
Computation with Finitely L-Presented Groups
Dissertationzur Erlangung des mathematish-naturwissenshaftlihenDoktorgrades�Dotor rerum naturalium�der Georg-August-Universität Göttingen
vorgelegt vonRené Hartungaus Magdeburg

Göttingen 2012



Referent: Prof. Dr. Laurent BartholdiKorreferent: Prof. Dr. Thomas ShikTag der mündlihen Prüfung: 1. Juni 2012



Table of Contents
1 Introdution 12 Groups and Presentations 92.1 Finite Presentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92.2 Deision Problems for Finitely Presented Groups . . . . . . . . . . . . . . 112.3 Algorithms for Finitely Presented Groups . . . . . . . . . . . . . . . . . . 152.4 Reursive Presentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212.5 Finite L-Presentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222.6 Examples of Finitely L-Presented Groups . . . . . . . . . . . . . . . . . . 252.7 Deision Problems for Finitely L-Presented Groups . . . . . . . . . . . . . 282.8 First Results for Finitely L-Presented Groups . . . . . . . . . . . . . . . . 312.9 Algorithms for Finitely L-Presented Groups . . . . . . . . . . . . . . . . . 323 The Group Homomorphism Problem 353.1 The Class of Finite Groups . . . . . . . . . . . . . . . . . . . . . . . . . . 353.2 The Class of Finitely Generated Nilpotent Groups . . . . . . . . . . . . . 443.3 Finitely Presented Images . . . . . . . . . . . . . . . . . . . . . . . . . . . 444 Tietze Transformations for L-presentations 474.1 Tietze Transformations for �nite L-presentations . . . . . . . . . . . . . . 484.2 Tietze's Theorem for Finite L-Presentations . . . . . . . . . . . . . . . . . 535 Finitely Based In�nite Rewriting Systems 555.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565.2 Monoid L-Presentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 595.3 A Redution Ordering on S(X ,Φ) . . . . . . . . . . . . . . . . . . . . . . 625.4 The Critial Pair Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . 645.5 A Generalized Knuth-Bendix Completion . . . . . . . . . . . . . . . . . . 685.6 An Appliation of the Knuth-Bendix Approah . . . . . . . . . . . . . . . 71A Investigating self-similar groups 79A.1 Introdution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79A.2 Self-Similar Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81A.3 A Nilpotent Quotient Algorithm . . . . . . . . . . . . . . . . . . . . . . . 83A.4 Computing Dwyer Quotients of the Shur Multiplier . . . . . . . . . . . . 86



ii Table of ContentsA.5 Coset Enumeration for Finite Index Subgroups . . . . . . . . . . . . . . . 88A.6 Computing Solvable Quotients . . . . . . . . . . . . . . . . . . . . . . . . 91B A Note on Invariantly Finitely L-Presented Groups 95B.1 Introdution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95B.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97B.3 Tietze Transformations for L-Presentations . . . . . . . . . . . . . . . . . 99B.4 Appliations of Tietze Transformations . . . . . . . . . . . . . . . . . . . 105B.5 Finitely generated normal subgroups of �nitely presented groups . . . . . 108C Coset Enumeration for Certain In�nitely Presented Groups 123C.1 Introdution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123C.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124C.3 Coset Enumeration for Finitely L-Presented Groups . . . . . . . . . . . . 125C.4 Deiding Validity of a Permutation Representation . . . . . . . . . . . . . 127C.5 Further Appliations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130D A Reidemeister-Shreier Theorem for Finitely L-Presented Groups 135D.1 Introdution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135D.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137D.3 The Reidemeister-Shreier Proess . . . . . . . . . . . . . . . . . . . . . . 141D.4 A Typial Example of a Subgroup L-Presentation . . . . . . . . . . . . . 142D.5 Stabilizing Subgroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143D.6 The Reidemeister-Shreier Theorem . . . . . . . . . . . . . . . . . . . . . 150D.7 Invariant Subgroup L-Presentations . . . . . . . . . . . . . . . . . . . . . 153D.8 Examples of Subgroup L-Presentations . . . . . . . . . . . . . . . . . . . 158E Approximating the Shur Multiplier 163E.1 Introdution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163E.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164E.3 Adjusting an Invariant L-Presentation . . . . . . . . . . . . . . . . . . . . 166E.4 A Generating Set for the Shur Multiplier . . . . . . . . . . . . . . . . . . 168E.5 Approximating the Shur Multiplier . . . . . . . . . . . . . . . . . . . . . 169E.6 Appliations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170Bibliography 177Curriulum Vitæ 187



Chapter1IntrodutionThe Burnside problems are among the most in�uential problems in ombinatorial grouptheory. The general Burnside problem asks whether a �nitely generated group in whihevery element has �nite order is �nite [30℄. This question was answered negatively byGolod [51℄. The �rst expliit ounter-examples to the general Burnside problem wereonstruted by Ale²in [5℄, Grigorhuk [53℄, and Gupta & Sidki [62℄. These ounter-examples an be realized as subgroups of the automorphism group of a rooted regulartree. They are the �rst examples of so-alled `self-similar groups'.Self-similar groups have appeared aross a wide range of mathematis, answeringlassial questions in in�nite group theory. For instane, beside being a ounter-exampleto the general Burnside problem, the group onsidered by Grigorhuk in [53℄ is the �rstexample of a group with an intermediate word growth [54℄, answering a lassial questionby Milnor [100℄. Moreover, this group was used in the onstrution of a �nitely presentedamenable group whih is not elementary amenable [55℄, answering a lassial questionby Day [37℄.The groups onsidered by Grigorhuk [53℄ and Gupta & Sidki [62℄ are not �nitelypresented [56, 96, 128℄. However, they admit reursive presentations whih are nowa-days known as �nite L-presentations [56℄ or endomorphi presentations [6℄. A �nite L-presentation for Grigorhuk's group was omputed by Lysënok [96℄. As a homage to thiswork, it was suggested in [56℄ that a reursive presentation similar to the one omputedby Lysënok [96℄ be alled a �nite L-presentation. This notion of a �nite L-presentationwas generalized in [6℄ as follows: a �nite L-presentation is a group presentation of theform 〈
X

∣∣∣ Q∪
⋃

σ∈Φ∗

Rσ
〉
,where X is a �nite alphabet, Q and R are �nite subsets of the free group F over thealphabet X , and Φ∗ denotes the monoid of endomorphisms of F that is generated by the�nite set Φ ⊆ End(F ). On the one hand, this notion allows one to prove that various�nitely generated self-similar groups are �nitely L-presented but do not admit a �nitepresentation [6℄. On the other hand, this notion is su�iently general so that other



2 Chapter 1. Introdutionin�nitely presented groups are �nitely L-presented; e.g., the groups in [18, 26, 85℄ admit�nite L-presentations. Even though a �nite L-presentation is possibly an in�nite grouppresentation, it an be desribed in �nite terms. Thus a �nite L-presentation provides a�nite data struture that allows one to de�ne in�nitely presented groups in a omputeralgebra system.Group presentations play an important role in omputational group theory. In parti-ular �nite group presentations have been the subjet of intensive researh during the lastdeades � dating bak to the early days of omputer algebra systems [102℄. Finite L-presentations were reently shown to be appliable to omputer algorithms as well: A �rstalgorithm for �nitely L-presented groups is the nilpotent quotient algorithm in [9,64℄. Amajor motivation for introduing this algorithm was the desire to understand better thestriking patterns along the lower entral series of various self-similar groups [7, 10, 123℄.Beside using a �nite L-presentation to study the struture of a self-similar group, itsreursive ation on the tree often allows one to use �nite approximations of this ationand thus to deal with �nite quotients of the group. For various self-similar groups,inluding Grigorhuk's group from [53℄, it su�es to onsider �nite approximations [8℄beause they have the ongruene property : every �nite index subgroup ontains the�xator of a level of the tree. However, there exist self-similar groups whih do not havethe ongruene property and thus may not be understood via �nite approximations [14℄.For these groups, a �nite L-presentation is essential in studying the struture of thegroup.In this thesis, we onentrate on �nite L-presentations. More preisely, analogouslyto the standard referene for omputing with �nitely presented groups [129℄, it is theaim of this thesis to develop methods for studying the struture of a group for whiha �nite L-presentation is known. Beause every �nite presentation an be onsideredas a �nite L-presentation, most algorithmi problems for �nitely L-presented groups arenot deidable � in the sense that there exists no algorithm whih terminates and whihreturns a orret answer to a given question (e.g., whether or not a group de�ned by a�nite L-presentation is �nite). In speial ases, though, we are able to derive algorithmsfor �nitely L-presented groups. For instane, we develop a oset enumerator for �niteindex subgroups of a �nitely L-presented groups in [67℄ or Appendix C.The algorithms developed in this thesis an be applied by hand to obtain a solution toa given problem and they also provide expliit solutions to some deision problems. More-over, our algorithms have been implemented in the omputer algebra system Gap [50℄.In Appendix A or [68℄, we demonstrate how detailed information on some self-similargroups ould be obtained with the help of our implementations.Parts of this thesis have appeared in [66, 67, 70℄. These papers are attahed in theAppendies C�E. Moreover, few parts of Appendix A were intended to be publishedin [42℄.



3An Overview of this ThesisIn the following, we give an overview of this thesis and its appendies. In Chapter 2, wesummarize the well-known results for �nitely presented groups and we formally introduethe notion of a �nite L-presentation. Moreover, Chapter 2 ontains �rst results for �nitely
L-presented groups as, for instane, obtained in [6, 9, 64℄.We then address, in Chapter 3, a �rst algorithmi problem for �nite L-presentations,the so-alled group homomorphism problem: In general, a group presentation is useful todeide whether or not a map from the generators of the group into another group extendsto a group homomorphism; namely, if and only if all relations are mapped trivially. Thegroup homomorphism problem for a lass H of groups asks for an algorithm that deideswhether or not suh a map extends to a group homomorphism. For �nite presentations,the group homomorphism problem is (semi-)deidable whenever the groups in the lass
H have a (semi-)deidable word problem. For �nitely L-presented groups, though, thereare possibly in�nitely many relations whih need to be onsidered. In Chapter 3, we givean expliit solution to the group homomorphism problem for the lass of �nite groups.Our solution allows us to develop various algorithms for �nitely L-presented groups. Forinstane, the oset enumerator in [67℄ or Appendix C is a onsequene of our solution tothe group homomorphism problem for the lass of �nite groups.In Chapter 4, we generalize Tietze's theorem for �nite presentations [132℄ to �nite
L-presentations. This theorem and the transformations introdued in its proof allow oneto modify a �nite L-presentation without hanging the isomorphism type of the group.Finally, in Chapter 5, we generalize the Knuth-Bendix ompletion for �nite rewritingsystems to possibly in�nite rewriting systems, the so-alled �nitely based in�nite rewrit-ing systems. These rewriting systems are derived from a �nite L-presentation of a group.An implementation of our Knuth-Bendix ompletion for �nitely based in�nite rewrit-ing systems does not terminate within a reasonable amount of time for Grigorhuk'sgroup [53℄, for the Basilia group [61℄, or even for the wreath produts Z ≀ Z and Z2 ≀ Z.Therefore, our generalized Knuth-Bendix ompletion does not allow us to solve the wordproblem of the groups using their �nite L-presentations.The appendies to this thesis ould be summarized as follows:Investigating the Shur Multiplier of a Finitely L-Presented GroupIt was shown in [56℄ that the group G onsidered by Grigorhuk in [53℄ is not �nitelypresented. The strategy in this proof is to onsider the Shur multiplier of the group. Itis well-known that the Shur multiplier is a �nitely generated abelian group whenever thegroup admits a �nite presentation. The group G is in�nitely presented beause its Shurmultiplier is in�nitely generated, 2-elementary abelian [56℄. The expliit alulationsin [56℄ use the �nite L-presentation from [96℄. Moreover, it was shown in [56℄ that the setof relations in [96℄ is minimal in the sense that no proper subset of relations is su�ientto de�ne the group.The Shur multiplier of a �nitely presented group is not omputable in general [52℄.



4 Chapter 1. IntrodutionSine every �nitely presented group admits a �nite L-presentation, the Shur multiplierof a �nitely L-presented group is not omputable either. Even though most algorithmiproblems are not deidable in general, there exist various algorithms that allow one togain insight into the struture of a �nitely presented group. Among the most importantalgorithms are quotient methods that ompute fator groups of a �nitely presented groupand thus allows one to gain insight into the struture of the group. Our generalization ofthe nilpotent quotient algorithm [9,64℄ in [66℄ or Appendix E follows the general idea of aquotient method: Sine it annot ompute the Shur multiplier of a �nitely L-presentedgroup in general, it attempts to gain insight into its struture by omputing suessiveDwyer quotients. These quotients of the Shur multiplier often exhibit a periodi growthin their ranks. This ould be onsidered as omputational evidene that the self-similargroups onsidered in [6, 9, 66℄ have an in�nitely generated Shur multiplier and thus,are in�nitely presented. However, there are other suessful attempts to ompute theShur multiplier of a self-similar group [14℄. These alulations possibly generalize to analgorithm for other self-similar groups.A Reidemeister-Shreier Theorem for Finite L-PresentationsFor �nitely presented groups, it is a well-known result by Reidemeister and Shreier [119,124℄ that every �nite index subgroup of a �nitely presented group is �nitely presented.The Reidemeister-Shreier proess is an algorithm that allows one to ompute a �nite pre-sentation for �nite index subgroups of a �nitely presented group. In [70℄ or Appendix D,we have generalized the Reidemeister-Shreier theorem and the Reidemeister-Shreierproess for �nitely presented groups to �nitely L-presented groups. More preisely, wehave proved that every �nite index subgroup of a �nitely L-presented group is �nitely L-presented. Moreover, we studied onditions on a �nite-index subgroup of an invariantly�nitely L-presented group to be invariantly �nitely L-presented.Computing with Finite Index SubgroupsAnother diretion of this thesis is the oset enumerator for �nitely L-presented groupsin [67℄ or Appendix C. This generalized oset enumerator has various interesting applia-tions: For instane, it shows that the generalized word problem for �nite index subgroupsof a �nitely L-presented group is deidable. Moreover, our oset enumerator allows oneto ompute all subgroups of a �nitely L-presented group up to a given (moderate) index.This is of partiular interest beause the lattie of �nite index subgroups of most self-similar groups is widely unknown [58℄; e.g., even though Grigorhuk's group has beeninvestigated for deades, little is known on the lattie of �nite-index subgroups: There areseven subgroups of index two [58℄ whih are the only maximal subgroups [116℄. Moreover,there exists a method to ompute all normal subgroups of Grigorhuk's group [7,11,33℄.However, its general subgroup growth is still unknown [58℄. Our oset enumerator allowsus to ompute the number of low-index subgroups of Grigorhuk's group. There werealready attempts in [11, 12℄ whih tried to ompute the number of low-index subgroups.Our oset enumeration is a �rst, automati omputer algorithm that allows us to ompute



5the orret subgroup ounts in [67℄ or Appendix C.A Note on Invariant Finite L-PresentationsIn Appendix B or [69℄, we introdue Tietze transformations for (possibly in�nite) L-presentations. These transformations allow us to generalize Tietze's theorem for �nitepresentations [132℄ to invariant �nite L-presentations. More preisely, we show thattwo invariant �nite L-presentations de�ne isomorphi groups if and only if it is possibleto pass from one invariant L-presentation to the other by a �nite sequene of Tietzetransformations. The intermediate L-presentations in our proof are always invariant
L-presentations.Moreover, in Appendix B or [69℄, we use Tietze transformations for �nite L-presen-tations to prove that `being invariantly �nitely L-presented' is an abstrat property of agroup that does not depend on the generating set. This latter result generalizes a well-known result for �nitely presented groups: if a group admits a �nite presentation withrespet to one generating set, then so it does with respet to any other �nite generatingset [38, Chapter V℄.Finally, we onsider �nitely generated normal subgroups of �nitely presented groups.We show that every �nitely generated normal subgroup H of a �nitely presented group
G is invariantly �nitely L-presented whenever G splits over H. This generalizes a reentresult by Benli on indiable groups [22℄. In fat, Benli proved that every �nitely generatedsubgroup H � G is invariantly �nitely L-presented whenever G/H ∼= Z holds. Wealso extend this latter result to the ase where G/H is a �nitely generated abeliangroup with torsion-free rank at most two. Our results address a question in [22℄ on�nitely generated subgroups whih embed as normal subgroups into �nitely presentedgroups. More preisely, analogously to Higman's embedding theorem [81℄, Benli askedwhether or not a �nitely generated group embeds as a normal subgroup into a �nitelypresented group if and only if the group admits an invariant �nite L-presentation allof whose endomorphisms indue automorphisms of the group; see Appendix B or [69℄for de�nitions. It is immanent that every suh �nitely L-presented group embeds as anormal subgroup into a �nitely presented groups. However, the onverse still remainsopen.A Note on our ImplementationsMost of our algorithms for �nitely L-presented groups have been implemented in theomputer algebra system Gap [50℄. In Appendix A or [68℄, we demonstrate how theseimplementations yield detailed information on the struture of some self-similar groups,the so-alled Fabrykowski-Gupta groups. In partiular, we obtain new information ontheir lower entral series, on their Shur multiplier, on their low-index subgroups, as wellas new information on their derived series.Minor parts of Appendix A were intended to be published in [42℄. This lattermanusript also ontains a method for gaining insight into the struture of the outer auto-morphism group of a �nitely L-presented group: Sine the lower entral series subgroups



6 Chapter 1. Introdutionare harateristi, this approah onsiders the outer automorphisms of the nilpotentquotients of the L-presented group. It is a straightforward appliation of the nilpotentquotient algorithm in [9, 64℄.An Overview of our AlgorithmsThe algorithms for �nitely L-presented groups that were developed in this thesis ouldbe found in the following parts: A �nite L-presentation of a group allows one to
• deide whether or not a map from the generators of a �nitely L-presented group intoa �nite permutation group (or into a �nitely generated nilpotent group) extends toa group homomorphism; see Chapter 3.
• ompute a permutation representation for the ation of a �nitely L-presented groupon the osets of a �nite index subgroup (oset enumeration); see [67℄ or Appendix C.
• ompute the index of a subgroup, whih is given by its �nitely many generators, of a�nitely L-presented group provided that this index is �nite; see [67℄ or Appendix C.
• solve the generalized word problem for �nite index subgroups of a �nitely L-presented group; see [67℄ or Appendix C.
• ompute the intersetion of two �nite index subgroups of a �nitely L-presentedgroup or to ompute the normal ore of a �nite index subgroup of a �nitely L-presented group; see Chapter 3.
• ompute all subgroups of a �nitely L-presented group up to a given (moderate)index (low-index subgroup algorithm); see [67℄ or Appendix C.
• ompute a �nite L-presentation for a �nite index subgroup of a �nitely L-presentedgroup; see [70℄ or Appendix D.
• ompute the setions G(i)/G(i+1) of the derived series of a �nitely L-presentedgroup G provided that G/G(i) is �nite; see Chapter 3 or [68℄.
• modify a �nite L-presentation of a group using Tietze transformations for �nitely
L-presented groups; see Chapter 4, Appendix B, or [69℄.

• ompute the Dwyer quotients of the Shur multiplier of an invariantly �nitely L-presented group; see [66℄ or Appendix E.For investigating self-similar groups with the help of our algorithms, it would be interest-ing if the methods in [6℄ ould be transformed into a proedure that, given a self-similargroup by its reursive ation on a regular rooted tree, omputes a �nite L-presentation forthe group. We are not aware of an automati proedure whih ould solve this problem.AknowledgmentsI would like to express my deepest gratitude to Laurent Bartholdi for supervising mydissertation and for providing an outstanding model of how to perform exellent researh.His tremendous support during the last years made this projet possible. Thank you for



7the opportunity to ome to Göttingen and for your invaluable advie and help during allstages of my dissertation.I am also grateful to Thomas Shik who aepted to be my o-advisor. His trueinterest in the topi was a great enouragement.Many thanks go to Mihele D'Adderio who introdued me to the (great!) Italianway of life, to Dzmitry `Dima' Dudko, whose patiene helped a lot to enlighten the `truemathematis' behind drawing pitures in omplex dynamis, and to Olivier Siegenthaler.The disussions I had with Olivier suggested some of the problems onsidered in thisthesis.I am also grateful to the folks who bore my presene in the same room during thelast fews years: Bodgan Nia, Mahesh Sunkula, Jehad Al Jaraden, Colin Reid, TatyanaLevitina, and Hossein Narmin.Thanks to my friends and my family for their enduring support. In partiular, I amdeeply indebted to Doreen. Her enduring enouragement during the last years made thisprojet possible.Göttingen, May 2012 René Hartung.



8 Chapter 1. Introdution



Chapter2Groups and PresentationsThe notion of a group presentation dates bak to Walter von Dyk who has introdued themodern notion of free groups and group presentations in 1882. Group presentations playan important role in omputational group theory. They de�ne a group by its generatorsand relations. A �nite presentation is group presentation with �nitely many generatorsand �nitely many relations. Therefore, �nite presentations provide an e�etive de�nitionof a group up to isomorphism. They an be used to de�ne a group in omputer algebrasystems suh as Gap [50℄ or Magma [28℄. Reently it was shown that even a lass ofin�nite presentations (so-alled �nite L-presentations) provide an e�etive way to de�nein�nitely presented groups.Even though �nite presentations provide an e�etive desription of a group, variousalgorithmi problems are unsolvable in general. Therefore, solving algorithmi problemsfor in�nite presentations seems even more infeasible. However, in this thesis we showthat most algorithms for �nitely presented groups generalize to �nite L-presentations.In this hapter, we reall the notion of a group presentation and we formally introduethe notion of a �nite L-presentation from [6℄. Moreover, we give an overview of thealgorithms known for �nitely presented and �nitely L-presented groups.2.1 Finite PresentationsIn the following, we reall the notion of a (�nite) group presentation. For further detailson �nitely presented groups, we refer to [95, 97℄.A group F is a free group over the alphabet X ⊆ F if eah map f :X → G into a group
G extends to a (unique) homomorphism π:F → G. If G is generated by X ⊆ G, theexistene of a free group F over the alphabet X shows that G is a homomorphi image of
F . In partiular, if π:F → G denotes the natural homomorphism, G ∼= F/ ker(π) holds.A group presentation de�nes the group G in terms of the free presentation π:F → G:Let R ⊆ F be a set of normal generators of the kernel ker(π); i.e., the normal subgroup
ker(π) is generated by {rg | r ∈ R, g ∈ F}. Then the pair 〈X | R〉 is a group presentation



10 Chapter 2. Groups and Presentationsfor G and the group G is presented by 〈X | R〉. On the other hand, a group presentation
〈X | R〉 is an abstrat objet that de�nes a group up to isomorphism: Denote by F thefree group over the alphabet X and let K = 〈R〉F be the normal losure in F of therelations R; i.e., K = 〈R〉F is the smallest normal subgroup of F that ontains R. Thenthe presentation 〈X | R〉 de�nes the group G = F/K. We will also write G = 〈X | R〉in this ase.A group presentation 〈X | R〉 is �nitely generated if the set of generators X is �nite.It is �nitely related if the set of relators R is �nite. If 〈X | R〉 is both, �nitely generatedand �nitely related, it is a �nite presentation and the group G = 〈X | R〉 it de�nes is�nitely presented. A group that admits a �nite presentation is �nitely presentable (or�nitely presented). If either X or R is in�nite, the presentation 〈X | R〉 is an in�nitepresentation and the group it de�nes is in�nitely presented by 〈X | R〉.Being �nitely presentable does not depend on a hosen generating set of the group [38,Chapter V℄ in the following sense: If 〈X | S〉 is an arbitrary (possibly in�nite) presen-tation of a �nitely presentable group G, there exists a �nite subset X ′ ⊆ X and a �niteset S ′ of redued words over X ′ so that G ∼= 〈X ′ | S ′〉 holds. This an be seen as aonsequene of a fundamental theorem by Tietze [132℄ whih relates possibly di�erentgroup presentations of the same group by the following Tietze transformations: Supposethat G is presented by 〈X | R〉. Denote by F the free group over X and let K = 〈R〉Fbe given. Then G = F/K. Eah element r ∈ K is a onsequene of the relations in R.The following well-known transformations allow one to modify the group presentation
〈X | R〉:(i) If r ∈ K is a onsequene, the group G is presented by 〈X | R ∪ {r}〉.(ii) If z 6∈ X and w ∈ F , the group presented by 〈X ∪ {z} | R ∪ {z−1w}〉 is isomorphito G.These transformations are reversible with the following inverse transformations:(iii) If K = 〈R \ {r}〉F holds, the group G is presented by 〈X | R \ {r}〉.(iv) If z−1w ∈ R, with z ∈ X , and z does not appear in the redued word w, G isisomorphi to the group presented by 〈X \ {z} | S〉 where S is obtained from

R\{z−1w} by replaing eah ourrene of z and z−1 by w and w−1, respetively.For �nite presentations, these transformations are su�ient to obtain Tietze's theoremfor �nitely presented groups:Theorem 2.1 (Tietze [132℄) Two �nite presentations de�ne isomorphi groups if andonly if it is possibly to pass for one presentation to the other by a �nite sequene of Tietzetransformations.By the Nielsen-Shreier theorem [121, 6.1.1℄, a �nite index subgroup of a �nitely gen-erated free group is �nitely generated. Therefore, if G = F/K is a �nite group, thekernel K of the free presentation F → G for a �nitely generated free group F is �nitelygenerated. Thus every �nite group is �nitely presentable. Further examples of �nitely



2.2. Deision Problems for Finitely Presented Groups 11presented groups are the in�nite dihedral group 〈{a, b} | {a2, b2}〉, Baumslag-Solitargroups B(m,n) = 〈{a, b} | {b−1amba−n}〉, with n,m ∈ N, from [21℄, polyyli groups,et. More examples naturally arise with the followingTheorem 2.2 (Reidemeister-Shreier Theorem [119, 124℄) Eah �nite index sub-group of a �nitely presented group is �nitely presented.Even though there are numerous �nitely presented groups, most �nitely generated groupsare not �nitely presented:Proposition 2.3 (B. H. Neumann [103℄) There are unountably many non-isomor-phi groups generated by two elements.As there are ountably many �nite presentations but unountably many non-isomorphi
2-generated groups, Proposition 2.3 yieldsCorollary 2.4 There are �nitely generated groups that are not �nitely presentable.2.2 Deision Problems for Finitely Presented GroupsA �nitely presented group is uniquely desribed by its �nitely many generators andde�ning relations. Therefore, a �nite presentation ould be useful to apply omputeralgorithms in the investigation of the struture of the group. However, there are variousproblems for whih it is known that there exists no algorithm that, given a �nite pre-sentation of a group, terminates and returns a orret answer to a given question (e.g.whether or not a group given by a �nite presentation is �nite). More preisely, we all anabstrat property (i.e., a property is an abstrat property of a group if it does not dependon the presentation) of a �nitely presented group reursively reognizable or deidableif there exists an algorithm whih takes as input a �nite presentation of the group anddeides whether or not the group satis�es this property.Many abstrat properties of �nitely presented groups are not deidable in general.For instane, Dehn [39℄ stated the following deision problems: the word problem, theonjugay problem, and the isomorphism problem. These problems are not deidable ingeneral [1,27,112,113℄. However, if the lass of groups under onsideration is restrited,deision problems that are not deidable in general may beome deidable; e.g., polyyligroups have a solvable word- and onjugay problem [125℄ and even their isomorphismproblem is solvable [126℄.Beside Dehn's deision problems there are various other abstrat properties that arenot deidable. In this setion, we give a brief survey on deision problems for �nitelypresented groups. These unsolvable problems demonstrate the limitations of omputeralgorithms in the study of �nitely presented groups. For further details on deisionproblems, we refer to the survey [99℄ or to [95, Chapter IV℄.



12 Chapter 2. Groups and Presentations2.2.1 The Word ProblemA �rst deision problem is Dehn's word problem for a �nitely presented group. It asksfor an algorithm that, given a �nite presentation of a group G = 〈X | R〉 and a word wover the alphabet X ∪ X−, deides whether or not the element w is trivial in the group
G. More preisely, if F denotes the free group over X and K � F is a normal subgroupso that G = F/K holds, the word problem asks for an algorithm that deides whetheror not w ∈ K holds (in this ase, we will also write w =G 1). An element w ∈ F isontained in the normal losure K if and only if it has the form

w = u−1
1 rε11 u1 · · · u

−1
m rεmm um, with ui ∈ F, ri ∈ R and εi = ±1, (2.1)for eah 1 ≤ i ≤ m. Clearly, if the word problem of a �nitely presented group is deidable,so it is for eah of its subgroups. If a group has a solvable word problem with respet toone �nite presentation, then so it has for any other �nite presentation [99, Lemma 2.2℄.The word problem of a �nitely presented group is not deidable in general:Theorem 2.5 (Novikov-Boone Theorem [27, 113℄) There exists a �nitely presentedgroup whose word problem is not deidable.The word problem ould be stated equivalently as follows: it asks for an algorithm thatdeides whether or not two words w and v over the alphabet X ∪ X− de�ne the sameelement of the �nitely presented group; i.e. if w =G v holds. Even though the wordproblem is not deidable in general, restriting the lass of �nitely presented groups mayresult in a lass of groups with a solvable word problem. For instane eah �nite, free,or polyyli group is �nitely presented and has a deidable word problem.2.2.2 The Conjugay ProblemThe onjugay problem asks for an algorithm that, given a �nite presentation 〈X | R〉of a group G and elements u, v ∈ F of the free group F over X , deides whether ornot the elements are onjugate in the group; i.e., if there exists x ∈ F so that theelements ux = x−1ux and v de�ne the same element of the group G; i.e. if x−1ux =G vholds. Sine a onjugate x−1ux is trivial in the group G = 〈X | R〉 if and only if theelement u itself is trivial, a solution to the onjugay problem implies a solution to theword problem. Therefore, Theorem 2.5 also shows that the onjugay problem is notdeidable [112℄. Again, restriting to the lass of �nite groups, free groups or polyyligroups [125℄, yields that the onjugay problem beomes deidable.2.2.3 The Generalized Word ProblemIt is easy to see that a �nitely presented group has deidable word problem if there existsa �nite index subgroup that has a deidable word problem. Conversely, eah subgroup ofa �nitely presented group with a deidable word problem has a deidable word problem.Therefore, �nite index subgroups play an important role in the investigation of a �nitelypresented group. For instane, by the Reidemeister-Shreier Theorem 2.2, eah �nite



2.2. Deision Problems for Finitely Presented Groups 13index subgroup of a �nitely presented group is itself �nitely presented. An expliit proofof Theorem 2.2 yields a Reidemeister-Shreier proess that omputes a �nite presentationfor the subgroup given a �nite presentation of the group and a �nite generating set ofthe subgroup [95℄.A deision problem that is related to �nitely generated subgroups of a �nitely pre-sented group is the generalized word problem or subgroup membership problem. It asksfor an algorithm that, given a �nite presentation 〈X | R〉 of a group and a �nite set
{w1, . . . , wn, w} of words over the alphabet X ∪X− deides whether or not the subgroupgenerated by {w1, . . . , wn} ontains the element w. Sine an element w ∈ F is trivialin the �nitely presented group G = 〈X | R〉 if and only if it is ontained in the trivialsubgroup {1} ≤ G, a solution to the generalized word problem implies a solution to theword problem. Hene, Theorem 2.5 also shows that the generalized word problem is notdeidable in general. However, if the subgroup has �nite index, oset enumeration (asoutlined in Setion 2.3.1 below) solves the generalized word problem.2.2.4 The Isomorphism ProblemDehn's third deision problem is the isomorphism problem. It asks for an algorithmthat deides whether or not two �nite presentations de�ne isomorphi groups. Theisomorphism problem is not deidable in general [1℄.Reall that Tietze's Theorem 2.1 relates two �nite presentations of a group: it showsthat two �nite presentations de�ne isomorphi groups if and only if there exists a �nitesequene of Tietze transformations that allows one to transform one presentation intothe other. However, it should be emphasized that Tietze's theorem does not providea solution to the isomorphism problem in general, as there is no e�etive proedure forhoosing the sequene of Tietze transformations. In partiular, it does not allow to deideif two �nite presentations de�ne non-isomorphi groups; even though an enumeration ofTietze transformations may allow to eventually prove that two �nite presentations de�neisomorphi groups [95℄.2.2.5 Markov PropertiesBeside Dehn's deision problems many other abstrat properties are not deidable. Alarge lass of deision problems are the so-alled Markov properties; see, for instane,the survey [99℄. An abstrat property of a �nitely presented group is a Markov propertyif there exist �nitely presented groups G and H so that G has the given property and,if H embeds into a �nitely presented group, this group annot have this property. Forinstane, being �nite is a Markov property beause the in�nite dihedral group is �nitelypresented by 〈{a, b} | {a2, b2}〉 and in�nite while the 2-elementary abelian group Z2×Z2 =
〈{a, b} | {a2, b2, [a, b]}〉 is �nite. Further examples of Markov properties are being trivial,abelian, nilpotent, solvable, free, and torsion-free [99℄. An example of an abstrat prop-erty that is not a Markov property is being perfet as there exists a �nitely presentedperfet group in whih every �nitely presented group embeds [99℄. Moreover, there ex-ists an algorithm that deides whether or not a �nitely presented group is perfet; see



14 Chapter 2. Groups and PresentationsSetion 2.3.5. A fundamental theorem for Markov properties is the following theorem:Theorem 2.6 (Adian-Rabin Theorem [2, 3, 118℄) A Markov property of a �nitelypresented group is not deidable.In partiular, there exists no algorithm that will ompute the order of a �nitely presentedgroup.2.2.6 Further Deision ProblemsBeside Dehn's deision problems and Markov properties, there are other group theoretiproperties that are not deidable in general.Reall that the de�ieny of a �nite presentation 〈X | R〉 is d(〈X | R〉) = |X | − |R|.For a �nitely presented group G, the de�ieny of the group G is the maximal de�ieny ofall its �nite presentations. The de�ieny of a �nitely presented groups is not omputable:Theorem 2.7 (Gordon [52℄) There is no algorithm for omputing the de�ieny of agroup from a �nite presentation.The Shur multiplier of a group G an be de�ned as the seond homology group H2(G,Z)with integer oe�ients. It is related to a group presentation G = F/R by Hopf's formula:
H2(G,Z) ∼= (R ∩ F ′)/[R,F ].It is not hard to see that Hopf's formula shows that eah �nitely presented group withde�ieny zero has a trivial Shur multiplier. However, even a group with a trivialShur multiplier might not be �nitely presentable [18℄. The Shur multiplier of a �nitelypresented groups is not omputable:Theorem 2.8 (Gordon [52℄) There is no algorithm for deiding, given a �nite presen-tation of a group G, whether or not H2(G,Z) = {0} holds.The properties in Theorems 2.7 and Theorem 2.8 are not Markov properties [99℄. Inpartiular, these results are not just onsequenes of the Adian-Rabin theorem in Theo-rem 2.6. Further deision problems for �nitely presented groups are given by the followingproposition; see also [99℄:Proposition 2.9 (Baumslag et al. [20℄) There is a �nitely presented group suh thatthere is no algorithm to determine whether or not the subgroup generated by an arbitrary�nite set of words is(i) trivial, �nite, free, loally free, yli, abelian, nilpotent, soluble, simple, diretlydeomposable, freely indeomposable, or whether it is a group with a deidable wordproblem.(ii) a �nitely related subgroup, a subgroup with �nite index, a normal subgroup, a sub-group with �nitely many onjugates.Again, restriting the lass of subgroups in Proposition 2.9 to subgroups with �niteindex yields the existene of various algorithms that expliitly solve the problems inProposition 2.9, (ii).



2.3. Algorithms for Finitely Presented Groups 152.2.7 Semi-DeidabilityWe all an abstrat property of a �nitely presented group G semi-deidable if thereexists an algorithm that allows one to verify that the group satis�es the given property;e.g. if there exists an algorithm that, given a �nite presentation of a group, eventuallyterminates and proves the group to be �nite. Clearly, an abstrat property that isdeidable is also semi-deidable. Various deision problems that are not deidable ingeneral are semi-deidable though. For instane, the word problem of a �nitely presentedgroups is semi-deidable: For a �nitely presented group G = 〈X | R〉 and an element
w ∈ F of the free group F over X , there exists an algorithm that enumerates the elements
u−1
1 rε11 u1 · · · u

−1
m rεmm um with ri ∈ R, ui ∈ F , and εi = ±1. Therefore, the elements ofthe normal losure K = 〈R〉F ould be listed algorithmially one after another. If anelement w ∈ F is trivial in the group G, this algorithm would eventually list the element

w and therefore it would prove that w =G 1 holds. Hene, the word problem of a �nitelypresented group is semi-deidable but not deidable.Further examples of semi-deidable problems are the onjugay problem and theisomorphism problem (an enumeration of Tietze transformations allows one to eventuallyprove that two �nite presentations de�ne isomorphi groups). Further appliations ofTietze's theorem provide algorithms that allow one to prove that a �nite presentationde�nes a trivial, abelian, nilpotent, or polyyli group.2.3 Algorithms for Finitely Presented GroupsEven though most group theoreti properties are not reursively reognizable [4℄, thereare various `algorithms' for �nitely presented groups whose termination is often not guar-anteed. If the underlying deision problem is semi-deidable, though, the algorithm ter-minates and gives a orret answer to the problem; e.g. it is semi-deidable if a �nitepresentation de�nes a �nite group and oset enumeration would allow to verify this; seeSetion 2.3.1. In this setion, we give an overview of the algorithms for �nitely pre-sented groups. Even though termination of these algorithms is often not guaranteed,they have beome a useful tool to investigate the struture of a �nitely presented group.Most of these algorithms are available in omputer algebra systems suh as Gap [50℄ orMagma [28℄ or even as stand-alone C-pakages suh as the Quotpi-pakage [83℄ orthe Ae-pakage [75℄. For further details on algorithms for �nitely presented groups, werefer to the standard referene [129℄.2.3.1 Coset EnumerationA �rst algorithm for �nitely presented groups is the oset enumeration proess introduedby Todd and Coxeter [36,133℄. This proess attempts to enumerate the osets of a �nitelygenerated subgroup in a �nitely presented group. If the index of the subgroup is �nite,oset enumeration terminates and it omputes the index of the subgroup together witha permutation representation for the group's ation on the osets. In partiular, osetenumeration allows one to prove that a given �nite presentation de�nes a �nite group �



16 Chapter 2. Groups and Presentationseven though being �nite is a Markov property! On the other hand, though, if the indexof the subgroup happens to be in�nite, oset enumeration will not terminate. Moreover,by Proposition 2.9, there exists no algorithm that allows one to deide whether or not a�nitely generated subgroup has �nite index in a �nitely presented groups. In fat, thereis no upper bound on the omplexity of oset enumeration. Therefore, even proving a�nitely presented group being trivial is omputationally a hallenging problem [76, 104℄.Nevertheless, oset enumeration is often used for proving �niteness of ertain �nitelypresented groups [78�80℄.Beause oset enumeration, if it terminates, additionally omputes a permutationrepresentation for group's ation on the osets, it also solves the generalized word problemfor a �nite index subgroup of a �nitely presented group. Therefore, oset enumerationhas beome a fundamental tool for omputing with �nite index subgroups; e.g., it allowsone to ompute the intersetion of two �nite index subgroups as well as the normalizerand the normal ore of a �nite index subgroup.Coset enumeration is usually a �rst step in the investigation of �nitely presentedgroups. For instane, the Shur multiplier of a �nite permutation group is omputablewith the methods in [82℄. If a �nite group is given by a �nite presentation, oset enu-meration will ompute a permutation representation for the group and thus it ould bea �rst step for omputing the Shur multiplier of a �nite, �nitely presented group.Coset enumeration is among the �rst algorithms in group theory that have beenimplemented as a omputer algorithm [32,88,102,129℄. It has been developed, improved,and investigated sine, see [32, 48℄, so that numerous oset enumeration tehniques areurrently available. For further historial details on oset enumeration, we refer to thehistorial notes in [129℄ or to the survey [102℄.2.3.2 The Low-Index Subgroup AlgorithmA variation of oset enumeration is the low-index subgroup algorithm [40℄ whih attemptsto ompute a representative for eah onjugay lass of subgroups of a �nitely presentedgroup up to a given index n ∈ N. The entral idea uses a baktrak-searh for �ndingall permutation representations of a �nitely presented group that ats transitively on atmost n points. In pratie, the low-index subgroup algorithm allows one to omputerepresentatives of onjugay lasses of subgroups with index up to a few hundred. Forfurther details on the low-index subgroup algorithm, we refer to [129, Setion 5.6℄.A variation of the low-index subgroup algorithm was developed in [35℄. This modi�edalgorithm omputes the normal subgroups of a �nitely presented groups up to a givenindex. In pratie, it allows one to ompute possibly larger indies than the standardlow-index subgroup algorithm. An implementation of both algorithms is available in thestand-alone C-pakage Lowx [41℄.The low-index subgroup algorithm yields insight into the lattie of �nite index sub-groups of a �nitely presented group top-down and therefore, it is a useful tool in theinvestigation of �nitely presented groups. For instane, sine `being trivial' is a Markovproperty, there is no algorithm for deiding whether or not a �nite presentation de�nes



2.3. Algorithms for Finitely Presented Groups 17a trivial group. However, if a �nite presentation does de�ne the trivial group, oset enu-meration is guaranteed to terminate and it will ompute the order of group. On the otherhand, there annot exists an algorithm whih proves that a given �nite presentation de-�nes a non-trivial group (otherwise we would obtain a ontradition to the Adian-RabinTheorem 2.6). The low-index subgroup algorithm ould be employed to this problembeause it may help to �nd a subgroup with non-trivial index. If the low-index subgroupalgorithm sueeds with this searh, it would prove that the given �nite presentation de-�nes a non-trivial group. An alternative approah for proving that a �nite presentationde�nes a non-trivial group is to searh for non-trivial homomorphi images of the �nitelypresented group; see Setion 2.3.5 below.2.3.3 The Reidemeister-Shreier ProessThe Reidemeister-Shreier Theorem 2.2 shows that eah �nite index subgroup of a �nitelypresented group is �nitely presented. A onstrutive proof of Theorem 2.2 is given bythe Reidemeister-Shreier proess: it takes as input a �nite presentation of a group and a�nite generating set of a subgroup and it omputes a �nite presentation for the subgroupprovided that it has a �nite index in the group. By Proposition 2.9, there annot existsuh an algorithm in general (in partiular if the subgroup has in�nite index). Supposethat the �nitely generated subgroup U has �nite index in the �nitely presented group
G = 〈X | R〉. Then the following steps yield a Reidemeister-Shreier proess:(i) Compute a permutation representation τ :F → Sym(U\G) for G's ation on theosets U\G using a oset enumerator.(ii) The permutation representation τ allows one to ompute �nitely many Shreiergenerators of the subgroup [124℄ with the Nielsen-Shreier theorem [121, 6.1.1℄;i.e., a Shreier generating set is a free generating set of the full preimage of thesubgroup U ≤ G in the free group F over X .(iii) The permutation representation τ yields a Reidemeister rewriting that rewrites G'srelations in R to �nitely many relations of the subgroup U .For further details on the Reidemeister-Shreier proess, we refer to [95, Setion II.4℄ orSetion D.3 below.The Reidemeister-Shreier proess gives an expliit method to apply the algorithmsfor �nitely presented groups to �nite index subgroups of �nitely presented groups. Inpartiular, in ombination with the low-index subgroup algorithm, the Reidemeister-Shreier proess yields a method to gain insight into the struture of a �nitely presentedgroup [77℄. For instane, it allows one to ompute the quotients of the derived seriesprovided that these quotients are �nite; see, for instane, Setion A.6 below. An earlyimplementation of the Reidemeister-Shreier proess an be found in [72℄.2.3.4 Tietze TransformationsThe �nite presentations that were omputed with the Reidemeister-Shreier proess oftenontain redundant generators and redundant relations. Indeed, given a �nitely presented



18 Chapter 2. Groups and Presentationsgroup G = 〈X | R〉 with n = |X | generators and a �nite index subgroup H ≤ Gwith m = [G : H], the Reidemeister-Shreier proess in Setion 2.3.3 omputes a �nitepresentation with mn−m+1 generators [121, 6.1.1℄. Numerous generators and relatorsare often redundant. Therefore, one wishes to remove redundant generators and relationsfrom a presentation. Here, the Tietze transformations from Setion 2.1 apply.Sine the isomorphism problem is not deidable in general, appliations of Tietzetransformations are limited in pratie. However, an implementation of a Tietze trans-formation program was desribed in [73,120℄. This proedure is part of the Reidemeister-Shreier program [72℄ where it simpli�es the obtained �nite presentation.2.3.5 Quotient MethodsMost algorithmi problems for �nitely presented groups are not deidable [4℄. There-fore, it surprises that omputer algorithms help in the investigation of the struture ofa �nitely presented group. However, there is a wide range of algorithms for omputingfator groups of a �nitely presented group. For instane, the abelianization of a �nitelypresented group (i.e., the abelianization is the isomorphism type of the largest abelianquotient G/[G,G] of a group G) an be e�etively omputed from a �nite presenta-tion [129, Setion 11.2℄. In partiular, there exists an algorithm that deides whether ornot a �nitely presented group is perfet (i.e. a group G is perfet if the abelianization
G/[G,G] is trivial). Moreover, there exists an algorithm that solves the membershipproblem for the derived subgroup G′ = [G,G] in a �nitely presented group.Beside the numerous variations of oset enumeration, the main tools for investigating�nitely presented groups are quotient methods. In general, they ompute suessivequotients of a �nitely presented group or, equivalently, they ompute homomorphismsinto omputationally `nie' groups (e.g. �nite groups, �nite p-groups, or polyyli groupswhih ould be handled well in omputer algebra systems). These methods also allow oneto deide whether or not a map from the generating set X of a �nitely presented group
G = 〈X | R〉 into a `nie' group H extends to a homomorphism G → H; see Chapter 3.In the following, we give a survey of the quotient methods for �nitely presented groups:The Abelianization AlgorithmA �rst quotient method is the abelianization algorithm for omputing the isomorphismtype of the largest abelian quotient of a �nitely presented group; see [129, Chapter 11.2℄.This algorithm relies on linear algebra only. More preisely, it omputes the Smithnormal form of an integer matrix that an be read o� diretly from the relations of the�nite presentation. These omputations are usually fast. Therefore, the abelianizationalgorithm is often a �rst tool in the investigation of a �nitely presented group. Forinstane, the abelianization algorithm and the low-index subgroup algorithm an beused to searh for �nite index subgroups with in�nite abelianization. This ould helpproving a �nitely presented group being in�nite. Moreover, the derived subgroup of a�nitely generated group G = 〈X | R〉 has a deidable membership problem: An element
w ∈ F of the free group F over X de�nes an element of the derived subgroup G′ = [G,G]



2.3. Algorithms for Finitely Presented Groups 19if and only if its exponent vetor vanishes (i.e. the exponent vetor is the image of theelement w ∈ F in the free abelian group F/F ′).The p-Quotient AlgorithmFor a prime p, the lower exponent-p series (or Frattini series) is de�ned reursively by
λ1G = G and λn+1G = [G,λnG](λnG)

p. The setions λnG/λn+1G are p-elementaryabelian so that G/λnG are �nite p-groups. Finite p-groups an be desribed e�etivelyby nilpotent presentations. A nilpotent presentation is a �nite presentation whih admitsan e�etive solution to the word problem of the group [129℄.The p-quotient algorithm omputes a nilpotent presentation for the fator group
G/λnG together with a homomorphism G → G/λnG. It uses an indution on n andit omputes the quotient G/λnG as a �nite entral extension of a p-elementary abeliangroup by a �nite p-group. The p-quotient algorithm was originally designed for theonstrution of �nite Burnside groups in [74, 105℄.The Nilpotent Quotient AlgorithmThe p-quotient algorithm was generalized in [107℄ to the nilpotent quotient algorithm for�nitely presented groups; see also [129, Setion 11℄. For a �nitely presented group G and apositive integer c, the nilpotent quotient algorithm omputes a nilpotent presentation forthe lower entral series quotient G/γc+1G together with a homomorphism G→ G/γc+1G.The lower entral series is de�ned reursively by γ1G = G and γc+1G = [G, γcG]. Similarto the p-quotient algorithm, the nilpotent quotient algorithm uses an indution on n. Theindution starts with the largest abelian quotient G/G′ of a �nitely presented group Gand thus it starts with the abelianization algorithm for �nitely presented groups. Thenthe quotients G/γc+1G are onstruted as entral extension of a �nitely generated abeliangroup by a �nitely generated nilpotent group.Soluble Quotient AlgorithmsFor a group G, the derived series is de�ned reursively by G(1) = G′ = [G,G] and
G(i+1) = [G(i), G(i)]. If, for eah 1 ≤ i ≤ j, the setions G(i)/G(i+1) are �nitely generated,the quotient G/G(j) is polyyli. A polyyli group an be desribed by a polyylipresentation that (like a nilpotent presentation) yields an e�etive solution to the wordproblem.A soluble quotient algorithm omputes a polyyli presentation of the quotient
G/G(i) together with a homomorphism G → G(i) provided that G/G(i) is polyyli. A�rst straightforward approah towards a soluble quotient algorithm ombines the abelian-ization algorithm and the Reidemeister-Shreier proess; see Setion A.6 below. Thisapproah omputes a permutation representation for G/G(i) provided that this quotientis �nite. Alternative approahes whih ompute polyyli presentations for �nite solv-able quotients were desribed by Wamsley [135℄, Leedham-Green [89℄, Plesken [117℄, andNiemeyer [108�110℄. These methods possibly use a di�erent series of normal subgroups.



20 Chapter 2. Groups and PresentationsA more general soluble quotient algorithm is the polyyli quotient algorithm in [92,93℄. This algorithm omputes a polyyli presentation for G/G(i). Similar to the nilpo-tent and the p-quotient algorithm, it uses an indution on i and it therefore omputes apolyyli presentation for G/G(i+1) from a polyyli presentation of G/G(i). For thispurpose, it uses a Gröbner bases approah whih is guaranteed to terminate. Even if Gand G/G(i) are �nitely generated, the setion G(i)/G(i+1) is possibly not �nitely gener-ated. In this ase, G/G(i+1) is not polyyli. The algorithm in [92, 93℄ either omputesa polyyli presentation for G/G(i+1) or it returns fail if the setion G(i)/G(i+1) isnot �nitely generated. If a �nite presentation de�nes a polyyli group, the algorithmin [92, 93℄ would ompute a polyyli presentation for it.2.3.6 Knuth-Bendix CompletionA pratial method for solving the word problem is given by a on�uent rewriting system.The Knuth-Bendix ompletion attempts to onstrut a on�uent rewriting system froma monoid presentation of a �nitely presented group [130℄. Sine the word problem ofa �nitely presented group is not deidable in general, termination of the Knuth-Bendixompletion is not guaranteed. If the Knuth-Bendix ompletion terminates, though, theon�uent rewriting system solves the word problem as it allows one to ompute normalforms for eah element of the group. For further details on rewriting systems, we referto [129, Chapter 2℄ or Chapter 5 below.A �nitely presented group G = 〈X | R〉 an be onsidered as a �nitely presentedmonoid 〈
X ∪ X−

∣∣ {r = ε | r ∈ R} ∪ {x−1x = xx−1 = ε | x ∈ X}
〉
,where ε denotes the empty string. A rewriting system for a �nitely presented monoidan be seen as a binary relation on the words over the alphabet X ∪ X− together witha redution ordering ≺; i.e., a redution ordering is a translation invariant well-ordering.From a �nite presentation of a monoid one an obtain a rewriting system by de�ning, foreah relation A = B of the presentation, either the rewriting rule A→ B, if B ≺ A holds,or B → A, otherwise. A redution of a word W ∈ (X ∪ X−)∗ replaes a subword A of

W by B whenever A→ B is a rewriting rule. As W = UAV holds and ≺ is translationinvariant, the redution W = UAV → UBV yields that W = UAV ≻ UBV as A ≻ Bholds. Thus, as the redution ordering ≺ is a well-ordering, a redution of W yields a�nite sequene W =W1 ≻W2 ≻ . . . ≻Wn with Wi →Wi+1.There are possibly di�erent hoies of the next rewriting rule to apply within aredution of a given word W . These hoies may result into di�erent least elements
Wn. A rewriting system is alled on�uent, though, if, for eah word W , the leastelement Wn does not depend on the hoie of the intermediate redutions. A on�uentrewriting system provides a method for transforming any word over X∪X− into its uniquenormal form. In fat, it solves the word problem of the group. For instane, �nitelygenerated nilpotent groups or polyyli groups are examples of groups whih admit a�nite on�uent rewriting system [129℄, so-alled on�uent polyyli presentations.



2.4. Reursive Presentations 21The Knuth-Bendix ompletion (see, for instane, [129, 130℄) transforms a rewritingsystem for a �nitely presented monoid into a on�uent rewriting system. For this purpose,it heks ertain overlaps of the rules and it adds rewriting rules if neessary. We outlinethe details of a Knuth-Bendix ompletion within our generalization in Chapter 5 below.2.4 Reursive PresentationsIn this setion, we introdue the notion of a reursive presentation and the notion of areursively presented group. For further details on reursively presented groups, we referto Chapter II of [95℄.Let F be a �nitely generated free group. We all a subset S ⊆ F reursively enumer-able if there exists an algorithm that lists the elements of S in some (arbitrary) order. Inthis ase, we an write S = {s1, s2, s3, . . .} where sn denotes the result of the algorithmthat is returned after the n-th step. For instane, a �nite set and a �nitely generatedfree monoid are reursively enumerable.A subset S ⊂ F is reursive if there exists an algorithm that deides whether or nota given element w ∈ F belongs to the set S. A reursive set S ⊆ F is learly reursivelyenumerable beause if an algorithm that lists the elements of the �nitely generated freegroup F an be ombined with the algorithm that deides whether or not an elementbelongs to the reursive set S. A set S is reursive if and only if S and its omplement
F \ S are reursively enumerable. On the other hand, it is a fundamental result in logithat there exists a reursively enumerable set that is not reursive. This is the reasonfor most problems in group theory not being deidable [95, 99℄.A reursive presentation is a group presentation 〈X | R〉 with a �nite alphabet X anda reursively enumerable set of relations R ⊆ F where F denotes the free group over thealphabet X . The group G = 〈X | R〉 de�ned by a reursive presentation is reursivelypresented. As �nite sets are reursively enumerable, every �nite presentation is a reursivepresentation. Reursively presented groups have been lassi�ed by Higman's embeddingtheorem:Theorem 2.10 (Higman's Embedding Theorem [81℄) A �nitely generated groupembeds into a �nitely presented group if and only if it is reursively presented.This is a fundamental result in ombinatorial group theory. For instane, the existene ofa reursively enumerable set of integers that is not reursive is used in [95, Setion IV.7℄for the onstrution of a reursively presented group whose word problem is not de-idable. As this reursively presented group embeds into a �nitely presented group byTheorem 2.10, there exists a �nitely presented group whose word problem is not deid-able [95, Theorem IV 7.2℄. This would prove the Novikov-Boone Theorem 2.5.If a group G is �nitely generated by X , it has a solvable word problem if and onlyif the set S = {w ∈ F (X ) | w =G 1} is reursive. In partiular, the word problem isdeidable if and only if S and its omplement F \ S are reursively enumerable. In thisase, a reursive presentation for the group G is given by 〈X | {w ∈ F (X ) | w =G 1}〉.



22 Chapter 2. Groups and PresentationsTherefore, every �nitely generated group with a solvable word problem is reursivelypresented. Hene, it embeds into a �nitely presented group with Higman's EmbeddingTheorem 2.10. More spei�ally, one an prove the followingProposition 2.11 (Clapham [34, 99℄) A �nitely generated group with a deidableword problem embeds into a �nitely presented group whose word problem is deidable.2.5 Finite L-presentationsIn this setion, we �nally introdue the notion of a �nite L-presentation and the notionof a �nitely L-presented group. The study of �nite L-presentations was initiated byLysënok's result in [96℄ for the group G onstruted by Grigorhuk [53℄: he proved that
G is in�nitely presented by

G ∼=
〈
{a, b, c, d}

∣∣∣ {a2, b2, c2, d2, bcd} ∪
⋃

i∈N0

{(ad)4, (adacac)4}σ
i
〉
, (2.2)where σ is an endomorphism of the free group over {a, b, c, d} that is indued by the map

a 7→ aca, b 7→ d, c 7→ b, and d 7→ c. As a homage to this work and as a referene to the
L-systems from [91℄, it was suggested in [56℄ that a group is alled �nitely L-presentedif it admits a group presentation of the form

〈
X

∣∣∣Q∪
⋃

i∈N0

Rσi
〉with a �nite alphabet X , �nite subsets Q and R of the free group over X , and a singleendomorphism σ of the free group over X . This notion was generalized in [6℄ as follows:De�nition 2.12 (Bartholdi [6℄) An L-presentation is a group presentation of theform 〈

X
∣∣∣Q ∪

⋃

σ∈Φ∗

Rσ
〉 (2.3)where Φ∗ denotes the free monoid of endomorphisms of the free group F over X that isgenerated by Φ; i.e., the losure of {id}∪Φ under taking omposition of group homomor-phisms.The group presentation in Eq. (2.3) is denoted by 〈X | Q | Φ | R〉. The group G itde�nes is L-presented by 〈X | Q | Φ | R〉. We also write G = 〈X | Q | Φ | R〉 in this ase.An L-presentation 〈X | Q | Φ | R〉 is a �nite L-presentation if X , Q, Φ, and R are �nite.A group presented by a �nite L-presentation is �nitely L-presented by 〈X | Q | Φ | R〉.The relations in Q and R are the �xed relations and iterated relations, respetively. Theendomorphisms in Φ are the substitutions of the L-presentations.



2.5. Finite L-Presentations 23Remark 2.13 In the following, we always assume that the substitutions in Φ of a �nite
L-presentation generate a free monoid. This is not neessary for the algorithms on-struted below and, in partiular, it does not hange the isomorphism type of the group.More preisely, given a �nite set of endomorphisms {σ1, . . . , σn} ⊆ End(F ) and a �niteset of symbols Φ = {φ1, . . . , φn}, we onsider the free monoid Φ∗ whih naturally mapsonto the monoid M = 〈σ1, . . . , σn〉 generated by the endomorphism {σ1, . . . , σn} of thefree group. In the following, we always identify the free monoid Φ∗ with its image in
End(F ). This identi�ation does not hange the isomorphism type of the L-presentedgroup. However, the free monoid Φ∗ is well-ordered [67, 129℄ whih we often use for thealgorithms onstruted below.With the notion of a �nite L-presentation, Lysënok's result in Eq. (2.2) ould be restatedas follows:Theorem 2.14 (Lysënok [96℄) The Grigorhuk group G is �nitely L-presented by〈
{a, b, c, d} | {a2, b2, c2, d2, bcd} | {σ} | {(ad)4, (adacac)4}

〉 where σ denotes the endomor-phism of the free group over {a, b, c, d} that is indued by the map a 7→ aca, b 7→ d, c 7→ b,and d 7→ c.An L-presentation of the form 〈X | ∅ | Φ | R〉 is an asending L-presentation. Asending
L-presentations generalize the onept of a �nite presentation:Remark 2.15 A �nitely presented group 〈X |R〉 is �nitely L-presented by 〈X | ∅ | ∅ | R〉.The substitutions σ ∈ Φ of an asending L-presentation 〈X | ∅ | Φ | R〉 stabilizethe normal subgroup K = 〈

⋃
σ∈Φ∗ Rσ〉F . Therefore, eah substitution of an asend-ing L-presentation indues an endomorphism of the L-presented group G = F/K. An

L-presentation where every substitution indues an endomorphism of the L-presentedgroup is alled an invariant L-presentation. The group presented by an invariant L-presentation is invariantly L-presented. Some algorithms developed in this thesis willwork for invariant L-presentations only; e.g. the algorithm in Appendix E for omputingDwyer quotients of the Shur multiplier of an invariantly �nitely L-presented group. Ad-ditionally, the nilpotent quotient algorithm in [9, 64℄ is more e�etive on invariant �nite
L-presentations. Note that invariant and asending L-presentations are related by thefollowingRemark 2.16 Every asending L-presentation is invariant. For eah invariant L-pre-sentation 〈X | Q | Φ | R〉 there exists an asending L-presentation 〈X | ∅ | Φ | Q ∪ R〉whih de�nes the same group.The �nite L-presentation in Theorem 2.14 for the group G onstruted by Grigorhuk isan invariant L-presentation as the �xed relations Q = {a2, b2, c2, d2, bcd} are mapped bythe substitution σ to
(a2)σ = (aca)2, (b2)σ = d2, (c2)σ = b2, (d2)σ = c2, and (bcd)σ = dbc = (bcd)d

−1
.



24 Chapter 2. Groups and PresentationsThese images are obviously relations in the group G. Therefore, the substitution σ fatorsthrough to an endomorphism of G; see also [55℄. In partiular, G is �nitely L-presentedby the asending �nite L-presentations
〈{a, b, c, d} ∣∣ ∅

∣∣ {σ}
∣∣ {a2, b2, c2, d2, bcd, (ad)4, (adacac)4}

〉

=
〈
{a, b, c, d}

∣∣ ∅
∣∣ {σ}

∣∣ {a2, bcd, (ad)4, (adacac)4}
〉
.Finite L-presentations are reursive:Lemma 2.17 A �nite L-presentation is a reursive presentation.Proof. Let 〈X | Q | Φ | R〉 be a �nite L-presentation. Sine the �nitely generatedfree monoid Φ∗ is reursively enumerable, the set of relations Q∪

⋃
σ∈Φ∗ Rσ of a �nitely

L-presented group is reursively enumerable. 2Higman's embedding theorem 2.10 and Lemma 2.17 have the following immediateCorollary 2.18 Eah �nitely L-presented group embeds into a �nitely presented group.Eah �nitely generated subgroup of a �nitely L-presented group is reursively presented.Proof. Sine a �nitely L-presented group is reursively presented, a �nitely L-presentedgroup embeds into a �nitely presented group by Higman's embedding theorem 2.10.Thus a �nitely generated subgroup of a �nitely L-presented group embeds into a �nitelypresented group and hene, it is reursively presented. 2In Appendix D, we generalize the Reidemeister-Shreier theorem for �nitely presentedgroups as we prove that eah �nite index subgroup of �nitely L-presented group is �nitely
L-presented itself.Proposition 2.19 The lass of �nitely presented groups is properly ontained in thelass of �nitely L-presented groups. The lass of �nitely L-presented groups is ontainedin the lass of reursively presented groups. There are �nitely generated groups that arenot �nitely L-presented.Proof. By Remark 2.15, eah �nitely presented group is �nitely L-presented. Grigor-huk's group is �nitely L-presented by Theorem 2.14 but it is not �nitely presented [56℄.Therefore, the lass of �nitely presented groups is properly ontained in the lass of�nitely L-presented groups. By Lemma 2.17, every �nitely L-presented group is reur-sively presented. Beause there are only ountably many �nite L-presentations but, byProposition 2.3, unountably many non-isomorphi groups generated by two elements,there are �nitely generated groups that are not �nitely L-presented. 2Sine we are not aware of a method to prove or disprove that a �nitely generated groupis �nitely L-presented (or even invariantly �nitely L-presented), we have no answer tothe following problem:Question 2.20 Is there an expliit example of a reursively presented group that is not�nitely L-presented? Is there a �nitely L-presented group that is not invariantly �nitely
L-presented?



2.6. Examples of Finitely L-Presented Groups 25Note that, in Appendix B, we prove that `being invariantly �nitely L-presented' is anabstrat property of a group whih does not depend on the generating set. Therefore,it su�es to onstrut a �nitely L-presented group whih does not admit an invariant
L-presentation with respet to the same generating set.2.6 Examples of Finitely L-Presented GroupsBeause �nite L-presentations generalize the onept of a �nite presentation, there arevarious examples of �nitely L-presented groups. More interesting examples of �nitely
L-presented groups are those whih are not �nitely presented. In this setion, we showthat the onept of a �nite L-presentation is quite general so that various examples of�nitely generated groups exist whih are �nitely L-presented. The algorithms developedin this thesis apply to these groups.2.6.1 Self-Similar GroupsA major motivation for introduing the notion of a �nite L-presentation in [6,56℄ was thedesire to understand better some examples of self-similar groups. Self-similar groups haveappeared aross a wide range of mathematis, answering lassial questions in in�nitegroup theory as well as establishing new links to omplex dynamis [6, 9℄.A self-similar group is de�ned by its reursive ation on a rooted regular tree. Weonsider the d-regular rooted tree as the free monoid over the alphabet T = {0, . . . , d−1}.Then a group G that ats faithfully on the free monoid T ∗ is a self-similar group if foreah g ∈ G and x ∈ T there exist h ∈ G and y ∈ T with

(xw)g = y wh for eah w ∈ T ∗.In order to de�ne a self-similar group, it su�es to speify the ation of its generatorson the regular rooted tree. For instane, we have the following well-known examples ofself-similar groups:Example 2.21 (Grigorhuk [53℄) The Grigorhuk group G = 〈a, b, c, d〉 is de�ned bythe following ation on the rooted binary tree T ∗ = {0, 1}∗:
(0w)a = 1w
(0w)b = 0wa

(0w)c = 0wa

(0w)d = 0w

(1w)a = 0w
(1w)b = 1wc

(1w)c = 1wd

(1w)d = 1wb .Example 2.22 (Gupta & Sidki [62℄) The Gupta-Sidki group G = 〈a, r〉 is de�ned bythe following ation on the rooted 3-regular tree T ∗ = {0, 1, 2}∗:
(0w)a = 1w
(1w)a = 2w
(2w)a = 0w

(0w)r = 0wa

(1w)r = 1wa
−1

(2w)r = 2wr .



26 Chapter 2. Groups and PresentationsExample 2.23 (Fabrykowski & Gupta [45, 46℄, Grigorhuk [57℄) For d ≥ 3, thegeneralized Fabrykowski-Gupta group Γd = 〈a, r〉 is de�ned by the following ation on therooted d-regular tree T ∗ = {0, . . . , d− 1}:
(xw)a = x+ 1 (mod d)w, for 0 ≤ x ≤ d− 1

(0w)r = 0wa,
(xw)r = xw, for 1 ≤ x < d− 1

(d− 1w)r = d− 1wr.Various self-similar groups are �nitely L-presented but not �nitely presented:Theorem 2.24 (Bartholdi [6℄) Eah �nitely generated, ontrating, semi-fratal, reg-ular branh group is �nitely L-presented but not �nitely presented.The onstrutive proof of Theorem 2.24 provides a method for omputing �nite L-presentations for self-similar groups; see [6, 14, 128℄. For further details on self-similargroups groups, we refer to [6, 12, 101℄. Throughout this thesis, we often use the testbed-groups from [6,9℄ to provide omputational evidene for the e�etiveness of our algorithmsin pratie.2.6.2 Groups Satisfying Finitely Many IdentitiesIn the style of [6, Setion 2.2℄, we de�ne an identity to be an element w of a free group Eover some alphabet Y. A group G satis�es the identity w ∈ E, if for eah homomorphism
π:E → G we have that wπ =G 1. For instane, all abelian groups satisfy the identity
w = [x, y]. The free group over X in the variety of groups satisfying the identities
{w1, . . . , wn} ⊆ E is

F = F
/〈

wπ1 , . . . , w
π
n

∣∣∣ π ∈ Hom(E,F )
〉Fwhere F denotes the free group over X . The group F is universal in the sense that everygroup generated by X and satisfying the identities w1, . . . , wn is a homomorphi imageof F . A �nitely generated group G is �nitely presented in the variety of groups satisfyingthe identities w1, . . . , wn if the kernel F → G is �nitely generated as normal subgroup.The following proposition is easily derived from [6, Proposition 2.13℄:Proposition 2.25 Eah group that is �nitely presented in the variety of groups satisfying�nitely many identities is �nitely L-presented.The proof of [6, Proposition 2.13℄ uses a variation of Nielsen transformations. It gen-eralizes to further examples of �nitely L-presented groups; see Setion 2.6.3 below. Forinstane, the free Burnside group B(m,n) on m generators that satis�es the identity xnis �nitely L-presented; see the AMS review of [114℄. Another example is given expliitlyby the following L-presentation from [64℄:



2.6. Examples of Finitely L-Presented Groups 27Example 2.26 An n-Engel group is a group G that satis�es the n-th Engel identity
[t,n u] =G 1, for all t, u ∈ G, where [t,n u] is de�ned reursively by [t,1 u] = [t, u] and
[t,n+1 u] = [[t,n u], u].The free group E(m,n) in the variety of m-generated n-Engel groups is �nitely L-presented by 〈{x1, . . . , xm} ∪ {t, u} | {t, u} | Φ | {[t,n u]}〉 where the substitutions Φ =
{σ+i , σ

−
i , τ

+
i , τ

−
i | 1 ≤ i ≤ m} are indued by the maps

σ+i :





xk 7→ xk, for 1 ≤ k ≤ m,
t 7→ xi t,
u 7→ u,

σ−i :





xk 7→ xk, for 1 ≤ k ≤ m,

t 7→ x−1
i t,

u 7→ u,and
τ+i :





xk 7→ xk, for 1 ≤ k ≤ m,
t 7→ t,
u 7→ xi u,

τ2i :





xk 7→ xk, for 1 ≤ k ≤ m,
t 7→ t,

u 7→ x−1
i u,respetively.2.6.3 Further Examples of Finitely L-Presented GroupsThe notion of a �nite L-presentation is quite natural. It was used intrinsially in manyinstanes for the onstrution of groups with interesting properties. The onstrutiveproof of Theorem 2.25 (as indiated in the Example 2.26), allows one to prove thatmany in�nitely presented groups in literature are �nitely L-presented. For instane, thelamplighter group Z2 ≀ Z admits a �nite L-presentation:Proposition 2.27 If H is a �nitely presented group, the wreath produt H ≀Z is �nitely

L-presented.Proof. Let 〈X | R〉 be a �nite presentation for the group H. Then the wreath produt
H ≀ Z admits the presentation

〈
X ∪ {t}

∣∣∣ R ∪ {[xt
i

, yt
j

] | x, y ∈ X , i, j ∈ Z, i 6= j}
〉
.It is easy to see that we an replae the relations [xt

i
, yt

j
] = [x, yt

j−i
]t
i , with i, j ∈ Z,by the relations [x, yt

i
] with i ∈ N \ {0} without hanging the isomorphism type of thegroup. In partiular, we have that

H ≀ Z ∼=
〈
X ∪ {t}

∣∣∣ R ∪ {[x, yt
i

] | x, y ∈ X , i ∈ N \ {0}}
〉
. (2.4)For eah x ∈ X , we introdue a stable letter ux 6∈ X and we write U = {ux | x ∈ X} sothat X ∩ U = ∅ holds. Consider the �nite L-presentation

〈
X ∪ U ∪ {t}

∣∣∣ {x−1ux}x∈X

∣∣∣ {σx}x∈X
∣∣∣ R∪ {[x, uty ]}x,y∈X

〉
, (2.5)



28 Chapter 2. Groups and Presentationswhere σy denotes the endomorphism of the free group over X ∪ U ∪ {t} that is induedby the map
σy:





x 7→ x, for eah x ∈ X
t 7→ t

ux 7→ ux, for eah x ∈ X \ {y}
uy 7→ (uy)

t.The map x 7→ x, t 7→ t, and ux 7→ x indues a surjetive homomorphism from the groupde�ned by the �nite L-presentation in Eq. (2.5) onto the wreath produt in Eq. (2.4).The map that identi�es the generators X ∪ {t} of the wreath produt in Eq. (2.4) withthe orresponding generators of the �nite L-presentation in Eq. (2.5) de�nes a surjetivehomomorphism. These homomorphisms are learly inverses of eah other. Thus the�nite L-presentation in Eq. (2.5) de�nes H ≀ Z. 2The �nite L-presentation for the wreath produt in Eq. (2.5) is not asending. In general,we are not aware of an asending L-presentation for the wreath produts H ≀Z. However,in ontrast to [6℄, Bartholdi notied that the lamplighter group Z2 ≀ Z is �nitely L-presented by
Z2 ≀ Z ∼=

〈
{a, t}

∣∣ ∅
∣∣ {σ}

∣∣ {a2, [a, at]}
〉
,where σ denotes the endomorphism of the free group over {a, t} that is indued by themap a 7→ ata and t 7→ t. We generalize this onstrution in the following proposition:Proposition 2.28 If H is a �nitely generated abelian group, the wreath produt H ≀Z isinvariantly �nitely L-presented.Proof. For a proof, we refer to Proposition 2.3 in Appendix B. 2Another group that is �nitely L-presented was onstruted in [85℄: Consider the subgroup

H = 〈a1, . . . , ar〉 of the group G = 〈{a1, . . . , ar, t} | {w1, . . . , ws, a
t
1v

−1
1 , . . . , atrv

−1
r }〉where wj are freely and ylially redued words in X± = {a1, . . . , ar}

±. If G satis�essome small-anellation ondition, H is not �nitely presented [85℄. However, by Theo-rem 3.1 of [85℄, H is �nitely L-presented by 〈{a1, . . . , ar} | ∅ | {φ} | {w1, . . . , wr}〉 where
φ denotes the endomorphism of the free group F over {a1, . . . , ar} that is indued by themap

φ:F → F,





a1 7→ v1,...
ar 7→ vr.Similarly, the �nitely generated group with trivial Shur multiplier in [18℄ is �nitely

L-presented but not �nitely presented. We are not aware of an invariant �nite L-presentation for this group [64℄. Another example of a �nite L-presentation is givenby the reursive presentation for Mihailova's subgroup in [26℄.2.7 Deision Problems for Finitely L-Presented GroupsIn this setion, we onsider deision problems for �nitely L-presented groups. Sine eah�nite presentation an be onsidered as a �nite L-presentation, we have the following



2.7. Deision Problems for Finitely L-Presented Groups 29Remark 2.29 If an abstrat property is not reursively reognizable for �nitely presentedgroups, it is not reursively reognizable for �nitely L-presented groups.Sine a �nitely L-presented group is reursively presented, the following lemma appliesto �nitely L-presented groups:Lemma 2.30 The word problem of a reursively presented group is semi-deidable.Proof. Let 〈X | R〉 be a reursive presentation of a group. Suppose that r1, r2, . . .is a reursive enumeration of the group's relations; i.e., rn ∈ R denotes the elementthat is returned as the n-th step of the algorithm that list the elements of R one afteranother. The word problem is semi-deidable if the set of elements g ∈ 〈R〉F is re-ursively enumerable where F denotes the free group over X . For g ∈ 〈R〉F , we have
g = u−1

1 rε11 u1 · · · u
−1
m rεmm um with ri ∈ R, ui ∈ F , and ε = ±1. Sine the free group Fis �nitely generated by X , elements of this form are reursively enumerable and thus

g ∈ 〈R〉F an be listed one after another. 2However, there are reursively presented groups whose word problem is not deidable [95,Setion IV.7℄. In the following, we onsider two deision problems whih ould be faedwith our algorithms in speial ases. Deision problems for reursively presented groupswere also studied in [94℄.2.7.1 Finite Presentability ProblemBeause `being �nitely presented' does not depend on the generating set of the group,it is an abstrat property [38℄. Sine the lass of �nitely presented groups is ontainedin the lass of �nitely L-presented groups, a natural deision problem for a �nitely L-presented group is to ask for an algorithm that deides whether or not a given �nite
L-presentation de�nes a �nitely presented group. In general, this �nite presentabilityproblem for �nitely L-presented groups is not deidable. In order to prove that the �nitepresentability problem is not deidable, we onsiderTheorem 2.31 (Baumslag [17℄) For �nitely presented groups G and H, the wreathprodut H ≀G is �nitely presented if and only if either H is trivial or G is �nite.An immediate onsequene of Proposition 2.27 and Theorem 2.31 is the followingProposition 2.32 There exists no algorithm that deides whether or not a �nite L-presentation de�nes a �nitely presented group.Proof. Let H = 〈X | R〉 be a �nitely presented group. By Proposition 2.27 the wreathprodut H ≀Z is �nitely L-presented. By Theorem 2.31, though, H ≀Z is �nitely presentedif and only if H is trivial. If an algorithm existed for deiding whether or not a �nite
L-presentation de�nes a �nitely presented group, there would exist an algorithm fordeiding whether or not H is trivial. However, `being trivial' is a Markov property. Bythe Adian-Rabin Theorem 2.6, it is therefore impossible to deide whether or not a �nite
L-presentation de�nes a �nitely presented group. 2As every �nitely L-presented group is reursively presented, Proposition 2.32 yields



30 Chapter 2. Groups and PresentationsCorollary 2.33 The �nite presentability problem for a reursively presented group is notdeidable.Even though it is not deidable whether or not a �nite L-presentation de�nes a �nitelypresented group, the algorithm in [66℄ or Appendix E addresses this deision problempratially. It attempts to gain omputational evidene for an invariantly �nitely L-presented group to be in�nitely related. Our approah follows the ideas from [56℄. Itomputes suessive (still �nitely generated) fator groups of the Shur multiplier of aninvariantly �nitely L-presented group.The Shur multiplier M(G) of a group G is an invariant whih is related to a grouppresentation by Hopf's formula: If F is a free group and R� F is a normal subgroup sothat G = F/R holds, the Shur multiplier M(G) satis�es
M(G) ∼= (R ∩ F ′)/[R,F ].The Shur multiplier M(G) is related to the �nite presentability problem:Lemma 2.34 The Shur multiplier of a �nitely presented group is a �nitely generatedabelian group.Proof. If G is �nitely presented, there exists a �nite presentation 〈X | R〉 for G. Let

F be the free group over X and denote by R the normal losure in F of the �nitelymany relations in R. Then G = F/R holds. By Hopf's formula, the Shur multipliersatis�es M(G) ∼= (R ∩ F ′)/[R,F ]. The subgroup (R ∩ F ′)/[R,F ] is ontained in theentral subgroup R/[R,F ] ≤ F/[R,F ]. Sine R is �nitely generated as normal subgroup,
R/[R,F ] is a �nitely generated abelian group. Thus, all subgroups of R/[R,F ] are �nitelygenerated. In partiular, the Shur multiplier M(G) ∼= (R ∩ F ′)/[R,F ] ≤ R/[R,F ] is a�nitely generated abelian group. 2Lemma 2.34 was used in [56℄ to prove that the group G onstruted by Grigorhuk [53℄is not �nitely presented. These expliit alulations were generalized to an algorithm foromputing Dwyer quotients of the Shur multiplier in [66℄ or Appendix E.Notie that the onverse of Lemma 2.34 is not true: A ounter-example, namely agroup with �nitely generated (even trivial) Shur multiplier whih is not �nitely pre-sented, was onstruted in [18℄:Theorem 2.35 (Baumslag [18℄) The group

B = 〈{a, b, t} | {at a−4, bt
−1
b−2, [a, bt

i

] | i ∈ Z}〉is a met-abelian, in�nitely related group with trivial Shur multiplier.The onstrutions in the proof of Proposition 2.27 also show that Baumslag's group inTheorem 2.35 is �nitely L-presented; see [64℄.Even though the Shur multiplier of a �nitely L-presented group is not omputable ingeneral [52℄, our approah in [66℄ or Appendix E omputes suessive quotients, so-alledDwyer quotients, of the Shur multiplier of an invariantly �nitely L-presented group.



2.8. First Results for Finitely L-Presented Groups 31Various self-similar groups admit striking patterns along the suessive Dwyer quotientswhih suggest that their Shur multiplier is in�nitely generated. The algorithm in [66℄ orAppendix E an be seen as a quotient method for the Shur multiplier of an invariantly�nitely L-presented group.2.7.2 The Group Homomorphism ProblemIn this setion, we onsider a omputational problem whih is fundamental for any quo-tient method for �nitely L-presented groups. Even though an answer to this problemmay depend on the L-presentation, a solution to this problem allows us to develop in-teresting algorithms for �nitely L-presented groups; e.g. the oset enumerator in [67℄ isa onsequene of our solution for the lass of �nite groups.Let H denote a lass of groups (e.g. an important ase is that H is the lass of �nitegroups). Suppose that G is �nitely L-presented by 〈X | Q | Φ | R〉 and assume that
f :X → H is a map into a group H ∈ H. We say that the group homomorphism problemfor the lass H is deidable if there exists an algorithm that deides whether or not themap f extends to a homomorphism G→ H.By the universal property of free groups, the map f :X → H extends to a uniquegroup homomorphism ϕ:F → H from the free group F over the alphabet X . Thehomomorphism ϕ indues a group homomorphism G → H if and only if G's relationsare mapped trivially; i.e., Q ∪

⋃
σ∈Φ∗ Rσ ⊆ ker(ϕ) holds. A solution to the grouphomomorphism problem may depend on the lass of groups.If H ∈ H has a deidable word problem, there exists an algorithm that deideswhether or not an element r ∈ F satis�es rϕ =H 1. Therefore, for a �nitely presentedgroup, the group homomorphism problem for a lass H of groups with a (semi-)deidableword problem is (semi-)deidable beause it su�es to hek �nitely many relations. Ifthe group is �nitely L-presented, though, there are possibly in�nitely many relations thatneed to be onsidered for solving the group homomorphism problem. In Chapter 3, weobtain a solution to the group homomorphism problem for the lass of �nite groups:Theorem 2.36 For a �nitely L-presented group, the group homomorphism problem forthe lass of �nite groups is deidable.We also solve the group homomorphism problem for the lass of �nitely generated nilpo-tent groups (and even the lass of polyyli groups is likely to admit a solution to thegroup homomorphism problem). In general, though, we have no solution to the grouphomomorphism problem.2.8 First Results for Finitely L-Presented GroupsIn this setion, we summarize some well-known results on the struture of a �nitely L-presented group. The following group theoreti onstrutions preserve the property ofbeing �nitely L-presented:



32 Chapter 2. Groups and PresentationsTheorem 2.37 (Bartholdi [6℄) For �nitely L-presented groups G and H, the followinggroups are �nitely L-presented:
• every fator group G/N for a normal subgroup N � G whih is �nitely generatedas a normal subgroup of G,
• every split-extension H ⋊G,
• every group extension of G by a �nitely presented group,
• the free produt G ∗H, and
• every HNN-extension of G relative to an isomorphism φ:K → L where K and Lare �nitely generated subgroups of G.An immediate onsequene of Theorem 2.37 isCorollary 2.38 Let G and H be �nitely L-presented groups. If F is a �nitely generatedgroup with embeddings ψ:F → G and φ:F → H, the amalgamated free produt G ∗F His �nitely L-presented.Furthermore, it was already suggested in [6℄ that eah �nite index subgroup of a �nitely

L-presented group is �nitely L-presented. The proof in [6, Proposition 2.9℄ ontains agap whih we addressed in [70℄ or Appendix D. However, �nitely L-presented groupssatisfyTheorem 2.39 (Reidemeister-Shreier Theorem) Eah �nite index subgroup of a�nitely L-presented group is �nitely L-presented.In [70℄ or Appendix D we also study onditions on a �nite index subgroup of an invariantly�nitely L-presented group to be invariantly �nitely L-presented.2.9 Algorithms for Finitely L-Presented GroupsIt was shown in [9,64℄ that �nite L-presentations allow omputer algorithms to be appliedin the investigation of �nitely L-presented groups. So far, the only algorithm for �nitely
L-presented groups is the nilpotent quotient algorithm in [9, 64℄:2.9.1 The Nilpotent Quotient AlgorithmMost results on the struture of a self-similar group were obtained using their realizationas automorphism groups of a regular rooted tree. For instane, the faithful ation onthe binary tree of group G onstruted by Grigorhuk [53℄ was used in [123℄ to omputeits lower entral series setions γcG/γc+1G; see also [10℄. The lower entral series of
G admits striking patterns so that the setions γcG/γc+1G have a nie desription (seeSetion A.3.1 below). In fat, G is a group of �nite width. Similar results were obtainedin [7℄ for other self-similar groups inluding the Fabrykowski-Gupta group from [45, 46℄.The striking patterns along the lower entral series γcG/γc+1G were a major motiva-tion for generalizing the nilpotent quotient algorithm for �nitely presented groups [107℄



2.9. Algorithms for Finitely L-Presented Groups 33to �nitely L-presented groups in [9,64℄. Similar to the original algorithm, this generaliza-tion omputes a polyyli presentation for the lower entral series quotients G/γc(G) ofa �nitely L-presented group G together with a group homomorphism G→ G/γcG. Thesuessful appliation of our nilpotent quotient algorithm to various self-similar groupsyields detailed onjetures on the struture of their lower entral series in general. More-over, it provides a �rst algorithm for omputing within the lower entral series quotients
G/γcG of a �nitely L-presented group (the groups G/γcG have a deidable word prob-lem). For further details on the nilpotent quotient algorithm for �nitely L-presentedgroups, we refer to [9, 64℄ or Setion A.3 below.Our generalization of the nilpotent quotient algorithm for �nitely presented groupsin [107℄ to �nite L-presentations suggested that the p-quotient algorithm [74, 105℄ andthe polyyli quotient algorithm from [92, 93℄ generalize to �nite L-presentations [63℄;see also [43℄.
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Chapter3The Group Homomorphism ProblemA group presentation is a useful tool to deide if a map from a generating set of agroup into another group indues a group homomorphism. More preisely, given a grouppresentation 〈X | R〉 of G and a map f :X → H from the generating set X of G into agroup H, the presentation is useful to deide whether or not f indues a (unique) grouphomomorphism G → H: By the universal property of free groups, the map f extendsto a unique homomorphism ϕ:F → H from the free group F over the alphabet X intothe group H. The homomorphism ϕ indues a group homomorphism G → H if andonly if all relations in R of G's group presentation are mapped trivially. If 〈X | R〉 isa �nite presentation, there are �nitely many relations that need to be onsidered. Thegroup homomorphism problem is deidable if both G and H are �nite [90℄ and, evenmore general, if G is �nitely presented and H has a deidable word problem. For �nitely
L-presented groups, though, there are possibly in�nitely many relations that need to beheked in order to verify that ϕ indues a group homomorphism G→ H.In this hapter, we show that the group homomorphism problem is solvable if H is�nite or �nitely generated and nilpotent. Our solution for the lass of �nite groups isthe basis for our oset enumerator for �nitely L-presented groups in [67℄ or Appendix C.3.1 The Class of Finite GroupsIn this setion, we onsider the group homomorphism problem for the lass H of �nitegroups. Let G = 〈X | Q | Φ | R〉 be a �nitely L-presented group. We expliitly desribean algorithm that deides whether or not a map f :X → H into a �nite group H ∈ Hindues a group homomorphism G→ H. Denote by F the free group over the alphabet
X . By the universal property of free groups, f extends (uniquely) to a homomorphism
ϕ:F → H. Then ϕ indues a group homomorphism π:G→ H if and only if all relationsof G's �nite L-presentation are mapped trivially by ϕ; i.e., we have rϕ =H 1 for all
r ∈ Q ∪

⋃
σ∈Φ∗ Rσ.Sine G is �nitely L-presented there are only �nitely many �xed relations in Q thatan be heked one after another. Therefore, it remains to onsider the (possibly in�nitely



36 Chapter 3. The Group Homomorphism Problemmany) relations ⋃
σ∈Φ∗ Rσ. We show that �nitely many relations of the form rσ, with

r ∈ R and σ ∈ Φ∗, are su�ient in order to deide whether or not f :X → H indues toa group homomorphism G→ H. First, we onsider the followingLemma 3.1 For a �nitely generated free group F and a positive integer n ∈ N, thereare only �nitely many subgroups in F with index at most n.Proof. Let F be a �nitely generated free group and let n ∈ N be given. Suppose that
U ≤ F has �nite index m = [F : U ] ≤ n. Then F ats transitively on the right-osets
U\F . Therefore, there exists a group homomorphism πU :F → Sym(U\F ) ∼= Sm. Onthe other hand, eah group homomorphism π:F → Sm whose image F π ats transitivelyon the points {1, . . . ,m} orresponds to a subgroup U = StabF (1) of F with index m.In fat, there is a one-to-one orrespondene between the subgroups with index m andthe group homomorphisms π:F → Sm whose image ats transitively on {1, . . . ,m}.By the universal property of a free group, a group homomorphism π:F → Sm isuniquely de�ned by the images of the basis X of F . Sine F is �nitely generated and Smis �nite, there are only �nitely many homomorphisms in Hom(F,Sm). Thus, there areonly �nitely many subgroups U ≤ F with index m ≤ n. 2Sine every �nitely generated group is a homomorphi image of a �nitely generated freegroup, this yields the followingCorollary 3.2 For a �nitely generated group G and a positive integer n ∈ N, there areonly �nitely many subgroup H ≤ G with [G : H] ≤ n.In the following, we onsider endomorphisms σ ∈ End(F ) of the free group F over Xand the kernels ker(σϕ) where ϕ:F → H denotes the (unique) extension of the map
f :X → H to the free group F .Lemma 3.3 For endomorphisms σ, δ ∈ End(F ) of the free group F and a homomor-phism ϕ:F → H into a �nite group, there exists an algorithm that deides whether ornot ker(σϕ) ≤ ker(δϕ) holds.Proof. Sine H is �nite and σ is an endomorphism of the free group F , the image
im (σϕ) ∼= F/ ker(σϕ) is �nite. Therefore, ker(σϕ) has �nite index in F . The group Fats transitively on F/ ker(σϕ) and there exists an isomorphism ι:F/ ker(σϕ) → im (σϕ).This isomorphism allows us to ompute a Shreier transversal T for ker(σϕ) in F . ThenShreier's theorem (as, for instane, in [95, Proposition I.3.7℄) allows us to ompute a�nite basis Y for the free subgroup ker(σϕ). The Shreier generators Y give a methodto deide whether or not ker(σϕ) ≤ ker(δϕ) holds: it su�es to evaluate the images yδϕfor �nitely many Shreier generators y ∈ Y. Clearly, we have ker(σϕ) ≤ ker(δϕ) if andonly if yδϕ =H 1 holds for eah y ∈ Y. Sine H is �nite, it has a solvable word problemand thus yδϕ =H 1 is deidable. 2The ondition ker(σϕ) ≤ ker(δϕ) in Lemma 3.3 yields the followingLemma 3.4 There exists a homomorphism π: im (σϕ) → im (δϕ) with δϕ = σϕπ if andonly if ker(σϕ) ≤ ker(δϕ) holds.



3.1. The Class of Finite Groups 37Proof. Suppose that there exists a homomorphism π: im (σϕ) → im (δϕ) with δϕ =
σϕπ. If g ∈ ker(σϕ), then 1 = 1π = (gσϕ)π = gσϕπ = gδϕ. Thus g ∈ ker(δϕ). If,on the other hand, ker(σϕ) ≤ ker(δϕ) holds, there are isomorphisms F/ ker(σϕ) →
im (σϕ), g ker(σϕ) 7→ gσϕ and F/ ker(δϕ) → im (δϕ), g ker(δϕ) 7→ gδϕ. Sine ker(σϕ) ≤
ker(δϕ) holds, there is a natural homomorphism F/ ker(σϕ) → F/ ker(δϕ), g ker(σϕ) 7→
g ker(δϕ). A ombination of these homomorphisms yields a homomorphism π: im (σϕ) →
im (δϕ), gσϕ 7→ gδϕ that satis�es σϕπ = δϕ. 2An alternative proof of Lemma 3.3 is given by the algorithm in [90℄: This algorithmallows one to deide whether or not a map from a generating set of a �nite group into�nite group indues a group homomorphism. By Lemma 3.4, we have ker(σϕ) ≤ ker(δϕ)if and only if there exists a homomorphism π: im (σϕ) → im (δϕ) with δϕ = σϕπ. Forthe latter problem, the algorithm in [90℄ applies.Our algorithm for deiding whether or not f :X → H indues a homomorphism G→
H is shown in Algorithm 3.1. It takes as input a �nite L-presentation 〈X | Q | Φ | R〉of G and the homomorphism ϕ:F → H. It deides whether or not ϕ indues a grouphomomorphism G → H. The proedure IsGroupHomomorphism in Algorithm 3.1 isIsGroupHomomorphism(X , Q, Φ, R, ϕ)if (∃q ∈ Q: q 6∈ ker(ϕ)) then return( false )if (∃r ∈ R: r 6∈ ker(ϕ)) then return( false )Choose an ordering on Φ = {φ1, . . . , φn} with φi ≺ φi+1.Initialize the lists V := [id:F → F ] and S := [φ1, . . . , φn].while S 6= [ ] doRemove the �rst entry δ from the list S.if (∃ r ∈ R: rδ 6∈ kerϕ

) then return( false )if (∀σ ∈ V : ker(σϕ) 6≤ ker(δϕ)) thenAppend φ1δ, . . . , φnδ to the list S.Add δ to the list V .return( true )Algorithm 3.1: An algorithm to deide whether or not ϕ:F → H indues a grouphomomorphism G→ H.an algorithm:Lemma 3.5 The algorithm IsGroupHomomorphism in Algorithm 3.1 terminates andit either returns true or false.Proof. Suppose that the proedure IsGroupHomomorphism does not terminate andhene, the while-loop will not terminate. Sine the list S = [φ1, . . . , φn] is �nite and ateah iteration of the while-loop an element is removed from S, non-termination of theproedure implies that it adds in�nitely many elements δ to the list V . At eah step,the elements δ, σ ∈ V satisfy ker(σϕ) 6= ker(δϕ). Beause ϕ:F → H is a homomorphisminto a �nite group H and im (σϕ) ≤ im (ϕ) ≤ H holds, the images im (σϕ) and im (δϕ)



38 Chapter 3. The Group Homomorphism Problemare �nite groups. Sine F/ ker(σϕ) ∼= im (σϕ) holds, ker(σϕ) and ker(δϕ) have �niteindex in F . As F is �nitely generated and ker(σϕ) has index at most n = |im (ϕ)|, thereare only �nitely subgroups ker(σϕ) by Lemma 3.1. This ontradits our assumption thatthe proedure adds in�nitely many elements σ to V with ker(σϕ) 6= ker(δϕ) for eahpair δ, σ ∈ V . Therefore, the while-loop eventually terminates and thus the proedureIsGroupHomomorphism is an algorithm. Clearly, it either returns true or false. 2In order to prove that the algorithm IsGroupHomomorphism solves the group homo-morphism problem for the lass H of �nite groups, we need the following observation:Lemma 3.6 Suppose that the algorithm IsGroupHomomorphism returned true. Foreah δ ∈ Φ∗, there exists σ ∈ V with ker(σϕ) ≤ ker(δϕ).Proof. The free monoid Φ∗ is well-ordered with respet to the length-plus-lexiographiordering whih extends the ordering ≺ on the generating set Φ. More preisely, theordering ≺ of the �nite generating set Φ = {φ1, . . . , φn} extends to the free monoid Φ∗ asfollows: de�ne σ ≺ δ if and only if either ‖σ‖ < ‖δ‖ holds or, otherwise, if σ = σ1 · · · σnand δ = δ1 · · · δn, with δi, σi ∈ Φ, and there exists 1 ≤ k ≤ n so that σi = δi for k < i ≤ nand σk ≺ δk. The obtained ordering ≺ on Φ∗ is total and a well-ordering [129℄. Byonstrution, S and V in Algorithm 3.1 are always ordered with respet to this ordering.Moreover, at eah step of the algorithm, the elements in V preede those in S.Suppose that δ ∈ Φ∗ is a ≺-minimal ounter-example to this lemma. Then we have
ker(σϕ) 6≤ ker(δϕ) for eah σ ∈ V . At eah step of the algorithm we neither have δ ∈ Vnor δ ∈ S (if δ ∈ S at an intermediate step, the algorithm would either have found
σ ∈ V with ker(σϕ) ≤ ker(δϕ) or it would have added δ to V � in both ases we obtaina ontradition to our assumption beause no elements were removed from V ). Sinethe stak S was initialized as S := Φ, we have that ‖δ‖ ≥ 2. Therefore, we an write
δ = δ1δ2 · · · δn with eah δi ∈ Φ. The algorithm yields the existene of a minimal positiveinteger 1 < k ≤ n so that, at some step of the algorithm, we have δkδk+1 · · · δn ∈ Sbut never δk−1δk · · · δn ∈ S. Hene, there exists τ ∈ V so that ker(τϕ) ≤ ker(δk · · · δnϕ)holds. Beause the elements in V preede those in S, the element τ ∈ V satis�esthat τ ≺ δk · · · δn. By Lemma 3.4, ker(τϕ) ≤ ker(δk · · · δnϕ) implies the existene of ahomomorphism π: im (τϕ) → im (δk · · · δnϕ) with τϕπ = δk · · · δnϕ. We obtain that

δϕ = δ1 · · · δnϕ = δ1 · · · δk−1δk · · · δnϕ = δ1 · · · δk−1τϕπ.By Lemma 3.4, this yields that ker(δ1 · · · δk−1τϕ) ≤ ker(δϕ). As τ ≺ δk · · · δn holds, wehave that δ1 · · · δk−1τ ≺ δ1 · · · δk−1δk · · · δn = δ. If there existed σ′ ∈ V with ker(σ′ϕ) ≤
ker(δ1 · · · δk−1τϕ), we would have that ker(σ′ϕ) ≤ ker(δ1 · · · δk−1τϕ) ≤ ker(δϕ). Hene,
δ1 · · · δk−1τ is a also ounter-example to our lemma whih preedes the ounter-example
δ. This however ontradits the minimality of δ. 2We are now in a position to prove the following theorem:Theorem 3.7 For a �nitely L-presented group and the lass of �nite group H, the grouphomomorphism problem for H is solved by the algorithm IsGroupHomomorphism.



3.1. The Class of Finite Groups 39Proof. Let ϕ:F → H be the unique homomorphism from the free group over the al-phabet X into the �nite group H ∈ H that lifts the map f :X → H. By Lemma 3.5, thealgorithm IsGroupHomomorphism terminates and it either returns true or false.If the algorithm returned false, it found either a �xed relation q ∈ Q with qϕ 6= 1or it found an iterated relation r ∈ R and a substitution σ ∈ Φ∗ with (rσ)ϕ 6= 1. In thisase, the homomorphism ϕ:F → H does not fator through to a group homomorphism
G→ H.Suppose that the algorithm IsGroupHomomorphism returned true. As the �nitelymany �xed relations in Q were veri�ed by the algorithm, it su�es to hek the (possiblyin�nitely many) iterated relations rδ with r ∈ R and δ ∈ Φ∗: By Lemma 3.6, thereexists σ ∈ V so that ker(σϕ) ≤ ker(δϕ) holds. Thus, by Lemma 3.4, there exists ahomomorphism π: im (σϕ) → im (δϕ) with σϕπ = δϕ. Sine the algorithm did notreturn false and σ ∈ V holds, the algorithm has veri�ed that rσ ∈ ker(ϕ) holds. Weobtain (rδ)ϕ = rδϕ = rσϕπ = (rσϕ)π = 1π = 1. Hene, all relations of the form rδwith r ∈ R and δ ∈ Φ∗ are mapped trivially by ϕ. Therefore, ϕ indues to a grouphomomorphism G→ H. 2The algorithm IsGroupHomomorphism has various interesting appliations. For in-stane, it allows us to develop a oset enumerator for �nitely L-presented groups in [67℄ orAppendix C. This is an algorithm whih, given a �nitely generated subgroup of a �nitely
L-presented group, omputes the index of the subgroup in the �nitely L-presented groupprovided that this index is �nite. Analogously to oset enumeration for �nitely pre-sented groups, our method has various useful further appliations inluding a solutionto the generalized word problem for �nite index subgroups and a method for omputinglow-index subgroups of a �nitely L-presented group.3.1.1 Appliations of the algorithm IsGroupHomomorphismIn this setion, we summarize the appliations of the algorithm IsGroupHomomor-phism in Algorithm 3.1. In partiular, it allows us to develop algorithms for subgroupsof �nitely L-presented groups:

• to ompute the index of a �nitely generated subgroup in a �nitely L-presentedgroups provided that this index is �nite,
• to ompute a permutation representation for the group's ation on the osets of a�nite index subgroup,
• to solve the generalized word problem for �nite index subgroups,
• to ompute the lattie of �nite index subgroups of a �nitely L-presented group,
• to ompute a �nite generating set of the kernel of a homomorphism from a �nitely
L-presented group into a �nite group,

• to ompute the intersetion of two �nite index subgroups, and
• to ompute the normal ore of a �nite index subgroup.



40 Chapter 3. The Group Homomorphism ProblemThese methods have been implemented in the omputer algebra system Gap [50℄. Appli-ations of these implementations to a lass of self-similar groups are shown in Appendix A.A fundamental appliation of algorithm IsGroupHomomorphism is the oset enu-merator for �nitely L-presented groups in [67℄ or Appendix C:Proposition 3.8 If G = 〈X | Q | Φ | R〉 is a �nitely L-presented group and U = 〈Y〉 is a�nitely generated subgroup of G whih has �nite index in G, there exists an algorithm thatomputes the index [G : U ] together with a permutation representation ϕ:G → Sym(U\G)for the group's ation on the osets.Proof. Let G = 〈X | Q | Φ | R〉 be a �nitely L-presented group and let U = 〈Y〉 be a�nitely generated subgroup with �nite index in G. Denote by F the free group over Xand write K = 〈Q∪
⋃
σ∈Φ∗ Rσ〉F . The usual word-length of an element σ ∈ Φ∗ from thefree monoid Φ∗ is denote by ‖σ‖. The �nitely presented groups Hi = 〈X | Q∪

⋃
σ∈Φi

Rσ〉with Φi = {σ ∈ Φ∗ | ‖σ‖ ≤ i} naturally map onto G. We onsider the �nitely manygenerators Y of the subgroup U as elements of the free group F . Then E = 〈Y〉 is asubgroup of F with U ∼= EK/K. In partiular, EK has �nite index in F . Sine F is�nitely generated and EK has �nite index, EK is �nitely generated by g1, . . . , gn, say.Write Ki = 〈Q ∪
⋃
σ∈Φi

Rσ〉F . Then EK0 ≤ EK1 ≤ EK2 ≤ . . . ≤ EK ≤ F and
EK =

⋃
i≥0EKi. Sine EK = 〈g1, . . . , gn〉 is �nitely generated and EK =

⋃
i≥0EKiholds, there exists ℓ ∈ N0 so that EKℓ = EK. In fat, the subgroup U an be onsideredas a �nite index subgroup of the �nitely presented group Hℓ = 〈X | Q ∪

⋃
σ∈Φℓ

Rσ〉. Weare to ompute the index [G : U ] = [F : EKℓ] = [Hℓ : U ] together with the permutationrepresentation ϕ:F → Sym(EKℓ\F ) whih indues G→ Sym(U\G).Coset enumeration for �nitely presented groups omputes a permutation represen-tation ϕj :F → Sym(EKj\F ) provided that [F : EKj] is �nite1 In this ase, the index
[F : EKj ] divides [F : EKℓ]. It remains to prove that ϕj :F → Sym(EKj\F ) induesa homomorphism G → Sym(EKj\F ). Here, our algorithm IsGroupHomomorphismapplies. In partiular, it allows us to deide whether or not ϕj indues a group homo-morphism G → Sym(EKj\F ). If this is the ase, the index [G : U ] = [F : EKℓ] and
[F : EKj ] oinide. Otherwise, we have to inrease the index j. Termination of thisproess is guaranteed by the existene of ℓ ∈ N so that EKℓ = EK. For further details,we refer to [67℄ or Appendix C. 2An `inverse' of the oset enumerator in Proposition 3.8 is given by Shreier's theorem (as,for instane, in [95, Proposition I.3.7℄). It allows us to ompute �nitely many Shreiergenerators for a �nite index subgroup of a �nitely generated free group:1Although the index j, so that [F : EKj ] is �nite, ould not be given a priori, the following approahyields an algorithm whose termination ould be guaranteed: For an arbitrary index j, the oset enumer-ator for �nitely presented groups ould be run with an upper bound N on the number of intermediateosets. If this proess does not terminate suessfully, we both inrease the index j and the upper bound
N on the intermediate osets. We then run both algorithms in parallel. We ontinue inreasing thesenumbers and to run these algorithms in parallel until eventually one of them terminates. Sine thesubgroup has �nite index, termination of this proess is guaranteed.



3.1. The Class of Finite Groups 41Proposition 3.9 There exists an algorithm that omputes a �nite generating set for a�nite index subgroup U of a �nitely L-presented group G from a permutation representa-tion ϕ:G→ Sym(U\G).Proof. The subgroup U oinides with the stabilizer of the trivial oset U 1 under theation of G. The permutation representation ϕ allows us to ompute a �nite generatingset for the stabilizer StabG(U 1) using an orbit-stabilizer algorithm. 2Another appliation of oset enumeration is given byProposition 3.10 If G = 〈X | Q | Φ | R〉 is a �nitely L-presented group, there existsan algorithm that proves that G is �nite and that omputes the order |G| provided that
G is �nite.Proof. If G is �nite, the trivial subgroup U = 〈∅〉 has �nite index in G. Therefore, ouroset enumerator terminates and it omputes the index [G : U ] = [G : {1}] = |G|. 2Similarly, oset enumeration yields the followingProposition 3.11 If G = 〈X | Q | Φ | R〉 is a �nitely L-presented group and U = 〈Y〉is a �nitely generated subgroup with �nite index in G, the generalized word problem for
U is deidable.Proof. If U has �nite index in G, oset enumeration omputes a permutation representa-tion ϕ:F → Sym(EK\F ). Let g ∈ G be given. We onsider the element g as an elementof the free group F over X . Then g ∈ EK if and only if g ∈ StabSym(EK\F )(EK 1).Using the permutation representation ϕ, it is learly deidable whether or not g ∈
StabSym(EK\F )(EK 1) holds. 2This solution to the generalized word problem for �nite index subgroups yields the fol-lowingCorollary 3.12 If G = 〈X | Q | Φ | R〉 is a �nitely L-presented group and U = 〈Y〉and V = 〈Z〉 are a �nitely generated subgroups with �nite index in G, there exists analgorithm that deides whether or not U ≤ V holds. If U ≤ V holds, there exists analgorithm that omputes [V : U ]. There exists an algorithm that deides whether or not
U ≤ G is normal in G and in this ase omputes a permutation representation for the�nite group G/U .The low-index subgroup algorithms for �nitely presented groups in [129, Setion 5.6℄and [35, 41℄ yield the followingProposition 3.13 If G = 〈X | Q | Φ | R〉 is a �nitely L-presented group, there existsan algorithm that omputes the lattie of �nite index subgroups of G.Proof. For a positive integer n > 0, the low-index subgroup algorithms in [35, 41℄and [129, Setion 5.6℄ enumerate the subgroups of a �nitely presented group with in-dex at most n (in pratie, the index n is rather limited so that these algorithms are



42 Chapter 3. The Group Homomorphism Problemknown as low-index subgroup algorithms). These algorithms enumerate those homomor-phisms F → Sn from the free group F over X into the symmetri group Sn that fatorthrough to a homomorphism G → Sn. They ould be used to ompute all subgroupswith �nite index in a �nitely L-presented group G = 〈X | Q | Φ | R〉 as follows: Considerthe notion introdued in the proof of Proposition 3.8. For an arbitrary i ∈ N0, onsiderthe �nitely presented group Hi = 〈X | Q ∪
⋃
σ∈Φi

Rσ〉. Eah subgroup EKi ≤ F of the�nitely presented group Hi an be omputed with the low-index subgroup algorithmsfor �nitely presented groups. The subgroup EKi/Ki of the �nitely presented group Hinaturally maps onto the subgroup EK/K of the �nitely L-presented group G. Therefore,every �nite index subgroup EKi/Ki of the �nitely presented group Hi yields a �niteindex subgroup EK/K of the �nitely L-presented group. Clearly, the index [F : EK]divides the index [F : EKi]. On the other hand, every �nite index subgroup EK/K ofthe �nitely L-presented group G yields a �nite index subgroup EK/Ki of the �nitelypresented group Hi. In partiular, every �nite index subgroup of G shows up in the listof �nite index subgroups of Hi.The list of �nite index subgroups of the �nitely presented group Hi possibly ontainsdupliate subgroups of G. It therefore remains to remove dupliates from a list of sub-groups. But this is an appliation of Corollary 3.12. Therefore, the list of subgroups of a�nitely L-presented group with index at most n an be omputed from a list of subgroupswith index at most n of the �nitely presented group Hi. 2A low-index subgroup algorithm may help to prove that a �nitely L-presented group isnon-trivial if we an �nd a subgroup with non-trivial index in G; see [129, p.251℄. Similarto �nitely presented groups, we also have the following appliation:Proposition 3.14 There exists an algorithm that omputes a permutation representa-tion for the group's ation on the osets of the intersetion of two �nite index subgroupsof a �nitely L-presented group.Proof. Let ϕ:F → Sym({1, . . . , n}) and ψ:F → Sym({1, . . . ,m}) be permutation rep-resentations for the group's ation on the right-osets EK\F and VK\F of two �niteindex subgroup of a �nitely L-presented group. Then F ats on the Cartesian produt
{1, . . . , n} × {1, . . . ,m} diagonally via (a, b)g = (ag

ϕ
, bg

ψ
). The stabilizer of the point

(1, 1) oinides with the intersetion EK ∩VK. Sine {1, . . . , n}×{1, . . . ,m} is �nite, anorbit-stabilizer algorithm omputes a generating set for the stabilizer of the point (1, 1)and thus a generating set for the intersetion EK ∩ VK. A permutation representationfor EK ∩ VK is then obtained from oset enumeration. 2An immediate onsequene of Proposition 3.14 is the followingCorollary 3.15 There exists an algorithm that omputes a permutation representationfor the group's ation on the osets of the normal ore of a �nite index subgroup of a�nitely L-presented group.Proof. The normal ore NU of a subgroup U ≤ G is the largest normal subgroup that isontained in U and it satis�es NU =
⋂
g∈G Ug. Sine [G : U ] is �nite, there exists a �nite



3.1. The Class of Finite Groups 43transversal T ⊆ G for U in G. Therefore, the normal ore NU satis�es NU =
⋂
t∈T U t andthus it is the intersetion of �nitely many �nite index subgroups. By Proposition 3.14, apermutation representation for this intersetion an be omputed. 2For a �nitely L-presented group G = 〈X | Q | Φ | R〉 and a homomorphism ϕ:G → Hinto a �nite group H, a �nite generating set for the kernel ker(ϕ) is omputable:Proposition 3.16 If G = 〈X | Q | Φ | R〉 is a �nitely L-presented group and if ϕ:G →

H is a homomorphism into a �nite group, there exists an algorithm that omputes a �nitegenerating set for the kernel of ϕ.Proof. Sine H is �nite, we an onsider H as a �nite permutation group H ≤ Sn =
Sym({1, . . . , n}). Moreover, we have F/ ker(ϕ) ∼= im (ϕ) ≤ Sn. By [95, Proposition 4.1℄,it su�es to ompute a Shreier transversal for ker(ϕ) in F . Beause there is a one-to-oneorrespondene between the osets F/ ker(ϕ) and the elements of im (ϕ), this Shreiertransversal an be omputed in the �nite permutation group Sn. 2An appliation of the latter proposition allows us to ompute a generating set for thederived subgroup G′ = [G,G] provided that the abelianization G/G′ is �nite. Notethat the abelianization is omputable with the nilpotent quotient algorithm in [9, 64℄.Combining this method with the Reidemeister-Shreier theorem for �nitely L-presentedgroups in [70℄ or Appendix D, we obtain a solvable quotient algorithm for �nitely L-presented groups:Corollary 3.17 If G = 〈X | Q | Φ | R〉 is a �nitely L-presented group, there exists analgorithm that omputes the isomorphism type of the abelianization G/G′. If G/G(i) is�nite for some i ∈ N, there exists an algorithm that omputes the isomorphism type ofthe setions G(i)/G(i+1).Proof. The nilpotent quotient algorithm in [9, 64℄ omputes a polyyli presentationfor G/G′ together with a homomorphism G → G/G′. The polyyli presentation for
G/G′ allows us to ompute the isomorphism type of G/G′. In partiular, it allows usto deide whether or not G/G′ is �nite. Suppose that, for i ≥ 2, the quotient G/G(i) is�nite. Then Proposition 3.16 allows us to ompute a �nite generating set for the ker-nel G(i) = ker(G → G/G(i)). Then the onstrutive proof of the Reidemeister-ShreierTheorem 2.39 in [70℄ or Appendix D allows us to ompute a �nite L-presentation for the�nite index subgroup G(i) ≤ G. This �nite L-presentation enables us to use the nilpo-tent quotient algorithm for omputing the abelianization G(i)/[G(i), G(i)] = G(i)/G(i+1)together with a homomorphism G(i) → G(i)/G(i+1). If G(i)/G(i+1) is �nite, then so is
G/G(i+1). The proess ontinues until G(i)/G(i+1) is either trivial or in�nite. 2The algorithms above have been implemented in the omputer algebra system Gap [50℄.Their implementations have been applied suessfully to a lass of self-similar group inAppendix A.



44 Chapter 3. The Group Homomorphism Problem3.2 The Class of Finitely Generated Nilpotent GroupsIn this setion, we onsider the group homomorphism problem for �nitely generatednilpotent groups. This problem an be faed with the quotient method in [9, 64℄: Morepreisely, for a �nitely L-presented groupG and a positive integer c, the nilpotent quotientalgorithm in [9, 64℄ omputes a weighted nilpotent presentation for the lower entralseries quotient G/γcG together with a homomorphism π:F → G/γcG whih indues ahomomorphism G → G/γcG. A weighted nilpotent presentation is a �nite presentationthat admits an e�etive solution to the word problem in G/γcG as it provides a on�uentrewriting system.The nilpotent quotient algorithm allows us to solve the group homomorphism problemfor the lass H of �nitely generated nilpotent groups: Let H ∈ H be given. We assumethatH is given by a weighted nilpotent presentation (ifH is given by a �nite presentation,a weighted nilpotent presentation an be omputed with the algorithms in [9, 64, 107℄).Suppose that G = 〈X | Q | Φ | R〉 is a �nitely L-presented group and that f :X → H is amap. We �rst ompute the nilpoteny lass c of the subgroup L = 〈{f(x) | x ∈ X}〉 ≤ H.This an be done by �rst omputing an indued polyyli presentation for the subgroup.Then the nilpotent quotient algorithm for �nitely presented groups applies. If G has amaximal nilpotent quotient with nilpoteny lass less than c, f annot extend to agroup homomorphism G → H. We an therefore assume that the nilpotent quotientalgorithm in [9, 64℄ omputes a weighted nilpotent presentation for G/γc+1G togetherwith a homomorphism π:F → G/γc+1G whih indues a homomorphism G→ G/γc+1G.There exists a homomorphism G → H if and only if there exists a homomorphism
ι:G/γc+1G→ H so that the diagram

F

π
ϕ

G/γc+1G ι H.ommutes. Sine G/γc+1G is �nitely presented and H has a deidable word problem, itis deidable whether or not suh a homomorphism ι:G/γc+1G→ H exists.The same ideas as above show that, sine the polyyli quotient algorithm for �nitelypresented groups in [92,93℄ also generalizes to �nitely L-presented groups [63℄, the grouphomomorphism problem for the lass of polyyli groups is deidable.3.3 Finitely Presented ImagesIn this setion, we onsider the group homomorphism problem for the lass of �nitelypresented groups with a solvable word problem. In a speial ase, we are also able togive a solution to this problem:Proposition 3.18 Let G = 〈X | Q | Φ | R〉 be a �nitely L-presented group and let
H = 〈Y | S〉 be a �nitely presented group whose word problem is deidable. Suppose that



3.3. Finitely Presented Images 45
f :X → H is a map so that 〈f(X )〉 has �nite index in H. Let ϕ:F → H be the uniqueextension of f to the free group F over the alphabet X . Then there exists an algorithmwhih deides whether or not ker(ϕ) is Φ-invariant. In this ase, there exists an algorithmwhih solves the group homomorphism problem for H.Proof. By the Reidemeister-Shreier Theorem 2.2, every �nite index subgroup of a�nitely presented group is itself �nitely presented. Moreover, as every subgroup of a�nitely presented group with a solvable word problem has a solvable word problem,we an assume that ϕ:F → H is onto. Thus, for eah y ∈ Y, there exists a word
wy(x1, . . . , xn) in the generators X = {x1, . . . , xn} so that y =H wy(x1, . . . , xn)

ϕ holds.Sine H has a deidable word problem, an enumeration of the elements of F allow usto ompute the representatives wy. Moreover, every image xϕ, x ∈ X , has the form
vx(y1, . . . , ym) where Y = {y1, . . . , ym}. Suppose that X ∩Y = ∅ holds. In the following,we use Tietze transformations to ompute a �nite presentation for the �nitely presentedgroup H with generators X . In partiular, Tietze transformations yield that

H ∼=
〈
X ∪ Y

∣∣ {x−1vx(y1, . . . , yn)}x∈X ∪ {y−1wy(x1, . . . , xn)}y∈Y ∪ S
〉
.The relations y−1wy(x1, . . . , xm) allow us to remove the generators y ∈ Y from thepresentation. We obtain a �nite presentation 〈X | S̃〉 for the group H. The �nitely manyrelators r ∈ S̃ are normal generators of the kernel ϕ. The kernel ker(ϕ) is Φ-invariant ifand only if rσϕ =H 1 holds for all σ ∈ Φ. Sine H has a deidable word problem and Φis �nite, the latter problem is reursively reognizable.Suppose that ker(ϕ) is Φ-invariant. Then, for eah σ ∈ Φ ⊆ End(F ) there exists anendomorphism σ̃ of the free group over Y so that σϕ = ϕσ̃ holds; see Appendix B. Themap f :X → H indues a group homomorphisms if and only if Q ∪

⋃
σ∈Φ∗ Rσ ⊆ ker(ϕ)holds. Sine Q is �nite and H has a deidable word problem, the images qϕ, with q ∈ Q,an be heked one after another. It therefore remains to onsider the relations of theform rσϕ. However, it remains to prove that rϕ =H 1 holds, as rσϕ = rϕσ̃ holds for anendomorphism σ̃ ∈ {δ̃ | δ ∈ Φ}. Sine R is �nite, the images rϕ an be heked oneafter another. This yields an algorithm that deides whether or not f :X → H indues ahomomorphism G→ H in the ase where ker(ϕ) is Φ-invariant. 2In general, though, we have no solution to the group homomorphism problem for thelass of �nitely presented group with a deidable word problem. A generalization of theideas in [70℄ or Appendix D needs to onstrut a �nite subset V ⊆ Φ∗ for the substitutionsof G's L-presentation 〈X | Q | Φ | R〉 so that, for eah δ ∈ Φ∗, there exists σ ∈ V with

ker(σϕ) ≤ ker(δϕ) or, equivalently, if there exists a homomorphism π: im (σϕ) → im (δϕ)with δϕ = σϕπ. In this ase, it would be su�ient to verify the �nitely many relations
r ∈ Q ∪

⋃
σ∈V Rσ.Question 3.19 Is the group homomorphism problem deidable for the lass of �nitelypresented groups with a solvable word problem?
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Chapter4Tietze Transformations for
L-presentations
Tietze transformations relate two presentations of the same group: If 〈X | R〉 is apresentation for G, F denotes the free group over the alphabet X , K denotes the normallosure 〈R〉F , and r ∈ K holds, then 〈X | R∪{r}〉 is a presentation for G. If 〈X | R〉 isa presentation for G, z 6∈ X is a symbol whih is not ontained in the alphabet X , and
wz ∈ F is an arbitrary element, then 〈X ∪ {z} | R ∪ {z−1wz}〉 is a presentation for G.Both transformations are reversible and are known as Tietze transformations; see, forinstane, [95, Chapter II℄. Tietze's theorem shows that these transformations (and theirinverses) are su�ient to relate two �nite presentations of a group by a �nite sequeneof these Tietze transformations.For �nite L-presentations, though, there are further transformations needed beausea �nite L-presentation 〈X | Q | Φ | R〉 onsists of �xed relations Q, iterated relations
R, and substitutions Φ. For example, a relation r ∈ K ould be added either as a �xedrelation or as an iterated relation. In this hapter, we introdue Tietze transformationsfor �nite L-presentations inluding transformations whih allow one to modify the sub-stitutions Φ of an L-presentation. These transformations allow us to prove a versionof Tietze's theorem for �nitely L-presented groups. This theorem shows that two �nite
L-presentations de�ne isomorphi groups if and only if one L-presentation an be trans-formed into the other by a �nite number of these transformations. Most of the resultsin this hapter were generalized in Appendix B in order to onsider �nitely generatednormal subgroups of �nitely presented groups.In pratie, Tietze transformations are used to simplify a group presentation. Forinstane, the group presentations omputed with the Reidemeister-Shreier proess oftenontain redundant generators and redundant relations whih ould be removed from thepresentation using Tietze transformations.



48 Chapter 4. Tietze Transformations for L-presentations4.1 Tietze Transformations for �nite L-presentationsIn this setion, we introdue Tietze transformations for �nite L-presentations; for arbi-trary L-presentations, we refer to Appendix B below. These transformations generalizethe usual Tietze transformations as, for instane, outlined in [95, Chapter II℄.Let G = 〈X | Q | Φ | R〉 be a �nitely L-presented group. Denote by F = F (X ) thefree group over the alphabet X and let K = 〈Q ∪
⋃
σ∈Φ∗ Rσ〉F be the kernel of the freepresentation π:F → G. The kernel K = kerπ deomposes into the normal subgroups

Q = 〈Q〉F and R = 〈
⋃
σ∈Φ∗ Rσ〉F so that K = RQ = QR holds. The group F/R isinvariantly �nitely L-presented by 〈X | ∅ | Φ | R〉. If r ∈ K is a relation, we obtain thefollowing Tietze transformation:Proposition 4.1 If G = 〈X | Q | Φ | R〉 is a �nitely L-presented group and

r ∈ 〈Q ∪
⋃
σ∈Φ∗ Rσ〉F (X ) holds, then 〈X | Q ∪ {r} | Φ | R〉 is a �nite L-presentation for

G.Proof. The proof follows immediately with the Tietze transformation that adds a rela-tion r to a group presentation 〈X | Q ∪
⋃
σ∈Φ∗ Rσ〉. 2The transformation in Proposition 4.1 is reversible in the sense that we an removethe relation r from the �nite L-presentation 〈X | Q ∪ {r} | Φ | R〉 if and only if

〈Q ∪ {r} ∪
⋃
σ∈Φ∗ Rσ〉F (X ) = 〈Q ∪

⋃
σ∈Φ∗ Rσ〉F (X ) holds. The following transformationsare reversible in a similar sense.If a �nite L-presentation is not invariant, there exist elements of the kernel K = QRthat annot be added as iterated relations without hanging the isomorphism type of thegroup. However, we have the following Tietze transformation:Proposition 4.2 If G = 〈X | Q | Φ | R〉 is a �nitely L-presented group and

r ∈ 〈
⋃
σ∈Φ∗ Rσ〉F (X ) holds, then 〈X | Q | Φ | R ∪ {r}〉 is a �nite L-presentation for

G. If G = 〈X | Q | Φ | R〉 is a �nitely L-presented group and rδ ∈ 〈Q ∪
⋃
σ∈Φ∗ Rσ〉F (X )holds for eah δ ∈ Φ∗, then 〈X | Q | Φ | R ∪ {r}〉 is a �nite L-presentation for G.Proof. The normal subgroup R = 〈

⋃
σ∈Φ∗ Rσ〉F (X ) is invariant under eah substitution

σ ∈ Φ∗. More preisely, for eah r ∈ R and σ ∈ Φ∗, it holds that rσ ∈ R. Therefore,adding the (possibly in�nitely many) relations {rσ | σ ∈ Φ∗} to the group presentation
〈X | Q ∪

⋃
σ∈Φ∗ Rσ〉 does not hange the isomorphism type of the group G. The seondassertion is obvious. 2Iterated and �xed relations of a �nite L-presentation are related by the transformation:Proposition 4.3 If G = 〈X | Q | Φ | R〉 is a �nitely L-presented group and r ∈ Rholds, then 〈X | Q ∪ {r} | Φ | (R \ {r}) ∪ {rψ | ψ ∈ Φ}〉 is a �nite L-presentation for G.Proof. The proof follows immediately from

Q ∪
⋃

σ∈Φ∗

Rσ = Q∪ {r} ∪
⋃

σ∈Φ∗

(
(R \ {r}) ∪ {rψ | ψ ∈ Φ}

)σ
;



4.1. Tietze Transformations for �nite L-presentations 49these are the relations of G's group presentation. 2The following proposition is a onsequene of the de�nition of an invariant L-presentation:Proposition 4.4 If G = 〈X | Q | Φ | R〉 is an invariantly �nitely L-presented groupand q ∈ Q holds, then 〈X | Q \ {q} | Φ | R ∪ {q}〉 is a �nite L-presentation for G.Proof. Sine G is invariantly L-presented by 〈X | Q | Φ | R〉, eah σ ∈ Φ indues anendomorphism of the group G. Therefore, the images {qψ | ψ ∈ Φ∗} are relations of thegroup and thus 〈X | (Q \ {q}) ∪
⋃
σ∈Φ∗(R ∪ {q})σ〉 is a group presentation for G. 2The following Tietze transformation adds a generator together with a �xed relation to a�nite L-presentation:Proposition 4.5 Let G = 〈X | Q | Φ | R〉 be a �nitely L-presented group, z 6∈ X , andlet wz ∈ F (X ) be given. For eah σ ∈ Φ, de�ne an endomorphism of the free group Eover the alphabet X ∪ {z} that is indued by the map

σ̃:

{
x 7→ xσ, for eah x ∈ X
z 7→ g,

(4.1)for an arbitrary g ∈ E. Then 〈X ∪ {z} | Q ∪ {z−1wz} | {σ̃ | σ ∈ Φ} | R〉 is a �nite
L-presentation for G.Proof. Similar to the proof of Proposition 4.1, the proof follows immediately with theTietze transformation that adds a generator z 6∈ X together with a relation z−1wz to thegroup presentation 〈X | Q ∪

⋃
σ∈Φ∗ Rσ〉. The extended substitution σ̃ in Eq. (4.1) anbe de�ned arbitrarily on z beause the iterated relations R do not ontain the generator

z or its inverse z−1 as a subword. 2Adding the relation z−1wz as an iterated relation needs the following de�nition of theextensions σ̃ of σ ∈ Φ:Proposition 4.6 Let G = 〈X | Q | Φ | R〉 be a �nitely L-presented group, z 6∈ X , andlet wz ∈ F (X ) be given. For eah σ ∈ Φ, we de�ne an endomorphism of the free group
E over the alphabet X ∪ {z} that is indued by the map

σ̃:

{
x 7→ xσ, for eah x ∈ X
z 7→ wσz .

(4.2)Then 〈X ∪ {z} | Q | {σ̃ | σ ∈ Φ} | R ∪ {z−1wz}〉 is a �nite L-presentation for G.Proof. The substitution σ̃ in Eq. (4.2) is well-de�ned as wz ∈ F (X ) and σ ∈ End(F (X ))hold. Proposition 4.3 yields that
〈
X ∪ {z}

∣∣ Q
∣∣ {σ̃ | σ ∈ Φ}

∣∣ R∪ {z−1wz}
〉

=
〈
X ∪ {z}

∣∣ Q ∪ {z−1wz}
∣∣ {σ̃ | σ ∈ Φ}

∣∣ R∪ {(z−1wz)
σ̃
∣∣ σ ∈ Φ}

〉
.



50 Chapter 4. Tietze Transformations for L-presentationsThe de�nition of σ̃ in Eq. (4.2) yields that (z−1)σ̃ = (wσz )
−1 and wσ̃z = wσz . Thus

(z−1 wz)
σ̃ = 1 holds. In partiular, adding the relations {(z−1wz)

σ̃ | σ ∈ Φ} to a grouppresentation does not hange the isomorphism type of the group. Finally, Proposition 4.5yields that
〈
X ∪ {z}

∣∣ Q
∣∣ {σ̃ | σ ∈ Φ}

∣∣ R ∪ {z−1wz}
〉

=
〈
X ∪ {z}

∣∣ Q∪ {z−1wz}
∣∣ {σ̃ | σ ∈ Φ}

∣∣ R∪ {(z−1wz)
σ̃
∣∣ σ ∈ Φ}

〉

=
〈
X ∪ {z}

∣∣ Q∪ {z−1wz}
∣∣ {σ̃ | σ ∈ Φ}

∣∣ R
〉

∼= 〈X | Q | Φ | R〉 ;whih proves the assertion of Proposition 4.6. 2The following version of Proposition 4.3 is a �rst transformation whih modi�es thesubstitutions Φ of an L-presentation:Proposition 4.7 If G = 〈X | Q | Φ | R〉 is a �nitely L-presented group and ψ ∈ Φholds, then 〈X | Q | (Φ \ {ψ}) ∪ {σψ | σ ∈ Φ} | R∪Rψ〉 is a �nite L-presentation for G.Proof. The proof follows immediately from
Q∪

⋃

σ∈Φ∗

Rσ = Q∪
⋃

σ∈Ψ∗

(R∪Rψ)σwhere Ψ = (Φ\{ψ})∪{σψ | σ ∈ Φ}; these are the relations of G's group presentation. 2We also have the following transformation:Proposition 4.8 Let G = 〈X | Q | Φ | R〉 be a �nitely L-presented group and let
s ∈ F (X ) be given. Denote by δs the inner automorphism of the free group F (X ) that isindued by onjugation with s. Then 〈X | Q | Φ∪{δs} | R〉, 〈X | Q | Φ\{σ}∪{δsσ} | R〉,and 〈X | Q | Φ \ {σ} ∪ {σδs} | R〉 are a �nite L-presentations for G.Proof. Sine eah relation of a group presentation an be replaed by a onjugate and
δxσ = σδxσ holds, for eah σ ∈ Φ∗, the proof is straightforward. 2Reall that the kernel K = 〈Q ∪

⋃
σ∈Φ∗ Rσ〉F (X ) deomposes into the normal subgroups

Q = 〈Q〉F (X ) and R = 〈
⋃
σ∈Φ∗ Rσ〉F (X ) so that K = QR holds. This deompositionyields the following transformation:Proposition 4.9 Let G = 〈X | Q | Φ | R〉 be a �nitely L-presented group. If

ψ ∈ End(F (X )) indues an endomorphism of F (X )/R, then 〈X | Q | Φ ∪ {ψ} | R〉is a �nite L-presentation for G.Proof. Suppose that ψ ∈ End(F (X )) indues an endomorphism of F (X )/R. Then Ris ψ-invariant. Thus, eah relation rσ with σ ∈ (Φ ∪ {ψ})∗ \ Φ∗ and r ∈ R is a relationof the group. Therefore, adding these (possibly in�nitely many) relations to the grouppresentation does not hange the isomorphism type of the group. 2For an asending (or invariant) L-presentation, we have the following transformation:



4.1. Tietze Transformations for �nite L-presentations 51Proposition 4.10 Let G = 〈X | ∅ | Φ | R〉 be a �nitely L-presented group. Then
〈X | ∅ | Φ ∪ {ψ} | R〉 is a �nite L-presentation for G if and only if ψ ∈ End(F (X ))indues an endomorphism of G = F (X )/K.Proof. If ψ ∈ End(F (X )) indues an endomorphism of F (X )/K, Proposition 4.9 showsthe �rst assertion. If, on the other hand, 〈X | ∅ | Φ | R〉 and 〈X | ∅ | Φ ∪ {ψ} | R〉 are�nite L-presentations for G, ψ indues an endomorphism of G = F (X )/K. 2For an invariantly �nitely L-presented group G = 〈X | Q | Φ | R〉, every substitution
σ ∈ Φ indues an endomorphism of G. However, there are possibly other endomorphisms
ψ ∈ End(F (X )) that indue the same endomorphism of G. The following propositionallows us to replae a substitution σ ∈ Φ by an endomorphism ψ ∈ End(F (X )):Proposition 4.11 Let G = 〈X | Q | Φ | R〉 be a �nitely L-presented group,
r ∈ 〈

⋃
ϕ∈Φ∗ Rϕ〉F (X ), z ∈ X , and let σ ∈ Φ be given. De�ne an endomorphism σ̃ ofthe free group F (X ) over the alphabet X that is indued by the map

σ̃:

{
z 7→ zσr,

x 7→ xσ, for eah x ∈ X \ {z}.Then 〈X | Q | (Φ \ {σ}) ∪ {σ̃} | R ∪ {r}〉 is a �nite L-presentation for G.Proof. We deompose the kernel K = 〈Q
⋃
ϕ∈Φ∗ Rϕ〉F (X ) of the free presentation

π:F (X ) → G into the normal subgroups Q = 〈Q〉F (X ) and R = 〈
⋃
ϕ∈Φ∗ Rϕ〉F (X ) sothat K = QR = RQ holds. Sine r ∈ 〈

⋃
ϕ∈Φ∗ Rϕ〉F (X ) holds, Proposition 4.2 yields that

G = 〈X | Q | Φ | R〉 = 〈X | Q | Φ | R ∪ {r}〉and R = 〈
⋃
ϕ∈Φ∗(R∪{r})ϕ〉F (X ). Write Ψ = (Φ∪{σ̃}) \ {σ}. We prove that the normalsubgroups R = 〈

⋃
ϕ∈Φ∗(R ∪ {r})ϕ〉F (X ) and R̃ = 〈

⋃
ϕ∈Ψ∗(R ∪ {r})ϕ〉F (X ) oinide. Forthis purpose, we prove that, for eah δ̃ ∈ Ψ∗ and g ∈ F (X ), there exist δ ∈ Φ∗ and

h ∈ L = 〈rϕ | ϕ ∈ Φ∗〉F (X ) so that gδ̃ = gδ · h holds. By onstrution, we havethat L ⊆ R. By symmetry, as we have both zσ̃ = zσr and zσ̃r−1 = zσ , the samearguments will show that, for eah δ ∈ Φ∗ and g ∈ F (X ), there exist δ̃ ∈ Ψ∗ and
h ∈ L̃ = 〈rϕ | ϕ ∈ Ψ∗〉F (X ) so that gδ = gδ̃ · h. If we have proved this, eah normalgenerator sϕ̃ ∈ R̃, with s ∈ R ∪ {r} and ϕ̃ ∈ Ψ∗, an be written as sϕ̃ = sϕ · h with
ϕ ∈ Φ∗ and h ∈ L ⊆ R. Thus sϕ̃ = sϕ · h ∈ R and R̃ ⊆ R. By symmetry, we would alsoobtain R ⊆ R̃.Write X = {x1, . . . , xm, z}. Eah g ∈ F (X ) is represented by a word wg(x1, . . . , xm, z)over the generators X . Let δ̃ ∈ Ψ∗ and g ∈ F (X ) be given. We prove the assertion byindution on n = ‖δ̃‖. If n = 1, then δ̃ ∈ Ψ holds. If δ̃ 6= σ̃ holds, then δ̃ ∈ Φ. Thus
gδ̃ = gδ for some δ ∈ Φ. Otherwise, if δ̃ = σ̃, we obtain that

gδ̃ = gσ̃ = wg(x1, . . . , xm, z)
σ̃ = wg(x

σ̃
1 , . . . , x

σ̃
m, z

σ̃) = wg(x
σ
1 , . . . , x

σ
m, z

σr).



52 Chapter 4. Tietze Transformations for L-presentationsConjugation in the free group F (X ) yields that the word wg(x
σ
1 , . . . , x

σ
m, z

σr) an bewritten as wg(xσ1 , . . . , xσm, zσ) · h for some h ∈ 〈r〉F (X ) ⊆ L. Thus gσ̃ = gσ · h holds for
σ ∈ Φ and some h ∈ L.For a positive integer n > 1, we assume that every image gδ̃ , with g ∈ F (X ), δ̃ ∈ Ψ∗,and ‖δ̃‖ = n, an be written as gδ · h for δ ∈ Φ∗ and h ∈ L. Let g ∈ F (X ) and γ̃ ∈ Ψ∗,with ‖γ̃‖ = n + 1, be given. Then there exist ω̃ ∈ Ψ and δ̃ ∈ Ψ∗, with ‖δ̃‖ = n, sothat γ̃ = δ̃ω̃ holds. By our assumption we have that gγ̃ = gδ̃ω̃ = (gδ · h)ω̃ for some
δ ∈ Φ∗ and h ∈ L. If ω̃ 6= σ̃, then ω̃ ∈ Φ and thus δω̃ ∈ Φ∗. Moreover, by onstrution,the normal subgroups L = 〈rϕ | ϕ ∈ Φ∗〉F (X ) and L̃ = 〈rϕ̃ | ϕ̃ ∈ Ψ∗〉F (X ) are Φ∗- and
Ψ∗-invariant, respetively. Thus hω̃ ∈ L if ω̃ 6= σ̃. Therefore, the image gγ̃ an be writtenas gγ̃ = (gδ ·h)ω̃ = gδω̃ ·hω̃ with δω̃ ∈ Φ∗ and hω̃ ∈ L. It therefore su�es to onsider thease ω̃ = σ̃. The elements gδ , h ∈ F (X ) are represented by words wgδ(x1, . . . , xm, z) and
wh(x1, . . . , xm, z), respetively. Again, onjugation in the free group F (X ) yields that
gγ̃ = (gδh)σ̃ = (gδσ · a) · (hσ · b) for some a, b ∈ 〈r〉F (X ) ⊆ L. Hene, the image gγ̃ an bewritten as gδσ ·h′ for δσ ∈ Φ∗ and h′ = ahσb ∈ L. By indution on n, it follows that eahimage gδ̃ , with g ∈ F (X ) and δ̃ ∈ Ψ∗, has the form gδ̃ = gδ ·h for some δ ∈ Φ∗ and h ∈ L.By symmetry, the same arguments above show that eah image gδ , with g ∈ F (X ) and
δ ∈ Φ∗, an be written as gδ = gδ̃ · h for δ̃ ∈ Ψ∗ and h ∈ L̃. This �nishes our proof ofProposition 4.11. 2Note that Proposition 4.11 allows us to replae a substitution σ ∈ Φ of an L-presentation
〈X | Q | Φ | R〉 by an endomorphism ψ ∈ End(F (X )) of the free group F (X ) that induesthe same endomorphism on group. More preisely, we obtain the followingCorollary 4.12 Let G be �nitely L-presented by 〈X | Q | Φ | R〉. Then every substitu-tion σ ∈ Φ indues an endomorphism of the invariantly �nitely L-presented group H =
〈X | ∅ | Φ | R〉. If ψ ∈ End(F (X )) indues the same endomorphism on H, there exists a�nite set S ⊆ F (X ) so that G is �nitely L-presented by 〈X | Q | (Φ\{σ})∪{ψ} | R∪S〉.Proof. If ψ and σ indue the same endomorphism of H there exists, for eah z ∈ X , rz ∈
〈
⋃
ϕ∈Φ∗ Rϕ〉F (X ) so that zψ = zσ rz holds. Write S = {rz | z ∈ X}. By Proposition 4.11,a �nite L-presentation for G is given by 〈X | Q | (Φ \ {σ}) ∪ {ψ} | R ∪ S〉. 2For our proof of a version of Tietze's theorem for �nitely L-presented groups we onsiderthe following transformations:(i) adds or removes a �xed relation (Proposition 4.1),(ii) adds or removes an iterated relation (Proposition 4.2),(iii) adds or removes a substitution (Proposition 4.9),(iv) adds or removes a generator together with a �xed relation (Proposition 4.5), or,(v) adds or removes a generator together with an iterated relation (Proposition 4.6).



4.2. Tietze's Theorem for Finite L-Presentations 534.2 Tietze's Theorem for Finite L-PresentationsWe prove a version of Tietze's theorem for �nite L-presentations:Theorem 4.13 Two �nite L-presentations de�ne isomorphi groups if and only if itis possible to pass from one L-presentation to the other by a �nite sequene of Tietzetransformations.Proof. We use similar ideas as in the proof of Tietze's theorem in [95, Chapter II℄:As eah Tietze transformation does not hange the isomorphism type of the group, two�nite L-presentations de�ne isomorphi groups if they an be transformed into eah otherby a sequene of Tietze transformations. In order to prove Theorem 4.13, it thereforesu�es to prove that two �nite L-presentations whih de�ne isomorphi groups an betransformed into eah other by a �nite sequene of Tietze transformations. For thispurpose, onsider two �nite L-presentations 〈X1 | Q1 | Φ1 | R1〉 and 〈X2 | Q2 | Φ2 | R2〉of a group G. Suppose that X1 ∩ X2 = ∅ holds. For 1 ≤ i ≤ 2, denote by Fi thefree group over the alphabet Xi and let πi:Fi → G be the free presentation with kernel
ker(πi) = 〈Qi ∪

⋃
σ∈Φ∗

i
Rσ
i 〉
Fi . For eah x ∈ X1, we hoose wx ∈ F2 with xπ1 = wπ2x ; i.e.,

wx ∈ F2 is a π2-preimage of xπ1 ∈ G. For eah z ∈ X2, hoose wz ∈ F1 with zπ2 = wπ1z .De�ne the �nite subsets S1 and S2 of the free group F over X1 ∪ X2 by
S1 = {x−1wx | x ∈ X1} and S2 = {z−1wz | z ∈ X2}. (4.3)By Proposition 4.5, we an add the generator z ∈ X2 together with the �xed relation

z−1 wz ∈ S2 if we extend eah substitution σ ∈ Φ1 to the free group over X1 ∪ {z} byde�ning x 7→ xσ, for x ∈ X1, and z 7→ z, otherwise. Therefore, Proposition 4.5 allowsus to add the generators z ∈ X2 together with a �xed relation z−1wz ∈ S2 to the �nite
L-presentation 〈X1 | Q1 | Φ1 | R1〉. More preisely, if F denotes the free group over
X1 ∪ X2 and, for eah σ ∈ Φ1, σ̃ denotes the endomorphism of the free group F that isindued by the map

σ̃:F → F,

{
x 7→ xσ, if x ∈ X1,
z 7→ z, if z ∈ X2,

(4.4)Proposition 4.5 yields that
G ∼= 〈X1 ∪ X2 | Q1 ∪ S2 | {σ̃}σ∈Φ1 | R1〉 . (4.5)The natural homomorphisms π1:F1 → G and π2:F2 → G extend to the natural homo-morphism π:F → G that is indued by the map

π:

{
x 7→ xπ1 , if x ∈ X1,
z 7→ zπ2 , if z ∈ X2.For x ∈ X1 and x−1wx ∈ S1, we have xπ = xπ1 = wπ2x = wπx and thus x−1wx ∈ ker(π).For eah r ∈ Q2, we have rπ = rπ2 = 1. Thus r ∈ Q2. By Proposition 4.1, we an



54 Chapter 4. Tietze Transformations for L-presentationstherefore add Q2 ∪ S1 as �xed relations to the L-presentation in Eq. (4.5). We obtainthe �nite L-presentation
G ∼= 〈X1 ∪ X2 | Q1 ∪ Q2 ∪ S1 ∪ S2 | {σ̃}σ∈Φ1 | R1〉 . (4.6)For eah σ ∈ Φ2, de�ne an endomorphism of the free group F that is indued by themap

σ̃:F → F,

{
x 7→ x, if x ∈ X1

z 7→ zσ, if x ∈ X2.
(4.7)Then σ̃ ats trivially on the generators X1 and therefore, it leaves the normal subgroup

〈
⋃
δ∈Φ∗

1
Rδ̃

1〉
F invariant. By Proposition 4.9, we an add the substitutions {σ̃ | σ ∈ Φ2}to the L-presentation in Eq. (4.6) and we obtain the L-presentation

G ∼= 〈X1 ∪ X2 | Q1 ∪Q2 ∪ S1 ∪ S2 | {σ̃}σ∈Φ1∪Φ2 | R1〉 . (4.8)It remains to onsider the relations R2 from the �nite L-presentation 〈X2 | Q2 | Φ2 | R2〉and it su�es to show that we an add these relations r ∈ R2 as iterated relationsto the L-presentation in Eq. (4.8). For this purpose, we need to prove that, for eah
δ ∈ {σ̃ | σ ∈ Φ1∪Φ2}

∗, the image rδ is a relation of the group; i.e., rδ is ontained in thekernel ker(π). Let δ ∈ {σ̃ | σ ∈ Φ1 ∪ Φ2}
∗ be given. We an write δ = σ̃i1 σ̃j1 · · · σ̃in σ̃jnwith eah σiℓ ∈ {ε} ∪ Φ1 and σjℓ ∈ {ε} ∪ Φ2. Sine eah σ̃iℓ , with σiℓ ∈ Φ1, atstrivially on the generators X2 and eah σ̃jℓ , with σjℓ ∈ Φ2, leaves the subgroup whih isgenerated by X2 invariant, we obtain that rδ = rσ̃i1 σ̃j1 ···σ̃in σ̃jn = rσ̃j1 ···σ̃jn . This yieldsthat (rδ)π = (rσ̃j1 ···σ̃jn )π = (rσj1 ···σjn )π2 = 1 holds. Thus, by Proposition 4.2, we an addthe relations R2 as iterated relations to the L-presentation in Eq. (4.8) and we obtainthe L-presentation

G ∼= 〈X1 ∪ X2 | Q1 ∪ Q2 ∪ S1 ∪ S2 | {σ̃}σ∈Φ1∪Φ2 | R1 ∪R2〉 . (4.9)Sine the L-presentations 〈X1 | Q1 | Φ1 | R1〉 and 〈X2 | Q2 | Φ2 | R2〉 were �nite,we have applied �nitely many Tietze transformations to obtain the �nite L-presentationin Eq. (4.9) from the �nite L-presentation 〈X1 | Q1 | Φ1 | R1〉. By symmetry, though,we would also obtain the �nite L-presentation in Eq. (4.9) from the L-presentation
〈X2 | Q2 | Φ2 | R2〉. As eah Tietze transformation is reversible, we an therefore trans-form the �nite L-presentation in Eq.(4.9) to the �nite L-presentation 〈X2 | Q2 | Φ2 | R2〉.This shows that both �nite L-presentations of G ould be transformed into eah otherby a �nite sequene of Tietze transformations. 2Similar to �nite presentations, Theorem 4.13 does not solve the isomorphism problemfor �nitely L-presented groups as there is no e�etive proedure for hoosing the sets
S1 and S2. In partiular, there exists no algorithm whih allows one to prove that two�nite L-presentations de�ne non-isomorphi groups. In Appendix B, we use the Tietzetransformations introdued above to proveTheorem 4.14 (Bartholdi [6℄) Being invariantly �nitely L-presented is an abstratproperty of a group whih does not depend on the generating set.This theorem was already posed in [6, Proposition 2.2℄. However, its proof ontains agap whih we ould address with the help of our Tietze transformations above.



Chapter5Finitely Based In�nite Rewriting SystemsThe group G onstruted by Grigorhuk in [53℄ an be realized as a subgroup of theautomorphism group of the rooted binary tree. As it ats faithfully on the tree, the wordproblem of the group G is deidable. Alternatively, the group G an be de�ned by theinvariant �nite L-presentation
G =

〈
{a, b, c, d}

∣∣∣ {a2, b2, c2, d2, bcd} ∪
⋃

i≥0

{
(ad)4, (adacac)4

}σi 〉
, (5.1)where σ is indued by the map a 7→ aca, b 7→ d, c 7→ b, and d 7→ c; see Theorem 2.14.The substitution σ indues a monomorphism of the group G [55℄. In this hapter, wedevelop a method for omputing anonial forms for elements of an invariantly �nitely

L-presented group. For �nite presentations, the Knuth-Bendix ompletion [86℄ omputesa on�uent rewriting system if it terminates. A on�uent rewriting system allows toompute anonial forms of an element in the �nitely presented groups and therefore, itallows one to solve the word problem. We generalize the Knuth-Bendix ompletion for�nite presentations to invariant �nite L-presentations. Sine the group G is not �nitelypresentable [56℄, there will not exist a �nite rewriting system. Therefore, our proedureattempts to ompute an in�nite rewriting system whose rewriting rules inorporate thesubstitution σ. More preisely, we attempt to onstrut a rewriting system whose (pos-sibly in�nitely many) rewriting rules are given by a �nite set of rewriting rules and theirimages under the substitutions.A rewriting system onsists of a set of objets and a set of rewriting rules thatdesribe the transformations of the objets. For an invariantly �nitely L-presented group
G = 〈X | Q | Φ | R〉, we establish a rewriting system with objets

S(X±,Φ) =
{
(x1, σ1) · · · (xn, σn)

∣∣ xi ∈ X±, σi ∈ Φ∗, 1 ≤ i ≤ n
} (5.2)where X± are the monoid generators of the �nitely L-presented group G and Φ∗ denotesthe free monoid that is generated by the �nite set Φ. The objets S(X±,Φ) are elementsof the free monoid over the Cartesian produt X± ×Φ∗. For further details on rewritingsystems, we refer to [23, 129℄.



56 Chapter 5. Finitely Based In�nite Rewriting SystemsComputer experiments with our Knuth-Bendix ompletion do not terminate and thusdo not allow to ompute a on�uent in�nite rewriting system for the group G as well asfor the Basilia group and the wreath produts Z2 ≀ Z or Z ≀ Z. Therefore, it is not learwhether or not these groups admit a `�nitely based in�nite rewriting system' as wouldhave been onstruted by our Knuth-Bendix ompletion.In Setion 5.1, we reall the notion of a rewriting system as, for instane, introduedin [129℄. Then, in Setion 5.2, we onstrut a monoid presentation for an invariantly�nitely L-presented group with objets S(X±,Φ). For onstruting a rewriting systemas in [129℄ we further need a redution ordering on the elements S(X±,Φ). This redutionordering is onstruted in Setion 5.3. Then, in Setion 5.4, we prove the fundamentalCritial Pair Lemma for the new type of `�nitely based in�nite rewriting systems'. Thislemma allows us to deide whether or not a given rewriting system is on�uent. More-over, it yields a Knuth-Bendix ompletion in Setion 5.5. Finally, in Setion 5.6, wedemonstrate the appliation of our Knuth-Bendix algorithm to a fairly easy invariant�nite L-presentation.In the following, a �nite L-presentation is always onsidered to be invariant if nototherwise stated. In partiular, an invariant �nite L-presentation 〈X | Q | Φ | R〉 an al-ways be hosen so that Q = ∅ holds. Our generalization of the Knuth-Bendix ompletionalgorithm follows [129, Chapter 2℄.5.1 PreliminariesIn this setion, we introdue the notion of a rewriting system as in [129℄. For this purpose,let X be a (possibly in�nite) alphabet and denote by X ∗ the free monoid over X . Froma set of binary relations R ⊆ X ∗ × X ∗, we obtain a monoid ongruene ∼ on X ∗ asfollows: Denote by R̂ the symmetri losure of R. For U, V ∈ X ∗, we de�ne U ∼ V ifthere exists A,B,P,Q ∈ X ∗ so that U = APB, V = AQB, and (P,Q) ∈ R̂ hold. There�exive and transitive losure of ∼ is the monoid ongruene ∼R generated by R. Themonoid presentation
〈X | {P = Q | (P,Q) ∈ R}〉 (5.3)de�nes the monoid X ∗/ ∼R of equivalene lasses of ∼R. In the following, we often willavoid the referene to R if it is lear from the ontext whih generating set we hoose.We an endow the free monoid X ∗ with a redution ordering ≺: A redution orderingis a total and translation invariant well-ordering; i.e., an ordering ≺ is translation invari-ant if P ≻ Q implies APB ≻ AQB for eah A,B ∈ X ∗. Sine ∼R is symmetri and ≺is a total ordering, we an assume that (P,Q) ∈ R always implies P ≻ Q (otherwise wean replae (P,Q) ∈ R by (Q,P ) if Q ≻ P or we an omit (P,Q) ∈ R if P = Q holds.Obviously this does not hange the monoid ongruene ∼R). The monoid presentationin Eq. (5.3) yields the rewriting system

T = {P → Q | P ≻ Q, (P,Q) ∈ R or (Q,P ) ∈ R} .For U, V ∈ X ∗, de�ne, if possible, a one-step redution U →T V with respet to T if thereexist A,B,P,Q ∈ X ∗ so that U = APB, V = AQB, and P → Q is a rewriting rule in T .



5.1. Preliminaries 57Denote by →∗
T the re�exive and transitive losure of →T . Clearly, a one-step redution

U →T V or, in general, a redution U →∗
T V always implies U ∼ V . In the following, wedo not distinguish between the rewriting rule U →T V from T and the relation (U, V )from the monoid presentation. In partiular, the rewriting rules of the rewriting system

T always generate a monoid ongruene ∼T .A rewriting system T allows us to transform the elements of X ∗ with respet to theredution ordering ≺ and the monoid ongruene ∼T , see [129℄: Let N be the ideal thatis generated as an ideal by the left-sides {P | P →T Q ∈ T }. If U0 ∈ N , there exist
A,B,P,Q ∈ X ∗ with U0 = APB and P →T Q ∈ T . Then U1 = AQB satis�es U0 ≻ U1,
U0 →T U1, and U0 ∼T U1. If U1 ∈ N holds, we an repeat this proess and obtain
U2 ∈ X ∗ with U1 ≻ U2, U1 →T U2, and U1 ∼T U2. This yields a desending sequene
U0 ≻ U1 ≻ U2 ≻ . . . in the well-ordered monoid X ∗. Thus the sequene U0, U1, U2, . . .eventually terminates with an element Un ∈ X ∗ \N that satis�es U0 ∼T Un, U0 →

∗
T Un,and U0 ≻ Un. The elements Un ∈ X ∗ \N annot be transformed any further. Therefore,

Un is irreduible with respet to T . The above proess of transforming the element
U0 ∈ X ∗ with the rewriting system T is alled rewriting. Eah rewriting system allowsus to rewrite eah element to an irreduible one. The rewriting system depends on theredution ordering ≺.Rewriting is non-deterministi beause there are possibly di�erent hoies of one-stepredutions Ui →T Ui+1 within a rewriting proess. Therefore, for a rewriting system T ,we have the following notations:

• An element W ∈ X ∗ is loally on�uent, if, for eah U, V ∈ X ∗ with W →T U and
W →T V , there exists Z ∈ X ∗ with U →∗

T Z and V →∗
T Z.

• An element W ∈ X ∗ is on�uent, if, for eah U, V ∈ X ∗ with W →∗
T U and

W →∗
T V , there exists Z ∈ X ∗ with U →∗

T Z and V →∗
T Z.Clearly, an element W ∈ X ∗ is loally on�uent whenever it is on�uent. In general,though, loal on�uene does not imply on�uene [23, Setion 1.2℄. A rewriting system

T is (loally) on�uent if and only if all elements W ∈ X ∗ are (loally) on�uent. Itis Noetherian if there is no in�nite redution sequene a1 →T a2 →T . . . with eah
ai 6= ai+1. If the rewriting rules U →T V always satisfy U ≻ V for a well-ordering ≺, therewriting system T is obviously Noetherian. Even though loal on�uene does not implyon�uene, a Noetherian rewriting system satis�es Newman's Lemma; see also [84℄:Theorem 5.1 (Newman's Lemma [106℄) A Noetherian rewriting system is on�uentif and only if it is loally on�uent.In order to hek a Noetherian rewriting system for on�uene it therefore su�es tohek it for loal on�uene only. In Setion 5.4, we show that loal on�uene of our(possibly in�nite) rewriting system an be heked algorithmially.Sine X ∗ is well-ordered, eah non-empty set ontains a least element. In partiular,eah equivalene lass in X ∗/ ∼T ontains a (unique) least element. For W ∈ X ∗, theleast representative of the equivalene lass whih ontains the elementW is the anonial



58 Chapter 5. Finitely Based In�nite Rewriting Systemsform of W with respet to ≺ and ∼T . The anonial form of an element W ∈ X ∗ andirreduibility are related by the following well-knownLemma 5.2 Let T be a rewriting system that generates the monoid ongruene ∼T .Eah anonial form with respet to ≺ and ∼T is irreduible. If T is on�uent, eahirreduible element is a anonial form.Proof. Suppose thatW ∈ X ∗ is a anonial form that is not irreduible. Then there exist
A,B,P,Q ∈ X ∗ with W = APB and a rewriting rule P →T Q. The element V = AQBsatis�es V ∼T W and W ≻ V ; this, however, ontradits our assumption that W is aanonial form and thus a least representative of the equivalene lass ontaining W .Suppose that W is irreduible with respet to the on�uent rewriting system T . Let
V be the anonial form ofW with respet to ≺ and ∼T . ThenW � V andW ∼T V . Byde�nition of monoid ongruene ∼T , there exists a sequene W = W0,W1, . . . ,Wn = Vso that Wi = AiPiBi, Wi+1 = AiQiBi, and either Pi →T Qi or Qi →T Pi. Sine
W =W0 is irreduible, we have the rewriting rule Q0 →T P0 ∈ T . Thus W1 →T W . Fora positive integer i, assume that Wi →

∗
T W holds. Sine Wi = AiPiBi, Wi+1 = AiQiBi,and either Pi →T Qi or Qi →T Pi, we either have Wi+1 →T Wi or Wi →T Wi+1. If

Wi+1 →T Wi, then Wi+1 →∗
T W . If, on the other hand, Wi →T Wi+1 holds, then wehave both Wi →T Wi+1 and Wi →

∗
T W . Beause the rewriting system T is on�uent,there exists U ∈ X ∗ so that W →∗

T U and Wi+1 →
∗
T U . Sine W is irreduible, though,we have W = U . Thus Wi →

∗
T W . By indution on i, we obtain that V = Wn →∗

T Wwhih implies that V � W . Sine V is the least representative of the equivalene lassthat ontains W , we have that W = V . 2Sine a rewriting system T allows us to rewrite eah element to an irreduible elementthat represents the same element of the monoid, we immediately obtainCorollary 5.3 A on�uent rewriting system T allows one to ompute the anonial formwith respet to ≺ and ∼T for eah element in the monoid.In the following, we onsider the free monoid S(X ,Φ) that is generated by the Cartesianprodut X ×Φ∗ = {(x, σ) | x ∈ X , σ ∈ Φ∗} where X is a �nite alphabet and Φ∗ denotesthe free monoid whih is generated by the �nite alphabet Φ.The monoid S(X ,Φ) arries an ation of the free monoid Φ∗: For eah σ ∈ Φ, themap
σ̂:X × Φ∗ → S(X ,Φ), (x, ψ) 7→ (x, ψσ),extends to a monoid homomorphism σ̂:S(X ,Φ) → S(X ,Φ). This homomorphism maps

w = (x1, ψ1) · · · (xn, ψn) ∈ S(X ,Φ) to wσ̂ = (x1, ψ1σ) · · · (xn, ψnσ). The map σ̂ isinjetive but not surjetive; as (x, ε) has no preimage under σ̂.In the following, we onsider a rewriting system T on the monoid S(X ,Φ). Eventhough the rewriting system T might be in�nite, we use the regularities that are induedby the monoid Φ∗. For this purpose, we introdue the following notation:



5.2. Monoid L-Presentations 59De�nition 5.4 Suppose that ≺ is a Φ-invariant redution ordering (i.e., the ordering
≺ is Φ-invariant if U ≺ V always implies Uσ ≺ V σ for eah σ ∈ Φ∗). For a rewritingsystem T on the free monoid S(X ,Φ), a Φ-generating set is a subset R ⊆ T so that

T =
{
U σ̂ → V σ̂

∣∣∣ U → V ∈ R and σ ∈ Φ∗
}
.A rewriting system T is Φ-�nite, if there exists a �nite Φ-generating set R.In Setion 5.2, we show that eah invariant �nite L-presentation gives rise to a Φ-�niterewriting system T . Moreover, in Setion 5.4, we develop an algorithm that deideswhether or not a Φ-�nite rewriting system is loally on�uent. This algorithm onlyperforms heks within the �nite Φ-generating set R.5.2 Monoid L-PresentationsIn this setion, we introdue the notion of a �nite monoid L-presentation. Further-more, we derive a monoid L-presentation for eah invariantly �nitely L-presented group.From this monoid L-presentation, we then obtain a Φ-�nite rewriting system for the

L-presented group. A monoid presentation of the form
M =

〈
X

∣∣∣ {Uσ = V σ | (U, V ) ∈ R and σ ∈ Φ∗}
〉 (5.4)with a �nite alphabet X , a �nite set R ⊆ X ∗ ×X ∗ of binary relations, and a �nite set Φof monoid homomorphisms X ∗ → X ∗ is a �nite asending monoid L-presentation. Thisde�nition generalizes the well-known de�nition for �nitely L-presented groups:Proposition 5.5 Eah invariantly �nitely L-presented group an be de�ned by an as-ending �nite monoid L-presentation.Proof. Let 〈X | Q | Φ | R〉 be an invariant �nite L-presentation for a group G. Invari-ane of the L-presentation yields that we an assume that Q = ∅ holds; otherwise, wereplae R by R∪Q and Q by ∅. In order to onstrut a monoid presentation for G, weonsider the formal inverses X− = {x−1 | x ∈ X} with X ∩ X− = ∅. Eah substitution

σ ∈ Φ translates in an obvious way to a monoid homomorphism σ̂ of the free monoid
X±∗ over X± = X ∪ X−. An asending �nite monoid L-presentation that de�nes thegroup G is given by

〈
X±

∣∣∣
{
U ψ̂ = (x−1)ψ̂xψ̂ = xψ̂ (x−1)ψ̂ = ε

∣∣∣ U ∈ R, x ∈ X , ψ̂ ∈ Φ∗
}〉

, (5.5)see [129, Proposition 4.7℄. 2Similar to group presentations, asending monoid L-presentations satisfy the followingLemma 5.6 Eah substitution σ ∈ Φ∗ of an asending monoid L-presentation indues amonoid homomorphism; that is, the monoid ongruene ∼ given by the monoid presen-tation is σ-invariant so that U ∼ V implies Uσ ∼ V σ.



60 Chapter 5. Finitely Based In�nite Rewriting SystemsProof. It su�es to prove that, for eah ψ ∈ Φ, the monoid ongruene ∼ is ψ-invariant.For this purpose, suppose that U, V ∈ X ∗ satisfy U ∼ V . Let ψ ∈ Φ be given. Denoteby T = {(Uσ , V σ) | (U, V ) ∈ R and σ ∈ Φ∗} the relations of the monoid presentationin Proposition 5.5. By de�nition of the monoid ongruene ∼, there exists a sequene
U = U0, U1, . . . , Un = V so that Ui = AiPiBi, Ui+1 = AiQiBi for Ai, Bi, Pi, Qi ∈ X ∗and either (Pi, Qi) ∈ T or (Qi, Pi) ∈ T . If (Pi, Qi) ∈ T holds, then (P σi , Q

σ
i ) ∈ T for

σ ∈ Φ∗. Thus, for 0 ≤ i ≤ n, we have that Uψi = (AiPiBi)
ψ = Aψi P

ψ
i B

ψ
i and, similarly,

Ui+1 = Aψi Q
ψ
i B

ψ
i for Aψi , Bψ

i , P
ψ
i , Q

ψ
i ∈ X ∗ with (Pψi , Q

ψ
i ) ∈ T or (Qψi , Pψi ) ∈ T . Thus

Uψ ∼ V ψ. 2From the �nite monoid L-presentation in Eq. (5.4), we obtain a monoid L-presentationover the Cartesian produt X × Φ∗:Theorem 5.7 Let M denote the monoid that is de�ned by the asending �nite monoid
L-presentation 〈 X | {Uψ = V ψ | (U, V ) ∈ R, ψ ∈ Φ∗}〉. For eah x ∈ X and σ ∈ Φ,we write xσ = ξ1 · · · ξℓ with eah ξi ∈ X . For eah relation (U, V ) ∈ R, we write
U = u1 · · · un and V = v1 · · · vm with eah ui, vj ∈ X . The monoid M is isomorphi tothe monoid de�ned by the monoid presentation

N =
〈
X × Φ∗

∣∣∣
{
U ψ̂ = V ψ̂

∣∣∣ (U, V ) ∈ V, ψ ∈ Φ∗
}〉 (5.6)where, for eah ϕ ∈ Φ∗, ϕ̂ denotes the monoid endomorphism of the free monoid S(X ,Φ)that is indued by the map ϕ̂:X × Φ∗ → S(X ,Φ), (x, ψ) 7→ (x, ψϕ) while the set V isgiven by

V =
{(

(u1, ε) · · · (un, ε), (v1, ε) · · · (vm, ε)
) ∣∣∣ (u1 · · · un, v1 · · · vm) ∈ R

}

⋃ {(
(x, σ), (ξ1, ε) · · · (ξℓ, ε)

) ∣∣∣ σ ∈ Φ, x ∈ X with xσ = ξ1 · · · ξℓ
}
.

(5.7)Proof. By Lemma 5.6, eah substitution ϕ̂ of the free monoid S(X ,Φ) indues a monoidendomorphism of M . In fat, relations are mapped to relations. De�ne a monoid homo-morphism π:S(X ,Φ) → X ∗ by the map
π: (x, ψ) 7→ xψ, for eah x ∈ X and ψ ∈ Φ∗.Sine {(x, ε) | x ∈ X} ⊆ S(X ,Φ) holds, the image of π ontains the basis X . Thus, π isonto and it indues a surjetive homomorphism S(X ,Φ) → M . In order to prove that

π indues a surjetive homomorphism N → M , it su�es to prove that eah relation of
N is mapped to a relation in M . For ψ ∈ Φ∗ and (u1 · · · un, v1 · · · vm) ∈ R, the relation
((u1, ε) · · · (un, ε))

ψ̂ = ((v1, ε) · · · (vm, ε))
ψ̂ of the monoid N is mapped as follows:

((u1, ε) · · · (un, ε))
ψ̂π = ((u1, ψ) · · · (un, ψ))

π = uψ1 · · · uψn

((v1, ε) · · · (vm, ε))
ψ̂π = ((v1, ψ) · · · (vm, ψ))

π = vψ1 · · · vψm



5.2. Monoid L-Presentations 61and uψ1 · · · uψn = vψ1 · · · vψm is a relation in M . The relation (x, σ)ψ̂ = ((ξ1, ε) · · · (ξℓ, ε))
ψ̂is mapped to

(x, σ)ψ̂π = (x, σψ)π = xσψ

((ξ1, ε) · · · (ξℓ, ε))
ψ̂π = ((ξ1, ψ) · · · (ξℓ, ψ))

π = ξψ1 · · · ξψℓand xσψ = ξψ1 · · · ξψℓ is a relation in M sine eah substitution ψ ∈ Φ∗ indues a ho-momorphism of M and xσ = ξ1 · · · ξℓ is a relation in M . Thus, π indues a surjetivehomomorphism π:N →M .De�ne a monoid homomorphism γ:X ∗ → S(X ,Φ) that is indued by the map
γ:x 7→ (x, ε), for eah x ∈ X .Then γ de�nes a homomorphism X ∗ → N . We �rst show that the latter homomorphismis surjetive by proving xψγ = (x, ψ) for eah x ∈ X and ψ ∈ Φ∗. We prove this by indu-tion on n = ‖ψ‖. If n = 1, there exists σ ∈ Φ with ψ = σ. Sine xσ = ξ1 · · · ξℓ ∈ X ∗, weobtain (xσ)γ = (ξ1 · · · ξℓ)

γ = (ξ1, ε) · · · (ξℓ, ε). There is a relation (x, σ) = (ξ1, ε) · · · (ξℓ, ε)in the monoid N . This relation yields (xσ)γ = (x, σ). Suppose that n > 1 holds. Then
ψ = σδ with σ ∈ Φ, δ ∈ Φ∗, and ‖δ‖ = n − 1. Then (ξ1 · · · ξℓ)

δγ = (ξδ1 · · · ξ
δ
ℓ )
γ . Byindution on n, it follows that (ξδ1 · · · ξ

δ
ℓ )
γ = (ξ1, δ) · · · (ξℓ, δ) = ((ξ1, ε) · · · (ξℓ, ε))

δ̂ . Therelation (x, σ) = (ξ1, ε) · · · (ξℓ, ε) and its Φ-iterates yield that xψ = xσδ = (ξ1 · · · ξℓ)
δ ismapped by γ to (xψ)γ = ((ξ1, ε) · · · (ξℓ, ε))

δ̂ = (x, σ)δ̂ = (x, σδ) = (x, ψ). This shows thatthe map γ:X ∗ → S(X ,Φ) indues a surjetive homomorphism X ∗ → N . Obviously, eahrelation uψ1 · · · uψn = vψ1 · · · vψm of M is mapped to a relation in N . Therefore, γ indues ahomomorphism M → N . Clearly, πγ = idN and γπ = idM . Thus, the monoids M and
N are isomorphi via γ and π. 2In the remainder, we write xψ for the element (x, ψ) ∈ X × Φ∗ so that the free monoid
S(X ,Φ) beomes

S(X ,Φ) = {xσ11 · · · xσnn | xi ∈ X , σi ∈ Φ∗}.This notation indiates that the elements σi ∈ Φ∗ orrespond to substitutions of anasending monoid L-presentation. We onstrut a Φ-invariant redution ordering on
S(X ,Φ) in Setion 5.3 below; that is, a redution ordering ≺ is Φ-invariant if U ≻ Vimplies Uψ ≻ V ψ for eah ψ ∈ Φ∗. A Φ-invariant redution ordering ≺ gives rise to a
Φ-�nite rewriting system T for the monoid M from Theorem 5.7:Lemma 5.8 Suppose that the free monoid S(X ,Φ) admits a Φ-invariant redution or-dering ≺. Eah invariant �nite L-presentation of a group gives rise to a Φ-�nite rewritingsystem T with objets S(X ,Φ).Proof. By Proposition 5.5, an invariantly �nitely L-presented group an be de�ned byan asending �nite monoid L-presentation

〈
X

∣∣∣ {Uψ = V ψ | (U, V ) ∈ R, ψ ∈ Φ∗}
〉
.



62 Chapter 5. Finitely Based In�nite Rewriting SystemsBy Theorem 5.7, we obtain an isomorphi monoid presentation with generators X ×Φ∗.This monoid L-presentation is asending and possibly in�nite beause X ×Φ∗ might bein�nite. However, the relations in the monoid presentation in Theorem 5.7 are Φ-�nitewith Φ-generating set
{U = V | (U, V ) ∈ R} ∪ {xσ = ξ1 · · · ξℓ | x ∈ X , σ ∈ Φ}. (5.8)A Φ-invariant redution ordering ≺ allows us to onstrut a Φ-�nite rewriting system forthe monoid in Theorem 5.7. 25.3 A Redution Ordering on S(X ,Φ)In this setion, we onstrut a Φ-invariant redution ordering on the free monoid S(X ,Φ).For this purpose, we reall some basi onstrutions �rst: An ordering x1 ≺ x2 ≺ · · · ≺

xn ≺ xn+1 ≺ . . . on the alphabet X extends to the free monoid X ∗ over the alphabet Xas follows: De�ne a1 · · · an ≺ b1 · · · bm if and only if(i) n = ‖a1 · · · an‖ < ‖b1 · · · bm‖ = m or, otherwise,(ii) if there exists 1 ≤ i ≤ m = n with aj = bj , for eah 1 ≤ j < i, and ai ≺ bi.The ordering ≺ is the length-plus-lexiographi ordering on the free monoid X ∗. We usethe left-to-right version here. However, a right-to-left version ould be de�ned analo-gously and it also applies to the onstrutions below.The length-plus-lexiographi ordering is a total and translation-invariant orderingon the free monoid X ∗ [129℄. It is a well-ordering provided that ≺ is a well-ordering onthe alphabet X [129℄. For instane, if X ∗ is �nitely generated by X = {x1, . . . , xn}, thelength-plus-lexiographi ordering is a total and translation-invariant well-ordering or,for short, a redution ordering.Let Φ be another �nite alphabet and denote by Φ∗ the free monoid that is generatedby Φ. Then an ordering < of the �nite set Φ extends to the length-plus-lexiographiordering < on the free monoid Φ∗. The ordering < further extends to a total well-ordering
≪ on the m-folded Cartesian produt Φ∗ × · · · × Φ∗ as follows:De�nition 5.9 Let < denote the length-plus-lexiographi ordering on the free monoid
Φ∗. De�ne (σ1, . . . , σm) ≪ (δ1, . . . , δm) if and only if there exists 1 ≤ i ≤ m so that
σj = δj , for eah 1 ≤ j < i, and σi < δi.This de�nition yields the followingLemma 5.10 The ordering ≪ in De�nition 5.9 is a total well-ordering on the m-foldedCartesian produt Φ∗ × · · · × Φ∗.Proof. Let (σ1, . . . , σm), (δ1, . . . , δm) ∈ Φ∗×· · ·×Φ∗ be given. Sine < is a total orderingon Φ∗, for eah 1 ≤ j ≤ m, we either have σj < δj , δj < σj , or σj = δj . For the m-foldedCartesian produt Φ∗×· · ·×Φ∗ we either have (σ1, . . . , σm) = (δ1, . . . , δm) or there exists



5.3. A Redution Ordering on S(X ,Φ) 63
1 ≤ i < m so that σj = δj , for eah 1 ≤ j < i, and either σi < δi or σi > δi. Hene, ≪ isa total ordering on Φ∗ × · · · × Φ∗ as soon as < is a total ordering on Φ∗.Consider the m-folded Cartesian produt Φ∗ × · · · × Φ∗. If m = 1, the ordering
≪ in De�nition 5.9 oinides with the well-ordering < on Φ∗. Obviously, the ordering
≪ is a well-ordering in this ase. Suppose that m > 1 holds. Let (σ

(1)
1 , . . . , σ

(1)
m ) ≫

(σ
(2)
1 , . . . , σ

(2)
m ) ≫ . . . be desending series in Φ∗ × · · · × Φ∗. Then (σ

(1)
1 , . . . , σ

(1)
m−1) ≫

(σ
(2)
1 , . . . , σ

(2)
m−1) ≫ . . . is a desending series in the (m − 1)-folded Cartesian produt.By indution on m, there exists ℓ ∈ N0 so that (σ(j)1 , . . . , σ

(j)
m−1) = (σ

(j+1)
1 , . . . , σ

(j+1)
m−1 ) foreah j ≥ ℓ. For j ≥ ℓ, this yields that σ(j)m ≥ σ

(j+1)
m ≥ . . . is a desending sequene in thewell-ordered monoid Φ∗. Thus, there exists k ≥ ℓ so that σ(j)m = σ

(j+1)
m , for eah j ≥ k,and hene, ≪ is a well-ordering. 2The following de�nition gives a redution ordering on the free monoid

S(X ,Φ) = {xσ11 · · · xσnn | xi ∈ X , σi ∈ Φ∗, 1 ≤ i ≤ n} .This ordering will be entral to our onstrution of a Φ-�nite rewriting system below.De�nition 5.11 Denote the length-plus-lexiographi ordering on X ∗ by < and let ≪denote the ordering on Φ∗ × · · · × Φ∗ from De�nition 5.9. Then an ordering ≺ on thefree monoid S(X ,Φ) is given as follows: For xσ11 · · · xσnn , yδ11 · · · yδmm ∈ S(X ,Φ), we de�ne
xσ11 · · · xσnn ≺ yδ11 · · · yδmm if and only if(i) either x1 · · · xn < y1 · · · ym holds or, otherwise,(ii) if (σ1, . . . , σn) ≪ (δ1, . . . , δn).This de�nition yields the followingProposition 5.12 The ordering ≪ in De�nition 5.11 is a redution ordering on the freemonoid S(X ,Φ).Proof. The ordering in De�nition 5.11 is total as both, the length-plus-lexiographiordering < and the ordering ≪ from De�nition 5.9 are total orderings.Suppose that U1 ≫ U2 ≫ . . . ≫ Ui ≫ Ui+1 ≫ . . . is desending series in S(X ,Φ).Sine < is a well-ordering on X ∗, there exists ℓ ∈ N0 so that Ui = x

σ
(i)
1

1 · · · xσ
(i)
n
n and

Ui+1 = x
σ
(i+1)
1

1 · · · xσ
(i+1)
n
n for eah i ≥ ℓ. It therefore su�es to onsider the desendingseries (σ(ℓ)1 , . . . , σ

(ℓ)
n ) ≫ (σ

(ℓ+1)
1 , . . . , σ

(ℓ+1)
n ) ≫ . . . within the n-folded Cartesian produt

Φ∗ × · · · × Φ∗. Sine ≪ is a well-ordering, though, the latter sequene terminates andthus, there exists k ≥ ℓ so that (σ(m)
1 , . . . , σ

(m)
n ) = (σ

(m+1)
1 , . . . , σ

(m+1)
n ) for eah m ≥ k.In partiular, for eah i ≥ k, we have Ui = x

σ
(i)
1

1 · · · xσ
(i)
n
n = x

σ
(i+1)
1

1 · · · xσ
(i+1)
n
n = Ui+1 andhene, the ordering ≺ is a well-ordering.For proving translation invariane of the ordering ≺, it su�es to prove that, foreah x ∈ X and σ ∈ Φ∗, we both have xσU ≺ xσV and Uxσ ≺ V xσ whenever U ≺ V



64 Chapter 5. Finitely Based In�nite Rewriting Systemsholds. However, this follows immediately from the onstrution of the ordering ≺ in Def-inition 5.11 and the fat that the length-plus-lexiographi ordering on X ∗ is translationinvariant; see [129, Proposition 1.5℄. 2The ordering ≺ in De�nition 5.11 is Φ-invariant:Lemma 5.13 For U, V ∈ S(X ,Φ) and ψ ∈ Φ∗, U ≺ V implies Uψ ≺ V ψ.Proof. Write U = xσ11 · · · xσnn and V = yδ11 · · · yδmm with eah xi, yj ∈ X and σi, δj ∈ Φ∗.For ψ ∈ Φ, we have
Uψ = xσ1ψ1 · · · xσnψn and V ψ = yδ1ψ1 · · · yδmψm . (5.9)Sine U ≺ V holds, we either have x1 · · · xn < y1 · · · ym in the length-plus-lexiographiordering < on X ∗ or (σ1, . . . , σn) ≪ (δ1, . . . , δn) in the ordering from De�nition 5.9. Inthe �rst ase, the images Uψ and V ψ satisfy x1 · · · xn < y1 · · · ym. Thus Uψ ≺ V ψ. In theseond ase, we would have x1 · · · xn = y1 · · · ym and (σ1, . . . , σn) ≪ (δ1, . . . , δn). Sinethe length-plus-lexiographi ordering on Φ∗ is translation invariant, the latter implies

(σ1ψ, . . . , σnψ) ≪ (δ1ψ, . . . , δnψ). Thus Uψ ≺ V ψ. 2We �nally note the followingRemark 5.14 Similar to the Knuth-Bendix ompletion for �nitely presented groups, theredution ordering is �exible; for instane, we need to speify the orderings on the gen-erating sets X and Φ of the free monoids X ∗ and Φ∗. Furthermore, we an also use theright-to-left version of the length-plus-lexiographi ordering. This provides a seletion ofredution orderings that an be applied in the Knuth-Bendix ompletion algorithm.5.4 The Critial Pair LemmaIn the following, we establish a Critial Pair Lemma for a Φ-�nite rewriting system.This lemma enables us to deide whether or not a Φ-�nite rewriting system is loallyon�uent. The Critial Pair Lemma below generalizes [129, Proposition 3.1℄ for �nitepresentations.Suppose that T is a Φ-�nite rewriting system with Φ-generating set R. Then anelement W ∈ S(X ,Φ) redues with respet to T if there exist A,B,P,Q ∈ S(X ,Φ) and
σ ∈ Φ∗ so that W = AP σB and P → Q is a rewriting rule in the Φ-generating set
R. In order to �nd the minimal words W ∈ S(X ,Φ) on whih loal on�uene fails wetherefore need to reognize the left-side P of the rewriting rule P → Q as a `subword' of
W = AP σB even if σ is non-trivial. More preisely, we use the following de�nition of a
Φ-subword:De�nition 5.15 For an element W = xσ11 · · · xσnn ∈ S(X ,Φ), a Φ-subword has the form
xδii · · · x

δj
j with 1 ≤ i ≤ j ≤ n and there exists ω ∈ Φ∗ so that σℓ = δℓ ω for eah i ≤ ℓ ≤ j.An element V ∈ S(X ,Φ) is a proper Φ-subword of W if it is a Φ-subword of W with

W 6= V .



5.4. The Critial Pair Lemma 65The notion of a Φ-subword is more general than the notion of a subword within the freemonoid S(X ,Φ) as it also inorporates the ation of the monoid Φ∗. In partiular, a
Φ-subword V of W is an ω-preimage of subword in the free monoid S(X ,Φ). Note that
σℓ = δℓ ω, for a ommon ω ∈ Φ∗, in De�nition 5.15 implies that δℓ is a pre�x of σℓ.Moreover, we have the following observation:Lemma 5.16 Let ≺ denote the redution ordering from Setion 5.3. EveryW ∈ S(X ,Φ)has only �nitely many Φ-subwords. Eah proper Φ-subword U of W satis�es U ≺W .Proof. The proof follows immediately from the de�nitions above. 2An elementW ∈ S(X ,Φ) is loally on�uent if for eah A,B ∈ S(X ,Φ) withW → A and
W → B, there existsD ∈ S(X ,Φ) so that A→∗ D and B →∗ D. A minimal ondition foran element W ∈ S(X ,Φ) not to be loally on�uent is given by the following proposition(in the style of [129℄):Proposition 5.17 (The Critial Pair Lemma) Let T be a rewriting system on
S(X ,Φ) with (possibly in�nite) Φ-generating set R ⊆ T . Suppose that the element
W ∈ S(X ,Φ) is not loally on�uent but eah of its proper Φ-subwords is loally on�u-ent. Then one of the following onditions holds: There exist rewriting rules P1 → Q1and P2 → Q2 in the Φ-generating set R so that(i) W = P1 and W = AP σ2 B for σ ∈ Φ∗ and A,B ∈ S(X ,Φ).(ii) W = P σ1 and W = AσP2B

σ for σ ∈ Φ∗ and non-empty words A,B ∈ S(X ,Φ).(iii) W an be written (AB)σC or A(BC)σ for non-empty words A,B,C ∈ S(X ,Φ),
σ ∈ Φ∗, and either

• P1 = AB and P2 = BσC, or
• P1 = ABσ and P2 = BC.Proof. We generalize the proof of [129, Proposition 3.1℄. If W ∈ S(X ,Φ) is not loallyon�uent, there exist A1, P1, Q1, B1, A2, P2, Q2, B2 ∈ S(X ,Φ) and σ, δ ∈ Φ∗ so that(i) W = A1P

σ
1 B1 and W = A2P

δ
2B2,(ii) there are rewriting rules P1 → Q1 and P2 → Q2 in R,(iii) there does not exist V ∈ S(X ,Φ) with A1Q

σ
1B1 →

∗ V and A2Q
δ
2B2 →

∗ V .First, assume that P1 and P2 do not overlap; i.e., we have W = A1P
σ
1 CP

δ
2B2 for some

C ∈ S(X ,Φ). Using the rewriting rule P1 → Q1, we obtain U1 = A1Q
σ
1CP

δ
2B2 while therule P2 → Q2 gives us U2 = A1P

σ
1 CQ

δ
2B2. Both U1 and U2 redue to the extended word

V = A1Q
σ
1CQ

δ
2B2; this ontradits the third ondition on W . Therefore, P1 and P2 dooverlap. This yields either one of the following onditions holds:

• There exist positive integers 1 ≤ i ≤ j ≤ n with P σ1 = xσ1σ1 · · · xσiσi · · · x
σjσ
j · · · xσnσnand P δ2 = xσiσi · · · x

σjσ
j . Write P σ1 = AσP δ2C

σ in this ase.
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• There exist positive integers 1 < i ≤ j < m with P σ1 = xσ1σ1 · · · xσiσi · · · x

σjσ
j ,

P δ2 = xδiδi · · · x
δjδ
j · · · xδmδm and δℓδ = σℓσ for i ≤ ℓ ≤ j. Write P σ1 = AσBσ and

P δ2 = Bδ Cδ for non-empty words A,B,C ∈ S(X ,Φ) with Bσ = Bδ.Consider the �rst ase above. Then W = A1P
σ
1 B1 = A1A

σP δ2C
σB1, A2 = A1A

σ, and
B2 = CσB1. Suppose that A1 6= ε or B1 6= ε holds. Then P σ1 = AσP δ2C

σ is a proper Φ-subword of W = A1A
σP δ2C

σB1. Sine eah proper Φ-subword of W is loally on�uent,there exists V ∈ S(X ,Φ) so that P σ1 → Qσ1 →∗ V and AσP δ2Cσ → AσQδ2C
σ →∗ V . Thisyields that

A1P
σ
1 B1 → A1Q

σ
1B1 →

∗ A1V B1and
A2P

δ
2B2 → A2Q

δ
2B2 = A1A

σQδ2C
σB1 →

∗ A1V B1;this ontradits the third ondition on W . Thus A1 = ε = B1 and W = AσP δ2C
σ = P σ1 .Suppose that ω ∈ Φ∗ is a ommon su�x of σ and δ so that δ = δ̄ω and σ = σ̄ωhold for δ̄, σ̄ ∈ Φ∗. Consider U = Aσ̄P δ̄2C

σ̄ = P σ̄1 ∈ S(X ,Φ). If the su�x ω ∈ Φ∗ isnon-trivial, U is a proper Φ-subword of W = AσP δ2C
σ. Sine eah proper Φ-subwordof W is loally on�uent, there exists V ∈ S(X ,Φ) so that U = P σ̄1 → Qσ̄1 →∗ V and

U = Aσ̄P δ̄2C
σ̄ → Aσ̄Qδ̄2C

σ̄ →∗ V . Hene Qσ1 →∗ V ω, AσQδ2Cσ →∗ V ω as well as
A1Q

σ
1B1 = Qσ1 →∗ V ωand

A2Q
δ
2B2 = A1A

σQδ2C
σB1 = AσQδ2C

σ →∗ V ω;this ontradits the third assumption on W . Therefore, the ommon su�x ω is trivial.As P1 and P2 have the form P σ1 = xσ1σ1 · · · xσiσi · · · x
σjσ
j · · · xσnσn and P δ2 = xσiσi · · · x

σjσ
j ,

δ is a ommon su�x of σℓσ, for eah i ≤ ℓ ≤ j. We obtain either one of the followingonditions:
• If σ = δ holds, both σ and δ are trivial. ThusW = AP2C = P1 for A,C ∈ S(X ,Φ).
• If ‖σ‖ < ‖δ‖ holds, σ is a su�x of δ and hene σ is trivial. Thus W = APψ2 C = P1for A,C ∈ S(X ,Φ) and ψ ∈ Φ∗.
• If ‖σ‖ > ‖δ‖ holds, δ is a su�x of σ and hene δ is trivial. ThusW = AψP2C

ψ = Pψ1for A,C ∈ S(X ,Φ) and ψ ∈ Φ∗.The �rst two onditions orrespond to (i) in Proposition 5.17 while the last onditionorrespond to either (i), if both A and B are empty, or it orresponds to (ii) of Proposi-tion 5.17 otherwise.Consider the seond ase where we have that P σ1 = AσBσ and P δ2 = BδCδ for non-empty words A,B,C ∈ S(X ,Φ) with Bσ = Bδ. Then W = A1P
σ
1 B1 = A1A

σBσB1 and
W = A2P

δ
2B2 = A2B

δCδB2. Moreover, we have
W = A1A

σBσCδB2 = A1A
σBδCδB2,



5.4. The Critial Pair Lemma 67as well as B1 = CδB2 and A2 = A1A
σ. Suppose that A1 6= ε or B2 6= ε holds. Then

U = AσBσCδ = AσBδCδ is a proper Φ-subword of W . Sine eah proper Φ-subword of
W is loally on�uent, there exists V ∈ S(X ,Φ) so that

U = AσBσCδ → Qσ1C
δ →∗ V and U = AσBδCδ → AσQδ2 →

∗ V.This yields that
A1P

σ
1 B1 → A1Q

σ
1B1 = A1Q

σ
1C

δB2 →
∗ A1V B2and

A2P
δ
2B2 → A2Q

δ
2B2 = A1A

σQδ2B2 →
∗ A1V B2;this ontradits the third ondition on W . Thus A1 = ε = B2 and W = AσBσCδ =

AσBδCδ with P σ1 = AσBσ, P δ2 = BδCδ, and Bσ = Bδ.Suppose that ω ∈ Φ∗ is a ommon su�x of δ and σ so that δ = δ̄ω and σ = σ̄ω holdfor σ̄, δ̄ ∈ Φ∗. Then B δ̄ = Bσ̄. Consider U = Aσ̄Bσ̄C δ̄ = Aσ̄B δ̄C δ̄. If the su�x ω isnon-trivial, U is a proper Φ-subword of W . Sine eah proper Φ-subword of W is loallyon�uent, there exists V ∈ S(X ,Φ) so that
U = Aσ̄Bσ̄C δ̄ → Qσ̄1C

δ̄ →∗ V and U = Aσ̄B δ̄C δ̄ → Aσ̄Qδ̄2 →
∗ V.This yields that Qσ1Cδ →∗ V ω and AσQδ2 →∗ V ω as well as

A1P
σ
1 B1 → A1Q

σ
1B1 = A1Q

σ
1C

δB2 →
∗ A1V

ωB2and
A2P

δ
2B2 → A2Q

δ
2B2 = A1A

σQδ2B2 →
∗ A1V

ωB2;this ontradits the third ondition on W . Thus the ommon su�x ω is trivial. Sine
Bδ = Bσ, we either have that δ is a su�x of σ or vie versa. In partiular, this showsthat either δ or σ is trivial. We obtain the third ondition of Proposition 5.17. 2There are only �nitely many heks in Proposition 5.17 to be performed on a Φ-�niterewriting system with a �nite Φ-generating set R. Note that ondition (i) in Propo-sition 5.17 yield that there exists a rewriting rule whose left-side is reduible. Similarto [129℄, rewriting systems where the left-side of a rule is reduible an be improved. Arewriting system T in whih ondition (i) of Proposition 5.17 does not our is alled aredued rewriting system.If loal on�uene fails at one of the onditions in Proposition 5.17, we obtain twoirreduible elements U, V ∈ S(X ,Φ) whih satisfy W →T U , W →T V , and U 6= V .In this ase, the tuple (U, V ) ∈ S(X ,Φ) × S(X ,Φ) is alled a Φ-overlap of the rewritingrules P1 → Q1 and P2 → Q2. Again, these overlaps generalize the notion in [129℄ for�nitely presented groups. For our algorithm, we need the followingLemma 5.18 There are only �nitely many Φ-overlaps in a Φ-�nite rewriting system.Proof. Sine eah element W ∈ S(X ,Φ) has only �nitely many Φ-subwords and eahoverlap in Proposition 5.17 ontains the left-side of a rewriting rule from a �nite Φ-generating set R, there are only �nitely many overlaps of rewriting rules. 2



68 Chapter 5. Finitely Based In�nite Rewriting Systems5.5 A Generalized Knuth-Bendix CompletionSo far, we have introdued the basis for a Knuth-Bendix ompletion as outlined in [129,Setion 2℄; see also [86℄. The overall idea of a Knuth-Bendix ompletion is quite simple:Sine, by Newman's Lemma 5.1, loal on�uene of a Noetherian rewriting system alreadyimplies on�uene, it su�es to hek a Φ-�nite rewriting system for loal on�uene only.For this purpose, the Critial Pair Lemma 5.17 applies. If we apply Lemma 5.17 to a�nite Φ-generating set, we either prove loal on�uene of the rewriting system or wewould have found an overlap (U, V ) ∈ S(X ,Φ) × S(X ,Φ). In the latter ase, the Φ-overlap satis�es U ∼ V and either U ≻ V or U ≺ V . Suppose that U ≻ V holds.Adding the rewriting rule U → V to the Φ-generating set R of the rewriting system
T does not hange the monoid ongruene ∼T . We an ontinue the proess until weprove loal on�uene of the obtained rewriting system. Of ourse termination of thisapproah is entral here. In the following, we desribe a �rst-hand approah to a Knuth-Bendix ompletion for invariantly �nitely L-presented groups. Moreover, we prove thatit terminates if the monoid L-presentation with generators X × Φ∗ admits a Φ-�niteon�uent rewriting system with respet to ≺.Let G be an invariantly �nitely L-presented group. Then, by Proposition 5.5 andTheorem 5.7, G admits an asending monoid L-presentation of the form

〈
X × Φ∗

∣∣∣
{
Uψ = V ψ

∣∣∣ (U, V ) ∈ S and ψ ∈ Φ∗
}〉

.The monoid ongruene ∼ is generated by the Φ-�nite rewriting system
T =

{
Pψ → Qψ

∣∣∣ P ≻ Q, (P,Q) ∈ S or (Q,P ) ∈ S, ψ ∈ Φ∗
}with Φ-generating set R = {P → Q | P ≻ Q, (P,Q) ∈ S or (Q,P ) ∈ S}. The algorithmLKnuthBendix in Algorithm 5.1 below takes as input the �nite Φ-generating set Rand it attempts to ompute a �nite Φ-generating set for a on�uent Φ-�nite rewritingsystem T that also de�nes the monoid ongruene ∼T . The algorithm LKnuthBendixterminates whenever a on�uent Φ-�nite rewriting system exists:Theorem 5.19 Let ≺ be a redution ordering on S(X ,Φ). If the monoid de�ned by themonoid presentation

〈X × Φ∗ | {Uψ = V ψ | (U, V ) ∈ R, ψ ∈ Φ∗ 〉admits a on�uent Φ-�nite rewriting system T with respet to ≺, the algorithm LKnuth-Bendix terminates and it omputes a �nite Φ-generating set R for T .Proof. We generalize the proof from [129, Proposition 5.1℄. Suppose that the algorithmLKnuthBendix in Algorithm 5.1 does not terminate. Then it onstruts an in�nitesequene of rewriting rules Pi → Qi where both Pi and Qi are irreduible with respetto the Φ-�nite rewriting system Zi = {Pψj → Qψj | 1 ≤ j < i, ψ ∈ Φ∗}. Denote by
Yi = {Pj → Qj | 1 ≤ j < i} a Φ-generating set for Zi. Write Z =

⋃
i∈N0

Zi and



5.5. A Generalized Knuth-Bendix Completion 69LKnuthBendix(X , Φ, R, ≺)Initialize i := 1.while i ≤ n dofor j ∈ {1, . . . , i} doCompute the Φ-overlaps O ⊆ S(X ,Φ)× S(X ,Φ) ofthe rules Pi → Qi and Pj → Qj .for (a, b) ∈ O doRewrite a and b to irreduible elements A and B, respetively.if A ≺ B then Set Pn+1 := B, Qn+1 := A, and n := n+ 1.if A ≻ B then Set Pn+1 := A, Qn+1 := B, and n := n+ 1.return( R ).Algorithm 5.1: A Knuth-Bendix ompletion algorithm
Y =

⋃
i∈N0

Yi. We �rst prove that the rewriting system Z is on�uent. Sine Z isNoetherian, it su�es to prove that it is loal on�uent.Suppose that the rewriting system Z is not loally on�uent. Then there exist el-ements whih are not loally on�uent. Sine ≺ is a well-ordering, there exists a leastelement W ∈ S(X ,Φ) whih is not loally on�uent. As eah proper Φ-subword U of Wsatis�es U ≺ W , eah proper Φ-subword of W is loally on�uent. Therefore, the Crit-ial Pair Lemma 5.17 applies to W : There exist rewriting rules Pi → Qi and Pj → Qjin the Φ-generating set Y of the rewriting system Z so that either one of the followingonditions hold:(i) W = P1 and W = AP σ2 B for σ ∈ Φ∗ and A,B ∈ S(X ,Φ).(ii) W = P σ1 and W = AσP2B
σ for σ ∈ Φ∗ and non-empty words A,B ∈ S(X ,Φ).(iii) W an be written (AB)σC or A(BC)σ for non-empty words A,B,C ∈ S(X ,Φ),

σ ∈ Φ∗, and either
• P1 = AB and P2 = BσC, or
• P1 = ABσ and P2 = BC.Suppose that either one of these onditions holds. Sine the algorithm LKnuthBendixensures that all overlaps are heked, the rules Pi → Qi and Pj → Qj would have beenheked for an overlap of this type and it would have enfored loal on�uene of Wby adding an appropriate rewriting rule. Therefore, the rewriting system Z with Φ-generating set Y is loally on�uent and it generates the monoid ongruene ∼. As Zis Noetherian by onstrution, Z is on�uent and, by Corollary 5.3, it allows to rewriteeah W ∈ S(X ,Φ) to its anonial form.Suppose that there exists a on�uent Φ-�nite rewriting system T with �nite Φ-generating set R for the monoid in Theorem 5.19. Then the rewriting systems T and
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Z both indue the same monoid ongruene ∼ whih is generated by the monoid L-presentation in Theorem 5.19. The redution ordering ≺ on S(X ,Φ) allows us to de�nethe set of anonial forms

C =
{
P ∈ S(X ,Φ)

∣∣ for eah U ∈ S(X ,Φ) we have U ∼ P ⇒ U � P
}
.This de�nition does not depend on the rewriting systems T and Z. Let P be the set ofelements W ∈ S(X ,Φ) \ C so that eah proper Φ-subword of W is a anonial form. Let

W ∈ P be given. Sine eah proper Φ-subword of W is a anonial form, it is irreduibleby Lemma 5.2. Beause the on�uent rewriting systems T and Z allow us to rewrite theelement W to its anonial form, both rewriting systems ontain a (unique) rewritingrule with left-side W . Sine R is a Φ-generating set for the rewriting system T , thereexists a (unique) rewriting rule P → Q in R and ψ ∈ Φ∗ so that W = Pψ. If ψ isnon-trivial, P is a proper subword of W and thus P ∈ C; this, however, ontradits theexistene of a rewriting rule P → Q whih implies that P ≻ Q holds. Therefore, W = Pis atually ontained in the Φ-generating set R. In partiular, the set of rewriting rules
{P → Q | P ∈ P} ⊆ R is �nite and so is P.Consider the Φ-generating set Y with the rewriting rules Pi → Qi that were generatedby the algorithm LKnuthBendix. Sine P is �nite, there exists a positive integer nthat is maximal subjet to Pn ∈ P. Let i > n be given. The elements Pi and Qi are,by onstrution, irreduible with respet to Zi = {Pψj → Qψj | 1 ≤ j < i, ψ ∈ Φ∗}.However, Pi 6∈ P and Pi 6∈ C. Therefore, Pi must ontain a proper Φ-subword U thatis ontained in P. But this is impossible as either Z does not allow to rewrite U toits anonial form (ontraditing Corollary 5.3) or U must be the left-side of a rulein {Pj → Qj | 1 ≤ j ≤ n} (ontraditing irreduibility of Pi with respet to Zi).Therefore, the algorithm LKnuthBendix annot produe an in�nite Φ-generating set
Y. It terminates and omputes a �nite Φ-generating set for a on�uent Φ-�nite rewritingsystem. 2It should be emphasized here that Theorem 5.19 does not imply that there is a proedurethat allows to deide whether or not a group admits a Φ-�nite rewriting system. Theproof of Theorem 5.19 also yields the followingCorollary 5.20 For a �nite group G, the algorithm LKnuthBendix terminates and itomputes a �nite Φ-generating set for a on�uent rewriting system for G.Proof. If G is �nite, there are only �nitely many anonial forms. In partiular, fora rewriting system T with Φ-generating set R and a monoid ongruene ∼, the set ofanonial forms C de�ned in the proof of Theorem 5.19 is �nite. It su�es to prove�niteness of the set P of elements W ∈ S(X ,Φ) \ C so that eah proper Φ-subword of
W is ontained in C. If this is the ase, the proof of Theorem 5.19 applies and it wouldprove that the algorithm LKnuthBendix terminates.Reall that the elements W ∈ S(X ,Φ) have the form W = xσ11 · · · xσnn . Sine C is�nite, there exists a positive integer ℓ that is maximal subjet to xσ11 · · · xσℓℓ ∈ C. Let
V ∈ P be given. Then eah proper Φ-subword of V is ontained in C. If V = xσ11 · · · xσnn



5.6. An Appliation of the Knuth-Bendix Approah 71for n > ℓ+ 1, the Φ-subword U = xσ11 · · · x
σℓ+1

ℓ+1 of V is proper and it is not ontained in
C. Therefore, V ∈ P has the form V = xσ11 · · · xσnn with n ≤ ℓ+ 1.Similar, as C is �nite, there exists a positive integer m that is maximal subjet to
xσ11 · · · xσnn ∈ C with eah ‖σi‖ ≤ m. Let V ∈ P be given. Then V = xσ11 · · · xσn with
n ≤ ℓ + 1. Suppose that for some 1 ≤ i ≤ n we have that ‖σi‖ = k > m. Then
σ = δ1 · · · δmδm+1 · · · δk with eah δi ∈ Φ. Then x

δ1···δm+1

i is a proper Φ-subword of Vbut xδ1···δm+1

i 6∈ C.It follows that the elements V ∈ P are `bounded' so that there are only �nitely manysuh elements. Sine P is �nite, the ideas of the proof of Theorem 5.19 apply. Theseshow that algorithm LKnuthBendix terminates and it omputes a �nite Φ-generatingset for the rewriting system for G. 25.6 An Appliation of the Knuth-Bendix ApproahIn order to illustrate our Knuth-Bendix approah for invariantly �nitely L-presentedgroups, we onsider a fairly easy L-presentation so that (most) omputations an bedone by hand. Consider the following asending �nite L-presentation
〈
{a12, a13, a14, a23, a24, a34}

∣∣ ∅
∣∣ {σ, δ}

∣∣ {a212, a12 a23 a13 a23}
〉 (5.10)where the endomorphisms σ and δ are indued by the maps

σ:





a12 7→ a12,
a13 7→ a23,
a14 7→ a24,
a23 7→ a13,
a24 7→ a14,
a34 7→ a34,

and δ:





a12 7→ a23,
a13 7→ a24,
a14 7→ a12,
a23 7→ a34,
a24 7→ a13,
a34 7→ a14.The �nite L-presentation in Eq. (5.10) is a �nite L-presentation for the symmetri group

S4 over four letters [6℄. Eah generator aij orresponds to the transposition (i, j) ∈ S4and the endomorphisms σ and δ orrespond to the inner automorphisms that are induedby onjugation with (1, 2) and (1, 2, 3, 4), respetively. From the �nite L-presentation inEq. (5.10) we obtain the following relators:
a212, a

2
13 = (a212)

δσ , a214 = (a212)
δδδ , a223 = (a212)

δ, a224 = (a212)
δσδ , a234 = (a212)

δδ .In partiular, eah generator aij is either trivial or it has order 2. Thus these generatorssatisfy a−1
ij = aij . Therefore, we an onsider the group presentation in Eq. (5.10) as amonoid L-presentation for S4. Otherwise, we would need to onsider the formal inverses

X− = {a−1
12 , a

−1
13 , a

−1
14 , a

−1
23 , a

−1
24 , a

−1
34 } together with the relations

ε = a−1
12 a12 = a12 a

−1
12 = a−1

13 a13 = a13 a
−1
13 = . . . = a−1

34 a34 = a34 a
−1
34and extensions σ̃ and δ̃ of the endomorphisms σ and δ as in Proposition 5.5.



72 Chapter 5. Finitely Based In�nite Rewriting SystemsWe hoose the orderings σ ≺ δ and a12 ≺ a13 ≺ a14 ≺ a23 ≺ a24 ≺ a34 on the monoidgenerators Φ and X , respetively. These orderings extend to a redution ordering ≺ on
S(X ,Φ) = {xσ11 · · · xσnn | xi ∈ {a12, a13, a14, a23, a24, a34}, σi ∈ {σ, δ}∗, 1 ≤ i ≤ n}as desribed in Setion 5.3. The redution ordering ≺ yields the rewriting rules

aσ12 → a12,
a23 → aσ13,
a24 → aσ14,

aσ23 → a13,
aσ24 → a14,
aσ34 → a34,

a23 → aδ12,
a24 → aδ13,
aδ14 → a12,

a34 → aδ23,
aδ24 → a13,
aδ34 → a14.

(5.11)as well as
a12 a12 → ε and a12 a23 a13 a23 → ε. (5.12)We �rst redue the rewriting system. For this purpose, we onsider the rewriting rulesone after another and we redue overlaps of the form (i) and (ii) in the Critial PairLemma 5.17; i.e., rewriting rules P1 → Q1 and P2 → Q2 so that Pω1 , for ω ∈ Φ∗, ontains

P2 as a proper Φ-subword. We always try to keep the rewriting system redued. Thereare no overlaps of type (i) or (ii) among the rewriting rules
aσ12 → a12 (5.13)
a23 → aσ13 (5.14)
a24 → aσ14. (5.15)Consider the rewriting rule aσ23 → a13. The left-side of this rule ontains a23 as a proper

Φ-subword. Thus there is an overlap with the rewriting rule a23 → aσ13 from Eq. (5.14).This overlap yields both
aσ23 → a13 and aσ23 = (a23)

σ → (aσ13)
σ = aσσ13 .This yields the rewriting rule

aσσ13 → a13. (5.16)We an omit the rewriting rule aσ23 → a13 in the following. Similar, there is an overlapwithin the rewriting rules aσ24 → a14 and a24 → aσ14 from Eq. (5.15). This overlap yieldsboth aσ24 → a14 and aσ24 → aσσ14 . Hene, we obtain the rewriting rule
aσσ14 → a14, (5.17)while we an omit the rule aσ24 → a14. There are no overlaps with the rewriting rule
aσ34 → a34. (5.18)Consider the rewriting rule a23 → aδ12. Then there is an overlap with the rule a23 → aσ13from Eq. (5.14). This overlap yields a23 → aσ13 and a23 → aδ12. Sine aδ12 ≺ aσ13 holds, weobtain the rewriting rule
aσ13 → aδ12. (5.19)



5.6. An Appliation of the Knuth-Bendix Approah 73Furthermore, we replae the rewriting rule a23 → aσ13 in Eq. (5.14) by
a23 → aδ12. (5.20)At this stage, the rewriting system given by the rewriting rules above is not reduedanymore beause the rule in Eq. (5.19) has an overlap with aσσ13 → a13 from Eq. (5.16).This overlap, on the one hand, gives aσσ13 → a13 while, on the other hand, it gives

aσσ13 = (aσ13)
σ → aδσ12 . This yields

a13 → aδσ12 . (5.21)We therefore replae the rule aσσ13 → a13 in Eq. (5.16) by
aδσσσ12 → aδσ12 . (5.22)The rule a13 → aδσ12 from Eq. (5.21) has an overlap with aσ13 → aδ12 from Eq. (5.19).This overlap gives aσ13 → aδ12 and aσ13 = (a13)

σ → aδσσ12 . We therefore replae the rule
aσ13 → aδ12 from Eq. (5.19) by

aδσσ12 → aδ12. (5.23)The latter rule yields that aδσσσ12 → aδσ12 from Eq. (5.22) is redundant. We have obtaineda redued rewriting system again. Consider the rewriting rule a24 → aδ13 → aδσδ12 . Thenthere is an overlap with the rule a24 → aσ14 from Eq. (5.15). This overlap gives
aσ14 → aδσδ12 (5.24)and we replae the rule a24 → aσ14 from Eq. (5.15) by
a24 → aδσδ12 . (5.25)Again the above rewriting system is not redued beause the rule aσ14 → aδσδ12 fromEq. (5.24) has an overlap with aσσ14 → a14 from Eq. (5.17). This overlap gives aσσ14 =

(aσ14)
σ → aδσδσ12 . We replae the rule aσσ14 → a14 from Eq. (5.17) by

a14 → aδσδσ12 . (5.26)The latter rule has an overlap with aσ14 → aδσδ12 from Eq. (5.24). This overlap allows usto replae aσ14 → aδσδ12 in Eq. (5.24) by
aδσδσσ12 → aδσδ12 . (5.27)We have obtained a redued rewriting system again. Consider the rule aδ14 → a12. Thenthe overlap with a14 → aδσδσ12 from Eq. (5.26) yields the rewriting rule
aδσδσδ12 → a12. (5.28)The rule a34 → aδ23 → aδδ12 gives us
a34 → aδδ12. (5.29)



74 Chapter 5. Finitely Based In�nite Rewriting SystemsThe latter rule has an overlap with aσ34 → a34 from Eq. (5.18). This overlap allows us toreplae the rule from Eq. (5.18) by
aδδσ12 → aδδ12. (5.30)Next we onsider the rule aδ24 → a13 → aδσ12 . This rule has an overlap with a24 → aδσδ12 inEq. (5.25). It gives us the rewriting rule
aδσδδ12 → aδσ12 . (5.31)Finally, we need to onsider the rule aδ34 → a14 → aδσδσ12 . This latter rule has an overlapwith a34 → aδδ12 from Eq. (5.29). This overlap gives us
aδσδσ12 → aδδδ12 . (5.32)This rule has various overlaps with the other rewriting rules. First, we an replae therule a14 → aδσδσ12 from Eq. (5.26) by
a14 → aδδδ12 . (5.33)Then the left-side of the rule aδσδσδ12 → a12 in Eq. (5.28) ontains aδσδσ12 as a proper

Φ-subword and thus we an replae the rule in Eq. (5.28) by
aδδδδ12 → a12. (5.34)Similar, the left-side of the rule aδσδσσ12 → aδσδ12 in Eq. (5.27) ontains aδσδσ12 as a proper

Φ-subword. We therefore replae the rule in Eq. (5.27) by
aδδδσ12 → aδσδ12 . (5.35)So far, we have obtained a redued rewriting system whose rewriting rules stem from thesubstitutions σ and δ in Eq. (5.11). It remains to onsider the rewriting rules whih stemfrom the iterated relations of the L-presentation in Eq. (5.11). The �rst rule indiatesthat the generator a12 is an involution
a12 a12 → ε. (5.36)This latter rule has several overlaps with the seond rule a12 a23 a13 a23 → ε fromEq. (5.11). The rewriting rules above yield that

a12 a23 a13 a23 → a12 a
δ
12 a

δσ
12 a

δ
12 → ε. (5.37)At this stage, we have obtained a redued rewriting system for the �nitely L-presentedgroup in Eq. (5.10). We have proved



5.6. An Appliation of the Knuth-Bendix Approah 75Proposition 5.21 For the symmetri group on four letters with its L-presentation fromEq. (5.10) and the orderings σ ≺ δ and a12 ≺ a13 ≺ a14 ≺ a23 ≺ a24 ≺ a34, a redued
Φ-�nite rewriting system is given by the following rewriting rules:

aσ12 → a12, a13 → aδσ12 , a14 → aδδδ12 ,

a23 → aδ12, a24 → aδσδ12 , a34 → aδδ12,

aδσσ12 → aδ12, aδδσ12 → aδδ12, aδσδσ12 → aδδδ12 ,

aδσδδ12 → aδσ12 , aδδδσ12 → aδσδ12 , aδδδδ12 → a12,

(5.38)and
a12 a12 → ε and a12 a

δ
12 a

δσ
12 a

δ
12 → ε. (5.39)In the following , we enfore loal on�uene of this rewriting system by onsidering theoverlaps of type (iii) in the Critial Pair Lemma 5.17. We indiate whih rewriting rule isapplied �rst by underlining the appropriate Φ-subword. The rewriting rules in Eq. (5.39)overlap as follows:

a12 a12 a
δ
12 a

δσ
12 a

δ
12 → aδ12 a

δσ
12 a

δ
12 and a12 a12 a

δ
12 a

δσ
12 a

δ
12 → a12.as well as

a12 a
δ
12 a

δσ
12 a

δ
12 a

δ
12 → a12 a

δ
12 a

δσ
12 and a12 a

δ
12 a

δσ
12 a

δ
12 a

δ
12 → aδ12.These overlaps give

aδ12 a
δσ
12 a

δ
12 → a12 and a12 a

δ
12 a

δσ
12 → aδ12. (5.40)Again, overlaps with the rule a12 a12 → ε from Eq. (5.36) give

aδ12 a
δ
12 a

δσ
12 a

δ
12 → aδσ12 a

δ
12 and aδ12 a

δ
12 a

δσ
12 a

δ
12 → aδ12 a12,

aδ12 a
δσ
12 a

δ
12 a

δ
12 → a12 a

δ
12 and aδ12 a

δσ
12 a

δ
12 a

δ
12 → aδ12 a

δσ
12 ,

a12 a12 a
δ
12 a

δσ
12 → aδ12 a

δσ
12 and a12 a12 a

δ
12 a

δσ
12 → a12 a

δ
12,

a12 a
δ
12 a

δσ
12 a

δσ
12 → aδ12 a

δσ
12 and a12 a

δ
12 a

δσ
12 a

δσ
12 → a12 a

δ
12.Therefore, we obtain the rules

aδ12 a
δσ
12 → a12 a

δ
12 (5.41)and

aδσ12 a
δ
12 → aδ12 a12. (5.42)Consider the overlap of the rule aδδδδ12 → a12 from Eq. (5.34) with the rule from Eq. (5.41).This overlap gives us

aδδδδ12 aδσδδδ12 → a12 a
δσδδδ
12 →∗ a12 a

δσδ
12and

aδδδδ12 aδσδδδ12 = (aδ12 a
δσ
12 )

δδδ → (a12 a
δ
12)

δδδ →∗ aδδδ12 a12.



76 Chapter 5. Finitely Based In�nite Rewriting SystemsHene, we obtain the rewriting rule
aδδδ12 a12 → a12 a

δσδ
12 . (5.43)Similar, the overlap of aδδδδ12 → a12 from Eq. (5.34) and aδσ12 aδ12 → aδ12 a12 from Eq. (5.42)gives

aδσδδδ12 aδδδδ12 → aδσδδδ12 a12 →
∗ aδσδ12 a12 and aδσδδδ12 aδδδδ12 → aδδδδ12 aδδδ12 →∗ a12 a

δδδ
12 .This yields the rewriting rule

aδσδ12 a12 → a12 a
δδδ
12 . (5.44)An overlap of aδδσ12 → aδδ12 from Eq. (5.30) and aδ12 aδσ12 → a12 a

δ
12 from Eq. (5.41) gives

aδδσ12 a
δσδσ
12 → aδδ12a

δσδσ
12 →∗ aδδ12a

δδδ
12 and aδδσ12 a

δσδσ
12 → aδσ12a

δδσ
12 →∗ aδσ12a

δδ
12.We obtain the rewriting rule

aδδ12a
δδδ
12 → aδσ12a

δδ
12. (5.45)Consider the overlap of aδδδσ12 → aδσδ12 from Eq. (5.35) and aδ12 a

δσ
12 → a12 a

δ
12 fromEq. (5.41). Then, on the one hand, we obtain

aδδδσ12 aδσδδσ12 → aδσδ12 a
δσδδσ
12 → aδσδ12 a

δσσ
12 → aδσδ12 a

δ
12while, on the other hand, we obtain

aδδδσ12 aδσδδσ12 → aδδσ12 a
δδδσ
12 → aδδσ12 a

δσδ
12 → aδδ12a

δσδ
12 = (aδ12 a

δσ
12 )

δ → aδ12a
δδ
12.This yields the rewriting rule

aδσδ12 a
δ
12 → aδ12a

δδ
12. (5.46)Consider an overlap of the latter rule with the rule aδδδδ12 → a12 from Eq. (5.34). Thisoverlap gives us

aδσδδδδ12 aδδδδ12 → aδσδδ12 a12 → aδσ12 a12and
aδσδδδδ12 aδδδδ12 → aδδδδ12 aδδδδδ12 →∗ a12 a

δ
12.Whene aδσ12 a12 → a12 a

δ
12 and we an replae the rule in Eq. (5.46) by

aδσ12 a12 → a12 a
δ
12. (5.47)An overlap of the latter rule with aδσσ12 → aδ12 from Eq. (5.23) gives

aδσσ12 aσ12 → aδ12 a
σ
12 → aδ12 a12 and aδσσ12 aσ12 → aσ12 a

δσ
12 → a12 a

δσ
12 .Therefore, we obtain the rewriting rule

aδ12 a12 → a12 a
δσ
12 . (5.48)



5.6. An Appliation of the Knuth-Bendix Approah 77Note that we an replae the rewriting rule aδσ12 aδ12 → aδ12 a12 in Eq. (5.42) by
aδσ12 a

δ
12 → a12 a

δσ
12 . (5.49)The overlap of aδ12 a12 → a12 a

δσ
12 from Eq. (5.48) with aδσδσ12 → aδδδ12 from Eq. (5.32) yields

aδσδσ12 aσδσ12 → aδδδ12 a
σδσ
12 → aδδδ12 a

δσ
12 and aδσδσ12 aσδσ12 → aσδσ12 aδσσδσ12 →∗ aδσ12 a

δδ
12.This yields the rewriting rule

aδδδ12 a
δσ
12 → aδσ12 a

δδ
12. (5.50)An overlap of aδ12 a12 → a12 a

δσ
12 from Eq. (5.48) with aδδσ12 → aδδ12 from Eq. (5.30) yields

aδδσ12 a
δσ
12 → aδδ12 a

δσ
12 and aδδσ12 a

δσ
12 → aδσ12 a

δσδσ
12 → aδσ12 a

δδδ
12 .Whene

aδδ12 a
δσ
12 → aδσ12 a

δδδ
12 . (5.51)We now onsider an overlap of aδσ12 aδ12 → a12 a

δσ
12 from Eq. (5.49) and aδδδ12 a12 → a12 a

δσδ
12from Eq. (5.43). This overlaps yields that

aδσδδ12 aδδδ12 a12 → aδσδδ12 a12 a
δσδ
12 → aδσ12 a12 a

δσδ
12 → a12 a

δ
12 a

δσδ
12and

aδσδδ12 aδδδ12 a12 → aδδ12 a
δσδδ
12 a12 → aδδ12 a

δσ
12 a12 → aδδ12 a12 a

δ
12We obtain the rule

aδδ12 a12 a
δ
12 → a12 a

δ
12 a

δσδ
12 . (5.52)Overlapping the latter rule with a12 a12 → ε yields that

aδδ12 a12 a
δ
12 a

δ
12 → aδδ12 a12and

aδδ12 a12 a
δ
12 a

δ
12 → a12 a

δ
12 a

δσδ
12 aδ12 → a12 a

δ
12 a

δ
12 a

δδ
12 → a12 a

δδ
12.Whene

aδδ12 a12 → a12 a
δδ
12. (5.53)This rewriting rule allows us to remove the rule aδδ12 a12 aδ12 → a12 a

δ
12 a

δσδ
12 from Eq. (5.52)sine

aδδ12 a12 a
δ
12 → a12 a

δδ
12 a

δ
12 → a12 a

δ
12 a

δσδ
12holds. An overlap of the rule in Eq. (5.53) with the rule aδδδσ12 → aδσδ12 from Eq. (5.35)gives us

aδδδσ12 aδσ12 → aδσδ12 aδσ12 and aδδδσ12 aδσ12 → aδσ12 a
δδδσ
12 → aδσ12 a

δσδ
12 .Thus

aδσδ12 aδσ12 → aδσ12 a
δσδ
12 . (5.54)



78 Chapter 5. Finitely Based In�nite Rewriting SystemsFinally, we onsider an overlap of aδδ12aδδδ12 → aδσ12a
δδ
12 from Eq. (5.45) and aδδδδ12 → a12 fromEq. (5.34). This overlap yields

aδδδ12 a
δδδδ
12 → aδδδ12 a12 → a12 a

δσδ
12 and aδδδ12 a

δδδδ
12 → aδσδ12 aδδδ12and we obtain the rewriting rule

aδσδ12 aδδδ12 → a12 a
δσδ
12 . (5.55)With a Gap-program (or even by hand) it an be shown that all 214 overlaps of therewriting system onstruted above are satis�ed so that it is (loally) on�uent by theCritial Pair Lemma 5.17. This proves the followingTheorem 5.22 A redued Φ-�nite on�uent rewriting system for the symmetri groupon four letters with respet to the redution ordering that is indued by σ ≺ δ and a12 ≺

a13 ≺ a14 ≺ a23 ≺ a24 ≺ a34 is given by the Φ-generating set
aσ12 → a12, a13 → aδσ12 , a14 → aδδδ12 ,

a23 → aδ12, a24 → aδσδ12 , a34 → aδδ12,

aδσσ12 → aδ12, aδδσ12 → aδδ12, aδσδσ12 → aδδδ12 ,

aδσδδ12 → aδσ12 , aδδδσ12 → aδσδ12 , aδδδδ12 → a12,and
a12 a12 → ε, aδ12 a12 → a12 a

δσ
12 , aδ12 a

δσ
12 → a12 a

δ
12,

aδσ12 a12 → a12 a
δ
12, aδσ12 a

δ
12 → a12 a

δσ
12 , aδδ12 a12 → a12 a

δδ
12,

aδδ12 a
δσ
12 → aδσ12 a

δδδ
12 , aδδ12a

δδδ
12 → aδσ12a

δδ
12, aδσδ12 a12 → a12 a

δδδ
12 ,

aδσδ12 aδσ12 → aδσ12 a
δσδ
12 , aδσδ12 aδδδ12 → a12 a

δσδ
12 , aδδδ12 a12 → a12 a

δσδ
12 ,

aδδδ12 a
δσ
12 → aδσ12 a

δδ
12.An implementation of this Knuth-Bendix ompletion algorithm in the omputer algebrasystemGap [50℄ does not terminate for the Grigorhuk group [53℄, the Basilia group [61℄,the lamplighter group Z2 ≀ Z and the wreath produt Z ≀ Z. Therefore, we do not knowif these groups admit a Φ-�nite on�uent rewriting system:Question 5.23 Is there an invariantly �nitely L-presented group that admits a Φ-�niteon�uent rewriting system but that is not �nitely presented? In partiular, do the testbedgroups in [6℄ or [9℄ admit Φ-�nite rewriting systems?



AppendixAInvestigating self-similar groups usingtheir �nite L-presentationAbstrat. Self-similar groups provide a rih soure of groups with interestingproperties; e.g., in�nite torsion groups (Burnside groups) and groups with anintermediate word growth. Various self-similar groups an be desribed bya reursive (possibly in�nite) presentation, a so-alled �nite L-presentation.Finite L-presentations allow numerous algorithms for �nitely presented groupsto be generalized to this speial lass of reursive presentations. We give anoverview of the algorithms for �nitely L-presented groups. As appliations, wedemonstrate how their implementation in a omputer algebra system allowsus to study expliit examples of self-similar groups inluding the Fabrykowski-Gupta groups. Our experiments yield detailed insight into the struture ofthese groups.Keywords. Reursive presentations; self-similar groups; Grigorhuk group;Fabrykowski-Gupta groups; oset enumeration; �nite index subgroups; Reide-meister-Shreier theorem; nilpotent quotients; solvable quotients.
A.1 IntrodutionThe general Burnside problem is among the most in�uential problems in ombinatorialgroup theory. It asks whether a �nitely generated group is �nite if every element has �niteorder. The general Burnside problem was answered negatively by Golod [51℄. The �rstexpliit ounter-examples were onstruted in [5,53,62℄. Among these ounter-examplesis the Grigorhuk group G whih is a �nitely generated self-similar group. The group
G is not �nitely presented [56℄ but it admits a reursive presentation whih ould bedesribed in �nite terms using the ation of a �nitely generated monoid of substitutionsating on �nitely many relations [96℄. These reursive presentations are nowadays known



80 Chapter A. Investigating self-similar groupsas �nite L-presentations [56℄ (or endomorphi presentations [6℄) in honor of Lysënok'swork in [96℄ for the Grigorhuk group; see [6℄ or Setion A.2 for a de�nition.Finite L-presentations allow omputer algorithms to be employed in the investiga-tion of the groups they de�ne. A �rst algorithm for �nitely L-presented groups is thenilpotent quotient algorithm [9,64℄. Reently, further algorithms for �nitely L-presentedgroups were developed [66, 67, 70℄. For instane, in [67℄, a oset enumeration proessfor �nitely L-presented groups was desribed. This is an algorithm whih, given a �nitegenerating set of a subgroup of a �nitely L-presented group, omputes the index of thesubgroup in the �nitely L-presented group provided that this index is �nite. Usuallyindex omputations in self-similar groups have involved lots of tedious alulations (e.g.,�nding an appropriate quotient of the self-similar group; omputing the index of thesubgroup in this quotient; followed by a proof that the obtained index is orret; see, forinstane, [11, Setion 4℄ or [38, Chapter VIII℄). The oset enumerator in [67℄ makes thisproess ompletely automati and thus it shows the signi�ane of �nite L-presentationsin the investigation of self-similar groups. Moreover, oset enumeration allows one toompute the number of low-index subgroups of �nitely L-presented groups [67℄.We demonstrate the appliation of the algorithms for �nitely L-presented groups inthe investigation of a lass of self-similar groups Γp for 3 ≤ p ≤ 11. The group Γ3 wasintrodued in [45℄. It is a self-similar group with an intermediate word growth [13,45,46℄.The groups Γp, with p > 3, were introdued in [57℄. They are known as Fabrykowski-Gupta groups. Their abelianization Γp/Γ
′
p
∼= Zp × Zp was omputed in [57℄. Moreover,for p ≥ 5, the groups Γp are just-in�nite, regular branh groups [57℄. The ongruenesubgroups of Γp, for primes p > 3, were studied in [131℄; see also [49℄. The lower entralseries setions γcΓ3/γc+1Γ3 have been omputed entirely in [7℄ while, for p > 3, parts ofthe lower entral series setions γcΓp/γc+1Γp have been omputed in [9℄. So far, littlemore is known on the groups Γp.For p ≥ 3, the Fabrykowski-Gupta group Γp admits a �nite L-presentation [9℄. Wedemonstrate how the implementations of the algorithms for �nitely L-presented groupsallow us to investigate the groups Γp for 3 ≤ p ≤ 11 in detail. For instane, we demon-strate the appliation of our algorithm

• to ompute the isomorphism type of the lower entral series setions γcΓp/γc+1Γpusing improved (parallel) methods from [9, 64℄.
• to ompute the isomorphism type of the Dwyer quotients Mc(Γp) of their Shurmultiplier using the methods from [66℄.
• to determine the number of low-index subgroups of the groups Γp using the methodsfrom [67℄.
• to ompute the isomorphism type of the setions Γ

(c)
p /Γ

(c+1)
p of the derived seriesombining the methods from [70℄ and [9, 64℄.We brie�y sketh the algorithms available for �nitely L-presented groups. Moreover,we ompare our experimental results for the Fabrykowski-Gupta groups Γp with thoseresults for the Grigorhuk group G. The group G has been investigated for deades now.



A.2. Self-Similar Groups 81Even though a lot is known about its struture, various questions still remain open [58℄.For further details on the Grigorhuk group G, we refer to [38, Chapter VIII℄.A.2 Self-Similar GroupsA self-similar group an be de�ned by its reursive ation on a regular rooted tree:Consider the d-regular rooted in�nite tree Td as a free monoid over the alphabet X =
{0, . . . , d− 1}. Then a self-similar group an be de�ned as follows:De�nition 1.1 A group G ating faithfully on the free monoid X ∗ is self-similar if foreah g ∈ G and x ∈ X there exist h ∈ G and y ∈ X so that

(xw)g = y wh for eah w ∈ X ∗. (A.1)It su�es to speify the self-similar ation in Eq. (A.1) on a generating set of a group.For instane, the Grigorhuk group G = 〈a, b, c, d〉 an be de�ned as a subgroup of theautomorphism group of the rooted binary tree T2 = {0, 1}∗ by its self-similar ation:
(0w)a = 1w (1w)a = 0w
(0w)b = 0wa (1w)b = 1wc

(0w)c = 0wa (1w)c = 1wd

(0w)d = 0w (1w)d = 1wb .The Fabrykowski-Gupta group Γ3 is another example of a self-similar group. It wasintrodued in [45℄ as a group with an intermediate word growth [13, 46℄. The group Γ3was generalized in [57℄ to a lass of self-similar groups Γd ating on the d-regular rootedtree:De�nition 1.2 For d ≥ 3, the Fabrykowski-Gupta group Γd = 〈a, r〉 is a self-similargroup ating faithfully on the d-regular rooted tree Td = {0, . . . , d− 1}∗ by
(xw)a = x+ 1 (mod d)w, for 0 ≤ x ≤ d− 1

(0w)r = 0wa,
(xw)r = xw, for 1 ≤ x < d− 1

(d− 1w)r = d− 1wr.The groups G and Γd admit a �nite L-presentation; that is, a �nite L-presentation is agroup presentation of the form
〈
X

∣∣∣ Q∪
⋃

σ∈Φ∗

Rσ
〉
, (A.2)where X is a �nite alphabet, Q and R are �nite subsets of the free group F over X ,and Φ∗ denotes the monoid of endomorphisms whih is generated by the �nite set Φ ⊆

End(F ). The group de�ned by the �nite L-presentation in Eq. (A.2) is denoted by
〈X | Q | Φ | R〉. If Q = ∅ holds, the L-presentation in Eq. (A.2) is asending. In thisase, every endomorphism σ ∈ Φ∗ indues an endomorphism of the group G.



82 Chapter A. Investigating self-similar groupsThe Grigorhuk group G is an example of a self-similar group whih is �nitely L-presented [96℄: the group G satis�es
G ∼=

〈
{a, b, c, d}

∣∣∣ {a2, b2, c2, d2, bcd} ∪
⋃

i≥0

{(ad)4, (adacac)4}σ
i
〉
,where σ is the endomorphism of the free group F over {a, b, c, d} whih is indued bythe map a 7→ aca, b 7→ d, c 7→ b, and d 7→ c. A general method for omputing a �nite

L-presentation for a lass of self-similar groups was developed in [6℄ in order to proveTheorem 1.3 (Bartholdi [6℄) Eah �nitely generated, ontrating, semi-fratal regu-lar branh group is �nitely L-presented; however, it is not �nitely presented.The onstrutive proof of Theorem 1.3 in [6℄ was used in [9℄ to ompute the following�nite L-presentation for the Fabrykowski-Gupta group Γp:Theorem 1.4 (Bartholdi et al. [9℄) For d ≥ 3, the group Γd is �nitely L-presentedby 〈{α, ρ} | ∅ | {ϕ} | R〉 where the iterated relations in R are de�ned as follows: Writing
σi = ρα

i , for 1 ≤ i ≤ d− 1, and reading indies modulo d, we have
R =

{
αd,

[
σ
σki−1

i , σ
σℓj−1

j

]
, σ

−σk+1
i−1

i σ
σki−1σ

σℓi−2
i−1

i

}

1≤i,j≤d, 2≤|i−j|≤d−2, 0≤k,ℓ≤d−1The substitution ϕ is indued by the map α 7→ ρα
−1 and ρ 7→ ρ.It follows immediately from the L-presentation in Theorem 1.4 that the substitution ϕindues an endomorphism of the group Γd. Finite L-presentations 〈X | Q | Φ | R〉 whosesubstitutions σ ∈ Φ indue endomorphisms of the group are invariant L-presentations.Eah asending L-presentation is invariant. It is also easy to see that the L-presentationfor the Grigorhuk group G above is invariant [55, Corollary 4℄.A �nite L-presentation allows us to de�ne a group that is possibly in�nitely presentedin omputer algebra systems suh as Gap [50℄ or Magma [28℄. Beside de�ning a self-similar group by its �nite L-presentation, it an also be de�ned by its reursive ationon a regular tree. A �nite approximation of the reursive ation of a self-similar groupis often su�ient to study �nite index subgroups sine various self-similar groups havethe ongruene property: every �nite index subgroup ontains a level stabilizer (i.e., thestabilizer of some level of the regular tree). This often yields an alternative approahto investigate the struture of a self-similar group with the help of omputer algebrasystems [8℄. However, there are self-similar groups that do not have the ongrueneproperty [14℄. For these groups, their �nite L-presentation may help to gain insight intothe struture of the group. The groups G and Γ3 have the ongruene property [11℄.In the following, we demonstrate how the �nite L-presentation in Theorem 1.4 allowsus to obtain detailed information on the struture of the groups Γp, for 3 ≤ p ≤ 11. Forfurther details on self-similar groups, we refer to the monograph by Nekrashevyh [101℄.



A.3. A Nilpotent Quotient Algorithm 83A.3 A Nilpotent Quotient AlgorithmFor a group G, the lower entral series is de�ned reursively by γ1G = G and γc+1 =
[γcG,G] for c ∈ N. If G is �nitely generated, G/γc+1G is polyyli and therefore itan be desribed by a polyyli presentation; i.e., a polyyli presentation is a �nitepresentation whose generators re�ne a subnormal series with yli setions. A polyylipresentation allows e�etive omputations within the group it de�nes [129, Chapter 9℄.A nilpotent quotient algorithm omputes a polyyli presentation for the fatorgroup G/γc+1G together with a homomorphism G → G/γc+1G. Suh an algorithmfor �nitely presented groups was developed in [107℄. This nilpotent quotient algorithmwas a �rst algorithm that ould be generalized to �nite L-presentations [9, 64℄. Theexperimental results in this setion were obtained with an improved, parallel version ofthe algorithm in [9, 64℄. They extend the omputational results in [9℄ signi�antly.We brie�y sketh the nilpotent quotient algorithm for �nitely L-presented groups inthe following. Let G = 〈X | Q | Φ | R〉 be a �nitely L-presented group. Denote by Fthe free group over the alphabet X and let K be the normal losure K =

〈⋃
σ∈Φ∗ Rσ

〉F .First, we assume that Q = ∅ holds. Then Kσ ⊆ K, for eah σ ∈ Φ, and G = F/K hold.Therefore, eah σ ∈ Φ indues an endomorphism of the group G. Furthermore, we have
G/γcG ∼= F/KγcF . The nilpotent quotient algorithm uses an indution on c to omputea polyyli presentation for G/γcG. For c = 2, we have

G/[G,G] ∼= F/KF ′ ∼= (F/F ′)/(KF ′/F ′).Sine G is �nitely generated, F/F ′ is free abelian with �nite rank. The normal generators⋃
σ∈Φ∗ Rσ of K give a (possibly in�nite) generating set of KF ′/F ′. From this generatingset it is possible to ompute a �nite generating set U with a spinning algorithm. The�nite generating set U allows us to apply the methods from [107℄ that eventually omputea polyyli presentation for F/KF ′ together with a homomorphism F → F/KF ′ whihindues G→ G/G′.For c > 2, assume that the algorithm has already omputed a polyyli presentationfor G/γcG ∼= F/KγcF together with a homomorphism F → F/KγcF . Consider thefator group Hc+1 = F/[KγcF,F ]. Then [KγcF,F ] = [K,F ]γc+1F and Hc+1 satis�esthe short exat sequene

1 → KγcF/[KγcF,F ] → Hc+1 → F/KγcF → 1;that is, Hc+1 is a entral extension of a �nitely generated abelian group by G/γcG. Thus
Hc+1 is nilpotent and polyyli. A polyyli presentation for Hc+1 together with ahomomorphism F → F/[KγcF,F ] an be omputed with the overing algorithm in [107℄;for a proof that this algorithm generalizes to �nite L-presentations we refer to [64℄. Then
Kγc+1F/[Kγc, F ] is a subgroup of KγcF/[KγcF,F ] and a (possibly in�nite) generatingset for Kγc+1F/[KγcF,F ] an be obtained from the normal generators of K. Again, a�nite generating set U forKγc+1F/[KγcF,F ] an be omputed with a spinning algorithmfrom the normal generators of K. The �nite generating set U allows us to apply the



84 Chapter A. Investigating self-similar groupsmethods in [107℄ for omputing a polyyli presentation for G/γc+1G ∼= F/Kγc+1Ftogether with a homomorphism F → F/Kγc+1F . This �nishes our desription of thenilpotent quotient algorithm in the ase where Q = ∅ holds.If, on the other hand, G is given by a �nite L-presentation 〈X | Q | Φ | R〉 with
Q 6= ∅, the algorithm desribed above applies to the �nitely L-presented group H = 〈X |
∅ | Φ | R〉. Write H = F/K and G = F/L for normal subgroups K ≤ L. The nilpotentquotient algorithm applied to H yields a polyyli presentation for H/γc+1H togetherwith a homomorphism F → F/Kγc+1F . This yields

G/γc+1G ∼= F/Lγc+1F ∼= (F/Kγc+1F )/(Lγc+1F/Kγc+1F ).The subgroup Lγc+1F/Kγc+1F is �nitely generated by the images of the relations in
Q. Standard methods for polyyli groups [129℄ then give a polyyli presentationfor the fator group G/γc+1G of the polyylially presented group H/γc+1H and ahomomorphism F → G/γc+1G.A.3.1 Appliations of the Nilpotent Quotient AlgorithmThe nilpotent quotient algorithm allows us to ompute within the lower entral seriesquotients G/γc+1G of a �nitely L-presented group G. For instane, it allows us todetermine the isomorphism type of the lower entral series setions γcG/γc+1G. Forvarious self-similar groups, the lower entral series setions often exhibit periodiities.For instane, the Grigorhuk group G satis�esTheorem 1.5 (Rozhkov [123℄) The lower entral series setions γcG/γc+1G are 2-elementary abelian with the following 2-ranks:

rk2(γcG/γc+1G) =





3 or 2, if c = 1 or c = 2, respetively
2, if c ∈ {2 · 2m + 1, . . . , 3 · 2m}

1, if c ∈ {3 · 2m + 1, . . . , 4 · 2m}





with m ∈ N0.The group G has �nite width 2.Our implementation of the nilpotent quotient algorithm in [65℄ allows a omputer al-gebra system to be applied in the investigation of the quotients G/γcG for a �nitely
L-presented group G. For instane, our implementation suggests that the group Γd has amaximal nilpotent quotient whenever d is not a prime-power. Based on this experimentalobservation, the following proposition was proved:Proposition 1.6 (Bartholdi et al. [9℄) If d is not a prime-power, the group Γd hasa maximal nilpotent quotient. Its nilpotent quotients are isomorphi to the nilpotentquotients of the wreath produt Zd ≀ Zd.For a prime p ≥ 3, the lower entral series setions γcΓp/γc+1Γp are p-elementary abelian.For p = 3, the lower entral series setions γcΓ3/γc+1Γ3 were omputed in [7℄:



A.3. A Nilpotent Quotient Algorithm 85Proposition 1.7 (Bartholdi [7℄) The setions γcΓ3/γc+1Γ3 are 3-elementary abelianwith the following 3-ranks:
rk3(γcΓ3/γc+1Γ3) =





2 or 1, if c = 1 or c = 2, respetively,
2, if c ∈ {3k + 2, . . . , 2 · 3k + 1},

1, if c ∈ {2 · 3k + 2, . . . , 3k+1 + 1}



with k ∈ N0. The group Γ3 has �nite width 2.For primes p > 3, little is known about the series setions γcΓp/γc+1Γp so far [9℄. Weuse the following abbreviation to list the ranks of these setions: If the same entry a ∈ Nappears in m onseutive plaes in a list, it is listed one in the form a[m]. The setions

γcΓp/γc+1Γp are p-elementary abelian. Their p-ranks are given by the following table:
p rkp(γcΓp/γc+1Γp) lass
3 2, 1[1], 2[1], 1[1], 2[3], 1[3], 2[9], 1[9], 2[27], 1[27], 2[65] 147

5 2, 1[3], 2[1], 1[13], 2[5], 1[65], 2[25], 1[26] 139

7 2, 1[5], 2[1], 1[33], 2[7], 1[68] 115

11 2, 1[9], 2[1], 1[97] 2[4] 112These omputational results were obtained with a parallel version of the nilpotent quo-tient algorithm in [9, 64℄. They were intended to be published in [42℄. These omputa-tional results extend those in [9℄ signi�antly so that we obtain detailed onjetures onthe struture of the lower entral series setions γcΓp/γc+1Γp: The setions γcΓp/γc+1Γpare p-elementary abelian with the following p-ranks: Write fp(ℓ) = p+(p2−2p−1)(pℓ+1−
1)/(p − 1) and gp(ℓ) = fp(ℓ) + pℓ+1. Then we onjeture that

rkp(γcΓp/γc+1Γp) =

{
2, if c ∈ {1, p} or fp(ℓ) ≤ c < gp(ℓ) for some ℓ ∈ N0,
1, otherwiseholds. If this onjeture is true, the group Γp would have �nite width 2. For primepowers 3 ≤ d ≤ 11, our implementation yields the following results:

• For d = 4, the Fabrykowski-Gupta group Γ4 satis�es
Γ4/Γ

′
4
∼= Z4 × Z4 and γ2Γ4/γ3Γ4

∼= Z4.For 3 ≤ c ≤ 141, the setions γcΓ4/γc+1Γ4 are 2-elementary abelian with 2-ranks:
2[4], 3[3], 2[13], 3[12], 2[52], 3[48], 2[7].

• For d = 8, the Fabrykowski-Gupta group Γ8 satis�es
Γ8/Γ

′
8
∼= Z8 × Z8, γ2Γ8/γ3Γ8

∼= Z8,and
γ3Γ8/γ4Γ8

∼= γ4Γ8/γ5Γ8
∼= γ5Γ8/γ6Γ8

∼= γ6Γ8/γ7Γ8
∼= Z4.For 7 ≤ c ≤ 111, the setions γcΓ8/γc+1Γ8 are 2-elementary abelian with 2-ranks:

2, 1, 2[2], 3, 2, 3[2], 4, 3[8], 2[23], 3[5], 2[3], 1[8], 2[16], 3[8], 2[8], 3[16], 4.



86 Chapter A. Investigating self-similar groups
• For d = 9, the Fabrykowski-Gupta group Γ9 satis�es

Γ9/Γ
′
9
∼= Z9 × Z9, γ2Γ9/γ3Γ9

∼= Z9, and γ3Γ9/γ4Γ9
∼= Z9.For 4 ≤ c ≤ 117, the setions γcΓ9/γc+1Γ9 are 3-elementary abelian with 3-ranks:

1[5], 2[6], 3, 2[17], 1[38], 1[47].A.4 Computing Dwyer Quotients of the Shur MultiplierThe Shur multiplier M(G) of a group G an be de�ned as the seond homology group
H2(G,Z) with integer oe�ients. It is an invariant of the group whih is of partiularinterest for in�nitely presented groups beause proving the Shur multiplier being in-�nitely generated proves that the group does not admit a �nite presentation. This is dueto the fat that the Shur multiplier of a �nitely presented group is �nitely generatedabelian whih an be seen as a onsequene of Hopf's formula: If F is a free group and
R� F a normal subgroup so that G ∼= F/R holds, the Shur multiplier M(G) satis�es

M(G) ∼= (R ∩ F ′)/[R,F ]. (A.3)However, a group with a �nitely generated Shur multiplier is not neessarily �nitelypresented [18℄. For further details on the Shur multiplier, we refer to [121, Chapter 11℄.It is known that the Shur multiplier of a �nitely L-presented group (and even theShur multiplier of a �nitely presented group) is not omputable in general [52℄. Never-theless, the Shur multiplier of some self-similar groups has been omputed in [14, 56℄:For instane, the Grigorhuk group G satis�esProposition 1.8 (Grigorhuk [56℄) The Shur multiplier M(G) is in�nitely gener-ated 2-elementary abelian. Therefore, the group G is not �nitely presented.There are various examples of self-similar groups for whih nothing is known on theirShur multiplier. Even though the Shur multiplier M(G) is not omputable in general,it is possible to ompute suessive quotients ofM(G) provided that the group G is givenby an invariant �nite L-presentation [66℄. These quotients often exhibit periodiities aswell: For instane, our experiments with the implementation of the algorithm in [66℄suggest that the Shur multiplier of the Fabrykowski-Gupta groups Γd, for a prime-power d = pℓ, is in�nitely generated. The algorithm for omputing suessive quotientsof M(G) provides a �rst method to investigate the struture of the Shur multiplierof an invariantly �nitely L-presented group (and even the Shur multiplier of a �nitelypresented group).We brie�y sketh the idea of this algorithm: Let G be an invariantly �nitely L-presented group. Write G ∼= F/K for a free group F and a normal subgroup K. Then
G/γcG ∼= F/KγcF . We identify M(G) with (K ∩ F ′)/[K,F ] and M(G/γcG) with
(KγcF ∩ F ′)/[KγcF,F ] and de�ne

ϕc:M(G) →M(G/γcG), g[K,F ] 7→ g[KγcF,F ].



A.4. Computing Dwyer Quotients of the Shur Multiplier 87Then ϕc is a homomorphism of abelian groups. In the indution step of the nilpo-tent quotient algorithm, the algorithm omputes a homomorphism F → F/[KγcF,F ].This homomorphism allows us to ompute the image of the Shur multiplier M(G) in
M(G/γcG). In partiular, it allows us to ompute the isomorphism type of the Dwyerquotient Mc(G) =M(G)/ kerϕc, for c ∈ N, where

M(G) ≥ kerϕ1 ≥ kerϕ2 ≥ . . . .The algorithm for omputing Mc(G) has been implemented in Gap. Its implementationallows us to ompute the Dwyer quotients of various self-similar groups: Sine the Shurmultiplier of the Grigorhuk group G is 2-elementary abelian, the Dwyer quotients of Gare 2-elementary abelian. We have omputed the Dwyer quotientsMc(G) for 1 ≤ c ≤ 301.These quotients are 2-elementary abelian with the following 2-ranks:
1, 2, 3[3], 5[6], 7[12], 9[24], 11[48], 13[96], 15[110].These experiments suggest that the Grigorhuk group satis�es

Mc(G) ∼=

{
Z2 or (Z2)

2, if c = 1 or c = 2, respetively,
(Z2)

2m+3, if c ∈ {3 · 2m, . . . , 3 · 2m+1 − 1},

}with m ∈ N0. For the Fabrykowski-Gupta groups Γd, the algorithm in [66℄ yields �rstinsight into the struture ofM(Γd): We restrit ourself to the groups Γd for prime powers
d = pℓ beause, otherwise, the groups have a maximal nilpotent quotient by Proposi-tion 1.6. For a prime p ∈ {3, 5, 7, 11}, the Dwyer quotients Mc(Γp) are p-elementaryabelian groups with the following p-ranks:

p rkp(Mc(Γp))

3 0[2], 1[3], 2[0], 3[9], 4[1], 5[26], 6[4], 7[77], 8[13], 9[12]

5 0[1], 1[4], 2[2], 3[20], 4[10], 5[100], 6[1]

7 0[1], 1[2], 2[6], 3[2], 4[14], 5[42], 6[14], 7[34]

11 0[1], 1[2], 2[2], 3[2], 4[10], 5[2], 6[22], 7[22], 8[22], 9[27]As noted by Bartholdi, these experimental results suggest that
rk3(Mc+1(Γ3)) =

{
2
⌊
log3

(
2c−1
10

)⌋
+ 3, if log3(2c− 1) ∈ Z,

⌊log3(2c − 1)⌋ +
⌊
log3

(
2c−1
10

)⌋
+ 1, otherwise,for c ≥ 6. Our results for the Dwyer quotients Mc(Γd), for d ∈ {4, 8, 9}, are shown inTable A.4 where we list the abelian invariants of Mc(G). Here, a list (α1, . . . , αn) standsfor the abelian group Zα1×· · ·×Zαn . Again, we list the abelian invariants (α1, . . . , αn)

[m]just one if they appear in m onseutive plaes.



88 Chapter A. Investigating self-similar groupsTable A.1: Dwyer quotients of the Fabrykowski-Gupta groups Γd
d Mc(Γd)

(1)[1] (2)[1] (2, 2)[1] (2, 4)[4] (2, 2, 2, 4)[1]4 (2, 2, 2, 2, 4)[4] (2, 2, 2, 4, 4)[16] (2, 2, 2, 2, 4, 4)[1] (2, 2, 2, 2, 2, 4, 4)[3]

(2, 2, 2, 2, 2, 2, 4, 4)[16] (2, 2, 2, 2, 2, 4, 4, 4)[64] (2, 2, 2, 2, 2, 2, 4, 4, 4)[5]

(2, 2, 2, 2, 2, 2, 2, 4, 4, 4)[11] (2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4)[26]

(1)[1] (8)[2] (4, 8)[3] (2, 4, 8)[4] (2, 8, 8)[1] (2, 2, 8, 8)[2]

(2, 2, 2, 8, 8)[2] (2, 2, 4, 8, 8)[2] (2, 4, 4, 8, 8)[2] (2, 4, 8, 8, 8)[2]8
(2, 8, 8, 8, 8)[8] (2, 2, 8, 8, 8, 8)[4] (2, 4, 8, 8, 8, 8)[20] (2, 2, 4, 8, 8, 8, 8)[32]

(2, 2, 8, 8, 8, 8, 8)[7] (2, 2, 2, 8, 8, 8, 8, 8)[16] (2, 2, 2, 2, 8, 8, 8, 8, 8)[16]

(2, 2, 2, 4, 8, 8, 8, 8, 8)[16] (2, 2, 4, 4, 8, 8, 8, 8, 8)[3]

(1)[1] (9)[2] (3, 9)[2] (3, 3, 9)[4] (3, 9, 9)[2]

(9, 9, 9)[2] (3, 9, 9, 9)[2] (3, 3, 9, 9, 9)[4] (3, 9, 9, 9, 9)[2]9
(9, 9, 9, 9, 9)[12] (3, 9, 9, 9, 9, 9)[18] (3, 3, 9, 9, 9, 9, 9)[36]

(3, 9, 9, 9, 9, 9, 9)[18] (9, 9, 9, 9, 9, 9, 9)[17] (3, 9, 9, 9, 9, 9, 9, 9)[12]A.5 Coset Enumeration for Finite Index SubgroupsA standard algorithm for �nitely presented groups is the oset enumerator introduedby Todd and Coxeter [133℄. Coset enumeration is an algorithm that, given a �nitegenerating set of a subgroup H ≤ G, omputes the index [G : H] provided that thisindex is �nite. Its overall strategy is to ompute a permutation representation for thegroup's ation on the right-osets H\G. For �nitely presented groups, oset enumerationtehniques have been investigate for some time [32, 88, 102, 129℄. They allow omputeralgorithms to be applied in the investigation of �nitely presented groups by their �niteindex subgroups [77℄. It was shown in [67℄, that even �nitely L-presented groups allow oneto develop a oset enumeration proess. This latter algorithm redues the omputationto �nite presentations �rst and then it proves orretness of the obtained result. Aoset enumerator for �nitely L-presented groups has various interesting appliations:For instane, it allows one to ompute low-index subgroups, as suggested in [40℄, and itsolves the generalized word problem for �nite index subgroups [67℄.We brie�y sketh the idea of the oset enumeration proess in [67℄ in the following. Let
G = 〈X | Q | Φ | R〉 be a �nitely L-presented group. Suppose that a subgroup H ≤ G isgiven by its �nitely many generators {g1, . . . , gn}. We onsider the generators g1, . . . , gnas elements of the free group F over X . Then E = 〈g1, . . . , gn〉 ≤ F satis�es H ∼= EK/Kwhere K = 〈Q ∪

⋃
σ∈Φ∗ Rσ〉F is the kernel of the free presentation. We are to omputethe index [G : H] = [F : EK]. For this purpose, we de�ne Φℓ = {σ ∈ Φ∗ | ‖σ‖ ≤ ℓ}where ‖ · ‖ denotes the usual word-length in the free monoid Φ∗. Consider the �nitely



A.5. Coset Enumeration for Finite Index Subgroups 89presented groups Gℓ = F/Kℓ given by the �nite presentation
Gℓ =

〈
X

∣∣∣Q ∪
⋃

σ∈Φℓ

Rσ
〉
. (A.4)Then Gℓ naturally maps onto G and we obtain a series of subgroups

EK0 ≤ EK1 ≤ . . . ≤ EK ≤ F.Sine EK ≤ F is a �nite index subgroup of a �nitely generated group, it is �nitelygenerated by u1, . . . , un, say. Furthermore, we have EK =
⋃
ℓ≥0EKℓ. For eah ui ∈ EK,there exists ni ∈ N0 so that ui ∈ EKni . For m = max{ni | 1 ≤ i ≤ n} we have

{u1, . . . , un} ⊆ EKm. Thus EK = EKm. In fat, there exists a positive integer m ∈ N0so that H has �nite index in the �nitely presented group Gm = 〈X | Q ∪
⋃
σ∈Φm

Rσ〉.Coset enumeration for �nitely presented groups allows us to ompute a permutationrepresentation π:F → Sym(EKm\F ). The integer m annot be given a priori. However,the following straightforward approah yields an algorithm for omputing ℓ ∈ N so that
[F : EKℓ] is �nite: Start with an arbitrary ℓ ∈ N and run the oset enumerator for�nitely presented groups with an upper bound N on the number of intermediate osetsde�ned in its proess. If this oset enumerator does not terminate suessfully, we bothinrease the index ℓ and the upper bound N . We then run both algorithms in parallelusing the inreased bound N ′. We ontinue to inrease these numbers and to run allthese algorithms in parallel until eventually one of them terminates. Termination of thisproess is guaranteed for a su�iently large integer ℓ beause [G : H] was assumed �nite.Suppose that [Gℓ : H] is �nite and that the oset enumerator has omputed a per-mutation representation πℓ:F → Sym(EKℓ\F ). Then [G : H] = [F : EK] divides theindex [Gℓ : H] = [F : EKℓ]. It su�es to hek whether or not πℓ indues a grouphomomorphism G → Sym(EKℓ\F ). In this ase, we obtain [Gℓ : H] = [G : H] and πℓis a permutation representation for G's ation on the right-osets H\G. Otherwise, wehave to enlarge the index ℓ and we would �nally ompute the index [G : H] in this way.The following theorem was proved in [67℄:Theorem 1.9 For a �nitely L-presented group G = 〈X | Q | Φ | R〉 and a homomor-phism π:F → H into a �nite group H, there exists an algorithm that deides whether ornot π indues a group homomorphism G→ H.Proof. For an expliit algorithm, we refer to [67℄. 2Coset enumeration for �nitely L-presented groups allows various omputations with �-nite index subgroups; e.g. omputing the intersetion of two �nite index subgroups,omputing the ore of a �nite index subgroup, solving the generalized word problem for�nite index subgroups, et. In the following, we demonstrate the appliation of our osetenumerator to the Fabrykowski-Gupta groups Γp. In partiular, we show how to omputethe number of �nite index subgroups with a moderate index.



90 Chapter A. Investigating self-similar groupsA.5.1 An Appliation of Coset Enumeration: Low-Index SubgroupsAs an appliation of the oset enumeration proess, we onsider subgroups with smallindex in a �nitely L-presented group. Sine the �nitely presented group Gℓ from Eq. (A.4)naturally maps onto the �nitely L-presented group G, it su�es to ompute low-indexsubgroups of the �nitely presented group Gℓ. These subgroups map to subgroups of Gwith possibly smaller index. On the other hand, eah �nite index subgroup of G has afull preimage with same index in Gℓ. Therefore it remains to remove dupliates from thelist of subgroups obtained from the �nitely presented group Gℓ. For �nitely presentedgroups, an algorithm for omputing all subgroups up to a given index was desribedin [40℄. An implementation of this algorithm an be found in [41℄. This implementationinludes an algorithm for omputing only the normal subgroups of a �nitely presentedgroup [35℄. The latter algorithm allows to deal with possibly larger indies than the usuallow-index subgroup algorithms.We �rst onsider the Grigorhuk group G: its lattie of normal subgroups is well-understood [7, 33℄ while its lattie of �nite index subgroups is widely unknown [58℄. Itis known that the Grigorhuk group has seven subgroups of index two [58℄. In [116℄,it was shown that these index-two subgroups are the only maximal subgroups of G.The implementation of our oset enumeration proess allows us to ompute the numberof subgroups with index at most 64 in the group G [67℄. Our omputations orret theounts in [12, Setion 7.4℄ and [11, Setion 4.1℄. The following list summarizes the numberof subgroups (≤) and the number of normal subgroups (�) of G:
index 1 2 4 8 16 32 64

≤ 1 7 31 183 1827 22931 378403
� 1 7 7 7 5 3 3For the Fabrykowski-Gupta groups Γp, where 3 ≤ p ≤ 11 is prime, we only foundsubgroups with prime-power index in Γp. Their ounts are as follows:

p = 3 p = 5 p = 7 p = 11index
≤ � ≤ � ≤ � ≤ �

p0 1 1 1 1 1 1 1 1
p1 4 4 6 6 8 8 12 12
p2 31 1 806 1 ? 1 ? 1
p3 1966 1 ? 1 ? ? ? ?
p4 ? 4 ? ? ? ? ? ?
p5 ? 1 ? ? ? ? ? ?
p6 ? 1 ? ? ? ? ? ?
p7 ? 4 ? ? ? ? ? ?Here '?' denotes an index where our omputations did not terminate within a reasonableamount of time. The only normal subgroups with index p2 are the derived subgroups



A.6. Computing Solvable Quotients 91sine Γp/Γ
′
p
∼= Zp × Zp holds [57℄. For a prime power index d = pℓ, the groups Γd onlyadmit subgroups with prime power index pj :

pℓ = 22 pℓ = 23 pℓ = 32index
≤ � ≤ � ≤ �

p0 1 1 1 1 1 1
p1 3 3 3 3 4 4
p2 19 7 19 7 76 13
p3 211 7 163 19 ? ?
p4 2419 11 2227 23 ? ?For the groups Γ6 and Γ10, we obtain the following subgroup ounts:

Γ6 Γ10index
≤ � ≤ �

1 1 1 1 1
2 3 3 3 3
3 7 4 0 0
4 9 1 5 1
5 0 0 11 6
6 39 13 0 0
7 0 0 0 0
8 45 1 1 1
9 79 1 0 0
10 0 0 113 19

Γ6 Γ10index
≤ � ≤ �

11 0 0 0 0
12 219 6 0 0
13 0 0 0 0
14 0 0 0 0
15 0 0 0 0
16 188 0 16 0
17 0 0 0 0
18 1299 7 0 0
19 0 0 0 0
20 0 0 ? ?A.6 Computing Solvable QuotientsThe oset enumeration proess in [67℄ was used to prove the following version of theReidemeister-Shreier theorem for �nitely presented groups in [70℄:Theorem 1.10 Eah �nite-index subgroup of a �nitely L-presented group is �nitely L-presented.Proof. For a onstrutive proof, we refer to [70℄. 2The onstrutive proof of Theorem 1.10 allows us to apply the method for �nitely L-presented groups to �nite index subgroups of a �nitely L-presented group. As an appli-ation of this method, we onsider the suessive quotients G/G(i) of the derived series.This series is de�ned reursively by G(1) = G′ = [G,G] and G(i+1) = [G(i), G(i)] for i ∈ N.The isomorphism type of the abelian quotient G/G′ an be omputed with the methodsfrom [9,64℄ provided that G is given by a �nite L-presentation. Moreover, it is deidablewhether or not G′ has �nite index in G; see [9, 64℄.



92 Chapter A. Investigating self-similar groupsSuppose that G/G′ is �nite. Then the onstrutive proof of Theorem 1.10 allows usto ompute a �nite L-presentation for the �nite index subgroup G′ ≤ G. Then we anompute its abelianization and we an ontinue this proess. In general, if G/G(i+1) is�nite, we an therefore ompute the quotients G(i+1)/G(i+2) reursively. An alternativeapproah to ompute the setions G(i)/G(i+1) ould generalize the methods for �nitelypresented groups [92℄.For the Grigorhuk group G, the setions G(i)/G(i+1) of the derived series have beenomputed by Rozhkov [122℄; see also [134℄:Theorem 1.11 (Rozhkov [122℄) The Grigorhuk group G satis�es [G : G′] = 23,
[G : G′′] = 27, and [G : G(k)] = 22+22k−2 for k ≥ 3.Our implementation of the Reidemeister-Shreier Theorem 1.10 yields that

G/G′ ∼= (Z2)
3, G′/G′′ ∼= Z2 × Z2 × Z4, and G′′/G(3) ∼= (Z2)

2 × (Z4)
3 × Z8.Sine the abelianization Γp/Γ

′
p
∼= Zp×Zp of the Fabrykowski-Gupta group Γp is �nite [57℄,the derived subgroup Γ′

p satis�es [Γp : Γ′
p] = p2. A �nite L-presentation for Γ′

p an beomputed with the methods in [70℄. We obtain that
Γ′
3/Γ

′′
3
∼= (Z3)

2, Γ′′
3/Γ

(3)
3

∼= (Z3)
4, and Γ

(3)
3 /Γ

(4)
3

∼= (Z3)
10as well as Γ′

4/Γ
′′
4
∼= (Z4)

2,
Γ′′
4/Γ

(3)
4

∼= Z2 × (Z4)
2 × Z8, and Γ

(3)
4 /Γ

(4)
4

∼= (Z2)
3 × (Z4)

9 × (Z8)
3.For 5 ≤ d ≤ 41, our omputations suggest the followingProposition 1.12 For d ≥ 5, Γd satis�es Γd/Γ

′
d
∼= (Zd)

2 and Γ′
d/Γ

′′
d
∼= (Zd)

d−1.Proof. It was already shown in [57℄ that Γd/Γ
′
d
∼= Zd × Zd holds. For the seondstatement, we ombine the methods from [49℄ and [57℄: For primes p, the struture ofthe ongruene subgroups Γp/StabΓp(n), n ∈ N, were studied in [49℄. Moreover, it wasshown in [57℄ that, for d ≥ 5, the index [Γ′

d : Γ
′′
d] is �nite.Let d ≥ 5 be given. Denote by StabΓd(1) the �rst level stabilizer in Γd. Then

Γd = StabΓd(1) ⋊ 〈a〉 and StabΓd(1) = 〈r, ra, . . . , ra
d−1

〉 hold. Sine Γ′
d = 〈[a, r]〉Γd =

〈r−a r〉Γd , we have that Γ′
d ≤ StabΓd(1) and, as Γd/Γ

′
d
∼= Zd × Zd holds, we have that

[StabΓd(1) : Γ
′
d] = d. More preisely, we have StabΓd(1) = Γ′

d ⋊ 〈r〉.For eah 0 ≤ i < d, we write gi = ra
i . In the following, indies are read mod-ulo d. For 0 ≤ ℓ < d, gℓi deomposes as (1, . . . , 1, rℓ, aℓ, 1, . . . , 1) where aℓ is at po-sition i. If |ℓ− k| > 1, the ommutator [gℓi , g

k
j ] is trivial; otherwise, the ommuta-tor [gℓi , g

k
i+1] deomposes as (1, . . . , 1, [aℓ, rk], 1, . . . , 1) with [aℓ, rk] at position i. Sine

[aℓ, rk] ∈ StabΓd(1), we have that [gℓi , g
k
j ] ∈ StabΓd(2). Thus, StabΓd(1)/StabΓd(2)is abelian and it is generated by the images of the elements g0, . . . , gd−1. Beause

[aℓ, rk] = a−ℓ r−k aℓ rk = g−kℓ gk0 , we have that [gℓi , g
k
j ] ∈ StabΓd(3) if and only if ℓ k ≡ 0
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(mod d). Therefore StabΓd(1)/StabΓd(2)

∼= Zd × · · · × Zd and Γd/StabΓd(2)
∼= Zd ≀ Zd.Sine StabΓd(1)/StabΓd(2) is abelian, we have that StabΓd(1)′ ≤ StabΓd(2). Beause eahgenerator of StabΓd(1) has order d, the largest abelian quotient StabΓd(1)/StabΓd(1)

′has order at most dd. It follows that StabΓd(2) = StabΓd(1)
′. Moreover, we have

StabΓd(2) = StabΓd(1)
′ ≤ Γ′

d and, sine Γ′
d ≤ StabΓd(1) holds, it follows that Γ′′

d ≤
StabΓd(1)

′ = StabΓd(2). The proofs in [9, 57℄ yield that StabΓd(2) ≤ Γ′′
d if d ≥ 5. There-fore dd−1 = |Γ′

d/StabΓd(2)| = |Γ′
d/Γ

′′
d| and Γ′

d/Γ
′′
d
∼= Zd × · · · × Zd. 2The onstrutive proof of Theorem 1.10 in [70℄ yields a �nite L-presentation over theShreier generators of the subgroup. By the Nielsen-Shreier theorem (as, for instane,in [121, 6.1.1℄), a subgroup H with index m = [G : H] in an n-generated �nitely L-presented group G has nm+1−m Shreier generators. The Fabrykowski-Gupta groupsare 2-generated and therefore, the subgroup Γ

(3)
3 satis�es [Γ3 : Γ

(3)
3 ] = 316. Thus Γ

(3)
3has 316 − 1 Shreier generators as a subgroup of the 2-generated group Γ3. Therefore,omputing the setions Γ(i)

3 /Γ
(i+1)
3 , i ≥ 4, with the above method is hard in pratie.AknowledgmentsI am grateful to Laurent Bartholdi for valuable omments and suggestions.René Hartung, Mathematishes Institut, Georg-August Universität zu Göt-tingen, Bunsenstraÿe 3�5, 37073 Göttingen, GermanyEmail: rhartung�uni-math.gwdg.de
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AppendixBA Note on Invariantly Finitely
L-Presented GroupsAbstrat. In the �rst part of this note, we introdue Tietze transformationsfor L-presentations. These transformations enable us to generalize Tietze'stheorem for �nitely presented groups to invariantly �nitely L-presented groups.Moreover, they allow us to prove that `being invariantly �nitely L-presented' isan abstrat property of a group whih does not depend on the generating set.In the seond part of this note, we onsider �nitely generated normal subgroupsof �nitely presented groups. Benli proved that a �nitely generated normal sub-group of a �nitely presented group is invariantly �nitely L-presented wheneverits quotient is in�nite yli. We generalize this result to the ase where the�nitely presented group splits over its �nitely generated subgroup and to thease where the quotient is abelian with torsion-free rank at most two.Keywords. Tietze transformations; in�nite presentations; reursive presenta-tions; self-similar groups.Mathematis Subjet Classi�ation 2010: 20F05, 20E07, 20-04B.1 IntrodutionFinite L-presentations are possibly in�nite group presentations with �nitely many gener-ators whose relations (up to �nitely many exeptions) are obtained by iteratively applying�nitely many substitutions to a �nite set of relations; see [6℄ or Setion B.2 for a de�-nition. Various in�nitely presented groups an be desribed by a �nite L-presentation.For example, the Grigorhuk group [53℄ and the Gupta-Sidki group [62℄ are �nitely L-presented [6,9,96,128℄. An L-presentation is invariant if the substitutions, whih generatethe relations, indue endomorphisms of the group. In fat, invariant �nite L-presentationsare �nite presentations in the universe of groups with operators [87,111℄ in the sense thatthe operator domain of the group generates the possibly in�nitely many relations out of



96 Chapter B. A Note on Invariantly Finitely L-Presented Groupsa �nite set of relations. The �nite L-presentation for the Grigorhuk group in [96℄ is anexample of an invariant �nite L-presentation [55℄.Finite L-presentations allow omputer algorithms to be applied in the investigationof the groups they de�ne. For instane, they allow one to ompute the lower en-tral series quotients [9℄, to ompute the Dwyer quotients of the group's Shur mul-tiplier [66℄, to develop a oset enumerator for �nite index subgroups [67℄, and eventhe Reidemeister-Shreier theorem for �nitely presented groups generalizes to �nitely
L-presented groups [70℄. For a survey on the appliation of omputers in the investiga-tion of �nitely L-presented groups, we refer to [68℄.In the �rst part of this note, we introdue Tietze transformations for L-presenta-tions. These transformations allow us to generalize Tietze's theorem for �nitely presentedgroups [132℄ to invariantly �nitely L-presented groups:Theorem A Two invariant �nite L-presentations de�ne isomorphi groups if and onlyif it is possible to pass from one L-presentation to the other by a �nite sequene oftransformations.If a group admits a �nite presentation with respet to one generating set, then so it doeswith respet to any other �nite generating set [38, Chapter V℄. This result for �nitelypresented groups also generalizes to invariant �nite L-presentations:Theorem B (Bartholdi [6℄) Being invariantly �nitely L-presented is an abstrat prop-erty of a group whih does not depend on the generating set.Our proof of Theorem B �lls a gap in the proof of [6, Proposition 2.2℄ beause thetransformations in the latter proof are not su�ient; see Setion B.4 below.In the seond part of this note, in Setion B.5, we onsider �nitely generated normalsubgroups of �nitely presented groups. By Higman's embedding theorem, every �nitelygenerated group embeds into a �nitely presented group if and only if it is reursivelypresented [81℄. Sine every �nite L-presentation is reursive, �nitely L-presented groupstherefore embed into �nitely presented groups. As indiated in [22℄, we prove that everygroup whih admits an invariant �nite L-presentation, where eah substitution induesan automorphism of the group, embeds as a normal subgroup into a �nitely presentedgroup. On the other hand, the Reidemeister-Shreier theorem for �nitely L-presentedgroups in [70℄ shows that every normal subgroup of a �nitely presented group admits aninvariant L-presentation where eah substitution indues an automorphism of the group;the obtained L-presentation is �nite if and only if the normal subgroup has �nite index.Finitely generated normal subgroups of �nitely presented groups with in�nite indexwere onsidered in [22℄: It was proved that a �nitely generated normal subgroup of a�nitely presented group is invariantly �nitely L-presented if its quotient is in�nite yli.Moreover, in [22, Remark (2)℄, Benli asked for a generalization of his latter result and heposed the following problem:Is it true that a �nitely generated group embeds as a normal subgroup intoa �nitely presented group if and only if it admits an invariant �nite L-presentation where eah substitution indues an automorphism of the group?



B.2. Preliminaries 97We generalize Benli's onstrutions from [22℄ in order to prove the followingTheorem C Every �nitely generated normal subgroup of a �nitely presented group isinvariantly �nitely L-presented if the group splits over its subgroup.Sine G splits over its subgroup H �G if G/H is a free group, Benli's result in [22℄ is aonsequene of Theorem C. Moreover, our generalizations of the onstrutions from [22℄allow us to proveTheorem D Every �nitely generated normal subgroup of a �nitely presented group isinvariantly �nitely L-presented whenever the quotient is abelian with torsion-free rank atmost two.Our onstrutions do not generalize further; see Remark 2.1.B.2 PreliminariesIn this setion, we reall the notion of an invariant �nite L-presentation as introduedin [6℄. An L-presentation is a group presentation of the form
〈
X

∣∣∣Q∪
⋃

σ∈Φ∗

Rσ
〉
, (B.1)where X is an alphabet, Q and R are subsets of the free group F = F (X ) over the alpha-bet X , and Φ∗ ⊆ End(F ) denotes the monoid of endomorphisms that is generated by Φ.If the generators X , the �xed relations Q, the substitutions Φ, and the iterated relations

R have �nite ardinality, the L-presentation in Eq. (B.1) is a �nite L-presentation. Wealso write 〈X | Q | Φ | R〉 for the L-presentation in Eq. (B.1) and G = 〈X | Q | Φ | R〉for the group it de�nes.A group whih admits a �nite L-presentation is �nitely L-presented. An L-presen-tation of the form 〈X | ∅ | Φ | R〉 is asending and an L-presentation 〈X | Q | Φ | R〉is alled invariant (and the group it de�nes is invariantly L-presented), if eah sub-stitution ϕ ∈ Φ indues an endomorphism of the group; i.e., if the normal subgroup
〈Q ∪

⋃
σ∈Φ∗ Rσ〉F � F is ϕ-invariant. Eah asending L-presentation is invariant andeah invariant L-presentation 〈X | Q | Φ | R〉 admits an asending L-presentation

〈X | ∅ | Φ | Q ∪ R〉 whih de�nes the same group; see Proposition 3.7. Even though in-variant and asending L-presentations are essentially the same, we like to distinguishbetween these two objets. The �nite L-presentation in [96℄ for the group onstruted byGrigorhuk [53℄ is not asending but it is easy to see that it is an invariant L-presentation;see, for instane, [55, Corollary 4℄.Remark 2.1 There are �nite L-presentations that are not invariant.Proof. The free produt Z2 ∗ Z2 = 〈{a, b} | {a2, b2}〉 is �nitely L-presented by
〈{a, b} | {a2} | {σ} | {b2}〉 where σ is indued by the map a 7→ ab and b 7→ b2. If this
L-presentation were invariant, the asending L-presentation 〈{a, b} | ∅ | {σ} | {a2, b2}〉



98 Chapter B. A Note on Invariantly Finitely L-Presented Groupswould also de�ne Z2 ∗ Z2; see Proposition 3.7. In this ase (a2)σ = abab is a relationin the group and, sine a2 = b2 = 1 holds, the generators a and b ommute. There-fore the asending L-presentation de�nes a quotient of the 2-elementary abelian group
Z2 × Z2. In fat, it de�nes a �nite group. Thus 〈{a, b} | ∅ | {σ} | {a2, b2}〉 is not a �nite
L-presentation for Z2 ∗ Z2 and hene 〈{a, b} | {a2} | {σ2} | {b2}〉 is not an invariant
L-presentation. 2Note that this latter proof from [70℄ provides a `method' to prove that a �nite L-presentation 〈X | Q | Φ | R〉 is invariant; namely, if the asending L-presentation
〈X | ∅ | Φ | R ∪ Q〉 de�nes a group whih is isomorphi to the �rst. In general, we arenot aware of a method whih allows us to deide whether or not a �nite L-presentation isinvariant � even if we assume that the L-presented group has a solvable word problem.Invariant �nite L-presentations are `natural' generalizations of �nite presentationsbeause every �nitely presented group 〈X | R〉 is invariantly �nitely L-presented by 〈X |
∅ | ∅ | R〉. However, invariant �nite L-presentations have been used to desribe variousexamples of self-similar groups that are not �nitely presented [14, 96℄. For instane,the group G onstruted by Grigorhuk in [53℄ is not �nitely presented [56℄ but it isinvariantly �nitely L-presented, see also [55℄:Theorem 2.2 (Lysënok [96℄) The Grigorhuk group is invariantly �nitely L-presentedby 〈

{a, b, c, d} | {a2, b2, c2, d2, bcd} | {σ} | {(ad)4, (adacac)4}
〉 where σ denotes the endo-morphism of the free group over {a, b, c, d} that is indued by the map a 7→ aca, b 7→ d,

c 7→ b, and d 7→ c.It is easy to see (and it follows with our Tietze transformations below) that the group Gis also invariantly �nitely L-presented by
G ∼=

〈
{a, c, d} | {a2, c2, d2, (cd)2} | {σ̃} | {(ad)4, (adacac)4}

〉
, (B.2)where σ̃ is indued by the map a 7→ aca, c 7→ cd, and d 7→ c. Further examples ofinvariantly �nitely L-presented groups arise, for instane, as ertain wreath-produts: Inontrast to [6℄, Bartholdi notied that the lamplighter group Z2 ≀Z is invariantly �nitely

L-presented by 〈
{a, t}

∣∣ ∅
∣∣ {δ}

∣∣ {a2, [a, at]}
〉
,where δ is indued by the map a 7→ ata and t 7→ t. This reent result generalizes towreath produts of the form H ≀ Z, where H is a �nitely generated abelian group:Proposition 2.3 If H is a �nitely generated abelian group, the wreath produt H ≀ Z isinvariantly �nitely L-presented.Proof. Sine H is �nitely generated and abelian, it deomposes into a diret produt ofyli groups; i.e., H has the form Zr1 × · · · × Zrn for r1, . . . , rn ∈ N ∪ {∞} where Z∞denotes the in�nite yli group while Zri denotes the yli group of order ri, otherwise.Then 〈X | {[x, y] | x, y ∈ X}∪{xrx | rx <∞}〉 is a �nite presentation for H. The wreathprodut H ≀ Z admits the presentation

H ≀ Z ∼=
〈
X ∪ {t}

∣∣∣ {[x, y], xrx}x,y∈X ,rx<∞ ∪ {[x, yt
i

]}x,y∈X ,i∈N0

〉
.



B.3. Tietze Transformations for L-Presentations 99For eah y ∈ X , de�ne a substitution σy whih is indued by the map
σy:





y 7→ yt y,
x 7→ x, for eah x ∈ X \ {y},
t 7→ t.For n ∈ N and x, y, z ∈ X with x 6= y and z 6= y, we obtain

[y, xt
n

]σy = [yty, xt
n

] = [y, xt
n−1

]ty · [y, xt
n

],

[x, yt
n

]σy = [x, yt
n+1

yt
n

] = [x, yt
n

] · [x, yt
n+1

]y
tn

,

[x, zt
n

]σy = [x, zt
n

],

[y, yt
n

]σy = [y, yt
n−1

]ty · [y, yt
n

]ty
tny · [y, yt

n

] · [y, yt
n+1

]y
tn

.This shows that the relations {[x, yti ] | x, y ∈ X , i ∈ N} are onsequenes of the iteratedimages {[x, yt]δ | δ ∈ {σy | y ∈ X}∗, x, y ∈ X} and vie versa. Moreover, for eahrelation xrx of H's �nite presentation, we have that (xrx)σy = xrx if x 6= y and (yry)σy =
(yty)ry =H≀Z (yry)t yry , otherwise. Thus these images are relations of the wreath produt
H ≀ Z. In partiular, the �nite L-presentation

〈
X ∪ {t}

∣∣ ∅
∣∣ {σy}y∈X

∣∣ {[x, yt]}x,y∈X ∪ {xrx}x∈X ,rx<∞

〉is an invariant �nite L-presentation for the wreath produt H ≀ Z. 2Even though invariant �nite L-presentations are known for numerous self-similar groups,we are not aware of an invariant �nite L-presentation for the Gupta-Sidki group from [62℄.Moreover, we are not aware of a �nitely L-presented group whih is not invariantly �nitely
L-presented.B.3 Tietze Transformations for L-PresentationsIn this setion, we introdue Tietze transformations for L-presentations. Let G = 〈X |
Q | Φ | R〉 be an L-presented group. Denote by F the free group F (X ) over the alphabet
X and let K = 〈Q ∪

⋃
σ∈Φ∗ Rσ〉F be the kernel of the free presentation π:F → G. Then

K = ker π deomposes into the normal subgroups Q = 〈Q〉F and R = 〈
⋃
σ∈Φ∗ Rσ〉F sothat K = RQ = QR holds. The group F/R is invariantly L-presented by 〈X | ∅ | Φ | R〉.We an add every element of the kernel K as a �xed relation:Proposition 3.4 If G = 〈X | Q | Φ | R〉 is a (�nitely) L-presented group and

S ⊆ 〈Q ∪
⋃
σ∈Φ∗ Rσ〉F is a (�nite) subset, then 〈X | Q ∪ S | Φ | R〉 is a (�nite)

L-presentation for G.Proof. The proof follows with the Tietze transformation that adds onsequenes S of
G's relations to the group presentation 〈X | Q ∪

⋃
σ∈Φ∗ Rσ〉. 2The transformation in Proposition 3.4 is reversible in the sense that we an remove �xedrelations S from an L-presentation 〈X | Q ∪ S | Φ | R〉 if and only if
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〈Q ∪ S ∪

⋃
σ∈Φ∗ Rσ〉F = 〈Q ∪

⋃
σ∈Φ∗ Rσ〉F holds. The following transformations arereversible in the same sense.If an L-presentation is not invariant (f. Remark 2.1), there exist elements from thekernel K of the free presentation π:F → G that we annot add as iterated relationswithout hanging the isomorphism type of the group. However, even for non-invariant

L-presentations we have the followingProposition 3.5 If G = 〈X | Q | Φ | R〉 is a (�nitely) L-presented group and
S ⊆ 〈

⋃
σ∈Φ∗ Rσ〉F is a (�nite) subset, then 〈X | Q | Φ | R∪S〉 is a (�nite) L-presentationfor G.Proof. By onstrution, the normal subgroup R = 〈

⋃
σ∈Φ∗ Rσ〉F is σ-invariant for eah

σ ∈ Φ∗. More preisely, for eah r ∈ R and σ ∈ Φ∗, we have rσ ∈ R. Therefore, addingthe (possibly in�nitely many) relations {sσ | s ∈ S, σ ∈ Φ∗} to the group presentation
〈X | Q ∪

⋃
σ∈Φ∗ Rσ〉 does not hange the isomorphism type of the group. 2Iterated and �xed relations of an L-presentation are related by the followingProposition 3.6 If G = 〈X | Q | Φ | R〉 is a (�nitely) L-presented group and S ⊆ Rholds, then 〈X | Q ∪ S | Φ | (R \ S) ∪ {rψ | r ∈ S, ψ ∈ Φ}〉 is a (�nite) L-presentationfor G.Proof. The proof follows immediately from

Q ∪
⋃

σ∈Φ∗

Rσ = Q ∪ S ∪
⋃

σ∈Φ∗

(
(R \ S) ∪ {rψ}r∈S,ψ∈Φ

)σ
;these are the relations of G's group presentation. 2The following proposition is a onsequene of the de�nition of an invariant L-presentation:Proposition 3.7 If 〈X | Q | Φ | R〉 is an invariant (�nite) L-presentation for the group

G and S ⊆ Q holds, then 〈X | Q \ S | Φ | R ∪ S〉 is a (�nite) L-presentation for G.Proof. Sine G is invariantly L-presented by 〈X | Q | Φ | R〉, eah σ ∈ Φ indues anendomorphism of the group G. Therefore, the images {qσ | q ∈ S, σ ∈ Φ∗} are relationswithin G and so 〈X | (Q \ S) ∪
⋃
σ∈Φ∗(R ∪ S)σ〉 is a presentation for G. 2The following proposition allows us to add generators together with �xed relations to an

L-presentation:Proposition 3.8 Let G = 〈X | Q | Φ | R〉 be an L-presented group, Z be an alphabetso that X ∩ Z = ∅ holds, and, for eah z ∈ Z, let wz ∈ F (X ) be given. For eah σ ∈ Φ,de�ne an endomorphism of the free group E over the alphabet X ∪ Z that is indued bythe map
σ̃:

{
x 7→ xσ, for eah x ∈ X ,
z 7→ gz, for eah z ∈ Z,

(B.3)



B.3. Tietze Transformations for L-Presentations 101where gz are arbitrary elements of the free group E. Then G satis�es that
G ∼= 〈X ∪ Z | Q ∪ {z−1wz}z∈Z | {σ̃}σ∈Φ | R 〉. (B.4)If 〈X | Q | Φ | R〉 is a �nite L-presentation and Z is a �nite alphabet, the L-presentationin Eq. (B.4) is �nite.Proof. Write H = 〈X ∪ Z | Q∪ {z−1wz | z ∈ Z} | {σ̃ | σ ∈ Φ} | R〉 and let F and E bethe free groups over X and X ∪Z, respetively. To avoid onfusion, the elements of G'spresentation are denoted by g ∈ F . Then

π:

{
x 7→ x, for eah x ∈ X ,
z 7→ wz, for eah z ∈ Z,indues a surjetive homomorphism π:E → F . By onstrution, the restrition of thesubstitution σ̃ to the free group F oinides with σ. Thus (⋃

σ∈Φ Rσ̃
)π

=
⋃
σ∈Φ∗ Rσand hene, π maps iterated relations of H's L-presentation to iterated relations of G.Similarly, π maps the �xed relations Q of H's L-presentation to �xed relations of G. Itremains to onsider the relations of the form z−1wz with z ∈ Z. However, these relationsare mapped trivially by π. This shows that the homomorphism π:E → F indues asurjetive homomorphism π̃:H → G. On the other hand, identifying the generators ofG's

L-presentation with the generators of H indues a surjetive homomorphism ϕ:G → Hwith ϕπ̃ = idH and π̃ϕ = idG. Hene, the groups G and H are isomorphi. The seondassertion is obvious. 2We an also add the relations {z−1wz | z ∈ Z} in Proposition 3.8 as iterated relations tothe L-presentation if we de�ne the substitutions σ̃ as follows:Proposition 3.9 Let G = 〈X | Q | Φ | R〉 be an L-presented group, Z be an alphabetso that X ∩ Z = ∅ holds, and, for eah z ∈ Z, let wz ∈ F (X ) be given. For eah σ ∈ Φ,de�ne an endomorphism of the free group E over the alphabet X ∪ Z that is indued bythe map
σ̃:

{
x 7→ xσ, for eah x ∈ X ,
z 7→ wσz , for eah z ∈ Z.

(B.5)Then G satis�es that
G ∼= 〈X ∪ Z | Q | {σ̃}σ∈Φ | R ∪ {z−1wz}z∈Z 〉. (B.6)If 〈X | Q | Φ | R〉 is a �nite L-presentation and Z is a �nite alphabet, the L-presentationin Eq. (B.6) is �nite.Proof. The substitutions σ̃ in Eq. (B.5) are well-de�ned beause wz ∈ F (X ) and

σ ∈ End(F (X )) hold. By Proposition 3.6, we have that
〈
X ∪ Z

∣∣ Q
∣∣ {σ̃}σ∈Φ

∣∣ R ∪ {z−1wz}z∈Z
〉

=
〈
X ∪ Z

∣∣ Q∪ {z−1wz}z∈Z
∣∣ {σ̃}σ∈Φ

∣∣ R∪ {(z−1wz)
σ̃}z∈Z,σ∈Φ

〉
.



102 Chapter B. A Note on Invariantly Finitely L-Presented GroupsBy de�nition of σ̃ in Eq. (B.5), we have (z−1)σ̃ = (wσz )
−1 and wσ̃z = wσz . Thus (z−1 wz)

σ̃ =
(wσz )

−1wσz = 1 holds. In partiular, adding the relations {(z−1wz)
σ̃ | z ∈ Z, σ ∈ Φ} toa group presentation does not hange the isomorphism type of the group. By Proposi-tion 3.8, we have that

G = 〈X | Q | Φ | R〉
∼=

〈
X ∪ Z

∣∣ Q ∪ {z−1wz}z∈Z
∣∣ {σ̃}σ∈Φ

∣∣ R
〉

=
〈
X ∪ Z

∣∣ Q ∪ {z−1wz}z∈Z
∣∣ {σ̃}σ∈Φ

∣∣ R∪ {(z−1wz)
σ̃}z∈Z,σ∈Φ

〉

=
〈
X ∪ Z

∣∣ Q
∣∣ {σ̃}σ∈Φ

∣∣ R∪ {z−1wz}z∈Z
〉
;whih proves the �rst assertion of Proposition 3.9 while the seond is obvious. 2The following proposition allows us to modify the substitutions of an L-presentation:Proposition 3.10 If G = 〈X | Q | Φ | R〉 is a (�nitely) L-presented group and Ψ ⊆ Φholds, then 〈X | Q | (Φ \ Ψ) ∪ {σψ | ψ ∈ Ψ, σ ∈ Φ} | R ∪

⋃
ψ∈Ψ Rψ〉 is a (�nite)

L-presentation for G.Proof. The proof follows immediately from
Q ∪

⋃

σ∈Φ∗

Rσ = Q∪
⋃

σ∈Φ̂∗

(
R∪

⋃

ψ∈Ψ

Rψ
)σwhere Φ̂ = (Φ \Ψ) ∪ {σψ | ψ ∈ Ψ, σ ∈ Φ}; these are the relations of G's group presenta-tion. 2Sine eah relation of a group presentation an be replaed by a onjugate, we an modifythe substitutions of an L-presentation as follows:Proposition 3.11 Let G = 〈X | Q | Φ | R〉 be a (�nitely) L-presented group, S ⊆ Fbe a (�nite) subset, and let Ψ ⊆ Φ be given. For eah x ∈ S, denote by δx the innerautomorphism of the free group F (X ) that is indued by onjugation with x. Then

• 〈X | Q | Φ ∪ {δx | x ∈ S} | R〉,
• 〈X | Q | (Φ \Ψ) ∪ {δxσ | x ∈ S, σ ∈ Ψ} | R〉, and
• 〈X | Q | (Φ \Ψ) ∪ {σδx | x ∈ S, σ ∈ Ψ} | R〉are (�nite) L-presentations for G.Proof. This follows beause eah relation of a group presentation an be replaed by aonjugate and we have δxσ = σδxσ for eah σ ∈ Φ∗ and x ∈ X . 2Reall that the kernel K = 〈Q ∪

⋃
σ∈Φ∗ Rσ〉F of the free presentation π:F → Gdeomposes into the normal subgroups Q = 〈Q〉F and R = 〈

⋃
σ∈Φ∗ Rσ〉F so that

K = QR = RQ holds. This deomposition yields the following



B.3. Tietze Transformations for L-Presentations 103Proposition 3.12 Let G = 〈X | Q | Φ | R〉 be a (�nitely) L-presented group andlet Ψ ⊆ End(F (X )) be a (�nite) subset. If eah ψ ∈ Ψ indues an endomorphism of
F (X )/R, then 〈X | Q | Φ ∪Ψ | R〉 is a (�nite) L-presentation for G.Proof. If ψ ∈ Ψ indues an endomorphism of F (X )/R, the normal subgroup R is ψ-invariant. Therefore, eah image rσ ∈ F (X ), with σ ∈ (Φ ∪ Ψ)∗ \ Φ∗ and r ∈ R, isa relation of the group. Adding these (possibly in�nitely many) relations to the grouppresentation does not hange the isomorphism type of the group. 2For an invariant L-presentation, we even have the followingProposition 3.13 Let G = 〈X | Q | Φ | R〉 be a (�nitely) L-presented group and let
Ψ ⊆ End(F (X )) be a (�nite) subset. Then 〈X | Q | Φ ∪Ψ | R〉 is a (�nite) L-presenta-tion for G if and only if eah ψ ∈ Ψ indues an endomorphism of G.Proof. Let K = 〈Q ∪

⋃
σ∈Φ∗ Rσ〉F be the kernel of the free presentation π:F (X ) →

G. If eah ψ ∈ Ψ indues an endomorphism of F (X )/K, Proposition 3.12 shows the�rst assertion. If, on the other hand, the invariant L-presentations 〈X | Q | Φ | R〉 and
〈X | Q | Φ ∪Ψ | R〉 are L-presentations for G, eah ψ ∈ Ψ indues an endomorphism of
G = F (X )/K. 2Every substitution σ ∈ Φ of an invariant L-presentation G = 〈X | Q | Φ | R〉 indues anendomorphism of G. However, there are possibly other endomorphisms of the free group
F (X ) that will indue the same endomorphism on G. The following proposition allowsus to modify a given substitution of an L-presentation:Proposition 3.14 Let G = 〈X | Q | Φ | R〉 be a (�nitely) L-presented group,
S ⊆ 〈

⋃
ϕ∈Φ∗ Rϕ〉F be a (�nite) subset, and let σ ∈ Φ be given. De�ne an endomor-phism σ̃ of the free group F = F (X ) over the alphabet X that is indued by the map

σ̃:x 7→ xσ rx for eah x ∈ X and some rx ∈ S. Then 〈X | Q | (Φ \ {σ}) ∪ {σ̃} | R ∪ S〉is a (�nite) L-presentation for G.Proof. We work in the free group F = F (X ) over the alphabet X and we deomposethe kernel K = 〈Q ∪
⋃
ϕ∈Φ∗ Rϕ〉F of the free presentation π:F → G into the normalsubgroups Q = 〈Q〉F and R = 〈

⋃
ϕ∈Φ∗ Rϕ〉F as above. Sine S ⊆ 〈

⋃
ϕ∈Φ∗ Rϕ〉F holds,Proposition 3.5 yields that G = 〈X | Q | Φ | R〉 = 〈X | Q | Φ | R ∪ S〉. In partiular,we have that R = 〈

⋃
ϕ∈Φ∗(R ∪ S)ϕ〉F . Write Ψ = (Φ \ {σ}) ∪ {σ̃}. We prove thisproposition by showing that the normal subgroups R = 〈

⋃
ϕ∈Φ∗(R ∪ S)ϕ〉F and R̃ =

〈
⋃
ϕ∈Ψ∗(R∪S)ϕ〉F oinide. For this purpose, we prove that, for eah δ̃ ∈ Ψ∗ and g ∈ F ,there exists δ ∈ Φ∗ and h ∈ L = 〈

⋃
ϕ∈Φ∗ Sϕ〉F so that gδ̃ = gδh holds. By onstrution,we have that L ⊆ R. By symmetry (as we have both xσ̃ = xσrx and xσ = xσ̃r−1

x )the same arguments will show that, for eah δ ∈ Φ∗ and g ∈ F , there exists δ̃ ∈ Ψ∗and h ∈ L̃ = 〈
⋃
ϕ∈Ψ∗ Sϕ〉F so that gδ = gδ̃h holds. This would yield that eah normalgenerator sδ̃ ∈ R̃, with s ∈ R ∪ S and δ̃ ∈ Ψ∗, an be written as sδ̃ = sδh for some

δ ∈ Φ∗ and h ∈ L ⊆ R. In fat, sδ̃ ∈ R̃ satis�es that sδ̃ = sδh ∈ R and thus R̃ ⊆ R. Bysymmetry, we would also obtain that R ⊆ R̃ holds. This learly proves Proposition 3.14.



104 Chapter B. A Note on Invariantly Finitely L-Presented GroupsIt therefore remains to prove that, for eah δ̃ ∈ Ψ∗ and g ∈ F , there exists δ ∈ Φ∗ and
h ∈ L so that gδ̃ = gδh holds. Eah g ∈ F is represented by a �nite word wg(xi1 , . . . , xin)over �nitely many generators {xi1 , . . . , xin} ⊆ X . Let δ̃ ∈ Ψ∗ and g ∈ F be given. Weprove the assertion by indution on m = ‖δ̃‖. If m = 1, then δ̃ ∈ Ψ. Moreover, we eitherhave δ̃ = σ̃ or δ̃ 6= σ̃. If δ̃ 6= σ̃ holds, then δ̃ ∈ Φ and thus gδ̃ = gδh for some δ ∈ Φ and
h ∈ L. Otherwise, if δ̃ = σ̃ holds, we obtain that

gσ̃ = wg(xi1 , . . . , xin)
σ̃ = wg(x

σ̃
i1 , . . . , x

σ̃
in) = wg(x

σ
i1 rxi1 , . . . , x

σ
in rxin ).Conjugation in the free group F yields that the word wg(x

σ
i1
rxi1 , . . . , x

σ
in
rxin ) an bewritten as wg(xσi1 , . . . , xσin) · h for some h ∈ 〈S〉F . Thus gσ̃ = gσ · h for some σ ∈ Φ and

h ∈ 〈S〉F ⊆ L.For an integer m > 1, assume that, for every g ∈ F and δ̃ ∈ Ψ∗, with ‖δ̃‖ = m, theimage gδ̃ ∈ R̃ satis�es that gδ̃ = gδh for δ ∈ Φ∗ and some h ∈ L. Let g ∈ F and δ̃ ∈ Ψ∗,with ‖δ̃‖ = m+ 1, be given. Then there exist ω̃ ∈ Ψ and γ̃ ∈ Ψ∗, with ‖γ̃‖ = n, so that
δ̃ = γ̃ ω̃ holds. By our assumption, there exist γ ∈ Φ∗ and h ∈ L so that gγ̃ = gγh holds.Thus gδ̃ = gγ̃ ω̃ = (gγh)ω̃. If ω̃ 6= σ̃ holds, then ω̃ ∈ Φ and thus γω̃ ∈ Φ∗. Moreover,by onstrution, the normal subgroups L = 〈

⋃
ϕ∈Φ∗ Sϕ〉F and L̃ = 〈

⋃
ϕ∈Ψ∗ Sϕ〉F are

Φ∗- and Ψ∗-invariant, respetively. Thus hω̃ ∈ L if ω̃ 6= σ̃. Therefore, the image gδ̃satis�es that gδ̃ = gγω̃hω̃ for some γω̃ ∈ Φ∗ and hω̃ ∈ L. It su�es to onsider the ase
ω̃ = σ̃. The elements gγ ∈ F and h ∈ F are represented by �nite words wgγ (xj1 , . . . , xjn)and wh(xk1 , . . . , xkℓ), respetively. Again, onjugation in the free group F yields that
wgγ (xj1 , . . . , xjn)

σ̃ = wgγ (x
σ
j1
, . . . , xσjn)u and wh(xk1 , . . . , xkℓ)σ̃ = wh(x

σ
k1
, . . . , xσkℓ) v with

u, v ∈ 〈S〉F . Thus gδ̃ = gγ̃σ̃ = (gγh)σ̃ = (gγσu) (hσ v). In fat, we have that gδ̃ = gγσ h′with γσ ∈ Φ∗ and h′ = uhσv ∈ L. Thus, for every g ∈ F and δ̃ ∈ Ψ∗, the image gδ̃satis�es that gδ̃ = gδh with δ ∈ Φ∗ and h ∈ L. By symmetry, as we have both xσ̃ = xσ rxand xσ = xσ̃ r−1
x , the same arguments will prove that for eah g ∈ F and δ ∈ Φ∗ theimage gδ satis�es that gδ = gδ̃h with δ̃ ∈ Ψ∗ and h ∈ L̃ = 〈

⋃
ϕ∈Ψ∗ Sϕ〉F . This �nishesour proof of Proposition 3.14. 2As a onsequene of Proposition 3.14, we obtain the followingCorollary 3.15 Let G = 〈X | Q | Φ | R〉 be a �nitely L-presented group and let

σ ∈ Φ be given. Then σ indues an endomorphism of the invariantly �nitely L-presentedgroup H = 〈X | ∅ | Φ | R〉. If ψ ∈ End(F (X )) and σ indue the same endomorphism on
H, then there exists a �nite subset S ⊆ F (X ) so that 〈X | Q | (Φ \ {σ}) ∪ {ψ} | R ∪ S〉is a �nite L-presentation for G.Proof. If σ and ψ indue the same endomorphism of H, there exists, for eah x ∈ X ,an element rx ∈ 〈

⋃
σ∈Φ∗ Rσ〉F with xψ = xσrx. Write S = {rx | x ∈ X}. ThenProposition 3.14 yields that G = 〈X | Q | (Φ \ {σ}) ∪ {ψ} | R ∪ S〉. 2The transformations introdued above allow us to modify a given L-presentation of agroup. In order to prove Tietze's theorem for invariantly �nitely L-presented groups, wehoose the following set of transformations:



B.4. Appliations of Tietze Transformations 105De�nition 3.16 An L-Tietze transformation is a transformation that(i) adds or removes a single �xed relation (Proposition 3.4),(ii) adds or removes a single iterated relation (Proposition 3.5),(iii) adds or removes a single substitution (Proposition 3.12),(iv) adds or removes a generator together with a �xed relation (Proposition 3.8),(v) adds or removes a generator together with an iterated relation (Proposition 3.9), orthat(vi) modi�es a given substitution of an L-presentation (Proposition 3.14).B.4 Appliations of Tietze TransformationsThe transformations introdued in Setion B.3 allow us to prove Theorem A:Proof of Theorem A. We use similar ideas as in the proof of Tietze's theorem in [95,Chapter II℄: As eah L-Tietze transformation does not hange the isomorphism type ofthe group, two �nite L-presentations de�ne isomorphi groups if one L-presentation anbe transformed into the other by a �nite sequene of L-Tietze transformations. In orderto prove Theorem A, it su�es to prove that two invariant �nite L-presentations whihde�ne isomorphi groups an be transformed into eah other by a �nite sequene of L-Tietze transformations. For this purpose, we onsider two invariant �nite L-presentations
〈X1 | Q1 | Φ1 | R1〉 and 〈X2 | Q2 | Φ2 | R2〉 of a group G. By Proposition 3.7, we anassume that both Q1 = ∅ and Q2 = ∅ hold. We will onstrut an invariant �nite L-presentation for G whih an be obtained from both L-presentations by a �nite sequeneof L-Tietze transformations. Beause eah L-Tietze transformation is reversible, thisshows that we an pass from one L-presentation to the other by a �nite sequene of
L-Tietze transformations.Suppose that X1 ∩ X2 = ∅ holds. For i ∈ {1, 2}, we denote by Fi = F (Xi) thefree group over the alphabet Xi and by πi:Fi → G the free presentation with kernel
ker(πi) = 〈

⋃
σ∈Φ∗

i
Rσ
i 〉
Fi . For eah x ∈ X1, we hoose wx ∈ F2 with xπ1 = wπ2x ; i.e., theelement wx ∈ F2 is a π2-preimage of xπ1 ∈ G. For eah z ∈ X2, we hoose wz ∈ F1 with

zπ2 = wπ1z . De�ne the subsets S1 = {x−1wx | x ∈ X1} and S2 = {z−1wz | z ∈ X2} of thefree group F = F (X1 ∪ X2) over the alphabet X1 ∪ X2. By Proposition 3.9, we an addthe �nitely many generators z ∈ X2 together with the iterated relation z−1 wz ∈ S2 if weextend eah substitution σ ∈ Φ1 to the free group F by
σ̃:

{
x 7→ xσ, for eah x ∈ X1,
z 7→ wσz , for eah z ∈ X2.This yields the �nite L-presentation

〈X1 ∪ X2 | ∅ | {σ̃}σ∈Φ1 | R1 ∪ {z−1wz}z∈X2 〉



106 Chapter B. A Note on Invariantly Finitely L-Presented Groupsfor the group G. The natural homomorphisms π1:F1 → G and π2:F2 → G extend to anatural homomorphism π:F → G that is indued by the map
π:

{
x 7→ xπ1 , for eah x ∈ X1,
z 7→ zπ2 , for eah z ∈ X2.Its kernel satis�es ker(π) = 〈

⋃
σ∈Φ∗

1
(R1 ∪ S2)

σ̃〉F . For x ∈ X1 and x−1wx ∈ S1, we have
xπ = xπ1 = wπ2x = wπx and thus x−1wx ∈ ker(π) holds. For eah r ∈ R2, we have
rπ = rπ2 = 1 and thus r ∈ ker(π) holds. Sine the kernel ker(π) is {σ̃ | σ ∈ Φ1}

∗-invariant, by onstrution, Proposition 3.5 yields that
G ∼= 〈 X1 ∪ X2 | ∅ | {σ̃}σ∈Φ1 | R1 ∪R2 ∪ S1 ∪ S2 〉 .As the invariant �nite L-presentations 〈X1 | ∅ | Φ1 | R1〉 and 〈X2 | ∅ | Φ2 | R2〉 de�neisomorphi groups and every ψ ∈ Φ2 indues an endomorphism of the whole group, wean extend ψ to an endomorphism of the free group F over the alphabet X1 ∪ X2 thatindues the same endomorphism on G as ψ does. More preisely, for eah ψ ∈ Φ2, wede�ne an endomorphism of the free group F that is indued by the map
ψ̃:

{
z 7→ zψ, for eah z ∈ X2

x 7→ wψx , for eah x ∈ X1 and x−1wx ∈ S1.By onstrution, the normal subgroup 〈
⋃
σ∈Φ∗

1
(R1 ∪ R2 ∪ S1 ∪ S2)

σ̃〉F is ψ̃-invariant.Thus, by Proposition 3.12, the group G satis�es that
G ∼=

〈
X1 ∪ X2

∣∣∣ ∅
∣∣∣ {σ̃}σ∈Φ1 ∪ {ψ̃}ψ∈Φ2

∣∣∣ R1 ∪R2 ∪ S1 ∪ S2
〉
. (B.7)Sine the L-presentations 〈X1 | Q1 | Φ1 | R1〉 and 〈X2 | Q2 | Φ2 | R2〉 were �nite, wehave applied only �nitely many L-Tietze transformations from De�nition 3.16. Therefore,starting with the L-presentation 〈X1 | Q1 | Φ1 | R1〉 we have obtained the L-presentationin Eq. (B.7) after �nitely many steps. By symmetry, though, we would also obtain the�nite L-presentation in Eq. (B.7) if we would have started with the �nite L-presentation

〈X2 | Q2 | Φ2 | R2〉. Sine eah L-Tietze transformation is reversible, we an thereforetransform the �nite L-presentation in Eq.(B.7) to the �nite L-presentation 〈X2 | Q2 | Φ2 |
R2〉. This yields a �nite sequene of L-Tietze transformations that allows us to transformthe L-presentation 〈X1 | Q1 | Φ1 | R1〉 to the L-presentation 〈X2 | Q2 | Φ2 | R2〉 and vieversa. 2Similarly, the Tietze transformations in Setion B.3 also allow us to prove that twoarbitrary �nite L-presentations ould be transformed into eah other by a �nite sequeneof Tietze transformations.Another appliation of L-Tietze transformations is to prove that `being invariantly�nitely L-presented' is an abstrat property of a group that does not depend on thegenerating set of the group; that is, if a group admits an invariant �nite L-presentationwith respet to one �nite generating set, then so it does with respet to any other �nite



B.4. Appliations of Tietze Transformations 107generating set. This result was already posed in [6, Proposition 2.2℄. However, its proofontains a gap: Consider the invariant �nite L-presentation
G ∼= 〈{a, b, c, d} | {a2, b2, c2, d2, bcd} | {σ} | {(ad)4, (adacac)4}〉from Theorem 2.2, where σ is indued by the map a 7→ aca, b 7→ d, c 7→ b, and d 7→ c.Then σ is a monomorphism of the free group F = F ({a, b, c, d}). The transformations inthe proof of [6, Proposition 2.2℄ keep the rank of im (σ) onstant and therefore, they donot allow to prove that the Grigorhuk group admits an invariant �nite L-presentationwith generators {a, c, d} as in Eq. (B.2). The L-Tietze transformations from Setion B.3allow us to address this gap:Proof of Theorem B. Let Y = {y1, . . . , yn} be an arbitrary �nite generating set of theinvariantly �nitely L-presented group G = 〈X | Q | Φ | R〉. As G is invariantly L-presented, we an assume that Q = ∅ holds. Sine Y generates G, there exists, foreah x ∈ X , a word wx(y1, . . . , yn) over the generators Y so that x =G wx(y1, . . . , yn)holds. Sine X = {x1, . . . , xm} also generates G, there exists, for eah y ∈ Y, a word

wy(x1, . . . , xm) so that y =G wy(x1, . . . , xm) holds. Suppose that X ∩ Y = ∅ holds. Foreah σ ∈ Φ, de�ne an endomorphism σ̃ of the free group E over the alphabet X ∪Y thatis indued by the map
σ̃:

{
x 7→ xσ, for eah x ∈ X ,
y 7→ wy(x1, . . . , xm)

σ , for eah y ∈ Y.Then, by Proposition 3.9, a �nite L-presentation for the group G is given by
〈X ∪ Y | ∅ | {σ̃}σ∈Φ | R ∪ {y−1wy(x1, . . . , xm)}y∈Y 〉.As this L-presentation is invariant, every σ̃, with σ ∈ Φ, indues an endomorphism ofthe group G. Thus, as x =G wx(y1, . . . , yn) holds, we have xσ̃ =G wx(y1, . . . , yn)

σ̃ foreah σ ∈ Φ∗. By Proposition 3.5, we have that
G ∼= 〈X ∪ Y | ∅ | {σ̃}σ∈Φ | R ∪ {y−1wy}y∈Y ∪ {x−1wx}x∈X 〉. (B.8)Sine Y generates H, for eah z ∈ X ∪ Y and σ ∈ Φ, the image zσ̃ is represented by aword vz,σ(y1, . . . , yn) over the generators Y so that zσ̃ =G vz,σ(y1, . . . , yn) holds. Sinethe L-presentation in Eq. (B.8) is invariant, Proposition 3.14 applies to the relation

r = (zσ̃)−1vz,σ(y1, . . . , yn) and it shows that G admits the following �nite L-presentation
〈X ∪ Y | ∅ | {σ̂}σ∈Φ | R ∪ {x−1wx}x∈X ∪ {y−1wy}y∈Y ∪ {(zσ̃)−1vz,σ}z∈X∪Y ,σ∈Φ〉where the substitutions σ̂ are indued by the maps

σ̂: z 7→ vz,σ(y1, . . . , yn), for eah z ∈ X ∪ Y.We use the iterated relations x−1wx(y1, . . . , yn), with x ∈ X , to replae every ourreneof x ∈ X among the iterated relations
R∪ {y−1wy(x1, . . . , xm)}y∈Y ∪ {(zσ̃)−1vz,σ(y1, . . . , yn)}z∈X∪Y ,σ∈Φ (B.9)



108 Chapter B. A Note on Invariantly Finitely L-Presented Groupsby wx(y1, . . . , yn). This yields a �nite set of relations S̃ that an be onsidered as a�nite subset of the free group over the alphabet Y. Replaing the relations in Eq. (B.9)by S̃ does not hange the isomorphism type of the group. The group G satis�es that
G ∼= 〈X ∪ Y | ∅ | {σ̂ | σ ∈ Φ} | S̃ ∪ {x−1wx | x ∈ X}〉. By Proposition 3.9, the group Gis invariantly �nitely L-presented by 〈Y | ∅ | {σ̂}σ∈Φ | S̃〉. 2B.5 Finitely generated normal subgroups of �nitely pre-sented groupsIn this setion, we onsider �nitely generated normal subgroups of �nitely presentedgroups. By Higman's embedding theorem [81℄, every �nitely generated group embedsinto a �nitely presented group if and only if it is reursively presented. This theoremlassi�es the �nitely generated subgroups of a �nitely presented group. The normalsubgroups of a �nitely presented group are invariantly L-presented:Proposition 5.17 Every normal subgroup of a �nitely presented group admits an in-variant L-presentation whose substitutions indue automorphisms of the subgroup. If thenormal subgroup has �nite index, it is invariantly �nitely L-presented.Proof. This follows from the proof of [70, Theorem 6.1℄; f. Lemma 5.19 below. 2The L-presentation in Lemma 5.19 below is an asending L-presentation with �nitelymany substitutions and �nitely many iterated relations. It has �nitely many generatorsif and only if the subgroup has �nite index. The substitutions of this L-presentationindue automorphisms of the subgroup sine they are indued by onjugation in the�nitely presented group.On the other hand, as every �nite L-presentation is reursive, �nitely L-presentedgroups embed into �nitely presented groups. As indiated in [22℄, a �nitely L-presentedgroup embeds as a normal subgroup into a �nitely presented group if we assume thatevery substitution of the L-presentation indues an automorphism of the subgroup:Proposition 5.18 Every group that admits an invariant �nite L-presentation, whosesubstitutions indue automorphisms of the group, embeds as a normal subgroup into a�nitely presented group.Proof. If H = 〈Z | ∅ | {δ1, . . . , δn} | R〉 is invariantly �nitely L-presented so that eah
δi indues an automorphism of H, the base group H embeds into the HNN-extension
G1 relative to the isomorphism δ1:H → H whih is indued by the substitution δ1. TheHNN-extension G1 is given by the presentation G1 = 〈Z ∪ {t1} |

⋃
σ∈Φ∗ Rσ ∪ {t−1

1 zt1 =
zδ1 | z ∈ Z}〉 where Φ = {δ1, . . . , δn}. Denote by H1 the image of H in G1. Then
δ2 indues an automorphism of the subgroup H1 ≤ G1. Thus we an form the HNN-extension G2 relative to the isomorphism δ2:H1 → H1. As the base group G1 embedsinto the HNN-extension G2, the subgroup H1 embeds into G2 as well. Iterating thisproess, we obtain a group Gn = 〈Z ∪ {t1, . . . , tn} |

⋃
σ∈Φ∗ Rσ ∪ {t−1

i zti = zδi | 1 ≤ i ≤
n}〉 in whih H embeds. Tietze transformations that replae every δi-image zδi by the



B.5. Finitely generated normal subgroups of �nitely presented groups 109onjugate t−1
i zti in the relations ⋃σ∈Φ∗ Rσ eventually show that Gn = 〈Z ∪{t1, . . . , tn} |

R ∪ {t−1
i zti = zδi | 1 ≤ i ≤ n, z ∈ Z}〉 is �nitely presented. The invariantly �nitely L-presented group H embeds into this �nitely presented group by identifying the generatorin Z. The image of H in Gn is obviously a normal subgroup of Gn. 2In the following, we use the onstrutions from [22℄ to prove Theorem C. Sine everynormal subgroup of a �nitely presented group admits an invariant L-presentation with�nitely many substitutions and �nitely many iterated relations, it su�es to show thatthe L-presentation in Lemma 5.19 below ould be transformed into an invariant �nite

L-presentation. For this purpose, though, we need to eliminate (possibly) in�nitely manygenerators from the L-presentation and we need to modify �nitely many substitutions.However, Proposition 3.14 adds iterated relations for eah modi�ation of a substitution.Hene, we need to ensure that this proess still gives a �nite L-presentation. In thefollowing, we generalize the onstrutions from [22℄:B.5.1 PreliminariesLet G be a �nitely presented group and let H � G be a �nitely generated normal sub-group. Then G/H is �nitely presented. Moreover, if H = 〈a1, . . . , am〉 and G/H =
〈s1H, . . . , snH〉 hold, there exists a �nite presentation 〈 {a1, . . . , am, s1, . . . , sn} | R 〉 for
G. The proof of [70, Theorem 6.1℄ yields the followingLemma 5.19 Let 〈 {a1, . . . , am, s1, . . . , sn} | R 〉 be a �nite presentation for G and write
S = {s±1

1 , . . . , s±1
n }. If T is a Shreier transversal for H = 〈a1, . . . , am〉 in G and Y arethe Shreier generators of H, then H is invariantly L-presented by

〈Y | ∅ | {δx | x ∈ S} | Rτ 〉where δx denotes the endomorphism of the free group F (Y) that is indued by onjugationwith x ∈ S and τ denotes the Reidemeister-rewriting.Proof. This follows from the Reidemeister-Shreier theorem, see [95, Setion II.4℄ andthe proof of [70, Theorem 6.1℄. Clearly, one an always omit the endomorphisms δx with
x ∈ {a1, . . . , am} as they give inner automorphisms of the subgroup H. 2Sine S and R are �nite, the L-presentation in Lemma 5.19 is �nite if and only if H has�nite index in G; in this ase Y is �nite. Finite index subgroups of �nitely L-presentedgroups have been studied in [70℄. It was shown that eah normal subgroup of a �nitelypresented group with �nite index is invariantly �nitely L-presented. In the following, wetherefore assume that [G : H] = ∞ holds.The strategy in the proof of Theorem C will be as follows: Our hoie of the gen-erating set of the �nitely presented group allows us to assume that H's generators
Z = {a1, . . . , am} are Shreier generators of H. We therefore obtain an embedding
χ:F (Z) → F (Y) and we will onstrut an epimorphism γ:F (Y) → F (Z) so that thefree presentation π:F (Y) → H that is given by the L-presentation in Lemma 5.19 sat-is�es γχπ = π. Sine the L-presentation in Lemma 5.19 is invariant, there exists, for



110 Chapter B. A Note on Invariantly Finitely L-Presented Groupseah σ ∈ Φ = {δx | x ∈ S}, an endomorphism σ̂ ∈ End(H) so that σπ = πσ̂ holds.In general, we annot assume that there also exists an endomorphism σ̃ ∈ End(F (Z))so that σγ = γσ̃ holds. Therefore, we will onstrut a normal subgroup N � F (Z)so that ψ:F (Z) → F (Z)/N, g 7→ gN yields the existene of σ̄ ∈ End(F (Z)/N) with
σγψ = γψσ̄. These onstrutions will give the following ommutative diagram:

F (Z)
ψ

χπ

F (Z)/N

δ̄x

F (Y)

δx

γ

π
H

δ̂xIn the speial ases of Theorem C and Theorem D, we are able to prove that F (Z)/N isinvariantly �nitely L-presented and so is the subgroup H. The normal subgroup N willbe generated, as a normal subgroup, by the iterated relations that Proposition 3.14 addswhen modifying the substitutions of the L-presentation in Lemma 5.19. These relationswere omitted in [22℄. It is not lear whether or not these relations are neessary to de�nethe subgroup H.In the remainder of this setion, we generalize the onstrutions from [22℄ to obtainthe ommutative diagram above. The generating set X = {a1, . . . , am, s1, . . . , sn} ofthe �nitely presented group G yields that the generators Z = {a1, . . . , am} are Shreiergenerators of H. Hene, there exists a natural embedding χ:F (Z) → F (Y) whih isindued by embedding the generators Z into Y. It su�es to remove the Shreier gen-erators Y \ Z from the invariant L-presentation in Lemma 5.19. Sine H is generatedby Z = {a1, . . . , am}, every y ∈ Y an be represented, as an element of H, by a wordover Z. This yields an epimorphism γ:F (Y) → F (Z) whih maps every y ∈ Y to a word
yγ ∈ F (Z) over the alphabet Z that represents the same element in H; i.e., we have

{y−1yγχ | y ∈ Y \ Z} ⊆ ker(π), (B.10)where π:F (Y) → H denotes the free presentation from Lemma 5.19. Note that Eq. (B.10)yields that ι = χπ de�nes an epimorphism ι:F (Z) → H with γι = π. The followinglemma generalizes [22, Lemma 4℄.Lemma 5.20 If H ∼= 〈Y | S〉 and γ:F (Y) → F (Z) is an epimorphism so that
F (Z)

ι

F (Y)

γ

π Hommutes, 〈Z | Sγ〉 is a presentation for H.



B.5. Finitely generated normal subgroups of �nitely presented groups 111Proof. Sine π = γι is onto, it su�es to prove that ker(ι) = 〈Sγ〉F (Z) holds. For r ∈ S,we have that rγι = rπ = 1 and so rγ ∈ ker(ι). Thus 〈Sγ〉F (Z) ⊆ ker(ι). If g ∈ ker(ι)holds, there exists h ∈ F (Y) with hγ = g as γ is surjetive. Then hπ = hγι = gι = 1 and
h ∈ ker(π) = 〈S〉F (Z). Thus g = hγ ∈ 〈Sγ〉F (Z). 2Thus, by Lemma 5.19 and Lemma 5.20, the subgroup H has a presentation of the form

H = 〈Z | {(rτσ)γ | r ∈ R, σ ∈ Φ∗}〉where Φ = {δx | x ∈ S} and τ denotes the Reidemeister rewriting. This presentationan be onsidered as a �nite L-presentation if, for eah σ ∈ Φ, there exists an endomor-phism σ̃ ∈ End(F (Z)) with σγ = γσ̃. The following lemma yields the existene of suhendomorphisms σ̃ ∈ End(F (Z)):Lemma 5.21 For groups L and M , an epimorphism π:L →M , and an endomorphism
δ ∈ End(L), there exists a (unique) endomorphism ∆ ∈ End(M) with δπ = π∆ if andonly if ker(π)δ ⊆ ker(π) holds.Proof. The proof is straightforward. 2Therefore, if the kernel ker(γ) is σ-invariant, for eah σ ∈ Φ, the subgroup H would beinvariantly �nitely L-presented by 〈Z | ∅ | {δ̃x | δx ∈ Φ} | Rτγ〉. In general, though, weannot assume that eah σ ∈ Φ leaves the kernel ker(γ) invariant. If we onsider thenatural embedding χ:F (Z) → F (Y) that is indued by embedding the generators Z into
Y, the kernel ker(γ) satis�esLemma 5.22 If χ:F (Z) → F (Y) is an embedding with γχ|Z = idZ , then χγ = idF (Z)and ker(γ) = 〈{y−1yγχ | y ∈ Y \ Z}〉F (Y) hold.Proof. Sine γχ|Z = idZ holds, the map γχ indues the identity on the free subgroup
E = 〈Z〉 ≤ F (Y). For g ∈ F (Z), we have gχ ∈ E and gχγχ = gχ. Thus (g−1gχγ)χ = 1and, as χ is injetive, we have g−1gχγ = 1 or

χγ = idF (Z). (B.11)For eah y ∈ Y \ Z, we have that (y−1yγχ)γ = y−γyγχγ = y−γyγ = 1. Therefore
N = 〈{y−1yγχ | y ∈ Y\Z}〉F (Y) satis�es that N ⊆ ker(γ). Let g ∈ ker(γ) be given. Then
g ∈ F (Y) is represented by a �nite word w(yi1 , . . . , yin , a1, . . . , am) with {yi1 , . . . , yin} ⊆
Y \ Z. Modulo the normal subgroup N , we an replae every ourrene of y ∈ Y \ Zby yγχ ∈ E; i.e., we have g = w(yi1 , . . . , yin , a1, . . . , am) = w(yγχi1 , . . . , y

γχ
in
, a1, . . . , am) · hfor some h ∈ N . As g ∈ ker(γ) and h ∈ N ⊆ ker(γ) hold, we have

1 = gγχ = w(yγχγχi1
, . . . , yγχγχin

, aγχ1 , . . . , aγχm ) · hγχ = w(yγχi1 , . . . , y
γχ
in
, a1, . . . , am) · 1.Similarly, modulo the normal subgroup N , we an replae every ourrene of yγχ by y.There exists k ∈ N with 1 = w(yγχi1 , . . . , y

γχ
in
, a1, . . . , am) = w(yi1 , . . . , yin , a1, . . . , am)·k =

g · k. Thus g ∈ N and N = ker(γ). 2



112 Chapter B. A Note on Invariantly Finitely L-Presented GroupsEven though δx ∈ Φ may not translate diretly to δ̃x ∈ End(F (Z)), there exists anormal subgroup N �F (Z) and a homomorphism ψ:F (Z) → F (Z)/N, g 7→ gN so that
ker(γψ)δx ⊆ ker(γψ) holds: For eah δx ∈ Φ, de�ne δ̃x = χδxγ ∈ End(F (Z)). Considerthe normal subgroup

N =
〈 ⋃

σ∈Φ̃∗

(
{(y−1yγχ)δxγ}y∈Y\Z,x∈S

)σ〉F (Z) (B.12)where Φ̃ = {δ̃x | δx ∈ Φ}. By onstrution, N satis�es N δ̃x ⊆ N and thus thereexists a unique endomorphism δ̄x:F (Z)/N → F (Z)/N, gN 7→ gδ̃xN with δ̃xψ = ψδ̄x.The normal subgroup N allows us to translate δx ∈ Φ to δ̄x ∈ End(F (Z)/N) with
δxγψ = γψδ̄x:Lemma 5.23 For eah x ∈ S, we have that ker(γψ)δx ⊆ ker(γψ).Proof. The kernel ker(γψ) = ker(γ)Nγ−1 satis�es that

ker(γψ) =
〈{
y−1yγχ

}
y∈Y\Z

∪
⋃

σ̃∈Φ∗

{
(y−1yγχ)δzγσ̃χ

}
y∈Y\Z
z∈S

〉F (Y)
.The generator (y−1yγχ)δzγσ̃χ is mapped by δxγ to (y−1yγχ)δzγσ̃χδxγ = (y−1yγχ)δzγσ̃δ̃x ∈ Nwhile y−1yγχ is mapped to (y−1yγχ)δxγ ∈ N . 2The endomorphisms δx ∈ End(F (Y)), δ̃x ∈ End(F (Z)), and δ̄x ∈ End(F (Z)/N) alsosatisfy that

δ̃xψ = χδxγψ = χγψδ̄x = ψδ̄x. (B.13)Sine the L-presentation in Lemma 5.19 is invariant, there exists δ̂x ∈ End(H) with
δxπ = πδ̂x. The subgroup H is a homomorphi image of F (Z)/N :Lemma 5.24 Let ι:F (Z) → H, g 7→ gχπ be given. Then γι = π and N ≤ ker(ι).Proof. The �rst assertion follows from the de�nition of γ in Eq. (B.10) above. For
δx ∈ Φ, we have δ̃xι = χδxγι = χδxπ = χπδ̂x = ιδ̂x and γχπ = γι = π. Thus
(y−1yγχ)π = y−πyγχπ = y−πyπ = 1. For σ̃ ∈ Φ̃∗ with σ̃ = δ̃x1 · · · δ̃xn we therefore obtain

δxγσ̃ι = δxγδ̃x1 · · · δ̃xnι = δxγιδ̂x1 · · · δ̂xn = δxπδ̂x1 · · · δ̂xn = πδ̂xδ̂x1 · · · δ̂xn .Hene, for eah σ̃ ∈ Φ∗, y ∈ Y \ Z, and x ∈ X , the generator (y−1yγχ)δxγσ̃ ∈ N satis�es
(y−1yγχ)δxγσ̃ι = (y−1yγχ)πδ̂x δ̂x1 ···δ̂xn = 1 as y−1yγχ ∈ ker(π) holds. Therefore N ⊆ ker(ι)holds. 2



B.5. Finitely generated normal subgroups of �nitely presented groups 113By Lemma 5.24, the homomorphism ϕ:F (Z)/N → H, gN 7→ gι is well-de�ned and itsatis�es that ψϕ = ι. We have obtained the following diagram:
F (Z)

χ

δ̃x

ι=χπ

ψ
F (Z)/N

δ̄x

ϕ

F (Y)

γ

δx

π H

δ̂xBy onstrution, F (Z)/N is invariantly L-presented by
F (Z)/N ∼= 〈Z | ∅ | {δ̃x}δx∈Φ | {(y−1yγχ)δxγ}y∈Y\Z,δx∈Φ〉.If [G : H] = ∞ holds, |Y \ Z| is in�nite. Therefore, the latter L-presentation is �nite ifand only if [G : H] is �nite. Our strategy in the proof of Theorem C uses the followingLemma 5.25 If there exists a �nite set U ⊆ F (Z) with F (Z)/N ∼= 〈Z | ∅ | Φ̃ | U〉, then

H is invariantly �nitely L-presented.Proof. The kernel of ϕ:F (Z)/N → H is generated by the images rτσγψ = rτγψσ̄ with
σ ∈ Φ∗ and r ∈ R. If 〈Z | ∅ | Φ̃ | U〉 is an invariant �nite L-presentation for F (Z)/N ,then H is invariantly �nitely L-presented by 〈Z | ∅ | Φ̃ | U ∪ Rτγ〉. 2B.5.2 Proofs of Theorem C and Theorem DIn this setion, we prove Theorem C and Theorem D:Proof of Theorem C. Our strategy in the proof of Theorem C is to onstrut a normalsubgroup N �F (Z) and to prove that F (Z)/N is invariantly �nitely L-presented. ThenLemma 5.25 applies and it shows that H ≤ G is invariantly �nitely L-presented.Sine G is �nitely presented, G/H is �nitely generated. Moreover, as G splits over
H, there exists s1, . . . , sn ∈ G so that G/H = 〈s1H, . . . , snH〉 and S = 〈s1, . . . , sn〉satis�es that S ∩H = {1}; i.e., G ∼= H ⋊ S holds. Beause H is �nitely generated, thereexist a1, . . . , am ∈ H so that H = 〈a1, . . . , am〉 holds. Then G = 〈a1, . . . , am, s1, . . . , sn〉holds and there exists a �nite set of relations R with G ∼= 〈 {a1, . . . , am, s1, . . . , sn} | R 〉.Write S = {s±1

1 , . . . , s±1
n } and X = {a1, . . . , am, s1, . . . , sn}. Clearly, we an hoose aShreier transversal T ⊆ S∗ whose elements are words over the alphabet S. This yieldsthe Shreier generators
aℓ,t = γ(t, aℓ) = taℓ(taℓ)

−1 = taℓt
−1,

sℓ,t = γ(t, sℓ) = tsℓ(tsℓ)
−1,with t ∈ T . Then {sℓ,t | 1 ≤ ℓ ≤ n, t ∈ T } ⊆ S∗. By Lemma 5.19, the subgroup H isinvariantly L-presented by 〈Y | ∅ | {δs | s ∈ S} | Rτ 〉 where

Y = {aℓ,t | t ∈ T , 1 ≤ ℓ ≤ m} ∪ {sℓ,t 6= 1 | t ∈ T , 1 ≤ ℓ ≤ n}



114 Chapter B. A Note on Invariantly Finitely L-Presented Groupsand δs denotes the endomorphism of F (Y) that is indued by onjugation with s ∈ S.Write S = 〈s1, . . . , sn〉 ≤ F (X ) and E = 〈a1, . . . , am〉 ≤ F (X ). Let K � F (X ) be thekernel of G's free presentation F (X ) → G. Then EK = 〈Y〉 and S ∩ EK = 〈sℓ,t 6= 1 |
1 ≤ ℓ ≤ n, t ∈ T 〉 are freely generated. For eah s ∈ S, the subgroup S ∩ EK is δs-invariant sine S∩EK�S holds. Beause G splits over H, we have S∩H = {1}. Thus thegenerators sℓ,t ∈ S∩EK are ontained in the kernel of the free presentation π:F (Y) → Hwhih is given by H's invariant L-presentation above. De�ne Z = {a1, . . . , am} and anembedding

χ:F (Z) → F (Y), aℓ 7→ aℓ,1where 1 ∈ T denotes the trivial element in the Shreier transversal T . For s ∈ S and
aℓ ∈ Z, we hoose a representative aχδsγℓ ∈ F (Z) with

a−χδsℓ (aχδsγℓ )χ ∈ ker(π). (B.14)For s ∈ S, let δ̃s ∈ F (Z) be indued by the map aℓ 7→ aχδsγℓ and de�ne ι:F (Z) → H by
ι = χπ. Then Eq. (B.14) yields that δ̃sι = ιδ̂s. In the following, we write δ̃t = δ̃x1 · · · δ̃xnif t = x1 · · · xn ∈ S∗ and eah xi ∈ S. Moreover, we write X for x−1 and T for t−1. Thisyields that aδTℓ,1 = taℓT = aℓ,t. Let γ:F (Y) → F (Z) be indued by the map

γ:

{
aℓ,t 7→ aδ̃Tℓ , for eah 1 ≤ ℓ ≤ m and t ∈ T ,
sℓ,t 7→ 1, for eah 1 ≤ ℓ ≤ n and t ∈ T .For eah 1 ≤ ℓ ≤ m, 1 ≤ k ≤ n, and t ∈ T , this yields

(aℓ,t)
γι = aδ̃T ιℓ = aιδ̂Tℓ = aχπδ̂Tℓ = aδT πℓ,1 = aπℓ,t and (sk,t)

γι = 1ι = 1 = (sk,t)
π.Thus γι = π. De�ne the normal subgroup

N =
〈 ⋃

σ̃∈Φ̃∗

(
{(y−1yγχ)δsγ}y∈Y\Z,s∈S

)σ̃〉F (Y)where Φ̃ = {δ̃s | s ∈ S}. For t ∈ T and s ∈ S, we have that
(s−1
ℓ,t s

γχ
ℓ,t )

δsγ = s−δsγℓ,t (sγℓ,t)
δ̃s = 1as the subgroup S ∩ EK = 〈sℓ,t | t ∈ T , 1 ≤ ℓ ≤ n〉 is δs-invariant and it is ontained inthe kernel of γ. This yields that

N =
〈 ⋃

σ̃∈Φ̃∗

(
{(a−1

ℓ,t a
γχ
ℓ,t )

δsγ}1≤ℓ≤m,t∈T \{1},s∈S

)σ̃〉F (Z)
.For t ∈ T and x ∈ S with xt ∈ T , we also have that

(a−1
ℓ,t a

γχ
ℓ,t )

δXγ = a−δXγℓ,t aγδ̃Xℓ,t = a−γℓ,xt a
γδ̃X
ℓ,t = a−δ̃TXℓ aδ̃T δ̃Xℓ = 1.



B.5. Finitely generated normal subgroups of �nitely presented groups 115It therefore su�es to onsider the generators (a−1
ℓ,t a

γχ
ℓ,t )

δXγ ∈ N with 1 ≤ ℓ ≤ m, t ∈ T ,and x ∈ S but xt 6∈ T . Sine G/H ∼= S/S ∩EK is a �nitely presented group, there existsa �nite monoid presentation
S/S ∩ EK ∼= 〈 S | (U1, V1), . . . , (Up, Vp) 〉.The monoid ongruene ∼ indued by this presentation is the re�exive, symmetri, andtransitive losure of the binary relation ∼ that is de�ned by x ∼ y if there exist A,B ∈ S∗and 1 ≤ i ≤ p so that x = AUiB and y = AViB hold. De�ne

M =
〈 ⋃

σ̃∈Φ̃∗

(
{(a

−δ̃Ui
ℓ a

δ̃Vi
ℓ )}1≤ℓ≤m,1≤i≤p

)σ̃〉F (Z)
.Suppose that u ∼ v holds. Then there exist Ai, Bi, Li ∈ S∗ so that u = L1 ∼ . . . ∼ Lq = vwith Li = AiUℓiBi and Li+1 = AiVℓiBi (or Li = AiVℓiBi and Li+1 = AiUℓiBi). Notethat

a
δ̃Ai δ̃Uℓi

δ̃Bi
ℓ = (a

δ̃Ai
ℓ )

δ̃Uℓi
δ̃Bi = wℓ(a1, . . . , am)

δ̃Uℓi
δ̃Bi = wℓ(a

δ̃Uℓi
1 , . . . , a

δ̃Uℓi
m )δ̃Bifor some word wℓ(a1, . . . , am) = a

δ̃Ai
ℓ ∈ F (Z). The normal subgroup M yields that

(a
δ̃Ai
ℓ )

δ̃Uℓi = wℓ(a
δ̃Uℓi
1 , . . . , a

δ̃Uℓi
m ) = wℓ(a

δ̃Vℓi
1 , . . . , a

δ̃Vℓi
m ) · h = a

δ̃Ai δ̃Vℓi
ℓ · hfor some h ∈M . By onstrution, M is Φ̃∗-invariant and thus

a
−δ̃Ai δ̃Vℓi

δ̃Bi
ℓ a

δ̃Ai δ̃Uℓi
δ̃Bi

ℓ = hδ̃Bi ∈M.This shows that, if u ∼ v holds, we have a−δ̃uℓ aδ̃vℓ ∈ M . Suppose that, for t ∈ T and
x ∈ S, xt 6∈ T holds. Then there exists u = xt ∈ T with u ∼ xt. Write U for u−1. Sine
S ∩ EK � S holds, there exists h ∈ S ∩ EK ⊆ ker(γ) so that xt = hu. This yields that
aδXℓ,t = xt aℓ TX = huaℓ Uh

−1 = haℓ,u h
−1 and aδXγℓ,t = aγℓ,u = aδ̃Uℓ . Sine u ∼ xt and

U ∼ TX hold, we obtain
(a−1
ℓ,t a

γχ
ℓ,t )

δXγ = a−γℓ,ua
δ̃T δ̃X
ℓ = a−δ̃Uℓ aδ̃T δ̃Xℓ ∈M.Thus N ⊆ M . It su�es to show that M ⊆ N holds. Sine M and N are both normalsubgroups of F (Z) and both are Φ̃∗-invariant, it su�es to prove that a−δ̃Uiℓ a

δ̃Vi
ℓ ∈ N =

ker(ψ) holds. Sine δ̃sψ = ψδ̄s and χγ = idF (Z) hold, we have that
(a

−δ̃Ui
ℓ a

δ̃Vi
ℓ )ψ = a

−ψδ̄Ui
ℓ a

ψδ̄Vi
ℓ = a

−χγψδ̄Ui
ℓ a

χγψδ̄Vi
ℓ = a

−γψδ̄Ui
ℓ,1 a

γψδ̄Vi
ℓ,1

= a
−δUiγψ

ℓ,1 a
δViγψ

ℓ,1 = (a
−δUi
ℓ,1 a

δVi
ℓ,1 )

γψ.As S ∩ EK � S and T ⊆ S hold, there exist h ∈ S ∩ EK = 〈sℓ,t | 1 ≤ ℓ ≤ n, t ∈ T 〉and t = U−1
i ∈ T with U−1

i = ht. Thus aδUiℓ,1 = U−1
i aℓUi = h taℓt

−1h−1 = haℓ,t h
−1.



116 Chapter B. A Note on Invariantly Finitely L-Presented GroupsSine h ∈ ker(γ) holds, we obtain (a
δUi
ℓ,1 )

γ = aγℓ,t. Sine Ui ∼ Vi holds, we also havethat V −1
i = t. Similarly, we obtain (a

δVi
ℓ,1 )

γ = aγℓ,t. Thus a−δUiℓ,1 a
δVi
ℓ,1 ∈ ker(γ) and so

(a
−δ̃Ui
ℓ a

δ̃Vi
ℓ )ψ = 1 or a−δ̃Uiℓ a

δ̃Vi
ℓ ∈ N . Thus M = N . This shows that that fator group

F (Z)/N is invariantly �nitely L-presented and so is our subgroup H. 2Even if G/H is free, the �nite L-presentation of F (Z)/N in the proof of Theorem Contains the relations of a monoid presentation of the free group. It is not lear whetheror not these relations an be omitted as was done in [22℄. However, the result in [22℄ isa onsequene of Theorem C even if these relations are not redundant:Theorem 5.26 (Benli [22℄) Every �nitely generated normal subgroup of a �nitely pre-sented group is invariantly �nitely L-presented if the quotient is in�nite yli.Proof. Sine the quotient is free, the �nitely presented group splits over its �nitelygenerated normal subgroup and thus, by Theorem C, the subgroup is invariantly �nitely
L-presented. 2Even if the �nitely presented group does not split over its �nitely generated subgroup,the subgroup is possibly invariantly �nitely L-presented:Theorem 5.27 Every �nitely generated normal subgroup of a �nitely presented group isinvariantly �nitely L-presented if the quotient is free abelian with rank two.Proof. Let G be a �nitely presented group and let H �G be �nitely generated so that
G/H ∼= Z×Z holds. By Lemma 5.25, it su�es to onstrut a fator group F (Z)/N whihis invariantly �nitely L-presented. Sine G/H ∼= Z×Z holds, there exists t, u ∈ G so that
G/H = 〈tH, uH〉 holds. Moreover, as H is �nitely generated, there exist a1, . . . , am ∈ Hso that H = 〈a1, . . . , am〉 holds. Then G = 〈a1, . . . , am, t, u〉 holds and there existsa �nite set of relations R with G ∼= 〈 {a1, . . . , am, t, u} | R 〉. We hoose as Shreiertransversal T = {tiuj | i, j ∈ Z}. Then, by Lemma 5.19, the subgroup H is invariantly
L-presented by 〈Y | ∅ | {δu, δU , δt, δT } | Rτ 〉 where δx denotes the endomorphism of thefree group F (Y) that is indued by onjugation with x ∈ {u,U = u−1, t, T = t−1}, τdenotes the Reidemeister rewriting, and Y = {aℓ,i,j, tl,k | i, j, k, l ∈ Z, k 6= 0} are thefollowing Shreier generators:

aℓ,i,j = γ(tiuj , aℓ) = tiujaℓu
−jt−i,

ti,j = γ(tiuj , t) = tiujtu−jt−1t−i,
ui,j = γ(tiuj , u) = tiujuu−ju−1t−i.Note that ti,j = 1 if and only if j = 0 while ui,j = 1 for eah i, j ∈ Z. The endomorphisms

δt and δT are indued by the maps
δt:

{
aℓ,i,j 7→ aℓ,i−1,j,
ti,j 7→ ti−1,j,

and δT :

{
aℓ,i,j 7→ aℓ,i+1,j,
ti,j 7→ ti+1,j,



B.5. Finitely generated normal subgroups of �nitely presented groups 117for eah i, j ∈ Z; while δu and δU are indued by the maps
δu:





aℓ,i,j 7→ (aℓ,i,j−1)
t−1
i−1,−1···t

−1
0,−1 , i ≥ 0, j ∈ Z,

aℓ,−i,j 7→ (aℓ,−i,j−1)
t−i,−1···t−1,−1 , i ≥ 0, j ∈ Z,

ti,j 7→ (ti,j−1 t
−1
i,−1)

t−1
i−1,−1···t

−1
0,−1 , i ≥ 0, j ∈ Z,

t−i,j 7→ (t−i,j−1 t
−1
−i,−1)

t−i,−1···t−1,−1 , i ≥ 0, j ∈ Z,and
δU :





aℓ,i,j 7→ (aℓ,i,j+1)
t−1
i−1,1···t

−1
0,1 , i ≥ 0, j ∈ Z,

aℓ,−i,j 7→ (aℓ,−i,j+1)
t−i,1···t−1,1 , i ≥ 0, j ∈ Z,

ti,j 7→ (ti,j+1 t
−1
i,1 )

t−1
i−1,1···t

−1
0,1 , i ≥ 0, j ∈ Z,

t−i,j 7→ (t−i,j+1 t
−1
−i,1)

t−i,1···t−1,1 , i ≥ 0, j ∈ Z.We will onstrut an invariant �nite L-presentation for the subgroup H with generators
Z = {a1, . . . , am} ∪ {t1}. De�ne an embedding χ:F (Z) → F (Y) that is indued by themap

χ:

{
aℓ 7→ aℓ,0,0, for eah 1 ≤ ℓ ≤ m
t1 7→ t0,1.Write Φ = {δt, δT , δu, δU}. For y ∈ Z and δ ∈ Φ, hoose yχδγ ∈ F (Z) with

y−χδ(yχδγ)χ ∈ ker(π). (B.15)De�ne ι:F (Z) → H by ι = χπ where π denotes the free presentation π:F (Y) → H thatis given by H's invariant L-presentation above. For eah δ ∈ Φ, de�ne an endomorphism
δ̃:F (Z) → F (Z) that is indued by the map y 7→ yχδγ . Then, for eah δ ∈ Φ and y ∈ Z,we obtain

yιδ̂ = yχπδ̂ = yχδπ = (yχδ)π = (yχδγχ)π = (yχδγ)χπ = yδ̃ιand thus δ̃ι = γδ̂. Write X = {a1, . . . , am, t, u} and onsider the following subgroupsof the free group F (X ): Let E = 〈a1, . . . , am〉 and S = 〈t, u〉 be �nitely generatedsubgroups of F (X ). Furthermore, let K � F (X ) be the kernel of G's free presentation.Then G ∼= F (X )/K and H ∼= EK/K. Moreover, the normal subgroup EK � F (X ) issupplemented by the �nitely generated free group S; i.e., F (X ) = S EK holds. Thus
G/H ∼= F (X )/EK ∼= S/S ∩ EK. Sine G/H is �nitely presented, the free subgroup
S ∩EK is �nitely generated as a normal subgroup. The Shreier generators Y yield thatthe subgroups

EK = 〈Y〉 and S ∩EK = 〈ti,j | i, j ∈ Z, j 6= 0〉are freely generated. Moreover, we have that
S ∩ EK = 〈ti,j+1t

−1
i,j | i, j ∈ Z〉

= 〈. . . ti,−2t
−1
i,−3, ti,−1t

−1
i,−2, t

−1
i,−1, ti,1, ti,2t

−1
i,1 , ti,3t

−1
i,2 , . . . | i ∈ Z〉.



118 Chapter B. A Note on Invariantly Finitely L-Presented GroupsThe latter subgroup is freely generated as the homomorphism ψ that is indued by themap
ψ:S ∩EK → S ∩ EK,





ti,j 7→ ti,j+1t
−1
i,j , j < −1

ti,−1 7→ t−1
i,−1,

ti,1 7→ ti,1
ti,j 7→ ti,jt

−1
i,j−1, j > 1is an automorphism of S ∩ EK whose inverse is indued by the map

ψ−1:S ∩ EK → S ∩ EK,





ti,j 7→ t−1
i,j t

−1
i,j+1 · · · t

−1
i,−1, j < −1

ti,−1 7→ t−1
i,−1,

ti,1 7→ ti,1
ti,j 7→ ti,jti,j−1 · · · ti,1, j > 1.Note that we have

ti,j+1t
−1
i,j = tiuj+1tu−j−1t−1t−i · (tiujtu−jt−1t−i)−1 = (t0,1)

ujti .In fat, every element in S ∩ EK has a unique representation as a word in the basis
{tiuj ·t0,1 ·u

−jt−i | i, j ∈ Z} where t0,1 = utUT is a normal generator of S∩EK = 〈t0,1〉
S .More preisely, for i ≥ 0 and j > 0, we have the following representatives in free subgroup

S ∩ EK ≤ F (Y):
ti,j =

(
t
δj−1
U
0,1 · t

δj−2
U
0,1 · · · t0,1

)δiT

t−i,j =

(
t
δj−1
U
0,1 · t

δj−2
U
0,1 · · · t0,1

)δit and ti,−j =
(
t−δ

j
u

0,1 · t−δ
j−1
u

0,1 · · · t−δu0,1

)δiT

t−i,−j =
(
t−δ

j
u

0,1 · t−δ
j−1
u

0,1 · · · t−δu0,1

)δit
.The Shreier generators aℓ,i,j are onjugates of the generators aℓ,0,0 so that

aℓ,i,j = (aℓ,0,0)
δjU δ

i
T

aℓ,−i,j = (aℓ,0,0)
δjU δ

i
t

and aℓ,i,−j = (aℓ,0,0)
δjuδ

i
T

aℓ,−i,−j = (aℓ,0,0)
δjuδ

i
t .In partiular, we an hoose the following basis Ŷ for the free subgroup EK:

Ŷ =
{
(aℓ,0,0)

δjUδ
i
T , . . . (aℓ,0,0)

δjuδ
i
t , (t0,1)

δjU δ
i
T , . . . , (t0,1)

δjuδ
i
t

}
i,j≥0

.De�ne γ:F (Ŷ) → F (Z) to be indued by the map
γ:





(aℓ,0,0)
δjUδ

i
T 7→ (aℓ)

δ̃jU δ̃
i
T ,

(aℓ,0,0)
δjU δ

i
t 7→ (aℓ)

δ̃jU δ̃
i
t ,

(aℓ,0,0)
δjuδ

i
T 7→ (aℓ)

δ̃juδ̃
i
T ,

(aℓ,0,0)
δjuδ

i
t 7→ (aℓ)

δ̃juδ̃
i
t ,

and γ:





(t0,1)
δjU δ

i
T 7→ (t1)

δ̃jU δ̃
i
T

(t0,1)
δjU δ

i
t 7→ (t1)

δ̃jU δ̃
i
t

(t0,1)
δjuδ

i
T 7→ (t1)

δ̃juδ̃
i
T

(t0,1)
δjuδ

i
t 7→ (t1)

δ̃juδ̃
i
t ,
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γ:





aℓ,i,j 7→ (aℓ)
δ̃j
U
δ̃iT ,

aℓ,−i,j 7→ (aℓ)
δ̃jU δ̃

i
t ,

aℓ,i,−j 7→ (aℓ)
δ̃ju δ̃

i
T ,

aℓ,−i,−j 7→ (aℓ)
δ̃ju δ̃

i
t ,

and γ:





ti,j 7→ (t
δ̃j−1
U
1 · · · t1)

δ̃iT ,

t−i,j 7→ (t
δ̃j−1
U
1 · · · t1)

δ̃it ,

ti,−j 7→ (t−δ̃
j
u

1 · · · t−δ̃u1 )δ̃
i
T ,

t−i,−j 7→ (t−δ̃
j
u

1 · · · t−δ̃u1 )δ̃
i
t ,where i ≥ 0 and j > 0. For i ≥ 0 and j > 0, the element ti,j ∈ Y is mapped by γι to

tγιi,j = (t
δ̃j−1
U
1 · · · t1)

δ̃iT ι = (t
δ̃j−1
U δ̃iT
1 · · · t

δ̃iT
1 )ι = t

ιδ̂j−1
U δ̂iT

1 · · · t
ιδ̂iT
1

= (t
χπδ̂j−1

U δ̂iT
1 · · · t

χπδ̂iT
1 ) = (t

δj−1
U δiT
0,1 · · · t

δiT
0,1)

π = (ti,j)
πbeause δ̃ι = ιδ̂ holds. Similarly, we obtain that aγιℓ,i,j = aπℓ,i,j holds. Thus γι = π. De�nethe normal subgroup

N =
〈 ⋃

σ∈Φ̃∗

(
{(y−1yγχ)δγ}y∈Y\Z,δ∈Φ

)σ〉F (Z)
.We prove that F (Z)/N is invariantly �nitely L-presented so that Lemma 5.25 applies.For i ≥ 0 and j > 0, it holds that

(t−1
i,j t

γχ
i,j )

δT γ = t−γi+1,jt
γδ̃T
i,j = (t

δ̃j−1
U
1 · · · t1)

−δ̃i+1
T (t

δ̃j−1
U
1 · · · t1)

δ̃iT δ̃T = 1,

(t−1
−i,jt

γχ
−i,j)

δtγ = t−γ−i−1,jt
γδ̃t
−i,j = (t

δ̃j−1
U
1 · · · t1)

−δ̃i+1
t (t

δ̃j−1
U
1 · · · t1)

δ̃it δ̃t = 1,

(t−1
i,−jt

γχ
i,−j)

δT γ = t−γi+1,−jt
γδ̃T
i,−j = (t−δ̃

j
u

1 · · · t−δ̃u1 )−δ̃
i+1
T (t−δ̃

j
u

1 · · · t−δ̃u1 )δ̃
i
T δ̃T = 1,

(t−1
−i,−jt

γχ
−i,−j)

δtγ = t−γ−i−1,−jt
γδ̃t
−i,−j = (t−δ̃

j
u

1 · · · t−δ̃u1 )−δ̃
i+1
t (t−δ̃

j
u

1 · · · t−δ̃u1 )δ̃
i
t δ̃t = 1.For i = 0, we also have that

(t−1
0,j t

γχ
0,j)

δUγ = (t0,j+1 t
−1
0,1)

−γtγδ̃U0,j = (t
δ̃jU
1 · · · tδ̃U1 · t1 · t

−1
1 )−1(t

δ̃j−1
U
1 · · · t1)

δ̃U = 1,

(t−1
0,−jt

γχ
0,−j)

δuγ = (t0,−j−1 t
−1
0,−1)

−γtγδ̃u0,−j = (t−δ̃
j+1
u

1 · · · t−δ̃u1 · tδ̃u1 )−1(t−δ̃
j
u

1 · · · tδ̃u1 )δ̃u = 1.However, we also need to onsider the image tδUi,j = t
δiT δU
0,1 with i > 0. Notie that in the�nitely presented monoid S/S ∩ EK the following holds:

TU = UT · tuTU = UT · (utUT )−1 = UT · t−1
0,1,

Tu = uT · tUTu = uT · (utUT )δu = uT · tδu0,1,

tU = U · (utUT ) · t = U · t0,1 · t = Ut · tδt0,1,

tu = u · (UtuT ) · t = u · t0,−1 · t = ut · t−δuδt0,1 .Denote by ∆(x):F (Y) → F (Y), g 7→ x−1gx the inner automorphism of F (Y) that isindued by onjugation with x ∈ F (Y). Then δ ∈ Φ = {δu, δU , δt, δT } satisfy
δT δU = δUδT ·∆(t−1

0,1),

δT δu = δuδT ·∆(tδu0,1),
and δtδU = δUδt ·∆(tδt0,1),

δtδu = δuδt ·∆(t−δuδt0,1 ).



120 Chapter B. A Note on Invariantly Finitely L-Presented GroupsWe prove that F (Z)/N is invariantly �nitely L-presented by 〈{a1, . . . , am, t1} | ∅ | Φ̃ | V〉where the iterated relations in V are given by
V =

{
y−1yδ̃tδ̃T , . . . , y−1yδ̃U δ̃u , y−δ̃T δ̃U yδ̃U δ̃T∆(t−1

1 ), . . . , y−δ̃tδ̃uyδ̃uδ̃t∆(t
−δ̃uδ̃t
1 )

}
y∈Zthat is, we prove that M = 〈

⋃
σ̃∈Φ̃ V σ̃〉F (Z) and N oinide. We �rst note that

N ∋ (t−1
1,1 t

γχ
1,1)

δUγ = t−δUγ1,1 tγδ̃U1,1 = t−δT δUγ0,1 tδ̃T δ̃U1 = t
−δUδT ·∆(t−1

0,1)γ

0,1 tδ̃T δ̃U1

= t
−δUδT γ·∆(t−1

1 )
0,1 tδ̃T δ̃U1 = t

−δ̃U δ̃T ·∆(t−1
1 )

1 tδ̃T δ̃U1 ∈ V.Similar omputations show that the elements in V appear a among the normal generatorsof N . Thus M ⊆ N . On the other hand, for i > 0 and j > 0, we have that
tδUγi,j = (t

δj−1
U
0,1 · · · t0,1)

δiT δUγ

= (t
δj−1
U
0,1 · · · t0,1)
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δUγ ∈ M . It follows analogously for theother normal generators of N that these are ontained inM . Thus F (Z)/N is invariantly�nitely L-presented and so is our subgroup H. 2By [70, Theorem 6.1℄, every �nite index subgroup H of an invariantly �nitely L-presentedgroup G = 〈X | Q | Φ | R〉 is invariantly �nitely L-presented whenever the substitutions
σ ∈ Φ indue endomorphisms of the subgroup H. This allows us to prove Theorem Dusing the results in Theorem 5.27 and Theorem 5.26:Proof of Theorem D. Let G be a �nitely presented group and let H � G be a �nitelygenerated normal subgroup so that G/H is abelian with torsion-free rank at most two.Sine G is �nitely generated, G/H is a �nitely generated abelian group and so it de-omposes into G/H ∼= Z

ℓ × T with torsion subgroup T and torsion-free rank ℓ ≤ 2.Denote by U ≤ G the full preimage of the torsion subgroup T in G. Then G/U ∼= Z
ℓ and
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[U : H] <∞ hold. If ℓ = 0 holds, H has �nite index in G and thus it is invariantly �nitely
L-presented by [70, Theorem 6.1℄. If either ℓ = 1 or ℓ = 2 holds, the subgroup U �G isinvariantly �nitely L-presented by Theorem 5.26 or Theorem 5.27. Eah substitution inthe L-presentation of U is indued by onjugation within the �nitely presented group G.Sine H is a normal subgroup of G eah substitution of the �nite L-presentation of Ustabilizes the subgroup H. Thus [70, Theorem 6.1℄ applies to the �nite index subgroup
H � U and it shows that H is invariantly �nitely L-presented. 2In the proof of Theorem 5.27, it is essential that the elements g ∈ S ∩EK have a uniquerepresentation in the basis {tisj · t0,1 · s

−jt−i | i, j ∈ Z}. This allows us to de�ne theepimorphism γ:F (Y) → F (Z) so that it maps onjugates by elements of the Shreiertransversal to images of automorphisms whih are indued by onjugation with a Shreiertransversal. Sine S/S ∩ EK is �nitely presented, we an always hoose �nitely manyShreier generators W ⊆ Y so that S ∩ EK is generated, as a normal subgroup, by W.In our proof of Theorem 5.27 the onjugates of these elements in W by elements of theShreier transversal from a basis for the subgroup S ∩EK. This is no longer possible for
G/H ∼= Z× Z× Z:Remark 5.28 Consider the notation from the proof of Theorem 5.27. For G/H ∼=
Z×Z×Z, we hoose as Shreier transversal T = {risjtk | i, j, k ∈ Z} and we obtain theShreier generators:

aℓ,i,j,k = γ(risjtk, aℓ) = risjtkaℓt
−ks−jr−i,

si,j,k = γ(risjtk, s) = risj(tkst−ks−1)s−jr−i,

ri,j,k = γ(risjtk, r) = ri(sjtkrt−ks−jr−1)r−i,

ti,j,k = γ(risjtk, t) = 1,where si,j,k = 1 if and only if k = 0 while ri,j,k = 1 if and only if (j, k) = (0, 0). Then
EK = 〈aℓ,i,j,k, si,j,o, ri,p,q | 1 ≤ ℓ ≤ m, i, j, k, o, p, q ∈ Z, o 6= 0, (p, q) 6= (0, 0)〉is freely generated and so is

S ∩ EK = 〈si,j,o, ri,p,q | i, j, o, p, q ∈ Z, o 6= 0, (p, q) 6= (0, 0)〉.Sine G/H ∼= S/S ∩EK ∼= Z×Z×Z is �nitely presented, the subgroup S∩EK is �nitelygenerated as a normal subgroup of S. In partiular, we have that
S/S ∩ EK = 〈r, s, t | tst−1s−1

︸ ︷︷ ︸
=s0,0,1

, trt−1r−1
︸ ︷︷ ︸
=r0,0,1

, srs−1r−1
︸ ︷︷ ︸

=r0,1,0

〉so that S ∩ EK = 〈s0,0,1, r0,0,1, r0,1,0〉
S holds. The normal generators of S ∩ EK satisfy

risjtk · s0,0,1 · t
−ks−jr−i = si,j,k+1 · s

−1
i,j,k,

risjtk · r0,0,1 · t
−ks−jr−i = ri,j,k+1 · r

−1
i,j,k,

risjtk · r0,1,0 · t
−ks−jr−i = si,j,k · ri,j+1,k · s

−1
i+1,j,k · r

−1
i,j,k.



122 Chapter B. A Note on Invariantly Finitely L-Presented GroupsIt an be seen easily (e.g. using Gap) that
U = {si,j,k+1 s

−1
i,j,k, ri,j,k+1 r

−1
i,j,k, si,j,k ri,j+1,k s

−1
i+1,j,k r

−1
i,j,k}i,j,k∈Zis not a basis for S ∩EK. Therefore the ideas in the proof of Theorem 5.27 do not apply.AknowledgmentsI am grateful to Laurent Bartholdi for valuable omments and suggestions.René Hartung, Mathematishes Institut, Georg-August Universität zu Göt-tingen, Bunsenstraÿe 3�5, 37073 Göttingen, GermanyEmail: rhartung�uni-math.gwdg.de



AppendixCCoset Enumeration for Certain In�nitelyPresented GroupsAbstrat. We desribe an algorithm that omputes the index of a �nitely gen-erated subgroup in a �nitely L-presented group provided that this index is�nite. This algorithm shows that the subgroup membership problem for �niteindex subgroups in a �nitely L-presented group is deidable. As an appliation,we onsider the low-index subgroups of some self-similar groups inluding theGrigorhuk group, the twisted twin of the Grigorhuk group, the Grigorhuksuper-group, and the Hanoi 3-group.Keywords. Coset enumeration; reursive presentations; self-similar groups; Gri-gorhuk group; low-index subgroups.
C.1 IntrodutionMany algorithmi problems are unsolvable for �nitely presented groups in general. Forinstane, there is no algorithm whih allows to deide if a group given by a �nite pre-sentation is trivial [95℄. However, the oset enumeration proess introdued by Todd& Coxeter [133℄ and investigated by various others, see [76℄ or the historial notes inChapter 5.9 of [129℄, omputes the index of a �nitely generated subgroup in a �nitelypresented group provided that this index is �nite. Therefore, the Todd-Coxeter methodallows one to prove that a �nitely presented group is trivial.Coset enumeration is one of the most important tools for investigating �nitely pre-sented groups; but, if the subgroup has in�nite index, this proess will not terminate.Even if the subgroup has �nite index, there is no upper bound on the omplexity ofoset enumeration. Therefore, even proving a �nitely presented group being trivial isomputationally a hallenging problem [76, 104℄.



124 Chapter C. Coset Enumeration for Certain In�nitely Presented GroupsFor this reason, solving algorithmi problems for in�nitely presented groups seemsentirely infeasible. However, an interesting family of reursively presented groups wasreently shown to be appliable for omputer investigations. Examples of suh groupsarise as subgroups of the automorphism group of a regular tree. A famous example is theGrigorhuk group G whih plays a prominent role in the area of Burnside problems [53℄.The group G is �nitely generated and it admits a reursive presentation whose relationsare given reursively by the ation of a �nitely generated free monoid of endomorphismsating on �nitely many relations [96℄. In�nite presentations of this type are alled �nite
L-presentations in honor of Lysënok's latter result for the Grigorhuk group G; seeSetion C.2 or [6℄ for a de�nition.Finite L-presentations are `natural' generalizations of �nite presentations and, asthe onept is quite general, they found their appliation in various aspets of grouptheory; see, for instane, [18, 85℄. A �nite L-presentation of a group allows to omputeits lower entral series quotients [9℄ and the Dwyer quotients of its Shur multiplier [66℄.The Dwyer quotients often exhibit periodiities whih yield detailed information on thestruture of the Shur multiplier in general.In this paper, we desribe a oset enumeration proess for omputing the index of a�nitely generated subgroup in a �nitely L-presented group provided that this index is�nite. In order to ahieve this method, we show in Setion C.3 that �nitely many rela-tions are su�ient to ompute an upper bound on the index using oset enumeration for�nitely presented groups. It then remains to either prove that this upper bound is sharpor to improve the bound otherwise. In Setion C.4, we show that the latter problem isalgorithmially deidable in general. In partiular, we show that there exists an algo-rithm whih deides whether or not a map from the free group over the L-presentationsgenerators into a �nite group indues a homomorphism from the L-presented group.Similar to oset enumeration for �nitely presented groups, our method for �nitely
L-presented groups allows straightforward appliations inluding a membership test for�nite index subgroups. In partiular, our method allows us to ompute the number ofsubgroups with small index for some self-similar groups in Setion C.5. Our expliitomputations orret the ounts obtained in [11,12℄, and hene we provide a further steptowards Problem 6.1 raised in [58℄.We have implemented our oset enumeration method and its appliations in theomputer algebra system Gap [50℄. Computer experiments with this implementationdemonstrate that our method works reasonably well in pratie.In a forthoming paper, we prove a variant of the Reidemeister-Shreier theorem for�nitely L-presented groups whih shows that eah �nite index subgroup of a �nitely
L-presented group is �nitely L-presented itself.C.2 PreliminariesWe brie�y reall the notion of a �nite L-presentation as introdued in [6℄. For thispurpose, let F be a �nitely generated free group over the alphabet X . Furthermore, let
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Q,R ⊂ F and Φ ⊂ End(F ) be �nite subsets. Then the quadruple 〈X | Q | Φ | R〉 is a�nite L-presentation. It de�nes the �nitely L-presented group

G =
〈
X

∣∣∣ Q ∪
⋃

σ∈Φ∗

Rσ
〉
, (C.1)where Φ∗ denotes the free monoid of endomorphisms generated by Φ; that is, the losureof {id}∪Φ under omposition of endomorphisms. We will also write G = 〈X | Q | Φ | R〉for the �nitely L-presented group in Eq. (C.1).Clearly, every �nitely presented group 〈X | R〉 is �nitely L-presented by 〈X | ∅ |

∅ | R〉. Therefore, �nite L-presentations generalize the onept of �nite presentations.Other examples of �nitely L-presented groups are various self-similar groups or branhgroups [6℄. For instane, the Grigorhuk group satis�es the followingTheorem 2.1 (Lysënok, 1985) The Grigorhuk group G is �nitely L-presented by
〈{a, b, c, d} | {a2, b2, c2, d2, bcd} | {σ} | {(ad)4, (adacac)4}〉,where σ is the endomorphism of the free group over the alphabet {a, b, c, d} indued bythe mapping a 7→ aca, b 7→ d, c 7→ b, and d 7→ c.Proof. For a proof, we refer to [96℄. 2Finite L-presentations are reursive presentations whih are `natural' generalizations of�nite presentations. They were used by various authors to onstrut groups with inter-esting properties; see, for instane, [18, 85℄. Furthermore, every free group in a varietyof groups that satis�es �nitely many identities is �nitely L-presented [6℄; e.g., the freeBurnside group B(n,m) of exponent m on n generators is �nitely L-presented by

〈{a1, . . . , an} ∪ {t} | {t} | Σ | {tm}〉,where the endomorphisms Σ = {σx | x ∈ {a±1
1 , . . . , a±1

n }} are indued by the mappings
σx:

{
ai 7→ ai, for eah 1 ≤ i ≤ n
t 7→ tx,for eah x ∈ {a±1

1 , . . . , a±1
n }.C.3 Coset Enumeration for Finitely L-Presented GroupsLet G = 〈X | Q | Φ | R〉 be a �nitely L-presented group and let U ≤ G be a �nitely gen-erated subgroup with �nite index in G. In this setion, we show that oset enumerationfor �nitely presented groups yields an upper bound on the index [G : U ]. In Setion C.4,it then remains to prove (or disprove) that this upper bound is sharp.



126 Chapter C. Coset Enumeration for Certain In�nitely Presented GroupsLet {g1, . . . , gn} be a generating set for the subgroup U . We assume that the gener-ators of U are given as words over the alphabet X ∪ X−. Denote the free group over Xby F and let K be the normal subgroup
K =

〈
Q∪

⋃

σ∈Φ∗

Rσ
〉Fso that G ∼= F/K holds. Then the subgroup E = 〈g1, . . . , gn〉 ≤ F satis�es that U ∼=

EK/K. Hene, we are to ompute the index [G : U ] = [F : EK].For an element σ ∈ Φ∗, we denote by ‖σ‖ the usual word-length in the generating set
Φ of the free monoid Φ∗. De�ne Φ(i) = {σ ∈ Φ∗ | ‖σ‖ ≤ i}, for eah i ∈ N0. Then, as Q,
Φ, and R are �nite sets, the normal subgroup

Ki =
〈
Q∪

⋃

σ∈Φ(i)

Rσ
〉Fis �nitely generated as normal subgroup. We obtain K =

⋃
i≥0Ki and also EK =⋃

i≥0EKi. Consider the asending hain of subgroups
EK0 ≤ EK1 ≤ . . . ≤ EKℓ ≤ EKℓ+1 ≤ . . . ≤ EK ≤ F.Then the following lemma is straightforward.Lemma 3.2 The subgroup EK has �nite index in F if and only if there exists ℓ ∈ N suhthat EKℓ has �nite index in F . In that ase, there exists ℓ′ ∈ N suh that EKℓ′ = EK.Proof. Obviously, if [F : EKℓ] is �nite for some ℓ ∈ N, then the subgroup EK has �niteindex in F . On the other hand, if [F : EK] is �nite, then, as F is �nitely generated, thesubgroup EK is �nitely generated. Let {u1, . . . , un} be a generating set of EK. Sine

EK =
⋃
i≥0EKi holds, there exists a positive integer ℓ ∈ N suh that {u1, . . . , un} ⊆ EKℓand thus EKℓ = EK. 2Note that the index [F : EKℓ] is the index of the subgroup U in the �nitely presentedovering group

Gℓ = 〈X | {q, rσ | q ∈ Q, r ∈ R, σ ∈ Φ(ℓ)}〉. (C.2)By Lemma 3.2, there exists a positive integer ℓ ∈ N so that the subgroup U has �niteindex in Gℓ. In this ase, oset enumeration for �nitely presented groups omputes theindex [Gℓ : U ]. Although we do not know this integer ℓ a priori, we an use the following�rsthand approah to �nd suh an integer: Starting with ℓ = 1, we attempt to prove�niteness of [Gℓ : U ] using oset enumeration for �nitely presented groups. If this attemptdoes not sueed within a previously de�ned time limit, we inrease the integer ℓ andthe time limit. We ontinue this proess until eventually the index [Gℓ : U ] is proved tobe �nite. In theory, Lemma 3.2 guarantees that this proess will terminate. Computerexperiments with the implementation of our method in Gap show that this �rsthandapproah works reasonably well in pratie. In partiular, our implementation allows toompute the index of all subgroups onsidered in [7, 11, 58℄ and Chapter VIII of [38℄.



C.4. Deiding Validity of a Permutation Representation 127Suppose that the integer ℓ ∈ N is hosen so that n = [Gℓ : U ] is �nite and thatthe oset enumeration for �nitely presented groups has terminated and has omputeda permutation representation ϕℓ:F → Sn for the group's ation on the right osets
EKℓ\F . Then the index [G : U ] = [F : EK] divides the index [Gℓ : U ] = [F : EKℓ], andhene [Gℓ : U ] is an upper bound on [G : U ]. It therefore remains to either prove that
[F : EK] = [F : EKℓ] holds, or to inrease the integer ℓ otherwise. The permutationrepresentation ϕℓ:F → Sn is alled valid, if [F : EK] = [F : EKℓ] holds.Clearly, a permutation representation ϕℓ:F → Sn is valid if and only if every relation
r ∈ F of the group presentation is ontained in the kernel of ϕℓ. Therefore, if the group
G = F/K were �nitely presented, only �nitely many relations need to be onsidered toprove validity of ϕℓ. However, for �nitely L-presented groups, even heking validity of apermutation representation ϕℓ involves possibly in�nitely many relations. In Setion C.4,we prove that the latter problem is deidable in general.C.4 Deiding Validity of a Permutation RepresentationIn this setion, we desribe our algorithm for deiding whether or not a permutationrepresentation ϕ:F → Sn, as onsidered in Setion C.3, is valid. This is equivalent toheking whether a oset-table for U in Gℓ obtained by the methods of Setion C.3 de�nesthe given subgroup U ≤ G.Let ϕ:F → Sn be a permutation representation as in Setion C.3 and let Φ∗ be thefree monoid generated by a �nite set Φ ⊆ End(F ). For two endomorphisms σ ∈ Φ∗ and
δ ∈ Φ∗, we say that δ redues to σ with respet to ϕ if there exists a homomorphism
π: im (σϕ) → im (δϕ) suh that σϕπ = δϕ. In this ase, we will write δ ;ϕ σ. Note that
; is a re�exive and transitive relation on the endomorphisms Φ∗. The following lemmagives an equivalent de�nition for δ ;ϕ σ.Lemma 4.3 Let δ, σ ∈ End(F ) be given. Then δ redues to σ with respet to ϕ if andonly if ker(σϕ) ≤ ker(δϕ) holds.Proof. Assume that δ ;ϕ σ holds. Then, by de�nition, there exists a homomorphism
π: im (σϕ) → im (δϕ) suh that σϕπ = δϕ. Let g ∈ ker(σϕ). Then we have that gδϕ =
gσϕπ = (gσϕ)π = 1 and hene, we obtain g ∈ ker(δϕ). Suppose that ker(σϕ) ≤ ker(δϕ)holds. Then we have the isomorphisms F/ ker(σϕ) → im (σϕ), g ker(σϕ) 7→ gσϕ and
F/ ker(δϕ) → im (δϕ), g ker(δϕ) 7→ gδϕ. We further have the natural homomorphism
F/ ker(σϕ) → F/ ker(δϕ), g ker(σϕ) 7→ g ker(δϕ). This yields the existene of a homo-morphism π: im (σϕ) → im (δϕ) suh that gσϕπ = gδϕ. 2A �nite generating set for the kernel ker(σϕ) is given by the Shreier theorem [95, Propo-sition 3.7℄ and hene, it is straightforward to hek whether or not δ ;ϕ σ holds. Thede�nition δ ;ϕ σ also yields the following immediate onsequene.Lemma 4.4 There is no in�nite set of endomorphisms of F suh that for eah pair (σ, δ)from this set, neither σ ;ϕ δ nor δ ;ϕ σ hold.



128 Chapter C. Coset Enumeration for Certain In�nitely Presented GroupsProof. Obviously, for every endomorphism σ ∈ End(F ), it holds that σ ;ϕ σ. Bythe universal property of the free group F , a homomorphism σϕ:F → Sn is uniquelyde�ned by the images xσϕ1 , . . . , xσϕn of the elements x1, . . . , xn of a basis of F . Sine
im (ϕ) is a �nite group, there are only �nitely many homomorphisms F → im (ϕ) andtherefore Hom(F, im (ϕ)) is �nite. Hene, an in�nite set of endomorphisms will ontainendomorphisms σ and δ with xσϕi = xδϕi , for eah 1 ≤ i ≤ n. In this ase, σ ;ϕ δobviously holds. 2An element σ ∈ Φ∗ is alled a Φ-desendant of δ ∈ Φ∗ if there exists ψ ∈ Φ suh that
σ = ψδ. Thereby, the free monoid Φ∗ obtains the struture of a |Φ|-regular rooted treewith its root being the identity map id:F → F . We an further endow the monoid Φ∗with a length-plus-(from the right)-lexiographi ordering ≺ by hoosing an arbitraryordering on the �nite set Φ. More preisely, we de�ne σ ≺ δ if ‖σ‖ < ‖δ‖ or, otherwise,if σ = σ1 · · · σn and δ = δ1 · · · δn, with σi, δi ∈ Φ, and there exists a positive integer
1 ≤ k ≤ n suh that σi = δi, for k < i ≤ n, and σk ≺ δk. Sine Φ is �nite, the obtainedordering ≺ is a well-ordering on the monoid Φ∗, see [129℄, and therefore there is no in�nite
≺-desending series of endomorphisms in Φ∗.Our algorithm that deides validity of a permutation representation ϕ:F → Sn isdisplayed in Algorithm C.1 below. We need to prove the followingIsValidPermRep(X , Q, Φ, R, U , ϕ)Choose an ordering on Φ = {φ1, . . . , φn} with φi ≺ φi+1.Initialize V := {id:F → F} and S := {φ1, . . . , φn}.while S 6= ∅ doRemove the �rst entry δ from S.if (∃ r ∈ R: rδ 6∈ kerϕ

) then return( false )if not (∃σ ∈ V : δ ;ϕ σ) thenAppend φ1δ, . . . , φnδ to S.Add δ to V .return( true )Algorithm C.1: Deiding validity of a permutation representationTheorem 4.5 The algorithm IsValidPermRep returns true if and only if the permu-tation representation ϕ:F → Sn is valid.Proof. The ordering ≺ on Φ an be extended to an ordering on Φ∗ as desribed above.By onstrution, the stak S is ordered with respet to ≺. Sine F is �nitely generated,the set of homomorphisms Hom(F,Sn) is �nite. Thus, in partiular, the set {δϕ | δ ∈
V } ⊆ Hom(F,Sn) is �nite and therefore the algorithm IsValidPermRep an add only�nitely many endomorphisms to the set V . Thus, for every Φ-desendant δ in the stak
S, there will eventually exist an element σ ∈ V suh that δ ;ϕ σ. Therefore, thealgorithm IsValidPermRep is guaranteed to terminate and it returns either true or



C.4. Deiding Validity of a Permutation Representation 129false. Clearly, if the algorithm returned false, then it found a relation rδ whih yieldsa oinidene, and hene the permutation representation ϕ:F → Sn is not valid.Suppose that the algorithm returned true. By the onstrutions of Setion C.3, the�xed relations in Q of the L-presentation 〈X | Q | Φ | R〉 are already ontained in thekernel of the permutation representation ϕ. Therefore, it su�es to prove that everyrelation of the form rσ1 , with r ∈ R and σ1 ∈ Φ∗, is ontained in the kernel of ϕ.By onstrution, there exists δ ∈ V maximal subjet to the existene of w ∈ Φ∗ suhthat σ1 = wδ. If ‖w‖ = 0, then σ1 = δ is ontained in V and therefore rδ ∈ kerϕ,as the algorithm did not return false. Otherwise, there exist ψ ∈ Φ and v ∈ Φ∗suh that wδ = vψδ. Sine ψδ 6∈ V , there exists an element ε ∈ V with ε ≺ ψδ, byonstrution, suh that ψδ redues to ε with respet to ϕ. Thus, by de�nition, thereexists a homomorphism π: im (εϕ) → im (ψδϕ) suh that ψδϕ = εϕπ. In partiular, weobtain that rσ1ϕ = rwδϕ = rvψδϕ = rvεϕπ. As π is a homomorphism, it su�es to provethat rvε ∈ kerϕ. Note that, sine ε ≺ ψδ, we have that vε ≺ vψδ = σ1. Continuing thisrewriting proess with the element σ2 = vε yields a desending sequene σ1 ≻ σ2 ≻ . . .in the monoid Φ∗. As the ordering ≺ is a well-ordering, this proess terminates with anelement σn ∈ V . Sine the algorithm did not return false, we have that rσn ∈ kerϕwhih proves the assertion. 2Note that, if the algorithm IsValidPermRep found a oinidene, this an be used toupdate the oset-table, and thus another appliation of oset enumeration for �nitelypresented groups an be avoided. Moreover, the Algorithm C.1 yields the followingTheorem 4.6 Let G be �nitely L-presented by 〈X | Q | Φ | R〉 and denote the free groupover X by F . There exists an algorithm whih deides whether or not a homomorphism
ϕ:F → Sn indues a homomorphism G→ Sn.If Φ∗ = {σ}∗ is generated by a single element σ ∈ End(F ), then there will exist positiveintegers 0 ≤ i < j suh that σj ;ϕ σ

i. In this ase, the algorithm IsValidPermRepsimpli�es to the followingCorollary 4.7 Let 0 ≤ i < j be positive integers suh that σj ;ϕ σi. Then we have
[F : EKℓ] = [F : EK] if and only if

{q, rσ
k

| q ∈ Q, r ∈ R, 0 ≤ k < j} ⊆ kerϕ. (C.3)We onsider the followingExample 4.8 Let G denote the Basilia Group [60℄. Then G is �nitely L-presented by
〈{a, b} | ∅ | {σ} | {[a, ab]}〉, where σ is indued by the mapping a 7→ b2 and b 7→ a;see [16℄. We onsider the subgroup U = 〈a3, b, aba〉. A oset enumeration for �nitelypresented groups yields that the subgroup U has index 3 in the �nitely presented overinggroup

G0 = 〈{a, b} | {[a, ab]}〉.Furthermore, we obtain the permutation representation ϕ:F → S3 for the group's ationon the osets EK0\F . This permutation representation is indued by the mapping
a 7→ (1, 2, 3) and b 7→ (2, 3).



130 Chapter C. Coset Enumeration for Certain In�nitely Presented GroupsWe now obtain the images
aσϕ = ( ), bσϕ = (1, 2, 3),

aσ
2ϕ = (1, 3, 2), bσ

2ϕ = ( ),

aσ
3ϕ = ( ), bσ

3ϕ = (1, 3, 2).Clearly, the mapping aσϕ 7→ aσ
3ϕ and bσϕ 7→ bσ

3ϕ indues a homomorphism π: im (σϕ) →
im (σ3ϕ), and hene we have σ3 ;ϕ σ. By Corollary 4.7, it therefore su�es to provethat

([a, ab])ϕ = ( ), ([a, ab])σϕ = ( ), and ([a, ab])σ
2ϕ = ( )hold. This yields that [G : U ] = 3.C.5 Further AppliationsThe permutation representation ϕ:F → Sn for a �nite index subgroup EK/K ≤ F/Kyields various algorithmi appliations. For instane, an element w ∈ F is ontained inthe given subgroup EK if and only if it stabilizes the trivial oset EK 1. This an beeasily be heked using the permutation representation ϕ. In partiular, we obtainTheorem 5.9 The subgroup membership problem for �nite index subgroups in a �nitely

L-presented group is deidable.Moreover, having omputed permutation representations ϕ1 and ϕ2 for two �nite indexsubgroups U and V of a �nitely L-presented group, one an ompute a generating setfor the intersetion U ∩ V . Thus, in partiular, our method allows one to ompute theore of a �nite index subgroup. For example, the ore of the subgroup U in Example 4.8is given by
H = 〈b2, a3, a2ba−1b−1, abab−1, ab2a−1, ba2b−1a−1, baba−2〉.SineH has �nite index inG, our method allows to ompute a permutation representationfor the ore H and we obtain G/H ∼= S3.Low-Index Subgroups of Finitely L-Presented GroupsThe oset enumeration proess for �nitely presented groups was used in [40℄ to desribe alow-index subgroup algorithm that omputes all subgroups of a �nitely presented groupup to a given index. This algorithm also yields a method for omputing all subgroupswith small index in a �nitely L-presented group. In this setion, we will desribe thismethod for �nitely L-presented groups and we use this algorithm to investigate some self-similar groups. In partiular, our implementation in the omputer algebra system Gapallows us to determine the number of subgroups with index at most 64 in the Grigorhukgroup.Let G = F/K be a �nitely L-presented group and let n be a positive integer. Usingthe low-index subgroup algorithm for �nitely presented groups [40℄, see also Chapter 5.6



C.5. Further Appliations 131of [129℄, we obtain the list of subgroups with index at most n in the �nitely presentedovering group Gℓ = F/Kℓ. Sine the overing group Gℓ naturally maps onto G, everysubgroup EKℓ/Kℓ with index n in Gℓ maps to a subgroup of the �nitely L-presentedgroup G. The index of this image EK/K in G divides the index n = [F : EKℓ]. Onthe other hand, every subgroup EK/K with index n in the �nitely L-presented group
F/K has a full preimage EK/Kℓ in the �nitely presented group Gℓ with index n. Thusthe list of subgroups with index at most n in a �nitely L-presented group G an beobtained from the list of subgroups of a �nitely presented overing group Gℓ by removingdupliate images. Our solution to the subgroup membership problem an be used toremove dupliate images in G.As an appliation, we onsider some interesting self-similar groups and we determinethe number of subgroups with small index. We �rst onsider the Grigorhuk group G:its lattie of normal subgroups is well-understood [7℄ while its lattie of subgroups with�nite index is widely unknown [58℄. It is well known [58℄ that the Grigorhuk group hasseven subgroups of index two. In [116℄, it was shown that the subgroups of index twoare the only maximal subgroups of G. Our low-index subgroup algorithm allows us todetermine the number of subgroups with index at most 64 in the group G and thereby,it orrets the ounts in Setion 7.4 of [12℄ and in Setion 4.1 of [11℄. The followinglist summarizes the number of subgroups (≤) and the number of normal subgroups (�)among them:

index 1 2 4 8 16 32 64

≤ 1 7 31 183 1827 22931 378403
� 1 7 7 7 5 3 3The Grigorhuk super-group G̃ was introdued in [11℄. It ontains the Grigorhuk groupas an in�nite index subgroup. Little is known about its subgroup lattie. The twistedtwin Ḡ of the Grigorhuk group was introdued in [14℄. Similarly, little is known aboutthe subgroup lattie of the twisted twin Ḡ. Our low-index subgroup algorithm allowsus to determine the number of subgroups with index at most 16 in both groups. Theirsubgroup ounts are:

G̃ Ḡindex
≤ � ≤ �

1 1 1 1 1
2 15 15 15 15
4 147 35 147 35
8 2163 43 1963 43
16 52403 55 46723 47As both groups are 2-groups, the only maximal subgroups with �nite index are thesubgroups with index two; though the question of determining all maximal subgroups of

G̃ and Ḡ has not been addressed in this paper.Finally, we onsider the Basilia group and the Hanoi-3 group [59℄ with its L-presentation from [15℄. The following list also inludes the number of maximal subgroups



132 Chapter C. Coset Enumeration for Certain In�nitely Presented Groups(max):
Hanoi−3 Basilicaindex
≤ � max ≤ � max

1 1 1 1 1 1 1
2 7 7 7 3 3 3
3 12 0 12 7 4 7
4 59 7 4 19 7 0
5 15 0 15 11 6 11
6 136 4 0 39 13 0
7 21 0 21 15 8 15
8 335 13 0 163 19 0
9 225 0 0 115 13 9
10 153 3 0 83 19 0
11 33 0 33 23 12 23
12 2872 12 0 355 31 0
13 39 0 39 27 14 27
14 297 3 0 115 25 0
15 450 0 0 77 24 0
16 1855 13 0 1843 47 0
17 51 0 51 35 18 35
18 5001 3 0 1047 44 0
19 57 0 57 39 20 39
20 1189 9 0 939 45 0
21 756 0 0 105 32 0
22 531 3 0 223 37 0
23 69 0 69 47 24 47
24 52220 23 0 4723 87 0
25 225 0 75 411 31 25
26 783 3 0 315 43 0
27 5616 0 27 736 49 0
28 2301 9 0
29 87 0 87
30 15462 3 0
31 93 0 93
32 9119 25 0The largest abelian quotient H/H ′ of the Hanoi-3 group H is 2-elementary abelian ofrank 3. Thus, by the Feit-Thompson theorem [47℄, there are no normal subgroups withodd index in the Hanoi-3 group.AknowledgmentsI am grateful to Laurent Bartholdi for valuable omments and suggestions.



C.5. Further Appliations 133René Hartung, Mathematishes Institut, Georg-August Universität zu Göt-tingen, Bunsenstraÿe 3�5, 37073 Göttingen, GermanyEmail: rhartung�uni-math.gwdg.deJune 2010 (revised May 2011).



134 Chapter C. Coset Enumeration for Certain In�nitely Presented Groups



AppendixDA Reidemeister-Shreier Theorem forFinitely L-Presented GroupsAbstrat. We prove a variant of the well-known Reidemeister-Shreier Theoremfor �nitely L-presented groups. More preisely, we prove that eah �nite indexsubgroup of a �nitely L-presented group is itself �nitely L-presented. Ourproof is onstrutive and it yields a �nite L-presentation for the subgroup. Wefurther study onditions on a �nite index subgroup of an invariantly �nitely
L-presented group to be invariantly L-presented itself.Keywords. Reidemeister-Shreier Theorem; in�nite presentations; reursivepresentations; self-similar groups; Basilia group; Grigorhuk group; �nite in-dex subgroups;Mathematis Subjet Classi�ation 2010: 20F05, 20E07, 20-04D.1 IntrodutionGroup presentations play an important role in omputational group theory. In partiular�nite presentations have been subjet to extensive researh in omputational group the-ory dating bak to the early days of omputer-algebra-systems [32, 88, 102, 129℄. Grouppresentations, on the one hand, provide an e�etive desription of the group. On theother hand, a desription of a group by its generators and relations leads to variousdeision problems whih are known to be unsolvable in general [95℄. For instane, theword problem of a �nitely presented group is unsolvable [27,113℄. However, various totaland partial algorithms for �nitely presented groups are known [129℄. For instane, theoset-enumeration proess introdued by Todd and Coxeter [133℄ enumerates the osetsof a subgroup in a �nitely presented group. If the subgroup has �nite index, oset-enumeration terminates and it omputes a permutation representation for the group'sation on the osets. Coset-enumeration is a partial algorithm as the proess will not



136 Chapter D. A Reidemeister-Shreier Theorem for Finitely L-Presented Groupsterminate if the subgroup has in�nite index. However, �nite presentations often allowtotal algorithms that ompute fator groups of speial type (inluding abelian quotients,nilpotent quotients [107℄ and, in general, solvable quotients [93℄).Beside quotient and subgroup methods, the well-known theorem by Reidemeister [119℄and Shreier [124℄ allows one to ompute a presentation for a subgroup. The Reide-meister-Shreier Theorem expliitly shows that a �nite index subgroup of a �nitely pre-sented group is itself �nitely presented. A similar result an be shown for �nite indexideals in �nitely presented semi-groups [31℄. In pratie, a permutation representationfor the group's ation on the osets allows one to ompute the Shreier generators of thesubgroup and the Reidemeister rewriting. The Reidemeister rewriting an be used torewrite the relations of the group to relations of the subgroup [72, 95, 129℄. A methodfor omputing a �nite presentation for a �nite index subgroup an be applied in theinvestigation of the struture of a group by its �nite index subgroups [77℄.Even though �nitely presented groups have been studied for a long time, most groupsare not �nitely presented beause there are unountably many two-generator groups [103℄but only ountably many �nite presentations [6℄. A generalization of �nite presentationsare �nite L-presentations whih were introdued in [6℄; however, there are still onlyountably many �nite L-presentations. It is known that various examples of self-similaror branh groups (inluding the Grigorhuk group [53℄ and its twisted twin [14℄) are�nitely L-presented but not �nitely presented [6℄. Finite L-presentations are possiblyin�nite presentations with �nitely many generators whose relations (up to �nitely manyexeptions) are obtained by iteratively applying �nitely many substitutions to a �niteset of relations; see [6℄ or Setion D.2 for a de�nition. A �nite L-presentation is invariantif the substitutions whih generate the relations indue endomorphisms of the group.In fat, invariant �nite L-presentations are �nite presentations in the universe of groupswith operators [87,111℄ in the sense that the operator domain of the group generates thepossibly in�nitely many relations out of a �nite set of relations.Finite L-presentations allow omputer algorithms to be applied in the investigationof the groups they de�ne. For instane, they allow to ompute the lower entral seriesquotients [9℄, the Dwyer quotients of the group's Shur multiplier [66℄, and even a oset-enumeration proess exists for �nitely L-presented groups [67℄. It is the aim of this paperto prove the following variant of the well-known Reidemeister-Shreier Theorem:Theorem 1.1 Eah �nite index subgroup of a �nitely L-presented group is �nitely L-presented.If the �nite index subgroup in Theorem 1.1 is normal and invariant under the substitu-tions (i.e., a normal and admissible subgroup in the notion of Krull & Noether [87,111℄),an easy argument gives a �nite L-presentation for the subgroup; furthermore, if the groupis invariantly �nitely L-presented, so is the subgroup. However, more work is needed ifthe subgroup is not invariant under the substitutions. Under either of two extra on-ditions (the subgroup is leaf-invariant, see De�nition 5.20; or it is normal and weaklyleaf-invariant, see De�nition 7.36), we show that the subgroup is invariantly �nitely L-presented as soon as the group is. We have not been able to get rid of these extra



D.2. Preliminaries 137assumptions. In partiular, it is not lear whether a �nite index subgroup of an in-variantly �nitely L-presented group is always invariantly �nitely L-presented. We showthat the methods presented in this paper will (in general) fail to ompute invariant L-presentations for the subgroup even if the group is invariantly L-presented. However, weare not aware of a method to prove that a given subgroup does not admit an invariant�nite L-presentation at all.Our proof of Theorem 1.1 is onstrutive and it yields a �nite L-presentation forthe subgroup. These �nite L-presentations an be applied in the investigation of theunderlying groups as the methods in [77℄ suggest for �nitely presented groups. Notiethat Theorem 1.1 was already posed in Proposition 2.9 of [6℄. The proof we explain inthis paper follows the sketh given in [6℄, but �xes a gap as the L-presentation of thegroup in Theorem 1.1 is possibly non-invariant. Even if the L-presentation is assumedto be invariant, the onsidered subgroup annot be assumed to be invariant under thesubstitutions.This paper is organized as follows: In Setion D.2, we reall the notion of a �-nite L-presentation and we reall basi group theoreti onstrutions whih preserve theproperty of being (invariantly) �nitely L-presented. Then, in Setion D.3, we reall thewell-known Reidemeister-Shreier proess. Before we prove Theorem 1.1 in Setion D.6,we onstrut, in Setion D.4, a ounter-example to the original proof of Theorem 1.1in [6℄. Then, in Setion D.5, we introdue the stabilizing subgroups whih are the maintools in our proof of Theorem 1.1. In Setion D.7, we study onditions on the �niteindex subgroup of an invariantly L-presented group to be invariantly L-presented it-self. We onlude this paper by onsidering two examples of subgroup L-presentationsin Setion D.8 inluding the normal losure of a generator d of the Grigorhuk group Gas in [11, 58℄. We �x a mistake in the generating set of the normal losure D = 〈d〉Gusing our Reidemeister-Shreier Theorem for �nitely L-presented groups. In partiularwe show, in the style of [77℄, how these omputational methods an be applied in theinvestigation of self-similar groups.D.2 PreliminariesIn the following, we brie�y reall the notion of a �nite L-presentation and the notion a�nitely L-presented group as introdued in [6℄. Moreover, we reall some basi onstru-tions for �nite L-presentations.A �nite L-presentation is a group presentation of the form
〈
X

∣∣∣Q∪
⋃

σ∈Φ∗

Rσ
〉
, (D.1)where X is a �nite alphabet, Q and R are �nite subsets of the free group F over X ,and Φ∗ ⊆ End(F ) denotes the free monoid of endomorphisms whih is �nitely generatedby Φ. We also write 〈X | Q | Φ | R〉 for the �nite L-presentation in Eq. (D.1) and

G = 〈X | Q | Φ | R〉 for the group it de�nes.



138 Chapter D. A Reidemeister-Shreier Theorem for Finitely L-Presented GroupsA group whih admits a �nite L-presentation is �nitely L-presented. An L-presen-tation of the form 〈X | ∅ | Φ | R〉 is asending and an L-presentation 〈X | Q | Φ | R〉is invariant (and the group it presents is invariantly L-presented), if eah endomor-phism ϕ ∈ Φ indues an endomorphism of the group; that is, if the normal subgroup
〈Q ∪

⋃
σ∈Φ∗ Rσ〉F ≤ F is ϕ-invariant. Eah asending L-presentation is invariant andeah invariant L-presentation 〈X | Q | Φ | R〉 admits an asending L-presentation

〈X | ∅ | Φ | Q ∪ R〉 whih de�nes the same group. On the other hand, we have the fol-lowingProposition 2.2 There are �nite L-presentations that are not invariant.Proof. The group B = 〈{a, b, t} | {at a−4, bt
−1
b−2, [a, bt

i
] | i ∈ Z}〉 is a met-abelian,in�nitely related group with trivial Shur multiplier [18℄. By introduing a stable letter

u, this group admits the �nite L-presentation
〈
{a, b, t, u}

∣∣∣ {ub−1}
∣∣∣ {σ, δ}

∣∣∣ {ata−4, bt
−1
b−2, [a, u]}

〉
,where σ is the free group homomorphism indued by the map σ: a 7→ a, b 7→ b, t 7→ t, and

u 7→ ut, while δ is the free group homomorphism indued by the map δ: a 7→ a, b 7→ b,
t 7→ t, and u 7→ ut

−1 . This �nite L-presentation is not invariant [64℄. 2Another non-invariant L-presentation an be given for the free produt Z2∗Z2 = 〈{a, b} |
{a2, b2}〉: it is �nitely L-presented by 〈{a, b} | {a2} | {σ} | {b2}〉 where σ is indued bythe map a 7→ ab and b 7→ b2. If this latter L-presentation were invariant, the asending�nite L-presentation 〈{a, b} | ∅ | {σ} | {a2, b2}〉 would also de�ne Z2 ∗ Z2. In thisase (a2)σ = abab is a relation and, sine a2 = b2 = 1 in the group, the generators
a and b ommute. Thus the latter asending �nite L-presentation de�nes a quotientof the 2-elementary abelian group Z2 × Z2. In partiular, it de�nes a �nite group.Hene, 〈{a, b} | ∅ | {σ} | {a2, b2}〉 is not a �nite L-presentation for Z2 ∗ Z2 and so
〈{a, b} | {a2} | {σ2} | {b2}〉 is not an invariant L-presentation.We are not aware of a method to deide whether or not a given (non-asending) �nite
L-presentation is invariant. In partiular, we have no answer to the followingQuestion 2.3 Is there a �nitely L-presented group so that eah of its �nite L-presen-tation is not invariant?The lass of �nitely L-presented groups ontains all �nitely presented groups:Proposition 2.4 Eah �nitely presented group 〈X | R〉 is �nitely L-presented by theinvariant (asending) �nite L-presentation 〈X | ∅ | ∅ | R〉.Therefore, (invariant or asending) �nite L-presentations generalize the onept of �nitepresentations. Examples of �nitely L-presented, but not �nitely presented, groups arevarious self-similar or branh groups [6℄ inluding the Grigorhuk group [53, 56, 96℄ andits twisted twin [14℄. However, the onept of a �nite L-presentation is quite general sothat other examples of in�nitely presented groups are �nitely L-presented [18, 85℄.



D.2. Preliminaries 139Various group theoreti onstrutions that preserve the property of being �nitely
L-presented have been studied in [6℄. For ompleteness, we reall some of these onstru-tions in the remainder of this setion.Proposition 2.5 (Bartholdi [6, Proposition 2.7℄) Let G = 〈X | Q | Φ | R〉 be a�nitely L-presented group and let H = 〈Y | S〉 be �nitely presented. The group Kwhih satis�es the short exat sequene 1 → G→ K → H → 1 is �nitely L-presented.Proof. We reall the onstrutions from [6℄: Let δ:H → K be a setion of H to K andidentify G with its image in K. Eah relation r ∈ S of the �nitely presented group Hlifts, through the setion δ, to an element gr ∈ G. As the group G is normal in K, eahgenerator t ∈ Y of the �nitely presented group H ats, via δ, on the subgroup G. Thuswe have xσ(t) = gx,t ∈ G for eah x ∈ X and t ∈ Y. If X ∩ Y = ∅, we onsider the �nite
L-presentation

〈X ∪ Y | Q ∪ {r g−1
r | r ∈ S} ∪ {xtg−1

x,t | x ∈ X , t ∈ Y} | Φ̂ | R〉, (D.2)where the endomorphisms Φ of G's L-presentation are extended to endomorphisms Φ̂ =
{σ̂ | σ ∈ Φ} of the free group F (X ∪ Y) by

σ̂:F (X ∪ Y) → F (X ∪ Y),

{
x 7→ xσ, for eah x ∈ X
y 7→ y, for eah y ∈ Y.Then the �nite L-presentation in Eq. (D.2) is a presentation for K; see [6℄. 2As eah �nite group is �nitely presented, Proposition 2.5 yields the immediateCorollary 2.6 Eah �nite extension of a �nitely L-presented group is �nitely L-pre-sented.The onstrution in the proof of Proposition 2.5 gives a �nite L-presentation for K whihis not asending � even if the group G we started with has an asending L-presentation.We therefore ask the followingQuestion 2.7 Is every �nite extension of an invariantly (�nitely) L-presented groupinvariantly (�nitely) L-presented?We do not have an answer to this question in general; though we suspet its answeris negative, see Remark 7.43. Given endomorphisms Φ of the normal subgroup G inProposition 2.5, one problem is to onstrut endomorphisms of the �nite extension Kwhih restrit to Φ. This does not seem to be possible in general.A �nite L-presentation for a free produt of two �nitely L-presented groups is givenby the following improved version of [6, Proposition 2.6℄.Proposition 2.8 The free produt of two �nitely L-presented groups is �nitely L-pre-sented. If both �nitely L-presented groups are invariantly L-presented, so is their freeprodut.



140 Chapter D. A Reidemeister-Shreier Theorem for Finitely L-Presented GroupsProof. Although a proof of the �rst statement an be found in [6℄, we summarize its on-strution for our proof of the seond statement. For this purpose, let G = 〈X | Q | Φ | R〉and H = 〈Y | S | Ψ | T 〉 be �nitely L-presented groups. Suppose that X ∩ Y = ∅ holds.Then, by [6℄, the free produt G ∗H is �nitely L-presented by 〈X ∪ Y | Q ∪ S | Φ̂ ∪ Ψ̂ |
R∪ T 〉 where the endomorphisms in Φ and Ψ are extended to endomorphisms in Φ̂ and
Ψ̂ of the free group F (X ∪ Y) over X ∪ Y as follows: for eah σ ∈ Φ, we let

σ̂:F (X ∪ Y) → F (X ∪ Y),

{
x 7→ xσ, for eah x ∈ X
y 7→ y, for eah y ∈ Y;and, aordingly, for eah δ ∈ Ψ.Suppose that the L-presentations of G and H are invariant. As an invariant L-presen-tation 〈X | Q | Φ | R〉 an be onsidered as an asending L-presentation 〈X | ∅ | Φ |

Q ∪ R〉, we an onsider Q and S to be empty. Then the onstrution above showsthat the free produt G ∗H is asendingly �nitely L-presented and thus it is invariantly�nitely L-presented. 2We further have the following improved version of [6, Proposition 2.9℄:Proposition 2.9 Let N �G be a normal subgroup of a �nitely L-presented group G =
〈X | Q | Φ | R〉. If N is �nitely generated as a normal subgroup, the fator group G/Nis �nitely L-presented. If, furthermore, G is invariantly L-presented and the normalsubgroup N is invariant under the indued endomorphisms Φ, G/N is invariantly L-presented.Proof. Let N = 〈g1, . . . , gn〉

G be a �nite normal generating set of the normal subgroup
N . We onsider the normal generators g1, . . . , gn as elements of the free group F over
X . By [6℄, the L-presentation 〈X | Q ∪ {g1, . . . , gn} | Φ | R〉 is a �nite L-presentation forthe fator group G/N .Suppose that G is given by an invariant L-presentation 〈X | Q | Φ | R〉. Then
G = 〈X | ∅ | Φ | Q ∪ R〉. As Nσ ⊆ N , eah σ ∈ Φ∗ indues an endomorphismof the L-presented fator group G/N . Thus the images gσ1 , . . . , gσn are onsequenes ofthe relations of G/N 's �nite L-presentation above. Hene, we have that G/N ∼= 〈X |
{g1, . . . , gn} | Φ | R ∪Q〉 = 〈X | ∅ | Φ | Q ∪R ∪ {g1, . . . , gn}〉. 2If G is invariantly L-presented and N is a normal Φ-invariant subgroup, then, in thenotion of Krull & Noether [87,111℄, the group G is a group with operator domain Φ andthe normal subgroup N is an admissible subgroup. Proposition 2.8 and Proposition 2.9yield the following straightforwardCorollary 2.10 Let G and H be �nitely L-presented groups and let F be a �nitely gen-erated group with embeddings ψ:F → G and φ:F → H. Then the amalgamated freeprodut G ∗F H is �nitely L-presented.For further group theoreti onstrutions whih preserve the property of being �nitely
L-presented were refer to [6℄.



D.3. The Reidemeister-Shreier Proess 141D.3 The Reidemeister-Shreier ProessIn the following, we brie�y reall the Reidemeister-Shreier proess as, for instane,outlined in [95, 129℄. For this purpose, let G be a group given by a group presentation
〈X | K〉 where X is a (�nite) alphabet whih de�nes the free group F and K ⊆ F is a(possibly in�nite) set of relations. Denote the normal losure of K in F by K = 〈K〉F .Then G = F/K.Let H ≤ G be a subgroup with �nite index that is given by its generators g1, . . . , gnand let T ⊆ F be a Shreier transversal for H in G (i.e., a transversal for H in G sothat every initial segment of an element of T itself belongs to T , see [95℄; note thatwe always at by multipliation from the right). We onsider the generators of H aswords over the alphabet X and thus as elements of the free group F . Then the subgroup
U = 〈g1, . . . , gn〉 satis�es that H ∼= UK/K. In the style of [95℄, we de�ne the Shreiermap γ:T × X → F by γ(t, x) = tx (tx)−1 where tx denotes the unique element s ∈ Tfrom the Shreier transversal so that UK s = UK tx holds. The Shreier Theorem (as, forinstane, in [95, Proposition I.3.7℄) shows that the subgroup UK ≤ F is freely generatedby the Shreier generating set

Y = {γ(t, x) 6= 1 | t ∈ T , x ∈ X}.In partiular, it shows that eah �nite index subgroup of a �nitely generated group is�nitely generated. We onsider the set Y as an alphabet and we denote by F (Y) the freegroup over Y. The Reidemeister rewriting τ is a map τ :F → F (Y) given by
τ(y1 · · · yn) = γ(1, y1) · γ(y1, y2) · · · γ(y1 · · · yn−1, yn)where eah yi ∈ X ∪ X−. In general, the Reidemeister rewriting τ is not a grouphomomorphism. However, we have the followingLemma 3.11 For V ≤ UK, the restrition τ :V → F (Y) is a homomorphism.Proof. Let g, h ∈ V be given. Write g = g1 · · · gn and h = h1 · · · hm with eah hi, gj ∈

X ∪ X−. Then, as g1 · · · gn = g = 1 holds, we obtain that
τ(gh) = γ(1, g1) · · · γ(g1 · · · gn−1, gn) · γ(1, h1) · · · γ(h1 · · · hm−1, hm) = τ(g) τ(h)while we already have τ(1) = 1 by de�nition. 2By Shreier's theorem, the Reidemeister rewriting τ :UK → F (Y) gives an isomorphism offree groups. A group presentation for the subgroup H ∼= UK/K is given by the followingwell-known theorem of Reidemeister [119℄ and Shreier [124℄; see also [95, Setion II.4℄.Theorem 3.12 (Reidemeister-Shreier Theorem) Let H be a subgroup of G. If τdenotes the Reidemeister-Shreier rewriting, T denotes a Shreier transversal for H in

G, and if 〈X | K〉 is a presentation for G, the subgroup H is presented by
H ∼=

〈
Y | {τ(trt−1) | r ∈ K, t ∈ T }

〉
. (D.3)



142 Chapter D. A Reidemeister-Shreier Theorem for Finitely L-Presented GroupsProof. We reall the proof for ompleteness: Note that H ∼= UK/K ∼= τ(UK)/τ(K)holds. By Shreier's theorem, we have τ(UK) = F (Y). It therefore su�es to determinea normal generating set for τ(K). As K is a normal generating set forK�F , a generatingset for τ(K) is given by τ(K) = 〈{τ(grg−1) | r ∈ K, g ∈ F}〉. Let r ∈ K and g ∈
F be given. Consider the relation τ(grg−1). Sine T is a transversal for UK in F ,
g ∈ F an be written as g = u t with t ∈ T and u ∈ UK. This yields τ(grg−1) =
τ(utrt−1u−1). For r ∈ K, we have that trt−1 ∈ UK. By Lemma 3.11, we obtainthat τ(grg−1) = τ(utrt−1u−1) = τ(u) τ(trt−1) τ(u)−1. Therefore the relation τ(grg−1)is a onsequene of τ(trt−1). Hene, it su�es to onsider the normal generating set
τ(K) =

〈
{τ(trt−1) | r ∈ K, t ∈ T }

〉F (Y) for τ(K). 2If H is a �nite index subgroup of a �nitely presented group G, there exist a �nite set ofrelations K and a �nite Shreier transversal T so that the subgroup H is �nitely presentedby Theorem 3.12. This latter result for �nitely presented groups is well-known and it isoften simply referred to the Reidemeister-Shreier Theorem for �nitely presented groups.In this paper, we prove a variant of the Reidemeister-Shreier Theorem for �nitely L-presented groups using the ideas of Theorem 3.12.D.4 A Typial Example of a Subgroup L-PresentationBefore proving Theorem 1.1, we �rst onsider an example of a �nite L-presentation fora �nite index subgroup of a �nitely L-presented group. For this purpose we onsider asubgroup of the Basilia group [60℄. The Basilia group satis�es the followingProposition 4.13 (Bartholdi & Virág [16℄) The Basilia group G is invariantly�nitely L-presented by G ∼= 〈{a, b} | ∅ | {σ} | {[a, ab]}〉 where σ is the free group ho-momorphism that is indued by the map a 7→ b2 and b 7→ a.The substitution σ in Proposition 4.13 indues an endomorphism of G. The group Gwill often provide an exlusive (ounter-) example throughout this paper.Consider the subgroup H = 〈a, bab−1, b3〉 of the Basilia group. Then oset-enumer-ation for �nitely L-presented groups [67℄ shows that H is a normal subgroup of G withindex 3. A Shreier generating set for the subgroup H is given by {a, bab−1, b2ab−2, b3}.Write x1 = a, x2 = bab−1, x3 = b2ab−2, and x4 = b3. Denote the free group over {a, b}by F and let E denote the free group over {x1, x2, x3, x4}. For eah n ∈ N0, we de�ne
an = (2n + 2)/3 and bn = (2n + 1)/3. Then the σ-images of the relation r = [a, ab] anbe rewritten with the Reidemeister rewriting τ :F → E. Their images have the form

τ(rσ
2n
) =





[
x2

n

1 , x
−an
4 x2

n

3 xan4
]
, if n is even,

[
x2

n

1 , x
−bn
4 x2

n

2 xbn4

]
, if n is odd,and

τ(rσ
2n+1

) =

{
x
−bn+1

4 x−2n

2 x
−bn+1

4 x2
n

3 x
bn+1

4 x−2n

2 x
bn+1

4 x2
n

1 , if n is even,
x
−an+1

4 x−2n

3 x
−an+1+1
4 x2

n

2 x
an+1−1
4 x−2n

3 x
an+1

4 x2
n

1 , if n is odd.



D.5. Stabilizing Subgroups 143Note that τ(rσ2n) ∈ [E,E] while τ(rσ2n+1
) 6∈ [E,E]. Therefore, the images τ(rσi) splitinto two lasses whih are reursive images of the endomorphism

σ̂:E → E,





x1 7→ x21,
x2 7→ x23,

x3 7→ x4 x
2
2 x

−1
4 ,

x4 7→ x24;in the sense that σ̂ satis�es
τ(rσ

2n
) = [x1, x

−1
4 x3 x4]

σ̂n and τ(rσ2n+1
) = (x−1

4 x−1
2 x−1

4 x3 x4 x
−1
2 x4 x1)

σ̂n ,for eah n ∈ N0. In Setion D.8, we show that a �nite L-presentation for the subgroup
H is given by

H ∼=
〈
{x1, . . . , x4}

∣∣ ∅
∣∣ {σ̂, δ}

∣∣ {[x1, x−1
4 x3 x4], x

−1
4 x−1

2 x−1
4 x3 x4 x

−1
2 x4 x1}

〉where the endomorphism δ is indued by the map
δ:E → E,





x1 7→ x2,
x2 7→ x3,

x3 7→ x4 x1 x
−1
4 ,

x4 7→ x4.These subgroup L-presentations are typial for �nite index subgroups of a �nitely L-presented group. Besides, the subgroup H and its subgroup L-presentation provide aounter-example to the original proof of Theorem 1.1 in [6℄ as there is no endomorphism
ε of the free group E suh that τ(rσn+1

) = (τ(rσ
n
))ε holds for eah n ∈ N0. A reason forthe failure of the proof in [6℄ is that the subgroup H is not σ-invariant but σ2-invariant.Therefore, the method suggested in the proof of [6, Proposition 2.9℄ will fail to omputea �nite L-presentation for H.D.5 Stabilizing SubgroupsIn this setion, we introdue the stabilizing subgroups. These subgroups will be entralto what follows.Let G = 〈X | Q | Φ | R〉 be a �nitely L-presented group and let H ≤ G be a �niteindex subgroup whih is generated by g1, . . . , gn. Denote the free group over X by Fand let K = 〈Q∪

⋃
σ∈Φ∗ Rσ〉F . We onsider the generators g1, . . . , gn of the subgroup Has words over the alphabet X ∪ X−. Then the subgroup U = 〈g1, . . . , gn〉 ≤ F satis�es

H ∼= UK/K. The group F ats on the right-osets UK\F by multipliation from theright. Let π:F → Sym(UK\F ) be a permutation representation for the group's ation on
UK\F . Suh a permutation representation an be omputed with the oset-enumerationproess from [67℄. The kernel of the permutation representation π is the normal ore,
CoreF (UK), of UK in F ; i.e., it is the largest normal subgroup of F that is ontained in
UK.The following de�nition introdues the stabilizing subgroups of H. These subgroupswill be entral to our proof of Theorem 1.1 in Setion D.6.



144 Chapter D. A Reidemeister-Shreier Theorem for Finitely L-Presented GroupsDe�nition 5.14 Let G = 〈X | Q | Φ | R〉 be a �nitely L-presented group and let
H ≤ G be a �nite index subgroup whih admits the permutation representation π:F →
Sym(UK\F ) as above. The stabilizing subgroup of H is

L̃ =
⋂

σ∈Φ∗

(σπ)−1(StabSym(UK\F )(UK 1)) =
⋂

σ∈Φ∗

σ−1(UK). (D.4)The stabilizing ore of H is
L =

⋂

σ∈Φ∗

ker(σπ). (D.5)For σ ∈ Φ∗, we denote by ‖σ‖ the usual word-length in the generating set Φ of thefree monoid Φ∗. The free monoid Φ∗ has the struture of a |Φ|-regular tree with its rootbeing the identity map id:F → F . We an further endow the monoid Φ∗ with a length-plus-(from the right)-lexiographi ordering ≺ by hoosing an arbitrary ordering on the�nite generating set Φ. We then de�ne σ ≺ δ if ‖σ‖ < ‖δ‖ or, otherwise, if σ = σ1 · · · σnand δ = δ1 · · · δn, with eah σi, δj ∈ Φ, and there exists a positive integer 1 ≤ k ≤ nsuh that σi = δi for eah k < i ≤ n, and σk ≺ δk. Sine Φ is �nite, the onstrutedordering ≺ is a well-ordering on Φ∗ [129℄. Thus, there is no in�nite desending sequenes
σ1 ≻ σ2 ≻ . . . in Φ∗.We onsider a variation of the algorithm IsValidPermRep from [67℄ in AlgorithmD.1 below. If π:F → Sym(UK\F ) denotes a permutation representation as in De�ni-IteratingEndomorphisms(X , Q, Φ, R, H, π)Choose an ordering on Φ = {φ1, . . . , φn} with φi ≺ φi+1.Initialize S := [φ1, . . . , φn] and V := [id:F → F ].while S 6= [ ] doRemove the �rst entry δ from the list S.if not (∃σ ∈ V: δπ = σπ) thenAppend φ1δ, . . . , φnδ to the list S.Add δ to the list V.return( V )Algorithm D.1: Computing a �nite set of endomorphisms V ⊆ Φ∗.tion 5.14, the algorithm IteratingEndomorphisms returns a �nite image of a se-tion of the map Φ∗ → Hom(F,Sym(UK\F )) de�ned by σ 7→ σπ; see Lemma 5.15 andLemma 5.17 below. More preisely, we have the followingLemma 5.15 The algorithm IteratingEndomorphisms terminates and it returns a�nite set of endomorphisms V ⊆ Φ∗ satisfying the following property: For eah σ ∈ Φ∗there exists a unique τ ∈ V so that σπ = τπ. The element τ ∈ V is minimal with respetto the ordering ≺ onstruted above.Proof. Let X be a basis of the free group F . A homomorphism ψ:F → Sym(UK\F ) isuniquely de�ned by the image of this basis. Sine UK\F is �nite, the symmetri group
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Sym(UK\F ) is �nite. Moreover, as F is �nitely generated, the set of homomorphisms
Hom(F,Sym(UK\F )) is �nite. Therefore, the algorithm IteratingEndomorphismsan add only �nitely many elements to V and the stak S will eventually be redued.Thus the algorithm terminates.The ordering ≺ on Φ extends to a total well-ordering on the free monoid Φ∗ asdesribed above. The elements in the stak S are always ordered with respet to ≺. Theyfurther always sueed those elements in V. In partiular, the elements σ ∈ V ⊆ Φ∗ are
≺-minimal representatives of the omposed homomorphism σπ:F → Sym(UK\F ).Let σ ∈ Φ∗ be given and write σ1 = σ. There exists w ∈ Φ∗ minimal subjet to theexistene of δ ∈ V so that σ1 = wδ. If ‖w‖ = 0 holds, then σ1 ∈ V and the laim isproved. Otherwise, there exists ψ ∈ Φ so that σ1 = vψδ for some v ∈ Φ∗ and ψδ 6∈ V. Ouralgorithm yields the existene of ε ∈ V so that ε ≺ ψδ and ψδπ = επ. We also have that
σ2 = vε ≺ vψδ = σ1. This rewriting proess yields a desending sequene σ1 ≻ σ2 ≻ . . .in Φ∗. As ≺ is a well-ordering, there exists σn ∈ V so that σ1 ≻ σ2 ≻ . . . ≻ σn and
σπ = σ1π = σnπ. The element τ = σn is unique. 2If π:F → Sym(UK\F ) is a permutation representation for an in�nite index subgroup
UK ≤ F , we annot ensure �niteness of the set V and termination of the algorithm. Inthe remainder, we always onsider �nite index subgroups UK ≤ F only.For �nite L-presentations 〈X | Q | Φ | R〉 with Φ = {σ}, �niteness of the set
{σℓπ | ℓ ∈ N0} ⊆ Hom(F,Sym(UK\F )) yields the followingCorollary 5.16 If Φ = {σ}, there exist integers 0 ≤ i < j with σjπ = σiπ.The set V ⊆ Φ∗ returned by Algorithm D.1 satis�es the followingLemma 5.17 The set V an be onsidered as a subtree of Φ∗. The image of the �niteset V and the image of the monoid Φ∗ in Hom(F,Sym(UK\F )) oinide.Proof. The identity mapping id:F → F is ontained in V and it represents the root of Vand Φ∗. Let σ ∈ V be given. Then either σ ∈ Φ or there exists ψ ∈ Φ and δ ∈ Φ∗ so that
σ = ψδ. In the �rst ase, id:F → F is a unique parent of σ ∈ Φ. Otherwise, if σ = ψδ, weneed to show that δ ∈ V holds. Our algorithm IteratingEndomorphisms only addselements from the stak S to V. At some stage of the algorithm we had σ = ψδ ∈ S.The latter element is added to the stak S as a hild of the element δ and thus δ ∈ V.The seond statement follows immediately from Algorithm D.1 and Lemma 5.15. 2We de�ne a binary relation ∼ on the free monoid Φ∗ by de�ning σ ∼ δ if and only if theunique element σn ∈ Φ∗ in Lemma 5.15 oinides for both σ and δ. Thus σ ∼ δ if andonly if σπ = δπ. This de�nition yields the immediateLemma 5.18 The relation σ ∼ δ is an equivalene relation. Eah equivalene lassis represented by a unique element in V whih is minimal with respet to the total andwell-ordering ≺.Reall that π:F → Sym(UK\F ) is a permutation representation for the group's ationon the right-osets UK\F . If T is a transversal for UK in F , σ ∼ δ implies that
UK t · gσ = UK t · gδ for eah t ∈ T and g ∈ F . We therefore obtain the following



146 Chapter D. A Reidemeister-Shreier Theorem for Finitely L-Presented GroupsLemma 5.19 If σ ∈ Φ∗ satis�es σπ = π, the subgroup UK is σ-invariant. There are
σ-invariant subgroups UK that do not satisfy σπ = π.Proof. The �rst statement holds in general for a group ating on a set: As σπ = π, wehave UK t ·gσ = UK t g for eah t ∈ T and g ∈ F . If g ∈ UK, then UK 1 ·gσ = UK 1 ·g =
UK 1 and so gσ ∈ UK. The index-2 subgroup H = 〈a, b2, bab−1〉 of the Basilia groupsatis�es (UK)σ ⊆ UK and σπ 6= π. This (and similar results in the remainder of thispaper) an be easily veri�ed with a omputer algebra system suh as Gap. 2The latter observation motivates the followingDe�nition 5.20 Let G = 〈X | Q | Φ | R〉 be a �nitely L-presented group and let
H ≤ G be a �nite index subgroup with permutation representation π as above. The
π-leafs Ψ ⊆ Φ∗ \ V of V are

Ψ = {ψδ | ψ ∈ Φ, δ ∈ V, ψδ 6∈ V, ψδπ = π}. (D.6)The subgroup H is leaf-invariant if Ψ = {ψδ | ψ ∈ Φ, δ ∈ V, ψδ 6∈ V} holds.For a �nitely L-presented group 〈X | Q | Φ | R〉, the generating set Φ of Φ∗ is �nite.Moreover, the equivalene ∼ yields �nitely many equivalene lasses. Hene, the set of
π-leafs Ψ of V is �nite. We obtain the followingLemma 5.21 If H is a leaf-invariant subgroup of G, eah π-leaf ψδ ∈ Ψ indues anendomorphism of UK. Moreover, eah σ ∈ Φ∗ an be written as σ = v σ with v ∈ V and
σ ∈ Ψ∗.Proof. We again follow the ideas of Algorithm D.1. By Lemma 5.19, the ondition
ψσπ = π implies ψσ-invariane of UK and hene Ψ∗ ⊆ End(UK). Write W = {ψδ | ψ ∈
Φ, δ ∈ V, ψδ 6∈ V} and let σ ∈ Φ∗ be given. Write σ1 = σ. There exists w ∈ Φ∗ minimalsubjet to the existene of δ ∈ V so that σ1 = wδ. If ‖w‖ = 0, then σ1 = δ id with δ ∈ Vand id ∈ Ψ∗. Otherwise, there exists ψ ∈ Φ and σ2 ∈ Φ∗ so that σ1 = σ2ψδ and ψδ 6∈ V.Then ψδ ∈ W . Sine H is leaf-invariant, we have W = Ψ and hene ψδ ∈ Ψ. Therefore
ψδ indues an endomorphism of UK. Clearly σ2 ≺ σ1. Rewriting the pre�x σ2 as aboveyields a desending sequene σ1 ≻ σ2 . . . in Φ∗. As ≺ is a well-ordering, we eventuallyhave σ1 ≻ σ2 ≻ . . . ≻ σn with σn ∈ V and σ = σ1 = σnδ for some δ ∈ Ψ∗. 2If the �nite L-presentation 〈X | Q | Φ | R〉 satis�es Φ = {σ} and if there exists a minimalpositive integer 0 < j so that σjπ = π, the set

W = {ψδ | ψ ∈ Φ, δ ∈ V, ψδ 6∈ V}in the proof of Lemma 5.21 above beomes W = {σj}. Note the followingRemark 5.22 The ondition σjπ = σ0π is essential for the σj−0-invariane of the sub-group. For instane, the subgroup H = 〈a, bab−1, b−1a2b, b4, b2ab−2〉 of the Basilia groupsatis�es σ4π = σ3π but it is not σ-invariant.The stabilizing subgroup L̃ introdued in De�nition 5.14 satis�es the following



D.5. Stabilizing Subgroups 147Proposition 5.23 Let V ⊆ Φ∗ be the �nite set returned by Algorithm D.1. The stabiliz-ing subgroup L̃ satis�es that
L̃ =

⋂

σ∈V

(σπ)−1
(
StabSym(UK\F )(UK 1)

)
=

⋂

σ∈V

σ−1(UK).The stabilizing subgroup L̃ is Φ-invariant (i.e., we have L̃ψ ⊆ L̃ for eah ψ ∈ Φ). It isontained in the subgroup UK and it has �nite index in F . The stabilizing subgroup L̃ isthe largest Φ∗-invariant subgroup of UK. It is not neessarily normal in F .Proof. By Lemma 5.17, the sets {σπ | σ ∈ Φ∗} and {σπ | σ ∈ V} oinide and thus wehave
L̃ =

⋂

σ∈Φ∗

(σπ)−1
(
StabSym(UK\F )(UK 1)

)
=

⋂

σ∈V

(σπ)−1
(
StabSym(UK\F )(UK 1)

)
.Sine (σπ)−1

(
StabSym(UK\F )(UK 1)

)
= σ−1(UK), we have L̃ =

⋂
σ∈V σ

−1(UK). For ψ ∈
Φ, we have

ψ−1(L̃) =
⋂

σ∈Φ∗

(σψ)−1(UK) ⊇
⋂

σ∈Φ∗

σ−1(UK) = L̃sine the �rst intersetion is over a smaller set than the seond one. Thus ψ(L̃) ⊆ L̃. Sine
σ = id ∈ Φ∗, we have L̃ ⊆ UK. Beause the stabilizing subgroup L̃ is the intersetionof �nitely many �nite index subgroups (σπ)−1(StabSym(UK\F )(UK 1) of F , it has �niteindex in F . If N ≤ UK is Φ∗ invariant, we have N ⊆ σ−1(N) ⊆ σ−1(UK) for eah
σ ∈ Φ∗. Hene N ⊆

⋂
σ∈Φ∗ σ−1(UK) = L̃.The stabilizing subgroup L̃ = 〈a, bab−1, b−1a2b, b2ab−2, b3a−1b, b−1ab3〉 of the sub-group H = 〈a, bab−1, b−1a−2b, b2ab−2, b3a−1b, b−1ab3〉 of the Basilia group is not normalin F . 2The stabilizing subgroup L̃ always satis�es that L̃ ⊆ UK. Conditions for equality aregiven by the followingLemma 5.24 The following onditions are equivalent:(i) L̃ = UK,(ii) (UK)ψ ⊆ UK for all ψ ∈ V, and(iii) (UK)δ ⊆ UK for all δ ∈ Φ∗.Proof. We have that L̃ =

⋂
σ∈Φ∗ σ−1(UK) =

⋂
σ∈V σ

−1(UK). Therefore
L̃ =

⋂
σ∈Φ∗ σ−1(UK) = UK if and only if UK ⊆ L̃ ⊆ σ−1(UK) and so (UK)σ ⊆ UK forall σ ∈ Φ∗. Similarly, we have (UK)ψ ⊆ UK, for all ψ ∈ V, if and only if (UK)σ ⊆ UK,for all σ ∈ Φ∗. 2In the style of [67℄, we de�ne a binary relation ;π on the free monoid Φ∗ as follows:For σ, δ ∈ Φ∗ we de�ne σ ;π δ if and only if there exists a homomorphism γ: im (δπ) →

im (σπ) so that σπ = δπγ holds. It is known [67℄ that it is deidable whether or not
σ ;π δ holds. This yields that



148 Chapter D. A Reidemeister-Shreier Theorem for Finitely L-Presented GroupsLemma 5.25 Let V ⊆ Φ∗ be the �nite set returned by Algorithm D.1. Then there existsa subset Ṽ ⊆ V with the following property: For eah σ ∈ Φ∗ there exists a unique element
δ ∈ Ṽ so that σ ;π δ and δ is minimal with respet to the ordering ≺ in Lemma 5.15.Proof. This is straightforward as the set V returned by Algorithm D.1 is an upper boundon Ṽ beause σ ∼ δ implies both σ ;π δ or δ ;π σ. 2Again, the set Ṽ in Lemma 5.25 an be onsidered a subtree of Φ∗ or even as a subtreeof V. The binary relation ;π is re�exive and transitive but not neessarily symmetri.The equivalene relation ∼ and the relation ;π are related by the followingLemma 5.26 Let π:F → Sym(UK\F ) be a permutation representation as above. For
σ, δ ∈ Φ∗, we have the following(i) We have σ ;π δ and δ ;π σ if and only if the homomorphism γ: im (δπ) → im (σπ)with σπ = δπγ is bijetive.(ii) If σ ∼ δ, then σ ;π δ and δ ;π σ. The onverse is not neessarily true.(iii) If k > 0 is minimal so that σk ∼ id, there exists a minimal positive integer ℓso that ℓ | k and σℓ ;π id. If Φ = {σ}, the set Ṽ from Lemma 5.25 beomes

Ṽ = {id, σ, . . . , σℓ−1}.(iv) If ℓ is a minimal positive integer suh that id ;π σ
ℓ, there exists a minimal integer

k ≥ ℓ so that σk ∼ id. If Φ = {σ}, the set V returned by Algorithm D.1 beomes
V = {id, σ, . . . , σk−1} while Ṽ = {id, σ, . . . , σℓ−1}.(v) The subgroup H = 〈a, b2, bab−1〉 of the Basilia group satis�es σ ;π id but there isno positive integer ℓ > 0 so that σℓ ∼ id holds.Proof. If the homomorphism γ: im (δπ) → im (σπ) with σπ = δπγ is bijetive, we obtain

σπγ−1 = δπ and thus δ ;π σ. On the other hand, suppose that both δ ;π σ and σ ;π δhold. Then there are homomorphisms γ: im (σπ) → im (δπ) and τ : im (δπ) → im (σπ) sothat δπ = σπγ and σπ = δπτ . This yields δπ = σπγ = δπτγ and σπ = δπτ = σπγτ .Hene γ and τ are isomorphisms.Sine σ ∼ δ implies σπ = δπ, we immediately obtain both σ ;π δ and δ ;π σ. Thesubgroup H = 〈a, bab−1, b3〉 of the Basilia group admits the permutation representation
π: a 7→ ( ), b 7→ (1, 2, 3). We have σ2π: a 7→ ( ), b 7→ (1, 3, 2) and therefore σ2 ;π id and
id ;π σ

2. Though σ2π 6= π.Suppose that k ∈ N is minimal so that σk ∼ id and so σkπ = π. Then im (π) ⊇
im (σπ) ⊇ . . . ⊇ im (σkπ) = im (π). There exists a minimal integer 0 < ℓ ≤ k suh that
σℓ ;π id. Hene, there exists a homomorphism γ: im (π) → im (σℓπ) with σℓπ = πγ.The homomorphism γ is onto and, sine im (π) = im (σℓπ) is �nite, γ is bijetive. As
ℓ ≤ k holds, we an write k = s ℓ + t for some 0 ≤ t < ℓ and s ∈ N. This yieldsthat π = σkπ = σt σs ℓ π = σtπγs and so π γ−s = σtπ. If t > 0, the latter yields that
σt ;π id whih ontradits the minimality of ℓ. Thus t = 0 and ℓ | k. If Φ = {σ}, the



D.5. Stabilizing Subgroups 149set {id, σ, . . . , σℓ−1} is an upper bound on the set Ṽ from Lemma 5.25 beause σℓ ;π idholds. By the minimal hoie of ℓ, we obtain that Ṽ = {id, σ, . . . , σℓ−1}.Suppose that id ;π σ
ℓ holds. There exists a homomorphism γ: im (σℓπ) → im (π)with σℓπγ = π. Sine γ is a surjetive map from a subgroup im (σℓπ) ≤ im (π) onto

im (π), γ is bijetive and hene, we also have that σℓ ;π id. Suppose that the au-tomorphism γ of the �nite group im (π), has �nite order n. Write k = nℓ. Then
σkπ = σnℓπ = πγn = π and so σk ∼ id and k is minimal. If Φ = {σ} holds, then,by the minimal hoie of k, we obtain V = {id, σ, . . . , σk−1} for the set V returned byAlgorithm D.1 while V = {id, σ, . . . , σℓ−1} by the minimality of ℓ.The permutation representation π:F → Sym(UK\F ) of the subgroup H =
〈a, b2, bab−1〉 is indued by the map a 7→ ( ) and b 7→ (1, 2). Therefore, H satis�esthat σ ;π id, |im (π)| = 2, and |im (σπ)| = 1. In partiular, for eah ℓ ≥ 1, we have
|im (σℓπ)| = 1. Thus there is no integer ℓ so that σℓ ∼ id holds. However, we have
σ2π = σπ so that the set V = {id, σ, σ2} returned by Algorithm D.1 is still �nite. 2The stabilizing ore L introdued in De�nition 5.14 satis�es the followingProposition 5.27 Let V ⊆ Φ∗ be the �nite set returned by Algorithm D.1. The stabiliz-ing ore L satis�es that

L =
⋂

σ∈V

ker(σπ).The stabilizing ore L is the largest Φ-invariant subgroup of UK whih is normal in Fand thus L = CoreF (L̃). It is �nitely generated, has �nite index in F , and it ontains alliterated relations R of G's L-presentation 〈X | Q | Φ | R〉. We have L ⊆ L̃ ⊆ UK ⊆ Fand L ⊆ CoreF (UK) ⊆ UK ⊆ F .Proof. By Lemma 5.17, the sets {σπ | σ ∈ Φ∗} and {σπ | σ ∈ V} oinide and thus wehave
L =

⋂

σ∈Φ∗

ker(σπ) =
⋂

σ∈V

ker(σπ).The stabilizing ore L is normal in F beause it is the intersetion of normal subgroups.Sine L ⊆ ker(π) = CoreF (UK) holds, the stabilizing ore L is ontained in UK. Sine
σ−1(ker(π)) = ker(σπ), we have that L =

⋂
σ∈Φ∗ σ−1(ker(π)). For any ψ ∈ Φ∗, we obtain

ψ−1(L) =
⋂

σ∈Φ∗

(σψ)−1(ker(π)) ⊇
⋂

σ∈Φ∗

σ−1(ker(π)) = Las the �rst intersetion is over a small set of indies. Thus L is Φ∗-invariant. Let N ≤ UKbe a Φ∗-invariant subgroup whih is normal in F . Then N ≤ CoreF (UK) = ker(π) andso N ⊆ σ−1(N) ⊆ σ−1(ker(π)) for eah σ ∈ Φ∗. Thus N ⊆
⋂
σ∈Φ∗ σ−1(ker(π)) = L.The stabilizing ore L has �nite index in F beause it is the intersetion of �nitely many�nite index subgroups ker(σπ) with σ ∈ V.The stabilizing ore L is �nitely generated as a �nite index subgroup of a �nitelygenerated free group F . Let r ∈ R be an iterated relator of G's L-presentation 〈X | Q |
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Φ | R〉. Then, for eah σ ∈ V, the image rσ is a relator of G. Thus r ∈ ker(σπ) and
r ∈ L.As L is a Φ-invariant subgroup of UK, we have L ⊆ L̃ by Proposition 5.23. Moreover,
L ⊆ ker(π) = CoreF (UK). 2Sine the stabilizing ore L ontains the iterated relations R of the L-presentation, italso ontains the normal losure 〈

⋂
σ∈Φ∗ Rσ〉F . We obtain the immediateCorollary 5.28 If G = 〈X | Q | Φ | R〉 = 〈X | ∅ | Φ | Q∪R〉 is invariantly L-presented,we have K ⊆ L ⊆ L̃ ⊆ UK ⊆ F . The subgroup H ∼= UK/K ≤ F/K ontains the

Φ-invariant normal subgroup L/K. The index [UK/K : L/K] = [UK : L] is �nite.The subgroup H in Corollary 5.28 is a �nite extension of L/K. Sine the stabilizing ore
L is the largest Φ-invariant subgroup whih is normal in F , the stabilizing subgroup L̃is normal in F if and only if L = L̃ holds. More preisely, we have the followingLemma 5.29 We have L̃ = L if and only if L̃ ⊆ CoreF (UK).Proof. We have L ⊆ L̃ and L̃σ ⊆ L̃ for eah σ ∈ Φ∗. If L = L̃, then L̃ = L ⊆
CoreF (UK). If L̃ ⊆ CoreF (UK) = ker(π), then L̃ ⊆ σ−1(L̃) ⊆ σ−1(ker(π)) for all
σ ∈ Φ∗. Thus L̃ ⊆

⋂
σ∈Φ∗ σ−1(ker(π)) = L. 2If UK � F is a normal subgroup, then L̃ ⊆ UK = CoreF (UK). Hene, we obtain theimmediateCorollary 5.30 If UK � F , then L = L̃.Note the followingRemark 5.31 There are subgroups that satisfy CoreF (UK) ⊂ L̃. For instane, thesubgroup H = 〈a, b2, ba2b−1, bab−2a−1b−1〉 of the Basilia group is Φ-invariant (and hene

L̃ = UK by Lemma 5.24) but not normal in G.There are subgroups that satisfy L̃ ⊂ CoreF (UK). For instane, the subgroup H =
〈a2, b, aba−1〉 of the Basilia group has index 2 in G (and thus it is normal in G); thoughthe subgroup H is not σ-invariant.There are subgroups that neither satisfy L̃ ⊆ CoreF (UK) nor CoreF (UK) ⊆ L̃. Forinstane, the subgroup H = 〈a, bab−1, b−1a2b, b2ab2, b3a−1b〉 of the Basilia group satis�es
[F : L̃] = [F : CoreF (UK)] and L̃ 6= CoreF (UK).D.6 The Reidemeister-Shreier TheoremIn this setion, we �nally prove our variant of the Reidemeister-Shreier Theorem inTheorem 1.1. For this purpose, let G = 〈X | Q | Φ | R〉 be a �nitely L-presentedgroup and let H ≤ G be a �nite index subgroup given by its generators g1, . . . , gn. Weonsider the generators g1, . . . , gn as elements of the free group F over X . Denote thenormal losure of the relations of G by K = 〈Q∪

⋃
σ∈Φ∗ Rσ〉F and let U = 〈g1, . . . , gn〉 ≤
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F . Then H ∼= UK/K. If T ⊆ F denotes a Shreier transversal for UK in F , theReidemeister-Shreier Theorem in Setion D.3 shows that the subgroup H admits thegroup presentation

H ∼=
〈
Y
∣∣∣ {τ(tqt−1) | t ∈ T , q ∈ Q} ∪

⋃

σ∈Φ∗

{τ(trσt−1) | t ∈ T , r ∈ R}
〉
, (D.7)where τ denotes the Reidemeister rewriting. We will onstrut a �nite L-presentationfrom the group presentation in Eq. (D.7). First, we note the followingTheorem 6.32 Let G = 〈X | Q | Φ | R〉 be invariantly �nitely L-presented. Eah

Φ-invariant normal subgroup with �nite index in G is invariantly �nitely L-presented.Proof. Let G = 〈X | Q | Φ | R〉 be an invariantly �nitely L-presented group andlet H � G be a Φ-invariant normal subgroup with �nite index in G. Every invariantly
L-presented group an be onsidered as an asendingly L-presented group. Thus, wemay onsider Q = ∅. Consider the notation introdued above. As G is invariantly L-presented, we have Kσ ⊆ K for eah σ ∈ Φ∗. Sine the subgroup H is Φ-invariant, wealso (UK)σ ⊆ UK for eah σ ∈ Φ∗. Then Lemma 5.24 shows that L̃ = UK. Moreover, as
UK�F , we have L = L̃ and thus UK = L̃ = L. Let t ∈ T be given. As UK�F , the map
δt:UK → UK, g 7→ tgt−1 de�nes an automorphism of UK. The Reidemeister rewriting
τ :UK → F (Y) is an isomorphism of free groups and therefore the endomorphisms Φ∪{δt |
t ∈ T } of UK translate to endomorphisms Φ̂ ∪ {δ̂t | t ∈ T } of the free group F (Y).Consider the invariant �nite L-presentation

〈 Y | ∅ | Φ̂ ∪ {δ̂t | t ∈ T } | {τ(r) | r ∈ R} 〉. (D.8)In order to prove that the �nite L-presentation in Eq. (D.8) de�nes the subgroup H,it su�es to prove that eah relation of the presentation in Eq. (D.7) is a onsequeneof the relations of the L-presentation in Eq. (D.8) and vie versa. For t ∈ T , r ∈ R,and σ ∈ Φ∗, we onsider the relation τ(t rσ t−1) of the group presentation in Eq. (D.7).Clearly, this relation is a relation in the �nite L-presentation in Eq. (D.8) beause thereexists σ̂ ∈ Φ̂∗ so that (τ(r))σ̂ = τ(rσ). Then (τ(r))σ̂δt = τ(trσt−1). On the other hand,onsider the relation τ(r)σ̂ of the �nite L-presentation in Eq. (D.8) where r ∈ R and
σ̂ ∈ (Φ̂ ∪ {δ̂t | t ∈ T })∗. Write Ψ = Φ̂ ∪ {δ̂t | t ∈ T }. Sine 1 ∈ T and id ∈ Φ∗, wean write eah image of an element δ̂ ∈ Ψ as τ(g)δ̂ = τ(tgδ t−1) for some t ∈ T and
δ ∈ Φ∗ where t or δ is possibly trivial. Sine σ̂ ∈ Ψ∗, we an write σ̂ = σ̂1 · · · σ̂n witheah σ̂i ∈ Ψ. The image τ(r)σ̂ has the form

τ(r)σ̂ = τ(tn · · · t
σ3···σn
2 tσ2σ3···σn1 · rσ1σ2···σn · t−σ2σ3···σn1 t−σ3···σn2 · · · t−1

n ).Sine T is a transversal for UK in F , we an write tn · · · tσ3···σn2 tσ2σ3···σn1 = u t with t ∈ Tand u ∈ UK. This yields that τ(r)σ̂ = τ(u t rσ1σ2···σn t−1 u−1) =
τ(u) τ(t rσ1σ2···σn t−1) τ(u)−1, whih is a onsequene of τ(t rσ1σ2···σn t−1). The latterrelation τ(t rσ1σ2···σn t−1) is a relation of the group presentation in Eq. (D.7). In sum-mary, eah relation of the group presentation in Eq. (D.7) is a onsequene of the �nite
L-presentation in Eq. (D.8) and vie versa. 2



152 Chapter D. A Reidemeister-Shreier Theorem for Finitely L-Presented GroupsIn order to prove Reidemeister-Shreier Theorem 1.1 for �nitely L-presented groups, weneed to onsider �nite index subgroups that are not normal. For this purpose, we needto onstrut the relations τ(trσ t−1) with t ∈ T , r ∈ R, and σ ∈ Φ∗ in Eq. (D.7).The overall strategy in this paper is to onstrut the relations as iterated images ofthe form τ(sr s−1)σ̂ for s ∈ T and some σ̂ ∈ Φ̂∗. If the subgroup H is normal as inProposition 6.34, the onjugation ation δt:UK → UK enables us to �rst onstrut theimage τ(rσ) = τ(r)σ̂ and then to onsider the onjugates τ(rσ)δ̂t = τ(trσt−1). However,in general, it is not su�ient to take as iterated relations those τ(trt−1)σ = τ(tσrσt−σ),with t ∈ T and r ∈ R, as σ may not be invertible over {tσ | t ∈ T }. More preisely, wehave the followingRemark 6.33 Let H = 〈a, b2, ba3b−1, bab−2a−1b−1, ba−1b−2ab−1〉 be a subgroup of theBasilia group G. The subgroup H is σ-invariant and thus we an onsider the iteratedimages {τ(r)σ̂ | r ∈ R, σ ∈ Φ∗}. A Shreier transversal T for H in G is given by T =
{1, b, ba, ba2, bab, ba2b}. We have T σ = {1, a, ab2, ab4, ab2a, ab4a}. Note that T σ ⊆ UKholds. Thus we annot ensure that the iterated images {τ(trt−1)σ̂ | r ∈ R, t ∈ T , σ ∈ Φ∗}ontain all relations in Eq. (D.7). As the subgroup H is not normal in G, we annotonsider the onjugate ation as well. However, an invariant �nite L-presentation forthe subgroup H an be omputed with Theorem 7.35 as the subgroup H is leaf-invariant(see Setion D.7 below).In the following, we use Theorem 6.32 to prove our variant of the Reidemeister-ShreierTheorem for invariantly �nitely L-presented groups �rst.Proposition 6.34 Every �nite index subgroup of an invariantly �nitely L-presentedgroup is �nitely L-presented.Proof. Let H be a �nite index subgroup of an invariantly �nitely L-presented group G =
F/K. By Corollary 5.28, the subgroup H ∼= UK/K ontains a normal subgroup L/Kwith �nite index in G that is Φ-invariant. By Theorem 6.32, the subgroup L/K ≤ F/Kis �nitely L-presented. The subgroup H is a �nite extension of a �nitely L-presentedgroup and thus, by Corollary 2.6, the subgroup H is �nitely L-presented. 2Reall that we do not have a method to onstrut an invariant L-presentation for a �niteextension of an invariantly L-presented group. Therefore, we annot ensure invarianeof the �nite L-presentation obtained from Corollary 5.28. In Setion D.7, we studyonditions on a subgroup of an invariantly L-presented group that ensure the invarianeof the subgroup L-presentation. First, we omplete our proof of Theorem 1.1:Proof of Theorem 1.1. Let G = 〈X | Q | Φ | R〉 be a �nitely L-presented group and let
H be a �nite index subgroup of G. Denote the free group over X by F . De�ne the normalsubgroups K = 〈Q ∪

⋃
σ∈Φ∗ Rσ〉F and M = 〈

⋃
σ∈Φ∗ Rσ〉F . Let U ≤ F be generated bythe generators of H so that H ∼= UK/K holds. Then we have M �K�F and G = F/K.Further, the group J = F/M is invariantly �nitely L-presented by 〈X | ∅ | Φ | R〉and it naturally maps onto G. The subgroup UK/M ≤ F/M has �nite index in J as

[F : UK] is �nite. By Proposition 6.34, the subgroup UK/M of the invariantly �nitely
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L-presented group J = F/M is �nitely L-presented. The exat sequene 1 → K/M →
UK/M → UK/K → 1 yields that H ∼= UK/K ∼= (UK/M)/(K/M) where the kernel
K/M is �nitely generated as a normal subgroup by the image of the �xed relations in Q.By Proposition 2.9, H is �nitely L-presented as a fator group of the �nitely L-presentedgroup UK/M whose kernel is �nitely generated as a normal subgroup. 2D.7 Invariant Subgroup L-PresentationsThe algorithms in [9,66℄ are muh more e�ient on invariant L-presentations. Therefore,we study onditions on a subgroup of an invariantly L-presented group to be invariantly
L-presented itself. By Theorem 6.32, eah Φ-invariant normal subgroup H of an invari-antly �nitely L-presented group G = 〈X | Q | Φ | R〉 is invariantly �nitely L-presentedas soon as [G : H] is �nite.Consider the notion introdued in Setion D.6 and let π:F → Sym(UK\F ) be apermutation representation as usual. Reall that the subgroup H is leaf-invariant, if the
π-leafs

Ψ = {ψδ | ψ ∈ Φ, δ ∈ V, ψδ 6∈ V, ψδπ = π},of V satisfy Ψ = {ψδ | ψ ∈ Φ, δ ∈ V, ψδ 6∈ V}. This de�nition yields the followingTheorem 7.35 Eah leaf-invariant, �nite index subgroup of an invariantly �nitely L-presented group is invariantly �nitely L-presented.Proof. Let G = 〈X | Q | Φ | R〉 be invariantly �nitely L-presented and let H ≤ G be aleaf-invariant �nite index subgroup of G. Clearly, we an onsider Q = ∅ in the following.The π-leafs Ψ satisfy Ψ = {ψδ | ψ ∈ Φ, δ ∈ V, ψδ 6∈ V}. By Lemma 5.21, eah π-leaf
ψδ ∈ Ψ ⊆ Φ∗ de�nes an endomorphism of the subgroup UK. Moreover, Lemma 5.21shows that eah σ ∈ Φ∗ an be written as σ = ϑ δ with ϑ ∈ V and δ ∈ Ψ∗. Consider the�nite L-presentation

〈Y | ∅ | {ψ̂δ | ψδ ∈ Ψ} | {τ(trϑ t−1) | ϑ ∈ V, r ∈ R, t ∈ T }〉, (D.9)where Y denotes the Shreier generators of UK, ψ̂σ denotes the endomorphism of the freegroup F (Y) indued by the endomorphisms ψσ of UK, and T is a Shreier transversalfor UK in F . For t ∈ T , σ ∈ Φ∗, and r ∈ R, the relation τ(t rσ t−1) of the grouppresentation in Eq. (D.7) an be obtained from the L-presentation in Eq. (D.9) as follows:Sine eah σ ∈ Φ∗ an be written as σ = ϑ δ with ϑ ∈ V and δ ∈ Ψ∗, we laim that therelation τ(t rσ t−1) is a onsequene of the image τ(trϑ t−1)δ̂. The latter image satis�esthat τ(trϑ t−1)δ̂ = τ(tδ rϑδ t−δ) = τ(tδ rσ t−δ). As δ ∈ Ψ∗, we an write δ = δ1 · · · δnwith eah δi ∈ Ψ. Reall that δiπ = π holds. Thus the right-oset UK 1 satis�es that
UK 1 · tδi = UK 1 · t = UK t and therefore UK tδ1···δn = UK t. Hene, there exists u ∈ UKso that tδ = ut and we obtain

τ(trϑ t−1)δ̂ = τ(tδ rσ t−δ) = τ(ut rσ t−1 u−1) = τ(u) τ(t rσ t−1) τ(u)−1



154 Chapter D. A Reidemeister-Shreier Theorem for Finitely L-Presented Groupswhih is a onsequene of τ(t rσ t−1) and vie versa. Similarly, every relation of the L-presentation in Eq. (D.9) is a onsequene of the relations in Eq. (D.7). Therefore, theinvariant �nite L-presentation in Eq. (D.9) de�nes the leaf-invariant �nite index subgroup
H. 2For �nite L-presentations 〈X | Q | Φ | R〉 with Φ = {σ}, the leaf-invariane of thesubgroup H yields the existene of a positive integer j so that σjπ = π holds. If weassume the positive integer j to be minimal, then V = {id, σ, . . . , σj−1} and Ψ = {σj}.In this ase, the invariant �nite L-presentation in Eq. (D.9) beomes

H ∼= 〈Y | ∅ | {σ̂j} | {τ(trσ
i

t−1) | t ∈ T , r ∈ R, 0 ≤ i < j}〉.Note that the subgroup H in Theorem 7.35 is not neessarily normal in G. However,leaf-invariane of a subgroup is a restritive ondition on the subgroup. We try to weakenthis ondition with the followingDe�nition 7.36 Let G = 〈X | Q | Φ | R〉 be a �nitely L-presented group and let H ≤ Gbe a �nite index subgroup with permutation representation π. The subgroup H is weaklyleaf-invariant, if
Ψ = {ψδ | ψ ∈ Φ, δ ∈ Ṽ, ψδ 6∈ Ṽ, ψδ ;π id}satis�es Ψ = {ψδ | ψ ∈ Φ, δ ∈ Ṽ, ψδ 6∈ Ṽ}.The notion of a weakly leaf-invariant subgroup is less restritive than leaf-invarianeas the low-index subgroups of the Basilia group suggest: Among the 4 956 low-indexsubgroups of the Basilia group with index at most 20 there are 2 539 weakly leaf-invariantsubgroups; only 156 of these subgroups are leaf-invariant. More preisely, Table D.1shows the number of subgroups (≤) that are normal (�), maximal (max), leaf-invariant(l.i.), weakly leaf-invariant (w.l.i.), and the number of subgroups that are weakly leaf-invariant and normal (� + w.l.i.). For �nite L-presentations 〈X | Q | Φ | R〉 with

Φ = {σ}, eah leaf-invariant subgroup is weakly leaf-invariant by Lemma 5.26, (iii). Onthe other hand, a weakly leaf-invariant subgroup with Φ = {σ} suh that id ;π σ
ℓ holds,is leaf-invariant by Lemma 5.26, (iv). There are subgroups of a �nitely L-presented groupthat are weakly leaf-invariant but not leaf-invariant; see Lemma 5.26, (v). If Φ ontainsmore than one generator, we may ask the followingQuestion 7.37 Is every leaf-invariant subgroup weakly leaf-invariant?The problem is that De�nitions 5.20 and 7.36 depend on the minimal sets V and Ṽ whihsatisfy Ṽ ⊆ V but whih may di�er in general. We do not have an answer to this question.Moreover, the sets V and Ṽ in the De�nitions 5.20 and 7.36 may also depend on hoieof the ordering ≺ in Algorithm D.1. However we have the followingLemma 7.38 The onditions leaf-invariane and weak leaf-invariane do not depend onthe hoie of the ordering ≺ in Algorithm D.1.
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index ≤ � max l.i. w.l.i �+w.l.i

1 1 1 1 1 1 1
2 3 3 3 0 3 3
3 7 4 7 4 4 4
4 19 7 0 0 19 7
5 11 6 11 6 6 6
6 39 13 0 0 14 12
7 15 8 15 8 8 8
8 163 19 0 0 139 19
9 115 13 9 49 52 13
10 83 19 0 0 22 18
11 23 12 23 12 12 12
12 355 31 0 0 98 28
13 27 14 27 14 14 14
14 115 25 0 0 30 24
15 77 24 0 24 24 24
16 1843 47 0 0 1531 43
17 35 18 35 18 18 18
18 1047 44 0 0 366 40
19 39 20 39 20 20 20
20 939 45 0 0 158 42Proof. We prove this lemma by onstruting the set V returned by Algorithm D.1 (theset Ṽ from Lemma 5.25) independently from the ordering ≺ provided that the subgroupis (weakly) leaf-invariant. Let π:F → Sym(UK\F ) be the permutation representationas usual and assume that the subgroup is leaf-invariant. For eah j ≥ 0, we write

Φ(j) = {σ ∈ Φ∗ | ‖σ‖ = j}. De�ne W0 = {id} and reursively Wn+1 = {σ ∈ ΦWn |
σπ 6= π} ⊆ Φ(n+1). Let W =

⋃
n≥0Wn. Clearly, the onstrution of W does not dependon the ordering ≺ in Algorithm D.1. We show that the sets W and V oinide. Write

Sj = V ∩ Φ(j) and Tj = W ∩ Φ(j). Then S0 = {id} = T0. In order to prove that W = Vholds, it su�es to show that Sj = Tj for eah j ≥ 0. Suppose that, for n ∈ N0, we have
Sj = Tj for all j < n while Sn 6= Tn. If σ ∈ Sn = V ∩ Φ(n), it is ontained in V andhene it satis�es σπ 6= π. Moreover, we have σ ∈ ΦSn−1 = ΦTn−1 and thus σ ∈ Tn. If
σ ∈ Tn = W∩Φ(n) but σ 6∈ Sn, then σ = ψδ with ψ ∈ Φ and δ ∈ Tn−1 = Sn−1 ⊆ V. Notethat σ satis�es σ = ψδ with δ ∈ V, ψ ∈ Φ, and σ = ψδ 6∈ V. Hene σ is a π-leaf. Sinethe subgroup H is leaf-invariant we have σπ = π. This is a ontradition to σ ∈ Tn.For proving the statement for weak leaf-invariane, the same arguments as above andthe onstrution S̃0 = {id} and S̃n = {σ ∈ ΦS̃n | σ 6;π id} apply. 2



156 Chapter D. A Reidemeister-Shreier Theorem for Finitely L-Presented GroupsThe subgroup J = 〈x1, x2, x3, x4 x1 x
−1
4 , x34〉 of the subgroup H in Setion D.4 is weaklyleaf-invariant but it is not leaf-invariant. The notion of a weakly leaf-invariant subgroupyields the followingLemma 7.39 A normal subgroup UK � F is σ-invariant if and only if σ ;π id.Proof. Sine UK�F , we have UK = CoreF (UK) = ker(π). Thus im (π) ∼= F/ ker(π) =

F/UK. If UK is σ-invariant, then σ indues an endomorphism σ̄:F/UK → F/UK and,as F/UK ∼= im (π), it indues an endomorphism γ: im (π) → im (π) so that the diagram
F

σ

π

F

π

im (π) γ im (π)ommutes. Thus σ ;π id. If, on the other hand, σπ = πγ holds for a homomorphism
γ: im (π) → im (σπ), eah g ∈ UK = ker(π) satis�es 1 = 1γ = (gπ)γ = gπγ = gσπ =
(gσ)π. Hene gσ ∈ ker(π) = UK and thus, UK is σ-invariant. 2Lemma 7.39 yields that a Φ-invariant normal subgroup is weakly leaf-invariant. How-ever, there exist subgroups whih are weakly leaf-invariant but not Φ-invariant (e.g. thesubgroup H = 〈a, bab−1, b3〉 of the Basilia group in Setion D.4 satis�es σ2 ;π id butnot σ ;π id; thus, it is weakly leaf-invariant but not Φ-invariant). The ondition UK�Fin Lemma 7.39 is neessary, as we have the followingRemark 7.40 The ondition UK � F in Lemma 7.39 is neessary, as the subgroup
H = 〈a, b2, ba3b−1, bab−2a−1b−1, ba−1b−2ab−1〉 of the Basilia group G is not normal in
G, it satis�es (UK)σ ⊆ UK; however, it does not satisfy σ ;π id.On the other hand, the subgroup H = 〈a, bab, ba−1b, b4〉 of the Basilia group G sat-is�es σ ;π id but it does not satisfy (UK)σ ⊆ UK as [F : CoreF (UK)] = [F : L̃] = 8 6=
4 = [F : UK].A weakly leaf-invariant normal subgroup satis�es the following variant of our Reide-meister-Shreier Theorem:Theorem 7.41 A weakly leaf-invariant normal subgroup whih has �nite index in aninvariantly �nitely L-presented group is invariantly �nitely L-presented.Proof. Let G = 〈X | Q | Φ | R〉 be invariantly �nitely L-presented and let H ∼= UK/Kbe a �nite index normal subgroup of G. As usual, we may onsider Q = ∅ as G isinvariantly L-presented. Let Ṽ ⊆ V be the set from Lemma 5.25. Sine H is weakly leaf-invariant, the weak-leafs Ψ in De�nition 7.36 satisfy Ψ = {ψδ | ψ ∈ Φ, δ ∈ Ṽ, ψδ 6∈ Ṽ}.By Lemma 7.39, eah ψδ ∈ Ψ indues an endomorphism of the normal subgroup UK�F .Let T be a Shreier transversal for UK in F and let Y denote the Shreier generators of thesubgroup UK. Then eah endomorphism ψδ ∈ Ψ of UK translates to an endomorphism
ψ̂δ of the free group F (Y). Consider the invariant �nite L-presentation

〈Y | ∅ | {ψ̂δ | ψδ ∈ Ψ} ∪ {δ̂t | t ∈ T } | {τ(rσ) | r ∈ R, σ ∈ Ṽ}〉, (D.10)



D.7. Invariant Subgroup L-Presentations 157where δt denotes the endomorphism of UK whih is indued by onjugation by t ∈ T .The �nite L-presentation in Eq. (D.10) de�nes the normal subgroup H. This statementfollows with the same tehniques as above; in partiular, it follows from rewriting thepresentation in Eq. (D.7). 2The subgroup H in Setion D.4 is a normal subgroup satisfying σ2 ;π id. Hene,Theorem 7.41 shows that this subgroup is invariantly �nitely L-presented. Even non-invariant L-presentations may give rise to invariant subgroup L-presentations as thefollowing shows:Remark 7.42 There are non-invariant L-presentation G = 〈X | Q | Φ | R〉 and �niteindex subgroups H ≤ G that satisfy (UK)σ ⊆ UK for eah σ ∈ Φ∗. For instane, the�nite L-presentation of Baumslag's group G in [64℄ is non-invariant (see the proof ofProposition 2.2) while its index-3 subgroup H = 〈a3, b, t〉 satis�es (UK)σ ⊆ UK for eah
σ ∈ Φ. The subgroup H even admits an invariant L-presentation over the generators
x = a3 and y = a2ta−2 given by

〈{x, y} | ∅ | {δt, δt2} | {y−1xyx−4}〉where δt is indued by the map x 7→ x and y 7→ xyx−3 and δt2 is indued by the map
x 7→ x and y 7→ xyx−2.The �nite L-presentations for �nite index subgroups in Proposition 6.34, Theo-rem 7.35, and Theorem 7.41, are derived from the group's L-presentation 〈X | Q | Φ | R〉by restriting to those endomorphisms in Φ∗ whih restrit to the subgroup. However,there are subgroups of an invariantly L-presented group so that no endomorphism from
Φ∗ restrits to the subgroup. In this ase the �nite L-presentation for the �nite indexsubgroup needs to be onstruted as a �nite extension of the �nitely L-presented stabi-lizing ore L as in the proof of Theorem 1.1. The following remark gives an example of asubgroup of the invariantly �nitely L-presented Basilia group so that no endomorphismfrom Φ∗ restrits to the subgroup:Remark 7.43 Let H = 〈b2, a3, ab2a−1, a−1b2a, bab−1a〉 denote a subgroup of the Basiliagroup G. Then H is a normal subgroup with index 6 in G. We are not able to �nd aninvariant �nite L-presentation for H.The subgroup H admits the permutation representation π:F → Sym(UK\F ). Wehave

π:

{
a 7→ (1, 2, 3)(4, 6, 5)
b 7→ (1, 4)(2, 5)(3, 6)

and σπ:

{
a 7→ ( )
b 7→ (1, 2, 3)(4, 6, 5)as well as

σ2π:

{
a 7→ (1, 3, 2)(4, 5, 6)
b 7→ ( )

and σ3π:

{
a 7→ ( )
b 7→ (1, 3, 2)(4, 5, 6).Clearly, σ3 ;π σ but, for eah 0 < ℓ < 3, we do not have σℓ ;π id. The homomorphism

γ: im (σπ) → im (σ3π) with σ3π = σπγ is bijetive. Suppose there existed σn ∈ Φ∗ so



158 Chapter D. A Reidemeister-Shreier Theorem for Finitely L-Presented Groupsthat the subgroup UK is σn-invariant. By Lemma 7.39, the normal subgroup UK is σn-invariant if and only if σn ;π id holds. Clearly n > 3. Sine σn ;π id, there existsa homomorphism ψ: im (π) → im (σnπ) so that σnπ = πψ. We obtain πψ = σnπ =
σn−3 σ3π = σn−3 σπγ = σn−2πγ. Iterating this rewriting proess eventually yields apositive integer 0 ≤ ℓ < 3 so that πψ = σnπ = σℓπγm for some m ∈ N. As γ is bijetive,this yields that σℓπ = πψγ−m and hene σℓ ;π id; a ontradition. Thus there is nopositive integer n ∈ N so that σn ;π id. Hene, no substitution in Φ∗ restrits to thesubgroup UK.Our method to ompute a �nite L-presentation for the subgroup H in Remark 7.43 istherefore given by our expliit proof of Theorem 1.1. If the subgroup H in Remark 7.43admits an invariant �nite L-presentation, the substitutions may not be related to thesubstitutions Φ of the �nite L-presentation 〈X | Q | Φ | R〉 of the Basilia groupin Proposition 4.13. It is neither lear to us whether H admits an invariant �nite L-presentation at all nor do we know how to possibly prove that H does not admit suhinvariant �nite L-presentation.D.8 Examples of Subgroup L-PresentationsIn this setion, we onsider the subgroup H = 〈a, bab−1, b3〉 of the Basilia group G as inSetion D.4. We demonstrate how our methods apply to this subgroup and, in partiular,how to ompute the L-presentation in Setion D.4.Coset-enumeration for �nitely L-presented groups [67℄ allows us to ompute the per-mutation representation π:F → Sym(UK\F ) for the group's ation on the right-osets.A Shreier transversal for H in G is given by T = {1, b, b2} and we have

π:F → Sn,

{
a 7→ ( )
b 7→ (1, 2, 3).Moreover, H is a normal subgroup with index 3 in G and it satis�es σ2 ;π id. ByLemma 5.26, there exists an integer k ≥ 2 so that σk ∼ id; we an verify that σ4π = πholds. Thus σ4 ∼ id. In partiular, the subgroup H is (weakly) leaf-invariant and normal.Therefore the following tehniques apply to this subgroup:

• As the subgroup H is a �nite index subgroup of an invariantly �nitely L-presentedgroup G, the general methods of Proposition 6.34 and Theorem 6.32 apply.
• As the subgroup H is leaf-invariant, the methods in Theorem 7.35 apply.
• As the subgroup H is weakly leaf-invariant and normal, the methods in Theo-rem 7.41 apply.We demonstrate these di�erent tehniques for the subgroup H. First, we onsider thegeneral method from Proposition 6.34. Note that the stabilizing subgroup L and stabi-lizing ore L̃ oinide by Corollary 5.30. The stabilizing subgroups L = L̃ have index 9



D.8. Examples of Subgroup L-Presentations 159in F and a Shreier generating set for L = L̃ is given by
x1 = a3 x4 = abab−1a−2 x7 = a2bab−1 x10 = b2a2ba−2.
x2 = bab−1a−1 x5 = ab2a−1b−2 x8 = a2b2a−2b−2

x3 = b3 x6 = b2aba−1 x9 = b2a3b−2Let F denote the free group over {a, b} and let E denote the free group over {x1, . . . , x10}.The Reidemeister rewriting τ :F → E allows us to rewrite the iterated relation r = [a, ab].We obtain τ(r) = x−1
1 x−1

10 x6 x
−1
10 x9 x3. Furthermore, the rewriting τ allows us to translatethe substitution σ of the Basilia group to an endomorphism of the free group E. Thehomomorphism σ̂:E → E is indued by the map

x1 7→ x23, x6 7→ x8 x9,
x2 7→ x5, x7 7→ x3 x2 x5 x6,

x3 7→ x1, x8 7→ x3 x2 x4 x
−1
10 x

−1
8 ,

x4 7→ x6 x
−1
2 x−1

3 , x9 7→ x8 x10 x8 x10,

x5 7→ x−1
8 , x10 7→ x8 x10 x7 x

−1
3 .Similarly, the onjugation ations δa and δb whih are indued by onjugation with aand b, respetively, translate to endomorphisms δ̂a and δ̂b of the free group E. ByProposition 6.34, the stabilizing subgroups L = L̃ are �nitely L-presented by

M = L/K ∼= 〈{x1, . . . , x10} | ∅ | {σ̂, δ̂a, δ̂b} | {x−1
1 x−1

10 x6 x
−1
10 x9 x3}〉.The subgroup H satis�es the short exat sequene 1 → M → H → Z3 → 1 with ayli group Z3 = 〈α | α3 = 1〉 of order 3. Corollary 2.6 yields the following �nite

L-presentation for the subgroup H:
〈{α, x1, . . . , x10} | {α3x−1

1 } ∪ {(x−1
i )αxδai }1≤i≤10 | Ψ̃ | {x−1

1 x−1
10 x6 x

−1
10 x9 x3}〉.where the substitutions Ψ̂ = {σ̂, δ̂a, δ̂b} of M 's �nite L-presentation are dilated to en-domorphisms Ψ̃ = {σ̃, δ̃a, δ̃b} of the free group over {α, x1, . . . , x10} as in the proof ofProposition 2.5.Seondly, the subgroup H is (weakly) leaf-invariant and normal. Therefore, themethods in Setion D.7 apply. First, we onsider the onstrution in Theorem 7.35for leaf-invariant subgroups: A Shreier generating set for the subgroup UK is given by

x1 = a, x2 = bab−1, x3 = b2ab−2, and x4 = b3. Sine σ4π = π, the subgroup H is
σ4-invariant and its su�es to rewrite the relation r = [a, b] and its images τ(trσit−1),
0 ≤ i < 4. These have the form:

i t = 1 t = b t = b2

0 x−1

1
x−1

4
x−1

3
x4 x1 x

−1

4
x3 x4 x−1

2
x−1

1
x2 x1 x−1

3
x−1

2
x3 x2

1 x−1

4
x−1

2
x−1

4
x3 x4 x

−1

2
x4 x1 x−1

4
x−1

3
x1 x

−1

3
x4 x2 x−1

1
x−1

4
x2 x4 x

−1

1
x3

2 x−2

1
x−1

4
x−2

2
x4 x

2

1
x−1

4
x2
2
x4 x−2

2
x−1

4
x−2

3
x4 x

2

2
x−1

4
x2
3
x4 x−2

3
x−2

1
x2
3
x2
1

3 x−2

4
x−2

3
x−1

4
x2
2
x4 x

−2

3
x2
4
x2
1

x−1

4
x−2

1
x−2

4
x2
3
x2
4
x−2

1
x4 x

2

2
x−1

4
x−2

2
x−1

4
x2
1
x4 x

−2

2
x4 x

2

3



160 Chapter D. A Reidemeister-Shreier Theorem for Finitely L-Presented GroupsDenote the set of relations above by S. The endomorphism σ4 translates, via τ , to anendomorphism of the free group over {x1, . . . , x4} whih is indued by the map
σ̂4:





x1 7→ x41,

x2 7→ x4 x
4
2 x

−1
4 ,

x3 7→ x24 x
4
3 x

−2
4 ,

x4 7→ x44.By Theorem 7.35, an L-presentation for the subgroup H is given by
H ∼= 〈{x1, . . . , x4} | ∅ | {σ̂4} | S〉.Finally, the subgroup H is weakly leaf-invariant and normal. Therefore, the methods inTheorem 7.41 apply. As σ2 ;π id, it su�es to onsider the relations τ(r), τ(rσ), andtheir images under the substitutions σ̂2 and δ̂b (beause a Shreier transversal is givenby T = {1, b, b2}). The substitutions σ̂2 and δ̂b are indued by the maps

σ̂2:





x1 7→ x21,
x2 7→ x23,

x3 7→ x4 x
2
2 x

−1
4 ,

x4 7→ x24,

and δ̂b:





x1 7→ x2,
x2 7→ x3,

x3 7→ x4 x1 x
−1
4 ,

x4 7→ x4.Theorem 7.41 yields the �nite L-presentation
H ∼= 〈{x1, . . . , x4} | ∅ | {σ̂2, δ̂b} | {τ(r), τ(rσ)}〉for the subgroup H as in Setion D.4.D.8.1 An Appliation to the Grigorhuk GroupAs a �nite L-presentation of a group allows the appliation of omputer algorithms, wemay use our onstrutive proof of Theorem 1.1 to investigate the struture of a self-similar group by its �nite index subgroups as in [77℄. As an appliation, we onsider theGrigorhuk group, see [53℄, G = 〈a, b, c, d〉 and its normal subgroup D = 〈d〉G. We showthat the subgroup D = 〈d〉G has a minimal generating set with 8 elements and therebywe orret a mistake in [11, 58℄.The Grigorhuk group G satis�es the well-knownProposition 8.44 (Lysënok [96℄) The group G is invariantly �nitely L-presented by

G ∼=
〈
{a, b, c, d} | {a2, b2, c2, d2, bcd} | {σ} | {(ad)4, (adacac)4}

〉, where σ is the endomor-phism of the free group over {a, b, c, d} indued by the mapping a 7→ aca, b 7→ d, c 7→ b,and d 7→ c.It was laimed in [11, Setion 4.2℄ and in [58, Setion 6℄ that the normal subgroup D =
〈d〉G is generated by {d, da, dac, daca}. In the following, we show that the ReidemeisterShreier Theorem 1.1 allows us to prove that a generating set for D = 〈d〉G ontains



D.8. Examples of Subgroup L-Presentations 161at least 8 elements. The oset-enumeration for �nitely L-presented groups [67℄ and thesolution to the subgroup membership problem for �nite index subgroups [67℄ show thatthe subgroup
H = 〈 d, da, dac, daca, dacac, dacaca, dacacac, dacacaca 〉 (D.11)has index 16 in G. It is a normal subgroup of G so that G/H is a dihedral group oforder 16. In partiular, the subgroup H and the normal subgroup D = 〈d〉G oinide. Apermutation representation π:F → Sn for the group's ation on the right-osets UK\Fis given by

π:F → S16,





a 7→ (1, 2)(3, 5)(4, 6)(7, 9)(8, 10)(11, 13)(12, 14)(15, 16)
b 7→ (1, 3)(2, 4)(5, 7)(6, 8)(9, 11)(10, 12)(13, 15)(14, 16)
c 7→ (1, 3)(2, 4)(5, 7)(6, 8)(9, 11)(10, 12)(13, 15)(14, 16)
d 7→ ( ).Our variant of the Reidemeister-Shreier Theorem and the tehniques introdued in Se-tion D.7 enable us to ompute a subgroup L-presentation for D. For this purpose, we �rstnote that σ3 ;π id. Hene, the normal ore D = CoreF (UK) = ker(π) is σ3-invariant.The ore CoreF (UK) is a free group with rank 49 and a Shreier transversal for D in Gis given by

1, a, b, ab, ba, aba, bab, (ab)2 , (ba)2, a(ba)2, b(ab)2, (ab)3, (ba)3, a(ba)3, b(ab)3, (ab)4.A �nite L-presentation with generators d0 = d, d1 = da, d2 = dac, d3 = daca, d4 = dacac,
d5 = dacaca, d6 = dacacac, and d7 = dacacaca is given by

D ∼= 〈{d0, . . . , d7} | ∅ | {σ̂, δa, δb} | R 〉,where the iterated relations are
R =

{
d20, [d1, d0], [d1, d4], [d7, d3 d4]

4 , [d7 d0, d3 d4], (d3 d7 d4 d0)
2, (d7 d

d3
4 d0 d

d4
3 )2

}and the endomorphisms {σ̂, δa, δb} are indued by the maps
δa:





d0 7→ d1,
d1 7→ d0,
d2 7→ d3,
d3 7→ d2,
d4 7→ d5,
d5 7→ d4,
d6 7→ d7,
d7 7→ d6,

, δb:





d0 7→ d0,

d1 7→ d2,

d2 7→ d1,

d3 7→ dd04 ,

d4 7→ dd03 ,

d5 7→ d6,

d6 7→ d5,

d7 7→ dd07 ,

, and σ̂:





d0 7→ d0,

d1 7→ d
d
d3
7

0 ,

d2 7→ d
d
d4
7

0 ,

d3 7→ d
d
d4
7 d

d3
7

0 ,

d4 7→ d
d
d3
7 d

d4
7

0 ,

d5 7→ d
d
d3
7 d

d4
7 d

d3
7

0 ,

d6 7→ d
d
d4
7 d

d3
7 d

d4
7

0 ,

d7 7→ d
d
d4
7 d

d3
7 d

d4
7 d

d3
7

0 .The latter L-presentation of the normal subgroup D allows us to ompute the abelianiza-tion D/[D,D] using the methods from [9℄. These omputations yield that D/[D,D] ∼=
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(Z2)

8 is 2-elementary abelian of rank 8. Hene, the normal subgroup D has a minimalgenerating set of length at least 8. Beause a generating set with 8 generators was alreadygiven in Eq. (D.11), a minimal generating set of D has preisely 8 elements. In partiular,this shows that D 6= 〈d, da, dac, daca〉. The latter mistake ould have been deteted alsoby omputing the abelianization of the image of D = 〈d〉G in a �nite quotient of G (e.g.the quotient G/Stab(n) for n ≥ 4) by hand or using a omputer algebra system suh asGap.AknowledgmentsI am grateful to Laurent Bartholdi and to the referee for valuable omments and sugges-tions.René Hartung, Mathematishes Institut, Georg-August Universität zu Göt-tingen, Bunsenstraÿe 3�5, 37073 Göttingen, GermanyEmail: rhartung�uni-math.gwdg.deJune 2011 (revised Otober 2011)



AppendixEApproximating the Shur Multiplier ofCertain In�nitely Presented Groups viaNilpotent QuotientsAbstrat. We desribe an algorithm for omputing suessive quotients of theShur multiplierM(G) for a groupG given by an invariant �nite L-presentation.As appliation, we investigate the Shur multipliers of various self-similargroups suh as the Grigorhuk super-group, the generalized Fabrykowski-Guptagroups, the Basilia group and the Brunner-Sidki-Vieira group.Keywords. Shur multiplier; reursive presentations; Grigorhuk group; self-similar groups;
E.1 IntrodutionThe Shur multiplier M(G) of a group G an be de�ned as the seond homology group
H2(G,Z). It was introdued by Shur and is, for instane, relevant in the theory ofentral group extensions. In ombinatorial group theory, the Shur multiplier found itsappliations due to the Hopf formula: if F is a free group and R is a normal subgroupof F so that G ∼= F/R, then the Shur multiplier of G is isomorphi to the fator group
(R∩F ′)/[R,F ]. For further details on the Shur multiplier we refer to [121, Chapter 11℄.The Hopf formula yields that every �nitely presentable group has a �nitely generatedShur multiplier. This is used in [56℄ for proving that the Grigorhuk group is not�nitely presentable: its Shur multiplier is in�nitely generated 2-elementary abelian.This answers the questions in [19℄ and [127℄. There are various examples of self-similargroups other than the Grigorhuk group for whih it is not known whether their Shurmultiplier is �nitely generated or whether the groups are �nitely presented.



164 Chapter E. Approximating the Shur MultiplierThe �rst aim of this paper is to introdue an algorithm for investigating the Shurmultiplier of self-similar groups with a view towards its �nite generation. Let G be agroup with a presentation G ∼= F/R. Then G/γcG ∼= F/RγcF , where γcG denotes the
c-th term of the lower entral series of G. We identify M(G) with (R ∩ F ′)/[R,F ] and
M(G/γcG) with (RγcF ∩ F ′)/[RγcF,F ] and de�ne

ϕc:M(G) →M(G/γcG), g[R,F ] 7→ g[RγcF,F ].Then ϕc is a homomorphism of abelian groups. We desribe an e�etive method todetermine the Dwyer quotients Mc(G) = M(G)/ kerϕc, for c ∈ N, provided that G isgiven by an invariant �nite L-presentation, see [6,9℄ or Setion E.2 below. Every �nitelypresented group and many self-similar groups an be desribed by a �nite invariant L-presentation. An implementation of our algorithm is available in the Nql-pakage [65℄of the omputer algebra system Gap; see [50℄.We have applied our algorithm to various examples of self-similar groups: the Grigor-huk super-group G̃, see [11℄, the Basilia group ∆, see [60,61℄, the Brunner-Sidki-Vieiragroup BSV, see [29℄, and some generalized Fabrykowski-Gupta groups Γd, see [45, 57℄.As a result, we observed that the sequene (M1(G), . . . ,Mc(G),Mc+1(G), . . .) exhibits aperiodiity in c in all these ases. Based on this, we propose the following onjeture.Conjeture I
• Mc(G̃) is 2-elementary abelian of rank 2⌊log2(c)⌋ + 2⌊log2

c
3⌋+ 5, for c ≥ 4.

• Mc(∆) has the form Z
2 ×Ac, where Ac is an abelian 2-group of rank ⌊log2

c
3⌋ andexponent 22⌊ c−6

2
⌋+2, for c ≥ 6.

• Mc(BSV) has the form Z
2 ×Bc, where Bc is an abelian 2-group of rank ⌊log2

c
5⌋+

⌊log2
c
9⌋+ 3 and exponent 22⌊ c−4

2
⌋+1, for c ≥ 4.

• For a prime power d, the group Mc(Γd) has exponent d for c large enough; its rankis an inreasing funtion in c whih exhibits a periodi pattern.In partiular, all of these groups have an in�nitely generated Shur multiplier and aretherefore not �nitely presentable.Further details on the periodiities and the omputational evidene for them are givenin Setion E.6.E.2 PreliminariesIn the following, we reall the basi notion of invariant and �nite L-presentations andthe basi theory of the Shur multiplier of a group. Let F be a �nitely generated freegroup over the alphabet X . Further suppose that Q,R ⊂ F are �nite subsets of the free



E.2. Preliminaries 165group F and Φ ⊂ End(F ) is a �nite set of endomorphisms of F . Then the quadruple
〈X | Q | Φ | R〉 is a �nite L-presentation. It de�nes the �nitely L-presented group

G =
〈
X

∣∣∣ Q∪
⋃

ϕ∈Φ∗

Rϕ
〉
,where Φ∗ denotes the free monoid generated by Φ; that is, the losure of Φ∪ {id} underomposition. A �nite L-presentation 〈X | Q | Φ | R〉 is invariant if every endomorphism

ϕ ∈ Φ indues an endomorphism of G; that is, if the normal losure of Q ∪
⋃
ϕ∈Φ∗ Rϕin F is ϕ-invariant. For example, every �nite L-presentation of the form 〈X | ∅ | Φ |

R〉 is invariant. Clearly, invariant �nite L-presentations generalize �nite presentationssine every �nitely presented group 〈X | R〉 is �nitely L-presented by 〈X | ∅ | {id} |
R〉. Further examples of invariantly L-presented groups are several self-similar groupsinluding the Grigorhuk group [53℄, the Basilia group [60, 61℄, and the Brunner-Sidki-Vieira group [29℄.In the remainder of this setion, we reall the basi theory of the Shur multiplier ofa group G. Reall that, in general, the Shur multiplier of a �nitely presented group isnot omputable; see [52℄. But, for instane, if G is �nite, then M(G) an be deduedfrom a �nite presentation of G with the Hopf formula and the Reidemeister-Shreieralgorithm. A more e�etive algorithm for �nite permutation groups is desribed in [82℄.Reently, Eik and Nikel [44℄ desribed an algorithm for omputing the Shur multiplierof a polyyli group given by a polyyli presentation.Let F be a free group and R be a normal subgroup of F so that G ∼= F/R. Then theHopf formula gives

M(G) ∼= (R ∩ F ′)/[R,F ]. (E.1)Suppose that N is a normal subgroup of G and let S be a normal subgroup of F so that
SR/R orresponds to N . Then Blakburn and Evens [24℄ determined the exat sequene

1 → (R ∩ [S,F ])/([R,F ] ∩ [S,F ]) →M(G) →M(G/N) → (N ∩G′)/[N,G] → 1.Applying this sequene to the lower entral series term N = γcG yields the exat sequene
1 → (R ∩ γc+1F )/([R,F ] ∩ γc+1F ) →M(G)

ϕc
→M(G/γcG) → γcG/γc+1G→ 1.This gives a �ltration M(G) ≥ kerϕ1 ≥ kerϕ2 ≥ . . ., alled the Dwyer-�ltration, of theShur multiplier of G. Note that, if G has a maximal nilpotent quotient of lass c, then

⋂

c∈N0

kerϕc ∼= (R ∩ γc+1F )[R,F ]/[R,F ].However, even if the group G is residually nilpotent, the group F/[R,F ] is not neessarilyresidually nilpotent; see [98℄ and [25℄. Thus the Dwyer-kernel ⋂
c∈N kerϕc is possiblynon-trivial.We note that the Shur multiplier M(G/γcG) an be omputed with the algorithmin [44℄ while the isomorphism type of γcG/γc+1G an be omputed with the nilpotent



166 Chapter E. Approximating the Shur Multiplierquotient algorithm in [9℄. Therefore, the sequeneM(G) →M(G/γcG) → γcG/γc+1G→
1 allows to determine the size of Mc(G) provided that M(G/γcG) is �nite. However, thealgorithm desribed here determines the struture of Mc(G) even if the Shur multiplier
M(G/γcG) is in�nite.E.3 Adjusting an Invariant L-PresentationIn order to prove the following theorem, we expliitly desribe an algorithm for modi-fying an invariant L-presentation. The resulting L-presentation enables us to read o�a generating set for the Shur multiplier in Setion E.4. Our algorithm generalizes theexpliit omputations in [56℄.Theorem 3.1 Let 〈X | Q | Φ | R〉 be an invariant �nite L-presentation whih de�nes thegroup G = F/R. Then G admits an invariant �nite L-presentation 〈X | Q′ ∪B | Φ | R′〉with Q′,R′ ⊂ F ′ and B ⊂ F satisfying |B| = |X | − h(G/G′), where h(G/G′) denotes thetorsion-free rank of G/G′.Proof. Sine 〈X | Q | Φ | R〉 is an invariant L-presentation, every endomorphism ϕ ∈ Φindues an endomorphism of the group G. Thus we have Rϕ ⊆ R, for every ϕ ∈ Φ∗.In partiular, every image of a relator in Q ∪ R is a onsequene; that is, Qϕ ⊂ R and
Rϕ ⊂ R, for every ϕ ∈ Φ∗.Write n = rk(F ). Then the abelianization π:F → Z

n maps every x ∈ F to itsorresponding exponent vetor ax ∈ Z
n. Clearly, kerπ = F ′ and, sine F ′ is fully-invariant, every ϕ ∈ Φ indues an endomorphism of the free abelian group Z

n. Therefore,the exponent vetor of xϕ is the image axMϕ for some matrix Mϕ ∈ Z
n×n. Now, thenormal subgroup RF ′ maps onto

U = 〈aq, arMϕ | q ∈ Q, r ∈ R, ϕ ∈ Φ∗〉 ≤ Z
n. (E.2)As every subgroup of Zn is generated by at most n elements, the subgroup U is �nitelygenerated. In the following, we may use the spinning algorithm from [9℄ and Hermitenormal form omputations to ompute a basis for the subgroup U while modifying the

L-presentation simultaneously.Let B be a basis of 〈aq | q ∈ Q〉. Then every element u ∈ B is a Z-linear ombinationof elements in {aq | q ∈ Q}. Hene, for every u ∈ B, there exists a word ru in the relatorsin Q suh that aru = u. De�ne B = {ru | u ∈ B}. Then, for every q ∈ Q, it holds that
aq ∈ 〈B〉 as B is a basis and hene, there exists a word wq in the ru's so that awq = aq.De�ne Q′ = {qw−1

q | q ∈ Q}. Then the exponent vetor of eah element in Q′ vanishesand hene Q′ ⊂ F ′. Moreover, the invariant and �nite L-presentation
〈X | Q′ ∪ B | Φ | R〉still de�nes the group G as we only applied Tietze transformations to the given L-presentation.



E.3. Adjusting an Invariant L-Presentation 167It remains to fore the elements of R into the derived subgroup F ′. For this purpose,we will use the spinning algorithm from [9℄ as follows: Initialize R′ = ∅. As long as R isnon-empty, we take an element r ∈ R and remove it from R. Then either ar ∈ 〈B〉 or
ar 6∈ 〈B〉 holds. If ar ∈ 〈B〉, then there exists a word wr in the ru's suh that awr = arand hene, rw−1

r ∈ F ′. In this ase we just add rw−1
r to R′. Note that, for every

ϕ ∈ Φ∗, the word (w−1
r )ϕ is a onsequene and hene, we an replae the relator rϕ inthe L-presentation by (rw−1

r )ϕ. The invariant and �nite L-presentation
〈X | Q′ ∪ B | Φ | R′ ∪R〉still de�nes the group G.If, on the other hand, ar 6∈ 〈B〉 holds, we enlarge the urrent basis B and modify theset B. Let B′ be a basis for 〈B ∪ {ar}〉. Then every v ∈ B′ is a Z-linear ombination ofthe elements in B ∪ {ar} and hene, there exists a word r̃v in B ∪ {r} suh that ar̃v = v.De�ne B = {r̃v | v ∈ B′}. Then, by onstrution, either |B| = |B|+1 or |B| = |B| holds.In the latter ase, there is an element u ∈ B so that u ∈ 〈(B \ {u}) ∪ {ar}〉 holds. Thus,there exists a word wu in the elements of B suh that awu = u and hene, ruw−1

u ∈ F ′.In this ase, we add ruw−1
u to Q′ and add the images {rϕu | ϕ ∈ Φ} to R. This yields aninvariant and �nite L-presentation 〈X | Q′ ∪ B | Φ | R′ ∪ R〉, with Q′,R′ ⊂ F ′, whihstill de�nes the group G.As asending hains of subgroups in Z

n terminate, eventually every exponent vetorof an element in R is ontained in the subgroup 〈B〉 and hene, the algorithm desribedabove eventually terminates. Clearly, the basis B is then a basis for the subgroup Uin (E.2). As shown in [9℄, the abelian quotient G/G′ is isomorphi to the fator Zn/U .Its torsion-free rank is n− |B| as laimed above. 2In the following example, we reall the expliit omputations in [56℄ for the Grigorhukgroup G.Example 3.2 Consider the Grigorhuk group G with its invariant L-presentation
G ∼= 〈{a, b, c, d} | {a2, b2, c2, d2, bcd} | {σ} | {(ad)4, (adacac)4}〉where σ is the free group endomorphism indued by the mapping

σ:





a 7→ ca

b 7→ d
c 7→ b
d 7→ c.As the exponent vetors (2, 0, 0, 0), (0, 1, 1, 1), (0, 0, 2, 0), and (0, 0, 0, 2) of the relations

a2, bcd, c2, and d2, respetively, are Z-linearly independent forming a basis for the sub-group U in (E.2), we an modify this presentation so that the relations beome
a2, c2, d2, bcd, b2(bcd)−2c2d2, σk((ad)4a−4d−4), σk((adacac)4a−12c−8d−4), (E.3)



168 Chapter E. Approximating the Shur Multiplierfor every k ∈ N0. Sine the L-presentation is invariant, the images σk(a−4d−4) and
σk(a−12c−8d−4) are onsequenes. Hene, the invariant �nite L-presentation

〈{a, b, c, d} | {b2(bcd)−2c2d2} ∪ {a2, c2, d2, bcd} | {σ} | R′〉,where R′ = {(ad)4a−4d−4, (adacac)4a−12c−8d−4}, de�nes the Grigorhuk group G and,as G/G′ ∼= Z
3
2, it has the form as laimed in Theorem 3.1.E.4 A Generating Set for the Shur MultiplierLet G be a �nitely generated group. We will use the results of Theorem 3.1 and theHopf formula to give a generating set for the Shur multiplier of G if G is invariantly�nitely L-presented. Suppose that F is a �nitely generated free group and R is a normalsubgroup of F so that G ∼= F/R. Then F/[R,F ] is a entral extension of R/[R,F ] bythe group G and the subgroup R/[R,F ] ontains (R∩ F ′)/[R,F ]. By the Hopf formula,the latter subgroup is isomorphi to the Shur multiplier of G. Further, the subgroup

R/[R,F ] deomposes as follows.Proposition 4.3 Let G ∼= F/R with a �nitely generated free group F . Then we havethat
R/[R,F ] ∼= Z

rk(F )−h(G/G′) ⊕M(G).Proof. The fator RF ′/F ′ is free abelian with torsion-free rank rk(F )− h(G/G′). Sine
RF ′/F ′ ∼= R/(R ∩ F ′) is free abelian, the subgroup (R ∩ F ′)/[R,F ] has a free abelianomplement of rank rk(F )−h(G/G′) and thus, the entral subgroup R/[R,F ] deomposesas laimed above. 2As R/[R,F ] is entral in F/[R,F ], it is generated by the images of the normal generatorsof R. Thus, in partiular, if R is �nitely generated as normal subgroup (that is, if Gis �nitely presentable), then R/[R,F ] is a �nitely generated abelian group and so is itssubgroup (R ∩ F ′)/[R,F ].If G is �nite, then R/[R,F ] is an abelian subgroup with �nite index in F/[R,F ]. A�nite presentation for F/[R,F ] an be obtained from a �nite presentation of G. Thenthe Reidemeister-Shreier algorithm yields a �nite presentation for R/[R,F ] from whihthe isomorphism type of M(G) is obtained easily.If G is polyyli, then it is �nitely presentable and hene, the group F/[R,F ] isan extension of a �nitely generated abelian group by a polyyli group. In partiular,
F/[R,F ] is polyyli in this ase. A onsistent polyyli presentation for F/[R,F ] anbe omputed with the algorithm in [44℄. This polyyli presentation enables us to reado� the isomorphism type of R/[R,F ] and, by Proposition 4.3, the isomorphism type of
M(G). If G is �nitely generated and nilpotent of lass c, then F/[R,F ] is nilpotent oflass at most c+1. If G is given by a weighted nilpotent presentation, then the algorithmin [107℄ omputes a weighted nilpotent presentation for F/[R,F ].We now onsider the ase of an invariantly �nitely L-presented group G. Even thoughits Shur multiplier is not omputable in general, the following theorem yields a gener-ating set for M(G) as subgroup of R/[R,F ].



E.5. Approximating the Shur Multiplier 169Theorem 4.4 Let 〈X | Q′ ∪ B | Φ | R′〉 be an invariant �nite L-presentation of Gas provided by Theorem 3.1. Further let π:F → F/[R,F ], x 7→ x̄ denote the naturalhomomorphism. Then we have that
M(G) ∼= 〈q̄, rϕ | q ∈ Q′, r ∈ R′, ϕ ∈ Φ∗〉.Proof. Clearly, R/[R,F ] is generated by the images of Q′ ∪ B ∪

⋃
ϕ∈Φ∗(R′)ϕ. As therelators in Q′ ∪R′ are ontained in F ′, it holds that

{q̄, rϕ | q ∈ Q′, r ∈ R′, ϕ ∈ Φ∗} ⊆ (R ∩ F ′)/[R,F ]. (E.4)We are left with the relators in B. Reall that we have |B| = rk(F ) − h(G/G′). Hene,the images {r̄ | r ∈ B} generate a free abelian omplement to the Shur multiplier
(R ∩ F ′)/[R,F ] in R/[R,F ]. Therefore, the images in (E.4) neessarily generate (R ∩
F ′)/[R,F ]. 2As the group G in Theorem 4.4 is invariantly L-presented, for every endomorphism
ϕ ∈ Φ, we have Rϕ ⊆ R and [R,F ]ϕ ⊆ [R,F ]. Therefore, every ϕ ∈ Φ also indues anendomorphism of F/[R,F ] whih �xes the subgroup R/[R,F ]. Further, as F ′ is fully-invariant, every suh ϕ indues an endomorphism ϕ̄ of (R ∩ F ′)/[R,F ]. This yieldsthat

M(G) ∼= 〈q̄, r̄ ϕ̄ | q ∈ Q′, r ∈ R′, ϕ ∈ Φ∗〉and hene, the free monoid Φ∗ indues a Φ∗-module struture on the Shur multiplier
M(G) in a natural way:Lemma 4.5 Let 〈X | Q | Φ | R〉 be an invariant �nite L-presentation. Then the Shurmultiplier M(G) is �nitely generated as a Φ∗-module.In partiular, the Shur multiplier M(G) has the form A⊕

⊕
Φ∗ B with �nitely generatedabelian groups A and B; see [6℄.We proeed with Example 3.2 by desribing a generating set for the Shur multiplierof the Grigorhuk group as provided by Theorem 4.4; f. [56℄.Example 4.6 Consider the invariant �nite L-presentation of the Grigorhuk group Gas determined in Example 3.2. Then the images of

b2(bcd)−2c2d2, σk((ad)4a−4d−4), σk((adacac)4a−12c−8d−4), with k ∈ N0, (E.5)in F/[R,F ], generate the subgroup (R ∩ F ′)/[R,F ]. The images in F/[R,F ] of the re-lations a2, c2, d2, and bcd generate a free abelian omplement to the Shur multiplier
(R ∩ F ′)/[R,F ] in R/[R,F ].E.5 Approximating the Shur MultiplierWe �nally desribe our algorithm for approximating the Shur multiplier of an invariantly�nitely L-presented group G. Let 〈X | Q | Φ | R〉 be an invariant �nite L-presentation



170 Chapter E. Approximating the Shur Multiplierde�ning the group F/R so that G ∼= F/R. Then G is �nitely generated and hene,its lower entral series quotient G/γcG is polyyli. The nilpotent quotient algorithmin [9℄ omputes a weighted nilpotent presentation for G/γcG together with the naturalhomomorphism π:F → G/γcG. In [107℄, Nikel desribed a overing-algorithm whih,given a weighted nilpotent presentation for G/γcG and the homomorphism π, omputes apolyyli presentation for F/[RγcF,F ] together with the natural homomorphism π̄:F →
F/[RγcF,F ]. The homomorphism π̄ indues the homomorphism ϕc:M(G) →M(G/γcG)as follows: By Theorem 3.1, the group G has an invariant �nite L-presentation of theform

〈X | Q′ ∪ B | Φ | R′〉, with Q′,R′ ⊂ F ′and |B| = |X | − h(G/G′). Now, by Theorem 4.4, the images of Q′ ∪
⋃
ϕ∈Φ∗(R′)ϕ in

F/[R,F ] generate the subgroup (R ∩ F ′)/[R,F ]. Similarly, the their images in
F/[RγcF,F ] generate the subgroup (R ∩ F ′)[RγcF,F ]/[RγcF,F ]. Sine [RγcF,F ] =
[R,F ]γc+1F , we have that

(R ∩ F ′)[RγcF,F ]/[RγcF,F ] = (Rγc+1F ∩ F ′)/[RγcF,F ].The latter subgroup is ontained in (RγcF ∩ F ′)/[RγcF,F ] whih is isomorphi to theShur multiplier M(G/γcG).As the group G is invariantly L-presented, every ϕ ∈ Φ indues an endomorphism ϕ̃of RγcF/[RγcF,F ]. This yields, that the image of M(G) in M(G/γcG) has the form
〈qp̄, (rπ̄) ϕ̃ | q ∈ Q′, r ∈ R′, ϕ ∈ Φ∗〉. (E.6)This an be used to investigate the Φ∗-module struture of M(G) by onsidering the�nitely generated Dwyer quotients Mc(G). In our algorithm, we use Hermite normalform omputations in a spinning algorithm for omputing a �nite generating set of thesubgroup in (E.6). We summarize our algorithm as follows: Write G = F/R.DwyerQuotient( G, c )Compute an invariant �nite L-presentation as in Theorem 3.1.Compute a weighted nilpotent presentation for G/γcGtogether with the natural homomorphism F → G/γcG.Compute a polyyli presentation for the group F/[RγcF,F ]together with the natural homomorphism F → F/[RγcF,F ].Translate eah ϕ ∈ Φ to an endomorphism of the group F/[RγcF,F ]and restrit this endomorphism to (Rγc+1F ∩ F ′)/[RγcF,F ].Use the spinning algorithm to ompute a �nite generating setfor the image (Rγc+1F ∩ F ′)/[RγcF,F ].E.6 AppliationsThe algorithm desribed in the �rst part is available in the NQL-pakage [65℄ of theomputer algebra system GAP; see [50℄. We parallelized the algorithm in [9℄ to enlarge



E.6. Appliations 171the possible depths in the lower entral series reahed in this setion. We show thesuessful appliation of our algorithm to the following invariantly �nitely L-presentedtestbed groups studied in [6℄ and [9℄:
• The Grigorhuk group G, see [53℄, with its invariant �nite L-presentation from [96℄;see also [56℄ and Example 3.2;
• the twisted twin Ḡ of the Grigorhuk group, see [14℄, with its invariant �nite L-presentation from [14℄;
• the Grigorhuk super-group G̃, see [11℄, with its invariant �nite L-presentationfrom [6℄;
• the Basilia group ∆, see [60,61℄, with its invariant �nite L-presentation from [16℄;and
• the Brunner-Sidki-Vieira group BSV, see [29℄, with its invariant �nite L-presenta-tion from [6℄.In Setion E.6, we further applied our algorithm to several generalized Fabrykowski-Gupta groups: an in�nite family of �nitely L-presented groups Γp introdued in [57℄.Invariant �nite L-presentations for these groups were omputed in [9℄.Aspets of the Implementation of our Algorithm in GapTable E.1 shows some performane data of the implementation of our algorithm in theNql-pakage of the omputer-algebra-system Gap. All timings displayed below havebeen obtained on an Intel Pentium Core 2 Quad with lok speed 2.83 GHz using a singleore. We applied our algorithm with a time limit of two hours. Then the omputationshave been stopped and the total time used to ompute a weighted nilpotent presentationfor the quotient G/γcG and the total time to ompute the Dwyer quotient Mc(G) havebeen listed. Every appliation ompleted within 1 GB of memory.Table E.1: Performane data of our implementation in GapTime (h:min) for

G c
G/γc+1G Mc+1(G)

G 90 1:47 0:07
Ḡ 54 1:44 0:09
G̃ 44 1:32 0:13
∆ 42 1:31 0:16

BSV 35 1:10 0:21
Γ3 75 1:46 0:04

Time (h:min) for
G c

G/γc+1G Mc+1(G)

Γ4 71 1:50 0:07
Γ5 55 1:40 0:04
Γ7 46 1:40 0:03
Γ8 56 1:54 0:06
Γ9 61 1:44 0:06
Γ11 35 1:54 0:02We note that for the results shown in the remainder of this setion we used a parallelversion of the algorithm for omputing G/γc+1G.



172 Chapter E. Approximating the Shur MultiplierOn the Dwyer Quotients of the Testbed-GroupsThe Dwyer quotient Mc(G) = M(G)/ ker ϕc is a �nitely generated abelian group andhene, it an be desribed by its abelian invariants or, if the group is p-elementaryabelian, by its p-rank. Here the list (c1, . . . , cn) stands for the group Zc1 ⊕ · · · ⊕Zcn. Forabbreviation, we will write a[ℓ] if the term a ours in ℓ onseutive plaes in a list. Inthe following we summarize our omputational results for the testbed groups.The Grigorhuk group G was shown in [53℄ to be an expliit ounter-example to thegeneral Burnside problem: it is a �nitely generated in�nite 2-torsion group. Furthermore,the Grigorhuk group is a �rst example of a group with an intermediate word-growth.In [96℄, Lysënok determined a �rst L-presentation for the group G; see Example 3.2.Even though it was already proposed in [53℄ that the Grigorhuk group G is not �nitelypresentable, a proof was not derived until [56℄ where Grigorhuk expliitly omputed theShur multiplier of G: it is in�nitely generated 2-elementary abelian. We have omputedthe Dwyer quotients Mc(G), for 1 ≤ c ≤ 301. These quotients are 2-elementary abelianwith the following 2-ranks
1, 2, 3[3], 5[6], 7[12], 9[24], 11[48], 13[96], 15[110].This suggests the following onjeture.Conjeture A The Grigorhuk group G satis�es

Mc(G) ∼=

{
Z2 or (Z2)

2, if c = 1 or c = 2, respetively
(Z2)

2m+3, if c ∈ {3 · 2m, . . . , 3 · 2m+1 − 1}

}
,with m ∈ N0.Further experiments suggest that the Shur multiplier of the Grigorhuk group G hasthe {σ}∗-module struture, as given by Lemma 4.5, of the form Z2 ⊕ (Z2[σ])

2 where σ�xes the �rst omponent.The twisted twin Ḡ of the Grigorhuk group was introdued in [14℄. It is invariantly�nitely L-presented by
〈{a, b, c, d} | {a2, b2, c2, d2} | {σ̄} | {[da, d], [d, cab], [d, (cab)c], [d, (cab)c], [cab, cba]}〉where σ̃ is the free group endomorphism indued by the mapping

σ̃:





a 7→ ca

b 7→ d
c 7→ ba

d 7→ c.We have omputed the Dwyer quotients Mc(Ḡ), for 1 ≤ c ≤ 144. These quotients are
2-elementary abelian with the following 2-ranks

2, 5, 7, 8[2], 11[2], 12[4], 15[4], 16[8], 19[8], 20[16], 23[16], 24[32], 27[32], 28[17].This suggests the following onjeture.



E.6. Appliations 173Conjeture B The twisted twin Ḡ of the Grigorhuk group satis�es
Mc(Ḡ) ∼=





(Z2)
2, (Z2)

5, or (Z2)
7, if c = 1, c = 2, or c = 3, resp.

(Z2)
4(m+1)+4, if c ∈ {2m+2, . . . , 2m+2 + 2m+1 − 1}

(Z2)
4(m+1)+7, if c ∈ {2m+2 + 2m+1, . . . , 2m+3 − 1}



 ,with m ∈ N0.Further experiments suggest that the Shur multiplier of Ḡ has the {σ̄}∗-module stru-ture, as given by Lemma 4.5, of the form (Z2[σ̄])

4; for a proof see [14℄.The Grigorhuk super-group G̃ was introdued in [11℄. It ontains the Grigorhukgroup G as an in�nite-index subgroup and it is another example of a group with anintermediate word-growth. In [6℄, it was shown that G̃ admits the invariant �nite L-presentation 〈{ã, b̃, c̃, d̃} | ∅ | {σ̃} | R〉 where
R = {a2, [b̃, c̃], [c̃, c̃a], [c̃, d̃a], [d̃, d̃a], [c̃ab̃, (c̃ab̃)a], [c̃ab̃, (d̃ab̃)a], [d̃ab̃, (d̃ab̃)a]}and σ̃ is the free group endomorphism indued by the mapping

σ̃:





a 7→ ab̃a

b̃ 7→ d̃

c̃ 7→ b̃

d̃ 7→ c̃ .The Shur multiplier of the group G̃ is still unknown. We have omputed the Dwyerquotients Mc(G̃), for 1 ≤ c ≤ 232. These quotients are 2-elementary abelian with thefollowing 2-ranks
3, 6, 7, 9[2], 11[2], 13[4], 15[4], 17[8], 19[8], 21[16], 23[16], 25[32], 27[32], 29[64], 31[41].This suggests the following onjeture.Conjeture C The Grigorhuk super-group G̃ satis�es
Mc(G̃) ∼=





(Z2)
3, (Z2)

6, or (Z2)
7, if c = 1, 2, or 3, respetively

(Z2)
4m+5, if c ∈ {2 · 2m, . . . , 3 · 2m − 1}

(Z2)
4m+7, if c ∈ {3 · 2m, . . . , 2 · 2m+1 − 1}



 ,with m ∈ N.Further experiments suggest that the Shur multiplier of the Grigorhuk super-group hasthe {σ̃}∗-module struture, as given by Lemma 4.5, of the form (Z2)

3 ⊕ (Z2[σ̃])
4, where

σ̃ ylially permutes the �rst omponent.The Basilia group ∆ was introdued in [60, 61℄ as a torsion-free group de�ned by athree-state automaton. Bartholdi and Virág [16℄ omputed the following invariant �nite
L-presentation:

∆ ∼= 〈{a, b} | ∅ | {σ} | {[a, ab]}〉



174 Chapter E. Approximating the Shur Multiplierwhere σ is the free group endomorphism indued by the mapping
σ:

{
a 7→ b2

b 7→ a.We have omputed the Dwyer quotients Mc(∆), for 1 ≤ c ≤ 103. These quotients satisfythe following onjeture.Conjeture D The Basilia group ∆ satis�es
Mc(∆) ∼= Z

2 ⊕
⊕

ℓ∈N

Aℓ(c), for eah c ≥ 2,where the groups Aℓ(c) are given as follows:
A1(c) =

{
0, if c ∈ {1, . . . , 5}

Z22(m+1) , if c ∈ {2m+ 6, 2m+ 7}

}and
Aℓ(c) =





0, if c ∈ {1, . . . , 3 · 2ℓ+1 − 1}
Z22m+1 , if c ∈ {(3 +m) · 2ℓ+1, . . . , (3 +m) · 2ℓ+1 + 2ℓ−1 − 1}
Z22m+2 , if c ∈ {(3 +m) · 2ℓ+1 + 2ℓ−1, . . . , (4 +m) · 2ℓ+1 − 1}



with m ∈ N0. Hene, the Basilia group ∆ is not �nitely presentable.The Brunner-Sidki-Vieira group BSV was introdued in [29℄ as a just-non-solvable,torsion-free group ating on the binary tree. The authors also gave the following invariant�nite L-presentation:

BSV ∼= 〈{a, b} | ∅ | {ε} | {[b, ba], [b, ba
3
]}〉where ε is the free group endomorphism indued by the mapping

ε:

{
a 7→ a2

b 7→ a2 b−1 a2.We have omputed the Dwyer quotients Mc(BSV), for 1 ≤ c ≤ 53. These quotientssatisfy the following onjeture.Conjeture E The Brunner-Sidki-Vieira group BSV satis�es
Mc(BSV) ∼= Z

2 ⊕A(c)⊕
⊕

ℓ∈N

Bℓ(c)⊕
⊕

ℓ∈N

Cℓ(c), for eah c ≥ 2,where the groups A(c), Bℓ(c), and Cℓ(c) are given as follows:
A(c) =

{
0, if c ∈ {1, . . . , 3}

Z22m+1 , if c ∈ {2m+ 4, 2m+ 5}

}



E.6. Appliations 175with m ∈ N0. Additionally, for eah ℓ ∈ N, we have
Bℓ(c) =





0, if c ∈ {1, . . . , 5 · 2ℓ−1 − 1}
Z24m+1 , if c ∈ {2ℓ+2m+ 5 · 2ℓ−1, . . . , 2ℓ+2m+ 6 · 2ℓ−1 − 1}
Z24m+2 , if c ∈ {2ℓ+2m+ 6 · 2ℓ−1, . . . , 2ℓ+2m+ 10 · 2ℓ−1 − 1}
Z24m+4 , if c ∈ {2ℓ+2m+ 10 · 2ℓ−1, . . . , 2ℓ+2m+ 13 · 2ℓ−1 − 1}



and

Cℓ(c) =





0, if c ∈ {1, . . . , 9 · 2ℓ−1 − 1}
Z24m+1 , if c ∈ {2ℓ+2m+ 9 · 2ℓ−1, . . . , 2ℓ+2m+ 12 · 2ℓ−1 − 1}
Z24m+2 , if c ∈ {2ℓ+2m+ 12 · 2ℓ−1, . . . , 2ℓ+2m+ 14 · 2ℓ−1 − 1}
Z24m+3 , if c ∈ {2ℓ+2m+ 14 · 2ℓ−1, . . . , 2ℓ+2m+ 16 · 2ℓ−1 − 1}
Z24m+4 , if c ∈ {2ℓ+2m+ 16 · 2ℓ−1, . . . , 2ℓ+2m+ 17 · 2ℓ−1 − 1}



with m ∈ N0. Hene, the Brunner-Sidki-Vieira group BSV is not �nitely presentable.On the Dwyer Quotients of some Fabrykowski-Gupta GroupsThe Fabrykowski-Gupta group Γ3 was introdued in [45℄ as an example of a group withan intermediate word-growth. For every positive integer d, Grigorhuk [57℄ desribed ageneralization Γd of the Fabrykowski-Gupta group Γ3. A rather longish invariant �nite

L-presentation was omputed in [9℄. Further, it was shown that, if d is not a prime-power,the group Γd has a maximal nilpotent quotient. This latter quotient is isomorphi tothe maximal nilpotent quotient of the wreath produt Zd ≀ Zd. We therefore onsideronly those groups Γd whih admit a `rih' lower entral series; that is, the index d is aprime-power.Let d ∈ {3, 5, 7, 11} be a prime. Then the Dwyer quotients Mc(Γd) are d-elementaryabelian with the following d-ranks.
d rk(Mc(Γd))

3 0[2], 1[3], 2[0], 3[9], 4[1], 5[26], 6[4], 7[77], 8[13], 9[12]
5 0[1], 1[4], 2[2], 3[20], 4[10], 5[100] 6[2]
7 0[1], 1[2], 2[6], 3[2], 4[14], 5[42], 6[14], 7[34]
11 0[1], 1[2], 2[2], 3[2], 4[10], 5[2], 6[22], 7[22], 8[22], 9[27]As noted by Laurent Bartholdi and Olivier Siegenthaler, there is a pattern in the ranksof the Dwyer quotients Mc(Γd). For example, it may holds that

Mc(Γ5) ∼=





0, if c = 0

Z
2m+1
5 , if c ∈ {2 + 3

2 (5
m − 1), . . . , 1 + 3

2 (5
m − 1) + 4 · 5m}

Z
2m+2
5 , if c ∈ {2 + 3

2 (5
m − 1) + 4 · 5m, . . . , 1 + 3

2(5
m+1 − 1)}



for m ∈ N0. This suggests the following onjeture.Conjeture F Let d be a prime. Then the Shur multiplier of Γd, modulo the Dwyer-kernel, is in�nitely generated d-elementary abelian.



176 Chapter E. Approximating the Shur MultiplierFinally, we summarize our results for Mc(Γd) for d ∈ {4, 8, 9}. The abelian invariants ofthe Dwyer quotients Mc(Γd) are as follows.
d Mc(Γd)

(1)[1] (2)[1] (2, 2)[1] (2, 4)[4] (2, 2, 2, 4)[1]4 (2, 2, 2, 2, 4)[4] (2, 2, 2, 4, 4)[16] (2, 2, 2, 2, 4, 4)[1] (2, 2, 2, 2, 2, 4, 4)[3]

(2, 2, 2, 2, 2, 2, 4, 4)[16] (2, 2, 2, 2, 2, 4, 4, 4)[64] (2, 2, 2, 2, 2, 2, 4, 4, 4)[5]

(2, 2, 2, 2, 2, 2, 2, 4, 4, 4)[11] (2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4)[26]

(1)[1] (8)[2] (4, 8)[3] (2, 4, 8)[4] (2, 8, 8)[1] (2, 2, 8, 8)[2]

(2, 2, 2, 8, 8)[2] (2, 2, 4, 8, 8)[2] (2, 4, 4, 8, 8)[2] (2, 4, 8, 8, 8)[2]8
(2, 8, 8, 8, 8)[8] (2, 2, 8, 8, 8, 8)[4] (2, 4, 8, 8, 8, 8)[20] (2, 2, 4, 8, 8, 8, 8)[32]

(2, 2, 8, 8, 8, 8, 8)[7] (2, 2, 2, 8, 8, 8, 8, 8)[16] (2, 2, 2, 2, 8, 8, 8, 8, 8)[16]

(2, 2, 2, 4, 8, 8, 8, 8, 8)[16] (2, 2, 4, 4, 8, 8, 8, 8, 8)[3]

(1)[1] (9)[2] (3, 9)[2] (3, 3, 9)[4] (3, 9, 9)[2]

(9, 9, 9)[2] (3, 9, 9, 9)[2] (3, 3, 9, 9, 9)[4] (3, 9, 9, 9, 9)[2]9
(9, 9, 9, 9, 9)[12] (3, 9, 9, 9, 9, 9)[18] (3, 3, 9, 9, 9, 9, 9)[36]

(3, 9, 9, 9, 9, 9, 9)[18] (9, 9, 9, 9, 9, 9, 9)[17] (3, 9, 9, 9, 9, 9, 9, 9)[12]Again, these omputational results suggest that the groups Γd are not �nitely presentable.Further, the exponent of Mc(Γd) is most likely the index d itself.AknowledgmentsI would like to thank Bettina Eik, Laurent Bartholdi, and Olivier Siegenthaler for manyhelpful disussions. I am grateful to the referee for valuable omments and suggestions.René Hartung, Institute of Computational Mathematis, University ofBraunshweig, Pokelsstraÿe 14, 38106 Braunshweig, GermanyEmail: r.hartung�tu-bs.deJune 2009 (aepted April 2010).
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