 for treatment of patients with metastatic breast cancer 

overexpressing HER291. In heavily pretreated patients, Herceptin has a response rate 

of 10 to 15 % and in untreated patients of 25 %91. 

Herceptin is known to bind to the extracellular domain IV of HER285 and to induce 

formation of HER2 homodimers, leading to ligand-mediated endocytosis of the 

receptor and to a considerable removal of HER2 from the plasma membrane and 

subsequently to a decreased receptor-initiated constitutive signaling97. However, the 

mechanism by which Herceptin causes its antitumor effect in cancer cells is not 

entirely understood. Other mechanisms of Herceptin action may include suppression 

of angiogenesis98, sterical blocking of the proteolytic cleavage of the extracellular 

region of HER299, and disruption of  interaction of HER2 with other proteins99. 

Another hypothesis favors an immunological mechanism, where antibody dependent 

cellular cytotoxicity (ADCC) caused by Herceptin bound to the tumor cell results in 

tumor cell lysis98.  

As Herceptin is a very well evaluated and clinically proven antibody, it presents an 

attractive device for the detection and monitoring of breast tumors100. Therefore, 

Herceptin is an optimal ligand for the bioconjugation of novel fluorescence probes, 

like pH-activatable dyes and dye-loaded NPs, to be evaluated as novel probes for in 

vivo imaging of breast tumors. 

For the evaluation of tumor-detection sensitivity of fluorescence probes tumor 

models are of considerable importance. Human KPL-4 breast tumor cells were 
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selected as the orthotopic breast tumor model in this study as these cells are known 

to have an overamplification of the HER2 gene as well as a high HER2 protein 

expression101. Orthotopic MDA-MB-231 cell implantation was performed to obtain 

control tumors in nude mice that do not overexpress HER2102. Orthotopic breast 

tumor xenorafts in mice generated by KPL-4103 as well as by MDA-MB-231102 cells 

have already been shown to be suitable model organisms for the evaluation of 

Herceptin binding in vivo. Therefore, both tumor models were used in this study to 

investigate in vivo binding and biodistribution of Herceptin-conjuagted fluorescence 

probes. 
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AIMS OF THE STUDY 

The aim of the work presented here was to characterize and to evaluate novel and 

innovative fluorescent probes regarding their suitability for fluorescence imaging in 

vivo, in order to improve tumor-detection sensitivity in breast tumor-bearing mice. 

For this purpose, 1.) a pH-sensitive NIR dye, CypHer5E and 2.) PSNPs loaded with a 

broadband NIR fluorophore, Itrybe, were investigated in orthotopic breast-tumor 

xenografts in nude mice. To achieve tumor targeting capacity, both probes were 

conjugated to Herceptin, in order to take advantage of the knowledge already 

available for the kinetics of the tumor targeting moiety Herceptin and thereby 

allowing me to focus on the behavior of the fluorescent labels. This is the first report 

of an in vivo imaging application and evaluation of CypHer5E as well as for Itrybe-

loaded PSNPs. 

The following issues will be addressed: 

1.)  The suitability of pH-activatable CypHer5E-Herceptin-conjugates to improve 

 tumor- detection sensitivity in vivo in comparison to always-on fluorescence 

 conjugates, AlexaFluor 647-Herceptin 

a. The in vitro characterization of fluorescence probes upon the influence 

of different environmental factors 

 b. The functionality of pH-sensitive conjugates in vitro in cell based  

  assays 

 c. The capability of CypHer5E-Herceptin probes to improve tumor contrast 

  in vivo in KPL-4 and MDA-MB-231 breast tumor-bearing mice in  

  combination with two different techniques for suppression of   

  background fluorescence: subtraction of autofluorescence and   

  LT-gated imaging 

2.) The biodistribution of Itrybe-loaded PSNPs of distinct sizes (100, 25, and 15 

nm) and with different surface modifications (amino groups, PEG chains of 

different sizes, or Herceptin coupled to PEG chains) and their feasibility for 

application in in vivo imaging of breast tumors in mice   

 a. The spectroscopic characterization of Itrybe-loaded PSNPs and  

  the influence of environmental factors on fluorescence of the probes 

b. The binding of Herceptin-modified NPs to HER2 in immuno- and cell-

based assays 

 c. The influences of NPs on cell viability  



Aims of the study 
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 d. The biodistribution of probes in vivo and ex vivo  

 e. The tumor-targeting capacity of PSNPs in KPL-4 and MDA-MB-231  

  breast-tumor bearing mice in vivo and ex vivo   

 

The results of this study will contribute to an improved knowledge about the 

characteristics of pH-sensitive probes and Itybe-loaded NPs and their suitability for 

application in non-invasive detection of breast tumors.  
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2. MATERIAL AND METHODS  

2.1. Material 

2.1.1. Equipment 

Analytical balance, Competence CP64  Sartorius, Göttingen 

Anesthesia system     VisualSonics, Toronto, Ontario,  

        Canada 

Apparatus for tissue processing, TP 1020  Leica, Bensheim 

Camera, EOS 1000D     Canon, Krefeld   

Centrifuge 5810     Eppendorf, Hamburg 

Chemi-Doc luminescence detection system Bio-Rad, Munich 

Centrifuge 5424     Eppendorf, Hamburg 

Cryostat, Jung Frigocut 2800E    Leica, Bensheim 

Extrudate 1439      Altromin, Lage 

Fluorescence microscope, Axiovert 200M   Carl Zeiss, Göttingen 

Incubator, Heraeus BB6220    Kendro, Laboratory products, Hanau 

LightCycler 480      Roche, Mannheim 

Light microscope, Axioscope 2    Carl Zeiss, Göttingen  

Light microscope, Telaval 31   Carl Zeiss, Göttingen  

Microtome HM 340E      Thermo Scientific, Braunschweig 

Nano photometer, Pearl    Implen, Munich 

Neubauer counting chamber    Schütt Labortechnik, Göttingen 

Odyssey infrared imaging system   Li-Cor Biosciences, Bad Homburg 

Optix MX2       ART, Montreal, Canada 

ORCA-ER digital camera     Hamamatsu, Herrsching am  

        Ammersee  

pH-meter, SevenEasy    Mettler-Toledo, Giessen 

Quartz glass precision cuvette   Helma, Müllheim 

Scantainer       Scanbur, Koge, Denmark  

Spectrofluorometer, QuantaMaster   Photon Technology International,  

        Seefeld 

Staining cuvette     VWR International, Ismaning 

Steamer, MultiGourmet    Braun, Kronberg 

Thermomixer compact    Eppendorf, Hamburg 

Tissue lyzer      Qiagen, Hilden 

Ultrasonic cleaner     Schütt Labortechnik, Göttingen 
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Vortexer, Vortex Genie 2    Bender & Hobein,Zurich,   

        Switzerland 

Wallac 1420 Victor 2 multilabel counter  American Instrument Exchange,  

        Haverhill, MA,    USA 

2.1.2. Consumable supplies 

Cell culture flasks      Sarstedt, Nümbrecht 

Chambered coverglasses, 4 well   Nalge Nunc International,   

        Rochester, NY, USA 

Cover glasses 12 mm Ø     Thermo Scientific, Bonn 

Cryotube vials      Nunc, Roskilde, Denmark 

Culture dishes      Sarstedt, Nümbrecht 

Culture plates 24-wells, 96-wells   Greiner Bio-One, Solingen 

Falcontubes 15 ml, 50 ml     BD, Heidelberg 

Filter tips, 10 µl, 100 µl, 1000 µl    Sarstedt, Nümbrecht 

Insulin syringes with integrated needle  Braun, Melsungen  

 (30G x ½)  

Insulin syringes with integrated needle  BD, Heidelberg  

 (30G) 

Insulin syringes, Omnifix 40 solo   Braun, Melsungen  

Microscope slides     Paul Marienfeld, Lauda-Königshofen 

Needles, Sterican, 26G x ½    Braun, Melsungen  

Hybridization transfer membranes   Amersham/GE Healthcare, Munich  

Nunc-Immuno modules, maxisorp loose  Nunc A/S, Roskilde, Denmark 

NuPAGE Novex 3-8 % TRIS-acetate gels  Invitrogen, Darmstadt  

Pasteurpipettes      Sarstedt, Nümbrecht 

Permanox cell culture slides    Nalge Nunc International, Naper  

        Ville, IL, USA  

Serological pipettes 5 ml, 10 ml    Greiner Bio-One, Solingen 

Serological pipettes 25 ml    Corning Incorporated, Corning, NY, 

        USA 

Surgical suture materials, absorbable,   Johnson & Johnson, Neuss 

 Vicryl, 4/0  

Tissue Tek cassettes     Vogel, Giessen   

2.1.3. Chemicals and reagents  

ABTS single solution     Invitrogen, Darmstadt 
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AEC peroxidase substrate    Vector, Peterborough, United  

        Kingdom 

Antibody diluent     Dako, Hamburg 

Aquatex, aqueous mounting medium  Merck, Darmstadt 

Blocking buffer – fish    SurModics, Eden Prairie, MN, USA 

BSA       Sigma-Aldrich, Seelze   

Casein       Roche, Mannheim 

Chemiluminescent HRP substrate    Millipore, Billerica, MA, USA 

Chloroform      Merck, Darmstadt 

Coomassie R250      Biomol, Hamburg 

DEPC       Sigma-Aldrich, Seelze 

DePex, hydrophobic mounting medium  Serva, Heidelberg 

DMEM       Gibco, Invitrogen, Darmstadt 

DPBS       Gibco, Invitrogen, Darmstadt 

EDTA       Sigma-Aldrich, Seelze 

Eosin G        Merck, Darmstadt 

Ethanol       Merck, Darmstadt  

FCS         PAN Systems, Aidenbach 

Formaldehyde      Merck, Darmstadt 

GLP Nafag feed 890      Provimi Kliba AG, Kaiseraugst 

Goat serum      Gibco, Invitrogen, Darmstadt 

Haematoxylin      Merck, Darmstadt 

HEPES       Carl Roth, Karlsruhe 

Hoechst 33342 trihydrochloride,   Invitrogen, Darmstadt 

 trihydrate 

Hydrochloric acid, 37%    Merck, Darmstadt 

Hydrogen peroxid     Sigma-Aldrich, Seelze 

Fluorescent mounting medium   Merck, Darmstadt 

 containing DAPI  

Isoflurane       Baxter, Unterschleißheim 

Ketamine 10%     Medistar, Holzwickede 

LDS sample buffer     Invitrogen, Darmstadt 

NuPAGE Antioxidant     Invitrogen, Darmstadt 

Paraffin (TM 60 °C)     Süsse, Guxhagen 

PBS tablets      Gibco, Invitrogen, Darmstadt 

Poly-L-lysine      Sigma-Aldrich, Seelze 

Precision Plus protein standard     BIO-RAD Laboratories, Munich 
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ProLong gold antifade reagent     Invitrogen, Darmstadt 

 with DAPI 

Protease inhibitor cocktail     Roche, Mannheim 

QIAzol lysis reagent     Qiagen, Hilden 

Reducing agent      Invitrogen, Darmstadt 

Regime 210, U8959A01R     Scientific Animal Food and   

        Engineering, Augy, France 

Sodium chloride      Merck, Darmstadt 

Sodium chloride, isotone, 0.9%   Braun, Melsungen   

Sodium hydroxide      Merck, Darmstadt 

Target retrieval solution    Dako, Hamburg 

TRIS        Sigma-Aldrich, Seelze  

TRIS-acetate SDS running buffer   Invitrogen, Darmstadt 

Triton X-100      Sigma-Aldrich, Seelze 

Tween-20      Sigma-Aldrich, Seelze  

Western blot stripping buffer   Thermo Scientific, Bonn 

WST-1 cell proliferation reagent   Clontech, Mountain View, CA, USA 

Xylazine 2%      Riemser, Greifswald 

Xylol        Merck, Darmstadt 

2.1.4. Kits  

BCA protein assay kit    Thermo Scientific, Bonn   

Mycoplasma PlusTM PCR primer set  Agilent Technologies, Waldbronn 

Ready-to-use hot-start PCR master mix  Roche, Mannheim 

RNase-free DNase set    Qiagen, Hilden 

RNeasy mini kit     Qiagen, Hilden 

SuperScript first-strand synthesis system   Invitrogen, Darmstadt 

 for RT-PCR 

2.1.5. Probes  

substance application provider 

Itrybe-loaded NPs fluorescence imaging BAM I.5, Berlin 

CypHer5E fluorescence imaging GE Healthcare, Munich 

Alexa Fluor 647 fluorescence imaging Invitrogen, Darmstadt 

humanized anti-HER2 IgG, 

Herceptin (Trastuzumab) 
tumor targeting Roche Diagnostics, 

Mannheim 
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substance application provider 

rabbit anti-HER2 IgG,                
Neu (C-18): sc-284 

Western blot Santa Cruz, Heidelberg 

goat anti-actin IgG,       
(C-11): sc-1615 Western blot Santa Cruz, Heidelberg 

donkey anti-rabbit IgG, 
HRP-labeled: NA934 

Western blot GE Healthcare, Munich 

rabbit anti-goat IgG, HRP-
labeled: 172-1034 

Western blot 
BIO-RAD Laboratories, 

Munich 

HER2 extracellular domain 
(ECD) protein immunoassay 

Roche Diagnostics, 
Mannheim 

rat anti-mouse CD31 IgG: 
DIA 310 M 

immunohistology Dianova, Hamburg 

goat anti-rat IgG, HRP 
labeled: AP136P 

immunohistology Merck, Millipore, 
Schwalbach 

 

2.1.6. Enzymes 

Trypsine-EDTA (0.25 %)    PAA Laboratories, Pasching, Austria  

DNase I      Qiagen, Hilden 

RNase H      Invitrogen, Darmstadt 

Super Script II RT     Invitrogen, Darmstadt 

Uracil-DNA-glycosylase    New England BioLabs, Frankfurt   

        am Main 

2.1.7. Eukaryotic cell lines 

• KPL-4, provided by J. Kurebayashi, Department of Breast and Thyroid 

Surgery, Kawasaki Medical School, Kurashiki, Japan 

Human breast cancer cell line, isolated from the malignant pleural effusion of a 

breast cancer patient with an inflammatory skin metastasis101. 

 

• MDA-MB-231, American type culture collection (ATCC)/LGC, Wesel 

Human breast cancer cell line, adenocarcinoma from the mammary gland derived 

from a metastatic pleural effusion.  

 

• 3T3, Swiss albino mouse fibroblasts, Deutsche Sammlung von 

Mikroorganismen und Zellkulturen (DMSZ), Braunschweig 

Fibroblasts, established from disaggregated Swiss albino mouse embryos. 
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2.1.8. Animals 

Female athymic nude mice, strain NMRI-Fox1nu/nu, Central Institution of Animal 

Experiments of the University Medicine, Göttingen. 

2.1.9.  Application specific computer programs 

Program:      Used for: 

Application Software, Version 2.1   Odyssey infrared imaging system 

AxioVision Rel.4.6     Axiovert 200M fluorescence  

        microscope 

FeliX32 Analysis 1.0     Spectroflourometer QuantaMaster 

Image 1.42l104      Image processing 

LightCycler 480 Software 1.5   LightCycler 480 

OptiView 1.00.00, ART, Montreal, Canada  Optix MX2 in vivo imaging system  

Quantity One 4.6.2     Chemi-doc luminescence detection 

        system 

Wallac 1420 Manager, Version 2.0   Victor 2 multilabel counter  
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2.2. Methods 

2.2.1. Molecular Biology  

2.2.1.1. Total RNA isolation and cDNA synthesis 

Purification of RNA from cells: 

RNA from cells was isolated via use of RNeasy mini kit according to the instruction 

manual. Briefly, cells (~1 x 106) were disrupted in buffer containing guanidine 

isothiocyanate and homogenized. Ethanol was then added to the lysate to bind RNA 

to the RNeasy silica-gel membrane and contaminants were washed away. DNase 

treatment was performed to eliminate genomic DNA (according to the instruction 

manual). After wash steps, the RNA was eluted in 30 µl RNase-free 

diethylpyrocarbonat (DEPC) water. 

Purification of RNA from tumor tissue: 

RNA from tumor tissue was isolated via phenol-chloroform extraction in combination 

with use of RNeasy mini kit. Tumor tissue (< 100 mg) was homogenized with 1 ml 

QIA-zol lysis reagent containing phenol and guanidine thiocyanate using a tissue 

lyzer. 200 µl chloroform was added and samples were vortexed and incubated for 5 

min at room temperature (RT).  After 15 min of centrifugation at 12,000 x g at 4 °C 

the aqueous phase was transferred in a new cup, supplemented with 600 µl 70 % 

ethanol and vortexed. The suspension was transferred to a RNeasy mini spin column 

and centrifuged at maximal speed for 15 sec. Total RNA bound to the membrane and 

contaminants were washed away. DNase treatment and elution of RNA was 

performed as described above.  

cDNA synthesis: 

cDNA synthesis for reverse transcriptase-polymerase chain reaction (RT-PCR)  was 

performed with the SuperScript first-strand synthesis system. cDNA was synthesized 

from 2.5 μg of total RNA upon addition of 0.5 μg oligo (dT) and DEPC-water to advice 

a RNA concentration of 0.2 μg/μl in a volume of 12 μl. At each step the samples were 

mixed by vortexing and collected by brief centrifugations. The reaction mixture was 

heated at 70 °C for 10 min and rapidly cooled on ice for 1 min. Subsequently 

reaction buffer was added containing: 2 μl of reverse transcriptase buffer, 2 μl MgCl2 

25 mM, 2 μl of dithiothreitol (DTT) 0.1 M and 1 μl of dNTPs 10 mM. The reaction 

mixture was heated for 5 min at 42 °C. The negative samples were supplemented 

with 1 μl of DEPC-water, whereas to the positive samples 200 units of reverse 

transcriptase enzyme were added. Probes were incubated for 50 min at 42 °C 
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following inactivation of the reverse transcriptase at 70 °C for 15 min. To degrade 

RNA present in the samples 2 units of RNase H were incubated with the mixture for 

20 min at 37 °C. At the end of the procedure the mixture was diluted with DEPC-

water to advice a reaction volume of 25 μl with a final cDNA concentration of 0.1 

μg/μl.  

RNA and cDNA concentration and purity were determined by optical density 

measurements at 260 and 280 nm using the spectrofluorometer. 

2.2.1.2. Quantitative real-time PCR 

Real-time PCR was performed using the TaqMan system in the LightCycler 480. 

Primers and probes were chosen from the Universal Probe Library from Roche105. The 

TaqMan probes contain a reporter dye fluorescein amidite (FAM) at the 5´end of the 

probe and a Dark Quencher Dye at the 3´end of the probe. When cleaved by the Taq 

DNA polymerase during PCR the reporter and quencher dye of the probe are 

separated, resulting in fluorescence of the reporter. For analyzing the mRNA 

expression of the human epidermal growth factor receptor 2 (hHER2) and human 

transferrin receptor type 1 (hTfR), used to control for RNA integrity and 

quantification, the following primers and probes were used: 

Primer     Sequence 

hTfR forward    5’-TTG AGA AAA CAA TGC AAA ATG TG-3’ 

hTfR reverse    5’-CCC AGT TGC TGT CCT GAT ATA GA-3’ 

TaqMan probe # 61   5’-FAM CTG GGC AA Dark Quencher Dye-3’ 

hHER2 forward   5‘-CAA GTA ATC CGG GGA CGA A-3‘ 

hHER2 reverse   5’-CAC TGC CCA GTT CCC TCA-3’ 

TaqMan probe # 23   5’-FAM GGG CTG GG Dark Quencher Dye-3’ 

 

Real-time PCR was performed with 100 ng cDNA, 200 nM forward and reverse 

primer, 100 nM TaqMan probe, 0.2 U Uracil-DNA-glycosylase, and a ready-to-use 

hot-start PCR mix containing Taq DNA polymerase, dNTP mix, as well as buffer and 

MgCl2.  

PCR conditions were:  

2 min 50 °C; 10 min 95 °C; (10 sec 95 °C; 30 sec 60 °C; and 10 sec 40 °C) x 45 

cycles. The number of PCR cycles to reach cycle threshold (Ct) was used to 

determine the relative mRNA expression. The results were standardized to the 

amount of hTfR in the respective probe and to the amount of mRNA expression in the 

calibrator (human brain RNA).  
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For this purpose the ΔΔCt-Method was applied:  

 

Normalized ratio: 2 ΔCt1 / 2 ΔCt2 

 

ΔCt1 = Ct hHER2 (calibrator) – Ct hHER2 (sample) 

ΔCt2 = Ct hTfR (calibrator) – Ct hTfR (sample) 

 

2.2.2. Protein extraction, protein separation on protein gel,     

and Western blot 

2.2.2.1. Protein extraction 

To obtain cell lysates, cell cultures were detached from the dish as described in 

2.2.5.1, transferred to a 15 ml falcon tube, washed twice with PBS, and resuspended 

in 3 ml of lysis buffer. After 30 min of incubation at RT, cell debris were centrifuged 

for 15 min at 18,000 g at 4 °C and the supernatant was used as total cell extract. 

• Lysis buffer:  

50 mM trishydroxymethylaminomethane (TRIS)-HCl, pH 7.4  

300 mM NaCl  

5 mM ethylene-diamine-tetraacetic acid (EDTA)  

1% Triton X-100  

Protease inhibitor cocktail (1 tablet for 25 ml)  

2.2.2.2. BCA protein assay 

Protein concentration was determined using the bicinchoninic acid (BCA) protein 

assay kit that employs bovine serum-albumin (BSA) as a standard curve. The 

samples (triplicates) in a volume of 25 μl were incubated for 30 min at 37 °C 

together with the BCA reagent, composed by solution A (sodium carbonate, sodium 

bicarbonate, bicinchoninic acid and sodium tartrate in 0.1 M sodium hydroxide) and 

solution B (4 % cupric sulfate). Absorbance was measured in the Wallac 1420 Victor 

2 multilabel counter at 550 nm. 

2.2.2.3. SDS-PAGE  

50 µg of total protein extract per sample were separated on a gradient SDS-PAGE 

(sodium dodecyl sulfate-polyacrylamide gel electrophoresis) NuPAGE Novex TRIS-

acetate 3-8 % gel, according to the instruction manual. Depending on the application 

the SDS-gels were either used for western blot analysis or stained with Coomassie 

for protein detection. 
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2.2.2.4. Western blot analysis 

For Western blot analysis the proteins were transferred to nitrocellulose hybridization 

transfer membranes. Membranes were blocked for 1 h with 0.1 % casein in TRIS 

buffer containing Tween-20 (TBST) buffer, incubated with rabbit anti-HER2 antibody 

(1:200 dilution) in 0.1 % casein for 1 h, washed with deionized water for 7 times and 

then incubated in TBST for 5 min. Following, the membranes were incubated with 

horseradish peroxidase (HRP)-coupled donkey anti-rabbit antibody (1:8000 dilution) 

for 1 h. After washing, the bound antibody was visualized using chemiluminescent 

HRP substrate. Signals were detected in a Chemi-Doc luminescence detection 

system. To verify equal amounts of proteins in each loaded sample, the membranes 

were stained afterwards with anti-actin antibody. For this purpose, the membranes 

were stripped by incubation in stripping buffer at 37 °C for 20 min and washed and 

blocked as described above. The primary goat anti-actin antibody was used at a 

1:200 dilution and the HRP-coupled rabbit anti-goat antibody was used at a 1:8000 

dilution. 

• TBST: 

140 mM NaCl 

20 mM TRIS-HCl, pH 7.5 

0.05% Tween-20 

2.2.3. Fluorescence probes 

In the following we analyzed properties and characteristics of activatable and always-

on fluorescence probes as well as of the fluorophore, Itrybe encapsulated in 

functionalized NPs, in combination with the tumor-specific antibody Herceptin.  

2.2.3.1. General information 

The fluorescence spectra of the pH-sensitive hydrophilic fluorescence dye, CypHer5E  

can be seen in Figure 7 (left). The quantum yield of CypHer5E in PBS is 0.26 at a pH 

of 7.8 and 0.27 at a pH of 5.3 (experiments performed by Jutta Pauli, BAM I.5, 

Berlin). CypHer5E in its hydrolyzed form has a molecular weight of 751 g/mol. 

The fluorescence spectra of the hydrophilic fluorescence dye Alexa Fluor 647 are 

depicted in Figure 7 (right). The quantum yield of the dye in PBS is 0.33 and the LT 

in water is 1.0 ns106. Alexa Fluor 647 in its hydrolyzed form has a molecular weight of 

~1200 g/mol.  
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Figure 7. Normalized spectrum of wavelength of CypHer5E and Alexa Fluor 647  

CypHer5E has an absorption maximum at 645 nm and an emission maximum at 663 nm. Alexa Fluor 647 

has similar spectra with an absorption maximum at 650 nm and an emission maximum at 670 nm. 

Spectra were taken from GE website (left)54 and Invitrogen website (right)106 and were modified. 

 

The hydrophobic asymmetric cyanine dye Itrybe has an absorption maximum at 

~590 nm and an emission maximum at ~750 nm. The quantum yield is 0.23 in 

ethanol.  

2.2.3.2. Coupling of Herceptin antibodies to fluorescence dyes 

Herceptin was coupled to the near-infrared fluorescence (NIRF) dyes, CypHer5E or 

Alexa Fluor 647, via their succinimidyl ester. Coupling resulted in conjugates with 

different dye to protein (DP) ratios of 0.5 to 6.4 dye molecules per antibody. 

Coupling was performed by Squarix Biotechnology GmbH, Marl. Purification was done 

via gel chromatography followed by a preparative gel filtration. DP ratios were 

determined photometrically by Jutta Pauli from the Bundesanstalt für 

Materialforschung und -Prüfung (BAM) I.5, Berlin. 

2.2.3.3. Modification of NPs 

Loading of polystyrene nanoparticles (PSNPs)68 with Itrybe as well as surface 

modification with polyethylene glycol (PEG) and Herceptin107 were performed by 

Thomas Behnke, BAM I.5, Berlin. A scheme of surface-modified nanoparticles (NPs) 

is shown in Figure 8. For surface modification 500 nmol PEG was added to the 

reaction solution per 1 mg polystyrene (PS). For bioconjugation in a second step 0.48 

nmol Herceptin was added per mg PEGylated PS.  
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Figure 8. Schematic illustration of surface-modified PSNPs  

PEG chains were coupled to Itrybe-loaded PSNPs via surface amino groups (NH2). Thiolated Herceptin 

antibodies were coupled to PEG via its maleimid group in a Michael-Addition107. Figure was modified from 

Steinhauser et al.107. 

 

The amounts of PSNPs used in this study are given as mg PS. Therefore, the number 

of particles per mg PS as well as the surface area are listed for different NP sizes in 

Table 1.  

 

Table 1. Characteristics of Itrybe-loaded PSNPs  

size 15 nm 25 nm 100 nm 

Itrybe molecules/ 
NP 

10 46 3100 

NPs/mg PS [1/mg] 5.4 x 1014 1.2 x 1014 1.8 x 1012 

relative amount: 
NPs/mg PS*  

296 64 1 

surface area/          
mg PS [m2/mg] 

0.38 0.23 0.06 

(Calculations were performed by Thomas Behnke, BAM I.5., Berlin.) 

* relative to 100 nm NPs 

 

Itrybe-loaded NPs of distinct sizes and surface modifications were analyzed in this 

work. Table 2 shows the composition of different NPs and their abbreviations, used in 

this study. 
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Table 2. Itrybe-loaded NPs of different sizes and surface modifications 

NP size 
surface 
group 

PEG chain 
size 

antibody abbreviation 

100 nm NH2 - - 100 nm-NH2 

100 nm NH2 1.5 kDa - 100 nm-PEG 1.5 kDa 

100 nm NH2 1.5 kDa Herceptin 100 nm-PEG 1.5 kDa-Her 

100 nm NH2 1.5 kDa 
2-fold 

amount* 
Herceptin 

100 nm-PEG 1.5 kDa-HER x2 

100 nm NH2 10 kDa Herceptin 100 nm-PEG 10 kDa-Her 

25 nm NH2 - - 25 nm-NH2 

25 nm NH2 1.5 kDa - 25 nm-PEG 1.5 kDa 

25 nm NH2 1.5 kDa Herceptin 25 nm-PEG 1.5 kDa-Her 

25 nm NH2 1.5 kDa 
5-fold 

amount* 
Herceptin 

25 nm-PEG 1.5 kDa-Her x5 

25 nm NH2 10 kDa - 25 nm-PEG 10 kDa 

25 nm NH2 10 kDa Herceptin 25 nm-PEG 10 kDa-Her 

15 nm NH2 - - 15 nm-NH2 

15 nm NH2 10 kDa - 15 nm-PEG 10 kDa 

15 nm NH2 10 kDa 
5-fold 

amount* 
Herceptin 

15 nm-PEG 10 kDa-Her x5 

15 nm NH2 1.5 kDa 
5-fold 

amount* 
Herceptin 

15 nm-PEG 1.5 kDa-Her x5 

15 nm NH2 
1/10 

amount*,   
1.5 kDa 

5-fold 
amount* 
Herceptin 

15 nm-PEG 1.5 kDa-1/10-Her x5  

* X/X amount and X-fold amount refers to variations in the amount of PEG (500 nmol/mg PS) or Herceptin 

(0.48 nmol/mg PS) used for coupling procedure.  

 

The amount of Herecptin that was successfully coupled to the surface of 100 nm 

particles was determined in a BCA assay following measurement of absorption 

spectra and correction for absorbance by Itrybe and scattering of the particles. 

Experiments were performed by Thomas Behnke, BAM I.5, Berlin. Table 3 shows the 

amount of Herceptin molecules per 100 nm NP used in this study. 
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Table 3. Number of Herceptin molecules successfully coupled on NPs 

probe 
Herceptin molecules/ 

NP 
Herceptin molecules/ 

mg PS 

100 nm-PEG 1.5 kDa-Her ~70 1.3 x 1014 

100 nm-PEG 1.5 kDa-Her x2 ~100 1.8 x 1014 

100 nm-PEG 10 kDa-Her, 
probe 1* 

~10 1.8 x 1013 

100 nm-PEG 10 kDa-Her, 
probe 2* 

~10 1.8 x 1013 

* probe 1 and 2 refers to two independently produced probes.  
 

2.2.3.4. Spectroscopic analysis 

Fluorescence conjugates: 

As dyes were coupled to Herceptin at different DP ratios, the amount of pH-Her and 

Alexa-Her used in the study always refers to the amount of Immunoglobulin G (IgG) 

in the respective conjugates. Fluorescence emission spectra of CypHer5E-Herceptin 

(in the following referred to as pH-Her) and Alexa Fluor 647-Herceptin (in the 

following referred to as Alexa-Her) conjugates were measured in a concentration of 5 

µg IgG in 75 µl phosphate buffered saline (PBS; 0.07 g/l). In order to evaluate the 

influence of pH-changes on fluorescence intensity of the conjugates they were 

measured in a solution with a pH of 7.5 and 5.5. The pH of PBS was adjusted with 1 

M NaOH and 1 M HCl solution and pH values were controlled again after addition of 

fluorescence probes and adjusted again to the respective value if necessary. 

Itrybe-loaded NPs: 

Excitation and emission spectra of Itrybe-loaded NPs with different surface-

modifications and sizes were recorded. For this purpose 0.5 g/l of 100 nm and 25 nm 

NPs and 2 g/l of 15 nm NPs were measured in 75 µl H2O.  

Measurements were performed in a spectrofluorometer. The settings used for 

recording of spectra are listed in section 2.2.8.1. 

2.2.3.5. In vitro determination of fluorescence intensities 

Fluorescence intensities of Itrybe-loaded NPs were measured to analyze influences of 

the environment on fluorescence of NPs. Itrybe-loaded NPs were measured in PBS or 

PBS containing 5 % BSA with a pH of 7.5 and 5.5, respectively.  The pH value of the 

solutions was adjusted as described in 2.2.3.4. For measurement 0.25 g/l of 100 nm 

and 25 nm and 0.5 g/l of 15 nm NPs in 150 µl of the respective solution were placed 
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in 96-well plates. Measurements were done in the Optix MX2 as described in section 

2.2.8.4.  

2.2.3.6. In vitro determination of fluorescence lifetimes 

Fluorescence lifetime (LT) analyses were performed in vitro in order to identify 

probe-derived signals in vivo according to their LT. LTs of the fluorescence 

conjugates pH-Her and Alexa-Her as well as of the respective free, hydrolyzed 

fluorescence dyes (in the following referred to as pH-OH and Alexa-OH) were 

determined in PBS or PBS containing 5 % BSA with a pH of 7.5 and 5.5, respectively. 

The pH of the solutions was adjusted as described in section 2.2.3.4. For 

measurement 3 µg (0.02 g/l) IgG or 0.03 nmol (0.2 mM) free dye in 150 µl of the 

respective solution were placed in 96-well plates. Measurements were performed in 

the Optix MX2 as described in section 2.2.8.4. 

2.2.4. Immunological methods 

2.2.4.1. Immunoassays 

Functionality of Herceptin after surface-conjugation to Itrybe-loaded NPs was 

evaluated via immunoassays. Here, specific binding to antigen-coated plates was 

analyzed and compared to the unspecific binding to uncoated plates and to binding of 

non-Herceptin-modified NPs. The extracellular domain of HER2, in the following 

referred to as HER2 antigen, was used as antigen. 

All steps of the immunoassay were performed at RT. 96-well plates were either 

coated over night with 2.5 g/l HER2 antigen in 70 µl TRIS buffered saline (TBS) 

buffer or treated only with TBS. Unspecific binding sites were blocked with 3 % BSA 

in TBS for 1h. NP-probes were added to the wells at different concentrations (from 

0.02 to 2 g/l) in 70 µl TBS. For competitive binding experiments a mixture of 14 µg 

Herceptin-labeled NP probe (0.2 g/l) and increasing amounts of free Herceptin (0.005 

to 1 µg) in 70 µl TBS were added per well. Probes were incubated for 2 h. After three 

washing steps with TBST (see section 2.2.2.4) the wells were covered with 100 µl 

TBS and fluorescence was directly measured in the Odyssey infrared imaging system.  

• TBS: 

140 mM NaCl 

20 mM TRIS-HCl, pH 7.5 
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2.2.5. Cell biological methods 

2.2.5.1. Cell culture conditions 

Cultivation: 

KPL-4, MDA-MB-231, and 3T3 cells were propagated in standard Dulbecco's Modified 

Eagle's Medium (DMEM) containing 4.5 g/l glucose and L-glutamine. The medium 

was supplemented with 10 % fetal calf serum (FCS). Cells were cultivated under 

standard cell culture conditions at 37 °C in a humidified atmosphere under 5 % CO2 

in an incubator and grown up to about 80 % confluency.  

For sub-cultivation medium was removed from the cells, cells were washed twice 

with sterile Dulbecco's Phosphate Buffered Saline (DPBS), and treated with 0.05 % 

trypsine-EDTA solution until they had detached from the dish. The enzyme was 

inhibited by addition of medium in which the cells were subsequently resuspended. 

When necessary, cells were counted in a Neubauer counting chamber and plated in 

the desired concentration.  

Cryoconservation: 

For cryoconservation eukaryotic cells were detached as described, centrifuged (1,200 

x g for 2 min at RT), resuspended in freezing medium (1-5 x 106 cells/ml) and 

aliquoted into storage vials. Vials were placed in an insulated box in a -80 °C freezer 

overnight and finally stored in liquid nitrogen. 

• Freezing medium: 

90 % FCS 

10 %  dimethyl sulfoxide (DMSO) 

Revitalization: 

For revitalization cryoconserved cells were quickly thawed in a 37 °C water bath after 

being removed from liquid nitrogen. Then, cells were pipetted in pre-warmed 

medium and centrifuged (1,200 x g for 2 min at RT). The medium was removed from 

the cells and cells were resuspended in medium and then placed into a flask 

containing medium.  

Mycoplasma test: 

Mycoplasma contamination may cause adverse effects, such as changes in 

metabolism, growth rate, viability, DNA, RNA and protein synthesis, morphology etc., 

which lead to unreliable experimental results. Therefore, cell cultures were regularly 

tested for the presence of mycoplasma using Mycoplasma Plus PCR Primer Set 

according to the manufacturer’s instructions. 
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2.2.5.2. Incubation of cells with fluorescence probes 

Fluorescence conjugates: 

To ensure better attachment of KPL-4 and MDA-MB-231 breast cancer cells to 4-well 

chambered coverglasses, they were covered with sterile poly-L-lysine solution (0.1 

g/l). After 3 h incubation at 37 °C, coverslips were washed several times with sterile 

PBS, and used for seeding of cells. 48 h prior to incubation with fluorescence probes 

cells were seeded at a density of 2 x 104 KPL-4 cells and of 1.2 x 104 MDA-MB-231 

cells per well in 500 µl DMEM. After 48 h the medium was removed and cells were 

washed once with PBS. Cells were supplemented with 500 µl DMEM and 0.1 M 4-(2-

hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffer containing 5 µg 

fluorescence conjugates or 0.2 nmol of the free fluorescence dyes (corresponding to 

the amount of dye in 5 µg conjugate with a DP ratio of 6) and incubated for 8 h at 37 

°C. In order to analyze signals deriving from membrane bound conjugates, probes 

were also incubated with the cells for 8 h at 4 °C where internalization should be 

strongly reduced5. Afterwards, the medium was removed and the cells were washed 

several times with PBS to remove unbound substances. Subsequently, cells were 

incubated with 1 µg Hoechst 33342 in 500 µl PBS (2 mg/l) for 10 min in order to 

stain the nuclei of living cells. Hoechst solution was removed and cells were covered 

with 500 µl PBS and directly used for fluorescence microscopy. The settings used for 

detection of fluorophores are listed in section 2.2.8.3. 

Itrybe-loaded NPs: 

Adherent breast cancer cells were seeded on poly-L-lysine-coated cover slips (treated 

as described above) in 24-well chambers 48 h prior to incubation with Itrybe-loaded 

NPs. KPL-4 cells were seeded at a density of 3 x 104 cells and MDA-MB-231 cells 

were seeded at a density of 1.8 x 104 cells per well in 500 µl DMEM. After 48 h the 

medium was removed and cells were washed once with PBS and supplemented with 

500 µl DMEM and 0.1 M HEPES buffer containing NPs at a concentration of 1 g/l. The 

cells were incubated for different time periods (30 min to 5 h) at 37 °C and 4 °C. 

Afterwards, the medium was removed and the cells were washed 3 times with PBS to 

remove unbound substances. Subsequently, cells were fixed with 4 % formaldehyde 

in PBS for 10 min on ice and then washed 3 times with PBS again. The cells were 

mounted with an antifade reagent supplemented with 4',6-diamidino-2-phenylindole 

(DAPI) for counter stain of cell nuclei. Samples were allowed to dry for 24 h at 4 °C 

and subsequently used for fluorescence microscopy. The settings used for detection 

of fluorophores are listed in section 2.2.8.3. 
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2.2.5.3. Assessment of cell viability  

Effects of NPs on proliferation and viability of cells were quantified via use of WST-1 

cell proliferation reagent. This assay is based on the enzymatic cleavage of the 

tetrazolium salt WST-1[2-(4-Iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-

2H-tetrazolium] (WST-1) to a water-soluble formazan dye by mitochondrial 

succinate-tetrazolium reductase which is active in viable cells. Absorbance of the dye 

is directly proportional to the amount of viable cells. 

3T3 mouse fibroblasts were seeded at a density of 5 x 103 cells/well in 96 well plates 

24 h before NP treatment. Cells were incubated with 0.01 to 2 g/l of 100 nm NPs or 

left untreated in DMEM for 24 h at 37 °C. To consider the absorbance caused by the 

Itrybe-loaded NPs itself, prior to addition of WST-1-reagent absorbance was 

measured in the Wallac 1420 Victor 2 Multilabel Counter at 450 nm. 10 µl of WST-1 

ready-to-use solution was added to the wells and after 30 min of incubation at 37 °C 

absorbance was measured again at 450 nm. To obtain only the signals derived from 

the formazan dye, absorbance measured prior to addition of WST-1 was subtracted 

from the respective wells measured after incubation with WST-1. 

2.2.5.4. Cell preparation for animal experiments  

One day before implantation, KPL-4 or MDA-MB-231 cells were sub-cultivated to 

achieve exponential growth. On the day of implantation cells were trypsinized and 

washed twice with medium. The cell number was determined as described in 2.2.5.1 

and suspension volumes containing 5 x 106 KPL-4 cells or 1 x 106 MDA-MB-231 cells 

were pelletized under centrifugation at 1000 x g, the medium was removed, and cells 

were resuspended in 500 µl medium. 

2.2.6. In vivo experiments 

All animal experiments were according to § 8 of the animal protection law in the 

version of 2006 and all animal protocols were approved by the administration of 

lower Saxony with the animal experiment number 33.14-42502-04-10/0064.  

2.2.6.1. Animal models 

Experiments were performed on female athymic nude mice, strain NMRI-Fox1nu/nu. 

Feeding occurred via pelletized Extrudate 1439 food and acidulated water with a pH 

of 2.5. Two weeks before the mice were scanned in the Optix MX2 they received 

chlorophyll-depleted low fluorescent food, GLP Nafag feed 890 or Regime 210, 

U8959A01R. The mice were maintained in a sterile environment in special cages with 
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filter huts placed in a scantainer. Cages, bedding, and water were autoclaved and the 

food was gamma irradiated. 

2.2.6.2. Orthotopic implantation of breast tumor cells in mice 

KPL-4 and MDA-MB-231 breast tumor cells were implanted in the right abdominal 

mammary fat pad of female nude mice at the age of 6 to 12 weeks. For this purpose 

mice were anesthetized by intraperitoneal (i.p.) injection of 15 mg/kg body weight 

xylazine und 75 mg/kg body weight ketamine in a 1:1 dilution with isotone sodium 

chloride (NaCl, 0.9 %) solution using an insulin syringe (Ominifix 40 solo) and a 

sterican needle (26G x ½). The solution containing the respective amount of tumor 

cells (5 x 106 KPL-4 cells or 1 x 106 MDA-MB-231 cells, prepared as described in 

section 2.2.5.4) was centrifuged, the medium was discarded, and cells were 

resuspended in a volume of 30 µl PBS and taken up with an insulin syringe with 

integrated needle (30G). Anesthetized mice were placed under a laminar flow in a 

dorsal position and the skin was opened with a small incision in the region over the 

right abdominal mammary fat pad. Tumor cells were implanted very slowly into the 

mammary fat pad. The needle was slowly withdrawn after a 1-minute delay. The 

mammary gland was then returned, and the incision was closed using absorbable 

surgical suture material, 4/0. Afterwards, mice were placed in cages on a heating 

plate at 37 °C for 3 h. In time intervals of three days body weight and general 

condition of the mice were controlled. 

2.2.6.3. Application of probes 

Mice were used for in vivo fluorescence imaging experiments 1 to 4 month after 

tumor implantation when tumors reached sizes of approximately 0.3 cm3. 

Biodistribution experiments with NPs were carried out on tumor-free nude mice. All 

fluorescent probes were injected solved in NaCl, 0.9 % with an insulin syringe with 

integrated needle (30G x ½). During injection, the animals were anesthetized with 

vaporized isoflurane at 0.8 – 1 % concentration.  

The amounts of fluorescence probes injected in mice and the different application 

methods are listed in Table 4. Before and after probe injection, mice were imaged in 

the Optix MX2 as described in section 2.2.8.4. 
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Table 4. Amount and application methods of fluorescent probes injected in mice  

Different amounts of fluorescent Herceptin-conjugates, the respective free fluorescence dyes, or Itrybe-

loaded NPs were injected in mice, either intravenously (i.v.), subcutaneously (s.c.), or intratumoral (i.t.).   

probe amount volume application 

fluorescence conjugates 25 µg IgG 150 µl i.v. 

free dyes 0.8 nmol* 150 µl i.v. 

fluorescence conjugates 10 µg IgG 50 µl s.c. 

free dyes 0.1 nmol 50 µl s.c. 

100 nm NPs 400 µg 200 µl i.v. 

25 nm NPs 400 µg 200 µl i.v. 

15 nm NPs 1 mg 200 µl i.v. 

15 nm NPs 0.8 – 100 µg 30 µl s.c. 

15 nm NPs 1.6 µg 30 µl i.t. 

* Amount corresponds to the amount of dye in the Herceptin-conjugates with a DP ratio of 5. 

2.2.6.4. Dissection 

At the end of the in vivo experiments mice were sacrificed by cervical dislocation 

under high concentration of isoflurane anesthesia. The animals were examined 

macroscopically for noticeable abnormalities and tumor development. Subsequently, 

tumors were excised and tumor sizes were measured by a caliper. Under the 

assumption that the tumor shape is ellipsoid the tumor volume was calculated 

according to the formula V [cm3] = (length x width x height) / 2. Furthermore, the 

abdomen and the thoracic cavity were opened and liver, kidneys, spleen, lung, heart, 

stomach, and gut were isolated and imaged ex vivo.  

2.2.6.5. Tumor preparation 

One half of the tumor was stored in a cryotube at - 80 °C and used for mRNA and/or 

protein analysis. The other half was fixed with formaldehyde (4 % in PBS) over night, 

embedded in paraffin and used for microscopic examination of tumor tissue. For this 

purpose, the formalin fixed tumors were placed in Tissue Tek cassettes, rinsed under 

the water-tap for half an hour and dehydrated and paraffinized in the apparatus for 

tissue processing over night.  
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The following steps were performed: 

repetition cycles time  applied substance 

three 1 h 75 % ethanol 

two 1 h 30 min 96 % ethanol 

three 1 h 15 min 100 % ethanol 

two 2 h xylol 

two 1 h paraffin  

 

2.2.7. Histological examinations of tumor tissue 

2.2.7.1. Generation of paraffin sections from tumor tissue 

Sections of the paraffin-fixed tumors were made with the microtome in 2.5 to 5 µm 

thickness. Sections were attached to object slides, and stored at RT until staining.  

2.2.7.2. Haematoxylin-Eosin (HE) staining of paraffin-embedded 

tumor sections 

Sections were incubated over night at 37 °C in the incubator to improve attachment 

of the tissue to the microscope slides. Afterwards the tumor sections were 

deparaffinized twice with xylol followed by rehydration in decreasing concentrations 

of ethanol (each for 2 min). The Haematoxylin staining of cell nuclei was done for 5 

to 10 min and after washing with water the cell structures were stained with Eosin G 

(1: 10 dilution in H2O) for 5 to 10 min. Tumor sections were washed with water and 

dehydrated with increasing concentrations of ethanol (50 %, 70 %, 90 %, 100 %) 

and xylol and mounted in hydrophobic mounting medium (DePex). Sections were 

analyzed under the light microscope.  

2.2.7.3. CD31 staining 

Paraffin-embedded tumor sections (2.5 µm thickness) were stained with the anti-

endothelial cell marker cluster of differentiation 31 (CD31) antibody after being 

deparaffinized as described in section 2.2.7.2. Prior to antibody treatment, sections 

were incubated for 20 min in target retrieval solution at 98 °C in a steamer. After 

cooling down, the sections were washed twice with TRIS buffer. The endogenous 

peroxidase was blocked with 3 % hydrogen peroxid in PBS for 10 min at RT. 

Afterwards unspecific binding sites were blocked with commercial blocking buffer 

from fish for 15 min at RT. Incubation of tissue with anti-mouse CD31 antibody at a 
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1:100 dilution was carried out in commercial background reducing antibody diluent 

over night at 4 °C. Afterwards, the sections were washed twice with TRIS buffer and 

incubated with the secondary HRP-coupled anti-rat antibody at a 1:200 dilution in 

TRIS-buffer for 1 h at RT. Sections were washed twice with TRIS buffer followed by 

incubation with peroxidase substrate, 3-amino-9-ethylcarbazole (AEC) for 30 min at 

RT, and washed twice with water. Staining of cell nuclei was performed by incubation 

in Haematoxylin for 10-20 sec. The tumor sections were washed with water and 

mounted with aqueous mounting medium (Aquatex). CD31 staining was analyzed 

under the light microscope. 

• TRIS buffer 

 50 mM TRIS-HCl (pH 7.6) 

 150 mM NaCl 

2.2.7.4. Near-infrared (NIR)-microscopic analysis of tumor 

sections 

Tumors treated in vivo with fluorescent probes: 

Paraffin sections (2.5 µm thickness) of tumors of mice treated with Herceptin-

conjugates in vivo were deparaffinized as described in section 2.2.7.2. and mounted 

with hydrophobic mounting medium containing DAPI for counterstain of cell nuclei. 

Samples were allowed to dry for 24 h at 4 °C. Sections were analyzed under the 

fluorescence microscope as described in section 2.2.8.3. 

Ex vivo treatment with fluorescent probes: 

Paraffin embedded tumor sections (5 µm thickness) were deparaffinized as described 

in section 2.2.7.2. The sections were washed 3 times with TBS containing 1 % goat 

serum and blocked with TBS and 10 % goat serum for 1 h at RT. Tumor samples 

were incubated with Itrybe-loaded NPs in TBS and 10 % goat serum for 2 h at 4 °C. 

Afterwards, the sections were washed several times with TBST to remove unbound 

NPs. The cells were mounted with an antifade reagent supplemented with DAPI for 

counter stain of cell nuclei and allowed to dry for 24 h at 4 °C. Sections were 

analyzed under the fluorescence microscope as described in section 2.2.8.3. 

2.2.8. Imaging devices 

2.2.8.1. Spectrofluorometer 

Excitation and emission spectra of fluorescence probes and dye-loaded NPs were 

recorded in a Spectrofluorometer QuantaMaster equipped with a xenon lamp as 

excitation source and two fluorescence detectors. The solutions were measured in a 
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quartz glass precision cuvette with a light pass of 3 x 3 mm. Spectra were recorded 

with a step size of 1 nm and an integration time of 1 sec. Wavelengths settings used 

for recording of spectra are listed in Table 5. Analysis of spectroscopic measurements 

was performed with the software FeliX32 Analysis 1.0. Measurements are quantified 

as the mean of signals recorded from both detectors. 

 

Table 5. Settings used for recording of spectra of fluorescent probes 

probe 

excitation scan emission scan 

λem [nm] 
recording 

range [nm] λex [nm] 
recording 

range [nm] 

fluorescence 
conjugates 

not analyzed not analyzed 635 610 - 750 

Itrybe-loaded NPs 740 - 770*  450 - 740 590 650 - 875 

λem: excitation wavelength; λex: emission wavelength 

* λem was chosen according to the absorption maximum of the NPs with different sizes, which was 740 nm 

for 15 nm NPs, 750 nm for the 25 nm NPs, and 770 nm for the 100 nm NPs. 
 

 

2.2.8.2. Odyssey infrared imaging system 

Functionality of bioconjugated Itrybe-loaded NPs was evaluated in the Odyssey 

infrared imaging system (see section 2.2.3.3 for production of NPs) by exciting the 

probes with a 685 nm laser diode. Fluorescence intensity was detected in a raster 

mode with a resolution of 84 µm. Analysis of fluorescence measurements was 

performed with the Odyssey Application Software, Version 2.1.  

Average fluorescence intensity was calculated as the sum of the intensity in an area 

set in the respective well divided by the number of measurement points in the area. 

2.2.8.3. Fluorescence microscope 

For examination of fluorescence stained human KPL-4 and MDA-MB-231 breast tumor 

cells, the fluorescence microscope Axiovert 200M equipped with a NIR-sensitive 

ORCA-ER digital camera was used. Filter settings are illustrated in Table 6. 

 

Table 6. Microscopy filter settings used for detection of fluorophores 

probe λex [nm] 
beam splitter 

[nm] 
λem [nm] 

fluorescence probes 640 ± 15 660 690 ± 25 

Itrybe-loaded NPs 620 ± 30 662 809 ± 45.5 

DAPI, Hoechst  365 ± 12.5 395 445 ± 25 
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Image generation and processing were performed with the software systems 

AxioVision Rel.4.6. and ImageJ, respectively. 

2.2.8.4. In vivo NIRF imager, Optix MX2 

The Optix MX2 system13 was used for characterization, quantification and illustration 

of NIRF probes in vitro and their localization in living animals. The system is a 

fluorescence imager working in reflectance mode and scanning in a raster scheme 

with a minimal step size of 0.5 mm. During the scan each raster point is irradiated 

with 9 ps laser impulses with a repetition rate of 80 MHz. The system utilizes a single 

photon counting detector, measuring the time between an excitation pulse and the 

detection of the first fluorescence photon. As illustrated in Figure 9, the generated 

temporal point spread function (TPSF) is a curve representing the distribution of the 

number of photons coming from a raster scan point on the sample over time. Under 

the assumption of a mono exponential decay of the measured intensity the 

fluorescence LT is calculated by linear regression in the slope of the logarithmic TPSF 

(Figure 9). Thus, the TPSF provides information about the fluorescence intensity and 

LT of the fluorescence transition. 

 

Figure 9. TPSF of one raster 

scan point 

Logarithmic photon time of 

flight histogram (TPSF) 

exemplarily shown for one 

scan point taken from a scan 

of a mouse injected with a 

fluorophore. The time between 

excitation pulse and detection 

of fluorescence photons is 

depicted on the x-axis. The 

fluorescence intensity in a log10 scale is illustrated on the y-axis. The fluorescence intensity is determined 

by the area under the curve. From the decay of the curve the fluorescence LT is calculated.      

 

For scanning mice were placed inside the imaging device on a table preheated to 37 °C 

and anesthetized with vaporized isoflurane at 0.8 to 1 % concentration throughout 

the imaging session.  

The excitation lasers (λex) and emission filters (λem) selected for detection of the 

fluorescence conjugates, free fluorescence dyes and Itrybe-loaded NPs are shown in 

Table 7.  
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Table 7. Laser and filter settings used for detection of fluorophores in the Optix MX2 

probe λex [nm] λem [nm] 

fluorescence conjugates 635 670 ± 20 

Itrybe-loaded NPs 635/670* 700 long pass 

* Due to the very bright absorption spectrum of Itrybe, excitation was possible with the 635 and 670 nm 

laser. 

 

Table 8 shows the measurement time per raster position (integration time) and step 

size generally used for the different scans in the Optix MX2.  

 

Table 8. Integration time and step sizes used for fluorescence measurements in the Optix MX2 

situation: in vivo ex vivo in vitro 

scan: tumor 
whole 
body tumor 

other 
organs solution 

integration 
time [sec.] 

1 0.7/0.2* 1 0.7 1 

step size 
[mm] 

1 1.5 1 1.5 0.5 

* Biodistribution experiments in healthy mice were performed with an integration time of 0.2 for whole 

body scans. 

 

The laser power was adapted automatically for optimal detection of the fluorescence 

yield. Analysis of the fluorescence measurements was performed with the software 

optiview 1.00.00 (ART). 

The following parameters were calculated for data analysis: 

Normalized counts (NC): 

The measured fluorescence signals (counts) were normalized for varying laser power 

and integration times, thus allowing comparison of measurements with different 

settings. 

Average fluorescence intensity: 

The average fluorescence intensity over a certain area was determined as the sum of 

the NC in the area divided by the number of measurement points in the area. 

Subtraction of autofluorescence: 

In order to eliminate unspecific signals deriving from endogenous particles of the 

mouse, subtraction of autofluorescence was performed. For this purpose, the average 
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fluorescence intensity in a region of the prescan of the mouse (e.g. the tumor area) 

was calculated and subtracted from the intensity maps after probe application. 

Contrast to noise ratio (CNR): 

To consider the signal difference from the average intensity over a certain area and 

those over the background, the contrast to noise ratio (CNR) was calculated. This 

ratio provides information about the level of signal differences and the affection of 

the signal by the noise (e. g. electrical- or photon noise). The CNR was calculated as 

followed: 

 

 

Fluorescence LT: 

Fluorescence LT is the average time an atom stays in the meta-stable state before its 

transition to the ground state under emission of a fluorescent photon. Thus the LT of 

the fluorescence transition is the characteristic value of a fluorescent probe. 

Fluorescence LT measurements enable a differentiation between fluorescence signals 

originating from the fluorescence probe and unspecific- or autofluorescence. 

Average fluorescence LT: 

The average fluorescence LT over a certain area was determined as the sum of the 

LTs in the area divided by the number of measurement points in the area. 

LT goodness of fit: 

For determination of the quality of the measured LT, the LT goodness of fit was 

calculated. Since, the decay of the fluorscence over a certain point is modeled with a 

mono exponential decay function, a signal derived from two or more fluorescence 

sources would no longer show a mono exponential decrease but an overlay of several 

signal decreases. Thus, the determined LT would arise from two or more fluorescent 

species leading to a high LT error and a poor accuracy of the LT estimation. A LT-

calculation with a LT goodness of fit of 1 ± 0.2 is considered to have a high accuracy. 
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3. RESULTS 

3.1. Characterization of tumor model organisms 

Fluorescent probes evaluated in this study were coupled to Herceptin in order to 

achieve specific binding of probes to HER2-positive breast tumor cells in vitro and in 

vivo. Therefore, HER2-positive, KPL-4101 as well as HER2-negative, MDA-MB-231102 

tumor models were established. Prior to evaluation of fluorescence probes in vivo, 

tumor cells were analyzed for HER2 expression levels and their suitability to bind 

Herceptin-conjugated probes. 

3.1.1. Orthotopic breast tumor models in nude mice 

Tumor-bearing mice were generated by orthotopic implantation of KPL-4 or MDA-MB-

231 tumor cells in the right abdominal mammary fat pad of female nude mice at the 

age of 6-12 weeks. Imaging of mice bearing KPL-4 tumors started 8.3 ± 4.6 weeks 

after implantation when the tumors reached a mean size of 0.28 ± 0.19 cm3 (n = 

24). MDA-MB-231 tumor-bearing mice were scanned after 9.9 ± 9.2 weeks, when 

tumors had a mean size of 0.25 ± 0.07 cm3 (n = 16). In Figure 10, representative 

KPL-4 (Figure 10A) and MDA-MB-231 (Figure 10B) tumor-bearing mice are shown. 

Due to the lack of fur in nude mice, the tumor is clearly visible in vivo (Figure 10A,B; 

upper part) and the growth rate can be assessed by caliper measurements easily. 

Section through the excised tumors show necrotic areas, which have been already 

developed at the described tumor size in both models (Figure 10A,B; lower part). In 

addition, for the KPL-4 tumors, a soft consistency at the tumor center was noted 

(Figure 10A, lower, right picture). No invasive growth and metastases were detected 

in both tumor types. 
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Figure 10. Macroscopic appearance of orthotopic breast tumor xenografts in nude mice 

Human tumor cells were implanted orthotopically in the right abdominal mammary fat pad of female nude 

mice. A,B. Representative ex vivo picture of (A) a nude mouse bearing a KPL-4 tumor (T) with a size of 

0.22 cm3 and (B) a nude mouse bearing a MDA-MB-231 tumor (T) with a size of 0.36 cm3. (A,B) Both 

tumors are supplied by large-diameter blood vessels (V; lower part, left). A section through the excised 

tumors (lower part, right) illustrates inhomogeneous tissue with necrotic areas. 

 

Morphology of KPL-4- and MDA-MB-231 tumors was evaluated on sections stained 

with HE or with a CD-31 antibody for assessment of tumor blood vessels. For both 

tumor types, KPL-4 (Figure 11A-C; n = 12) and MDA-MB-231 (Figure 11D-F; n = 8) 

cancerous cells and also vital tumor tissue, such as mammary glands and ducts can 

be observed (Figure 11A,D; black arrow). Both tumors are supplied by several small-

diameter capillaries (Figure 11C,F; red stars). Towards the tumor border a network 

of microvessels is observed whereas the vessel density seems to be lower towards 

the center (data not shown). Moreover, necrotic areas can be seen between vital 

tumor tissue (Figure 11A,B,D,E; white arrow). Here, less necrosis is observed for the 

MDA-MB-231 tumors (Figure 11A,B; white arrow) that is, in comparison to the KPL-4 

tumors (Figure 11D,E) located more towards the tumor center.  
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Figure 11. Histology of breast tumor xenografts 

A-C. Sections of a representative KPL-4 tumor (n = 12). A. HE staining shows several necrotic areas 

(white arrows) between vital tumor tissue and normal breast tissue (black arrow). B. HE staining at a 

higher magnification illustrates a necrotic area in detail (white arrow). C. CD31 staining marks endothelial 

cells (red stars).  D-E. Sections of a representative MDA-MB-231 tumor (n = 8). D. HE staining shows 

some necrotic areas (white arrows) between vital tumor tissue (black arrow). E. HE staining at a higher 

magnification illustrates a necrotic area in detail (white arrow). F. CD31 staining marks endothelial cells 

(red stars). Images A,D. were taken with a x 2.5 objective and images B,C,E,F. were taken with a x 10 

objective. 

 

Taken together, KPL-4 and MDA-MB-231 tumor cells developed orthotopic breast 

tumors in nude mice that are partly necrotic but well vascularized. 

3.1.2. HER2 expression in breast tumors 

Tumors used in this study were analyzed for HER2 mRNA expression levels via 

quantitative real-time PCR. In Figure 12, the normalized expression ratio of HER2 in 

KPL-4 and MDA-MB-231 cells as well as in a corresponding tumor, are illustrated. 

High expression ratios were found in a KPL-4 tumor (sample no. 3383) and in KPL-4 

cells whereas a MDA-MB-231 tumor (sample no.3450) and MDA-MB-231 cells show a 

very low HER2 expression. 
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Figure 12. Expression 

levels of HER2 mRNA in 

KPL-4 and MDA-MB-231 

cell lines and tumors 

Representative results of 

a quantitative real-time 

PCR (n = 2). Expression 

levels of HER2 are 

normalized to the amount 

of human transferrin. The 

highest normalized ratio 

detected in the KPL-4 

tumor (sample no. 3383) 

was set to 100 %. All measurements were performed in triplicate. 

 

In addition, the expression levels of the HER2 protein were determined. For this 

purpose, 50 µg of total protein amount of KPL-4 and MDA-MB-231 cells as well as of 

two tumors, from each cell type were separated via SDS-PAGE and analyzed for the 

presence of HER2 protein by Western blot. As illustrated in Figure 13, KPL-4 cells and 

-tumors both show high expression of HER2 whereas MDA-MB-231 cells and tumors 

show a very weak protein band at the size of HER2 (185 kDa) after incubation with 

the anti-HER2 antibody. Staining for actin revealed that for all samples a comparable 

amount of protein was used. (The Western blot experiments were performed by Dr. 

Fernanda Ramos.)  

 

 

Figure 13. HER2 

protein levels in KPL-4 

and MDA-MB-231 cell 

lines and tumors 

Western blot analysis 

revealed that KPL-4 

cells (left) and tumors 

(right; samples no. 

3383 and 3380) express 

HER2 protein showing a 

band with the size of 

185 kDa after 

incubation with an anti-

HER2 antibody (upper 

panel). In contrary, 

almost no staining can be observed in the MDA-MB-231 cells (left) and tumors (right; samples no. 3444 

and 3450). Staining of actin reveals comparable amounts of total protein in all samples (lower panel). 

Representative results of three independent experiments performed by Dr. Fernanda Ramos are shown. 
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Taken together, KPL-4 cells as well as tumors developed from these cells express 

HER2, on the mRNA and protein level. In contrary, MDA-MB-231 cells and tumors 

show a very low expression of HER2. Therefore, KPL-4 cells (defined as HER2-

positive) provide an excellent model for the evaluation of Herceptin-conjugated 

fluorescence probes whereas MDA-MB-231 cells (defined as HER2-negative) were 

used as negative controls. 

3.1.3. Validation of tumor models for evaluation of fluorescence 

probes 

To evaluate the suitability of KPL-4 and MDA-MB-231 tumors, to be applied for 

evaluation of novel fluorescent conjugates in vivo, it is important to ensure that the 

dye-coupled Herceptin binds to HER2-expressing tumors that developed in mice. In 

order to enable a high sensitivity of signal detection, fluorescence distribution in the 

tumor was investigated by using an always-on fluorescent Herceptin-conjugate with 

high amounts of dyes per antibody. 24 h after i.v. injection of Alexa-Her at a DP ratio 

of 3.4, one KPL-4- and one MDA-MB-231 breast tumor were examined under a 

fluorescence microscope. As shown in Figure 14A, Alexa-Her-derived fluorescence 

can be detected inside the KPL-4 tumor, located around vital tumor cells. The 

antibody seems to be not equally distributed in the tumor tissue: Stronger 

fluorescence is observed in some clustered regions whereas signals in other areas are 

comparable weak. In contrary, as illustrated in Figure 14B, almost no Herceptin 

conjugate-derived signals can be detected inside the control MDA-MB-231 tumor. 
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Figure 14. Herceptin-conjugates bind to HER2-expressing tumors in vivo 

Sections of paraffin fixed tumors were examined under a fluorescence microscope with a x 40 objective. A 

KPL-4 and a MDA-MB-231 tumor excised from mice 24 h after receiving i.v. injections of 25 µg Alexa-Her 

at a DP ratio of 3.4 is shown. For each box, on the left upper side, counter stain of cell nuclei with DAPI 

and on the left lower side, probe-derived signals are illustrated. Merged images of the cell nuclei (blue) 

and the probe (red) are shown on the right. A. The Herceptin-conjugates are detected inside the KPL-4 

tumor. Some tumor areas show stronger accumulation of the conjugates then others. B. In the MDA-MB-

231 tumor almost no Alexa-Her derived fluorescence is detected. The exposure time for detection of Alexa-

Her was 300 ms. Bars represent 50 µm. 

 

Here, we confirmed that breast tumors of HER2-positive, KPL-4 and HER2-negative, 

MDA-MB-231 cells can be used for the evaluation of Herceptin-conjugated 

fluorescence probes.  
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3.2. Improvement of tumor detection via pH-sensitive 

NIRF probes 

There is a high demand for innovative probes with improved fluorescent properties to 

increase the sensitivity of tumor detection in vivo. In this context, functional 

fluorescence dyes that selectively activate at the targeted tumor site are promising 

tools to reduce unspecific signals in the background deriving from circulating and 

unbound fluorescence probes. 

In this part of the work, the functionality and sensitivity of the pH-sensitive tumor-

specific probe, pH-Her was examined and compared to the always-on fluorescence 

conjugate Alexa-Her.  

3.2.1. pH-Her conjugates at different DP ratios increase 

fluorescence in an acidic environment 

In order to investigate the spectroscopic properties of different fluorescence probes 

with distinct dye to protein (DP) ratios, ranging from statistically 0.5 up to 6.4 dye 

molecules per Herceptin, fluorescence emission spectra of Herceptin-conjuates were 

recorded. To illustrate influences of pH on fluorescence emission, the spectra of all 

probes were measured in a neutral pH of 7.5 and an acidic pH of 5.5.  

As illustrated in Figure 15, the shapes of the emission spectra of the pH-sensitive 

antibody-dye-conjugates, pH-Her and the always-on control conjugates, Alexa-Her 

are comparable to those of the free fluorescence dyes (CypHer5E and Alexa Fluor 

647) showing an emission maximum at about 665 nm for pH-Her and about 668 nm 

for Alexa-Her (for details see section 2.2.3.1, Figure 7). In an acidic environment (pH 

of 5.5; n = 3), all pH-Her probes increase their fluorescence compared to 

measurements at a neutral pH (of 7.5; n = 3). In contrast, the always-on Alexa-Her 

probes show no remarkable change in fluorescence in response to a low pH (n = 3). 
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Figure 15. Fluorescence emission spectra of probes at different pH 

Representative fluorescence emission spectra of pH-Her and Alexa-Her probes recorded from 620 to 750 

nm at λex of 635 nm in a spectrofluorometer (n = 3). Probes were measured in PBS at a pH of 7.5 (blue 

curve) and of 5.5 (red curve). A-F. Fluorescence of pH-Her with different DP ratios (from 0.5 to 6.4) 

remarkably increases in a pH of 5.5 compared to a pH of 7.5. G,H. No remarkable change in fluorescence 

can be observed for the Alexa-Her probes at low and high DP ratios (of 1.3 and 3.4) in response to an 

acidic pH. 
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Table 9, summarizes the fluorescence intensities of all probes calculated from the λem 

maximum of the spectra illustrated in Figure 15. The pH-Her and Alexa-Her 

conjugates both show a clear tendency of higher fluorescence with an increase in DP 

ratio. The later probe also demonstrates much higher intensity when compared to 

pH-Her at comparable DP ratios. For example, the mean intensity of pH-Her with a 

DP ratio of 1.2 at a pH of 5.5 is 44,446 counts/s whereas Alexa-Her with a DP ratio of 

1.3 has an almost 4-fold higher mean fluorescence of 169,582 counts/s, under the 

same experimental conditions. pH-Her conjugates reveal a slightly less pH-sensitivity 

with increasing DP ratios. For example, pH-Her with a DP ratio of 5.0 shows a 3.9-

fold increase in fluorescence when measured in a neutral pH in correspondence to a 

pH of 5.5 (factor). In comparison, pH-Her with a DP ratio of 1.6 shows the highest 

increase in fluorescence with a factor of 5.6. In contrast, both Alexa-Her conjugates 

do almost not change fluorescence in a low pH.   

 

Table 9. Fluorescence intensities of Herceptin-conjugates in dependence of pH 

Fluorescence of 0.07 g/l conjugates was recorded in a spectrofluorometer at λem of 665 nm for pH-Her and 

668 nm for Alexa-Her. Measurements were performed in PBS at a pH of either 7.5 or 5.5. The fluorescence 

counts/s of three independently performed experiments (1 to 3) as well as the mean values are illustrated. 

The pH-sensitivity of the conjugates is shown as the factor of the mean fluorescence at a pH of 5.5 divided 

by the mean fluorescence at pH 7.5. 

pH-Her conjugates   

DP 0.5 
pH 7.5 

[counts/s] 
 

pH 5.5 
[counts/s] 

 DP 1.2 
pH 7.5 

[counts/s] 
 

pH 5.5 
[counts/s] 

1 4,311  23,624  1 8,415  38,205 

2 3,445  24,161  2 9,186  52,740 

3 5,202  23,457  3 9,048  42,393 

mean           
 

4,319            
± 879  23,747               

± 368  
mean 

 
8,883            
± 411  44,446              

± 7,482 

factor  5.5   factor  5.0  

         

DP 1.6 
pH 7.5 

[counts/s] 
 

pH 5.5 
[counts/s] 

 DP 1.8 
pH 7.5 

[counts/s] 
 

pH 5.5 
[counts/s] 

1 11,890  67,832  1 12,963  58,480 

2 10,411  59,381  2 11,534  56,458 

3 9,751  51,224  3 13,136  52,796 

mean 
 

10,684   ± 
1,095  59,479       

± 8,305  
mean 

 
12,544  ± 

879  55,912       
± 2,881 

factor  5.6   factor  4.5  
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pH-Her conjugates 
 

     

DP 5.0 
pH 7.5 

[counts/s] 
 

pH 5.5 
[counts/s] 

 DP 6.4 
pH 7.5 

[counts/s] 
 

pH 5.5 
[counts/s] 

1 28,155  109,445  1 32,622  120,354 

2 23,283  97,068  2 40,924  174,290 

3 21,818  80,698  3 20,990  82,792 

mean 
 

24,418   ± 
3,318  95,737       

± 14,419  
mean 

 
31,512   ± 

10,013  125,812     
± 45,992 

factor  3.9   factor  4.0  
 

Alexa-Her conjugates     

DP 1.3 
pH 7.5 

[counts/s] 
 

pH 5.5 
[counts/s] 

 DP 3.4 
pH 7.5 

[counts/s] 
 

pH 5.5 
[counts/s] 

1 157,824  152,775  1 317,535  264,915 

2 152,639  163,651  2 332,074  302,574 

3 169,503  192,321  3 338,816  310,969 

mean 
 

159,988 ± 
8,638  169,582     

± 20,430  
mean 

 
329,475 ± 

10,876  292,819     
± 24, 528 

factor  1.1   factor  0.9  

 

After spectroscopic characterization, two pH-Her conjugates with distinct properties 

were chosen for further analysis: pH-Her with a low DP ratio of 1.6 (pH-Her DP 1.6) 

due to its high pH-sensitivity (5.6-fold increase in fluorescence from pH 7.5 to pH 

5.5) and pH-Her with a high DP ratio of 5.0 (pH-Her DP 5.0) due to its relatively high 

fluorescence intensity (96,000 counts of 0.07 g/l probe at a pH of 5.5). As controls, 

the always-on conjugates Alexa-Her with a DP ratio of 1.3 (Alexa-Her DP 1.3) and 

Alexa-Her with a DP ratio of 3.4 (Alexa-Her DP 3.4) were used for further 

experiments in order to have probes with low and high DP ratios, comparable to the 

selected pH-Her probes.   

3.2.2. LTs of fluorescence probes are influenced by the 

environment 

Due to its comparable high pH-sensitivity, pH-Her DP 1.6 was applied for LT-gated 

analysis in vivo. Therefore, LTs of pH-Her DP 1.6 and of the control conjugate Alexa-

Her DP 1.3 were analyzed in detail and compared to LTs of the respective free 

fluorescence dyes pH-OH and Alexa-OH. 
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The influence of the environment on the LT of pH-sensitive- and control-probes was 

analyzed by examination of the probes under different conditions that are known to 

influence LTs, like pH (pH of 7.5 and 5.5) or presence of proteins (PBS/BSA 

5%)2,108,109. Here, BSA was chosen as serum albumin presents the main plasma 

protein (60 %) in humans110. In addition, LTs were also determined under in vivo 

conditions after s.c. injection of probes in mice. The mean LT of all measurements for 

each probe was defined as the predicted LT and used for probe identification in in 

vivo LT-imaging.  

As summarized in Table 10, pH-Her DP 1.6 has a mean LT of 1.3 ns and shows low 

variation upon changes in pH, in the presence of proteins, or after s.c. injection. 

Alexa-Her DP 1.3 has a mean LT of 1.5 ns and reveals slightly longer LTs in the 

presence of proteins (BSA). The respective free hydrolyzed fluorophores pH-OH and 

Alexa-OH, both have shorter mean LTs (of 1.1 and 1.3 ns) compared to the 

corresponding Herceptin-conjugated flurophores, pH-Her and Alexa-Her. Moreover, 

LTs of both free dyes increase in the presence of proteins, especially at a low pH as 

well as after s.c. injection in mice.  

 

Table 10. Determination of the probes’ LT under different conditions 

LTs of pH-sensitive- and control-probes were determined in PBS and PBS/BSA 5 % with a pH of 7.5 and 

5.5, respectively as well as after s.c. injection in mice. Measurements were performed in triplicates in the 

Optix MX2. The mean LT of all measurements for each probe was defined as the predicted LT. 

 

pH-Her              
DP 1.6 

 
pH 7.5 

LT [ns] 
 

 
pH 5.5 

PBS 1.25 ± 0.01  1.26 ± 0.01 

PBS/BSA 5% 1.29 ± 0.03  1.33 ± 0.01 

in vivo s.c.  1.23 ± 0.01  

predicted LT   1.3  ns  

 
 

pH-OH 
 

 
pH 7.5 

LT [ns] 
 

 
pH 5.5 

PBS 0.81 ± 0.01  0.83 ± 0.00 

PBS/BSA 5% 1.00 ± 0.01  1.55 ± 0.02 

in vivo s.c.  1.14 ± 0.02  

predicted LT  1.1 ns   
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Alexa-Her 
DP 1.3 

 
pH 7.5 

LT [ns] 
 

 
pH 5.5 

PBS 1.43 ± 0.03  1.44 ± 0.03 

PBS/BSA 5% 1.53 ± 0.02  1.63 ± 0.07 

in vivo s.c.  1.36 ± 0.01  

predicted LT  1.5 ns  

    
 

Alexa-OH 
 

 
pH 7.5 

LT [ns] 
 

 
pH 5.5 

PBS 1.17 ± 0.00  1.14 ± 0.00 

PBS/BSA 5% 1.20 ± 0.02  1.57 ± 0.02 

in vivo s.c.  1.27 ± 0.02  

predicted LT  1.3 ns   
 

Taken together, the influences of a changing environment on the probes’ LTs are 

relatively small. However, the LTs of all probes show a tendency to increase in the 

presence of proteins. This increase is most prominent for the free dyes measured in 

BSA-containing solution with a low pH. Furthermore, probes’ LTs become longer for 

both dyes after their conjugation to Herceptin.  

3.2.3. pH-sensitive conjugates are functional in vitro 

In order to test the functionality of the pH-sensitive probes of low and high DP ratios 

in vitro, fluorescence microscopy with HER2-positive (KPL-4) and HER2-negative 

(MDA-MB-231) breast cancer cells was performed after incubation with different 

probes. Herceptin-conjugates are known to internalize and localize in the acidic 

endosomes and lysosomes within 8 h of incubation at 37 °C7,38,92 whereas at 4 °C 

internalization is strongly reduced5. Therefore, cells were incubated with Herceptin-

conjugates for 8 h at 37 °C and at 4 °C as a control, in order to measure only 

fluorescence of membrane bound probes, when located in an approximately neutral 

pH.  

The pH-sensitive probe, pH-Her DP 1.6 shows fluorescence only after receptor-

mediated internalization into KPL-4 cells (Figure 16A) whereas no signals are 

detected of membrane bound pH-Her (Figure 16B). In contrast, the always-on probe 

Alexa-Her DP 1.3, shows fluorescence after internalization (Figure 16C) as well as 

when bound to the cell membrane (Figure 16C,D). No fluorescence signals are 

detected on HER2-negative MDA-MB-231 cells after incubation with all probes (Figure 



Results 

 57 

16E-H) at 37 °C and 4 °C showing that no unspecific binding and/or internalization 

occurred. 

 
 

Figure 16. (legend see next page) 
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Figure 16. In vitro fluorescence microscopy demonstrates functionality of pH-sensitive probes 

with a low DP ratio 

Cells grown on culture slides were examined under a fluorescence microscope with an x 40 objective. For 

this purpose breast cancer cells were seeded on chambered coverglasses and incubated for 8 h with the 

fluorescent probes pH-Her or Alexa-Her (5 µg IgG) with a low DP ratio. On the left, counter stain of cell 

nuclei with Hoechst 33342, in the middle, probe-derived signals, and on the right, merged images of the 

cell nuclei (blue) and the probe (red) are illustrated. For detection of pH-Her an exposure time of 1500 ms 

and for detection of Alexa-Her an exposure time of 200 ms was used. A. When incubated with KPL-4 cells 

at 37 °C, pH-Her DP 1.6 shows fluorescence only after receptor-mediated internalization (green arrow). B. 

No signals from the membrane-bound probes are observed, as can be seen by incubation of cells at 4 °C. 

C,D. In contrast, Alexa-Her DP 1.3 shows fluorescence from the internalized probe (green arrow) but also 

membrane-derived fluorescence after 8 h of incubation at (C) 37 °C and at (D) 4 °C (yellow arrow). E-H. 

No fluorescence signals can be detected after 8 h incubation of MDA-MB-231 cells with pH-Her at (E) 37 °C 

or (F) 4 °C as well as after incubation with Alexa-Her at (G) 37 °C and (H) 4 °C. Representative images of 

three independently performed experiments are presented. Bars represent 50 µm. 

 

Incubation of breast cancer cells with pH-Her and Alexa-Her conjugates of high DP 

ratios (Figure 17) revealed similar results as the cell experiments performed with 

probes with low DP ratios (Figure 16). In KPL-4 cells pH-Her DP 5.0 shows 

fluorescence only after internalization (Figure 17A) but not when bound to the 

membrane (Figure 17B) whereas fluorescence of Alexa-Her DP 3.4 is independent on 

internalization (Figure 17C,D). MDA-MB-231 cells show no fluorescence signals upon 

incubation with probes with high DP ratios (Figure 17E-H). 

In order to prove that fluorescence signals on the KPL-4 cells after incubation with 

pH-Her and Alexa-Her conjugates (Figure 16 and 17) do derive from specifically 

membrane-bound or internalized Herceptin, control experiments with the free 

fluorophores were carried out. No fluorescence signals are detected on HER2-positive 

KPL-4 cells after incubation with pH-OH neither at 37 °C nor at 4 °C (Figure 18A,B) 

or with Alexa-OH at 4 °C or at 37 °C (Figure 18C,D). MDA-MB-231 cells also show no 

detectable fluorescence when incubated with pH-OH or Alexa-OH (Figure 18E-H). 
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Figure 17. (legend see next page) 
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Figure 17. In vitro fluorescence microscopy demonstrates functionality of pH-sensitive probes 

with a high DP ratio 

Cells grown on culture slides were examined under a fluorescence microscope with an x 40 objective. For 

this purpose cells were incubated for 8 h with pH-Her or Alexa-Her fluorescent probes (5 µg IgG) with a 

high DP ratio. On the left, counter stain of cell nuclei with Hoechst 33342, in the middle, probe-derived 

signals, and on the right, merged images of the cell nuclei (blue) and the probe (red) are illustrated. For 

detection of pH-Her an exposure time of 1000 ms and for detection of Alexa-Her an exposure time of 100 

ms was used. A. When incubated with KPL-4 cells at 37 °C, pH-Her DP 5.0 shows fluorescence only after 

receptor-mediated internalization (green arrow). B. No signals from the membrane-bound probes are 

observed at 4 °C. C,D. Alexa-Her DP 3.4 shows fluorescence from the internalized probe (green arrow) but 

also membrane-derived signals after 8 h of incubation at (C) 37 °C and at (D) 4 °C (yellow arrow). E-H. 

No fluorescence signals can be detected after 8 h incubation of MDA-MB-231 cells with pH-Her at (E) 37 °C 

or (F) 4 °C as well as after incubation with Alexa-Her at (G) 37 °C and (H) 4 °C. Representative results of 

three independently performed experiments are shown. Bars represent 50 µm. 

 

 

 

Figure 18. In vitro fluorescence microscopy reveals no unspecific binding of free fluorescence 

dyes 

Cells grown on culture slides were examined under a fluorescence microscope at with an x 40 objective. 

For this purpose cells were incubated for 8 h with 0.2 nmol of pH-OH or Alexa-OH. On the left, counter 

stain of cell nuclei with Hoechst 33342, in the middle, probe-derived signals, and on the right, merged 

images of the cell nuclei (blue) and the probe (red) are illustrated. For pH-OH an exposure time of 1500 

ms and for Alexa-OH an exposure time of 200 ms was used, according to the exposure times used for 

Herceptin-conjugates with low DP ratios (Figure 16). A.-H. No fluorescence can be detected on KPL-4 cells 

after 8 h of incubation with pH-OH at (A) 37 °C and (B) 4 °C or with Alexa-OH at (C) 37 °C and (D) 4 °C. 

Incubation of MDA-MB-231 cells with pH-OH at (E) 37 °C or (F) 4 °C as well as with Alexa-OH at (G) 

37 °C and (H) 4 °C also does not result in the detection of fluorescence signals. Representative results of 

three independently performed experiments are shown. Bars represent 50 µm. 
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The functionality of pH-Her was confirmed by showing pH-Her-derived fluorescence 

only after internalization in HER2-positive breast cancer cells presumably due to 

localization in acidic cell compartments. In contrast to that, fluorescence intensity of 

the always-on control probes, Alexa-Her was independent on pH and internalization.  

3.2.4. Improved detection sensitivity of tumors by the combined 

use of pH-sensitive probes and subtraction of autofluorescence 

pH-probes were tested for their ability to improve tumor-detection sensitivity in 

tumor-bearing mice. A further aim of this study was to eliminate autofluorescence 

signals deriving from the mouse itself, hampering the detection sensitivity of specific, 

probe-derived signals. Consequently, imaging data were processed by the use of two 

different techniques for background suppression, subtraction of autofluorescence and 

LT-gated imaging. 

For this purpose, KPL-4 and MDA-MB-231 breast tumor-bearing nude mice were 

imaged before (prescan) and at different times up to 72 h after i.v. injection of 25 µg 

IgG of the respective probe in the Optix MX2.  

3.2.4.1. Background suppression via subtraction of 

autofluorescence in combination with pH-Her improves tumor-

detection sensitivity  

In order to eliminate autofluorescence of mice and thus to only illustrate signals 

deriving from the injected probes, subtraction of autofluorescence was performed. 

For this purpose, the average fluorescence intensity over the tumor area of the 

untreated mouse (prescan) was subtracted from all scans of the same mouse. In 

Figure 19, representative fluorescence intensity maps of KPL-4 tumor-bearing mice 

before and 1 to 72 h after injection of the probes are demonstrated. After i.v. 

application of pH-Her DP 1.6 (Figure 19A; n = 3) fluorescence in the tumor (white 

circle, shown at 24 h) can be clearly detected. The background fluorescence (white 

circle, shown at 24 h) is low and comparable to the fluorescence of the prescan, with 

exception of some signals deriving from the gastrointestinal (GI) tract of the mouse. 

In contrast, after injection of Alexa-Her DP 1.3 (Figure 19B; n = 3), fluorescence in 

the tumor (white circle, shown at 24 h) is also clearly visible but background signals 

(white circle, shown at 24 h) are high compared to signals of the prescan. Note also, 

that fluorescence intensities after injection of Alexa-Her in mice (Figure 19B) are 

much higher compared to signals after injection of pH-Her (Figure 19A) as indicated 

by the different scale bars in the figure. 
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Figure 19. Intensity maps after subtraction of autofluorescence after probe application in vivo 

KPL-4 breast tumor-bearing mice were imaged before and at different times up to 72 h after probe 

injection (25 µg IgG) in the Optix MX2 in a ventral position. Representative examples (n = 3) of 

fluorescence intensity images after subtraction of the mean autofluorescence, calculated over the tumor 

area of the respective untreated mouse (prescan) are shown. A. Images of a mouse receiving pH-Her DP 

1.6 are illustrated. Probe-derived signals are mainly detected in the tumor. B. Images of a mouse 

receiving Alexa-Her DP 1.3 are illustrated. Probe-derived signals are detected in the tumor and in the 

background. Background- and tumor area are indicated with white circles. Note, that fluorescence 

intensities in B. are much higher than in A., as indicated by the different scale bars. 

 

In summary, use of the pH-sensitive probe, pH-Her at a low DP ratio in combination 

with subtraction of autofluorescence resulted in elimination of major parts of 

background fluorescence in scans of tumor-bearing mice. In contrast, the intensity of 

the background strongly increased after injection of the always-on probe, Alexa-Her 

and could not be eliminated by subtraction of autofluorescence.  

 

Contrast to noise ratios (CNRs) were calculated to quantify signal-detection 

sensitivity of the tumor in in vivo scans after background subtraction. The CNR 

provides information about the level of signal difference in the tumor and background 

and the affection of the signal by the background noise (see 2.2.8.4). CNRs were 

calculated in scans of KPL-4 tumor-bearing mice after treatment with Herceptin-

conjugates. As controls, CNRs were also determined in scans of MDA-MB-231 tumor-

bearing mice injected with Herceptin-conjugates and of KPL-4 tumor-bearing mice 

receiving the free fluorophores. As shown in Figure 20, i.v. injection of pH-Her DP 1.6 

(Figure 20A) in HER2-positive KPL-4 tumor-bearing mice (n = 5) resulted in an 

continuous increase of CNRs within 24 h to a ratio of 171 that stays comparable high 
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up to 72 h. In contrast, Alexa-Her DP 1.3 (Figure 20B; n = 5) shows an increase in 

CNRs in these mice over time but only to a maximum CNR of 82 after 72 h. The 

average CNR over all times in KPL-4 mice treated with pH-Her DP 1.6 was about 2.5-

fold higher than for mice treated with Alexa-Her.  

Control experiments performed in HER2-negative MDA-MB-231 tumor-bearing mice 

injected with pH-Her DP 1.6 (Figure 20A; n = 3) or Alexa-Her DP 1.3 (Figure 20B; n 

= 3) revealed much lower CNRs, with an average of about 18, that is 9-times lower 

than in KPL-4 tumor-bearing mice treated with pH-Her. In contrast to that, for the 

same times, the average CNR after application of Alexa-Her DP 1.3 is only 4-times 

higher in KPL-4 tumor-bearing mice compared to MDA-MB-231 tumor-bearing mice. 

This illustrates that the differences of signals deriving from HER2-positive- and HER2-

negative tumors can be enhanced by the use of the pH-sensitive probe.  

 

 

 

Figure 20. Improved tumor-detection sensitivity in vivo by use of a pH-sensitive tumor-specific 

probe at a low DP ratio 

A,B. CNRs calculated from in vivo intensity scans after subtraction of autofluorescence are shown. For 

calculation, the average intensity of the background was measured in the area over the lung. CNRs were 

calculated in scans of KPL-4 tumor-bearing mice before (0 h) and 1, 2, 4 (n = 3), 24, 28, and 72 h (n = 5) 

after injection of (A) pH-Her DP 1.6 or (B) Alexa-Her DP 1.3. As controls, CNRs were also calculated from 

scans of KPL-4 tumor-bearing mice 0 to 72 h after injection of the free fluorescence dyes (0.8 nmol; n = 

3), (A) pH-OH and (B) Alexa-OH as well as from scans of MDA-MB-231 tumor-bearing mice 0, 24, 48, and 

72 h (n = 3) after injection of (A) pH-Her DP 1.6 or (B) Alexa-Her DP 1.3. Standard deviations are 

indicated as black bars. 

 

Further control experiments in KPL-4 tumor-bearing mice revealed that after 

injection of the free dyes, CNRs also are low after 24 to 72 h with a maximum ratio 

for pH-OH of 21 (Figure 20A; n = 3) and of 20 for Alexa-OH (Figure 20B; n =3). 

These findings further suggest that signals after application of both Herceptin-

conjugates, pH-Her and Alexa-Her to mice with KPL-4 tumors are deriving from 

specific interaction of the antibody with tumor cells, as here much higher CNRs were 
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calculated. Moreover, the fact that CNRs calculated for mice with MDA-MB-231 

tumors after injection of pH-Her and Alexa-Her are comparable to the CNRs in mice 

that received free fluorophores, indicates that tumor signals in MDA-MB-231 tumor-

bearing mice are deriving from unspecific accumulation of the Herceptin probe. 

Surprisingly, for Alexa-OH administered to KPL-4 tumor-bearing mice, relatively high 

CNRs, of 72 were calculated 1 h after injection (Figure 20B). Furthermore, for both 

free dyes, pH-OH and Alexa-OH high intensity signals were observed over the 

bladder at early (1 and 4 h) times after probe injection, very likely deriving from a 

rapid excretion of the low molecular weight (~1000 Da) molecules via the urinary 

system. 

In addition, to analyze in more detail whether the fluorescence probes unspecifically 

accumulate in any other organ than the tumor, KPL-4 and MDA-MB-231 tumor-

bearing mice were sacrificed 72 h after injection of pH-Her, Alexa-Her, or the free 

fluorescence dyes and organs were scanned ex vivo. When compared to organs of 

untreated mice (n = 4), no remarkable fluorescence signals could be detected in 

liver, kidneys, lung, heart, spleen, stomach, and gut (data not shown). 

Taken together, subtraction of autofluorescence in vivo in combination with 

application of pH-Her at a low DP ratio led to an efficient elimination of background 

fluorescence in breast tumor-bearing mice and clearly improved tumor-detection 

sensitivity compared to injection of Alexa-Her.  

3.2.4.2. Background suppression via LT-gating does not improve 

tumor-detection sensitivity in vivo 

LT imaging in vivo not only illustrates specific signals deriving from the applied probe 

but can depict signals occurring from autofluorescence of the tissue and from 

unspecific fluorescence, e.g. from the food in the GI tract. First, in order to 

characterize this fluorescence from different origin, the LTs were analyzed in distinct 

areas of whole body scans of tumor-bearing mice prior to probe application. The 

representative histogram in Figure 21, on the left side shows the frequency of 

occurrence of different LTs measured in an untreated KPL-4 tumor-bearing mouse (n 

= 10). The most frequently detected LTs are shorter than 1 ns or longer than 2 ns. 

The corresponding color-coded LT map (Figure 21, right side) illustrates that the 

short LTs are deriving from autofluorescence in the background, which has a mean 

LT of 1.0 ns (n = 10) whereas the longer LTs correspond likely to the food in the GI 

tract, with a mean LT of 2.0 ns (n = 10). The LT of the autofluorescence in the tumor 

with a mean of 1.6 ns (n = 10) is higher than the LT in the background. 
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Figure 21. LTs of 

fluorescence signals 

in certain areas of 

untreated tumor-

bearing mice  

On the left side, a 

representative histogram 

shows the frequency of 

occurrence of different 

LTs measured in an 

untreated KPL-4 tumor-

bearing mouse (n = 10) 

in the Optix MX2. The 

most frequently 

measured LTs are shorter than 1 ns or longer than 2 ns. On the right side, the corresponding color-coded 

LT map of an untreated mouse is shown. The autofluorescence in the background has a mean LT of 1.0 ns 

(arrow; n = 10). In contrary, the GI tract (GI) has a mean LT of 2.0 ns (arrow; n = 10). The mean LT of 

the autofluorescence in the tumor is 1.6 ns (arrow). 

 

With the aim to only illustrate fluorescence signals in vivo, that are deriving from the 

applied probe, intensity maps of mice were gated to the predicted LT of the applied 

probe ± 0.2 ns in order to decouple them from unspecific background fluorescence. 

The predicted LT was calculated as the mean from the LTs of the respective probe 

determined in vitro under different conditions and after s.c. injection in mice (see 

section 3.2.2, Table 10). In Figure 22A, representative fluorescence intensity maps of 

a mouse bearing a KPL-4 tumor in the right abdominal mammary gland are 

illustrated at different times after receiving pH-Her DP 1.6 (n = 5). Only signals with 

LTs of 1.3 ns ± 0.2 ns are shown, according to the predicted LT for pH-Her (Table 

10). When comparing these LT-gated images to the ones after subtraction of 

background fluorescence of the same mice, in Figure 19A, some fluorescence is still 

visible in the background (white circle, shown at 24 h) whereas unspecific 

fluorescence from the GI tract of mice could be completely eliminated. Unexpectedly, 

the fluorescence signals of high intensity from pH-Her in the tumor (white circle, 

shown at 24 h) are also eliminated at most times (e.g. at 48 and 72 h). Figure 22B, 

shows representative fluorescence intensity maps of a mouse with a KPL-4 tumor 

receiving Alexa-Her DP 1.3 (n = 5). Only signals with LTs of 1.5 ns ± 0.2 ns are 

shown, according to the predicted LT for Alexa-Her (Table 10). In contrary to LT-

gating after application of pH-Her, the major part of the background fluorescence is 

still visible (white circle, shown at 24 h) whereas fluorescence signals from Alexa-Her 

in the tumor (white circle, shown at 24h) are also partly eliminated at some time 

points (e.g. at 4 and 24 h; see also Figure 19B for comparison). 
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Figure 22. LT-gated intensity maps after probe application in vivo 

KPL-4 breast-tumor bearing mice were imaged before and from 1 to 72 h after probe injection (25 µg IgG) 

in the Optix MX2 in a ventral position. Representative examples of LT-gated in vivo intensity maps are 

shown. The LT-gates were set according to the predicted LT of the respective probe ± 0.2 ns. A. A 

representative mouse receiving pH-Her DP 1.6 is illustrated (n = 3). After LT-gating (LT: 1.3 ± 0.2 ns) 

remaining background fluorescence and partial elimination of the tumor signals are observed at most time 

points (e.g. after 48h). B. A representative mouse receiving Alexa-Her DP 1.3 is illustrated (n = 3). After 

LT-gating (LT 1.5 ± 0.2 ns) a high amount of background fluorescence remains and part of the tumor 

signal is eliminated at some time points (e.g. after 4 and 48 h). Background- and tumor area are indicated 

with white circles at 24 h after probe injection. Note, that fluorescence intensities in B. are much higher 

than in A., as indicated by the different scale bars. 

 

Here, LT-gating does not lead to an improved tumor-detection sensitivity in vivo as 

probe-derived signals in the tumor are eliminated, especially those of pH-Her. In 

addition, LT-gating does not reduce fluorescence in the background after injection of 

the always-on fluorescent probe, Alexa-Her. 

The average LTs in the tumor at each time point were analyzed more precisely in 

order to evaluate why part of tumor signals was eliminated after LT-gating, although 

high intensities in the tumor were very likely deriving from the applied fluorescence 

probes. Figure 23 shows that the average LTs in the tumor area of KPL-4 tumor-

bearing mice (M1 to M5), each treated with either pH-Her DP 1.6 (Figure 23A) or 

Alexa-Her DP 1.3 (Figure 23B) vary over time and in the different mice. Moreover, 

after application of pH-Her (Figure 23A) tumor LTs are clearly longer than the 

predicted LTs (black dashed line; Table 10) and are also partly outside the LT-range 

used for gating (1.3 ± 0.2 ns, grey area) of pH-Her signals. The mean LT in the KPL-

4 tumor area of all mice treated with pH-Her and at all times is 1.49 ± 0.06 ns (n = 
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24). Ex vivo LT analyses of the excised tumors 72 h after injection of pH-Her reveal 

an even higher mean LT of 1.57 ± 0.13 ns (n = 5; data not shown). In contrary, the 

average LTs after injection of Alexa-Her (Figure 23B) are close to the predicted LT 

(black dashed line; Table 10) and are within the LT-gate (1.5 ± 0.2 ns, grey area) 

determined for Alexa-Her. Here, the mean LT in the tumor area over time of all mice 

is 1.48 ± 0.04 ns (n = 24). Ex vivo LT analyses of the tumors 72 h after injection of 

Alexa-Her also reveal a higher mean LT of 1.65 ± 0.05 ns (n = 5; data not shown). 

This demonstrates that for both Herceptin probes the LT does further increase when 

the tumor is measured ex vivo where its fluorescence signal is not overlayed with 

other signals deriving from mouse tissue. 

 

 

 

Figure 23. Variations of LTs in the tumor area after probe application 

In vivo average LTs in KPL-4 tumors of mice (M1 – M5) are shown. Tumor LTs were analyzed 1, 2, 4 (n = 

3), 24, 48, and 72 h (n = 5) after i.v. injection of fluorescence probes. A,B. The predicted LT of the probe 

(determined in in vitro measurements and after s.c. injection) is indicated as a black dashed line and the 

LT-ranges used for LT-gating of in vivo intensity images are shown in grey. LTs after application of (A) pH-

Her DP 1.6 and (B) Alexa-Her DP 1.3 are shown. LTs vary over time as well as between mice. Note, that 

tumor LTs after application of (A) pH-Her are partly longer than the predicted LT. Standard deviations are 

indicated as bars.  

 

In summary, LT-analyses of tumor signals over time in vivo and ex vivo show that 

the predicted LT for pH-Her differs from the LT of the probe in the tumor. Therefore, 

a clear prediction of the in vivo LT of the probe in the KPL-4 tumor environment and 

thus an identification of probe-derived signals via LT-gating is not possible.  

In order to examine the reliability of the LT calculations in the tumor, the LT 

goodness of fit was determined. This parameter determines the quality of the mean 

LTs calculated over the tumor area of the respective mice. A LT-calculation with a 

high accuracy is considered to have a LT goodness of fit between 0.8 and 1.2 (see 

also section 2.2.8.4 in Material and Methods). As can be seen in Figure 24, the LT 

goodness of fit does not significantly increase or decrease from 1 to 72 h after probe 
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application or between the mice. For tumor LTs after injection of pH-Her (Figure 24A) 

as well as of Alexa-Her (Figure 24B) the mean goodness of fit is 0.8 (n = 24) 

indicating that the LT calculations have a high accuracy. 

 

 

Figure 24. Analysis of reliability of in vivo LT calculations 

The LT goodness of fit of the in vivo LT calculation in the KPL-4 tumor area in mice (M1 – M5) at different 

times after injection of (A) pH-Her DP 1.6 and (B) Alexa-Her DP 1.3 shows slight variations over time as 

well as between the mice. The mean LT goodness of fit for the LT calculations of both probes is 0.8. 

Standard deviations are indicated as bars. 

 

These results demonstrate that the in vivo LT calculations of the tumor area are 

reliable, even at early (1 h) and late (72 h) times after injection of the respective 

probe when the concentration of the fluorescent probe in the tumor might be low. 

In summary, tumor-detection sensitivity in vivo was not enhanced after injection of 

Herceptin-conjugates in combination with LT-gating. As prediction of the pH-Her LT 

was not precise and background signals deriving from unbound Alexa-Her could not 

be efficiently eliminated, tumor-derived fluorescence was not effectively separated 

from background fluorescence. 

3.2.5. pH-Her conjugates at high DP ratios are less suitable for in 

vivo imaging 

Fluorescence probes with high DP ratios, pH-Her DP 5.0 and Alexa-Her DP 3.4 were 

injected in KPL-4 tumor-bearing mice (n = 3) to evaluate their tumor-detection 

sensitivity in vivo in comparison to fluorescence probes with low DP ratios. For this 

purpose, CNRs were calculated from in vivo fluorescence intensity scans of KPL-4 

tumor-bearing mice receiving probes at high DP-ratios after background subtraction. 

As depicted in Figure 25, after injection of pH-Her DP 5.0, CNRs over time stay very 

low with a maximum ratio of 7 after 72 h (Figure 25A). In addition, during in vivo 

scans we could detect only weak tumor signals but interestingly strong fluorescence 

in the bladder of the mice especially at early times (1 to 4 h) after application of pH-
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Her DP 5.0 (n = 3; data not shown). This was also observed after injection of pH-Her 

DP 6.4 (data not shown; n = 2) and after application of the free fluorescence dyes, 

pH-OH and Alexa-OH (see 3.2.4.1) in tumor-bearing mice.  

CNRs after injection of Alexa-Her DP 3.4 in KPL-4 tumor-bearing mice increased over 

time to a maximum ratio of 47. However, the average CNR at all times was ~1.7 fold 

lower compared to the average CNRs in the same mice model after injection of the 

Alexa-Her conjugate with a low DP ratio (see 3.2.4.1, Figure 20B).  

Human IgG has a hydrodynamic diameter (HD) of 10 nm and usually gets excreted 

via the liver75. The observation of a rapid excretion of the pH-Her probe at high DP 

ratio via the kidneys and bladder which is usually the case for smaller molecules of 5 

to 6 nm in HD75 pointed already to a structural degradation of the Herceptin-

conjugates into smaller fragments. As CNRs were low for Herceptin-conjugates with 

high DP ratios, when compared to CNRs of conjugates with low DP ratios, control 

studies on MDA-MB-231 tumor-bearing mice or with free fluorophores were not 

performed. 

 

 

 

Figure 25. Fluorescence probes with high DP ratios reveal no improvement in tumor-detection 

sensitivity  

CNRs were calculated from fluorescence intensity scans of KPL-4 tumor-bearing mice after background 

subtraction before (0 h) and 1 to 72 h (n = 3) after injection of probes (25 µg IgG) at high DP ratios. CNRs 

after application of (A) pH-Her DP 5.0 and (B) Alexa-Her DP 3.4 are shown. For CNR-calculation the 

average intensity of the background was measured in the area of the lung. Standard deviations are 

indicated as black bars. 

 

Taken together, the application of fluorescent probes with high DP ratios 

unexpectedly did not lead to an improved sensitivity of tumor detection in vivo, when 

compared to probes with low DP ratios.  
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In the following it was assessed, whether pH-Her at high DP ratios might have been 

decomposed to nonfunctional fragments at the time of in vivo application in tumor-

baring mice, in comparison to their application in vitro on cells (see section 3.2.3, 

Figure 16 and 17). 

For this purpose, first fluorescence probes were separated according to their size by 

SDS-PAGE under non-reducing conditions as shown in Figure 26. As a control, 

unlabeled Herceptin in its reduced and unreduced form was used. In order to 

separate the heavy (~50 kDa) and the light chain (~25 kDa) of the antibody, 

Herceptin was incubated with reducing agent and heated at 70 °C for 10 min (line A). 

Herceptin in its unreduced form has a size of ~146 kDa (line B). Compared to the 

size of this antibody, the CypHer5E- and Alexa Fluor 647 fluorophores are small (750 

to 1200 Da) so that the size of the fluorescence conjugates does not significantly 

differ from that of the free IgG. Alexa-Her DP 1.3 (line C) and DP 3.4 (line D) as well 

as pH-Her DP 1.6 (line E) reveal a comparable strong band with the size of 

unreduced Herceptin. pH-Her DP 1.6 additionally shows two bands with the size of 

250 kDa and larger which are likely to be deriving from agglomerates of the 

conjugates. In contrast, pH-Her DP 5.0 (line F) and DP 6.4 (line G), both show no 

bands at the size of unreduced Herceptin and only some very weak bands between 

25 and 45 kDa, indicating that pH-Her at high DP ratios has been decomposed into 

smaller fragments.  

 

 

Figure 26. Detection of 

conjugates in a non-

reducing protein gel 

Herceptin-dye-conjugates (5 

µg IgG) were separated 

according to their size via 

SDS-PAGE under non-

denaturating conditions and 

stained with Coomassie (n = 

1). (A) As a control, unlabeled 

Herceptin was treated with 

reducing agent and heated to 

70 °C for 10 min. Heavy and 

light chains of the antibody 

can be seen. (B) Unlabeled 

Herceptin in its non-reduced 

form.  (C) Alexa-Her DP 1.3 

and (D) DP 3.4 as well as (E) 

pH-Her DP 1.6 have a size comparable to the unlabeled Herceptin. (F) pH-Her DP 5.0 and (G) DP 6.4 show 

no bands at the size of Herceptin. 
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To verify whether the Herceptin-conjugates were destructed into smaller fragments, 

the protein content of the probes was determined in a BCA assay (n = 2; data not 

shown) revealing that pH-Her DP 5.0 (line F) and pH-Her DP 6.4 (line G) had an 

approximately 3- and 5-times lower protein content, respectively when compared to 

the other probes (line B-E). Via this method, proteins decomposed to very small 

peptides containing three or more aminoacid residues are still detectable. Therefore, 

it can be assumed that the low functionality of the pH-Her conjugates with high DP 

ratios in vivo might not solely been caused by a degradation of the antibody 

conjugates into smaller fragments, detected in vivo in the bladder but also by a 

partial precipitation, presumably caused by probe aggregation. 

In general, fluorescence conjugates with low DP ratios tend to be more stable over 

time when compared to conjugates with high DP ratios.  
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3.3. Evaluation of Itrybe-loaded NPs as in vivo NIRF 

imaging agents 

Nanosized carrier systems are promising imaging tools as they exhibit several 

advantages, such as loading with multiple fluorophores resulting in highly intense 

and stable fluorescent labels. Furthermore, they enable surface conjugation with 

multiple target-specific ligands, which compared to the commonly used single 

antibody-fluorophore units may be especially favorable for in vivo imaging 

applications.  

In this context, NPs with a diameter of 100 nm, 25 nm, and 15 nm, loaded with the 

NIR fluorophore Itrybe were evaluated for their capacity to be used for in vivo 

monitoring of tumors. These particles were either unmodified, bearing NH2 groups or 

PEG chains of 1.5 or 10 kDa, linked to the NPs via the NH2 groups. In addition, 

Herceptin-modified (Her) NPs were examined, at which the antibody was conjugated 

to the particle surface via the PEG chains (dye-loading and surface conjugation were 

performed by Thomas Behnke, BAM I.5, Berlin, see section 2.2.3.3). 

3.3.1. Characterization of Itrybe-loaded NPs 

Fluorescence excitation and emission spectra of different Itrybe-loaded NPs were 

recorded, to analyze whether the different sizes (100, 25, and 15 nm) and surface 

modifications (NH2, PEG, Her) influence their spectral behavior.  

Figure 27A-C illustrates no remarkable spectral differences of NPs with the same size 

but different surface-modifications. However, the excitation and emission spectra of 

the 100 nm particles (blue line) are slightly right shifted compared to the spectra of 

the smaller sized NPs (25 nm and 15 nm), as exemplarily shown for NH2-modified 

probes in Figure 27. All spectra appear noisy which might be caused by a decreased 

emission intensity due to scattering effects of the NPs itself. Scattering of the NPs 

can lead to a size-dependent decrease of excitation intensity and to interreflections of 

emitted photons and subsequently to a stronger reabsorption by the dye. This may 

cause the slight right shifts in the spectra of the 100 nm NPs (Figure 1D) compared 

to the smaller sized 15 nm and 25 nm NPs. With an increase in NP size, scattering 

and reabsorption effects increase possibly leading to some measurement artifacts. 
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Figure 27. Fluorescence excitation and emission spectra of NPs 

Representative normalized fluorescence spectra of Itrybe-loaded NPs of different sizes and surface 

modifications were measured in a spectrofluorometer. The excitation spectra range from ~450 to 750 nm. 

The emission spectra range from ~650 to 850 nm. Fluorescence spectra of (A) 100 nm (n = 3), (B) 25 nm 

(n = 3), and (C) 15 nm (n = 2) NPs are illustrated. No remarkable spectral changes are observed for the 

different surface-modifications of NPs (NH2, PEG, and Her). D. Spectra of all three sizes of NPs with NH2 

groups are illustrated. Note that, excitation and emission spectra of 100 nm particles (blue line) are 

slightly right shifted compared to the 25 nm and 15 nm NPs (green and red line). 

 

Taken together, spectral differences of NPs of the same size but with various surface 

modifications are only small showing that the surface moiety has no relevant impact 

on the detection of Itrybe-derived fluorescence using the same excitation and 

emission settings. As fluorescence intensities from differently sized particles were not 

directly compared, the slight spectral variations of NPs of different sizes were not of 

relevance for the results of the study.  

 

The encapsulation of the NIR fluorescence dye, Itrybe in NPs provides a cover of the 

dye towards the environment. Common factors influencing the fluorescence 

properties of fluorophores are, among others, proteins and ions2,20,108. Therefore, the 

influences of changes in the environment on Itrybe loaded in NPs were analyzed 

exemplarily for the different sizes of the NH2-modified particles (n = 2, for each size 

and each condition). As depicted in Figure 28, a decrease in pH from 7.5 to 5.5 has 
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no influence on fluorescence properties of the dye enclosed in NPs of all sizes; 

however a slight (1.3-fold) increase was observed for the 100 and 25 nm NPs when 5 % 

BSA is added to the measurement solution (PBS), independent on pH. In contrary, as 

can be seen in Figure 28C, Itrybe loaded in the smallest, 15 nm particles shows a 

stronger, 5-fold increase in fluorescence in the presence of 5 % BSA at a neutral pH. 

At an acidic pH of 5.5 the fluorescence is still 4-fold higher compared to fluorescence 

measured in PBS. 

 

 

 

Figure 28. Sensitivity of NP-encapsulated Itrybe to changes in environment 

The relative increase in fluorescence intensity of Itrybe-loaded NH2 NPs of different sizes in dependence on 

environmental factors was analyzed in the Optix MX2. For this purpose, NPs were measured in PBS with a 

pH of 7.5 and 5.5 as well as in the presence of proteins (5 % BSA). For relativization, the lowest mean 

intensity for each NP size was set to 1. A. 100 and B. 25 nm particles show no influence on fluorescence 

intensity with a change in pH but a slight (1.3-fold) increase in fluorescence in the presence of proteins. C. 

In contrary, 15 nm NPs revealed a high (5.3-fold) increase in fluorescence in the presence of proteins at a 

pH 7.5 that is slightly lower (4-fold) at a pH of 5.5. The mean of two measurements is illustrated for each 

probe and each condition.  

 

In summary, the influence of proteins on Itrybe-derived fluorescence are relatively 

small in 100 nm and 25 nm particles but increase in the small, 15 nm NPs. Moreover, 

the pH shows no strong influence on fluorescence of Itrybe. 

3.3.2. Functionality of bioconjugated NPs 

Itrybe-loaded NPs were designed to specifically bind to tumor cells. For this purpose, 

Herceptin, which recognizes HER2, was bioconjugated to the 100, 25, and 15 nm 

NPs. Immunoassays were performed to evaluate whether 1.) bioconjugation of NPs 

was successful and 2.) Herceptin-conjugated NPs bind to the HER2 antigen, as well 

3.) NH2-modified and PEGylated particles unspecifically bind to HER2 antigen-coated 

surfaces.  

Figure 29 shows the ratio of fluorescence detected after incubation of HER2-coated 

and -uncoated wells with 15 nm particles. A ratio of 1.0 is determined for the control 

experiment in which coated and uncoated wells were incubated with TBS only. 
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Particles with NH2 groups and PEG 10 kDa chains show no specific binding to antigen-

coated wells. To achieve a high conjugation efficiency of Herceptin to the relatively 

small 15 nm NPs und thus a specific binding to HER2, a 5-fold amount of Herceptin 

(Her x5; 2.4 nmol/mg PS; see section 2.2.3.3, Table 2) was used for coupling 

procedure. After Herceptin-conjugation (Her x5), NPs with 10 and 1.5 kDa PEG 

chains show a slightly increased binding ratio of 1.1 and 1.2, respectively. To further 

increase specific binding of 15 nm NPs by Herceptin, in a next step the amount of 

PEG for coupling procedure was reduced to 1/10 (PEG 1.5 kDa 1/10; 50 nmol/mg PS; 

see section 2.2.3.3, Table 2) of the original amount. This was done, as a too high 

density of PEG chains might probably lead to steric hindrances during antibody 

conjugation. In addition, a “blockade” of the already conjugated antibodies on the 

particle surface can occur, thereby hampering interaction of the antibody with its 

target. However, when reducing the PEG amount for coupling procedure, after 

conjugation to Herceptin (Her x5) again no specific binding to the HER2 antigen is 

observed (ratio 1.0). 

 

 

Figure 29. Binding specificity of 

bioconjugated 15 nm NPs 

Signals from immunoassays with 

15 nm NPs were measured in the 

Odyssey infrared imaging system. 

The ratio of fluorescence detected 

after incubation with 0.2 g/l NPs 

on HER2 antigen-coated and         

-uncoated wells, is illustrated. The 

control experiments, after 

incubation with only TBS or NH2 

and PEG 10 kDa NPs all show a ratio of 1.0. After Herceptin conjugation (Her x5), NPs with 10 and 1.5 kDa 

PEG chains have a slightly increased ratio of 1.1 and 1.2, respectively. No binding of Herceptin-conjugated 

NPs (Her x5) is observed for NPs with PEG 1.5 kDa chains when lower amounts of PEG (1/10) were used 

for coupling (ratio of 1.0). The number of independently done experiments is listed under the probes. 

Standard errors are illustrated as black bars. Each experiment was performed in triplicate. 

 

Further it was tested whether bioconjugation of 25 nm particles with Herceptin was 

successful and thus specific binding of these probes to HER2 occurs. As can be seen 

in Figure 30A, the controls, NH2- or PEGylated NPs (PEG 1.5 kDa and PEG 10 kDa) do 

not specifically bind to antigen-coated wells. A weak binding to antigen-coated wells 

is observed after coupling of Herceptin to 25 nm particles with PEG 1.5 kDa chains 

(ratio of 1.7) that cannot be further enhanced when the amount of antibody was 

increased 5-fold for coupling procedure (Her x5; 2.4 nmol/mg PS, see section 
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2.2.3.3, Table 2; ratio of 1.7). The use of PEG 10 kDa chains leads to a reduced 

antigen binding after Herceptin conjugation, with a ratio of 1.4. The bioconjugated 

NPs with the highest ratio and therefore best HER2 binding, PEG 1.5 kDa-Her and 

PEG 1.5 kDa-Her x5 were selected for further analysis. Figure 30B, illustrates that 

binding of these probes to HER2-coated wells is saturated at concentrations of 1 g/l 

whereas binding to uncoated wells further increases up to 2 g/l (n = 1). The ratios of 

binding to coated and uncoated wells for both 25 nm-Her probes (Figure 30C) are 

comparable high at 0.2 to 1 g/l (ratios between 1.6 and 1.8). Therefore, a 

concentration of 0.2 g/l was chosen for further analysis of binding specificity of NPs 

which was evaluated for the 25 nm PEG 1.5 kDa-Her x5 probe.  

 

 

 

Figure 30. Binding specificity of bioconjugated 25 nm NPs 

Signals from immunoassays with 25 nm NPs were measured in the Odyssey infrared imaging system. A. 

The ratios of signals from HER2-coated and -uncoated wells incubated with 0.2 g/l of NPs are illustrated. 

The control experiments, after incubation with only TBS or NH2, PEG 1.5 kDa, and 10 kDa NPs all show low 

ratios (of 1.1 and 1.0). Slightly higher ratios are observed for the Herceptin-conjugated NPs PEG 1.5 kDa-

Her and –Her x5 (ratio of 1.7) and PEG 10 kDa-Her (ratio of 1.4). The number of independently done 

experiments is listed under the probes. B. Relative intensities of 25 nm PEG 1.5 kDa-Her and -Her x5 NPs 

incubated on HER2-coated and -uncoated wells at concentrations of 0.02 to 2 g/l are shown. C. The 

respective ratios of signals from coated and uncoated wells for both probes are illustrated. D. Relative 

intensities of 25 nm PEG 1.5 kDa-Her x5 NPs (n = 2) incubated on HER2-coated and -uncoated wells at 

concentrations of 0.2 g/l. Free Herceptin was added in increasing amounts (0.005 to 1 µg) to the wells. 

Black bars indicate standard errors in A,C. and standard deviations in B,D. Each experiment was 

performed in triplicate. 
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Figure 30D shows, that binding of the probe to HER2 is specifically occurring via 

interaction of Herceptin and the antigen as this binding can be “blocked” by addition 

of increasing amounts of free Herceptin (n = 2). After co-incubation with 0.5 µg 

Herceptin per well, binding of 25 nm PEG 1.5 kDa-Her x5 NPs can be completely 

reduced to the level of unspecific binding to uncoated wells. 

 

In Figure 31A, the ratios of signals from antigen-coated and -uncoated wells after 

incubation with 100 nm particles are illustrated. NPs without bioconjugation show no 

binding to the antigen (NH2, ratio of 1.0 and PEG 1.5 kDa, ratio of 1.1). In contrary, 

the Herceptin-conjugated NPs with PEG 1.5 kDa chains show a 4.7-fold increased 

ratio which is even slightly higher (ratio of 4.8) when the double amount of Herceptin 

was used for bioconjugation (Her x2; 0.96 nmol/mg PS, see section 2.2.3.3, Table 

2). Antigen binding is reduced when PEG 10 kDa chains were used as a linker for 

Herceptin to the NPs, which is in agreement with the results observed for the 25 nm 

NPs (see Figure 30A). Here, a ratio of 2.9 and 2.7 was calculated for two 

independently produced 100 nm-PEG 10 kDa-Her probes. This effect can be 

explained by the differences in number of Herceptin molecules per 100 nm particle 

(listed in section 2.2.3.3., Table 3): The 100-PEG 1.5 kDa-Her and –Her x2 probes 

bear ~70 and 100 Herceptin molecules on the surface of one particle, whereas the 

100-PEG 10 kDa-Her probes bear only ~10 antibodies per NP. Therefore, the 100 

nm-PEG 1.5 kDa-Her and –Her x2 NPs, showing the highest ratios, were selected for 

further studies. As illustrated in Figure 31B, the binding of PEG 1.5 kDa-Her to the 

antigen is saturated at 0.2 g/l whereas binding of PEG 1.5 kDa-Her x2 increases up 

to 1 g/l as does the unspecific binding for both probes to the uncoated wells (n = 1). 

Analysis of the ratio of signals from coated and uncoated wells (Figure 31C) reveals 

best ratios for the PEG 1.5 kDa-Her and –Her x2 probes at 0.1 g/l (ratio of 4.8 and 

4.1) and 0.2 g/l (ratio of 4.6 and 4.2). Exemplarily, the binding specificity is shown 

for the PEG 1.5 kDa-Her NPs at 0.2 g/l in Figure 31D. Binding of NPs to HER2 can be 

decreased via addition of increasing amounts of free Herceptin (n = 2). After co-

incubation with 0.5 µg Herceptin per well the signal from bound NPs is comparable 

low to the unspecific signal deriving from uncoated wells. 

In summary, the highest binding specificity to HER2 was achieved after Herceptin-

conjugation to the 100 nm NPs, whereas bioconjugated 25 and 15 nm NPs showed 

weak or almost no binding to HER2, respectively. For the bioconjugated 25 nm as 

well as 100 nm particles stronger binding to HER2 was observed when short PEG 

chains (1.5 kDa) were linked to the NP-surface compared to longer PEG chains (10 

kDa). 
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Figure 31. Binding specificity of bioconjugated 100 nm NPs 

Signals from immunoassays with 100 nm NPs were measured in the Odyssey infrared imaging system. A. 

The ratios of signals from HER2-coated and -uncoated wells incubated with 0.2 g/l of NPs are illustrated. 

The control experiments, after incubation with only TBS or NH2 and PEG 1.5 kDa NPs, all show low ratios 

(of 1.1 and 1.0). An increase in specific binding can be observed for 1.5 kDa PEG-Her and -Her x2 (ratio of 

4.7 and 4.8, respectively). Use of 10 kDa PEG chains reduces binding of Herceptin-conjugated NPs to 

HER2 (ratio of 2.9 and 2.7 for two independently generated probes). The number of independently done 

experiments is listed under the respective probes. B. Relative intensities of 100 nm-1.5 kDa-Her and -Her 

x2 NPs incubated on coated and uncoated wells at concentrations of 0.02 to 1 g/l are shown. C. The 

respective ratios of signals from coated and uncoated wells for both probes are illustrated. D. Relative 

intensities of 100 nm-PEG 1.5 kDa-Her NPs (n = 2) incubated on HER2-coated and -uncoated wells at 

concentrations of 0.2 g/l. Free Herceptin was added in increasing amounts (0.005 to 1 µg) to the wells. 

Black bars indicate standard errors in A,C. and standard deviations in B,D. Each experiment was 

performed in triplicate. 

 

3.3.3. NPs show no influence on cell viability  

As 100-PEG 1.5 kDa-Her and –Her x2 NPs showed the highest binding specificity to 

HER2, these probes were selected for further analyses of tumor cell binding 

specificity in vitro and in vivo.  

Since, potentially cytotoxic effects of NPs, especially to non-cancerous cells had to be 

excluded, a cell viability assay was performed on 3T3 mouse fibroblasts. Fibroblasts 

were incubated for 24 h with 0.01 to 2 g/l 100 nm NPs and the amount of viable 

cells, proportional to the amount of formazan was measured by absorption at 450 
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nm. Figure 32 shows that 100 nm-NH2 NPs (blue columns; n = 3) as well as 

Herceptin-conjugated NPs (PEG 1.5 kDa-Her, green columns, n = 2; PEG 1.5 kDa-

Her x2, red columns, n = 1) had no effect on cell viability when compared to 

untreated cells (0 g/l, grey column, n = 3) with a confidence of 90 % (red lines). 

Control samples without cells, containing only medium (medium, grey column; n = 1) 

showed a low absorption, far outside the 90 % confidence interval of untreated 3T3 

cells. 

 
 

Figure 32. NPs do not decrease cell viability 

3T3 mouse fibroblasts were incubated with 0.01 to 2 g/l of 100 nm NPs for 24 h and cell viability was 

analyzed via WST-1 assay and measurement of absorption at 450 nm. To exclude absorption effects by 

the Itrybe-loaded NPs, absorption was measured before addition of WST-1 and subtracted from absorption 

after WST-1 treatment. The mean values of the absorption by formazan are illustrated for untreated cells 

(0 g/l NPs; n = 3) and for medium only (grey column; n = 1) as well as for cells incubated with 100 nm 

NPs. Incubation with NPs is shown in blue columns for 100 nm-NH2 (n = 3), in green columns for 100 nm-

PEG 1.5 kDa-Her (n = 2), and in red columns for 100 nm-PEG 1.5 kDa-Her x2 (n = 1). All experiments 

were performed in triplicate. The 90 % confidence interval of untreated cells is depicted in red lines. 

 

In summary, NPs at concentrations up to 2g/l incubated for 24 h do not affect cell 

viability of mouse fibroblasts. 
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3.3.4. Binding specificity of bioconjugated NPs to breast tumor cells 

in vitro 

As 100-PEG 1.5 kDa-Her and –Her x2 NPs showed strong binding to the HER2 

antigen in immunoassays (see section 3.3.2, Figure 31), they were analyzed for their 

binding capacity to KPL-4 and MDA-MB-231 tumor cells by fluorescence microscopy, 

in comparison to controls, the 100-NH2 and -PEG 1.5 kDa NPs.  

Specific binding of Herceptin-conjugated NPs to HER2-positive KPL-4 cells was 

observed, whereas the controls revealed also some unspecific binding. Figure 33 

shows, that strongest fluorescence is detected from HER2-positive, KPL-4 cells after 

incubation with 100 nm-PEG 1.5 kDa-Her NPs (Her) whereas signals are low after 

incubation of the same cell type with the unspecific probe, 100 nm- PEG 1.5 kDa NPs 

(PEG). Incubation of both probes with HER2-negative, MDA-MB-231 cells also 

revealed comparable low fluorescence (n = 3). The differences of specific and 

unspecific binding to cells decreased with increasing incubation times: Whereas the 

differences of fluorescence of KPL-4 cells incubated with Her to the control samples 

(PEG on KPL-4 as well as Her and PEG on MDA-MB-231 cells) are relatively high after 

30 min (Figure 33A) and 1 h (Figure 33B), unspecific uptake of the control samples 

in cells increased after 3 h (Figure 33C) and 5 h of incubation (Figure 33D).  

The binding and/or uptake of 100 nm-PEG 1.5 kDa-Her NPs on KPL-4 cells over time 

is illustrated in Figure 34. Itrybe-derived signals continuously increased from 30 min 

to 5 h after incubation of the probe at 37 °C (Figure 34A; n = 3). At 4 °C incubation 

(Figure 34B; n = 1), no fluorescence can be detected on cells using the same 

exposure time (10 ms). Nevertheless, an increase of Itrybe-derived fluorescence 

over time is also detected at 4 °C with a higher exposure time of 20 ms (Figure 34C), 

however, cell binding and/or uptake of NPs is lower compared to incubation at 37 °C. 

The distribution of NPs on cells incubated at 37 °C (Figure 34A) and at 4 °C (Figure 

34C) is relatively equal over time as no differences in location of NPs, e.g. 

predominantly membrane bound probe at early time points in comparison to 

internalized probe after longer incubation times, are observed. NPs seem to localize 

inside the cells after very short incubation times (Figure 33 and Figure 34).  
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Figure 33. Increased binding/uptake of Herceptin-conjugated NPs to HER2-positive cells in 

vitro 

Cells were seeded on glass slides and incubated for 30 min, 1, 3, and 5 h at 37 °C with 1 g/l Itrybe-loaded 

100 nm NPs and examined under a fluorescence microscope with an x 40 objective. For each box, on the 

left, counter stain of cell nuclei with Hoechst 33342 and in the middle probe-derived signals are illustrated. 

Merged images of the cell nuclei (blue) and the probe (red) can be seen on the right. The exposure time 

used for detection of Itrybe was 30 ms after 30 min, 10 ms after 1 and 3 h, and 4 ms after 5 h of 

incubation.  A,B. After (A) 30 min and (B) 1 h of incubation strongest fluorescence is deriving from KPL-4 

cells treated with 100 nm-PEG 1.5 kDa-Her (Her). The control probe, PEG 1.5 kDa (PEG) on KPL-4 cells as 

well as both probes on MDA-MB-231 cells reveal low fluorescence signals. C,D. When incubated (C) for 3 h 

and (D) 5 h with 100 nm NPs, still strongest fluorescence is deriving from 100 nm-Her on KPL-4 cells but 

signals from 100 nm-PEG on KPL-4 cells and from both probes on MDA-MB-231 cells are slightly increased, 

compared to A. and B. Representative results of three independently performed experiments are shown. 

Bars represent 50 µm. 
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Figure 34. Increased binding/uptake of Herceptin-conjugated 100 nm NPs in HER2-positive 

cells over time at 37 and 4 °C  

KPL-4 cells were incubated for 30 min, 1, 3, and 5 h at 37 °C and 4 °C with 1 g/l Itrybe-loaded 100 nm-

PEG 1.5 kDa-Her NPs and examined under a fluorescence microscope with an x 40 objective. For each box, 

on the left, counter stain of cell nuclei with Hoechst 33342 and in the middle, probe-derived signals are 

illustrated. Merged images of the cell nuclei (blue) and the probe (red) can be seen on the right. A. Itrybe-

derived fluorescence on cells, detected with a constant exposure time of 10 ms, continuously increases 

over time at 37 °C. Representative results of three independently done experiments are shown. B. No 

fluorescence signals on cells can be detected after incubation at 4 °C (n = 1) at the same exposure time 

as in A., of 10 ms. C. When using a higher exposure time of 20 ms, increased Itrybe-derived signals on 

cells can be detected over time. Bars represent 50 µm. 
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The binding specificity of Herceptin-conjugated NPs was further verified on KPL-4 and 

MDA-MB-231 tumor sections (two tumors of each type) that were incubated with 

different 100 nm probes. As illustrated in Figure 35, 100 nm-PEG 1.5 kDa-Her x2 NPs 

(n = 2) show strong binding to KPL-4 tumors (Figure 35A; n = 2), compared to the 

control probes, 100 nm-PEG 1.5 kDa and 100 nm-NH2 (Figure 35B,C; n = 2).  

 

 

 

Figure 35. Ex vivo fluorescence experiments demonstrate binding specificity of Herceptin-

conjugated NPs to HER2-positive tumors 

Paraffin fixed KPL-4 and MDA-MB-231 tumor sections were incubated with 0.1 g/l Itrybe-loaded NPs and 

examined under a fluorescence microscope with a x 40 objective. For each box, on the left upper side, 

counter stain of cell nuclei with DAPI and on the left lower side, probe-derived signals are illustrated. 

Merged images of the cell nuclei (blue) and the probe (red) can be seen on the right. A-C. Representative 

results of two different KPL-4 tumors incubated with (A) 100 nm-PEG 1.5 kDa-Her x2 (Her; n = 2) show 

strong fluorescence in comparison to KPL-4 tumors incubated with (B) 100 nm-PEG 1.5 kDa (PEG; n = 1), 

or (C) 100 nm-NH2 (NH2; n = 2). D-F. Representative results of two different MDA-MB-231 tumors 

incubated with (D) 100 nm-PEG 1.5 kDa-Her x2 (Her; n = 1), (E) 100 nm-PEG 1.5 kDa (PEG; n = 1), or 

(F) 100 nm-NH2 (NH2; n = 1) reveal lower fluorescence compared to A. The exposure time for detection of 

NPs was 140 ms. Bars represent 50 µm. 
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Weak fluorescence could be observed in MDA-MB-231 tumors treated with 100 nm-

PEG 1.5 kDa-Her x2 NPs (Figure 35D) that was slightly higher compared to both 

tumor types incubated with the control probes (Figure 35B-C,E-F). 

Taken together, Herceptin-conjugated 100 nm NPs are functional on breast tumor 

cells, as they showed increased binding/uptake to HER2-positive KPL-4 cells and -

tumors. In contrary, PEGylated or NH2-modified NPs showed lower binding to KPL-4 

cells and –tumors as did all NP probes to HER2-negative, MDA-MB-231 cells and –

tumors. 

3.3.5. In vivo detection of Itrybe-loaded NPs 

The suitability of fluorescence deriving from Itrybe-loaded NPs to be detected in vivo 

in tumor tissue and at other sites of the mice was investigated. For this purpose, 

KPL-4 and MDA-MB-231 tumor-bearing nude mice received i.v. injections of different 

Itrybe-loaded NPs and were imaged in vivo and ex vivo at diverse time points. Due to 

the broad absorption spectra of Itrybe-loaded NPs (see section 3.3.1, Figure 27), 

imaging was performed at two different λex of 635 and 670 nm and fluorescence was 

detected at λem above 700 nm (n = 9).  

Figure 36A shows representative in vivo images of a KPL-4 tumor-bearing nude 

mouse before and 1 to 24 h after i.v. injection of 400 µg 100 nm-PEG 1.5 kDa-Her at 

λex 635 nm (n = 2). Autofluorescence (white circle) was assessed in prescans of mice 

before treatment. High fluorescence in the liver is seen shortly after NP-injection up 

to 24 h (white ellipse after 1 h). However, no tumor signals were detected within this 

time (white circle). The same mouse imaged at λex 670 nm, is illustrated in Figure 

36B. Here, autofluorescence is lower in the prescan but unspecific signals in the 

stomach (arrow) and gut (white ellipse) appear higher. NP-derived fluorescence in 

the liver was also observed but appears weaker than at λex 635 nm (Figure 36A). 

This can be explained by the better excitability of Itrybe at λex 635 nm, compared to 

λex 670 nm (see Figure 27 in section 3.3.1). Ex vivo scans of excised organs of the 

same mouse 24 h after probe injection are depicted in Figure 36C,D. Here, the 

highest signals can be seen in the liver at λex 635 nm (Figure 36C) as well as at λex 

670 nm (Figure 36D) compared to low signals at both wavelengths in the gut, 

stomach, kidneys, heart, spleen, lung, and tumor. In comparison to excitation at λex 

635 nm, Itrybe-derived fluorescence in the liver is weaker at λex 670 nm but 

unspecific signals from the GI tract are slightly higher, which is in agreement with 

the in vivo measurements. 
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Figure 36. In vivo and ex vivo detection of NP-derived fluorescence at different wavelengths 

Fluorescence intensity scans taken by the Optix MX2 before (prescan) and after i.v. injection of 400 µg 

100 nm-PEG 1.5 kDa-Her NPs in nude mice bearing KPL-4 tumors in the right abdominal mammary gland  

(n = 2). A. A representative mouse in a ventral position imaged before and 1, 4, and 24 h after probe 

application at λex 635 nm and λem above 700 nm. Autofluorescence in the prescan over the lung area is 

illustrated with a white circle. No accumulation of NPs in the tumor (white circle, 24 h) but high liver 

signals (white ellipse, 1 h) are observed after probe application. B. The same mouse shown in A. imaged 

at λex 670 nm and λem above 700 nm. In the prescan autofluorescence is lower compared to A. but 

unspecific signals from the stomach (arrow) and gut (white ellipse) are higher. C. Ex vivo scans of excised 

organs of the mouse shown in A. and B. at λex 635 nm, 24 h after NP-injection confirm in vivo 

observations. D. The same organs seen in C. imaged at λex of 670 nm.  
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In summary, Itrybe-loaded NPs can be excited at λex 635 nm but also at λex 670 nm 

and be detected well above λem 700 nm. Following injection of NPs, probe-derived 

fluorescence cannot be detected in the tumor, but strong signals are observed in the 

liver. Due to the higher fluorescence of Itrybe at λex 635 nm making autofluorescence 

appear negligible, this excitation wavelength was used for all following in vivo and ex 

vivo scans performed in the Optix MX2. 

 

In order to illustrate the brightness of Itrybe-loaded NPs and its detection limit for 

tumors in vivo, different concentrations (100 to 0.8 µg) of 15 nm-PEG 10 kDa NPs 

were injected s.c. in mice at different sites (n = 2). 15 nm particles were selected 

due to their lowest fluorescence intensity per mg PS compared to other NPs (see 

Table 11). As illustrated in Figure 37, fluorescence intensities of NPs after s.c. 

injection (Figure 37A,B; white circles) are well detectable even at an amount of 1.6 

µg, as NPs are still 4-times more fluorescent (Figure 37C; 1,200 NC) than the 

autofluorescence (Figure 37B,D; red circle; 327 NC). In comparison, fluorescence of 

1.6 µg of NPs injected in the MDA-MB-231 tumor (Figure 37C; 813 NC) is slightly 

weaker, as only 2.5-fold higher than the autofluorescence. 

As a result, Itrybe-derived fluorescence can be detected in very low amounts in vivo, 

although fluorescence is lower within the tumor compared to s.c. injections near the 

surface of the mouse. Therefore, Itrybe-loaded NPs are suitable for in vivo tumor 

imaging in mice. 

 



Results 

 87 

 

 

Figure 37. In vivo detection of Itrybe-derived fluorescence  

Fluorescence intensity scans taken by the Optix MX2 directly after injection of different amounts of 15 nm-

PEG 10 kDa NPs solved in 30 µl NaCl. The areas of probe injections are indicated with white circles. A. 

Mouse in a dorsal view with s.c. injections of 100, 50, 25, and 12.5 µg NPs (n = 2). B. Mouse in a dorsal 

view with s.c. injections of 6.3, 3.1, 1.6, and 0.8 µg NPs (n = 2). Autofluorescence (red circle) was 

determined in an area outside the gut and stomach C. A MDA-MB-231 tumor-bearing mouse in a ventral 

position injected with 1.6 µg NPs i.t. (red arrow) and s.c. (red arrow). Note that different intensity scales 

are shown in A-C. D. The log of the average intensity after s.c. injection of 100 to 0.8 µg 15 nm NPs (A,B) 

and of the autofluorescence of the mouse (0.0 µg NPs) is illustrated.  

 

3.3.6. Biodistribution of NPs 

In order to compare the in vivo behavior of NPs depending on different sizes and 

surface modifications, biodistribution studies were performed in healthy nude mice. 

As NPs seem to be captured in the liver rapidly after injection (see section 3.3.5, 

Figure 36), mice were analyzed at early time points, from 6 min to 4 h after injection 

of NH2 and PEGylated NPs of different sizes (n = 28). 

As illustrated in Figure 38, exemplarily for a mouse injected with 25 nm-PEG 10 kDa 

(n = 4), NPs accumulate in the liver (white ellipse) already 6 min after injection. 

Therefore, fluorescence is especially analyzed over the liver and compared to 
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fluorescence measured in the background of mice, representing the amount of 

circulating unbound NPs in the blood. An area over the hindlimb of mice (in a ventral 

position) was selected as a background region (white circle), since no unspecific 

accumulation of NPs is expected here. After injection of NPs, only a marginal increase 

in fluorescence is detected in the background (white circle) indicating a fast 

elimination of NPs from the blood pool. 

 

 

 

Figure 38. Biodistribution of NPs in healthy mice over time 

Fluorescence intensity maps of healthy, tumor free, female nude mice scanned in vivo in the Optix MX2 

before (prescan) and 6 min to 4 h after injection of diverse NPs (n = 28). Exemplarily, a representative 

mouse before and after injection of 400 µg 25 nm-PEG 10 kDa NPs is illustrated (n = 4). High liver signals 

can be seen rapidly after probe application (white ellipse) whereas background fluorescence (white circle) 

remains low. 

 

In Figure 39 average fluorescence intensities in liver (Figure 39A-C) and background 

regions (Figure 39D-F) of healthy nude mice treated with different NPs are illustrated 

before and 6 min to 4 h after treatment (n = 4; see also Figure 38). In order to 

eliminate signals deriving from autofluorescence of the mouse, the average 

fluorescence in the liver and background of the prescans of each mouse was 

subtracted from the respective regions after probe injection.  

Note that intensities are not comparable between mice treated with NPs of varying 

sizes (15, 25, and 100 nm) since the fluorescence intensity of the injected probe 

varies dependent on the NP size. As illustrated in Table 11, per mg PS, the 25 nm 

NPs are 3-fold more fluorescent and the 15 nm particles are 5-fold less fluorescent 

compared to the 100 nm NPs.  
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Table 11. Fluorescence intensities of NPs of different sizes 

Total fluorescence intensities of NP probes in 200 µl NaCl were measured in the Optix MX2 prior to i.v. 

injection in mice. Measurements and calculations were performed for the PEGylated NPs (100 nm-PEG 1.5 

kDa, 25 nm-PEG 10 kDa, and 15 nm-PEG 10 kDa). 

probe 100 nm 25 nm 15 nm 

injected amount 
[mg] 

0.4 0.4 1 

PI [NC] 1,900,000 5,630,000 790,000 

relative* PI/mg 1.0 3.0 0.2 

PI = Total fluorescence intensity of the injected probe  

* relative to 100 nm NPs 

 

As summarized in Figure 39A-C, NPs with increasing size accumulate slower in the 

liver: Fluorescence of 15 nm NPs already peaks ~6 min (Figure 39A), signals of 25 

nm NPs peak ~30 min (Figure 39B), and fluorescence of 100 nm NPs peaks ~1 to 2 h 

after injection (Figure 39C). Furthermore, PEGylation of probes influences their 

accumulation in the liver, as 25 and 100 nm NPs demonstrate decreased liver signals 

after PEGylation whereas PEGylated 15 nm NPs show increased signals when 

compared to the NH2-modified particles (Figure 39A-C).  All probes show low 

fluorescence in the background with a maximal intensity within the first view minutes 

after injection of NPs that decreases over time (Figure 39D-F). Only the 100-PEG 1.5 

kDa NPs (Figure 39F) revealed a well measurable and stable background signal over 

time (from 30 min to 4 h). In contrary, PEGylation of the 15 and 25 nm NPs had no 

impact on the prolongation of their blood circulation time (Figure 39D,E). 

 

Healthy nude mice treated with NPs (see Figure 38 and 39) were sacrificed 4.5 h 

after injection and excised organs were scanned in the Optix MX2 ex vivo. Probe-

derived fluorescence in the organs is displayed according to the presumable size of 

the injected NPs from the probe with the highest to the lowest diameter (100 nm-

PEG 1.5 kDa > 100 nm-NH2 > 25 nm-PEG 10 kDa > 25 nm-PEG 1.5 kDa > 25 nm-

NH2 > 15 nm-PEG 10 kDa > 15 nm-NH2). To exclusively illustrate NP-derived signals, 

the autofluorescence from untreated organs (n = 4) was subtracted from the 

respective organs from mice that received NPs. To allow comparability of intensities 

from different probes, the average fluorescence intensity in particular organs is 

illustrated relative to the total intensity of all organs (liver, lung, heart, spleen, and 

kidneys) of mice treated with the same probe (n = 4).  
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Figure 39. NP distribution in liver and background of healthy mice in vivo over time 

Average fluorescence intensities in liver (A-C) and background regions (D-F) of female healthy nude mice 

treated with distinct NPs are shown before and 6 min to 4 h after probe injection (n = 4). Mice received 

(A,D) 1 mg of 15 nm NPs, (B,E) 400 µg of 25 nm, or (C,F) 400 µg of 100 nm NPs. The average 

autofluorescence in the liver and background of the prescans of each mouse is subtracted from the 

respective regions after probe injection. Liver signals after injection of (A) 15 nm-NH2 and –PEG 10 kDa, 

(B) 25 nm-NH2, -PEG 1.5 kDa, and -10 kDa, as well as (C) 100 nm-NH2 and –PEG 1.5 kDa are shown. 

Corresponding background signals after injection of (D) 15 nm-NH2 and –PEG 10 kDa, (E) 25 nm-NH2,      

-PEG 1.5 kDa, and -10 kDa, as well as (F) 100 nm-NH2 and –PEG 1.5 kDa are illustrated. Mean values of 4 

mice are shown. Standard deviations are indicated as black bars. 

 

Figure 40A illustrates that all probes accumulate in the liver to a high extend after 

i.v. injection. For example, 25 nm NPs show highest liver uptake with up to 90 % (for 

the 25 nm-PEG 10 kDa probe) whereas lung, heart, spleen, and kidneys show 

comparable low fluorescence (Figure 40B). The second highest fluorescence after NP 

injection is seen in the spleen. Here, the 100 nm-NH2 particles show the strongest 

fluorescence, with 9 % and a slightly decreasing tendency with a decrease in size of 

NPs. In contrary, highest fluorescence in the kidneys was found for the smallest (15 

nm) NPs with 6 % whereas the larger probes show lower fluorescence of 2 to 3 %. 

Fluorescence in the heart was low for all probes (1.4 %). 

 



Results 

 91 

 

 

Figure 40. Biodistribution of NPs by ex vivo analysis 

Healthy nude mice injected with different NPs were sacrificed after 4.5 h and organs were scanned in the 

Optix MX2 (n = 4). Mice received 1 mg of 15 nm or 400 µg of 25 or 100 nm NPs, with NH2 or PEG (1.5 and 

10 kDa) surface groups. Autofluorescence from the respective untreated organs (n = 4) is subtracted from 

the organs of treated mice. The relative fluorescence intensity of average signals over the respective 

organs is illustrated. This is calculated under the assumption that liver, lung, heart, spleen, and kidneys 

make up 100 % of the fluorescence. A. Relative fluorescence intensity in the liver is high compared to 

other organs. B. The spleen shows second highest uptake of NPs. In the kidneys, fluorescence increases 

after injection of 15 nm NPs. 

 

Taken together, biodistribution studies in mice illustrate a rapid and high 

accumulation of all probes in the liver compared to the spleen, kidneys, lung, and 

heart. Ex vivo, 15 nm NPs showed the lowest liver accumulation but the highest 

signals in the kidney. With an increase in NP size, liver uptake and excretion seems 

to be slower over time. Blood circulation times for all NPs were low, showing peak 

intensity rapidly after injection, but are slightly enhanced after applying the 

PEGylated 100 nm NPs.  

3.3.7. NPs accumulate in MDA-MB-231 breast tumors 

In KPL-4 or MDA-MB-231 tumor-bearing mice injected with Herceptin-conjugated or 

PEGylated 15, 25, and 100 nm particles no NP-derived fluorescence could be 

detected in the tumors in vivo in whole-body scans up to 24 h (see Figure 36A,B; n = 

19). Accumulation of NPs in a MDA-MB-231 tumor was also not observed in vivo up 

to 96 h after injection of 400 µg 100 nm NPs with surface carboxyl-groups (-COOH) 

(data not shown). 

Furthermore, tumors of mice treated with 1 mg of 15 nm NPs or with 400 µg of 100 

and 25 nm NPs were excised 24 h after injection and scanned ex vivo (n = 2). Figure 
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41A,B shows the “total fluorescence intensities in the tumor normalized to the tumor 

volume” (TIV) of KPL-4 tumors from mice treated with NPs. Compared to the average 

TIV of untreated mice (red line), no increase in fluorescence after NP-injection is 

observed. In contrary, TIVs in MDA-MB-231 tumors of mice treated with PEGylated 

NP show a clear increase with decreasing particle size compared to tumors of 

untreated mice (Figure 41C,D). Note, that untreated KPL-4 tumors (Figure 41A,B) 

have more than twice as high autofluorescence compared to MDA-MB-231 tumors 

(Figure 41C,D).  

 

 

 

Figure 41. Passive accumulation of PEGylated NPs in MDA-MB-231 tumors ex vivo 

Ex vivo analysis of excised KPL-4 and MDA-MB-231 tumors of mice 24 h after i.v. injection of Herceptin-

conjugated and PEGylated 100, 25, and 15 nm NPs (n = 2) scanned in the Optix MX2. A. Total 

fluorescence intensities in the tumor normalized to the tumor volume (TIV) of KPL-4 tumors before 

(untreated, grey columns) and after treatment (white columns) with NPs are shown. From left to right: 

untreated, 100 nm-PEG 1.5 kDa-Her (100-Her), 100 nm-PEG 1.5 kDa (100-PEG), 25 nm-PEG 1.5 kDa-Her 

(25-Her), 25 nm-PEG 1.5 kDa (25-PEG), and 15 nm-PEG 10 kDa (15-PEG). The average TIV in untreated 

mice is indicated with a red line. No increase in fluorescence is observed in tumors after NP-treatment 

compared to tumors of untreated mice. B. Fluorescence intensity scans of KPL-4 tumors corresponding to 

A. are illustrated. C. TIV of MDA-MB-231 tumors before (untreated; grey columns) and after treatment 

(white columns) with NPs are shown. From left to right: untreated, 100-PEG, 25-PEG, and 15-PEG. The 

average TIV in untreated mice is indicated with a red line. Increased fluorescence is measured in tumors of 

mice treated with NPs. D. Fluorescence intensity scans of MDA-MB-231 tumors corresponding to C. are 

illustrated. 
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In order to obtain only the fluorescence in the tumor deriving from injected NPs, the 

average TIV of untreated tumors was subtracted from the average TIV after probe 

injection; defined as the NP-derived TIV (Table 12). As the total fluorescence 

intensity of the injected probe (PI) is known for the 100, 25, and 15 nm PEGylated 

NPs, the NP-derived TIV, relative to the PI was calculated (NP-derived TIV/PI). Here, 

15 nm-PEG 10 kDa NPs show a more than 4-fold higher NP-derived TIV/PI ratio than 

the 100 nm-PEG 1.5 kDa NPs (0.18 to 0.04) and a 9-fold higher ratio than the 25 

nm-PEG 10 kDa NPs (0.18 to 0.02). This demonstrates that the 15 nm NPs show the 

highest fluorescence intensity in tumor tissue (normalized to the tumor volume) in 

relation to the intensity of the injected probe 

 

Table 12. NP-derived signals in MDA-MB-231 tumors ex vivo 

Total fluorescence intensities of NPs prior to injection in MDA-MB-231 tumor-bearing mice as well as of the 

excised tumors 24 h after injection were measured in the Optix MX2. The injected amounts of NPs were: 

400 µg of 100 nm-PEG 1.5 kDa NPs (100-PEG), 400 µg of 25 nm-PEG 10 kDa NPs (25-PEG), and 1 mg of 

15 nm-PEG 10 kDa NPs (15-PEG).   

probe 100-PEG 25-PEG 15-PEG 

NP-derived TIV  
[NC/cm3] 

79,251 125,695 143,754 

PI [NC] 1,900,000 5,630,000 790,000 

NP-derived TIV/PI 
[1/cm3] 

0.04 0.02 0.18 

TIV = Total fluorescence intensity in the tumor normalized to the tumor volume                                            

PI = Total fluorescence intensity of the injected probe 

 

In summary, ex vivo analysis revealed that Herceptin-labeled and PEGylated NPs do 

not specifically bind to or accumulate in HER2-positive KPL-4 tumors. However, a 

passive accumulation of PEGylated NPs is seen in MDA-MB-231 breast tumors, 

especially for the smallest 15 nm-PEG 10 kDa NPs. 

 

The origin of fluorescence signals after treatment with 15 nm-PEG 10 kDa NPs was 

further assessed on the cellular level by NIR fluorescence microscopy. Therefore, 

tumor sections of KPL-4 and MDA-MB-231 tumors excised 24 h after injection of 15 

nm-PEG 10 kDa NPs were analyzed. KPL-4 tumors of untreated mice show a 

relatively high autofluorescence (Figure 42A; n = 2) whereas no fluorescece in KPL-4 

tumors of mice treated with NP can be observed (Figure 42B; n = 2). Compared to 

untreated KPL-4 tumors, MDA-MB-231 tumors of untreated mice show lower 

autofluorescence (Figure 42C; n = 2). After treatment of mice with 15 nm-PEG 10 

kDa NPs, MDA-MB-231 tumors (Figure 42D; n =2) show fluorescence deriving from 
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the tumor cells. The signal distribution within the tumor is not homogeneous with 

most parts showing comparably low fluorescence. In addition, more fluorescence was 

observed at the tumor border compared to the center (data not shown). 

 

 
 

Figure 42. Detection of 15 nm NP-derived fluorescence in MDA-MB-231 tumor sections ex vivo 

Sections of KPL-4 and MDA-MB-231 tumors of mice 24 h after i.v. injection of 1 mg 15 nm-PEG 10 kDa 

NPs were examined under a fluorescence microscope with a x 40 objective. For each box, on the left upper 

side, counter stain of cell nuclei with DAPI and on the left lower side, probe-derived signals are illustrated. 

Merged images of the cell nuclei (blue) and the probe (red) are shown on the right. A. In untreated KPL-4 

tumors (n = 2) some autofluorescence can be detected. B. In KPL-4 tumors of mice treated with 15 nm-

PEG 10 kDa NPs (n = 2) fluorescence is not higher compared to untreated tumors in A. C. MDA-MB-231 

tumors show almost no autofluorescence (n = 2). D. MDA-MB-231 tumors of mice treated with 15 nm-PEG 

10 kDa NPs (n = 2) show fluorescence located around the tumor cells. The exposure time for detection of 

NPs was 800 ms. Bars represent 50 µm. 

 

Best signal detection of Itrybe-loaded NPs was observed ex vivo for the PEGylated 15 

nm particles after injection in MDA-MB-231 tumor bearing mice. Here, illustration of 

tumor signals was also possible in vivo, as illustrated in Figure 43 (n = 2). As tumor-

derived fluorescence is relatively low after probe injection (compared to the prescan) 

this could only be achieved by scanning exclusively the tumor region. Thereby, the 

high probe-derived signals in the liver which were hampering the detection sensitivity 

of low fluorescent signals from the tumor are excluded (see Figure 36A for 

comparison). Although fluorescence in the tumor is relatively weak, the intensity in 

the tumor (black circle) is higher 1 h after injection of NPs and further increases up 

to 24 h when compared to the autofluorescence in the prescan.  
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Figure 43. PEGylated 15 nm NPs can be detected in the tumor in vivo 

In vivo fluorescence intensity scan of a MDA-MB-231 breast tumor-bearing mouse before (prescan) and 1, 

4, and 24 h after i.v. injection of 1 mg 15 nm-PEG 10 kDa NPs (n = 2) performed in the Optix MX2. Only 

the tumor region (black circle) was scanned. After injection of NPs, fluorescence over the tumor increases 

over time. 

 

In summary, tumor-bearing mice treated with NPs of all sizes with PEG- and 

Herceptin surface-modifications showed no NP-derived fluorescence in the tumor in 

vivo in whole body scans. In contrary, a closer analysis of the tumor targeting ability 

of NPs ex vivo revealed low but clear accumulation of NPs in MDA-MB-231 breast 

tumors. Here, the 15 nm PEGylated NPs seem to be the most promising probes for 

tumor imaging in vivo.  
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4. DISCUSSION 

4.1. Improvement of tumor detection via pH-sensitive 

NIRF probes 

The present work illustrates the potential of the pH-sensitive tumor-specific NIRF 

conjugate, pH-Her (Cyp-Her5E-Herceptin) to improve tumor-detection sensitivity in 

vivo in comparison to the always-on probe Alexa-Her (Alexa Fluor 647-Herceptin).  

4.1.1. Tumor imaging with target specific pH-activatable NIRF 

probes  

The use of pH-Her enabled non-invasive detection of tumors in vivo with a 2.5-fold 

increased sensitivity compared to the always-on probe Alexa-Her. The very high 

tumor contrast shown here by the use of pH-Her was achieved by a considerable 

increase in fluorescence intensity of pH-Her in the acidic environment of the tumor 

and after internalization in targeted tumor cells. At the same time pH-Her produced a 

low background fluorescence in the blood, where it faces an approximately neutral 

pH. The remaining autofluorescence was efficiently eliminated by subtraction of 

autofluorescence from prescans of mice. In contrast, the always-on fluorescence 

conjugate, Alexa-Her was fluorescent in the tumor as well as in the blood, as this 

probe did not respond to pH changes in the environment. Although Alexa-Her had a 

higher fluorescence intensity, this resulted in 2.5-fold lower CNRs in mice, compared 

to pH-Her, despite subtraction of autofluorescence, which was negligible compared to 

the high background fluorescence caused by Alexa-Her in the blood. The higher 

fluorescence intensity of Alexa-Her and Alexa-OH compared to pH-Her and pH-OH 

observed in this study in in vitro and in vivo measurements is due to the considerably 

higher quantum yield of Alexa Fluor 647 of 0.33 compared to CypHer5E which has a 

quantum yield of 0.27 at a pH of 5.3. 

Other groups, like Urano et al.38 and Ogawa and colleagues6, have also achieved high 

tumor to background ratios with a pH-sensitive Herceptin-conjugate utilizing PeT for 

photo quenching and a TAMRA-QSY7 fluorophore-quencher pair conjugated to 

Herceptin, respectively. However, as these probes both emit in the visible 

wavelength region, the limited tissue penetration restricted the generation of in vivo 

data and allowed only ex vivo measurements of the opened abdominal cavity which 

is of low importance for noninvasive tumor detection in living organisms. 

Furthermore, some studies, like those of Ogawa and colleagues lack information such 

as CNRs or tumor to background ratios of their activatable probes, thereby giving no 

quantitative data about the ability of their probes to improve tumor detection7. 
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The very low background fluorescence of pH-Her, which contributed to high tumor-

detection sensitivity was further attained by the lack of major signals in other organs 

in vivo and ex vivo. In contrast to that, it has been reported that some quenched 

fluorescence probes, like ICG coupled to Herceptin7 or Cy5.5-Herceptin-conjugates8 

at high labeling densities, produce high liver signals resulting in decreased tumor 

contrast. Furthermore, since the applied fluorophore CypHer5E in pH-Her emits 

fluorescence in the near-infrared region, the probe is well suited for in vivo imaging 

in deeper mouse tissues as less autofluorescence is detected and tissue penetration 

is increased compared to fluorophores that emit in the visible wavelength region21.  

pH-Her was well detectable in the tumor as early as one hour after probe injection in 

KPL-4 tumor-bearing mice. This very early detection was probably mainly due to an 

increase in fluorescence of pH-Her in the acidic tumor interstitium, before receptor-

based internalization in the target tumor cells occurred. It is known that CypHer5E 

changes its absorption spectrum and thus its excitability with changes in pH due to 

protonation/deprotonation at the nitrogen atom39,43 and therefore is able to increase 

its fluorescence in the presence of protons already in the acidic tumor environment. 

Different to pH-Her, activatable fluorescence probes based on quenching mechanisms 

induced by homo- or hetero-FRET6,8, H-dimer formation5, or autoquenching7 are 

mainly dependent on lysosomal degradation which occurs after internalization in 

targeted cells. Here, processing by e.g. proteasomal cleavage leads to dequenching 

of the conjugates resulting in activation of fluorescence only within the cells.  

In the present study the majority of Herceptin-conjugates internalized after 8 h of 

incubation at 37 °C in HER2-positive cells in vitro, confirming previous studies which 

illustrate high internalization of fluorescent Herceptin-conjugates in target cells after 

a similar period rather than after a short time of one hour6,7. This indicates that the 

fluorescent Herceptin-conjugates activated by dequenching in the lysosomes, 

reported by others, need a longer time to be detected in vivo in the tumor, compared 

to the here used pH-Her. In the present work, the fluorescent signals in the tumor 

were well detectable as early as one hour after injection of pH-Her in mice and CNRs 

continuously increased in the first 24 h. In contrast to that, Ogawa and colleagues 

applied quenched fluorescence probes coupled to Herceptin for in vivo imaging of 

tumors, but did not show any fluorescence images of tumor-bearing mice, earlier 

than 24 h or 48 h after i.v. injection of the probes7,8, suggesting that tumor contrast 

at early times were low. 

The pH-sensitive probe used in the present study was earlier shown by others to be 

reversible activatable after protonation/deprotonation by changes in pH53. Although 

not investigated in this study, this reversible fluorescence activation might be 
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especially advantageous for imaging of the localization of probes in real-time as 

fluorescence disappears as soon as  pH-Her escapes the acidic environment of the 

tumor or of endolysosomal cell compartments, which might occur in case of cell 

damage or cell death. In contrast, activation of fluorescence-conjugates via 

dequenching by lysosomal processing is irreversible and thereby does not provide 

imaging of environmental changes in real time. 

Herceptin presents an excellent tumor targeting moiety for this study, as binding 

specificity and kinetics of Herceptin are well characterized5,38,111 The Herceptin-

conjugate, pH-Her selectively activates its fluorescence after internalization into 

HER2-positive KPL-4 cells after 8 h at 37 °C, but not when bound to the cell 

membrane at 4 °C, when cell physiology is slowed down and the pH is neutral. It has 

also been described by others that Herceptin-fluorophore-conjugates are internalized 

to a high extend after 8 h of incubation at 37 ° C but not at 4 °C5. The spectroscopic 

characterizations of the pH-Her probes, showing an increase in fluorescence only 

when the pH is decreased, are in accordance with the proposed pH-dependent 

increase in fluorescence of pH-Her after internalization in cells and point to the 

localization of these conjugates in acidic endolysosomal compartments. My means of 

lysosomal markers5,6,38, this was earlier confirmed by showing that Herceptin-

conjuated fluorescence dyes colocalize with lysosomal compartments, which are 

known to have an acidic pH of 5 to 638. 

pH-Her is especially advantageous for imaging purposes as a high DP ratio is not 

necessary for quenching of the probe. In contrast, activatable probes that utilize self-

quenching via conjugation of several fluorophores to one targeting ligand need, e.g. 

~7 to 20 dyes to be linked to one ligand8,112. The conjugation of many fluorophores 

to one ligand is challenging as, besides the higher costs for such an amount of 

hydrophilic dyes, some fluorophores, like ICG, form aggregates after conjugation to 

ligands113. The degree of aggregation is directly related to the amount of fluorophore 

loaded onto the protein113. In this study, a lower stability over time was observed for 

the pH-Her conjugates at high DP ratios of 5.0 and 6.4, compared to pH-Her at a low 

DP ratio of 1.6. The fact that pH-Her DP 5.0 and 6.4 showed very low tumor 

targeting capacity but high bladder signals early after application in tumor-bearing 

mice, pointed to a structural degradation of the antibody into non-functional smaller 

fragments (< 5.5 nm in HD) that are filtrated by the kidney rather than eliminated by 

the liver, representing the normal excretion route of IgGs75. The structural instability 

of these conjugates is likely caused by the high labeling density of Herceptin, which 

may lead to fragmentation of the IgG especially at the disulfide bridges (Jutta Pauli, 

personal communication). However, the amount of protein was also lower in the pH-
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Her DP 5.0 and 6.4 probes, compared to the pH-Her conjugate at a low DP ratio and 

the Alexa-Her conjugates. This suggests that a part of the pH-Her probes at high DP 

ratios had precipitated, probably due to enhanced agglomeration of these probes at a 

high labeling density (Jutta Pauli, personal communication). Most likely, both effects, 

structural degradation of Herceptin-conjugates into smaller non-functional fragments 

as well as partial precipitation of pH-Her with high DP ratios, occurred over time. The 

higher stability and the increased pH-sensitivity of pH-Her probes at a low DP ratio, 

observed in this work in spectroscopic measurements favor its use for in vivo tumor 

detection, when compared to pH-Her probes with high DP ratios. 

KPL-4 cells, applied in this study to generate orthotopic breast tumor xenografts in 

nude mice, showed high expression of HER2 and were efficiently targeted by 

Herceptin-conjugated fluorophores. This confirmed the suitability of KPL-4 cells as an 

optimal tumor model for the evaluation of Herceptin-conjugated fluorescence labels, 

as already reported in previous studies103.  

 

   4.1.2.  Suppression of background fluorescence in vivo  

In the present work, tumor-detection sensitivity was improved via elimination of 

background fluorescence by subtraction of autofluorescence but not via LT-gated 

imaging. Background fluorescence was eliminated in this work, as it presents one of 

the greatest problems in fluorescence imaging of living mice, hampering the 

detection sensitivity of specific probes in vivo1,2,15,16.  

Subtraction of autofluorescence was especially advantageous in combination with the 

pH-sensitive probe, pH-Her. This probe exhibited a low fluorescence outside the 

tumor area. Thereby, and in contrast to Alexa-Her, pH-Her had only a minor 

contribution to the background fluorescence and after injection of pH-Her, the 

majority of background signals were caused by autofluorescence of the mice. This 

could be measured in prescans and efficiently eliminated by a software-based 

subtraction, thereby leading to a high detection sensitivity of the pH-Her-derived 

fluorescence in the tumor. This straightforward technique is possible with the 

majority of imaging devices, as most imaging softwares are capable to subtract a 

given value of fluorescence from the generated scans. In comparison, suppression of 

autofluorescence by LT imaging or spectral unmixing, performed by scanning the 

excitation and emission spectra of signals in objects, followed by their separation via 

their spectroscopic signatures21,22, both require a special hardware. However, only 

few commercially available imaging devices are equipped with photon-counting 

systems, needed for LT imaging or tunable excitation or emission filters, used for 
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spectral unmixing. The software based subtraction of autofluorescence represents a 

simple and effective alternative. 

In the present study, subtraction of autofluorescence was performed by subtracting 

the average autofluorescence in the untreated tumor from whole scans of the same 

mice after probe injection. This technique may not precisely reflect the differences in 

autofluorescence in certain areas of the mice. As a second option, elimination of 

autofluorescence can be performed by subtraction of fluorescence images generated 

at two different excitation wavelengths, one at which mainly the autofluorescence is 

measured and another wavelength at which autofluorescence and probe signals can 

be measured114,115. However, subtraction of signals taken at different wavelengths, 

although they are not too far apart, is also inaccurate as the amount of 

autofluorescence varies at different wavelength (see section 1.1, Figure 1). 

For the probes applied in this study, pH-Her and Alexa-Her, LT-gated imaging, which 

offers the possibility to separate probe-derived fluorescence and autofluorescence2,15, 

did not improve tumor-detection sensitivity in vivo. However, in other studies, LT 

imaging has been successfully applied as a tool to increase detection of specific 

signals in vivo2,15, for example, for illustration of tumors after injection of a small 

peptide-fluorophore conjugate2. Moreover, compared to fluorescence intensity 

imaging, LT measurements provide the advantage of being relatively independent on 

probe concentration, thereby increasing the sensitivity for the detection of weak 

signals108. Nevertheless, several factors are known to influence the LT of fluorescent 

probes which can lead to misinterpretation of specific signals. As also shown in this 

study for the free dyes, pH-OH and Alexa-OH, the LTs of fluorophores change after 

conjugation to Herceptin. It has also been shown that the LT of fluorescent probes 

can be influenced by factors, such as the presence of proteins and varying pH2,108,109. 

In this work, the pre-evaluation of probes under distinct conditions, such as varying 

pH, the presence of proteins, and after s.c. injection in vivo, was performed in order 

to predict a characteristic LT and thereby to identify the fluorescence probes when 

distributed in vivo after i.v. injection. However, for pH-Her in vivo, a higher LT of 

about 1.5 ns was measured at the tumor site compared to the predicted LT of 1.3 ns. 

Therefore, in pH-Her treated tumor-bearing mice, the majority of tumor signals was 

eliminated after gating of images to the predicted LT. These findings indicate, that 

some factors in the tumor environment influence the LT of pH-Her, which could not 

be assessed by the LT characterization in PBS and BSA, neither at different pH nor 

after s.c. injection in mice. Additional factors known to influence the LT are, amongst 

others, tissue depth, calcium concentration, and lipids16,108. Therefore, further studies 

are required to examine the conditions in detail that might have led to an increase in 
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LT of pH-Her in the tumor in vivo. As the increase in LT at the tumor site, in 

comparison to the predicted LT was not observed for Alexa-Her, it is likely that the 

sensitivity of the LT of pH-Her to the tumor environment is a characteristic of the 

dye, CypHer5E. This would provide an additional potential to use CypHer5E as a 

highly sensitive means of identifying tumors via LT-gated imaging, due to the 

characteristic change in LT of the probe at the tumor site. Fluorescence probes that 

utilize such a principle would be highly advantageous compared to probes, like Alexa-

Her which resulted in high background fluorescence when circulating in the blood of 

mice, thereby contributing to similar LTs in the background as well as at the tumor 

site. LT-gated imaging using Alexa-Her did not allow an efficient separation of 

background signals from tumor fluorescence and thereby did not lead to an increase 

in tumor-detection sensitivity. Furthermore, the high background signals of the 

Alexa-Her conjugates are caused by the prolonged blood circulation time of IgGs34. In 

comparison, smaller molecules, such as peptides34 are cleared more rapidly from the 

blood and might be a better tumor-targeting moiety to be conjugated to always-on 

probes, such as Alexa Fluor. This may enable a better separation of probe-derived 

signals in the tumor from background signals, mainly caused by autofluorescence, 

according to their different LTs2 and thus improve tumor-detection sensitivity, 

compared to LT-gated imaging with IgG-conjugates. 

In future, the pH-sensitive NIRF probe, pH-Her may be applied for a fast and 

sensitive detection of weak signals, deriving e.g. from small metastatic lesions in 

vivo. 
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4.2. Evaluation of Itrybe-loaded PSNPs as in vivo NIRF 

imaging agents 

The broadband NIR fluorophore, Itrybe, enclosed in polystyrene nanoparticles 

(PSNPs) of different sizes (15, 25, and 100 nm) and surface modifications was 

evaluated, for the first time concerning its suitability for in vivo tumor imaging. The 

results presented here predict a great potential for the use of Itrybe-loaded NPs for 

application in highly sensitive in vivo NIRF imaging. Itrybe can be excited in the NIR 

region at two different wavelengths and is well detectable in mice down to amounts 

of 1.6 µg (for 15 nm NPs).  

4.2.1. Characterization of Itrybe-loaded NPs 

Enclosure of Itrybe in PSNPs with different surface modifications (NH2, PEG, or 

Herceptin) had no considerable influence on the shape of spectra of Itrybe, as shown 

by spectroscopic analyses. This ensured a good comparability of these probes when 

measurements were performed with the same excitation and emission settings. The 

enclosure of hydrophobic Itrybe fluorophores in PSNPs enabled its application in 

aqueous environments and therefore in vivo. In addition to the conservation of the 

spectral range of the dye after enclosure in NPs, a further advantage of this NP 

system is its protection of Itrybe against species in the environment that might 

impair its fluorescence properties55.  

In this study, with the exception of 15 nm NPs, none of the NH2-modifed particles 

showed major alteration in fluorescence with changes in pH or protein concentration. 

In the presence of BSA, 25 and 100 nm NPs showed a slight increase in fluorescence. 

The unexpected high increase in fluorescence observed for the smallest, 15 nm NPs 

in the presence of BSA is likely caused by interaction of proteins with fluorophores 

that are close to the surface of the small particles. As the ratio of particle surface to 

the volume increases with decreasing particle size (15 nm NPs have a surface area of 

0.38 m2/mg PS whereas 100 nm NPs only have a surface of 0.06 m2/mg PS), the 

fluorophores in the 15 nm NPs have the strongest contact to its surrounding. The 

here performed characterization of NPs by evaluation of factors known to influence 

fluorescence properties is an important investigation prior to preclinical studies, as 

NPs used for in vivo tumor imaging are exposed to the usually acidic pH in the tumor 

and to high amounts of protein in blood and tissue.  

The high amount of Itrybe molecules per NPs (which is 10 for 15 nm, 46 for 25 nm, 

and 3100 for 100 nm) contributes to the high brightness of NPs. Hydrophobic dyes, 

like Itrybe are especially suitable for dense loading into NPs of hydrophobic PS. In 
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contrast, loading with hydrophilic dyes is challenging, as the dyes commonly applied 

in fluorescence imaging, such as Cy- or Alexa dyes don’t incorporate efficiently in the 

hydrophobic PS matrix. Moreover, Itrybe is favorably incorporated in NPs in high 

amounts, because, in contrast to most other commonly used NIR fluorophores, a 

close proximity of Itrybe does not result in quenching of fluorescence (Thomas 

Behnke, personal communication).  

4.2.2. Detection sensitivity of Itrybe enclosed in NPs 

The broad absorption spectrum of Itrybe enabled excitation of dye-loaded NPs at 635 

and 670 nm, both resulting in a well measureable fluorescence above 700 nm. In 

vivo scanning revealed a stronger autofluorescence of mice at 635 nm compared to 

670 nm, which is in accordance with the fact that autofluorescence is reduced 

towards the infrared wavelength region1,21. On the contrary, fluorescence of the 

gastrointestinal (GI) tract of mice increased at the longer wavelength of 670 nm 

compared to the measurement at 635 nm. Therefore, one can take advantage of the 

fact that Itrybe can be excited at different wavelengths. The excitation wavelength of 

the dye can be selected according to the imaging purpose of the probe. In the case of 

detection of gastric cancer for instance, an excitation wavelength of 635 nm may be 

favorable, as at this wavelength background fluorescence from food in the GI tract is 

minimized, that may otherwise hamper the specific detection of probe-derived 

signals.    

Itrybe-loaded 15 nm NPs were well detectable in vivo down to amounts of 1.6 µg 

when injected s.c. as well as intratumorally. For the latter, a slightly lower 

fluorescence intensity was measured in the tumor compared to s.c. application of the 

same amount of probe. This was presumably caused by absorption effects in the 

tumor tissue due to e.g. tumor blood vessels and the fact that the probe is 

distributed within the tumor in deeper layers of the mice9,116. As the 15 nm NPs were 

shown to have the lowest fluorescence intensity per mg PS, compared to the other 

probes, the 25 and 100 nm NPs would even show higher detection sensitivity in vivo. 

4.2.3. Surface functionalization of NPs 

The successful surface conjugation of ligands to Itrybe-loaded NPs is important to 

ensure specific binding of these probes to target structures, like tumor cells. Here, of 

all the probes, the 100 nm Herceptin-conjugated NPs showed the highest binding 

specificity to the HER2 antigen. 

By performing an immunoassay with HER2 antigen-coated plates, the reliable 

evaluation of the binding specificity of Herceptin-modified NPs was possible. 
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However, no absolute quantitative analysis of binding specificity of Herceptin-labeled 

NPs to HER2 (e.g. by determination of equilibrium constant or half maximal inhibitory 

concentration) was performed in this study. NPs are 3D structures allowing 3D 

surface conjugation of many Herceptin molecules per NP, whereas the immunoassay 

was performed on two-dimensional antigen-coated plates. Thus, due to sterical 

hindrances of the relatively large NPs bound to the antigen on the plate, the specific 

binding of Herceptin-coated NPs on the plate is presumably less effective than in 

vivo. In the animal, the 3D bioconjugation of NPs with many ligands may even result 

in a higher binding probability to target cells.    

For the 100 nm NPs the number of Herceptin molecules conjugated to the surface 

was ~70 to 100 molecules, depending on the Herceptin amount used for coupling 

procedure. For these probes in particular, functionalization with Herceptin was 

successful, with ratios between specific binding to the HER2 antigen and unspecific 

binding of 4.8, as measured in immunoassays. Binding specificity could not be 

enhanced by increasing the amount of Herceptin during the coupling procedure. Most 

likely, sterical hindrances did not allow further coupling of NPs with Herceptin 

molecules. The smaller, 25 and 15 nm sized probes showed low (ratio of 1.7) and no 

(ratio of 1.2) binding to the HER2 antigen, respectively. Since the amount of 

Herceptin molecules per NP was not determined for these probes (Thomas Behnke, 

personal communication), it is not clear whether antibody coupling to 25 and 15 nm 

NPs was successful but the antibody was non-functional after conjugation or whether 

Herceptin conjugation was not achieved.  

This study revealed that binding of NPs of all sizes to HER2 is more efficient when 

Herceptin is conjugated to the NP surface using 1.5 kDa- rather than 10 kDa PEG 

chains as linker. One possible explanation may be that sterical hindrance via the 

large 10 kDa PEG chains decreased binding efficiency of Herceptin to PEG. In 

addition, large PEG chains at a high density could form ravels with each other, 

further hampering the binding to Herceptin. On the other hand, conjugation of 1.5 

kDa PEG chains, especially to small, 15 nm NPs was challenging as particles tended 

to agglomerate after conjugation to 1.5 kDa PEG (Thomas Behnke, personal 

communication). Agglomeration might have been caused by the low electrokinetic 

potential (zeta potential) of the small particles, due to their low surface area, leading 

to lower repulsion of the particles among each other and thus to a higher 

agglomeration probability. 

Furthermore, a reduction of PEG amounts for coupling of 15 nm NPs to 1/10 (50 

nmol/mg PS) of the original amount did not improve Herceptin conjugation or binding 

specificity of particles to HER2. It may be possible that PEG was still in excess, 
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leading to a too high density of PEG chains on the particle surface and thus a 

decreased mobility of PEG chains62. This probably resulted in steric hindrances during 

antibody conjugation. In future, the procedure of bioconjugation should be further 

optimized for small NPs, e.g. by further reducing the amount of PEG for coupling 

procedures. 

4.2.4. Evaluation of PSNP toxicity 

To evaluate toxicity, the impact of Itrybe-containing PSNPs on cell viability was 

investigated. The toxicity of the free fluorophore was not assessed, since Itrybe 

fluorophores were sterically incorporated in the matrix of non-biodegradable PSNPs 

and no leakage of the dye from the 100 nm NPs was observed when incubated with a 

5 % BSA solution for 4 weeks (Thomas Behnke, personal communication). This 

implies that no release of free Itrybe fluorophores occurs in vivo, which could have 

potentially caused any unwanted effects. 100 nm PSNPs bearing NH2 surface groups 

and PSNPs with Herceptin molecules linked to the particle surface via 1.5 kDa PEG 

chains at concentrations up to 2 g/l showed no impact on cell viability of 3T3 mouse 

fibroblasts after 24 h of incubation. These findings are in accordance with various 

reports in the literature, describing NPs which consist of PS as generally non-toxic 

and a safe tool for in vivo applications77,79. However, particle size and surface charge 

have to be taken into account when analyzing toxicity117, as some studies report a 

higher toxicity for NH2-modified PSNPs than e.g. for carboxylated PS particles, 

indicating that surface coating plays a prominent role in cytotoxicity66,78. However, 

these findings could not be confirmed in the present work, as no impact of 100 nm-

NH2 PSNPs on cell viability was observed. An increase in cytotoxicity has also been 

reported with a decrease in particle size78,79, as well as with increasing incubation 

times and concentration66,79. These findings suggest that the reduction in cell viability 

may be caused by an overloading of cells with NPs leading to a disturbance of cellular 

functions rather than by toxicity of the NPs itself79.  

4.2.5. Binding specificity of bioconjugated NPs in vitro 

Herceptin-modified 100 nm PSNPs specifically bound to HER2-positive, KPL-4 cells 

and -breast tumor tissue in vitro, whereas control probes, NH2-modified or PEGylated 

NPs unspecifically bound to KP-4 cells or tumors to a low degree. All probes showed 

low binding to HER2-negative, MDA-MB-231 cells and tumors as investigated by 

fluorescence microscopy. These findings are in accordance with immunoassay results, 

verifying specific binding of Herceptin-conjugated 100 nm NPs to HER2 expressed on 

tumor cells. Binding specificity of Herceptin-modified 100 nm and 25 nm NPs to the 

HER2 antigen was further proven in immunoassays by “blocking” of HER2 with 



Discussion  

 106 

excess of unlabeled Herceptin, thereby prohibiting specific binding of Herceptin-

conjugated NPs.  

Moreover, unspecific uptake of PEGylated and Herceptin-modified NPs in KPL-4 and 

MDA-MB-231 tumor cells was observed, which increased over time. Unspecific uptake 

of NPs over time was also reported by Steinhauser et al. who applied NPs consisting 

of human serum albumin and conjugated to Herceptin. This group reported, that the 

unspecific uptake of PEGylated NPs increased after 3 h. After 5 h of incubation, no 

differences between Herceptin-modified and PEGylated NPs on HER2-positive breast 

cancer cells could be observed. Steinhauser et al. also reported unspecific uptake of 

both probes in HER2-negative cells107. These findings, together with the results 

reported here illustrate that unspecific uptake seems to be a common phenomenon 

for several NP formulations.  

In general, uptake of all particles by both cell types, KPL-4 and MDA-MB-231, 

increased over time and was reduced when cells were kept at 4 °C. However, NPs 

showed no differences in their cellular localization under incubation at 4 °C and at 37 

°C, which indicates no predominant binding or accumulation of NPs at the cell 

membrane or inside the tumor cells. The fluorescence microscope used for analysis of 

NP-derived signals on the cellular level revealed insufficient power of depth resolution 

to discriminate membrane-derived signals from fluorescence deriving from inside the 

cell.  

Enhanced fluorescence was observed on KPL-4 cells treated with 100 nm-Herceptin 

NPs at early time points of incubation. Since the internalization rate of Herceptin into 

HER2-overexpressing cells has been reported as low as 4 % per hour118, this could 

have predominantly been caused by antibody-receptor interaction, leading to an 

increase of NPs on the surface and enhanced unspecific uptake. Nevertheless, the 

exact way of uptake of target-specific NPs in cells is not entirely known, as reports 

about NP formulations of various sizes are contradictory and uptake is also known to 

be influenced by particle charge and material. Reports in the literature indicate that 

endocytosis of NPs from 43 nm to 150 nm is driven by clathrin-mediated pathways or 

calveolae-mediated endocytosis66,119,120 whereas 24 nm NPs consisting of PS have 

been reported to be internalized in a clathrin- and calveolae independent way120. 

Furthermore, 43 nm120 and 100 nm sized PSNPs were shown to colocalize with 

lysosomes after internalization66, whereas small, 24 nm PSNPs were shown to 

localize outside the lysosomes but near the perinuclear space120. This indicates a 

dependence of NP cell uptake mechanisms on their size. Interestingly, very small NPs 

(8 nm) composed of ironoxide and conjugated to PEG and Herceptin localize in 

lysosomes after internalization in HER2-positive tumor cells in vivo121.  
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As Itrybe-loaded NPs seem to be highly and rapidly internalized in cells, they may 

also present suitable tools for in vivo labeling of highly endocytotic cells, like 

macrophages and thereby may function as sensitive markers for imaging of 

inflammatory diseases. Furthermore, Itrybe-loaded NPs could be applied to monitor 

cell tracking in vivo. Stem cells for instance could be labeled ex vivo by endocytosis 

and then their migration followed in vivo by imaging. 

4.2.1. Tumor targeting capacity of NPs in vivo 

None of the NPs of different sizes, (100, 25, and 15 nm) or surface-modifications 

(PEG and Herceptin) were able to visualize KPL-4 or MDA-MB-231 tumors in whole 

body scans after i.v. injection in mice. However, imaging revealed that all NP probes 

accumulate rapidly and to a high extent in the liver. This indicates that these probes 

still need modification in order to increase their longevity in the blood and their 

accumulation in the targeted tumor in vivo. For efficient delivery to the tumor, NPs 

should present prolonged blood circulation times, reduced nonspecific uptake in 

normal tissue, as well as rapid accumulation in targeted tumor tissue122.  

NPs of all sizes bearing PEG surface-chains passively accumulated in MDA-MB-231 

tumors after injection in mice as shown by ex vivo imaging. The highest 

accumulation, relative to the injected amount of probe was found in tumors of mice 

that received 15 nm NPs. This is probably due to the size of these NPs, which are 

small enough to allow the most efficient extravasation from the vasculature into the 

tumor tissue74, mediated by the enhanced permeability and retention (EPR) effect. 

Reports in the literature describe 20 to 100 nm to be the optimal size for efficient 

extravasation and retention of NP from capillaries to the tumor interstitium65 as well 

as a cutoff size of >400 nm123. Tumor targeting with smaller NPs was also reported, 

e.g. for QDs of sizes of ~5 to 15 nm or PEGylated ironoxide NPs of ~8 nm72,74,121. 

Furthermore, PEGylated calcium phosphate NPs of 16 nm accumulated in the tumor 

of mice with a signal persisting up to 96 h after probe injection55. Nevertheless, in 

accordance with the result of the present work, nonspecific uptake in other organs, 

such as liver, kidney, and spleen was also reported55,72,74,121.  

Based on the ratio of tumor intensity, relative to the total intensity of the injected 

amount, the smallest, 15 nm NPs have the highest capacity for tumor targeting 

compared to both larger NPs. Calculations of the fluorescence intensity in the tumor 

relative to the injected amount of the respective probe revealed a ratio for the 15 nm 

NPs that was 4-fold higher than for the 100 nm particles (0.18 to 0.04) and 9-fold 

higher than for the 25 nm NPs (0.18 to 0.02). However, it should be taken into 

consideration that the number of NPs injected in vivo was different for each probe of 

different size. Thus, the injected probe of 15 nm NPs contained more particles than 
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the 25 and 100 nm NP probes (in this order), causing a higher number of NPs in the 

blood. Therefore, the higher fluorescence observed in the tumor after injection of the 

15 nm probe might have been influenced by the higher number of 15 nm NPs in the 

blood. However, this probe is nonetheless less fluorescent than the 25 and 100 nm 

NP probes (in this order). Therefore a direct comparison in absolute numbers of 

varying amounts of NPs with different sizes and fluorescence intensities is challenging 

and difficult. The ratio of tumor intensity, relative to the total intensity of the injected 

amount, was calculated to compare the tumor targeting capacity for different sizes of 

NPs. In addition, fluorescence reflectance imaging (FRI) of 3D structures, such as the 

tumor provides only semi-quantitative data, as fluorescence measurements are 

surface weighted9.  

Even when increasing the affinity of NPs to HER2-positive KPL-4 tumors via 

conjugation to the tumor-specific ligand Herceptin, no clear accumulation of NPs was 

detected in KPL-4 tumors in vivo as well as ex vivo after 24 h. Specific tumor 

targeting was also not achieved by others, who reported no clear differences between 

in vivo tumor-targeting capacities of target-specific NPs compared to non-targeted 

NPs, such as gadolinium124 or silica NPs125 coated with folic acid, or RGD labeled lipid 

NPs65. Specific targeting of tumors has mainly been achieved by use of QDs 

conjugated to tumor-specific antibodies72 or small ligands74. However, QDs, 

containing heavy metals, suffer from potentially toxic effects20,75, which limit their in 

vivo application. 

PEGylated NPs of all sizes accumulated in MDA-MB-231 tumors when injected in mice 

and revealed a higher fluorescence in comparison to the autofluorescence in tumors 

from untreated mice. This could be shown in ex vivo measurements, where 

fluorescence is not absorbed by the surrounding tissue of the mouse, leading to a 

higher sensitivity of signal detection of excised tumors. 

PSNPs used in this study are relatively inflexible spheres126, which may be one reason 

why they were limited in efficient extravasation from the blood and tumor 

penetration. In addition to the size of NPs and surface coatings, it is likely that the 

NP-shape and deformability is important for the probes to efficiently pass the 

endothelial barrier towards the tumor interstitium. Compared to the relatively rigid 

spheres used in this study, other groups showed that more flexible lipid NPs126 of 35 

nm used in vivo accumulate clearly in the tumor and resulted also in high NP-derived 

signals in the blood plasma65. Such liposomal NP-formulations of 100 nm are already 

used for efficient delivery of anthracyclines for cancer therapy in patients64. Other 

examples are relatively large but deformable glycol chitosan NPs of ~260 nm, which 

are well detectable in vivo for up to 7 days and reveal the highest signal in the tumor 

compared to other organs. These flexible NPs also showed longer circulation times 
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than the comparable unyielding PSNPs126 of similar size122. These observations 

indicate that the PSNP-sizes of up to 100 nm, applied in the present work have the 

potential for tumor targeting when modified to achieve sufficient bioavailability and 

that the relatively low flexibility of PSNPs might have considerable influence on the 

tumor penetration capacity of the NPs. However, another report shows that 

mesoporous silica NPs of 100 to 130 can accumulate in the tumor125. Interestingly, 

NPs formed of anorganic silica are expected to be relatively inflexible. However, 

these NPs showed stronger fluorescence in the tumor than in other organs up to 24 h 

after injection125. 

These findings underline the need for detailed and systematic investigations of the in 

vivo behavior of nanosized carriers to gain more knowledge about the influence of 

composition, size, surface charge, and deformability on biodistribution and tumor-

targeting abilities of NPs. Therefore, all NP systems should be optimized prior to 

routine application in preclinical studies.  

In this work, only the MDA-MB-231 tumor could be targeted by Itrybe-loaded NPs of 

all sizes. Histological examinations of both tumor types, MDA-MB-231 and KPL-4, 

revealed that vascularization was comparable, providing adequate conditions for NPs 

to reach both tumors through the blood system. However, in the present study, 

MDA-MB-231 tumors preferentially developed necrosis in the tumor center only, 

whereas KPL-4 tumors demonstrated necrotic areas in the tumor center as well as 

towards the tumor boarder. These findings confirmed previous observations for both 

tumor types of the frequent development of massive central necrosis101,127. One 

might speculate that since the effectiveness of penetration of the tumor by NPs is 

dependent on the tumor characteristics, the more frequent and expanded necrosis 

observed in KPL-4 tumors could probably hinder the efficient distribution of NPs in 

these tumors to a higher extend when compared to MDA-MB-231 tumors.  

These results further indicate that Itrybe-loaded PSNPs are in principle capable of 

reaching the tumor, but that tumor targeting with Itrybe-loaded PSNPs is not very 

effective, presumably due to 1.) fast elimination of NPs from the organism and 2.) 

relatively low flexibility of PSNPs probably impairing efficient tumor penetration. 

Consequently, NP formulations other than of PS should be used for incorporation of 

Itrybe fluorophores, e.g. built of more flexible glycol chitosan or lipids. These should 

be evaluated for their suitability to improve the longevity of Itrybe-loaded NPs in the 

blood and their accumulation in the targeted tumor in vivo.  

4.2.2. In vivo biodistribution of NPs 

Biodistribution studies of Herceptin-conjugated and PEGylated NPs in healthy mice 

revealed a rapid uptake of all probes in the liver which was accompanied by a fast 
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decrease in background fluorescence, defined as the amount of circulating probe in 

the blood. Knowledge about the bioavailability of Itrybe-loaded NPs, is of 

considerable importance for their use in tumor imaging as NPs have to be present in 

the bloodstream long enough to reach the targeted tumor tissue62. Uptake in non-

targeted tissue should be low or entirely prevented as it causes unspecific 

background signals, hampering the identification of target-specific signals, deriving 

from the tumor.  

A rapid uptake by the liver62,71 and short blood-circulation times71,128,129 have been 

observed in the literature for many NPs of various materials, including PSNPs67,130,131 

as well. The fast liver uptake of all NPs observed in this study can be explained, 

because the liver is part of the excretory system and its mononuclear phagocytic 

system (MPS) is the basic mechanism of excretion of NPs122. NPs can be bound by 

opsonins in the blood serum, most commonly by IgG and complement proteins. 

These opsonins are then recognized by macrophages, usually Kupffer cells or 

macrophages of the liver that clear the particles from the blood. The rapid 

elimination of Itrybe-loaded NPs from the blood was most likely caused by uptake in 

the MPS that can occur within minutes and presents a major drawback for the 

accumulation of NPs at the targeted site. As shown here and by others, this rapid 

elimination of NPs may result in short blood-circulation times, of a few minutes62.  

Biodistribution was analyzed, at early time points (6 min to 4 h) as uptake of probes 

occurred very rapidly after NP injection. PSNPs of all three sizes showed a rapid 

increase in liver signals, which remained high for 4 h when compared to the low 

background observed for all probes. Ex vivo analyses of excised organs confirmed the 

in vivo observations with highest signals found in the liver for all probes (average of 

~84 % of the total intensity measured in all tested organs).  

The elimination of NPs from the blood was assessed in dependence of their size, and 

surface modification. By comparing the distribution of NPs of different sizes, a slower 

uptake of NPs in the liver was found with an increase in size of NPs. The 100 nm NPs 

showed a peak intensity in the liver after ~1 h, whereas the 15 nm NPs peaked as 

early as ~6 min after probe injection in mice. This indicates that elimination of larger, 

100 nm Itrybe-loaded PSNPs from the blood by the liver is slower compared to 25 

and 15 nm NPs.  

Liver signals measured ex vivo 4.5 h after probe injection were slightly lower for the 

small 15 nm NPs (6 % and 2 % lower compared to the 25 and 100 nm NPs, 

respectively), presumably due to enhanced renal filtration of the smallest NPs by the 

kidney. This is demonstrated by a slight increased of the kidney signal, of ~3 % after 

injection of 15 nm NPs compared to larger NPs. These findings are in accordance with 
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the literature, showing a decrease in liver accumulation of smaller NPs71 especially at 

early time points after probe injection128 and also for PSNPs67. Furthermore, 

accumulation of small gandolinium oxide NPs of ~14 nm126 or of gold NPs of 20 nm71 

was reported to occur in the kidney rather than in liver. However, high liver 

accumulation was described for NP-formulations with a small diameter, such as QDs 

of ~5 to 15 nm72,74,116. Although the results presented here, showed lower uptake in 

the liver of 15 nm NPs, compared to 25 and 100 nm NPs as confirmed by ex vivo 

analyses, the background fluorescence in vivo was also considerable low over time. 

This indicates that the small size of NPs did not contribute to an increased blood 

circulation. Work by others indicates that smaller particles tend to have longer blood-

half-lives, presumably due to reduced plasma protein adsorption on their 

surface62,67,123.  

Furthermore, ex vivo analyses revealed low accumulation of NPs in the spleen and a 

slight tendency of decreased uptake with a decrease in NPs size, as shown by the 

average intensities in the spleen that were ~8 %, 6 %, and 5 % for the 100, 25, and 

15 nm NPs, respectively. Accumulation of NPs, including PSNPs130, in the spleen has 

been reported previously, and is likely mediated by macrophages as part of the MPS 
116, but has also been shown to be reduced with a decrease in size71. In addition to 

liver and spleen, uptake in the lung has been observed in this study, with an average 

intensity in the lung for NPs of all sizes of ~3 %. Lung accumulation was also 

described for other NPs128, including PSNPs130 and may be caused by endocytosis of 

particles by pulmonary endothelial cells.  

The results presented here reveal a change in the degree of liver uptake over time 

when NPs were PEGylated. For PEGylated 25 and 100 nm NPs, slightly higher liver 

signals were measured in vivo and ex vivo over time compared to the NH2 probes. 

Therefore, a decrease of sequestration of NPs in the liver by surface PEGylation, 

compared to NPs with NH2 surface groups could not be observed in the present 

study. These findings disaccord with the common believe that PEGylation leads to a 

decrease in liver signals due to avoidance of NP-elimination through the MPS, 

resulting in prolonged blood circulation and extravasation of NPs into permeable 

tissues, like the tumor62,123. PEG belongs to a group of long hydrophilic, neutrally 

charged polymer chains shown to be very effective in creating a surface barrier 

between the NP and the opsonins by “blocking” electrostatic and hydrophobic 

interactions on the surface and thereby preventing elimination of NP from the blood 

stream62. It is known that neutrally charged particles have a lower opsonization rate 

than charged NPs, bearing for instance, positively charged NH2 surface groups. 

Furthermore, hydrophilic NPs are reported to be less recognized by opsonins, 
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compared to hydrophobic ones, as blood serum proteins adsorb less on these 

surfaces. Apparently, as also shown in this work PEGylation does not definitively lead 

to a successful decrease in elimination of particles. This is in agreement with findings 

of Sun and colleagues who also observed no differences in biodistribution for PSNPs 

with sizes of 18 and 37 nm after PEGylation with 5 kDa PEG (except for a reduction 

in spleen uptake compared to non-PEGylated probes)67.  

In this work, no differences in biodistribution were observed for 25 nm NPs 

conjugated to 1.5 and 10 kDa PEG chains, both showing comparable high liver 

signals and low background signals over time in vivo. These results were confirmed 

by ex vivo analysis of organs, illustrating comparable high intensities (of 89 and 90 

% of the total intensity of all organs) for the 25 nm-PEG 1.5 kDa and -10 kDa 

probes, respectively. Therefore, conjugation of NPs with different lengths of PEG 

chains had no impact on elimination of NPs by the MPS. These findings are in 

contrast to some reports in the literature, where PEG chains with a weight of at least 

2 kDa are required for MPS-avoidance, presumably due to a reduced flexibility of 

shorter PEG chains62,126.  

In addition to the length of the PEG chains, their surface density may also influence 

recognition of probes by the MPS. As reported by Owens et al., very low surface 

densities of PEG result in gaps on the surface of the particle, where opsonins may 

bind, thereby initiating NP-elimination. On the other hand, a too high density of PEG 

on the surface leads to restriction of motion of the PEG chains, thereby decreasing 

PEG mobility and thus steric hindrance properties for opsonins. In this regard, a 

moderate density of PEG would be optimal, with no gaps on the surface but providing 

sufficient mobility of PEG62. Therefore, in future the effect of reduced amounts of 

surface-PEG on a prolonged bioavailability of Itrybe-loaded NPs in the blood should 

be investigated. 

Independent on PEGylation of 15 and 25 nm NPs, the background fluorescence did 

not increase after probe injection. In contrast, application of the 100 nm-PEG 1.5 

kDa probe resulted in a slightly enhanced background fluorescence compared to the 

100 nm-NH2 NPs. However, this is in contrast to the finding that the PEGylated 100 

nm NPs also showed higher liver uptake over time compared to the NH2-modified 100 

nm NPs. Nevertheless, due to their enhanced fluorescence in the background, the 

PEGylated 100 nm NPs seem to have an increased blood circulation time, compared 

to all other NP probes. 

Characteristic for all probes investigated here was the peak in background 

fluorescence within the first few minutes after probe injection, showing that the 

circulating NPs in the blood are rapidly eliminated. This is in accordance with reports 
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of the literature for NPs built of PEGylated- (18 and 24 nm)67, serum albumin-coated- 

(50 nm)131, or carboxylated PS (100 nm)130, as well as of PEGylated gold (20 and 80 

nm)71, of silica of different shape (185 and 720 nm in length) 129, or of dextran-

coated salt-bridged polymer aggregates (100 and 500 nm)128. However, longer blood 

circulation times were observed for some probes, such as PEGylated gadolinium NPs 

of 85 nm, which in addition showed comparably low accumulation in liver, spleen, 

lungs and kidneys up to 8 h after injection124. Similar results were obtained by use of 

3 and 6 nm sized silica NPs up to 3 h after injection132. Furthermore, a long half-live 

of NPs in the blood was reported for lipid NPs of 35 nm with fluorescence clearly 

evident in the plasma after 24 h65. 

When compared to signals of single fluorophore-conjugates, like Alexa Fluor 647 

coupled to Herceptin (Alexa-Her DP ratio 1.3), the background signals in this study 

and thus blood circulation times were relatively low for all NPs probes after i.v. 

injection in mice. This underlines the suggestion that the excretion of NPs was 

relatively fast, thereby not providing sufficient time for the NPs to effectively reach 

the targeted tumor.  

Biodistribution analyses, performed systematically in this work, advanced the 

knowledge about the behavior and bioavailability of Itrybe-loaded PSNPs of different 

sizes and surface modifications. However, it should be mentioned, that fluorescence 

imaging performed in this study is not an absolutely quantitative method to assess 

biodistibution, mainly because different tissues (e.g. blood, plasma, and organs) 

absorb light in a different manner65. Of further importance for the future might be 

the direct analysis of fluorescence in blood samples of mice at different time points 

after injection of diverse NPs, as this would provide a more precise calculation of 

probes present in the blood pool than measurement of background fluorescence.  

However, the biodistribution study explored the mechanisms for the inefficient 

tumor-targeting by Itrybe-loaded NPs and helped to conclude which improvements 

are needed for the future design of these probes to mediate tumor-detection in vivo. 

The overall goal is for NPs to be present in the bloodstream long enough to reach the 

targeted tumor tissue62. Therefore, the results obtained in this analyses, concerning 

the yet low bioavailability and tumor-targeting capacity of Itrybe-loaded PSNPs are 

helpful to further modify Itrybe-loaded PSNP probes, in regards to surface density of 

PEG chains or the use of more flexible materials for their design. Systematically 

performed studies, addressing biodistribution and suitability of novel probes for 

efficient tumor targeting in vivo, including NP systems, are often missing in the 

literature, thereby impeding clear interpretations of obtained results. 
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Taken together, Itrybe-loaded NPs used in this study, demonstrate attractive probes 

in regard to their brightness and 3D appearance, allowing various surface 

modifications for in vivo imaging applications. However, the specificity and 

bioavailability of these probes has to be further improved to enable efficient tumor-

targeting in vivo. 
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5. SUMMARY AND CONCLUSIONS 

The work presented here illustrates a detailed and systematic in vitro and in vivo 

analysis of novel and innovative fluorescence probes, pH-sensitive conjugates and 

PSNPs loaded with the broadband fluorophore Itrybe, concerning their suitability for 

in vivo tumor imaging. Coupled to the tumor-specific antibody Herceptin, the pH-

sensitive dyes and Itrybe-loaded NPs were evaluated in orthotopic mouse breast 

tumor models for tumor-specific targeting.  

This study illustrates, for the first time, the suitability of CypHer5E for its application 

in in vivo tumor imaging, with an enhanced sensitivity compared to commonly 

applied, commercially available always on fluorophores, such as AlexaFluor 647.  

The pH-sensitive Herceptin conjugate, pH-Her, only activated in the acidic pH of the 

tumor, significantly enhanced detection sensitivity of breast tumors in combination 

with subtraction of autofluorescence. Analysis of different methods for elimination of 

unwanted and perturbing autofluorescence or background fluorescence showed that 

especially subtraction of autofluorescence is a reliable method of image data analysis 

and, in combination with pH-Her, improves tumor-detection sensitivity in vivo. In 

contrast, as shown for pH-Her and Alexa-Her, LT-gated imaging is more challenging, 

as it needs extensive pre-evaluation of LTs of applied probes under different 

conditions. Moreover, the results of LT-gated imaging have to be considered with 

caution as unknown influences, e.g. in the tumor environment may change the LT of 

some probes in vivo and therefore lead to misinterpretations of probe-derived 

signals. As a consequence, the unexpected changes in LT observed for pH-Her in 

tumor tissue require further investigations. Probes that display extensive drifts in LT 

upon distinct influences of a specific environment, such as a tumor, may have great 

potential for sensitive detection and monitoring of cancer in vivo when combined with 

LT-gated imaging. This would allow a simple separation of tumor-derived 

fluorescence from background signals caused by the fluorophore in the blood, 

according to different LTs of the probes in certain areas of the body. In future, the 

pH-sensitive fluorophore CypHer5E, in conjugation with other tumor-specific ligands, 

may be a promising tool for the sensitive detection of other malignancies as well as 

for monitoring of disease progression over time in vivo. The use of CypHer5E could 

also assist preclinical studies that evaluate novel anti-cancer therapies by detecting 

primary tumors as well as metastatic lesions.  

This work is the first report about the in vivo application of Itrybe-loaded NPs. The 

results obtained here underline the potential of this probe as a highly sensitive 

imaging tool in vivo. As large numbers of Itrybe fluorophores can be loaded in NPs, 
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very bright fluorescence probes were generated in comparison to single dye 

molecules. The broad spectra of Itrybe in NPs enable excitation at different 

wavelengths in the NIRF region and a sensitive detection of the fluorophore in vivo, 

thereby allowing, for example to selectively minimize unspecific signals in the GI 

tract. Enhanced detection sensitivity is especially important in in vivo fluorescence 

imaging, where autofluorescence or unspecific fluorescence from unbound probes or 

food decrease the detection sensitivity of probe-derived signals. Moreover, by 

analysis of binding specificity of Herceptin-conjugated NPs in vitro, the functionality 

of these probes was confirmed, excluding the lack of binding specificity as a factor 

that could limit or reduce tumor targeting of NPs in vivo. Although Itrybe-loaded 

PSNPs may present attractive tools for labeling of cells due to their high cellular 

uptake, their application for in vivo imaging of tumors has to be improved by 

increasing their bioavailability and tumor targeting capacity. In this regard, use of 

materials other than PS, for the generation of NPs, which exhibit e.g. more flexibility, 

could be advantageous. In addition, further investigations should be performed on 

the influences of a lower PEG surface density on biodistribution of NPs of different 

sizes. 

In this study, specific tumor targeting to KPL4 tumors, overexpressing HER2 was 

achieved by coupling the probes to the tumor-specific antibody Herceptin. The 

application of antibody-single dye-conjugates, such as pH-Her enabled specific 

targeting of tumor structures. This was possible due to a better bioavailability of 

these probes in vivo in comparison to Herceptin-conjugated or non-bioconjugated 

NPs. However, fluorophore-doped NPs also exhibit great potential for in vivo imaging 

and monitoring of tumors as they provide the possibility for various modifications 

depending on their application purpose.  By combining different labels in/on one NP, 

such carriers could be applied for simultaneous monitoring by different imaging 

methods, such as fluorescence imaging and MRI56,57. They can also be surface tagged 

with different markers to improve binding probability to the target structures in vivo. 

In addition, modifications of composition of NP-formulations can advance the 

biodegradability of NPs in vivo and by this means their use as drug carrier systems. 

In future, Itrybe-loaded NPs and CypHer5E may be used in combination with other 

disease-specific markers, such as antibodies or peptides for detection and evaluation 

of various biological processes during disease progression.  
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