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Chapter1Introdu
tionThe Burnside problems are among the most in�uential problems in 
ombinatorial grouptheory. The general Burnside problem asks whether a �nitely generated group in whi
hevery element has �nite order is �nite [30℄. This question was answered negatively byGolod [51℄. The �rst expli
it 
ounter-examples to the general Burnside problem were
onstru
ted by Ale²in [5℄, Grigor
huk [53℄, and Gupta & Sidki [62℄. These 
ounter-examples 
an be realized as subgroups of the automorphism group of a rooted regulartree. They are the �rst examples of so-
alled `self-similar groups'.Self-similar groups have appeared a
ross a wide range of mathemati
s, answering
lassi
al questions in in�nite group theory. For instan
e, beside being a 
ounter-exampleto the general Burnside problem, the group 
onsidered by Grigor
huk in [53℄ is the �rstexample of a group with an intermediate word growth [54℄, answering a 
lassi
al questionby Milnor [100℄. Moreover, this group was used in the 
onstru
tion of a �nitely presentedamenable group whi
h is not elementary amenable [55℄, answering a 
lassi
al questionby Day [37℄.The groups 
onsidered by Grigor
huk [53℄ and Gupta & Sidki [62℄ are not �nitelypresented [56, 96, 128℄. However, they admit re
ursive presentations whi
h are nowa-days known as �nite L-presentations [56℄ or endomorphi
 presentations [6℄. A �nite L-presentation for Grigor
huk's group was 
omputed by Lysënok [96℄. As a homage to thiswork, it was suggested in [56℄ that a re
ursive presentation similar to the one 
omputedby Lysënok [96℄ be 
alled a �nite L-presentation. This notion of a �nite L-presentationwas generalized in [6℄ as follows: a �nite L-presentation is a group presentation of theform 〈
X

∣∣∣ Q∪
⋃

σ∈Φ∗

Rσ
〉
,where X is a �nite alphabet, Q and R are �nite subsets of the free group F over thealphabet X , and Φ∗ denotes the monoid of endomorphisms of F that is generated by the�nite set Φ ⊆ End(F ). On the one hand, this notion allows one to prove that various�nitely generated self-similar groups are �nitely L-presented but do not admit a �nitepresentation [6℄. On the other hand, this notion is su�
iently general so that other



2 Chapter 1. Introdu
tionin�nitely presented groups are �nitely L-presented; e.g., the groups in [18, 26, 85℄ admit�nite L-presentations. Even though a �nite L-presentation is possibly an in�nite grouppresentation, it 
an be des
ribed in �nite terms. Thus a �nite L-presentation provides a�nite data stru
ture that allows one to de�ne in�nitely presented groups in a 
omputeralgebra system.Group presentations play an important role in 
omputational group theory. In parti
-ular �nite group presentations have been the subje
t of intensive resear
h during the lastde
ades � dating ba
k to the early days of 
omputer algebra systems [102℄. Finite L-presentations were re
ently shown to be appli
able to 
omputer algorithms as well: A �rstalgorithm for �nitely L-presented groups is the nilpotent quotient algorithm in [9,64℄. Amajor motivation for introdu
ing this algorithm was the desire to understand better thestriking patterns along the lower 
entral series of various self-similar groups [7, 10, 123℄.Beside using a �nite L-presentation to study the stru
ture of a self-similar group, itsre
ursive a
tion on the tree often allows one to use �nite approximations of this a
tionand thus to deal with �nite quotients of the group. For various self-similar groups,in
luding Grigor
huk's group from [53℄, it su�
es to 
onsider �nite approximations [8℄be
ause they have the 
ongruen
e property : every �nite index subgroup 
ontains the�xator of a level of the tree. However, there exist self-similar groups whi
h do not havethe 
ongruen
e property and thus may not be understood via �nite approximations [14℄.For these groups, a �nite L-presentation is essential in studying the stru
ture of thegroup.In this thesis, we 
on
entrate on �nite L-presentations. More pre
isely, analogouslyto the standard referen
e for 
omputing with �nitely presented groups [129℄, it is theaim of this thesis to develop methods for studying the stru
ture of a group for whi
ha �nite L-presentation is known. Be
ause every �nite presentation 
an be 
onsideredas a �nite L-presentation, most algorithmi
 problems for �nitely L-presented groups arenot de
idable � in the sense that there exists no algorithm whi
h terminates and whi
hreturns a 
orre
t answer to a given question (e.g., whether or not a group de�ned by a�nite L-presentation is �nite). In spe
ial 
ases, though, we are able to derive algorithmsfor �nitely L-presented groups. For instan
e, we develop a 
oset enumerator for �niteindex subgroups of a �nitely L-presented groups in [67℄ or Appendix C.The algorithms developed in this thesis 
an be applied by hand to obtain a solution toa given problem and they also provide expli
it solutions to some de
ision problems. More-over, our algorithms have been implemented in the 
omputer algebra system Gap [50℄.In Appendix A or [68℄, we demonstrate how detailed information on some self-similargroups 
ould be obtained with the help of our implementations.Parts of this thesis have appeared in [66, 67, 70℄. These papers are atta
hed in theAppendi
es C�E. Moreover, few parts of Appendix A were intended to be publishedin [42℄.



3An Overview of this ThesisIn the following, we give an overview of this thesis and its appendi
es. In Chapter 2, wesummarize the well-known results for �nitely presented groups and we formally introdu
ethe notion of a �nite L-presentation. Moreover, Chapter 2 
ontains �rst results for �nitely
L-presented groups as, for instan
e, obtained in [6, 9, 64℄.We then address, in Chapter 3, a �rst algorithmi
 problem for �nite L-presentations,the so-
alled group homomorphism problem: In general, a group presentation is useful tode
ide whether or not a map from the generators of the group into another group extendsto a group homomorphism; namely, if and only if all relations are mapped trivially. Thegroup homomorphism problem for a 
lass H of groups asks for an algorithm that de
ideswhether or not su
h a map extends to a group homomorphism. For �nite presentations,the group homomorphism problem is (semi-)de
idable whenever the groups in the 
lass
H have a (semi-)de
idable word problem. For �nitely L-presented groups, though, thereare possibly in�nitely many relations whi
h need to be 
onsidered. In Chapter 3, we givean expli
it solution to the group homomorphism problem for the 
lass of �nite groups.Our solution allows us to develop various algorithms for �nitely L-presented groups. Forinstan
e, the 
oset enumerator in [67℄ or Appendix C is a 
onsequen
e of our solution tothe group homomorphism problem for the 
lass of �nite groups.In Chapter 4, we generalize Tietze's theorem for �nite presentations [132℄ to �nite
L-presentations. This theorem and the transformations introdu
ed in its proof allow oneto modify a �nite L-presentation without 
hanging the isomorphism type of the group.Finally, in Chapter 5, we generalize the Knuth-Bendix 
ompletion for �nite rewritingsystems to possibly in�nite rewriting systems, the so-
alled �nitely based in�nite rewrit-ing systems. These rewriting systems are derived from a �nite L-presentation of a group.An implementation of our Knuth-Bendix 
ompletion for �nitely based in�nite rewrit-ing systems does not terminate within a reasonable amount of time for Grigor
huk'sgroup [53℄, for the Basili
a group [61℄, or even for the wreath produ
ts Z ≀ Z and Z2 ≀ Z.Therefore, our generalized Knuth-Bendix 
ompletion does not allow us to solve the wordproblem of the groups using their �nite L-presentations.The appendi
es to this thesis 
ould be summarized as follows:Investigating the S
hur Multiplier of a Finitely L-Presented GroupIt was shown in [56℄ that the group G 
onsidered by Grigor
huk in [53℄ is not �nitelypresented. The strategy in this proof is to 
onsider the S
hur multiplier of the group. Itis well-known that the S
hur multiplier is a �nitely generated abelian group whenever thegroup admits a �nite presentation. The group G is in�nitely presented be
ause its S
hurmultiplier is in�nitely generated, 2-elementary abelian [56℄. The expli
it 
al
ulationsin [56℄ use the �nite L-presentation from [96℄. Moreover, it was shown in [56℄ that the setof relations in [96℄ is minimal in the sense that no proper subset of relations is su�
ientto de�ne the group.The S
hur multiplier of a �nitely presented group is not 
omputable in general [52℄.



4 Chapter 1. Introdu
tionSin
e every �nitely presented group admits a �nite L-presentation, the S
hur multiplierof a �nitely L-presented group is not 
omputable either. Even though most algorithmi
problems are not de
idable in general, there exist various algorithms that allow one togain insight into the stru
ture of a �nitely presented group. Among the most importantalgorithms are quotient methods that 
ompute fa
tor groups of a �nitely presented groupand thus allows one to gain insight into the stru
ture of the group. Our generalization ofthe nilpotent quotient algorithm [9,64℄ in [66℄ or Appendix E follows the general idea of aquotient method: Sin
e it 
annot 
ompute the S
hur multiplier of a �nitely L-presentedgroup in general, it attempts to gain insight into its stru
ture by 
omputing su

essiveDwyer quotients. These quotients of the S
hur multiplier often exhibit a periodi
 growthin their ranks. This 
ould be 
onsidered as 
omputational eviden
e that the self-similargroups 
onsidered in [6, 9, 66℄ have an in�nitely generated S
hur multiplier and thus,are in�nitely presented. However, there are other su

essful attempts to 
ompute theS
hur multiplier of a self-similar group [14℄. These 
al
ulations possibly generalize to analgorithm for other self-similar groups.A Reidemeister-S
hreier Theorem for Finite L-PresentationsFor �nitely presented groups, it is a well-known result by Reidemeister and S
hreier [119,124℄ that every �nite index subgroup of a �nitely presented group is �nitely presented.The Reidemeister-S
hreier pro
ess is an algorithm that allows one to 
ompute a �nite pre-sentation for �nite index subgroups of a �nitely presented group. In [70℄ or Appendix D,we have generalized the Reidemeister-S
hreier theorem and the Reidemeister-S
hreierpro
ess for �nitely presented groups to �nitely L-presented groups. More pre
isely, wehave proved that every �nite index subgroup of a �nitely L-presented group is �nitely L-presented. Moreover, we studied 
onditions on a �nite-index subgroup of an invariantly�nitely L-presented group to be invariantly �nitely L-presented.Computing with Finite Index SubgroupsAnother dire
tion of this thesis is the 
oset enumerator for �nitely L-presented groupsin [67℄ or Appendix C. This generalized 
oset enumerator has various interesting appli
a-tions: For instan
e, it shows that the generalized word problem for �nite index subgroupsof a �nitely L-presented group is de
idable. Moreover, our 
oset enumerator allows oneto 
ompute all subgroups of a �nitely L-presented group up to a given (moderate) index.This is of parti
ular interest be
ause the latti
e of �nite index subgroups of most self-similar groups is widely unknown [58℄; e.g., even though Grigor
huk's group has beeninvestigated for de
ades, little is known on the latti
e of �nite-index subgroups: There areseven subgroups of index two [58℄ whi
h are the only maximal subgroups [116℄. Moreover,there exists a method to 
ompute all normal subgroups of Grigor
huk's group [7,11,33℄.However, its general subgroup growth is still unknown [58℄. Our 
oset enumerator allowsus to 
ompute the number of low-index subgroups of Grigor
huk's group. There werealready attempts in [11, 12℄ whi
h tried to 
ompute the number of low-index subgroups.Our 
oset enumeration is a �rst, automati
 
omputer algorithm that allows us to 
ompute



5the 
orre
t subgroup 
ounts in [67℄ or Appendix C.A Note on Invariant Finite L-PresentationsIn Appendix B or [69℄, we introdu
e Tietze transformations for (possibly in�nite) L-presentations. These transformations allow us to generalize Tietze's theorem for �nitepresentations [132℄ to invariant �nite L-presentations. More pre
isely, we show thattwo invariant �nite L-presentations de�ne isomorphi
 groups if and only if it is possibleto pass from one invariant L-presentation to the other by a �nite sequen
e of Tietzetransformations. The intermediate L-presentations in our proof are always invariant
L-presentations.Moreover, in Appendix B or [69℄, we use Tietze transformations for �nite L-presen-tations to prove that `being invariantly �nitely L-presented' is an abstra
t property of agroup that does not depend on the generating set. This latter result generalizes a well-known result for �nitely presented groups: if a group admits a �nite presentation withrespe
t to one generating set, then so it does with respe
t to any other �nite generatingset [38, Chapter V℄.Finally, we 
onsider �nitely generated normal subgroups of �nitely presented groups.We show that every �nitely generated normal subgroup H of a �nitely presented group
G is invariantly �nitely L-presented whenever G splits over H. This generalizes a re
entresult by Benli on indi
able groups [22℄. In fa
t, Benli proved that every �nitely generatedsubgroup H � G is invariantly �nitely L-presented whenever G/H ∼= Z holds. Wealso extend this latter result to the 
ase where G/H is a �nitely generated abeliangroup with torsion-free rank at most two. Our results address a question in [22℄ on�nitely generated subgroups whi
h embed as normal subgroups into �nitely presentedgroups. More pre
isely, analogously to Higman's embedding theorem [81℄, Benli askedwhether or not a �nitely generated group embeds as a normal subgroup into a �nitelypresented group if and only if the group admits an invariant �nite L-presentation allof whose endomorphisms indu
e automorphisms of the group; see Appendix B or [69℄for de�nitions. It is immanent that every su
h �nitely L-presented group embeds as anormal subgroup into a �nitely presented groups. However, the 
onverse still remainsopen.A Note on our ImplementationsMost of our algorithms for �nitely L-presented groups have been implemented in the
omputer algebra system Gap [50℄. In Appendix A or [68℄, we demonstrate how theseimplementations yield detailed information on the stru
ture of some self-similar groups,the so-
alled Fabrykowski-Gupta groups. In parti
ular, we obtain new information ontheir lower 
entral series, on their S
hur multiplier, on their low-index subgroups, as wellas new information on their derived series.Minor parts of Appendix A were intended to be published in [42℄. This lattermanus
ript also 
ontains a method for gaining insight into the stru
ture of the outer auto-morphism group of a �nitely L-presented group: Sin
e the lower 
entral series subgroups



6 Chapter 1. Introdu
tionare 
hara
teristi
, this approa
h 
onsiders the outer automorphisms of the nilpotentquotients of the L-presented group. It is a straightforward appli
ation of the nilpotentquotient algorithm in [9, 64℄.An Overview of our AlgorithmsThe algorithms for �nitely L-presented groups that were developed in this thesis 
ouldbe found in the following parts: A �nite L-presentation of a group allows one to
• de
ide whether or not a map from the generators of a �nitely L-presented group intoa �nite permutation group (or into a �nitely generated nilpotent group) extends toa group homomorphism; see Chapter 3.
• 
ompute a permutation representation for the a
tion of a �nitely L-presented groupon the 
osets of a �nite index subgroup (
oset enumeration); see [67℄ or Appendix C.
• 
ompute the index of a subgroup, whi
h is given by its �nitely many generators, of a�nitely L-presented group provided that this index is �nite; see [67℄ or Appendix C.
• solve the generalized word problem for �nite index subgroups of a �nitely L-presented group; see [67℄ or Appendix C.
• 
ompute the interse
tion of two �nite index subgroups of a �nitely L-presentedgroup or to 
ompute the normal 
ore of a �nite index subgroup of a �nitely L-presented group; see Chapter 3.
• 
ompute all subgroups of a �nitely L-presented group up to a given (moderate)index (low-index subgroup algorithm); see [67℄ or Appendix C.
• 
ompute a �nite L-presentation for a �nite index subgroup of a �nitely L-presentedgroup; see [70℄ or Appendix D.
• 
ompute the se
tions G(i)/G(i+1) of the derived series of a �nitely L-presentedgroup G provided that G/G(i) is �nite; see Chapter 3 or [68℄.
• modify a �nite L-presentation of a group using Tietze transformations for �nitely
L-presented groups; see Chapter 4, Appendix B, or [69℄.

• 
ompute the Dwyer quotients of the S
hur multiplier of an invariantly �nitely L-presented group; see [66℄ or Appendix E.For investigating self-similar groups with the help of our algorithms, it would be interest-ing if the methods in [6℄ 
ould be transformed into a pro
edure that, given a self-similargroup by its re
ursive a
tion on a regular rooted tree, 
omputes a �nite L-presentation forthe group. We are not aware of an automati
 pro
edure whi
h 
ould solve this problem.A
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Chapter2Groups and PresentationsThe notion of a group presentation dates ba
k to Walter von Dy
k who has introdu
ed themodern notion of free groups and group presentations in 1882. Group presentations playan important role in 
omputational group theory. They de�ne a group by its generatorsand relations. A �nite presentation is group presentation with �nitely many generatorsand �nitely many relations. Therefore, �nite presentations provide an e�e
tive de�nitionof a group up to isomorphism. They 
an be used to de�ne a group in 
omputer algebrasystems su
h as Gap [50℄ or Magma [28℄. Re
ently it was shown that even a 
lass ofin�nite presentations (so-
alled �nite L-presentations) provide an e�e
tive way to de�nein�nitely presented groups.Even though �nite presentations provide an e�e
tive des
ription of a group, variousalgorithmi
 problems are unsolvable in general. Therefore, solving algorithmi
 problemsfor in�nite presentations seems even more infeasible. However, in this thesis we showthat most algorithms for �nitely presented groups generalize to �nite L-presentations.In this 
hapter, we re
all the notion of a group presentation and we formally introdu
ethe notion of a �nite L-presentation from [6℄. Moreover, we give an overview of thealgorithms known for �nitely presented and �nitely L-presented groups.2.1 Finite PresentationsIn the following, we re
all the notion of a (�nite) group presentation. For further detailson �nitely presented groups, we refer to [95, 97℄.A group F is a free group over the alphabet X ⊆ F if ea
h map f :X → G into a group
G extends to a (unique) homomorphism π:F → G. If G is generated by X ⊆ G, theexisten
e of a free group F over the alphabet X shows that G is a homomorphi
 image of
F . In parti
ular, if π:F → G denotes the natural homomorphism, G ∼= F/ ker(π) holds.A group presentation de�nes the group G in terms of the free presentation π:F → G:Let R ⊆ F be a set of normal generators of the kernel ker(π); i.e., the normal subgroup
ker(π) is generated by {rg | r ∈ R, g ∈ F}. Then the pair 〈X | R〉 is a group presentation



10 Chapter 2. Groups and Presentationsfor G and the group G is presented by 〈X | R〉. On the other hand, a group presentation
〈X | R〉 is an abstra
t obje
t that de�nes a group up to isomorphism: Denote by F thefree group over the alphabet X and let K = 〈R〉F be the normal 
losure in F of therelations R; i.e., K = 〈R〉F is the smallest normal subgroup of F that 
ontains R. Thenthe presentation 〈X | R〉 de�nes the group G = F/K. We will also write G = 〈X | R〉in this 
ase.A group presentation 〈X | R〉 is �nitely generated if the set of generators X is �nite.It is �nitely related if the set of relators R is �nite. If 〈X | R〉 is both, �nitely generatedand �nitely related, it is a �nite presentation and the group G = 〈X | R〉 it de�nes is�nitely presented. A group that admits a �nite presentation is �nitely presentable (or�nitely presented). If either X or R is in�nite, the presentation 〈X | R〉 is an in�nitepresentation and the group it de�nes is in�nitely presented by 〈X | R〉.Being �nitely presentable does not depend on a 
hosen generating set of the group [38,Chapter V℄ in the following sense: If 〈X | S〉 is an arbitrary (possibly in�nite) presen-tation of a �nitely presentable group G, there exists a �nite subset X ′ ⊆ X and a �niteset S ′ of redu
ed words over X ′ so that G ∼= 〈X ′ | S ′〉 holds. This 
an be seen as a
onsequen
e of a fundamental theorem by Tietze [132℄ whi
h relates possibly di�erentgroup presentations of the same group by the following Tietze transformations: Supposethat G is presented by 〈X | R〉. Denote by F the free group over X and let K = 〈R〉Fbe given. Then G = F/K. Ea
h element r ∈ K is a 
onsequen
e of the relations in R.The following well-known transformations allow one to modify the group presentation
〈X | R〉:(i) If r ∈ K is a 
onsequen
e, the group G is presented by 〈X | R ∪ {r}〉.(ii) If z 6∈ X and w ∈ F , the group presented by 〈X ∪ {z} | R ∪ {z−1w}〉 is isomorphi
to G.These transformations are reversible with the following inverse transformations:(iii) If K = 〈R \ {r}〉F holds, the group G is presented by 〈X | R \ {r}〉.(iv) If z−1w ∈ R, with z ∈ X , and z does not appear in the redu
ed word w, G isisomorphi
 to the group presented by 〈X \ {z} | S〉 where S is obtained from

R\{z−1w} by repla
ing ea
h o

urren
e of z and z−1 by w and w−1, respe
tively.For �nite presentations, these transformations are su�
ient to obtain Tietze's theoremfor �nitely presented groups:Theorem 2.1 (Tietze [132℄) Two �nite presentations de�ne isomorphi
 groups if andonly if it is possibly to pass for one presentation to the other by a �nite sequen
e of Tietzetransformations.By the Nielsen-S
hreier theorem [121, 6.1.1℄, a �nite index subgroup of a �nitely gen-erated free group is �nitely generated. Therefore, if G = F/K is a �nite group, thekernel K of the free presentation F → G for a �nitely generated free group F is �nitelygenerated. Thus every �nite group is �nitely presentable. Further examples of �nitely



2.2. De
ision Problems for Finitely Presented Groups 11presented groups are the in�nite dihedral group 〈{a, b} | {a2, b2}〉, Baumslag-Solitargroups B(m,n) = 〈{a, b} | {b−1amba−n}〉, with n,m ∈ N, from [21℄, poly
y
li
 groups,et
. More examples naturally arise with the followingTheorem 2.2 (Reidemeister-S
hreier Theorem [119, 124℄) Ea
h �nite index sub-group of a �nitely presented group is �nitely presented.Even though there are numerous �nitely presented groups, most �nitely generated groupsare not �nitely presented:Proposition 2.3 (B. H. Neumann [103℄) There are un
ountably many non-isomor-phi
 groups generated by two elements.As there are 
ountably many �nite presentations but un
ountably many non-isomorphi

2-generated groups, Proposition 2.3 yieldsCorollary 2.4 There are �nitely generated groups that are not �nitely presentable.2.2 De
ision Problems for Finitely Presented GroupsA �nitely presented group is uniquely des
ribed by its �nitely many generators andde�ning relations. Therefore, a �nite presentation 
ould be useful to apply 
omputeralgorithms in the investigation of the stru
ture of the group. However, there are variousproblems for whi
h it is known that there exists no algorithm that, given a �nite pre-sentation of a group, terminates and returns a 
orre
t answer to a given question (e.g.whether or not a group given by a �nite presentation is �nite). More pre
isely, we 
all anabstra
t property (i.e., a property is an abstra
t property of a group if it does not dependon the presentation) of a �nitely presented group re
ursively re
ognizable or de
idableif there exists an algorithm whi
h takes as input a �nite presentation of the group andde
ides whether or not the group satis�es this property.Many abstra
t properties of �nitely presented groups are not de
idable in general.For instan
e, Dehn [39℄ stated the following de
ision problems: the word problem, the
onjuga
y problem, and the isomorphism problem. These problems are not de
idable ingeneral [1,27,112,113℄. However, if the 
lass of groups under 
onsideration is restri
ted,de
ision problems that are not de
idable in general may be
ome de
idable; e.g., poly
y
li
groups have a solvable word- and 
onjuga
y problem [125℄ and even their isomorphismproblem is solvable [126℄.Beside Dehn's de
ision problems there are various other abstra
t properties that arenot de
idable. In this se
tion, we give a brief survey on de
ision problems for �nitelypresented groups. These unsolvable problems demonstrate the limitations of 
omputeralgorithms in the study of �nitely presented groups. For further details on de
isionproblems, we refer to the survey [99℄ or to [95, Chapter IV℄.



12 Chapter 2. Groups and Presentations2.2.1 The Word ProblemA �rst de
ision problem is Dehn's word problem for a �nitely presented group. It asksfor an algorithm that, given a �nite presentation of a group G = 〈X | R〉 and a word wover the alphabet X ∪ X−, de
ides whether or not the element w is trivial in the group
G. More pre
isely, if F denotes the free group over X and K � F is a normal subgroupso that G = F/K holds, the word problem asks for an algorithm that de
ides whetheror not w ∈ K holds (in this 
ase, we will also write w =G 1). An element w ∈ F is
ontained in the normal 
losure K if and only if it has the form

w = u−1
1 rε11 u1 · · · u

−1
m rεmm um, with ui ∈ F, ri ∈ R and εi = ±1, (2.1)for ea
h 1 ≤ i ≤ m. Clearly, if the word problem of a �nitely presented group is de
idable,so it is for ea
h of its subgroups. If a group has a solvable word problem with respe
t toone �nite presentation, then so it has for any other �nite presentation [99, Lemma 2.2℄.The word problem of a �nitely presented group is not de
idable in general:Theorem 2.5 (Novikov-Boone Theorem [27, 113℄) There exists a �nitely presentedgroup whose word problem is not de
idable.The word problem 
ould be stated equivalently as follows: it asks for an algorithm thatde
ides whether or not two words w and v over the alphabet X ∪ X− de�ne the sameelement of the �nitely presented group; i.e. if w =G v holds. Even though the wordproblem is not de
idable in general, restri
ting the 
lass of �nitely presented groups mayresult in a 
lass of groups with a solvable word problem. For instan
e ea
h �nite, free,or poly
y
li
 group is �nitely presented and has a de
idable word problem.2.2.2 The Conjuga
y ProblemThe 
onjuga
y problem asks for an algorithm that, given a �nite presentation 〈X | R〉of a group G and elements u, v ∈ F of the free group F over X , de
ides whether ornot the elements are 
onjugate in the group; i.e., if there exists x ∈ F so that theelements ux = x−1ux and v de�ne the same element of the group G; i.e. if x−1ux =G vholds. Sin
e a 
onjugate x−1ux is trivial in the group G = 〈X | R〉 if and only if theelement u itself is trivial, a solution to the 
onjuga
y problem implies a solution to theword problem. Therefore, Theorem 2.5 also shows that the 
onjuga
y problem is notde
idable [112℄. Again, restri
ting to the 
lass of �nite groups, free groups or poly
y
li
groups [125℄, yields that the 
onjuga
y problem be
omes de
idable.2.2.3 The Generalized Word ProblemIt is easy to see that a �nitely presented group has de
idable word problem if there existsa �nite index subgroup that has a de
idable word problem. Conversely, ea
h subgroup ofa �nitely presented group with a de
idable word problem has a de
idable word problem.Therefore, �nite index subgroups play an important role in the investigation of a �nitelypresented group. For instan
e, by the Reidemeister-S
hreier Theorem 2.2, ea
h �nite



2.2. De
ision Problems for Finitely Presented Groups 13index subgroup of a �nitely presented group is itself �nitely presented. An expli
it proofof Theorem 2.2 yields a Reidemeister-S
hreier pro
ess that 
omputes a �nite presentationfor the subgroup given a �nite presentation of the group and a �nite generating set ofthe subgroup [95℄.A de
ision problem that is related to �nitely generated subgroups of a �nitely pre-sented group is the generalized word problem or subgroup membership problem. It asksfor an algorithm that, given a �nite presentation 〈X | R〉 of a group and a �nite set
{w1, . . . , wn, w} of words over the alphabet X ∪X− de
ides whether or not the subgroupgenerated by {w1, . . . , wn} 
ontains the element w. Sin
e an element w ∈ F is trivialin the �nitely presented group G = 〈X | R〉 if and only if it is 
ontained in the trivialsubgroup {1} ≤ G, a solution to the generalized word problem implies a solution to theword problem. Hen
e, Theorem 2.5 also shows that the generalized word problem is notde
idable in general. However, if the subgroup has �nite index, 
oset enumeration (asoutlined in Se
tion 2.3.1 below) solves the generalized word problem.2.2.4 The Isomorphism ProblemDehn's third de
ision problem is the isomorphism problem. It asks for an algorithmthat de
ides whether or not two �nite presentations de�ne isomorphi
 groups. Theisomorphism problem is not de
idable in general [1℄.Re
all that Tietze's Theorem 2.1 relates two �nite presentations of a group: it showsthat two �nite presentations de�ne isomorphi
 groups if and only if there exists a �nitesequen
e of Tietze transformations that allows one to transform one presentation intothe other. However, it should be emphasized that Tietze's theorem does not providea solution to the isomorphism problem in general, as there is no e�e
tive pro
edure for
hoosing the sequen
e of Tietze transformations. In parti
ular, it does not allow to de
ideif two �nite presentations de�ne non-isomorphi
 groups; even though an enumeration ofTietze transformations may allow to eventually prove that two �nite presentations de�neisomorphi
 groups [95℄.2.2.5 Markov PropertiesBeside Dehn's de
ision problems many other abstra
t properties are not de
idable. Alarge 
lass of de
ision problems are the so-
alled Markov properties; see, for instan
e,the survey [99℄. An abstra
t property of a �nitely presented group is a Markov propertyif there exist �nitely presented groups G and H so that G has the given property and,if H embeds into a �nitely presented group, this group 
annot have this property. Forinstan
e, being �nite is a Markov property be
ause the in�nite dihedral group is �nitelypresented by 〈{a, b} | {a2, b2}〉 and in�nite while the 2-elementary abelian group Z2×Z2 =
〈{a, b} | {a2, b2, [a, b]}〉 is �nite. Further examples of Markov properties are being trivial,abelian, nilpotent, solvable, free, and torsion-free [99℄. An example of an abstra
t prop-erty that is not a Markov property is being perfe
t as there exists a �nitely presentedperfe
t group in whi
h every �nitely presented group embeds [99℄. Moreover, there ex-ists an algorithm that de
ides whether or not a �nitely presented group is perfe
t; see



14 Chapter 2. Groups and PresentationsSe
tion 2.3.5. A fundamental theorem for Markov properties is the following theorem:Theorem 2.6 (Adian-Rabin Theorem [2, 3, 118℄) A Markov property of a �nitelypresented group is not de
idable.In parti
ular, there exists no algorithm that will 
ompute the order of a �nitely presentedgroup.2.2.6 Further De
ision ProblemsBeside Dehn's de
ision problems and Markov properties, there are other group theoreti
properties that are not de
idable in general.Re
all that the de�
ien
y of a �nite presentation 〈X | R〉 is d(〈X | R〉) = |X | − |R|.For a �nitely presented group G, the de�
ien
y of the group G is the maximal de�
ien
y ofall its �nite presentations. The de�
ien
y of a �nitely presented groups is not 
omputable:Theorem 2.7 (Gordon [52℄) There is no algorithm for 
omputing the de�
ien
y of agroup from a �nite presentation.The S
hur multiplier of a group G 
an be de�ned as the se
ond homology group H2(G,Z)with integer 
oe�
ients. It is related to a group presentation G = F/R by Hopf's formula:
H2(G,Z) ∼= (R ∩ F ′)/[R,F ].It is not hard to see that Hopf's formula shows that ea
h �nitely presented group withde�
ien
y zero has a trivial S
hur multiplier. However, even a group with a trivialS
hur multiplier might not be �nitely presentable [18℄. The S
hur multiplier of a �nitelypresented groups is not 
omputable:Theorem 2.8 (Gordon [52℄) There is no algorithm for de
iding, given a �nite presen-tation of a group G, whether or not H2(G,Z) = {0} holds.The properties in Theorems 2.7 and Theorem 2.8 are not Markov properties [99℄. Inparti
ular, these results are not just 
onsequen
es of the Adian-Rabin theorem in Theo-rem 2.6. Further de
ision problems for �nitely presented groups are given by the followingproposition; see also [99℄:Proposition 2.9 (Baumslag et al. [20℄) There is a �nitely presented group su
h thatthere is no algorithm to determine whether or not the subgroup generated by an arbitrary�nite set of words is(i) trivial, �nite, free, lo
ally free, 
y
li
, abelian, nilpotent, soluble, simple, dire
tlyde
omposable, freely inde
omposable, or whether it is a group with a de
idable wordproblem.(ii) a �nitely related subgroup, a subgroup with �nite index, a normal subgroup, a sub-group with �nitely many 
onjugates.Again, restri
ting the 
lass of subgroups in Proposition 2.9 to subgroups with �niteindex yields the existen
e of various algorithms that expli
itly solve the problems inProposition 2.9, (ii).



2.3. Algorithms for Finitely Presented Groups 152.2.7 Semi-De
idabilityWe 
all an abstra
t property of a �nitely presented group G semi-de
idable if thereexists an algorithm that allows one to verify that the group satis�es the given property;e.g. if there exists an algorithm that, given a �nite presentation of a group, eventuallyterminates and proves the group to be �nite. Clearly, an abstra
t property that isde
idable is also semi-de
idable. Various de
ision problems that are not de
idable ingeneral are semi-de
idable though. For instan
e, the word problem of a �nitely presentedgroups is semi-de
idable: For a �nitely presented group G = 〈X | R〉 and an element
w ∈ F of the free group F over X , there exists an algorithm that enumerates the elements
u−1
1 rε11 u1 · · · u

−1
m rεmm um with ri ∈ R, ui ∈ F , and εi = ±1. Therefore, the elements ofthe normal 
losure K = 〈R〉F 
ould be listed algorithmi
ally one after another. If anelement w ∈ F is trivial in the group G, this algorithm would eventually list the element

w and therefore it would prove that w =G 1 holds. Hen
e, the word problem of a �nitelypresented group is semi-de
idable but not de
idable.Further examples of semi-de
idable problems are the 
onjuga
y problem and theisomorphism problem (an enumeration of Tietze transformations allows one to eventuallyprove that two �nite presentations de�ne isomorphi
 groups). Further appli
ations ofTietze's theorem provide algorithms that allow one to prove that a �nite presentationde�nes a trivial, abelian, nilpotent, or poly
y
li
 group.2.3 Algorithms for Finitely Presented GroupsEven though most group theoreti
 properties are not re
ursively re
ognizable [4℄, thereare various `algorithms' for �nitely presented groups whose termination is often not guar-anteed. If the underlying de
ision problem is semi-de
idable, though, the algorithm ter-minates and gives a 
orre
t answer to the problem; e.g. it is semi-de
idable if a �nitepresentation de�nes a �nite group and 
oset enumeration would allow to verify this; seeSe
tion 2.3.1. In this se
tion, we give an overview of the algorithms for �nitely pre-sented groups. Even though termination of these algorithms is often not guaranteed,they have be
ome a useful tool to investigate the stru
ture of a �nitely presented group.Most of these algorithms are available in 
omputer algebra systems su
h as Gap [50℄ orMagma [28℄ or even as stand-alone C-pa
kages su
h as the Quotpi
-pa
kage [83℄ orthe A
e-pa
kage [75℄. For further details on algorithms for �nitely presented groups, werefer to the standard referen
e [129℄.2.3.1 Coset EnumerationA �rst algorithm for �nitely presented groups is the 
oset enumeration pro
ess introdu
edby Todd and Coxeter [36,133℄. This pro
ess attempts to enumerate the 
osets of a �nitelygenerated subgroup in a �nitely presented group. If the index of the subgroup is �nite,
oset enumeration terminates and it 
omputes the index of the subgroup together witha permutation representation for the group's a
tion on the 
osets. In parti
ular, 
osetenumeration allows one to prove that a given �nite presentation de�nes a �nite group �



16 Chapter 2. Groups and Presentationseven though being �nite is a Markov property! On the other hand, though, if the indexof the subgroup happens to be in�nite, 
oset enumeration will not terminate. Moreover,by Proposition 2.9, there exists no algorithm that allows one to de
ide whether or not a�nitely generated subgroup has �nite index in a �nitely presented groups. In fa
t, thereis no upper bound on the 
omplexity of 
oset enumeration. Therefore, even proving a�nitely presented group being trivial is 
omputationally a 
hallenging problem [76, 104℄.Nevertheless, 
oset enumeration is often used for proving �niteness of 
ertain �nitelypresented groups [78�80℄.Be
ause 
oset enumeration, if it terminates, additionally 
omputes a permutationrepresentation for group's a
tion on the 
osets, it also solves the generalized word problemfor a �nite index subgroup of a �nitely presented group. Therefore, 
oset enumerationhas be
ome a fundamental tool for 
omputing with �nite index subgroups; e.g., it allowsone to 
ompute the interse
tion of two �nite index subgroups as well as the normalizerand the normal 
ore of a �nite index subgroup.Coset enumeration is usually a �rst step in the investigation of �nitely presentedgroups. For instan
e, the S
hur multiplier of a �nite permutation group is 
omputablewith the methods in [82℄. If a �nite group is given by a �nite presentation, 
oset enu-meration will 
ompute a permutation representation for the group and thus it 
ould bea �rst step for 
omputing the S
hur multiplier of a �nite, �nitely presented group.Coset enumeration is among the �rst algorithms in group theory that have beenimplemented as a 
omputer algorithm [32,88,102,129℄. It has been developed, improved,and investigated sin
e, see [32, 48℄, so that numerous 
oset enumeration te
hniques are
urrently available. For further histori
al details on 
oset enumeration, we refer to thehistori
al notes in [129℄ or to the survey [102℄.2.3.2 The Low-Index Subgroup AlgorithmA variation of 
oset enumeration is the low-index subgroup algorithm [40℄ whi
h attemptsto 
ompute a representative for ea
h 
onjuga
y 
lass of subgroups of a �nitely presentedgroup up to a given index n ∈ N. The 
entral idea uses a ba
ktra
k-sear
h for �ndingall permutation representations of a �nitely presented group that a
ts transitively on atmost n points. In pra
ti
e, the low-index subgroup algorithm allows one to 
omputerepresentatives of 
onjuga
y 
lasses of subgroups with index up to a few hundred. Forfurther details on the low-index subgroup algorithm, we refer to [129, Se
tion 5.6℄.A variation of the low-index subgroup algorithm was developed in [35℄. This modi�edalgorithm 
omputes the normal subgroups of a �nitely presented groups up to a givenindex. In pra
ti
e, it allows one to 
ompute possibly larger indi
es than the standardlow-index subgroup algorithm. An implementation of both algorithms is available in thestand-alone C-pa
kage Lowx [41℄.The low-index subgroup algorithm yields insight into the latti
e of �nite index sub-groups of a �nitely presented group top-down and therefore, it is a useful tool in theinvestigation of �nitely presented groups. For instan
e, sin
e `being trivial' is a Markovproperty, there is no algorithm for de
iding whether or not a �nite presentation de�nes



2.3. Algorithms for Finitely Presented Groups 17a trivial group. However, if a �nite presentation does de�ne the trivial group, 
oset enu-meration is guaranteed to terminate and it will 
ompute the order of group. On the otherhand, there 
annot exists an algorithm whi
h proves that a given �nite presentation de-�nes a non-trivial group (otherwise we would obtain a 
ontradi
tion to the Adian-RabinTheorem 2.6). The low-index subgroup algorithm 
ould be employed to this problembe
ause it may help to �nd a subgroup with non-trivial index. If the low-index subgroupalgorithm su

eeds with this sear
h, it would prove that the given �nite presentation de-�nes a non-trivial group. An alternative approa
h for proving that a �nite presentationde�nes a non-trivial group is to sear
h for non-trivial homomorphi
 images of the �nitelypresented group; see Se
tion 2.3.5 below.2.3.3 The Reidemeister-S
hreier Pro
essThe Reidemeister-S
hreier Theorem 2.2 shows that ea
h �nite index subgroup of a �nitelypresented group is �nitely presented. A 
onstru
tive proof of Theorem 2.2 is given bythe Reidemeister-S
hreier pro
ess: it takes as input a �nite presentation of a group and a�nite generating set of a subgroup and it 
omputes a �nite presentation for the subgroupprovided that it has a �nite index in the group. By Proposition 2.9, there 
annot existsu
h an algorithm in general (in parti
ular if the subgroup has in�nite index). Supposethat the �nitely generated subgroup U has �nite index in the �nitely presented group
G = 〈X | R〉. Then the following steps yield a Reidemeister-S
hreier pro
ess:(i) Compute a permutation representation τ :F → Sym(U\G) for G's a
tion on the
osets U\G using a 
oset enumerator.(ii) The permutation representation τ allows one to 
ompute �nitely many S
hreiergenerators of the subgroup [124℄ with the Nielsen-S
hreier theorem [121, 6.1.1℄;i.e., a S
hreier generating set is a free generating set of the full preimage of thesubgroup U ≤ G in the free group F over X .(iii) The permutation representation τ yields a Reidemeister rewriting that rewrites G'srelations in R to �nitely many relations of the subgroup U .For further details on the Reidemeister-S
hreier pro
ess, we refer to [95, Se
tion II.4℄ orSe
tion D.3 below.The Reidemeister-S
hreier pro
ess gives an expli
it method to apply the algorithmsfor �nitely presented groups to �nite index subgroups of �nitely presented groups. Inparti
ular, in 
ombination with the low-index subgroup algorithm, the Reidemeister-S
hreier pro
ess yields a method to gain insight into the stru
ture of a �nitely presentedgroup [77℄. For instan
e, it allows one to 
ompute the quotients of the derived seriesprovided that these quotients are �nite; see, for instan
e, Se
tion A.6 below. An earlyimplementation of the Reidemeister-S
hreier pro
ess 
an be found in [72℄.2.3.4 Tietze TransformationsThe �nite presentations that were 
omputed with the Reidemeister-S
hreier pro
ess often
ontain redundant generators and redundant relations. Indeed, given a �nitely presented



18 Chapter 2. Groups and Presentationsgroup G = 〈X | R〉 with n = |X | generators and a �nite index subgroup H ≤ Gwith m = [G : H], the Reidemeister-S
hreier pro
ess in Se
tion 2.3.3 
omputes a �nitepresentation with mn−m+1 generators [121, 6.1.1℄. Numerous generators and relatorsare often redundant. Therefore, one wishes to remove redundant generators and relationsfrom a presentation. Here, the Tietze transformations from Se
tion 2.1 apply.Sin
e the isomorphism problem is not de
idable in general, appli
ations of Tietzetransformations are limited in pra
ti
e. However, an implementation of a Tietze trans-formation program was des
ribed in [73,120℄. This pro
edure is part of the Reidemeister-S
hreier program [72℄ where it simpli�es the obtained �nite presentation.2.3.5 Quotient MethodsMost algorithmi
 problems for �nitely presented groups are not de
idable [4℄. There-fore, it surprises that 
omputer algorithms help in the investigation of the stru
ture ofa �nitely presented group. However, there is a wide range of algorithms for 
omputingfa
tor groups of a �nitely presented group. For instan
e, the abelianization of a �nitelypresented group (i.e., the abelianization is the isomorphism type of the largest abelianquotient G/[G,G] of a group G) 
an be e�e
tively 
omputed from a �nite presenta-tion [129, Se
tion 11.2℄. In parti
ular, there exists an algorithm that de
ides whether ornot a �nitely presented group is perfe
t (i.e. a group G is perfe
t if the abelianization
G/[G,G] is trivial). Moreover, there exists an algorithm that solves the membershipproblem for the derived subgroup G′ = [G,G] in a �nitely presented group.Beside the numerous variations of 
oset enumeration, the main tools for investigating�nitely presented groups are quotient methods. In general, they 
ompute su

essivequotients of a �nitely presented group or, equivalently, they 
ompute homomorphismsinto 
omputationally `ni
e' groups (e.g. �nite groups, �nite p-groups, or poly
y
li
 groupswhi
h 
ould be handled well in 
omputer algebra systems). These methods also allow oneto de
ide whether or not a map from the generating set X of a �nitely presented group
G = 〈X | R〉 into a `ni
e' group H extends to a homomorphism G → H; see Chapter 3.In the following, we give a survey of the quotient methods for �nitely presented groups:The Abelianization AlgorithmA �rst quotient method is the abelianization algorithm for 
omputing the isomorphismtype of the largest abelian quotient of a �nitely presented group; see [129, Chapter 11.2℄.This algorithm relies on linear algebra only. More pre
isely, it 
omputes the Smithnormal form of an integer matrix that 
an be read o� dire
tly from the relations of the�nite presentation. These 
omputations are usually fast. Therefore, the abelianizationalgorithm is often a �rst tool in the investigation of a �nitely presented group. Forinstan
e, the abelianization algorithm and the low-index subgroup algorithm 
an beused to sear
h for �nite index subgroups with in�nite abelianization. This 
ould helpproving a �nitely presented group being in�nite. Moreover, the derived subgroup of a�nitely generated group G = 〈X | R〉 has a de
idable membership problem: An element
w ∈ F of the free group F over X de�nes an element of the derived subgroup G′ = [G,G]



2.3. Algorithms for Finitely Presented Groups 19if and only if its exponent ve
tor vanishes (i.e. the exponent ve
tor is the image of theelement w ∈ F in the free abelian group F/F ′).The p-Quotient AlgorithmFor a prime p, the lower exponent-p series (or Frattini series) is de�ned re
ursively by
λ1G = G and λn+1G = [G,λnG](λnG)

p. The se
tions λnG/λn+1G are p-elementaryabelian so that G/λnG are �nite p-groups. Finite p-groups 
an be des
ribed e�e
tivelyby nilpotent presentations. A nilpotent presentation is a �nite presentation whi
h admitsan e�e
tive solution to the word problem of the group [129℄.The p-quotient algorithm 
omputes a nilpotent presentation for the fa
tor group
G/λnG together with a homomorphism G → G/λnG. It uses an indu
tion on n andit 
omputes the quotient G/λnG as a �nite 
entral extension of a p-elementary abeliangroup by a �nite p-group. The p-quotient algorithm was originally designed for the
onstru
tion of �nite Burnside groups in [74, 105℄.The Nilpotent Quotient AlgorithmThe p-quotient algorithm was generalized in [107℄ to the nilpotent quotient algorithm for�nitely presented groups; see also [129, Se
tion 11℄. For a �nitely presented group G and apositive integer c, the nilpotent quotient algorithm 
omputes a nilpotent presentation forthe lower 
entral series quotient G/γc+1G together with a homomorphism G→ G/γc+1G.The lower 
entral series is de�ned re
ursively by γ1G = G and γc+1G = [G, γcG]. Similarto the p-quotient algorithm, the nilpotent quotient algorithm uses an indu
tion on n. Theindu
tion starts with the largest abelian quotient G/G′ of a �nitely presented group Gand thus it starts with the abelianization algorithm for �nitely presented groups. Thenthe quotients G/γc+1G are 
onstru
ted as 
entral extension of a �nitely generated abeliangroup by a �nitely generated nilpotent group.Soluble Quotient AlgorithmsFor a group G, the derived series is de�ned re
ursively by G(1) = G′ = [G,G] and
G(i+1) = [G(i), G(i)]. If, for ea
h 1 ≤ i ≤ j, the se
tions G(i)/G(i+1) are �nitely generated,the quotient G/G(j) is poly
y
li
. A poly
y
li
 group 
an be des
ribed by a poly
y
li
presentation that (like a nilpotent presentation) yields an e�e
tive solution to the wordproblem.A soluble quotient algorithm 
omputes a poly
y
li
 presentation of the quotient
G/G(i) together with a homomorphism G → G(i) provided that G/G(i) is poly
y
li
. A�rst straightforward approa
h towards a soluble quotient algorithm 
ombines the abelian-ization algorithm and the Reidemeister-S
hreier pro
ess; see Se
tion A.6 below. Thisapproa
h 
omputes a permutation representation for G/G(i) provided that this quotientis �nite. Alternative approa
hes whi
h 
ompute poly
y
li
 presentations for �nite solv-able quotients were des
ribed by Wamsley [135℄, Leedham-Green [89℄, Plesken [117℄, andNiemeyer [108�110℄. These methods possibly use a di�erent series of normal subgroups.



20 Chapter 2. Groups and PresentationsA more general soluble quotient algorithm is the poly
y
li
 quotient algorithm in [92,93℄. This algorithm 
omputes a poly
y
li
 presentation for G/G(i). Similar to the nilpo-tent and the p-quotient algorithm, it uses an indu
tion on i and it therefore 
omputes apoly
y
li
 presentation for G/G(i+1) from a poly
y
li
 presentation of G/G(i). For thispurpose, it uses a Gröbner bases approa
h whi
h is guaranteed to terminate. Even if Gand G/G(i) are �nitely generated, the se
tion G(i)/G(i+1) is possibly not �nitely gener-ated. In this 
ase, G/G(i+1) is not poly
y
li
. The algorithm in [92, 93℄ either 
omputesa poly
y
li
 presentation for G/G(i+1) or it returns fail if the se
tion G(i)/G(i+1) isnot �nitely generated. If a �nite presentation de�nes a poly
y
li
 group, the algorithmin [92, 93℄ would 
ompute a poly
y
li
 presentation for it.2.3.6 Knuth-Bendix CompletionA pra
ti
al method for solving the word problem is given by a 
on�uent rewriting system.The Knuth-Bendix 
ompletion attempts to 
onstru
t a 
on�uent rewriting system froma monoid presentation of a �nitely presented group [130℄. Sin
e the word problem ofa �nitely presented group is not de
idable in general, termination of the Knuth-Bendix
ompletion is not guaranteed. If the Knuth-Bendix 
ompletion terminates, though, the
on�uent rewriting system solves the word problem as it allows one to 
ompute normalforms for ea
h element of the group. For further details on rewriting systems, we referto [129, Chapter 2℄ or Chapter 5 below.A �nitely presented group G = 〈X | R〉 
an be 
onsidered as a �nitely presentedmonoid 〈
X ∪ X−

∣∣ {r = ε | r ∈ R} ∪ {x−1x = xx−1 = ε | x ∈ X}
〉
,where ε denotes the empty string. A rewriting system for a �nitely presented monoid
an be seen as a binary relation on the words over the alphabet X ∪ X− together witha redu
tion ordering ≺; i.e., a redu
tion ordering is a translation invariant well-ordering.From a �nite presentation of a monoid one 
an obtain a rewriting system by de�ning, forea
h relation A = B of the presentation, either the rewriting rule A→ B, if B ≺ A holds,or B → A, otherwise. A redu
tion of a word W ∈ (X ∪ X−)∗ repla
es a subword A of

W by B whenever A→ B is a rewriting rule. As W = UAV holds and ≺ is translationinvariant, the redu
tion W = UAV → UBV yields that W = UAV ≻ UBV as A ≻ Bholds. Thus, as the redu
tion ordering ≺ is a well-ordering, a redu
tion of W yields a�nite sequen
e W =W1 ≻W2 ≻ . . . ≻Wn with Wi →Wi+1.There are possibly di�erent 
hoi
es of the next rewriting rule to apply within aredu
tion of a given word W . These 
hoi
es may result into di�erent least elements
Wn. A rewriting system is 
alled 
on�uent, though, if, for ea
h word W , the leastelement Wn does not depend on the 
hoi
e of the intermediate redu
tions. A 
on�uentrewriting system provides a method for transforming any word over X∪X− into its uniquenormal form. In fa
t, it solves the word problem of the group. For instan
e, �nitelygenerated nilpotent groups or poly
y
li
 groups are examples of groups whi
h admit a�nite 
on�uent rewriting system [129℄, so-
alled 
on�uent poly
y
li
 presentations.



2.4. Re
ursive Presentations 21The Knuth-Bendix 
ompletion (see, for instan
e, [129, 130℄) transforms a rewritingsystem for a �nitely presented monoid into a 
on�uent rewriting system. For this purpose,it 
he
ks 
ertain overlaps of the rules and it adds rewriting rules if ne
essary. We outlinethe details of a Knuth-Bendix 
ompletion within our generalization in Chapter 5 below.2.4 Re
ursive PresentationsIn this se
tion, we introdu
e the notion of a re
ursive presentation and the notion of are
ursively presented group. For further details on re
ursively presented groups, we referto Chapter II of [95℄.Let F be a �nitely generated free group. We 
all a subset S ⊆ F re
ursively enumer-able if there exists an algorithm that lists the elements of S in some (arbitrary) order. Inthis 
ase, we 
an write S = {s1, s2, s3, . . .} where sn denotes the result of the algorithmthat is returned after the n-th step. For instan
e, a �nite set and a �nitely generatedfree monoid are re
ursively enumerable.A subset S ⊂ F is re
ursive if there exists an algorithm that de
ides whether or nota given element w ∈ F belongs to the set S. A re
ursive set S ⊆ F is 
learly re
ursivelyenumerable be
ause if an algorithm that lists the elements of the �nitely generated freegroup F 
an be 
ombined with the algorithm that de
ides whether or not an elementbelongs to the re
ursive set S. A set S is re
ursive if and only if S and its 
omplement
F \ S are re
ursively enumerable. On the other hand, it is a fundamental result in logi
that there exists a re
ursively enumerable set that is not re
ursive. This is the reasonfor most problems in group theory not being de
idable [95, 99℄.A re
ursive presentation is a group presentation 〈X | R〉 with a �nite alphabet X anda re
ursively enumerable set of relations R ⊆ F where F denotes the free group over thealphabet X . The group G = 〈X | R〉 de�ned by a re
ursive presentation is re
ursivelypresented. As �nite sets are re
ursively enumerable, every �nite presentation is a re
ursivepresentation. Re
ursively presented groups have been 
lassi�ed by Higman's embeddingtheorem:Theorem 2.10 (Higman's Embedding Theorem [81℄) A �nitely generated groupembeds into a �nitely presented group if and only if it is re
ursively presented.This is a fundamental result in 
ombinatorial group theory. For instan
e, the existen
e ofa re
ursively enumerable set of integers that is not re
ursive is used in [95, Se
tion IV.7℄for the 
onstru
tion of a re
ursively presented group whose word problem is not de-
idable. As this re
ursively presented group embeds into a �nitely presented group byTheorem 2.10, there exists a �nitely presented group whose word problem is not de
id-able [95, Theorem IV 7.2℄. This would prove the Novikov-Boone Theorem 2.5.If a group G is �nitely generated by X , it has a solvable word problem if and onlyif the set S = {w ∈ F (X ) | w =G 1} is re
ursive. In parti
ular, the word problem isde
idable if and only if S and its 
omplement F \ S are re
ursively enumerable. In this
ase, a re
ursive presentation for the group G is given by 〈X | {w ∈ F (X ) | w =G 1}〉.



22 Chapter 2. Groups and PresentationsTherefore, every �nitely generated group with a solvable word problem is re
ursivelypresented. Hen
e, it embeds into a �nitely presented group with Higman's EmbeddingTheorem 2.10. More spe
i�
ally, one 
an prove the followingProposition 2.11 (Clapham [34, 99℄) A �nitely generated group with a de
idableword problem embeds into a �nitely presented group whose word problem is de
idable.2.5 Finite L-presentationsIn this se
tion, we �nally introdu
e the notion of a �nite L-presentation and the notionof a �nitely L-presented group. The study of �nite L-presentations was initiated byLysënok's result in [96℄ for the group G 
onstru
ted by Grigor
huk [53℄: he proved that
G is in�nitely presented by

G ∼=
〈
{a, b, c, d}

∣∣∣ {a2, b2, c2, d2, bcd} ∪
⋃

i∈N0

{(ad)4, (adacac)4}σ
i
〉
, (2.2)where σ is an endomorphism of the free group over {a, b, c, d} that is indu
ed by the map

a 7→ aca, b 7→ d, c 7→ b, and d 7→ c. As a homage to this work and as a referen
e to the
L-systems from [91℄, it was suggested in [56℄ that a group is 
alled �nitely L-presentedif it admits a group presentation of the form

〈
X

∣∣∣Q∪
⋃

i∈N0

Rσi
〉with a �nite alphabet X , �nite subsets Q and R of the free group over X , and a singleendomorphism σ of the free group over X . This notion was generalized in [6℄ as follows:De�nition 2.12 (Bartholdi [6℄) An L-presentation is a group presentation of theform 〈

X
∣∣∣Q ∪

⋃

σ∈Φ∗

Rσ
〉 (2.3)where Φ∗ denotes the free monoid of endomorphisms of the free group F over X that isgenerated by Φ; i.e., the 
losure of {id}∪Φ under taking 
omposition of group homomor-phisms.The group presentation in Eq. (2.3) is denoted by 〈X | Q | Φ | R〉. The group G itde�nes is L-presented by 〈X | Q | Φ | R〉. We also write G = 〈X | Q | Φ | R〉 in this 
ase.An L-presentation 〈X | Q | Φ | R〉 is a �nite L-presentation if X , Q, Φ, and R are �nite.A group presented by a �nite L-presentation is �nitely L-presented by 〈X | Q | Φ | R〉.The relations in Q and R are the �xed relations and iterated relations, respe
tively. Theendomorphisms in Φ are the substitutions of the L-presentations.



2.5. Finite L-Presentations 23Remark 2.13 In the following, we always assume that the substitutions in Φ of a �nite
L-presentation generate a free monoid. This is not ne
essary for the algorithms 
on-stru
ted below and, in parti
ular, it does not 
hange the isomorphism type of the group.More pre
isely, given a �nite set of endomorphisms {σ1, . . . , σn} ⊆ End(F ) and a �niteset of symbols Φ = {φ1, . . . , φn}, we 
onsider the free monoid Φ∗ whi
h naturally mapsonto the monoid M = 〈σ1, . . . , σn〉 generated by the endomorphism {σ1, . . . , σn} of thefree group. In the following, we always identify the free monoid Φ∗ with its image in
End(F ). This identi�
ation does not 
hange the isomorphism type of the L-presentedgroup. However, the free monoid Φ∗ is well-ordered [67, 129℄ whi
h we often use for thealgorithms 
onstru
ted below.With the notion of a �nite L-presentation, Lysënok's result in Eq. (2.2) 
ould be restatedas follows:Theorem 2.14 (Lysënok [96℄) The Grigor
huk group G is �nitely L-presented by〈
{a, b, c, d} | {a2, b2, c2, d2, bcd} | {σ} | {(ad)4, (adacac)4}

〉 where σ denotes the endomor-phism of the free group over {a, b, c, d} that is indu
ed by the map a 7→ aca, b 7→ d, c 7→ b,and d 7→ c.An L-presentation of the form 〈X | ∅ | Φ | R〉 is an as
ending L-presentation. As
ending
L-presentations generalize the 
on
ept of a �nite presentation:Remark 2.15 A �nitely presented group 〈X |R〉 is �nitely L-presented by 〈X | ∅ | ∅ | R〉.The substitutions σ ∈ Φ of an as
ending L-presentation 〈X | ∅ | Φ | R〉 stabilizethe normal subgroup K = 〈

⋃
σ∈Φ∗ Rσ〉F . Therefore, ea
h substitution of an as
end-ing L-presentation indu
es an endomorphism of the L-presented group G = F/K. An

L-presentation where every substitution indu
es an endomorphism of the L-presentedgroup is 
alled an invariant L-presentation. The group presented by an invariant L-presentation is invariantly L-presented. Some algorithms developed in this thesis willwork for invariant L-presentations only; e.g. the algorithm in Appendix E for 
omputingDwyer quotients of the S
hur multiplier of an invariantly �nitely L-presented group. Ad-ditionally, the nilpotent quotient algorithm in [9, 64℄ is more e�e
tive on invariant �nite
L-presentations. Note that invariant and as
ending L-presentations are related by thefollowingRemark 2.16 Every as
ending L-presentation is invariant. For ea
h invariant L-pre-sentation 〈X | Q | Φ | R〉 there exists an as
ending L-presentation 〈X | ∅ | Φ | Q ∪ R〉whi
h de�nes the same group.The �nite L-presentation in Theorem 2.14 for the group G 
onstru
ted by Grigor
huk isan invariant L-presentation as the �xed relations Q = {a2, b2, c2, d2, bcd} are mapped bythe substitution σ to
(a2)σ = (aca)2, (b2)σ = d2, (c2)σ = b2, (d2)σ = c2, and (bcd)σ = dbc = (bcd)d

−1
.



24 Chapter 2. Groups and PresentationsThese images are obviously relations in the group G. Therefore, the substitution σ fa
torsthrough to an endomorphism of G; see also [55℄. In parti
ular, G is �nitely L-presentedby the as
ending �nite L-presentations
〈{a, b, c, d} ∣∣ ∅

∣∣ {σ}
∣∣ {a2, b2, c2, d2, bcd, (ad)4, (adacac)4}

〉

=
〈
{a, b, c, d}

∣∣ ∅
∣∣ {σ}

∣∣ {a2, bcd, (ad)4, (adacac)4}
〉
.Finite L-presentations are re
ursive:Lemma 2.17 A �nite L-presentation is a re
ursive presentation.Proof. Let 〈X | Q | Φ | R〉 be a �nite L-presentation. Sin
e the �nitely generatedfree monoid Φ∗ is re
ursively enumerable, the set of relations Q∪

⋃
σ∈Φ∗ Rσ of a �nitely

L-presented group is re
ursively enumerable. 2Higman's embedding theorem 2.10 and Lemma 2.17 have the following immediateCorollary 2.18 Ea
h �nitely L-presented group embeds into a �nitely presented group.Ea
h �nitely generated subgroup of a �nitely L-presented group is re
ursively presented.Proof. Sin
e a �nitely L-presented group is re
ursively presented, a �nitely L-presentedgroup embeds into a �nitely presented group by Higman's embedding theorem 2.10.Thus a �nitely generated subgroup of a �nitely L-presented group embeds into a �nitelypresented group and hen
e, it is re
ursively presented. 2In Appendix D, we generalize the Reidemeister-S
hreier theorem for �nitely presentedgroups as we prove that ea
h �nite index subgroup of �nitely L-presented group is �nitely
L-presented itself.Proposition 2.19 The 
lass of �nitely presented groups is properly 
ontained in the
lass of �nitely L-presented groups. The 
lass of �nitely L-presented groups is 
ontainedin the 
lass of re
ursively presented groups. There are �nitely generated groups that arenot �nitely L-presented.Proof. By Remark 2.15, ea
h �nitely presented group is �nitely L-presented. Grigor-
huk's group is �nitely L-presented by Theorem 2.14 but it is not �nitely presented [56℄.Therefore, the 
lass of �nitely presented groups is properly 
ontained in the 
lass of�nitely L-presented groups. By Lemma 2.17, every �nitely L-presented group is re
ur-sively presented. Be
ause there are only 
ountably many �nite L-presentations but, byProposition 2.3, un
ountably many non-isomorphi
 groups generated by two elements,there are �nitely generated groups that are not �nitely L-presented. 2Sin
e we are not aware of a method to prove or disprove that a �nitely generated groupis �nitely L-presented (or even invariantly �nitely L-presented), we have no answer tothe following problem:Question 2.20 Is there an expli
it example of a re
ursively presented group that is not�nitely L-presented? Is there a �nitely L-presented group that is not invariantly �nitely
L-presented?



2.6. Examples of Finitely L-Presented Groups 25Note that, in Appendix B, we prove that `being invariantly �nitely L-presented' is anabstra
t property of a group whi
h does not depend on the generating set. Therefore,it su�
es to 
onstru
t a �nitely L-presented group whi
h does not admit an invariant
L-presentation with respe
t to the same generating set.2.6 Examples of Finitely L-Presented GroupsBe
ause �nite L-presentations generalize the 
on
ept of a �nite presentation, there arevarious examples of �nitely L-presented groups. More interesting examples of �nitely
L-presented groups are those whi
h are not �nitely presented. In this se
tion, we showthat the 
on
ept of a �nite L-presentation is quite general so that various examples of�nitely generated groups exist whi
h are �nitely L-presented. The algorithms developedin this thesis apply to these groups.2.6.1 Self-Similar GroupsA major motivation for introdu
ing the notion of a �nite L-presentation in [6,56℄ was thedesire to understand better some examples of self-similar groups. Self-similar groups haveappeared a
ross a wide range of mathemati
s, answering 
lassi
al questions in in�nitegroup theory as well as establishing new links to 
omplex dynami
s [6, 9℄.A self-similar group is de�ned by its re
ursive a
tion on a rooted regular tree. We
onsider the d-regular rooted tree as the free monoid over the alphabet T = {0, . . . , d−1}.Then a group G that a
ts faithfully on the free monoid T ∗ is a self-similar group if forea
h g ∈ G and x ∈ T there exist h ∈ G and y ∈ T with

(xw)g = y wh for ea
h w ∈ T ∗.In order to de�ne a self-similar group, it su�
es to spe
ify the a
tion of its generatorson the regular rooted tree. For instan
e, we have the following well-known examples ofself-similar groups:Example 2.21 (Grigor
huk [53℄) The Grigor
huk group G = 〈a, b, c, d〉 is de�ned bythe following a
tion on the rooted binary tree T ∗ = {0, 1}∗:
(0w)a = 1w
(0w)b = 0wa

(0w)c = 0wa

(0w)d = 0w

(1w)a = 0w
(1w)b = 1wc

(1w)c = 1wd

(1w)d = 1wb .Example 2.22 (Gupta & Sidki [62℄) The Gupta-Sidki group G = 〈a, r〉 is de�ned bythe following a
tion on the rooted 3-regular tree T ∗ = {0, 1, 2}∗:
(0w)a = 1w
(1w)a = 2w
(2w)a = 0w

(0w)r = 0wa

(1w)r = 1wa
−1

(2w)r = 2wr .



26 Chapter 2. Groups and PresentationsExample 2.23 (Fabrykowski & Gupta [45, 46℄, Grigor
huk [57℄) For d ≥ 3, thegeneralized Fabrykowski-Gupta group Γd = 〈a, r〉 is de�ned by the following a
tion on therooted d-regular tree T ∗ = {0, . . . , d− 1}:
(xw)a = x+ 1 (mod d)w, for 0 ≤ x ≤ d− 1

(0w)r = 0wa,
(xw)r = xw, for 1 ≤ x < d− 1

(d− 1w)r = d− 1wr.Various self-similar groups are �nitely L-presented but not �nitely presented:Theorem 2.24 (Bartholdi [6℄) Ea
h �nitely generated, 
ontra
ting, semi-fra
tal, reg-ular bran
h group is �nitely L-presented but not �nitely presented.The 
onstru
tive proof of Theorem 2.24 provides a method for 
omputing �nite L-presentations for self-similar groups; see [6, 14, 128℄. For further details on self-similargroups groups, we refer to [6, 12, 101℄. Throughout this thesis, we often use the testbed-groups from [6,9℄ to provide 
omputational eviden
e for the e�e
tiveness of our algorithmsin pra
ti
e.2.6.2 Groups Satisfying Finitely Many IdentitiesIn the style of [6, Se
tion 2.2℄, we de�ne an identity to be an element w of a free group Eover some alphabet Y. A group G satis�es the identity w ∈ E, if for ea
h homomorphism
π:E → G we have that wπ =G 1. For instan
e, all abelian groups satisfy the identity
w = [x, y]. The free group over X in the variety of groups satisfying the identities
{w1, . . . , wn} ⊆ E is

F = F
/〈

wπ1 , . . . , w
π
n

∣∣∣ π ∈ Hom(E,F )
〉Fwhere F denotes the free group over X . The group F is universal in the sense that everygroup generated by X and satisfying the identities w1, . . . , wn is a homomorphi
 imageof F . A �nitely generated group G is �nitely presented in the variety of groups satisfyingthe identities w1, . . . , wn if the kernel F → G is �nitely generated as normal subgroup.The following proposition is easily derived from [6, Proposition 2.13℄:Proposition 2.25 Ea
h group that is �nitely presented in the variety of groups satisfying�nitely many identities is �nitely L-presented.The proof of [6, Proposition 2.13℄ uses a variation of Nielsen transformations. It gen-eralizes to further examples of �nitely L-presented groups; see Se
tion 2.6.3 below. Forinstan
e, the free Burnside group B(m,n) on m generators that satis�es the identity xnis �nitely L-presented; see the AMS review of [114℄. Another example is given expli
itlyby the following L-presentation from [64℄:



2.6. Examples of Finitely L-Presented Groups 27Example 2.26 An n-Engel group is a group G that satis�es the n-th Engel identity
[t,n u] =G 1, for all t, u ∈ G, where [t,n u] is de�ned re
ursively by [t,1 u] = [t, u] and
[t,n+1 u] = [[t,n u], u].The free group E(m,n) in the variety of m-generated n-Engel groups is �nitely L-presented by 〈{x1, . . . , xm} ∪ {t, u} | {t, u} | Φ | {[t,n u]}〉 where the substitutions Φ =
{σ+i , σ

−
i , τ

+
i , τ

−
i | 1 ≤ i ≤ m} are indu
ed by the maps

σ+i :





xk 7→ xk, for 1 ≤ k ≤ m,
t 7→ xi t,
u 7→ u,

σ−i :





xk 7→ xk, for 1 ≤ k ≤ m,

t 7→ x−1
i t,

u 7→ u,and
τ+i :





xk 7→ xk, for 1 ≤ k ≤ m,
t 7→ t,
u 7→ xi u,

τ2i :





xk 7→ xk, for 1 ≤ k ≤ m,
t 7→ t,

u 7→ x−1
i u,respe
tively.2.6.3 Further Examples of Finitely L-Presented GroupsThe notion of a �nite L-presentation is quite natural. It was used intrinsi
ally in manyinstan
es for the 
onstru
tion of groups with interesting properties. The 
onstru
tiveproof of Theorem 2.25 (as indi
ated in the Example 2.26), allows one to prove thatmany in�nitely presented groups in literature are �nitely L-presented. For instan
e, thelamplighter group Z2 ≀ Z admits a �nite L-presentation:Proposition 2.27 If H is a �nitely presented group, the wreath produ
t H ≀Z is �nitely

L-presented.Proof. Let 〈X | R〉 be a �nite presentation for the group H. Then the wreath produ
t
H ≀ Z admits the presentation

〈
X ∪ {t}

∣∣∣ R ∪ {[xt
i

, yt
j

] | x, y ∈ X , i, j ∈ Z, i 6= j}
〉
.It is easy to see that we 
an repla
e the relations [xt

i
, yt

j
] = [x, yt

j−i
]t
i , with i, j ∈ Z,by the relations [x, yt

i
] with i ∈ N \ {0} without 
hanging the isomorphism type of thegroup. In parti
ular, we have that

H ≀ Z ∼=
〈
X ∪ {t}

∣∣∣ R ∪ {[x, yt
i

] | x, y ∈ X , i ∈ N \ {0}}
〉
. (2.4)For ea
h x ∈ X , we introdu
e a stable letter ux 6∈ X and we write U = {ux | x ∈ X} sothat X ∩ U = ∅ holds. Consider the �nite L-presentation

〈
X ∪ U ∪ {t}

∣∣∣ {x−1ux}x∈X

∣∣∣ {σx}x∈X
∣∣∣ R∪ {[x, uty ]}x,y∈X

〉
, (2.5)



28 Chapter 2. Groups and Presentationswhere σy denotes the endomorphism of the free group over X ∪ U ∪ {t} that is indu
edby the map
σy:





x 7→ x, for ea
h x ∈ X
t 7→ t

ux 7→ ux, for ea
h x ∈ X \ {y}
uy 7→ (uy)

t.The map x 7→ x, t 7→ t, and ux 7→ x indu
es a surje
tive homomorphism from the groupde�ned by the �nite L-presentation in Eq. (2.5) onto the wreath produ
t in Eq. (2.4).The map that identi�es the generators X ∪ {t} of the wreath produ
t in Eq. (2.4) withthe 
orresponding generators of the �nite L-presentation in Eq. (2.5) de�nes a surje
tivehomomorphism. These homomorphisms are 
learly inverses of ea
h other. Thus the�nite L-presentation in Eq. (2.5) de�nes H ≀ Z. 2The �nite L-presentation for the wreath produ
t in Eq. (2.5) is not as
ending. In general,we are not aware of an as
ending L-presentation for the wreath produ
ts H ≀Z. However,in 
ontrast to [6℄, Bartholdi noti
ed that the lamplighter group Z2 ≀ Z is �nitely L-presented by
Z2 ≀ Z ∼=

〈
{a, t}

∣∣ ∅
∣∣ {σ}

∣∣ {a2, [a, at]}
〉
,where σ denotes the endomorphism of the free group over {a, t} that is indu
ed by themap a 7→ ata and t 7→ t. We generalize this 
onstru
tion in the following proposition:Proposition 2.28 If H is a �nitely generated abelian group, the wreath produ
t H ≀Z isinvariantly �nitely L-presented.Proof. For a proof, we refer to Proposition 2.3 in Appendix B. 2Another group that is �nitely L-presented was 
onstru
ted in [85℄: Consider the subgroup

H = 〈a1, . . . , ar〉 of the group G = 〈{a1, . . . , ar, t} | {w1, . . . , ws, a
t
1v

−1
1 , . . . , atrv

−1
r }〉where wj are freely and 
y
li
ally redu
ed words in X± = {a1, . . . , ar}

±. If G satis�essome small-
an
ellation 
ondition, H is not �nitely presented [85℄. However, by Theo-rem 3.1 of [85℄, H is �nitely L-presented by 〈{a1, . . . , ar} | ∅ | {φ} | {w1, . . . , wr}〉 where
φ denotes the endomorphism of the free group F over {a1, . . . , ar} that is indu
ed by themap

φ:F → F,





a1 7→ v1,...
ar 7→ vr.Similarly, the �nitely generated group with trivial S
hur multiplier in [18℄ is �nitely

L-presented but not �nitely presented. We are not aware of an invariant �nite L-presentation for this group [64℄. Another example of a �nite L-presentation is givenby the re
ursive presentation for Mihailova's subgroup in [26℄.2.7 De
ision Problems for Finitely L-Presented GroupsIn this se
tion, we 
onsider de
ision problems for �nitely L-presented groups. Sin
e ea
h�nite presentation 
an be 
onsidered as a �nite L-presentation, we have the following



2.7. De
ision Problems for Finitely L-Presented Groups 29Remark 2.29 If an abstra
t property is not re
ursively re
ognizable for �nitely presentedgroups, it is not re
ursively re
ognizable for �nitely L-presented groups.Sin
e a �nitely L-presented group is re
ursively presented, the following lemma appliesto �nitely L-presented groups:Lemma 2.30 The word problem of a re
ursively presented group is semi-de
idable.Proof. Let 〈X | R〉 be a re
ursive presentation of a group. Suppose that r1, r2, . . .is a re
ursive enumeration of the group's relations; i.e., rn ∈ R denotes the elementthat is returned as the n-th step of the algorithm that list the elements of R one afteranother. The word problem is semi-de
idable if the set of elements g ∈ 〈R〉F is re-
ursively enumerable where F denotes the free group over X . For g ∈ 〈R〉F , we have
g = u−1

1 rε11 u1 · · · u
−1
m rεmm um with ri ∈ R, ui ∈ F , and ε = ±1. Sin
e the free group Fis �nitely generated by X , elements of this form are re
ursively enumerable and thus

g ∈ 〈R〉F 
an be listed one after another. 2However, there are re
ursively presented groups whose word problem is not de
idable [95,Se
tion IV.7℄. In the following, we 
onsider two de
ision problems whi
h 
ould be fa
edwith our algorithms in spe
ial 
ases. De
ision problems for re
ursively presented groupswere also studied in [94℄.2.7.1 Finite Presentability ProblemBe
ause `being �nitely presented' does not depend on the generating set of the group,it is an abstra
t property [38℄. Sin
e the 
lass of �nitely presented groups is 
ontainedin the 
lass of �nitely L-presented groups, a natural de
ision problem for a �nitely L-presented group is to ask for an algorithm that de
ides whether or not a given �nite
L-presentation de�nes a �nitely presented group. In general, this �nite presentabilityproblem for �nitely L-presented groups is not de
idable. In order to prove that the �nitepresentability problem is not de
idable, we 
onsiderTheorem 2.31 (Baumslag [17℄) For �nitely presented groups G and H, the wreathprodu
t H ≀G is �nitely presented if and only if either H is trivial or G is �nite.An immediate 
onsequen
e of Proposition 2.27 and Theorem 2.31 is the followingProposition 2.32 There exists no algorithm that de
ides whether or not a �nite L-presentation de�nes a �nitely presented group.Proof. Let H = 〈X | R〉 be a �nitely presented group. By Proposition 2.27 the wreathprodu
t H ≀Z is �nitely L-presented. By Theorem 2.31, though, H ≀Z is �nitely presentedif and only if H is trivial. If an algorithm existed for de
iding whether or not a �nite
L-presentation de�nes a �nitely presented group, there would exist an algorithm forde
iding whether or not H is trivial. However, `being trivial' is a Markov property. Bythe Adian-Rabin Theorem 2.6, it is therefore impossible to de
ide whether or not a �nite
L-presentation de�nes a �nitely presented group. 2As every �nitely L-presented group is re
ursively presented, Proposition 2.32 yields



30 Chapter 2. Groups and PresentationsCorollary 2.33 The �nite presentability problem for a re
ursively presented group is notde
idable.Even though it is not de
idable whether or not a �nite L-presentation de�nes a �nitelypresented group, the algorithm in [66℄ or Appendix E addresses this de
ision problempra
ti
ally. It attempts to gain 
omputational eviden
e for an invariantly �nitely L-presented group to be in�nitely related. Our approa
h follows the ideas from [56℄. It
omputes su

essive (still �nitely generated) fa
tor groups of the S
hur multiplier of aninvariantly �nitely L-presented group.The S
hur multiplier M(G) of a group G is an invariant whi
h is related to a grouppresentation by Hopf's formula: If F is a free group and R� F is a normal subgroup sothat G = F/R holds, the S
hur multiplier M(G) satis�es
M(G) ∼= (R ∩ F ′)/[R,F ].The S
hur multiplier M(G) is related to the �nite presentability problem:Lemma 2.34 The S
hur multiplier of a �nitely presented group is a �nitely generatedabelian group.Proof. If G is �nitely presented, there exists a �nite presentation 〈X | R〉 for G. Let

F be the free group over X and denote by R the normal 
losure in F of the �nitelymany relations in R. Then G = F/R holds. By Hopf's formula, the S
hur multipliersatis�es M(G) ∼= (R ∩ F ′)/[R,F ]. The subgroup (R ∩ F ′)/[R,F ] is 
ontained in the
entral subgroup R/[R,F ] ≤ F/[R,F ]. Sin
e R is �nitely generated as normal subgroup,
R/[R,F ] is a �nitely generated abelian group. Thus, all subgroups of R/[R,F ] are �nitelygenerated. In parti
ular, the S
hur multiplier M(G) ∼= (R ∩ F ′)/[R,F ] ≤ R/[R,F ] is a�nitely generated abelian group. 2Lemma 2.34 was used in [56℄ to prove that the group G 
onstru
ted by Grigor
huk [53℄is not �nitely presented. These expli
it 
al
ulations were generalized to an algorithm for
omputing Dwyer quotients of the S
hur multiplier in [66℄ or Appendix E.Noti
e that the 
onverse of Lemma 2.34 is not true: A 
ounter-example, namely agroup with �nitely generated (even trivial) S
hur multiplier whi
h is not �nitely pre-sented, was 
onstru
ted in [18℄:Theorem 2.35 (Baumslag [18℄) The group

B = 〈{a, b, t} | {at a−4, bt
−1
b−2, [a, bt

i

] | i ∈ Z}〉is a met-abelian, in�nitely related group with trivial S
hur multiplier.The 
onstru
tions in the proof of Proposition 2.27 also show that Baumslag's group inTheorem 2.35 is �nitely L-presented; see [64℄.Even though the S
hur multiplier of a �nitely L-presented group is not 
omputable ingeneral [52℄, our approa
h in [66℄ or Appendix E 
omputes su

essive quotients, so-
alledDwyer quotients, of the S
hur multiplier of an invariantly �nitely L-presented group.



2.8. First Results for Finitely L-Presented Groups 31Various self-similar groups admit striking patterns along the su

essive Dwyer quotientswhi
h suggest that their S
hur multiplier is in�nitely generated. The algorithm in [66℄ orAppendix E 
an be seen as a quotient method for the S
hur multiplier of an invariantly�nitely L-presented group.2.7.2 The Group Homomorphism ProblemIn this se
tion, we 
onsider a 
omputational problem whi
h is fundamental for any quo-tient method for �nitely L-presented groups. Even though an answer to this problemmay depend on the L-presentation, a solution to this problem allows us to develop in-teresting algorithms for �nitely L-presented groups; e.g. the 
oset enumerator in [67℄ isa 
onsequen
e of our solution for the 
lass of �nite groups.Let H denote a 
lass of groups (e.g. an important 
ase is that H is the 
lass of �nitegroups). Suppose that G is �nitely L-presented by 〈X | Q | Φ | R〉 and assume that
f :X → H is a map into a group H ∈ H. We say that the group homomorphism problemfor the 
lass H is de
idable if there exists an algorithm that de
ides whether or not themap f extends to a homomorphism G→ H.By the universal property of free groups, the map f :X → H extends to a uniquegroup homomorphism ϕ:F → H from the free group F over the alphabet X . Thehomomorphism ϕ indu
es a group homomorphism G → H if and only if G's relationsare mapped trivially; i.e., Q ∪

⋃
σ∈Φ∗ Rσ ⊆ ker(ϕ) holds. A solution to the grouphomomorphism problem may depend on the 
lass of groups.If H ∈ H has a de
idable word problem, there exists an algorithm that de
ideswhether or not an element r ∈ F satis�es rϕ =H 1. Therefore, for a �nitely presentedgroup, the group homomorphism problem for a 
lass H of groups with a (semi-)de
idableword problem is (semi-)de
idable be
ause it su�
es to 
he
k �nitely many relations. Ifthe group is �nitely L-presented, though, there are possibly in�nitely many relations thatneed to be 
onsidered for solving the group homomorphism problem. In Chapter 3, weobtain a solution to the group homomorphism problem for the 
lass of �nite groups:Theorem 2.36 For a �nitely L-presented group, the group homomorphism problem forthe 
lass of �nite groups is de
idable.We also solve the group homomorphism problem for the 
lass of �nitely generated nilpo-tent groups (and even the 
lass of poly
y
li
 groups is likely to admit a solution to thegroup homomorphism problem). In general, though, we have no solution to the grouphomomorphism problem.2.8 First Results for Finitely L-Presented GroupsIn this se
tion, we summarize some well-known results on the stru
ture of a �nitely L-presented group. The following group theoreti
 
onstru
tions preserve the property ofbeing �nitely L-presented:



32 Chapter 2. Groups and PresentationsTheorem 2.37 (Bartholdi [6℄) For �nitely L-presented groups G and H, the followinggroups are �nitely L-presented:
• every fa
tor group G/N for a normal subgroup N � G whi
h is �nitely generatedas a normal subgroup of G,
• every split-extension H ⋊G,
• every group extension of G by a �nitely presented group,
• the free produ
t G ∗H, and
• every HNN-extension of G relative to an isomorphism φ:K → L where K and Lare �nitely generated subgroups of G.An immediate 
onsequen
e of Theorem 2.37 isCorollary 2.38 Let G and H be �nitely L-presented groups. If F is a �nitely generatedgroup with embeddings ψ:F → G and φ:F → H, the amalgamated free produ
t G ∗F His �nitely L-presented.Furthermore, it was already suggested in [6℄ that ea
h �nite index subgroup of a �nitely

L-presented group is �nitely L-presented. The proof in [6, Proposition 2.9℄ 
ontains agap whi
h we addressed in [70℄ or Appendix D. However, �nitely L-presented groupssatisfyTheorem 2.39 (Reidemeister-S
hreier Theorem) Ea
h �nite index subgroup of a�nitely L-presented group is �nitely L-presented.In [70℄ or Appendix D we also study 
onditions on a �nite index subgroup of an invariantly�nitely L-presented group to be invariantly �nitely L-presented.2.9 Algorithms for Finitely L-Presented GroupsIt was shown in [9,64℄ that �nite L-presentations allow 
omputer algorithms to be appliedin the investigation of �nitely L-presented groups. So far, the only algorithm for �nitely
L-presented groups is the nilpotent quotient algorithm in [9, 64℄:2.9.1 The Nilpotent Quotient AlgorithmMost results on the stru
ture of a self-similar group were obtained using their realizationas automorphism groups of a regular rooted tree. For instan
e, the faithful a
tion onthe binary tree of group G 
onstru
ted by Grigor
huk [53℄ was used in [123℄ to 
omputeits lower 
entral series se
tions γcG/γc+1G; see also [10℄. The lower 
entral series of
G admits striking patterns so that the se
tions γcG/γc+1G have a ni
e des
ription (seeSe
tion A.3.1 below). In fa
t, G is a group of �nite width. Similar results were obtainedin [7℄ for other self-similar groups in
luding the Fabrykowski-Gupta group from [45, 46℄.The striking patterns along the lower 
entral series γcG/γc+1G were a major motiva-tion for generalizing the nilpotent quotient algorithm for �nitely presented groups [107℄



2.9. Algorithms for Finitely L-Presented Groups 33to �nitely L-presented groups in [9,64℄. Similar to the original algorithm, this generaliza-tion 
omputes a poly
y
li
 presentation for the lower 
entral series quotients G/γc(G) ofa �nitely L-presented group G together with a group homomorphism G→ G/γcG. Thesu

essful appli
ation of our nilpotent quotient algorithm to various self-similar groupsyields detailed 
onje
tures on the stru
ture of their lower 
entral series in general. More-over, it provides a �rst algorithm for 
omputing within the lower 
entral series quotients
G/γcG of a �nitely L-presented group (the groups G/γcG have a de
idable word prob-lem). For further details on the nilpotent quotient algorithm for �nitely L-presentedgroups, we refer to [9, 64℄ or Se
tion A.3 below.Our generalization of the nilpotent quotient algorithm for �nitely presented groupsin [107℄ to �nite L-presentations suggested that the p-quotient algorithm [74, 105℄ andthe poly
y
li
 quotient algorithm from [92, 93℄ generalize to �nite L-presentations [63℄;see also [43℄.
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Chapter3The Group Homomorphism ProblemA group presentation is a useful tool to de
ide if a map from a generating set of agroup into another group indu
es a group homomorphism. More pre
isely, given a grouppresentation 〈X | R〉 of G and a map f :X → H from the generating set X of G into agroup H, the presentation is useful to de
ide whether or not f indu
es a (unique) grouphomomorphism G → H: By the universal property of free groups, the map f extendsto a unique homomorphism ϕ:F → H from the free group F over the alphabet X intothe group H. The homomorphism ϕ indu
es a group homomorphism G → H if andonly if all relations in R of G's group presentation are mapped trivially. If 〈X | R〉 isa �nite presentation, there are �nitely many relations that need to be 
onsidered. Thegroup homomorphism problem is de
idable if both G and H are �nite [90℄ and, evenmore general, if G is �nitely presented and H has a de
idable word problem. For �nitely
L-presented groups, though, there are possibly in�nitely many relations that need to be
he
ked in order to verify that ϕ indu
es a group homomorphism G→ H.In this 
hapter, we show that the group homomorphism problem is solvable if H is�nite or �nitely generated and nilpotent. Our solution for the 
lass of �nite groups isthe basis for our 
oset enumerator for �nitely L-presented groups in [67℄ or Appendix C.3.1 The Class of Finite GroupsIn this se
tion, we 
onsider the group homomorphism problem for the 
lass H of �nitegroups. Let G = 〈X | Q | Φ | R〉 be a �nitely L-presented group. We expli
itly des
ribean algorithm that de
ides whether or not a map f :X → H into a �nite group H ∈ Hindu
es a group homomorphism G→ H. Denote by F the free group over the alphabet
X . By the universal property of free groups, f extends (uniquely) to a homomorphism
ϕ:F → H. Then ϕ indu
es a group homomorphism π:G→ H if and only if all relationsof G's �nite L-presentation are mapped trivially by ϕ; i.e., we have rϕ =H 1 for all
r ∈ Q ∪

⋃
σ∈Φ∗ Rσ.Sin
e G is �nitely L-presented there are only �nitely many �xed relations in Q that
an be 
he
ked one after another. Therefore, it remains to 
onsider the (possibly in�nitely



36 Chapter 3. The Group Homomorphism Problemmany) relations ⋃
σ∈Φ∗ Rσ. We show that �nitely many relations of the form rσ, with

r ∈ R and σ ∈ Φ∗, are su�
ient in order to de
ide whether or not f :X → H indu
es toa group homomorphism G→ H. First, we 
onsider the followingLemma 3.1 For a �nitely generated free group F and a positive integer n ∈ N, thereare only �nitely many subgroups in F with index at most n.Proof. Let F be a �nitely generated free group and let n ∈ N be given. Suppose that
U ≤ F has �nite index m = [F : U ] ≤ n. Then F a
ts transitively on the right-
osets
U\F . Therefore, there exists a group homomorphism πU :F → Sym(U\F ) ∼= Sm. Onthe other hand, ea
h group homomorphism π:F → Sm whose image F π a
ts transitivelyon the points {1, . . . ,m} 
orresponds to a subgroup U = StabF (1) of F with index m.In fa
t, there is a one-to-one 
orresponden
e between the subgroups with index m andthe group homomorphisms π:F → Sm whose image a
ts transitively on {1, . . . ,m}.By the universal property of a free group, a group homomorphism π:F → Sm isuniquely de�ned by the images of the basis X of F . Sin
e F is �nitely generated and Smis �nite, there are only �nitely many homomorphisms in Hom(F,Sm). Thus, there areonly �nitely many subgroups U ≤ F with index m ≤ n. 2Sin
e every �nitely generated group is a homomorphi
 image of a �nitely generated freegroup, this yields the followingCorollary 3.2 For a �nitely generated group G and a positive integer n ∈ N, there areonly �nitely many subgroup H ≤ G with [G : H] ≤ n.In the following, we 
onsider endomorphisms σ ∈ End(F ) of the free group F over Xand the kernels ker(σϕ) where ϕ:F → H denotes the (unique) extension of the map
f :X → H to the free group F .Lemma 3.3 For endomorphisms σ, δ ∈ End(F ) of the free group F and a homomor-phism ϕ:F → H into a �nite group, there exists an algorithm that de
ides whether ornot ker(σϕ) ≤ ker(δϕ) holds.Proof. Sin
e H is �nite and σ is an endomorphism of the free group F , the image
im (σϕ) ∼= F/ ker(σϕ) is �nite. Therefore, ker(σϕ) has �nite index in F . The group Fa
ts transitively on F/ ker(σϕ) and there exists an isomorphism ι:F/ ker(σϕ) → im (σϕ).This isomorphism allows us to 
ompute a S
hreier transversal T for ker(σϕ) in F . ThenS
hreier's theorem (as, for instan
e, in [95, Proposition I.3.7℄) allows us to 
ompute a�nite basis Y for the free subgroup ker(σϕ). The S
hreier generators Y give a methodto de
ide whether or not ker(σϕ) ≤ ker(δϕ) holds: it su�
es to evaluate the images yδϕfor �nitely many S
hreier generators y ∈ Y. Clearly, we have ker(σϕ) ≤ ker(δϕ) if andonly if yδϕ =H 1 holds for ea
h y ∈ Y. Sin
e H is �nite, it has a solvable word problemand thus yδϕ =H 1 is de
idable. 2The 
ondition ker(σϕ) ≤ ker(δϕ) in Lemma 3.3 yields the followingLemma 3.4 There exists a homomorphism π: im (σϕ) → im (δϕ) with δϕ = σϕπ if andonly if ker(σϕ) ≤ ker(δϕ) holds.



3.1. The Class of Finite Groups 37Proof. Suppose that there exists a homomorphism π: im (σϕ) → im (δϕ) with δϕ =
σϕπ. If g ∈ ker(σϕ), then 1 = 1π = (gσϕ)π = gσϕπ = gδϕ. Thus g ∈ ker(δϕ). If,on the other hand, ker(σϕ) ≤ ker(δϕ) holds, there are isomorphisms F/ ker(σϕ) →
im (σϕ), g ker(σϕ) 7→ gσϕ and F/ ker(δϕ) → im (δϕ), g ker(δϕ) 7→ gδϕ. Sin
e ker(σϕ) ≤
ker(δϕ) holds, there is a natural homomorphism F/ ker(σϕ) → F/ ker(δϕ), g ker(σϕ) 7→
g ker(δϕ). A 
ombination of these homomorphisms yields a homomorphism π: im (σϕ) →
im (δϕ), gσϕ 7→ gδϕ that satis�es σϕπ = δϕ. 2An alternative proof of Lemma 3.3 is given by the algorithm in [90℄: This algorithmallows one to de
ide whether or not a map from a generating set of a �nite group into�nite group indu
es a group homomorphism. By Lemma 3.4, we have ker(σϕ) ≤ ker(δϕ)if and only if there exists a homomorphism π: im (σϕ) → im (δϕ) with δϕ = σϕπ. Forthe latter problem, the algorithm in [90℄ applies.Our algorithm for de
iding whether or not f :X → H indu
es a homomorphism G→
H is shown in Algorithm 3.1. It takes as input a �nite L-presentation 〈X | Q | Φ | R〉of G and the homomorphism ϕ:F → H. It de
ides whether or not ϕ indu
es a grouphomomorphism G → H. The pro
edure IsGroupHomomorphism in Algorithm 3.1 isIsGroupHomomorphism(X , Q, Φ, R, ϕ)if (∃q ∈ Q: q 6∈ ker(ϕ)) then return( false )if (∃r ∈ R: r 6∈ ker(ϕ)) then return( false )Choose an ordering on Φ = {φ1, . . . , φn} with φi ≺ φi+1.Initialize the lists V := [id:F → F ] and S := [φ1, . . . , φn].while S 6= [ ] doRemove the �rst entry δ from the list S.if (∃ r ∈ R: rδ 6∈ kerϕ

) then return( false )if (∀σ ∈ V : ker(σϕ) 6≤ ker(δϕ)) thenAppend φ1δ, . . . , φnδ to the list S.Add δ to the list V .return( true )Algorithm 3.1: An algorithm to de
ide whether or not ϕ:F → H indu
es a grouphomomorphism G→ H.an algorithm:Lemma 3.5 The algorithm IsGroupHomomorphism in Algorithm 3.1 terminates andit either returns true or false.Proof. Suppose that the pro
edure IsGroupHomomorphism does not terminate andhen
e, the while-loop will not terminate. Sin
e the list S = [φ1, . . . , φn] is �nite and atea
h iteration of the while-loop an element is removed from S, non-termination of thepro
edure implies that it adds in�nitely many elements δ to the list V . At ea
h step,the elements δ, σ ∈ V satisfy ker(σϕ) 6= ker(δϕ). Be
ause ϕ:F → H is a homomorphisminto a �nite group H and im (σϕ) ≤ im (ϕ) ≤ H holds, the images im (σϕ) and im (δϕ)



38 Chapter 3. The Group Homomorphism Problemare �nite groups. Sin
e F/ ker(σϕ) ∼= im (σϕ) holds, ker(σϕ) and ker(δϕ) have �niteindex in F . As F is �nitely generated and ker(σϕ) has index at most n = |im (ϕ)|, thereare only �nitely subgroups ker(σϕ) by Lemma 3.1. This 
ontradi
ts our assumption thatthe pro
edure adds in�nitely many elements σ to V with ker(σϕ) 6= ker(δϕ) for ea
hpair δ, σ ∈ V . Therefore, the while-loop eventually terminates and thus the pro
edureIsGroupHomomorphism is an algorithm. Clearly, it either returns true or false. 2In order to prove that the algorithm IsGroupHomomorphism solves the group homo-morphism problem for the 
lass H of �nite groups, we need the following observation:Lemma 3.6 Suppose that the algorithm IsGroupHomomorphism returned true. Forea
h δ ∈ Φ∗, there exists σ ∈ V with ker(σϕ) ≤ ker(δϕ).Proof. The free monoid Φ∗ is well-ordered with respe
t to the length-plus-lexi
ographi
ordering whi
h extends the ordering ≺ on the generating set Φ. More pre
isely, theordering ≺ of the �nite generating set Φ = {φ1, . . . , φn} extends to the free monoid Φ∗ asfollows: de�ne σ ≺ δ if and only if either ‖σ‖ < ‖δ‖ holds or, otherwise, if σ = σ1 · · · σnand δ = δ1 · · · δn, with δi, σi ∈ Φ, and there exists 1 ≤ k ≤ n so that σi = δi for k < i ≤ nand σk ≺ δk. The obtained ordering ≺ on Φ∗ is total and a well-ordering [129℄. By
onstru
tion, S and V in Algorithm 3.1 are always ordered with respe
t to this ordering.Moreover, at ea
h step of the algorithm, the elements in V pre
ede those in S.Suppose that δ ∈ Φ∗ is a ≺-minimal 
ounter-example to this lemma. Then we have
ker(σϕ) 6≤ ker(δϕ) for ea
h σ ∈ V . At ea
h step of the algorithm we neither have δ ∈ Vnor δ ∈ S (if δ ∈ S at an intermediate step, the algorithm would either have found
σ ∈ V with ker(σϕ) ≤ ker(δϕ) or it would have added δ to V � in both 
ases we obtaina 
ontradi
tion to our assumption be
ause no elements were removed from V ). Sin
ethe sta
k S was initialized as S := Φ, we have that ‖δ‖ ≥ 2. Therefore, we 
an write
δ = δ1δ2 · · · δn with ea
h δi ∈ Φ. The algorithm yields the existen
e of a minimal positiveinteger 1 < k ≤ n so that, at some step of the algorithm, we have δkδk+1 · · · δn ∈ Sbut never δk−1δk · · · δn ∈ S. Hen
e, there exists τ ∈ V so that ker(τϕ) ≤ ker(δk · · · δnϕ)holds. Be
ause the elements in V pre
ede those in S, the element τ ∈ V satis�esthat τ ≺ δk · · · δn. By Lemma 3.4, ker(τϕ) ≤ ker(δk · · · δnϕ) implies the existen
e of ahomomorphism π: im (τϕ) → im (δk · · · δnϕ) with τϕπ = δk · · · δnϕ. We obtain that

δϕ = δ1 · · · δnϕ = δ1 · · · δk−1δk · · · δnϕ = δ1 · · · δk−1τϕπ.By Lemma 3.4, this yields that ker(δ1 · · · δk−1τϕ) ≤ ker(δϕ). As τ ≺ δk · · · δn holds, wehave that δ1 · · · δk−1τ ≺ δ1 · · · δk−1δk · · · δn = δ. If there existed σ′ ∈ V with ker(σ′ϕ) ≤
ker(δ1 · · · δk−1τϕ), we would have that ker(σ′ϕ) ≤ ker(δ1 · · · δk−1τϕ) ≤ ker(δϕ). Hen
e,
δ1 · · · δk−1τ is a also 
ounter-example to our lemma whi
h pre
edes the 
ounter-example
δ. This however 
ontradi
ts the minimality of δ. 2We are now in a position to prove the following theorem:Theorem 3.7 For a �nitely L-presented group and the 
lass of �nite group H, the grouphomomorphism problem for H is solved by the algorithm IsGroupHomomorphism.



3.1. The Class of Finite Groups 39Proof. Let ϕ:F → H be the unique homomorphism from the free group over the al-phabet X into the �nite group H ∈ H that lifts the map f :X → H. By Lemma 3.5, thealgorithm IsGroupHomomorphism terminates and it either returns true or false.If the algorithm returned false, it found either a �xed relation q ∈ Q with qϕ 6= 1or it found an iterated relation r ∈ R and a substitution σ ∈ Φ∗ with (rσ)ϕ 6= 1. In this
ase, the homomorphism ϕ:F → H does not fa
tor through to a group homomorphism
G→ H.Suppose that the algorithm IsGroupHomomorphism returned true. As the �nitelymany �xed relations in Q were veri�ed by the algorithm, it su�
es to 
he
k the (possiblyin�nitely many) iterated relations rδ with r ∈ R and δ ∈ Φ∗: By Lemma 3.6, thereexists σ ∈ V so that ker(σϕ) ≤ ker(δϕ) holds. Thus, by Lemma 3.4, there exists ahomomorphism π: im (σϕ) → im (δϕ) with σϕπ = δϕ. Sin
e the algorithm did notreturn false and σ ∈ V holds, the algorithm has veri�ed that rσ ∈ ker(ϕ) holds. Weobtain (rδ)ϕ = rδϕ = rσϕπ = (rσϕ)π = 1π = 1. Hen
e, all relations of the form rδwith r ∈ R and δ ∈ Φ∗ are mapped trivially by ϕ. Therefore, ϕ indu
es to a grouphomomorphism G→ H. 2The algorithm IsGroupHomomorphism has various interesting appli
ations. For in-stan
e, it allows us to develop a 
oset enumerator for �nitely L-presented groups in [67℄ orAppendix C. This is an algorithm whi
h, given a �nitely generated subgroup of a �nitely
L-presented group, 
omputes the index of the subgroup in the �nitely L-presented groupprovided that this index is �nite. Analogously to 
oset enumeration for �nitely pre-sented groups, our method has various useful further appli
ations in
luding a solutionto the generalized word problem for �nite index subgroups and a method for 
omputinglow-index subgroups of a �nitely L-presented group.3.1.1 Appli
ations of the algorithm IsGroupHomomorphismIn this se
tion, we summarize the appli
ations of the algorithm IsGroupHomomor-phism in Algorithm 3.1. In parti
ular, it allows us to develop algorithms for subgroupsof �nitely L-presented groups:

• to 
ompute the index of a �nitely generated subgroup in a �nitely L-presentedgroups provided that this index is �nite,
• to 
ompute a permutation representation for the group's a
tion on the 
osets of a�nite index subgroup,
• to solve the generalized word problem for �nite index subgroups,
• to 
ompute the latti
e of �nite index subgroups of a �nitely L-presented group,
• to 
ompute a �nite generating set of the kernel of a homomorphism from a �nitely
L-presented group into a �nite group,

• to 
ompute the interse
tion of two �nite index subgroups, and
• to 
ompute the normal 
ore of a �nite index subgroup.



40 Chapter 3. The Group Homomorphism ProblemThese methods have been implemented in the 
omputer algebra system Gap [50℄. Appli-
ations of these implementations to a 
lass of self-similar groups are shown in Appendix A.A fundamental appli
ation of algorithm IsGroupHomomorphism is the 
oset enu-merator for �nitely L-presented groups in [67℄ or Appendix C:Proposition 3.8 If G = 〈X | Q | Φ | R〉 is a �nitely L-presented group and U = 〈Y〉 is a�nitely generated subgroup of G whi
h has �nite index in G, there exists an algorithm that
omputes the index [G : U ] together with a permutation representation ϕ:G → Sym(U\G)for the group's a
tion on the 
osets.Proof. Let G = 〈X | Q | Φ | R〉 be a �nitely L-presented group and let U = 〈Y〉 be a�nitely generated subgroup with �nite index in G. Denote by F the free group over Xand write K = 〈Q∪
⋃
σ∈Φ∗ Rσ〉F . The usual word-length of an element σ ∈ Φ∗ from thefree monoid Φ∗ is denote by ‖σ‖. The �nitely presented groups Hi = 〈X | Q∪

⋃
σ∈Φi

Rσ〉with Φi = {σ ∈ Φ∗ | ‖σ‖ ≤ i} naturally map onto G. We 
onsider the �nitely manygenerators Y of the subgroup U as elements of the free group F . Then E = 〈Y〉 is asubgroup of F with U ∼= EK/K. In parti
ular, EK has �nite index in F . Sin
e F is�nitely generated and EK has �nite index, EK is �nitely generated by g1, . . . , gn, say.Write Ki = 〈Q ∪
⋃
σ∈Φi

Rσ〉F . Then EK0 ≤ EK1 ≤ EK2 ≤ . . . ≤ EK ≤ F and
EK =

⋃
i≥0EKi. Sin
e EK = 〈g1, . . . , gn〉 is �nitely generated and EK =

⋃
i≥0EKiholds, there exists ℓ ∈ N0 so that EKℓ = EK. In fa
t, the subgroup U 
an be 
onsideredas a �nite index subgroup of the �nitely presented group Hℓ = 〈X | Q ∪

⋃
σ∈Φℓ

Rσ〉. Weare to 
ompute the index [G : U ] = [F : EKℓ] = [Hℓ : U ] together with the permutationrepresentation ϕ:F → Sym(EKℓ\F ) whi
h indu
es G→ Sym(U\G).Coset enumeration for �nitely presented groups 
omputes a permutation represen-tation ϕj :F → Sym(EKj\F ) provided that [F : EKj] is �nite1 In this 
ase, the index
[F : EKj ] divides [F : EKℓ]. It remains to prove that ϕj :F → Sym(EKj\F ) indu
esa homomorphism G → Sym(EKj\F ). Here, our algorithm IsGroupHomomorphismapplies. In parti
ular, it allows us to de
ide whether or not ϕj indu
es a group homo-morphism G → Sym(EKj\F ). If this is the 
ase, the index [G : U ] = [F : EKℓ] and
[F : EKj ] 
oin
ide. Otherwise, we have to in
rease the index j. Termination of thispro
ess is guaranteed by the existen
e of ℓ ∈ N so that EKℓ = EK. For further details,we refer to [67℄ or Appendix C. 2An `inverse' of the 
oset enumerator in Proposition 3.8 is given by S
hreier's theorem (as,for instan
e, in [95, Proposition I.3.7℄). It allows us to 
ompute �nitely many S
hreiergenerators for a �nite index subgroup of a �nitely generated free group:1Although the index j, so that [F : EKj ] is �nite, 
ould not be given a priori, the following approa
hyields an algorithm whose termination 
ould be guaranteed: For an arbitrary index j, the 
oset enumer-ator for �nitely presented groups 
ould be run with an upper bound N on the number of intermediate
osets. If this pro
ess does not terminate su

essfully, we both in
rease the index j and the upper bound
N on the intermediate 
osets. We then run both algorithms in parallel. We 
ontinue in
reasing thesenumbers and to run these algorithms in parallel until eventually one of them terminates. Sin
e thesubgroup has �nite index, termination of this pro
ess is guaranteed.



3.1. The Class of Finite Groups 41Proposition 3.9 There exists an algorithm that 
omputes a �nite generating set for a�nite index subgroup U of a �nitely L-presented group G from a permutation representa-tion ϕ:G→ Sym(U\G).Proof. The subgroup U 
oin
ides with the stabilizer of the trivial 
oset U 1 under thea
tion of G. The permutation representation ϕ allows us to 
ompute a �nite generatingset for the stabilizer StabG(U 1) using an orbit-stabilizer algorithm. 2Another appli
ation of 
oset enumeration is given byProposition 3.10 If G = 〈X | Q | Φ | R〉 is a �nitely L-presented group, there existsan algorithm that proves that G is �nite and that 
omputes the order |G| provided that
G is �nite.Proof. If G is �nite, the trivial subgroup U = 〈∅〉 has �nite index in G. Therefore, our
oset enumerator terminates and it 
omputes the index [G : U ] = [G : {1}] = |G|. 2Similarly, 
oset enumeration yields the followingProposition 3.11 If G = 〈X | Q | Φ | R〉 is a �nitely L-presented group and U = 〈Y〉is a �nitely generated subgroup with �nite index in G, the generalized word problem for
U is de
idable.Proof. If U has �nite index in G, 
oset enumeration 
omputes a permutation representa-tion ϕ:F → Sym(EK\F ). Let g ∈ G be given. We 
onsider the element g as an elementof the free group F over X . Then g ∈ EK if and only if g ∈ StabSym(EK\F )(EK 1).Using the permutation representation ϕ, it is 
learly de
idable whether or not g ∈
StabSym(EK\F )(EK 1) holds. 2This solution to the generalized word problem for �nite index subgroups yields the fol-lowingCorollary 3.12 If G = 〈X | Q | Φ | R〉 is a �nitely L-presented group and U = 〈Y〉and V = 〈Z〉 are a �nitely generated subgroups with �nite index in G, there exists analgorithm that de
ides whether or not U ≤ V holds. If U ≤ V holds, there exists analgorithm that 
omputes [V : U ]. There exists an algorithm that de
ides whether or not
U ≤ G is normal in G and in this 
ase 
omputes a permutation representation for the�nite group G/U .The low-index subgroup algorithms for �nitely presented groups in [129, Se
tion 5.6℄and [35, 41℄ yield the followingProposition 3.13 If G = 〈X | Q | Φ | R〉 is a �nitely L-presented group, there existsan algorithm that 
omputes the latti
e of �nite index subgroups of G.Proof. For a positive integer n > 0, the low-index subgroup algorithms in [35, 41℄and [129, Se
tion 5.6℄ enumerate the subgroups of a �nitely presented group with in-dex at most n (in pra
ti
e, the index n is rather limited so that these algorithms are



42 Chapter 3. The Group Homomorphism Problemknown as low-index subgroup algorithms). These algorithms enumerate those homomor-phisms F → Sn from the free group F over X into the symmetri
 group Sn that fa
torthrough to a homomorphism G → Sn. They 
ould be used to 
ompute all subgroupswith �nite index in a �nitely L-presented group G = 〈X | Q | Φ | R〉 as follows: Considerthe notion introdu
ed in the proof of Proposition 3.8. For an arbitrary i ∈ N0, 
onsiderthe �nitely presented group Hi = 〈X | Q ∪
⋃
σ∈Φi

Rσ〉. Ea
h subgroup EKi ≤ F of the�nitely presented group Hi 
an be 
omputed with the low-index subgroup algorithmsfor �nitely presented groups. The subgroup EKi/Ki of the �nitely presented group Hinaturally maps onto the subgroup EK/K of the �nitely L-presented group G. Therefore,every �nite index subgroup EKi/Ki of the �nitely presented group Hi yields a �niteindex subgroup EK/K of the �nitely L-presented group. Clearly, the index [F : EK]divides the index [F : EKi]. On the other hand, every �nite index subgroup EK/K ofthe �nitely L-presented group G yields a �nite index subgroup EK/Ki of the �nitelypresented group Hi. In parti
ular, every �nite index subgroup of G shows up in the listof �nite index subgroups of Hi.The list of �nite index subgroups of the �nitely presented group Hi possibly 
ontainsdupli
ate subgroups of G. It therefore remains to remove dupli
ates from a list of sub-groups. But this is an appli
ation of Corollary 3.12. Therefore, the list of subgroups of a�nitely L-presented group with index at most n 
an be 
omputed from a list of subgroupswith index at most n of the �nitely presented group Hi. 2A low-index subgroup algorithm may help to prove that a �nitely L-presented group isnon-trivial if we 
an �nd a subgroup with non-trivial index in G; see [129, p.251℄. Similarto �nitely presented groups, we also have the following appli
ation:Proposition 3.14 There exists an algorithm that 
omputes a permutation representa-tion for the group's a
tion on the 
osets of the interse
tion of two �nite index subgroupsof a �nitely L-presented group.Proof. Let ϕ:F → Sym({1, . . . , n}) and ψ:F → Sym({1, . . . ,m}) be permutation rep-resentations for the group's a
tion on the right-
osets EK\F and VK\F of two �niteindex subgroup of a �nitely L-presented group. Then F a
ts on the Cartesian produ
t
{1, . . . , n} × {1, . . . ,m} diagonally via (a, b)g = (ag

ϕ
, bg

ψ
). The stabilizer of the point

(1, 1) 
oin
ides with the interse
tion EK ∩VK. Sin
e {1, . . . , n}×{1, . . . ,m} is �nite, anorbit-stabilizer algorithm 
omputes a generating set for the stabilizer of the point (1, 1)and thus a generating set for the interse
tion EK ∩ VK. A permutation representationfor EK ∩ VK is then obtained from 
oset enumeration. 2An immediate 
onsequen
e of Proposition 3.14 is the followingCorollary 3.15 There exists an algorithm that 
omputes a permutation representationfor the group's a
tion on the 
osets of the normal 
ore of a �nite index subgroup of a�nitely L-presented group.Proof. The normal 
ore NU of a subgroup U ≤ G is the largest normal subgroup that is
ontained in U and it satis�es NU =
⋂
g∈G Ug. Sin
e [G : U ] is �nite, there exists a �nite



3.1. The Class of Finite Groups 43transversal T ⊆ G for U in G. Therefore, the normal 
ore NU satis�es NU =
⋂
t∈T U t andthus it is the interse
tion of �nitely many �nite index subgroups. By Proposition 3.14, apermutation representation for this interse
tion 
an be 
omputed. 2For a �nitely L-presented group G = 〈X | Q | Φ | R〉 and a homomorphism ϕ:G → Hinto a �nite group H, a �nite generating set for the kernel ker(ϕ) is 
omputable:Proposition 3.16 If G = 〈X | Q | Φ | R〉 is a �nitely L-presented group and if ϕ:G →

H is a homomorphism into a �nite group, there exists an algorithm that 
omputes a �nitegenerating set for the kernel of ϕ.Proof. Sin
e H is �nite, we 
an 
onsider H as a �nite permutation group H ≤ Sn =
Sym({1, . . . , n}). Moreover, we have F/ ker(ϕ) ∼= im (ϕ) ≤ Sn. By [95, Proposition 4.1℄,it su�
es to 
ompute a S
hreier transversal for ker(ϕ) in F . Be
ause there is a one-to-one
orresponden
e between the 
osets F/ ker(ϕ) and the elements of im (ϕ), this S
hreiertransversal 
an be 
omputed in the �nite permutation group Sn. 2An appli
ation of the latter proposition allows us to 
ompute a generating set for thederived subgroup G′ = [G,G] provided that the abelianization G/G′ is �nite. Notethat the abelianization is 
omputable with the nilpotent quotient algorithm in [9, 64℄.Combining this method with the Reidemeister-S
hreier theorem for �nitely L-presentedgroups in [70℄ or Appendix D, we obtain a solvable quotient algorithm for �nitely L-presented groups:Corollary 3.17 If G = 〈X | Q | Φ | R〉 is a �nitely L-presented group, there exists analgorithm that 
omputes the isomorphism type of the abelianization G/G′. If G/G(i) is�nite for some i ∈ N, there exists an algorithm that 
omputes the isomorphism type ofthe se
tions G(i)/G(i+1).Proof. The nilpotent quotient algorithm in [9, 64℄ 
omputes a poly
y
li
 presentationfor G/G′ together with a homomorphism G → G/G′. The poly
y
li
 presentation for
G/G′ allows us to 
ompute the isomorphism type of G/G′. In parti
ular, it allows usto de
ide whether or not G/G′ is �nite. Suppose that, for i ≥ 2, the quotient G/G(i) is�nite. Then Proposition 3.16 allows us to 
ompute a �nite generating set for the ker-nel G(i) = ker(G → G/G(i)). Then the 
onstru
tive proof of the Reidemeister-S
hreierTheorem 2.39 in [70℄ or Appendix D allows us to 
ompute a �nite L-presentation for the�nite index subgroup G(i) ≤ G. This �nite L-presentation enables us to use the nilpo-tent quotient algorithm for 
omputing the abelianization G(i)/[G(i), G(i)] = G(i)/G(i+1)together with a homomorphism G(i) → G(i)/G(i+1). If G(i)/G(i+1) is �nite, then so is
G/G(i+1). The pro
ess 
ontinues until G(i)/G(i+1) is either trivial or in�nite. 2The algorithms above have been implemented in the 
omputer algebra system Gap [50℄.Their implementations have been applied su

essfully to a 
lass of self-similar group inAppendix A.



44 Chapter 3. The Group Homomorphism Problem3.2 The Class of Finitely Generated Nilpotent GroupsIn this se
tion, we 
onsider the group homomorphism problem for �nitely generatednilpotent groups. This problem 
an be fa
ed with the quotient method in [9, 64℄: Morepre
isely, for a �nitely L-presented groupG and a positive integer c, the nilpotent quotientalgorithm in [9, 64℄ 
omputes a weighted nilpotent presentation for the lower 
entralseries quotient G/γcG together with a homomorphism π:F → G/γcG whi
h indu
es ahomomorphism G → G/γcG. A weighted nilpotent presentation is a �nite presentationthat admits an e�e
tive solution to the word problem in G/γcG as it provides a 
on�uentrewriting system.The nilpotent quotient algorithm allows us to solve the group homomorphism problemfor the 
lass H of �nitely generated nilpotent groups: Let H ∈ H be given. We assumethatH is given by a weighted nilpotent presentation (ifH is given by a �nite presentation,a weighted nilpotent presentation 
an be 
omputed with the algorithms in [9, 64, 107℄).Suppose that G = 〈X | Q | Φ | R〉 is a �nitely L-presented group and that f :X → H is amap. We �rst 
ompute the nilpoten
y 
lass c of the subgroup L = 〈{f(x) | x ∈ X}〉 ≤ H.This 
an be done by �rst 
omputing an indu
ed poly
y
li
 presentation for the subgroup.Then the nilpotent quotient algorithm for �nitely presented groups applies. If G has amaximal nilpotent quotient with nilpoten
y 
lass less than c, f 
annot extend to agroup homomorphism G → H. We 
an therefore assume that the nilpotent quotientalgorithm in [9, 64℄ 
omputes a weighted nilpotent presentation for G/γc+1G togetherwith a homomorphism π:F → G/γc+1G whi
h indu
es a homomorphism G→ G/γc+1G.There exists a homomorphism G → H if and only if there exists a homomorphism
ι:G/γc+1G→ H so that the diagram

F

π
ϕ

G/γc+1G ι H.
ommutes. Sin
e G/γc+1G is �nitely presented and H has a de
idable word problem, itis de
idable whether or not su
h a homomorphism ι:G/γc+1G→ H exists.The same ideas as above show that, sin
e the poly
y
li
 quotient algorithm for �nitelypresented groups in [92,93℄ also generalizes to �nitely L-presented groups [63℄, the grouphomomorphism problem for the 
lass of poly
y
li
 groups is de
idable.3.3 Finitely Presented ImagesIn this se
tion, we 
onsider the group homomorphism problem for the 
lass of �nitelypresented groups with a solvable word problem. In a spe
ial 
ase, we are also able togive a solution to this problem:Proposition 3.18 Let G = 〈X | Q | Φ | R〉 be a �nitely L-presented group and let
H = 〈Y | S〉 be a �nitely presented group whose word problem is de
idable. Suppose that
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f :X → H is a map so that 〈f(X )〉 has �nite index in H. Let ϕ:F → H be the uniqueextension of f to the free group F over the alphabet X . Then there exists an algorithmwhi
h de
ides whether or not ker(ϕ) is Φ-invariant. In this 
ase, there exists an algorithmwhi
h solves the group homomorphism problem for H.Proof. By the Reidemeister-S
hreier Theorem 2.2, every �nite index subgroup of a�nitely presented group is itself �nitely presented. Moreover, as every subgroup of a�nitely presented group with a solvable word problem has a solvable word problem,we 
an assume that ϕ:F → H is onto. Thus, for ea
h y ∈ Y, there exists a word
wy(x1, . . . , xn) in the generators X = {x1, . . . , xn} so that y =H wy(x1, . . . , xn)

ϕ holds.Sin
e H has a de
idable word problem, an enumeration of the elements of F allow usto 
ompute the representatives wy. Moreover, every image xϕ, x ∈ X , has the form
vx(y1, . . . , ym) where Y = {y1, . . . , ym}. Suppose that X ∩Y = ∅ holds. In the following,we use Tietze transformations to 
ompute a �nite presentation for the �nitely presentedgroup H with generators X . In parti
ular, Tietze transformations yield that

H ∼=
〈
X ∪ Y

∣∣ {x−1vx(y1, . . . , yn)}x∈X ∪ {y−1wy(x1, . . . , xn)}y∈Y ∪ S
〉
.The relations y−1wy(x1, . . . , xm) allow us to remove the generators y ∈ Y from thepresentation. We obtain a �nite presentation 〈X | S̃〉 for the group H. The �nitely manyrelators r ∈ S̃ are normal generators of the kernel ϕ. The kernel ker(ϕ) is Φ-invariant ifand only if rσϕ =H 1 holds for all σ ∈ Φ. Sin
e H has a de
idable word problem and Φis �nite, the latter problem is re
ursively re
ognizable.Suppose that ker(ϕ) is Φ-invariant. Then, for ea
h σ ∈ Φ ⊆ End(F ) there exists anendomorphism σ̃ of the free group over Y so that σϕ = ϕσ̃ holds; see Appendix B. Themap f :X → H indu
es a group homomorphisms if and only if Q ∪

⋃
σ∈Φ∗ Rσ ⊆ ker(ϕ)holds. Sin
e Q is �nite and H has a de
idable word problem, the images qϕ, with q ∈ Q,
an be 
he
ked one after another. It therefore remains to 
onsider the relations of theform rσϕ. However, it remains to prove that rϕ =H 1 holds, as rσϕ = rϕσ̃ holds for anendomorphism σ̃ ∈ {δ̃ | δ ∈ Φ}. Sin
e R is �nite, the images rϕ 
an be 
he
ked oneafter another. This yields an algorithm that de
ides whether or not f :X → H indu
es ahomomorphism G→ H in the 
ase where ker(ϕ) is Φ-invariant. 2In general, though, we have no solution to the group homomorphism problem for the
lass of �nitely presented group with a de
idable word problem. A generalization of theideas in [70℄ or Appendix D needs to 
onstru
t a �nite subset V ⊆ Φ∗ for the substitutionsof G's L-presentation 〈X | Q | Φ | R〉 so that, for ea
h δ ∈ Φ∗, there exists σ ∈ V with

ker(σϕ) ≤ ker(δϕ) or, equivalently, if there exists a homomorphism π: im (σϕ) → im (δϕ)with δϕ = σϕπ. In this 
ase, it would be su�
ient to verify the �nitely many relations
r ∈ Q ∪

⋃
σ∈V Rσ.Question 3.19 Is the group homomorphism problem de
idable for the 
lass of �nitelypresented groups with a solvable word problem?
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Chapter4Tietze Transformations for
L-presentations
Tietze transformations relate two presentations of the same group: If 〈X | R〉 is apresentation for G, F denotes the free group over the alphabet X , K denotes the normal
losure 〈R〉F , and r ∈ K holds, then 〈X | R∪{r}〉 is a presentation for G. If 〈X | R〉 isa presentation for G, z 6∈ X is a symbol whi
h is not 
ontained in the alphabet X , and
wz ∈ F is an arbitrary element, then 〈X ∪ {z} | R ∪ {z−1wz}〉 is a presentation for G.Both transformations are reversible and are known as Tietze transformations; see, forinstan
e, [95, Chapter II℄. Tietze's theorem shows that these transformations (and theirinverses) are su�
ient to relate two �nite presentations of a group by a �nite sequen
eof these Tietze transformations.For �nite L-presentations, though, there are further transformations needed be
ausea �nite L-presentation 〈X | Q | Φ | R〉 
onsists of �xed relations Q, iterated relations
R, and substitutions Φ. For example, a relation r ∈ K 
ould be added either as a �xedrelation or as an iterated relation. In this 
hapter, we introdu
e Tietze transformationsfor �nite L-presentations in
luding transformations whi
h allow one to modify the sub-stitutions Φ of an L-presentation. These transformations allow us to prove a versionof Tietze's theorem for �nitely L-presented groups. This theorem shows that two �nite
L-presentations de�ne isomorphi
 groups if and only if one L-presentation 
an be trans-formed into the other by a �nite number of these transformations. Most of the resultsin this 
hapter were generalized in Appendix B in order to 
onsider �nitely generatednormal subgroups of �nitely presented groups.In pra
ti
e, Tietze transformations are used to simplify a group presentation. Forinstan
e, the group presentations 
omputed with the Reidemeister-S
hreier pro
ess often
ontain redundant generators and redundant relations whi
h 
ould be removed from thepresentation using Tietze transformations.



48 Chapter 4. Tietze Transformations for L-presentations4.1 Tietze Transformations for �nite L-presentationsIn this se
tion, we introdu
e Tietze transformations for �nite L-presentations; for arbi-trary L-presentations, we refer to Appendix B below. These transformations generalizethe usual Tietze transformations as, for instan
e, outlined in [95, Chapter II℄.Let G = 〈X | Q | Φ | R〉 be a �nitely L-presented group. Denote by F = F (X ) thefree group over the alphabet X and let K = 〈Q ∪
⋃
σ∈Φ∗ Rσ〉F be the kernel of the freepresentation π:F → G. The kernel K = kerπ de
omposes into the normal subgroups

Q = 〈Q〉F and R = 〈
⋃
σ∈Φ∗ Rσ〉F so that K = RQ = QR holds. The group F/R isinvariantly �nitely L-presented by 〈X | ∅ | Φ | R〉. If r ∈ K is a relation, we obtain thefollowing Tietze transformation:Proposition 4.1 If G = 〈X | Q | Φ | R〉 is a �nitely L-presented group and

r ∈ 〈Q ∪
⋃
σ∈Φ∗ Rσ〉F (X ) holds, then 〈X | Q ∪ {r} | Φ | R〉 is a �nite L-presentation for

G.Proof. The proof follows immediately with the Tietze transformation that adds a rela-tion r to a group presentation 〈X | Q ∪
⋃
σ∈Φ∗ Rσ〉. 2The transformation in Proposition 4.1 is reversible in the sense that we 
an removethe relation r from the �nite L-presentation 〈X | Q ∪ {r} | Φ | R〉 if and only if

〈Q ∪ {r} ∪
⋃
σ∈Φ∗ Rσ〉F (X ) = 〈Q ∪

⋃
σ∈Φ∗ Rσ〉F (X ) holds. The following transformationsare reversible in a similar sense.If a �nite L-presentation is not invariant, there exist elements of the kernel K = QRthat 
annot be added as iterated relations without 
hanging the isomorphism type of thegroup. However, we have the following Tietze transformation:Proposition 4.2 If G = 〈X | Q | Φ | R〉 is a �nitely L-presented group and

r ∈ 〈
⋃
σ∈Φ∗ Rσ〉F (X ) holds, then 〈X | Q | Φ | R ∪ {r}〉 is a �nite L-presentation for

G. If G = 〈X | Q | Φ | R〉 is a �nitely L-presented group and rδ ∈ 〈Q ∪
⋃
σ∈Φ∗ Rσ〉F (X )holds for ea
h δ ∈ Φ∗, then 〈X | Q | Φ | R ∪ {r}〉 is a �nite L-presentation for G.Proof. The normal subgroup R = 〈

⋃
σ∈Φ∗ Rσ〉F (X ) is invariant under ea
h substitution

σ ∈ Φ∗. More pre
isely, for ea
h r ∈ R and σ ∈ Φ∗, it holds that rσ ∈ R. Therefore,adding the (possibly in�nitely many) relations {rσ | σ ∈ Φ∗} to the group presentation
〈X | Q ∪

⋃
σ∈Φ∗ Rσ〉 does not 
hange the isomorphism type of the group G. The se
ondassertion is obvious. 2Iterated and �xed relations of a �nite L-presentation are related by the transformation:Proposition 4.3 If G = 〈X | Q | Φ | R〉 is a �nitely L-presented group and r ∈ Rholds, then 〈X | Q ∪ {r} | Φ | (R \ {r}) ∪ {rψ | ψ ∈ Φ}〉 is a �nite L-presentation for G.Proof. The proof follows immediately from

Q ∪
⋃

σ∈Φ∗

Rσ = Q∪ {r} ∪
⋃

σ∈Φ∗

(
(R \ {r}) ∪ {rψ | ψ ∈ Φ}

)σ
;



4.1. Tietze Transformations for �nite L-presentations 49these are the relations of G's group presentation. 2The following proposition is a 
onsequen
e of the de�nition of an invariant L-presentation:Proposition 4.4 If G = 〈X | Q | Φ | R〉 is an invariantly �nitely L-presented groupand q ∈ Q holds, then 〈X | Q \ {q} | Φ | R ∪ {q}〉 is a �nite L-presentation for G.Proof. Sin
e G is invariantly L-presented by 〈X | Q | Φ | R〉, ea
h σ ∈ Φ indu
es anendomorphism of the group G. Therefore, the images {qψ | ψ ∈ Φ∗} are relations of thegroup and thus 〈X | (Q \ {q}) ∪
⋃
σ∈Φ∗(R ∪ {q})σ〉 is a group presentation for G. 2The following Tietze transformation adds a generator together with a �xed relation to a�nite L-presentation:Proposition 4.5 Let G = 〈X | Q | Φ | R〉 be a �nitely L-presented group, z 6∈ X , andlet wz ∈ F (X ) be given. For ea
h σ ∈ Φ, de�ne an endomorphism of the free group Eover the alphabet X ∪ {z} that is indu
ed by the map

σ̃:

{
x 7→ xσ, for ea
h x ∈ X
z 7→ g,

(4.1)for an arbitrary g ∈ E. Then 〈X ∪ {z} | Q ∪ {z−1wz} | {σ̃ | σ ∈ Φ} | R〉 is a �nite
L-presentation for G.Proof. Similar to the proof of Proposition 4.1, the proof follows immediately with theTietze transformation that adds a generator z 6∈ X together with a relation z−1wz to thegroup presentation 〈X | Q ∪

⋃
σ∈Φ∗ Rσ〉. The extended substitution σ̃ in Eq. (4.1) 
anbe de�ned arbitrarily on z be
ause the iterated relations R do not 
ontain the generator

z or its inverse z−1 as a subword. 2Adding the relation z−1wz as an iterated relation needs the following de�nition of theextensions σ̃ of σ ∈ Φ:Proposition 4.6 Let G = 〈X | Q | Φ | R〉 be a �nitely L-presented group, z 6∈ X , andlet wz ∈ F (X ) be given. For ea
h σ ∈ Φ, we de�ne an endomorphism of the free group
E over the alphabet X ∪ {z} that is indu
ed by the map

σ̃:

{
x 7→ xσ, for ea
h x ∈ X
z 7→ wσz .

(4.2)Then 〈X ∪ {z} | Q | {σ̃ | σ ∈ Φ} | R ∪ {z−1wz}〉 is a �nite L-presentation for G.Proof. The substitution σ̃ in Eq. (4.2) is well-de�ned as wz ∈ F (X ) and σ ∈ End(F (X ))hold. Proposition 4.3 yields that
〈
X ∪ {z}

∣∣ Q
∣∣ {σ̃ | σ ∈ Φ}

∣∣ R∪ {z−1wz}
〉

=
〈
X ∪ {z}

∣∣ Q ∪ {z−1wz}
∣∣ {σ̃ | σ ∈ Φ}

∣∣ R∪ {(z−1wz)
σ̃
∣∣ σ ∈ Φ}

〉
.



50 Chapter 4. Tietze Transformations for L-presentationsThe de�nition of σ̃ in Eq. (4.2) yields that (z−1)σ̃ = (wσz )
−1 and wσ̃z = wσz . Thus

(z−1 wz)
σ̃ = 1 holds. In parti
ular, adding the relations {(z−1wz)

σ̃ | σ ∈ Φ} to a grouppresentation does not 
hange the isomorphism type of the group. Finally, Proposition 4.5yields that
〈
X ∪ {z}

∣∣ Q
∣∣ {σ̃ | σ ∈ Φ}

∣∣ R ∪ {z−1wz}
〉

=
〈
X ∪ {z}

∣∣ Q∪ {z−1wz}
∣∣ {σ̃ | σ ∈ Φ}

∣∣ R∪ {(z−1wz)
σ̃
∣∣ σ ∈ Φ}

〉

=
〈
X ∪ {z}

∣∣ Q∪ {z−1wz}
∣∣ {σ̃ | σ ∈ Φ}

∣∣ R
〉

∼= 〈X | Q | Φ | R〉 ;whi
h proves the assertion of Proposition 4.6. 2The following version of Proposition 4.3 is a �rst transformation whi
h modi�es thesubstitutions Φ of an L-presentation:Proposition 4.7 If G = 〈X | Q | Φ | R〉 is a �nitely L-presented group and ψ ∈ Φholds, then 〈X | Q | (Φ \ {ψ}) ∪ {σψ | σ ∈ Φ} | R∪Rψ〉 is a �nite L-presentation for G.Proof. The proof follows immediately from
Q∪

⋃

σ∈Φ∗

Rσ = Q∪
⋃

σ∈Ψ∗

(R∪Rψ)σwhere Ψ = (Φ\{ψ})∪{σψ | σ ∈ Φ}; these are the relations of G's group presentation. 2We also have the following transformation:Proposition 4.8 Let G = 〈X | Q | Φ | R〉 be a �nitely L-presented group and let
s ∈ F (X ) be given. Denote by δs the inner automorphism of the free group F (X ) that isindu
ed by 
onjugation with s. Then 〈X | Q | Φ∪{δs} | R〉, 〈X | Q | Φ\{σ}∪{δsσ} | R〉,and 〈X | Q | Φ \ {σ} ∪ {σδs} | R〉 are a �nite L-presentations for G.Proof. Sin
e ea
h relation of a group presentation 
an be repla
ed by a 
onjugate and
δxσ = σδxσ holds, for ea
h σ ∈ Φ∗, the proof is straightforward. 2Re
all that the kernel K = 〈Q ∪

⋃
σ∈Φ∗ Rσ〉F (X ) de
omposes into the normal subgroups

Q = 〈Q〉F (X ) and R = 〈
⋃
σ∈Φ∗ Rσ〉F (X ) so that K = QR holds. This de
ompositionyields the following transformation:Proposition 4.9 Let G = 〈X | Q | Φ | R〉 be a �nitely L-presented group. If

ψ ∈ End(F (X )) indu
es an endomorphism of F (X )/R, then 〈X | Q | Φ ∪ {ψ} | R〉is a �nite L-presentation for G.Proof. Suppose that ψ ∈ End(F (X )) indu
es an endomorphism of F (X )/R. Then Ris ψ-invariant. Thus, ea
h relation rσ with σ ∈ (Φ ∪ {ψ})∗ \ Φ∗ and r ∈ R is a relationof the group. Therefore, adding these (possibly in�nitely many) relations to the grouppresentation does not 
hange the isomorphism type of the group. 2For an as
ending (or invariant) L-presentation, we have the following transformation:



4.1. Tietze Transformations for �nite L-presentations 51Proposition 4.10 Let G = 〈X | ∅ | Φ | R〉 be a �nitely L-presented group. Then
〈X | ∅ | Φ ∪ {ψ} | R〉 is a �nite L-presentation for G if and only if ψ ∈ End(F (X ))indu
es an endomorphism of G = F (X )/K.Proof. If ψ ∈ End(F (X )) indu
es an endomorphism of F (X )/K, Proposition 4.9 showsthe �rst assertion. If, on the other hand, 〈X | ∅ | Φ | R〉 and 〈X | ∅ | Φ ∪ {ψ} | R〉 are�nite L-presentations for G, ψ indu
es an endomorphism of G = F (X )/K. 2For an invariantly �nitely L-presented group G = 〈X | Q | Φ | R〉, every substitution
σ ∈ Φ indu
es an endomorphism of G. However, there are possibly other endomorphisms
ψ ∈ End(F (X )) that indu
e the same endomorphism of G. The following propositionallows us to repla
e a substitution σ ∈ Φ by an endomorphism ψ ∈ End(F (X )):Proposition 4.11 Let G = 〈X | Q | Φ | R〉 be a �nitely L-presented group,
r ∈ 〈

⋃
ϕ∈Φ∗ Rϕ〉F (X ), z ∈ X , and let σ ∈ Φ be given. De�ne an endomorphism σ̃ ofthe free group F (X ) over the alphabet X that is indu
ed by the map

σ̃:

{
z 7→ zσr,

x 7→ xσ, for ea
h x ∈ X \ {z}.Then 〈X | Q | (Φ \ {σ}) ∪ {σ̃} | R ∪ {r}〉 is a �nite L-presentation for G.Proof. We de
ompose the kernel K = 〈Q
⋃
ϕ∈Φ∗ Rϕ〉F (X ) of the free presentation

π:F (X ) → G into the normal subgroups Q = 〈Q〉F (X ) and R = 〈
⋃
ϕ∈Φ∗ Rϕ〉F (X ) sothat K = QR = RQ holds. Sin
e r ∈ 〈

⋃
ϕ∈Φ∗ Rϕ〉F (X ) holds, Proposition 4.2 yields that

G = 〈X | Q | Φ | R〉 = 〈X | Q | Φ | R ∪ {r}〉and R = 〈
⋃
ϕ∈Φ∗(R∪{r})ϕ〉F (X ). Write Ψ = (Φ∪{σ̃}) \ {σ}. We prove that the normalsubgroups R = 〈

⋃
ϕ∈Φ∗(R ∪ {r})ϕ〉F (X ) and R̃ = 〈

⋃
ϕ∈Ψ∗(R ∪ {r})ϕ〉F (X ) 
oin
ide. Forthis purpose, we prove that, for ea
h δ̃ ∈ Ψ∗ and g ∈ F (X ), there exist δ ∈ Φ∗ and

h ∈ L = 〈rϕ | ϕ ∈ Φ∗〉F (X ) so that gδ̃ = gδ · h holds. By 
onstru
tion, we havethat L ⊆ R. By symmetry, as we have both zσ̃ = zσr and zσ̃r−1 = zσ , the samearguments will show that, for ea
h δ ∈ Φ∗ and g ∈ F (X ), there exist δ̃ ∈ Ψ∗ and
h ∈ L̃ = 〈rϕ | ϕ ∈ Ψ∗〉F (X ) so that gδ = gδ̃ · h. If we have proved this, ea
h normalgenerator sϕ̃ ∈ R̃, with s ∈ R ∪ {r} and ϕ̃ ∈ Ψ∗, 
an be written as sϕ̃ = sϕ · h with
ϕ ∈ Φ∗ and h ∈ L ⊆ R. Thus sϕ̃ = sϕ · h ∈ R and R̃ ⊆ R. By symmetry, we would alsoobtain R ⊆ R̃.Write X = {x1, . . . , xm, z}. Ea
h g ∈ F (X ) is represented by a word wg(x1, . . . , xm, z)over the generators X . Let δ̃ ∈ Ψ∗ and g ∈ F (X ) be given. We prove the assertion byindu
tion on n = ‖δ̃‖. If n = 1, then δ̃ ∈ Ψ holds. If δ̃ 6= σ̃ holds, then δ̃ ∈ Φ. Thus
gδ̃ = gδ for some δ ∈ Φ. Otherwise, if δ̃ = σ̃, we obtain that

gδ̃ = gσ̃ = wg(x1, . . . , xm, z)
σ̃ = wg(x

σ̃
1 , . . . , x

σ̃
m, z

σ̃) = wg(x
σ
1 , . . . , x

σ
m, z

σr).



52 Chapter 4. Tietze Transformations for L-presentationsConjugation in the free group F (X ) yields that the word wg(x
σ
1 , . . . , x

σ
m, z

σr) 
an bewritten as wg(xσ1 , . . . , xσm, zσ) · h for some h ∈ 〈r〉F (X ) ⊆ L. Thus gσ̃ = gσ · h holds for
σ ∈ Φ and some h ∈ L.For a positive integer n > 1, we assume that every image gδ̃ , with g ∈ F (X ), δ̃ ∈ Ψ∗,and ‖δ̃‖ = n, 
an be written as gδ · h for δ ∈ Φ∗ and h ∈ L. Let g ∈ F (X ) and γ̃ ∈ Ψ∗,with ‖γ̃‖ = n + 1, be given. Then there exist ω̃ ∈ Ψ and δ̃ ∈ Ψ∗, with ‖δ̃‖ = n, sothat γ̃ = δ̃ω̃ holds. By our assumption we have that gγ̃ = gδ̃ω̃ = (gδ · h)ω̃ for some
δ ∈ Φ∗ and h ∈ L. If ω̃ 6= σ̃, then ω̃ ∈ Φ and thus δω̃ ∈ Φ∗. Moreover, by 
onstru
tion,the normal subgroups L = 〈rϕ | ϕ ∈ Φ∗〉F (X ) and L̃ = 〈rϕ̃ | ϕ̃ ∈ Ψ∗〉F (X ) are Φ∗- and
Ψ∗-invariant, respe
tively. Thus hω̃ ∈ L if ω̃ 6= σ̃. Therefore, the image gγ̃ 
an be writtenas gγ̃ = (gδ ·h)ω̃ = gδω̃ ·hω̃ with δω̃ ∈ Φ∗ and hω̃ ∈ L. It therefore su�
es to 
onsider the
ase ω̃ = σ̃. The elements gδ , h ∈ F (X ) are represented by words wgδ(x1, . . . , xm, z) and
wh(x1, . . . , xm, z), respe
tively. Again, 
onjugation in the free group F (X ) yields that
gγ̃ = (gδh)σ̃ = (gδσ · a) · (hσ · b) for some a, b ∈ 〈r〉F (X ) ⊆ L. Hen
e, the image gγ̃ 
an bewritten as gδσ ·h′ for δσ ∈ Φ∗ and h′ = ahσb ∈ L. By indu
tion on n, it follows that ea
himage gδ̃ , with g ∈ F (X ) and δ̃ ∈ Ψ∗, has the form gδ̃ = gδ ·h for some δ ∈ Φ∗ and h ∈ L.By symmetry, the same arguments above show that ea
h image gδ , with g ∈ F (X ) and
δ ∈ Φ∗, 
an be written as gδ = gδ̃ · h for δ̃ ∈ Ψ∗ and h ∈ L̃. This �nishes our proof ofProposition 4.11. 2Note that Proposition 4.11 allows us to repla
e a substitution σ ∈ Φ of an L-presentation
〈X | Q | Φ | R〉 by an endomorphism ψ ∈ End(F (X )) of the free group F (X ) that indu
esthe same endomorphism on group. More pre
isely, we obtain the followingCorollary 4.12 Let G be �nitely L-presented by 〈X | Q | Φ | R〉. Then every substitu-tion σ ∈ Φ indu
es an endomorphism of the invariantly �nitely L-presented group H =
〈X | ∅ | Φ | R〉. If ψ ∈ End(F (X )) indu
es the same endomorphism on H, there exists a�nite set S ⊆ F (X ) so that G is �nitely L-presented by 〈X | Q | (Φ\{σ})∪{ψ} | R∪S〉.Proof. If ψ and σ indu
e the same endomorphism of H there exists, for ea
h z ∈ X , rz ∈
〈
⋃
ϕ∈Φ∗ Rϕ〉F (X ) so that zψ = zσ rz holds. Write S = {rz | z ∈ X}. By Proposition 4.11,a �nite L-presentation for G is given by 〈X | Q | (Φ \ {σ}) ∪ {ψ} | R ∪ S〉. 2For our proof of a version of Tietze's theorem for �nitely L-presented groups we 
onsiderthe following transformations:(i) adds or removes a �xed relation (Proposition 4.1),(ii) adds or removes an iterated relation (Proposition 4.2),(iii) adds or removes a substitution (Proposition 4.9),(iv) adds or removes a generator together with a �xed relation (Proposition 4.5), or,(v) adds or removes a generator together with an iterated relation (Proposition 4.6).



4.2. Tietze's Theorem for Finite L-Presentations 534.2 Tietze's Theorem for Finite L-PresentationsWe prove a version of Tietze's theorem for �nite L-presentations:Theorem 4.13 Two �nite L-presentations de�ne isomorphi
 groups if and only if itis possible to pass from one L-presentation to the other by a �nite sequen
e of Tietzetransformations.Proof. We use similar ideas as in the proof of Tietze's theorem in [95, Chapter II℄:As ea
h Tietze transformation does not 
hange the isomorphism type of the group, two�nite L-presentations de�ne isomorphi
 groups if they 
an be transformed into ea
h otherby a sequen
e of Tietze transformations. In order to prove Theorem 4.13, it thereforesu�
es to prove that two �nite L-presentations whi
h de�ne isomorphi
 groups 
an betransformed into ea
h other by a �nite sequen
e of Tietze transformations. For thispurpose, 
onsider two �nite L-presentations 〈X1 | Q1 | Φ1 | R1〉 and 〈X2 | Q2 | Φ2 | R2〉of a group G. Suppose that X1 ∩ X2 = ∅ holds. For 1 ≤ i ≤ 2, denote by Fi thefree group over the alphabet Xi and let πi:Fi → G be the free presentation with kernel
ker(πi) = 〈Qi ∪

⋃
σ∈Φ∗

i
Rσ
i 〉
Fi . For ea
h x ∈ X1, we 
hoose wx ∈ F2 with xπ1 = wπ2x ; i.e.,

wx ∈ F2 is a π2-preimage of xπ1 ∈ G. For ea
h z ∈ X2, 
hoose wz ∈ F1 with zπ2 = wπ1z .De�ne the �nite subsets S1 and S2 of the free group F over X1 ∪ X2 by
S1 = {x−1wx | x ∈ X1} and S2 = {z−1wz | z ∈ X2}. (4.3)By Proposition 4.5, we 
an add the generator z ∈ X2 together with the �xed relation

z−1 wz ∈ S2 if we extend ea
h substitution σ ∈ Φ1 to the free group over X1 ∪ {z} byde�ning x 7→ xσ, for x ∈ X1, and z 7→ z, otherwise. Therefore, Proposition 4.5 allowsus to add the generators z ∈ X2 together with a �xed relation z−1wz ∈ S2 to the �nite
L-presentation 〈X1 | Q1 | Φ1 | R1〉. More pre
isely, if F denotes the free group over
X1 ∪ X2 and, for ea
h σ ∈ Φ1, σ̃ denotes the endomorphism of the free group F that isindu
ed by the map

σ̃:F → F,

{
x 7→ xσ, if x ∈ X1,
z 7→ z, if z ∈ X2,

(4.4)Proposition 4.5 yields that
G ∼= 〈X1 ∪ X2 | Q1 ∪ S2 | {σ̃}σ∈Φ1 | R1〉 . (4.5)The natural homomorphisms π1:F1 → G and π2:F2 → G extend to the natural homo-morphism π:F → G that is indu
ed by the map

π:

{
x 7→ xπ1 , if x ∈ X1,
z 7→ zπ2 , if z ∈ X2.For x ∈ X1 and x−1wx ∈ S1, we have xπ = xπ1 = wπ2x = wπx and thus x−1wx ∈ ker(π).For ea
h r ∈ Q2, we have rπ = rπ2 = 1. Thus r ∈ Q2. By Proposition 4.1, we 
an



54 Chapter 4. Tietze Transformations for L-presentationstherefore add Q2 ∪ S1 as �xed relations to the L-presentation in Eq. (4.5). We obtainthe �nite L-presentation
G ∼= 〈X1 ∪ X2 | Q1 ∪ Q2 ∪ S1 ∪ S2 | {σ̃}σ∈Φ1 | R1〉 . (4.6)For ea
h σ ∈ Φ2, de�ne an endomorphism of the free group F that is indu
ed by themap

σ̃:F → F,

{
x 7→ x, if x ∈ X1

z 7→ zσ, if x ∈ X2.
(4.7)Then σ̃ a
ts trivially on the generators X1 and therefore, it leaves the normal subgroup

〈
⋃
δ∈Φ∗

1
Rδ̃

1〉
F invariant. By Proposition 4.9, we 
an add the substitutions {σ̃ | σ ∈ Φ2}to the L-presentation in Eq. (4.6) and we obtain the L-presentation

G ∼= 〈X1 ∪ X2 | Q1 ∪Q2 ∪ S1 ∪ S2 | {σ̃}σ∈Φ1∪Φ2 | R1〉 . (4.8)It remains to 
onsider the relations R2 from the �nite L-presentation 〈X2 | Q2 | Φ2 | R2〉and it su�
es to show that we 
an add these relations r ∈ R2 as iterated relationsto the L-presentation in Eq. (4.8). For this purpose, we need to prove that, for ea
h
δ ∈ {σ̃ | σ ∈ Φ1∪Φ2}

∗, the image rδ is a relation of the group; i.e., rδ is 
ontained in thekernel ker(π). Let δ ∈ {σ̃ | σ ∈ Φ1 ∪ Φ2}
∗ be given. We 
an write δ = σ̃i1 σ̃j1 · · · σ̃in σ̃jnwith ea
h σiℓ ∈ {ε} ∪ Φ1 and σjℓ ∈ {ε} ∪ Φ2. Sin
e ea
h σ̃iℓ , with σiℓ ∈ Φ1, a
tstrivially on the generators X2 and ea
h σ̃jℓ , with σjℓ ∈ Φ2, leaves the subgroup whi
h isgenerated by X2 invariant, we obtain that rδ = rσ̃i1 σ̃j1 ···σ̃in σ̃jn = rσ̃j1 ···σ̃jn . This yieldsthat (rδ)π = (rσ̃j1 ···σ̃jn )π = (rσj1 ···σjn )π2 = 1 holds. Thus, by Proposition 4.2, we 
an addthe relations R2 as iterated relations to the L-presentation in Eq. (4.8) and we obtainthe L-presentation

G ∼= 〈X1 ∪ X2 | Q1 ∪ Q2 ∪ S1 ∪ S2 | {σ̃}σ∈Φ1∪Φ2 | R1 ∪R2〉 . (4.9)Sin
e the L-presentations 〈X1 | Q1 | Φ1 | R1〉 and 〈X2 | Q2 | Φ2 | R2〉 were �nite,we have applied �nitely many Tietze transformations to obtain the �nite L-presentationin Eq. (4.9) from the �nite L-presentation 〈X1 | Q1 | Φ1 | R1〉. By symmetry, though,we would also obtain the �nite L-presentation in Eq. (4.9) from the L-presentation
〈X2 | Q2 | Φ2 | R2〉. As ea
h Tietze transformation is reversible, we 
an therefore trans-form the �nite L-presentation in Eq.(4.9) to the �nite L-presentation 〈X2 | Q2 | Φ2 | R2〉.This shows that both �nite L-presentations of G 
ould be transformed into ea
h otherby a �nite sequen
e of Tietze transformations. 2Similar to �nite presentations, Theorem 4.13 does not solve the isomorphism problemfor �nitely L-presented groups as there is no e�e
tive pro
edure for 
hoosing the sets
S1 and S2. In parti
ular, there exists no algorithm whi
h allows one to prove that two�nite L-presentations de�ne non-isomorphi
 groups. In Appendix B, we use the Tietzetransformations introdu
ed above to proveTheorem 4.14 (Bartholdi [6℄) Being invariantly �nitely L-presented is an abstra
tproperty of a group whi
h does not depend on the generating set.This theorem was already posed in [6, Proposition 2.2℄. However, its proof 
ontains agap whi
h we 
ould address with the help of our Tietze transformations above.



Chapter5Finitely Based In�nite Rewriting SystemsThe group G 
onstru
ted by Grigor
huk in [53℄ 
an be realized as a subgroup of theautomorphism group of the rooted binary tree. As it a
ts faithfully on the tree, the wordproblem of the group G is de
idable. Alternatively, the group G 
an be de�ned by theinvariant �nite L-presentation
G =

〈
{a, b, c, d}

∣∣∣ {a2, b2, c2, d2, bcd} ∪
⋃

i≥0

{
(ad)4, (adacac)4

}σi 〉
, (5.1)where σ is indu
ed by the map a 7→ aca, b 7→ d, c 7→ b, and d 7→ c; see Theorem 2.14.The substitution σ indu
es a monomorphism of the group G [55℄. In this 
hapter, wedevelop a method for 
omputing 
anoni
al forms for elements of an invariantly �nitely

L-presented group. For �nite presentations, the Knuth-Bendix 
ompletion [86℄ 
omputesa 
on�uent rewriting system if it terminates. A 
on�uent rewriting system allows to
ompute 
anoni
al forms of an element in the �nitely presented groups and therefore, itallows one to solve the word problem. We generalize the Knuth-Bendix 
ompletion for�nite presentations to invariant �nite L-presentations. Sin
e the group G is not �nitelypresentable [56℄, there will not exist a �nite rewriting system. Therefore, our pro
edureattempts to 
ompute an in�nite rewriting system whose rewriting rules in
orporate thesubstitution σ. More pre
isely, we attempt to 
onstru
t a rewriting system whose (pos-sibly in�nitely many) rewriting rules are given by a �nite set of rewriting rules and theirimages under the substitutions.A rewriting system 
onsists of a set of obje
ts and a set of rewriting rules thatdes
ribe the transformations of the obje
ts. For an invariantly �nitely L-presented group
G = 〈X | Q | Φ | R〉, we establish a rewriting system with obje
ts

S(X±,Φ) =
{
(x1, σ1) · · · (xn, σn)

∣∣ xi ∈ X±, σi ∈ Φ∗, 1 ≤ i ≤ n
} (5.2)where X± are the monoid generators of the �nitely L-presented group G and Φ∗ denotesthe free monoid that is generated by the �nite set Φ. The obje
ts S(X±,Φ) are elementsof the free monoid over the Cartesian produ
t X± ×Φ∗. For further details on rewritingsystems, we refer to [23, 129℄.



56 Chapter 5. Finitely Based In�nite Rewriting SystemsComputer experiments with our Knuth-Bendix 
ompletion do not terminate and thusdo not allow to 
ompute a 
on�uent in�nite rewriting system for the group G as well asfor the Basili
a group and the wreath produ
ts Z2 ≀ Z or Z ≀ Z. Therefore, it is not 
learwhether or not these groups admit a `�nitely based in�nite rewriting system' as wouldhave been 
onstru
ted by our Knuth-Bendix 
ompletion.In Se
tion 5.1, we re
all the notion of a rewriting system as, for instan
e, introdu
edin [129℄. Then, in Se
tion 5.2, we 
onstru
t a monoid presentation for an invariantly�nitely L-presented group with obje
ts S(X±,Φ). For 
onstru
ting a rewriting systemas in [129℄ we further need a redu
tion ordering on the elements S(X±,Φ). This redu
tionordering is 
onstru
ted in Se
tion 5.3. Then, in Se
tion 5.4, we prove the fundamentalCriti
al Pair Lemma for the new type of `�nitely based in�nite rewriting systems'. Thislemma allows us to de
ide whether or not a given rewriting system is 
on�uent. More-over, it yields a Knuth-Bendix 
ompletion in Se
tion 5.5. Finally, in Se
tion 5.6, wedemonstrate the appli
ation of our Knuth-Bendix algorithm to a fairly easy invariant�nite L-presentation.In the following, a �nite L-presentation is always 
onsidered to be invariant if nototherwise stated. In parti
ular, an invariant �nite L-presentation 〈X | Q | Φ | R〉 
an al-ways be 
hosen so that Q = ∅ holds. Our generalization of the Knuth-Bendix 
ompletionalgorithm follows [129, Chapter 2℄.5.1 PreliminariesIn this se
tion, we introdu
e the notion of a rewriting system as in [129℄. For this purpose,let X be a (possibly in�nite) alphabet and denote by X ∗ the free monoid over X . Froma set of binary relations R ⊆ X ∗ × X ∗, we obtain a monoid 
ongruen
e ∼ on X ∗ asfollows: Denote by R̂ the symmetri
 
losure of R. For U, V ∈ X ∗, we de�ne U ∼ V ifthere exists A,B,P,Q ∈ X ∗ so that U = APB, V = AQB, and (P,Q) ∈ R̂ hold. There�exive and transitive 
losure of ∼ is the monoid 
ongruen
e ∼R generated by R. Themonoid presentation
〈X | {P = Q | (P,Q) ∈ R}〉 (5.3)de�nes the monoid X ∗/ ∼R of equivalen
e 
lasses of ∼R. In the following, we often willavoid the referen
e to R if it is 
lear from the 
ontext whi
h generating set we 
hoose.We 
an endow the free monoid X ∗ with a redu
tion ordering ≺: A redu
tion orderingis a total and translation invariant well-ordering; i.e., an ordering ≺ is translation invari-ant if P ≻ Q implies APB ≻ AQB for ea
h A,B ∈ X ∗. Sin
e ∼R is symmetri
 and ≺is a total ordering, we 
an assume that (P,Q) ∈ R always implies P ≻ Q (otherwise we
an repla
e (P,Q) ∈ R by (Q,P ) if Q ≻ P or we 
an omit (P,Q) ∈ R if P = Q holds.Obviously this does not 
hange the monoid 
ongruen
e ∼R). The monoid presentationin Eq. (5.3) yields the rewriting system

T = {P → Q | P ≻ Q, (P,Q) ∈ R or (Q,P ) ∈ R} .For U, V ∈ X ∗, de�ne, if possible, a one-step redu
tion U →T V with respe
t to T if thereexist A,B,P,Q ∈ X ∗ so that U = APB, V = AQB, and P → Q is a rewriting rule in T .



5.1. Preliminaries 57Denote by →∗
T the re�exive and transitive 
losure of →T . Clearly, a one-step redu
tion

U →T V or, in general, a redu
tion U →∗
T V always implies U ∼ V . In the following, wedo not distinguish between the rewriting rule U →T V from T and the relation (U, V )from the monoid presentation. In parti
ular, the rewriting rules of the rewriting system

T always generate a monoid 
ongruen
e ∼T .A rewriting system T allows us to transform the elements of X ∗ with respe
t to theredu
tion ordering ≺ and the monoid 
ongruen
e ∼T , see [129℄: Let N be the ideal thatis generated as an ideal by the left-sides {P | P →T Q ∈ T }. If U0 ∈ N , there exist
A,B,P,Q ∈ X ∗ with U0 = APB and P →T Q ∈ T . Then U1 = AQB satis�es U0 ≻ U1,
U0 →T U1, and U0 ∼T U1. If U1 ∈ N holds, we 
an repeat this pro
ess and obtain
U2 ∈ X ∗ with U1 ≻ U2, U1 →T U2, and U1 ∼T U2. This yields a des
ending sequen
e
U0 ≻ U1 ≻ U2 ≻ . . . in the well-ordered monoid X ∗. Thus the sequen
e U0, U1, U2, . . .eventually terminates with an element Un ∈ X ∗ \N that satis�es U0 ∼T Un, U0 →

∗
T Un,and U0 ≻ Un. The elements Un ∈ X ∗ \N 
annot be transformed any further. Therefore,

Un is irredu
ible with respe
t to T . The above pro
ess of transforming the element
U0 ∈ X ∗ with the rewriting system T is 
alled rewriting. Ea
h rewriting system allowsus to rewrite ea
h element to an irredu
ible one. The rewriting system depends on theredu
tion ordering ≺.Rewriting is non-deterministi
 be
ause there are possibly di�erent 
hoi
es of one-stepredu
tions Ui →T Ui+1 within a rewriting pro
ess. Therefore, for a rewriting system T ,we have the following notations:

• An element W ∈ X ∗ is lo
ally 
on�uent, if, for ea
h U, V ∈ X ∗ with W →T U and
W →T V , there exists Z ∈ X ∗ with U →∗

T Z and V →∗
T Z.

• An element W ∈ X ∗ is 
on�uent, if, for ea
h U, V ∈ X ∗ with W →∗
T U and

W →∗
T V , there exists Z ∈ X ∗ with U →∗

T Z and V →∗
T Z.Clearly, an element W ∈ X ∗ is lo
ally 
on�uent whenever it is 
on�uent. In general,though, lo
al 
on�uen
e does not imply 
on�uen
e [23, Se
tion 1.2℄. A rewriting system

T is (lo
ally) 
on�uent if and only if all elements W ∈ X ∗ are (lo
ally) 
on�uent. Itis Noetherian if there is no in�nite redu
tion sequen
e a1 →T a2 →T . . . with ea
h
ai 6= ai+1. If the rewriting rules U →T V always satisfy U ≻ V for a well-ordering ≺, therewriting system T is obviously Noetherian. Even though lo
al 
on�uen
e does not imply
on�uen
e, a Noetherian rewriting system satis�es Newman's Lemma; see also [84℄:Theorem 5.1 (Newman's Lemma [106℄) A Noetherian rewriting system is 
on�uentif and only if it is lo
ally 
on�uent.In order to 
he
k a Noetherian rewriting system for 
on�uen
e it therefore su�
es to
he
k it for lo
al 
on�uen
e only. In Se
tion 5.4, we show that lo
al 
on�uen
e of our(possibly in�nite) rewriting system 
an be 
he
ked algorithmi
ally.Sin
e X ∗ is well-ordered, ea
h non-empty set 
ontains a least element. In parti
ular,ea
h equivalen
e 
lass in X ∗/ ∼T 
ontains a (unique) least element. For W ∈ X ∗, theleast representative of the equivalen
e 
lass whi
h 
ontains the elementW is the 
anoni
al



58 Chapter 5. Finitely Based In�nite Rewriting Systemsform of W with respe
t to ≺ and ∼T . The 
anoni
al form of an element W ∈ X ∗ andirredu
ibility are related by the following well-knownLemma 5.2 Let T be a rewriting system that generates the monoid 
ongruen
e ∼T .Ea
h 
anoni
al form with respe
t to ≺ and ∼T is irredu
ible. If T is 
on�uent, ea
hirredu
ible element is a 
anoni
al form.Proof. Suppose thatW ∈ X ∗ is a 
anoni
al form that is not irredu
ible. Then there exist
A,B,P,Q ∈ X ∗ with W = APB and a rewriting rule P →T Q. The element V = AQBsatis�es V ∼T W and W ≻ V ; this, however, 
ontradi
ts our assumption that W is a
anoni
al form and thus a least representative of the equivalen
e 
lass 
ontaining W .Suppose that W is irredu
ible with respe
t to the 
on�uent rewriting system T . Let
V be the 
anoni
al form ofW with respe
t to ≺ and ∼T . ThenW � V andW ∼T V . Byde�nition of monoid 
ongruen
e ∼T , there exists a sequen
e W = W0,W1, . . . ,Wn = Vso that Wi = AiPiBi, Wi+1 = AiQiBi, and either Pi →T Qi or Qi →T Pi. Sin
e
W =W0 is irredu
ible, we have the rewriting rule Q0 →T P0 ∈ T . Thus W1 →T W . Fora positive integer i, assume that Wi →

∗
T W holds. Sin
e Wi = AiPiBi, Wi+1 = AiQiBi,and either Pi →T Qi or Qi →T Pi, we either have Wi+1 →T Wi or Wi →T Wi+1. If

Wi+1 →T Wi, then Wi+1 →∗
T W . If, on the other hand, Wi →T Wi+1 holds, then wehave both Wi →T Wi+1 and Wi →

∗
T W . Be
ause the rewriting system T is 
on�uent,there exists U ∈ X ∗ so that W →∗

T U and Wi+1 →
∗
T U . Sin
e W is irredu
ible, though,we have W = U . Thus Wi →

∗
T W . By indu
tion on i, we obtain that V = Wn →∗

T Wwhi
h implies that V � W . Sin
e V is the least representative of the equivalen
e 
lassthat 
ontains W , we have that W = V . 2Sin
e a rewriting system T allows us to rewrite ea
h element to an irredu
ible elementthat represents the same element of the monoid, we immediately obtainCorollary 5.3 A 
on�uent rewriting system T allows one to 
ompute the 
anoni
al formwith respe
t to ≺ and ∼T for ea
h element in the monoid.In the following, we 
onsider the free monoid S(X ,Φ) that is generated by the Cartesianprodu
t X ×Φ∗ = {(x, σ) | x ∈ X , σ ∈ Φ∗} where X is a �nite alphabet and Φ∗ denotesthe free monoid whi
h is generated by the �nite alphabet Φ.The monoid S(X ,Φ) 
arries an a
tion of the free monoid Φ∗: For ea
h σ ∈ Φ, themap
σ̂:X × Φ∗ → S(X ,Φ), (x, ψ) 7→ (x, ψσ),extends to a monoid homomorphism σ̂:S(X ,Φ) → S(X ,Φ). This homomorphism maps

w = (x1, ψ1) · · · (xn, ψn) ∈ S(X ,Φ) to wσ̂ = (x1, ψ1σ) · · · (xn, ψnσ). The map σ̂ isinje
tive but not surje
tive; as (x, ε) has no preimage under σ̂.In the following, we 
onsider a rewriting system T on the monoid S(X ,Φ). Eventhough the rewriting system T might be in�nite, we use the regularities that are indu
edby the monoid Φ∗. For this purpose, we introdu
e the following notation:



5.2. Monoid L-Presentations 59De�nition 5.4 Suppose that ≺ is a Φ-invariant redu
tion ordering (i.e., the ordering
≺ is Φ-invariant if U ≺ V always implies Uσ ≺ V σ for ea
h σ ∈ Φ∗). For a rewritingsystem T on the free monoid S(X ,Φ), a Φ-generating set is a subset R ⊆ T so that

T =
{
U σ̂ → V σ̂

∣∣∣ U → V ∈ R and σ ∈ Φ∗
}
.A rewriting system T is Φ-�nite, if there exists a �nite Φ-generating set R.In Se
tion 5.2, we show that ea
h invariant �nite L-presentation gives rise to a Φ-�niterewriting system T . Moreover, in Se
tion 5.4, we develop an algorithm that de
ideswhether or not a Φ-�nite rewriting system is lo
ally 
on�uent. This algorithm onlyperforms 
he
ks within the �nite Φ-generating set R.5.2 Monoid L-PresentationsIn this se
tion, we introdu
e the notion of a �nite monoid L-presentation. Further-more, we derive a monoid L-presentation for ea
h invariantly �nitely L-presented group.From this monoid L-presentation, we then obtain a Φ-�nite rewriting system for the

L-presented group. A monoid presentation of the form
M =

〈
X

∣∣∣ {Uσ = V σ | (U, V ) ∈ R and σ ∈ Φ∗}
〉 (5.4)with a �nite alphabet X , a �nite set R ⊆ X ∗ ×X ∗ of binary relations, and a �nite set Φof monoid homomorphisms X ∗ → X ∗ is a �nite as
ending monoid L-presentation. Thisde�nition generalizes the well-known de�nition for �nitely L-presented groups:Proposition 5.5 Ea
h invariantly �nitely L-presented group 
an be de�ned by an as-
ending �nite monoid L-presentation.Proof. Let 〈X | Q | Φ | R〉 be an invariant �nite L-presentation for a group G. Invari-an
e of the L-presentation yields that we 
an assume that Q = ∅ holds; otherwise, werepla
e R by R∪Q and Q by ∅. In order to 
onstru
t a monoid presentation for G, we
onsider the formal inverses X− = {x−1 | x ∈ X} with X ∩ X− = ∅. Ea
h substitution

σ ∈ Φ translates in an obvious way to a monoid homomorphism σ̂ of the free monoid
X±∗ over X± = X ∪ X−. An as
ending �nite monoid L-presentation that de�nes thegroup G is given by

〈
X±

∣∣∣
{
U ψ̂ = (x−1)ψ̂xψ̂ = xψ̂ (x−1)ψ̂ = ε

∣∣∣ U ∈ R, x ∈ X , ψ̂ ∈ Φ∗
}〉

, (5.5)see [129, Proposition 4.7℄. 2Similar to group presentations, as
ending monoid L-presentations satisfy the followingLemma 5.6 Ea
h substitution σ ∈ Φ∗ of an as
ending monoid L-presentation indu
es amonoid homomorphism; that is, the monoid 
ongruen
e ∼ given by the monoid presen-tation is σ-invariant so that U ∼ V implies Uσ ∼ V σ.



60 Chapter 5. Finitely Based In�nite Rewriting SystemsProof. It su�
es to prove that, for ea
h ψ ∈ Φ, the monoid 
ongruen
e ∼ is ψ-invariant.For this purpose, suppose that U, V ∈ X ∗ satisfy U ∼ V . Let ψ ∈ Φ be given. Denoteby T = {(Uσ , V σ) | (U, V ) ∈ R and σ ∈ Φ∗} the relations of the monoid presentationin Proposition 5.5. By de�nition of the monoid 
ongruen
e ∼, there exists a sequen
e
U = U0, U1, . . . , Un = V so that Ui = AiPiBi, Ui+1 = AiQiBi for Ai, Bi, Pi, Qi ∈ X ∗and either (Pi, Qi) ∈ T or (Qi, Pi) ∈ T . If (Pi, Qi) ∈ T holds, then (P σi , Q

σ
i ) ∈ T for

σ ∈ Φ∗. Thus, for 0 ≤ i ≤ n, we have that Uψi = (AiPiBi)
ψ = Aψi P

ψ
i B

ψ
i and, similarly,

Ui+1 = Aψi Q
ψ
i B

ψ
i for Aψi , Bψ

i , P
ψ
i , Q

ψ
i ∈ X ∗ with (Pψi , Q

ψ
i ) ∈ T or (Qψi , Pψi ) ∈ T . Thus

Uψ ∼ V ψ. 2From the �nite monoid L-presentation in Eq. (5.4), we obtain a monoid L-presentationover the Cartesian produ
t X × Φ∗:Theorem 5.7 Let M denote the monoid that is de�ned by the as
ending �nite monoid
L-presentation 〈 X | {Uψ = V ψ | (U, V ) ∈ R, ψ ∈ Φ∗}〉. For ea
h x ∈ X and σ ∈ Φ,we write xσ = ξ1 · · · ξℓ with ea
h ξi ∈ X . For ea
h relation (U, V ) ∈ R, we write
U = u1 · · · un and V = v1 · · · vm with ea
h ui, vj ∈ X . The monoid M is isomorphi
 tothe monoid de�ned by the monoid presentation

N =
〈
X × Φ∗

∣∣∣
{
U ψ̂ = V ψ̂

∣∣∣ (U, V ) ∈ V, ψ ∈ Φ∗
}〉 (5.6)where, for ea
h ϕ ∈ Φ∗, ϕ̂ denotes the monoid endomorphism of the free monoid S(X ,Φ)that is indu
ed by the map ϕ̂:X × Φ∗ → S(X ,Φ), (x, ψ) 7→ (x, ψϕ) while the set V isgiven by

V =
{(

(u1, ε) · · · (un, ε), (v1, ε) · · · (vm, ε)
) ∣∣∣ (u1 · · · un, v1 · · · vm) ∈ R

}

⋃ {(
(x, σ), (ξ1, ε) · · · (ξℓ, ε)

) ∣∣∣ σ ∈ Φ, x ∈ X with xσ = ξ1 · · · ξℓ
}
.

(5.7)Proof. By Lemma 5.6, ea
h substitution ϕ̂ of the free monoid S(X ,Φ) indu
es a monoidendomorphism of M . In fa
t, relations are mapped to relations. De�ne a monoid homo-morphism π:S(X ,Φ) → X ∗ by the map
π: (x, ψ) 7→ xψ, for ea
h x ∈ X and ψ ∈ Φ∗.Sin
e {(x, ε) | x ∈ X} ⊆ S(X ,Φ) holds, the image of π 
ontains the basis X . Thus, π isonto and it indu
es a surje
tive homomorphism S(X ,Φ) → M . In order to prove that

π indu
es a surje
tive homomorphism N → M , it su�
es to prove that ea
h relation of
N is mapped to a relation in M . For ψ ∈ Φ∗ and (u1 · · · un, v1 · · · vm) ∈ R, the relation
((u1, ε) · · · (un, ε))

ψ̂ = ((v1, ε) · · · (vm, ε))
ψ̂ of the monoid N is mapped as follows:

((u1, ε) · · · (un, ε))
ψ̂π = ((u1, ψ) · · · (un, ψ))

π = uψ1 · · · uψn

((v1, ε) · · · (vm, ε))
ψ̂π = ((v1, ψ) · · · (vm, ψ))

π = vψ1 · · · vψm



5.2. Monoid L-Presentations 61and uψ1 · · · uψn = vψ1 · · · vψm is a relation in M . The relation (x, σ)ψ̂ = ((ξ1, ε) · · · (ξℓ, ε))
ψ̂is mapped to

(x, σ)ψ̂π = (x, σψ)π = xσψ

((ξ1, ε) · · · (ξℓ, ε))
ψ̂π = ((ξ1, ψ) · · · (ξℓ, ψ))

π = ξψ1 · · · ξψℓand xσψ = ξψ1 · · · ξψℓ is a relation in M sin
e ea
h substitution ψ ∈ Φ∗ indu
es a ho-momorphism of M and xσ = ξ1 · · · ξℓ is a relation in M . Thus, π indu
es a surje
tivehomomorphism π:N →M .De�ne a monoid homomorphism γ:X ∗ → S(X ,Φ) that is indu
ed by the map
γ:x 7→ (x, ε), for ea
h x ∈ X .Then γ de�nes a homomorphism X ∗ → N . We �rst show that the latter homomorphismis surje
tive by proving xψγ = (x, ψ) for ea
h x ∈ X and ψ ∈ Φ∗. We prove this by indu
-tion on n = ‖ψ‖. If n = 1, there exists σ ∈ Φ with ψ = σ. Sin
e xσ = ξ1 · · · ξℓ ∈ X ∗, weobtain (xσ)γ = (ξ1 · · · ξℓ)

γ = (ξ1, ε) · · · (ξℓ, ε). There is a relation (x, σ) = (ξ1, ε) · · · (ξℓ, ε)in the monoid N . This relation yields (xσ)γ = (x, σ). Suppose that n > 1 holds. Then
ψ = σδ with σ ∈ Φ, δ ∈ Φ∗, and ‖δ‖ = n − 1. Then (ξ1 · · · ξℓ)

δγ = (ξδ1 · · · ξ
δ
ℓ )
γ . Byindu
tion on n, it follows that (ξδ1 · · · ξ

δ
ℓ )
γ = (ξ1, δ) · · · (ξℓ, δ) = ((ξ1, ε) · · · (ξℓ, ε))

δ̂ . Therelation (x, σ) = (ξ1, ε) · · · (ξℓ, ε) and its Φ-iterates yield that xψ = xσδ = (ξ1 · · · ξℓ)
δ ismapped by γ to (xψ)γ = ((ξ1, ε) · · · (ξℓ, ε))

δ̂ = (x, σ)δ̂ = (x, σδ) = (x, ψ). This shows thatthe map γ:X ∗ → S(X ,Φ) indu
es a surje
tive homomorphism X ∗ → N . Obviously, ea
hrelation uψ1 · · · uψn = vψ1 · · · vψm of M is mapped to a relation in N . Therefore, γ indu
es ahomomorphism M → N . Clearly, πγ = idN and γπ = idM . Thus, the monoids M and
N are isomorphi
 via γ and π. 2In the remainder, we write xψ for the element (x, ψ) ∈ X × Φ∗ so that the free monoid
S(X ,Φ) be
omes

S(X ,Φ) = {xσ11 · · · xσnn | xi ∈ X , σi ∈ Φ∗}.This notation indi
ates that the elements σi ∈ Φ∗ 
orrespond to substitutions of anas
ending monoid L-presentation. We 
onstru
t a Φ-invariant redu
tion ordering on
S(X ,Φ) in Se
tion 5.3 below; that is, a redu
tion ordering ≺ is Φ-invariant if U ≻ Vimplies Uψ ≻ V ψ for ea
h ψ ∈ Φ∗. A Φ-invariant redu
tion ordering ≺ gives rise to a
Φ-�nite rewriting system T for the monoid M from Theorem 5.7:Lemma 5.8 Suppose that the free monoid S(X ,Φ) admits a Φ-invariant redu
tion or-dering ≺. Ea
h invariant �nite L-presentation of a group gives rise to a Φ-�nite rewritingsystem T with obje
ts S(X ,Φ).Proof. By Proposition 5.5, an invariantly �nitely L-presented group 
an be de�ned byan as
ending �nite monoid L-presentation

〈
X

∣∣∣ {Uψ = V ψ | (U, V ) ∈ R, ψ ∈ Φ∗}
〉
.



62 Chapter 5. Finitely Based In�nite Rewriting SystemsBy Theorem 5.7, we obtain an isomorphi
 monoid presentation with generators X ×Φ∗.This monoid L-presentation is as
ending and possibly in�nite be
ause X ×Φ∗ might bein�nite. However, the relations in the monoid presentation in Theorem 5.7 are Φ-�nitewith Φ-generating set
{U = V | (U, V ) ∈ R} ∪ {xσ = ξ1 · · · ξℓ | x ∈ X , σ ∈ Φ}. (5.8)A Φ-invariant redu
tion ordering ≺ allows us to 
onstru
t a Φ-�nite rewriting system forthe monoid in Theorem 5.7. 25.3 A Redu
tion Ordering on S(X ,Φ)In this se
tion, we 
onstru
t a Φ-invariant redu
tion ordering on the free monoid S(X ,Φ).For this purpose, we re
all some basi
 
onstru
tions �rst: An ordering x1 ≺ x2 ≺ · · · ≺

xn ≺ xn+1 ≺ . . . on the alphabet X extends to the free monoid X ∗ over the alphabet Xas follows: De�ne a1 · · · an ≺ b1 · · · bm if and only if(i) n = ‖a1 · · · an‖ < ‖b1 · · · bm‖ = m or, otherwise,(ii) if there exists 1 ≤ i ≤ m = n with aj = bj , for ea
h 1 ≤ j < i, and ai ≺ bi.The ordering ≺ is the length-plus-lexi
ographi
 ordering on the free monoid X ∗. We usethe left-to-right version here. However, a right-to-left version 
ould be de�ned analo-gously and it also applies to the 
onstru
tions below.The length-plus-lexi
ographi
 ordering is a total and translation-invariant orderingon the free monoid X ∗ [129℄. It is a well-ordering provided that ≺ is a well-ordering onthe alphabet X [129℄. For instan
e, if X ∗ is �nitely generated by X = {x1, . . . , xn}, thelength-plus-lexi
ographi
 ordering is a total and translation-invariant well-ordering or,for short, a redu
tion ordering.Let Φ be another �nite alphabet and denote by Φ∗ the free monoid that is generatedby Φ. Then an ordering < of the �nite set Φ extends to the length-plus-lexi
ographi
ordering < on the free monoid Φ∗. The ordering < further extends to a total well-ordering
≪ on the m-folded Cartesian produ
t Φ∗ × · · · × Φ∗ as follows:De�nition 5.9 Let < denote the length-plus-lexi
ographi
 ordering on the free monoid
Φ∗. De�ne (σ1, . . . , σm) ≪ (δ1, . . . , δm) if and only if there exists 1 ≤ i ≤ m so that
σj = δj , for ea
h 1 ≤ j < i, and σi < δi.This de�nition yields the followingLemma 5.10 The ordering ≪ in De�nition 5.9 is a total well-ordering on the m-foldedCartesian produ
t Φ∗ × · · · × Φ∗.Proof. Let (σ1, . . . , σm), (δ1, . . . , δm) ∈ Φ∗×· · ·×Φ∗ be given. Sin
e < is a total orderingon Φ∗, for ea
h 1 ≤ j ≤ m, we either have σj < δj , δj < σj , or σj = δj . For the m-foldedCartesian produ
t Φ∗×· · ·×Φ∗ we either have (σ1, . . . , σm) = (δ1, . . . , δm) or there exists
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tion Ordering on S(X ,Φ) 63
1 ≤ i < m so that σj = δj , for ea
h 1 ≤ j < i, and either σi < δi or σi > δi. Hen
e, ≪ isa total ordering on Φ∗ × · · · × Φ∗ as soon as < is a total ordering on Φ∗.Consider the m-folded Cartesian produ
t Φ∗ × · · · × Φ∗. If m = 1, the ordering
≪ in De�nition 5.9 
oin
ides with the well-ordering < on Φ∗. Obviously, the ordering
≪ is a well-ordering in this 
ase. Suppose that m > 1 holds. Let (σ

(1)
1 , . . . , σ

(1)
m ) ≫

(σ
(2)
1 , . . . , σ

(2)
m ) ≫ . . . be des
ending series in Φ∗ × · · · × Φ∗. Then (σ

(1)
1 , . . . , σ

(1)
m−1) ≫

(σ
(2)
1 , . . . , σ

(2)
m−1) ≫ . . . is a des
ending series in the (m − 1)-folded Cartesian produ
t.By indu
tion on m, there exists ℓ ∈ N0 so that (σ(j)1 , . . . , σ

(j)
m−1) = (σ

(j+1)
1 , . . . , σ

(j+1)
m−1 ) forea
h j ≥ ℓ. For j ≥ ℓ, this yields that σ(j)m ≥ σ

(j+1)
m ≥ . . . is a des
ending sequen
e in thewell-ordered monoid Φ∗. Thus, there exists k ≥ ℓ so that σ(j)m = σ

(j+1)
m , for ea
h j ≥ k,and hen
e, ≪ is a well-ordering. 2The following de�nition gives a redu
tion ordering on the free monoid

S(X ,Φ) = {xσ11 · · · xσnn | xi ∈ X , σi ∈ Φ∗, 1 ≤ i ≤ n} .This ordering will be 
entral to our 
onstru
tion of a Φ-�nite rewriting system below.De�nition 5.11 Denote the length-plus-lexi
ographi
 ordering on X ∗ by < and let ≪denote the ordering on Φ∗ × · · · × Φ∗ from De�nition 5.9. Then an ordering ≺ on thefree monoid S(X ,Φ) is given as follows: For xσ11 · · · xσnn , yδ11 · · · yδmm ∈ S(X ,Φ), we de�ne
xσ11 · · · xσnn ≺ yδ11 · · · yδmm if and only if(i) either x1 · · · xn < y1 · · · ym holds or, otherwise,(ii) if (σ1, . . . , σn) ≪ (δ1, . . . , δn).This de�nition yields the followingProposition 5.12 The ordering ≪ in De�nition 5.11 is a redu
tion ordering on the freemonoid S(X ,Φ).Proof. The ordering in De�nition 5.11 is total as both, the length-plus-lexi
ographi
ordering < and the ordering ≪ from De�nition 5.9 are total orderings.Suppose that U1 ≫ U2 ≫ . . . ≫ Ui ≫ Ui+1 ≫ . . . is des
ending series in S(X ,Φ).Sin
e < is a well-ordering on X ∗, there exists ℓ ∈ N0 so that Ui = x

σ
(i)
1

1 · · · xσ
(i)
n
n and

Ui+1 = x
σ
(i+1)
1

1 · · · xσ
(i+1)
n
n for ea
h i ≥ ℓ. It therefore su�
es to 
onsider the des
endingseries (σ(ℓ)1 , . . . , σ

(ℓ)
n ) ≫ (σ

(ℓ+1)
1 , . . . , σ

(ℓ+1)
n ) ≫ . . . within the n-folded Cartesian produ
t

Φ∗ × · · · × Φ∗. Sin
e ≪ is a well-ordering, though, the latter sequen
e terminates andthus, there exists k ≥ ℓ so that (σ(m)
1 , . . . , σ

(m)
n ) = (σ

(m+1)
1 , . . . , σ

(m+1)
n ) for ea
h m ≥ k.In parti
ular, for ea
h i ≥ k, we have Ui = x

σ
(i)
1

1 · · · xσ
(i)
n
n = x

σ
(i+1)
1

1 · · · xσ
(i+1)
n
n = Ui+1 andhen
e, the ordering ≺ is a well-ordering.For proving translation invarian
e of the ordering ≺, it su�
es to prove that, forea
h x ∈ X and σ ∈ Φ∗, we both have xσU ≺ xσV and Uxσ ≺ V xσ whenever U ≺ V



64 Chapter 5. Finitely Based In�nite Rewriting Systemsholds. However, this follows immediately from the 
onstru
tion of the ordering ≺ in Def-inition 5.11 and the fa
t that the length-plus-lexi
ographi
 ordering on X ∗ is translationinvariant; see [129, Proposition 1.5℄. 2The ordering ≺ in De�nition 5.11 is Φ-invariant:Lemma 5.13 For U, V ∈ S(X ,Φ) and ψ ∈ Φ∗, U ≺ V implies Uψ ≺ V ψ.Proof. Write U = xσ11 · · · xσnn and V = yδ11 · · · yδmm with ea
h xi, yj ∈ X and σi, δj ∈ Φ∗.For ψ ∈ Φ, we have
Uψ = xσ1ψ1 · · · xσnψn and V ψ = yδ1ψ1 · · · yδmψm . (5.9)Sin
e U ≺ V holds, we either have x1 · · · xn < y1 · · · ym in the length-plus-lexi
ographi
ordering < on X ∗ or (σ1, . . . , σn) ≪ (δ1, . . . , δn) in the ordering from De�nition 5.9. Inthe �rst 
ase, the images Uψ and V ψ satisfy x1 · · · xn < y1 · · · ym. Thus Uψ ≺ V ψ. In these
ond 
ase, we would have x1 · · · xn = y1 · · · ym and (σ1, . . . , σn) ≪ (δ1, . . . , δn). Sin
ethe length-plus-lexi
ographi
 ordering on Φ∗ is translation invariant, the latter implies

(σ1ψ, . . . , σnψ) ≪ (δ1ψ, . . . , δnψ). Thus Uψ ≺ V ψ. 2We �nally note the followingRemark 5.14 Similar to the Knuth-Bendix 
ompletion for �nitely presented groups, theredu
tion ordering is �exible; for instan
e, we need to spe
ify the orderings on the gen-erating sets X and Φ of the free monoids X ∗ and Φ∗. Furthermore, we 
an also use theright-to-left version of the length-plus-lexi
ographi
 ordering. This provides a sele
tion ofredu
tion orderings that 
an be applied in the Knuth-Bendix 
ompletion algorithm.5.4 The Criti
al Pair LemmaIn the following, we establish a Criti
al Pair Lemma for a Φ-�nite rewriting system.This lemma enables us to de
ide whether or not a Φ-�nite rewriting system is lo
ally
on�uent. The Criti
al Pair Lemma below generalizes [129, Proposition 3.1℄ for �nitepresentations.Suppose that T is a Φ-�nite rewriting system with Φ-generating set R. Then anelement W ∈ S(X ,Φ) redu
es with respe
t to T if there exist A,B,P,Q ∈ S(X ,Φ) and
σ ∈ Φ∗ so that W = AP σB and P → Q is a rewriting rule in the Φ-generating set
R. In order to �nd the minimal words W ∈ S(X ,Φ) on whi
h lo
al 
on�uen
e fails wetherefore need to re
ognize the left-side P of the rewriting rule P → Q as a `subword' of
W = AP σB even if σ is non-trivial. More pre
isely, we use the following de�nition of a
Φ-subword:De�nition 5.15 For an element W = xσ11 · · · xσnn ∈ S(X ,Φ), a Φ-subword has the form
xδii · · · x

δj
j with 1 ≤ i ≤ j ≤ n and there exists ω ∈ Φ∗ so that σℓ = δℓ ω for ea
h i ≤ ℓ ≤ j.An element V ∈ S(X ,Φ) is a proper Φ-subword of W if it is a Φ-subword of W with

W 6= V .



5.4. The Criti
al Pair Lemma 65The notion of a Φ-subword is more general than the notion of a subword within the freemonoid S(X ,Φ) as it also in
orporates the a
tion of the monoid Φ∗. In parti
ular, a
Φ-subword V of W is an ω-preimage of subword in the free monoid S(X ,Φ). Note that
σℓ = δℓ ω, for a 
ommon ω ∈ Φ∗, in De�nition 5.15 implies that δℓ is a pre�x of σℓ.Moreover, we have the following observation:Lemma 5.16 Let ≺ denote the redu
tion ordering from Se
tion 5.3. EveryW ∈ S(X ,Φ)has only �nitely many Φ-subwords. Ea
h proper Φ-subword U of W satis�es U ≺W .Proof. The proof follows immediately from the de�nitions above. 2An elementW ∈ S(X ,Φ) is lo
ally 
on�uent if for ea
h A,B ∈ S(X ,Φ) withW → A and
W → B, there existsD ∈ S(X ,Φ) so that A→∗ D and B →∗ D. A minimal 
ondition foran element W ∈ S(X ,Φ) not to be lo
ally 
on�uent is given by the following proposition(in the style of [129℄):Proposition 5.17 (The Criti
al Pair Lemma) Let T be a rewriting system on
S(X ,Φ) with (possibly in�nite) Φ-generating set R ⊆ T . Suppose that the element
W ∈ S(X ,Φ) is not lo
ally 
on�uent but ea
h of its proper Φ-subwords is lo
ally 
on�u-ent. Then one of the following 
onditions holds: There exist rewriting rules P1 → Q1and P2 → Q2 in the Φ-generating set R so that(i) W = P1 and W = AP σ2 B for σ ∈ Φ∗ and A,B ∈ S(X ,Φ).(ii) W = P σ1 and W = AσP2B

σ for σ ∈ Φ∗ and non-empty words A,B ∈ S(X ,Φ).(iii) W 
an be written (AB)σC or A(BC)σ for non-empty words A,B,C ∈ S(X ,Φ),
σ ∈ Φ∗, and either

• P1 = AB and P2 = BσC, or
• P1 = ABσ and P2 = BC.Proof. We generalize the proof of [129, Proposition 3.1℄. If W ∈ S(X ,Φ) is not lo
ally
on�uent, there exist A1, P1, Q1, B1, A2, P2, Q2, B2 ∈ S(X ,Φ) and σ, δ ∈ Φ∗ so that(i) W = A1P

σ
1 B1 and W = A2P

δ
2B2,(ii) there are rewriting rules P1 → Q1 and P2 → Q2 in R,(iii) there does not exist V ∈ S(X ,Φ) with A1Q

σ
1B1 →

∗ V and A2Q
δ
2B2 →

∗ V .First, assume that P1 and P2 do not overlap; i.e., we have W = A1P
σ
1 CP

δ
2B2 for some

C ∈ S(X ,Φ). Using the rewriting rule P1 → Q1, we obtain U1 = A1Q
σ
1CP

δ
2B2 while therule P2 → Q2 gives us U2 = A1P

σ
1 CQ

δ
2B2. Both U1 and U2 redu
e to the extended word

V = A1Q
σ
1CQ

δ
2B2; this 
ontradi
ts the third 
ondition on W . Therefore, P1 and P2 dooverlap. This yields either one of the following 
onditions holds:

• There exist positive integers 1 ≤ i ≤ j ≤ n with P σ1 = xσ1σ1 · · · xσiσi · · · x
σjσ
j · · · xσnσnand P δ2 = xσiσi · · · x

σjσ
j . Write P σ1 = AσP δ2C

σ in this 
ase.
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• There exist positive integers 1 < i ≤ j < m with P σ1 = xσ1σ1 · · · xσiσi · · · x

σjσ
j ,

P δ2 = xδiδi · · · x
δjδ
j · · · xδmδm and δℓδ = σℓσ for i ≤ ℓ ≤ j. Write P σ1 = AσBσ and

P δ2 = Bδ Cδ for non-empty words A,B,C ∈ S(X ,Φ) with Bσ = Bδ.Consider the �rst 
ase above. Then W = A1P
σ
1 B1 = A1A

σP δ2C
σB1, A2 = A1A

σ, and
B2 = CσB1. Suppose that A1 6= ε or B1 6= ε holds. Then P σ1 = AσP δ2C

σ is a proper Φ-subword of W = A1A
σP δ2C

σB1. Sin
e ea
h proper Φ-subword of W is lo
ally 
on�uent,there exists V ∈ S(X ,Φ) so that P σ1 → Qσ1 →∗ V and AσP δ2Cσ → AσQδ2C
σ →∗ V . Thisyields that

A1P
σ
1 B1 → A1Q

σ
1B1 →

∗ A1V B1and
A2P

δ
2B2 → A2Q

δ
2B2 = A1A

σQδ2C
σB1 →

∗ A1V B1;this 
ontradi
ts the third 
ondition on W . Thus A1 = ε = B1 and W = AσP δ2C
σ = P σ1 .Suppose that ω ∈ Φ∗ is a 
ommon su�x of σ and δ so that δ = δ̄ω and σ = σ̄ωhold for δ̄, σ̄ ∈ Φ∗. Consider U = Aσ̄P δ̄2C

σ̄ = P σ̄1 ∈ S(X ,Φ). If the su�x ω ∈ Φ∗ isnon-trivial, U is a proper Φ-subword of W = AσP δ2C
σ. Sin
e ea
h proper Φ-subwordof W is lo
ally 
on�uent, there exists V ∈ S(X ,Φ) so that U = P σ̄1 → Qσ̄1 →∗ V and

U = Aσ̄P δ̄2C
σ̄ → Aσ̄Qδ̄2C

σ̄ →∗ V . Hen
e Qσ1 →∗ V ω, AσQδ2Cσ →∗ V ω as well as
A1Q

σ
1B1 = Qσ1 →∗ V ωand

A2Q
δ
2B2 = A1A

σQδ2C
σB1 = AσQδ2C

σ →∗ V ω;this 
ontradi
ts the third assumption on W . Therefore, the 
ommon su�x ω is trivial.As P1 and P2 have the form P σ1 = xσ1σ1 · · · xσiσi · · · x
σjσ
j · · · xσnσn and P δ2 = xσiσi · · · x

σjσ
j ,

δ is a 
ommon su�x of σℓσ, for ea
h i ≤ ℓ ≤ j. We obtain either one of the following
onditions:
• If σ = δ holds, both σ and δ are trivial. ThusW = AP2C = P1 for A,C ∈ S(X ,Φ).
• If ‖σ‖ < ‖δ‖ holds, σ is a su�x of δ and hen
e σ is trivial. Thus W = APψ2 C = P1for A,C ∈ S(X ,Φ) and ψ ∈ Φ∗.
• If ‖σ‖ > ‖δ‖ holds, δ is a su�x of σ and hen
e δ is trivial. ThusW = AψP2C

ψ = Pψ1for A,C ∈ S(X ,Φ) and ψ ∈ Φ∗.The �rst two 
onditions 
orrespond to (i) in Proposition 5.17 while the last 
ondition
orrespond to either (i), if both A and B are empty, or it 
orresponds to (ii) of Proposi-tion 5.17 otherwise.Consider the se
ond 
ase where we have that P σ1 = AσBσ and P δ2 = BδCδ for non-empty words A,B,C ∈ S(X ,Φ) with Bσ = Bδ. Then W = A1P
σ
1 B1 = A1A

σBσB1 and
W = A2P

δ
2B2 = A2B

δCδB2. Moreover, we have
W = A1A

σBσCδB2 = A1A
σBδCδB2,
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al Pair Lemma 67as well as B1 = CδB2 and A2 = A1A
σ. Suppose that A1 6= ε or B2 6= ε holds. Then

U = AσBσCδ = AσBδCδ is a proper Φ-subword of W . Sin
e ea
h proper Φ-subword of
W is lo
ally 
on�uent, there exists V ∈ S(X ,Φ) so that

U = AσBσCδ → Qσ1C
δ →∗ V and U = AσBδCδ → AσQδ2 →

∗ V.This yields that
A1P

σ
1 B1 → A1Q

σ
1B1 = A1Q

σ
1C

δB2 →
∗ A1V B2and

A2P
δ
2B2 → A2Q

δ
2B2 = A1A

σQδ2B2 →
∗ A1V B2;this 
ontradi
ts the third 
ondition on W . Thus A1 = ε = B2 and W = AσBσCδ =

AσBδCδ with P σ1 = AσBσ, P δ2 = BδCδ, and Bσ = Bδ.Suppose that ω ∈ Φ∗ is a 
ommon su�x of δ and σ so that δ = δ̄ω and σ = σ̄ω holdfor σ̄, δ̄ ∈ Φ∗. Then B δ̄ = Bσ̄. Consider U = Aσ̄Bσ̄C δ̄ = Aσ̄B δ̄C δ̄. If the su�x ω isnon-trivial, U is a proper Φ-subword of W . Sin
e ea
h proper Φ-subword of W is lo
ally
on�uent, there exists V ∈ S(X ,Φ) so that
U = Aσ̄Bσ̄C δ̄ → Qσ̄1C

δ̄ →∗ V and U = Aσ̄B δ̄C δ̄ → Aσ̄Qδ̄2 →
∗ V.This yields that Qσ1Cδ →∗ V ω and AσQδ2 →∗ V ω as well as

A1P
σ
1 B1 → A1Q

σ
1B1 = A1Q

σ
1C

δB2 →
∗ A1V

ωB2and
A2P

δ
2B2 → A2Q

δ
2B2 = A1A

σQδ2B2 →
∗ A1V

ωB2;this 
ontradi
ts the third 
ondition on W . Thus the 
ommon su�x ω is trivial. Sin
e
Bδ = Bσ, we either have that δ is a su�x of σ or vi
e versa. In parti
ular, this showsthat either δ or σ is trivial. We obtain the third 
ondition of Proposition 5.17. 2There are only �nitely many 
he
ks in Proposition 5.17 to be performed on a Φ-�niterewriting system with a �nite Φ-generating set R. Note that 
ondition (i) in Propo-sition 5.17 yield that there exists a rewriting rule whose left-side is redu
ible. Similarto [129℄, rewriting systems where the left-side of a rule is redu
ible 
an be improved. Arewriting system T in whi
h 
ondition (i) of Proposition 5.17 does not o

ur is 
alled aredu
ed rewriting system.If lo
al 
on�uen
e fails at one of the 
onditions in Proposition 5.17, we obtain twoirredu
ible elements U, V ∈ S(X ,Φ) whi
h satisfy W →T U , W →T V , and U 6= V .In this 
ase, the tuple (U, V ) ∈ S(X ,Φ) × S(X ,Φ) is 
alled a Φ-overlap of the rewritingrules P1 → Q1 and P2 → Q2. Again, these overlaps generalize the notion in [129℄ for�nitely presented groups. For our algorithm, we need the followingLemma 5.18 There are only �nitely many Φ-overlaps in a Φ-�nite rewriting system.Proof. Sin
e ea
h element W ∈ S(X ,Φ) has only �nitely many Φ-subwords and ea
hoverlap in Proposition 5.17 
ontains the left-side of a rewriting rule from a �nite Φ-generating set R, there are only �nitely many overlaps of rewriting rules. 2



68 Chapter 5. Finitely Based In�nite Rewriting Systems5.5 A Generalized Knuth-Bendix CompletionSo far, we have introdu
ed the basi
s for a Knuth-Bendix 
ompletion as outlined in [129,Se
tion 2℄; see also [86℄. The overall idea of a Knuth-Bendix 
ompletion is quite simple:Sin
e, by Newman's Lemma 5.1, lo
al 
on�uen
e of a Noetherian rewriting system alreadyimplies 
on�uen
e, it su�
es to 
he
k a Φ-�nite rewriting system for lo
al 
on�uen
e only.For this purpose, the Criti
al Pair Lemma 5.17 applies. If we apply Lemma 5.17 to a�nite Φ-generating set, we either prove lo
al 
on�uen
e of the rewriting system or wewould have found an overlap (U, V ) ∈ S(X ,Φ) × S(X ,Φ). In the latter 
ase, the Φ-overlap satis�es U ∼ V and either U ≻ V or U ≺ V . Suppose that U ≻ V holds.Adding the rewriting rule U → V to the Φ-generating set R of the rewriting system
T does not 
hange the monoid 
ongruen
e ∼T . We 
an 
ontinue the pro
ess until weprove lo
al 
on�uen
e of the obtained rewriting system. Of 
ourse termination of thisapproa
h is 
entral here. In the following, we des
ribe a �rst-hand approa
h to a Knuth-Bendix 
ompletion for invariantly �nitely L-presented groups. Moreover, we prove thatit terminates if the monoid L-presentation with generators X × Φ∗ admits a Φ-�nite
on�uent rewriting system with respe
t to ≺.Let G be an invariantly �nitely L-presented group. Then, by Proposition 5.5 andTheorem 5.7, G admits an as
ending monoid L-presentation of the form

〈
X × Φ∗

∣∣∣
{
Uψ = V ψ

∣∣∣ (U, V ) ∈ S and ψ ∈ Φ∗
}〉

.The monoid 
ongruen
e ∼ is generated by the Φ-�nite rewriting system
T =

{
Pψ → Qψ

∣∣∣ P ≻ Q, (P,Q) ∈ S or (Q,P ) ∈ S, ψ ∈ Φ∗
}with Φ-generating set R = {P → Q | P ≻ Q, (P,Q) ∈ S or (Q,P ) ∈ S}. The algorithmLKnuthBendix in Algorithm 5.1 below takes as input the �nite Φ-generating set Rand it attempts to 
ompute a �nite Φ-generating set for a 
on�uent Φ-�nite rewritingsystem T that also de�nes the monoid 
ongruen
e ∼T . The algorithm LKnuthBendixterminates whenever a 
on�uent Φ-�nite rewriting system exists:Theorem 5.19 Let ≺ be a redu
tion ordering on S(X ,Φ). If the monoid de�ned by themonoid presentation

〈X × Φ∗ | {Uψ = V ψ | (U, V ) ∈ R, ψ ∈ Φ∗ 〉admits a 
on�uent Φ-�nite rewriting system T with respe
t to ≺, the algorithm LKnuth-Bendix terminates and it 
omputes a �nite Φ-generating set R for T .Proof. We generalize the proof from [129, Proposition 5.1℄. Suppose that the algorithmLKnuthBendix in Algorithm 5.1 does not terminate. Then it 
onstru
ts an in�nitesequen
e of rewriting rules Pi → Qi where both Pi and Qi are irredu
ible with respe
tto the Φ-�nite rewriting system Zi = {Pψj → Qψj | 1 ≤ j < i, ψ ∈ Φ∗}. Denote by
Yi = {Pj → Qj | 1 ≤ j < i} a Φ-generating set for Zi. Write Z =

⋃
i∈N0

Zi and



5.5. A Generalized Knuth-Bendix Completion 69LKnuthBendix(X , Φ, R, ≺)Initialize i := 1.while i ≤ n dofor j ∈ {1, . . . , i} doCompute the Φ-overlaps O ⊆ S(X ,Φ)× S(X ,Φ) ofthe rules Pi → Qi and Pj → Qj .for (a, b) ∈ O doRewrite a and b to irredu
ible elements A and B, respe
tively.if A ≺ B then Set Pn+1 := B, Qn+1 := A, and n := n+ 1.if A ≻ B then Set Pn+1 := A, Qn+1 := B, and n := n+ 1.return( R ).Algorithm 5.1: A Knuth-Bendix 
ompletion algorithm
Y =

⋃
i∈N0

Yi. We �rst prove that the rewriting system Z is 
on�uent. Sin
e Z isNoetherian, it su�
es to prove that it is lo
al 
on�uent.Suppose that the rewriting system Z is not lo
ally 
on�uent. Then there exist el-ements whi
h are not lo
ally 
on�uent. Sin
e ≺ is a well-ordering, there exists a leastelement W ∈ S(X ,Φ) whi
h is not lo
ally 
on�uent. As ea
h proper Φ-subword U of Wsatis�es U ≺ W , ea
h proper Φ-subword of W is lo
ally 
on�uent. Therefore, the Crit-i
al Pair Lemma 5.17 applies to W : There exist rewriting rules Pi → Qi and Pj → Qjin the Φ-generating set Y of the rewriting system Z so that either one of the following
onditions hold:(i) W = P1 and W = AP σ2 B for σ ∈ Φ∗ and A,B ∈ S(X ,Φ).(ii) W = P σ1 and W = AσP2B
σ for σ ∈ Φ∗ and non-empty words A,B ∈ S(X ,Φ).(iii) W 
an be written (AB)σC or A(BC)σ for non-empty words A,B,C ∈ S(X ,Φ),

σ ∈ Φ∗, and either
• P1 = AB and P2 = BσC, or
• P1 = ABσ and P2 = BC.Suppose that either one of these 
onditions holds. Sin
e the algorithm LKnuthBendixensures that all overlaps are 
he
ked, the rules Pi → Qi and Pj → Qj would have been
he
ked for an overlap of this type and it would have enfor
ed lo
al 
on�uen
e of Wby adding an appropriate rewriting rule. Therefore, the rewriting system Z with Φ-generating set Y is lo
ally 
on�uent and it generates the monoid 
ongruen
e ∼. As Zis Noetherian by 
onstru
tion, Z is 
on�uent and, by Corollary 5.3, it allows to rewriteea
h W ∈ S(X ,Φ) to its 
anoni
al form.Suppose that there exists a 
on�uent Φ-�nite rewriting system T with �nite Φ-generating set R for the monoid in Theorem 5.19. Then the rewriting systems T and
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Z both indu
e the same monoid 
ongruen
e ∼ whi
h is generated by the monoid L-presentation in Theorem 5.19. The redu
tion ordering ≺ on S(X ,Φ) allows us to de�nethe set of 
anoni
al forms

C =
{
P ∈ S(X ,Φ)

∣∣ for ea
h U ∈ S(X ,Φ) we have U ∼ P ⇒ U � P
}
.This de�nition does not depend on the rewriting systems T and Z. Let P be the set ofelements W ∈ S(X ,Φ) \ C so that ea
h proper Φ-subword of W is a 
anoni
al form. Let

W ∈ P be given. Sin
e ea
h proper Φ-subword of W is a 
anoni
al form, it is irredu
ibleby Lemma 5.2. Be
ause the 
on�uent rewriting systems T and Z allow us to rewrite theelement W to its 
anoni
al form, both rewriting systems 
ontain a (unique) rewritingrule with left-side W . Sin
e R is a Φ-generating set for the rewriting system T , thereexists a (unique) rewriting rule P → Q in R and ψ ∈ Φ∗ so that W = Pψ. If ψ isnon-trivial, P is a proper subword of W and thus P ∈ C; this, however, 
ontradi
ts theexisten
e of a rewriting rule P → Q whi
h implies that P ≻ Q holds. Therefore, W = Pis a
tually 
ontained in the Φ-generating set R. In parti
ular, the set of rewriting rules
{P → Q | P ∈ P} ⊆ R is �nite and so is P.Consider the Φ-generating set Y with the rewriting rules Pi → Qi that were generatedby the algorithm LKnuthBendix. Sin
e P is �nite, there exists a positive integer nthat is maximal subje
t to Pn ∈ P. Let i > n be given. The elements Pi and Qi are,by 
onstru
tion, irredu
ible with respe
t to Zi = {Pψj → Qψj | 1 ≤ j < i, ψ ∈ Φ∗}.However, Pi 6∈ P and Pi 6∈ C. Therefore, Pi must 
ontain a proper Φ-subword U thatis 
ontained in P. But this is impossible as either Z does not allow to rewrite U toits 
anoni
al form (
ontradi
ting Corollary 5.3) or U must be the left-side of a rulein {Pj → Qj | 1 ≤ j ≤ n} (
ontradi
ting irredu
ibility of Pi with respe
t to Zi).Therefore, the algorithm LKnuthBendix 
annot produ
e an in�nite Φ-generating set
Y. It terminates and 
omputes a �nite Φ-generating set for a 
on�uent Φ-�nite rewritingsystem. 2It should be emphasized here that Theorem 5.19 does not imply that there is a pro
edurethat allows to de
ide whether or not a group admits a Φ-�nite rewriting system. Theproof of Theorem 5.19 also yields the followingCorollary 5.20 For a �nite group G, the algorithm LKnuthBendix terminates and it
omputes a �nite Φ-generating set for a 
on�uent rewriting system for G.Proof. If G is �nite, there are only �nitely many 
anoni
al forms. In parti
ular, fora rewriting system T with Φ-generating set R and a monoid 
ongruen
e ∼, the set of
anoni
al forms C de�ned in the proof of Theorem 5.19 is �nite. It su�
es to prove�niteness of the set P of elements W ∈ S(X ,Φ) \ C so that ea
h proper Φ-subword of
W is 
ontained in C. If this is the 
ase, the proof of Theorem 5.19 applies and it wouldprove that the algorithm LKnuthBendix terminates.Re
all that the elements W ∈ S(X ,Φ) have the form W = xσ11 · · · xσnn . Sin
e C is�nite, there exists a positive integer ℓ that is maximal subje
t to xσ11 · · · xσℓℓ ∈ C. Let
V ∈ P be given. Then ea
h proper Φ-subword of V is 
ontained in C. If V = xσ11 · · · xσnn
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h 71for n > ℓ+ 1, the Φ-subword U = xσ11 · · · x
σℓ+1

ℓ+1 of V is proper and it is not 
ontained in
C. Therefore, V ∈ P has the form V = xσ11 · · · xσnn with n ≤ ℓ+ 1.Similar, as C is �nite, there exists a positive integer m that is maximal subje
t to
xσ11 · · · xσnn ∈ C with ea
h ‖σi‖ ≤ m. Let V ∈ P be given. Then V = xσ11 · · · xσn with
n ≤ ℓ + 1. Suppose that for some 1 ≤ i ≤ n we have that ‖σi‖ = k > m. Then
σ = δ1 · · · δmδm+1 · · · δk with ea
h δi ∈ Φ. Then x

δ1···δm+1

i is a proper Φ-subword of Vbut xδ1···δm+1

i 6∈ C.It follows that the elements V ∈ P are `bounded' so that there are only �nitely manysu
h elements. Sin
e P is �nite, the ideas of the proof of Theorem 5.19 apply. Theseshow that algorithm LKnuthBendix terminates and it 
omputes a �nite Φ-generatingset for the rewriting system for G. 25.6 An Appli
ation of the Knuth-Bendix Approa
hIn order to illustrate our Knuth-Bendix approa
h for invariantly �nitely L-presentedgroups, we 
onsider a fairly easy L-presentation so that (most) 
omputations 
an bedone by hand. Consider the following as
ending �nite L-presentation
〈
{a12, a13, a14, a23, a24, a34}

∣∣ ∅
∣∣ {σ, δ}

∣∣ {a212, a12 a23 a13 a23}
〉 (5.10)where the endomorphisms σ and δ are indu
ed by the maps

σ:





a12 7→ a12,
a13 7→ a23,
a14 7→ a24,
a23 7→ a13,
a24 7→ a14,
a34 7→ a34,

and δ:





a12 7→ a23,
a13 7→ a24,
a14 7→ a12,
a23 7→ a34,
a24 7→ a13,
a34 7→ a14.The �nite L-presentation in Eq. (5.10) is a �nite L-presentation for the symmetri
 group

S4 over four letters [6℄. Ea
h generator aij 
orresponds to the transposition (i, j) ∈ S4and the endomorphisms σ and δ 
orrespond to the inner automorphisms that are indu
edby 
onjugation with (1, 2) and (1, 2, 3, 4), respe
tively. From the �nite L-presentation inEq. (5.10) we obtain the following relators:
a212, a

2
13 = (a212)

δσ , a214 = (a212)
δδδ , a223 = (a212)

δ, a224 = (a212)
δσδ , a234 = (a212)

δδ .In parti
ular, ea
h generator aij is either trivial or it has order 2. Thus these generatorssatisfy a−1
ij = aij . Therefore, we 
an 
onsider the group presentation in Eq. (5.10) as amonoid L-presentation for S4. Otherwise, we would need to 
onsider the formal inverses

X− = {a−1
12 , a

−1
13 , a

−1
14 , a

−1
23 , a

−1
24 , a

−1
34 } together with the relations

ε = a−1
12 a12 = a12 a

−1
12 = a−1

13 a13 = a13 a
−1
13 = . . . = a−1

34 a34 = a34 a
−1
34and extensions σ̃ and δ̃ of the endomorphisms σ and δ as in Proposition 5.5.
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hoose the orderings σ ≺ δ and a12 ≺ a13 ≺ a14 ≺ a23 ≺ a24 ≺ a34 on the monoidgenerators Φ and X , respe
tively. These orderings extend to a redu
tion ordering ≺ on
S(X ,Φ) = {xσ11 · · · xσnn | xi ∈ {a12, a13, a14, a23, a24, a34}, σi ∈ {σ, δ}∗, 1 ≤ i ≤ n}as des
ribed in Se
tion 5.3. The redu
tion ordering ≺ yields the rewriting rules

aσ12 → a12,
a23 → aσ13,
a24 → aσ14,

aσ23 → a13,
aσ24 → a14,
aσ34 → a34,

a23 → aδ12,
a24 → aδ13,
aδ14 → a12,

a34 → aδ23,
aδ24 → a13,
aδ34 → a14.

(5.11)as well as
a12 a12 → ε and a12 a23 a13 a23 → ε. (5.12)We �rst redu
e the rewriting system. For this purpose, we 
onsider the rewriting rulesone after another and we redu
e overlaps of the form (i) and (ii) in the Criti
al PairLemma 5.17; i.e., rewriting rules P1 → Q1 and P2 → Q2 so that Pω1 , for ω ∈ Φ∗, 
ontains

P2 as a proper Φ-subword. We always try to keep the rewriting system redu
ed. Thereare no overlaps of type (i) or (ii) among the rewriting rules
aσ12 → a12 (5.13)
a23 → aσ13 (5.14)
a24 → aσ14. (5.15)Consider the rewriting rule aσ23 → a13. The left-side of this rule 
ontains a23 as a proper

Φ-subword. Thus there is an overlap with the rewriting rule a23 → aσ13 from Eq. (5.14).This overlap yields both
aσ23 → a13 and aσ23 = (a23)

σ → (aσ13)
σ = aσσ13 .This yields the rewriting rule

aσσ13 → a13. (5.16)We 
an omit the rewriting rule aσ23 → a13 in the following. Similar, there is an overlapwithin the rewriting rules aσ24 → a14 and a24 → aσ14 from Eq. (5.15). This overlap yieldsboth aσ24 → a14 and aσ24 → aσσ14 . Hen
e, we obtain the rewriting rule
aσσ14 → a14, (5.17)while we 
an omit the rule aσ24 → a14. There are no overlaps with the rewriting rule
aσ34 → a34. (5.18)Consider the rewriting rule a23 → aδ12. Then there is an overlap with the rule a23 → aσ13from Eq. (5.14). This overlap yields a23 → aσ13 and a23 → aδ12. Sin
e aδ12 ≺ aσ13 holds, weobtain the rewriting rule
aσ13 → aδ12. (5.19)
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ation of the Knuth-Bendix Approa
h 73Furthermore, we repla
e the rewriting rule a23 → aσ13 in Eq. (5.14) by
a23 → aδ12. (5.20)At this stage, the rewriting system given by the rewriting rules above is not redu
edanymore be
ause the rule in Eq. (5.19) has an overlap with aσσ13 → a13 from Eq. (5.16).This overlap, on the one hand, gives aσσ13 → a13 while, on the other hand, it gives

aσσ13 = (aσ13)
σ → aδσ12 . This yields

a13 → aδσ12 . (5.21)We therefore repla
e the rule aσσ13 → a13 in Eq. (5.16) by
aδσσσ12 → aδσ12 . (5.22)The rule a13 → aδσ12 from Eq. (5.21) has an overlap with aσ13 → aδ12 from Eq. (5.19).This overlap gives aσ13 → aδ12 and aσ13 = (a13)

σ → aδσσ12 . We therefore repla
e the rule
aσ13 → aδ12 from Eq. (5.19) by

aδσσ12 → aδ12. (5.23)The latter rule yields that aδσσσ12 → aδσ12 from Eq. (5.22) is redundant. We have obtaineda redu
ed rewriting system again. Consider the rewriting rule a24 → aδ13 → aδσδ12 . Thenthere is an overlap with the rule a24 → aσ14 from Eq. (5.15). This overlap gives
aσ14 → aδσδ12 (5.24)and we repla
e the rule a24 → aσ14 from Eq. (5.15) by
a24 → aδσδ12 . (5.25)Again the above rewriting system is not redu
ed be
ause the rule aσ14 → aδσδ12 fromEq. (5.24) has an overlap with aσσ14 → a14 from Eq. (5.17). This overlap gives aσσ14 =

(aσ14)
σ → aδσδσ12 . We repla
e the rule aσσ14 → a14 from Eq. (5.17) by

a14 → aδσδσ12 . (5.26)The latter rule has an overlap with aσ14 → aδσδ12 from Eq. (5.24). This overlap allows usto repla
e aσ14 → aδσδ12 in Eq. (5.24) by
aδσδσσ12 → aδσδ12 . (5.27)We have obtained a redu
ed rewriting system again. Consider the rule aδ14 → a12. Thenthe overlap with a14 → aδσδσ12 from Eq. (5.26) yields the rewriting rule
aδσδσδ12 → a12. (5.28)The rule a34 → aδ23 → aδδ12 gives us
a34 → aδδ12. (5.29)



74 Chapter 5. Finitely Based In�nite Rewriting SystemsThe latter rule has an overlap with aσ34 → a34 from Eq. (5.18). This overlap allows us torepla
e the rule from Eq. (5.18) by
aδδσ12 → aδδ12. (5.30)Next we 
onsider the rule aδ24 → a13 → aδσ12 . This rule has an overlap with a24 → aδσδ12 inEq. (5.25). It gives us the rewriting rule
aδσδδ12 → aδσ12 . (5.31)Finally, we need to 
onsider the rule aδ34 → a14 → aδσδσ12 . This latter rule has an overlapwith a34 → aδδ12 from Eq. (5.29). This overlap gives us
aδσδσ12 → aδδδ12 . (5.32)This rule has various overlaps with the other rewriting rules. First, we 
an repla
e therule a14 → aδσδσ12 from Eq. (5.26) by
a14 → aδδδ12 . (5.33)Then the left-side of the rule aδσδσδ12 → a12 in Eq. (5.28) 
ontains aδσδσ12 as a proper

Φ-subword and thus we 
an repla
e the rule in Eq. (5.28) by
aδδδδ12 → a12. (5.34)Similar, the left-side of the rule aδσδσσ12 → aδσδ12 in Eq. (5.27) 
ontains aδσδσ12 as a proper

Φ-subword. We therefore repla
e the rule in Eq. (5.27) by
aδδδσ12 → aδσδ12 . (5.35)So far, we have obtained a redu
ed rewriting system whose rewriting rules stem from thesubstitutions σ and δ in Eq. (5.11). It remains to 
onsider the rewriting rules whi
h stemfrom the iterated relations of the L-presentation in Eq. (5.11). The �rst rule indi
atesthat the generator a12 is an involution
a12 a12 → ε. (5.36)This latter rule has several overlaps with the se
ond rule a12 a23 a13 a23 → ε fromEq. (5.11). The rewriting rules above yield that

a12 a23 a13 a23 → a12 a
δ
12 a

δσ
12 a

δ
12 → ε. (5.37)At this stage, we have obtained a redu
ed rewriting system for the �nitely L-presentedgroup in Eq. (5.10). We have proved
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h 75Proposition 5.21 For the symmetri
 group on four letters with its L-presentation fromEq. (5.10) and the orderings σ ≺ δ and a12 ≺ a13 ≺ a14 ≺ a23 ≺ a24 ≺ a34, a redu
ed
Φ-�nite rewriting system is given by the following rewriting rules:

aσ12 → a12, a13 → aδσ12 , a14 → aδδδ12 ,

a23 → aδ12, a24 → aδσδ12 , a34 → aδδ12,

aδσσ12 → aδ12, aδδσ12 → aδδ12, aδσδσ12 → aδδδ12 ,

aδσδδ12 → aδσ12 , aδδδσ12 → aδσδ12 , aδδδδ12 → a12,

(5.38)and
a12 a12 → ε and a12 a

δ
12 a

δσ
12 a

δ
12 → ε. (5.39)In the following , we enfor
e lo
al 
on�uen
e of this rewriting system by 
onsidering theoverlaps of type (iii) in the Criti
al Pair Lemma 5.17. We indi
ate whi
h rewriting rule isapplied �rst by underlining the appropriate Φ-subword. The rewriting rules in Eq. (5.39)overlap as follows:

a12 a12 a
δ
12 a

δσ
12 a

δ
12 → aδ12 a

δσ
12 a

δ
12 and a12 a12 a

δ
12 a

δσ
12 a

δ
12 → a12.as well as

a12 a
δ
12 a

δσ
12 a

δ
12 a

δ
12 → a12 a

δ
12 a

δσ
12 and a12 a

δ
12 a

δσ
12 a

δ
12 a

δ
12 → aδ12.These overlaps give

aδ12 a
δσ
12 a

δ
12 → a12 and a12 a

δ
12 a

δσ
12 → aδ12. (5.40)Again, overlaps with the rule a12 a12 → ε from Eq. (5.36) give

aδ12 a
δ
12 a

δσ
12 a

δ
12 → aδσ12 a

δ
12 and aδ12 a

δ
12 a

δσ
12 a

δ
12 → aδ12 a12,

aδ12 a
δσ
12 a

δ
12 a

δ
12 → a12 a

δ
12 and aδ12 a

δσ
12 a

δ
12 a

δ
12 → aδ12 a

δσ
12 ,

a12 a12 a
δ
12 a

δσ
12 → aδ12 a

δσ
12 and a12 a12 a

δ
12 a

δσ
12 → a12 a

δ
12,

a12 a
δ
12 a

δσ
12 a

δσ
12 → aδ12 a

δσ
12 and a12 a

δ
12 a

δσ
12 a

δσ
12 → a12 a

δ
12.Therefore, we obtain the rules

aδ12 a
δσ
12 → a12 a

δ
12 (5.41)and

aδσ12 a
δ
12 → aδ12 a12. (5.42)Consider the overlap of the rule aδδδδ12 → a12 from Eq. (5.34) with the rule from Eq. (5.41).This overlap gives us

aδδδδ12 aδσδδδ12 → a12 a
δσδδδ
12 →∗ a12 a

δσδ
12and

aδδδδ12 aδσδδδ12 = (aδ12 a
δσ
12 )

δδδ → (a12 a
δ
12)

δδδ →∗ aδδδ12 a12.
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e, we obtain the rewriting rule
aδδδ12 a12 → a12 a

δσδ
12 . (5.43)Similar, the overlap of aδδδδ12 → a12 from Eq. (5.34) and aδσ12 aδ12 → aδ12 a12 from Eq. (5.42)gives

aδσδδδ12 aδδδδ12 → aδσδδδ12 a12 →
∗ aδσδ12 a12 and aδσδδδ12 aδδδδ12 → aδδδδ12 aδδδ12 →∗ a12 a

δδδ
12 .This yields the rewriting rule

aδσδ12 a12 → a12 a
δδδ
12 . (5.44)An overlap of aδδσ12 → aδδ12 from Eq. (5.30) and aδ12 aδσ12 → a12 a

δ
12 from Eq. (5.41) gives

aδδσ12 a
δσδσ
12 → aδδ12a

δσδσ
12 →∗ aδδ12a

δδδ
12 and aδδσ12 a

δσδσ
12 → aδσ12a

δδσ
12 →∗ aδσ12a

δδ
12.We obtain the rewriting rule

aδδ12a
δδδ
12 → aδσ12a

δδ
12. (5.45)Consider the overlap of aδδδσ12 → aδσδ12 from Eq. (5.35) and aδ12 a

δσ
12 → a12 a

δ
12 fromEq. (5.41). Then, on the one hand, we obtain

aδδδσ12 aδσδδσ12 → aδσδ12 a
δσδδσ
12 → aδσδ12 a

δσσ
12 → aδσδ12 a

δ
12while, on the other hand, we obtain

aδδδσ12 aδσδδσ12 → aδδσ12 a
δδδσ
12 → aδδσ12 a

δσδ
12 → aδδ12a

δσδ
12 = (aδ12 a

δσ
12 )

δ → aδ12a
δδ
12.This yields the rewriting rule

aδσδ12 a
δ
12 → aδ12a

δδ
12. (5.46)Consider an overlap of the latter rule with the rule aδδδδ12 → a12 from Eq. (5.34). Thisoverlap gives us

aδσδδδδ12 aδδδδ12 → aδσδδ12 a12 → aδσ12 a12and
aδσδδδδ12 aδδδδ12 → aδδδδ12 aδδδδδ12 →∗ a12 a

δ
12.When
e aδσ12 a12 → a12 a

δ
12 and we 
an repla
e the rule in Eq. (5.46) by

aδσ12 a12 → a12 a
δ
12. (5.47)An overlap of the latter rule with aδσσ12 → aδ12 from Eq. (5.23) gives

aδσσ12 aσ12 → aδ12 a
σ
12 → aδ12 a12 and aδσσ12 aσ12 → aσ12 a

δσ
12 → a12 a

δσ
12 .Therefore, we obtain the rewriting rule

aδ12 a12 → a12 a
δσ
12 . (5.48)



5.6. An Appli
ation of the Knuth-Bendix Approa
h 77Note that we 
an repla
e the rewriting rule aδσ12 aδ12 → aδ12 a12 in Eq. (5.42) by
aδσ12 a

δ
12 → a12 a

δσ
12 . (5.49)The overlap of aδ12 a12 → a12 a

δσ
12 from Eq. (5.48) with aδσδσ12 → aδδδ12 from Eq. (5.32) yields

aδσδσ12 aσδσ12 → aδδδ12 a
σδσ
12 → aδδδ12 a

δσ
12 and aδσδσ12 aσδσ12 → aσδσ12 aδσσδσ12 →∗ aδσ12 a

δδ
12.This yields the rewriting rule

aδδδ12 a
δσ
12 → aδσ12 a

δδ
12. (5.50)An overlap of aδ12 a12 → a12 a

δσ
12 from Eq. (5.48) with aδδσ12 → aδδ12 from Eq. (5.30) yields

aδδσ12 a
δσ
12 → aδδ12 a

δσ
12 and aδδσ12 a

δσ
12 → aδσ12 a

δσδσ
12 → aδσ12 a

δδδ
12 .When
e

aδδ12 a
δσ
12 → aδσ12 a

δδδ
12 . (5.51)We now 
onsider an overlap of aδσ12 aδ12 → a12 a

δσ
12 from Eq. (5.49) and aδδδ12 a12 → a12 a

δσδ
12from Eq. (5.43). This overlaps yields that

aδσδδ12 aδδδ12 a12 → aδσδδ12 a12 a
δσδ
12 → aδσ12 a12 a

δσδ
12 → a12 a

δ
12 a

δσδ
12and

aδσδδ12 aδδδ12 a12 → aδδ12 a
δσδδ
12 a12 → aδδ12 a

δσ
12 a12 → aδδ12 a12 a

δ
12We obtain the rule

aδδ12 a12 a
δ
12 → a12 a

δ
12 a

δσδ
12 . (5.52)Overlapping the latter rule with a12 a12 → ε yields that

aδδ12 a12 a
δ
12 a

δ
12 → aδδ12 a12and

aδδ12 a12 a
δ
12 a

δ
12 → a12 a

δ
12 a

δσδ
12 aδ12 → a12 a

δ
12 a

δ
12 a

δδ
12 → a12 a

δδ
12.When
e

aδδ12 a12 → a12 a
δδ
12. (5.53)This rewriting rule allows us to remove the rule aδδ12 a12 aδ12 → a12 a

δ
12 a

δσδ
12 from Eq. (5.52)sin
e

aδδ12 a12 a
δ
12 → a12 a

δδ
12 a

δ
12 → a12 a

δ
12 a

δσδ
12holds. An overlap of the rule in Eq. (5.53) with the rule aδδδσ12 → aδσδ12 from Eq. (5.35)gives us

aδδδσ12 aδσ12 → aδσδ12 aδσ12 and aδδδσ12 aδσ12 → aδσ12 a
δδδσ
12 → aδσ12 a

δσδ
12 .Thus

aδσδ12 aδσ12 → aδσ12 a
δσδ
12 . (5.54)



78 Chapter 5. Finitely Based In�nite Rewriting SystemsFinally, we 
onsider an overlap of aδδ12aδδδ12 → aδσ12a
δδ
12 from Eq. (5.45) and aδδδδ12 → a12 fromEq. (5.34). This overlap yields

aδδδ12 a
δδδδ
12 → aδδδ12 a12 → a12 a

δσδ
12 and aδδδ12 a

δδδδ
12 → aδσδ12 aδδδ12and we obtain the rewriting rule

aδσδ12 aδδδ12 → a12 a
δσδ
12 . (5.55)With a Gap-program (or even by hand) it 
an be shown that all 214 overlaps of therewriting system 
onstru
ted above are satis�ed so that it is (lo
ally) 
on�uent by theCriti
al Pair Lemma 5.17. This proves the followingTheorem 5.22 A redu
ed Φ-�nite 
on�uent rewriting system for the symmetri
 groupon four letters with respe
t to the redu
tion ordering that is indu
ed by σ ≺ δ and a12 ≺

a13 ≺ a14 ≺ a23 ≺ a24 ≺ a34 is given by the Φ-generating set
aσ12 → a12, a13 → aδσ12 , a14 → aδδδ12 ,

a23 → aδ12, a24 → aδσδ12 , a34 → aδδ12,

aδσσ12 → aδ12, aδδσ12 → aδδ12, aδσδσ12 → aδδδ12 ,

aδσδδ12 → aδσ12 , aδδδσ12 → aδσδ12 , aδδδδ12 → a12,and
a12 a12 → ε, aδ12 a12 → a12 a

δσ
12 , aδ12 a

δσ
12 → a12 a

δ
12,

aδσ12 a12 → a12 a
δ
12, aδσ12 a

δ
12 → a12 a

δσ
12 , aδδ12 a12 → a12 a

δδ
12,

aδδ12 a
δσ
12 → aδσ12 a

δδδ
12 , aδδ12a

δδδ
12 → aδσ12a

δδ
12, aδσδ12 a12 → a12 a

δδδ
12 ,

aδσδ12 aδσ12 → aδσ12 a
δσδ
12 , aδσδ12 aδδδ12 → a12 a

δσδ
12 , aδδδ12 a12 → a12 a

δσδ
12 ,

aδδδ12 a
δσ
12 → aδσ12 a

δδ
12.An implementation of this Knuth-Bendix 
ompletion algorithm in the 
omputer algebrasystemGap [50℄ does not terminate for the Grigor
huk group [53℄, the Basili
a group [61℄,the lamplighter group Z2 ≀ Z and the wreath produ
t Z ≀ Z. Therefore, we do not knowif these groups admit a Φ-�nite 
on�uent rewriting system:Question 5.23 Is there an invariantly �nitely L-presented group that admits a Φ-�nite
on�uent rewriting system but that is not �nitely presented? In parti
ular, do the testbedgroups in [6℄ or [9℄ admit Φ-�nite rewriting systems?



AppendixAInvestigating self-similar groups usingtheir �nite L-presentationAbstra
t. Self-similar groups provide a ri
h sour
e of groups with interestingproperties; e.g., in�nite torsion groups (Burnside groups) and groups with anintermediate word growth. Various self-similar groups 
an be des
ribed bya re
ursive (possibly in�nite) presentation, a so-
alled �nite L-presentation.Finite L-presentations allow numerous algorithms for �nitely presented groupsto be generalized to this spe
ial 
lass of re
ursive presentations. We give anoverview of the algorithms for �nitely L-presented groups. As appli
ations, wedemonstrate how their implementation in a 
omputer algebra system allowsus to study expli
it examples of self-similar groups in
luding the Fabrykowski-Gupta groups. Our experiments yield detailed insight into the stru
ture ofthese groups.Keywords. Re
ursive presentations; self-similar groups; Grigor
huk group;Fabrykowski-Gupta groups; 
oset enumeration; �nite index subgroups; Reide-meister-S
hreier theorem; nilpotent quotients; solvable quotients.
A.1 Introdu
tionThe general Burnside problem is among the most in�uential problems in 
ombinatorialgroup theory. It asks whether a �nitely generated group is �nite if every element has �niteorder. The general Burnside problem was answered negatively by Golod [51℄. The �rstexpli
it 
ounter-examples were 
onstru
ted in [5,53,62℄. Among these 
ounter-examplesis the Grigor
huk group G whi
h is a �nitely generated self-similar group. The group
G is not �nitely presented [56℄ but it admits a re
ursive presentation whi
h 
ould bedes
ribed in �nite terms using the a
tion of a �nitely generated monoid of substitutionsa
ting on �nitely many relations [96℄. These re
ursive presentations are nowadays known



80 Chapter A. Investigating self-similar groupsas �nite L-presentations [56℄ (or endomorphi
 presentations [6℄) in honor of Lysënok'swork in [96℄ for the Grigor
huk group; see [6℄ or Se
tion A.2 for a de�nition.Finite L-presentations allow 
omputer algorithms to be employed in the investiga-tion of the groups they de�ne. A �rst algorithm for �nitely L-presented groups is thenilpotent quotient algorithm [9,64℄. Re
ently, further algorithms for �nitely L-presentedgroups were developed [66, 67, 70℄. For instan
e, in [67℄, a 
oset enumeration pro
essfor �nitely L-presented groups was des
ribed. This is an algorithm whi
h, given a �nitegenerating set of a subgroup of a �nitely L-presented group, 
omputes the index of thesubgroup in the �nitely L-presented group provided that this index is �nite. Usuallyindex 
omputations in self-similar groups have involved lots of tedious 
al
ulations (e.g.,�nding an appropriate quotient of the self-similar group; 
omputing the index of thesubgroup in this quotient; followed by a proof that the obtained index is 
orre
t; see, forinstan
e, [11, Se
tion 4℄ or [38, Chapter VIII℄). The 
oset enumerator in [67℄ makes thispro
ess 
ompletely automati
 and thus it shows the signi�
an
e of �nite L-presentationsin the investigation of self-similar groups. Moreover, 
oset enumeration allows one to
ompute the number of low-index subgroups of �nitely L-presented groups [67℄.We demonstrate the appli
ation of the algorithms for �nitely L-presented groups inthe investigation of a 
lass of self-similar groups Γp for 3 ≤ p ≤ 11. The group Γ3 wasintrodu
ed in [45℄. It is a self-similar group with an intermediate word growth [13,45,46℄.The groups Γp, with p > 3, were introdu
ed in [57℄. They are known as Fabrykowski-Gupta groups. Their abelianization Γp/Γ
′
p
∼= Zp × Zp was 
omputed in [57℄. Moreover,for p ≥ 5, the groups Γp are just-in�nite, regular bran
h groups [57℄. The 
ongruen
esubgroups of Γp, for primes p > 3, were studied in [131℄; see also [49℄. The lower 
entralseries se
tions γcΓ3/γc+1Γ3 have been 
omputed entirely in [7℄ while, for p > 3, parts ofthe lower 
entral series se
tions γcΓp/γc+1Γp have been 
omputed in [9℄. So far, littlemore is known on the groups Γp.For p ≥ 3, the Fabrykowski-Gupta group Γp admits a �nite L-presentation [9℄. Wedemonstrate how the implementations of the algorithms for �nitely L-presented groupsallow us to investigate the groups Γp for 3 ≤ p ≤ 11 in detail. For instan
e, we demon-strate the appli
ation of our algorithm

• to 
ompute the isomorphism type of the lower 
entral series se
tions γcΓp/γc+1Γpusing improved (parallel) methods from [9, 64℄.
• to 
ompute the isomorphism type of the Dwyer quotients Mc(Γp) of their S
hurmultiplier using the methods from [66℄.
• to determine the number of low-index subgroups of the groups Γp using the methodsfrom [67℄.
• to 
ompute the isomorphism type of the se
tions Γ

(c)
p /Γ

(c+1)
p of the derived series
ombining the methods from [70℄ and [9, 64℄.We brie�y sket
h the algorithms available for �nitely L-presented groups. Moreover,we 
ompare our experimental results for the Fabrykowski-Gupta groups Γp with thoseresults for the Grigor
huk group G. The group G has been investigated for de
ades now.



A.2. Self-Similar Groups 81Even though a lot is known about its stru
ture, various questions still remain open [58℄.For further details on the Grigor
huk group G, we refer to [38, Chapter VIII℄.A.2 Self-Similar GroupsA self-similar group 
an be de�ned by its re
ursive a
tion on a regular rooted tree:Consider the d-regular rooted in�nite tree Td as a free monoid over the alphabet X =
{0, . . . , d− 1}. Then a self-similar group 
an be de�ned as follows:De�nition 1.1 A group G a
ting faithfully on the free monoid X ∗ is self-similar if forea
h g ∈ G and x ∈ X there exist h ∈ G and y ∈ X so that

(xw)g = y wh for ea
h w ∈ X ∗. (A.1)It su�
es to spe
ify the self-similar a
tion in Eq. (A.1) on a generating set of a group.For instan
e, the Grigor
huk group G = 〈a, b, c, d〉 
an be de�ned as a subgroup of theautomorphism group of the rooted binary tree T2 = {0, 1}∗ by its self-similar a
tion:
(0w)a = 1w (1w)a = 0w
(0w)b = 0wa (1w)b = 1wc

(0w)c = 0wa (1w)c = 1wd

(0w)d = 0w (1w)d = 1wb .The Fabrykowski-Gupta group Γ3 is another example of a self-similar group. It wasintrodu
ed in [45℄ as a group with an intermediate word growth [13, 46℄. The group Γ3was generalized in [57℄ to a 
lass of self-similar groups Γd a
ting on the d-regular rootedtree:De�nition 1.2 For d ≥ 3, the Fabrykowski-Gupta group Γd = 〈a, r〉 is a self-similargroup a
ting faithfully on the d-regular rooted tree Td = {0, . . . , d− 1}∗ by
(xw)a = x+ 1 (mod d)w, for 0 ≤ x ≤ d− 1

(0w)r = 0wa,
(xw)r = xw, for 1 ≤ x < d− 1

(d− 1w)r = d− 1wr.The groups G and Γd admit a �nite L-presentation; that is, a �nite L-presentation is agroup presentation of the form
〈
X

∣∣∣ Q∪
⋃

σ∈Φ∗

Rσ
〉
, (A.2)where X is a �nite alphabet, Q and R are �nite subsets of the free group F over X ,and Φ∗ denotes the monoid of endomorphisms whi
h is generated by the �nite set Φ ⊆

End(F ). The group de�ned by the �nite L-presentation in Eq. (A.2) is denoted by
〈X | Q | Φ | R〉. If Q = ∅ holds, the L-presentation in Eq. (A.2) is as
ending. In this
ase, every endomorphism σ ∈ Φ∗ indu
es an endomorphism of the group G.



82 Chapter A. Investigating self-similar groupsThe Grigor
huk group G is an example of a self-similar group whi
h is �nitely L-presented [96℄: the group G satis�es
G ∼=

〈
{a, b, c, d}

∣∣∣ {a2, b2, c2, d2, bcd} ∪
⋃

i≥0

{(ad)4, (adacac)4}σ
i
〉
,where σ is the endomorphism of the free group F over {a, b, c, d} whi
h is indu
ed bythe map a 7→ aca, b 7→ d, c 7→ b, and d 7→ c. A general method for 
omputing a �nite

L-presentation for a 
lass of self-similar groups was developed in [6℄ in order to proveTheorem 1.3 (Bartholdi [6℄) Ea
h �nitely generated, 
ontra
ting, semi-fra
tal regu-lar bran
h group is �nitely L-presented; however, it is not �nitely presented.The 
onstru
tive proof of Theorem 1.3 in [6℄ was used in [9℄ to 
ompute the following�nite L-presentation for the Fabrykowski-Gupta group Γp:Theorem 1.4 (Bartholdi et al. [9℄) For d ≥ 3, the group Γd is �nitely L-presentedby 〈{α, ρ} | ∅ | {ϕ} | R〉 where the iterated relations in R are de�ned as follows: Writing
σi = ρα

i , for 1 ≤ i ≤ d− 1, and reading indi
es modulo d, we have
R =

{
αd,

[
σ
σki−1

i , σ
σℓj−1

j

]
, σ

−σk+1
i−1

i σ
σki−1σ

σℓi−2
i−1

i

}

1≤i,j≤d, 2≤|i−j|≤d−2, 0≤k,ℓ≤d−1The substitution ϕ is indu
ed by the map α 7→ ρα
−1 and ρ 7→ ρ.It follows immediately from the L-presentation in Theorem 1.4 that the substitution ϕindu
es an endomorphism of the group Γd. Finite L-presentations 〈X | Q | Φ | R〉 whosesubstitutions σ ∈ Φ indu
e endomorphisms of the group are invariant L-presentations.Ea
h as
ending L-presentation is invariant. It is also easy to see that the L-presentationfor the Grigor
huk group G above is invariant [55, Corollary 4℄.A �nite L-presentation allows us to de�ne a group that is possibly in�nitely presentedin 
omputer algebra systems su
h as Gap [50℄ or Magma [28℄. Beside de�ning a self-similar group by its �nite L-presentation, it 
an also be de�ned by its re
ursive a
tionon a regular tree. A �nite approximation of the re
ursive a
tion of a self-similar groupis often su�
ient to study �nite index subgroups sin
e various self-similar groups havethe 
ongruen
e property: every �nite index subgroup 
ontains a level stabilizer (i.e., thestabilizer of some level of the regular tree). This often yields an alternative approa
hto investigate the stru
ture of a self-similar group with the help of 
omputer algebrasystems [8℄. However, there are self-similar groups that do not have the 
ongruen
eproperty [14℄. For these groups, their �nite L-presentation may help to gain insight intothe stru
ture of the group. The groups G and Γ3 have the 
ongruen
e property [11℄.In the following, we demonstrate how the �nite L-presentation in Theorem 1.4 allowsus to obtain detailed information on the stru
ture of the groups Γp, for 3 ≤ p ≤ 11. Forfurther details on self-similar groups, we refer to the monograph by Nekrashevy
h [101℄.



A.3. A Nilpotent Quotient Algorithm 83A.3 A Nilpotent Quotient AlgorithmFor a group G, the lower 
entral series is de�ned re
ursively by γ1G = G and γc+1 =
[γcG,G] for c ∈ N. If G is �nitely generated, G/γc+1G is poly
y
li
 and therefore it
an be des
ribed by a poly
y
li
 presentation; i.e., a poly
y
li
 presentation is a �nitepresentation whose generators re�ne a subnormal series with 
y
li
 se
tions. A poly
y
li
presentation allows e�e
tive 
omputations within the group it de�nes [129, Chapter 9℄.A nilpotent quotient algorithm 
omputes a poly
y
li
 presentation for the fa
torgroup G/γc+1G together with a homomorphism G → G/γc+1G. Su
h an algorithmfor �nitely presented groups was developed in [107℄. This nilpotent quotient algorithmwas a �rst algorithm that 
ould be generalized to �nite L-presentations [9, 64℄. Theexperimental results in this se
tion were obtained with an improved, parallel version ofthe algorithm in [9, 64℄. They extend the 
omputational results in [9℄ signi�
antly.We brie�y sket
h the nilpotent quotient algorithm for �nitely L-presented groups inthe following. Let G = 〈X | Q | Φ | R〉 be a �nitely L-presented group. Denote by Fthe free group over the alphabet X and let K be the normal 
losure K =

〈⋃
σ∈Φ∗ Rσ

〉F .First, we assume that Q = ∅ holds. Then Kσ ⊆ K, for ea
h σ ∈ Φ, and G = F/K hold.Therefore, ea
h σ ∈ Φ indu
es an endomorphism of the group G. Furthermore, we have
G/γcG ∼= F/KγcF . The nilpotent quotient algorithm uses an indu
tion on c to 
omputea poly
y
li
 presentation for G/γcG. For c = 2, we have

G/[G,G] ∼= F/KF ′ ∼= (F/F ′)/(KF ′/F ′).Sin
e G is �nitely generated, F/F ′ is free abelian with �nite rank. The normal generators⋃
σ∈Φ∗ Rσ of K give a (possibly in�nite) generating set of KF ′/F ′. From this generatingset it is possible to 
ompute a �nite generating set U with a spinning algorithm. The�nite generating set U allows us to apply the methods from [107℄ that eventually 
omputea poly
y
li
 presentation for F/KF ′ together with a homomorphism F → F/KF ′ whi
hindu
es G→ G/G′.For c > 2, assume that the algorithm has already 
omputed a poly
y
li
 presentationfor G/γcG ∼= F/KγcF together with a homomorphism F → F/KγcF . Consider thefa
tor group Hc+1 = F/[KγcF,F ]. Then [KγcF,F ] = [K,F ]γc+1F and Hc+1 satis�esthe short exa
t sequen
e

1 → KγcF/[KγcF,F ] → Hc+1 → F/KγcF → 1;that is, Hc+1 is a 
entral extension of a �nitely generated abelian group by G/γcG. Thus
Hc+1 is nilpotent and poly
y
li
. A poly
y
li
 presentation for Hc+1 together with ahomomorphism F → F/[KγcF,F ] 
an be 
omputed with the 
overing algorithm in [107℄;for a proof that this algorithm generalizes to �nite L-presentations we refer to [64℄. Then
Kγc+1F/[Kγc, F ] is a subgroup of KγcF/[KγcF,F ] and a (possibly in�nite) generatingset for Kγc+1F/[KγcF,F ] 
an be obtained from the normal generators of K. Again, a�nite generating set U forKγc+1F/[KγcF,F ] 
an be 
omputed with a spinning algorithmfrom the normal generators of K. The �nite generating set U allows us to apply the



84 Chapter A. Investigating self-similar groupsmethods in [107℄ for 
omputing a poly
y
li
 presentation for G/γc+1G ∼= F/Kγc+1Ftogether with a homomorphism F → F/Kγc+1F . This �nishes our des
ription of thenilpotent quotient algorithm in the 
ase where Q = ∅ holds.If, on the other hand, G is given by a �nite L-presentation 〈X | Q | Φ | R〉 with
Q 6= ∅, the algorithm des
ribed above applies to the �nitely L-presented group H = 〈X |
∅ | Φ | R〉. Write H = F/K and G = F/L for normal subgroups K ≤ L. The nilpotentquotient algorithm applied to H yields a poly
y
li
 presentation for H/γc+1H togetherwith a homomorphism F → F/Kγc+1F . This yields

G/γc+1G ∼= F/Lγc+1F ∼= (F/Kγc+1F )/(Lγc+1F/Kγc+1F ).The subgroup Lγc+1F/Kγc+1F is �nitely generated by the images of the relations in
Q. Standard methods for poly
y
li
 groups [129℄ then give a poly
y
li
 presentationfor the fa
tor group G/γc+1G of the poly
y
li
ally presented group H/γc+1H and ahomomorphism F → G/γc+1G.A.3.1 Appli
ations of the Nilpotent Quotient AlgorithmThe nilpotent quotient algorithm allows us to 
ompute within the lower 
entral seriesquotients G/γc+1G of a �nitely L-presented group G. For instan
e, it allows us todetermine the isomorphism type of the lower 
entral series se
tions γcG/γc+1G. Forvarious self-similar groups, the lower 
entral series se
tions often exhibit periodi
ities.For instan
e, the Grigor
huk group G satis�esTheorem 1.5 (Rozhkov [123℄) The lower 
entral series se
tions γcG/γc+1G are 2-elementary abelian with the following 2-ranks:

rk2(γcG/γc+1G) =





3 or 2, if c = 1 or c = 2, respe
tively
2, if c ∈ {2 · 2m + 1, . . . , 3 · 2m}

1, if c ∈ {3 · 2m + 1, . . . , 4 · 2m}





with m ∈ N0.The group G has �nite width 2.Our implementation of the nilpotent quotient algorithm in [65℄ allows a 
omputer al-gebra system to be applied in the investigation of the quotients G/γcG for a �nitely
L-presented group G. For instan
e, our implementation suggests that the group Γd has amaximal nilpotent quotient whenever d is not a prime-power. Based on this experimentalobservation, the following proposition was proved:Proposition 1.6 (Bartholdi et al. [9℄) If d is not a prime-power, the group Γd hasa maximal nilpotent quotient. Its nilpotent quotients are isomorphi
 to the nilpotentquotients of the wreath produ
t Zd ≀ Zd.For a prime p ≥ 3, the lower 
entral series se
tions γcΓp/γc+1Γp are p-elementary abelian.For p = 3, the lower 
entral series se
tions γcΓ3/γc+1Γ3 were 
omputed in [7℄:



A.3. A Nilpotent Quotient Algorithm 85Proposition 1.7 (Bartholdi [7℄) The se
tions γcΓ3/γc+1Γ3 are 3-elementary abelianwith the following 3-ranks:
rk3(γcΓ3/γc+1Γ3) =





2 or 1, if c = 1 or c = 2, respe
tively,
2, if c ∈ {3k + 2, . . . , 2 · 3k + 1},

1, if c ∈ {2 · 3k + 2, . . . , 3k+1 + 1}



with k ∈ N0. The group Γ3 has �nite width 2.For primes p > 3, little is known about the series se
tions γcΓp/γc+1Γp so far [9℄. Weuse the following abbreviation to list the ranks of these se
tions: If the same entry a ∈ Nappears in m 
onse
utive pla
es in a list, it is listed on
e in the form a[m]. The se
tions

γcΓp/γc+1Γp are p-elementary abelian. Their p-ranks are given by the following table:
p rkp(γcΓp/γc+1Γp) 
lass
3 2, 1[1], 2[1], 1[1], 2[3], 1[3], 2[9], 1[9], 2[27], 1[27], 2[65] 147

5 2, 1[3], 2[1], 1[13], 2[5], 1[65], 2[25], 1[26] 139

7 2, 1[5], 2[1], 1[33], 2[7], 1[68] 115

11 2, 1[9], 2[1], 1[97] 2[4] 112These 
omputational results were obtained with a parallel version of the nilpotent quo-tient algorithm in [9, 64℄. They were intended to be published in [42℄. These 
omputa-tional results extend those in [9℄ signi�
antly so that we obtain detailed 
onje
tures onthe stru
ture of the lower 
entral series se
tions γcΓp/γc+1Γp: The se
tions γcΓp/γc+1Γpare p-elementary abelian with the following p-ranks: Write fp(ℓ) = p+(p2−2p−1)(pℓ+1−
1)/(p − 1) and gp(ℓ) = fp(ℓ) + pℓ+1. Then we 
onje
ture that

rkp(γcΓp/γc+1Γp) =

{
2, if c ∈ {1, p} or fp(ℓ) ≤ c < gp(ℓ) for some ℓ ∈ N0,
1, otherwiseholds. If this 
onje
ture is true, the group Γp would have �nite width 2. For primepowers 3 ≤ d ≤ 11, our implementation yields the following results:

• For d = 4, the Fabrykowski-Gupta group Γ4 satis�es
Γ4/Γ

′
4
∼= Z4 × Z4 and γ2Γ4/γ3Γ4

∼= Z4.For 3 ≤ c ≤ 141, the se
tions γcΓ4/γc+1Γ4 are 2-elementary abelian with 2-ranks:
2[4], 3[3], 2[13], 3[12], 2[52], 3[48], 2[7].

• For d = 8, the Fabrykowski-Gupta group Γ8 satis�es
Γ8/Γ

′
8
∼= Z8 × Z8, γ2Γ8/γ3Γ8

∼= Z8,and
γ3Γ8/γ4Γ8

∼= γ4Γ8/γ5Γ8
∼= γ5Γ8/γ6Γ8

∼= γ6Γ8/γ7Γ8
∼= Z4.For 7 ≤ c ≤ 111, the se
tions γcΓ8/γc+1Γ8 are 2-elementary abelian with 2-ranks:

2, 1, 2[2], 3, 2, 3[2], 4, 3[8], 2[23], 3[5], 2[3], 1[8], 2[16], 3[8], 2[8], 3[16], 4.
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• For d = 9, the Fabrykowski-Gupta group Γ9 satis�es

Γ9/Γ
′
9
∼= Z9 × Z9, γ2Γ9/γ3Γ9

∼= Z9, and γ3Γ9/γ4Γ9
∼= Z9.For 4 ≤ c ≤ 117, the se
tions γcΓ9/γc+1Γ9 are 3-elementary abelian with 3-ranks:

1[5], 2[6], 3, 2[17], 1[38], 1[47].A.4 Computing Dwyer Quotients of the S
hur MultiplierThe S
hur multiplier M(G) of a group G 
an be de�ned as the se
ond homology group
H2(G,Z) with integer 
oe�
ients. It is an invariant of the group whi
h is of parti
ularinterest for in�nitely presented groups be
ause proving the S
hur multiplier being in-�nitely generated proves that the group does not admit a �nite presentation. This is dueto the fa
t that the S
hur multiplier of a �nitely presented group is �nitely generatedabelian whi
h 
an be seen as a 
onsequen
e of Hopf's formula: If F is a free group and
R� F a normal subgroup so that G ∼= F/R holds, the S
hur multiplier M(G) satis�es

M(G) ∼= (R ∩ F ′)/[R,F ]. (A.3)However, a group with a �nitely generated S
hur multiplier is not ne
essarily �nitelypresented [18℄. For further details on the S
hur multiplier, we refer to [121, Chapter 11℄.It is known that the S
hur multiplier of a �nitely L-presented group (and even theS
hur multiplier of a �nitely presented group) is not 
omputable in general [52℄. Never-theless, the S
hur multiplier of some self-similar groups has been 
omputed in [14, 56℄:For instan
e, the Grigor
huk group G satis�esProposition 1.8 (Grigor
huk [56℄) The S
hur multiplier M(G) is in�nitely gener-ated 2-elementary abelian. Therefore, the group G is not �nitely presented.There are various examples of self-similar groups for whi
h nothing is known on theirS
hur multiplier. Even though the S
hur multiplier M(G) is not 
omputable in general,it is possible to 
ompute su

essive quotients ofM(G) provided that the group G is givenby an invariant �nite L-presentation [66℄. These quotients often exhibit periodi
ities aswell: For instan
e, our experiments with the implementation of the algorithm in [66℄suggest that the S
hur multiplier of the Fabrykowski-Gupta groups Γd, for a prime-power d = pℓ, is in�nitely generated. The algorithm for 
omputing su

essive quotientsof M(G) provides a �rst method to investigate the stru
ture of the S
hur multiplierof an invariantly �nitely L-presented group (and even the S
hur multiplier of a �nitelypresented group).We brie�y sket
h the idea of this algorithm: Let G be an invariantly �nitely L-presented group. Write G ∼= F/K for a free group F and a normal subgroup K. Then
G/γcG ∼= F/KγcF . We identify M(G) with (K ∩ F ′)/[K,F ] and M(G/γcG) with
(KγcF ∩ F ′)/[KγcF,F ] and de�ne

ϕc:M(G) →M(G/γcG), g[K,F ] 7→ g[KγcF,F ].
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hur Multiplier 87Then ϕc is a homomorphism of abelian groups. In the indu
tion step of the nilpo-tent quotient algorithm, the algorithm 
omputes a homomorphism F → F/[KγcF,F ].This homomorphism allows us to 
ompute the image of the S
hur multiplier M(G) in
M(G/γcG). In parti
ular, it allows us to 
ompute the isomorphism type of the Dwyerquotient Mc(G) =M(G)/ kerϕc, for c ∈ N, where

M(G) ≥ kerϕ1 ≥ kerϕ2 ≥ . . . .The algorithm for 
omputing Mc(G) has been implemented in Gap. Its implementationallows us to 
ompute the Dwyer quotients of various self-similar groups: Sin
e the S
hurmultiplier of the Grigor
huk group G is 2-elementary abelian, the Dwyer quotients of Gare 2-elementary abelian. We have 
omputed the Dwyer quotientsMc(G) for 1 ≤ c ≤ 301.These quotients are 2-elementary abelian with the following 2-ranks:
1, 2, 3[3], 5[6], 7[12], 9[24], 11[48], 13[96], 15[110].These experiments suggest that the Grigor
huk group satis�es

Mc(G) ∼=

{
Z2 or (Z2)

2, if c = 1 or c = 2, respe
tively,
(Z2)

2m+3, if c ∈ {3 · 2m, . . . , 3 · 2m+1 − 1},

}with m ∈ N0. For the Fabrykowski-Gupta groups Γd, the algorithm in [66℄ yields �rstinsight into the stru
ture ofM(Γd): We restri
t ourself to the groups Γd for prime powers
d = pℓ be
ause, otherwise, the groups have a maximal nilpotent quotient by Proposi-tion 1.6. For a prime p ∈ {3, 5, 7, 11}, the Dwyer quotients Mc(Γp) are p-elementaryabelian groups with the following p-ranks:

p rkp(Mc(Γp))

3 0[2], 1[3], 2[0], 3[9], 4[1], 5[26], 6[4], 7[77], 8[13], 9[12]

5 0[1], 1[4], 2[2], 3[20], 4[10], 5[100], 6[1]

7 0[1], 1[2], 2[6], 3[2], 4[14], 5[42], 6[14], 7[34]

11 0[1], 1[2], 2[2], 3[2], 4[10], 5[2], 6[22], 7[22], 8[22], 9[27]As noted by Bartholdi, these experimental results suggest that
rk3(Mc+1(Γ3)) =

{
2
⌊
log3

(
2c−1
10

)⌋
+ 3, if log3(2c− 1) ∈ Z,

⌊log3(2c − 1)⌋ +
⌊
log3

(
2c−1
10

)⌋
+ 1, otherwise,for c ≥ 6. Our results for the Dwyer quotients Mc(Γd), for d ∈ {4, 8, 9}, are shown inTable A.4 where we list the abelian invariants of Mc(G). Here, a list (α1, . . . , αn) standsfor the abelian group Zα1×· · ·×Zαn . Again, we list the abelian invariants (α1, . . . , αn)

[m]just on
e if they appear in m 
onse
utive pla
es.



88 Chapter A. Investigating self-similar groupsTable A.1: Dwyer quotients of the Fabrykowski-Gupta groups Γd
d Mc(Γd)

(1)[1] (2)[1] (2, 2)[1] (2, 4)[4] (2, 2, 2, 4)[1]4 (2, 2, 2, 2, 4)[4] (2, 2, 2, 4, 4)[16] (2, 2, 2, 2, 4, 4)[1] (2, 2, 2, 2, 2, 4, 4)[3]

(2, 2, 2, 2, 2, 2, 4, 4)[16] (2, 2, 2, 2, 2, 4, 4, 4)[64] (2, 2, 2, 2, 2, 2, 4, 4, 4)[5]

(2, 2, 2, 2, 2, 2, 2, 4, 4, 4)[11] (2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4)[26]

(1)[1] (8)[2] (4, 8)[3] (2, 4, 8)[4] (2, 8, 8)[1] (2, 2, 8, 8)[2]

(2, 2, 2, 8, 8)[2] (2, 2, 4, 8, 8)[2] (2, 4, 4, 8, 8)[2] (2, 4, 8, 8, 8)[2]8
(2, 8, 8, 8, 8)[8] (2, 2, 8, 8, 8, 8)[4] (2, 4, 8, 8, 8, 8)[20] (2, 2, 4, 8, 8, 8, 8)[32]

(2, 2, 8, 8, 8, 8, 8)[7] (2, 2, 2, 8, 8, 8, 8, 8)[16] (2, 2, 2, 2, 8, 8, 8, 8, 8)[16]

(2, 2, 2, 4, 8, 8, 8, 8, 8)[16] (2, 2, 4, 4, 8, 8, 8, 8, 8)[3]

(1)[1] (9)[2] (3, 9)[2] (3, 3, 9)[4] (3, 9, 9)[2]

(9, 9, 9)[2] (3, 9, 9, 9)[2] (3, 3, 9, 9, 9)[4] (3, 9, 9, 9, 9)[2]9
(9, 9, 9, 9, 9)[12] (3, 9, 9, 9, 9, 9)[18] (3, 3, 9, 9, 9, 9, 9)[36]

(3, 9, 9, 9, 9, 9, 9)[18] (9, 9, 9, 9, 9, 9, 9)[17] (3, 9, 9, 9, 9, 9, 9, 9)[12]A.5 Coset Enumeration for Finite Index SubgroupsA standard algorithm for �nitely presented groups is the 
oset enumerator introdu
edby Todd and Coxeter [133℄. Coset enumeration is an algorithm that, given a �nitegenerating set of a subgroup H ≤ G, 
omputes the index [G : H] provided that thisindex is �nite. Its overall strategy is to 
ompute a permutation representation for thegroup's a
tion on the right-
osets H\G. For �nitely presented groups, 
oset enumerationte
hniques have been investigate for some time [32, 88, 102, 129℄. They allow 
omputeralgorithms to be applied in the investigation of �nitely presented groups by their �niteindex subgroups [77℄. It was shown in [67℄, that even �nitely L-presented groups allow oneto develop a 
oset enumeration pro
ess. This latter algorithm redu
es the 
omputationto �nite presentations �rst and then it proves 
orre
tness of the obtained result. A
oset enumerator for �nitely L-presented groups has various interesting appli
ations:For instan
e, it allows one to 
ompute low-index subgroups, as suggested in [40℄, and itsolves the generalized word problem for �nite index subgroups [67℄.We brie�y sket
h the idea of the 
oset enumeration pro
ess in [67℄ in the following. Let
G = 〈X | Q | Φ | R〉 be a �nitely L-presented group. Suppose that a subgroup H ≤ G isgiven by its �nitely many generators {g1, . . . , gn}. We 
onsider the generators g1, . . . , gnas elements of the free group F over X . Then E = 〈g1, . . . , gn〉 ≤ F satis�es H ∼= EK/Kwhere K = 〈Q ∪

⋃
σ∈Φ∗ Rσ〉F is the kernel of the free presentation. We are to 
omputethe index [G : H] = [F : EK]. For this purpose, we de�ne Φℓ = {σ ∈ Φ∗ | ‖σ‖ ≤ ℓ}where ‖ · ‖ denotes the usual word-length in the free monoid Φ∗. Consider the �nitely



A.5. Coset Enumeration for Finite Index Subgroups 89presented groups Gℓ = F/Kℓ given by the �nite presentation
Gℓ =

〈
X

∣∣∣Q ∪
⋃

σ∈Φℓ

Rσ
〉
. (A.4)Then Gℓ naturally maps onto G and we obtain a series of subgroups

EK0 ≤ EK1 ≤ . . . ≤ EK ≤ F.Sin
e EK ≤ F is a �nite index subgroup of a �nitely generated group, it is �nitelygenerated by u1, . . . , un, say. Furthermore, we have EK =
⋃
ℓ≥0EKℓ. For ea
h ui ∈ EK,there exists ni ∈ N0 so that ui ∈ EKni . For m = max{ni | 1 ≤ i ≤ n} we have

{u1, . . . , un} ⊆ EKm. Thus EK = EKm. In fa
t, there exists a positive integer m ∈ N0so that H has �nite index in the �nitely presented group Gm = 〈X | Q ∪
⋃
σ∈Φm

Rσ〉.Coset enumeration for �nitely presented groups allows us to 
ompute a permutationrepresentation π:F → Sym(EKm\F ). The integer m 
annot be given a priori. However,the following straightforward approa
h yields an algorithm for 
omputing ℓ ∈ N so that
[F : EKℓ] is �nite: Start with an arbitrary ℓ ∈ N and run the 
oset enumerator for�nitely presented groups with an upper bound N on the number of intermediate 
osetsde�ned in its pro
ess. If this 
oset enumerator does not terminate su

essfully, we bothin
rease the index ℓ and the upper bound N . We then run both algorithms in parallelusing the in
reased bound N ′. We 
ontinue to in
rease these numbers and to run allthese algorithms in parallel until eventually one of them terminates. Termination of thispro
ess is guaranteed for a su�
iently large integer ℓ be
ause [G : H] was assumed �nite.Suppose that [Gℓ : H] is �nite and that the 
oset enumerator has 
omputed a per-mutation representation πℓ:F → Sym(EKℓ\F ). Then [G : H] = [F : EK] divides theindex [Gℓ : H] = [F : EKℓ]. It su�
es to 
he
k whether or not πℓ indu
es a grouphomomorphism G → Sym(EKℓ\F ). In this 
ase, we obtain [Gℓ : H] = [G : H] and πℓis a permutation representation for G's a
tion on the right-
osets H\G. Otherwise, wehave to enlarge the index ℓ and we would �nally 
ompute the index [G : H] in this way.The following theorem was proved in [67℄:Theorem 1.9 For a �nitely L-presented group G = 〈X | Q | Φ | R〉 and a homomor-phism π:F → H into a �nite group H, there exists an algorithm that de
ides whether ornot π indu
es a group homomorphism G→ H.Proof. For an expli
it algorithm, we refer to [67℄. 2Coset enumeration for �nitely L-presented groups allows various 
omputations with �-nite index subgroups; e.g. 
omputing the interse
tion of two �nite index subgroups,
omputing the 
ore of a �nite index subgroup, solving the generalized word problem for�nite index subgroups, et
. In the following, we demonstrate the appli
ation of our 
osetenumerator to the Fabrykowski-Gupta groups Γp. In parti
ular, we show how to 
omputethe number of �nite index subgroups with a moderate index.
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ation of Coset Enumeration: Low-Index SubgroupsAs an appli
ation of the 
oset enumeration pro
ess, we 
onsider subgroups with smallindex in a �nitely L-presented group. Sin
e the �nitely presented group Gℓ from Eq. (A.4)naturally maps onto the �nitely L-presented group G, it su�
es to 
ompute low-indexsubgroups of the �nitely presented group Gℓ. These subgroups map to subgroups of Gwith possibly smaller index. On the other hand, ea
h �nite index subgroup of G has afull preimage with same index in Gℓ. Therefore it remains to remove dupli
ates from thelist of subgroups obtained from the �nitely presented group Gℓ. For �nitely presentedgroups, an algorithm for 
omputing all subgroups up to a given index was des
ribedin [40℄. An implementation of this algorithm 
an be found in [41℄. This implementationin
ludes an algorithm for 
omputing only the normal subgroups of a �nitely presentedgroup [35℄. The latter algorithm allows to deal with possibly larger indi
es than the usuallow-index subgroup algorithms.We �rst 
onsider the Grigor
huk group G: its latti
e of normal subgroups is well-understood [7, 33℄ while its latti
e of �nite index subgroups is widely unknown [58℄. Itis known that the Grigor
huk group has seven subgroups of index two [58℄. In [116℄,it was shown that these index-two subgroups are the only maximal subgroups of G.The implementation of our 
oset enumeration pro
ess allows us to 
ompute the numberof subgroups with index at most 64 in the group G [67℄. Our 
omputations 
orre
t the
ounts in [12, Se
tion 7.4℄ and [11, Se
tion 4.1℄. The following list summarizes the numberof subgroups (≤) and the number of normal subgroups (�) of G:
index 1 2 4 8 16 32 64

≤ 1 7 31 183 1827 22931 378403
� 1 7 7 7 5 3 3For the Fabrykowski-Gupta groups Γp, where 3 ≤ p ≤ 11 is prime, we only foundsubgroups with prime-power index in Γp. Their 
ounts are as follows:

p = 3 p = 5 p = 7 p = 11index
≤ � ≤ � ≤ � ≤ �

p0 1 1 1 1 1 1 1 1
p1 4 4 6 6 8 8 12 12
p2 31 1 806 1 ? 1 ? 1
p3 1966 1 ? 1 ? ? ? ?
p4 ? 4 ? ? ? ? ? ?
p5 ? 1 ? ? ? ? ? ?
p6 ? 1 ? ? ? ? ? ?
p7 ? 4 ? ? ? ? ? ?Here '?' denotes an index where our 
omputations did not terminate within a reasonableamount of time. The only normal subgroups with index p2 are the derived subgroups
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e Γp/Γ
′
p
∼= Zp × Zp holds [57℄. For a prime power index d = pℓ, the groups Γd onlyadmit subgroups with prime power index pj :

pℓ = 22 pℓ = 23 pℓ = 32index
≤ � ≤ � ≤ �

p0 1 1 1 1 1 1
p1 3 3 3 3 4 4
p2 19 7 19 7 76 13
p3 211 7 163 19 ? ?
p4 2419 11 2227 23 ? ?For the groups Γ6 and Γ10, we obtain the following subgroup 
ounts:

Γ6 Γ10index
≤ � ≤ �

1 1 1 1 1
2 3 3 3 3
3 7 4 0 0
4 9 1 5 1
5 0 0 11 6
6 39 13 0 0
7 0 0 0 0
8 45 1 1 1
9 79 1 0 0
10 0 0 113 19

Γ6 Γ10index
≤ � ≤ �

11 0 0 0 0
12 219 6 0 0
13 0 0 0 0
14 0 0 0 0
15 0 0 0 0
16 188 0 16 0
17 0 0 0 0
18 1299 7 0 0
19 0 0 0 0
20 0 0 ? ?A.6 Computing Solvable QuotientsThe 
oset enumeration pro
ess in [67℄ was used to prove the following version of theReidemeister-S
hreier theorem for �nitely presented groups in [70℄:Theorem 1.10 Ea
h �nite-index subgroup of a �nitely L-presented group is �nitely L-presented.Proof. For a 
onstru
tive proof, we refer to [70℄. 2The 
onstru
tive proof of Theorem 1.10 allows us to apply the method for �nitely L-presented groups to �nite index subgroups of a �nitely L-presented group. As an appli-
ation of this method, we 
onsider the su

essive quotients G/G(i) of the derived series.This series is de�ned re
ursively by G(1) = G′ = [G,G] and G(i+1) = [G(i), G(i)] for i ∈ N.The isomorphism type of the abelian quotient G/G′ 
an be 
omputed with the methodsfrom [9,64℄ provided that G is given by a �nite L-presentation. Moreover, it is de
idablewhether or not G′ has �nite index in G; see [9, 64℄.
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onstru
tive proof of Theorem 1.10 allows usto 
ompute a �nite L-presentation for the �nite index subgroup G′ ≤ G. Then we 
an
ompute its abelianization and we 
an 
ontinue this pro
ess. In general, if G/G(i+1) is�nite, we 
an therefore 
ompute the quotients G(i+1)/G(i+2) re
ursively. An alternativeapproa
h to 
ompute the se
tions G(i)/G(i+1) 
ould generalize the methods for �nitelypresented groups [92℄.For the Grigor
huk group G, the se
tions G(i)/G(i+1) of the derived series have been
omputed by Rozhkov [122℄; see also [134℄:Theorem 1.11 (Rozhkov [122℄) The Grigor
huk group G satis�es [G : G′] = 23,
[G : G′′] = 27, and [G : G(k)] = 22+22k−2 for k ≥ 3.Our implementation of the Reidemeister-S
hreier Theorem 1.10 yields that

G/G′ ∼= (Z2)
3, G′/G′′ ∼= Z2 × Z2 × Z4, and G′′/G(3) ∼= (Z2)

2 × (Z4)
3 × Z8.Sin
e the abelianization Γp/Γ

′
p
∼= Zp×Zp of the Fabrykowski-Gupta group Γp is �nite [57℄,the derived subgroup Γ′

p satis�es [Γp : Γ′
p] = p2. A �nite L-presentation for Γ′

p 
an be
omputed with the methods in [70℄. We obtain that
Γ′
3/Γ

′′
3
∼= (Z3)

2, Γ′′
3/Γ

(3)
3

∼= (Z3)
4, and Γ

(3)
3 /Γ

(4)
3

∼= (Z3)
10as well as Γ′

4/Γ
′′
4
∼= (Z4)

2,
Γ′′
4/Γ

(3)
4

∼= Z2 × (Z4)
2 × Z8, and Γ

(3)
4 /Γ

(4)
4

∼= (Z2)
3 × (Z4)

9 × (Z8)
3.For 5 ≤ d ≤ 41, our 
omputations suggest the followingProposition 1.12 For d ≥ 5, Γd satis�es Γd/Γ

′
d
∼= (Zd)

2 and Γ′
d/Γ

′′
d
∼= (Zd)

d−1.Proof. It was already shown in [57℄ that Γd/Γ
′
d
∼= Zd × Zd holds. For the se
ondstatement, we 
ombine the methods from [49℄ and [57℄: For primes p, the stru
ture ofthe 
ongruen
e subgroups Γp/StabΓp(n), n ∈ N, were studied in [49℄. Moreover, it wasshown in [57℄ that, for d ≥ 5, the index [Γ′

d : Γ
′′
d] is �nite.Let d ≥ 5 be given. Denote by StabΓd(1) the �rst level stabilizer in Γd. Then

Γd = StabΓd(1) ⋊ 〈a〉 and StabΓd(1) = 〈r, ra, . . . , ra
d−1

〉 hold. Sin
e Γ′
d = 〈[a, r]〉Γd =

〈r−a r〉Γd , we have that Γ′
d ≤ StabΓd(1) and, as Γd/Γ

′
d
∼= Zd × Zd holds, we have that

[StabΓd(1) : Γ
′
d] = d. More pre
isely, we have StabΓd(1) = Γ′

d ⋊ 〈r〉.For ea
h 0 ≤ i < d, we write gi = ra
i . In the following, indi
es are read mod-ulo d. For 0 ≤ ℓ < d, gℓi de
omposes as (1, . . . , 1, rℓ, aℓ, 1, . . . , 1) where aℓ is at po-sition i. If |ℓ− k| > 1, the 
ommutator [gℓi , g

k
j ] is trivial; otherwise, the 
ommuta-tor [gℓi , g

k
i+1] de
omposes as (1, . . . , 1, [aℓ, rk], 1, . . . , 1) with [aℓ, rk] at position i. Sin
e

[aℓ, rk] ∈ StabΓd(1), we have that [gℓi , g
k
j ] ∈ StabΓd(2). Thus, StabΓd(1)/StabΓd(2)is abelian and it is generated by the images of the elements g0, . . . , gd−1. Be
ause

[aℓ, rk] = a−ℓ r−k aℓ rk = g−kℓ gk0 , we have that [gℓi , g
k
j ] ∈ StabΓd(3) if and only if ℓ k ≡ 0
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(mod d). Therefore StabΓd(1)/StabΓd(2)

∼= Zd × · · · × Zd and Γd/StabΓd(2)
∼= Zd ≀ Zd.Sin
e StabΓd(1)/StabΓd(2) is abelian, we have that StabΓd(1)′ ≤ StabΓd(2). Be
ause ea
hgenerator of StabΓd(1) has order d, the largest abelian quotient StabΓd(1)/StabΓd(1)

′has order at most dd. It follows that StabΓd(2) = StabΓd(1)
′. Moreover, we have

StabΓd(2) = StabΓd(1)
′ ≤ Γ′

d and, sin
e Γ′
d ≤ StabΓd(1) holds, it follows that Γ′′

d ≤
StabΓd(1)

′ = StabΓd(2). The proofs in [9, 57℄ yield that StabΓd(2) ≤ Γ′′
d if d ≥ 5. There-fore dd−1 = |Γ′

d/StabΓd(2)| = |Γ′
d/Γ

′′
d| and Γ′

d/Γ
′′
d
∼= Zd × · · · × Zd. 2The 
onstru
tive proof of Theorem 1.10 in [70℄ yields a �nite L-presentation over theS
hreier generators of the subgroup. By the Nielsen-S
hreier theorem (as, for instan
e,in [121, 6.1.1℄), a subgroup H with index m = [G : H] in an n-generated �nitely L-presented group G has nm+1−m S
hreier generators. The Fabrykowski-Gupta groupsare 2-generated and therefore, the subgroup Γ

(3)
3 satis�es [Γ3 : Γ

(3)
3 ] = 316. Thus Γ

(3)
3has 316 − 1 S
hreier generators as a subgroup of the 2-generated group Γ3. Therefore,
omputing the se
tions Γ(i)

3 /Γ
(i+1)
3 , i ≥ 4, with the above method is hard in pra
ti
e.A
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AppendixBA Note on Invariantly Finitely
L-Presented GroupsAbstra
t. In the �rst part of this note, we introdu
e Tietze transformationsfor L-presentations. These transformations enable us to generalize Tietze'stheorem for �nitely presented groups to invariantly �nitely L-presented groups.Moreover, they allow us to prove that `being invariantly �nitely L-presented' isan abstra
t property of a group whi
h does not depend on the generating set.In the se
ond part of this note, we 
onsider �nitely generated normal subgroupsof �nitely presented groups. Benli proved that a �nitely generated normal sub-group of a �nitely presented group is invariantly �nitely L-presented wheneverits quotient is in�nite 
y
li
. We generalize this result to the 
ase where the�nitely presented group splits over its �nitely generated subgroup and to the
ase where the quotient is abelian with torsion-free rank at most two.Keywords. Tietze transformations; in�nite presentations; re
ursive presenta-tions; self-similar groups.Mathemati
s Subje
t Classi�
ation 2010: 20F05, 20E07, 20-04B.1 Introdu
tionFinite L-presentations are possibly in�nite group presentations with �nitely many gener-ators whose relations (up to �nitely many ex
eptions) are obtained by iteratively applying�nitely many substitutions to a �nite set of relations; see [6℄ or Se
tion B.2 for a de�-nition. Various in�nitely presented groups 
an be des
ribed by a �nite L-presentation.For example, the Grigor
huk group [53℄ and the Gupta-Sidki group [62℄ are �nitely L-presented [6,9,96,128℄. An L-presentation is invariant if the substitutions, whi
h generatethe relations, indu
e endomorphisms of the group. In fa
t, invariant �nite L-presentationsare �nite presentations in the universe of groups with operators [87,111℄ in the sense thatthe operator domain of the group generates the possibly in�nitely many relations out of



96 Chapter B. A Note on Invariantly Finitely L-Presented Groupsa �nite set of relations. The �nite L-presentation for the Grigor
huk group in [96℄ is anexample of an invariant �nite L-presentation [55℄.Finite L-presentations allow 
omputer algorithms to be applied in the investigationof the groups they de�ne. For instan
e, they allow one to 
ompute the lower 
en-tral series quotients [9℄, to 
ompute the Dwyer quotients of the group's S
hur mul-tiplier [66℄, to develop a 
oset enumerator for �nite index subgroups [67℄, and eventhe Reidemeister-S
hreier theorem for �nitely presented groups generalizes to �nitely
L-presented groups [70℄. For a survey on the appli
ation of 
omputers in the investiga-tion of �nitely L-presented groups, we refer to [68℄.In the �rst part of this note, we introdu
e Tietze transformations for L-presenta-tions. These transformations allow us to generalize Tietze's theorem for �nitely presentedgroups [132℄ to invariantly �nitely L-presented groups:Theorem A Two invariant �nite L-presentations de�ne isomorphi
 groups if and onlyif it is possible to pass from one L-presentation to the other by a �nite sequen
e oftransformations.If a group admits a �nite presentation with respe
t to one generating set, then so it doeswith respe
t to any other �nite generating set [38, Chapter V℄. This result for �nitelypresented groups also generalizes to invariant �nite L-presentations:Theorem B (Bartholdi [6℄) Being invariantly �nitely L-presented is an abstra
t prop-erty of a group whi
h does not depend on the generating set.Our proof of Theorem B �lls a gap in the proof of [6, Proposition 2.2℄ be
ause thetransformations in the latter proof are not su�
ient; see Se
tion B.4 below.In the se
ond part of this note, in Se
tion B.5, we 
onsider �nitely generated normalsubgroups of �nitely presented groups. By Higman's embedding theorem, every �nitelygenerated group embeds into a �nitely presented group if and only if it is re
ursivelypresented [81℄. Sin
e every �nite L-presentation is re
ursive, �nitely L-presented groupstherefore embed into �nitely presented groups. As indi
ated in [22℄, we prove that everygroup whi
h admits an invariant �nite L-presentation, where ea
h substitution indu
esan automorphism of the group, embeds as a normal subgroup into a �nitely presentedgroup. On the other hand, the Reidemeister-S
hreier theorem for �nitely L-presentedgroups in [70℄ shows that every normal subgroup of a �nitely presented group admits aninvariant L-presentation where ea
h substitution indu
es an automorphism of the group;the obtained L-presentation is �nite if and only if the normal subgroup has �nite index.Finitely generated normal subgroups of �nitely presented groups with in�nite indexwere 
onsidered in [22℄: It was proved that a �nitely generated normal subgroup of a�nitely presented group is invariantly �nitely L-presented if its quotient is in�nite 
y
li
.Moreover, in [22, Remark (2)℄, Benli asked for a generalization of his latter result and heposed the following problem:Is it true that a �nitely generated group embeds as a normal subgroup intoa �nitely presented group if and only if it admits an invariant �nite L-presentation where ea
h substitution indu
es an automorphism of the group?



B.2. Preliminaries 97We generalize Benli's 
onstru
tions from [22℄ in order to prove the followingTheorem C Every �nitely generated normal subgroup of a �nitely presented group isinvariantly �nitely L-presented if the group splits over its subgroup.Sin
e G splits over its subgroup H �G if G/H is a free group, Benli's result in [22℄ is a
onsequen
e of Theorem C. Moreover, our generalizations of the 
onstru
tions from [22℄allow us to proveTheorem D Every �nitely generated normal subgroup of a �nitely presented group isinvariantly �nitely L-presented whenever the quotient is abelian with torsion-free rank atmost two.Our 
onstru
tions do not generalize further; see Remark 2.1.B.2 PreliminariesIn this se
tion, we re
all the notion of an invariant �nite L-presentation as introdu
edin [6℄. An L-presentation is a group presentation of the form
〈
X

∣∣∣Q∪
⋃

σ∈Φ∗

Rσ
〉
, (B.1)where X is an alphabet, Q and R are subsets of the free group F = F (X ) over the alpha-bet X , and Φ∗ ⊆ End(F ) denotes the monoid of endomorphisms that is generated by Φ.If the generators X , the �xed relations Q, the substitutions Φ, and the iterated relations

R have �nite 
ardinality, the L-presentation in Eq. (B.1) is a �nite L-presentation. Wealso write 〈X | Q | Φ | R〉 for the L-presentation in Eq. (B.1) and G = 〈X | Q | Φ | R〉for the group it de�nes.A group whi
h admits a �nite L-presentation is �nitely L-presented. An L-presen-tation of the form 〈X | ∅ | Φ | R〉 is as
ending and an L-presentation 〈X | Q | Φ | R〉is 
alled invariant (and the group it de�nes is invariantly L-presented), if ea
h sub-stitution ϕ ∈ Φ indu
es an endomorphism of the group; i.e., if the normal subgroup
〈Q ∪

⋃
σ∈Φ∗ Rσ〉F � F is ϕ-invariant. Ea
h as
ending L-presentation is invariant andea
h invariant L-presentation 〈X | Q | Φ | R〉 admits an as
ending L-presentation

〈X | ∅ | Φ | Q ∪ R〉 whi
h de�nes the same group; see Proposition 3.7. Even though in-variant and as
ending L-presentations are essentially the same, we like to distinguishbetween these two obje
ts. The �nite L-presentation in [96℄ for the group 
onstru
ted byGrigor
huk [53℄ is not as
ending but it is easy to see that it is an invariant L-presentation;see, for instan
e, [55, Corollary 4℄.Remark 2.1 There are �nite L-presentations that are not invariant.Proof. The free produ
t Z2 ∗ Z2 = 〈{a, b} | {a2, b2}〉 is �nitely L-presented by
〈{a, b} | {a2} | {σ} | {b2}〉 where σ is indu
ed by the map a 7→ ab and b 7→ b2. If this
L-presentation were invariant, the as
ending L-presentation 〈{a, b} | ∅ | {σ} | {a2, b2}〉



98 Chapter B. A Note on Invariantly Finitely L-Presented Groupswould also de�ne Z2 ∗ Z2; see Proposition 3.7. In this 
ase (a2)σ = abab is a relationin the group and, sin
e a2 = b2 = 1 holds, the generators a and b 
ommute. There-fore the as
ending L-presentation de�nes a quotient of the 2-elementary abelian group
Z2 × Z2. In fa
t, it de�nes a �nite group. Thus 〈{a, b} | ∅ | {σ} | {a2, b2}〉 is not a �nite
L-presentation for Z2 ∗ Z2 and hen
e 〈{a, b} | {a2} | {σ2} | {b2}〉 is not an invariant
L-presentation. 2Note that this latter proof from [70℄ provides a `method' to prove that a �nite L-presentation 〈X | Q | Φ | R〉 is invariant; namely, if the as
ending L-presentation
〈X | ∅ | Φ | R ∪ Q〉 de�nes a group whi
h is isomorphi
 to the �rst. In general, we arenot aware of a method whi
h allows us to de
ide whether or not a �nite L-presentation isinvariant � even if we assume that the L-presented group has a solvable word problem.Invariant �nite L-presentations are `natural' generalizations of �nite presentationsbe
ause every �nitely presented group 〈X | R〉 is invariantly �nitely L-presented by 〈X |
∅ | ∅ | R〉. However, invariant �nite L-presentations have been used to des
ribe variousexamples of self-similar groups that are not �nitely presented [14, 96℄. For instan
e,the group G 
onstru
ted by Grigor
huk in [53℄ is not �nitely presented [56℄ but it isinvariantly �nitely L-presented, see also [55℄:Theorem 2.2 (Lysënok [96℄) The Grigor
huk group is invariantly �nitely L-presentedby 〈

{a, b, c, d} | {a2, b2, c2, d2, bcd} | {σ} | {(ad)4, (adacac)4}
〉 where σ denotes the endo-morphism of the free group over {a, b, c, d} that is indu
ed by the map a 7→ aca, b 7→ d,

c 7→ b, and d 7→ c.It is easy to see (and it follows with our Tietze transformations below) that the group Gis also invariantly �nitely L-presented by
G ∼=

〈
{a, c, d} | {a2, c2, d2, (cd)2} | {σ̃} | {(ad)4, (adacac)4}

〉
, (B.2)where σ̃ is indu
ed by the map a 7→ aca, c 7→ cd, and d 7→ c. Further examples ofinvariantly �nitely L-presented groups arise, for instan
e, as 
ertain wreath-produ
ts: In
ontrast to [6℄, Bartholdi noti
ed that the lamplighter group Z2 ≀Z is invariantly �nitely

L-presented by 〈
{a, t}

∣∣ ∅
∣∣ {δ}

∣∣ {a2, [a, at]}
〉
,where δ is indu
ed by the map a 7→ ata and t 7→ t. This re
ent result generalizes towreath produ
ts of the form H ≀ Z, where H is a �nitely generated abelian group:Proposition 2.3 If H is a �nitely generated abelian group, the wreath produ
t H ≀ Z isinvariantly �nitely L-presented.Proof. Sin
e H is �nitely generated and abelian, it de
omposes into a dire
t produ
t of
y
li
 groups; i.e., H has the form Zr1 × · · · × Zrn for r1, . . . , rn ∈ N ∪ {∞} where Z∞denotes the in�nite 
y
li
 group while Zri denotes the 
y
li
 group of order ri, otherwise.Then 〈X | {[x, y] | x, y ∈ X}∪{xrx | rx <∞}〉 is a �nite presentation for H. The wreathprodu
t H ≀ Z admits the presentation

H ≀ Z ∼=
〈
X ∪ {t}

∣∣∣ {[x, y], xrx}x,y∈X ,rx<∞ ∪ {[x, yt
i

]}x,y∈X ,i∈N0

〉
.
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h y ∈ X , de�ne a substitution σy whi
h is indu
ed by the map
σy:





y 7→ yt y,
x 7→ x, for ea
h x ∈ X \ {y},
t 7→ t.For n ∈ N and x, y, z ∈ X with x 6= y and z 6= y, we obtain

[y, xt
n

]σy = [yty, xt
n

] = [y, xt
n−1

]ty · [y, xt
n

],

[x, yt
n

]σy = [x, yt
n+1

yt
n

] = [x, yt
n

] · [x, yt
n+1

]y
tn

,

[x, zt
n

]σy = [x, zt
n

],

[y, yt
n

]σy = [y, yt
n−1

]ty · [y, yt
n

]ty
tny · [y, yt

n

] · [y, yt
n+1

]y
tn

.This shows that the relations {[x, yti ] | x, y ∈ X , i ∈ N} are 
onsequen
es of the iteratedimages {[x, yt]δ | δ ∈ {σy | y ∈ X}∗, x, y ∈ X} and vi
e versa. Moreover, for ea
hrelation xrx of H's �nite presentation, we have that (xrx)σy = xrx if x 6= y and (yry)σy =
(yty)ry =H≀Z (yry)t yry , otherwise. Thus these images are relations of the wreath produ
t
H ≀ Z. In parti
ular, the �nite L-presentation

〈
X ∪ {t}

∣∣ ∅
∣∣ {σy}y∈X

∣∣ {[x, yt]}x,y∈X ∪ {xrx}x∈X ,rx<∞

〉is an invariant �nite L-presentation for the wreath produ
t H ≀ Z. 2Even though invariant �nite L-presentations are known for numerous self-similar groups,we are not aware of an invariant �nite L-presentation for the Gupta-Sidki group from [62℄.Moreover, we are not aware of a �nitely L-presented group whi
h is not invariantly �nitely
L-presented.B.3 Tietze Transformations for L-PresentationsIn this se
tion, we introdu
e Tietze transformations for L-presentations. Let G = 〈X |
Q | Φ | R〉 be an L-presented group. Denote by F the free group F (X ) over the alphabet
X and let K = 〈Q ∪

⋃
σ∈Φ∗ Rσ〉F be the kernel of the free presentation π:F → G. Then

K = ker π de
omposes into the normal subgroups Q = 〈Q〉F and R = 〈
⋃
σ∈Φ∗ Rσ〉F sothat K = RQ = QR holds. The group F/R is invariantly L-presented by 〈X | ∅ | Φ | R〉.We 
an add every element of the kernel K as a �xed relation:Proposition 3.4 If G = 〈X | Q | Φ | R〉 is a (�nitely) L-presented group and

S ⊆ 〈Q ∪
⋃
σ∈Φ∗ Rσ〉F is a (�nite) subset, then 〈X | Q ∪ S | Φ | R〉 is a (�nite)

L-presentation for G.Proof. The proof follows with the Tietze transformation that adds 
onsequen
es S of
G's relations to the group presentation 〈X | Q ∪

⋃
σ∈Φ∗ Rσ〉. 2The transformation in Proposition 3.4 is reversible in the sense that we 
an remove �xedrelations S from an L-presentation 〈X | Q ∪ S | Φ | R〉 if and only if
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〈Q ∪ S ∪

⋃
σ∈Φ∗ Rσ〉F = 〈Q ∪

⋃
σ∈Φ∗ Rσ〉F holds. The following transformations arereversible in the same sense.If an L-presentation is not invariant (
f. Remark 2.1), there exist elements from thekernel K of the free presentation π:F → G that we 
annot add as iterated relationswithout 
hanging the isomorphism type of the group. However, even for non-invariant

L-presentations we have the followingProposition 3.5 If G = 〈X | Q | Φ | R〉 is a (�nitely) L-presented group and
S ⊆ 〈

⋃
σ∈Φ∗ Rσ〉F is a (�nite) subset, then 〈X | Q | Φ | R∪S〉 is a (�nite) L-presentationfor G.Proof. By 
onstru
tion, the normal subgroup R = 〈

⋃
σ∈Φ∗ Rσ〉F is σ-invariant for ea
h

σ ∈ Φ∗. More pre
isely, for ea
h r ∈ R and σ ∈ Φ∗, we have rσ ∈ R. Therefore, addingthe (possibly in�nitely many) relations {sσ | s ∈ S, σ ∈ Φ∗} to the group presentation
〈X | Q ∪

⋃
σ∈Φ∗ Rσ〉 does not 
hange the isomorphism type of the group. 2Iterated and �xed relations of an L-presentation are related by the followingProposition 3.6 If G = 〈X | Q | Φ | R〉 is a (�nitely) L-presented group and S ⊆ Rholds, then 〈X | Q ∪ S | Φ | (R \ S) ∪ {rψ | r ∈ S, ψ ∈ Φ}〉 is a (�nite) L-presentationfor G.Proof. The proof follows immediately from

Q ∪
⋃

σ∈Φ∗

Rσ = Q ∪ S ∪
⋃

σ∈Φ∗

(
(R \ S) ∪ {rψ}r∈S,ψ∈Φ

)σ
;these are the relations of G's group presentation. 2The following proposition is a 
onsequen
e of the de�nition of an invariant L-presentation:Proposition 3.7 If 〈X | Q | Φ | R〉 is an invariant (�nite) L-presentation for the group

G and S ⊆ Q holds, then 〈X | Q \ S | Φ | R ∪ S〉 is a (�nite) L-presentation for G.Proof. Sin
e G is invariantly L-presented by 〈X | Q | Φ | R〉, ea
h σ ∈ Φ indu
es anendomorphism of the group G. Therefore, the images {qσ | q ∈ S, σ ∈ Φ∗} are relationswithin G and so 〈X | (Q \ S) ∪
⋃
σ∈Φ∗(R ∪ S)σ〉 is a presentation for G. 2The following proposition allows us to add generators together with �xed relations to an

L-presentation:Proposition 3.8 Let G = 〈X | Q | Φ | R〉 be an L-presented group, Z be an alphabetso that X ∩ Z = ∅ holds, and, for ea
h z ∈ Z, let wz ∈ F (X ) be given. For ea
h σ ∈ Φ,de�ne an endomorphism of the free group E over the alphabet X ∪ Z that is indu
ed bythe map
σ̃:

{
x 7→ xσ, for ea
h x ∈ X ,
z 7→ gz, for ea
h z ∈ Z,

(B.3)



B.3. Tietze Transformations for L-Presentations 101where gz are arbitrary elements of the free group E. Then G satis�es that
G ∼= 〈X ∪ Z | Q ∪ {z−1wz}z∈Z | {σ̃}σ∈Φ | R 〉. (B.4)If 〈X | Q | Φ | R〉 is a �nite L-presentation and Z is a �nite alphabet, the L-presentationin Eq. (B.4) is �nite.Proof. Write H = 〈X ∪ Z | Q∪ {z−1wz | z ∈ Z} | {σ̃ | σ ∈ Φ} | R〉 and let F and E bethe free groups over X and X ∪Z, respe
tively. To avoid 
onfusion, the elements of G'spresentation are denoted by g ∈ F . Then

π:

{
x 7→ x, for ea
h x ∈ X ,
z 7→ wz, for ea
h z ∈ Z,indu
es a surje
tive homomorphism π:E → F . By 
onstru
tion, the restri
tion of thesubstitution σ̃ to the free group F 
oin
ides with σ. Thus (⋃

σ∈Φ Rσ̃
)π

=
⋃
σ∈Φ∗ Rσand hen
e, π maps iterated relations of H's L-presentation to iterated relations of G.Similarly, π maps the �xed relations Q of H's L-presentation to �xed relations of G. Itremains to 
onsider the relations of the form z−1wz with z ∈ Z. However, these relationsare mapped trivially by π. This shows that the homomorphism π:E → F indu
es asurje
tive homomorphism π̃:H → G. On the other hand, identifying the generators ofG's

L-presentation with the generators of H indu
es a surje
tive homomorphism ϕ:G → Hwith ϕπ̃ = idH and π̃ϕ = idG. Hen
e, the groups G and H are isomorphi
. The se
ondassertion is obvious. 2We 
an also add the relations {z−1wz | z ∈ Z} in Proposition 3.8 as iterated relations tothe L-presentation if we de�ne the substitutions σ̃ as follows:Proposition 3.9 Let G = 〈X | Q | Φ | R〉 be an L-presented group, Z be an alphabetso that X ∩ Z = ∅ holds, and, for ea
h z ∈ Z, let wz ∈ F (X ) be given. For ea
h σ ∈ Φ,de�ne an endomorphism of the free group E over the alphabet X ∪ Z that is indu
ed bythe map
σ̃:

{
x 7→ xσ, for ea
h x ∈ X ,
z 7→ wσz , for ea
h z ∈ Z.

(B.5)Then G satis�es that
G ∼= 〈X ∪ Z | Q | {σ̃}σ∈Φ | R ∪ {z−1wz}z∈Z 〉. (B.6)If 〈X | Q | Φ | R〉 is a �nite L-presentation and Z is a �nite alphabet, the L-presentationin Eq. (B.6) is �nite.Proof. The substitutions σ̃ in Eq. (B.5) are well-de�ned be
ause wz ∈ F (X ) and

σ ∈ End(F (X )) hold. By Proposition 3.6, we have that
〈
X ∪ Z

∣∣ Q
∣∣ {σ̃}σ∈Φ

∣∣ R ∪ {z−1wz}z∈Z
〉

=
〈
X ∪ Z

∣∣ Q∪ {z−1wz}z∈Z
∣∣ {σ̃}σ∈Φ

∣∣ R∪ {(z−1wz)
σ̃}z∈Z,σ∈Φ

〉
.



102 Chapter B. A Note on Invariantly Finitely L-Presented GroupsBy de�nition of σ̃ in Eq. (B.5), we have (z−1)σ̃ = (wσz )
−1 and wσ̃z = wσz . Thus (z−1 wz)

σ̃ =
(wσz )

−1wσz = 1 holds. In parti
ular, adding the relations {(z−1wz)
σ̃ | z ∈ Z, σ ∈ Φ} toa group presentation does not 
hange the isomorphism type of the group. By Proposi-tion 3.8, we have that

G = 〈X | Q | Φ | R〉
∼=

〈
X ∪ Z

∣∣ Q ∪ {z−1wz}z∈Z
∣∣ {σ̃}σ∈Φ

∣∣ R
〉

=
〈
X ∪ Z

∣∣ Q ∪ {z−1wz}z∈Z
∣∣ {σ̃}σ∈Φ

∣∣ R∪ {(z−1wz)
σ̃}z∈Z,σ∈Φ

〉

=
〈
X ∪ Z

∣∣ Q
∣∣ {σ̃}σ∈Φ

∣∣ R∪ {z−1wz}z∈Z
〉
;whi
h proves the �rst assertion of Proposition 3.9 while the se
ond is obvious. 2The following proposition allows us to modify the substitutions of an L-presentation:Proposition 3.10 If G = 〈X | Q | Φ | R〉 is a (�nitely) L-presented group and Ψ ⊆ Φholds, then 〈X | Q | (Φ \ Ψ) ∪ {σψ | ψ ∈ Ψ, σ ∈ Φ} | R ∪

⋃
ψ∈Ψ Rψ〉 is a (�nite)

L-presentation for G.Proof. The proof follows immediately from
Q ∪

⋃

σ∈Φ∗

Rσ = Q∪
⋃

σ∈Φ̂∗

(
R∪

⋃

ψ∈Ψ

Rψ
)σwhere Φ̂ = (Φ \Ψ) ∪ {σψ | ψ ∈ Ψ, σ ∈ Φ}; these are the relations of G's group presenta-tion. 2Sin
e ea
h relation of a group presentation 
an be repla
ed by a 
onjugate, we 
an modifythe substitutions of an L-presentation as follows:Proposition 3.11 Let G = 〈X | Q | Φ | R〉 be a (�nitely) L-presented group, S ⊆ Fbe a (�nite) subset, and let Ψ ⊆ Φ be given. For ea
h x ∈ S, denote by δx the innerautomorphism of the free group F (X ) that is indu
ed by 
onjugation with x. Then

• 〈X | Q | Φ ∪ {δx | x ∈ S} | R〉,
• 〈X | Q | (Φ \Ψ) ∪ {δxσ | x ∈ S, σ ∈ Ψ} | R〉, and
• 〈X | Q | (Φ \Ψ) ∪ {σδx | x ∈ S, σ ∈ Ψ} | R〉are (�nite) L-presentations for G.Proof. This follows be
ause ea
h relation of a group presentation 
an be repla
ed by a
onjugate and we have δxσ = σδxσ for ea
h σ ∈ Φ∗ and x ∈ X . 2Re
all that the kernel K = 〈Q ∪

⋃
σ∈Φ∗ Rσ〉F of the free presentation π:F → Gde
omposes into the normal subgroups Q = 〈Q〉F and R = 〈

⋃
σ∈Φ∗ Rσ〉F so that

K = QR = RQ holds. This de
omposition yields the following



B.3. Tietze Transformations for L-Presentations 103Proposition 3.12 Let G = 〈X | Q | Φ | R〉 be a (�nitely) L-presented group andlet Ψ ⊆ End(F (X )) be a (�nite) subset. If ea
h ψ ∈ Ψ indu
es an endomorphism of
F (X )/R, then 〈X | Q | Φ ∪Ψ | R〉 is a (�nite) L-presentation for G.Proof. If ψ ∈ Ψ indu
es an endomorphism of F (X )/R, the normal subgroup R is ψ-invariant. Therefore, ea
h image rσ ∈ F (X ), with σ ∈ (Φ ∪ Ψ)∗ \ Φ∗ and r ∈ R, isa relation of the group. Adding these (possibly in�nitely many) relations to the grouppresentation does not 
hange the isomorphism type of the group. 2For an invariant L-presentation, we even have the followingProposition 3.13 Let G = 〈X | Q | Φ | R〉 be a (�nitely) L-presented group and let
Ψ ⊆ End(F (X )) be a (�nite) subset. Then 〈X | Q | Φ ∪Ψ | R〉 is a (�nite) L-presenta-tion for G if and only if ea
h ψ ∈ Ψ indu
es an endomorphism of G.Proof. Let K = 〈Q ∪

⋃
σ∈Φ∗ Rσ〉F be the kernel of the free presentation π:F (X ) →

G. If ea
h ψ ∈ Ψ indu
es an endomorphism of F (X )/K, Proposition 3.12 shows the�rst assertion. If, on the other hand, the invariant L-presentations 〈X | Q | Φ | R〉 and
〈X | Q | Φ ∪Ψ | R〉 are L-presentations for G, ea
h ψ ∈ Ψ indu
es an endomorphism of
G = F (X )/K. 2Every substitution σ ∈ Φ of an invariant L-presentation G = 〈X | Q | Φ | R〉 indu
es anendomorphism of G. However, there are possibly other endomorphisms of the free group
F (X ) that will indu
e the same endomorphism on G. The following proposition allowsus to modify a given substitution of an L-presentation:Proposition 3.14 Let G = 〈X | Q | Φ | R〉 be a (�nitely) L-presented group,
S ⊆ 〈

⋃
ϕ∈Φ∗ Rϕ〉F be a (�nite) subset, and let σ ∈ Φ be given. De�ne an endomor-phism σ̃ of the free group F = F (X ) over the alphabet X that is indu
ed by the map

σ̃:x 7→ xσ rx for ea
h x ∈ X and some rx ∈ S. Then 〈X | Q | (Φ \ {σ}) ∪ {σ̃} | R ∪ S〉is a (�nite) L-presentation for G.Proof. We work in the free group F = F (X ) over the alphabet X and we de
omposethe kernel K = 〈Q ∪
⋃
ϕ∈Φ∗ Rϕ〉F of the free presentation π:F → G into the normalsubgroups Q = 〈Q〉F and R = 〈

⋃
ϕ∈Φ∗ Rϕ〉F as above. Sin
e S ⊆ 〈

⋃
ϕ∈Φ∗ Rϕ〉F holds,Proposition 3.5 yields that G = 〈X | Q | Φ | R〉 = 〈X | Q | Φ | R ∪ S〉. In parti
ular,we have that R = 〈

⋃
ϕ∈Φ∗(R ∪ S)ϕ〉F . Write Ψ = (Φ \ {σ}) ∪ {σ̃}. We prove thisproposition by showing that the normal subgroups R = 〈

⋃
ϕ∈Φ∗(R ∪ S)ϕ〉F and R̃ =

〈
⋃
ϕ∈Ψ∗(R∪S)ϕ〉F 
oin
ide. For this purpose, we prove that, for ea
h δ̃ ∈ Ψ∗ and g ∈ F ,there exists δ ∈ Φ∗ and h ∈ L = 〈

⋃
ϕ∈Φ∗ Sϕ〉F so that gδ̃ = gδh holds. By 
onstru
tion,we have that L ⊆ R. By symmetry (as we have both xσ̃ = xσrx and xσ = xσ̃r−1

x )the same arguments will show that, for ea
h δ ∈ Φ∗ and g ∈ F , there exists δ̃ ∈ Ψ∗and h ∈ L̃ = 〈
⋃
ϕ∈Ψ∗ Sϕ〉F so that gδ = gδ̃h holds. This would yield that ea
h normalgenerator sδ̃ ∈ R̃, with s ∈ R ∪ S and δ̃ ∈ Ψ∗, 
an be written as sδ̃ = sδh for some

δ ∈ Φ∗ and h ∈ L ⊆ R. In fa
t, sδ̃ ∈ R̃ satis�es that sδ̃ = sδh ∈ R and thus R̃ ⊆ R. Bysymmetry, we would also obtain that R ⊆ R̃ holds. This 
learly proves Proposition 3.14.



104 Chapter B. A Note on Invariantly Finitely L-Presented GroupsIt therefore remains to prove that, for ea
h δ̃ ∈ Ψ∗ and g ∈ F , there exists δ ∈ Φ∗ and
h ∈ L so that gδ̃ = gδh holds. Ea
h g ∈ F is represented by a �nite word wg(xi1 , . . . , xin)over �nitely many generators {xi1 , . . . , xin} ⊆ X . Let δ̃ ∈ Ψ∗ and g ∈ F be given. Weprove the assertion by indu
tion on m = ‖δ̃‖. If m = 1, then δ̃ ∈ Ψ. Moreover, we eitherhave δ̃ = σ̃ or δ̃ 6= σ̃. If δ̃ 6= σ̃ holds, then δ̃ ∈ Φ and thus gδ̃ = gδh for some δ ∈ Φ and
h ∈ L. Otherwise, if δ̃ = σ̃ holds, we obtain that

gσ̃ = wg(xi1 , . . . , xin)
σ̃ = wg(x

σ̃
i1 , . . . , x

σ̃
in) = wg(x

σ
i1 rxi1 , . . . , x

σ
in rxin ).Conjugation in the free group F yields that the word wg(x

σ
i1
rxi1 , . . . , x

σ
in
rxin ) 
an bewritten as wg(xσi1 , . . . , xσin) · h for some h ∈ 〈S〉F . Thus gσ̃ = gσ · h for some σ ∈ Φ and

h ∈ 〈S〉F ⊆ L.For an integer m > 1, assume that, for every g ∈ F and δ̃ ∈ Ψ∗, with ‖δ̃‖ = m, theimage gδ̃ ∈ R̃ satis�es that gδ̃ = gδh for δ ∈ Φ∗ and some h ∈ L. Let g ∈ F and δ̃ ∈ Ψ∗,with ‖δ̃‖ = m+ 1, be given. Then there exist ω̃ ∈ Ψ and γ̃ ∈ Ψ∗, with ‖γ̃‖ = n, so that
δ̃ = γ̃ ω̃ holds. By our assumption, there exist γ ∈ Φ∗ and h ∈ L so that gγ̃ = gγh holds.Thus gδ̃ = gγ̃ ω̃ = (gγh)ω̃. If ω̃ 6= σ̃ holds, then ω̃ ∈ Φ and thus γω̃ ∈ Φ∗. Moreover,by 
onstru
tion, the normal subgroups L = 〈

⋃
ϕ∈Φ∗ Sϕ〉F and L̃ = 〈

⋃
ϕ∈Ψ∗ Sϕ〉F are

Φ∗- and Ψ∗-invariant, respe
tively. Thus hω̃ ∈ L if ω̃ 6= σ̃. Therefore, the image gδ̃satis�es that gδ̃ = gγω̃hω̃ for some γω̃ ∈ Φ∗ and hω̃ ∈ L. It su�
es to 
onsider the 
ase
ω̃ = σ̃. The elements gγ ∈ F and h ∈ F are represented by �nite words wgγ (xj1 , . . . , xjn)and wh(xk1 , . . . , xkℓ), respe
tively. Again, 
onjugation in the free group F yields that
wgγ (xj1 , . . . , xjn)

σ̃ = wgγ (x
σ
j1
, . . . , xσjn)u and wh(xk1 , . . . , xkℓ)σ̃ = wh(x

σ
k1
, . . . , xσkℓ) v with

u, v ∈ 〈S〉F . Thus gδ̃ = gγ̃σ̃ = (gγh)σ̃ = (gγσu) (hσ v). In fa
t, we have that gδ̃ = gγσ h′with γσ ∈ Φ∗ and h′ = uhσv ∈ L. Thus, for every g ∈ F and δ̃ ∈ Ψ∗, the image gδ̃satis�es that gδ̃ = gδh with δ ∈ Φ∗ and h ∈ L. By symmetry, as we have both xσ̃ = xσ rxand xσ = xσ̃ r−1
x , the same arguments will prove that for ea
h g ∈ F and δ ∈ Φ∗ theimage gδ satis�es that gδ = gδ̃h with δ̃ ∈ Ψ∗ and h ∈ L̃ = 〈

⋃
ϕ∈Ψ∗ Sϕ〉F . This �nishesour proof of Proposition 3.14. 2As a 
onsequen
e of Proposition 3.14, we obtain the followingCorollary 3.15 Let G = 〈X | Q | Φ | R〉 be a �nitely L-presented group and let

σ ∈ Φ be given. Then σ indu
es an endomorphism of the invariantly �nitely L-presentedgroup H = 〈X | ∅ | Φ | R〉. If ψ ∈ End(F (X )) and σ indu
e the same endomorphism on
H, then there exists a �nite subset S ⊆ F (X ) so that 〈X | Q | (Φ \ {σ}) ∪ {ψ} | R ∪ S〉is a �nite L-presentation for G.Proof. If σ and ψ indu
e the same endomorphism of H, there exists, for ea
h x ∈ X ,an element rx ∈ 〈

⋃
σ∈Φ∗ Rσ〉F with xψ = xσrx. Write S = {rx | x ∈ X}. ThenProposition 3.14 yields that G = 〈X | Q | (Φ \ {σ}) ∪ {ψ} | R ∪ S〉. 2The transformations introdu
ed above allow us to modify a given L-presentation of agroup. In order to prove Tietze's theorem for invariantly �nitely L-presented groups, we
hoose the following set of transformations:



B.4. Appli
ations of Tietze Transformations 105De�nition 3.16 An L-Tietze transformation is a transformation that(i) adds or removes a single �xed relation (Proposition 3.4),(ii) adds or removes a single iterated relation (Proposition 3.5),(iii) adds or removes a single substitution (Proposition 3.12),(iv) adds or removes a generator together with a �xed relation (Proposition 3.8),(v) adds or removes a generator together with an iterated relation (Proposition 3.9), orthat(vi) modi�es a given substitution of an L-presentation (Proposition 3.14).B.4 Appli
ations of Tietze TransformationsThe transformations introdu
ed in Se
tion B.3 allow us to prove Theorem A:Proof of Theorem A. We use similar ideas as in the proof of Tietze's theorem in [95,Chapter II℄: As ea
h L-Tietze transformation does not 
hange the isomorphism type ofthe group, two �nite L-presentations de�ne isomorphi
 groups if one L-presentation 
anbe transformed into the other by a �nite sequen
e of L-Tietze transformations. In orderto prove Theorem A, it su�
es to prove that two invariant �nite L-presentations whi
hde�ne isomorphi
 groups 
an be transformed into ea
h other by a �nite sequen
e of L-Tietze transformations. For this purpose, we 
onsider two invariant �nite L-presentations
〈X1 | Q1 | Φ1 | R1〉 and 〈X2 | Q2 | Φ2 | R2〉 of a group G. By Proposition 3.7, we 
anassume that both Q1 = ∅ and Q2 = ∅ hold. We will 
onstru
t an invariant �nite L-presentation for G whi
h 
an be obtained from both L-presentations by a �nite sequen
eof L-Tietze transformations. Be
ause ea
h L-Tietze transformation is reversible, thisshows that we 
an pass from one L-presentation to the other by a �nite sequen
e of
L-Tietze transformations.Suppose that X1 ∩ X2 = ∅ holds. For i ∈ {1, 2}, we denote by Fi = F (Xi) thefree group over the alphabet Xi and by πi:Fi → G the free presentation with kernel
ker(πi) = 〈

⋃
σ∈Φ∗

i
Rσ
i 〉
Fi . For ea
h x ∈ X1, we 
hoose wx ∈ F2 with xπ1 = wπ2x ; i.e., theelement wx ∈ F2 is a π2-preimage of xπ1 ∈ G. For ea
h z ∈ X2, we 
hoose wz ∈ F1 with

zπ2 = wπ1z . De�ne the subsets S1 = {x−1wx | x ∈ X1} and S2 = {z−1wz | z ∈ X2} of thefree group F = F (X1 ∪ X2) over the alphabet X1 ∪ X2. By Proposition 3.9, we 
an addthe �nitely many generators z ∈ X2 together with the iterated relation z−1 wz ∈ S2 if weextend ea
h substitution σ ∈ Φ1 to the free group F by
σ̃:

{
x 7→ xσ, for ea
h x ∈ X1,
z 7→ wσz , for ea
h z ∈ X2.This yields the �nite L-presentation

〈X1 ∪ X2 | ∅ | {σ̃}σ∈Φ1 | R1 ∪ {z−1wz}z∈X2 〉



106 Chapter B. A Note on Invariantly Finitely L-Presented Groupsfor the group G. The natural homomorphisms π1:F1 → G and π2:F2 → G extend to anatural homomorphism π:F → G that is indu
ed by the map
π:

{
x 7→ xπ1 , for ea
h x ∈ X1,
z 7→ zπ2 , for ea
h z ∈ X2.Its kernel satis�es ker(π) = 〈

⋃
σ∈Φ∗

1
(R1 ∪ S2)

σ̃〉F . For x ∈ X1 and x−1wx ∈ S1, we have
xπ = xπ1 = wπ2x = wπx and thus x−1wx ∈ ker(π) holds. For ea
h r ∈ R2, we have
rπ = rπ2 = 1 and thus r ∈ ker(π) holds. Sin
e the kernel ker(π) is {σ̃ | σ ∈ Φ1}

∗-invariant, by 
onstru
tion, Proposition 3.5 yields that
G ∼= 〈 X1 ∪ X2 | ∅ | {σ̃}σ∈Φ1 | R1 ∪R2 ∪ S1 ∪ S2 〉 .As the invariant �nite L-presentations 〈X1 | ∅ | Φ1 | R1〉 and 〈X2 | ∅ | Φ2 | R2〉 de�neisomorphi
 groups and every ψ ∈ Φ2 indu
es an endomorphism of the whole group, we
an extend ψ to an endomorphism of the free group F over the alphabet X1 ∪ X2 thatindu
es the same endomorphism on G as ψ does. More pre
isely, for ea
h ψ ∈ Φ2, wede�ne an endomorphism of the free group F that is indu
ed by the map
ψ̃:

{
z 7→ zψ, for ea
h z ∈ X2

x 7→ wψx , for ea
h x ∈ X1 and x−1wx ∈ S1.By 
onstru
tion, the normal subgroup 〈
⋃
σ∈Φ∗

1
(R1 ∪ R2 ∪ S1 ∪ S2)

σ̃〉F is ψ̃-invariant.Thus, by Proposition 3.12, the group G satis�es that
G ∼=

〈
X1 ∪ X2

∣∣∣ ∅
∣∣∣ {σ̃}σ∈Φ1 ∪ {ψ̃}ψ∈Φ2

∣∣∣ R1 ∪R2 ∪ S1 ∪ S2
〉
. (B.7)Sin
e the L-presentations 〈X1 | Q1 | Φ1 | R1〉 and 〈X2 | Q2 | Φ2 | R2〉 were �nite, wehave applied only �nitely many L-Tietze transformations from De�nition 3.16. Therefore,starting with the L-presentation 〈X1 | Q1 | Φ1 | R1〉 we have obtained the L-presentationin Eq. (B.7) after �nitely many steps. By symmetry, though, we would also obtain the�nite L-presentation in Eq. (B.7) if we would have started with the �nite L-presentation

〈X2 | Q2 | Φ2 | R2〉. Sin
e ea
h L-Tietze transformation is reversible, we 
an thereforetransform the �nite L-presentation in Eq.(B.7) to the �nite L-presentation 〈X2 | Q2 | Φ2 |
R2〉. This yields a �nite sequen
e of L-Tietze transformations that allows us to transformthe L-presentation 〈X1 | Q1 | Φ1 | R1〉 to the L-presentation 〈X2 | Q2 | Φ2 | R2〉 and vi
eversa. 2Similarly, the Tietze transformations in Se
tion B.3 also allow us to prove that twoarbitrary �nite L-presentations 
ould be transformed into ea
h other by a �nite sequen
eof Tietze transformations.Another appli
ation of L-Tietze transformations is to prove that `being invariantly�nitely L-presented' is an abstra
t property of a group that does not depend on thegenerating set of the group; that is, if a group admits an invariant �nite L-presentationwith respe
t to one �nite generating set, then so it does with respe
t to any other �nite



B.4. Appli
ations of Tietze Transformations 107generating set. This result was already posed in [6, Proposition 2.2℄. However, its proof
ontains a gap: Consider the invariant �nite L-presentation
G ∼= 〈{a, b, c, d} | {a2, b2, c2, d2, bcd} | {σ} | {(ad)4, (adacac)4}〉from Theorem 2.2, where σ is indu
ed by the map a 7→ aca, b 7→ d, c 7→ b, and d 7→ c.Then σ is a monomorphism of the free group F = F ({a, b, c, d}). The transformations inthe proof of [6, Proposition 2.2℄ keep the rank of im (σ) 
onstant and therefore, they donot allow to prove that the Grigor
huk group admits an invariant �nite L-presentationwith generators {a, c, d} as in Eq. (B.2). The L-Tietze transformations from Se
tion B.3allow us to address this gap:Proof of Theorem B. Let Y = {y1, . . . , yn} be an arbitrary �nite generating set of theinvariantly �nitely L-presented group G = 〈X | Q | Φ | R〉. As G is invariantly L-presented, we 
an assume that Q = ∅ holds. Sin
e Y generates G, there exists, forea
h x ∈ X , a word wx(y1, . . . , yn) over the generators Y so that x =G wx(y1, . . . , yn)holds. Sin
e X = {x1, . . . , xm} also generates G, there exists, for ea
h y ∈ Y, a word

wy(x1, . . . , xm) so that y =G wy(x1, . . . , xm) holds. Suppose that X ∩ Y = ∅ holds. Forea
h σ ∈ Φ, de�ne an endomorphism σ̃ of the free group E over the alphabet X ∪Y thatis indu
ed by the map
σ̃:

{
x 7→ xσ, for ea
h x ∈ X ,
y 7→ wy(x1, . . . , xm)

σ , for ea
h y ∈ Y.Then, by Proposition 3.9, a �nite L-presentation for the group G is given by
〈X ∪ Y | ∅ | {σ̃}σ∈Φ | R ∪ {y−1wy(x1, . . . , xm)}y∈Y 〉.As this L-presentation is invariant, every σ̃, with σ ∈ Φ, indu
es an endomorphism ofthe group G. Thus, as x =G wx(y1, . . . , yn) holds, we have xσ̃ =G wx(y1, . . . , yn)

σ̃ forea
h σ ∈ Φ∗. By Proposition 3.5, we have that
G ∼= 〈X ∪ Y | ∅ | {σ̃}σ∈Φ | R ∪ {y−1wy}y∈Y ∪ {x−1wx}x∈X 〉. (B.8)Sin
e Y generates H, for ea
h z ∈ X ∪ Y and σ ∈ Φ, the image zσ̃ is represented by aword vz,σ(y1, . . . , yn) over the generators Y so that zσ̃ =G vz,σ(y1, . . . , yn) holds. Sin
ethe L-presentation in Eq. (B.8) is invariant, Proposition 3.14 applies to the relation

r = (zσ̃)−1vz,σ(y1, . . . , yn) and it shows that G admits the following �nite L-presentation
〈X ∪ Y | ∅ | {σ̂}σ∈Φ | R ∪ {x−1wx}x∈X ∪ {y−1wy}y∈Y ∪ {(zσ̃)−1vz,σ}z∈X∪Y ,σ∈Φ〉where the substitutions σ̂ are indu
ed by the maps

σ̂: z 7→ vz,σ(y1, . . . , yn), for ea
h z ∈ X ∪ Y.We use the iterated relations x−1wx(y1, . . . , yn), with x ∈ X , to repla
e every o

urren
eof x ∈ X among the iterated relations
R∪ {y−1wy(x1, . . . , xm)}y∈Y ∪ {(zσ̃)−1vz,σ(y1, . . . , yn)}z∈X∪Y ,σ∈Φ (B.9)



108 Chapter B. A Note on Invariantly Finitely L-Presented Groupsby wx(y1, . . . , yn). This yields a �nite set of relations S̃ that 
an be 
onsidered as a�nite subset of the free group over the alphabet Y. Repla
ing the relations in Eq. (B.9)by S̃ does not 
hange the isomorphism type of the group. The group G satis�es that
G ∼= 〈X ∪ Y | ∅ | {σ̂ | σ ∈ Φ} | S̃ ∪ {x−1wx | x ∈ X}〉. By Proposition 3.9, the group Gis invariantly �nitely L-presented by 〈Y | ∅ | {σ̂}σ∈Φ | S̃〉. 2B.5 Finitely generated normal subgroups of �nitely pre-sented groupsIn this se
tion, we 
onsider �nitely generated normal subgroups of �nitely presentedgroups. By Higman's embedding theorem [81℄, every �nitely generated group embedsinto a �nitely presented group if and only if it is re
ursively presented. This theorem
lassi�es the �nitely generated subgroups of a �nitely presented group. The normalsubgroups of a �nitely presented group are invariantly L-presented:Proposition 5.17 Every normal subgroup of a �nitely presented group admits an in-variant L-presentation whose substitutions indu
e automorphisms of the subgroup. If thenormal subgroup has �nite index, it is invariantly �nitely L-presented.Proof. This follows from the proof of [70, Theorem 6.1℄; 
f. Lemma 5.19 below. 2The L-presentation in Lemma 5.19 below is an as
ending L-presentation with �nitelymany substitutions and �nitely many iterated relations. It has �nitely many generatorsif and only if the subgroup has �nite index. The substitutions of this L-presentationindu
e automorphisms of the subgroup sin
e they are indu
ed by 
onjugation in the�nitely presented group.On the other hand, as every �nite L-presentation is re
ursive, �nitely L-presentedgroups embed into �nitely presented groups. As indi
ated in [22℄, a �nitely L-presentedgroup embeds as a normal subgroup into a �nitely presented group if we assume thatevery substitution of the L-presentation indu
es an automorphism of the subgroup:Proposition 5.18 Every group that admits an invariant �nite L-presentation, whosesubstitutions indu
e automorphisms of the group, embeds as a normal subgroup into a�nitely presented group.Proof. If H = 〈Z | ∅ | {δ1, . . . , δn} | R〉 is invariantly �nitely L-presented so that ea
h
δi indu
es an automorphism of H, the base group H embeds into the HNN-extension
G1 relative to the isomorphism δ1:H → H whi
h is indu
ed by the substitution δ1. TheHNN-extension G1 is given by the presentation G1 = 〈Z ∪ {t1} |

⋃
σ∈Φ∗ Rσ ∪ {t−1

1 zt1 =
zδ1 | z ∈ Z}〉 where Φ = {δ1, . . . , δn}. Denote by H1 the image of H in G1. Then
δ2 indu
es an automorphism of the subgroup H1 ≤ G1. Thus we 
an form the HNN-extension G2 relative to the isomorphism δ2:H1 → H1. As the base group G1 embedsinto the HNN-extension G2, the subgroup H1 embeds into G2 as well. Iterating thispro
ess, we obtain a group Gn = 〈Z ∪ {t1, . . . , tn} |

⋃
σ∈Φ∗ Rσ ∪ {t−1

i zti = zδi | 1 ≤ i ≤
n}〉 in whi
h H embeds. Tietze transformations that repla
e every δi-image zδi by the
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onjugate t−1
i zti in the relations ⋃σ∈Φ∗ Rσ eventually show that Gn = 〈Z ∪{t1, . . . , tn} |

R ∪ {t−1
i zti = zδi | 1 ≤ i ≤ n, z ∈ Z}〉 is �nitely presented. The invariantly �nitely L-presented group H embeds into this �nitely presented group by identifying the generatorin Z. The image of H in Gn is obviously a normal subgroup of Gn. 2In the following, we use the 
onstru
tions from [22℄ to prove Theorem C. Sin
e everynormal subgroup of a �nitely presented group admits an invariant L-presentation with�nitely many substitutions and �nitely many iterated relations, it su�
es to show thatthe L-presentation in Lemma 5.19 below 
ould be transformed into an invariant �nite

L-presentation. For this purpose, though, we need to eliminate (possibly) in�nitely manygenerators from the L-presentation and we need to modify �nitely many substitutions.However, Proposition 3.14 adds iterated relations for ea
h modi�
ation of a substitution.Hen
e, we need to ensure that this pro
ess still gives a �nite L-presentation. In thefollowing, we generalize the 
onstru
tions from [22℄:B.5.1 PreliminariesLet G be a �nitely presented group and let H � G be a �nitely generated normal sub-group. Then G/H is �nitely presented. Moreover, if H = 〈a1, . . . , am〉 and G/H =
〈s1H, . . . , snH〉 hold, there exists a �nite presentation 〈 {a1, . . . , am, s1, . . . , sn} | R 〉 for
G. The proof of [70, Theorem 6.1℄ yields the followingLemma 5.19 Let 〈 {a1, . . . , am, s1, . . . , sn} | R 〉 be a �nite presentation for G and write
S = {s±1

1 , . . . , s±1
n }. If T is a S
hreier transversal for H = 〈a1, . . . , am〉 in G and Y arethe S
hreier generators of H, then H is invariantly L-presented by

〈Y | ∅ | {δx | x ∈ S} | Rτ 〉where δx denotes the endomorphism of the free group F (Y) that is indu
ed by 
onjugationwith x ∈ S and τ denotes the Reidemeister-rewriting.Proof. This follows from the Reidemeister-S
hreier theorem, see [95, Se
tion II.4℄ andthe proof of [70, Theorem 6.1℄. Clearly, one 
an always omit the endomorphisms δx with
x ∈ {a1, . . . , am} as they give inner automorphisms of the subgroup H. 2Sin
e S and R are �nite, the L-presentation in Lemma 5.19 is �nite if and only if H has�nite index in G; in this 
ase Y is �nite. Finite index subgroups of �nitely L-presentedgroups have been studied in [70℄. It was shown that ea
h normal subgroup of a �nitelypresented group with �nite index is invariantly �nitely L-presented. In the following, wetherefore assume that [G : H] = ∞ holds.The strategy in the proof of Theorem C will be as follows: Our 
hoi
e of the gen-erating set of the �nitely presented group allows us to assume that H's generators
Z = {a1, . . . , am} are S
hreier generators of H. We therefore obtain an embedding
χ:F (Z) → F (Y) and we will 
onstru
t an epimorphism γ:F (Y) → F (Z) so that thefree presentation π:F (Y) → H that is given by the L-presentation in Lemma 5.19 sat-is�es γχπ = π. Sin
e the L-presentation in Lemma 5.19 is invariant, there exists, for
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h σ ∈ Φ = {δx | x ∈ S}, an endomorphism σ̂ ∈ End(H) so that σπ = πσ̂ holds.In general, we 
annot assume that there also exists an endomorphism σ̃ ∈ End(F (Z))so that σγ = γσ̃ holds. Therefore, we will 
onstru
t a normal subgroup N � F (Z)so that ψ:F (Z) → F (Z)/N, g 7→ gN yields the existen
e of σ̄ ∈ End(F (Z)/N) with
σγψ = γψσ̄. These 
onstru
tions will give the following 
ommutative diagram:

F (Z)
ψ

χπ

F (Z)/N

δ̄x

F (Y)

δx

γ

π
H

δ̂xIn the spe
ial 
ases of Theorem C and Theorem D, we are able to prove that F (Z)/N isinvariantly �nitely L-presented and so is the subgroup H. The normal subgroup N willbe generated, as a normal subgroup, by the iterated relations that Proposition 3.14 addswhen modifying the substitutions of the L-presentation in Lemma 5.19. These relationswere omitted in [22℄. It is not 
lear whether or not these relations are ne
essary to de�nethe subgroup H.In the remainder of this se
tion, we generalize the 
onstru
tions from [22℄ to obtainthe 
ommutative diagram above. The generating set X = {a1, . . . , am, s1, . . . , sn} ofthe �nitely presented group G yields that the generators Z = {a1, . . . , am} are S
hreiergenerators of H. Hen
e, there exists a natural embedding χ:F (Z) → F (Y) whi
h isindu
ed by embedding the generators Z into Y. It su�
es to remove the S
hreier gen-erators Y \ Z from the invariant L-presentation in Lemma 5.19. Sin
e H is generatedby Z = {a1, . . . , am}, every y ∈ Y 
an be represented, as an element of H, by a wordover Z. This yields an epimorphism γ:F (Y) → F (Z) whi
h maps every y ∈ Y to a word
yγ ∈ F (Z) over the alphabet Z that represents the same element in H; i.e., we have

{y−1yγχ | y ∈ Y \ Z} ⊆ ker(π), (B.10)where π:F (Y) → H denotes the free presentation from Lemma 5.19. Note that Eq. (B.10)yields that ι = χπ de�nes an epimorphism ι:F (Z) → H with γι = π. The followinglemma generalizes [22, Lemma 4℄.Lemma 5.20 If H ∼= 〈Y | S〉 and γ:F (Y) → F (Z) is an epimorphism so that
F (Z)

ι

F (Y)

γ

π H
ommutes, 〈Z | Sγ〉 is a presentation for H.



B.5. Finitely generated normal subgroups of �nitely presented groups 111Proof. Sin
e π = γι is onto, it su�
es to prove that ker(ι) = 〈Sγ〉F (Z) holds. For r ∈ S,we have that rγι = rπ = 1 and so rγ ∈ ker(ι). Thus 〈Sγ〉F (Z) ⊆ ker(ι). If g ∈ ker(ι)holds, there exists h ∈ F (Y) with hγ = g as γ is surje
tive. Then hπ = hγι = gι = 1 and
h ∈ ker(π) = 〈S〉F (Z). Thus g = hγ ∈ 〈Sγ〉F (Z). 2Thus, by Lemma 5.19 and Lemma 5.20, the subgroup H has a presentation of the form

H = 〈Z | {(rτσ)γ | r ∈ R, σ ∈ Φ∗}〉where Φ = {δx | x ∈ S} and τ denotes the Reidemeister rewriting. This presentation
an be 
onsidered as a �nite L-presentation if, for ea
h σ ∈ Φ, there exists an endomor-phism σ̃ ∈ End(F (Z)) with σγ = γσ̃. The following lemma yields the existen
e of su
hendomorphisms σ̃ ∈ End(F (Z)):Lemma 5.21 For groups L and M , an epimorphism π:L →M , and an endomorphism
δ ∈ End(L), there exists a (unique) endomorphism ∆ ∈ End(M) with δπ = π∆ if andonly if ker(π)δ ⊆ ker(π) holds.Proof. The proof is straightforward. 2Therefore, if the kernel ker(γ) is σ-invariant, for ea
h σ ∈ Φ, the subgroup H would beinvariantly �nitely L-presented by 〈Z | ∅ | {δ̃x | δx ∈ Φ} | Rτγ〉. In general, though, we
annot assume that ea
h σ ∈ Φ leaves the kernel ker(γ) invariant. If we 
onsider thenatural embedding χ:F (Z) → F (Y) that is indu
ed by embedding the generators Z into
Y, the kernel ker(γ) satis�esLemma 5.22 If χ:F (Z) → F (Y) is an embedding with γχ|Z = idZ , then χγ = idF (Z)and ker(γ) = 〈{y−1yγχ | y ∈ Y \ Z}〉F (Y) hold.Proof. Sin
e γχ|Z = idZ holds, the map γχ indu
es the identity on the free subgroup
E = 〈Z〉 ≤ F (Y). For g ∈ F (Z), we have gχ ∈ E and gχγχ = gχ. Thus (g−1gχγ)χ = 1and, as χ is inje
tive, we have g−1gχγ = 1 or

χγ = idF (Z). (B.11)For ea
h y ∈ Y \ Z, we have that (y−1yγχ)γ = y−γyγχγ = y−γyγ = 1. Therefore
N = 〈{y−1yγχ | y ∈ Y\Z}〉F (Y) satis�es that N ⊆ ker(γ). Let g ∈ ker(γ) be given. Then
g ∈ F (Y) is represented by a �nite word w(yi1 , . . . , yin , a1, . . . , am) with {yi1 , . . . , yin} ⊆
Y \ Z. Modulo the normal subgroup N , we 
an repla
e every o

urren
e of y ∈ Y \ Zby yγχ ∈ E; i.e., we have g = w(yi1 , . . . , yin , a1, . . . , am) = w(yγχi1 , . . . , y

γχ
in
, a1, . . . , am) · hfor some h ∈ N . As g ∈ ker(γ) and h ∈ N ⊆ ker(γ) hold, we have

1 = gγχ = w(yγχγχi1
, . . . , yγχγχin

, aγχ1 , . . . , aγχm ) · hγχ = w(yγχi1 , . . . , y
γχ
in
, a1, . . . , am) · 1.Similarly, modulo the normal subgroup N , we 
an repla
e every o

urren
e of yγχ by y.There exists k ∈ N with 1 = w(yγχi1 , . . . , y

γχ
in
, a1, . . . , am) = w(yi1 , . . . , yin , a1, . . . , am)·k =

g · k. Thus g ∈ N and N = ker(γ). 2



112 Chapter B. A Note on Invariantly Finitely L-Presented GroupsEven though δx ∈ Φ may not translate dire
tly to δ̃x ∈ End(F (Z)), there exists anormal subgroup N �F (Z) and a homomorphism ψ:F (Z) → F (Z)/N, g 7→ gN so that
ker(γψ)δx ⊆ ker(γψ) holds: For ea
h δx ∈ Φ, de�ne δ̃x = χδxγ ∈ End(F (Z)). Considerthe normal subgroup

N =
〈 ⋃

σ∈Φ̃∗

(
{(y−1yγχ)δxγ}y∈Y\Z,x∈S

)σ〉F (Z) (B.12)where Φ̃ = {δ̃x | δx ∈ Φ}. By 
onstru
tion, N satis�es N δ̃x ⊆ N and thus thereexists a unique endomorphism δ̄x:F (Z)/N → F (Z)/N, gN 7→ gδ̃xN with δ̃xψ = ψδ̄x.The normal subgroup N allows us to translate δx ∈ Φ to δ̄x ∈ End(F (Z)/N) with
δxγψ = γψδ̄x:Lemma 5.23 For ea
h x ∈ S, we have that ker(γψ)δx ⊆ ker(γψ).Proof. The kernel ker(γψ) = ker(γ)Nγ−1 satis�es that

ker(γψ) =
〈{
y−1yγχ

}
y∈Y\Z

∪
⋃

σ̃∈Φ∗

{
(y−1yγχ)δzγσ̃χ

}
y∈Y\Z
z∈S

〉F (Y)
.The generator (y−1yγχ)δzγσ̃χ is mapped by δxγ to (y−1yγχ)δzγσ̃χδxγ = (y−1yγχ)δzγσ̃δ̃x ∈ Nwhile y−1yγχ is mapped to (y−1yγχ)δxγ ∈ N . 2The endomorphisms δx ∈ End(F (Y)), δ̃x ∈ End(F (Z)), and δ̄x ∈ End(F (Z)/N) alsosatisfy that

δ̃xψ = χδxγψ = χγψδ̄x = ψδ̄x. (B.13)Sin
e the L-presentation in Lemma 5.19 is invariant, there exists δ̂x ∈ End(H) with
δxπ = πδ̂x. The subgroup H is a homomorphi
 image of F (Z)/N :Lemma 5.24 Let ι:F (Z) → H, g 7→ gχπ be given. Then γι = π and N ≤ ker(ι).Proof. The �rst assertion follows from the de�nition of γ in Eq. (B.10) above. For
δx ∈ Φ, we have δ̃xι = χδxγι = χδxπ = χπδ̂x = ιδ̂x and γχπ = γι = π. Thus
(y−1yγχ)π = y−πyγχπ = y−πyπ = 1. For σ̃ ∈ Φ̃∗ with σ̃ = δ̃x1 · · · δ̃xn we therefore obtain

δxγσ̃ι = δxγδ̃x1 · · · δ̃xnι = δxγιδ̂x1 · · · δ̂xn = δxπδ̂x1 · · · δ̂xn = πδ̂xδ̂x1 · · · δ̂xn .Hen
e, for ea
h σ̃ ∈ Φ∗, y ∈ Y \ Z, and x ∈ X , the generator (y−1yγχ)δxγσ̃ ∈ N satis�es
(y−1yγχ)δxγσ̃ι = (y−1yγχ)πδ̂x δ̂x1 ···δ̂xn = 1 as y−1yγχ ∈ ker(π) holds. Therefore N ⊆ ker(ι)holds. 2



B.5. Finitely generated normal subgroups of �nitely presented groups 113By Lemma 5.24, the homomorphism ϕ:F (Z)/N → H, gN 7→ gι is well-de�ned and itsatis�es that ψϕ = ι. We have obtained the following diagram:
F (Z)

χ

δ̃x

ι=χπ

ψ
F (Z)/N

δ̄x

ϕ

F (Y)

γ

δx

π H

δ̂xBy 
onstru
tion, F (Z)/N is invariantly L-presented by
F (Z)/N ∼= 〈Z | ∅ | {δ̃x}δx∈Φ | {(y−1yγχ)δxγ}y∈Y\Z,δx∈Φ〉.If [G : H] = ∞ holds, |Y \ Z| is in�nite. Therefore, the latter L-presentation is �nite ifand only if [G : H] is �nite. Our strategy in the proof of Theorem C uses the followingLemma 5.25 If there exists a �nite set U ⊆ F (Z) with F (Z)/N ∼= 〈Z | ∅ | Φ̃ | U〉, then

H is invariantly �nitely L-presented.Proof. The kernel of ϕ:F (Z)/N → H is generated by the images rτσγψ = rτγψσ̄ with
σ ∈ Φ∗ and r ∈ R. If 〈Z | ∅ | Φ̃ | U〉 is an invariant �nite L-presentation for F (Z)/N ,then H is invariantly �nitely L-presented by 〈Z | ∅ | Φ̃ | U ∪ Rτγ〉. 2B.5.2 Proofs of Theorem C and Theorem DIn this se
tion, we prove Theorem C and Theorem D:Proof of Theorem C. Our strategy in the proof of Theorem C is to 
onstru
t a normalsubgroup N �F (Z) and to prove that F (Z)/N is invariantly �nitely L-presented. ThenLemma 5.25 applies and it shows that H ≤ G is invariantly �nitely L-presented.Sin
e G is �nitely presented, G/H is �nitely generated. Moreover, as G splits over
H, there exists s1, . . . , sn ∈ G so that G/H = 〈s1H, . . . , snH〉 and S = 〈s1, . . . , sn〉satis�es that S ∩H = {1}; i.e., G ∼= H ⋊ S holds. Be
ause H is �nitely generated, thereexist a1, . . . , am ∈ H so that H = 〈a1, . . . , am〉 holds. Then G = 〈a1, . . . , am, s1, . . . , sn〉holds and there exists a �nite set of relations R with G ∼= 〈 {a1, . . . , am, s1, . . . , sn} | R 〉.Write S = {s±1

1 , . . . , s±1
n } and X = {a1, . . . , am, s1, . . . , sn}. Clearly, we 
an 
hoose aS
hreier transversal T ⊆ S∗ whose elements are words over the alphabet S. This yieldsthe S
hreier generators
aℓ,t = γ(t, aℓ) = taℓ(taℓ)

−1 = taℓt
−1,

sℓ,t = γ(t, sℓ) = tsℓ(tsℓ)
−1,with t ∈ T . Then {sℓ,t | 1 ≤ ℓ ≤ n, t ∈ T } ⊆ S∗. By Lemma 5.19, the subgroup H isinvariantly L-presented by 〈Y | ∅ | {δs | s ∈ S} | Rτ 〉 where

Y = {aℓ,t | t ∈ T , 1 ≤ ℓ ≤ m} ∪ {sℓ,t 6= 1 | t ∈ T , 1 ≤ ℓ ≤ n}



114 Chapter B. A Note on Invariantly Finitely L-Presented Groupsand δs denotes the endomorphism of F (Y) that is indu
ed by 
onjugation with s ∈ S.Write S = 〈s1, . . . , sn〉 ≤ F (X ) and E = 〈a1, . . . , am〉 ≤ F (X ). Let K � F (X ) be thekernel of G's free presentation F (X ) → G. Then EK = 〈Y〉 and S ∩ EK = 〈sℓ,t 6= 1 |
1 ≤ ℓ ≤ n, t ∈ T 〉 are freely generated. For ea
h s ∈ S, the subgroup S ∩ EK is δs-invariant sin
e S∩EK�S holds. Be
ause G splits over H, we have S∩H = {1}. Thus thegenerators sℓ,t ∈ S∩EK are 
ontained in the kernel of the free presentation π:F (Y) → Hwhi
h is given by H's invariant L-presentation above. De�ne Z = {a1, . . . , am} and anembedding

χ:F (Z) → F (Y), aℓ 7→ aℓ,1where 1 ∈ T denotes the trivial element in the S
hreier transversal T . For s ∈ S and
aℓ ∈ Z, we 
hoose a representative aχδsγℓ ∈ F (Z) with

a−χδsℓ (aχδsγℓ )χ ∈ ker(π). (B.14)For s ∈ S, let δ̃s ∈ F (Z) be indu
ed by the map aℓ 7→ aχδsγℓ and de�ne ι:F (Z) → H by
ι = χπ. Then Eq. (B.14) yields that δ̃sι = ιδ̂s. In the following, we write δ̃t = δ̃x1 · · · δ̃xnif t = x1 · · · xn ∈ S∗ and ea
h xi ∈ S. Moreover, we write X for x−1 and T for t−1. Thisyields that aδTℓ,1 = taℓT = aℓ,t. Let γ:F (Y) → F (Z) be indu
ed by the map

γ:

{
aℓ,t 7→ aδ̃Tℓ , for ea
h 1 ≤ ℓ ≤ m and t ∈ T ,
sℓ,t 7→ 1, for ea
h 1 ≤ ℓ ≤ n and t ∈ T .For ea
h 1 ≤ ℓ ≤ m, 1 ≤ k ≤ n, and t ∈ T , this yields

(aℓ,t)
γι = aδ̃T ιℓ = aιδ̂Tℓ = aχπδ̂Tℓ = aδT πℓ,1 = aπℓ,t and (sk,t)

γι = 1ι = 1 = (sk,t)
π.Thus γι = π. De�ne the normal subgroup

N =
〈 ⋃

σ̃∈Φ̃∗

(
{(y−1yγχ)δsγ}y∈Y\Z,s∈S

)σ̃〉F (Y)where Φ̃ = {δ̃s | s ∈ S}. For t ∈ T and s ∈ S, we have that
(s−1
ℓ,t s

γχ
ℓ,t )

δsγ = s−δsγℓ,t (sγℓ,t)
δ̃s = 1as the subgroup S ∩ EK = 〈sℓ,t | t ∈ T , 1 ≤ ℓ ≤ n〉 is δs-invariant and it is 
ontained inthe kernel of γ. This yields that

N =
〈 ⋃

σ̃∈Φ̃∗

(
{(a−1

ℓ,t a
γχ
ℓ,t )

δsγ}1≤ℓ≤m,t∈T \{1},s∈S

)σ̃〉F (Z)
.For t ∈ T and x ∈ S with xt ∈ T , we also have that

(a−1
ℓ,t a

γχ
ℓ,t )

δXγ = a−δXγℓ,t aγδ̃Xℓ,t = a−γℓ,xt a
γδ̃X
ℓ,t = a−δ̃TXℓ aδ̃T δ̃Xℓ = 1.



B.5. Finitely generated normal subgroups of �nitely presented groups 115It therefore su�
es to 
onsider the generators (a−1
ℓ,t a

γχ
ℓ,t )

δXγ ∈ N with 1 ≤ ℓ ≤ m, t ∈ T ,and x ∈ S but xt 6∈ T . Sin
e G/H ∼= S/S ∩EK is a �nitely presented group, there existsa �nite monoid presentation
S/S ∩ EK ∼= 〈 S | (U1, V1), . . . , (Up, Vp) 〉.The monoid 
ongruen
e ∼ indu
ed by this presentation is the re�exive, symmetri
, andtransitive 
losure of the binary relation ∼ that is de�ned by x ∼ y if there exist A,B ∈ S∗and 1 ≤ i ≤ p so that x = AUiB and y = AViB hold. De�ne

M =
〈 ⋃

σ̃∈Φ̃∗

(
{(a

−δ̃Ui
ℓ a

δ̃Vi
ℓ )}1≤ℓ≤m,1≤i≤p

)σ̃〉F (Z)
.Suppose that u ∼ v holds. Then there exist Ai, Bi, Li ∈ S∗ so that u = L1 ∼ . . . ∼ Lq = vwith Li = AiUℓiBi and Li+1 = AiVℓiBi (or Li = AiVℓiBi and Li+1 = AiUℓiBi). Notethat

a
δ̃Ai δ̃Uℓi

δ̃Bi
ℓ = (a

δ̃Ai
ℓ )

δ̃Uℓi
δ̃Bi = wℓ(a1, . . . , am)

δ̃Uℓi
δ̃Bi = wℓ(a

δ̃Uℓi
1 , . . . , a

δ̃Uℓi
m )δ̃Bifor some word wℓ(a1, . . . , am) = a

δ̃Ai
ℓ ∈ F (Z). The normal subgroup M yields that

(a
δ̃Ai
ℓ )

δ̃Uℓi = wℓ(a
δ̃Uℓi
1 , . . . , a

δ̃Uℓi
m ) = wℓ(a

δ̃Vℓi
1 , . . . , a

δ̃Vℓi
m ) · h = a

δ̃Ai δ̃Vℓi
ℓ · hfor some h ∈M . By 
onstru
tion, M is Φ̃∗-invariant and thus

a
−δ̃Ai δ̃Vℓi

δ̃Bi
ℓ a

δ̃Ai δ̃Uℓi
δ̃Bi

ℓ = hδ̃Bi ∈M.This shows that, if u ∼ v holds, we have a−δ̃uℓ aδ̃vℓ ∈ M . Suppose that, for t ∈ T and
x ∈ S, xt 6∈ T holds. Then there exists u = xt ∈ T with u ∼ xt. Write U for u−1. Sin
e
S ∩ EK � S holds, there exists h ∈ S ∩ EK ⊆ ker(γ) so that xt = hu. This yields that
aδXℓ,t = xt aℓ TX = huaℓ Uh

−1 = haℓ,u h
−1 and aδXγℓ,t = aγℓ,u = aδ̃Uℓ . Sin
e u ∼ xt and

U ∼ TX hold, we obtain
(a−1
ℓ,t a

γχ
ℓ,t )

δXγ = a−γℓ,ua
δ̃T δ̃X
ℓ = a−δ̃Uℓ aδ̃T δ̃Xℓ ∈M.Thus N ⊆ M . It su�
es to show that M ⊆ N holds. Sin
e M and N are both normalsubgroups of F (Z) and both are Φ̃∗-invariant, it su�
es to prove that a−δ̃Uiℓ a

δ̃Vi
ℓ ∈ N =

ker(ψ) holds. Sin
e δ̃sψ = ψδ̄s and χγ = idF (Z) hold, we have that
(a

−δ̃Ui
ℓ a

δ̃Vi
ℓ )ψ = a

−ψδ̄Ui
ℓ a

ψδ̄Vi
ℓ = a

−χγψδ̄Ui
ℓ a

χγψδ̄Vi
ℓ = a

−γψδ̄Ui
ℓ,1 a

γψδ̄Vi
ℓ,1

= a
−δUiγψ

ℓ,1 a
δViγψ

ℓ,1 = (a
−δUi
ℓ,1 a

δVi
ℓ,1 )

γψ.As S ∩ EK � S and T ⊆ S hold, there exist h ∈ S ∩ EK = 〈sℓ,t | 1 ≤ ℓ ≤ n, t ∈ T 〉and t = U−1
i ∈ T with U−1

i = ht. Thus aδUiℓ,1 = U−1
i aℓUi = h taℓt

−1h−1 = haℓ,t h
−1.
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e h ∈ ker(γ) holds, we obtain (a
δUi
ℓ,1 )

γ = aγℓ,t. Sin
e Ui ∼ Vi holds, we also havethat V −1
i = t. Similarly, we obtain (a

δVi
ℓ,1 )

γ = aγℓ,t. Thus a−δUiℓ,1 a
δVi
ℓ,1 ∈ ker(γ) and so

(a
−δ̃Ui
ℓ a

δ̃Vi
ℓ )ψ = 1 or a−δ̃Uiℓ a

δ̃Vi
ℓ ∈ N . Thus M = N . This shows that that fa
tor group

F (Z)/N is invariantly �nitely L-presented and so is our subgroup H. 2Even if G/H is free, the �nite L-presentation of F (Z)/N in the proof of Theorem C
ontains the relations of a monoid presentation of the free group. It is not 
lear whetheror not these relations 
an be omitted as was done in [22℄. However, the result in [22℄ isa 
onsequen
e of Theorem C even if these relations are not redundant:Theorem 5.26 (Benli [22℄) Every �nitely generated normal subgroup of a �nitely pre-sented group is invariantly �nitely L-presented if the quotient is in�nite 
y
li
.Proof. Sin
e the quotient is free, the �nitely presented group splits over its �nitelygenerated normal subgroup and thus, by Theorem C, the subgroup is invariantly �nitely
L-presented. 2Even if the �nitely presented group does not split over its �nitely generated subgroup,the subgroup is possibly invariantly �nitely L-presented:Theorem 5.27 Every �nitely generated normal subgroup of a �nitely presented group isinvariantly �nitely L-presented if the quotient is free abelian with rank two.Proof. Let G be a �nitely presented group and let H �G be �nitely generated so that
G/H ∼= Z×Z holds. By Lemma 5.25, it su�
es to 
onstru
t a fa
tor group F (Z)/N whi
his invariantly �nitely L-presented. Sin
e G/H ∼= Z×Z holds, there exists t, u ∈ G so that
G/H = 〈tH, uH〉 holds. Moreover, as H is �nitely generated, there exist a1, . . . , am ∈ Hso that H = 〈a1, . . . , am〉 holds. Then G = 〈a1, . . . , am, t, u〉 holds and there existsa �nite set of relations R with G ∼= 〈 {a1, . . . , am, t, u} | R 〉. We 
hoose as S
hreiertransversal T = {tiuj | i, j ∈ Z}. Then, by Lemma 5.19, the subgroup H is invariantly
L-presented by 〈Y | ∅ | {δu, δU , δt, δT } | Rτ 〉 where δx denotes the endomorphism of thefree group F (Y) that is indu
ed by 
onjugation with x ∈ {u,U = u−1, t, T = t−1}, τdenotes the Reidemeister rewriting, and Y = {aℓ,i,j, tl,k | i, j, k, l ∈ Z, k 6= 0} are thefollowing S
hreier generators:

aℓ,i,j = γ(tiuj , aℓ) = tiujaℓu
−jt−i,

ti,j = γ(tiuj , t) = tiujtu−jt−1t−i,
ui,j = γ(tiuj , u) = tiujuu−ju−1t−i.Note that ti,j = 1 if and only if j = 0 while ui,j = 1 for ea
h i, j ∈ Z. The endomorphisms

δt and δT are indu
ed by the maps
δt:

{
aℓ,i,j 7→ aℓ,i−1,j,
ti,j 7→ ti−1,j,

and δT :

{
aℓ,i,j 7→ aℓ,i+1,j,
ti,j 7→ ti+1,j,
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h i, j ∈ Z; while δu and δU are indu
ed by the maps
δu:





aℓ,i,j 7→ (aℓ,i,j−1)
t−1
i−1,−1···t

−1
0,−1 , i ≥ 0, j ∈ Z,

aℓ,−i,j 7→ (aℓ,−i,j−1)
t−i,−1···t−1,−1 , i ≥ 0, j ∈ Z,

ti,j 7→ (ti,j−1 t
−1
i,−1)

t−1
i−1,−1···t

−1
0,−1 , i ≥ 0, j ∈ Z,

t−i,j 7→ (t−i,j−1 t
−1
−i,−1)

t−i,−1···t−1,−1 , i ≥ 0, j ∈ Z,and
δU :





aℓ,i,j 7→ (aℓ,i,j+1)
t−1
i−1,1···t

−1
0,1 , i ≥ 0, j ∈ Z,

aℓ,−i,j 7→ (aℓ,−i,j+1)
t−i,1···t−1,1 , i ≥ 0, j ∈ Z,

ti,j 7→ (ti,j+1 t
−1
i,1 )

t−1
i−1,1···t

−1
0,1 , i ≥ 0, j ∈ Z,

t−i,j 7→ (t−i,j+1 t
−1
−i,1)

t−i,1···t−1,1 , i ≥ 0, j ∈ Z.We will 
onstru
t an invariant �nite L-presentation for the subgroup H with generators
Z = {a1, . . . , am} ∪ {t1}. De�ne an embedding χ:F (Z) → F (Y) that is indu
ed by themap

χ:

{
aℓ 7→ aℓ,0,0, for ea
h 1 ≤ ℓ ≤ m
t1 7→ t0,1.Write Φ = {δt, δT , δu, δU}. For y ∈ Z and δ ∈ Φ, 
hoose yχδγ ∈ F (Z) with

y−χδ(yχδγ)χ ∈ ker(π). (B.15)De�ne ι:F (Z) → H by ι = χπ where π denotes the free presentation π:F (Y) → H thatis given by H's invariant L-presentation above. For ea
h δ ∈ Φ, de�ne an endomorphism
δ̃:F (Z) → F (Z) that is indu
ed by the map y 7→ yχδγ . Then, for ea
h δ ∈ Φ and y ∈ Z,we obtain

yιδ̂ = yχπδ̂ = yχδπ = (yχδ)π = (yχδγχ)π = (yχδγ)χπ = yδ̃ιand thus δ̃ι = γδ̂. Write X = {a1, . . . , am, t, u} and 
onsider the following subgroupsof the free group F (X ): Let E = 〈a1, . . . , am〉 and S = 〈t, u〉 be �nitely generatedsubgroups of F (X ). Furthermore, let K � F (X ) be the kernel of G's free presentation.Then G ∼= F (X )/K and H ∼= EK/K. Moreover, the normal subgroup EK � F (X ) issupplemented by the �nitely generated free group S; i.e., F (X ) = S EK holds. Thus
G/H ∼= F (X )/EK ∼= S/S ∩ EK. Sin
e G/H is �nitely presented, the free subgroup
S ∩EK is �nitely generated as a normal subgroup. The S
hreier generators Y yield thatthe subgroups

EK = 〈Y〉 and S ∩EK = 〈ti,j | i, j ∈ Z, j 6= 0〉are freely generated. Moreover, we have that
S ∩ EK = 〈ti,j+1t

−1
i,j | i, j ∈ Z〉

= 〈. . . ti,−2t
−1
i,−3, ti,−1t

−1
i,−2, t

−1
i,−1, ti,1, ti,2t

−1
i,1 , ti,3t

−1
i,2 , . . . | i ∈ Z〉.



118 Chapter B. A Note on Invariantly Finitely L-Presented GroupsThe latter subgroup is freely generated as the homomorphism ψ that is indu
ed by themap
ψ:S ∩EK → S ∩ EK,





ti,j 7→ ti,j+1t
−1
i,j , j < −1

ti,−1 7→ t−1
i,−1,

ti,1 7→ ti,1
ti,j 7→ ti,jt

−1
i,j−1, j > 1is an automorphism of S ∩ EK whose inverse is indu
ed by the map

ψ−1:S ∩ EK → S ∩ EK,





ti,j 7→ t−1
i,j t

−1
i,j+1 · · · t

−1
i,−1, j < −1

ti,−1 7→ t−1
i,−1,

ti,1 7→ ti,1
ti,j 7→ ti,jti,j−1 · · · ti,1, j > 1.Note that we have

ti,j+1t
−1
i,j = tiuj+1tu−j−1t−1t−i · (tiujtu−jt−1t−i)−1 = (t0,1)

ujti .In fa
t, every element in S ∩ EK has a unique representation as a word in the basis
{tiuj ·t0,1 ·u

−jt−i | i, j ∈ Z} where t0,1 = utUT is a normal generator of S∩EK = 〈t0,1〉
S .More pre
isely, for i ≥ 0 and j > 0, we have the following representatives in free subgroup

S ∩ EK ≤ F (Y):
ti,j =

(
t
δj−1
U
0,1 · t

δj−2
U
0,1 · · · t0,1

)δiT

t−i,j =

(
t
δj−1
U
0,1 · t

δj−2
U
0,1 · · · t0,1

)δit and ti,−j =
(
t−δ

j
u

0,1 · t−δ
j−1
u

0,1 · · · t−δu0,1

)δiT

t−i,−j =
(
t−δ

j
u

0,1 · t−δ
j−1
u

0,1 · · · t−δu0,1

)δit
.The S
hreier generators aℓ,i,j are 
onjugates of the generators aℓ,0,0 so that

aℓ,i,j = (aℓ,0,0)
δjU δ

i
T

aℓ,−i,j = (aℓ,0,0)
δjU δ

i
t

and aℓ,i,−j = (aℓ,0,0)
δjuδ

i
T

aℓ,−i,−j = (aℓ,0,0)
δjuδ

i
t .In parti
ular, we 
an 
hoose the following basis Ŷ for the free subgroup EK:

Ŷ =
{
(aℓ,0,0)

δjUδ
i
T , . . . (aℓ,0,0)

δjuδ
i
t , (t0,1)

δjU δ
i
T , . . . , (t0,1)

δjuδ
i
t

}
i,j≥0

.De�ne γ:F (Ŷ) → F (Z) to be indu
ed by the map
γ:





(aℓ,0,0)
δjUδ

i
T 7→ (aℓ)

δ̃jU δ̃
i
T ,

(aℓ,0,0)
δjU δ

i
t 7→ (aℓ)

δ̃jU δ̃
i
t ,

(aℓ,0,0)
δjuδ

i
T 7→ (aℓ)

δ̃juδ̃
i
T ,

(aℓ,0,0)
δjuδ

i
t 7→ (aℓ)

δ̃juδ̃
i
t ,

and γ:





(t0,1)
δjU δ

i
T 7→ (t1)

δ̃jU δ̃
i
T

(t0,1)
δjU δ

i
t 7→ (t1)

δ̃jU δ̃
i
t

(t0,1)
δjuδ

i
T 7→ (t1)

δ̃juδ̃
i
T

(t0,1)
δjuδ

i
t 7→ (t1)

δ̃juδ̃
i
t ,



B.5. Finitely generated normal subgroups of �nitely presented groups 119where i, j ≥ 0. Then γ a
ts on the S
hreier generators Y as follows:
γ:





aℓ,i,j 7→ (aℓ)
δ̃j
U
δ̃iT ,

aℓ,−i,j 7→ (aℓ)
δ̃jU δ̃

i
t ,

aℓ,i,−j 7→ (aℓ)
δ̃ju δ̃

i
T ,

aℓ,−i,−j 7→ (aℓ)
δ̃ju δ̃

i
t ,

and γ:





ti,j 7→ (t
δ̃j−1
U
1 · · · t1)

δ̃iT ,

t−i,j 7→ (t
δ̃j−1
U
1 · · · t1)

δ̃it ,

ti,−j 7→ (t−δ̃
j
u

1 · · · t−δ̃u1 )δ̃
i
T ,

t−i,−j 7→ (t−δ̃
j
u

1 · · · t−δ̃u1 )δ̃
i
t ,where i ≥ 0 and j > 0. For i ≥ 0 and j > 0, the element ti,j ∈ Y is mapped by γι to

tγιi,j = (t
δ̃j−1
U
1 · · · t1)

δ̃iT ι = (t
δ̃j−1
U δ̃iT
1 · · · t

δ̃iT
1 )ι = t

ιδ̂j−1
U δ̂iT

1 · · · t
ιδ̂iT
1

= (t
χπδ̂j−1

U δ̂iT
1 · · · t

χπδ̂iT
1 ) = (t

δj−1
U δiT
0,1 · · · t

δiT
0,1)

π = (ti,j)
πbe
ause δ̃ι = ιδ̂ holds. Similarly, we obtain that aγιℓ,i,j = aπℓ,i,j holds. Thus γι = π. De�nethe normal subgroup

N =
〈 ⋃

σ∈Φ̃∗

(
{(y−1yγχ)δγ}y∈Y\Z,δ∈Φ

)σ〉F (Z)
.We prove that F (Z)/N is invariantly �nitely L-presented so that Lemma 5.25 applies.For i ≥ 0 and j > 0, it holds that

(t−1
i,j t

γχ
i,j )

δT γ = t−γi+1,jt
γδ̃T
i,j = (t

δ̃j−1
U
1 · · · t1)

−δ̃i+1
T (t

δ̃j−1
U
1 · · · t1)

δ̃iT δ̃T = 1,

(t−1
−i,jt

γχ
−i,j)

δtγ = t−γ−i−1,jt
γδ̃t
−i,j = (t

δ̃j−1
U
1 · · · t1)

−δ̃i+1
t (t

δ̃j−1
U
1 · · · t1)

δ̃it δ̃t = 1,

(t−1
i,−jt

γχ
i,−j)

δT γ = t−γi+1,−jt
γδ̃T
i,−j = (t−δ̃

j
u

1 · · · t−δ̃u1 )−δ̃
i+1
T (t−δ̃

j
u

1 · · · t−δ̃u1 )δ̃
i
T δ̃T = 1,

(t−1
−i,−jt

γχ
−i,−j)

δtγ = t−γ−i−1,−jt
γδ̃t
−i,−j = (t−δ̃

j
u

1 · · · t−δ̃u1 )−δ̃
i+1
t (t−δ̃

j
u

1 · · · t−δ̃u1 )δ̃
i
t δ̃t = 1.For i = 0, we also have that

(t−1
0,j t

γχ
0,j)

δUγ = (t0,j+1 t
−1
0,1)

−γtγδ̃U0,j = (t
δ̃jU
1 · · · tδ̃U1 · t1 · t

−1
1 )−1(t

δ̃j−1
U
1 · · · t1)

δ̃U = 1,

(t−1
0,−jt

γχ
0,−j)

δuγ = (t0,−j−1 t
−1
0,−1)

−γtγδ̃u0,−j = (t−δ̃
j+1
u

1 · · · t−δ̃u1 · tδ̃u1 )−1(t−δ̃
j
u

1 · · · tδ̃u1 )δ̃u = 1.However, we also need to 
onsider the image tδUi,j = t
δiT δU
0,1 with i > 0. Noti
e that in the�nitely presented monoid S/S ∩ EK the following holds:

TU = UT · tuTU = UT · (utUT )−1 = UT · t−1
0,1,

Tu = uT · tUTu = uT · (utUT )δu = uT · tδu0,1,

tU = U · (utUT ) · t = U · t0,1 · t = Ut · tδt0,1,

tu = u · (UtuT ) · t = u · t0,−1 · t = ut · t−δuδt0,1 .Denote by ∆(x):F (Y) → F (Y), g 7→ x−1gx the inner automorphism of F (Y) that isindu
ed by 
onjugation with x ∈ F (Y). Then δ ∈ Φ = {δu, δU , δt, δT } satisfy
δT δU = δUδT ·∆(t−1

0,1),

δT δu = δuδT ·∆(tδu0,1),
and δtδU = δUδt ·∆(tδt0,1),

δtδu = δuδt ·∆(t−δuδt0,1 ).



120 Chapter B. A Note on Invariantly Finitely L-Presented GroupsWe prove that F (Z)/N is invariantly �nitely L-presented by 〈{a1, . . . , am, t1} | ∅ | Φ̃ | V〉where the iterated relations in V are given by
V =

{
y−1yδ̃tδ̃T , . . . , y−1yδ̃U δ̃u , y−δ̃T δ̃U yδ̃U δ̃T∆(t−1

1 ), . . . , y−δ̃tδ̃uyδ̃uδ̃t∆(t
−δ̃uδ̃t
1 )

}
y∈Zthat is, we prove that M = 〈

⋃
σ̃∈Φ̃ V σ̃〉F (Z) and N 
oin
ide. We �rst note that

N ∋ (t−1
1,1 t

γχ
1,1)

δUγ = t−δUγ1,1 tγδ̃U1,1 = t−δT δUγ0,1 tδ̃T δ̃U1 = t
−δUδT ·∆(t−1

0,1)γ

0,1 tδ̃T δ̃U1

= t
−δUδT γ·∆(t−1

1 )
0,1 tδ̃T δ̃U1 = t

−δ̃U δ̃T ·∆(t−1
1 )

1 tδ̃T δ̃U1 ∈ V.Similar 
omputations show that the elements in V appear a among the normal generatorsof N . Thus M ⊆ N . On the other hand, for i > 0 and j > 0, we have that
tδUγi,j = (t

δj−1
U
0,1 · · · t0,1)

δiT δUγ

= (t
δj−1
U
0,1 · · · t0,1)

δi−1
T δU δT ·∆(t−1

0,1)γ

= . . . = (t
δj−1
U
0,1 · · · t0,1)

δU δ
i
T ·∆(t

−δi−1
T

0,1 )∆(t
−δi−2
T

0,1 )···∆(t−1
0,1)γ

= (t
δj−1
U
0,1 · · · t0,1)

δU δ
i
T γ·∆(t

−δ̃
i−1
T

1 )∆(t
−δ̃
i−2
T

1 )···∆(t−1
1 )

= (t
δjU δ

i
T γ

0,1 · · · t
δU δ

i
T γ

0,1 )∆(t
−δ̃i−1
T

1 )∆(t
−δ̃i−2
T

1 )···∆(t−1
1 )

= (t
δ̃j−1
U
1 · · · t1)

δ̃U δ̃
i
T ·∆(t

−δ̃i−1
T

1 )∆(t
−δ̃i−2
T

1 )···∆(t−1
1 )

= (t
δ̃j−1
U
1 · · · t1)

δ̃U δ̃T∆(t−1
1 )δ̃i−1

T ·∆(t
−δ̃i−2
T

1 )···∆(t−1
1 )

≡ (t
δ̃j−1
U
1 · · · t1)

δ̃T δ̃U δ̃
i−1
T ·∆(t

−δ̃
i−2
T

1 )···∆(t−1
1 ) modM

≡ . . . ≡ (t
δ̃j−1
U
1 · · · t1)

δ̃iT δ̃U modMand (t
δ̃j−1
U
1 · · · t1)

δ̃iT δ̃U = (ti,j)
γδ̃U . Thus (t−1

i,j t
γχ
i,j )

δUγ ∈ M . It follows analogously for theother normal generators of N that these are 
ontained inM . Thus F (Z)/N is invariantly�nitely L-presented and so is our subgroup H. 2By [70, Theorem 6.1℄, every �nite index subgroup H of an invariantly �nitely L-presentedgroup G = 〈X | Q | Φ | R〉 is invariantly �nitely L-presented whenever the substitutions
σ ∈ Φ indu
e endomorphisms of the subgroup H. This allows us to prove Theorem Dusing the results in Theorem 5.27 and Theorem 5.26:Proof of Theorem D. Let G be a �nitely presented group and let H � G be a �nitelygenerated normal subgroup so that G/H is abelian with torsion-free rank at most two.Sin
e G is �nitely generated, G/H is a �nitely generated abelian group and so it de-
omposes into G/H ∼= Z

ℓ × T with torsion subgroup T and torsion-free rank ℓ ≤ 2.Denote by U ≤ G the full preimage of the torsion subgroup T in G. Then G/U ∼= Z
ℓ and
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[U : H] <∞ hold. If ℓ = 0 holds, H has �nite index in G and thus it is invariantly �nitely
L-presented by [70, Theorem 6.1℄. If either ℓ = 1 or ℓ = 2 holds, the subgroup U �G isinvariantly �nitely L-presented by Theorem 5.26 or Theorem 5.27. Ea
h substitution inthe L-presentation of U is indu
ed by 
onjugation within the �nitely presented group G.Sin
e H is a normal subgroup of G ea
h substitution of the �nite L-presentation of Ustabilizes the subgroup H. Thus [70, Theorem 6.1℄ applies to the �nite index subgroup
H � U and it shows that H is invariantly �nitely L-presented. 2In the proof of Theorem 5.27, it is essential that the elements g ∈ S ∩EK have a uniquerepresentation in the basis {tisj · t0,1 · s

−jt−i | i, j ∈ Z}. This allows us to de�ne theepimorphism γ:F (Y) → F (Z) so that it maps 
onjugates by elements of the S
hreiertransversal to images of automorphisms whi
h are indu
ed by 
onjugation with a S
hreiertransversal. Sin
e S/S ∩ EK is �nitely presented, we 
an always 
hoose �nitely manyS
hreier generators W ⊆ Y so that S ∩ EK is generated, as a normal subgroup, by W.In our proof of Theorem 5.27 the 
onjugates of these elements in W by elements of theS
hreier transversal from a basis for the subgroup S ∩EK. This is no longer possible for
G/H ∼= Z× Z× Z:Remark 5.28 Consider the notation from the proof of Theorem 5.27. For G/H ∼=
Z×Z×Z, we 
hoose as S
hreier transversal T = {risjtk | i, j, k ∈ Z} and we obtain theS
hreier generators:

aℓ,i,j,k = γ(risjtk, aℓ) = risjtkaℓt
−ks−jr−i,

si,j,k = γ(risjtk, s) = risj(tkst−ks−1)s−jr−i,

ri,j,k = γ(risjtk, r) = ri(sjtkrt−ks−jr−1)r−i,

ti,j,k = γ(risjtk, t) = 1,where si,j,k = 1 if and only if k = 0 while ri,j,k = 1 if and only if (j, k) = (0, 0). Then
EK = 〈aℓ,i,j,k, si,j,o, ri,p,q | 1 ≤ ℓ ≤ m, i, j, k, o, p, q ∈ Z, o 6= 0, (p, q) 6= (0, 0)〉is freely generated and so is

S ∩ EK = 〈si,j,o, ri,p,q | i, j, o, p, q ∈ Z, o 6= 0, (p, q) 6= (0, 0)〉.Sin
e G/H ∼= S/S ∩EK ∼= Z×Z×Z is �nitely presented, the subgroup S∩EK is �nitelygenerated as a normal subgroup of S. In parti
ular, we have that
S/S ∩ EK = 〈r, s, t | tst−1s−1

︸ ︷︷ ︸
=s0,0,1

, trt−1r−1
︸ ︷︷ ︸
=r0,0,1

, srs−1r−1
︸ ︷︷ ︸

=r0,1,0

〉so that S ∩ EK = 〈s0,0,1, r0,0,1, r0,1,0〉
S holds. The normal generators of S ∩ EK satisfy

risjtk · s0,0,1 · t
−ks−jr−i = si,j,k+1 · s

−1
i,j,k,

risjtk · r0,0,1 · t
−ks−jr−i = ri,j,k+1 · r

−1
i,j,k,

risjtk · r0,1,0 · t
−ks−jr−i = si,j,k · ri,j+1,k · s

−1
i+1,j,k · r

−1
i,j,k.



122 Chapter B. A Note on Invariantly Finitely L-Presented GroupsIt 
an be seen easily (e.g. using Gap) that
U = {si,j,k+1 s

−1
i,j,k, ri,j,k+1 r

−1
i,j,k, si,j,k ri,j+1,k s

−1
i+1,j,k r

−1
i,j,k}i,j,k∈Zis not a basis for S ∩EK. Therefore the ideas in the proof of Theorem 5.27 do not apply.A
knowledgmentsI am grateful to Laurent Bartholdi for valuable 
omments and suggestions.René Hartung, Mathematis
hes Institut, Georg-August Universität zu Göt-tingen, Bunsenstraÿe 3�5, 37073 Göttingen, GermanyEmail: rhartung�uni-math.gwdg.de



AppendixCCoset Enumeration for Certain In�nitelyPresented GroupsAbstra
t. We des
ribe an algorithm that 
omputes the index of a �nitely gen-erated subgroup in a �nitely L-presented group provided that this index is�nite. This algorithm shows that the subgroup membership problem for �niteindex subgroups in a �nitely L-presented group is de
idable. As an appli
ation,we 
onsider the low-index subgroups of some self-similar groups in
luding theGrigor
huk group, the twisted twin of the Grigor
huk group, the Grigor
huksuper-group, and the Hanoi 3-group.Keywords. Coset enumeration; re
ursive presentations; self-similar groups; Gri-gor
huk group; low-index subgroups.
C.1 Introdu
tionMany algorithmi
 problems are unsolvable for �nitely presented groups in general. Forinstan
e, there is no algorithm whi
h allows to de
ide if a group given by a �nite pre-sentation is trivial [95℄. However, the 
oset enumeration pro
ess introdu
ed by Todd& Coxeter [133℄ and investigated by various others, see [76℄ or the histori
al notes inChapter 5.9 of [129℄, 
omputes the index of a �nitely generated subgroup in a �nitelypresented group provided that this index is �nite. Therefore, the Todd-Coxeter methodallows one to prove that a �nitely presented group is trivial.Coset enumeration is one of the most important tools for investigating �nitely pre-sented groups; but, if the subgroup has in�nite index, this pro
ess will not terminate.Even if the subgroup has �nite index, there is no upper bound on the 
omplexity of
oset enumeration. Therefore, even proving a �nitely presented group being trivial is
omputationally a 
hallenging problem [76, 104℄.



124 Chapter C. Coset Enumeration for Certain In�nitely Presented GroupsFor this reason, solving algorithmi
 problems for in�nitely presented groups seemsentirely infeasible. However, an interesting family of re
ursively presented groups wasre
ently shown to be appli
able for 
omputer investigations. Examples of su
h groupsarise as subgroups of the automorphism group of a regular tree. A famous example is theGrigor
huk group G whi
h plays a prominent role in the area of Burnside problems [53℄.The group G is �nitely generated and it admits a re
ursive presentation whose relationsare given re
ursively by the a
tion of a �nitely generated free monoid of endomorphismsa
ting on �nitely many relations [96℄. In�nite presentations of this type are 
alled �nite
L-presentations in honor of Lysënok's latter result for the Grigor
huk group G; seeSe
tion C.2 or [6℄ for a de�nition.Finite L-presentations are `natural' generalizations of �nite presentations and, asthe 
on
ept is quite general, they found their appli
ation in various aspe
ts of grouptheory; see, for instan
e, [18, 85℄. A �nite L-presentation of a group allows to 
omputeits lower 
entral series quotients [9℄ and the Dwyer quotients of its S
hur multiplier [66℄.The Dwyer quotients often exhibit periodi
ities whi
h yield detailed information on thestru
ture of the S
hur multiplier in general.In this paper, we des
ribe a 
oset enumeration pro
ess for 
omputing the index of a�nitely generated subgroup in a �nitely L-presented group provided that this index is�nite. In order to a
hieve this method, we show in Se
tion C.3 that �nitely many rela-tions are su�
ient to 
ompute an upper bound on the index using 
oset enumeration for�nitely presented groups. It then remains to either prove that this upper bound is sharpor to improve the bound otherwise. In Se
tion C.4, we show that the latter problem isalgorithmi
ally de
idable in general. In parti
ular, we show that there exists an algo-rithm whi
h de
ides whether or not a map from the free group over the L-presentationsgenerators into a �nite group indu
es a homomorphism from the L-presented group.Similar to 
oset enumeration for �nitely presented groups, our method for �nitely
L-presented groups allows straightforward appli
ations in
luding a membership test for�nite index subgroups. In parti
ular, our method allows us to 
ompute the number ofsubgroups with small index for some self-similar groups in Se
tion C.5. Our expli
it
omputations 
orre
t the 
ounts obtained in [11,12℄, and hen
e we provide a further steptowards Problem 6.1 raised in [58℄.We have implemented our 
oset enumeration method and its appli
ations in the
omputer algebra system Gap [50℄. Computer experiments with this implementationdemonstrate that our method works reasonably well in pra
ti
e.In a forth
oming paper, we prove a variant of the Reidemeister-S
hreier theorem for�nitely L-presented groups whi
h shows that ea
h �nite index subgroup of a �nitely
L-presented group is �nitely L-presented itself.C.2 PreliminariesWe brie�y re
all the notion of a �nite L-presentation as introdu
ed in [6℄. For thispurpose, let F be a �nitely generated free group over the alphabet X . Furthermore, let
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Q,R ⊂ F and Φ ⊂ End(F ) be �nite subsets. Then the quadruple 〈X | Q | Φ | R〉 is a�nite L-presentation. It de�nes the �nitely L-presented group

G =
〈
X

∣∣∣ Q ∪
⋃

σ∈Φ∗

Rσ
〉
, (C.1)where Φ∗ denotes the free monoid of endomorphisms generated by Φ; that is, the 
losureof {id}∪Φ under 
omposition of endomorphisms. We will also write G = 〈X | Q | Φ | R〉for the �nitely L-presented group in Eq. (C.1).Clearly, every �nitely presented group 〈X | R〉 is �nitely L-presented by 〈X | ∅ |

∅ | R〉. Therefore, �nite L-presentations generalize the 
on
ept of �nite presentations.Other examples of �nitely L-presented groups are various self-similar groups or bran
hgroups [6℄. For instan
e, the Grigor
huk group satis�es the followingTheorem 2.1 (Lysënok, 1985) The Grigor
huk group G is �nitely L-presented by
〈{a, b, c, d} | {a2, b2, c2, d2, bcd} | {σ} | {(ad)4, (adacac)4}〉,where σ is the endomorphism of the free group over the alphabet {a, b, c, d} indu
ed bythe mapping a 7→ aca, b 7→ d, c 7→ b, and d 7→ c.Proof. For a proof, we refer to [96℄. 2Finite L-presentations are re
ursive presentations whi
h are `natural' generalizations of�nite presentations. They were used by various authors to 
onstru
t groups with inter-esting properties; see, for instan
e, [18, 85℄. Furthermore, every free group in a varietyof groups that satis�es �nitely many identities is �nitely L-presented [6℄; e.g., the freeBurnside group B(n,m) of exponent m on n generators is �nitely L-presented by

〈{a1, . . . , an} ∪ {t} | {t} | Σ | {tm}〉,where the endomorphisms Σ = {σx | x ∈ {a±1
1 , . . . , a±1

n }} are indu
ed by the mappings
σx:

{
ai 7→ ai, for ea
h 1 ≤ i ≤ n
t 7→ tx,for ea
h x ∈ {a±1

1 , . . . , a±1
n }.C.3 Coset Enumeration for Finitely L-Presented GroupsLet G = 〈X | Q | Φ | R〉 be a �nitely L-presented group and let U ≤ G be a �nitely gen-erated subgroup with �nite index in G. In this se
tion, we show that 
oset enumerationfor �nitely presented groups yields an upper bound on the index [G : U ]. In Se
tion C.4,it then remains to prove (or disprove) that this upper bound is sharp.



126 Chapter C. Coset Enumeration for Certain In�nitely Presented GroupsLet {g1, . . . , gn} be a generating set for the subgroup U . We assume that the gener-ators of U are given as words over the alphabet X ∪ X−. Denote the free group over Xby F and let K be the normal subgroup
K =

〈
Q∪

⋃

σ∈Φ∗

Rσ
〉Fso that G ∼= F/K holds. Then the subgroup E = 〈g1, . . . , gn〉 ≤ F satis�es that U ∼=

EK/K. Hen
e, we are to 
ompute the index [G : U ] = [F : EK].For an element σ ∈ Φ∗, we denote by ‖σ‖ the usual word-length in the generating set
Φ of the free monoid Φ∗. De�ne Φ(i) = {σ ∈ Φ∗ | ‖σ‖ ≤ i}, for ea
h i ∈ N0. Then, as Q,
Φ, and R are �nite sets, the normal subgroup

Ki =
〈
Q∪

⋃

σ∈Φ(i)

Rσ
〉Fis �nitely generated as normal subgroup. We obtain K =

⋃
i≥0Ki and also EK =⋃

i≥0EKi. Consider the as
ending 
hain of subgroups
EK0 ≤ EK1 ≤ . . . ≤ EKℓ ≤ EKℓ+1 ≤ . . . ≤ EK ≤ F.Then the following lemma is straightforward.Lemma 3.2 The subgroup EK has �nite index in F if and only if there exists ℓ ∈ N su
hthat EKℓ has �nite index in F . In that 
ase, there exists ℓ′ ∈ N su
h that EKℓ′ = EK.Proof. Obviously, if [F : EKℓ] is �nite for some ℓ ∈ N, then the subgroup EK has �niteindex in F . On the other hand, if [F : EK] is �nite, then, as F is �nitely generated, thesubgroup EK is �nitely generated. Let {u1, . . . , un} be a generating set of EK. Sin
e

EK =
⋃
i≥0EKi holds, there exists a positive integer ℓ ∈ N su
h that {u1, . . . , un} ⊆ EKℓand thus EKℓ = EK. 2Note that the index [F : EKℓ] is the index of the subgroup U in the �nitely presented
overing group

Gℓ = 〈X | {q, rσ | q ∈ Q, r ∈ R, σ ∈ Φ(ℓ)}〉. (C.2)By Lemma 3.2, there exists a positive integer ℓ ∈ N so that the subgroup U has �niteindex in Gℓ. In this 
ase, 
oset enumeration for �nitely presented groups 
omputes theindex [Gℓ : U ]. Although we do not know this integer ℓ a priori, we 
an use the following�rsthand approa
h to �nd su
h an integer: Starting with ℓ = 1, we attempt to prove�niteness of [Gℓ : U ] using 
oset enumeration for �nitely presented groups. If this attemptdoes not su

eed within a previously de�ned time limit, we in
rease the integer ℓ andthe time limit. We 
ontinue this pro
ess until eventually the index [Gℓ : U ] is proved tobe �nite. In theory, Lemma 3.2 guarantees that this pro
ess will terminate. Computerexperiments with the implementation of our method in Gap show that this �rsthandapproa
h works reasonably well in pra
ti
e. In parti
ular, our implementation allows to
ompute the index of all subgroups 
onsidered in [7, 11, 58℄ and Chapter VIII of [38℄.



C.4. De
iding Validity of a Permutation Representation 127Suppose that the integer ℓ ∈ N is 
hosen so that n = [Gℓ : U ] is �nite and thatthe 
oset enumeration for �nitely presented groups has terminated and has 
omputeda permutation representation ϕℓ:F → Sn for the group's a
tion on the right 
osets
EKℓ\F . Then the index [G : U ] = [F : EK] divides the index [Gℓ : U ] = [F : EKℓ], andhen
e [Gℓ : U ] is an upper bound on [G : U ]. It therefore remains to either prove that
[F : EK] = [F : EKℓ] holds, or to in
rease the integer ℓ otherwise. The permutationrepresentation ϕℓ:F → Sn is 
alled valid, if [F : EK] = [F : EKℓ] holds.Clearly, a permutation representation ϕℓ:F → Sn is valid if and only if every relation
r ∈ F of the group presentation is 
ontained in the kernel of ϕℓ. Therefore, if the group
G = F/K were �nitely presented, only �nitely many relations need to be 
onsidered toprove validity of ϕℓ. However, for �nitely L-presented groups, even 
he
king validity of apermutation representation ϕℓ involves possibly in�nitely many relations. In Se
tion C.4,we prove that the latter problem is de
idable in general.C.4 De
iding Validity of a Permutation RepresentationIn this se
tion, we des
ribe our algorithm for de
iding whether or not a permutationrepresentation ϕ:F → Sn, as 
onsidered in Se
tion C.3, is valid. This is equivalent to
he
king whether a 
oset-table for U in Gℓ obtained by the methods of Se
tion C.3 de�nesthe given subgroup U ≤ G.Let ϕ:F → Sn be a permutation representation as in Se
tion C.3 and let Φ∗ be thefree monoid generated by a �nite set Φ ⊆ End(F ). For two endomorphisms σ ∈ Φ∗ and
δ ∈ Φ∗, we say that δ redu
es to σ with respe
t to ϕ if there exists a homomorphism
π: im (σϕ) → im (δϕ) su
h that σϕπ = δϕ. In this 
ase, we will write δ ;ϕ σ. Note that
; is a re�exive and transitive relation on the endomorphisms Φ∗. The following lemmagives an equivalent de�nition for δ ;ϕ σ.Lemma 4.3 Let δ, σ ∈ End(F ) be given. Then δ redu
es to σ with respe
t to ϕ if andonly if ker(σϕ) ≤ ker(δϕ) holds.Proof. Assume that δ ;ϕ σ holds. Then, by de�nition, there exists a homomorphism
π: im (σϕ) → im (δϕ) su
h that σϕπ = δϕ. Let g ∈ ker(σϕ). Then we have that gδϕ =
gσϕπ = (gσϕ)π = 1 and hen
e, we obtain g ∈ ker(δϕ). Suppose that ker(σϕ) ≤ ker(δϕ)holds. Then we have the isomorphisms F/ ker(σϕ) → im (σϕ), g ker(σϕ) 7→ gσϕ and
F/ ker(δϕ) → im (δϕ), g ker(δϕ) 7→ gδϕ. We further have the natural homomorphism
F/ ker(σϕ) → F/ ker(δϕ), g ker(σϕ) 7→ g ker(δϕ). This yields the existen
e of a homo-morphism π: im (σϕ) → im (δϕ) su
h that gσϕπ = gδϕ. 2A �nite generating set for the kernel ker(σϕ) is given by the S
hreier theorem [95, Propo-sition 3.7℄ and hen
e, it is straightforward to 
he
k whether or not δ ;ϕ σ holds. Thede�nition δ ;ϕ σ also yields the following immediate 
onsequen
e.Lemma 4.4 There is no in�nite set of endomorphisms of F su
h that for ea
h pair (σ, δ)from this set, neither σ ;ϕ δ nor δ ;ϕ σ hold.



128 Chapter C. Coset Enumeration for Certain In�nitely Presented GroupsProof. Obviously, for every endomorphism σ ∈ End(F ), it holds that σ ;ϕ σ. Bythe universal property of the free group F , a homomorphism σϕ:F → Sn is uniquelyde�ned by the images xσϕ1 , . . . , xσϕn of the elements x1, . . . , xn of a basis of F . Sin
e
im (ϕ) is a �nite group, there are only �nitely many homomorphisms F → im (ϕ) andtherefore Hom(F, im (ϕ)) is �nite. Hen
e, an in�nite set of endomorphisms will 
ontainendomorphisms σ and δ with xσϕi = xδϕi , for ea
h 1 ≤ i ≤ n. In this 
ase, σ ;ϕ δobviously holds. 2An element σ ∈ Φ∗ is 
alled a Φ-des
endant of δ ∈ Φ∗ if there exists ψ ∈ Φ su
h that
σ = ψδ. Thereby, the free monoid Φ∗ obtains the stru
ture of a |Φ|-regular rooted treewith its root being the identity map id:F → F . We 
an further endow the monoid Φ∗with a length-plus-(from the right)-lexi
ographi
 ordering ≺ by 
hoosing an arbitraryordering on the �nite set Φ. More pre
isely, we de�ne σ ≺ δ if ‖σ‖ < ‖δ‖ or, otherwise,if σ = σ1 · · · σn and δ = δ1 · · · δn, with σi, δi ∈ Φ, and there exists a positive integer
1 ≤ k ≤ n su
h that σi = δi, for k < i ≤ n, and σk ≺ δk. Sin
e Φ is �nite, the obtainedordering ≺ is a well-ordering on the monoid Φ∗, see [129℄, and therefore there is no in�nite
≺-des
ending series of endomorphisms in Φ∗.Our algorithm that de
ides validity of a permutation representation ϕ:F → Sn isdisplayed in Algorithm C.1 below. We need to prove the followingIsValidPermRep(X , Q, Φ, R, U , ϕ)Choose an ordering on Φ = {φ1, . . . , φn} with φi ≺ φi+1.Initialize V := {id:F → F} and S := {φ1, . . . , φn}.while S 6= ∅ doRemove the �rst entry δ from S.if (∃ r ∈ R: rδ 6∈ kerϕ

) then return( false )if not (∃σ ∈ V : δ ;ϕ σ) thenAppend φ1δ, . . . , φnδ to S.Add δ to V .return( true )Algorithm C.1: De
iding validity of a permutation representationTheorem 4.5 The algorithm IsValidPermRep returns true if and only if the permu-tation representation ϕ:F → Sn is valid.Proof. The ordering ≺ on Φ 
an be extended to an ordering on Φ∗ as des
ribed above.By 
onstru
tion, the sta
k S is ordered with respe
t to ≺. Sin
e F is �nitely generated,the set of homomorphisms Hom(F,Sn) is �nite. Thus, in parti
ular, the set {δϕ | δ ∈
V } ⊆ Hom(F,Sn) is �nite and therefore the algorithm IsValidPermRep 
an add only�nitely many endomorphisms to the set V . Thus, for every Φ-des
endant δ in the sta
k
S, there will eventually exist an element σ ∈ V su
h that δ ;ϕ σ. Therefore, thealgorithm IsValidPermRep is guaranteed to terminate and it returns either true or



C.4. De
iding Validity of a Permutation Representation 129false. Clearly, if the algorithm returned false, then it found a relation rδ whi
h yieldsa 
oin
iden
e, and hen
e the permutation representation ϕ:F → Sn is not valid.Suppose that the algorithm returned true. By the 
onstru
tions of Se
tion C.3, the�xed relations in Q of the L-presentation 〈X | Q | Φ | R〉 are already 
ontained in thekernel of the permutation representation ϕ. Therefore, it su�
es to prove that everyrelation of the form rσ1 , with r ∈ R and σ1 ∈ Φ∗, is 
ontained in the kernel of ϕ.By 
onstru
tion, there exists δ ∈ V maximal subje
t to the existen
e of w ∈ Φ∗ su
hthat σ1 = wδ. If ‖w‖ = 0, then σ1 = δ is 
ontained in V and therefore rδ ∈ kerϕ,as the algorithm did not return false. Otherwise, there exist ψ ∈ Φ and v ∈ Φ∗su
h that wδ = vψδ. Sin
e ψδ 6∈ V , there exists an element ε ∈ V with ε ≺ ψδ, by
onstru
tion, su
h that ψδ redu
es to ε with respe
t to ϕ. Thus, by de�nition, thereexists a homomorphism π: im (εϕ) → im (ψδϕ) su
h that ψδϕ = εϕπ. In parti
ular, weobtain that rσ1ϕ = rwδϕ = rvψδϕ = rvεϕπ. As π is a homomorphism, it su�
es to provethat rvε ∈ kerϕ. Note that, sin
e ε ≺ ψδ, we have that vε ≺ vψδ = σ1. Continuing thisrewriting pro
ess with the element σ2 = vε yields a des
ending sequen
e σ1 ≻ σ2 ≻ . . .in the monoid Φ∗. As the ordering ≺ is a well-ordering, this pro
ess terminates with anelement σn ∈ V . Sin
e the algorithm did not return false, we have that rσn ∈ kerϕwhi
h proves the assertion. 2Note that, if the algorithm IsValidPermRep found a 
oin
iden
e, this 
an be used toupdate the 
oset-table, and thus another appli
ation of 
oset enumeration for �nitelypresented groups 
an be avoided. Moreover, the Algorithm C.1 yields the followingTheorem 4.6 Let G be �nitely L-presented by 〈X | Q | Φ | R〉 and denote the free groupover X by F . There exists an algorithm whi
h de
ides whether or not a homomorphism
ϕ:F → Sn indu
es a homomorphism G→ Sn.If Φ∗ = {σ}∗ is generated by a single element σ ∈ End(F ), then there will exist positiveintegers 0 ≤ i < j su
h that σj ;ϕ σ

i. In this 
ase, the algorithm IsValidPermRepsimpli�es to the followingCorollary 4.7 Let 0 ≤ i < j be positive integers su
h that σj ;ϕ σi. Then we have
[F : EKℓ] = [F : EK] if and only if

{q, rσ
k

| q ∈ Q, r ∈ R, 0 ≤ k < j} ⊆ kerϕ. (C.3)We 
onsider the followingExample 4.8 Let G denote the Basili
a Group [60℄. Then G is �nitely L-presented by
〈{a, b} | ∅ | {σ} | {[a, ab]}〉, where σ is indu
ed by the mapping a 7→ b2 and b 7→ a;see [16℄. We 
onsider the subgroup U = 〈a3, b, aba〉. A 
oset enumeration for �nitelypresented groups yields that the subgroup U has index 3 in the �nitely presented 
overinggroup

G0 = 〈{a, b} | {[a, ab]}〉.Furthermore, we obtain the permutation representation ϕ:F → S3 for the group's a
tionon the 
osets EK0\F . This permutation representation is indu
ed by the mapping
a 7→ (1, 2, 3) and b 7→ (2, 3).



130 Chapter C. Coset Enumeration for Certain In�nitely Presented GroupsWe now obtain the images
aσϕ = ( ), bσϕ = (1, 2, 3),

aσ
2ϕ = (1, 3, 2), bσ

2ϕ = ( ),

aσ
3ϕ = ( ), bσ

3ϕ = (1, 3, 2).Clearly, the mapping aσϕ 7→ aσ
3ϕ and bσϕ 7→ bσ

3ϕ indu
es a homomorphism π: im (σϕ) →
im (σ3ϕ), and hen
e we have σ3 ;ϕ σ. By Corollary 4.7, it therefore su�
es to provethat

([a, ab])ϕ = ( ), ([a, ab])σϕ = ( ), and ([a, ab])σ
2ϕ = ( )hold. This yields that [G : U ] = 3.C.5 Further Appli
ationsThe permutation representation ϕ:F → Sn for a �nite index subgroup EK/K ≤ F/Kyields various algorithmi
 appli
ations. For instan
e, an element w ∈ F is 
ontained inthe given subgroup EK if and only if it stabilizes the trivial 
oset EK 1. This 
an beeasily be 
he
ked using the permutation representation ϕ. In parti
ular, we obtainTheorem 5.9 The subgroup membership problem for �nite index subgroups in a �nitely

L-presented group is de
idable.Moreover, having 
omputed permutation representations ϕ1 and ϕ2 for two �nite indexsubgroups U and V of a �nitely L-presented group, one 
an 
ompute a generating setfor the interse
tion U ∩ V . Thus, in parti
ular, our method allows one to 
ompute the
ore of a �nite index subgroup. For example, the 
ore of the subgroup U in Example 4.8is given by
H = 〈b2, a3, a2ba−1b−1, abab−1, ab2a−1, ba2b−1a−1, baba−2〉.Sin
eH has �nite index inG, our method allows to 
ompute a permutation representationfor the 
ore H and we obtain G/H ∼= S3.Low-Index Subgroups of Finitely L-Presented GroupsThe 
oset enumeration pro
ess for �nitely presented groups was used in [40℄ to des
ribe alow-index subgroup algorithm that 
omputes all subgroups of a �nitely presented groupup to a given index. This algorithm also yields a method for 
omputing all subgroupswith small index in a �nitely L-presented group. In this se
tion, we will des
ribe thismethod for �nitely L-presented groups and we use this algorithm to investigate some self-similar groups. In parti
ular, our implementation in the 
omputer algebra system Gapallows us to determine the number of subgroups with index at most 64 in the Grigor
hukgroup.Let G = F/K be a �nitely L-presented group and let n be a positive integer. Usingthe low-index subgroup algorithm for �nitely presented groups [40℄, see also Chapter 5.6



C.5. Further Appli
ations 131of [129℄, we obtain the list of subgroups with index at most n in the �nitely presented
overing group Gℓ = F/Kℓ. Sin
e the 
overing group Gℓ naturally maps onto G, everysubgroup EKℓ/Kℓ with index n in Gℓ maps to a subgroup of the �nitely L-presentedgroup G. The index of this image EK/K in G divides the index n = [F : EKℓ]. Onthe other hand, every subgroup EK/K with index n in the �nitely L-presented group
F/K has a full preimage EK/Kℓ in the �nitely presented group Gℓ with index n. Thusthe list of subgroups with index at most n in a �nitely L-presented group G 
an beobtained from the list of subgroups of a �nitely presented 
overing group Gℓ by removingdupli
ate images. Our solution to the subgroup membership problem 
an be used toremove dupli
ate images in G.As an appli
ation, we 
onsider some interesting self-similar groups and we determinethe number of subgroups with small index. We �rst 
onsider the Grigor
huk group G:its latti
e of normal subgroups is well-understood [7℄ while its latti
e of subgroups with�nite index is widely unknown [58℄. It is well known [58℄ that the Grigor
huk group hasseven subgroups of index two. In [116℄, it was shown that the subgroups of index twoare the only maximal subgroups of G. Our low-index subgroup algorithm allows us todetermine the number of subgroups with index at most 64 in the group G and thereby,it 
orre
ts the 
ounts in Se
tion 7.4 of [12℄ and in Se
tion 4.1 of [11℄. The followinglist summarizes the number of subgroups (≤) and the number of normal subgroups (�)among them:

index 1 2 4 8 16 32 64

≤ 1 7 31 183 1827 22931 378403
� 1 7 7 7 5 3 3The Grigor
huk super-group G̃ was introdu
ed in [11℄. It 
ontains the Grigor
huk groupas an in�nite index subgroup. Little is known about its subgroup latti
e. The twistedtwin Ḡ of the Grigor
huk group was introdu
ed in [14℄. Similarly, little is known aboutthe subgroup latti
e of the twisted twin Ḡ. Our low-index subgroup algorithm allowsus to determine the number of subgroups with index at most 16 in both groups. Theirsubgroup 
ounts are:

G̃ Ḡindex
≤ � ≤ �

1 1 1 1 1
2 15 15 15 15
4 147 35 147 35
8 2163 43 1963 43
16 52403 55 46723 47As both groups are 2-groups, the only maximal subgroups with �nite index are thesubgroups with index two; though the question of determining all maximal subgroups of

G̃ and Ḡ has not been addressed in this paper.Finally, we 
onsider the Basili
a group and the Hanoi-3 group [59℄ with its L-presentation from [15℄. The following list also in
ludes the number of maximal subgroups
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Hanoi−3 Basilicaindex
≤ � max ≤ � max

1 1 1 1 1 1 1
2 7 7 7 3 3 3
3 12 0 12 7 4 7
4 59 7 4 19 7 0
5 15 0 15 11 6 11
6 136 4 0 39 13 0
7 21 0 21 15 8 15
8 335 13 0 163 19 0
9 225 0 0 115 13 9
10 153 3 0 83 19 0
11 33 0 33 23 12 23
12 2872 12 0 355 31 0
13 39 0 39 27 14 27
14 297 3 0 115 25 0
15 450 0 0 77 24 0
16 1855 13 0 1843 47 0
17 51 0 51 35 18 35
18 5001 3 0 1047 44 0
19 57 0 57 39 20 39
20 1189 9 0 939 45 0
21 756 0 0 105 32 0
22 531 3 0 223 37 0
23 69 0 69 47 24 47
24 52220 23 0 4723 87 0
25 225 0 75 411 31 25
26 783 3 0 315 43 0
27 5616 0 27 736 49 0
28 2301 9 0
29 87 0 87
30 15462 3 0
31 93 0 93
32 9119 25 0The largest abelian quotient H/H ′ of the Hanoi-3 group H is 2-elementary abelian ofrank 3. Thus, by the Feit-Thompson theorem [47℄, there are no normal subgroups withodd index in the Hanoi-3 group.A
knowledgmentsI am grateful to Laurent Bartholdi for valuable 
omments and suggestions.
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AppendixDA Reidemeister-S
hreier Theorem forFinitely L-Presented GroupsAbstra
t. We prove a variant of the well-known Reidemeister-S
hreier Theoremfor �nitely L-presented groups. More pre
isely, we prove that ea
h �nite indexsubgroup of a �nitely L-presented group is itself �nitely L-presented. Ourproof is 
onstru
tive and it yields a �nite L-presentation for the subgroup. Wefurther study 
onditions on a �nite index subgroup of an invariantly �nitely
L-presented group to be invariantly L-presented itself.Keywords. Reidemeister-S
hreier Theorem; in�nite presentations; re
ursivepresentations; self-similar groups; Basili
a group; Grigor
huk group; �nite in-dex subgroups;Mathemati
s Subje
t Classi�
ation 2010: 20F05, 20E07, 20-04D.1 Introdu
tionGroup presentations play an important role in 
omputational group theory. In parti
ular�nite presentations have been subje
t to extensive resear
h in 
omputational group the-ory dating ba
k to the early days of 
omputer-algebra-systems [32, 88, 102, 129℄. Grouppresentations, on the one hand, provide an e�e
tive des
ription of the group. On theother hand, a des
ription of a group by its generators and relations leads to variousde
ision problems whi
h are known to be unsolvable in general [95℄. For instan
e, theword problem of a �nitely presented group is unsolvable [27,113℄. However, various totaland partial algorithms for �nitely presented groups are known [129℄. For instan
e, the
oset-enumeration pro
ess introdu
ed by Todd and Coxeter [133℄ enumerates the 
osetsof a subgroup in a �nitely presented group. If the subgroup has �nite index, 
oset-enumeration terminates and it 
omputes a permutation representation for the group'sa
tion on the 
osets. Coset-enumeration is a partial algorithm as the pro
ess will not



136 Chapter D. A Reidemeister-S
hreier Theorem for Finitely L-Presented Groupsterminate if the subgroup has in�nite index. However, �nite presentations often allowtotal algorithms that 
ompute fa
tor groups of spe
ial type (in
luding abelian quotients,nilpotent quotients [107℄ and, in general, solvable quotients [93℄).Beside quotient and subgroup methods, the well-known theorem by Reidemeister [119℄and S
hreier [124℄ allows one to 
ompute a presentation for a subgroup. The Reide-meister-S
hreier Theorem expli
itly shows that a �nite index subgroup of a �nitely pre-sented group is itself �nitely presented. A similar result 
an be shown for �nite indexideals in �nitely presented semi-groups [31℄. In pra
ti
e, a permutation representationfor the group's a
tion on the 
osets allows one to 
ompute the S
hreier generators of thesubgroup and the Reidemeister rewriting. The Reidemeister rewriting 
an be used torewrite the relations of the group to relations of the subgroup [72, 95, 129℄. A methodfor 
omputing a �nite presentation for a �nite index subgroup 
an be applied in theinvestigation of the stru
ture of a group by its �nite index subgroups [77℄.Even though �nitely presented groups have been studied for a long time, most groupsare not �nitely presented be
ause there are un
ountably many two-generator groups [103℄but only 
ountably many �nite presentations [6℄. A generalization of �nite presentationsare �nite L-presentations whi
h were introdu
ed in [6℄; however, there are still only
ountably many �nite L-presentations. It is known that various examples of self-similaror bran
h groups (in
luding the Grigor
huk group [53℄ and its twisted twin [14℄) are�nitely L-presented but not �nitely presented [6℄. Finite L-presentations are possiblyin�nite presentations with �nitely many generators whose relations (up to �nitely manyex
eptions) are obtained by iteratively applying �nitely many substitutions to a �niteset of relations; see [6℄ or Se
tion D.2 for a de�nition. A �nite L-presentation is invariantif the substitutions whi
h generate the relations indu
e endomorphisms of the group.In fa
t, invariant �nite L-presentations are �nite presentations in the universe of groupswith operators [87,111℄ in the sense that the operator domain of the group generates thepossibly in�nitely many relations out of a �nite set of relations.Finite L-presentations allow 
omputer algorithms to be applied in the investigationof the groups they de�ne. For instan
e, they allow to 
ompute the lower 
entral seriesquotients [9℄, the Dwyer quotients of the group's S
hur multiplier [66℄, and even a 
oset-enumeration pro
ess exists for �nitely L-presented groups [67℄. It is the aim of this paperto prove the following variant of the well-known Reidemeister-S
hreier Theorem:Theorem 1.1 Ea
h �nite index subgroup of a �nitely L-presented group is �nitely L-presented.If the �nite index subgroup in Theorem 1.1 is normal and invariant under the substitu-tions (i.e., a normal and admissible subgroup in the notion of Krull & Noether [87,111℄),an easy argument gives a �nite L-presentation for the subgroup; furthermore, if the groupis invariantly �nitely L-presented, so is the subgroup. However, more work is needed ifthe subgroup is not invariant under the substitutions. Under either of two extra 
on-ditions (the subgroup is leaf-invariant, see De�nition 5.20; or it is normal and weaklyleaf-invariant, see De�nition 7.36), we show that the subgroup is invariantly �nitely L-presented as soon as the group is. We have not been able to get rid of these extra



D.2. Preliminaries 137assumptions. In parti
ular, it is not 
lear whether a �nite index subgroup of an in-variantly �nitely L-presented group is always invariantly �nitely L-presented. We showthat the methods presented in this paper will (in general) fail to 
ompute invariant L-presentations for the subgroup even if the group is invariantly L-presented. However, weare not aware of a method to prove that a given subgroup does not admit an invariant�nite L-presentation at all.Our proof of Theorem 1.1 is 
onstru
tive and it yields a �nite L-presentation forthe subgroup. These �nite L-presentations 
an be applied in the investigation of theunderlying groups as the methods in [77℄ suggest for �nitely presented groups. Noti
ethat Theorem 1.1 was already posed in Proposition 2.9 of [6℄. The proof we explain inthis paper follows the sket
h given in [6℄, but �xes a gap as the L-presentation of thegroup in Theorem 1.1 is possibly non-invariant. Even if the L-presentation is assumedto be invariant, the 
onsidered subgroup 
annot be assumed to be invariant under thesubstitutions.This paper is organized as follows: In Se
tion D.2, we re
all the notion of a �-nite L-presentation and we re
all basi
 group theoreti
 
onstru
tions whi
h preserve theproperty of being (invariantly) �nitely L-presented. Then, in Se
tion D.3, we re
all thewell-known Reidemeister-S
hreier pro
ess. Before we prove Theorem 1.1 in Se
tion D.6,we 
onstru
t, in Se
tion D.4, a 
ounter-example to the original proof of Theorem 1.1in [6℄. Then, in Se
tion D.5, we introdu
e the stabilizing subgroups whi
h are the maintools in our proof of Theorem 1.1. In Se
tion D.7, we study 
onditions on the �niteindex subgroup of an invariantly L-presented group to be invariantly L-presented it-self. We 
on
lude this paper by 
onsidering two examples of subgroup L-presentationsin Se
tion D.8 in
luding the normal 
losure of a generator d of the Grigor
huk group Gas in [11, 58℄. We �x a mistake in the generating set of the normal 
losure D = 〈d〉Gusing our Reidemeister-S
hreier Theorem for �nitely L-presented groups. In parti
ularwe show, in the style of [77℄, how these 
omputational methods 
an be applied in theinvestigation of self-similar groups.D.2 PreliminariesIn the following, we brie�y re
all the notion of a �nite L-presentation and the notion a�nitely L-presented group as introdu
ed in [6℄. Moreover, we re
all some basi
 
onstru
-tions for �nite L-presentations.A �nite L-presentation is a group presentation of the form
〈
X

∣∣∣Q∪
⋃

σ∈Φ∗

Rσ
〉
, (D.1)where X is a �nite alphabet, Q and R are �nite subsets of the free group F over X ,and Φ∗ ⊆ End(F ) denotes the free monoid of endomorphisms whi
h is �nitely generatedby Φ. We also write 〈X | Q | Φ | R〉 for the �nite L-presentation in Eq. (D.1) and

G = 〈X | Q | Φ | R〉 for the group it de�nes.



138 Chapter D. A Reidemeister-S
hreier Theorem for Finitely L-Presented GroupsA group whi
h admits a �nite L-presentation is �nitely L-presented. An L-presen-tation of the form 〈X | ∅ | Φ | R〉 is as
ending and an L-presentation 〈X | Q | Φ | R〉is invariant (and the group it presents is invariantly L-presented), if ea
h endomor-phism ϕ ∈ Φ indu
es an endomorphism of the group; that is, if the normal subgroup
〈Q ∪

⋃
σ∈Φ∗ Rσ〉F ≤ F is ϕ-invariant. Ea
h as
ending L-presentation is invariant andea
h invariant L-presentation 〈X | Q | Φ | R〉 admits an as
ending L-presentation

〈X | ∅ | Φ | Q ∪ R〉 whi
h de�nes the same group. On the other hand, we have the fol-lowingProposition 2.2 There are �nite L-presentations that are not invariant.Proof. The group B = 〈{a, b, t} | {at a−4, bt
−1
b−2, [a, bt

i
] | i ∈ Z}〉 is a met-abelian,in�nitely related group with trivial S
hur multiplier [18℄. By introdu
ing a stable letter

u, this group admits the �nite L-presentation
〈
{a, b, t, u}

∣∣∣ {ub−1}
∣∣∣ {σ, δ}

∣∣∣ {ata−4, bt
−1
b−2, [a, u]}

〉
,where σ is the free group homomorphism indu
ed by the map σ: a 7→ a, b 7→ b, t 7→ t, and

u 7→ ut, while δ is the free group homomorphism indu
ed by the map δ: a 7→ a, b 7→ b,
t 7→ t, and u 7→ ut

−1 . This �nite L-presentation is not invariant [64℄. 2Another non-invariant L-presentation 
an be given for the free produ
t Z2∗Z2 = 〈{a, b} |
{a2, b2}〉: it is �nitely L-presented by 〈{a, b} | {a2} | {σ} | {b2}〉 where σ is indu
ed bythe map a 7→ ab and b 7→ b2. If this latter L-presentation were invariant, the as
ending�nite L-presentation 〈{a, b} | ∅ | {σ} | {a2, b2}〉 would also de�ne Z2 ∗ Z2. In this
ase (a2)σ = abab is a relation and, sin
e a2 = b2 = 1 in the group, the generators
a and b 
ommute. Thus the latter as
ending �nite L-presentation de�nes a quotientof the 2-elementary abelian group Z2 × Z2. In parti
ular, it de�nes a �nite group.Hen
e, 〈{a, b} | ∅ | {σ} | {a2, b2}〉 is not a �nite L-presentation for Z2 ∗ Z2 and so
〈{a, b} | {a2} | {σ2} | {b2}〉 is not an invariant L-presentation.We are not aware of a method to de
ide whether or not a given (non-as
ending) �nite
L-presentation is invariant. In parti
ular, we have no answer to the followingQuestion 2.3 Is there a �nitely L-presented group so that ea
h of its �nite L-presen-tation is not invariant?The 
lass of �nitely L-presented groups 
ontains all �nitely presented groups:Proposition 2.4 Ea
h �nitely presented group 〈X | R〉 is �nitely L-presented by theinvariant (as
ending) �nite L-presentation 〈X | ∅ | ∅ | R〉.Therefore, (invariant or as
ending) �nite L-presentations generalize the 
on
ept of �nitepresentations. Examples of �nitely L-presented, but not �nitely presented, groups arevarious self-similar or bran
h groups [6℄ in
luding the Grigor
huk group [53, 56, 96℄ andits twisted twin [14℄. However, the 
on
ept of a �nite L-presentation is quite general sothat other examples of in�nitely presented groups are �nitely L-presented [18, 85℄.



D.2. Preliminaries 139Various group theoreti
 
onstru
tions that preserve the property of being �nitely
L-presented have been studied in [6℄. For 
ompleteness, we re
all some of these 
onstru
-tions in the remainder of this se
tion.Proposition 2.5 (Bartholdi [6, Proposition 2.7℄) Let G = 〈X | Q | Φ | R〉 be a�nitely L-presented group and let H = 〈Y | S〉 be �nitely presented. The group Kwhi
h satis�es the short exa
t sequen
e 1 → G→ K → H → 1 is �nitely L-presented.Proof. We re
all the 
onstru
tions from [6℄: Let δ:H → K be a se
tion of H to K andidentify G with its image in K. Ea
h relation r ∈ S of the �nitely presented group Hlifts, through the se
tion δ, to an element gr ∈ G. As the group G is normal in K, ea
hgenerator t ∈ Y of the �nitely presented group H a
ts, via δ, on the subgroup G. Thuswe have xσ(t) = gx,t ∈ G for ea
h x ∈ X and t ∈ Y. If X ∩ Y = ∅, we 
onsider the �nite
L-presentation

〈X ∪ Y | Q ∪ {r g−1
r | r ∈ S} ∪ {xtg−1

x,t | x ∈ X , t ∈ Y} | Φ̂ | R〉, (D.2)where the endomorphisms Φ of G's L-presentation are extended to endomorphisms Φ̂ =
{σ̂ | σ ∈ Φ} of the free group F (X ∪ Y) by

σ̂:F (X ∪ Y) → F (X ∪ Y),

{
x 7→ xσ, for ea
h x ∈ X
y 7→ y, for ea
h y ∈ Y.Then the �nite L-presentation in Eq. (D.2) is a presentation for K; see [6℄. 2As ea
h �nite group is �nitely presented, Proposition 2.5 yields the immediateCorollary 2.6 Ea
h �nite extension of a �nitely L-presented group is �nitely L-pre-sented.The 
onstru
tion in the proof of Proposition 2.5 gives a �nite L-presentation for K whi
his not as
ending � even if the group G we started with has an as
ending L-presentation.We therefore ask the followingQuestion 2.7 Is every �nite extension of an invariantly (�nitely) L-presented groupinvariantly (�nitely) L-presented?We do not have an answer to this question in general; though we suspe
t its answeris negative, see Remark 7.43. Given endomorphisms Φ of the normal subgroup G inProposition 2.5, one problem is to 
onstru
t endomorphisms of the �nite extension Kwhi
h restri
t to Φ. This does not seem to be possible in general.A �nite L-presentation for a free produ
t of two �nitely L-presented groups is givenby the following improved version of [6, Proposition 2.6℄.Proposition 2.8 The free produ
t of two �nitely L-presented groups is �nitely L-pre-sented. If both �nitely L-presented groups are invariantly L-presented, so is their freeprodu
t.



140 Chapter D. A Reidemeister-S
hreier Theorem for Finitely L-Presented GroupsProof. Although a proof of the �rst statement 
an be found in [6℄, we summarize its 
on-stru
tion for our proof of the se
ond statement. For this purpose, let G = 〈X | Q | Φ | R〉and H = 〈Y | S | Ψ | T 〉 be �nitely L-presented groups. Suppose that X ∩ Y = ∅ holds.Then, by [6℄, the free produ
t G ∗H is �nitely L-presented by 〈X ∪ Y | Q ∪ S | Φ̂ ∪ Ψ̂ |
R∪ T 〉 where the endomorphisms in Φ and Ψ are extended to endomorphisms in Φ̂ and
Ψ̂ of the free group F (X ∪ Y) over X ∪ Y as follows: for ea
h σ ∈ Φ, we let

σ̂:F (X ∪ Y) → F (X ∪ Y),

{
x 7→ xσ, for ea
h x ∈ X
y 7→ y, for ea
h y ∈ Y;and, a

ordingly, for ea
h δ ∈ Ψ.Suppose that the L-presentations of G and H are invariant. As an invariant L-presen-tation 〈X | Q | Φ | R〉 
an be 
onsidered as an as
ending L-presentation 〈X | ∅ | Φ |

Q ∪ R〉, we 
an 
onsider Q and S to be empty. Then the 
onstru
tion above showsthat the free produ
t G ∗H is as
endingly �nitely L-presented and thus it is invariantly�nitely L-presented. 2We further have the following improved version of [6, Proposition 2.9℄:Proposition 2.9 Let N �G be a normal subgroup of a �nitely L-presented group G =
〈X | Q | Φ | R〉. If N is �nitely generated as a normal subgroup, the fa
tor group G/Nis �nitely L-presented. If, furthermore, G is invariantly L-presented and the normalsubgroup N is invariant under the indu
ed endomorphisms Φ, G/N is invariantly L-presented.Proof. Let N = 〈g1, . . . , gn〉

G be a �nite normal generating set of the normal subgroup
N . We 
onsider the normal generators g1, . . . , gn as elements of the free group F over
X . By [6℄, the L-presentation 〈X | Q ∪ {g1, . . . , gn} | Φ | R〉 is a �nite L-presentation forthe fa
tor group G/N .Suppose that G is given by an invariant L-presentation 〈X | Q | Φ | R〉. Then
G = 〈X | ∅ | Φ | Q ∪ R〉. As Nσ ⊆ N , ea
h σ ∈ Φ∗ indu
es an endomorphismof the L-presented fa
tor group G/N . Thus the images gσ1 , . . . , gσn are 
onsequen
es ofthe relations of G/N 's �nite L-presentation above. Hen
e, we have that G/N ∼= 〈X |
{g1, . . . , gn} | Φ | R ∪Q〉 = 〈X | ∅ | Φ | Q ∪R ∪ {g1, . . . , gn}〉. 2If G is invariantly L-presented and N is a normal Φ-invariant subgroup, then, in thenotion of Krull & Noether [87,111℄, the group G is a group with operator domain Φ andthe normal subgroup N is an admissible subgroup. Proposition 2.8 and Proposition 2.9yield the following straightforwardCorollary 2.10 Let G and H be �nitely L-presented groups and let F be a �nitely gen-erated group with embeddings ψ:F → G and φ:F → H. Then the amalgamated freeprodu
t G ∗F H is �nitely L-presented.For further group theoreti
 
onstru
tions whi
h preserve the property of being �nitely
L-presented were refer to [6℄.
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ess 141D.3 The Reidemeister-S
hreier Pro
essIn the following, we brie�y re
all the Reidemeister-S
hreier pro
ess as, for instan
e,outlined in [95, 129℄. For this purpose, let G be a group given by a group presentation
〈X | K〉 where X is a (�nite) alphabet whi
h de�nes the free group F and K ⊆ F is a(possibly in�nite) set of relations. Denote the normal 
losure of K in F by K = 〈K〉F .Then G = F/K.Let H ≤ G be a subgroup with �nite index that is given by its generators g1, . . . , gnand let T ⊆ F be a S
hreier transversal for H in G (i.e., a transversal for H in G sothat every initial segment of an element of T itself belongs to T , see [95℄; note thatwe always a
t by multipli
ation from the right). We 
onsider the generators of H aswords over the alphabet X and thus as elements of the free group F . Then the subgroup
U = 〈g1, . . . , gn〉 satis�es that H ∼= UK/K. In the style of [95℄, we de�ne the S
hreiermap γ:T × X → F by γ(t, x) = tx (tx)−1 where tx denotes the unique element s ∈ Tfrom the S
hreier transversal so that UK s = UK tx holds. The S
hreier Theorem (as, forinstan
e, in [95, Proposition I.3.7℄) shows that the subgroup UK ≤ F is freely generatedby the S
hreier generating set

Y = {γ(t, x) 6= 1 | t ∈ T , x ∈ X}.In parti
ular, it shows that ea
h �nite index subgroup of a �nitely generated group is�nitely generated. We 
onsider the set Y as an alphabet and we denote by F (Y) the freegroup over Y. The Reidemeister rewriting τ is a map τ :F → F (Y) given by
τ(y1 · · · yn) = γ(1, y1) · γ(y1, y2) · · · γ(y1 · · · yn−1, yn)where ea
h yi ∈ X ∪ X−. In general, the Reidemeister rewriting τ is not a grouphomomorphism. However, we have the followingLemma 3.11 For V ≤ UK, the restri
tion τ :V → F (Y) is a homomorphism.Proof. Let g, h ∈ V be given. Write g = g1 · · · gn and h = h1 · · · hm with ea
h hi, gj ∈

X ∪ X−. Then, as g1 · · · gn = g = 1 holds, we obtain that
τ(gh) = γ(1, g1) · · · γ(g1 · · · gn−1, gn) · γ(1, h1) · · · γ(h1 · · · hm−1, hm) = τ(g) τ(h)while we already have τ(1) = 1 by de�nition. 2By S
hreier's theorem, the Reidemeister rewriting τ :UK → F (Y) gives an isomorphism offree groups. A group presentation for the subgroup H ∼= UK/K is given by the followingwell-known theorem of Reidemeister [119℄ and S
hreier [124℄; see also [95, Se
tion II.4℄.Theorem 3.12 (Reidemeister-S
hreier Theorem) Let H be a subgroup of G. If τdenotes the Reidemeister-S
hreier rewriting, T denotes a S
hreier transversal for H in

G, and if 〈X | K〉 is a presentation for G, the subgroup H is presented by
H ∼=

〈
Y | {τ(trt−1) | r ∈ K, t ∈ T }

〉
. (D.3)



142 Chapter D. A Reidemeister-S
hreier Theorem for Finitely L-Presented GroupsProof. We re
all the proof for 
ompleteness: Note that H ∼= UK/K ∼= τ(UK)/τ(K)holds. By S
hreier's theorem, we have τ(UK) = F (Y). It therefore su�
es to determinea normal generating set for τ(K). As K is a normal generating set forK�F , a generatingset for τ(K) is given by τ(K) = 〈{τ(grg−1) | r ∈ K, g ∈ F}〉. Let r ∈ K and g ∈
F be given. Consider the relation τ(grg−1). Sin
e T is a transversal for UK in F ,
g ∈ F 
an be written as g = u t with t ∈ T and u ∈ UK. This yields τ(grg−1) =
τ(utrt−1u−1). For r ∈ K, we have that trt−1 ∈ UK. By Lemma 3.11, we obtainthat τ(grg−1) = τ(utrt−1u−1) = τ(u) τ(trt−1) τ(u)−1. Therefore the relation τ(grg−1)is a 
onsequen
e of τ(trt−1). Hen
e, it su�
es to 
onsider the normal generating set
τ(K) =

〈
{τ(trt−1) | r ∈ K, t ∈ T }

〉F (Y) for τ(K). 2If H is a �nite index subgroup of a �nitely presented group G, there exist a �nite set ofrelations K and a �nite S
hreier transversal T so that the subgroup H is �nitely presentedby Theorem 3.12. This latter result for �nitely presented groups is well-known and it isoften simply referred to the Reidemeister-S
hreier Theorem for �nitely presented groups.In this paper, we prove a variant of the Reidemeister-S
hreier Theorem for �nitely L-presented groups using the ideas of Theorem 3.12.D.4 A Typi
al Example of a Subgroup L-PresentationBefore proving Theorem 1.1, we �rst 
onsider an example of a �nite L-presentation fora �nite index subgroup of a �nitely L-presented group. For this purpose we 
onsider asubgroup of the Basili
a group [60℄. The Basili
a group satis�es the followingProposition 4.13 (Bartholdi & Virág [16℄) The Basili
a group G is invariantly�nitely L-presented by G ∼= 〈{a, b} | ∅ | {σ} | {[a, ab]}〉 where σ is the free group ho-momorphism that is indu
ed by the map a 7→ b2 and b 7→ a.The substitution σ in Proposition 4.13 indu
es an endomorphism of G. The group Gwill often provide an ex
lusive (
ounter-) example throughout this paper.Consider the subgroup H = 〈a, bab−1, b3〉 of the Basili
a group. Then 
oset-enumer-ation for �nitely L-presented groups [67℄ shows that H is a normal subgroup of G withindex 3. A S
hreier generating set for the subgroup H is given by {a, bab−1, b2ab−2, b3}.Write x1 = a, x2 = bab−1, x3 = b2ab−2, and x4 = b3. Denote the free group over {a, b}by F and let E denote the free group over {x1, x2, x3, x4}. For ea
h n ∈ N0, we de�ne
an = (2n + 2)/3 and bn = (2n + 1)/3. Then the σ-images of the relation r = [a, ab] 
anbe rewritten with the Reidemeister rewriting τ :F → E. Their images have the form

τ(rσ
2n
) =





[
x2

n

1 , x
−an
4 x2

n

3 xan4
]
, if n is even,

[
x2

n

1 , x
−bn
4 x2

n

2 xbn4

]
, if n is odd,and

τ(rσ
2n+1

) =

{
x
−bn+1

4 x−2n

2 x
−bn+1

4 x2
n

3 x
bn+1

4 x−2n

2 x
bn+1

4 x2
n

1 , if n is even,
x
−an+1

4 x−2n

3 x
−an+1+1
4 x2

n

2 x
an+1−1
4 x−2n

3 x
an+1

4 x2
n

1 , if n is odd.



D.5. Stabilizing Subgroups 143Note that τ(rσ2n) ∈ [E,E] while τ(rσ2n+1
) 6∈ [E,E]. Therefore, the images τ(rσi) splitinto two 
lasses whi
h are re
ursive images of the endomorphism

σ̂:E → E,





x1 7→ x21,
x2 7→ x23,

x3 7→ x4 x
2
2 x

−1
4 ,

x4 7→ x24;in the sense that σ̂ satis�es
τ(rσ

2n
) = [x1, x

−1
4 x3 x4]

σ̂n and τ(rσ2n+1
) = (x−1

4 x−1
2 x−1

4 x3 x4 x
−1
2 x4 x1)

σ̂n ,for ea
h n ∈ N0. In Se
tion D.8, we show that a �nite L-presentation for the subgroup
H is given by

H ∼=
〈
{x1, . . . , x4}

∣∣ ∅
∣∣ {σ̂, δ}

∣∣ {[x1, x−1
4 x3 x4], x

−1
4 x−1

2 x−1
4 x3 x4 x

−1
2 x4 x1}

〉where the endomorphism δ is indu
ed by the map
δ:E → E,





x1 7→ x2,
x2 7→ x3,

x3 7→ x4 x1 x
−1
4 ,

x4 7→ x4.These subgroup L-presentations are typi
al for �nite index subgroups of a �nitely L-presented group. Besides, the subgroup H and its subgroup L-presentation provide a
ounter-example to the original proof of Theorem 1.1 in [6℄ as there is no endomorphism
ε of the free group E su
h that τ(rσn+1

) = (τ(rσ
n
))ε holds for ea
h n ∈ N0. A reason forthe failure of the proof in [6℄ is that the subgroup H is not σ-invariant but σ2-invariant.Therefore, the method suggested in the proof of [6, Proposition 2.9℄ will fail to 
omputea �nite L-presentation for H.D.5 Stabilizing SubgroupsIn this se
tion, we introdu
e the stabilizing subgroups. These subgroups will be 
entralto what follows.Let G = 〈X | Q | Φ | R〉 be a �nitely L-presented group and let H ≤ G be a �niteindex subgroup whi
h is generated by g1, . . . , gn. Denote the free group over X by Fand let K = 〈Q∪

⋃
σ∈Φ∗ Rσ〉F . We 
onsider the generators g1, . . . , gn of the subgroup Has words over the alphabet X ∪ X−. Then the subgroup U = 〈g1, . . . , gn〉 ≤ F satis�es

H ∼= UK/K. The group F a
ts on the right-
osets UK\F by multipli
ation from theright. Let π:F → Sym(UK\F ) be a permutation representation for the group's a
tion on
UK\F . Su
h a permutation representation 
an be 
omputed with the 
oset-enumerationpro
ess from [67℄. The kernel of the permutation representation π is the normal 
ore,
CoreF (UK), of UK in F ; i.e., it is the largest normal subgroup of F that is 
ontained in
UK.The following de�nition introdu
es the stabilizing subgroups of H. These subgroupswill be 
entral to our proof of Theorem 1.1 in Se
tion D.6.



144 Chapter D. A Reidemeister-S
hreier Theorem for Finitely L-Presented GroupsDe�nition 5.14 Let G = 〈X | Q | Φ | R〉 be a �nitely L-presented group and let
H ≤ G be a �nite index subgroup whi
h admits the permutation representation π:F →
Sym(UK\F ) as above. The stabilizing subgroup of H is

L̃ =
⋂

σ∈Φ∗

(σπ)−1(StabSym(UK\F )(UK 1)) =
⋂

σ∈Φ∗

σ−1(UK). (D.4)The stabilizing 
ore of H is
L =

⋂

σ∈Φ∗

ker(σπ). (D.5)For σ ∈ Φ∗, we denote by ‖σ‖ the usual word-length in the generating set Φ of thefree monoid Φ∗. The free monoid Φ∗ has the stru
ture of a |Φ|-regular tree with its rootbeing the identity map id:F → F . We 
an further endow the monoid Φ∗ with a length-plus-(from the right)-lexi
ographi
 ordering ≺ by 
hoosing an arbitrary ordering on the�nite generating set Φ. We then de�ne σ ≺ δ if ‖σ‖ < ‖δ‖ or, otherwise, if σ = σ1 · · · σnand δ = δ1 · · · δn, with ea
h σi, δj ∈ Φ, and there exists a positive integer 1 ≤ k ≤ nsu
h that σi = δi for ea
h k < i ≤ n, and σk ≺ δk. Sin
e Φ is �nite, the 
onstru
tedordering ≺ is a well-ordering on Φ∗ [129℄. Thus, there is no in�nite des
ending sequen
es
σ1 ≻ σ2 ≻ . . . in Φ∗.We 
onsider a variation of the algorithm IsValidPermRep from [67℄ in AlgorithmD.1 below. If π:F → Sym(UK\F ) denotes a permutation representation as in De�ni-IteratingEndomorphisms(X , Q, Φ, R, H, π)Choose an ordering on Φ = {φ1, . . . , φn} with φi ≺ φi+1.Initialize S := [φ1, . . . , φn] and V := [id:F → F ].while S 6= [ ] doRemove the �rst entry δ from the list S.if not (∃σ ∈ V: δπ = σπ) thenAppend φ1δ, . . . , φnδ to the list S.Add δ to the list V.return( V )Algorithm D.1: Computing a �nite set of endomorphisms V ⊆ Φ∗.tion 5.14, the algorithm IteratingEndomorphisms returns a �nite image of a se
-tion of the map Φ∗ → Hom(F,Sym(UK\F )) de�ned by σ 7→ σπ; see Lemma 5.15 andLemma 5.17 below. More pre
isely, we have the followingLemma 5.15 The algorithm IteratingEndomorphisms terminates and it returns a�nite set of endomorphisms V ⊆ Φ∗ satisfying the following property: For ea
h σ ∈ Φ∗there exists a unique τ ∈ V so that σπ = τπ. The element τ ∈ V is minimal with respe
tto the ordering ≺ 
onstru
ted above.Proof. Let X be a basis of the free group F . A homomorphism ψ:F → Sym(UK\F ) isuniquely de�ned by the image of this basis. Sin
e UK\F is �nite, the symmetri
 group
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Sym(UK\F ) is �nite. Moreover, as F is �nitely generated, the set of homomorphisms
Hom(F,Sym(UK\F )) is �nite. Therefore, the algorithm IteratingEndomorphisms
an add only �nitely many elements to V and the sta
k S will eventually be redu
ed.Thus the algorithm terminates.The ordering ≺ on Φ extends to a total well-ordering on the free monoid Φ∗ asdes
ribed above. The elements in the sta
k S are always ordered with respe
t to ≺. Theyfurther always su

eed those elements in V. In parti
ular, the elements σ ∈ V ⊆ Φ∗ are
≺-minimal representatives of the 
omposed homomorphism σπ:F → Sym(UK\F ).Let σ ∈ Φ∗ be given and write σ1 = σ. There exists w ∈ Φ∗ minimal subje
t to theexisten
e of δ ∈ V so that σ1 = wδ. If ‖w‖ = 0 holds, then σ1 ∈ V and the 
laim isproved. Otherwise, there exists ψ ∈ Φ so that σ1 = vψδ for some v ∈ Φ∗ and ψδ 6∈ V. Ouralgorithm yields the existen
e of ε ∈ V so that ε ≺ ψδ and ψδπ = επ. We also have that
σ2 = vε ≺ vψδ = σ1. This rewriting pro
ess yields a des
ending sequen
e σ1 ≻ σ2 ≻ . . .in Φ∗. As ≺ is a well-ordering, there exists σn ∈ V so that σ1 ≻ σ2 ≻ . . . ≻ σn and
σπ = σ1π = σnπ. The element τ = σn is unique. 2If π:F → Sym(UK\F ) is a permutation representation for an in�nite index subgroup
UK ≤ F , we 
annot ensure �niteness of the set V and termination of the algorithm. Inthe remainder, we always 
onsider �nite index subgroups UK ≤ F only.For �nite L-presentations 〈X | Q | Φ | R〉 with Φ = {σ}, �niteness of the set
{σℓπ | ℓ ∈ N0} ⊆ Hom(F,Sym(UK\F )) yields the followingCorollary 5.16 If Φ = {σ}, there exist integers 0 ≤ i < j with σjπ = σiπ.The set V ⊆ Φ∗ returned by Algorithm D.1 satis�es the followingLemma 5.17 The set V 
an be 
onsidered as a subtree of Φ∗. The image of the �niteset V and the image of the monoid Φ∗ in Hom(F,Sym(UK\F )) 
oin
ide.Proof. The identity mapping id:F → F is 
ontained in V and it represents the root of Vand Φ∗. Let σ ∈ V be given. Then either σ ∈ Φ or there exists ψ ∈ Φ and δ ∈ Φ∗ so that
σ = ψδ. In the �rst 
ase, id:F → F is a unique parent of σ ∈ Φ. Otherwise, if σ = ψδ, weneed to show that δ ∈ V holds. Our algorithm IteratingEndomorphisms only addselements from the sta
k S to V. At some stage of the algorithm we had σ = ψδ ∈ S.The latter element is added to the sta
k S as a 
hild of the element δ and thus δ ∈ V.The se
ond statement follows immediately from Algorithm D.1 and Lemma 5.15. 2We de�ne a binary relation ∼ on the free monoid Φ∗ by de�ning σ ∼ δ if and only if theunique element σn ∈ Φ∗ in Lemma 5.15 
oin
ides for both σ and δ. Thus σ ∼ δ if andonly if σπ = δπ. This de�nition yields the immediateLemma 5.18 The relation σ ∼ δ is an equivalen
e relation. Ea
h equivalen
e 
lassis represented by a unique element in V whi
h is minimal with respe
t to the total andwell-ordering ≺.Re
all that π:F → Sym(UK\F ) is a permutation representation for the group's a
tionon the right-
osets UK\F . If T is a transversal for UK in F , σ ∼ δ implies that
UK t · gσ = UK t · gδ for ea
h t ∈ T and g ∈ F . We therefore obtain the following
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hreier Theorem for Finitely L-Presented GroupsLemma 5.19 If σ ∈ Φ∗ satis�es σπ = π, the subgroup UK is σ-invariant. There are
σ-invariant subgroups UK that do not satisfy σπ = π.Proof. The �rst statement holds in general for a group a
ting on a set: As σπ = π, wehave UK t ·gσ = UK t g for ea
h t ∈ T and g ∈ F . If g ∈ UK, then UK 1 ·gσ = UK 1 ·g =
UK 1 and so gσ ∈ UK. The index-2 subgroup H = 〈a, b2, bab−1〉 of the Basili
a groupsatis�es (UK)σ ⊆ UK and σπ 6= π. This (and similar results in the remainder of thispaper) 
an be easily veri�ed with a 
omputer algebra system su
h as Gap. 2The latter observation motivates the followingDe�nition 5.20 Let G = 〈X | Q | Φ | R〉 be a �nitely L-presented group and let
H ≤ G be a �nite index subgroup with permutation representation π as above. The
π-leafs Ψ ⊆ Φ∗ \ V of V are

Ψ = {ψδ | ψ ∈ Φ, δ ∈ V, ψδ 6∈ V, ψδπ = π}. (D.6)The subgroup H is leaf-invariant if Ψ = {ψδ | ψ ∈ Φ, δ ∈ V, ψδ 6∈ V} holds.For a �nitely L-presented group 〈X | Q | Φ | R〉, the generating set Φ of Φ∗ is �nite.Moreover, the equivalen
e ∼ yields �nitely many equivalen
e 
lasses. Hen
e, the set of
π-leafs Ψ of V is �nite. We obtain the followingLemma 5.21 If H is a leaf-invariant subgroup of G, ea
h π-leaf ψδ ∈ Ψ indu
es anendomorphism of UK. Moreover, ea
h σ ∈ Φ∗ 
an be written as σ = v σ with v ∈ V and
σ ∈ Ψ∗.Proof. We again follow the ideas of Algorithm D.1. By Lemma 5.19, the 
ondition
ψσπ = π implies ψσ-invarian
e of UK and hen
e Ψ∗ ⊆ End(UK). Write W = {ψδ | ψ ∈
Φ, δ ∈ V, ψδ 6∈ V} and let σ ∈ Φ∗ be given. Write σ1 = σ. There exists w ∈ Φ∗ minimalsubje
t to the existen
e of δ ∈ V so that σ1 = wδ. If ‖w‖ = 0, then σ1 = δ id with δ ∈ Vand id ∈ Ψ∗. Otherwise, there exists ψ ∈ Φ and σ2 ∈ Φ∗ so that σ1 = σ2ψδ and ψδ 6∈ V.Then ψδ ∈ W . Sin
e H is leaf-invariant, we have W = Ψ and hen
e ψδ ∈ Ψ. Therefore
ψδ indu
es an endomorphism of UK. Clearly σ2 ≺ σ1. Rewriting the pre�x σ2 as aboveyields a des
ending sequen
e σ1 ≻ σ2 . . . in Φ∗. As ≺ is a well-ordering, we eventuallyhave σ1 ≻ σ2 ≻ . . . ≻ σn with σn ∈ V and σ = σ1 = σnδ for some δ ∈ Ψ∗. 2If the �nite L-presentation 〈X | Q | Φ | R〉 satis�es Φ = {σ} and if there exists a minimalpositive integer 0 < j so that σjπ = π, the set

W = {ψδ | ψ ∈ Φ, δ ∈ V, ψδ 6∈ V}in the proof of Lemma 5.21 above be
omes W = {σj}. Note the followingRemark 5.22 The 
ondition σjπ = σ0π is essential for the σj−0-invarian
e of the sub-group. For instan
e, the subgroup H = 〈a, bab−1, b−1a2b, b4, b2ab−2〉 of the Basili
a groupsatis�es σ4π = σ3π but it is not σ-invariant.The stabilizing subgroup L̃ introdu
ed in De�nition 5.14 satis�es the following



D.5. Stabilizing Subgroups 147Proposition 5.23 Let V ⊆ Φ∗ be the �nite set returned by Algorithm D.1. The stabiliz-ing subgroup L̃ satis�es that
L̃ =

⋂

σ∈V

(σπ)−1
(
StabSym(UK\F )(UK 1)

)
=

⋂

σ∈V

σ−1(UK).The stabilizing subgroup L̃ is Φ-invariant (i.e., we have L̃ψ ⊆ L̃ for ea
h ψ ∈ Φ). It is
ontained in the subgroup UK and it has �nite index in F . The stabilizing subgroup L̃ isthe largest Φ∗-invariant subgroup of UK. It is not ne
essarily normal in F .Proof. By Lemma 5.17, the sets {σπ | σ ∈ Φ∗} and {σπ | σ ∈ V} 
oin
ide and thus wehave
L̃ =

⋂

σ∈Φ∗

(σπ)−1
(
StabSym(UK\F )(UK 1)

)
=

⋂

σ∈V

(σπ)−1
(
StabSym(UK\F )(UK 1)

)
.Sin
e (σπ)−1

(
StabSym(UK\F )(UK 1)

)
= σ−1(UK), we have L̃ =

⋂
σ∈V σ

−1(UK). For ψ ∈
Φ, we have

ψ−1(L̃) =
⋂

σ∈Φ∗

(σψ)−1(UK) ⊇
⋂

σ∈Φ∗

σ−1(UK) = L̃sin
e the �rst interse
tion is over a smaller set than the se
ond one. Thus ψ(L̃) ⊆ L̃. Sin
e
σ = id ∈ Φ∗, we have L̃ ⊆ UK. Be
ause the stabilizing subgroup L̃ is the interse
tionof �nitely many �nite index subgroups (σπ)−1(StabSym(UK\F )(UK 1) of F , it has �niteindex in F . If N ≤ UK is Φ∗ invariant, we have N ⊆ σ−1(N) ⊆ σ−1(UK) for ea
h
σ ∈ Φ∗. Hen
e N ⊆

⋂
σ∈Φ∗ σ−1(UK) = L̃.The stabilizing subgroup L̃ = 〈a, bab−1, b−1a2b, b2ab−2, b3a−1b, b−1ab3〉 of the sub-group H = 〈a, bab−1, b−1a−2b, b2ab−2, b3a−1b, b−1ab3〉 of the Basili
a group is not normalin F . 2The stabilizing subgroup L̃ always satis�es that L̃ ⊆ UK. Conditions for equality aregiven by the followingLemma 5.24 The following 
onditions are equivalent:(i) L̃ = UK,(ii) (UK)ψ ⊆ UK for all ψ ∈ V, and(iii) (UK)δ ⊆ UK for all δ ∈ Φ∗.Proof. We have that L̃ =

⋂
σ∈Φ∗ σ−1(UK) =

⋂
σ∈V σ

−1(UK). Therefore
L̃ =

⋂
σ∈Φ∗ σ−1(UK) = UK if and only if UK ⊆ L̃ ⊆ σ−1(UK) and so (UK)σ ⊆ UK forall σ ∈ Φ∗. Similarly, we have (UK)ψ ⊆ UK, for all ψ ∈ V, if and only if (UK)σ ⊆ UK,for all σ ∈ Φ∗. 2In the style of [67℄, we de�ne a binary relation ;π on the free monoid Φ∗ as follows:For σ, δ ∈ Φ∗ we de�ne σ ;π δ if and only if there exists a homomorphism γ: im (δπ) →

im (σπ) so that σπ = δπγ holds. It is known [67℄ that it is de
idable whether or not
σ ;π δ holds. This yields that



148 Chapter D. A Reidemeister-S
hreier Theorem for Finitely L-Presented GroupsLemma 5.25 Let V ⊆ Φ∗ be the �nite set returned by Algorithm D.1. Then there existsa subset Ṽ ⊆ V with the following property: For ea
h σ ∈ Φ∗ there exists a unique element
δ ∈ Ṽ so that σ ;π δ and δ is minimal with respe
t to the ordering ≺ in Lemma 5.15.Proof. This is straightforward as the set V returned by Algorithm D.1 is an upper boundon Ṽ be
ause σ ∼ δ implies both σ ;π δ or δ ;π σ. 2Again, the set Ṽ in Lemma 5.25 
an be 
onsidered a subtree of Φ∗ or even as a subtreeof V. The binary relation ;π is re�exive and transitive but not ne
essarily symmetri
.The equivalen
e relation ∼ and the relation ;π are related by the followingLemma 5.26 Let π:F → Sym(UK\F ) be a permutation representation as above. For
σ, δ ∈ Φ∗, we have the following(i) We have σ ;π δ and δ ;π σ if and only if the homomorphism γ: im (δπ) → im (σπ)with σπ = δπγ is bije
tive.(ii) If σ ∼ δ, then σ ;π δ and δ ;π σ. The 
onverse is not ne
essarily true.(iii) If k > 0 is minimal so that σk ∼ id, there exists a minimal positive integer ℓso that ℓ | k and σℓ ;π id. If Φ = {σ}, the set Ṽ from Lemma 5.25 be
omes

Ṽ = {id, σ, . . . , σℓ−1}.(iv) If ℓ is a minimal positive integer su
h that id ;π σ
ℓ, there exists a minimal integer

k ≥ ℓ so that σk ∼ id. If Φ = {σ}, the set V returned by Algorithm D.1 be
omes
V = {id, σ, . . . , σk−1} while Ṽ = {id, σ, . . . , σℓ−1}.(v) The subgroup H = 〈a, b2, bab−1〉 of the Basili
a group satis�es σ ;π id but there isno positive integer ℓ > 0 so that σℓ ∼ id holds.Proof. If the homomorphism γ: im (δπ) → im (σπ) with σπ = δπγ is bije
tive, we obtain

σπγ−1 = δπ and thus δ ;π σ. On the other hand, suppose that both δ ;π σ and σ ;π δhold. Then there are homomorphisms γ: im (σπ) → im (δπ) and τ : im (δπ) → im (σπ) sothat δπ = σπγ and σπ = δπτ . This yields δπ = σπγ = δπτγ and σπ = δπτ = σπγτ .Hen
e γ and τ are isomorphisms.Sin
e σ ∼ δ implies σπ = δπ, we immediately obtain both σ ;π δ and δ ;π σ. Thesubgroup H = 〈a, bab−1, b3〉 of the Basili
a group admits the permutation representation
π: a 7→ ( ), b 7→ (1, 2, 3). We have σ2π: a 7→ ( ), b 7→ (1, 3, 2) and therefore σ2 ;π id and
id ;π σ

2. Though σ2π 6= π.Suppose that k ∈ N is minimal so that σk ∼ id and so σkπ = π. Then im (π) ⊇
im (σπ) ⊇ . . . ⊇ im (σkπ) = im (π). There exists a minimal integer 0 < ℓ ≤ k su
h that
σℓ ;π id. Hen
e, there exists a homomorphism γ: im (π) → im (σℓπ) with σℓπ = πγ.The homomorphism γ is onto and, sin
e im (π) = im (σℓπ) is �nite, γ is bije
tive. As
ℓ ≤ k holds, we 
an write k = s ℓ + t for some 0 ≤ t < ℓ and s ∈ N. This yieldsthat π = σkπ = σt σs ℓ π = σtπγs and so π γ−s = σtπ. If t > 0, the latter yields that
σt ;π id whi
h 
ontradi
ts the minimality of ℓ. Thus t = 0 and ℓ | k. If Φ = {σ}, the



D.5. Stabilizing Subgroups 149set {id, σ, . . . , σℓ−1} is an upper bound on the set Ṽ from Lemma 5.25 be
ause σℓ ;π idholds. By the minimal 
hoi
e of ℓ, we obtain that Ṽ = {id, σ, . . . , σℓ−1}.Suppose that id ;π σ
ℓ holds. There exists a homomorphism γ: im (σℓπ) → im (π)with σℓπγ = π. Sin
e γ is a surje
tive map from a subgroup im (σℓπ) ≤ im (π) onto

im (π), γ is bije
tive and hen
e, we also have that σℓ ;π id. Suppose that the au-tomorphism γ of the �nite group im (π), has �nite order n. Write k = nℓ. Then
σkπ = σnℓπ = πγn = π and so σk ∼ id and k is minimal. If Φ = {σ} holds, then,by the minimal 
hoi
e of k, we obtain V = {id, σ, . . . , σk−1} for the set V returned byAlgorithm D.1 while V = {id, σ, . . . , σℓ−1} by the minimality of ℓ.The permutation representation π:F → Sym(UK\F ) of the subgroup H =
〈a, b2, bab−1〉 is indu
ed by the map a 7→ ( ) and b 7→ (1, 2). Therefore, H satis�esthat σ ;π id, |im (π)| = 2, and |im (σπ)| = 1. In parti
ular, for ea
h ℓ ≥ 1, we have
|im (σℓπ)| = 1. Thus there is no integer ℓ so that σℓ ∼ id holds. However, we have
σ2π = σπ so that the set V = {id, σ, σ2} returned by Algorithm D.1 is still �nite. 2The stabilizing 
ore L introdu
ed in De�nition 5.14 satis�es the followingProposition 5.27 Let V ⊆ Φ∗ be the �nite set returned by Algorithm D.1. The stabiliz-ing 
ore L satis�es that

L =
⋂

σ∈V

ker(σπ).The stabilizing 
ore L is the largest Φ-invariant subgroup of UK whi
h is normal in Fand thus L = CoreF (L̃). It is �nitely generated, has �nite index in F , and it 
ontains alliterated relations R of G's L-presentation 〈X | Q | Φ | R〉. We have L ⊆ L̃ ⊆ UK ⊆ Fand L ⊆ CoreF (UK) ⊆ UK ⊆ F .Proof. By Lemma 5.17, the sets {σπ | σ ∈ Φ∗} and {σπ | σ ∈ V} 
oin
ide and thus wehave
L =

⋂

σ∈Φ∗

ker(σπ) =
⋂

σ∈V

ker(σπ).The stabilizing 
ore L is normal in F be
ause it is the interse
tion of normal subgroups.Sin
e L ⊆ ker(π) = CoreF (UK) holds, the stabilizing 
ore L is 
ontained in UK. Sin
e
σ−1(ker(π)) = ker(σπ), we have that L =

⋂
σ∈Φ∗ σ−1(ker(π)). For any ψ ∈ Φ∗, we obtain

ψ−1(L) =
⋂

σ∈Φ∗

(σψ)−1(ker(π)) ⊇
⋂

σ∈Φ∗

σ−1(ker(π)) = Las the �rst interse
tion is over a small set of indi
es. Thus L is Φ∗-invariant. Let N ≤ UKbe a Φ∗-invariant subgroup whi
h is normal in F . Then N ≤ CoreF (UK) = ker(π) andso N ⊆ σ−1(N) ⊆ σ−1(ker(π)) for ea
h σ ∈ Φ∗. Thus N ⊆
⋂
σ∈Φ∗ σ−1(ker(π)) = L.The stabilizing 
ore L has �nite index in F be
ause it is the interse
tion of �nitely many�nite index subgroups ker(σπ) with σ ∈ V.The stabilizing 
ore L is �nitely generated as a �nite index subgroup of a �nitelygenerated free group F . Let r ∈ R be an iterated relator of G's L-presentation 〈X | Q |
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Φ | R〉. Then, for ea
h σ ∈ V, the image rσ is a relator of G. Thus r ∈ ker(σπ) and
r ∈ L.As L is a Φ-invariant subgroup of UK, we have L ⊆ L̃ by Proposition 5.23. Moreover,
L ⊆ ker(π) = CoreF (UK). 2Sin
e the stabilizing 
ore L 
ontains the iterated relations R of the L-presentation, italso 
ontains the normal 
losure 〈

⋂
σ∈Φ∗ Rσ〉F . We obtain the immediateCorollary 5.28 If G = 〈X | Q | Φ | R〉 = 〈X | ∅ | Φ | Q∪R〉 is invariantly L-presented,we have K ⊆ L ⊆ L̃ ⊆ UK ⊆ F . The subgroup H ∼= UK/K ≤ F/K 
ontains the

Φ-invariant normal subgroup L/K. The index [UK/K : L/K] = [UK : L] is �nite.The subgroup H in Corollary 5.28 is a �nite extension of L/K. Sin
e the stabilizing 
ore
L is the largest Φ-invariant subgroup whi
h is normal in F , the stabilizing subgroup L̃is normal in F if and only if L = L̃ holds. More pre
isely, we have the followingLemma 5.29 We have L̃ = L if and only if L̃ ⊆ CoreF (UK).Proof. We have L ⊆ L̃ and L̃σ ⊆ L̃ for ea
h σ ∈ Φ∗. If L = L̃, then L̃ = L ⊆
CoreF (UK). If L̃ ⊆ CoreF (UK) = ker(π), then L̃ ⊆ σ−1(L̃) ⊆ σ−1(ker(π)) for all
σ ∈ Φ∗. Thus L̃ ⊆

⋂
σ∈Φ∗ σ−1(ker(π)) = L. 2If UK � F is a normal subgroup, then L̃ ⊆ UK = CoreF (UK). Hen
e, we obtain theimmediateCorollary 5.30 If UK � F , then L = L̃.Note the followingRemark 5.31 There are subgroups that satisfy CoreF (UK) ⊂ L̃. For instan
e, thesubgroup H = 〈a, b2, ba2b−1, bab−2a−1b−1〉 of the Basili
a group is Φ-invariant (and hen
e

L̃ = UK by Lemma 5.24) but not normal in G.There are subgroups that satisfy L̃ ⊂ CoreF (UK). For instan
e, the subgroup H =
〈a2, b, aba−1〉 of the Basili
a group has index 2 in G (and thus it is normal in G); thoughthe subgroup H is not σ-invariant.There are subgroups that neither satisfy L̃ ⊆ CoreF (UK) nor CoreF (UK) ⊆ L̃. Forinstan
e, the subgroup H = 〈a, bab−1, b−1a2b, b2ab2, b3a−1b〉 of the Basili
a group satis�es
[F : L̃] = [F : CoreF (UK)] and L̃ 6= CoreF (UK).D.6 The Reidemeister-S
hreier TheoremIn this se
tion, we �nally prove our variant of the Reidemeister-S
hreier Theorem inTheorem 1.1. For this purpose, let G = 〈X | Q | Φ | R〉 be a �nitely L-presentedgroup and let H ≤ G be a �nite index subgroup given by its generators g1, . . . , gn. We
onsider the generators g1, . . . , gn as elements of the free group F over X . Denote thenormal 
losure of the relations of G by K = 〈Q∪

⋃
σ∈Φ∗ Rσ〉F and let U = 〈g1, . . . , gn〉 ≤
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F . Then H ∼= UK/K. If T ⊆ F denotes a S
hreier transversal for UK in F , theReidemeister-S
hreier Theorem in Se
tion D.3 shows that the subgroup H admits thegroup presentation

H ∼=
〈
Y
∣∣∣ {τ(tqt−1) | t ∈ T , q ∈ Q} ∪

⋃

σ∈Φ∗

{τ(trσt−1) | t ∈ T , r ∈ R}
〉
, (D.7)where τ denotes the Reidemeister rewriting. We will 
onstru
t a �nite L-presentationfrom the group presentation in Eq. (D.7). First, we note the followingTheorem 6.32 Let G = 〈X | Q | Φ | R〉 be invariantly �nitely L-presented. Ea
h

Φ-invariant normal subgroup with �nite index in G is invariantly �nitely L-presented.Proof. Let G = 〈X | Q | Φ | R〉 be an invariantly �nitely L-presented group andlet H � G be a Φ-invariant normal subgroup with �nite index in G. Every invariantly
L-presented group 
an be 
onsidered as an as
endingly L-presented group. Thus, wemay 
onsider Q = ∅. Consider the notation introdu
ed above. As G is invariantly L-presented, we have Kσ ⊆ K for ea
h σ ∈ Φ∗. Sin
e the subgroup H is Φ-invariant, wealso (UK)σ ⊆ UK for ea
h σ ∈ Φ∗. Then Lemma 5.24 shows that L̃ = UK. Moreover, as
UK�F , we have L = L̃ and thus UK = L̃ = L. Let t ∈ T be given. As UK�F , the map
δt:UK → UK, g 7→ tgt−1 de�nes an automorphism of UK. The Reidemeister rewriting
τ :UK → F (Y) is an isomorphism of free groups and therefore the endomorphisms Φ∪{δt |
t ∈ T } of UK translate to endomorphisms Φ̂ ∪ {δ̂t | t ∈ T } of the free group F (Y).Consider the invariant �nite L-presentation

〈 Y | ∅ | Φ̂ ∪ {δ̂t | t ∈ T } | {τ(r) | r ∈ R} 〉. (D.8)In order to prove that the �nite L-presentation in Eq. (D.8) de�nes the subgroup H,it su�
es to prove that ea
h relation of the presentation in Eq. (D.7) is a 
onsequen
eof the relations of the L-presentation in Eq. (D.8) and vi
e versa. For t ∈ T , r ∈ R,and σ ∈ Φ∗, we 
onsider the relation τ(t rσ t−1) of the group presentation in Eq. (D.7).Clearly, this relation is a relation in the �nite L-presentation in Eq. (D.8) be
ause thereexists σ̂ ∈ Φ̂∗ so that (τ(r))σ̂ = τ(rσ). Then (τ(r))σ̂δt = τ(trσt−1). On the other hand,
onsider the relation τ(r)σ̂ of the �nite L-presentation in Eq. (D.8) where r ∈ R and
σ̂ ∈ (Φ̂ ∪ {δ̂t | t ∈ T })∗. Write Ψ = Φ̂ ∪ {δ̂t | t ∈ T }. Sin
e 1 ∈ T and id ∈ Φ∗, we
an write ea
h image of an element δ̂ ∈ Ψ as τ(g)δ̂ = τ(tgδ t−1) for some t ∈ T and
δ ∈ Φ∗ where t or δ is possibly trivial. Sin
e σ̂ ∈ Ψ∗, we 
an write σ̂ = σ̂1 · · · σ̂n withea
h σ̂i ∈ Ψ. The image τ(r)σ̂ has the form

τ(r)σ̂ = τ(tn · · · t
σ3···σn
2 tσ2σ3···σn1 · rσ1σ2···σn · t−σ2σ3···σn1 t−σ3···σn2 · · · t−1

n ).Sin
e T is a transversal for UK in F , we 
an write tn · · · tσ3···σn2 tσ2σ3···σn1 = u t with t ∈ Tand u ∈ UK. This yields that τ(r)σ̂ = τ(u t rσ1σ2···σn t−1 u−1) =
τ(u) τ(t rσ1σ2···σn t−1) τ(u)−1, whi
h is a 
onsequen
e of τ(t rσ1σ2···σn t−1). The latterrelation τ(t rσ1σ2···σn t−1) is a relation of the group presentation in Eq. (D.7). In sum-mary, ea
h relation of the group presentation in Eq. (D.7) is a 
onsequen
e of the �nite
L-presentation in Eq. (D.8) and vi
e versa. 2
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hreier Theorem for Finitely L-Presented GroupsIn order to prove Reidemeister-S
hreier Theorem 1.1 for �nitely L-presented groups, weneed to 
onsider �nite index subgroups that are not normal. For this purpose, we needto 
onstru
t the relations τ(trσ t−1) with t ∈ T , r ∈ R, and σ ∈ Φ∗ in Eq. (D.7).The overall strategy in this paper is to 
onstru
t the relations as iterated images ofthe form τ(sr s−1)σ̂ for s ∈ T and some σ̂ ∈ Φ̂∗. If the subgroup H is normal as inProposition 6.34, the 
onjugation a
tion δt:UK → UK enables us to �rst 
onstru
t theimage τ(rσ) = τ(r)σ̂ and then to 
onsider the 
onjugates τ(rσ)δ̂t = τ(trσt−1). However,in general, it is not su�
ient to take as iterated relations those τ(trt−1)σ = τ(tσrσt−σ),with t ∈ T and r ∈ R, as σ may not be invertible over {tσ | t ∈ T }. More pre
isely, wehave the followingRemark 6.33 Let H = 〈a, b2, ba3b−1, bab−2a−1b−1, ba−1b−2ab−1〉 be a subgroup of theBasili
a group G. The subgroup H is σ-invariant and thus we 
an 
onsider the iteratedimages {τ(r)σ̂ | r ∈ R, σ ∈ Φ∗}. A S
hreier transversal T for H in G is given by T =
{1, b, ba, ba2, bab, ba2b}. We have T σ = {1, a, ab2, ab4, ab2a, ab4a}. Note that T σ ⊆ UKholds. Thus we 
annot ensure that the iterated images {τ(trt−1)σ̂ | r ∈ R, t ∈ T , σ ∈ Φ∗}
ontain all relations in Eq. (D.7). As the subgroup H is not normal in G, we 
annot
onsider the 
onjugate a
tion as well. However, an invariant �nite L-presentation forthe subgroup H 
an be 
omputed with Theorem 7.35 as the subgroup H is leaf-invariant(see Se
tion D.7 below).In the following, we use Theorem 6.32 to prove our variant of the Reidemeister-S
hreierTheorem for invariantly �nitely L-presented groups �rst.Proposition 6.34 Every �nite index subgroup of an invariantly �nitely L-presentedgroup is �nitely L-presented.Proof. Let H be a �nite index subgroup of an invariantly �nitely L-presented group G =
F/K. By Corollary 5.28, the subgroup H ∼= UK/K 
ontains a normal subgroup L/Kwith �nite index in G that is Φ-invariant. By Theorem 6.32, the subgroup L/K ≤ F/Kis �nitely L-presented. The subgroup H is a �nite extension of a �nitely L-presentedgroup and thus, by Corollary 2.6, the subgroup H is �nitely L-presented. 2Re
all that we do not have a method to 
onstru
t an invariant L-presentation for a �niteextension of an invariantly L-presented group. Therefore, we 
annot ensure invarian
eof the �nite L-presentation obtained from Corollary 5.28. In Se
tion D.7, we study
onditions on a subgroup of an invariantly L-presented group that ensure the invarian
eof the subgroup L-presentation. First, we 
omplete our proof of Theorem 1.1:Proof of Theorem 1.1. Let G = 〈X | Q | Φ | R〉 be a �nitely L-presented group and let
H be a �nite index subgroup of G. Denote the free group over X by F . De�ne the normalsubgroups K = 〈Q ∪

⋃
σ∈Φ∗ Rσ〉F and M = 〈

⋃
σ∈Φ∗ Rσ〉F . Let U ≤ F be generated bythe generators of H so that H ∼= UK/K holds. Then we have M �K�F and G = F/K.Further, the group J = F/M is invariantly �nitely L-presented by 〈X | ∅ | Φ | R〉and it naturally maps onto G. The subgroup UK/M ≤ F/M has �nite index in J as

[F : UK] is �nite. By Proposition 6.34, the subgroup UK/M of the invariantly �nitely
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L-presented group J = F/M is �nitely L-presented. The exa
t sequen
e 1 → K/M →
UK/M → UK/K → 1 yields that H ∼= UK/K ∼= (UK/M)/(K/M) where the kernel
K/M is �nitely generated as a normal subgroup by the image of the �xed relations in Q.By Proposition 2.9, H is �nitely L-presented as a fa
tor group of the �nitely L-presentedgroup UK/M whose kernel is �nitely generated as a normal subgroup. 2D.7 Invariant Subgroup L-PresentationsThe algorithms in [9,66℄ are mu
h more e�
ient on invariant L-presentations. Therefore,we study 
onditions on a subgroup of an invariantly L-presented group to be invariantly
L-presented itself. By Theorem 6.32, ea
h Φ-invariant normal subgroup H of an invari-antly �nitely L-presented group G = 〈X | Q | Φ | R〉 is invariantly �nitely L-presentedas soon as [G : H] is �nite.Consider the notion introdu
ed in Se
tion D.6 and let π:F → Sym(UK\F ) be apermutation representation as usual. Re
all that the subgroup H is leaf-invariant, if the
π-leafs

Ψ = {ψδ | ψ ∈ Φ, δ ∈ V, ψδ 6∈ V, ψδπ = π},of V satisfy Ψ = {ψδ | ψ ∈ Φ, δ ∈ V, ψδ 6∈ V}. This de�nition yields the followingTheorem 7.35 Ea
h leaf-invariant, �nite index subgroup of an invariantly �nitely L-presented group is invariantly �nitely L-presented.Proof. Let G = 〈X | Q | Φ | R〉 be invariantly �nitely L-presented and let H ≤ G be aleaf-invariant �nite index subgroup of G. Clearly, we 
an 
onsider Q = ∅ in the following.The π-leafs Ψ satisfy Ψ = {ψδ | ψ ∈ Φ, δ ∈ V, ψδ 6∈ V}. By Lemma 5.21, ea
h π-leaf
ψδ ∈ Ψ ⊆ Φ∗ de�nes an endomorphism of the subgroup UK. Moreover, Lemma 5.21shows that ea
h σ ∈ Φ∗ 
an be written as σ = ϑ δ with ϑ ∈ V and δ ∈ Ψ∗. Consider the�nite L-presentation

〈Y | ∅ | {ψ̂δ | ψδ ∈ Ψ} | {τ(trϑ t−1) | ϑ ∈ V, r ∈ R, t ∈ T }〉, (D.9)where Y denotes the S
hreier generators of UK, ψ̂σ denotes the endomorphism of the freegroup F (Y) indu
ed by the endomorphisms ψσ of UK, and T is a S
hreier transversalfor UK in F . For t ∈ T , σ ∈ Φ∗, and r ∈ R, the relation τ(t rσ t−1) of the grouppresentation in Eq. (D.7) 
an be obtained from the L-presentation in Eq. (D.9) as follows:Sin
e ea
h σ ∈ Φ∗ 
an be written as σ = ϑ δ with ϑ ∈ V and δ ∈ Ψ∗, we 
laim that therelation τ(t rσ t−1) is a 
onsequen
e of the image τ(trϑ t−1)δ̂. The latter image satis�esthat τ(trϑ t−1)δ̂ = τ(tδ rϑδ t−δ) = τ(tδ rσ t−δ). As δ ∈ Ψ∗, we 
an write δ = δ1 · · · δnwith ea
h δi ∈ Ψ. Re
all that δiπ = π holds. Thus the right-
oset UK 1 satis�es that
UK 1 · tδi = UK 1 · t = UK t and therefore UK tδ1···δn = UK t. Hen
e, there exists u ∈ UKso that tδ = ut and we obtain

τ(trϑ t−1)δ̂ = τ(tδ rσ t−δ) = τ(ut rσ t−1 u−1) = τ(u) τ(t rσ t−1) τ(u)−1
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h is a 
onsequen
e of τ(t rσ t−1) and vi
e versa. Similarly, every relation of the L-presentation in Eq. (D.9) is a 
onsequen
e of the relations in Eq. (D.7). Therefore, theinvariant �nite L-presentation in Eq. (D.9) de�nes the leaf-invariant �nite index subgroup
H. 2For �nite L-presentations 〈X | Q | Φ | R〉 with Φ = {σ}, the leaf-invarian
e of thesubgroup H yields the existen
e of a positive integer j so that σjπ = π holds. If weassume the positive integer j to be minimal, then V = {id, σ, . . . , σj−1} and Ψ = {σj}.In this 
ase, the invariant �nite L-presentation in Eq. (D.9) be
omes

H ∼= 〈Y | ∅ | {σ̂j} | {τ(trσ
i

t−1) | t ∈ T , r ∈ R, 0 ≤ i < j}〉.Note that the subgroup H in Theorem 7.35 is not ne
essarily normal in G. However,leaf-invarian
e of a subgroup is a restri
tive 
ondition on the subgroup. We try to weakenthis 
ondition with the followingDe�nition 7.36 Let G = 〈X | Q | Φ | R〉 be a �nitely L-presented group and let H ≤ Gbe a �nite index subgroup with permutation representation π. The subgroup H is weaklyleaf-invariant, if
Ψ = {ψδ | ψ ∈ Φ, δ ∈ Ṽ, ψδ 6∈ Ṽ, ψδ ;π id}satis�es Ψ = {ψδ | ψ ∈ Φ, δ ∈ Ṽ, ψδ 6∈ Ṽ}.The notion of a weakly leaf-invariant subgroup is less restri
tive than leaf-invarian
eas the low-index subgroups of the Basili
a group suggest: Among the 4 956 low-indexsubgroups of the Basili
a group with index at most 20 there are 2 539 weakly leaf-invariantsubgroups; only 156 of these subgroups are leaf-invariant. More pre
isely, Table D.1shows the number of subgroups (≤) that are normal (�), maximal (max), leaf-invariant(l.i.), weakly leaf-invariant (w.l.i.), and the number of subgroups that are weakly leaf-invariant and normal (� + w.l.i.). For �nite L-presentations 〈X | Q | Φ | R〉 with

Φ = {σ}, ea
h leaf-invariant subgroup is weakly leaf-invariant by Lemma 5.26, (iii). Onthe other hand, a weakly leaf-invariant subgroup with Φ = {σ} su
h that id ;π σ
ℓ holds,is leaf-invariant by Lemma 5.26, (iv). There are subgroups of a �nitely L-presented groupthat are weakly leaf-invariant but not leaf-invariant; see Lemma 5.26, (v). If Φ 
ontainsmore than one generator, we may ask the followingQuestion 7.37 Is every leaf-invariant subgroup weakly leaf-invariant?The problem is that De�nitions 5.20 and 7.36 depend on the minimal sets V and Ṽ whi
hsatisfy Ṽ ⊆ V but whi
h may di�er in general. We do not have an answer to this question.Moreover, the sets V and Ṽ in the De�nitions 5.20 and 7.36 may also depend on 
hoi
eof the ordering ≺ in Algorithm D.1. However we have the followingLemma 7.38 The 
onditions leaf-invarian
e and weak leaf-invarian
e do not depend onthe 
hoi
e of the ordering ≺ in Algorithm D.1.
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a group with index at most 20.
index ≤ � max l.i. w.l.i �+w.l.i

1 1 1 1 1 1 1
2 3 3 3 0 3 3
3 7 4 7 4 4 4
4 19 7 0 0 19 7
5 11 6 11 6 6 6
6 39 13 0 0 14 12
7 15 8 15 8 8 8
8 163 19 0 0 139 19
9 115 13 9 49 52 13
10 83 19 0 0 22 18
11 23 12 23 12 12 12
12 355 31 0 0 98 28
13 27 14 27 14 14 14
14 115 25 0 0 30 24
15 77 24 0 24 24 24
16 1843 47 0 0 1531 43
17 35 18 35 18 18 18
18 1047 44 0 0 366 40
19 39 20 39 20 20 20
20 939 45 0 0 158 42Proof. We prove this lemma by 
onstru
ting the set V returned by Algorithm D.1 (theset Ṽ from Lemma 5.25) independently from the ordering ≺ provided that the subgroupis (weakly) leaf-invariant. Let π:F → Sym(UK\F ) be the permutation representationas usual and assume that the subgroup is leaf-invariant. For ea
h j ≥ 0, we write

Φ(j) = {σ ∈ Φ∗ | ‖σ‖ = j}. De�ne W0 = {id} and re
ursively Wn+1 = {σ ∈ ΦWn |
σπ 6= π} ⊆ Φ(n+1). Let W =

⋃
n≥0Wn. Clearly, the 
onstru
tion of W does not dependon the ordering ≺ in Algorithm D.1. We show that the sets W and V 
oin
ide. Write

Sj = V ∩ Φ(j) and Tj = W ∩ Φ(j). Then S0 = {id} = T0. In order to prove that W = Vholds, it su�
es to show that Sj = Tj for ea
h j ≥ 0. Suppose that, for n ∈ N0, we have
Sj = Tj for all j < n while Sn 6= Tn. If σ ∈ Sn = V ∩ Φ(n), it is 
ontained in V andhen
e it satis�es σπ 6= π. Moreover, we have σ ∈ ΦSn−1 = ΦTn−1 and thus σ ∈ Tn. If
σ ∈ Tn = W∩Φ(n) but σ 6∈ Sn, then σ = ψδ with ψ ∈ Φ and δ ∈ Tn−1 = Sn−1 ⊆ V. Notethat σ satis�es σ = ψδ with δ ∈ V, ψ ∈ Φ, and σ = ψδ 6∈ V. Hen
e σ is a π-leaf. Sin
ethe subgroup H is leaf-invariant we have σπ = π. This is a 
ontradi
tion to σ ∈ Tn.For proving the statement for weak leaf-invarian
e, the same arguments as above andthe 
onstru
tion S̃0 = {id} and S̃n = {σ ∈ ΦS̃n | σ 6;π id} apply. 2
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hreier Theorem for Finitely L-Presented GroupsThe subgroup J = 〈x1, x2, x3, x4 x1 x
−1
4 , x34〉 of the subgroup H in Se
tion D.4 is weaklyleaf-invariant but it is not leaf-invariant. The notion of a weakly leaf-invariant subgroupyields the followingLemma 7.39 A normal subgroup UK � F is σ-invariant if and only if σ ;π id.Proof. Sin
e UK�F , we have UK = CoreF (UK) = ker(π). Thus im (π) ∼= F/ ker(π) =

F/UK. If UK is σ-invariant, then σ indu
es an endomorphism σ̄:F/UK → F/UK and,as F/UK ∼= im (π), it indu
es an endomorphism γ: im (π) → im (π) so that the diagram
F

σ

π

F

π

im (π) γ im (π)
ommutes. Thus σ ;π id. If, on the other hand, σπ = πγ holds for a homomorphism
γ: im (π) → im (σπ), ea
h g ∈ UK = ker(π) satis�es 1 = 1γ = (gπ)γ = gπγ = gσπ =
(gσ)π. Hen
e gσ ∈ ker(π) = UK and thus, UK is σ-invariant. 2Lemma 7.39 yields that a Φ-invariant normal subgroup is weakly leaf-invariant. How-ever, there exist subgroups whi
h are weakly leaf-invariant but not Φ-invariant (e.g. thesubgroup H = 〈a, bab−1, b3〉 of the Basili
a group in Se
tion D.4 satis�es σ2 ;π id butnot σ ;π id; thus, it is weakly leaf-invariant but not Φ-invariant). The 
ondition UK�Fin Lemma 7.39 is ne
essary, as we have the followingRemark 7.40 The 
ondition UK � F in Lemma 7.39 is ne
essary, as the subgroup
H = 〈a, b2, ba3b−1, bab−2a−1b−1, ba−1b−2ab−1〉 of the Basili
a group G is not normal in
G, it satis�es (UK)σ ⊆ UK; however, it does not satisfy σ ;π id.On the other hand, the subgroup H = 〈a, bab, ba−1b, b4〉 of the Basili
a group G sat-is�es σ ;π id but it does not satisfy (UK)σ ⊆ UK as [F : CoreF (UK)] = [F : L̃] = 8 6=
4 = [F : UK].A weakly leaf-invariant normal subgroup satis�es the following variant of our Reide-meister-S
hreier Theorem:Theorem 7.41 A weakly leaf-invariant normal subgroup whi
h has �nite index in aninvariantly �nitely L-presented group is invariantly �nitely L-presented.Proof. Let G = 〈X | Q | Φ | R〉 be invariantly �nitely L-presented and let H ∼= UK/Kbe a �nite index normal subgroup of G. As usual, we may 
onsider Q = ∅ as G isinvariantly L-presented. Let Ṽ ⊆ V be the set from Lemma 5.25. Sin
e H is weakly leaf-invariant, the weak-leafs Ψ in De�nition 7.36 satisfy Ψ = {ψδ | ψ ∈ Φ, δ ∈ Ṽ, ψδ 6∈ Ṽ}.By Lemma 7.39, ea
h ψδ ∈ Ψ indu
es an endomorphism of the normal subgroup UK�F .Let T be a S
hreier transversal for UK in F and let Y denote the S
hreier generators of thesubgroup UK. Then ea
h endomorphism ψδ ∈ Ψ of UK translates to an endomorphism
ψ̂δ of the free group F (Y). Consider the invariant �nite L-presentation

〈Y | ∅ | {ψ̂δ | ψδ ∈ Ψ} ∪ {δ̂t | t ∈ T } | {τ(rσ) | r ∈ R, σ ∈ Ṽ}〉, (D.10)



D.7. Invariant Subgroup L-Presentations 157where δt denotes the endomorphism of UK whi
h is indu
ed by 
onjugation by t ∈ T .The �nite L-presentation in Eq. (D.10) de�nes the normal subgroup H. This statementfollows with the same te
hniques as above; in parti
ular, it follows from rewriting thepresentation in Eq. (D.7). 2The subgroup H in Se
tion D.4 is a normal subgroup satisfying σ2 ;π id. Hen
e,Theorem 7.41 shows that this subgroup is invariantly �nitely L-presented. Even non-invariant L-presentations may give rise to invariant subgroup L-presentations as thefollowing shows:Remark 7.42 There are non-invariant L-presentation G = 〈X | Q | Φ | R〉 and �niteindex subgroups H ≤ G that satisfy (UK)σ ⊆ UK for ea
h σ ∈ Φ∗. For instan
e, the�nite L-presentation of Baumslag's group G in [64℄ is non-invariant (see the proof ofProposition 2.2) while its index-3 subgroup H = 〈a3, b, t〉 satis�es (UK)σ ⊆ UK for ea
h
σ ∈ Φ. The subgroup H even admits an invariant L-presentation over the generators
x = a3 and y = a2ta−2 given by

〈{x, y} | ∅ | {δt, δt2} | {y−1xyx−4}〉where δt is indu
ed by the map x 7→ x and y 7→ xyx−3 and δt2 is indu
ed by the map
x 7→ x and y 7→ xyx−2.The �nite L-presentations for �nite index subgroups in Proposition 6.34, Theo-rem 7.35, and Theorem 7.41, are derived from the group's L-presentation 〈X | Q | Φ | R〉by restri
ting to those endomorphisms in Φ∗ whi
h restri
t to the subgroup. However,there are subgroups of an invariantly L-presented group so that no endomorphism from
Φ∗ restri
ts to the subgroup. In this 
ase the �nite L-presentation for the �nite indexsubgroup needs to be 
onstru
ted as a �nite extension of the �nitely L-presented stabi-lizing 
ore L as in the proof of Theorem 1.1. The following remark gives an example of asubgroup of the invariantly �nitely L-presented Basili
a group so that no endomorphismfrom Φ∗ restri
ts to the subgroup:Remark 7.43 Let H = 〈b2, a3, ab2a−1, a−1b2a, bab−1a〉 denote a subgroup of the Basili
agroup G. Then H is a normal subgroup with index 6 in G. We are not able to �nd aninvariant �nite L-presentation for H.The subgroup H admits the permutation representation π:F → Sym(UK\F ). Wehave

π:

{
a 7→ (1, 2, 3)(4, 6, 5)
b 7→ (1, 4)(2, 5)(3, 6)

and σπ:

{
a 7→ ( )
b 7→ (1, 2, 3)(4, 6, 5)as well as

σ2π:

{
a 7→ (1, 3, 2)(4, 5, 6)
b 7→ ( )

and σ3π:

{
a 7→ ( )
b 7→ (1, 3, 2)(4, 5, 6).Clearly, σ3 ;π σ but, for ea
h 0 < ℓ < 3, we do not have σℓ ;π id. The homomorphism

γ: im (σπ) → im (σ3π) with σ3π = σπγ is bije
tive. Suppose there existed σn ∈ Φ∗ so



158 Chapter D. A Reidemeister-S
hreier Theorem for Finitely L-Presented Groupsthat the subgroup UK is σn-invariant. By Lemma 7.39, the normal subgroup UK is σn-invariant if and only if σn ;π id holds. Clearly n > 3. Sin
e σn ;π id, there existsa homomorphism ψ: im (π) → im (σnπ) so that σnπ = πψ. We obtain πψ = σnπ =
σn−3 σ3π = σn−3 σπγ = σn−2πγ. Iterating this rewriting pro
ess eventually yields apositive integer 0 ≤ ℓ < 3 so that πψ = σnπ = σℓπγm for some m ∈ N. As γ is bije
tive,this yields that σℓπ = πψγ−m and hen
e σℓ ;π id; a 
ontradi
tion. Thus there is nopositive integer n ∈ N so that σn ;π id. Hen
e, no substitution in Φ∗ restri
ts to thesubgroup UK.Our method to 
ompute a �nite L-presentation for the subgroup H in Remark 7.43 istherefore given by our expli
it proof of Theorem 1.1. If the subgroup H in Remark 7.43admits an invariant �nite L-presentation, the substitutions may not be related to thesubstitutions Φ of the �nite L-presentation 〈X | Q | Φ | R〉 of the Basili
a groupin Proposition 4.13. It is neither 
lear to us whether H admits an invariant �nite L-presentation at all nor do we know how to possibly prove that H does not admit su
hinvariant �nite L-presentation.D.8 Examples of Subgroup L-PresentationsIn this se
tion, we 
onsider the subgroup H = 〈a, bab−1, b3〉 of the Basili
a group G as inSe
tion D.4. We demonstrate how our methods apply to this subgroup and, in parti
ular,how to 
ompute the L-presentation in Se
tion D.4.Coset-enumeration for �nitely L-presented groups [67℄ allows us to 
ompute the per-mutation representation π:F → Sym(UK\F ) for the group's a
tion on the right-
osets.A S
hreier transversal for H in G is given by T = {1, b, b2} and we have

π:F → Sn,

{
a 7→ ( )
b 7→ (1, 2, 3).Moreover, H is a normal subgroup with index 3 in G and it satis�es σ2 ;π id. ByLemma 5.26, there exists an integer k ≥ 2 so that σk ∼ id; we 
an verify that σ4π = πholds. Thus σ4 ∼ id. In parti
ular, the subgroup H is (weakly) leaf-invariant and normal.Therefore the following te
hniques apply to this subgroup:

• As the subgroup H is a �nite index subgroup of an invariantly �nitely L-presentedgroup G, the general methods of Proposition 6.34 and Theorem 6.32 apply.
• As the subgroup H is leaf-invariant, the methods in Theorem 7.35 apply.
• As the subgroup H is weakly leaf-invariant and normal, the methods in Theo-rem 7.41 apply.We demonstrate these di�erent te
hniques for the subgroup H. First, we 
onsider thegeneral method from Proposition 6.34. Note that the stabilizing subgroup L and stabi-lizing 
ore L̃ 
oin
ide by Corollary 5.30. The stabilizing subgroups L = L̃ have index 9
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hreier generating set for L = L̃ is given by
x1 = a3 x4 = abab−1a−2 x7 = a2bab−1 x10 = b2a2ba−2.
x2 = bab−1a−1 x5 = ab2a−1b−2 x8 = a2b2a−2b−2

x3 = b3 x6 = b2aba−1 x9 = b2a3b−2Let F denote the free group over {a, b} and let E denote the free group over {x1, . . . , x10}.The Reidemeister rewriting τ :F → E allows us to rewrite the iterated relation r = [a, ab].We obtain τ(r) = x−1
1 x−1

10 x6 x
−1
10 x9 x3. Furthermore, the rewriting τ allows us to translatethe substitution σ of the Basili
a group to an endomorphism of the free group E. Thehomomorphism σ̂:E → E is indu
ed by the map

x1 7→ x23, x6 7→ x8 x9,
x2 7→ x5, x7 7→ x3 x2 x5 x6,

x3 7→ x1, x8 7→ x3 x2 x4 x
−1
10 x

−1
8 ,

x4 7→ x6 x
−1
2 x−1

3 , x9 7→ x8 x10 x8 x10,

x5 7→ x−1
8 , x10 7→ x8 x10 x7 x

−1
3 .Similarly, the 
onjugation a
tions δa and δb whi
h are indu
ed by 
onjugation with aand b, respe
tively, translate to endomorphisms δ̂a and δ̂b of the free group E. ByProposition 6.34, the stabilizing subgroups L = L̃ are �nitely L-presented by

M = L/K ∼= 〈{x1, . . . , x10} | ∅ | {σ̂, δ̂a, δ̂b} | {x−1
1 x−1

10 x6 x
−1
10 x9 x3}〉.The subgroup H satis�es the short exa
t sequen
e 1 → M → H → Z3 → 1 with a
y
li
 group Z3 = 〈α | α3 = 1〉 of order 3. Corollary 2.6 yields the following �nite

L-presentation for the subgroup H:
〈{α, x1, . . . , x10} | {α3x−1

1 } ∪ {(x−1
i )αxδai }1≤i≤10 | Ψ̃ | {x−1

1 x−1
10 x6 x

−1
10 x9 x3}〉.where the substitutions Ψ̂ = {σ̂, δ̂a, δ̂b} of M 's �nite L-presentation are dilated to en-domorphisms Ψ̃ = {σ̃, δ̃a, δ̃b} of the free group over {α, x1, . . . , x10} as in the proof ofProposition 2.5.Se
ondly, the subgroup H is (weakly) leaf-invariant and normal. Therefore, themethods in Se
tion D.7 apply. First, we 
onsider the 
onstru
tion in Theorem 7.35for leaf-invariant subgroups: A S
hreier generating set for the subgroup UK is given by

x1 = a, x2 = bab−1, x3 = b2ab−2, and x4 = b3. Sin
e σ4π = π, the subgroup H is
σ4-invariant and its su�
es to rewrite the relation r = [a, b] and its images τ(trσit−1),
0 ≤ i < 4. These have the form:

i t = 1 t = b t = b2

0 x−1

1
x−1

4
x−1

3
x4 x1 x

−1

4
x3 x4 x−1

2
x−1

1
x2 x1 x−1

3
x−1

2
x3 x2

1 x−1

4
x−1

2
x−1

4
x3 x4 x

−1

2
x4 x1 x−1

4
x−1

3
x1 x

−1

3
x4 x2 x−1

1
x−1

4
x2 x4 x

−1

1
x3

2 x−2

1
x−1

4
x−2

2
x4 x

2

1
x−1

4
x2
2
x4 x−2

2
x−1

4
x−2

3
x4 x

2

2
x−1

4
x2
3
x4 x−2

3
x−2

1
x2
3
x2
1

3 x−2

4
x−2

3
x−1

4
x2
2
x4 x

−2

3
x2
4
x2
1

x−1

4
x−2

1
x−2

4
x2
3
x2
4
x−2

1
x4 x

2

2
x−1

4
x−2

2
x−1

4
x2
1
x4 x

−2

2
x4 x

2

3



160 Chapter D. A Reidemeister-S
hreier Theorem for Finitely L-Presented GroupsDenote the set of relations above by S. The endomorphism σ4 translates, via τ , to anendomorphism of the free group over {x1, . . . , x4} whi
h is indu
ed by the map
σ̂4:





x1 7→ x41,

x2 7→ x4 x
4
2 x

−1
4 ,

x3 7→ x24 x
4
3 x

−2
4 ,

x4 7→ x44.By Theorem 7.35, an L-presentation for the subgroup H is given by
H ∼= 〈{x1, . . . , x4} | ∅ | {σ̂4} | S〉.Finally, the subgroup H is weakly leaf-invariant and normal. Therefore, the methods inTheorem 7.41 apply. As σ2 ;π id, it su�
es to 
onsider the relations τ(r), τ(rσ), andtheir images under the substitutions σ̂2 and δ̂b (be
ause a S
hreier transversal is givenby T = {1, b, b2}). The substitutions σ̂2 and δ̂b are indu
ed by the maps

σ̂2:





x1 7→ x21,
x2 7→ x23,

x3 7→ x4 x
2
2 x

−1
4 ,

x4 7→ x24,

and δ̂b:





x1 7→ x2,
x2 7→ x3,

x3 7→ x4 x1 x
−1
4 ,

x4 7→ x4.Theorem 7.41 yields the �nite L-presentation
H ∼= 〈{x1, . . . , x4} | ∅ | {σ̂2, δ̂b} | {τ(r), τ(rσ)}〉for the subgroup H as in Se
tion D.4.D.8.1 An Appli
ation to the Grigor
huk GroupAs a �nite L-presentation of a group allows the appli
ation of 
omputer algorithms, wemay use our 
onstru
tive proof of Theorem 1.1 to investigate the stru
ture of a self-similar group by its �nite index subgroups as in [77℄. As an appli
ation, we 
onsider theGrigor
huk group, see [53℄, G = 〈a, b, c, d〉 and its normal subgroup D = 〈d〉G. We showthat the subgroup D = 〈d〉G has a minimal generating set with 8 elements and therebywe 
orre
t a mistake in [11, 58℄.The Grigor
huk group G satis�es the well-knownProposition 8.44 (Lysënok [96℄) The group G is invariantly �nitely L-presented by

G ∼=
〈
{a, b, c, d} | {a2, b2, c2, d2, bcd} | {σ} | {(ad)4, (adacac)4}

〉, where σ is the endomor-phism of the free group over {a, b, c, d} indu
ed by the mapping a 7→ aca, b 7→ d, c 7→ b,and d 7→ c.It was 
laimed in [11, Se
tion 4.2℄ and in [58, Se
tion 6℄ that the normal subgroup D =
〈d〉G is generated by {d, da, dac, daca}. In the following, we show that the ReidemeisterS
hreier Theorem 1.1 allows us to prove that a generating set for D = 〈d〉G 
ontains



D.8. Examples of Subgroup L-Presentations 161at least 8 elements. The 
oset-enumeration for �nitely L-presented groups [67℄ and thesolution to the subgroup membership problem for �nite index subgroups [67℄ show thatthe subgroup
H = 〈 d, da, dac, daca, dacac, dacaca, dacacac, dacacaca 〉 (D.11)has index 16 in G. It is a normal subgroup of G so that G/H is a dihedral group oforder 16. In parti
ular, the subgroup H and the normal subgroup D = 〈d〉G 
oin
ide. Apermutation representation π:F → Sn for the group's a
tion on the right-
osets UK\Fis given by

π:F → S16,





a 7→ (1, 2)(3, 5)(4, 6)(7, 9)(8, 10)(11, 13)(12, 14)(15, 16)
b 7→ (1, 3)(2, 4)(5, 7)(6, 8)(9, 11)(10, 12)(13, 15)(14, 16)
c 7→ (1, 3)(2, 4)(5, 7)(6, 8)(9, 11)(10, 12)(13, 15)(14, 16)
d 7→ ( ).Our variant of the Reidemeister-S
hreier Theorem and the te
hniques introdu
ed in Se
-tion D.7 enable us to 
ompute a subgroup L-presentation for D. For this purpose, we �rstnote that σ3 ;π id. Hen
e, the normal 
ore D = CoreF (UK) = ker(π) is σ3-invariant.The 
ore CoreF (UK) is a free group with rank 49 and a S
hreier transversal for D in Gis given by

1, a, b, ab, ba, aba, bab, (ab)2 , (ba)2, a(ba)2, b(ab)2, (ab)3, (ba)3, a(ba)3, b(ab)3, (ab)4.A �nite L-presentation with generators d0 = d, d1 = da, d2 = dac, d3 = daca, d4 = dacac,
d5 = dacaca, d6 = dacacac, and d7 = dacacaca is given by

D ∼= 〈{d0, . . . , d7} | ∅ | {σ̂, δa, δb} | R 〉,where the iterated relations are
R =

{
d20, [d1, d0], [d1, d4], [d7, d3 d4]

4 , [d7 d0, d3 d4], (d3 d7 d4 d0)
2, (d7 d

d3
4 d0 d

d4
3 )2

}and the endomorphisms {σ̂, δa, δb} are indu
ed by the maps
δa:





d0 7→ d1,
d1 7→ d0,
d2 7→ d3,
d3 7→ d2,
d4 7→ d5,
d5 7→ d4,
d6 7→ d7,
d7 7→ d6,

, δb:





d0 7→ d0,

d1 7→ d2,

d2 7→ d1,

d3 7→ dd04 ,

d4 7→ dd03 ,

d5 7→ d6,

d6 7→ d5,

d7 7→ dd07 ,

, and σ̂:





d0 7→ d0,

d1 7→ d
d
d3
7

0 ,

d2 7→ d
d
d4
7

0 ,

d3 7→ d
d
d4
7 d

d3
7

0 ,

d4 7→ d
d
d3
7 d

d4
7

0 ,

d5 7→ d
d
d3
7 d

d4
7 d

d3
7

0 ,

d6 7→ d
d
d4
7 d

d3
7 d

d4
7

0 ,

d7 7→ d
d
d4
7 d

d3
7 d

d4
7 d

d3
7

0 .The latter L-presentation of the normal subgroup D allows us to 
ompute the abelianiza-tion D/[D,D] using the methods from [9℄. These 
omputations yield that D/[D,D] ∼=
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(Z2)

8 is 2-elementary abelian of rank 8. Hen
e, the normal subgroup D has a minimalgenerating set of length at least 8. Be
ause a generating set with 8 generators was alreadygiven in Eq. (D.11), a minimal generating set of D has pre
isely 8 elements. In parti
ular,this shows that D 6= 〈d, da, dac, daca〉. The latter mistake 
ould have been dete
ted alsoby 
omputing the abelianization of the image of D = 〈d〉G in a �nite quotient of G (e.g.the quotient G/Stab(n) for n ≥ 4) by hand or using a 
omputer algebra system su
h asGap.A
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AppendixEApproximating the S
hur Multiplier ofCertain In�nitely Presented Groups viaNilpotent QuotientsAbstra
t. We des
ribe an algorithm for 
omputing su

essive quotients of theS
hur multiplierM(G) for a groupG given by an invariant �nite L-presentation.As appli
ation, we investigate the S
hur multipliers of various self-similargroups su
h as the Grigor
huk super-group, the generalized Fabrykowski-Guptagroups, the Basili
a group and the Brunner-Sidki-Vieira group.Keywords. S
hur multiplier; re
ursive presentations; Grigor
huk group; self-similar groups;
E.1 Introdu
tionThe S
hur multiplier M(G) of a group G 
an be de�ned as the se
ond homology group
H2(G,Z). It was introdu
ed by S
hur and is, for instan
e, relevant in the theory of
entral group extensions. In 
ombinatorial group theory, the S
hur multiplier found itsappli
ations due to the Hopf formula: if F is a free group and R is a normal subgroupof F so that G ∼= F/R, then the S
hur multiplier of G is isomorphi
 to the fa
tor group
(R∩F ′)/[R,F ]. For further details on the S
hur multiplier we refer to [121, Chapter 11℄.The Hopf formula yields that every �nitely presentable group has a �nitely generatedS
hur multiplier. This is used in [56℄ for proving that the Grigor
huk group is not�nitely presentable: its S
hur multiplier is in�nitely generated 2-elementary abelian.This answers the questions in [19℄ and [127℄. There are various examples of self-similargroups other than the Grigor
huk group for whi
h it is not known whether their S
hurmultiplier is �nitely generated or whether the groups are �nitely presented.



164 Chapter E. Approximating the S
hur MultiplierThe �rst aim of this paper is to introdu
e an algorithm for investigating the S
hurmultiplier of self-similar groups with a view towards its �nite generation. Let G be agroup with a presentation G ∼= F/R. Then G/γcG ∼= F/RγcF , where γcG denotes the
c-th term of the lower 
entral series of G. We identify M(G) with (R ∩ F ′)/[R,F ] and
M(G/γcG) with (RγcF ∩ F ′)/[RγcF,F ] and de�ne

ϕc:M(G) →M(G/γcG), g[R,F ] 7→ g[RγcF,F ].Then ϕc is a homomorphism of abelian groups. We des
ribe an e�e
tive method todetermine the Dwyer quotients Mc(G) = M(G)/ kerϕc, for c ∈ N, provided that G isgiven by an invariant �nite L-presentation, see [6,9℄ or Se
tion E.2 below. Every �nitelypresented group and many self-similar groups 
an be des
ribed by a �nite invariant L-presentation. An implementation of our algorithm is available in the Nql-pa
kage [65℄of the 
omputer algebra system Gap; see [50℄.We have applied our algorithm to various examples of self-similar groups: the Grigor-
huk super-group G̃, see [11℄, the Basili
a group ∆, see [60,61℄, the Brunner-Sidki-Vieiragroup BSV, see [29℄, and some generalized Fabrykowski-Gupta groups Γd, see [45, 57℄.As a result, we observed that the sequen
e (M1(G), . . . ,Mc(G),Mc+1(G), . . .) exhibits aperiodi
ity in c in all these 
ases. Based on this, we propose the following 
onje
ture.Conje
ture I
• Mc(G̃) is 2-elementary abelian of rank 2⌊log2(c)⌋ + 2⌊log2

c
3⌋+ 5, for c ≥ 4.

• Mc(∆) has the form Z
2 ×Ac, where Ac is an abelian 2-group of rank ⌊log2

c
3⌋ andexponent 22⌊ c−6

2
⌋+2, for c ≥ 6.

• Mc(BSV) has the form Z
2 ×Bc, where Bc is an abelian 2-group of rank ⌊log2

c
5⌋+

⌊log2
c
9⌋+ 3 and exponent 22⌊ c−4

2
⌋+1, for c ≥ 4.

• For a prime power d, the group Mc(Γd) has exponent d for c large enough; its rankis an in
reasing fun
tion in c whi
h exhibits a periodi
 pattern.In parti
ular, all of these groups have an in�nitely generated S
hur multiplier and aretherefore not �nitely presentable.Further details on the periodi
ities and the 
omputational eviden
e for them are givenin Se
tion E.6.E.2 PreliminariesIn the following, we re
all the basi
 notion of invariant and �nite L-presentations andthe basi
 theory of the S
hur multiplier of a group. Let F be a �nitely generated freegroup over the alphabet X . Further suppose that Q,R ⊂ F are �nite subsets of the free



E.2. Preliminaries 165group F and Φ ⊂ End(F ) is a �nite set of endomorphisms of F . Then the quadruple
〈X | Q | Φ | R〉 is a �nite L-presentation. It de�nes the �nitely L-presented group

G =
〈
X

∣∣∣ Q∪
⋃

ϕ∈Φ∗

Rϕ
〉
,where Φ∗ denotes the free monoid generated by Φ; that is, the 
losure of Φ∪ {id} under
omposition. A �nite L-presentation 〈X | Q | Φ | R〉 is invariant if every endomorphism

ϕ ∈ Φ indu
es an endomorphism of G; that is, if the normal 
losure of Q ∪
⋃
ϕ∈Φ∗ Rϕin F is ϕ-invariant. For example, every �nite L-presentation of the form 〈X | ∅ | Φ |

R〉 is invariant. Clearly, invariant �nite L-presentations generalize �nite presentationssin
e every �nitely presented group 〈X | R〉 is �nitely L-presented by 〈X | ∅ | {id} |
R〉. Further examples of invariantly L-presented groups are several self-similar groupsin
luding the Grigor
huk group [53℄, the Basili
a group [60, 61℄, and the Brunner-Sidki-Vieira group [29℄.In the remainder of this se
tion, we re
all the basi
 theory of the S
hur multiplier ofa group G. Re
all that, in general, the S
hur multiplier of a �nitely presented group isnot 
omputable; see [52℄. But, for instan
e, if G is �nite, then M(G) 
an be dedu
edfrom a �nite presentation of G with the Hopf formula and the Reidemeister-S
hreieralgorithm. A more e�e
tive algorithm for �nite permutation groups is des
ribed in [82℄.Re
ently, Ei
k and Ni
kel [44℄ des
ribed an algorithm for 
omputing the S
hur multiplierof a poly
y
li
 group given by a poly
y
li
 presentation.Let F be a free group and R be a normal subgroup of F so that G ∼= F/R. Then theHopf formula gives

M(G) ∼= (R ∩ F ′)/[R,F ]. (E.1)Suppose that N is a normal subgroup of G and let S be a normal subgroup of F so that
SR/R 
orresponds to N . Then Bla
kburn and Evens [24℄ determined the exa
t sequen
e

1 → (R ∩ [S,F ])/([R,F ] ∩ [S,F ]) →M(G) →M(G/N) → (N ∩G′)/[N,G] → 1.Applying this sequen
e to the lower 
entral series term N = γcG yields the exa
t sequen
e
1 → (R ∩ γc+1F )/([R,F ] ∩ γc+1F ) →M(G)

ϕc
→M(G/γcG) → γcG/γc+1G→ 1.This gives a �ltration M(G) ≥ kerϕ1 ≥ kerϕ2 ≥ . . ., 
alled the Dwyer-�ltration, of theS
hur multiplier of G. Note that, if G has a maximal nilpotent quotient of 
lass c, then

⋂

c∈N0

kerϕc ∼= (R ∩ γc+1F )[R,F ]/[R,F ].However, even if the group G is residually nilpotent, the group F/[R,F ] is not ne
essarilyresidually nilpotent; see [98℄ and [25℄. Thus the Dwyer-kernel ⋂
c∈N kerϕc is possiblynon-trivial.We note that the S
hur multiplier M(G/γcG) 
an be 
omputed with the algorithmin [44℄ while the isomorphism type of γcG/γc+1G 
an be 
omputed with the nilpotent
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hur Multiplierquotient algorithm in [9℄. Therefore, the sequen
eM(G) →M(G/γcG) → γcG/γc+1G→
1 allows to determine the size of Mc(G) provided that M(G/γcG) is �nite. However, thealgorithm des
ribed here determines the stru
ture of Mc(G) even if the S
hur multiplier
M(G/γcG) is in�nite.E.3 Adjusting an Invariant L-PresentationIn order to prove the following theorem, we expli
itly des
ribe an algorithm for modi-fying an invariant L-presentation. The resulting L-presentation enables us to read o�a generating set for the S
hur multiplier in Se
tion E.4. Our algorithm generalizes theexpli
it 
omputations in [56℄.Theorem 3.1 Let 〈X | Q | Φ | R〉 be an invariant �nite L-presentation whi
h de�nes thegroup G = F/R. Then G admits an invariant �nite L-presentation 〈X | Q′ ∪B | Φ | R′〉with Q′,R′ ⊂ F ′ and B ⊂ F satisfying |B| = |X | − h(G/G′), where h(G/G′) denotes thetorsion-free rank of G/G′.Proof. Sin
e 〈X | Q | Φ | R〉 is an invariant L-presentation, every endomorphism ϕ ∈ Φindu
es an endomorphism of the group G. Thus we have Rϕ ⊆ R, for every ϕ ∈ Φ∗.In parti
ular, every image of a relator in Q ∪ R is a 
onsequen
e; that is, Qϕ ⊂ R and
Rϕ ⊂ R, for every ϕ ∈ Φ∗.Write n = rk(F ). Then the abelianization π:F → Z

n maps every x ∈ F to its
orresponding exponent ve
tor ax ∈ Z
n. Clearly, kerπ = F ′ and, sin
e F ′ is fully-invariant, every ϕ ∈ Φ indu
es an endomorphism of the free abelian group Z

n. Therefore,the exponent ve
tor of xϕ is the image axMϕ for some matrix Mϕ ∈ Z
n×n. Now, thenormal subgroup RF ′ maps onto

U = 〈aq, arMϕ | q ∈ Q, r ∈ R, ϕ ∈ Φ∗〉 ≤ Z
n. (E.2)As every subgroup of Zn is generated by at most n elements, the subgroup U is �nitelygenerated. In the following, we may use the spinning algorithm from [9℄ and Hermitenormal form 
omputations to 
ompute a basis for the subgroup U while modifying the

L-presentation simultaneously.Let B be a basis of 〈aq | q ∈ Q〉. Then every element u ∈ B is a Z-linear 
ombinationof elements in {aq | q ∈ Q}. Hen
e, for every u ∈ B, there exists a word ru in the relatorsin Q su
h that aru = u. De�ne B = {ru | u ∈ B}. Then, for every q ∈ Q, it holds that
aq ∈ 〈B〉 as B is a basis and hen
e, there exists a word wq in the ru's so that awq = aq.De�ne Q′ = {qw−1

q | q ∈ Q}. Then the exponent ve
tor of ea
h element in Q′ vanishesand hen
e Q′ ⊂ F ′. Moreover, the invariant and �nite L-presentation
〈X | Q′ ∪ B | Φ | R〉still de�nes the group G as we only applied Tietze transformations to the given L-presentation.



E.3. Adjusting an Invariant L-Presentation 167It remains to for
e the elements of R into the derived subgroup F ′. For this purpose,we will use the spinning algorithm from [9℄ as follows: Initialize R′ = ∅. As long as R isnon-empty, we take an element r ∈ R and remove it from R. Then either ar ∈ 〈B〉 or
ar 6∈ 〈B〉 holds. If ar ∈ 〈B〉, then there exists a word wr in the ru's su
h that awr = arand hen
e, rw−1

r ∈ F ′. In this 
ase we just add rw−1
r to R′. Note that, for every

ϕ ∈ Φ∗, the word (w−1
r )ϕ is a 
onsequen
e and hen
e, we 
an repla
e the relator rϕ inthe L-presentation by (rw−1

r )ϕ. The invariant and �nite L-presentation
〈X | Q′ ∪ B | Φ | R′ ∪R〉still de�nes the group G.If, on the other hand, ar 6∈ 〈B〉 holds, we enlarge the 
urrent basis B and modify theset B. Let B′ be a basis for 〈B ∪ {ar}〉. Then every v ∈ B′ is a Z-linear 
ombination ofthe elements in B ∪ {ar} and hen
e, there exists a word r̃v in B ∪ {r} su
h that ar̃v = v.De�ne B = {r̃v | v ∈ B′}. Then, by 
onstru
tion, either |B| = |B|+1 or |B| = |B| holds.In the latter 
ase, there is an element u ∈ B so that u ∈ 〈(B \ {u}) ∪ {ar}〉 holds. Thus,there exists a word wu in the elements of B su
h that awu = u and hen
e, ruw−1

u ∈ F ′.In this 
ase, we add ruw−1
u to Q′ and add the images {rϕu | ϕ ∈ Φ} to R. This yields aninvariant and �nite L-presentation 〈X | Q′ ∪ B | Φ | R′ ∪ R〉, with Q′,R′ ⊂ F ′, whi
hstill de�nes the group G.As as
ending 
hains of subgroups in Z

n terminate, eventually every exponent ve
torof an element in R is 
ontained in the subgroup 〈B〉 and hen
e, the algorithm des
ribedabove eventually terminates. Clearly, the basis B is then a basis for the subgroup Uin (E.2). As shown in [9℄, the abelian quotient G/G′ is isomorphi
 to the fa
tor Zn/U .Its torsion-free rank is n− |B| as 
laimed above. 2In the following example, we re
all the expli
it 
omputations in [56℄ for the Grigor
hukgroup G.Example 3.2 Consider the Grigor
huk group G with its invariant L-presentation
G ∼= 〈{a, b, c, d} | {a2, b2, c2, d2, bcd} | {σ} | {(ad)4, (adacac)4}〉where σ is the free group endomorphism indu
ed by the mapping

σ:





a 7→ ca

b 7→ d
c 7→ b
d 7→ c.As the exponent ve
tors (2, 0, 0, 0), (0, 1, 1, 1), (0, 0, 2, 0), and (0, 0, 0, 2) of the relations

a2, bcd, c2, and d2, respe
tively, are Z-linearly independent forming a basis for the sub-group U in (E.2), we 
an modify this presentation so that the relations be
ome
a2, c2, d2, bcd, b2(bcd)−2c2d2, σk((ad)4a−4d−4), σk((adacac)4a−12c−8d−4), (E.3)
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hur Multiplierfor every k ∈ N0. Sin
e the L-presentation is invariant, the images σk(a−4d−4) and
σk(a−12c−8d−4) are 
onsequen
es. Hen
e, the invariant �nite L-presentation

〈{a, b, c, d} | {b2(bcd)−2c2d2} ∪ {a2, c2, d2, bcd} | {σ} | R′〉,where R′ = {(ad)4a−4d−4, (adacac)4a−12c−8d−4}, de�nes the Grigor
huk group G and,as G/G′ ∼= Z
3
2, it has the form as 
laimed in Theorem 3.1.E.4 A Generating Set for the S
hur MultiplierLet G be a �nitely generated group. We will use the results of Theorem 3.1 and theHopf formula to give a generating set for the S
hur multiplier of G if G is invariantly�nitely L-presented. Suppose that F is a �nitely generated free group and R is a normalsubgroup of F so that G ∼= F/R. Then F/[R,F ] is a 
entral extension of R/[R,F ] bythe group G and the subgroup R/[R,F ] 
ontains (R∩ F ′)/[R,F ]. By the Hopf formula,the latter subgroup is isomorphi
 to the S
hur multiplier of G. Further, the subgroup

R/[R,F ] de
omposes as follows.Proposition 4.3 Let G ∼= F/R with a �nitely generated free group F . Then we havethat
R/[R,F ] ∼= Z

rk(F )−h(G/G′) ⊕M(G).Proof. The fa
tor RF ′/F ′ is free abelian with torsion-free rank rk(F )− h(G/G′). Sin
e
RF ′/F ′ ∼= R/(R ∩ F ′) is free abelian, the subgroup (R ∩ F ′)/[R,F ] has a free abelian
omplement of rank rk(F )−h(G/G′) and thus, the 
entral subgroup R/[R,F ] de
omposesas 
laimed above. 2As R/[R,F ] is 
entral in F/[R,F ], it is generated by the images of the normal generatorsof R. Thus, in parti
ular, if R is �nitely generated as normal subgroup (that is, if Gis �nitely presentable), then R/[R,F ] is a �nitely generated abelian group and so is itssubgroup (R ∩ F ′)/[R,F ].If G is �nite, then R/[R,F ] is an abelian subgroup with �nite index in F/[R,F ]. A�nite presentation for F/[R,F ] 
an be obtained from a �nite presentation of G. Thenthe Reidemeister-S
hreier algorithm yields a �nite presentation for R/[R,F ] from whi
hthe isomorphism type of M(G) is obtained easily.If G is poly
y
li
, then it is �nitely presentable and hen
e, the group F/[R,F ] isan extension of a �nitely generated abelian group by a poly
y
li
 group. In parti
ular,
F/[R,F ] is poly
y
li
 in this 
ase. A 
onsistent poly
y
li
 presentation for F/[R,F ] 
anbe 
omputed with the algorithm in [44℄. This poly
y
li
 presentation enables us to reado� the isomorphism type of R/[R,F ] and, by Proposition 4.3, the isomorphism type of
M(G). If G is �nitely generated and nilpotent of 
lass c, then F/[R,F ] is nilpotent of
lass at most c+1. If G is given by a weighted nilpotent presentation, then the algorithmin [107℄ 
omputes a weighted nilpotent presentation for F/[R,F ].We now 
onsider the 
ase of an invariantly �nitely L-presented group G. Even thoughits S
hur multiplier is not 
omputable in general, the following theorem yields a gener-ating set for M(G) as subgroup of R/[R,F ].
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hur Multiplier 169Theorem 4.4 Let 〈X | Q′ ∪ B | Φ | R′〉 be an invariant �nite L-presentation of Gas provided by Theorem 3.1. Further let π:F → F/[R,F ], x 7→ x̄ denote the naturalhomomorphism. Then we have that
M(G) ∼= 〈q̄, rϕ | q ∈ Q′, r ∈ R′, ϕ ∈ Φ∗〉.Proof. Clearly, R/[R,F ] is generated by the images of Q′ ∪ B ∪

⋃
ϕ∈Φ∗(R′)ϕ. As therelators in Q′ ∪R′ are 
ontained in F ′, it holds that

{q̄, rϕ | q ∈ Q′, r ∈ R′, ϕ ∈ Φ∗} ⊆ (R ∩ F ′)/[R,F ]. (E.4)We are left with the relators in B. Re
all that we have |B| = rk(F ) − h(G/G′). Hen
e,the images {r̄ | r ∈ B} generate a free abelian 
omplement to the S
hur multiplier
(R ∩ F ′)/[R,F ] in R/[R,F ]. Therefore, the images in (E.4) ne
essarily generate (R ∩
F ′)/[R,F ]. 2As the group G in Theorem 4.4 is invariantly L-presented, for every endomorphism
ϕ ∈ Φ, we have Rϕ ⊆ R and [R,F ]ϕ ⊆ [R,F ]. Therefore, every ϕ ∈ Φ also indu
es anendomorphism of F/[R,F ] whi
h �xes the subgroup R/[R,F ]. Further, as F ′ is fully-invariant, every su
h ϕ indu
es an endomorphism ϕ̄ of (R ∩ F ′)/[R,F ]. This yieldsthat

M(G) ∼= 〈q̄, r̄ ϕ̄ | q ∈ Q′, r ∈ R′, ϕ ∈ Φ∗〉and hen
e, the free monoid Φ∗ indu
es a Φ∗-module stru
ture on the S
hur multiplier
M(G) in a natural way:Lemma 4.5 Let 〈X | Q | Φ | R〉 be an invariant �nite L-presentation. Then the S
hurmultiplier M(G) is �nitely generated as a Φ∗-module.In parti
ular, the S
hur multiplier M(G) has the form A⊕

⊕
Φ∗ B with �nitely generatedabelian groups A and B; see [6℄.We pro
eed with Example 3.2 by des
ribing a generating set for the S
hur multiplierof the Grigor
huk group as provided by Theorem 4.4; 
f. [56℄.Example 4.6 Consider the invariant �nite L-presentation of the Grigor
huk group Gas determined in Example 3.2. Then the images of

b2(bcd)−2c2d2, σk((ad)4a−4d−4), σk((adacac)4a−12c−8d−4), with k ∈ N0, (E.5)in F/[R,F ], generate the subgroup (R ∩ F ′)/[R,F ]. The images in F/[R,F ] of the re-lations a2, c2, d2, and bcd generate a free abelian 
omplement to the S
hur multiplier
(R ∩ F ′)/[R,F ] in R/[R,F ].E.5 Approximating the S
hur MultiplierWe �nally des
ribe our algorithm for approximating the S
hur multiplier of an invariantly�nitely L-presented group G. Let 〈X | Q | Φ | R〉 be an invariant �nite L-presentation
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hur Multiplierde�ning the group F/R so that G ∼= F/R. Then G is �nitely generated and hen
e,its lower 
entral series quotient G/γcG is poly
y
li
. The nilpotent quotient algorithmin [9℄ 
omputes a weighted nilpotent presentation for G/γcG together with the naturalhomomorphism π:F → G/γcG. In [107℄, Ni
kel des
ribed a 
overing-algorithm whi
h,given a weighted nilpotent presentation for G/γcG and the homomorphism π, 
omputes apoly
y
li
 presentation for F/[RγcF,F ] together with the natural homomorphism π̄:F →
F/[RγcF,F ]. The homomorphism π̄ indu
es the homomorphism ϕc:M(G) →M(G/γcG)as follows: By Theorem 3.1, the group G has an invariant �nite L-presentation of theform

〈X | Q′ ∪ B | Φ | R′〉, with Q′,R′ ⊂ F ′and |B| = |X | − h(G/G′). Now, by Theorem 4.4, the images of Q′ ∪
⋃
ϕ∈Φ∗(R′)ϕ in

F/[R,F ] generate the subgroup (R ∩ F ′)/[R,F ]. Similarly, the their images in
F/[RγcF,F ] generate the subgroup (R ∩ F ′)[RγcF,F ]/[RγcF,F ]. Sin
e [RγcF,F ] =
[R,F ]γc+1F , we have that

(R ∩ F ′)[RγcF,F ]/[RγcF,F ] = (Rγc+1F ∩ F ′)/[RγcF,F ].The latter subgroup is 
ontained in (RγcF ∩ F ′)/[RγcF,F ] whi
h is isomorphi
 to theS
hur multiplier M(G/γcG).As the group G is invariantly L-presented, every ϕ ∈ Φ indu
es an endomorphism ϕ̃of RγcF/[RγcF,F ]. This yields, that the image of M(G) in M(G/γcG) has the form
〈qp̄, (rπ̄) ϕ̃ | q ∈ Q′, r ∈ R′, ϕ ∈ Φ∗〉. (E.6)This 
an be used to investigate the Φ∗-module stru
ture of M(G) by 
onsidering the�nitely generated Dwyer quotients Mc(G). In our algorithm, we use Hermite normalform 
omputations in a spinning algorithm for 
omputing a �nite generating set of thesubgroup in (E.6). We summarize our algorithm as follows: Write G = F/R.DwyerQuotient( G, c )Compute an invariant �nite L-presentation as in Theorem 3.1.Compute a weighted nilpotent presentation for G/γcGtogether with the natural homomorphism F → G/γcG.Compute a poly
y
li
 presentation for the group F/[RγcF,F ]together with the natural homomorphism F → F/[RγcF,F ].Translate ea
h ϕ ∈ Φ to an endomorphism of the group F/[RγcF,F ]and restri
t this endomorphism to (Rγc+1F ∩ F ′)/[RγcF,F ].Use the spinning algorithm to 
ompute a �nite generating setfor the image (Rγc+1F ∩ F ′)/[RγcF,F ].E.6 Appli
ationsThe algorithm des
ribed in the �rst part is available in the NQL-pa
kage [65℄ of the
omputer algebra system GAP; see [50℄. We parallelized the algorithm in [9℄ to enlarge



E.6. Appli
ations 171the possible depths in the lower 
entral series rea
hed in this se
tion. We show thesu

essful appli
ation of our algorithm to the following invariantly �nitely L-presentedtestbed groups studied in [6℄ and [9℄:
• The Grigor
huk group G, see [53℄, with its invariant �nite L-presentation from [96℄;see also [56℄ and Example 3.2;
• the twisted twin Ḡ of the Grigor
huk group, see [14℄, with its invariant �nite L-presentation from [14℄;
• the Grigor
huk super-group G̃, see [11℄, with its invariant �nite L-presentationfrom [6℄;
• the Basili
a group ∆, see [60,61℄, with its invariant �nite L-presentation from [16℄;and
• the Brunner-Sidki-Vieira group BSV, see [29℄, with its invariant �nite L-presenta-tion from [6℄.In Se
tion E.6, we further applied our algorithm to several generalized Fabrykowski-Gupta groups: an in�nite family of �nitely L-presented groups Γp introdu
ed in [57℄.Invariant �nite L-presentations for these groups were 
omputed in [9℄.Aspe
ts of the Implementation of our Algorithm in GapTable E.1 shows some performan
e data of the implementation of our algorithm in theNql-pa
kage of the 
omputer-algebra-system Gap. All timings displayed below havebeen obtained on an Intel Pentium Core 2 Quad with 
lo
k speed 2.83 GHz using a single
ore. We applied our algorithm with a time limit of two hours. Then the 
omputationshave been stopped and the total time used to 
ompute a weighted nilpotent presentationfor the quotient G/γcG and the total time to 
ompute the Dwyer quotient Mc(G) havebeen listed. Every appli
ation 
ompleted within 1 GB of memory.Table E.1: Performan
e data of our implementation in GapTime (h:min) for

G c
G/γc+1G Mc+1(G)

G 90 1:47 0:07
Ḡ 54 1:44 0:09
G̃ 44 1:32 0:13
∆ 42 1:31 0:16

BSV 35 1:10 0:21
Γ3 75 1:46 0:04

Time (h:min) for
G c

G/γc+1G Mc+1(G)

Γ4 71 1:50 0:07
Γ5 55 1:40 0:04
Γ7 46 1:40 0:03
Γ8 56 1:54 0:06
Γ9 61 1:44 0:06
Γ11 35 1:54 0:02We note that for the results shown in the remainder of this se
tion we used a parallelversion of the algorithm for 
omputing G/γc+1G.
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hur MultiplierOn the Dwyer Quotients of the Testbed-GroupsThe Dwyer quotient Mc(G) = M(G)/ ker ϕc is a �nitely generated abelian group andhen
e, it 
an be des
ribed by its abelian invariants or, if the group is p-elementaryabelian, by its p-rank. Here the list (c1, . . . , cn) stands for the group Zc1 ⊕ · · · ⊕Zcn. Forabbreviation, we will write a[ℓ] if the term a o

urs in ℓ 
onse
utive pla
es in a list. Inthe following we summarize our 
omputational results for the testbed groups.The Grigor
huk group G was shown in [53℄ to be an expli
it 
ounter-example to thegeneral Burnside problem: it is a �nitely generated in�nite 2-torsion group. Furthermore,the Grigor
huk group is a �rst example of a group with an intermediate word-growth.In [96℄, Lysënok determined a �rst L-presentation for the group G; see Example 3.2.Even though it was already proposed in [53℄ that the Grigor
huk group G is not �nitelypresentable, a proof was not derived until [56℄ where Grigor
huk expli
itly 
omputed theS
hur multiplier of G: it is in�nitely generated 2-elementary abelian. We have 
omputedthe Dwyer quotients Mc(G), for 1 ≤ c ≤ 301. These quotients are 2-elementary abelianwith the following 2-ranks
1, 2, 3[3], 5[6], 7[12], 9[24], 11[48], 13[96], 15[110].This suggests the following 
onje
ture.Conje
ture A The Grigor
huk group G satis�es

Mc(G) ∼=

{
Z2 or (Z2)

2, if c = 1 or c = 2, respe
tively
(Z2)

2m+3, if c ∈ {3 · 2m, . . . , 3 · 2m+1 − 1}

}
,with m ∈ N0.Further experiments suggest that the S
hur multiplier of the Grigor
huk group G hasthe {σ}∗-module stru
ture, as given by Lemma 4.5, of the form Z2 ⊕ (Z2[σ])

2 where σ�xes the �rst 
omponent.The twisted twin Ḡ of the Grigor
huk group was introdu
ed in [14℄. It is invariantly�nitely L-presented by
〈{a, b, c, d} | {a2, b2, c2, d2} | {σ̄} | {[da, d], [d, cab], [d, (cab)c], [d, (cab)c], [cab, cba]}〉where σ̃ is the free group endomorphism indu
ed by the mapping

σ̃:





a 7→ ca

b 7→ d
c 7→ ba

d 7→ c.We have 
omputed the Dwyer quotients Mc(Ḡ), for 1 ≤ c ≤ 144. These quotients are
2-elementary abelian with the following 2-ranks

2, 5, 7, 8[2], 11[2], 12[4], 15[4], 16[8], 19[8], 20[16], 23[16], 24[32], 27[32], 28[17].This suggests the following 
onje
ture.
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ations 173Conje
ture B The twisted twin Ḡ of the Grigor
huk group satis�es
Mc(Ḡ) ∼=





(Z2)
2, (Z2)

5, or (Z2)
7, if c = 1, c = 2, or c = 3, resp.

(Z2)
4(m+1)+4, if c ∈ {2m+2, . . . , 2m+2 + 2m+1 − 1}

(Z2)
4(m+1)+7, if c ∈ {2m+2 + 2m+1, . . . , 2m+3 − 1}



 ,with m ∈ N0.Further experiments suggest that the S
hur multiplier of Ḡ has the {σ̄}∗-module stru
-ture, as given by Lemma 4.5, of the form (Z2[σ̄])

4; for a proof see [14℄.The Grigor
huk super-group G̃ was introdu
ed in [11℄. It 
ontains the Grigor
hukgroup G as an in�nite-index subgroup and it is another example of a group with anintermediate word-growth. In [6℄, it was shown that G̃ admits the invariant �nite L-presentation 〈{ã, b̃, c̃, d̃} | ∅ | {σ̃} | R〉 where
R = {a2, [b̃, c̃], [c̃, c̃a], [c̃, d̃a], [d̃, d̃a], [c̃ab̃, (c̃ab̃)a], [c̃ab̃, (d̃ab̃)a], [d̃ab̃, (d̃ab̃)a]}and σ̃ is the free group endomorphism indu
ed by the mapping

σ̃:





a 7→ ab̃a

b̃ 7→ d̃

c̃ 7→ b̃

d̃ 7→ c̃ .The S
hur multiplier of the group G̃ is still unknown. We have 
omputed the Dwyerquotients Mc(G̃), for 1 ≤ c ≤ 232. These quotients are 2-elementary abelian with thefollowing 2-ranks
3, 6, 7, 9[2], 11[2], 13[4], 15[4], 17[8], 19[8], 21[16], 23[16], 25[32], 27[32], 29[64], 31[41].This suggests the following 
onje
ture.Conje
ture C The Grigor
huk super-group G̃ satis�es
Mc(G̃) ∼=





(Z2)
3, (Z2)

6, or (Z2)
7, if c = 1, 2, or 3, respe
tively

(Z2)
4m+5, if c ∈ {2 · 2m, . . . , 3 · 2m − 1}

(Z2)
4m+7, if c ∈ {3 · 2m, . . . , 2 · 2m+1 − 1}



 ,with m ∈ N.Further experiments suggest that the S
hur multiplier of the Grigor
huk super-group hasthe {σ̃}∗-module stru
ture, as given by Lemma 4.5, of the form (Z2)

3 ⊕ (Z2[σ̃])
4, where

σ̃ 
y
li
ally permutes the �rst 
omponent.The Basili
a group ∆ was introdu
ed in [60, 61℄ as a torsion-free group de�ned by athree-state automaton. Bartholdi and Virág [16℄ 
omputed the following invariant �nite
L-presentation:

∆ ∼= 〈{a, b} | ∅ | {σ} | {[a, ab]}〉
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hur Multiplierwhere σ is the free group endomorphism indu
ed by the mapping
σ:

{
a 7→ b2

b 7→ a.We have 
omputed the Dwyer quotients Mc(∆), for 1 ≤ c ≤ 103. These quotients satisfythe following 
onje
ture.Conje
ture D The Basili
a group ∆ satis�es
Mc(∆) ∼= Z

2 ⊕
⊕

ℓ∈N

Aℓ(c), for ea
h c ≥ 2,where the groups Aℓ(c) are given as follows:
A1(c) =

{
0, if c ∈ {1, . . . , 5}

Z22(m+1) , if c ∈ {2m+ 6, 2m+ 7}

}and
Aℓ(c) =





0, if c ∈ {1, . . . , 3 · 2ℓ+1 − 1}
Z22m+1 , if c ∈ {(3 +m) · 2ℓ+1, . . . , (3 +m) · 2ℓ+1 + 2ℓ−1 − 1}
Z22m+2 , if c ∈ {(3 +m) · 2ℓ+1 + 2ℓ−1, . . . , (4 +m) · 2ℓ+1 − 1}



with m ∈ N0. Hen
e, the Basili
a group ∆ is not �nitely presentable.The Brunner-Sidki-Vieira group BSV was introdu
ed in [29℄ as a just-non-solvable,torsion-free group a
ting on the binary tree. The authors also gave the following invariant�nite L-presentation:

BSV ∼= 〈{a, b} | ∅ | {ε} | {[b, ba], [b, ba
3
]}〉where ε is the free group endomorphism indu
ed by the mapping

ε:

{
a 7→ a2

b 7→ a2 b−1 a2.We have 
omputed the Dwyer quotients Mc(BSV), for 1 ≤ c ≤ 53. These quotientssatisfy the following 
onje
ture.Conje
ture E The Brunner-Sidki-Vieira group BSV satis�es
Mc(BSV) ∼= Z

2 ⊕A(c)⊕
⊕

ℓ∈N

Bℓ(c)⊕
⊕

ℓ∈N

Cℓ(c), for ea
h c ≥ 2,where the groups A(c), Bℓ(c), and Cℓ(c) are given as follows:
A(c) =

{
0, if c ∈ {1, . . . , 3}

Z22m+1 , if c ∈ {2m+ 4, 2m+ 5}

}



E.6. Appli
ations 175with m ∈ N0. Additionally, for ea
h ℓ ∈ N, we have
Bℓ(c) =





0, if c ∈ {1, . . . , 5 · 2ℓ−1 − 1}
Z24m+1 , if c ∈ {2ℓ+2m+ 5 · 2ℓ−1, . . . , 2ℓ+2m+ 6 · 2ℓ−1 − 1}
Z24m+2 , if c ∈ {2ℓ+2m+ 6 · 2ℓ−1, . . . , 2ℓ+2m+ 10 · 2ℓ−1 − 1}
Z24m+4 , if c ∈ {2ℓ+2m+ 10 · 2ℓ−1, . . . , 2ℓ+2m+ 13 · 2ℓ−1 − 1}



and

Cℓ(c) =





0, if c ∈ {1, . . . , 9 · 2ℓ−1 − 1}
Z24m+1 , if c ∈ {2ℓ+2m+ 9 · 2ℓ−1, . . . , 2ℓ+2m+ 12 · 2ℓ−1 − 1}
Z24m+2 , if c ∈ {2ℓ+2m+ 12 · 2ℓ−1, . . . , 2ℓ+2m+ 14 · 2ℓ−1 − 1}
Z24m+3 , if c ∈ {2ℓ+2m+ 14 · 2ℓ−1, . . . , 2ℓ+2m+ 16 · 2ℓ−1 − 1}
Z24m+4 , if c ∈ {2ℓ+2m+ 16 · 2ℓ−1, . . . , 2ℓ+2m+ 17 · 2ℓ−1 − 1}



with m ∈ N0. Hen
e, the Brunner-Sidki-Vieira group BSV is not �nitely presentable.On the Dwyer Quotients of some Fabrykowski-Gupta GroupsThe Fabrykowski-Gupta group Γ3 was introdu
ed in [45℄ as an example of a group withan intermediate word-growth. For every positive integer d, Grigor
huk [57℄ des
ribed ageneralization Γd of the Fabrykowski-Gupta group Γ3. A rather longish invariant �nite

L-presentation was 
omputed in [9℄. Further, it was shown that, if d is not a prime-power,the group Γd has a maximal nilpotent quotient. This latter quotient is isomorphi
 tothe maximal nilpotent quotient of the wreath produ
t Zd ≀ Zd. We therefore 
onsideronly those groups Γd whi
h admit a `ri
h' lower 
entral series; that is, the index d is aprime-power.Let d ∈ {3, 5, 7, 11} be a prime. Then the Dwyer quotients Mc(Γd) are d-elementaryabelian with the following d-ranks.
d rk(Mc(Γd))

3 0[2], 1[3], 2[0], 3[9], 4[1], 5[26], 6[4], 7[77], 8[13], 9[12]
5 0[1], 1[4], 2[2], 3[20], 4[10], 5[100] 6[2]
7 0[1], 1[2], 2[6], 3[2], 4[14], 5[42], 6[14], 7[34]
11 0[1], 1[2], 2[2], 3[2], 4[10], 5[2], 6[22], 7[22], 8[22], 9[27]As noted by Laurent Bartholdi and Olivier Siegenthaler, there is a pattern in the ranksof the Dwyer quotients Mc(Γd). For example, it may holds that

Mc(Γ5) ∼=





0, if c = 0

Z
2m+1
5 , if c ∈ {2 + 3

2 (5
m − 1), . . . , 1 + 3

2 (5
m − 1) + 4 · 5m}

Z
2m+2
5 , if c ∈ {2 + 3

2 (5
m − 1) + 4 · 5m, . . . , 1 + 3

2(5
m+1 − 1)}



for m ∈ N0. This suggests the following 
onje
ture.Conje
ture F Let d be a prime. Then the S
hur multiplier of Γd, modulo the Dwyer-kernel, is in�nitely generated d-elementary abelian.
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hur MultiplierFinally, we summarize our results for Mc(Γd) for d ∈ {4, 8, 9}. The abelian invariants ofthe Dwyer quotients Mc(Γd) are as follows.
d Mc(Γd)

(1)[1] (2)[1] (2, 2)[1] (2, 4)[4] (2, 2, 2, 4)[1]4 (2, 2, 2, 2, 4)[4] (2, 2, 2, 4, 4)[16] (2, 2, 2, 2, 4, 4)[1] (2, 2, 2, 2, 2, 4, 4)[3]

(2, 2, 2, 2, 2, 2, 4, 4)[16] (2, 2, 2, 2, 2, 4, 4, 4)[64] (2, 2, 2, 2, 2, 2, 4, 4, 4)[5]

(2, 2, 2, 2, 2, 2, 2, 4, 4, 4)[11] (2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4)[26]

(1)[1] (8)[2] (4, 8)[3] (2, 4, 8)[4] (2, 8, 8)[1] (2, 2, 8, 8)[2]

(2, 2, 2, 8, 8)[2] (2, 2, 4, 8, 8)[2] (2, 4, 4, 8, 8)[2] (2, 4, 8, 8, 8)[2]8
(2, 8, 8, 8, 8)[8] (2, 2, 8, 8, 8, 8)[4] (2, 4, 8, 8, 8, 8)[20] (2, 2, 4, 8, 8, 8, 8)[32]

(2, 2, 8, 8, 8, 8, 8)[7] (2, 2, 2, 8, 8, 8, 8, 8)[16] (2, 2, 2, 2, 8, 8, 8, 8, 8)[16]

(2, 2, 2, 4, 8, 8, 8, 8, 8)[16] (2, 2, 4, 4, 8, 8, 8, 8, 8)[3]

(1)[1] (9)[2] (3, 9)[2] (3, 3, 9)[4] (3, 9, 9)[2]

(9, 9, 9)[2] (3, 9, 9, 9)[2] (3, 3, 9, 9, 9)[4] (3, 9, 9, 9, 9)[2]9
(9, 9, 9, 9, 9)[12] (3, 9, 9, 9, 9, 9)[18] (3, 3, 9, 9, 9, 9, 9)[36]

(3, 9, 9, 9, 9, 9, 9)[18] (9, 9, 9, 9, 9, 9, 9)[17] (3, 9, 9, 9, 9, 9, 9, 9)[12]Again, these 
omputational results suggest that the groups Γd are not �nitely presentable.Further, the exponent of Mc(Γd) is most likely the index d itself.A
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