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Introduction

A regular foliation of a smooth manifold is, roughly speaking, a partition into

immersed submanifolds, called the leaves of the foliation. These submanifolds

are supposed to be of the same dimension and to fit together in a regular way.

Foliations of manifolds occur in various situations. For instance, as the fibers

of a submersion, as the orbits of a Lie group action on a smooth manifold or as

solutions of differential equations and integrable systems (cf. [11], [12]).

The origin of this notion can be traced back to the works of Ehresmann, Reeb,

Haefliger and many others in the ’50s, who were motivated by the problem of

existence of completely integrable vector fields on 3−manifolds. They started

to investigate these objects sistematically and to establish their first properties.

A feature, that appeared immediately, is the ”singular” nature of these geomet-

rical objects. A foliated manifold can not be in general viewed as the total space

of a fibration with leaves the fibers, since even in the simplest examples the base

space is a space with trivial topology. Moreover, the leaves of a foliation need

not be all diffemorphic to each other and the way in which they are immersed

in the ambient manifold is generally very complicated and presents a strange

behaviour with respect to the topology of the ambient manifold. We refer, for

instance, to [39] and [11] for examples and further comments.

Put in a nutshell, foliated manifolds have a singular ”transverse structure” that

encodes geometric and dynamical properties of the foliation, but that is hard to

study by means of usual methods of algebraic topology and differential geome-

try.

Thus, people working on foliations were forced to think of them as a class of

”singular spaces” and were led to the idea of describing the transverse struc-

ture of a foliated manifold through a groupoid. This turned out to be a very

profound idea and a unifying concept for dealing with other classes of singular

spaces, like orbit spaces of smooth group actions on manifolds.

To a foliated manifold (M,F) one can associate various groupoids, each of which

reflects some property of the foliation and of its transverse geometry. Among

them, there is the holonomy groupoid H(F), the smallest Lie groupoid asso-

ciated to the foliation which unwraps simultaneously all leaves. It was first

rigorously defined in [47], following ideas of Ehresmann, and later it has been

extensively studied form different points of view.

In the early ’80s Connes started in [13] to investigate the analytical significance

of the holonomy groupoid H(F). Using it, he was able to associate to any foli-
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ation (M,F) various operator algebras, which ought to describe the transverse

geometry of the foliation. Indeed, in [13], [14] and [16] he defined a von Neu-

mann algebra W ∗(M,F), which should reflect measure theoretical properties

of the transverse structure of F , a C∗−algebra C∗(M,F), which should encode

the topological features of (M,F) and suitable subalgebras of this C∗−algebra,

which ought to codify differential-topological properties of the foliation.

The above algebras are no longer commutative, but in general highly noncommu-

tative, showing from another point of view the singular nature of the transverse

structure of the foliation.

Furthermore, using powerful invariants of such algebras, like Kasparov’s bivari-

ant K−theory (see [9]) and cyclic-type cohomology theories (cf. [17], Chapter

III, [37] or [18]), he and his collaborators have succeeded in generalizing many

aspects of index theory for compact manifolds to the more general context of

compact foliated manifolds.

Let us be a bit more precise. Given a compact foliated manifold (M,F), com-

plex vector bundles E and F over M and a leafwise elliptic differential oper-

ator D : C∞(M,E) → C∞(M,F ) one can associate to D an element of the

K−theory K0(C∗(M,F)) of the foliation C∗−algebra C∗(M,F). This element

is called the analytic index class of D and is denoted by inda(D).

Using Kasparov’s bivariant K−theory, one can show that inda(D) depends only

on topological data of the foliated manifold (M,F). This is the content of the cel-

ebrated Connes-Skandalis longitudinal index theorem for foliations ([17], Chap-

ter II, Section 9.γ and the references therein). However, this theorem is abstract

and does not provide explicit formulas for inda(D), relating the analytical index

of D with topological invariants of (M,F).

To get such formulas, a crucial role is played by cyclic cocycles and their pairing

with K−theory (see [15] or [17], Chapter III, Section 1 and Section 3). In gen-

eral, any cyclic cocycle on an algebra A determines a complex-valued additive

map on the K−theory K0(A) and one can attempt to compute explicitly the

values of suitable K−theory classes under this map. In geometric situations,

like those provided by foliations, this approach turns out to be very important

and deep (cf. [16], [17], Chapter III). Thus, a fundamental problem of this

method is that of constructing as many as possible ”interesting” cyclic cocycles.

In the case of a foliated manifold (M,F), Connes [16], [17], Chapter III, con-

structs various geometric cyclic cocycles. Using these cocycles and the additive

maps on K−theory induced by them, he gets explicit index formulae, evalu-

ating these maps on the K−theory class inda(D). Surprisingly, the resulting

index formulae involve very important invariants of the foliation, in particu-

lar, the so-called exotic characteristic classes of (M,F) (see [12], Chapter 6

for the construction and properties). The most famous example is that of the

Godbillon-Vey class and the corresponding Godbillon-Vey cyclic cocycle of a

transversely oriented foliation of codimension 1 (cf. [16] and [41]).

These index formulae, relating on one side analytical invariants of the folia-

tion and on the other side topological/geometric invariants, allow to prove deep

results in the theory of foliated manifolds. Among them, we mention the in-
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variance of the L−class of a compact oriented and transversely oriented foliated

manifold under orientation-preserving leafwise homotopy equivalences and the

relationship between the nontriviality of the Godbillon-Vey class of a trans-

versely oriented codimension 1 foliation (M,F) and the type of the foliation

von Neumann algebra W ∗(M,F). See [16] for details and further remarks.

An important variant of index theory is represented by the so-called equivariant

index theory.

Classically, if Γ is a compact Lie group acting smoothly on a compact manifold

M and D is a Γ−equivariant elliptic operator on M, then it is interesting to

take into account the action and to replace the numerical index of the opera-

tor D by the natural representation of Γ on ker(D) and on coker(D), i.e. the

kernel and the cokernel of D, respectively. The resulting ”character-index” is a

natural generalization of the nonequivariant index and carries many interesting

informations about the manifold and the action. The corresponding index the-

orem is a far-reaching generalization of the Lefschetz fixed point formula and

has found many interesting applications in different branches of mathematics.

We refer to [36] and the references therein for details and further remarks.

Considering what we have discussed above, it is natural to ask to which extent

equivariant index theory can be generalized to the more general context of foli-

ated manifolds.

First, one should make precise how a group acts on a foliated manifold. Given

a foliated manifold (M,F) let us assume to have a compact Lie group Γ acting

by foliation-preserving diffeomorphisms, i.e. for every h ∈ Γ and every leaf L of

the foliation, h(L) = L′, where L′ is another leaf. Actually, we will concentrate

on the case where each h determines a diffeomorphism that maps each leaf into

itself. A foliated manifold (M,F) endowed with an action of a compact Lie

group Γ by leaf-preserving diffeomorphisms will be called a foliated Γ−manifold

and denoted by (M,F ,Γ). Such a triple will be our main object of study.

Now, if (M,F ,Γ) is a foliated Γ−manifold, then the holonomy groupoid H(F) of

the foliation inherits an action of Γ, turning it into a so-called Lie Γ−groupoid.

Using the holonomy groupoid H(F) endowed with this Γ−action, Benameur [5]

proved an equivariant version of the Connes-Skandalis index theorem in equiv-

ariant K−theory. More precisely, he proved that the equivariant index class

indΓ
a(D) ∈ KΓ

0 (C∗(M,F)) of a leafwise elliptic Γ−equivariant differential op-

erator on a foliated Γ−manifold (M,F ,Γ) depends only on topological data.

Moreover, generalizing methods of [3] to foliated manifolds, he is able to estab-

lish under some assumption a Lefschetz-type theorem for a foliated Γ−manifold

(M,F ,Γ). Roughly speaking, his theorem states that the Lefschetz class L(h,D)

of h ∈ Γ with respect to a Γ−equivariant leafwise elliptic differential operator

D, defined as a certain localization of indΓ
a(D), does only depend on topological

data of the fixed point set Mh of h in M.

However, as in the nonequivariant case this result is very abstract and one

is forced to develop other methods for extracting topological/geometric infor-

mations out of L(h,D). In analogy with the nonequivariant theory a possible

strategy is constructing equivariant cyclic cocycles on the foliated Γ−manifold,
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that determine additive maps on equivariant K−theory.

There are different way to define equivariant cyclic cocycles and equivariant

cyclic (co-)homology. So far, the most general treatment to equivariant cyclic

theories has been given by Voigt [46], where also many features of the theory,

like stability and excission, are established. Unfortunately, for our purposes, his

approach is difficult to deal with. Thus, we consider a different method to define

equivariant cyclic cocycles (see [34], [23]), which seems to be more convenient for

our applications. Roughly speaking, we shall view an equivariant cyclic cocycle

as a Γ−equivariant ”higher trace” with values in the set of continuous functions

on Γ. With this definition, we will be able to show that an equivariant cyclic

cocycle induces an additive map on equivariant K−theory.

Now, it turns out that in order to construct equivariant cyclic cocycles on a

foliated Γ−manifold (M,F ,Γ) as equivariant ”higher traces”, one has to under-

stand the ”transverse action” of the elements h ∈ Γ on (M,F). More precisely,

since any element h acts as a leaf-preserving diffeomorphism, then it determines

a local diffeomorphism Hol(h) defined on a suitable local transversal Tx passing

through a point x ∈M to a suitable local transversal Th(x) through h(x). If for

all x ∈ M these local transverse diffeomorphisms Hol(h) are holonomy trans-

formations of the foliated manifold, there exists a smooth global bisection σh
of the holonomy groupoid H(F) of the foliation that ”lifts” the action of h to

the holonomy groupoid, i.e. t ◦ σh = h (t is the target map of H(F)). If such a

bisection exists for every h ∈ Γ, then we are able to construct equivariant cyclic

cocycles on the holonomy groupoid H(F) of (M,F ,Γ).

Unfortunately, it is not true in general that for every leaf-preserving diffeomor-

phism f there exists a smooth global bisection σf of H(F) with t ◦ σf = f.

To overcome this problem, we introduce another Lie groupoid associated to the

foliated Γ−manifold (M,F ,Γ), that depends also on Γ and that has a smooth

global bisection σh for every h ∈ Γ. This Lie groupoid, denoted by H(M,F ,Γ),

contains the holonomy groupoid H(F) as open subgroupoid and ”integrates”

the same foliation F of M. Thus, it is a so-called foliation groupoid in the

sense of [19]. Heuristically, H(M,F ,Γ) encodes not only information of the

transverse structure provided by holonomies, but also additional information

coming from the local transverse diffeomorphisms Hol(h), for h ∈ Γ. Hence, it

seems to be more appropriate than the holonomy groupoid for studying foliated

Γ−manifolds.

Using H(M,F ,Γ), we will construct equivariant cyclic cocycles for (M,F ,Γ).

More precisely, generalizing first the construction of [7], we show that there

exist equivariant cyclic cocycles coming from closed Haefliger currents of the

foliation. Our construction is analogous to that in [7], but since we use the

groupoid H(M,F ,Γ) we can consider general leaf-preserving diffeomorphisms

and not only holonomy diffeomorphisms, as in [7].

Furthermore, we will show that there exists an equivariant cyclic cocycle that

corresponds to the Godbillon-Vey cyclic cocycle of the foliated manifold. To

define such an equivariant cocycle, we first generalize the construction of the

(nonequivariant) Godbillon-Vey cyclic cocycle of [41] to arbitrary transversely
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oriented foliations of codimension 1. Then, we prove the existence of an equivari-

ant cyclic cocycle, whose evaluation at the identity coincides with the Godbillon-

Vey cyclic cocycle.

Through these equivariant cyclic cocycles we will define analytical higher Lefschetz-

type numbers associated to a foliated Γ−manifold (M,F ,Γ) and to any leafwise

elliptic Γ−equivariant differential operator D.

Let us now briefly explain how the text is organized. In the first chapter we

begin with a section devoted to basic definitions and properties of foliated man-

ifolds and of the associated group of diffeomorphisms preserving the foliation.

In particular, we introduce the triples (M,F ,Γ). In the subsequent section, we

introduce the holonomy groupoid of the foliation, using the language of bisub-

mersions and bisections developed in [1]. Even though this approach may seem

at first sight more complicated than the one using leafwise paths, it turns out

to be more conceptual and more flexible for our purposes. Indeed, this is the

language we use to construct the groupoid H(M,F ,Γ) associated to a foliated

Γ−manifold (M,F ,Γ). We show that H(M,F ,Γ) is a Lie groupoid ”integrat-

ing” the foliation F of M and containing the holonomy groupoid H(F) as open

Lie subgroupoid. In the last section, we present the notion of Lie Γ−groupoid

and show that both groupoids H(F) and H(M,F ,Γ) inherite an action from

the action of Γ on (M,F). The action of Γ on H(M,F ,Γ) is induced by smooth

global bisections σh of H(M,F ,Γ), corresponding to the elements h ∈ Γ, and

extends the Γ−action on H(F).

In the second chapter we describe the algebras associated to a foliated man-

ifold, that we will need in the following. More precisely, we introduce the

smooth convolution algebra C∞c (G,Ω1/2) and the foliation C∗−algebra C∗r (G),

where G may denote both H(F) and H(M,F ,Γ). In the case of a foliated

Γ−manifold, we will show that both algebras carry a natural action of Γ by

automorphisms, induced by the action of Γ on (M,F). Moreover, since the ac-

tion of Γ on H(M,F ,Γ) is defined through bisections, we will prove that the

Γ−action on C∗r (H(M,F ,Γ)) is induced by suitable multipliers S(h), for all

h ∈ Γ. After this we survey some basic results of equivariant K−theory and we

present the basic definitions and properties of Γ−equivariant pseudodifferential

operators on a Lie groupoid endowed with an action of a group. Finally, we de-

fine Γ−equivariant index classes of an elliptic Γ−equivariant pseudodifferential

operator D and the corresponding Lefschetz classes of the conjugacy class [h]

of any element h ∈ Γ with respect to D.

The third chapter contains basic definitions and properties of continuous equiv-

ariant cyclic cocycles and continuous equivariant cyclic cohomology of locally

convex algebras. For technical reason, we define continuous equivariant cyclic

cohomology only for Fréchet algebras. For such algebras, our treatment is based

on the equivariant cyclic bicomplex, which provides a natural framework for

nonunital algebras. Again, we point out that there is a different approach to

equivariant cyclic cohomology developed in [46] that allow to define the theory

for more general algebras.

However, even though the definition of continuous equivariant cyclic cohomology



Contents 6

is well-posed only for a particular class of locally convex algebras, the notion

of equivariant cyclic cocycle makes sense for any locally convex algebra and

we show that any such equivariant cocycle gives rise to an additive map on

Γ−equivariant K−theory with values in the central continuous functions of Γ.

This is an important point in the theory, since it allows to define higher Lef-

schetz numbers on foliated Γ−manifolds.

The fourth chapter is the main part of the work and it is divided in two parts.

In the first one, given a foliated Γ−manifold (M,F ,Γ), with Γ a compact Lie

group, and given the groupoid H(M,F ,Γ) we define a Haefliger-type transverse

(co-)homology on (M,F) with respect to the (equivalence class of ) pseudogroup

PΓ determined by H(M,F ,Γ). Then, using closed PΓ−invariant currents we can

define continuous equivariant cyclic cocycles φC on (C∞c (H(M,F ,Γ)),Γ). An

important example is provided by the equivariant cyclic cocycle corresponding

to the transverse orientation of a transversely oriented foliated Γ−manifold. As

already mentioned, our construction is formally analogous to that in [7], but

since we use the groupoid H(M,F ,Γ) instead of the holonomy groupoid H(F),

we can deal with general Γ−actions by leaf-preserving diffeomorphisms and

not only by holonomy diffeomorphisms (see [7]). Now, using even dimensional

equivariant cyclic cocycles, we will be able to define higher Lefschetz numbers

LφC ([h], D) of the conjugacy class [h] of an element h ∈ Γ with respect to an

elliptic Γ−equivariant pseudodifferential operator D.

In the second part, we focus on a remarkable equivariant cyclic cocycle, namely

the equivariant Godbillon-Vey cyclic cocycle. We first review the construction

of the (nonequivariant) Godbillon-Vey cyclic cocycle for codimension 1 foli-

ated bundles as given in [41]. Then, we generalize the construction of [41] to

an arbitrary transversely oriented foliated Γ−manifold of codimension 1 in or-

der to define a cyclic 2−cocycle gv on C∞c (H(M,F ,Γ)). Finally, we construct

an equivariant cyclic cocycle gvΓ, whose evaluation at the identity of Γ coin-

cides with the Godbillon-Vey cyclic cocycle gv. Using gvΓ we can define the

Godbillon-Vey Lefschetz number Lgv([h], D) of the conjugacy class [h] of the

element h ∈ Γ with respect to the Γ−invariant elliptic pseudodifferential oper-

ator D.

At this point it is natural to ask how to compute the defined higher Lefschetz

numbers. However, this question will not be addressed here for the follow-

ing reasons. First, our equivariant cyclic cocycles are defined on the algebra

C∞c (H(M,F ,Γ)). However, in order to compute the higher Lefschetz numbers,

we should extend the equivariant cyclic cocycles to holomorphically closed sub-

algebras containing C∞c (H(M,F ,Γ)). This extension process is, however, a del-

icate point of the theory (see [17], Chapter III for further comments). Secondly,

we cannot apply the equivariant Benameur-Connes-Skandalis longitudinal index

theorem [5], since this is formulated in terms of the holonomy groupoid H(F)

and not in terms of H(M,F ,Γ). Therefore, one needs first a suitable generaliza-

tion of this theorem to encompass these more general groupoids. Alternatively,

to obtain equivariant index formulas one could maybe use the approach through

superconnections developed in [26]. This method has to be generalized to the
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equivariant case as well. These developments will be treated elsewhere.



Chapter 1

Foliations

1.1 Basic definitions and some examples

Foliated manifolds are nowadays an important and still developing research topic

in Mathematics. The origin of this notion can be traced back to the works of

Ehresmann, Reeb, Haefliger and many others in the ’50, who started sistemat-

ically to investigate these objects.

At the present foliated manifolds can be studied with a variety of powerful

techniques, developed over the years and coming from different areas of the

Mathematics. There is a homotopy theoretic approach that culminates in some

beautiful results by Thurston, about quantitative aspects of the theory of foli-

ations, or by Tsuboi. The interested reader is referred to [32] and [44] and the

references therein. At the other side one can think of a foliation as a generalized

dynamical system and then study dynamical and ergodic properties of a foliated

manifold.

A further and powerful approach to the study of a foliated manifold comes

from looking at it as a so called ” noncommutative space”. We refer to [?] for a

more conceptual explanation of this name and for a brief historical ‘excursus‘.

Here we just would like to emphasize that the foliations provide one of the basic

class of examples of noncommutative spaces, that can be of course studied by

methods of Noncommutative Geometry. Understanding these mathematical ob-

jects has maybe been one of the motivations and starting points in developing

Noncommutative Geometry.

In this work we will adopt this point of view. Let us therefore begin by mak-

ing more precise how a foliation gives rise to a noncommutative space and by

introducing some basic invariants associated to it.

In the next sections and chapters we will go further using this approach, intro-

ducing other invariants for our foliations.

Let M a manifold of class C∞ and dimension n. We consider open rectan-

gular sets of Rn, i.e. open sets B ⊆ Rn of the form B = J1×J2× ...×Jn, where

Jk = (αk, βk) is a connected open interval of the k−th coordinate axis of Rn

possibly unbounded.

8



1 Basic definitions and some examples 9

Definition 1.1. A foliated chart on M of codimension q and class Cl is a pair

(U, φ) where U ⊆M is an open set and

φ : U → Bn−q ×Bq ⊆ Rn−q × Rq (1.1)

is a diffeomorphism of class Cl. Here Bn−q and Bq are open rectangular sets,

respectively, of Rn−q and Rq

Define the plaques of the foliated chart (U, φ) as the level sets

Py = φ−1(Bn−q × {y}) ⊂ U (1.2)

for all y ∈ Bq. Similarly we define the transversals as

Tx = φ−1({x} ×Bq) ⊂ U (1.3)

for all x ∈ Bn−q Troughout we will often denote a foliated chart (U, x, y) instead

of (U, φ), showing explicitly the longitudinal and transverse coordinates.

Definition 1.2. 1. A regular foliated atlas of codimension q and of class Cl

on the smooth manifold M is an atlas U = {(Ui, φi)}i∈L of class Cl on M

made up by foliated charts of codimension q such that ∀i, j ∈ L for which

Ui ∩ Uj 6= ∅ the coordinate transformations

γij := φi ◦ φ−1
j : φj(Ui ∩ Uj)→ φi(Ui ∩ Uj)

have the form

γij(xj , yj) = (xi(xj , yj), yi(yj)) (1.4)

2. We will say that two regular foliated atlases U = {(Ui, φi)} and V =

{(Vj , ψj)} are coherent if their union is again a regular foliated atlas.

In other words in the definition of regular foliated atlas we demand that, in

the case Ui ∩Uj 6= ∅, each plaque P ⊂ Ui intersects at most one plaque Q ⊂ Uj
and that P ∩Q is open both in P and Q. In this way we prevent the possibility

that a plaque P might intersect distinct plaques of another foliated chart. (see,

for instance [11] for further remarks.)

It is not difficult to prove that coherence of regular foliated atlases is an equiv-

alence relation.

Definition 1.3. A foliation F on M of codimension q and of class Cl is a

coherence class of regular foliated atlases on M of codimension q and class Cl

In the following we will assume the foliated atlas to be of class C∞.

By Zorn’s lemma (cf. [2], pagg. 3-4) every coherence class of regular foliated

atlases contains a unique maximal regular foliated atlas. Therefore we can

equivalently define a foliation F of codimension q on a smooth manifold M to

be a maximal regular foliated atlas of codimension q.
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Remark 1.1. Notice that the transverse coordinate map yi can be thought of

as a submersion

yi : Ui → Bq ⊂ Rq (1.5)

and that the transverse coordinate transformations a regular foliated atlas yi(yj)

induces a local diffeomorphism of Rq (whose regularity depends of course upon

the regularity of the atlas)

γij : yj(Ui ∩ Uj) ⊂ Rq → yi(Ui ∩ Uj) ⊂ Rq (1.6)

These local diffeomorphisms satisfy the cocycle conditions, i.e. on yk(Ui ∩ Uj ∩
Uk)

γij ◦ γjk = γik (1.7)

and moreover it holds that

yi = γij ◦ yj (1.8)

The local diffeomorphisms γij play a crucial role in Foliation theory. They lead,

indeed, to the notion of holonomy of the foliated manifold (M,F). The set

γ = {γij} is called the holonomy cocycle associated to the regular foliated atlas.

It is nowadays well established that the set of germs of all possible holonomy

transformations γij is a Lie groupoid and that this Lie groupoid models the

transverse geometry of the foliation. We will deal with these ideas in the coming

sections.

However for further remarks see [12], [11], [14] and the references therein.

Let (M,F) be a foliated manifold, where dim(M) = n and codimF = q.

Lemma 1.1.1. There exists a family {Lλ, iλ}λ∈Λ of dimension n− q connected

C∞−manifolds and C∞−maps iλ : Lλ →M such that

1. iλ : Lλ →M are injective immersions.

2. M =
⊔
λ∈Λ Lλ (disjoint union)

3. If (U, x, y) ∈ F is a foliated chart and Lp is the unique submanifold through

a point p ∈ U,then U ∩ Lp is a union of plaques.

Proof. Let F = {Uj , xj , yj} denote the maximal regular foliated atlas defining

the foliation on M . Let us introduce the following equivalence relation: for any

two points x, y ∈ M, x ∼ y iff either there is a F−plaque P0 so that x, y ∈ P0

or there exists a finite family of F−plaques {P0, P1, ..., Pm} such that

1. x ∈ P0 and y ∈ Pm.

2. Pi ∩ Pi+1 6= ∅, for all i = 0, ...,m− 1

The family of plaques {P0, P1, ..., Pm} is called chain plaque of lenght m con-

necting x with y. It is obvious that this is indeed an equivalence relation. Denote

by L each equivalence class and by Λ = M/ ∼ the set of equivalence classes.

The open subsets of the plaques P ⊆ L generate a topology on L which makes it
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into a Hausdorff, 2nd countable connected topological space. Moreover, since F
is a regular foliated atlas, one knows that F−plaques can only overlap in open

subsets of each other. Therefore each equivalence class L endowed with the

above topology is a manifold of dimension n−q. If we denote now the inclusions

by

iλ : Lλ →M (1.9)

for each λ ∈ Λ, it is clear that these are injective, smooth and immersions with

respect to the smooth structure just defined on Lλ.

It follows also immediately from the fact that ∼ is an equivalence relation that

M =
⊔
λ∈Λ Lλ, so 2) is proved. Finally, by definition of the equivalence classes

themselves one has that L ∩ U is a union of plaques P ⊆ U, for any foliated

chart (U, x, y) ∈ F .

The submanifolds iλ(Lλ) of (M,F), are called the leaves of the foliation.

With a small abuse of notation we will identify the manifolds Lλ with their

images iλ(Lλ) through the immersions iλ and call them also the leaves of (M,F).

Remark 1.2. An equivalent definition of foliation on a smooth manifold M

starts with a decomposition ofM in the disjoint union of a family of topologically

immersed submanifolds Lλ together with an atlas of foliated charts which is

adapted to the decomposition. This means that for any foliated chart (U, φ) in

the given atlas and any submanifold Lλ the intersection Lλ ∩ U, if not empty,

is a union of the plaques of (U, φ).

Remark 1.3. In general a leaf L in (M,F) need not be an embedded subman-

ifold of M, i.e. in general the immersion i : L→M is not an embedding. This

is because the topology on each L, generated by the open subsets of each plaque

P ⊆ L, may not coincide with the subspace topology of L as subset of M. One

simple example, showing this, is given by the Kronecker foliation (T 2,Fθ) on

the 2−torus with slope θ ∈ R Q.
Actually the proof of the lemma suggests that there is another topology on M

which is generated by all possible open subsets of any plaque in the maximal

foliated atlas F . With respect to this topology M is a smooth manifold of di-

mension dimF , disconnected with connected components exactly the leaves L.

This topology is often referred to as the leaf topology.

A further important feature appearing in the proof of lemma 1.1.1 is that a

foliation naturally defines an equivalence relation. Set RF = {(p, p′) ∈M ×M :

p ∼ p′}.

Definition 1.4. We will callRF the equivalence relation of the foliation (M,F)

The graph of this equivalence relation is a groupoid (see section 1.3) naturally

associated to the foliation.

Let (M,F) be a foliated manifold. For any x ∈M, consider

Fx := TxLx ⊂ TxM
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The collection

F =
⋃
x∈M

Fx (1.10)

is a vector subbundle of TM, since the map x 7→ dim(Fx) is a locally constant

function on each connected component of M.

Definition 1.5. The smooth distribution F ⊂ TM is called the vector bundle

tangent to the foliation F .

Moreover we have the natural short exact sequence of vector bundles on M

0→ F → TM → TM/F → 0 (1.11)

It is not difficult to check that TM/F is a vector bundle of rank q.

Definition 1.6. The vector bundle TM/F is called the normal bundle or the

transverse bundle to the foliation F

These two vector bundles naturally attached to a foliation (M,F) play a

crucial role in the theory of foliations. The transverse bundle is, for instance,

fundamental for the construction of characteristic classes of a foliation, both

geometrically and analytically. We will deal with some aspects of these consid-

erations in the next chapters of this work.

In particular, let us give the following definition.

Definition 1.7. A foliated manifold (M,F) is said to be transversely orientable

if the normal bundle to the foliation TM/F is orientable. The foliation is

transversely oriented if it is transversely orientable and an orientation of TM/F

is chosen.

Transversely orientable foliated manifolds will play an important role in this

work.

Now we will explain in which sense the tangent bundle F to the foliation (M,F)

determines the foliation.

In particular we put the following problem: given a C∞−manifold M of dimen-

sion n and a distribution F ⊆ TM of the tangent bundle of rank p (p ≤ n), does

there exist a C∞ foliation F on M of codimension n− p such that T (F) = F ?

The solution to this question is provided by the classical theorem of Frobenius,

that we would like briefly to mention.

Let us introduce the following notions

Definition 1.8. Let F ⊆ TM be a C∞ distribution.

1. F is said to be involutive if the smooth sections C∞(F ) ⊆ C∞(TM) is a

Lie subalgebra of the Lie algebra of all smooth vector fields on M.

2. F is completely integrable if ∀x ∈ M there is a topologically immersed

submanifold N ⊆M so that x ∈ N and TzN = Fz, ∀z ∈ N

3. A graded ideal I∗ ⊆ Ω∗(M) is said to be differential if d(I∗) ⊆ I∗.
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Theorem 1.1.2. (Frobenius) Let F be a rank = p distribution of TM. The

following are equivalent.

1. F is completely integrable.

2. The graded ideal I∗(F ) ⊆ Ω∗(M) of smooth differential forms which vanish

on F is a differential graded ideal.

3. F is involutive.

4. There exists a regular foliated atlas on M of codimension q = n− p, such

that every plaque in the atlas is an integral submanifold to F

As we stated the theorem, it is only a local result. However we have by

definition the following global consequence

Corollary 1.1.3. If the rank = p distribution F ⊆ TM is completely integrable,

then there is a C∞ foliation F of codimension q = n−p on M so that T (F) = F.

By virtue of the above theorem we get a negative answer to the integrability

problem, we have put above. In fact, to have a foliation (M,F) integrating a

given distribution F ⊆ TM, one needs the smooth sections C∞(F ) tangent to F

to be closed with respect to Lie bracket of vector fields on M. There are indeed

examples of not involutive distributions and not completely integrable distribu-

tions, even for Rn, showing that the condition of the theorem of Frobenius is

not trivial. For further remarks and proofs see [11] and the references therein.

A further very important feature of the theorem above is that a foliation is

completely determined by infinitesimal data, i.e. by the tangent bundle to the

foliation. One might define therefore a foliated manifold to be a pair consisting

of a smooth manifold M with an involutive distribution F ⊆ TM.

Example 1.1. Let π : V → B a differentiable fiber bundle of class C∞ with

tipical fibre the p−dimensional connected manifold F. Then the fibers π−1(b),

for any b ∈ B, are the leaves of a natural foliation F of codimension q = dimB

on the total space V. To see this, consider the distribution TvertV ⊆ TV defined

by the vertical tangent vectors to the fibers

TvertV = {v ∈ TV |dπ(v) = 0.} = ker(dπ) (1.12)

Since the pushforward π∗ is compatible with the Lie bracket on vector fields

Γ(TV ), one immediately deduces that Γ(TvertV ) is closed under the Lie bracket,

i.e. TvertV is an involutive distribution. By Frobenius’s theorem it defines a

foliation F on V of codimension dimV − rankTvertV such that TF = TvertV.

It is now obvious that the leaves of this foliation are exactly the fibers π−1(b)

for all b ∈ B.
The foliations arising in this way are called simple foliations.



1 Basic definitions and some examples 14

Example 1.2. Let G be a Lie group and H a connected Lie subgroup (not

necessarily a closed subgroup). Thus one has that the left cosets {gH}g∈G are

the leaves of a foliation on G. Indeed it is not difficult to check that the tangent

vectors to the left cosets forms a distribution G× h ⊆ TG ∼= G× g, where g is

the Lie algebra of G and h is the Lie subalgebra of the Lie subgroup H. It is

now obvious that the distribution G× h is involutive and that the leaves of the

foliation defined by it are the left cosets.

If H is closed, then G/H is a manifold and the canonical projection π : G →
G/H is a fibre bundle, whose fibers are again the left cosets by H.

In the above classes of examples all the leaves of the foliation are diffeo-

morphic to each other. This is false in general. We will construct in the next

examples classes of foliations for which the leaves need not be all diffeomorphic

to each other.

Example 1.3. (foliated bundle). Let H be a finitely generated discrete group

and M̃ be a smooth manifold on which H acts properly and freely on the right.

The quotient space M = M̃/H is thus a smooth manifold. Let T be a smooth

connected manifold and assume H acts on it on the right by diffeomorphisms.

Consider the product manifold M̃ × T endowed with the diagonal action of H

on the right. Thus we have the H−equivariant fibre bundle

π : M̃ × T → T (1.13)

Since the action of H on M̃ is proper and free, the diagonal action on M̃ ×T is

also proper and free. We denote the quotient manifold by X = (M̃ × T )/H.

Proposition 1.1.4. 1. The manifold X is the total space of the C∞ fibre

bundle

p : X →M (1.14)

over the manifold M = M̃/H with typical fibre the manifold T.

2. Moreover X inherits a C∞ foliation F of codimension q = dim(T ), whose

leaves are the images of the fibres of π : M̃ × T → T under the quotient

map M̃ × T → X.

3. For any point m ∈M, the fibre p−1(m) is a complete transversal subman-

ifold to the foliation F and the bundle projection p restricted to any leaf

L of F is a covering map.

For a proof of this proposition and further comments, we refer to [11] and

the references therein.

Definition 1.9. The triple (X, p,F) is called a T−foliated bundle or, simply,

a foliated bundle.

Foliated bundles constitutes an important class of foliated manifolds, that

we will study in some detail in following sections and chapters of this work.
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Example 1.4. (group actions) Let G be a connected Lie group acting smoothly

on a connected C∞ manifold M. Assume that the dimension of the isotropy

groups Gx = {g ∈ G : g(x) = x} is indipendent of x ∈ M . In particular one

could consider locally free smooth actions of connected Lie groups, meaning that

the isotropy groups have to be discrete.

Then the orbits Gx of the action are immersed submanifolds of M of constant

dimension p = dimG−dimGx for all points x ∈M and define a foliation on M.

Roughly speaking, many information, both geometrical-topological and dy-

namical, is encoded in the transverse structure of the foliation and in the so

called ”space of leaves” of the foliation. We end this section with the following

Definition 1.10. Let (M,F) a foliated manifold. The set of leaves M/F is the

set of leaves of F , i.e.

M/F = {L ⊆M : L ∈ F} (1.15)

One has the natural projection

p : M →M/F (1.16)

which sends x ∈M to the (unique) leaf Lx passing through x.

We may endowe the set of leaves with the quotient topology with respect to p.

However with this topology the space of leaves is very often a very ill-behaved

and singular space.

To deal with it we will think of it as a noncommutative space.

1.2 Groups of diffeomorphisms preserving the

foliation

In the last sections we gave the basic definitions and examples of a foliated

manifold (M,F).

In this section, given a Lie group Γ we will define the most basic object of

study of the present work, the so-called foliated Γ−manifold. These are simply

foliated manifolds endowed with a Lie group action of diffeomorphisms pre-

serving the foliation. Thus, our primary task is to introduce these groups of

foliation-preserving diffeomorphisms. It turns out that these groups encode in

a complicated way important informations about the foliation, especially re-

garding its transverse structure. In next sections we will see how some of these

informations can be extracted. In the present one we will just study some basic

properties of them and show some examples of foliated Γ−manifolds.

Let (M,F)) and (N,G) denote foliated manifolds and M/F and N/G, re-

spectively, their space of leaves, as defined in the previous section.

Definition 1.11. 1. A leafwise map f : (M,F) → (N,G) is a smooth map

f : M → N such that

f(L) ⊆ L′ (1.17)
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for any L ∈M/F , L′ ∈ N/G.

2. A leafwise diffeomorphism φ : (M,F) → (N,G) is a diffeomorphism φ :

M → N such that

φ(L) = L′ (1.18)

for all L ∈M/F , L′ ∈ N/G

Denote Diff(M,F) the group of foliated diffeomorphisms of (M,F) and

Diff(F) E Diff(M,F) the normal subgroup of those foliated diffeomor-

phisms, which preserve each leaf of (M,F), i.e. f(L) = L, for all L ∈M/F .

Lemma 1.2.1. Let f : M → N be a smooth map. The following are equivalent:

1. f is a leafwise map.

2. f preserves the equivalence relation groupoids associated to the foliations,

i.e. f(RF ) ⊆ RG.

3. the differential df : T (M)→ T (N) sends TF to TG.

Proof. 1.⇐⇒ 2. If f is a leafwise map between (M,F) and (N,G) then f(x) ∼
f(y) in N, whenever x ∼ y in M. For the converse, observe simply that if f

preserves the equivalence relations, then it preserves also all equivalence classes.

1. ⇒ 3. Notice that for any leaf L ∈ M/F , the restriction f|L : L → L′ is a

smooth map between leaves.

Let now x ∈M and Lx ∈M/F be the leaf passing through x and consider the

restriction fLx : Lx → L′f(x). Since it is smooth, one has that d(fLx)x(Tx(Lx)) ⊆
Tf(x)(L

′
f(x)). But one has that TxF = Tx(Lx), Tf(x)G = Tf(x)(L

′
f(x)) and

(dfx)|Fx = d(fLx)x. Thus one deduces that dfx(TxF) ⊆ Tf(x)G. Since x is arbi-

trary we conclude that df(TF) ⊆ TG.

3. ⇒ 2. Suppose that x, y ∈ L and consider a leafwise path α : [0, 1] → L

connecting x with y. Then f · α : [0, 1] → N is a path joining f(x) with f(y).

Observe that ∀t ∈ [0, 1],

α′(t) ∈ Tα(t)F .

Choose a subdivision {0 = t0 < t1 < ... < tm = 1} of [0, 1] and foliated charts

{U0, U1, ..., Um−1} ⊆ G such that

(f · α)([ti, ti+1]) ⊆ Ui.

Since df(TF) ⊆ TG, one has

dff(α(t))(α
′(t)) ∈ Tf(α(t))G (1.19)

and therefore there exists a plaque Pi ⊆ Ui for all i = 0, ...,m− 1 such that

(f · α)([ti, ti+1]) ⊆ Pi. (1.20)

Thus there is a plaque chain {P0, P1, ..., Pm−1} of lenght m connecting f(x)

with f(y). This implies that f(x) ∼ f(y), i.e. they are in the same leaf.
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Note that ψ ∈ Diff(F) if and only if Graph(ψ) = {(x, ψ(x))|x ∈M} ⊆ RF .
The groups of diffeomorphisms defined above are in general very large as the

following lemma states. In some sense the lemma is one of the main ingredients

in the proof of the Frobenius theorem.

Recall that a vector field X ∈ C∞(TM) on M is called complete if it generates

a one-parameter group of diffeomorphisms Φ = {φt} for all t ∈ R.

Lemma 1.2.2. 1. Let (M,F) be a foliated manifold and X ∈ C∞(TM)

a complete smooth vector field. Let {φt}t∈R be the diffeomorphism flow

generated by X. One has φt ∈ Diff(M,F) for any t ∈ R if and only if

[X,C∞(TF)] ⊆ C∞(TF).

2. In particular X ∈ C∞(TF) if and only if {φt}t∈R ⊂ Diff(F).

Proof. 1. If, for all t ∈ R φt ∈ Diff(M,F), we already know by lemma 1.2.1

that TF is also invariant under the flow. Thus, if Y ∈ C∞(TF),

[X,Y ] = lim
t→0

(φ−t)∗(Y )− Y
t

∈ C∞(TF).

Conversely, let us first assume that t ∈ (−ε, ε), for ε small enough. We will

prove that for such t the diffeomorphism φ{t carries plaques to plaques. The

fact that φt carries plaques to plaques for all t ∈ R will then follow easily.

Let (U, x, y) ∈ F . One has that

X|U =

p∑
i=1

fi(x, y)
∂

∂xi
+

q∑
j=1

tj(x, y)
∂

∂yj
.

By hypothesis,

[
∂

∂xi
, X|U ] ∈ C∞(TF) (1.21)

therefore the functions tj(x, y) = tj(y), i.e. they are indipendent of x, for all

j = 1, ..., q. The flow φt = (φ1
t (x, y, t), φ

2
t (x, y, t), ..., φ

p+q
t (x, y, t)) is by definition

the solution of the system of differential equation

d

dt
φlt = fl(x, y) l = 1, . . . , p (1.22)

d

dt
φkt = tk(y) k = p+ 1, . . . , p+ q (1.23)

Given the initial condition (a, b) ∈ U, we deduce that the last q coordinates of

φt only depend on b and t. Thus the plaque y = y(b, 0) = b is mapped onto the

plaque y = y(b, t).

2. If X ∈ C∞(TF), then, applying the same argument, one obtains that the

coordinates tj ≡ 0. The last q coordinates of φt are therefore even indipendent

of t. The claim follows.
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By virtue of the above lemma, we may define a very important subgroup of

Diff(F). Notice that each compactly supported vector field is complete. Thus

consider the exponential map

exp : C∞c (M,TF)→ Diff(F) (1.24)

which sends X to exp(X), and the image exp(C∞c (M,TF)) ⊆ Diff(F).

Definition 1.12. The subgroup expF is the subgroup of Diff(F) generated

by exp(C∞c (M,TF)).

Lemma 1.2.3. The subgroup expF is a normal subgroup of Diff(F).

Proof. Let X ∈ C∞c (M,TF) and f ∈ Diff(F). It is not difficult to check that

f exp(X)f−1 = exp(f∗(X)) ∈ expF

from which the claim follows.

Remark 1.4. The discussion above suggests that the the group Diff(M,F)

and Diff(F) are regular infinite dimensional Lie groups with Lie algebra

C∞c (M,TF).

One has the sequence of normal subgroups

expF E Diff(F) E Diff(M,F) (1.25)

Definition 1.13. 1. Let f0, f1 : (M,F) → (N,G) two leafwise maps. A

leafwise homotopy between f0 and f1 is a C∞,0 map H : M × [0, 1]→ N

such that H(x, ·) : [0, 1]→ N is a leafwise path with starting point f0(x)

and end point f1(x) for any x ∈M.

If there is a leafwise homotopy, then the leafwise maps f0, f1 are said to

be leafwise homotopic.

2. We shall say that two leafwise maps are leafwise isotopic if there is a C∞

leafwise homotopy between them. In this case we will write f0 ∼F f1.

A C∞,0 map H : M× [0, 1]→ N is a continuous map such that Ht : M → N

is a C∞ map for all t ∈ [0, 1]. By definition one clearly has that Ht is a leafwise

map for any t ∈ [0, 1].

In particular, if ψ0, ψ1 ∈ Diff(M,F) are leafwise homotopic through the leaf-

wise homotopy H, then clearly Ht ∈ Diff(M,F). Further, if ψ0 = H0 is so

that ψ0(L) = L′, then Ht(L) = L′ for all L ∈M/F , L′ ∈ N/G, t ∈ [0, 1].

Consider the normal subgroup Diff0(F) E Diff(F) of leaf-preserving dif-

feomorphisms ψ ∼F id. (leafwise isotopic). One has the following short exact

sequence of groups

1→ Diff0(F)→ Diff(F)→ Diff(F)/Diff0(F)→ 1 (1.26)
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Definition 1.14. We will call Diff(F)/Diff0(F) the leafwise mapping class

group of the foliation.

The leafwise mapping class group can be also characterized as the group

π0(Diff(F)) of path connectedcomponents of Diff(F). It might be interesting

to study more deeply π0(Diff(F)).

Lemma 1.2.4. expF E Diff0(F)

Proof. Let X ∈ C∞c (M,TF). Then there is a natural leafwise isotopy between

the identity and the leafwise diffeomorphism exp(X) given by

H(m, t) = exp(tX)(m)

for m ∈ M, t ∈ [0, 1]. Therefore expF ≤ Diff0(F). Since expF is a normal

subgroup of Diff(F), it is a fortiori normal in Diff0(F).

Thus one has the sequence of groups

expF E Diff0(F) E Diff(F) E Diff(M,F) (1.27)

each inclusion of which defines a normal subgroup.

We will deal with foliated manifold (M,F) equipped with the action of a

Lie group by foliation-preserving diffeomorphisms. More precisely, let Γ be a

Lie group.

Definition 1.15. An action of Γ on the foliated manifold (M,F) is a smooth

action ρ of Γ on the manifold M such that ρh ∈ Diff(M,F) for any h ∈ Γ.

The map ρ : Γ→ Diff(M,F) defines of course a group homomorphism.

Since we are primarily interested in fixed point formulae, we will mostly deal

with Diff(F) and its subgroups. Let us then give the following

Definition 1.16. A foliated manifold (M,F) is called a foliated Γ-manifold, if

there is an action ρ of Γ taking values in Diff(F). We will denote a foliated

Γ−manifold by (M,F ,Γ).

Example 1.5. Let (M,F) be a foliated manifold. The most natural example of

Lie group action by leave-preserving diffeomorphisms on (M,F) is the following.

Pick any element ϕ ∈ Diff(F) and consider the group Γ generated by ϕ. This

group is either isomorphic to Z or is isomorphic to the finite group Zm, if

ϕm = id for some m.

With the obvious action, the triple (M,F ,Γ) is a foliated Γ−manifold..

Example 1.6. A further simple, but interesting example is given by considering

vector fields tangent to the foliation. Any X ∈ C∞c (M,TF) is in particular

complete. Therefore by Lemma 1.2.2, we know that the diffeomorphisms flow

(φXt )t∈R, generated by X, is a subgroup of Diff(F). Thus, letting R act on

(M,F) through the flow (φXt )t∈R, we obtain a foliated R−manifold (M,F ,R).
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Example 1.7. Let π : V → B a differentiable fiber bundle with typical fi-

bre a p−dimensional connected manifold F. Then, as we have seen in Example

1.1, one has the foliation (V,F) whose leaves are just the fibers of π. In this

case, of course, the group Diff(F) of leaf-preserving diffeomorphisms of V co-

incides with the group of bundle isomorphisms Diff(V, π) = {f : V → V |f ∈
Diff(V ), f ◦ π = π}.
Each subgroup Γ ≤ Diff(V, π) gives rise to a foliated Γ−manifold. In partic-

ular, if V is compact, g is a Riemannian metric on V , and f ∈ Diff(V, π) ∩
Iso(V, g), one may consider the topologically cyclic subgroup T generated by f

in Iso(V, g). The group T is, in general, a subgroup of Diff(M,F). However

it has got a dense subgroup Γ ≤ T which acts on (V,F) by leaf-preserving dif-

feomorphisms. Thus (V,F ,Γ) is a foliated Γ−manifold, such that each element

f ∈ Γ is an isometry of the chosen metric g and Γ is relatively compact in

Diff(M,F).

Example 1.8. Consider the setting explained in Example 1.4. Then it is obvi-

ous that G acts on (M,F) by leaf-preserving diffeomorphisms. Each subgroup

Γ ≤ G defines, by restriction, a foliated Γ−manifold. In particular, taking

Γ = T the maximal compact subgroup of G, one gets a foliated T−manifold

with compact acting group.

In next sections we will see further examples of foliated Γ−manifolds.

The diffeomorphisms groups introduced above are important. Indeed we will

see in the next section that the transverse structure of the foliation can be in

some sense constructed from the group expF .
Moreover if the foliation (M,F) is a foliated Γ-manifold, there are groupoids

modelling the transverse structure and encoding also the action by Γ.

1.3 The leaf space and the holonomy groupoid

The leaf space of a foliation reflects in some sense the transverse geometry of the

foliation itself. It is nowadays well known, for instance, that many topological

and geometrical invariants of the foliation, in particular those coming from Index

Theory, are encoded in the transverse structure of the foliation, modelled on

the leaf space. This section is thus devoted to introduce this transverse structure

for any foliated manifold.

As first attempt to describe the transverse geometry we use the leaf space of the

foliation. However the problem is that, even in the simplest examples, the leaf

space of a foliation is a very ill-behaved object. Thus to be able to extract the

informations in it, a very deep and poweful idea is to describe the transverse

geometry of the foliation modelling the leaf space with a groupoid (see, for

instance, [22], [39] or [38]).

In a following section we will associate operator algebras to the leaf space, using

one of the groupoids introduced in this section. These algebras are in general

highly noncommutative, showing the pathological behaviour of the leaf space.
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The construction, that is presented here, is heavily based on the paper [1].

Let (M,F) be a foliated manifold. Recall that we have defined the leaf space of

the foliated manifold to be the set

M/F = {L ⊆M : L ∈ F}

and we may define the projection

p : M →M/F (1.28)

which associates the leaf Lx ∈M/F through any point x ∈M.

Thus we can endow the leaf spaceM/F with the quotient topology. The simplest

examples show that the leaf space with this topology is so singular that it is in

practice useless.

The simplest example is perhaps the Kronecker foliation Fθ with irrational

slope θ on the 2−dimensional torus T 2. This is an example of a minimal foli-

ation, i.e. each leaf is dense in the ambient manifold T 2. Therefore it follows

by the definition of quotient topology that the only open sets of T 2/Fθ are the

empty set ∅ and the whole space. In other words the leaf space T 2/Fθ of the

Kronecker foliation (T 2,Fθ) is a trivial topological space.

This reflections force to look for a better model for the leaf space of a foliation.

It turns out that a very powerful description of it can be achieved through the

notion of groupoid.

Definition 1.17. A groupoid is a small category in which each arrow is invert-

ible.

As it is customary, a groupoid is denoted by G ⇒ G(0), where G(0) is the

set of objects and G is the set of arrows. The maps connecting G with G(0)

in the notation above are the source map s : G → G(0) and the target map

t : G→ G(0), defined for any γ : x→ y in G by

s(γ) = x (1.29)

and

t(γ) = y (1.30)

Since we are dealing with a category, we have a composition map

m : G(2) = {(γ, γ′) ∈ G×G|s(γ) = t(γ′)} → G (1.31)

given by the composition m(γ, γ′) = γγ′.

Moreover since each arrow is by definition invertible, one also has the bijec-

tion i : G→ G defined by

i(γ) = γ−1 (1.32)

and the so-called inclusion of the units u : G(0) ↪→ G defined by

u(x) = 1x (1.33)

where 1x : x→ x is the identity arrow.
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Definition 1.18. 1. A Lie groupoid is a groupoid G ⇒ G(0) such that G

and G(0) are smooth manifolds, all the structure maps defined above are

smooth, and s, t : G→ G(0) are submersions.

2. A Lie groupoid G⇒ G(0) is called étale if the source map s : G→ G(0) is

a local diffeomorphism.

Remark 1.5. If the source map is a local diffeomorphism, then it follows that

all other structure maps are also local diffeomorphisms.

Basic examples of groupoids are groups, equivalence relations and group ac-

tions on sets.

Examples of Lie groupoids are Lie groups, Lie group actions on manifolds, the

Haefliger groupoid Γn asociated with the pseudogroup of local diffeomorphisms

of Rn. For further examples, details and properties of Lie groupoids we refer to

[17], [11], [8] and [39].

In the rest of this section and in the next ones we will construct various Lie

groupoids naturally associated with a foliation (M,F). As already mentioned

at the beginning of the introduction we will use the deep methods developed in

[1].

Definition 1.19. 1. Let (M,F) be a foliated manifold. A bi-submersion of

(M,F) is a triple (V, t, s) consisting of a smooth manifold V together with

smooth maps t : V →M and s : V →M satisfying the following

(a) t and s are submersions on their image.

(b) t−1(F) = s−1(F), where these are the pullback foliations on V. We

will sometimes denote FV = s−1(F).

(c) C∞c (V, TFV ) = C∞c (V, kerds) + C∞c (V, kerdt)

2. A bi-submersion (V, t, s) is said to be leave-preserving if for any v ∈ V,

s(v) and t(v) lie in the same leaf.

Roughly speaking, a bi-submersion is a kind of ‘local Lie groupoid‘, which

allows to study the foliation locally. We will mainly deal with leave-preserving

bi-submersions.

Definition 1.20. Let (V, tV , sV ) and (W, tW , sW ) be bi-submersions of (M,F).

A morphism of bi-submersions f : (V, tV , sV ) → (W, tW , sW ) is a smooth map

f : V →W such that sV (v) = sW (f(v)) and tV (v) = tW (f(v)).

Before introducing the bi-submersions that are needed for constructing the

groupoids of a foliation, we observe some important features of bi-submersions.

In the next proposition, we will see that each bi-submersion of (M,F) has got

an inverse and, moreover, any two bi-submersions of (M,F) can be composed

to give another bi-submersion of (M,F).

Proposition 1.3.1. Let (M,F) a foliated manifold and (V, tV , sV ) and (W, tW , sW )

be bi-submersions of (M,F).
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1. The triple (V, sV , tV ) is a bi-submersion, which is called the inverse of

(V, tV , sV ). We will denote the inverse by V −1.

2. Set Z = VsV ×tW W = {(v, w) ∈ V ×W |sV = tW } and tZ = tV ◦ pr1

and sZ = sW ◦ pr2. Then (Z, tZ , sZ) is a bi-submersion, which is called

the composition of (V, tV , sV ) and (W, tW , sW ). The composition will be

denoted by V ◦W.

Proof. The proof of the first claim is obvious. For the second we refer to [1]

where all the details are given.

The proposition above suggests to consider families of bi-submersions which

are in some sense closed with respect to the operations above. More precisely

Definition 1.21. Let V = (Vi, ti, si)i∈I be a family of bi-submersions.

1. A bi-submersion (U, t, s) is said to be adapted to V if for all u ∈ U there

is an open neighbourhood W ⊆ U containing u, an index i ∈ I and a

morphism of bi-submersions f : W → Vi.

2. The family V of bi-submersions is called an atlas if

(a)
⋃
i∈I si(Vi) = M.

(b) The composition of any two elements of V is adapted to V.

(c) The inverse of any element of V is adapted to V.

3. Two atlases U and V are said to be equivalent if they are adapted to each

other, i.e. if every element of U is adapted to V and conversely every

element of V is adapted to U

The notion of atlas is crucial in the description of the holonomy groupoid

given in [1]. The point is that to any atlas one can associate a groupoid, i.e.

loosely speaking the groupoid of germs of bisections of the elements of the atlas.

In order to understand this let us give the following

Definition 1.22. Let (V, t, s) be a bi-submersion.

1. A bisection of (V, t, s) is a locally closed submanifold T ⊆ V such that the

restriction of both t and s is a diffeomorphism onto open subsets of M.

The local diffeomorphism defined by a bisection is

t|T ◦ s−1
|T : s(T )→ t(T ) (1.34)

2. A local diffeomorphism φ : Ω ⊆ M → M is carried by the bi-submersion

(V, t, s) at v ∈ V if there is a bisection T of (V, t, s) containing v whose

local diffeomorphism coincide with φ in a neighborhood of s(v).
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Remark 1.6. It follows directly from the definition that if a local diffeomor-

phism φ of (M,F) is carried by a bi-submersion, then φ must preserve the

foliation.

Moreover it is useful to observe that if two local diffeomorphisms φ and ψ

are carried respectively by (U, tU , sU ) at u ∈ U and (V, tV , sV ) at v ∈ V and

sU (u) = tV (v), then φ ◦ ψ is carried by the composition U ◦ V at (u, v).

Similarly the inverse of φ is carried by the inverse U−1 at u.

Therefore one may think of a bisection as a ‘geometric realization‘ of a local

diffeomorphism preserving the foliation. Given any bi-submersion (V, t, s) and

any point v ∈ V, there exists a bisection T containing v. For a proof of this see [1].

Proposition 1.3.2. Let (M,F) a foliated manifold and let dim M = n, dimF =

p and codimF = n− p = q. Moreover let x ∈M.

1. (bi-submersions near the identities) Let X1, ..., Xp ∈ C∞c (M,TF) be vector

fields tangent to the foliation which are a local base frame for TF around

x. For all λ ∈ Rp and all y ∈M, set φ(λ, y) = exp(
∑
i λiXi)(y) ∈ expF .

Define Ω0 = Rp×M, the submersions s0(λ, y) = y and t0(λ, y) = φ(λ, y).

Then there exists an open neighborhood Ω ⊆ Ω0 of (0, x) such that (Ω, t =

t0|Ω , s = s0|Ω) is a bi-submersion.

2. (minimality) If (V, t, s) is another bi-submersion carrying the identity at

v ∈ V with s(v) = x, then there is an open neighborhood V ′ ⊆ V of v and

a local morphism of bi-submersions π : V ′ → Ω which is a submersion

and π(v) = (0, x).

Proof. We refer to [1] Proposition 2.10 for a detailed proof of the above result.

We will sometimes call identity bi-submersion, each of the bi-submersions

constructed in 1.3.2 1).

Corollary 1.3.3. 1. If O ⊆ M is an open neighborhood of x and φ : O →
Ω′ is a local diffeomorphism preserving the foliation, then there is a bi-

submersion (V, t, s) carrying φ at a point v ∈ V such that s(v) = x.

2. If two bi-submersions (U, tU , sU ) and (V, tV , sV ) carry the same local dif-

feomorphism φ respectively at u ∈ U and v ∈ V, then there exists an open

neighborhhood U ′ of u and a local morphism of bi-submersions f : U ′ ⊆
U → V such that f(u) = v.

3. If there is a local morphism of bi-submersions h : V ′ ⊆ V → U with

h(v) = u for a point v ∈ V ′, then there is an open neighborhood U ′ ⊆ U

of the point u and a morphism of bi-submersions f : U ′ → V so that

f(u) = v.
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Proof. 1) Consider the point x ∈ M and construct a bi-submersion (Ω, t, s)

as constructed in 1.3.2 1) around x. This bi-submersion carries the identity at

(0, x). Now up to reducing Ω we can suppose that t(Ω) ⊆ O. Thus (Ω,φ ◦ t, s)
is a bi-submersion carrying (a restriction of) φ at (0, x).

2)As in 1) up to reducing U and V we have that tU (U) and tV (V ) are con-

tained in the range of φ. Thus we can form new bi-submersions (U, φ−1 ◦ tU , sU )

and (V, φ−1 ◦ tV , sV ) which by construction carry the identity diffeomorphism

respectively at u ∈ U and v ∈ V. Now setting sU (u) = sV (v) = x, consider

the identity bi-submersion (Ω, t, s) around x. We know from 1.3.2 2) that there

exist open neighborhhoods Ũ ⊆ U of u and Ṽ ⊆ V of v and morphisms of

bi-submersions h : Ũ → Ω and k : Ṽ → Ωwith h(u) = k(v) = (0, x) that are

also submersions. Taking now a local section s of k such that s(0, x) = v, up to

reducing Ũ we may assume the range of h to be contained in the domain of s.

Then we can set f = s ◦ h.

3) Consider a bisection T ⊆ V through v ∈ V ′ and let ψ the local diffeo-

morphism associated to T. Since h is a morphism of bi-submersions, h(T ) is a

bi-section of U through h(v) = u and its associated diffeomorphism is ψ again,

because h commutes with s and t. Applying now 2), the claim follows.

Remark 1.7. It is important to note that in the identity bi-submersions con-

structed in 1.3.2 1) the target submersion t : Ω → M is defined by leave-

preserving diffeomorphisms in the group expF . (see section 1.2).

Remark 1.8. It is useful to note that the composition of identity bi-submersions

can be described in a very simple form. Indeed, if (Ω1, t1, s1) and (Ω2, t2, s2)

are two identity bi-submersions around, respectively, the points x1 and x2, their

composition Ω2 ◦Ω1 is by definition the set

{(λ2, y2), (λ1, y1) ∈ Ω2 ×Ω1| exp(
∑

λ1
iXi)(y

1) = y2} ⊆ Ω2 ×Ω1.

It is evident that the component y2 is determined by the components λ1 and

y1. Hence Ω2 ◦Ω1 can be canonically identified with the open set

{(λ2, λ1, y1)| (λ2, exp(
∑

λ1
iXi)(y

1) ∈ Ω2, (λ
1, y1) ∈ Ω1) ⊆ Rp × Rp ×M

(1.35)

In what follows we will freely use both descriptions, wherever needed.

Let φ : Ω → Ω′ be a local diffeomorphism preserving the foliation, (V, t, s)

be a bi-submersion and x ∈ Ω. Suppose that t(V ) is contained in the domain

of φ. Then, as we did in the proof of corollary 1.3.3 1), we may define a new

bi-submersion (V, φ ◦ t, s).

Definition 1.23. The bi-submersion (V, φ ◦ t, s) is said to be twisted by the

diffeomorphism φ.
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Let (M,F) be a foliated manifold and take a cover of M by identity bi-

submersions {(Ωi, ti, si)}i∈I as given in 1.3.2 1). We consider the atlas Uτ
generated by those.

Moreover we consider also the maximal atlas U generated by all bi-submersions

of this form.

Definition 1.24. As in [1] we will call the atlas U the path holonomy atlas and

Uτ the path holonomy atlas associated to the cover {(Ωi, ti, si)}

The crucial theorem, valid for any atlas of bi-submersions, is the following

Theorem 1.3.4. Let V = (Vi, ti, si)i∈I be an atlas.

1. There is a natural equivalence relation on the manifold
⊔
i∈I Vi given by:

Vi 3 u ∼ v ∈ Vj if and only if there is an open neighborhhood V ′ ⊆ Vi of u

and a morphism of bi-submersion f : V ′ → Vj so that f(u) = v. We denote

the set of equivalence classes by GV and by π = (πi) :
⊔
i∈I Vi → GV the

quotient map.

2. There are two maps s, t : GV →M, such that s ◦ πi = si and t ◦ πi = ti.

3. GV is a groupoid with space of objects given by M and source and target

maps given respectively by s and t. Moreover (GV , t, s) is a topological

groupoid if endowed with the quotient topology.

Proof. 1). The relation ∼ defined on
⊔
i∈I Vi is an equivalence realtion. Indeed,

the reflexivity and transitivity are clear. The fact that it is symmetric follows

from Corollary 1.3.3 3).

2). Let us observe first that if Vi 3 u ∼ v ∈ Vj , then si(u) = sj(v) ∈M and

ti(u) = tj(v) ∈M. Thus we define the surjective map s : GV →M by

GV 3 [u] 7→ si(u) ∈M (1.36)

if u ∈ Vi is a representative of the element [u] ∈ GV . From the observation

above we know that this map is well defined. Moreover it is also clear, from the

definition, that for all i ∈ I and v ∈ Vi, s(πi(v)) = si(v).

For the map t : GV →M the proof is the same.

3). Let [u], [v] ∈ GV such that t([u]) = s([v]). This means that, if u ∈ Vi and

v ∈ Vj , one has

ti(u) = sj(v) (1.37)

Consider the composition Vj◦Vi of bi-submersions and notice that (v, u) ∈ Vj◦Vi.
Since Vj ◦Vi is adapted to the atlas, there is the quotient map (see [1] for further

details)

πVj◦Vi : Vj ◦ Vi → GV (1.38)

We define the composition of the elements [u] and [v] by

[v] · [u] := πVj◦Vi(v, u). (1.39)
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This definition is well-posed. In fact, let us give (W, t, s) and (Z, t′, s′), bi-

submersions adapted to V, and w ∈W, z ∈ Z such that

πW (w) = πi(u) = [u] πZ(z) = πj(v) = [v].

A very important consequence of Corollary 1.3.3 is that, for any two bi-submersions

(E, t, s) and (F, t′, s′) adapted to the atlas V and points e ∈ E and f ∈ F, one

has πE(e) = πF (f) if and only if there exists a local diffeomorphism carried

both by E at e and by F at f.

Therefore, there is a local diffeomorphisms ψ carried both by W at w and by

Vi at u, and, analogously, there is a local diffeomorphism φ carried both by Z

at z and by Vj at v.

From 1.37 it follows now that these local diffeomorphisms can be locally com-

posed and from Remark 1.6 one deduces that Z ◦W and Vj ◦ Vi carry the same

diffeomorphism respectively at (z, w) and (v, u), namely the composition ψ ◦ φ
defined on a suitable open set. Thus it follows from Corollary 1.3.3 that

πZ◦W (z, w) = πVj◦Vi(v, u).

This proves that the composition is well defined. Now it is quite simple to check

that GV endowed with the maps s, t and with the composition just defined is a

groupoid.

Finally, if one induces the quotient topology on GV through the quotient map

π :
⊔
i∈I Vi → GV it is clear that all the structural maps of the groupoid

become continuous with respect to this topology. Then (GV , t, s) is a topological

groupoid.

Definition 1.25. Given a foliated manifold (M,F), the holonomy groupoid

H(M,F) of (M,F) is the groupoid GU associated to the path holonomy atlas

U .

If there is no need to specify explicitly the manifold M we will also denote

the holonomy groupoid H(F).

There is another description of the holonomy groupoid of a foliation, given

by Winkelnkemper in [47]. Let us sketch it, as well.

Let x, y ∈ M be two points lying in the same leaf L and let α : [0, 1] → L a

continuous path in the leaf connecting x with y. Since the foliation (M,F)

is defined by a maximal regular foliated atlas, we can find foliated charts

{(U0, x0, y0), (U1, x1, y1), ..., (Ul, xl, yl} such that

1. x ∈ U0 and y ∈ Ul.

2. Ui ∩ Ui+1 6= ∅ for any i = 0, ...l − 1.

3. there is a subdivision {0 = t0 < t1 < ... < tl = 1} of [0, 1] such that

α([ti, ti+1]) ⊆ Ui.
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4. each plaque P ⊆ Ui intersects at most one plaque Q ⊆ Ui+1.

Since α is a leafwise path and by 3) above, it follows immediately that there

is a plaque chain {P0, P1, ..., Pl} connecting x ∈ P0 and y ∈ Pl and such that

α([ti, ti+1]) ⊆ Pi ⊆ Ui.
Consider now local transversals Tx at x and Ty at y. Denoting γi,i+1 the trans-

verse coordinate maps between the foliated charts Ui and Ui+1, as in Remark

1.1, one sees that the composition

hα := γl−1,l ◦ γl−2,l−1 ◦ ... ◦ γ1,0 (1.40)

is a local diffeomorphism defined on a suitable open neighborhood of x in Tx onto

an open neighborhood of y in Ty so that hα(x) = y. Such a local diffeomorphism

is called a holonomy transformation.

A holonomy transformation depends on all the choices we have done for defining

it. However the germ (hα)x of hα at x satisfies the following important feature.

Proposition 1.3.5. The germ (hα)x of the holonomy transformation hα de-

pends only on the homotopy class [α] of the path α in the leaf L (rel ∂α ).

For a proof of this result we refer to [11], chapter 2. , pag. 60.

Consider, now, the space C([0, 1],F) of all continuous (with respect to the leaf

topology) leafwise paths. This space has got a partially defined multiplication

simply given by concatenation of paths.

Definition 1.26. [47] The holonomy groupoid Graph(M,F) of the foliated

manifold (M,F) is the quotient of C([0, 1],F) by the following equivalence rela-

tion. Two paths α and β are equivalent if and only if they have the same initial

point α(0) = β(0) = x and terminal point α(1) = β(1) = y and if their germinal

holonomies at x coincide, i.e. (hα)x = (hβ)x.

The set Graph(M,F) is a groupoid with space of objects Graph(M,F)(0) =

M . The source and range maps s, t : Graph(M,F) → M are defined, respec-

tively, by s([α]) = α(0) and t([α]) = α(1). These are well defined. Moreover the

partially defined multiplication on C([0, 1],F) descends to a partially defined

multiplication on Graph(M,F). Thus [α], [β] ∈ Graph(M,F) are composable

if and only if t([α]) = s([β]) and, in this case, [β] · [α] can be representated by

the concatenation of the paths α and β.

Proposition 1.3.6. ([47]) Let (M,F) be a foliated manifold of dimension

dimF = p and codimension codimF = q. The holonomy groupoid Graph(M,F)

of (M,F) is a not necessarily Hausdorff Lie groupoid of dimension 2dimF +

codimF .

We will prove this proposition in the next section in the more general case

of twisted holonomy groupoids.

Given a foliated manifold (M,F) we have now two a priori different ”holonomy

groupoids”, namely H(F) and Graph(M,F). The following theorem provides

that there is a unique holonomy groupoid for the foliation (M,F).
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Theorem 1.3.7. ([1]) The holonomy groupoid H(F) coincides with the groupoid

Graph(M,F) defined by Winkelnkemper. In particular H(F) is a Lie groupoid.

From now on we will denote the holonomy groupoid of (M,F) by H(M,F)

or, simpler, H(F) and H, if there is no confusion.

It is very important to have different descriptions for the holonomy groupoid.

Even if it is technically more involved, the description through bi-submersions

allows to attach a holonomy groupoid to any singular foliation. For details

about this point see [1].

Besides it follows from the above theorem and remark 1.7 that the holonomy

groupoid is built out of elements of the group expF . In other words, the holon-

omy transformations, whose germs are the elements of the holonomy groupoid,

are restrictions of diffeomorphisms of expF to foliated charts (and thus to lo-

cal transversals). This has led us to construct twisted holonomy groupoids, i.e.

groupoids that contain also germs of leave-preserving diffeomorphisms not nec-

essarily belonging to the group expF . For details of the construction, remarks

and applications we refer to the next sections.

On the other side, the approach using paths shows other features and advan-

tages. For instance, the relationship between the monodromy groupoid of the

foliation and the holonomy groupoid is clear through this description (see [19],

Proposition 1). In the following, we will freely use both descriptions, whenever

it will be needed.

We end up this section with a simple example.

Example 1.9. Let (M,F) be a simple foliation, as given in 1.1. Thus, the

manifold M is the total space of a locally trivial fibration with bundle projection

denoted by π : M → B and typical fiber F. For simplicity, we assume F to be

connected. The leaves of F are, by definition, the fibers π−1(b), for all b ∈ B.
In this case, the holonomy groupoid is isomorphic to the equivalence relation

RF of (M,F) given by ”lying in the same leaf” (see 1.4). The equivalence

relation RF is given by the fibred product

M ×B M = {(x, y) ∈M ×M |π(x) = π(y)} (1.41)

In the case of a simple foliation, this is a Lie groupoid with target and source

maps, respectively, the first and second projection. Now, since the fiber bundle

is locally trivial, there is no nontrivial holonomy, so that each element of the

holonomy groupoid is completely determined by its source and target points,

determining therefore a unique element of RF .
More generally, if a foliated manifold (M,F) is without holonomy, the holonomy

groupoid is nothing else but the equivalence relation of the foliation.

1.4 Holonomy groupoid of a foliated Γ−manifold

Let Γ be a (not necessarily compact nor connected) Lie group and (M,F ,Γ) a fo-

liated Γ−manifold. Take a cover ofM by identity bi-submersions {(Ωi, ti, si)}i∈I
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as given in 1.3.2 1).

The idea is to twist (see definition 1.23) each bi-submersion (Ωi, ti, si) with the

leave-preserving diffeomorphisms defined by the elements of Γ. More precisely

we consider the family of bi-submersions

{(Ωi, g ◦ ti, si)|i ∈ I, g ∈ Γ} (1.42)

Since each g acts as leave-preserving diffeomorphisms, each element in the family

1.42 is a leave-preserving bi-submersion.

Notice also that the identity element g = 1 ∈ Γ does twist trivially the bi-

submersions and therefore {(Ωi, ti, si)}i∈I ⊆ {(Ωi, g ◦ ti, si)|i ∈ I, g ∈ Γ}.
Let us consider now the atlas UΓ

τ generated by the family of bi-submersions

given by 1.42 and UΓ the associated maximal atlas.

We will refer to UΓ as the path holonomy atlas twisted by Γ, or simply by the

twisted path holonomy atlas.

Remark 1.9. It is important to note that the group < exp(F),Γ >⊆ Diff(F),

generated by exp(F) and Γ, enters the definition of the twisted path holonomy

atlas. Indeed, it follows from the definition of composition of bi-submersions

(cf. Proposition 1.3.1) that composing any two twisted bi-submersions (Ω1, g ◦
t1, s1), (Ω2, g ◦ t2, s2) ∈ UΓ, one gets a bi-submersion whose source and target

maps are some suitable element of < exp(F),Γ > .

Lemma 1.4.1. 1. The path holonomy atlas U ⊆ UΓ.

2. Let us denote by H(F ,Γ) ⇒ M the groupoid associated with the twisted

holonomy atlas UΓ. This is a topological groupoid with source and target

maps, respectively, denoted by sΓ
F and tΓF

3. The holonomy groupoid H(F) is a subgroupoid of H(F ,Γ).

Proof. The first claim is an immediate consequence of the inclusion

{(Ωi, ti, si)}i∈I ⊆ {(Ωi, g ◦ ti, si)|i ∈ I, g ∈ Γ}.

The second follows immediately from theorem 1.3.4.

Let us now prove 3). By point 1) we know, in particular, that the path holonomy

atlas is adapted to the twisted path holonomy atlas. Therefore one obtains a

natural map j : H(F)→ H(F ,Γ), which sends each element [u] ∈ H(F) to the

corresponding element [u]Γ ∈ H(F ,Γ). This map is a morphism of groupoids, or,

equivalently, a functor between H(F) and H(F ,Γ). Indeed, let [u] ∈ H(F) be

represented by the point u in the bi-submersion (U, t, s). Then, as consequence

of 1), j([u]) = [u]Γ ∈ H(F ,Γ) can be represented by the same point u ∈ U. Thus

sΓ
F (j([u])) = sΓ

F ([u]Γ) = s(u) = sF ([u]).

The same argument, applied to the target maps, yields that tΓF ◦ j = tF . It is

also immediate to verify that j([v][u]) = j([v])j([u]), applying the definition of

composition given by the formula 1.39.

Moreover, it is straightforward from the definition of groupoid associated with

an atlas that this morphism is injective.
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Definition 1.27. The groupoidH(F ,Γ) is called the holonomy groupoid twisted

by Γ, or, simpler, the twisted holonomy groupoid, if there is no need to specify

the group Γ.

Proposition 1.4.2. 1. The twisted holonomy groupoid H(F ,Γ) ⇒ M has

the structure of a not necessarily Hausdorff C∞ manifold of dimension

2 dimF + codimF with respect to the quotient topology.

2. All the structural maps of H(F ,Γ) are smooth. Moreover, the source

and target maps tΓF , s
Γ
F : H(F ,Γ) → M are smooth submersions, mak-

ing H(F ,Γ) into a Lie groupoid.

Proof. Let g ∈ H(F ,Γ), with sΓ
F (g) = x and tΓF (g) = y.

Then there is a bi-submersion (W, tW , sW ) in the twisted path holonomy atlas

and a point w ∈W such that

πW (w) = g

where πW : W → G is the quotient map.

Recall that given any bi-submersion (U, t, s) and a point u ∈ U , there exists al-

ways a bisection S ⊆ U containing u (cf. [1], Proposition 2.7). Then, let T ⊆W
be a bisection through w and let φ : sW (T )→ tW (T ) the local diffeomorphism

associated with T. Notice that x ∈ sW (T ) and y ∈ tW (T ).

Choose compactly supported vector fields X1, . . . , Xp tangent to the foliation

such that (X1)x, . . . , (Xp)x form a basis of TxF . By Proposition 1.3.2, there

exists a bi-submersion (Ω0, t0, s0) satisfying the following properties

1. (Ω0, t0, s0) is in the twisted path holonomy atlas.

2. The bi-submersion is minimal, i.e. dimΩ0 = 2 dimF + codimF .

3. s0(λ, y) = y for all (λ, y) ∈ Ω0. In particular s0(0, x) = x = sW (w).

4. (Ω0, t0, s0) carries the identity at (0, x).

Now, put Ω′ = {p ∈ Ω0|t0(p) ∈ sW (T )}, s′ = (s0)|Ω′ and t′ = (t0)|Ω′ and twist

this bi-submersion with the diffeomorphism φ.

Thus, the twisted bi-submersion (Ω′, φ · t′, s′) carries at (0, x) the same diffeo-

morphism carried by (W, tW , sW ) at w. By Corollary 1.3.3 2), we deduce that

there exists an open neighborhood Ω ⊆ Ω′ of (0, x) and a morphism of bi-

submersions f : Ω →W such that f(0, x) = w.

Setting t = t′|Ω and s = s′|Ω , we have, therefore, obtained a bi-submersion

(Ω,φ · t, s) adapted to the twisted path holonomy atlas.

Claim 1. There is an open neighborhood Bp × U ⊆ Ω of (0, x) such that,

for all y ∈ U, the target map (φ · t)|Bp×{y} : Bp×{y} → Ly is a diffeomorphism

onto its image. Here Ly denotes the leaf through y.
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Being φ ∈ Diff(F), we only have to prove that

t|Bp×{y} = expy : Bp × {y} → Ly

is a diffeomorphism onto its image for a suitable open ball Bp ⊆ Rp and open

neighborhood U of x.

Since the vector fields X1, . . . , Xp form a basis at x, there exists an open co-

ordinate neighborhood O′ ⊆ M of x, such that X1, . . . , Xp form a basis of TF
at each point y ∈ O′ and the Lie algebra of all smooth vector fields on O′

tangent to the foliation is generated by X1, . . . , Xp (see [1]). We assume that

x = (0, 0, . . . , 0) with respect to the coordinates yi on O′.

By the proof of the Frobenius theorem 1.1.2, we may further assume that on

O′ the vector fields commute with each other, i.e. [Xi, Xj ] = 0. Thus, there is

an open subset O ⊆ O′ containing x and an open set Bpε (0)×Bqε′(0) ⊆ Rp ×Rq

such that the map

(λ1, . . . , λp, yp+1, . . . , yp+q)→ exp(
∑
i

λiXi)(0, . . . , 0, yp+1, . . . , yp+q) (1.43)

defines a diffeomorphism Ψ : Bpε (0)×Bqε′(0) ' O. Thus O is a foliated chart.

Now, there is an open disc Bp ⊆ Bpε (0) containing 0 and an open subset U ⊆ O
containing x such that Bp × U ⊆ Ω and t(Bp × U) ⊆ O. Moreover, for any

y ∈ U

expy : Bp × {y} → Ly (1.44)

is a diffeomorphism onto its image. �

Since (Ω,φ · t, s) is adapted to the twisted path holonomy atlas, one has the

corresponding quotient map

πΩ : Ω → H(F ,Γ) (1.45)

such that πΩ(0, x) = πW (w) = g.

Claim 2. If Ω = Bp × U, as given in Claim 1, then πΩ is injective.

We have to prove that ∀(λ, y), (µ, z) ∈ Ω

πΩ(λ, y) = πΩ(µ, z) =⇒ (λ, y) = (µ, z) (1.46)

Denoting with sΓ
F the source map of the twisted holonomy groupoid H(F ,Γ),

one has by Proposition 3.2. c) in [1] and by 1.46, that

y = s(λ, y) = sΓ
F (πΩ(λ, y)) = sΓ

F (πΩ(µ, z)) = s(µ, z) = z (1.47)

It remains to prove that πΩ(λ, y) = πΩ(µ, y) =⇒ λ = µ. Again by Proposition

3.2. c) in [1], one also knows that tΓF ◦πΩ = φ ·t. Therefore one has the following
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commutative diagram

Bp × {y} πΩ−−→ H(F ,Γ)

↓ φ · t � ↓ tΓF
Ly

id−→ Ly

Now, it follows from Claim 1 that the vertical arrow Bp×{y} → Ly is injective

for any y ∈ U. This implies that πΩ is injective. �

Define a coordinate chart around g in H(F ,Γ) to be the image

U(g) = πΩ(Ω) ⊆ H(F ,Γ), (1.48)

where Ω is chosen as in Claim 1.

Claim 3. U(g) is an open set of H(F ,Γ) with respect to the quotient topol-

ogy.

We have to prove that, for all bi-submersions Ωi in the twisted path holon-

omy atlas, π−1
i (U(g)) ⊆ Ωi is an open subset.

Consider a bi-submersion (Ωi, ti, si) in the twisted path holonomy atlas such

that

π−1
i (U(g)) = O ⊆ Ωi.

Let p ∈ O and consider πi(p) ∈ U(g). Since Ω
πΩ−−→ U(g) is a bijection, there is

a unique point a ∈ Ω such that πΩ(a) = πi(p).

By Corollary 1.3.3, there is an open neighborhood O′ ⊆ Ωi containing p and a

morphism of bi-submersions

f : O′ ⊆ Ωi → Ω

such that f(p) = a. By Proposition 3.2 c) of [1], for all q ∈ O′

πΩ(f(q)) = πi(q)

and, since πΩ is bijective, it follows that

πi(O
′) ⊆ U(g) (1.49)

and

O′ ⊆ O (1.50)

Therefore, each point p ∈ O is internal and O is an open set in Ωi. This proves

that U(g) is open in H(F ,Γ) with respect to the quotient topology. �

Now, we want to prove that the coordinate changes are diffeomorphisms.

Let g, g′ ∈ H(F ,Γ) and U(g) and U(g′) coordinate charts around g and g′,

respectively, such that U(g) ∩ U(g′) 6= ∅. Let γ ∈ U(g) ∩ U(g′) with source
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sΓ
F (γ) = p and target tΓF (γ) = q.

By construction, there exist two bi-submersions (Bpε ×U, t, s) and (Bpη×V, t′, s′)
such that

π : Bpε × U
'−→ U(g) (1.51)

ρ : Bpη × V
'−→ U(g′) (1.52)

Since the open sets U and V are foliated charts, we have foliated coordinates

on them, defined by the diffeomorphisms φ1 : Bpε′ × T ' U and, respectively,

φ2 : Bpη′ × S ' V. With a small abuse of notation, we will think of U and V as

open subsets of Rp×Rq via these diffeomorphisms. Furthermore, we will denote

the compositions π ◦ (id× φ1) and ρ ◦ (id× φ2), respectively, by π and ρ again.

The coordinate change map is, now, given by

ψ = ρ−1 ◦ π : V1 → V2 (1.53)

where V1 = π−1(U(g) ∩ U(g′)) and V2 = ρ−1(U(g) ∩ U(g′)).

The construction of the coordinate neighborhoods U(g) and U(g′) shows that

sΓ
F (U(g)) = U and sΓ

F (U(g′)) = V are foliated charts, whose intersection con-

tains sΓ
F (γ) = p and, analogously, tΓF (U(g)) and tΓF (U(g′)) are foliated charts,

whose intersection contains tΓF (γ) = q.

Now, notice that ψ commutes with the source and target maps on the bi-

submersions. Indeed,

s′ ◦ ψ = (sΓ
F ◦ ρ) ◦ ψ = sΓ

F ◦ π = s.

The computation for the target is the same. Thus, one has the following com-

mutative diagrams

V1
s−→ sΓ

F (U(g)) ∩ sΓ
F (U(g′))

↓ ψ � ‖
V2

s′−→ sΓ
F (U(g)) ∩ sΓ

F (U(g′))

and
V1

t−→ tΓF (U(g)) ∩ tΓF (U(g′))

↓ ψ � ‖
V2

t′−→ tΓF (U(g)) ∩ tΓF (U(g′))

Hence, if the coordinate change map between the foliated charts sΓ
F (U(g)) and

sΓ
F (U(g′)) is given by φ(a, z) = (α(a, z), β(z)) and that between the foliated

charts tΓF (U(g)) and tΓF (U(g′)) is θ(b, z) = (δ(b, z), β(z)), we deduce that

ψ(λ1, µ1, z) = (δ(λ1, z), α(µ1, z), β(z)). (1.54)

which shows that ψ is a diffeomorphism between V1 and V2. This completes the

proof of 1).

Let us now prove 2). From the definition of the coordinate charts, it is not

difficult to realize that the source and the target maps sΓ
F , t

Γ
F : H(F ,Γ) → M
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are smooth submersions. Indeed, for any γ ∈ H(F ,Γ), one has a coordinate

neighborhood U(γ) around γ diffeomorphic to Bpε × B
p
ε′ × T. The source and

target maps restricted to U(γ) take the form

sΓ
F (λ, µ, z) = (µ, z) (1.55)

and

tΓF (λ, µ, z) = (λ, z) (1.56)

Analogously, the product of two composable elements g1 = (λ1, µ1, z) and g2 =

(µ1, µ2, z) is given in coordinates by the formula

(λ1, µ1, z) · (µ1, µ2, z) = (λ1, µ2, z) (1.57)

For the unit map u : M → H(F ,Γ) and the inverse map i : H(F ,Γ)→ H(F ,Γ)

the proof is similar.

Remark 1.10. Considering, in particular, the trivial group Γ = {1}, we have

explicitly proved that the holonomy groupoid H(F) is a Lie groupoid of dimen-

sion 2 dimF + codimF , as stated in 1.3.6.

Proposition 1.4.3. The holonomy groupoid H(F) is an open Lie subgroupoid

of H(F ,Γ).

Proof. Let us consider the inclusion j : H(F) → H(F ,Γ) as defined in the

proof of Lemma 1.4.1. Let us first notice that j is continuous with respect to

the quotient topologies defined on H(F) and H(F ,Γ). This follows immediately

from the commutative diagram

U ↪→ UΓ

π ↓ � ↓ πΓ

H(F)
j−→ H(F ,Γ)

Furthermore, j is a local diffeomorphism. Indeed, let [u] be an element of H(F)

and consider j([u]) = [u]Γ ∈ H(F ,Γ). Then, there is a coordinate neighborhood

U([u]) ⊆ H(F) of [u] and a coordinate neighborhood U([u]Γ) ⊆ H(F ,Γ) of

[u]Γ such that j(U([u])) ⊆ U([u]Γ). Since sΓ
F ◦ j = sF , by Lemma 1.4.1), we

deduce that sF (U([u])) and sΓ
F (U([u]Γ)) are coordinate neighborhoods around

the same point sΓ
F ([u]Γ) = sF ([u]) such that sF (U([u]) ⊆ sΓ

F (U([u]Γ)). Similarly,

the formula tΓF ◦ j = tF implies that tF (U([u])) ⊆ tΓF (U([u]Γ)) and both are

coordinate charts around the point tF ([u]).

If the coordinates on sΓ
F (U([u]Γ)) are denoted by (µ, z) and those on tΓF (U([u]Γ))

by (λ, z), we have that the coordinates on U([u]Γ) are given by (λ, µ, z). By

restriction, each point of U([u]) is expressed by the same coordinates.

In these coordinates j takes the form

j(λ, µ, z) = (λ, µ, z) ∈ H(F ,Γ) (1.58)

for any point (λ, µ, z) ∈ H(F). Therefore, it is clearly smooth.

Moreover, one gets from the above expression that j is an immersion for all
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[u] ∈ H(F) and, thus, a local diffeomorphism, since the holonomy groupoid

H(F) and the twisted holonomy groupoid H(F ,Γ) have the same dimension.

Now, knowing that j : H(F) ↪→ H(F ,Γ) is a local diffeomorphism, it follows

quite easily that j(H(F)) ⊆ H(F ,Γ) is open. In fact, let us take any point

[v] ∈ j(H(F)). Then, there is a unique point [u] ∈ H(F) such that j([u]) = [v].

Since j is a local diffeomorphism, there are open neighborhoods U of [u] in H(F)

and V of [v] in H(F ,Γ) such that j|U : U → V is a diffeomorphism. This shows

that V ⊆ j(H(F)) and, thus, that each point of j(H(F)) is internal.

Recall that, for an arbitrary Lie groupoid G ⇒ M, there exists always an

open s−connected Lie subgroupoid of G, obtained by taking the connected

components of the units with respect to the s−fibers. This open subgroupoid is

called the s−connected component of the identities and it is denoted by Cs(G).

By the above proposition, one has therefore that j(H(F)) ⊆ Cs(H(F ,Γ)).

Let us now briefly recall the definition of the Lie algebroid g associated to a Lie

groupoid G over M.

Since the source map s : G → M is a submersion, one considers the vector

bundle ker(ds : TG→ TM) of s−vertical tangent vectors on G, i.e. all tangent

vectors v ∈ TG such that ds(v) = 0. Its restriction along the unit map u of

the groupoid is denoted by g and is a vector bundle on M. Equivalently, g is

the vector bundle
⋃
x∈M T1x(Gx) on M. The bundle morphism given by the

differential dt of the target map t : G→M is called the anchor map. Moreover,

the space of smooth sections C∞(M, g) is naturally endowed with a Lie bracket.

The triple (g, [·, ·], dt) is the Lie algebroid of G. We will, more briefly, denote

the Lie algebroid with g. For further properties concerning Lie algebroids, we

refer to [39] and [38].

A Lie groupoid G over M is called a foliation groupoid if its Lie algebroid g has

injective anchor map ( see [19]).

Theorem 1.4.4. The Lie groupoid H(F ,Γ) over M is a foliation groupoid with

Lie algebroid isomorphic to the vector bundle F = TF tangent to the foliation.

In particular, for every x ∈ M, the isotropy groups H(F ,Γ)xx are discrete and

the holonomy groups H(F)xx are subgroups of H(F ,Γ)xx.

Proof. Let h(F ,Γ) denote the Lie algebroid of H(F ,Γ).

It is known that the Lie algebroid of the holonomy groupoid H(F) is isomorphic

to vector bundle F = TF on M tangent to the foliation (see, for instance, [39],

pag. 152, for a proof). Therefore, by a small abuse of notation, we will denote

the Lie algebroid of H(F) by F.

We want to prove that h(F ,Γ) ∼= F.

Let j : H(F) ↪→ H(F ,Γ). By Lemma 1.4.1, we know that sΓ
F ◦ j = sF . This

implies that

dsΓ
F ◦ dj = dsF .

Then

dj : ker(dsF )→ ker(dsΓ
F ) (1.59)
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Moreover, since j ◦ uF = uΓ
F , one gets that

j∗ = dj|M : F → h(F ,Γ) (1.60)

is a morphism of Lie algebroid (see [38], section 3.5.)

Now, by Proposition 1.4.3 j is a local diffeomorphism. Then, it follows that

j∗ : F → h(F ,Γ) must be a bundle isomorphism.

In particular, the Lie algebroid h(F ,Γ) has injective anchor map, which means,

by the characterisation theorem in [19], that H(F ,Γ) is a foliation groupoid.

This completes the proof.

One of the crucial features of the holonomy groupoid is its action on local

transversal submanifolds. Indeed, each element γ ∈ H(F), γ : x → y records

a unique germ at x of a locally defined diffeomorphism between two transverse

submanifolds Tx through x and Ty through y. This germ from x to y is the

holonomy carried by the element γ and any representative is called a holonomy

transformation. Furthermore this action gives rise to an action of the holonomy

groupoid on the normal bundle ν of the foliation, by taking the differential of

the holonomy associated to every γ ∈ H(F). We refer to [39], [11] and [12] for

details and for many consequences this important notion.

Now, we want to show that this action of the holonomy groupoid, and its lin-

earization, extends naturally to the twisted holonomy groupoid, giving rise to

more general holonomies determined by the elements of the group Γ.

Theorem 1.4.5. Let (M,F ,Γ) be a foliated Γ−manifold. For any two points

x, y ∈ M lying in the same leaf L let us choose connected local transversals

Tx at x and Ty at y and denote by Diffx(Tx, Ty) the group of germs of local

diffeomorphisms mapping (Tx, x) to (Ty, y). Then there exists a well defined map

Λ
Ty
Tx

: H(F ,Γ)yx → Diffx(Tx, Ty) (1.61)

such that

1. ΛTzTx(γ1γ2) = ΛTzTy (γ1)Λ
Ty
Tx

(γ2) for every γ1, γ2 ∈ H(F ,Γ) with γ1 : z → y

and γ2 : x→ y. In particular, for every x ∈M the map

ΛTxTx : H(F ,Γ)xx → Diffx(Tx, Tx)

is a group homomorphism.

2. Λ
Ty
Tx

is injective for all x, y ∈M.

Proof. Given connected local transversal submanifolds Tx at x and Ty at y, we

set T = Tx∪Ty and consider the subgroupoid H(F ,Γ)TT ⊆ H(F ,Γ). By theorem

1.4.4 H(F ,Γ) is a foliation groupoid in the sense of [19] and, consequently, one

knows that H(F ,Γ)TT is an étale groupoid (see [19], Lemma 2), i.e. the source

and target maps restricted to H(F ,Γ)TT are local diffeomorphisms. Therefore,

for all γ ∈ H(F ,Γ)yx we define

Λ
Ty
Tx

(γ) = (t ◦ (s|U )−1)x (1.62)
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where U is an arbitrary connected open neighborhood of γ in the étale groupoid

H(F ,Γ)TT such that both s|U and t|U are diffeomorphisms onto suitable open

sets of respectively Tx and Ty.

Now, it is clear that the germ (t ◦ (s|U )−1)x does not depend on the choice of U

and does only depend on γ.

Next, let us show that Λ is compatible with the groupoid multiplication.

Let x, y, z ∈ M and choose connected local transversals Tx, Ty and Tz. We put

T = Tx∪Ty∪Tz and consider the corresponding étale groupoid H(F ,Γ)TT . Take

now γ1, γ2 ∈ H(F ,Γ)TT with γ1 : y → z and γ2 : x→ y.

Since H(F ,Γ)TT is étale, we can choose an open neighborhood U1 ⊆ H(F ,Γ)TT
of γ1 such that both s|U1

and t|U1
are diffeomorphisms on their image. In

the same way, we choose an open neighborhood U2 ⊆ H(F ,Γ)TT of γ2 such

that the restrictions s|U2
and t|U2

are diffeomorphisms on the image. Since

s(γ1) = t(γ2), up to shrinking U1 and U2 we can assume that s(U1) = t(U2).

Thus, by construction each element of U2 can be composed with exactly one

element of U1 and the resulting subset

U = {η1η2| η1 ∈ U1, η2 ∈ U2 with s(η1) = t(η2)}

contains the product γ1γ2. Furthermore, both s|U and t|U are diffeomorphisms

on their image.

Hence, one has that

(s|U )−1 = (s|U1
)−1 ◦ t ◦ (s|U2

)−1

which immediately implies that

ΛTxTz (γ1γ2) = ΛTzTy (γ1)Λ
Ty
Tx

(γ2).

It remains to show the injectivity. We need only to prove that the group

homomorphism ΛTxTx is injective for all x ∈ M, that is if for γ ∈ H(F ,Γ)xx,

ΛTxTx(γ) = idx, then γ = 1x. Here we have denoted by idx the identity of

Diffx(Tx) and by 1x ∈ H(F ,Γ)xx the unity arrow at x.

In other words, we must show that if there exists an open connected neighbor-

hood V ′ of H(F ,Γ)TxTx containing γ such that s(V ′) = t(V ′) = V ⊆ Tx and

t ◦ (s|V )−1 = idV , then there is a bi-submersion (U, t, s) adapted to the twisted

path holonomy atlas and which contains a point u ∈ U with [u] = γ and a local

bisection E through u carrying the identity (cf. Corollary 1.3.3 and Theorem

1.3.4).

For notational simplicity, let us denote the transverse local diffeomorphism

t ◦ (s|V )−1 representing ΛTxTx(γ) simply by f.

Up to shrinking V if needed, we can choose an open coordinate neighborhood

U(γ) of γ in the whole groupoid H(F ,Γ) diffemorphic to W ′×f W, where W '
D× S and W ′ ' D′ × S are two foliated charts around x both containing V as

transversal submanifold and W ′×fW = {((w′, s′), (w, s)) ∈W ′×W |s′ = f(s)}.
Hence, W ′ ×f W is naturally diffeomorphic to D′ ×D × S and V ' S, the dif-

feomorphism being induced by the transverse coordinate.
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Moreover, the restrictions s|U(γ) and t|U(γ) can be identified, respectively, with

the projections p1 : W ′ ×f W → W and p2 : W ′ ×f W → W ′. Therefore

(W ′×fW,p2, p1) is a bi-submersion adapted to the twisted holonomy atlas rep-

resenting γ through the point p = ((b0, s0), (b0, s0)).

Now, since by assumption f is the identity map, thenW ′×fW = {((w′, s′), (w, s)) ∈
W ′ × W |s′ = s}, which means that the source and target of any point p ∈
W ′ ×f W must lie in the same plaque. Hence, taking an open subset B × S ⊆
(D′ × S) ∩ (D × S) which contains x = (b0, s0), we deduce that the set

∆B×S = {((b, s), (b, s)) ∈W ′ ×f W |b ∈ B, s ∈ S}

is a bisection through p that carries the identity. This proves the claim and

concludes the proof of the theorem.

Let x, y ∈ M as above. Let us take two connected local transversals Tx
and T

′

x at x both contained in a foliated chart around x and two connected

transversals Ty and T
′

y at y both contained in a foliated chart around y.

If you denote by φ : Tx → T
′

x and by ψ : Ty → T
′

y the diffeomorphisms given by

”being on the same plaque”, then for γ ∈ H(F ,Γ)yx

Λ
T
′
y

T ′x
(γ) = ψy ◦ Λ

Ty
Tx

(γ) ◦ (φx)−1.

In this sense the map Λ defined in Theorem 1.4.5 does not depend on the choice

of the transversals. In the following, we will therefore denote Λ
Ty
Tx

simply by Λ

assuming implicitly that two transversal submanifolds respectively at x and y

have been chosen.

It is immediate to see that the map Λ defined above for the twisted holonomy

groupoid extends the natural transverse action of the holonomy groupoid.

Definition 1.28. Given any γ ∈ H(F ,Γ), γ : x→ y, the germ Λ(γ) as defined

in Theorem 1.4.5 is called the holonomy along γ.

Recall that to any vector bundle (E
π−→M) one can associate its frame linear

groupoid, namely the groupoid

Φ(E) = {(x, φ, y)| x, y ∈M,φ : Ex → Ey is a linear isomorphism}.

A linear action of a Lie groupoid G over M on the vector bundle (E
π−→ M) is

by definition a morphism of Lie groupoids

ρ : G→ Φ(E) (1.63)

which covers the identity of M. For more about this point, see [38].

An important consequence of Theorem 1.4.5 is the following corollary.

Corollary 1.4.6. If x, y are two points of a foliated Γ−manifold (M,F ,Γ) lying

in the same leaf L and ν is the normal bundle of the foliation, then for every

γ ∈ H(F ,Γ), γ : x→ y, one has a linear isomorphism

λ(γ) : νx → νy (1.64)
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induced by the differential (dΛ(γ))x of the holonomy Λ(γ). This determines a

linear action

λ : H(F ,Γ)→ Φ(ν) (1.65)

of H(F ,Γ) on ν, where Φ(ν) is the frame linear groupoid of ν.

Proof. Choose any two connected transversal submanifolds Sx at x and Sy at

y. By transversality one has the linear isomorphisms ρ : Tx(Sx) → νx and

µ : Ty(Sy) → νy, induced by the decomposition TxM = Tx(F) ⊕ Tx(Sx) and

TyM = Ty(F)⊕ Ty(Sy). We set

λ(γ) = µ ◦ (dΛ(γ))x ◦ ρ−1 (1.66)

It is immediate to see that λ(γ) is well defined, i.e. it does not depend on the

choice of the transversals.

Moreover, since by Theorem 1.4.5 Λ is compatible with the groupoid multipli-

cation, λ : H(F ,Γ)→ Φ(ν) determines a morphism of Lie groupoids, giving rise

to a linear action of H(F ,Γ) on ν.

The linear action λ of H(F ,Γ) on the normal bundle ν is very important

and will play a central role in Chapter 4.

1.5 Lie Γ−groupoids and inner automorphisms

In the present section we will see that a Γ−foliated manifold (M,F ,Γ) induces

naturally an additional structure on its holonomy groupoid and twisted holon-

omy groupoid. Indeed, the action of Γ on (M,F) ”integrates” to an action by

Lie groupoid morphisms on the groupoids of the foliation, giving rise to Lie

Γ−groupoids.

We will give definitions and some properties of this general concept. In partic-

ular, we will consider actions on Lie groupoids given by inner automorphisms,

which are particulartly suitable for our purposes. The most important result of

this section and our motivation for introducing twisted holonomy groupoids is

that, given any Γ−foliated manifold, the action induced on its twisted holonomy

groupoid is always given by inner automorphisms, while the induced action on

the holonomy groupoid may be more complicated.

Let us begin with general definitions about Lie Γ−groupoids.

Let G be a Lie groupoid with space of objects G(0) and let Γ be a Lie group.

Definition 1.29. A (left) Lie Γ−groupoid is a Lie groupoid G endowed with a

smooth (left) Γ−action % on its space of arrows that commutes with all structure

maps of the groupoid. We will also denote a Lie Γ−groupoid by (G,Γ, %),

specifying explicitly the action.

It is evident from the definition that each element h ∈ Γ acts on the Lie

Γ−groupoid G as a morphism of Lie groupoids, i.e. as a functor %(h) : G→ G

which is a smooth map both on objects and on arrows.
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Example 1.10. Perhaps the most basic example of Lie Γ−groupoid is provided

by the smooth action of a Lie group Γ on a smooth manifold M, viewed as trivial

groupoid.

Another very natural example is the following. If Γ and K are both Lie groups

and Γ acts on K by α : Γ→ Aut(K), then K can be viewed as a Lie Γ−groupoid.

Lie Γ−groupoids, in particular those arising in the theory of foliations, will

be our main objects of study. For many purposes we have in mind, we will not

deal with general actions on Lie groupoids, but, rather, we will consider special

ones.

To give an idea of how these actions are, let us consider first the case of Lie

groups.

If Γ and K are two Lie groups and if there exists a Lie group homomorphism

δ : Γ → K, a particularly simple action of Γ on K is that induced by δ and

given by the formula

α : Γ→ Aut(K) (1.67)

h 7→ αh(k) = δ(h)kδ(h−1) (1.68)

Viewing K as groupoid, we have therefore a Lie Γ−groupoid.

Even simpler, let K denote, again, a Lie group and consider the action of K

on itself by conjugation. Looking at it as a groupoid with space of objects

K(0) = {e}, one can interpret this action in a slightly different way. Indeed, let

us think of left translations of the group, i.e. the diffeomorphisms Lg : k 7→ gk,

as the smooth maps

φg : K(0) → K (1.69)

e 7→ g (1.70)

defined on the space of objects of the groupoid K. Since there is only one object,

namely the identity e ∈ K, there is an obvious bijection φg 7→ g and the action

on K by conjugation can be rewritten in terms of the φg, ∀g ∈ K,

K → Aut(K) g 7→ φg(e)kφg−1(e) = gkg−1 (1.71)

where we think of the group element k as an arrow k : e→ e.

We will mainly deal with actions of Lie groups on Lie groupoids that are for-

mally defined as in the equation above.

The first difficulty, however, one encounters in generalizing the above construc-

tion to general Lie groupoids is that left translations of Lie groupoids are only

defined along the fibers of the source and target maps, while we need maps of

the whole groupoid. To overcome this problem, we define the following notion.

Definition 1.30. Let G be a Lie groupoid with space of objects G(0). A

bisection of the groupoid is a smooth map φ : G(0) → G which is a right inverse

of the source map and such that t ◦ φ is a diffeomorphism of G(0). The set of

bisections of G is denoted by Bis(G).
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Bisections can be regarded somehow as generalized elements of the groupoids,

since, in some part of the theory, they play the role that, in the case of groups,

is taken by the group elements themselves.

Remark 1.11. Let G be a Lie groupoid over G(0) and let σ : G(0) → G be a

bisection. The image

V = {σ(x)|x ∈ G(0)} ⊆ G (1.72)

is a closed embedded submanifold of G such that the restrictions of both s and

t to V → G(0) are diffeomorphisms. Conversely, if there is a closed embedded

submanifold V ⊆ G so that the restrictions s, t : V → G(0) are both diffeomor-

phisms, then V is the image of a unique bisection.

This shows that the notion of bisection given above for Lie groupoids coincides

with the notion of bisections given in 1.22 for bi-submersions.

We will, sometimes, identify a bisection with its image.

Given a bisection φ ∈ Bis(G) we define the diffeomorphism

Lφ : G→ G (1.73)

g 7→ φ(t(g)) · g (1.74)

These maps will play an important role in the following.

Let us now list some basic properties of bisections, whose proof is straightfor-

ward.

Lemma 1.5.1. Let G be a Lie groupoid over G(0).

1. The set Bis(G) of bisections of G is a group with respect to the multipli-

cation defined by

(φ ? ψ)(x) = φ((t ◦ ψ)(x))ψ(x) (1.75)

for all x ∈ G(0).

2. One has that Lφ?ψ = Lφ ◦ Lψ.

3. The map φ 7→ t ◦ φ is a group homomorphism from Bis(G) to the diffeo-

morphisms of G(0) that preserve the orbits of the natural action of G on

G(0).

Since Bis(G) is a group, any group homomorphism σ : Γ→ Bis(G) induces

an action of Γ on the Lie groupoid G, making it into a Lie Γ−groupoid. Indeed,

the map Fh : G→ G defined by

Fh(g) = σh(t(g))gσh(s(g))−1 (1.76)

is clearly a Lie groupoid morphism over the diffeomorphism t ◦ σh.

Definition 1.31. Let G be a Lie groupoid.
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1. A morphism of Lie groupoids F : G→ G is said to be an inner automor-

phism, if there exists a bisection φ ∈ Bis(G) such that

F (g) = φ(t(g)) · g · φ(s(g))−1 (1.77)

.

2. Let (G,Γ, %) be a Lie Γ−groupoid. The action is given by inner auto-

morphisms, if there exists a group homomorphism σ : Γ → Bis(G) that

induces % on G.

Note that an inner automorphism Fφ is an isomorphism of Lie groupoids

over the objects map t ◦ φ.
Thus, if the action on the groupoid G is defined through the group homomor-

phism σ : Γ→ Bis(G), for any h ∈ Γ, an action on the space of objects G(0) is

induced by letting h ∈ Γ act through the diffeomorphism t ◦ σh. For simplicity,

we will denote this diffeomorphism simply by h. Moreover, we will say that the

bisection σh lifts the diffeomorphism h to stress that t ◦ σh = h.

Remark 1.12. Let Fφ be an inner automorphism defined by the bisection

φ ∈ Bis(G). Then φ can be thought of as a natural transformation between

the functor Fφ and the identity functor. Indeed, φ assigns to each object in G

a morphism of this category. Moreover for any γ ∈ G, γ : x → y, one gets by

definition that

Fφ(γ)φ(x) = φ(y)γ,

which shows that φ defines a natural transformation between Fφ and the identity

functor.

Thus, we use the structure of 2−category of the groupoid G.

We now return to the case of foliated manifolds.

Let (M,F) be a foliated manifold and pick an element f ∈ Diff(F). We have

seen in 1.2.1 that f must preserve the equivalence relation RF of the foliation.

In other words, f induces a functor

F : RF → RF (1.78)

that associates the object f(x) to any x ∈ Obj(RF ) = M and to any morphism

(x, y) ∈ RF associates a new morphism F (x, y) = (f(x), f(y)) ∈ RF .
Besides one has the following proposition

Proposition 1.5.2. Any element f ∈ Diff(F) induces a functor F on the

holonomy groupoid H(F) of the foliation (M,F). This functor is naturally an

isomorphism of Lie groupoids.

Before proving this proposition, let us observe the following simple but in-

teresting feature of f . Since f ∈ Diff(F), choosing suitable foliated charts

(U1, y1) around any p ∈M and (U2, y2) around f(p) (here, we have just written

down the submersions yi given by transverse coordinates. See Remark 1.1 for

details), such that f : (U1, y1) → (U2, y2), one immediately gets that f is a
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bundle morphism, i.e. it preserves the plaques. Thus, we have the transverse

local diffeomorphism

Hol(f) : y1(U1)→ y2(U2) (1.79)

which records the local action of f on the transversals y1(U1) and y2(U2).

Proof. Using the description of the holonomy groupoid given by leafwise paths

(see 1.26), let us define the functor F : H(F) → H(F) induced by f in the

following way: choose an element γ ∈ H(F) represented by the leafwise path

α : [0, 1]→M and set F (γ) = [f ◦ α].

We have to prove that this definition is well-posed. Thus, take another represen-

tative for γ given by the leafwise path β : [0, 1]→M. Since α and β define the

same element in H(F), then their holonomies hα, hβ , respectively, along α and

β, coincide on a suitable open neighborhood of x = s(γ) in a local transversal

Tx.

Since f ∈ Diff(F), one gets that

hf◦α = Hol(f) ◦ hα ◦Hol(f)−1 (1.80)

on a suitable open neighborhood of the transversal Hol(f)(Tx) at f(x). Then,

since locally hα = hβ , it follows that

hf◦α = hf◦β

on a suitable neighborhhood of f(x) in the transversal. This shows that F is

well-defined.

From its definition it is clear that the map F associated to f defines a functor

of H(F), that has an inverse, namely the functor F ′ associated to f−1. Finally,

for every γ ∈ H(F) there are coordinate charts U(γ) ' D × D × S around γ

and U(F (γ)) ' D′ ×D′ × S′ around F (γ) such that F (U(γ)) ⊆ U(F (γ)) and

the map F takes the form

F (a, b, t) = (f2(a, t), f1(b, t), Hol(f)(t))

where f|s(U(γ))(b, t) = (f1(b, t), Hol(f)(t)) and f|t(U(γ))(a, t) = (f2(a, t), Hol(f)(t)).

Hence, F is smooth and determines an isomorphism of Lie groupoids.

Corollary 1.5.3. Let (M,F ,Γ) be a foliated Γ−manifold. Then its holonomy

groupoid H(F), with the induced Γ−action given by Proposition 1.5.2, is a Lie

Γ−groupoid.

Now, in the case of a foliated manifold (M,F) and for an arbitrary h ∈
Diff(F), one may ask whether the induced Lie groupoid isomorphism Fh of

H(F) is an inner automorphism.

As suggested by equation 1.80, this is equivalent to ask whether there exists a

bisection φh ∈ Bis(H(F)) such that t ◦ φh = h and the holonomy along φh(x),

for all x ∈ M, coincides with the transverse local diffeomorphism Hol(h) on a

suitable transverse open neighborhood of x.

In some case, this happens, as the following example shows.
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Example 1.11. If the holonomy of each leaf of the foliation (M,F) is trivial, for

instance, for a simple foliation, we know that the holonomy groupoid coincides

with the equivalence relation RF . See Example 1.9. Thus, considering RF , one

has a natural bisection given by the graph of f, i.e. more precisely

φf : M → RF (1.81)

p→ (p, f(p)). (1.82)

This map is smooth and the element (p, f(p)) coincides with the Hol(f) at p

for trivial reasons.

However, it is not true, in general, that for any diffeomorphism f ∈ Diff(F)

of the foliated manifold (M,F) there is a bisection φf ∈ Bis(H(F)) with values

in the holonomy groupoid H(F) satisfying the extra conditions indicated above.

The following example has been pointed out to us by Moulay Benameur and

James Heitsch.

Example 1.12. Let S1 be the 1−sphere and consider a one-parameter group

of diffeomorphisms from the south pole to the north pole, induced by a suitable

vector field X ∈ C∞(TS1) that vanishes at the north and at the south poles.

Let f : S1 → S1 be the time−1 diffeomorphism of this flow and define the

natural action of Z on S1 induced by f. Moreover, let Z act on R by integer

translations. Now, following the recipe explained in Example 1.3 and observing

that R × S1/Z ' T 2, the 2−dimensional torus, we get the foliated bundle

(T 2, π,F), which has two leaves which are S1s, corresponding to the fixed points

of f, and all the other leaves are copies of R which wind from the south S1 to

the north S1. Now, consider the diffeomorphism of T 2 which on the east part is

the identity, but on the west part is given by going along each leaf a distance so

that the induced map on the boundary S1 leaves is the identity. This cannot be

a holonomy diffeomorphism because the holonomy of the S1 leaves is two sided,

while the local transverse diffeomorphism Hol(f) induced by f is a map which

is the identity on one side and a contraction or expansion on the other.

Now, there are (at least) two ways to solve this problem. First, one could

just consider those leafwise diffeomorphisms, that have the above properties.

To this regard, we present the following notion, given by Benameur and Heitsch

in [7].

Definition 1.32. Let (M,F) a foliated manifold and f ∈ Diff(F). We say

that f is a holonomy diffeomorphism, if there exists a bisection φf ∈ Bis(H(F))

such that

1. φf lifts f, i.e. t ◦ φf = f

2. for every x ∈M, the holonomy along φf (x) coincides with the germ of the

transverse local diffeomorphism Hol(f) at x.

Remark 1.13. If f is a holonomy diffeomorphism, then the bisection φ asso-

ciated to f must be unique.
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Recall that two leaf-preserving diffeomorphisms f, g ∈ Diff(F) are leafwise

homotopic, in symbols f ∼F g, if there exists a leafwise homotopy between

them as defined in Definition 1.13.

Lemma 1.5.4. ([7]) Let (M,F) be a foliated manifold.

1. Every element f ∈ exp(F) is a holonomy diffeomorphism.

2. More generally, if f ∈ Diff(F), g ∈ Diff(F) is a holonomy diffeo-

morphism and f ∼F g, then also f is a holonomy diffeomorphism. In

particular, every f ∈ Diff0(F) is a holonomy diffeomorphism.

3. If (M,F ,Γ) is a foliated Γ−manifold with Γ a connected Lie group, then

each element of Γ is a holonomy diffeomorphism.

The proof of the following lemma is straightforward.

Lemma 1.5.5. Let (M,F) be a foliated manifold. Let f be a holonomy diffeo-

morphism, with induced Lie groupoid morphism on H(F) denoted by F. Then,

for any γ ∈ H(F), γ : x→ y, one has that the diagram

y
φf (y)−−−−→ F (y)

γ

x xF (γ)

x
φf (x)−−−−→ F (x)

(1.83)

is commutative. In other words the bisection φf is a natural transformation

between the functor F and the identity functor.

A second possible way to solve the above problem consists in considering,

instead of the holonomy groupoid, another groupoid, whose elements carry

the germs of the transverse local diffeomorphisms Hol(f) defined by f. This

groupoid is by construction provided by the twisted holonomy groupoid.

More precisely, one gets the following results. These have been our main moti-

vation to introduce twisted holonomy groupoids.

Theorem 1.5.6. Let (M,F) be a foliated manifold and let f ∈ Diff(F) be any

leaf-preserving diffeomorphism. Let us build the holonomy groupoid H(M,F ,Z)

twisted by the subgroup Z ≤ Diff(F) generated by f. Then, for any element

n ∈ Z, there exists a bisection φn : M → H(M,F ,Z) such that

1. φn lifts fn, i.e. t ◦ φn = fn;

2. for any x ∈M, the holonomy along φn(x) coincides with the germ Hol(f)x
at x of the transverse local action induced by f.

Moreover, the correspondence n 7→ φn is a group homomorphism Z→ Bis(H(M,F ,Z)).

Thus, by means of the bisections φn we can define an action of Z by inner

automorphisms on the twisted holonomy groupoid H(M,F ,Z), as in Equation

1.76.

The above theorem is actually a special case of the next result, valid for an

arbitrary Lie group Γ and any foliated Γ−manifold.
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Theorem 1.5.7. Let (M,F ,Γ) be a foliated Γ−manifold and consider its twisted

holonomy groupoid H(M,F ,Γ). Then, for any h ∈ Γ there exists a bisection

φh ∈ Bis(H(M,F ,Γ)) satisfying

1. t ◦ φh = h;

2. for any x ∈M, the holonomy along φh(x) coincides with the germ Hol(f)x
at x of the transverse local action Hol(h).

Moreover, the map h 7→ φh from Γ to Bis(H(F ,Γ)) is a group homomorphism.

Proof. Let h ∈ Γ and choose an arbitrary point x ∈ M. By definition of the

twisted path holonomy atlas (see 1.42) there exists a bi-submersion (U, tU , sU )

in the twisted path holonomy atlas and a point u ∈ U such that

• sU (u) = x and,

• there is a bisection c : A→ U defined on a suitable open neighborhood of

x in M such that c(x) = u and the local diffeomorphism associated to it

coincides with the restriction of h on A.

We define

φh(x) = πU (c(x)) = [u] ∈ H(F ,Γ), (1.84)

where πU : U → H(F ,Γ) is the quotient map of U (cf. Theorem 1.3.4).

It is clear from the definition that s(φh(x)) = sU (u) = x and t(φh(x)) = tU (u) =

h(x).

Furthermore, the element φh(x) is well defined. In fact, if there is another

bi-submersion (W, tW , sW ) adapted to the twisted path holonomy atlas and a

point w ∈ W such that sW (w) = x and there is a bisection c′ : B → W with

c′(x) = w and whose associated diffeomorphism is the restriction of h on B,

then

πU (u) = πW (w) = φh(x)

since u and w carry the same diffeomorphism (see Corollary 1.3.3).

Since the twisted path holonomy atlas covers M, φh(x) is defined for all x ∈M
and it gives rise to a map

φh : M → H(F ,Γ)

such that s ◦ φh = idM and t ◦ φh = h.

Moreover, this map φh is smooth. Indeed, given any x ∈ M we can assume

that the domain A of the local bisection c as described above is a foliated chart

around x. Then the restriction (φh)|A coincides with the composition πU ◦ c,
which is smooth since both c and the quotient map πU are smooth.

Therefore, φh is a smooth global bisection of H(F ,Γ) such that t ◦ φh = h.

Now, to prove that Λ(φh(x)) = Hol(h)x, let us consider a coordinate chart

U(φh(x)) around φh(x) as those constructed in Proposition 1.4.2 such that A =

s(U(φh(x))) is a foliated chart around x and B = t(U(φh(x))) a foliated chart

around h(x). Thus (U(φh(x)), t, s) can be viewed as a bi-submersion adapted
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to the twisted path holonomy atlas with quotient map given by the inclusion.

Hence, up to reducing further the foliated charts, we know that there exists a

bisection α : A → U(φh(x)) such that α(x) = φh(x) and the diffeomorphism

associated to it is h|A. Choosing, now, two connected transversals Sx ⊆ A at x

and Sy ⊆ B we deduce that

Λ
Sy
Sx

(φh(x)) = Hol(h)x.

Since the choice of transversals is irrelevant, this implies the property 2.

Finally, for all h1, h2 ∈ Γ and x ∈M one has

φh1h2
(x) = Hol(h1h2)x = Hol(h1)h2(x)Hol(h2)x = φh1

(h2(x))φh2
(x),

from which it follws that h 7→ φh determines a group homomorphism from Γ to

the group of bisections Bis(H(F ,Γ)).

We can define an action of Γ on H(M,F ,Γ) by inner automorphisms through

the formula

Fh(γ) = φh(t(γ)) · γ · φh(s(γ))−1 (1.85)

for every γ ∈ H(M,F ,Γ).

Combining Proposition 1.5.2 with the action just defined on H(F ,Γ), we get

the following proposition, whose proof is at this point straightforward.

Proposition 1.5.8. The above Γ−action on H(M,F ,Γ) extends the Γ−action

on H(F) defined in Proposition 1.5.2.

The following remarks were suggested to us by Ralf Meyer.

Remark 1.14. Consider the holonomy groupoid H(F) with the Γ−action given

by Corollary 1.5.3. Then one can form the crossed product groupoid

Γ nH(F) = (Γ×H(F),M).

For full details of this construction we refer to [20] or [39].

Since H(F) is a Lie groupoid and the action of Γ on H(F) is smooth, one has

that Γ nH(F) is also a Lie groupoid. Moreover, the groupoid Γ nH(F) acts

on local transversal submanifolds of (M,F), namely any element (g, α) ∈ (Γ n
H(F))yx determines a unique germ at x of the local diffeomorphism hα ·Hol(g)

defined on suitable local transversals Tx and Ty.

Now, there exists a morphism of Lie groupoids

Φ : Γ nH(F)→ H(F ,Γ) (1.86)

defined by mapping an element (h, α) ∈ Γ × H(F) to the unique element γ ∈
H(F ,Γ) that acts transversely on M as (h, α) does. The uniqueness of γ follows

by Theorem 1.4.5 2). This map is surjective and therefore we get an extension

of Lie groupoids

1→ Ker(Φ)→ Γ nH(F)→ H(F ,Γ)→ 1.
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Thus, the groupoid H(F ,Γ) can be viewed as a quotient subgroupoid of the

groupoid Γ nH(F) modulo the subgroupoid Ker(Φ).

In principle one could work with the groupoid H(F ,Γ) or, equivalently, with

the crossed product groupoid Γ nH(F).

For our purposes, however, H(F ,Γ) enjoys noteworthy properties that ΓnH(F)

does not satisfy in general. Indeed, by Theorem 1.4.4 H(F ,Γ) is a foliation

groupoid, while Γ nH(F) is so only under suitable assumptions for the action.

Furthermore we showed in Theorem 1.4.5 that the action of H(F ,Γ) on local

transversal submanifolds is effective, while that of Γ n H(F) may be not, if

Ker(Φ) is non trivial.

For these reasons in the following we will use the groupoid H(F ,Γ) rather than

Γ nH(F).

Remark 1.15. Let G and H be two Lie groupoids. Recall that a Morita

equivalence (G−H)-bimodule P between G and H is a space P endowed with

commuting left G−action and right H−action that are both free and proper,

and satisfying another extra compatibility conditions on the orbit spaces G\P
and P/H. For a detailed definition of action of a groupoid on a space and further

details and remarks one may, for instance, consult [17], [39] and [20].

Now, let Γ be a Lie group and suppose that G and H are both Lie Γ−groupoids.

Then they are said to be Γ-equivariantly Morita equivalent if there exists a

Morita equivalence (G−H)-bimodule P, endowed with a smooth Γ−action and

such that the actions

G×G(0) P ×H(0) H → P (1.87)

(γ, p, η) 7→ γpη (1.88)

satisfy

h(γpη) = h(γ)h(p)h(η) ∀h ∈ Γ. (1.89)

Now consider a foliated Γ−manifold (M,F ,Γ) and its twisted holonomy

groupoid H(F ,Γ). Let us endow H(F ,Γ) with the Γ−action given by Equation

1.85 and with the trivial Γ−action.

Then these two Lie Γ−groupoids are Γ-equivariantly Morita equivalent.

Indeed, as Morita equivalence bimodule we can take H(F ,Γ) as manifold with

left and right actions of H(F ,Γ) given, respectively, by left and right multi-

plication. Moreover one can endow the manifold H(F ,Γ) with the action by

diffeomorphisms given by

h · p = φh(t(p))p h ∈ Γ, p ∈ H(F ,Γ),

where φh is the bisection of H(F ,Γ) associated to h. This is indeed an action

since by Theorem 1.5.7 φh1h2
= φh1

φh2
for every h1, h2 ∈ Γ.

With these definitions all other axioms of equivariant Morita equivalence are

easily checked and the claim follows.



Chapter 2

Foliation C*-algebras,

Operators and equivariant

Index classes

2.1 Foliation C*-algebras

The algebras associated to the holonomy groupoid of a foliated manifold (M,F)

are one of the most important concepts in Noncommutative Geometry. Loosely

speaking, they represent algebras of continuous functions on the leaf space M/F ,
extending the duality of the theorem of Gel’fand-Naimark. Indeed, these al-

gebras are in general noncommutative, since the leaf space M/F might have

a very singular topology (cf. Section 1.3). Nevertheless many invariants for

M/F , which encode geometric and dynamical properties of the foliated mani-

fold (M,F), can be defined with operator algebra techniques. In this chapter,

we will introduce some of these invariants, namely the K-theory of a C*-algebra

and index classes.

Throughout all the groupoids are assumed to be Hausdorff.

2.1.1 The smooth convolution algebra associated to a Lie

groupoid

In this section we describe the convolution algebra of the compactly supported

smooth functions on a Lie groupoid. The construction heavily uses the structure

of groupoid and it may be thought of as a generalization of the construction of

the group ring associated to a discrete group. Many important invariants are

related to this algebra, in particular index classes of leafwise elliptic differential

operators and cyclic cocycles of the foliation. We will introduce these invariants

and explain their relationship with the smooth convolution algebra in this and

in next chapters of this work.

Let G be a Lie groupoid over the manifold M and let us denote by g the Lie

50
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algebroid of G (for basic definitions and properties see [39]). In particular, g is

a vector bundle on M and, if k is the rank of g, we consider the line bundle Ωα

of leafwise densities of order α on M. The fiber Ωαx of Ωα over a point x ∈M is

the space

Ωαx = {σ : Λkgx → C| σ(λv) = |λ|ασ(v), } (2.1)

for λ ∈ R, v ∈ Λkgx. Define

ΩαG = s∗Ωα ⊗ t∗Ωα (2.2)

This is a line bundle over G, whose fiber at each γ ∈ G is the tensor product

(ΩαG)γ = Ωαs(γ) ⊗ Ωαt(γ).

Consider now the vector space C∞c (G,Ω1/2G) of compactly supported smooth

sections of the bundle Ω1/2G of half-densities on G. Here we need to assume

that the groupoid is Hausdorff. Indeed, a non-Hausdorff manifold might not

have enough smooth functions with compact support.

Using the groupoid structure of G, one can define on C∞c (G,Ω1/2G) the struc-

ture of an algebra with involution. Let us give the details.

If f1, f2 are sections of C∞c (G,Ω1/2G), then their convolution f1 ∗ f2 is the

section of C∞c (G,Ω1/2G), defined by

(f1 ∗ f2)(g) =

∫
g1·g2=g

f1(g1)f2(g2) (2.3)

The integral is well defined. Indeed, if g : x → y is fixed, then the integrand is

the 1−density

g1 7→ f1(g1)f2(g−1
1 · g)

defined on the manifold Gy = r−1(y). Thus, a more explicit formula, for ex-

pressing the convolution, is

(f1 ∗ f2)(g) =

∫
Gy
f1(g1)f2(g−1

1 · g) (2.4)

The fact that the convolution of two compactly supported smooth half-densities

is again a well-defined compactly supported half-density is proved, for instance,

in [12].

An involution on C∞c (G,Ω1/2G) is defined by the following formula. If f ∈
C∞c (G,Ω1/2G), its adjoint f∗ is defined to be the smooth section of C∞c (G,Ω1/2G),

given by

f∗(g) = f(g−1). (2.5)

It is easy to check that this mapping really defines an involution.

Lemma 2.1.1. The space C∞c (G,Ω1/2G) endowed with the convolution and the

involution defined above becomes a ∗−algebra.

Proof. It is a standard fact that the convolution operation as defined above is

associative, i.e. f1 ∗ (f2 ∗ f3) = (f1 ∗ f2) ∗ f3 and distributive. Thus it defines

the structure of an associative algebra on C∞c (G,Ω1/2G). Moreover it is not

difficult to verify that (f1 ∗ f2)∗ = f∗1 ∗ f∗2 and (f1 + f2)∗ = f∗1 + f∗2 .
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Notice the quite clear but important fact that the algebra C∞c (G,Ω1/2G) is

no longer commutative.

Remark 2.1. The use of half-densities in the definition of the convolution

algebra shows how canonical the construction is. However, if one prefers to work

with functions instead of densities, let us observe that any positive smooth half-

density on M induces a trivialization of Ω1/2G. Using this trivialization, one

may define the convolution between two smooth compactly supported functions

with respect to the chosen density by means of the same formula.

Remark 2.2. If G is not Hausdorff, it is still possible to construct a canonical

∗−algebra associated to the groupoid. The construction is more involved and

use in an essential way the local structure of G, which is very simple, being G

locally diffeomorphic to an Euclidean space.

The details of this construction can be found in [12] or in [14].

Now, let (M,F) be a foliated manifold and let H(M,F) be its holonomy

groupoid. We have seen in the previous chapter that H(M,F) is a Lie groupoid

(Proposition 1.3.6), in general not Hausdorff. Let us restrict our attention

on foliated manifolds with Hausdorff holonomy groupoid (this is a non trivial

hypothesis. See [12] for examples of foliations, whose holonomy groupoid is not

Hausdorff). Analogously, we consider Γ−foliated manifolds (M,F ,Γ) whose

associated twisted holonomy groupoid H(F ,Γ), is Hausdorff.

Definition 2.1. 1. To any foliated manifold (M,F) we associate the ∗−algebra

C∞c (H(F),Ω1/2H(F)) of the holonomy groupoid H(F) of the foliation.

We shall call it the smooth convolution algebra of the foliated manifold.

2. Similarly, if (M,F ,Γ) is a Γ−foliated manifold, the involutive algebra

C∞c (H(F ,Γ),Ω1/2H(F ,Γ)) of the twisted holonomy groupoid will be called

the smooth convolution algebra of the Γ−foliated manifold.

These algebras play an important role in the study of foliated manifolds by

means of methods coming from Noncommutative Geometry. Indeed, we shall

see that many invariants of a foliation are naturally defined on them.

2.1.2 The reduced C*-algebras associated to a Lie groupoid

In order to obtain the C∗−algebras associated with a Lie groupoid and, in

particular, the foliation C∗−algebras canonically related to a foliated manifold

(M,F), the idea is to complete the involutive algebra C∞c (G,Ω1/2G) with re-

spect to various norms. The norms on C∞c (G,Ω1/2G) are induced by suitable

representations into the C∗−algebra of bounded operators on a Hilbert space.

Thus, the C∗−algebras of a Lie groupoid are closed involutive subalgebras of

bounded operators with respect to the operator norm.

Let G be a Lie groupoid over the manifold M and g its Lie algebroid of rank k.

For each point x ∈M there is a natural representation Rx of C∞c (G,Ω1/2G) on

the Hilbert space of half-densities on the s−fibers Gx of the groupoid.
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Indeed, let Ω1/2Gx denote the vector bundle of 1/2−densities on the subman-

ifold Gx = s−1(x) and L2(Gx,Ω
1/2Gx) the Hilbert space of square integrable

densities.

Recall, now, that there exists a canonical bundle isomorphism ker(ds) ∼= t∗(g).

Then, if Ω1/2 is the line bundle of leafwise densities of order 1/2 on M, as defined

in the previous section, one has the canonical identification Ω1/2Gx ∼= t∗Ω1/2.

Thus, for any γ ∈ Gx, the fiber (Ω1/2Gx)γ ∼= (Ω1/2)t(γ).

For any point x ∈M, and any f ∈ C∞c (G,Ω1/2G), consider the operator

Rx(f) : L2(Gx,Ω
1/2Gx)→ L2(Gx,Ω

1/2Gx) (2.6)

defined by

(Rx(f)ξ)(γ) =

∫
γ1·γ2=γ

f(γ1)ξ(γ2) (2.7)

This definition is well-posed. Indeed, first observe that, for fixed γ : x→ y, the

density ξ(γ2) ∈ (Ω1/2Gx)γ2
∼= (Ω1/2)t(γ2) and f(γ1) ∈ (Ω1/2G)γ1

∼= (Ω1/2)t(γ1)⊗
(Ω1/2)s(γ1). Since t(γ2) = s(γ1), f(γ1)ξ(γ2) is a 1−density on the manifold

{γ1 · γ2 = γ} with values in (Ω1/2)t(γ)=t(γ1)
∼= (Ω1/2Gx)γ .

The integral (Rx(f)ξ)(γ) is, thus, a well-defined element of (Ω1/2Gx)γ . Setting

γ1 = γ · γ−1
2 , it is clear that {γ1 · γ2 = γ} = Gx and we can rewrite

(Rx(f)ξ)(γ) =

∫
Gx

f(γ · γ−1
2 )ξ(γ2) (2.8)

The above expression 2.8 shows thatRx(f) is an integral operator on L2(Gx,Ω
1/2Gx)

with smooth compactly supported kernel F (γ1, γ2) = f(γ1 · γ−1
2 ). Thus, in par-

ticular, it defines a bounded operator. For a proof of this statement, also valid

in the non-Hausdorff case, we recommend [12].

Lemma 2.1.2. For each x ∈M, the map

Rx : C∞c (G,Ω1/2G)→ B(L2(Gx,Ω
1/2Gx))

is an involutive representation of the ∗−algebra C∞c (G,Ω1/2G).

Proof. By definition, we have to prove that Rx(f1 ∗ f2) = Rx(f1) ◦ Rx(f2) and

that Rx(f∗) = (Rx(f))∗. The first equality follows from the associativity of the

multiplication in G. For the second one, recall that the Schwartz kernel of the

bounded operator Rx(f) is F (γ1, γ2) = f(γ1 ·γ−1
2 ) and that the Schwartz kernel

of the adjoint (Rx(f))∗ is given by F (γ1, γ2) = f(γ1 · γ−1
2 ). This proves the

lemma.

The family of representations {Rx}x∈M defined above is called the family of

right regular representations of C∞c (G,Ω1/2G).

Given any element γ ∈ G, γ : x → y, one has a natural unitary operator

Uγ : L2(Gx,Ω
1/2Gx)→ L2(Gy,Ω

1/2Gy) given by

(Uγ(ξ))(γ1) = ξ(γ1 · γ) (2.9)

One gets the following result, whose proof is straightforward.
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Lemma 2.1.3. Given any f ∈ C∞c (G,Ω1/2G) and any element γ ∈ G, the

operator Uγ intertwines the operators Rs(γ)(f) and Rt(γ)(f), precisely Rs(γ)Uγ =

UγRt(γ).

Roughly speaking, the above lemma states that the family {Rx} induces a

family of representations {RL}L∈M/F parametrized by the space of leaves of the

foliated manifold (M,F). Indeed, if x, y ∈ M are in the same leaf L, then the

representations Rx and Ry are equivalent. In particular, the norm ‖ Rx(f) ‖
only depends on the leaf Lx through x.

We are, now, ready to give the following fundamental definitions.

Definition 2.2. 1. The reduced C∗−algebra of the Lie groupoid G over M

is the completion of the involutive algebra C∞c (G,Ω1/2G) with respect to

the norm

‖ f ‖= sup
x∈M

‖ Rx(f) ‖ (2.10)

This algebra is denoted by C∗r (G).

2. Let (M,F) be a foliated manifold and H(F) its holonomy groupoid. The

reduced C∗−algebra of the foliated manifold is the reduced C∗−algebra of

the holonomy groupoid H(F). This C∗−algebra is denoted by C∗r (M,F).

3. If (M,F ,Γ) is a foliated Γ−manifold and H(F ,Γ) is its twisted holonomy

groupoid, then the reduced C∗-algebra of the foliated Γ−manifold is the

reduced C∗−algebra of the twisted holonomy groupoid H(F ,Γ). We will

denote it by C∗r (M,F ,Γ).

It is not difficult to verify that the norm

‖ f ‖= sup
x∈M

‖ Rx(f) ‖

is indeed a C∗-norm.

Lemma 2.1.4. If f ∈ C∞c (G,Ω1/2G) is not identically zero, then there is x ∈M
such that Rx(f) 6= 0.

Proof. Let f ∈ C∞c (G,Ω1/2G) and γ ∈ G with f(γ) 6= 0. Then, there exists a

coordinate neighborhood U(γ) of γ on which f does not vanish. Let x = s(γ)

and consider the neighborhood V = U(γ) ∩ Gx of γ in Gx. Then, of course, f

does not vanish on V. Choose, now, a smooth positive function ξ with compact

support contained in an open neighborhood of 1x in Gx. Then Rx(f)(ξ) is

evidently nonzero and therefore the operator Rx(f) is nontrivial. Hence ‖ f ‖6=
0.

The definition of the regular representations implies, of course, that for each

x ∈M
Rx : C∞c (G,Ω1/2G)→ B(L2(Gx,Ω

1/2Gx))

is continuous with respect to this norm. Therefore Rx extends by continuity to

a representation of C∗r (G).
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Important Remark 2.1. If E is a Hermitian vector bundle over the space of

objects G(0) = M of the Lie groupoid G, then one can introduce the reduced

C∗−algebra with coefficients in E. Precisely, one defines the bundle END(E) =

(s∗(E))∗ ⊗ t∗(E) on G and takes the space C∞c (G,END(E)⊗ Ω1/2G) of com-

pactly supported smooth sections of the tensor product END(E)⊗Ω1/2G. On

this space one can define a convolution and an involution exactly as in the scalar

case. Now, letting C∞c (G,END(E)⊗Ω1/2G) act on the fields of Hilbert spaces

L2
τ (G, t∗(E)) = {L2(Gx, t

∗(E) ⊗ Ω1/2Gx))}x∈M as in 2.8, we get a family of

representations denoted again by {Rx}x∈M .
One completes, now, C∞c (G,END(E)⊗Ω1/2G) with respect to these representa-

tions, obtaining the reduced C∗−algebra with coefficients denoted by C∗r (G,E).

It can be proved that C∗r (G) and C∗r (G,E) are Morita equivalent (see [40], pag.

141 for a proof).

The reduced C∗−algebra C∗r (G) of a Lie groupoid G reflects many features

and properties of the groupoid itself. In the case of a foliated manifold (M,F)

or of a Γ−foliated manifold (M,F ,Γ), the algebras C∗r (M,F) and C∗r (M,F ,Γ)

encode geometric and dynamical features of the foliation, in particular related

to the transverse geometry of the foliation.

In this regard we state below two theorems, suggesting the deep interplay be-

tween the geometry of a foliated manifold and the representations of the foliation

C∗−algebra.

Besides, we shall see many other remarkable aspects and consequences of this

interaction in the coming sections of this thesis.

Theorem 2.1.5. Let (M,F) be a foliated manifold. Then the representation

Rx of C∗r (M,F) is irreducible if and only if the leaf Lx through x has trivial

holonomy.

Theorem 2.1.6. (Fack-Skandalis) Let (M,F) be a foliated manifold. Then the

foliation (M,F) is minimal, i.e. each leaf L of F is dense in M, if and only if

the foliation C∗−algebra C∗r (M,F) is simple.

For a detailed proof we refer to [12].

The construction of the foliation C∗−algebra C∗r (M,F) is local in the following

sense.

Proposition 2.1.7. ([12]) Let (M,F) be a foliated manifold and let U =

{(Ui, xi, yi)}i∈I a regular foliated atlas. Then the algebra generated by the convo-

lution algebras C∞c (H(U,F),Ω1/2H(U,F)), with U ∈ U , is dense in C∗r (M,F).

In the proposition, the symbol H(U,F) denotes the open subgroupoids

of H(F) given by the s−connected component of the restrictions H(F)UU =

t−1(U) ∩ s−1(U) of the holonomy groupoid at U.

We will see in a moment that the structure of the C∗−algebras C∗r (H(U,F))

is rather elementary, reflecting the local triviality of the foliation and being es-

sentially continuous functions on the transversal manifold T ⊆ U vanishing at

infinity. At the other side, the structure of C∗r (M,F) can be very complicated,



2 Foliation C*-algebras 56

depending on the intricate way, in which the foliation charts U assemble to give

the foliation.

Proposition 2.1.8. Let (M,F) be a foliated manifold and let V ⊆ M be an

open set, foliated by the restriction FV of F to V. Then the holonomy groupoid

H(V,FV ) of (V,FV ) is an open subgroupoid of the holonomy groupoid H(M,F)

of (M,F). Moreover, the inclusion H(V,FV ) ⊆ H(M,F) induces an isometric

∗−homomorphism of C∗r (V,FV ) into C∗r (M,F).

Proof. We refer to [12], Proposition 1.5.5 for a proof of this result.

Let (M,F ,Γ) be a Γ−foliated manifold. We have seen in Lemma 1.4.1 and

in Proposition 1.4.3 that the natural inclusion map

j : H(F) ↪→ H(F ,Γ)

is a morphism of Lie groupoids, i.e a smooth functor between Lie groupoids, and

also a local diffeomorphism. Thus, we deduced that the holonomy groupoid is

an open s−connected Lie subgroupoid over M of the twisted holonomy groupoid

H(F ,Γ).

Furthermore, one has the induced involutive algebra homomorphism

j : C∞c (H(F),Ω1/2H(F))→ C∞c (H(F ,Γ),Ω1/2H(F ,Γ)) (2.11)

defined by ”extension by 0” (since the groupoids are Hausdorff, this is well

defined).

Let us, now, mention some very basic examples of foliation C∗−algebras for

particular classes of foliated manifolds, which can be explicitly computed.

Example 2.1. Let us consider first a trivial foliated manifold M = U×T, with

U a connected manifold. In this case there is no non trivial holonomy and thus

the holonomy groupoid H of U×T can be identified with U×U×T, with source

map s(x, y, t) = (y, t) and target map t(x, y, t) = (x, t). The product takes the

form

(x, y, t) · (x′, y′, t′) = (x, y′, t)

if t = t′ and x′ = y.

Proposition 2.1.9. ( [12] ) The reduced C∗−algebra C∗r (U × T ) of the trivial

foliated manifold U × T is isomorphic to the tensor product K ⊗ C0(T ), where

C0(T ) denotes the continuous functions on the transversal T vanishing at infin-

ity and K is the elementary C∗−algebra of compact operators on L2(U).

Then, up to stabilizing with compact operators, the foliation C∗−algebra is

the same as the commutative C∗−algebra of continuous functions defined on

the manifold T transversal to the leaves.

Let (M,F) be an arbitrary foliated manifold and let U ⊆M be a foliated chart

of M. Then (U,FU ) is a trivial foliated space and, by Proposition 2.1.8, one

gets the isometric ∗−homomorphism i : C∗r (U,FU ) → C∗r (M,F). Moreover, as
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a consequence of Proposition 2.1.7 we also know that C∗r (M,F) is generated by

the C∗−subalgebras C∗r (U,FU ), which essentially are continuous functions on

the local transversal.

Heuristically, this means that the foliation C∗−algebra C∗r (M,F) only depends

upon the transverse geometry of the foliation and may be thought of as the

algebra of continuous functions on the space of leaves.

Example 2.2. Let us consider the geometric setup described in Example 1.1.

In other words, let us assume to have a foliated manifold (M,F), whose leaves

are the fibers of a fibre bundle projection π : M → B (we assume the tipical

fiber F of the fiber bundle to be a connected manifold). Recall that such a

foliation is called simple.

In this case, one has the following result.

Proposition 2.1.10. The reduced C∗−algebra of the simple foliation (M,F)

is isomorphic to C0(B)⊗K(L2(F )).

Thus, also in this example as in the previous one, we may heuristically think

of the foliation C∗−algebra of a simple foliation (M,F) as being the algebra of

continuous functions on the space of leaves of the foliation.

2.1.3 Automorphisms defined by a group Γ

After having seen how to associate various algebras to any Lie groupoid, we

will study in this section their behaviour, if the Lie groupoid G is further a

Lie Γ−groupoid. In this case it is not surprising that the convolution algebras

inherite also an action of the group Γ by algebra automorphisms. More surpris-

ing, however, is the fact that, if the action of Γ on the Lie groupoid G is by

inner automorphisms, then each element of Γ gives rise to a multiplier of the

groupoid C∗−algebra, which preserves the smooth convolution algebra. This

will be important for constructing equivariant cyclic cocycles on the groupoid.

Finally, we will specialize to the case of a foliated Γ−manifold, applying the

results obtained for general Lie Γ−groupoid to the holonomy groupoid and the

twisted holonomy groupoid of the foliation.

Many results of this section are generalizations to general Lie Γ−groupoids of

results proven in [7] for the holonomy groupoid.

Thus, let A be a not necessarily unital C−algebra and let Γ denote a Lie group.

Definition 2.3. 1. The algebra A is called a Γ−algebra if there is a group

homomorphism

ρ : Γ→ Aut(A),

where Aut(A) denotes the group of the algebra automorphisms of A.
Equivalently, we will call the triple (A,Γ, ρ) a Γ−algebra or also noncom-

mutative dynamical system.

If A is endowed with an involution ∗, we further require that

ρh(a∗) = ρh(a)∗ (2.12)
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for every h ∈ Γ, a ∈ A.
In this case, A is said to be a Γ− ∗−algebra.

2. If the algebra A is a topological algebra, we will call A a Γ−algebra,

if there is a group homomorphism ρ : Γ → Aut(A), in the continuous

automorphisms which is strongly continuous, i.e. for every a ∈ A the map

g 7→ ρg(a) ∈ A

is continuous with respect to the topology on A.

We will often forget to mention explicitly the homomorphism ρ if there is

no cause of confusion.

Examples of Γ−algebras arise naturally in Mathematics. The following is, per-

haps, the simplest one.

Example 2.3. Let M be a closed smooth Γ−manifold, with Γ a compact Lie

group acting smoothly (on the left) on M by diffeomorphisms. Then the algebra

of smooth functions C∞(M) inherits a natural Γ−action, given by ρg(f)(p) :=

f(g−1(p)) and this action is naturally strongly continuous with respect to the

Frèchet topology of C∞(M), since the action Γ on M is smooth.

Thus, the Fréchet algebra C∞(M) endowed with the action ρ is a Γ−algebra.

In this section we will see that, for any Lie Γ−groupoid G, the smooth con-

volution algebra C∞c (G,Ω1/2G) and the C∗−algebra C∗r (G) are Γ−algebras, as

well as the algebras C∞c (G,END(E)⊗Ω1/2G) and C∗r (G,E) with values in the

equivariant vector bundle E over M (see Remark 2.1 for details).

Thus, let nowG be a Lie Γ−groupoid (see Def. 1.29) and let E be a Γ−equivariant

vector bundle over its space of objects G0 = M. We endow the bundle E with a

Hermitian metric which is preserved by Γ. This is always possible, if the group

Γ is compact.

Consider the smooth convolution algebra C∞c (G,END(E)⊗Ω1/2G) of smooth

half densities over G with values in END(E) = Hom(s∗(E), t∗(E)) = s∗(E∗)⊗
t∗(E) (see Remark 2.1).

On the bundles Ω1/2G and END(E) one can canonically induce actions of Γ

from the given Γ−action on G and E. Indeed, the Lie algebroid g of G inherits

a natural Γ−action by Lie algebroid morphisms (for details on this point, see

[38]) which in turn induces an action of Γ on the bundle Ω1/2 of transversal

densities on M. This turns Ω1/2 into a Γ−equivariant vector bundle.

Further notice that for any Γ−equivariant bundle E over M, the pull-back bun-

dle s∗(E), with respect to the source map, inherits a natural action of Γ, that

makes it into a Γ−equivariant bundle on G. In the same way, the pull-back

t∗(E), with respect to the target map, becomes a Γ−equivariant bundle over G.

Hence, the bundle Ω1/2G⊗END(E) = s∗(Ω1/2)⊗t∗(Ω1/2)⊗Hom(s∗(E), t∗(E))

is naturally a Γ−equivariant bundle over G with the diagonal action.

Important Remark 2.2. To distinguish the various actions, we will denote

the action of an element h on Ω1/2⊗E by Ah, and that on Ω1/2⊗E∗ by A∗h. The
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induced action on the bundle Ω1/2G⊗END(E) over G will be simply denoted

by h.

Since Ω1/2G ⊗ END(E) = t∗(Ω1/2 ⊗ E) ⊗ s∗(Ω1/2 ⊗ E∗), one has for T ∈
(Ω1/2G⊗ END(E))γ that h · T = (Ah ⊗A∗h) · T ∈ (Ω1/2G⊗ END(E))h(γ).

The latter notation has the advantage to make clear that we are acting simulta-

neously on the ”source-part” and on ”target-part” of the section T . If we want

to denote only the action on the ”source-part”, we will write id⊗A∗h. Similarly,

we will write Ah ⊗ id to indicate the action of h only on the ”target-part”.

Finally, observe that the action on END(E) is given by conjugation with the

action on the bundle E. Then, with a small abuse of notation given by men-

tioning implicitly the action on half-densities, we will write (Ah ⊗ A∗h) · T =

AhTA
−1
h ∈ (Ω1/2G⊗ END(E))h(γ).

Using both actions on G and on Ω1/2G⊗ END(E), we set

(h · f)(γ) = h · f(h−1(γ)) ∀γ ∈ G (2.13)

for any h ∈ Γ and f ∈ C∞c (G,END(E)⊗ Ω1/2G).

Lemma 2.1.11. Equation 2.13 defines a Γ−action on C∞c (G,END(E)⊗Ω1/2G),

which turns it into a Γ− ∗−algebra.

Proof. The proof follows directly by applying the definition of convolution and

involution on C∞c (G,END(E)⊗ Ω1/2G).

Consider, now, the field of Hilbert spaces L2
τ (G, t∗(E)) = {L2(Gx, t

∗(E) ⊗
Ω1/2Gx))}x∈M over M.

For each element h ∈ Γ, we define the operator

Uh : L2(Gx,Ω
1/2Gx ⊗ t∗(E))→ L2(Gh(x),Ω

1/2Gh(x) ⊗ t∗(E)) (2.14)

ξ 7→ (Uhξ)(γ) = Ah · ξ(h−1(γ)). (2.15)

Since the Hermitian metric on E has been chosen to be Γ−invariant, the oper-

ator Uh defines a unitary operator between Hilbert spaces for any point x ∈M.

Recall that the algebra C∞c (G,END(E)⊗Ω1/2G) acts on L2
τ (G, t∗(E)) through

the right regular representation R = {Rx}x∈M as given by Equation 2.8.

One has the following lemma.

Lemma 2.1.12. The pair (R,U) defines a covariant representation of the pair

(C∞c (G,END(E) ⊗ Ω1/2G),Γ) on the field of Hilbert spaces L2
τ (G, t∗(E)), i.e.

it holds that

Rx(h · k) = Uh ◦Rh−1(x)(k) ◦ Uh−1 (2.16)

for all h ∈ Γ, k ∈ C∞c (G,END(E)⊗ Ω1/2G), x ∈M.

Proof. Let us briefly sketch the proof. Let ξ ∈ L2(Gx, t
∗(E) ⊗ Ω1/2Gx)) and

γ ∈ Gx. Then

(Rx(h · k)(ξ))(γ) =

∫
Gx

(h · k)(γγ−1
1 )ξ(γ1) =
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=

∫
Gx

[h·k(h−1(γ)h−1(γ−1
1 ))]ξ(γ1) =

∫
Gx

[(Ah⊗A∗h)·k(h−1(γ)h−1(γ−1
1 ))]ξ(γ1) =

=

∫
Gx

Ah · k(h−1(γ)h−1(γ−1
1 ))A−1

h · ξ(γ1).

Now, using the invariance of the integral of densities with respect to diffeomor-

phisms and setting η = h−1(γ1), one gets that∫
Gx

Ah·k(h−1(γ)h−1(γ−1
1 ))A−1

h ·ξ(γ1) =

∫
Gh−1(x)

Ah·k(h−1(γ)η−1)A−1
h ·ξ(h(η)) =

=

∫
Gh−1(x)

Ah·k(h−1(γ)η−1)(Uh−1ξ)(η) = Ah·
∫
Gh−1(x)

k(h−1(γ)η−1)(Uh−1ξ)(η) =

= (Uh ◦Rh−1(x)(k) ◦ Uh−1)(ξ)(γ).

By the Lemma above, it is now evident that each h ∈ Γ gives rise to an

automorphism Th = Uh · Uh−1 of C∞c (G,END(E) ⊗ Ω1/2G), that is bounded

with respect to the norm 2.10.

Lemma 2.1.13. For every h ∈ Γ the automorphism Th = Uh · Uh−1 extends

to a ∗−automorphism of C∗r (G,E) giving rise to an action of Γ on C∗r (G,E).

Moreover, this action is strongly continuous.

Proof. Since C∞c (G,END(E)⊗Ω1/2G) ⊆ C∗r (G,E) is dense and Th is bounded,

it follows that each Th extends by continuity to an automorphism of C∗r (G,E).

In this way, we get an induced action on the C∗−algebra. The fact that this

action is also strongly continuous follows from the continuity of all the actions

on the groupoid and on the bundles.

Summarizing, the reduced C∗−algebra C∗r (G,E) of any Lie Γ−groupoid G

with values in a Γ−equivariant vector bundle E, endowed with a Γ−invariant

Hermitian structure, is a Γ − C∗−algebra. Moreover, this action preserves the

smooth subalgebra C∞c (G,END(E)⊗ Ω1/2G).

For our purposes the case where the Γ−action on the Lie groupoid is given by

inner automorphisms deserves particular attention.

Let us assume therefore to have a group homomorphism σ : Γ→ Bis(G) induc-

ing the action on G. Recall that Bis(G) is the group of smooth global bisections

of G and that such a homomorphism defines an action by inner automorphisms

(see Section 1.5 of Chapter 1).

If E is an equivariant vector bundle with a Γ−invariant metric, for each h ∈ Γ

we can define the unitary operator

S(h)x : L2(Gx,Ω
1/2Gx ⊗ t∗(E))→ L2(Gx,Ω

1/2Gx ⊗ t∗(E))

given by

(S(h)xξ)(γ) = Ah · ξ((h−1γ)σh−1(s(γ))) (2.17)
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for all ξ ∈ L2(Gx,Ω
1/2Gx ⊗ t∗(E)) and γ ∈ Gx.

Since the action consists by hypothesis of inner automorphisms, we immediately

deduce that

(S(h)xξ)(γ) = Ah · ξ((h−1γ)σh−1(s(γ))) = Ah · ξ(σh−1(t(γ))γ). (2.18)

The importance of these operators is explained in the following

Proposition 2.1.14. The family of bounded operators S(h) = {S(h)x}x∈M on

the field of Hilbert spaces L2
τ (G, t∗(E)) defines a multiplier of the C∗−algebra

C∗r (G,E) of G.

Moreover S(h) preserves the dense subalgebra C∞c (G,END(E)⊗ Ω1/2G).

Proof. We have to show that for every P ∈ C∗r (G,E), the operators S(h)P

and PS(h) are again elements of C∗r (G,E). Furthermore, if in particular P ∈
C∞c (G,END(E) ⊗ Ω1/2G), then we claim that S(h)P ∈ C∞c (G,END(E) ⊗
Ω1/2G) and PS(h) ∈ C∞c (G,END(E)⊗ Ω1/2G).

Let us first show that S(h) is a multiplier of the C∗−algebra.

Notice that the field L2
τ (G, t∗(E)) gives rise to a right Hilbert C∗−module EM,E

on the foliation C∗−algebra C∗r (G). Indeed the construction done in [14], Sec-

tion 7 carries over in the case of a general Lie groupoid).

One can also define a left action of C∞c (G,END(E)⊗Ω1/2G) on EM,E by con-

volution. This action consists of adjointable endomorphisms of the C∗−module

and it extends to a well-defined left action of the C∗−algebra C∗r (G,E). More-

over, it can be shown that C∞c (G,END(E)⊗Ω1/2G) acts as compact operators

of the Hilbert C∗−module EM,E , which implies that C∗r (G,E) is contained in

the C∗−algebra of compact operators of EM,E . (We refer, for instance, to [9] for

basic definitions).

Now, from Equation 2.18, it is immediate to see that S(h) defines an adjointable

endomorphism of EM,E .

Therefore, since the C∗−algebra of adjointable endomorphisms of EM,E is canon-

ically isomorphic to the multiplier algebra of the compact ones (see [9], Theorem

13.4.1), we get the result.

Let us now proceed with proving that S(h) preserves the smooth convolution

algebra. To prove this we argue as in [7].

Take k ∈ C∞c (G,END(E)⊗Ω1/2G). Recall that k acts on L2
τ (G, t∗(E)) through

the regular representation R = {Rx}x∈M . Let us check that S(h) ◦ R(k) ∈
C∞c (G,END(E)⊗ Ω1/2G). Then, for any ξ ∈ L2(Gx, t

∗(E)), γ ∈ Gx

((S(h) ◦R(k))xξ)(γ) = (S(h)x ◦Rx(k))ξ(γ) = (S(h)x[Rx(k)ξ])(γ) =

= Ah · (Rx(k)ξ)(σh−1(t(γ))γ) = Ah ·
∫
Gx

k(σh−1(t(γ))γγ−1
1 )ξ(γ1) =

=

∫
Gx

Ah · k(σh−1(t(γ))γγ−1
1 )ξ(γ1).

Thus the Schwartz kernel klh of the operator S(h) ◦R(k) is given by

klh(γ) = (Ah ⊗ id) · k(σh−1(t(γ))γ) (2.19)
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which is obviously smooth. Recall that Ah ⊗ id represents the action of h only

on the ”target part” of k (see Remark 2.2).

Analogously one computes the Schwartz kernel krh of the operator R(k) ◦ S(h),

getting the compactly supported smooth section

krh(γ) = (id⊗A∗h−1) · k(σh−1(ht(γ))h(γ)), (2.20)

where id⊗A∗h−1 denotes the action on the ”source part” of k (see again Remark

2.2). This completes the proof.

Notice that the mapping h 7→ S(h) satisfies the relations S(h1h2) = S(h1) ◦
S(h2) and S(e) = Id, where e ∈ Γ is the identity element of the group. In

other words it defines another unitary representation of Γ on the field of Hilbert

spaces L2
τ (G, t∗(E)).

Proposition 2.1.15. The pair (R,S) defines a covariant representation of

(C∞c (G,E),Γ) on the field of Hilbert spaces L2
τ (G, t∗(E)). In symbols

Rx(h · k) = S(h)xRx(k)S(h−1)x (2.21)

for all h ∈ Γ, k ∈ C∞c (G,E), x ∈M.

Proof. The proof is similar to that of Lemma 2.1.12.

Let ξ ∈ L2(Gx,Ω
1/2Gx ⊗ t∗(E)) and γ ∈ Gx. Then

[S(h)x ◦Rx(k) ◦ S(h−1)x](ξ)(γ) = S(h)x[Rx(k)(S(h−1)xξ)](γ) =

= Ah · (Rx(k)(S(h−1)xξ))(h
−1(γ)σh−1(s(γ))) =

= Ah ·
∫
Gx

k(h−1(γ)σh−1(s(γ))γ−1
1 )(S(h−1)ξ)(γ1) =

= Ah ·
∫
Gx

k(h−1(γ)σh−1(s(γ))γ−1
1 )A−1

h · ξ(h(γ1)σh(s(γ1))).

Now, setting γ′ = h(γ1)σh(s(γ1)) = σh(t(γ1))γ1, we have

γ−1
1 = (σh(t(γ1))−1γ′)−1 =

= (h−1(γ′)σh(h−1(s(γ1)))−1)−1 = σh(h−1(s(γ1)))h−1(γ′)−1.

Hence, by invariance of the integral with respect to diffeomorphisms it follows

that

Ah ·
∫
Gx

k(h−1(γ)σh−1(s(γ))γ−1
1 )A−1

h · ξ(h(γ1)σh(s(γ1))) =

=

∫
Gx

Ah · k(h−1(γ)σh−1(s(γ))σh(h−1(s(γ1)))h−1(γ′)−1)A−1
h · ξ(γ

′).

Now, notice that s(γ) = s(γ1) = s(γ′) and that

σh−1(s(γ))σh(h−1(s(γ1))) = (σh−1 ? σh)(h−1(s(γ))) = 1h−1(s(γ)).
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Therefore,∫
Gx

Ah · k(h−1(γ)σh−1(s(γ))σh(h−1(s(γ1)))h−1(γ′)−1)A−1
h · ξ(γ

′) =

=

∫
Gx

Ah · k(h−1(γ)h−1(γ′)−1)A−1
h · ξ(γ

′) =

=

∫
Gx

[(Ah ⊗A∗h) · k(h−1(γ)h−1((γ′)−1))]ξ(γ′) =

∫
Gx

(h · k)(γ(γ′)−1)ξ(γ′).

which completes the proof.

Now, if (M,F ,Γ) is a foliated Γ−manifold, the holonomy groupoid H(F)

and the twisted holonomy groupoid H(F ,Γ) are naturally Lie Γ−groupoids

with actions defined respectively as in Proposition 1.5.2 and by Equation 1.85.

Therefore, according with the results of this section we deduce

Proposition 2.1.16. For any Γ−equivariant Hermitian vector bundle E, the

C∗−algebras C∗r (M,F , E) and C∗r (M,F ,Γ, E) associated respectively to H(F)

and H(F ,Γ) inherit a Γ−action that turns them into Γ − C∗−algebras. These

actions preserve the smooth convolution subalgebras.

Moreover, the inclusion

j : C∞c (H(F), END(E)⊗Ω1/2H(F))→ C∞c (H(F ,Γ), END(E)⊗Ω1/2H(F ,Γ))

defined in 2.11 is Γ−equivariant.

Proof. The only point which has not been proven yet is the equivariance of the

inclusion j. For simplicity, let us assume E to be the trivial rank one vector

bundle. But, by Proposition 1.5.8 we know that the inclusion H(F) ⊆ H(F ,Γ)

of groupoids is Γ−equivariant, which implies the result.

The results described so far in this section will be important for constructing

the equivariant cyclic cocycles we aim at.

2.2 Equivariant K-theory and the equivariant

analytic index class

2.2.1 Equivariant K-theory

There are many ways to define equivariant K−theory for C∗−algebras. One

is by means of equivariant Kasparov’s bivariant KK−theory. This theory is

extremely general and allows general actions by locally compact groups (and

even more general objects, like groupoids or Hopf algebras). The cycles used

to define the equivariant KK−groups are the so-called equivariant Kasparov

bimodules, which are a wide generalization of equivariant Fredholm modules

(see [7]). Unfortunately, it is technically more difficult to construct a pairing

between equivariant K−theory, defined using equivariant Kasparov bimodules,
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and equivariant cyclic cohomology (see chapter 3 for the latter). One possible

way to do it, might be to define an equivariant bivariant cyclic/periodic ho-

mology and then an equivariant bivariant Connes-Chern character. Equivariant

bivariant periodic homology with respect to actions by locally compact groups

has been defined and extensively studied by [46]. However, a general equivariant

bivariant Connes-Chern character is still missing.

If one restricts, though, to actions by compact groups, one gets a simple de-

scription of equivariant K−theory, that is very suitable for defining a pairing

between equivariant K−theory and equivariant cyclic cohomology. Moreover,

this description allows to define the KG
0 −functor for algebras acted upon by the

compact group G, that are not necessarily C∗−algebras.

Thus, in this section we will give the basic definitions and state the basic prop-

erties of equivariant K−theory with respect to compact groups, which will be

necessary also in next sections. Unless otherwise specified, all groups, that we

will deal with, will be compact and second countable.

Let G denote a compact group and let (A,G, α) be a complete locally convex

algebra A over C endowed with an action of G through the group homomor-

phism α : G → Aut(A). Since A is a locally convex algebra, we require further

the action α to be strongly continuous, i.e. for all a ∈ A, the map g 7→ αg(a) is

continuous (see 2.1.3). We will call A a G−algebra.

In the case of a C∗−algebra A, such a triple is often called a noncommutative

C∗−dynamical system, or, equivalently, a covariant system. We will also say

that A is a G− C∗−algebra.

Since G is compact, every unitary representation on a Hilbert space is a direct

sum of finite dimensional irreducible unitary representations. Thus it suffices to

consider only finite dimensional unitary representations of G.

Now, for every finite dimensional unitary representation ∆ : G→ End(V ), con-

sider the C∗−algebra End(V ) equipped with the natural action of G, given by

g · T = ∆gT∆−1
g (2.22)

for all T ∈ End(V ). Being A a G−algebra, the tensor product A ⊗ End(V ) is

also naturally a G−algebra, with respect to the diagonal action

g · (a⊗ T ) = (ga)⊗ (g · T ) = (ga)⊗ (∆gT∆−1
g ). (2.23)

We consider G−invariant idempotents e ∈ A⊗End(V ), where V runs through

all finite dimensional unitary representations of G.

If Λ : G → End(W ) is another finite dimensional representation and f ∈
A ⊗ End(W ) is a G−invariant idempotent, then we shall say that e and f

are equivalent if there exist a G−invariant element u ∈ A⊗Hom(V,W ) and a

G−invariant element v ∈ A⊗Hom(W,V ) such that

vu = e ∈ A⊗ End(V ), uv = f ∈ A⊗ End(W ) (2.24)

This is indeed an equivalence relation. We will write e ∼G f.

There is a natural binary operation on the set of G−invariant idempotents. In
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fact, if e ∈ A⊗End(V ) and f ∈ A⊗End(W ) are G−invariant idempotents, then

we can simply set e⊕ f ∈ A⊗End(V ⊕W ) to be the G−invariant idempotent

diag(e, f). This operation preserves the equivalence relation ∼G and descends

to a binary operation on the set VG(A) of equivalence classes, turning it into an

abelian monoid with 1.

Assume, now, A to be a unital G−algebra. Thus

Definition 2.4. The equivariant K−theory KG
0 (A) of A is the Grothendieck

group K(VG(A)).

The group KG
0 (A) has a richer structure than K0(A). Indeed, let R[G] denote

the representation ring of G, i.e. the ring of formal differences of equivalence

classes of finite-dimensional unitary representations of G with direct sum and

tensor product as the ring operations. R[G] is a commutative ring with 1, given

by the trivial one-dimensional representation. It is not difficult to check that

KG
0 (A) has a natural structure of R[G]−module, defined by sending the class

represented by the G−invariant idempotent e ∈ A⊗End(V ) to the class given

by the idempotent e ⊗ IdW ∈ A ⊗ End(V ⊗W ), for any class [W ] ∈ R[G]. In

particular, if A = C, with the trivial action, then KG
0 (C) ∼= R[G].

Let us, now, consider the general case, in which A is not necessarily unital.

Then, we define the equivariant K−theory KG
0 (A) as in the non-equivariant

case. Consider C with the trivial action and denote by A+ the unitalization of

A, with the induced action of G, trivially extended on C. Denote by

π : A+ → C (2.25)

(a, λ) 7→ λ (2.26)

the natural projection. This clearly is an equivariant homomorphism.

Definition 2.5. The equivariant K−theory group KG
0 (A) for A is the kernel

of the map

π∗ : KG
0 (A+)→ KG

0 (C) (2.27)

induced by π.

The two definitions coincide, if A is unital and it can be shown that KG
0 de-

fines a functor on the category of G−algebras in the category of R[G]−modules.

Important Remark 2.3. Let us briefly focus on the case in which A is a

G − C∗−algebra. In this case the group KG
0 (A) enjoys properties similar to

those of nonequivariant K−theory for C∗−algebras.

First, we can define KG
1 (A) in a similar fashion to the nonequivariant case. If

the suspension SA = C0(R)⊗ A of A is given the G−action which is extended

on C0(R) trivially, then SA is a G− C∗−algebra. Then

Definition 2.6. The R[G]−module KG
1 (A) is defined as KG

0 (SA).
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It is possible to define KG
1 (A) in terms of G−invariant invertible elements.

See for instance [9], Section 11 and the references therein.

The most important properties of ordinary K−theory can be generalized to the

equivariant case. In particular, one gets the following results.

Theorem 2.2.1. (stability) Let A be a G − C∗−algebra and let K be the

C∗−algebra of compact operators on a separable Hilbert space with the triv-

ial G−action. Consider the tensor product A ⊗ K endowed with the diagonal

action. Then there exists an isomorphism of R[G]−modules

φ∗ : KG
0 (A)→ KG

0 (A⊗K) (2.28)

Theorem 2.2.2. (Bott periodicity) For any G− C∗−algebra A, there exists a

natural R[G]−module isomorphism

β : KG
0 (A)→ KG

1 (SA) (2.29)

Theorem 2.2.3. (excission) Let A be a G− C∗−algebra and let J be a closed

two-sided G−invariant ideal of A. Then, there exist R[G]−module homomor-

phisms

∂0 : KG
1 (A/J)→ KG

0 (J) (2.30)

and

∂1 : KG
0 (A/J)→ KG

1 (J) (2.31)

which make the following six-term sequence of R[G]−modules exact:

KG
0 (J) −→ KG

0 (A) −→ KG
0 (A/J)

↑ ∂0 ↓ ∂1

KG
1 (A/J) ←− KG

1 (A) ←− KG
1 (J)

(2.32)

where the horizontal arrows are induced by the inclusion J → A and the quotient

map A→ A/J.

For proofs of these results and further remarks we refer again to [9] and the

references therein.

2.2.2 Pseudo-differential operators, ellipticity and the fun-

damental extension

This section will provide a very brief introduction to the theory of elliptic lon-

gitudinal pseudodifferential operators defined on a Lie groupoid. We will begin

with the notions of longitudinal differential and pseudodifferential operators. Of

course, we are interested in elliptic longitudinal operators, i.e. operators that are

” invertible up to smoothing operators”. The concept of ellipticity mentioned

here is a very important generalization of the classical notion for compact mani-

folds and it is formulated through a suitable defined principal symbol associated

to any longitudinal pseudodifferential operator. This correspondence is a surjec-

tive map and gives rise to an extension of C∗−algebras, that is fundamental for
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defining index classes. Along the nonequivariant case, we will also deal with the

equivariant version of the above notions. This paragraph is mainly based upon

[21] and [40]. Another important reference is [13], where a pseudodifferential

calculus for foliated manifolds was first introduced.

Let G be a Lie groupoid with space of objects G(0) = M. For many reasons,

both analytic and topological, we assume M to be compact. Moreover for sim-

plicity, we will denote the bundle of half-densities Ω1/2G over G simply by Ω1/2

and the bundle of leafwise half-densities over M by Ω
1/2
F . Finally, let E,F be

Hermitian smooth vector bundles over M.

For γ ∈ G, we consider again the induced operator

Uγ : C∞c (Gs(γ),Ω
1/2Gs(γ) ⊗ t∗(E))→ C∞(Gt(γ),Ω

1/2Gt(γ) ⊗ t∗(E)),

given by

Uγ(f)(γ′) = f(γ′γ) (2.33)

We will deal with families of operators parametrized by the space of objects

which are invariant with respect to the action of the groupoid on itself defined

by right multiplication. Precisely,

Definition 2.7. A G−operator, also called a tangential operator, P is defined

by the following data.

1. P is given by a family of operators P = {Px}x∈M , where

Px : C∞c (Gx,Ω
1/2Gx ⊗ t∗(E))→ C∞(Gx,Ω

1/2Gx ⊗ t∗(F )) (2.34)

and

(Pf)(γ) = Pxf(γ) (2.35)

for all f ∈ C∞c (Gx,Ω
1/2Gx ⊗ t∗(E)), γ ∈ Gx.

2. The operator P is G−invariant, i.e. ∀γ ∈ G,

UγPs(γ) = Pt(γ)Uγ (2.36)

If P is a G−operator, we denote by kx ∈ C−∞(Gx×Gx, (Ω1/2Gx⊗ t∗(F ))�
(Ω1/2Gx ⊗ t∗(E)∗)) the Schwartz kernel of the operator Px, for any x ∈ M, so

that

Pxf(γ) =

∫
Gx

kx(γ, γ′)f(γ′)

for all f ∈ C∞c (Gx,Ω
1/2Gx⊗t∗(E)), γ ∈ Gx. Using (1) and (2), one immediately

gets the following equality of vector-valued distributions

kx(γ1γ, γ2) = ky(γ1, γ2γ
−1) (2.37)

for every γ ∈ G and s(γ) = x, t(γ) = y. Thus, setting kP (γ) = ks(γ)(γ, s(γ)),

one gets kx(γ, γ′) = kP (γ(γ′)−1) and that

Pf(γ) =

∫
Gx

kP (γ(γ′)−1)f(γ′) (2.38)
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Thus, kP can be viewed as a single distribution on the groupoid G with values

in the bundle Ω1/2 ⊗ s∗(E∗)⊗ t∗(F ) acting on sections by convolution. For the

computations we have omitted we refer to [21].

With the distributional kernel kP at hand, it is simple to make precise which

growth conditions the G−operators have to satisfy. Thus, we say that P is

uniformly supported if its Schwartz kernel kP has compact support.

Moreover

Definition 2.8. A G−operator is called smoothing, if its distributional kernel

kP lies in C∞(G,Ω1/2 ⊗ s∗(E∗)⊗ t∗(F )).

In the following, we will only deal with uniformly supported G−operators. A

uniformly supported smoothing operator will be also called compactly smooth-

ing.

Remark 2.3. If the G−operator P is compactly smoothing, then its Schwartz

kernel kP belongs to C∞c (G,Ω1/2⊗ s∗(E∗)⊗ t∗(F )) and it acts on half densities

by convolution. If E = F , we have simply re-obtained formula 2.8. In other

words, the G−operator P = {Px}x∈M coincides with the family of operators

{Rx(kP )}x∈M restricted to smooth sections.

Example 2.4. Let π : M → B be a smooth fibre bundle with connected fibers

and G = M ×BM its holonomy groupoid (see 1.9 for the details). It is evident

that each s−fiber Gx can be identified with the fiber π−1(π(x)) of the fiber

bundle π.

Now Axiom (2) in 2.7 implies that, for each M ×B M−operator P and for any

x, y ∈M with π(x) = π(y, ) i.e. lying in the same fiber, one has Px = Py. Hence,

a M ×B M−operator is given by a family of operators {P̃b}b∈B , parametrized

by the base manifold B, with the relation Px = P̃π(x).

Let us, now, define pseudodifferential operators on a Lie groupoid.

Definition 2.9. Let G be a Lie groupoid over M and let E,F be complex

smooth vector bundles onM.A compactly supported pseudodifferentialG−operator

P of order m is a uniformly supported G−operator such that

1. its Schwartz kernel kP is smooth outside M, and

2. for any distinguished chart φ : U ⊆ G → L × s(U) of G and any χ ∈
C∞c (U), the operator

(φ−1)∗(χPχ)φ∗ : C∞c (L×s(U),Ω1/2L⊗t∗(E))→ C∞(L×s(U),Ω1/2L⊗t∗(F ))

is a smooth family of classical pseudodifferential operators of order m

parametrized by s(U).

Thus, a pseudodifferential operator is a G−invariant family of operators that

are locally classical pseudodifferential operators.

In particular, a differential operator on the Lie groupoid G is described by a

G−invariant family of differential operators along the s−fibers.
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We will denote by Ψm
c (G;E,F ) the space of uniformly supported pseudodiffer-

ential G−operators of order m on G between the vector bundles E and F and

we set Ψ∞c (G;E,F ) =
⋃
m∈Z Ψm

c (G;E,F ).

If E = F, it turns out (see [42]) that Ψ∞c (G;E) is actually a filtered algebra

with respect to the composition. Moreover, if E ⊗ Ω
1/2
F is a Hermitian vector

bundle and if we assign to any operator P ∈ Ψ∞c (G;E) its formal adjoint P ∗,

then P ∗ is still a pseudodifferential G−operator of the same order of P and in

this way one defines on Ψ∞c (G;E) an involution compatible with the product.

Thus, Ψ∞c (G;E) is a ∗−algebra.

Important ∗−subalgebras of Ψ∞c (G;E) are provided by Ψ0
c(G;E), the algebra of

order 0 pseudodifferential G−operators, and Ψ−∞c (G;E). Actually, Ψ−∞c (G;E)

is a two sided ideal of Ψ∞c (G;E) (see [42]).

The following result is immediate for uniformly supported pseudodifferential

G−operators.

Lemma 2.2.4. Let G be a Lie groupoid and H an open subgroupoid of G, both

over the manifold M. Let E be a complex vector bundle on M. Then the inclusion

H ⊆ G induces a filtration preserving algebra homomorphism

i : Ψ∞c (H;E) ↪→ Ψ∞c (G;E) (2.39)

defined by extending to the whole G the convolution kernel kP of P ∈ Ψ∞c (H;E)

by zero outside the support.

As in the classical situation provided by pseudodifferential operators on a

compact manifold, also for a pseudodifferential G−operator on a Lie groupoid

G, one can define a principal symbol, that generalizes the classical one.

Let π : g∗ → M be the dual Lie algebroid of G. Now, for any P ∈ Ψm
c (G,E),

the principal symbol of P is defined as the map

σpr(P ) : g∗ \ {0} → End(π∗(E ⊗ Ω
1/2
F ))

by the formula

σpr(P )(x, ξ) = σpr(Px)(x, ξ) (2.40)

for every ξ ∈ g∗x, x ∈M. Here σpr(Px) denotes the principal symbol of the clas-

sical pseudodifferential operator Px on Gx. Note that, choosing an Euclidean

metric on g∗ and using homogeneity, the principal symbol σpr(P ) can actually

be defined on the ”co-sphere bundle” S∗g of G, i.e. the set of vectors of g∗ \{0}
of lenght 1. In what follows we will always think of the principal symbol as to

be defined on S∗g.

To prove that the definition 2.40 is well-posed, there is something to check,

namely that there are representatives ax of σpr(Px) such that the family {ax}
is smooth and invariant. Moreover, the principal symbol is compatible with the

composition of operators, i.e. σpr(PQ) = σpr(P )σpr(Q). All the details can be

found in [42] and we omit them here.
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Definition 2.10. Let P ∈ Ψm
c (G;E). We will say that P is elliptic if its prin-

cipal symbol σpr(P ) is invertible for all (x, ξ) ∈ S∗g.

We get, also in this context, the following fundamental result.

Theorem 2.2.5. Let P ∈ Ψm
c (G;E) be an elliptic pseudodifferential G−operator

of order m. Then, there exists an elliptic pseudodifferential G−operator Q ∈
Ψ−mc (G;E) of order −m such that 1−QP = S0 and 1−PQ = S1 are compactly

smoothing operators.

The pseudodifferential operator Q is called a parametrix or a quasi-inverse

of P.

Proof. A proof of this result can be found in [45], Proposition 3.5.1.

Recall that a pseudodifferential G−operator P ∈ Ψ0
c(G;E) extends to an

intertwining bounded operator

P : L2
τ (G, t∗(E))→ L2

τ (G, t∗(E))

One may norm P setting

‖P‖ = sup
x∈M
‖Px‖ (2.41)

where

Px : L2(Gx,Ω
1/2Gx ⊗ t∗(E))→ L2(Gx,Ω

1/2Gx ⊗ t∗(E))

is the pseudodifferential operator at the point x ∈M.

Consider, now, the ∗−algebra Ψ0
c(G;E) normed as above and take the closure.

Thus one gets a C∗−algebra Ψ0
c(G;E), called the pseudodifferential C∗−algebra.

Clearly, Ψ−∞c (G;E) ∼= C∞c (G,END(E) ⊗ Ω1/2G) is contained in Ψ0
c(G;E).

Now, by Remark 2.3 and observing that the norm above coincides with 2.10,

one immediately gets that C∗r (G,E) is a C∗−subalgebra of Ψ0
c(G;E).

Actually, one has the following result.

Theorem 2.2.6. Let G be a Lie groupoid over M and let E be a Hermitian

vector bundle on M.

1. One has that

0→ Ψ−1
c (G;E)→ Ψ0

c(G;E)
σpr−−→ C∞(S∗g, End(π∗(E ⊗ Ω

1/2
F )))→ 0

is exact.

2. The principal symbol map extends to a surjective symbol map

σpr : Ψ0
c(G;E)→ C(S∗g, End(π∗(E ⊗ Ω

1/2
F )))

such that the sequence of C∗−algebras

0→ C∗r (G,E)→ Ψ0
c(G;E)

σpr−−→ C(S∗g, End(π∗(E ⊗ Ω
1/2
F )))→ 0 (2.42)

is exact.
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The proof of the first statement can be found in [42]. For the second one,

the proof given in [40] in the case of the holonomy groupoid carries over in the

context of general Lie groupoids.

The above result allows us to extend the notion of ellipticity to any opera-

tor P ∈ Ψ0
c(G;E) by simply declaring P to be elliptic if its principal symbol

σpr(P ) ∈ C(S∗g, End(π∗(E ⊗ Ω
1/2
F ))) is invertible for all x ∈ S∗g.

Let us consider, now, the case of a Lie groupoid endowed with additional

symmetries given by the action of a group.

Thus, let Γ denote a compact Lie group acting on the Lie groupoid G, as defined

in 1.29. Recall that if E is a Γ−equivariant Hermitian vector bundle over the

space of objects G(0) = M, then the pull-back bundle t∗(E) inherits a natural

action of Γ, that makes it into a Γ−equivariant bundle on G. Thus, it remains in-

duced a natural action of Γ on the field {C∞c (Gx,Ω
1/2Gx⊗ t∗(E))}x∈M , defined

through the linear isomorphisms

Uh : C∞c (Gx,Ω
1/2Gx ⊗ t∗(E))→ C∞c (Gh(x),Ω

1/2Gh(x) ⊗ t∗(E)) (2.43)

by

(Uhs)(γ) = h · s(h−1(γ)) (2.44)

for all x ∈M,h ∈ H.
Let, now, P ∈ Ψm

c (G;E). For any h ∈ Γ and x ∈M, we define the operator

(h·P )x = Uh◦Ph−1x◦Uh−1 : C∞c (Gx,Ω
1/2Gx⊗t∗(E))→ C∞c (Gx,Ω

1/2Gx⊗t∗(E)).

(2.45)

The new operator h · P can be proven to be a pseudodifferential G−operator.

Indeed, since this is a local statement, it is a consequence of the Theorem

3.12 in [36] about the behaviour of pseudodifferential operators under change of

coordinates of the underlying manifold.

Thus, Equation 2.45 ensures that the space of pseudodifferential G−operators

Ψm
c (G;E) admits an action by Γ.

In particular, Ψ0
c(G;E) is a Γ−algebra with the Γ−invariant ideal Ψ−1

c (G;E).

The principal symbol map

σpr : Ψ0
c(G;E)→ C∞(S∗g, End(π∗(E ⊗ Ω

1/2
F )))

turns out to be Γ−equivariant. In fact, the dual Lie algebroid g∗ inherits an

action by Lie algebroid morphisms, induced by the action of Γ on G (see [38]

for details). Moreover, choosing a Γ−invariant metric on the co-sphere bundle

S∗g, it follows that this action descends to S∗g.

Hence, the space C∞(S∗g, End(π∗(E ⊗ Ω
1/2
F ))) is naturally endowed with an

action of Γ.

One has

σpr(h · P )(x, ξ) = σpr((h · P )x)(x, ξ) = h[σpr(Ph−1(x))(h(x, ξ))] = (h · σpr)(x, ξ)

where in the second equation we have used again Theorem 3.12 and Theorem

3.5 in [36] to have an explicit formula for the principal symbol of h ·P in terms

of that of P.
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Proposition 2.2.7. If G is a Lie Γ−groupoid, then the extension

0→ Ψ−1
c (G;E)→ Ψ0

c(G;E)
σpr−−→ C∞(S∗g, End(π∗(E ⊗ Ω

1/2
F )))→ 0

is an extension of Γ−algebras and Γ−equivariant homomorphisms.

Moreover, taking closures with respect to the norm 2.41, one gets the extension

of Γ− C∗−algebras

0→ C∗r (G,E)→ Ψ0
c(G;E)

σpr−−→ C(S∗g, End(π∗(E ⊗ Ω
1/2
F )))→ 0

Proof. This is a consequence of Theorem 2.2.6, the discussion above and the

fact that the Γ−action on Ψ0
c(G;E) extends to a strongly continuous action on

the C∗−algebra Ψ0
c(G;E).

Definition 2.11. Let G be a Lie Γ−groupoid and let P ∈ Ψm
c (G;E). We say

that P is Γ−invariant if h · P = P, for all h ∈ Γ.

Since the principal symbol map is Γ−equivariant, it follows that the prin-

cipal symbol of a Γ−invariant pseudodifferential G−operator P is an invariant

section. If the operator P is also elliptic, then one can choose a Γ−invariant

parametrix Q of P. This will be important in the next section to define the

equivariant analitic index class indΓ
a(P ) of a Γ−invariant elliptic pseudodiffer-

ential G−operator P.

One gets the following equivariant version of 2.2.4

Lemma 2.2.8. Let G be a Lie Γ−groupoid and H a Γ−invariant open sub-

groupoid of G, both over the manifold M. Then the inclusion H ⊆ G induces a

Γ−equivariant filtration-preserving algebra monomorphism

i : Ψ∞c (H;E) ↪→ Ψ∞c (G;E) (2.46)

defined again by extending to the whole G the convolution kernel kP of P ∈
Ψ∞c (H;E) by zero outside the support.

Proof. Take P ∈ Ψ∞c (H;E) with distributional kernel kP . Since the action on

H is the restriction of that on G, it is the same letting h ∈ Γ act on kP and

then extending the resulting distribution to G or, conversely, extending first kP
to G and then acting on it with h.

Let, now, (M,F) be a foliated manifold and E is a Hermitian vector bundle

over M. The pseudodifferential calculus along the leaves of the foliation is by

definition the algebra Ψ∞c (H(F);E) associated to the holonomy groupoid H(F)

of the foliation. Since H(F) is a Lie groupoid for any foliation (M,F), all the

results of this section hold in the particular case of Ψ∞c (H(F);E). In particular,

one can talk about differential and pseudodifferential operators along the leaves

of the foliation, principal symbols and elliptic pseudodifferential operators. Fur-

thermore, one has the foliated extension given in Theorem 2.2.6 relative to the

holonomy groupoid, that is important to define the analytic index class of an

elliptic longitudinal operator.
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If (M,F ,Γ) is a foliated Γ−manifold andH(F ,Γ) its twisted holonomy groupoid,

then we define the pseudodifferential calculus of (M,F ,Γ) to be the algebra

Ψ∞c (H(F ,Γ);E) of uniformly supported pseudodifferential H(F ,Γ)−operators.

Ψ∞c (H(F ,Γ);E) admits an action of Γ coming from the action of Γ on H(F ,Γ).

Moreover, since by Proposition 1.4.3 and Proposition 1.5.8 the holonomy groupoid

H(F) is a Γ−invariant open Lie subgroupoid of H(F ,Γ), one has the inclusion

j : Ψ∞c (H(F);E) ↪→ Ψ∞c (H(F ,Γ);E) (2.47)

which, by Lemma 2.2.8, is a Γ−equivariant filtration-preserving algebra monomor-

phism.

Since Ψ−∞c (G;E) ∼= C∞c (G,END(E)⊗Ω1/2G) for any Lie groupoid, it is clear

that the inclusion 2.47 extends the inclusion

j : C∞c (H(F), END(E)⊗Ω1/2H(F))→ C∞c (H(F ,Γ), END(E)⊗Ω1/2H(F ,Γ))

between compactly smoothing pseudodifferential operators.

2.2.3 The equivariant index class and the Lefschetz class

Using the notions introduced in the previous paragraphs, we are now going to

define the equivariant analytic index class of an elliptic Γ−invariant pseudod-

ifferential G−operator, where G is a Lie Γ−groupoid. We will first define the

index of operators of order 0 using the general extension of Γ − C∗−algebras

2.2.7. Looking at this definition carefully, we will realize that the index class

can be defined as a KΓ−theory class of the smooth convolution algebra C∞c (G)

of the groupoid and that this construction of the index class generalizes imme-

diately to the case of operators of arbitrary order.

Besides, we will also introduce the Lefschetz class relative to the operator. This

is an invariant both of the operator and of a chosen element of Γ and can be

viewed as a localization of the equivariant index class to the fixed-point set of

this element. The original idea to interpret Lefschetz-type invariants of compact

smooth manifolds in terms of equivariant indices goes back to the fundamental

work of Atiyah, Singer and Segal [4], [3]. These ideas have been generalized to

the realm of foliated manifolds by Benameur in [5].

Since from now on we will constantly use the equivariant K−theory groups,

previously introduced, we will always assume that the Lie groupoids have com-

pact space of objects and the groups acting on them are compact Lie groups.

Let G be a Lie Γ−groupoid and let E a Hermitian Γ−equivariant vector bun-

dle on the space of objects M. Take P ∈ Ψ0
c(G;E) Γ−invariant and elliptic.

Then, by construction, the principal symbol σpr(P ) is an invertible Γ−invariant

element of the C∗−algebra C(S∗g, End(π∗(E))) and thus defines naturally an

element

[σpr(P )] ∈ KΓ
1 (C(S∗g, End(π∗(E)))). (2.48)

By Proposition 2.2.7, we have the extension of Γ− C∗−algebras

0→ C∗r (G,E)→ Ψ0
c(G;E)

σpr−−→ C(S∗g, End(π∗(E)))→ 0
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Applying Theorem 2.2.3 to this extension, one gets a long exact sequence in

equivariant K−theory and, in particular, the boundary homomorphism

∂0 : KΓ
1 (C(S∗g, End(π∗(E))))→ KΓ

0 (C∗r (G,E)) (2.49)

Definition 2.12. Let P ∈ Ψ0
c(G;E) an elliptic Γ−invariant operator. The

equivariant analytic index of P is the KΓ
0−theory class

indΓ
a(P ) = ∂0([σpr(P )]) ∈ KΓ

0 (C∗r (G,E)). (2.50)

Looking at the definition of the equivariant index class more carefully, one

gets an explicit representative of the index class in terms of a parametrix in the

following way.

Let Q ∈ Ψ0
c(G;E) be a parametrix for P. Since P is Γ−invariant, one can choose

a Γ−invariant parametrix Q. In this case, the operators PQ−1 and QP −1 are

both elements of C∗r (G,E) and are Γ−invariant, as well.

Define the matrix

T =

(
P + (1− PQ)P PQ− 1

1−QP Q

)
∈M2(Ψ0

c(G;E)) (2.51)

Then T is invertible with inverse

T−1 =

(
Q 1−QP

PQ− 1 P + P (1−QP )

)

Letting now e be the Γ−invariant idempotent

(
1 0

0 0

)
∈ M2(C∗r (G,E)+),

where C∗r (G,E)+ is the unitalization of C∗r (G,E), one gets

indΓ
a(P ) = ∂0([σpr(P )]) = [TeT−1]− [e] ∈ KΓ

0 (C∗r (G,E)) (2.52)

The second equality above is exactly the definition of the boundary homomor-

phism ∂0 (see, for instance, [9]).

Thus, we have found a representative of the equivariant index class, explicitly

given by the Γ−invariant idempotent

TeT−1 =

(
1− S2

1 (S1 + S2
1)P

S0Q S2
0

)
(2.53)

where S0 = 1−QP and S1 = 1− PQ.
If P ∈ Ψ0

c(G;E) is a Γ−invariant elliptic pseudodifferential G−operator of order

0, one can construct a more refined equivariant index class. More precisely, if

P ∈ Ψ0
c(G;E) is a Γ−invariant elliptic pseudodifferential G−operator, then

PQ− 1 and QP − 1 can be chosen to be Γ−invariant elements of the involutive

algebra Ψ−∞c (G,E).

Using that Ψ−∞c (G,E) ∼= C∞c (G,END(E) ⊗ Ω1/2G) and following the same

recipe as above, one gets therefore that the Γ−invariant idempotents e and
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TeT−1 belong to M2(C∞c (G,END(E)⊗⊗Ω1/2G)+).

One defines the smooth equivariant index class to be

indΓ
C∞(P ) = [TeT−1]− [e] ∈ KΓ

0 (C∞c (G,END(E)⊗ Ω1/2G)) (2.54)

Note that in the definition of the smooth equivariant index class, the order of P

has not played any significant role. What we have really used, is the crucial fact

stated in Theorem 2.2.5 that an elliptic pseudodifferential operator is invertible

modulo Ψ−∞c (G;E), result that holds for an elliptic operator of arbitrary order.

Thus, let P ∈ Ψm
c (G;E) be an elliptic Γ−invariant pseudodifferenatialG−operator

of order m > 0 and choose a Γ−invariant parametrix Q ∈ Ψ−mc (G;E) for it.

Then, PQ− 1 and QP − 1 are Γ−invariant operators belonging to Ψ−∞c (G,E)

and we can define again the invertible matrix

T =

(
P + (1− PQ)P PQ− 1

1−QP Q

)
∈M2(Ψ∞c (G;E))

and the corresponding Γ−invariant idempotent

TeT−1 =

(
1− S2

1 (S1 + S2
1)P

S0Q S2
0

)
The idempotents e, defined as above, and TeT−1 belong to the matrix algebra

M2(C∞c (G,END(E)⊗ Ω1/2G)+) and we can give the following

Definition 2.13. Let P ∈ Ψm
c (G;E) elliptic and Γ−invariant. The smooth

equivariant index class of P is the KΓ
0−theory class defined by

indΓ
C∞(P ) = [TeT−1]− [e] ∈ KΓ

0 (C∞c (G,END(E)⊗ Ω1/2G))

Remark 2.4. It can be proven that this definition does not depend on the

choice of the parametrix Q of P. See, for instance, [9], Section 8.3.

The inclusion i : C∞c (G,END(E)⊗Ω1/2G) ↪→ C∗r (G,E) induces an additive

map of equivariant K−theory groups

i∗ : KΓ
0 (C∞c (G,END(E)⊗ Ω1/2G))→ KΓ

0 (C∗r (G,E)).

and one defines the C∗−algebraic equivariant index class to be

indΓ
a(P ) = i∗(ind

Γ
C∞(P )) ∈ KΓ

0 (C∗r (G,E)). (2.55)

for any P ∈ Ψm
c (G,E). In the case P ∈ Ψ0

c(G,E), it follows by construction

that the smooth equivariant index class is mapped to the C∗−algebraic one as

defined in 2.12.

In passing from the smooth to the C∗−algebraic index, we lose informations,

since the map i∗ is not in general injective. However, the C∗−algebraic index

class is a more stable object, satisfying homotopy invariance and vanishing re-

sults. For further comments and results about this point we refer to [17] and

the references therein.
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Both the smooth and the C∗−algebraic equivariant index classes are very com-

plicated invariants associated to the Lie Γ−groupoid and the operator. A very

interesting idea, due to Atiyah, Segal and Singer, to extract geometric informa-

tions out of them, consists in localizing the equivariant index class to a suitable

prime ideal of the representation ring R[Γ].

More precisely, recall first that every commutative ring R with unit can be lo-

calized at a prime ideal p to yield a ring of fractions denoted by Rp. In the same

way, every R−module M can be localized at the prime ideal p, giving rise to a

Rp−module Mp. The localization procedure defines a functor from the category

of R−modules to the category of Rp−modules, which is exact. For details and

further comments, we refer to [2].

Let, now, h ∈ Γ, denote by [h] the conjugacy class of h in Γ and let

I[h] = {χ ∈ R[Γ]|χ(ghg−1) = 0, ∀g ∈ Γ} ⊆ R[Γ]

be the prime ideal of the representation ring R[Γ] associated with the conjugacy

class [h] of h. In our case, localization of the representation ring R[Γ] at I[h]

gives rise to the ring of fractions denoted by R[Γ]I[h]
. As we have seen in Section

2.2.1, the equivariant KΓ
0−theory group of a Γ−algebra is an example of a

R[Γ]−module. Thus, we can localize the R[Γ]−module KΓ
0 (C∞c (G,E)) at I[h]

to get the module of fractions KΓ
0 (C∞c (G,E))[h].

Now, motivated also by the notions given in [7] and [5], we set the following

definition of the Lefschetz class of a Lie Γ−groupoid, as localization of the

equivariant index.

Definition 2.14. LetG be a Lie Γ−groupoid, let P ∈ Ψm
c (G,E) be a Γ−invariant

elliptic pseudodifferential G−operator and let h ∈ Γ.

1. The smooth Lefschetz class L∞([h], P ) of the conjugacy class [h] of h

relative to P is the smooth equivariant analytic index class indΓ
C∞(P ) of

P localized at I[h]. In symbols

L∞([h], P ) =
indΓ

C∞(P )

1R[Γ]
∈ KΓ

0 (C∞c (G,E))[h]. (2.56)

2. The C∗−algebraic Lefschetz class L([h], P ) of [h] relative to P is the lo-

calized C∗−algebraic equivariant index class with respect to I[h],

L([h], P ) =
indΓ

a(P )

1R[Γ]
∈ KΓ

0 (C∗r (G,E))[h]. (2.57)

Remark 2.5. If Γ′ is a compact abelian Lie group, then the conjugacy class

[h] of any element h ∈ Γ′ contains only the element h itself. In this case, we

define the smooth Lefschetz class L∞(h, P ) of the diffeomorphism h relative to

the Γ′−invariant pseudodifferential operator P as

L∞(h, P ) =
indΓ′

C∞(P )

1R[Γ′]
∈ KΓ′

0 (C∞c (G,E))h, (2.58)
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where, by abuse of notation, we have denoted KΓ′

0 (C∞c (G,E))[h] simply by

KΓ′

0 (C∞c (G,E))h.

Analogously, we define the C∗−algebraic Lefschetz class L(h, P ) of the element

h relative to P as the localized C∗−algebraic equivariant index class with respect

to Γ′.

Our aim now is focusing on the particular case of a foliated Γ−manifold and

studying the Lefschetz classes introduced above for the holonomy groupoid and

the twisted holonomy groupoid of the foliation.

Let (M,F ,Γ) be a foliated Γ−manifold and E be a Hermitian vector bundle on

M. Let H(F ,Γ) denote its twisted holonomy groupoid and H(F) ⊆ H(F ,Γ)

the holonomy groupoid.

For notational simplicity and for the rest of this section, we will denote the

bundle of half densities Ω1/2H(F ,Γ) over H(F ,Γ) and Ω1/2H(F) over H(F)

by the same symbol Ω1/2, since it will be clear from the context which bundle

is meant.

Finally let us assume the group Γ to be a compact Lie group.

The Γ−equivariant algebra homomorphism

j : C∞c (H(F), END(E)⊗ Ω1/2) ↪→ C∞c (H(F ,Γ), END(E)⊗ Ω1/2))

induces a corresponding R[Γ]−linear map

j∗ : KΓ
0 (C∞c (H(F), END(E)⊗ Ω1/2))→ KΓ

0 (C∞c (H(F ,Γ), END(E)⊗ Ω1/2)).

Since this map is R[Γ]−linear, picking h ∈ Γ, we get by functoriality the localized

R[Γ]I[h]
−linear maps

j[h] : KΓ
0 (C∞c (H(F), END(E)⊗Ω1/2))[h] → KΓ

0 (C∞c (H(F ,Γ), END(E)⊗Ω1/2))[h].

Now, let P ∈ Ψm
c (H(F ,Γ);E) be Γ−invariant and elliptic and let h ∈ Γ.

Then, the smooth equivariant index class is an equivariant K−theory class

indΓ
C∞(P ) ∈ KΓ

0 (C∞c (H(F ,Γ), END(E)⊗Ω1/2)) and the Lefschetz class of [h]

relative to P is the corresponding localized class

L∞([h], P ) =
indΓ

C∞(P )

1R[Γ]
∈ KΓ

0 (C∞c (H(F ,Γ), END(E)⊗ Ω1/2))[h].

Analogously, one gets the C∗−algebraic equivariant index and the C∗−algebraic

Lefschetz classes.

In the same way, if D ∈ Ψm
c (H(F);E) is instead a Γ−invariant elliptic pseudod-

ifferential operator on the holonomy groupoid H(F) ⊆ H(F ,Γ), then its smooth

equivariant index class indΓ
C∞(D) is a class in KΓ

0 (C∞c (H(F), END(E)⊗Ω1/2))

and the corresponding smooth Lefschetz class on H(F) of [h] will be denoted

by

L∞([h], D) =
indΓ

C∞(D)

1R[Γ]
∈ KΓ

0 (C∞c (H(F), END(E)⊗ Ω1/2))[h].

Notice that we have two ways to think of the index of D as being an element of

KΓ
0 (C∞c (H(F ,Γ), END(E)⊗ Ω1/2)) :
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• we can extend D to the operator j(D) ∈ Ψm
c (H(F ,Γ);E) by means of

Equation 2.47 and take the index of j(D);

• we can take indΓ
C∞(D) ∈ KΓ

0 (C∞c (H(F), END(E)⊗Ω1/2)) and map this

class through the map j∗.

The following proposition ensures that these two ways are equivalent.

Proposition 2.2.9. If D ∈ Ψm
c (H(F);E) is Γ−invariant and elliptic and

j(D) ∈ Ψm
c (H(F ,Γ);E) is the corresponding operator on H(F ,Γ), then the

following equalities hold

j∗(ind
Γ
C∞(D)) = indΓ

C∞(j(D)) ∈ KΓ
0 (C∞c (H(F ,Γ), END(E)⊗ Ω1/2)) (2.59)

and

j[h](L∞([h], D)) = L∞([h], j(D)) ∈ KΓ
0 (C∞c (H(F ,Γ), END(E)⊗ Ω1/2))[h]

(2.60)

Proof. Since P is Γ−invariant and elliptic, there exists a Γ−invariant parametrix

Q for P such that S0 = 1−QP,S1 = 1−PQ ∈ Ψ−∞c (H(F);E). Moreover, since

the inclusion j : Ψ∞c (H(F);E) ↪→ Ψ∞c (H(F ,Γ);E) is an equivariant unital

algebra homomorphism, it follows that j(Q) is a Γ−invariant parametrix for

j(P ), with remainders j(S0) and j(S1).

The smooth equivariant index class of P is, by definition, the formal difference

of the equivalence classes of the idempotents e =

(
1 0

0 0

)
and TeT−1 =(

1− S2
1 (S1 + S2

1)P

S0Q S2
0

)
.

In the same way, the smooth equivariant index of j(P ) is the formal difference of

j(e) = e and the idempotent R =

(
1− j(S1)2 (j(S1) + j(S1)2)j(P )

j(S0)j(Q) j(S0)2

)
. The

particular choice of the parametrix j(Q) to construct the index class of j(P ) is

irrelevant, since the index does not depend on the parametrix.

Now, with these choices one gets that j(TeT−1) = R and thus

j∗(ind
Γ
C∞(P )) = j∗([TeT

−1]− [e]) = [j(TeT−1)]− [e] = [R]− [e] = indΓ
C∞(j(P ))

which proves the first equality.

The second one follows from the equality of the index classes and from the

functoriality of the localization procedure.

As already mentioned, the equivariant index class of an elliptic operator and

the corresponding Lefschetz class of the conjugacy class of a diffeomorphism

h ∈ Γ are complicated invariants of the foliated Γ−manifold (M,F ,Γ) and the

operator. In particular, the non-vanishing of the Lefschetz class is a difficult

problem to solve in general. One strategy to attack this problem, or, more

generally, to investigate these classes is to construct additive maps defined on

KΓ
0 (C∞c (H(F ,Γ), END(E)⊗ Ω1/2))[h] or KΓ

0 (C∞c (H(F), END(E)⊗ Ω1/2))[h]
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to C. These maps should reflect topological/geometric and dynamical features

of the foliation. Thus the evaluation of such a map on the Lefschetz class should

provide invariants of the foliation.

These maps arise from suitable equivariant cyclic cocycles, our object of study

in the next chapters.

2.3 Pseudo-differential calculus for foliated bun-

dles

In the particular case of a foliated bundle (M̃ ×H T,F , π), the pseudodifferen-

tial calculus introduced in the previous section, can be slightly simplified. In-

deed, instead of using families on the holonomy groupoid, one may use smooth

H−invariant families of classical pseudodifferential operators on the manifolds

M̃x, for all points x ∈ T. The resulting pseudodifferential calculus is equivalent

to that defined using the holonomy groupoid, in the sense that there exists a

bijection between these two spaces of operators. However for many purposes, it

is technically simpler to deal with.

Let us give in this section a brief overview of this calculus. We will only sketch

the proofs, giving precise references in which those can be found. For a more

detailed treatment we refer to [41] and [8].

Let (M̃ ×H T,F , π) be a foliated bundle, as defined in Example 1.3. Assume

that the action of H on T is locally free, namely given g ∈ H, if there exists an

open set U ⊆ T such that xg = x, for all x ∈ U, then g = e, the identity of H.

Under this assumption, it follows that there exists a Lie groupoid isomorphism

between the holonomy groupoid H(F) of the foliated bundle and its monodromy

groupoid Π(F) = (M̃ × M̃ × T )/H. In particular, H(F) is Hausdorff. Through

this section we will always assume the H−action on T to be locally free (for

comments, see [41] or [12]).

Let Ẽ and F̃ be two H−equivariant Hermitian vector bundles on M̃×T. Further

denote by C∞c (M̃ × T, Ẽ) the space of compactly supported smooth sections of

Ẽ over M̃ × T.

Definition 2.15. Let P : C∞c (M̃ × T, Ẽ)→ C∞(M̃ × T, F̃ ) a linear operator.

We say that P is a H−invariant family of pseudodifferential operators of order

m ∈ Z if

1. for each t ∈ T, the operator P restricts on M̃t = pr−1
2 (t) to an operator

Pt : C∞c (M̃t, Ẽt)→ C∞(M̃t, F̃t)

which is a classical pseudodifferential operator of orderm. Here Ẽt = Ẽ|Mt
,

We require further that the family of pseudodifferential operators (Pt)t∈T
is smooth with respect to t ∈ T, as defined in [42].

2. P is H−equivariant, i.e. gPxg
−1 = Pgx, for any x ∈ T, g ∈ H.

3. the distributional kernel of P has H−compact support.
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Conditions (1) and (2) imply that the distributional kernel can be thought

of as a distribution on M̃ × M̃ × T which is H−invariant. Therefore it can

be regarded as a distribution on the holonomy groupoid H(F). Condition (3)

means that this distribution has compact support and therefore the operator P

maps C∞c (M̃ × T ; Ẽ) to C∞c (M̃ × T ; F̃ ).

Let m ∈ Z and denote the space of H−invariant families of pseudodifferential

operators of order ≤ m from Ẽ to F̃ by Ψm
H(Ẽ, F̃ ). A very important fact is

that if P ∈ Ψm
H(Ẽ0, Ẽ1) and Q ∈ Ψk

H(Ẽ1, Ẽ2, then the composition QP ∈
Ψm+k
H (Ẽ0, Ẽ2). Set

Ψ∞H (Ẽ, F̃ ) =
⋃
m∈Z

Ψm
H(Ẽ, F̃ ).

In the case Ẽ = F̃ we obtain the filtered algebra Ψ∞H (Ẽ, Ẽ), simply denoted

by Ψ∞H (Ẽ). Moreover if P ∈ Ψm
H(Ẽ, F̃ ) we can associate the formal adjoint

P ∗ = (P ∗t )t∈T , which is an element in Ψm
H(F̃ , Ẽ). This is an involution in the

case Ẽ = F̃ , giving Ψ∞H (Ẽ) the structure of a ∗-algebra.

Important subalgebras of Ψ∞H (Ẽ) are the algebras Ψ0
H(Ẽ) of pseudodifferential

operators of order ≤ 0 and Ψ−∞H (Ẽ) of pseudodifferential operators of order

−∞. The latter are also called compactly smoothing operators.

Remark 2.6. Let E denote a vector bundle over M̃ ×H T and Ẽ its pullback

over M̃ × T.
There exists an isomorphism between the algebra of pseudodifferential operators

Ψ∞H (Ẽ), as defined in 2.15, and the algebra Ψ∞c (H(F), E), where H(F) = (M̃×
M̃ × T )/H.

For the definition of this isomorphism we refer to [8], Section 3.2.

Thus in the case of foliated bundles, instead of using the general pseudodiffer-

ential calculus we can alternatively use H−invariant families on the transversal

T. This is technically simpler.

Let πvert : T ∗vert(M̃ × T ) → M̃ × T be the vertical cotangent bundle of the

product fibration M̃ × T and consider the vector bundle Hom(π∗vertẼ, π
∗
vertF̃ )

on T ∗vert(M̃ × T ). Since the projection πvert is H−equivariant, then the Hom-

bundle above carries an induced H−action.

If P ∈ Ψm
H(Ẽ, F̃ ), its principal symbol is a well defined H−invariant section

σm(P ) ∈ C∞(T ∗vert(M̃ × T );Hom(π∗vertẼ, π
∗
vertF̃ )). Equivalently, σm(P ) is a

well defined section on the cotangent bundle to the foliation T ∗F with values

in Hom(π∗F (E), π∗F (F )). Choosing an Euclidean inner product on T ∗F , we see

that σm(P ) is completely determined by its restriction to the cosphere bundle

S∗F of the foliation, since the operators we deal with are classical. Therefore

one has that σm(P ) ∈ C∞(S∗F ;Hom(π∗F (E), π∗F (F ))).

More generally, one can introduce the principal symbol map

σm : Ψm
H(Ẽ, F̃ )→ C∞(S∗F ;Hom(π∗F (E), π∗FF )) (2.61)

Definition 2.16. Let P ∈ Ψm
H(Ẽ, F̃ ). We say that P is elliptic if its principal

symbol σm(P ) is invertible, for each (x, ξ) ∈ S∗F .



2 Pseudo-differential calculus for foliated bundles 81

The following result is the analogue of 2.2.5 in the context of foliated bundles.

Theorem 2.3.1. If P ∈ Ψl
H(Ẽ, F̃ ) is elliptic, then there exists an operator

Q ∈ Ψ−lH (F̃ , Ẽ) such that

Id− PQ = R0 ∈ Ψ−∞H (F̃ , F̃ ), Id−QP = R1 ∈ Ψ−∞H (Ẽ, Ẽ) (2.62)

The operator Q is called a parametrix for P.

Notice now that a pseudodifferential operator P ∈ Ψ0
H(Ẽ) of order ≤ 0 extends

to a continuous family of bounded operators for the field of Hilbert spaces L2
τ (Ẽ).

We define the norm

‖ P ‖= sup
t∈T
‖ Pt ‖ (2.63)

for every P ∈ Ψ0
H(Ẽ) and take the closure Ψ0

H(Ẽ)
‖·‖

with respect to this norm.

Theorem 2.3.2. The principal symbol map extends to the surjective linear map

σ0 : Ψ0
H(Ẽ)→ C(S∗F , Hom(π∗F (E), π∗F (F )) (2.64)

and we have the following exact sequence of C∗−algebras

0→ C∗(M̃ ×H T,F ;E)→ Ψ0
H(Ẽ)

σ0−→ C(S∗F , Hom(π∗F (E), π∗F (F ))→ 0

Let us now suppose that a Lie group Γ acts on (M̃ ×H T,F , π) by leaf-

preserving diffeomorphisms, making it into a foliated Γ−manifold. Then, all

the results about the induced action of Γ on the algebra of pseudodifferential

operators Ψ∞H (Ẽ) are exactly the same as those stated in Section 2.2.2. There-

fore we do not repeat them here, referring to Section 2.2.2 and the references

therein for the details.



Chapter 3

Equivariant and Twisted

Cyclic Cohomology

In this chapter we present the definitions of the equivariant Hochschild, equiv-

ariant cyclic and equivariant periodic cyclic cohomology groups of a certain

class of locally convex C-algebras acted upon by a compact Lie group Γ, and

establish the basic properties of these functors. In particular, we will prove an

equivariant SBI-sequence, that relates equivariant Hochschild cohomology and

equivariant cyclic cohomology.

Furthermore, we will study the pairing between equivariant K0-theory and the

equivariant cyclic cocycles on (A,Γ). This pairing is fundamental for higher

index theory, both equivariant and nonequivariant. The nonequivariant case

has been extensively studied in various geometric situations like discrete group

actions on manifolds and foliations, giving rise to deep and unexpected results

(cf. [17] and [16] and the references therein for details and further remarks).

Instead, the equivariant situation has not yet been fully explored and it is in-

teresting to investigate further in this direction.

Our treatment is based on [37], [18], [7] and [46].

3.1 Equivariant Cyclic Cohomology for unital Γ-

algebras

In this section we introduce the basic objects and operators we will deal with in

the rest of the chapter, namely equivariant (Hochschild) cochains, the equivari-

ant Hochschild differential maps bΓ and b
′

Γ and the equivariant cyclic operators

λΓ on cochains.

Unlike the nonequivariant case, the definitions of the differential bΓ and of the

cyclic operator must be suitably modified, to keep track of the Γ−action. Do-

ing this, one gets again that the operator bΓ is well-defined on the λΓ-invariant

cochains, giving rise to a cochain complex (C∗λΓ
(A,Γ), bΓ), whose homology is

by definition the equivariant cyclic cohomology of the Γ−algebra A.

82



3 Equivariant Cyclic Cohomology for unital Γ-algebras 83

We shall not attempt to deal with general locally convex algebras, but rather

we will treat for simplicity a special class of locally convex algebras, namely

Fréchet algebras, in order to emphasize the algebraic aspects of the equivariant

cyclic theory. If the group happens to be finite, it is not necessary to consider

a topology and the theory is purely algebraic.

Finally, we will first assume that the algebras are unital. We shall see in the

next sections how to get rid of this assumption.

If A is a unital locally convex C-algebra acted upon by a compact Lie group Γ,

recall that A is a Γ-algebra if there is a group homomorphism

ρ : Γ→ Aut(A)

where Aut(A) is the group of continuous automorphisms of A, which is strongly

continuous, i.e. for any a ∈ A the map

g → ρg(a)

is continuous with respect to the topology on A. As usual, we will often forget

to mention explicitly the homomorphism ρ, if there is no cause of confusion.

Now, let us consider a unital Fréchet Γ-algebra A and let C(Γ) denote the

C∗−algebra of complex valued continuous functions on Γ. Denote by Ln(A, C(Γ))

the vector space of continuous (n+ 1)-linear maps τ : A×· · ·×A → C(Γ). The

action of Γ on A and on C(Γ), given by the conjugation in the argument, induces

a natural action on this space, namely for any g, h ∈ Γ, ai ∈ A, τ ∈ Ln(A, C(Γ))

(g · τ)(a0, a1, . . . , an)(h) := τ(ga0, ga1, . . . , gan)(ghg−1) (3.1)

Definition 3.1. A map τ ∈ Ln(A, C(Γ)) is called Γ-invariant if for all g ∈ Γ

g · τ = τ

The vector space of all Γ-invariant mappings τ ∈ Ln(A, C(Γ)) will be de-

noted by Cn(A,Γ) and an element of it will be called equivariant Hochschild

cochain, or simply equivariant cochain.

Following [7] we will adopt the notation τ(a0, a1, . . . , an | h) for the scalar

τ(a0, a1, . . . , an)(h), for all elements ai ∈ A, h ∈ Γ.

The corresponding graded vector space is denoted by

C∗(A,Γ) =
⊕
n≥0

Cn(A,Γ) (3.2)

Remark 3.1. If the group Γ is a finite and A is a (nontopological) Γ−algebra,

one can consider the vector space Ln(A, F (Γ)) of (n+1)−linear maps on A with

values in F (Γ), the space of all complex valued functions on Γ. Again, the action

of Γ on A and on F (Γ) by conjugation determines an action on Ln(A, F (Γ)) and

we take the Γ−invariant elements of Ln(A, F (Γ)). The subspace of invariant

maps is denoted as above Cn(A,Γ).
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3.1.1 Cyclic group action

Let Γ be a compact Lie group and let A be a unital Fréchet Γ−algebra.

Like in the nonequivariant theory, one notes that on Cn(A,Γ) an action of the

cyclic group Z/(n+ 1)Z is naturally defined. However, in the equivariant case,

the representation of Z/(n+1)Z on the space of equivariant Hochschild cochains

Cn(A, G) is provided by a cyclic operator which takes into account the presence

of the group Γ. More precisely

Definition 3.2. The operator λΓ : Cn(A,Γ)→ Cn(A,Γ) acts on τ ∈ Cn(A,Γ)

by

(λΓτ)(a0, a1, . . . , an | g) := (−1)nτ(g−1(an), a0, . . . , an−1 | g) (3.3)

This is the equivariant cyclic operator on Cn(A,Γ).

Remark 3.2. The equivariant cyclic operator λΓ induces a representation of

the cyclic group Z/(n + 1)Z on the equivariant cochains. The only thing to

prove, which is not evident is the relation

λn+1
Γ = id (3.4)

One gets

λn+1
Γ τ(a0, a1, . . . , an | g) = (−1)nλnΓτ(g−1an, a0, . . . , an−1 | g) =

= · · · = (−1)n(n+1)τ(g−1a0, g
−1a1, . . . , g

−1an | g) = τ(a0, a1, . . . , an | g)

The last equality follows from the invariance of the cochain. Therefore 3.4

is proved.

Definition 3.3. The norm operator is defined as

NΓ :=

n∑
i=0

λiΓ (3.5)

To simplify notations and formulas in what follows, we will often write λ

instead of λΓ and analogously N in place of NΓ.

Now by 3.4 it is obvious that the following relation holds

(id− λ)N = N(id− λ) = 0. (3.6)

This relation and the following lemma are going to play an important role

for the definition of equivariant cyclic cohomology.

Lemma 3.1.1. For any n ∈ N

Cn(A,Γ)
id−λ−−−→ Cn(A,Γ)

N−→ Cn(A,Γ)
id−λ−−−→ Cn(A,Γ)

N−→ . . . (3.7)

is a Z/(n+ 1)Z-complex.

Moreover this complex is acyclic.
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Proof. By Equation 3.6 it is clear that 3.7 is a complex. Since we are working

with algebras on a field of characteristic 0, namely with C−algebras, there is a

homotopy from the identity chain map to the zero chain map of 3.7, like in the

nonequivariant theory. Set

G′ := 1/(n+ 1) · id G := − 1

n+ 1

n∑
j=0

jλj .

One verifies that

G′N + (1− λ)G = id (3.8)

NG′ +G(1− λ) = id (3.9)

Therefore (G,G′) is a chain homotopy from id to 0 and the complex is

acyclic.

Remark 3.3. If we consider algebras over arbitrary fields or even rings (the

theory for such general algebras in the nonequivariant case has been extensively

studied. See [37]), it is no longer true that the complex 3.7 is acyclic.

3.1.2 Equivariant Hochschild cohomology

In this subsection we will define equivariant Hochschild cohomology for a unital

Fréchet Γ-algebra with Γ a compact Lie group. The assumption of the unitality

of the algebra is essential and in the non-unital case the definition must be

modified. We will see how to modify it in the next section. As for the equivariant

cyclic operator λΓ, the Hochschild differential bΓ is suitably defined to keep track

of the action of Γ.

Our treatment is based on the approach developed in [7] and [34].

Let Γ be a compact Lie group and let A be a unital Fréchet Γ−algebra.

Definition 3.4. Let τ ∈ Cn(A,Γ). The operator b′Γ on Cn(A,Γ) is defined by

(b′Γτ)(a0, a1, . . . , an+1 | g) =

n∑
i=0

(−1)iτ(a0, a1, . . . , aiai+1, . . . , an+1 | g)

It is easy to verify that b′Γτ ∈ Cn+1(A,Γ), for any τ ∈ Cn(A,Γ).

Since the definition of the operator b′Γ is the same as in the nonequivariant

theory, we deduce that (b′Γ)2 = 0, i.e. it is indeed a differential for the graded

vector space C∗(A,Γ), and, further, since we are also assuming the algebras to

be unital, the resulting complex (C∗(A,Γ), b′Γ) is acyclic.

In fact the operators s : Cn(A,Γ)→ Cn−1(A,Γ) given by

(sτ)(a0, a1, . . . , an−1 | g) = (−1)n−1τ(a0, a1, . . . , an−1, 1 | g) (3.10)

are chain contractions for (C∗(A,Γ), b′Γ).

Set, now, for any τ ∈ Cn(A,Γ)

(dΓτ)(a0, . . . , an+1 | g) = (−1)n+1τ(g−1(an+1)a0, . . . , an | g) (3.11)
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Definition 3.5. The equivariant Hochschild coboundary map bΓ : Cn(A,Γ)→
Cn+1(A,Γ) is the operator given by

bΓ = b′Γ + dΓ (3.12)

It is obvious that C∗(A,Γ) is invariant for bΓ. This operator is the equivariant

version of the Hochschild coboundary operator in the nonequivariant theory.

Indeed

Lemma 3.1.2. b2Γ = 0

Proof. From the definition it follows that

b2Γ = (b′Γ + dΓ)2 = (b′Γ)2 + b′ΓdΓ + dΓb
′
Γ + d2

Γ.

Now, we already know that (b′Γ)2 = 0. Moreover, by a direct computation, one

can show that b′ΓdΓ + dΓb
′
Γ + d2

Γ = 0, from which the result follows.

Now we are in the position to define the equivariant Hochschild complex for

(A,Γ). We remark again that the unitality assumption is essential here.

Definition 3.6. The equivariant Hochschild complex is the cochain complex

(C∗(A,Γ), bΓ). The equivariant Hochschild cohomology of (A,Γ) is the homol-

ogy of this complex, i.e.

HHn(A,Γ) = Hn(C∗(A,Γ), bΓ) (3.13)

This is the correct definition of equivariant Hochschild cohomology only in

the unital case. If the algebra A has not got a unit we need an alternative ap-

proach to define this theory and we will see that in general the cyclic operator

λ and the complex (C∗(A,Γ), b′Γ) must be used to give the correct notion of

equivariant Hochschild cohomology. These aspects will be discussed at lenght

in the next section.

Now, note that, if the group G is the trivial group consisting only of the iden-

tity element Γ = e, then one clearly recovers the nonequivariant Hochschild

cohomology groups of the algebra A.

Remark 3.4. For a finite group Γ and a Γ−algebra A we can define the equiv-

ariant Hochschild complex and equivariant Hochschild cohomology in exactly

the same way.

3.1.3 Equivariant cyclic cohomology

In this subsection we will define equivariant cyclic cohomology directly from

the equivariant Hochschild complex (C∗(A,Γ), bΓ). The following definition is

inspired by the original one of A. Connes, in the nonequivariant theory, and can

be found in the paper [7].

Let A be as above a unital Fréchet Γ−algebra. The main idea to define equiv-

ariant cyclic cohomology is the following. Once one has the cyclic action of

Z/(n + 1)Z on Cn(A,Γ), important cochains to study are the ones invariant

with respect to this action. This motivates the following definition.
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Definition 3.7. An equivariant cochain τ ∈ Cn(A,Γ) is called cyclic if

λΓτ = τ (3.14)

where λΓ is the equivariant cyclic operator.

The vector space of equivariant cyclic n-cochains is denoted by Cnλ (A,Γ)

In other words, an equivariant cochain τ is cyclic iff for any ai ∈ A, g ∈ Γ

the following relation holds

τ(g−1an, a0, . . . , an−1 | g) = (−1)nτ(a0, a1, . . . , an | g). (3.15)

Hence one gets that

Cnλ (A,Γ) = Cn(A,Γ)Z/(n+1)Z (3.16)

As usual, we set

C∗λ(A,Γ) =
⊕
n>0

Cnλ (A,Γ) (3.17)

Similarly to the nonequivariant case, the striking phenomenon happening is

that the equivariant coboundary operatory bΓ is a well defined differential on

C∗λ(A,Γ). Although bΓ does not commute with λΓ, one has

Lemma 3.1.3. The following relations hold

b′Γ(id− λΓ) = (id− λΓ)bΓ (3.18)

and

NΓb
′
Γ = bΓNΓ (3.19)

Proof. First observe that the coboundary maps b′Γ and bΓ can be expressed in

terms of the cyclic operator and the operator dΓ defined in 3.11, more precisely

b′n =

n∑
j=0

λ
−(j+1)
n+1 dnλ

j
n

and

bn =

n+1∑
j=0

λ
−(j+1)
n+1 dnλ

j
n

In the above formulas to simplify the notation we omitted the subscript Γ

throughout and we added the subscript n, to stress that the corresponding

operator acts on Cn(A,Γ). This convention is adopted also in the rest of the

proof. The above two formulas are quite easy to derive.
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As a consequence of the above formulas we get the claimed relations. In fact

b′n(id− λn)− (id− λn+1)bn =

(

n∑
j=0

λ
−(j+1)
n+1 dnλ

j
n)(id− λ)− (id− λ)(

n+1∑
j=0

λ
−(j+1)
n+1 dnλ

j
n) =

=

n∑
j=0

λ
−(j+1)
n+1 dnλ

j
n −

n∑
j=0

λ−jn+1dnλ
j
n + dn − λ−(n+1)

n+1 dn −

n∑
j=0

λ
−(j+1)
n+1 dnλ

j
n −

n∑
j=0

λ
−(j+1)
n+1 dnλ

j+1
n =

n∑
j=0

λ
−(j+1)
n+1 dnλ

j+1
n −

n∑
j=0

λ−jn+1dnλ
j
n + dn − λ−(n+1)

n+1 dn =

= λ
−(n+1)
n+1 dnλ

n+1
n − dn + dn − λ−(n+1)

n+1 dn = 0

Therefore we have shown 3.18.

The equation 3.19 is proved analogously.

Thus, as immediate consequence of Equation 3.18 of the previous lemma,

one gets indeed

bΓ(Cnλ (A,Γ)) ⊆ Cn+1
λ (A,Γ) (3.20)

Definition 3.8. The equivariant cyclic complex of (A,Γ) is the subcomplex

(C∗λ(A,Γ), bΓ) of the equivariant Hochschild complex (C∗(A,Γ), bΓ).

Its homology is denoted by

Hn
λ (A,Γ) = Hn(C∗λ(A,Γ), bΓ) (3.21)

3.2 Equivariant Cyclic Bicomplex

In this section we will construct the equivariant cyclic bicomplex CC∗∗(A,Γ)

for pairs (A,Γ). As in the nonequivariant case, this bicomplex intertwines the

equivariant Hochschild complex and the periodic resolution of period 2 for

Z/(n + 1)Z−modules and gives the right framework for defining Hochschild

and cyclic cohomology for nonunital Γ-algebras.

It is not difficult to prove that both definitions of equivariant Hochschild and

cyclic cohomology coincide for unital Γ-algebras, so that one gets two equiv-

alent descriptions of the theories. Moreover we will get easily from the cyclic

bicomplex an analogue for (not necessarily unital) Γ-algebras of the Connes’

SBI-sequence, which relates equivariant Hochschild and cyclic cohomology. A

comprehensive introduction to the nonequivariant theory can be found in [37]

and [18].

Let Γ be a compact Lie group and let A be a not necessarily unital Fréchet

Γ-algebra. Let us consider C∗(A,Γ), the vector space of equivariant cochains

on A, and the equivariant cyclic operator λΓ, the norm operator NΓ and finally

both Hochschild coboundary operators b′Γ, bΓ, as defined in the previous section.
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The above Lemma 3.1.3 allows us to define the following first quadrant

bicomplex, denoted by CC∗∗(A,Γ)

xb x−b′ xb x−b′
C2(A,Γ)

1−λ−−−−→ C2(A,Γ)
N−−−−→ C2(A,Γ)

1−λ−−−−→ C2(A,Γ)
N−−−−→ . . .xb x−b′ xb x−b′

C1(A,Γ)
1−λ−−−−→ C1(A,Γ)

N−−−−→ C1(A,Γ)
1−λ−−−−→ C1(A,Γ)

N−−−−→ . . .xb x−b′ xb x−b′
C0(A,Γ)

1−λ−−−−→ C0(A,Γ)
N−−−−→ C0(A,Γ)

1−λ−−−−→ C0(A,Γ)
N−−−−→ . . .

Again, for notational simplicity we have omitted the subscript Γ throughout.

Definition 3.9. The bicomplex CC∗∗(A,Γ) is called the equivariant cyclic

bicomplex of the pair (A,Γ).

The total complex of CC∗∗(A,Γ) will be denoted by (Tot∗(A,Γ), ∂), where

Totn(A,Γ) =

n⊕
k=0

Cn−k(A,Γ)

and the differential ∂ = ∂v + ∂h. An element x ∈ Totn(A,Γ) is, therefore, a

n−tuple x = (x0, x1, . . . , xn), with xk ∈ Cn−k(A,Γ).

Definition 3.10. We define

HCn(A,Γ) = Hn(Tot∗(A,Γ), ∂) (3.22)

to be the equivariant cyclic cohomology of (A,Γ).

Note that we do not assume the algebra to be unital in the above definition.

We set

HC∗(A,Γ) =
⊕
n≥0

HCn(A,Γ) (3.23)

Let us now consider only the first two columns of the cyclic bicomplexxb x−b′
C2(A,Γ)

1−λ−−−−→ C2(A,Γ)xb x−b′
C1(A,Γ)

1−λ−−−−→ C1(A,Γ)xb x−b′
C0(A,Γ)

1−λ−−−−→ C0(A,Γ)

(3.24)

and its total complex (Tot∗[2], δ), where
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Totn[2] = Cn(A,Γ)⊕ Cn−1(A,Γ), n ≥ 1, D0 = C0(A,Γ)

and

δ =

(
b 0

id− λ −b′

)
Definition 3.11. The equivariant Hochschild cohomology HH∗(A,Γ) for any

(possibly non unital) Γ-algebra A is defined as the homology of the cochain

complex (Tot∗[2], δ).

If A has a unit we know that (C∗(A,Γ), b′Γ) is an acyclic complex, with

a chain contraction given explicitly by the degeneracy maps s, as defined by

Equation 3.10 and therefore the second column of 3.24 can be disregarded for

the computation of the HH∗(A,Γ).

Thus in this case we reobtain the old definition of equivariant Hochschild coho-

mology as given in 3.6, as the homology of (C∗(A,Γ), bΓ).

As next step we want to compare the group HCn(A,Γ) with Hn
λ (A,Γ), in the

particular case of a unital Γ-algebra A. These groups are up to isomorphisms

the same. This is the content of the following theorem.

Theorem 3.2.1. For any unital Γ-algebra A and any n ∈ N one has a canonical

isomorphism

HCn(A,Γ) ∼= Hn
λ (A,Γ) (3.25)

Proof. Recall that we have shown in Lemma 3.1.1 that the rows of the equiv-

ariant cyclic bicomplex CC∗∗(A,Γ) are acyclic complexes. Thus the only non

trivial homology of each row is the homology group H0(C∗(A,Γ), (id− λ,N)).

It is an immediate consequence of the definition of equivariant cyclic cochain

that

H0(Ck(A,Γ); (id− λ,N)) = ker(id− λk) = Ckλ(A,Γ).

Moreover, since CC∗∗(A,Γ) is a bicomplex with horizontal differentials dh =

id− λΓ, NΓ, and vertical differentials dv = bΓ,−b′Γ, it follows from the relation

dhdv + dvdh = 0 that the equivariant Hochschild coboundary map bΓ is a well

defined differential on C∗(A,Γ), as we already proved in 3.1.3.

By a spectral sequence argument (cf. [37], Proposition 1.0.12 and Appendix D),

one gets

HCn(A,Γ) = Hn(Tot∗(A,Γ)) ∼= Hn(C∗λ(A,Γ), bΓ) = Hn
λ (A,Γ) (3.26)

Remark 3.5. In the proof of the previous theorem we have obtained the equiv-

ariant cyclic complex (C∗λ(A,Γ), bΓ) of a unital algebra A as the vertical complex

of the homology of the rows of CC∗∗(A,Γ) (or equivalently as the E1-term of

the spectral sequence induced by CC∗∗(A,Γ)).

If the algebra A is nonunital, we can define its equivariant cyclic complex as
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being the E1−term of the spectral sequence induced by the cyclic bicomplex of

(A,Γ). Explicitly, this complex is (C∗λ(A,Γ), bΓ), where Cnλ (A,Γ) is the vector

space of cyclic equivariant n−cochains of (A,Γ) and bΓ is the usual equivariant

Hochschild differential.

Hence, we get that the equivariant cyclic cohomology of a nonunital algebra A
can be computed also through its equivariant cyclic complex (C∗λ(A,Γ), bΓ).

This is implicitly used in [7], where equivariant Hochschild and cyclic cohomol-

ogy are defined explicitly only in the unital case.

Let now B be another Fréchet Γ−algebra. For any continuous Γ−equivariant

algebra homomorphism ψ : A → B, we define

(ψ∗τ)(a0, a1, . . . , an|h) = τ(ψ(a0), ψ(a1), . . . , ψ(an)|h) (3.27)

for every τ ∈ Cn(B,Γ), ai ∈ A, h ∈ Γ.

Using the fact that ψ is an equivariant homomorphism, it is immediate to check

that ψ∗ gives rise to a cochain map of degree 0

ψ∗ : Cnλ (B,Γ)→ Cnλ (A,Γ),

which in turn induces a well- defined map

ψ∗ : HCn(B,Γ)→ HCn(A,Γ) (3.28)

Thus we have shown

Lemma 3.2.2. Let Γ be a compact Lie group. For every n ∈ N, HCn(·,Γ)

is a functor on the category of Fréchet Γ−algebras and equivariant continuous

algebra homomorphisms to the category of abelian groups and group homomor-

phisms.

If we assume the group to be finite, all the results of the preceding sections

hold for any Γ−algebra without topology.

3.3 The equivariant SBI-sequence and the peri-

odic theory

Besides the possibility to define equivariant Hochschild and cyclic cohomology

for nonunital algebras, another advantage of working with the equivariant cyclic

bicomplex is that it enables to show very simply a long exact sequence that re-

lates the equivariant Hochchild cohomology groups with the equivariant cyclic

ones. This sequence is the so-called equivariant SBI−sequence and it is impor-

tant because it reduces the problem of computing the equivariant cyclic coho-

mology groups to the computation of the equivariant Hochschild cohomology.

More precisely, once the equivariant Hochschild cohomology has been computed,

then applying the SBI−sequence one can compute in principle the equivariant

cyclic cohomology inductively.

In this section, we will provide the details. Furthermore, we will introduce
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equivariant periodic cyclic cohomology by means of the periodicity operator SΓ,

also appearing in the SBI−sequence.

Let A be a Fréchet, possibly nonunital Γ−algebra. Let us consider the cyclic

bicomplex CC∗∗(A,Γ) and its total complex (Tot∗(A,Γ), ∂). Recall that an ele-

ment x ∈ Totn(A,Γ) is a n−tuple x = (x0, x1, . . . , xn), where xk ∈ Cn−k(A,Γ).

One can define the cochain map SΓ : Tot∗(A,Γ)→ Tot∗(A,Γ) defined by

SΓ(x0, x1, . . . , xn) = (0, 0, x0, x1, . . . , xn) (3.29)

for any (x0, x1, . . . , xn) ∈ Totn(A,Γ). It is immediate to see that SΓ is a cochain

map of degree 2.

Moreover, taking the total complex (Tot∗[2](A,Γ), δ) of the bicomplex 3.24, we

define I : Tot∗(A,Γ)→ Tot∗[2](A,Γ) to be the map given by projecting, i.e.

I(x0, x1, . . . , xn) = (x0, x1), (3.30)

for all x ∈ Totn(A,Γ). In particular, if x0 ∈ Tot0(A,Γ), then I(x0) = x0.

Thus, we get a short exact sequence of cochain complexes

0→ Tot∗(A,Γ)
SΓ−−→ Tot∗(A,Γ)

I−→ Tot∗[2](A,Γ)→ 0, (3.31)

where, however, the map SΓ is of degree 2.

To get cochain maps of degree 0 in the above sequence, we perform the following

trick. Let us define the cochain complex (Tot∗(A,Γ)[−2], ∂′) by

Totn(A,Γ)[−2] = Totn−2(A,Γ), n ≥ 2 (3.32)

Totn(A,Γ)[−2] = 0, n = 0, 1 (3.33)

with differential ∂′n = ∂n, for n ≥ 2, and ∂′ = 0, if n = 0, 1. Morally, we have

simply shifted Tot∗(A,Γ) to the left.

Now, it is clear that SΓ : Tot∗(A,Γ)[−2]→ Tot∗(A,Γ), extended in the obvious

way, is a degree 0 map of cochain complexes and one gets the short exact

sequence

0→ Tot∗(A,Γ)[−2]
SΓ−−→ Tot∗(A,Γ)

I−→ Tot∗[2](A,Γ)→ 0. (3.34)

Proposition 3.3.1. (equivariant SBI-sequence) The short exact sequence 3.34

gives rise to the long exact sequence in cohomology

· · · → HCn−2(A,Γ)
SΓ−−→ HCn(A,Γ)

I−→ HHn(A,Γ)
BΓ−−→ HCn−1(A,Γ)

SΓ−−→ HCn+1(A,Γ)
I−→ HHn+1(A,Γ)

BΓ−−→ HCn(A,Γ)→ . . .

In the proposition above, the maps in cohomology are denoted with the same

symbol of the maps on cochains.

Proof. This is just the long exact sequence in cohomology associated to the

short exact sequence 3.34.
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As already mentioned, the SBI−sequence allows in many cases to com-

pute explicitly the equivariant cyclic cohomology, if the Hochschild cohomolgy

is known.

The operators SΓ : HCn(A,Γ) → HCn+2(A,Γ) and BΓ : HHn(A,Γ) →
HCn−1(A,Γ) are very important in equivariant cyclic cohomology. The latter

leads to another approach to the cyclic theory and we refer to [46] for remarks

and details about this point.

The operator SΓ, also called periodicity operator, allows to define equivariant

periodic cyclic cohomology. More precisely, note that by definition of SΓ one

can give the sets {(HCn+2l(A,Γ), SΓ)}l∈N, where n = 0, 1, a natural structure

of direct system. Hence, we can set the following

Definition 3.12. Given a Γ−algebra A, its equivariant periodic cyclic coho-

mology HPn(A,Γ), for n = 0, 1 is defined to be

HPn(A,Γ) = lim−→
SΓ

HCn+2l(A,Γ) (3.35)

3.3.1 Some Remarks and construction

So far we have assumed the algebras to be Fréchet Γ−algebras.

This choice was mainly done for the sake of simplicity, in order to emphasize

the algebraic aspects of the theory.

It would be desiderable to extend the equivariant cyclic theory to more general

locally convex algebras, since in many geometrically motivated problems such

algebras arise naturally. For instance, in Foliation theory one is interested in the

convolution algebras of compactly supported smooth functions on the variuos

Lie groupoids associated to a foliation. These are locally convex algebras with

separately continuous multiplication.

For these latter algebras, however, one cannot simply follow the same pattern

used for Fréchet algebras, since many technical problems arise. For instance,

the equivariant Hochschild differential of a continuous equivariant cochain is no

longer continuous, but in general only separately continuous. Hence, we do not

get a well-defined cochain complex. Moreover, for such algebras one does not

have a natural choice of a well-behaved topological tensor product. The lack of

the tensor product makes difficult (or even impossible) to prove the properties

we would like equivariant cyclic theories to have.

We point out that such technical problems can be solved by considering bornolo-

gies on the algebras, rather than topologies. A bornology on a vector space is a

suitable collection of subsets, playing the same role as that of bounded subsets

in a locally convex space. Every locally convex algebra carries natural bornolo-

gies, determined by the locally convex topology. The point is that bornological

algebras have better functorial features, which make possible to overcome the

difficulties one encounters proceeding with locally convex topologies.

We refer the interested reader to [46], where equivariant cyclic theories are de-

fined for complete bornological Γ−algebras and many interesting properties are

established.
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In spite of the fact that we cannot easily define equivariant cyclic cohomology

groups for locally convex Γ−algebras, we can still consider equivariant cyclic

cocycles on the algebra. More precisely, given a locally convex Γ−algebra A, a

continuous (n+1)−linear map τ : A×· · ·×A → C(Γ) invariant with respect to

the action of Γ on A and C(Γ) is said to be an equivariant Hochschild n−cochain

of A, or simply an equivariant cochain.

The operators λΓ and bΓ, defined as above, can be applied to an equivariant

n−cochain. Thus, it makes sense to define an equivariant cyclic cocycle as

follows.

Definition 3.13. Given a locally convex Γ−algebra A, An equivariant cyclic

n−cocycle is an equivariant n−cochain τ on A such that λΓτ = τ and bΓτ = 0.

In the next section we shall see that any equivariant cyclic cocycle on (A,Γ)

determines an additive map on the equivariant K−theory of A. This is crucial

for being able to define higher Lefschetz invariants for foliated Γ−manifolds.

Now, to end this section we shall prove three lemmas that provide simple

constructions to obtain equivariant cyclic cocycles on a special class of locally

convex algebras, namely LF-algebras. A LF-space is a locally convex vector

space V for which there is an increasing sequence of subspaces (Vn)n∈N such

that each Vn is a Fréchet space with respect to the subspace topology, the

union
⋃
n∈N Vn = V and V carries the finest locally convex topology making

the inclusions Vn → V continuous for every n ∈ N. A LF-algebra is a LF-space

endowed with a separately continuous multiplication. We refer to [46], pag. 15,

and the references therein for further remarks and properties of such algebras.

Important examples of LF-algebras are the convolution algebras of compactly

supported smooth functions on Lie groupoids.

The first lemma we prove is a straightforward generalization of Proposition 4.15

in [7]. Let A be a LF-algebra and suppose that there is a C∗−algebra B which

contains A as a dense subalgebra.

Denote the multiplier algebra of B by M(B) and suppose there is a continuous

group homomorphism

Ψ : Γ→ GL(M(B))

where GL(M(B)) denotes the multiplicative group of M(B) and Γ is a compact

Lie group.

Assume now that for all h ∈ Γ the multiplier Ψ(g) satisfies

Ψ(g)A ⊆ A AΨ(g) ⊆ A (3.36)

and furthermore that the linear actions defined by left and right multiplication

with Ψ(g) take value in the continuous linear operators of A and happen to be

strongly continuous (with respect to the locally convex topology of A).

Then we get a Γ−action on A given by the formula

g · a = Ψ(g)aΨ(g−1) (3.37)

for all a ∈ A, g ∈ Γ.
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Example 3.1. The pivotal example of the above situation is the following.

Suppose to have a Lie groupoid G on which Γ acts by inner automorphisms

defined through the group homomorphism σ : Γ → Bis(G). Now, taking A =

C∞c (G,Ω1/2G) with its natural LF-space structure and B = C∗r (G) the groupoid

C∗−algebra, we have constructed in Proposition 2.1.14 the multiplier S(g) ∈
M(C∗r (G)), for all g ∈ Γ. Each multiplier preserves C∞c (G,Ω1/2G) and it gives

rise to linear actions with values in the continuous operators of C∞c (G,Ω1/2G)

and which are strongly continuous.

Lemma 3.3.2. Let k > 0 and let τ be a continuous cyclic k−cocycle on A
satisfying

τ(a0, a1, . . . , ai ·Ψ(g), ai+1, . . . , ak) = τ(a0, a1, . . . , ai,Ψ(g)·ai+1, . . . , ak) (3.38)

for every ai ∈ A, g ∈ Γ. The expression

ϕ(a0, . . . , ak|g) = τ(Ψ(g) · a0, a1, . . . , ak) (3.39)

defines an equivariant cyclic cocycle on (A,Γ).

Furthermore, if τ is a cyclic 0−cocycle on A such that τ(Ψ(g) ·a) = τ(a ·Ψ(g)),

then

ϕ(a|g) = τ(Ψ(g) · a) (3.40)

defines an equivariant cyclic 0−cocycle on (A,Γ).

Proof. Let us consider first the case where k > 0.

• We have to show that ϕ is Γ−invariant, i.e. ∀ai ∈ A, g, h ∈ Γ

ϕ(h · a0, h · a1, . . . , h · ak|hgh−1) = ϕ(a0, a1, . . . , ak|g).

By definition of the action and by the relation 3.38, one gets

ϕ(h · a0, h · a1, . . . , h · ak|hgh−1) = τ(Ψ(hgh−1)(h · a0), h · a1, . . . , h · ak) =

= τ(Ψ(h)Ψ(g)Ψ(h−1)Ψ(h)a0Ψ(h−1),Ψ(h)a1Ψ(h−1), . . . ,Ψ(h)akΨ(h−1)) =

= τ(Ψ(h)Ψ(g)a0, a1, . . . , akΨ(h−1)).

Finally, by using the fact that τ is cyclic we deduce that

τ(Ψ(h)Ψ(g)a0, a1, . . . , akΨ(h−1)) = τ(Ψ(g)a0, a1, . . . , ak) =

= ϕ(a0, a1, . . . , ak|g).

• Let us now show that ϕ is equivariantly cyclic.

(λΓϕ)(a0, . . . , ak|g) = (−1)kϕ(g−1 · ak, a0, . . . , ak+1|g) =

= (−1)kτ(Ψ(g)(g−1ak), a1, . . . , ak−1) = (−1)kτ(akΨ(g), a0, . . . , ak−1) =

= (−1)kτ(ak,Ψ(g)a0, . . . , ak−1).

By the cyclicity of τ it follows that

(−1)kτ(ak,Ψ(g)a0, . . . , ak−1) = τ(Ψ(g)a0, a1, . . . , ak+1, ak) =

= ϕ(a0, a1, . . . , ak|g).
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• The proof of the fact that ϕ is an equivariant cocycle follows again from

the definitions, similarly as we did in the previous two steps.

The case k = 0 follows from similar computations.

The continuity of the equivariant cocycle ϕ follows immediately from the conti-

nuity of the action and of τ.

Lemma 3.3.3. Let A be a Γ−algebra as considered above. Let us assume

that there is a one-parameter group (σt)t∈R ⊆ Aut(B) of automorphisms of the

C∗−algebra B such that

• σt(A) ⊆ A, for all t ∈ R.

• the infinitesimal generator D of (σt)t∈R determines a derivation of A that

is continuous with respect to the locally convex topology.

Moreover, suppose that the two actions satisfy the following compatibility rela-

tions

σt(Ψ(g)a) = Ψ(g)σt(a) (3.41)

σt(aΨ(g)) = σt(a)Ψ(g) (3.42)

for all t ∈ R, g ∈ Γ, a ∈ A.
If τ is a continuous cyclic 1−cocycle on A satisfying Relation 3.38, then the

formula
d

dt |t=0
σ∗t (τ)(Ψ(g)a0, a1) (3.43)

defines an equivariant cyclic 1−cocycle on (A,Γ).

Proof. First, we observe that

τ̇(a0, a1) =
d

dt |t=0
σ∗t (τ)(a0, a1) = lim

t→0

τ(σt(a
0), σt(a

1))− τ(a0, a1)

t
=

= τ(D(a0), a1) + τ(a0, D(a1)),

for ai ∈ A. It can be easily checked that τ̇ is a cyclic cocycle.

Now applying the hypothesis and Relation 3.38, one has that

τ̇(a0Ψ(g), a1) = τ(D(a0Ψ(g)), a1) + τ(a0Ψ(g), D(a1)) =

= τ(D(a0),Ψ(g)a1) + τ(a0, D(Ψ(g)a1)) = τ̇(a0,Ψ(g)a1).

Now setting for g ∈ Γ

ϕ̇(a0, a1|g) = τ̇(Ψ(g)a0, a1). (3.44)

the claim follows from Lemma 3.3.2.
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Now, if a cyclic 1−cocycle τ is invariant under a one-parameter group of

automorphisms (σt)t∈R, one can canonically construct a 2−cyclic cocycle out of

ρ and (σt). More precisely, let ρ be a cyclic 1−cocycle on A and assume that

the infinitesimal generator D of (σt) is such that A ⊆ dom(D). One says that ρ

is invariant under (σt) if ρ̇ = 0. In this case, the formula

iD(ρ)(a0, a1, a2) = ρ(D(a2)a0, a1)− ρ(a0D(a1), a2)

defines a cyclic 2−cocycle on A.
The cocycle iDα(ρ) is called the contraction of ρ and we refer to [16], Lemma

7.6 for details.

We have the following

Lemma 3.3.4. With the same notation and hypothesis of the previous two lem-

mas, if the cyclic cocycle τ̇ is invariant under the one-parameter group (σt)t∈R,

i.e. τ̈ = 0, then its contraction iD(τ̇) is the evaluation at the identity of an

equivariant 2−cyclic cocycle given by

ψ(a0, a1, a2|g) = iD(τ̇)(Ψ(g)a0, a1, a2) (3.45)

for all ai ∈ A, g ∈ Γ.

Proof. Recall ([17]) that

iD(τ̇)(a0, a1, a2) = τ̇(D(a2)a0, a1)− τ̇(a0D(a1), a2).

From the proof of Lemma 3.3.3 we know that τ̇ satisfies the Relation 3.38. Using

this and the fact that iD(τ̇)is a cocycle, it is straightforward to check that ψ is

an equivariant Hochschild cocycle.

Let us prove the cyclicity. One has

(λΓψ)(a0, a1, a2|g) = ψ(g−1a2, a0, a1|g) =

= iD(τ̇)(Ψ(g)(g−1a2), a0, a1) = iD(τ̇)(a2Ψ(g), a0, a1) =

= τ̇(D(a1)(a2Ψ(g)), a0)− τ̇((a2Ψ(g))D(a0), a1).

For notational simplicity we set b = a2Ψ(g). Then using that D is a deriva-

tion and that τ̇ is a Hochschild cocycle, i.e. τ̇(ba0, D(a1)) − τ̇(b, a0D(a1)) +

τ̇(D(a1)b, a0) = 0, we get

τ̇(D(a1)b, a0)− τ̇(bD(a0), a1) =

= τ̇(b, a0D(a1))− τ̇(ba0, D(a1)) + τ̇(D(b)a0, a1)− τ̇(D(ba0), a1) =

= τ̇(D(b)a0, a1)− τ̇(a0D(a1), b),

since τ̇(ba0, D(a1))+τ̇(D(ba0), a1) = 0 by the invariance of τ̇ under the 1−parameter

group. Applying Relation 3.38, the result follows.
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3.4 The pairing with equivariant K-theory

In this section we will show that any equivariant cyclic cocycle on the pair (A,Γ)

gives rise to an additive map defined on the equivariant K-theory KΓ
0 (A) with

values in the conjugation invariant continuous functions on Γ.

This pairing is one of the most basic tools for dealing with equivariant index-

theoretical problems within the framework of Noncommutative Geometry.

In the setting of foliated manifolds, the equivariant indices of elliptic Γ−invariant

longitudinal differential operators have been defined to be elements of the equiv-

ariant K-group of the foliation C∗−algebra and of the smooth convolution alge-

bra (see 2.2.3). The additive maps constructed out equivariant cyclic cocycles

will allow to extract both analytical and geometric informations out of these

index classes.

This section is largely based on [7] and on [17], Chapter III, Section 3.

Let (V, ρ) be a finite dimensional unitary representation of the compact Lie

group Γ. By equation 2.22 we already know that the algebra End(V ) has a

natural Γ−action given by conjugation, which we will simply denote by hTh−1,

for any T ∈ End(V ), h ∈ Γ.

Moreover, it has the natural equivariant 0-cyclic cocycle Tr(Aρ(h)), for any

h ∈ Γ, A ∈ End(V ), provided by ”twisting” the trace with the representation.

In what follows, we will also denote the equivariant trace by Tr(Ah), thinking

of h as ρ(h).

If A is a locally convex Γ−algebra and τ is an equivariant cochain, we define

the map τ]Tr on A⊗ End(V ) by setting

τ]Tr(a0⊗A0, a1⊗A1, ..., an⊗An | h) = τ(a0, ..., an | h)Tr(A0 ···Anρ(h)) (3.46)

for any ai ∈ A, Ai ∈ End(V ), h ∈ Γ, and then extending it by linearity.

Lemma 3.4.1. The cochain τ]Tr is continuous and equivariant, i.e. it is an

equivariant Hochschild cochain. Moreover one has

bΓ(τ]Tr) = (bΓτ)]Tr (3.47)

Therefore, if τ is an equivariant Hochschild cocycle, so is τ]Tr.

Proof. The new cochain τ]Tr is clearly continuous. Besides, we get

(τ]Tr)(h(a0 ⊗A0), h(a1 ⊗A1), ..., h(an ⊗An) | hgh−1) =

= (τ]Tr)(ha0 ⊗ hA0h−1, . . . , han ⊗ hAnh−1 | hgh−1) =

= τ(ha0, . . . , han | hgh−1)Tr(h(A0A1 · · ·An)gh−1) =

= τ(a0, a1, . . . , an | g)Tr((A0A1 · · ·An)g) =

= (τ]Tr)(a0 ⊗A0, a1 ⊗A1, ..., an ⊗An | g),

which proves that the cochain τ]Tr is equivariant.

Let us now prove the equation 3.47. One has

[bΓ(τ]Tr)](a0 ⊗A0, a1 ⊗A1, ..., an+1 ⊗An+1 | g) =
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=

n∑
i=0

(−1)i(τ]Tr)(a0 ⊗A0, . . . , aiai+1 ⊗AiAi+1, . . . , an+1 ⊗An+1|g)+

+(−1)n+1(τ]Tr)((g−1(an+1 ⊗An+1))(a0 ⊗A0), a1 ⊗A1, . . . , an ⊗An | g) =

=

n∑
i=0

(−1)iτ(a0, . . . , aiai+1, . . . , an+1 | g)Tr((A0A1 · · ·An+1)g)+

+(−1)n+1τ((g−1an+1)a0, a1, . . . , an|g)Tr((A0A1 · · ·An+1)g) =

((bΓτ)]Tr)(a0 ⊗A0, a1 ⊗A1, ..., an+1 ⊗An+1 | g).

This completes the proof.

Lemma 3.4.2. If τ ∈ Cnλ (A,Γ), then τ]Tr is an equivariant cyclic cochain on

A⊗ End(V ).

Proof. Since τ is cyclic, then one gets

(τ]Tr)(g−1(an ⊗An), a0 ⊗A0, a1 ⊗A1, . . . , an−1 ⊗An−1|g) =

= τ(g−1an, a0, a1, . . . , an−1|g)Tr(AngA0A1An−1) =

= (−1)nτ(a0, a1, . . . , an|g)Tr((A0 · · ·An)g) =

= (−1)n(τ]Tr)(a0 ⊗A0, a1 ⊗A1, ..., an ⊗An | g).

Using together the lemmas above, one immediately deduces that if τ is an

equivariant cyclic cocycle, so is τ]Tr as well.

Since the group Γ is compact, the equivariant K−theory can be defined by

means of Γ−invariant idempotents e ∈ A ⊗ End(V ), for all finite dimensional

unitary representations V of Γ (see 2.2.1).

We are now ready to see how an equivariant cyclic cocycle determines an ad-

dtive map on equivariant K−theory.

LetA be a locally convex Γ−algebra and let τ be an equivariant cyclic 2k−cocycle

on (A,Γ). For any finite dimensional unitary representation (V, ρ) of Γ and for

any Γ−invariant idempotent e ∈ A⊗ End(V ) and any h ∈ Γ, one sets

〈e, τ〉(h) = (τ]Tr)(e, . . . , e|h). (3.48)

Proposition 3.4.3. ([7])

1. With the notation above, the mapping 〈e, τ〉 defines a continuous conjuga-

tion invariant function on Γ, i.e 〈e, τ〉 ∈ C(Γ)Γ.

2. The formula 3.48 descends a well defined additive map

〈·, τ〉 : KΓ
0 (A)→ C(Γ)Γ. (3.49)
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3. If the algebra A is a Fréchet algebra, the map 3.49 does only depend on

the cohomology class of τ and it induces a pairing

KΓ
0 (A)×HCev(A,Γ)→ C(Γ)Γ (3.50)

between the equivariant K−theory and equivariant cyclic cohomology.

As observed in [7], when A is not unital, the statement in the second item

means that if e ∈ A+ ⊗ End(V ) and e′ ∈ A+ ⊗ End(V ′) (A+ denotes the

unitalization of A) are Γ−invariant idempotents such that [e] − [e′] ∈ KΓ
0 (A),

then

τ]Tr(e, . . . , e|h)− τ]Tr(e′, . . . , e′|h) ∈ C

only depends on the class [e]− [e′] in K−theory (the cocycle has been trivially

extended on the unitalized algebra).

Proof. We will only sketch the proof for the sake of completeness. More details

can be found in [7].

The first item follows by Γ−invariance of the cocycle and the idempotent. In

fact, one has

(τ]Tr)(e, . . . , e|ghg−1) = (τ]Tr)(g−1e, g−1e, . . . , g−1e|h) = (τ]Tr)(e, . . . , e|h)

which shows that the function 〈e, τ〉 is central. Continuity follows immediately

from the definition of 〈e, τ〉.
Let us now sketch 2). First, one can assume thatA is unital. Moreover, replacing

A by the matrix algebra M2(A), one sees that there exists a Γ−invariant element

u that conjugates the idempotents e and e′, if they are equivalent. See [17], pag.

229 for details. Thus, the proof is reduced to show that if e′ = ueu−1, then

〈e, τ〉 = 〈e′, τ〉.
The crucial point of the proof is that, if e′ = ueu−1, there exists an equivariant

odd cyclic cochain ψu such that

〈e′, τ〉 − 〈e, τ〉 = 〈e, bΓ(ψu)〉. (3.51)

The explicit construction of the cochain ψu can be found in [7], Proposition 3.5.

Now, since ψu is odd and e is Γ−invariant, one gets

〈e, bΓ(ψu)〉(h) = b′ψu(e, . . . , e|h) + ψu(h−1e, e, . . . , e|h) = ψu(e, . . . , e|h).

Using cyclicity, one immediately deduces that ψu(e, . . . , e|h) = 0, which proves

the claim.

Remark 3.6. Since by the Peter-Weyl theorem R[Γ]⊗ZC is a dense subalgebra

of C(Γ)Γ, the pairing 3.48 can be seen as a generalization of the ”classical”

character-index indΓ : KΓ
0 (T ∗M) → R[Γ] of a compact Γ−manifold M, due to

Atiyah and Singer. For details, we recommend the original papers [4] and [3].
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Given any equivariant even cyclic cocycle τ of (A,Γ), consider the additive

map

χτ = 〈·, τ〉 : KΓ
0 (A)→ C(Γ)Γ (3.52)

Now, composing the above map with the evaluation evh at an arbitrary element

h ∈ Γ, one gets a C−valued additive map

χτ (h) = 〈·, τ〉h = evh◦ < ·, τ >: KΓ
0 (A)→ C (3.53)

In the case of a foliated Γ−manifold, one is interested to compute in topological

and geometrical terms the scalars 〈[e] − [e′], τ〉h, for classes [e] − [e′] ∈ KΓ
0 (A)

defined in geometric terms, in order to get informations about the foliation and

the foliated diffeomorphism h.

Notice that evaluating 〈·, τ〉 at h or at its conjugacy class [h] yields the same

result, since 〈·, τ〉 is central. If we want to emphasize this invariance property,

we will denote the evaluation χτ (h) = 〈·, τ〉h also by χτ ([h]) = 〈·, τ〉[h].

Using naturality of the equivariant K−groups with respect to subgroups, it fol-

lows that the evaluation does not depend upon the group Γ, as far as this exists.

More precisely, if Γ1 ≤ Γ is a compact subgroup, let resΓ1
: KΓ

0 (A)→ KΓ1
0 (A)

be the natural forgetful map from Γ−equivariant K−theory to Γ1−equivariant

K−theory. Moreover, given an equivariant cyclic n−cocycle τ denote by RΓ1
(τ)

the restriction of τ to the subgroup Γ1. One has the following proposition.

Proposition 3.4.4. Let Γ1 ≤ Γ be a compact subgroup.

1. For any equivariant cyclic cocycle τ on (A,Γ), the diagram

KΓ
0 (A)

resΓ1−−−→ KΓ1
0 (A)

χτ ↓ ↓ χRΓ1 (τ)

C(Γ)Γ r−→ C(Γ1)Γ1

is commutative. Here r : C(Γ)Γ → C(Γ1)Γ1 denotes the restriction map

to Γ1.

2. If A is a Fréchet Γ−algebra, there is a well-defined pairing

KΓ
0 (A)×HCev(A,Γ1)→ C(Γ1)Γ1 (3.54)

defined by the same formula of Equation 3.48, for all h ∈ Γ1.

Proof. 1). Let x = [e] − [e′] ∈ KΓ
0 (A) and let resΓ1

(x) be the induced class

in KΓ1
0 (A). Then resΓ1(x) can be represented by the idempotents e and e′.

Moreover, consider the restriction RΓ1(τ) of τ to Γ1. Then for all h1 ∈ Γ1 it

follows that

〈e, τ〉(h1)− 〈e′, τ〉(h1) = 〈e,RΓ1(τ)〉(h1)− 〈e′, RΓ1(τ)〉(h1),

where e and e′ represent x ∈ KΓ
0 (A) on the LHS and represent resΓ1

(x) on the

RHS. Now, since Γ1 is compact, 1) follows.
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2). Given any Γ1−equivariant even cyclic cocycle τ1 and any Γ−invariant idem-

potent e ∈ A⊗End(V ), where V is a representation of Γ, it is obvious that the

pairing 3.48 makes sense for all h1 ∈ Γ1 and it does only depend on the cohomol-

ogy class [τ1] ∈ HCev(A,Γ1). Let us pick now another Γ−invariant idempotent

e′ ∈ A × End(V ) conjugated to e through the Γ−invariant invertible element

u. By arguing as in Theorem 3.4.3, there exists a Γ1−equivariant odd cyclic

cochain φu such that

〈e, τ1〉(h1)− 〈e′, τ1〉(h1) = 〈e, bΓ1
φu〉(h1)

for all h1 ∈ Γ1. Now, by using the fact that e is in particular Γ1−invariant and

φu is odd, one gets that 〈e, bΓ1
φu〉(h1) = 0, for every h1 ∈ Γ1. This proves the

claim.

As a consequence of Proposition 3.4.4, if x ∈ KΓ
0 (A), one can use any sub-

group of Γ containing h to compute the number χτ (h)(x) = 〈x, τ〉[h]. In partic-

ular, the proposition implies that the problem of studying the map

χτ (h) : KΓ
0 (A)→ C

can be reduced to the case where Γ is the topologically cyclic group generated

by the element h. Thus, as in the classical case, the group Γ has been eliminated

from the problem.

Another important property of the map 3.53 is that it can be localized at the

prime ideal I[h] associated with the conjugacy class [h] of h ∈ Γ. Indeed, let

us recall that I[h] is the prime ideal of all characters ρ ∈ R[Γ] which vanish in

h. The equivariant K−group KΓ
0 (A) has a R[Γ]−module structure (see 2.2.1)

and therefore it can be localized at I[h], giving rise to the R[Γ]I[h]
−module of

fractions KΓ
0 (A)[h]. For the notation and further details we refer to Section 2.2.3.

Now, one has the following result.

Proposition 3.4.5. With the notation above, for any equivariant even cyclic

cocycle τ of the pair (A,Γ), the additive map

χτ ([h]) = 〈·, τ〉[h] : KΓ
0 (A)→ C

satisfies

〈xρ, τ〉[h] = 〈x, τ〉[h] · ρ(h) (3.55)

for all x ∈ KΓ
0 (A), ρ ∈ R[Γ].

Thus, χτ ([h]) induces a R[Γ]I[h]
−linear map

〈·, τ〉I[h]
: KΓ

0 (A)[h] → C (3.56)

such that the diagram

KΓ
0 (A)

χτ ([h])−−−−→ C
↓ ‖

KΓ
0 (A)[h]

〈·,τ〉I[h]−−−−−→ C

is commutative. Here the vertical map KΓ
0 (A)→ KΓ

0 (A)[h] is defined by sending

x to x
1R[Γ]

.
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Proof. Take two Γ−invariant idempotents e ∈ A+ ⊗ End(V ) and e′ ∈ A+ ⊗
End(V ′) such that [e] − [e′] ∈ KΓ

0 (A). Moreover, let us choose another finite

dimensional unitary representation (W,Λ) that represents the element ρ ∈ R[Γ].

The KΓ−theory class xρ is by definition (see Section 2.2.1) the formal difference

xρ = [e⊗ IdW ]− [e′ ⊗ IdW ]

Now, for any equivariant cyclic 2k−cocycle τ, one has

〈xρ, τ〉[h] = (τ](TrV ]TrW ))(e⊗ IdW , . . . , e⊗ IdW |h)−

−(τ](TrV ′]TrW ))(e′ ⊗ IdW , . . . , e′ ⊗ IdW |h) =

= ((τ]TrV )]TrW )(e⊗ IdW , . . . , e⊗ IdW |h)−

−((τ]TrV ′)]TrW )(e′ ⊗ IdW , . . . , e′ ⊗ IdW |h) =

(τ]TrV )(e, . . . , e|h) · TrW (Λ(h))− (τ]Tr′V )(e′, . . . , e′|h) · TrW (Λ(h)) =

= 〈x, τ〉[h] · ρ(h),

which proves the desired formula. As a corollary of this and by functoriality

of the localization procedure, we get the well defined map on the localized

K−group

〈·, τ〉I[h]
: KΓ

0 (A)[h] → C

defined by

〈x
ρ
, τ〉I[h]

=
〈x, τ〉[h]

ρ(h)
(3.57)

for every x ∈ KΓ
0 (A), ρ ∈ R[Γ] \ I[h]. The commutativity of the diagram follows

directly from the above definition.

This proposition is important and will allow us to define higher Lefschetz

invariants associated to a foliated Γ−manifold.

3.5 Twisted cyclic cohomology and the pairing

with equivariant K-theory

We consider in this paragraph the twisted cyclic cohomology groups of a pair

(A, φ), with A a C−algebra and φ an algebra automorphism of A, and study

some of their basic properties.

One motivation to introduce the twisted theory relies on the fact that an equiv-

ariant cyclic cocycle on the Γ−algebra A may be thought of as a ”family” of

twisted cyclic cocycles, parametrized in a continuous manner by Γ. Hence it

is natural to consider the elements of this family in their own right and study

their basic features. In particular, an easy but interesting fact about twisted

cocycles is that it is possible to pair them with equivariant K−theory classes,

getting additive maps on the equivariant K−groups with values in C. This is

an immediate consequence of the proof of Theorem 3.4.3.
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Another reason to look at the twisted case is that it may be thought of as a

special case of the equivariant theory, where one allows actions of the infinite

cyclic group Z generated by the automorphism φ. Even if this group is no longer

compact, twisted cohomology turns out to be an interesting theory which enjoys

all the properties satisfied by an equivariant theory with respect to a compact

group. In particular, we will establish a SBI−sequence in the twisted case.

Moreover, in practice one also encounters twisted cyclic cocycles along with

equivariant ones, as we will see in Chapter 4.

Our treatment of twisted cyclic cohomology will be similar to the treatment we

have given for the equivariant theory, showing the formal analogies between the

theories. However, the twisted theory can be more clearly formulated in purely

algebraic terms for pairs (A, φ), given by an algebra and an automorphism of

the algebra, without assuming for now any topology on A.
Thus, let (A, φ) be a pair consisting of a C−algebra A and an algebra automor-

phism φ : A → A. We will first assume that A is unital and then we will study

how to get rid of this assumption.

Let Cn(A) be the space of all (n+ 1)−linear maps on A× · · · × A with values

in C and define the corresponding graded vector space C∗(A) = ⊕n≥0C
n(A).

Definition 3.14. Let σ ∈ Cn(A). We will call σ a twisted cochain if

σ(φ(a0), φ(a1), . . . , φ(an)) = σ(a0, a1, . . . , an),

for all ai ∈ A. If one needs to specify the automorphism, we will also call σ a

φ−twisted cochain.

The vector space of all twisted cochains will be denoted by Cn(A, φ).

We set

C∗(A, φ) =
⊕
n≥0

Cn(A, φ).

As in the equivariant case, we define a representation of the cyclic group Z/(n+

1)Z on Cn(A, φ) by means of an operator which suitably generalizes the cyclic

operator of the ordinary cyclic theory and keeps track of the twisting automor-

phism φ.

Definition 3.15. The twisted cyclic operator is the operator λφ : C∗(A, φ)→
C∗(A, φ) of degree zero, defined by setting

(λφτ)(a0, a1, . . . , an) = (−1)nτ(φ(an), a0, . . . , an+1) (3.58)

for all τ ∈ Cn(A, φ), n ≥ 0.

To prove that the twisted cyclic operator λφ defines indeed a representation

of Z/(n+ 1)Z on Cn(A, φ), one has to check that

λn+1
φ = id. (3.59)

This follows from the same computation we did in Remark 3.2.
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Definition 3.16. A twisted cochain σ ∈ Cn(A, φ) is said to be cyclic if λφ(σ) =

σ. The vector space of twisted cyclic cochains will be denoted by C∗λ(A, φ).

Let us also define the twisted norm operator as the degree zero operator

Nφ : C∗(A, φ)→ C∗(A, φ)

that on Cn(A, φ) is given by the formula

Nφ =

n∑
i=0

λiφ (3.60)

Once again, it follows from Equation 3.59 that

(id− λφ)Nφ = Nφ(id− λφ) = 0. (3.61)

which in turn implies that the sequence

Cn(A,Γ)
id−λφ−−−−→ Cn(A,Γ)

Nφ−−→ Cn(A,Γ)
id−λφ−−−−→ Cn(A,Γ)

Nφ−−→ . . . (3.62)

is a cochain complex.

The first differential in the twisted theory is, as in the ordinary and in the

equivariant theory, the operator b′ : Cn(A, φ)→ Cn+1(A, φ), given by

(b′σ)(a0, a1, . . . , an+1) =

n∑
i=0

(−1)iσ(a0, a1, . . . , aiai+1, . . . , an+1) (3.63)

for all σ ∈ Cn(A, φ). It is straightforward to see that C∗(A, φ) is invariant for

b′.

Since this operator does not involve the automorphism φ, one has that (b′)2 = 0,

i.e. it is a differential on the twisted cochains. However, the resulting cochain

complex (C∗(A, φ), b′) does not contain any interesting cohomological informa-

tion, being an acyclic complex. Indeed, since A is unital, there exist chain

contractions for (C∗(A, φ), b′) defined as in 3.10.

The twisted Hochschild differential is defined by adding to b′ an additional term,

which takes into account the automorphism. Thus, similarly to the equivariant

case, we set

(dφσ)(a0, a1, . . . , an+1) = (−1)n+1σ(φ(an+1)a0, a1, . . . , an) (3.64)

and define the twisted Hochschild coboundary map to be

bφ = b′ + dφ : C∗(A, φ)→ C∗+1(A, φ) (3.65)

As in the proof of Lemma 3.1.2, it follows from (b′)2 = 0 and the relation

dφb
′ + b′dφ + (dφ)2 = 0, that b2φ = 0.

Definition 3.17. For any pair (A, φ), with A unital, the twisted Hochschild

cohomology of (A, φ), denoted by HH∗(A, φ), is the homology of the cochain

complex (C∗(A, φ), bφ).
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For nonunital algebras the previous definition of twisted Hochschild coho-

mology is not the correct one. To generalize it also in the nonunital case, we

will construct a bicomplex, exactly in the same way we constructed the cyclic

bicomplex CC∗∗(A,Γ). We will see the details of this construction in a moment.

Before of that, though, let us state the following analogue of Lemma 3.1.3.

Lemma 3.5.1. One has the following relations

b′(id− λφ) = (id− λφ)bφ (3.66)

and

Nφb
′ = bφNφ (3.67)

Proof. The proof of Lemma 3.1.3 carries over verbatim in the twisted theory.

Recall that a twisted cyclic cochain is a twisted cochain σ such that (id −
λφ)(σ) = 0.

Hence Equation 3.66 implies that

bφ(C∗λ(A, φ)) ⊆ C∗λ(A, φ),

and one gets the subcomplex (C∗λ(A, φ), bφ). For any pair (A, φ), with A unital,

we denote

Hn
λ (A, φ) = H∗(C

n
λ (A, φ), bφ). (3.68)

So far we assumed the algebra A to be unital. To get rid of this assumption,

one proceeds as we did for the equivariant theory, namely defining a bicomplex.

Combining together the relations 3.61, 3.66 and 3.67, we get indeed the following

first quadrant bicomplexxbφ x−b′ xbφ x−b′
C2(A, φ)

1−λφ−−−−→ C2(A, φ)
Nφ−−−−→ C2(A, φ)

1−λφ−−−−→ C2(A, φ)
Nφ−−−−→ . . .xbφ x−b′ xbφ x−b′

C1(A, φ)
1−λφ−−−−→ C1(A, φ)

Nφ−−−−→ C1(A, φ)
1−λφ−−−−→ C1(A, φ)

Nφ−−−−→ . . .xbφ x−b′ xbφ x−b′
C0(A, φ)

1−λφ−−−−→ C0(A, φ)
Nφ−−−−→ C0(A, φ)

1−λφ−−−−→ C0(A, φ)
Nφ−−−−→ . . .

Definition 3.18. The bicomplex above is called the twisted cyclic bicomplex

of the pair (A, φ) and is denoted by CC∗∗(A, φ). The n−dimensional twisted

cyclic cohomology group of (A, φ) is the n−th homology group

HCn(A, φ) = Hn(Tot∗(A, φ), ∂φ), (3.69)

where (Tot∗(A, φ), ∂φ) is the total complex of CC∗∗(A, φ) such that Totn(A, φ) =⊕n
k=0 C

n−k(A, φ).
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In the definition of HCn(A, φ) we do not assume the algebra to be unital.

Moreover, the twisted cyclic bicomplex provides a good framework to generalize

twisted Hochschild cohomology to nonunital algebras as well.

As for the equivariant theory, see 3.24, set C∗∗[2](A, φ) to be the bicomplex ob-

tained from CC∗∗(A, φ) by restricting to the first two columns and denote by

Tot∗[2](A, φ) its total complex. One may thus consider the homology groups

Hn(Tot∗[2](A, φ)), for all n ∈ N.
If A has a unit, then the second column of C∗∗[2](A, φ) does not contribute to the

homology of Tot∗[2](A, φ). Hence, in this case,

Hn(Tot∗[2](A, φ)) ∼= Hn(C∗(A, φ), bφ) ∼= HHn(A, φ),

and we recover the previous definition of twisted Hochschild cohomology of

(A, φ).

This leads us to define in general the twisted Hochschild cohomology of (A, φ),

with A possibly nonunital, by HH∗(A, φ) = H∗(Tot
∗
[2](A, φ)).

Moreover, if A is unital, we get the analogue of Theorem 3.2.1.

Theorem 3.5.2. Given the pair (A, φ), with A unital, then for any n ∈ N one

gets

HCn(A, φ) ∼= Hn
λ (A, φ). (3.70)

The proof of Theorem 3.2.1 can be re-written verbatim to prove the above

result.

Remark 3.7. As in the equivariant case, we can compute the twisted cyclic co-

homology of a pair (A, φ) through the total complex (Tot∗(A,Γ), ∂φ) of CC∗∗(A, φ),

or alternativily through the E1−term of the spectral sequence induced by the

twisted bicomplex. The latter complex turns out to be the complex (C∗λ(A, φ), bφ)

defined exactly as for a unital algebra.

Now, also in the twisted theory as in the equivariant one, one gets easily from

the twisted cyclic bicomplex a ”SBI−sequence” relating twisted Hochschild

cohomology with twisted cyclic cohomology.

We define, for all (x0, x1, . . . , xn) ∈ Totn(A, φ), the degree 2 cochain map Sφ :

Tot∗(A, φ)→ Tot∗(A, φ) by

Sφ(x0, x1, . . . , xn) = (0, 0, x0, x1, . . . , xn) (3.71)

and the projection I : Tot∗(A, φ)→ Tot∗[2](A, φ) by the formula

I(x0, x1, . . . , xn) = (x0, x1), (3.72)

where again I(x0) = x0, for every x0 ∈ Tot0(A,Γ).

This gives a short exact sequence of cochain complexes

0→ Tot∗(A, φ)
Sφ−−→ Tot∗(A, φ)

I−→ Tot∗[2](A, φ)→ 0,

which, by applying the trick explained in Section 3.3, induces the long exact

sequence in cohomology

· · · → HCn−2(A, φ)
Sφ−−→ HCn(A, φ)

I−→ HHn(A, φ)
Bφ−−→ HCn−1(A, φ)
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Sφ−−→ HCn+1(A, φ)
I−→ HHn+1(A, φ)

Bφ−−→ HCn(A, φ)→ . . .

whereBφ is the boundary homomorphism. This is the twisted SBI−sequence.

Moreover, by means of the periodicity map Sφ : HCn−2(A, φ) → HCn(A, φ),

we define the twisted periodic cyclic cohomology HPn(A, φ), with n = 0, 1, to

be

HPn(A, φ) = lim−→
Sφ

HCn+2l(A, φ). (3.73)

Now, let (A,Γ, ρ) be a locally convex Γ−algebra, with Γ a compact group, and

let us fix, once and for all, an element h ∈ Γ.

Then one gets the pair (A, h), where h is viewed as the corresponding continuous

automorphism induced by the action ρh : A → A. Hence one may consider the

twisted cyclic cohomology HC∗(A, h).

For any equivariant cyclic cocycle τ on A, we define a twisted cyclic cocycle τh
of (A, h) by simply setting τh = evh−1 ◦ τ.
Now, an interesting fact is that there is a well defined pairing

KΓ
0 (A)×HCev(A, h)→ C. (3.74)

between equivariant K−theory and twisted cyclic cohomology. Indeed, let σ

be a h−twisted 2k−dimensional cochain on the pair (A, h). For any unitary

finite dimensional representation Λ : Γ → End(V ), let us consider the pair

(A⊗ End(V ), h) and set

(σ]Trh)(a0⊗A0, a1⊗A1, . . . , a2k⊗A2k) = σ(a0, a1, . . . , a2k)Trh(Λ(h)A0 · · ·A2k)

(3.75)

extended on the whole algebra by linearity. It is obvious that σ]Trh is again a

h−twisted cochain. Furthermore,

Lemma 3.5.3. 1. If σ ∈ Cλ(A, h), then σ]Trh ∈ Cλ(A⊗ End(V ), h).

2. One has that bh(σ]Trh) = (bhσ)]Trh.

Proof. It follows by a straightforward computation.

Now, similarly to the equivariant case, we set for any Γ−invariant idempo-

tent e ∈ A⊗ End(V )

〈e, σ〉h = (σh]Trh)(e, e, . . . , e). (3.76)

Theorem 3.5.4. 1. The Equation 3.76 induces a well defined pairing

KΓ
0 (A)×HCev(A, h)→ C.

2. The following diagram

KΓ
0 (A)

〈·, [τ ]〉 ↙ ↘ 〈·, R∗h([τ ])〉
C(Γ)Γ evh−−→ C

is commutative.
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Proof. 1). To show that the pairing is well-defined one proceeds as in the proof

of Theorem 3.4.3 2). More precisely, if two Γ−invariant idempotents e, e′ are

conjugated by a Γ−invariant invertible element u, i.e. e′ = ueu−1, then one

constructs a twisted odd cyclic cochain θu such that

〈e′, σ〉h − 〈e, σ〉h = 〈e, bφ(θu)〉h.

Now, being θu odd and e Γ−invariant, one easily deduces that 〈e, bφ(θu)〉h = 0.

Finally, it is immediate to see that two even twisted cocycles that are cohomol-

ogous determine the same map on equivariant K−theory.

2). It is straightforward.

In other words, any even cyclic cocycle σ twisted by a fixed h ∈ Γ yields an

additive map

〈·, σh〉 : KΓ
0 (A)→ C (3.77)

which does depend only on the cyclic cohomology class of σh.



Chapter 4

Equivariant Cyclic Cocycles

for foliated manifolds

In this chapter we are going to introduce and study important equivariant cyclic

cocycles on a foliated Γ−manifold (M,F ,Γ).

One of the interesting facts is that some of the geometric cyclic cocycles on the

foliated manifold are actually seen to be the evaluation at the identity of some

equivariant cyclic cocycles on (M,F ,Γ). Indeed, under some nontrivial assump-

tions on the action of Γ on (M,F) Benameur and Heitsch proved in [7] that, for

instance, a transverse fundamental cyclic cocycle τ, representing the transverse

fundamental class on the convolution algebra (C∞c (H(F))), is Γ−invariant and

is just the evaluation at the identity element of an equivariant cyclic cocycle ϕ

of (M,F ,Γ). Their arguments work more generally for any cyclic cocycle arising

from a closed even-dimensional Haefliger current. Therefore each of these cocy-

cles can be thought of as a small part of an equivariant cyclic cocycle, namely

the evaluation at the identity of Γ.

One limitation of their approach is that they have to work with the holonomy

groupoid H(F) and therefore consider only holonomy diffeomorphisms (see Def.

1.32), excluding the general case. Using the twisted holonomy groupoid, we will

be able to construct cyclic cocycles equivariant with respect to any diffeomor-

phism, not only those satisfying the holonomy assumption.

Besides, the equivariant cocycles mentioned above describe characteristic classes

of the foliation, which do not exceed by construction the codimension q of

(M,F). On the other side, foliations admit ”exotic” characteristic classes, which

do exceed the codimension. Thus, it is natural to ask whether there exist equiv-

ariant cyclic cocycles describing the exotic classes of a foliated Γ−manifold. In

this direction, we will focus on the simplest non trivial example of these sec-

ondary characteristic classes, namely the Godbillon-Vey class of a transversely

oriented foliated manifold (M,F) of codimension 1.

Using the general theory developed in the previous chapter, and in particular

the pairing 3.4.3 between equivariant K-theory and equivariant cyclic cocycles,

we will be able to define higher Lefschetz numbers of leafwise diffeomorphisms

110
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with respect to invariant leafwise elliptic pseudodifferential operators.

Notation. In the following, unless otherwise specified we shall assume that a

foliated manifold is always a closed manifold M endowed with a C∞−foliation

F .
Given a vector bundle E over the foliated manifold (M,F) and given any Lie

groupoid G integrating F , we will denote the convolution algebra of smooth

compactly supported sections on G of the bundle END(E) = s∗(E∗) ⊗ t∗(E)

over G simply by C∞c (G,E).

4.1 The equivariant transverse fundamental class

Given a transversely oriented foliated Γ−manifold (M,F ,Γ), we will show that

if the action of Γ preserves the transverse orientation then the transverse fun-

damental cyclic cocycle is the evaluation at the identity of an equivariant cyclic

cocycle.

Our method is inspired by [7]. Nevertheless our setting is more general, since

we do not have to assume the diffeomorphisms acting on the foliated manifold

to be holonomy diffeomorphisms (see Definition 1.32). Indeed, since the twisted

holonomy groupoid H(F ,Γ) encodes the transverse action of Γ on the foliation,

it is natural to construct the equivariant transverse fundamental cyclic cocycle

as an equivariant cocycle on the twisted holonomy groupoid. This holds for

more general cocycles coming from Haefliger’s holonomy invariant currents, as

well. However, using the twisted holonomy groupoid it is no longer possible to

show that all these cyclic cocycles can be made equivariant, as proved in [7]. In

fact one has to require a stronger invariance for the currents, namely also the

invariance with respect to the transverse action of Γ given by holonomies.

Using these equivariant cyclic cocycles, we will be able to define higher Lefschetz

numbers of the foliation for general leaf-preserving diffeomorphisms.

4.1.1 Haefliger-type transverse cohomologies

Let (M,F ,Γ) be a foliated Γ−manifold of codimension q and let H(F ,Γ) be its

twisted holonomy groupoid.

Recall that a complete transversal T is a q−dimensional submanifold transverse

to the foliation which meets every leaf of the foliation. Without requiring T to

be connected or compact, such complete transversals exist always.

Taking, now, any complete transversal T, the reduced twisted holonomy groupoid

over T, i.e.

G = H(F ,Γ)TT ⇒ T

is a smooth étale groupoid, since according to Theorem 1.4.4 H(F ,Γ) is a folia-

tion groupoid (for further comments about this point, see also [19]). Moreover,

this étale groupoid is effective, as we have seen in Theorem 1.4.5.

Now, one can always construct a pseudogroup P (G) out of an étale effective
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groupoid G by setting

P (G) = {t ◦ β| β is a local bisection of G}. (4.1)

This is clearly a pseudogroup on the space of objects G(0) of G. Given a complete

transversal T, we denote the pseudogroup associated to G = H(F ,Γ)TT by PΓ

or simply by P.

With PΓ at hand we define a Haefliger cohomology by means of PΓ−invariant

differential forms on T.

Let Ωpc(T ) denote the space of p−differential forms on T. Following [27], we con-

sider the quotient of Ωpc(T ) by the subspace generated by the forms of the form

ω − h∗ω, where h ∈ PΓ and the support of ω ∈ Ωpc(T ) is contained in the range

of h. The topology on the quotient space is the quotient topology of the locally

convex topology on Ωpc(T ). We will denote this quotient by Ωpc(Tr(F ,Γ)), since

PΓ is the pseudogroup associated to the reduced twisted holonomy groupoid.

Morever, we set Ω∗c(Tr(F ,Γ)) =
⊕

p≥0 Ωpc(Tr(F ,Γ)).

The definition of the space Ω∗c(Tr(F ,Γ)) does not depend on the choice of the

complete transversal T. Indeed, if T ′ is another complete transversal and P
′

Γ

is the pseudogroup associated to H(F ,Γ)T
′

T ′ , then there exists an isomorphism

from PΓ to P
′

Γ (in the sense of [27], Section 1.1), since H(F ,Γ)T
′

T ′ and H(F ,Γ)TT
are Morita equivalent (see [39], Exercise 5.24). This induces a continuous iso-

morphism between Ωpc(T )/ < ω− h∗ω > and Ωpc(T
′)/ < η− (h′)∗η > . We refer

to [27], Section 1.2. for details.

The de Rham differential d : Ωpc(T ) → Ωp+1
c (T ) descends to the quotient

Ω∗c(Tr(F ,Γ)) giving rise to a cochain complex (Ω∗c(Tr(F ,Γ)), dH), whose co-

homology is denoted by H∗(TrF ,Γ).

A continuous linear form on Ωkc (Tr(F ,Γ)) is a k−current C defined on every

transversal submanifold which is PΓ−invariant, i.e. C(α) = C(h∗α), for any

h ∈ PΓ and any α ∈ Ωkc (T ) with support contained in the range of h. The space

of PΓ−invariant currents will be denoted by C∗(Tr(F ,Γ)). These currents will

provide interesting graded traces, which we are going to use to construct the

equivariant cyclic cocycles we want to define.

Denoting by ∂H the dual of the differential dH one gets the dual chain complex

(C∗(TrF ,Γ), ∂H), whose homology will be denoted by H∗(Tr(F ,Γ)).

Remark 4.1. Since the holonomy groupoid H(F) is an open subgroupoid of

H(F ,Γ) it is obvious that any PΓ−invariant current is in particular holonomy

invariant.

Example 4.1. Let (M,F ,Γ) be a transversely oriented foliated Γ−manifold of

codimension q and denote by ν the oriented normal bundle to the foliation.

Let us assume that the induced action of Γ on ν consists of orientation-preserving

diffeomorphisms.

Then each element γ ∈ H(F ,Γ), γ : x → y, gives rise to an orientation-

preserving linear isomorphism λ(γ) : νx → νy. Indeed, first recall that to an

arbitrary element γ ∈ H(F ,Γ)yx one associates the linear isomorphism λ(γ) :
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νx → νy, which is the differential at the point x of the transverse local diffeo-

morphism determined by γ. See Theorem 1.4.5 and Corollary 1.4.6 for details.

By construction of the twisted holonomy groupoid, each λ(γ) can be written

as the composition of infinitesimal holonomies λ(α), with α ∈ H(F), and of

the differential dHol(h) of the transverse local diffeomorphisms Hol(h) induced

by the elements h ∈ Γ. Being the foliation transversely oriented and being the

induced action of Γ on ν orientation-preserving by hypothesis, it follows that

the linear maps λ(α) and dHol(h), for every α ∈ H(F), h ∈ Γ, are orientation-

preserving. Therefore, λ(γ) preserves the orientation of ν.

For a given complete transversal T and for any ω ∈ Ωqc(T ) one can integrate

ω using the transverse orientation. Moreover, one has
∫
T
ω =

∫
T
h∗ω, when-

ever this makes sense, since h ∈ PΓ is orientation-preserving. Hence we get the

invariant q−current ∫
: Ωqc(Tr(F ,Γ))→ C [ω] 7→

∫
[ω] (4.2)

This invariant current is fundamental to construct the transverse fundamental

cyclic cocycle associated to a horizontal distribution.

To end this section, we recall the following result, which will be needed later.

Theorem 4.1.1. Let (M,F ,Γ) a foliated Γ−manifold and let ν denote the

normal bundle to the foliation. Moreover let ΩF be the line bundle of leafwise

1−densities on M and consider the bundle ΩF ⊗Λ∗ν∗ over M. Then there exists

a continuous open surjective linear map∫
F

: C∞(M,ΩF ⊗ Λkν∗)→ Ωkc (Tr(F ,Γ)). (4.3)

To define the above integration along the leaves one proceeds as follows.

Let us give a regular foliated atlas U = {Ui} with transverse coordinate maps

yi : Ui → Ti and consider the disjoint union T = qiTi. The submanifold T is

clearly a complete transversal to the foliation. Taking a smooth partition of

unity subordinated to the open cover {Ui} one may express any section s ∈
C∞(M,ΩF ⊗ Λkν∗) as a finite sum

∑
si, where each si has support contained

in Ui. Moreover, each si is a leafwise density with transverse differential forms

as coefficients. Hence it makes sense to integrate each si along the leaves to

get a k−differential form
∫
Ui/Ti

si on the transversal Ti. The Haefliger form∫
F s is then defined to be the class in Ωkc (Tr(F ,Γ)) of the differential k−form∑∫

Ui/Ti
si on the complete transversal T. It is easy to verify that this definition

does not depend on the choice of the partition of unity nor on the foliated atlas.

For details and further comments we refer to [27].

4.1.2 Cyclic cocycles on the twisted holonomy groupoid

In this section we will construct geometric cyclic coycles on the smooth convolu-

tion algebra of the twisted holonomy groupoid using the Haefliger (co-)homology

introduced in the previous section. In particular, we will define the transverse
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fundamental cyclic cocycle associated to a horizontal distribution of a trans-

versely oriented foliated Γ−manifold.

The procedure adopted here is a general way to construct cyclic cocycles and is

taken from [17], [7] and [6].

Let (M,F ,Γ) denote as usual a foliated Γ−manifold and let F and ν be re-

spectively the tangent and the normal bundles to the foliation. For notational

simplicity, in the following we will denote the corresponding complexified bun-

dles with the same symbols. Moreover we will denote by G the twisted holonomy

groupoid H(F ,Γ) and by Ω1/2 the bundle of densities Ω1/2H(F ,Γ).

Finally, let E be a Hermitian vector bundle on M endowed with a connection

∇.
We may consider the vector bundle END(E)⊗ t∗(Λ∗ν∗)⊗Ω1/2 over G, where

END(E) = s∗(E)∗⊗ t∗(E). The space of compactly supported smooth sections

Ω∗E = C∞c (G,END(E)⊗ t∗(Λ∗ν∗)⊗ Ω1/2)

becomes a graded algebra if endowed with the following product. For T1⊗ω1 ∈
ΩkE and T2 ⊗ ω2 ∈ ΩmE we set

((T1⊗ω1)∗ (T2⊗ω2))(γ) =

∫
γ1γ2=γ

(T1(γ1)T2(γ2))⊗ (ω1(γ1)∧λγ1
ω2(γ2)) (4.4)

where λγ1
: Λmν∗s(γ1) → Λmν∗t(γ1) denotes the action of the twisted holonomy

groupoid on transverse covectors, and then we extend it by linearity for general

tensors.

There is a transverse differentiation ∇Q on Ω∗E of degree 1. It does depend on

the choice of a horizontal distribution Q ⊆ TM, i.e. on a splitting of the short

exact sequence 0→ F → TM → ν → 0.

Let us then fix such a horizontal distribution. The transverse differentiation

is constructed as follows. First we need to define it for sections of the bundle

E ⊗ Λ∗F ∗ ⊗ Λ∗Q∗. Notice that the connection ∇ on E induces a differential

operator, denoted again by ∇,

∇ : C∞(M,E ⊗ ΛkT ∗M)→ C∞(M,E ⊗ Λk+1T ∗M).

Using the isomorphism ψ : Λ∗T ∗M
∼=−→ Λ∗F ∗⊗Λ∗Q∗ provided by the horizontal

distribution, we define ∇Qω for any form ω ∈ ΛrF ∗ ⊗ ΛsQ∗ as the (r, s +

1)−component of ψ∇(ψ−1ω), getting the operator

∇Q : C∞(M,E ⊗ ΛrF ∗ ⊗ Λsν∗)→ C∞(M,E ⊗ ΛrF ∗ ⊗ Λs+1ν∗). (4.5)

Next, we need to differentiate in the transverse direction half-densities on

M with coefficients in the dual bundle E∗. We use here the dual connection ∇∗
on E∗, induced canonically by the connection on E.

Any half-density ρ can be written as ρ = f |λ|1/2, where f ∈ C∞(V,E∗) and

λ ∈ C∞(M,Ω1
F ). Thus, we set

∇Q(f |λ|1/2) = (∇∗Qf)|λ|1/2 +
1

2
f |λ|1/2k(λ), (4.6)
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where k(λ) ∈ C∞(M,Q∗) ∼= C∞(M,ν∗) is the transverse 1−form defines as fol-

lows. Take p ∈ V and let us choose foliated coordinates (x1, . . . , xp, t1, . . . tq) ∈
Ip× Iq around p. In these coordinates, p = (x0, t0) and the 1−density λ has the

form

λ(x, t) = α(x, t)|dx1 ∧ dx2 ∧ · · · ∧ dxp|.

Now, if X(t) =
∑q
i=1Xi(t)

∂
∂ti

is any vector field on the transversal Iq and XQ

denotes its unique horizontal lift on Ip × Iq given by

XQ(x, t) =

p∑
j=1

Xj
Q(x, t)

∂

∂xj
+

q∑
i=1

Xi(t)
∂

∂ti
,

then the transverse 1−form k(λ) evaluated at p = (x0, t0) on the transverse

vector X(t0) ∈ νp is

XQ(f)(x0, t0) +

p∑
j=1

(
∂

∂xj
Xj
Q(x0, t0)

)
f(x0, t0). (4.7)

It can be checked that this definition does not depend on the choice of the local

coordinates. We refer to [35], Section 5.3 for further details and comments.

We get therefore the transverse differentiation

∇Q : C∞(M,E∗ ⊗ Ω
1/2
F )→ C∞(M,ν∗ ⊗ E∗ ⊗ Ω

1/2
F ). (4.8)

Finally we need to differentiate transversely a smooth function f ∈ C∞(G). To

do this, let us consider γ ∈ G = H(F ,Γ) and a normal vector X0 ∈ νt(γ). Set

X1 = hγ−1X0 ∈ νs(γ). Next, using the horizontal distribution Q lift these two

vectors to the corresponding unique horizontal vectors XQ
0 and XQ

1 . Since G is a

foliation groupoid, the anchor map (s, t) : G→M ×M is an immersion. Hence,

(XQ
1 , X

Q
0 ) ∈ T(s(γ),t(γ))(M ×M) is the image of a unique vector Y ∈ TγG. One

defines

(dQf)(X) = df(Y ), (4.9)

where d is the usual de Rham differential on the groupoid G.

Now, putting together all these pieces we obtain a graded derivation ∇Q on Ω∗E
of degree 1. Recall first that every element k ∈ C∞c (G,END(E) ⊗ Ω1/2) can

be written as k = fs∗(α)t∗(β), where f ∈ C∞c (G), α ∈ C∞c (M,E∗ ⊗ Ω
1/2
F ), β ∈

C∞c (M,E ⊗ Ω
1/2
F ). Then

Lemma 4.1.2. For any k ∈ C∞c (G,END(E)⊗ Ω1/2) the formula

∇Q(fs∗(α)t∗(β)) = (∇Qf)s∗(α)t∗(β) + fs∗(∇Qα)t∗(β) + fs∗(α)t∗(∇Qβ)

(4.10)

defines a derivation of degree 1 from Ω0
E to Ω1

E . This derivation extends in a

unique way to a graded derivation on Ω∗E .

Remark 4.2. If the foliation is oriented, choosing a positive nowhere half-

density one can work directly with functions rather than with half-densities.
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Through this identification the graded algebra Ω∗E can be taken as the convo-

lution algebra C∞c (G,END(E)⊗ t∗(Λ∗(ν∗))). Moreover, one can take as trans-

verse derivation ∇Q : C∞c (G,END(E))→ C∞c (G,END(E)⊗ t∗(ν∗)) the pull-

back transverse derivative, i.e. the transverse derivative as defined by Equation

4.9 and by Equation 4.5.

The pair (Ω∗E ,∇Q) is not a differential graded algebra, since the horizontal

distribution is not in general integrable and therefore (∇Q)2 may be not zero.

Indeed (∇Q)2 involves the curvature tensor of the connection ∇ on E and the

”curvature” of the horizontal distribution Q. More precisely, it is shown in [17],

Chapter III, Section 7. α, for trivial E, and in [24], Section 4.6 in general, that

(∇Q)2 determines a degree 2 multiplier of Ω∗E , i.e. there exists a unique element

θ ∈ C−∞c (G,END(E)⊗ t∗Λ2ν∗ ⊗ Ω1/2) such that

(∇Q)2ω = [θ, ω] (4.11)

for all ω ∈ Ω∗E . See also [6].

Using that (∇Q)2 has the above form and following [17], Lemma 9, Chapter 3,

Section 3 or [7], we can construct a DGA (Ω∗E , δ) out of (Ω∗E ,∇Q) by setting

• ΩkE = M2(ΩkE).

• for any A = (αij), B = (βij) ∈M2(ΩkE), the product is defined by

A ∗B = AΘB, (4.12)

with Θ =

(
1 0

0 θ

)
.

• the differential δ of any element A = (αij) ∈ M2(ΩkE) is defined by the

formula

δ(A) =

(
∇Qα11 ∇Qα12

∇Qα21 ∇Qα22

)
+

(
0 −θ
1 0

)
A+ (−1)∂AA

(
0 1

−θ 0

)
,

(4.13)

where ∂A is the grading of A ∈ M2(ΩkE) (see [17]). It is straightforward

to verify that δ2 = 0.

The algebra Ω∗E is naturally a subalgebra of Ω∗E by using the inclusion

ω 7→
(
ω 0

0 0

)
. (4.14)

Remark 4.3. So far we have not used the fact that G is the twisted holonomy

groupoid of a foliated Γ−manifold. In fact, all the algebras and operators can

be defined for any foliation groupoid.

Let us now construct traces on Ω∗E , using PΓ−invariant currents.

Let C ∈ Ck(Tr(F ,Γ)) a closed PΓ−invariant current and let ω ∈ ΩkE . The re-

striction ω|M of ω to the space of objects M yields a smooth section of the bundle
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End(E)⊗Λkν∗ ⊗Ω1
F . Moreover we can take pointwise the trace tr(ω|M )(m) of

ω|M (m) ∈ End(Em)⊗ Λkν∗m ⊗ (Ω1
F )m. This yields of course a section

tr(ω|M ) ∈ C∞(M,Λkν∗ ⊗ Ω1
F ).

Applying the map 4.3 to this section we get∫
F
tr(ω|M ) ∈ Ωkc (Tr(F ,Γ)).

Thus, we can define ∫
C

: Ω∗E → C (4.15)

by posing∫
C

ω =

〈∫
F
tr(ω|M ), C

〉 (∫
C

η = 0 if deg(η) 6= k

)
(4.16)

Lemma 4.1.3. The linear map
∫
C

defines a closed graded trace on Ω∗E .

See [6] for a proof of this result and further comments.

Now the closed graded trace
∫
C

extends to a closed graded trace on Ω∗E by

setting for any A = (αij) ∈ ΩkE∫
C

A =

∫
C

α11 − (−1)k
∫
C

α22θ. (4.17)

We refer to [17], Lemma 9, pag. 234 for the details about this point. Sum-

marizing, for any Hermitian vector bundle E over M with connection ∇ and any

homogeneous closed invariant current C ∈ C∗(Tr(F ,Γ)), we have constructed

a DGA (Ω∗E , δ), endowed with a closed graded trace
∫
C
.

Recall that C∞c (H(F ,Γ), E) = Ω0
E is contained in Ω0

E through the inclusion

4.14.

One has

Theorem 4.1.4. For any Hermitian vector bundle E over M with connection ∇
and any closed PΓ−invariant current C ∈ Ck(Tr(F ,Γ)) defined on the foliated

Γ−manifold (M,F ,Γ), the formula

τC(a0, a1, . . . , ak) =

∫
C

(a0 ∗ δa1 ∗ · · · ∗ δak)11 (4.18)

defines a cyclic k−cocycle over C∞c (H(F ,Γ), E), which is continuous with re-

spect to the LF-locally convex topology on C∞c (H(F ,Γ), E).

Before proving the above theorem, let us make some observations. For the

sake of simplicity, let us assume in the following that the bundle E is trivial

and let us assume to have fixed a smooth positive leafwise density. Thus, we

will consider functions, rather than densities. Furthermore, let us denote the

groupoid H(F ,Γ) simply by G. We observe that without fixing a density and

for general bundles E, the discussion below is completely analogous.
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On the spaces Ωk, for k = 0, ..., q, we have two natural topologies compatible

with the vector space structure. The first one is the LF-topology, which turns

each Ωk into a LF-space (cf. [46], pag. 15 and the references therein, or [10],

Chapter II, Section 6). If we want to emphasize it, we will denote Ωk endowed

with this topology by the symbol ΩkLF .

The other topology is the so-called compact-open C∞ topology. For the defini-

tion of this topology, we refer to [31], Chapter 2. In this case, if Ωk carries the

compact-open C∞ topology, we shall denote it by ΩkCO.

In the proof of the above theorem we will need the following lemma, whose proof

can be found in Appendix A.

Lemma 4.1.5. Fix k ≤ q, where codimF = q, and consider the space ΩkCO.

Then, for any m−tuple (k1, k2, . . . , km) ∈ Nl such that
∑m
l=0 kl = k the multi-

linear map

Ωk1

LF × Ωk2

LF × · · · × ΩkmLF → ΩkCO

defined by the convolution

(a1, a2, . . . , am) 7→ a1 ∗ a2 ∗ · · · ∗ am

is continuous.

Proof. (proof of Theorem 4.1.4) Following the general methods developed in

[17], Chapter III. 1. α, we deduce that the multilinear functional τC defines a

cyclic cocycle on C∞c (H(F ,Γ)), which is determined by (Ω∗, δ,
∫
C

) as explained

in [17], Proposition 4, 190.

For the continuity we argue as follows.

We shall first prove that the multilinear map

C∞c (G)LF × · · · × C∞c (G)LF → C∞c (G,Λk(t∗ν∗))CO

given by

(a0, a1, . . . , ak) 7→ (a0 ∗ δa1 ∗ · · · ∗ δak)11 (4.19)

is continuous.

By a straightforward computation, one easily gets that the transverse k−form

(a0 ∗ δa1 ∗ · · · ∗ δak)11 is a polynomial in the variables ai, dQa
i and θ. Now, the

transverse derivative a 7→ dQa clearly determines a continuous operator from

C∞c (G)LF to C∞c (G, t∗(ν∗))LF . Moreover, convolution by the fixed element θ is

also continuous with respect to the LF-topology.

By applying Lemma 4.1.5 to all monomials appearing in (a0 ∗ δa1 ∗ · · · ∗ δak)11

and summing them up in C∞c (G,Λk(t∗ν∗))CO, we get indeed that the multilin-

ear map 4.19 is continuous with respect to the LF-topology on C∞c (G) and the

CO-topology on C∞c (G,Λkt∗(ν∗)).

Next, since we are assuming M compact, the spaces C∞(M,Λ∗(ν∗))LF and

C∞(M,Λ∗(ν∗))CO turn out to coincide and the resulting topology is a Fréchet

topology. Moreover, we can choose a compact complete transversal T to the

foliation F and consider the space of differential forms Ω∗(T ) with its natu-

ral LF-topology and the corresponding space of transverse differential forms
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Ω∗(Tr(F ,Γ)) (see Section 4.1.1) endowed with the quotient topology. Hence,

the restriction of the map 4.19 to M is continuous and the integration along the

leaves, as defined in 4.3, is also continuous.

Hence, the k−linear map

(a0, a1, . . . , ak) 7→
∫
F

((a0 ∗ δa1 ∗ · · · ∗ δak)11)|M

is continuous with respect to the LF-topology on C∞c (G) and the quotient topol-

ogy on Ωk(Tr(F ,Γ)). Finally, by definition an invariant k−current is a contin-

uous linear form on Ωk(Tr(F ,Γ)). Therefore,

(a0, a1, . . . , ak) 7→
〈∫
F

((a0 ∗ δa1 ∗ · · · ∗ δak)11)|M , C

〉
is continuous with respect to the LF-topology on C∞c (G). This concludes the

proof.

From now on and unless otherwise specified, on C∞c (H(F ,Γ), E) we will

always consider the LF-topology.

Remark 4.4. In [7] it is stated that the cyclic cocycle τC on C∞c (H(F), E)

is continuous with respect to the compact-open C∞ topology. Unfortunately,

with respect to this topology the cocycle is only separately continuous.

Remark 4.5. The construction we have performed is formally the same as that

done in [6] for the holonomy groupoid of the foliation. However, since we are

working with the twisted holonomy groupoid we have produced different cyclic

cocycles.

Let (M,F ,Γ) be a codimension q transversely oriented foliated Γ−manifold

and assume that the action of Γ on the normal bundle ν to the foliation consists

of orientation-preserving bundle morphisms. We have shown in Example 4.1

that in this case there is always an invariant q−current
∫

associated to the

transverse orientation.

Definition 4.1. The transverse fundamental class of the transversely oriented

foliated Γ−manifold (M,F ,Γ), with Γ−action on the normal bundle ν given by

orientation-preserving morphisms, is the class [τ ] ∈ HCq(C∞c (H(F ,Γ), E)) of

the cocycle associated to the invariant current
∫

as described in Theorem 4.1.4.

Remark 4.6. The restriction of any transverse fundamental cyclic cocycle

τ to the smooth convolution algebra C∞c (H(F),Ω1/2H(F)) of the holonomy

groupoid coincides with the transverse fundamental cyclic cocycle as defined for

instance in [17], Chapter III, Section 7, α. More generally this holds for all cyclic

cocycles coming from PΓ−invariant currents.

Remark 4.7. All the constructions of the last two sections hold more generally

for any foliation groupoid in the sense of [19].
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4.1.3 Equivariant cyclic cocycles

For any foliated Γ−manifold (M,F ,Γ), the cyclic cocycles on the smooth al-

gebra C∞c (H(F ,Γ), E) introduced in the previous section give rise to twisted

and equivariant cocycles. In this section, we will show that any cyclic cocycle

τC associated to an invariant current determine in a natural way an equivariant

cyclic cocycle, if the group Γ is compact.

We keep denoting the twisted holonomy groupoid H(F ,Γ) of (M,F ,Γ) simply

by G and the bundle of half densities over it by Ω1/2 instead of Ω1/2H(F ,Γ).

Moreover, the bundle of leafwise densities on M will be denoted by Ω
1/2
F .

As already mentioned in the introduction many ideas of this section are taken

from [7], even if our treatment is more general, not assuming anything about

the leafwise diffeomorphisms.

Thus, let (M,F ,Γ) denote a foliated Γ−manifold and let G be its twisted holon-

omy groupoid. Let Γ to be a compact Lie group.

Let ν = TM/T (F) be the normal bundle to the foliation and let us choose a

horizontal distribution Q ⊆ TM that is invariant with respect to the action of

Γ on TM given by differentials. Being Γ compact, such horizontal distributions

will always exist. In fact, the short exact sequence of Γ−equivariant vector

bundles

0→ T (F)→ TM
π−→ ν → 0

admits a linear splitting, i.e. a (not necessarily equivariant) bundle morphism

s′ : ν → TM over the identity of M, with π ◦ s′ = id. Now, since Γ is compact,

one can average s′ with respect to the Haar measure of Γ and obtain in this way

an equivariant splitting s such that π ◦ s = id.

Finally, let E denote a Γ−equivariant bundle endowed with a Γ−invariant Her-

mitian metric and with a Γ−invariant connection ∇.
By Theorem 1.5.7, for any h ∈ Γ there exists a smooth global bisection

σh : M → G

such that

• t ◦ σh = h;

• for any x ∈M, the holonomy along σh(x) coincides with the germ Hol(f)x
at x.

Through σh we have defined the operator (see 2.17)

S(h) = {S(h)x}x∈M : L2
τ (G, t∗(E))→ L2

τ (G, t∗(E)).

According to Proposition 2.1.14 we know that S(h) defines a multiplier for

the smooth convolution algebra C∞c (G,E), i.e. S(h) ◦ R(k), R(k) ◦ S(h) ∈
C∞c G,E). As usual, we understand under R(k) the action of k ∈ C∞c (G,E)

on L2
τ (G, t∗(E)) through the right regular representation (see 2.8). Since this

representation is faithful, we will identify C∞c (G,E) with its image using the
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same notation k to denote an element of C∞c (G,E) and the corresponding op-

erator R(k), if there is no cause of confusion.

The compositions S(h)◦k and k ◦S(h) defines linear actions of Γ on C∞c (G,E),

that are explicitly given by the formulas

(S(h) ◦ k)(γ) = klh(γ) = (Ah ⊗ id) · k(σh−1(t(γ))γ) (4.20)

and

(k ◦ S(h))(γ) = krh(γ) = (id⊗A∗h−1) · k(σh−1(ht(γ))h(γ)) (4.21)

for all k ∈ C∞c (G,E), h ∈ Γ and γ ∈ Γ. See Proposition 2.1.14 and Remark 2.2

for notation and the explicit computations.

These actions can be extended to Ω∗E . Indeed, the bundle END(E) ⊗ Ω1/2 ⊗
t∗(Λ∗ν∗) is Γ−equivariant, the action αh on t∗(Λ∗ν∗) being induced canonically

by the action of Γ on ν and explicitly determined by the transpose (h−1)t∗ of

the differential of h−1 acting on the fibres of Λ∗ν∗.

Remark 4.8. Notice that for all γ ∈ G, (αh)γ = λσh(t(γ)), since the transverse

action of h is encoded in the bisection σh.

Remark 4.9. Using the Γ−invariant horizontal distribution Q, that we have

chosen, we also have that the bundle END(E)⊗Ω1/2⊗t∗(Λ∗Q∗) is Γ−equivariant.

Moreover, the isomorphism between END(E)⊗Ω1/2⊗t∗(Λ∗ν∗) and END(E)⊗
Ω1/2 ⊗ t∗(Λ∗Q∗) is equivariant.

For any ω ∈ ΩkE and h ∈ Γ we set

ωlh(γ) = (Ah ⊗ id⊗ (h−1)t∗) · ω(σh−1(t(γ))γ) (4.22)

ωrh(γ) = (id⊗A∗h−1 ⊗ id) · ω(σh−1(ht(γ))h(γ)) (4.23)

The notation expresses explicitly that we are acting separately on the target

part and on the source part of the section ω.

Remark 4.10. Viewing (see [26]) an element ω ∈ ΩkE as the Schwartz kernel

of a G−invariant family of smoothing operators Pω = (Pωx )x∈M such that

Pωx : C∞c (G, t∗(E))→ C∞c (G, t∗(E ⊗ ΛkQ∗),

it can be shown arguing as in Proposition 2.1.14 that the composition of oper-

ators S(h) ◦ Pω is an operator with Schwartz kernel given by ωlh. Similarly the

composition Pω ◦ S(h) is an operator with Schwartz kernel ωrh.

Proposition 4.1.6. Let (M,F ,Γ) be a foliated Γ−manifold and let Q ⊆ TM

be a Γ−invariant horizontal distribution.

1. For any ω ∈ ΩkE , η ∈ ΩlE , it holds that

ω ∗ ηlh = ωrh ∗ η.
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2. If the bundle E is endowed with a Γ−invariant connection and if ∇Q
denotes the corresponding transverse differentiation on Ω∗E , then for any

k ∈ Ω0
E and h ∈ Γ

∇Q(S(h) ◦ k) = ∇Q(klh) = (∇Qk)lh (4.24)

Proof. 1). For notational simplicity, we assume that the bundle E is trivial of

rank one. For general bundles the result follows exactly from the same argument.

Moreover, we will not denote explicitly the action of Γ on densities, being obvious

where it is used.

Recall that by definition and for any γ ∈ G, γ : x→ y

(ω ∗ ηlh)(γ) =

∫
Gy
ω(γ1) ∧ λγ1

(ηlh(γ−1
1 γ)) =

=

∫
Gy
ω(γ1) ∧ λγ1

(αhη(σh−1(s(γ1))γ−1
1 γ)).

Now, setting γ′ = γ1σh(h−1s(γ1)) one gets

ω(γ1) = ω(γ′σh(h−1s(γ1))−1) = ω(γ′σ−1
h (hs(γ′))).

Moreover

(γ′)−1 = σh(h−1s(γ1))−1γ−1
1 = σh−1(s(γ1))γ−1

1 .

Hence from this computation, the fact that (αh)h−1s(γ1) = λσh(h−1s(γ1)) and the

invariance of the integral of densities with respect to diffeomorphisms, we finally

deduce that ∫
Gy
ω(γ1) ∧ λγ1

(αhη(σh−1(s(γ1))γ−1
1 γ)) =

=

∫
Gy
ω(γ′σ−1

h (hs(γ′))) ∧ λγ1
λσh(h−1s(γ1))η((γ′)−1γ)) =

=

∫
Gy
ωrh ∧ λγ′η((γ′)−1γ) = (ωrh ∗ η)(γ).

2). Let us first assume that the bundle E is trivial of rank 1 and let us

denote the transverse derivation simply by dQ.

Given an arbitrary element k ∈ C∞c (G,Ω1/2), we can write it as

k = fs∗(α)t∗(α),

where f ∈ C∞c (G), α ∈ C∞(M,Ω
1/2
F ). With this notation, it is easy to check

that for any h ∈ Γ

klh = (fs∗(α)t∗(α))lh = f lhs
∗(α)t∗(h · α),

where

f lh(γ) = f(σh−1(t(γ))γ)

and

(h · α)(t(γ)) = h · α(h−1(t(γ)))

is the usual action on h on half densities. On the density s∗(α) there is no action

of h since we only act on the target part of k.

Thus, the claim follows if we establish the two following equalities
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1. dQ(f lh) = (dQf)lh

2. t∗(dQ(h · α)) = t∗(h · dQ(α))

To show the first one, we proceed exactly as in [7], Lemma 4.16. We sketch

the argument for the sake of completeness.

Let γ ∈ G, γ : x→ y and consider the element γ1 = σh−1(y)γ. Further, take any

X ∈ t∗(Q)γ ∼= Qy.

The normal vector X gives rise to a tangent vector X̂ ∈ TγG determined by the

following requirements,

s∗(X̂) = λγ−1X t∗(X̂) = X.

Since the anchor map of the groupoid (s, t) is an immersion we get that X̂ is

unique. The vector X defines also a vector Y ∈ Th−1(y)M by putting Y =

h−1
∗ (X) = λσh−1 (y)(X) and then the corresponding tangent vector Ŷ ∈ Tγ1G

determined by setting

s∗(Ŷ ) = λγ−1
1

(Y ) = λ(σ−1
h (y)γ)−1(Y ) = λγ−1X t∗(Ŷ ) = Y.

Now, by definition

dQ(f lh)(X) = d(f lh)(X̂)

and

dQ(f)(Y ) = df(Ŷ ).

Now, consider any smooth local curve γt ⊆ G passing through γ for t = 0

and defining the tangent vector X̂. Then, it can be shown that the curve βt =

σh−1(t(γt))γt ⊆ G passes through γ1 and defines the vector Ŷ . Since f lh(γt) =

f(βt), we get

dQ(f lh)(X) = d(f lh)(X̂) =
d

dt
(f lh(γt))|t=0 =

=
d

dt
(f(βt))|t=0 = df(Ŷ ) = dQ(f)(Y ) = dQf(h−1

∗ (X)) =

= ((h−1)t∗dQf)(X).

Thus, we have proved the first equality.

For the second equality we argue as follows. Let us fix a Γ−invariant positive

one-density λ ∈ C∞(M,Ω1
F ). Then every half-density α ∈ C∞(M,Ω

1/2
F ) can be

written as α = f |λ|1/2 and the transverse derivation of α is given by the formula

dQ(α) = dQ(f |λ|1/2) = dQ(f)|λ|1/2 +
1

2
f |λ|1/2k(λ) (4.25)

where k(λ) ∈ C∞(M,Q∗) is the transverse derivation of λ as defined in the

previous section (see also [35], pag. 50).

Now, from the invariance of λ, one has that

dQ(h · α) = dQ((h · f)|λ|1/2) =

= dQ(h · f)|λ|1/2 + (h · f)|λ|1/2k(λ) = h · dQ(f)|λ|1/2 + (h · f)|λ|1/2k(λ).
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On the other side

h · (dQ(α)) = h · dQ(f)|λ|1/2 + (h · f)(h · k(λ))|λ|1/2.

Hence, the equality follows if we show that h · k(λ) = k(λ), for any h ∈ Γ.

But applying the definition of k(λ) and using the invariance of λ, it follows

straightforwardly that k(λ) is indeed Γ−invariant.

This proves the secong equality and thus the claim in the case E is trivial of a

rank 1.

For general E, observe that any element k ∈ C∞c (G,E) can be written as

k = fs∗(α)t∗(β),

where f ∈ C∞c (G), α ∈ C∞(M,E∗ ⊗ Ω
1/2
F ) and β ∈ C∞(M,E ⊗ Ω

1/2
F ). Hence,

provided E is endowed with a Γ−invariant connection ∇, we can apply the same

argument as above using E−valued densities.

Recall (cf. Section 4.1.1) that the pseudogroup associated to the reduced

étale groupoid GTT = H(F ,Γ)TT with respect to a complete transversal T is

denoted by PΓ.

Proposition 4.1.7. Let C ∈ Cm(Tr(F ,Γ)) be a closed PΓ−invariant current,

with m > 0, and let τC be the corresponding cyclic cocycle on C∞c (G,E) as given

by Theorem 4.1.4. Then, one has that

τC(k0, . . . , ki ◦ S(h), ki+1, . . . , km) = τC(k0, . . . , ki, S(h) ◦ ki+1, . . . , km) (4.26)

for every ki ∈ C∞c (G,E), h ∈ Γ.

If C ∈ C0(Tr(F ,Γ)) is a closed invariant 0−current, then it holds

τC(k ◦ S(h)) = τC(S(h) ◦ k), (4.27)

for k ∈ C∞c (G,E), h ∈ Γ.

Proof. We argue as in [7]. Let us first prove the proposition for m > 0. Using

the fact that τC is cyclic, it suffices to show that

τC(k0 ◦ S(h), . . . , km) = τC(k0, S(h) ◦ k1, . . . , km).

Now, recall that the τC is defined by the formula

τC(k0, k1, . . . , km) =

∫
C

tr(((k0 ∗ δk1 ∗ · · · ∗ δkm)11)|M

where ∗ is the product of the algebra Ω∗E = M2(Ω∗E) and δ the derivation

on it defined in the previous section. Thus, we only need to study the (1, 1)

component in M2(Ω∗E) of the above product.

Computing explicitly k0 ∗ δk1 ∗ · · · ∗ δkm in terms of the product in Ω∗E , one gets

two types of terms involving the action of the multiplier S(h). First one obtains

terms of the form k0(S(h) ◦ k1)Q, where Q is a polynomial in the variables
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ki,∇Qki and the curvature term θ, for which the result is immediate. The

second type of terms are given by k0∇Q(S(h)◦k1)Q. Applying now Proposition

4.1.6, we deduce that k0∇Q(S(h) ◦ k1) = (k0 ◦ S(h))∇Qk1, which implies the

result.

If now C ∈ C0(Tr(F ,Γ)), we argue as follows.

For any other group element g ∈ Γ we will prove the formula

τC(g(k ◦ S(h))) = τC(k ◦ S(h)),

from which Equation 4.27 easily follows.

Since by definition of
∫
C

we restrict to the M, one can assume the support of

k̃ = k ◦ S(h) to be contained in a foliated chart U of M. Then, the support of

g(k̃) is contained in the foliated chart V = g(U).

By the invariance of the integral of 1−densities with respect to diffeomorphisms

we know that ∫
F
g(k̃) =

∫
V/F

g(k̃) =

∫
U/F

k̃.

This implies that 〈∫
V/F

g(k̃), C

〉
=

〈∫
U/F

k̃, (g−1)∗C

〉

Hence, if (g−1)∗C = C, or equivalently g∗C = C, the result follows. Let S ⊆ U
a transversal and set T = g(S) ⊆ V. Since g is lifted by the bisection σg ∈
Bis(H(F ,Γ)), one can cover S with open sets Ωj in such a way that g|Ωj =

λσg(yj), for suitable yj ∈ Ωj . Since C is PΓ−invariant, we have

g∗(C)|g(Ωj) = λ∗σg(yj)
(C)|g(Ωj) = C|g(Ωj).

This completes the proof.

As consequence of the propositions above, we get the following theorem.

Recall that C∞c (H(F ,Γ), E) carries its natural LF-topology.

Theorem 4.1.8. Let (M,F ,Γ) a foliated Γ−manifold, with Γ compact, and let

Q ⊆ TM a Γ−invariant horizontal distribution.

Let C ∈ Cm(Tr(F ,Γ)) closed and let τC be the corresponding cyclic cocycle on

C∞c (H(F ,Γ), E). Then the formula

ϕC(k0, k1, . . . , km|h) = τC(S(h) ◦ k0, k1, . . . , km) (4.28)

defines an equivariant cyclic m−cocycle on (C∞c (H(F ,Γ), E),Γ).

Proof. Continuity follows immediately from the continuity of τC and of the

linear action defined by the multipliers S(h). Moreover, the fact that it is a

closed cyclic invariant cochain is an immediate corollary of Proposition 4.1.7

and Lemma 3.3.2.
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Remark 4.11. Notice that evaluating the equivariant cyclic ϕC at the identity

e ∈ Γ, we get the (non-equivariant) cyclic cocycle τC , which we started with.

Heuristically, we can think of ϕC as being a delocalization of τC outside the

identity element of Γ.

Remark 4.12. As suggested by Ralf Meyer, using the invariance of equivariant

cyclic cohomology under equivariant Morita equivalences one can conceive an

alternative method to get equivariant extension of nonequivariant cyclic cocy-

cles.

More precisely, Remark 1.15 in Chapter 1 implies that C∞c (H(F ,Γ), E) with its

canonical Γ−action is equivariantly Morita equivalent to C∞c (H(F ,Γ), E) with

trivial Γ−action. Thus, the equivariant cyclic cohomology of C∞c (H(F ,Γ), E) is

isomorphic to that of C∞c (H(F ,Γ), E) with trivial action, that is in turn isomor-

phic to the C(Γ)-valued nonequivariant cyclic cohomology of C∞c (H(F ,Γ), E).

Hence, once one has a nonequivariant cyclic cocycle τ on C∞c (H(F ,Γ), E) one

obtains an equivariant cyclic cocycle on the algebra C∞c (H(F ,Γ), E) with triv-

ial Γ−action by extending τ constantly for any element of Γ. Then, using the

isomorphisms mentioned above, one gets an equivariant cyclic cocycle ϕ on

C∞c (H(F ,Γ), E) endowed with the canonical Γ−action, whose evaluation at

the identity is τ.

We believe that the methods shown in Theorem 4.1.8 and mentioned here yield

eventually the same equivariant cyclic cocycles but we did not work out the

details.

An important example of the above theorem is provided by the transverse

fundamental cyclic cocycles of a foliated Γ−manifold as defined in Definition

4.1.

Corollary 4.1.9. Let (M,F ,Γ) be a foliated Γ−manifold of codimension q with

Γ compact and let Q denote a Γ−invariant horizontal distribution.

If (M,F ,Γ) is transversely oriented and the action of Γ on Q is given by

orientation-preserving bundle morphisms, then there exists an equivariant cyclic

cocycle ϕ on (C∞c (H(F ,Γ), E),Γ) whose evaluation at e ∈ Γ is the transverse

fundamental cyclic q−cocycle τ on (C∞c (H(F ,Γ), E)) associated to the horizon-

tal distribution Q.

The equivariant cyclic cocycle ϕ will be called an equivariant transverse

fundamental cocycle of (M,F ,Γ).

Using the Γ−equivariant inclusion j : C∞c (H(F), E) ↪→ C∞c (H(F ,Γ), E), we

can define an equivariant cyclic cocycle ϕC on (C∞c (H(F), E),Γ) by restriction.

More precisely for every closed C ∈ Cm(Tr(F ,Γ)) we can set

ϕC(a0, . . . , am|h) = j∗(ϕC)(a0, . . . , am|h) (4.29)

for all ai ∈ C∞c (H(F), E), h ∈ Γ, defining an equivariant cyclic cocycle on

C∞c (H(F), E). We will say that ϕC is the restriction of ϕC on the holonomy

groupoid H(F).
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We are now able to define higher Lefschetz numbers.

Let P ∈ Ψm
c (H(F ,Γ), E) be a Γ−invariant elliptic pseudodifferentialH(F ,Γ)−operator

and let h ∈ Γ. Recall that the smooth Lefschetz class L∞([h], P ) on H(F ,Γ) of

the conjugacy class [h] relative to P is defined as

L∞([h], P ) =
indΓ

C∞(P )

1R[Γ]
∈ KΓ

0 (C∞c (H(F ,Γ), E))[h]

where KΓ
0 (C∞c (H(F ,Γ), E))[h] is the module localized at the prime ideal I[h] of

R[Γ] determined by [h] (cf. 2.2.3).

Let C be a closed even dimensional invariant current and let ϕC be the corre-

sponding equivariant cyclic cocycle on (C∞c (H(F ,Γ), E),Γ) as given by Theo-

rem 4.1.8. By Proposition 3.4.5, the equivariant cocycle ϕC defines an additive

map

〈·, ϕC〉I[h]
: KΓ

0 (C∞c (H(F ,Γ), E))[h] → C.

Definition 4.2. The ϕC−Lefschetz number on H(F ,Γ) of [h] with respect to

the Γ−invariant elliptic operator P is the number

LϕC ([h], P ) = 〈L∞([h], P ), ϕC〉I[h]
(4.30)

Using again Proposition 3.4.5 and the very definition of L∞([h], P ), one gets

that

LϕC ([h], P ) = χϕC ([h])(indΓ
C∞(P )) = χϕC (h)(indΓ

C∞(P )), (4.31)

i.e. the ϕC−Lefschetz numbers depend directly on the equivariant index class

without localizing (here we have used the notation of Section 2.2.3).

Now, restricting the cocycle ϕC to the holonomy groupoid H(F) and denoting

the resulting equivariant cocycle by ϕC , we obtain an additive map

〈·, ϕC〉I[h]
: KΓ

0 (C∞c (H(F), E))[h] → C.

If h ∈ Γ and D ∈ Ψ∞c (H(F);E) is a Γ−invariant elliptic operator on the holon-

omy groupoid, we may take its Lefschetz class L∞([h], D) ∈ KΓ
0 (C∞c (H(F), E))[h]

and set

Definition 4.3. The ϕC−Lefschetz number on H(F) of [h] with respect to the

Γ−invariant elliptic operator D is the scalar

LϕC ([h], D) = 〈L∞([h], D), ϕC〉I[h]
. (4.32)

As above, one can deduce from Proposition 3.4.5 that the ϕC−Lefschetz

number on H(F) only depends on the equivariant index class.

From Proposition 3.4.4 and the discussion after it follows that these higher Lef-

schetz numbers do not depend on the group Γ as far as this latter exists.

The Lefschetz numbers are important invariants associated to the diffeomor-

phism h and the operators P and D. We will see few properties of these invari-

ants in the last section of the chapter. For othere results we refer to [7], [5] and

[28].
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4.1.4 Twisted cyclic cocycles

If the group Γ = Z, generated by a leaf-preserving diffeomorphism h, the proce-

dure developed above allows to construct cyclic cocycles, which are equivariant

with respect to Z. However, since the group is no longer compact we will not use

directly the equivariant cyclic theory, but rather the twisted theory (cf. Chap-

ter 3). This will allow us to get Lefschetz-type invariants in situations that are

slightly more general than those considered above.

Given a foliated manifold (M,F) and h ∈ Diff(F) a leaf-preserving diffeo-

morphism, one can consider the foliated Γ−manifold (M,F ,Γ), where Γ is the

cyclic group generated by h. Notice that Γ could be isomorphic to Z or to Zn,
where hn = id. Since we have already studied the case of a compact group, we

will focus here on the case where Γ = Z.
Then, let (M,F ,Z) be a foliated Z−manifold with Z generated by h and con-

sider its twisted holonomy groupoid H(F ,Z). We assume that there exists a

one-density λ ∈ Ω
1/2
F which is preserved h and that there exists a horizontal dis-

tribution Q ⊆ TM complementary to T (F) which is invariant under the action

of h given by differential. Moreover, let E denote a Z−equivariant Hermitian

vector bundle endowed with a Z−invariant connection.

Therefore, setting Γ = Z we can follow the same steps done in the previous

section until Proposition 4.1.7.

More precisely, it follows that for any closed PZ−invariant current C ∈ Cm(Tr(F ,Z))

the corresponding cyclic cocycle τC on C∞c (H(F ,Z), E) satisfies the fundamen-

tal relation

τC(k0, . . . , ki ◦ S(l), ki+1, . . . , km) = τC(k0, . . . , ki, S(l) ◦ ki+1, . . . , km),

for every ki ∈ C∞c (H(F ,Z), E), l ∈ Z (if m = 0, see 4.1.7).

Unfortunately, since Z is not compact we do not obtain an equivariant cyclic

cocycle. However, arguing as in Theorem 4.1.8 one immediately gets

Proposition 4.1.10. Let (M,F ,Z) be a foliated Z−manifold, with Z gen-

erated by the diffeomorphism h ∈ Diff(F). Let τC be the cyclic cocycle on

C∞c (H(F ,Z), E) associated to a closed PZ−invariant current C ∈ Cm(Tr(F ,Z)).

The formula

ϕhC(k0, k1, . . . , km) = τC(S(h−1) ◦ k0, k1, . . . , km) (4.33)

defines a h−twisted cyclic m−cocycle on the pair (C∞c (H(F ,Z), E), h).

Exactly as in the case where Γ is compact, we have the important example

represented by the transverse fundamental class. Precisely

Corollary 4.1.11. Let (M,F ,Z) be a transversely oriented codimension q foli-

ated Z−manifold and let Q a Z−invariant horizontal distribution. Assume that

h acts on Q as an orientation-preserving bundle morphism.

Then the corresponding transverse fundamental cyclic cocycle τ of the algebra

(C∞c (H(F ,Z), E)) is the evaluation at e ∈ Γ of a twisted cyclic cocycle ϕhC of

the pair (C∞c (H(F ,Z), E), h).
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It is interesting to define twisted cyclic cocycles as above, in order to be able

to treat the following situation. Let us assume that there exists a compact Lie

group W such that

• Γ is a dense subgroup of W ;

• W acts only as foliation-preserving diffeomorphisms extending the action

of Γ, i.e. there is an action α : W → Diff(M,F) extending that of Γ.

In this case, we have a foliated Γ−manifold, but not a foliated W−manifold,

since by definition the group needs to act by leaf-preserving diffeomorphisms.

However we can average over the group W with respect to its Haar measure, in

order to get the existence for instance of W−invariant one-densities on M and

invariant horizontal distribution complementary to the foliation.

Hence, taking h ∈ Γ and considering (M,F ,Z), with Z generated by h, all the

required assumptions in Proposition 4.1.10 are satisfied and we get h−twisted

cyclic cocycles ϕhC .

Now, we may restrict ϕhC to the holonomy groupoid H(F) getting the twisted

cyclic cocycle ϕhC . Applying Theorem 3.5.4, we get a map

〈·, ϕhC〉h : KW
0 (C∞c (H(F), E))→ C

that descends to the module of fractions KW
0 (C∞c (H(F), E))I[h]

. Hence, we set

in this case the following definition

Definition 4.4. The ϕhC−Lefschetz number of [h] with respect to aW−invariant

elliptic operator D is the number

LϕhC ([h], D) = 〈L∞([h], D), ϕhC〉I[h]
. (4.34)

Thus we could define higher Lefschetz numbers as in the equivariant case,

using the pairing between equivariant K−theory of the convolution algebra of

the holonomy groupoid and its twisted cyclic cohomology.

4.2 The equivariant Godbillon-Vey cyclic class

This section is devoted to studying the Godbillon-Vey class for a transversely

oriented codimension 1 foliated manifold. More comprehensive introductions

are at the beginning of each subsection.

4.2.1 The Godbillon-Vey class: classical definition

We are going to introduce the Godbillon-Vey class for any transversely oriented

foliated manifold (V,F) of codimension 1 and present some of its basic features.

Let (M,F) be a transversely oriented foliated manifold of codimension 1. Let

F = T (F) ⊆ TM denote the tangent bundle to the foliation and let ν = TM/F

be the normal bundle to the foliation. Recall that a foliation is transversely

oriented if its normal bundle is oriented.
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In this case and since the foliation has codimension 1, there exists a 1-form

ω ∈ Ω1(M) which defines the foliation, i.e. it is nonsingular and

Ker(ω) := {w ∈ TxM : ωx(w) = 0} = F (4.35)

Let us consider the annihilator I∗(F ) defined by integrability of the vector

bundle F, see 1.1.2. Since I∗(F ) is a differential graded ideal of Ω∗(M) and

clearly ω ∈ I1(F ), it follows dω ∈ I2(F ). Now, it is not very difficult to see that,

in our case, I∗(F ) is actually a principal differential graded ideal of Ω∗(M)

generated by ω. Therefore it exists η ∈ Ω1(M) so that

dω = η ∧ ω (4.36)

Moreover

0 = d2ω = d(η ∧ ω) = dη ∧ ω (4.37)

and, since ω is nonsingular, there is α ∈ Ω1(M)

dη = α ∧ ω. (4.38)

From these computations it follows easily that the differential form η ∧ dη is a

closed 3-form of M. Indeed

d(η ∧ dη) = dη ∧ dη = α ∧ ω ∧ α ∧ ω = 0 (4.39)

Definition 4.5. The 3-dimensional cohomology class

GV (F) = [η ∧ dη] ∈ H3(M ;R) (4.40)

is called the Godbillon-Vey class of the transversely oriented codimension 1

foliation (M,F).

The choice of ω and η, in the construction of GV (F), is of course not unique;

thus it might happen that the Godbillon-Vey class does depend also on the choice

of these differential forms. However it does not as the following lemma states.

Lemma 4.2.1. The Godbillon-Vey class GV (F) is independent upon the choice

of the 1-forms ω and η, used in its definition. Hence it is an invariant of the

foliated manifold (M,F).

Proof. The proof is an easy computation. See for instance [17], pag. 250.

The first surprising feature of the Godbillon-Vey class GV (F), coming out

directly from its construction, is that it is a 3−dimensional cohomology class,

although it is constructed from the 1-dimensional normal bundle ν of the folia-

tion. Therefore it can not be a characteristic class of ν.

In fact GV (F) is the first nontrivial example of exotic characteristic classes of

the foliation (M,F) (we refer to [12] for a nice and detailed introdution into the

theory of these classes).

There exist indeed many examples of transversely oriented codimension 1 foli-

ations for which the Godbillon-Vey class is not zero. The simplest example is
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perhaps that due to Roussarie, which we now briefly describe. For details, we

refer to [11], pag. 39-40.

Let Σg be a closed Riemann surface with genus g > 1. Then its universal cov-

ering is the hyperbolic plane H2 and its fundamental group Γ = π1(Σg) is

a Fuchsian group, acting on H2 by Moebius transformations. Letting now Γ

act on ∂H2 = S1 by Moebius transformations as well, one obtains a foliated

bundle (H2×ΓS
1,F , p), as shown in Example 1.3. This foliated bundle is trans-

versely orientable and, once a transverse orientation is chosen, one can show that

〈GV (F), [H2×Γ S
1]〉 = 4π(1− g), which shows that GV (F) ∈ H3(H2×Γ S

1,R)

is nontrivial. Here [H2 ×Γ S
1] ∈ H3(H2 ×Γ S

1,R) is the fundamental class of

H2×Γ S
1. For the details of this construction and further comments we refer to

[11] and [12].

Moreover, among the examples of foliated manifolds whose Godbillon-Vey class

is non trivial, there is the family {Ft}t∈R of transversely oriented codimension 1

foliations on the 3−sphere due to Thurston [43]. He showed that 〈GV (Ft), [S3]〉 =

t for any t ∈ R. This proves in particular that there exist foliations whose

Godbillon-Vey class has not integral coefficients.

The previous definition of the Godbillon-Vey class as GV (F) = [η ∧ dη] ∈
H3(M,R) relies on the Frobenius theorem.

In some cases, however, it is useful to have at the level of forms other represen-

tatives for GV (F). For S1-foliated bundles Moriyoshi and Natsume [41] found

another 3−form, representing the Godbillon-vey class. This form appears in

their index formula for the Godbillon-Vey higher index of a leafwise Dirac op-

erator D = (DL)L∈M/F on a spin foliation (see again [41]).

The definition of the Godbillon-Vey class does not give any hint about its

geometric or dynamical meaning. However, it is nowadays very well known that

this class has profound connections both with the geometry and the dynamical

properties of the foliation. To illustrate briefly this point, let us mention the

two following very deep results.

Theorem 4.2.2. (Duminy) Let F be a transversely oriented codimension 1

foliation of a closed manifold M. If GV (F) 6= 0, then there is an open saturated

set of M consisting of leaves with exponential growth.

A detailed proof of this result and further insights in this circle of ideas can

be found in [12], Chapter 7.

Theorem 4.2.3. (Hurder and Katok) ([33]) Let F be a transversely oriented

codimension 1 foliation of a closed manifold M. If GV (F) 6= 0, then the von

Neumann algebraM(M,F) of the foliation has a nontrivial type III component.

If F is ergodic, then M(M,F) is a type III factor.
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4.2.2 The Godbillon-Vey class: the Moriyoshi-Natsume’

cyclic cocycle

In this section we will construct the so-called Godbillon-Vey cyclic cocycle as

done in [41]. Since they deal with foliated bundles (M̃ ×H T,F , π), in this sec-

tion we will focus on this particular class of foliations. Moreover, we will assume

that the foliated bundle is of codimension 1 and that all manifolds involved are

oriented with the H−actions on them preserving the respective orientation.

Thus, consider a foliated bundle (M̃ ×H S1,F , π), as defined in Example 1.3,

where S1 denotes the 1−dimensional sphere. We set V = M̃ ×H S1. Since we

are assuming the manifold M̃ to be oriented, the foliation is naturally oriented.

Furthermore, since the action of H on S1 consists of orientation-preserving dif-

feomorphisms, it can be checked that the foliation is also transversely oriented.

Recall that if the action of the discrete group H on S1 is locally free 1, then there

exists a Lie groupoid isomorphism between the holonomy groupoid H(V,F) of

(V,F , π) and its monodromy groupoid Π(V,F) = (M̃ × M̃ × S1)/H. In partic-

ular, H(V,F) is Hausdorff.

Through this section we will always assume the H−action on S1 to be locally

free.

Following [41], we will use the pseudodifferential calculus introduced in Section

2.3.

The Godbillon-Vey cyclic cocycle is the result of the interplay between the trans-

verse orientation of the foliation and the action of the modular automorphism

group on the foliation C∗−algebra C∗(V,F). Let us introduce the latter.

Recall that S1 is a complete transversal to the foliation and that H(V,F)S1 =

{γ ∈ H(V,F)|s(γ) ∈ S1} ∼= M̃ × S1 (see [41] for details). Now, let ω̃M̃ be a

H−invariant volume form on M̃, ΩM̃×S1 a H−invariant volume form on M̃×S1

corresponding to the orientation on V. Furthermore, let us fix once and for all

a volume form on S1 which will be denoted by dt. Notice that it is impossible

in general to choose dt to be H−invariant.

There exists a smooth nowhere vanishing function ψ on M̃ × S1 defined by

ω̃M̃ ∧ dt = ψΩM̃×S1 (4.41)

The function ψ is called a modular function of the holonomy groupoid.

Remark 4.13. It should be noticed that ψ is not compactly supported nor

Γ−invariant. In fact, it holds that

g(ψ) = µ(g)ψ ∀g ∈ H (4.42)

where µ(g) is a positive smooth function on S1 defined by

g · dt = µ(g)dt ∀g ∈ H (4.43)

It can be shown that µ(g) is 1−cocycle on H with values in C∞(S1).

1i.e. if for g ∈ H, if there is an open set U ⊆ S1 such that x · g = x, for all x ∈ U, then

g = e.
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The modular function ψ generates a 1−parameter group of operators {∆it}t∈R
of C∞c (M̃×S1, Ẽ). Indeed, if Ẽ is a H−equivariant Hermitian vector bundle over

M̃×S1, the operator ∆it is defined by ∆it(ξ) = ψ−itξ and sends C∞c (M̃×S1, Ẽ)

to itself.

One gets the following

Proposition 4.2.4. 1. If P ∈ Ψl
H(Ẽ), then ∆itP∆−it ∈ Ψl

H(Ẽ) for every

l ∈ Z.

2. The operator ∆it extends to an intertwining bounded operator on L2
τ (Ẽ).

3. For all A ∈ C∗(V,F , E) then ∆itA∆−it ∈ C∗(V,F , E). This defines an

automorphism of C∗(V,F , E).

4. Setting σt(A) := ∆itA∆−it for any A ∈ C∗(V,F , E) the family of auto-

morphisms σt is a one-parameter group of automorphisms that leaves the

smooth subalgebra C∞c (H(F), E) invariant.

For a detailed proof of these results we refer to [41].

Observe that the one-parameter group of automorphisms (σt)t∈R on C∗(V,F , E)

defines a R−action on the smooth convolution algebra of the foliation.

To construct the Godbillon-Vey cyclic cocycle we just take advantage of this

action. The methods used will actually lead to a family of new cyclic cocycles

parametrized by closed 1−dimensional Haefliger currents.

For the moment, we assume the bundle E trivial of rank one.

Since the foliation is oriented, we can consider the transverse differential calculus

on the holonomy groupoid as defined in Remark 4.2. More precisely, we consider

the graded algebra Ω∗ = C∞c (H(F),Λ∗t∗(ν∗)), where ν denotes the complex-

ification of the normal bundle of the foliation. Moreover, as (complexified)

horizontal distribution Q we choose the vector bundle Tvert,CV = ker(dπ)⊗C,
i.e. the complexification of the vertical tangent bundle along the fibers of π. We

denote by dvert the corresponding transverse derivation on Ω∗.

In the case of a transversely oriented codimension 1 foliation, any horizontal

distribution is integrable and therefore (Ω∗, dvert) is a differential graded alge-

bra, i.e. d2
vert = 0.

Now, we know that the one-parameter group (σt)t∈R acts on Ω0 = C∞c (H(F)).

The infinitesimal generator δ of (σt)t∈R defines an unbounded derivation on

C∗(V,F), whose domain contains C∞c (H(F)). This derivation, denoted again

by δ, is explicitly given by

δ(K) = [φ,K] = φK −Kφ K ∈ C∞c (H(F)) (4.44)

where φ = logψ, i.e. it is the logarithm of the modular function ψ.

The commutator can be interpreted in two equivalent ways. First, we can think

of K as a compactly smoothing operator through the isomorphism C∞c (H(F)) ∼=
Ψ−∞H (C) and φ is regarded as a multiplication operator from C∞c (M̃ × S1) to

itself. Then the commutator [φ,K] is the usual commutator of operators. It

can checked that it represents a compactly smoothing operator of the foliated
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bundle (see Proposition 4.9 of [41]).

Equivalently, [φ,K] can be viewed as a compactly supported smooth function on

the holonomy groupoid H(F). Indeed, [φ,K] is a smooth function on M̃×M̃×S1

such that

[φ,K](m,n, x) = (φK −Kφ)(m,n, x) = φ(m,x)K(m,n, x)−K(m,n, x)φ(n, x)

(4.45)

for all (m,n, x) ∈ M̃ × M̃ ×S1. 2 Moreover it is H−invariant (see again Propo-

sition 4.9 of [41]). Thus it yields a smooth function on H(F).

In this way, we have defined a derivation

δ : C∞c (H(F))→ C∞c (H(F)) k 7→ [φ, k]. (4.46)

Recall that the space C∞c (H(F)) is a locally convex vector space carrying its

natural LF-topology.

Lemma 4.2.5. The derivation δ is a continuous operator with respect to the

LF-topology on C∞c (H(F)).

Proof. This lemma is a special case of Lemma 4.2.22 below.

To proceed further, recall that as horizontal distribution we have chosen

Q = Tvert,CV. Notice that its pullback q∗(Tvert,CV ) on M̃×S1 under the quotient

map q : M̃ × S1 → V is isomorphic to M̃ × TCS1. The latter is of course the

vertical tangent bundle of the bundle M̃ × S1 → M̃. With respect to it the de

Rham differential d on M̃ × S1 splits as

d = dM̃ + (−1)ndS1

where dM̃ and dS1 are respectively the exterior derivatives in the direction of

M̃ and of S1.

Remark 4.14. It can be shown that the transverse derivation dvert on V corre-

sponds to dS1 under the quotient map M̃ ×S1 q−→ V, i.e. q∗(dvertk) = dS1(q∗k),

for any k ∈ C∞(V ).

In the following to simplify the notation, the space of compactly supported

smooth sections of q∗(T ∗vert,CV ) = M̃ × T ∗CS
1 will be denoted by C∞c (M̃ ×

S1, T ∗CS
1).

Consider the transverse derivation of φ = logψ,

dS1φ ∈ C∞(M̃ × S1, T ∗CS
1)

and think of it as a multiplication operator

dS1φ : C∞c (M̃ × S1)→ C∞c (M̃ × S1, T ∗CS
1) (4.47)

2This can be checked by analyzing the Schwartz kernels of the families of operators φK

and Kφ.
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by taking into account the C∞c (M̃×S1)−module structure of C∞c (M̃×S1, T ∗CS
1).

Let K ∈ C∞c (H(F)) ∼= Ψ−∞H (C). Then the composition

dS1φ ◦K : C∞c (M̃ × S1)→ C∞c (M̃ × S1, T ∗CS
1). (4.48)

makes sense. To define the composition K ◦ dS1φ we observe that

Lemma 4.2.6. There exists an algebra isomorphism

Θ : Ψ−∞H (C)→ Ψ−∞H (T ∗CS
1) (4.49)

induced by the chosen transverse volume form dt ∈ C∞(M̃ × S1, T ∗CS
1).

Proof. Since dt is a nowhere vanishing transverse form, any section ξ ∈ C∞c (M̃×
S1, T ∗CS

1) can be written as ξ = fdt. With this notation the action of g ∈ H on

ξ is expressed by the formula

g · ξ = g · (fdt) = (g · f)(g · dt) = µ(g)(g · f)dt.

Now, on the trivial bundle (M̃ × S1)× C over M̃ × C define a H−action by

C(m′,t) 3 (m′, t, v) 7→ (m′g, tg, µ(g)−1(t)v) ∈ C(m′g,tg) g ∈ H

Denote the corresponding H−equivariant bundle by C̃.
Then the corresponding action on a section σ ∈ C∞c (M̃ × S1, C̃) is

(g · σ)(m′, t) = µ(g)(t)σ(m′g, tg) ∀(m′, t) ∈ M̃ × S1

and we get the H−equivariant isomorphism

j : C∞c (M̃ × S1, C̃)→ C∞c (M̃ × S1, T ∗CS
1). (4.50)

defined by

f 7→ fdt.

Hence, for any P ∈ Ψ−∞H (C̃) we can define P ′ ∈ Ψ−∞H (T ∗CS
1) by setting P ′ =

jPj−1. This correspondence defines an algebra isomorphism between Ψ−∞H (C̃)

and Ψ−∞H (T ∗CS
1).

Moreover, as proved in [41], there is a natural isomorphism i from Ψ−∞H (C) onto

Ψ−∞H (C̃). Composing these two bijections, we get the desired isomorphism.

Thus, unless otherwise specified, we can identify Ψ−∞H (C) with Ψ−∞H (T ∗CS
1).

Remark 4.15. Passing to Schwartz kernels, by Lemma 4.2.6 we get an algebra

isomorphism C∞c (H(F))
∼=−→ C∞c (H(F), END(T ∗vert,CV )), which is more explic-

itly determined as follows.

Consider the transverse volume form dt ∈ C∞c (M̃ × S1, T ∗CS
1) and the cor-

responding section X ∈ C∞c (M̃ × S1, TCS
1) such that dt(X) ≡ 1. If K =

(Kt)t∈S1 ∈ Ψ−∞H (C) and ξ = fdt ∈ C∞c (M̃ × S1, T ∗CS
1), then

Θ(K)(fdt) = (K(f))dt. (4.51)
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If we forget for a moment the H−invariance of the family of operators K =

(Kt)t∈S1 , then its Schwartz kernel is a smooth function k ∈ C∞(M̃ × M̃ × S1)

and the isomorphism Θ sends

k 7→ k(ŝ∗(X)⊗ t̂∗(dt)) ∈ C∞(M̃ × M̃ × S1, ŝ∗(TCS
1)⊗ t̂∗(T ∗CS1)), (4.52)

where ŝ(m,n, t) = (n, t) is the source map of the groupoid M̃ × M̃ × S1 and

t̂(m,n, t) = (m, t) its target map.

By definition (ŝ∗(X) ⊗ t̂∗(dt)) ∈ C∞(M̃ × M̃ × S1, ŝ∗(TCS
1) ⊗ t̂∗(T ∗CS1)) is a

nowhere vanishing section and it is easily seen to be H−invariant. Hence, since

k ∈ C∞(M̃ × M̃ × S1) is H−invariant, then k(ŝ∗(X)⊗ t̂∗(dt)) is so as well.

In other words, since (ŝ∗(X) ⊗ t̂∗(dt)) is H−invariant, it descends to a section

µ ∈ C∞(H(F), END(T ∗vert,CV )) and for all k ∈ C∞c (H(F)), one has Θ(k) =

kµ ∈ C∞c (H(F), END(T ∗vert,CV )).

The lemma above make possible to define the commutator

[dS1φ,K] = dS1φ ◦K −K ◦ dS1φ K ∈ C∞c (H(F)) (4.53)

Lemma 4.2.7. One has [dS1φ,K] ∈ C∞c (H(F), t∗(T ∗vert,CV )).

Proof. To show the claim, let us first think in terms of operators. Thus, let us

take K ∈ Ψ−∞H (C). Since dS1φ ∈ C∞(M̃×S1, T ∗CS
1), the operators dS1φ◦K and

K ◦ dS1φ are families of smoothing operators from C∞c (M̃ × S1) to C∞c (M̃ ×
S1, T ∗CS

1) with H−compact support. Then, we have only to check that the

commutator [dS1φ,K] is H−invariant.

Using the transverse volume form dt on M̃ × S1, we can write dS1φ = αdt. For

g ∈ H one has that

g(dS1φ) = g(αdt) = µ(g)g(α)dt =

dS1g(φ) = dS1(φ+ log µ(g)) = (α+ ρ(g))dt,

where ρ(g)dt = dS1 logµ(g) is a smooth function constant along M̃x, for all

x ∈ S1. Therefore, µ(g)g(α) = α+ ρ(g).

Then

g(dS1φ ◦K −K ◦ dS1) = g(dS1φ)gK − g(KdS1φ) =

= g(dS1φ)Kg −Kg(dS1φ)g = (g(αdt)K −Kg(αdt)) g =

= (µ(g)g(α)Kdt−K(µ(g)g(α))dt) g = ((α+ ρ(g))Kdt−K(α+ ρ(g))dt) g.

Now, since ρ(g) is constant along M̃x it commutes with K and hence we obtain

((α+ ρ(g))Kdt−K(α+ ρ(g))dt) g = ((αdt)K −K(αdt)) g =

= (dS1φ ◦K −K ◦ dS1φ)g.

Thus, [dS1φ,K] ∈ Ψ−∞H (C, T ∗CS1). Finally, using the isomorphism given by pass-

ing to Schwartz kernels

Φ : Ψ−∞H (C, T ∗CS1) ∼= C∞c (H(F), t∗(T ∗vert,CV )) (4.54)

we get a smooth section in the chosen horizontal distribution, proving the

lemma.
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According to the above lemma, we have the map

[dS1φ, ·] : C∞c (H(F))→ C∞c (H(F), t∗(T ∗vert,CV )) (4.55)

Notice that the space C∞c (H(F), t∗(Tvert,CV )) is a bimodule over C∞c (H(F)),

with bimodule-structure given by the graded product of Ω∗, i.e. by convolution.

On the other side, Ψ−∞H (C, T ∗CS1) has also a well-defined bimodule structure

over C∞c (H(F)) ∼= Ψ−∞H (C), defined through the isomorphism 4.2.6.

Lemma 4.2.8. The linear isomorphism

Φ : Ψ−∞H (C, T ∗CS1) ∼= C∞c (H(F), t∗(T ∗vert,CV ))

defined by associating to each operator P its corresponding Schwartz kernel p,

is an isomorphism of bimodules.

Proof. The right action of C∞c (H(F)) ∼= Ψ−∞H (C) on Ψ−∞H (C, T ∗CS1) is de-

fined to be the composition P ◦ K ∈ Ψ−∞H (C, T ∗CS1) for every element P ∈
Ψ−∞H (C, T ∗CS1) and K ∈ Ψ−∞H (C). By passing to the Schwartz kernels p ∈
C∞c (H(F), t∗(T ∗vert,CV )) and k ∈ C∞c (H(F)) of, respectively, P and K we

have that composition of operators coincides with the convolution p ∗ k ∈
C∞c (H(F), t∗(T ∗vert,CV )), which is exactly the right action of C∞c (H(F)) on

C∞c (H(F), t∗(T ∗vert,CV )).

Hence, we get that Φ is a morphism of right C∞c (H(F))−modules.

To show that it preserves the left actions as well, we argue in the following way.

By definition, the left action of an element K ∈ Ψ−∞H (C) on P ∈ Ψ−∞H (C, T ∗CS1)

is given by

K · P = Θ(K) ◦ P.

In terms of the Schwartz kernels k and p of K and P, respectively, we deduce

from Remark 4.15 that the above formula takes the form

k · p(γ) =

∫
H(F)t(γ)

k(γ1)µ(γ1)p(γ−1
1 γ)dγ1

for all γ ∈ H(F).

On the other side, recall from Section 4.1.2 that the left action of C∞c (H(F))

on C∞c (H(F), t∗(T ∗vert,CV )) is defined by means of the holonomy action through

the formula (we have slightly changed notation but the meaning is the same)

k · p(γ) =

∫
H(F)t(γ)

k(γ1)λ(γ1)p(γ−1
1 γ)dγ1.

Notice that the holonomy action λ on the normal bundle can be viewed as a

section λ ∈ C∞(H(F), END(T ∗vert,CV )) such that λ(γ1γ2) = λ(γ1)λ(γ2) for all

γ1, γ2 ∈ H(F).

Hence, if we prove that µ = λ, then the left actions will coincide.

Now, since both λ and µ belong to C∞(H(F), END(T ∗vert,CV )) we can consider

the liftings λ̂ of λ and (ŝ∗(X) ⊗ t̂∗(dt)) of µ on the space of smooth sections

C∞(M̃ × M̃ × S1, ŝ∗(TCS
1)⊗ t̂∗(T ∗CS1)).
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It is not difficult to see that λ̂ is exactly the holonomy action on the bundle

M̃ × T ∗CS
1 over M̃ × S1. Moreover, since the transverse volume form dt is

constant along the leaves M̃t of the trivial foliation F0 = (M̃t)t∈S1 on M̃ × S1,

we deduce that it is holonomy-invariant. Since dt vanishes nowhere and it is in

each point (m, t) ∈ M̃×S1 a base of the fiber (M̃×T ∗CS1))(m,t), one deduces that

λ̂ = (ŝ∗(X)⊗ t̂∗(dt)), which in turn implies the equality λ = µ. This concludes

the proof.

Thus we get

Proposition 4.2.9. The commutator

[dS1φ, ·] : C∞c (H(F))→ C∞c (H(F), t∗(Tvert,CV ))

defines a bimodule derivation, that is continuous with respect to the LF-topologies

on C∞c (H(F)) and on C∞c (H(F), t∗(Tvert,CV )).

Proof. The fact that [dS1φ, ·] defines a bimodule derivation follows directly from

the discussion above. For the continuity we refer to Corollary 4.2.25.

In what follows, we will denote the derivation [dS1φ, ·] by δ1.

There is also a linear map δ′ defined on the bimodule C∞c (H(F), t∗(T ∗vert,CV ))

which is important to consider. It is defined as follows. Using the isomorphism

4.54 and the multiplication operator ∆it on both the trivial bundle (M̃×S1)×C
and on M̃ × T ∗CS1, one has

Lemma 4.2.10. There is a one-parameter group (σ̃t)t∈R of automorphisms of

Ψ−∞H (C, T ∗CS1), that is given by

σ̃t(P ) = ∆itP∆−it (4.56)

for any P ∈ Ψ−∞H (C, T ∗CS1).

Proof. The only thing to prove is that ∆itP∆−it is H−invariant. But this

follows from a straightforward computation.

The linear map δ′ is now defined to be the infinitesimal generator of the

one-parameter group (σ̃t)t∈R. Hence using the isomorphism 4.54

δ′(P ) = [φ, P ] P ∈ C∞c (H(F), t∗(T ∗vert,CV )), (4.57)

where φ = logψ. This map is continuous with respect to the LF-topology on

C∞c (H(F), t∗(T ∗vert,CV )).

The importance of introducing the map δ′ relies on the following result.

Lemma 4.2.11. For every K ∈ C∞c (H(F)), δ1(δ(K)) = δ′(δ1(K)).

Proof. It is a direct consequence of the definitions and of the Jacobi identity.
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Remark 4.16. Summarizing, we have constructed two derivations on Ω∗. The

first one is the derivation δ0
Ω of degree 0 defined on Ω0 by

δ0
Ω(k) = δ(k) = [φ, k] = φk − kφ k ∈ Ω0

and on Ω1 by

δ0
Ω(p) = δ′(p) p ∈ Ω1

The other one is the derivation δ1
Ω of degree 1 on Ω∗ given by the formula

δ1
Ω(k) = δ1(k) = [dS1φ, k]

for k ∈ Ω0, and δ1
Ω(p) = 0, for p ∈ Ω1.

Now, on the graded algebra Ω∗ we have natural graded traces
∫
C

for any

closed holonomy-invariant current C ∈ C∗(TrF) (see Lemma 4.1.3).

In particular, any closed C ∈ C1(TrF) defines a so-called trace map∫
C

: C∞c (H(F), t∗(T ∗vert,CV ))→ C

such that ∫
C

(k0k1) =

∫
C

(k1k0) for ki ∈ Ωi.

Lemma 4.2.12. 1. One has ∫
C

δ1
Ω = 0

for all closed C ∈ C1(TrF).

2. Similarly ∫
C

δ0
Ω = 0

for all closed C ∈ C1(TrF).

Proof. 1). It suffices to show that
∫
C
δ1 = 0. Notice first that each C ∈ C1(TrF)

induces a H−invariant current on S1, which we denote by the same symbol.

If D denotes a fundamental domain for the free H−action on M̃, one has that〈
C,

∫
F

[dS1φ, k]|V

〉
=

〈
C,

∫
D

[dS1φ, k](m,m, x)dm

〉
.

Now, for any x ∈ S1 it holds∫
D

[dS1φ, k](m,m, x)dm = 0.

which immediately implies ∫
C

δ1
Ω = 0.

2). The proof is the same as above.

Therefore, we have



4 The equivariant Godbillon-Vey cyclic class 140

Lemma 4.2.13. The following formula

τ̇C(k0, k1) =

∫
C

k0δ1(k1) (4.58)

defines a continuous cyclic 1−cocycle on Ω0 = C∞c (H(F)).

The cocycles τ̇C are closely related to the cocycles τC as given by Theorem

4.1.4. More precisely

Proposition 4.2.14. Let C ∈ C1(TrF) closed and let τC be the corresponding

cyclic 1−cocycle as defined by Theorem 4.1.4. Then the following formula holds

τ̇C(k0, k1) = lim
t→0

1

t
(τC(σt(k0), σt(k1))− τC(k0, k1)) (4.59)

where (σt)t∈R is the modular group on C∞c (H(F)).

Before proving the proposition, let us make some observation. Consider

(Ω∗, dvert) and recall that d2
vert = 0, since we are dealing with a transversely

oriented codimension 1 foliation. Thus, (Ω∗, dvert) is a DGA.

Further, since H(F) ∼= M̃×M̃×S1

H , each element k ∈ Ω0 = C∞c (H(F)) can be

thought of as a smooth H−invariant function. We shall denote the function on

H(F) and its lift on M̃ × M̃ × S1 by the same symbol.

If q : M̃ × M̃ × S1 → (M̃ × M̃ × S1)/H is the quotient map, it is immediate to

see that

q∗(t∗(Tvert,CV )) ∼= M̃ × M̃ × T ∗CS1.

This is of course the horizontal distribution complementary to the obvious foli-

ation F0 = {M̃ × M̃ × {t}}t∈S1 on M̃ × M̃ × S1. The foliation F0 corresponds

clearly to that on the holonomy groupoid under q. We shall denote dS1 the

corresponding transverse derivation on M̃ × M̃ × S1.

Given any closed C ∈ C1(TrF) the corresponding cyclic cocycle τC can be

written as

τC(k0, k1) =

〈
C,

∫
D

∫
M̃

k0(m,n, x)(dS1k1)(n,m, x)dndm,

〉
(4.60)

where D denotes a fundamental domain for the action of H on M̃, the function

k1 is regarded as H−invariant functions on M̃ × M̃ × S1, while k0 is regarded

as the corresponding unique image through the isomorphism 4.2.6. Finally we

have used the transverse derivation dS1 on M̃ × M̃ × S1.

Let us now prove Proposition 4.2.14.

Proof. Recall that the infinitesimal generator of the modular group (σt) is pre-

cisely the derivation δ on C∞c (H(F)). Now,

lim
t→0

1

t
(τC(σt(k0), σt(k1))− τC(k0, k1)) = τC(δ(k0), k1) + τC(k0, δ(k1)) =

= τC([φ, k0], k1) + τC(k0, [φ, k1]) =
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〈
C,

∫
D

∫
M̃

[φ, k0](m,n, x)(dS1k1)(n,m, x)dn+ k0(m,n, x)dS1([φ, k1])(n,m, x)dndm

〉
.

Let us study the integrand of this expression. One has

[φ, k0](m,n, x)(dS1k1)(n,m, x) + k0(m,n, x)dS1([φ, k1])(n,m, x) =

= (φk0−k0φ)(m,n, x)(dS1k1)(n,m, x) +k0(m,n, x)(dS1(φk1−k1φ))(n,m, x) =

= (φ(m,x)k0(m,n, x)− k0(m,n, x)φ(n, x))(dS1k1)(n,m, x)+

k0(m,n, x) (dS1(φ)k1 + φdS1(k1)− dS1(k1)φ− k1dS1(φ)) (n,m, x) =

= k0(m,n, x)(dS1(φ)(n, x)k1(n,m, x))− k0(m,n, x)(k1(n,m, x)dS1(φ)(m,x)) =

= k0(m,n, x)[dS1φ, k1](n,m, x).

Hence, we have obtained that〈
C,

∫
D

∫
M̃

[φ, k0](m,n, x)(dS1k1)(n,m, x)dndm+ k0(m,n, x)dS1([φ, k1])(n,m, x)dndm

〉
=

〈
C,

∫
D

∫
M̃

k0(m,n, x)[dS1φ, k1](n,m, x)dndm

〉
=

=

∫
C

k0δ1(k1).

This finishes the proof.

In other words, we have built out of the cocycles τC a new family of cyclic

cocycles τ̇C as the ”Lie derivative” of τC under the flow (σt)t∈R. A remarkable

property of the cocycles τ̇C is that they are invariant under the action of the

modular group. Indeed

Proposition 4.2.15. One has that

τ̈C(k0, k1) = lim
t→0

1

t
(τ̇C(σt(k0), σt(k1))− τ̇C(k0, k1)) = 0.

Proof. Using the properties of the derivations established above, one has

lim
t→0

1

t
(τ̇C(σt(k0), σt(k1))− τ̇C(k0, k1)) = τ̇C(δ(K0), k1) + τ̇C(k0δ(k1)) =

=

∫
C

(δ(k0)δ1(k1)) +

∫
C

(k0δ1(δ(k1))) =

=

∫
C

(δ(k0)δ1(k1)) +

∫
C

(k0δ
′(δ1(k1))) =

=

∫
C

(δ(k0)δ1(k1)) +

∫
C

(δ′(k0δ1(k1)))−
∫
C

(δ(k0)δ1(k1)) = 0.
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As already mentioned in Chapter 3, once one has a cyclic n−cocycle τ that

is invariant under the action of a one-parameter group (αt)t∈R, it is always

possible to define a cyclic (n + 1)−cocycle iD(τ), called the contraction of τ

with respect to the infinitesimal generator D of (αt)t∈R.

Its explicit definition is given in Equation 4.81 below and we refer to [17], pag.

264 for details.

In our case, to any closed holonomy-invariant current C ∈ C1(TrF) we can

associate a cyclic 2−cocycle gvC on C∞c (H(F)), namely the contraction of τ̇C
with respect to the one-parameter group (σt)t∈R.

Definition 4.6. The cyclic 2−cocycle gvC on C∞c (H(F)) associated to C ∈
C1(TrF) is called the distributional C−Godbillon-Vey cyclic cocycle of the fo-

liated bundle (M̃ ×H T,F , π).

Each C−Godbillon-Vey cyclic cocycle gvC is a continuous cyclic 2−cocycle

on C∞c (H(F)).

Recall that each H−invariant current on S1 gives rise to a holonomy invariant

current on (V,F).

Notice that if the closed holonomy-invariant current C ∈ C1(TrF) corresponds

to the measure determined by the transverse volume form dt, then the corre-

sponding Godbillon-Vey cyclic cocycle gv is the cyclic 2−cocycle constructed

in [41].

Let us now analyze the situation where the bundle E is a nontrivial bundle.

In this case, the infinitesimal generator δ of the one-parameter group (σt)t∈R
gives rise to a derivation on the algebra C∞c (H(F), E) ∼= Ψ−∞H (Ẽ).

Moreover, one considers the bimodule

Ω1
E = C∞c (H(F), END(E)⊗ t∗((Tvert,CV ))) ∼= Ψ−∞H (Ẽ, Ẽ ⊗ (M̃ × T ∗CS1))

over C∞c (H(F), E). Equivalently, the bimodule Ω1
E can be viewed as the space

of operators Ψ−∞H (Ẽ, Ẽ ⊗ (M̃ × T ∗CS1)), which is a bimodule over Ψ−∞H (Ẽ). To

define the left action one proves that there is an algebra isomorphism

Ψ−∞H (Ẽ) ∼= Ψ−∞H (Ẽ ⊗ (M̃ × T ∗CS1))

generalizing Lemma 4.2.6.

The transverse derivation dS1φ induces again a multiplication operator

dS1φ : C∞c (M̃ × S1, Ẽ)→ C∞c (M̃ × S1, Ẽ ⊗ (M̃ × T ∗CS1)) (4.61)

exactly as above and one can show that the commutator [dS1φ,K] ∈ Ω1
E , for all

K ∈ C∞c (H(F), E). This defines the bimodule derivation δ1 : Ω0
E → Ω1

E .

One also gets the linear map δ′ exactly as in the scalar case.

Finally, for any C ∈ C1(Tr(F)) one has a graded trace
∫
C

on Ω1
E , which happens

to be closed with respect to the derivation δ1 and with respect to the linear map

δ′. The proof of these results follows the same lines done in the scalar case.

Hence, with these ingredients we can define on C∞c (H(F), E) the family of

cyclic 1−cocycles τ̇C and the distributional Godbillon-Vey cyclic cocycles gvC
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parametrized by closed C ∈ C1(Tr(F)) exactly as in the scalar case.

If C is the holonomy invariant current corresponding to the transverse volume

form dt, then we obtain the Godbillon Vey cyclic cocycle gv on C∞c (H(F), E)

constructed in [41].

Remark 4.17. The only point in the scalar theory which is not easy to be

generalized to general vector bundles is Proposition 4.2.14, since in this case

(Ω0
E ,∇Q) is no longer a DGA.

4.2.3 The Godbillon-Vey class: the general case

In this paragraph we will generalize the construction of the Godbillon-Vey cyclic

cocycles done in 4.2.2 for a transversely oriented compact foliated Γ−manifold

(M,F ,Γ) of codimension 1.

For notational simplicity, in this section we will denote simply by G the twisted

holonomy groupoid H(F ,Γ) of (M,F ,Γ). Moreover, we will always assume the

group Γ to be a compact Lie group.

Let us begin first with an arbitrary not necessarily transversely oriented codi-

mension 1 compact foliated Γ−manifold with G = H(F ,Γ) as twisted holonomy

groupoid.

Let us choose once and for all a complete transversal T of (M,F), i.e. a subman-

ifold T ⊆M of dimension 1 transverse to the foliation which intersects every leaf

of F . Since the source map s of G is transverse to T, then GT = s−1(T ) ⊆ G is a

submanifold of G. We consider on GT the foliation Fs defined by the surjective

submersion s : GT → T. The leaves of Fs are therefore the connected compo-

nents of the fibers of s. Since G has discrete isotropy groups, the dimension of

Fs is equal to p = dim(Gx) = dim(F), for all x ∈ T, and its codimension is just

1 = dim(T ). In particular, one has dim(GT ) = dim(M) = p+ 1.

Now, considering the target map t restricted to GT , we get

Lemma 4.2.16. 1. The target map t : GT → M is a surjective local diffeo-

morphism. Moreover, viewed as a map between foliated manifolds

t : (GT ,Fs)→ (M,F),

it is a leafwise map. For all x ∈ T, its restriction to the fiber Gx

t : Gx → Lx

is a principal bundle onto the leaves Lx through x with structure group

Gxx.

2. The pullback foliation t∗(F) on GT induced by t coincides with the foliation

Fs.

Proof. Given any x ∈ M, by definition of the twisted holonomy groupoid the

orbit Gx of G through x is exactly the leaf Lx passing through x. Thus, the

first item follows from [39], Proposition 5.20 and Theorem 5.4.

The second item is an immediate consequence of the definition of pullback foli-

ation and of the fact that t is a leafwise map.
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Summarizing we are considering

GT
s−→ T

↓ t
M

where s and t are, respectively, the restrictions of the source and the target map

of G to GT and satisfy the properties stated in Lemma 4.2.16.

We can define a right action of the étale groupoid GTT on GT simply by right

multiplication. It is not difficult to check that this groupoid action is proper

and free and that the target map induces a diffeomorphism t : GT /G
T
T → M.

Moreover, if p : GT → GT /G
T
T is the quotient map, then one gets that t ◦ p = t.

We refer to [39], [20] and the references therein for more details and further

remarks about this and groupoid actions in general.

The étale groupoid GTT acts of course also on its space of objects T. More

precisely, if g ∈ GTT with t(g) = y the assignment

(y, g) 7→ s(g) (4.62)

defines a right action of GTT on T. This action can be equivalently described in

the following way. Recall that, being GTT étale, each element g ∈ GTT induces the

germ (hg)s(g) of a local diffeomorphism hg at s(g) defined as follows. If U ⊆ GTT
is an open neighborhood of g such that both s|U and t|U are diffeomorphisms,

one has the local diffeomorphism of T given by

hg = t|U ◦ (s|U )−1.

Then (hg)s(g) is by definition the germ at s(g) of hg. It is evident that (hg)s(g)
does only depend on g.

Given g ∈ GTT , one set

y · g = (h−1
g )t(g)(t(g))

This defines a right action of GTT on T which coincides with that given by 4.62.

The importance of viewing the GTT−action on T as being induced by the germs

(h−1
g )t(g) relies on the fact that we can induce a GTT−action on the tangent

bundle T (T ) by taking the linear isomorphisms d(h−1
g )t(g) : Tt(g)(T )→ Ts(g)(T )

for every g ∈ GTT .
With respect to the above GTT−actions, it is immediate to see that the map

s : GT → T is GTT−equivariant, i.e. s(pg) = s(p)g, for all p ∈ GT , g ∈ GTT such

that s(p) = t(g).

Now, the pull-back bundle s∗(T (T )) fits in the short exact sequence of vector

bundles over GT

0→ ker(ds)→ T (GT )
ds−→ s∗(T (T ))→ 0 (4.63)

Since the foliation Fs on GT is defined by the involutive distribution ker(ds)

it follows that s∗(T (T )) is isomorphic to the normal bundle of the foliation.

Moreover, it inherits a nontrivial action of GTT , defined by pulling back through

s the GTT−action on T (T ).
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Lemma 4.2.17. 1. There exists an action of GTT on T (GT ) and on ker(ds)

which turns the sequence 4.63 into a short exact sequence of GTT−equivariant

vector bundles and GTT−equivariant morphisms.

2. The quotient s∗(T (T ))/GTT defines a vector bundle over M isomorphic to

the normal bundle ν of the foliation F of M.

3. There exists a GTT−invariant subbundle Q ⊆ T (GT ) that is equivariantly

isomorphic to s∗(T (T )).

Proof. 1). Since GT is a proper and free GTT−manifold, any element g ∈ GTT
with s(g) = x and t(g) = y induces a diffeomorphism αg : Gy → Gx given by the

action. Hence, by taking the differential of these diffeomorphisms one gets a well-

defined action of GTT on the tangent bundle to the foliation T (Fs) = Ker(ds)

over GT .

Next, for any g ∈ GTT and p ∈ GT with s(p) = t(g), one has a local dif-

feomorphism induced by g and defined in a suitable neighborhood of p. More

precisely, take a foliated chart W ' P × V around p with V ⊆ T an open

coordinate neighborhood of s(p) ∈ T. Assume further that W and V are chosen

in such a way that there is an open set U ⊆ GTT containing g, where t|U and

s|U are both diffeomorphisms on their images and t|U (U) = V. By construction

h−1
g = (s|U ) ◦ (t|U )−1 : V → V ′, where V ′ = s|U (U).

Thus, we define ψg : W → GT as follows. For any q ∈W

ψg(q) = αg1
(q) (4.64)

where g1 ∈ U is the unique element of GTT whose target is t(g1) = s(q) = t′ ∈ V.
By construction, the image of ψg is a foliated chart W ′ ' P × V ′ around

αg(p) = pg and ψg determines a local diffeomorphism of GT which preserves

the foliation.

It is readily checked that the germ (ψg)p of ψg at p does only depend on the

p ∈ GT and g ∈ GTT , being independent from the other data needed to define it.

Now, for all p ∈ GT and g ∈ GTT with s(p) = t(g) we set

β(g) : Tp(GT )→ Tpg(GT ), β(g) = d(ψg)p. (4.65)

This defines a linear action of GTT on T (GT ) turning it into a GTT−equivariant

vector bundle over GT .

Moreover, it is a direct consequence of the definition of the diffeomorphisms ψg
that the bundle morphisms in 4.63 are GTT−equivariant, making the sequence

an exact sequence of GTT−equivariant bundles.

2). Since the action of GTT on GT is proper and free, then the linear

GTT−action on every equivariant vector bundle over GT is free and proper as

well. Thus, the quotient s∗(T (T ))/GTT is a manifold equipped with a submer-

sion π : s∗(T (T ))/GTT → M (cf. [39], Lemma 5.35). Moreover, since the target

map (that can be identified with the projection map) t : GT → M is a local

diffeomorphism, then s∗(T (T ))/GTT inherits the structure of vector bundle over
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M. We denote this bundle more simply by τ.

The same argument can be applied to the vector bundle T (GT ) and to the in-

volutive distribution ker(ds) and, using that t is also a leafwise map, we get

immediately that T (GT )/GTT
∼= TM and ker(ds)/GTT

∼= T (F).

Now, since in our case any GTT−equivariant bundle morphism induces a bun-

dle morphism between the quotient vector bundles, one has the commutative

diagram

0 → ker(ds) → T (GT ) → s∗(T (T )) → 0

↓ ↓ ↓
0 → T (F) → TM → τ → 0

(4.66)

where the vertical maps are the quotient maps and the horizontal ones in the

bottom sequence are those induced by the equivariant morphisms in the top

sequence. From this diagram, we deduce that the bottom sequence must be

also short exact. This implies that τ is isomorphic to the normal bundle ν to

the foliation (M,F).

3). Take any distribution H ⊆ TM such that H ∼= ν. Then the pullback Q =

t∗(H) determines a GTT−invariant distribution of T (GT ) which is equivariantly

isomorphic to s∗(T (T )), the isomorphism being determined by that between H

and ν.

Let us now choose a GTT−invariant horizontal distribution Q ⊆ T (GT ) as

given by point 3) of the lemma above. We know that this amounts to choose a

horizontal distribution H ⊆ TM isomorphic to ν.

Let us now suppose that (M,F ,Γ) is trasversely oriented and that the induced

action of Γ on ν consists of orientation-preserving bundle morphisms. Further-

more, we assume also that the foliation F is oriented.

We can define a transverse orientation on GT in a such way that the quotient

map Q→ H is orientation-preserving and every element g ∈ GTT acts on Q as an

orientation-preserving linear maps. This orientation induces also an orientation

on T such that the bundle morphismQ
ds−→ T (T ) becomes orientation-preserving

and GTT acts on T (T ) through orientation-preserving germs. Moreover, we can

induce a leafwise orientation on the foliation Fs of GT making the quotient map

and the GTT−action orientation-preserving.

Let us choose a volume form Ω̄ of M and consider the pullback Ω = t∗(Ω̄)

defined on GT . Since t is a local diffeomorphism, Ω is a GTT−equivariant vol-

ume form of GT . Moreover, if we take a smooth nowhere vanishing section

ω̄ ∈ C∞(M,ΛpT ∗(F)), its pullback ω = t∗(ω̄) turns out to be a GTT−equivariant

nowhere vanishing section on GT of (ker(ds))∗, since t is a leafwise map and its

restriction to any leaf is a local diffeomorphism (see Lemma 4.2.16).

Let now ρ′ be a volume form on T. It is impossible, in general, to choose this

form to be GTT−equivariant. Let us consider the section ρ of Q∗, obtained by

taking the pull-back section s∗(ρ′) ∈ C∞(GT , s
∗(T ∗(T ))) of ρ′ along s and then

identifying s∗(T ∗(T )) with Q∗.
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Since s is a surjective submersion, ρ is nowhere vanishing and, therefore, a defin-

ing 1−form for the foliation Fs on GT .

Now, let us consider the smooth positive function ψ ∈ C∞(GT ) defined as the

Radon-Nikodym derivative

ψ =
ω ∧ ρ

Ω
. (4.67)

The positive function ψ ∈ C∞(GT ) is called a modular function of the

groupoid G.

Remark 4.18. The choice of the volume form ρ′ on T determines a positive

function δ : GTT → R+ on the étale groupoid GTT defined by

δ =
s∗(ρ′)

t∗(ρ′)
. (4.68)

This in turn defines a one-parameter group (αt)t∈R of automorphisms of C∗r (GTT )

by the formula

αt(f)(γ) = δ−it(γ)f(γ) ∀f ∈ C∞c (GTT ), γ ∈ GTT . (4.69)

This one-parameter group leaves C∞c (GTT ) globally invariant. It can be proved

that (αt)t∈R is the modular group associated to the normal faithful weight nat-

urally associated to ρ′. For details about this point, we refer to [17], pag. 263

and the references therein.

The modular function ψ defined above is in general neither compactly sup-

ported nor GTT−invariant, i.e constant along the orbits. Indeed, from a straight-

forward computation it follows that ψ is related to the function δ ∈ C∞(GTT )

by the following formula

ψ(pg) = δ(g)ψ(p) (4.70)

for any p ∈ GT , g ∈ GTT such that s(p) = t(g).

By means of ψ, we will now define a one-parameter group of automorphisms of

the groupoid C∗−algebra C∗r (G,E) that leaves the smooth convolution algebra

C∞c (G,E) invariant.

Let E be a Hermitian vector bundle over M and let Ẽ = t∗(E) denote the

GTT−equivariant Hermitian vector bundle pulled back over GT . Consider the

space C∞c (GT , Ẽ). For t ∈ R define a linear operator ∆it on C∞c (GT , Ẽ) by

setting

∆it(f) = ψ−itf f ∈ C∞c (GT , Ẽ). (4.71)

It is well known that using the right GTT−action on GT , one can turn C∞c (GT , Ẽ)

into a Hilbert pre-C∗−module on C∞c (GTT ). Its completion in the norm given

by the GTT−valued scalar product gives rise to a Hilbert C∗−module denoted

by EM . For details about this construction, we refer to [30] or [20] and the

references therein.

Lemma 4.2.18. The operator ∆it extends to a bounded operator of the Hilbert

C∗−module EM such that
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1. 〈∆itξ,∆itη〉 = αt(〈ξ, η〉), ξ, η ∈ EM .

2. ∆it(ξa) = (∆it(ξ))αt(a), ξ ∈ EM , a ∈ C∗r (GTT )

3. The family (∆it)t∈R defines a one-parameter group of bounded operators

of EM .

Proof. 1). Let ξ, η ∈ C∞c (GT , Ẽ). Then using Equation 4.70 one gets, for all

γ ∈ GTT ,
〈∆it(ξ),∆it(η)〉(γ) = 〈ψ−itξ, ψ−itη〉(γ) =

=

∫
Gt(γ)

< (ψ−itξ)(p), (ψ−itη)(pγ) >Ẽ dp =

=

∫
Gt(γ)

< ψ−it(p)ξ(p), ψ−it(pγ)η(pγ) >Ẽ dp =

=

∫
Gt(γ)

ψ−it(p)δ−it(γ)ψ−it(p) < ξ(p), η(pγ) >Ẽ dp =

= δ−it(γ)

∫
Gt(γ)

< ξ(p), η(pγ) >Ẽ dp =

= δ−it(γ)(〈ξ, η〉)(γ) = αt(〈ξ, η〉)(γ).

In the above computation we have used the action of γ to identify Ẽpγ with Ẽp.

Thus the equality 1) holds on C∞c (GT , Ẽ). Moreover, this implies that

sup

{
‖∆it(ξ)‖
‖ξ‖

, ξ ∈ C∞c (GT , Ẽ), ξ 6= 0

}
=

= sup

{
‖αt(〈ξ, ξ〉)‖1/2

‖〈ξ, ξ〉‖1/2
, ξ ∈ C∞c (GT , Ẽ), ξ 6= 0

}
= 1.

Thus, ∆it extends to a bounded operator on the Banach space EM and the

equality holds on the whole EM .
2) follows from a straightforward computation and by continuity. So does 3) as

well.

In other words, Lemma 4.2.18 shows that EM endowed with the R−action

given by (∆it)t∈R becomes a R−equivariant Hilbert C∗−module on the R−algebra

C∗r (GTT ) with action defined by (αt)t∈R (cf. Remark 4.18).

Now, if L(EM ) denotes the C∗−algebra of adjuntable morphisms of EM , we have

that ∆itP∆−it ∈ L(EM ) for any P ∈ L(EM ). Setting σt(P ) = ∆itP∆−it, we

have

Proposition 4.2.19. 1. The family (σt)t∈R on L(EM ) defines a one-parameter

group of automorphisms of L(EM ).

2. One has σt(K(EM )) ⊆ K(EM ) for all t ∈ R. Therefore, (σt)t∈R restricts

to a one-parameter group of automorphisms of the C∗−algebra of compact

operators K(EM ).
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Proof. 1). The fact that ∆itP∆−it ∈ L(EM ), if P ∈ L(EM ), follows easily

from Lemma 4.2.18. In particular, the adjoint of ∆itP∆−it is just ∆itP ∗∆−it.

Moreover, it can be checked that t→ σt is strongly continuous. Hence it defines

a one-parameter group of automorphisms.

2). It holds that

∆itθξ,η∆−it = θ∆itξ,∆itη,

where ξ, η ∈ EM and θξ,η is the corresponding ”rank one” operator. This implies

immediately the second statement.

Corollary 4.2.20. The family (σt)t∈R induces a one-parameter group of auto-

morphisms of C∗r (G,E).

Proof. Since G is a foliation groupoid, the manifold GT is a (G,GTT )−Morita

equivalence and therefore C∗r (G,E) ∼= K(EM ). See [20] for details.

Any compactly smoothing operator K = (Kx)x∈M ∈ Ψ−∞c (G,E) can be

”restricted” to the complete transversal T, giving rise to a linear operator

K ′ : C∞c (GT , Ẽ)→ C∞c (GT , Ẽ),

where Ẽ = t∗(E) denotes the pullback of E over GT , such that

• K ′ is the family K|T = (Kt)t∈T ,

• K ′ is GTT−invariant,

• the distributional kernel of K ′ has GTT−compact support.

Conversely, let K ′ = (K ′t)t∈T be a GTT−invariant family of compactly smooth-

ing operators on C∞c (GT , Ẽ), with distributional kernel having GTT−compact

support. Then, using the GTT−invariance, one can extend K ′ to a G−invariant

family K = (Kx)x∈M of smoothing operators parametrized by M , defining a

unique element of Ψ−∞c (G,E).

Lemma 4.2.21. The one-parameter group (σt)t∈R preserves the dense subalge-

bra C∞c (G,E) ⊆ C∗r (G,E).

Proof. Using the isomorphism Ψ−∞c (G,E) ∼= C∞c (G,E), we need to show that

for K ∈ Ψ−∞c (G,E), then ∆itK∆−it ∈ Ψ−∞c (G,E).

Viewing K as a GTT−invariant family of operators of C∞c (GT , Ẽ), the only non

trivial point to check is the GTT−invariance of ∆itK∆−it. Let γ ∈ GTT , γ : x→ y.

Then for any ξ ∈ C∞c (Gx, Ẽ) and p ∈ Gy

Uγ(∆it
x ξ)(p) = Uγ(ψ−itξ)(p) =

= (ψ−itξ)(pγ) = ψ−it(pγ)ξ(pγ) =

= δ−it(γ)ψ−it(p)(Uγξ)(p) = δ−it(γ)(∆it
y (Uγξ))(p).

Hence using this and the invariance of K, one gets

Uγ(∆itK∆−it)x = Uγ∆it
xKx∆−itx = δ−it(γ)∆it

y (UγKx)∆−itx =
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= δ−it(γ)∆it
yKyUγ∆−itx = δ−it(γ)∆it

yKyδ
it(γ)∆−ity Uγ = (∆itK∆−it)yUγ .

This proves the lemma.

Hence, as in the special case of a foliated bundle, we get

Proposition 4.2.22. 1. The infinitesimal generator of (σt)t∈R defines an

unbounded derivation of C∗r (G,E), whose domain contains the smooth con-

volution algebra C∞c (G,E) and which is given by

δ(K) = [φ,K] K ∈ C∞c (G,E),

where φ = logψ.

2. δ determines a derivation of C∞c (G,E), i.e. for all K ∈ C∞c (G,E),

δ(K) ∈ C∞c (G,E). Moreover, this derivation is continuous with respect

to the LF-topology on C∞c (G,E).

Proof. Since (σt)t∈R defines a one-parameter group of automorphisms of the

C∗−algebra C∗r (G,E), then its infinitesimal generator defines a densely defined

operator δ that is a derivation.

Viewing K ∈ C∞c (G,E) as a GTT−invariant family of smoothing operators

parametrized by T it follows from the definition of (σt)t∈R and a straightforward

computation that δ(K) exists and it is equal to the commutator [φ,K], where

φ = logψ acts as a pointwise multiplication operator.

Next, one has that δ(C∞c (G,E)) ⊆ C∞c (G,E). More precisely, it is easy to see

that [φ,K] represents a family of smoothing operators parametrized by T. Fur-

thermore, [φ,K] is GTT−invariant. Indeed, for γ ∈ GTT , γ : x → y, notice that

Equation 4.70 implies that

φ(pγ) = log δ(γ) + φ(p), (4.72)

for every p ∈ Gy. Hence

Uγ [φ,K]x = Uγ(φKx −Kxφ) = UγφKx − UγKxφ =

= (log δ(γ) + φ)UγKx −KyUγφ = (log δ(γ) + φ)KyUγ −Ky(log δ(γ) + φ)Uγ =

= φKyUγ −KyφUγ = [φ,K]yUγ .

Thus, δ determines a derivation of C∞c (G,E).

To show that δ is continuous with respect to the LF-topology on C∞c (G,E), we

first observe that δ preserves the supports, i.e. if K ∈ C∞c (G,E) has support

contained in the compact subset C ⊂ G, then the support of δ(K) will be also

contained in C. Hence, we need to prove that for all compact subset C ⊂ G,

δ : C∞(C,E) → C∞(C,E) is continuous with respect to the Fréchet topology

on C∞(C,E). But this follows directly from the fact that δ is the commutator

with the smooth function φ.
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Thus, we have introduced the first derivation we need to define the Godbillon-

Vey cyclic cocycles.

To define the other data needed in the construction, we again use the chosen

horizontal distribution Q ⊆ T (GT ) over GT complementary to Fs. Recall that

Q determines a horizontal distribution H ⊆ TM over M through the quotient

map t : GT →M such that t∗(H) = Q.

Let E be a vector bundle over M. The space C∞c (G, s∗(E∗)⊗t∗(E⊗H∗)) carries

a natural right action of the convolution algebra C∞c (G,E) given by

(PK)(γ) =

∫
γ1γ2=γ

P (γ1)K(γ2), (4.73)

for all P ∈ C∞c (G, s∗(E∗)⊗ t∗(E ⊗H∗)),K ∈ C∞c (G,E).

Equivalently, viewing P ∈ C∞c (G, s∗(E∗) ⊗ t∗(E ⊗ H∗)) as a GTT−invariant

family of operators

(Pt)t∈T : C∞c (GT , t
∗(E))→ C∞c (GT , t

∗(E)⊗Q∗)

and K ∈ C∞c (G,E) as the corresponding GTT−invariant family (Kt)t∈T acting

on C∞c (GT , t
∗(E)), one immediately deduces that the above action is simply

the composition of these operators, i.e. PK = P ◦K = (Pt ◦Kt)t∈T .

Next, we can endow C∞c (G, s∗(E∗)⊗t∗(E⊗H∗)) with a left action of C∞c (G,E),

turning it into a C∞c (G,E)−bimodule.

Recall that END(E) denotes the bundle s∗(E∗)⊗ t∗(E) and that C∞c (G,E) =

C∞c (G,END(E)). One has

Proposition 4.2.23. 1. There exists an algebra isomorphism

ι : C∞c (G,E)→ C∞c (G,END(E ⊗H∗)) (4.74)

induced by the chosen transverse volume form ρ = s∗(ρ′) on GT .

2. Given P ∈ C∞c (G, s∗(E∗)⊗ t∗(E ⊗H∗)) and K ∈ C∞c (G,E), the formula

(KP )(γ) =

∫
γ1γ2=γ

ι(K)(γ1)P (γ2) (4.75)

determines a left action of C∞c (G,E) on C∞c (G, s∗(E∗)⊗t∗(E⊗H∗)) that

commutes with the right action defined by 4.73.

Proof. 1). Let us consider the kernel groupoid of the submersion s

GT ×T GT = {(γ1, γ2) ∈ GT ×GT |s(γ1) = s(γ2)}.

This is a groupoid over GT with target t̂ and source ŝ given, respectively, by

the first and the second projection.

The étale groupoid GTT acts diagonally on GT ×T GT and this action is clearly

free and proper. Moreover, one has the natural morphism of Lie groupoids

π : GT ×T GT → G defined by

(γ1, γ2) 7→ γ1γ
−1
2 (4.76)
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Since the transversal T is complete, the morphism π is surjective and induces

an isomorphism of Lie groupoids

π : (GT ×T GT )/GTT → G.

For a proof that (GT ×T GT )/GTT is indeed a Lie groupoid over M we refer to

[39], Lemma 5.9.

Now, let us consider the transverse volume form ρ ∈ C∞(GT , Q
∗) defined above

and the corresponding dual section r ∈ C∞(GT , Q) such that ρ(r) ≡ 1. We

define the smooth section ŝ∗(r)⊗ t̂∗(ρ) ∈ C∞(GT ×T GT , ŝ∗(Q)⊗ t̂∗(Q∗)).
By definition, this is a nowhere vanishing section of the bundle ŝ∗(Q)⊗ t̂∗(Q∗)
over GT ×T GT . Moreover, it is easy to check using 4.72 that this section is

GTT−invariant, i.e. constant along the orbits, and for all (p1, p), (p, p2) ∈ GT ×T
GT it satisfies

(ŝ∗(r)⊗ t̂∗(ρ))((p1, p)(p, p2)) = (ŝ∗(r)⊗ t̂∗(ρ))(p1, p)(ŝ
∗(r)⊗ t̂∗(ρ))(p, p2).

Hence it descends to a well-defined section µ ∈ C∞(G, s∗(H) ⊗ t∗(H∗)) which

is nowhere vanishing and satisfies µ(γ1γ2) = µ(γ1)µ(γ2), for all γ1, γ2 ∈ G with

s(γ1) = t(γ2).

Now, given any K ∈ C∞c (G,E) we set

ι(K) = K ⊗ µ ∈ C∞c (G,END(E ⊗H∗)). (4.77)

Since the bundle END(H∗) over G has rank 1, it is then immediate to see

that ι defines an algebra isomorphism between the algebras C∞c (G,E) and

C∞c (G,END(E ⊗H∗)). This concludes the proof of 1).

2). It follows from a straightforward computation, since ι is an algebra isomor-

phism.

Remark 4.19. If we view K and P as the corresponding GTT−invariant families

of operators, the definition of the left action 4.75 is nothing but the composition

of operators

KP = ι(K) ◦ P = (ι(K)t ◦ Pt)t∈T .

Important Remark 4.1. Repeating the proof of Lemma 4.2.8 one can show

that the section µ constructed in Lemma 4.2.23 coincides with the holonomy

action λ of G on the dual bundle H∗, viewed as a section λ ∈ C∞(G, s∗(H) ⊗
t∗(H∗)).

In other words, the graded vector space C∞c (G,E)⊕C∞c (G, s∗(E∗)⊗t∗(E⊗H∗)),
with graded product induced by the bi-module structure 4.75 is nothing but the

transverse differential calculus Ω∗E of the groupoid G (cf. Section 4.1.2).

Let dQ : C∞(GT ) → C∞(GT , Q
∗) be the transverse differentiation on GT

with respect to the chosen horizontal distribution Q (see Section 4.1.2) and

denote by dQφ ∈ C∞(GT , Q
∗) the transverse derivative of φ.

We can regard dQφ as a form-valued multiplication operator

dQφ : C∞c (GT , t
∗(E))→ C∞c (GT , t

∗(E)⊗Q∗).
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Now, using the algebra isomorphism ι of Lemma 4.2.23, we consider the com-

mutator

δ1(K) = [dQφ,K] = (dQφ)K − ι(K)dQφ for K ∈ C∞c (G,E) (4.78)

(K is viewed as the corresponding GTT−invariant family of smoothing operators

and then the commutator is the usual commutator of operators).

Proposition 4.2.24. δ1(K) defines an element of C∞c (G, s∗(E∗)⊗t∗(E⊗H∗)),
for all K ∈ C∞c (G,E).

Proof. We need to show that δ1(K) determines aGTT−invariant family of smooth-

ing operators parametrized on T from C∞c (GT , t
∗(E)) to C∞c (GT , t

∗(E)⊗Q∗).
Viewing K ∈ C∞c (G,E) as the corresponding family of operators, one sees im-

mediately that both operators (dQφ)K and ι(K)dQφ define families of smooth-

ing operators on T.

Thus, the only thing to show is the GTT−invariance of the family of opera-

tors [dQφ,K] = (dQφ)K − ι(K)dQφ. But, using the transverse volume form

ρ = s∗(ρ′) ∈ C∞(GT , Q
∗) and the function δ on the étale groupoid GTT defined

in Remark 4.18, this follows exactly from the same computation as that done

in Lemma 4.2.7.

Corollary 4.2.25. The map

δ1 : C∞c (G,E)→ C∞c (G, s∗(E∗)⊗ t∗(E ⊗H∗))

is a bimodule derivation, that is continuous with respect to the LF-topologies on

C∞c (G,E) and on C∞c (G, s∗(E∗)⊗ t∗(E ⊗H∗)).

Proof. The fact that δ1 is a bimodule derivation follows immediately from the

discussion above. The continuity can be proved in the same way as we have done

for the continuity of δ. In fact, we first notice that δ1 preserves the supports.

Hence, one has to show that for any compact set C ⊂ G, δ1 : C∞(C,E) →
C∞(C, s∗(E∗)⊗ t∗(E ⊗H∗)) is a continuous operator between Fréchet spaces.

But this follows directly from the fact that, by definition, δ1 is the commutator

with the smooth section dQφ.

Finally for any P ∈ C∞c (G, s∗(E∗)⊗ t∗(E ⊗H∗)), we set

δ′(P ) = [φ, P ], (4.79)

where again φ = logψ. We get the following lemma, whose proof is completely

analogous to that of Lemma 4.2.22 1).

Lemma 4.2.26. δ′ determines a continuous linear map

δ′ : C∞c (G, s∗(E∗)⊗ t∗(E ⊗H∗))→ C∞c (G, s∗(E∗)⊗ t∗(E ⊗H∗))

such that δ1(δ(K)) = δ′(δ1(K)), for all K ∈ C∞c (G,E).
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Exactly as for foliated bundles, the derivations δ, δ′ and δ1 determine two

graded derivations δ0
Ω and δ1

Ω, respectively, of degree 0 and 1 on the graded

algebra Ω∗E = C∞c (G,E)⊕ C∞c (G, s∗(E∗)⊗ t∗(E ⊗H∗)) by means of the same

formulas of Remark 4.16.

Now, from Lemma 4.1.3 we know that any closed PΓ−invariant current C ∈
C1(Tr(F ,Γ)) (for the notation see Section 4.1.1), determines a bimodule trace∫

C

: C∞c (G, s∗(E∗)⊗ t∗(E ⊗H∗))→ C,

i.e. a linear map such that ∫
C

KP =

∫
C

PK

for every K ∈ C∞c (G,E), P ∈ C∞c (G, s∗(E∗)⊗ t∗(E ⊗H∗)).
These traces happen to be closed with respect to the derivations δ0

Ω and δ1
Ω.

Lemma 4.2.27. It holds that ∫
C

δ1
Ω = 0

for every closed invariant current C ∈ C1(Tr(F ,Γ)). Similarly, we have that∫
C

δ0
Ω = 0

for all closed current C ∈ C1(Tr(F ,Γ)).

Proof. For the first claim it suffices to prove that
∫
C
δ1 = 0. Recall that for any

K ∈ C∞c (G,E) ∫
C

δ1(K) =

〈
C,

∫
F
tr([dQφ,K]|M )

〉
.

By definition of integration along the leaves (cf. 4.3) and since t : GT → M is

a local diffeomorphism, we may assume that the support of tr([dQφ,K]|M ) is

contained in a foliated chart U diffeomorphic to a foliated chart Ũ in GT . Then∫
F
tr([dQφ,K]|M ) =

∫
Ũ/Fs

tr([dQφ,K](p, p))dp = 0.

This concludes the proof of the first statement.

For the second claim, one may argue in a similar way.

As a consequence of the above results, we get the following

Proposition 4.2.28. 1. Given any closed invariant current C ∈ C1(Tr(F ,Γ)),

the bilinear functional

τ̇C(k0, k1) =

∫
C

k0δ1(k0) (4.80)

defines a continuous cyclic 1−cocycle on C∞c (G,E).
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2. The cyclic cocycle τ̇C is invariant under the R−action on C∞c (G,E) de-

fined by the one-parameter group of automorphisms (σt)t∈R.

Proof. 1). It follows from a straightforward computation that τ̇ is a cyclic

cocycle. The continuity follows from Corollary 4.2.25, Remark 4.1 and from the

proof of Theorem 4.1.4.

2). We must show that the limit

lim
t→0

1

t
(τ̇C(σt(k0), σt(k1))− τ̇C(k0, k1)) = 0.

To prove this, one proceeds in exactly the same way as we did in Proposition

4.2.15. We omit the details.

Since τ̇C is invariant under the automorphisms σt, we can define the con-

traction of τ̇C by the infinitesimal generator δ of (σt)t∈R. Explicitly this is the

continuous cyclic 2−cocycle

gvC(k0, k1, k2) = τ̇C(δ(k2)k0, k1)− τ̇C(k0δ(k1), k2) (4.81)

for all k0, k1, k2 ∈ C∞c (G,E) ( cf. [17], pag. 264).

Definition 4.7. For any closed C ∈ C1(Tr(F ,Γ)), the cyclic 2−cocycle gvC
on C∞c (G,E) is called the distributional C−Godbillon-Vey cyclic cocycle of the

foliated Γ−manifold (M,F ,Γ) and the bundle E.

If C ∈ C1(Tr(F ,Γ)) is the closed invariant current determined by the trans-

verse orientation, then the cyclic cocycle gvC is a straightforward generalization

of the cyclic cocycle constructed in [41] in the case of a foliated bundle.

We point out that all the results of this section should hold more generally for

an arbitrary foliation groupoid G integrating the foliated manifold (M,F).

4.2.4 The equivariant Godbillon-Vey cyclic cocycle

In this section we will investigate the equivariance of the cyclic cocycles gvC
introduced in the previous section.

Thus, let (M,F ,Γ) be a foliated Γ−manifold which is transversely oriented and

of codimension 1. For simplicity, we further suppose (M,F) to be longitudinally

oriented.

Next, let us assume that the induced action of Γ on the normal bundle ν of the

foliation consists of orientation-preserving diffeomorphisms.

We consider the twisted holonomy groupoid H(F ,Γ) of (M,F ,Γ). As in the

previous paragraph, for notational simplicity we will denote it simply by G.

By Theorem 1.5.7 there exists a group homomorphism σ : Γ → Bis(G), in

the group Bis(G) of global smooth bisections of G, such that for all x ∈ M

and h ∈ Γ, σh(x) is the element of G that acts as the germ of the transverse

diffeomorphism determined by h in a transverse neighborhood of x. See Chapter

1 for details.

If E is a Γ−equivariant vector bundle over M, recall that on C∞c (G,E) we
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have the action of Γ induced by that on (M,F ,Γ), determined (cf. Proposition

2.1.15) by the multipliers S(h), which are in turn determined by the bisections

σh for every h ∈ Γ. We refer to 2.1.3 for details.

Furthermore, on C∞c (G,E) we also have the R−action implemented by the

one-parameter group of automorphisms (σt)t∈R, as constructed in the previous

section.

We shall define a suitable modular function ψ of the twisted holonomy groupoid

G such that the corresponding R−action determined by ψ and Γ−action will

be compatible.

To begin with, let us choose a complete transversal submanifold T of (M,F ,Γ).

Using the bisections σh, for h ∈ Γ, we can define on the manifold GT a left

action of Γ by diffeomorphisms, setting

h · γ = σh(t(γ))γ h ∈ Γ, γ ∈ GT

Since σ is a group homomorphism, it is not difficult to check that this is indeed

an action which leaves invariant the source of the points. In other words, each

element of Γ acts on GT taking each fiber of s : GT → T to itself. Therefore,

it remains induced an action of Γ on T, which is trivial. Moreover, this action

commutes with the right action of GTT on GT and the target map t : GT → M

is equivariant with respect to it and the Γ−action on M. Hence, the diagram

0 → ker(ds) → T (GT ) → s∗(T (T )) → 0

↓ ↓ ↓
0 → T (F) → TM → ν → 0

(4.82)

consists of Γ−equivariant vector bundles and Γ−equivariant bundle morphisms,

with the horizontal sequences short exact.

Since the group Γ is compact, we can choose a Γ−invariant horizontal distribu-

tion H ⊆ TM that is equivariantly isomorphic to the normal bundle ν of the

foliation F . Then, the pull-back Q = t∗(H) ⊆ T (GT ) of H through the local

diffeomorphism t : GT → M determines a Γ−invariant horizontal distribution,

which is Γ−equivariantly isomorphic to s∗(T (T )).

Remark 4.20. With the above Γ−action on GT the operator S(h), defined in

Proposition 2.1.14, induces by restriction an operator, denoted with the same

symbol,

S(h) = (S(h)t)t∈T : L2
τ (GT , t

∗(E))→ L2
τ (GT , t

∗(E))

where S(h)t is defined by the formula 2.17 for every t ∈ T.

Now, again because the group Γ is compact, we choose a Γ−invariant volume

form Ω̂ on M. Then its pullback Ω on GT through t is also Γ−invariant, because

the target map is equivariant. Moreover, we can also choose a Γ−invariant

nowhere vanishing form ω̂F ∈ C∞(M,ΛdimFT ∗F), whose pullback ω defines a

Γ−invariant leafwise volume form, once again because t is equivariant. Finally,

take a volume form ρ′ on T and consider the corresponding section ρ = s∗(ρ′)

of Q∗, as defined in Section 4.2.3. Then, ρ is Γ−invariant, since the action of Γ
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on GT takes each fiber to itself.

Defining the modular function ψ as the Radon-Nykodim derivative

ψ =
ω ∧ ρ

Ω

we get, therefore, that ψ is a Γ−invariant modular function. We consider the

one-parameter group (σt)t∈R defined by ψ.

With these choices, we are able to state the compatibility relation between the

R−action and the Γ−action.

Lemma 4.2.29. For every h ∈ Γ and t ∈ R, it holds that

σt(S(h) ◦K) = S(h) ◦ σt(K) (4.83)

σt(K ◦ S(h)) = σt(K) ◦ S(h), (4.84)

for all K ∈ C∞c (G,E).

In particular, the R−action and the Γ−action on C∞c (G,E) commute.

Proof. We assume first that E is (equivariantly) trivial of rank 1. Given a func-

tion s ∈ C∞(GT ), the action of an element h ∈ Γ on s is given by the formula

(h · s)(υ) = s(σh−1(t(υ))υ), for all υ ∈ GT .
Now, if ξ ∈ C∞c (GT ) and for any υ ∈ GT one has

(∆it(S(h)ξ))(υ) = (ψ−it(S(h)ξ))(υ) =

= ψ−it(υ)(S(h)ξ)(υ) = ψ−it(υ)ξ(σh−1(t(υ))υ).

Since ψ is Γ−invariant, we deduce that

ψ−it(υ)ξ(σh−1(t(υ))υ) = ψ−it(σh−1(t(υ))υ)ξ(σh−1(t(υ))υ) =

= (ψ−itξ)(σh−1(t(υ))υ) = (S(h)(∆itξ))(υ).

Then, it follows that ∆it(S(h)ξ) = S(h)(∆itξ). In other words, since ξ is arbi-

trary, we have established that ∆it ◦ S(h) = S(h) ◦∆it.

Now, using the above relation let us show that σt(S(h) ◦K) = S(h) ◦ σt(K) for

all K ∈ C∞c (G).

We have

σt(S(h) ◦K) = ∆it(S(h) ◦K)∆−it = S(h) ◦ (∆itK∆−it) = S(h) ◦ σt(K).

The other formula is proved similarly.

Now, it is immediate to see that the same argument applies for any equivariant

bundle E, giving the result.

Finally, that the two actions commute follows from Proposition 2.1.15 and from

the equalities we have just proved.

The equivariance of the distributional Godbillon-Vey cyclic cocycles will fol-

low from the following result.
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Proposition 4.2.30. Let (M,F ,Γ) be a foliated Γ−manifold as considered

above. Let E be a Γ−equivariant vector bundle over M and assume to have

chosen a Γ−invariant horizontal distribution H ⊆ TM. Denote by Q ⊆ T (GT )

the pullback t∗(H) of H through the map t : GT →M.

Then, for any closed PΓ−invariant current C ∈ C1(Tr(F ,Γ)) the cyclic 1−cocycle

τ̇C on C∞c (G,E) satisfies the Relation 4.1.7, namely

τ̇C(k0, S(h) ◦ k1) = τ̇C(k0 ◦ S(h), k1),

for every k0, k1 ∈ C∞c (G,E), h ∈ Γ.

Proof. Recall that for all k0, k1 ∈ C∞c (G,E)

τ̇C(k0, k1) =

∫
C

k0δ1(k1),

where δ1(·) = [dQφ, ·].
Since Q is a Γ−invariant rank 1 distribution on GT and the function φ = logψ

is Γ−invariant, it follows that the transverse 1−form dQφ is Γ−invariant as well,

i.e. h · dQφ = dQφ, for every h ∈ Γ. Hence, we have that

S(h) ◦ ((dQφ)k) = (h · dQφ)(S(h) ◦ k) = dQφ(S(h) ◦ k),

for every k ∈ C∞c (G,E) viewed as the corresponding GTT−invariant family of

smoothing operators acting on C∞c (GT , t
∗(E)). This implies that

δ1(S(h) ◦ k) = S(h) ◦ δ1(k),

for all k ∈ C∞c (G,E). Now the conclusion follows from Proposition 4.1.6 1).

Corollary 4.2.31. With the same assumptions and the notation as in Propo-

sition 4.2.30, for any closed C ∈ C1(Tr(F ,Γ)) one has that

gvΓ
C(k0, k1, k2|h) = gvC(S(h) ◦ k0, k1, k2) (4.85)

defines an equivariant cyclic 2−cocycle on (C∞c (G,E),Γ).

Proof. This follows immediately from Proposition 4.2.30, Proposition 4.2.28 2)

and Lemma 3.3.4.

Recall that for notational simplicity G stands for the twisted holonomy

groupoid H(F ,Γ).

Definition 4.8. The equivariant cyclic cocycle gvΓ
C on (C∞c (H(F ,Γ), E),Γ)

is called the equivariant C−Godbillon-Vey cyclic cocycle of (M,F ,Γ) and the

bundle E.

Evidently, evaluating gvΓ
C at the identity e of Γ one gets the (nonequivariant)

C−Godbillon-Vey cyclic cocycle gvC .
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Remark 4.21. Arguing as in Remark 4.12, one can define an equivariant ex-

tension of gvC using Remark 1.15 of Chapter 1 and the invariance of equivariant

cyclic cohomology under equivariant Morita equivalences.

As observed in Remark 4.12, these two methods should yield the same equiv-

ariant cyclic cocycles.

Now, we are able to define the Lefschetz-Godbillon-Vey numbers. Let P ∈
Ψm
c (H(F ,Γ), E) be a Γ−invariant elliptic pseudodifferential H(F ,Γ)−operator

and let h ∈ Γ. We consider the smooth Lefschetz class L∞([h], P ) of the conju-

gacy class [h] relative to P defined by

L∞([h], P ) =
indΓ

C∞(P )

1R[Γ]
∈ KΓ

0 (C∞c (H(F ,Γ), E))[h]

where KΓ
0 (C∞c (H(F ,Γ), E))[h] is the module of fractions at the prime ideal I[h]

of R[Γ] determined by [h] (cf. 2.2.3).

Let C ∈ C1(Tr(F ,Γ)) closed and let gvΓ
C be the corresponding equivariant

Godbillon-Vey cyclic cocycle on (C∞c (H(F ,Γ), E),Γ). With the same notation

of Proposition 3.4.5, we set

Definition 4.9. The gvΓ
C−Lefschetz number, or C−Godbillon-Vey Lefschetz

number, on H(F ,Γ) of [h] with respect to the Γ−invariant elliptic operator P

is the number

LgvΓ
C

([h], P ) = 〈L∞([h], P ),gvΓ
C〉I[h]

(4.86)

Remark 4.22. Again by Proposition 3.4.5 and by the definition of L∞([h], P ),

we have that

LgvΓ
C

([h], P ) = χgvΓ
C

([h])(indΓ
C∞(P )) = χgvΓ

C
(h)(indΓ

C∞(P )). (4.87)

Thus the C−Godbillon-Vey Lefschetz number depends directly on the equivari-

ant index class.

Let nowD ∈ Ψm
c (H(F), E) be a Γ−invariant elliptic operator and L∞([h], D)

its corresponding Lefschetz class. We can restrict gvΓ
C to the holonomy groupoid

H(F).

Then we define the Godbillon-Vey-Lefschetz number on H(F) of [h] with respect

to D by

LgvΓ
C

([h], D) = 〈L∞([h], D),gvΓ
C〉I[h]

where gvΓ
C denotes the restricition of gvΓ

C to H(F).

From Proposition 3.4.4 and the discussion after it one deduces that the Lefschetz

numbers do not depend on the group Γ as far as this latter exists.

Important Remark 4.2. As we have done in 4.1.4 for the transverse funda-

mental cyclic cocycle and the other primary cocycles, we may also define twisted

Godbillon-Vey cyclic cocycles gvhC . These arise naturally if we consider the ac-

tion of just one leaf-preserving diffeomorphism f ∈ Diff(F) or, equivalently, if

we allow the group Γ to be the infinite cyclic group Z generated by f.

The procedure above permits to define such cocycles in the same way we did
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for equivariant ones (siehe Section 4.1.4).

This observation is interesting for the following reason. Suppose that f is a leaf-

preserving diffeomorphism belonging to a compact Lie group W ⊆ Diff(M,F).

Although not every element of W takes a leaf into itself, hence we do not have

W−equivariant cyclic cocyles, we still have f−twisted cyclic cocycles gvfC which

can be paired with equivariant KW
0 −theory of the holonomy groupoid, giving

rise to higher Godbillon-Vey-Lefschetz numbers also in this case.

4.3 Some examples and further developments

In this section we shall briefly outline some example and few properties of the

Lefschetz invariants introduced above. Moreover, we would like to give an infor-

mal outlook on some possible developments and applications of these invariants

and, more generally, of equivariant/twisted index theory for foliated manifolds.

Let (M,F ,Γ) be a compact foliated Γ−manifold with Γ a compact not discrete

Lie group and let H(F ,Γ) denote its twisted holonomy groupoid. Consider

a closed even dimensional invariant current C ∈ Cev(Tr(F ,Γ)) and the cor-

responding equivariant cyclic cocycle φC on (C∞c (H(F ,Γ)),Γ). Moreover, let

us take a Γ−invariant elliptic pseudodifferential H(F ,Γ)−operator P of order

m. Then the first straightforward property of higher Lefschetz numbers is the

following

Proposition 4.3.1. The φC−Lefschetz number LφC ([h], P ) is a continuous

function on Γ. Hence, if e ∈ Γ is the identity of Γ and LφC (e, P ) 6= 0, then

there exists a h ∈ Γ, h 6= e such that LφC ([h], P ) 6= 0.

Proof. We know that LφC ([h], P ) = χφC (h)(indΓ
C∞(P )). Now, Theorem 3.4.3

states that the function h 7→ χφC (h)(indΓ
C∞(P )) is a central continuous function

on Γ. This proves the first statement.

The second one is an immediate consequence of the continuity.

We have of course a parallel result for the Godbillon-Vey Lefschetz numbers.

Let (M,F ,Γ) be a codimension 1 transversely oriented foliated Γ−manifold

with Γ a compact not discrete Lie group, whose induced action on the normal

bundle preserves the orientation. Let P be a Γ−invariant elliptic operator as

above. Then

Proposition 4.3.2. The gvC−Lefschetz number LgvC ([h], P ) is a continuous

function on Γ. If e ∈ Γ is the identity element and LgvC (e, P ) 6= 0 then there

exists a h ∈ Γ such that LgvC ([h], P ) 6= 0.

Remark 4.23. It is immediate to see that the same results hold for LφC ([h], D)

and LgvΓ
C

([h], D) for D ∈ Ψ∞c (H(F), E).

We point out that in [29] it is shown that the measured Lefschetz number

depends continuously on the group. However the proof is much more involved

and requires heavy analytic tools. Let us now outline some examples.
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Example 4.2. Let M be a closed oriented manifold and let G be a Lie group

acting smoothly on M. Suppose that this action is foliated, i.e. the dimension

of the stabilizer Gx is constant, for all x ∈M. Then, the orbits of G determine

a foliation (M,F) of codimension q = dimM − dimGx. (see [39], pag. 16).

An important class of examples of foliated actions of compact Lie groups on

manifolds comes from orbifolds’ theory. More precisely, it can be shown ([39],

Section 2.4) that to any compact orbifold Q one can associate a closed manifold

M endowed with a foliated action of a compact connected Lie group G such that

the leaf space of the corresponding foliation is isomorphic to Q. Moreover, if the

orbifold is orientable, then one gets a transversely orientable foliated manifold.

We refer to [39], Section 2.4 for details.

Back to the general case, we can endow the foliated manifold (M,F) with an

action of compact Lie group whose elements act by leaf-preserving diffeomor-

phisms. Indeed, take a compact subgroup Γ of G. Since by definition the leaves

are the G−orbits, each element h ∈ Γ can be viewed as a diffeomorphism of

M that takes each leaf into itself. Hence, one obtains a foliated Γ−manifold

(M,F ,Γ).

Now, given a closed invariant even dimensional current C ∈ Cev(Tr(F ,Γ))

and a Γ−invariant elliptic pseudodifferential operator P, the Lefschetz num-

bers LφC ([h], P ) and LφC ([h], D) provide interesting invariants of the foliated

manifold and the action of Γ. In particular, it seems to be worthwhile to study

such Lefschetz-type invariants for foliations coming from orbifolds, as explained

above, in order to understand more deeply the latter objects.

Example 4.3. Let Σg be a closed Riemann surface of genus g ≥ 2 and let

Λ → H2 → Σg its universal covering. Consider the action of Λ on S1 by

Moebius transformations and define the diagonal action of Λ on the product

manifold H2 × S1. Notice that this action is free, proper and cocompact.

The foliation F0 on H2 × S1, whose leaves are given by H2 × {t}, for every

t ∈ S1, is invariant under the action of Λ. Hence it descends to a well-defined

foliation F on the quotient manifold M = H2×S1

Λ whose leaves are the images

of the leaves of F0 under the quotient map q : H2 × S1 → M. In other words,

the resulting foliated manifold (M,F) is a leafwise and transversely oriented

foliated bundle of codimension 1 (see Example 1.3, Chapter 1).

It is well known (cf. [11], Example 1.3.14 )that the Godbillon-Vey class GV (F)

of (M,F) is nontrivial.

Next, let us consider the complex projective plane CP 2 as the corresponding

oriented smooth manifold of real dimension 4. Further, we consider the oriented

manifold M × CP 2 and define the submersion π : M × CP 2 →M by

M × CP 2 3 (m, z) 7→ m. (4.88)

Since M is a foliated manifold, on M × CP 2 we may consider the pullback

foliation Fπ = π∗(F). This is a codimension 1 transversely oriented foliation,

whose leaves are given by the inverse images

π−1(L) = L× CP 2
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where L runs through the leaves of the foliation (M,F). Moreover, it is clear

that the tangent bundle T (Fπ) to the foliation Fπ has rank 6 and is isomorphic

to T (Fπ) ∼= T (F) ⊕ TCP 2. Here TCP 2 denotes the real tangent bundle of the

smooth manifold CP 2.

By the naturality property of the Godbillon-Vey class we have that

GV (Fπ) = GV (π∗(F)) = π∗(GV (F)).

Since GV (F) ∈ H3(M,R) is nontrivial, we immediately deduce that π∗(GV (F))

defines a nontrivial element in H3(M × CP 2,R). Hence (M × CP 2,Fπ) is a

foliated manifold with nontrivial Godbillon-Vey class.

Next, it can be easily shown that the L−class of the bundle T (Fπ) (cf. [36],

Section 11, Chapter III for basic definitions) is nontrivial. Indeed, the L−class

is a suitable polynomial in the Pontryagin classes of T (Fπ) and, for dimensional

reasons, the only nontrivial Pontryagin classes of T (Fπ) are p0(T (Fπ)) = 1 and

p1(T (Fπ)). By construction and by naturality of the Pontryagin classes, one has

that

p1(T (Fπ)) = π∗2(p1(TCP 2)),

where π2 : M × CP 2 → CP 2 is the projection on CP 2. Since p1(TCP 2)

is nontrivial, one deduces that p1(T (Fπ)) is nonzero and, consequently, that

L(T (Fπ)) ∈ H∗(M × CP 2,R) is a nontrivial cohomology class.

Using all these facts we get that

〈L(T (Fπ)) ∩GV (Fπ), [M × CP 2]〉 6= 0, (4.89)

where [M ×CP 2] ∈ H7(M ×CP 2,R) is the fundamental class of M ×CP 2 and

〈·, ·〉 is the pairing between cohomology and homology.

Now, recall the natural action of the compact connected Lie group U(3) on CP 2.

Hence on the foliated manifold M ×CP 2 we have an induced action of U(3) by

leaf-preserving diffeomorphisms. Indeed, for any A ∈ U(3) we define the map

ϕA : M × CP 2 →M × CP 2 by setting

ϕA(m, z) = (m,Az). (4.90)

This clearly defines a diffeomorphism that takes each leaf into itself. Thus, we

have constructed a foliated U(3)−manifold (M × CP 2,Fπ).

Since U(3) is compact, there exists a Riemannian metric on M × CP 2 with

respect to which each element of U(3) determines a leaf-preserving isometry.

Hence, using the chosen metric and orientation on M×CP 2 and since the leaves

are even dimensional, we can define the leafwise signature operator Dsign,+ =

(Dsign,+
L )L∈Fπ . This is a leafwise elliptic differential operator which is also

U(3)−invariant, since the action of U(3) consists of leaf-preserving isometries.

Hence, for every A ∈ U(3) and every closed C ∈ C1(Tr(F)) we can define the

Godbillon-Vey Lefschetz number L
gv

U(3)
C

([A], Dsign,+) of the conjugacy class [A]

of A relative to Dsign,+.

If I denotes the identity element of U(3), one has that L
gv

U(3)
C

(I,Dsign,+) is the
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Godbillon-Vey higher index indgvC (Dsign,+) of the signature operator. This

(nonequivariant) higher index has been computed (see [41], [25]) and one has

indgvC (Dsign,+) = 〈L(T (Fπ)) ∩GV (Fπ), [M × CP 2]〉.

Then, we get that L
gv

U(3)
C

(I,Dsign,+) = indgvC (Dsign,+) 6= 0 and thus we

deduce that there exists an element A ∈ U(3) such that L
gv

U(3)
C

([A], Dsign,+) 6=
0.

Therefore, Godbillon-Vey Lefschetz numbers are not always zero.

Lefschetz-type invariants are usually related to the fixed point sets of the

elements in the conjugacy class [h] of h. In particular, if a Lefschetz number of

[h] is not zero, then the fixed point set of [h] should be non empty.

For the φC−Lefschetz numbers this result is shown in [7] in the case of a compact

Lie group acting by holonomy diffeomorphisms. Recall that M [h] ⊆M denotes

the fixed point set of the conjugacy class [h] of h. Then

Theorem 4.3.3. ([7]) . Let (M,F ,Γ) be a closed foliated Γ−manifold with Γ

acting by holonomy diffeomorphisms. Let P ∈ Ψm
c (H(F), E) be a Γ−invariant

elliptic pseudodifferential operator with values in the Γ−equivariant bundle E.

If for a closed C ∈ Cev(TrF) one has that LφC ([h], P ) 6= 0, then M [h] 6= ∅.

This should, more generally, hold for any compact group acting by leaf-

preserving diffeomorphisms.

Moreover, similar results should hold for the Godbillon-Vey Lefschetz numbers,

as well.

In these cases, however, one has first to show that the equivariant cyclic cocycles

extend to a holomorphically closed Γ−equivariant subalgebra B of the foliation

Γ− C∗−algebra C∗r (H(F ,Γ), E).

The problem of extending equivariant or twisted cyclic cocycles to equivariant

holomorphically closed subalgebras B of C∗r (H(F ,Γ)) in order to get additive

map of the equivariant K−theory of the Γ−C∗−algebra C∗r (H(F ,Γ)) is a deep

problem in this theory.

For the nonequivariant cyclic cocycles τC and the Godbillon-Vey cocycles gvC
it was solved by Connes in [16]. See also [41] for gvC . In the equivariant case,

it is sketched in [7] that in the case of a compact Lie group consisting of holon-

omy diffeomorphisms the equivariant cyclic cocycles φC can be extended to a

holomorphically closed Γ−invariant subalgebra B of C∗r (H(F)).

Anyway, solving the extension problem in case of an arbitrary compact Lie

group of leaf-preserving diffeomorphisms and for both the primary equivariant

cyclic cocycles φC and the equivariant Godbillon-Vey cyclic cocycles gvΓ
C is an

important step that still has to be done, even if we think it should hold true.

Furthermore, the other fundamental problem in the theory is the computation

of the higher Lefschetz invariants.

Under a suitable transversality and regularity assumption of the fixed point sets

and in the case of a compact Lie group consisting of holonomy diffeomorphisms,

the φC−Lefschetz numbers for any closed even dimensional C ∈ Cev(Tr(F))
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have been computed in [7], Theorem 5.2 and Theorem 5.3.

The resulting cohomological formulas involve characteristic classes of the fixed

point set of the elements of the conjugacy classes [h] and are clear generaliza-

tions of the classical fixed point theorems due to Atiyah and Segal (cf. [3]).

Restricting only on measured foliations, we have also the Lefschetz theorem due

to Heitsch and Lazarov [28], that generalizes more directly the Atiyah-Bott ap-

proach to fixed point Lefschetz formulae.

We are interested in extending these formulas to general leaf-preserving diffeo-

morphisms that do not necessarily satisfy the holonomy assumption.

Moreover, it seems worthwhile to establish fixed point formulae for the Godbillon-

Vey Lefschetz numbers. In this case we expect to obtain fixed point formulae

which involve in some way the Godbillon-Vey class restricted to the fixed point

sets.

Let us now conclude with few words about possible applications.

First, it seems to be interesting to prove rigidity results for φC−Lefschetz num-

bers and Godbillon-Vey Lefschetz numbers analoguous to those proved in [28]

for measured foliations. This would permit to get more insight in the structure

of the foliated manifold itself and it would provide useful informations about its

group of leafwise diffeomorphisms.

As further application, one could use fixed point formulae to detect nontriv-

ial elements of the equivariant K−theory group of the foliation C∗−algebra

and, therefore, of the K−theory of the crossed product algebra. Indeed, in the

nonequivariant theory nontrivial elements and torsion elements of the K−theory

of the foliation C∗−algebra can be detected by applying higher index formulae.

See, for instance, [16] or [41] for interesting results in this direction.

Hence, it seems natural to use Lefschetz fixed point formulae for detecting non-

trivial elements of equivariant K−theory of the foliation C∗−algebra, in order

to shed more light on its structure. Finally, since equivariant K−theory of

the foliation C∗−algebra with respect to a compact group is isomorphic to

the K−theory of the corresponding crossed product algebra (cf. [9], Theorem

11.7.1), we would obtain, in this way, informations about the structure of the

K−theory of the crossed product algebra.
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Proof of Lemma 4.1.5

In this appendix we give a proof of the technical lemma, needed in the proof of

Theorem 4.1.4. The notation is the same as that of Section 4.1.2. Moreover, for

the sake of simplicity we assume the bundle E to be trivial and to have fixed

a smooth everywhere positive leafwise density α. Thus, we consider functions,

rather than densities, and the integrals are computed with respect to the Haar

system induced by α. Finally, we denote the groupoid H(F ,Γ) simply by G.

Recall that on the spaces Ωk, for k = 0, ..., q, we have two natural topologies

compatible with the vector space structure. The first one is the LF-topology,

which turns each Ωk into a LF-space (cf. [46], pag. 15 and the references therein,

or [10], Chapter II, Section 6). If we want to emphasize it, we will denote Ωk

endowed with this topology by the symbol ΩkLF .

The other topology is the so-called compact-open C∞ topology. For the defini-

tion of this topology, we refer to [31], Chapter 2. In this case, if Ωk carries the

compact-open C∞ topology, we shall denote it by ΩkCO.

Lemma A.0.4. Fix k ≤ q, where codimF = q, and consider the space ΩkCO.

Then, for any m−tuple (k1, k2, . . . , km) ∈ Nl such that
∑m
l=0 kl = k the multi-

linear map

Ωk1

LF × Ωk2

LF × · · · × ΩkmLF → ΩkCO

defined by the convolution

(a1, a2, . . . , am) 7→ a1 ∗ a2 ∗ · · · ∗ am

is continuous.

Proof. For the sake of simplicity, we will consider the case m = 2.

Since we are dealing with topological vector spaces, we only need to show con-

tinuity at 0. Moreover, we need to check it only for a subbasic family of neigh-

borhoods of 0 in ΩkCO
∼= C∞c (G,Λkt∗(ν∗)).

We consider a Hermitian metric on ν∗. Moreover, we take a coordinate neigh-

borhood U ⊆ G that trivializes the bundle Λkt∗(ν∗) and consider a compact

subset K ⊆ U. Further, we choose a positive integer N and a positive real num-

ber ε > 0.
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Then we consider the open neighborhood UK,N of 0 in C∞c (G,Λkt∗(ν∗))CO given

by

UK,N = {f ∈ C∞c (G,Λkt∗(ν∗))| ‖∂αf(γ)‖ < ε, for all γ ∈ K and |α| ≤ N}.

Here, ‖ · ‖ is defined through the Hermitian metric on Λkt∗(ν∗) induced by that

on ν∗ and |α| denotes the lenght of the multindex α.

For i = 1, 2, we must find open neighborhoods Vi ⊆ ΩkiLF
∼= C∞c (G,Λkit∗(ν∗))

of 0 such that for every ai ∈ Vi, the convolution a1 ∗ a2 ∈ UK,N .
To this purpose, let us take a countable compact exhaustion of G, i.e. a count-

able family K of compact subsets Kj ⊆ G such that ∅ = K0 ⊂ K1 ⊂ K̊2 ⊂
K2 ⊂ K̊3 ⊂ K3 ⊂ · · · ⊂ G.
For each i = 1, 2, we consider now a step function φi on G defined by φi(γ) = cij
for all γ ∈ Kj \ Kj−1 (recall that by definition K0 = ∅), where cij ∈ R and

cij+1 < cij , for all j > 0.

Consider the subset Vi ⊆ ΩkiLF (i = 1, 2) of all functions ai ∈ ΩkiLF such that

‖ai‖ < φi on G, together with all its derivatives up to order N.

It is easy to check that each Vi ⊆ ΩkiLF , for i = 1, 2, is an open neighborhood of

0 with respect to the LF-topology on Ωki .

Moreover, by choosing the values cij of the step functions small enough, it can

be directly checked that for all (a1, a2) ∈ V1 × V2 one gets a1 ∗ a2 ∈ UK,N .
Indeed, let a1 ∈ V1, a

2 ∈ V2 and fix γ ∈ K with s(γ) = x and t(γ) = y. One has

‖(a1 ∗ a2)(γ)‖ =

∥∥∥∥∫
Gy
a1(γ1)λ(γ1)a2(γ−1

1 γ)dαy(γ1)

∥∥∥∥ ≤
≤
∫
Gy
‖a1(γ1)‖‖λ(γ1)a2(γ−1

1 γ)‖dαy(γ1) ≤

≤
∫
Gy
‖a1(γ1)‖‖λ(γ1)‖‖a2(γ−1

1 γ)‖dαy(γ1),

where ‖λ(γ1)‖ denotes the operator norm of λ(γ1) : Λk2ν∗s(γ1) → Λk2ν∗t(γ1) given

by infinitesimal holonomy.

Since a1 and a2 have both compact support, there exists an index m ∈ N such

that the compact subset Km ∈ K contains both supports of a1 and a2. Then∫
Gy
‖a1(γ1)‖‖λ(γ1)‖‖a2(γ−1

1 γ)‖dαy(γ1) =

=

∫
Gy∩Km

‖a1(γ1)‖‖λ(γ1)‖‖a2(γ−1
1 γ)‖dαy(γ1).

Now, since by hypothesis a2 ∈ V2, there is a constant c0 indipendent of γ such

that ∫
Gy∩Km

‖a1(γ1)‖‖λ(γ1)‖‖a2(γ−1
1 γ)‖dαy(γ1) ≤

≤ c0
∫
Gy∩Km

‖a1(γ1)‖‖λ(γ1)‖dαy(γ1).
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Moreover, since the compact subsets Kj are nested into each other, one gets

that

c0

∫
Gy∩Km

‖a1(γ1)‖‖λ(γ1)‖dαy(γ1) ≤

c0

m∑
j=1

∫
Gy∩(Kj\Kj−1)

‖a1(γ1)‖‖λ(γ1)‖dαy(γ1).

Viewing the holonomy action as a smooth section λ : G→ END(ν∗), one easily

deduces that for all j ≥ 1 there exist a constant Nj such that ‖λ(γ1)‖ ≤ Nj for

all γ1 ∈ Kj \Kj−1. Moreover, by definition of the open set V1, it follows that

‖a1(γ1)‖ < c1j for every γ1 ∈ Kj \Kj−1. Then one has that

c0

m∑
j=1

∫
Gy∩(Kj\Kj−1)

‖a1(γ1)‖‖λ(γ1)‖dαy(γ1) <

< c0

m∑
j=1

Njc
1
j

∫
Gy∩(Kj\Kj−1)

dαy(γ1).

By the continuity of the Haar system dα = (dαx)x∈M with respect to x and

the fact that γ varies in the fixed compact set K, it follows immediately that

the integral
∫
Gy∩(Kj\Kj−1)

dαy(γ1) can be estimated uniformly with respect to

y = t(γ) by some constant Mj .

Hence, we get finally that

c0

m∑
j=1

Njc
1
j

∫
Gy∩(Kj\Kj−1)

dα(γ1) < c0

m∑
j=1

NjMjc
1
j .

Now, by choosing for instance c1j = ε
c0MjNj

1
2j , we immediately deduce that

c0

m∑
j=1

NjMjc
1
j <

∞∑
j=1

c0NjMjc
1
j ≤ ε.

This shows that a1 ∗a2 ∈ UK,N . A similar computation can be done to estimate

the derivatives of a1 ∗ a2 up to order N.

Since the open sets of the form UK,N generate the CO-topology, we deduce the

lemma.
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