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(Abstract)

Abstract

The main objective this research was to assess two types of emerging remote sens-

ing technology, hyper-spectral and SAR sensors, for an exploratory data analysis

of land covers in the south of Costa Rica. Hyper-spectral data contain information

in several narrow spectral bands in the optical domain, which give information on

the biochemical and structural properties of vegetation, while the SAR data, as

an active system, can penetrate the clouds making it a promising tool for ecosys-

tem monitoring. The main hypothesis was that these two datasets would permit

greater understanding of the spectral confusion between different land covers.

From the hyper-spectral point of view, this knowledge could help to select and

derive spectral signatures which serve as training data sets in supervised species

classification in the optical domain. In the microwave domain, fusion and derived

bands increase the separability and permit greater forest/non-forest classification

accuracy in non-flat terrains.

The hyper-spectral information is based on two information sources. The first

comes from two scenes of the space-borne Earth Observing-1 mission with the

Hyperion sensor and two scenes of the airborne hyper-spectral sensor HyMap.

The second hyper-spectral data source was acquired from the field-based hyper-

spectral clip-prove system. Furthermore, the microwave information corresponds

to the TerraSAR-X HH and VV polarized images.

Working in different land covers including Gmelina arborea plantations in the

south of Costa Rica, individual Regions of Interest were manually digitized with

reference to high spatial resolution aerial photographs datasets. Principal com-

ponents of hyper-spectral space and airborne data were derived to perform a

classification using two different approaches of Hierarchical Cluster Analysis.

Spectra from field-based hyper-spectral clip-prove data was acquired from Gmelina

arborea leaves in three plantations of 6, 8 and 18 years. Other reference spectra

of land covers were also measured.

With seven TerraSAR-X polarized images, principal component analysis as fu-

sion technique and derived bands ratios were generated in order to evaluate the

availability of reducing the speckle noise in non flat terrains to classify forest in
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the south of Costa Rica.

The highest scene based spectra variability was in the Near Infra-Red portion

of the electromagnetic spectrum. Hierarchical Cluster Analysis applied to the

hyper-spectral scenes showed that cluster solutions of the PCs spectra from the

two sensors present different separability solutions. The clusters solutions were

subject to systematic differences; only one scene of EO-1 Hyperion and one of

HyMap PCs spectra did not present spectral confusion among Gmelina arborea,

palm oil and the forest. That indicates that the same sensor under different

conditions will give different spectra and different cluster results. These results

suggested that hyper-spectral imagery need not to be acquired at a very high

spatial resolution to provide adequate discrimination of land covers. Further-

more, spectra collection and analysis are needed to acquire time series spectral

signatures.

The best Hierarchical Cluster Analysis classification was with the Approximately

Unbiased p-values which permit the identification of clusters that exist at a pre-

defined level of significance.

Canopy phenology, a property related to the different acquisition times and at-

mospheric conditions, was important in clustering land covers.

Regarding the field based spectra, there was spectral confusion in the majority

of 18 years of leaves of Gmelina arborea and mangrove. Also, 6 spectra of this

age were not clustered at all. There was spectral confusion between the spectra

of Gmelina arborea leaves of 6, 8 and 18 years. However, the reflectance of field

based spectrometers should be interpreted with caution. Sampling is a key factor

as well as a challenge in leaf spectral analysis.

Hyper-spectral and Synthetic Aperture Radar data was useful for land cover dis-

crimination, and it did provide an unprecedented potential to classify forest and

non-forest in tropical environments and avoid spectral confusion with highly re-

lated land covers. However, all the associated variability of acquisition parameters

has be to taken into account in order to provide acceptable levels of accuracy.

— Georg-August University of Göttingen, November, 2012 —
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Zusammenfassung

Die Zielsetzung dieser Forschungsarbeit war die Beurteilung zweier sich noch in

der Entwicklung befindenden Technologien der Fernerkundung, hyperspektrale

und Synthetic Aperture Radar (SAR) Sensoren, im Rahmen einer untersuchen-

den Datenanalyse von Landbedeckungen im Süden Costa Ricas. Die hyperspek-

tralen Daten enthalten Informationen in vielen schmalen spektralen Bändern

im optischen Bereich, die Aufschluss über die biochemischen und strukturellen

Eigenschaften von Vegetation geben können. Dagegen können SAR-Sensoren,

als aktive Systeme, Wolken durchdringen und stellen somit ein viel versprechen-

des Werkzeug für das Monitoring von kosystemen dar. Die Haupthypothese war,

dass diese beiden Datensätze ein besseres Verständnis der spektralen Vermischung

unterschiedlicher Landbedeckungsklassen erlauben. Vom hyperspektralen Stand-

punkt aus könnte diese Kenntnis dabei helfen spektralen Signaturen zu selektieren

und abzuleiten, welche als Trainingsdaten einer überwachten Artenklassifizierung

im optischen Bereich dienen. Im Mikrowellenlängenbereich verbessern Fusion und

abgeleitete Bänder die Unterscheidbarkeit und erlauben im nicht flachen Terrain

höhere Genauigkeiten bei der Klassifizierung von Wald/Nicht-Wald.

Die hyperspektralen Informationen basieren auf zwei Quellen. Bei der ersten

handelt es sich um zwei Szenen der EO-1 Mission des Satelliten Hyperion und

je zwei Szenen des luftgetragenen hyperspektralen Sensors Hymap. Der zweite

hyperspektrale Datensatz stammt von einem feldbasierenden System. Ferner

entsprechen die Mikrowellen-Information TerraSAR-X HH und VV polarisierten

Bildern.

Es wurden unterschiedliche Landbedeckungen im Süden Costa Ricas einschlielich

Gmelina arborea-Plantagen untersucht, wobei einzelne Klassen manuell mit Hilfe

von hochaufgelösten Luftbildern identifiziert und digitalisiert wurden. Haup-

tkomponenten der hyperspektralen Bilder wurden verwendet, um zwei verschiedene

Ansätze der hierarchischen Clusteranalyse durchzuführen. Zudem wurden mit

einem Feldspektrometer Spektren von G.arborea-Blättern in drei Plantagen im

Alter von 6, 8 und 18 Jahren aufgenommen. Auch wurden Spektren anderer

Landbedeckungen gemessen.
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Aus sieben polarisierten TerrSAR-X Bildern wurde eine Hauptkomponentenanaylse

als Fusionstechnik durchgeführt sowie Bandverhältnisse generiert, um die Möglichkeit

der Reduzierung des Rauschens im nicht flachen Gelände abzuschätzen und Wald

im Süden von Costa Rica zu klassifizieren.

Die höchste bildbasierte spektrale Variabilität gab es im nahen Infrarotbereich des

elektromagnetischen Spektrums. Die hierarchische Clusteranalyse, angewendet

auf die hyperspektralen Szenen, zeigte, dass Cluster-Lösungen basierend auf den

Hauptkomponenten der zwei Sensoren unterschiedliche Trennbarkeiten liefern.

Die Cluster-Ergebnisse bilden den Gegenstand systematischer Unterschiede; nur

eine Szene von EO-1 Hyperion und eines der Hymap Hauptkomponentenbilder

zeigten keine spektrale Vermischung von Gmelina arborea, lpalmen und Wald.

Das weist darauf hin, dass derselbe Sensor unter unterschiedlichen Bedingungen

verschiedene Spektren und andere Cluster erzeugt. Diese Ergebnisse deuten an,

dass hyperspektrale Bilder nicht mit einer hohen räumlichen Auflösung akquiriert

werden müssen, um eine gute Unterscheidung von Landbedeckungen zu erreichen.

Weiter werden Aufnahmen und Analysen von spektralen Signaturen im Rahmen

von Zeitreihen benötigt.

Die beste Klassifizierung aus den hierarchischen Clusteranalysen ergab sich mit

den Approximately Unbiased p-Werten, welche eine Identifikation von Clustern

erlauben, die bei einem definierten Signifikanzlevel existieren. Die Kronenphänolo-

gie, abhängig von den unterschiedlichen Aufnahmezeitpunkten und atmosphärischen

Bedingungen, war wichtig beim Clustern von Landbedeckungen.

Bezüglich der im Feld gemessenen Daten gab es Vermischung von Blattspektren

vor allem bei den 18 jährigen Individuen von G.aborea und Mangroven. Auch

konnten sechs Spektren dieser Altersklasse keinem Cluster zugeordnet werden.

Die Reflexionswerte des Feldspektrometers sollten mit Vorsicht interpretiert wer-

den. Sampling ist dabei genauso ein Schlüsselpunkt wie die Herausforderung der

Analyse von Blattspektren.

Hyperspektrale und Synthetic Aperture Radar Daten stellten sich als nützlich für

die Unterscheidung von Landbedeckungen heraus. Zudem bieten sie ein beispiel-

loses Potential für die Klassifizierung von Wald und Nicht-Wald. Dennoch sollte
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die Variabilität der Aufnahmeparameter beachtet werden, um ein akzeptables

Niveau der Genauigkeit zu liefern.

— Georg-August Universität Göttingen, November, 2012 —

viii



Contents

Dedication i

Acknowledgements ii

Abstract iv

Zusammenfassung vi

Contents ix

List of Figures xii

List of Tables xv

Acronyms and abbreviations xviii

1 Introduction 1

1.1 Introduction and Problem Statement . . . . . . . . . . . . . . . . 1

1.2 Objectives and Hypotheses . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Study Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 Geographic Location . . . . . . . . . . . . . . . . . . . . . 5

1.3.2 Climate and Vegetation . . . . . . . . . . . . . . . . . . . 5

1.3.3 Principal Land Covers of the Study Site . . . . . . . . . . 9

2 Literature Review 12

2.1 Forest Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 Forest Measuring . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.2 Vegetation and Climate . . . . . . . . . . . . . . . . . . . 16

ix



Contents (Contents)

2.2 Remote Sensing and Earth Observation Monitoring Systems . . . 17

2.3 Hyper-Spectral Data . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.1 Atmospheric Corrections . . . . . . . . . . . . . . . . . . . 23

2.4 RADAR Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.1 Principles of RADAR Data Processing . . . . . . . . . . . 29

2.4.1.1 RADAR Relief Displacement, Shadows and Speckle 29

2.4.1.2 Surface Roughness and Electrical Characteristics 29

2.4.2 Texture Quantization and Image Segmentation . . . . . . . 31

2.5 Data Reduction and Fusion . . . . . . . . . . . . . . . . . . . . . 32

2.6 Cluster Analysis and Linear Discrimination Analysis . . . . . . . 34

3 Methodology 38

3.1 Hyper-Spectral . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.1.1 EO-1 Hyperion . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1.2 HyMap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.1.3 Selection of the Regions of Interest . . . . . . . . . . . . . 44

3.2 The USB650 Field Spectrometer Measurements . . . . . . . . . . 45

3.3 Statistical Analysis of Hyper-spectral Data . . . . . . . . . . . . . 50

3.3.1 Principal Component Analysis of Hyper-spectral Data . . 51

3.3.2 Hierarchical Cluster Analysis . . . . . . . . . . . . . . . . 52

3.4 TerraSAR-X Image Processing . . . . . . . . . . . . . . . . . . . . 57

3.4.1 The TerraSAR-X Imagery Description . . . . . . . . . . . 58

3.4.2 TerraSAR-X Data Pre-processing . . . . . . . . . . . . . . 59

3.4.2.1 Radiometric Correction . . . . . . . . . . . . . . 59

3.4.2.2 Speckle Reduction . . . . . . . . . . . . . . . . . 61

3.4.2.3 Terrain Correction . . . . . . . . . . . . . . . . . 62

3.4.2.4 Selection of TerraSAR-X Processed Bands . . . . 64

3.4.3 Image Classification of TerraSAR-X Processed Bands and

the RapidEye imagery description . . . . . . . . . . . . . . 64

3.4.4 Analysis of the Land Cover Distributions . . . . . . . . . . 66

4 Results 68

4.1 Hyper-Spectral Analysis from the Four Scenes . . . . . . . . . . . 68

x



Contents (Contents)

4.1.1 The Scene’s Spectra . . . . . . . . . . . . . . . . . . . . . 68

4.1.2 The hy 15 scene . . . . . . . . . . . . . . . . . . . . . . . . 73

4.1.3 The hy 14 scene . . . . . . . . . . . . . . . . . . . . . . . . 77

4.1.4 The eo1 pz scene . . . . . . . . . . . . . . . . . . . . . . . 80

4.1.5 The eo1 kw scene . . . . . . . . . . . . . . . . . . . . . . . 83

4.1.6 Specific clusters error evaluation . . . . . . . . . . . . . . . 87

4.2 USB650 Field Spectrometer . . . . . . . . . . . . . . . . . . . . . 89

4.3 TerraSAR-X Processing and Land Cover Analysis . . . . . . . . . 95

5 Discussion 107

5.1 Hyper-Spectral Sensors and General Considerations on the Clus-

tering Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.2 The USB650 Field Spectrometer . . . . . . . . . . . . . . . . . . . 111

5.3 TerraSAR-X Processing and classification . . . . . . . . . . . . . . 114

5.4 Climate, Vegetation and Remote Sensing in Costa Rica . . . . . . 120

6 Conclusions 126

6.1 Hyper-spectral Conclusions . . . . . . . . . . . . . . . . . . . . . . 126

6.2 TerraSAR-X Conclusions . . . . . . . . . . . . . . . . . . . . . . . 129

6.3 Remote Sensing and Climate . . . . . . . . . . . . . . . . . . . . . 130

Bibliography 132

Appendices 150

A Climate and Vegetation in Costa Rica 151

A.1 Normalized Difference Vegetation Index . . . . . . . . . . . . . . . 151

A.2 Precipitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

A.3 Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

A.4 Potential Evapo-transpiration . . . . . . . . . . . . . . . . . . . . 154

A.5 Reconnaissance Drought Index . . . . . . . . . . . . . . . . . . . . 154

B Slopes of the Study Area 156

C List of the Clusters and Edges 157

xi



C.1 Clusters and Edge Number of the Dendrogram of the hy 15 PCs

Spectral Signatures. . . . . . . . . . . . . . . . . . . . . . . . . . . 157

C.2 Clusters and Edge Number of the Dendrogram of the hy 14 PCs

Spectral Signatures. . . . . . . . . . . . . . . . . . . . . . . . . . . 158

C.3 Clusters and Edge Number of the dendrogram of the eo1 pz PCs

Spectral Signatures. . . . . . . . . . . . . . . . . . . . . . . . . . . 160

C.4 Clusters and Edge Number of the Dendrogram of the eo1 kw PCs

Spectral Signatures. . . . . . . . . . . . . . . . . . . . . . . . . . . 161

C.5 Clusters and Edge Number of the Dendrogram of the USB650

Spectral Signatures. . . . . . . . . . . . . . . . . . . . . . . . . . . 162

D Conditional Density Plots for All Bands and the Different Land

Covers 164

E Comparison of the Covers by TerraSAR-X Processed Bands 170

F Comparison of the Covers by TerraSAR-X Processed Bands 171

List of Figures

1.1 Study site in south of Costa Rica. . . . . . . . . . . . . . . . . . . 6

1.2 Mean values of precipitation, potential evapo-transpiration and

Normalized Difference Vegetation Index for the study site. . . . . 7

1.3 Original RapidEye true colour composite showing the cloud prob-

lems in the study area and the systematic sampling points. . . . . 8

2.1 Spectral curves from Lawn Grass and Juniper Bush spectra and the

relative spectral response for Landsat ETM+ and MODIS sensors. 23

2.2 Principles of typical RADAR system components . . . . . . . . . 28

2.3 Steps of clustering process . . . . . . . . . . . . . . . . . . . . . . 36

xii



List of Figures (List of Figures)

3.1 Overview of the hyper-spectral scenes in the south of Costa Rica . 39

3.2 Segment of colour composite of the EO1 Hyperion images . . . . . 41

3.3 Segment of colour composite of the of the HyMap images . . . . . 44

3.4 Crown sampling scheme in a tree. . . . . . . . . . . . . . . . . . . 47

3.5 USB650 Field Spectrometer. . . . . . . . . . . . . . . . . . . . . . 48

3.6 A schematic diagram of the general approach to perform the hier-

archical cluster analysis and the similarity discrimination. . . . . . 51

3.7 TerraSAR-X work-flow in south of Costa Rica. . . . . . . . . . . . 57

3.8 TerraSAR-X polarization modes in south of Costa Rica. . . . . . . 60

4.1 Spectral Signatures in the hy 15 scene. . . . . . . . . . . . . . . . 69

4.2 Spectral signatures in the hy 14 scene. . . . . . . . . . . . . . . . 70

4.3 Spectral signatures in the eo1 pz scene. . . . . . . . . . . . . . . . 71

4.4 Spectral Signatures in the eo1 kw scene. . . . . . . . . . . . . . . 71

4.5 Silhouette graphs for the PCs spectral signatures of the scenes

analysed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.6 Average silhouette width for different number of clusters solutions 72

4.7 Hierarchical cluster analysis and silhouette graph of 83 PCs spectra

of hy 15 scene. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.8 Approximately unbiased (AU) p-value of 83 PCs spectral signa-

tures of hy 15 scene. . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.9 Hierarchical cluster analysis and silhouette graph of 95 PCs spec-

tral signatures of hy 14 image. . . . . . . . . . . . . . . . . . . . . 79

4.10 Approximately Unbiased (AU) p-value of 95 PCs spectral signa-

tures of hy 14 image. . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.11 Hierarchical cluster analysis and silhouette graph of 73 PC spectral

signatures of eo1 pz scene. . . . . . . . . . . . . . . . . . . . . . . 82

4.12 Approximately unbiased (AU) p-value of 73 PC spectral signatures

of eo1 pz scene. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.13 Hierarchical cluster analysis and silhouette graph of 79 PCs spec-

tral signatures of eo1 kw scene. . . . . . . . . . . . . . . . . . . . 85

4.14 Approximately unbiased (AU) p-value of 79 PC spectral signatures

of the eo1 kw scene. . . . . . . . . . . . . . . . . . . . . . . . . . . 86

xiii



List of Figures (List of Figures)

4.15 Approximately unbiased (AU) p-value and standard error for the

four scenes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.16 Mean ± standard deviation of reflectance for leaves of three differ-

ent edges of G.arborea plantations in the south of Costa Rica. . . 90

4.17 Silhouettes of a clustering with k=14 of 122 spectral signatures

measured from the USB650 field spectrometer. . . . . . . . . . . . 91

4.18 Dendrogram with k=14 cut height of 122 spectral signatures mea-

sured from the USB650 field spectrometer. . . . . . . . . . . . . . 92

4.19 Approximately unbiased (AU) p-value of 122 PCs spectral signa-

tures of USB650 field spectrometer. . . . . . . . . . . . . . . . . . 93

4.20 Approximately unbiased (AU) p-value and the standard error for

the USB650 spectral signatures . . . . . . . . . . . . . . . . . . . 94

4.21 Segment of TerraSAR-X processed HH intensity image in the south

of Costa Rica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.22 Linear density graphs for the ROIs of forest in undulating and

rolling slopes for the 9 bands . . . . . . . . . . . . . . . . . . . . . 98

4.23 Example of TerraSAR-X Red (band B8), Green (band B5) and

Blue (band B1) composite in a segment of the study area in the

south of Costa Rica. . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.24 Conditional density plot for all bands for the land cover forest in

flat terrain (raffia). . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.25 Example of TerraSAR-X penetration in soils in a segment of the

study area in the south of Costa Rica. . . . . . . . . . . . . . . . 102

4.26 Unsupervised Classification of the TerraSAR-X imagery in the

study area. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

B.1 Slopes of the TerraSAR-X study area. . . . . . . . . . . . . . . . . 156

D.1 Conditional density plot all bands for the land cover forest in gently

undulating slopes. . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

D.2 Conditional density plot for all bands the land cover forest in

rolling slopes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

D.3 Conditional density plot for all bands for the land cover herbland

in flat slopes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

xiv



D.4 Conditional density plot for all bands for the land cover infrastruc-

ture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

D.5 Conditional density plot for all bands for the land cover mangrove. 166

D.6 Conditional density plot for all bands for the land cover palm oil

(old plantation). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

D.7 Conditional density plot for all bands for the land coverpalm oil

(young plantation). . . . . . . . . . . . . . . . . . . . . . . . . . . 167

D.8 Conditional density plot for all bands for the land cover pasture. . 168

D.9 Conditional density plot for all bands for the land cover bare soil. 168

D.10 Conditional density plot for all bands for the land cover water. . . 169

F.1 Conditional density plot for the Band 1 and all land covers. . . . 171

F.2 Conditional density plot for the Band 2 and all land covers. . . . 172

F.3 Conditional density plot for the Band 3 and all land covers. . . . 172

F.4 Conditional density plot for the Band 4 and all land covers. . . . 173

F.5 Conditional density plot for the Band 5 and all land covers. . . . 173

F.6 Conditional density plot for the Band 6 and all land covers. . . . 174

F.7 Conditional density plot for the Band 7 and all land covers. . . . 174

F.8 Conditional density plot for the Band 8 and all land covers. . . . 175

F.9 Conditional density plot for the Band 9 and all land covers. . . . 175

List of Tables

1.1 Slopes of the study area. . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 Characteristics of some selected SAR sensors . . . . . . . . . . . . 28

3.1 Codification and number of selected regions of interest per hyper-

spectral scenes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

xv



List of Tables (List of Tables)

3.2 Codification used and acquisition dates for to the four hyper-

spectral scenes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3 Codification of selected covers for the USB650 hyper-spectral field

spectrometer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4 Characteristics of Optical Sensors . . . . . . . . . . . . . . . . . . 50

3.5 Interpretation key for the Silhouettes values. . . . . . . . . . . . . 55

3.6 Interpretation key for the average silhouette width. . . . . . . . . 56

3.7 Characteristics of TerraSAR-X mission products . . . . . . . . . . 59

3.8 Acquisition parameters for Stripmap TerraSAR-X imagery. . . . . 60

3.9 Multilook parameters of the TerraSAR-X imagery. . . . . . . . . . 62

3.10 Selected regions of interest for the density distribution analysis of

the TerraSAR-X process. . . . . . . . . . . . . . . . . . . . . . . . 66

4.1 Hierarchical clustering parameters for the four remote base sensor

spectral signatures . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2 Statistics for the approximately unbiased p-values and the SE for

the PCs of the hy 15 scene data . . . . . . . . . . . . . . . . . . . 75

4.3 Statistics for the Approximately Unbiased p-values and the SE for

the PCs of the hy 14 scene data . . . . . . . . . . . . . . . . . . . 81

4.4 Statistics for the Approximately unbiased p-values and the SE for

the PCs of the eo1 pz scene data . . . . . . . . . . . . . . . . . . 84

4.5 Statistics for the approximately unbiased p-values and the SE for

the PCs of the eo1 kw scene data . . . . . . . . . . . . . . . . . . 87

4.6 Approximately unbiased p-values for the two highest standard er-

ror per scene. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.7 Statistics for the approximately unbiased p-values and the SE for

the USB650 field spectrometer data . . . . . . . . . . . . . . . . . 94

4.8 Approximately unbiased p-values for the three edges with the high-

est standard error in the USB650 field spectrometer data . . . . . 94

4.9 TerraSAR-X selected bands. . . . . . . . . . . . . . . . . . . . . . 97

4.10 Summary area and percentage per class of the unsupervised clas-

sification of the TerraSAR-X imagery in the study area . . . . . . 105

xvi



List of Tables (List of Tables)

4.11 Error matrix of forest/non-forest classes for the classification of

TerraSAR-X imagery in south of Costa Rica. . . . . . . . . . . . . 105

E.1 Comparison of the covers by TerraSAR-X processed bands. . . . . 170

xvii



Acronyms and abbreviations

αλ Absorbance

λ wavelength

ρλ Reflectance

τλ Transmittance

ALOS-2 Advanced Land Observing Satellite-2

ASAR The SAR on board on ENVISAT

ATREM ATmospheric REMoval program

AU Approximately Unbiased Test

AVIRIS Advanced Very Hight Resolution Radiometer

BIL Band-Interleaved-by-Line

BIP Band Interleaved by Pixel

CARTA Mission Costa Rica Airborne Research and Technology Applica-

tion

CBM Convention on Biological Diversity

CICANUM Research Centre on Nuclear and Molecular Sciences, Uni-

versity of Costa Rica

xviii



(Acronyms and abbreviations)

CosmoSkyMed Constellation of Small Satellites for Mediterranean Basin

Observation

DBH Diameter at Breast Height

DEM Digital Elevation Model

DEM Digital Elevation Model

DLR German Aerospace Centre

DN Digital Number

EEC Enhanced Ellipsoid Corrected

EnMap Environmental Mapping and Analysis Program

ENVISAT ENVIronmental SATellite

EO-1 Hyperion High Resolution Hyper-spectral push-broom imager on

board of Earth Observing-1 mission

ERS Earth Remote Sensing Satellite

ESA European Space Agency

FAO Food and Agriculture Organization of the United Nations

FCPF Forest Carbon Partnership Facility

FLAASH Fast Line-of-sight Atmospheric Analysis of Spectral Hy-

percubes

FRA Global Forest Resources Assessment of FAO

FWHM Full Width at Half Maximum

G.arborea Gmelina arborea

xix



(Acronyms and abbreviations)

GCP Ground Control Point

GEC Geocoded Ellipsoid Corrected

GeoTIFF Geographic Referenced Tagged Image File Format

GIS Geographic Information Systems

GIS Geographical Information Systems

HCA Hierarchical Cluster Analysis

HH Horizontal-Horizontal polarization

HyMap Airborne Hyperspectral Sensor

I.D.I.O.T InSAR Deformation Inspection and Observation Tool

IEMR Incident Electromagnetic Radiation

IFOV Instantaneous Field of View

Infoterra GmbH A subsidiary of EADS Astrium which is responsible for

the commercial marketing of the TerraSAR-X products,

nowadays Astrium GEO-Information Services

Landsat 7 ETM+ Landsat 7 Enhanced Thematic Mapper Plus

LDA Linear Discrimination Analysis

LULC Land Use and Land Cover

MGD Multilook Ground Range Detected

MODIS MODerate resolution Imaging Spectroradiometer

MRV Measurement, Reporting and Verification

NASA National Aeronautics and Space Administration

xx



(Acronyms and abbreviations)

NDVI Normalized Difference Vegetation Index

NEST Next ESA Toolboox

NFIs National Forest Inventories

NIR Near-Infra-Red

NPP Net Primary Production

PAZ The first Spanish RADAR observation satellite

PCs Principal Components

PET Potential Evapo-transpiration

PRCR Costa Rican Cadastre and Register Regularization Pro-

gram

PRE Precipitation

QGIS Quantum GIS is a cross-platform free and open source

desktop geographic information systems

R R is a language and environment for statistical computing

and graphics

RADARSAT-2 Canada’s next-generation commercial radar satellite

RapidEye Space Borne Satellite Image Products for Geo-Information

Solutions

RDI Reconnaissance Drought Index

REDD+ Reduction of Emissions from Deforestation and Forest

Degradation

ROIs Regions of Interest

xxi



(Acronyms and abbreviations)

SAR Synthetic Aperture Radar

SE Standard Error

Sentinel-1 ESA SAR C-band satellites

Sentinel-2 ESA satellites with high-resolution optical capabilities

SPOT Satellites Pour l’Observation de la Terre or Earth-observing

Satellites

SRTM Shuttle Radar Topography Mission

SSC Single Look Slant Range Complex

SWIR Short-Wave Infra-Red

TanDEM-X TerraSAR add-on for Digital Elevation Measurements

TerraSAR-X Operational Advanced SAR-satellite system for scientific

and commercial applications

UCR University of Costa Rica

UNA National University of Costa Rica

USB650 USB650 RedTide Fibre Optic Spectrometer from Ocean

Optics

UTM Universal Transversal de Mercator

VEGETATION SPOT VEGETATION ten daily synthesis archive

VHR Very High Resolution

VIS Visible region of the spectrum

VIs Vegetation Indices

xxii



(Acronyms and abbreviations)

VNIR Visible and Near-Infra-Red

VV Vertical-Vertical polarization

WGS84 World Geodetic System

xxiii



Chapter 1

Introduction

1.1 Introduction and Problem Statement

The global climate change is a fact with an international impact that has been dis-

cussed extensively within the framework of international agreements such as the

Kyoto Protocol, the Convention on Biological Diversity (CBM) and the United

Nations Convention on Climate Change. The need for scientific information is

very time sensitive due to the impacts these changes have on the different ecosys-

tems including human environments.

The ability to predict climate change and climate-change related impacts criti-

cally depends on understanding the role vegetation plays in modifying changes in

the concentration of atmospheric CO2 and the global energy balance [Jones and

Vaughan, 2010].

The CO2 concentration levels are a global issue, and it does not matter where

they are produced because they affect the entire planet. From this perspective the

international community is responsible for maintaining the equilibrium of CO2

concentrations. Currently, only a multinational monitoring system can provide

the scientific information needed on global climate change, carbon sequestration,

forest growth and biodiversity [Lorentz et al., 2005].

The Global Forest Resources Assessment (FRA) of the Food and Agriculture Or-
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ganization of the United Nations (FAO), is the most important initiative that

provides quantitative and qualitative global forest information. This information

combines data provided by several countries, however, the FAO uses supplemen-

tary remote sensing data due to the inconsistencies, availability and quality of

the data provided [FAO, 2001]. Among these efforts, there are two main aspects

that are worth mentioning, first, the needed continuously gather forest related

information, because climate is not static, hence the idea of monitoring. The

second aspect is the need standardize definitions in order to make the reports

comparable in time and consistent between the different countries.

The basic question of, ”what constitutes a forest?” has been discussed by the

international community, however, no consensus has been achieved. No solution

has been reached for a harmonized definition of forest, not even a definition

which could be implemented for the needs of remote sensing. Similarly, it would

be important to have a definition that differentiates forest and other land cover

types on various scales. For example, it would be important to make a distinction

at the regional level (a region within a country), country level and even at the

global level.

Currently, only FAO uses a global standard definition of forest [Fagan and De-

Fries, 2009]. In Appendix 2 of the terms and definitions for the national reporting

tables for FRA 2005 can be read: ”Land spanning more than 0.5 hectares with

trees higher than 5 metres and a canopy cover of more than 10 percent, or trees

able to reach these thresholds in situ. It does not include land that is predomi-

nantly under agricultural or urban land use” [FAO, 2006]. The lack of standard,

acceptable and appropriate definition for forest cover makes it difficult to create

forest maps with standard remote sensing methods. However, and based on the

case-study of Costa Rica Kleinn et al. [2002] ”do not believe that the problem can

be resolved in a homogenization-of-definitions manner on a global level [Kleinn

et al., 2002]”.

The use of remote sensing to provide complementary forest measurements is

needed because there are gaps in data from less accessible regions of some coun-

tries or entire countries, especially countries with several economy or social prob-

lems.
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In forest mapping and monitoring, remote sensing has been proven to be a well-

established method [Fagan and DeFries, 2009; Kuntz, 2010], however, there are

several challenges. These challenges can be categorized into technical and logistic

issues. One technical challenge could be because the selection of the imagery

is not guided by scientific principles. For example, limitations in the budget in

a specific project or the availability of a set of cloud free imagery in a specific

region.

Under a global perspective, Fagan and DeFries [2009] pointed out that it is dif-

ficult to distinguish between different types of forest (i.e. between primary and

secondary forest or tree plantations) with actual remote sensing imagery. It is also

challenging to detect forest degradation in which a forest is partially cleared by

human activity [Fagan and DeFries, 2009]. However, at country level, new Very

High Resolution (VHR) imagery can supply detailed information which help to

distinguish between forests. For example, the Pléiades platform1, with 50-cm

resolution and up to 100 km x 100 km in strip mapping mode, can archive the

information needed to map and monitor the vegetation and distinguish between

the different types.

Despite the limitations of the technique, principally at global scale, it is recog-

nized that remote sensing can provide the spatial information needed to manage

ecosystems in a time and cost effective manner.

1.2 Objectives and Hypotheses

This study was conducted against the background of requiring Forest Area Maps

and Remote Sensing as a tool to measure, report and verify the related infor-

mation in the context of international processes. The two main objectives were

to find the potential of hyper-spectral data to differentiate within and between

species and other land cover groups. The second aim was to evaluate the use of

TerraSAR-X data for the purpose of identifying forest classes in an adaptation of

1http://www.astrium-geo.com/en/52-pleiades-very-high-resolution-satellite-imagery. Ac-
cess 20.09.2012
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the (FAO) forest definition of classes forest/non-forest.

Hyper-spectral specific objectives

1. To evaluate the potential of two different data sensors (one space borne

and the other air-borne) to discriminate between and identify different land

cover groups in the southern region of Costa Rica.

2. To ascertain the difference in reflectance in the visible and near-infrared

(NIR) radiation of different Gmelina arborea plantations in the southern

region of Costa Rica, using a field-base spectrometer.

Synthetic Aperture Radar specific objectives

1. By fusion of two polarization modes of Single Look Slant Range Complex

TerraSAR-X imagery, to evaluate the possibility of reducing the speckle

noise in non flat terrains to classify forest in the south of Costa Rica.

Additionally, in this study, the inter-annual climate variability is assessed to

analyse the influence and the relationship of the climate on the vegetation based

on the Normalized Difference Vegetation Index NDVI in sub-climatic regions in

Costa Rica.

The given goals can be translated into the following research questions or hy-

potheses:

1. Are there spectral confusions in the classification of HyMap and EO-1 Hy-

perion sensors for some of the most important land covers in the south of

Costa Rica.

2. Is it possible to develop suitable methods to increase the potential of TerraSAR-

X in target recognition for monitoring land covers as an option for contin-

uous monitoring in humid tropical areas with high cloud coverage.

By understanding the spectral patterns and detecting the spectral confusion from

the hyper-spectral and microwave domain in different land covers in the south of

Costa Rica, better methods for classifying forest and non-forest are studied
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1.3 Study Area

1.3.1 Geographic Location

Costa Rica is located between Nicaragua and Panama on the Central American

isthmus with an area of only 51.100 km2. The country has a diverse topography

(with elevations from 0 to 3820 m.a.s.l), climatic conditions (e.g. precipitation

from 1400 to 8000 mm/a, averaged 3297 mm/a), vegetation forms (from semi-

deciduous dry forests to tropical moist forests and mountain cloud forests), and

land use systems (intensive monoculture agriculture like sugar cane and banana,

and highly diverse agro-forestry systems). Costa Rica’s land area represents just

about 0.03% of all land on Earth but this area houses around 5-6 % of all doc-

umented species in the world. There are two mountain systems that run from

the north western region to the south eastern one, dividing the country in three

general areas: the so called Pacific influence, the Caribbean influence, and the

Central Valley. The mountain system and the impact of the oceans define the

climatic regions of Costa Rica.

1.3.2 Climate and Vegetation

The southern region site, located in Central America, Costa Rica (Figure 1.1 a

and b), consists of three cantones (or counties) called Osa, Corredores y Golfito.

The lowlands are dominated by big farms with various forms of agricultural use

e.g. rice, melon and palm oil. There are some forest plantations of teak and

Gmelina arborea (G.arborea) in the lowlands.

In the regions of average slopes, small farmers produce a diversity of products

such as plantain, yucca and recently palm oil. On the steep slopes there are some

remaining patches of primary and secondary forests. On the coast there are large

areas covered by mangroves.

The study site (which is in the South Pacific Climatic Region) has monthly pre-

cipitation that varies between 69 mm in February and 597 mm in October, the
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Central America

Figure 1.1: Study site in south of Costa Rica.

mean value is 300 mm. There is a decrease in rainfall in the months of January,

February, March and April. Also in those months, there is a rise in the values of

potential evapo-transpiration the maxima being in April with 115 mm and the

minima in December with 95 mm, the mean value of potential evapo-transpiration

is 106 mm (Figure 1.2 after Vega-Araya et al. [2012]). The minimum value of

NDVI is 0.6 in October and the maximum is 0.71 in January. Despite this de-

crease in October, the NDVI in this zone is more or less stable with a standard

deviation of 0.033 units of NDVI [Vega-Araya et al., 2012].

Figure 1.2 is a summary of the results computed for the south pacific climatic re-

gion following the methodology presented in Appendix A. The variables presented

in this graph are: PRE is precipitation, PET is potential evapo-transpiration and

NDVI is the normalized difference vegetation index.
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Table 1.1 list the types of slopes the study area for the TerraSAR-X analysis. 48.6

% of the slopes are classified as moderate steep and steep. Most of the plantations

in this region are flat, especially the palm oil plantations, however, recently with

the rise of international prices of palm oil, some small farmers have planted the

palm in undulating slopes. Another practice is to drain the flat lowlands which

traditionally are swampy areas in order to establish more palm oil plantations.

Figure 1.2: Mean values of precipitation (PRE), potential evapo-transpiration

(PET) and Normalized Difference Vegetation Index (NDVI) for the study site

[Vega-Araya et al., 2012].

Figure 1.3 is a mosaic of four images in a true colour composite of high spatial

(5m) resolution RapidEye optical sensor. Most of the raw images used in this

study were taken between 3 and 4 pm (UTC). During this hours there is an

inherent presence of clouds in Costa Rica as is the case for tropical areas in

general, even in the months of February and March, where there is a decrease in

the rate of the precipitations.
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Table 1.1: Slopes of the study area.

Slope category Range(%) Area (ha) Area (%)

Flat 0-3.5 14237.15 27.2
Gently undulat-
ing

3.5-7 4050.77 7.7

Undulating 7-12.3 4484.34 8.6
Rolling 12.3-17.6 3835.01 7.3
Moderate steep 17.6 - 36.4 11599.36 22.1
Steep 36.4 - 120 13901.13 26.5
Highly steep > 120 193.46 0.4
no data − 116.40 0.2
Total − 52417.60 100

Figure 1.3: Original RapidEye true colour composite showing the cloud problems

in the study area and the systematic sampling points.
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1.3.3 Principal Land Covers of the Study Site

In the study area there’s a total of 21 natural ecosystems. From those, 5 are

different types of dense tropical forest, 7 are different types of dense tropical

shrublands, 8 types of dense tropical herblands, and one water body [Kappelle

et al., 2002]. However, some of the differences between the ecosystems, are due

to the altitudinal distribution.

This section describes the main land cover groups which are useful to select the

different Regions of Interest (ROIs). As will be explained in Chapter 3, different

ROIs were selected for the hyper-spectral scenes analysis and for the TerraSAR-X

image processing.

The description below of a three level grouping system could be useful for a

posterior classification scheme in the south of Costa Rica as well as for a remote

sensing based approach for the generation of standardized land cover maps at

national level.

Level I (Vegetated areas)

Forest (Level II)

Description: Tree cover (1): are all wooded pixels with dif-

ferent tree canopy cover where the canopy is composed of single

stemmed and woody plants. This class also includes riverine veg-

etation with sparse grass cover, mangrove trees, dense tropical ev-

ergreen lowland dominated by raffia (Raphia taedigera) or by hog

plum (Symphonia globulifera) [Kappelle et al., 2002]. This study

takes a special consideration of the ecosystem of dense tropical

broad-leave evergreen lowland swamp forest dominated by raffia

[Kappelle et al., 2002], because of the similarity with palm plan-

tations. This ecosystem is located in lowlands and is frequently

flooded.

Non Forest (Level II)
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Description: Shrubs (2):. Sparse woodland or scattered trees giving

a canopy cover but not in form of a tree cover. This class also

includes a varying density of small shrubs and bushes. This cover

is normally about 2m in height in situ. There are small areas with

dense tropical shurbland dominated by raffia (Raphia taedigera),

however, in the description of this ecosystem Kappelle et al. [2002]

indicates that it is sometimes a woody herbland.

Description: Herblands and natural non wooded lands (3): in

this class the herblands are grouped to include the shrubby trop-

ical evergreen herbland dominated by graminoids and the woody

tropical evergreen herbland dominated by graminoids [Kappelle

et al., 2002]. In this class there are both natural herblands and

pastures. Normally in gently undulating and undulating terrains

it is common to find pastures in an association with a palm called

royal palm (Attalea butyracea).

Description: Cultivated managed areas (4):. This class includes

agricultural areas currently with crops. It also includes palm oil,

rice, plantain and banana plantations, among others. Most of the

plantations in the study area are in flat terrains.

There is a company called Palmatica which is the largest owner

of palm oil plantations in the south of Costa Rica. This com-

pany buys the fruit of the palm from the small owners through

contracts. Thus, there is an established market that makes this

activity profitable.

In the case of G.arborea, the area planted has been decreasing,

principally because of the increase in the international prices of

palm oil. Currently most of the plantations are cut, or the owners

have cut the largest trees and let the rest in a semi non-managed

system. This is possible because G.arborea can re-sprout from the

stumps.
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Level I (No Vegetation)

Water bodies (Level II)

Description: Water bodies (5), both natural and artificial are grouped

in this category. In the study area the Laguna de Sierpe represents the

largest body of freshwater in the study area, the remaining freshwater

bodies are rivers. In Figure 4.21 (d) it is represented by a small black

spot in the lower right part of the segment. The principal salt water

body in the study area is the Golfo Dulce which flows into the Pacific

Ocean. The rivers carry high sediment loads (see Figs.1.3 and 4.23).

Description: Bare land (6) is non-vegetated areas such as bare rocks or

areas with very little vegetation cover where soil exposure is clearly

apparent. This class also includes landslides. There are some natural

small bare lands on the banks of the river Grande de Térraba, however,

most of the bare lands are terrains which are being used for agricultural

purposes.

Description: Settlements (7) are areas where there is permanent con-

centration of people with man-made structures. Except for the town

of Palmar, there is not a big concentration of infrastructure in the

study area. The remaining settled land scape consists of man-made

constructions that are scattered or are at the sides of the main streets.

Level I (No Data)

No data (Level II)

Description: This class includes the shadow areas (8) and the foreshort-

ened areas (9). The latter is subdivided in foreslope and backslope. In

the optical domain this class includes the clouds and the shadows of the

clouds.
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Chapter 2

Literature Review

2.1 Forest Monitoring

Remote sensing, together with other tools such as geographic information sys-

tems have been increasing the potential of ecological research and applications

that are explicitly spatial and temporal [Cohen and Goward, 2004]. The models

and algorithms developed by the scientific community have to be applicable at

the global scale but also take into account the regional scale [Tansey et al., 2004].

Other authors such as Asner et al. [2000], believe that one of the principal ob-

jectives of remote sensing is carbon accounting in the world’s forests via biomass

monitoring.

It is generally accepted that forests provide a series of ecosystem services such as

climate moderation, protection of streams and soils, oxygen generation, supply

of wood and non-timber products, biodiversity beauty and recreation [Haines-

Young and Potschin, 2007]. These ecosystems play a large role in the world’s

carbon budget and its dynamics [Clark et al., 2001].

The Food and Agriculture Organization of the United Nations (FAO) began re-

porting information about global forests in 1948 [FAO, 1948], and has subse-

quently published reports up to date. Recently, the organization published Forest
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Resource Assessment (FRA) reports for the years 1980, 1990, 2000, and 20051.

However, the inaccuracy of the FAO reports has been criticized [Waggoner, 2009].

Errors in estimating forest area are attributed to changes in the definitions of

forests, revisions of estimates based on conflicting data, unreliable national in-

ventory estimates, and data aggregation errors [Grainger, 2008; Houghton, 2005].

Historical FAO estimates of forest area are demonstrably assumption and do not

exist for some countries [Grainger, 2008; Houghton, 2005]. As Waggoner [2009]

points out, it is unclear from the FAO statistics whether the global forest area is

declining or growing.

Any comparison of the current status and trends of forest resources among coun-

tries presumes that the nations apply definitions and concepts that produce com-

parable estimates. Presently however, cross-country estimates are not comparable

[Vidal et al., 2008].

It is acknowledged that climate change will have a severe global impact, and this

is one of the main contemporary discussion themes in the world. As one way

of addressing this challenge, the Reduction of Emissions from Deforestation and

Forest Degradation (REDD+) takes an important role on issues like conservation

and the enhancement of carbon stocks in tropical forests. REDD+ also includes

sustainable forest management as a general goal. An important component of

the REDD+ mechanism is the Measurement, Reporting and Verification (MRV)

standard which allows a transparent and comprehensive monitoring of the entire

process. Monitoring encompasses collecting and assessing information over time

which, for REDD+, refers to monitoring at a national level. Information (data)

and services which can provide the data and infrastructure are also defined along

the nationally available capacities. In addition, history-based reference emission

levels must be determined in order to compare them with the emission reduction

effects of the newly implemented measures.

1available in http://www.fao.org/forestry/fra/2620/en/
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2.1.1 Forest Measuring

The need for relevant information about forests and their function at both na-

tional and international levels is increasing [Vidal et al., 2008].

Forests play an ecological role in addition to the traditional industrial productivity

role. The scope of National Forest Inventories (NFIs) has broadened and new

variables for assessment have been introduced to address both national needs

and the need for common reporting at the international level [Vidal et al., 2008].

However, published forest cover data often differ considerably [Kleinn et al., 2002].

Class confusions are the most frequent problem in remote sensing based landscape

classifications because in tropical areas green vegetation has a very complex spec-

trum of different plant compositions and arrangements.

REDD+ is a financial initiative. Its main purpose is to reduce emissions of

greenhouse gases from deforestation and forest degradation. In REDD+, one

of the challenges is how to differentiate deforestation and degradation because

this distinction is deeply intertwined with questions of how to measure either

category. However, both concepts are connected in the political-economical and

scientific dimension. In addition, in REDD+ mechanisms, all actors need a base

to negotiate or to implement one specific initiative. Normally, this base is a forest

map.

Only remote sensing can provide the information needed to produce a forest map

in regular time and large scale dimensions at a reasonable cost. Remote sensing

plays an important role in cases in which it is not suitable to carry out terrestrial

inventories such as for remote and hardly accessible locations or due to security

reasons.

Remote platforms provide the only means of viewing large portions of the Earth

surface at regular intervals and the selective absorption and reflectance of light

by plants allows optical sensors to gather large amounts of information [Ollinger,

2011] as well as to provide essential input for climate and ecosystem models [Ustin

et al., 2004].

For passive sensors, the amount of light reflected from a surface is determined by
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[Jackson and Huete, 1991]: the amount and composition of solar irradiance that

strikes the surface and the reflectance properties of the surface. Here we face two

different issues: one is that the composition of solar irradiance varies with the

atmospheric conditions the second is related to the intrinsic characteristics of the

target itself.

From a global perspective, Fagan and DeFries [2009] pointed out, that it is difficult

to distinguish between different types of forest (i.e primary, secondary forests or

tree plantations) with actual remote sensing imagery. It is also challenging to

detect forest degradation in which a forest is partially cleared by human activity

[Fagan and DeFries, 2009].

Hyper-spectral imagery is a promising technology to solve some difficulties in

discrimination of green vegetation. With this technology, the image is sub-divided

in several narrow bands across the spectrum. Several recent studies have used

hyper-spectral remote sensing [Asner et al., 2008; He et al., 2011; Ustin et al.,

2002; Ustin and Santos, 2010] to assess the spatial distribution of plant species.

Passive sensors such as the multi-spectral sensor have largely succeeded at clas-

sifying whole pixels, however, deep analysis related to its constituent substances

is limited by a relatively low number of spectral measurements [Keshava and

Mustard, 2002].

Hyper-spectral scanners have the ability, on the other hand, to collect data in

over 200 very narrow continuous bands [Jones and Vaughan, 2010]. Therefore,

this imaging spectrometers can discern the reflectance spectrum of each pixel.

These spectra may then be compared with spectra measured from field samples

or spectra from laboratory measurements collected in spectral libraries.

In the last few years in the optical domain, the typical patterns of the radiation

in the electromagnetic spectrum are well described [Jacquemoud et al., 2009;

Jones and Vaughan, 2010; Ollinger, 2011]. These patterns can be divided and

summarized into three main spectral regions; the primary region emerges from the

reflectance spectrum of a leaf. The first (400-700 ηm) pattern is predominantly

due to light absorption by pigments (especially chlorophyll), the second (700-

1200 ηm) pattern is influenced by light scattering at air-cell- all interfaces and
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characterized by high reflectance and transmittance, and the third (1200-2500

ηm) pattern is governed by water absorption.

Nevertheless, and in spite of the fact that the healthy leaves have a similar char-

acteristic spectral signature [Daughtry and Walthall, 1998], the variability that

exists between and within leafs, plants [Price, 1994] and ecosystems presents great

challenges. The success of hyper-spectral approaches therefore depends on the

ability to interpret reflectance data [Ollinger, 2011].

Although remote sensing has been proven to be a well-established method to

map forest [Fagan and DeFries, 2009; Kuntz, 2010], there are several challenges

that are still there. These challenges, can be summarized and categorized into

technical, logistic and political issues.

In terms of logistic issues, the selection of satellite imagery is not always guided

by scientific principles. Many times the selection of the imagery simply depends

on availability and accessibility (i.e. the cloud coverage or the budged of a specific

project).

From the technical point of view, there are problems associated with the spectral

heterogeneity in transition zones where areas exhibit properties of two or more

land cover types.

The political aspect is related to the definition of the classes, for example, the

basic question of ”what is a forest?” has been discussed by the international

community. There is no harmonized definition of forest, not even one which

could be implemented for the purpose of remote sensing. A similar challenge to

the issue of defining a forest is posed by the task of differentiating forests and

other land cover classes into various scales. For example, on a local level (a region

within a country), a country level or even a global scale perspective.

2.1.2 Vegetation and Climate

For estimating national level forest cover only remote sensing can provide a view

back in time (given that imagery is available). Even though accuracy and preci-
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sion are always and issue, it also is the only data source that allows wall-to-wall

mapping at an acceptable cost. Currently, most of the national forest maps have

been produced with optical passive sensors. Though seemingly straightforward,

remote sensing based forest mapping is a complex undertaking and involves anal-

yses and interpretation. Vegetation Indices (VIs) as indicators of vegetation

characteristics are widely used in this context [Glenn et al., 2008]. However, the

VIs are calculated by different band transformations from optical sensors [Fuchs

et al., 2009]. The calculation of VIs also depends on many factors that are not

specific to the vegetation characteristics, e.g. solar zenith angle, view angle, soil

background and climatic conditions such as atmosphere and moisture [Jackson

and Huete, 1991].

VIs are widely used in the state of plant growth and plant phenology studies and

are recognized, at a large regional scale, as an important indicator of ecological

conditions [Weishou et al., 2011]. Other authors have established correlations

between climate variables and VIs. For example, Shisanya et al. [2011] studied

the rainfall variability and its impact on Normalized Difference Vegetation Index

(NDVI) in Kenya, Ji and Peters [2003] evaluated the vegetation response (trough

NDVI ) to drought in the Northern Great Plains and Zaitchik et al. [2007] studied

the inter-annual climatic variability to characterize the climatic sensitivities of

vegetation in the Middle East.

Given that climatic variables have a significant impact on the determination of

VIs, it becomes clear that VIs for one and the same area vary over time. Analysis

of time-series of VIs over different seasons will therefore be useful.

2.2 Remote Sensing and Earth Observation Mon-

itoring Systems

Satellite remote sensing data provide an invaluable continuous, temporal and spa-

tial information, which helps us understand the processes, dynamics and distur-

bances in the biosphere, and the impacts of environmental changes on terrestrial

ecosystems [Zhao and Running, 2008].
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Earth Observation (EO) is a technique that uses sensor data collection techniques,

which implies that the information about the objects is collected from a certain

distance. Remote sensing collects the data using sensors from different platforms,

for example, space borne or from the air using an aircraft’s airborne systems.

Up to present time, forest assessment has been implemented worldwide using

remote sensing at different intensities and at different scales, ranging from the

stand level to a national, multinational and global scale. These different views are

changing some paradigms in terms of the way that we see forest systems [Lorentz

et al., 2005].

Today there are 994 (at 12.31.2011) satellites operating, however, just 13% are for

Earth science, Earth observation or meteorology [Union of Concerned Scientist

(UCS), 2012]. Many of the systems have a military use.

With the launch of the first Lansat1 satellite in 1972, the era of civilian satellite

image on repetitive acquisition began.

Remote sensing information that is acquired in conjunction with ground measure-

ments at the project level, can help in the development of regional and national es-

timates of the impacts of carbon sequestration initiatives [Sanchez-Azofeifa et al.,

2009].

In remote sensing, it is possible to obtain relevant information about objects

by the characterization of the radian flux, when it interacts with the surface.

Carefully monitoring the exact nature of this incoming radiant flux in selective

wavelengths is a critical step in remote sensing [Jensen, 2007].

Earth observation satellites provide data by using different portions of the elec-

tromagnetic spectrum at different spatial, temporal, radiometric and spectral

resolutions [Pohl and van Genderen, 1998]:

The spectral resolution refers to the ability of the sensor to distinguish between

two closely thematic objects in an image or in the electromagnetic spectrum

[Jones and Vaughan, 2010]. In other words, it specifies the number of spectral

bands in a determined wavelength range in which the sensor can collect reflected

1http://geo.arc.nasa.gov/sge/landsat/tofc.html Access 01.02.2010
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radiance. The narrowest spectral feature that can be resolved by the spectrometer

is defined by the full width at half maximum (FWHM) of an instrument’s response

to a signal. Another important concept is the spectral sampling interval which is

the interval between data points in wavelength units.

A temporal resolution is simply how often the sensor observes the same place

[Lillesand et al., 2008]. For example, meteorological satellites have a very high

temporal resolution in terms of minutes, such as the second generation of Me-

teosat which has temporal repeat cycles of 15 minutes and twelve spectral bands.

On the other hand there are systems that have a very large repeat cycle, for

example, the EO-1 Hyperion with 200 days [Beck, 2003].

The radiometric resolution refers to the number of possible brightness values in

each data band, thus, after the data quantization process, the number of bits into

which the recorded energy is defined [Jensen, 2007; Jones and Vaughan, 2010].

Spatial resolution is a measure of the smallest angular or linear separation between

two objects that can be resolved by the sensor [Jensen, 2007; Jones and Vaughan,

2010]. In other words, it is the detail of discernible objects in an image which is

represented by each pixel or grid cell in the image that is the ability to separate

closely spaced objects on an image. Spatial resolution of passive sensors depends

on their Instantaneous Field of View (IFOV). The IFOV defines the nominal

spatial resolution, which is in turn defined as a dimension in meters where the

diameter of the circle in the field (D) is a function of the IFOV (β) times the

altitude (H) of the sensor above ground level [Jensen, 2007].

D = β ×H (2.1)

The final system of nominal spatial resolution is composed of a matrix of picture

elements, or pixels, of 30 × 30 meters in the case of Lansat TM+, for example.
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2.3 Hyper-Spectral Data

Hyper-spectral scanners have the ability to collect data in over 200 very narrow

continuous bands [Goetz et al., 1985; Jones and Vaughan, 2010], a process also

called imaging spectroscopy [Smith, 2002]. For this reason, imaging spectrometers

can discern the reflectance spectrum of each pixel. These spectra may then be

compared with spectra measured from field samples or spectra from laboratory

measurements collected in spectral libraries. For example, Roberts et al. [1999]

utilize high-resolution AVIRIS to augment a regionally specific spectral library for

the Santa Monica Mountains for use in posterior Multiple End-member Spectral

Mixture Analysis [Roberts et al., 1999].

In typical multi-spectral sensor samples the given wavelength window is similar

to the hyper-spectral one in terms of the range covered (400 to 2500 ηm), but

it uses several broad band-passes, thus leaving large gaps between the bands. In

contrast, hyper-spectral sensors sample the spectral window with very narrow

band-passes (see Fig 2.1).

Table 3.4 shows the differences between hyper-spectral imagery and multi-spectral

imagery, such as that of Landsat Thematic Mapper (TM) and three hyper-

spectral sensors. For example, the high spectral resolution of individual channels

in MODIS imagery is less than 10 ηm wide over a spectrum.

Spectral anomalies can be detected due to the narrow widths of the channels.

If these were not given, as for example in multi-spectral imagery, the differences

could be masked by broader bands.

The specific problems associated with hyper-spectral remote sensing spectral im-

age analyses arise from any combination of the following [Mernyi, 1998] cited by

Mernyi [1999]:

• The spectral patterns are high dimensional (more than 50 and less than a

hundred bands);

• The number of data points (image pixels) can be as large as several million;

• The pixels are mixed: Several different materials contribute to the spectral
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signature detected from each pixel;

• Given the richness of data, the goal is to separate many cover classes;

• Different surface materials may be distinguished by very subtle differences

in their spectral patterns;

• Very little training data may be available for some classes; and classes may

be represented very unevenly.

To compare different spectra it is necessary to convert the data to reflectance.

It does not matter whether the spectra come from airborne, sensor or field data.

The most critical step in most imaging spectrometer data analysis strategies is to

convert the data to reflectance so that individual spectra can be compared directly

with laboratory or field data for identification. This is one of the main results of

the atmospheric correction procedure (see Section 2.3.1). Passive remote sensing

is based on interaction between light and material. Each vegetation (leaves or

group of leaves) has its own spectral response, this is the basis for the working

principle of imaging spectrometers. Therefore, if remotely sensed data have high

spectral resolution with a continuous wavelength range, the materials can be

distinguished by using their spectral features. In addition, the narrower the

band width, the higher the discrimination capacity of the sensor [Jensen, 2007;

Sanchez-Azofeifa et al., 2009].

Remote sensing at the proximal visible and near-infra-red (VNIR, 400-2500 ηm)

has been used to estimate the variability in leaf properties. For example, at the

species level Castro-Esau et al. [2006] showed the sample variability of some meso-

American trees. Studying these variabilities, the authors analysed implications

for potential tree crown classifications. Dennison and Roberts [2003] performed a

time series with hyper-spectral analysis to determine effects of vegetation penol-

ogy in southern California Chaparral and the implications in posterior classifi-

cations. Clark et al. [2005] investigated the utility of high spectral and spatial

resolution imagery for the automated species-level classification of individual tree

crowns in Costa Rican tropical rain forest.

The combination of narrow band absorption features and reflectance provides
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a unique avenue for understanding changes in the biophysical and biochemical

characteristics of ecosystems [Asner, 1998]. For example, Schmidt and Skidmore

[2001] analysed the spectral reflectance from eight species of range-land grasses

in Kenya using a laboratory-based spectrometer. They found statistically signif-

icant differences in the spectral reflectance between species. A result which is

encouraging for future work on identifying, classifying, mapping and monitoring

rang-eland ecosystems from hyper-spectral imagery.

In spite of these efforts, the spectral properties of vegetation and soils must still

be better understood, not just to identify plant species, but also to estimate plant

productivity from remotely sensed data [Daughtry and Walthall, 1998]. However,

other considerations such as scale and temporal dimensions are necessary. The

ability to go from a leaf to a canopy-level increases the challenges [Ollinger, 2011].

From the field-work perspective, recent improvements in portable VNIR spectro

radiometers have made this technology faster, lighter, and easier to use which

is a requisite and a necessity for tree-level measurement [Fagan and DeFries,

2009]. In addition, the availability of space-borne hyper-spectral platforms makes

the collection and analysis of data possible at low-cost, which may increase the

number of examples for each species in spectral libraries.

Figure 2.1 demonstrates the potential and the differences of hyper-spectral data

to distinguish between vegetation covers. The y axis is reflectance, which is

defined as the ratio of reflected radiation to the incoming radiation. However,

when the radiation reflected from a surface is measured, this measure is the

spectral radiance, which is the radiant flux density emanating from the surface

in W m2 sr−1 nm−1 [Jones and Vaughan, 2010].

The division of the optical domain from 400 to 2500 ηm are typically classified into

three parts [Elach and van Zyl, 2006; Jacquemoud and Ustin, 2003]: ”the visible

region (400-700 ηm) characterized by a strong absorption of light by chlorophyll

in a green leaf. In the near-infra-red region (700 to 1200 ηm), the absorption

is limited to dry leaf matter where there is multiple scattering within the leaf

and thus a strong reflectance due to the refractive index discontinuity between

air and the leaf cell structure. Finally the middle-infra-red region (1200-2500
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Figure 2.1: Spectral curves from Lawn Grass and Juniper Bush spectra and the
relative spectral response for Landsat ETM+ and MODIS sensors.[U.S Geological
Survery, 2010]

ηm) which is also a zone of strong absorption, primarily by water in fresh leaves

and secondarily, by dry matter (dry carbon compounds like cellulose and lignin,

nitrogen, sugars, and other plant compounds) when the leaf wilts and dries. All

of these observations are a prerequisite to extracting biophysical information”

[Elach and van Zyl, 2006; Jacquemoud and Ustin, 2003].

The interaction of the radiation with plant leaves and canopies and its respective

magnitude of spectral reflectance (ρλ), spectral absorbance (αλ), and spectral

transmittance (ρλ), depends not only on the wavelength but also on the range of

the structural and chemical composition, the leaf age, the leaf thickness, the leaf

structure, and the water content, among others [Jones and Vaughan, 2010].

2.3.1 Atmospheric Corrections

The Digital Number DN as a form to recorded the radiation emanating from a

surface, can be converted to a spectral radiance at the sensor (Wm−2sr−1) as

a previous step to obtain the reflectance at the surface. However, one needs to

remove the effects of atmospheric absorptions and scattering of the electromag-
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netic radiation travelling between the sun, the surface and the sensor [Jones and

Vaughan, 2010].

When the electromagnetic radiation interacts with the Earth’s atmosphere, the

degree of interaction depends on the wavelength of the radiation and the local

characteristics of the atmosphere (gases and aerosol composition) [Song et al.,

2001; Tso and Mather, 2009]. For example, the Earth’s atmosphere absorption

is relatively small at frequencies lower than 10 GHz (3 cm wavelength), frequen-

cies where clouds are also transparent. However, when the frequencies rise, the

absorption increases because of the presence of water vapour and oxygen [Elach

and van Zyl, 2006].

The source of incident electromagnetic radiation (IEMR) for passively acquiring

remote sensors is the sun. The visible (VIS) (400-700 ηm) and near infra-red

(NIR) (700-1300 ηm) regions contain the maximum amount of solar energy, which

falls off in energy into the SWIR short-wave infra-red (SWIR) (1300-2500 ηm).

Electromagnetic radiation must travel through the atmosphere of Earth before

interacting with surface materials [Jensen, 2007].

The earth’s atmosphere contains CO2, O2, O3, H2O, CH4, CO, NH4, N2O, and

other nitrogen gasses, which interact with approximately 50% of the IEMR spec-

trum over the region of 300-2800 ηm [Gao et al., 1993]. Gases and particles in

the atmosphere absorb and scatter significant amounts of the IEMR over this

region. The absorption features of these gases are typically narrow. Particular

regions of the electromagnetic spectrum, such as 900 ηm, 1100 ηm, 1400 ηm and

1900 ηm wavelengths, are almost opaque to sensors. Regions that do not contain

significant absorption features due to atmospheric gasses are called transmission

windows. It is these transmission widows that are exploited by remote sensing

sensors [Jensen, 2007].

The carbon dioxide (CO2), oxygen (O2), methane (CH4), carbon oxide (CO)

and ammonium ion (NH4+) gases remain in relatively constant concentrations

through the atmosphere, whereas ozone (O3) predominantly occurs in the strato-

sphere. The concentration of water (H2O) can vary with altitude whereas the

other gases can differ with the environment’s setting [Vermote et al., 2006].
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Remotely sensed spectral imagery of the Earth’s surface can be used to the fullest

advantage only when the influence of the atmosphere has been removed and the

data are reduced to units of reflectance [Adler-Golden et al., 1999].

Atmospheric correction (or compensation) of spectral imagery refers to the re-

trieval of surface reflectance spectra from measured radiances [Matthew et al.,

2000] and it is a prerequisite to enhance and to exploit hyper-spectral imagery

data analysis approaches [Borengasser et al., 2008]. The need for atmospheric cor-

rection depends on the objectives of the analysis. For instance, when multi-sensor

or multi-date images are being classified, or where the aim of pattern recognition

is to identify land cover change over time [Tso and Mather, 2009].

A number of studies have been carried out on the inter-comparison of the tech-

niques and performance of some of the various atmospheric correction schemes

[Goetz et al., 2003; Kruse, 2004].

Some cases in which the advantages of radiometric and atmospheric correction in

remote sensing become apparent are: (1) when multi-temporal data applications

such as in land use/cover change detection are desirable; (2) across scene (across

path) comparison of spectral information of land cover types, for example, a

scene of HyMap can be several km long; (3) multi-sensor data applications such

as multiple image mosaic to spatially produce a large image, multi-sensor data

fusion; (4) quantitative analysis by combining field survey data with spectral data

for applications such as biomass estimation; and (5) band ratio operations such

as vegetation indexes (after Lu et al. [2002]).

The magnitude of the electromagnetic energy in the visible and near-infra-red re-

gion of the spectrum that is detected by a sensor above the atmosphere is depen-

dent on the magnitude of incoming solar energy (irradiance), which is attenuated

by the process of atmospheric absorption and by the reflectance characteristics of

the ground surface. For this reason, energy received by the sensor is a function of

incident energy (path radiance), and atmospheric absorption [Tso and Mather,

2009].

There are basically three types of atmospheric correction approaches. The first is

a scene-based empirical approach, the second is the radiative transfer modelling
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approach; and the third are the hybrid approaches [Gao et al., 2006]. One example

of an radiative transfer modelling approach is the Fast Line-of-sight Atmospheric

Analysis of Spectral Hype-cubes (FLAASH) which is an atmospheric correction of

hyper-spectral and multi-spectral imagery. FLAASH handles data from a variety

of hyper-spectral and multi-spectral sensors, supports off-nadir as well as nadir

viewing, and incorporates algorithms for water vapour and aerosol retrieval and

adjacency effect correction. [Adler-Golden et al., 1999; Matthew et al., 2000].

2.4 RADAR Data

The principle of RAdio Detecting And Ranging (RADAR) is that it does not

need electromagnetic radiation from the sun. Therefore it is called active re-

mote sensing, which is based on the transmission of long wavelength microwaves

through the atmosphere followed by recording the amount of energy backscatter

from the surface [Jensen, 2007]. In Figure 2.2 the antenna sends a beam through

the transmitter, this energy interacts with the objects and is then recorded in a

digital recorder.

The RADAR systems are capable of crossing most atmospheric gases and also

the clouds, but this ability depend on the wavelength (λ) of the system. The

bands are associated with some letters (see Tab. 2.1). The general idea is that

the larger the wavelength, the higher the penetrability of the beam.

However, there are other important characteristics of RADAR which complement

the understanding of RADAR functionality, these parameters are [Jensen, 2007;

Richards, 2009]:

• Azimuth direction, refers to the in-flight direction along the orbit or flight

path. Since RADAR is a side looking system, the objects near the line of

the trajectory of the antenna are close to the antenna, that is why it is called

near-range. On the other hand, the objects situated far from the antenna

are called the far-range. The azimuth direction is directly dependent on

the size of the antenna. A significance improvement of RADAR systems is

archived by synthesising a very long antenna electronically by combining
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many pulses along-track.

• Range direction, is the looking direction of the RADAR perpendicular to

the azimuth, thus the direction of the beam that is at a right angle to the

direction of the sensor’s trajectory. The range direction is dependent on

the incidence angle and the band width.

• Incidence angle, refers to the angle between the incident radar beam and

the direction perpendicular to the ground surface. The interaction between

microwaves and the surface depends on the incident angle of the radar pulse

on the surface.

• Polarization, when the electric pulse oscillates along the horizontal direc-

tion, the wave is H polarized. If the electric field vector oscillates perpen-

dicular to the horizontal direction, the wave is V polarized.

As the RADAR systems send their own pulses of energy (active sensors), they

are capable of night-time operation. The current RADAR systems are capable

of synthesizing a much larger antenna, using the forward linear motion of the

space platform, and are for that reason called Synthetic Aperture Radars (SAR)

[Richards, 2009].

Some of the existing SAR sensors are COSMO-SkyMed and TerraSAR-X in X-

band and RADARSAT-1/2, ERS-2 in the C-band [ITT Visual Information Solu-

tions, Nd; Union of Concerned Scientist (UCS), 2012]. ERS-2 and RADARSAT-1

provide data based on a single polarization (VV for ERS-2, and HH for RADARSAT-

1). With the sensor ASAR it is possible to acquire images in dual-polarization

mode (HH/HV, HH/VV, VV/VH). The radar incidence angle is 23◦ for ERS-2,

between 20◦ and 50◦ for RADARSAT-1, and ranges from 14◦ to 45◦ for ASAR.

The nominal swath width for ASAR and ERS-2 is greater or equal to 100 km,

with a spatial resolution of, at best, 25m (12.5m pixel size). For RADARSAT-

1, the nominal swath width is greater than or equal to 50 km, with a spatial

resolution of, at best, 10 m (6.25 m pixel size).

Today it is possible to order SAR data with multiple polarization configurations,

incidence angle, radar wavelength (X-, C- and L-bands), and at high spatial reso-
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Figure 2.2: Principles of typical RADAR system components (adapted after
Jensen [2007]).

lution (metric for TerraSAR-X and COSMO-SkyMed, ≈ 3 m for RADARSAT-2,

and 6m for PALSAR) [Liao et al., 2009]. The increasing number of SAR satellites

and the high revisit interval of new sensors (TerraSAR-X 11 days and COSMO-

SkyMed every 15 days) makes it possible to follow the vegetation changes with

high temporal frequency [Union of Concerned Scientist (UCS), 2012].

Table 2.1: Characteristics of some selected SAR sensors

Band Wavelength(cm) Platforms

P 30-100 AIRSAR
L 15-30 ALOS PALSAR, JERS-1 SAR
S 7.5-15 ALMAZ-1
C 3.8-7.5 RADARSAT-1-2, ENVISAT, ERS-1-2
X 2.5-3.8 TerraSAR-X, COSMO-SkyMed
Ku 1.7-2.5 Military domain
K 1.1-1.7 Military domain
Ka 0.8-1.1 Military domain
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2.4.1 Principles of RADAR Data Processing

2.4.1.1 RADAR Relief Displacement, Shadows and Speckle

For a focus on forests in slopes (undulating and rolling terrains), there remain

several difficulties despite the cloud penetrability of the radar images which are

summarized here, based on Jensen [2007]; Kuntz [2010]; Richards [2009]:

• Contrary to the passive sensors, where the light may be scattered into the

shadow, there is no information within the shadow areas of the radar images

that contain shadows, due to the side-looking effect of the SAR antenna. A

possible solution for this can be to use ascending and descending orbits.

• The shape of objects depends on SAR imaging geometry and also on the

imaging mode. That is the reason the same object may appear differently

(e.g. with different shadows) depending on the acquisition parameters.

• The grainy salt-and-pepper speckle phenomenon causes random construc-

tive and destructive interference. Due to this, some features appear as

bright or as dark areas. The speckle can be reduced by a process called

multiple looks.

• All the mountains that have a slope towards the looking direction will ap-

pear compressed or foreshortened relative to the opposite side of the same

mountain (back-slope). In general, the foreshortening depends on the object

height and the incidence angle. This effect will cause that higher objects

to be more foreshortened and the intensities recorded by the sensor to be

brighter at the top of the mountain and darker in the back-slope. Also, the

smaller the incidence angle is, the greater the foreshortening.

2.4.1.2 Surface Roughness and Electrical Characteristics

Vegetation canopy forms a complex, heterogeneous volume which consists of dif-

ferent sizes, shapes and orientation components [Jones and Vaughan, 2010]. The

size of vegetation or of a group of objects is related to the roughness characteris-
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tics and to the surface texture characteristics. Jensen [2007], makes a comparison

of the terminology used in the interpretation of aerial photography. For exam-

ple, the division into rough, intermediate and smooth (fine) surface texture. The

author then extended the analogy to include the concepts of micro-scale, meso-

scale and macro-scale. This categorization takes the height of the objects into

account and is dependent on the wavelength of the system. For example, at a

wavelength of 3 cm the micro-scale level is defined by a surface with a height less

than 0.17 cm (smooth) for the intermediate level the range is between 0.17 cm

and 0.96 cm. Finally, the rough level is attributed to all objects higher than 0.96

cm. The meso-scale and macro-scale function for large areas, for example a patch

of forest (meso-scale) or entire landscape that takes into account the topography

(macro-scale).

A smooth surface acts like a specular reflection, where the incident radar pulse is

reflected from the antenna in the same angle as the incidence. Thus, very little

energy is scattered back to the RADAR sensor. The opposite case is a rough

surface which reflects the incident radar pulse in all directions. Here part of the

energy is recorded by the sensor.

As different objects at different scales have different roughness characteristics,

the properties have been studied in a diverse manner. For example, Gade and

Stelzer [2000] studied the radar backscattering from wet sediments, and found

that the backscattering depends on the wet sediments’ surface roughness proper-

ties. However, surface roughness is another major limiting factor in soil moisture

retrieval for which simple correction procedures are extremely difficult to develop

[Barrett et al., 2009].

Park et al. [2010], reviewed and developed effective methods of extracting geo-

physical information of tidal wetlands in Suncheon Bay, South Korea. However,

they pointed out that relating radar derived roughness parameters to fundamen-

tal environmental processes in tidal flats has to be further investigated through

time series of polarimetric SAR data sets and detailed in-site measurements.

Different types of terrain conduct the electricity better than others. This charac-

teristic is the complex dielectric constant [Jensen, 2007]. The dielectric constant
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of the surface materials depends strongly on the moisture content of the land-

scape components [McDonald et al., 2002]. It also depends on the size, shape,

distribution of the individual object’s constituents (i.e. the leaves, reproductive

organs, branches, stems and boles) which are primary determinants of the radar

signature [Kasischke and Christensen-Jr, 1990].

To link variation in canopy conductance to soil moisture in the rooting zone of

a forest dominated by Pinus taeda, Oren et al. [1998] measured several variables

such as through-fall, volumetric soil moisture, transpiration from trees, and vapor

pressure deficit. They found that canopy leaf conductance, calculated from these

variables, was strongly related to volumetric soil moisture in the upper soil layer.

2.4.2 Texture Quantization and Image Segmentation

In many machine visions and image processing algorithms, simplifying assump-

tions are made about the uniformity of intensities in local image regions. How-

ever, images of real objects often do not exhibit regions of uniform intensities.

For example, the image of a wooden surface is not uniform but contains vari-

ations of intensities which form certain repeated patterns called visual texture.

The patterns can be the result of physical surface properties such as roughness or

oriented strands which often have a tactile quality, or they could be the result of

reflectance differences such as the colour of a surface [Tuceryan and Jain, 1988].

Texture could be defined as a structure composed of a large number of more or

less ordered similar elements or patterns without one of these drawing special

attention [van Gool et al., 1985].

A texture measure attempts to characterize the texture within an image [Wiebe,

1998] and describes an innate property of objects which contains important in-

formation about the structural arrangement of surfaces [Castro-Esau et al., 2006;

Tso and Mather, 2009].

In remote sensing the images are not compose of regions of uniform intensities

which exhibit regular patterns called visual texture [Tuceryan and Jain, 1988]. In

an image classification approach different textured regions are labelled with their
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proper category label. A further goal of texture segmentation is to separate the

regions in the image which have different textures and identify the boundaries

between them [Tuceryan and Jain, 1988].

2.5 Data Reduction and Fusion

Many authors believe that hyper-spectral images are highly redundant because of

band correlations [Mernyi, 1999]. Therefore data reduction techniques are neces-

sary. For example, multispectral remote sensing data are usually highly correlated

[Song et al., 2001], thus, Principal Component Analysis (PCA) is widely used.

For example, [Theseira et al., 2003] found that 96.9 % of the variance of the

imagery information, using the Along Track Scanning Radiometer 2 (ATSR-2)

imagery in central Finland, is explained by the first principal component. But, in

hyper-spectral remote sensing, PCA is used not only because of the redundancy

of some bands, but also because of the dimensionality of the data which makes

the process a challenge [Robila, 2005].

One important aspect of spectral imaging is that it generates a large amount

of data which may be difficult to handle, be viewed and interpreted [Scholten

et al., 2005]. The size of a spectral image cube can easily reach several tens

of megabytes and post-processing methods are needed in order to fully exploit

the information contained in the image cube. The main goal of hyper-spectral

data processing is to distinguish and identify materials or land covers, to detect

signs of degradation, to enhance the visibility of faint or obscured features from

their spectral signatures and to spatially group pixels with similar characteristics

[Klein et al., 2008].

As the hyper-spectral data are obtained in hundreds of bands for many applica-

tions, it may be inefficient and undesirable to utilize the data from all the bands

(i.e., features) due to the increased computational time in data processing [Cheng

et al., 2006].

To exploit all the potential of the different multi-sensor, multi-temporal, multi-

resolution and multi-frequency image data, the fusion of digital image data has
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become a valuable tool in remote sensing image evaluation [Pohl and van Gen-

deren, 1998]. If a monitoring system is established, the fusion techniques are also

useful in the case of a sensor’s breakdowns. For instance, the Landsat program

has been used widely since 1972 [Union of Concerned Scientist (UCS), 2012] with

a specific and expected lifetime which was longer than originally planned. How-

ever, the Landsat 7 ETM+, the Scan Line Corrector (SLC) in the instrument,

failed before its expected life time. To fix this error in the meantime, it is possible

to use of multi-temporal image combinations where the gaps of one images are

automatically filled by the next image.

Principal Components Analysis (PCA) is a statistical technique that has appli-

cations in fields such as face recognition and data reduction as well as image

compression, pattern recognition and image analysis. It is a common technique

for finding patterns in data of high dimension and to reduce the data dimen-

sionality [Izenman, 2008; Smith, 2002]. For example, Pu and Gong [2004] used

PCA as a feature extraction methods to map forest crown closure and leaf area

index (LAI ) with EO-1 Hyperion data. The use of PCA as data reduction is

more widely used with different sensor types. For instance, Khan-Ullah and Jian

[2007] used PCA to shrink the dimension of the feature vector in a classification

performance.

PCA explores the variance-covariance or correlation structure of a sample set in

vector form and it serves data (or dimensionality) reduction and interpretation

[Johnson and Wichern, 2007].

The orthogonal axes in PCA analysis, are determined by performing an eigen-

decomposition of the sample covariance matrix of the data [Liang, 2004]:

Γ =
1

N

N∑
i=1

(Ri − µR) (Ri − µR)T (2.2)

where µR is the mean vector of the pixel reflectance Ri. The covariance matrix

can be decomposed into eigenvector matrix U and eigenvalues Γ = U
∑
UT ,

where
∑

is the diagonal matrix of eigenvalues.
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The reduction is done when the first few largest eigenvalues and the corresponding

eigenvectors are selected and retained for a successful unmixing in the lower

dimension [Liang, 2004].

Spectral component substitution techniques have been developed principally to

fuse multi-spectral and panchromatic images where the panchromatic band usu-

ally has a much higher spatial resolution, as well as for RADAR and optical

imagery [Musa and Hussin, 2000; Sadidya et al., 2004]. They are based on re-

placing a spectral component of the low-resolution multi-spectral image by the

radio-metrically adjusted panchromatic image. The most frequently used spectral

component substitution techniques include hue-intensity-saturation (HIS) meth-

ods, PCA methods, and regression methods [Liang, 2004].

2.6 Cluster Analysis and Linear Discrimination

Analysis

Cluster analysis is the process of classifying objects or homogeneous natural

groups [Hoffbeck and Landgrebe, 1995] into subsets that have meaning in the

context of a particular problem [Jain and Dubes, 1988]. It is an unsupervised

learning method that categorizes objects into groups, where no assumptions are

made concerning the number of groups or the group structure, distribution of

patterns and interesting correlations in large data sets [Becker and Plumbley,

1996; Halkidi et al., 2001; Kaufman and Rousseeuw, 2005]. For the objects, there

are no specifications by which group they will be clustered. In other words the

clusters are not known in advance [Maindonald, 2004].

This is in fact a contrast to the supervised classification (such as Linear Discrim-

inant Analysis, Decision Tree, Spectral Information Divergence, Naive Bayes,

Maximum Likelihood, Parallelepiped and some others) where the user defines

the training classes prior to clustering objects and the computer identifies the

best classification rules.

There are basically two categories of clustering, hierarchical clustering and par-
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tition clustering [Commaniciu and Meer, 2002; Johnson and Wichern, 2007]. In

the first approach, the user categorizes the objects into a hierarchy similar to a

tree-like diagram called dendrogram [Halkidi et al., 2001]. Partition clustering in

contrast (such as k means clustering and expectation-maximization algorithm),

will construct non-overlapping groups [Johnson and Wichern, 2007].

In the hierarchical clustering the principal steps are [Chen et al., 2002; Halkidi

et al., 2001]:

• Preprocessing of data may be necessary prior to their utilization in cluster-

ing.

• To create a hierarchical structure that reflects the order in which groups are

merged or divided, a clustering algorithm is used which consist of two steps.

The first is the proximity measure (distance) that quantifies how similar two

data points are, for example. The second is the clustering criterion that is a

cost function, and is used to find the pair of sets {Si, Sj} from the list that

is the cheapest to merge. Once merged, Si and Sj are removed from the

list of sets and replaced with Si. . . Sj in an agglomerative method, which

builds the hierarchy by merging the objects which initially belonged to a

list of singleton sets S1, . . . , Sn.

• This process iterates until all objects are in a single group. Complete link-

age, average linkage, and single linkage methods use maximum, average,

and minimum distances between the members of two clusters, respectively.

• Validation of the results has to be verified using appropriate criteria and

techniques.

• Finally, the interpretation of the results means that the results of the clus-

tering have to be analysed in order to draw the right conclusions.

Different variants of agglomerative hierarchical clustering algorithms may use

different cost functions [Chen et al., 2002]. In summary the user specifies the rule

of clustering in terms of how the distances between clusters are computed.
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Figure 2.3: Steps of clustering process after Halkidi et al. [2001].

Referring to the validation phase, however, there are some natural questions that

are difficult to answer [Rezaee et al., 1998; Rousseeuw, 1987]:

• How good are the partitions?

• Are the dissimilarities within clusters small when compared to the dissimi-

larities between clusters?

• Which objects appear to be well-classified, which ones are misclassified?

• What is the overall structure of the data like?

• Can we estimate the number of clusters that are really present?

The validation implies the application of statistical methods and testing hypothe-

ses [Abonyi and Feil, 2007]. For example, Rousseeuw [1987] proposed the silhou-

ette approach, which tries to answer these questions. Shimodaira [2002] developed

a method for assessing the uncertainty in hierarchical cluster analysis which is

called an approximately unbiased (AU) test that uses a newly devised multiscale

bootstrap technique.
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In addition, if the number of classes within the data is not known a priori, a

validation index may help to find out the optimal number of classes [Rezaee

et al., 1998].

The Linear Discrimination Analysis (LDA) [Fisher, 1936] uses a priori knowledge

about the agreement of different groups in the data, separating the groups us-

ing linear functions which are built by estimating the central location and the

multivariate spread covariance for each group. This method can be used as an

estimator. Once the functions are estimated, new observations can be assigned

to a group [Reimann et al., 2008].

The group covariances are estimated using the covariance matrix of the data

for each group. For this reason data outliers plays an important role in the

estimations of the group centres’ covariances [Reimann et al., 2008].
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Methodology

Chapter 3 involves the processing of the hyper-spectral data as well as the

TerraSAR-X imagery. Two work-flow diagrams are presented in Figures 3.6 and

3.7, for the hyper-spectral and SAR process respectively. In addition, in Ap-

pendix A the long term time series from the Costa Rican dataset and its relation

to the climatic data information in Costa Rica is presented. Specifically, in this

appendix, the methodological steps to extract the 10-year long time series in Nor-

malized Difference Vegetation Index (NDVI) and more than 30 years of climatic

data is presented. The main idea is to identify trends and changes in vegetation

over a decade to understand the dynamics of the local and Costa Rican terrestrial

ecosystems and its links with the imagery used in this study.

3.1 Hyper-Spectral

The relationship between land use and land cover (LULC) is often used as a

fixed notion and since remote sensing data usually allows only the assessment of

the Earth’s cover [Breidenbach et al., 2009], in this study the term land cover is

henceforth used to avoid ambiguity.

In this chapter, three hyper-spectrometers with different resolution are tested in

order to explore the spatial-scale dependency of spectral reflectance in the remote
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identification of forest classification.

A codification for hyper-spectral scene was used (see Tab. 3.2). These are the

prefixes for HyMap (hy) and for Earth Observing-1 (eo1 ).

Costa Rica
Legend

Area of selection of ROIs
Coordinates: UTM zone 17N 

Datum: WGS84

Figure 3.1: Overview of the hyper-spectral scenes in the south of Costa Rica

In this study three types of hyper-spectral data were used. First, two scenes

of the EO-1 Hyperion sensor, second, the HyMap (also two scenes). Third, the

USB650 field spectrometer (Ocean Optics) which was used to measure several

sample of leaves of G.arborea trees and also another samples of palm oil, teak,

rise and plantain.

Table 3.1 list the codes used for the selections of the ROIs. Not all the scenes

have the same quantity of this ROIs. The hy 15 has three covers that are not

included. These covers are: clouds, shadows and mangrove. In the hy 14 scene

there is not grass. For the eo1 scenes it was possible to archive all the covers
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presented in the Table 3.1.

Table 3.1: Codification and number of selected regions of interest per hyper-

spectral scenes.

ROIs per scene

Region Codes hy 15 hy 14 eo1 pz eo1 kw

G.arborea X1000 10 4 8 3

palm X22 6 9 10 4

forest X33 14 6 7 8

soil X44 7 9 8 5

grass X55 12 NA 7 5

mangrove X66 4 5 5 1

clouds X77 NA 5 8 2

shadows X88 NA 5 6 2

water X99 3 5 6 4

Total 56 48 65 34

3.1.1 EO-1 Hyperion

The swath width of the Hyperion is 7.5 km where the characteristic scene size is

7.5 x 100 km, a narrow strip [Beck, 2003]. The Level 1 radiometric product has

a total of 242 bands but only 198 bands are calibrated, there are only 196 unique

channels. Calibrated channels are 8-57 for the VNIR, and 77-224 for the SWIR

and the reason for not calibrating all 242 channels is mainly due to the detectors’

low responsiveness. The bands that are not calibrated are set to zero in those

channels [Beck, 2003]. Level 1Gst (L1Gst) is radio-metrically corrected and re

sampled for geometric correction and registration to a geographic map projection

with a swath width of 7.7 km (see Tab. 3.4).

In Table 3.4, other useful characteristics of the hyper-spectral data are presented.
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Table 3.2: Codification used and acquisition dates for to the four hyper-spectral
scenes

Scene name Code used Acquisition date

hy2 20050315 s01 hy 15 2005/03/15
hy2 20050314 s01 hy 14 2005/03/14
EO1H0140532005074110PZ eo1 pz 2005/03/15
EO1H0140532006054110KW eo1 kw 2006/02/23

The final L1R data provides a total of 198 bands representing 427-2395 ηm of

continuous spectra with 10 ηm spectral resolution. The data files are organized

in Band-Interleaved-by-Line (BIL) format.

(b)(a)

Figure 3.2: Segment of colour composite of the EO-1 Hyperion images and its

ROIs(a) eo1 pz, (b) eo1 kw

Two scenes from EO-1 Hyperion images were chosen. One (eo1 pz ) was acquired

on March 15, 2005. The second one (eo1 kw) was acquired on February 23, 2006.
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Data from the Earth Science Data Interface (ESDI) at the Global Land Cover

Facility was downloaded. The projection of the EO-1 Hyperion images was UTM,

reference ellipsoid was WGS84, and zone number was 17N. The data format was

in Geo Tagged-Image File Format (GeoTIFF) radio-metrically corrected (Level

L1Gst) data, written as BIL files stored in 16-bit signed integer radiance values

[U.S. Geological Survey, 2006].

The un-calibrated image bands from the original 242 channels were removed. For

example, the bands 1-7 (356-417 ηm), bands 58-70 (936-1058 ηm), bands 71-76

(852-902 ηm) and bands 225-242 (2406-2578 ηm) are not calibrated and set to

zero in the L1R product. Thus, the final L1R data provides a total of 198 bands

representing 427-2395 ηm continuous spectra with 10 ηm spectral resolution.

The original EO-1 Hyperion scenes to level 1 radiance were processed using ENVI

[ITT Visual Information Solutions, 2012] and Equations 3.1 and 3.2. The gain,

offset, and mean band centre and mean wavelength information were provided by

the U.S. Geological Survey [2006] in order to edit the band headers. The units of

the radiance scenes are in Wm−2sr−1ηm−1 (Watts per stereo-radians per square

meter)

V NIR(L) = DN/40 (3.1)

SWIR(L) = DN/80 (3.2)

Where L are the radiance values, and DN are the digital numbers.

An atmospheric correction of the EO-1 Hyperion radiance images was performed

using the Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH )

module in ENVI. The headers of the scenes were edited again to obtain the cor-

rect wavelength, FWHM, and scale factors in accordance with the parameters of

the U.S. Geological Survey [2006]. FLAASH uses the MODerate resolution at-

mospheric TRANsmission (MODTRAN ) radiative transfer model to archive the

at-surface reflectance.

After atmospheric correction with FLAASH, the final products have units of at-
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surface reflectance, which is a ratio between the reflected spectral radiant flux

density at the surface and the direct beam spectral solar irradiance at the surface

[Jones and Vaughan, 2010].

3.1.2 HyMap

HyMap (Hyper-spectral Mapper), is series of airborne hyper-spectral sensors that

deliver up to 128 bands covering the 440 to 2500 ηm spectral region and two ther-

mal bands. The design is fundamentally modular which allows the configuration

of the spectral and spatial characteristics to suit the customer’s specific require-

ments [Cocks et al., 1998].

The HyMap imagery was acquired between March and April of 2005 in a mission

called ”Costa Rica Airborne Research Technology and Application” (CARTA-

2005). The specific acquisition dates are in Table 3.2. The images at surface

reflectance were provided by the National Aeronautics and Space Administration

(NASA). The HyMap images were converted to apparent surface reflectance using

the HyCorr atmospheric correction software (Hyvista Corp., Sydney,Australia).

This is a modified version of the Atmospheric Removal (ATREM) algorithm [Gao

et al., 1993]. The HyMap data was provided in 126 bands because two bands

(band 1 and 32 of the VIS module) were deleted during the pre-processing steps.

Both images were geo-corrected using the geo-correction data files provided by

the CARTA Mission to the UTM zone 17 north and ellipsoid WGS84 as the final

projection.
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(a)

(b)

Figure 3.3: Segment of colour composite of the HyMap images (a) hy 15, (b)

hy 14

3.1.3 Selection of the Regions of Interest

In the Quantum GIS geographical information system [Quantum GIS Develop-

ment Team, 2012] the ROIs were selected based on the very height spatial (50 cm

proximately) aerial ortho-rectified-photographies, provided by the Cadastre and

Register Regularization Program (PRCR) in Costa Rica. A revised field-based

and old G.arborea data base register of plantations was used to identify pure

G.arborea stands over the study area.

The ROIs selection is a combination of pure spectra, similar to the concept of

Endmembers, which can be measured in the laboratory as well as be extracted

from imagery [Dennison and Roberts, 2003]. For all the ROIs, a buffer of 60 m

was carefully drawn from the edge of each selected cover to the polygon centre
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of mass in order to avoid the edge mixture pixels. A special effort was made to

accurately locate these ROIs in order to be sure of the representativeness of each

pixel and avoid lateral scattering.

The VIPER Tools to extract the spectral signatures via ROIs were used. This

application is made available by the Department of Geography at University of

California Santa Barbara1. For all the spectra sets a Frost filter was applied [Frost

et al., 1982]. The Frost filter is an exponentially damped circularly symmetric

filter that uses local statistics [Frost et al., 1982; Shi and Fung, 1994]. Also, other

adaptive filters in ENVI were tested but the Frost filter emerged as the best

option to reduce the noise.

3.2 The USB650 Field Spectrometer Measure-

ments

Section 3.2 involves the measuring of the leaves with the USB650 field spectrome-

ter for later comparisons of G.arborea plantation spectra. Here the description of

the measurements of the leaf radiative properties of G.arborea leaves is presented.

This approach is known as directional-hemispherical values for transmittance (τλ)

or reflectance (ρλ) [Jones and Vaughan, 2010].

The Red Tide USB650 fibre optic spectrometer from Ocean Optics [Ocean Optics,

2006] was used. The USB650 was interfaced with the PASCO Xplorer GLX

data-logger [PASCO, Nd]. A contact prove designed by CICANUM, from the

University of Costa Rica was used. In order to take the samples from fresh leaves

it uses a fibre optic led illumination source and a leaf clip assembly with a black

panel face. The responsiveness of the USB650 is from 350 to 1000 ηm (VNIR

portion of the spectra) and it utilizes a Sony ILX511 linear silicon CCD array

detector. The sensor has a sensitivity of up to 75 photons/count at 400 ηm of

wavelength and an optical resolution of 2.0 of Full Width at Half Maximum

(FWHM) of an instrument’s response to a signal [Ocean Optics, 2006].

1http://www.vipertools.org
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The light enters the USB650 and passes through the different components of

the spectrometer, like SMA Connector, Slit, Filter, Collimating Mirror, Grating,

Focusing Mirror. Then the detector VNIR collects the light received from the

Focusing Mirror or L4 detector Collection Lens and converts the optical signal

into a digital signal. Each pixel on the detector responds to the wavelength of

light that strikes it, creating a digital response. The spectrometer then transmits

the digital signal to the Pasco data-logger [Ocean Optics, 2006] (see Fig. 3.5).

A reference and dark measurements to correct for instrument response variables

were stored.

All G.arborea plantations in the south of Costa Rica were searched in order

to measure the spectra. In the preparation survey, all information about area,

location, accessibility, permissions, age and other conditions was extracted. The

area was acquired from RapidEye images from 2009-2010, but secondary sources

such as the owners were also consulted.

A basic inventory with a systematic sampling design for these plantations was

performed. On circular plots of 12.64 m radius, each tree bigger than 5 cm

diameter at breast height (DBH) (1.30 m); and the height (total and commercial)

of three closest trees to the centre of the plot were measured. The main reason

of using systematic sampling over other sampling was its simplicity, and the

assurance that the entire G.arborea plantations were evenly sampled.

In order to take the destructive samples of leaves in trees of G.arborea, the per-

mission for three different G.arborea plantations from edges of 6, 8 and 18 years

was obtained. This was done in order to select three trees for each group of ages.
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Figure 3.4: Crown sampling scheme in a tree.

With the basic inventory data, an analysis of diameter frequency distribution

was made. Then all trees were divided in tree diameter classes. A sample of

9 cut trees was selected. For each tree the crown was divided in three sections

(see Figure 3.4). In each crown section one branch was selected randomly and in

each branch three leaves were also randomly selected. In situ, at each selected

leaf four spectral signatures were taken with the fibre optic field spectrometer

USB650 [Ocean Optics, 2006]. This handle system was adapted by Research

Centre on Nuclear and Molecular Sciences (CICANUM) from the University of

Costa Rica. In total 81 leaves and 281 spectra were measured. A brief description

of the system is presented below.
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Figure 3.5: USB650 Field Spectrometer.

A codification for the sampled leaves was defined. For example, the code X103311055

was divided into five parts (see Tab. 3.3). The first one was assigned to the cover,

in this case it was X10 for G.arborea. The second level was for the plantation

age which has three levels 6, 8 and 18 years with their respective 11, 22, and 33

codes. In our example the code was a 33 which means that this sample has an age

of 18 years. The third level was for the tree identification within the plantation.

In this case it was number 1, meaning that this sample corresponded to the tree

number one of the particular plantation of G.arborea. The fourth level was for

the crown strata which have three crown levels (see Fig. 3.4). Again number 1

appeared, meaning that this leaf was taken from the low crown stratum in this

tree. Finally, the fifth level was assigned to the leaf within the samples of the

specific plantation. This three digit number is just a counting number which

facilitated the work in the data frame format.

As shown in Table 3.3, all the covers except the G.arborea have only the first and

the fifth level. That is because a sample design for taking the spectra of these

covers was not performed. For these covers the important number is the first one

because it permits to detect whether there are some spectral confusions with the

G.arborea.
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In the same field survey, samples of several leaves of teak, mangrove, rice, palm

oil, and plantain were taken (see Tab. 3.3). To do so a block or a plantation of

these land covers was selected. Then azimuth and a distance (within the block

or in the plantation) from the access point were randomly selected. Once in this

point, the samples were chosen. There were special difficulties with the palm oil,

mangrove and teak trees, because of their height. Thus, only the lower part of

these trees was sampled.

Table 3.3: Codification of selected covers for the USB650 hyper-spectral field
spectrometer.

Cover Cover
code

Plantation
age
(years)

Age
code

Tree/code Crown
strata

Crown
level
code

Leaf
code

G.arborea X10
6 11 1 low 1 001
8 22 2 medium 2
18 33 3 upper 3

Teak X20 001
Mangrove X30 002
Grass X40 003
Rice X50 004
Palm X60 005
Platain X70 006

With the interpretation key presented in Table 3.3 it is possible to read the results

presented in the Appendix C.5 as well as in Figure 4.19.

These spectral signatures were averaged by leaf and filtered with the ”A Robust

Adaptive On-line Filter for Multivariate Time Series” (madore filter) in the R

robfilter package [Fried et al., 2011].

The final data frame used is composed of 100 spectra of G.arborea and 22 spectra

of other covers. To obtain this reduced number of spectra for the G.arborea, the

mean spectra per leaf was calculated. For the remaining 22 spectra the mean value

was also calculated but this value is for the site where the sample was taken. For

example, with teak (code X20), there were five spectra, this means that several

samples from five different teak plantations were taken and the average for each
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place was calculated. For plantain (code X70) there is just one mean spectra

value, because only one plantain plantation in the study site was found in the

field campaign.

Table 3.4 shows some characteristics of the hypes-spectral sensors used. In addi-

tion, the RapidEye characteristics are also presented.

Table 3.4: Characteristics of Optical Sensors (adapted from Beck [2003]; Cocks
et al. [1998]; Jung-Rothenhusler et al. [2007]).

Platform

Parameters RapidEye EO-1 Hyperion Hymap USB 650

Spectral range (ηm) 440-850 400-2500 450-2500 350-1000
Spatial resolution (m) 5 30 2-10 -
Swath width (km) 77 7.7 6-9 -
Spectral resolution
(ηm)

±74 10 17 ?

Temporal resolution
(days)

1 200 independent independent

Spectral coverage discrete continuous continuous continuous
Number of bands 5 242 100-200 NA
System space borne space borne air borne handled

3.3 Statistical Analysis of Hyper-spectral Data

This section involves the processing of the spectra of two sets of hyper-spectral

datasets and the later analyses by Hierachical Cluster Analysis (HCA). Using the

same distance algorithm and linkage method, two different approaches of HCA

were applied to the dataset to identify the spectral confusions in the spectra.
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Figure 3.6: A schematic diagram of the general approach to perform the hierar-

chical cluster analysis and the similarity discrimination.

3.3.1 Principal Component Analysis of Hyper-spectral Data

Principal Component Analysis (PCA) was performed only for spectra of the four

scenes (hy 15, hy 14, eo1 pz and eo1 kw) as the data reduction technique in order

to select the highest variability of the spectra of the different ROIs.

All the filtered spectra were imported as data frames into R [R Development Core

Team, 2011], and then into the hyperSpec package [Beleites, 2009]. After running

the PCA algorithm for every group of ROIs, the scree-plots were plotted and the

variability information of each result was printed. Following the suggestion of

Izenman [2008] only the first principal components containing 99 percent of the

variability were chose. The scree-plots graphed the component number against

the explained variance of each group of spectra [Cattell, 1966]. A test of data

normality was not applied because it was not essential [Reimann et al., 2008].

After running the PCA algorithm for every group of ROIs, the scree-plot was

plotted and the variability information of each result was printed.
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In addition to the scree plots, the prcomp function from the stats package was

applied [Becker et al., 1988] as a method to analyse information contained in

each PCs. The result is a list containing the coefficients of each component

(sometimes referred to as loadings), the principal component scores, etc. The cut

point was chosen when more than 98 % of the variability was explained by the

first components.

3.3.2 Hierarchical Cluster Analysis

Hierarchical Cluster Analysis HCA is an unsupervised classification algorithm

which generates a cluster of trees to partition a data set into subsets or clusters,

where each cluster is based on a first, pairwise distance between all objects, and

on a linkage or similarity algorithm [Duin et al., 1997; Torrecilla et al., ress].

In the R statistical software [R Development Core Team, 2011], HCA was per-

formed to all derived spectra. That includes the spectra derived from PCs in

the case of the hyper-spectral scenes and the averaged spectra derived from the

USB650 field spectrometer.

The spectra data were modelled as a matrix. The matrix is of size n × m, where

n = is the wavelengths at different intervals and m = is the number of pixels

that give a spectral signature. The rows, i = 1,. . . , n, are the spectral signatures

which, for example, come from each original pixel on the hyper-spectral cube.

In R statistical software [R Development Core Team, 2011], this refers to the

element in row i and column j of matrix X.

As the first clustering approach, agglomerative nesting clustering with agnes func-

tion included in the cluster package [Maechler, 2012] of the R statistical environ-

ment was performed [R Development Core Team, 2011]. The average was used

as clustering method. After several tests with different distance methods, the

manhattan distance, which is the sum of absolute differences, was used [Izenman,
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2008]:

d(xi, xj) =
i∑

k=1

|xik − xjk| (3.3)

The average method was used as a clustering algorithm. It linked the distance

between two clusters, finding the average dissimilarity of each item in the first

cluster to each item in the second cluster by computing [Izenman, 2008]:

dIJ,K =
∑
i∈IJ

∑
k∈K

dik
(NIJ NK)

(3.4)

where NIJ and NK are the numbers of items in clusters IJ and K, respectively.

Because of the availability of different clustering algorithms, the majority of used

clustering methods was tested. Specifically the ward, single, complete, average,

mcquitty and manhattan methods were computed. As the selection of the distance

is the determining factor in the all clustering process, several distance methods

specifically the euclidean, maximum, manhattan and minkowski were tested. The

package clue was used [Hornik, 2012] in R to compute the dissimilarity between

(ensembles) of hierarchies produced for every method.

To determinate (as an indicator) the number of cluster of each image spectra in

R [R Development Core Team, 2011], the silhouette graphs were calculated. A

silhouette graph is a graphical display technique where each cluster is represented

based on the comparison of its tightness and separation [Rousseeuw, 1987].

To perform a second validation of the intrinsic groups, the Cophenetic Index

[Rohlf, 1982; Sokal and Rohlf, 1962] and the Agglomerative Coefficient were used

[Kaufman and Rousseeuw, 2005].

The Cophenetic Index (rC) is a measure of how precisely two dendrograms pre-

serve the pairwise distances between data objects [Rohlf, 1982; Sokal and Rohlf,

1962]. This index is computed from the cophenetic matrix (C) associated with

each dendrogram. The elements of a cophenetic matrix (ci,j) encode the distance

between two objects (i, j), representing in the dendrogram the height of the link
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at which those two objects are first joined. This height is the distance between

the two clusters that are merged by this link. The Cophenetic Index rC represents

the correlation between two cophenetic matrices (C1 and C2)[Torrecilla et al.,

ress].

rC =

∑
i

∑
j

(
C1ij − C̄1

)(
C2ij − C̄2

)
√√√√(∑

i

∑
j

(
C1ij − C̄1

)2
)(∑

i

∑
i

(
C2ij − C̄2

)2
) (3.5)

The Agglomerative Coefficient measures the clustering structure of the dataset

[Kaufman and Rousseeuw, 2005]. For each observation i, m(i) denotes its dissim-

ilarity to the first cluster it is merged with, and is divided by the dissimilarity of

the merger in the final step of the algorithm. The agglomerative coefficient is the

average of all 1-m(i). It can also be seen as the average width (or the percentage

filled) of the banner plot [Maechler, 2012].

These two agreement indices take values between 0 and 1. They indicate how

closely two partitions of the same data set match each other. The closer to 1 the

value, the more similarity between the two partitions, where 1 means a perfect

match.

The standard R [R Development Core Team, 2011] functions to estimate the

Cophenetic index, and the package cluster [Maechler, 2012] to access the Ag-

glomerative Coefficient were used.

Based on the analysis presented in Reynolds et al. [2006], it is the right solution

when the average silhouette width is the highest and when this value is closest

to the real number of groups that are obtained for each scene.

The Silhouettes are constructed by [Rousseeuw, 1987]:

Let A be a specific cluster which contains i objects, then calculate The silhouettes
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are defined as follows:

s(i) =
b(i)− a(i)

max{a(i), b(i)}
(3.6)

where:

a(i) = average dissimilarity of i to all other objects of cluster A

b(i) = minimum d(i, C) where there are more than tow clusters, and d(i, C) is

the average dissimilarity of i to all objects of a specific cluster.

The interpretation key in Table 3.5 was used as an interpretation key due to the

silhouettes values [UNESCO, 2008]:

Table 3.5: Interpretation key for the silhouettes values (after [UNESCO, 2008]).

Values of s(i) Interpretation

1 within dissimilarity a(i) is much smaller than the smallest between
dissimilarity. In other words, object i has been assigned to an ap-
propriate cluster. The second best cluster B is not nearly as close
as the actual cluster A.

0 a(i) and b(i) are approximately equal. Hence, it is not clear whether i
should be assigned to A or B. It can be considered as an intermediate
case.

-1 Object i is badly classified. When s is close to negative one, the
object is poorly classified. Its dissimilarity with other objects in
its cluster is much greater than its dissimilarity with objects in the
nearest cluster. Why it is not it in the neighboring cluster?

Pam [Maechler, 2012] was run several times with different values of k and then

the optimal number of clusters based on highest average silhouette width SC was

decided. The interpretation key as follows [UNESCO, 2008]:

SC = max s̄ (k) (3.7)
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The maximum SC is a dimensionless measure which is taken over all k and this

value summarizes how appropriate each object’s cluster is. The silhouette of a

cluster is a plot of the s(i) ranked in decreasing order of all the objects i. The

plot is a horizontal line whose length is proportional to s(i). The silhouette shows

which objects lie well within the cluster and which ones are merely somewhere

in between clusters. A wide silhouette indicates large s(i) values and hence a

pronounced cluster [UNESCO, 2008].

Kaufman and Rousseeuw [2005] suggest that SC can be used for the selection of

the best value of k, by choosing that k for which SC is maximal.

Table 3.6: Interpretation key for the average silhouette width.

Range of s(i). Interpretation

0.71-1.0 A strong structure has been found
0.51-0.70 A reasonable structure has been found
0.26-0.50 The structure is weak and could be artificial
< 0.25 No substantial structure has been found

As a second HCA and also as an evaluation technique R was used [R Develop-

ment Core Team, 2011]. The package pvclust [Suzuki and Shimodaira, 2011],

with the manhattan (see Eq.3.3) distance as the rule of clustering and an average

(see Eq.3.4) linkage as an agglomerative method was used with 10000 bootstrap

replications. With this method the Approximately Unbiased (AU) p-values was

calculated. The probability p of 0.95 if the one cluster does not exist [Shimodaira,

2002] was taken. The null hypothesis was that the samples of the different spec-

tra arrangements are merely due by chance, which means that the cluster does

not exist at a defined significance level. In other words, the groups that are

statistically significant cannot be reasonably divided into smaller clusters.

This method evaluates the accuracy of the clusters, where the accuracy means

the certainty of the existence of a cluster. For example, if its p-value is less than

α, the cluster is rejected at the α level of significance [Suzuki and Shimodaira,

2004].

The hypothesis Hi (the cluster does not exist) was rejected when Pi < α for a
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level of significance of 0 < α < 1, of 0.05.

The p-value calculated by multi-scale bootstrap re-sampling is an approximation,

however, it is less biased than bootstrap probability, which is also an approxi-

mation of p-value calculated by bootstrap re-sampling [Suzuki and Shimodaira,

2004].

3.4 TerraSAR-X Image Processing

Section 3.4 involves the processing of the TerraSAR-X imagery from the pre-

processing to the accuracy assessment of the unsupervised classification. Fig-

ure 3.7, presents a schematic view of the TerraSAR-X process.

Figure 3.7: TerraSAR-X work-flow in south of Costa Rica.
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3.4.1 The TerraSAR-X Imagery Description

All images acquired are in Single Look Slant Range Complex (SSC) mode. See

Table 3.8. The main focus of SSC is the radar signal and the pixels are spaced

equidistantly in azimuth and in slant range. The product contains all intensity

information and phase information so that any other product can be generated

at a later time [Roth et al., 2004].

In Strip Map Mode, the ground swath is illuminated with a continuous sequence

of pulses while the antenna beam is fixed in elevation and azimuth. This results

in an image strip with continuous image quality in azimuth [Roth et al., 2007].

Horizontal-Horizontal (HH ), and Vertical-Vertical (VV ) sets of polarization im-

ages were used as it is shown in Figure 3.8 and in Table 3.8 in both ascending

and descending look directions.

Besides the polarization the differences are in incidence angles between two of the

sets of VV images. These differences have a impact on the backscatter values.

As it is shown in Table 2.1, the TerraSAR-X is operated at X-band at 9.65 GHz

or 3.1 cm with 15 revolutions around the world per day, 11 days revisit and an

altitude at the Equator of 514.8 km. The TerraSAR-X mission was launched in

2007 [Scheuchl et al., 2009]. The X-Band mainly describes the surface of the

objects because the radar beam is backscattered very close to the surface instead

of penetrating the vegetation as the L-Band beams do. As Jensen [2007] pointed

out, the general rule of thumb is that the microwave energy that could penetrate

into a dry surface is equal to the wavelength of the RADAR system.

There are three different modes and polarizations (single and dual) where TerraSAR-

X operates, which are: the ScanSAR, Stripmap and Spotlight, each of varying

geometric resolution from 1 to 18 m. Quad polarization and along-track interfer-

ometry are possible on an experimental basis[DLR, 2007; Kuntz, 2010; Scheuchl

et al., 2009].

The basic image products for the TerraSAR-X mission are [Faller and Weber,

2007]:
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Table 3.7: Characteristics of TerraSAR-X mission products

Basic Image Scene Size (km) Polarization Resolution Pricea

High Resolu-
tion SpotLigth
(HS)

10 x 5 Single VV or
HH

up to 1 m 6750

SpotLigth
(SL)

10 x 10 Dual HH and
VV

up to 2 m 6750

StriMap (SM) 30 x 50 All b up to 3 m 3750
ScanSAR (SC) 100 x 150 Single VV or

HH
up to 18 m 2750

aStandard Scene in AC
bSingle VV or HH; Dual HH, VV and HV or VH

• Single Look Slant Range Complex (SSC) with amplitude and phase infor-

mation in slant range geometry

• Multilook Ground Range Detected (MGD) corrected to WGS84 with an

average terrain height for slant range to ground range projection

• Geocoded Ellipsoid Corrected (GEC) corrected to WGS84 with an average

terrain height

• Enhanced Ellipsoid Corrected (EEC) corrected to WGS84 with a digital

elevation model (DEM) .

3.4.2 TerraSAR-X Data Pre-processing

3.4.2.1 Radiometric Correction

In order to make the different measurement comparable, the images were cal-

ibrated. This process also facilitates the co-registration process and PCA fu-

sion analysis. In NEST [ARRAY-ESA, 2011], for TerraSAR-X imagery, the co-

registration operator performs absolute radiometric calibration by applying the

simplified approach where the Noise Equivalent Beta Naught is neglected. Only

calibration constant correction and an incidence angle correction are applied. For
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Table 3.8: Acquisition parameters for Stripmap TerraSAR-X imagery.

Producta Incidence
angle b

Polari-
zation

Pass
direc-
tionc

Date GRRd ARe Track/Orbit

SSC 40.99 HH asc 2010/05/03 2.689 3.30 112/15977
SSC 40.89 HH asc 2010/05/13 2.694 3.30 105/16137
SSC 39.20 HH des 2010/04/10 2.791 3.30 112/15643
SSC 23.70 VV des 2010/05/13 2.912 3.30 112/16144
SSC 40.98 VV asc 2010/05/23 2.689 3.30 105/16304
SSC 23.70 VV des 2010/05/24 2.912 3.30 112/16311
SSC 40.98 VV asc 2010/06/03 2.689 3.30 105/16471

a(SSC) Single Look Slant Range Complex.
bAt scene centre coordinate.
c(asc) ascending (des) descending
d(GRR) Ground Range Resolution
e(AR)Azimuth Resolution

Legend

VV polarization Descending

VV polarization Ascending HH polarization Ascending

HH polarization Descendiong

Studysite Costa Rica

(a) (b)

Figure 3.8: TerraSAR-X polarization modes in south of Costa Rica.
(a) VV polarization and (b) HH polarization
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the TerraSAR-X products calibration algorithm, the NEST algorithm is based in

Infoterra [2008].

After the calibration process a set of images is generated in Sigma Naught (σ0,

radar scattering coefficient in units of m2m−2), Beta (β0) and Gamma (γ0) values

as shown below. The values of radar brightness β0 are computed by:

β0
dB = 10 ∗ log10(ks ∗ |DN|2) (3.8)

Where DN is the digital number in the imagery, ks is the calibration factor

provided by TerraSAR-X products.

The σ0 values (radar reflectivity) per unit area in the ground range are derived

from β0, but this time the incidence angle plays an important role in the equation,

as follows:

σ0
dB = β0

dB + 10 ∗ log10(sinθloc) (3.9)

Where the θloc is the local incidence angle between the radar beam and the normal

to the illuminated area, and dB are decibels.

3.4.2.2 Speckle Reduction

The speckle is a grainy, salt-and pepper pattern in radar images [Jensen, 2007].

Speckles are caused by random constructive and destructive interference of the

de-phased but coherent return waves scattered by the elementary scatters within

each resolution cell. Speckle noise reduction can be applied either by spatial

filtering or multi-look processing. The reduction of this inherent speckled ap-

pearance is generally known as multi-look processing [ARRAY-ESA, 2011]. In

the terminology of RADAR image processing these simultaneous (or sub-) im-

ages are called looks [Richards, 2009]. The number of looks is a function of the

pixel spacing in the azimuth direction, pixel spacing in the slang range, and the

incidence angle.
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In order to enhance radio-metrically the set of images the number of looks was

increased. However, this process reduced the geometric resolution, compared

with the spatially enhanced product, for example. For that reason, the speckle of

the radio-metrically enhanced image is reduced, resulting in a better radiometric

resolution.

In NEST [ARRAY-ESA, 2011] the multi-look images were produced by a frequency-

domain method using the sub-spectral band width. This means that the multi-

looking process is produced by space-domain averaging of a single look image,

either with or without specific 2D kernels by convolution [ARRAY-ESA, 2011].

The number of range looks and the number of azimuth looks for every image that

was used is shown in Table 3.9. This option was computed based on the ground

range spacing and the azimuth spacing. The window size is then determined by

the number of range looks and the number of azimuth looks. As a result, an

image with approximately square pixel spacing on the ground is produced.

After the multi-look process, in NEST [ARRAY-ESA, 2011], a Frost filter was

applied [Frost et al., 1982] in order to further reduce the speckle. The filter size

in X and Y was 4 × 4, with a Damping Factor of 2.

Table 3.9: Multilook parameters of the TerraSAR-X imagery.

Product. Looks-[Azimuth-Range] Ground Range Resolution (meters)

HH-2010/04/10 4:4 8.76
HH-2010/05/01 4:4 7.94
HH-2010/05/12 4:4 8.17
VV-2010/05/03 4:4 7.94
VV-2010/05/13 4:6 9.31
VV-2010/05/23 4:6 9.31
VV-2010/06/03 4:4 7.94

3.4.2.3 Terrain Correction

An interpolated Digital Elevation Model (DEM ) at 5m spatial resolution from

the digitalized iso-lines available in the topography maps of Changuena [National
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Geographic Instutute of Costa Rica, 1980] and Rincón was used [National Geo-

graphic Instutute of Costa Rica, 1979].

The main steps in the terrain correction algorithm, after ARRAY-ESA [Nd] are:

• SAR simulation: Generate simulated SAR image using DEM, the geo-

coding and orbit state vectors from the original SAR image, and mathe-

matical modelling of SAR imaging geometry. The simulated SAR image

will have the same dimension and resolution as the original image.

• Co-registration: The simulated SAR image (master) and the original SAR

image (slave) are co-registered and a WARP1 function is produced. The

WARP function maps each pixel in the simulated SAR image to its corre-

sponding position in the original SAR image.

• Terrain correction: Traverse DEM grid that covers the imaging area. For

each cell in the DEM grid, compute its corresponding pixel position in the

simulated SAR image is computing using SAR model. Then its correspond-

ing pixel position in the original SAR image can be found with the help of

the WARP function. Finally, the pixel value for the ortho-rectified image

can be obtained from the original SAR image using interpolation.

A 1000 Ground Control Point (GCP) was used in the final co-registration. The

interpolation methods used was the cubic convolution.

The final product is a projected and re-sampled Universal Transversal Mercator

UTM, zone 17 north using the WGS84 reference ellipsoid. The final pixel spacing

is equidistant in northing and easting. Terrain induced distortions are corrected

and the pixel location of these products is very accurate.

The DEM from the Shuttle Radar Topography Mission (SRTM ) was also tested

visually [USGS- U.S. Geological Survey, 2006] with 30 m spatial resolution sup-

plemented with elevation data of similar quality from other sources, but the best

results were from the interpolated topo-maps DEM.

1The WARP function is a type of geometric transformation, that is concerned with the
registering of an image to a common coordinate system or one data model.
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3.4.2.4 Selection of TerraSAR-X Processed Bands

To perform the PCA to the TerraSAR-X imagery as a fusion technique, first a

layer stacking for each polarization mode was made. This new multi-band file

came from the exported and processed TerrSAR-X images from previous steps.

For discriminating the soil and vegetation properties of the scattering surfaces,

the polarimetric discrimination ratio (PDR) was used [Singh, 2006]:

PDR =
σV V − σHH
σV V + σHH

(3.10)

A mean band of HH processed bands was calculated but the average of the VV

images was not calculated because it was considered that in this case the VV

images did not increase the information for the performed analysis. However, the

VV images were used to calculate the PCs and to calculate one average of this

information (see Tab. 4.9).

3.4.3 Image Classification of TerraSAR-X Processed Bands

and the RapidEye imagery description

RapidEye is commercial constellation of 5 sensors that deliver 5 spectral bands

(blue, green, red, red-edge, NIR) covering the range of 440 to 850 ηm of the

spectrum. The design system allows regular monitoring of large areas because

of the 77 km swath width. There is daily access to any location on the globe

and processing of the image data into information products is done within 24hrs

[Jung-Rothenhusler et al., 2007]. Other characteristics are presented in Table 3.4.

The RapidEye imagery was acquired between December 2009 and January of

2010 in GeoTIFF product format in UTM zone 17N and WGS84 ellipsoid. A

mosaic of the RapidEye imagery is presented in Figure 1.3.

The exploratory image classification is divided into two parts. The first consists of

the TerraSAR-X bands used (see.Tab. 4.9) plus the PDR index to perform image

segmentation for which the ortho-rectified derived bands were exported to 8-bit
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format, following the suggestion of Clausi [2002], who showed that increasing

grey levels do not necessarily increase the separability, but also serve as data

reduction to reduce the computational effort. Then, the images were exported

into GeoTIFF format using the Orfeo Toolbox (OTB) [OTB Development Team,

2012].

The purpose of the SAR image segmentation is to partition an image into regions

of different characteristics, in other words, the purpose is to assign a specific class

label for each pixel [Zhang et al., 2008].

Descriptive features based on the Gray Level Co-occurrence Matrix (GLCM )

[Haralick et al., 1973] defined in the software were extracted. The filters computed

include; mean, variance, homogeneity, contrast, dissimilarity, entropy, second

moment, and correlation. The GLCM method is a way of extracting second

order statistical texture features [Albregtsen, 2008]. It is beyond the scope of this

thesis to explain each parameter.

After the image segmentation, a subset of input variables was selected by elimi-

nating features with little or no additional information. The idea is to improve

the comprehensibility of the resulting classifier models [Kim et al., 2002].

An isodata unsupervised classification was used as an exploratory analysis of the

results from the previous steps in order to perform a forest/non-forest classifica-

tion, but also to detect the distribution of the different classes in the whole study

area. The isodata is an ENVI [ITT Visual Information Solutions, 2012] module

that calculates the class means evenly distributed in the data space, then itera-

tively clusters the remaining pixels using minimum distance techniques. All the

bands used in the segmentation phase are described in Table 4.9. The segmented

image was classified in eight classes, as described in section 1.3.3.

After the isodata process, 20 classes were again classified into 9 classes which were

the basis for the forest/non-forest classification. The reference data (truth) was

acquired using actual RapidEye imagery as well as aerial photographs and the

ecosystem descriptions after Kappelle et al. [2002]. For the construction of the

error matrix for the classes forest/non-forest a total of 143 sample points was used.

The systematic sample design is shown in Figure 1.3. The systematic sampling
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design was chosen because it ensures good distribution of samples across the study

area landscape and because no other pattern correlated with the landscape was

found.

The error matrix is a square array of numbers set out in rows and columns that

expresses the number of sample units assigned to a particular category (i.e forest)

in one classification relative to the number of sample units assigned to a particular

category in another classification [Congalton and Green, 2009].

3.4.4 Analysis of the Land Cover Distributions

Table 3.10 list the codes and a short description of the land covers as ROIs that

were selected in a subsection of the TerraSAR-X study area. Then a total of 11

ROIs was allocated in order to describe the distribution of the pixels contained

in these ROIs in the different selected bands.

A more detailed description of these land covers is available in section 1.3.3.

Table 3.10: Selected regions of interest for the density distribution analysis of the
TerraSAR-X process.

Code Description

soil Bare soils
palm young Palm oil (young plantations)
forest gently undulating Forest in gently undulating and undulating slopes
pastures Pastures principally for cattle
palm old Palm oil (old plantations, more than 7 years)
infrastructure Infrastructure (man-made constructions)
herbland Herblands (natural graminoids)
mangrove Mangroves
water Natural and artificial water bodies
forest flat raffia Forest in flat terrains dominated by raffia
forest rolling Forest in rolling slopes

In order to avoid mixed pixels only the central part of the image object was

mapped by extracting the ROIs.
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RapidEye actual imagery was used as additional source of actual information, this

was however done only when one class could not be assigned from the TerraSAR-

X-1 processed bands alone.

A linear discriminant analysis (LDA) was done on the data of the TerraSAR-X

processed images (see Tab. 4.9) to evaluate the dissimilarities of selected ROIs

(see Tab. 3.10) of the study area, and also to evaluate how within each group co-

variances of the ROIs are homogeneous. With the evaluation of the estimation of

the group covariances matrix, the possible problems of the processed TerraSAR-X

bands can be explained.

The histograms were plotted since they are a useful tool for displaying distri-

butions as well as indicating the shape of the underlying density function. The

density function was calculated as smooth curves in order to discuss and describe

the distributions of the selected covers ROIs). The R [R Development Core Team,

2011] statistical software and the package ggplot2 was used [Wickham, 2009]. The

plots are presented in Appendix D and are divided into two main groups. First,

all band per land cover, and then, each land cover per band.

Usually in remote sensing, when a sample is taken from an image, even for ex-

ploratory analysis or for an accuracy assessment, the polygons or ROIs have

different sizes. In this case, the comparison of the distribution with the density

kernel function instead of the histograms is recommended [Wickham, 2009].
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Chapter 4

Results

This Chapter the results in of the hyper-spectral data as well as the TerraSAR-

X imagery are presented. The hyper-spectral part contains the scene and the

USB650 spectra.

4.1 Hyper-Spectral Analysis from the Four Scenes

In Section 4.1 the results for the four scenes, two from the space-borne EO-1

Hyperion and two for the airborne HyMap data, are described. These results are

divided in three sections. First, the general remarks of the four scenes spectra,

the exploratory review of the number of clusters and the evaluation parameters of

each scene clustering solution. The second part is the description of the clustering

process per scene which includes the two HCA approaches. The third section is

a specific cluster error evaluation.

4.1.1 The Scene’s Spectra

In this section only the standard deviation of the PCs of G.arborea in Figures

4.1 to 4.4 is presented because the graphical representation becomes illegible if

all the standard deviations are shown in one graph.
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For the vegetative spectra in the Figures 4.1 to 4.4, the typical patterns are shown.

In the NIR the pigments do not absorb the electromagnetic radiation strongly.

In this region, the SD rises for all the scene spectra, and there is strong water

influence as chemical contributor to the reflectance patterns.

In these figures the water absorption bands are in the range of ≈1300 to 1500 ηm

and 1800 to 2100 ηm. In this range I eliminated all the reflectance values for all

the scenes, for that reason there is a straight line between these spectra ranges.

In Figures 4.1, 4.2 and 4.4, it is observed that G.arborea and palm oil PCs spectra

from the hy 15, hy 14 and eo1 kw are similar in shape and magnitude. This

prospect of fair discrimination is particular clear in the NIR region. For the

eo1 pz spectra the shapes and magnitudes are similar for G.arborea, palm oil and

forest.

R

Legend
G.melina

Figure 4.1: Selected spectral signatures in the hy 15 scene.a

aThe shaded area is the mean ± standard deviation

As shown in Figure 4.1, in the PCs spectra for the hy 15 scene, the shaded area

is overlapping with the line of the palm oil in the region of 950 and 1050 ηm.
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Also in this region the thickness of the line is the greatest.

R

Legend
G.arborea

Figure 4.2: Selected spectral signatures in the hy 14 scene.a

aThe shaded area is the mean ± standard deviation

Table 4.1 lists the cophenetic index as well as the agglomerative coefficient. Both

numbers can be used as some kind of measure of how well a particular dendrogram

fits.

In Figure 4.6 the average silhouette width by number of clusters is shown. This

relationship shows the usefulness of the graphic silhouette. For example, scenes

hy 14 and eo1 pz show high values of the average silhouette width, however, this

is not the best solution in terms of number of clusters. In general, all the scenes

tend to have low values as the number of clusters increases.

The highest average value recorded image is eo1 kw with 0.86 for the solution

of 5 clusters, however, the number of clusters in the scene eo1 pz has one of the

lowest values with 0.59.
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R
Legend

G.melina

Figure 4.3: Selected spectral signatures in the eo1 pz scene.a

aThe shaded area is the mean ± standard deviation

R

Legend

G.arborea

Figure 4.4: Selected spectral signatures in the eo1 kw scene.a

aThe shaded area is the mean ± standard deviation
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(c)

(a) (b)

(d)

Figure 4.5: Silhouette graphs for the PCs spectral signatures of the scenes anal-
ysed.
(a) hy 15, (b) hy 14, (c) eo1 pz and (d) eo1 kw

Legend

Figure 4.6: Average silhouette width for different number of clusters solutions for

the space-borne and air-borne scenes
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Table 4.1: Hierarchical clustering parameters for the four remote base sensor
spectral signatures

Scene Cophenetic index Agglomerative coefficient Average silhouette

hy 15 0.89 0.95 0.78
hy 14 0.87 0.98 0.83
eo1 pz 0.93 0.99 0.77
eo1 kw 0.92 0.99 0.83

Figures 4.7,4.9,4.11 and 4.13 show the first approach of the hierarchical cluster

analysis performed for the input data consisting of the PCs of 4 hyper-spectral

scenes. The optimal number of clusters (k) is presented in the silhouette graphs.

In all the dendrogram graphs, the horizontal line represents the height where the

solution k gives the best average silhouette width value.

The average of the silhouette is the SC of the Equation 3.7.

The second part of the clustering process (see Fig.3.6) for the PCs spectral

signature scenes is presented in Figures 4.8,4.10,4.12 and 4.14. The values at the

branches are p-values in percentage and the coloured boxes are some selected

clusters that have a p-value higher than the α level of significance or in other

words k clusters with AU > 95%.

4.1.2 The hy 15 scene

In this section the tow HCA approaches are presented for the hy 15 scene.

The best average silhouette width for the PCs spectra in the hy 15 scene is 0.78,

this value is possible with k=5. This differs according to the number of ROIs that

was originally selected. The agglomerative coefficient and cophenetic index are

0.95 and 0.89 respectively (see Table 4.1). Higher values indicate that a strong

structure has been found between the different land covers analyzed for this scene.

Figure 4.5 (a) presents another way to see and to detect how many clusters are

present in the hy 15 PCs spectra. As shown in this figure, after approximately

5 clusters, the within groups sum of squares tend to be constant.

73



Hyper-Spectral Analysis from the Four Scenes (4. Results)

(b)

(a)

Figure 4.7: Hierarchical cluster analysis and silhouette graph of 83 PCs spectra

of hy 15 scene.

(a) Dendrogram obtained from 83 PCs spectra in the hy 15 scene. The black

horizontal line indicates the number of clusters with the SC maximum. The

dashed red line indicates the original number of land covers (7). (b) Silhouette

graph for the k=5 with the best average silhouette width for the hy 15 scene.
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Figure 4.7 illustrates the results from the cluster analysis applied to the PCs

spectral signatures of the scene hy 15 over the entire spectral range from 474

ηm to 2476 ηm. The horizontal line indicates the cut height where the five best

k clusters could be cut. If this cut height is taken as the best number of k

clusters (see Fig. 4.7 (b)), then there are spectral confusions or it is not possible

to separate the G.arborea from the palm and from the three spectra of forest. Also

the mangroves and the forest present spectral confusions at this reference height.

However, there is good separability from all land covers if the cut height is taken as

the magenta doted line is taken as reference. Also, in this figure we can see where

the problems are. For example, the first cluster has 26 spectra with an average

silhouette width of 0.67. If we follow the decision key presented in Table 3.6, only

one reasonable structure has been found for this cluster arrangement.

Table 4.2: Statistics for the approximately unbiased p-values and the SE for the
PCs of the hy 15 scene data

Statistic AU SE.AU

Min. 0.5468 0.000000
1st Qu. 0.7503 0.001108
Median 0.9251 0.004328
Mean 0.8777 0.004705
3rd Qu. 0.9951 0.007868
Max. 1.0000 0.031868
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AU

Figure 4.8: Approximately unbiased (AU) p-value with the manhattan distance

and average as the cluster method for 83 PCs spectral signatures of hy 15 scene.

The dendrogram in Figure 4.8 gives the cluster arrangement with the approxi-

mately unbiased p-values. Some of the most important clusters were squared. For

example, the dashed line squares a cluster which mixes palm oil and G.arborea.

However, within this cluster, there are other clusters. One of these separates the

palm oil completely.

The median of 0.9251 (see Tab. 4.2) indicates that half of the AU values are

below this value. All the clusters with a value less or equal to 0.95 are rejected.

For example, and coming back to the cluster within the dashed line, only three

spectra of G.arborea do not form a cluster with other G.arborea despite being

close to another G.arborea spectra.
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4.1.3 The hy 14 scene

The first clustering process for the PCs spectral signatures of the hy 14 scene are

presented in Figure 4.9. Also, the clustering behaviour is different with respect

to the number of types of ROIs that were selected for this image (a total of 8).

The agglomerative coefficient and cophenetic index are 0.98 and 0.87 respectively

(see Table 4.1). This degree of similarity is very similar to the one obtained for

the hy 15.

Figure 4.8 shows the results of the uncertainty in the hierarchical cluster analysis

applied to the PCs spectral signatures of the scene hy 15. With this approach,

there are spectral confusion with G.arborea when the cluster with the dashed line

in this figure is selected. The cluster within the dashed line has an AU of 0.99681

and a SE of 0.00318, which indicates that the cluster exists. However, within

this cluster there are one cluster of palm oil and four clusters of G.arborea. For

three of the 12 PCs of G.arborea it was not possible to separate the palm oil.

The rest can been separated into four different G.arborea clusters. There are no

spectral confusions between forest and mangroves, however, they are very close

in the dendrogram. The mangrove formed 8 PCs spectra in one cluster and the

remaining 4 (of a total of 12) PCs are in two clusters.

In a superior height, there is a cluster formed by 4 PCs of mangrove and two of

forest, in this case there is a spectral confusion between these two land covers.

For two of the PCs of forest it is possible to form a cluster at the height of 6. This

indicates that if these two PCs are clustered, then the forest, mangrove, grass,

palm and G.arborea also have to be clustered. There is no problem clustering the

water and the soils.

Figure 4.5 (b) presents another way to see and detect how many clusters could

be present in the hy 14 PCs spectra. As it is shown in this figure, after approxi-

mately 8 clusters the within groups sum of squares tends to be constant.

Figure 4.9 illustrates the results from cluster analysis applied to the PCs spectral

signatures of the scene hy 14 spectra presented in Figure 4.2 and the spectra over

the entire spectral range from 474 ηm to 2476 ηm. The horizontal line indicates
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the cut height where the five best k clusters could be cut. In this case, this height

cut the dendrogram into 6 clusters, one more than the hy 15 scene. Again, if this

cut height is considered as the best number of k based on the Figure 4.9 (b), then

there are spectral confusions or it is not possible to separate the G.arborea from

the palm. Also, the mangroves and the forest presents spectral confusions at this

reference height. However, there is good separability from soils, clouds and grass.

In this figure, for example, the first cluster has 23 PCs spectra with an average

silhouette width of 0.78. This cluster is very similar to the one for the hy 15,

just without the three forest spectra. If we follow the decision key presented in

Table 3.6, a strong structure has been found for this cluster arrangement.
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(a)

(b)

Figure 4.9: Hierarchical cluster analysis and silhouette graph of 95 PCs spectral

signatures of hy 14 image

(a) Dendrogram obtained from 95 PCs spectral signatures in the hy 14 scene.

The black horizontal line indicates the number of clusters with the SC maximum.

The dashed red line indicates the original number of land covers (8). The green

dot-dashed line is an arbitrary cut height. (b) Silhouette graph for the k=6 with

the best average silhouette width for the hy 14 scene.
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In Figure 4.10 the results from of the uncertainty in the hierarchical cluster anal-

ysis applied to the PCs spectral signatures of the scene hy 14 are shown. With

this approach, there are no spectral confusions with G.arborea when the cluster

with the dashed line (the X1000 spectra) in this figure is selected. This cluster

within the dashed line has an AU of almost 1 and a low SE. This indicates

that the cluster exists. There is very good separability, also for the forest (see

the doted line in the figure), forming a cluster with three clusters of forest at an

inferior height.

AU

Figure 4.10: Approximately Unbiased (AU)p-value with the manhattan distance

and average as the cluster method for 95 PCs spectral signatures of hy 14 image.

4.1.4 The eo1 pz scene

The first part of the clustering process for the PCs spectral signatures of the

eo1 pz scene are presented in Figure 4.11. Clustering behaves differently with

respect to the number of types of ROIs that were selected for this image. The
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Table 4.3: Statistics for the Approximately Unbiased p-values and the SE for
the PCs of the hy 14 scene data

Statistic AU SE.AU

Min. 0.5149 0.000000
1st Qu. 0.8237 0.0008406
Median 0.9543 0.0033567
Mean 0.8813 :0.0041172
3rd Qu. 0.9955 0.0076124
Max. 1.0000 0.0103644

agglomerative coefficient and cophenetic index are 0.99 and 0.93 respectively (see

Table 4.1). This degree of similarity is superior to that obtained for the hy 15

and hy 14.

For the mangrove, there are spectral confusions with forest for 6 PCs, indicating

that it is not possible to totally separate these covers. For the rest of the covers

there are no spectral confusion. The covers of shadows, water, clouds, grass and

soils have a good separability for such an uncertain dendrogram arrangement.

Figure 4.11 shows the results from cluster analysis applied to the PCs spectral

signatures of the scene eo1 pz presented in Figure 4.3 and entire spectral range

from 427 ηm to 2395 ηm. The horizontal line indicates the cut height where

the four best k clusters could be cut. Again, if this cut height is considered as

the best number of k based on Figure 4.11 (c), there are spectral confusion or

it is not possible to separate within vegetation. Also the grass presents spectral

confusion at this reference height. However, there is good separability from soils,

clouds, water, and shadows. In this figure we can see where the problems are.

For example, the first cluster has 49 PCs spectra with and average silhouette

width of 0.70. If the decision key presented in Table 3.6 is followed, a reasonable

structure has been found for this target cluster.
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(a)

(b)

Figure 4.11: Hierarchical cluster analysis and silhouette graph of 73 PC spectral

signatures of eo1 pz scene.

(a) Dendrogram obtained from 73 PC s spectral signatures in the eo1 pz scene.

The black horizontal line indicates the number of clusters with the SC maximum.

The dashed red line indicates the original number of land covers (9). The green

dot-dashed line is an arbitrary cut height. (b) Silhouette graph for the k=4 with

the best average silhouette width for the eo1 pz scene.
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AU

Figure 4.12: Approximately unbiased (AU)p-value with the manhattan distance

and average as the cluster method for 73 PCs spectral signatures of eo1 pz scene.

4.1.5 The eo1 kw scene

The clustering process (first part) for the PCs spectral signatures of the eo1 kw

scene is presented in Figure 4.13. This clustering behaves differently with respect

to the number of types of ROIs selected for this image (a total of 9 land covers).

The agglomerative coefficient and cophenetic index are 0.99 and 0.92 respectively

(see Table 4.1). The degree of similarity is superior to that obtained for the hy 15

and hy 14 scenes, but also very similar to the eo1 pz scene.

Figure 4.13 shows the results from cluster analysis applied to the PCs spectral

signatures of the scene eo1 pz spectra presented in Figure 4.4 with the same

spectral range from 427 ηm to 2395 ηm as the eo1 pz. The horizontal line defines

the seven best k clusters that could be cut, which in this case means a cut of the

dendrogram into 7 clusters. If this cut height is considered as the best number of
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Table 4.4: Statistics for the Approximately unbiased p-values and the SE for the
PCs of the eo1 pz scene data

Statistic AU SE.AU

Min. 0.3559 0.000000
1st Qu. 0.6747 0.0003279
Median 0.9249 0.0041088
Mean 0.8337 0.0047465
3rd Qu. 0.9990 0.0088480
Max. 1.0000 0.0116888

k clusters (based on the Figure 4.13 (a)), there are spectral confusions or it is not

possible to separate between G.arborea, teak and forest. Mangrove and grass did

not present spectral confusions at this reference height. As in other dendrograms,

there is a good separability of soils, clouds, water, and shadows. The first cluster

has 18 PCs spectra with an average silhouette width of 0.65. This cluster is

very similar to the first cluster in Figure 4.9 (b) of the hy 14 dendrogram with

G.arborea and palm oil in one single cluster. However, the decision key says that

just one reasonable structure has been found for this target arrangement.

The minimum value of all AU for the four scenes corresponds to the PCs of the

eo1 pz (0.3559 in Tab. 4.4).
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(a)

(b)

Figure 4.13: Hierarchical cluster analysis and silhouette graph of 79 PCs spectral

signatures of eo1 kw scene.

(a) Dendrogram obtained from 79 PCs spectral signatures in the eo1 kw scene.

The black horizontal line indicates the number of clusters with the SC maximum.

The dashed red line indicates the original number of land covers (9). The green

dot-dashed line is an arbitrary cut height. (b) Silhouette graph for the k=7 with

the best average silhouette width for the eo1 kw scene.
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The perfect matches for the number of ROIs that were selected are in the uncer-

tainty hierarchical cluster presented in the Figure 4.14. Only G.arborea presented

two separate clusters, as is shown in the dashed box in this figure. This is one

cluster with three PCs and another one with 5 PCs, for a total of 8. This indi-

cates that all the clusters in boxes in this figure did not present spectral confusion

in respect to the selected ROIs. However, the spectra of G.arborea are close from

the palm oil spectra.

The minimum value of AU is 0.5164 (see Tab. 4.5) which is similar to the mini-

mum of the hy 15 and hy 14 spectra. The median is the highest of all arrange-

ments with AU values of 0.9849.

AU

Figure 4.14: Approximately unbiased (AU)p-value with the manhattan distance

and average as the cluster method for 79 PC s spectral signatures of the eo1 kw

scene.
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Table 4.5: Statistics for the approximately unbiased p-values and the SE for the

PCs of the eo1 kw scene data

Statistic AU SE.AU

Min. 0.5164 0.0000000

1st Qu. 0.8733 0.0000084

Median 0.9849 0.0002636

Mean 0.9137 0.0003425

3rd Qu. 1.0000 0.0088480

Max. 1.0000 0.0010850

4.1.6 Specific clusters error evaluation

Figure 4.15 shows the number of clusters with the highest standard error for the

four scenes. The highest value corresponds to the cluster 53 of the hy 15 scene.

This value is 0.03187 (see Tab.4.6) which is consistent with the inference that

the true AU p-value is roughly estimated to exist in between AU − 2 ∗ SE and

AU + 2 ∗ SE. The confidence interval for this cluster is 0.92592 and 1.0534 or

≈ 1.0. However, if the SE is too high, and considering that the AU p-value is

defined to be between 0 and 1, this inference has no meaning.

The next interesting cluster is the number 24 in the scene eo1 pz, with an SE

of 0.00909 (see Tab. 4.6). The confidence interval of where the true p-value may

exist is between 0.9811 and ≈ 1.0. As the α of 0.05 was defined, the existence of

this cluster at this significance level is concluded.

The remaining clusters in all of the graphs in Figure 4.15 seems to have errors

smaller than or around 0.01. Table 4.6 shows as an example some of these values

which are marked in the Figure 4.15 with their respective edge number. The edge

number is an identifier that permits the identification of every single cluster in

one arrangement.
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Table 4.6: Approximately unbiased p-values for the two highest standard error
per scene.

Scene Edge’s
number

AU SE.AU

hy 15 24 0.60839 0.01001
53 0.98966 0.03187

hy 14 52 0.57851 0.01036
93 0.85807 0.00985

eo1 pz 63 0.35594 0.00999
61 0.60811 0.01169

eo1 kw 44 0.54102 0.01085
24 0.99928 0.00909

(a) (b)

(d)(c)

53

9352

24
4461

63

24

Figure 4.15: Approximately unbiased (AU) p-value and standard error for the

four images

(a) hy 15, (b) hy 14, (c) eo1 pz and (d) eo1 kw

In Appendix C.1,C.2,C.3 and C.4, I presented the different arrangements of clus-

ters solutions with their edge number. Thus, it is possible to identify each edge

and the different AU and the respective SE.
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4.2 USB650 Field Spectrometer

In this section the results for the USB650 field spectrometer are described. These

results have the same structure as those of the hyper-spectral scenes process.

In Figure 4.16 the mean and the standard deviation of the spectra of G.arborea

for the ages of 6, 8 and 18 years in a range of wavelength from 366-1022 ηm is

presented. In (a) the shaded area (standard deviation) is overlapping with the

lines of the samples of the G.arborea of 6 and 18 years in practically the whole

wavelength range. The least variability can be seen in the SD of the 6 years

samples in the wavelength range of 500-700 ηm, but, in this section, there is an

overlap with the 8 year G.arborea samples.

In the region of 900-1022 ηm there is no overlap between the SD of the mean

G.arborea spectra of 6 and 18 years.

The best average silhouette width for the measured spectra with the USB650 field

spectrometer is 41, a value is possible with k=14. That differs with respect to

the number of groups of spectra that were originally selected. The agglomerative

coefficient and cophenetic index are 0.86 and 0.82 respectively. The agglomera-

tive coefficient and the cophenetic index values are lower than all the clustering

solutions of the PCs spectra of the hyper-spectral scenes.

Figure 4.17 (a) shows that after more than 12 clusters the within groups sum of

squares are constant. The low value of the average silhouette width (0.41 for 14

clusters) indicates that the spectra measured with the USB650 field spectrometer

present high variability within the spectra of the different group of covers.

In Figure 4.18 the horizontal line indicates the cut height, where 14 k clusters

could be cut. If this cut height is taken as the best number of k clusters, there

are spectral confusions, or it is not possible to separate the G.arborea from the

palm oil, teak, mangrove. The edge 49 (see App. C.5) forms a cluster with one

spectrum of palm oil and one of G.arborea, indicating spectral confusion at this

reference height. However, in general, there is good separability in the teak and

G.arborea spectra.
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6 years

Legend

8 years 18 years

(a)

(b)

(c)

Figure 4.16: Mean ± standard deviation (shaded area) of reflectance for leaves

of three different edges of G.arborea plantations in the south of Costa Rica.

(a) Shaded area is for leaves in plantation of 8 years

(b) Shaded area is for leaves in plantation of 6 years

(c) Shaded area is for leaves in plantation of 18 years
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(a)

(b)

Figure 4.17: (a) Silhouette plot to identify possible groupings of the variables.

(b) Silhouettes of a clustering with k=14 of 122 spectral signatures measured

from the USB650 field spectrometer

Figure 4.19 shows the relationship between the different G.arborea ages and the

other reference spectra according to the hierarchical cluster analysis with the AU

based method. The clusters which have more than 95% of AU and more than

three spectra are marked in shaded boxes. In these shaded clusters there are no
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Figure 4.18: Dendrogram with k=14 cut height of 122 spectral signatures mea-
sured from the USB650 field spectrometer

spectral confusions with G.arborea and spectra of other covers. However, there

is a cluster of two spectra that mix G.arborea and palm oil.

The most important spectral confusion is between 4 spectra of 18 year old G.arborea

and 6 of mangrove. Just one spectra of teak is not clustered with similar teak

spectra, and one cluster is formed by palm oil and a 8 year G.arborea spectrum.

The mean of the AU p-values of the computed multi-scale bootstrap resampling

of the USB650 is 0.8420 and its median is 0.9271. The mean SE is 0.004965 and

the median of the SE is 0.005854.

Figure 4.20 shows the number of clusters with the highest standard error for

the USB650 field spectrometer. The highest values (in both axes) correspond to

the cluster 89 followed by the number 84. For edge 89 this value is 0.01526 (see

Tab.4.8). Following the same rule applied to the PCs scenes spectra (AU−2∗SE
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AU

Figure 4.19: Approximately unbiased (AU) p-value with the manhattan distance
and average as the cluster method for 122 spectral signatures of USB650 field
spectrometer.

and AU + 2 ∗ SE), the confidence interval for this edge is between 0.95439 and

1.01543 or ≈ 1.0. Thus, the existence of these clusters at the level of significance

is concluded.

The next edge is number 84 in the scene eo1 pz, with an SE of 0.00986 (see

Tab. 4.8). The confidence interval where the true p-value may exits is between

0.93599 and 0.97543. As the α of 0.05 was defined, this cluster cannot exist at

this significance level.

The rest of the clusters in all of the graphs in Figure 4.20 seems to have errors

smaller or around 0.01 as well as too low AU values. As an example, table 4.8

shows one value which is marked in Figure 4.20 with its respective edge number.
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Table 4.7: Statistics for the approximately unbiased p-values and the SE for the
USB650 field spectrometer data

Statistic AU SE.AU

Min. 0.3708 0.000000
1st Qu. 0.7197 0.000000
Median 0.9271 0.005854
Mean 0.8420 0.004965
3rd Qu. 1.0000 1.00000
Max. 1.0000 0.015264

Table 4.8: Approximately unbiased p-values for the three edges with the highest
standard error in the USB650 field spectrometer data

Sensor Edge’s
number

AU SE.AU

USB650 89 0.98491 0.01526
84 0.95571 0.00986
95 0.86593 0.00792

89

84

95

Figure 4.20: Approximately unbiased (AU) p-value and the standard error for

the USB650 spectral signatures
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4.3 TerraSAR-X Processing and Land Cover Anal-

ysis

After a multi-looking process, a more pleasing appearance of the segment of

TerraSAR-X is presented (see Figure 4.21). This process makes the features

more interpretable, however, the cost is in the spatial resolution. For example,

the HH co-registered images pass from 1.93 mean GR square pixel from 1 range

look and 1 azimuth look to 9.31 mean GR square pixel with 4 range looks and

6 azimuth looks. With this process the images are degraded in order to enhance

features which are easier to be classified as well as interpreted. The mean GR

square pixel is the average of the range and azimuth pixel spacings in the multi-

looked image. It was computed based on the number of range looks, the number

of azimuth looks and the source image pixel spacings [ARRAY-ESA, 2011].

The mean and the SD of different ROIs in the HH example is shown in Ap-

pendix E.

Table 4.9 is a selection of bands which give some important information in order

to analyse the separability of the covers in the study area as well as for the

unsupervised classification. Not all the calculated bands are listed here because

some bands did not, for example, add more information. The dates of the HH

and VV polarized images are the same as it is shown in Table 3.8.

The images of VV polarization with high incidence angle≈ 23◦ exhibit substantial

problems such as foreshortening. For that reason, they were excluded in the

calculation of a mean of this polarization (as in B1).

In Figure 4.22, the x-axis describes the vector with the LDA was created, which

encompasses all of the variables that were used and assigns importance to each

of them. The y-axis represents the proportion of plots along each vector. Here

a trend is shown, and it seems to separate the (ROI ) forest (in flat terrain with

dominance of raffia) into different bands.

All conditional density plots except Figure 4.24 are presented in Appendix D.

These are Figures from D.1 to D.10. These plots represent the distributions
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(a) (b)

(c) (d)

Figure 4.21: Segment of the TerraSAR-X HH process in the south of Costa Rica:
(a) intensity raw image
(b) calibrated image
(c) calibrated and multi-looked image
(d) calibrated, multi-looked, filtered and speckled image

of the different land covers (ROIs) (see Tab. 3.10 for the description) that were

selected. With these plots it is possible to superimpose the kernel density plots of

two or more land covers per band. Specifically, the posterior discussion is focused

on the land covers of forest in flat terrain (raffia), forest in undulating terrain and

rolling slopes, as well as the confusion with foreshortened and shadowing areas

and palm oil (old and young plantations) land covers.

In Appendix E, the mean and the standard deviation of the different land covers

per band is presented. The mean varies from band to band. For example, for the
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Table 4.9: TerraSAR-X selected bands.

Band Description

B1 Mean of the tree HH processed images
B2 HH polarization (2010.04.10)
B3 HH polarization (2010.05.01)
B4 HH polarization (2010.05.02)
B5 VV polarization (2010-06-02)
B6 VV polarization (2010-05-03)
B7 Mean of HH and VV polarization images
B8 Mean HH polarization PCs
B9 Mean VV polarization PCs

land cover forest in flat terrain with raffia’s dominance, the bands B3, B4, B5 and

B6 have a similar mean (81.63, 81.75, 71.29, and 75.40 respectively) as opposed

to the bands B2, B7, B8 and B9 (123.79, 119.95, 130.20 and 117.90 respectively)

(see Appendix E for the values). In this land cover, band B1 presents a multi-

modal distribution with a hight value of SD. Here it is difficult to interpret the

mean value of 18.42, because of the influence of the skewness. As is shown in

Figure 4.24, all the bands except the band B1 have a normal distribution which

makes it possible to compare the means.

For the land cover forest in gently undulating and undulating terrains, again B1

exhibits a multi-modal distribution (see Fig. D.1), which makes it difficult to

interpret the mean of 49.23. All the other bands present a right-skewed distribu-

tion which covers the whole range of the 8-bit intensity values. As the degrees

of freedom determine the shape of the distribution, with an increase of n this

distribution becomes more and more symmetric [Reimann et al., 2008]. However,

the outliers are still there. This is an inherent property of the foreshortened

and shadowing areas in the TerraSAR-X imagery. All the objects oriented to

the antenna beam (fore-slope) will present high values in intensity, on the other

hand the back-slope will present darker areas with low intensity values. In the

unsupervised classification preformed, the foreshortened areas account for 10.9%

of the study area.

An extreme case of foreshortening is called image layover [Jensen, 2007]. The
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band 1

band 2

band 3

band 4

band 5

band 6

band 7

band 8

band 9

Figure 4.22: Linear density graphs for the ROIs of forest in undulation and rolling
slopes for the 9 bands

result is presented in Figure D.1. The land cover forest in gently undulating and

undulating terrains does not exceed the 12.3◦ of slope. However, there are many

extreme values around 255 of the 8-bit intensity bands. The band that does not

present the right-skewed distribution is band B1, however, it presents two picks

and some very low 8-bit intensity values and a SD of 26.21.

Figure D.2 shows the extreme cases of layover, again the band B1 does not present

the right-skewed distribution but has two peaks in it, also with many values with
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Figure 4.23: Example of TerraSAR-X Red (band B8), Green (band B5) and Blue
(band B1) composite in a segment of the study area in the south of Costa Rica.
(The coordinates UTM Zone 17 north, datum WGS84)

low intensity. This band also presents the low SD with 25.85 but its mean of

41.48 is difficult to interpret because of the shape of the distribution. The ROIs

were selected for this land cover in the slope category of rolling in the Table 1.1

which has a range between 12.3◦ and 17.6◦. Especially the bands B2, B7 and B8

are very sensitive to the layover presenting the high values of SD (80.53, 50.08

and 62.11 respectively).
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Figure 4.24: Conditional density plot for all bands for the land cover forest in

flat terrain (raffia).

For the land cover herbland, all bands present a multi-modal distribution with

more than one peak. In this case, all measures of central tendency will be located

in different places (on x-axis of density of the plot, for example). Again, it is

difficult to interpret the means. However, the SD values are lower than the SD

values of the land cover forest in flat terrains (raffia).

A different behaviour from the rest of the land covers is shown in Figure D.4.

Normally the man-made structures act as corner reflectors that send much of the

incidence energy back toward the antenna [Jensen, 2007]. These are the highest

mean values in the bands B2, B7 and B8 (252.94, 226.30, 244.30 respectively).

However, there are very low values for the bands B1, B3, B4, B5 and B6 (41.55,

78.58, 73.39, 54.64 and 72.27 respectively).
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Except for the band B1, the mangrove land cover (see Fig. D.5) presents a sym-

metrical distribution, but has heavy tails with some extreme values in the hold

range of the 8-bit quantization. The bands B7, B8 and B9 have the highest

values of intensity with 134.35, 132.24 and 143.16, respectively. There is no big

difference in the SD values, the highest value is for band B5 with 31.11 and the

lowest value is for band B2 with 20.79.

Similar to the distributions of the land cover forest in flat terrain (raffia), Fig-

ure D.6 presents a normal distributions in all (except B1) bands, however, they

are clearly divided into two main groups. First, the bands B3, B4, B5 and B6 with

intensity values of 93.18, 83.25, 73.83 and 77.13, respectively. The second group

is formed by the bands B2, B7, B8 and B9, with values of 141.69, 132.80, 146.96

and 124.34, respectively. These groups are the same as the ones in Figure 4.24.

In all the cases, the means for all the bands and the standard deviation are a

little higher in the palm oil (old plantations), but keeping the same proportions

as forest in flat terrain (raffia). In Figure D.7 the land cover palm oil (young

plantation) is similar in Figures D.6 and 4.24.

For the land cover pasture, a normal distribution for all bands is shown, but

with some small peaks. Contrary to previous Figures, band B1 has a similar

distribution to all the rest of bands and also a similar mean (45.97) and SD.

All bands in Figure D.9, have a multi-modal like distribution (except B2) and

together with the forest in gently undulating and undulating terrains and forest

in rolling terrain, they present the highest values of SD, except for the band B2

with 10.56.

Figure 4.25 is a subset of three different bands of the process of TerraSAR-X

imagery. Here, the PDR index (a) is presented. This result was excluded from

the land cover analysis but was included in the unsupervised classification.

The PDR band is highly sensitive to the moisture content of the soils. The differ-

ent surfaces or materials conduct the electricity better than others. One measure

of the material’s electrical characteristics is the complex dielectric constant which

is defined as a measure of the ability of a material to conduct electrical energy

Jensen [2007]. This property is important to understand the SAR backscatter.
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In general, moist soils reflect more energy than dry soils Jensen [2007]. However,

Figure 4.25(b), is more useful than (a), if the interest is in soil moisture but in

(a) there is doubt about the dissimilarities between the bare soils and vegetated

soils.
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Coordinates UTM Zone 17 north, datum WGS84

Figure 4.25: Example of TerraSAR-X penetration in soils in a segment of the
study area in the south of Costa Rica:
(a) PDR image (see Eq. 3.10)
(b) HH polarization (2010.05.01)
(c) VV polarization (2010.05.02)
(d) True colour composite of RapidEye optical imagery

The land cover water presents the lowest SD values, band B3 has a value of 3.92,

the remaining bands are around 2 or less. Band B9 has the highest mean value
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with 53.08, but, as other bands, also (see Fig.D.10) presents several peaks in the

distribution (multi-modal).

In Figures F.1 to F.9, the conditional density plots for all land covers per band

are presented.

For band B1 (see Fig.F.1) the land covers that present the lower variability are;

herbland, pasture and water (SD of 9.39, 9.13 and 1.37 respectively), the rest of

the land covers have an SD > 17. However, the land cover palm which has a SD

of 13.13 is an exception. It is noT possible to discriminate the land covers forest

in rolling slops and mangrove, forest in gently undulating and undulating terrain

from the others. In this Figure, all bands presented a multi-modal distributions

and covers a range from 0 to 95 values of intensity. Except for the forest in rolling

terrains which has values up to 255 of intensity.

In Figure F.2 the distributions are normal except for the land cover of forest in

rolling slopes and the forest in gently undulating and undulating terrain which

is right-skewed. For this band the lowest variabilities are for water, pasture, soil

and infrastructure (1.46, 7.62, 10.56 and 8.77). The infrastructure is leaf-skewed

with two small peaks.

Band B3 shows another behaviour from band B2. For example, infrastructure is

right-skewed (see Fig. F.3) and its mean is 78.58 values of intensity (SD of 55.43).

In contrast, the mean value of intensity in the band B2 is 252.94. In this band,

there is no separability between the land covers of soil, mangrove, palm (old and

young plantations) and forest (flat terrain with raffia). The forest (rolling slopes)

covers the whole range of intensity values but with a right-skewed shape.

For band B4 the shape of the density plot of forest (flat terrain with raffia) and

palm (old plantation) are similar, with mean values of 81.75 and 83.25 respec-

tively. Infrastructure presents a right-skewed curve with a very low mean of

intensity (73.39) and very high SD (42.88).

In Figure F.5, land covers herbland and pasture present a similar shape with

means values of intensity of 33.99 and 41.51 respectively. However, the pasture

is right-skewed at the lower part of the density. Here, the land covers of soil,
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mangrove, palm (old and young plantations) and forest (flat terrain with raffia)

present better separability than band B4.

In band B6 (see Figure F.6) the palm (young plantation) is slightly detached

from the palm (old plantation) and forest (flat terrain with raffia). These land

covers have a normal distribution with mean values of 92.69, 77.13 and 75.40

respectively. The standard deviations are 12.97, 12.83 and 10.25 respectively

which are the small ones, if the land cover water is excluded.

Contrary to band B6, the palm (old plantation) is slightly separated from the

forest (flat terrain with raffia) and palm (young plantation) in band B7 (see

Figure F.7). These three land covers present a normal distribution with close

means for forest (flat terrain with raffia) and palm (young plantation) (119.95

and 123.20 respectively). The infrastructure presents a leaf-skewed distribution

trough out the range of the distribution. Band B8 is similar to band B7 (see

Fig.F.8).

In band B9 the shape of the curve of the land covers of herbland and pasture are

very similar, except that pasture is right-skewed and herbland has a small peak.

In this band the water has the highest mean value and an SD with 53.08 and

2.13 respectively.

Figure 4.26 shows the unsupervised classification of all bands presented in Ta-

ble 4.9 plus the PDR band.

Results (see Table 4.11) from the isodata classification indicate an acceptable

overall accuracy of 86 percent. Visual inspection of the cross table confirms that

12 of the misclassification are attributed to the foreshortening areas.

With this exploratory classification the producer’s accuracy of forest is (4752)

90.4 percent while the user accuracy is (4762) 75.8 percent. It is expect that

roughly 76% of all pixels classified as forest are indeed forest on the reference

data. However, as a producer 90.4% of all the forest pixels as such were classified.

There are pixel confusions, especially with two blocks of palm oil plantations and

mangroves. This problems is shown in Figure 4.26 in the class palm oil with the

orange colour.
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Table 4.10: Summary area and percentage per class of the unsupervised classifi-
cation of the TerraSAR-X imagery in the study area

Land cover Area (ha) Percentage

water 2006.56 3.8
soil-grass 5591.75 10.7
grass-soil 4300.50 8.2
herblands 7894.28 15.1
forest 14367.05 27.4
forest-raffia 5803.18 11.1
palm-oil-raffia 4372.87 8.4
palm-oil 2335.42 4.5
foreshortening 5687.55 10.9

Total 52359.18 100.0

Table 4.11: Error matrix of forest/non-forest classes for the classification of
TerraSAR-X imagery in south of Costa Rica.

Reference truth Total
(classi-
fied)

User’s ac-
curacy

forest no forest

Classified map
forest 47 15 62 75.8%
no forest 5 76 81 93.8%

Total (ground truth) 52 91 143 Overall
accuracy

Producer’s accuracy 90.4% 83.5% 86.0%
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Figure 4.26: Unsupervised Classification of the TerraSAR-X imagery in the study
area.
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Chapter 5

Discussion

The discussion of the hyper-spectral and TerraSAR-X processing begins in Chap-

ter 5. In order to analyse the clustering results obtained, the hyper-spectral re-

sults are subdivided in the two sections. First, the analysis of the hyper-spectral

scenes is done by comparing the scenes (within sensors) based on seasonality and

atmospheric conditions. Second, the field spectrometer spectra at the leaf level is

an analysis of the variability within G.arbarea to illustrate the spectral confusion

of the scene based spectra.

Finally, on the one hand, the analysis of the TerraSAR-X processing and forest/non-

forest classification is presented. On the other hand, a General discussion about

remote sensing and seasonality of vegetation based on the precipitation, potential

evapo-transpiration and normalized difference vegetation index is presented.

5.1 Hyper-Spectral Sensors and General Con-

siderations on the Clustering Process

Regarding the hyper-spectral pre-processing, it is not possible to automatically

perform elementary operations on the imagery using the FLAASH module for

the atmospheric correction. Therefore, the necessary manual pre-processing is
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a cumbersome task (calibration, BIL-to-BIP conversion, scaling, writing wave-

lengths to header). This also means that batch processing is not possible, making

the atmospheric correction of several images at time practically impossible.

A special consideration is needed for the ROI selection. As a method based on

visual inspection it has several severe disadvantages. First, the selection or the

availability of the reference high spatial resolution photographs is constrain and

these are not always from the same month as the imagery. The ROI selection is

also inherently subjective as it relies heavily on the researcher’s visual capabili-

ties and experience at the time when inspecting the photographs. Secondly, the

features determining different covers have different conditions depending on the

quality of the photographs. Finally, visual inspection and selection is limited by

the variation of the sensitivity of the human eye over the visible spectral range,

and by previous and ancillary information available. Nevertheless, visual inspec-

tion and ROI selection are widely used. These are, however, not exempt from

human errors in terms of interpreting the key correctly.

In addition to the previous considerations, all the derived ROIs ’ spectra are in

the category of flat and undulating slopes (see the ranges of Table 1.1) which

could present topographic effects. Despite this, the topographic normalization

was not applied to the four scenes.

The first approach of HCA results shows that there are several spectral confusions

between the vegetation land covers in all the PC spectra of the four scenes. But

the degree of confusion depends on the cut height of the dendrogram. There

are some obvious variations in the reflectance patterns of the four scenes. These

variations, for example, can come in the shape of shaded areas due to clouds

which have a lower reflectance. However, these shaded areas can also appear as

a result of lower incidence angles as well as the topographic effects.

It is important to know if a partition obtained by a clustering algorithm is good

or not. It is possible to compare the partition with other partitions obtained by

other clustering algorithms. The better the agreement is among these partitions,

the more condensed the obtained partition. Lack of agreement among these

partitions indicates either that the cluster structure is difficult to detect or that
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some clustering algorithms do not perform properly for the specific data set. An

example of this situation is the difference in the partitions of the eo1 kw and the

USB650 field spectrometer with values of 0.92 and 0.82 for the cophenetic index

respectively. In this situation, a strength index that measures the separation

among clusters of the data set is useful to indicate which partition is better for

the specific data set. The larger the minimum separation a partition has, the

better the partition is.

If in the clustering evaluation phase, the final arrangement of a group of clusters

produces very different spectra, it can be suspected that there are genuinely no

clusters in some of the spectra, or that the chosen distance measure was not the

best. The manhattan distance was the best one tested for all the hyper-spectral

data including the data from the USB6650 field spectrometer.

The cophenetic index does not require a priori selection of an optimal number of

clusters and provides a general view of the partition obtained. Thus, this index

facilitates comparison of the results for the different clustering solutions.

The overall average silhouette width of the entire plot is the average of all objects

in the data frame. The suggestion given by Rousseeuw [1987] of choosing the

number of clusters when the SC is as large as possible was followed. However, in

the case of the arrangements of eo1 pz and hy 14 this criterion was not applied.

The highest SC for these two arrangements is a k of 2. This is not the optimal

case because the number of coverages for the images is 9.

The basic indicator for a well fitting cluster is that the variance within the cluster

is small while variance between clusters is large.

In the first clustering approach, the height at which the dendrogram is cut defines

the objects that are classified. For example, in Figure 4.13 (a), there are two

clusters defined for the cover of clouds. There is a significant difference in the

heights that define these two clusters indicating that the types of clouds are very

heterogeneous.

For all the clustering solutions the initial number of land covers was known. This

means that if the SD value did not correspond with this number, the cluster
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solution showed the spectral confusion for some of the clusters. For example, the

black line in Figure 4.4 is the cut height for the highest SD, but the original

number of land covers in this case was 9. The dashed red line represents these 9

clusters. However, this should be seen with caution because of the within ROIs

variability. In other words, it is possible to capture two ages of one land cover in

one ROI.

As an example of the idea described above, the green dot-dashed line in the

same figure is an arbitrary cut height which gives the separability between all

selected land covers. However, there are more than 9 clusters at this cut height

(15 clusters), which would be an indicator of the variability of the spectra. For

example, the clouds (X77) at this reference height are divided in three clusters

from a total of four PCs spectra. If there is no previous knowledge about the

possible number of clusters, the average silhouette width is a good indicator of

the possible number of clusters.

In the case of the eo1 kw scene, it is possible to classify all 9 land covers using PCA

as a data reduction technique. However, for the scene eo1 pz it is not possible to

establish a cut height where there is a clear separability among G.arborea, palm

oil, forest and mangrove. Comparing these two scenes, it is clearly seen that

seasons influence the success of the clustering process. This result confirms the

importance of seasonality for the classification of vegetation.

The same behaviour, as described above, in terms of differences in the clustering

process, was displayed by the two scenes from HyMap. Here, the green dot-dashed

lines form figures 4.1 and 4.2 represent an attempt to get more separability but

at the expense of getting a lot of clusters. In a specific dendrogram, if there

is the needed to draw a cut line at a short distance (near 0), the result is that

the number of clusters is too high, which is not ideal for classifying the objects

in small classes or categories. Contrary to the eo1 scenes, the differences are

attributed due to the atmospheric conditions from one day to another.

In addition to the lack of multi-temporal hyper-spectral images, they also have

limited coverage. For example, in the above mentioned CARTA missions only

70% of Costa Rica was successfully acquired with flight lines of ≈ 7 km width.
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On the other hand, EO-1 Hyperion has 7.7 km width which is considerably small

compared with Lansat which has a width of 186 km. However, the potential of

these optical sensors is still being explored. One important milestone is not only

the free availability of the EO-1 imagery [Fagan and DeFries, 2009], but also the

projected satellite-borne missions like the German EnMap, which will increase

the availability of hyper-spectral data.

5.2 The USB650 Field Spectrometer

Sampling in trees is always a challenge. For example, Cochrane [2000] studied

the vegetation reflectance variability for species level classification using hyper-

spectral data. Regarding the sampling for this study, 325 spectra from various

mahogany foliage and other 190 spectra from foliage of the other 10 species were

collected by the authors. However, despite the effort, there is no mention of the

sampling technique applied to collect the data.

In situ measurements are likely to have a human-method-produced error as well

as measurement device calibration problems [Jensen, 2007]. Despite the possible

errors, a method of using spectral libraries to classify satellite images is needed

[Rao, 2008]. This author used both in situ hyper-spectral measurements and

pixel based spectra for an automatic classification in agricultural crop varieties.

This interesting approach integrates the spectral libraries into the classification

scheme and uses them as the training data.

The most important determinant of the spectral properties of a leaf, particularly

in the VIS, is the chemical composition of the leaf [Jones and Vaughan, 2010].

From this starting point, the considerations made by Acquaye [1964]; Agyeman

and Safo [1997] who made a wide analysis of foliar techniques applied to cocoa

crops and Terminalia ivorensis, are applied to a spectral signature analysis. These

authors pointed out some useful key strategies for foliar analysis in nutrition

studies. These factors should be taken into account when taking samples for

analysis and for interpreting results of the leaves’ spectral properties.

As leaves are very different within the same tree [Jones and Vaughan, 2010], and
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depend on the position in the canopy, considerations regarding the timing of the

sampling of leaves have to be taken into account [Acquaye, 1964]. For example,

the time of the day, the lighting conditions, number of leaves per strata and per

tree, the position of the leaves in the canopy, etc. have to be considered.

The USB650 spectral signature presented is a very simplified view of the interac-

tion of the radiation with leaves. However, the variability of spectral response is

high within a species, between ages of the same species (G.arborea) and within a

single tree. If high spectral resolution data will be used, the variability will also

be high. Thus, this variability needs to be incorporated into the classification

schemes.

Some of the major clusters are indicated in Figure 4.19. However, there are also

clusters formed by two spectra, for example, the edge 54 (see App. C.5) which

forms a cluster with spectra of the X101113008 and X102223043. Although this

cluster is very close to the edge 69 on the dendrogram, it does not form a cluster

with it. This shows precisely how well the AU method fits in comparison to the

first Hierarchical Clustering applied in this study. What matters in the first HCA

approach is the height at which the dendrogram is cut and the cutting height set

by the number of clusters. Thus, if the AU’s in Figure 4.19 are ignored and the

dendrogram is cut at the level of approximately 75, the edges 54 and 69 remain

in the same cluster. By this time the AU is 71% and it can be concluded that

these two edges are not supported by the data to form a cluster. It is noteworthy

that edge 54 presents ages of 6 and 8 years, while edge 69 has only spectra of 8

years.

Another cluster that mixes one spectrum of 6 years with 9 spectra of 8 years is

defined by edge 104. But more critical is the cluster defined by edge 109, where

two spectra are combined with 7 other spectra of 8 years. Another cluster that

exhibits this problem is defined by edge 90 where 3 of 6 spectra are of 6 years

and the another 3 of 18 years old G.arborea.

The cluster defined by edge 60, (cluster shown in the spectra of X103331070,

103331071 and X103331072 of 18 years), is at a smaller height in the y-axis in

the dendrogram than the one defined by the edge 90. However, the spectra of
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X101123014, X101123016 and X101123015 could not be in another cluster that

is not defined by the edge 90. Therefore, it can be said that there is a spectral

confusion for coverage of G.arborea between 6 and 18 years.

There is a total of 55 clusters with an AU greater than 95%. This brings it to

97 spectra out of a total of 122, or 79.5%. From the remaining (25 spectra) only

9 spectra belongs to the G.arborea. From these 9 spectra, 5 are from the edge of

18 years.

But what does it the mean that a remaining 20.4% are not in any cluster that

meets that AU p-values> 0.95. It is the separability. In other words, these spectra

are close to some other spectra but not close enough in terms of the distance to

form a cluster.

As described in the previous paragraphs the within variability of the G.arborea is

evident. However, it also suggests, that there are some strong differences within

the three ages (6, 8 and 18 years). Taking into account the within variability, a

future study could be done in order to test the within variability of G.arborea in

different ages but with scene based spectra.

Contrary to the results obtained from the PCs scenes spectra where there was

spectral confusion, in general, between palm oil, forest and G.arborea, the spec-

tral confusion in the USB650 spectra were found between spectra of leaves of

G.arborea (18 years) and leaves spectra of mangrove. Specifically, the most im-

portant spectral confusion was between 4 spectra of 18 year old G.arborea and 6

spectra of mangrove. Also 6 spectra of 18 years were not clustered at all. There

were spectral confusions between the spectra of G.arborea leaves of 6, 8 and 18

years.

On the other side, 9 of 14 teak spectra, thus 64% of the spectra, are in the cluster

defined by the edge 81. However, there is one palm oil spectrum within this

cluster. Four of the other spectra of teak are two individual clusters and the

remaining (X20203082) does not correspond to any cluster but is very close to

form a cluster along with several spectra of a spectrum of mangrove. However, the

analysis of the teak and mangrove spectra just describes the general behaviour and

suggest the possible spectral confusion with palm oil and G.arborea spectra. An
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intensive sampling scheme is needed in order to detect and compare the spectral

confusion with G.arborea.

In tropical forest environments, Clark et al. [2005] found that ”the leaf spectral

variability among individuals of a certain species, or even within a single crown,

was attributed to differences in internal leaf structure and biochemistry (e.g.,

water, chlorophyll content, epiphyll cover and herbivory)”. As some differences

could be found within spectra of a single crown, the spectra based analysis could

help to understand the correlations between the relations of plant-soil-atmosphere

carbon fluxes if it exist. A very interesting approach could be archiving by mea-

suring spectra and chlorophyll content of leaves at the same time and height of

CO2 measures in bio-climatic towers.

5.3 TerraSAR-X Processing and classification

One of the most important steps in the processing of RADAR is the speckle

reduction. This process tries to remove the grainy salt-and-pepper pattern in

the images that is present due to the coherent nature of the radar wave [Jensen,

2007].

The desired feature of a speckle filter is to smooth out speckles while preserving

the useful information. However, there is always a trade-off between these two

requirements [Shi and Fung, 1994]. In Figure 4.21 the more pleasing appearance

segments of the TerraSAR-X image are presented. As the speckle filtering mostly

remains an estimation problem, the objective is to retrieve the scene reflectivity

from the observed speckled SAR measurement [Touzi et al., 2004]. The final

choice of the multiple looks that were applied took into account the objective of

the whole process which is the ultimate forest/not-forest classification.

After the multi looking and the filtering process, there are spatial distortions in

terrain slopes facing a side-looking TerraSAR-X illumination, which are mapped

as having a compressed range scale as compared to their appearance if the same

terrain was levelled. Foreshortening is a special case of elevation displacement.

The effect is more pronounced for steeper slopes (producing the layover as an
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extreme form of elevation displacement or foreshortening), and for images with

steeper incidence angles. For that reason, the images with an incidence angle of

≈ 23◦ were excluded. The opposite effect occurs for slopes that face away from

the radar illumination. This produces the shadows in the images. The shadows

are regions hidden behind elevated features such as man-made structures as well

as mountains which in the image appear out of the beam of the SAR system.

In the visual inspection performed on the classification results presented in Fig-

ure 4.26, some small shadowed areas were classified in the same class as water.

Figure D.4 is very instructive because normally the buildings, bridges, etc. are

corner reflectors. That means that much of the backscatter is recorded by the

antenna. This was the case for the highest values of the bands B2, B7 and B8.

However, the mean values are high and there are many values with low intensity.

An explanation of this phenomenon is that the ROIs capture shadowing areas

of the man-made structures. But it is the rest of the bands (B1, B3, B4, B5

and B6) which are critical because of the very low mean intensity values which

indicate that every band provides some unique information about the different

land covers. As Liao et al. [2009] pointed out, SAR has several disadvantages in

urban areas which are related to the wavelength and oblique viewing geometry

of SAR systems.

In order to discriminate the human-made structures, another possibility, not im-

plemented in this study, is to use the coherence information to separate between

vegetation and artificial lands as well as to use texture parameters with larger

kernels which are quite sensitive to the heterogeneity of urban areas.

Another example is the land cover of water which is theoretically a smooth sur-

face. This means that calm and pure water acts as a specular reflector, deflecting

most of the energy sent by the antenna which then cannot be recorded. How-

ever, as shown in Figure D.10, there are several differences between the different

bands. A plausible explanation of this is that water bodies are not always mo-

tionless since the wind produces small waves. Also, water bodies have different

sediment contents but these do not directly impact the signal. In Figure 4.23

(low leaf part) there is a spot of sediments which has been captured as a water
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producing variability between the bands.

TerraSAR-X has a frequency of 9.65 GHz (≈ 3 cm wavelength). At this wave-

length, the penetration of the signal mainly takes place in the canopy components

and not as much in the stems or branches. As an example of the complexity of

the signal backscatter, the land cover forest in flat terrain (with dominance of

raffia) and palm oil (old plantation) are very similar. As described earlier, forest

in flat terrain (see Section 1.3.3) contains the Raphia taedigera (raffia) which is

a palm typically found in natural swampy areas in tropical lowlands [Kappelle

et al., 2002]. Both raffia and palm oil plants are from the Arecaceae family, but in

the case of the SAR backscatter, the chemical components are not as important

as in the passive remote sensing. In the microwave domain, the roughness, dielec-

tric properties which are related to the canopy water content, and the structure

of the biomass canopy [Jensen, 2007], play an important role in the amount of

energy recorded by the antenna.

However, as showed earlier, depending on the polarization and the incidence an-

gle, the returned backscatter could be very different (see Fig.4.25) for mapping

purposes. The raw TerraSAR-X images that were used in this study transmit

either H or V polarized pulses and receive in H or V polarization. The resulting

product was just in one polarimetric channel, in one of the HH and VV com-

binations. However, other acquisition parameters such as HV or VH, ascending

and descending pass directions may be used. Through the use of more acquisi-

tion modes, the potential of TerraSAR-X is to be exploited, especially in non flat

terrains.

It is clear that the use of more acquisition modes increases the cost of any map-

ping project. Further theoretical and experimental investigations using fusion

techniques, derived band combinations with different polarization SAR data are

needed for: a better comprehension of the physical behaviour of the different land

covers and the optimization and careful selection of the acquisition parameters for

specific regions of ecosystems. The cost would be greatly reduced with additional

investigation related to regional selection of acquisition parameters.

For accessing TerraSAR-X imagery, in the context of REDD+ projects, for ex-
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ample, a good option is provided by the German Aerospace Centre (DLR) that

can also provide the user segment information for scientific applications. Com-

mercial data acquisition is done through the Infoterra GmbH [Roth et al., 2007],

which nowadays it is the Astrium GEO-Information Services. In this context, the

international donors play an important role providing the necessary founding to

acquire the imagery.

In the case of REDD+, however, the sponsorship of donors could take care of the

data costs; at least as long the market is not developed. In addition, deploying

a Forest Carbon Partnership Facility (FCPF) as well as bilateral agreements can

address the need of capacity building and training. With more than US$150

million committed, the FCPF is a multilateral World Bank initiative which helps

developing countries to prepare for the REDD+ process [Davis et al., 2010].

Also in the context of REDD+ as a result-based initiative, where monitoring

deforestation and degradation is a challenge, tests have shown that TerraSAR-

X can be used for detecting changes in forest cover and to map tropical forest

[Scheuchl et al., 2009]. In another approach Kuntz et al. [2011], using a multi-

temporal TerraSAR-X High Resolution SpotLight image (1m resolution), showed

a selectively logged stand in the Amazon rainforest/Brazil. The logging of in-

dividual trees was detected and automatically identified combining three images

from different dates [Kuntz et al., 2011].

Related to the issue of capacity building and training, the use of open source

software is increasing in popularity. This is also the case for SAR processing,

specifically with the open source software called NEST [ARRAY-ESA, 2011], with

which all the TerraSAR-X image processing was tested and done. There are other

open source SAR software possibilities, for example, the RAT 1(Radar Tools) and

I.D.I.O.T. (InSAR Deformation Inspection and Observation Tool) [Reigber et al.,

2007] among others. These tools open the opportunities for giving and receiving

SAR courses at very low cost in developing countries.

However, the capacity and training could be focused on fusion techniques, derived

band combinations, and leaving all pre-processing process to the data providers.

1http://radartools.berlios.de/
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In this way, an initiative or project can focus on just obtaining interesting features

that could be for direct use and for integration with different initiatives.

As was discussed earlier for the hyper-spectral approach, a special consideration

is needed for the ROI selection. In the case of TerraSAR-X applications, one

polygon (ROI ) could capture the true intensity values for one land cover but at

the same time this polygon could be capturing another thing. For example, in

the case of infrastructure, one ROI in one band can also capture shadows, and

in another band just the infrastructure itself could be captured.

This last consideration can be added to the sampling procedure, just as if it were

for a pixel based classification or for an exploratory analysis that is valid for

optical and for SAR image processing. Thus, to provide a complete answer, the

following questions have to be taken in account [Congalton and Green, 2009]:

• What are the thematic map classes to be assessed and how are they dis-

tributed across the landscape ?

• What is the appropriate sample unit?

• How many samples should be taken?

• How should the samples be chosen?

There are some guidelines which help determine the optimal selection of the

ROIs [van Genderen et al., 1978]. But the optimal sample size depends on how

abundant and fragmented the landscape is and on the classification objectives. In

the practice of allocating sampling and training sites, the site location constraints

and minimum mapping unit sizes have to be taken into account. For example,

in the study site, the infrastructure was in most of the cases small constructions

in the middle of big farms, which easily led to some very bright pixels as well

as some shadows being present in the same ROI. In such a case, the principle

that the classification scheme should be mutually exclusive and totally exhaustive

would be violated [Congalton and Green, 2009].

An object-oriented approach takes the form, textures and spectral information

into account. Its classification phase starts with the crucial initial step of grouping

neigh-boring pixels into meaningful areas which can be handled in a later step
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of classification. In this procedure, the grouping capabilities increase with the

number of bands. This is valid for optical and SAR imaging processing. In the

optical domain, the use of indexes is a very common procedure, for example,

Fuchs et al. [2009] give a description and references for the satellite image bands

and transformations which are commonly used and are very well tested. However,

this is not the case of the SAR remote sensing for two main reasons: first, the

availability of the SAR imagery is a constrain due to the high prices as well as

the need of highly skilled software. Nevertheless, as was discussed earlier, this

not an excuse. Second, the knowledge needed for processing SAR imagery is also

very different to the one for the optical domain.

The PDR is an example of the use of valuable information through one index.

This index is a band ratio between the HH and VV polarizations. Figure 4.25

shows a band index that is very useful to discriminate bare soils based on the

differences in the moisture content. The surface soil moisture is a key parameter

that influences numerous environmental processes that occur over a large range

of spatial and temporal scales [Barrett et al., 2009]. It is also an important link

between the land surface and the atmosphere [Owe et al., 2001].

If an object oriented classification is being done, the information contained in the

PDR band is important because it can discriminate the texture of the bare soils.

The final objective of any classification is to avoid class confusions. Here, any

additional information that helps to discriminate the classes is useful.

Finally, there are several considerations related to the error matrix. First, the

reference data such as RapidEye mosaics or aerial photographs are not exempt

of errors and are not always representative of the entire classification because

of the cloud coverage. Second, the reference data and classified images are not

perfectly co-registered. For that reason, the actual accuracy of the classification

is unknown because it is impossible to perfectly assess the true class of every

pixel. To overcome the mentioned aspects, the ”expert analysis based” approach

was needed based on our expertise gained during our fieldwork and previous

knowledge of the study site.

The classification key presented in Figure 4.26 could be used to develop an ac-
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curate forest/non-forest classification. For example, if each class becomes one

stratum, there is more control over how accurately the user accuracy is esti-

mated. With this technique, one can ensure that there are enough samples for

smaller classes. It is also possible to define some hard to get to strata. For exam-

ple, spectral confusion were found in mangroves and palm oil plantations. The

above strategy is useful for both the training phase as well as the evaluation of

the accuracy.

Nowadays on the microwave domain, there is a continuous development of new

SAR processing tools. More sensors such as the Italian CosmoSkyMed and the

Canadian RADARSAT-2, increase the opportunities for improving the analysis

procedures of monitoring of tropical ecosystems.

5.4 Climate, Vegetation and Remote Sensing in

Costa Rica

For this subsection, the following variables: precipitation (PRE), potential evapo-

transpiration (PET) and normalized difference vegetation index (NDVI) were

used to analyse the seasonality and vegetation dynamics of the study area.

The amount of PET as a demand of the atmosphere [Tsakiris et al., 2007] rep-

resents water consuming activities. However, it is a hypothetical quantity which

cannot be directly measured Holdridge [1962]. There are several methods to es-

timate PET in the literature which are based on the mean air temperature only.

Most of them are intended for temperate zones; hence a correction is needed

for low latitudes as in the case of Costa Rica. Information regarding PET can

be used as a baseline for climate change studies in which potential distributions

of flora and fauna can be predicted under the impact of climate change. From

such information, priority areas for biodiversity conservation can be identified.

Furthermore, the difference between the PRE and PET can be easily calculated

on a monthly basis. This provides a simple measure of water surplus or deficit.

One issue that makes PET important is that it can be used to calculate the

actual evapo-transpiration. With this quantity it is possible to derive a soil wa-
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ter balance measure which is the ultimate information needed to establish the

relationship between ecosystems, the water balance and the service of the water

regulator.

NDVI time series provide relevant information of the state of vegetation. There-

fore, this information is very valuable when it is linked with climatic data for the

purpose of addressing climate change, land use as well as land use and land cover

(LULC), or agriculture. As an example of these relationships Shisanya et al.

[2011], found that the trends of biomass in the south-east of Kenya are explained

by changes in LULC but also by rainfall variability.

The accumulated NDVI integrated over the growing season is related to the Net

Primary Production (NPP) [Zhao and Running, 2008]. Annual NPP is a direct

measure of the quantity of carbon fixed by the vegetation through photosynthesis

in a year since it is linked with the photosynthetic activity of the vegetation.

However, caution has to be taken when NDVI is applied in tropical forest with

higher biomass because of the rapid saturation of the NDVI values [Wang et al.,

2005].

The NDVI time series and climatic data could also serve as guide lines for a

better understanding of some spectral confusions on hyper-spectral data. Re-

cently, Somers and Asner [2012] used 4 years EO1 Hyperion time series spectra

to analyse the seasonal dynamics of the canopy of four tree species of the Hawai-

ian ecosystems. The authors found that native and invasive trees are unique in

their reflectance and derivative spectral properties. Multi-temporal studies high-

light the fact that photosynthetic activity and functional properties in different

land covers directly express themselves in spectral differences. NDVI could serve

as an indicator for imagery selection as well as planning hyper-spectral airborne

missions. For example, incorporating the reflection behaviour of plants in the

near infra-red spectrum, the NDVI can be used as an indicator for healthy/non-

healthy vegetation and its condition at a specific point of time.

Gathering and exploitation of information delivered by airborne or satellite sen-

sors can be performed in a variety of different ways depending on the user’s

intention and the field of research. One major issue is how to handle the data in
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an appropriate manner. As the atmospheric conditions are changing over time

and location, the solar irradiance is never a constant. Therefore, the calculation

of special spectral indices derived from remotely sensed data is a suitable way.

However, even then such results should be considered carefully because the in-

dices can either be obtained from a sensor voltage output, digital numbers and

radiance, or reflectance values producing different results [Jackson and Huete,

1991].

Many studies show the (seasonal) relation between NDVI and rainfall. But in

the case of tropical countries such as Costa Rica, there is only a small variation

in the monthly mean temperatures. For that reason, it is also crucial that the

precipitation and potential evapo-transpiration are taken into account in order to

have a better understanding of the interactions and relationships of climate and

vegetation.

Another issue worth mentioning is the subsequent reaction or growth of living

vegetation after rainfall. This circumstance can be seen in Figure 1.2. For exam-

ple, in the month of October in the south of Costa Rica, the NDVI is lowest when

the PRE is at its highest, then the PRE decreases to a minimum in the month

of February. On the other hand, the NDVI has the highest values in the months

of January and February. But after January the curve of NDVI decreases until

the month of April, where the highest value of PET is observed. In the months

of January to April there are several changes in ecosystems in the south of Costa

Rica.

The dates of acquisition of the imagery that were used are in this period of climate

and vegetation activity. For example, one Hyperion scene is from February 23,

2006 and the second one from March 15, 2005. In the case of the HyMap scenes,

one is from March 14, and the second one from March 15, 2005. In the case of the

TerraSAR-X one image is from the month of April, where for example, there is a

larger difference in terms of PRE than in the rest of the TerraSAR-X images that

were acquired from the months of May and June. In SAR multi-temporal data

analysis is very common to separate classes, which can be a function of water

content and vegetation response according to changes of the di-electric constant.
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Regarding the vegetation water content, Danson et al. [1992] found high cor-

relations between the wavelengths corresponding to the slopes on the edges of

the water absorption bands and the leaf water content (but insensitive to differ-

ences in leaf structure) in a laboratory measurements of the spectral reflectance

of leaves from a variety of species. If the relation between spectral reflectance

and leaf water content is important, the acquisition dates within a year are also

important.

Rao [2008], suggest that matching the spectra in order to label unknown spectra

could be a useful method for automatic identification and extraction of various

crop species and may also lead to proper selection of training pixels for mapping

of various crop varieties in an area. If spectral libraries will provide a source

of reference spectra that can aid the interpretation of hyper-spectral and multi-

spectral images [Rao, 2008], they have to take into account the intra-species

variability in various types of soil, mineral and vegetation species [Price, 1994].

If valuable information from spectral libraries is developed, some factors such as

time, year, growth stage, type of variety, soil and climate have to be considered.

An alternative approach is to use a signature derived from training data and a

matching image from another period and apply this to the images for which no

training data are available [Laborte et al., 2010].

As Rao [2008] pointed out after an extensive literature review, there are no sys-

tematic studies carried out for the development of an agriculture-specific spectral

library. If this is the situation for agricultural environments, then it is even more

complicated to develop a systematic spectral library for trees in a forest or in a

forest plantation following the principles of sampling.

Normally, in the optical domain of remote sensing, the acquisition and the avail-

ability of cloud free images are a challenge. In the hyper-spectral field it’s even

more challenging. The cluster analysis of the hyper-spectral scenes and the field

based spectra that were performed could serve as an exploratory data analysis to

identify the similarities as well as the dissimilarities among different land covers.

This previous step is desirable prior to designing a sampling procedure even if the

spectra are taken from the pixels in the imagery or from the in situ measurements.
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In a supervised classification for example, the inputs are the training data and

a set of reference data. The reference data (truth) are needed in order to eval-

uate the classification error. This error is the discrepancy between the situation

depicted on the thematic map and reality [Foody, 2002]. If a statistically sound

accuracy assessment is desirable, both sets of data have to be as high in quality

and quantity as possible.

To fill the gaps in the training data sets, the use of spectral libraries could be an

alternative, especially in classification schemes were the larger regions comprise

multiple images or when images from different years (but also months) are used.

However, the use is limited when the imagery uses broad-bands. Thus, the finer

spectral differences coming from the spectral libraries are not detectable. Further

research is needed using spectral libraries classifying multi-derived SAR bands.

In large projects where the use of remote sensing is needed or in the frame of

REDD+ projects, forest area maps are required. To provide the spatial and the

large spatial view, the use of spectral signatures could help to better understand

the specific land cover as well as to identify the spectral confusion such as that

detected in this study among G.arborea, the palm oil plantations and the forest

in flat slopes with the dominance of raffia. A further investigation could be the

use of local in situ spectral signatures and their variation during the year to

determine how correlated these spectra are with the NDVI time series.

The use of spectral libraries requires a very thorough-full data calibration of

both the reference spectra and the remote sensing data. A further investigation

is required on the calibration of the remote sensing data using more accurate

DEMs. Related to the very high resolution TanDEM-X mission, Riegler et al.

[2011] pointed out that ”in 2014, a homogeneous elevation model will be available

for the Earth’s land surface featuring a vertical accuracy of 2-4 meters (relative)

and 10 meters (absolute), within a horizontal raster of 12 meters” [Riegler et al.,

2011]. This mission will open the opportunity to calibrate the SAR imagery even

better and thus reduce the shadow problems even more.

Since 1972 remote sensing has been providing accurate measurements for mon-

itoring the global forest. However, there are several challenges that the global
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community has to take into account if remote sensing is to play a significant

role in forest monitoring. There are several issues that have to be considered

to guide this discussion and this is a matter the scientific community should be

concerned with as well. At the same time, the political and social sectors are rele-

vant in achieving the necessary consensus. Also, in the framework of the REDD+

initiative, operational approaches are need.

The availability of satellite imagery and its methods must be guided by the best

accuracy that is possible and follow scientific principles in accordance with the

ideas of monitoring, reporting and verification.

Many remote sensing instruments have been built in many different satellites

and platforms over the years. The purposes have been very different as many

different sensors exist. For example, a sample of this variability is presented

in the Appendix 3 of Jones and Vaughan [2010] and there are some websites

which provide up-to-date lists, for example in Union of Concerned Scientist (UCS)

[2012]. The problem is that many of the sensors are built for a specific time

which might be too short for vegetation monitoring purposes. However, there are

other sensor that have been there for many years, and for longer time than they

had been designed for, the TM5 instrument for example was in operation until

November 2011, many years after its planned design life.

There are many airborne-sensors but the data are not available after the specific

programs or laboratories have used the data to their own purposes. This also

poses limitations if a vegetation monitoring system is desirable.

Despite of the data availability and continuity of recent or past sensors, there are

several upcoming and promising new sensors such as Sentinel-2, SPOT continuity

through Pleiades system, SPOT 6 and 7 and Landsat Continuity Mission. In

the microwave doming TerraSAR-X2 will be lunched in 2014 [Knabe, 2010] and

Sentinel C-band will be launched around 2013 [Torres et al., 2012].
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Chapter 6

Conclusions

6.1 Hyper-spectral Conclusions

The analysis of hyper-spectral optical data is limited not only because of restric-

tions and limitations in the availability of imagery, but also and most importantly,

due to the limitations of the temporal resolution and the coverage of on single

scene. The temporal resolution could be solved by the use of aerial platforms.

However, in the case of the two Costa Rican missions, one that took place in 2003

and the second in 2005, 100% of the 51.000 km2 of the Costa Rican surface was not

acquired due to adverse weather conditions and cloud coverage, demonstrating

the restriction of these enterprises.

Nevertheless, space-borne hyper-spectral imagery could scan the same area at

regular time intervals making the monitoring of vegetation and their spectral

confusion possible while taking into account the vegetation phenology. Still, the

availability of the imagery continues to be a constraint due to the cloud coverage

and the time resolution.

Because of the phenology variability, removing the atmospheric effects is a manda-

tory task since it permits inter-sensor comparisons. However, these are incom-

plete atmosphere models. A special challenge for this research was precisely

atmospheric corrections, because it was not possible to automatically perform
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elementary operations on the imagery using the FLAASH module.

The ability to obtain more spectral and spatial details comes at the expense

of a very high data volume which also poses computational and methodological

challenges in the processing of the imagery with high spectral dimensionality.

Principal Component Analysis was needed as a data reduction technique because

of the amount of hyper-spectral information. However, the amount of useful

information that was discarded is ignored.

The highest scene based spectral variability was in the NIR portion of the spectra.

This suggests that further analysis extracting spectra from some specific regions

could solve some of the spectral confusion encountered.

Regarding the clustering process, this technique is not exempt from some prob-

lems. For example, the effectiveness of the method depends on the definition of

a distance. The result of the clustering can be interpreted in different ways, as

well as the cut height, which defines the number of clusters. For instance, multi-

ple sensor and measurement conditions are needed in order to establish spectral

libraries. One of the most important issues in cluster analysis is the evaluation

of clustering results to find the partitioning that best fits the underlying data.

HCA analyses showed that cluster solutions of the PCs spectra from the two

sensors present good separability at a global scale. However, they were subject

to systematic differences; only the eo1 kw and the hy 14 PCs spectra did not

present spectral confusion among G.arborea, palm oil and the forest. The first

approach of HCA defines the number of clusters depending on the cut height. At

an arbitrary cut height, only the dendrograms of the eo1 kw and hy 14 scene did

not present spectral confusion at all. At the height of 0.6 G.arborea presented

spectral confusion with palm oil plantations. These results suggested that hy-

perspectral imagery should not be acquired at a very high spatial resolution to

provide adequate discrimination of land covers.

With the Approximately Unbiased HCA, the spectral detail provided by hyper-

spectral analysis was successful and allowed to identify where exactly the spectral

confusion was among different vegetation land covers. For example, the AU
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method applied to hy 15 scene presents spectral confusion only in three spectra

of G.arborea and palm oil.

Each data set has its variability. These variabilities are determined by the sensor

characteristics, angle of measure, light intensity, water content, and others. The

same sensor under different conditions will give different spectra and different

cluster results. Furthermore, data collection techniques need to acquire time

series spectral signatures.

Regarding the field based spectra, there was spectral confusion in the majority of

18 years of leaves of G.arborea and mangrove. Specifically, the most important

spectral confusion was between 4 spectra of an 18 year old G.arborea and 6

spectra of mangrove. Also 6 spectra of 18 years were not clustered at all. There

was spectral confusion between the spectra of G.arborea leaves of 6, 8 and 18

years.

An extensive amount of variability was found in the spectral response of foliage

within a species and even within the ages of leaves of G.arborea. Due to the

non-unique nature of spectral responses of the leaves of G.arborea, separation of

vegetation at the species level is never likely to be perfect, but it can be a useful

tool for the development of specific spectral libraries as well as a tool to explain

the variability of spectra derived from hyper-spectral imagery.

In addition, robust methods are needed to address the optimal data reduction and

fusion (not implemented here) as well as the classification of multi-source data

in conjunction with hyper-spectral images, SAR imagery; and variable spectral-

spatial resolution. If valuable information from spectral libraries is developed,

some factors such as time, year, growth stage, type of vegetation variety, soil and

climate have to be considered.

In this study, the field based spectra that clustered G.arborea and mangrove

reflectance should be interpreted with caution. A more realistic result of land

covers separability is to use data from airborne or space-borne spectrometers,

with all of the associated variability introduced by poor radiometric calibration,

positive and negative scattering, angle of views and angle of illumination.
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6.2 TerraSAR-X Conclusions

More than 50% of the study area has slopes that vary from rolling to highly

steep ones. However, with the methodology followed, only 10.9% of the area was

classified as foreshortening. On one hand, the use of ascending and descending

orbits and the calibration based on very high resolution DEMs can reduce even

more the shadow and foreshortening problems. On the other hand, if a pixel base

multi-band supervised classification is done, the training as well as the validation

points or polygons have to take care of the high differences within the artificial

SAR bands.

The object-oriented approach takes into account textures and spectral informa-

tion. Its classification phase starts with the crucial initial step of grouping neigh-

boring pixels into meaningful areas, which can be handled in the later step of

classification. In this procedure the usefulness of more bands is shown as this

increases the grouping capabilities. This is valid for optical and SAR imaging

processing. Specifically, in this study, a simple fast and reliable approach to com-

bine the polarized TerraSAR-X imagery is presented. More band combinations,

fusions and indexes are needed especially for SAR sensors like TerraSAR-X. With

more acquisition parameters, the potential of TerraSAR-X is to be exploited.

As shown in section 4.3, the use of several derived bands is necessary to obtain

optimal results for hybrid texture classification. The overall accuracy for forest

and non-forest classification for the study site was 86%. The proven band com-

binations and fusions are an adequate foundation for today’s classification tasks

using TerraSAR-X data. However, the results obtained are highly dependent on

the reference data which were not optimal because of the cloud coverage of the

actual RapidEye imagery and the differences in the acquisition dates from the

other auxiliary data.

Nowadays, the available SAR systems have the potential to develop powerful

tools to map and monitor regions with frequent cloud coverage. The accessible

open source software provides new opportunities to process RADAR images at

low cost.
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More collaboration and partnerships are needed between agencies and organiza-

tions that have agreements with governmental institutions in developing countries

in order to use and observe the forest changes.

6.3 Remote Sensing and Climate

Global data sets that are available free of charge for science and for developing

countries, provide a starting point to run models at a local scale. However, we

need to understand and close the information gaps in order to develop methods

to identify relationships between climate and vegetation at a local scale.

In order to apply NDVI time series analysis, it is necessary to collect data on

a regular basis and only remote sensing is able to provide such data. In the

long term, vegetation modelled as NDVI will provide valuable information about

climate change. In addition, these time-series data are necessary to build or adjust

ecosystem maps as well as to understand vegetation phenological differences.

The use of remote sensing data has the potential to view the ecosystems at a global

scale in terms of time, cost and cover. However, the interpretation requires an

understanding of how the energy interacts with the different land covers and how

to extract the information of interest from the different remote sensing systems.

A crucial step to extract valuable information from remote sensing data is the

atmospheric correction. In this study the imagery used (including the free VEGE-

TATION products), the atmospheric effects are still present because the methods

used to remove these effects are model-based and the information used to archive

this models are based on general conditions. Moreover, for comparison purposes,

further considerations related to NDVI such as soil moisture must be taken into

account, especially in areas of evergreen lowlands swamp forests.

Soil water storage quantification is needed in order to calculate the effect of

water movements on the NDVI, but also, for multi-seasonal remote sensing data

analysis. For that reason, the quantification of the actual evapo-transpiration is

needed.
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Through this study and analysis we wish to make a contribution to improving ap-

proaches for remote sensing based on forest cover estimations. Such information

may also be useful for monitoring purposes and could help to develop a national

standard definition using remote sensing approaches.

At a country level, the efforts to measure forests using remote sensing technolo-

gies face several technical challenges. Ground truth data must be acquired across

diverse ecosystems or using different sources. Creating national forest maps with

high, regionally consistent accuracy is demanding. Choices are necessary in se-

lecting imagery with the appropriate trade-off in cost and different resolutions

(spatial, spectral, time and radio-metrical). Challenges also remain to process

time series imagery in automated or semi-automated manner, which increases

the amount of data and the information to accurately monitor forest over large

areas.

Finally, emerging and in-development sensors either passive or active such as the

global TanDEM-X, EnMAP, ALOS-2, SPOT6 and 7, Landsat Data Continuity

Mission and PAZ, etc. will provide the needed sustainability and operational use

for REDD+ purposes.
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Appendix A

Climate and Vegetation in Costa

Rica

A.1 Normalized Difference Vegetation Index

I used climate variables like precipitation and potential evapo-transpiration as

well as the Reconnaissance Drought Index (RDI) which is also comparable with

the FAOs aridity index [Tsakiris et al., 2007]. To correlate the NDVI data, we

combined several techniques like interpolation and linear regressions in order to

compute Costa Rica’s surface in pixels of mean monthly values.

We extracted subsets of downloaded SPOT-VEGETATION D10 NDVI tiles using

VGTExtract 1.4.2. Three composites per month were used, on the first day of

the month, the 11th and on the 21st day. The NDVI is derived from spectral (in

reflectance, ρ) data as shown in Equation 1:

NDV I =
ρNIR− ρRED
ρNIR + ρRED

(A.1)
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Precipitation (Climate and Vegetation in Costa Rica)

Where RED is the red portion of the electromagnetic spectrum (0.6-0.7 ηm) and

NIR is the near infrared portion of the electromagnetic spectrum (0.75-1.5 ηm).

Then we imported the imagery into R [R Development Core Team, 2011] with

the raster package [van Etten, 2011].

High cloud cover occurs frequently in Central America leading to large regions

with missing optical sensor observations even in the NDVI 10 days synthesis

products. Therefore, it was necessary to estimate the missing sensor observations

using a spatio-temporal imputation method using the Expectation Maximization

(EM) algorithm of the Amelia R package [Honaker et al., 2011]. The average

monthly values of NDVI for the period from 2001 to 2010 were calculated based

on these filled data.

A.2 Precipitation

Spatially irregularly distributed monthly means of meteorological stations were

interpolated to a regular grid using the Regularized Spline with Tension (RST)

interpolation method implemented as v.surf.rst in GRASS [GRASS Development

Team, 2011]. A spline is a type of piecewise polynomial, which is preferable to a

simple polynomial interpolation [Hengl, 2009]. In our study we specifically defined

the amount of smoothness semi-norm, a tension parameter which controls the

behaviour of the resulting surface from a thin membrane to a stiff steel plate and

segment processing [Neteler and Mitasova, 2008]: as the precipitation is highly

variable in time and space we adjusted the smoothing, tension and the number of

segments to the spline interpolation process for each month in order to control the

variance of the residuals over the data set. Hereby, we wish to avoid overshoots.

The segmentation process in the RST uses a decomposition of the studied region

into rectangular segments with variable size, dependent on the density of the data

points [Neteler and Mitasova, 2008]. The use of the segmented processing was

the key factor in the present application. In equation 2 we present the general

idea of a regularized spline with tension and smoothing [Neteler and Mitasova,
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Temperature (Climate and Vegetation in Costa Rica)

2008].

z(r) = T (r) +
N∑
i=1

λj ×R(r, r[j]) (A.2)

Where z is the studied phenomenon (in this case precipitation), (r) is an un-

sampled location (x, y), λ is a coefficient and the trend function T (r) is described

in the next equation:

T (r) =
M∑
i=1

alfl(r) (A.3)

Where fl(r) is a set of linearly independent monomial functions and R(r, r[j])

is a radial basis function with an explicit form which depends on the choice of

weights for partial derivatives in the smooth semi-norm [Neteler and Mitasova,

2008]. A complete description of the variables or equations can also be found in

Hengl [2009].

A.3 Temperature

We used a linear regression model for each climatic region and for every month

based on the variation of the temperature and elevation from the New LocClim

data base. These parameters were then applied to the SRTM digital elevation

model to get the mean air temperature of Costa Rica.

Tm = β0 − β1 × Elev (A.4)

Where Tm is the mean monthly air temperature in ◦C; Elev is the elevation in

meters. B0 and B1 are the linear parameters that represent the intercept and the

slope, respectively.

153



Potential Evapo-transpiration (Climate and Vegetation in Costa Rica)

A.4 Potential Evapo-transpiration

We calculated the Potential Evapotranspiration (PET) based on Hamon [1963]

and the formulae presented in Lu et al. [2005] as follows:

PET = 0.1651× Ld×RHOSAT × kPEC (A.5)

Where PET is in mm, Ld is the daytime length, which is the time from sunrise to

sunset in multiples of 12 hours; RHOSAT is the saturated vapor density (g/m3)

at the daily mean air temperature (Tm estimated with equation 7.4). kPEC is

the calibration coefficient which was 2.2 in the study. Specifically RHOSAT is:

RHOSAT =
216.7× ESAT
Tm + 273.3

(A.6)

ESAT is the saturated vapour pressure (mb) at the given Tm:

ESAT = 6.108× exp(
17.26939× Tm
Tm + 273.3

) (A.7)

We also calculated PET based on four other methods such as Holdridge ([Holdridge,

1962], Thornthwaithe [Lu et al., 2005], Lu-Hamon [Lu et al., 2005]) and the FAO

Penman-Monteith equation as in New LocClim (version.1.1) [Grieser et al., 2006].

The purpose was to compare the methods and to decide which method and which

calibration coefficient to choose for our study.

A.5 Reconnaissance Drought Index

The aridity index used was proposed by Tsakiris et al. [2007] as described below:

a0 =
PREi
PETi

(A.8)
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Reconnaissance Drought Index (Climate and Vegetation in Costa Rica)

Where PRE is the mean precipitation and PET is the potential evapo-transpiration

of the ith month for the analysed period. The second expression is called the

Normalized Reconnaissance Drought Index (RDI) [Tsakiris et al., 2007], and the

monthly calculation is given by the following equation:

RDIn =
a0

ā0

− 1 (A.9)
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Appendix B

Coordinates
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Figure B.1: Slopes of the TerraSAR-X study area.
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Appendix C

List of the Clusters and Edges

The appendixes C.1,C.2,C.3,C.4 and C.5 are the text-printed dendrograms for

the all hyper-spectral data.

Each of these appendixes presents all the information contained in the dendro-

grams, however, they contain the edge number of each cluster arrangement. This

information is not presented in the Figures 4.8,4.10,4.12,4.14 and 4.19 because of

the space needed to print the edge numbers and the AU values in each dendro-

gram.

C.1 Clusters and Edge Number of the Dendro-

gram of the hy 15 PCs Spectral Signatures.

cluster X99.10, X99.11(edge2)

cluster X22.8, X22.9(edge4)

cluster X99.5, X99.6 X99.7, X99.8 (edge5)

cluster X99.1, X99.9(edge7)

cluster X99.5, X99.6, X99.7, X99.8, X99.10, X99.11(edge8)

cluster X99.2, X99.3, X99.12(edge10)

cluster X1001.1, X1001.2(edge11)

cluster X55.8, X55.9(edge13)

157



Clusters and Edge Number of the Dendrogram of the hy 14 PCs Spectral
Signatures. (List of the Clusters and Edges)

cluster X22.3, X22.4(edge18)

cluster X66.3, X66.6 X33.10, X33.11(edge19)

cluster X22.6, X22.7, X22.11(edge22)

cluster X55.3, X55.4(edge28)

cluster X22, X22.6, X22.7, X22.11(edge29)

cluster X1001.7, X1001.8, X1001.9(edge30)

cluster X44, X44.1(edge31)

cluster X44.2 X1001.3, X1001.4(edge32)

cluster X1001.10, X1001.11(edge33)

cluster X22.2, X22.3, X22.4 X44.3(edge34)

cluster X44.4, X44.5, X44.11(edge36)

cluster X66.1, X66.2(edge37)

cluster X99.1, X99.2, X99.3, X99.4, X99.5, X99.6, X99.7, X99.8, X99.9, X99.10, X99.11, X99.12(edge38)

cluster X55.3, X55.4, X55.5(edge42)

cluster X44.6, X44.10(edge50)

cluster X33, X33.1(edge53)

cluster X33.5, X33.7(edge55)

cluster X66, X66.4, X66.5, X66.7, X66.8, X66.9, X66.10, X66.11(edge56)

cluster X44.7, X44.8, X44.9(edge60) X33.6, X33.10, X33.11(edge61)

cluster X33.3, X33.9, X66.1, X66.2, X66.3, X66.6(edge64)

cluster X22, X22.1, X22.2, X22.3, X22.4, X22.5, X22.6, X22.7, X22.8, X22.9, X22.10, X22.11(edge66)

cluster X55, X55.1, X55.2, X55.3, X55.4, X55.5, X55.6, X55.7, X55.8, X55.9, X55.10, X55.11(edge67)

cluster X44, X44.1, X44.2, X44.3, X44.4, X44.5, X44.6, X44.10, X44.11(edge68)

cluster X33.5, X33.7, X66, X66.4, X66.5, X66.7, X66.8, X66.9, X66.10, X66.11(edge69)

cluster X33, X33.1, X33.2(edge71)

cluster X1001, X1001.1, X1001.2, X1001.3, X1001.4, X1001.5, X1001.6, X1001.7, X1001.8, X1001.9,

X1001.10, X1001.11, X22, X22.1, X22.2, X22.3, X22.4, X22.5, X22.6, X22.7, X22.8, X22.9, X22.10, X22.11(edge75)

cluster X44, X44.1, X44.2, X44.3, X44.4, X44.5, X44.6, X44.7, X44.8, X44.9, X44.10, X44.11(edge76)

cluster X1001, X1001.1, X1001.2, X1001.3, X1001.4, X1001.5, X1001.6, X1001.7, X1001.8, X1001.9, X1001.10, X1001.11, X22,

X22.1, X22.2, X22.3, X22.4, X22.5, X22.6, X22.7, X22.8, X22.9, X22.10, X22.11, X33, X33.1, X33.2, X33.3, X33.4, X33.5,

X33.6, X33.7, X33.8, X33.9, X33.10, X33.11, X55, X55.1, X55.2, X55.3, X55.4, X55.5, X55.6, X55.7, X55.8, X55.9, X55.10,

X55.11, X66, X66.1, X66.2, X66.3, X66.4, X66.5, X66.6, X66.7, X66.8, X66.9, X66.10, X66.11(edge81)

cluster X1001, X1001.1, X1001.2, X1001.3, X1001.4, X1001.5, X1001.6, X1001.7, X1001.8, X1001.9, X1001.10, X1001.11,

X22, X22.1,X22.2, X22.3, X22.4, X22.5, X22.6, X22.7, X22.8, X22.9, X22.10, X22.11, X33, X33.1, X33.2, X33.3, X33.4, X33.5,

X33.6, X33.7, X33.8, X33.9, X33.10, X33.11, X44, X44.1, X44.2, X44.3, X44.4, X44.5, X44.6, X44.7, X44.8, X44.9, X44.10,

X44.11, X55, X55.1, X55.2, X55.3, X55.4,X55.5, X55.6, X55.7, X55.8, X55.9, X55.10, X55.11, X66, X66.1, X66.2, X66.3,

X66.4, X66.5, X66.6, X66.7, X66.8, X66.9, X66.10, X66.11(edge82)

C.2 Clusters and Edge Number of the Dendro-

gram of the hy 14 PCs Spectral Signatures.

cluster X77.4, X77.5(edge1)

cluster X77.2, X77.3(edge2)

cluster X99.9, X99.10(edge3)

cluster X99.3, X99.4(edge4)

cluster X88.5, X88.6(edge5)

158



Clusters and Edge Number of the Dendrogram of the hy 14 PCs Spectral
Signatures. (List of the Clusters and Edges)

cluster X99.1, X99.2, X99.5(edge9)

cluster X99.3, X99.4, X99.9, X99.10, X99.12(edge10)

cluster X99.6, X99.7, X99.8(edge12)

cluster X77.7, X77.8(edge15)

cluster X33.8, X33.9(edge16)

cluster X22.6, X22.7(edge17)

cluster X99.1, X99.2, X99.5, X99.11(edge19)

cluster X88.4, X88.5, X88.6, X88.9, X88.10(edge20)

cluster X22.8, X22.9(edge21)

cluster X22.1, X22.2(edge23)

cluster X22.3, X22.4(edge24)

cluster X33.1, X33.2(edge28)

cluster X33, X33.11(edge31)

cluster X99.1, X99.2, X99.3, X99.4, X99.5, X99.6, X99.7, X99.8, X99.9, X99.10, X99.11, X99.12(edge35)

cluster X44.3, X44.4(edge37) X77.6, X77.7, X77.8(edge40) X44.10, X44.11(edge42)

cluster X88, X88.1, X88.2, X88.3, X88.4, X88.5, X88.6, X88.7, X88.8, X88.9, X88.10, X88.11(edge47)

cluster X77.1, X77.11(edge48) X66, X66.6 (edge49)X66.3, X66.5(edge56)

cluster X77.2, X77.3, X77.4, X77.5, X77.10(edge61) X66, X66.6, X66.9(edge63)

cluster X77, X77.1, X77.11(edge64) X1001.7, X1001.8, X1001.9(edge65)

cluster X1001.1, X1001.2, X1001.3, X1001.4, X1001.5, X1001.6, X1001.10, X1001.11(edge67)

cluster X77.2, X77.3, X77.4, X77.5, X77.9, X77.10(edge68) X66, X66.6, X66.7, X66.9(edge69)

cluster X22, X22.1, X22.2, X22.3, X22.4, X22.5, X22.6, X22.7, X22.8, X22.9, X22.10, X22.11(edge70)

cluster X44.7, X44.9(edge71)

cluster X33, X33.1, X33.2, X33.3, X33.4, X33.5, X33.6, X33.7, X33.8, X33.9, X33.10, X33.11(edge72)

cluster X44.3, X44.4, X44.5, X44.6, X44.10, X44.11(edge74)

cluster X66, X66.3, X66.5, X66.6, X66.7, X66.9(edge76) X44.7, X44.8, X44.9(edge79)

cluster X77.2, X77.3, X77.4, X77.5, X77.6, X77.7, X77.8, X77.9, X77.10(edge83)

cluster X1001, X1001.1, X1001.2, X1001.3, X1001.4, X1001.5, X1001.6, X1001.7, X1001.8, X1001.9,

X1001.10, X1001.11(edge84)

cluster X33, X33.1, X33.2, X33.3, X33.4, X33.5, X33.6, X33.7, X33.8, X33.9, X33.10, X33.11, X66, X66.1, X66.2,

X66.3, X66.4, X66.5, X66.6, X66.7, X66.8, X66.9, X66.10, X66.11(edge87)

cluster X1001, X1001.1, X1001.2, X1001.3, X1001.4, X1001.5, X1001.6, X1001.7, X1001.8, X1001.9, X1001.10,

X1001.11, X22, X22.1, X22.2, X22.3, X22.4, X22.5, X22.6, X22.7, X22.8, X22.9, X22.10, X22.11(edge88)

cluster X77, X77.1, X77.2, X77.3, X77.4, X77.5, X77.6, X77.7, X77.8, X77.9, X77.10, X77.11(edge89)

cluster X44, X44.1, X44.2, X44.3, X44.4, X44.5, X44.6, X44.7, X44.8, X44.9, X44.10, X44.11(edge90)

cluster X88, X88.1, X88.2, X88.3, X88.4, X88.5, X88.6, X88.7, X88.8, X88.9, X88.10, X88.11, X99.1, X99.2,

X99.3, X99.4, X99.5, X99.6, X99.7, X99.8, X99.9, X99.10, X99.11, X99.12(edge91)

cluster X1001, X1001.1, X1001.2, X1001.3, X1001.4, X1001.5, X1001.6, X1001.7, X1001.8, X1001.9, X1001.10,

X1001.11, X22, X22.1, X22.2, X22.3, X22.4, X22.5, X22.6, X22.7, X22.8, X22.9, X22.10, X22.11, X33, X33.1,

X33.2, X33.3, X33.4, X33.5, X33.6, X33.7, X33.8, X33.9, X33.10, X33.11, X44, X44.1, X44.2, X44.3, X44.4,

X44.5, X44.6, X44.7, X44.8, X44.9, X44.10, X44.11, X66, X66.1, X66.2, X66.3, X66.4, X66.5, X66.6, X66.7,

X66.8, X66.9, X66.10, X66.11, X88, X88.1, X88.2, X88.3, X88.4, X88.5, X88.6, X88.7, X88.8, X88.9, X88.10,

X88.11, X99.1, X99.2, X99.3, X99.4, X99.5, X99.6, X99.7, X99.8, X99.9, X99.10, X99.11, X99.12(edge94)
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Clusters and Edge Number of the dendrogram of the eo1 pz PCs Spectral
Signatures. (List of the Clusters and Edges)

C.3 Clusters and Edge Number of the dendro-

gram of the eo1 pz PCs Spectral Signa-

tures.

cluster X88.4, X88.5(edge2) X1001, X1001.1(edge3)

cluster X66.5, X66.6(edge7)

cluster X55.4, X55.5(edge8)

cluster X66.3, X66.4(edge10)

cluster X44.4, X44.5(edge11)

cluster X99, X99.1, X99.2, X99.3, X99.4, X99.5(edge13)

cluster X55.1, X55.2, X55.3(edge15)

cluster X33.1, X33.2(edge16)

cluster X22, X22.2(edge17)

cluster X44, X44.1, X44.2(edge18)

cluster X22.10, X22.11(edge21)

cluster X44.3, X44.4, X44.5(edge22)

cluster X66, X66.1(edge26)

cluster X1001, X1001.1, X1001.2(edge27)

cluster X22, X22.2, X22.8(edge29)

cluster X33.4, X33.5(edge30)

cluster X33.9, X33.10(edge32)

cluster X22, X22.2, X22.8, X22.9(edge34)

cluster X22.3, X22.5(edge36)

cluster X44, X44.1, X44.2, X44.3, X44.4, X44.5(edge39)

cluster X88, X88.1, X88.2, X88.3, X88.4, X88.5, X88.6, X88.7(edge41)

cluster X1001.5, X1001.6(edge45)

cluster X55, X55.1, X55.2, X55.3, X55.4, X55.5, X55.6, X55.7(edge48)

cluster X66, X66.1, X66.2, X66.3, X66.4, X66.5, X66.6, X66.7, X66.8, X66.9(edge58)

cluster X77, X77.1, X77.2, X77.3(edge65)

cluster X1001, X1001.1, X1001.2, X1001.3, X1001.4, X1001.5, X1001.6, X1001.7, X22, X22.2, X22.3, X22.4, X22.5, X22.6, X22.7,

X22.8, X22.9, X22.10, X22.11, X33, X33.1, X33.2, X33.3, X33.4, X33.5, X33.6, X33.7, X33.8, X33.9, X33.10, X33.11(edge66)

cluster X88, X88.1, X88.2, X88.3, X88.4, X88.5, X88.6, X88.7, X99, X99.1, X99.2, X99.3, X99.4, X99.5(edge67)

cluster X1001, X1001.1, X1001.2, X1001.3, X1001.4, X1001.5, X1001.6, X1001.7, X22, X22.2, X22.3, X22.4, X22.5, X22.6, X22.7,

X22.8, X22.9, X22.10, X22.11, X33, X33.1, X33.2, X33.3, X33.4, X33.5, X33.6, X33.7, X33.8, X33.9, X33.10, X33.11, X66, X66.1,

X66.2, X66.3, X66.4, X66.5, X66.6, X66.7, X66.8, X66.9(edge68)

cluster X1001, X1001.1, X1001.2, X1001.3, X1001.4, X1001.5, X1001.6, X1001.7, X22, X22.2, X22.3, X22.4, X22.5, X22.6, X22.7,

X22.8, X22.9, X22.10, X22.11, X33, X33.1, X33.2, X33.3, X33.4, X33.5, X33.6, X33.7, X33.8, X33.9, X33.10, X33.11, X55, X55.1,

X55.2, X55.3, X55.4, X55.5, X55.6, X55.7, X66, X66.1, X66.2, X66.3, X66.4, X66.5, X66.6, X66.7, X66.8, X66.9(edge69)

cluster X1001, X1001.1, X1001.2, X1001.3, X1001.4, X1001.5, X1001.6, X1001.7, X22, X22.2, X22.3, X22.4, X22.5, X22.6, X22.7,

X22.8, X22.9, X22.10, X22.11, X33, X33.1, X33.2, X33.3, X33.4, X33.5, X33.6, X33.7, X33.8, X33.9, X33.10, X33.11, X44, X44.1,

X44.2, X44.3, X44.4, X44.5, X55, X55.1, X55.2, X55.3, X55.4, X55.5, X55.6, X55.7, X66, X66.1, X66.2, X66.3, X66.4, X66.5,

X66.6, X66.7, X66.8, X66.9(edge70)

cluster X1001, X1001.1, X1001.2, X1001.3, X1001.4, X1001.5, X1001.6, X1001.7, X22, X22.2, X22.3, X22.4, X22.5, X22.6, X22.7, X22.8,

X22.9, X22.10, X22.11, X33, X33.1, X33.2, X33.3, X33.4, X33.5, X33.6, X33.7, X33.8, X33.9, X33.10, X33.11, X44, X44.1, X44.2, X44.3,

X44.4, X44.5, X55, X55.1, X55.2, X55.3, X55.4, X55.5, X55.6, X55.7, X66, X66.1, X66.2, X66.3, X66.4, X66.5, X66.6, X66.7, X66.8, X66.9,

X88, X88.1, X88.2, X88.3, X88.4, X88.5, X88.6, X88.7, X99, X99.1, X99.2, X99.3, X99.4, X99.5(edge71)
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Clusters and Edge Number of the Dendrogram of the eo1 kw PCs Spectral
Signatures. (List of the Clusters and Edges)

C.4 Clusters and Edge Number of the Dendro-

gram of the eo1 kw PCs Spectral Signa-

tures.

cluster X22.1, X22.2(edge1)

cluster X99.3, X99.4(edge2)

cluster X22.4, X22.5(edge3)

cluster X33.7, X33.8(edge4)

cluster X44, X44.1(edge5)

cluster X33.5, X33.6(edge8)

cluster X33.1, X33.2(edge9)

cluster X44.3, X44.4(edge11)

cluster X66.2, X66.3(edge12)

cluster X88.1, X88.2(edge13)

cluster X99, X99.1, X99.2(edge14)

cluster X66.4, X66.5(edge15)

cluster X1001.1, X1001.2(edge18) X22, X22.1, X22.2(edge19)

cluster X44.6, X44.7(edge20)

cluster X22.7, X22.8, X22.9(edge21)

cluster X66.6, X66.7(edge24)

cluster X55.5, X55.6 X55, X55.1(edge25)

cluster X1001.6, X1001.7(edge28)

cluster X66.8, X66.9(edge33)

cluster X55.2, X55.3(edge39)

cluster X1001.1, X1001.2, X1001.5(edge45)

cluster X44, X44.1, X44.2, X44.3, X44.4, X44.5, X44.8(edge46)

cluster X88, X88.1, X88.2, X88.3, X88.4, X88.5, X88.6, X88.7(edge50)

cluster X55.5, X55.6, X55.7(edge53)

cluster X66, X66.1, X66.2, X66.3, X66.4, X66.5, X66.6, X66.7, X66.8, X66.9(edge54)

cluster X1001, X1001.3, X1001.4(edge55)

cluster X33, X33.1, X33.2, X33.3, X33.5, X33.6, X33.7, X33.8, X33.9(edge56)

cluster X22, X22.1, X22.2, X22.3, X22.4, X22.5, X22.6, X22.7, X22.8, X22.9(edge57)

cluster X44, X44.1, X44.2, X44.3, X44.4, X44.5, X44.6, X44.7, X44.8(edge59)

cluster X1001.1, X1001.2, X1001.5, X1001.6, X1001.7(edge60) X77.1, X77.3(edge61)

cluster X33, X33.1, X33.2, X33.3, X33.4, X33.5, X33.6, X33.7, X33.8, X33.9(edge63)

cluster X1001.1, X1001.2, X1001.5, X1001.6, X1001.7, X22, X22.1, X22.2, X22.3, X22.4, X22.5,

X22.6, X22.7, X22.8, X22.9(edge65)

cluster X44, X44.1, X44.2, X44.3, X44.4, X44.5, X44.6, X44.7, X44.8, X44.9(edge66)

cluster X1001, X1001.1, X1001.2, X1001.3, X1001.4, X1001.5, X1001.6, X1001.7, X22, X22.1,

X22.2, X22.3, X22.4, X22.5, X22.6, X22.7, X22.8, X22.9(edge67)

cluster X55, X55.1, X55.2, X55.3, X55.4, X55.5, X55.6, X55.7(edge68)

cluster X99, X99.1, X99.2, X99.3, X99.4, X99.5, X99.6, X99.7, X99.8, X99.9, X99.10(edge69)

cluster X77, X77.1, X77.3(edge70)

cluster X88, X88.1, X88.2, X88.3, X88.4, X88.5, X88.6, X88.7, X99, X99.1, X99.2, X99.3, X99.4,

X99.5, X99.6, X99.7, X99.8, X99.9, X99.10(edge71)

cluster X77, X77.1, X77.2, X77.3(edge73)
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Clusters and Edge Number of the Dendrogram of the USB650 Spectral
Signatures. (List of the Clusters and Edges)

cluster X1001, X1001.1, X1001.2, X1001.3, X1001.4, X1001.5, X1001.6, X1001.7, X22, X22.1, X22.2,

X22.3, X22.4, X22.5, X22.6, X22.7, X22.8, X22.9, X33, X33.1, X33.2, X33.3, X33.4, X33.5, X33.6,

X33.7, X33.8, X33.9, X66, X66.1, X66.2, X66.3, X66.4, X66.5, X66.6, X66.7, X66.8, X66.9(edge74)

cluster X44, X44.1, X44.2, X44.3, X44.4, X44.5, X44.6, X44.7, X44.8, X44.9, X55, X55.1,

X55.2, X55.3, X55.4, X55.5, X55.6, X55.7(edge75)

cluster X1001, X1001.1, X1001.2, X1001.3, X1001.4, X1001.5, X1001.6, X1001.7, X22, X22.1, X22.2, X22.3,

X22.4, X22.5, X22.6, X22.7, X22.8, X22.9, X33, X33.1, X33.2, X33.3, X33.4, X33.5, X33.6, X33.7, X33.8,

X33.9, X44, X44.1, X44.2, X44.3, X44.4, X44.5, X44.6, X44.7, X44.8, X44.9, X55, X55.1, X55.2, X55.3,

X55.4, X55.5, X55.6, X55.7, X66, X66.1, X66.2, X66.3, X66.4, X66.5, X66.6, X66.7, X66.8, X66.9(edge76)

cluster X1001, X1001.1, X1001.2, X1001.3, X1001.4, X1001.5, X1001.6, X1001.7, X22, X22.1, X22.2, X22.3,

X22.4, X22.5, X22.6, X22.7, X22.8, X22.9, X33, X33.1, X33.2, X33.3, X33.4, X33.5, X33.6, X33.7, X33.8,

X33.9, X44, X44.1, X44.2, X44.3, X44.4, X44.5, X44.6, X44.7, X44.8, X44.9, X55, X55.1, X55.2, X55.3,

X55.4, X55.5, X55.6, X55.7, X66, X66.1, X66.2, X66.3, X66.4, X66.5, X66.6, X66.7, X66.8, X66.9, X88,

X88.1, X88.2, X88.3, X88.4, X88.5, X88.6, X88.7, X99, X99.1, X99.2, X99.3, X99.4, X99.5, X99.6,

X99.7, X99.8, X99.9, X99.10(edge77)

C.5 Clusters and Edge Number of the Dendro-

gram of the USB650 Spectral Signatures.

cluster X103311055, X103311056(edge1)

cluster X302010845, X302010846(edge2)

cluster X302030861, X302030862(edge3)

cluster X302030863, X302030864 (edge4)

cluster X30203086, X103311055, X103311056, X302030861, X302030862, X302030863, X302030864, X302030865 (edge8)

cluster X30203086, X103311054, X103311055, X103311056, X302030861, X302030862, X302030863, X302030864, X302030865(edge9)

cluster X302010841, X302010843 X302010844, X302010845, X302010846(edge11)

cluster X302010841, X302010842, X302010843(edge12)

cluster X103333078, X103333079(edge13)

cluster X101132021, X101132022(edge14)

cluster X30202085, X302020851(edge15)

cluster X50202091, X50203092(edge16)

cluster X40202088, X60206098(edge17)

cluster X302010841, X302010842, X302010843, X302010844, X302010845, X302010846(edge18)

cluster X50202091, X50203092, X60204096(edge19)

cluster X103312057, X103312058(edge20)

cluster X103313059, X103313060 (edge21)

cluster X101131018, X101131019(edge22)

cluster X101122012, X101122013(edge23)

cluster X101132020, X101132021, X101132022(edge24)

cluster X102222039, X102222040(edge26)

cluster X102211026, X102211027(edge29)

cluster X103331070, X103331071(edge30)

cluster X102222038, X102222039, X102222040(edge33)

cluster X30203086, X103311054, X103311055, X103311056, X103332075, X302030861, X302030862, X302030863, X302030864, X302030865(edge35)

cluster X102212029, X102212031(edge36)

cluster X103313059, X103313060, X103313061(edge37)
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Clusters and Edge Number of the Dendrogram of the USB650 Spectral
Signatures. (List of the Clusters and Edges)

cluster X102232047, X102232048, X102232049(edge39)

cluster X102221035, X102221036(edge40)

cluster X102222038, X102222039, X102222040, X102223041(edge42)

cluster X202030821, X202030822(edge45)

cluster X102211026, X102211027, X102211028(edge46)

cluster X101113007, X102223042(edge47)

cluster X101133024, X101133025(edge48)

cluster X60202094, X102233052(edge49)

cluster X103322065, X103322066(edge52)

cluster X202030823, X202030824(edge53)

cluster X101113008, X102223043(edge54)

cluster X102212030, X102231046(edge55)

cluster X101113006, X102231044(edge59)

cluster X103331070, X103331071, X103331072(edge60)

cluster X101122012, X101122013, X101133023(edge63)

cluster X101111010, X101111011(edge65)

cluster X103323067, X103323068, X103323069(edge66)

cluster X101113007, X102222038, X102222039, X102222040, X102223041, X102223042(edge69)

cluster X102233050, X102233051(edge80)

cluster X60207099, X202030821, X202030822, X202030823, X202030824, X202030825, X202030826, X202030827, X202030828, X202030829(edge81)

cluster X103312057, X103312058, X103313059, X103313060, X103313061(edge84)

cluster X101113006, X102212029, X102212030, X102212031, X102231044, X102231045, X102231046(edge89)

cluster X101123014, X101123015, X101123016, X103331070, X103331071, X103331072(edge90)

cluster X103332073, X103332074(edge97)

cluster X101111009, X101111010, X101111011(edge100)

cluster X101113006, X102212029, X102212030, X102212031, X102231044, X102231045, X102231046, X102232047, X102232048, X102232049(edge104)

cluster X102213032, X102213033, X102213034, X102221035, X102221036, X102233050, X102233051, X103332073, X103332074(edge109)
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Appendix D
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Figure D.1: Conditional density plot all bands for the land cover forest in gently

undulating slopes.
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(Conditional Density Plots for All Bands and the Different Land Covers)
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Figure D.2: Conditional density plot for all bands the land cover forest in rolling

slopes.

Bands

Intensity (8bit)

D
en

si
ty

 (
sc

al
ed

)

Figure D.3: Conditional density plot for all bands for the land cover herbland in

flat slopes.
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(Conditional Density Plots for All Bands and the Different Land Covers)
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Figure D.4: Conditional density plot for all bands for the land cover infrastruc-

ture.
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Figure D.5: Conditional density plot for all bands for the land cover mangrove.
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(Conditional Density Plots for All Bands and the Different Land Covers)
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Figure D.6: Conditional density plot for all bands for the land cover palm oil (old

plantation).
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Figure D.7: Conditional density plot for all bands for the land cover palm oil

(young plantation).
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(Conditional Density Plots for All Bands and the Different Land Covers)

Bands

D
en

si
ty

 (
sc

al
ed

)

Intensity (8bit)

Figure D.8: Conditional density plot for all bands for the land cover pasture.
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Figure D.9: Conditional density plot for all bands for the land cover bare soil.
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(Conditional Density Plots for All Bands and the Different Land Covers)

Bands

D
en

si
ty

 (
sc

al
ed

)

Intensity (8bit)

Figure D.10: Conditional density plot for all bands for the land cover water.
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Appendix E

Table E.1: Comparison of the land covers by TerraSAR-X processed bands.
B1 B2 B3 B4 B5 B6 B7 B8 B9

Cover (ROI) Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

soil 65.01 17.89 79.97 10.56 72.16 18.72 60.18 17.35 62.18 19.21 70.56 20.98 89.18 17.31 90.91 16.62 101.56 19.14
forest gen undul 49.23 26.21 88.86 32.47 73.04 38.46 76.91 39.20 71.19 37.61 75.23 37.88 100.97 32.47 102.39 32.03 111.59 32.95
pastures 45.97 9.13 58.77 7.62 41.19 13.67 43.85 17.08 41.51 19.70 45.64 16.58 61.11 16.42 58.75 14.82 82.71 17.90
palm old 22.26 13.26 141.69 17.28 93.18 16.69 83.25 13.52 73.83 13.09 77.13 12.83 132.80 13.72 146.96 15.99 124.34 14.05
palm young 17.78 18.42 110.46 12.44 94.71 14.54 88.38 12.55 80.63 11.60 92.69 12.97 123.20 10.21 129.21 12.33 125.16 11.80
infrastructure 41.55 17.75 252.94 8.77 78.58 55.43 73.39 42.88 54.64 16.64 72.27 31.37 226.30 55.87 244.30 35.42 89.94 36.03
herbland 51.20 9.39 64.27 12.47 45.23 9.66 45.10 9.35 33.99 7.15 39.84 6.35 58.44 10.85 62.94 13.86 73.07 6.74
mangrove 29.80 24.44 105.07 20.79 90.05 23.78 108.51 30.50 103.36 31.11 94.97 24.05 134.35 23.29 132.24 23.49 143.16 25.46
water 19.91 1.37 28.48 1.46 16.84 3.92 15.13 0.45 12.23 0.48 22.44 1.58 22.00 1.06 17.04 1.73 53.08 2.13
forest flat raffia 18.42 21.61 123.79 15.53 81.63 11.55 81.75 11.08 71.29 10.49 75.40 10.35 119.95 10.25 130.20 13.16 117.90 10.68
forest slopes 41.48 25.85 126.33 80.53 70.62 44.25 68.55 42.39 61.24 38.43 66.41 36.79 119.96 50.08 132.23 62.11 111.21 35.90
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Appendix F
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Figure F.1: Conditional density plot for the Band 1 and all land covers.
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(Comparison of the Covers by TerraSAR-X Processed Bands)
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Figure F.2: Conditional density plot for the Band 2 and all land covers.
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Figure F.3: Conditional density plot for the Band 3 and all land covers.

172



(Comparison of the Covers by TerraSAR-X Processed Bands)
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Figure F.4: Conditional density plot for the Band 4 and all land covers.
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Figure F.5: Conditional density plot for the Band 5 and all land covers.
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(Comparison of the Covers by TerraSAR-X Processed Bands)
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Figure F.6: Conditional density plot for the Band 6 and all land covers.
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Figure F.7: Conditional density plot for the Band 7 and all land covers.
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(Comparison of the Covers by TerraSAR-X Processed Bands)
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Figure F.8: Conditional density plot for the Band 8 and all land covers.
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Figure F.9: Conditional density plot for the Band 9 and all land covers.
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