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Chapter

Introduction

The Burnside problems are among the most influential problems in combinatorial group
theory. The general Burnside problem asks whether a finitely generated group in which
every element has finite order is finite [30]. This question was answered negatively by
Golod [5I]. The first explicit counter-examples to the general Burnside problem were
constructed by Alesin [5], Grigorchuk [53], and Gupta & Sidki [62]. These counter-
examples can be realized as subgroups of the automorphism group of a rooted regular
tree. They are the first examples of so-called ‘self-similar groups’.

Self-similar groups have appeared across a wide range of mathematics, answering
classical questions in infinite group theory. For instance, beside being a counter-example
to the general Burnside problem, the group considered by Grigorchuk in [53] is the first
example of a group with an intermediate word growth [54], answering a classical question
by Milnor [I00]. Moreover, this group was used in the construction of a finitely presented
amenable group which is not elementary amenable [55], answering a classical question
by Day [37].

The groups considered by Grigorchuk [53] and Gupta & Sidki [62] are not finitely
presented [56L06L[128]. However, they admit recursive presentations which are nowa-
days known as finite L-presentations [56] or endomorphic presentations [6]. A finite L-
presentation for Grigorchuk’s group was computed by Lysénok [96]. As a homage to this
work, it was suggested in [56] that a recursive presentation similar to the one computed
by Lysénok [96] be called a finite L-presentation. This notion of a finite L-presentation
was generalized in [0] as follows: a finite L-presentation is a group presentation of the

form
(¥lou Y )
ocd*

where X' is a finite alphabet, @ and R are finite subsets of the free group F' over the
alphabet &', and ®* denotes the monoid of endomorphisms of F' that is generated by the
finite set ® C End(F). On the one hand, this notion allows one to prove that various
finitely generated self-similar groups are finitely L-presented but do not admit a finite
presentation [6]. On the other hand, this notion is sufficiently general so that other
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infinitely presented groups are finitely L-presented; e.g., the groups in [I8[26],85] admit
finite L-presentations. Even though a finite L-presentation is possibly an infinite group
presentation, it can be described in finite terms. Thus a finite L-presentation provides a
finite data structure that allows one to define infinitely presented groups in a computer
algebra system.

Group presentations play an important role in computational group theory. In partic-
ular finite group presentations have been the subject of intensive research during the last
decades — dating back to the early days of computer algebra systems [102]. Finite L-
presentations were recently shown to be applicable to computer algorithms as well: A first
algorithm for finitely L-presented groups is the nilpotent quotient algorithm in [91[64]. A
major motivation for introducing this algorithm was the desire to understand better the
striking patterns along the lower central series of various self-similar groups [7,[10}123].

Beside using a finite L-presentation to study the structure of a self-similar group, its
recursive action on the tree often allows one to use finite approximations of this action
and thus to deal with finite quotients of the group. For various self-similar groups,
including Grigorchuk’s group from [53], it suffices to consider finite approximations [§]
because they have the congruence property: every finite index subgroup contains the
fixator of a level of the tree. However, there exist self-similar groups which do not have
the congruence property and thus may not be understood via finite approximations [I4].
For these groups, a finite L-presentation is essential in studying the structure of the

group.

In this thesis, we concentrate on finite L-presentations. More precisely, analogously
to the standard reference for computing with finitely presented groups [129], it is the
aim of this thesis to develop methods for studying the structure of a group for which
a finite L-presentation is known. Because every finite presentation can be considered
as a finite L-presentation, most algorithmic problems for finitely L-presented groups are
not decidable — in the sense that there exists no algorithm which terminates and which
returns a correct answer to a given question (e.g., whether or not a group defined by a
finite L-presentation is finite). In special cases, though, we are able to derive algorithms
for finitely L-presented groups. For instance, we develop a coset enumerator for finite
index subgroups of a finitely L-presented groups in [67] or Appendix [C]

The algorithms developed in this thesis can be applied by hand to obtain a solution to
a given problem and they also provide explicit solutions to some decision problems. More-
over, our algorithms have been implemented in the computer algebra system GAP [50].
In Appendix [A] or [68], we demonstrate how detailed information on some self-similar
groups could be obtained with the help of our implementations.

Parts of this thesis have appeared in [66,67,[70]. These papers are attached in the
Appendices [CHEl Moreover, few parts of Appendix [Al were intended to be published

in [42].



An Overview of this Thesis

In the following, we give an overview of this thesis and its appendices. In Chapter 2, we
summarize the well-known results for finitely presented groups and we formally introduce
the notion of a finite L-presentation. Moreover, Chapter[2lcontains first results for finitely
L-presented groups as, for instance, obtained in [6L0,[64].

We then address, in Chapter Bl a first algorithmic problem for finite L-presentations,
the so-called group homomorphism problem: In general, a group presentation is useful to
decide whether or not a map from the generators of the group into another group extends
to a group homomorphism; namely, if and only if all relations are mapped trivially. The
group homomorphism problem for a class H of groups asks for an algorithm that decides
whether or not such a map extends to a group homomorphism. For finite presentations,
the group homomorphism problem is (semi-)decidable whenever the groups in the class
‘H have a (semi-)decidable word problem. For finitely L-presented groups, though, there
are possibly infinitely many relations which need to be considered. In Chapter B we give
an explicit solution to the group homomorphism problem for the class of finite groups.
Our solution allows us to develop various algorithms for finitely L-presented groups. For
instance, the coset enumerator in [67] or Appendix [(lis a consequence of our solution to
the group homomorphism problem for the class of finite groups.

In Chapter [ we generalize Tietze’s theorem for finite presentations [I32] to finite
L-presentations. This theorem and the transformations introduced in its proof allow one
to modify a finite L-presentation without changing the isomorphism type of the group.

Finally, in Chapter B, we generalize the Knuth-Bendix completion for finite rewriting
systems to possibly infinite rewriting systems, the so-called finitely based infinite rewrit-
ing systems. These rewriting systems are derived from a finite L-presentation of a group.
An implementation of our Knuth-Bendix completion for finitely based infinite rewrit-
ing systems does not terminate within a reasonable amount of time for Grigorchuk’s
group [53], for the Basilica group [6I], or even for the wreath products ZZ and Zg ! Z.
Therefore, our generalized Knuth-Bendix completion does not allow us to solve the word
problem of the groups using their finite L-presentations.

The appendices to this thesis could be summarized as follows:

Investigating the Schur Multiplier of a Finitely L-Presented Group

It was shown in [56] that the group & considered by Grigorchuk in [53] is not finitely
presented. The strategy in this proof is to consider the Schur multiplier of the group. It
is well-known that the Schur multiplier is a finitely generated abelian group whenever the
group admits a finite presentation. The group & is infinitely presented because its Schur
multiplier is infinitely generated, 2-elementary abelian [56]. The explicit calculations
in [56] use the finite L-presentation from [96]. Moreover, it was shown in [56] that the set
of relations in [96] is minimal in the sense that no proper subset of relations is sufficient
to define the group.

The Schur multiplier of a finitely presented group is not computable in general [52].
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Since every finitely presented group admits a finite L-presentation, the Schur multiplier
of a finitely L-presented group is not computable either. Even though most algorithmic
problems are not decidable in general, there exist various algorithms that allow one to
gain insight into the structure of a finitely presented group. Among the most important
algorithms are quotient methods that compute factor groups of a finitely presented group
and thus allows one to gain insight into the structure of the group. Our generalization of
the nilpotent quotient algorithm [964] in [66] or Appendix [Elfollows the general idea of a
quotient method: Since it cannot compute the Schur multiplier of a finitely L-presented
group in general, it attempts to gain insight into its structure by computing successive
Dwyer quotients. These quotients of the Schur multiplier often exhibit a periodic growth
in their ranks. This could be considered as computational evidence that the self-similar
groups considered in [6,[9,[66] have an infinitely generated Schur multiplier and thus,
are infinitely presented. However, there are other successful attempts to compute the
Schur multiplier of a self-similar group [14]. These calculations possibly generalize to an
algorithm for other self-similar groups.

A Reidemeister-Schreier Theorem for Finite L-Presentations

For finitely presented groups, it is a well-known result by Reidemeister and Schreier [119]
[124] that every finite index subgroup of a finitely presented group is finitely presented.
The Reidemeister-Schreier process is an algorithm that allows one to compute a finite pre-
sentation for finite index subgroups of a finitely presented group. In [70] or Appendix [D],
we have generalized the Reidemeister-Schreier theorem and the Reidemeister-Schreier
process for finitely presented groups to finitely L-presented groups. More precisely, we
have proved that every finite index subgroup of a finitely L-presented group is finitely L-
presented. Moreover, we studied conditions on a finite-index subgroup of an invariantly
finitely L-presented group to be invariantly finitely L-presented.

Computing with Finite Index Subgroups

Another direction of this thesis is the coset enumerator for finitely L-presented groups
in [67] or Appendix[Cl This generalized coset enumerator has various interesting applica-
tions: For instance, it shows that the generalized word problem for finite index subgroups
of a finitely L-presented group is decidable. Moreover, our coset enumerator allows one
to compute all subgroups of a finitely L-presented group up to a given (moderate) index.
This is of particular interest because the lattice of finite index subgroups of most self-
similar groups is widely unknown [58]; e.g., even though Grigorchuk’s group has been
investigated for decades, little is known on the lattice of finite-index subgroups: There are
seven subgroups of index two [58] which are the only maximal subgroups [I16]. Moreover,
there exists a method to compute all normal subgroups of Grigorchuk’s group [7,[111[33].
However, its general subgroup growth is still unknown [58]. Our coset enumerator allows
us to compute the number of low-index subgroups of Grigorchuk’s group. There were
already attempts in [IIL12] which tried to compute the number of low-index subgroups.
Our coset enumeration is a first, automatic computer algorithm that allows us to compute



the correct subgroup counts in [67] or Appendix

A Note on Invariant Finite L-Presentations

In Appendix [Bl or [69], we introduce Tietze transformations for (possibly infinite) L-
presentations. These transformations allow us to generalize Tietze’s theorem for finite
presentations [I32] to invariant finite L-presentations. More precisely, we show that
two invariant finite L-presentations define isomorphic groups if and only if it is possible
to pass from one invariant L-presentation to the other by a finite sequence of Tietze
transformations. The intermediate L-presentations in our proof are always invariant
L-presentations.

Moreover, in Appendix [Bl or [69], we use Tietze transformations for finite L-presen-
tations to prove that ‘being invariantly finitely L-presented’ is an abstract property of a
group that does not depend on the generating set. This latter result generalizes a well-
known result for finitely presented groups: if a group admits a finite presentation with

respect to one generating set, then so it does with respect to any other finite generating
set [38], Chapter V.

Finally, we consider finitely generated normal subgroups of finitely presented groups.
We show that every finitely generated normal subgroup H of a finitely presented group
G is invariantly finitely L-presented whenever G splits over H. This generalizes a recent
result by Benli on indicable groups [22]. In fact, Benli proved that every finitely generated
subgroup H < G is invariantly finitely L-presented whenever G/H = 7Z holds. We
also extend this latter result to the case where G/H is a finitely generated abelian
group with torsion-free rank at most two. Our results address a question in [22] on
finitely generated subgroups which embed as normal subgroups into finitely presented
groups. More precisely, analogously to Higman’s embedding theorem [81], Benli asked
whether or not a finitely generated group embeds as a normal subgroup into a finitely
presented group if and only if the group admits an invariant finite L-presentation all
of whose endomorphisms induce automorphisms of the group; see Appendix [B] or [69]
for definitions. It is immanent that every such finitely L-presented group embeds as a
normal subgroup into a finitely presented groups. However, the converse still remains
open.

A Note on our Implementations

Most of our algorithms for finitely L-presented groups have been implemented in the
computer algebra system GAP [50]. In Appendix [Al or [68], we demonstrate how these
implementations yield detailed information on the structure of some self-similar groups,
the so-called Fabrykowski-Gupta groups. In particular, we obtain new information on
their lower central series, on their Schur multiplier, on their low-index subgroups, as well
as new information on their derived series.

Minor parts of Appendix [Al were intended to be published in [42]. This latter
manuscript also contains a method for gaining insight into the structure of the outer auto-
morphism group of a finitely L-presented group: Since the lower central series subgroups
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are characteristic, this approach considers the outer automorphisms of the nilpotent
quotients of the L-presented group. It is a straightforward application of the nilpotent
quotient algorithm in [9,[64].

An Overview of our Algorithms

The algorithms for finitely L-presented groups that were developed in this thesis could
be found in the following parts: A finite L-presentation of a group allows one to

e decide whether or not a map from the generators of a finitely L-presented group into
a finite permutation group (or into a finitely generated nilpotent group) extends to
a group homomorphism; see Chapter [3]

e compute a permutation representation for the action of a finitely L-presented group
on the cosets of a finite index subgroup (coset enumeration); see [67] or Appendix|[C]

e compute the index of a subgroup, which is given by its finitely many generators, of a
finitely L-presented group provided that this index is finite; see [67] or Appendix [C]

e solve the generalized word problem for finite index subgroups of a finitely L-
presented group; see [67] or Appendix [Cl

e compute the intersection of two finite index subgroups of a finitely L-presented
group or to compute the normal core of a finite index subgroup of a finitely L-
presented group; see Chapter Bl

e compute all subgroups of a finitely L-presented group up to a given (moderate)
index (low-index subgroup algorithm); see [67] or Appendix [Cl

e compute a finite L-presentation for a finite index subgroup of a finitely L-presented
group; see [70] or Appendix [Dl

e compute the sections G /G(”l) of the derived series of a finitely L-presented
group G provided that G/G® is finite; see Chapter B or [68].

e modify a finite L-presentation of a group using Tietze transformations for finitely
L-presented groups; see Chapter @ Appendix [B] or [69].

e compute the Dwyer quotients of the Schur multiplier of an invariantly finitely L-
presented group; see [66] or Appendix [E]

For investigating self-similar groups with the help of our algorithms, it would be interest-
ing if the methods in [6] could be transformed into a procedure that, given a self-similar
group by its recursive action on a regular rooted tree, computes a finite L-presentation for
the group. We are not aware of an automatic procedure which could solve this problem.
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Chapter

Groups and Presentations

The notion of a group presentation dates back to Walter von Dyck who has introduced the
modern notion of free groups and group presentations in 1882. Group presentations play
an important role in computational group theory. They define a group by its generators
and relations. A finite presentation is group presentation with finitely many generators
and finitely many relations. Therefore, finite presentations provide an effective definition
of a group up to isomorphism. They can be used to define a group in computer algebra
systems such as GAP [50] or MAGMA [28]. Recently it was shown that even a class of
infinite presentations (so-called finite L-presentations) provide an effective way to define
infinitely presented groups.

Even though finite presentations provide an effective description of a group, various
algorithmic problems are unsolvable in general. Therefore, solving algorithmic problems
for infinite presentations seems even more infeasible. However, in this thesis we show
that most algorithms for finitely presented groups generalize to finite L-presentations.

In this chapter, we recall the notion of a group presentation and we formally introduce
the notion of a finite L-presentation from [6]. Moreover, we give an overview of the
algorithms known for finitely presented and finitely L-presented groups.

2.1 Finite Presentations

In the following, we recall the notion of a (finite) group presentation. For further details
on finitely presented groups, we refer to [95],97].

A group F'is a free group over the alphabet X C F if each map f: X — G into a group
G extends to a (unique) homomorphism 7: F' — G. If G is generated by X C G, the
existence of a free group F' over the alphabet X shows that G is a homomorphic image of
F. In particular, if m: F' — G denotes the natural homomorphism, G = F'/ ker(m) holds.
A group presentation defines the group G in terms of the free presentation m F — G:
Let R C F be a set of normal generators of the kernel ker(r); i.e., the normal subgroup
ker(7) is generated by {r9 | r € R,g € F'}. Then the pair (X | R) is a group presentation
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for G and the group G is presented by (X | R). On the other hand, a group presentation
(X | R) is an abstract object that defines a group up to isomorphism: Denote by F the
free group over the alphabet X and let K = (R)I" be the normal closure in F of the
relations R; i.e., K = (R)" is the smallest normal subgroup of F' that contains R. Then
the presentation (X | R) defines the group G = F/K. We will also write G = (X | R)
in this case.

A group presentation (X | R) is finitely generated if the set of generators X is finite.
It is finitely related if the set of relators R is finite. If (X' | R) is both, finitely generated
and finitely related, it is a finite presentation and the group G = (X | R) it defines is
finitely presented. A group that admits a finite presentation is finitely presentable (or
finitely presented). If either X or R is infinite, the presentation (X | R) is an infinite
presentation and the group it defines is infinitely presented by (X | R).

Being finitely presentable does not depend on a chosen generating set of the group [38),
Chapter V] in the following sense: If (X | S) is an arbitrary (possibly infinite) presen-
tation of a finitely presentable group G, there exists a finite subset X’ C X and a finite
set &’ of reduced words over X’ so that G = (X’ | &) holds. This can be seen as a
consequence of a fundamental theorem by Tietze [132] which relates possibly different
group presentations of the same group by the following Tietze transformations: Suppose
that G is presented by (X | R). Denote by F the free group over X and let K = (R)
be given. Then G = F//K. Each element r € K is a consequence of the relations in R.
The following well-known transformations allow one to modify the group presentation
(X | R):

(i) If r € K is a consequence, the group G is presented by (X | RU{r}).

(ii) If z ¢ X and w € F, the group presented by (X U{z} | RU{z"!w}) is isomorphic
to G.

These transformations are reversible with the following inverse transformations:

(iii) If K = (R \ {r})¥ holds, the group G is presented by (X | R\ {r}).

(iv) If z='w € R, with z € X, and z does not appear in the reduced word w, G is
isomorphic to the group presented by (X \ {z} | S) where S is obtained from
R\ {z~ 1w} by replacing each occurrence of z and z~! by w and w™!, respectively.

For finite presentations, these transformations are sufficient to obtain Tietze’s theorem
for finitely presented groups:

Theorem 2.1 (Tietze [132]) Two finite presentations define isomorphic groups if and
only if it is possibly to pass for one presentation to the other by a finite sequence of Tietze
transformations.

By the Nielsen-Schreier theorem [I121] 6.1.1], a finite index subgroup of a finitely gen-
erated free group is finitely generated. Therefore, if G = F/K is a finite group, the
kernel K of the free presentation F' — G for a finitely generated free group F' is finitely
generated. Thus every finite group is finitely presentable. Further examples of finitely
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presented groups are the infinite dihedral group ({a,b} | {a?, b?}), Baumslag-Solitar
groups B(m,n) = {{a,b} | {b~1a™ba""}), with n,m € N, from [21], polycyclic groups,
etc. More examples naturally arise with the following

Theorem 2.2 (Reidemeister-Schreier Theorem [119,[124]) FEach finite index sub-
group of a finitely presented group is finitely presented.

Even though there are numerous finitely presented groups, most finitely generated groups
are not finitely presented:

Proposition 2.3 (B. H. Neumann [103]) There are uncountably many non-isomor-
phic groups generated by two elements.

As there are countably many finite presentations but uncountably many non-isomorphic
2-generated groups, Proposition 23] yields

Corollary 2.4 There are finitely generated groups that are not finitely presentable.

2.2 Decision Problems for Finitely Presented Groups

A finitely presented group is uniquely described by its finitely many generators and
defining relations. Therefore, a finite presentation could be useful to apply computer
algorithms in the investigation of the structure of the group. However, there are various
problems for which it is known that there exists no algorithm that, given a finite pre-
sentation of a group, terminates and returns a correct answer to a given question (e.g.
whether or not a group given by a finite presentation is finite). More precisely, we call an
abstract property (i.e., a property is an abstract property of a group if it does not depend
on the presentation) of a finitely presented group recursively recognizable or decidable
if there exists an algorithm which takes as input a finite presentation of the group and
decides whether or not the group satisfies this property.

Many abstract properties of finitely presented groups are not decidable in general.
For instance, Dehn [39] stated the following decision problems: the word problem, the
conjugacy problem, and the isomorphism problem. These problems are not decidable in
general [I,271T2,[113]. However, if the class of groups under consideration is restricted,
decision problems that are not decidable in general may become decidable; e.g., polycyclic
groups have a solvable word- and conjugacy problem [125] and even their isomorphism
problem is solvable [126].

Beside Dehn’s decision problems there are various other abstract properties that are
not decidable. In this section, we give a brief survey on decision problems for finitely
presented groups. These unsolvable problems demonstrate the limitations of computer
algorithms in the study of finitely presented groups. For further details on decision
problems, we refer to the survey [99] or to [95, Chapter IV].
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2.2.1 The Word Problem

A first decision problem is Dehn’s word problem for a finitely presented group. It asks
for an algorithm that, given a finite presentation of a group G = (X | R) and a word w
over the alphabet X U X~ decides whether or not the element w is trivial in the group
G. More precisely, if F' denotes the free group over X and K < F' is a normal subgroup
so that G = F/K holds, the word problem asks for an algorithm that decides whether
or not w € K holds (in this case, we will also write w =g 1). An element w € F is
contained in the normal closure K if and only if it has the form

w = uflrilul e u,;lrfn’”um, with u; € F, r; € R and g; = %1, (2.1)

for each 1 < i < m. Clearly, if the word problem of a finitely presented group is decidable,
so it is for each of its subgroups. If a group has a solvable word problem with respect to
one finite presentation, then so it has for any other finite presentation [99, Lemma 2.2].
The word problem of a finitely presented group is not decidable in general:

Theorem 2.5 (Novikov-Boone Theorem [27,[113]) There exists a finitely presented
group whose word problem s not decidable.

The word problem could be stated equivalently as follows: it asks for an algorithm that
decides whether or not two words w and v over the alphabet X U X~ define the same
element of the finitely presented group; i.e. if w =g v holds. Even though the word
problem is not decidable in general, restricting the class of finitely presented groups may
result in a class of groups with a solvable word problem. For instance each finite, free,
or polycyclic group is finitely presented and has a decidable word problem.

2.2.2 The Conjugacy Problem

The conjugacy problem asks for an algorithm that, given a finite presentation (X | R)
of a group G and elements u,v € F' of the free group I’ over X, decides whether or
not the elements are conjugate in the group; i.e., if there exists x € F so that the
elements u®* = x~luz and v define the same element of the group G; i.e. if v ux =g v
holds. Since a conjugate x~luz is trivial in the group G = (X | R) if and only if the
element w itself is trivial, a solution to the conjugacy problem implies a solution to the
word problem. Therefore, Theorem also shows that the conjugacy problem is not
decidable [I12]. Again, restricting to the class of finite groups, free groups or polycyclic
groups [125], yields that the conjugacy problem becomes decidable.

2.2.3 The Generalized Word Problem

It is easy to see that a finitely presented group has decidable word problem if there exists
a finite index subgroup that has a decidable word problem. Conversely, each subgroup of
a finitely presented group with a decidable word problem has a decidable word problem.
Therefore, finite index subgroups play an important role in the investigation of a finitely
presented group. For instance, by the Reidemeister-Schreier Theorem 2.2 each finite
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index subgroup of a finitely presented group is itself finitely presented. An explicit proof
of Theorem 22 yields a Reidemeister-Schreier process that computes a finite presentation
for the subgroup given a finite presentation of the group and a finite generating set of

the subgroup [95].

A decision problem that is related to finitely generated subgroups of a finitely pre-
sented group is the generalized word problem or subgroup membership problem. It asks
for an algorithm that, given a finite presentation (X | R) of a group and a finite set
{wy,...,w,, w} of words over the alphabet X UX~ decides whether or not the subgroup
generated by {wi,...,w,} contains the element w. Since an element w € F is trivial
in the finitely presented group G = (X | R) if and only if it is contained in the trivial
subgroup {1} < G, a solution to the generalized word problem implies a solution to the
word problem. Hence, Theorem also shows that the generalized word problem is not
decidable in general. However, if the subgroup has finite index, coset enumeration (as
outlined in Section 2-31] below) solves the generalized word problem.

2.2.4 The Isomorphism Problem

Dehn’s third decision problem is the isomorphism problem. Tt asks for an algorithm
that decides whether or not two finite presentations define isomorphic groups. The
isomorphism problem is not decidable in general [I].

Recall that Tietze’s Theorem 2T relates two finite presentations of a group: it shows
that two finite presentations define isomorphic groups if and only if there exists a finite
sequence of Tietze transformations that allows one to transform one presentation into
the other. However, it should be emphasized that Tietze’s theorem does not provide
a solution to the isomorphism problem in general, as there is no effective procedure for
choosing the sequence of Tietze transformations. In particular, it does not allow to decide
if two finite presentations define non-isomorphic groups; even though an enumeration of
Tietze transformations may allow to eventually prove that two finite presentations define
isomorphic groups [95].

2.2.5 Markov Properties

Beside Dehn’s decision problems many other abstract properties are not decidable. A
large class of decision problems are the so-called Markov properties; see, for instance,
the survey [99]. An abstract property of a finitely presented group is a Markov property
if there exist finitely presented groups G and H so that G has the given property and,
if H embeds into a finitely presented group, this group cannot have this property. For
instance, being finite is a Markov property because the infinite dihedral group is finitely
presented by ({a, b} | {a?,b?}) and infinite while the 2-elementary abelian group Zox Zo =
{{a,b} | {a®,b%, [a,b]}) is finite. Further examples of Markov properties are being trivial,
abelian, nilpotent, solvable, free, and torsion-free [99]. An example of an abstract prop-
erty that is not a Markov property is being perfect as there exists a finitely presented
perfect group in which every finitely presented group embeds [99]. Moreover, there ex-
ists an algorithm that decides whether or not a finitely presented group is perfect; see
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Section 235l A fundamental theorem for Markov properties is the following theorem:

Theorem 2.6 (Adian-Rabin Theorem [2,3,118]) A Markov property of a finitely
presented group s not decidable.

In particular, there exists no algorithm that will compute the order of a finitely presented
group.

2.2.6 Further Decision Problems

Beside Dehn’s decision problems and Markov properties, there are other group theoretic
properties that are not decidable in general.

Recall that the deficiency of a finite presentation (X | R) is d((X | R)) = |X| — |R].
For a finitely presented group G, the deficiency of the group G is the maximal deficiency of
all its finite presentations. The deficiency of a finitely presented groups is not computable:

Theorem 2.7 (Gordon [52]) There is no algorithm for computing the deficiency of a
group from a finite presentation.

The Schur multiplier of a group G can be defined as the second homology group Hs (G, Z)
with integer coefficients. It is related to a group presentation G = F'/R by Hopf’s formula:

Hy(G,Z) = (RN F")/[R, F).

It is not hard to see that Hopf’s formula shows that each finitely presented group with
deficiency zero has a trivial Schur multiplier. However, even a group with a trivial
Schur multiplier might not be finitely presentable [I8]. The Schur multiplier of a finitely
presented groups is not computable:

Theorem 2.8 (Gordon [52]) There is no algorithm for deciding, given a finite presen-
tation of a group G, whether or not Ho(G,Z) = {0} holds.

The properties in Theorems 2.7 and Theorem [Z8 are not Markov properties [99]. In
particular, these results are not just consequences of the Adian-Rabin theorem in Theo-
rem[2.6] Further decision problems for finitely presented groups are given by the following
proposition; see also [99]:

Proposition 2.9 (Baumslag et al. [20]) There is a finitely presented group such that
there is mo algorithm to determine whether or not the subgroup gemerated by an arbitrary
finite set of words is

(1) trivial, finite, free, locally free, cyclic, abelian, nilpotent, soluble, simple, directly
decomposable, freely indecomposable, or whether it is a group with a decidable word
problem.

(ii) a finitely related subgroup, a subgroup with finite index, a normal subgroup, a sub-
group with finitely many conjugates.

Again, restricting the class of subgroups in Proposition 2.9] to subgroups with finite
index yields the existence of various algorithms that explicitly solve the problems in

Proposition [29] (ii).
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2.2.7 Semi-Decidability

We call an abstract property of a finitely presented group G semi-decidable if there
exists an algorithm that allows one to verify that the group satisfies the given property;
e.g. if there exists an algorithm that, given a finite presentation of a group, eventually
terminates and proves the group to be finite. Clearly, an abstract property that is
decidable is also semi-decidable. Various decision problems that are not decidable in
general are semi-decidable though. For instance, the word problem of a finitely presented
groups is semi-decidable: For a finitely presented group G = (X | R) and an element
w € F of the free group F over X, there exists an algorithm that enumerates the elements
ul_lr‘ilul . --u,;lr,i;”um with r; € R, u; € F, and ¢; = 1. Therefore, the elements of
the normal closure K = (R)f" could be listed algorithmically one after another. If an
element w € F is trivial in the group G, this algorithm would eventually list the element
w and therefore it would prove that w =g 1 holds. Hence, the word problem of a finitely

presented group is semi-decidable but not decidable.

Further examples of semi-decidable problems are the conjugacy problem and the
isomorphism problem (an enumeration of Tietze transformations allows one to eventually
prove that two finite presentations define isomorphic groups). Further applications of
Tietze’s theorem provide algorithms that allow one to prove that a finite presentation
defines a trivial, abelian, nilpotent, or polycyclic group.

2.3 Algorithms for Finitely Presented Groups

Even though most group theoretic properties are not recursively recognizable [4], there
are various ‘algorithms’ for finitely presented groups whose termination is often not guar-
anteed. If the underlying decision problem is semi-decidable, though, the algorithm ter-
minates and gives a correct answer to the problem; e.g. it is semi-decidable if a finite
presentation defines a finite group and coset enumeration would allow to verify this; see
Section 2.33.J1 In this section, we give an overview of the algorithms for finitely pre-
sented groups. Even though termination of these algorithms is often not guaranteed,
they have become a useful tool to investigate the structure of a finitely presented group.
Most of these algorithms are available in computer algebra systems such as GAP [50] or
MAGMA [28] or even as stand-alone C-packages such as the QuUoTPic-package [83] or
the Ace-package [75]. For further details on algorithms for finitely presented groups, we
refer to the standard reference [129].

2.3.1 Coset Enumeration

A first algorithm for finitely presented groups is the coset enumeration process introduced
by Todd and Coxeter [36]133]. This process attempts to enumerate the cosets of a finitely
generated subgroup in a finitely presented group. If the index of the subgroup is finite,
coset enumeration terminates and it computes the index of the subgroup together with
a permutation representation for the group’s action on the cosets. In particular, coset
enumeration allows one to prove that a given finite presentation defines a finite group —
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even though being finite is a Markov property! On the other hand, though, if the index
of the subgroup happens to be infinite, coset enumeration will not terminate. Moreover,
by Proposition 20] there exists no algorithm that allows one to decide whether or not a
finitely generated subgroup has finite index in a finitely presented groups. In fact, there
is no upper bound on the complexity of coset enumeration. Therefore, even proving a
finitely presented group being trivial is computationally a challenging problem [761[104].
Nevertheless, coset enumeration is often used for proving finiteness of certain finitely

presented groups [78-80].

Because coset enumeration, if it terminates, additionally computes a permutation
representation for group’s action on the cosets, it also solves the generalized word problem
for a finite index subgroup of a finitely presented group. Therefore, coset enumeration
has become a fundamental tool for computing with finite index subgroups; e.g., it allows
one to compute the intersection of two finite index subgroups as well as the normalizer
and the normal core of a finite index subgroup.

Coset enumeration is usually a first step in the investigation of finitely presented
groups. For instance, the Schur multiplier of a finite permutation group is computable
with the methods in [82]. If a finite group is given by a finite presentation, coset enu-
meration will compute a permutation representation for the group and thus it could be
a first step for computing the Schur multiplier of a finite, finitely presented group.

Coset enumeration is among the first algorithms in group theory that have been
implemented as a computer algorithm [3288[T02[129]. It has been developed, improved,
and investigated since, see [32,[48], so that numerous coset enumeration techniques are
currently available. For further historical details on coset enumeration, we refer to the
historical notes in [129] or to the survey [102].

2.3.2 The Low-Index Subgroup Algorithm

A variation of coset enumeration is the low-index subgroup algorithm [40] which attempts
to compute a representative for each conjugacy class of subgroups of a finitely presented
group up to a given index n € N. The central idea uses a backtrack-search for finding
all permutation representations of a finitely presented group that acts transitively on at
most n points. In practice, the low-index subgroup algorithm allows one to compute
representatives of conjugacy classes of subgroups with index up to a few hundred. For
further details on the low-index subgroup algorithm, we refer to [129), Section 5.6].

A variation of the low-index subgroup algorithm was developed in [35]. This modified
algorithm computes the normal subgroups of a finitely presented groups up to a given
index. In practice, it allows one to compute possibly larger indices than the standard
low-index subgroup algorithm. An implementation of both algorithms is available in the
stand-alone C-package Lowx [41].

The low-index subgroup algorithm yields insight into the lattice of finite index sub-
groups of a finitely presented group top-down and therefore, it is a useful tool in the
investigation of finitely presented groups. For instance, since ‘being trivial’ is a Markov
property, there is no algorithm for deciding whether or not a finite presentation defines
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a trivial group. However, if a finite presentation does define the trivial group, coset enu-
meration is guaranteed to terminate and it will compute the order of group. On the other
hand, there cannot exists an algorithm which proves that a given finite presentation de-
fines a non-trivial group (otherwise we would obtain a contradiction to the Adian-Rabin
Theorem [Z8]). The low-index subgroup algorithm could be employed to this problem
because it may help to find a subgroup with non-trivial index. If the low-index subgroup
algorithm succeeds with this search, it would prove that the given finite presentation de-
fines a non-trivial group. An alternative approach for proving that a finite presentation
defines a non-trivial group is to search for non-trivial homomorphic images of the finitely
presented group; see Section below.

2.3.3 The Reidemeister-Schreier Process

The Reidemeister-Schreier Theorem 22lshows that each finite index subgroup of a finitely
presented group is finitely presented. A constructive proof of Theorem is given by
the Reidemeister-Schreier process: it takes as input a finite presentation of a group and a
finite generating set of a subgroup and it computes a finite presentation for the subgroup
provided that it has a finite index in the group. By Proposition 2] there cannot exist
such an algorithm in general (in particular if the subgroup has infinite index). Suppose
that the finitely generated subgroup U has finite index in the finitely presented group
G = (X | R). Then the following steps yield a Reidemeister-Schreier process:

(i) Compute a permutation representation 7: F — Sym(U\G) for G’s action on the
cosets U\G using a coset enumerator.

(ii) The permutation representation 7 allows one to compute finitely many Schreier
generators of the subgroup [124] with the Nielsen-Schreier theorem [121 6.1.1];
i.e., a Schreier generating set is a free generating set of the full preimage of the
subgroup U < G in the free group F over X.

(iii) The permutation representation 7 yields a Reidemeister rewriting that rewrites G's
relations in R to finitely many relations of the subgroup U.

For further details on the Reidemeister-Schreier process, we refer to [95], Section I1.4] or
Section [D.3] below.

The Reidemeister-Schreier process gives an explicit method to apply the algorithms
for finitely presented groups to finite index subgroups of finitely presented groups. In
particular, in combination with the low-index subgroup algorithm, the Reidemeister-
Schreier process yields a method to gain insight into the structure of a finitely presented
group [77]. For instance, it allows one to compute the quotients of the derived series
provided that these quotients are finite; see, for instance, Section below. An early
implementation of the Reidemeister-Schreier process can be found in [72].

2.3.4 Tietze Transformations

The finite presentations that were computed with the Reidemeister-Schreier process often
contain redundant generators and redundant relations. Indeed, given a finitely presented
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group G = (X | R) with n = |X| generators and a finite index subgroup H < G
with m = [G : H], the Reidemeister-Schreier process in Section computes a finite
presentation with mn —m + 1 generators [121], 6.1.1]. Numerous generators and relators
are often redundant. Therefore, one wishes to remove redundant generators and relations
from a presentation. Here, the Tietze transformations from Section 2Tl apply.

Since the isomorphism problem is not decidable in general, applications of Tietze
transformations are limited in practice. However, an implementation of a Tietze trans-
formation program was described in [73|[120]. This procedure is part of the Reidemeister-
Schreier program [72] where it simplifies the obtained finite presentation.

2.3.5 Quotient Methods

Most algorithmic problems for finitely presented groups are not decidable [4]. There-
fore, it surprises that computer algorithms help in the investigation of the structure of
a finitely presented group. However, there is a wide range of algorithms for computing
factor groups of a finitely presented group. For instance, the abelianization of a finitely
presented group (i.e., the abelianization is the isomorphism type of the largest abelian
quotient G/[G,G] of a group G) can be effectively computed from a finite presenta-
tion [129, Section 11.2]. In particular, there exists an algorithm that decides whether or
not a finitely presented group is perfect (i.e. a group G is perfect if the abelianization
G/|G,G] is trivial). Moreover, there exists an algorithm that solves the membership
problem for the derived subgroup G’ = [G,G] in a finitely presented group.

Beside the numerous variations of coset enumeration, the main tools for investigating
finitely presented groups are quotient methods. In general, they compute successive
quotients of a finitely presented group or, equivalently, they compute homomorphisms
into computationally ‘nice’ groups (e.g. finite groups, finite p-groups, or polycyclic groups
which could be handled well in computer algebra systems). These methods also allow one
to decide whether or not a map from the generating set X of a finitely presented group
G = (X | R) into a ‘nice’ group H extends to a homomorphism G — H; see Chapter Bl
In the following, we give a survey of the quotient methods for finitely presented groups:

The Abelianization Algorithm

A first quotient method is the abelianization algorithm for computing the isomorphism
type of the largest abelian quotient of a finitely presented group; see [129, Chapter 11.2].
This algorithm relies on linear algebra only. More precisely, it computes the Smith
normal form of an integer matrix that can be read off directly from the relations of the
finite presentation. These computations are usually fast. Therefore, the abelianization
algorithm is often a first tool in the investigation of a finitely presented group. For
instance, the abelianization algorithm and the low-index subgroup algorithm can be
used to search for finite index subgroups with infinite abelianization. This could help
proving a finitely presented group being infinite. Moreover, the derived subgroup of a
finitely generated group G = (X | R) has a decidable membership problem: An element
w € F of the free group F over X’ defines an element of the derived subgroup G’ = [G, G]
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if and only if its exponent vector vanishes (i.e. the ezponent vector is the image of the
element w € F in the free abelian group F/F”).

The p-Quotient Algorithm

For a prime p, the lower exponent-p series (or Frattini series) is defined recursively by
MG = G and N\, 11G = [G,\,G](\,G)P. The sections \,G/\,+1G are p-elementary
abelian so that G/, G are finite p-groups. Finite p-groups can be described effectively
by nilpotent presentations. A nilpotent presentation is a finite presentation which admits
an effective solution to the word problem of the group [129].

The p-quotient algorithm computes a nilpotent presentation for the factor group
G/ G together with a homomorphism G — G/\,G. It uses an induction on n and
it computes the quotient G/\,G as a finite central extension of a p-elementary abelian
group by a finite p-group. The p-quotient algorithm was originally designed for the
construction of finite Burnside groups in [741[105].

The Nilpotent Quotient Algorithm

The p-quotient algorithm was generalized in [I07] to the nilpotent quotient algorithm for
finitely presented groups; see also [129] Section 11]. For a finitely presented group G and a
positive integer ¢, the nilpotent quotient algorithm computes a nilpotent presentation for
the lower central series quotient G/v.4+1G together with a homomorphism G — G/7.41G.
The lower central series is defined recursively by v1G = G and 7.41G = [G,7.G|. Similar
to the p-quotient algorithm, the nilpotent quotient algorithm uses an induction on n. The
induction starts with the largest abelian quotient G/G’ of a finitely presented group G
and thus it starts with the abelianization algorithm for finitely presented groups. Then
the quotients G//v.+1G are constructed as central extension of a finitely generated abelian
group by a finitely generated nilpotent group.

Soluble Quotient Algorithms

For a group G, the derived series is defined recursively by G = @' = [G,G] and
G = (GO, GW]. Tf, for each 1 < i < j, the sections G®) /G are finitely generated,
the quotient G/ GU) is polycyclic. A polycyclic group can be described by a polycyclic
presentation that (like a nilpotent presentation) yields an effective solution to the word
problem.

A soluble quotient algorithm computes a polycyclic presentation of the quotient
G /G together with a homomorphism G — G provided that G/G® is polycyclic. A
first straightforward approach towards a soluble quotient algorithm combines the abelian-
ization algorithm and the Reidemeister-Schreier process; see Section below. This
approach computes a permutation representation for G/ G provided that this quotient
is finite. Alternative approaches which compute polycyclic presentations for finite solv-
able quotients were described by Wamsley [135], Leedham-Green [89], Plesken [I17], and
Niemeyer [I08HIT0]. These methods possibly use a different series of normal subgroups.
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A more general soluble quotient algorithm is the polycyclic quotient algorithm in [92),
93]. This algorithm computes a polycyclic presentation for G/G®. Similar to the nilpo-
tent and the p-quotient algorithm, it uses an induction on 4 and it therefore computes a
polycyclic presentation for G/ GUFY from a polycyclic presentation of G / G . For this
purpose, it uses a Grobner bases approach which is guaranteed to terminate. Even if G
and G/G® are finitely generated, the section G /GU+1) is possibly not finitely gener-
ated. In this case, G/GU*Y is not polycyclic. The algorithm in [92,93] either computes
a polycyclic presentation for G/GUHY or it returns fail if the section G /GU+1) is
not finitely generated. If a finite presentation defines a polycyclic group, the algorithm
in [92,93] would compute a polycyclic presentation for it.

2.3.6 Knuth-Bendix Completion

A practical method for solving the word problem is given by a confluent rewriting system.
The Knuth-Bendix completion attempts to construct a confluent rewriting system from
a monoid presentation of a finitely presented group [I30]. Since the word problem of
a finitely presented group is not decidable in general, termination of the Knuth-Bendix
completion is not guaranteed. If the Knuth-Bendix completion terminates, though, the
confluent rewriting system solves the word problem as it allows one to compute normal

forms for each element of the group. For further details on rewriting systems, we refer
to [129, Chapter 2| or Chapter Bl below.

A finitely presented group G = (X | R) can be considered as a finitely presented
monoid

<XUX*‘{7":5|r€R}U{x*1x:xx*1:6|x€X}>,

where ¢ denotes the empty string. A rewriting system for a finitely presented monoid
can be seen as a binary relation on the words over the alphabet X U X~ together with
a reduction ordering <; i.e., a reduction ordering is a translation invariant well-ordering.
From a finite presentation of a monoid one can obtain a rewriting system by defining, for
each relation A = B of the presentation, either the rewriting rule A — B, if B < A holds,
or B — A, otherwise. A reduction of a word W € (X U X™)* replaces a subword A of
W by B whenever A — B is a rewriting rule. As W = UAV holds and < is translation
invariant, the reduction W = UAV — UBYV yields that W = UAV - UBV as A~ B
holds. Thus, as the reduction ordering < is a well-ordering, a reduction of W yields a
finite sequence W = Wy = Wy = ... = W,, with W; — W, ;.

There are possibly different choices of the next rewriting rule to apply within a
reduction of a given word W. These choices may result into different least elements
Wy,. A rewriting system is called confluent, though, if, for each word W, the least
element W,, does not depend on the choice of the intermediate reductions. A confluent
rewriting system provides a method for transforming any word over XUX ™ into its unique
normal form. In fact, it solves the word problem of the group. For instance, finitely
generated nilpotent groups or polycyclic groups are examples of groups which admit a
finite confluent rewriting system [129], so-called confluent polycyclic presentations.
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The Knuth-Bendix completion (see, for instance, [129,[130]) transforms a rewriting
system for a finitely presented monoid into a confluent rewriting system. For this purpose,
it checks certain overlaps of the rules and it adds rewriting rules if necessary. We outline
the details of a Knuth-Bendix completion within our generalization in Chapter Bl below.

2.4 Recursive Presentations

In this section, we introduce the notion of a recursive presentation and the notion of a
recursively presented group. For further details on recursively presented groups, we refer
to Chapter II of [95].

Let F be a finitely generated free group. We call a subset S C F' recursively enumer-
able if there exists an algorithm that lists the elements of S in some (arbitrary) order. In
this case, we can write S = {s1, $2, S3, ...} where s,, denotes the result of the algorithm
that is returned after the n-th step. For instance, a finite set and a finitely generated
free monoid are recursively enumerable.

A subset S C F'is recursive if there exists an algorithm that decides whether or not
a given element w € F belongs to the set S. A recursive set S C F' is clearly recursively
enumerable because if an algorithm that lists the elements of the finitely generated free
group F' can be combined with the algorithm that decides whether or not an element
belongs to the recursive set S. A set S is recursive if and only if S and its complement
F\ S are recursively enumerable. On the other hand, it is a fundamental result in logic
that there exists a recursively enumerable set that is not recursive. This is the reason
for most problems in group theory not being decidable [95,99].

A recursive presentation is a group presentation (X | R) with a finite alphabet X and
a recursively enumerable set of relations R C F' where F' denotes the free group over the
alphabet X'. The group G = (X | R) defined by a recursive presentation is recursively
presented. As finite sets are recursively enumerable, every finite presentation is a recursive
presentation. Recursively presented groups have been classified by Higman’s embedding
theorem:

Theorem 2.10 (Higman’s Embedding Theorem [81]]) A finitely generated group
embeds into a finitely presented group if and only if it is recursively presented.

This is a fundamental result in combinatorial group theory. For instance, the existence of
a recursively enumerable set of integers that is not recursive is used in [95] Section IV.7]
for the construction of a recursively presented group whose word problem is not de-
cidable. As this recursively presented group embeds into a finitely presented group by
Theorem 2I0] there exists a finitely presented group whose word problem is not decid-
able [95] Theorem IV 7.2|. This would prove the Novikov-Boone Theorem 2.5

If a group G is finitely generated by X, it has a solvable word problem if and only
if the set S = {w € F(X) | w =¢ 1} is recursive. In particular, the word problem is
decidable if and only if S and its complement F'\ S are recursively enumerable. In this
case, a recursive presentation for the group G is given by (X | {w € F(X) | w =¢ 1}).
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Therefore, every finitely generated group with a solvable word problem is recursively
presented. Hence, it embeds into a finitely presented group with Higman’s Embedding
Theorem ZT0l More specifically, one can prove the following

Proposition 2.11 (Clapham [34,099]) A finitely generated group with a decidable
word problem embeds into a finitely presented group whose word problem is decidable.

2.5 Finite L-presentations

In this section, we finally introduce the notion of a finite L-presentation and the notion
of a finitely L-presented group. The study of finite L-presentations was initiated by
Lysénok’s result in [96] for the group & constructed by Grigorchuk [53]: he proved that
& is infinitely presented by

6= ({a,b,c.d} ( {a?,0%,¢%, a2, bed} U | {(ad)*, (adacac)'}"), (2.2)
1€Np

where o is an endomorphism of the free group over {a, b, ¢, d} that is induced by the map
a v aca, b — d, c— b, and d — c. As a homage to this work and as a reference to the
L-systems from [91], it was suggested in [56] that a group is called finitely L-presented
if it admits a group presentation of the form

(¥lev Ur7)

1€Np

with a finite alphabet X', finite subsets Q and R of the free group over &X', and a single
endomorphism o of the free group over X. This notion was generalized in [6] as follows:

Definition 2.12 (Bartholdi [6]) An L-presentation is a group presentation of the
form
<X‘QU U R"> (2.3)
occd*
where ®* denotes the free monoid of endomorphisms of the free group F over X that is

generated by ®; i.e., the closure of {id} U® under taking composition of group homomor-
phisms.

The group presentation in Eq. (23] is denoted by (¥ | @ | ® | R). The group G it
defines is L-presented by (X | Q | ® | R). We also write G = (X | @ | ® | R) in this case.
An L-presentation (X | Q | ® | R) is a finite L-presentation if X, Q, ®, and R are finite.
A group presented by a finite L-presentation is finitely L-presented by (X | Q | @ | R).
The relations in Q and R are the fized relations and iterated relations, respectively. The
endomorphisms in ® are the substitutions of the L-presentations.
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Remark 2.13 In the following, we always assume that the substitutions in ® of a finite
L-presentation generate a free monoid. This is not necessary for the algorithms con-
structed below and, in particular, it does not change the isomorphism type of the group.
More precisely, given a finite set of endomorphisms {o1,...,0,} C End(F) and a finite
set of symbols ® = {¢1,...,0n}, we consider the free monoid ®* which naturally maps
onto the monoid M = (o1,...,0,) generated by the endomorphism {o1,...,0,} of the
free group. In the following, we always identify the free monoid ®* with its image in
End(F). This identification does not change the isomorphism type of the L-presented
group. However, the free monoid ®* is well-ordered [67,[129] which we often use for the
algorithms constructed below.

With the notion of a finite L-presentation, Lysénok’s result in Eq. (2.2]) could be restated
as follows:

Theorem 2.14 (Lysénok [96]) The Grigorchuk group & is finitely L-presented by
({a,b,e,d} | {a®,b%, 2, d? bed} | {o} | {(ad)*, (adacac)*}) where o denotes the endomor-
phism of the free group over {a,b,c,d} that is induced by the map a — aca, b+ d, ¢ — b,
and d — c.

An L-presentation of the form (X | 0 | ® | R) is an ascending L-presentation. Ascending
L-presentations generalize the concept of a finite presentation:

Remark 2.15 A finitely presented group (X | R) is finitely L-presented by (X | 0 |0 | R).

The substitutions o € ® of an ascending L-presentation (X | ) | ® | R) stabilize
the normal subgroup K = (U,cp- Ro)F. Therefore, each substitution of an ascend-
ing L-presentation induces an endomorphism of the L-presented group G = F/K. An
L-presentation where every substitution induces an endomorphism of the L-presented
group is called an inwvariant L-presentation. The group presented by an invariant L-
presentation is invariantly L-presented. Some algorithms developed in this thesis will
work for invariant L-presentations only; e.g. the algorithm in Appendix [El for computing
Dwyer quotients of the Schur multiplier of an invariantly finitely L-presented group. Ad-
ditionally, the nilpotent quotient algorithm in [9L[64] is more effective on invariant finite
L-presentations. Note that invariant and ascending L-presentations are related by the
following

Remark 2.16 FEvery ascending L-presentation is invariant. For each invariant L-pre-
sentation (X | Q | ® | R) there exists an ascending L-presentation (X |0 |® | QUR)
which defines the same group.

The finite L-presentation in Theorem .14 for the group & constructed by Grigorchuk is
an invariant L-presentation as the fixed relations Q = {a?,b%, ¢?,d?, bed} are mapped by
the substitution o to

(aQ)U = (aca)27 (b2)(’ = d?, (02)‘7 =12, (dg)” = ¢, and (bed)? = dbe = (bcd)dil.
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These images are obviously relations in the group &. Therefore, the substitution ¢ factors
through to an endomorphism of &; see also [55]. In particular, & is finitely L-presented
by the ascending finite L-presentations

({a,b,c,d} | 0| {o} | {a?, 0%, %, d? bed, (ad)?, (adacac)*})
= ({a,b,c,d} | 0| {o} | {a® bed, (ad)*, (adacac)*}).

Finite L-presentations are recursive:
Lemma 2.17 A finite L-presentation is a recursive presentation.

Proof. Let (X | Q| ® | R) be a finite L-presentation. Since the finitely generated
free monoid ®* is recursively enumerable, the set of relations QU |J,cq4+ R7 of a finitely
L-presented group is recursively enumerable. O

Higman’s embedding theorem 2.I0] and Lemma 217 have the following immediate

Corollary 2.18 FEach finitely L-presented group embeds into a finitely presented group.
Each finitely generated subgroup of a finitely L-presented group is recursively presented.

Proof. Since a finitely L-presented group is recursively presented, a finitely L-presented
group embeds into a finitely presented group by Higman’s embedding theorem R.T0
Thus a finitely generated subgroup of a finitely L-presented group embeds into a finitely
presented group and hence, it is recursively presented. O

In Appendix [D] we generalize the Reidemeister-Schreier theorem for finitely presented
groups as we prove that each finite index subgroup of finitely L-presented group is finitely
L-presented itself.

Proposition 2.19 The class of finitely presented groups is properly contained in the
class of finitely L-presented groups. The class of finitely L-presented groups is contained
in the class of recursively presented groups. There are finitely generated groups that are
not finitely L-presented.

Proof. By Remark T3] each finitely presented group is finitely L-presented. Grigor-
chuk’s group is finitely L-presented by Theorem 2.I4] but it is not finitely presented [56].
Therefore, the class of finitely presented groups is properly contained in the class of
finitely L-presented groups. By Lemma 2.I7] every finitely L-presented group is recur-
sively presented. Because there are only countably many finite L-presentations but, by
Proposition 23] uncountably many non-isomorphic groups generated by two elements,
there are finitely generated groups that are not finitely L-presented. O

Since we are not aware of a method to prove or disprove that a finitely generated group
is finitely L-presented (or even invariantly finitely L-presented), we have no answer to
the following problem:

Question 2.20 Is there an explicit example of a recursively presented group that is not
finitely L-presented? Is there a finitely L-presented group that is not invariantly finitely
L-presented?
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Note that, in Appendix [B], we prove that ‘being invariantly finitely L-presented’ is an
abstract property of a group which does not depend on the generating set. Therefore,
it suffices to construct a finitely L-presented group which does not admit an invariant
L-presentation with respect to the same generating set.

2.6 Examples of Finitely L-Presented Groups

Because finite L-presentations generalize the concept of a finite presentation, there are
various examples of finitely L-presented groups. More interesting examples of finitely
L-presented groups are those which are not finitely presented. In this section, we show
that the concept of a finite L-presentation is quite general so that various examples of
finitely generated groups exist which are finitely L-presented. The algorithms developed
in this thesis apply to these groups.

2.6.1 Self-Similar Groups

A major motivation for introducing the notion of a finite L-presentation in [6,56] was the
desire to understand better some examples of self-similar groups. Self-similar groups have
appeared across a wide range of mathematics, answering classical questions in infinite
group theory as well as establishing new links to complex dynamics [6,9].

A self-similar group is defined by its recursive action on a rooted regular tree. We
consider the d-regular rooted tree as the free monoid over the alphabet 7 = {0,...,d—1}.
Then a group G that acts faithfully on the free monoid T is a self-similar group if for
each g € G and = € T there exist h € G and y € T with

(zw)? = yw" for each w € T*.

In order to define a self-similar group, it suffices to specify the action of its generators
on the regular rooted tree. For instance, we have the following well-known examples of
self-similar groups:

Example 2.21 (Grigorchuk [53]) The Grigorchuk group & = (a,b,c,d) is defined by
the following action on the rooted binary tree T* = {0,1}*:

Ow)* = 1w (Iw)* = 0w

Ow) = 0w® (1lw) = 1w°
Ow) = Oow® (1lw) = 1w
Ow)? = Ow lw)? = 1w’.

Example 2.22 (Gupta & Sidki [62]) The Gupta-Sidki group G = {(a,r) is defined by
the following action on the rooted 3-reqular tree T* = {0,1,2}*:

Ow)* = 1w Ow)" = 0w®
(lw)* = 2w (lw)” = 1w’
2w)* = 0w 2w)" = 2uw".
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Example 2.23 (Fabrykowski & Gupta [45,46], Grigorchuk [57]) For d > 3, the
generalized Fabrykowski-Gupta group Ty = (a,r) is defined by the following action on the
rooted d-reqular tree T* =1{0,...,d — 1}:

(zw)* = 241 (modd)w, for0<z<d-1

Ow)" = 0w®,

(zw)" = zw, for1<z<d-1
(d=1w)" = d—1w".

Various self-similar groups are finitely L-presented but not finitely presented:

Theorem 2.24 (Bartholdi [6]) Each finitely generated, contracting, semi-fractal, reg-
ular branch group is finitely L-presented but not finitely presented.

The constructive proof of Theorem provides a method for computing finite L-
presentations for self-similar groups; see [6,[14,[128]. For further details on self-similar
groups groups, we refer to [6l[12][101]. Throughout this thesis, we often use the testbed-
groups from [6J9] to provide computational evidence for the effectiveness of our algorithms
in practice.

2.6.2 Groups Satisfying Finitely Many Identities

In the style of [6, Section 2.2|, we define an identity to be an element w of a free group F
over some alphabet Y. A group G satisfies the identity w € F | if for each homomorphism
m: E — G we have that w™ =4 1. For instance, all abelian groups satisfy the identity
w = [x,y]. The free group over X in the variety of groups satisfying the identities
{wy,...,w,} C Eis

F
.7::F/<wir,...,wg 7r€Hom(E,F)>

where F' denotes the free group over X'. The group F is universal in the sense that every
group generated by X and satisfying the identities wy, ..., w, is a homomorphic image
of F. A finitely generated group G is finitely presented in the variety of groups satisfying
the identities wy, ..., wy if the kernel F — G is finitely generated as normal subgroup.
The following proposition is easily derived from [6, Proposition 2.13]:

Proposition 2.25 Each group that is finitely presented in the variety of groups satisfying
finitely many identities is finitely L-presented.

The proof of [6, Proposition 2.13] uses a variation of Nielsen transformations. It gen-
eralizes to further examples of finitely L-presented groups; see Section 2.6.3] below. For
instance, the free Burnside group B(m,n) on m generators that satisfies the identity x”
is finitely L-presented; see the AMS review of [I14]. Another example is given explicitly
by the following L-presentation from [64]:
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Example 2.26 An n-Engel group is a group G that satisfies the n-th Engel identity
[t u] =g 1, for all t,u € G, where [t,, u] is defined recursively by [t,1 u] = [t,u] and
[thrl u] = [[tm u]’u]

The free group E(m,n) in the variety of m-generated n-Engel groups is finitely L-
presented by ({z1,...,xm} U{t,u} | {t,u} | | {[t,n ul}) where the substitutions & =
{0, 07,77, 77 | 1 <i<m} are induced by the maps

R AR A A )

T — T, forl1 <k <m, T — T, for 1 <k <m,
02': t — x;t, o; t — x;lt,
u = u, u = u,
and
T v T, forl1 <k <m, T = wp, for 1 <k <m,
2
.t t — t, T2 t — t,
(R S R T (A w;lu,
respectively.

2.6.3 Further Examples of Finitely L-Presented Groups

The notion of a finite L-presentation is quite natural. It was used intrinsically in many
instances for the construction of groups with interesting properties. The constructive
proof of Theorem (as indicated in the Example 2.26]), allows one to prove that
many infinitely presented groups in literature are finitely L-presented. For instance, the
lamplighter group Zo ! Z admits a finite L-presentation:

Proposition 2.27 If H is a finitely presented group, the wreath product H17Z is finitely
L-presented.

Proof. Let (X | R) be a finite presentation for the group H. Then the wreath product
H 7 admits the presentation

(Rt} | RU{" ") o,y € X,ij €Z,i # j}).
It is easy to see that we can replace the relations [z, "] = [z,y" )", with 4,j € Z,
by the relations [z,4"] with i € N\ {0} without changing the isomorphism type of the
group. In particular, we have that

HQ17= <XU{t} ( RU{[z, "] | 2,y € X,i eN\{O}}>. (2.4)

For each = € X, we introduce a stable letter u, ¢ X and we write U = {u, | v € X} so
that X NU = () holds. Consider the finite L-presentation

(2 VUL | (o webnen | {ouhoer | RU{ 6 bager ) (25)
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where o, denotes the endomorphism of the free group over X U U {t} that is induced
by the map

r = X, for each x € X
ot st
VY up o, for each x € X'\ {y}

uy o (uy)
The map x — z, t — t, and u, — x induces a surjective homomorphism from the group
defined by the finite L-presentation in Eq. ([Z3]) onto the wreath product in Eq. (24).
The map that identifies the generators X U {t} of the wreath product in Eq. (2Z4]) with
the corresponding generators of the finite L-presentation in Eq. (Z3]) defines a surjective
homomorphism. These homomorphisms are clearly inverses of each other. Thus the
finite L-presentation in Eq. (23] defines H Z. O

The finite L-presentation for the wreath product in Eq. (2.3)) is not ascending. In general,
we are not aware of an ascending L-presentation for the wreath products H!Z. However,
in contrast to [6], Bartholdi noticed that the lamplighter group Zo ! Z is finitely L-
presented by

Zo L 1 = <{a,t} ‘ 0 ‘ {o} ‘ {aZ,[a, at]}>,
where o denotes the endomorphism of the free group over {a,t} that is induced by the
map a — a’a and t — t. We generalize this construction in the following proposition:

Proposition 2.28 If H is a finitely generated abelian group, the wreath product H1Z is
wnvariantly finitely L-presented.

Proof. For a proof, we refer to Proposition 2.3l in Appendix [Bl O

Another group that is finitely L-presented was constructed in [85]: Consider the subgroup
H = {(ay,...,a,) of the group G = ({as,...,ar,t} | {wl,...,ws,aﬁvfl,...,a’;vﬂ )
where w; are freely and cyclically reduced words in X* = {ay,...,a,}*. If G satisfies
some small-cancellation condition, H is not finitely presented [85]. However, by Theo-
rem 3.1 of [85], H is finitely L-presented by ({a1,...,a,} |0 | {6} | {wi,...,w,.}) where
¢ denotes the endomorphism of the free group F over {ay,...,a,} that is induced by the
map

ay +w— v,

¢: F — F,
ar > U

Similarly, the finitely generated group with trivial Schur multiplier in [I8] is finitely
L-presented but not finitely presented. We are not aware of an invariant finite L-
presentation for this group [64]. Another example of a finite L-presentation is given
by the recursive presentation for Mihailova’s subgroup in [26].

2.7 Decision Problems for Finitely L-Presented Groups

In this section, we consider decision problems for finitely L-presented groups. Since each
finite presentation can be considered as a finite L-presentation, we have the following
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Remark 2.29 If an abstract property is not recursively recognizable for finitely presented
groups, it is not recursively recognizable for finitely L-presented groups.

Since a finitely L-presented group is recursively presented, the following lemma applies
to finitely L-presented groups:

Lemma 2.30 The word problem of a recursively presented group is semi-decidable.

Proof. Let (X | R) be a recursive presentation of a group. Suppose that r,79,...
is a recursive enumeration of the group’s relations; i.e., r, € R denotes the element
that is returned as the n-th step of the algorithm that list the elements of R one after
another. The word problem is semi-decidable if the set of elements g € (R)¥ is re-
cursively enumerable where F' denotes the free group over X. For g € (R)¥, we have
g = ul_lr'ilul ceusrémy,, with r; € R, u; € F, and € = +1. Since the free group F

is finitely generated by X, elements of this form are recursively enumerable and thus
g € (R)F can be listed one after another. 0

However, there are recursively presented groups whose word problem is not decidable [95],
Section IV.7]. In the following, we consider two decision problems which could be faced
with our algorithms in special cases. Decision problems for recursively presented groups
were also studied in [94].

2.7.1 Finite Presentability Problem

Because ‘being finitely presented’ does not depend on the generating set of the group,
it is an abstract property [38]. Since the class of finitely presented groups is contained
in the class of finitely L-presented groups, a natural decision problem for a finitely L-
presented group is to ask for an algorithm that decides whether or not a given finite
L-presentation defines a finitely presented group. In general, this finite presentability
problem for finitely L-presented groups is not decidable. In order to prove that the finite
presentability problem is not decidable, we consider

Theorem 2.31 (Baumslag [17]) For finitely presented groups G and H, the wreath
product H ! G is finitely presented if and only if either H 1is trivial or G is finite.

An immediate consequence of Proposition 227 and Theorem 231] is the following

Proposition 2.32 There exists no algorithm that decides whether or not a finite L-
presentation defines a finitely presented group.

Proof. Let H= (X | R) be a finitely presented group. By Proposition the wreath
product H7Z is finitely L-presented. By Theorem 2.31] though, HZ is finitely presented
if and only if H is trivial. If an algorithm existed for deciding whether or not a finite
L-presentation defines a finitely presented group, there would exist an algorithm for
deciding whether or not H is trivial. However, ‘being trivial’ is a Markov property. By
the Adian-Rabin Theorem 2.6], it is therefore impossible to decide whether or not a finite
L-presentation defines a finitely presented group. O

As every finitely L-presented group is recursively presented, Proposition 2.32] yields
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Corollary 2.33 The finite presentability problem for a recursively presented group is not
decidable.

Even though it is not decidable whether or not a finite L-presentation defines a finitely
presented group, the algorithm in [66] or Appendix [E]l addresses this decision problem
practically. It attempts to gain computational evidence for an invariantly finitely L-
presented group to be infinitely related. Our approach follows the ideas from [56]. It
computes successive (still finitely generated) factor groups of the Schur multiplier of an
invariantly finitely L-presented group.

The Schur multiplier M (G) of a group G is an invariant which is related to a group
presentation by Hopf’s formula: If F'is a free group and R < F' is a normal subgroup so
that G = F'/R holds, the Schur multiplier M (G) satisfies

M(G) = (RN F')/[R, F].
The Schur multiplier M (G) is related to the finite presentability problem:

Lemma 2.34 The Schur multiplier of a finitely presented group is a finitely generated
abelian group.

Proof. 1If G is finitely presented, there exists a finite presentation (X | R) for G. Let
F' be the free group over X and denote by R the normal closure in F' of the finitely
many relations in R. Then G = F/R holds. By Hopf’s formula, the Schur multiplier
satisfies M (G) = (RN F')/[R, F]. The subgroup (RN F')/[R, F] is contained in the
central subgroup R/[R, F| < F/[R, F]. Since R is finitely generated as normal subgroup,
R/[R, F] is a finitely generated abelian group. Thus, all subgroups of R/[R, F| are finitely
generated. In particular, the Schur multiplier M(G) = (RN F')/[R,F] < R/|R, F] is a
finitely generated abelian group. O

Lemma [2.34] was used in [56] to prove that the group & constructed by Grigorchuk [53]
is not finitely presented. These explicit calculations were generalized to an algorithm for
computing Dwyer quotients of the Schur multiplier in [66] or Appendix [E]

Notice that the converse of Lemma [2.34] is not true: A counter-example, namely a
group with finitely generated (even trivial) Schur multiplier which is not finitely pre-
sented, was constructed in [I8]:

Theorem 2.35 (Baumslag [18]) The group
B =({a.b,t}| {a'a b b7 [a,b"] i € Z})
s a met-abelian, infinitely related group with trivial Schur multiplier.

The constructions in the proof of Proposition 2.27] also show that Baumslag’s group in
Theorem [2.35] is finitely L-presented; see [64].

Even though the Schur multiplier of a finitely L-presented group is not computable in

general [52], our approach in [66] or Appendix [E]l computes successive quotients, so-called
Dwyer quotients, of the Schur multiplier of an invariantly finitely L-presented group.
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Various self-similar groups admit striking patterns along the successive Dwyer quotients
which suggest that their Schur multiplier is infinitely generated. The algorithm in [66] or
Appendix [E] can be seen as a quotient method for the Schur multiplier of an invariantly
finitely L-presented group.

2.7.2 The Group Homomorphism Problem

In this section, we consider a computational problem which is fundamental for any quo-
tient method for finitely L-presented groups. Even though an answer to this problem
may depend on the L-presentation, a solution to this problem allows us to develop in-
teresting algorithms for finitely L-presented groups; e.g. the coset enumerator in [67] is
a consequence of our solution for the class of finite groups.

Let ‘H denote a class of groups (e.g. an important case is that # is the class of finite
groups). Suppose that G is finitely L-presented by (X | Q | ® | R) and assume that
f: X — H is a map into a group H € H. We say that the group homomorphism problem
for the class H is decidable if there exists an algorithm that decides whether or not the
map [ extends to a homomorphism G — H.

By the universal property of free groups, the map f: X — H extends to a unique
group homomorphism ¢: F — H from the free group F' over the alphabet X. The
homomorphism ¢ induces a group homomorphism G — H if and only if G’s relations
are mapped trivially; i.e., QU (J,cq+ R C ker(y) holds. A solution to the group
homomorphism problem may depend on the class of groups.

If H € H has a decidable word problem, there exists an algorithm that decides
whether or not an element r € F satisfies r¥ =y 1. Therefore, for a finitely presented
group, the group homomorphism problem for a class H of groups with a (semi-)decidable
word problem is (semi-)decidable because it suffices to check finitely many relations. If
the group is finitely L-presented, though, there are possibly infinitely many relations that
need to be considered for solving the group homomorphism problem. In Chapter B, we
obtain a solution to the group homomorphism problem for the class of finite groups:

Theorem 2.36 For a finitely L-presented group, the group homomorphism problem for
the class of finite groups is decidable.

We also solve the group homomorphism problem for the class of finitely generated nilpo-
tent groups (and even the class of polycyclic groups is likely to admit a solution to the
group homomorphism problem). In general, though, we have no solution to the group
homomorphism problem.

2.8 First Results for Finitely L-Presented Groups

In this section, we summarize some well-known results on the structure of a finitely L-
presented group. The following group theoretic constructions preserve the property of
being finitely L-presented:
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Theorem 2.37 (Bartholdi [6]) For finitely L-presented groups G and H, the following
groups are finitely L-presented:

e cvery factor group G/N for a normal subgroup N < G which is finitely generated
as a normal subgroup of G,

o cvery split-extension H x G,

e cvery group extension of G by a finitely presented group,

e the free product G x H, and

o cvery HNN-extension of G relative to an isomorphism ¢: K — L where K and L
are finitely generated subgroups of G.

An immediate consequence of Theorem [2.37]is

Corollary 2.38 Let G and H be finitely L-presented groups. If F' is a finitely generated
group with embeddings ¢: F — G and ¢: F' — H, the amalgamated free product G xp H
18 finitely L-presented.

Furthermore, it was already suggested in [6] that each finite index subgroup of a finitely
L-presented group is finitely L-presented. The proof in [6, Proposition 2.9] contains a
gap which we addressed in [70] or Appendix [Dl However, finitely L-presented groups
satisfy

Theorem 2.39 (Reidemeister-Schreier Theorem) FEach finite index subgroup of a
finitely L-presented group is finitely L-presented.

In [[70] or Appendix[Dlwe also study conditions on a finite index subgroup of an invariantly
finitely L-presented group to be invariantly finitely L-presented.

2.9 Algorithms for Finitely L-Presented Groups

It was shown in [9[64] that finite L-presentations allow computer algorithms to be applied
in the investigation of finitely L-presented groups. So far, the only algorithm for finitely
L-presented groups is the nilpotent quotient algorithm in [964]:

2.9.1 The Nilpotent Quotient Algorithm

Most results on the structure of a self-similar group were obtained using their realization
as automorphism groups of a regular rooted tree. For instance, the faithful action on
the binary tree of group & constructed by Grigorchuk [53] was used in [123] to compute
its lower central series sections 7.8 /7.4+18; see also [I0]. The lower central series of
® admits striking patterns so that the sections 7. /7.+1® have a nice description (see
Section [A.3. 1] below). In fact, & is a group of finite width. Similar results were obtained
in [7] for other self-similar groups including the Fabrykowski-Gupta group from [45][46].

The striking patterns along the lower central series v.G/v.+1G were a major motiva-
tion for generalizing the nilpotent quotient algorithm for finitely presented groups [107]
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to finitely L-presented groups in [964]. Similar to the original algorithm, this generaliza-
tion computes a polycyclic presentation for the lower central series quotients G/v.(G) of
a finitely L-presented group G together with a group homomorphism G — G/~.G. The
successful application of our nilpotent quotient algorithm to various self-similar groups
yields detailed conjectures on the structure of their lower central series in general. More-
over, it provides a first algorithm for computing within the lower central series quotients
G/~.G of a finitely L-presented group (the groups G/v.G have a decidable word prob-
lem). For further details on the nilpotent quotient algorithm for finitely L-presented
groups, we refer to [9,[64] or Section below.

Our generalization of the nilpotent quotient algorithm for finitely presented groups
in [TI07] to finite L-presentations suggested that the p-quotient algorithm [74,[105] and
the polycyclic quotient algorithm from [921[93] generalize to finite L-presentations [63];

see also [43].
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Chapter

The Group Homomorphism Problem

A group presentation is a useful tool to decide if a map from a generating set of a
group into another group induces a group homomorphism. More precisely, given a group
presentation (X | R) of G and a map f: X — H from the generating set X of G into a
group H, the presentation is useful to decide whether or not f induces a (unique) group
homomorphism G — H: By the universal property of free groups, the map f extends
to a unique homomorphism ¢: F' — H from the free group F' over the alphabet X into
the group H. The homomorphism ¢ induces a group homomorphism G — H if and
only if all relations in R of G’s group presentation are mapped trivially. If (X | R) is
a finite presentation, there are finitely many relations that need to be considered. The
group homomorphism problem is decidable if both G and H are finite [90] and, even
more general, if G is finitely presented and H has a decidable word problem. For finitely
L-presented groups, though, there are possibly infinitely many relations that need to be
checked in order to verify that ¢ induces a group homomorphism G — H.

In this chapter, we show that the group homomorphism problem is solvable if H is

finite or finitely generated and nilpotent. Our solution for the class of finite groups is
the basis for our coset enumerator for finitely L-presented groups in [67] or Appendix [Cl

3.1 The Class of Finite Groups

In this section, we consider the group homomorphism problem for the class H of finite
groups. Let G = (X | Q| ® | R) be a finitely L-presented group. We explicitly describe
an algorithm that decides whether or not a map f: X — H into a finite group H € H
induces a group homomorphism G — H. Denote by F' the free group over the alphabet
X. By the universal property of free groups, f extends (uniquely) to a homomorphism
@: F'— H. Then ¢ induces a group homomorphism 7: G — H if and only if all relations
of G’s finite L-presentation are mapped trivially by ¢; i.e., we have r¥ =g 1 for all
r € QUJyeq- R7.

Since G is finitely L-presented there are only finitely many fixed relations in O that
can be checked one after another. Therefore, it remains to consider the (possibly infinitely
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many) relations (J,cq« R?. We show that finitely many relations of the form r7, with
r € R and o € ®*, are sufficient in order to decide whether or not f: X — H induces to
a group homomorphism G — H. First, we consider the following

Lemma 3.1 For a finitely generated free group I and a positive integer n € N, there
are only finitely many subgroups in F with index at most n.

Proof. Let F be a finitely generated free group and let n € N be given. Suppose that
U < F has finite index m = [F' : U] < n. Then F acts transitively on the right-cosets
U\F. Therefore, there exists a group homomorphism my: F' — Sym(U\F) = S,,. On
the other hand, each group homomorphism 7: F' — S,,, whose image F'™ acts transitively
on the points {1,...,m} corresponds to a subgroup U = Stabp(1) of F' with index m.
In fact, there is a one-to-one correspondence between the subgroups with index m and
the group homomorphisms 7: F' — S,,, whose image acts transitively on {1,...,m}.

By the universal property of a free group, a group homomorphism m: F — &, is
uniquely defined by the images of the basis X of F. Since F'is finitely generated and S,
is finite, there are only finitely many homomorphisms in Hom(F,S,,). Thus, there are
only finitely many subgroups U < F with index m < n. O

Since every finitely generated group is a homomorphic image of a finitely generated free
group, this yields the following

Corollary 3.2 For a finitely generated group G and a positive integer n € N, there are
only finitely many subgroup H < G with |G : H|] < n.

In the following, we consider endomorphisms o € End(F') of the free group F over X
and the kernels ker(oyp) where ¢: F — H denotes the (unique) extension of the map
f: X — H to the free group F.

Lemma 3.3 For endomorphisms 0,6 € End(F) of the free group F and a homomor-
phism @: F — H into a finite group, there exists an algorithm that decides whether or
not ker(oy) < ker(dyp) holds.

Proof. Since H is finite and o is an endomorphism of the free group F, the image
im (o) = F/ker(oyp) is finite. Therefore, ker(oy) has finite index in F'. The group F
acts transitively on F'/ ker(op) and there exists an isomorphism ¢: F'/ ker(op) — im (o).
This isomorphism allows us to compute a Schreier transversal T for ker(og) in F. Then
Schreier’s theorem (as, for instance, in [95] Proposition 1.3.7]) allows us to compute a
finite basis ) for the free subgroup ker(op). The Schreier generators ) give a method
to decide whether or not ker(op) < ker(d¢) holds: it suffices to evaluate the images y°?
for finitely many Schreier generators y € ). Clearly, we have ker(og) < ker(dy) if and
only if y°# =g 1 holds for each y € ). Since H is finite, it has a solvable word problem
and thus y%¢ =p 1 is decidable. a

The condition ker(op) < ker(dp) in Lemma B3] yields the following

Lemma 3.4 There exists a homomorphism m:im (op) — im (0p) with d¢ = oem if and
only if ker(op) < ker(d¢) holds.
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Proof.  Suppose that there exists a homomorphism 7:im (o) — im (dp) with dp =
opr. If g € ker(op), then 1 = 17 = (¢°%)" = ¢ = ¢%. Thus g € ker(dp). Tf,
on the other hand, ker(cp) < ker(dp) holds, there are isomorphisms F/ker(ocp) —
im (o), gker(op) — g°% and F/ker(6p) — im (0p), gker(dyp) + ¢°%. Since ker(cp) <
ker(d¢p) holds, there is a natural homomorphism F'/ker(op) — F/ker(dyp), g ker(op) —
gker(d¢). A combination of these homomorphisms yields a homomorphism 7:im (o) —
im (6p), 7% — ¢°¢ that satisfies opm = d¢. O

An alternative proof of Lemma B3] is given by the algorithm in [90]: This algorithm
allows one to decide whether or not a map from a generating set of a finite group into
finite group induces a group homomorphism. By Lemma[B.4] we have ker(op) < ker(d¢p)
if and only if there exists a homomorphism 7:im (0p) — im (dp) with dp = opm. For
the latter problem, the algorithm in [90] applies.

Our algorithm for deciding whether or not f: X — H induces a homomorphism G —
H is shown in Algorithm Bl It takes as input a finite L-presentation (X | Q | ® | R)
of G and the homomorphism ¢: F' — H. It decides whether or not ¢ induces a group
homomorphism G — H. The procedure ISGROUPHOMOMORPHISM in Algorithm Bl is

ISGROUPHOMOMORPHISM(X, Q, ®, R, ¢)
if (3¢ € Q:q & ker(p)) then return( false )
if (3r € R:r € ker(p)) then return( false )
Choose an ordering on ® = {¢1,..., ¢, } with ¢; < ¢it1.
Initialize the lists V := [id: F — F| and S := [¢1, ..., ¢n).
while S # [] do
Remove the first entry ¢ from the list S.
if (3r € R: r° ¢ ker ) then return( false )
if (Vo eV: ker(op) £ ker(dyp)) then
Append ¢10,...,¢,0 to the list S.
Add ¢ to the list V.
return( true )

Algorithm 3.1: An algorithm to decide whether or not ¢: F — H induces a group
homomorphism G — H.

an algorithm:

Lemma 3.5 The algorithm ISGROUPHOMOMORPHISM in Algorithm [31] terminates and
it either returns true or false.

Proof. Suppose that the procedure ISGROUPHOMOMORPHISM does not terminate and
hence, the while-loop will not terminate. Since the list S = [¢1,..., ¢;] is finite and at
each iteration of the while-loop an element is removed from S, non-termination of the
procedure implies that it adds infinitely many elements § to the list V. At each step,
the elements 0,0 € V satisfy ker(op) # ker(dp). Because ¢: F' — H is a homomorphism
into a finite group H and im (0p) < im () < H holds, the images im (o) and im (d¢p)
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are finite groups. Since F/ker(op) = im (o) holds, ker(ocp) and ker(dyp) have finite
index in F. As F'is finitely generated and ker(o¢) has index at most n = |im ()|, there
are only finitely subgroups ker(cp) by Lemma Bl This contradicts our assumption that
the procedure adds infinitely many elements o to V with ker(cp) # ker(dy) for each
pair §,0 € V. Therefore, the while-loop eventually terminates and thus the procedure
[SGROUPHOMOMORPHISM is an algorithm. Clearly, it either returns true or false. O

In order to prove that the algorithm ISGROUPHOMOMORPHISM solves the group homo-
morphism problem for the class H of finite groups, we need the following observation:

Lemma 3.6 Suppose that the algorithm ISGROUPHOMOMORPHISM returned true. For
each § € ®*, there exists o € V with ker(op) < ker(dyp).

Proof. The free monoid ®* is well-ordered with respect to the length-plus-lexicographic
ordering which extends the ordering < on the generating set ®. More precisely, the
ordering < of the finite generating set ® = {¢1, ..., ¢, } extends to the free monoid ®* as
follows: define o < ¢ if and only if either ||o|| < ||0] holds or, otherwise, if 0 = o1 --- 0y,
and 6 = 61 - - 0y, with §;,0; € @, and there exists 1 < k <nsothat o, =6, fork <i<n
and o < . The obtained ordering < on ®* is total and a well-ordering [129]. By
construction, S and V in Algorithm Bl are always ordered with respect to this ordering.
Moreover, at each step of the algorithm, the elements in V precede those in S.

Suppose that § € ®* is a <-minimal counter-example to this lemma. Then we have
ker(op) £ ker(dg) for each o € V. At each step of the algorithm we neither have 6 € V
nor 6 € S (if § € S at an intermediate step, the algorithm would either have found
o € V with ker(og) < ker(dyp) or it would have added ¢ to V' — in both cases we obtain
a contradiction to our assumption because no elements were removed from V). Since
the stack S was initialized as S := ®, we have that ||§|] > 2. Therefore, we can write
0 = 0102 - - - 6, with each 0; € ®. The algorithm yields the existence of a minimal positive
integer 1 < k < n so that, at some step of the algorithm, we have 0305411 ---9, € S
but never ;19 - -+ 0, € S. Hence, there exists 7 € V so that ker(r¢) < ker(dy - - d,)
holds. Because the elements in V' precede those in S, the element 7 € V satisfies
that 7 < 0 -+ - d,,. By Lemma B4l ker(7¢) < ker(dg - - 0,¢) implies the existence of a
homomorphism 7:im (7¢) — im (0 - - - dp) With 7w = g, - - - 0p0. We obtain that

dp =101+ 0pp =01+ 010 - Opp = 01 -+ - Op_1TepT.

By Lemma B.4] this yields that ker(d; - -+ dx_17¢) < ker(dp). As 7 < O - -+ 9, holds, we
have that 61 -+ 0p_17 < 01+ 010k - -+ 6, = &. If there existed ¢/ € V with ker(o’¢) <
ker(dq - -+ dx_17¢), we would have that ker(c’y) < ker(d; - -+ 0x—17¢) < ker(dyp). Hence,
01+ 0r_17 is a also counter-example to our lemma which precedes the counter-example
0. This however contradicts the minimality of §. a

We are now in a position to prove the following theorem:

Theorem 3.7 For a finitely L-presented group and the class of finite group H, the group
homomorphism problem for H is solved by the algorithm ISGROUPHOMOMORPHISM.
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Proof. Let ¢: F' — H be the unique homomorphism from the free group over the al-
phabet X into the finite group H € H that lifts the map f: X — H. By Lemma [3.3] the
algorithm ISGROUPHOMOMORPHISM terminates and it either returns true or false.

If the algorithm returned false, it found either a fixed relation ¢ € Q with ¢¥ # 1
or it found an iterated relation r € R and a substitution o € ®* with (r7)% # 1. In this

case, the homomorphism ¢: F' — H does not factor through to a group homomorphism
G — H.

Suppose that the algorithm ISGROUPHOMOMORPHISM returned true. As the finitely
many fixed relations in Q were verified by the algorithm, it suffices to check the (possibly
infinitely many) iterated relations 7° with 7 € R and § € ®*: By Lemma [0 there
exists 0 € V so that ker(op) < ker(dyp) holds. Thus, by Lemma B.4] there exists a
homomorphism 7:im (o) — im (dp) with ocpmr = dp. Since the algorithm did not
return false and o € V holds, the algorithm has verified that r? € ker(¢) holds. We
obtain (r%)¥ = 7% = yo%T — (y°¢)™ = 1™ = 1. Hence, all relations of the form 7°
with r € R and § € ®* are mapped trivially by . Therefore, ¢ induces to a group
homomorphism G — H. O

The algorithm ISGROUPHOMOMORPHISM has various interesting applications. For in-
stance, it allows us to develop a coset enumerator for finitely L-presented groups in [67] or
Appendix [Tl This is an algorithm which, given a finitely generated subgroup of a finitely
L-presented group, computes the index of the subgroup in the finitely L-presented group
provided that this index is finite. Analogously to coset enumeration for finitely pre-
sented groups, our method has various useful further applications including a solution
to the generalized word problem for finite index subgroups and a method for computing
low-index subgroups of a finitely L-presented group.

3.1.1 Applications of the algorithm ISGROUPHOMOMORPHISM

In this section, we summarize the applications of the algorithm ISGROUPHOMOMOR-
PHISM in Algorithm Bl In particular, it allows us to develop algorithms for subgroups
of finitely L-presented groups:

e to compute the index of a finitely generated subgroup in a finitely L-presented
groups provided that this index is finite,

e to compute a permutation representation for the group’s action on the cosets of a
finite index subgroup,

e to solve the generalized word problem for finite index subgroups,
e to compute the lattice of finite index subgroups of a finitely L-presented group,

e to compute a finite generating set of the kernel of a homomorphism from a finitely
L-presented group into a finite group,

e to compute the intersection of two finite index subgroups, and

e to compute the normal core of a finite index subgroup.
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These methods have been implemented in the computer algebra system GAP [50]. Appli-
cations of these implementations to a class of self-similar groups are shown in Appendix[Al

A fundamental application of algorithm ISGROUPHOMOMORPHISM is the coset enu-
merator for finitely L-presented groups in [67] or Appendix [C

Proposition 3.8 IfG = (X | Q| ® | R) is a finitely L-presented group andU = (Y) is a
finitely generated subgroup of G which has finite index in G, there exists an algorithm that
computes the index |G : U] together with a permutation representation p: G — Sym(U\G)
for the group’s action on the cosets.

Proof. Let G = (X | Q| ® | R) be a finitely L-presented group and let U = ()) be a
finitely generated subgroup with finite index in G. Denote by F' the free group over X
and write K = (QUJ,cq- R7)¥. The usual word-length of an element o € ®* from the
free monoid ®* is denote by [|o[|. The finitely presented groups H; = (X' | QUJ, e, R7)
with ®; = {0 € ®* | ||o|| < i} naturally map onto G. We consider the finitely many
generators ) of the subgroup U as elements of the free group F. Then E = ()) is a
subgroup of F' with Y = FEK/K. In particular, EK has finite index in F. Since F is
finitely generated and EK has finite index, FK is finitely generated by g1, ..., gn, say.

Write K; = (QU U, cq, R%)F. Then EKy < EK; < EKy < ... < EK < F and
EK = {U;> EK;. Since EK = (g1,...,gyn) is finitely generated and EK = |J,~, EK;
holds, there exists £ € Ny so that EK, = EK. In fact, the subgroup U can be considered
as a finite index subgroup of the finitely presented group H; = (X | QUJ,cq, R?). We
are to compute the index [G : U] = [F' : EKy] = [Hy : U] together with the permutation
representation ¢: F' — Sym(EK,\F') which induces G — Sym(U\G).

Coset enumeration for finitely presented groups computes a permutation represen-
tation ¢;: F' — Sym(EK;\F') provided that [F' : EKj] is finitd] In this case, the index
[F' : EKj] divides [F' : EK,]. It remains to prove that ¢;: F' — Sym(EK;\F) induces
a homomorphism G — Sym(EK;\F). Here, our algorithm ISGROUPHOMOMORPHISM
applies. In particular, it allows us to decide whether or not ¢; induces a group homo-
morphism G — Sym(EK;\F'). If this is the case, the index [G : U] = [F : EK,] and
[F' : EKj| coincide. Otherwise, we have to increase the index j. Termination of this
process is guaranteed by the existence of £ € N so that EK, = EK. For further details,
we refer to [67] or Appendix [C O

An ‘inverse’ of the coset enumerator in Proposition B.§]is given by Schreier’s theorem (as,
for instance, in [95] Proposition 1.3.7]). It allows us to compute finitely many Schreier
generators for a finite index subgroup of a finitely generated free group:

! Although the index j, so that [F : EK;] is finite, could not be given a priori, the following approach
yields an algorithm whose termination could be guaranteed: For an arbitrary index j, the coset enumer-
ator for finitely presented groups could be run with an upper bound N on the number of intermediate
cosets. If this process does not terminate successfully, we both increase the index j and the upper bound
N on the intermediate cosets. We then run both algorithms in parallel. We continue increasing these
numbers and to run these algorithms in parallel until eventually one of them terminates. Since the
subgroup has finite index, termination of this process is guaranteed.
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Proposition 3.9 There exists an algorithm that computes a finite generating set for a
finite index subgroup U of a finitely L-presented group G from a permutation representa-
tion p: G — Sym(U\G).

Proof. The subgroup U coincides with the stabilizer of the trivial coset ¢/ 1 under the
action of G. The permutation representation ¢ allows us to compute a finite generating
set for the stabilizer Stabg (U 1) using an orbit-stabilizer algorithm. O

Another application of coset enumeration is given by

Proposition 3.10 If G = (X | Q | ® | R) is a finitely L-presented group, there exists
an algorithm that proves that G is finite and that computes the order |G| provided that
G is finite.

Proof. If G is finite, the trivial subgroup & = ((}) has finite index in G. Therefore, our
coset enumerator terminates and it computes the index [G : U] = [G : {1}] = |G|. 0

Similarly, coset enumeration yields the following

Proposition 3.11 If G = (X | Q | ® | R) is a finitely L-presented group and U = ()
1s a finitely generated subgroup with finite index in G, the generalized word problem for

U is decidable.

Proof. IfU has finite index in G, coset enumeration computes a permutation representa-
tion p: F' — Sym(EK\F). Let g € G be given. We consider the element g as an element
of the free group F" over X. Then g € EK if and only if g € Stabgyygx\r)(EK 1).
Using the permutation representation ¢, it is clearly decidable whether or not g €
Stabsym(EK\F) (EK 1) holds. O

This solution to the generalized word problem for finite index subgroups yields the fol-
lowing

Corollary 3.12 If G = (X | Q| ® | R) is a finitely L-presented group and U = ()
and V = (Z) are a finitely generated subgroups with finite index in G, there exists an
algorithm that decides whether or not U < V holds. If U <V holds, there exists an
algorithm that computes [V : U]. There exists an algorithm that decides whether or not
U < G is normal in G and in this case computes a permutation representation for the

finite group G/U.

The low-index subgroup algorithms for finitely presented groups in [129] Section 5.6]
and [35,41] yield the following

Proposition 3.13 If G = (X | Q| ® | R) is a finitely L-presented group, there exists
an algorithm that computes the lattice of finite index subgroups of G.

Proof. For a positive integer n > 0, the low-index subgroup algorithms in [35] 4T]
and [129, Section 5.6] enumerate the subgroups of a finitely presented group with in-
dex at most n (in practice, the index n is rather limited so that these algorithms are
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known as low-index subgroup algorithms). These algorithms enumerate those homomor-
phisms F' — S, from the free group F over X into the symmetric group S,, that factor
through to a homomorphism G — &,. They could be used to compute all subgroups
with finite index in a finitely L-presented group G = (X | Q | ® | R) as follows: Consider
the notion introduced in the proof of Proposition B8l For an arbitrary 7 € Ny, consider
the finitely presented group H; = (X | QU ,cq, R7). Each subgroup EK; < F of the
finitely presented group H; can be computed with the low-index subgroup algorithms
for finitely presented groups. The subgroup EK;/K; of the finitely presented group H;
naturally maps onto the subgroup EK/K of the finitely L-presented group G. Therefore,
every finite index subgroup EK;/K; of the finitely presented group H; yields a finite
index subgroup EK/K of the finitely L-presented group. Clearly, the index [F' : EK]
divides the index [F' : EK;]. On the other hand, every finite index subgroup EK/K of
the finitely L-presented group G yields a finite index subgroup EK/K; of the finitely
presented group H;. In particular, every finite index subgroup of G shows up in the list
of finite index subgroups of H;.

The list of finite index subgroups of the finitely presented group H; possibly contains
duplicate subgroups of G. It therefore remains to remove duplicates from a list of sub-
groups. But this is an application of Corollary Therefore, the list of subgroups of a
finitely L-presented group with index at most n can be computed from a list of subgroups
with index at most n of the finitely presented group H,. O

A low-index subgroup algorithm may help to prove that a finitely L-presented group is
non-trivial if we can find a subgroup with non-trivial index in G; see [129] p.251|. Similar
to finitely presented groups, we also have the following application:

Proposition 3.14 There exists an algorithm that computes a permutation representa-
tion for the group’s action on the cosets of the intersection of two finite index subgroups
of a finitely L-presented group.

Proof. Let ¢: F' — Sym({1,...,n}) and ¢ FF — Sym({1,...,m}) be permutation rep-
resentations for the group’s action on the right-cosets EK\F and VK\F of two finite
index subgroup of a finitely L-presented group. Then F' acts on the Cartesian product
{1,...,n} x {1,...,m} diagonally via (a,b)? = (a%",59"). The stabilizer of the point
(1,1) coincides with the intersection EK NVK. Since {1,...,n} x{1,...,m} is finite, an
orbit-stabilizer algorithm computes a generating set for the stabilizer of the point (1, 1)
and thus a generating set for the intersection FK N VK. A permutation representation
for EK N VK is then obtained from coset enumeration. O

An immediate consequence of Proposition B.14] is the following

Corollary 3.15 There exists an algorithm that computes a permutation representation
for the group’s action on the cosets of the normal core of a finite index subgroup of a
finitely L-presented group.

Proof. The normal core Ny of a subgroup U < G is the largest normal subgroup that is
contained in U and it satisfies Ny = (,cUY. Since [G : U] is finite, there exists a finite
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transversal T' C G for U in G. Therefore, the normal core Ny, satisfies Ny = (e Ut and
thus it is the intersection of finitely many finite index subgroups. By Proposition B.14] a
permutation representation for this intersection can be computed. O

For a finitely L-presented group G = (X | Q | ® | R) and a homomorphism ¢:G — H
into a finite group H, a finite generating set for the kernel ker(y) is computable:

Proposition 3.16 If G = (X | Q| ® | R) is a finitely L-presented group and if ¢: G —
H is a homomorphism into a finite group, there exists an algorithm that computes a finite
generating set for the kernel of ¢.

Proof. Since H is finite, we can consider H as a finite permutation group H < §,, =
Sym({1,...,n}). Moreover, we have F'/ker(¢) = im (¢) < S,. By [95, Proposition 4.1],
it suffices to compute a Schreier transversal for ker(¢) in F. Because there is a one-to-one
correspondence between the cosets F'/ker(yp) and the elements of im (¢), this Schreier
transversal can be computed in the finite permutation group S,. O

An application of the latter proposition allows us to compute a generating set for the
derived subgroup G’ = [G,G] provided that the abelianization G/G’ is finite. Note
that the abelianization is computable with the nilpotent quotient algorithm in [9L64].
Combining this method with the Reidemeister-Schreier theorem for finitely L-presented
groups in [70] or Appendix [D we obtain a solvable quotient algorithm for finitely L-
presented groups:

Corollary 3.17 If G = (X | Q| ® | R) is a finitely L-presented group, there exists an
algorithm that computes the isomorphism type of the abelianization G/G'. If G/G(i) 1S

finite for some i € N, there exists an algorithm that computes the isomorphism type of
the sections G /GUH1),

Proof. The nilpotent quotient algorithm in [9[64] computes a polycyclic presentation
for G/G' together with a homomorphism G — G/G’. The polycyclic presentation for
G/G" allows us to compute the isomorphism type of G/G’. In particular, it allows us
to decide whether or not G/G’ is finite. Suppose that, for i > 2, the quotient G/G® is
finite. Then Proposition allows us to compute a finite generating set for the ker-
nel G = ker(G — G/G®). Then the constructive proof of the Reidemeister-Schreier
Theorem in [70] or Appendix [Dlallows us to compute a finite L-presentation for the
finite index subgroup G < G. This finite L-presentation enables us to use the nilpo-
tent quotient algorithm for computing the abelianization G /[G®, GW] = G /GU+D)
together with a homomorphism G — G®/G0+D 1f GO /GU+1) is finite, then so is
G/GU+Y) | The process continues until G /G(+1) is either trivial or infinite. O

The algorithms above have been implemented in the computer algebra system GaAp [50].
Their implementations have been applied successfully to a class of self-similar group in

Appendix [Al
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3.2 The Class of Finitely Generated Nilpotent Groups

In this section, we consider the group homomorphism problem for finitely generated
nilpotent groups. This problem can be faced with the quotient method in [9[64]: More
precisely, for a finitely L-presented group G and a positive integer ¢, the nilpotent quotient
algorithm in [9,[64] computes a weighted nilpotent presentation for the lower central
series quotient G/~.G together with a homomorphism 7: F — G/7.G which induces a
homomorphism G — G/~.G. A weighted nilpotent presentation is a finite presentation
that admits an effective solution to the word problem in G/+.G as it provides a confluent
rewriting system.

The nilpotent quotient algorithm allows us to solve the group homomorphism problem
for the class H of finitely generated nilpotent groups: Let H € H be given. We assume
that H is given by a weighted nilpotent presentation (if H is given by a finite presentation,
a weighted nilpotent presentation can be computed with the algorithms in [9.64,[107]).
Suppose that G = (X | Q | ® | R) is a finitely L-presented group and that f: X — H is a
map. We first compute the nilpotency class ¢ of the subgroup L = ({f(z) | z € X'}) < H.
This can be done by first computing an induced polycyclic presentation for the subgroup.
Then the nilpotent quotient algorithm for finitely presented groups applies. If G has a
maximal nilpotent quotient with nilpotency class less than ¢, f cannot extend to a
group homomorphism G — H. We can therefore assume that the nilpotent quotient
algorithm in [9,[64] computes a weighted nilpotent presentation for G/7v.11G together
with a homomorphism 7: F' — G/7.4+1G which induces a homomorphism G — G/7.41G.
There exists a homomorphism G — H if and only if there exists a homomorphism

t:G /741G — H so that the diagram
/ l“"

G/7c+1G LH- H.

commutes. Since G/7.4+1G is finitely presented and H has a decidable word problem, it
is decidable whether or not such a homomorphism ¢: G/v.4+1G — H exists.

The same ideas as above show that, since the polycyclic quotient algorithm for finitely
presented groups in [921[93] also generalizes to finitely L-presented groups [63], the group
homomorphism problem for the class of polycyclic groups is decidable.

3.3 Finitely Presented Images

In this section, we consider the group homomorphism problem for the class of finitely
presented groups with a solvable word problem. In a special case, we are also able to
give a solution to this problem:

Proposition 3.18 Let G = (X | Q | ® | R) be a finitely L-presented group and let
H = (Y|S8) be a finitely presented group whose word problem is decidable. Suppose that
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f: X — H is a map so that (f(X)) has finite index in H. Let p: F' — H be the unique
extension of f to the free group F' over the alphabet X. Then there exists an algorithm
which decides whether or not ker(p) is ®-invariant. In this case, there exists an algorithm
which solves the group homomorphism problem for H.

Proof. By the Reidemeister-Schreier Theorem [Z2] every finite index subgroup of a
finitely presented group is itself finitely presented. Moreover, as every subgroup of a
finitely presented group with a solvable word problem has a solvable word problem,
we can assume that o: ' — H is onto. Thus, for each y € ), there exists a word
wy(x1,...,Ty) in the generators X = {x1,...,2,} so that y =g wy(z1,...,2,)? holds.
Since H has a decidable word problem, an enumeration of the elements of F' allow us
to compute the representatives w,. Moreover, every image z¥, x € X, has the form
Ve(Y1y -+ Ym) where Y = {y1,...,ym}. Suppose that X NY = 0 holds. In the following,
we use Tietze transformations to compute a finite presentation for the finitely presented
group H with generators X. In particular, Tietze transformations yield that

H=(xu) | {7 ey, Yn) baex U {y twy (21, - .-, 20) Jyey US)

The relations yilwy(xl,...,xm) allow us to remove the generators y € ) from the

presentation. We obtain a finite presentation (X | S) for the group H. The finitely many
relators r € S are normal generators of the kernel . The kernel ker(y) is ®-invariant if
and only if r°? =g 1 holds for all ¢ € ®. Since H has a decidable word problem and ®
is finite, the latter problem is recursively recognizable.

Suppose that ker(y) is ®-invariant. Then, for each o € ® C End(F') there exists an
endomorphism & of the free group over ) so that cp = pd holds; see Appendix [Bl The
map f: X — H induces a group homomorphisms if and only if QU (J, e« R? C ker(¢p)
holds. Since @Q is finite and H has a decidable word problem, the images ¢¥, with ¢ € Q,
can be checked one after another. It therefore remains to consider the relations of the
form r°%. However, it remains to prove that ¥ =g 1 holds, as r°% = %7 holds for an
endomorphism & € {§ | § € ®}. Since R is finite, the images ¢ can be checked one
after another. This yields an algorithm that decides whether or not f: X — H induces a
homomorphism G — H in the case where ker(y) is ®-invariant. 0

In general, though, we have no solution to the group homomorphism problem for the
class of finitely presented group with a decidable word problem. A generalization of the
ideas in [70] or Appendix[DIneeds to construct a finite subset V C ®* for the substitutions
of G’s L-presentation (X | Q | ® | R) so that, for each § € ®*, there exists o € V with
ker(o¢) < ker(dyp) or, equivalently, if there exists a homomorphism 7:im (o) — im (d¢p)
with d¢p = opm. In this case, it would be sufficient to verify the finitely many relations
r€ QUJ,ep R

Question 3.19 Is the group homomorphism problem decidable for the class of finitely
presented groups with a solvable word problem?
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Chapter

Tietze Transformations for
L-presentations

Tietze transformations relate two presentations of the same group: If (X | R) is a
presentation for GG, F' denotes the free group over the alphabet X', K denotes the normal
closure (R)f" | and r € K holds, then (X | RU{r}) is a presentation for G. If (X | R) is
a presentation for G, z € X is a symbol which is not contained in the alphabet X', and
w, € F is an arbitrary element, then (X U {2z} | RU {2z 1w,}) is a presentation for G.
Both transformations are reversible and are known as Tietze transformations; see, for
instance, [95, Chapter II]. Tietze’s theorem shows that these transformations (and their
inverses) are sufficient to relate two finite presentations of a group by a finite sequence
of these Tietze transformations.

For finite L-presentations, though, there are further transformations needed because
a finite L-presentation (X | Q | ® | R) consists of fixed relations Q, iterated relations
R, and substitutions ®. For example, a relation » € K could be added either as a fixed
relation or as an iterated relation. In this chapter, we introduce Tietze transformations
for finite L-presentations including transformations which allow one to modify the sub-
stitutions ® of an L-presentation. These transformations allow us to prove a version
of Tietze’s theorem for finitely L-presented groups. This theorem shows that two finite
L-presentations define isomorphic groups if and only if one L-presentation can be trans-
formed into the other by a finite number of these transformations. Most of the results
in this chapter were generalized in Appendix [Bl in order to consider finitely generated
normal subgroups of finitely presented groups.

In practice, Tietze transformations are used to simplify a group presentation. For
instance, the group presentations computed with the Reidemeister-Schreier process often
contain redundant generators and redundant relations which could be removed from the
presentation using Tietze transformations.
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4.1 Tietze Transformations for finite L-presentations

In this section, we introduce Tietze transformations for finite L-presentations; for arbi-
trary L-presentations, we refer to Appendix [B] below. These transformations generalize
the usual Tietze transformations as, for instance, outlined in [95] Chapter II].

Let G = (X | Q| ®|R) be a finitely L-presented group. Denote by F' = F(X') the
free group over the alphabet X' and let K = (Q U J,cq- R7) be the kernel of the free
presentation 7: F' — G. The kernel K = kerm decomposes into the normal subgroups
Q = (QF and R = (U,cq- R7)Y so that K = RQ = QR holds. The group F/R is
invariantly finitely L-presented by (X | 0 | ® | R). If » € K is a relation, we obtain the
following Tietze transformation:

Proposition 4.1 If G = (X | Q | ® | R) is a finitely L-presented group and
r € (QUU, e ROYEX) holds, then (X | QU {r} | ® | R) is a finite L-presentation for
G.

Proof. The proof follows immediately with the Tietze transformation that adds a rela-
tion r to a group presentation (X' | QU U, cp- R7)- O

The transformation in Proposition 1] is reversible in the sense that we can remove
the relation r from the finite L-presentation (X | QU {r} | ® | R) if and only if
(QU{rtUUyeqp- ROV = (Qu Usca- R)VF(X) holds. The following transformations
are reversible in a similar sense.

If a finite L-presentation is not invariant, there exist elements of the kernel K = QR
that cannot be added as iterated relations without changing the isomorphism type of the
group. However, we have the following Tietze transformation:

Proposition 4.2 If G = (X | Q | ® | R) is a finitely L-presented group and
r € (Uyeq: ROV holds, then (X | Q | ® | RU{r}) is a finite L-presentation for
G. IfG=(X|Q|®|R) is a finitely L-presented group and r° € (Q U, cq R7)F')
holds for each § € ®*, then (X | Q| ® | RU{r}) is a finite L-presentation for G.

Proof. The normal subgroup R = ({J,cg+ R%)F?) is invariant under each substitution
o € ®*. More precisely, for each r € R and o € ®*, it holds that 7 € R. Therefore,
adding the (possibly infinitely many) relations {r? | o € ®*} to the group presentation
(X ] QU cqo+ R7) does not change the isomorphism type of the group G. The second
assertion is obvious. O

Iterated and fixed relations of a finite L-presentation are related by the transformation:

Proposition 4.3 If G = (X | Q | ® | R) is a finitely L-presented group and r € R
holds, then (X | QU {r} | ® | (R\ {r}) U {r¥ | ¥ € ®}) is a finite L-presentation for G.

Proof. The proof follows immediately from

ou [J R =qu{rtu |J (R\{rhu | v e a})

oced* oed*

ag
)
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these are the relations of G’s group presentation. O

The following proposition is a consequence of the definition of an invariant L-presentation:

Proposition 4.4 If G = (X | Q | ® | R) is an invariantly finitely L-presented group
and q € Q holds, then (X | Q\ {q} | ® | RU{q}) is a finite L-presentation for G.

Proof. Since G is invariantly L-presented by (X | Q | ® | R), each o € ® induces an
endomorphism of the group G. Therefore, the images {q¥ | ¢ € ®*} are relations of the
group and thus (X | (Q\ {¢}) U Uyeq- (R U{q})?) is a group presentation for G. 0

The following Tietze transformation adds a generator together with a fixed relation to a
finite L-presentation:

Proposition 4.5 Let G = (X | Q | ® | R) be a finitely L-presented group, z ¢ X, and
let w, € F(X) be given. For each o € ®, define an endomorphism of the free group E
over the alphabet X U {z} that is induced by the map

a
&:{x — xz%, foreachxe X (4.1)

zZ = g,

for an arbitrary g € E. Then (X U{z} | QU {z"tw,} | {6 | 0 € ®} | R) is a finite
L-presentation for G.

Proof. Similar to the proof of Proposition A1l the proof follows immediately with the
Tietze transformation that adds a generator z ¢ X together with a relation z~ 1w, to the
group presentation (X | QU J,cq« R?). The extended substitution & in Eq. (&I]) can
be defined arbitrarily on z because the iterated relations R do not contain the generator
z or its inverse 2! as a subword. O

Adding the relation 2w, as an iterated relation needs the following definition of the
extensions g of o € ®:

Proposition 4.6 Let G = (X | Q | ® | R) be a finitely L-presented group, z ¢ X, and
let w, € F(X) be given. For each o € ®, we define an endomorphism of the free group
E over the alphabet X U {z} that is induced by the map

loa
&:{x — x%, for eachx e X (4.2)

z = wl.
Then (X U{z} | Q| {6 |0 ®} | RU{z" w,}) is a finite L-presentation for G.

Proof. The substitution ¢ in Eq. (£2) is well-defined as w, € F(X) and o € End(F (X))
hold. Proposition [£3] yields that

(xu{z}|Q { {6 |0e€d} { RU{Z_le}>
= (Xu{z}| QU {z tw,} | {5 |oecd}| RU{(z7 w,)® | o€ ®}).
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The definition of & in Eq. (@&Z) yields that (271)° = (w?)~! and wJ = wJ. Thus

z z

(7' w,)? = 1 holds. In particular, adding the relations {(z !w,)? | o € ®} to a group
presentation does not change the isomorphism type of the group. Finally, Proposition 3]
yields that

<XU{Z} | Q | {6 |0 € d} ‘ RU{z_lwz}>
(xu{z} | QU {ztw.} | {5 | o€} | RU{(z  w,)? | o € @})

<XU{z}|QU{zilwz}|{5’|J€<I>}|7?,>
= (X|Q[®|R);

which proves the assertion of Proposition O

The following version of Proposition is a first transformation which modifies the
substitutions ® of an L-presentation:

Proposition 4.7 If G = (X | Q | ® | R) is a finitely L-presented group and ¢ € ®
holds, then (X | Q| (®\ {¢})U{oy | o € ®} | RURY) is a finite L-presentation for G.

Proof. The proof follows immediately from

Qu | J R7=9u [J (RURY)"

occd* ocev*
where U = (®\{¢})U{o¢ | o € ®}; these are the relations of G’s group presentation. O
We also have the following transformation:

Proposition 4.8 Let G = (X | Q | ® | R) be a finitely L-presented group and let
s € F(X) be given. Denote by d5 the inner automorphism of the free group F(X) that is
induced by conjugation with s. Then (X | Q| @U{ds} | R), (X | Q| P\ {o}U{dsc} | R),
and (X | Q| @\ {c} U{cds} | R) are a finite L-presentations for G.

Proof. Since each relation of a group presentation can be replaced by a conjugate and
0,0 = 00z0 holds, for each o € ®*, the proof is straightforward. O

Recall that the kernel K = (QU J,cg+ R%)F(*) decomposes into the normal subgroups
Q = (QFM) and R = (U, cqp- R7)FM) s0 that K = QR holds. This decomposition
yields the following transformation:

Proposition 4.9 Let G = (X | Q | ® | R) be a finitely L-presented group. If
¥ € End(F(X)) induces an endomorphism of F(X)/R, then (X | Q | @ U{¢y} | R)
s a finite L-presentation for G.

Proof.  Suppose that 1) € End(F (X)) induces an endomorphism of F(X)/R. Then R
is ¢-invariant. Thus, each relation 7 with o € (® U {¢})* \ ®* and r € R is a relation
of the group. Therefore, adding these (possibly infinitely many) relations to the group
presentation does not change the isomorphism type of the group. O

For an ascending (or invariant) L-presentation, we have the following transformation:
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Proposition 4.10 Let G = (X | 0 | ® | R) be a finitely L-presented group. Then
(X | 0| PU{b} | R) is a finite L-presentation for G if and only if 1 € End(F(X))
induces an endomorphism of G = F(X)/K.

Proof. If ¢ € End(F (X)) induces an endomorphism of F(X)/K, Proposition L9 shows
the first assertion. If, on the other hand, (X |0 | ® | R) and (X | 0| PU{¢p} | R) are
finite L-presentations for G, ¢ induces an endomorphism of G = F(X)/K. O

For an invariantly finitely L-presented group G = (X | Q | ® | R), every substitution
o € ® induces an endomorphism of G. However, there are possibly other endomorphisms
1 € End(F(X)) that induce the same endomorphism of G. The following proposition
allows us to replace a substitution o € ® by an endomorphism v € End(F(X)):

Proposition 4.11 Let G = (X | Q | ® | R) be a finitely L-presented group,
r e <U(P€q>* R“")F(X), z € X, and let 0 € @ be given. Define an endomorphism & of
the free group F(X) over the alphabet X that is induced by the map

)z e 2%,
1z = x%,  for each x € X\ {z}.
Then (X | Q| (®\{o})U{c} | RU{r}) is a finite L-presentation for G.

Proof. We decompose the kernel K = (Q, cq RPYF(X) of the free presentation
m: F(X) — G into the normal subgroups Q@ = (Q)¥¥) and R = (Upecar RV 50
that K = QR = RQ holds. Since r € (U, R¥)F(X) holds, Proposition yields that

G=(X|Q|®|R)=(X[Q|®|RU{r})

and R = (J,eqp-(RU {rP?YFX) . Write W = (®U{5})\ {o}. We prove that the normal
subgroups R = (Ugeqp: (R U {r}H#)FX) and R = (Upew-(RU {r}?)FX®) coincide. For
this purpose, we prove that, for each § € U* and g € F(X), there exist § € ®* and

heL=(@%|¢ed)X 5o that gs = ¢° - h holds. By construction, we have
that L C R. By symmetry, as we have both 2° = 2% and 2%r~! = 27, the same
arguments will show that, for each § € ®* and g € F(X), there exist 6 € ¥* and

helL=(¢]¢e U)X 5o that ¢° = ¢° - h. If we have proved this, each normal
generator s? € R, with s € RU {r} and ¢ € ¥*, can be written as s? = s - h with
o€ ® and h € L C R. Thus s? = s¥-h € R and R C R. By symmetry, we would also
obtain R C R.

Write X = {x1,...,Zm, 2}. Each g € F(X)isrepresented by a word wg(z1,...,%m, 2)
over the generators X'. Let 6 € U* and g € F(X) be given. We prove the assertion by
induction on n = ||§]|. If n = 1, then § € ¥ holds. If § # & holds, then § € ®. Thus
¢® = ¢° for some & € ®. Otherwise, if 6 = &, we obtain that

@ =4q° =Wy (T1,. .., T, 2)7 = wy(29,...
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Conjugation in the free group F(X) yields that the word wgy(z],...,27,,27r) can be

written as wy (27, ...,2%,2%) - h for some h € (r)¥) C L. Thus ¢° = ¢g° - h holds for
o € ® and some h € L.

For a positive integer n > 1, we assume that every image ¢°, with g € F(X), § € U*,
and ||| = n, can be written as g° - h for € ®* and h € L. Let g € F(X) and 7 € ¥*,
with ||5] = n + 1, be given. Then there exist @ € ¥ and § € ¥*, with ||0]| = n, so
that 4 = 0@ holds. By our assumption we have that ¢7 = ¢°¢ = (¢° - h)® for some
0 € ® and h € L. If © # &, then @ € ® and thus 0w € &*. Moreover, by construction,
the normal subgroups L = (r# | ¢ € ®)F®) and L = (% | ¢ € U*)FX) are &*- and
U*-invariant, respectively. Thus h* € L if & # &. Therefore, the image g7 can be written
as g7 = (¢° -h)® = g% - h¥ with & € ®* and h® € L. Tt therefore suffices to consider the
case @ = G. The elements ¢g°, h € F(X) are represented by words Wgs (T1, - -+ s T,y 2) and
wp (X1, ..., T, z), respectively. Again, conjugation in the free group F(&X') yields that
g7 = (¢°h)? = (¢°7 -a) - (h° - b) for some a,b € (r)F'*) C L. Hence, the image ¢7 can be
written as g% - b’ for o € ®* and b/ = ah®b € L. By induction on n, it follows that each
image ¢°, with g € F(X) and § € U*, has the form ¢° = ¢°-h for some § € ®* and h € L.
By symmetry, the same arguments above show that each image ¢°, with g € F (X) and
§ € ®*, can be written as ¢ = ¢° - h for § € U* and h € L. This finishes our proof of
Proposition 11l O

Note that Proposition I allows us to replace a substitution o € ® of an L-presentation
(X ] Q| ®|R)byan endomorphism ¢ € End(F (X)) of the free group F'(X') that induces
the same endomorphism on group. More precisely, we obtain the following

Corollary 4.12 Let G be finitely L-presented by (X | Q | ® | R). Then every substitu-
tion o € ® induces an endomorphism of the invariantly finitely L-presented group H =
(X|0]®|R). If p € End(F (X)) induces the same endomorphism on H, there ezists a
finite set S C F(X) so that G is finitely L-presented by (X | Q| (P\{c})U{v} | RUS).

Proof. If 1 and ¢ induce the same endomorphism of H there exists, for each z € X, r, €
(Upeca RPVF(X) 50 that z¥ = 27 7, holds. Write S = {r, | z € X'}. By Proposition EIT]
a finite L-presentation for G is given by (X | Q | (¢ \ {o}) U{¢} | RUS). 0

For our proof of a version of Tietze’s theorem for finitely L-presented groups we consider
the following transformations:

(i) adds or removes a fixed relation (Proposition ET),
(ii

)

) adds or removes an iterated relation (Proposition E.2]),
(iii) adds or removes a substitution (Proposition 3],
)

)

(iv) adds or removes a generator together with a fixed relation (Proposition [3]), or,

(v

adds or removes a generator together with an iterated relation (Proposition [E.0]).
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4.2 Tietze’s Theorem for Finite L-Presentations
We prove a version of Tietze’s theorem for finite L-presentations:

Theorem 4.13 Two finite L-presentations define isomorphic groups if and only if it
15 possible to pass from one L-presentation to the other by a finite sequence of Tietze
transformations.

Proof. We use similar ideas as in the proof of Tietze’s theorem in [95, Chapter II]:
As each Tietze transformation does not change the isomorphism type of the group, two
finite L-presentations define isomorphic groups if they can be transformed into each other
by a sequence of Tietze transformations. In order to prove Theorem [A13] it therefore
suffices to prove that two finite L-presentations which define isomorphic groups can be
transformed into each other by a finite sequence of Tietze transformations. For this
purpose, consider two finite L-presentations (X} | Q1 | @1 | R1) and (Xa | Q2 | P2 | Ra)
of a group G. Suppose that X1 N Xy = 0 holds. For 1 < i < 2, denote by F; the
free group over the alphabet X; and let 7;: F; — G be the free presentation with kernel
ker(m;) = (Q; U Uaeq); RZ)Fi. For each z € X}, we choose w, € 5 with 2™ = w?; i.e.,
wy € Fy is a my-preimage of 2™ € G. For each z € Xy, choose w, € F} with 2™ = wI'.
Define the finite subsets S; and Ss of the free group F' over X7 U &5 by

Si={z7lw, |z eX} and Sy={z"lw,|zec ) (4.3)

By Proposition 5, we can add the generator z € X, together with the fixed relation
2w, € Sy if we extend each substitution o € ®; to the free group over X U {z} by
defining = — 7, for x € X}, and z — z, otherwise. Therefore, Proposition allows
us to add the generators z € X, together with a fixed relation z~'w, € S5 to the finite
L-presentation (X1 | Q1 | ®1 | R1). More precisely, if F' denotes the free group over
X1 U Xy and, for each ¢ € ®1, ¢ denotes the endomorphism of the free group F' that is
induced by the map

. r — x2°, ifxe i,

GF=F { z =z, ifze Ay, (44)
Proposition yields that

G= <X1 U Xy | Q1 US, | {5'}oe<1>1 | R1> . (45)

The natural homomorphisms m1: F; — G and mo: F5, — G extend to the natural homo-
morphism 7: F' — G that is induced by the map

- — ™, ifx e Ay,
oz o= 2™ iz e Al

For z € X1 and x~tw, € S, we have 2™ = 2™ = w2 = wT and thus v~ 'w, € ker(r).
For each r € Q, we have r™ = r™ = 1. Thus r € Q. By Proposition L1 we can
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therefore add Qs U S; as fixed relations to the L-presentation in Eq. ([@I]). We obtain
the finite L-presentation

G= (Xl U Xy | Q1 UOQyU ST US, | {5}06431 | R1>. (46)

For each o € ®5, define an endomorphism of the free group F' that is induced by the
map
T = X, ifze

z — 279, ifxe . (4.7)

5:F — F, {

Then ¢ acts trivially on the generators & and therefore, it leaves the normal subgroup
<U66<1>{ RS invariant. By Proposition B, we can add the substitutions {5 | o € ®}
to the L-presentation in Eq. (6] and we obtain the L-presentation

G=(XUX | QUQUS US| {G}oea,ue, | R1) - (4.8)

It remains to consider the relations Ro from the finite L-presentation (Xs | Q2 | ®o | Ra)
and it suffices to show that we can add these relations » € Ro as iterated relations
to the L-presentation in Eq. (L8]). For this purpose, we need to prove that, for each
§ € {6 |0 € d UDy}*, the image r? is a relation of the group; i.e., 70 is contained in the
kernel ker(7). Let 6 € {6 | 0 € &1 U P2}* be given. We can write 0 = &;, 65, - - - G4, 05,
with each o;, € {e} U®; and 0;, € {e} U ®5. Since each &;,, with o;, € ®1, acts
trivially on the generators Xy and each 7j,, with o, € ®9, leaves the subgroup which is
generated by X invariant, we obtain that 70 = 791 %1% %n = y%1%in This yields
that (r°)™ = (%17%n )™ = (#%1%n )™ = 1 holds. Thus, by Proposition E2, we can add
the relations R as iterated relations to the L-presentation in Eq. (@8] and we obtain
the L-presentation

G= <X1 U Ay | Q1 U QU ST USy | {5'}ae<1>1u<1>2 | R U R2> . (49)

Since the L-presentations (X7 | Q1 | &1 | R1) and (X | Qo | ®2 | Ra) were finite,
we have applied finitely many Tietze transformations to obtain the finite L-presentation
in Eq. (£9)) from the finite L-presentation (X; | Q1 | ®1 | R1). By symmetry, though,
we would also obtain the finite L-presentation in Eq. (£9]) from the L-presentation
(Xa | Q2| P2 | Ra). As each Tietze transformation is reversible, we can therefore trans-
form the finite L-presentation in Eq.([@9]) to the finite L-presentation (X5 | Qa | @2 | Ra).
This shows that both finite L-presentations of G' could be transformed into each other
by a finite sequence of Tietze transformations. O

Similar to finite presentations, Theorem T3] does not solve the isomorphism problem
for finitely L-presented groups as there is no effective procedure for choosing the sets
S1 and Ss. In particular, there exists no algorithm which allows one to prove that two
finite L-presentations define non-isomorphic groups. In Appendix [Bl we use the Tietze
transformations introduced above to prove

Theorem 4.14 (Bartholdi [6]) Being invariantly finitely L-presented is an abstract
property of a group which does not depend on the generating set.

This theorem was already posed in [6, Proposition 2.2|. However, its proof contains a
gap which we could address with the help of our Tietze transformations above.



Chapter

Finitely Based Infinite Rewriting Systems

The group & constructed by Grigorchuk in [53] can be realized as a subgroup of the
automorphism group of the rooted binary tree. As it acts faithfully on the tree, the word
problem of the group & is decidable. Alternatively, the group & can be defined by the
invariant finite L-presentation

6= <{a, b,c,d} ‘ {a®, b, c?,d* bed} U U {(ad)47 (adacac)‘l}ai >, (5.1)
i>0

where o is induced by the map a +— aca, b — d, ¢ — b, and d — ¢; see Theorem 2141
The substitution o induces a monomorphism of the group & [55]. In this chapter, we
develop a method for computing canonical forms for elements of an invariantly finitely
L-presented group. For finite presentations, the Knuth-Bendix completion [86] computes
a confluent rewriting system if it terminates. A confluent rewriting system allows to
compute canonical forms of an element in the finitely presented groups and therefore, it
allows one to solve the word problem. We generalize the Knuth-Bendix completion for
finite presentations to invariant finite L-presentations. Since the group & is not finitely
presentable [56], there will not exist a finite rewriting system. Therefore, our procedure
attempts to compute an infinite rewriting system whose rewriting rules incorporate the
substitution o. More precisely, we attempt to construct a rewriting system whose (pos-
sibly infinitely many) rewriting rules are given by a finite set of rewriting rules and their
images under the substitutions.

A rewriting system consists of a set of objects and a set of rewriting rules that
describe the transformations of the objects. For an invariantly finitely L-presented group
G=(X]|Q|®|R), we establish a rewriting system with objects

S(x*%, ) = {(z1,01) - (xn,0n) { € X o e ®1<i< n} (5.2)

where X* are the monoid generators of the finitely L-presented group G and ®* denotes
the free monoid that is generated by the finite set ®. The objects S(X'*, ®) are elements
of the free monoid over the Cartesian product X+ x ®*. For further details on rewriting

systems, we refer to [231[129].
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Computer experiments with our Knuth-Bendix completion do not terminate and thus
do not allow to compute a confluent infinite rewriting system for the group & as well as
for the Basilica group and the wreath products Zo ! Z or Z ! Z. Therefore, it is not clear
whether or not these groups admit a ‘finitely based infinite rewriting system’ as would
have been constructed by our Knuth-Bendix completion.

In Section Bl we recall the notion of a rewriting system as, for instance, introduced
in [I29]. Then, in Section [.2] we construct a monoid presentation for an invariantly
finitely L-presented group with objects S(X*,®). For constructing a rewriting system
as in [129] we further need a reduction ordering on the elements S(AX'*, ®). This reduction
ordering is constructed in Section .3l Then, in Section [B.4], we prove the fundamental
Critical Pair Lemma for the new type of ‘finitely based infinite rewriting systems’. This
lemma allows us to decide whether or not a given rewriting system is confluent. More-
over, it yields a Knuth-Bendix completion in Section Finally, in Section B.6] we
demonstrate the application of our Knuth-Bendix algorithm to a fairly easy invariant
finite L-presentation.

In the following, a finite L-presentation is always considered to be invariant if not
otherwise stated. In particular, an invariant finite L-presentation (X | Q | ® | R) can al-
ways be chosen so that @ = () holds. Our generalization of the Knuth-Bendix completion
algorithm follows [129], Chapter 2].

5.1 Preliminaries

In this section, we introduce the notion of a rewriting system as in [129]. For this purpose,
let X be a (possibly infinite) alphabet and denote by X* the free monoid over X'. From
a set of binary relations R C X* x X*, we obtain a monoid congruence ~ on X™* as
follows: Denote by R the symmetric closure of R. For U,V € X*, we define U ~ V if
there exists A, B, P,Q € X* so that U = APB, V = AQB, and (P,Q) € R hold. The
reflexive and transitive closure of ~ is the monoid congruence ~r generated by R. The
monoid presentation

(X[ {P=Q|(PQ)eR}) (5.3)
defines the monoid X*/ ~g of equivalence classes of ~%. In the following, we often will
avoid the reference to R if it is clear from the context which generating set we choose.

We can endow the free monoid X* with a reduction ordering <: A reduction ordering
is a total and translation invariant well-ordering; i.e., an ordering < is translation invari-
ant if P > (Q implies APB = AQB for each A, B € X*. Since ~p is symmetric and <
is a total ordering, we can assume that (P, Q) € R always implies P > @ (otherwise we
can replace (P,Q) € R by (@, P) if Q > P or we can omit (P,Q) € R if P = @ holds.
Obviously this does not change the monoid congruence ~%). The monoid presentation
in Eq. (5.3)) yields the rewriting system

T={P—=>Q|P>Q, (PQ) cRor (Q,P)eR}.

For U,V € X*, define, if possible, a one-step reduction U —5 V with respect to T if there
exist A, B, P,Q € X* so that U = APB,V = AQB, and P — @ is a rewriting rule in T .
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Denote by —7- the reflexive and transitive closure of —7. Clearly, a one-step reduction
U —7 V or, in general, a reduction U —3 V always implies U ~ V. In the following, we
do not distinguish between the rewriting rule U —7 V from 7T and the relation (U, V)
from the monoid presentation. In particular, the rewriting rules of the rewriting system
T always generate a monoid congruence ~.

A rewriting system 7 allows us to transform the elements of X* with respect to the
reduction ordering < and the monoid congruence ~7, see [129]: Let N be the ideal that
is generated as an ideal by the left-sides {P | P =1+ Q € T}. If Uy € N, there exist
A, B, P,Q € X* with Uy = APB and P —7 @ € T. Then U} = AQB satisfies Uy >~ Uy,
Uy —7 Uy, and Uy ~7 Uy. If Uy € N holds, we can repeat this process and obtain
U, € X* with Uy = Uy, Uy —7 Us, and Uy ~7 Us. This yields a descending sequence
Uy = Uy = Uy > ... in the well-ordered monoid X*. Thus the sequence Uy, U1, Us, ...
eventually terminates with an element U,, € X* \ V' that satisfies Uy ~7 Uy, Uy =% Uy,
and Uy > U,. The elements U,, € X*\ N cannot be transformed any further. Therefore,
U, is irreducible with respect to 7. The above process of transforming the element
Uy € X* with the rewriting system 7T is called rewriting. Each rewriting system allows
us to rewrite each element to an irreducible one. The rewriting system depends on the
reduction ordering <.

Rewriting is non-deterministic because there are possibly different choices of one-step
reductions U; —7 U; 41 within a rewriting process. Therefore, for a rewriting system 7T,
we have the following notations:

e An element W € X™* is locally confluent, if, for each U,V € X* with W —+ U and
W —7 V, there exists Z € X* with U =5 Z and V =% Z.

e An element W € &™* is confluent, if, for each U,V € &* with W —3% U and
W =%V, there exists Z € X* with U =5 Z and V =% Z.

Clearly, an element W € X* is locally confluent whenever it is confluent. In general,
though, local confluence does not imply confluence [23] Section 1.2]. A rewriting system
T is (locally) confluent if and only if all elements W € X* are (locally) confluent. It
is Noetherian if there is no infinite reduction sequence a; —7 as —7 ... with each
a; # a;11. If the rewriting rules U —7 V always satisfy U = V for a well-ordering <, the
rewriting system 7 is obviously Noetherian. Even though local confluence does not imply
confluence, a Noetherian rewriting system satisfies Newman’s Lemma; see also [84]:

Theorem 5.1 (Newman’s Lemma [106]) A Noetherian rewriting system is confluent
if and only if it is locally confluent.

In order to check a Noetherian rewriting system for confluence it therefore suffices to
check it for local confluence only. In Section 4] we show that local confluence of our
(possibly infinite) rewriting system can be checked algorithmically.

Since X* is well-ordered, each non-empty set contains a least element. In particular,
each equivalence class in X*/ ~7 contains a (unique) least element. For W € X™*, the
least representative of the equivalence class which contains the element W is the canonical
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form of W with respect to < and ~7. The canonical form of an element W € X* and
irreducibility are related by the following well-known

Lemma 5.2 Let T be a rewriting system that generates the monoid congruence ~.
Each canonical form with respect to < and ~7 is irreducible. If T is confluent, each
wrreducible element is a canonical form.

Proof. Suppose that W € X* is a canonical form that is not irreducible. Then there exist
A, B,P,Q € X* with W = APB and a rewriting rule P —7 ). The element V = AQB
satisfies V' ~3+ W and W = V; this, however, contradicts our assumption that W is a
canonical form and thus a least representative of the equivalence class containing W.

Suppose that W is irreducible with respect to the confluent rewriting system 7. Let
V be the canonical form of W with respect to < and ~7. Then W > V and W ~4 V. By
definition of monoid congruence ~7, there exists a sequence W = Wy, W1,... . W, =V
so that W; = AZPZBZ7 Wi+1 = AzQzBm and either P; —T Qz or Qz —T P;. Since
W = W, is irreducible, we have the rewriting rule Qg —7 Py € T. Thus W7, —5 W. For
a positive integer i, assume that W; —% W holds. Since W; = A;P;B;, Wiy, = A;Q; By,
and either P, —7 Q; or Q; —7 P;, we either have W1 —7 W; or W; —7 W;,q1. If
Wiv1 —1 W, then Wi 1 =35 W. If, on the other hand, W; —7 W; 1 holds, then we
have both W; —7 W1 and W; —7 W. Because the rewriting system T is confluent,
there exists U € X" so that W —% U and W;1 =% U. Since W is irreducible, though,
we have W = U. Thus W; —% W. By induction on 7, we obtain that V = W,, -3 W
which implies that V' = W. Since V is the least representative of the equivalence class
that contains W, we have that W = V. O

Since a rewriting system 7 allows us to rewrite each element to an irreducible element
that represents the same element of the monoid, we immediately obtain

Corollary 5.3 A confluent rewriting system T allows one to compute the canonical form
with respect to < and ~g for each element in the monoid.

In the following, we consider the free monoid S(X, ®) that is generated by the Cartesian
product X x ®* = {(x,0) |z € X,0 € ®*} where X is a finite alphabet and ®* denotes
the free monoid which is generated by the finite alphabet ®.

The monoid S(X,®) carries an action of the free monoid ®*: For each o € ®, the
map
g: X X " = S(X, D), (z,¢) — (z,v0),
extends to a monoid homomorphism ¢: S(X, ®) — S(X, ®). This homomorphism maps
w = (r1,¢Y1) - (Tn,Yn) € S(X,P) to w = (z1,¥10) - (Tp,Ypo). The map 7 is
injective but not surjective; as (x, ) has no preimage under 7.
In the following, we consider a rewriting system 7 on the monoid S(&X,®). Even

though the rewriting system 7 might be infinite, we use the regularities that are induced
by the monoid ®*. For this purpose, we introduce the following notation:
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Definition 5.4 Suppose that < is a ®-invariant reduction ordering (i.e., the ordering
=< is ®-invariant if U <V always implies U < V' for each o € ®*). For a rewriting
system T on the free monoid S(X,®), a P-generating set is a subset R C T so that

7’:{U3—>Va

U—>V€Randa€<1>*}.

A rewriting system T is ®-finite, if there exists a finite ®-generating set R.

In Section B2, we show that each invariant finite L-presentation gives rise to a ®-finite
rewriting system 7. Moreover, in Section 4] we develop an algorithm that decides
whether or not a ®-finite rewriting system is locally confluent. This algorithm only
performs checks within the finite ®-generating set R.

5.2 Monoid L-Presentations

In this section, we introduce the notion of a finite monoid L-presentation. Further-
more, we derive a monoid L-presentation for each invariantly finitely L-presented group.
From this monoid L-presentation, we then obtain a ®-finite rewriting system for the
L-presented group. A monoid presentation of the form

M:<X({UU:VJ|(U,V)eRandaec1>*}> (5.4)

with a finite alphabet X', a finite set R C A" x X* of binary relations, and a finite set ®
of monoid homomorphisms X* — X* is a finite ascending monotd L-presentation. This
definition generalizes the well-known definition for finitely L-presented groups:

Proposition 5.5 Fach invariantly finitely L-presented group can be defined by an as-
cending finite monoid L-presentation.

Proof. Let (X | Q| ® | R) be an invariant finite L-presentation for a group G. Invari-
ance of the L-presentation yields that we can assume that Q = ) holds; otherwise, we
replace R by R U Q and Q by (). In order to construct a monoid presentation for G, we
consider the formal inverses X~ = {z7! | # € X} with X N X~ = (. Each substitution
o € ® translates in an obvious way to a monoid homomorphism & of the free monoid
X** over XT = X UX~. An ascending finite monoid L-presentation that defines the
group G is given by

<Xi ‘ {U*Z = (afl)zzw@z 0 (3671)7*Z —c|UeR, zeX e @*}> , (5.5)
see [129, Proposition 4.7]. 0

Similar to group presentations, ascending monoid L-presentations satisfy the following

Lemma 5.6 Fach substitution o € ®* of an ascending monoid L-presentation induces a
monoid homomorphism; that is, the monoid congruence ~ given by the monoid presen-
tation 1s o-invariant so that U ~ V implies U° ~ V.
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Proof. It suffices to prove that, for each ¢ € ®, the monoid congruence ~ is 1-invariant.
For this purpose, suppose that U,V € X* satisfy U ~ V. Let ¢ € ® be given. Denote
by T ={(U°,V?) | (UV) € R and 0 € ®*} the relations of the monoid presentation
in Proposition By definition of the monoid congruence ~, there exists a sequence
U=UyU,...,U, =V sothat U; = A;P;B;, Uj11 = A;Q;B; for A;, B;, P;,Q; € X*
and either (P;,Q;) € T or (Q;,P;) € T. If (P;,Q;) € T holds, then (P7,Q7) € T for
o € ®*. Thus, for 0 < i < n, we have that UZ’D = (A;P,B;)Y = A?Pin;’b and, similarly,
Upp1 = AYQVBY for AV, BY, PY, Q" € x* with (PY,QY) € T or (QV, P¥) € T. Thus
UY ~ VY. O

From the finite monoid L-presentation in Eq. (5.4]), we obtain a monoid L-presentation
over the Cartesian product X x ®*:

Theorem 5.7 Let M denote the monoid that is defined by the ascending finite monoid
L-presentation (X | {UY = V¥ | (U,V) € R,¢p € ®*}). For each x € X and o € P,
we write 7 = & ---& with each § € X. For each relation (U, V) € R, we write
U=uy-up and V = vy - vy with each u;,v; € X. The monoid M is isomorphic to
the monoid defined by the monoid presentation

N:<X><<1>*

{U$:V$( (U, V) 6V,1,Z)€<I>*}> (5.6)

where, for each p € ®*, ¢ denotes the monoid endomorphism of the free monoid S(X, ®)
that is induced by the map ©: X x ®* — S(X,®), (x,v¢) — (x,v¢) while the set V is
given by

y = {((ul,a)---(un,e),(vl,a)---(vm,e)) ‘(ul---un,vl---vm) GR}

(5.7)
U {((x,a),(fl,g)...(&,g)) ‘aefb,weXwithx”:&...&}.

Proof. By Lemma[5.0] each substitution ¢ of the free monoid S(X, ®) induces a monoid
endomorphism of M. In fact, relations are mapped to relations. Define a monoid homo-
morphism 7: S(X, ®) — X* by the map

7 (z,9) — 2%, for each x € X and ¢ € O*.

Since {(z,¢) | v € X} C S(X, P) holds, the image of 7 contains the basis X'. Thus, 7 is
onto and it induces a surjective homomorphism S(X,®) — M. In order to prove that
7 induces a surjective homomorphism N — M it suffices to prove that each relation of
N is mapped to a relation in M. For 1) € ®* and (uy -« Up,v1 - - Vy) € R, the relation

((ug,€) - (un,e))¥ = ((v1,€) - (U, €))¥ of the monoid N is mapped as follows:

—~ o~
— —
g =
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— —~
SN
N
™ ™
~— ~—
N— N—
<) )
3 3
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— —
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= —
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5.2. Monoid L-Presentations 61

and u¥ - ol = v}ﬂ .--vl is a relation in M. The relation (36,0)7*Z = ((&,e) - (&,5))7’Z
is mapped to

)

(z,0)"" = (z,00)" =2
(€1,8) -+ (€)™ = ((E1,9) - ()" =€ )

)

and z7% = 571’0 . --5@0 is a relation in M since each substitution i € ®* induces a ho-
momorphism of M and z% = & --- & is a relation in M. Thus, 7 induces a surjective
homomorphism 7: N — M.

Define a monoid homomorphism ~: X* — S(X, ®) that is induced by the map
~v:x — (z,e), foreach z € X.

Then ~ defines a homomorphism X* — N. We first show that the latter homomorphism
is surjective by proving %7 = (z,1) for each x € X and 1 € ®*. We prove this by induc-
tion on n = [|¢||. If n = 1, there exists 0 € ® with ¢ = 0. Since 27 =& --- & € X*, we
obtain (7)Y = (& -+ &)Y = (&1,€) - - (&, €). There is a relation (z,0) = (&1,¢) -+ (&, €)
in the monoid N. This relation yields (x?)Y = (x,0). Suppose that n > 1 holds. Then
Y = 06 with 0 € ®, § € ®*, and |6 = n — 1. Then (& &) = (&£ ---&)). By
induction on n, it follows that (£)--- €)Y = (&,6) - (&,0) = ((€1,€) -+ (&,€))°. The
relation (z,0) = (£1,€) -+ (&, ) and its P-iterates yield that ¥ = 29 = (& ---&)0 is
mapped by v to (z¥)Y = ((£1,¢) - (&,€))° = (z,0)° = (x,00) = (x,%). This shows that
the map v: X* — S(X, ®) induces a surjective homomorphism X* — N. Obviously, each
relation ulf cud = v}ﬂ e v% of M is mapped to a relation in N. Therefore, v induces a
homomorphism M — N. Clearly, 7y = idy and y7m = idys. Thus, the monoids M and
N are isomorphic via v and 7. O

In the remainder, we write 2% for the element (x,1)) € X x ®* so that the free monoid
S(X, ®) becomes
S(X, Q) ={z]" -2l |z, € X,0; € D"}

This notation indicates that the elements o; € ®* correspond to substitutions of an
ascending monoid L-presentation. We construct a ®-invariant reduction ordering on
S(X,®) in Section below; that is, a reduction ordering < is ®-invariant if U = V
implies UY = V¥ for each 1) € ®*. A ®-invariant reduction ordering < gives rise to a
®-finite rewriting system 7 for the monoid M from Theorem BT

Lemma 5.8 Suppose that the free monoid S(X,®) admits a ®-invariant reduction or-
dering <. Fach invariant finite L-presentation of a group gives rise to a ®-finite rewriting
system T with objects S(X, ®).

Proof. By Proposition [5.5] an invariantly finitely L-presented group can be defined by
an ascending finite monoid L-presentation

<X ( Y =v*| (U,V)eR,¢e<I>*}>.
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By Theorem [5.7], we obtain an isomorphic monoid presentation with generators X x ®*.
This monoid L-presentation is ascending and possibly infinite because X x ®* might be
infinite. However, the relations in the monoid presentation in Theorem (.7 are ®-finite
with ®-generating set

({U=V|UV)eER}U{2" =€ & |z € X, o€ d). (5.8)

A ®-invariant reduction ordering < allows us to construct a ®-finite rewriting system for
the monoid in Theorem (.71 O

5.3 A Reduction Ordering on S(X, ®)

In this section, we construct a ®-invariant reduction ordering on the free monoid S(X, ®).
For this purpose, we recall some basic constructions first: An ordering z1 < x9 < -+ <
Ty < Tpt1 < ... on the alphabet X extends to the free monoid X* over the alphabet X
as follows: Define aq---a, < b1 --- by, if and only if

(i) n=llai---an| <||b1---bm| = m or, otherwise,

(ii) if there exists 1 < i < m = n with a; = bj, for each 1 < j < ¢, and a; < b;.

The ordering < is the length-plus-lezicographic ordering on the free monoid X*. We use
the left-to-right version here. However, a right-to-left version could be defined analo-
gously and it also applies to the constructions below.

The length-plus-lexicographic ordering is a total and translation-invariant ordering
on the free monoid A* [129]. It is a well-ordering provided that < is a well-ordering on
the alphabet X [129]. For instance, if X'* is finitely generated by X = {x1,...,x,}, the
length-plus-lexicographic ordering is a total and translation-invariant well-ordering or,
for short, a reduction ordering.

Let @ be another finite alphabet and denote by ®* the free monoid that is generated
by ®. Then an ordering < of the finite set ® extends to the length-plus-lexicographic
ordering < on the free monoid ®*. The ordering < further extends to a total well-ordering
< on the m-folded Cartesian product ®* x --- x ®* as follows:

Definition 5.9 Let < denote the length-plus-lexicographic ordering on the free monoid
®*. Define (01,...,0m) < (01,...,0m) if and only if there exists 1 < i < m so that
oj = 0j, for each 1 < j <1, and o; < J;.

This definition yields the following

Lemma 5.10 The ordering < in Definition .9 is a total well-ordering on the m-folded
Cartesian product ®* x --- x ®*.

Proof. Let (01,...,0m),(01,...,0p) € *x---xP* be given. Since < is a total ordering
on ®*, for each 1 < j < m, we either have o; < d;, 6; < 0, or 0; = d;. For the m-folded
Cartesian product ®* x - - - x ®* we either have (o1,...,0.,) = (d1,...,d,) or there exists
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1 <4 < m so that o; = J;, for each 1 < j <4, and either o; < ¢; or o; > J;. Hence, < is
a total ordering on ®* x --- x ®* as soon as < is a total ordering on ®*.

Consider the m-folded Cartesian product ®* x --- x ®*. If m = 1, the ordering
< in Definition coincides with the well-ordering < on ®*. Obviously, the ordering

< is a well-ordering in this case. Suppose that m > 1 holds. Let (0%1), e ,aﬁ,{)) >

(052),...,07(3)) > ... be descending series in ®* x --- x ®*. Then (ag),...,a,(ﬁ),l) >

(O‘%z), e ,0’7(3)_1) > ... is a descending series in the (m — 1)-folded Cartesian product.
By induction on m, there exists £ € Ny so that (ay), .. ,052)71) = (agjﬂ), . ,afgﬂ)) for

each j > £. For j > /¢, this yields that 0%) > aﬁrjﬁl) > ... is a descending sequence in the
well-ordered monoid ®*. Thus, there exists k& > £ so that 0%) = J,(%H), for each 7 > k,
and hence, < is a well-ordering. O

The following definition gives a reduction ordering on the free monoid
SX,0) ={a]" -y |z, € X,0, € D", 1 <i<n}.
This ordering will be central to our construction of a ®-finite rewriting system below.

Definition 5.11 Denote the length-plus-lexicographic ordering on X* by < and let <
denote the ordering on ®* x --- x ®* from Definition [.4. Then an ordering < on the
free monoid S(X, ®) is given as follows: For z{" - -- xfl”,y‘lsl ceydm o€ S(X, @), we define
aft e aln < y‘fl <oyOmif and only if

(i) either x1 - xn, < y1---ym holds or, otherwise,
(1) if (o1,...,00n) < (01,...,0n).
This definition yields the following

Proposition 5.12 The ordering < in Definition[5.11 is a reduction ordering on the free
monoid S(X, ®).

Proof. The ordering in Definition [5.I1] is total as both, the length-plus-lexicographic
ordering < and the ordering < from Definition are total orderings.

Suppose that Uy > Us > ... > U; > U;4q1 > ... is descending series in S(X, ®).

otV (i)

Since < is a well-ordering on &A™, there exists £ € Ny so that U; = ;' ---x)» and
U1 = x‘filﬂ) ---xﬁfﬂ) for each ¢ > £. It therefore suffices to consider the descending
series (ag), ... ,07(5)) > (O'g-i_l), ... ,ag“)) > ... within the n-folded Cartesian product
®* x .-+ x ®*. Since < is a well-ordering, though, the latter sequence terminates and
thus, there exists k > ¢ so that (0§m), e ,O'gm)) = (ngﬂ), e ,a,ﬁm“)) for each m > k.
In particular, for each ¢ > k, we have U; = x({gl) ---mgg) = xfilﬂ) ---xﬁfﬂ) = U;4+1 and

hence, the ordering < is a well-ordering.

For proving translation invariance of the ordering <, it suffices to prove that, for
each x € X and o € ®*, we both have z°U < z°V and Uxz? < V% whenever U < V
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holds. However, this follows immediately from the construction of the ordering < in Def-
inition [E.11] and the fact that the length-plus-lexicographic ordering on X'* is translation
invariant; see [129, Proposition 1.5]. O

The ordering < in Definition E11]is ®-invariant:
Lemma 5.13 For U,V € S(X,®) and o € ®*, U <V implies U¥ < V.

Proof. Write U = z{' -+ 29" and V = y<151 - y0m with each z;,y; € X and 0,05 € .
For ¢ € &, we have

Uv = x‘lnw c-x9% and VY = yf”’b cogfdm?, (5.9)
Since U < V holds, we either have x1---x, < y1---yn in the length-plus-lexicographic
ordering < on X* or (o1,...,0,) < (d1,...,0,) in the ordering from Definition 5.9l In
the first case, the images U¥ and V¥ satisfy 21 - @p < y1 -+ Ym. Thus U¥ < VY. In the

second case, we would have z1 - -z, = y1 -y and (o1,...,0,) < (61,...,9,). Since
the length-plus-lexicographic ordering on ®* is translation invariant, the latter implies
(012, ..., opth) < (019, ..., 0p2p). Thus UY < VY. O

We finally note the following

Remark 5.14 Similar to the Knuth-Bendiz completion for finitely presented groups, the
reduction ordering is flexible; for instance, we need to specify the orderings on the gen-
erating sets X and ® of the free monoids X* and ®*. Furthermore, we can also use the
right-to-left version of the length-plus-lexzicographic ordering. This provides a selection of
reduction orderings that can be applied in the Knuth-Bendiz completion algorithm.

5.4 The Critical Pair Lemma

In the following, we establish a Critical Pair Lemma for a ®-finite rewriting system.
This lemma, enables us to decide whether or not a ®-finite rewriting system is locally
confluent. The Critical Pair Lemma below generalizes [129], Proposition 3.1| for finite
presentations.

Suppose that 7 is a ®-finite rewriting system with ®-generating set R. Then an
element W € S(X, ®) reduces with respect to T if there exist A, B, P,Q € S(X, ®) and
o € ®* so that W = AP°B and P — (@ is a rewriting rule in the ®-generating set
R. In order to find the minimal words W € S(X, ®) on which local confluence fails we
therefore need to recognize the left-side P of the rewriting rule P — @ as a ‘subword’ of
W = A P? B even if ¢ is non-trivial. More precisely, we use the following definition of a
®-subword:

Definition 5.15 For an element W = ' --- 29" € S(X, ®), a ®-subword has the form
xfi . --xjj with 1 < i < j < n and there exists w € ®* so that oy = dyw for each i < £ < j.
An element V € S(X,®) is a proper ®-subword of W if it is a ®-subword of W with
W #£V.
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The notion of a ®-subword is more general than the notion of a subword within the free
monoid S(X,®) as it also incorporates the action of the monoid ®*. In particular, a
®-subword V' of W is an w-preimage of subword in the free monoid S(X, ®). Note that
oy = 0pw, for a common w € ®*, in Definition implies that dp is a prefix of oy.
Moreover, we have the following observation:

Lemma 5.16 Let < denote the reduction ordering from Section[Z.3. Every W € S(X, ®)
has only finitely many ®-subwords. Each proper ®-subword U of W satisfies U < W.

Proof. The proof follows immediately from the definitions above. O

An element W € S(X, @) is locally confluent if for each A, B € S(X, ®) with W — A and
W — B, there exists D € S(&X, ®) so that A —* D and B —* D. A minimal condition for
an element W € S(X, ®) not to be locally confluent is given by the following proposition

(in the style of [129]):

Proposition 5.17 (The Critical Pair Lemma) Let T be a rewriting system on
S(X,®) with (possibly infinite) ®-generating set R C T. Suppose that the element
W e S(X,®) is not locally confluent but each of its proper ®-subwords is locally conflu-
ent. Then one of the following conditions holds: There exist rewriting rules Pi — Q1
and Py — Q9 in the ®-generating set R so that

(1)) W =P, and W = APJB for o € ®* and A,B € S(X, D).
(1) W = P7 and W = A°P,B? for o € ®* and non-empty words A, B € S(X,®).

(113) W can be written (AB)°C or A(BC)? for non-empty words A,B,C € S(X,®),
o € ®*, and either
e P, =AB and P, = B°C, or
e P, = AB? and P, = BC.

Proof. 'We generalize the proof of [129, Proposition 3.1]. If W € S(X, ®) is not locally
confluent, there exist Ay, Py, Q1, B1, Aa, P2, Q2, By € S(X,®) and 0,6 € ®* so that

(i) W = A P?B; and W = AyP{ By,
(ii) there are rewriting rules P, — @1 and P, — Q2 in R,
(iii) there does not exist V € S(X,®) with A;Q{B; —* V and AyQ3By —* V.

First, assume that P; and P, do not overlap; i.e., we have W = AlPl"C'PQ‘SBg for some
C € S(X,®). Using the rewriting rule P, — Q1, we obtain U; = A;Q{C P{ By while the
rule Py — Q5 gives us Us = AleCQgBQ. Both U; and Us reduce to the extended word
V= AlQ‘{CQgBQ; this contradicts the third condition on W. Therefore, P; and P, do
overlap. This yields either one of the following conditions holds:

e There exist positive integers 1 < i < j <n with P} =277 --- 277 ...

and Py =277 - x;ja. Write PY = A P{C° in this case.

e p9n0
7 7 Ly
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e There exist positive integers 1 < ¢ < j < m with P{ = z{'7-- fio---x?jo,

P2‘5 — 200 %0 pmd and 000 = oypo for i < £ < j. Write PY = A°B° and

K J m

P = B° Y for non-empty words A, B,C € S(X,®) with B = B°.

X

Consider the first case above. Then W = A, P B, = AlA"PgC"Bl, Ay = A1 A%, and
By = C?By. Suppose that A # € or By # ¢ holds. Then P{ = A°PJC? is a proper ®-
subword of W = A1A"P25C"’Bl. Since each proper ®-subword of W is locally confluent,
there exists V € S(X, ®) so that P{ — Q] —* V and APIC° — A°Q3C° —* V. This
yields that

A1P10B1 — AlQ({Bl —* A1VB1

and
AQPZ(SBQ — A2QgB2 = Al AanCUBl —>* A1VB1;

this contradicts the third condition on W. Thus A1 = ¢ = By and W = A"PgC" =Py.

Suppose that w € ®* is a common suffix of o and J so that § = dw and 0 = Gw
hold for 6,6 € ®*. Consider U = APJC% = P{ € S(X,®). If the suffix w € ®* is
non-trivial, U is a proper ®-subword of W = A° PQ‘SC“’ . Since each proper ®-subword
of W is locally confluent, there exists V € S(X,®) so that U = P — QJ —* V and
U= A°P{C7 — A7Q5C7 —* V. Hence Q7 —* V¥, A7Q5C7 —* V¥ as well as

AQIB, = Q] =V~

and

A2Q3By = Ay A7QYC7 By = AQYCT —* V¥
this contradicts the third assumption on W. Therefore, the common suffix w is trivial.
As Py and P, have the form P{ = 277277 .. 2777 ... 297 and P = 277 - --x?jo,
0 is a common suffix of gyo, for each i < ¢ < j. We obtain either one of the following
conditions:

e If 0 = 4 holds, both ¢ and § are trivial. Thus W = AP,C = P, for A,C € S(X, D).

o If ||o|| < ||6]| holds, o is a suffix of 6 and hence o is trivial. Thus W = AP2¢C’ =P
for A,C' € S(X,®) and ) € ®*.

e If||o|| > ||0]| holds, 6 is a suffix of o and hence d is trivial. Thus W = AY PR,C¥ = le
for A,C € S(X,®) and ¢ € P*.

The first two conditions correspond to (i) in Proposition [L.I7] while the last condition
correspond to either (i), if both A and B are empty, or it corresponds to (ii) of Proposi-
tion B.I7] otherwise.

Consider the second case where we have that P7 = A°B? and P{ = B°C® for non-
empty words A, B,C € S(X,®) with B? = B Then W = APy By = AiA° B° By and
W = A2P26B2 = Ay B°C%B,. Moreover, we have

W = A1A°B°C°By = A1 A° B°CY B,
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as well as By = C°By and Ay = A;A°. Suppose that A; # € or By # ¢ holds. Then
U= A°B°C% = A°B9C? is a proper ®-subword of W. Since each proper ®-subword of
W is locally confluent, there exists V € S(X, ®) so that

U=A°B°C° - QIC° -*V and U= A7B°C° = A°Q5 —* V.

This yields that
AlplaBl — AlQ({Bl = AIQ({C6B2 —* AlVB2

and
AyPY By — AyQ5By = A1 A° QS By —* ALV By;

this contradicts the third condition on W. Thus A; = ¢ = By and W = A°B°CY =
A°B°C? with P = A°B°, P = B°C?, and B® = B°.

Suppose that w € ®* is a common suffix of § and o so that § = éw and ¢ = Gw hold
for 3,6 € ®*. Then B® = B?. Consider U = A°B°CY% = A°BOC?. If the suffix w is
non-trivial, U is a proper ®-subword of W. Since each proper ®-subword of W is locally
confluent, there exists V' € S(X, ®) so that

U=A"BC% - QJC° -*V and U= ABC% — A°Q) »* V.
This yields that Q{C% —* V¥ and A°QS —* V¥ as well as
A1P{B; — A1QIB; = A1QJC°By —* A\V¥ By

and
AyPY By — AyQ5By = A1 A° QS By —* A|V¥ By;

this contradicts the third condition on W. Thus the common suffix w is trivial. Since
B% = B?, we either have that ¢ is a suffix of ¢ or vice versa. In particular, this shows
that either § or o is trivial. We obtain the third condition of Proposition B.I71 O

There are only finitely many checks in Proposition B.17 to be performed on a ®-finite
rewriting system with a finite ®-generating set R. Note that condition (i) in Propo-
sition [B.I7] yield that there exists a rewriting rule whose left-side is reducible. Similar
to [129], rewriting systems where the left-side of a rule is reducible can be improved. A
rewriting system 7 in which condition (i) of Proposition .17 does not occur is called a
reduced rewriting system.

If local confluence fails at one of the conditions in Proposition E.17, we obtain two
irreducible elements U,V € S(X,®) which satisty W —5 U, W —¢ V, and U # V.
In this case, the tuple (U, V) € S(X,®) x S(X,®) is called a ®-overlap of the rewriting
rules P, — Q1 and P, — Q2. Again, these overlaps generalize the notion in [129] for
finitely presented groups. For our algorithm, we need the following

Lemma 5.18 There are only finitely many ®-overlaps in a ®-finite rewriting system.

Proof. Since each element W € S(X, ®) has only finitely many ®-subwords and each
overlap in Proposition B.I7] contains the left-side of a rewriting rule from a finite ®-
generating set R, there are only finitely many overlaps of rewriting rules. O
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5.5 A Generalized Knuth-Bendix Completion

So far, we have introduced the basics for a Knuth-Bendix completion as outlined in [129]
Section 2]; see also [86]. The overall idea of a Knuth-Bendix completion is quite simple:
Since, by Newman’s Lemma 5.1l local confluence of a Noetherian rewriting system already
implies confluence, it suffices to check a ®-finite rewriting system for local confluence only.
For this purpose, the Critical Pair Lemma 517 applies. If we apply Lemma BETI7 to a
finite ®-generating set, we either prove local confluence of the rewriting system or we
would have found an overlap (U, V) € S(X,®) x S(X,®). In the latter case, the ®-
overlap satisfies U ~ V and either U = V or U < V. Suppose that U > V holds.
Adding the rewriting rule U — V to the ®-generating set R of the rewriting system
T does not change the monoid congruence ~7. We can continue the process until we
prove local confluence of the obtained rewriting system. Of course termination of this
approach is central here. In the following, we describe a first-hand approach to a Knuth-
Bendix completion for invariantly finitely L-presented groups. Moreover, we prove that
it terminates if the monoid L-presentation with generators X x ®* admits a ®-finite
confluent rewriting system with respect to <.

Let G be an invariantly finitely L-presented group. Then, by Proposition and
Theorem B, G admits an ascending monoid L-presentation of the form

<X><<1>*

{U¢ e ‘ (U, V) €S and ¢ ecb*}>.
The monoid congruence ~ is generated by the ®-finite rewriting system
T:{Pw—wgw ‘ P=Q, (PQ) eSor(Q,P)cs, z,z)ecb*}

with ®-generating set R={P - Q| P > Q, (P,Q) € S or (Q,P) € S}. The algorithm
LKNUTHBENDIX in Algorithm [B1] below takes as input the finite ®-generating set R
and it attempts to compute a finite ®-generating set for a confluent ®-finite rewriting
system T that also defines the monoid congruence ~7. The algorithm LKNUTHBENDIX
terminates whenever a confluent ®-finite rewriting system exists:

Theorem 5.19 Let < be a reduction ordering on S(X,®). If the monoid defined by the
monoid presentation

(X x @ [{UY =VY|(U,V) € R, € D)

admits o confluent ®-finite rewriting system T with respect to <, the algorithm LKNUTH-
BENDIX terminates and it computes a finite ®-generating set R for T.

Proof. 'We generalize the proof from [129, Proposition 5.1]. Suppose that the algorithm
LKNUTHBENDIX in Algorithm [B.1] does not terminate. Then it constructs an infinite
sequence of rewriting rules P; — ); where both P; and @Q; are irreducible with respect
to the ®-finite rewriting system Z; = {P]w — Q}b | 1 < j < i, € ®*}. Denote by
Vi =A{P; — Q;j | 1 <j < i} a ®-generating set for Z;. Write Z = (J;cy, Zi and
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LKNUTHBENDIX(X, ®, R, <)
Initialize ¢ := 1.
while i <n do
for je{l,...,i} do
Compute the ®-overlaps O C S(X,P) x S(X, P) of
the rules P, — @; and P; — Q).
for (a,b) € O do
Rewrite a and b to irreducible elements A and B, respectively.
if A< B then Set P11 :=B, Qnt1:= A, and n:=n+1.
if A> B then Set P11 := A, Qui1:=B,and n:=n+1.
return( R ).

Algorithm 5.1: A Knuth-Bendix completion algorithm

Yy = UiENo YV;. We first prove that the rewriting system Z is confluent. Since Z is
Noetherian, it suffices to prove that it is local confluent.

Suppose that the rewriting system Z is not locally confluent. Then there exist el-
ements which are not locally confluent. Since < is a well-ordering, there exists a least
element W € S(X, ®) which is not locally confluent. As each proper ®-subword U of W
satisfies U < W, each proper ®-subword of W is locally confluent. Therefore, the Crit-
ical Pair Lemma B.I7 applies to W: There exist rewriting rules P, — @Q; and P; — Q;
in the ®-generating set ) of the rewriting system Z so that either one of the following
conditions hold:

(i) W=P, and W =APyB for o0 € ®* and A, B € S(X,®).
(i) W = Py and W = A? P,B? for 0 € ®* and non-empty words A, B € S(X, ®).

(iii) W can be written (AB)?C or A(BC)? for non-empty words A, B,C € S(X,®),
o € ®*, and either

e P, =AB and P, = B°C, or
[ ] P1 = AB? and P2 = BC.

Suppose that either one of these conditions holds. Since the algorithm LKNUTHBENDIX
ensures that all overlaps are checked, the rules P; — @; and P; — @; would have been
checked for an overlap of this type and it would have enforced local confluence of W
by adding an appropriate rewriting rule. Therefore, the rewriting system Z with -
generating set ) is locally confluent and it generates the monoid congruence ~. As Z
is Noetherian by construction, Z is confluent and, by Corollary 5.3}, it allows to rewrite
each W € S(X, ®) to its canonical form.

Suppose that there exists a confluent ®-finite rewriting system 7 with finite ®-
generating set R for the monoid in Theorem .19 Then the rewriting systems 7 and
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Z both induce the same monoid congruence ~ which is generated by the monoid L-
presentation in Theorem 519 The reduction ordering < on S(X, ®) allows us to define
the set of canonical forms

C={PecSx, ) ! for each U € S(X,®) we have U ~ P = U = P}.

This definition does not depend on the rewriting systems 7 and Z. Let P be the set of
elements W € S(X, ®) \ C so that each proper ®-subword of W is a canonical form. Let
W € P be given. Since each proper ®-subword of W is a canonical form, it is irreducible
by Lemma 5.2l Because the confluent rewriting systems 7 and Z allow us to rewrite the
element W to its canonical form, both rewriting systems contain a (unique) rewriting
rule with left-side W. Since R is a ®-generating set for the rewriting system 7T, there
exists a (unique) rewriting rule P — @ in R and ) € ®* so that W = P¥. If ¢ is
non-trivial, P is a proper subword of W and thus P € C; this, however, contradicts the
existence of a rewriting rule P — ) which implies that P > @ holds. Therefore, W = P
is actually contained in the ®-generating set R. In particular, the set of rewriting rules
{P— Q| PeP}CRis finite and so is P.

Consider the ®-generating set ) with the rewriting rules P, — @; that were generated
by the algorithm LKNUTHBENDIX. Since P is finite, there exists a positive integer n
that is maximal subject to P, € P. Let i > n be given. The elements P; and Q; are,
by construction, irreducible with respect to Z; = {P;p — Q}b |1 <j < i e &}
However, P; ¢ P and P; ¢ C. Therefore, P, must contain a proper ®-subword U that
is contained in P. But this is impossible as either Z does not allow to rewrite U to
its canonical form (contradicting Corollary 53]) or U must be the left-side of a rule
in {P; - Q; | 1 < j < n} (contradicting irreducibility of P; with respect to Z;).
Therefore, the algorithm LKNUTHBENDIX cannot produce an infinite ®-generating set
Y. It terminates and computes a finite ®-generating set for a confluent ®-finite rewriting
system. O

It should be emphasized here that Theorem .19 does not imply that there is a procedure
that allows to decide whether or not a group admits a ®-finite rewriting system. The
proof of Theorem .19 also yields the following

Corollary 5.20 For a finite group G, the algorithm LKNUTHBENDIX terminates and it
computes a finite ®-generating set for a confluent rewriting system for G.

Proof. If G is finite, there are only finitely many canonical forms. In particular, for
a rewriting system 7 with ®-generating set R and a monoid congruence ~, the set of
canonical forms C defined in the proof of Theorem .19 is finite. It suffices to prove
finiteness of the set P of elements W € S(X,®) \ C so that each proper ®-subword of
W is contained in C. If this is the case, the proof of Theorem applies and it would
prove that the algorithm LKNUTHBENDIX terminates.

Recall that the elements W € S(X,®) have the form W = z{'---x7". Since C is

n
finite, there exists a positive integer ¢ that is maximal subject to z{*---27* € C. Let

V € P be given. Then each proper ®-subword of V' is contained in C. If V' = 7" --- 20"
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for n > ¢+ 1, the ®-subword U = z7* - -- xz_ﬁl of V is proper and it is not contained in
C. Therefore, V € P has the form V = 27" --- 27" with n < £+ 1.

Similar, as C is finite, there exists a positive integer m that is maximal subject to
(' z9m € C with each ||o;|| < m. Let V € P be given. Then V = 7' -.- 27" with
n < ¢+ 1. Suppose that for some 1 < ¢ < n we have that ||o;]| = & > m. Then
o =01 OmOma1 - O with each §; € ®. Then xfl'“ém“ is a proper ®-subword of V'
but wflmém“ ¢C.

It follows that the elements V € P are ‘bounded’ so that there are only finitely many
such elements. Since P is finite, the ideas of the proof of Theorem .19 apply. These
show that algorithm LKNUTHBENDIX terminates and it computes a finite ®-generating
set for the rewriting system for G. O

5.6 An Application of the Knuth-Bendix Approach

In order to illustrate our Knuth-Bendix approach for invariantly finitely L-presented
groups, we consider a fairly easy L-presentation so that (most) computations can be
done by hand. Consider the following ascending finite L-presentation

{{ar2, a13, a14, az3, a24,asa} | 0 | {0,6} | {aty, a12 azs ar3 ass}) (5.10)

where the endomorphisms ¢ and 0 are induced by the maps

(

aiz tr aig, aiz Fr ag,
aiz +» @23, a1z ‘a4,
o a4 > a4, and 5: a4 Fr a2,
a3 ‘> 13, a3 ‘> a34,
az4 > Q14 az4 Fr ai1g,
az4 +r a3, \ @34 > Qa14.

The finite L-presentation in Eq. (5I0) is a finite L-presentation for the symmetric group
Sy over four letters [6]. Each generator a;; corresponds to the transposition (4,j) € Sy
and the endomorphisms o and § correspond to the inner automorphisms that are induced
by conjugation with (1,2) and (1,2, 3,4), respectively. From the finite L-presentation in
Eq. (BI0) we obtain the following relators:

2 2 )50

a2y, 0%3 — (a12 2 )555 2 2 )505 2 ( 2 )55‘

2 2N 2 _
» ayy = (a12)™, azz = (aiy)’, azy = (aiy » 34 = \A712
In particular, each generator a;; is either trivial or it has order 2. Thus these generators
satisfy ai_jl = a;;. Therefore, we can consider the group presentation in Eq. (ZI0) as a
monoid L-presentation for S;. Otherwise, we would need to consider the formal inverses

- -1 -1 -1 -1 -1 —1 - .
X~ ={ayy, 055,07, ,053 a9, , a3, + together with the relations
-1 “1_ -1 _ “1_ -1 _ —1
€ =019 Q12 = Q12 Q19 = Gq3 Q13 = Q13 Q13 = ... = g4 A34 = A34 A3y

and extensions & and 4 of the endomorphisms ¢ and ¢ as in Proposition
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We choose the orderings ¢ < § and a12 < a13 < a14 < a3 < agq < as4 on the monoid
generators ® and X, respectively. These orderings extend to a reduction ordering < on

S(X, @) = {af" - ai" | 2; € {a12,a13,a14, a23, 024, a34},0; € {0,6}",1 <i <n}

as described in Section (3l The reduction ordering < yields the rewriting rules

1 )
afy — aio, ags — a1, ao3 — a%Q, a§4 — ays,
a3 — a‘f3, a‘274 — a4, a§4 — a3, a§4 —  a13, (5.11)
aza — ajy, ag, — as, ajy, — a2, as, — a.
as well as
aijp a1 — € and a2 a3 13 a23 — €. (512)

We first reduce the rewriting system. For this purpose, we consider the rewriting rules
one after another and we reduce overlaps of the form (i) and (ii) in the Critical Pair
Lemma [0.I7 i.e., rewriting rules P; — @ and P> — Q2 so that P}, for w € ®*, contains
P as a proper ®-subword. We always try to keep the rewriting system reduced. There
are no overlaps of type (i) or (ii) among the rewriting rules

a(172 —  a12 (5.13)
as3 — a({3 (5.14)
asy — a({4. (5.15)

Consider the rewriting rule ag; — a13. The left-side of this rule contains a3 as a proper
®-subword. Thus there is an overlap with the rewriting rule ass — afy from Eq. (5.14).
This overlap yields both

ass — ais and a3 = (az3)’ — (af3)? = af3.

This yields the rewriting rule
a‘fg — 413. (5.16)

We can omit the rewriting rule ags — a3 in the following. Similar, there is an overlap
within the rewriting rules a3, — aj4 and agq — af, from Eq. (5.I5]). This overlap yields
both af, — ai4 and af; — aj]. Hence, we obtain the rewriting rule

aﬁ’ — ai4, (5.17)
while we can omit the rule a3, — a14. There are no overlaps with the rewriting rule
ag4 — a34. (518)

Consider the rewriting rule agg — aj,. Then there is an overlap with the rule ass — afs
from Eq. (5I14). This overlap yields ass — afy and ags — ady. Since ady < af; holds, we
obtain the rewriting rule

ady — ad. (5.19)
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Furthermore, we replace the rewriting rule ass — afy in Eq. (5.14) by
a3 — a(1$2. (520)

At this stage, the rewriting system given by the rewriting rules above is not reduced
anymore because the rule in Eq. (5.19) has an overlap with a{§ — a3 from Eq. (5.10).
This overlap, on the one hand, gives a{{ — a;3 while, on the other hand, it gives
aJg = (aj3)” — alg. This yields

a1z — al3. (5.21)

We therefore replace the rule a{§ — a3 in Eq. (&I6]) by

dooo oo

aq9 — apy. (522)

The rule a;3 — al§ from Eq. (5.2I) has an overlap with af; — af, from Eq. (5I9).
This overlap gives a{; — a3y and afy = (a13)? — a3?. We therefore replace the rule

afy — aly from Eq. (EI9) by
al3% — al,. (5.23)

The latter rule yields that a{3°® — a3$ from Eq. (5:22)) is redundant. We have obtained
a reduced rewriting system again. Consider the rewriting rule agq — a3 — a3°. Then
there is an overlap with the rule asqs — af, from Eq. (&.I5]). This overlap gives

ag, — ad3° (5.24)
and we replace the rule agy — af, from Eq. (B.I5]) by
agy — a?g‘s. (525)

Again the above rewriting system is not reduced because the rule af, — a3 from
Eq. (B24) has an overlap with aJ{ — a14 from Eq. (BI7). This overlap gives af] =
(agy)? — a$%?. We replace the rule afy — a1y from Eq. (5I7) by

ayg — a$3%. (5.26)

The latter rule has an overlap with a{, — a‘fg‘; from Eq. (5:24]). This overlap allows us
to replace af, — a{3° in Eq. (5:24) by

a‘{g‘s‘” — a‘fg‘;. (5.27)

We have obtained a reduced rewriting system again. Consider the rule a‘h — aj2. Then
the overlap with aj4 — a{3%° from Eq. (5.28) yields the rewriting rule

a¢15<27505 — ai12. (528)
The rule azq4 — ag3 — a‘f‘; gives us

asqy — a‘ig (5.29)
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The latter rule has an overlap with a§, — a34 from Eq. (5.I8]). This overlap allows us to
replace the rule from Eq. (5.I8]) by

a%? — a%3. (5.30)

Next we consider the rule a3, — aj3 — a{3. This rule has an overlap with agq — af

Eq. (223). It gives us the rewriting rule

% in

a5% — as3. (5.31)
Finally, we need to consider the rule a3, — a4 — aj3%°
with asy — af3 from Eq. (529). This overlap gives us

. This latter rule has an overlap

ad3%% — ag%’. (5.32)

This rule has various overlaps with the other rewriting rules. First, we can replace the
rule ayq — af$%° from Eq. (5286) by

ayy — ady. (5.33)

Then the left-side of the rule aj3°® — a5 in Eq. (528) contains a$’” as a proper
®-subword and thus we can replace the rule in Eq. (5.28]) by

a(ig&s — a12. (5.34)

Similar, the left-side of the rule a3$%7° — a?%’ in Eq. (5.27) contains a3%® as a proper
®-subword. We therefore replace the rule in Eq. (5.27) by

a7 — al3°. (5.35)
So far, we have obtained a reduced rewriting system whose rewriting rules stem from the
substitutions o and § in Eq. (&I1J). It remains to consider the rewriting rules which stem
from the iterated relations of the L-presentation in Eq. (B.I1). The first rule indicates
that the generator ajo is an involution

a12a12 — €. (536)

This latter rule has several overlaps with the second rule aisas3aiz3as3 — € from
Eq. (5I0). The rewriting rules above yield that

s 0o .0
412 A23 A13 @23 — @12 Q19 alg Q19 —7 E. (537)

At this stage, we have obtained a reduced rewriting system for the finitely L-presented
group in Eq. (B.I0). We have proved
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Proposition 5.21 For the symmetric group on four letters with its L-presentation from
Eq. (Z10) and the orderings o < 6 and a1a < a13 < a14 < as3 < a4 < asy, a reduced
O-finite rewriting system 1is given by the following rewriting rules:

a({2 —  a12, aiz — a‘{g, aly — a(igé,
a3 — Q?Q, asy — a({gé, azqs — a‘{g, 5.38
S T T LA S
B o o e o e
and
ajp a1z — € and  aypalyaldad, — e. (5.39)

In the following , we enforce local confluence of this rewriting system by considering the
overlaps of type (iii) in the Critical Pair Lemma[.I7 We indicate which rewriting rule is
applied first by underlining the appropriate ®-subword. The rewriting rules in Eq. (5.39)
overlap as follows:

a1z a1 aly ad3 ady — ady a3 ady and a1z a12 ady ad3 ady — ais.
as well as
a1z afy af ajy afy — arp afyall and a12 a}y af$ ajy afy — ajs.
These overlaps give
aly al3 ady — aro and a2 aly al5 — als. (5.40)

Again, overlaps with the rule ajs a19 — € from Eq. (B.30) give

§ 6 8o .6 5o 8 § 5 60 .8 P
ajp a99 15§y —> 13 a5 and  afy ajy aj3 ajy —> ajy aiz,

§ 0,8 .08 b § 0,6 5 5 b0

ajp alg ajs ajs — arzajy and  afyaif ajyajy — afy agy,
5§ 6 5§ 6 5 95 )

a12 a12 aj, aiy — ajpaig and ajzaizalyalf — ajzals,

do 00 6 00 do 00

0 6 0

Therefore, we obtain the rules
a‘1$2 a‘{g — a19 a‘1$2 (5.41)

and
o d d
alg aq9 — a9 A12. (542)

Consider the overlap of the rule a33®® — a1 from Eq. (534 with the rule from Eq. (54T)).
This overlap gives us

5668 50668 55666 )
a3y’ ai9°%° — a12a39°°° = a12a$9
and
5685 80665 _ .8 60\885 5 \0685 .+ 568
a3 a13"" = (ai9 a19)"" — (a12a13)”" =7 afy’ aia.
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Hence, we obtain the rewriting rule
666 60d
a9 Q12 — 412 alg . (54:3)

Similar, the overlap of a3’ — ao from Eq. (5:34) and a3 ay — al, ays from Eq. (5.42)
gives

az{g&%az{g&; s a‘fg‘%‘;au ¥ az{gé a1 and az{g&%az{g&; 5656(1({(;6 ¥ alo a‘fg‘s.
This yields the rewriting rule
60 666
a/12 a/12 — a/12 a/12 . (544)

An overlap of a3 — a23 from Eq. (530) and a$, al3 — a1z af, from Eq. (BAI) gives

(560 (5060 N a(i(sa(sgéa ¥ a?ga(igé and aééaa(ig(% N a?ga?ga ¥ a(iga({g

We obtain the rewriting rule
88 868 o 80
ajpaty’ — ajsaf. (5.45)

Consider the overlap of aj® — aj3° from Eq. (535) and adyall — ajpad, from

Eq. (54d)). Then, on the one hand, we obtain

8060 _doddo 6o 60560 (505 doo Lo )
ajp Q1 7 a9 — Q12 Q12" 7 Q12 A9

while, on the other hand, we obtain

8660 80880 550 5660 860 806 88 806 5§ 80N\ 5 88
aly’?a99°%? — af97aiy’” — afy’al3’ — ajpals’ = (ajyai3)” — ajyaly.

This yields the rewriting rule
606 0 6 60
ayy’ajy — afaaiy. (5.46)
Consider an overlap of the latter rule with the rule a3’ — a1 from Eq. (534). This

overlap gives us

600660 5556 6006 ]
1(27 — alg a2 — alg a2

and
5586688 5866 58685 5868568 5
ayg aly”’ — afy’aly’” =" ajpaf,.

Whence a§ a1z — a1z ady and we can replace the rule in Eq. (548) by
a‘fg a2 — a12 a‘f2. (5.47)
An overlap of the latter rule with a{3% — a, from Eq. (5:23) gives
a‘{gaa({g — a‘iz ajy — a‘iz a1 and a?gga‘b — afy a‘b — ayo a‘b.

Therefore, we obtain the rewriting rule

1) 1)
A19 Q12 — A12 alg. (5.48)
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Note that we can replace the rewriting rule a3 ay — ady a12 in Eq. (542) by
al3 aly — a1z al3. (5.49)

The overlap of ady a1o — a1z ad§ from Eq. (5.48) with a{3% — af)® from Eq. (5.32)) yields

dodo _odo 806 odo 006 o dodo odo odo doodo * 0o 80
aj3°?aiy” — ajy aly” —ajyayy and  af3°?aiy” — a3’ aig — Q13 Q).

This yields the rewriting rule

606 do do 60
aly a9 — al9 als. (5.50)

An overlap of af, a1z — a2 al3 from Eq. (BA8) with a{3” — af$ from Eq. (530) yields

800 do 60 _do 800 do b0 _dodo do 0606
ajy’ajy — ajzajy  and  ajy’ajy — ajgais’’ — ajgajy -

Whence
60 _do do 606
a5 aiy — aig ajy’. (5.51)

We now consider an overlap of ag ady — a2 aj3 from Eq. (549) and a3 a1z — a2 a3’

from Eq. (&43]). This overlaps yields that

5068 8868 5068 508 b} 506 5 806
ai3°’agy’ a1z — a1’ a1z ajy’ — ayg a2 a33° — aiz ajy ajg

and
5065 866 58 5088
a2

66 0 60 d
a1y a12 — 19 A1y Q12 — aq9 alg a1 — 19 A12 Q19
We obtain the rule
60 ) 6 00d
a12 a12 a12 — a12 a12 alg . (552)

Overlapping the latter rule with ajs a0 — € yields that
af$ a1z afy afy — afh ara

and
)

56 5 5 5 5085 &8 5 5 688
ajh aip ajs ajy — @12 Y9 a15° ajy —> a12 Aj5 A5 Y9 —> 12 75
Whence
55 55
a12 a12 —> a12 a12. (553)

This rewriting rule allows us to remove the rule a} a2 ay — a12 afy a3’ from Eq. (552)
since
00 0 00 6 0 606
ajp a1z Al = 12 G713 Ag — (12 A1 415

holds. An overlap of the rule in Eq. (5.53) with the rule a3%®® — a3%° from Eq. (5:33)

gives us

8600 oo dod do

8600 o do 6060 6o _b60d
ajy’® ayg — a1’ ajy  and  afy

Q12 —> Q12 A1 —> A2 Q12 -

Thus

dod oo do dod
a39°’ aig — afg aj9’. (5.54)
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Finally, we consider an overlap of a%5a%%° — a93a% from Eq. and a?9% — aq5 from
Vs p 12012 12412 q 12

Eq. (&34). This overlap yields

009 8666 000 606
2

006 0660 6ad 660
a/12 a/12 — a/l a9 — a9 a12 a.nd a/12 g

Q19" — Q12 G719

and we obtain the rewriting rule

a5 a3’ — a10adg. (5.55)
With a GAP-program (or even by hand) it can be shown that all 214 overlaps of the
rewriting system constructed above are satisfied so that it is (locally) confluent by the
Critical Pair Lemma 517 This proves the following

Theorem 5.22 A reduced ®-finite confluent rewriting system for the symmetric group
on four letters with respect to the reduction ordering that is induced by o < § and a1 <
a13 < a14 < a93 < agq4 < asq 1S given by the ®-generating set

a‘f2 — a2, aiy — a‘lsg, aly — a(lsgé,
ao3 — a‘b, aoq4 — a‘ig‘s, asy — a‘ig,
R ST A N )
N N R N
and
ais ajo — €, a‘152a12 — alga‘fg, a‘an‘fg — alga%,
a‘igalg — a12a‘i2, a‘iga‘b — alga‘fg, a?galg — a12a‘ig,
oy - el ofld o gl affen o and
gy o affdlf, Pl o endd  dfes > andg
oiffals — alfaft

An implementation of this Knuth-Bendix completion algorithm in the computer algebra
system GAP [50] does not terminate for the Grigorchuk group [53], the Basilica group [61],
the lamplighter group Zo!Z and the wreath product Z @ Z. Therefore, we do not know
if these groups admit a ®-finite confluent rewriting system:

Question 5.23 Is there an invariantly finitely L-presented group that admits a ®-finite
confluent rewriting system but that is not finitely presented? In particular, do the testbed
groups in [6] or [9] admit ®-finite rewriting systems?



Appendix

Investigating self-similar groups using
their finite L-presentation

Abstract. Self-similar groups provide a rich source of groups with interesting
properties; e.g., infinite torsion groups (Burnside groups) and groups with an
intermediate word growth. Various self-similar groups can be described by
a recursive (possibly infinite) presentation, a so-called finite L-presentation.
Finite L-presentations allow numerous algorithms for finitely presented groups
to be generalized to this special class of recursive presentations. We give an
overview of the algorithms for finitely L-presented groups. As applications, we
demonstrate how their implementation in a computer algebra system allows
us to study explicit examples of self-similar groups including the Fabrykowski-
Gupta groups. Our experiments yield detailed insight into the structure of
these groups.

Keywords. Recursive presentations; self-similar groups; Grigorchuk group;
Fabrykowski-Gupta groups; coset enumeration; finite index subgroups; Reide-
meister-Schreier theorem; nilpotent quotients; solvable quotients.

A.1 Introduction

The general Burnside problem is among the most influential problems in combinatorial
group theory. It asks whether a finitely generated group is finite if every element has finite
order. The general Burnside problem was answered negatively by Golod [5I]. The first
explicit counter-examples were constructed in [5,[53162]. Among these counter-examples
is the Grigorchuk group & which is a finitely generated self-similar group. The group
& is not finitely presented [56] but it admits a recursive presentation which could be
described in finite terms using the action of a finitely generated monoid of substitutions
acting on finitely many relations [96]. These recursive presentations are nowadays known
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as finite L-presentations [56] (or endomorphic presentations [6]) in honor of Lysénok’s
work in [96] for the Grigorchuk group; see [6] or Section [A.2] for a definition.

Finite L-presentations allow computer algorithms to be employed in the investiga-
tion of the groups they define. A first algorithm for finitely L-presented groups is the
nilpotent quotient algorithm [9,[64]. Recently, further algorithms for finitely L-presented
groups were developed [66,67,[70]. For instance, in [67], a coset enumeration process
for finitely L-presented groups was described. This is an algorithm which, given a finite
generating set of a subgroup of a finitely L-presented group, computes the index of the
subgroup in the finitely L-presented group provided that this index is finite. Usually
index computations in self-similar groups have involved lots of tedious calculations (e.g.,
finding an appropriate quotient of the self-similar group; computing the index of the
subgroup in this quotient; followed by a proof that the obtained index is correct; see, for
instance, [I1], Section 4] or [38, Chapter VIII]). The coset enumerator in [67] makes this
process completely automatic and thus it shows the significance of finite L-presentations
in the investigation of self-similar groups. Moreover, coset enumeration allows one to
compute the number of low-index subgroups of finitely L-presented groups [67].

We demonstrate the application of the algorithms for finitely L-presented groups in
the investigation of a class of self-similar groups I',, for 3 < p < 11. The group I's was
introduced in [45]. It is a self-similar group with an intermediate word growth [131[45/46].
The groups I'y, with p > 3, were introduced in [57]. They are known as Fabrykowski-
Gupta groups. Their abelianization I, /F;, = 7, X Zy, was computed in [57]. Moreover,
for p > 5, the groups I', are just-infinite, regular branch groups [57]. The congruence
subgroups of I'y, for primes p > 3, were studied in [I31]; see also [49]. The lower central
series sections 7v.I'3/7.+11's have been computed entirely in [7] while, for p > 3, parts of
the lower central series sections v.I'p/vc41I', have been computed in [9]. So far, little
more is known on the groups I',.

For p > 3, the Fabrykowski-Gupta group I', admits a finite L-presentation [9]. We
demonstrate how the implementations of the algorithms for finitely L-presented groups
allow us to investigate the groups I'), for 3 < p < 11 in detail. For instance, we demon-
strate the application of our algorithm

e to compute the isomorphism type of the lower central series sections v.I'p/ve111'
using improved (parallel) methods from [9[64].

e to compute the isomorphism type of the Dwyer quotients M.(I',) of their Schur
multiplier using the methods from [66].

e to determine the number of low-index subgroups of the groups I';, using the methods

from [67].

e to compute the isomorphism type of the sections I“I(,C) /FI(;CH) of the derived series
combining the methods from [70] and [9,64].

We briefly sketch the algorithms available for finitely L-presented groups. Moreover,
we compare our experimental results for the Fabrykowski-Gupta groups I', with those
results for the Grigorchuk group . The group & has been investigated for decades now.
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Even though a lot is known about its structure, various questions still remain open [58§].
For further details on the Grigorchuk group &, we refer to [38 Chapter VIII].

A.2 Self-Similar Groups

A self-similar group can be defined by its recursive action on a regular rooted tree:
Consider the d-regular rooted infinite tree 74 as a free monoid over the alphabet X' =
{0,...,d —1}. Then a self-similar group can be defined as follows:

Definition 1.1 A group G acting faithfully on the free monoid X* s self-similar if for
each g € G and x € X there exist h € G and y € X so that

(zw)? = yuw”

for each w € X*. (A.1)

It suffices to specify the self-similar action in Eq. (AJ]) on a generating set of a group.
For instance, the Grigorchuk group & = (a,b,c,d) can be defined as a subgroup of the
automorphism group of the rooted binary tree 75 = {0,1}* by its self-similar action:

Ow)* = 1w (Iw)* = Ow

Ow)® = 0w® (1w)? = 1wc
Ow)* = Ow* (1lw) = 1w
Ow)? = Ow (1w)? = 1wd.

The Fabrykowski-Gupta group I's is another example of a self-similar group. It was
introduced in [45] as a group with an intermediate word growth [I3,[46]. The group I's
was generalized in [57] to a class of self-similar groups I'y acting on the d-regular rooted
tree:

Definition 1.2 For d > 3, the Fabrykowski-Gupta group I'y = (a,r) is a self-similar
group acting faithfully on the d-reqular rooted tree Ty = {0,...,d — 1}* by

(zw)* = 241 (modd)w, for0<z<d-1

Ow)" = 0w?,

(zw)” = zw, forl<z<d-—1
(d=1w)" = d—1w".

The groups & and I'y admit a finite L-presentation; that is, a finite L-presentation is a
group presentation of the form

(¥ ‘ ou [J r7), (A.2)
ocd*
where X is a finite alphabet, @ and R are finite subsets of the free group F' over X,
and ®* denotes the monoid of endomorphisms which is generated by the finite set ® C
End(F). The group defined by the finite L-presentation in Eq. (AZ2) is denoted by
(X Q| ®|R). If Q=0 holds, the L-presentation in Eq. (A.2) is ascending. In this
case, every endomorphism o € ®* induces an endomorphism of the group G.
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The Grigorchuk group & is an example of a self-similar group which is finitely L-
presented [96]: the group & satisfies

GE= <{a, b,c,d} ‘ {a®,b? %, d? bed} U U {(ad)*, (adacac)4}”i>,
i>0

where o is the endomorphism of the free group F over {a,b,c,d} which is induced by
the map a — aca, b — d, c — b, and d — c. A general method for computing a finite
L-presentation for a class of self-similar groups was developed in [6] in order to prove

Theorem 1.3 (Bartholdi [6]) FEach finitely generated, contracting, semi-fractal regu-
lar branch group is finitely L-presented; however, it is not finitely presented.

The constructive proof of Theorem [[3] in [6] was used in [9] to compute the following
finite L-presentation for the Fabrykowski-Gupta group I'y:

Theorem 1.4 (Bartholdi et al. [9]) For d > 3, the group Ty is finitely L-presented
by ({a,p} | 0| {¢} | R) where the iterated relations in R are defined as follows: Writing
o; = p~, for 1 <i<d—1, and reading indices modulo d, we have

2
}1§z‘,j§d, 2<i—j|<d—2, 0<k,f<d—1
The substitution o is induced by the map o — p"‘_1 and p — p.

It follows immediately from the L-presentation in Theorem [[L4] that the substitution ¢
induces an endomorphism of the group I'y. Finite L-presentations (X | @ | ® | R) whose
substitutions ¢ € ® induce endomorphisms of the group are invariant L-presentations.
Each ascending L-presentation is invariant. It is also easy to see that the L-presentation
for the Grigorchuk group & above is invariant [55, Corollary 4].

A finite L-presentation allows us to define a group that is possibly infinitely presented
in computer algebra systems such as GAP [50] or MAGMA [28]. Beside defining a self-
similar group by its finite L-presentation, it can also be defined by its recursive action
on a regular tree. A finite approximation of the recursive action of a self-similar group
is often sufficient to study finite index subgroups since various self-similar groups have
the congruence property: every finite index subgroup contains a level stabilizer (i.e., the
stabilizer of some level of the regular tree). This often yields an alternative approach
to investigate the structure of a self-similar group with the help of computer algebra
systems [8]. However, there are self-similar groups that do not have the congruence
property [14]. For these groups, their finite L-presentation may help to gain insight into
the structure of the group. The groups & and I's have the congruence property [I1].

In the following, we demonstrate how the finite L-presentation in Theorem [[.4] allows
us to obtain detailed information on the structure of the groups I',, for 3 < p < 11. For
further details on self-similar groups, we refer to the monograph by Nekrashevych [101].
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A.3 A Nilpotent Quotient Algorithm

For a group G, the lower central series is defined recursively by v1G = G and .41 =
[7.G,G] for ¢ € N. If G is finitely generated, G/v.4+1G is polycyclic and therefore it
can be described by a polycyclic presentation; i.e., a polycyclic presentation is a finite
presentation whose generators refine a subnormal series with cyclic sections. A polycyclic
presentation allows effective computations within the group it defines [129] Chapter 9].

A nilpotent quotient algorithm computes a polycyclic presentation for the factor
group G/7.4+1G together with a homomorphism G — G/7.4+1G. Such an algorithm
for finitely presented groups was developed in [I07]. This nilpotent quotient algorithm
was a first algorithm that could be generalized to finite L-presentations [9][64]. The
experimental results in this section were obtained with an improved, parallel version of
the algorithm in [9[[64]. They extend the computational results in [9] significantly.

We briefly sketch the nilpotent quotient algorithm for finitely L-presented groups in
the following. Let G = (X | @ | ® | R) be a finitely L-presented group. Denote by F'
the free group over the alphabet X and let K be the normal closure K = <UU€¢* R">F.
First, we assume that Q@ = () holds. Then K C K, for each o € ®, and G = F/K hold.
Therefore, each o € ® induces an endomorphism of the group G. Furthermore, we have
G/v.G = F/K~.F. The nilpotent quotient algorithm uses an induction on ¢ to compute
a polycyclic presentation for G/~.G. For ¢ = 2, we have

G/[G,G] = F/KF = (F/F')/(KF'|F).

Since G is finitely generated, F'//F" is free abelian with finite rank. The normal generators
U,ca- R7 of K give a (possibly infinite) generating set of K F”/F’. From this generating
set it is possible to compute a finite generating set U with a spinning algorithm. The
finite generating set U allows us to apply the methods from [I07] that eventually compute
a polycyclic presentation for F//KF’ together with a homomorphism F — F/KF’ which
induces G — G/G’.

For ¢ > 2, assume that the algorithm has already computed a polycyclic presentation
for G/v.G = F/K~.F together with a homomorphism F — F/K~.F. Consider the
factor group Hey1 = F/[K~ F,F]. Then [K~.F,F] = [K, F]y.41F and H.y; satisfies
the short exact sequence

1_>K’7€F/[K’7€F7F] _>Hc+1_>F/K’YcF_>1§

that is, H.41 is a central extension of a finitely generated abelian group by G/~.G. Thus
H..4 is nilpotent and polycyclic. A polycyclic presentation for H.y1 together with a
homomorphism F' — F/[K~.F, F] can be computed with the covering algorithm in [107];
for a proof that this algorithm generalizes to finite L-presentations we refer to [64]. Then
K~ 1 F/[KAe, F] is a subgroup of K~.F/[K~.F, F] and a (possibly infinite) generating
set for K71 F/[K~.F,F] can be obtained from the normal generators of K. Again, a
finite generating set U for K~.11F/[K~.F, F| can be computed with a spinning algorithm
from the normal generators of K. The finite generating set U allows us to apply the
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methods in [I07] for computing a polycyclic presentation for G/v.41G = F/K~. 1 F
together with a homomorphism F — F/K~.1F. This finishes our description of the
nilpotent quotient algorithm in the case where @ = () holds.

If, on the other hand, G is given by a finite L-presentation (X | @ | ® | R) with
Q # (), the algorithm described above applies to the finitely L-presented group H = (X |
0| ®|R). Write H = F/K and G = F/L for normal subgroups K < L. The nilpotent
quotient algorithm applied to H yields a polycyclic presentation for H/v..1H together
with a homomorphism F' — F/K~.41F. This yields

G/Yer1G = F/Lyep1 F = (F/Kye 1 F) [ (Lyet1 F/Kvesr F).

The subgroup Lve41F/K~.41F is finitely generated by the images of the relations in
Q. Standard methods for polycyclic groups [129] then give a polycyclic presentation
for the factor group G/7.+1G of the polycyclically presented group H/7.+1H and a
homomorphism F' — G/7.41G.

A.3.1 Applications of the Nilpotent Quotient Algorithm

The nilpotent quotient algorithm allows us to compute within the lower central series
quotients G/v.4+1G of a finitely L-presented group G. For instance, it allows us to
determine the isomorphism type of the lower central series sections 7.G/7.+1G. For
various self-similar groups, the lower central series sections often exhibit periodicities.
For instance, the Grigorchuk group & satisfies

Theorem 1.5 (Rozhkov [123]) The lower central series sections v.®/v.4+1® are 2-
elementary abelian with the following 2-ranks:

3or2, ifc=1 orc=2, respectively
ko (7.8 /Ve4198) = 2, ifce{2-2m4+1,...,3-2™} with m € No.
1, ifce{3-2m+1,...,4-2™m}

The group & has finite width 2.

Our implementation of the nilpotent quotient algorithm in [65] allows a computer al-
gebra system to be applied in the investigation of the quotients G/7.G for a finitely
L-presented group G. For instance, our implementation suggests that the group I'y has a
maximal nilpotent quotient whenever d is not a prime-power. Based on this experimental
observation, the following proposition was proved:

Proposition 1.6 (Bartholdi et al. [9]) If d is not a prime-power, the group Ty has
a maximal nilpotent quotient. Its nilpotent quotients are isomorphic to the nilpotent
quotients of the wreath product Zgql Z.

For a prime p > 3, the lower central series sections v.I'p/vc4+1I'p are p-elementary abelian.
For p = 3, the lower central series sections 7.I'3/v.4+1I's were computed in [7]:
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Proposition 1.7 (Bartholdi [7]) The sections ~v.I's/v.+11's are 3-elementary abelian
with the following 3-ranks:

20rl, ifc=1 orc=2, respectively,
rks(vel's/ve+113) = 2, ifee{3F+2,...,2-3" 41},
1, ifce{2-3F42,... 31 +1}

with k € Ngo. The group I's has finite width 2.

For primes p > 3, little is known about the series sections v.I'y/ye+1Tp so far [9]. We
use the following abbreviation to list the ranks of these sections: If the same entry a € N
appears in m consecutive places in a list, it is listed once in the form al™. The sections
Yel'p/Yet1T'p are p-elementary abelian. Their p-ranks are given by the following table:

p rkp (Yel'p/Yer11'p) class
3 2,100 o) 10 93] 181 o9 191 227 1[27] 2[65] 147
5 2,181 2t 10131 o5] 1[65] 9[25] 1[26] 139
7 2,100 20 1[33] 9l7 168] 115
11 2,100 20 1097 ol4] 112

These computational results were obtained with a parallel version of the nilpotent quo-
tient algorithm in [9,[64]. They were intended to be published in [42]. These computa-
tional results extend those in [9] significantly so that we obtain detailed conjectures on
the structure of the lower central series sections v.I'p/ve41T'p: The sections v.I'y/ver11'p
are p-elementary abelian with the following p-ranks: Write f,(£) = p+(p*—2p—1)(p**!1—
1)/(p — 1) and g,(£) = f,(£) + p**1. Then we conjecture that

2, ifce{l,p}or f,(¢) <c < gp¥) for some ¢ € Ny,

rkp(’Ych/'YcHFP) - { 1, otherwise

holds. If this conjecture is true, the group I', would have finite width 2. For prime
powers 3 < d < 11, our implementation yields the following results:

e For d = 4, the Fabrykowski-Gupta group I'y satisfies
Ly/T) =74y x Zy and  ~ol'y/y30y = Zy.

For 3 < ¢ < 141, the sections 7.4 /7414 are 2-elementary abelian with 2-ranks:
ol4 331 o[13] 3[12] 9[52] 3[48] 9l7],

e For d = 8, the Fabrykowski-Gupta group I's satisfies
I's/Ty = Zg x Zs, Y2l's/v3l's = Zs,
and
v3T'g/val's = y4l'g /vsI's = y51's /v6's = y61's/v7l's = Zy.

For 7 < ¢ < 111, the sections .I's/v.+1's are 2-elementary abelian with 2-ranks:
2.1,212 3 2 32 4 38 20231 3051 23] 18] 2l16] 3[8] 9l8] 3[16] 4.
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e For d =9, the Fabrykowski-Gupta group I'g satisfies
Dg/Tg 22 Zg x Ly, 72lg/y3T9 = Zg, and ~3Tg/v4lg = Zg.

For 4 < ¢ <117, the sections v.I'g/vc+19 are 3-elementary abelian with 3-ranks:
1051 9l6] 3 o[17] 1(38] 1047,

A.4 Computing Dwyer Quotients of the Schur Multiplier

The Schur multiplier M(G) of a group G can be defined as the second homology group
Hy(G,Z) with integer coefficients. It is an invariant of the group which is of particular
interest for infinitely presented groups because proving the Schur multiplier being in-
finitely generated proves that the group does not admit a finite presentation. This is due
to the fact that the Schur multiplier of a finitely presented group is finitely generated
abelian which can be seen as a consequence of Hopf’s formula: If F'is a free group and
R < F a normal subgroup so that G = F/R holds, the Schur multiplier M (G) satisfies

M(G) = (RN F')/IR, F). (A.3)

However, a group with a finitely generated Schur multiplier is not necessarily finitely
presented [I8]. For further details on the Schur multiplier, we refer to [121I], Chapter 11].

It is known that the Schur multiplier of a finitely L-presented group (and even the
Schur multiplier of a finitely presented group) is not computable in general [52]. Never-
theless, the Schur multiplier of some self-similar groups has been computed in [141[56]:
For instance, the Grigorchuk group & satisfies

Proposition 1.8 (Grigorchuk [56]) The Schur multiplier M (&) is infinitely gener-
ated 2-elementary abelian. Therefore, the group & is not finitely presented.

There are various examples of self-similar groups for which nothing is known on their
Schur multiplier. Even though the Schur multiplier M (G) is not computable in general,
it is possible to compute successive quotients of M (G) provided that the group G is given
by an invariant finite L-presentation [66]. These quotients often exhibit periodicities as
well: For instance, our experiments with the implementation of the algorithm in [66]
suggest that the Schur multiplier of the Fabrykowski-Gupta groups 'y, for a prime-
power d = p’, is infinitely generated. The algorithm for computing successive quotients
of M(G) provides a first method to investigate the structure of the Schur multiplier
of an invariantly finitely L-presented group (and even the Schur multiplier of a finitely
presented group).

We briefly sketch the idea of this algorithm: Let G be an invariantly finitely L-
presented group. Write G = F/K for a free group F' and a normal subgroup K. Then
G/v.G =2 F/K~.F. We identify M(G) with (K N F')/[K,F] and M(G/~.G) with
(K~.F N F'")/|[Kv.F, F] and define

et M(G) = M(G/7.G), g[K, F| — g[K~.F, F].
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Then ¢, is a homomorphism of abelian groups. In the induction step of the nilpo-
tent quotient algorithm, the algorithm computes a homomorphism F — F/[K~.F, F].
This homomorphism allows us to compute the image of the Schur multiplier M(G) in
M(G/~.G). In particular, it allows us to compute the isomorphism type of the Dwyer
quotient M.(G) = M(G)/ ker ¢, for ¢ € N, where

M(G) > kerp; > kerpg > ...

The algorithm for computing M.(G) has been implemented in GAP. Its implementation
allows us to compute the Dwyer quotients of various self-similar groups: Since the Schur
multiplier of the Grigorchuk group & is 2-elementary abelian, the Dwyer quotients of &
are 2-elementary abelian. We have computed the Dwyer quotients M.(®) for 1 < ¢ < 301.
These quotients are 2-elementary abelian with the following 2-ranks:

1,2, 300, 501 7012 gl24] 11[48] 13[96] 15[110]
These experiments suggest that the Grigorchuk group satisfies

M. (&) = Zy or (Zy)?, if ¢ =1 or ¢ = 2, respectively,
c - (Z2)2m+3’ ifece {3,2m,.”’3‘2m+1 _1},

with m € Ny. For the Fabrykowski-Gupta groups I'y, the algorithm in [66] yields first
insight into the structure of M (I'y): We restrict ourself to the groups I'y for prime powers
d = p’ because, otherwise, the groups have a maximal nilpotent quotient by Proposi-
tion For a prime p € {3,5,7,11}, the Dwyer quotients M.(I',) are p-elementary
abelian groups with the following p-ranks:

p rky, (M.(I'p))

3 012, 18] 9ol0] 309 4ltl 5[26]  gl4l - 7[77) gl13] gl12]
5 0 104 of2] 3201 4[10] 5[100] g[1]

7 0l 112 2l6] g2 404] 5l42) - gl14] 7(34]

11 o, 1120 o) 32 4[0] 5021 gl22] 7[22] g[22] g[27]

As noted by Bartholdi, these experimental results suggest that

2 [logs (*55+)] +3, if logs(2c — 1) € Z,
[logs(2c — 1)) + Llog?) (26161” +1, otherwise,

rk3(Me+1(I'3)) = {

for ¢ > 6. Our results for the Dwyer quotients M.(T'y), for d € {4,8,9}, are shown in
Table [A4] where we list the abelian invariants of M.(G). Here, a list (aq, ..., a;,) stands
for the abelian group Zg, X - - - X Zq,,. Again, we list the abelian invariants (o, . . ., )™
just once if they appear in m consecutive places.
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Table A.1: Dwyer quotients of the Fabrykowski-Gupta groups I'y

d M(Tq)

(M (21 (2,2)0 (2,4)1 (2,2,2,4)01
4 (2,2,2,2,4)4 (2,2,2,4,4)116 (2,2,2,2.4,4)[] (2,2,2,2,2,4,4)5
)[ ]
]

(2,2,2,2,2,2,4, )19 (2,2,2.2,2 4,4, 4)164 (2,2,2.2,2,2 4,4, 4)
(2,2,2,2,2,2,2,4,4 4)[111 (2,2,2,2,2,2,2,2,4,4, 4)[26

(DI (8)2) (4,8)B (2,4,8)1 (2,8,8)11] (2,2,8,8)?
(2,2,2,8,8)12 (2,2,4,8,8)12 (2,4,4,8,8)2 (2,4,8,8,8)"

8 (2,8,8,8,8)18 (2,2,8,8,8,8)4 (2,4,8,8,8, 8)[201 (2,2,4,8,8,8, 8)[32}
(2,2,8,8,8,8,8)! (2,2,2,8,8,8,8,8)[16] (2,2,2,2,8,8,8,8,8)[16]
(2,2,2,4,8,8,8,8,8)[16 (2,2 4,4,8,8,8,8,8)

(M (9P (3,9)1 (3,3,9)1 (3,9,9)!

0 (9,9,92 (3,9,9,9) (3,3,9,9,9)4 (3,9,9,9,9)2

(9,9,9,9,9) }(399999)[181(3399999)[36}
(3,9,9,9,9,9,9)8 (9.9.9,9.9,9,9)17 (3,9,9,9,9,9,9,9)12

A.5 Coset Enumeration for Finite Index Subgroups

A standard algorithm for finitely presented groups is the coset enumerator introduced
by Todd and Coxeter [I33]. Coset enumeration is an algorithm that, given a finite
generating set of a subgroup H < G, computes the index [G : H| provided that this
index is finite. Its overall strategy is to compute a permutation representation for the
group’s action on the right-cosets H\G. For finitely presented groups, coset enumeration
techniques have been investigate for some time [32/[88[102/129]. They allow computer
algorithms to be applied in the investigation of finitely presented groups by their finite
index subgroups [77]. It was shown in [67], that even finitely L-presented groups allow one
to develop a coset enumeration process. This latter algorithm reduces the computation
to finite presentations first and then it proves correctness of the obtained result. A
coset enumerator for finitely L-presented groups has various interesting applications:
For instance, it allows one to compute low-index subgroups, as suggested in [40], and it
solves the generalized word problem for finite index subgroups [67].

We briefly sketch the idea of the coset enumeration process in [67] in the following. Let
G=(X]Q|®|R) be afinitely L-presented group. Suppose that a subgroup H < G is
given by its finitely many generators {g1,...,g,}. We consider the generators g1, ..., gy
as elements of the free group F over X. Then E = (¢1,...,g,) < F satisfies H =2 EK/K
where K = (QU J,cqp- R7)! is the kernel of the free presentation. We are to compute
the index [G : H] = [F : EK]. For this purpose, we define &, = {0 € ®* | ||o| < ¢}
where || - || denotes the usual word-length in the free monoid ®*. Consider the finitely
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presented groups Gy = F/ Ky given by the finite presentation

Gy = <X(Qu U R7). (A4)

oged,

Then Gy naturally maps onto G and we obtain a series of subgroups
EKy<EK; <...<EK<F.

Since EK < F is a finite index subgroup of a finitely generated group, it is finitely
generated by uy,...,up, say. Furthermore, we have EK = | J,~, EK,. For each u; € EK,
there exists n; € Ny so that u; € EK,,. For m = max{n; | 1 < i < n} we have
{uy,...,un} € EK,,. Thus EK = EK,,. In fact, there exists a positive integer m € Ny
so that H has finite index in the finitely presented group G, = (X | QU J R7).

Coset enumeration for finitely presented groups allows us to compute a permutation
representation m: F' — Sym(EK,,\F). The integer m cannot be given a priori. However,
the following straightforward approach yields an algorithm for computing ¢ € N so that
[F' : EK,] is finite: Start with an arbitrary ¢ € N and run the coset enumerator for
finitely presented groups with an upper bound N on the number of intermediate cosets
defined in its process. If this coset enumerator does not terminate successfully, we both
increase the index ¢ and the upper bound N. We then run both algorithms in parallel
using the increased bound N’. We continue to increase these numbers and to run all
these algorithms in parallel until eventually one of them terminates. Termination of this
process is guaranteed for a sufficiently large integer ¢ because [G : H] was assumed finite.

oced,,

Suppose that [Gy : H]| is finite and that the coset enumerator has computed a per-
mutation representation mp: F' — Sym(EK,\F'). Then [G : H| = [F : EK] divides the
index [Gy : H| = [F : EKy]. It suffices to check whether or not 7, induces a group
homomorphism G — Sym(EK,\F). In this case, we obtain [G; : H| = [G : H] and 7y
is a permutation representation for G’s action on the right-cosets H\G. Otherwise, we
have to enlarge the index ¢ and we would finally compute the index [G : H] in this way.
The following theorem was proved in [67]:

Theorem 1.9 For a finitely L-presented group G = (X | Q | ® | R) and a homomor-
phism m: F — H into a finite group H, there exists an algorithm that decides whether or
not 7 induces a group homomorphism G — H.

Proof. For an explicit algorithm, we refer to [67]. O

Coset enumeration for finitely L-presented groups allows various computations with fi-
nite index subgroups; e.g. computing the intersection of two finite index subgroups,
computing the core of a finite index subgroup, solving the generalized word problem for
finite index subgroups, etc. In the following, we demonstrate the application of our coset
enumerator to the Fabrykowski-Gupta groups I',. In particular, we show how to compute
the number of finite index subgroups with a moderate index.
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A.5.1 An Application of Coset Enumeration: Low-Index Subgroups

As an application of the coset enumeration process, we consider subgroups with small
index in a finitely L-presented group. Since the finitely presented group Gy from Eq. (A4)
naturally maps onto the finitely L-presented group G, it suffices to compute low-index
subgroups of the finitely presented group Gy. These subgroups map to subgroups of G
with possibly smaller index. On the other hand, each finite index subgroup of G has a
full preimage with same index in GGy. Therefore it remains to remove duplicates from the
list of subgroups obtained from the finitely presented group G,. For finitely presented
groups, an algorithm for computing all subgroups up to a given index was described
in [40]. An implementation of this algorithm can be found in [4I]. This implementation
includes an algorithm for computing only the normal subgroups of a finitely presented
group [35]. The latter algorithm allows to deal with possibly larger indices than the usual
low-index subgroup algorithms.

We first consider the Grigorchuk group ®: its lattice of normal subgroups is well-
understood [7,[33] while its lattice of finite index subgroups is widely unknown [58]. It
is known that the Grigorchuk group has seven subgroups of index two [58]. In [116],
it was shown that these index-two subgroups are the only maximal subgroups of &.
The implementation of our coset enumeration process allows us to compute the number
of subgroups with index at most 64 in the group & [67]. Our computations correct the
counts in [12] Section 7.4] and [L1] Section 4.1]. The following list summarizes the number
of subgroups (<) and the number of normal subgroups (<) of &:

index 1 2 4 8 16 32 64
< 1 7 31 183 1827 22931 378403
< T 7 7 7 ) 3 3

For the Fabrykowski-Gupta groups I',, where 3 < p < 11 is prime, we only found
subgroups with prime-power index in I'). Their counts are as follows:

. =3 =5 =7 p=11
mdex ST T2 9 % s
p° 1 1 1 1 1 1 1 1
p! 4 4 6 6 8 8 12 12
p? 31 1 86 1 ? 1 ?7 1
p> 1966 1 ? 1 ? ? ? 7
pt ? 4 7 2?2 ? 7?7 7 2
p° ? 1 7?7 2?2 ? 7?2 7 2
P8 ? 1 7?7 ? ? 7?7 7?7 2
P’ ?7 4 7 2?2 7?7 7?7 7 2

Here ’?’ denotes an index where our computations did not terminate within a reasonable
amount of time. The only normal subgroups with index p? are the derived subgroups
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since I', /T, = Z;, x Zj holds [57]. For a prime power index d = p’, the groups T'y only
admit subgroups with prime power index p’:

dex pf _ 22 pZ — 23 pf _ 32
< d4 < g9 < d

p° 1 1 1 1 1 1
p! 3 3 3 3 4 4
p? 19 7 19 7 76 13
p> 211 7 163 19 ? 2
pt 2419 11 2227 23 ? 7

For the groups I'g and I'1p, we obtain the following subgroup counts:

index < a9 < < index < qa < <
1 1 1 1 1 11 0 0 0 0
2 3 3 3 3 12 219 6 0 O
3 7T 4 0 0 13 0 0 0 0
4 9 1 5 1 14 0 0 0 0
5 0 0 11 6 15 0 0 0 0
6 39 13 0 0 16 188 0 16 O
7 0O 0 O 0 17 0 0 0 0
8 45 1 1 1 18 1299 7 0 O
9 79 1 0 0 19 0 0 0 0
10 0 0 113 19 20 0 o 7 7

A.6 Computing Solvable Quotients

The coset enumeration process in [67] was used to prove the following version of the
Reidemeister-Schreier theorem for finitely presented groups in [70]:

Theorem 1.10 Fach finite-index subgroup of a finitely L-presented group s finitely L-
presented.

Proof. For a constructive proof, we refer to [70]. O

The constructive proof of Theorem [[I0] allows us to apply the method for finitely L-
presented groups to finite index subgroups of a finitely L-presented group. As an appli-
cation of this method, we consider the successive quotients G/ G of the derived series.
This series is defined recursively by GV = G’ = [G, G] and GU+Y =[G, GO)] for i € N.
The isomorphism type of the abelian quotient G/G’ can be computed with the methods
from [91[64] provided that G is given by a finite L-presentation. Moreover, it is decidable
whether or not G’ has finite index in G; see [9,[64].
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Suppose that G/G’ is finite. Then the constructive proof of Theorem allows us
to compute a finite L-presentation for the finite index subgroup G’ < G. Then we can
compute its abelianization and we can continue this process. In general, if G/ GO+ s
finite, we can therefore compute the quotients G+ / G+2) recursively. An alternative
approach to compute the sections G(i)/ GU*D could generalize the methods for finitely
presented groups [92].

For the Grigorchuk group &, the sections G /GU+1 of the derived series have been
computed by Rozhkov [122]; see also [134]:

Theorem 1.11 (Rozhkov [122]) The Grigorchuk group & satisfies [& : &'] = 23,
(6 :6") =27, and [ : 6*)] = 220277 50 | > 3,

Our implementation of the Reidemeister-Schreier Theorem yields that
/6 2 (7,)°, &) 27y x Ty xZy, and &"/6G) =2 (7y)% x (Z4)* x Zs.

Since the abelianization T, /T, = Z), X Z,, of the Fabrykowski-Gupta group T', is finite [57],
the derived subgroup I}, satisfies [I', : I')] = p?. A finite L-presentation for I', can be
computed with the methods in [70]. We obtain that

/Ty = (Zs)2,  T4/TS) = (Zs)', and T§/T§Y 2 (24)"
as well as I} /T = (Z4)?,
TS = 7, x (Z4)2 x Zg, and TP TW = (2,)3 x (Z4)° x (Zs)?.
For 5 < d < 41, our computations suggest the following
Proposition 1.12 For d > 5, I'y satisfies T'q/T"; = (Z4)* and I')/T = (Zq)? 1.

Proof. Tt was already shown in [57] that T'y/TY, & Z4 X Z4 holds. For the second
statement, we combine the methods from [49] and [57]: For primes p, the structure of
the congruence subgroups I'y/Stabr,(n), n € N, were studied in [49]. Moreover, it was
shown in [57] that, for d > 5, the index [I"; : I'}] is finite.

Let d > 5 be given. Denote by Stabr,(1) the first level stabilizer in I'y. Then
Iy = Stabr,(1) x (a) and Stabr,(1) = (r,7%,..., 7% ") hold. Since I'; = ([a,r])T* =
(r=@r)ld, we have that I/, < Stabr,(1) and, as I'y/T’, & Zy x Z, holds, we have that
[Stabr, (1) : I'})] = d. More precisely, we have Stabr,(1) =T x (r).

For each 0 < i < d, we write ¢; = r*. In the following, indices are read mod-
ulo d. For 0 < ¢ < d, g¢ decomposes as (1,...,1,7¢,a’,1,...,1) where a’ is at po-
sition ¢. If |¢ — k| > 1, the commutator [gf,g;?] is trivial; otherwise, the commuta-
tor [gf,g¥ ;] decomposes as (1,...,1,[a%,7*],1,...,1) with [a’,7¥] at position i. Since
[a,r*] € Stabr,(1), we have that [gf,gf] € Stabr,(2). Thus, Stabr,(1)/Stabr,(2)
is abelian and it is generated by the images of the elements gg,...,94-1. Because
[a*,r%] = a=tr~Falrk = g% gk, we have that [gf,gf] € Stabr,(3) if and only if £k =0
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(mod d). Therefore Stabpd(l)/Stabpd(Q) = Zg X -+ X Lg and Fd/stabpd(2) = ZalZyq.
Since Stabr,(1)/Stabr,(2) is abelian, we have that Stabr, (1)’ < Stabr,(2). Because each
generator of Stabr, (1) has order d, the largest abelian quotient Stabp,(1)/Stabr,(1)
has order at most d?. Tt follows that Stabr,(2) = Stabr,(1)’. Moreover, we have
Stabr,(2) = Stabr, (1)’ < I';, and, since I, < Stabr,(1) holds, it follows that I'j <
Stabr,(1)" = Stabr,(2). The proofs in [957] yield that Stabr,(2) <TI7 if d > 5. There-
fore d4=1 = |I,/Stabr,(2)| = [I,/TY| and I')/T} 2 Zy x - -+ X Zg. m

The constructive proof of Theorem [[LI0 in [70] yields a finite L-presentation over the
Schreier generators of the subgroup. By the Nielsen-Schreier theorem (as, for instance,
in [I21, 6.1.1]), a subgroup H with index m = [G : H]| in an n-generated finitely L-
presented group G has nm + 1 —m Schreier generators. The Fabrykowski-Gupta groups
are 2-generated and therefore, the subgroup Fg?’) satisfies [['s : ng)] =316 Thus Fg?’)
has 3'6 — 1 Schreier generators as a subgroup of the 2-generated group I's. Therefore,
computing the sections I‘gf)/l‘gﬂ), 1 > 4, with the above method is hard in practice.
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Appendix

A Note on Invariantly Finitely
L-Presented Groups

Abstract. In the first part of this note, we introduce Tietze transformations
for L-presentations. These transformations enable us to generalize Tietze’s
theorem for finitely presented groups to invariantly finitely L-presented groups.
Moreover, they allow us to prove that ‘being invariantly finitely L-presented’ is
an abstract property of a group which does not depend on the generating set.

In the second part of this note, we consider finitely generated normal subgroups
of finitely presented groups. Benli proved that a finitely generated normal sub-
group of a finitely presented group is invariantly finitely L-presented whenever
its quotient is infinite cyclic. We generalize this result to the case where the
finitely presented group splits over its finitely generated subgroup and to the
case where the quotient is abelian with torsion-free rank at most two.

Keywords. Tietze transformations; infinite presentations; recursive presenta-
tions; self-similar groups.

Mathematics Subject Classification 2010: 20F05, 20E07, 20-04

B.1 Introduction

Finite L-presentations are possibly infinite group presentations with finitely many gener-
ators whose relations (up to finitely many exceptions) are obtained by iteratively applying
finitely many substitutions to a finite set of relations; see [6] or Section for a defi-
nition. Various infinitely presented groups can be described by a finite L-presentation.
For example, the Grigorchuk group [53] and the Gupta-Sidki group [62] are finitely L-
presented [619J96IT28]. An L-presentation is invariant if the substitutions, which generate
the relations, induce endomorphisms of the group. In fact, invariant finite L-presentations
are finite presentations in the universe of groups with operators [87[IT1] in the sense that
the operator domain of the group generates the possibly infinitely many relations out of
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a finite set of relations. The finite L-presentation for the Grigorchuk group in [96] is an
example of an invariant finite L-presentation [55].

Finite L-presentations allow computer algorithms to be applied in the investigation
of the groups they define. For instance, they allow one to compute the lower cen-
tral series quotients [9], to compute the Dwyer quotients of the group’s Schur mul-
tiplier [66], to develop a coset enumerator for finite index subgroups [67], and even
the Reidemeister-Schreier theorem for finitely presented groups generalizes to finitely
L-presented groups [70]. For a survey on the application of computers in the investiga-
tion of finitely L-presented groups, we refer to [68].

In the first part of this note, we introduce Tietze transformations for L-presenta-
tions. These transformations allow us to generalize Tietze’s theorem for finitely presented
groups [132] to invariantly finitely L-presented groups:

Theorem A Two invariant finite L-presentations define isomorphic groups if and only
if it 1s possible to pass from one L-presentation to the other by a finite sequence of
transformations.

If a group admits a finite presentation with respect to one generating set, then so it does
with respect to any other finite generating set [38 Chapter V|. This result for finitely
presented groups also generalizes to invariant finite L-presentations:

Theorem B (Bartholdi [6]) Being invariantly finitely L-presented is an abstract prop-
erty of a group which does not depend on the generating set.

Our proof of Theorem [B] fills a gap in the proof of [6, Proposition 2.2] because the
transformations in the latter proof are not sufficient; see Section [B.4] below.

In the second part of this note, in Section [B.5], we consider finitely generated normal
subgroups of finitely presented groups. By Higman’s embedding theorem, every finitely
generated group embeds into a finitely presented group if and only if it is recursively
presented [8I]. Since every finite L-presentation is recursive, finitely L-presented groups
therefore embed into finitely presented groups. As indicated in [22], we prove that every
group which admits an invariant finite L-presentation, where each substitution induces
an automorphism of the group, embeds as a normal subgroup into a finitely presented
group. On the other hand, the Reidemeister-Schreier theorem for finitely L-presented
groups in [70] shows that every normal subgroup of a finitely presented group admits an
invariant L-presentation where each substitution induces an automorphism of the group;
the obtained L-presentation is finite if and only if the normal subgroup has finite index.

Finitely generated normal subgroups of finitely presented groups with infinite index
were considered in [22]: It was proved that a finitely generated normal subgroup of a
finitely presented group is invariantly finitely L-presented if its quotient is infinite cyclic.
Moreover, in [22] Remark (2)], Benli asked for a generalization of his latter result and he
posed the following problem:

Is it true that a finitely generated group embeds as a mormal subgroup into
a finitely presented group if and only if it admits an invariant finite L-
presentation where each substitution induces an automorphism of the group?
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We generalize Benli’s constructions from [22] in order to prove the following

Theorem C Ewvery finitely generated normal subgroup of a finitely presented group is
invariantly finitely L-presented if the group splits over its subgroup.

Since G splits over its subgroup H < G if G/H is a free group, Benli’s result in [22] is a
consequence of Theorem [Cl Moreover, our generalizations of the constructions from [22]
allow us to prove

Theorem D FEvery finitely generated normal subgroup of a finitely presented group is
invariantly finitely L-presented whenever the quotient is abelian with torsion-free rank at
most two.

Our constructions do not generalize further; see Remark 2.1

B.2 Preliminaries

In this section, we recall the notion of an invariant finite L-presentation as introduced
in [6]. An L-presentation is a group presentation of the form

<X‘QU U R">, (B.1)

oed*

where X is an alphabet, Q and R are subsets of the free group F' = F(X) over the alpha-
bet X, and ®* C End(F') denotes the monoid of endomorphisms that is generated by ®.
If the generators X, the fized relations Q, the substitutions ®, and the iterated relations
R have finite cardinality, the L-presentation in Eq. (B.) is a finite L-presentation. We
also write (X' | Q| @ | R) for the L-presentation in Eq. (B) and G=(X | Q| ® | R)
for the group it defines.

A group which admits a finite L-presentation is finitely L-presented. An L-presen-
tation of the form (X | 0 | ® | R) is ascending and an L-presentation (X | Q| ® | R)
is called invariant (and the group it defines is invariantly L-presented), if each sub-
stitution ¢ € & induces an endomorphism of the group; i.e., if the normal subgroup
(Q U Upea RV < F is g-invariant. Each ascending L-presentation is invariant and
each invariant L-presentation (X | Q | ® | R) admits an ascending L-presentation
(X |0]®] QUR) which defines the same group; see Proposition B7l Even though in-
variant and ascending L-presentations are essentially the same, we like to distinguish
between these two objects. The finite L-presentation in [96] for the group constructed by
Grigorchuk [53] is not ascending but it is easy to see that it is an invariant L-presentation;
see, for instance, [55, Corollary 4].

Remark 2.1 There are finite L-presentations that are not invariant.

Proof. The free product Zo * Zy = ({a,b} | {a%,b}) is finitely L-presented by
{a,b} | {a®} | {o} | {*}) where ¢ is induced by the map a — ab and b +— b2. If this
L-presentation were invariant, the ascending L-presentation ({a,b} | 0 | {o} | {a?, b*})
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would also define Zo * Zo; see Proposition B7l In this case (a?)? = abab is a relation
in the group and, since a?> = b*> = 1 holds, the generators a and b commute. There-
fore the ascending L-presentation defines a quotient of the 2-elementary abelian group
7o x Zs. In fact, it defines a finite group. Thus ({a,b} | @ | {0} | {a?,b*}) is not a finite
L-presentation for Zy * Zo and hence ({a,b} | {a®} | {o?} | {V?}) is not an invariant
L-presentation. O

Note that this latter proof from [70] provides a ‘method’ to prove that a finite L-
presentation (X | Q@ | ® | R) is invariant; namely, if the ascending L-presentation
(X 0| ®|RUQ) defines a group which is isomorphic to the first. In general, we are
not aware of a method which allows us to decide whether or not a finite L-presentation is
invariant — even if we assume that the L-presented group has a solvable word problem.

Invariant finite L-presentations are ‘natural’ generalizations of finite presentations
because every finitely presented group (X | R) is invariantly finitely L-presented by (X’ |
0| 0| R). However, invariant finite L-presentations have been used to describe various
examples of self-similar groups that are not finitely presented [14,[96]. For instance,
the group & constructed by Grigorchuk in [53] is not finitely presented [56] but it is
invariantly finitely L-presented, see also [55]:

Theorem 2.2 (Lysénok [96]) The Grigorchuk group is invariantly finitely L-presented
by ({a,b,c,d} | {a®,b?, %, d? bed} | {o} | {(ad)*, (adacac)'}) where o denotes the endo-
morphism of the free group over {a,b,c,d} that is induced by the map a — aca, b+ d,
c—b, and d — c.

It is easy to see (and it follows with our Tietze transformations below) that the group &
is also invariantly finitely L-presented by

G = <{a, c,d} | {a2,c2,d2, (cd)2} | {7} | {(ad)4, (adacac)4}>, (B.2)

where ¢ is induced by the map a — aca, ¢ — cd, and d — c¢. Further examples of
invariantly finitely L-presented groups arise, for instance, as certain wreath-products: In
contrast to [6], Bartholdi noticed that the lamplighter group Zs ! Z is invariantly finitely

L-presented by
({a, 1} [ 0] {0} | {a®,[a,a']}),

where ¢ is induced by the map a — a'a and ¢t + t. This recent result generalizes to

wreath products of the form HZ, where H is a finitely generated abelian group:

Proposition 2.3 If H is a finitely generated abelian group, the wreath product H 17 is
invariantly finitely L-presented.

Proof. Since H is finitely generated and abelian, it decomposes into a direct product of
cyclic groups; i.e., H has the form Z, x --- x Z, for ri,...,r, € NU{oo} where Z
denotes the infinite cyclic group while Z,, denotes the cyclic group of order r;, otherwise.
Then (X | {[z,y] | z,y € X}U{a"* | r, < oo}) is a finite presentation for H. The wreath
product H ! Z admits the presentation

H12.2 (X U{t} | {29),2™ Yogerra<oo U050 Dagerieni ) -
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For each y € X, define a substitution o, which is induced by the map

y = 'y,
o4 © +— x, foreach z e X\ {y},
t — .

For n € Nand z,y,z € X with x # y and z # y, we obtain

n n n—1 n
[y, 2" = [yy.a"] =[y,a" Y[y, 2",

n. o n+1 n n n+1.,t"
[z,y" )7 =[xy Y =[z,y" ] [y )Y
221 = 2"

nag n—1 n " n nt+1.,, t"
vy 17 = oy eyt Yy )

This shows that the relations {[z,y"] | z,y € X,i € N} are consequences of the iterated
images {[z,4']° | 0 € {0, | y € X}*, 2,y € X} and vice versa. Moreover, for each
relation 2" of H’s finite presentation, we have that (z"*)% = 2"~ if x # y and (y"v)% =
(y'y)™v =mz (y"v)ty™v, otherwise. Thus these images are relations of the wreath product
HZ. In particular, the finite L-presentation

<XU {t} ‘ 0 ‘ {Uy}yGX | {[%yt]}x,yex U{l“”}ze;\.’,rz<oo>

is an invariant finite L-presentation for the wreath product H ! Z. O

Even though invariant finite L-presentations are known for numerous self-similar groups,
we are not aware of an invariant finite L-presentation for the Gupta-Sidki group from [62].
Moreover, we are not aware of a finitely L-presented group which is not invariantly finitely
L-presented.

B.3 Tietze Transformations for L-Presentations

In this section, we introduce Tietze transformations for L-presentations. Let G = (X |
Q| ® | R) be an L-presented group. Denote by F' the free group F(X) over the alphabet
X and let K = (QUJ,cq- R7)Y be the kernel of the free presentation m: ' — G. Then
K = ker 7 decomposes into the normal subgroups @ = (Q)* and R = (|, cqe R7)* so
that K = RQ = QR holds. The group F/R is invariantly L-presented by (X |0 | ® | R).
We can add every element of the kernel K as a fixed relation:

Proposition 3.4 If G = (X | Q | ® | R) is a (finitely) L-presented group and
S C (QU Uyeq- RO is a (finite) subset, then (X | QU S | ® | R) is a (finite)
L-presentation for G.

Proof. The proof follows with the Tietze transformation that adds consequences S of
G’s relations to the group presentation (X' | QU J,cq- R7)- O

The transformation in Proposition B.4lis reversible in the sense that we can remove fixed
relations & from an L-presentation (X | QU S | & | R) if and only if
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(QUSUU,eer R = (QUU,ep- R7)F holds. The following transformations are
reversible in the same sense.

If an L-presentation is not invariant (cf. Remark 2.1]), there exist elements from the
kernel K of the free presentation m: FF — G that we cannot add as iterated relations
without changing the isomorphism type of the group. However, even for non-invariant
L-presentations we have the following

Proposition 3.5 If G = (X | Q | ® | R) is a (finitely) L-presented group and
S C (Uyea+ RO is a (finite) subset, then (X | Q | ® | RUS) is a (finite) L-presentation
for G.

Proof. By construction, the normal subgroup R = (|J, - R7)" is o-invariant for each
o € ®*. More precisely, for each r € R and o € ®*, we have r? € R. Therefore, adding
the (possibly infinitely many) relations {s? | s € S,0 € ®*} to the group presentation
(X ] QU cqp+ R7) does not change the isomorphism type of the group. O

Iterated and fixed relations of an L-presentation are related by the following

Proposition 3.6 If G = (X | Q| ® | R) is a (finitely) L-presented group and S C R
holds, then (X | QUS | ® | (R\S)U{r¥ | r € S, € ®}) is a (finite) L-presentation
for G.

Proof. The proof follows immediately from

ou [J R =qusu |J (R\S)U{r'}espes)

ocd* ocd*
these are the relations of G’s group presentation. O

The following proposition is a consequence of the definition of an invariant L-presentation:

Proposition 3.7 If (X | Q| ® | R) is an invariant (finite) L-presentation for the group
G and S C Q holds, then (X | Q\ S| ® | RUS) is a (finite) L-presentation for G.

Proof. Since G is invariantly L-presented by (X | Q | ® | R), each o € ® induces an
endomorphism of the group G. Therefore, the images {¢° | ¢ € S,0 € ®*} are relations
within G and so (X | (Q\ S) UU,cq-(RUS)?) is a presentation for G. O

The following proposition allows us to add generators together with fixed relations to an
L-presentation:

Proposition 3.8 Let G = (X | Q| ® | R) be an L-presented group, Z be an alphabet
so that X N Z = 0 holds, and, for each z € Z, let w, € F(X) be given. For each o € ®,
define an endomorphism of the free group E over the alphabet X U Z that is induced by
the map
ag
~:{x — xz%, for each x € X, (B.3)

z +— g, foreachze€ Z,
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where g, are arbitrary elements of the free group E. Then G satisfies that
G2(XUZ|QU{z  w.}.ez | {6}oca | R). (B.4)

If (X | Q| ® | R) is a finite L-presentation and Z is a finite alphabet, the L-presentation
in Eq. (B) is finite.

Proof. Write H=(XUZ | QU{ztw,|2€ Z}|{6 |0 € ®} | R) and let F and F be
the free groups over X and X U Z, respectively. To avoid confusion, the elements of G’s
presentation are denoted by g € F. Then

r +— T, foreach x e X,
I __
z +— w,, foreachze Z,

induces a surjective homomorphism 7: F — F. By construction, the restriction of the
substitution & to the free group F' coincides with o. Thus (Uaeq) R&)ﬂ = Ugea+ R?
and hence, m maps iterated relations of H’s L-presentation to iterated relations of G.
Similarly, = maps the fixed relations O of H’s L-presentation to fixed relations of G. It
remains to consider the relations of the form z~'w, with z € Z. However, these relations
are mapped trivially by «. This shows that the homomorphism n: £ — F' induces a
surjective homomorphism 7: H — G. On the other hand, identifying the generators of G’s
L-presentation with the generators of H induces a surjective homomorphism ¢: G — H
with ¢ = idy and 7¢ = idg. Hence, the groups G and H are isomorphic. The second
assertion is obvious. O

We can also add the relations {z 'w, | z € Z} in Proposition B8] as iterated relations to
the L-presentation if we define the substitutions ¢ as follows:

Proposition 3.9 Let G = (X | Q| ® | R) be an L-presented group, Z be an alphabet
so that X N Z = 0 holds, and, for each z € Z, let w, € F(X) be given. For each o € ®,
define an endomorphism of the free group E over the alphabet X U Z that is induced by
the map

.| >z = x%,  foreachxec X,
7 { z +— w?, foreachze Z. (B.5)
Then G satisfies that
G2 (XUZ|Q|{6}oea | RU{z W, }sez). (B.6)

If (X | Q| ® | R) is a finite L-presentation and Z is a finite alphabet, the L-presentation
in Eq. (B.4) is finite.

Proof. The substitutions ¢ in Eq. (B.5) are well-defined because w, € F(X) and
o € End(F(X)) hold. By Proposition B.6] we have that

(XUZ| Q| {6}oeo | RU{z " w:}ocz)
= <XUZ ‘ QU {Z_lwz}zez | {5’}geq> ‘ RU {(Z_lwz)&}zez7geq>>.
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By definition of & in Eq. (B), we have (271)% = (w?)~! and w? = w?. Thus (27! w,)? =

z
(w?)"'w? =1 holds. In particular, adding the relations {(z !w,)? | z € Z,0 € ®} to

z
a group presentation does not change the isomorphism type of the group. By Proposi-

tion B.8], we have that

G = X|Q[®[R)

~ (XUZ | QU{z w.tocz | {5hoce | R)
= (XUZ|QU{z 'w.liez | {}oco | RU{(z7'w:) oz 0ca)
= (XUZ| Q| {6}oea | RU{zw:}zez);
which proves the first assertion of Proposition while the second is obvious. O

The following proposition allows us to modify the substitutions of an L-presentation:

Proposition 3.10 If G = (X | Q| ® | R) is a (finitely) L-presented group and ¥ C @
holds, then (X | Q | (P\V)U{oy | ¥ € V,0 € &} | RUU¢GWR¢> is a (finite)
L-presentation for G.

Proof. The proof follows immediately from

ou |Jr7=2u |J <Ru UR¢)O

oed* O'E&S* Ppev
where & = (®\ U) U {0t | € U, 5 € B}; these are the relations of G’s group presenta-
tion. O

Since each relation of a group presentation can be replaced by a conjugate, we can modify
the substitutions of an L-presentation as follows:

Proposition 3.11 Let G = (X | Q | ® | R) be a (finitely) L-presented group, S C F
be a (finite) subset, and let W C ® be given. For each x € S, denote by 0, the inner
automorphism of the free group F(X) that is induced by conjugation with x. Then

o (X[ Q| DU, |zeSH|R),
o (X[ Q| (®\T)U{byo |z €S,0€T}|R), and
o (X[ Q| (®\T)U{0d, |z €S, 0€T}|R)

are (finite) L-presentations for G.

Proof. This follows because each relation of a group presentation can be replaced by a
conjugate and we have §,0 = 0,0 for each 0 € ®* and = € X. O

Recall that the kernel K = (Q U J,cq R7)Y of the free presentation mF — G
decomposes into the normal subgroups Q@ = (Q)f" and R = (| RV so that
K = QR = RQ holds. This decomposition yields the following

oed*
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Proposition 3.12 Let G = (X | Q | ® | R) be a (finitely) L-presented group and
let U C End(F(X)) be a (finite) subset. If each v € ¥ induces an endomorphism of
F(X)/R, then (X | Q| ®U Y | R) is a (finite) L-presentation for G.

Proof. 1f ¢ € ¥ induces an endomorphism of F(X)/R, the normal subgroup R is -
invariant. Therefore, each image r” € F(X), with o € (P U ¥)*\ ®* and r € R, is
a relation of the group. Adding these (possibly infinitely many) relations to the group
presentation does not change the isomorphism type of the group. O

For an invariant L-presentation, we even have the following

Proposition 3.13 Let G = (X | Q | ® | R) be a (finitely) L-presented group and let
U C End(F(X)) be a (finite) subset. Then (X | Q| UV |R) is a (finite) L-presenta-
tion for G if and only if each ¢ € V induces an endomorphism of G.

Proof. Let K = (Q U J,cq- R%)F be the kernel of the free presentation m: F(X) —
G. If each ¢ € ¥ induces an endomorphism of F(X)/K, Proposition shows the
first assertion. If, on the other hand, the invariant L-presentations (X | Q | ® | R) and
(X Q|®UW | R) are L-presentations for G, each ¢ € ¥ induces an endomorphism of
G=F(X)/K. O

Every substitution o € ® of an invariant L-presentation G = (X | Q | ® | R) induces an
endomorphism of G. However, there are possibly other endomorphisms of the free group
F(X) that will induce the same endomorphism on G. The following proposition allows
us to modify a given substitution of an L-presentation:

Proposition 3.14 Let G = (X | Q | ® | R) be a (finitely) L-presented group,
S C (Upear R be a (finite) subset, and let o € ® be given. Define an endomor-
phism & of the free group F = F(X) over the alphabet X that is induced by the map
g:x v+ 2771y for each x € X and some r, € S. Then (X | Q | (P \{c})U{c} | RUS)
is a (finite) L-presentation for G.

Proof. We work in the free group F' = F(X) over the alphabet X and we decompose
the kernel K = (Q U U, cq- RV of the free presentation 7: F — G into the normal
subgroups Q@ = (Q)F and R = (Upeca R¥)F as above. Since S C (Upeca RV holds,
Proposition B0 yields that G = (X | Q| ® | R) = (X | Q| ® | RUS). In particular,
we have that R = (U,cq«(R U S)P)V. Write ¥ = (®\ {0}) U {6}. We prove this
pea-(R U S)?)F and R =
<U¢€\I,*(RU8)“’>F coincide. For this purpose, we prove that, for each § € ¥* and g € F,

there exists 6 € ®* and h € L = (U%@* S?)F so that gS = ¢°h holds. By construction,
we have that L C R. By symmetry (as we have both 2° = 277, and 2° = 277, !)

the same arguments will show that, for each § € ®* and g € F, there exists 6 e U
and h € L = (U,cy- S?)F 5o that ¢° = ¢g°h holds. This would yield that each normal

generator $ ¢ R, with s € R US and 5 € U*, can be written as § = 35@ for some
€ ® and he L CR. Infact, s € R satisfies that s = s°h € R and thus R C R. By
symmetry, we would also obtain that R C R holds. This clearly proves Proposition B.14]

proposition by showing that the normal subgroups R = (|
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It therefore remains to prove that, for each 6 € U* and g € F, there exists § € ®* and
h € L so that g° = ¢°h holds. Each g € F is represented by a finite word Wo(xiy, ..., z,)
over finitely many generators {z;,,...,z;, } C X. Let 6 € U* and g € F be given. We
prove the assertion by induction on m = ||6]|. If m = 1, then § € ¥. Moreover, we either
have 6 = 6 or 6 # G. If § # & holds, then 6 € ® and thus ¢° = ¢°h for some § € ® and
h € L. Otherwise, if 6 = & holds, we obtain that

o __ . . \O __ o o\ o o
97 =wy (i, 24,)7 = wy(xf ... 2] ) = wy(xf, Taips- oo Ty, rxin).
. . . - o
Conjugation in the free group F' yields that the word wg(zf, Tay s 7 Tz, ) can be

7 x7 ) - h for some h € (S)F'. Thus ¢° = ¢° - h for some o € ® and

written as wy(x7, ..., 27

he (S)F CL.

For an integer m > 1, assume that, for every g € F and § € U*, with ||6|| = m, the
image ¢° € R satisfies that ¢° = ¢°h for § € ®* and some h € L. Let g € F and § € U*,
with ||0]| = m + 1, be given. Then there exist @ € U and 5 € ¥*, with ||5] = n, so that
6= 4@ holds. By our assumption, there exist v € ®* and h € L so that g7 = g7h holds.
Thus ¢° = ¢7% = (¢7h)%. If & # & holds, then @ € ® and thus y& € ®*. Moreover,
by construction, the normal subgroups L = (e S and L = (Upew SP)E are
®*- and ¥*-invariant, respectively. Thus h¥ € L if & # &. Therefore, the image ¢°
satisfies that ¢ = ¢?“h® for some 7@ € ®* and h® € L. It suffices to consider the case
@ = 6. The elements g7 € F and h € F' are represented by finite words wg~ (z;,, ..., xj,)
and wp(x,,...,2y,), respectively. Again, conjugation in the free group F' yields that
wer (T, ..., 25,)° = wgw(x;’l, .. ,m‘]’n)u and wp (T, s - - T, ) = WR(TF, - ,wgl)v with
u,v € (S)F. Thus ¢° = ¢7% = (¢7h)% = (¢?°u) (h? v). In fact, we have that ¢° = g7 '/
with vo € ®* and I/ = uh®v € L. Thus, for every g € F and 6 € ¥*, the image ¢°
satisfies that ¢° = ¢g°h with § € ®* and h € L. By symmetry, as we have both 27 = 27 r,,
and 27 = 2% r; !, the same arguments will prove that for each g € F' and § € ®* the
image ¢° satisfies that ¢ = ¢°h with 6 € U* and h € L = (Upecw S®)F. This finishes
our proof of Proposition 314l O

As a consequence of Proposition B14], we obtain the following

Corollary 3.15 Let G = (X | Q | ® | R) be a finitely L-presented group and let
o € ® be given. Then o induces an endomorphism of the invariantly finitely L-presented
group H= (X |0 | ®|R). Ifp € End(F(X)) and o induce the same endomorphism on
H, then there exists a finite subset S C F(X) so that (X | Q| (P \ {o})U{¢} | RUS)

s a finite L-presentation for G.

Proof. If ¢ and ¢ induce the same endomorphism of H, there exists, for each x € X,
an element 7, € (U,cq R7) with 2¥ = 29r,. Write S = {r; | # € X}. Then
Proposition BI4 yields that G = (X | Q | (® \ {¢}) U{v} | RUS). O

The transformations introduced above allow us to modify a given L-presentation of a
group. In order to prove Tietze’s theorem for invariantly finitely L-presented groups, we
choose the following set of transformations:
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Definition 3.16 An L-Tietze transformation is a transformation that

(1) adds or removes a single fized relation (Proposition [37),
(1i) adds or removes a single iterated relation (Proposition [3.3),
(iii) adds or removes a single substitution (Proposition[313),
(1v) adds or removes a generator together with a fized relation (Proposition [3.8),

(v) adds or removes a generator together with an iterated relation (Proposition[39), or
that

(vi) modifies a given substitution of an L-presentation (Proposition[3.17).

B.4 Applications of Tietze Transformations
The transformations introduced in Section allow us to prove Theorem [Al

Proof of Theorem [Al We use similar ideas as in the proof of Tietze’s theorem in [95],
Chapter II]: As each L-Tietze transformation does not change the isomorphism type of
the group, two finite L-presentations define isomorphic groups if one L-presentation can
be transformed into the other by a finite sequence of L-Tietze transformations. In order
to prove Theorem [A] it suffices to prove that two invariant finite L-presentations which
define isomorphic groups can be transformed into each other by a finite sequence of L-
Tietze transformations. For this purpose, we consider two invariant finite L-presentations
(X1] Q1] ®1|Ry) and (Xy | Qo | P2 | Re) of a group G. By Proposition B.7] we can
assume that both Q; = @) and Qy = 0 hold. We will construct an invariant finite L-
presentation for GG which can be obtained from both L-presentations by a finite sequence
of L-Tietze transformations. Because each L-Tietze transformation is reversible, this
shows that we can pass from one L-presentation to the other by a finite sequence of
L-Tietze transformations.

Suppose that X3 N Xy = 0 holds. For i € {1,2}, we denote by F; = F(X;) the
free group over the alphabet AX; and by m;: F; — G the free presentation with kernel
ker(m;) = <erd>;* RY)Fi. For each z € X, we choose w, € Fy with 2™ = wT; i.e., the
element w, € Fy is a mo-preimage of 2™ € G. For each z € A5, we choose w, € F} with
2™ = wTl. Define the subsets S; = {v lw, |z € X1} and Sy = {z7w, | z € X} of the
free group F' = F(X; U X3) over the alphabet X7 U X5. By Proposition B9 we can add
the finitely many generators z € X, together with the iterated relation z = w, € Sy if we

extend each substitution o € ®; to the free group F by

_ [ x — a9, foreach xz € A,
o:
=W

z 7, for each z € Ab.

This yields the finite L-presentation

(XUXo | 0] {6}eca, | R1IU{z w02 oca )
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for the group G. The natural homomorphisms 71: F; — G and 7o: F» — G extend to a
natural homomorphism 7: F — G that is induced by the map

x +— x™, for each x € XY,
I
z 2™, foreach z € Xs.

Its kernel satisfies ker(m) = (|

e

sear(R1U S2)?VE. For v € &y and v~ 'w, € S1, we have
2™ = 2™ = w2 = w”" and thus 2 'w, € ker(m) holds. For each r € Ry, we have
r™ = r™ =1 and thus r € ker(w) holds. Since the kernel ker(m) is {6 | 0 € ®;}*-
invariant, by construction, Proposition yields that

G§<X1UX2|@|{5}UGQ>1 |R1UR2U51U52>.

As the invariant finite L-presentations (X; | 0 | @1 | R1) and (X2 | () | P2 | Re) define
isomorphic groups and every ¢ € ®5 induces an endomorphism of the whole group, we
can extend 1 to an endomorphism of the free group F' over the alphabet X} U X5 that
induces the same endomorphism on G as 1 does. More precisely, for each 1 € &5, we
define an endomorphism of the free group F' that is induced by the map

T w;p, for each z € X} and =z~ tw, € 9.

~‘{ z +— 2%, foreach z € Xy
By construction, the normal subgroup <UU€‘1>’1‘(R1 U Ry U Sy U S)%)F is ¢-invariant.
Thus, by Proposition B.12] the group G satisfies that

G = <X1 U Xy ‘ 0 ‘ {6}oeca, U{t} yes, | R1IURUSI U Sg> . (B.7)

Since the L-presentations (X} | Q1 | @1 | R1) and (Xy | Qo | P2 | Re) were finite, we
have applied only finitely many L-Tietze transformations from Definition B. 16l Therefore,
starting with the L-presentation (X; | Q1 | ®1 | R1) we have obtained the L-presentation
in Eq. (B.Z) after finitely many steps. By symmetry, though, we would also obtain the
finite L-presentation in Eq. (B7) if we would have started with the finite L-presentation
(Xa | Q2| P2 | R2). Since each L-Tietze transformation is reversible, we can therefore
transform the finite L-presentation in Eq.(B.1) to the finite L-presentation (X | Qg | 4 |
R2). This yields a finite sequence of L-Tietze transformations that allows us to transform
the L-presentation (X; | Q1 | ®1 | R1) to the L-presentation (Xs | Qo | P2 | Ro) and vice
versa. O

Similarly, the Tietze transformations in Section also allow us to prove that two
arbitrary finite L-presentations could be transformed into each other by a finite sequence
of Tietze transformations.

Another application of L-Tietze transformations is to prove that ‘being invariantly
finitely L-presented’ is an abstract property of a group that does not depend on the
generating set of the group; that is, if a group admits an invariant finite L-presentation
with respect to one finite generating set, then so it does with respect to any other finite
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generating set. This result was already posed in [6] Proposition 2.2|. However, its proof
contains a gap: Consider the invariant finite L-presentation

® = ({a,b,c,d} | {aQ,bQ,CQ,dz,bcd} | {c} | {(ad)4, (adacac)4}>

from Theorem [2.2], where o is induced by the map a — aca, b — d, ¢ — b, and d — c.
Then o is a monomorphism of the free group F' = F({a,b,c,d}). The transformations in
the proof of [6, Proposition 2.2| keep the rank of im (o) constant and therefore, they do
not allow to prove that the Grigorchuk group admits an invariant finite L-presentation
with generators {a,c,d} as in Eq. (B:2)). The L-Tietze transformations from Section
allow us to address this gap:

Proof of Theorem[B. Let YV = {y1,...,yn} be an arbitrary finite generating set of the
invariantly finitely L-presented group G = (X | Q | ® | R). As G is invariantly L-
presented, we can assume that Q@ = () holds. Since ) generates G, there exists, for
each x € X, a word w,(y1,...,yn) over the generators ) so that z =g w.(y1,...,Yn)
holds. Since X = {x1,...,z,,} also generates G, there exists, for each y € ), a word
wy(x1,...,Ty) so that y =¢ wy(x1,...,2y) holds. Suppose that X N Y = @ holds. For
each o € ®, define an endomorphism & of the free group E over the alphabet X UY that
is induced by the map

P B 7, for each x € X,
Ly = wy(zr,...,2,)7, foreachye ).

Then, by Proposition B9, a finite L-presentation for the group G is given by
(XUY|0]{}oer | RU{y wy(ar, ..., 2m)byey)-

As this L-presentation is invariant, every &, with ¢ € ®, induces an endomorphism of
the group G. Thus, as * =g wz(y1,.--,yn) holds, we have 2% =g wx(y1,...,yn)° for
each o € ®*. By Proposition B3] we have that

G2 (XUY|0]{5}rer | RU{y  wylyey U{e™ wstoex). (B.8)

Since ) generates H, for each z € X UY and o € ®, the image 27 is represented by a
word v, (Y1, ..,Yn) Over the generators ) so that 2% =¢ Vz0(Y1,...,yn) holds. Since
the L-presentation in Eq. (B.8]) is invariant, Proposition B.I4] applies to the relation
r=(2°)" v, 5(y1,...,yn) and it shows that G admits the following finite L-presentation

XUV 0] {G}oes | RU{z wotoexr ULy wylyey U{(z7) 020} zeauy.oce)
where the substitutions o are induced by the maps
g2V, 6(Y1,...,Yn), for each z € X UY.

We use the iterated relations z = w,(y1,...,yn), with z € X, to replace every occurrence
of z € X among the iterated relations

RU {y_lwy(xh e 7xm)}y€y U {(25)_17)?:,0@17 e 7yn)}z€XU37,06<1> (B.9)
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by wz(y1,...,yn). This yields a finite set of relations S that can be considered as a
finite subset of the free group over the alphabet ). Replacing the relations in Eq. (B.9)
by S does not change the isomorphism type of the group. The group G satisfies that
G2(XUY|0|{c|oecd} | SU{z " w, |z ec X}). By Proposition B9, the group G
is invariantly finitely L-presented by (Y | 0 | {6}ocs | S). O

B.5 Finitely generated normal subgroups of finitely pre-
sented groups

In this section, we consider finitely generated normal subgroups of finitely presented
groups. By Higman’s embedding theorem [81], every finitely generated group embeds
into a finitely presented group if and only if it is recursively presented. This theorem
classifies the finitely generated subgroups of a finitely presented group. The normal
subgroups of a finitely presented group are invariantly L-presented:

Proposition 5.17 Every normal subgroup of a finitely presented group admits an in-
variant L-presentation whose substitutions induce automorphisms of the subgroup. If the
normal subgroup has finite indez, it is invariantly finitely L-presented.

Proof. This follows from the proof of [70], Theorem 6.1]; cf. Lemma 519 below. O

The L-presentation in Lemma below is an ascending L-presentation with finitely
many substitutions and finitely many iterated relations. It has finitely many generators
if and only if the subgroup has finite index. The substitutions of this L-presentation
induce automorphisms of the subgroup since they are induced by conjugation in the
finitely presented group.

On the other hand, as every finite L-presentation is recursive, finitely L-presented
groups embed into finitely presented groups. As indicated in [22], a finitely L-presented
group embeds as a normal subgroup into a finitely presented group if we assume that
every substitution of the L-presentation induces an automorphism of the subgroup:

Proposition 5.18 FEvery group that admits an invariant finite L-presentation, whose
substitutions induce automorphisms of the group, embeds as a normal subgroup into a
finitely presented group.

Proof. 1t H=(Z|0|{01,...,0,} | R) is invariantly finitely L-presented so that each
d; induces an automorphism of H, the base group H embeds into the HNN-extension
G relative to the isomorphism §1: H — H which is induced by the substitution §;. The
HNN-extension G is given by the presentation G1 = (ZU {t1} | U,cqp- R U {t; '2t1 =
2% | z € Z}) where ® = {61,...,8,}. Denote by H; the image of H in G;. Then
09 induces an automorphism of the subgroup H; < Gy. Thus we can form the HNN-
extension Gg relative to the isomorphism d9: H1 — Hy. As the base group GG; embeds
into the HNN-extension G5, the subgroup H; embeds into G5 as well. Iterating this
process, we obtain a group Gy, = (ZU {t1,...,tn} | Upep- R7U{t; 1oty = 2% [1 < i <
n}) in which H embeds. Tietze transformations that replace every d;-image 2% by the
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conjugate t; 'z¢; in the relations U,cao+ R7 eventually show that Gy, = (ZU{t1,...,tn} |
RU{t;'2t; = 2% | 1 <i < n,z € Z}) is finitely presented. The invariantly finitely L-
presented group H embeds into this finitely presented group by identifying the generator
in Z. The image of H in G, is obviously a normal subgroup of G,,. O

In the following, we use the constructions from [22] to prove Theorem [Cl Since every
normal subgroup of a finitely presented group admits an invariant L-presentation with
finitely many substitutions and finitely many iterated relations, it suffices to show that
the L-presentation in Lemma below could be transformed into an invariant finite
L-presentation. For this purpose, though, we need to eliminate (possibly) infinitely many
generators from the L-presentation and we need to modify finitely many substitutions.
However, Proposition [3.14] adds iterated relations for each modification of a substitution.
Hence, we need to ensure that this process still gives a finite L-presentation. In the
following, we generalize the constructions from [22]:

B.5.1 Preliminaries

Let G be a finitely presented group and let H < G be a finitely generated normal sub-
group. Then G/H is finitely presented. Moreover, if H = (aj,...,a,) and G/H =
(s1H,...,s,H) hold, there exists a finite presentation ({ai,...,am,S1,...,8,} | R) for
G. The proof of [70, Theorem 6.1] yields the following

Lemma 5.19 Let ({a1,...,am,S1,...,8,} | R) be a finite presentation for G and write
S = {stl,..., s} If T is a Schreier transversal for H = (ay, ..., an) in G and Y are
the Schreier generators of H, then H is invariantly L-presented by

Y10]{6: |z €S}H[RT)

where 0, denotes the endomorphism of the free group F(Y) that is induced by conjugation
with x € S and T denotes the Reidemeister-rewriting.

Proof. 'This follows from the Reidemeister-Schreier theorem, see [95] Section II.4] and
the proof of [0, Theorem 6.1]. Clearly, one can always omit the endomorphisms §, with
x €{ay,...,an} as they give inner automorphisms of the subgroup H. O

Since § and R are finite, the L-presentation in Lemma is finite if and only if H has
finite index in G} in this case ) is finite. Finite index subgroups of finitely L-presented
groups have been studied in [70]. It was shown that each normal subgroup of a finitely
presented group with finite index is invariantly finitely L-presented. In the following, we
therefore assume that [G : H] = oo holds.

The strategy in the proof of Theorem [C] will be as follows: Our choice of the gen-
erating set of the finitely presented group allows us to assume that H’s generators
Z = {ai,...,an} are Schreier generators of H. We therefore obtain an embedding
x:F(2) — F(Y) and we will construct an epimorphism ~: F()) — F(Z) so that the
free presentation 7: F'())) — H that is given by the L-presentation in Lemma sat-
isfies yxm = w. Since the L-presentation in Lemma [5.19 is invariant, there exists, for
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each 0 € ® = {4, | z € S}, an endomorphism ¢ € End(H) so that or = 7o holds.
In general, we cannot assume that there also exists an endomorphism & € End(F(Z))
so that 0y = & holds. Therefore, we will construct a normal subgroup N < F(Z2)
so that ¢: F(Z) — F(Z)/N, g — gN yields the existence of ¢ € End(F(Z)/N) with
oy = vypa. These constructions will give the following commutative diagram:

5
s (¥
F(2) —= F(2)/N

v

F(Y) H
) @)
é. gx

T

In the special cases of Theorem [C]and Theorem [D], we are able to prove that F(Z)/N is
invariantly finitely L-presented and so is the subgroup H. The normal subgroup N will
be generated, as a normal subgroup, by the iterated relations that Proposition B.14] adds
when modifying the substitutions of the L-presentation in Lemma 519 These relations
were omitted in [22]. It is not clear whether or not these relations are necessary to define
the subgroup H.

In the remainder of this section, we generalize the constructions from [22] to obtain
the commutative diagram above. The generating set X = {a1,...,am,51,...,8,} of
the finitely presented group G yields that the generators Z = {aq,...,a,,} are Schreier
generators of H. Hence, there exists a natural embedding x: F(Z) — F()) which is
induced by embedding the generators Z into ). It suffices to remove the Schreier gen-
erators ) \ Z from the invariant L-presentation in Lemma B9l Since H is generated
by Z = {a1,...,an}, every y € ) can be represented, as an element of H, by a word
over Z. This yields an epimorphism v: F(}) — F(Z) which maps every y € Y to a word
yY € F(Z) over the alphabet Z that represents the same element in H; i.e., we have

{y X |y e Y\ 2} C ker(r), (B.10)

where 7: F'())) — H denotes the free presentation from Lemmal[5.T9. Note that Eq. (BI0)
yields that ¢ = x7 defines an epimorphism ¢: F(Z) — H with v« = 7. The following
lemma generalizes [22, Lemma 4].

Lemma 5.20 If H = (Y| S) and v: F(Y) — F(Z) is an epimorphism so that

commutes, (Z | 87) is a presentation for H.
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Proof. Since m = ~u is onto, it suffices to prove that ker(:) = (S?)¥(®) holds. For r € S,
we have that 77 = 7™ = 1 and so 17 € ker(¢). Thus (S?)¥(®) C ker(:). If g € ker(:)
holds, there exists h € F()) with hY = g as 7 is surjective. Then h™ = h7* = ¢g* =1 and
h € ker(m) = (S)F(Z). Thus g = hY € (§7)F(2), O

Thus, by Lemma [E.19 and Lemma [5.20] the subgroup H has a presentation of the form
H=(Z|{(r")"|reR, ocd*})

where ® = {J, | z € S} and 7 denotes the Reidemeister rewriting. This presentation
can be considered as a finite L-presentation if, for each o € ®, there exists an endomor-
phism ¢ € End(F(Z)) with oy = 6. The following lemma yields the existence of such
endomorphisms ¢ € End(F(Z2)):

Lemma 5.21 For groups L and M, an epimorphism w: L — M, and an endomorphism
d € End(L), there exists a (unique) endomorphism A € End(M) with o7 = ©A if and
only if ker(m)® C ker(w) holds.

Proof. The proof is straightforward. O

Therefore, if the kernel ker() is o-invariant, for each o € ®, the subgroup H would be
invariantly finitely L-presented by (Z | 0 | {0, | 6, € ®} | R™). In general, though, we
cannot assume that each o € ® leaves the kernel ker(y) invariant. If we consider the
natural embedding x: F(Z£) — F(Y) that is induced by embedding the generators Z into
Y, the kernel ker(7) satisfies

Lemma 5.22 If x: F(Z) — F(Y) is an embedding with yx|z = idz, then xy = idp(z)
and ker(y) = ({y~'yX |y € Y\ ZHNFO) hold.

Proof. Since x|z = idz holds, the map vy induces the identity on the free subgroup
E =(Z) < F(Y). For g € F(Z), we have gX € E and g"’X = ¢gX. Thus (g 1g¥)X =1
and, as y is injective, we have ¢~ 1¢gX? =1 or

XY = idp(z). (B.11)

For each y € Y\ Z, we have that (y~'y"X)? = y7yX7 = y~ 7y = 1. Therefore
N = {y 1y |y € Y\ ZNFO) satisfies that N C ker(y). Let g € ker(y) be given. Then
g € F(Y) is represented by a finite word w(vy;,, ..., Yi, a1, am) With {y;,, ...,y } C
Y\ Z. Modulo the normal subgroup N, we can replace every occurrence of y € Y\ 2
by y?X € Ej;i.e., we have g = w(Yiy, -+ Yip, Oly -« Q) = w(yzlx,...,y;/nx,al,...,am) -h
for some h € N. As g € ker(y) and h € N C ker(y) hold, we have

L=g™ =w(y %, .y el al) - B =w(yl, oy a . am) - 1
Similarly, modulo the normal subgroup N, we can replace every occurrence of 47X by y.

There exists k € N with 1 = w(yglx,...,ygnx,al,...,am) =W(Yiyy ey Yins A1y -y )k =
g-k. Thus g € N and N = ker(7). O
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Even though §, € ® may not translate directly to d, € End(F(Z)), there exists a
normal subgroup N < F(Z) and a homomorphism ¢: F(Z) — F(Z)/N, g — gN so that
ker(y%)% C ker(yt)) holds: For each §, € ®, define 0, = xd,y € End(F(Z)). Consider
the normal subgroup

N={ U (o™ Y yepzaes) ) (B.12)

oed*

where & = {0, | 6, € ®}. By construction, N satisfies N% C N and thus there
exists a unique endomorphism §,: F(Z)/N — F(Z)/N, gN ¢ N with 3,00 = 15,
The normal subgroup N allows us to translate d, € ® to 6, € End(F(Z)/N) with

Lemma 5.23 For each © € S, we have that ker(y1))% C ker(yy)).

Proof. The kernel ker(y1) = ker(y) N7~ satisfies that

ker(wb) - <{y71yw}y63’\zu U {(yilyw)éﬂ&x}yey\z>F(y).

GeP* €8

The generator (y*1y7x)5275x is mapped by d,7 to (y*1y7x)5275x‘5” = (y*1y7x)527551 eN
while y 157X is mapped to (y~'y7X)%7 € N. O

The endomorphisms §, € End(F())), d, € End(F(2)), and §, € End(F(Z)/N) also
satisfy that

0pth = X0y = XVYOy = 10y (B.13)

Since the L-presentation in Lemma [FI3 is invariant, there exists &, € End(H) with
dgm = moy. The subgroup H is a homomorphic image of F/(Z)/N:

Lemma 5.24 Let v: F(Z) — H, g+ gX™ be given. Then yo =7 and N < ker(¢).

Proof. The first assertion follows from the definition of v in Eq. (B.I0) above. For
6, € @, we have 0,0 = Y070 = X0pm = X7T5 = L5 ~aund yxm = ¢ = 7. Thus
(y‘lyW) =y TyXT =y~ Ty = 1. For 6 € ®* with & =0y, 5% we therefore obtain

~

Op oL = w’ygm e SwnL = 535")%;5;1 e gxn = 5357725;1 e gxn = ﬂgwgm O,
Hence, for each 6 € &*, y € Y \ Z, and z € X, the generator (y~'47X)%7% € N satisfies
(y~1y™)P=17 = (y~ y“/X)ms”” Sepben = 1 ag y~1y?X € ker(7) holds. Therefore N C ker(t)
holds. O
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By Lemma [(524] the homomorphism ¢: F(Z)/N — H, gN +— g* is well-defined and it
satisfies that ¢ = 1. We have obtained the following diagram:

5 5,
ﬂ (Y
F(Z) F(Z)/N

A2

T 690

By construction, F'(Z)/N is invariantly L-presented by

F(Z2)/N = (Z [0 | {8:}s,e0 | {ly™9) hyey\ 2 .c0)-

If [G: H| = oo holds, |V \ Z| is infinite. Therefore, the latter L-presentation is finite if
and only if [G : H] is finite. Our strategy in the proof of Theorem [C] uses the following

Lemma 5.25 If there exists a finite set U C F(Z) with F(Z)/N = (Z |0 | ® | U), then
H is invariantly finitely L-presented.

Proof.  The kernel of p: F(Z)/N — H is generated by the images rTOY = ¢TI with
o€ ® andr e R If(Z]0]|P|U)isan invariant finite L-presentation for F'(Z)/N,
then H is invariantly finitely L-presented by (Z |0 | ® |UUR™). O

B.5.2 Proofs of Theorem [C] and Theorem

In this section, we prove Theorem [Cl and Theorem

Proof of Theorem[d. Our strategy in the proof of Theorem [C]is to construct a normal
subgroup N < F(Z) and to prove that F'(Z)/N is invariantly finitely L-presented. Then
Lemma applies and it shows that H < @ is invariantly finitely L-presented.

Since G is finitely presented, G/H is finitely generated. Moreover, as G splits over
H, there exists s1,...,8, € G so that G/H = (s1H,...,s,H) and S = (s1,...,5p)
satisfies that SN H = {1}; i.e., G = H x S holds. Because H is finitely generated, there
exist ai,...,a, € H so that H = (a1,...,a,,) holds. Then G = (ay,...,am,S1,...,5n)
holds and there exists a finite set of relations R with G = ({a1,...,am,s1,...,5.} | R).
Write § = {siﬂ,...,sfl} and X = {a1,...,am,s1,...,8,}. Clearly, we can choose a
Schreier transversal 7 C S&* whose elements are words over the alphabet S. This yields
the Schreier generators

agy =(t,ar) = tag(@)_l = tagt ™!,
sep =t se) = tsp(tsg) ™",

with t € 7. Then {s;; | 1 < ¢ < n,t € T} C S*. By Lemma [B.I9, the subgroup H is
invariantly L-presented by (V| 0| {0s | s € S} | R™) where

Y=Aag |[teT,1<l<m}U{s #1[teT,1<l<n}
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and 05 denotes the endomorphism of F()) that is induced by conjugation with s € S.
Write S = (s1,...,8,) < F(X) and E = (a1,...,ap) < F(X). Let K < F(X) be the
kernel of G’s free presentation F'(X) — G. Then EK = (¥) and SN EK = (sp; # 1 |
1 < /¢ < n,t €T) are freely generated. For each s € S, the subgroup S N EK is ds-
invariant since SN EK <S holds. Because G splits over H, we have SNH = {1}. Thus the
generators sp € SNEK are contained in the kernel of the free presentation m: F()) — H
which is given by H's invariant L-presentation above. Define Z = {a1,...,a,,} and an
embedding
X: F(Z) — F(y), Qp = Qg1

where 1 € 7 denotes the trivial element in the Schreier transversal 7. For s € S and
ag € Z, we choose a representative a?és'y € F(2) with

a; X% (aX )X € ker(n). (B.14)

For s € S, let 0, € F(Z) be induced by the map ag axésw and define «: F(Z) — H by

, = ym. Then Eq. (BI4) yields that 8,0 = 3,. In the following, We write 8 = 0y, -+ O,
ift=ux1-- -2z, € S* and each z; € S. Moreover, we write X for = and T for t~'. This
yields that agzi =taT = agy. Let v: F(Y) — F(Z) be induced by the map

yd e = agT, foreach 1</ <mandteT,
' ser 1, foreach 1 </<nandteT.

For each 1 </ <m, 1<k <n,and t € T, this yields

(a0 = al"" =0’ =@} =al" = af, and (s40)" = 1'= 1= (sp.0)"

Thus ¢ = w. Define the normal subgroup
\ F()
-1 Ss
V= U ({9 epmzses) )
GEP*
where ® = {0, | s € S}. Fort € T and s € S, we have that

( -1 WX)JSW —

-6 53 —
Set S0t S SW(SZt) =1

0

as the subgroup SN EK = (sg; |t € T,1 < ¢ < n) is dg-invariant and it is contained in
the kernel of «. This yields that

B o\ F(2)
N= < U <{(Gz,tla%)6”}1gzgm,teT\{1},ses> > :
Fed*
For t € T and z € S with ot € T, we also have that

Lo 0Xyoxy —5x7 ¥ox -y Ndx _ _—brx dréx _
(a“ z) Qo™ Qpy = QpppQpy = Gy ay =1
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It therefore suffices to consider the generators (a,, a ! ZX)‘SXV €ENwith1</<m,teT,
and x € S but xt ¢ T. Since G/H = S/SNEK is a ﬁmtely presented group, there exists
a finite monoid presentation

S/SNEK = (S| (U, V),...,(U,,Vp)).

The monoid congruence ~ induced by this presentation is the reflexive, symmetric, and
transitive closure of the binary relation ~ that is defined by = ~ y if there exist A, B € S*
and 1 <17 < pso that x = AU; B and y = AV;B hold. Define

M:< u ({(G;SU i )}1<£<m 1<z<p> >F(Z)-

Ged*
Suppose that u ~ v holds. Then there exist A;, B;, L; € S*sothatu =Ly ~ ...~ Ly =v
with Lz == AZU&BZ and Li+1 = AZWZBZ (or Lz == Az‘/&Bz and Li+1 = AZU&BZ) Note
that

5UZ n, b, vy, \ 5

SA'SUg SB' 6 (SU (SB
‘ T k2 1 5 .
4 =wpay ", ... am )P

a%z i z:(az )

v —wg(al,...,am)

for some word wy(aq,...,an) = ain € F(2). The normal subgroup M yields that

(az )Uz—’wZ( e,...,amel):w[(01Zla---aamel)'h:a€ teh

for some h € M. By construction, M is ®*-invariant and thus

—54,6v, 5, 54,60, b5,

i it SB-
a, a, = h°Bi € M.

This shows that, if u ~ v holds, we have a, —u a‘g € M. Suppose that, for ¢ € T and
reS, atgT holds Then there exists u = zf € T with u ~ xt. Write U for u~!. Since
S N EK <8 holds, there exists h € S N EK C ker(y) so that xt = hu. This yields that
a% =atayTX = hua,Uh™! = hag, h™' and aéX“/ = azu = agU. Since u ~ at and
U ~ TX hold, we obtain

—1_YX\oxy _ . —7.0rdx _ _—bu drdx
(a“a“) = ay, 4 =a,a, e M.

Thus N C M. It suffices to show that M C N holds. Since M and N are both normal

subgroups of F(Z) and both are ®*-invariant, it suffices to prove that a;SU" aiv" eN=
ker(¢) holds. Since 53¢ =96, and yy = idF(Z) hold, we have that

—du, dv, v ¥y szvi  =xdu, xydy,  —yb, “/WSV
(a, a, )" = aq =ay az = ayq Gy 1
. —6U v dv vy —du, "W
= Gy ay = (a Ay q Z 1 )

As SNEK 45 and 7 C S hold, there exist h € SNEK = (sg; | 1 <l <mn,t €T)
and t = U; L € T with U7 = ht. Thus a,% = U;  agU; = htagt='h=" = hag, h™".

)
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. . Su, .

Since h € ker(v) holds, we obtain (aZUf)'V = a),. Since U; ~ V; holds, we also have
y— by, —bu, Ov.

that V,"! = ¢. Similarly, we obtain (a,'})” = a},. Thus a,, ‘a,7 € ker(y) and so

%

—du, v, ~éu, v, .
(a, "a,”)¥ =1ora, “a,” € N. Thus M = N. This shows that that factor group
F(Z)/N is invariantly finitely L-presented and so is our subgroup H. O

Even if G/H is free, the finite L-presentation of F'(Z)/N in the proof of Theorem
contains the relations of a monoid presentation of the free group. It is not clear whether
or not these relations can be omitted as was done in [22]. However, the result in [22] is
a consequence of Theorem [C] even if these relations are not redundant:

Theorem 5.26 (Benli [22]) Every finitely generated normal subgroup of a finitely pre-
sented group is invariantly finitely L-presented if the quotient is infinite cyclic.

Proof. Since the quotient is free, the finitely presented group splits over its finitely
generated normal subgroup and thus, by Theorem [C] the subgroup is invariantly finitely
L-presented. O

Even if the finitely presented group does not split over its finitely generated subgroup,
the subgroup is possibly invariantly finitely L-presented:

Theorem 5.27 FEvery finitely generated normal subgroup of a finitely presented group is
invariantly finitely L-presented if the quotient is free abelian with rank two.

Proof. Let G be a finitely presented group and let H < G be finitely generated so that
G/H = ZxZ holds. By Lemmal[5.25] it suffices to construct a factor group F(Z)/N which
is invariantly finitely L-presented. Since G/H = Z x 7 holds, there exists ¢,u € G so that
G/H = (tH,uH) holds. Moreover, as H is finitely generated, there exist ay,...,a, € H
so that H = (a1,...,an) holds. Then G = (ai,...,am,t,u) holds and there exists
a finite set of relations R with G = ({ai,...,am,t,u} | R). We choose as Schreier
transversal 7 = {t'u/ | i,j € Z}. Then, by Lemma [5I9, the subgroup H is invariantly
L-presented by (Y | 0 | {0u, 1, 0:, 07} | RT) where 6, denotes the endomorphism of the
free group F())) that is induced by conjugation with x € {u,U = v~ t,T =t~ '}, 7
denotes the Reidemeister rewriting, and Y = {a¢;j,tix | 4,7, k,0 € Z,k # 0} are the
following Schreier generators:

ag; = Yt a) = twau It
N
u; = Yt u) = tuduu w1t

Note that ¢; ; = 1 if and only if j = 0 while u; ; = 1 for each 4, j € Z. The endomorphisms
d¢ and dp are induced by the maps

Gpij > Qpi—1j Qeii > Qpi+lj
5t: 4y1,] li—1,55 and 5T3 0,3, 0,141,755
tij = ti—14, tij — tiv1,



B.5. Finitely generated normal subgroups of finitely presented groups 117

for each i, j € Z; while §,, and dy are induced by the maps

PR . .
ap;j +r (agij—1) it i>0,j €7,
ap—ij > (ag_qj1)t-bmrtn i>0,j€Z,
Ou: 1 L gt . .
ti,j = (t 1,J— 1tz —1) =11 0’_1’ 1 2 0’] S Z,
tig = (tigoat_y)mertio i>0,5 € Z,
and
-1 -1 ) )
ai; — (agijr1)i-tor i>0,j€Z,
5 ag,—ij '+ (a 7j+1)t_i 1"'t’1’1 1>0,7 €7,
U-:
t o . .
tig (¢ 7]+1t21)111 01, i>0,j€Z,

1 . .
toig = (toijn tfz‘,1)tﬂ’1 t_1’17 120,j €.

We will construct an invariant finite L-presentation for the subgroup H with generators
Z=A{ay,...,an} U{t1}. Define an embedding x: F(Z) — F(Y) that is induced by the
map
| oar = agpp, foreach 1 </f<m
Xt { t1 +— t071.

Write ® = {0y, 07, 64,0p}. For y € Z and 6 € ®, choose yX°7 € F(Z) with
y X0 (X)X € ker(m). (B.15)

Define v: F(Z) — H by ¢ = xm where 7 denotes the free presentation 7: F'())) — H that
is given by H'’s invariant L-presentation above. For each § € ®, define an endomorphism
6: F(Z) — F(2) that is induced by the map y ~— yX%7. Then, for each § € ® and y € Z,
we obtain R i
XTo — g X0 — (yxé) (yX5’YX) (yxév)xn = %

and thus 6. = fyg. Write X = {a1,...,am,t,u} and consider the following subgroups
of the free group F(X): Let £ = (ai,...,an) and S = (¢,u) be finitely generated
subgroups of F(X'). Furthermore, let K < F(X) be the kernel of G’s free presentation.
Then G = F(X)/K and H = EK/K. Moreover, the normal subgroup EK < F(X) is
supplemented by the finitely generated free group S; i.e., F(X) = S EK holds. Thus
G/H = F(X)/EK = S/S N EK. Since G/H is finitely presented, the free subgroup
S N EK is finitely generated as a normal subgroup. The Schreier generators ) yield that
the subgroups

v =y

EK =(Y) and SNEK = (t;;|i,j€Z,j#0)
are freely generated. Moreover, we have that

SNEK = <ti,j+1t;j1 |i,j €Z)
= (otiaty g ity G i, tioti ) tistiy, ... |1 € Z).
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The latter subgroup is freely generated as the homomorphism ¢ that is induced by the
map

tij ti,j+1t;]~1, J<-1
ti—1 t'iila
W:SNEK — SNEK, { " i
il tz 1

is an automorphism of S N EK whose inverse is induced by the map

ti; tJltle ctly, <1
1 ti g o
P SNEK — SNEK, b b1
tin — i
tl'J' — t t ij—1" tl'71, 7> 1.
Note that we have
tigriti) = T (T ) T = (1)

In fact, every element in S N EK has a unique representation as a word in the basis
{thud -tgq1-u=It7" | i,j € Z} where tg; = utUT is a normal generator of SNEK = (g 1)°.
More precisely, for ¢ > 0 and j > 0, we have the following representatives in free subgroup
SNEK < F(Y):

P .
51 1 5J 2 T Gj—1 o

tij = <7501 “toq ctoa 1 ti—j = <ta,1 750(15 "'ta,?u)
st s8It 5 an —&, a7t —0u o

tij = <t01 “ton --t0,1> frimi = <t°’1 ottt ) ’

The Schreier generators ay; ; are conjugates of the generators ag g so that

7 si J 50
agi; = (ag00)0°r and | Mied = (ar,0,0)°°r
J s g si
ap—i; = (apop)v ap—i—j = (apop0)®.

In particular, we can choose the following basis )A/ for the free subgroup EK:

N i 5 j i 5i J 5i
Y= {(az,o,o)éU‘slT - (ag0,0)% ud} , (to, 1)6“%,---,(750,1)6“6;}ij>0-

Define v: F(Y) — F(Z) to be induced by the map

(ac00)%% = (ag)%r, (to1)®% s (t1)%%%
(az,o,o)‘sgf‘;i — (a) o and ~: (t071)5?]5§ = (tl)S{:ﬁ;
(ago0)™r <ag>5i | o~ ()
(a00)™% = (a)™ (ton)%0h s (1),
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where 4,7 > 0. Then v acts on the Schreier generators ) as follows:

ai; (g0, tig = (HY --t)r,
53 54 §i-t N
ap—ij +— (ag)’v% and tiy = (HY - t)%,
! - 5.5, K —6& —0u)\5:
Qg —;j —> ((lg) s ti,—j — (tl uo, . tl u) T,
. . L
i (ag)éuéi’ tij — (t;5ﬁ o tI‘SU)‘Sz’

where ¢ > 0 and j > 0. For ¢ > 0 and j > 0, the element ¢; ; € ) is mapped by ¢ to

51 - 51 5 1w ~
PPN, S SRV SO SO
Xﬂgj_lgi X! si-1s 54
= (7 et ) =t T )T = ()"

because d. = ¢ holds. Similarly, we obtain that a)’ ;= aj, ; holds. Thus 7. = m. Define
the normal subgroup

N:< u <{(?/71?/7X)M}yey\z,éeq>>U>F(Z)-
oed

We prove that F'(Z)/N is invariantly finitely L-presented so that Lemma applies.
For ¢ > 0 and 7 > 0, it holds that

_ - 5 &t _git1, 807t 5i
)™ = gty = @ )T )T =1
— - 5 . _gi+l, 807 5i 5
(gt = ot = 0 )T )t =1
-1 - o -5, —0u =6t =5, —6u\5%. &
(ti,—jtzﬁj)éT’y = ti—f:yl,—jtZTTj =(f ol )70 (t ot )T =1,
-1 - g _Si *Su —5itt _Si 75u 5¢ 5
(tfi,fjt,z)g,fj)éw = tf,iyfl,fjtzit,fj = (ty )T ()00 =1,
For ¢ = 0, we also have that
_ BRI 5 5 ERTNIR 5
(to,}t&’;)‘s’” = (tojt1 to,%) vtgvjli — (t1U~-'+'1' Uty - 1) 1(75111. ...tl)éU =1,
j N H 5j Tz
(ta,lfjtg?ij)&ﬂ — (to,—j—l til—l)ﬂtgfsfj _ (tl—éu .. -tf‘;“ . t?u)—l(tl—éu . t?u)éu -1

However, we also need to consider the image tflj’. = tngléU with ¢ > 0. Notice that in the
finitely presented monoid S/S N EK the following holds:

TU = UT - -tuIU = UT - (wtUT)"! = UT-ta&,
Tu = ul-tUTu = ul- (utUT)‘su = uT- tgqfla
tU = U-(wtUT)-t = U-toy-t _ Ut-t&p
tu = w-(Utul)-t = w-to_1-t = ut- tafiu&f.

Denote by A(x): F(Y) — F(Y), g — o 'gx the inner automorphism of F())) that is
induced by conjugation with x € F()). Then § € ® = {4y, oy, ¢, 7} satisfy

ordy = Sudr-Allgy), . Gy = dudi- Altgy),

Srdu = Sudr - A(tdY), 00y = Budy Altg ")
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We prove that F(Z)/N is invariantly finitely L-presented by ({a1,...,am,t1} | 0] @ | V)
where the iterated relations in V are given by

1. 3.6 1 5ubu . —brdy . SubrAGT! 508 Bubi At
Vz{y yOOT Ly 0ty OOy PUOT AU gy 0uug bt A T .
Y

that is, we prove that M = (U, <5 VIVF(Z) and N coincide. We first note that

~ - o~ —1 -~ o~
—1,9\0ur . 4=0uy U —orduy Jordy _ ,—OudT Al 1)y b1y
N> (751,1 t1,1) = i1 "ty =t b =g, 51
—Subry- AETY) 508 —Subr-AWTY) 508
_ t01UT’Y (1)ti5T5U:t1UT (1)t(15T5U€V.

Similar computations show that the elements in V appear a among the normal generators
of N. Thus M C N. On the other hand, for i > 0 and 7 > 0, we have that

5 & 506
tig = (toq - -ton)T?
. - B
= (100 )0 T Al
st i IR —1
= ...= (toUl -t 1)6U6T'A(t0,1 YAy " ) Altg 1)y
st ; —in ! -2 -1
= (toUl <t 1)5U‘ST’Y'A(151 JA(t ) At)

i—1

. = i—2
8,6y Sudhy AT
= (750,1 o ) (t

AW T YA

Si— O _5i—1 52
— (tfgfl...tl)éU&T-A(tl&T INCR IR NG

$1—2

5i—1 : = C1\Fi— -5 _
— (th .. .tl)éUéTA(tl heirtaw, T o)Al
i1 i—2

- . _5
1U ---tl)(ST(SU(S%‘_I'A(tl T )A(tl—l) mOdM

(t
1 .
= .=t --t)°° mod M

j e =
and (t(lsU S 11)01%0 = (t; ;)7°U. Thus (t;jlt%?)‘sm/ € M. It follows analogously for the
other normal generators of N that these are contained in M. Thus F'(Z)/N is invariantly
finitely L-presented and so is our subgroup H. O

By [0, Theorem 6.1|, every finite index subgroup H of an invariantly finitely L-presented
group G = (X | Q| ® | R) is invariantly finitely L-presented whenever the substitutions
o € ® induce endomorphisms of the subgroup H. This allows us to prove Theorem
using the results in Theorem and Theorem

Proof of Theorem [Dl. Let G be a finitely presented group and let H < G be a finitely
generated normal subgroup so that G/H is abelian with torsion-free rank at most two.
Since G is finitely generated, G/H is a finitely generated abelian group and so it de-
composes into G/H = 7' x T with torsion subgroup 7' and torsion-free rank ¢ < 2.
Denote by U < G the full preimage of the torsion subgroup 7" in G. Then G /U = Z* and
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[U : H] < oo hold. If £ = 0 holds, H has finite index in G and thus it is invariantly finitely
L-presented by [70, Theorem 6.1]. If either £ =1 or ¢ = 2 holds, the subgroup U < G is
invariantly finitely L-presented by Theorem or Theorem Each substitution in
the L-presentation of U is induced by conjugation within the finitely presented group G.
Since H is a normal subgroup of G each substitution of the finite L-presentation of U
stabilizes the subgroup H. Thus [T}, Theorem 6.1| applies to the finite index subgroup
H QU and it shows that H is invariantly finitely L-presented. O

In the proof of Theorem (5.27] it is essential that the elements g € SN EK have a unique
representation in the basis {t's’ - tg1 - s/t~ | i,j € Z}. This allows us to define the
epimorphism ~: F()) — F(Z) so that it maps conjugates by elements of the Schreier
transversal to images of automorphisms which are induced by conjugation with a Schreier
transversal. Since S/S N EK is finitely presented, we can always choose finitely many
Schreier generators YW C ) so that S N EK is generated, as a normal subgroup, by W.
In our proof of Theorem the conjugates of these elements in W by elements of the
Schreier transversal from a basis for the subgroup SN EK. This is no longer possible for
G/H=ZXZXZ:

Remark 5.28 Consider the notation from the proof of Theorem [L.270. For G/H =
7 x 7. x 7., we choose as Schreier transversal T = {r's’t* | i,5,k € Z} and we obtain the
Schreier generators:

risjtkagt_ks_jr_i,
risd (tkst_ks_l)s_jr_i,
ri(sjtkrt_ks_jr_l)r_i,

L,

»
%
.
-
Il
2
—~
)
. L
VA .
. LS
~
ko
VA
— N N
Il

where s; ;1 = 1 if and only if k =0 while r; j,, = 1 if and only if (j,k) = (0,0). Then
EK = <a€,’i,j,k’ Si,5,05 Ti,p,q | 1< 14 < mai,ja ka 0,p,q € Z’O 7£ 0? (pa Q) 7£ (Oa 0)>

18 freely generated and so is

SNEK = <5i,j,o,”7p,q | i’j’ 0,D,4q € Z,O 75 Oa (p’ q) 75 (0,0)>

Since G/H =2 S/SNEK = 7 x 7 X 7 is finitely presented, the subgroup SN EK is finitely
generated as a normal subgroup of S. In particular, we have that

S/SNEK = (r,s,t | tst s gt tr—h ers™trh)

=50,0,1 =70,0,1 =70,1,0
so that SN EK = <80,071,T0,071,T071,0>S holds. The normal generators of S N EK satisfy

— e .
TSIt - s00,0 - UTSTITTY = Skt S,

e B -1

TSIt o0 tTESTITTY = Ty Ty

—1

—i sy . Lol .
Sigk " Tig+1k " Siv1 5k Tk

rigith . 70,1,0 * t—kg=ip
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It can be seen easily (e.g. using GAP) that
~1 —1 -1 ~1
U = {8i,jk+1 8 j > Tijkt1Ti joo Sisgie Tij+1,k Si15k T gk Viris k€2

is not a basis for SN EK. Therefore the ideas in the proof of Theorem L. 27 do not apply.

Acknowledgments
I am grateful to Laurent Bartholdi for valuable comments and suggestions.

René Hartung, MATHEMATISCHES INSTITUT, GEORG-AUGUST UNIVERSITAT Z2U GOT-
TINGEN, BUNSENSTRASSE 3—5, 37073 GOTTINGEN, GERMANY

Email: rhartung@uni-math.gwdg.de



Appendix

Coset Enumeration for Certain Infinitely
Presented Groups

Abstract. We describe an algorithm that computes the index of a finitely gen-
erated subgroup in a finitely L-presented group provided that this index is
finite. This algorithm shows that the subgroup membership problem for finite
index subgroups in a finitely L-presented group is decidable. As an application,
we consider the low-index subgroups of some self-similar groups including the
Grigorchuk group, the twisted twin of the Grigorchuk group, the Grigorchuk
super-group, and the Hanoi 3-group.

Keywords. Coset enumeration; recursive presentations; self-similar groups; Gri-
gorchuk group; low-index subgroups.

C.1 Introduction

Many algorithmic problems are unsolvable for finitely presented groups in general. For
instance, there is no algorithm which allows to decide if a group given by a finite pre-
sentation is trivial [95]. However, the coset enumeration process introduced by Todd
& Coxeter [133] and investigated by various others, see [76] or the historical notes in
Chapter 5.9 of [129], computes the index of a finitely generated subgroup in a finitely
presented group provided that this index is finite. Therefore, the Todd-Coxeter method
allows one to prove that a finitely presented group is trivial.

Coset enumeration is one of the most important tools for investigating finitely pre-
sented groups; but, if the subgroup has infinite index, this process will not terminate.
Even if the subgroup has finite index, there is no upper bound on the complexity of
coset enumeration. Therefore, even proving a finitely presented group being trivial is
computationally a challenging problem [76]104].



124 Chapter C. Coset Enumeration for Certain Infinitely Presented Groups

For this reason, solving algorithmic problems for infinitely presented groups seems
entirely infeasible. However, an interesting family of recursively presented groups was
recently shown to be applicable for computer investigations. Examples of such groups
arise as subgroups of the automorphism group of a regular tree. A famous example is the
Grigorchuk group & which plays a prominent role in the area of Burnside problems [53].
The group & is finitely generated and it admits a recursive presentation whose relations
are given recursively by the action of a finitely generated free monoid of endomorphisms
acting on finitely many relations [96]. Infinite presentations of this type are called finite
L-presentations in honor of Lysénok’s latter result for the Grigorchuk group &; see
Section or [6] for a definition.

Finite L-presentations are ‘natural’ generalizations of finite presentations and, as
the concept is quite general, they found their application in various aspects of group
theory; see, for instance, [I885]. A finite L-presentation of a group allows to compute
its lower central series quotients [9] and the Dwyer quotients of its Schur multiplier [66].
The Dwyer quotients often exhibit periodicities which yield detailed information on the
structure of the Schur multiplier in general.

In this paper, we describe a coset enumeration process for computing the index of a
finitely generated subgroup in a finitely L-presented group provided that this index is
finite. In order to achieve this method, we show in Section that finitely many rela-
tions are sufficient to compute an upper bound on the index using coset enumeration for
finitely presented groups. It then remains to either prove that this upper bound is sharp
or to improve the bound otherwise. In Section [C.4] we show that the latter problem is
algorithmically decidable in general. In particular, we show that there exists an algo-
rithm which decides whether or not a map from the free group over the L-presentations
generators into a finite group induces a homomorphism from the L-presented group.

Similar to coset enumeration for finitely presented groups, our method for finitely
L-presented groups allows straightforward applications including a membership test for
finite index subgroups. In particular, our method allows us to compute the number of
subgroups with small index for some self-similar groups in Section Our explicit
computations correct the counts obtained in [I1l[12], and hence we provide a further step
towards Problem 6.1 raised in [5§].

We have implemented our coset enumeration method and its applications in the
computer algebra system GAP [50]. Computer experiments with this implementation
demonstrate that our method works reasonably well in practice.

In a forthcoming paper, we prove a variant of the Reidemeister-Schreier theorem for
finitely L-presented groups which shows that each finite index subgroup of a finitely
L-presented group is finitely L-presented itself.

C.2 Preliminaries

We briefly recall the notion of a finite L-presentation as introduced in [6]. For this
purpose, let F' be a finitely generated free group over the alphabet X'. Furthermore, let
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Q,R C F and ® C End(F) be finite subsets. Then the quadruple (X | Q | ® | R) is a
finite L-presentation. It defines the finitely L-presented group

G = <X ‘ ou R">, (C.1)

oed*

where ®* denotes the free monoid of endomorphisms generated by ®; that is, the closure
of {id} U® under composition of endomorphisms. We will also write G = (X | Q | ® | R)
for the finitely L-presented group in Eq. (CI).

Clearly, every finitely presented group (X | R) is finitely L-presented by (X | 0 |
() | R). Therefore, finite L-presentations generalize the concept of finite presentations.
Other examples of finitely L-presented groups are various self-similar groups or branch
groups [6]. For instance, the Grigorchuk group satisfies the following

Theorem 2.1 (Lysénok, 1985) The Grigorchuk group & is finitely L-presented by
({a,b,c,d} | {a?, 0%, %, d* bed} | {o} | {(ad)*, (adacac)*}),

where o is the endomorphism of the free group over the alphabet {a,b,c,d} induced by
the mapping a — aca, b+— d, c+— b, and d — c.

Proof. For a proof, we refer to [96]. O

Finite L-presentations are recursive presentations which are ‘natural’ generalizations of
finite presentations. They were used by various authors to construct groups with inter-
esting properties; see, for instance, [I8,85]. Furthermore, every free group in a variety
of groups that satisfies finitely many identities is finitely L-presented [6]; e.g., the free
Burnside group B(n,m) of exponent m on n generators is finitely L-presented by

({ar, ... an} U{t} [{t} | S [{t"}),

where the endomorphisms ¥ = {0, | € {aF!,... at'}} are induced by the mappings

a; — a;, foreachl1l<i<n
oo
v t — tx,

for each = € {af’,...,af"}.

»n

C.3 Coset Enumeration for Finitely L-Presented Groups

Let G =(X | Q| ®|R) be a finitely L-presented group and let 4 < G be a finitely gen-
erated subgroup with finite index in G. In this section, we show that coset enumeration
for finitely presented groups yields an upper bound on the index [G : U]. In Section [C.4]
it then remains to prove (or disprove) that this upper bound is sharp.
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Let {g1,...,9n} be a generating set for the subgroup &. We assume that the gener-
ators of U are given as words over the alphabet X U X~. Denote the free group over X
by F' and let K be the normal subgroup

K = <QU U R">F
oed*

so that G = F/K holds. Then the subgroup F = (g1,...,¢9,) < F satisfies that U =
FEK/K. Hence, we are to compute the index [G : U] = [F' : EK].

For an element o € ®*, we denote by ||o|| the usual word-length in the generating set
® of the free monoid ®*. Define ®) = {7 € ®* | ||o|| < i}, for each i € Ng. Then, as Q,
®, and R are finite sets, the normal subgroup

K; = <Qu U R">F

ocd()

is finitely generated as normal subgroup. We obtain K = UiZO K; and also EK =
UiZO FEK;. Consider the ascending chain of subgroups

EKy<EK, <...<EK;<EK;;; <...<EK <F.

Then the following lemma is straightforward.

Lemma 3.2 The subgroup EK has finite index in F if and only if there exists £ € N such
that EK, has finite index in F. In that case, there exists ' € N such that EKy = EK.

Proof.  Obviously, if [F': EK/] is finite for some ¢ € N, then the subgroup EK has finite
index in F. On the other hand, if [F' : EK] is finite, then, as F' is finitely generated, the
subgroup EK is finitely generated. Let {uj,...,u,} be a generating set of EK. Since
EK = |J;>¢ EK; holds, there exists a positive integer ¢ € N such that {u1,...,u,} C EK,
and thus FK, = EK. O

Note that the index [F' : FK,| is the index of the subgroup U in the finitely presented

covering group
Gr=(X[{g,77 |ge QreR,oec ) (C2)

By Lemma B2l there exists a positive integer £ € N so that the subgroup U has finite
index in Gy. In this case, coset enumeration for finitely presented groups computes the
index [Gy : U]. Although we do not know this integer ¢ a priori, we can use the following
firsthand approach to find such an integer: Starting with £ = 1, we attempt to prove
finiteness of [Gy : U] using coset enumeration for finitely presented groups. If this attempt
does not succeed within a previously defined time limit, we increase the integer ¢ and
the time limit. We continue this process until eventually the index [Gy : U] is proved to
be finite. In theory, Lemma guarantees that this process will terminate. Computer
experiments with the implementation of our method in GAP show that this firsthand
approach works reasonably well in practice. In particular, our implementation allows to
compute the index of all subgroups considered in [7,[11,58] and Chapter VIII of [38].
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Suppose that the integer ¢ € N is chosen so that n = [Gy : U] is finite and that
the coset enumeration for finitely presented groups has terminated and has computed
a permutation representation ¢y F' — S, for the group’s action on the right cosets
EK,\F. Then the index [G : U] = [F : EK] divides the index [Gy : U] = [F' : EK/], and
hence [Gy : U] is an upper bound on [G : U]. It therefore remains to either prove that
[F': EK] = [F : EK/] holds, or to increase the integer ¢ otherwise. The permutation
representation ¢g: F' — S, is called valid, if [F' : EK] = [F : EK;] holds.

Clearly, a permutation representation yy: F' — &, is valid if and only if every relation
r € I of the group presentation is contained in the kernel of ¢,. Therefore, if the group
G = F/K were finitely presented, only finitely many relations need to be considered to
prove validity of ¢,. However, for finitely L-presented groups, even checking validity of a
permutation representation ¢, involves possibly infinitely many relations. In Section [C.4],
we prove that the latter problem is decidable in general.

C.4 Deciding Validity of a Permutation Representation

In this section, we describe our algorithm for deciding whether or not a permutation
representation ¢: F' — S,,, as considered in Section [C.3] is valid. This is equivalent to
checking whether a coset-table for ¢ in Gy obtained by the methods of Section [C.3]defines
the given subgroup U < G.

Let o: FF — S, be a permutation representation as in Section and let ®* be the
free monoid generated by a finite set ® C End(F'). For two endomorphisms o € ®* and
0 € ®*, we say that § reduces to o with respect to ¢ if there exists a homomorphism
m:im (o) — im (d¢) such that opm = dp. In this case, we will write 6 ~», 0. Note that
~» is a reflexive and transitive relation on the endomorphisms ®*. The following lemma
gives an equivalent definition for 6 ~, o.

Lemma 4.3 Let 0,0 € End(F) be given. Then 0 reduces to o with respect to ¢ if and
only if ker(op) < ker(d¢) holds.

Proof. Assume that § ~+, o holds. Then, by definition, there exists a homomorphism
7:im (o) — im (6¢) such that opr = dgp. Let g € ker(op). Then we have that ¢°¢ =
g°¥™ = (¢°%)™ = 1 and hence, we obtain g € ker(dp). Suppose that ker(cp) < ker(d¢p)
holds. Then we have the isomorphisms F/ker(cp) — im (op), gker(op) — ¢?% and
F/ker(dp) — im (6p), gker(dp) — g%, We further have the natural homomorphism
F/ker(op) — F/ker(dp), gker(op) — gker(dp). This yields the existence of a homo-

morphism 7:im (o@) — im (Jp) such that g7¢™ = g%¢. O

A finite generating set for the kernel ker(oy) is given by the Schreier theorem [95], Propo-
sition 3.7] and hence, it is straightforward to check whether or not 6 ~», ¢ holds. The
definition § ~, o also yields the following immediate consequence.

Lemma 4.4 There is no infinite set of endomorphisms of F' such that for each pair (o, 9)
from this set, neither o ~, 6 nor § ~, o hold.
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Proof.  Obviously, for every endomorphism o € End(F), it holds that ¢ ~», 0. By
the universal property of the free group F, a homomorphism op: F — §,, is uniquely
defined by the images x]%,...,z;” of the elements z1,...,z, of a basis of F. Since
im (¢) is a finite group, there are only finitely many homomorphisms F' — im () and
therefore Hom(F,im (¢)) is finite. Hence, an infinite set of endomorphisms will contain
endomorphisms ¢ and ¢ with z7* = xf“", for each 1 < ¢ < n. In this case, 0 ~, §

obviously holds. O

An element o € ®* is called a ®-descendant of 6 € ®* if there exists ¢ € ® such that
o = 1§. Thereby, the free monoid ®* obtains the structure of a |®|-regular rooted tree
with its root being the identity map id: F' — F. We can further endow the monoid ¢*
with a length-plus-(from the right)-lexicographic ordering < by choosing an arbitrary
ordering on the finite set ®. More precisely, we define o < ¢ if ||o|| < ||0]| or, otherwise,
if o =010, and § = 010y, with 0;,6; € ®, and there exists a positive integer
1 <k <n such that g; = §;, for k < i < n, and o} < d;. Since ® is finite, the obtained
ordering < is a well-ordering on the monoid ®*, see [129], and therefore there is no infinite
<-descending series of endomorphisms in ®*.

Our algorithm that decides validity of a permutation representation ¢: F' — S, is
displayed in Algorithm below. We need to prove the following

ISVALIDPERMREP(X, Q, ®, R, U, )
Choose an ordering on ® = {¢1,...,¢,} with ¢; < dii1.
Initialize V := {id: F — F} and S := {¢1,...,0n}-
while S # () do
Remove the first entry ¢ from S.
if (37 € R: 1% ¢ ker ) then return( false )
if not (30 € V: 6 ~, o) then
Append ¢16,...,¢,0 to S.
Add 6 to V.
return( true )

Algorithm C.1: Deciding validity of a permutation representation

Theorem 4.5 The algorithm ISVALIDPERMREP returns true if and only if the permu-
tation representation o: F' — S, is valid.

Proof. The ordering < on ® can be extended to an ordering on ®* as described above.
By construction, the stack S is ordered with respect to <. Since F' is finitely generated,
the set of homomorphisms Hom(F,S,,) is finite. Thus, in particular, the set {d¢ | § €
V} C Hom(F,S,,) is finite and therefore the algorithm ISVALIDPERMREP can add only
finitely many endomorphisms to the set V. Thus, for every ®-descendant § in the stack
S, there will eventually exist an element o € V such that 6 ~», o. Therefore, the
algorithm ISVALIDPERMREP is guaranteed to terminate and it returns either true or
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false. Clearly, if the algorithm returned false, then it found a relation 70 which yields
a coincidence, and hence the permutation representation ¢: F' — S, is not valid.

Suppose that the algorithm returned true. By the constructions of Section [C.3] the
fixed relations in Q of the L-presentation (X | @ | ® | R) are already contained in the
kernel of the permutation representation ¢. Therefore, it suffices to prove that every
relation of the form r?', with » € R and o1 € ®*, is contained in the kernel of .
By construction, there exists § € V maximal subject to the existence of w € ®* such
that oy = wd. If |Jw| = 0, then oy = § is contained in V and therefore 7° € ker g,
as the algorithm did not return false. Otherwise, there exist v € ® and v € ®*
such that wd = wvyd. Since 1§ € V, there exists an element ¢ € V with ¢ < 4, by
construction, such that 1d reduces to € with respect to ¢. Thus, by definition, there
exists a homomorphism 7:im (ep) — im (¢0p) such that ¥dp = epnm. In particular, we
obtain that r?1% = pwd® = pv¥0¢ — pve¢™  Ag 7 is a homomorphism, it suffices to prove
that "¢ € ker ¢. Note that, since € < ¥4, we have that ve < v1)d = o1. Continuing this
rewriting process with the element oo = ve yields a descending sequence o1 > g9 > ...
in the monoid ®*. As the ordering < is a well-ordering, this process terminates with an
element o, € V. Since the algorithm did not return false, we have that r7» € ker ¢
which proves the assertion. O

Note that, if the algorithm ISVALIDPERMREP found a coincidence, this can be used to
update the coset-table, and thus another application of coset enumeration for finitely
presented groups can be avoided. Moreover, the Algorithm yields the following

Theorem 4.6 Let G be finitely L-presented by (X | Q | ® | R) and denote the free group
over X by F'. There exists an algorithm which decides whether or not a homomorphism
p: ' — S, induces a homomorphism G — S,,.

If ®* = {o}* is generated by a single element o € End(F'), then there will exist positive
integers 0 < i < j such that o7 ~ro o'. In this case, the algorithm ISVALIDPERMREP
simplifies to the following

Corollary 4.7 Let 0 < i < j be positive integers such that o’ ~r ot
[F': EKy) = [F : EK] if and only if

Then we have

{q,r"k|q€Q,T€R,0§k<j}§kergo. (C.3)
We consider the following

Example 4.8 Let G denote the Basilica Group [60]. Then G is finitely L-presented by
{a,b} | 0 | {o} | {[a,a’]}), where o is induced by the mapping a +— b* and b +— a;
see [16]. We consider the subgroup U = (a®,b,aba). A coset enumeration for finitely
presented groups yields that the subgroup U has index 3 in the finitely presented covering

group
Go = ({a,0} | {[a,a"]}).

Furthermore, we obtain the permutation representation o: F' — S3 for the group’s action
on the cosets EKg\F. This permutation representation is induced by the mapping

ar(1,2,3) and b~ (2,3).
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We now obtain the images

a’f = (), A (1,2,3),
a? = (1,3,2), b7 = (),
@’ = (), b = (1,3,2).

Clearly, the mapping a®% a®*? and b°% — b°°¢ induces a homomorphism m:im (op) —
im (03¢), and hence we have o> ~, 0. By Corollary [{.7, it therefore suffices to prove
that

(la.a")? = (), ([a,a’)7® = (), and ([a,a"])7% = ()
hold. This yields that [G : U] = 3.

C.5 Further Applications

The permutation representation ¢: F' — S, for a finite index subgroup EK/K < F/K
yields various algorithmic applications. For instance, an element w € F' is contained in
the given subgroup EK if and only if it stabilizes the trivial coset FK 1. This can be
easily be checked using the permutation representation ¢. In particular, we obtain

Theorem 5.9 The subgroup membership problem for finite index subgroups in a finitely
L-presented group is decidable.

Moreover, having computed permutation representations ¢; and o for two finite index
subgroups U and V of a finitely L-presented group, one can compute a generating set
for the intersection U N V. Thus, in particular, our method allows one to compute the
core of a finite index subgroup. For example, the core of the subgroup ¢/ in Example 8]
is given by

H = (1*,a®,a?ba" b, abab™ !, ab®a™ !, ba*bta ™", baba2).

Since H has finite index in G, our method allows to compute a permutation representation
for the core H and we obtain G/H = S;.

Low-Index Subgroups of Finitely L-Presented Groups

The coset enumeration process for finitely presented groups was used in [40] to describe a
low-index subgroup algorithm that computes all subgroups of a finitely presented group
up to a given index. This algorithm also yields a method for computing all subgroups
with small index in a finitely L-presented group. In this section, we will describe this
method for finitely L-presented groups and we use this algorithm to investigate some self-
similar groups. In particular, our implementation in the computer algebra system GAP
allows us to determine the number of subgroups with index at most 64 in the Grigorchuk
group.

Let G = F/K be a finitely L-presented group and let n be a positive integer. Using
the low-index subgroup algorithm for finitely presented groups [40], see also Chapter 5.6
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of [129], we obtain the list of subgroups with index at most n in the finitely presented
covering group Gy = F/K,. Since the covering group G, naturally maps onto G, every
subgroup EK,;/K, with index n in Gy, maps to a subgroup of the finitely L-presented
group G. The index of this image EK/K in G divides the index n = [F' : EKy]. On
the other hand, every subgroup EK/K with index n in the finitely L-presented group
F/K has a full preimage EK /K, in the finitely presented group G, with index n. Thus
the list of subgroups with index at most n in a finitely L-presented group G can be
obtained from the list of subgroups of a finitely presented covering group Gy by removing
duplicate images. Our solution to the subgroup membership problem can be used to
remove duplicate images in G.

As an application, we consider some interesting self-similar groups and we determine
the number of subgroups with small index. We first consider the Grigorchuk group &:
its lattice of normal subgroups is well-understood [7] while its lattice of subgroups with
finite index is widely unknown [58]. It is well known [58] that the Grigorchuk group has
seven subgroups of index two. In [IT6], it was shown that the subgroups of index two
are the only maximal subgroups of . Our low-index subgroup algorithm allows us to
determine the number of subgroups with index at most 64 in the group & and thereby,
it corrects the counts in Section 7.4 of [I2] and in Section 4.1 of [II]. The following
list summarizes the number of subgroups (<) and the number of normal subgroups (<)
among them:

index 1 2 4 8 16 32 64
< 1 7 31 183 1827 22931 378403
< 1 7 7 7 5 3 3

The Grigorchuk super-group & was introduced in [I1]. It contains the Grigorchuk group
as an infinite index subgroup. Little is known about its subgroup lattice. The twisted
twin & of the Grigorchuk group was introduced in [I4]. Similarly, little is known about
the subgroup lattice of the twisted twin &. Our low-index subgroup algorithm allows
us to determine the number of subgroups with index at most 16 in both groups. Their
subgroup counts are:

) &

index < < < <
1 1 1 1 1
2 15 15 15 15
4 147 35 147 35
8 2163 43 1963 43

16 52403 55 46723 47

As both groups are 2-groups, the only maximal subgroups with finite index are the
subgroups with index two; though the question of determining all maximal subgroups of
® and & has not been addressed in this paper.

Finally, we consider the Basilica group and the Hanoi-3 group [59] with its L-
presentation from [I5]. The following list also includes the number of maximal subgroups
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(max):
. Hanoi—3 Basilica
index
< < max < < max
1 1 1 1 1 1 1
2 7T 7 7 3 3 3
3 12 0 12 7 4 7
4 59 7 4 19 7 0
5 15 0 15 11 6 11
6 136 4 0 39 13 0
7 21 0 21 15 8 15
8 335 13 0 163 19 0
9 225 0 0 115 13 9
10 153 3 0 83 19 0
11 3 0 33 23 12 23
12 2872 12 0 355 31 0
13 39 0 39 27 14 27
14 297 3 0 115 25 0
15 450 0 0 77T 24 0
16 1855 13 0 1843 47 0
17 51 0 51 35 18 35
18 5001 3 0 1047 44 0
19 57 0 57 39 20 39
20 1189 9 0 939 45 0
21 756 0 0 105 32 0
22 531 3 0 223 37 0
23 69 0 69 47 24 47
24 52220 23 0 4723 87 0
25 225 0 75 411 31 25
26 783 3 0 315 43 0
27 5616 0 27 736 49 0
28 2301 9 0
29 87 0 87
30 15462 3 0
31 93 0 93

32 9119 25 0

The largest abelian quotient H/H' of the Hanoi-3 group H is 2-elementary abelian of
rank 3. Thus, by the Feit-Thompson theorem [47], there are no normal subgroups with
odd index in the Hanoi-3 group.
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Appendix

A Reidemeister-Schreier Theorem for
Finitely L-Presented Groups

Abstract. We prove a variant of the well-known Reidemeister-Schreier Theorem
for finitely L-presented groups. More precisely, we prove that each finite index
subgroup of a finitely L-presented group is itself finitely L-presented. Our
proof is constructive and it yields a finite L-presentation for the subgroup. We
further study conditions on a finite index subgroup of an invariantly finitely
L-presented group to be invariantly L-presented itself.

Keywords. Reidemeister-Schreier Theorem; infinite presentations; recursive
presentations; self-similar groups; Basilica group; Grigorchuk group; finite in-
dex subgroups;

Mathematics Subject Classification 2010: 20F05, 20E07, 20-04

D.1 Introduction

Group presentations play an important role in computational group theory. In particular
finite presentations have been subject to extensive research in computational group the-
ory dating back to the early days of computer-algebra-systems [32|[88,[102][129]. Group
presentations, on the one hand, provide an effective description of the group. On the
other hand, a description of a group by its generators and relations leads to various
decision problems which are known to be unsolvable in general [95]. For instance, the
word problem of a finitely presented group is unsolvable [27,[113]. However, various total
and partial algorithms for finitely presented groups are known [129]. For instance, the
coset-enumeration process introduced by Todd and Coxeter [I33] enumerates the cosets
of a subgroup in a finitely presented group. If the subgroup has finite index, coset-
enumeration terminates and it computes a permutation representation for the group’s
action on the cosets. Coset-enumeration is a partial algorithm as the process will not
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terminate if the subgroup has infinite index. However, finite presentations often allow
total algorithms that compute factor groups of special type (including abelian quotients,
nilpotent quotients [I07] and, in general, solvable quotients [93]).

Beside quotient and subgroup methods, the well-known theorem by Reidemeister [119]
and Schreier [124] allows one to compute a presentation for a subgroup. The Reide-
meister-Schreier Theorem explicitly shows that a finite index subgroup of a finitely pre-
sented group is itself finitely presented. A similar result can be shown for finite index
ideals in finitely presented semi-groups [3I]. In practice, a permutation representation
for the group’s action on the cosets allows one to compute the Schreier generators of the
subgroup and the Reidemeister rewriting. The Reidemeister rewriting can be used to
rewrite the relations of the group to relations of the subgroup [72,05,129]. A method
for computing a finite presentation for a finite index subgroup can be applied in the
investigation of the structure of a group by its finite index subgroups [77].

Even though finitely presented groups have been studied for a long time, most groups
are not finitely presented because there are uncountably many two-generator groups [103]
but only countably many finite presentations [6]. A generalization of finite presentations
are finite L-presentations which were introduced in [6]; however, there are still only
countably many finite L-presentations. It is known that various examples of self-similar
or branch groups (including the Grigorchuk group [53] and its twisted twin [14]) are
finitely L-presented but not finitely presented [6]. Finite L-presentations are possibly
infinite presentations with finitely many generators whose relations (up to finitely many
exceptions) are obtained by iteratively applying finitely many substitutions to a finite
set of relations; see [6] or Section [D.2for a definition. A finite L-presentation is invariant
if the substitutions which generate the relations induce endomorphisms of the group.
In fact, invariant finite L-presentations are finite presentations in the universe of groups
with operators [87,[111] in the sense that the operator domain of the group generates the
possibly infinitely many relations out of a finite set of relations.

Finite L-presentations allow computer algorithms to be applied in the investigation
of the groups they define. For instance, they allow to compute the lower central series
quotients [9], the Dwyer quotients of the group’s Schur multiplier [66], and even a coset-
enumeration process exists for finitely L-presented groups [67]. It is the aim of this paper
to prove the following variant of the well-known Reidemeister-Schreier Theorem:

Theorem 1.1 Each finite index subgroup of a finitely L-presented group is finitely L-
presented.

If the finite index subgroup in Theorem [[T]is normal and invariant under the substitu-
tions (i.e., a normal and admissible subgroup in the notion of Krull & Noether [87,111]),
an easy argument gives a finite L-presentation for the subgroup; furthermore, if the group
is invariantly finitely L-presented, so is the subgroup. However, more work is needed if
the subgroup is not invariant under the substitutions. Under either of two extra con-
ditions (the subgroup is leaf-invariant, see Definition (.20} or it is normal and weakly
leaf-invariant, see Definition [[.36]), we show that the subgroup is invariantly finitely L-
presented as soon as the group is. We have not been able to get rid of these extra
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assumptions. In particular, it is not clear whether a finite index subgroup of an in-
variantly finitely L-presented group is always invariantly finitely L-presented. We show
that the methods presented in this paper will (in general) fail to compute invariant L-
presentations for the subgroup even if the group is invariantly L-presented. However, we
are not aware of a method to prove that a given subgroup does not admit an invariant
finite L-presentation at all.

Our proof of Theorem [[LT] is constructive and it yields a finite L-presentation for
the subgroup. These finite L-presentations can be applied in the investigation of the
underlying groups as the methods in [77] suggest for finitely presented groups. Notice
that Theorem [[[T] was already posed in Proposition 2.9 of [6]. The proof we explain in
this paper follows the sketch given in [6], but fixes a gap as the L-presentation of the
group in Theorem [[T] is possibly non-invariant. Even if the L-presentation is assumed
to be invariant, the considered subgroup cannot be assumed to be invariant under the
substitutions.

This paper is organized as follows: In Section [D.2] we recall the notion of a fi-
nite L-presentation and we recall basic group theoretic constructions which preserve the
property of being (invariantly) finitely L-presented. Then, in Section [D.3], we recall the
well-known Reidemeister-Schreier process. Before we prove Theorem [[.1]in Section [D.6]
we construct, in Section [D.4] a counter-example to the original proof of Theorem [Tl
in [6]. Then, in Section [D.5] we introduce the stabilizing subgroups which are the main
tools in our proof of Theorem [l In Section [D.7] we study conditions on the finite
index subgroup of an invariantly L-presented group to be invariantly L-presented it-
self. We conclude this paper by considering two examples of subgroup L-presentations
in Section including the normal closure of a generator d of the Grigorchuk group &
as in [IT1[58]. We fix a mistake in the generating set of the normal closure D = (d)®
using our Reidemeister-Schreier Theorem for finitely L-presented groups. In particular
we show, in the style of [77], how these computational methods can be applied in the
investigation of self-similar groups.

D.2 Preliminaries

In the following, we briefly recall the notion of a finite L-presentation and the notion a
finitely L-presented group as introduced in [6]. Moreover, we recall some basic construc-
tions for finite L-presentations.

A finite L-presentation is a group presentation of the form

<X‘QU U R">, (D.1)

oed*

where A" is a finite alphabet, Q@ and R are finite subsets of the free group F' over X,
and ®* C End(F') denotes the free monoid of endomorphisms which is finitely generated
by ®. We also write (X | Q | ® | R) for the finite L-presentation in Eq. (D)) and
G=(X|Q|®|R) for the group it defines.
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A group which admits a finite L-presentation is finitely L-presented. An L-presen-
tation of the form (X | @ | ® | R) is ascending and an L-presentation (X | Q| ® | R)
is invariant (and the group it presents is invariantly L-presented), if each endomor-
phism ¢ € ® induces an endomorphism of the group; that is, if the normal subgroup
(QU U, co ROV < F is @-invariant. Each ascending L-presentation is invariant and
each invariant L-presentation (X | Q@ | ® | R) admits an ascending L-presentation
(X|0|®| QUR) which defines the same group. On the other hand, we have the fol-
lowing

Proposition 2.2 There are finite L-presentations that are not invariant.

Proof. The group B = ({a,b,t} | {ata™* b b2, [a,b"] | i € Z}) is a met-abelian,
infinitely related group with trivial Schur multiplier [I8]. By introducing a stable letter
u, this group admits the finite L-presentation

({ab.t,u} | (™'} | {0} | {a'a™ 0672 [a,ul} )

where ¢ is the free group homomorphism induced by the map o:a — a, b +— b, t — ¢, and
u — u, while § is the free group homomorphism induced by the map 6:a — a, b — b,
t ¢, and u — u' . This finite L-presentation is not invariant [64]. 0

Another non-invariant L-presentation can be given for the free product Zy*Zy = ({a, b} |
{a?,b}): it is finitely L-presented by ({a,b} | {a®} | {o} | {b?}) where o is induced by
the map a — ab and b — b?. If this latter L-presentation were invariant, the ascending
finite L-presentation ({a,b} | 0 | {o} | {a? b*}) would also define Zy * Zy. In this
case (a?)° = abab is a relation and, since a® = b> = 1 in the group, the generators
a and b commute. Thus the latter ascending finite L-presentation defines a quotient
of the 2-elementary abelian group Zo X Zs. In particular, it defines a finite group.
Hence, ({a,b} | 0 | {0} | {a?,b?}) is not a finite L-presentation for Zs * Zs and so
{a,b} | {a®} | {o?} | {b?}) is not an invariant L-presentation.

We are not aware of a method to decide whether or not a given (non-ascending) finite
L-presentation is invariant. In particular, we have no answer to the following

Question 2.3 Is there a finitely L-presented group so that each of its finite L-presen-
tation is not invariant?

The class of finitely L-presented groups contains all finitely presented groups:

Proposition 2.4 Fach finitely presented group (X | R) is finitely L-presented by the
invariant (ascending) finite L-presentation (X |0 |0 | R).

Therefore, (invariant or ascending) finite L-presentations generalize the concept of finite
presentations. Examples of finitely L-presented, but not finitely presented, groups are
various self-similar or branch groups [6] including the Grigorchuk group [53]56106] and
its twisted twin [I4]. However, the concept of a finite L-presentation is quite general so
that other examples of infinitely presented groups are finitely L-presented [18]85].
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Various group theoretic constructions that preserve the property of being finitely
L-presented have been studied in [6]. For completeness, we recall some of these construc-
tions in the remainder of this section.

Proposition 2.5 (Bartholdi [6, Proposition 2.7]) Let G=(X|Q|®|R) be a
finitely L-presented group and let H = (Y | S) be finitely presented. The group K
which satisfies the short exact sequence 1 - G — K — H — 1 is finitely L-presented.

Proof.  We recall the constructions from [6]: Let 6: H — K be a section of H to K and
identify G with its image in K. Each relation r € S of the finitely presented group H
lifts, through the section §, to an element g, € G. As the group G is normal in K, each
generator t € ) of the finitely presented group H acts, via ¢, on the subgroup G. Thus
we have 2°®) = g, , € G for each x € X and t € Y. If X N Y = (), we consider the finite
L-presentation

(XUY|QU{rg " |restu{aly,; |z X teY}|P|R), (D.2)

where the endomorphisms ® of G’s L-presentation are extended to endomorphisms P =
{o | 0 € @} of the free group F(X U)Y) by

- x — 279, foreachz e X
U:F(XUy)%F(Xuy)’{ =y for each y € ).

Then the finite L-presentation in Eq. (D.2)) is a presentation for K; see [6]. O

As each finite group is finitely presented, Proposition yields the immediate

Corollary 2.6 Fach finite extension of a finitely L-presented group s finitely L-pre-
sented.

The construction in the proof of Proposition gives a finite L-presentation for K which
is not ascending — even if the group G we started with has an ascending L-presentation.
We therefore ask the following

Question 2.7 Is every finite extension of an invariantly (finitely) L-presented group
invariantly (finitely) L-presented?

We do not have an answer to this question in general; though we suspect its answer
is negative, see Remark [ 43l Given endomorphisms ® of the normal subgroup G in
Proposition 23], one problem is to construct endomorphisms of the finite extension K
which restrict to ®. This does not seem to be possible in general.

A finite L-presentation for a free product of two finitely L-presented groups is given
by the following improved version of [6, Proposition 2.6].

Proposition 2.8 The free product of two finitely L-presented groups is finitely L-pre-
sented. If both finitely L-presented groups are invariantly L-presented, so is their free
product.
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Proof.  Although a proof of the first statement can be found in [6], we summarize its con-
struction for our proof of the second statement. For this purpose, let G = (X | Q| ® | R)
and H = (Y | S|V |T) be finitely L-presented groups. Suppose that X N'Y = @ holds.
Then, by [6], the free product G % H is finitely L-presented by (YUY | QUS| dUT |
RUT ) where the endomorphisms in ® and ¥ are extended to endomorphisms in ® and
U of the free group F(X UY) over X U as follows: for each o € ®, we let

r +— x°, foreachx e X

a:F(XUy)%F(Xuy%{y — y, foreachyeY;

and, accordingly, for each § € .

Suppose that the L-presentations of G and H are invariant. As an invariant L-presen-
tation (X | @ | ® | R) can be considered as an ascending L-presentation (X | () | ® |
QU R), we can consider Q and S to be empty. Then the construction above shows
that the free product G * H is ascendingly finitely L-presented and thus it is invariantly
finitely L-presented. O

We further have the following improved version of [6, Proposition 2.9]:

Proposition 2.9 Let N I G be a normal subgroup of a finitely L-presented group G =
(X Q| ®|R). If N is finitely generated as a normal subgroup, the factor group G/N
s finitely L-presented. If, furthermore, G is invariantly L-presented and the normal
subgroup N is invariant under the induced endomorphisms ®, G/N is invariantly L-
presented.

Proof. TLet N = (g1,...,9,)¢ be a finite normal generating set of the normal subgroup
N. We consider the normal generators g1, ..., g, as elements of the free group F' over
X. By [6], the L-presentation (X | QU {g1,...,gn} | ® | R) is a finite L-presentation for
the factor group G/N.

Suppose that G is given by an invariant L-presentation (X | Q | ® | R). Then
G=(X]0]|]®| QUR). As N° C N, each ¢ € ®* induces an endomorphism

of the L-presented factor group G/N. Thus the images ¢7,..., g7 are consequences of
the relations of G/N’s finite L-presentation above. Hence, we have that G/N = (X |
{1, g} [RIRUQ) =(X D[ L[ QURU{g1,..,gn})- O

If G is invariantly L-presented and N is a normal ®-invariant subgroup, then, in the
notion of Krull & Noether [R7,[I11], the group G is a group with operator domain ® and
the normal subgroup N is an admissible subgroup. Proposition 2.8 and Proposition
yield the following straightforward

Corollary 2.10 Let G and H be finitely L-presented groups and let ' be a finitely gen-
erated group with embeddings ¢: F — G and ¢:F — H. Then the amalgamated free
product G xp H 1s finitely L-presented.

For further group theoretic constructions which preserve the property of being finitely
L-presented were refer to [6].
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D.3 The Reidemeister-Schreier Process

In the following, we briefly recall the Reidemeister-Schreier process as, for instance,
outlined in [95L[129]. For this purpose, let G be a group given by a group presentation
(X | K) where X is a (finite) alphabet which defines the free group F' and K C F'is a
(possibly infinite) set of relations. Denote the normal closure of K in F by K = (KC)F.
Then G = F/K.

Let H < G be a subgroup with finite index that is given by its generators gi,...,gn
and let 7 C F be a Schreier transversal for H in G (i.e., a transversal for H in G so
that every initial segment of an element of 7T itself belongs to 7, see [95]; note that
we always act by multiplication from the right). We consider the generators of H as
words over the alphabet X and thus as elements of the free group F. Then the subgroup
U= {g1,...,9n) satisfies that H = UK/K. In the style of [95], we define the Schreier
map v:T x X — F by y(t,z) = tx (fx)~! where tx denotes the unique element s € T
from the Schreier transversal so that UK s = UK tx holds. The Schreier Theorem (as, for
instance, in [95, Proposition 1.3.7]) shows that the subgroup UK < F' is freely generated
by the Schreier generating set

Y={yt,z)#1|teT,ze X}

In particular, it shows that each finite index subgroup of a finitely generated group is
finitely generated. We consider the set ) as an alphabet and we denote by F()) the free
group over Y. The Reidemeister rewriting T is a map 7: F' — F())) given by

Ty yn) = v(Ly1) YT y2) YW Yn1, Yn)

where each y; € X U X ™. In general, the Reidemeister rewriting 7 is not a group
homomorphism. However, we have the following

Lemma 3.11 For V < UK, the restriction 7:V — F()) is a homomorphism.

Proof. Let g,h € V be given. Write g = g1 ---g, and h = hy - -- hy, with each h;, g; €
X UX ™. Then, as g1 -- - g, = g = 1 holds, we obtain that

7(gh) =v(L,g1) =791 Gn—1,9n) - Y(L; h1) - -y (h -+ - b o) = 7(g) 7(h)
while we already have 7(1) = 1 by definition. O

By Schreier’s theorem, the Reidemeister rewriting 7: UK — F'())) gives an isomorphism of
free groups. A group presentation for the subgroup H = UK /K is given by the following
well-known theorem of Reidemeister [I19] and Schreier [124]; see also [95] Section II.4].

Theorem 3.12 (Reidemeister-Schreier Theorem) Let H be a subgroup of G. If T
denotes the Reidemeister-Schreier rewriting, T denotes a Schreier transversal for H in
G, and if (X | K) is a presentation for G, the subgroup H is presented by

H2(Y|{rtrt ) |rekK,teT}). (D.3)
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Proof.  We recall the proof for completeness: Note that H = UK/K = 7(UK)/7(K)
holds. By Schreier’s theorem, we have 7(UK) = F())). It therefore suffices to determine
a normal generating set for 7(K). As K is a normal generating set for K <F', a generating
set for 7(K) is given by 7(K) = ({r(grg™') | 7 € K,g € F}). Let r € K and g €
F be given. Consider the relation 7(grg=!). Since T is a transversal for UK in F,
g € F can be written as ¢ = ut with ¢t € 7 and w € UK. This yields 7(grg~!) =
T(utrt~'u=!). For r € K, we have that trt~! € UK. By Lemma [II], we obtain
that 7(grg™') = 7(utrt *u=') = 7(u) 7(trt=1) 7(u)~!. Therefore the relation 7(grg=!)
is a consequence of 7(trt~1). Hence, it suffices to consider the normal generating set
7(K) = ({r(trt™Y) [r e Kt € THTY for 7(K). 0

If H is a finite index subgroup of a finitely presented group G, there exist a finite set of
relations IC and a finite Schreier transversal 7 so that the subgroup H is finitely presented
by Theorem B.I2] This latter result for finitely presented groups is well-known and it is
often simply referred to the Reidemeister-Schreier Theorem for finitely presented groups.
In this paper, we prove a variant of the Reidemeister-Schreier Theorem for finitely L-
presented groups using the ideas of Theorem B.121

D.4 A Typical Example of a Subgroup L-Presentation

Before proving Theorem [[LT] we first consider an example of a finite L-presentation for
a finite index subgroup of a finitely L-presented group. For this purpose we consider a
subgroup of the Basilica group [60]. The Basilica group satisfies the following

Proposition 4.13 (Bartholdi & Virag [16]) The Basilica group G is invariantly
finitely L-presented by G = ({a,b} | 0 | {o} | {[a,a’]}) where o is the free group ho-
momorphism that is induced by the map a — b> and b — a.

The substitution o in Proposition 13l induces an endomorphism of G. The group G
will often provide an exclusive (counter-) example throughout this paper.

Consider the subgroup H = (a,bab!,b%) of the Basilica group. Then coset-enumer-
ation for finitely L-presented groups [67] shows that H is a normal subgroup of G with
index 3. A Schreier generating set for the subgroup H is given by {a,bab™!,b%ab=2,b%}.
Write 21 = a, 3 = bab™ !, x3 = b%ab~2, and x4 = b>. Denote the free group over {a,b}
by F' and let E denote the free group over {x1,x9,x3,24}. For each n € Ny, we define
an = (2" +2)/3 and b, = (2" + 1)/3. Then the o-images of the relation r = [a,a’] can
be rewritten with the Reidemeister rewriting 7: F — E. Their images have the form

2n —an 2™ _.an : s
. [3:1 TR = ] , if n is even,
T(TU ) - on —bn 2" by f . dd
x7 ,xy x5 x|, if nisodd,

and

7bn+1 —2m 7bn+1 n bn+1 —2m bn+1 n . .
x4 fL'Q x4 x3 x4 xQ fL'4 xl s lf n 1S even,
x

—ap+1,_,—2" —apt1+1_9on apy1—1 27 ap41  on . .
4 T3 Ty x5 X xg® w27, if nis odd.
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Note that 7(r°") € [E, E] while 7(r°""") & [E, E]. Therefore, the images 7(r°' ) split
into two classes which are recursive images of the endomorphism
2

xl |_> .%'1,
2
~ To +— X
6:E — E, ¥,
T3 = T4Ty Ty s
T4 > xi;
in the sense that o satisfies
2n 2n+1 ~n

g a

T(r ) = [xl,xfxg m]an and 7(r )= (x;lxgllewg T4 w;lm x1)7,

for each n € Ng. In Section [D.8] we show that a finite L-presentation for the subgroup
H is given by

H = <{x1, s, T4} ‘ 0 ‘ {7,6} ‘ {[xl,lexg x4],lex2_1xglx3 T4 x2_13:4 x1}>

where the endomorphism § is induced by the map

T — X9,
o +H— T

§:F — E, B
T3 TyaT12y,
Ty > T4.

These subgroup L-presentations are typical for finite index subgroups of a finitely L-
presented group. Besides, the subgroup H and its subgroup L-presentation provide a
counter-example to the original proof of Theorem [[T]in [6] as there is no endomorphism
e of the free group E such that 7(r°" ") = (r(r°")) holds for each n € Ny. A reason for
the failure of the proof in [6] is that the subgroup H is not o-invariant but o2-invariant.
Therefore, the method suggested in the proof of [6, Proposition 2.9] will fail to compute
a finite L-presentation for H.

D.5 Stabilizing Subgroups

In this section, we introduce the stabilizing subgroups. These subgroups will be central
to what follows.

Let G = (X | Q| ® | R) be a finitely L-presented group and let H < G be a finite
index subgroup which is generated by ¢1,...,9,. Denote the free group over A by F
and let K = (QUJ,cq R7)F". We consider the generators g1, ..., g, of the subgroup H
as words over the alphabet X U X ™. Then the subgroup U = (g1,...,9,) < F satisfies
H = UK/K. The group F acts on the right-cosets UK\ F' by multiplication from the
right. Let m: F' — Sym(UK\F') be a permutation representation for the group’s action on
UK\F'. Such a permutation representation can be computed with the coset-enumeration
process from [67]. The kernel of the permutation representation 7 is the normal core,
Corep(UK), of UK in F i.e., it is the largest normal subgroup of F' that is contained in
UK.

The following definition introduces the stabilizing subgroups of H. These subgroups
will be central to our proof of Theorem [[.T]in Section [D.6l
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Definition 5.14 Let G = (X | Q | ® | R) be a finitely L-presented group and let
H < G be a finite index subgroup which admits the permutation representation w: F —
Sym(UK\F') as above. The stabilizing subgroup of H is

L= () (om) " (Stabgymui\m) (UK 1)) = () o (UK). (D.4)
ged* oced*

The stabilizing core of H 1is
L= () ker(om). (D.5)
oed*

For o € ®*, we denote by ||o|| the usual word-length in the generating set ® of the
free monoid ®*. The free monoid ®* has the structure of a |®|-regular tree with its root
being the identity map id: F' — F. We can further endow the monoid ®* with a length-
plus-(from the right)-lexicographic ordering < by choosing an arbitrary ordering on the
finite generating set ®. We then define o < § if ||o|| < ||d]| or, otherwise, if 0 = 071 --- 7y,
and 0 = 01 -0y, with each 0;,0; € ®, and there exists a positive integer 1 < k < n
such that o; = 9; for each k < i < n, and o} < 6. Since ® is finite, the constructed
ordering < is a well-ordering on ®* [129]. Thus, there is no infinite descending sequences
01> 09 = ...1in ®*,

We consider a variation of the algorithm ISVALIDPERMREP from [67] in Algorithm
[D.1 below. If m: F — Sym(UK\F) denotes a permutation representation as in Defini-

ITERATINGENDOMORPHISMS (X, Q, &, R, H, )
Choose an ordering on ® = {¢1,...,¢,} with ¢; < ¢i11.
Initialize S := [¢1,...,¢,] and V := [id: F — F1.
while S # [ | do
Remove the first entry § from the list S.
if not (3o € V: im = om) then
Append ¢16, ..., 0,0 to the list S.
Add ¢ to the list V.
return( V)

Algorithm D.1: Computing a finite set of endomorphisms ¥V C ®*.

tion .14}, the algorithm ITERATINGENDOMORPHISMS returns a finite image of a sec-
tion of the map ®* — Hom(F,Sym(UK\F')) defined by ¢ — on; see Lemma .15 and
Lemma 517 below. More precisely, we have the following

Lemma 5.15 The algorithm ITERATINGENDOMORPHISMS terminates and it returns a
finite set of endomorphisms V C ®* satisfying the following property: For each o € ®*
there exists a unique T € V so that om = 7w. The element T € V is minimal with respect
to the ordering < constructed above.

Proof. Let X be a basis of the free group F. A homomorphism ¢: F — Sym(UK\F) is
uniquely defined by the image of this basis. Since UK\ F is finite, the symmetric group
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Sym(UK\F) is finite. Moreover, as F' is finitely generated, the set of homomorphisms
Hom(F,Sym(UK\F)) is finite. Therefore, the algorithm ITERATINGENDOMORPHISMS
can add only finitely many elements to V and the stack S will eventually be reduced.
Thus the algorithm terminates.

The ordering < on ® extends to a total well-ordering on the free monoid ®* as
described above. The elements in the stack S are always ordered with respect to <. They
further always succeed those elements in V. In particular, the elements 0 € V C ®* are
<-minimal representatives of the composed homomorphism o7m: F' — Sym(UK\F).

Let o0 € ®* be given and write 01 = ¢. There exists w € ®* minimal subject to the
existence of § € V so that oy = wd. If ||w|| = 0 holds, then o; € V and the claim is
proved. Otherwise, there exists ¢ € ® so that o1 = vy for some v € ®* and 1§ &€ V. Our
algorithm yields the existence of € € V so that € < ¢ and ¥drm = emr. We also have that
o9 = ve < vi)d = 1. This rewriting process yields a descending sequence o1 = 09 > ...
in ®*. As < is a well-ordering, there exists o, € V so that o1 > 09 > ... = 0, and
omw = 017w = o,mw. The element 7 = o, is unique. a

If m: F — Sym(UK\F) is a permutation representation for an infinite index subgroup
UK < F, we cannot ensure finiteness of the set V and termination of the algorithm. In
the remainder, we always consider finite index subgroups UK < F only.

For finite L-presentations (X | Q | ® | R) with ® = {0}, finiteness of the set
{on | £ € Ng} C Hom(F,Sym(UK\F)) yields the following

Corollary 5.16 If ® = {c}, there exist integers 0 < i < j with o/7 = o'x.
The set V C ®* returned by Algorithm [D.1] satisfies the following

Lemma 5.17 The set V can be considered as a subtree of ®*. The image of the finite
set V and the image of the monoid ®* in Hom(F, Sym(UK\F)) coincide.

Proof. The identity mapping id: F' — F'is contained in V and it represents the root of V
and ®*. Let o € V be given. Then either o € ¢ or there exists ) € ® and § € ®* so that
o = 6. In the first case, id: F — F'is a unique parent of 0 € ®. Otherwise, if 0 = Y6, we
need to show that 6 € V holds. Our algorithm ITERATINGENDOMORPHISMS only adds
elements from the stack S to V. At some stage of the algorithm we had ¢ = ¢ € S.
The latter element is added to the stack S as a child of the element § and thus § € V.
The second statement follows immediately from Algorithm [D.I] and Lemma G135 O

We define a binary relation ~ on the free monoid ®* by defining o ~ ¢ if and only if the
unique element o, € ®* in Lemma coincides for both ¢ and §. Thus o ~ ¢ if and
only if om = dm. This definition yields the immediate

Lemma 5.18 The relation o ~ 0 is an equivalence relation. FEach equivalence class
18 represented by a unique element in V which is minimal with respect to the total and
well-ordering <.

Recall that m: F — Sym(UK\F') is a permutation representation for the group’s action
on the right-cosets UK\F. If T is a transversal for UK in F, ¢ ~ § implies that
UKt-g° =UKt-¢° for each t € T and g € F. We therefore obtain the following
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Lemma 5.19 If o € ®* satisfies om = 7, the subgroup UK is o-invariant. There are
o-invariant subgroups UK that do not satisfy om = 7.

Proof. The first statement holds in general for a group acting on a set: As ow = 7, we
have UKt-g° =UKtgforeacht € Tandge F. If g€ UK, then UK 1-9° =UK 1-g =
UK 1 and so g° € UK. The index-2 subgroup H = (a,b? bab~') of the Basilica group
satisfies (UK)? C UK and om # 7. This (and similar results in the remainder of this
paper) can be easily verified with a computer algebra system such as GAP. O

The latter observation motivates the following

Definition 5.20 Let G = (X | Q | ® | R) be a finitely L-presented group and let
H < G be a finite index subgroup with permutation representation m as above. The
m-leafs U C ®*\ 'V of V are

UV={j|ped sV, pd &V, pomr =m7}. (D.6)
The subgroup H is leaf-invariant if U = {16 | € &, € V, 16 & V} holds.

For a finitely L-presented group (X | Q | ® | R), the generating set ® of ®* is finite.
Moreover, the equivalence ~ yields finitely many equivalence classes. Hence, the set of
m-leafs W of V is finite. We obtain the following

Lemma 5.21 If H is a leaf-invariant subgroup of G, each m-leaf ¥§ € ¥ induces an
endomorphism of UK. Moreover, each o € ®* can be written as o = vo with v € V and
oevr,

Proof. We again follow the ideas of Algorithm [D.Il By Lemma [BEI9 the condition
Yom = 7 implies Yo-invariance of UK and hence U* C End(UK). Write W = {40 | ¢ €
®,6 € V,106 € V} and let o € ®* be given. Write 01 = 0. There exists w € ®* minimal
subject to the existence of § € V so that o3 = wd. If ||w|| = 0, then o7 = §id with § € V
and id € U*. Otherwise, there exists 1) € ® and o9 € ®* so that o1 = 090§ and Yo &€ V.
Then 9 € W. Since H is leaf-invariant, we have W = ¥ and hence 1 € W. Therefore
19 induces an endomorphism of UK. Clearly o9 < o1. Rewriting the prefix oo as above
yields a descending sequence o1 = 0s... in ®*. As < is a well-ordering, we eventually
have o1 = 09 = ... = o, with 0, € V and ¢ = 01 = 0,0 for some § € U*. O

If the finite L-presentation (X | Q | ® | R) satisfies ® = {o} and if there exists a minimal
positive integer 0 < j so that o/7 = 7, the set

W={d|pe®,deV iV}
in the proof of Lemma [5.21] above becomes W = {¢7}. Note the following

Remark 5.22 The condition o/m = o1 is essential for the o7~ %-invariance of the sub-
group. For instance, the subgroup H = (a,bab=*,b~ta?b, b*, b2ab=2) of the Basilica group
satisfies o*m = 3w but it is not o-invariant.

The stabilizing subgroup L introduced in Definition .14 satisfies the following
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Proposition 5.23 Let V C ®* be the finite set returned by Algorithm[D.1l The stabiliz-
ing subgroup L satisfies that

f/ = ﬂ ( ) (Stabsym(UK\F UK 1 ﬂ o
oeV oeV

The stabilizing subgroup L is ®-invariant (i.e., we have LY C L for each v € D). It s
contained in the subgroup UK and it has finite index in F'. The stabilizing subgroup L is
the largest ®*-invariant subgroup of UK. It is not necessarily normal in F'.

Proof. By Lemma 017 the sets {o7 | 0 € ®*} and {o7 | 0 € V} coincide and thus we
have

f/ = ﬂ (0'7'(')_1 (Stabsym(UK\F)(UK 1)) = ﬂ (0'71')_1 (Stabsym(UK\F)(UK 1)) .
ocd* ocV

Since (o)~ (Stabgym(ur\r) (UK 1)) = 0~ (UK), we have L= Noey o H(UK). For ¢ €
®, we have
v L) = () (e¥) T (UK) 2 (1) o7 (UK) =
ocd* ocd*

since the first intersection is over a smaller set than the second one. Thus (L) C L. Since
o =id € ®*, we have L C UK. Because the stablhzmg subgroup L is the intersection
of finitely many finite index subgroups (om) ™! (Stabsym @i\ ry(UK 1) of F, it has finite
index in F. If N < UK is ®* invariant, we have N C o~ !(N) C o~ '(UK) for each
o € ®*. Hence N C (", cq- 0 (UK) =

The stabilizing subgroup L = (a,bab~', b~ a?b, b%ab=2,b%a~'b, b= 1ab®) of the sub-
group H = {a,bab=',b=ta=2b,b%ab=2,b3a~1b,bLab?) of the Basilica group is not normal
in F. O

The stabilizing subgroup L always satisfies that L C UK. Conditions for equality are
given by the following

Lemma 5.24 The following conditions are equivalent:
(i) L =UK,
(i) (UK)Y C UK for all+ €V, and
(iii) (UK)® C UK for all § € ®*.
Proof. We have that [ = Npear 0 HUK) = Nyepo (UK). Therefore
L =yeg: 0 L(UK) = UK if and only if UK C L C ¢~ }(UK) and so (UK)° C UK for

all 0 € ®*. Similarly, we have (UK)¥ C UK, for all ¢ € V, if and only if (UK)? C UK,
for all o € ®*. O

In the style of [67], we define a binary relation ~», on the free monoid ®* as follows:
For 0,8 € ®* we define o ~» § if and only if there exists a homomorphism ~:im (d7) —
im (o) so that om = dmy holds. It is known [67] that it is decidable whether or not
o~ 0 holds. This yields that
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Lemma 5.25 Let V C ®* be the finite set returned by Algorithm [Dd. Then there exists
a subset V C 'V with the following property: For each o € ®* there exists a unique element
0 €V so that o~ § and 0 is minimal with respect to the ordering < in Lemma [L 12,

Proof.  This is straightforward as the set ) returned by Algorithm [D.Ilis an upper bound
on V because o ~ § implies both o ~»; d or § ~ 0. O

Again, the set V in Lemma .25 can be considered a subtree of ®* or even as a subtree
of V. The binary relation ~», is reflexive and transitive but not necessarily symmetric.
The equivalence relation ~ and the relation ~», are related by the following

Lemma 5.26 Let m: F — Sym(UK\F') be a permutation representation as above. For
0,0 € ®* we have the following

(i) We have o~ § and § ~ o if and only if the homomorphism ~v:im (d7) — im (o)
with om = 07y 1s bijective.

(ii) If o ~ 6, then o ~, 6 and § ~ 0. The converse is not necessarily true.

(iii) If k > 0 is minimal so that o® ~ id, there exists a minimal positive integer (
so that £ | k and o* ~ id. If ® = {0}, the set V from Lemma becomes
Vv ={id,o,...,0" 1}

(iv) If € is a minimal positive integer such that id ~», o, there exists a minimal integer
k > ¢ so that o% ~id. If ® = {0}, the set V returned by Algorithm [D.1] becomes
V ={id,o,...,0c" '} while V = {id, 0,...,0""1}.

(v) The subgroup H = (a,b?, bab™') of the Basilica group satisfies o ~», id but there is
no positive integer £ > 0 so that o ~ id holds.

Proof. If the homomorphism ~:im (d7) — im (o7) with om = d7ry is bijective, we obtain
omy~! = ém and thus § ~»; 0. On the other hand, suppose that both § ~» o and o ~» §
hold. Then there are homomorphisms v:im (o) — im (é7) and 7:im (d7) — im (o) so
that ém = ony and o = dnr. This yields 7 = oy = dn7y and o = dnr = owyT.
Hence v and 7 are isomorphisms.

Since o ~ ¢ implies o = dm, we immediately obtain both o ~; § and § ~, o. The
subgroup H = {(a,bab™!,b%) of the Basilica group admits the permutation representation
mia— (), b (1,2,3). We have o?m:a +— (), b+ (1,3,2) and therefore 0 ~+ id and
id ~», 02. Though o?n # .

Suppose that k& € N is minimal so that ¢* ~ id and so ¢*7 = 7. Then im (7) D
im (o) O ... Dim (¢*n) = im (7). There exists a minimal integer 0 < ¢ < k such that
o ~», id. Hence, there exists a homomorphism v:im (1) — im (¢‘7) with o'n = 7.
The homomorphism ~ is onto and, since im (7) = im (o) is finite, v is bijective. As
¢ < k holds, we can write k = sf 4+t for some 0 < t < £ and s € N. This yields
that 7 = ofn = o' 01 = olmy® and so 7y ~% = ofn. If t > 0, the latter yields that

o' ~», id which contradicts the minimality of £. Thus ¢t = 0 and ¢ | k. If ® = {0}, the

k
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set {id,0,...,0'"1} is an upper bound on the set V from Lemma [F25 because o ~ id
holds. By the minimal choice of £, we obtain that V = {id,o,...,o/"1}.

Suppose that id ~», of holds. There exists a homomorphism ~:im (¢‘7) — im ()
with o‘my = 7. Since 7 is a surjective map from a subgroup im (¢‘7) < im (7) onto
im (), 7 is bijective and hence, we also have that ol ~». id. Suppose that the au-
tomorphism v of the finite group im (7), has finite order n. Write &k = nf. Then
ofr = o™n = 7y" = 7 and so 0f ~ id and k is minimal. If ® = {o} holds, then,
by the minimal choice of k, we obtain V = {id,o,...,0" 1} for the set V returned by
Algorithm D1 while V = {id, o,...,0"" '} by the minimality of £.

The permutation representation 7: F — Sym(UK\F) of the subgroup H =
{a,b% bab~ ') is induced by the map a — () and b — (1,2). Therefore, H satisfies
that o ~ id, |[im (7)] = 2, and |im (o7)| = 1. In particular, for each ¢ > 1, we have
lim (o7)| = 1. Thus there is no integer ¢ so that o ~ id holds. However, we have
0?1 = o so that the set V = {id, o, 0?} returned by Algorithm [D:1lis still finite. O

¢

The stabilizing core L introduced in Definition (.14l satisfies the following

Proposition 5.27 Let V C ®* be the finite set returned by Algorithm[D.1l. The stabiliz-
ing core L satisfies that
L= ﬂ ker (o).
oceV

The stabilizing core L is the largest ®-invariant subgroup of UK which is normal in F
and thus L = Corep(f/). It is finitely generated, has finite index in F', and it contains all
iterated relations R of G’s L-presentation (X | Q | ® | R). We have L C L C UK C F
and L C Corep(UK) CUK C F.

Proof. By Lemma 517 the sets {o7 | 0 € ®*} and {o7 | 0 € V} coincide and thus we

have
L= ﬂ ker(om) = ﬂ ker(om).
oed* ocV

The stabilizing core L is normal in F' because it is the intersection of normal subgroups.
Since L C ker(n) = Corepr(UK) holds, the stabilizing core L is contained in UK. Since
o~ (ker(r)) = ker(om), we have that L = () cg« 0~ ! (ker(m)). For any ¢ € ®*, we obtain

G L) = () (o) ker(m) 2 () o (ker(m)) = L

oced* oed*

as the first intersection is over a small set of indices. Thus L is ®*-invariant. Let N < UK
be a ®*-invariant subgroup which is normal in F. Then N < Corer(UK) = ker(7) and
so N C o7 }(N) C o !(ker(m)) for each o € ®*. Thus N C () cq- 0 *(ker(m)) = L.
The stabilizing core L has finite index in F' because it is the intersection of finitely many
finite index subgroups ker(om) with o € V.

The stabilizing core L is finitely generated as a finite index subgroup of a finitely
generated free group F. Let r € R be an iterated relator of G’s L-presentation (X | Q |
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® | R). Then, for each o € V, the image r? is a relator of G. Thus r € ker(ow) and
re L.

As L is a ®-invariant subgroup of UK, we have L C L by Proposition .23 Moreover,
L C ker(m) = Corep(UK). O

Since the stabilizing core L contains the iterated relations R of the L-presentation, it
also contains the normal closure {(),cg« R7)Y. We obtain the immediate

Corollary 5.28 IfG=(X | Q[ |R)=(X|0|®| QUR) is invariantly L-presented,
we have K C L C L C UK C F. The subgroup H =2 UK/K < F/K contains the
O -invariant normal subgroup L/K. The index [UK/K : L/K] = [UK : L] is finite.

The subgroup H in Corollary is a finite extension of L /K. Since the stabilizing core
L is the largest ®-invariant subgroup which is normal in F, the stabilizing subgroup L
is normal in F if and only if L = L holds. More precisely, we have the following

Lemma 5.29 We have L = L if and only if L C Corep(UK).

Proof. We have~L C L and L° C L for each o € P*, If~L = f/, then L = L C
Corep(UK). If L C Corep(UK) = ker(w), then L C o~ '(L) C o !(ker(m)) for all
o€ ®*. Thus L C (,cqp-0 *(ker(m)) = L. O

If UK < F is a normal subgroup, then L C UK = Corer(UK). Hence, we obtain the
immediate

Corollary 5.30 I[fUK < F, then L = L.
Note the following

Remark 5.31 There are subgroups that satisfy Corep(UK) C L. For instance, the
subgroup H = {(a,b? ba?b=1 bab=2a~'b~1) of the Basilica group is ®-invariant (and hence
L="UK by Lemma[5.27)) but not normal in G.

There are subgroups that satisfy L C Corep(UK). For instance, the subgroup H =
(a®,b,aba™") of the Basilica group has index 2 in G (and thus it is normal in G ); though
the subgroup H 1is not o-invariant.

There are subgroups that neither satisfy L C Corep(UK) nor Corep(UK) C L. For
instance, the subgroup H = (a, bgbil, b= La?b,b%ab? b3a~1b) of the Basilica group satisfies
[F': L] = [F : Corep(UK)| and L # Corep(UK).

D.6 The Reidemeister-Schreier Theorem

In this section, we finally prove our variant of the Reidemeister-Schreier Theorem in
Theorem [[Il For this purpose, let G = (X | Q | ® | R) be a finitely L-presented
group and let H < G be a finite index subgroup given by its generators ¢1,...,g,. We
consider the generators g, ..., g, as elements of the free group F' over X. Denote the
normal closure of the relations of G by K = (QU,cq- R%)" and let U = (g1, ..., gn) <
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F. Then H = UK/K. If T C F denotes a Schreier transversal for UK in F', the
Reidemeister-Schreier Theorem in Section [D.3] shows that the subgroup H admits the
group presentation

H = <y ‘ {r(tgt™) [t e T.qe QU | {r(trt™) [teTre R}>, (D.7)

oed*

where 7 denotes the Reidemeister rewriting. We will construct a finite L-presentation
from the group presentation in Eq. (D.7). First, we note the following

Theorem 6.32 Let G = (X | Q | ® | R) be invariantly finitely L-presented. Each
d-invariant normal subgroup with finite index in G is invariantly finitely L-presented.

Proof. Let G = (X | Q | ® | R) be an invariantly finitely L-presented group and
let H <G be a ®-invariant normal subgroup with finite index in G. Every invariantly
L-presented group can be considered as an ascendingly L-presented group. Thus, we
may consider @ = (). Consider the notation introduced above. As G is invariantly L-
presented, we have K7 C K for each o € ®*. Since the subgroup H is ®-invariant, we
also (UK)? C UK for each ¢ € ®*. Then Lemma 524 shows that L = UK. Moreover, as
UK <F,wehave L = L and thus UK = L = L. Let t € T be given. As UK <F, the map
8 UK — UK, g — tgt~! defines an automorphism of UK. The Reidemeister rewriting
7:UK — F(Y) is an isomorphism of free groups and therefore the endomorphisms ®U{J; |
t € T} of UK translate to endomorphisms ® U {5; | ¢t € T} of the free group F(Y).
Consider the invariant finite L-presentation

(V10| @U{ [teT} {r(r) |7 €R}). (D.8)

In order to prove that the finite L-presentation in Eq. (D.8) defines the subgroup H,
it suffices to prove that each relation of the presentation in Eq. (D.7)) is a consequence
of the relations of the L-presentation in Eq. (D.8) and vice versa. For t € T, r € R,
and o € ®*, we consider the relation 7(t7° t~1) of the group presentation in Eq. (D).
Clearly, this relation is a relation in the finite L-presentation in Eq. (D.8) because there
exists & € ®* so that (7(r))? = 7(r°). Then (7(r))?® = 7(tr°t~'). On the other hand,
consider the relation 7(r)% of the finite L-presentation in Eq. (O.8) where r € R and
Ge(@U{d|teThH . Wiite W =®U {0, |t € T}. Since 1 € T and id € ®*, we
can write each image of an element & € U as 7(9)? = 7(tg’t™1) for some t € T and
0 € ®* where ¢ or ¢§ is possibly trivial. Since ¢ € ¥*, we can write ¢ = 07 - - - 0, with
each 5; € W. The image 7(r)% has the form

- _ 03++:0n 102030n 01020 —0903 0 4—03-0p -1
T(r)? =71(tn - 13 t] .y "t t5 st ).

Since 7 is a transversal for UK in F', we can write ¢, --- ¢33 ¢]?7*"" =wut witht € T
and v € UK. This yields that 7(r)7 = 7(utrotozontly=l) =
7(u) T(troro2on t=1) 7(y)~!, which is a consequence of 7(tr°192"nt~1). The latter
relation 7(t 7919277 t~1) is a relation of the group presentation in Eq. (0.7). In sum-
mary, each relation of the group presentation in Eq. (D.7)) is a consequence of the finite
L-presentation in Eq. (D.8) and vice versa. O
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In order to prove Reidemeister-Schreier Theorem [[LT] for finitely L-presented groups, we
need to consider finite index subgroups that are not normal. For this purpose, we need
to construct the relations 7(tr°t~!) with t € 7, r € R, and ¢ € ®* in Eq. (D).
The overall strategy in this paper is to construct the relations as iterated images of
the form 7(srs™1)? for s € 7 and some & € ®*. If the subgroup H is normal as in
Proposition [.34] the conjugation action d;: UK — UK enables us to first construct the
image 7(r?) = 7(r)? and then to consider the conjugates 7(r?)% = 7(tr°t ). However,
in general, it is not sufficient to take as iterated relations those 7(trt=1)7 = 7(t7r°t=7),
with ¢t € T and r € R, as 0 may not be invertible over {¢t? | t € T}. More precisely, we
have the following

Remark 6.33 Let H = (a,b?,ba®b~! bab=2a71b71, ba=tb"2ab™ 1) be a subgroup of the
Basilica group G. The subgroup H is o-invariant and thus we can consider the iterated
images {T(r)? | r € R,0 € ®*}. A Schreier transversal T for H in G is given by T =
{1,b,ba, ba?, bab,ba’b}. We have T° = {1,a,ab?, ab*, ab’a,ab*a}. Note that T° C UK
holds. Thus we cannot ensure that the iterated images {T(trt=')7 | r € R,t € T,0 € ®*}
contain all relations in Eq. (D.7). As the subgroup H is not normal in G, we cannot
consider the conjugate action as well. However, an invariant finite L-presentation for

the subgroup H can be computed with Theorem as the subgroup H is leaf-invariant
(see Section [D.A below).

In the following, we use Theorem [6.32] to prove our variant of the Reidemeister-Schreier
Theorem for invariantly finitely L-presented groups first.

Proposition 6.34 Every finite index subgroup of an invariantly finitely L-presented
group s finitely L-presented.

Proof. Let H be a finite index subgroup of an invariantly finitely L-presented group G =
F/K. By Corollary 5.28] the subgroup H = UK/K contains a normal subgroup L/K
with finite index in G that is ®-invariant. By Theorem [6.32] the subgroup L/K < F/K
is finitely L-presented. The subgroup H is a finite extension of a finitely L-presented
group and thus, by Corollary 2.6l the subgroup H is finitely L-presented. O

Recall that we do not have a method to construct an invariant L-presentation for a finite
extension of an invariantly L-presented group. Therefore, we cannot ensure invariance
of the finite L-presentation obtained from Corollary (.28 In Section [D.7, we study
conditions on a subgroup of an invariantly L-presented group that ensure the invariance
of the subgroup L-presentation. First, we complete our proof of Theorem [Tt

Proof of Theorem[L1 Let G= (X | Q| ®|R) be a finitely L-presented group and let
H be a finite index subgroup of G. Denote the free group over & by F'. Define the normal
subgroups K = (QU U, cqp- R7)F and M = (J,ce- R7)F". Let U < F be generated by
the generators of H so that H = UK /K holds. Then we have M <K <JF and G = F/K.
Further, the group J = F/M is invariantly finitely L-presented by (X | 0 | ® | R)
and it naturally maps onto G. The subgroup UK/M < F/M has finite index in J as
[F' : UK] is finite. By Proposition [6.34], the subgroup UK /M of the invariantly finitely
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L-presented group J = F/M is finitely L-presented. The exact sequence 1 — K/M —
UK/M — UK/K — 1 yields that H = UK/K = (UK/M)/(K/M) where the kernel
K/M is finitely generated as a normal subgroup by the image of the fixed relations in Q.
By Proposition 2.9], H is finitely L-presented as a factor group of the finitely L-presented
group UK /M whose kernel is finitely generated as a normal subgroup. O

D.7 Invariant Subgroup L-Presentations

The algorithms in [966] are much more efficient on invariant L-presentations. Therefore,
we study conditions on a subgroup of an invariantly L-presented group to be invariantly
L-presented itself. By Theorem [6.32] each ®-invariant normal subgroup H of an invari-
antly finitely L-presented group G = (X | Q | ® | R) is invariantly finitely L-presented
as soon as [G : H| is finite.

Consider the notion introduced in Section and let m: F' — Sym(UK\F) be a
permutation representation as usual. Recall that the subgroup H is leaf-invariant, if the
w-leafs

U={j|peddecVdgV pér =mr},
of V satisfy ¥ = {10 | € ®,§ € V,16 ¢ V}. This definition yields the following

Theorem 7.35 Fach leaf-invariant, finite index subgroup of an invariantly finitely L-
presented group is invariantly finitely L-presented.

Proof. Let G = (X | Q| ® | R) be invariantly finitely L-presented and let H < G be a
leaf-invariant finite index subgroup of G. Clearly, we can consider @ = () in the following.
The w-leafs ¥ satisfy ¥ = {40 | ¢ € ®,§ € V, 96 ¢ V}. By Lemma .21 each 7-leaf
o € ¥ C &* defines an endomorphism of the subgroup UK. Moreover, Lemma [5.2T]
shows that each o € ®* can be written as ¢ = 9§ with ¥ € V and § € ¥*. Consider the
finite L-presentation

V0] {6 |6 € Ty | {r@P ) |9 eV,re R teTY, (D.9)

where ) denotes the Schreier generators of UK, 1,7);‘ denotes the endomorphism of the free
group F()) induced by the endomorphisms o of UK, and T is a Schreier transversal
for UK in . Fort € T, 0 € ®, and r € R, the relation 7(t7°¢~1) of the group
presentation in Eq. (D.7)) can be obtained from the L-presentation in Eq. (D.9)) as follows:
Since each o € ®* can be written as 0 = 99 with 9 € V and § € ¥*, we claim that the

relation 7(tr?t~1) is a consequence of the image 7(tr?¢t=1)°. The latter image satisfies
that 7(tr?t71)0 = 7(t9799¢79) = 7(t9r7¢7%). As § € U*, we can write § = 6y --- 0,
with each §; € W. Recall that ;7 = 7 holds. Thus the right-coset UK 1 satisfies that
UK 1-t% = UK 1-t = UK t and therefore UK t°*9» = UK t. Hence, there exists u € UK
so that t® = ut and we obtain

(tr? t_l)g =7t 7t = r(utrt ul) = r(u) T(tro ) T (u)
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which is a consequence of 7(t7° t~1) and vice versa. Similarly, every relation of the L-
presentation in Eq. (D.9)) is a consequence of the relations in Eq. (D.7)). Therefore, the
invariant finite L-presentation in Eq. (D.9) defines the leaf-invariant finite index subgroup
H. O

For finite L-presentations (X | Q@ | ® | R) with ® = {o}, the leaf-invariance of the
subgroup H yields the existence of a positive integer j so that o/ = 7 holds. If we
assume the positive integer j to be minimal, then V = {id,o,...,07"1} and ¥ = {07}.
In this case, the invariant finite L-presentation in Eq. (D.9) becomes

H= |0 {0} | {rt Y [t e T,r e R,0<i<j}.

Note that the subgroup H in Theorem [.33] is not necessarily normal in G. However,
leaf-invariance of a subgroup is a restrictive condition on the subgroup. We try to weaken
this condition with the following

Definition 7.36 Let G = (X | Q| ® | R) be a finitely L-presented group and let H < G
be a finite index subgroup with permutation representation w. The subgroup H is weakly
leaf-invariant, uf

U= {6 |y €0V, Y5 &V, 00~ id)
satisfies U = {5 | € ,6 € V, 98 € V}.

The notion of a weakly leaf-invariant subgroup is less restrictive than leaf-invariance
as the low-index subgroups of the Basilica group suggest: Among the 4956 low-index
subgroups of the Basilica group with index at most 20 there are 2 539 weakly leaf-invariant
subgroups; only 156 of these subgroups are leaf-invariant. More precisely, Table [D.]
shows the number of subgroups (<) that are normal (<), maximal (max), leaf-invariant
(1i.), weakly leaf-invariant (w.l.i.), and the number of subgroups that are weakly leaf-
invariant and normal (< + w.l.i.). For finite L-presentations (X | Q | ® | R) with
® = {0}, each leaf-invariant subgroup is weakly leaf-invariant by Lemma [(.20] (iii). On
the other hand, a weakly leaf-invariant subgroup with ® = {¢} such that id ~+, ¢* holds,
is leaf-invariant by Lemma[5.26] (iv). There are subgroups of a finitely L-presented group
that are weakly leaf-invariant but not leaf-invariant; see Lemma [5.26], (v). If ® contains
more than one generator, we may ask the following

Question 7.37 Is every leaf-invariant subgroup weakly leaf-invariant?

The problem is that Definitions and depend on the minimal sets V and V which
satisfy V C V but which may differ in general. We do not have an answer to this question.
Moreover, the sets V and V in the Definitions and may also depend on choice
of the ordering < in Algorithm [D.Il However we have the following

Lemma 7.38 The conditions leaf-invariance and weak leaf-invariance do not depend on
the choice of the ordering < in Algorithm [D.1
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Table D.1: Subgroups of the Basilica group with index at most 20.

index < < max li. wli <4+ wli
1 1 1 1 1 1 1
2 3 3 3 0 3 3
3 7 4 7 4 4 4
4 19 7 0 0 19 7
5 11 6 11 6 6 6
6 39 13 0 0 14 12
7 15 8 15 8 8 8
8 163 19 O 0 139 19
9 115 13 9 49 52 13
10 83 19 0 0 22 18
11 23 12 23 12 12 12
12 355 31 0 0 98 28
13 27 14 27 14 14 14
14 115 25 0 0 30 24
15 7TT24 0 24 24 24
16 1843 47 0 0 1531 43
17 35 18 35 18 18 18
18 1047 44 0 0 366 40
19 39 20 39 20 20 20
20 939 45 0 0 158 42

Proof. We prove this lemma by constructing the set V returned by Algorithm [D.1] (the
set V from Lemma [5.25)) independently from the ordering < provided that the subgroup
is (weakly) leaf-invariant. Let m: FF — Sym(UK\F') be the permutation representation
as usual and assume that the subgroup is leaf-invariant. For each ;7 > 0, we write
dU) = {o € ®* | |lo|| = j}. Define Wy = {id} and recursively Wy 41 = {0 € ®W, |
or #m} C O Let W =, ~o Wh. Clearly, the construction of W does not depend
on the ordering < in Algorithm D1l We show that the sets YW and V coincide. Write
S; =V nNol) and 7, = WN ®U). Then Sy = {id} = To. In order to prove that W =V
holds, it suffices to show that §; = 7T; for each j > 0. Suppose that, for n € Ny, we have
S; =T forall j <nwhileS, #7, foecS,=VnN ®(") it is contained in V and
hence it satisfies o # w. Moreover, we have ¢ € S, 1 = ®7,_1 and thus ¢ € 7,,. If
oceTn=WnNdM but o €S, then o = with ) € ® and § € T,,_1 = S,_1 C V. Note
that o satisfies 0 = ¥ with 6 € V, 1 € &, and o = )d € V. Hence o is a 7-leaf. Since
the subgroup H is leaf-invariant we have om = 7. This is a contradiction to o € T,.

For proving the statement for weak leaf-invariance, the same arguments as above and
the construction Sy = {id} and S,, = {0 € ®S,, | 0 %, id} apply. O
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The subgroup J = (1,9, x3, 7421 2, *,x3) of the subgroup H in Section [D.4is weakly
leaf-invariant but it is not leaf-invariant. The notion of a weakly leaf-invariant subgroup
yields the following

Lemma 7.39 A normal subgroup UK < F is o-invariant if and only if o~ id.

Proof. Since UK < F, we have UK = Corep(UK) = ker(m). Thus im (7) = F/ ker(n) =
F/UK. If UK is o-invariant, then o induces an endomorphism ¢: F/UK — F/UK and,
as F'//UK = im (m), it induces an endomorphism ~:im (7) — im (7) so that the diagram

commutes. Thus o ~», id. If, on the other hand, om = 7y holds for a homomorphism
v:im (1) — im (o), each g € UK = ker(m) satisfies 1 = 17 = (¢")Y = g™ = ¢°" =
(¢°)™. Hence g7 € ker(m) = UK and thus, UK is o-invariant. O

Lemma yields that a ®-invariant normal subgroup is weakly leaf-invariant. How-
ever, there exist subgroups which are weakly leaf-invariant but not ®-invariant (e.g. the
subgroup H = (a,bab~1,b%) of the Basilica group in Section [D.4] satisfies 02 ~+ id but
not o ~ id; thus, it is weakly leaf-invariant but not ®-invariant). The condition UK < F
in Lemma is necessary, as we have the following

Remark 7.40 The condition UK < F' in Lemma 15 necessary, as the subgroup
H = {(a,b?,bab", bab=2a= b7, ba=b=2ab™ ") of the Basilica group G is not normal in
G, it satisfies (UK)? C UK ; however, it does not satisfy o~ id.

On the other hand, the subgroup H = (a,bab,ba='b,b?) of the Basilica group G sat-
isfies &~y id but it does not satisfy (UK)? C UK as [F : Corep(UK)] = [F : L] = 8 #
4 =[F:UK].

A weakly leaf-invariant normal subgroup satisfies the following variant of our Reide-
meister-Schreier Theorem:

Theorem 7.41 A weakly leaf-invariant normal subgroup which has finite index in an
invariantly finitely L-presented group is invariantly finitely L-presented.

Proof. Let G = (X | Q| ®|R) be invariantly finitely L-presented and let H = UK/K
be a finite index normal subgroup of G. As usual, we may consider @ = () as G is
invariantly L-presented. Let V C V be the set from Lemma (.25l Since H is weakly leaf-
invariant, the weak-leafs W in Definition satisfy U = {40 | ¢ € ,6 € V, 08 & V}.
By Lemma [7.39] each 1§ € ¥ induces an endomorphism of the normal subgroup UK < F.
Let T be a Schreier transversal for UK in F and let ) denote the Schreier generators of the
subgroup UK. Then each endomorphism 1) € W of UK translates to an endomorphism
1o of the free group F()). Consider the invariant finite L-presentation

(V10 {65 | w6 € WyU{s [te T} | {r() | r € R,o € V}), (D-10)
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where d; denotes the endomorphism of UK which is induced by conjugation by ¢t € T.
The finite L-presentation in Eq. (D.10) defines the normal subgroup H. This statement
follows with the same techniques as above; in particular, it follows from rewriting the
presentation in Eq. (D.1). O

The subgroup H in Section [D.4] is a normal subgroup satisfying o2 ~», id. Hence,
Theorem [[41] shows that this subgroup is invariantly finitely L-presented. Even non-
invariant L-presentations may give rise to invariant subgroup L-presentations as the
following shows:

Remark 7.42 There are non-invariant L-presentation G = (X | Q | ® | R) and finite
index subgroups H < G that satisfy (UK)? C UK for each o € ®*. For instance, the
finite L-presentation of Baumslag’s group G in [6]|] is non-invariant (see the proof of
Proposition [Z23) while its index-3 subgroup H = (a3 b,t) satisfies (UK)? C UK for each
o € ®. The subgroup H even admits an invariant L-presentation over the generators
x =a® and y = a*ta™? given by

(o, y} 1 01 {00 02} | {y~taya™})

3

where 8 is induced by the map x — x and y — xyx™° and 62 is induced by the map

x =z and y — cyx 2.

The finite L-presentations for finite index subgroups in Proposition [6.34] Theo-
rem [[.35], and Theorem [T41] are derived from the group’s L-presentation (X | Q | & | R)
by restricting to those endomorphisms in ®* which restrict to the subgroup. However,
there are subgroups of an invariantly L-presented group so that no endomorphism from
®* restricts to the subgroup. In this case the finite L-presentation for the finite index
subgroup needs to be constructed as a finite extension of the finitely L-presented stabi-
lizing core L as in the proof of Theorem [Tl The following remark gives an example of a
subgroup of the invariantly finitely L-presented Basilica group so that no endomorphism
from ®* restricts to the subgroup:

Remark 7.43 Let H = (b?,a®,ab’a™",a'b%a, bab~'a) denote a subgroup of the Basilica
group G. Then H is a normal subgroup with index 6 in G. We are not able to find an
imwariant finite L-presentation for H.

The subgroup H admits the permutation representation m: F — Sym(UK\F). We

" R L i A G
Lb o= (1,4)(2,5)(3,6) b= (1,2,3)(4,6,5)
as well as
Ja = (1,3,2)(4,5,6) Ja = ()
02”'{ b — () and "3”'{ b — (1,3,2)(4,5,6).

l

Clearly, 0® ~, o but, for each 0 < £ < 3, we do not have o ~ id. The homomorphism
3

y:im (o) — im (o37) with o1 = omwy is bijective. Suppose there existed o™ € ®* so
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that the subgroup UK is o™ -invariant. By Lemma [Z.39, the normal subgroup UK is o"-
wnwvariant if and only if o™ ~s; id holds. Clearly n > 3. Since o™ ~», id, there exists
a homomorphism :im (7) — im (o"m) so that o"m = mp. We obtain mp = o"m =
o" 3o = o" Bony = 0" 2ny. Iterating this rewriting process eventually yields a
positive integer 0 < £ < 3 so that mp = o™ = olny™ for some m € N. As v is bijective,
this yields that o'm = mpy™™ and hence o° ~ id; a contradiction. Thus there is no
positive integer n € N so that 0™ ~, id. Hence, no substitution in ®* restricts to the

subgroup UK.

Our method to compute a finite L-presentation for the subgroup H in Remark [[43] is
therefore given by our explicit proof of Theorem [Tl If the subgroup H in Remark [[.43]
admits an invariant finite L-presentation, the substitutions may not be related to the
substitutions ® of the finite L-presentation (X | Q | ® | R) of the Basilica group
in Proposition LT3l It is neither clear to us whether H admits an invariant finite L-
presentation at all nor do we know how to possibly prove that H does not admit such
invariant finite L-presentation.

D.8 Examples of Subgroup L-Presentations

In this section, we consider the subgroup H = (a,bab™!,b%) of the Basilica group G as in
Section [D.4l We demonstrate how our methods apply to this subgroup and, in particular,
how to compute the L-presentation in Section [D.41

Coset-enumeration for finitely L-presented groups [67] allows us to compute the per-
mutation representation m: F' — Sym(UK\F') for the group’s action on the right-cosets.
A Schreier transversal for H in G is given by 7 = {1,b,b%} and we have

a +—
F—
i Sns { b — (1,2,3).
Moreover, H is a normal subgroup with index 3 in G and it satisfies 02 ~», id. By
Lemma [5.26] there exists an integer k > 2 so that o* ~ id; we can verify that o*r =«
holds. Thus o4 ~ id. In particular, the subgroup H is (weakly) leaf-invariant and normal.
Therefore the following techniques apply to this subgroup:

e As the subgroup H is a finite index subgroup of an invariantly finitely L-presented
group G, the general methods of Proposition [6.34] and Theorem [6.32] apply.

e As the subgroup H is leaf-invariant, the methods in Theorem [[.35] apply.

e As the subgroup H is weakly leaf-invariant and normal, the methods in Theo-
rem [L.41] apply.

We demonstrate these different techniques for the subgroup H. First, we consider the
general method from Proposition [6.34l Note that the stabilizing subgroup L and stabi-
lizing core L coincide by Corollary 5.30l The stabilizing subgroups L = L have index 9
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in I and a Schreier generating set for L = L is given by

r = a* x4 = abab 'a"? x7 = a®bab! z10 = b%a?ba2.
xo = bab la™l x5 = ab?a b2 x5 = a?bPa?b?
x3 = b3 zg = b*aba~! zg = b%a®b?

Let F' denote the free group over {a, b} and let E denote the free group over {z1,...,z10}.
The Reidemeister rewriting 7: F' — F allows us to rewrite the iterated relation r = [a, a].
We obtain 7(r) = $I1$I01$6 $I01$9 x3. Furthermore, the rewriting 7 allows us to translate
the substitution o of the Basilica group to an endomorphism of the free group £. The

homomorphism ¢: E — E is induced by the map

T .%'?)’, T +r TgTo9,

xr9 +H— s, Ty = T3T2Ts5Tg,

T3 — X1, ry > T3ToT4 x;olxgl,
T4 +— Tg x;lxgl, g9 +» TgT10I8T10,

Ts xgl, Trip > TgT10 X7 ﬂ:gl.

Similarly, the conjugation actions d, and d, which are induced by conjugation with a
and b, respectively, translate to endomorphisms 5 and 5b of the free group E. By
Proposition B34, the stabilizing subgroups L = L are finitely L-presented by

M=L/K = ({z),....210} | 0| {5, 00,0} | {o7 21 26 275 w9 23}).

The subgroup H satisfies the short exact sequence 1 - M — H — Zs — 1 with a
cyclic group Zs = {(a | a® = 1) of order 3. Corollary yields the following finite
L-presentation for the subgroup H:

{a, 2, w0} [{ePa " U{(a ) ) haicio | O | {7 g we g g w3)).

where the substitutions_ \TIN: {8,&,&,} of M’s finite L-presentation are dilated to en-
domorphisms ¥ = {7,d,,d} of the free group over {«,z1,...,x10} as in the proof of
Proposition

Secondly, the subgroup H is (weakly) leaf-invariant and normal. Therefore, the
methods in Section apply. First, we consider the construction in Theorem
for leaf-invariant subgroups: A Schreier generating set for the subgroup UK is given by
T, = a, T3 = bab~', 3 = b%ab~?, and x4 = b>. Since o'm = 7, the subgroup H is
o-invariant and its suffices to rewrite the relation r = [a,b] and its images 7(tr® t~1),

0 <1 < 4. These have the form:

i t=1 t="b t = b?
0 xfleq}glm X1 x;lxg T4 x;lelxg X1 xglscglxg To
1 oy xy x) 2324 x;1z4 T zllzglxl :cglm x9 :cl_lzZ To T4 1'1_11'3
—2 ~1..-2 2,..-1,2 -2 1.2 2,..—1.2 -2 .-2.92, 2
2 29042:52 1:1:49013042:132304 Ty 190429032:549029042:133:54 ) 303 :11:1 1133301
-2, -2 -1_2 —-2,.2 2 -1,,-2 -2.2 92 -— 2 -1 - 2
3wy twg Ty Xy T4y TXEX] Ty T Ty TZTLX] CXTATE Ty Ty Ty z1z4x2 x4z3
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Denote the set of relations above by S. The endomorphism o* translates, via 7, to an

endomorphism of the free group over {z1,...,z4} which is induced by the map
1 xil,
— 4,1
gy T > T4ToTy ,
) oz3 o~ 23 xzz,
T4 > .%'3

By Theorem [Z.35] an L-presentation for the subgroup H is given by

He ({z1,...,24} 0] {0} | S).

Finally, the subgroup H is weakly leaf-invariant and normal. Therefore, the methods in
Theorem [Z4T] apply. As 02 ~+ id, it suffices to consider the relations 7(r), 7(r?), and

their images under the substitutions o2 and (SAb (because a Schreier transversal is given
by T = {1,b,b%}). The substitutions ¢2 and 0, are induced by the maps

ry = xi, T = I9,
2
- o +H— T o o +H— T
o2 ¥, and  dp: B
T3 = T4T5Ty , T3 = T4T1T4 0,
Ty xi, Ty > T4.

Theorem [C.4]] yields the finite L-presentation

H= ({ay, ..o} | 0] {028} | {r(r),7(r)})

for the subgroup H as in Section [D.4

D.8.1 An Application to the Grigorchuk Group

As a finite L-presentation of a group allows the application of computer algorithms, we
may use our constructive proof of Theorem [[I] to investigate the structure of a self-
similar group by its finite index subgroups as in [77]. As an application, we consider the
Grigorchuk group, see [53], & = (a,b,c,d) and its normal subgroup D = (d)®. We show
that the subgroup D = (d)® has a minimal generating set with 8 elements and thereby
we correct a mistake in [TT,/58].

The Grigorchuk group & satisfies the well-known

Proposition 8.44 (Lysénok [96]) The group & is invariantly finitely L-presented by
& = ({a,b,c,d} | {a®,b%,c2,d? bed} | {o} | {(ad)*, (adacac)*}), where o is the endomor-
phism of the free group over {a,b,c,d} induced by the mapping a — aca, b+ d, ¢+ b,
and d — c.

It was claimed in [II], Section 4.2] and in [58] Section 6] that the normal subgroup D =
(d)® is generated by {d,d®,d,d*}. In the following, we show that the Reidemeister
Schreier Theorem [Tl allows us to prove that a generating set for D = (d)® contains
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at least 8 elements. The coset-enumeration for finitely L-presented groups [67] and the
solution to the subgroup membership problem for finite index subgroups [67] show that
the subgroup

H — <d da dac daca dacac dacaca dacacac dacacaca> (D.ll)

has index 16 in &. It is a normal subgroup of & so that &/H is a dihedral group of
order 16. In particular, the subgroup H and the normal subgroup D = (d>® coincide. A
permutation representation 7: F' — S, for the group’s action on the right-cosets UK\ F’
is given by

a — (1,2)(3,5)(4,6)(7,9)(8,10)(11,13)(12,14)(15, 16)

Fas b — (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13, 15)(14, 16)

T8 Y o (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13, 15) (14, 16)
d — ().

Our variant of the Reidemeister-Schreier Theorem and the techniques introduced in Sec-
tion [D. 7 enable us to compute a subgroup L-presentation for D. For this purpose, we first
note that o2 ~+, id. Hence, the normal core D = Corer(UK) = ker(r) is o3-invariant.
The core Corer(UK) is a free group with rank 49 and a Schreier transversal for D in &
is given by

1,a,b,ab, ba, aba, bab, (ab)?, (ba)?, a(ba)?, b(ab)?, (ab)?, (ba)?, a(ba)?, b(ab)?, (ab)?.

A finite L-presentation with generators dy = d, di = d%, do = d°¢, d3 = d*“, dy = d*°*¢,
d5 — dacaca, d6 — dacacac, and d7 — dacacaca iS given by

D= ({do,...,d7} |0 |{5,04,0} | R),
where the iterated relations are

R = {d37 [dy, do), [d1, da), [d7, ds da]*, [d7 do, d3 da), (d3 d7 dy do)?, (d7 d* dy d§l4)2}

and the endomorphisms {&, d,, dy} are induced by the maps

dy > do, oo
7
do — dl, dl — d2, d1 — dod s
d 4
dl — d07 d — d d2 — d 7
2 1 0o >
d2 — d3, d d?4d‘7i3
0
d3 g dg, d3 — d4 ) ~ d3 = d(] )
% ;o Oy do and o 43 g4
dy +— ds, dy +— d3°, dy — dy7 "7,
d5 — d4 ds .dy ,d3
’ ds +— dg, ds +— d0d7 d;"dg ,
d6 — d7
’ d — d dd4dd3dd4
d7 +— d6, 6 5 dg — dy7 77
d dy ,d3 ,dy d
dr — d70 > d7 d0d74 d7?d7td7? )

The latter L-presentation of the normal subgroup D allows us to compute the abelianiza-
tion D/[D, D] using the methods from [9]. These computations yield that D/[D, D] =



162 Chapter D. A Reidemeister-Schreier Theorem for Finitely L-Presented Groups

(Z)® is 2-elementary abelian of rank 8. Hence, the normal subgroup D has a minimal
generating set of length at least 8. Because a generating set with 8 generators was already
given in Eq. (D.11)), a minimal generating set of D has precisely 8 elements. In particular,
this shows that D # (d,d*,d®,d**). The latter mistake could have been detected also
by computing the abelianization of the image of D = (d)® in a finite quotient of & (e.g.
the quotient G/Stab(n) for n > 4) by hand or using a computer algebra system such as
GAP.
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Appendix

Approximating the Schur Multiplier of
Certain Infinitely Presented Groups via
Nilpotent Quotients

Abstract. We describe an algorithm for computing successive quotients of the
Schur multiplier M (G) for a group G given by an invariant finite L-presentation.
As application, we investigate the Schur multipliers of various self-similar
groups such as the Grigorchuk super-group, the generalized Fabrykowski-Gupta
groups, the Basilica group and the Brunner-Sidki-Vieira group.

Keywords. Schur multiplier; recursive presentations; Grigorchuk group; self-
similar groups;

E.1 Introduction

The Schur multiplier M (G) of a group G can be defined as the second homology group
Hy(G,Z). Tt was introduced by Schur and is, for instance, relevant in the theory of
central group extensions. In combinatorial group theory, the Schur multiplier found its
applications due to the Hopf formula: if F'is a free group and R is a normal subgroup
of F' so that G = F'/R, then the Schur multiplier of G is isomorphic to the factor group
(RN F')/[R, F]. For further details on the Schur multiplier we refer to [I21}, Chapter 11].

The Hopf formula yields that every finitely presentable group has a finitely generated
Schur multiplier. This is used in [56] for proving that the Grigorchuk group is not
finitely presentable: its Schur multiplier is infinitely generated 2-elementary abelian.
This answers the questions in [19] and [I27]. There are various examples of self-similar
groups other than the Grigorchuk group for which it is not known whether their Schur
multiplier is finitely generated or whether the groups are finitely presented.
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The first aim of this paper is to introduce an algorithm for investigating the Schur
multiplier of self-similar groups with a view towards its finite generation. Let G be a
group with a presentation G = F/R. Then G/~.G = F/R~.F, where .G denotes the
c-th term of the lower central series of G. We identify M(G) with (RN F’')/[R, F] and
M(G/~.G) with (Ry.F N F")/[Ry.F, F] and define

¢c: M(G) = M(G/7.G), g[R, F| — g[Ry.F, F].

Then ¢, is a homomorphism of abelian groups. We describe an effective method to
determine the Dwyer quotients M.(G) = M(G)/ ker ¢., for ¢ € N, provided that G is
given by an invariant finite L-presentation, see [6l9] or Section [E.21 below. Every finitely
presented group and many self-similar groups can be described by a finite invariant L-
presentation. An implementation of our algorithm is available in the NQL-package [65]
of the computer algebra system GAP; see [50)].

We have applied our algorithm to various examples of self-similar groups: the Grigor-
chuk super-group &, see [I1], the Basilica group A, see [60,61], the Brunner-Sidki-Vieira
group BSV, see [29], and some generalized Fabrykowski-Gupta groups I'y, see [45,[57].
As a result, we observed that the sequence (M1(G), ..., M.(G), Mct1(G),...) exhibits a
periodicity in ¢ in all these cases. Based on this, we propose the following conjecture.

Conjecture 1

o M.(®) is 2-elementary abelian of rank 2|logy(c)| + 2|log, g] +5, forc>4.
o M.(A) has the form 72 x A., where A. is an abelian 2-group of rank |log, <] and

exponent 22L%J+2’ for ¢ > 6.

e M.(BSV) has the form Z? x B., where B, is an abelian 2-group of rank |log, £+
|logs %J + 3 and exponent 22L%J+1’ for ¢ > 4.

e For a prime power d, the group M.(I'q) has exponent d for c large enough; its rank

18 an increasing function in ¢ which exhibits a periodic pattern.

In particular, all of these groups have an infinitely generated Schur multiplier and are
therefore not finitely presentable.

Further details on the periodicities and the computational evidence for them are given
in Section

E.2 Preliminaries

In the following, we recall the basic notion of invariant and finite L-presentations and
the basic theory of the Schur multiplier of a group. Let F' be a finitely generated free
group over the alphabet X. Further suppose that Q, R C F' are finite subsets of the free
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group F' and ® C End(F) is a finite set of endomorphisms of F'. Then the quadruple
(X ] Q| ®|R)is a finite L-presentation. It defines the finitely L-presented group

G:<X‘QU U R¢>,

peP*

where ®* denotes the free monoid generated by ®; that is, the closure of ® U {id} under
composition. A finite L-presentation (X | Q | ® | R) is invariant if every endomorphism
@ € ® induces an endomorphism of G; that is, if the normal closure of Q U Uweqﬁ RY¥
in F is p-invariant. For example, every finite L-presentation of the form (X | ( | @ |
R) is invariant. Clearly, invariant finite L-presentations generalize finite presentations
since every finitely presented group (X | R) is finitely L-presented by (X | 0 | {id} |
R). Further examples of invariantly L-presented groups are several self-similar groups
including the Grigorchuk group [53], the Basilica group [60L61I], and the Brunner-Sidki-
Vieira group [29].

In the remainder of this section, we recall the basic theory of the Schur multiplier of
a group GG. Recall that, in general, the Schur multiplier of a finitely presented group is
not computable; see [52]. But, for instance, if G is finite, then M(G) can be deduced
from a finite presentation of G with the Hopf formula and the Reidemeister-Schreier
algorithm. A more effective algorithm for finite permutation groups is described in [82].
Recently, Eick and Nickel [44] described an algorithm for computing the Schur multiplier
of a polycyclic group given by a polycyclic presentation.

Let F be a free group and R be a normal subgroup of F' so that G = F'/R. Then the
Hopf formula gives

M(G) = (RN F')/[R, F). (E.1)

Suppose that N is a normal subgroup of GG and let S be a normal subgroup of F' so that
SR/R corresponds to N. Then Blackburn and Evens [24] determined the exact sequence

1= (RNI[S, F))/([R,FIN[S,F]) - M(G) - M(G/N) = (NNG")/[N,G] — 1.
Applying this sequence to the lower central series term N = 7. yields the exact sequence
1= (RNYer1 F)/([R, F] N Y1 F) = M(G) R M(G/v:.G) = .G /Yer1G — 1.

This gives a filtration M(G) > ker ¢y > ker pg > ..., called the Dwyer-filtration, of the
Schur multiplier of G. Note that, if G has a maximal nilpotent quotient of class ¢, then

ﬂ kergpc = (Rm'70+1F)[R’ F]/[R’ F]

However, even if the group G is residually nilpotent, the group F/[R, F'] is not necessarily
residually nilpotent; see [98] and [25]. Thus the Dwyer-kernel (1), oy ker ¢, is possibly
non-trivial.

We note that the Schur multiplier M (G/~.G) can be computed with the algorithm
in [44] while the isomorphism type of v.G/v.+1G can be computed with the nilpotent
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quotient algorithm in [9]. Therefore, the sequence M (G) — M(G/7.G) = .G /Yer1G —
1 allows to determine the size of M.(G) provided that M(G/~.G) is finite. However, the
algorithm described here determines the structure of M.(G) even if the Schur multiplier
M(G/~.G) is infinite.

E.3 Adjusting an Invariant L-Presentation

In order to prove the following theorem, we explicitly describe an algorithm for modi-
fying an invariant L-presentation. The resulting L-presentation enables us to read off
a generating set for the Schur multiplier in Section [E4l Our algorithm generalizes the
explicit computations in [56].

Theorem 3.1 Let (X | Q| ® | R) be an invariant finite L-presentation which defines the
group G = F/R. Then G admits an invariant finite L-presentation (X | Q UB | ® | R')
with @'\ R’ C F' and B C F satisfying |B| = |X| — b(G/G"), where h(G/G') denotes the
torsion-free rank of G/G’.

Proof. Since (X | Q | ® | R) is an invariant L-presentation, every endomorphism ¢ € ®
induces an endomorphism of the group G. Thus we have R¥ C R, for every ¢ € ®*.
In particular, every image of a relator in Q UR is a consequence; that is, Q¥ C R and
R? C R, for every @ € ®*.

Write n = rk(F'). Then the abelianization 7: F' — Z"™ maps every x € F to its
corresponding exponent vector a, € Z". Clearly, kerm = F’ and, since F’ is fully-
invariant, every ¢ € ® induces an endomorphism of the free abelian group Z". Therefore,
the exponent vector of ¥ is the image a, M, for some matrix M, € Z"*". Now, the
normal subgroup RF’ maps onto

U=(ag,a, M, |qe Q,reR,pcd) 7" (E.2)

As every subgroup of Z™ is generated by at most n elements, the subgroup U is finitely
generated. In the following, we may use the spinning algorithm from [J] and Hermite
normal form computations to compute a basis for the subgroup U while modifying the
L-presentation simultaneously.

Let B be a basis of (a, | ¢ € Q). Then every element u € B is a Z-linear combination
of elements in {a, | ¢ € Q}. Hence, for every u € B, there exists a word r, in the relators
in Q such that a,, = u. Define B = {r, | u € B}. Then, for every ¢ € Q, it holds that
aq € (B) as B is a basis and hence, there exists a word wyg in the r,’s so that a,,, = aq.
Define @' = {qu,"' | ¢ € Q}. Then the exponent vector of each element in Q' vanishes
and hence Q' C F’. Moreover, the invariant and finite L-presentation

(X1 QUB|®|R)

still defines the group G as we only applied Tietze transformations to the given L-
presentation.
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It remains to force the elements of R into the derived subgroup F’. For this purpose,
we will use the spinning algorithm from [9] as follows: Initialize R’ = ). As long as R is
non-empty, we take an element r € R and remove it from R. Then either a, € (B) or
ar ¢ (B) holds. If a, € (B), then there exists a word w, in the r,’s such that a,, = a,
and hence, rw.! € F’. In this case we just add rw;! to R’. Note that, for every
¢ € ®* the word (w;!)? is a consequence and hence, we can replace the relator r¥ in
the L-presentation by (rw, 1)?. The invariant and finite L-presentation

(X | QUB|®|RUR)

still defines the group G.

If, on the other hand, a, ¢ (B) holds, we enlarge the current basis B and modify the
set B. Let B’ be a basis for (B U {a,}). Then every v € B’ is a Z-linear combination of
the elements in B U {a,} and hence, there exists a word 7, in BU{r} such that az, = v.
Define B = {7, | v € B'}. Then, by construction, either |B| = |B|+1 or |B| = | B| holds.
In the latter case, there is an element v € B so that u € (B \ {u}) U{a,}) holds. Thus,
there exists a word w, in the elements of B such that a,, = u and hence, r,w, ' € F'.
In this case, we add r,w; ! to Q" and add the images {r{ | ¢ € ®} to R. This yields an
invariant and finite L-presentation (X | Q' UB | ® | R’ UR), with @', R’ C F’, which
still defines the group G.

As ascending chains of subgroups in Z™ terminate, eventually every exponent vector
of an element in R is contained in the subgroup (B) and hence, the algorithm described
above eventually terminates. Clearly, the basis B is then a basis for the subgroup U
in (E2). As shown in [9], the abelian quotient G/G’ is isomorphic to the factor Z"/U.
Its torsion-free rank is n — |B| as claimed above. O

In the following example, we recall the explicit computations in [56] for the Grigorchuk
group &.

Example 3.2 Consider the Grigorchuk group & with its invariant L-presentation
& = ({a,b,c.d} | {a®, 0%, c*. d?,bed} | {o} | {(ad)", (adacac)'})

where o s the free group endomorphism induced by the mapping

a

QLo o Q
11117
SIS R~

As the exponent vectors (2,0,0,0), (0,1,1,1), (0,0,2,0), and (0,0,0,2) of the relations
a?, bed, ¢, and d?, respectively, are Z-linearly independent forming a basis for the sub-
group U in (E2), we can modify this presentation so that the relations become

a2, ¢, d?, bed, b* (bed) 22 d?, oF ((ad)*a=*d™%), o ((adacac) a2 8d™4), (E.3)
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for every k € Ny. Since the L-presentation is invariant, the images o*(a=*d™*) and
Jk(a*12c*8d*4) are consequences. Hence, the invariant finite L-presentation

Ha,b,e,d}y | {B*(bed)2Pd*} U {a?, 2, d% bed} | {0} | R)),

where R' = {(ad)*a=*d™*, (adacac)*a='2c=8d*}, defines the Grigorchuk group & and,
as &/ = 73 it has the form as claimed in Theorem [31)

E.4 A Generating Set for the Schur Multiplier

Let G be a finitely generated group. We will use the results of Theorem B1] and the
Hopf formula to give a generating set for the Schur multiplier of G if G is invariantly
finitely L-presented. Suppose that F'is a finitely generated free group and R is a normal
subgroup of F' so that G = F//R. Then F/[R, F| is a central extension of R/[R, F] by
the group G and the subgroup R/[R, F| contains (RN F')/[R, F|. By the Hopf formula,
the latter subgroup is isomorphic to the Schur multiplier of G. Further, the subgroup
R/[R, F] decomposes as follows.

Proposition 4.3 Let G = F/R with a finitely generated free group F. Then we have
that
R/[R, F] = z*<F)=0(G/G) o pp(@).

Proof. The factor RF'/F’ is free abelian with torsion-free rank rk(F) — h(G/G"). Since
RF'/F" = R/(RN F') is free abelian, the subgroup (R N F’)/[R, F] has a free abelian
complement of rank rk(F)—h(G/G’) and thus, the central subgroup R/[R, F| decomposes
as claimed above. O

As R/[R, F] is central in F//[R, F], it is generated by the images of the normal generators
of R. Thus, in particular, if R is finitely generated as normal subgroup (that is, if G
is finitely presentable), then R/[R, F| is a finitely generated abelian group and so is its
subgroup (RN F')/[R, F].

If G is finite, then R/[R, F| is an abelian subgroup with finite index in F'/[R, F]. A
finite presentation for F'/[R, F| can be obtained from a finite presentation of G. Then
the Reidemeister-Schreier algorithm yields a finite presentation for R/[R, F'] from which
the isomorphism type of M (G) is obtained easily.

If G is polycyclic, then it is finitely presentable and hence, the group F/[R, F] is
an extension of a finitely generated abelian group by a polycyclic group. In particular,
F/[R, F| is polycyclic in this case. A consistent polycyclic presentation for F'/[R, F] can
be computed with the algorithm in [44]. This polycyclic presentation enables us to read
off the isomorphism type of R/[R, F| and, by Proposition 3], the isomorphism type of
M(G). If G is finitely generated and nilpotent of class ¢, then F/[R, F] is nilpotent of
class at most ¢+ 1. If GG is given by a weighted nilpotent presentation, then the algorithm
in [I07] computes a weighted nilpotent presentation for F/[R, F.

We now consider the case of an invariantly finitely L-presented group G. Even though

its Schur multiplier is not computable in general, the following theorem yields a gener-
ating set for M (G) as subgroup of R/[R, F].



E.5. Approximating the Schur Multiplier 169

Theorem 4.4 Let (X | Q UB | ® | R') be an invariant finite L-presentation of G
as provided by Theorem [31. Further let m: F — F/|R,F|,x — & denote the natural
homomorphism. Then we have that

M(G)= (g% |qe Q,re R, pecd).

Proof.  Clearly, R/[R, F] is generated by the images of Q" UBUJ,cqe+(R')¥. As the
relators in @' U R’ are contained in F’, it holds that

{g,m%|qe Q' reR ,ped®} C(RNF)/IR,F]. (E.4)

We are left with the relators in B. Recall that we have |B| = rk(F) — h(G/G’). Hence,
the images {r | r € B} generate a free abelian complement to the Schur multiplier
(RN F')/[R,F]| in R/[R, F]|. Therefore, the images in (E.4]) necessarily generate (RN
F/IR, F]. O

As the group G in Theorem (4] is invariantly L-presented, for every endomorphism
¢ € &, we have R? C R and [R, F]? C [R, F]. Therefore, every ¢ € ® also induces an
endomorphism of F/[R, F| which fixes the subgroup R/[R, F]. Further, as F’ is fully-
invariant, every such ¢ induces an endomorphism @ of (R N F')/[R, F]. This yields
that

M(G)=(q,7%|qe Q@ ,reR pecd
and hence, the free monoid ®* induces a ®*-module structure on the Schur multiplier

M(G) in a natural way:

Lemma 4.5 Let (X | Q| ® | R) be an invariant finite L-presentation. Then the Schur
multiplier M(G) is finitely generated as a ®*-module.

In particular, the Schur multiplier M (G) has the form A& @y B with finitely generated
abelian groups A and B; see [0].

We proceed with Example by describing a generating set for the Schur multiplier
of the Grigorchuk group as provided by Theorem 4} cf. [56].

Example 4.6 Consider the invariant finite L-presentation of the Grigorchuk group &
as determined in Example[T2 Then the images of

b2 (bed) 22 d?, o ((ad)*a=*d™?), oF ((adacac)*a " 2¢8d™*), with k € Ny, (E.5)

in F/[R, F], generate the subgroup (RN F')/[R, F]|. The images in F/[R, F| of the re-
lations a®, ¢*, d?, and bed generate a free abelian complement to the Schur multiplier

(RN F"Y/[R, F) in R/[R, F).

E.5 Approximating the Schur Multiplier

We finally describe our algorithm for approximating the Schur multiplier of an invariantly
finitely L-presented group G. Let (X | @ | ® | R) be an invariant finite L-presentation
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defining the group F'/R so that G = F/R. Then G is finitely generated and hence,
its lower central series quotient G/~.G is polycyclic. The nilpotent quotient algorithm
in [9] computes a weighted nilpotent presentation for G/~.G together with the natural
homomorphism 7: F — G/~.G. In [107], Nickel described a covering-algorithm which,
given a weighted nilpotent presentation for G /.G and the homomorphism 7, computes a
polycyclic presentation for F'/[R~.F, F| together with the natural homomorphism 7: F' —
F/|R~.F, F]. The homomorphism 7 induces the homomorphism ¢.: M (G) — M (G/~.G)
as follows: By Theorem Bl the group G has an invariant finite L-presentation of the
form
(x| QuB|®|R), with 9 R CF

and |B| = |X| — h(G/G"). Now, by Theorem B4}, the images of Q' U J,cq-(R)? in
F/|R,F] generate the subgroup (R N F')/[R,F]. Similarly, the their images in
F/|R~.F, F| generate the subgroup (R N F')[R~.F,F]/[RY.F,F]. Since [Rv.F,F] =
[R, F|yet1F, we have that

(RN F')[RcF, Fl/[RyF, F] = (Rye1 F 0 F') /R F, F.

The latter subgroup is contained in (Rvy.F N F’)/[R~.F, F| which is isomorphic to the
Schur multiplier M (G/~.G).

As the group G is invariantly L-presented, every ¢ € ® induces an endomorphism ¢
of Ry .F/|R~.F, F|. This yields, that the image of M(G) in M (G/~.G) has the form

(¢, (r")? | qe Q,r e R\, p € B*). (E.6)

This can be used to investigate the ®*-module structure of M(G) by considering the
finitely generated Dwyer quotients M.(G). In our algorithm, we use Hermite normal
form computations in a spinning algorithm for computing a finite generating set of the
subgroup in (E.6). We summarize our algorithm as follows: Write G = F//R.

DWYERQUOTIENT( G, ¢ )
Compute an invariant finite L-presentation as in Theorem B.11

Compute a weighted nilpotent presentation for G /.G
together with the natural homomorphism F' — G/~.G.

Compute a polycyclic presentation for the group F/[R~.F, F]
together with the natural homomorphism F' — F/[R~.F, F].

Translate each ¢ € ® to an endomorphism of the group F/[R.F, F|
and restrict this endomorphism to (Ry.41F N F')/[Ry.F, FJ.

Use the spinning algorithm to compute a finite generating set
for the image (Ry.+1F N F')/[R.F, F].
E.6 Applications

The algorithm described in the first part is available in the NQL-package [65] of the
computer algebra system GAP; see [50]. We parallelized the algorithm in [9] to enlarge
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the possible depths in the lower central series reached in this section. We show the
successful application of our algorithm to the following invariantly finitely L-presented
testbed groups studied in [6] and [9]:

e The Grigorchuk group &, see [53], with its invariant finite L-presentation from [96];
see also [56] and Example B2}

e the twisted twin & of the Grigorchuk group, see [14], with its invariant finite L-
presentation from [I4];

e the Grigorchuk super-group &, see [I1], with its invariant finite L-presentation
from [6];

e the Basilica group A, see [60,61], with its invariant finite L-presentation from [16];
and

e the Brunner-Sidki-Vieira group BSV, see [29], with its invariant finite L-presenta-
tion from [6].

In Section [E.6l we further applied our algorithm to several generalized Fabrykowski-
Gupta groups: an infinite family of finitely L-presented groups I', introduced in [57].
Invariant finite L-presentations for these groups were computed in [9].

Aspects of the Implementation of our Algorithm in GAP

Table [E.1]l shows some performance data of the implementation of our algorithm in the
NQrL-package of the computer-algebra-system GAP. All timings displayed below have
been obtained on an Intel Pentium Core 2 Quad with clock speed 2.83 GHz using a single
core. We applied our algorithm with a time limit of two hours. Then the computations
have been stopped and the total time used to compute a weighted nilpotent presentation
for the quotient G/~.G and the total time to compute the Dwyer quotient M.(G) have
been listed. Every application completed within 1 GB of memory.

Table E.1: Performance data of our implementation in GAP

Time (h:min) for Time (h:min) for

“ G/res1G Mo (G) CC GlenG Men(G)
& 90 1:47 0:07 r, 71 1:50 0:07
& 54 1:44 0:09 s 55 1:40 0:04
& 44 1:32 0:13 7 46 1:40 0:03
A 42 1:31 0:16 s 56 1:54 0:06
BSV 35 1:10 0:21 Iy 61 1:44 0:06
s 7 1:46 0:04 I'n 35 1:54 0:02

We note that for the results shown in the remainder of this section we used a parallel
version of the algorithm for computing G /v.4+1G.



172 Chapter E. Approximating the Schur Multiplier

On the Dwyer Quotients of the Testbed-Groups

The Dwyer quotient M.(G) = M(G)/ker ¢, is a finitely generated abelian group and
hence, it can be described by its abelian invariants or, if the group is p-elementary
abelian, by its p-rank. Here the list (¢1,...,¢,) stands for the group Z., ® -+ ® Z,,. For
abbreviation, we will write al¥ if the term a occurs in £ consecutive places in a list. In
the following we summarize our computational results for the testbed groups.

The Grigorchuk group & was shown in [53] to be an explicit counter-example to the
general Burnside problem: it is a finitely generated infinite 2-torsion group. Furthermore,
the Grigorchuk group is a first example of a group with an intermediate word-growth.
In [96], Lysénok determined a first L-presentation for the group &; see Example 3.2
Even though it was already proposed in [53] that the Grigorchuk group & is not finitely
presentable, a proof was not derived until [56] where Grigorchuk explicitly computed the
Schur multiplier of &: it is infinitely generated 2-elementary abelian. We have computed
the Dwyer quotients M.(®), for 1 < ¢ < 301. These quotients are 2-elementary abelian
with the following 2-ranks

1,2, 301 501 7012] gl24] 11048] 13[96] 1501101
This suggests the following conjecture.
Conjecture A The Grigorchuk group & satisfies

M(6) = Zy or (Z3)?, if c=1 or c = 2, respectively
N (Z)P3, ifee{3-2m, ... 3.2 1) (7
with m € Ny.
Further experiments suggest that the Schur multiplier of the Grigorchuk group & has

the {o}*-module structure, as given by Lemma @5 of the form Zy @ (Zz[o])? where o
fixes the first component.

The twisted twin & of the Grigorchuk group was introduced in [I4]. Tt is invariantly
finitely L-presented by

({a,b,c,d} | {a®,0°, %, &} | {&} | {[d",d], [d, 0], [d, (c*b)°], [d, (*b)“], [c"b, cb?]})

where ¢ is the free group endomorphism induced by the mapping

a — @

5 b — d
’ c = b
d — c

We have computed the Dwyer quotients M.(®), for 1 < ¢ < 144. These quotients are
2-elementary abelian with the following 2-ranks

2,5,7,82 1112 1204 1514 16/81 1908 20[16] 230161 94032 27132 217,

This suggests the following conjecture.
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Conjecture B The twisted twin & of the Grigorchuk group satisfies

(Zg)z, (22)5, or (Z2)7, ifc=1, ¢=2, orc=3, resp.
Mc(é) ~ (22)4(m+1)+4’ if c e {2m+27 o ’2m+2 4 omtl _ 1}
(22)4(m+1)+7’ if c e {2m+2 + 2m+1’ o ’2m+3 _ 1}

)

with m € Ny.

Further experiments suggest that the Schur multiplier of & has the {7}*-module struc-
ture, as given by Lemma 3], of the form (Zy[5])*; for a proof see [14].

The Grigorchuk super-group & was introduced in [I1]. It contains the Grigorchuk
group & as an infinite-index subgroup and it is another example of a group with an
intermediate word-growth. In [6], it was shown that & admits the invariant finite L-
presentation ({@,b,¢,d} | 0| {5} | R) where

R = {a2,[b, &, [&,&), [&,d"), [d, d"), [&*°, (&), [&*°, ()], [d“, (d*P)*)}

and & is the free group endomorphism induced by the mapping

a +— a,l;a,
)b = d
Y & = b

d — ¢.

The Schur multiplier of the group & is still unknown. We have computed the Dwyer

quotients M.(®), for 1 < ¢ < 232. These quotients are 2-elementary abelian with the
following 2-ranks

3,6,7,92 1112 1314 1504 1718] 19081 21[16] 93[16] o5[32] 97132 ogl64] 31[41],
This suggests the following conjecture.
Conjecture C The Grigorchuk super-group & satisfies

. (Z2)3,(Z2)®, or (Z2)", ifc=1,2, or3, respectively
M. (8) = (Zo)4m+5, ifce{2-2m ...,3.-2m — 1}
(Zg)4m+T, ifce{3-2m ... ,2.2mF 1}

with m € N.

Further experiments suggest that the Schur multiplier of the Grigorchuk super-group has
the {5 }*-module structure, as given by Lemma L5 of the form (Z2)?® @ (Z2[5])*, where
o cyclically permutes the first component.

The Basilica group A was introduced in [60,[61] as a torsion-free group defined by a
three-state automaton. Bartholdi and Virag [16] computed the following invariant finite
L-presentation:

A= ({a,0} | 0| {o} | {la,a’]})
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where o is the free group endomorphism induced by the mapping

{ a +— b2
o:
b — a.

We have computed the Dwyer quotients M.(A), for 1 < ¢ < 103. These quotients satisfy
the following conjecture.

Conjecture D The Basilica group A satisfies

M(A) = 77 & € A(e),

£eN

where the groups Ay(c) are given as follows:

for each ¢ > 2,

Ay () = 0, ifce{l,...,5}
YT Zogsmary, ifc€ {2m+6,2m + 7}
and

0, ifce{l,...,3-2F1 -1}
Tgpmir, ifc€ {(3+m)- 271 ... (34 m) 26+ 1 20-1 1}
Zopmen, if € {(3+m)- 207 42070 (44 m)- 200 — 1)

A(c) =

with m € Ng. Hence, the Basilica group A is not finitely presentable.

The Brunner-Sidki-Vieira group BSV was introduced in [29] as a just-non-solvable,

torsion-free group acting on the binary tree. The authors also gave the following invariant
finite L-presentation:

BSV = ({a,b} | 0| {} | {[b,8°], [b,6"]})

where ¢ is the free group endomorphism induced by the mapping

Lo a?
1 b — a?b a2

We have computed the Dwyer quotients M.(BSV), for 1 < ¢ < 53. These quotients
satisfy the following conjecture.

Conjecture E The Brunner-Sidki-Vieira group BSV satisfies

M(BSV) = Z* & A(c) & €D Bu(c) & @D (o),
leN £eN

where the groups A(c), Be(c), and Cy(c) are given as follows:

0, ifce{l,...,3}
Z22m+1,

if c € {2m +4,2m + 5}

for each ¢ > 2,

Ale)
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with m € Ng. Additionally, for each ¢ € N, we have

0, ifce{l,...,5-271 1}
Lgams1, if c € {20F2m + 5271 0 22 462071 — 1}
Togamyz, if c € {272m +6-271 . 2 2m 102671 — 1}
Lgam+a, if c € {2672m +10-2071, ... 2642m 4 13- 271 — 1)

Bg(c) =

Vs
and

0, ifce{l,...,9-21 -1}
Lowmir, ifc€ {2F2m 9. 2071 0 262 1122651 1)
Cole) = § Zowmiz, ifce{2Pm12.2070 22 m 414201 — 1}
Zigam+3, if ¢ € {2z+2m +14 - 25*17 o 726+2m +16-2-1 — 1}
Dgamsa, if ¢ € {26F2m +16- 21 .. 2 2m 417 2071 — 1}

with m € Ng. Hence, the Brunner-Sidki- Vieira group BSV is not finitely presentable.

On the Dwyer Quotients of some Fabrykowski-Gupta Groups

The Fabrykowski-Gupta group I's was introduced in [45] as an example of a group with
an intermediate word-growth. For every positive integer d, Grigorchuk [57] described a
generalization 'y of the Fabrykowski-Gupta group I's. A rather longish invariant finite
L-presentation was computed in [9]. Further, it was shown that, if d is not a prime-power,
the group I'y has a maximal nilpotent quotient. This latter quotient is isomorphic to
the maximal nilpotent quotient of the wreath product Z4 ! Zy. We therefore consider
only those groups I'y which admit a ‘rich’ lower central series; that is, the index d is a
prime-power.

Let d € {3,5,7,11} be a prime. Then the Dwyer quotients M.(T'y) are d-elementary
abelian with the following d-ranks.

d rk(M.(T'g))

3 0l 1B o[0) 3091 411 5261 g4l 7771 g3l gl12]
5 0l 14l 221 3201 4[10] 5[100] 5[]

7 ol 11 206] 32 404] 5l42] gl1d] 7(34]

11 o, 112 2@ 3[2  4010] 52 g[22) 7(22] gl22] g[27]

As noted by Laurent Bartholdi and Olivier Siegenthaler, there is a pattern in the ranks
of the Dwyer quotients M.(I'y). For example, it may holds that

0, ife=0
M, Ts) = Z3", ifce{24+3(5m—1),....,1+3(5™ —1)+4-5m}
ZZVT i ee{243(m —1)+4-5™, .. 1+ (5™ —1)}

for m € Ny. This suggests the following conjecture.

Conjecture F Let d be a prime. Then the Schur multiplier of 'y, modulo the Dwyer-
kernel, is infinitely generated d-elementary abelian.
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Finally, we summarize our results for M.(I'g) for d € {4,8,9}. The abelian invariants of
the Dwyer quotients M.(I'y) are as follows.

d M, (Ty)
(O 21 (2,21 (2,91 (2,2,2,4)11
4 (2,2,2,2, )4 (2,2,2,4,4)16 (2,2,2 2 4, 4)11 (2,2,2,2,2,4 4)B]
(2,2,2,2,2,2, 4, 4)[161 (2,2,2,2,2,4,4 4)[ 1 (2,2,2,2,2,2,4, 4 ,4)0)
(2,2,2,2,2,2,2,4,4,4)[1” (2,2,2,2 2,2, ,2,4,4,4)[26]
(MM (8)2 (4,8)18 (2,4,8)14 (2,8,8)1 (2,278 8)2!
(2,2,2,8,8)2 (2,2,4,8,8) (2,4,4,8 8)“ (2,4,8,8,8)

8 (2,8,8,8,8)18 (2,2,8,8,8,8)4 (2,4,8,8,8, 8)[201 (2,2,4,8,8,8, 8)[32}
(2,2,8,8,8,8,8)7 (2,2,2,8,8,8,8,8)[16] (2,2,2,2,8,8,8,8,8)[16
(2,2,2,4,8,8,8,8,8)[16] (2,2 4,48, 8,8 8,8)

(I (9P (3,9 (3,3,9)H (3,9,9)

0 (9,9,92 (3,9,9,9) (3,3,9,9,94 (3,9,9,9,9)2

(9,9,9,9,912 (3,9,9,9,9, 9)[181 (3,3,9,9,9,9, 9)[36}
(3,9,9,9,9,9,9)118 (9,9,9,9,9,9,9)[171 (3,9,9,9,9,9,9,9)12

Again, these computational results suggest that the groups I'g are not finitely presentable.
Further, the exponent of M.(I'y) is most likely the index d itself.
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