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Chapter 1

Introduction

1.1 Description of the Capitulation Problem

and its Historical Background

The original capitulation problem in class field theory is more than one cen-
tury old. It was Hilbert, who did pioneering work on the capitulation prob-
lem. In his celebrated Zahlbericht of 1897, he proved Hilbert’s Theorem 94
which can be seen as the foundation of this subject. In what follows, we
shortly describe the problem. For further details on Hilbert’s Theorem, we
refer to [22]. A comprehensive overview of the topic yields Miyake, see [4].
For an extension L/K of number fields with groups of fractional ideals JK
and JL, respectively, we define the lift of ideals in K to L as follows:

ıL/K : JK → JL, I 7→ I · OL.

This is obviously an injective group homomorphism, which canonically in-
duces the lift of ideal classes:

ı̄L/K : Cl(K)→ Cl(L), [I] 7→ [I · OL],

where I is an ideal in K and [I] is the ideal class generated by I. Hilbert’s
Theorem 94 states that in an unramfied cyclic extension L/K, there are non-
principal ideals in K, which become principal when lifted to L. In the 1930s
Scholz coined the expression that such ideals capitulate in L. Accordingly,
the capitulation kernel of L/K is defined as

ker(̄ıL/K : Cl(K)→ Cl(L)) = PK(L).

More precisely, Hilbert showed that the degree of L/K divides the order of
the capitulation kernel. At that time, however, one could only prove this
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result for unramified cyclic extensions but not more generally for unramified
abelian extensions. Meanwhile, in 1906 Hilbert’s student Furtwängler paved
the way for class field theory by proving the existence of a Hilbert class field
for any given number field K. It is the maximal uramified abelian extension
of K and has the property that its Galois group over K is isomorphic to
the ideal class group of K. For further details on the explicit construction
of such a Hilbert class field, we refer to Furtwängler’s original work, see [1].
An outline of the history of class field theory can be found in [26]. In 1932,
Furtwängler proved the Principal Ideal Theorem which asserts that the class
group of a given number field capitulates completely in its Hilbert class field.
His proof is based on a theorem due to Artin of 1930 in which he proved that
the capitulation problem is equivalent to finding the kernel of the transfer
of certain groups. Thus, he reduced the capitulation problem to a purely
group theoretic challenge. Having established the Principal Ideal Theorem,
the question remains which ideal classes of K capitulate in a field which
lies between K and its Hilbert class field. In 1932, Furtwängler’s student
Taussky analyzed under which conditions a number field K, with ideal class
group of the form Cn

p , has a basis such that each basis element capitulates
in an unramified cyclic extension of K of degree p. The original work can be
found in [39]. Taussky and Scholz were the first who explicitly computed the
capitulation kernel of unramified cyclic degree-3-extensions of several imagi-
nary quadratic fields. Their work dates back to 1934 and can be studied in
[21]. In 1958, Tannaka and Terada proved that for a cyclic extension K/k
with Galois group G, the G-invariant ideal classes in K capitulate in the
genus field of K/k, i.e. in the maximal extension of K which is unramified
over K and abelian over k. For more details, we refer to [30]. Heider and
Schmithals extended the ideas of Taussky and Scholz in 1982. They yielded
a general criterion for capitulation in unramified cyclic extensions of prime
degree and used this to delineate a procedure that explicitly computes the
capitulation kernel. Verifying the conditions for the above criterion, however,
is difficult as well, cf. [25]. In 1989, Iwasawa constructed a family of real
quadratic fields in which the ideal class already capitulates in an extension
strictly contained in the Hilbert class field. For additional insight, we com-
mend [24]. Afterward, this approach has been generalized by Cremona and
Odoni, see [28]. In 1991, the capitulation problem culminated in Suzuki’s
Theorem who proved that for any unramified abelian extension L/K, the
order of the capitulation kernel is divided by the degree of L over K. This
result essentially comprises all information we have with regard to the ca-
pitulation problem, nowadays. Gonzalez-Aviles considered the capitulation
problem in arbitrary Galois extensions and yielded various generalizations of
the existing results for unramified abelian extensions. His paper dates back
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to 2007 and can be found in [27]. In 2009, Daniel Mayer et alii launched the
so-called principalization project, which can be found on the website given
in [36]. Amongst others, this site contains a list of capitulation kernels for
unramified cyclic degree-3-extensions of both real and imaginary quadratic
fields, thus extending the numerical data computed by Scholz, Taussky, Hei-
der, and Schmithals.

Naturally, several interesting questions emerge in this context:

1) What is the exact order of the capitulation kernel of a given unramified
abelian extension?

2) Suzuki’s Theorem only yields a statement on the cardinality of the ca-
pitulation kernel of an extension L/K but no information on the structure of
it. Under which circumstances, for instance, can we embed the Galois group
of L/K in the capitulation kernel of L/K?

3) Let K be a number field with class group being isomorphic to Cp×Cp, for
example. Then there exist p+1 unramified cyclic extensions of K of degree p.
Are the various capitulation kernels of these extensions somehow correlated?
Do the capitulation kernels tend to be pairwise distinct for example?

Amongst others, we will investigate these questions in this thesis, putting
particular emphasis on the second and third question.
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1.2 Overview and Organization of the Thesis

In the following section, we first give a very concise overview of the topics
we discuss in this thesis. In particular, we indicate which parts are pre-
dominantly a reproduction of known results and which parts contain a high
percentage of own contributions to the subject. Afterward, we yield a more
precise outline of the thesis and summarize the contents of the various chap-
ters.

After an introduction on the capitulation problem, we gather certain proper-
ties of unramified cyclic extensions. In doing so, we establish known results
as Furtwängler’s Theorem and extend them by own contributions which can
be found in the preliminary section and in the last two sections of Chapter
2. In view of the second question from above, Chapter 3 revisits Hilbert’s
work on the capitulation problem and yields additional information on the
structure of a capitulation kernel by generalizing his approach. Subsequently,
we compare the ideal classes of unramified cyclic extensions in Chapter 4. In
particular, we derive a strict relationship between the orders of those ideal
classes and show why this is of importance with respect to capitulation. In
this context, we begin with ideas on the growth of ideal classes due to Pro-
fessor Mihailescu. Later, this work is extended and generalized in various
aspects. In Chapter 5, we assume an additional group action on the class
group of a given number field. This can be used to obtain further results on
the structure of a capitulation kernel. Chapter 6 comprises one of the main
results of the thesis. It deals with capitulation in extensions of imaginary
quadratic fields and the correlations between the various capitulation kernels
of a number of unramified cyclic extensions of a given imaginary quadratic
base field. (See the third question from above). In this connection, we also
introduce some heuristics on the class groups of unramified cyclic extensions
of imaginary quadratic fields. Most of the results in this chapter are due to
the author. The last chapter deals with capitulation in Zp-extensions and
also yields some new insights.

We now proceed with a more precise summary of the contents of this thesis:

Chapter I. This preliminary chapter describes the capitulation problem in
class field theory. We outline the historical progress in this field and give an
overview of natural questions arising in this context. Subsequently, we intro-
duce the basic results in class field theory and present the notations used in
the sequel.
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Chapter II. In this chapter, we illuminate various properties of an unram-
ified cyclic extension L/K with Galois group G and rings of integers OK ,
OL, respectively. We establish an explicit relation between the G-invariant
ideal classes in L and O∗K/NL/K(O∗L). This connection is not mentioned
anywhere in the literature. We then follow ideas of Iwasawa to show that
the first Galois cohomology group of the G-module O∗L is isomorphic to the
capitulation kernel of L/K. Applying the above results, we obtain a particu-
larly short and modern proof of Furtwängler’s Theorem, which is essentially
a version of Hilbert’s Theorem 90 for ideal classes. More generally, we say
that cyclic extensions in which Hilbert 90 for ideal classes holds satisfy the
Furtwängler-property or short F -property. Proving a theorem due to Cheval-
ley, we demonstrate that extensions in which at most one prime ramifies
have the F -property. In light of that theorem, we also discuss capitulation
in ramified cyclic extensions, investigating which further factors influence ca-
pitulation in this case. Afterward, we conclude several interesting properties
arising from the F -property. We show that a number field with cyclic class
group has a Hilbert class field with trivial class group. Moreover, we analyze
the structure of the class group A(L) of L in dependence on the class group
of K, determine an upper bound for the rank of A(L), and finally decom-
pose A(L) into a product of certain cyclic Z[G]-submodules. Striving for
a connection between such a decomposition and capitulation, we introduce
the notation of exact and non-exact Z[G]-submodules of A(L) and prove
that non-exact Z[G]-modules give rise to non-capitulating ideal classes in
L/K. The theoretical results are supplemented by various numerical exam-
ples which we computed on MAGMA.

Chapter III. Here, we want to show which factors determine the structure
of the capitulation kernel of an unramified cyclic p-extension L/K with Ga-
lois group G. In doing so, we first disclose the underlying concept of Galois
cohomology with regard to capitulation and explicitly show how elements in
O∗K/NL/K(O∗L) give rise to capitulating ideal classes in L/K. In this con-
text, we revisit Hilbert’s ideas that led to Hilbert’s Theorem 94, see [22],
and present various generalizations of Hilbert’s original ideas. Amongst oth-
ers, we give a sufficient condition under which G and O∗K/NL/K(O∗L) can be
embedded in the capitulation kernel. Numerical examples, however, show
that this is not the case in general. Hence, we introduce the so-called deep
cohomology, which yields a more subtle picture of the interplay between the
according Galois cohomology and the capitulation kernel. Appealing to the
developed theory of the deep cohomology, we give a concrete formula for the
rank of a capitulation kernel. Afterward, we extend the results by evaluating
some numerical data of capitulation in unramified cyclic extensions of degree
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9 with regard to the evolved theory.

Chapter IV. This chapter deals with the growth of ideal classes in a given
cyclic extension L/K of prime degree p, satisfying the F -property as defined
in Chapter 2. (We can then generalize the results to cyclic p-extensions sim-
ply by splitting them into extensions of degree p). More precisely, we discuss
questions of the following type: Let b be an ideal class of L and a an ideal
class in K with NL/K(b) = a. How are the orders of b and a correlated? We
will prove that under certain conditions, we have that

ord(b) = p · ord(ıL/K(NL/K(b))). (1.1)

Obviously, the growth of ideal classes is closely connected with capitulation.
Indeed, if equation (1.1) holds, the ideal class a capitulates in L if and only
if a and b are of the same order. For a more sophisticated approach, we dis-
tinguish between four different types of growth: stable growth, tame growth,
semi-stable growth, and wild growth. We then show that (1.1) is satisfied in
the first three cases provided that a can be extended to a minimal generat-
ing system of NL/K(A(L)). Subsequently, we discuss wild growth in further
depth. We show that the exponent of kerNL/K can be arbitrarily large. In
doing so, we construct a family of finite p-groups G such that G contains an
abelian subgroup of index p and such that the exponent of the commutator
group G′ is unbounded as G ranges of the constructed family of p-groups. A
theorem due to Ozaki, then reveals that for each such group G, there exists
an unramified cyclic extension L/K of degree p with Gal(H(L)/K) being
isomorphic to G, which eventually yields the desired result. In the remain-
der of this chapter, we give numerous concrete examples for the various types
of growth.

Chapter V. In order to obtain more information on the structure of a capit-
ulation kernel, we additionally assume some Galois action on the class group
of a given number field K. More precisely, we suppose that K contains a
subfield k such that K/k is Galois with Galois group G. Throughout this
chapter, we assume that a fixed prime p does not divide the order of G.
We begin our analysis by showing how G acts on the p-class group A(K) of
K and on the Galois group of the p-Hilbert class field H(K) of K over K,
illustrating how this action affects the capitulation problem. We then use
idempotents in Zp[G] to decompose the class group of K and thus the Hilbert
class field of K into so-called α-components A(K)α and H(K)α, respectively,
corresponding to certain idempotents α in Zp[G]. In this context, we draw
particular attention to irreducible α-components, i.e. to those components
which correspond to primitive idempotents. We show under which circum-
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stances Suzuki’s Theorem extends to a component wise version. More pre-
cisely, assuming that L is an intermediate field of K and a given α-component
H(K)α, we investigate under which conditions the degree of L over K divides
the order of the capitulation kernel of L/K on the given component A(K)α,
i.e. the order of PK(L)∩A(K)α. The theoretic results are then extended by
several numerical examples in which we decompose the class group of a given
number field K into α-components and compute the capitulation kernels on
the various components of the class group of K. In light of the above results,
we also shortly deal with capitulation in CM-fields, where the developed the-
ory can be applied more specifically. We then insert several results in p-adic
analysis and representation theory in order to prove that Qp[G] and Fp[G]
have the same number of primitive idempotents supposing that G is abelian.
Appealing to this result, we conclude that p-maximal elements in irreducible
α-components of the class group of K are invertible in some sense. In the
case that the class group of K is Zp[G]-cyclic, we derive that all p-maximal
elements in a given irreducible α-component are of the same order. We then
use this property to prove that under certain conditions, all ideal classes in K
of order equal or less than pl capitulate in an intermediate field of H(K)/K
whose Galois group over K is isomorphic to A(K)/A(K)p

l
.

In order to abandon the assumption that the class group of K is Zp[G]-cyclic,
we apply the developed results to prove that the class group of K can be de-
composed into a direct product of cyclic Zp[G]-submodules. All previous
results then extend to cyclic Zp[G]-submodules of A(K) lying within a given
irreducible component. Having established such a decomposition of the class
group of K, we show that KH(k) is the p-genus field of K/k, i.e. the maxi-
mal unramified p-extension of K which is abelian over k. We conclude this
chapter with a generalization of the G-action on A(K). We replace it by the
action of the automorphism group of the Galois group of the second Hilbert
class field of K over K. Assuming that this automorphism group is not a
p-group, we evolve a similar machinery as above and use this with respect to
capitulation.

Chapter VI. This chapter deals with capitulation in extensions of an imagi-
nary quadratic fieldK. For a given unramified cyclic extension L/K of degree
p, we prove that the kernel of the norm of ideal classes NL/K is non-trivial
and of even rank. Generalizing a paper due to Wittmann, we introduce a
substantiated heuristic on the structure of kerNL/K , taking the above prop-
erty into account. Subsequently, we compare our heuristics with the given
numerical data, noticing that the heuristics are in good accordance with the
computed data.
Whereas there was only a database for capitulation in extensions of imagi-
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nary quadratic fields of degree 2 and 3, we first extend the numerical data
to extensions of degree 5 and 7. In this regard, we draw our attention to
questions of the following type: For example, let K be as above with class
group being isomorphic to Cp×Cp, where p > 3 is a prime. Then there exist
p+1 unramified cyclic extensions of K of degree p. How are the capitulation
kernels of these intermediate fields correlated, are there any noticeable pat-
terns? Evaluating the numerical data, we observed the following surprising
phenomenon: Either the capitulation kernels of all these intermediate fields
are pairwise distinct (1-1-capitulation), or there exists a non-trivial ideal
class in K that capitulates in at least p fields of these intermediate fields (p-
capitulation). We proceed with a proof of the main theorem of this chapter
stating that K has 1-1-capitulation or p-capitulation if K satisfies certain
assumptions and if p > 3. In view of the developed results and heuristics of
Section 6.1 and 6.2, we notice that the assumptions we make in the above
theorem are satisfied with high likelihood. The proof of the theorem is di-
vided into several lemmata and propositions. Amongst others, we apply the
theory of the transfer of groups and some of its group theoretical properties.
Summing up all results we need to prove, the proof comprises approximately
ten pages.

Chapter VII. The final chapter deals with capitulation in Zp-extensions.
More precisely, let K be a number field and K∞ be a Zp-extension of K. For
an intermediate field Kn of K∞/K, we let Hn be the Hilbert class field of
Kn and H∞ be the composite of the Hn’s. For an intermediate field L of
H∞/K∞, which is Galois over K, we set Ln = L ∩Hn. We then show that
(Xn = ker(ıLn/Kn))n is a projective limit with respect to the norm map and
apply Iwasawa Theory to obtain a statement on the cardinality of the Xn’s.
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1.3 Basic Notations and Results in Class Field

Theory

In this section, we want to state the basic results in class field theory. For
a comprehensive and exhaustive treatise on class field theory, we refer to
[2] and [3], where the proofs of the results mentioned here can be found.
Moreover, we introduce the notation that we will use throughout the thesis.
We start with

Theorem 1.3.1. Let K be an algebraic number field with ideal class group
Cl(K). Then there exists a unique field extension H(K)/K such that:

(i) H(K) is the maximal unramified abelian extension of K;
(ii) Cl(K) ∼= Gal(H(K)/K).

H(K) is called the Hilbert class field of K.

Proof. See Chapter 13 of [3] and in particular Corollary 13.3.5.

Remark: 1) For clarification, we need to say a word on the ramification of
an infinite prime p∞ in K in a given Galois extension L/K. Both Lorenz
and Neukirch define the ramification index ep∞ to be one and set

fp∞ = [LP∞ : Kp∞ ],

where P∞ is a prime in L lying above p∞. Using these definitions, the Hilbert
class field H(K) of K is the maximal abelian extension such that all finite
primes in K are unramified and all infinite primes in K split completely in
H(K). With a slight abuse of notation, we will henceforth say that an infinite
prime p∞ in K ramifies in an extension L if fp∞ = 2. We can then use the
definition of H(K) as used in the above theorem.

2) The isomorphism in (ii) is induced by the Artin symbol of H(K)/K.
In what follows, we shortly explain it. For further details and proofs, see
Chapter 7 of [3]. Let L/K be an unramified abelian extension and P be a
prime ideal in L lying above the prime ideal p in K. Let

DP|p = {σ ∈ Gal(L/K) : σ(P) = P}

be the decomposition group of P|p. Let OK and OL denote the ring of
integers of K and L, respectively. One can show that the canonical map

DP|p → Gal((OL/P)/(OK/p))
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is surjective and also injective since L/K is assumed to be unramified. El-
ementary Galois theory also yields that (OL/P)/(OK/p) is a cyclic field
extension whose Galois group is generated by the Frobenius homomorphism,
which sends all elements of OL/P to the power of |OK/p|. Let FrobP|p be the
automorphism in DP|p that corresponds to the Frobenius homomorphism. As
L/K is abelian, one can show that FrobP|p = FrobP′|p, for all primes P,P′

lying above p. Thus, we may simply write Frobp. One can then show:

Cl(K) ∼= Gal(H(K)/K), [p] 7→ Frobp.

Here p is a prime ideal in K and [p] denotes the ideal class generated by p.

In the rest of the thesis, we set ϕK([p]) :=
(
H(K)/K

[p]

)
:= Frobp, i.e. when we

say ϕK is the Artin symbol of K, we mean more precisely the Artin symbol
of H(K)/K.

Let L/K be an extension of number fields. Then we define the norm map of
ideals as

NL/K : JL → JK , NL/K(P) = pfP|p ,

where P is a prime ideal in L that lies above the prime ideal p in K and
fP|p denotes the inertia degree of P|p. This group homomorphism induces a
norm map on ideal classes:

N̄L/K : Cl(L)→ Cl(K), [I] 7→ [NL/K(I)],

where I is an ideal in L. Basically, we are only interested in the lift and the
norm map of ideal classes. For the ease of notation, we will thus henceforth
write ıL/K instead of ıL/K and NL/K instead of N̄L/K . We then have

Proposition 1.3.2. Notations being like above, it follows that

(i) NL/K(ıL/K(a)) = a[L:K], ∀ a ∈ Cl(K).
In particular, if ([L : K], ord(a)) = 1, then ord(a) = ord(ıL/K(a)).

(ii) Let L/K be Galois with Galois group G. Then, ∀ b ∈ Cl(L):∏
σ∈G

bσ = ıL/K(NL/K(b)).

Proof. See page 197, Theorem 1.6 (ii), (iv), of [2].

Remark: The previous proposition allows us to focus on p-parts of Cl(K)
and on unramified abelian p-extension of K, where p is some fixed prime. For
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some fixed prime p, we henceforth set A(K) = Cl(K)p, the p-Sylow subgroup
of Cl(K). Moreover, let H(K) = H(K)p denote the p-Hilbert class field of
K, i.e. the maximal unramified abelian p-extension of K.

Definition: Let A be a finite abelian p-group. Then:

(i) rk(A) denotes the p− rk(A) of A, i.e. rk(A) = dimFp(A/A
p).

(ii) Sl(A) denotes the l-socle of A, i.e.

Sl(A) = {a ∈ A : ord(a) ≤ pl}, ∀ 1 ≤ pl ≤ exp(A).

(iii) Supposing that A is a G-module for some group G, the G-invariant
elements in A are denoted by AG.

Proposition 1.3.3. Let L/K be an unramified abelian extension. Then:

(i) Gal(H(K)/L) ∼= NL/K(A(L));

(ii) Gal(H(L)/H(K)) ∼= kerNL/K.

Proof. Using the basic properties of the Artin symbol (cf. Corollaries 7.1.1
and 7.1.3 of [3]), one can verify that the following diagram commutes:

A(L) //

NL/K
��

Gal(H(L)/L)

res|H(K)

��
A(K) // Gal(H(K)/K)

Here the horizontal maps are isomorphisms given by the Artin symbol of
H(K)/K and H(L)/L, respectively. Furthermore, res|H(K) denotes the re-
striction of Gal(H(L)/L) to H(K). This readily proves the statements (i)
and (ii).

Now suppose that L/K is an abelian extension such that H(K) ∩ L = K,
then NL/K : A(L)→ A(K) is surjective. Indeed, we have

Proposition 1.3.4. Let L/K be an abelian extension such that H(K)∩L =
K. Then the following diagram commutes:

A(L) //

NL/K
��

Gal(H(L)/L)

res|H(K)

��
A(K) // Gal(H(K)/K)
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Again, the horizontal maps are isomorphisms given by the Artin symbol of
H(K)/K and H(L)/L, respectively.

In particular, NL/K : A(L)→ A(K) is surjective, which implies that kerNL/K

is isomorphic to G(H(L)/H(K)L). It follows that |kerNL/K | = [H(L) :
H(K)]/[L : K].

Proof. See Theorem 5, page 400, of [8].

The two propositions from above show that the group theoretic equivalent to
the norm map is the restriction map. This poses the natural question what
the group theoretical equivalent to the lift of ideal classes is. When L/K is
unramified and abelian, a celebrated theorem due to Artin yields the answer.
Before we state it, we need the definition of the transfer of groups. We have

Definition: Let G be a finite group and H be a subgroup of G. Let R be a
system of representatives of left cosets of H in G. For some σ ∈ G, we may
write for each ρ ∈ R:

σρ = ρ′σρ, for some σρ ∈ H and ρ′ ∈ R.

Then we define the transfer of G to H in the following way:

V erG→H : G/G′ → H/H ′, (σ mod G′) 7→
∏
ρ∈R

σρ mod H
′.

Here G′ and H ′ denote the respective commutator subgroups. The notation
V er comes from the German word Verlagerung. This map yields a well-
defined group homomorphism, cf. [37].

We are now prepared to state

Theorem 1.3.5 (Artin). Let L/K be an unramified abelian extension. Then
the following diagram is commutative:

A(L) // Gal(H(L)/L)

A(K) //

ıL/K

OO

Gal(H(K)/K)

V erG(H(L)/K)→G(H(L)/L)

OO

The horizontal maps are isomorphisms given by the Artin symbol of H(K)/K
and H(L)/L, respectively. Also, note that G(H(L)/H(K)) is the commutator
subgroup of G(H(L)/K).

14



Proof. Cf. page 285, of [3].

Remark: This result reduces the capitulation problem to a purely group
theoretical problem. Many major contributions to the capitulation problem
have been made by using group theory and analyzing the kernel of the trans-
fer. Also in our treatise, group theory and the transfer of groups will play a
decisive role.

Proposition 1.3.6. Let E/K be a Galois extension with Galois group G and
let JK, JE denote the corresponding groups of fractional ideals. Then

(JGE : JK) =
∏
p

ep,

where JGE are the G-invariant ideals in E, p runs through the set of finite
primes in K and ep denotes the ramification index of p in E/K. Moreover,
we identify JK with ıE/K(JK).

Proof. See Remark 6.8.1, page 109, of [3].

Theorem 1.3.7 (Chebotarev’s Density Theorem). Let L/K be a Galois
extension of number fields with Galois group G. For each σ ∈ G, we may
consider the set SL/K(σ) of all primes p in K being unramified in L such that
there exists a prime P|p in L with

σ =

(
L/K

P

)
.

Let [σ] denote the conjugacy class of σ ∈ G. Then SL/K(σ) has the Dirichlet
density

d(SL/K(σ)) =
|[σ]|
|G|

.

In particular, each σ ∈ G is Frobenius automorphism for P for infinitely
many primes P in L.

Proof. See Theorem 13.4.6, page 290, of [3].

Theorem 1.3.8. Let L/K and K ′/K be extensions lying in the algebraic
closure K̄ of K and L′ = LK ′. Suppose that L/K is unramified. Then
L′/K ′ is also unramified.
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Proof. See Theorem 7.2, page 160, of [2].

We now introduce some basic concepts of Galois cohomology. A theorem by
Iwasawa will show that there is a direct link between Galois cohomology and
the capitulation problem.

Let G be a finite group and A be a G-module, denoted multiplicatively. Then

AG = {x ∈ A : xσ = x, ∀ σ ∈ G}

is the fix module of A by G. Also we define the norm of x ∈ A as

NG(x) =
∏
σ∈G

xσ.

Clearly, NG(A) ⊂ AG and we define

H0(G,A) = AG/NG(A).

We call H0(G,A) the 0-th cohomology group of G with coefficients in A.
Next, we define the first cohomology group: A map σ 7→ aσ from G to A
satisfying the property that aστ = aτσaτ , ∀ σ,τ ∈ G, is called a cocycle of G
to A. Let C1(G,A) denote the set of cocycles of G to A, which form a group
in the obvious way.
In addition, for each a ∈ A, we have a map σ 7→ aσ−1 from G to A. It is
called a coboundary of G in A. The group of such couboundaries is denoted
by B1(G,A), which is clearly a subgroup of C1(G,A). We then define

H1(G,A) = C1(G,A)/B1(G,A),

which we call the first cohomology group of G in A. Last but not least, we
define H−1(G,A). To this end, we set

IG(A) =< {aσ−1 : a ∈ A, σ ∈ G} >,

the subgroup of A which is generated by all elements of the form aσ−1. One
easily verifies that IG(A) is a submodule of the G-module A. Then we set

H−1(G,A) = kerNG/IG(A).

The following theorem connects H−1(G,A) and H1(G,A) supposing that G
is cyclic. We have
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Theorem 1.3.9. Let G be a cyclic group and A be a G-module. Then

H1(G,A) ∼= H−1(G,A).

Proof. See page 152, Theorem 8.1.9, of [3].

Definition: Let G be a cyclic group. For a G-module A, we call

h(G,A) =
|H0(G,A)|
|H1(G,A)|

the Herbrand quotient of A provided that H0 and H1 are finite groups.

Theorem 1.3.10. Let L/K be a cyclic Galois extension with Galois group
G and groups of units O∗K, O∗L, respectively. Then

|H1(G,O∗L)| = [L : K] · |H0(G,O∗L)|.

Proof. See Theorem 8.3.4, page 160, of [3]. Then the proof follows for S =
S∞.

Theorem 1.3.11 (Hassescher Normensatz). Let L/K be a cyclic field ex-
tension. An element x ∈ K∗ is a norm if and only if it is norm of each
completion LP/Kp, P|p.

Proof. See Corollary 4.5, page 401, of [2].

Proposition 1.3.12. Let L/K be a cyclic unramified extension of local fields.
Then:

H0(Gal(L/K),O∗L) = {1}.

Proof. See Corollary 1.2, page 335, of [2].

Corollary 1.3.13. Let L/K be a cyclic unramified field extension. Then
O∗K ⊂ NL/K(L∗).

Proof. The proof follows immediately from Theorem 1.3.11 and Proposition
1.3.12, observing that L/K being unramified implies that LP/Kp is unrami-
fied as well.
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Theorem 1.3.14 (Tannaka-Terada). Let k/k0 be a cyclic extension (not
necessarily unramified) and K be the genus field of k/k0, i.e. the maximal
unramified extension of k that is abelian over k0. Then the ideals of k be-
longing to a Gal(k/k0)-invariant ideal class of k become principal ideals in
K.

Proof. See Corollary 4, page 310, of [4].

In [4], Miyake shows that the above statement does not hold in general, when
k/k0 is just abelian. So the assumption that k/k0 is cyclic is essential here.
But at least, we have the following result due to Hisako Furuya:

Theorem 1.3.15. Let K/Q be an abelian extension with Galois group G.
Then all G-invariant ideals in K capitulate in the genus field of K/Q.

Proof. See [31].

At this point, we remark that one always has to distinguish between ideals
and ideal classes. For instance, the above theorem does not yield that all
G-invariant ideal classes capitulate in the genus field of K/Q.

By Artin’s theorem, the capitulation problem can be transferred to a purely
group theoretical problem. The transition to group theory allows one to
interpret capitulation kernels as transfer kernels. More precisely: Let G be a
finite group, then a finite abelian group X is a transfer kernel for G if there
exists an exact sequence of multiplicatively written groups

1→ A ↪→ H → G→ 1

with A finite abelian such that X is isomorphic to the kernel of the transfer
homomorphism H/[H,H]→ A. We have

Theorem 1.3.16 (Suzuki). If G is a finite abelian group, then the finite
additive group X is a transfer kernel for G if and only if |G|X = 0 and |G|
divides |X|.

Proof. The proof is originally due to Hiroshi Suzuki. Another proof can be
found in [5], page 220 et seq..

We can apply the above theorem in the following context: Let L/K be
an unramified abelian extension. Furthermore, we set H = Gal(H(L)/K),
A = Gal(H(L)/L), and G = Gal(L/K). It then follows that

1→ A ↪→ H → G→ 1
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is an exact sequence. By Artin’s Theorem, we obtain that V erH→A is a
transfer kernel for G and hence [L : K] divides the order of the capitulation
kernel of L/K. As a special case of Suzuki’s Theorem, we obtain

Theorem 1.3.17 (Principal Ideal Theorem). Let K be an algebraic number
field with ideal class group Cl(K) and Hilbert class field H(K). Then Cl(K)
capitulates completely in H(K).

In Chapter 5, we will need some basic knowledge of Representation Theory,
Kummer Theory, and p-adic analysis. All relevant results will be outlined in
the beginning of the respective section. Chapter 7 requires some basic insight
into Iwasawa Theory. All necessary results will be given in the introduction
of that chapter.
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Chapter 2

Galois Cohomology and
Furtwängler’s Theorem for
Unramified Cyclic Extensions

This chapter deals with cyclic p-extensions L/K, where p is some fixed prime.
We set G = Gal(L/K) generated by some σ ∈ G and define s = σ − 1. We
then introduce some basic ideas of Galois cohomology and show how the 0-
th and first cohomology groups H0(G,O∗L) and H1(G,O∗L) are closely linked
with the capitulation kernel of L/K. To this end, we establish a relation
between H0(G,O∗L) and the G-invariant ideal classes of L, the proof of which
seems original. Afterward, we follow the ideas of Iwasawa and show that
H1(G,O∗L) is isomorphic to the capitulation kernel PK(L) if L/K is unram-
ified. We then use these tools to obtain a rather short and modern proof
of a theorem due to Furtwängler, which is essentially a version of Hilbert
90 for ideal classes for the case that L/K is unramified. We also state and
prove Chevalley’s Theorem which is a generalization of Furtwängler’s The-
orem to ramified cyclic extensions. In this context, we also shortly address
the capitulation problem in the case that L/K is ramified, and discuss which
additional factors influence the cardinality of the capitulation kernel. Having
established this result, we say that a cyclic field extension L/K as above sat-
isfies the Furtwängler-property (or short F -property) if kerNL/K = A(L)s.
Subsequently, we draw several interesting conclusions arising from the F -
property: We show that a number field K with cyclic ideal class group A(K)
has a Hilbert class field tower of length 1, i.e. the Hilbert class field H(K) of
K has trivial ideal class group. Moreover, we analyze the structure of A(L)s,
give an upper bound for the rank of A(L)s and A(L), and decompose A(L)s

into a direct product of cyclic Z[s]-submodules of A(L), which we will call
Z[s]-cycles. In this context, we introduce the concept of exact and non-exact
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Z[s]-cycles and show that non-exact Z[s]-cycles give rise to non-capitulating
ideal classes in A(K). Thus, we link the capitulation problem with the prob-
lem of verifying if certain Z[s]-cycles are exact or not. Throughout this
chapter, we apply the computer algebra system MAGMA to compute sev-
eral concrete examples of unramified cyclic extensions and its capitulation
kernels. We also illustrate that most of the results in this chapter cannot be
generalized to non-cyclic abelian unramified extensions.

2.1 H0(G,O∗L) ∼= A(L)G/ıL/K(A(K))

In this section, we want to establish a correlation between the 0-th Galois
cohomology group H0(G,O∗L) and the G-invariant ideal classes in L, where
L/K is an unramified cyclic extension with Galois group G. The result
that we prove is interesting in its own right, but it will also contribute to a
particularly easy and modern proof of a theorem due to Furtwängler.

We begin with an easy proposition. It is basically a version of Hilbert 90 for
ideals. We have

Proposition 2.1.1. Let L/K be an unramified cyclic extension with Galois
group G generated by some σ ∈ G, and I ∈ JL an ideal with NL/K(I) = (1).
Then there is an ideal J ∈ JL with

I = Jσ−1.

Moreover, J is uniquely determined up to lifts of JK.

Proof. Let I =
∏k

i P
θi
i , where θi ∈ Z[Gal(L/K)/DPi|Pi ] and Pi prime ideals

in L lying above distinct prime ideals Pi in K. Obviously, NL/K(I) = (1)

implies that NL/K(Pθii ) = (1), ∀ 1 ≤ i ≤ k. Thus, it is sufficient to prove
the proposition for k = 1. Let P = P1, P1 = P with P1|P1, and θ1 = θ =∑l

j=0 λjσ
j, where l is the order of σ in Gal(L/K)/DP|P . Since NL/K(P) =

NL/K(Pσ), it follows that NL/K(Pθ) = P fP|P
∑l
j=0 λj , where fP|P denotes the

residue degree of P|P . As NL/K(I) = (1), we obtain that
∑l

j=0 λj = 0.

Henceforth, let J := P
∑l
j=0 µjσ

j

, µj ∈ Z, and assume that I = Jσ−1. We now
show how to choose the µj’s such that I = Jσ−1 holds. We have

Jσ−1 = P(µl−µ0)+(µ0−µ1)σ+···+(µl−1−µl)σl .
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By the assumption that I = Jσ−1, it follows that

µl − µ0 = λ0

µ0 − µ1 = λ1

· · ·
µl−1 − µl = λl.

This system of equation is obviously solvable if and only if
∑l

j=0 λj = 0. In
this case, the µ′js are unique up to a constant in Z. This implies that J is
uniquely determined modulo lifts of JK as L/K is unramified (cf. Proposition
1.3.6). This finishes the proof.

Theorem 2.1.2. Let L/K be a cyclic unramified extension with Galois group
G and notations from above. Then we have:

H0(G,O∗L) ∼= A(L)G/ıL/K(A(K)). (2.1)

Proof. In what follows, we explicitly state a group isomorphism between the
above groups: Let e ∈ O∗K . By Corollary 1.3.13, there is an x ∈ L∗ with
NL/K(x) = e. Since NL/K((x)) = (e) = (1), the previous proposition yields
that there is an ideal I ∈ JL with (x) = Iσ−1, where σ is a generator of G.
Then we map e to [I], where [I] denotes the ideal class generated by I. As
(x) = Iσ−1, it follows that [I] = [I]σ in A(L). This yields a map

Ψ : H0(G,O∗L)→ A(L)G/ıL/K(A(K)),

e 7→ [I] mod ıL/K(A(K)).

We will show that it is a well-defined group isomorphism:
1. Ψ is well-defined: Let e1, e2 ∈ O∗K with e1 ≡ e2 mod (NL/K(O∗L)). Let
x1, x2 ∈ L∗ with NL/K(x1) = e1, NL/K(x2) = e2. By assumption, we obtain
that NL/K(x1/x2) = NL/K(x), for some x ∈ O∗L, yielding NL/K(x1/(x2x)) =
1. Since L/K is cyclic, Hilbert’s Theorem 90 implies that there is an y ∈ L∗
with x1/(x2x) = yσ−1. It follows that (x1) = (x2)(y)σ−1, observing that
(x) = 1 due to x ∈ O∗L. Now let (x1) = Iσ−1

1 and (x2) = Iσ−1
2 , with I1,

I2 ∈ JL. Hence, Iσ−1
1 = Iσ−1

2 (y)σ−1. Proposition 1.3.6 then yields that
I1 ≡ I2(y) mod ıL/K(JK), implying that [I1] ≡ [I2] mod ıL/K(A(K)).

2. Ψ is a group homomorphism: Let e1, e2 ∈ O∗K , and x1, x2 ∈ L∗ with
NL/K(x1) = e1, NL/K(x2) = e2. Moreover, let (x1) = Iσ−1

1 and (x2) = Iσ−1
2 ,

with I1, I2 ∈ JL. Now we can conclude that NL/K(x1x2) = e1e2, and hence
(x1x2) = (I1I2)σ−1. It follows that Ψ(e1e2) = [I1][I2] = Ψ(e1)Ψ(e2).
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3. Ψ is bijective: Let e ∈ O∗K with NL/K(x) = e, (x) = Jσ−1, and J ∈ JK .
Hence, Jσ−1 = (1), which implies that x ∈ O∗L due to (x) = (1). It follows
that e ∈ NL/K(O∗L) and hence Ψ is injective.
Now let J ∈ JL with [J ]σ = [J ]. Then there is an x ∈ L∗ with Jσ = J(x),
i.e. (x) = Jσ−1. This implies that NLK (x) = e, for some e ∈ O∗K . Finally,
Ψ(e) = [J ] mod ıL/K(A(K)), i.e. Ψ is surjective. This finishes the proof.

Remark: The above theorem does not hold in general if L/K is unramified
and just abelian:

Example: Let K = Q(α) with α2 + 3896 = 0. Then MAGMA yields:
1. A(K) =< a1, a2 >∼= C3 × C3.
2. A(H(K)) is non-trivial.
Since K is imaginary quadratic, it follows that H0(Gal(H(K)/K)) = {1}.
Moreover, ıH(K)/K(A(K)) = {1} by the Principal Ideal Theorem. Let G
denote the Galois group of H(2)(K)/K. Then G has the commutator sub-
group G′ = Gal(H(2)(K)/H(K)). Section 2.5 then, however, implies that
G′ ∩ Z(G) 6= {1} and hence A(H(K))G(H(K)/K) 6= {1}.

2.2 Iwasawa’s Theorem

In what follows, we derive Iwasawa’s Theorem. It yields a direct link between
the first cohomology group H1(Gal(L/K),O∗L) and the capitulation kernel
of L/K. In the following, we basically follow the ideas of Iwasawa, cf. [14].
We have

Theorem 2.2.1 (Iwasawa). Let L/K be an unramified cyclic extension with
Galois group G and let O∗L denote the group of units of OL. Then

PK(L) ∼= H−1(G,O∗L). (2.2)

Proof. Let σ ∈ G be a generator of G and set C = {x ∈ O∗L| NL/K(x) = 1}.
Then we obtain that

H−1(G,O∗L) = C/(O∗L)σ−1.

Now let x ∈ C. By Hilbert 90, it follows that there exists some y ∈ L∗ such
that yσ−1 = x. Since x ∈ O∗L, it follows that (y)σ = (y). Let PK and PL
denote the principal ideals of K and L, respectively. Then one easily verifies
that the above map yields a well-defined group isomorphism

Ψ : C/(O∗L)σ−1 → PGL /PK .
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Also, we can conclude that PGL /PK ∼= PK(L). Indeed, let J = (α) ∈ PGL .
By Proposition 1.3.6, it follows that there is a unique I ∈ JK such that
ıL/K(I) = J = (α). This yields the isomorphisms

PGL /PK ∼= PK(L) ∼= H−1(G,O∗L),

and thus the desired statement.

Remark: Iwasawa’s Theorem is actually even more general. For a given
Galois extension L/K with Galois group G, it asserts that

PGL /PK ∼= H1(G,O∗L).

However, the isomorphism PGL /PK ∼= PK(L) only holds when L/K is unram-
ified. And

H1(G,O∗L) ∼= H−1(G,O∗L)

only holds when L/K is cyclic.

2.3 Hilbert’s Theorem 94 and Furtwängler’s

Theorem

In this section, we make use of the results of the Sections 2.1 and 2.2 to
prove Hilbert’s Theorem 94 and Furtwängler’s Theorem. Hilbert’s Theorem
94 is essentially the cornerstone of the capitulation problem. It says that the
capitulation kernel PK(L) is non-trivial in the case that L/K is an unramified
cyclic extension. Furtwängler’s Theorem is the key ingredient to prove the
existence of Hilbert class fields. It is basically a version of Hilbert 90 for ideal
classes. We begin with a result that comprises Hilbert’s Theorem 94 as it
not only shows that PK(L) is non-trivial, but also yields a concrete formula
for the cardinality of the capitulation kernel. We have

Theorem 2.3.1. Let L/K be an unramified cyclic extension with Galois
group G. Then

|PK(L)| = [L : K] · |H0(G,O∗L)|. (2.3)

Proof. In light of Iwasawa’s Theorem, we obtain that |PK(L)| = |H1(G,O∗L)|.
Since L/K is cyclic, Herbrand’s Theorem yields that

|H1(G,O∗L)| = [L : K] · |H0(G,O∗L)|.

Combing these results, we obtain the desired statement.
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This poses the natural question if equation (2.3) also holds for a non-cyclic
unramified abelian extension L/K. The following example illustrates that
this is not the case in general.

Example: Consider the imaginary quadratic number field

K = Q(
√
−8867 · 73681).

MAGMA yields that A(K)3
∼= C3 × C3 × C3 × C3. Theorem 2, page 747, of

[19], says that there exist at least 81 subfields Lj, 1 ≤ j ≤ 81, of H(K)3 such
that [H(K)3 : Lj] = 9 and A(K)3 capitulates completely in Lj. On the other
hand, Dirichlet’s Unit Theorem yields that H0(Gal(Lj/K),O∗Lj) is trivial as
K is imaginary quadratic. It follows that

|PK(Lj)| = 81 6= 9 = [Lj : K] · |H0(Gal(Lj/K),O∗Lj)|.

In the remainder of this section, we want to deduce Furtwängler’s Theorem.
This theorem seems to be rather unknown but is very important for the entire
future chapters. While it was quite easy to establish Hilbert 90 for ideals,
Hilbert 90 for ideal classes is a rather deep-seated theorem. We have

Theorem 2.3.2 (Furtwängler). Let L/K be a cyclic unramified field exten-
sion with Galois group G generated by some σ ∈ G. Then

kerNL/K = A(L)σ−1.

Proof. Combining the results of (2.1) and (2.3), we derive that

|PK(L)| = [L : K] · |A(L)G|
|ıL/K(A(K))|

.

Since |ıL/K(A(K))| = |A(K)|/|PK(L)|, it follows that

[H(K) : K] = |A(K)| = [L : K] · |A(L)G|,

i.e. |A(L)G| = [H(K) : L]. Likewise, we know that kerNL/K is isomorphic
to Gal(H(L)/H(K)) by Proposition 1.3.3 and thus

|kerNL/K | = [H(L) : H(K)].

Due to the isomorphism A(L)/A(L)G ∼= A(L)σ−1, it follows that |A(L)σ−1| =
[H(L) : H(K)] and hence kerNL/K = A(L)σ−1.
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Corollary 2.3.3. Notations being like above, it follows that

|A(L)G| = [H(K) : L].

Proof. See the proof of the above theorem.

Remark: However, A(L)G andGal(H(K)/L)) are in general not isomorphic:

Example: Consider the imaginary quadratic number field

K = Q(α) with α2 + 11651 = 0.

Using MAGMA, we obtain that: 1. A(K) =< a1, a2 >∼= C3 × C9;
2. We define L = H(K)<a2> and obtain A(L) ∼= C3 × C9 × C27;
3. PK(L) =< a3

2 > which implies that ıL/K(A(K)) = A(L)G(L/K) ∼= C3×C3;
On the contrary, NL/K(A(L)) ∼= C9.

Definition: We say a cyclic extension L/K, with Galois group G generated
by some σ ∈ G, satisfies the Furtwängler-property (or short F -property) if

kerNL/K = A(L)σ−1.

As we have seen, if L/K is unramified and cyclic, then L/K has the F -
property. Moreover, Chevalley’s Theorem (see next section) shows that it
also holds in the case that L/K is cyclic and only one prime in K ramifies
in L.

Remark: 1) One can also use Iwasawa’s Theorem and Furtwängler’s The-
orem to prove Herbrand’s Theorem, i.e. the various proofs are somewhat
circular.

2) Note that the Hilbert class field H(K) of K is the genus field of L/K,
i.e. it is the maximal unramified abelian extension of L which is abelian over
K. The theorem of Tannaka-Terada then implies that A(L)G ⊂ PL(H(K)),
where PL(H(K)) denotes the capitulation kernel of H(K)/L. In view of
that, the result of (2.1) shows that H0(Gal(L/K),O∗L) yields interesting in-
formation on the structure of PL(H(K)). Moreover, observe that [H(K) :
L] = |A(L)G| divides |PL(H(K))| (verifying the theorem due to Suzuki in
that case).

One natural question that emerges is whether a version of Furtwängler’s the-
orem is also true for an unramified abelian field extensions L/K which is
not cyclic. Again it makes sense to consider ideals first and ideal classes
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afterward. We start with the definition of an augmentation ideal and a basic
result on it:

For the ring homomorphism

φ : Z[G(L/K)]→ Z,
∑

σ∈G(L/K)

λσσ 7→
∑

σ∈G(L/K)

λσ

we define the augmentation ideal Aug(G(L/K)) to be the kernel of φ. We
have the following useful result:

Proposition 2.3.4. Let G be a finite group generated by a system {σ1, ..., σn}.
Then

Aug(G) = Z(σ1 − 1) + ...+ Z(σn − 1).

Proof. The proof is elementary and straightforward.

We are now prepared to state and prove the next

Proposition 2.3.5. Let L/K be an abelian field extension with Galois group
G =< σ1, ..., σn > and I ∈ JL be an ideal with NL/K(I) = (1). Then there
exist ideals I1, ..., In ∈ JL such that

I = Iσ1−1
1 · Iσ2−1

2 · · · · Iσn−1
n .

Proof. Let I =
∏n

i=1 Pi
θi , where Pi are primes in L lying above distinct

primes Pi in K and for some θi =
∑

σ∈G(L/K) λσ,iσ. Since NL/K(I) = (1), it
follows, ∀ i = 1, .., n:

1 = P
∑
σ∈G(L/K) λσ,i

i , and hence∑
σ∈G(L/K)

λσ,i = 0.

By the previous proposition, we obtain for all i = 1, .., n:

θi =
∑

σ∈G(L/K)

λσ,iσ ∈ Z(σ1 − 1) + ...+ Z(σn − 1).

Rearranging the terms, we can conclude that there exist ideals I1, ..., In ∈ JL
such that

I = Iσ1−1
1 · Iσ2−1

2 · · · · Iσn−1
n .
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A version of the above proposition for ideal classes does not hold, however,
as the following example shows: Let K be a number field such that the
Galois group Gal(H(K)/K) =< σ1, σ2 >∼= Cp ×Cp and such that A(H(K))
is non-trivial. By Proposition 1.3.3, we know that kerNH(K)/K

∼= A(H(K)).
Assume that

kerNH(K)/K = A(H(K))σ1−1 · A(H(K))σ2−1.

Since A(H(K))(σi−1)p
l

= {1}, for i = 1, 2, and sufficiently large l, one easily
verifies that A(H(K)) must be trivial then, a contradiction to the assump-
tion. This example illustrates that there is no generalization of Furtwängler’s
Theorem to the abelian case whatsoever. Moreover, we learn that

|NH(K)/K(A(H(K)))| = {1} 6= |A(H(K))G(H(K)/K)|.

The first equality is obvious and the second inequality follows easily: Indeed,
let H(2)(K) be the Hilbert class field of H(K) and G = Gal(H(2)(K)/K).
Then {1} 6= G′ = Gal(H(2)(K)/H(K)). By Theorem 2.5.5, it follows that
Z(G) ∩G′ 6= {1} and hence the statement.

2.4 Chevalley’s Theorem and Capitulation in

Ramified Cyclic Extensions

Henceforth, we want to allow arbitrary cyclic extensions of number fields,
i.e. we do not necessarily assume that the given field extension is unramified
anymore. The main theorem in this context is Chevalley’s Theorem.

From now on, let L/K be a general cyclic extension with G = Gal(L/K)
generated by some σ ∈ G. Let J G

L be the group of G-invariant ideals in L,
and [J G

L ] be the image of J G
L in JL/PL, where PL are the principal ideals in

L. Accordingly, PGL denotes the G-invariant principal ideals.
Let e0(L/K) =

∏
p ep, where p runs through the set of finite primes in K and

ep denotes the ramification index of p. Also, we set e∞(L/K) =
∏

p∞
fp∞ ,

where P∞ runs through the set of infinite primes in L lying above p∞ in K
and where fp∞ := [LP∞ : Kp∞ ] for P∞|p∞. Finally, we define

e(L/K) = e0(L/K)e∞(L/K).

Using the results of the previous sections, we obtain the following three
results:

A(L)G/[J G
L ] ∼= (O∗K ∩NL/K(L∗))/NL/K(O∗L) (2.4)
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H1(G,O∗L) ∼= PGL /PK (2.5)

|H0(G,O∗L)|
|H1(G,O∗L)|

=
e∞(L/K)

[L : K]
(2.6)

Statement (2.4) follows directly from the proof of Theorem 2.1.2.
The isomorphism (2.5) is an immediate consequence of the proof of Iwasawa’s
Theorem of Section 2.2.
For result (2.6), see Herbrand’s Theorem and apply it to S = S∞.

Now we are ready to state the main theorem of this section. We have

Theorem 2.4.1 (Chevalley). Let L/K be a cyclic extension with Galois
group G generated by some σ ∈ G. As before, let A(L)G denote the G-
invariant ideal classes in A(L). Then

|A(L)G| = |A(K)|e(L/K)

[L : K](O∗K : NL/K(L∗) ∩ O∗K)
.

Proof. The proof is quite straightforward. Essentially, we only have to
slightly modify the arguments we used for the unramified case. We will
make use of the above results, Iwasawa’s Theorem and Herbrand’s Theorem.
Combining them, we eventually obtain the above statement. By virtue of
(2.4), it follows that

|A(L)G/[J G
L ]| =

|H0(G,O∗L)|
(O∗K : NL/K(L∗) ∩ O∗K)

. (2.7)

In view of (2.6), we conclude that

|A(L)G| =
|H1(G,O∗L)| · e∞(L/K) · |[J G

L ]|
[L : K] · (O∗K : NL/K(L∗) ∩ O∗K)

. (2.8)

Moreover, we have that

[J G
L ] ∼= J G

L PL/PL ∼= J G
L /PGL .

Thus, Proposition 1.3.6 yields that

|H1(G,O∗L)| · |[J G
L ]| = |PGL /PK | · |J G

L /PGL |
= |J G

L /JK | · |JK/PK |
= e0(L/K)|A(K)|.
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Plugging this into equation (2.8), it finally follows that

|A(L)G| = |A(K)|e(L/K)

[L : K] · (O∗K : NL/K(L∗) ∩ O∗K)
.

This finishes the proof.

In the remainder of this section, we want to address the capitulation problem
for ramified cyclic extensions. In particular, we will analyze which further
factors influence the cardinality of the capitulation kernel. Let L/K be as
before, p ∈ K be a finite prime, and P|p be a prime in L lying above p. Then
we define

Ip :=
∏

τ mod GP

τ(P),

where GP is the decomposition group of P|p and τ ∈ G. Observe that Ip is
independent of the choice for P. Let us set

λ(L/K) :=
∏
p

(ep, ord(Ip)),

where p runs through the set of finite primes in K, (ep, ord(Ip)) denotes the
greatest common divisor of ep and ord(Ip), and ord(Ip) denotes the order of
Ip in JL/PL. We have

Lemma 2.4.2. Notations being like above, it follows that

|[J G
L ]/ıL/K(A(K))| = λ(L/K). (2.9)

Proof. Observe that

[J G
L ]/ıL/K(A(K)) ∼= J G

L PL/JKPL
∼= (J G

L /J G
L ∩ PL)/(JK/JK ∩ PL).

Obviously, for all unramified primes p in K, we have that Ip ∈ JK . Thus, we
can focus on the ramified primes as possible generators of [J G

L ]/ıL/K(A(K)).
Let p be a ramified prime in K and say that n is the order of Ip in JL/PL.
Then I

ep
p has the order n/(n, ep) in JL/PL. Combining these arguments

shows that

|[J G
L ]/ıL/K(A(K))| =

∏
p

ord(Ip)

ord(Ip)/(ord(Ip), ep)

=
∏
p

(ord(Ip), ep).
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Corollary 2.4.3. With the notations as above, we conclude that

|PK(L)| = λ(L/K)[L : K]|H0(G,O∗L)|
e(L/K)

≤ [L : K]|H0(G,O∗L)|
e∞(L/K)

.

Proof. Due to the equations (2.7) and (2.9), it follows that

|ıL/K(A(K))| =
|A(L)G|(O∗K : NL/K(L∗) ∩ O∗K)

λ(L/K) · |H0(G,O∗L)|
.

By the previous theorem, we thus obtain

|PK(L)| =
|A(K)|

|ıL/K(A(K))|

=
λ(L/K) · |A(K)| · |H0(G,O∗L)| · [L : K] · (O∗K : NL/K(L∗) ∩ O∗K)

(O∗K : NL/K(L∗) ∩ O∗K) · |A(K)| · e(L/K)

=
λ(L/K)[L : K]|H0(G,O∗L)|

e(L/K)
.

Henceforth, assume that G = Gal(L/K) =< σ > and H(K) ∩ L = K.
By Proposition 1.3.4, this assumption implies that |kerNL/K | = [H(L) :
H(K)]/[L : K], where NL/K : A(L) → A(K) is the usual norm map. We
can now use the above results to compare kerNL/K with A(L)σ−1. Since
A(L)σ−1 ∼= A(L)/A(L)G, we can derive that

|A(L)σ−1| =
|A(L)|[L : K](O∗K : NL/K(L∗) ∩ O∗K)

|A(K)|e(L/K)
.

Hence,

|kerNL/K/A(L)σ−1| =
|A(K)| · e(L/K) · |A(L)|

|A(K)| · |A(L)| · [L : K] · (O∗K : NL/K(L∗) ∩ O∗K)

=
e(L/K)

[L : K](O∗K : NL/K(L∗) ∩ O∗K)
.

We gather the information in

Corollary 2.4.4. Assume that L/K is a cyclic Galois extension as above
such that H(K) ∩ L = K. Then:

|kerNL/K/A(L)σ−1| = e(L/K)

[L : K](O∗K : NL/K(L∗) ∩ O∗K)
.
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Corollary 2.4.5. Let L/K be a cyclic Galois extension as above. Assume
that there is exactly one prime in K that ramifies in L and that this prime
is totally ramified. Then:

(i) kerNL/K = A(L)σ−1

(ii) (O∗K : NL/K(L∗) ∩ O∗K) = 1

(iii) H0(Gal(L/K),O∗L) ∼= A(L)Gal(L/K)/ıL/K(A(K))

Proof. The proof follows from the previous corollary and the fact thatH(K)∩
L = K as L/K has a totally ramified prime.

Remark: 1) Using the notation of the previous section, the extension L/K
as in the above corollary satisfies the F -property.

2) For instance, let L = Q(ζpn), where ζpn is a primitive pn-th root of unity
(p an odd prime), and K = Q. Then L/K satisfies the F -property.

2.5 Number Fields with Cyclic Class Groups

In what follows, we intend to show that A(H(K)) = {1} if H(K)/K is
cyclic, i.e. in this case K has a Hilbert class field tower of length 1. We give
three different proofs of that as they are all interesting in their own rights.
Furthermore, the theory used in these proofs will be of relevance in the future
thesis. The first proof uses the results of Section 2.3 and the others apply
group theory. Especially, the group theory developed in the two latter proofs
plays a major role in the further treatise. We have

Proposition 2.5.1. Let K be a number field such that A(K) is cyclic. Then
A(H(K)) = {1}.

Proof. 1. Let G = Gal(H(K)/K) =< σ >. Appealing to Proposition 1.3.3,
we obtain that A(H(K)) = kerNH(K)/K . By Furtwängler’s Theorem, it thus
follows that A(H(K)) = A(H(K))σ−1. Let a ∈ A(H(K)) and a = aσ−1

1 for
some a1 ∈ A(H(K)). Now we choose an a2 ∈ A(H(K)) with a1 = aσ−1

2 .

Iterating this procedure, we obtain for k ≥ 0 an ak such that a = a
(σ−1)k

k .
If we choose k = pl for l > 0 sufficiently large, we see that a = 1 and thus
A(H(K)) = {1}.

For the next two proofs of the above proposition we need an interlude on
group theory. We begin with the following

32



Definition: If G is a group, its Frattini subgroup Φ(G) is defined as the
intersection of all the maximal subgroups of G. (Since G is finite in our case,
G certainly contains a maximal subgroup).

Definition: An element x ∈ G is called a nongenerator if it can be omitted
from any generating system: If G =< x, Y >, then G =< Y >.

Theorem 2.5.2. For every group G, the Frattini subgroup Φ(G) is the set
of all nongenerators.

Proof. See Theorem 5.47, page 123, of [9].

Theorem 2.5.3. Let G be a finite Group. Then:

(i) (Frattini,1885) Φ(G) is nilpotent.

(ii) If G is a finite p-group, then Φ(G) = G′Gp, where Gp is the subgroup of
G generated by all p-th powers.

(iii) If G is a finite p-group, then G/Φ(G) is a vector space over Fp.

Proof. See Theorem 5.48, page 123, of [9].

Definition: A minimal generating set of a group G is a generating set X
such that no proper subset of X is a generating set of G.

Theorem 2.5.4 (Burnside’s Basis Theorem, 1912). : If G is a finite p-group,
then any two minimal generating sets have the same cardinality, namely
dim(G/Φ(G)). Moreover, every x 6∈ Φ(G) can be extended to a minimal
system of generators.

Proof. See Theorem 5.50, page 124, of [9].

Burnside’s Basis Theorem yields another way of proving the above proposi-
tion. We have

Proof. 2. Recall that K is a number field such that A(K) is cyclic. Let
H(2)(K) be the second Hilbert class field of K and set G = G(H(2)(K)/K).
By class field theory, the commutator group G′ of G is then given by G′ =
Gal(H(2)(K)/H(K)). Since

G(H(2)(K))/K)/Gal(H(2)(K)/H(K)) ∼= Gal(H(K)/K)
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is cyclic, G/Φ(G) = G/(G′Gp) is cyclic a fortiori. By Burnside’s Basis Theo-
rem, it follows that G is cyclic as well and hence H(2)(K)/K is an unramified
abelian extension. By class field theory, it follows that H(2)(K) = H(K) and
hence A(H(K)) = {1}.

The last proof uses the theory of central series and nilpotent groups. We
start with a fundamental result on finite p-groups (cf. 5.51, page 118, of [9]):

Theorem 2.5.5. Let G be a finite p-group and H ⊂ G be a non-trivial
normal subgroup. Then

H ∩ Z(G) 6= {1},

where Z(G) denotes the center of G.

Proof. First, we define the upper central series of G by induction:

ζ0(G) = 1, ζ i+1(G)/ζ i(G) = Z(G/ζ i(G)), i.e.

if hi : G → G/ζ i(G) is the natural map, then ζ i+1(G) is the inverse image
of the center. Obviously, ζ1(G) = Z(G). Moreover, we can conclude that

ζ i+1(G) = {z ∈ G| zgz−1g−1 ∈ ζ i(G), ∀ g ∈ G}.

It is well-known that finite p-groups are nilpotent, i.e. there exists some c ≥ 1
such that

{1} = ζ0(G) ⊂ ζ1(G) ⊂ ... ⊂ ζc(G) = G.

Furthermore, one verifies that

[ζ i(G), G] ⊂ ζ i−1(G).

This follows immediately from the definition. Due to ζc(G) = G, there is
a minimal 1 ≤ m ≤ c such that ζm(G) ∩ H 6= {1}. Since H is a normal
subgroup of G, it follows that

(ζm(G) ∩ [H,G]) ⊂ ([ζm(G), G] ∩H) ⊂ (ζm−1(G) ∩ (H)) = {1}.

Hence, {1} 6= ζm(G) ∩H ⊂ Z(G) ∩H. This finishes the proof.

We conclude this section with the third proof. We have

34



Proof. 3. Let H(2)(K) be the second Hilbert class field of K and set G =
G(H(2)(K)/K). By the previous section, we can deduce that

|A(H(K))G(H(K)/K)| = |NH(K)/K(A(H(K)))| = 1.

Moreover,

A(H(K))G(H(K)/K) ∼= Gal(H(2)(K)/H(K)) ∩ Z(G).

It follows that Gal(H(2)(K)/H(K)) ∩ Z(G) = {1}. The previous theorem
then yields that G′ = {1} and hence A(H(K)) = {1}.

2.6 Z[s]-Cycles and an Upper Bound for the

Rank of A(L)

In this section, let L/K be a cyclic extension of prime degree p and we
assume that it satisfies the F -property, i.e. kerNL/K = A(L)σ−1, where σ
is a generator of G = G(L/K). Before we begin with the next theorem, we
state and prove the following basic results:

Lemma 2.6.1. Let R be a commutative ring, x ∈ R nilpotent, and u ∈ R∗
a unit in R. Then: x+ u ∈ R∗.

Proof. First, we show that 1 + x ∈ R∗: Setting xn = 0, it follows that

(−x)n − 1

−x− 1
= (−x)n−1 + (−x)n−2 + ...+ 1, i.e.

((1 + x)((−x)n−1 + (−x)n−2 + ...+ 1) = 1.

Thus, 1 + x is a unit in R. We conclude that x + u = u(u−1x + 1). Since
u−1x is nilpotent and u ∈ R∗ , the claim follows with the arguments from
above.

Proposition 2.6.2. Let L/K be a cyclic extension of degree p, satisfying the
F-property. Let σ ∈ G(L/K) be a generator of G = G(L/K) and s = σ − 1.
Suppose that exp(A(L)s) = pl, for some l ∈ N, and let a ∈ A(L). Setting
R = Z[s]/(sp

l
), it follows that A(L)s is an R-module and

(i) as
p

= apsu, for some unit u ∈ R∗.
(ii) p · ord(as

p
) = ord(as).

(iii) ıL/K(NL/K(a)) = a1+σ+...+σp−1
= apu

′+sp−1
, u′ ∈ R∗.
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Proof. We have

0 = σp − 1

= (s+ 1)p − 1

=

p∑
k=1

(
p

k

)
sk

= sp + ps

p−1∑
k=1

1

p

(
p

k

)
sk−1.

This reveals that A(L)s
pl

= {1}, where pl = exp(A(L)s). Hence, we can
regard A(L) as an Z[s]/(sp

l
)-module, where (sp

l
) is the ideal in Z[s] generated

by sp
l
. Now we can apply the previous lemma for the case thatR = Z[s]/(sp

l
),

which implies that s is nilpotent in R. We then obtain that
∑p−1

k=1
1
p

(
p
k

)
sk−1 is

a unit in R, which yields the first statement. The second statement follows
immediately as u is a unit in R and sp

l
is nilpotent in R.

(iii) Let 0 ≤ k,m ≤ n and let us define that
(
m
k

)
= 0 if m < k. Then

n∑
m=0

(
m

k

)
=

(
n+ 1

k + 1

)
.

It then follows that

1 + σ + ...+ σp−1 = 1 + (s+ 1) + (s+ 1)2 + ...+ (s+ 1)p−1

= p+

p−1∑
k=1

(
k

1

)
s+

p−1∑
k=2

(
k

2

)
s2 + ...+

p−1∑
k=p−1

(
k

p− 1

)
sp−1

= p+

p−1∑
j=1

(
p

j + 1

)
sj

For j ≤ p − 2, then obviously
(
p
j+1

)
∈ pZ[s]. The rest follows from the

previous lemma.

Assuming the notation as above, let Z[T ] denote the ring of polynomials with
variable T and integer coefficients. For a non-trivial ideal class a ∈ A(L), we
define the Z[s]-cycle of a as

aZ[s] = {af(s) : f ∈ Z[T ]}.

In this context, we also define

r(a) = max{n ∈ N : as
n 6= 1},
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which we call the length of a. We are now prepared to state and prove the
following

Theorem 2.6.3. Notations being like above, let r = rk(asZ[s]). Then

asZ[s] ∼=< as > × < as
2

> ×...× < as
r

>,

i.e. {as, as2 , ..., asr} forms a Z-basis of asZ[s].
In particular, if ord(as) > p, then r = p− 1.

Proof. Without loss of generalization, we may assume that r(a) > 1. (In the
following, r and r(a) are not be confused). By the previous proposition, we
then have that ord(as

p
) = ord(aps). Hence r(a) ≤ p − 1 if ord(as) = p. Let

us prove the above statement by induction on the order of as:
Induction start: ord(as) = p: Assume that

ak1s · ak2s2 · ... · akrsr = 1,

where k1, ..., kr ∈ Z. Taking both sides of the equation to the sr−1, we obtain
that ak1s

r
= 1 and hence k1 ≡ 0 mod p. Continuing in this fashion, we readily

see that ki ≡ 0 mod p, ∀ 1 ≤ i ≤ r. This proves the statement.
Induction hypothesis: The statement holds in the case that ord(as) = pk−1,
for some k > 1.
Induction step: ord(as) = pk, for k > 1. Note that if ord(as) > p, then
as

p 6= 1 and hence r = p− 1. Let us now assume the equation as above, i.e.

ak1s · ak2s2 · ... · aklsr = 1. (2.10)

Let 1 ≤ t ≤ p − 1 be maximal such that ord(as) = ord(as
t
). Taking both

sides of the equation to the power p, we obtain that

apk1s · apk2s2 · ... · apkrsr = 1,

observing that ord(aps) = pk−1. By induction hypothesis, it follows that
ki = pk−1k′i, for 1 ≤ i ≤ t, and k′i ∈ Z. Also, ki = pk−2k′i, for t+ 1 ≤ i ≤ p−1
and k′i ∈ Z. It follows that ord(akis

i
) ≤ p, ∀ 1 ≤ i ≤ r. Equation (2.10) can

be written as

ap
k−1k′1s · · · · apk−1k′ts

t · apk−2k′t+1s
t+1

... · apk−2k′rs
r

= 1.

Taking both sides of the equation to the power of sp−1, one easily verifies
that ap

k−2k′t+1s
t+1

= 1 and thus k′t+1 ≡ 0 mod p. Repeating this procedure
with sp−2 and so on, one can eventually conclude that k′i ≡ 0 mod p. This
proves the induction step and hence the proof.
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Another important implication of the F -property is that we obtain an upper
bound for the rank of A(L). We have the following:

Proposition 2.6.4. In the situation as before, let L/K be more generally
a cyclic p-extension (i.e. not necessarily of degree p), still satisfying the F-
property. We set A(K)′ = NL/K(A(L)), and r = rk(A(K)′). Assume that
A(K)′ =< a1, ..., ar > and let B′ :=< b1, ..., br >⊂ A(L) with NL/K(bj) = aj,
∀ 1 ≤ j ≤ r. Then B′ generates A(L) as an Z[s]-module.

Proof. Let A(L) = B. Then we have

(B′ ·Bs)/Bs ∼= B′/(B′ ∩Bs) ∼= A(K)′ ∼= B/Bs.

Slightly modifying the arguments in the case where [L : K] = p, one still

obtains that Bsp
l

= {1}, for sufficiently large l ∈ N. It thus follows that

B ⊂ B′ ·Bs ⊂ B′ ·B′s ·B′s2 ⊂ ... ⊂ B′Z[s].

This completes the proof.

Remark: Essentially, the above statement is a special case of Nakayama’s
Lemma. See page 126, of [11]. Apply it for V = A(L) and o = Zp[[T ]], where
T is identified with s.

Corollary 2.6.5. Let L/K and A(K)′ be as in the previous proposition.
Then:

(i) rk(A(L)) ≤ [L : K] · rk(A(K)′);

(ii) rk(A(L)s) ≤ ([L : K]− 1) · rk(A(K)′).

Proof. The proof follows immediately from the previous proposition and
Proposition 2.6.2.

The above theorem poses the following natural question: Let L/K be cyclic
of degree p, satisfying the F -property. Let σ ∈ G(L/K) be a generator of
G(L/K), s = σ − 1. Also, assume that b1, ..., br is a system in A(L) such
that b1, ..., br form a basis of A(L)/A(L)s, where bi, i = 1, ..., r, denote the

images of bi in A(L)/A(L)s. Now we define λ(bi) = rk(b
Z[s]
i ).

Question: Can we choose the bi’s such that

r∑
i=1

λ(bi) = rk(A(L)) ?
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Answer: In general, this is not possible as the following example shows. In
particular, we cannot decompose A(L) into a direct product of Z[s]-cycles.

Example: Let K = Q(α) with α2 + 3299 = 0. Then MAGMA yields:

1. A(K) =< a1, a2 >∼= C3 × C9;
2. A(L) =< b1, b2, b3 >∼= C3 × C3 × C9;
Now let L = H(K)<a1,a

3
2>. Then L/K is an unramified cyclic extension of

degree 3 and NL/K(A(L)) ∼=< a1, a
3
2 >
∼= C3 × C3. Set G = Gal(L/K) =<

σ >, s = σ − 1. MAGMA yields that
3. PK(L) =< a1 >. It follows that A(L)G = ıL/K(< a2 >) ∼= C9 and
A(L)s ∼= C3 × C3.
Without loss of generality, we may assume thatNL/K(b1) = 1, NL/K(b2) = a1,
NL/K(b3) = a3

2 with b3 = ıL/K(a2). Then b2, b3 form a basis for A(L)/A(L)s

with
λ(b2) + λ(b3) = 3 + 1 = 4 > 3 = rk(A(L)).

Observe that λ(b3) = 1 since b3 is G-invariant and λ(b2) = 3 since A(L)s =<
bs2, b

s2

2 > and b2 6∈ A(L)s. One may easily verify that it is impossible to find
b′2, b

′
3 forming a basis of A(L)/A(L)s with λ(b′2) + λ(b′3) = 3.

2.7 Exact and Non-Exact Z[s]-Cycles

In the following discussion, we intend to yield more information on the struc-
ture of the ideal class groups in cyclic extensions with F -property. Hence-
forth, let L/K be a cyclic Galois extension of degree p satisfying the F -
property. Also, let G = Gal(L/K), generated by some σ ∈ G, and s = σ−1.
Suppose now that a is a non-trivial ideal class in K of order pl, for some
l ∈ N, and b ∈ A(L) with NL/K(b) = a. We then define B = bZ[s] ⊂ A(L). In
this section, we will focus on analyzing the structure of Z[s]-cycles. In the
subsequent section, we will also discuss how the Z[s]-cycles can be used to
form a generating set of A(L), which is minimal in some sense. It is worth
mentioning that the F -property does not need to hold on Z[s]-cycles, i.e. in
general we do not have B∩A(L)s = Bs. Let us assume that B∩A(L)s 6= Bs.
Then there exists an integer k ∈ Z such that bk ∈ A(L)s \Bs. It follows that
bk = cs, for some c ∈ A(L) \B. Due to cs

p
= cpus, for some unit u ∈ Z[s]/(sp

l
)

(l sufficiently large), we obtain that

bpk = cps = cu
′(sp) ∈ Bs,

where u′ is some unit Z[s]. Thus, we can derive that |B ∩ A(L)s|/|Bs| ≤ p.
We introduce the following
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Definition: Notations being like above, we say that the Z[s]-cycle B is exact
if B ∩ A(L)s = Bs and not exact otherwise.

Remark: Let BG = B ∩ A(L)G. Then |BG| = ord(NL/K(b)) if B is exact.
If B is not exact, then |BG| = p · ord(NL/K(b)). This follows easily due
the above arguments and the isomorphism B/BG ∼= Bs. Another important
remark is that exp(Bs) > p may be possible as we will see in Chapter 4.

We begin our investigations with the following

Lemma 2.7.1. Notations being like above (B exact or non-exact), let r =
rk(Bs) and N = ıL/K ◦ NL/K the algebraic norm. Assume that there exist
integers ki ∈ Z, 0 ≤ i ≤ r − 1, such that

bk0+k1s+...+kr−1sr−1

= 1,

where bkis
i 6= 1, for at least one 0 ≤ i ≤ r−1. It then follows that exp(Bs) > p

and
1 6= bk0 = bkts

t ∈ BG, for some 0 ≤ t ≤ r − 1.

Moreover, ord(b) = p · ord(N(B)) and ord(b) = p · ord(a).

Proof. Assume that bk0+k1s+...+kr−1sr−1
= 1. Taking this equation to the s,

we obtain that
bk0s+k1s

2+...+kr−1sr = 1.

By Theorem 2.6.3, we know that {bs, ..., bsr} is a Z-basis of Bs. This implies
that bk0 is non-trivial and that bkis

i+1
= 1, ∀ 0 ≤ i ≤ r − 1. In particular,

bk0 ∈ BG ∩Bs, yielding that ord(bk0) = p. Hence, there exists exactly one
t ∈ {1, ..., r − 1} such that bkts

t ∩ BG 6= {1} and < bk0 >=< bkts
t
>. This

implies that exp(Bs) > p since otherwise rk(Bs) = t < r. Hence, r = p− 1.
As < bk0 >=< bkts

t
> and t < r, it follows that ord(bs

p−1
) ≤ ord(b)/p2.

Recall that N(b) = bpu+sp−1
, for some unit u ∈ Zp[s]/(sl) and sufficiently

large l. Combining these arguments, we deduce that p · ord(N(B)) = ord(b).
As < b > ∩Bs 6= {1} the rest follows.

For a better overview, we will analyze the case where B is exact and where
B is not exact separately. We begin with the exact case. We have

Proposition 2.7.2. Notations being like above, assume that B is exact,
a ∈ A(K) of order pl, for some l > 0, and b ∈ A(L) with NL/K(b) = a and
ord(b) = pm. We define B = bZ[s], r = rk(Bs), and n = exp(< b > ∩BG).
Also, we set Br−1 = {b, bs, ..., bsr−1} and Br−1 =< Br−1 >. We then differen-
tiate between the following cases:
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Case 1. If rk(B) = 1, then B ∼= Cpl+1.

Case 2. If ord(a) = ord(b), then rk(B) > 1 and Br−1∪ < bs
r
> forms a

basis of B. Hence,

B ∼= Cpm × Cpm−n × ...× Cpm−n × Cpm−n−1 × ...× Cpm−n−1 .

Case 3. Suppose that rk(B) > 1 and ord(b) > ord(a).
Case 3.1. Assume that ord(b) = p · ord(N(b)) and hence ord(b) = p · ord(a).
Case 3.1.1. Assume case 3.1 with n = 0: The system Br−1 can be extended
to a basis of B and thus

B ∼= Cpm × Cpm × ...× Cpm × Cpm−1 × ...× Cpm−1 × Cpm−2 .

Case 3.1.2. Assume case 3.1 with n > 0.
Case 3.1.2.1. Assume case 3.1.2 and that Br−1 is a basis for Br−1. Then

B ∼= Cpm × Cpm−n × ...× Cpm−n × Cpm−n−1 .

Case 3.1.2.2. Assume case 3.1.2 and that Br−1 is not a basis for Br−1. It
then follows that

Bs ∼= Cpm−n × ...× Cpm−n︸ ︷︷ ︸
r0−times

×Cpm−n−1 × ...× Cpm−n−1︸ ︷︷ ︸
r1−times

,

with 1 ≤ r0 ≤ r − 1, r = r0 + r1, and

B ∼= Cpm × Cpm−n × ...× Cpm−n︸ ︷︷ ︸
(r0−1)−times

×Cpm−n−1 × ...× Cpm−n−1︸ ︷︷ ︸
(r1+1)−times

.

Case 3.2. Assume that ord(b) > p · ord(N(b)): Then the system Br−1 can be
extended to a basis of B and thus

B ∼= Cpm × Cpm × ...× Cpm × Cpm−1 × ...× Cpm−1 × Cpl−1 .

Additionally, n ≤ 1 in this case.

Proof. Case 1 is evident.
Case 2. Since ord(a) = ord(b), it follows that < b > ∩ < bs, ..., bs

r
>= {1}.

41



The rest follows due to Bs ∩BG ∼= Cp.
Case 3.1.1. By the previous lemma, the system Br−1 is a basis of Br−1 and can
be extended to a basis of B. Indeed, there exists an bxs, x ∈ Z[s], such that
Bs =< bs, ..., bs

r−1
, bxs > and bp

m−2xs = bp
m−1

. Then {b, bs, ..., bsr−1
, bxs−p} is

a basis of B. The rest follows since S1(< bs
r
>) cannot be G-invariant since

otherwise Br−1 would not be a basis of Br−1.
Case 3.1.2.1. With the same notation and arguments as above, the system
{b, bs, ..., bsr−1

, bxs−p} is a basis of B. The rest follows since S1(< bs
r
>) must

be G-invariant in this case.
Case 3.1.2.2. The statement follows readily from the fact that 1 6= bk0 =
bkts

t ∈ BG, for some 0 ≤ t ≤ r − 1, by the previous lemma.
Case 3.2. By the previous lemma, Br−1 is a basis of Br−1 and can be extended
to a basis of B as above. Also observe that exp(Bs∩ < b >) = pm−l as B is
exact. Finally, n ≤ 1 due to ord(b) > p · ord(N(b)).

Remark: The case where B is not exact is rather analogous: The first two
cases from the above proposition stay the same.
In all other cases where Br−1 can be extended to a basis of B, we only have
to raise the exponent of the last direct factor by p. This follows from the
remark before the definition of the exactness of Z[s]-cycles.
In case 3.1.2.2, we have to replace r0 − 1 by r0 and r1 + 1 by r1.

2.8 Decomposition of A(L) into a Product of

Z[s]-Cycles and its Effect on Capitulation

Henceforth, let L/K be a cyclic extension of degree p satisfying the F -
property, i.e. kerNL/K = A(L)s. Let G = Gal(L/K) =< σ >, where σ ∈ G
is a generator of G, and we set s = σ − 1. In the previous section, we have
focused our investigations on a Z[s]-cycle B. Now one may ask how can we
deduce the structure of A(L) from the structure of the various Z[s]-cycles?
The upcoming analysis will answer this question. For this purpose, we in-
tend to decompose the ideal class group A(L) into a product of Z[s]-cycles.
As we have seen in the end of Section 2.6, this product cannot necessarily
chosen to be direct. However, one can choose Z[s]-cycles B1, ..., Bn such that
A(L) = B1 · · ·Bn and kerNL/K =

∏n
j=1B

s
j , where

∏
is a direct product

here. We introduce the so-called method of contraction and explicitly show
how to obtain such a system (B1, ..., Bn). Subsequently, we explain why this
does not necessarily imply that A(L) is a direct product of these Bi’s. Led
by this observation, we revisit the concept of exact and non-exact Z[s]-cycles

42



and show that there is no capitulation in non-exact cycles. Thus, we link the
problem of the decomposition of A(L) into a product of Z[s]-cycles with the
problem of capitulation. Finally, we obtain sufficient conditions under which
A(L) can be decomposed into a direct product of Z[s]-cycles. One general
remark: Henceforth,

∏
does not necessarily denote a direct product, unless

stated explicitly.

Let b ∈ A(L) such that bs is non-trivial, B = bZ[s], and r := r(b), i.e. r ∈ N
such that bs

r 6= 1 and bs
r+1

= 1. Let c ∈ Bs of the form

c =
r∏
j=1

bkjs
j

,

where kj ∈ Z. Due to the relation bps = bu(sp−sp−1), for some u ∈ Z[s], we
may assume that in the above equation kj = 0 or p - kj holds, ∀ 1 ≤ j ≤ r.
Indeed, if kj = pk′j, for some 1 ≤ j ≤ r and k′j ∈ Z, we may have

bpk
′
js
kj

= bk
′
js
kj−1(u(sp−sp−1)) ∈ Bskj+p−2

.

If p ≥ 3, we can now assume that kj = 0. If p = 2, we can iterate this
procedure until p - kj.

Definition: As usual, we denote by A(L)G the G-invariant ideal classes in
A(L), i.e. A(L)G = {a ∈ A(L) : aσ = a}. For a subgroup A of A(L), we then
define AG = A ∩ A(L)G.

The following proposition will prove useful:

Proposition 2.8.1. Notations being like above, assume that

c =
r∏
j=1

bkjs
j

= 1, kj ∈ Z,

where kj = 0 or p - kj holds, ∀ 1 ≤ j ≤ r. Then

kj = 0, ∀ 1 ≤ j ≤ r.

Proof. If ord(bs) ≤ p, then r ≤ p − 1 and the statement follows from
Proposition 2.6.3. Now let us assume that ord(bs) > p, which implies that
Bs =< bs, ..., bs

p−1
> and rk(Bs) = p − 1. Let t ∈ {1, ..., p− 1} such

that S1(< bs
t
>) ⊂ A(L)G. Recall that t is uniquely determined and ob-

serve that all elements in {bs, ..., bst} are of order ord(bs), all elements in
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{bst+1
, ..., bs

t+p−1} are of order ord(bs)/p, and so on. Due to kj = 0 or p - kj,
it follows that

∏r
j=1 b

kjs
j

= 1 if and only if
∏t

j=1 b
kjs

j
= 1,

∏t+p−1
j=t+1 b

kjs
j

= 1,
and so on. Since all products have at most (p− 1) factors, Proposition 2.6.3
yields that bkjs

j
= 1, ∀ 1 ≤ j ≤ r.

Corollary 2.8.2. Notations being like above, assume that 1 6= c ∈ Bs ∩BG.
Then

< c >=< bs
r

> .

Proof. Assume that c =
∏r

j=1 b
kjs

j
, with kj = 0 or p - kj, for all 1 ≤ j ≤ r.

Then

1 = cs =
r∏
j=2

bkj−1s
j

.

By the above proposition, it follows that k1 = ... = kr−1 = 0 and p - kr due
to c 6= 1. This proves the claim.

After having generalized Proposition 2.6.3, the next results will explicitly
show how to find a Z[s]-basis for A(L)s. We have

Proposition 2.8.3. Notations being like above, one can choose a Z[s]-basis

{b̃1, ..., b̃n} of A(L) with corresponding Z[s]-cycles B̃i = b̃
Z[s]
i such that

B̃s
1 × ...× B̃s

n = kerNL/K . (2.11)

Proof. Let {a1, ..., an} be a basis of NL/K(A(L)) =: A(K)′ and bi ∈ A(L)

such that NL/K(bi) = ai, ∀ 1 ≤ i ≤ n. Also set Bi = b
Z[s]
i , ∀ 1 ≤ i ≤ n. By

Furtwängler’s Theorem, we certainly have that

kerNL/K = Bs
1 ·Bs

2 · · ·Bs
n.

However, the above product does not need to be direct as we have seen.
Hence, we will apply the method of contraction:
For all 1 ≤ i ≤ n, let ri = r(bi) =: l(bi) be the length of the flag of bi as
defined before. Assume that there exist ki,j ∈ Z, not all being zero, such that

n∏
i=1

ri∏
j=1

b
ki,js

j

i = 1, (2.12)

where, ∀ 1 ≤ i ≤ n, 1 ≤ j ≤ ri, we have that ki,j = 0 or p - ki,j.
For all 1 ≤ i ≤ n, we let ti = min{j ∈ {1, ..., ri} : ki,j 6= 0}. (Without loss
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of generality, we may assume that, ∀ 1 ≤ i ≤ n, there exists an j such that
ki,j 6= 0. Otherwise, the index i only runs through a subset of {1, ..., n} and
things are fine as well).
Let maxi∈{1,...,n}{ri− ti} = rl− tl, for some 1 ≤ l ≤ n. Also, let I ⊂ {1, ..., n}
such that for all i ∈ I, we have ri − ti = rl − tl. Taking equation (2.12) to
the srl−tl , we then obtain ∏

i∈I

b
k′is

ri

i = 1,

where k′i := ki,ti .
Now let m ∈ I such that rm = mini∈I{ri}. Then, we may write∏

i∈I

(b
k′is

ri−rm

i )rm = 1, and set

b̃m =
∏
i∈I

b
k′is

ri−rm

i .

First assume that rm is a strict minimum, i.e. rm < ri, ∀ i ∈ I, i 6= m.
Then, < NL/K(b̃m) >=< am > and l(b̃m) < l(bm) due to b̃s

rm

m = 1. If
rm is not a strict minimum, then choose m ∈ I such that rm is minimal
and ord(am) is maximal among those i ∈ I with ri = rm. It then fol-
lows that {a1, ..., am−1, NL/K(b̃m), am+1, ..., an} is a basis for A(K)′. In both

cases, we have found a new system {b1, ..., bm−1, b̃m, bm+1, ..., bn} in A(L)
such that {NL/K(b1), ..., NL/K(bm−1), NL/K(b̃m), NL/K(bm+1), ..., NL/K(bn)} is
a basis for A(K)′ and such that

l(b̃m) +
n∑

i=1, i6=m

l(bi) <
n∑
i=1

l(bi). (2.13)

That means, we have reduced the total length of the bi’s. Since this procedure
must terminate, the above method of contraction, finally yields Z[s]-cycles
B̃1, ..., B̃n such that

kerNL/K =
n∏
j=1

B̃s
j , where

∏
is a direct product.

Remark: (1) The above proof is constructive, i.e. the method of contraction
finally leads to a desired family of Z[s]-cycles satisfying the condition as in
the above proposition.

(2) Let Bi = b
Z[s]
i and B̃i = b̃

Z[s]
i , 1 ≤ i ≤ n, such that kerNL/K =

∏n
i=1B

s
i =
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∏n
i=1 B̃

s
i , where

∏
denotes the direct product. Then one easily verifies that∑n

i=1 l(bi) =
∑n

i=1 l(b̃i).

Henceforth, assume that B1 = b
Z[s]
1 , ..., Bn = b

Z[s]
n are given as in equation

(2.11) with {NL/K(bi)}1≤i≤n forming a basis of NL/K(A(K)). We will then
refer to such a system {B1, ..., Bn} as being in standard form.

Corollary 2.8.4. Let (B1, ..., Bn) be in standard form. Then

A(L)G =
n∏
i=1

BG
i .

Proof. Let c ∈ A(L)G, c =
∏n

i=1 b
xi
i , for some xi ∈ Z[s]. It then follows that

1 = cs =
∏n

i=1 b
xis
i . Since kerNL/K = Bs

1× ...×Bs
n by assumption, we obtain

that bxisi = 1 and thus bxii ∈ Bi ∩ A(L)G, ∀ 1 ≤ i ≤ n.

Corollary 2.8.5. Let (B1, ..., Bn) be in standard form. Assume that

1 =
n∏
i=1

bxii , for some xi ∈ Z[s].

Then: bxii ∈ BG
i ,∀ ≤ i ≤ n.

Proof. The proof follows immediately from the proof of the above corollary.

Let (B1, ...Bn) be in standard form and set

z = |{1 ≤ j ≤ n : Bj is not exact}|.

Also, we define

C = {(bx11 , ..., b
xn
n ) : xi ∈ Z[s] (1 ≤ i ≤ n),

n∏
i=1

bxii = 1} ⊂
n∏
i=1

Bi,

where the second
∏

denotes a Cartesian product.
By the previous corollary, we obtain that

C ⊂
n∏
i=1

(BG
i ∩ kerNL/K) ⊂

n∏
i=1

S1(Bi).

(Again,
∏

denotes the Cartesian product in both cases).
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Proposition 2.8.6. Notations being like above, it follows that

rk(C) = z.

Proof. Without loss of generality, we may assume that B1, ..., Bz are not

exact and Bz+1, ..., Bn are exact. For all 1 ≤ i ≤ z, let bp
ki

i ∈ kerNL/K \Bs
i

for some ki ∈ Z. By Furtwängler’s Theorem, it follows that

b
pki+wi,is
i ·

n∏
j=1, j 6=i

b
wi,js
j = 1,

for some wi,j ∈ Z[s], 1 ≤ i ≤ z, 1 ≤ j ≤ n. Observe that b
wi,js
j ∈ A(L)G,

for all j 6= i, and hence b
wi,js
j ∈ < bs

rj

j >. Let us say b
wi,js
j = b

li,js
rj

j , for some
0 ≤ li,j < p.
For all 1 ≤ i ≤ z, we now define

yi = (b
xi,1
1 , ..., bxi,nn ), where

xi,j =

{
li,js

rj if j 6= i,
pki + wi,is if j = i.

It follows that y1, ..., yz ∈ C and one easily verifies that

rk(< y1, ..., yz >) = z.

Now it is only left to show that < y1, ..., yz > even forms a basis of C: Let
y ∈ C, y = (bv11 , ..., b

vn
n ), for some vj ∈ Z[s], 1 ≤ j ≤ n. By renumbering the

bi’s, we may assume that there is an l ∈ N such that vj = sv′j (v′j ∈ Z[s])
for all j > l and vj 6∈ sZ[s] for all j ≤ l. Since Bz+1, ..., Bn are exact, it
follows that l ≤ z and that B1, ..., Bl are not exact. Thus, for all 1 ≤ j ≤ l,

b
vj
j = b

pkj+v′js

j for some v′js ∈ Z[s]. All in all, we obtain that

y = (b
pk1+v′1s
1 , ..., b

pkl+v′ls

l , b
v′l+1s

l+1 , ..., bv
′
ns
n ).

SinceB1, ..., Bn are in standard form, one easily obtains that y ∈ < y1, ..., yz >.
This finishes the proof.

The next result shows: In non-exact Z[s]-cycles we have no capitulation.
More precisely, we have

Proposition 2.8.7. Let b ∈ A(L) with 1 6= NL/K(b) = a ∈ A(K) and
B = bZ[s]. Assume that B is not exact, then ord(a) = ord(ıL/K(a)).
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Proof. It is sufficient to show that S1(< a >) does not capitulate in L. Since
B is not exact, there exists an 1 6= bp

k ∈ kerNL/K \Bs for some k ∈ N.

Observe that bp
k−1 6∈ kerNL/K due to |(B ∩ kerNL/K)/Bs| = p. It follows

that NL/K(bp
k−1

) = S1(a), where S1(a) is a generator of S1(< a >). Now

assume that S1(a) capitulates in L. Due to 1 = ıL/K(S1(a)) = (bp
k−1

)pu+sp−1
,

for some unit u ∈ Z[s], it then follows that bp
k ∈ Bs, which is a contradiction

to the initial assumption.

This leads us to the following

Corollary 2.8.8. Notations being like above, suppose that S1(A(K)′) capit-
ulates completely in L. Then there exist Z[s]-cycles B1, ..., Bn such that A(L)
is a direct product of B1, ..., Bn, i.e.

A(L) =
n∏
j=1

Bj.

Proof. The proof follows immediately from the above discussion and the
previous proposition. Any system (B1, ..., Bn) being in standard form yields
a decomposition of A(L) into a direct product of Z[s]-cycles.

Let (B1, ..., Bn) be a system of Z[s]-cycles in standard form, i.e. kerNL/K =∏n
j=1 B

s
j , where

∏
denotes the direct product. (Again, Bj = b

Z[s]
j , ∀ 1 ≤ j ≤

n). As we have seen in earlier examples, this does not necessarily imply that
A(L) is a direct product of the Bi’s. The reason for this are the non-exact
cycles. This poses the question if one can reduce the number of non-exact
Z[s]-cycles by some clever modifications without violating the standard form
assumption. In the following, we will show under which prerequisites this is
possible and we will explicitly show how to do this. We will restrict ourselves
to the case where exp(kerNL/K) ≤ p:

Let us assume that B1 is not exact, say bp
l1

1 ∈ kerNL/K \Bs
1. Due to

exp(kerNL/K) ≤ p by assumption, it follows that B1 =< b1 > ×Bs
1. Also,

|BG
1 | = p · ord(a1) and hence < b1 >

G=< b1 > (which implies that Bs
1 = 1)

or < b1 >
G=< bp1 >. In either way, we have that BG

1 =< b1 >
G · < bs

r1

1 >,
where r1 = l(b1) is the length of b1 as before. By Furtwängler’s Theorem and
the fact that C(B1,...,Bn) ⊂

∏n
j=1 kerNL/K ∩BG

j , we then obtain that

bp
l1

1 =
n∏
j=1

b
kjs

rj

1 ,
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where 0 ≤ kj < p, ∀ 1 ≤ j ≤ n. In the following, we will differentiate two
cases. In the first case, k1 6= 0 and in the second case k1 = 0.

Case 1: Assume that k1 6= 0 and that 0 < r1 < rj, ∀ 2 ≤ j ≤ n, with kj 6= 0.
Then we set

b̃1 =
n∏
j=1

b
kjs

rj−r1

j .

As r1 < rj, for all 2 ≤ j ≤ n with kj 6= 0, and as p - k1, it follows that
< NL/K(b̃1) >=< a1 >. Moreover, l(b̃1) = r1. Also note that S1(< b1 >

) = S1(< b̃1 >) since ord(b1) > p. Thus, < b̃p
l1

1 >=< b̃s
r1

1 >, which implies

that B̃1 = b̃
Z[s]
1 is exact now. Furthermore, l(b̃1) +

∑n
j≥2 l(bj) is still minimal,

implying that (B̃1, B2, ..., Bn) is in standard form with

rk(C(B̃1,B2,...,Bn)) < rk(C(B1,...,Bn)).

Case 2: Assume that k1 = 0 and that there exist lj > 0 such that < bs
rj

j >=<

bp
lj

j >, ∀ 2 ≤ j ≤ n, with kj 6= 0. (If Bj is exact and kerNL/K∩ < bj >6= 1,
one easily verifies that this is always the case). If l1 < lj for all j as above,
we then set

b̃1 =
n∏
j=1

b
k′jp

lj−l1

j ,

where 0 ≤ k′j < p, ∀ 1 ≤ j ≤ n, satisfying b̃p
l1

1 = 1. We then obtain that

ord(b̃1) = pl1 = ord(b1)/p and < b̃1 > ∩kerNL/K = 1, which implies that

B̃1 = b̃
Z[s]
1 is exact now. Observe that ord(NL/K(b

k′jp
lj−l1

j )) = pl1 , ∀ 1 ≤ j ≤ n,

with k′j 6= 0. Hence, < NL/K(b̃1), a2, ..., an > is a basis of A(K)′. Due to

exp(kerNL/K) ≤ p and l1 < lj, we obtain that l(b̃1) = l(b1). With the same

arguments as in the first case, we can thus derive that (B̃1, B2, ..., Bn) is in
standard form with rk(C(B̃1,B2,...,Bn)) < rk(C(B1,...,Bn)).

Remark: One can show that the two methods above are essentially the only
ways to lower the rk(C) for a given system (B1, ..., Bn) in standard form.
The proof is rather arduous and is omitted here, though. Examples show
that the two previous methods work no longer in general, when we relax the
assumption that exp(kerNL/K) ≤ p. It makes sense now to introduce the
following

Definition: Let (B1, ..., Bn) be a system of Z[s]-cycles in A(L) with A(L) =∏n
j=1Bj. (This product is not necessarily direct). Then we say the system
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(B1, ..., Bn) is in minimized standard form if it is in standard form and the
number of non-exact cycles is minimal among all systems of Z[s]-cycles being
in standard form. Let z be the number of non-exact cycles of a system
(B1, ..., Bn) in minimized standard form. Then we set min(L/K) := z.

Remark: Let (B1, ..., Bn) be in minimized standard form. The previous
results then imply that C(B1,...,Bn) is of minimal rank among all systems of
Z[s]-cycles being in standard form.

Now we are in the position to state and prove the main result of this section.
We have

Theorem 2.8.9. Notations being like above, let {a1, ..., an} be a basis of

A(K)′ and bi ∈ A(L) with NL/K(bi) = ai, ∀ 1 ≤ i ≤ n. We set Bi = b
Z[s]
i ,

∀ 1 ≤ i ≤ n, and assume that (B1, ..., Bn) is in standard form. Let us say
B1, ..., Bk are non-exact cycles and Bk+1, ..., Bn are exact cycles, for some
1 ≤ k ≤ n. We then obtain that

a) PK(L)∩ < ak+1, ..., an >=
n∏

j=k+1

(< aj > ∩PK(L));

b)
k∏
j=1

(< aj > ∩PK(L)) = {1};

Now additionally assume that (B1, ..., Bn) is in minimized standard form, i.e.
min(L/K) = k, and that exp(Bs

i ) ≤ p, ∀ 1 ≤ i ≤ k. Then

c) PK(L)∩ < a1, ..., ak >= {1}

In particular, min(L/K) ≤ rk(A(K)′)− rk(PK(L) ∩ A(K)′).

Proof. (a) Is straightforward and left to the reader.
(b) follows from a previous proposition.
(c) Let us suppose that there is some 1 6= a ∈ PK(L) with

a =
k∏
j=1

S1(aj)
kj ,

where S1(aj) is a generator of S1(< aj >), 0 ≤ kj < p (1 ≤ j ≤ k). Without
loss of generality, we may assume that kj = 0 or kj = 1, ∀ 1 ≤ j ≤ k, by

replacing aj by a
kj
j if kj = 0. Let I ⊂ {1, ..., k} such that kj 6= 0, i.e. kj = 1
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for all j ∈ I. As a ∈ PK(L), it follows that 1 =
∏

j∈I ıL/K(S1(aj)). Let

NL/K(bp
mj

j ) = S1(aj), for some mj ∈ Z and all j ∈ I. Due to exp(Bs
i ) ≤ p,

for all 1 ≤ i ≤ k by assumption, we can derive that∏
j∈I

(bp
mj

j )p+s
p−1

= 1 (∗)

Suppose that I is not empty, which implies that |I| ≥ 2, since S1(< aj >)

does not capitulate in L, ∀ 1 ≤ j ≤ k, and hence (bp
mj

j )p+s
p−1 6= 1, for all

j ∈ I. Then let m := minj∈I{mj} and let 1 ≤ l ≤ k be such that ml = m
and rl = l(bl) is maximal among all indices j satisfying mj = m. Then, we
set

b̃l =
∏
j∈I

bp
mj−ml

j .

Observe that ord(NL/K(bp
mj−ml

j )) = pml+1 = ord(al), for all j ∈ I. Hence,

{a1, ..., al−1, NL/K(b̃l), al+1, ..., an} is a basis of A(K)′. For all j ∈ I with

mj > ml, we have that l(bp
mj−ml

j ) = 0 due to exp(Bs
j ) ≤ p. For all j ∈ I with

mj = ml, we have that rl ≥ rj. Thus, we obtain that l(b̃l) = l(bl).
Using equation (*), it also follows that

b̃p
ml+1

l =
∏
j∈I

b−p
mj sp−1

j .

If ml > 0, then obviously b̃p
ml+1

l = 1 and B̃l is exact. Assume now that
ml = 0 and let I ′ ⊂ I such that mj = 0 for all j ∈ I ′. Then the above
equation reads

b̃pl =
∏
j∈I′

b−s
p−1

j ∈ B̃s
l ,

implying that B̃l is exact. In both cases, we obtain a contradiction to the
assumption that (B1, ..., Bn) is minimized and hence I must be empty. This
proves the claim.

Remark: In (c), the assumption that exp(Bs
i ) ≤ p, ∀ 1 ≤ i ≤ k, seems

essential. If exp(Bs
i ) > p, for some 1 ≤ i ≤ k, then B̃l from above is

not necessarily exact anymore and the standard form assumption may be
violated.
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Chapter 3

On the Structure of the
Capitulation Kernel in
Unramified Cyclic Extensions

In this chapter, we want to investigate the structure of the capitulation kernel
in unramified cyclic p-extensions of higher degree. Henceforth, let L/K be
an unramified cyclic extension of degree pn, where p is an odd prime and
n ∈ N. Let σ be a generator of the Galois group G = Gal(L/K). For the
ease of notation, we set O∗L = E(L) and O∗K = E(K). Also, we let µK and µL
denote the group of roots of unity in K and L, respectively. For simplicity,
we assume that L only contains the trivial roots of unity ±1. Most of the
following arguments, however, still hold when µL 6= {±1}. So far, the results
of Chapter 2 only yield a statement about the cardinality of the capitulation
kernel, namely

|PK(L)| = [L : K] · |H0(G,E(L))|.

This, however, neither yields any information on the structure of the capit-
ulation kernel PK(L) nor does it explain how elements in H0(G,E(L)) give
rise to capitulating ideals in L/K. On account of that, we illuminate the
underlying concept of Galois cohomology with respect to capitulation and
revisit Hilbert’s ideas that led to Hilbert’s Theorem 94 (see [22]). Subse-
quently, we push this approach further and present various generalizations
of Hilbert’s original ideas. In particular, we give sufficient conditions under
which the Galois group G(L/K) and the 0-th cohomology groupH0(G,E(L))
can be embedded in the capitulation kernel PK(L). Guided by MAGMA, we
then consider various examples where the above does not hold. In view of
that, we generalize our approach and denominate further factors that in-
fluence the structure of the capitulation kernel. To this end, we introduce
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the so-called deep cohomology, which contributes to a more subtle picture of
H−1(G,E(L)). Due to the enormous complexity, we will then restrict our-
selves to extensions of degree p2. In this case, the rank of the capitulation
kernel already yields the precise structure of PK(L). We conclude the first
section with a result that gives us a concrete formula for the rank of PK(L).
In the second section, we supplement the theoretic results of the first sec-
tion by giving some numerical data of concrete unramified cyclic extensions
L/K of degree 9 and their capitulation kernels PK(L). We then compare the
theoretic results of Section 1 with the developed database of Section 2.

3.1 Unramified Cyclic p-Extensions of Higher

Degree and the Deep Cohomology

Let r1 be the number of real embeddings of K, r2 be the number of pairs of
complex embeddings of K, and set r = r1 +r2. By Dirichlet’s Unit Theorem,
we obtain that rk(E(K)) = r − 1. (Here rk(E(K)) denotes the Z-rank of
the Z-torsion-free part E(K)/µK). Let e2, ..., er ∈ E(K) be a Z-basis of
E(K)/µK . Since µL = {±1} by assumption, it follows that the ei’s are
p-maximal in E(L), i.e. ei 6∈ E(L)p, ∀ 2 ≤ i ≤ r. Indeed, suppose that
e2 = xp for some x ∈ E(L) \ E(K). Then xσ−1 6= 1 and xp(σ−1) = 1, i.e.
xσ−1 is a non-trivial p-th root of unity, which contradicts the assumption
that µL = {±1}. Thus, the system {e2, ..., er} can be extended to a Z-basis
of E(L)/µL. (From now on, we will neglect µL and we will only refer to
E(L)/µL as E(L). We certainly may do this as p is odd). Now let L1 be
the unique intermediate field of L/K of degree pn−1 over K with O∗L1

being
denoted by E(L1). Let {ε1, ..., εν} ⊂ E(L), ν ∈ N such that its images form
an Fp-vector-space basis of E(L)/(E(L1)E(L)(s,p)), where s = σ − 1 and
E(L)(s,p) = E(L)sE(L)p.
Claim: ν = r.
Proof: Note that the infinite places of K split completely in L due to K ⊂
L ⊂ H(K). Dirichlet’s Unit Theorem thus yields that

rk(E(L)) = pnr − 1 = r − 1 + r(pn − 1). (3.1)

For all 1 ≤ i ≤ ν, we also have that rk(< εsi , ..., ε
sp
n−1

i >) = pn − 1. This
follows from elementary computations, using that εi 6∈ E(L1)E(L)(s,p). (Also

recall the results of Proposition 2.6.2). Furthermore, note that εs
pn−1

i ∈
(< εi, ..., ε

sp
n−2

i > ·NL/K(εi)). Combining the above arguments, one easily
verifies that < εi >Z[s] mod E(K) can be generated by a minimal number of
pn − 1 generators in E(L)/E(K). By equation (3.1), we can then conclude
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that ν = r, i.e. we have

rk(< e2, ..., er > · < ε1, ..., εr >Z[s]) = rk(E(L)).

Let us define E(L)′ =< e2, ..., er > · < ε1, ..., εr >Z[s]. By the theory on
finitely generated free Z-modules, we know that E(L)′ is of finite index in
E(L). However, the equality of the ranks of E(L)′ and E(L) does not nec-
essarily imply E(L)′ = E(L). However, in the case that [L : K] = p, we
always have this equality since E(L)p ⊂ E(K)E(L)s. Henceforth, we will
first analyze the case where E(L) = E(L)′ and later on the more general
case where E(L) 6= E(L)′.

So let us first assume that

E(L) =< e2, ..., er > · < ε1, ..., εr >Z[s] . (3.2)

Let t = rk(NL/K(< ε1, ..., εr >)) and thus t ≤ r − 1. Hence, there exist
δi ∈ < ε1, ..., εr >, 1 ≤ i ≤ r − t, such that NL/K(δi) = 1 and δi 6∈ E(L)s.
It follows that H−1(G,E(L)) is not trivial and hence the capitulation kernel
PK(L) not either. This recovers Hilbert’s Theorem 94.
Let us now define

δi =
r∏
j=1

ε
ki,j
j ,

where ki,j ∈ Z and 1 ≤ i ≤ r − t. Since µK = {±1} by assumption, we may
assume that 0 ≤ ki,j < p. As rk(< δ1, ..., δr−t >) = r − t, it then follows
that < δ1, ..., δr−t > can be extended to a minimal system of generators of
< ε1, ..., εr >. Without loss of generality, we may thus assume that εi = δi,
∀ 1 ≤ i ≤ r − t. By a suitable basis transformation of {e2, ..., er} ⊂ E(K),
we may also assume, ∀ i = r − t+ 1, ..., r:

NL/K(εi) = eqii ,

where 1 ≤ qi ≤ pn and qi is a p-th power.
We then define

δi =
ε
pn/qi
i

ei
, ∀ r − t+ 1 ≤ i ≤ r.

It then follows that δi ∈ kerNL/K , ∀ 1 ≤ i ≤ r, and |H0(G,E(L))| =
∏r

i=2 qi,
where qi = pn, ∀ 2 ≤ i ≤ r− t. (Note, however, that it may be possible that
δi ∈ E(L)s, for some r − t + 1 ≤ i ≤ r). The above calculations show
very well how non-trivial elements in H0(G,E(L)) yield non-trivial elements
in H−1(G,E(L)), thus giving rise to capitulating ideal classes. The next
proposition shows that the whole capitulation kernel is described by the
above δi. More precisely, we have
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Proposition 3.1.1. Assume the situation as above, in particular E(L) is
given as in equation (3.2). Then we obtain that

H−1(G,E(L)) =< δi >1≤i≤r,

where δi denotes the image of δi in E(L)/E(L)s, ∀ 1 ≤ i ≤ r.

Proof. Let x ∈ E(L) with NL/K(x) = 1. By equation (3.2), there exist
kj, li ∈ Z such that

x ≡
r∏
j=2

e
kj
j

r∏
i=1

εlii mod E(L)σ−1.

Since εi = δi, ∀ 1 ≤ i ≤ r − t, and ei = δ−1
i ε

pn/qi
i , ∀ i = r − t + 1, ..., r, it

follows that

x ≡
r−t∏
j=2

e
kj
j

r∏
i=r−t+1

εlii (ε
pn/qi
i )ki mod < δi >1≤i≤r ·E(L)σ−1.

Due to NL/K(x) = 1, we obtain that

NL/K(
r−t∏
j=2

e
−kj
j ) = NL/K(

r∏
i=r−t+1

εlii (ε
pn/qi
i )ki).

As < e1, ..., er−t > ∩NL/K(< εr−t+1, ..., εr >) = 1 and

rk(NL/K(< εr−t+1, ..., εr >)) = r − t,

we can conclude that

r∏
i=r−t+1

εlii (ε
pn/qi
i )ki = 1, and

r−t∏
j=2

e
kj
j = 1.

It follows that x ∈ < δi >1≤i≤r ·E(L)σ−1 and hence the claim.

Now we want to use the above proposition in order to give an upper bound
for the rank of H−1(G,E(L)). For this purpose, we need to bound the rank

of < δi >1≤i≤r in E(L)/E(L)s. Let us have a look at the δi = ε
pn/qi
i /ei with
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i > r − t. If qi = 1, for some i > r − t, then NL/K(εi) = ei and hence

δi = εp
n

i /ei ∈ E(L)s. Indeed,

εp
n

i /ei =

pn−1∏
k=0

εi/ε
σk

i

=

pn−1∏
k=0

(εσ
k−1
i )−1 ∈ E(L)σ−1.

We may now proceed with the next

Corollary 3.1.2. Notations being like above, we have that

rk(H−1(G,E(L))) = rk(H0(G,E(L))) + 1.

Moreover, there exist subgroups G1, G2 of H−1(G,E(L)) with G1
∼= G and

G2
∼= H0(G,E(L)) such that

H−1(G,E(L)) ∼= G1 ×G2.

Proof. Let m = rk(H0(G,E(L))). By the above arguments and the previous
proposition, we then easily obtain that rk(H−1(G,E(L))) ≤ m+ 1. Without
loss of generality, we may assume that δi ∈ E(L)σ−1, ∀ m + 2 ≤ i ≤ r, and
that < δ1, ..., δm+1 >= H−1(G,E(L)). Observe that ord(δi) ≤ qi, ∀ r−t+1 ≤
i ≤ r, due to

δqii = εp
n

i /e
qi
i = εp

n

i /NL/K(εi) ∈ E(L)σ−1.

As ord(δi) ≤ pn, ∀ 1 ≤ i ≤ r − t, and pn · |H0(G,E(L))| = |H−1(G,E(L))|,
we obtain that ord(δi) = pn, ∀ 1 ≤ i ≤ r − t, and that ord(δi) = qi,
∀ r − t+ 1 ≤ i ≤ r. This finishes the proof.

The following two examples show that the Galois group G of an unramified
cyclic extension L/K cannot be embedded in the capitulation kernel PK(L)
in general. We have

Example 1. Let K = Q(α) be an imaginary quadratic number field with
α2 = 3299. Then MAGMA yields that A(K) =< a1, a2 >∼= C3 × C9. Let
L = H(K)<a1>. Hence, L/K is cyclic of degree 9. By [21], it follows that
PK(L) =< a1, a

3
2 >
∼= C3 × C3.

Example 2. Let K = Q(α) be an imaginary quadratic number field with
65α2 + 168 = 0. Then MAGMA yields that A(K) =< a1, a2, a3, a4 >∼=
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C2×C2×C2×C4. Let L = H(K)<a1,a2,a3>. Then L/K is a cyclic extension
of degree 4. MAGMA states that PK(L) =< a1, a2, a3a

2
4 >
∼= C2 × C2 × C2.

The above examples demonstrate that the assumption as in equation (3.2) is
not always satisfied. In the following, we want to investigate the more general
case where E(L)′ 6= E(L). In this case, the structure of the capitulation
kernel depends on further parameters as we will see below. Due to the
complexity, we will restrict ourselves to the case where [L : K] = p2. In order
to determine the structure of the capitulation kernel, it is then sufficient to
determine the rank of H−1(G,E(L)). We start our analysis with

Proposition 3.1.3. Let K ⊂ L1 ⊂ L ⊂ H(K) with [L : L1] = [L1 : K] = p
and r − 1 = rk(E(K)) be as before. Let {ε1, ..., εr} ⊂ E(L) be a system with
dimFp(< ε1, ..., εr >) = r in E(L)/(E(L1)E(L)(s,p)). Then

E(L) = E(L1)· < ε1, ..., εr >Z[s] .

Proof. First observe that rk(E(L1)) = pr−1. Moreover, one verifies that the
system {ε1, ..., εs

p−2

1 , ..., εr, ..., ε
sp−2

r } is independent over E(L1)E(L)(σp−1,p).
Further elementary computations then reveal the claim, noting that E(L)p ⊂
E(L1)E(L)s.

Definition: Notations being like above, we define the deep cohomology of
L/L1 as

H0
(L/L1) = E(L1)/(E(K)E(L1)(s,p)NL/L1(E(L))).

Remark: 1) Obviously, H0
(L/L1) is isomorphic to a subgroup of the 0-th

cohomology group H0(Gal(L/L1), E(L)).

2) Let γ ∈ E(L1). Then γ ∈ E(K)E(L1)(s,p) ⇔ γ ∈ E(K)E(L)(s,p). This is
an elementary computation.

Proposition 3.1.4. Notations being like above, we have that

dimFp(E(L)/(E(K)E(L)(s,p))) = r + dimFp(H
0
(L/L1)).

Proof. Let < ε1, ..., εr >⊂ E(L) be as in the previous proposition. Then:

rk(< e2, ..., er > · < ε1, ..., εr >Z[s]) = rk(E(L)) = p2r − 1.
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It follows that

< ep2, ..., e
p
r > · < NL/L1(εi), ..., NL/L1(εi)

sp−2

>1≤i≤r

has the same rank as E(L1), namely pr− 1. In particular, NL/L1(εi) 6= 1, for
all 1 ≤ i ≤ r. It follows that NL/L1(E(K)· < ε1, ..., εr >Z[s]) = NL/L1(E(L)),
observing that E(L) = E(L1)· < ε1, ..., εr >Z[s] by Proposition 3.1.3. Let
I ⊂ {1, ..., r} such that NL/L1(εj) ∈ E(L1)p for all j ∈ I and NL/L1(εj) 6∈
E(L1)p, for all j ∈ {1, ..., r} \ I. For all j ∈ I, we choose some p-maximal
γj ∈ E(L1) such that NL/L1(εj) = γpj and for all j 6∈ I, we choose some
p-maximal γj ∈ E(L1) such that NL/L1(εj) = γj. Let γj be the image of γj
in E(L)/(E(K)E(L)(s,p)), for all 1 ≤ j ≤ r. Then the previous arguments
reveal that

< ε1, ..., εr > · < γj >j∈I= E(L)/(E(K)E(L)(s,p)).

More precisely, we have that < ε1, ..., εr > and < γj >j∈I are disjoint since
otherwise we would get a contradiction to the fact that dimFp(< ε1, ..., εr >
) = r in E(L)/(E(L1)E(L)(s,p)). (Note: In the proof εi denotes the image
of εi in both E(L1)E(L)(s,p) and E(K)E(L)(s,p)). By Remark 2) before this
proposition, the claim now follows.

Let {ε1, ..., εr} be as above and t = rk(NL/K(< ε1, ..., εr >)). As before, we
may assume that < ε1, ..., εr−t >⊂ kerNL/K and set δi = εi for all 1 ≤ i ≤
r− t. By a suitable basis transformation of {e2, ..., er} ⊂ E(K), we may also
assume for all i = r − t+ 1, ..., r:

NL/K(εi) = eqii ,

where 1 ≤ qi ≤ p2 and qi is a p-th power.
We then define

δi = ε
p2/qi
i /ei, ∀ i = r − t+ 1, ..., r.

It then follows that δi ∈ kerNL/K , for all 1 ≤ i ≤ r. The above proposition

shows that the system (δi)1≤i≤r does not necessarily generate H−1(G,E(L))
anymore. Indeed, the γj, j ∈ I, may also give rise to capitulating ideal
classes:
Let j ∈ I. If γj ∈ kerNL/K , then we define βj = γj. If γj 6∈ kerNL/K ,

we obtain that NL/K(γj) = NL/K(εj) = e
qj
j . Then we define βj = γ

p2/qj
j /ej.

Note: If qj = p, then δj ≡ βj mod E(L)s. We are now prepared to state the
next
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Proposition 3.1.5. Notations being like above, let J ′′ ⊂ {1, ..., r} such that
for all j ∈ J ′′, we have that NL/L1(εj) = γpj and NL1/K(γj) = ej. It then
follows that

H−1(G,E(L)) =< δi >1≤i≤r · < βj >j∈I · < εj/γj >j∈J ′′ ,

where for x ∈ E(L), x denotes the image of x in E(L)/E(L)σ−1.

Proof. The proof follows from Proposition 3.1.3 and by a slight modification
of the proof of Proposition 3.1.1. The details can be verified in a straightfor-
ward way.

In order to determine the structure of the capitulation kernel precisely, we
still need some further information on the structure of H0(G,E(L)) and on
H0(Gal(L1, K), E(L1)). For instance, if NL/K(εj) = epj , for some j ∈ N, then
we cannot say if NL/L1(εj) is in E(L1)p or not. The following proposition
describes the rank of H−1(G,E(L)) more exactly. For the ease of notation,
we set for an arbitrary Galois extension M/F : Hi(Gal(M/F ), E(M)) =
Hi(M/F ), i = −1, 0, 1. Also, we define

d = |{εj, r − t+ 1 ≤ j ≤ r : NL/L1(εj) = γpj , NL1/K(γj) = ej}|.

The subsequent proposition comprises all of the previous results and yields
a concrete formula for the cardinality of the capitulation kernel PK(L). We
have

Proposition 3.1.6. Notations being like, it follows that

rk(H−1(L/K)) = rk(H0(L/K)) + rk(H0
(L/L1)) + 1− d.

Proof. For 1 ≤ i ≤ r, let εi and δi be defined as above. Also, let βj, j ∈ I,
and t = rk(NL/K(< ε1, ..., εr >)) be as before. By construction, we have that

εi ∈ kerNL/K , for all 1 ≤ i ≤ r−t, and hence that rk(< δ1, ..., δr−t >) = r−t
in E(L)/E(L)s. Let J ⊂ {r − t+ 1, ..., r} such that for all j ∈ J , we have

that NL/K(εj) = ep
2

j and thus δj = εj/ej. In particular, NL/L1(εj) = γpj ,

which yields βj = γj/ej ∈ kerNL/K with δjβ
−1
j 6∈ E(L)s by the choice of εj.

It then follows that in E(L)/E(L)s:

rk(< δ1, ..., δr−t > · < δj, βj >j∈J) = r − t+ |J |+ rk(< βj >j∈J).

Observe that rk(< βj >j∈J) equals rk(< γj >j∈J) in H0
(L/L1). Let J ′ ⊂

{r − t+ 1, ..., r} \ J such that for all j ∈ J ′, we have that NL/K(εj) = epj .
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Note that obviously δi ∈ E(L)s for all i ∈ {r − t+ 1, ..., r} \ {J ∪ J ′}, i.e.
for all δi with NL/K(δi) = ei. Now let j ∈ J ′ and hence NL/K(εj) = epj . If
NL/L1(εj) ∈ E(L1)p, then NL/L1(εj) = γpj . By construction of εj, it follows
that εj/γj ∈ kerNL/K \ E(L)s. Since NL1/K(γj) = ej, it follows that γpj /ej ∈
E(L1)s. Due to εpj/ej ≡ γpj /ej mod E(L)s, this implies that also δj = εpj/ej ∈
E(L)s.
Again let j ∈ J ′, NL/K(εj) = epj , and now suppose that NL/L1(εj) 6∈ E(L1)p.
Then, NL/L1(εj) = γj and NL1/K(γj) = epj . It follows that

γj/ej ∈ kerNL1/K \ E(L1)s.

A moment of reflection also shows that γj/ej ∈ kerNL/K \ E(L)s. Since,

εpj/ej = (εp/γj)(γj/ej) ≡ γj/ej mod E(L)s, it follows that δj = γj/ej.
All in all, we have that

rk(H−1(L/K)) = rk(H0(L/K)) + 1 + rk(< γj >j∈J),

where γj denotes the image of γj in H0
(L/L1). As rk(< γj >j∈J) =

rk(H0
(L/L1))−d, we finally obtain the claim by the previous proposition.

Remark: 1) The proof yields that d ≤ rk(H0(L/L1)). Hence,

rk(H−1(L/K)) ≥ rk(H0) + 1.

2) By the proof of Corollary 3.1.2, we obtain that bothH0(L/K) andGal(L/K)
can be embedded in the capitulation kernel PK(L) in the case that d =
rk(H0(L/L1)).

In the next section, we compile some computational data concerning the
structure of the capitulation kernel in unramified cyclic extension of degree
9.

3.2 Numerical Data for Capitulation in Un-

ramified Cyclic Extensions of Degree 9

In this section, we supplement the theoretic results of the previous section
by computing the capitulation kernels of various unramified cyclic extensions
L/K of degree 9, assuming that the base field K is imaginary quadratic. In
particular, we are interested in the question whether such a capitulation
kernel is isomorphic to C9 or isomorphic to C3 × C3, or equivalently in the
question if the Galois group Gal(L/K) can be embedded in the capitulation
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kernel. The previous section has shown that this is not the case in general,
but one may ask how likely it is that Gal(L/K) is isomorphic to PK(L).
(Observe that |PK(L)| = 9 by the results of Chapter 2). In the following
list, we consider imaginary quadratic fields with A(K) ∼= C3 × C9, i.e. with
the easiest non-cyclic class groups having a cyclic subgroup of order 9. Let
A(K) =< a1, a2 > with ord(a1) = 3 and ord(a2) = 9. We then obtain four
subfields L1, ..., L4 of H(K)/K with [Li : K] = 9. Let the ordering be as
follows:
L1 = H(K)<a1>, L2 = H(K)<a1a

3
2>, L3 = H(K)<a

2
1a

3
2>, and L4 = H(K)<a

3
2>.

It follows that Gal(Li/K) ∼= C9, for i = 1, 2, 3, and Gal(L4/K) ∼= C3×C3. In
the subsequent list, the capitulation type is given in the form (PK(Li))i=1,...,4

and S1 = S1(A(K)) will denote the 1-socle of A(K). We have:

Nr. Discriminant Capitulation Type

1 -3299 (S1,S1,S1,S1)
2 -5703 (a1a2, a2, a1a2, S1)
3 -10015 (S1,S1,S1,S1)
4 -11561 (S1,S1,S1,S1)
5 -17728 (S1,S1,S1,S1)
6 -19427 (a2, a1a2, a2

1a2, S1)
7 -19919 (S1,S1,S1,S1)
8 -27635 (a2, a2

1a2, a1a2, S1)
9 -27656 (S1,S1,S1,S1)
10 -31983 (S1,S1,S1,S1)
11 -33879 (S1,S1,S1,S1)
12 -34603 (S1,S1,S1,S1)
13 -35331 (S1,S1,S1,S1)
14 -38296 (a1a2,a2

1a2,a2,S1)
15 -43763 (S1,S1,S1,S1)
16 -48039 (S1,S1,S1,S1)
17 -56132 (a2,a1a2,a2

1a2,S1)
18 -57336 (a2

1a2,a2,a2,S1)
19 -64571 (a2,a1a2,a2

1a2,S1)
20 -62527 (S1,S1,S1,S1)

The above table comprises 20 · 3 = 60 different unramified cyclic extensions
of degree 9. In 39 cases, we have that PK(L) ∼= C3 × C3, i.e. in roughly 2/3
of the cases. This underlines that the assertion of equation (3.2) is not only
wrong in general, but it is violated with rather high frequency.
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Chapter 4

Growth of Ideal Classes in
Extensions with F -Property

After Furtwängler had proved the Principal Ideal Theorem in 1932, he posed
the following question: Let K be a number field and let H(i+1)(K) denote
the Hilbert class field of H(i)(K), for i ≥ 0. Then Furtwängler asked if
this tower of Hilbert class fields eventually terminates? In the case that
H(k+1)(K) = H(k)(K), for some k ∈ N, one says that K has a class field
tower of length k. In 1964, Golod and Shafarevich, however, proved that
the Hilbert class field tower of a number field can also be infinite, see [29].
Whereas the above question implicitly deals with the growth of ideal classes
of successive Hilbert class fields, we henceforth want to study the growth of
ideal classes in a given unramified cyclic extension of prime degree.
In what follows, let L/K be an extension of degree p and let A(K)′ denote
the image of A(L) arising from the norm map NL/K . In this chapter, we want
to compare the ideal classes of K and L. In particular, we are interested in
the following question: Let a and b be ideal classes in K and L, respectively,
with NL/K(b) = a. How is the order of b related with the order of a? If L/K
satisfies the F -property, then the index of A(K)′ in A(K) is p or trivial. Thus,
A(K)′ is a good approximation for the ideal class of K. Since the norm maps
the ideal class of L onto A(K)′, it follows that A(K)′ is contained in A(L)
in some sense. Hence, it makes sense to speak of the growth of ideal classes.
Once we have examined the growth of ideal classes in extension of degree p,
we can generalize the results to p-extensions, simply by splitting them into
extensions of degree p.
It is quite evident that the analysis of such a growth is inextricably linked
with the capitulation problem. Indeed, let b be a non-trivial ideal class in L
with NL/K(b) = a as above. We will then show that under certain conditions
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the following relation holds:

ord(b) = p · ord(ıL/K(NL/K(b))). (4.1)

It then follows that a capitulates in L if and only if ord(b) = ord(a).
For a more sophisticated investigation, we distinguish between four different
types of growth: stable growth, tame growth, semi-stable growth, and wild
growth. We then show that equation (4.1) holds for the first three types in
the case that a can be extended to a minimal system of generators of A(K)′.
In the last section, we show that in general there is no bound for the growth
of ideal classes. More precisely, we demonstrate that exp(kerNL/K) can be
arbitrarily large. To this end, we construct a family of finite p-groups G such
that G contains an abelian normal subgroup of index p and such that exp(G′)
is arbitrarily large. A theorem due to Ozaki then tells us that there exist
unramified cyclic extensions L/K of degree p with Gal(H(L)/K) ∼= G, thus
showing that G′ ∼= kerNL/K is unbounded as G ranges of the constructed
family of p-groups. Supported by MAGMA, we supplement these theoretic
results by giving concrete examples for the various types of growth.

4.1 Preliminary Results on Finite Abelian p-

Groups and a Classification of the Growth

of Ideal Classes

In this section, we first state and prove some basic results on finite abelian
p-groups. Subsequently, we classify the different types of the growth of ideal
classes. From now on, let p be prime, A be a finite abelian p-group of rank r,
denoted multiplicatively, and {a1, ..., an} a system of generators of A. Then
we say {a1, ..., an} is a minimal system of generators of A if n = r. Moreover,
we say a minimal system of generators {a1, ..., ar} is a basis of A if every a ∈ A
has a unique representation of the form a =

∏r
i=1 a

ki
i with 0 ≤ ki < ord(ai).

We say a ∈ A is p-maximal if a 6∈ Ap. Finally, we define the subexponent of
A as subexp(A) = min{pk, k ∈ N : rk(Ap

k
) < rk(A)}.

We start with some basic results on finite abelian p-groups and minimal
systems of generators. We have

Proposition 4.1.1. Let A be a finite abelian p-group and {a1, ..., ar} be a
minimal system of generators of A. Then ai 6∈ Ap, for all i = 1, ..., r.

Proof. Suppose a1 = ap, for some a ∈ A. Since {a1, ..., ar} is a system of

63



generators, we have:

a = ak1p
r∏
i=2

akii ,

for some ki ∈ N, and thus

a1−k1p =
r∏
i=2

akii .

It follows that < a1−k1p >=< a >⊂ span(ak22 , ..., a
kr
2 ) and thus a1 lies in

span(ak22 , ..., a
kr
2 ), which yields a contradiction to {a1, ..., ar} being a minimal

system.

Proposition 4.1.2. Let A be a finite abelian p-group and a ∈ A \ Ap. Then
a can be extended to a minimal system of generators of A.

Proof. Let {a1, ..., ar} be a basis of A. Then we have a unique representation
for a of the form a =

∏r
i=1 a

ki
i with 0 ≤ ki < ord(ai). Since a ∈ A \ Ap, we

can assume that p does not divide k1 without loss of generality. This implies
that < a1 >=< ak11 > and hence {a, a2, ..., ar} forms a minimal system of
generators of A.

Proposition 4.1.3. Let A be a finite abelian p-group of rank r and {a1, ..., ar}
be a system of elements in A. Then {a1, ..., ar} is a minimal system of gen-
erators of A if and only if the system {a1A

p, ..., arA
p} forms a basis of the

Fp-vector-space A/Ap.

Proof. First, we assume that {a1, ..., ar} is a minimal system of generators
of A and that {a1A

p, ..., arA
p} does not form a basis of A/Ap. Without loss

of generality, we may then assume that there exist 0 ≤ ki < p, i = 2, ..., r,
with a1A

p =
∏r

i=2 a
ki
i A

p which implies that a1 =
∏r

i=2 a
ki
i a

p for some a ∈ A.
It follows that {a1, ..., ar} = {ap, a2, ..., ar}. This, however, yields a contra-
diction to Proposition 4.1.1.
Now let us assume that {a1A

p, ..., arA
p} forms a basis of A/Ap. It is then suf-

ficient to show that A′ :=< a1, ..., ar > equals A. Let a ∈ A. By assumption,
there exist ki ∈ Z (1 ≤ i ≤ r) and some b ∈ A such that

a =
r∏
i=1

akii b
p.
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Iterating this procedure, it follows for sufficiently large l > 0:

a ∈ A′ · A′p · · ·A′pl ⊂ A′.

Hence, A ⊂ A′, which completes the proof.

We proceed with further elementary observations on the structure of finite
abelian groups. We have

Lemma 4.1.4. Let A be a finite abelian p-group, denoted multiplicatively,
and a ∈ A. Then

rk(A/ < a >) = rk(A)− 1 if a 6∈ Ap and

rk(A/ < a >) = rk(A) if a ∈ Ap.

Proof. The proof follows immediately from the previous assertions.

Proposition 4.1.5. Let A be a finite abelian p-group of rank s, A′ ⊂ A a
subgroup of rank 0 < r ≤ s, and rk(A/A′) = s−l, for some l ∈ N. Then there
is a system {a′1, ..., a′l} ⊂ A′ which can be extended to a minimal generating
system of A.

Proof. Assume that there is a system {a′1, ..., a′k} ⊂ A′ (k ≥ 0), which
can be extended to a minimal generating system of A and that k is max-
imal with this property. Then A has a minimal generating system of the
form {a′1, ..., a′k, ak+1, ..., as} and A′ has a minimal generating system of the
form {a′1, ..., a′k, a′k+1, ..., a

′
r}. (By the previous proposition, {a′1, ..., a′k} can

a fortiori be extended to a minimal generating system of A′). We define
Ak+1 =< ak+1, ..., as >, A′k+1 =< a′k+1, ..., a

′
r >, and Ā =< a′1, ..., a

′
k >. It

then follows that

A/A′ ∼= Ak+1Ā/A
′
k+1Ā.

Clearly, k ≤ l. Assume that k < l. Since rk(A/A′) = s − l < s − k, it thus
follows that

rk(Ak+1) = s− k > rk(Ak+1Ā/A
′
k+1Ā).

A moment of reflection shows that this implies that there exists a non-trivial
a′ ∈ A′k+1 with a 6∈ Ap. Hence, {a′1, ..., a′k, a′} can be extended to a minimal
generating system of A, which yields a contradiction to the assumption that
k was maximal. Thus, k = l.
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For the further analysis of the growth of ideal classes, we introduce the
following classification. (In the course of the discussion, the denominations
become more comprehensible). We have

Definition: Let L/K be a Galois extension of degree p satisfying the F -
property. Let G = Gal(L/K) generated by some σ ∈ G and s = σ − 1. We
define A(K)′ = NL/K(A(L)) and set N = NL/K . Then we say L/K has

(a) stable growth if rk(A(K)′) = rk(A(L)) and subexp(A(K)′) > p;

(b) tame growth if subexp(A(K)′) > p and A(L) has a basis of the form
{b1, .., br, br+1, .., bt} with N(bj) = 1, ∀ r + 1 ≤ j ≤ t, and {N(b1), ..., N(br)}
forms a minimal system of generators of A(K)′;

(c) semi-stable growth if A(L)s
p−1

= {1};
(d) wild growth, otherwise.

Remark: We will treat the cases (a) and (b) in greater generality and we do
not need the F -property there. In the later chapters, however, we are mainly
interested in the case where L/K is unramified and so we have chosen the
above setting. Henceforth, we will analyze the growth of ideal classes in the
various cases listed above beginning with stable and tame growth.

4.2 Stable Growth of Ideal Classes

We start with the investigation of stable growth. The analysis of stable
growth essentially goes back to Preda Mihailescu. The following theorem
discusses stable growth in a more general context. We have

Theorem 4.2.1. Let A and B be finite abelian p-groups, denoted additively,
with subexp(A) > p. Let N : B → A and ı : A→ B be group homomorphisms
such that:
(i) N is surjective;
(ii) rk(A) = rk(B);
(iii) N(ı(a)) = pa, for all a ∈ A.
Then ı(A) = pB and ord(b) = p · ord(ı(Nb)), for all non-trivial b ∈ B.

Proof. The maps N and ı induce maps N̄ : B/pB → A/pA and ı̄ : A/pA→
B/pB. By (i) we obtain that N̄ is surjective and by (ii) it follows that N̄
is also injective and hence N̄ is a group isomorphism. Moreover, we can
conclude that the map N̄ ◦ ı̄: A/pA→ A/pA is the trivial map due to (iii).
It follows that ı(A) ⊂ pB.
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Now let {b′1, ..., b′r} be a minimal system of generators of B. Hence, the
images b′i of b′i in B/pB form an Fp-basis of B/pB. Let ai = N(b′i) for
i = 1, ..., r. Let ai denote the images of ai in A/pA. Since N̄ is a group
isomorphism, we obtain that the system {āi}1≤i≤r forms an Fp-basis of A/pA.
Thus, {a1, ..., ar} is a minimal system of generators of A by Proposition 4.1.3.
Now let a′i = ı(ai). Then {a′1, ..., a′r} forms a minimal system of ı(A) as ı is
rank preserving due to (iii) and subexp(A) > p. For all 1 ≤ i ≤ r, let
bi ∈ B with peibi = a′i and ei ≥ 0 maximal among all possible choices of bi.
A moment of reflection shows that {b1 · pB, ..., br · pB} forms an Fp-basis of
B/pB since {a1 ·pA, ..., ar ·pA} forms an Fp-basis of A/pA. Hence, {b1, ..., br}
is a minimal system of generators of B by Proposition 4.1.3. Furthermore,
ı(A) ⊂ pB implies that ei ≥ 1, for all 1 ≤ i ≤ r. As {b′1, ..., b′r} is a minimal

system of generators, there is a matrix E ∈Mat(r,Z) with ~b = E · ~b′, where
~b = (b1, ..., br)

T and ~b′ = (b′1, ..., b
′
r)
T . (MT denotes the transponent matrix

of a matrix M). (Accordingly, ~a = (a1, ..., ar)
T and ~a′ = (a′1, ..., a

′
r)
T ). Let

Diag(pei) denote the r × r diagonal matrix with entries pe1 , ..., per . It then
follows that

ı(~a) = ~a′ = Diag(pei)~b = Diag(pei)E · ~b′.
Also, the group homomorphism N : B → A acts component wise on vectors
in the Cartesian product Br and hence

N(~b) = N(E · ~b′) = E ·N(~b′) = E · ~a.

Combining the two above results and denoting the unit matrix by I, we
obtain that

N(~a′) = p~a = pI · ~a = N(Diag(pei)~b) = Diag(pei) ·N(~b)

= Diag(pei) · E~a.

It follows that
~a = Diag(pei−1) · E~a+ ~x,

where ~x = (x1, ..., xr) with xi ∈ A and ord(xi) = p, for all 1 ≤ i ≤ r. Since
subexp(A) > p, it follows that xi ∈ pA. Now let E~a =: ~α = {α1, ..., αr}. As
{a1, ..., ar} is a minimal system of generators, we obtain that Diag(pei−1) ·
~α+~x is also a minimal generating system of A. Proposition 4.1.3 thus yields
that ei = 1, for all 1 ≤ i ≤ r. Indeed, if ek ≥ 2 for some k, then ak ∈ pA due
to subexp(A) > p. This proves that ı(A) = pB.
Now we want to show that ord(b) = p · ord(ı(Nb)) holds for all non-trivial
b ∈ B. If b ∈ pB = ı(A), b 6= 1, then there is an a ∈ A with ı(a) = b. It
follows that N(b) = N(ı(a)) = pa and hence ı((N(b))) = ı(pa) = pı(a) = pb.
This implies that ord(b) = p · ord(ı(N(b))). Now let b ∈ B \ pB. First,
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we show that ı(N(b)) 6= 1. Indeed, since b 6∈ pB, Proposition 4.1.2 yields
that we can extend b to a minimal system of generators of B. As N̄ is an
isomorphism, we obtain that a := N(b) 6∈ pA. As a 6∈ pA, we can also
extend a to a minimal system of generators of A. Since ı is rank preserving,
it follows that ı(a) = ı(N(b)) 6= 1. Due to pb ∈ ı(A) and ı(N(b)) 6= 1, we can
now conclude that

ord(b)/p = ord(pb) = p · ord(ı(N(pb))) = p · ord(p(ı(N(b))))

= ord(ı(N(b)))

This yields the claim.

Corollary 4.2.2. Let L/K be an extension of degree p and A(K)′ as before.
Assume that subexp(A(K)′) > p and that rk(A(K)′) = rk(A(L)). Then
ıL/K(A(K)′) = A(L)p and

ord(b) = p · ord(ıL/K(NL/K(b))), ∀ b ∈ A(L), b 6= 1.

Proof. The proof follows immediately from the previous theorem. (Note
that A(K) and A(L) are denoted multiplicatively and not additively as in
the theorem above).

Remark: Sören Kleine has shown that one can also relax the assump-
tion that subexp(A(K)′) > p by replacing it with the assumption that
rk(A(L)p) = rk(A(K)′p).

4.3 Tame Growth of Ideal Classes

One natural question is to what extent can we generalize the results of the
previous section in the case that rk(A(K)′) < rk(A(L)). As in Section 4.2,
we begin with some more general observations. We have the following

Theorem 4.3.1. Let A and B be finite abelian p-groups, denoted additively,
with subexp(A) > p. Moreover, let N : B → A and ı : A → B be group
homomorphisms such that:
(i) N is surjective;
(ii) N(ı(a)) = pa, for all a ∈ A;
(iii) r = rk(A) < rk(B) = t;

Also assume that there is a basis {b1, .., br, br+1, .., bt} of B with N(bj) = 1,
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r + 1 ≤ j ≤ t, such that {a1 = N(b1), ..., ar = N(br)} ⊂ A forms a minimal
system of generators of A. Then

ord(bj) ≤ p · ord(ı(N(bj))), ∀ 1 ≤ j ≤ r.

Proof. Again, the maps N and ı induce maps N̄ : B/pB → A/pA and ı̄ :
A/pA → B/pB. By assumption, it follows that kerN̄ =< br+1, .., bt > ·pB.
Also, (ii) yields that the map N̄ ◦ ı̄: A/pA→ A/pA is the trivial map. Thus,
ı(A) ⊂< br+1, .., bt > ·pB. Let a′i = ı(ai) for some 1 ≤ i ≤ r. For the ease
of notation, let us say that i = 1 without loss of generality. Then there are
k1, .., kt ∈ Z such that

a′1 = k1pb1 + ...+ krpbr + kr+1br+1 + ...+ ktbt.

We claim that p does not divide k1.
Proof: For the following, we set ~a = (a1, ..., ar)

T . Since N(bj) = 1, ∀ j =
r + 1, .., t, and N(bj) = aj, ∀ 1 ≤ j ≤ r, it follows that

pa1 = N(a′1) = (k1p, ..., krp) · ~a.

Consequently, there is an x ∈ A with ord(x) = p such that

a1 = (k1, ..., kr) · ~a+ x.

Since subexp(A) > p, we obtain that x ∈ pA. Now assume that p|k1. Then
a1 ∈ (k2, .., kr) · (a2, .., ar)

T + pA. This, however, yields a contradiction since
rk(< a1 · pA, .., ar · pA >) = rk(A) = r. Thus, the claim follows.
On the other hand, we have that

ord(ı(N(b1))) = ord(a′1)

= max{ord(k1pb1), .., ord(krpbr), ord(kr+1br+1), .., ord(ktbt)}

As {b1, .., bt} is a basis of B and p does not divide k1, we can conclude that

ord(ı(N(b1))) ≥ ord(k1pb1) = ord(b1)/p, and hence

ord(b1) ≤ p · ord(ı(N(b1))).

This proves the theorem.

In what follows, we apply the above result for the case of a field extension
L/K of degree p. The previous theorem yields
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Corollary 4.3.2. Let L/K be an extension of degree p and A(K)′ as before
with subexp(A(K)′) > p. Let rk(A(L)) = t > r = rk(A(K)′). Assume that
{b1, .., br, br+1, .., bt} is a basis of A(L) with NL/K(bj) = 1, r+1 ≤ j ≤ t, such
that {NL/K(bj) = aj}1≤j≤r forms a minimal system of generators of A(K)′.
Then

ord(bj) ≤ p · ord(ıL/K(NL/K(bj))), ∀ 1 ≤ j ≤ r.

If L/K is cyclic and has the F -property, then equality holds in the above
statement.

Proof. The proof of the inequality follows immediately from the previous
theorem, noting that A(K) and A(L) are multiplicative groups. Now suppose
that L/K is cyclic and has the F -property. Let bj ∈ A(L) be as above, for
some 1 ≤ j ≤ r. Obviously, ord(bj) > p by assumption. Assume that
ord(bj) = ord(ıL/K(NL/K(bj))). Then < bj > ∩kerNL/K = {1}. By Section
2.5, we also have that exp(kerNL/K) = p. As ord(bj) > p, it follows that
< bj > ∩A(L)G 6= {1}. This yields the desired contradiction.

Remark: Again one can relax the assumption subexp(A(K)′) > p by replac-
ing it by the assumption that rk(< b1, .., br >

p) = rk(< a1, .., ar >
p). The

details are omitted here.

We conclude this section with an example where

ord(bj) < p · ord(ıL/K(N(bj))), for some 1 ≤ j ≤ r,

i.e. the case that ord(bj) = ord(ıL/K(N(bj))) may occur as the following
example shows. (Observe, however, that subexp(A(K)′) = p).

Example: Consider the imaginary quadratic field

K = Q(α) with α2 + 3896 = 0.

Then MAGMA yields:
(i) A(K) =< a1, a2 >∼= C3 × C3, for some a1, a2 ∈ A(K).
(ii) We define L = H(K)<a2>, which implies that NL/K(A(L)) =< a2 >∼= C3.
Using MAGMA, we obtain: A(L) ∼= C3 × C3 × C3.
(iii) PK(L) ∩NL/K(A(L)) = {1}.
Since NL/K is surjective, there is an ideal class b ∈ A(L) with NL/K(b) = a2

and one observes that b can be extended to a basis < b, b2, b3 > of A(L)
with < b2, b3 >= kerNL/K , i.e. the assumptions of the previous theorem are
satisfied apart from subexp(A(K)′) > p. By (iii), it follows that

ord(b) = ord(ıL/K(NL/K(b)).

70



Later in this chapter, we show that even ord(bj) ≤ p · ord(ıL/K(NL/K(bj)))
does not hold if we relax the assumption of the previous theorem. In Section
4.5, we will even show that there are no general bounds for the exponent of
kerNL/K .

4.4 Semi-Stable Growth of Ideal Classes

Henceforth, we want to study semi-stable growth. Whereas L/K was an
arbitrary extension of degree p in the previous corollary, we now assume that
L/K is a cyclic extension of degree p, satisfying the F -property. Let σ ∈
G(L/K) be a generator of G = G(L/K) and s = σ−1. We assume that L/K
has semi-stable growth, i.e. A(L)s

p−1
= {1}. Suppose that exp(A(L)s) = pl,

for some l ∈ N, and let b be a non-trivial ideal class in L. Recall Proposition
2.6.2 (iii): Setting R = Z[s]/(sp

l
), it follows that A(L)s is an R-module and

due to A(L)s
p−1

= {1}, we can derive that

ıL/K(NL/K(b)) = b1+σ+...+σp−1

= bpu
′
, u′ ∈ R∗.

In particular, p · ord(ıL/K(NL/K(b))) = ord(b), for all non-trivial b ∈ A(L).

Heuristics: If p tends to infinity, the likelihood of A(L)s
p−1

being trivial
should go to 1, i.e. if p is large, then L/K has semi-stable growth with a
rather high probability. (Also see Chapter 6). In this case, equation (4.1)
applies.

We now want to generalize the above definition to an unramified abelian
p-extension L/K. We say that L/K has semi-stable growth if there exists a
tower K ⊂ L1 ⊂ L2 ⊂ ... ⊂ Lk = L such that [Li+1 : Li] = p and Li+1/Li is
semi-stable, ∀ 1 ≤ i ≤ k − 1. We then have

Proposition 4.4.1. Let L/K be an unramified abelian extension with semi-
stable growth. Then

ıL/K(NL/K(b)) = b[L:K], ∀ b ∈ A(L).

Proof. Let pn = [L : K]. Then, we may prove the proposition by induction
on n. For n = 1, we have already established the result. Now let n > 1 and
K ⊂ L′ ⊂ L with [L′ : K] = pn−1. Let b ∈ A(L) with NL/L′(b) = b′ and
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NL/K(b) = a . Using the induction hypothesis for L′/K, it follows that

ıL/K(NL/K(b)) = ıL/L′ ◦ ıL′/K(NL′/K(b′))

= ıL/L′(b
′[L′:K])

= ıL/L′(NL/L′(b))
[L′:K]

= bp[L
′:K]

= b[L:K].

4.5 Wild Growth of Ideal Classes

In Section 2.6, we have shown that rk(A(L)) ≤ p ·rk(A(K)), where L/K is a
cyclic extension of prime degree satisfying the F -property. Hence, one may be
inclined to think that the exponent of A(L) is also somehow bounded by the
exponent of A(K). For instance, we first conjectured that exp(kerNL/K) ≤
prk(A(K)). This, however, turned out to be wrong. One can even show that the
exponent of kerNL/K is unbounded and thus the exponent of A(L) as well.
Before we begin to show that the exponent of kerNL/K can be arbitrarily
large, we state two very useful results due to Yahagi and Ozaki. These
results link the field theoretic situation with the group theoretic situation.
More precisely, we have

Theorem 4.5.1 (Yahagi). Let G be a finite abelian p-group. Then there
exists a number field K with maximal unramified p-extension M such that
Gal(M/K)ab ∼= G.

Proof. See [13].

An immediate consequence is

Corollary 4.5.2. Let G be a finite abelian p-group. Then there exists a
number field K such that the p-part of its ideal class group is isomorphic to
G.

Theorem 4.5.3 (Ozaki). Let G be a finite p-group. Then there exists a num-
ber field K with maximal unramified p-extension M such that Gal(M/K) ∼=
G.

Proof. See [12].
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Before we apply Ozaki’s Theorem to show that exp(kerNL/K) can be arbi-
trarily large, we derive the following group theoretic version of Furtwängler’s
Theorem. We have

Corollary 4.5.4. Let G be a finite p-group with abelian normal subgroup H
such that G/H is cyclic. Let σ ∈ G such that < σ̄ >= G/H, where σ̄ denotes
the image of σ in G/H. Since H is abelian, σ̄ acts on H by hσ̄−1 = σhσ−1h−1,
for h ∈ H, and

G′ = Hσ−1.

In this case, we will say that H ⊂ G satisfies the F -property.

Proof. The proof follows immediately by Ozaki’s Theorem and the theorem
due to Furtwängler.

One can now use the above corollary to prove the classical Principal Genus
Theorem. We have

Theorem 4.5.5 (Principal Genus Theorem). Let L/K be a cyclic extension
with Galois group G =< σ >, for some σ ∈ G. Let M be the genus field of
L/K, i.e. the maximal abelian extension of K which is unramified over L.
Then

Gal(H(L)/M) = Gal(H(L)/K)′ = Gal(H(L)/L)σ−1.

Proof. By the previous corollary, we obtain that Gal(H(L)/L)σ−1 is the com-
mutator group of Gal(H(L)/K). One easily verifies that H(L)Gal(H(L)/K)′ is
the maximal subfield of H(L)/L which is abelian over K. It follows that
H(L)Gal(H(L)/K)′ = M and thus Gal(H(L)/K)′ = Gal(H(L)/M).

Remark: By the theorem of Tannaka-Terada, we obtain that theG-invariant
ideal classes of A(L) capitulate in H(L)Gal(H(L)/L)σ−1

.

In what follows we apply Ozaki’s Theorem to show that the exp(kerNL/K) is
unbounded. To this end, we construct a group with the following properties:

1. G is a finite p-group with abelian normal subgroup H of index p in G.
2. exp(G′) is arbitrarily large.

Suppose G is a group with the above properties. By Ozaki’s Theorem, it fol-
lows that there exists a number field K with maximal unramified p-extension
M such that Gal(M/K) ∼= G. Now we define L = MH , yielding that L/K
is an unramified abelian extension of degree p. Since L/K is unramified, we
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obtain that H(L) ⊂ M . One the other hand, Gal(M/L) = H is abelian,
showing that H(L) = M and hence G ∼= Gal(H(L)/K). As usual, we can
derive that G′ = Gal(H(L)/H(K)) ∼= kerNL/K . By construction of G, it
follows that exp(kerNL/K) is arbitrarily large. Thus, it is sufficient to show
that there are finite p-groups satisfying the above properties.

One can show that a subgroup of a p-group of index p is normal. Indeed, we
have

Proposition 4.5.6. Let G be a finite p-group and H be a subgroup of index
p. Then H is a maximal subgroup and hence a normal subgroup of G.

Proof. Since H is of index p, H is maximal by Lagrange’s theorem. The
second statement follows from Theorem 4.6, page 75, of [9].

For the ease of notation, we make the following definition: Let G be a group
and g1, g2 ∈ G. Then [g1, g2] := g1g2g

−1
1 g−1

2 and gg12 := g1g2g
−1
1 .

We now start with the construction of 2-groups with the above properties:

One can easily show that the dihedral groups D2n with n = 2k, for some
k ≥ 2, satisfy the above properties:

D2n =< s, t| sn = 1, t2 = 1 and tst = s−1 > .

It is well-known that D2n is a group of order 2n = 2k+1 and that it is non-
abelian for n ≥ 3. One can also verify that
1. The commutator subgroup G′ = [G,G] is of order 2k−1.
2. G contains a normal cyclic subgroup H =< s >∼= C2k of index 2 in D2n,
which contains G′.
3. G′ ∼= C2k−1 , i.e. exp(G′) is unbounded as k tends to infinity.
4. G/G′ ∼= C2 × C2.
5. H ⊂ G satisfies the F -property.

For p = 3, the group becomes more complicated. Consider the finitely pre-
sented 3-group

Gn =< a, b, c| a3, b3n+1

, c3n , [a, b] = c, [a, c] = b3n−3c−3, bc = cb > .

One can verify: 1. ord(Gn) = 31+n+1+n = 32(n+1).
2. Hn :=< b, c > is an abelian normal subgroup of index 3 in Gn, i.e.
Hn
∼= C3n+1 × C3n .

3. G′n
∼= C3n × C3n .
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4. Gn/G
′
n
∼= C3 × C3.

For a general prime p, we can generalize the above construction. We set
kj =

(
p
j

)
and define the finitely presented groups

Gn =< a0, a1, ..., ap−1 | ap0 = 1, ap
n+1

1 = 1, ap
n

i = 1, ∀ 2 ≤ i ≤ p− 1,

[ai, aj] = 1, ∀ i, j 6= 0,

aa0−1
1 = a2, a

(a0−1)2

1 = a3, ..., a
(a0−1)p−2

1 = ap−1,

aa0−1
p−1 = ap

n−k1
1 · ... · ap

n−kp−1

p−1 > .

Remark: Setting aa0−1
p−1 = ap

n−k1
1 · · · · · ap

n−kp−1

p−1 yields that

a
(a0−1)2

p−1 = a
(a0−1)p

1 = a
−

∑p−1
i=1 (pi)(a0−1)i

1 .

Hence, the choice for aa0−1
p−1 is not arbitrary but well thought about.

One can verify that: 1. ord(Gn) = p1+n+1+(p−2)n = pn(p−1)+2.
2. Hn :=< a1, ..., ap−1 > is an abelian normal subgroup of index p in Gn, i.e.
Hn
∼= Cpn+1 × Cpn × ...× Cpn .

3. G′n
∼= Cpn × ...× Cpn with ord(G′n) = (p− 1)pn.

4. Gn/G
′
n
∼= Cp × Cp.

The statements in the above example can be verified by arduous calculations
or for the specific cases by MAGMA.
These examples show that the growth of ideal classes is unbounded! For
a better understanding, we want to state a few examples illustrating the
different types of growth. Due to the theorem of Ozaki, we may either look
at the group theoretic or field theoretic case. When introducing the upcoming
examples, we think of identifications as follows: Let K ⊂ L ⊂ H(K) ⊂ H(L)
be the usual tower of an unramified cyclic extension L/K with Hilbert class
fields H(L) and H(K), respectively. Then we identify:

1. G ≈ Gal(H(L)/K).
2. H ≈ Gal(H(L)/L).
3. G′ = [G,G] ≈ Gal(H(L)/H(K)).
4. G/G′ ≈ Gal(H(K)/K).
5. G/H ≈ Gal(L/K).

Example 1: Consider the following finitely presented group

G =< a, b, c| a3, b81, c27, aba−1 = bc, aca−1c−1 = b24c24, bc = cb > .
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MAGMA yields the following facts: 1. ord(G) = 38.
2. G contains an abelian normal subgroup H ∼= C81 × C27.
3. The commutator subgroup of G is given by G′ ∼= C27×C27 and is contained
in H.
4. H ⊂ G satisfies the F -property.

Now we set N : H → H/G′ to be the canonical projection and ı : H/G′ → H
to be the transfer of G to H. By Miyake, we obtain that N(ı(a)) = a3, for
all a ∈ H/G′. Hence, the assumptions (i)-(iii) of Theorem 4.3.1 hold, but
subexp(H/G′) = 3 and kerN = G′ ∼= C27 × C27, i.e. exp(kerN) = 27.

Example 2: Consider the following finitely presented group:

G =< a, b| a3, b81, b(aba−1) = (aba−1)b, (a2ba−2)3 = b24(aba−1)24 > .

Then MAGMA yields that: 1. ord(G) = 39.
2. G contains an abelian normal subgroup H ∼= C81 × C27 × C3.
3. The commutator subgroup of G is given by G′ ∼= C27×C27 and is contained
in H.
4. G/G′ ∼= C3 × C9.
Hence, there exists a number field K with A(K) =< a1, a2 >∼= C3 × C9 and
L = H(K)<a2> such that A(L) ∼= H.

We point out that Ozaki’s Theorem and the above identifications also enable
us to create different types of capitulation. For instance, in the above example
one verifies that ıL/K(a3

2) 6= 1. Indeed, for Gal(L/K) =< τ >, we have
that ord(ıL/K(a3

2)) = ord(N(b3) = b3+3τ+24+24τ ) = 3. Hence, there is no
capitulation in A(K)′ = NL/K(A(K)). A few modifications of the above
group, however, give us a different type of capitulation.

Example 3: Consider the following finitely presented group

G =< a, b| a3, b81, b(aba−1) = (aba−1)b, (a2ba−2)3 = b−3(aba−1)−3 > .

Then MAGMA yields that: 1. ord(G) = 310.
2. G contains an abelian normal subgroup H ∼= C81 × C81 × C3.
3. The commutator subgroup of G is given by G′ ∼= C81 × C27 and is con-
tained in H.
4. G/G′ ∼= C3 × C9.
By Ozaki’s Theorem, there exists a number field K with A(K) =< a1, a2 >∼=
C3×C9 and L = H(K)<a2> such thatA(L) ∼= H. Moreover, forGal(L/K) =<
τ >, we have that ıL/K(a3

2) = N(b3) = b3+3τ−3−3τ = 1. Thus, we have capit-
ulation in A(K)′ = NL/K(A(K)).
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We proceed with some concrete examples of the growth of ideal classes in an
unramified cyclic extension L/K of degree p. We will restrict ourselves to
the case where K is an imaginary quadratic number field and where p = 2
or p = 3.

Example 4: Consider the imaginary quadratic number field

K = Q(α) with α2 + 11651 = 0.

Then MAGMA yields: 1. A(K) =< a1, a2 >∼= C3 × C9, for some a1, a2 ∈
A(K).
2. We define L = H(K)<a2>, i.e. A(K)′ = NL/K(A(L)) =< a2 >. We obtain
A(L) ∼= C3 × C9 × C27.
3. PK(L) =< a3

2 >
∼= C3.

4. kerNL/K
∼= C9 × C9 and hence exp(kerNL/K) > 3.

Example 5: Consider the imaginary quadratic number field

K = Q(α) with α2 + 9748 = 0.

Then MAGMA yields: 1. A(K) =< a1, a2 >∼= C3 × C3, for some a1, a2 ∈
A(K).
2. We define L := H(K)<a2>, i.e. A(K)′ := NL/K(A(L)) =< a2 >. We
obtain that A(L) ∼= C9 × C27.
3. kerNL/K

∼= C9 × C9 and hence exp(kerNL/K) > 3.

Example 6: Consider the imaginary quadratic number field

K = Q(α) with 93α2 + 865 = 0.

Then MAGMA yields: 1. A(K) =< a1, a2, a3, a4 >∼= C2 × C2 × C2 × C2, for
some a1, a2, a3, a4 ∈ A(K).
2. We define L = H(K)<a2,a1a3,a4>, i.e. NL/K(A(L)) =< a2, a1a3, a4 >. We
obtain that A(L) ∼= C2 × C4 × C32.
3. kerNL/K

∼= C2 × C16 and hence exp(kerNL/K) = 24.

It is worth mentioning that in all of the above examples the author’s initial
conjecture that exp(kerNL/K) ≤ prk(A(K)) is true. Laborious calculations on
MAGMA, however, showed that the cases where exp(kerNL/K) > prk(A(K)),
are extremely seldom but they do exist! We give the following

Example 7: Consider the imaginary quadratic number field

K = Q(α) with 113α2 + 111 = 0.

77



Then MAGMA yields: 1. A(K) =< a1, a2 >∼= C2 × C2, for some a1, a2 ∈
A(K).
2. We define L = H(K)<a2>, i.e. NL/K(A(L)) =< a2 >. We obtain that
A(L) ∼= C16.
3. kerNL/K

∼= C8 and hence exp(kerNL/K) = 23 > 2rk(A(K)) = 4. We even
have that exp(kerNL/K) = 23 > |A(K)|.

We have seen that the prerequisites for wild growth are rather restrictive,
which also explains why wild growth is quite a rare phenomenon.
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Chapter 5

G-Action on Ideal Classes

In the following chapter, we let K/k be a Galois extension with Galois group
G = Gal(K/k). Throughout this chapter, we assume that the prime p does
not divide the order of G.
In the introductory Section 5.1, we yield some preliminary results concerning
the action of G on A(K) and on Gal(H(K)/K), respectively, and consider
the action of G in the context of the capitulation problem.
In Section 5.2, we use the idempotents in Zp[G] to decompose the ideal
class group of K into a direct product of so-called α-components of the form
A(K)α, where α runs through a subset of idempotents in Zp[G]. Accordingly,
this decomposition gives rise to a decomposition of H(K) into α-components
H(K)α. For an intermediate field L of H(K)/K, which is Galois over k, we
then sort of lift the idempotents in Zp[G] to idempotents in Zp[Gal(L/k)],
which in turn yields a decomposition of the ideal class group of L and of
H(L), respectively.
In Section 5.3, we show under which conditions Suzuki’s Theorem extends
to a component wise version of Suzuki’s Theorem. In other words, assuming
that L is contained in an α-component H(K)α, we show under which pre-
requisites the degree of L over K divides the order of the capitulation kernel
restricted to the α-component A(K)α. Supported by MAGMA, we give sev-
eral concrete examples of a decomposition of A(K) into α-components and
also compute the capitulation kernels on the various α-components.
In view of the developed theory, Section 5.4 proceeds with a discussion of the
capitulation problem in CM-fields, where we would like to draw the reader’s
attention to Proposition 5.4.1.
In Section 5.5, we insert an interlude on representation theory and particu-
larly consider irreducible α-components, i.e. those components which corre-
spond to primitive idempotents. Using p-adic analysis, we prove that Qp[G]
and Fp[G] have the same number of primitive idempotents provided that G
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is abelian. As a main proposition of this section, we conclude from the above
result that p-maximal elements in irreducible α-components of A(K) are in-
vertible in some sense.
In Section 5.6, we use this property to show that under certain conditions
the l-socle of A(K) capitulates completely in the l-socle of H(K), where the
l-socle of A(K) contains all ideal classes in K of order equal or less than pl

and the l-socle of H(K) is the intermediate field of H(K)/K whose Galois
group over K is isomorphic to the l-socle of A(K). Moreover, we show that
all p-maximal ideal classes in an irreducible α-component of A(K) have the
same order, provided that A(K) is Zp[G]-cyclic.
In Section 5.7, we prove that A(K) can be decomposed in a direct product
of Zp[G]-cycles, thus getting rid of the assumption of Section 5.6 that A(K)
is Zp[G]-cyclic.
In Section 5.8, we apply the results of Section 5.7 to show that the p-genus
field of K/k is KH(k), i.e. KH(k) is the maximal unramified p-extension of
K, which is abelian over k. (Here, H(k) is the p-Hilbert class field of k and
K/k is abelian).
In Section 5.9, we generalize the developed theory of the previous sections by
replacing the action of G on A(K) by the action of the automorphism group
of the Galois group (Gal(H(2)/K)) on A(K). Assuming that the automor-
phism group of (Gal(H(2)/K)) is not a p-group, we show that it gives rise to
a non-trivial action on A(K), which then in turn can be used with respect
to capitulation.

5.1 Preliminary Results

In what follows, let K/k be a Galois extension with Galois group G =
Gal(K/k) and L be an intermediate field of H(K)/K. The situation is
shown in the following diagram:

H(K)

L

K

G=Gal(K/k)

k

We first verify that H(K)/k is a Galois extension. We have
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Proposition 5.1.1. Let K/k be a Galois extension and H(K) be the Hilbert
class field of K. Then H(K)/k is Galois.

Proof. Let σ : H(K) → σ(H(K)) be a ring homomorphism fixing k. Since
H(K)/K is Galois, it follows that σ(K) = K. Furthermore, one easily verifies
that Gal(σ(H(K))/K) = σGal(H(K)/K)σ−1 and hence Gal(H(K)/K) ∼=
Gal(σ(H(K))/K). A moment of reflection also shows that σ(H(K))/K is
unramified. Since H(K) is the maximal unramified field extension of K,
we obtain that σ(H(K)) ⊂ H(K). Applying the above arguments to σ−1,
shows that σ(H(K)) = H(K). By Galois theory, it follows that H(K)/k is
Galois.

Let us say that exp(Gal(H(K)/K)) = pn, for some n ∈ N. For 1 ≤ l ≤ n, we
then define the l-socle of H(K) as the unique intermediate field of H(K)/K
with Galois group being isomorphic to Gal(H(K)/K)/Gal(H(K)/K)p

l
. Us-

ing the same arguments as above, we obtain

Proposition 5.1.2. Let K/k be a Galois extension and Sl(H(K)), 1 ≤ l ≤
n, denote the l-socle of H(K). Then Sl(H(K))/k is Galois.

Let K/k be as above with Galois group Gal(K/k) = G. Then G obviously
acts on the ideal class group A(K) of K in the following way: Let σ ∈ G and
a ∈ A(K). Then we set aσ := σ(a). One easily verifies that A(K) becomes
a G-module in this way. Note: For a ∈ A(K), σ, τ ∈ G, we have that
aστ = στ(a) = σ(aτ ) = (aτ )σ.
Since A(K) ∼= Gal(H(K)/K) by the Artin isomorphism ϕH(K)/K = ϕ =

(H(K)/K ), the G-action on A(K) is transferred to Gal(H(K)/K): Let τ ∈
Gal(H(K)/K) and σ ∈ G. Then we define

τσ := ϕ((ϕ−1(τ))σ).

A moment of reflection shows that Gal(H(K)/K) thus becomes a G-module.
Another way of transporting the G-action on A(K) to Gal(H(K)/K) is the
following: Let τ ∈ Gal(H(K)/K) and σ ∈ G. Since K/k and H(K)/k are
Galois, we may lift σ to an automorphism σ̃ ∈ Gal(H(K)/k), i.e. σ̃|K = σ.
Then we define

τσ := σ̃τ σ̃−1.

In order to show that this defines a G-action on Gal(H(K)/K), we must
check that the above definition is well-defined, i.e. it is independent of the
choice of the lift of σ: Let σ1 and σ2 be lifts of σ to Gal(H(K)/k). Then

81



σ1 = σ2h, for some h ∈ Gal(H(K)/K). Since H(K)/K is abelian, it follows
that hτ = τh and hence

σ1τσ
−1
1 = σ2hτ(σ2h)−1

= σ2hτh
−1σ−1

2

= σ2τσ
−1
2 .

As one might have expected, the two above definitions of a G-action on
Gal(H(K)/K) are the same:

Proposition 5.1.3. In the situation as above, let τ = ϕ(a) ∈ Gal(H(K)/K),
for some a ∈ A(K), σ ∈ G, and σ̃ ∈ Gal(H(K)/k) be a lift of σ. Then

ϕσϕ−1(τ) = σ̃τ σ̃−1.

Proof. We have that

ϕσϕ−1(τ) =

(
H(K)/K

σ̃(a)

)
=

(
σ̃(H(K))/σ̃(K)

σ̃(a)

)
= σ̃

(
H(K)/K

a

)
σ̃−1.

Let σ ∈ G and σ̃ ∈ Gal(H(K)/k) be a lift of σ. For an intermediate field L
of H(K)/K, we then define

Lσ = σ̃(L).

This definition is well-defined. Indeed, let σ1 and σ2 be lifts of σ to the
Galois group Gal(H(K)/k). Then Gal(H(K)/σi(L)) = σiGal(H(K)/L)σ−1

i ,
for i = 1, 2. By the above arguments, we obtain that

σ1Gal(H(K)/L)σ−1
1 = σ2Gal(H(K)/L)σ−1

2 , and hence

σ1(L) = σ2(L).

These observations lead us to the next
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Proposition 5.1.4. Let H(K)/L/K/k be as above and σ ∈ G. Let I be a
fractional ideal in K and a = [I] be an ideal class in K represented by I.
Assume that a capitulates in L. Then aσ capitulates in Lσ.
In particular, PK(L) ∼= PK(Lσ).

Proof. Let IOL = xOL for some x ∈ L∗. Then

IσOLσ = (IOL)σ̃

= (xOL)σ̃

= xσ̃OLσ .

The second statement is evident.

Corollary 5.1.5. If L/k is Galois, then L = Lσ and thus PK(L) is a G-
module.

Proof. Elementary.

5.2 Decomposition of A(K) via Idempotents

and Lifting of Idempotents

As before, let K/k be a Galois extension with Galois group Gal(K/k) = G
and p - |G|. The goal of this section is the decomposition of A(K) via
idempotents. For a supplementary insight, we refer to [6]. For the following
discussion, let α ∈ Zp[G] be an idempotent. Such an element certainly exists
if p - |G| as |G| has an inverse in Zp in this case. For instance, one readily
verifies that β = (1/|G|)

∑
σ∈G σ is a central idempotent in Zp[G]. This yields

the decomposition

Zp[G] = αZp[G]⊕ (1− α)Zp[G].

Since A(K) is a finite p-abelian G-module, it is also a Zp[G]-module and we
obtain the decomposition

A(K) = A(K)α × A(K)1−α, where

A(K)α = A(K)α = {aα| a ∈ A(K)} and A(K)1−α accordingly.

Indeed, let aα = b1−α, for some ideal classes a, b ∈ A(K). Taking the term
on both sides of the equation to the α, it follows that

aα = bα(1−α) = 1.
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The rest is evident. We remark that we will use both the notation A(K)α
and A(K)α, meaning the same object.
Furthermore, observe that A(K)α and A(K)1−α are subgroups of A(K). If
α is central in Zp[G] they are also Zp[G]-modules.

For the upcoming discussion, the following theorem proves useful:

Theorem 5.2.1 (Schur-Zassenhaus). Let G be a finite group and H be a
normal subgroup of G such that (|H|, |G/H|) = 1. Then H has a complement
in G. In particular, G is a semi-direct product of H and G/H.

Proof. See Theorem 7.41, page 190, of [9].

Let H(2)(K) denote the p-Hilbert class field of H(K). As p - |G|, the
above theorem then implies that there is a subgroup H ∼= Gal(K/k) of
Gal(H(2)(K)/k) such that

Gal(H(2)(K)/k) = Gal(H(2)(K)/K) nH.

Obviously, the restriction of H(2)(K) to K satisfies that resH(2)(K)/K(H) =
Gal(K/k). Thus, we obtain the isomorphism

resH(2)(K)/K : H → Gal(K/k), σ 7→ σ|K .

Then we define the group homomorphism

sH(2)(K)/K : Gal(K/k)→ Gal(H(2)(K)/k), sH(2)(K)/K(τ) := res−1
H(2)(K)/K

(τ).

It follows that sH(2)(K)/K ◦resH(2)(K)/K = idH. Now let M be an intermediate

field of H(2)(K)/K which is Galois over k. Then the restriction of H(2)(K)
to M yields that

Gal(M/k) = Gal(M/K) n resH(2)(K)/M(H),

resM/K : Gal(M/k)→ Gal(K/k), σ 7→ σ/K , and

sM/K : Gal(K/k)→ Gal(M/k), sM/K(τ) := res−1
M/K(τ).

One easily verifies that sH(2)(K)/M ◦ sM/K = sH(2)(K)/K and likewise that
resM/K◦resH(2)(K)/M = resH(2)(K)/K , where sH(2)(K)/M is defined in the canon-
ical way. On account of that, we may lift the idempotent α from K to M
and H(2)(K). More precisely, we have

α̃ = sM/K(α) ∈ Zp[sM/K(G)] ⊂ Zp[G(M/k)],
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˜̃α = sH(2)(K)/K(α) ∈ Zp[sH(2)(K)/K(G)] ⊂ Zp[G(H(2)(K)/k)].

Clearly, sH(2)(K)/M(α̃) = ˜̃α, resH(2)(K)/M( ˜̃α) = α̃, and resM/K(α̃) = α. If α is

central in Zp[G], then α̃ and ˜̃α are central idempotents in Zp[sM/K(G)] and
Zp[sH(2)(K)/K(G)], respectively. Henceforth, we simply write α instead of α̃

and ˜̃α, respectively, as long as this does not cause any confusion.

Let α ∈ Zp[G] be an idempotent as before and L be an intermediate field of
H(K)/K which is Galois over k. By the previous arguments, we may lift α
to an idempotent α̃ ∈ Zp[Gal(L/k)], i.e. res|K(α̃) = α. Observe that the
choice of α̃ is not unique, however. We obtain a decomposition of A(L) into

A(L) = A(L)α̃ × A(L)1−α̃, where

A(L)α̃ = {aα̃| a ∈ A(L)} and A(L)1−α̃ accordingly.

Moreover, we have

Proposition 5.2.2. In the situation as before, we obtain that

ıL/K(A(K)α) ⊂ A(L)α̃.

Proof. Let I be a fractional ideal in K and a = [I] the ideal class group in
K represented by I. Let σ ∈ Gal(K/k) and σ̃ an extension to L. Then

ıL/K([I]σ) = ıL/K([Iσ])

= [IσOL]

= [(IOL)]σ̃

= ıL/K([I])σ̃.

Since α is a Zp-linear combination of elements in Gal(K/k), the claim follows.

We may use the decomposition of A(K) and A(L) via idempotents to learn
more about the capitulation kernel. For this purpose, we define

PK(L)α = PK(L) ∩ A(K)α.

The above introduced machinery now allows us to restrict the search for
capitulating ideal classes to A(K)α and A(K)1−α. More precisely, we obtain
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Proposition 5.2.3. In the situation as above, we have that

PK(L) = PK(L)α × PK(L)1−α.

Proof. Obviously, PK(L)α ∩ PK(L)1−α = {1}. Now let

a = aαa1−α ∈ PK(L).

It follows that
1 = ıL/K(a) = ıL/K(a)αıL/K(a)1−α.

As ıL/K(A(L))α ∩ ıL/K(A(L))1−α = {1}, we obtain that

ıL/K(aα) = ıL/K(a1−α) = 1.

We can find an even finer decomposition of A(K): Let X be the set of non-
trivial central idempotents in Zp[G] and |X| = 2r, for some r ∈ N. Let Xr

be the set of non-ordered r-tuples of elements in X and

Y = {(α1, ..., αr) ∈ Xr : αi 6= αj, αiαj 6= 0, ∀ 1 ≤ i, j ≤ r}.

Since the product of central idempotents is again an idempotent, we obtain
the decomposition

A(K) =
∏

(α1,...,αr)∈Y

A(K)α1·····αr , where

∏
denotes the Cartesian product and A(K)α1·····αr = {aα1·····αr | a ∈ A(K)}.

The above proposition thus yields

Corollary 5.2.4. In the situation as above, we have that

PK(L) =
∏

(α1,...,αr)∈Y

PK(L)α1·····αr , where

∏
denotes the Cartesian product and PK(L)α1·····αr = PK(L) ∩ A(K)α1·····αr .

This is a useful simplification when determining the capitulation kernel PK(L)
as we obtain PK(L) by calculating the various PK(L)α1·····αr and afterward
forming the Cartesian product of the various components.
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5.3 Suzuki’s Theorem on α-Components

By Suzuki’s Theorem, we obtain that for an unramified abelian extension
L/K the order of the capitulation kernel PK(L) is divided by the degree
of L over K. We are now interested in the question under which conditions
Suzuki’s Theorem extends to a component wise version of Suzuki’s Theorem,
i.e. under which prerequisites do we have that [L : K] divides the order of
PK(L)α, where α is an idempotent in Zp[G] and L ⊂ H(K)α? (For a defini-
tion of H(K)α see below). In this context, we also investigate under which
conditions the F -property as defined in Chapter 2 holds component wise.
Supported by MAGMA, we give several concrete examples of a decomposi-
tion of A(K) into α-components and also compute the capitulation kernels
on the various α-components.

Let H(K)/L/K/k be as in the previous section, i.e. L/k and K/k are Galois
extensions. Let α ∈ Zp[G] be an idempotent and α̃ ∈ Zp[G(L/k)] be a lift
of α. Throughout this section, we write for a Galois group of an extension
M/F from now on G(M/F ) instead of Gal(M/F ). Finally, we let ϕK and
ϕL be the Artin symbols of K and L, respectively. Then we define

H(K)α = H(K)ϕK(A(K)1−α),

H(K)1−α = H(K)ϕK(A(K)α).

Obviously, H(K) = H(K)αH(K)1−α and H(K)α∩H(K)1−α = K. Moreover,
it follows that G(H(K)α/K) ∼= A(K)α and G(H(K)1−α/K) ∼= A(K)1−α.
Accordingly, we may define the fields

H(L)α̃ = H(L)ϕL(A(L)1−α̃),

H(L)1−α̃ = H(L)ϕL(A(L)α̃),

satisfying the according properties as H(K)α and H(K)1−α.
We have

Proposition 5.3.1. Let H(K)/L/K/k be as before. Then H(K)α ⊂ H(L)α̃.

Proof. We have
H(L)α̃ = H(L)G(H(L)/L)1−α̃ , and

H(K)α = H(K)G(H(K)/K)1−α .

Now let z ∈ H(K)α, i.e. z ∈ H(K) and ϕ(z) = z, for all ϕ ∈ G(H(K)/K)(1−α).
Let Ψ ∈ G(H(L)/L)(1−α̃). Claim: Ψ|H(K) ∈ G(H(K)/L)(1−α).

87



Proof: For x ∈ Zp[G(L/k)], x =
∑

σ∈G(L/k) λσσ, λσ ∈ Zp, we define x|K :=∑
σ∈G(L/k) λσσ|K . Then

Ψx =
∏
σ

(Ψλσ)σ =
∏
σ

σ̃Ψλσ σ̃−1,

where σ̃ is a lift of σ ∈ G(L/k) to G(H(L)/k). It follows that

Ψx
|H(K) =

∏
σ

σ̃|H(K) ◦ (Ψ|H(K))
λσ ◦ σ̃−1

|H(K).

Since σ̃ is a lift of σ ∈ G(L/k) to G(H(L)/k), we obtain that σ̃|H(K) is a lift
of σ to G(H(K)/k). Thus,

Ψx
|H(K) = (Ψ|H(K))

x|K .

Since α̃|K = α, the proof of the claim follows, implying that Ψ(z) = z. This
proves the proposition.

All in all, we obtain the following tower of number fields: k ⊂ K ⊂ L ⊂
H(K)α ⊂ H(L)α̃.

The next proposition yields additional structural information. We have

Proposition 5.3.2. Let k ⊂ K ⊂ L ⊂ H(K)α ⊂ H(L)α̃ be as before and
L/k Galois. Then

1. H(K)α = H(L)α̃ ∩H(K).

2. ker(NL/K : A(L)α̃ → A(K)α) ∼= G(H(L)/H(K))α̃ ∼= G(H(L)α̃/H(K)α).

3. im(NL/K : A(L)α̃ → A(K)α) ∼= G(H(K)α/L).

Proof. 1. “⊃”: Let x ∈ H(K) with τ(x) = x, for all τ ∈ G(H(L)/L)1−α̃,
implying that σ(x) = x, for all σ ∈ G(H(K)/L)1−α, since H(K)/k Ga-
lois. Due to L ⊂ H(K)α, it follows, for all ρ ∈ G(H(K)/K)1−α and all
y ∈ L that ρ(y) = y and thus G(H(K)/K)1−α ⊂ G(H(K)/L). Hence,
G(H(K)/K)1−α ⊂ G(H(K)/L)1−α. This implies that x ∈ H(K) ∩H(L)α̃
lies in H(K)α.
“⊂”: Elementary.
2. We have that

ker(NL/K : A(L)α̃ → A(K)α) ∼= G(H(L)/L)α̃ ∩G(H(L)/H(K)

= G(H(L)/L)α̃ ∩G(H(L)/H(K))α̃

= G(H(L)/H(K))α̃.
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For the second isomorphism in the proposition, we consider the isomorphism

Ψ := resH(L)/H(L)α̃ : G(H(L)/L)α̃ → G(H(L)α̃/L).

In particular, Ψ(G((H(L)/H(K))α̃) = G(H(L)α̃/H(L)α̃ ∩ H(K)). Since
H(L)α̃ ∩H(K) = H(K)α, we finally obtain the claim.
3. With the same arguments as before, we can conclude that

im(NL/K : A(L)α → A(K)α) ∼= G(H(L)/L)α̃/G(H(L)/H(K))α̃
∼= G(H(K)/L)α,

which yields the third statement of the proposition.

In order to apply transfer theory to the capitulation problem on α-components,
we need H(L)α̃/K to be Galois. This is certainly the case if α̃ is central in
Zp[G(L/k)]. Indeed, we have the following

Proposition 5.3.3. In the situation as before, assume that α̃ is a central
idempotent in Zp[G(L/k)]. Then H(L)α̃/k is Galois.

Proof. Let ϕ = ϕL be the Artin symbol of L. By definition, we have that
H(L)α̃ = H(L)ϕ(A(L)1−α̃). Also H(L)/k is Galois since L/k is Galois by
assumption. Hence, it is sufficient to show that ϕ(A(L)1−α̃) is a normal
subgroup of G(H(L)/k). Let σ ∈ G(L/k), σ̃ ∈ G(H(L)/k) be an extension
of σ, and τ ∈ ϕ(A(L)1−α̃) with τ = ϕ(a1−α̃) for some a ∈ A(L). In the initial
section of this chapter, we have shown how G(L/k) acts on G(H(L)/L) and
that the action is independent of the choice for the extension of elements in
G(L/k). Since α̃ is central in Zp[G(L/k)], we thus obtain that

σ̃τ σ̃−1 = σ̃ϕ(a1−α̃)σ̃−1

= (ϕ(a)1−α̃)σ

= ϕ(a)σ(1−α̃)

= ϕ(a)(1−α̃)σ

= (ϕ(a)σ)1−α̃

= ϕ(aσ)1−α̃ ∈ ϕ(A(L)1−α̃).

This completes the proof.

In particular, we obtain that H(K)α/k is Galois if α ∈ Zp[G] is central.
Before we start the machinery of transfer theory, we need to show
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Proposition 5.3.4. Let H(L)α̃ ⊃ H(K)α ⊃ L ⊃ K be as before and assume
that α̃ is a central idempotent in Zp[G(L/k)]. It then follows that H(K)α
is the maximal intermediate field of H(L)α̃/K which is abelian over K. In
particular,

G(H(L)α̃/K)′ = G(H(L)α̃/H(K)α),

where G(H(L)α̃/K)′ denotes the commutator subgroup of G(H(L)α̃/K).

Proof. Since H(L)α̃/K is unramified, the statement follows from the fact
that H(L)α̃ ∩H(K) = H(K)α.

This implies the next

Proposition 5.3.5. We have the following commutative diagram:

A(L)α̃ // G(H(L)α̃/L)

A(K)α //

ıL/K

OO

G(H(K)α/K)

V er

OO

The horizontal isomorphisms are induced by the Artin symbols of K and L.
The transfer map V er is more precisely given by

V er : G(H(L)α̃/K)/(G(H(L)α̃/K))′ → G(H(L)α̃/H(K)α).

Proof. By the previous proposition, it follows that the above transfer is well-
defined. It is quite straight forward to prove that the diagram is commutative.
(For details, see Theorem 3.13, of [6]).

Now we are prepared to prove the main result of this section:

Theorem 5.3.6. Let α be a central idempotent in Zp[G] and α̃ be a lift of α
which is central in Zp[G(L/k)]. Furthermore, let H(L)α̃ ⊃ H(K)α ⊃ L ⊃ K
be as before. Then [L : K] divides |PK(L)α|.

Proof. By the above proposition, it follows that

PK(L)α ∼= ker(V erG(H(L)α̃/K)/(G(H(L)α̃/K))′→G(H(L)α̃/H(K)α)).

Moreover, we have the exact sequence

1→ G(H(L)α̃/L)→ G(H(L)α̃/K)→ G(L/K)→ 1.

Hence, PK(L) is isomorphic to a transfer kernel for G(L/K). (For the defi-
nition of a transfer kernel, revisit the introduction). By Suzuki’s Theorem,
the claim follows.
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Corollary 5.3.7. Let α be a central idempotent in Zp[G] and assume that
α can be lifted to a central idempotent in Zp[G(H(K)α/k)]. Then A(K)α
capitulates completely in H(K)α.

Since additionally G(H(K)α/K) ∼= A(K)α, H(K)α can thus be seen as a
Hilbert class field for the α-component A(K)α.

Definition: In the above situation, we call H(K)α the canonic α-component
and H(K)1−α the canonic (1− α)-component of H(K)/K.

Henceforth, we resume the situation where H(L)α̃ ⊃ H(K)α ⊃ L ⊃ K ⊃
k with L/k Galois. Now we want to discuss the case where α is central
in Zp[G], but α̃ is not central in Zp[G(L/k)]. In this case H(L)α̃ is not
necessarily Galois over K. However, for the special case that L/K is a
quadratic extension, the above statements are still valid, i.e. we have

Corollary 5.3.8. Let H(K)α ⊃ L ⊃ K ⊃ k be as before with L/k Galois,
and [L : K] = 2. Then [L : K] divides the order of PK(L)α.

Proof. Let σ be a generator of G(L/K). It is sufficient to show that A(L)α̃
is G(L/K)-invariant. The rest is analogous to the preceding proof. For an
ideal class aα̃ ∈ A(L)α̃, we obviously have that

ıL/K(NL/K(aα̃)) = (aα̃)1+σ ∈ A(L)α̃.

It follows that (aα̃)σ ∈ A(L)α̃, implying that A(L)α̃ is G(L/K)-invariant.

For the other cases, we define H(L)′α̃ to be the maximal subfield of H(L)α̃/K
which is Galois over K. Since α is central in Zp[G], it follows that H(K)α/K
is Galois and hence H(L)′α̃ ⊃ H(K)α. We can recover the following

Proposition 5.3.9. Let H(L)α̃ ⊃ H(K)α ⊃ L ⊃ K be as before. Let α
be a central idempotent in Zp[G] and α̃ be a lift of α in Zp[G(L/k)] (not
necessarily central). Then

|PK(L)α| ≥
[L : K]

[H(L)α̃ : H(L)′α̃]
.

Proof. By the proof of a previous proposition, we know that H(K)α is the
maximal abelian subfield of H(L)α̃/K. Hence, H(K)α is a fortiori the max-
imal abelian subfield of H(L)′α̃/K. Furthermore, the diagram as in Propo-
sition 5.3.5, with H(L)α̃ replaced by H(L)′α̃, is still commutative. The only
difference is that the Artin symbol ϕL = ϕ induces a homomorphism

Ψ = ϕ|H(L)′α̃
: G(H(L)/L)α̃ → G(H(L)′α̃/L),
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which is not necessarily injective anymore. But we have that |kerΨ| ≤
[H(L)α̃ : H(L)′α̃]. Hence,

|PK(L)α| ≥
[L : K]

[H(L)α̃ : H(L)′α̃]
.

In a nutshell, we have shown that Suzuki’s Theorem can also be extended to
subfields L of H(K)α/K provided that L/k is Galois and that the lift α̃ of α
to L is central in Zp[G(L/k)]. The assumption that L/k is Galois is essential
as it guarantees that idempotents in Zp[G] can be lifted to idempotents in
Zp[G(L/k)]. Moreover, we have seen that if α̃ is not central we obtain weaker
results than in the central case.

Now we want to give a concrete example of a non-trivial decomposition of
A(K) into α-components. We have

Example: Let K be the splitting field of X3 + 4X + 14 over Q. Then K/Q
is a Galois extension of degree 6. Supported by MAGMA, we obtain that:
1. K contains the quadratic number field k = Q(β) with β2 = −5548.
2. K/k is Galois with G := G(K/k) ∼= C3.
3. F2[G] = αF2[G]⊕ (1−α)F2[G], for some idempotent α in F2[G]. We have
that dimF2(αF2[G]) = 1 and dimF2((1− α)F2[G]) = 2.
4. A(K) =< a1, a2, a3 >∼= C2 × C2 × C4.
5. < a1a2a3 > is the only G-invariant subgroup of A(K) which is isomorphic
to C4. One verifies that A(K) has 4 subgroups being isomorphic to C4. Since
|G| = 3 , the Orbit Stabilizer Theorem yields that the 3 subgroups which are
isomorphic to C4 and different from < a1a2a3 > are conjugates with respect
to G. Hence,

a
Z2[G]
3 ⊃ < a3, a1a3, a2a3 > = A(K),

i.e. A(K) is Z2[G]-cyclic. This implies that A(K)α ∼= C4 and A(K)1−α ∼=
C2 × C2. But we do not know the generators of A(K)α and A(K)1−α yet.
6. Since < a1a2a3 > is the only G-invariant subgroup of A(K) which is iso-
morphic to C4, it follows that H(K)1−α = H(K)ϕK(<a1a2a3>).
7. H(K)α = H(K)ϕK(<a1,a2>). Indeed, < a1, a2 > is the only G-invariant
subgroup of A(K) which is isomorphic to C2×C2. The rest follows from the
above theory.
8. We finally obtain that A(K)α =< a1a2a3 > and A(K)1−α =< a1, a2 >.
9. PK(H(K)α) = A(K) and PK(H(K)1−α) =< a1, a2, a

2
3 >
∼= C2 × C2 × C2.

This example demonstrates that A(K)α capitulates in H(K)α and A(K)1−α
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capitulates inH(K)1−α. Moreover, we see that also ideal classes fromA(K)1−α
can capitulate in H(K)α. In our example, even all ideals in K capitulate in
H(K)α. In H(K)1−α only the socle of A(K) capitulates, though.
We also learn that the decomposition of the kernel PK(L) = PK(L)α ×
PK(L)1−α does not hold in general if L/k is not Galois: For instance, let
L = H(K)ϕK(<a1,a1a2a3>). MAGMA yields that L/k is not Galois and that
PK(L) =< a1, a2a

2
3 >, i.e. PK(L)α =< a1 >∼= C2 and PK(L)1−α = {1}. This

is not astonishing as we cannot lift α to G(L/k).

It also should be mentioned that the decomposition ofA(K) into α-components
may be trivial, i.e. we may have the case that A(K)α is trivial and hence
A(K)1−α = A(K). If K is a quadratic number field for example, this is al-
ways the case. Indeed, let P be a prime ideal in OK lying above some prime
p ∈ Z and σ be a generator of G(K/Q). If P is inert, it follows that [P] = 1
due to pOK = P. Now assume that P|p is not inert. Then

pOK = PPσ.

Since pOK is principal, it follows that [P]σ = [P]−1. For α = (1 + σ)/2,
Chebotarev’s Density Theorem then yields that A(K)α = {1}.

We have already seen that the generalization of Suzuki’s Theorem to α-
components is not necessarily exact, i.e. for an intermediate field L of
H(K)α/K, it does not necessarily follow that [L : K] = |PK(L)α|. Even
if A(K) is assumed to be Zp[G]-cyclic, Suzuki’s Theorem is not exact on
α-components in general. We have

Example: Let K be the splitting field of x3 + 6x − 23 over Q. Supported
by MAGMA, we obtain:
1. K contains a quadratic subfield k = Q(β) with β2 + 15147 = 0 and K/k
is Galois of degree 3. Let us say G = G(K/k).
2. Z2[G] = αZ2[G] ⊕ (1 − α)Z2[G], where α ∈ Z2[G] is an idempotent with
rkZ2(αZ2[G]) = 2 and rkZ2((1− α)Z2[G]) = 1.
3. A(K) =< a1, a2, a3 >∼= C2 × C4 × C4. Again, it is not at all obvious how
the decomposition of A(K) looks like and MAGMA is not able to yield the
decomposition of A(K) into A(K)α and A(K)1−α directly. However, we can
use the fact that A(K)α and A(K)1−α are G-invariant since G is abelian.
4. < a2, a3 > is the only G-invariant subgroup of A(K) which is isomorphic
to C4 × C4. This implies that < a2

2, a
2
3 >∼= C2 × C2 is also G-invariant.

Moreover, MAGMA yields that < a2, a3 > has no G-invariant subgroups
which are isomorphic to C2 × C4. A moment of reflection thus reveals that
< a2, a3 > has no G-invariant subgroups being isomorphic to C2. Hence,
all elements in < a2, a3 > of order 4 generate < a2, a3 > over Z2[G]. Fur-
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thermore, we see that A(K) has no G-invariant subgroups being isomorphic
to C4. Indeed, suppose that < a1a

k
2a

l
3 > is such a subgroup for suitable

k, l ∈ N. Then a fortiori, < a2
1a

2k
2 a

2l
3 >=< a2k

2 a
2l
3 >∼= C2 is a G-invariant

subgroup of < a2, a3 > of order 2, which yields a contradiction. Since A(K)α
and A(K)1−α are G-invariant, it necessarily follows that A(K)α =< a2, a3 >.
Also, we obtain that A(K)1−α ∼= C2. Since A(K)α ∩ A(K)1−α are disjoint,
it follows that A(K)1−α =< a1a

2k
2 a

2l
3 >, for some suitable k, l ∈ N. Obvi-

ously, < a1a
2k
2 a

2l
3 , a

2
2, a3 >=< a1, a

2
2, a3 >, i.e. L = H(K)ϕK(<a1,a22,a3>) lies in

H(K)α with [L : K] = 2.
5. PK(L) =< a2

2, a
2
3 >
∼= C2 × C2.

This shows that Suzuki is not necessarily exact on α-components even if the
component is Zp[G]-cyclic.

In the remainder of this section, we want to analyze under which conditions
the F -property as defined in Chapter 2 is satisfied on α-components. More
precisely: Let L be an intermediate field of H(K)/K which is cyclic over K
and Galois over k. Let α be a central idempotent in Zp[G(K/k)] and α̃ be
a lift of α to L. (We subsequently simply write α instead of α̃). Suppose
that σ ∈ G(L/K) is a generator of G(L/K) and set s = σ− 1. Under which
circumstances, do we have that

ker(NL/K : A(L)α → A(K)α) = (A(L)α)s ?

Let a ∈ kerNL/K ∩ A(L)α. By Furtwängler’s Theorem, there exists an a1 ∈
A(L) with

a = as1
= (as1)α(as1)1−α

= aαs1 a
(1−α)s
1 .

As a ∈ A(L)α, it follows that

a = aα

= aαs1

= (as1)α ∈ (A(L)s)α.

The problem now is that σ and α do not necessarily commute since the lift
of the central idempotent α ∈ Zp[G(K/k)] to L does not need to be central
in Zp[G(L/k)]. In order to make sure that the F -property holds component
wise, it is reasonable to require that α is lifted to a central idempotent in
Zp[G(L/k)]. In this case we obtain
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Proposition 5.3.10. Let α be a central idempotent in Zp[G(K/k)] and L be
an intermediate field of H(K)/K which is cyclic over K and Galois over k.
Let σ ∈ G(L/K) be a generator of G(L/K) and s = σ − 1. Assume that α
is lifted to a central idempotent in Zp[G(L/k)]. Then:

(i) ker(NL/K : A(L)α → A(K)α) = (A(L)α)s.

(ii) |A(L)
G(L/K)
α | = [H(K)α : L].

(iii) |PK(L)α| ≥ [L : K].

Proof. (i) By the above computations and by the assumption that α com-
mutes with σ, the above statement readily follows.
(ii) Consider the group homomorphism

A(L)α → ker(NL/K : A(L)α → A(K)α), a 7→ as.

By (i), the above homomorphism is surjective with kernel A(L)
G(L/K)
α . By

the isomorphism theorem and previous arguments, it follows that
|A(L)

G(L/K)
α | = |G(H(L)α/L)|/|G(H(L)α/H(K)/α)| = [H(K)α : L].

The third statement of the proposition follows due to

|im(ıL/K : A(K)α → A(L)α)| ≤ |A(L)G(L/K)
α | = [H(K)α : L], i.e.

|PK(L)α| ≥ [[H(K)α : K]/[H(K)α : L] = [L : K].

5.4 Capitulation in CM-Fields

The results of the previous section suggest that Suzuki’s Theorem does not
extend to α-components in general. The crucial problem was that the lifted
elements of G(K/k) to G(L/k) do not not necessarily commute with elements
in G(L/K). On the contrary, we will see that the generalization of Suzuki’s
Theorem holds for so-called CM-fields at least on A(K)+. If K contains a
primitive p-th root of unity, we show that a subgroup of A(K)− of the same
rank as A(K)+ capitulates in H(K)+. (For the definitions of A(K)+ and
H(K)+ see below).
We recall that a CM-field is a totally imaginary quadratic extension of a
totally real field. For instance, Q(ζn) is a CM-field, where ζn is a primitive
n-th root of unity. Indeed, it contains the real number field Q(ζn)+ :=
Q(ζn+ζ−1

n ) and we obtain Q(ζn) by adjoining the square root of ζ2
n+ζ−2

n −2.
These fields are called CM-fields since the complex multiplication in C can
be transferred to such fields in a well-defined way: Let K be a CM-field and
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Φ be an embedding of K into C. For x ∈ K, we then define x̄ = Φ−1(Φ(x)).
From the properties of CM-fields, one easily derives that the above definition
is well-defined, i.e. Φ(K) ⊂ Φ−1 and the definition is independent of the
chosen embedding. Let K+ be the totally real subfield of K and G(K/K+) =
{1, J}, where J is the complex multiplication on K. Henceforth, let p be an
odd prime and A(K) = Cl(K)p. Then we define α = 1+J

2
and obtain the

decomposition
A(K) = A(K)α × A(K)1−α.

For the ease of notation, we will set A(K)α = A+ and A(K)1−α = A−. As
before, the decomposition of A(K) yields a decomposition of H(K) into

H(K) = H(K)+ ·H(K)−,

where H(K)+ = H(K)ϕ(A−) and H(K)− = H(K)ϕ(A+), with ϕ being the
Artin symbol of K as usual. It follows that H(K)+ is also a CM-field. Indeed,
let H(K+) be the p-Hilbert class field of K+. Since K+ is totally real, H(K+)
is also totally real. As A(K+) ∼= A(K)+, one also verifies that H(K)+ =
KH(K+). It follows that H(K+) lies in H(K)+ with [H(K)+ : H(K+)] = 2.
Since K is totally imaginary, we obtain that H(K)+ is totally imaginary and
hence H(K)+ is a CM-field. Furthermore, we have that A(K)+ capitulates
completely in H(K)+ since H(K)+ = KH(K+) and A(K+) capitulates in
H(K+).

This poses the question whether there also exist ideal classes in A(K)− which
capitulate in H(K)+. If K contains a primitive p-th root of unity, we have
the following surprising

Proposition 5.4.1. Let K be a CM-field containing a primitive p-th root of
unity. Then A(K)− contains a subgroup C with rk(C) = rk(A+) such that
all ideal classes of C capitulate in H(K)+.

Proof. Let r = rk(A(K)+) and L be the 1-socle of H(K)+/K, i.e. L is
the maximal intermediate field of H(K)+/K such that rk(Gal(L/K)) =
rk(Gal(H(K)+/K)) and exp(Gal(L/K)) = p. Since K contains a primitive
p-th root of unity by assumption, L/K is a Kummer extension, i.e. L =

K(b
1/p
1 , ..., b

1/p
r ), for some bi ∈ K∗, 1 ≤ i ≤ r. The following lemma proves

useful now:

Lemma 5.4.2. Assume the situation as above. If K(b1/pn)/K is unramified,
for some b ∈ K∗ and n ∈ N, then bO(K) = In for some ideal I of K.
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Proof. Let K1 = K(b1/pn). As K contains a primitive p-th root of unity, the
principal ideal b1/pnO(K1) is invariant under the action of G(K1/K). Since
K1/K is unramified, Proposition 1.3.6 implies that b1/pnO(K1) = IO(K1),
for some ideal I of K, and hence bO(K1) = InO(K1). As the embedding of
ideals of K into K1 is injective, it follows that bO(K) = In.

Back to the proof of the proposition: Let b = bi, for some 1 ≤ i ≤ r, and
K1 = K(b1/p). By the proof of the previous lemma, we can conclude that
IO(K1) = b1/pO(K1), for some ideal I in K. Now let B =< b1, ..., br > be
the Kummer radical of L/K.
Claim: Then B = B−.
Proof: Let WK =< ζp > be the group of p-th roots of unity and consider the
Kummer pairing

< , >: G(L/K)×B → WK , < σ, b > 7→ σ(b1/p)

b1/p
.

Since WK ⊂ (O(K)∗)− and as the Kummer pairing is bilinear, we obtain
that < G(L/K), B+ >= 1 and hence the map < , >: G(L/K)×B− → WK

is non-degenerate. It follows that G(L/K) ∼= B− and thus B = B−.
As we have already shown that IO(K1) = b1/pO(K1), it is now sufficient to
show that I is not principal in K. Suppose that I = (x) for some x ∈ K∗.
Then b = xpε for some ε ∈ O(K)∗. Observe that ε/ε is a root of unity as
it is of absolute value 1. As b ∈ B−, it follows that b = (xp)−ζkp , for some
k ∈ N. If ζkp = 1, then K1 = K(x) = K, which yields a contradiction.
Otherwise, it follows that K1 = K(ζp2), which is a contradiction to K/K1

being unramified. We have now shown that, for all 1 ≤ i ≤ r, there exists
a non-principal ideal Ii in K that capitulates in K(b

1/p
i ) and hence in L. It

is now left to show that rk([I1], ..., [Ir]) = r. This, however, follows easily

from the fact that K(b
1/p
1 , ..., b

1/p
r )/K has a Galois group of rank r and that

B = B−. This proves the claim.

5.5 Interlude on Representation Theory and

α-Components

In what follows, we introduce some basic facts on the representation theory
of finite groups and use these results to decompose Zp[G] into irreducible
submodules, which give rise to so-called irreducible α-components of A(K).
For further details on representation theory, we refer to [7], [16]. Using p-
adic analysis, we then prove that Qp[G] and Fp[G] have the same number
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of primitive idempotents provided that G is abelian. As a main proposition
of this section, we use the above result to prove that p-maximal elements
in irreducible α-components are invertible in some sense. This property can
then be applied to the capitulation problem. We begin with

Proposition 5.5.1. Let G be a finite group and p be a prime not dividing
|G|. Then

Zp[G] = α1Zp[G]⊕ ...⊕ αrZp[G],

where αi, 1 ≤ i ≤ r (r ∈ N), are the primitive orthogonal idempotents in
Zp[G].

Proof. See Corollary 2.5, page 17, of [6].

Theorem 5.5.2 (Maschke). Let G be a finite group and F be a field. Then
the group ring F[G] is semi-simple (i.e. F[G] can be decomposed as a direct
sum of irreducible F[G]-modules) if and only if F has characteristic 0 or
characteristic coprime to |G|.

Proof. See Theorem 5.1, page 221, of [17].

Proposition 5.5.3. Let R be a semi-simple ring and M be an R-module.
Then M is irreducible if and only if M is indecomposable.

Proof. See Corollary 2.13, of [16].

Proposition 5.5.4. Let R be a ring and α ∈ R be an idempotent. Then α
is primitive if and only if Rα is indecomposable as an R-module.

Proof. See Lemma 3.8, of [16].

Proposition 5.5.5. Let G be a finite group and F be a field with character-
istic 0 or characteristic coprime to |G|. Furthermore, let χ1, ..., χs : G → F
be the irreducible characters of G. Then the elements

1χi =
χi(1)

|G|
∑
σ∈G

χi(σ
−1)σ, 1 ≤ i ≤ s,

form a complementary set of central primitive idempotents in F[G]. (And
these are all central primitive idempotents).
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Proof. See Proposition 6.1, of [16].

Instead of considering a decomposition of Zp[G], we may also analyze the
decomposition of Zp[G]/pZp[G] ∼= Fp[G]. Obviously, idempotents in Zp[G]
yield idempotents in Fp[G]. On the other hand, the image of primitive idem-
potents in Zp[G] does not necessarily have to be primitive in Fp[G]. Thus,
we introduce the following

Definition: Let G be a finite group and p be a prime not dividing |G|. Then
we say Zp[G] has good reduction if all primitive idempotents in Zp[G] induce
primitive idempotents in Fp[G].

In what follows, we prove that Zp[G] has good reduction if G is abelian:
By Maschke’s Theorem, Qp[G] and Fp[G] are semi-simple. Hence, they have
a finite number of irreducible submodules. Since G is abelian and p - |G|, it
follows that the number of primitive idempotents in Zp[G] equals the num-
ber of primitive idempotents in Qp[G]. Thus, it is sufficient to verify the
following

Theorem 5.5.6. Let G be a finite abelian group of order n with p - n. Then
Qp[G] and Fp[G] have the same number of irreducible submodules.

Proof. Before we begin with the actual proof, we need some further back-
ground in p-adic analysis:

Proposition 5.5.7. Let K/Qp be a finite field extension with ramification
index e and f = [K : Qp]/e. Furthermore, let k be the residue field of K.
Then

[k : Fp] = f.

Proof. See Proposition 5.4.6, page 162, of [18].

Proposition 5.5.8. Let f(X) ∈ Zp[X] be a monic polynomial whose reduc-
tion modulo p is irreducible in Fp[X]. Then f(X) is irreducible over Qp.

Proof. See Corollary 5.3.8, page 155, of [18].

We now resume the proof of the above theorem. Let ζ denote a primitive
n-th root of unity in the algebraic closure of Qp and ζ̃ be a primitive n-th
root of unity in the algebraic closure of Fp. Then we define K = Qp(ζ) and
Fq = Fp(ζ̃), where q is a power of p. By the above proposition, it follows that
K/Qp and Fq/Fp are cyclic Galois extensions of the same degree. Since p - n
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by assumption, it follows that K is an unramified extension of Qp. Let k be
the residue field of K and P be the maximal ideal of K. Then Proposition
5.5.7 yields that [k : Fp] = [K : Qp], i.e. k = Fq. Thus, we may assume that

ζ mod P = ζ̃ .

Since G is of order n, representation theory then yields that K[G] and Fq[G]
can be decomposed into n one dimensional irreducible submodules. As ρ
runs through the set of characters of G over K and ρ̃ runs through the set of
characters of G over Fq, we thus obtain n primitive idempotents of the form

1ρ =
1

n

∑
σ∈G

ρ(σ)σ−1 ∈ K[G],

1ρ̄ =
1

n

∑
σ∈G

ρ̄(σ)σ−1 ∈ Fq[G],

which are in 1-1 correspondence.
Now let H = Gal(K/Qp) and X be the set of primitive idempotents in K[G].
Then H defines an equivalence relation on X in the following way: Let 1ρ
and 1ρ′ be two primitive idempotents in X. Then we say

1ρ ∼ 1ρ′ ⇔ ∃ ν ∈ H : ν(1ρ) = 1ρ′ .

This yields indeed an equivalence relation onX. The proof is straightforward.
Now let α ∈ Qp[G] be a primitive idempotent, i.e. αQp[G] is irreducible.
Then αK[G] has a decomposition into irreducible submodules of K[G], which
are generated by elements of X. Let 1ρ ∈ K[G] be a primitive idempotent
lying in αK[G]. Since α ∈ Qp[G], it follows that αK[G] is invariant by all
ν ∈ H. It follows that

α̃ :=
1

|H|
∑
ν∈H

ν(1ρ) ∈ Qp[G].

Indeed, α̃ is an idempotent lying in Qp[G] as it is the algebraic trace of 1ρ.
Since α ∈ Qp[G] is primitive, one verifies that

αQp[G] = α̃Qp[G] and thus αK[G] = α̃K[G].

Let Xρ be the equivalence class represented by 1ρ. Obviously, then

αK[G] =
1

|H|
∑
ν∈H

ν(1ρ)K[G] =
∑

1τ∈Xρ

1τK[G] =: K[G]Xρ .
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This shows that the primitive idempotents in Qp[G] are in 1-1 correspon-
dence to the K[G]Xρ , where Xρ runs through the equivalence classes of X.
Certainly, we have the according 1-1 correspondence for the primitive idem-
potents in Fp[G]. Due to Gal(K/Qp) ∼= Gal(Fq/Fp), it follows that X and the
set of primitive idempotents in Fp[G] have the same number of equivalence
classes. Combining these arguments, we obtain that Fp[G] and Qp[G] have
the same number of primitive idempotents. This proves the theorem.

This yields the desired result, namely

Corollary 5.5.9. Let G be a finite abelian group of order n with p - n. Then
Zp[G] has good reduction.

Corollary 5.5.10. Let G be a finite abelian group of order n with p - n.
Then, we have a 1-1-correspondence between the idempotents in Qp[G] and
Fp[G]. In particular, Qp[G] has only finitely many idempotents.

Proof. The proof follows immediately from the proof of the above theorem.
Indeed, all idempotents in Qp[G] are a sum of primitive idempotents in Qp[G].
Moreover, the algebraic trace is additive. Thus, the claim follows.

We would also like to give an alternative proof in the case where G is cyclic.
The alternative proof is worth mentioning as it emphasizes the role of the
Hensel lifting and as it uses elementary tools only. Before we start with the
actual proof, we recall

Lemma 5.5.11 (Hensel). Let f(X) be a primitive polynomial in Zp[X], i.e.
f(X) 6≡ 0 mod (p). Assume that f(X) modulo (p) has a decomposition

f(X) ≡ ḡ(X)h̄(X) mod (p)

into coprime polynomials ḡ, h̄ ∈ Fp[X], then f(X) has a decomposition

f(X) = g(X)h(X)

into polynomials g, h ∈ Zp[X] with deg(g) = deg(ḡ) and

g(X) ≡ ḡ(X) mod (p) and h(X) ≡ h̄(X) mod (p).

Proof. See Lemma 4.6, page 135, of [2].
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Proof. We now want to give the alternative proof. We assume that G is
cyclic of order n and that σ ∈ G is a generator of G. It then follows that

Zp[G] ∼= Zp[X]/((1 +X)n − 1), σ 7→ X + 1,

Fp[G] ∼= Fp[X]/((1 +X)n − 1), σ 7→ X + 1.

In the following, we want to show that for every idempotent α̃ ∈ Fp[G] there
exists an idempotent α ∈ Zp[G] with α̃ = α mod (p).
Let f̄(X) ∈ Fp[X] correspond to a non-trivial idempotent α̃ in Fp[G], i.e.

f̄(f̄ − 1) ≡ 0 mod ((1 +X)n − 1).

Then there exists an ḡ ∈ Fp[X] such that

f̄(f̄ − 1) = ḡ((1 +X)n − 1).

Now we define the polynomial s(X) = g(X)((1 + X)n − 1) ∈ Zp[X], where
g(X) ∈ Zp[X] with ḡ(X) = g(X) mod (p). Obviously, s̄ = ḡ((1 + X)n − 1),
where .̄ denotes the reduction modulo (p). Observe that s(X) 6∈ pZp[X].
Otherwise, f̄(f̄ − 1) = 0 in Fp[X]. This implies that f̄ = 1 or f̄ = 0, yielding
the contradiction that f̄ was assumed to be non-trivial. Moreover, f̄ and
f̄ − 1 are certainly coprime in Fp[X]. By Hensel’s Lemma, it follows that
f̄ and f̄ − 1 can be lifted to polynomials f(X), f̃(X) ∈ Zp[X] such that
s(X) = f(X)f̃(X). We need to show that we can choose f̃ = f − 1. For
doing so, we revisit the proof of Hensel’s Lemma, following the proof of [2],
page 135, with according notation:
In the proof, we have that h̄ = ḡ − 1 and hence h0 = g0 − 1. Thus, we may
set a = 1 and b = −1. Following the proof, we see that it is sufficient to solve
the congruence

g0fn − (g0 − 1)fn ≡ fn mod (π).

(See page 136, first congruence for a = 1, b = −1, and h̄ = ḡ − 1). Let
fn(X) = −q(X)g0(X) − pn(X) with q(X), pn(X) ∈ Zp[X] with deg(pn) <
deg(g0). (Observe that q(X) ∈ Zp[X] since the leading coefficient of g0 is a
unit). It follows that

g0pn(X) + (g0 − 1)pn(X) ≡ fn(X) mod (π).

Since pn(X) = qn(X), for all n ∈ N, it follows that h = g − 1.
Resuming the previous context and notation, we obtain that we can indeed
set f̃ = f − 1. It follows that there exists a polynomial f(X) ∈ Zp[X] such
that

f(f − 1) = s = g(X)((1 +X)n − 1), and thus
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f(f − 1) ≡ 0 mod ((1 +X)n − 1).

Hence, f is an idempotent in Zp[X]/((1 +X)n − 1), yielding an idempotent
in Zp[G]. This shows that we can lift idempotents of Fp[G] to idempotents
of Zp[G]. Henceforth, let φ denote the reduction modulo (p), A be the set
of idempotents in Zp[G], and B be the set of idempotents in Fp[G]. Since φ
certainly maps idempotents in Zp[G] to idempotents in Fp[G], it follows that

φ|A : A→ B

is surjective by the above arguments.
Claim: φ|A is also injective .
Proof: Assume that α, β ∈ Zp[G] are distinct idempotents with φ(α) = φ(β).
It follows that φ(α − β) = 0, i.e. α − β ∈ pZp[G]. Let us say α − β = pkx,
for some x ∈ Zp[G] \ pZp[G], k ∈ Z>0. (As α− β 6= 0 by assumption, we can
certainly write α− β like that). It follows that

p3kx3 = (α− β)3

= α3 − 3α2β + 3αβ2 − β3

= α− 3αβ + 3αβ − β
= α− β
= pkx.

It follows that x = p2kx3 ∈ pZp[G], which contradicts the choice of x. Hence,
φ(α) = φ(β), α, β idempotents, implies that α = β. This proves the claim.
It is left to show that primitive idempotents in Zp[G] are mapped to primitive
idempotents in Fp[G]:
Let α be a primitive idempotent in Zp[G] and assume that

φ(α) = α̃1 + α̃2,

where α̃1, α̃2 are orthogonal idempotents in Fp[G]. Since φ|A is bijective,
there exist unique idempotents α1, α2 in Zp[G] with φ(αi) = α̃i, i = 1, 2.
Since φ(α1α2) = 0 and α1α2 idempotent, it also follows that α1α2 = 0. As
φ is injective, we can conclude that α = α1 + α2. This yields the desired
contradiction as α was supposed to be primitive.

After this interlude on representation theory, we now want apply the de-
veloped results to the capitulation problem. By Proposition 5.5.5, we have
that

Zp[G] = α1Zp[G]⊕ ...⊕ αrZp[G], (5.1)
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where the αi are primitive orthogonal idempotents in Zp[G], for all 1 ≤ i ≤ r.
Let α̃i ∈ Fp[G], 1 ≤ i ≤ r, denote the image of αi in Fp[G]. It follows that

Fp[G] = α̃1Fp[G]⊕ ...⊕ α̃rFp[G],

where the α̃i, 1 ≤ i ≤ r, are central orthogonal idempotents in Fp[G] as G
is abelian. Moreover, the α̃i’s are primitive since Zp[G] has good reduction.
By Maschke’s Theorem, we know that Fp[G] is semi-simple. Also, α̃iFp[G],
1 ≤ i ≤ r, is an indecomposable Fp[G]-module since the α̃i’s are primitive.
As Fp[G] is semi-simple, it even follows that α̃iFp[G] is an irreducible Fp[G]-
module. (See Proposition 5.5.4). Observe that

α̃iFp[G] ∼= αiZp[G]/(αiZp[G] ∩ pZp[G]), 1 ≤ i ≤ r.

It follows that αiZp[G]/(αiZp[G] ∩ pZp[G]), 1 ≤ i ≤ r, is an irreducible
Zp[G]-module. Thus, we have shown

Proposition 5.5.12. Let G be a finite abelian group of order n with p - n.
Let Zp[G] be decomposed as in (5.1). Then αiZp[G]/(αiZp[G]∩ pZp[G]) is an
irreducible Zp[G]-module, for all 1 ≤ i ≤ r.

Remark: Observe that αiZp[G] ∩ pZp[G] = pαiZp[G], for all 1 ≤ i ≤ r.
Proof: “⊃” is obvious.
⊂: Let αix = py with x, y ∈ Zp[G], for some 1 ≤ i ≤ r. It follows that
py = pαiy ∈ pαiZp[G].

Definition: Let Zp[G] be decomposed as in (5.1). Then we call the α-
components A(K)αi irreducible α-components as they correspond to primi-
tive idempotents. Accordingly, we speak of irreducible α-componentsH(K)αi .

The above proposition shows that p-maximal elements in an irreducible com-
ponent αZp[G] are invertible in a certain sense. More precisely, we have

Corollary 5.5.13. In the situation as above, let α = αi, for some 1 ≤ i ≤ r,
and let αx ∈ αZp[G] \ pαZp[G]. Then there exists an y ∈ Zp[G] such that
αxαy = αxy ≡ α mod (pαZp[G]).

Proof. The proof follows immediately from the fact that αZp[G]/pαZp[G] is
an irreducible Zp[G]-module.
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Corollary 5.5.14. In the situation as above, let αx ∈ αZp[G] \ pαZp[G].
Then for all a ∈ A(K),

ord(aα) = ord(aαx).

Proof. Since αx 6∈ pαZp[G], there exists an y ∈ Zp[G] such that αxαy =
α + pαz, for some z ∈ Zp[G]. It follows that

ord(aα) ≥ ord(aαx) ≥ ord(aαxαy) = ord(aα+pαz) = ord(aα).

Hence, the above inequalities are all equalities and the claim follows.

5.6 Capitulation for the Case that A(K) is

Zp[G]-Cyclic

As before, let K/k be an abelian extension with Galois group G = Gal(K/k)
and we suppose that the prime p does not divide the order of G. In this sec-
tion, we additionally assume that A(K) is Zp[G]-cyclic, i.e. A(K) = aZp[G],
for some ideal class a in K. By virtue of Corollary 5.5.13, we then obtain
particularly strong results for the structure of A(K) and the capitulation ker-
nel. For instance, we show that under certain conditions the l-socle of A(K)
capitulates completely in the l-socle of H(K), where 1 ≤ pl ≤ exp(A(K)).
Moreover, we explicitly state the Zp[G]-annihilator of A(K). We conclude
this section with an analysis of the special case that the irreducible compo-
nents of A(K) are cyclic.

Let Sl(Gal(H(K)/K)) be the l-socle of Gal(H(K)/K), where 1 ≤ pl ≤
exp(Gal(H(K)/K)). Recall that

Sl(Gal(H(K)/K)) = {σ ∈ Gal(H(K)/K)| ord(σ) ≤ pl}.

Then we define Sl(H(K)) to be the unique intermediate field of H(K)/K
with Galois group over K being isomorphic to Sl(Gal(H(K)/K)). In the
same way we may define the l-socle of H(K)α to be the unique subfield
Sl(H(K)α) of H(K)α/K with Gal(Sl(H(K)α)/K) ∼= Sl(Gal(H(K)α/K)).
We may now apply the machinery that we developed in the previous section.
We have

Theorem 5.6.1. Notations being like above, let H(K)α be a fixed irreducible
α-component of H(K). Assume that G = Gal(K/k) is abelian with p - |G|
and that α has a central lift to the l-socle Sl(H(K)α), 1 ≤ pl ≤ exp(A(K)α),
denoted by α̃. Let Zp[G] be decomposed as in (5.1) and assume that A(K)α is
Zp[G]-cyclic. Then the k-socle of A(K)α capitulates completely in the k-socle
of H(K)α, ∀ 1 ≤ k ≤ l.
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Proof. For the ease of notation, we set Aα = A(K)α. We prove the the-
orem by induction on 1 ≤ pk ≤ pl. As α̃ is a central lift to Sl(H(K)α)
by assumption, it follows that Suzuki’s Theorem holds for each subfield of
Sl(H(K)α)/K which is Galois over k. In particular, it holds for all k-socles
Sk(H(K)α) of H(K)α with k ≤ l. This implies that for each 1 ≤ pk ≤ pl,
there is an ideal class bk ∈ Sk(Aα) with ord(bk) = pk such that bk capit-
ulates in Sk(H(K)α). Let a ∈ Aα such that Aα = aαZp[G]. Let ak = ap

m

such that m ∈ N and ord(ap
mα) = pk. By the last corollary, it then follows

that Sk(Aα) = a
αZp[G]
k . Since ord(bk) = pk, it follows that bk = aαxk , where

αx ∈ αZp[G] \ pαZp[G]. Now let 1 6= aαyk ∈ Sk(Aα). Since αx 6∈ pαZp[G],
there exists an y′ ∈ Zp[G] such that αxαy′ = α+ pαy′′, for some y′′ ∈ Zp[G],
and hence αxαy′y = αy + pαy′′y. Since bk = aαxk capitulates in Sk(H(K)α),

it easily follows that aαxαy
′y

k = aαy+pαy′′y
k also capitulates in Sk(H(K)α) as

Sk(H(K)α) is Galois over k. By induction hypothesis, we may assume that

apαy
′′y

k capitulates due to ord(apαy
′′y

k ) < ord(aαyk ) ≤ pk. (By the previous
arguments, the induction start for k = 1 obviously holds). All in all, we
obtain that aαyk capitulates in Sk(H(K)α). As Sk(Aα) is Zp[G]-cyclic, the
claim follows.

Corollary 5.6.2. In the situation as in the above theorem, it follows that all
p-maximal elements in Aα, i.e. all elements which do not lie in Apα, have the
same order.

Proof. Obviously, all p-maximal elements in Aα are of the form aαx with αx ∈
αZp[G] \ pαZp[G]. Corollary 5.5.14 then yields that ord(aα) = ord(aαx).

We continue this section by explicitly stating the Zp[G]-annihilator of A(K)
provided that A(K) is Zp[G]-cyclic. We have

Theorem 5.6.3. Let us assume that A(K) is Zp[G]-cyclic and let A(K) be
decomposed as in (5.1). Let ni = exp(A(K)αi), ∀ 1 ≤ i ≤ r. Let S1 ⊂
{1, ..., r} such that for all i ∈ S1, we have that A(K)αi = {1}. We define
α =

∑
i∈S1

αi and S2 = {1, ..., r} \ S1. Then

AnnZp[G](A(K)) = αZp[G]⊕i∈S2 p
niαiZp[G].

Proof. Since the αi’s are orthogonal to each other, α is certainly an idem-
potent and αZp[G] =

∑
i∈S1

αiZp[G]. Moreover, for all i ∈ S2 we have that
A(K)αi 6= {1} and by the previous corollary it follows that the annihilator
is given by AnnZp[G](A(K)αi) = pniZp[G]. As the αi’s are orthogonal to each
other, the claim follows.
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In view of Theorem 5.6.1, the following question emerges: What can we say
when L/k is Galois, but L is not contained in an α-component H(K)α? In
this context, it makes sense to introduce the following

Definition: Let K/k be as before and let A(K) be decomposed as in (5.1).
Let L be an intermediate field of H(K)/K and set Li = L ∩H(K)αi , ∀ 1 ≤
i ≤ r. Then we say L is faithful with respect to (α1, ..., αr) if

L =
r∏
i=1

Li. (5.2)

Remark: One can easily construct group theoretic examples where the above
property does not hold. If L is not faithful w.r.t. (α1, ..., αr), then it becomes
very difficult to extract information for the capitulation problem from the
decomposition of A(K) into α-components.

Proposition 5.6.4. Notations being like above, let L be an intermediate field
of H(K)/K and assume that L is faithful w.r.t. (α1, ..., αr). Then L/k is
Galois if and only if ∀ 1 ≤ i ≤ r:

Li = Sli(H(K)αi), for some 1 ≤ pli ≤ exp(A(K)αi).

Proof. First observe that for all 1 ≤ i ≤ r, we have that exp(A(K)αi) =
subexp(A(K)αi) by Corollary 5.6.2. (For the definition of the subexponent
of an abelian group, see Section 4.1). Moreover, we have shown that the
Zp[G]-cyclicity of A(K)αi is inherited to all socles of A(K)αi . Thus, Zp[G]
acts transitively on all socles of A(K)αi as A(K)αi is irreducible. Hence, if
M is an intermediate field of H(K)αi/K and M is not a socle of H(K)αi/K,
then M is not Galois over k. As L is faithful, the above arguments extend
to L. Indeed, L is given as in (5.2). A moment of reflection then shows that

Gal(H(K)/
r∏
i=1

Li) =
r∏
i=1

Gal(H(K)α1/Li), (5.3)

where
∏

denotes the Cartesian product. Now assume that there exists an
1 ≤ i ≤ r such that Li is not a socle in H(K)αi/K. Without restriction of
generality, we may say that L1 is not a socle in H(K)α1/K. By the above
arguments, there exists some σ ∈ Gal(K/k) such that Lσ1 = σ(L1) 6= L1. It
follows that G(H(K)α/L1) 6= G(H(K)α/L

σ
1 ). By (5.3), we then obtain that

L is not Galois over k. The converse direction is also obviously true.
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We have seen how powerful the decomposition of A(K) into irreducible α-
components is in the context of the capitulation problem. The capitulation
problem becomes particularly well-accessible when the irreducible submod-
ules αZp[G] of Zp[G] are Zp-cyclic. Indeed, in the case where A(K) is Zp[G]-
cyclic it has the consequence that all α-components are either trivial or a
cyclic subgroup of A(K). In light of that, we pose the following question:
Under which circumstances are the irreducible submodules of Zp[G] definitely
Zp-cyclic? In this context, we need the following

Theorem 5.6.5. Let µp−1 denote the group of (p−1)-th roots of unity. Then
the group of roots of unity in Qp is precisely

µ(Qp) = µp−1 when p is an odd prime, and

µ(Q2) = {±1}.

In fact, Hensel’s Lemma yields that all (p− 1)-th roots of unity lie in Zp.

Proof. See Corollary 2, page 110, of [20].

Proposition 5.6.6. Let G be a finite abelian group of order n. Then the
following is equivalent:
(i) exp(G) divides p− 1.
(ii) There exist primitive orthogonal idempotents α1, ..., αn ∈ Zp[G] such that

Qp[G] = α1Qp[G]⊕ ...⊕ αnQp[G].

In particular, in this case αiQp[G] is a 1-dimensional Qp-vector space, ∀ 1 ≤
i ≤ n.

Proof. The proof follows immediately from the previous theorem and Propo-
sition 5.5.5. Indeed, as G is abelian, all characters of G over Qp are 1-
dimensional, i.e. their images are l-th roots of unity, where l = exp(G). The
images of all characters lie in Qp if and only if Qp contains all l-th roots of
unity. This is the case if and only if l|(p− 1).

Lemma 5.6.7. Let G be a finite abelian group and α ∈ Zp[G] an idem-
potent. Then αQp[G] is a 1-dimensional Qp-vector space if and only if
Zp − rk(αZp[G]) = 1.
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Proof. First note that αQp[G]∩Zp[G] = αZp[G]. Indeed, let x ∈ Qp[G] with
αx ∈ Zp[G]. Let us say αx = y. Then y = αy ∈ αZp[G]. The other inclusion
is obvious. Now assume that αQp[G] is a 1-dimensional Qp-vector space. Let
us say, αQp[G] = Qpαx, for some x ∈ Qp[G]. By the previous arguments,
this implies that αZp[G] = Qpαx ∩ Zp[G]. Furthermore, we may write

αx = pky = pkαy with y ∈ Zp[G], vp(y) = 0, k ∈ Z.

Let z ∈ Qp[G]. Then zαx ∈ Zp[G]⇔ z ∈ p−kZp, i.e.

αZp[G] = Zpp−kαx = Zpαy.

As y lies in Zp[G], we have shown that Zp − rk(αZp[G]) = 1 . The other
implication is analogous.

Observe that the assumption that exp(G)|(p− 1), implies that |G| and p are
coprime. Combining the above lemma and Proposition 5.6.6, we thus obtain

Corollary 5.6.8. Let K/k be an abelian extension with Galois group G =
Gal(K/k), and assume that exp(G)|(p−1). Also suppose that A(K) is Zp[G]-
cyclic. For r = rk(A(K)), there exist idempotents α1, ..., αr ∈ Zp[G] such
that

A(K) = A(K)α1 × ...× A(K)αr , and

rk(A(K)αi) = 1, ∀ 1 ≤ i ≤ r.

The situation as in Corollary 5.6.8 can be realized in the context of cyclotomic
Zp-extensions for example: Let K be a number field, ζpn be a primitive pn-th
root of unity (n ∈ N), and assume that ζp 6∈ K. Then we define Kn = K(ζpn).
By Galois theory and the previous theorem, it follows that there exists a
subfield K ′n ⊂ Kn such that Gal(Kn/K

′
n) is abelian with |Gal(Kn/K

′
n)| =

p − 1. Hence, one only has to check if A(Kn) is Zp[Gal(Kn/K
′
n)]-cyclic. If

this is the case, we are in the situation of Corollary 5.6.8. Applying Theorem
5.6.1 now, the capitulation problem becomes particularly well-accessible.

We conclude this section with two interesting examples:

Example: Consider the imaginary quadratic number field

K = Q(α) with α2 = −3299.

MAGMA yields that A(K) ∼= C3 × C9.
Obviously, A(K) is not Z3[G]-cyclic, where G = Gal(K/Q). Moreover, all
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intermediate fields of H(K)/K are Galois over Q. Using MAGMA, one can
verify that there is an intermediate field L of H(K)/K with Gal(L/K) ∼= C9,
but PK(L) ∼= C3×C3. For more details see [21]. Although exp(G) = p−1 = 2,
we cannot decompose A(K) as in Corollary 5.6.8. This example demonstrates
that the assumption that A(K) is Zp[G]-cyclic is essential.

We proceed with an example which shows that the l-socle of A(K) does not
capitulate completely in the l-socle of H(K) in general. We have

Example: Consider the imaginary quartic number field

K = Q(α) with α4 + 313 = 0.

Then MAGMA yields: 1. A(K) ∼= C2 × C16;
2. PK(S1(H(K))) ∼= C4, i.e. the 1-socle of A(K) does not capitulate com-
pletely in the 1-socle of H(K).

5.7 Decomposition of A(K) into a Direct Prod-

uct of Zp[G]-Cycles

Throughout this section, we assume G = Gal(K/k) to be abelian and p - |G|.
In Section 5.2, we have decomposed A(K) into a direct product of irreducible
α-components. In the following, we pursue an even finer decomposition of
A(K) into a direct product of Zp[G]-cycles. By Zp[G]-cycles, we mean sub-
groups of A(K) of the form aZp[G] = {ax| x ∈ Zp[G]}, for some ideal class a
in K. In view of that, we can thus relax the assumption of the previous sec-
tion that A(K) is Zp[G]-cyclic, i.e. all the results of the previous section can
then be applied to Zp[G]-cycles within irreducible α-components of A(K).
Furthermore, we show that such a decomposition is unique in a certain sense
and present various consequences of the above result.

By the previous sections, the irreducible components A(K)α of A(K) are
Zp[G]-closed since Zp[G] is abelian. Hence, we may restrict ourselves to
considering a fixed irreducible α-component A(K)α when we intend to de-
compose A(K) into a direct product of Zp[G]-cycles. Before we start with
the actual proof, we need three easy lemmata first.

Lemma 5.7.1. Let a be an ideal class in the irreducible component A(K)α.
Then all p-maximal elements in aZp[G] are of the same order, i.e.

aZp[G] ∼= Cpk × ...× Cpk︸ ︷︷ ︸
r−times

,
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where r, k ∈ Z>0.

Proof. Follows immediately from the proof of Corollary 5.6.2.

Lemma 5.7.2. Let A1 ⊂ A(K)α be a direct product of Zp[G]-cycles, i.e.

A1 = a
Zp[G]
1 × ...× aZp[G]

n , for some a1, ..., an ∈ A1.

Then A1 is closed by the action of Zp[G].

Proof. Elementary.

Lemma 5.7.3. Let A1 = aZp[G] ⊂ A(K)α, for some a ∈ A(K)α, and A2 ⊂
A(K)α be a direct product of Zp[G]-cycles. Then either A1∩A2 = {1} or the
1-socle S1(A1) is contained in S1(A2).

Proof. Assume that A1∩A2 6= {1}. Then there exists an ideal class b ∈ A(K)
of order p such that b ∈ A1 ∩ A2. By the previous section, we obtain that
Zp[G] acts transitively on the 1-socle of A1. Since A2 is Zp[G]-closed, it
follows that S1(A1) is contained in S1(A2).

Theorem 5.7.4. Let K/k be abelian with Galois group G = Gal(K/k) and
p - ord(G). Then A(K) can be decomposed into a direct product of Zp[G]-
cycles.

Proof. Let us assume that the fixed irreducible component A(K)α is decom-
posed into cyclic subgroups as follows:

A(K)α = Cpn1 × ...× Cpn1︸ ︷︷ ︸
r1−times

×...× Cpns × ...× Cpns︸ ︷︷ ︸
rs−times

,

where r1, ..., rs ∈ Z>0 and 0 < n1 < n2 < ... < ns. Now we start to construct
a decomposition into Zp[G]-cycles by induction on t, where t runs backwards
from s to 1.
t = s: Choose some element as,1 in A(K)α of order pns . If rk(a

Zp[G]
s,1 ) = rs,

we can continue with t = s − 1. If rk(a
Zp[G]
s,1 ) < rs, then there exists an

as,2 ∈ A(K)α of order pns such that < as,2 > and a
Zp[G]
s,1 are disjoint. In

particular, S1(< as,2 >) is not contained in S1(a
Zp[G]
s,1 ). By the previous

lemma, it follows that the Zp[G]-cycles a
Zp[G]
s,1 and a

Zp[G]
s,2 are disjoint. In this
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fashion, we can continue until rk(a
Zp[G]
s,1 , ..., a

Zp[G]
s,ks

) = rs, for suitable ks ∈ N.
The initial lemma then yields that

As := a
Zp[G]
s,1 × ...× aZp[G]

s,ks
∼= Cpns × ...× Cpns︸ ︷︷ ︸

rs−times

.

t < s: Choose an element at,1 ∈ A(K)α of order pnt such that < at,1 > and
At+1 × ...× As are disjoint. (See definition for As and assume that As−1,...,
At+1 have been constructed accordingly by induction hypothesis). By the

previous lemma, it then follows that a
Zp[G]
t,1 and At+1 × ... × As are disjoint.

If rk(a
Zp[G]
t,1 ) = rt, we can continue with t − 1. If rk(a

Zp[G]
t,1 ) < rt, then there

exists an at,2 ∈ A(K)α of order pnt such that < at,2 > and At+1× ...×As are
disjoint. With the same arguments as before, we thus obtain, for suitable
kt ∈ N, that

At = a
Zp[G]
t,1 × ...× aZp[G]

t,kt
∼= Cpnt × ...× Cpnt︸ ︷︷ ︸

rt−times

,

where At and At+1 × ...× As are disjoint. One easily verifies that this even-
tually leads to a Zp[G]-basis for the irreducible component A(K)α and hence
for A(K).

Remark: 1. In Section 2.8, we have seen that the above statement is not
true in general when p divides the order of G. So the assumption that p - |G|
is essential here.

2. Certainly, the statement of the above theorem is true in general for fi-
nite abelian p-groups on which Zp[G] acts. For instance, we may apply the
above theorem also in the following context: Let H(K) ⊃ L ⊃ K ⊃ k with
[L : K] = pl, for some l ∈ N, and L/k Galois. Clearly, H0(G(L/K),O∗L) is
a finite abelian p-group and it is closed by the action of Zp[G]. Thus, it can
be decomposed into a direct product of Zp[G]-cycles.

3. The above theorem is very useful in the context of capitulation: Let L
be an intermediate field of H(K)/K with L/k Galois and [L : K] = pl. Let
A1 = aZp[G] ⊂ A(K)α be a Zp[G]-cycle in a given irreducible α-component.
Then either all elements in A1 of order pl capitulate in L or none of them.

Furthermore, one may pose the question to which extent the above decom-
position of A(K) into a direct product of Zp[G]-cycles is unique. One easily
verifies that the Zp[G]-cycles themselves are not unique but we have the
following
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Proposition 5.7.5. Notations being like above, let

A(K) =
∏
α

kα∏
i=1

a
Zp[G]
i,α

be a direct product of Zp[G]-cycles, where α runs through the set of primitive
orthogonal idempotents in Zp[G] and ai,α ∈ A(K)α, kα ∈ N. We then define

ri,α = rk(a
Zp[G]
i,α ) and ni,α = exp(a

Zp[G]
i,α ). Let

A(K) =
∏
α

lα∏
i=1

b
Zp[G]
i,α

be another direct product of Zp[G]-cycles with bi,α ∈ A(K)α and lα ∈ N.

For r′i,α = rk(b
Zp[G]
i,α ) and n′i,α = exp(b

Zp[G]
i,α ), we obtain that kα = lα, for all

primitive idempotents α, and

{(ri,α, ni,α)1≤i≤kα} = {(r′i,α, n′i,α)1≤i≤kα}, ∀ α, i.e.

up to order, the ranks and the exponents of the Zp[G]-cycles in a decomposi-
tion of an irreducible component A(K)α into a direct product are unique.

Proof. The proof is straightforward. Essentially, one observes that in an
irreducible component of A(K), the Zp[G]-cycles of different rank must be
disjoint by Lemma 5.7.3. The rest follows from the unique decomposition of
A(K) into cyclic subgroups.

Now let L/K be a p-extension with L/k Galois and set A(K)′ = NL/K(A(L)).
As L/k is Galois, G acts on A(L) and A(K)′. Hence, we can also decompose
A(K)′ into a direct product of Zp[G]-cycles. The following result describes
to which extent the structure of A(K)′ is transferred to A(L). We have

Proposition 5.7.6. In the situation as above, there exist ai ∈ A(K)′, bi ∈
A(L) with NL/K(bi) = ai (∀ 1 ≤ i ≤ k) such that

(i) A(K)′ =
∏k

i=1 a
Zp[G]
i is a direct product of Zp[G]-cycles and

(ii) rk(a
Zp[G]
i ) = rk(b

Zp[G]
i ).

Proof. Let 1 ≤ i ≤ k be fixed. By the previous arguments, we may choose
ai ∈ A(K)′ such that ai lies in an irreducible α-component of A(K)′ and bi ∈
A(L) lies in an irreducible component of A(L). Since NL/K(b

Zp[G]
i ) = a

Zp[G]
i ,

it obviously follows that rk(b
Zp[G]
i ) ≥ rk(a

Zp[G]
i ). Suppose that rk(b

Zp[G]
i ) >

rk(a
Zp[G]
i ). As all basis elements of b

Zp[G]
i have the same order, we can conclude

that exp(b
Zp[G]
i ) = exp(b

Zp[G]
i ∩kerNL/K), which yields that b

Zp[G]
i ⊂ kerNL/K ,

a contradiction to ai being non-zero. This completes the proof.

113



5.8 Some Results on the Genus Field

Let K/k be an abelian extension with Galois group G = Gal(K/k). The
genus field of K/k is the maximal unramified extension of K, which is abelian
over k. Henceforth, let M denote the maximal unramified p-extension of K,
which is abelian over k, i.e. M is the so-called p-genus field of K/k. In what
follows, we want to make use of the decomposition of A(K) into a direct
product of Zp[G]-cycles. On account of that, we assume that p - |G| as in
the previous sections. The main result of this section is

Theorem 5.8.1. Let K/k be an abelian extension with Galois group G =
Gal(K/k) and p - |G|. Let H(k) be the p-Hilbert class field of k and M be
the p-genus field of K/k. Then: M = KH(k).

Proof. Obviously, KH(k) is abelian over k as K/k and H(k)/k are abelian.
By Theorem 1.3.8, KH(k) is also unramified and hence KH(k) ⊂ M . We
will now show that also KH(k) ⊃ M . Indeed, let A(k) be the p-part of
Cl(k). As p - |G| by assumption, it follows that ıK/k embeds A(k) into A(K)
and we obtain that

A(K) = A(k)× kerNK/k.

Now assume that KH(k) is contained in L ⊂ M . It then follows that
G(H(K)/L) is Zp[G]-invariant. As in the previous section, we may decom-
pose G(H(K)/K) and G(H(K)/L) into a direct product of Zp[G]-cycles.
Let us assume that there is a primitive idempotent α ∈ Zp[G] such that
G(H(K)/K)α contains a Zp[G]-cycle B = τZp[G], τ ∈ G(H(K)/K)α, of rank
larger than 1. Then B is contained in G(H(K)/L)α. Indeed, suppose this is
not the case. Then τ 6∈ G(H(K)/L)α since G(H(K)/L)α is Zp[G]-invariant.
As L/k is abelian, it also follows that G(L/K) commutes with G̃, where G̃
is a lift of G to G(L/k). Thus, τ̃Zp[G] has rank 1, where τ̃ = resH(K)/L(τ). It
follows that

τZp[G] ≡ < τ > mod G(H(K)/L). (5.4)

As τZp[G] is of rank larger than 1 by assumption, there exists an x ∈ Zp[G]
such that < τ > ∩ < τx >= {1} and ord(τ) = ord(τx). Corollary 5.6.2
then yields that < τ, τx >∼= Cpn × Cpn , where ord(τ) = pn. Since τ 6∈
G(H(K)/L)α, we also obtain that exp(τZp[G] ∩G(H(K)/L)) < pn. As τx =
τy for some y ∈ τZp[G] ∩G(H(K)/L)α by (5.4), it follows that

< τ, τx >∼= Cpn × Cpl
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with l < n, which yields the desired contradiction. Let

G(H(K)/K) =
∏
α

kα∏
i=1

τ
Zp[G]
i,α

be a direct product of Zp[G]-cycles, where α runs through a set of primitive
idempotents in Zp[G] and τi,α ∈ A(K)α, kα ∈ N. By the previous arguments,

all Zp[G]-cycles τ
Zp[G]
i,α of rank larger than 1 must lie in G(H(K)/L). Now

recall that A(K) = A(k) × kerNK/k and let C = ϕ(kerNK/k), where ϕ
denotes the Artin symbol of K. Let

C = C1 × C2,

where C1, C2 are subgroups of C and where C1 contains all Zp[G]-cycles in
C of rank 1 and C2 contains all Zp[G]-cycles in C of rank larger than 1. Let
L′ = H(K)C2 and thus G(L′/K) ∼= ϕ(A(k))×C1. By the previous arguments,
then L ⊂ L′. Also observe that kerNK/k ∩ A(K)G(K/k) = {1} due to p - |G|.
Let {τ1, ..., τk} ⊂ C1 form a Z-basis of C1 (k ∈ N). Let us fix some τi and let
us denote it by τ1. By the previous remark, there exists some σ ∈ G(K/k)
such that (τ ′)σ−1 6= 1, for all non-trivial τ ′ ∈ < τ1 >. Since < τ1 > is Zp[G]-
invariant, we then obtain that < τ >=< τ >σ−1. This shows that C1 lies
in the commutator subgroup of G(L′/k) and hence G(L/K) ∼= A(k). This
finally reveals that M ⊂ L.

Corollary 5.8.2. Notations being like above, assume that there is a prime
q < p with q|ord(G) and q - (p− 1). Then kerNK/k contains no Zp[G]-cycles
of rank 1. In particular, if rk(kerNK/k) ≤ 3, then kerNK/k is Zp[G]-cyclic.

Proof. Assume that kerNK/k contains a Zp[G]-cycle of rank 1. By previous
arguments, then there is also a Zp[G]-cycle of rank 1 in a decomposition of
kerNK/k into Zp[G]-cycles. Hence, this gives rise to an extension L ⊃ K ⊃ k
with L/k Galois and [L : K] = p. By assumption there is also a field
K ⊃ k′ ⊃ k with [K : k′] = q. As L/k is Galois, a fortiori L/k′ is Galois
and |G(L/k′)| = pq. It is well-known that groups of order pq with p, q prime,
q < p, q - (p− 1), are cyclic and hence abelian. (See Theorem 12, page 250,
of [10]). It follows that L lies in the genus field of K/k, but not in KH(k).
This, however, is a contradiction to the fact that KH(k) is the genus field of
K/k. The second statement of the above corollary follows immediately from
the first part.
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5.9 The Automorphisms of G(H(2)(K)/K) Act-

ing on A(K)

In the previous sections, we had the Galois group G(K/k) acting on the
ideal class group of K. By the Theorem of Schur-Zassenhaus, we have
that G(H(2)(K)/k) is a semi-direct product of G(H(2)(K)/K) and G(K/k).
Hence, each σ ∈ G(K/k) gives rise to an automorphism

ϕσ : G(H(2)(K)/K)→ G(H(2)(K)/K), τ 7→ σ̃τ σ̃−1,

where σ̃ is a lift of σ to G(H(2)(K)/k). (Note that G(H(2)(K)/K) is not
abelian. Hence, ϕσ is dependent on the choice of σ̃). On the other hand,
in general not every automorphism of G(H(2)(K)/K) is of the above form.
Usually, the automorphism group of G(H(2)(K)/K) is rather large even if
there is no subfield k ⊂ K with K/k Galois. Thus, in this section, we are
striving for a generalization of the previous approach by investigating the ac-
tion of the automorphism group of G(H(2)(K)/K) on A(K). Before we start
this analysis, we want to mention some basic properties of the automorphism
groups of finite p-groups:
As the easy example of the automorphism group of Cp shows, the automor-
phism group of a p-group is not necessarily a p-group. Moreover, one verifies
that Aut(G(H(2)(K)/K)) tends to have a lot more outer automorphisms than
inner ones. (Of course, there always exist non-trivial outer automorphisms of
a p-group as a p-group has a non-trivial center). In [41], Helleloid and Mar-
tin show that the automorphism group of a finite p-group is almost always a
p-group. For further details, see Theorem 1.1, page 2, of [41]. Nonetheless,
if p is a small prime and G is a p-group with few generators, the automor-
phism group of G is often not a p-group. For instance, in the following table
Helleloid and Martin state the proportion of p-groups of a given order whose
automorphism group is a p-group:

Order p = 2 p = 3 p = 5
p3 3 of 5 0 of 5 0 of 5
p4 9 of 14 0 of 15 0 of 15
p5 36 of 51 0 of 67 1 of 77
p6 211 of 267 30 of 504 65 of 685
p7 2067 of 2328 2119 of 9310 11895 of 34297

Another interesting result in this context is due to Burnside. We have the
following
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Theorem 5.9.1. Let G be a finite p-group, Φ(G) = G′Gp be the Frattini
subgroup of G. Then the kernel of the canonic group homomorphism

ϕ : Aut(G)→ Aut(G/Φ(G))

is a p-group.

Proof. See Theorem 5.1.4, page 174, of [40].

Let us now combine the above arguments. Henceforth, let K be a number
field such that the automorphism group of G(H(2)(K)/K) is not a p-group.
As G(H(2)(K)/K)/Φ(G(H(2)(K)/K)) ∼= S1(A(K)), the previous theorem
then implies that the reduction of Aut(G(H(2)(K)/K)) acts non-trivially on
S1(A(K)). We now intend to use this machinery to obtain more information
on the structure of the various capitulation kernels. In this context, we need
some basic properties of the group transfer. For a finite group G and a
subgroup H of G, let V erG→H : G → H/[H,H] be the transfer of G to H
and V erG→H : G/[G,G]→ H/[H,H] the induced map. In the following, we
will replace V er by V in the notation. We then have

Proposition 5.9.2. Let Ψ be a homomorphism of a group G to another
group G1, and suppose that the kernel of Ψ lies in a subgroup H of G. Then
we have

VΨ(G)→Ψ(H) ◦Ψ = Ψ̄ ◦ VG→H
where Ψ̄ : H/[H,H] → Ψ(H)/[Ψ(H),Ψ(H)] is the homomorphism induced
by Ψ.

Proof. See Proposition 4, page 298, of [4].

We are now prepared to state and prove the following

Proposition 5.9.3. In the situation as before, let K ⊂ L ⊂ H(K) ⊂
H(L) ⊂ F ⊂ H(2)(K) be a tower of number fields with the common no-
tation. Then: V̄G(F/K)→G(F/L) = V̄G(H(L)/K)→G(H(L)/L).

Proof. First observe that V̄G(F/K)→G(F/L) maps G(H(K)/K) to G(H(L)/L).
The same is true for V̄G(H(L)/K)→G(H(L)/L). We now apply the above proposi-
tion for Ψ = res|H(L) and H = G(F/L), verifying that kerΨ = G(F/H(L))
lies in H. We then obtain:

VG(H(L)/K)→G(H(L)/L) ◦ res|H(L) = res|H(L) ◦ VG(F/K)→G(F/L).

Since res|H(K) = res|H(K) ◦ res|H(L), the claim easily follows.

117



Assuming the situation as above, let ϕ ∈ Aut(G(H(2)(K)/K)) and L be a
subfield ofH(K)/K. Recall that ϕ restricts canonically to Aut(G(H(K)/K))
and hence acts on A(K). Thus, we may set ϕ(L) = H(K)ϕ(G(H(K)/L)), which
is well-defined. This leads us to the next

Proposition 5.9.4. Let K be a number field, ϕ ∈ Aut(G(H(2)(K)/K)) and
L be a subfield of H(K)/K. Then:

ϕ(PK(L)) = PK(ϕ(L)).

Proof. The proof follows immediately from the previous propositions and
Artin’s Theorem.

By the assumption that the automorphism group of G(H(2)(K)/K) is not
a p-group, we may find a non-trivial subgroup V ⊂ Aut(G(H(2)(K)/K)) of
order coprime to p and thus acting non-trivially on A(K). Then the decom-
position of Zp[V ] via idempotents goes analogously to the decomposition of
Zp[G(K/k)] and the results of the previous sections can be extended to this
case one to one.
In Section 5.3, we could not dispense of the assumption that the lift of a
central idempotent α ∈ Zp[G(K/k)] to Zp[G(H(K)α/k)] is central. When
we now consider the action of Aut(G(H(2)(K)/K)) on A(K) instead of the
action of G(K/k), the problem persists in a certain way. To be more precise,
we give the following

Definition: Let G be a finite group and H be a subgroup of G. Then H
is called characteristic in G, denoted by H char G, if ϕ(H) = H for every
automorphism ϕ of G.

Obviously, the higher commutator subgroups of a group are characteristic in
G. Hence, G(H(2)(K)/H(K)) char G(H(2)(K)/K) and thus V restricts to
a subgroup of the automorphism group of G(H(K)/K). Let V ′ denote the
restriction of V to H(K), i.e. V ′ ⊂ Aut(G(H(K)/K)). Now let α ∈ Zp[V ] be
an idempotent which restricts to an idempotent in Zp[V ′], which we will also
denote by α. As in Section 5.3, we may define H(K)α = H(K)G(H(K)/K)1−α .
Of course, α also restricts to an idempotent in Zp[V ′′], where V ′′ denotes the
restriction of V to G(H(H(K)α)/K) and where H(H(K)α) is the Hilbert
class field of H(K)α. Then we define A(H(K)α)α = A(H(K)α)αZp[V ′′]. It
follows that A(H(K)α)α is a uniquely determined well-defined subgroup of
A(H(K)α). Indeed, let Gα = G(H(2)(K)/H(K)α), having the commutator
subgroup G′α = G(H(2)(K)/H(H(K)α)). Since by the definition of H(K)α,
Ψ(Gα) = Gα and Ψ(G′α) = G′α, for all Ψ ∈ αZp[V ], each such Ψ also acts
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on Gα/G
′
α
∼= G(H(H(K)α)/H(K)α) via reduction. The problem now is that

A(H(K)α)α is not necessarily invariant by the action of G(H(K)α), in other
words, Gα does not need to be characteristic in G(H(2)(K)/K). This has
the consequence that H(K)α,α = H(H(K)α)G(H(H(K)α)/H(K)α)1−α is not Ga-
lois over K in general, which leads to the same complications as in Section
5.3. If, however, Gα is characteristic in G(H(2)(K)/K), then H(K)α,α/K is
Galois and the component wise Suzuki holds on the given α-component.

We conclude this section with a remarkable theorem due to Bryant and Ko-
vacs. Let G be a finite p-group as before. Then V := G/Φ(G) is an n-
dimensional Fp-vector-space for some n ∈ N. Hence, the group of automor-
phisms of G induces a subgroup H of GL(n, p) on V . The following theorem
asserts that any subgroup H of GL(n, p) can arise in this way:

Theorem 5.9.5. (Bryant and Kovacs). Let V be an n-dimensional Fp-
vector-space, and H be a subgroup of the group of non-singular linear trans-
formations of V . Then there exists a finite p-group G such that G/Φ(G) ∼= V
and the group of automorphisms of G/Φ(G) induced by all the automorphisms
of G corresponds to H.

Proof. See Theorem 13.5, page 403, of [38].

This is a strong result and it underlines the importance of analyzing the au-
tomorphism group of G(H(2)(K)/K) with respect to the capitulation prob-
lem. Combining the above result with Ozaki’s theorem, Theorem 5.9.5 can
be translated as follows: Let V be an n-dimensional Fp-vector-space, and
H be a subgroup of the group of non-singular linear transformations of V .
Then there exists a number field K with G = G(H(2)(K)/K) such that
G/Φ(G) ∼= V and the group of automorphisms of G/Φ(G) induced by all
the automorphisms of G corresponds to H. For instance, this can be used to
construct all possible different types of capitulation.
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Chapter 6

Capitulation in Extensions of
Imaginary Quadratic Fields

In the following chapter, we investigate capitulation in the case that the base
field K is imaginary quadratic and L/K is an unramified cyclic extension
of degree p. In Section 6.1, we analyze the structure of kerNL/K , where
NL/K : A(L) → A(K) is the norm of ideal classes. In particular, we show
that the rank of kerNL/K is non-trivial and even.
In Section 6.2, we yield a heuristic on the structure of kerNL/K . To this
end, we generalize a paper due to Wittmann, who has given a heuristic for
the case of a cyclic p-extension of the rationals. Bearing in mind that the
rank of kerNL/K is even, we essentially modify some ideas of the celebrated
Cohen-Lenstra heuristics for the case of an imaginary quadratic base field.
Subsequently, we compare our developed heuristics with the given numerical
data, seeing that the heuristics are in good accordance with them.
Supported by MAGMA, Section 6.3 yields a database for capitulation in
extensions of imaginary quadratic fields of degree 5 and 7. So far, numerical
data only existed for the case of extensions of degree 2 and 3. Evaluating the
numerical data, we are particularly interested in questions of the following
type: For instance, let K be an imaginary quadratic field with ideal class
group A(K) ∼= Cp×Cp. Then there exist p+1 intermediate fields of H(K)/K
of degree p over K. How are the various capitulation kernels PK(Li), 1 ≤ i ≤
p+ 1, correlated? Do the capitulation kernels tend to be pairwise distinct or
are there any other patterns? Whereas there seem to be no regular patterns
in the case of extensions of degree 3, the database of Section 6.3 reveals a
surprising phenomenon in the case of extensions of degree 5 and 7. In the
numerical data, only the following two extreme scenarios occurred: Either
all capitulation kernels PK(Li), 1 ≤ i ≤ p+ 1, are pairwise distinct, or there
exists a non-trivial ideal class a in K that capitulates in at least p fields
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of the given intermediate fields L1,...,Lp+1. In the first case, we say K has
1-1-capitulation and in the latter case we speak of p-capitulation.
In Section 6.4, we prove the main theorem of this chapter which shows that
under certain assumptions we always have 1-1-capitulation or p-capitulation
provided that p > 3. In particular, we show what goes wrong when p ≤ 3.
Appealing to the results of Section 6.1 and the heuristics of Section 6.2, we
observe that the assumptions we made are satisfied with high likelihood.
The proof of the theorem is divided into several propositions and lemmata.
It makes frequent use of the transfer of groups and group theory. Altogether,
the proof extends to around 10 pages.

6.1 Structure of Class Groups of Extensions

of Imaginary Quadratic Fields

Henceforth, let K be an imaginary quadratic field and L/K be an unramified
cyclic extension of odd prime degree p. Let G = Gal(H(L)/K) and g1 ∈ G
such that the restriction of g1 to L, denoted by ḡ1, generates G(L/K). For
the ease of notation, we will subsequently simply write g1 instead of ḡ1,
as it is usually clear from the context if we mean g1 or its restriction to
L. Moreover, we set s = g1 − 1. Recall the following definition which we
introduced in Section 2.7. We have

Definition: Let a be an ideal class in L. Then we define

r(a) = max{n ∈ N : as
n 6= 1}.

We call r(a) the length of the flag of a.

This leads us to the following remarkable

Theorem 6.1.1. Notations being like above, let < a1, ..., al > be a Z[s]-basis

of A(L) in standard form, i.e. (a
sZ[s]
i )1≤i≤l is a Z[s]-basis of A(L)s. (See

Section 2.8). Then r(ai) is even, ∀ 1 ≤ i ≤ l.

Proof. Let ϕ = ϕL be the Artin symbol of L, a = a1, and ϕ(a) = g2 ∈
G(H(L)/L). Also, let G(K/Q) =< τ >. As τ acts on G(H(K)/K) by
taking the inverse, it follows that L/Q is Galois and hence H(L)/Q Galois.
Let τ̃ ∈ Gal(H(L)/Q) be a lift of τ . (That exists due to the theorem of Schur-
Zassenhaus). Then τ̃ gives rise to an automorphism on G = Gal(H(L)/K),
which we denote by Ψ. Observe that ∀ g ∈ G: Ψ(g mod G′) = g−1 mod G′,
where G′ = [G,G]. By assumption we know that g1, g2 6∈ G′ and thus
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Ψ(gi) = g−1
i hi, for some hi ∈ G′, i = 1, 2. We will first show, for all k ∈ N,

that
(g−1

2 )(g−1
1 −1)k = (g

(g1−1)k

2 )(p−1)k+1+(g1−1)xk ,

where xk ∈ Z[s]. We prove this statement by induction on k:
k = 1: Using Taylor-expansion, we have that

(g−1
2 )g

−1
1 −1 = (g−1

2 )g
p−1
1 −1

= ((g−1
2 )g1−1)1+g1+g21+...+gp−2

1

= ((g−1
2 )g1−1)p−1+x′1s (x′1 ∈ Z[s])

= (g
g−1
2 −1

1 )−(p−1+x′1s)

= ((gg2−1
1 )p−1)−(p−1+x′′1 s) (x′′1 ∈ Z[s])

= (gg1−1
2 )(p−1)2+x1s (x1 ∈ Z[s]).

Let us now assume the induction hypothesis for k − 1. It then follows

(g−1
2 )(g−1

1 −1)k = ((g−1
2 )(g−1

1 −1)k−1

)g
−1
1 −1

= ((gs
k−1

2 )(p−1)k+sxk−1)g
−1
1 −1

= ((gs
k−1

2 )(p−1)k+sxk−1)s(p−1+x′ks)

= (gs
k

2 )(p−1)k+1+sxk (xk ∈ Z[s]).

This proves the above statement. As {a1, ..., al} is a Z[s]-basis of A(L) in
standard form, we may write

h2 = gsy2 g
sz (6.1)

such that y, z ∈ Z[s], g ∈ G(H(L)/L), and < gsy2 >Z[s] ∩ < gsz >Z[s]= {1}.
It thus follows that

Ψ(g
(g1−1)k

2 ) = Ψ(g2)(Ψ(g1)−1)k

= (g−1
2 h2)(g−1

1 h1−1)k

= (g−1
2 )(g−1

1 h1−1)kh
(g−1

1 h1−1)k

2

= (g−1
2 )(g−1

1 −1)kh
(g−1

1 −1)k

2

= (gs
k

2 )(p−1)k+1+sxkh
(g−1

1 −1)k

2 .

= (gs
k

2 )(p−1)k+1+sxk((gsy2 g
sz)s

k

)p−1+sw, w ∈ Z[s]

= (gs
k

2 )(p−1)k+1+sx′′k (gs
k+1z)p−1+sw, x′′k ∈ Z[s].

Let r = r(a), which implies that as
r ∈ ıL/K(A(K)) due toH0(Gal(L/K),O∗L)

being trivial. Hence, we obviously obtain that Ψ(gs
r

2 ) = g−s
r

2 . It follows that

(gs
r

2 )(p−1)r+1

(gs
k+1z)p−1+sw = g−s

r

2 .
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Due to (6.1), we can then derive that

(gs
r

2 )(p−1)r+1

= g−s
r

2 .

Finally, observe that (gs
r

2 )p = 1, which yields that

(gs
r

2 )(−1)r+1

= g−s
r

2 .

This equation obviously holds if and only if r is even. This proves the theo-
rem.

Corollary 6.1.2. Let < a1, ..., al > be a Z[s]-basis of A(L) in standard form
as above and assume that r(ai) ≤ r(aj), ∀ i < j. If rk(NL/K(A(L))) =
rk(A(K))− 1, then r(ai) ≥ 2, ∀ 1 ≤ i ≤ l. If rk(NL/K(A(L))) = rk(A(K)),
then rk(a1) = 0 and rk(ai) ≥ 2, ∀ 1 < i ≤ l. In particular, rk(A(L)s) is
even.

Proof. AsK is imaginary quadratic, it follows thatH0(Gal(L/K),O∗L) = {1}
and |PK(L)| = p. This implies that rk(ıL/K(S1(A(K)))) = rk(S1(A(K)))−1
and thus rk(A(L)s ∩ A(L)G(L/K)) = rk(A(K)) − 1. The further arguments
are straightforward.

Remark: More generally, one can show that the Galois group of H(L)/K is
a so-called Schur σ-group. For further details, we refer to [44]. The results
developed above also hold for such Schur σ-groups.

6.2 Heuristics on Class Groups of Unramified

Cyclic Extensions of Imaginary Quadratic

Fields

There is quite a lot of literature on cyclic extensions of prime degree. In [43],
Gras studies arbitrary cyclic extensions of prime degree in greatest gener-
ality. This, however, has the disadvantage that one can hardly extract any
explicit information on unramified cyclic extensions of imaginary quadratic
fields. Specifically, cyclic extensions of Q of prime degree are first discussed
by Gerth in the 1970s, see [45]. In 2005, his results are then taken up by
Wittmann, who gives a heuristic on the class groups of cyclic extensions of
Q of prime degree. The heuristic can be found in [42] and leans on the fa-
mous Cohen-Lenstra heuristics, see [47]. As extensions of Q are ramified, we
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cannot simply generalize Wittmann’s heuristics to unramified cyclic exten-
sions of imaginary quadratic fields. In the following, we will show how to
generalize his ideas for the above case, though. Related questions have also
been discussed by Bush, Boston, and Hajir in greater generality, see [46]. In
the specific situation as above, however, our following approach seems to be
more straight forward and more applicable.

Henceforth, let K be an imaginary quadratic field and L/K be an unramified
cyclic extension of odd prime degree p with Galois group G = Gal(L/K).
Let σ ∈ G be a generator of G and set s = σ− 1. In what follows, we intend
to deduce heuristics on the structure of kerNL/K , i.e. we do not consider the
whole ideal class group of L but only the kernel of the norm NL/K . As we have
learned in the previous section, rk(kerNL/K) is even. It is also worth men-
tioning that the structure of kerNL/K is uniquely determined by the length
of the various flags of a given Z[s]-basis of A(L)s. This follows immediately
from Furtwängler’s Theorem and the fact that for all ideal classes b ∈ A(L):
bs
p

= bpsu for some unit u ∈ Z[s]. As we have already announced, we plan to
generalize a paper due to C. Wittmann. He has given a substantiated heuris-
tic for the case that M/Q is a cyclic extension of odd prime degree. Let us
say Gal(M/Q) =< σM > and sM = σM − 1. In order to answer the question
of a heuristic adequately, we must fix t = rk(A(K)). One then easily veri-
fies that rk(A(L)s/A(L)s

2
) = t − 1. Observe that this is very analogous to

Wittmann’s paper: He defines t to be the number of ramified primes in M/Q.
And Chevalley’s Theorem then yields that rk(A(M)/A(M)sM ) = t− 1. Also
observe that kerNM/Q = A(M), which yields another analogy to our case as
we also only investigate the structure of the kernel of NL/K . Having fixed
t = rk(A(K)), it remains open which ratio we exactly want to predict. We
want to make this precise now. We define the following sets:

KD = {imaginary quadratic fields of abs. discriminant not exceeding D},

KD,t = {K ∈ KD : rk(A(K)) = t},

LD,t = {L field | ∃ K ∈ KD,t : L/K unramified cyclic of degree p}.

Note: If L ∈ LD,t, then L/Q is Galois and there exists exactly one field
K ∈ KD,t with L/K unramified cyclic of degree p.

Let M be a finite Z[s]-module and M0 := sM be a submodule of M such
that

M0 = ⊕t−1
i=1sZ[s] ·mi
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with mi ∈ M and ri := r(mi) = max{n ∈ N : snmi 6= 0} < ∞. As we
have already argued, M0 is uniquely determined by r1, ..., rt−1 and we write
M0 = M0(r1, ..., rt−1). We may now apply this notation in the case that

A(L)s =
∏t−1

i=1 b
sZ[s]
i , where

∏
is a direct product, bi ∈ A(L), and ri = r(bi).

(Observe that we write A(L) multiplicatively and not additively). We also
mention that such a decomposition of A(L)s is always possible by Section
2.8. We can now write A(L)s ∼=Z[s] M0(r1, ..., rt−1). By the previous section,
we obtain that ri = 2ki, for some ki ∈ Z>0 (1 ≤ i ≤ t − 1). We may thus
define √

M0(2k1, ..., 2kt−1) := M0(k1, ..., kt−1).

With the notations from above, we set

LD,t,(2k1,...,2kt−1) = {L ∈ LD,t| ∃ K ∈ KD,t : L/K cyclic unram.,

[L : K] = p, kerNL/K
∼=Z[s] M0(2k1, ..., 2kt−1)}.

We set: Freqt(2k1, ..., 2kt−1) := limD→∞
|LD,t,(2k1,...,2kt−1)

|
|LD,t|

,

conjecturing that this limes does exist.

We now set q = 1/p, (qm) =
∏m

i=1(1− qi), and

Ct =
(q)t−1 · (q)t
qt(t−1) · (q)1

.

Conjecture: Notations being like above, we have that

Freqt(2k1, ..., 2kt−1) = Ct ·
1

|AutZ[s](M0(k1, ..., kt−1))|
· 1

|M0(k1, ..., kt−1)|
.

Remark: 1) By Theorem 2.2, page 988, of [42], the map Freqt yields indeed
a probability measure. The factor Ct is used to norm the measure.

2) |AutZ[s](M0(k1, ..., kt−1))| can be computed by Lemma 2.1 of [42] and The-
orem 2.11 of [49].

3) In the above heuristic only t = rk(A(K)) matters but not the exponent
of A(K). This makes sense as we are only interested in the kernel of NL/K

and not in the whole class group of L. As we will see, this point of view is
supported by the numerical data.
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In the remainder of this section, we want to see how good the accordance of
the heuristic with the given numerical data is. To this end, we consider the
numerical data for t = 2, 3 and p = 3. Any other situations, for instance for
p > 3, are computationally beyond the scope. The computations were done
by MAGMA, using the various Gauss servers in the University of Goettingen.
Particular thanks goes to Michael Jacobson, who sent us a table of imagi-
nary quadratic number fields with non-cyclic p-class groups for p = 3, 5, 7.
In this context, we also refer to his joined paper on class groups of imaginary
quadratic fields, see [48].

First let t = 2: Then C2 = p2(1 − 1/p)(1 − 1/p2), |AutZ[s](M0(k))| =
pk−1(p− 1), and |M0(k)| = pk, where k ∈ Z>0. Altogether, we obtain that

Freq2(2k) =
p2 − 1

p2k
.

In order to support Remark 3, we will consider the case A(K) ∼= C3×C3 and
A(K) ∼= C3 × C9 separately. We begin with t = 2, p = 3, A(K) ∼= C3 × C3.
We set:

LD,C3×C3 = {L ∈ LD,2 | ∃ K ∈ KD : A(K) ∼= C3 × C3,

L/K unramified cyclic of degree p}.

(LD,C3×C9 is defined accordingly). We then have:

Number of fields considered: |LD,C3×C3| = 8080, where |D| < 106.

LD,C3×C3,2k ratio =
|LD,C3×C3,2k

|
|LD,C3×C3

| pred. ratio = Freq2(2k)

k = 1 0.8979 0.8889
k = 2 0.0950 0.0988
k = 3 0.0071 0.0110

The numerical data were taken from the following website:

http : //www.algebra.at/SciRes2010TrfType.htm

We need to add the following

Remark: The data given at that website yield exactly the information we
need. It is just stated there in a different context. In what follows, we shortly
explain how we can extract the desired information from that website. There
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it says: For each of the 2020 complex quadratic fields K with discriminant D,
we have four simply real cubic fields L1,...,L4 with fundamental discriminant
D. Question: Let K be a complex quadratic field with discriminant D, L/K
be unramified cyclic of degree 3, G(L/K) =< σ >, s = σ− 1, and L1 be the
simply real cubic subfield of L. How are A(L1) and A(L) related? By Gerth,
see [45], we know that A(L1) is cyclic. Moreover, we have:
Claim: exp(kerNL/K) = ord(A(L1)).
Proof: Let b ∈ A(L) with NL/K(b) ∼= C3 and Gal(L/L1) =< τ >. As K
is imaginary quadratic, we obtain that A(L)G(L/K) =< ıL/K(a) >, for some
a ∈ A(K). As the restriction of τ to K acts as inversion on A(K), it fol-
lows that ıL/K(a)τ = ıL/K(a)−1. Also observe that NL/L1(A(L)) = A(L1) as
2 = [L : L1] is coprime to 3. We now differentiate:
Case 1. ord(b) = 3. By Theorem 6.1.1, it follows that A(L) ∼= C3×C3×C3.
By Gerth, we have that ord(A(L1)) = 3.
Case 2. ord(b) = 3k for some k > 1. By Theorem 6.1.1 , we can deduce that
A(L) =< b, bs >∼= C3k × C3k−1 .
Let α = 1+τ

2
. Then clearly, A(L) = A(L)α × A(L)1−α. By the above argu-

ments, A(L)α contains < ıL/K(a) >. As A(L)α can be extended to a basis
of A(L), one easily verifies that ord(A(L)α) = 3k. As A(L)α = kerNL/L1 ,
the claim follows. On account of that result, we can easily determine the
structure of kerNL/K by considering ord(A(L1)).

Let us now consider the case, where t = 2, p = 3, A(K) ∼= C3 × C9:

Number of fields considered: |LD,C3×C9| = 2404, where |D| < 106.

LD,C3×C9,2k ratio =
|LD,C3×C9,2k

|
|LD,C3×C9

| pred. ratio = Freq2(2k)

k = 1 0.9053 0.8889
k = 2 0.0902 0.0988

We learn that the numerical data are in good accordance with the developed
heuristic. Moreover, there is little difference between the ratios in the cases
where A(K) ∼= C3 × C3 and A(K) ∼= C3 × C9, which supports Remark 3.
Last but not least, let us consider the case where t = 3. Due to the scarcity
of numerical data, we will not differentiate between the various structures of
A(K), but we will consider all imaginary quadratic fields of rank 3.

Number of fields considered: |LD,3| = 1062, where |D| < 107.

LD,3,(2k1,2k2) ratio =
|LD,3,(2k1,2k2)|
|LD,3|

pred. ratio = Freq2(2k1, 2k2)
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(2k1, 2k2) = (2, 2) 0.8633 0.8559
(2k1, 2k2) = (2, 4) 0.1158 0.1268
(2k1, 2k2) = (2, 6) 0.0209 0.0141

We see that the heuristic and the numerical data are in good accordance.

6.3 Database for Capitulation in Degree 5-

and-7-Extensions

In the existing literature, the capitulation kernel has essentially only been
computed for unramified cyclic extensions of degree 2 and 3, where the base
field is quadratic. This is due to the enormous complexity of computing the
capitulation kernel. One basic problem is that one has to compute ideal
class groups, which becomes increasingly difficult when the considered num-
ber field is of higher degree over the rationals. In [25], Heider and Schmithals
have started to analyze the capitulation types for the imaginary quadratic
field K = Q(

√
−12451) with ideal class group A(K) ∼= C5 × C5. It follows

that K has 6 unramified cyclic extensions of degree 5. For 2 of these 6 inter-
mediate fields, let us say L1 and L2, Heider and Schmithals have been able to
compute the capitulation kernels PK(Li), i = 1, 2. For the other 4 fields, they
could not determine the capitulation kernel. By extensive use of MAGMA
and the Gauss-servers at the University of Goettingen, we have been able to
find the capitulation kernels for these 4 fields. Moreover, we computed the
capitulation kernels for all 6 unramified cyclic 5-extensions for more than 50
other imaginary quadratic fields. We used the lists of [33], [34], and [48] to
find imaginary quadratic fields having a 5-primary part isomorphic to C5×C5

or C5 × C25. All following computations have been performed by MAGMA,
see [35]. The results can be verified on MAGMA. Observe that MAGMA
always uses the same basis of ideal classes for a given class group A(K), i.e.
one can repeat the computations and one obtains exactly the same results.
(MAGMA denotes the ideal classes by g1, g2, and so on. We have denoted
them by a1, a2, and so on).

In the following table, we list imaginary quadratic number fields with absolute
discriminant not exceeding 106, whose 5-class group is isomorphic to C5×C5.
For the ease of notation, we make the following arrangements: Let K be an
imaginary quadratic field with A(K) =< a1, a2 >∼= C5 × C5, for some ideal
classes a1, a2 ∈ A(K). Then there exist 6 subgroups of A(K) of order 5 and
accordingly 6 unramified cyclic extensions of K of degree 5. Let C1 =< a2 >,
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C2 =< a1a2 >, C3 =< a2
1a2 >, C4 =< a3

1a2 >, C5 =< a4
1a2 >, C6 =< a1 >.

And accordingly, Li = H(K)ϕ(Ci), ∀ 1 ≤ i ≤ 6. We aggregate the various ca-
pitulation kernels in the form of 6-tuples, i.e. (PK(L1), ..., PK(L6)). Instead
of writing PK(Lj) = Ci, for some 1 ≤ i, j ≤ p + 1, we will suppress the C
and simply write i instead of Ci. For example: (1, 2, 3, 4, 5, 6) means that
PK(Lj) = Cj, ∀ 1 ≤ j ≤ p + 1. Accordingly, (3, 6, 4, 1, 5, 2) means that C3

capitulates in L1, C6 capitulates in L2, an so on.

Remark: 1) We are only interested in the relation of the various capitulation
kernels, i.e. in the question whether they are pairwise distinct or all equal
for example. Hence, it does not matter if one chooses a different notation for
the intermediate fields.

2) Olga Taussky coined the following expression: She says Lj/K is of capit-
ulation type (A) if PK(Lj) = Cj and of type (B) otherwise. The question
whether Lj/K is of type (A) or (B) can also be properly addressed despite
the arbitrary notation of the intermediate fields.

Nr. Discriminant (PK(L1), ..., PK(L6))

1 -12451 (3,6,4,1,5,2)
2 -17944 (2,1,5,4,6,3)
3 -30263 (6,5,3,4,2,1)
4 -33531 (3,2,4,6,1,5)
5 -37363 (1,2,3,4,6,5)
6 -38047 (3,1,6,4,2,5)
7 -39947 (5,1,4,6,2,3)
8 -42871 (2,1,6,5,4,3)
9 -53079 (2,6,4,1,5,3)
10 -54211 (2,6,3,4,1,5)
11 -58424 (3,2,1,5,4,6)
12 -61556 (6,5,4,1,3,2)
13 -62632 (2,6,6,6,6,6)
14 -63411 (5,2,6,4,1,3)
15 -64103 (1,3,6,5,2,4)
16 -65784 (3,6,4,5,2,1)
17 -66328 (6,2,4,3,5,1)
18 -67031 (4,4,4,1,4,4)
19 -67063 (1,1,1,6,1,1)
20 -67128 (3,2,4,6,1,5)
21 -69811 (3,1,4,2,5,6)
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22 -72084 (3,1,5,6,4,2)
23 -74051 (2,1,3,6,5,4)
24 -75688 (5,6,5,5,5,5)
25 -81287 (4,1,3,5,2,6)
26 -83767 (5,4,3,2,1,6)
27 -84271 (5,4,2,1,6,3)
28 -85099 (6,2,1,4,3,5)
29 -85279 (3,1,4,2,5,6)
30 -87971 (2,3,6,4,5,6)
31 -89751 (1,3,5,2,4,6)
32 -90795 (5,5,5,5,5,5)
33 -90868 (1,3,1,1,1,1)
34 -92263 (3,1,4,2,5,6)
35 -98591 (5,1,3,4,6,2)
36 -99031 (4,1,1,1,1,1)
37 -99743 (2,6,4,1,5,3)
38 -104503 (3,5,1,6,2,4)
39 -105151 (5,3,1,4,2,6)
40 -112643 (1,4,6,2,5,3)
41 -113140 (2,3,4,5,1,6)
42 -114395 (2,3,1,6,4,5)
43 -115912 (5,2,6,4,1,3)
44 -116187 (2,1,3,6,5,4)
45 -119191 (3,6,4,5,2,1)
46 -119915 (1,4,4,4,4,4)
47 -120463 (6,3,5,4,1,2)
48 -127103 (6,4,2,3,1,5)
49 -128680 (6,6,6,4,6,6)
50 -132520 (4,2,6,5,3,1)
51 -134312 (6,5,3,4,2,1)
52 -135167 (5,3,2,6,1,4)
53 -135176 (6,4,2,3,1,5)
54 -140696 (6,2,5,1,4,3)
55 -143508 (3,6,2,5,1,4)
56 -146184 (1,5,6,4,3,2)

The above table shows that in the given numerical data there is a rig-
orous relationship between the various capitulation kernels. We say an
imaginary quadratic field K with rk(A(K)) = 2 has 1-1-capitulation if
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PK(Lj) 6= PK(Li), ∀ 1 ≤ i 6= j ≤ p + 1. In this case, we have a 1-1-
correspondence between the subgroups of C1, ..., C6 and the intermediate
fields L1, ..., L6. We say such a field K as above has p-capitulation if there
exists a subgroup Ci (1 ≤ i ≤ p + 1) such that PK(Lj) = Ci, for all but
at most one j ∈ {1, ..., p+ 1}. In the above table, all imaginary fields ei-
ther have 1-1-capitulation or p-capitulation. More precisely, 47 out of 56
fields have 1-1-capitulation and 9 fields have p capitulation. In the subse-
quent section, we give substantiated reasons for the phenomena observed
above. Before doing so, we add some examples of imaginary quadratic fields
K with rk(A(K)) = 2 and exp(A(K)) > 5. The observed phenomenon stays
the same. Indeed, in all following computed examples, the given imaginary
quadratic field either has 1-1-capitulation or p-capitulation. With a slight
abuse of notation, we subsequently identify A(K) with Gal(H(K)/K).

Example 1: K = Q(
√
−50783) is an imaginary quadratic number field with

A(K)5 =< a1, a2 >∼= C5 × C25. Then:
For L1 = H(K)<a2>: PK(L1) =< a2

1a
5
2 >;

For L2 = H(K)<a1a2>: PK(L2) =< a1a
5
2 >;

For L3 = H(K)<a
2
1a2>: PK(L3) =< a1 >;

For L4 = H(K)<a
3
1a2>: PK(L4) =< a5

2 >;
For L5 = H(K)<a

4
1a2>: PK(L5) =< a4

1a
5
2 >;

For L6 = H(K)<a1,a
5
2>: PK(L6) =< a3

1a
5
2 >;

In this example, L4/K and L6/K are of type (A). The other extensions are
of type (B). Moreover, K has 1-1-capitulation.

Example 2: K = Q(
√
−178004) is an imaginary quadratic number field

with A(K)5 =< a1, a2 >∼= C5 × C25. Then:
For L1 = H(K)<a2>: PK(L1) =< a1a

20
2 >;

For L2 = H(K)<a1a2>: PK(L2) =< a1 >;
For L3 = H(K)<a

2
1a2>: PK(L3) =< a5

2 >;
For L4 = H(K)<a

3
1a2>: PK(L4) =< a1a

5
2 >;

For L5 = H(K)<a
4
1a2>: PK(L5) =< a1a

10
2 >;

For L6 = H(K)<a1,a
5
2>: PK(L6) =< a1a

15
2 >;

In this example, L3/K and L6/K are of type (A). The other extensions are
of type (B). Moreover, K has 1-1-capitulation.

Example 3: K = Q(
√
−258563) is an imaginary quadratic number field

with A(K)5 =< a1, a2 >∼= C5 × C25. Then:
For L1 = H(K)<a2>: PK(L1) =< a5

2 >;
For L2 = H(K)<a1a2>: PK(L2) =< a1a

5
2 >;
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For L3 = H(K)<a
2
1a2>: PK(L3) =< a4

1a
5
2 >;

For L4 = H(K)<a
3
1a2>: PK(L4) =< a1 >;

For L5 = H(K)<a
4
1a2>: PK(L5) =< a2

1a
5
2 >;

For L6 = H(K)<a1,a
5
2>: PK(L6) =< a3

1a
5
2 >;

In this example, L1/K and L6/K are of type (A). The other extensions are
of type (B). Moreover, K has 1-1-capitulation.

Example 4: K = Q(
√
−309263) is an imaginary quadratic number field

with A(K)5 =< a1, a2 >∼= C5 × C25. Then:
For L1 = H(K)<a2>: PK(L1) =< a1a

10
2 >;

For L2 = H(K)<a1a2>: PK(L2) =< a1a
15
2 >;

For L3 = H(K)<a
2
1a2>: PK(L3) =< a1a

5
2 >;

For L4 = H(K)<a
3
1a2>: PK(L4) =< a5

2 >;
For L5 = H(K)<a

4
1a2>: PK(L5) =< a1a

20
2 >;

For L6 = H(K)<a1,a
5
2>: PK(L6) =< a1 >;

In this example, L4/K and L6/K are of type (A). The other extensions are
of type (B). Moreover, K has 1-1-capitulation.

Example 5: K = Q(
√
−1287491) is an imaginary quadratic number field

with A(K)5 =< a1, a2 >∼= C5 × C125. Then:
For L1 = H(K)<a2>: PK(L1) =< a1a

25
2 >;

For L2 = H(K)<a1a2>: PK(L2) =< a4
1a

25
2 >;

For L3 = H(K)<a
2
1a2>: PK(L3) =< a3

1a
25
2 >;

For L4 = H(K)<a
3
1a2>: PK(L4) =< a1 >;

For L5 = H(K)<a
4
1a2>: PK(L5) =< a2

1a
25
2 >;

For L6 = H(K)<a1,a
5
2>: PK(L6) =< a25

2 >;

In this example, L6/K is of type (A). The other extensions are of type (B).
Besides, K has 1-1-capitulation.

Example 6: K = Q(
√
−1390367) is an imaginary quadratic number field

with A(K)5 =< a1, a2 >∼= C25 × C25. Then:
For L1 = H(K)<a

5
1,a2>: PK(L1) =< a5

1a
5
2 >;

For L2 = H(K)<a
5
1,a1a2>: PK(L2) =< a5

1a
5
2 >;

For L3 = H(K)<a
5
1,a

2
1a2>: PK(L3) =< a5

1a
5
2 >;

For L4 = H(K)<a
5
1,a

3
1a2>: PK(L4) =< a5

1a
5
2 >;

For L5 = H(K)<a
5
1,a

4
1a2>: PK(L5) =< a5

1a
5
2 >;

For L6 = H(K)<a1,a
5
2>: PK(L6) =< a15

1 a
5
2 >;

In this example, all extensions are of type (A). Moreover, K has p-capitulation.
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These examples demonstrate that we still only have 1-1-capitulation or p-
capitulation as long as the rank of A(K) is 2, no matter what the exponent
is.

So far, we observed that the various capitulation kernels of extensions of de-
gree 5 seem to be much more correlated as this is the case for extensions of
degree 3. Due to the massive computational expenses, for p = 7 we have only
been able to compute the capitulation kernels for two imaginary quadratic
fields. We have:

Example 1: Let K = Q(
√
−63499). Then A(K)7 =< a1, a2 >∼= C7 × C7.

Furthermore, we have:
For L1 = H(K)<a2>: PK(L1) =< a1a2 >;
For L2 = H(K)<a1a2>: PK(L2) =< a4

1a2 >;
For L3 = H(K)<a

2
1a2>: PK(L3) =< a5

1a2 >;
For L4 = H(K)<a

3
1a2>: PK(L4) =< a2

1a2 >;
For L5 = H(K)<a

4
1a2>: PK(L5) =< a3

1a2 >;
For L6 = H(K)<a

5
1a2>: PK(L6) =< a6

1a2 >;
For L7 = H(K)<a

6
1a2>: PK(L7) =< a1 >;

For L8 = H(K)<a1>: PK(L8) =< a2 >;

All extensions are of type (B) and K has 1-1- capitulation.

Example 2: Let K = Q(
√
−159592). Then A(K)7 =< a1, a2 >∼= C7 × C7.

Furthermore, we have:
For L1 = H(K)<a2>: PK(L1) =< a2 >;
For L2 = H(K)<a1a2>: PK(L2) =< a2

1a2 >;
For L3 = H(K)<a

2
1a2>: PK(L3) =< a2

1a2 >;
For L4 = H(K)<a

3
1a2>: PK(L4) =< a2

1a2 >;
For L5 = H(K)<a

4
1a2>: PK(L5) =< a2

1a2 >;
For L6 = H(K)<a

5
1a2>: PK(L6) =< a2

1a2 >;
For L7 = H(K)<a

6
1a2>: PK(L7) =< a2

1a2 >;
For L8 = H(K)<a1>: PK(L8) =< a2

1a2 >;

The extensions L1 and L3 are of type (A), all other extensions are of type
(B). Besides, K has p-capitulation.

6.4 Main Theorem on Capitulation in Exten-

sions of Prime Degree

In Section 6.3, we have observed that the capitulation kernels in extensions of
degree 5 and 7 of a given imaginary quadratic field are a lot more correlated
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than that is the case in extensions of degree 3. (For numerical data in the
case of extensions of degree 3, see [36]). In Section 5.9, we have investigated
the action of the automorphism group of the Galois group Gal(H(2)(K)/K)
on A(K) with regard to the capitulation problem. That analysis gave us a
deeper insight into the capitulation problem. On the other hand, we could
not explain the numerical data of the previous section just by the developed
theory of Section 5.9. Hence, we look for further explanations. In this con-
text, the heuristics of the previous section will play a major role. Another
key ingredient will be the theory of the group transfer. Henceforth, let K
be an imaginary quadratic field, with r = rk(A(K)) > 1, and let L be an
unramified cyclic extension of K of prime degree p > 3. Then the heuristics
of Section 6.2 predict that rk(kerNL/K) = 2(r− 1) with high probability. In
the following treatise, we will show how this property leads to a remarkable
phenomenon concerning capitulation. In the case for r = 2, we will prove

Theorem 6.4.1. Let K be an imaginary quadratic field with rk(A(K)) = 2,
and p > 3 be a prime. Let L1, ..., Lp+1 be the intermediate fields of H(K)/K
of degree p over K such that rk(kerNLi/K) ≤ rk(kerNLj/K), ∀ 1 ≤ i < j ≤
p+ 1. Assume the following two assumptions:

(A1) exp(kerNLj/K) = p, ∀ 1 ≤ j ≤ p+ 1;
(A2) There exists some 1 ≤ k ≤ p+ 1 such that rk(kerNLk/K) = 2.

Then: (i) PK(Li) 6= PK(Lj), ∀ 1 ≤ i 6= j ≤ p + 1 ⇔ rk(kerNLu/K) = 2,
∀ 1 ≤ u ≤ p+ 1.

(ii) PK(Li) = PK(Lj), ∀ 1 ≤ i 6= j ≤ p, otherwise.

In the first case, we say K has 1-1-capitulation and in the second case we
say K has p-capitulation. In a nutshell, assuming (A1) and (A2), K either
has 1-1-capitulation or p-capitulation.

Remark: (a) In light of the developed heuristics and Corollary 6.1.2, the
assumptions (A1) and (A2) are satisfied with high likelihood. In fact, in the
computed numerical data, we could not find a single example where these
assumptions were violated. Moreover, it seems plausible that the probability
that both (A1) and (A2) hold should go to 1 as p tends to infinity. One
reason for this is that the rank of kerNLj/K must be at least p− 1 for (A1)
to be violated. (See Theorem 2.6.3). Likewise, A(L) = Cl(L)p tends to be
smaller, when p is increasing, which is in favor of (A2).

(b) In the end of this section, we also give a generalization of the above the-
orem for the case that r > 2. As the result becomes more complicated in
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this case, though, we decided to state the theorem for r = 2 separately and
in the beginning.

(c) The proof of the above theorem will show that it is essential that assump-
tion (A2) implies that Lk/K has semi-stable growth. This is the case if and
only if p > 3. That is why we have to exclude the case that p = 3.

The proof of the above theorem is divided into several lemmas and propo-
sitions. When possible, we prove the results in the general case that r =
rk(A(K)) > 1. Throughout the following proof, we will make extensive use
of assumption (A1). In the general case, this means that we assume, for
all intermediate fields of H(K)/K of degree p, that exp(kerNLj/K) = p,
∀ 1 ≤ j ≤ s, where s = (pr − 1)/(p− 1).
In what follows, let K ⊂ L ⊂ H(K) ⊂ H(L) ⊂ F ⊂ H(2)(K) be an extension
of number fields with the usual notation, F/K Galois, and [L : K] = p. Also,
we set G = Gal(F/K). We then have

Lemma 6.4.2. Notations being like above, let a ∈ A(K) \NL/K(A(L)) and
g ∈ G with ϕK(a) = g mod G′, where ϕK denotes the Artin symbol of K.
Then

a ∈ PK(L)⇔ gp ∈ Gal(F/H(L)).

Proof. Let ḡ = g mod G′. By Proposition 5.9.3, we know that V̄G→G(F/L)(ḡ) =
1 if and only if V̄G(H(L)/K)→G(H(L)/L)(ḡ) = 1. By Artin’s Theorem, it thus
follows that a capitulates in L if and only if V̄G→G(F/L)(ḡ) = 1. Since
a 6∈ NL/K(A(L)) by assumption, it also follows that g 6∈ G(F/L). Let
H = G(F/L). Then, G/H = {1 mod H, g mod H, ..., gp−1 mod H}. By
the definition of the transfer, we then obtain that

V̄G→H(ḡ) = gp mod H ′.

Thus, V̄G→H(ḡ) = 1 if and only if gp ∈ H ′ = G(F/H(L)).

Lemma 6.4.3. Let K ⊂ L ⊂ H(K) ⊂ H(L) ⊂ F ⊂ H(2)(K) be as above
and assume that L/K has semi-stable growth. Let a ∈ NL/K(A(L)) and
g ∈ G = Gal(F/K) with ϕK(a) = g mod G′. Then

a ∈ PK(L)⇔ gp ∈ Gal(F/H(L)).

Proof. As a ∈ NL/K(A(L)), it follows that g ∈ Gal(F/L) and hence ḡ :=
g mod G(F/H(L)) ∈ G(H(L)/L). Let b ∈ A(L) with ϕL(b) = ḡ, where
ϕL denotes the Artin symbol of L. It follows that NL/K(b) = a. Let
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Gal(L/K) =< σ >, and set s = σ − 1. Since L/K has semi-stable growth
by assumption, it follows that A(L)s

p−1
= {1}. We then obtain that

ıL/K(a) = bpu+sp−1

= bpu,

for some unit u ∈ Z[s]∗. Thus, a ∈ PK(L) if and only if ḡp = 1, i.e. gp ∈
G(F/H(L)). This proves the claim.

Remark: The proof of the above lemma shows that the assumption that
L/K is semi-stable is essential. It simply secures that the equivalence

a ∈ PK(L)⇔ gp ∈ Gal(F/H(L))

holds for all ideal classes a ∈ A(K) and not only for those classes in A(K)
that do not lie in NL/K(A(L)).

As before let K be an imaginary quadratic field with ideal class group
A(K) =< a1, ..., ar >, where r > 1. Let L1, ..., Ls denote the subfields
of H(K)/K of degree p over K, where s = (pr − 1)/(p − 1). Let F =∏s

i=1 H(Li) with G = Gal(F/K) and thus G′ = Gal(F/H(K)). Also we
set Gj = Gal(F/H(Lj)), ∀ 1 ≤ j ≤ s. By assumption (A1), we know
that exp(kerNLj/K) = p, ∀ 1 ≤ j ≤ s. This implies that exp(G′) = p
due to Gal(H(Li)/H(K)) ∼= kerNLi/K having exponent p and as G′ =∏s

i=1 Gal(H(Li)/H(K)). (Observe that G′ 6= 1. Otherwise, we would ob-
tain a contradiction to K being imaginary quadratic). In what follows, let
{ḡ1, ..., ḡr} be a minimal generating system of G(H(K)/K) and {g1, ..., gr}
be a minimal system of generators of G = G(F/K) with res|H(K)(gi) = ḡi,
∀ 1 ≤ i ≤ r. (By Burnside’s Basis Theorem, such a choice is certainly
possible). We then have

Proposition 6.4.4. Notations being like above, assumption (A1) yields that

(G′)(g−1)p−1

= {1}, ∀ g ∈ G.

Proof. Let us assume that there exists an x ∈ G′ and some g ∈ G \G′ such
that

y := x(g−1)p−1 6= 1.

Let ḡ = res|H(K)(g). We claim that y ∈ Gi, ∀ 1 ≤ i ≤ s. Indeed, if
G(H(K)/Li) contains ḡ, then certainly y ∈ Gi. Now suppose that ḡ 6∈
G(H(K)/Li) and y 6∈ Gi. Then

res|H(Li)(y) = res|H(Li)(x)(ḡ−1)p−1 6= 1,
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i.e. ord(res|H(Li)(x)) > p by Proposition 2.6.2 (i). It follows that the expo-
nent of kerNLi/K is larger than p, which contradicts (A1). Hence, y ∈ Gj,
∀ 1 ≤ j ≤ s, which is again a contradiction to ∩sj=1Gj = {1}. This proves
the proposition.

Proposition 6.4.5. Notations being like, ∀ 1 ≤ i 6= j ≤ r:

(gpi )
gj−1 = (g

gpi−1
j )−1 = (ggi−1

j )−p = 1.

Proof. Obviously, (gpi )
gj−1 = (g

gpi−1
j )−1. Moreover,

(g
gpi−1
j ) = (ggi−1

j )1+gi+...+g
p−1
i .

Actually, the proof for this statement is rather obvious, but we have to be
cautious since G is not abelian and hence is not a Z[G]-module. But observe
that ggi−1

j ∈ G′. Since G′ is abelian, it is a well-defined Z[G]-module and
hence the following terms make sense. Clearly,

(ggi−1
j )gi+1 = gi(gigjg

−1
i g−1

j )g−1
i (gigjg

−1
i g−1

j )−1

= g2
i gjg

−2
i g−1

j

= g
g2i−1
j .

Induction hypothesis: (ggi−1
j )1+gi+...+g

n−2
i = g

gn−1
i −1
j , for some n ∈ N. Then:

(ggi−1
j )1+gi+...+g

n−1
i = (ggi−1

j )1+gi+...+g
n−2
i (ggi−1

j )g
n−1
i

= (ggi−1
j )g

n−1
i · gg

n−1
i −1
j

= gn−1
i ggi−1

j gj(g
n−1
i )−1g−1

j

= gni gjg
−1
i (gi)

n−1)−1g−1
j

= g
gni −1
j .

For n = p, we obtain the desired result. By the previous proposition, we
have that (G′)(g−1)p−1

= {1}, ∀ g ∈ G. As exp(G′) = p, Proposition 2.6.2

(iii) then yields that g
gpi−1
j = (ggi−1

j )p. All in all, we obtain that

(gpi )
gj−1 = (ggi−1

j )−p = (g
gj−1
i )p.
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Subsequently, we want to analyze the structure of G′ more precisely. To this
end, we define K = F0, F1 = H(K)ϕK(<ḡ2,...,ḡr>), F2 = H(K)ϕK(<ḡ3,...,ḡr>),...,
Fr−1 = H(K)ϕK(<ḡr>), and Fr = H(K). It follows that K ⊂ F1 ⊂ F2 ⊂
... ⊂ H(K). Henceforth, we make use of the group theoretic version of
Furtwängler’s Theorem to successively build up G′ and to prove the following

Proposition 6.4.6. Notations being like above, we have

G′ =< {ggj−1
i }1≤j<i≤r > ·

r∏
k=1

(G′)gk−1.

Proof. For the ease of notation, we set res|(H(Fi)∩F )(gj) = gj,i, ∀ 1 ≤ i, j ≤ r.
Obviously, then

G(H(K)/F1) =< g2,0, g3,0, ..., gr,0 >, and hence

G((H(F1) ∩ F )/F1) =< g2,1, g3,1, ..., gr,1 >Z[g1,1−1] .

A moment of reflection, now shows that

G((H(F1) ∩ F )/F2) =< g
g1,1−1
2,1 , g3,1, g4,1, ..., gr,1 >Z[g1,1−1], and thus

G((H(F2) ∩ F )/F2) =<< g
g1,2−1
2,2 , g3,2, g4,2, ..., gr,2 >Z[g1,2−1]>Z[g2,2−1] .

Accordingly, we can conclude that

G((H(F3) ∩ F )/F3) = <<< g
g1,3−1
2,3 , g

g1,3−1
3,3 , g

g2,3−1
3,3 ,

g4,3, ..., gr,3 >Z[g1,3−1]>Z[g2,3−1]>Z[g3,3−1] .

Iterating this procedure, we finally obtain the claimed structure for

G((H(Fr) ∩ F )/Fr) = G(F/H(K)).

Now let L be an intermediate field of H(K)/K of degree p over K. For the
ease of notation, let us assume that G(H(K)/L) =< ḡ1, ..., ḡr−1, ḡ

p
r >. (This

assumption is possible due to a basis transformation for G(H(K)/K)). We
then obtain

Proposition 6.4.7. Notations being like above, we have

G(F/H(L)) =< {ggj−1
i }1≤j<i<r > ·

r−1∏
k=1

G(F/H(K))gk−1.
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Proof. ”⊃”: Obvious.
”⊂”: For the ease of notation, let us say g̃i := res|H(L)(gi), ∀ 1 ≤ i ≤ r. It
follows thatG(H(L)/L) =< g̃1, g̃2, ..., g̃r−1, g̃

p
r >Z[g̃r−1]. We can now apply the

previous proposition to determine the structure of G(F/H(L)) by replacing
K by L. Note that G((H(2)(L)∩F )/H(L)) = G(F/H(L)) and that G′g

p
r−1 =

{1} due to Proposition 6.4.5. The further arguments are straightforward.

Notations being like above, let 1 ≤ u < v ≤ s. Then there exists a system
{ĝ1, ..., ĝr−2, ĝu, ĝv} in G(H(K)/K) such that these elements form a minimal
system of generators of G(H(K)/K), {ĝ1, ..., ĝr−2, ĝu, ĝ

p
v} forms a minimal

system of generators of G(H(K)/Lu), and {ĝ1, ..., ĝr−2, ĝ
p
u, ĝv} forms a min-

imal system of generators of G(H(K)/Lv). For the ease of notation, we
henceforth identify the ĝi’s with their extensions to G and suppress the hat.
For Gj = G(F/H(Lj)), 1 ≤ j ≤ s, we then have

Proposition 6.4.8. G′ =< ggv−1
u > × (Gu ·Gv).

Proof. By the previous proposition, we obtain that:

Gu =< g
gj−1
i >1≤j<i≤r, i 6=v 6=j ·

r∏
k=1,k 6=v

(G′)gk−1;

Gv =< g
gj−1
i >1≤j<i≤r, i 6=u6=j ·

r∏
k=1,k 6=u

(G′)gk−1.

Observe that (G′)g
p
k−1 = 1, ∀ 1 ≤ k ≤ r, due to Proposition 6.4.5. By

Proposition 6.4.6, it thus follows that

G′ =< ggv−1
u > ·(Gu ·Gv).

As exp(G′) = p, it is now sufficient to show that ggv−1
u 6∈ Gu ·Gv. Suppose

that this is not the case. Then G′ = Gu · Gv. Let g̃v = res|Lu and thus
G(Lu/K) =< g̃v >. As |PK(Lu)| = p, it follows that rk(ıLu/K(S1(A(K)))) =
r − 1, which implies that

rk(A(Lu)
g̃v−1 ∩ A(Lu)

<g̃v>) = r − 1.

One verifies that this reveals that rk(A(Lu)
g̃v−1/A(Lu)

(g̃v−1)2) = r − 1. If
G′ = Gu · Gv, however, then restricting the groups to H(Lu), one obtains
that

G(H(Lu/H(K)) = res|H(Lu)(Gv)

= < res|H(Lu)(g
gv−1
i ) >1≤i≤r,i6=u,v ·G(H(Lu/H(K))

˜̃gv−1,
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where ˜̃gv = res|H(Lu)(gv). This implies that

rk(G(H(Lu)/H(K))/G(H(Lu)/H(K))
˜̃gv−1) = r − 2,

which yields the desired contradiction. This proves the claim.

Proposition 6.4.9. Notations being like above, let m = rk(G′) and mi =
rk(Gi), ∀ 1 ≤ i ≤ s. Then there is at most one intermediate field Li of
H(K)/K, 1 ≤ i ≤ s, such that

mi < bm/2c.

Proof. Suppose Li is an intermediate field of H(K)/K, for some 1 ≤ i ≤ s,
such that mi < bm/2c. Then

rk(G(H(Li)/H(K))) = rk(G′/Gi)

= m−mi

≥ dm/2e+ 1.

By the previous propositions, it then follows, ∀ 1 ≤ j 6= i ≤ s:

rk(Gj) ≥ (dm/2e+ 1)− 1, i.e.

rk(Gj) ≥ dm/2e.

Whereas the previous results are valid for all r ≥ 2, we will now restrict
ourselves to the case that r = rk(A(K)) = 2. Later we will come back to the
general case. We have

Proposition 6.4.10. Notations being like above, let r = 2. Assume the
assumptions (A1) and (A2) as in Theorem 6.4.1. By assumption, we have
that rk(kerNLi/K) ≤ rk(kerNLj/K), ∀ i < j. Hence, rk(kerNL1/K) = 2 by
(A2). It follows that

Z(G) ∩G1
∼= Cp.

Proof. As p > 3 by assumption, we can derive that L1/K has semi-stable
growth. (This is a crucial point, where the following proof becomes wrong

for p ≤ 3). By Proposition 6.4.5, we obtain that < gp
k1

1 , gp
k2

2 >⊂ Z(G) ∩G′,
where ord(gi mod G

′) = pki in G(H(K)/K), i = 1, 2. Since L1/K is semi-
stable, it follows for i = 1, 2:

V erG→G(F/L1)(g
pki−1

i ) ∈ G1 ⇔ gp
ki

i ∈ G1.
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Let us say that L1 = H(K)<ḡ1,ḡ
p
2>, where ḡi is the restriction of gi to

H(K), for i = 1, 2. By Proposition 6.4.6, we obtain that G′ =< gg2−1
1 >

·(G′)g1−1(G′)g2−1 and G1 = (G′)g1−1. By (A2), it follows that G′/G1
∼=

Cp×Cp, which implies that |G′/(G′)g1−1| = p2 and hence |(G′)<g1>| = p2. In
particular, we can conclude that rk(Z(G) ∩ G′) ≤ 2. By Theorem 6.1.1, we
also obtain that rk(kerNLi/K) ≥ 2, ∀ 1 ≤ i ≤ p+1. By group theory, we can
then conclude that Z(G) ∩G1 is non-trivial. If rk(Z(G) ∩G1) = 2, it would
follow that |PK(L1)| = p2, a contradiction to K being imaginary quadratic.
This proves the claim.

Proposition 6.4.11. Assuming the above situation, it follows that

rk(kerNLj/K) = 2, ∀ 1 ≤ j ≤ p.

Proof. By (A2), we know that rk(kerNL1/K) = 2 and hence m1 = m−2. By
the previous proposition, we have that |Z(G) ∩ G1| = p. Assume now that
mp+1 ≥ 2, then m1 + mp+1 ≥ m. As mp+1 is minimal among the mi and
due to Z(G) ∩ G1

∼= Cp, we thus obtain that ∩p+1
j=1Gj 6= {1}, which yields a

contradiction. Hence, mp+1 = 1. (Note that mp+1 6= 0 by Theorem 6.1.1).
By the proof of Proposition 6.4.9, it follows that mi ≥ m−mp+1−1 = m−2,
∀ 1 ≤ i ≤ p, and hence rk(kerNLi/K) = 2.

We are now in the position to finally prove Theorem 6.4.1. We proceed with
the following

Proof. First assume that rk(kerNLj/K) = 2, ∀ 1 ≤ j ≤ p + 1, and thus
mj = m− 2. We know that Z(G) ∩ G1 =< z >, for some 1 6= z ∈ G′. Also
recall that rk(G1 · G2) = m − 1. This implies that m − 2 + m − 2 < m
since otherwise z ∈ ∩p+1

j=1Gj, a contradiction to ∩p+1
j=1Gj = {1}. It follows

that rk(G′) = m = 3 and thus rk(Gj) = 1, ∀ 1 ≤ j ≤ p + 1. Due to
rk(G1 ·G2) = m− 1 = 2, we obtain that Gj ∩Gi = {1}, ∀ 1 ≤ j 6= i ≤ p+ 1,
i.e. the Gj’s have pairwise distinct centers, which almost yields the claim.

It is only left to show that gp
ki

i 6= 1, for i = 1, 2. Suppose this were not the

case, let us say gp
k1

1 = 1. Then gp
k2

2 6∈ Gj, ∀ 1 ≤ j ≤ p + 1, as |PK(Li)| = p,
∀ i. On the other hand, we have p + 1 Gj’s with pairwise distinct center.

By the pigeon hole principle then, however, < gp
k2

2 >∈ Gj, for some j, which
yields the desired contradiction. Hence, K has 1-1-capitulation in that case.
Let us now assume (ii). By Proposition 6.4.11, it follows that rk(kerNLj/K) =
2, ∀ 1 ≤ j ≤ p, and rk(kerNLp+1/K) > 2. By the previous arguments,
we know that mj = m − 2, ∀ 1 ≤ j ≤ p, and mp+1 = 1, i.e. m =
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rk(kerNLp+1/K) + 1 ≥ 4. This implies that m − 2 + m − 2 ≥ m and hence
mi + mj ≥ m, ∀ 1 ≤ i, j ≤ p. For Z(G) ∩ G1 =< z > as above, we thus

obtain that 1 6= z ∈ ∩pj=1Gj. If rk(< gp
k1

1 , gp
k2

2 >) = 1, we are done as clearly

1 ∈ Gj, ∀ Gj. Otherwise, we have that Z(G)∩G′ =< gp
k1

1 , gp
k2

2 >. Let us say

that z = gl1p
k1

1 gl2p
k2

2 , for some 0 ≤ li < p. As L1, ..., Lp all have semi-stable
growth over K, it follows ∀ 1 ≤ i ≤ p:

V erG→G(F/Li)(g
l1pk1−1

1 gl2p
k2−1

2 ) ≡ z mod Gi.

As z ∈ Gi, ∀ 1 ≤ i ≤ p, the claim in statement (ii) follows.

If the assumption (A1), is violated we can still recover the above theorem for
those intermediate fields where (A1) holds. More precisely, we have

Theorem 6.4.12. Notations being like above, assume assumption (A2) and
that exp(kerNLj/K) = p, ∀ 1 ≤ j ≤ t, where t ≤ p+ 1. Then either:

(i) PK(Lj) 6= PK(Li), ∀ 1 ≤ i 6= j ≤ t, or

(ii) PK(Lj) = PK(Li), ∀ 1 ≤ i 6= j ≤ t.

Proof. The proof is rather analogous. Simply replace F by
∏t

j=1 H(Lj).

Subsequently, we want to deal with the case that r = rk(A(K)) > 2. One
can show that it is not possible to 1-1-generalize Theorem 6.4.1 to the case
where r > 2, but again we can recover it to some extent:

Let K be an imaginary quadratic field and K ⊂ M ⊂ H(K) be an in-
termediate field with G(M/K) ∼= Cp × Cp, p > 3. Let L1, ..., Lp+1 be
the intermediate fields of K ⊂ M of degree p over K and let us say that
rk(kerNLi/K) ≤ rk(kerNLj/K), ∀ 1 ≤ i < j ≤ p+1. Let L1, ..., Lt (t ≤ p+1)
be such that rk(kerNLj/K) = 2(r − 1), ∀ 1 ≤ j ≤ t. Then we have

Theorem 6.4.13. Notations being like above, we either have

(i) PK(Li) 6= PK(Lj), ∀ 1 ≤ i 6= j ≤ t, or

(ii) PK(Li) = PK(Lj), ∀ 1 ≤ i 6= j ≤ t.

Proof. We set F =
∏t

j=1H(Lj). Since rk(kerNLj/K) = 2(r−1), ∀ 1 ≤ j ≤ t,
it readily follows that exp(kerNLj/K) = p and hence exp(G(F/H(K))) =
p. Henceforth, we write G = Gal(F/K), G′ = Gal(F/H(K)), and Gj =
Gal(F/H(Lj)), ∀ 1 ≤ j ≤ t. Let {g1, ..., gr} ⊂ G be a minimal system of
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generators of G, ḡi = gi mod G
′ (1 ≤ i ≤ r), and ord(ḡi) = pki , with ki ∈ N.

By previous arguments, we obtain that

Z(p) := {gp
k1

1 , ..., gp
kr

r } ⊂ Z(G) ∩G′.

Claim: Assume that Gl1 ∩ Gl2 6= {1}, for some 1 ≤ l1, l2 ≤ t. Then Gl1 ∩
Gl2 ∩ Z(p) 6= {1}.
Proof: For the ease of notation, let us say l1 = 1 and l2 = 2. First observe
that Lj/K is semi-stable, for all 1 ≤ j ≤ t, and hence for all 1 ≤ i ≤ r:

gp
ki

i ∈ Gj ⇔ ϕ−1
K (gi) ∈ PK(Lj),

where ϕK is the Artin symbol of K. If rk(Z(p)) < r, it easily follows that
PK(Li) = PK(Lj), ∀ 1 ≤ i 6= j ≤ t. We may thus assume that rk(Z(p)) = r.
By assumption, we have that Gal(M/K) ∼= Cp × Cp. Without loss of gen-
erality, we may assume that Gal(H(K)/M) = G(H(K)/K)p· < ḡ3, ..., ḡr >.
Let h1, ..., ht ∈ G be such that Lj = M<h̄j> (1 ≤ j ≤ t), where h̄j =
hj mod G(F/M). (In a nutshell: h1, ..., ht are products of g1 and g2). Also:
Gal(M/K) =< h̄i, h̄j >, ∀ 1 ≤ i 6= j ≤ t. Suppose now that there is some

1 ≤ k ≤ t and some 1 ≤ i ≤ r such that g
(hk−1)3

i 6= 1. Then, however,

g
(hk−1)3

i ∈ Gj, ∀ 1 ≤ j ≤ t, which yields a contradiction to ∩tj=1Gj = {1}. A
moment of reflection then reveals that

Z(G) ∩G′ =< g
(g1−1)2

i >1<i≤r × < g
(g2−1)2

j >1≤j 6=2≤r .

In particular, rk(Z(G)∩G′) = 2(r−1) and rk(Z(G)∩G1) = rk(Z(G)∩G2) =
r− 1. Assume that G1 ∩G2 6= {1} and G1 ∩G2 ∩Z(p) = {1}. We know that
Gi ∩ Z(p) =< zi >∼= Cp, for i = 1, 2, and some z1, z2 ∈ Z(G) ∩G′. We write
Z(p) =< z1, z2, z3, ..., zr >, for suitable zi, and extend this system to a basis
of

Z(G) ∩G′ =< z1, ..., z2(r−1) >,

where zj ∈ Z(G) ∩G′, for all 1 ≤ j ≤ 2(r−1). Without loss of generality, we
may also assume that G1 ∩G2 =< zr+1 >. Observe that rk(< z1, z2, zr+1 >
) = 3 by assumption. Let (Z(G) ∩ G1) \ < z1, zr+1 > =< x1, ..., xr−3 > and
(Z(G)∩G2)\< z2, zr+1 > =< y1, ..., yr−3 >. For all j = 3, ..., r, we may then
write

zj =
r−3∏
i=1

x
ki,j
i · yli,ji ,

where ki,j and li,j ∈ Z. Now consider the matrix My := (ki,j)1≤i≤r−3, 3≤j≤r.
Obviously, My is a (r−2)×(r−3)-matrix with integer entries. By elementary
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linear algebra, it follows that the column rank is strictly smaller than r − 2.
This, however, implies that < z3, ..., zr > ∩G2 6= {1}, which yields the
desired contradiction. This proves the claim. The rest is analogous to the
usual arguments.

Eventually, we want to use the developed heuristic of Section 6.2 in order to
evaluate how likely it is that the assumptions (A1) and (A2) are satisfied.
Having done that, we will also ask how likely it is that a given imaginary
quadratic field has 1-1-capitulation or p-capitulation, respectively. For the
upcoming discussion, we restrict ourselves to the case t = 2 and p > 3. By
the heuristics, we have that

∞∑
k≥2

Freq2(2k) =
1

p2
.

Question: How likely is it that (A1) is satisfied, i.e. that exp(kerNLj/K) = p,
∀ 1 ≤ j ≤ p+1? We know that exp(kerNLj/K) > p⇔ rk(kerNLj/K) > p−1.
Also,

∞∑
k≥(p+1)/2

Freq2(2k) =
1

pp+1
.

Let Γ(Ai) denote the event that (Ai) is violated (i = 1, 2). By the pigeon
hole principle, we deduce that

limD→∞
|{K ∈ KD,2 : Γ(A1)}|
|{K ∈ KD,2}|

≤ p+ 1

pp+1
≈ 1/pp.

How likely is it that assumption (A2) is violated, i.e. that rk(kerNLj/K) ≥ 4,
∀ 1 ≤ j ≤ p + 1? By the pigeon hole principle, we obtain the following
defensive upper bound:

limD→∞
|{K ∈ KD,2 : Γ(A2)}|
|{K ∈ KD,2}|

≤ 1/p2

p+ 1
<

1

p3
.

In a nutshell, it is very likely that the assumptions (A1) and (A2) are satisfied.
When p grows larger, the respective likelihoods go to 1.

Question: What is the likelihood that an imaginary quadratic field K, with
rk(A(K)) = 2, has 1-1-capitulation, provided that it satisfies (A1) and (A2)?
By the previous arguments, this is the case when rk(kerNLj/K) = 2, ∀ 1 ≤
j ≤ p+ 1. By the pigeon hole principle, we have that

limD→∞
|{K ∈ KD,2 : K has 1-1-capitulation}|

|{K ∈ KD,2}|
≥ 1− (p+ 1)

1

p2
≈ 1− 1

p
.
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Hence, it becomes more and more likely that K has 1-1-capitulation as p
goes to infinity.
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Chapter 7

The Capitulation Problem in
Zp-Extensions

In this chapter, we want to investigate horizontal capitulation in a given
Zp-extension. (We will specify this below). For a comprehensive study of
Iwasawa Theory, we refer to [8], [11]. Throughout this chapter, let K be a
number field and K∞ be a given Zp-extension of K for a fixed prime p > 2.
Let Γ = Gal(K∞/K) with topological generator σ and Γn = Γ/Γp

n
. Then,

we obtain a tower of fields Kn/K with Γn = Gal(Kn/K) cyclic of order pn.
It is well known that

lim
←

Zp[Γn] ∼= Zp[[T ]], via

σ 7→ T + 1.

We call Λ := Zp[[T ]] the Iwasawa algebra. (For further details, see Theorem
7.1, page 114, of [8]).
Let An be the p-part of the ideal class group of Kn and Hn be the p-part
of the Hilbert class field of Kn. Then we define H∞ = ∪n≥0Hn. By Section
5.1, Hn/K is Galois for all n ∈ N. Thus, H∞/K is Galois. Now let L be an
intermediate field of H∞/K∞ with L/K Galois. For Ln = L ∩Hn, it follows
that Ln/K is Galois. The situation is given as in the following diagram:

K∞ L H∞

Kn Ln Hn

K L0 H0
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For simplicity, we will assume that all primes in K that ramify in K∞ are
totally ramified. It follows that Kn+1 ∩ Ln = Kn and that NKn+1/Kn :
A(Kn+1) → A(Kn) is surjective by Proposition 1.3.4. We now want to ana-
lyze the capitulation kernels Xn = ker(ıLn/Kn : A(Kn) → A(Ln)). We start
with a useful

Lemma 7.0.14. Notations being like above, we have ∀ n ∈ N:

NKn+1/Kn(Xn+1) ⊂ Xn.

Proof. Let a ∈ Xn+1 with a = [P], for some prime P in Kn+1 lying above
the prime p in Kn. By assumption, POLn+1 = αOLn+1 , for some α ∈ L∗n+1.
Moreover, we have that∏

τ∈Gal(Kn+1/Kn)

Pτ = NKn+1/Kn(P)OKn+1 .

Due to resLn+1/Kn+1(Gal(Ln+1/Ln)) = Gal(Kn+1/Kn), it follows that

NKn+1/Kn(P)OLn+1 =
∏

τ∈Gal(Kn+1/Kn)

PτOLn+1

=
∏

τ ′∈Gal(Ln+1/Ln)

(POLn+1)
τ ′

= (
∏

τ ′∈Gal(Ln+1/Ln)

(ατ
′
)).

As Ln+1/Ln is Galois, we obtain that α′ :=
∏

τ ′∈Gal(Ln+1/Ln)(α
τ ′) ∈ Ln. It

follows that (α′)−1 ·NKn+1/Kn(P)OLn+1 = OLn+1 . Since α′ and NKn+1/Kn(P)
lie in Ln and as the lift of ideals from Ln to Ln+1 is injective, we obtain that

NKn+1/Kn(P)OLn = αOLn i.e.

NKn+1/Kn([P]) capitulates in Ln. This completes the proof.

By the previous lemma, we may define the projective limit of the Xn with
respect to the norms NKm/Kn , ∀ m ≥ n ≥ 0. Let us say

X := lim
←
Xn,

i.e. X = {(x0, x1, ...) ∈
∏

n≥0Xn| NKn+1/Kn(xn+1) = xn}. Since Ln is Galois
over K, ∀ n ∈ N, it follows that Xn is a Zp[Gal(Kn/K)]-module. Hence, X
is a Λ-module, where the action of Λ on X is defined component wise. This
poses the natural question if X may be trivial? We have the following
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Theorem 7.0.15. Notations being like above, assume that L/K∞ is an in-
finite extension. Then X is a non-trivial Λ-module. Moreover, there exist
constants λ(X), µ(X), ν(X) ≥ 0 such that

|Xn| = pλ(X)n+µ(X)pn+ν(X).

Proof. Since L/K is Galois by assumption, there exist Iwasawa invariants
λ, µ, ν ≥ 0 such that

|Gal(Ln/Kn)| = pλn+µpn+ν .

Since L/K∞ is supposed to be infinite, it follows that Gal(L/K) is an infinite
Λ-module implying that λ > 0 or µ > 0. By Suzuki’s Theorem, we also have
that

|Xn| ≥ pλn+µpn+ν .

In particular, |Xn| is not constant as n runs through N.
For all n ∈ N, let ϕn : A(Kn) → Gal(Hn/Kn) denote the Artin symbol of

Hn/Kn and set Mn = H
ϕn(Xn)
n . By Proposition 1.3.4, it follows that

resHn+1/Hn(ϕn+1(Xn+1)) ⊂ ϕn(Xn).

Hence, we can conclude that

Mn+1 ∩Hn = H
resHn+1/Hn

(ϕn+1(Xn+1))
n

⊃ Hϕn(Xn)
n

= Mn

Now we may defineM = ∪n≥0Mn, which is an intermediate field ofK∞ ⊂ H∞
and which is Galois over K as all Xn are closed by the action of Λ. Thus,
there are Iwasawa-invariants λ′, µ′, ν ′ ≥ 0 such that

|Gal(Mn/Kn)| = pλ
′n+µ′pn+ν′ .

Assume that M = H∞. Then λ(Gal(M/K∞)) = λ(Gal(H∞/K∞)) and
µ(Gal(M/K∞)) = µ(Gal(H∞/K∞)). (” ≤ ” certainly holds in both cases).
This implies that |Xn| = |Gal(Hn/Kn)|/|Gal(Mn/Kn)| is constant, for all n,
which yields a contradiction to the above assertions. Thus, M 6= H∞. It
follows that

{1} 6= Gal(H∞/M)

= lim
←
Gal(H∞/M)/Gal(H∞/HnM)

= lim
←
Gal(Hn/Hn ∩M)

⊂ lim
←
Gal(Hn/Mn)

= lim
←
Xn

= X.
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Let λ′′ := λ(G(H∞/K∞)), µ′′ := µ(G(H∞/K∞)), and ν ′′ = ν(G(H∞/K∞)).
Then:

|Xn| = p(λ′′−λ′)n+(µ′′−µ′)pn+ν′′−ν′ .

149



Appendix A

List of Notations

The following table lists notations which we frequently used throughout the
thesis and indicates on which page the given notation occurs for the first
time. However, this list does not claim to be exhaustive. Special notations
will be explained in the various contexts. Moreover, we use two different
notations both for the Artin symbol and for a Galois group (see below). The
reason for this is that depending on the context it is convenient to have a
more precise or shorter notation.
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Notation Explanation Page
p Some fixed prime 8
K Number field 3
JK Group of fractional ideals of K 3

Cl(K) Ideal class group of K 3
A(K) p-Sylow subgroup of Cl(K) 13
A Finite abelian p-group 13

rk(A) p-Rank of A 13
Sl(A) l-Socle of A 13
AG G-invariant elements in A 13
OK Ring of integers of K 11
O∗K Unit group of OK 17
H(K) Hilbert class field of K 4
H(K)(i) Hilbert class field of H(K)(i−1) 33
H(K)p p-Hilbert class field of K 13
L/K Extension of number fields 3

[L : K] Degree of L/K 12
Gal(L/K) Galois group of L/K 11
G(L/K) Galois group of L/K 11
PK(L) Capitulation kernel of L/K 3(
L/K
.

)
Artin symbol of L/K 12

ϕL/K Artin symbol of L/K 12
ϕK Artin symbol of H(K)/K 12
ıL/K Lift of ideal classes 3
NL/K Norm of ideal classes 12

V erG→H Transfer from G to H 14
Hi(G,A) i-th cohomology group of G in A 16
res|K Restriction to K 13
DPi|Pi Decomposition group of Pi|Pi 11
Cpk Cyclic group of order pk 4
Zp Ring of p-adic integers 6

Φ(G) Frattini group of G 33
Z(G) Center of a group G 34
α Idempotent in Zp[G] 8
bZ[s] Z[s]-cycle of b 36

r(b), l(b) Length of the flag of b 36
< .., .., .. > Z-span 23
< .., .., .. >Z[s] Z[s]-span 54
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Appendix B

Source Codes Used in MAGMA

Here we want to add the various source codes that we used in MAGMA.
For further details, we refer to [35] and the handbook of MAGMA. Using
the following code, one can compute if a given ideal class capitulates in a
given unramified abelian extension L/K or not. In the following illustration,
we consider capitulation in the imaginary quadratic field K = Q(

√
−63499).

Its class group is isomorphic to C7 × C7, implying that K has 8 unramified
cyclic extensions of degree 7. The following example shows how to construct
such an extension, which is denoted by aK2 below. Then we check whether
a given ideal class of K capitulates in that extension:

k := NumberF ield(Polynomial([63499, 0, 1]));
g,m := ClassGroup(k);
aK := AbelianExtension(m);
q,mq := quo < g| (5 ∗ g.1) ∗ g.2 >;
m2 := Inverse(mq) ∗m;m2;
aK2 := AbelianExtension(m2);
O := MaximalOrder(aK2);O;
I := O!!m(g.1);
IsPrincipal(I);

In order to compute the class group of aK2 from above, we use the following
source code:

L := NumberF ield(aK2);
M := SimpleExtension(L);
ClassGroup(M);

Remark: In some cases, we also used the computer program pari/gp, which
seems to be better when it comes to the computation of class numbers.
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When we are concerned with capitulation, however, MAGMA shows obvious
advantages.

Last but not least, we also used MAGMA for group theoretic computations.
For instance, we constructed certain finitely presented p-groups. We then
computed the order of the respective group G, the commutator subgroup G′

of G, and the order of G′. We give the following example:

G := Group < a, b| a25, b25, ab = a5ba, ba5 = a5b, ab5 = b5a >;G;
n := Order(G);Factorization(n);
H := CommutatorSubgroup(G);H;
Order(H);CommutatorSubgroup(H);
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