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Notation

Υ ⊂ Rd domain of interest

Z random field, defined on domain Υ

T finite set of data locations; T = {t1, . . . , tn}

Z(t) vector of values of the random field Z at data locations;
Z(t) = (Z(t1), . . . , Z(tn))

T , page 6

P a probability measure

E expectation

Var variance

Cov covariance

i.i.d. independent and identically distributed

a.s. almost surely

p−→ convergence in probability

d−→ convergence in distribution (weak convergence)

d
= equality in distribution

γ(·) a variogram, page 43

In n× n-identity matrix, page 20

|A| cardinality of a set A; |A| = #{i : i ∈ A}

2A powerset of A

RΥ set of all functions f : Υ → R

C(Υ) set of all continuous functions f : Υ → R

C(Υ) σ-algebra on a space of functions f : Υ → R; generated by cylinder sets,
page 38

B Borel σ-algebra on R

Bd Borel σ-algebra on Rd

B(S) Borel σ-algebra on some space S
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Lp(Υ) Lp-space w.r.t. domain Υ

H(K; Υ) native space for the kernel K : Υ×Υ → R, page 7

H(K; Υ) pre-Hilbert space spanned by the functions K(· − t), t ∈ Υ, page 7

W τ,2(Υ) Sobolev space of order τ w.r.t. domain Υ, page 9

κν , κ̃ν Whittle-Matérn covariance/correlation function with smoothness parame-
ter ν, page 8

κ̃ν,c Whittle-Matérn correlation function with smoothness parameter ν and
scale parameter c, page 82

sf,T,ν kernel interpolant w.r.t. data {(t, f(t)) : t ∈ T} and kernel κν , page 11

φε Gaussian kernel; scaled by ε > 0, page 13

Cε kernel/covariance matrix w.r.t. kernel φε and locations T , page 14

sε kernel interpolant w.r.t. data {(t, Z(t)) : t ∈ T} and kernel φε, page 14

Φ standard normal distribution function, page 82

ϕ standard normal density, page 83
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1 Introduction

This PhD thesis deals with different aspects of spatial interpolation and prediction of
random fields. In general, we have the following situation: A random field {Z(t), t ∈ Υ},
Υ ⊂ Rd, is measured at a finite set T = {t1, . . . , tn} of locations. Based on these data
Z(t1), . . . , Z(tn), we aim to predict the random field at further locations taking into
account spatial dependencies. This question of prediction is one of the main issues in
spatial statistics and has various applications in sciences like mining, hydrology or mete-
orology. Methods of spatial statistics have also been adapted in a non-spatial framework,
e.g. in animal breeding. In these applications, measurements are often very expensive.
Therefore, we often have to cope with small and sparse sets T of data points. This makes
an accurate prediction quite challenging.

In this context of prediction, basically two questions occur: First, one may ask for a
pointwise predictor which is optimal w.r.t. some criterion, e.g. the conditional mean or
the conditional median. In most applications, this question is answered by various kinds
of kriging providing the best linear unbiased predictor which minimizes the predictive
variance. Kriging (named after D. G. Krige) is a suitable tool to predict the variable of
interest at some fixed location, e.g. the ore concentration in a deposit or the total genetic
value of a single animal (cf. Ober et al., 2011). However, one should be aware of the fact
that kriging yields a spatial interpolant being much smoother than a typical sample path
of the random field. As kriging only accounts for the pointwise conditional variability of
a random field, important quantities — like the probability that some critical amount of
precipitation is exceeded within a whole region — cannot be determined by the means
of kriging.
Thus, secondly, one may ask how to sample the random field conditionally on the data.
By conditional sampling, we can get the whole conditional distribution of the random
field and therefore entirely describe its stochastic properties.

In this thesis, we will deal with two types of random fields: (stationary) Gaussian and
max-stable random fields.
The case of a stationary Gaussian random field is known best in spatial statistics as it
covers the assumptions made in most applications. In this framework, various methods
of kriging are used for prediction, providing the conditional mean of the random field.
Conditional sampling is quite easy as the conditional random field can be described as a
sum of the kriging result and a zero mean (non-stationary) Gaussian random field with
both summands being stochastically independent. However, all these methods rely on
the knowledge of the correct covariance structure of the random field. Therefore, tools
are needed to identify the underlying covariance from the data. In this work, we will
point out ways to incorporate results from kernel interpolation in numerical analysis into
parameter estimation procedures used in spatial statistics. To this end, we make use
of connections to kernel interpolation in numerical analysis which have recently been
analysed by Scheuerer (2009).
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1. Introduction

Besides the most prominent class of Gaussian random fields, we also consider so-called
max-stable random fields. Over the last decades, max-stable processes have entered
numerous applications as models for extreme events like heavy storms or heat waves.
In this case, the application of kriging methods is troublesome. In general, kriging
methods require a second-order random field, i.e. the existence of second moments —
a condition which is often not met in the max-stable setting. Bypassing this problem
by transformations often leads to covariances which are numerically intractable. Nat-
urally, conditional sampling is even more challenging. Promising approaches to tackle
this problem have been rare for a long time. Recently, first results in this framework
were obtained by Wang and Stoev (2011), Dombry and Eyi-Minko (2011), Dombry et al.
(2011) and Dombry and Ribatet (2012). We present procedures for conditional simula-
tion for three classes of max-stable processes which are used in spatial applications quite
frequently: mixed moving maxima processes (e.g. Smith, 1990) and — independently of
Dombry et al. (2011) and Dombry and Ribatet (2012) — extremal Gaussian processes
(Schlather, 2002) and Brown-Resnick processes (Brown and Resnick, 1977; Kabluchko
et al., 2009).

In more detail, this PhD thesis is organized as follows: Chapter 2 deals with an exam-
ple of parameter estimation in case of a Gaussian random field. Here, we consider the
very flexible class of Whittle-Matérn kernels and estimate the corresponding smooth-
ness parameter. Scheuerer (2009) showed that this parameter is closely related to the
smoothness of the sample paths of the random field expressed in terms of weak deriva-
tives. The corresponding Sobolev spaces also occur as so-called native spaces of the
Whittle-Matérn kernels in numerical analysis. In this framework, kernels and native
spaces are well-studied as there are numerous applications, e.g. in machine learning and
for solving partial differential equations numerically. We combine the stochastic proper-
ties of the random field with results on the behaviour of the interpolant from numerical
analysis to create new estimators. We compare these estimators to classical ones like
maximum likelihood and cross validation estimators. While deriving new estimators, we
obtain results on the behaviour of the interpolant, i.e. the kriging result, as the smooth-
ness parameter tends to infinity. As a tool for the analysis of these smooth limits we use
results on flat limits of kernel interpolants.

Flat limits also occur in Chapter 3 which connects Gaussian random fields to max-stable
random fields. Here, we construct max-stable processes based on flat limits of Gaussian
processes. Furthermore, we study the stationarity of these processes. In some examples,
the construction yields processes which belong to the class of Brown-Resnick processes.
Brown-Resnick processes are the natural link between Gaussian and max-stable processes
as they occur as limits of maxima of Gaussian processes.

Before tackling the problem of conditional simulation, we notice that even unconditional
simulation of Brown-Resnick processes is quite involved. Although Brown-Resnick pro-
cesses are stationary, finite approximations based on the definition indicate instationar-
ity. Therefore, in Chapter 4 — which is also published in a slightly modified form as
(Oesting et al., 2012) resulting from a diploma thesis (Oesting, 2009) — we present al-
ternative representations of these processes. Based on these representations, we propose
finite approximations and give error estimates. Finally, we compare different simula-
tion techniques. Some techniques, in particular simulation by a mixed moving maxima
representation, provide notable improvements.
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The final Chapters 5 and 6 deal with conditional sampling for max-stable processes. In
both chapters, we choose similar approaches making use of the underlying Poisson point
process structure. In Chapter 5, which is also published as (Oesting and Schlather, 2012)
in a slightly modified form, we consider the class of processes which allow for a mixed
moving maxima representation. Besides general formulae and results in a broad setting,
explicit and exact calculations are presented for processes on R with a finite number of
smooth shape functions. We compare our results to other algorithms for the Gaussian
extreme value process (Smith, 1990) and the original Brown-Resnick process (Brown
and Resnick, 1977) based on the mixed moving maxima representation by Engelke et al.
(2011).
As the algorithm for mixed moving maxima cannot be applied exactly to Brown-Resnick
processes, we present an exact procedure for conditional sampling for these processes –
using a technically different approach than Dombry et al. (2011). The same techniques
can be applied to the class of extremal Gaussian processes (Chapter 6; see also Dombry
and Ribatet 2012).

In this thesis, we also have to deal with the fact that the literature on max-stable pro-
cesses is quite heterogeneous w.r.t. the marginal distributions considered. Working with
processes based on maxima of Gaussian processes, it is very natural to have Gumbel
margins as the normal distribution is in the Gumbel max-domain of attraction. There-
fore, we study processes with Gumbel margins in Chapters 3 and 4. Contrarily, Fréchet
margins are assumed in most recent publications as these allow for convenient handling
of exponent and spectral measures. For this reason, we work with Fréchet marginal dis-
tributions for conditional sampling of max-stable processes (Chapters 5 and 6). Thus,
within this thesis, we deal with Brown-Resnick processes with Gumbel margins (Chap-
ter 4) and Fréchet margins (Chapter 6). However, marginal transformation can be done
very easily by the exponential and logarithmic function, respectively.
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2 Estimating the Whittle-Matérn

Smoothness Parameter via the Native

Space Norm

In this chapter, we deal with spatial interpolation in the case of Gaussian random fields.
As already mentioned in the introduction, in this case, procedures for optimal predic-
tion and conditional sampling are well-studied provided that the underlying covariance
structure is known. We aim to estimate the covariance from the broad class of Whittle-
Matérn covariance functions making use of strong connections between methods from
spatial statistics and numerical analysis, which were already treated in Scheuerer (2009).
First, we give a short introduction to prediction for second-order random fields and con-
ditional sampling for Gaussian random fields (Section 2.1) and present the basics of
kernel interpolation in numerical analysis (Section 2.2). In Section 2.3, we point out
that there is a strong connection in the case of Whittle-Matérn kernels. Employing this
connection, we analyse the behaviour of the spatial interpolant as the smoothness pa-
rameter of the kernel used for interpolation tends to infinity (Section 2.4). In Sections
2.5–2.7, we develop new estimators based on these results and compare them with other
estimators. Finally, we consider an estimator making use of error bounds known from
numerical analysis (Section 2.8).

2.1 Spatial Interpolation for Second-Order Random Fields

Let {Z(t), t ∈ Υ}, Υ ⊂ Rd, be a second-order random field, i.e. a random field with
finite second moments, of the form

Z(t) = m(t) + ζ(t), t ∈ Υ,

where m : Υ → R is the mean function and {ζ(t), t ∈ Υ} is a zero mean second-order
random field. By this decomposition, we have E(Z(t)) = m(t) and Cov(Z(s), Z(t)) =
Cov(ζ(s), ζ(t)) for all s, t ∈ Υ.
We assume that Z is known on some set T = {t1, . . . , tn} ⊂ Υ. In this framework, a
natural way to predict Z(t0), t0 ∈ Υ, based on Z(t1), . . . , Z(tn) is to choose the best
linear unbiased predictor (BLUP) which is a predictor Z∗(t0) of the form

Z∗(t0) =
n∑

i=1

αi(t0)Z(ti), t0 ∈ Υ, αi(t0) ∈ R,

such that E(Z∗(t0)) =
∑n

i=1 αi(t0)m(ti) = m(t0) (i.e. Z
∗(t0) is unbiased) and

Var(Z∗(t0)− Z(t0)) ≤ Var

(
n∑

i=0

βi(t0)Z(ti)− Z(t0)

)

5



2. Estimating the Whittle-Matérn Smoothness Parameter via the Native Space Norm

for all β1(t0), . . . , βn(t0) ∈ R such that
∑n

i=1 βi(t0)m(ti) = m(t0).

For second-order random fields, various kinds of best linear unbiased prediction are
summarized by the term “kriging”. Based on the work of Krige (1951) and Matheron
(1963), BLUPs based on different assumptions on the random field Z have been de-
veloped, e.g. simple kriging (known mean), ordinary kriging (unknown, but constant
mean) or universal kriging (unknown mean function which is known to be in some given
finite-dimensional linear space).

Here, we will focus on simple kriging. For details on other kinds of kriging, see Chilès
and Delfiner (1999). In the framework of simple kriging, the mean function m(t) is
assumed to be known, w.l.o.g. m(t) ≡ 0. Then, the simple kriging predictor (BLUP) is
given by Z∗(t0) =

∑n
i=0 αi(t0)Z(ti) where the vector of α1(t0), . . . , αn(t0) is a solution

of the linear system



K(t1, t1) · · · K(t1, tn)
...

. . .
...

K(tn, t1) · · · K(tn, tn)


 ·




α1(t0)
...

αn(t0)


 =




K(t0, t1)
...

K(t0, tn)


 , (2.1)

where K(s, t) = Cov(Z(s), Z(t)) for all s, t ∈ Υ.
If K(·, ·) is strictly positive definite, Equation (2.1) is uniquely solvable and we get

Z∗(t0) = (K(t0, t1), . . . ,K(t0, tn)) ·




K(t1, t1) · · · K(t1, tn)
...

. . .
...

K(tn, t1) · · · K(tn, tn)




−1

·




Z(t1)
...

Z(tn)


 .

(2.2)
Then, the kriging variance is given by

Var(Z∗(t0)− Z(t0)) = K(0, 0)−
n∑

i=1

n∑

j=1

K(t0, ti)
(
(K(tk, tl))

−1
k,l

)
ij
K(t0, tj). (2.3)

Note that the simple kriging predictor relies on the knowledge of the true covariance
function K(·, ·) of Z.
If Z is a Gaussian random field, the simple kriging predictor is not only the best linear
unbiased estimator but even yields the conditional expectation Z∗(t0) = E(Z(t0) | Z(t))
where Z(t) = (Z(t1), . . . , Z(tn))

T . Furthermore, Z(·) | Z(t) is a Gaussian random field,
by itself, and the random kriging error Z∗(·) − Z(·) is independent of Z∗(·). Thus, we
get

Z(·) | Z(t) d
= Z∗(·) + Z̃(·)− Z̃∗(·),

where Z̃ is a Gaussian random field with the same distribution but independent of Z
(Lantuéjoul, 2002). Thus, the conditional distribution of Z can be simulated quite easily.

2.2 Interpolation in Reproducing Kernel Hilbert Spaces

In this section, we give a short introduction to kernel interpolation in numerical analysis
which is a projection in a reproducing kernel Hilbert space. To this end, we need the
notion of a positive definite kernel on some domain Υ ⊂ Rd.
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2.2. Interpolation in Reproducing Kernel Hilbert Spaces

Definition 2.1 (cf. Wendland 2005, for example). A continuous and symmetric function
K : Υ × Υ → R is called positive semi-definite, if for all finite sets of pairwise distinct
locations T = {t1, . . . , tn} ⊂ Υ, n ∈ N, and coefficients a1, . . . , an ∈ R, we have

n∑

i=1

n∑

j=1

aiajK(ti, tj) ≥ 0. (2.4)

The kernel K is called strictly positive definite if equality in (2.4) holds if and only if
a1 = . . . = an = 0.

Note that any (continuous) covariance function of a random field is positive semi-definite.

Let K : Υ × Υ → R be a strictly positive-definite kernel. Then, following Wendland
(2005), we can define the linear space

H(K; Υ) = span{K(·, t) : t ∈ Υ}.

Thus, H(K; Υ) is a pre-Hilbert space w.r.t. the inner product (·, ·)K defined by




m∑

i=1

aiK(·, xi),
n∑

j=1

bjK(·, yj)




K

=
m∑

i=1

n∑

j=1

aibjK(xi, yj).

Furthermore, for all f ∈ H(K; Υ) and t ∈ Υ, the reproducing property

f(t) = (f,K(·, t))K (2.5)

holds. Completing H(K; Υ) w.r.t. the norm induced by the inner product (·, ·)K , we get
a Hilbert space H(K; Υ). By continuity arguments, the reproducing property can be
extended and the elements f ∈ H(K; Υ) can be interpreted as functions defined on Υ via
(2.5). The space H(K; Υ) is called reproducing kernel Hilbert space (RKHS) associated
to the kernel K(·, ·).
Now, let f ∈ H(K; Υ) be given on the set T = {t1, . . . , tn}. A suitable approach to
reconstruct f based on f(t1), . . . , f(tn) is to find the best approximation in H(K;T )
w.r.t. the norm || · ||K defined by ||g||2K = (g, g)K for all g ∈ H(K; Υ). Thus, we have to
find sf,T (·) =

∑n
i=1 aiK(·, ti) such that

||sf,T (·)− f(·)||K ≤
∣∣∣∣∣

∣∣∣∣∣

n∑

i=1

biK(·, ti)− f(·)
∣∣∣∣∣

∣∣∣∣∣
K

for all b1, . . . , bn ∈ R.

By Wendland (2005), Thm. 13.1, the solution sf,T (·) turns out to be the unique in-
terpolant to f in H(K;T ) w.r.t. the data locations (ti, f(ti)), i = 1, . . . , n. Thus,
sf,T (t0) =

∑n
i=1 aiK(t0, ti) with




K(t1, t1) · · · K(t1, tn)
...

. . .
...

K(tn, t1) · · · K(tn, tn)


 ·




a1
...
an


 =




f(t1)
...

f(tn)


 .

7



2. Estimating the Whittle-Matérn Smoothness Parameter via the Native Space Norm

As K is strictly positive definite, this linear system has a unique solution, and we can
rewrite

sf,T (t0) = (f(t1), . . . , f(tn)) ·




K(t1, t1) · · · K(t1, tn)
...

. . .
...

K(tn, t1) · · · K(tn, tn)




−1

·




K(t0, t1)
...

K(t0, tn)




which is exactly the same formula as (2.2). The pointwise interpolation error can be
bounded uniformly by

|f(t)− sf,T (t)| ≤ PK,T (t) · ||f ||K for all f ∈ H(K; Υ) (2.6)

where PK,T , defined by

P 2
K,T (t) = K(0, 0)−

n∑

i=1

n∑

j=1

K(t, ti)
(
(K(tk, tl))

−1
k,l

)
ij
K(t, tj), (2.7)

is called power function. The inequality (2.6) is sharp and equality holds for f(·) =
K(·, t) − sK(·,t),T (·), for example (cf. Wendland, 2005). Note that Equations (2.3) and
(2.7) look exactly the same, that is, the kriging variance equals the squared power
function. In the following, we will make use of these connections between interpolation
in second-order random fields and reproducing kernel Hilbert spaces which yield the
same formulae although basic assumptions are different.

2.3 The Whittle-Matérn Kernel and its Native Space

Let Z be a stationary zero mean random field on an open and bounded domain Υ ⊂ Rd

with a Whittle-Matérn covariance function κ̃ν0 , ν0 > 0. The Whittle-Matérn covariance
function is given by

κν(h) :=
||h||ν

2ν+d/2−1Γ(ν + d/2)
Kν(||h||), h ∈ Rd, ν > 0,

where Kν(·) is the modified Bessel function of the second kind. The analogous correlation
function is defined by

κ̃ν(h) =
||h||ν

2ν−1Γ(ν)
Kν(||h||) =

2d/2Γ(ν + d/2)

Γ(ν)
κν(h).

The class of Whittle-Matérn covariance functions is very flexible as it allows for modelling
the regularity of the sample paths of Z by the smoothness parameter ν. It can be shown
that the sample paths of the Gaussian field Z are k times differentiable (after some
modification if necessary) if and only if ν0 > k (cf. Gelfand et al., 2010). Because of
this flexibility, Stein (1999) recommends to use this class for modelling spatial data in
various applications. Furthermore, the Whittle-Matérn family contains other popular
covariance functions like the exponential (ν = 1/2) and the Gaussian covariance kernel
which occurs as a scaled limit κ̃ν(2

√
νr) → exp(−r2) for all r ≥ 0 as ν → ∞ (cf. Gelfand

8



2.3. The Whittle-Matérn Kernel and its Native Space

et al., 2010). For further details on the Whittle-Matérn family see the review article by
Guttorp and Gneiting (2006).

Now, we study the native space (reproducing kernel Hilbert space) belonging to κ̃ν . As
the Fourier transform κ̂ν of κν is given by

κ̂ν(ω) =
1

√
2π

d

∫

Rd

κν(x)e
−ixTω dx = (1 + ||ω||22)−(ν+d/2), ω ∈ Rd, (2.8)

the native space H(κν ;R
d) = H(κ̃ν ;R

d) can be written as

H(κν ;R
d) =

{
f ∈ L2(Rd) ∩ C(Rd) :

∫

Rd

|f̂(ω)|2(1 + ||ω||2)ν+d/2 dω <∞
}

(2.9)

by Wendland (2005), Thm. 10.12.

On the other hand, we have the so-called Sobolev space

W τ,2(Υ) =
{
f ∈ L2(Υ) :

∑

|α|≤⌊τ⌋
||Dαf ||2L2(Υ)

+
∑

|α|=⌊τ⌋

∫

Υ

∫

Υ

|Dαf(s)−Dαf(t)|2
||s− t||d+2(τ−⌊τ⌋) ds dt <∞

}
, τ > 0,

where Dαf denotes the weak derivative of f of order α ∈ Nd
0 and ⌊τ⌋ denotes the largest

integer less or equal to τ . If τ is an integer, the second term is dropped.
The Sobolev space is a Hilbert space with respect to the inner product (·, ·)W τ,2(Υ), which
is given by

(f, g)W τ,2(Υ) =
∑

|α|≤⌊τ⌋
(Dαf,Dαg)L2(Υ)

+
∑

|α|=⌊τ⌋

∫

Υ

∫

Υ

(Dαf(x)−Dαf(y))(Dαg(x)−Dαg(y))

||x− y||d+2(τ−⌊τ⌋) dx dy

for f, g ∈W τ,2(Υ) (cf. Kufner et al., 1977, Section 6.8).
If we replace Υ by Rd, the Sobolev space W τ,2(Rd) and the corresponding inner product
can be written via Fourier transforms yielding the space

Hτ (Rd) =

{
f ∈ L2(Rd) :

∫

Rd

|f̂(ω)|2(1 + ||ω||2)τ dω <∞
}

and the inner product

(f, g)Hτ (Rd) = (2π)−d/2

∫

Rd

f̂(ω)ĝ(ω)(1 + ||ω||2)τ dω, f, g ∈ Hτ (Rd).

By Adams (1975), Theorem 7.63, the Hilbert spaces W τ,2(Rd) and Hτ (Rd) coincide
algebraically and the norms || · ||Hτ (Rd) and || · ||W τ,2(Rd), induced by the inner products
(·, ·)Hτ (Rd) and (·, ·)W τ,2(Rd), respectively, are equivalent. Thus, we have

H(κν ;R
d) =W ν+d/2,2(Rd), ν > 0, (2.10)

9



2. Estimating the Whittle-Matérn Smoothness Parameter via the Native Space Norm

by Equation (2.9) (see also Wendland, 2005, Cor. 10.13).

We also aim to link native spaces of Whittle-Matérn kernels with Sobolev spaces for an
appropriate class of domains Υ ( Rd. Following Grisvard (1985), we define domains
with Lipschitz boundaries.

Definition 2.2 (cf. Grisvard, 1985, Def. 1.2.1.1). Let Υ ⊂ Rd be an open set with bound-
ary Γ. We call Υ Lipschitz domain or domain with Lipschitz boundary if for every t ∈ Υ
there exists a neighbourhood Ut ⊂ Rd and a system {y1, . . . , yd} = {y1(t), . . . , yd(t)} of
orthogonal coordinates such that

1. Ut = {(y1, . . . , yd) : −aj < yj < aj , j = 1, . . . , d} for some aj = aj(t) > 0,
j = 1, . . . , d

2. there is a Lipschitz function

ψ : Ũt = {(y1, . . . , yd−1) : aj < yj < aj , j = 1, . . . , d− 1} →
[
−ad

2
,
ad
2

]

such that Υ∩Ut = {(ỹ, yd) ∈ Ut : yd < ψ(ỹ)}, Γ∩Ut = {(ỹ, yd) ∈ Ut : yd = ψ(ỹ)}.
Note that the assumption that an open and bounded subset Υ ⊂ Rd has Lipschitz
boundary is relatively mild. For example, every bounded, open and convex subset of Rd

has a Lipschitz boundary (Grisvard, 1985, Cor. 1.2.2.3). Thus, the following statements
hold if we consider the convex hull of our domain of interest.

Lemma 2.3 (cf. Grisvard, 1985, Thm. 1.4.3.1). Let Υ be an open and bounded domain
with Lipschitz boundary. Then, any function f ∈ W τ,2(Υ) can be extended to some
function f̃ ∈W τ,2(Rd) for any τ > 0.

The next theorem and its proof are similar to Corollary 10.48 in Wendland (2005).

Theorem 2.4. Let Υ be an open and bounded set with Lipschitz boundary. Then, we
have

H(κν ; Υ) =W ν+d/2,2(Υ)

for all ν > 0.

Proof. By Equation (2.10), we have that these spaces coincide if we replace Υ by Rd.
Thus, we get

H(κν ; Υ) ⊂ {f |Υ : f ∈ H(κν ;R
d)} = {f |Υ : f ∈W ν+d/2,2(Rd)} ⊂W ν+d/2,2(Υ),

where we used that any f ∈ H(κν ; Υ) can be extended to a function f̃ ∈ H(κν ;R
d) by

Thm. 10.46 in Wendland (2005).
Now, let f ∈ W ν+d/2,2(Υ). Then, by Lemma 2.3, f can be extended to a function
f̃ ∈ W ν+d/2,2(Rd) = H(κν ;R

d). This implies, as stated in Wendland (2005), Thm.
10.47, that the restriction f = f̃ |Υ is in the native space H(κν ; Υ).

In case of Rd, the connection between native and Sobolev spaces is even stronger.

Theorem 2.5 (cf. Wendland, 2005, Thm. 10.12). For each f ∈ H(κν ;R
d), the native

space norm ||f ||κν and the Sobolev norm ||f ||Hν+d/2(Rd) are the same, which means that
both Hilbert spaces are identical.

10



2.4. On the Behaviour of the Native Space Norm

Proof. It suffices to show the proposition for f ∈ span{κν(· − t), t ∈ Rd}. Let f(·) =∑n
i=1 aiκν(· − ti) for some ai ∈ R, ti ∈ Rd, n ∈ N. Then, with τ = ν + d/2, we have

||f ||2Hτ (Rd) = (2π)−d/2

∫

Rd




n∑

j=1

n∑

k=1

aiaj ̂κν(· − tj)(ω) ̂κν(· − tk)(ω)


 (1 + ||ω||2)τ dω

= (2π)−d/2

∫

Rd




n∑

j=1

n∑

k=1

aiaje
−iωT tj κ̂ν(ω)e

iωT tk κ̂ν(ω)


 (1 + ||ω||2)τ dω

(2.8)
=

n∑

j=1

n∑

k=1

aiaj

(
(2π)−d/2

∫

Rd

eiω
T (tk−tj)κ̂ν(ω) dω

)

=
n∑

j=1

n∑

k=1

aiajκν(tj − tk) = ||f ||2κν

In Scheuerer (2010, Corollary 1 and Proposition 1), for an open and bounded domain
Υ ⊂ Rd and a Gaussian random field Z with correlation function κ̃ν0 the a.s. equivalence

ν0 > k ⇐⇒ Zω(·) ∈W k,2(Υ)

is shown for k ∈ N0 (although the kernel κ̃ν0 generates the smaller RKHSW ν0+d/2,2(Υ)),
i.e.

ν0 > k ⇐⇒ Zω(·) ∈W k,2(Υ) a.s.

ν0 ≤ k ⇐⇒ Zω(·) /∈W k,2(Υ) a.s.

For a fractional order τ of the Sobolev space the condition ν0 > τ is at least sufficient
(see Scheuerer (2010), Remark 1).

2.4 On the Behaviour of the Native Space Norm

In the following, we will always assume Υ to be an open and bounded set with Lipschitz
boundary. So, we can assess the smoothness parameter ν0 by

ν̂ := sup

{
τ >

d

2
: Zω(·) ∈ H(κτ− d

2
; Υ) =W τ,2(Υ)

}
(2.11)

if it is greater than d/2.

In order to determine this value, let T = {t1, . . . , tn} ⊂ Υ. Furthermore, we denote by
sZ,T,ν the unique interpolant to Zω(·) on T in H(κν ;T )

Theorem 2.6 (Schaback and Wendland 2002, Thm. 5.1). A continuous function f :
Υ → R belongs to the native space H(κτ ; Υ) if and only if there exists a constant cf such
that ||sf,T,τ ||κτ ≤ cf for all finite subsets T ⊂ Υ.

11



2. Estimating the Whittle-Matérn Smoothness Parameter via the Native Space Norm

Actually, ||sf,T,τ ||κτ = ||sf,T,τ ||Hτ+d/2(Rd) turns out to be very large for τ + d
2 ≫ ν0 and

a sufficiently dense T ⊂ Υ. However, ν̂ is quite difficult to determine since, in general,
data on a large set T are needed.

Therefore, we try to assess an appropriate smoothness parameter for Z in another way.
For kriging and interpolation purposes, it is not really necessary to estimate the “real”
parameter ν, but to assure a small interpolation error. The latter one is given by the
power function, which equals the kriging variance (see Equations (2.3) and (2.7)),

P 2
κ̃ν ,T

(t) = κ̃ν(0)− k̃ν(t)
T K̃−1

ν k̃ν(t) (2.12)

where k̃ν(t) = (κ̃ν(t−ti))Ti=1,...,n and K̃ν = (κ̃ν(ti−tj))i,j=1,...,n are the correlation matrix

and vector for the set of locations T = {t1, . . . , tn}. Note, that K̃ν is invertible because
of κ̃ν being strictly positive definite.

Proposition 2.7. Let {Zν(t), t ∈ Υ} be a zero mean Gaussian random field with
covariance function κ̃ν and T = {t1, . . . , tn} ⊂ Υ. Then, we have limν→∞ P 2

κ̃ν ,T
(t) =

limν→∞Var(Zν(t)− sZν ,T,ν(t)) = 0 for all t ∈ Υ

Proof. Since sZν ,T,ν(t) is the best linear unbiased predictor of Zν(t) and κ̃ν(h)
ν→∞−→ 1

for all h ∈ Rd, we have

P 2
κ̃ν ,T

(t) = Var(Zν(t)− sZν ,T,ν(t)) ≤ Var(Zν(t)− Zν(t1)) = 2− 2κ̃ν(t− t1)
ν→∞−→ 0

for all t ∈ Υ.

One approach to estimate the true parameter ν0 is to minimize some (continuous) error
function E , depending on the kernel κν as a function of ν, like the power function or a
modification of it. We combine this with (2.11) and minimize a function of the type

GT,λ(τ) = E(κτ ) + λ · ||sZ,T,τ−d/2||2κτ−d/2
, τ > d/2.

Because of Theorem 2.6 and the following lemma, the penalty term ||sZ,T,τ−d/2||2κτ−d/2

is expected to be large for Zω(·) /∈ H(κτ−d/2; Υ) — i.e. τ ≥ ν0 — and sufficiently large
T ⊂ Υ.

Lemma 2.8. Let {Tm}m∈N be an increasing sequence of subsets of Υ, i.e. Tm ⊂ Tm+1

for all m ∈ N. Then, the sequence {||sZ,Tm,ν ||κν}m∈N is monotonically increasing.

Proof. We have sZ,Tm,ν = sZ,Tm+1,ν on Tm. By Wendland (2005, Thm. 13.2), it holds

||sZ,Tm,ν ||κν = min
g∈H(κν ;Υ)

g=sZ,Tm,ν on Tm

||g||κν

and therefore we get ||sZ,Tm,ν ||κν ≤ ||sZ,Tm+1,ν ||κν .

The behaviour of ||sZ,T,ν ||2κν
as a function of ν is described by the following statement.

Proposition 2.9. Let T = {t1, . . . , tn} ⊂ Υ. The function ||sZ,T,ν ||2κν
is monotonically

increasing in ν on (0,∞).

12



2.4. On the Behaviour of the Native Space Norm

Proof. First, we use the fact that each interpolating function

sZ,T,ν(·) =
n∑

i=1

λiκν(· − ti)

can be extended naturally to Rd and that

||sZ,T,ν ||2κν
=

n∑

i=1

n∑

j=1

λiλjκν(ti − tj)

does not depend on Υ, as long as T ⊂ Υ. Therefore, w.l.o.g. we may replace Υ by Rd.
Let 0 < ν1 < ν2. By

H(κν1 ;R
d) =W ν1+d/2,2(Rd) ⊃W ν2+d/2,2(Rd) = H(κν2 ;R

d)

the norm ||sZ,T,ν2 ||κν1
is well-defined and finite. By Wendland (2005, Thm. 13.2), we get

||sZ,T,ν1 ||κν1
= min

g∈H(κν1 ;R
d)

g=sZ,T,ν1
on T

||g||κν1
≤ ||sZ,T,ν2 ||κν1

. (2.13)

Furthermore, by Theorem 2.5, we have

||f ||2κν1
= (2π)−d/2

∫

Rd

|f̂(ω)|2(1 + ||ω||22)ν1+d/2 dω

≤ (2π)−d/2

∫

Rd

|f̂(ω)|2(1 + ||ω||2)ν2+d/2 dω = ||f ||2κν2

for all f ∈ H(κν2 ;R
d). Applying this to f = sZ,T,ν2 and using Equation 2.13, we get the

proposition.

In order to draw further conclusions on the behaviour of ||sZ,T,ν ||κν for large ν, we study
the geometry of the set T = {t1, . . . , tn} ⊂ Υ ⊂ Rd of data locations and the behaviour
of flat limits. To this end, we consider the kernel interpolant

sε(·) =
n∑

i=1

ai,εC(ε(· − tj)), ε > 0,

to the data points (t1, z1), . . . , (tn, zn) ∈ Rd×R where C is a positive definite kernel, i.e.
a covariance function. The flat limit s0 is defined as the limit

s0(t) = lim
εց0

sε(t), t ∈ Rd.

Many results on the existence and behaviour of this limit can be found in the literature.
For example, Driscoll and Fornberg (2002) gave a first condition on C which guarantees
that the flat limit in R exists and coincides with the Lagrange interpolating polynomial.
If we consider the scaled Gaussian kernel

φε(h) = exp

(
−(ε||h||)2

2

)
, ε > 0, h ∈ Rd,

13



2. Estimating the Whittle-Matérn Smoothness Parameter via the Native Space Norm

sε always converges to an interpolating polynomial (cf. Schaback, 2005).

In Schaback (2008), the existence of the flat limit was shown under some assumptions on
C and a condition on the geometry of T = {t1, . . . , tn}. Therefore, following Schaback
(2008), we define

k0 = k0(T ) := max{k : p ∈ P d
k , p(T ) = {0} ⇒ p = 0} (2.14)

k1 = k1(T ) := min

{
k : n ≤

(
k + d

d

)}
(2.15)

k2 = k2(T ) := min{k : rank((tαj )1≤j≤n,α∈Zd
0,|α|≤k) = n} (2.16)

where P d
k denotes the linear space of multivariate polynomials on Rd with degree at most

k. These quantities can be interpreted as follows:

• k0 is the largest degree which guarantees uniqueness of polynomial interpolation

• k1 is the expected degree of an interpolating polynomial on a set of magnitude
|T | = n neglecting the geometry of T

• k2 is the minimal degree which guarantees existence of an interpolating polynomial

We have k0 ≤ k1 ≤ k2. If d = 1, we have k0 = k1 = k2 = n − 1. For the points of T
being on a line in Rd, d > 1, we have 0 = k0 and k2 = n− 1 (cf. Schaback, 2008).
By Theorem 2 in Schaback (2008), the flat limit s0 exists for an analytic radial basis
function C with positive Fourier transform on a set of positive measure if k2 ≤ k0 + 2.

Here, we will use flat limits for the Gaussian kernel φε to get results on the “smooth limit”
behaviour of sZ,T,ν as ν → ∞. Let Z(t) = (Z(t1), . . . , Z(tn))

T , Cε = (φε(ti − tj))1≤i,j≤n

and vε(t) = (φε(t − tj))j=1,...,n for ε > 0, t ∈ Rd. As the Gaussian kernel is strictly
positive definite, the matrix Cε is non-singular and the interpolant sε(·) on T with
respect to the kernel φε can be written as

sε(t) = Z(t)TC−1
ε vε(t).

By Theorem 2 in Schaback (2005), we have that sε converges pointwise to a polynomial
p interpolating the data points (ti, Z(ti)), i = 1, . . . , n. In the following, we will analyse
the behaviour of sε for random data. We consider multivariate Gaussian data Z(t) ∈ Rn

with a non-degenerated covariance structure, which means supp(dZ(t)) = Rn where dZ(t)

is the probability density of Z(t). Then, p ∈ P d
k1−1 with

p(t) = lim
ε→0

(
Z(t)TC−1

ε vε(t)
)
, t ∈ Rd,

implies that Z(t) ∈
{
(q(t1), . . . , q(tn)) : q ∈ P d

k1−1

}
. On the other hand, we have

dim
{
(q(t1), . . . , q(tn)) : q ∈ P d

k1−1

}
≤ dim(P d

k1−1) =

(
k1 − 1 + d

d

)

< n = dim(supp(dZ(t))).

This implies P(Z(t) ∈
{
(q(t1), . . . , q(tn)) : q ∈ P d

k1−1

}
) = 0 and therefore

p /∈ P d
k1−1 a.s. (2.17)
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2.4. On the Behaviour of the Native Space Norm

Lemma 2.10. Let Z(t) be a random vector as above and k0 = k0(T ), k1 = k1(T ) and
k2 = k2(T ) be defined as in Equations (2.14)–(2.16). Then, for any two norms || · ||V on
Rn and || · ||M on Rn×n, it holds

1. (C−1
ε )ij ∈ O(ε−2k2) for all i, j ∈ {1, . . . , n}.

2. ||Z(t)TC−1
ε ||V /∈ o(ε−k1) a.s.

3. With probability one there exist 0 < C1(Z(t)) < ∞ and 0 < C2(Z(t)) < ∞ such
that

lim
εց0

||Z(t)TC−1
ε ||V

||C−1
ε ||M

= C1(Z(t)) and lim
εց0

Z(t)TC−1
ε Z(t)

||Z(t)TC−1
ε ||V

= C2(Z(t))

for all ε > 0.

Proof. 1. Follows directly from Theorem 1 in Schaback (2008).

2. Assume that ||Z(t)TC−1
ε || ∈ o(ε−k1). As each component of Z(t)TC−1

ε can be
written as the quotient of two power series with respect to ε2 by the explicit series
expansion

φε(h) =
∞∑

k=0

(−1)k
ε2k

k!

||h||2k
2k

, h ∈ Rd,

it has a power series expansion itself which implies Z(t)TC−1
ε ∈ O(ε−(k1−1)). Using

this series expansion (Z(t)TC−1
ε )j =

∑∞
n=−(k1−1) cnjε

n we get

sε(·) = Z(t)TC−1
ε vε(·) =

n∑

j=1




∞∑

l=−(k1−1)

cijε
l


 ·

( ∞∑

k=0

(−1)k
ε2k

k!

|| · −tj ||2k
2k

)
.

By Schaback (2005), we get that this product of series converges to a polynomial
p, so it has the form

sε(·) ∼

⌊
k1−1

2

⌋

∑

k=0

n∑

j=1

c̃jk|| · −tj ||2k + o(1)

ε→0−→

⌊
k1−1

2

⌋

∑

k=0

n∑

j=1

c̃jk|| · −tj ||2k = p(·) ∈ P d
k1−1

for some appropriate c̃jk ∈ R. However, by (2.17) above, p(·) /∈ P d
k1−1 a.s.

3. We write C−1
ε =

∑∞
k=−2k2

Akε
k for matrices Ak. By k∗ we denote the smallest

k ∈ Z such that Ak 6= 0. Then, we immediately get that the limits C1(Z(t)) and
C2(Z(t)) considered in the lemma exist and have the form

C1(Z(t)) =
||Z(t)TAk∗ ||V

||Ak∗ ||M
and C2(Z(t)) =

Z(t)TAk∗Z(t)

||Z(t)TAk∗ ||V
.
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2. Estimating the Whittle-Matérn Smoothness Parameter via the Native Space Norm

We note that
Ak∗ = lim

ε→0
C−1

ε ε−k∗

is a positive semi-definite and symmetric matrix and so there exists a lower trian-
gular matrix L such that Ak∗ = LTL.

Assume Z(t)TAk∗Z(t) = 0. Then, we have (LZ(t))T (LZ(t)) = 0, so LZ(t) = 0
and Ak∗Z(t) = LTLZ(t) = 0. This means Z(t) ∈ kerAk∗ . As Ak∗ 6= 0, we
have dim(kerAk∗) < n, and therefore Z(t) ∈ kerAk∗ with probability zero. This
means Z(t)TAk∗Z(t) 6= 0 and Z(t)TAk∗ 6= 0 with probability one. Therefore,
0 < C1(Z(t)) <∞ and 0 < C2(Z(t)) <∞ almost surely.

Lemma 2.11. Let T = {t1, . . . , tn} ⊂ Υ and Z(t) = (Z(t1), . . . , Z(tn))
T be normally

distributed with non-degenerated density. Then,

lim
τ→∞

||sZ,T,τ ||2κτ
= ∞ a.s.

For |T | > 1, we also have
lim
τ→∞

||sZ,T,τ ||2κ̃τ
= ∞ a.s.

Proof. The idea of this proof is to consider some scaled Gaussian covariance function such
that the native space norm of the corresponding interpolant is asymptotically smaller
than the one corresponding to κ̃τ . The first one is increasing by a rate which can be
assessed by Lemma 2.10.

In a first step we consider the Gaussian covariance function

φ1/
√
τ (h) = exp

(
−||h||2

2τ

)
, h ∈ Rd, τ >

d

2
.

The corresponding Fourier transform is given by

φ̂1/
√
τ (ω) =

1
(√

2π
)d
∫

Rd

φ1/
√
τe

−ixTω dx = τd/2 exp

(
−||ω||2τ

2

)
, ω ∈ Rd.

As a second step we define a covariance function Cτ via its Fourier transform

Ĉτ (ω) = (2τ)d/2 exp

(
−||ω||2τ

2

)
1{||ω||2≤2} + 2d/2

Γ(τ)

Γ(τ − d/2)
(1 + ||ω||2)−τ1{||ω||2>2}.

Then, using inverse Fourier transforms, we get for h ∈ Rd that

|2d/2φ1/√τ (h)− Cτ (h)|

=

∣∣∣∣∣

∫

Rd

(( τ
π

)d/2
exp

(
−||ω||2τ

2

)
− Γ(τ)π−d/2

Γ(τ − d/2)
(1 + ||ω||2)−τ

)
1{||ω||2>2} cos(h

Tω) dω

∣∣∣∣∣

≤
∫

Rd

( τ
π

)d/2
exp

(
−||ω||2τ

2

)
1{||ω||2>2} dω

+

∫

Rd

(
1

π

)d/2 Γ(τ)

Γ(τ − d/2)
(1 + ||ω||2)−τ1{||ω||2>2} dω (2.18)
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2.4. On the Behaviour of the Native Space Norm

The first summand of (2.18) can be rewritten as
∫
Rd

1√
π
d exp

(
− ||ω||2

2

)
1{||ω||2>2τ} dω

which is — up to the factor 2d/2 — the probability of a χ2-distribution with d degrees
of freedom to be larger than 2τ (cf. Abramowitz and Stegun, 1965, Section 26.4). This
can be bounded by cd√

τ
exp

(
− τ

d

)
for some cd > 0, for instance.

Since Γ(τ)
Γ(τ−d/2) ∼ (τ − d/2)d/2 for τ sufficiently large (cf. Gradshteyn and Ryzhik, 2007,

Formula 8.328.2), the second summand of (2.18) equals asymptotically

∫ π

0
. . .

∫ π

0

∫ 2π

0

∫ ∞

2

(
τ − d/2

π

)d/2

(1 + r2)−τrd−1 dr dϕ
d−2∏

j=1

(
(sin θj)

j dθj
)
,

which can be seen via transformation to polar coordinates (cf. Amann and Escher,
2008, Section X.8). Thus, the absolute value of the inner integral can be bounded

by
∫∞
2 r−2τ+d−1(τ − d/2)d/2 dr = (τ−d/2)d/2

2τ−d 2−2τ+d.

All in all, we have that |Cτ (h)− 2d/2φτ−1/2(h)| decreases exponentially as τ → ∞ for all
h ∈ Rd. The same holds true for ||(Cτ (ti − tj))i,j − (2d/2φτ−1/2(ti − tj))i,j ||.
Using ||2d/2(φτ−1/2(xi − xj))

−1
i,j || ∼ K̃τk

∗/2 for some k∗ ≤ 2k2 and K̃ > 0 (cf. the first
part of Lemma 2.10) we get

||(2d/2φτ−1/2(ti − tj))
−1
i,j Z(t)− (Cτ (xi − xj))

−1
i,j Z(t)||

||(2d/2φτ−1/2(ti − tj))
−1
i,j Z(t)||

≤
||(2d/2φτ−1/2(ti − tj))i,j − (Cτ (ti − tj))i,j || · ||(2d/2φτ−1/2(ti − tj))

−1
i,j ||

1− ||(2d/2φτ−1/2(ti − tj))
−1
i,j || · ||(2d/2φτ−1/2(ti − tj))i,j − (Cτ (ti − tj))i,j ||

∈ o(1)

for τ large enough by Lange (1999), Section 6.5. Thus, almost surely, there is K =
K(Z(t)) > 0 such that

Z(t)T (Cτ (ti − tj))
−1
i,j Z(t)

= Z(t)T (2d/2φτ−1/2(ti − tj))
−1
i,j Z(t) + o(||Z(t)T (2d/2φτ−1/2(ti − tj))

−1
i,j ||)

=
(
C1(Z(t)) + o(1)

)
· ||Z(t)T (2d/2φτ−1/2(ti − tj))

−1
i,j ||

∼ C1(Z(t)) · ||Z(t)T (2d/2φτ−1/2(ti − tj))
−1
i,j || ≥ K · τk1/2 (2.19)

for τ large enough by the second and third part of Lemma 2.10.

As a last step we consider the difference Cτ (·) − κ̃τ−d/2(·). Using again 2d/2 Γ(τ)
Γ(τ−d/2) ∼

(2τ − d)d/2 for τ sufficiently large, we can see that the Fourier transform

Ĉτ (ω)− ̂̃κτ−d/2(ω) ∼
(
(2τ)d/2 exp(−||ω||2τ/2)− (2τ − d)d/2(1 + ||ω||2)−τ

)
1{||ω||2≤2}

is nonnegative everywhere and strictly positive on a Lebesgue non-null set and we have
that the matrix

(Cτ (ti − tj))i,j︸ ︷︷ ︸
=:A1(τ)

− (κ̃τ−d/2(ti − tj))i,j︸ ︷︷ ︸
=:A2(τ)

is strictly positive definite (cf. Wendland, 2005, Thm. 6.8).
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2. Estimating the Whittle-Matérn Smoothness Parameter via the Native Space Norm

It is well-known that this implies that A−1
2 (τ)−A−1

1 (τ) is positive semidefinite (see Horn
and Johnson, 1996, Corollary 7.7.4). Hence, for τ large enough,

||sZ,T,τ−d/2||2κ̃τ−d/2
= Z(t)TA−1

2 (τ)Z(t) ≥ Z(t)TA−1
1 (τ)Z(t) ≥ Kτ

k1
2

τ→∞−→ ∞

with probability one if k1 > 0. This condition holds if and only if n > 1 since
(
0+d
d

)
= 1.

Furthermore, we have

||sZ,T,τ−d/2||2κτ−d/2
∼ (2τ − d)d/2||sZ,T,τ−d/2||2κ̃τ−d/2

& (2τ − d)d/2τ
k1
2

τ→∞−→ ∞

for any n ∈ N.

The proof of Lemma 2.11 was based on results on flat limits for Gaussian kernels. Re-
cently, Song et al. (2012) proved the existence of flat limits for the Whittle-Matérn kernel
κν , ν ∈ N, provided that the set T is unisolvent w.r.t. the set P d

2ν of polynomials of de-
gree up to 2ν. Here, we consider “smooth limits” for Whittle-Matérn kernels based on
some fixed set T . Note that this set is not unisolvent w.r.t. P d

2ν as ν → ∞. Therefore,
we cannot resort to the results by Song et al. (2012), but again use results on Gaussian
kernels instead.

Proposition 2.12. Let T = {t1, . . . , tn} ⊂ Υ such that k2 ≤ 2 and f : Υ → R. Then, the
sequence of interpolants (sf,T,m)m∈N w.r.t. the Whittle-Matérn kernel converges (point-
wise) to a polynomial.

Proof. For the proof we use the series expansion of the modified Bessel function given
in Abramowitz and Stegun (1965):

Km(r) =
1

2

(
1

2
r

)−m m−1∑

k=0

(m− k − 1)!

k!

(
−1

4
r2
)k

+ (−1)m+1 log

(
1

2
r

)
Im(r)

+ (−1)m
1

2

(
1

2
r

)m ∞∑

k=0

(Ψ(k + 1) + Ψ(m+ k + 1))
(14r

2)k

k!(m+ k)!
, m ∈ N, r ≥ 0,

with

Im(r) =

(
1

2
r

)m ∞∑

k=0

(14r
2)k

k!Γ(m+ k + 1)

and

Ψ(1) = −γ, Ψ(m) = −γ +
m−1∑

k=1

k−1

where γ ≈ 0.5772 is the Euler-Mascheroni constant.

So we get

κ̃m(h) = 2

(
1

2
||h||

)m Km(||h||)
(m− 1)!
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2.4. On the Behaviour of the Native Space Norm

=
m−1∑

k=0

(m− k − 1)!

(m− 1)!

(−1
4 ||h||2)k
k!

+
2 · (−1)m+1

(m− 1)!
log

(
1

2
||h||

) ∞∑

k=0

1

k!

(14 ||h||2)m+k

(m+ k)!

+
(−1)n

(m− 1)!

∞∑

k=0

Ψ(k + 1) + Ψ(m+ k + 1)

k!

(14 ||h||2)m+k

(m+ k)!
,

which means

κ̃m(h) = 1− 1

m− 1

(
1

4
||h||2

)
+

1

(m− 1)(m− 2)

(14 ||h||2)2
2!

+
∞∑

k=3

(−1)k
1

(m− 1) · . . . · (m− k)

(14 ||h||2)k
k!

+ o

(
1

(m− 1)!

)
, m→ ∞.

Thus, we obtain

∣∣∣∣κ̃m(h)− φ 1√
2(m−1)

(h)

∣∣∣∣ =
∣∣∣∣
m−1∑

k=2

(
1

(m− 1) · (m− 2) · · · (m− k)

) (−1
4 ||h||2

)k

k!

−
∞∑

k=m

(−1)k

(m− 1)k

(
−1

4 ||h||2
)k

k!
+ o

(
1

(m− 1)!

) ∣∣∣∣ ∈ O
(

1

m3

)
.

On the other hand, by Lemma 2.10, we have
∣∣∣∣
∣∣∣∣
(
φ
1/
√

2(m−1)
(ti − tj)

)−1

i,j=1,...,n

∣∣∣∣
∣∣∣∣ ∈ O(mk2).

Thus, by Schaback and Wendland (2004), Thm. 3.18, for τm = 1√
2(m−1)

and m large

enough, we get the inequality

||φτm(ti − tj))
−1
i,j (φτm(t− ti))i − (κ̃m(ti − tj))

−1
i,j (κ̃m(t− ti))i||

≤
||(φτm(ti − tj))

−1
i,j || · ||(φτm(ti − tj))i,j ||

1− ||(φτm(ti − tj))
−1
i,j || · ||(φτm(ti − tj))i,j − (κ̃m(ti − tj))i,j ||

·
(∣∣∣∣(φτm(ti − tj)

)
i,j

− (κ̃m(ti − tj))i,j
∣∣∣∣

||(φτm(ti − tj))i,j ||
+

||(φτm(t− ti))i − (κ̃m(t− ti))i||
||(φτm(t− tj))i||

)

· ||(φτm(ti − tj))
−1
i,j (φτm(t− ti))i||

= o(||(φτm(ti − tj))
−1
i,j (φτm(t− ti))i||)

for any t ∈ Υ since k2 < 3.
As FT (φτm(ti−tj))−1

i,j (φτm(t−ti))i converges to a polynomial for any F ∈ Rn by Theorem

1 in Schaback (2008), we get that ||(φτm(ti− tj))−1
i,j (φτm(t− ti))i|| is bounded. Therefore,

||φτm(ti − tj))
−1
i,j (φτm(t− ti))i − (κ̃m(ti − tj))

−1
i,j (κ̃m(t− ti))i|| ∈ o(1)

for any t ∈ Υ.
Thus, for all F = (f(t1), . . . , f(tn)) ∈ Rn we have

sf,T,m(t) = FT (κ̃m(ti − tj))
−1
i,j (κ̃m(t− ti))i ∼ FT (φτm(ti − tj))

−1
i,j (φτm(t− ti))i

and this term converges to a polynomial.
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2. Estimating the Whittle-Matérn Smoothness Parameter via the Native Space Norm

Lemma 2.13. For any f : Υ → R with f |T 6≡ 0 it holds

1. lim
ν→0

||sf,T,ν ||2κ̃ν
∈ (0,∞)

2. lim
ν→0

||sf,T,ν ||2κν
= 0

Proof. 1. Let K̃ν = (κ̃ν(ti − tj))i,j=1,...,n. Then, we have K̃ν
ν→0−→ In where In ∈ Rn×n

is the n × n-identity matrix. Therefore, as all matrices K̃ν are strictly positive
definite and matrix multiplication and inversion are continuous,

||sf,T,ν ||2κ̃ν
= FT K̃−1

ν F
ν→0−→ FTF > 0 for F 6= 0

where F = (f(t1), . . . , f(tn))
T .

2. By Formulae 6.2.1 and 6.2.2 in Abramowitz and Stegun (1965), we have Γ(ν)
Γ(ν+d/2) =

Γ(d/2) ·B(ν, d/2), where B denotes the beta function, and therefore

Γ(ν + d/2)

Γ(ν)
∼ 1∫ 1

0 t
ν−1(1− t)d/2−1 dt

≤ 1
∫ 1/2
0 tν−1(1/2)d/21−1 dt

ν→0−→ 0.

Using ||sf,T,ν ||2κν
∼ Γ(ν+d/2)

Γ(ν) ||sf,T,ν ||2κ̃ν
and the first part of this lemma, we get

limν→0 ||sf,T,ν ||2κν
= 0.

By these considerations we can proof the existence of a minimum of

GT,λ(τ) := E(τ) + λ(τ) · ||sZ,T,τ−d/2||2κτ−d/2
,

where E is some error function, under certain conditions.

Theorem 2.14. Let 0 < ε < d
2 < ν0, and Z(·) be a stationary zero mean Gaussian

random field with covariance function κ̃ν0. Furthermore, let E : (0,∞) → [0,∞) be
continuous and λ :

(
d
2 ,∞

)
→ [0,∞) be continuous and eventually larger than some

C > 0. Let T ⊂ Υ be finite. Then, minτ∈[d/2+ε,∞)GT,λ(τ) exists with probability one.

Proof. Note that τ 7→ Kτ (h) and τ 7→ κτ (h) are continuous on (0,∞) for all h ∈ Rd.
Employing

||sZ,T,τ ||2κτ
= Z(t)T (κτ )

−1
i,j Z(t)

where Z(t) = (Z(t1), . . . , Z(tn))
T , we get that the mapping GT,λ :

(
d
2 ,∞

)
→ [0,∞)

is continuous since matrix multiplication and inversion are continuous operations. For
µ − d

2 ∈ (ε, ν0) we have Zω(·) ∈ Wµ−d/2,2(T ) with probability one by Scheuerer (2010).
Theorem 2.6 yields

min
τ∈[ d

2
+ε,µ]

GT,λ(τ) ≤ GT,λ(µ) ≤ E(µ) + λ(µ) · c2Z =: C̃ ∀T ⊂ Υ.

By the assumptions on λ(·) we have λ(τ) > C for all τ larger than some µ1. Furthermore,
by Lemma 2.11, there exists some µ2 such that C · ||sZ,T,µ2−d/2||2κµ2−d/2

> C̃ and by
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2.5. The Choice of the Tuning Parameter Function λ(ν)

Proposition 2.9 the same inequality holds for all τ ≥ µ2. Since E(τ) is nonnegative, we
have GT,λ(τ) > C̃ for all τ > µ∗ = max{µ1, µ2}. Therefore,

inf
τ∈[ d

2
+ε,∞)

GT,λ(τ) = inf
τ∈[ d

2
+ε,µ∗]

GT,λ(τ) = min
τ∈[ d

2
+ε,µ∗]

GT,λ(τ).

The last equation holds because of the continuity of GT,λ(·) and the compactness of
[d2 + ε, µ∗].

Remark 2.15. 1. In fact, the condition d
2 < ν0 is not necessary for the existence of

the minimum stated above. Nevertheless, it guarantees that Zω(·) is element of
the Hilbert spaces H(κµ; Υ), µ < ν0− d

2 . Only under this condition we can expect
to re-estimate ν0 correctly by minimizing GT,λ(·).

2. In the case |T | > 1, Theorem 2.14 also holds true if we replace GT,λ(ν) by

G̃T,λ(τ) := E(τ) + λ(τ) · ||sZ,T,τ−d/2||2κ̃τ−d/2
.

Note that τ 7→ ||sZ,T,τ−d/2||2κ̃τ−d/2
is not monotonically increasing, but tends to

infinity as τ → ∞ by Lemma 2.11 and therefore C ·||sZ,T,τ2−d/2||2κ̃τ−d/2
is eventually

larger than any C̃. In contrast to GT,λ, the function G̃T,λ also allows for penalizing
for small values of τ as limνց0 ||sZ,T,ν ||κ̃ν

> 0 = limνց0 ||sZ,T,ν ||κν (Lemma 2.13).

As the minimum exists under the conditions of Theorem 2.14, we can define the following
estimators, which we call native space penalty estimators,

ν̂NP1 = argminν>d/2Gλ,T (ν) and ν̂NP2 = argminν>d/2G̃λ,T (ν), (2.20)

respectively. Considering these estimators, we have to deal with the choice of the error
function E and the tuning parameter function λ.

2.5 The Choice of the Tuning Parameter Function λ(ν)

Remark 2.16. Let (κ̃ν(ti − tj))i,j = LνL
T
ν be the Cholesky decomposition of (κ̃ν(ti −

tj))i,j . Then, for a zero mean stationary Gaussian random field Z with covariance
function κν0 and a data vector Z(t) = (Z(t1), . . . , Z(tn))

T we have (L−1
ν0 )Z(t) ∼ N (0, In)

and therefore ||sZ,T,ν0 ||2κ̃ν0
∼ χ2

n, i.e. ||sZ,T,ν0 ||2κ̃ν0
is χ2-distributed with n degrees of

freedom (cf. Abramowitz and Stegun, 1965, Section 26.4).

It seems reasonable to take a tuning parameter which represents the probability of the
observed value ||sZ,T,ν ||2κ̃ν

under the assumption that κ̃ν is the true covariance function,

which means to choose λ(·) as a data-dependent function of p(ν) = P(Xn ≤ ||sZ,T,ν ||2κ̃ν
|

Z(t)) where Xn ∼ χ2
n is independent of Z. Here, we want λ to be small for “common”

values of ||sZ,T,ν ||2κ̃ν
and to be large for rare values, i.e. p ≈ 0 or p ≈ 1. One canonical

choice of λ would be an indicator function of the type λ(ν) = 1|p(ν)− 1
2
|>b for some

b ∈ (0, 12). However, for Theorem 2.14 to hold, λ should be continuous. Therefore, we
choose an continuous approximation to an indicator function:
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Figure 2.1: λ(ν) as a function of p(ν) for different parameters. Left: b1 = 0.24, b2 = 0.26.
Right: b1 = 0.39, b2 = 0.41.

λ(ν) =





0, |p(ν)− 1
2 | ≤ b1

−p(ν)−( 1
2
−b1)

b2−b1
, 1

2 − b2 < p(ν) < 1
2 − b1

p(ν)−( 1
2
+b1)

b2−b1
, 1

2 + b1 < p(ν) < 1
2 + b2

1, |p(ν)− 1
2 | ≥ b2

for appropriate parameters 0 ≤ b1 < b2 ≤ 1
2 (see Figure 2.1 for λ with two different

parameter settings). Thus, λ is a nonnegative continuous function. By Lemma 2.11, we
have p(ν)

ν→∞−→ 1 a.s. if |T | > 1 and therefore λ is finally bounded away from zero.

2.6 Comparison with MLE and Cross Validation Estimator

Now, we compare the results of the native space penalty estimators ν̂NP1 and ν̂NP2 from
Equation (2.20) to the results of other estimators. As an alternative estimator for ν0
we consider the well-known maximum likelihood estimator (see Stein 1999, p. 169, for
example)

ν̂MLE = argmaxν>0L(ν).
Here, L(·) denotes the Gaussian likelihood function

L(ν) = 1
√
2π

n
(
det(K̃ν)

)1/2 exp
(
−1

2
zT K̃−1

ν z

)
,

where K̃ν = (κ̃ν(||ti−tj ||))i,j=1,...,n is the covariance matrix corresponding to the parame-
ter ν > 0 and z ∈ Rn denotes the vector consisting of observations at locations t1, . . . , tn.
Note that — for numerical reasons — often the log-likelihood function ℓ(ν) = logL(ν)
is maximized instead of the likelihood function L(ν) itself.
Furthermore, we consider the leave-one-out cross validation (LOOCV) estimator which
was proposed by Rippa (1999) for scale parameter estimation. In contrast to ν̂MLE , the
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2.6. Comparison with MLE and Cross Validation Estimator

LOOCV estimator does not assume Z to be Gaussian. Here, one considers the error
vector E(ν) = (E1(ν), . . . , En(ν))

T with Ek(ν) = Z(tk)− sZ,T\{tk},κν
(tk) and defines

ν̂LCV = argminν>0||E(ν)||1.

Rightaway, the calculation of E(ν) seems to be quite time-consuming because it involves
solving n linear systems of dimension (n− 1)× (n− 1). However, Rippa (1999) showed
that this can be done much faster: Let a(ν) and x(k)(ν), k = 1, . . . , n, be the solution of
the linear systems K̃νa(ν) = z and K̃νx

(k)(ν) = ek, respectively, where ek denotes the
k-th standard basis vector in Rn, k = 1, . . . , n. Then, one can rewrite E(ν) in terms of

a(ν) and x(k)(ν) and one obtains Ek(ν) =
ak(ν)

x(k)
k(ν)

. This simplification reduces the costs

of calculating E(ν) from O(n4) to O(n3).

However, this estimator may not take into account the geometry of T = {t1, . . . , tn} in
a suitable way. Therefore, Scheuerer (2011) proposes a weighted cross validation (WCL)
estimator. Let

ǫi(ν) =
|sf,{t1,...,ti−1},ν(ti)− f(ti)|

P{t1,...,ti−1},κ̃ν
(ti)

, i = 1, . . . , N,

where sf,∅,ν ≡ 0 and P∅,κ̃ν
≡ 1. By the weighting of the errors by the reciprocal power

function we account for the expected accuracy of interpolation based on the geometry
of T . Then, the weighted cross validation estimator is given by

ν̂WCV = argminν>0


 n

√√√√
n∏

i=1

P{t1,...,ti−1},κ̃ν
(ti) · ||ǫ(ν)||22


 .

The computation can be simplified by using ||ǫ(ν)||22 = ||sf,T,ν ||2κ̃ν
(cf. Scheuerer, 2011).

Before we can apply the native space penalty estimators from Equation (2.20), we have
to care for the choice of the error function E(·) involved. The power function itself does
not seem to be suitable as it determines the error only for the true smoothness parameter
ν0. As the weighted cross validation estimator turns out to provide much better results
than the leave-one-out cross validation estimator, we choose

E(ν) = n

√√√√
n∏

i=1

P{t1,...,ti−1},κ̃ν
(ti) · ||ǫ(ν)||22.

The tuning parameter function λ is chosen as in Section 2.5 with parameters b1 = 0.24
and b2 = 0.26.
We do a performance study in order to compare the estimators ν̂MLE , ν̂LOOCV , ν̂WCV ,
ν̂NP1 and ν̂NP2 as well as their impact on kriging errors. To this end, we simulate
data Z1, . . . , ZK of a stationary Gaussian random field with covariance function κ̃ν0
with ν0 ∈ {0.75, 1.25, 1.75, 2.25} on the set Y = {−5,−4.9, . . . , 4.9, 5} ⊂ R using the
software environment R (Ihaka and Gentleman, 1996; R Development Core Team, 2011),
in particular the R package RandomFields (Schlather, 2012). Each simulation is repeated
independently K = 500 times. Estimation is performed based on the data on a set
T ⊂ Y with |T | = 34 (see Figure 2.2) yielding estimates ν̂(1), . . . , ν̂(K). In a first step we
determine the mean squared error for each estimator. Furthermore, we use the estimated
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−5 −3 −1 1 3 5

Figure 2.2: The set T (black dots) and the point t0 (grey cross).

ν0 ν̂MLE ν̂NP1 ν̂NP2 ν̂WCV ν̂LCV ν̂MLE ν̂NP1 ν̂NP2 ν̂WCV ν̂LCV

MSE MSE MSE MSE MSE MSKE MSKE MSKE MSKE MSKE

0.75 0.0059 0.0091 0.0061 0.0169 0.139 0.2555 0.2562 0.2563 0.2582 0.2998

1.25 0.0057 0.0064 0.0064 0.0214 0.282 0.0571 0.0572 0.0572 0.0573 0.0640

1.75 0.0058 0.0069 0.0069 0.0232 0.332 0.0123 0.0123 0.0123 0.0123 0.0142

2.25 0.0066 0.0074 0.0074 0.0252 0.369 0.0021 0.0021 0.0021 0.0021 0.0024

Table 2.1: Estimation of ν0 in the case of a known variance (σ2 = 1) and a Gaussian
random field. Results of a simulation study with 500 simulated data sets for
each ν0. The mean squared error (MSE) for the estimation of ν and the mean
squared kriging error (MSKE) at location t0 are shown.

parameters for kriging based on the data on T and determine the mean squared kriging
error at location t0 (see Figure 2.2) which is

MSKE(t0) =
1

K

K∑

i=1

(sZi,T,ν̂(i)
(t0)− Zi(t0))

2.

The results are presented in Table 2.1. As a first result, the WCV estimator performs
much better than the LOOCV estimator. Furthermore, the estimators ν̂MLE , ν̂NP1 and
ν̂NP2 which assume Gaussianity, provide better results than the cross validation ones
which are not based on this assumption. The native space penalty estimators perform
slightly worse than the maximum likehood estimator, in particular with respect to the
MSE. Among the native space penalty estimators, differences only occur if ν0 is small
as penalization of small τ is crucial in this case. Here, the results of ν̂NP2 are a little
better than the ones of ν̂NP1.

Furthermore, we analyse the case where the assumption of Gaussianity is not perfectly
satisfied. At the same time, the random field we consider should allow for controlling
the sample path smoothness. Here, we choose Gaussian random fields and truncate
with thresholds −1.5 and 1.5. As truncation functions are once weakly differentiable,
the smoothness of the sample paths should not be affected by the truncation for ν ≤ 1.
We redo the same simulation study as before with truncated Gaussian random fields for
ν0 = 0.7, 0.9. The results are shown in Table 2.2. In this case of slight deviations from
Gaussianity, ν̂NP2 performs as good as ν̂MLE .

2.7 The Unknown Variance Case

In the previous sections, we considered Gaussian random fields with covariance function
κ̃ν0 , that is, with variance σ2 = 1. Now, we want to modify λ(ν) for the case of unknown
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2.7. The Unknown Variance Case

ν0 ν̂MLE ν̂NP1 ν̂NP2 ν̂WCV ν̂LCV ν̂MLE ν̂NP1 ν̂NP2 ν̂WCV ν̂LCV

MSE MSE MSE MSE MSE MSKE MSKE MSKE MSKE MSKE

0.7 0.0116 0.0131 0.0107 0.0171 0.119 0.2431 0.2441 0.2434 0.2444 0.2741

0.9 0.0107 0.0142 0.0106 0.0200 0.192 0.1391 0.1395 0.1394 0.1405 0.1573

Table 2.2: Estimation of ν0 in the case of a known variance (σ2 = 1) and a truncated
Gaussian random field. Results of a simulation study with 500 simulated data
sets for each ν0 = 0.7, 0.9. The mean squared error (MSE) for the estimation
of ν0 and the mean squared kriging error (MSKE) at location t0 are shown.

variance σ2, i.e. for the case of a stationary Gaussian random field with covariance
function σ2 · κ̃ν0 . Therefore, we should choose λ(·) in a way that the behaviour of GT,λ

(and G̃T,λ, respectively) is invariant under multiplying Z with some norming constant
(which is modifying the variance of the data). As E(ν), ||sZ,T,ν−d/2||2κν

and ||sZ,T,ν−d/2||2κ̃ν

all depend on the data in a quadratic way, ν̂NP1 and ν̂NP2 become invariant w.r.t. the
variance of the data if λ(·) does not depend on the variance.

Let Lν be as in Remark 2.16. Then, we have for Z(t) ∼ N (0, σ2(κ̃ν0(xi − xj))i,j) that

(g1(ν), . . . , gn(ν))
T = (L−1

ν0 )
TZ(t) ∼ N (0, σ2In).

So we get that ∑⌊n/2⌋
i=1 g2i (ν0)∑2⌊n/2⌋

i=⌊n/2⌋+1 g
2
i (ν0)

∼ F⌊n/2⌋,⌊n/2⌋

is F-distributed and the distribution does not dependent on the variance (cf. Abramowitz
and Stegun, 1965, Section 26.6). Thus, we can define

p(ν) = P


Yn ≤

∑⌊n/2⌋
i=1 g2i (ν)∑2⌊n/2⌋

i=⌊n/2⌋+1 g
2
i (ν)

∣∣∣∣∣ Z(t)


 ,

where Yn ∼ F⌊n/2⌋,⌊n/2⌋ is independent of Z, and choose λ(ν) as a function of p(ν) as in
Section 2.5 with parameters b1 = 0.39 and b2 = 0.41.

Note that the maximum likelihood estimator has to be modified for the unknown variance
case, as well. Here, the profile log-likelihood is given by

ℓ(ν) = −n
2
log(2π)− n

2
(1− logn)− 1

2
log(det(K̃ν))−

n

2
log(zT K̃−1

ν z)

(Scheuerer, 2009). The resulting estimator ν̂MLE = argminν>0ℓ(ν) is equivalent to the
weighted cross validation estimator (cf. Scheuerer, 2011) which motivates the accuracy of
maximum likelihood estimation even in a non-Gaussian framework. The cross validation
estimators are invariant under changes of the variance.

We redo the above simulation study with Gaussian random fields and the true but
unknown variance σ2 = 10. The results are shown in Table 2.3. Here, the estimators
ν̂NP1 and ν̂NP2 perform similar to the ML/WCV estimator, and much better than the
LOOCV estimator. Note that the parameters chosen for λ lead to penalization only if
the observed value of ||sZ,T,ν−d/2||2κ̃ν

is quite unlikely provided that it is χ2
n-distributed.

Therefore, in most cases, the estimators ν̂MLE (= ν̂WCV ), ν̂NP1 and ν̂NP2 coincide.
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ν0 ν̂MLE ν̂NP1 ν̂NP2 ν̂WCV ν̂LCV ν̂MLE ν̂NP1 ν̂NP2 ν̂WCV ν̂LCV

MSE MSE MSE MSE MSE MSKE MSKE MSKE MSKE MSKE

0.75 0.0180 0.0198 0.0189 0.0180 0.162 2.602 2.601 2.596 2.602 2.933

1.25 0.0201 0.0207 0.0207 0.0201 0.257 0.5799 0.5814 0.5814 0.5799 0.6690

1.75 0.0217 0.0218 0.0218 0.0217 0.301 0.1136 0.1137 0.1137 0.1136 0.1251

2.25 0.0256 0.0263 0.0263 0.0256 0.331 0.0169 0.0169 0.0169 0.0169 0.0192

Table 2.3: Estimation of ν0 in case of an unknown variance and a Gaussian random
field. Results of a simulation study with 500 simulated data sets with variance
σ2 = 10 for each ν0. The mean squared error (MSE) for the estimation of ν0
and the mean squared kriging error (MSKE) for the location t0 are shown.

2.8 An Alternative Approach Using Error Bounds

Let Υ ⊂ Rd be an open and bounded Lipschitz domain satisfying the interior cone
condition (cf. Wendland, 2005): there exists an angle θ ∈ (0, 2π) and a radius r > 0 such
that for every t ∈ Υ a unit vector ψ(t) exists with

{t+ λu : u ∈ Rd, ||u||2 = 1, uTψ(t) ≥ cos θ, λ ∈ [0, r]} ⊂ Υ.

Furthermore, for a finite subset T = {t1, . . . , tn} ⊂ Υ, we define the fill distance

hT,Υ = sup
t∈Υ

min
i=1,...,n

||ti − t||

and the mesh ratio

ρT,Υ =
hT,Υ
qT

where qT = 1
2 mini,j=1,...,n, i 6=j ||ti− tj || is the so-called separation radius. That is, the fill

distance denotes the radius of the largest ball in Υ which does not contain any element
of T whereas the separation radius is the radius of the smallest ball which contains two
elements of T . Thus, if T is a grid in Rd, the mesh ratio ρT,Υ equals

√
d up to some

boundary effects. We can assess the convergence rate of sf,T,τ to f in terms of hT,Υ and
ρT,Υ via the following proposition.

Proposition 2.17. Let k > d
2 be some positive integer, 0 < s ≤ 1 and f ∈ W k+s,2(Υ).

Furthermore, let τ > k + s. Then, there exist C, h0 > 0 such that

1. ||f − sf,T,τ− d
2
||∞ ≤ C · hk+s−d/2

T,Υ · ρτ−k−s
T,Υ · ||f ||W k+s,2(Υ)

2. ||f − sf,T,τ− d
2
||2 ≤ C · hk+s

T,Υ · ρτ−k−s
T,Υ · ||f ||W k+s,2(Υ)

for all T ⊂ Υ with hT,Υ ≤ h0. Here, || · ||q denotes the Lq(Υ)-norm for q ∈ {2,∞}.

Proof. As τ > k + s, we have u := f − sf,T,τ−d/2 ∈ W k+s,2(Υ) and u|T = 0. Applying
Theorem 11.32 from Wendland (2005), we get

||f − sf,T,τ−d/2||q ≤ C1 · hk+s−d(1/2−1/q)
T,Υ · ||f − sf,T,τ−d/2||W k+s,2(Υ)
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mean MSE

ν0 ν̂L2
ν̂MLE ν̂L2

ν̂MLE

1.1 1.17 1.10 0.0134 0.0006

1.3 1.36 1.30 0.0138 0.0007

1.5 1.55 1.50 0.0146 0.0006

1.7 1.76 1.70 0.0167 0.0006

1.9 1.96 1.90 0.0187 0.0007

Table 2.4: Mean and mean squared errors (MSE) for ν̂2 and ν̂MLE based on 500 realisa-
tions of a Gaussian random field with covariance function κ̃ν0 .

for q ∈ {2,∞}, for suitable C1 > 0 and sufficiently small hT,Υ. Furthermore, Theorem
4.2 of Narcowich et al. (2006) yields

||f − sf,T,τ−d/2||W k+s,2(Υ) ≤ C2 · ρτ−k−s
T,Υ · ||f ||W k+s,2(Υ)

for some C2 > 0.

Thus, for sets T consisting of equispaced points — which means that ρT,Υ does not
depend on hT,Υ — we might expect that ||f − sf,T,τ−d/2|| decays like hk+s

T,Υ if || · || = || · ||2
or like h

k+s−d/2
T,Υ if ||·|| = ||·||∞ for τ > k+s, provided that the assessments in Proposition

2.17 are accurate. This motivates to estimate the true smoothness parameter ν0 of a
stationary Gaussian random field by choosing τ ≫ ν0 and determining the slope of a
log-log-regression of ||f − sf,T,τ−d/2|| on hT,Υ. As the error estimates in Proposition
2.17 only hold for small hT,Υ, one should only use small values of hT,Υ for regression.
However, we note that the || · ||∞-norm of the kriging error can hardly be determined
without knowing f exactly at least on a dense set near the boundary of Υ as the largest
error is expected to occur in this region. Contrarily, as these boundary effects occur only
in a small region, the || · ||2-norm of the kriging error might be approximated quite well
by summing up and normalising the squared errors on a grid. Thus, in the following, we
will restrict ourselves to the L2(Υ)-norm.

We want to assess the performance of such an estimator by a simulation study based
on Gaussian random fields with covariance function κ̃ν0 . Note that the L2(Υ)-error
based estimator can be applied only if ν0 > ⌈d/2⌉. For ν0 = 1.1, 1.3, . . . , 1.9 we simulate
k = 500 realisations of a zero mean Gaussian random field with covariance function κν on
Y = {−0.5,−0.495, . . . , 0.495, 0.5} using the R package RandomFields (Schlather, 2012).
We apply simple kriging with τ = 2.6, 2.8, 3 for the sets T = Y ∩ 0.01Z, Y ∩ 0.015Z,
Y ∩ 0.02Z, . . . and perform a log-log-regression for the L2(Υ)-errors on the smallest
2, . . . , 10 values of hT,Υ. Using the mean of these estimates respectively and averaging
over the different values for τ we get an estimator denoted by ν̂L2 .

As a reference method we use maximum likelihood estimation based on the set of loca-
tions T = {−0.5,−0.48, . . . , 0.5} denoted by ν̂MLE . The results — in terms of means
and mean squared errors — are shown in Table 2.4. It can be seen that ν0 seems to be
overestimated by ν̂L2 . Furthermore, ν̂MLE performs much better than the L2(Υ)-error
based estimator although fewer data are used for estimation.
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3 Max-Stable Processes Based on Flat

Limits of Gaussian Random Fields

In this chapter, we construct max-stable processes based on interpolated Gaussian ran-
dom fields. We consider flat limits of interpolated fields which we also used to proof
Lemma 2.10. More precisely, we deal with flat limits in the case of n = 2 or n = 3 points.
The flat limits are calculated explicitly and employed in a construction of Brown-Resnick
type (cf. Kabluchko et al., 2009).
This chapter is organized as follows: First, we give a short introduction to max-stable
processes and the construction principle we consider in this chapter (Section 3.1). In
Sections 3.2 and 3.3, we analyse max-stable processes based on flat limits for universal
and simple kriging, respectively. Both sections are divided into three subsections, de-
voted to the flat limits involved, the max-stable processes occurring and considerations
on the stationarity of these processes.

3.1 Max-Stable Processes

Having dealt with Gaussian processes in Chapter 2, we now advance to max-stable
processes. These are well studied in extreme value theory and have found their way
in numerous applications, see de Haan and Ferreira (2006), and Ribatet (2011), for
instance. We start by giving the definition of max-stable processes.

Definition 3.1 (De Haan, 1984). A stochastic process {η(t), t ∈ Rd} is calledmax-stable
if there exist functions an : Rd → (0,∞), bn : Rd → R such that

{
max

i=1,...,n

(
ηi(t)− bn(t)

an(t)

)
, t ∈ Rd

}
d
= {η(t), t ∈ Rd},

where {ηi(t), t ∈ Rd}, i ∈ N, are independent copies of η.

In de Haan (1984), stochastically continuous max-stable processes have been charac-
terized entirely by a spectral representation. Based on this approach involving Poisson
point processes, many models for stationary max-stable processes have been developed.
Let us just mention some of these models which will be further analysed within this the-
sis. Smith (1990) introduced “rainfall-storm” models like the Gaussian and t extreme
value processes. For this kind of models — which allow for a mixed moving maxima
representation — conditional sampling will be done in Chapter 5. Another model, called
extremal Gaussian process, was proposed by Schlather (2002) (cf. Chapter 6).

In this chapter, we consider processes which are constructed similarly to Brown-Resnick
processes (Brown and Resnick, 1977; Kabluchko et al., 2009). As we will see, Brown-
Resnick processes arise naturally as stationary max-stable processes based on Gaussian
processes. They will be further investigated in Chapter 4 and Chapter 6.
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3. Max-Stable Processes Based on Flat Limits of Gaussian Random Fields

Let
∑

i∈N δUi be a Poisson point process on R with intensity measure e−u du and, inde-
pendently, let {ξi(t), t ∈ Rd}, i ∈ N, be i.i.d. stochastic processes. Then, the process

η(t) = max
i∈N

(Ui + ξi(t)), t ∈ Rd,

is max-stable and has finite-dimensional distributions

P(η(t1) ≤ z1, . . . , η(tn) ≤ zn) = exp

(
−E

(
max

i=1,...,n
exp(ξ1(ti)− zi)

))
,

t1, . . . , tn ∈ Rd, z1, . . . , zn ∈ R, if

E(exp(ξ1(t))) <∞ (3.1)

for all t ∈ Rd (Kabluchko et al., 2009; de Haan, 1984). In particular, {η(t), t ∈ Rd} has
Gumbel margins. The following lemma turns out to be useful to proof max-stability in
the following sections.

Lemma 3.2. Let
∑

i∈N δUi be a Poisson point process on R with intensity measure

e−u du. Furthermore, let (Z
(i)
1 , . . . , Z

(i)
m ), i ∈ N, be independent copies of a Gaussian

random vector (Z1, . . . , Zm) and f1, . . . , fm : Rd → R be measurable functions. Then,

ζ(t) = max
i∈N


Ui +

m∑

j=1

fj(t)Z
(i)
j


 , t ∈ Rd,

ζ+(t) = max
i∈N


Ui +

m∑

j=1

|fj(t)| · |Z(i)
j |


 , t ∈ Rd,

ζ−(t) = max
i∈N


Ui −

m∑

j=1

|fj(t)| · |Z(i)
j |


 , t ∈ Rd,

define max-stable processes with Gumbel margins.

Proof. By the considerations above, it suffices to verify (3.1), that is, to show that

E


exp


−

m∑

j=1

|fj(t)| · |Zj |




 ≤ E


exp




m∑

j=1

fj(t)Zj






≤ E


exp




m∑

j=1

|fj(t)| · |Zj |




 <∞

for all t ∈ Rd. As the vector (Zj)
m
j=1 is Gaussian, there exists a vector µ ∈ Rm and a

matrix B = (bij)ij ∈ Rm×m such that

(Zj)
m
j=1

d
= µ+B · (Xj)

m
j=1
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where Xj ∼i.i.d. N (0, 1), j = 1, . . . ,m. With gj(t) =
∑m

i=1 |bij | · |fi(t)| we can assess

E


exp




m∑

j=1

|fj(t)| · |Zj |




 ≤ E


exp




m∑

j=1

|fj(t)| · |µj |+
m∑

j=1

|gj(t)| · |Xj |






= exp




m∑

j=1

|fj(t)| · |µj |




m∏

j=1

E (exp (|gj(t)| · |Xj |))

= exp




m∑

j=1

|fj(t)| · |µj |




m∏

j=1

exp

(
1

2
|gj(t)|2

)
<∞

for all t ∈ Rd.

3.2 Max-Stable Processes Based on Universal Kriging with

Two Data Locations

3.2.1 Flat Limits

Here, we consider a Gaussian random field of the form

Z(t) = c ·m(t) + ζ(t), t ∈ R,

where c ∈ R is an unknown constant, m : R → R is a known trend basis function and
{ζ(t), t ∈ R} is a stationary Gaussian random field with mean zero and variance one.
We aim to interpolate this random field w.r.t. its values at two locations t1 and t2.
W.l.o.g. we assume t1 = 1, and t2 = −1. Then, we have

(Z(1), Z(−1)) ∼ N
(
c

(
m(1)
m(−1)

)
,

(
1 ρ
ρ 1

))
(3.2)

where ρ = Cov(Z(−1), Z(1)) ∈ [−1, 1].
As the mean function E(Z(·)) ∈ span{m(·)} is only known up to some constant, interpo-
lation is done by universal kriging which provides a best linear estimator for each Z(t),
t ∈ R, if the true covariance of Z is used (Chilès and Delfiner, 1999). However, as we are
interested in flat limits, we will perform universal kriging based on a scaled covariance
function

Cε(h) := C(εh), ε > 0, h ∈ R,

where C(·) is of the form
C(h) = 1 + a|h|α + o(|h|α) (3.3)

for some α > 0, a 6= 0.
By

{Zε(t), t ∈ Rd}
we denote the random field we get by universal kriging based on the data Z(1), Z(−1),
the covariance function Cε(·) and the trend function m, i.e.

Zε(t) = λ1,ε(t)Z(1) + λ2,ε(t)Z(−1)
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where (λ1,ε(t), λ2,ε(t), µε(t)) is a solution of the linear system




Cε(0) Cε(2) m(1)
Cε(−2) Cε(0) m(−1)
m(1) m(−1) 0






λ1,ε(t)
λ2,ε(t)
µε(t)


 =




Cε(t− 1)
Cε(t+ 1)
m(t)


 (3.4)

(see Chilès and Delfiner, 1999).

Proposition 3.3. Under the assumptions given above and for m(1) = m(−1) = 1, the
random field {Z0(t), t ∈ R} defined by

Z0(t) = lim
εց0

Zε(t), t ∈ R,

exists and coincides with the random function G given by

G(t) =
1

2
(Z(1) + Z(−1))m(t) +

1

2
(Z(1)− Z(−1))

|t+ 1|α − |t− 1|α
2α

.

Proof. Employing (3.3) one can solve the universal kriging system (3.4) explicitly:




1 1 + a(2ε)α + o(εα) 1
1 + a(2ε)α + o(εα) 1 1

1 1 0




︸ ︷︷ ︸
=:Aε




λ1,ε(t)
λ2,ε(t)
µε(t)


 =




1 + a|t− 1|αεα
1 + a|t+ 1|αεα

m(t)


 .

The condition a 6= 0 ensures that Aε is invertible for small ε. For calculating λ1,ε(t) and
λ2,ε(t) we need to determine the first and second row of A−1

ε which is

A−1
ε =

1

det(Aε)




−1 1 a(2ε)α + o(εα)
1 −1 a(2ε)α + o(εα)

. . .




where det(Aε) = a(2ε)α + o(εα). Thus, we get

Zε(t) = λ1,ε(t)Z(1) + λ2,ε(t)Z(−1)

=

(
−|t− 1|α

2α+1
+

|t+ 1|α
2α+1

+
m(t)

2
+ o(1)

)
Z(1)

+

( |t− 1|α
2α+1

− |t+ 1|α
2α+1

+
m(t)

2
+ o(1)

)
Z(−1).

This yields limεց0 Zε(t) = G(t).

3.2.2 Max-Stable Processes

Based on the flat limit G given in Proposition 3.3, we construct max-stable processes as
described in Section 3.1.
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Theorem 3.4. Let (Z(i)(1), Z(i)(−1)), i ∈ N, be independent copies of

(Z(1), Z(−1)) ∼ N
(
c

(
m(1)
m(−1)

)
,

(
1 ρ
ρ 1

))

and Z
(i)
ε the corresponding random field based on universal kriging. Furthermore, in-

dependently of (Z(i)(1), Z(i)(−1)), i ∈ N, let
∑

i∈N δUi be a Poisson point process on R
with intensity measure e−u du. Then,

Y (t) = lim
εց0

max
i∈N

(
Ui + Z(i)

ε (t)
)
, t ∈ R,

defines a max-stable random field with Gumbel margins on R.

Proof. First, we rewrite

Z0(t) = λ1,0(t)Z(1) + λ2,0(t)Z(−1), t ∈ R.

By the calculations in the proof of Proposition 3.3 there are functions fε : R → R, ε > 0,
such that

|λj,ε(t)− λj,0(t)| < fε(t) · |λj,0(t)|, j = 1, 2, t ∈ Rd,

and fε(t) → 0 as εց 0 for all t ∈ R. Thus, for any t ∈ R, we can assess

(1 + fε(t)) ·max
i∈N

(
Ui + Z

(i)
0 (t)

)

− fε(t) ·max
i∈N

(
Ui + 2 · |λ1,0(t)| · |Z(i)(1)|+ 2 · |λ2,0(t)| · |Z(i)(−1)|

)

≤ max
i∈N

(
Ui + Z(i)

ε (t)
)

≤ (1− fε(t)) ·max
i∈N

(
Ui + Z

(i)
0 (t)

)

+ fε(t) ·max
i∈N

(
Ui + 2 · |λ1,0(t)| · |Z(i)(1)|+ 2 · |λ2,0(t)| · |Z(i)(−1)|

)
.

By Lemma 3.2 all the maxima define max-stable processes. As εց 0, we get pointwise
a.s. convergence to

Y (t) = max
i∈N

(
Ui + Z

(i)
0 (t)

)

which is

Y (t) = max
i∈N

(
Ui +

Z(i)(1) + Z(i)(−1)

2
·m(t) +

Z(i)(1)− Z(i)(−1)

2
· |t+ 1|α − |t− 1|α

2α

)

by Proposition 3.3. Lemma 3.2 yields that {Y (t), t ∈ R} is a max-stable process with
Gumbel margins.

Remark 3.5. One can also calculate the scale parameters of the marginal Gumbel
distributions and get

EeZ0(t) = exp

(
1

4
(1 + ρ)m(t)2 + c ·m(t) +

1

4
(1− ρ)

( |t+ 1|α − |t− 1|α
2α

)2
)
. (3.5)

33



3. Max-Stable Processes Based on Flat Limits of Gaussian Random Fields

3.2.3 Stationarity

There are some situations where we end up with a process Y (·) which is even stationary.
For example, if ρ = −1, α = 2, m(t) = t2 and c = −1

2 we have

Y (t)
d
= max

i∈N

(
Ui + Z(i)(1) · t

)
d
= max

i∈N

(
Ui +Xi · t−

1

2
· t2
)

for Xi ∼i.i.d. N (0, 1). As we will see in Chapter 4, this means that Y (·) is a Brown-
Resnick process associated to the variogram γ(h) = h2, which is indeed stationary as
shown by Kabluchko et al. (2009).
However, in general, Y (t) does not even need to have identically distributed marginals
which can be seen in Equation (3.5). One can overcome this drawback by marginal
transformations

Y ′(t) = Y (t)− log
(
EeZ0(t)

)
.

Then, Y ′(·) has standard Gumbel marginals.
In some examples this procedure leads to a stationary process. In the case m(t) = |t|,
α = 2, c = 0 and an arbitrary −1 ≤ ρ ≤ 1, we have

Y (t) = max
i∈N

(
Ui + |t| · Z(i)(sgn(t))

)
, t ∈ R,

which is not stationary since we have EeZ0(t) = exp(12 t
2). But it is “stationarizable” at

least on each half axis since Y ′(·) coincides with the Brown-Resnick process associated
to the variogram γ(h) = h2 restricted to this domain.
In order to check whether all these processes are stationarizable, it might be useful to
have a look at bivariate characteristics. A very weak form of stationarity — which is at
least stronger than identically distributed margins — is the invariance of the extremal
coefficient function (cf. Schlather and Tawn, 2003)

θ(s, t) = lim
x→∞

logP(Y ′(s) ≤ x, Y ′(t) ≤ x)

logP(Y ′(t) ≤ x)

= Emax
{
exp(Z

(1)
0 (s)) · E exp(−Z(1)

0 (s)), exp(Z
(1)
0 (t)) · E exp(−Z(1)

0 (t))
}
,

under translations of s, t ∈ R.
But even this mild condition turns out not to be always fulfilled. For example, if m(t) =
t2, α = 2, c = 0 and ρ = 1, which leads to

Y ′(t) = max
i∈N

(
Ui + t2 · Z(i)(1)− 1

2
t4
)
, t ∈ R,

we can compute

θ(s, t) =

∫ s2+t2

−∞
e(s

2∧t2)w− 1
2
(s2∧t2)2 1√

2π
exp

(
−w

2

2

)
dw

+

∫ ∞

s2+t2
e(s

2∨t2)w− 1
2
(s2∨t2) 1√

2π
exp

(
−w

2

2

)
dw = 1 + Φ(s2 ∨ t2)− Φ(s2 ∧ t2),

which is obviously not invariant under translations.
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3.3 Max-Stable Processes Based on Simple Kriging with Two

or Three Data Locations

3.3.1 Flat Limits

Here, we assume {Z(t), t ∈ R} to be a stationary random field with zero mean. Let
T = {t1, . . . , tn} ⊂ R be a set of locations with corresponding data Z(ti), i = 1, . . . , n.
As the mean is known, interpolation w.r.t. these data is done by the best linear estimator
which is the result of simple kriging using the true covariance structure (cf. Chilès and
Delfiner 1999; see also Section 3.1). However, following the lines of flat limit theory, we
use a scaled covariance function Cε(·) = C(ε·). We denote the result by Zε(·), i.e.

Zε(t) = λ1,ε(t)Z(t1) + . . .+ λn,ε(t)Z(tn), t ∈ R,

where λε(t) = (λ1,ε(t), . . . , λn,ε(t))
T is the solution of the simple kriging system

Aελε(t) = kε(t) (3.6)

with Aε = (Cε(ti − tj))i,j=1,...,n and kε(t) = (Cε(t1 − t), . . . , Cε(tn − t))T .

Proposition 3.6. Let Zε denote the simple kriging result w.r.t. the scaled kernel Cε.

If T = {−1, 1} and C(h) = 1 + a|h|α + o(|h|α) for some α > 0, a 6= 0, then

Z0(t) = lim
εց0

Zε(t), t ∈ R,

exists and coincides with the random function

H1(t) =
1

2

(
1 +

|t− 1|α
2α

− |t+ 1|α
2α

)
Z(−1) +

1

2

(
1− |t− 1|α

2α
+

|t+ 1|α
2α

)
Z(1).

If T = {−1, 0, 1} and C(h) = 1 + a|h|α +O(|h|2α) for some 0 < α < 2, a 6= 0, then

Z0(t) = lim
εց0

Zε(t), t ∈ R,

exists and coincides with the random function

H2(t) =

(
2 · (|t− 1|α − |t+ 1|α)

2α(4− 2α)
+

1 + |t|α − |t− 1|α
4− 2α

)
· Z(−1)

+
2− 2α + |t+ 1|α − 2|t|α + |t− 1|α

4− 2α
· Z(0)

+

(
2 · (|t+ 1|α − |t− 1|α)

2α(4− 2α)
+

1 + |t|α − |t+ 1|α
4− 2α

)
· Z(1)

Proof. Employing Cε one can solve the system (3.6) explicitly in both cases.

In the case of two locations {−1, 1}, we can write (3.6) as

Aε ·
(

λ1,ε(t)
λ2,ε(t)

)
=

(
1 + a(|t+ 1|ε)α + o(εα)
1 + a(|t− 1|ε)α + o(εα)

)
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3. Max-Stable Processes Based on Flat Limits of Gaussian Random Fields

where

Aε =

(
1 1 + a(2ε)α + o(εα)

1 + a(2ε)α + o(εα) 1

)
.

As a 6= 0, Aε is invertible for small ε yielding

A−1
ε =

1

2a(2ε)α + o(εα)

(
−1 1 + a(2ε)α + o(εα)

1 + a(2ε)α + o(εα) −1

)
.

Thus, we get

Zε(t) = λ1,ε(t)Z(−1) + λ2,ε(t)Z(1) =

(
1

2
− |t+ 1|α

2 · 2α +
|t− 1|α
2 · 2α + o(1)

)
Z(−1)

+

(
1

2
+

|t+ 1|α
2 · 2α − |t− 1|α

2 · 2α + o(1)

)
Z(1),

which implies limεց0 Zε(t) = H1(t) for all t ∈ R.

In the case of three locations {−1, 0, 1}, we rewrite C(h) = 1 + |h|α + b|h|2α + o(|h|2α),
h ∈ R, with some b ∈ R. This yields the simple kriging system

Aε ·




λ1,ε
λ2,ε
λ3,ε


 =




1 + a(|t+ 1|ε)α + b(|t+ 1|ε)2α + o(ε2α)
1 + a(|t|ε)α + b(|t|ε)2α + o(ε2α)

1 + a(|t− 1|ε)α + b(|t− 1|ε)2α + o(ε2α)




with

Aε =




1 C(ε) C(2ε)
C(ε) 1 C(ε)
C(2ε) C(ε) 1


 .

This implies det(Aε) = 2αa2(4−2α)ε2α+o(ε2α). As a 6= 0, 0 < α < 2, we get det(Aε) 6= 0
for ε small enough. Inverting Aε yields A−1

ε = 1
det(Aε)

(ãij)i,j=1,2,3 where

ã11 = ã33 = − 2aεα − (2b+ a2)ε2α + o(ε2α),

ã12 = ã21 = a(2ε)α + a22αε2α + b(2ε)2α + o(ε2α),

ã13 = ã31 = 2aεα + (a2 + 2b)ε2α − a(2ε)α − b(2ε)2α + o(ε2α),

ã22 = − 2a(2ε)α − (a2 + 2b)(2ε)2α + o(ε2α),

and ã23 = ã32 = a(2ε)α + a22αε2α + b(2ε)2α + o(ε2α).

Thus, we compute

λ1,ε(t) =
a2ε2α

det(Aε)
(2(|t− 1|α − |t+ 1|α) + 2α(1 + |t|α − |t− 1|α) + o(1)) ,

λ2,ε(t) =
a22αε2α

det(Aε)
(2− 2α + |t+ 1|α − 2|t|α + |t− 1|α + o(1)) ,

λ3,ε(t) =
a2ε2α

det(Aε)
(2(|t+ 1|α − |t− 1|α) + 2α(1 + |t|α − |t+ 1|α) + o(1)) .

Hence, limεց0 Zε(t) = limεց0(λ1,ε(t)Z(−1) + λ2,ε(t)Z(0) + λ3,ε(t)Z(1)) = H2(t) for all
t ∈ R.
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3.3.2 Max-Stable Processes

One way to construct max-stable processes based on flat limits of random fields inter-
polated by simple kriging is to imitate the construction in the previous section, which
yields similar results. However, here, we follow the lines of neighbourhood kriging (see
Chilès and Delfiner, 1999) which is based on the idea of predicting Z by data located
within a moving neighbourhood.

Let {Z(n), n ∈ Z} be a stationary family of standard Gaussian random variables. For
t ∈ R, let T be the set of the two or three nearest neighbours of t in Z, respectively,
and Zε(t) the corresponding spatially interpolated field based on simple kriging with
covariance function Cε with C(h) = 1 + a|h|α + o(|h|α) or C(h) = 1 + a|h|α +O(|h|2α),
respectively.

Then, by Proposition 3.6, the flat limit

Z0(t) = lim
εց0

Zε(t), t ∈ R,

exists and consists of pieces of functions of type H1 or H2, respectively. Each of these
pieces is defined on the set of points with the same nearest neighbours.

In the case of two nearest neighbours, these sets are the intervals (z, z + 1), z ∈ Z. As
Z0|(z,z+1) can be extended continuously to [z, z+1] by the values Z(z) and Z(z+1), Z0

is well-defined and continuous.

In the case of three neighbours, we have intervals of type (z, z+ 1
2), z ∈ Z, and the pieces

of Z0 need not be glued together continuously at half-integer locations. Therefore, we
define Z0 as a càdlàg function, i.e.

Z0

(
z +

1

2

)
= lim

δց0
Z0

(
z +

1

2
+ δ

)
, z ∈ Z.

Furthermore, we note that the distribution of Z0(·) is invariant under translations by
integers by construction, but Z0(·) is not necessarily stationary.

Theorem 3.7. Let {Z(i)(n), n ∈ N}, i ∈ N, be independent copies of {Z(n), n ∈ N}
and Z

(i)
ε the corresponding random field based on simple kriging as described above.

Furthermore, independently of {Z(i)(n), n ∈ Z}, i ∈ N, let
∑

i∈N δUi be a Poisson point
process on R with intensity measure e−u du. Then,

Y (t) = lim
εց0

max
i∈N

(
Ui + Z(i)

ε (t)
)
, t ∈ R,

defines a max-stable random field with Gumbel margins on R.

Proof. By similar arguments as in the proof of Theorem 3.4, we get

Y (t) = max
i∈N

(
Ui + Z

(i)
0 (t)

)
, t ∈ R.

By Lemma 3.2, this defines a max-stable process.
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3. Max-Stable Processes Based on Flat Limits of Gaussian Random Fields

3.3.3 Stationarity

As in the section beforehand, Y is not stationary in general. In the case of simple kriging
with a neighbourhood of two points, we get

Z0(t) =
1

2
(1 + |t− 1|α − |t|α)Z(0) + 1

2
(1− |t− 1|α + |t|α)Z(1), 0 ≤ t ≤ 1,

and

EeZ0(t) = exp

(
1

4
(1 + ρ) +

1

4
(1− ρ) (|t|α − |t− 1|α)2

)
.

In a general setting, this term is not constant with respect to t ∈ R, but there is a
possibility to stationarize Y .
Therefore, we revisit the notion of Brown-Resnick stationarity introduced by Kabluchko
et al. (2009). Let ξi(·) be independent copies of a stochastic process ξ(·) on Rd with
Eeξ(·) <∞. Independently, let

∑
i∈N δUi be a Poisson point process on R with intensity

measure e−u du.
Then, ξ is called Brown-Resnick stationary if the max-stable process η(·) defined by

η(t) = max
i∈N

(Ui + ξi(t)) , t ∈ Rd,

is stationary.
ξ(·) is Brown-Resnick stationary if and only if the Poisson point process

∑
i∈N δUi+ξi(·)

on RRd
is translation-invariant. Working with this point process we have to endow RRd

with a σ-algebra. To this end, we define the cylinder sets

Ct1,...,tn(B) = {f ∈ RRd
: (f(t1), . . . , f(tn)) ∈ B}

for t1, . . . , tn ∈ R, n ∈ N, and Borel sets B ⊂ Rn. These sets generate the appropriate
σ-algebra C(Rd) for stochastic processes. It can be shown that C(Rd) — restricted to
subsets of C(Rd) — is the Borel σ-algebra on C(Rd) w.r.t. the topology of uniform
convergence on compact sets. We will work with this σ-algebra in various situations
within this thesis. Note that C(Rd) is used as σ-algebra on RRd

and C(Rd).

Theorem 3.8. Let
∑

i∈N δUi and {Z0(t), t ∈ R} be as in Theorem 3.7 and, indepen-
dently, Si ∼i.i.d. Unif([0, 1]). Then,

Y ′(t) = max
i∈N

(
Ui + Z

(i)
0 (t− Si)

)
, t ∈ R,

is a stationary and max-stable process.

Proof. Max-stability can be shown analogously to the proof of Theorem 3.7. We show
stationarity by showing that the Poisson point process Π =

∑
i∈N δUi+Z

(i)
0 (·−Si)

is trans-

lation invariant. The intensity measure Λ of Π is given by

Λ(Ct1,...,tn(B)) =

∫ 1

0

∫

R

∫

B−u1
e−uPt1−s,...,tn−s(dw1, . . . , dwn) du ds,

where Pt1,...,tn denotes the probability measure belonging to (Z0(t1), . . . , Z0(tn)).
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3.3. Max-Stable Processes Based on Simple Kriging with Two or Three Data Locations

Let t ∈ R. We have to show that Λ(Ct1−t,...,tn−t(B)) = Λ(Ct1,...,tn(B)). First, we note
that the mapping ψt : [0, 1] → Z, s 7→ ⌊t + s⌋ (where ⌊x⌋ denotes the largest integer
smaller than or equal to x) has a range consisting of exactly two values, x1, x2 ∈ Z. Let
A1 = ψ−1

t (x1), A2 = ψ−1
t (x2) , B1 = t+A1−x1 and B2 = t+A2−x2. By construction,

the interior of B1 and the interior of B2 are disjoint and we have B1 ∪B2 = [0, 1].

These considerations yield

Λ(Ct1−t,...,tn−t(B))

=

∫ 1

0

∫

R

∫

B−u1
e−uPt1−(t+s),...,tn−(t+s)(dw1, . . . , dwn) du ds

=

∫

A1

∫

R

∫

B−u1
e−uPt1−x1−(t+s−x1),...,tn−x1−(t+s−x1)(dw1, . . . , dwn) du ds

+

∫

A2

∫

R

∫

B−u1
e−uPt1−x2−(t+s−x2),...,tn−x2−(t+s−x2)(dw1, . . . , dwn) du ds

=

∫

B1

∫

R

∫

B−u1
e−uPt1−x1−v,...,tn−x1−v(dw1, . . . , dwn) du dv

+

∫

B2

∫

R

∫

B−u1
e−uPt1−x2−v,...,tn−x2−v(dw1, . . . , dwn) du dv

=

∫

B1

∫

R

∫

B−u1
e−uPt1−v,...,tn−v(dw1, . . . , dwn) du dv

+

∫

B2

∫

R

∫

B−u1
e−uPt1−v,...,tn−v(dw1, . . . , dwn) du dv

=

∫ 1

0

∫

R

∫

B−u1
e−uPt1−v,...,tn−v(dw1, . . . , dwn) du dv

= Λ(Ct1,...,tn(B)),

where we use the fact that Pt1,...,tn is invariant under translations by integers. This
means that Π is translation-invariant, so Y ′(·) is stationary.

This way to stationarize processes leads to the following definition.

Definition 3.9. Let {ξi(t), t ∈ Rd} be independent copies of a stochastic process
{ξ(t), t ∈ Rd} with E exp(ξ(t)) < ∞ for all t ∈ Rd. Independently, let

∑
i∈N δUi be a

Poisson point process on R with intensity measure e−u du. Then, we call ξ(·) Brown-
Resnick stationarizable if there exists a family {Si, i ∈ N} of i.i.d. random variables
with distribution F and independent of

∑
i∈N δUi such that the max-stable process

υ(t) = max
i∈N

(Ui + ξi(t− Si)) , t ∈ Rd,

is stationary. We call F a stationarizing distribution of ξ.

Remark 3.10. Obviously, any Brown-Resnick stationary process is Brown-Resnick sta-
tionarizable with stationarizing distribution δ0, for example.
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3. Max-Stable Processes Based on Flat Limits of Gaussian Random Fields

Using the same techniques as in the proof of Theorem 3.8, we can generalize the result
in two steps. First, we consider processes on R allowing for invariance under translations
on a more general grid. Then, we advance to processes on Rd. Furthermore, we give
some results on the class of stationarizing distribution.

Proposition 3.11. Let {ξ(t), t ∈ R} satisfy E exp(ξ(t)) < ∞ for all t ∈ R. If there
exists a λ > 0 such that the distribution of ξ(·) is invariant under translations by each
t̃ ∈ λZ, then ξ(·) is Brown-Resnick stationarizable.

Proof. Let Si ∼i.i.d. Unif([0, λ]), i ∈ N. Then, one can proof that
∑

i∈N δUi+ξi(·−Si) is
translation invariant similarly to the proof of Theorem 3.8. We only have to redefine the
mapping ψt : [0, λ] → λZ, s 7→ λ

⌊
s+t
λ

⌋
.

Proposition 3.12. Let {ξ(t), t ∈ Rd} satisfy E exp(ξ(t)) < ∞ for all t ∈ Rd. If there
exist λ1, λ2, . . . , λd > 0 such that the distribution of ξ(·) is invariant under translations
by each t̃ ∈ λ1Z× . . .× λdZ, then ξ(·) is Brown-Resnick stationarizable.

Proof. Let Si = (Si,1, . . . , Si,d) where Si,j ∼ Unif([0, λj ]), i ∈ N, j = 1, . . . , d, are inde-
pendent. Considering mappings as in the proof of Proposition 3.11 for each component
separately, Brown-Resnick stationarizability can be shown in the same way as before.

Lemma 3.13. Let {ξ(t), t ∈ Rd} be a stochastic process with E exp(ξ(t)) < ∞ for all
t ∈ Rd. If ξ(· − S) is stationary for some random variable S which is independent of
ξ(·), then ξ(·) is Brown-Resnick stationarizable.

Proof. Let Si, i ∈ N, be i.i.d. random variables with the same distribution as S. Then,
ξi(· − Si), i ∈ N, are independent copies of the stationary field ξ(· − S) and therefore
maxi∈N (Ui + ξi(· − Si)) is stationary, as well.

Proposition 3.14. Let {ξ(t), t ∈ Rd} be a stochastic process with E exp(ξ(t)) <∞ for
all t ∈ Rd and N ∈ Bd a Lebesgue null set such that ξ(·)

∣∣
Rd\N is stationary. Then, ξ(·)

is Brown-Resnick stationarizable.

Proof. Let S be an arbitrary continuous random variable on Rd and let t, t1, . . . , tm ∈ Rd,
B ⊂ Bm and m ∈ N. Then, we have P(ti − t − S /∈ N, ti − S /∈ N, i = 1, . . . ,m) = 1
and therefore

P((ξ(t1 − t− S), . . . , ξ(tm − t− S)) ∈ B)

= P((ξ(t1 − t− S), . . . , ξ(tm − t− S)) ∈ B, ti − t− S /∈ N, ti − S /∈ N, i = 1, . . . ,m)

= P((ξ(t1 − S), . . . , ξ(tm − S)) ∈ B, ti − t− S /∈ N, ti − S /∈ N, i = 1, . . . ,m)

= P((ξ(t1 − S), . . . , ξ(tm − S)) ∈ B)

where we use the stationarity of ξ on Rd \N . Hence, ξ(· − S) is stationary and Lemma
3.13 yields the proposition.

Lemma 3.15. Let {ξ(t), t ∈ Rd} be a Brown-Resnick stationary process. Then, any
probability distribution F on Rd is a stationarizing distribution for ξ.
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Proof. Let F be an arbitrary probability distribution on Rd and S1, S2, . . . ∼i.i.d. F . Fur-
thermore, let Λ be the intensity measure of the Poisson point process

∑
i∈N δUi+ξi(·−Si).

Then, for any t1, t2, . . . , tn, t ∈ Rd, B ∈ Bn, we have

Λ(Ct1−t,...,tn−t(B)) =

∫

Rd

∫

R

∫

B−u1
e−uPξ(t1−(t+s)),...,ξ(tn−(t+s))(dw1, . . . , dwn) duF (ds)

=

∫

Rd

∫

R

∫

B−u1
e−uPξ(t1),...,ξ(tn)(dw1, . . . , dwn) duF (ds)

=

∫

Rd

∫

R

∫

B−u1
e−uPξ(t1−s),...,ξ(tn−s)(dw1, . . . , dwn) duF (ds)

= Λ(Ct1,...,tn(B)).

Here, we used that ξ(·) is Brown-Resnick stationary.

Corollary 3.16. The stationarizing distribution F of a Brown-Resnick stationarizable
process ξ(·) is not unique. In particular, the convolution F ⋆ G is a stationarizing dis-
tribution, as well, for any probability distribution G.

Now, let us summarize what we know about the class of stationarizing distributions:

• For “trivial cases” where ξ(·) is (Brown-Resnick) stationary, any distribution is
stationarizing. If ξ(·) is stationary at least almost everywhere, any absolutely
continuous distribution is stationarizing (cf. Proposition 3.14).

• There exist some non-trivial cases which show that uniform distributions can oc-
cur as stationarizing distributions (cf. Theorem 3.8, Propositions 3.11 and 3.12).
Corollary 3.16 yields that the class of stationarizing distributions in non-trivial
cases contains at least all convolutions of a uniform distribution and any other
probability distribution, as well.
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4 Unconditional Simulation of

Brown-Resnick Processes

In this chapter, which is based on the article of (Oesting et al., 2012) resulting from
a diploma thesis (Oesting, 2009), we will focus on a class of max-stable processes that
has been introduced by Brown and Resnick (1977) and generalized by Kabluchko et al.
(2009). This class is notable, as Brown-Resnick processes also occur as the limit of
maxima of independent copies of stationary and appropriately scaled Gaussian random
fields (Kabluchko et al., 2009). Thus, Brown-Resnick processes are the natural link of
max-stable processes to Gaussian processes as we have already seen in Chapter 3.

Let {W (t), t ∈ Rd} be a Gaussian process with stationary increments, that is, the law
of {W (t + h) − W (h), t ∈ Rd} does not depend on the choice of h ∈ Rd. For any
second-order process W (·) with stationary increments the variogram γ(·) (see Chilès
and Delfiner, 1999) is defined by

γ(h) = E(W (h)−W (0))2, h ∈ Rd.

If W (0) = 0, then σ2(t) = γ(t), where σ2(t) is the variance Var(W (t)). With the
following theorem, we review the construction of stationary max-stable processes, which
has originally been introduced by Brown and Resnick (1977) for the special case of W (·)
being a Brownian motion, i.e. for γ(h) = |h|.

Theorem 4.1 (Kabluchko et al. 2009). Let {Wi(t), t ∈ Rd}, i ∈ N, be independent
copies of a Gaussian random field {W (t), t ∈ Rd} with zero mean and variance σ2(·).
Independently, let

∑
i∈N δUi be a Poisson point process on R with intensity measure

exp(−u) du.

1. The process {Z(t), t ∈ Rd}, defined by

Z(t) = max
i∈N

(
Ui +Wi(t)−

σ2(t)

2

)
,

is a max-stable process with standard Gumbel margins.

2. If, additionally, W (·) has stationary increments, then the process Z(·) is stationary
and its law only depends on the variogram γ(·) of W (·). The process Z(·) is called
Brown-Resnick process associated to the variogram γ(·).

3. Moreover, under the assumptions of the second part of this theorem,

∑

i∈N
δUi+Wi(·)−σ2(·)/2

is a translation invariant Poisson point process on RRd
.
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Brown-Resnick processes have been further analysed over the last years. For example,
Kabluchko (2009a) showed that they also occur, in a modified form, as the limit of
empirical distribution functions. The decomposition of the processes into conservative
and dissipative components is discussed in Kabluchko (2009b) and Wang and Stoev
(2010); ergodicity and mixing properties are investigated by Kabluchko and Schlather
(2010). Recently, Dombry et al. (2011) presented an algorithm to perform conditional
sampling. We will also deal with this issue in Chapter 6. Furthermore, Brown-Resnick
processes have found their way to applications. Buishand et al. (2008) use them for
modelling spatial rainfall.

Here, we aim at developing algorithms which allow for efficient simulation of Brown-
Resnick processes as it turns out that finite approximations based on the definition
indicate the presence of a drift although Brown-Resnick processes are stationary. There-
fore, we present alternative representations, e.g. by random shifts, which we introduce
in Section 4.1. Section 4.2 deals with Brown-Resnick processes which are generated by
a dissipative flow and presents further representations for them. All these different rep-
resentations lead to different kinds of finite approximations introduced in Section 4.3.
Error estimates for these approximations are given in Section 4.4 for the original pro-
cess of Brown and Resnick (1977). In Section 4.5, we analyse the results of a simulation
study and compare the quality of different simulation techniques resulting from the finite
approximations.

We restrict ourselves to max-stable processes with Gumbel margins as these naturally
occur when considering maxima of Gaussian processes. Fréchet and Weibull margins
can be obtained by marginal transformation.

4.1 Random Shifts

Figure 4.1 shows that a finite approximation of the Brown-Resnick process based on the
definition (cf. Subsection 4.3) turns out to appear non-stationary on large intervals if
the equation

lim
||t||→∞

(
W (t)− σ2(t)

2

)
= −∞ P− a.s. (4.1)

holds. Therefore, we seek equivalent representations of Brown-Resnick processes that
avoid this drawback. A first possibility is to include some “random shifting” into the
construction.

Theorem 4.2. Let Wi(·), i ∈ N, be independent copies of a Gaussian random field
{W (t), t ∈ Rd} with zero mean, stationary increments and variance σ2(·) and let Q be
a probability measure on Rd. Independently of Wi(·), let

∑
i∈N δ(Ui,Si) be a Poisson point

process on R× Rd with intensity measure exp(−u) du×Q(ds). Then,

Z̃(t) = max
i∈N

(
Ui +Wi(t− Si)−

σ2(t− Si)

2

)
, t ∈ Rd,

is a Brown-Resnick process associated to the variogram γ(·), i.e. Z̃ d
= Z with Z as in

Theorem 4.1.
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4.1. Random Shifts
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Figure 4.1: Five finite approximations of the original Brown-Resnick process, each based
on the largest 1000 values of the underlying Poisson point process.

Proof. Let t1, . . . , tm ∈ Rd, y1, . . . ym ∈ R and m ∈ N, be arbitrary and Pt1,...,tm be the
law of the random vector (W (t1), . . . ,W (tm)).

Then, Π =
∑

i∈N δ(Ui,Si,Wi) is a Poisson point process on R × Rd × RRd
with intensity

measure exp(−u) du×Q(ds)× PW (dw) and

Z̃(t1) ≤ y1, . . . , Z̃(tm) ≤ ym

⇔ Π

({
(u, s, w) ∈ R× Rd × RRd

: u > min
k=1,...,m

(
yk − w(tk − s) +

σ2(tk − s)

2

)})
= 0.

Thus, we obtain

− log(P(Z̃(t1) ≤ y1, . . . , Z̃(tm) ≤ ym))

=

∫

Rd

∫

Rm

∫ ∞

mink=1,...,m

(
yk−wk+

σ2(tk−s)

2

) exp(−u) du Pt1−s,...,tm−s( dw1, . . . , dwm) Q(ds)

=

∫

Rd

− log(P(Z(t1 − s) ≤ y1, . . . , Z(tm − s) ≤ ym)) Q(ds).

Due to the stationarity of Z(·) the right hand side equals

∫

Rd

− log (P(Z(t1 − s) ≤ y1, . . . , Z(tm − s) ≤ ym)) Q(ds)

=

∫

Rd

− log (P(Z(t1) ≤ y1, . . . , Z(tm) ≤ ym)) Q(ds)

= − log(P(Z(t1) ≤ y1, . . . , Z(tm) ≤ ym))

since Q is a probability measure.

This theorem can be used for representing Brown-Resnick processes in many different
ways. Here, we give two corollaries as applications.
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4. Unconditional Simulation of Brown-Resnick Processes

Corollary 4.3. Let W (·) be as in Theorem 4.1, W
(j)
i ∼i.i.d. W, i ∈ N, j = 1, . . . , n.

Independently of W
(j)
i , i ∈ N, let Π(j) =

∑
δ
U

(j)
i

, j = 1, . . . , n, be independent Poisson

point processes on R with intensity measure n−1 exp(−u) du and s1, . . . , sn ∈ Rd. Then,

Z1(t) = max
j=1,...,n

max
i∈N

(
U

(j)
i +W

(j)
i (t− sj)−

σ2(t− sj)

2

)
, t ∈ Rd,

is a Brown-Resnick process associated to the variogram γ(·), i.e. Z1
d
= Z.

Proof. Note that the superposition
∑n

j=1

∑
i∈N δ(U(j)

i ,sj)
is a Poisson point process on

R× Rd with intensity measure exp(−u) du× ( 1n
∑n

j=1 δsj ), and apply Theorem 4.2.

Corollary 4.4. Let Wi(·) be as in Theorem 4.1, and I ⊂ Rd a finite cuboid. Inde-
pendently of Wi let Π =

∑
δ(Ui,Si) be a Poisson point process on R × I with intensity

measure exp(−u) du× |I|−1 ds. Then, Z
d
= Z2, where

Z2(t) = max
i∈N

(
Ui +Wi(t− Si)−

σ2(t− Si)

2

)
, t ∈ Rd.

Proof. With Q(ds) = |I|−11s∈I ds the assertion follows from Theorem 4.2.

4.2 Mixed Moving Maxima Representation

The notion of max-stable processes generated by non-singular flows has been introduced
by de Haan and Pickands (1986); further results on the representations of max-stable
processes have been obtained in Kabluchko (2009b) and Wang and Stoev (2010) by
transferring some work of Rosiński (1995) on SαS-processes.
Kabluchko et al. (2009, Theorem 14) showed that a Brown-Resnick process is generated
by a dissipative flow if (4.1) holds. In the case d = 1, condition (4.1) is satisfied if
liminft→∞γ(t)/ log t > 8.
Using the stationarity criterion from the third part of Theorem 4.1, we provide equivalent
representations of Brown-Resnick processes given on the following theorems.

Theorem 4.5. Let W
(j)
i , i ∈ N, j ∈ Zd, be independent copies of a Gaussian random

field W (·) with continuous sample paths, stationary increments, zero mean, variance
σ2(·) and variogram γ(·) on Rd. Furthermore, let

T
(j)
i = inf

(
argsupt∈Rd

(
W

(j)
i (t)− σ2(t)

2

))

where the “inf” is understood in the lexicographic sense if d > 1. We assume (4.1), so

that T
(j)
i is well-defined a.s.

Independently of W
(j)
i , let Π(j) =

∑
i∈N δU(j)

i

, j ∈ Zd, be independent Poisson point

processes on R with intensity measure m−d exp(−u) du for some m ∈ N. Furthermore,
let p > 0. Then,

Z3(t) = max
j∈Zd

max
i∈N

T
(j)
i ∈(−m

2
p,m

2
p]

d

(
U

(j)
i +W

(j)
i (t− pj)− σ2(t− pj)

2

)
, t ∈ Rd,
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4.2. Mixed Moving Maxima Representation

is a Brown-Resnick process associated to the variogram γ(·), i.e. Z3
d
= Z.

Proof. We endow C(Rd) with the Borel-σ-algebra w.r.t. uniform convergence on compact

sets C(Rd) (see Section 3.3). Furthermore, we define ξ
(j)
i (t) =W

(j)
i (t)−σ2(t)/2. Because

of condition (4.1), each T
(j)
i is finite P-a.s. and M

(j)
i = supt∈Rd(U

(j)
i + ξ

(j)
i (t)) is well-

defined. The mapping

Θ : C(Rd) → Rd × C(Rd), U
(j)
i + ξ

(j)
i (·) 7→ (T

(j)
i , U

(j)
i + ξ

(j)
i (·)),

is measurable since supt∈Rd ξ
(j)
i (t) = supt∈Qd ξ(j)(t) and T

(j)
i is the first root of ξ

(j)
i −

sup(ξ
(j)
i ). Therefore, the mapping theorem for Poisson point processes (Kingman, 1993)

yields that
∑

i∈N δ(T (j)
i ,U

(j)
i +ξ

(j)
i (·)) is a Poisson point process with intensity measure

Ψ(A) =

∫

R

1

md
exp(−u)PW (u+ ξ ∈ Θ−1(A)) du, A ∈ Bd × C,

where PW is the law of the process W (·).
Now we define Ut : C(Rd) → C(Rd), f(·) 7→ f(· − t) and Vt : Rd × C(Rd) → Rd ×
C(Rd), (s, f(·)) 7→ (s+ t, f(· − t)) as translations by t ∈ Rd. Then we obtain

(Θ ◦ Ut)(U
(j)
i + ξ

(j)
i (·)) = (T

(j)
i + t, U

(j)
i + ξ

(j)
i (· − t)) = (Vt ◦Θ)(U

(j)
i + ξ

(j)
i (·)).

The intensity measure of the Poisson point process
∑
δ
U

(j)
i +ξ

(j)
i (·) is translation invariant

(with respect to Ut) by Theorem 4.1. Because of the fact that Θ commutes with the
translation operators, Ψ is translation invariant (with respect to Vt), as well.

Thus, for any j ∈ Zd, we obtain

max
i∈N

T
(j)
i ∈(−m

2
p,m

2
p]

d

(
U

(j)
i + ξ

(j)
i (· − pj)

)
d
= max

i∈N
T

(j)
i ∈(−m

2
p,m

2
p]

d
+pj

(
U

(j)
i + ξ

(j)
i (·)

)
. (4.2)

Now we consider each side of (4.2) separately. For different j ∈ Zd we get stochastically
independent processes. This yields

Z3(·) = max
j∈Zd

max
i∈N

T
(j)
i ∈(−m

2
p,m

2
p]

d

(
U

(j)
i + ξ

(j)
i (· − pj)

)

d
= max

j∈Zd
max
i∈N

T
(j)
i ∈(−m

2
p,m

2
p]

d
+pj

(
U

(j)
i + ξ

(j)
i (·)

)
.

Furthermore, by replacing T
(j)
i , ξ

(j)
i , and U

(j)
i by T

(j mod m)
i , ξ

(j mod m)
i , and U

(j mod m)
i ,

respectively, we obtain

max
i∈N

T
(j)
i ∈(−m

2
p,m

2
p]

d
+pj

(
U

(j)
i + ξ

(j)
i (·)

)
d
= max

i∈N
T

(j mod m)
i ∈(−m

2
p,m

2
p]

d
+pj

(
U

(j mod m)
i + ξ

(j mod m)
i (·)

)

where “mod” is understood as a componentwise operation.
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4. Unconditional Simulation of Brown-Resnick Processes

For j1 ≡ j2 mod m, j1 6= j2 we have

((−mp/2,mp/2]d + pj1) ∩ ((−mp/2,mp/2]d + pj2) = ∅,

which guarantees that the processes ξ
(j1 mod m)
i with T

(j1 mod m)
i ∈ (−mp/2,mp/2]d+pj1

and ξ
(j2 mod m)
i with T

(j2 mod m)
i ∈ (−mp/2,mp/2]d + pj2 are independent. By these

considerations we get

Z3(·) d
=max

j∈Zd
max
i∈N

T
(j mod m)
i ∈(−m

2
p,m

2
p]

d
+pj

(
U

(j mod m)
i + ξ

(j mod m)
i (·)

)

d
= max

k∈{0,...,m−1}d
max
j∈Zd

j mod m≡k

max
i∈N

T
(k)
i ∈(−m

2
p,m

2
p]

d
+pj

(
U

(k)
i + ξ

(k)
i (·)

)

= max
k∈{0,...m−1}d

max
i∈N

(
U

(k)
i + ξ

(k)
i (·)

)
d
= Z(·).

The last step is based on the fact that
∑

k∈{0,...,m−1}d
∑

i∈N δU(k)
i

is a Poisson point

process with intensity measure
∑

k∈{0,...,m−1}d m
−d exp(−u) du = exp(−u) du.

By Kabluchko (2009b), condition (4.1) holds only if Z(·) has a mixed moving maxima
representation, i.e. Z(·) is of the form

Z(·) = max
i∈N

(
Ũi + F̃i(· − Si)

)
, t ∈ Rd.

where (Si, Ũi), i ∈ N, are the points of a Poisson point process on Rd ×R with intensity
measure ds × e−u du and F̃i, i ∈ N, are i.i.d. random measurable functions such that
E(
∫
Rd e

F̃1(t) dt) <∞. In order to construct such a representation, we repeat results from
the proof of Theorem 14 in Kabluchko et al. (2009).

Theorem 4.6. Let {Wi(t), t ∈ Rd}, i ∈ N, be independent copies of a Gaussian random
field {W (t), t ∈ Rd} with continuous sample paths, stationary increments, zero mean,
variance σ2(·) and variogram γ(·) on Rd. We assume that condition (4.1) is satisfied.

Furthermore, let Ti = inf
(
argsupt∈Rd

(
Wi(t)− σ2(t)

2

))
, Mi = supt∈Rd

(
Wi(t)− σ2(t)

2

)

and Fi(·) =Wi(·+ Ti)− σ2(·+Ti)
2 −Mi.

Independently of Wi, let
∑

i∈N δUi be a Poisson point process with intensity measure
exp(−u) du. Then, the random measure

∑
i∈N δ(Ti,Ui+Mi,Fi) defines a Poisson point pro-

cess on Rd ×R×C(Rd) with intensity measure λ∗ dt× e−y dy× Q̃(dF ) for some λ∗ > 0
and a probability measure Q̃ on C(Rd).

Furthermore, let
∑

i∈N δ(Si,Ũi)
be a Poisson point process on Rd×R with intensity measure

λ∗ ds× e−ũ dũ and F̃i ∼i.i.d. Q̃. Then, we have Z4
d
= Z for

Z4(t) = max
i∈N

(
Ũi + F̃i(t− Si)

)
, t ∈ Rd.

Proof. The first part is shown in the proof of Theorem 14 in Kabluchko et al. (2009).
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4.2. Mixed Moving Maxima Representation

For the second part note that
∑

i∈N δ(Ti,Ui+Mi,Fi) and
∑

i∈N δ(Si,Ũi,F̃i)
are Poisson point

processes on Rd × R × C(Rd) with the same intensity measure. Furthermore, we have
Z(·) = maxi∈N Γ(Ti, Ui +Mi, Fi) and Z4(·) = maxi∈N Γ(Si, Ui, F̃i) with the transforma-
tion Γ : Rd × R× C(Rd) → C(Rd), (s, y, f) 7→ y + f(· − s).

Remark 4.7. A similar result holds if we consider all the processes from Theorem 4.6
restricted to pZd, p > 0, instead of Rd. Then, for

T
(p)
i = inf

(
argsupt∈pZd

(
Wi(t)−

σ2(t)

2

))
, M

(p)
i = sup

t∈pZd

(
Wi(t)−

σ2(t)

2

)
,

and F
(p)
i (·) =Wi(·+ T

(p)
i )− σ2(·+ T

(p)
i )

2
−M

(p)
i , t ∈ pZd,

the random measure
∑

i∈N δ(T (p)
i ,Ui+M

(p)
i ,F

(p)
i )

defines a Poisson point process on pZd ×
R × RpZd

with intensity measure λ(p)pdδt × e−y dy × Q̃(p)(dF ) for some λ(p) > 0 and

some probability measure Q̃(p) on RpZ. An equivalent representation Z
(p)
4 of Z|pZd can

be given analogously to Theorem 4.6. Even more easily, all the other results from this
chapter up to here can be transferred to processes on a lattice.

For approximating Z via the representation Z4, the law Q̃ is needed explicitly. Note
that, in general, Q̃ is not the law of W (·+ T )− σ2(·+ T )−M (and Q̃(p) is not the law
of W (· + T (p)) − σ2(· + T (p)) −M (p)). If we assume W (0) = 0 — which can be done
w.l.o.g. by replacing W (·) by W (·) −W (0) — and restrict ourselves to processes on a
lattice pZd, we get the following result.

Theorem 4.8. Let p > 0 and {W (t), t ∈ pZd} be as in Theorem 4.6 and

T (p) = inf

(
argsupt∈pZd

(
W (t)− σ2(t)

2

))
.

Furthermore, assume W (0) = 0. Then, Q(p) is the law of W (·)− σ2(·)
2

∣∣∣ T (p) = 0.

Proof. Let A ∈ B(RpZd
) and V ∈ B such that 0 <

∫
V e

−u du < ∞. Furthermore, let

Π =
∑

i∈N δ(T (p)
i ,Ui+M

(p)
i ,F

(p)
i )

be the Poisson point process on pZd × R × RpZd
with the

notation from Remark 4.7. As the intensity measure of Π is a product measure, we have

Q̃(p)(A) = P(Π({0} × V ×A) = 1 | Π({0} × V × RpZd
) = 1), (4.3)

Furthermore, we may assume that the points (T
(p)
i , Ui +M

(p)
i , F

(p)
i ) are numbered such

that the sequence (Ui)i∈N is decreasing (cf. Section 4.3). Then, we get

P(Π({0} × V ×A) = 1 | Π({0} × V × RpZd
) = 1) (4.4)

=
∑

i∈N
P(T

(p)
i = 0, Ui +M

(p)
i ∈ V | #{i : (T

(p)
i , Ui +M

(p)
i ) ∈ {0} × V } = 1)

· P(F (p)
i ∈ A | T (p)

i = 0, Ui +M
(p)
i ∈ V, #{i : (T

(p)
i , Ui +M

(p)
i ) ∈ {0} × V } = 1)
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4. Unconditional Simulation of Brown-Resnick Processes

with

P(F
(p)
i ∈ A | T (p)

i = 0, Ui +M
(p)
i ∈ V, #{i : (T

(p)
i , Ui +M

(p)
i ) ∈ {0} × V } = 1)

= P(F
(p)
i ∈ A | T (p)

i = 0, Ui +M
(p)
i ∈ V, (T

(p)
j , Uj +M

(p)
j ) /∈ {0} × V ∀j 6= i)

= P(F
(p)
i ∈ A | T (p)

i = 0, Ui ∈ V, (T
(p)
j , Uj +M

(p)
j ) /∈ {0} × V ∀j 6= i)

= P(F
(p)
i ∈ A | T (p)

i = 0),

where we use the fact that Wi is independent of Ui, Uj and Wj for all j 6= i.
Employing (4.3), (4.4), and

∑

i∈N
P
(
T
(p)
i = 0, Ui +M

(p)
i ∈ V

∣∣ Π({0} × V × RpZd
) = 1

)
= 1,

we get

Q̃(p)(A) = P(F
(p)
i ∈ A | Ti = 0) = P

(
W (·)− σ2(·)

2
∈ A

∣∣∣∣ T
(p) = 0

)

for all A ∈ B(RpZd
).

Remark 4.9. Let Π be defined as in the proof of Theorem 4.8. Considering the intensity
λ(p)pd of the restriction of Π on the set {0}× [0,∞)×C(Rd) we get the equality λ(p)pd =
P(T (p) = 0).

Using only the assumptions of Theorem 4.6, Q̃ can be described as the law of Fi con-
ditional on Ui +Mi and Ti. Let Π =

∑
i∈N δ(Ti,Ui+Mi,Fi) and E ∈ B(Rd × R) such that∫

E e
−u(dt × du) ∈ (0,∞). Furthermore, let N = Π(E × C(Rd)) and i1 < . . . < iN

such that (Tik , Uik +Mik) ∈ E for k = 1, . . . , N . By G1, . . . , GN we denote a random
permutation of Fi1 , . . . , FiN .

Theorem 4.10. Conditional on N = n, the processes G1, . . . , Gn are i.i.d. with law Q̃.

Proof. We have to proof that all finite dimensional margins of G1, . . . , Gn are products
of one dimensional margins with law Q̃. By decomposing the sets of C(Rd) and chang-
ing numbering of indices, it suffices to proof that P(G1 ∈ A1, . . . , Gn1 ∈ A1, Gn1+1 ∈
A2, . . . , Gn1+n2+...+nl

∈ Al | N = n) equals
∏l

i=1 Q̃(Ai)
ni for pairwise disjoint sets

A1, . . . , Al ∈ C, n1, . . . , nl ∈ N with n1 + . . . + nl ≤ n. Let m = n1 + . . . + nl and
A =

⋃l
i=1Ai. Then, we have

P(G1 ∈ A1, . . . , Gn1 ∈ A1, Gn1+1 ∈ A2, . . . , Gm ∈ Al | N = n)

=
∑

k1≥n1,...,kl≥nl
k1+...+kl≤n

P


G1 ∈ A1, . . . , Gm ∈ Al

∣∣∣∣
l⋂

j=1

Π(E ×Aj) = kj , N = n




· P(Π(E ×Aj) = kj , j = 1, . . . , l | N = n)

=
∑

k1≥n1,...,kl≥nl
k1+...+kl≤n

k1
n

· · · k1 − n1 + 1

n− n1 + 1

k2
n− n1

. . .
kl − nl + 1

n−m+ 1
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4.3. Finite Approximations

·
(

n

k1, . . . , kl, n− k1 − . . .− kl

)
· Q̃(A1)

k1 · · · Q̃(Al)
kl · (1− Q̃(A))n−k1−...−kl

=

(
l∏

i=1

Q̃(Ai)
ni

)
·
(

∑

k1≥n1,...,kl≥nl
k1+...+kl≤n

(
n−m

k1 − n1, . . . , kl − nl, n− k1 − . . .− kl

)

· Q̃(A1)
k1−n1 · · · Q̃(Al)

kl−nl · (1− Q̃(A))n−k1−...−kl

)

=

(
l∏

i=1

Q̃(Ai)
ni

)
·
(

∑

k1≥0,...,kl≥0
k1+...+kl≤n−m

(
n−m

k1, . . . , kl, n−m− k1 − . . .− kl

)

· Q̃(A1)
k1 · · · Q̃(Al)

kl · (1− Q̃(A))n−m−k1−...−kl

)
=

l∏

i=1

Q̃(Ai)
ni .

which is the assertion of the theorem.

Remark 4.11. In case of the original Brown-Resnick process, Q̃ can be described even
more explicitly than in Theorem 4.10, see Engelke et al. (2011) for details.

4.3 Finite Approximations

Let Y1, Y2, . . . be independent exponentially distributed random variables with parameter
λ > 0 and define Rn =

∑n
i=1 Yi for n ∈ N. Then,

∑
i∈N δRi is a Poisson point process on

(0,∞) with intensity λ. Applying the mapping theorem (Kingman, 1993) we get that∑
i∈N δ− logRi is a Poisson point process on R with intensity measure λ exp(−u) du and

the sequence (Ui)i∈N with Ui = − logRi is monotonically decreasing.

For simplicity we will only consider approximations of Z on a symmetric cuboid [−b, b],
b ∈ (0,∞)d, based on the definition of Z and the representations Z1, Z2, Z3, and Z4,
respectively.

1. Approximation method based on the definition of Z(·)
For the Poisson point process Π =

∑
i∈N δUi with intensity measure exp(−u) du

and independent copies {Wi(t), t ∈ [−b, b]} of a Gaussian process with stationary
increments, let

Z(k)(t) = max
i=1,...,k

(
Ui +Wi(t)−

σ2(t)

2

)
, t ∈ [−b, b], k ∈ N.

2. Approximation method based on the representation Z(·) = Z1(·)
Let {U (j)

i }i∈N, j = 1, . . . , n, be decreasing sequences of points of Poisson point

processes
∑

i∈N δU(j)
i

with intensity measure n−1 exp(−u) du and {W (j)
i (t), t ∈

[−b − sj , b − sj ]} be independent copies of Gaussian processes. Then, for k ∈ N,
let

Z
(k)
1 (t) = max

j=1,...,n
max

i=1,...,k

(
U

(j)
i +W

(j)
i (t− sj)−

σ2(t− sj)

2

)
, t ∈ [−b, b].

51



4. Unconditional Simulation of Brown-Resnick Processes

3. Approximation method based on the representation Z(·) = Z2(·)
Let

∑
i∈N δ(Si,Ui) be a Poisson point process on I × R with intensity measure

|I|−1 ds × exp(−u) du. For each i ∈ N, let {Wi(t), t ∈ [−b − Imax, b − Imin]}
be independent copies of a Gaussian process where Imin and Imax are the lower
and upper end point of I, and let

Z
(k)
2 (t) = max

i=1,...,k

(
Ui +Wi(t− Si) +

σ2(t− Si)

2

)
, t ∈ [−b, b], k ∈ N.

4. Approximation method based on the representation Z(·) = Z3(·)

For jmin ≤ j ≤ jmax ∈ Zd, let {U (j)
i }i∈N be descending sequences of points of the

Poisson point processes
∑

i∈N δU(j)
i

with intensity measurem−d exp(−u) du. We as-

sume pjmin < a < b < pjmax. Furthermore, we have independent copies {W (j)
i , t ∈

[−b−pj, b−pj]} of Gaussian process and define T
(j)
i = inf(argsup(W

(j)
i (t)− σ2(t)

2 )).
For k ∈ N, t ∈ [−b, b], let

Z
(k)
3 (t) = max

j=jmin,...,jmax

max
i=1,...,k

T
(j)
i ∈(−m

2
p,m

2
p]d

(
U

(j)
i +W

(j)
i (t− pj)− σ2(t− pj)

2

)
.

5. Approximation method based on the representation Z(·) = Z4(·)
Let I be a finite cuboid in Rd with [−b, b] ⊂ I. Let (Ũi, Si) be descending in Ũi

such that
∑

i∈N δ(Ũi,Si)
is a Poisson point process on R× I with intensity measure

λ∗ exp(−ũ) dũ × ds, i.e. Ũ1 ≥ Ũ2 ≥ Ũ3 ≥ . . .. For each i ∈ N, let F̃i be an
independent sample path with law Q̃. Then, for k ∈ N, t ∈ [−b, b], let

Z
(k)
4 (t) = max

i=1,...,k

(
Ũi + F̃i(t− Si)

)
.

This construction is illustrated by Figure 4.2.

For simulating F̃i ∼i.i.d. Q̃ or the discretized version F̃
(p)
i ∼i.i.d. Q̃

(p) we can either
use Theorem 4.8 or 4.10. In the first case we simulate independent copies Wj(·) of
W (·) and reject all those processes with T

(p)
j 6= 0. In the second case we simulate

a Brown-Resnick process (e.g. using the standard approximation method) and use
all those processes Fj with (Uj+Mj , Tj) ∈ E in a random order. We have to choose
E carefully such that we have to simulate as few processes Wj(·) as possible to get

a realization of F̃i.

The constants λ∗ or λ(p)pd can be estimated by counting #{i ∈ N : Ui +Mi >

0, Ti ∈ [0, 1]d} or #{i ∈ N : Ui > 0, T
(p)
i = 0} (i.e. estimating P(T (p) = 0)),

respectively.
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Figure 4.2: Construction of one sample path of the original Brown-Resnick process based
on the representation Z(·) = Z4(·). The circles mark the points (Si, Ũi). The
resulting process is displayed by the bold line.

4.4 Error Estimates

In this section we assume that {W (t), t ∈ R} is a one-dimensional standard Brownian
motion. Furthermore, we consider a symmetric interval [−b, b] on which the simulation
is performed. Under these assumptions, we give some basic error estimates for the
approximations from Section 4.3. For details see Oesting (2009), Version 2.
In order to estimate the error for the approximation of Z(·) by Z(k)(·), we define the
random variable Ck = inft∈[−b,b](Z

(k)(t) + σ2(t)/2). Then, we get the following result.

Proposition 4.12. (Oesting, 2009, Version 2, Proposition 3.8) Let u < c < 0. Then,

P(Z(k)(t) 6= Z(t) for some t ∈ [−b, b] | Uk ≤ u,Ck > c)

≤ 4e−c b

c− u
exp

(
b

2

)(
1− Φ

(
c− u− b√

b

))
. (4.5)

Furthermore, we have

P(Ck ≤ c) ≤ 1−
(
1− exp

(
− exp

(
− c
2

)))
·
(
2Φ

(
− c

2
√
b

)
− 1

)2

(4.6)

and

P(Uk > u) ≤ exp(−(k − 1)u)

(k − 1)!
(1− exp(− exp(−u))). (4.7)

The unconditional error probability P(Z(k)(t) 6= Z(t) for some t ∈ [−b, b]) can be bounded
by the sum of the rhs of (4.5), (4.6) and (4.7).

If the right-hand sides of (4.5), (4.6) and (4.7) tend to 0 for k → ∞, e.g. for c = c(k) =
− log log(log(k)/2) and x = x(k) = − log(k)/2, we get

lim
k→∞

P(Z(k)(t) 6= Z(t) for some t ∈ [−b, b]) = 0.
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4. Unconditional Simulation of Brown-Resnick Processes

Similar results hold for Z
(k)
1 (·) and Z

(k)
2 (·), cf. Oesting (2009), Version 2, Propositions

3.9 and 3.10. In particular, these bounds have the same asymptotic behaviour.

To give bounds for Z4(·), we consider the standard Brownian motion restricted to the
lattice pZ for some p > 0. Here, we also have to adjust the Poisson point process∑

i∈N δ(Ũi,Si)
to the lattice and to restrict its second component to some finite interval

[−v, v]. Let
∑

i∈N δ(Y (p)
i ,R

(p)
i )

be a Poisson point process on R × [−v, v] with intensity

measure λ(p)p exp(−y) dy ×∑k∈Z∩[−v/p,v/p] δpk(ds). Then, we get an approximation of
Z4 by

Z
(k,v,p)
4 (t) = max

i=1,...,k

(
Y

(p)
i + F̃

(p)
i (t−R

(p)
i )
)

for t ∈ [−b, b] ∩ pZ, where F̃
(p)
i ∼i.i.d. Q̃

(p). For the following result we use that Q̃(p)

is the law of W (t) − |t|
2 | T (p) = 0, where W is a standard Brownian motion and

T (p) = inf
(
argsupt∈pZ (W (t)− |t|/2)

)
.

Proposition 4.13. (Oesting, 2009, Version 2, Proposition 3.14) Let b, v ∈ pN with

v − b ≥ 16 and b ≥ 1. Furthermore, let Ck = mint∈[−b,b]∩pZ Z
(k,v,p)
4 (t) and c < 0. Then,

we have

P(Z
(k,v,p)
4 (t) 6= Z4(t) for some t ∈ [−b, b] ∩ pZ | Ck > c, Y

(p)
k ≤ c)

≤ 64λ(p)e−c

(1− exp (−p/2))2
(
exp

(
−
√
v − b

2

)
+ 7

√
b3 exp

(
−v − b

48b

))
. (4.8)

Furthermore, it holds that

P(Ck ≤ c) ≤ 1−
(
1− exp

(
−λp(2b+ p)e−c/2

))

·
(
1− (2(o− b)λ(p))k

exp(− (k−1)c
2 )

(k − 1)!
(1− exp(−e−(v−b)λ(p)c))

)

·
(
1− 4

1− e−p/2

(
1− Φ

(
− c√

8b
−
√
b

2

)

− exp
(
− c
2

)(
1− Φ

(
− c√

8b
+

√
b

2

)))2)
(4.9)

and

P(Y
(p)
k > c) ≤ ((2v + p)λ(p))k

exp(−(k − 1)c)

(k − 1)!
(1− exp(−e−(2v+p)λ(p)c)). (4.10)

The unconditional error probability P(Z
(k,v,p)
4 (t) 6= Z4(t) for some t ∈ [−b, b]) can be

bounded by the sum of the rhs of (4.8), (4.9) and (4.10).

If we choose v = v(k) = k1/4 and c = c(k) = − log(k)/4 for example, again all the error
bounds given in Proposition 4.13 tend to 0 as k → ∞.
Here, the unconditional bound is given for fixed k ∈ N. However, we can also use

a stopping rule similar to Schlather (2002) and consider Z
(k)
4 with k ∈ N such that
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4.5. Simulation Study

Ck > Y
(p)
k . Then, the error can be assessed by the bound for the probability (4.8) which

is independent of k.

Note that the upper bounds given in Proposition 4.13 can be made explicit by employing
λ(p) = P(T (p) = 0)/p (cf. Remark 4.9) and using further bounds like (1−exp(−p/2))2/4 ≤
P(T (p) = 0) ≤ 1. Similar bounds can be given for Z

(k)
3 , cf. Oesting (2009), Propositions

3.11 and 3.12.

4.5 Simulation Study

In order to compare the different simulation techniques described in Section 4.3 we per-
form a simulation study on R1 using the software environment R (Ihaka and Gentleman,
1996; R Development Core Team, 2011). Functions to simulate Brown-Resnick pro-
cesses based on different approximations will be available in a future version of the R

package RandomFields (Schlather, 2012). We consider symmetric intervals [−b, b] with
b ∈ {1, 2, 5, 10, 20, 30, 50} and the variogram γ(h) = 2|h|α for α ∈ {0.2, 0.4, 0.6, . . . , 1.8}.
This means that for all these Brown-Resnick processes condition (4.1) holds. We always
consider the process on a grid of length 0.1.

In order to get a fair criterion for the comparison of the different methods, we have
fixed the number q of simulated sample paths of W (·) on [−b, b] per realization of the
Brown-Resnick process, q = 100, 500 and 2500. Simulation techniques for W are given
in Lantuéjoul (2002) and Schlather (2012). In order to approximate Z3 and Z4 the paths
W (·) have to be computed on an interval larger than [−b, b]. Here, we assume that the
computing time depends linearly on the length of this interval and modify the number
of simulated sample paths to have an approximately equal computing time for all the
approximations. We repeat every simulation of a Brown-Resnick process N = 5000
times and call this a run.

For ease of notation, we call the approximation of Zi “method i” (i = 1, 2, 3, 4) and the
approximation of Z “method 0”.

Applying method 1, we have to choose s1, . . . , sn depending on b. It seems to be reason-
able to distribute s1, . . . , sn equally on [−b, b]. Furthermore, the distance ∆s = s2 − s1
should neither be too large — because we want to cover the interval with good approx-
imations — nor too small — in order to get a method distinct from method 2. Here,
depending on b, we choose some n ∈ {5, 10, 20, 50} such that 0.5 ≤ ∆s ≤ 2.

In order to approximate Z2(·), let Q be the uniform distribution on [−b, b]. When
approximating Z3(·), we always set p as the mesh width, i.e. p = 0.1, and set jmax = 200
for b = 1, 2, jmax = 250 for b = 5 and jmax = 10b + 300 otherwise. Note that for the
choice of jmax (and also for the choice of v in method 4) not its absolute value, but
the difference pjmax − b is important. In practice, a difference of 30 (or larger) provides
very good results. However, one should be aware of the fact, that increasing jmax is
quite expensive in terms of computing times if k is fixed. We also varied the intensity
parameter m and got best results for m = 31.

In case of method 4 we set v = 20 for b = 1, 2, v = 25 for b = 5 and v = b+30 otherwise.
Here, the choice of the set E is crucial. A large domain of E requires the simulation of low
values of Ui, involving high computational costs. A very small domain, however, leads
to a high rejection rate. We choose E in the following way. Let Π̃ =

∑
i∈N δ(Ui,Ti,Ui+Mi)
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4. Unconditional Simulation of Brown-Resnick Processes

be a Poisson point process on R×Rd ×R with intensity measure Λ̃. From Theorem 4.6
it is known that Λ̃(R× E) = λ∗

∫
E e

−y dt× dy. We compare this to Λ̃([u0,∞)× E) for
some fixed u0 ∈ R. The latter one can be easily estimated by simulation. Then, the
probability of drawing F̃i incorrectly when restricting our simulation to processes with
Uj > x0 given that Π̃([u0,∞)× E) > 0 can be bounded by

P(Π̃((−∞, u0)× E) > 0) = 1− exp(−Λ̃((−∞, u0)× E)).

For our simulation study we choose u0 = −2 and approximate the area of highest
intensity with cubes.
As already mentioned before, for methods 3 and 4, the (location of the) maximum of the
Gaussian process is needed. To this end, we simulate the Gaussian process on a larger
interval, which is at least of length pjmax+b or v+b, respectively, and take the maximum
of the process restricted to this area which implies additional errors. Note that we do
not get any additional error by discretization as the equivalent representations Z3(·) and
Z4(·) also hold for Brown Resnick processes restricted to a lattice (cf. Remark 4.7).

As a measure of approximation quality we take the largest distance between the empirical
cumulative distribution function of the approximated process at the interval bounds and
the standard Gumbel distribution function. This is motivated by the fact that we expect
the largest deviations from the original process at the interval bounds. Both bounds
are taken into account in order to get a lower volatility of the results: For independent

realizations Z
(k)
i,1 (·), . . . , Z

(k)
i,N (·), let Z(k)

i,(1)(t), . . . , Z
(k)
i,(N)(t) be the order statistic at location

t ∈ pZ. Then, we define the deviation of approximation as

ǫ =
1

2
max

j=1,...,N

∣∣∣∣exp(− exp(−Z(k)
i,(j)(−b)))−

j

N

∣∣∣∣

+
1

2
max

j=1,...,N

∣∣∣∣exp(− exp(−Z(k)
i,(j)(b)))−

j

N

∣∣∣∣ .

We perform all the simulations up to 50 times. After each run of all methods we cal-
culate the p-values for pairwise t-tests between the different methods assuming that ǫ
is normally distributed. We stop simulating a method whenever p < 0.005. Figure 4.3
depicts the methods for each pair (b, α) that have not been rejected after 50 repetitions.

In general, methods 0, 1 and 2 perform best, if α or b is small. If both are large, method
4 is the best one. The area where method 4 performs best increases for q growing.
For large q methods 0 and 2 have the same behaviour; if q is small, there is a sharper
distinction between these methods. Method 0 provides better results for small b, method
2 for small α. Method 3 only works well if q gets large. Then, we get best results for b
large.
The typical behaviour for large b, α and q is shown in Figures 4.1 and 4.4 for the stan-
dard Brownian motion. The development of the deviation ǫ for growing q and different
b and α is shown in Table 4.1. More generally, there are the following recommendations
concerning the choice of methods in practice: If the variogram value evaluated at the
diameter of the simulated area is low, then use the original definition; simulation by ran-
dom shifting is also appropriate if an imprecise simulation is sufficient; if the variogram
tends to infinity and the value evaluated at the diameter of the simulated window is
high, then the mixed moving maxima representation is best.
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Figure 4.3: Methods providing best results depending on the interval bound b and vari-
ogram parameter α using q = 100 (left), 500 (middle), and 2500 (right) sim-
ulated sample paths of W (·) on [−b, b] per realization of the Brown-Resnick
process.
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Figure 4.4: Finite approximations of the original Brown-Resnick process; five realizations

of Z
(1000)
2 (·) (left) and Z(1000)

4 (·) (right).

α = 0.4, b = 30 α = 1, b = 10 α = 1.6, b = 2

q 100 500 2500 100 500 2500 100 500 2500

ǫ0 0.148 0.066 0.027 0.662 0.514 0.367 0.085 0.030 0.014

ǫ1 0.153 0.064 0.026 0.429 0.345 0.281 0.137 0.101 0.065

ǫ2 0.135 0.063 0.030 0.423 0.339 0.280 0.129 0.084 0.046

ǫ3 0.816 0.472 0.023 0.833 0.493 0.026 0.848 0.519 0.025

ǫ4 0.379 0.099 0.066 0.514 0.076 0.014 0.357 0.045 0.012

Table 4.1: The mean deviation of approximation is shown for different (α, b, q). By ǫi we
denote the deviation of approximation by method i, i = 0, . . . , 4.
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5 Conditional Sampling of Mixed Moving

Maxima Processes

This chapter, which is based on the article Oesting and Schlather (2012), and Chapter
6 are devoted to conditional simulation of some classes of max-stable processes. In view
of the variety of models, which have been developed over the last decades, and the wide
range of potential applications of max-stable processes for modelling extreme events,
the question of prediction and conditional sampling arises. Davis and Resnick (1989,
1993) proposed prediction procedures for time series which basically aim to minimize a
suitable distance between observation and prediction. Further approaches for time series
or random fields have been rare for a long time, apart from a few exceptions. Cooley
et al. (2007) introduced an approximation of the conditional density. Recently, Wang
and Stoev (2011) proposed an exact and efficient algorithm for conditional sampling for
max-linear models

Zi = max
j=1,...,p

aijYj , i = 1, . . . , n,

where Yj are independent Fréchet random variables. Algorithms for conditional sim-
ulation of Brown-Resnick processes (Dombry et al., 2011) and for extremal Gaussian
processes (Dombry and Ribatet, 2012) were developed based on more general results
on conditional distributions of max-stable processes given in Dombry and Eyi-Minko
(2011).

In this chapter, we consider stationary max-stable processes with standard Fréchet mar-
gins that allow for a mixed moving maxima representation (see, for instance, Schlather
2002, Stoev and Taqqu 2005). Let (Ω,F ,P) be a probability space and F : (Ω,F) →
(G,G) be a random function such that E(

∫
Rd F (x) dx) = 1. We assume that G is a

countable set of measurable functions f : Rd → [0,∞) and G = 2G.

Then, we consider the stationary max-stable process

Z(t) = max
i∈N

(Ui · Fi(t− Si)) , t ∈ Rd, (5.1)

where (Si, Ui, Fi), i ∈ N, are the elements of a Poisson point process Π =
∑

i∈N δ(Si,Ui,Fi)

on S = Rd × (0,∞)×G with intensity measure

Λ(A×B × C) = |A| · PF (C) ·
∫

B

du

u2
, A ∈ Bd, B ∈ B ∩ (0,∞), C ∈ G, (5.2)

and PF is the probability measure belonging to F .

We aim to sample from the conditional distribution of Z given Z(t1), . . . , Z(tn) for fixed
t1, . . . , tn ∈ Rd. As Z is entirely determined by the Poisson point process Π, we analyse
the distribution of Π given some values of Z. The idea to use a Poisson point process
structure for calculating conditional distributions has already been implemented in the
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5. Conditional Sampling of Mixed Moving Maxima Processes

case of a bivariate min-stable random vector (Weintraub, 1991). A very general Poisson
point process approach was recently used by Dombry and Eyi-Minko (2011) yielding
formulae for conditional distributions in terms of the exponent measure. Some of these
results are independently found here, as well.

This chapter is organized as follows. In Section 5.1, we introduce a random partition of
Π into three measurable point processes. This partition allows to focus on the critical
points of Π which determine Z(t1), . . . , Z(tn). Similarly to Wang and Stoev (2011) and
Dombry and Eyi-Minko (2011), we will call realizations of these point configuration
scenarios and figure out the conditional distribution of these scenarios coping with the
problem that we work on events of probability zero (Section 5.2). In Section 5.3, the
conditional distribution of Π is calculated explicitly for the case d = 1 and under some
regularity assumptions on a finite number of random shape functions. In Section 5.4, the
results are applied to the Gaussian extreme value process (Smith, 1990) and compared
to other algorithms. Section 5.5 deals with sampling techniques which are needed in
the case that the number of shape functions is large. In Section 5.6, an approximation
procedure is introduced for the case of a countable and uncountable number of random
shape functions. A prominent example, the Brown-Resnick process (Brown and Resnick,
1977), is the matter of a comparison study for different algorithms in Section 5.7. In the
last section, we give a brief overview of the results for a discrete mixed moving maxima
process restricted to pZd.

5.1 Random Partition of Π and Measurability

In this section, we will consider random sets of points within Π which essentially deter-
mine the process Z. Separating these critical points of Π from the other ones, we get a
random partition of Π. We will show that this partition is measurable, which allows for
further investigation of this partition.

For some fixed (t, z) ∈ Rd × (0,∞), define the set

Kt,z =

{
(x, y, f) ∈ S : f(t− x) > 0, y =

z

f(t− x)

}
,

which we call the set of points generating (t, z) due to the fact that

Z(t) = z ⇐⇒ Π(Kt,z) ≥ 1 ∧ Π(Kt,z) = 0.

Here, K =
⋃

(x,y,f)∈K{x} × (y,∞)× {f} for a set K ⊂ S.

In a next step, we consider n fixed points (t1, z1), . . . , (tn, zn) ∈ Rd × (0,∞). For any
vector t = (t1, . . . , tn) ∈ Rd·n and any mapping g with domain dom(g) ⊂ Rd, we write
g(t) instead of (g(t1), . . . , g(tn)), for short. Similarly, t > 0 is understood as ti > 0,
i = 1, . . . , n.

Now, we define the set of points generating (t, z) as

Kt,z =
{
(x, y, f) ∈ S : max

i=1,...,n
f(ti − x) > 0, y = min

i=1,...,n

zi
f(ti − x)

}
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5.1. Random Partition of Π and Measurability

=
{
(x, y, f) ∈ S : yf(t− x) ≤ z, yf(tj − x) = zj for some j ∈ {1, . . . , n}

}
.

This implies

Kt,z =
{
(x, y, f) ∈ S : yf(tj − x) > zj for some j ∈ {1, . . . , n}

}

and

Kt,z ∩Kti,zi = {(x, y, f) ∈ S : yf(ti − x) = zi, yf(t− x) ≤ z} .

Therefore, we have

Z(t) ≤ z ⇐⇒ Π(Kt,z) = 0

and

Z(t) = z ⇐⇒ Π(Kti,zi ∩Kt,z) ≥ 1, i = 1, . . . , n ∧ Π(Kt,z) = 0. (5.3)

Now we define a random partition of Π by

Π1(·) := Π(· ∩Kt,Z(t))

Π2(·) := Π(· ∩Kt,Z(t)),

and Π3(·) := Π(·)−Π1(·)−Π2(·).

Relation (5.3) implies that Π1(·) ≡ 0 and Π2(Kti,Z(ti)) ≥ 1 a.s. for i ∈ {1, . . . , n}. Note

that the partition of Π into Π1, Π2 and Π3 corresponds to the classification of Φ+
K and

Φ−
K in Dombry and Eyi-Minko (2011).

Before proceeding any further, we need to proof that Π1, Π2 and Π3 are well-defined.
We will do this by showing the measurability of a further partition of Π2, namely the
restriction of Π to intersection sets. For any A ∈ 2{1,...,n} \ ∅, these are defined as

IA(z) = Kt,z ∩


⋂

i∈A
Kti,zi \

⋃

j∈Ac

Ktj ,zj




= {(x, y, f) ∈ S : yf(ti − x) = zi, i ∈ A, yf(tj − x) < zj , j /∈ A}

By construction, Kt,z is a disjoint union of IA(z), A ∈ 2{1,...,n} \ ∅.

Proposition 5.1. Let t1, . . . , tn ∈ Rd be fixed.

1. The mapping

Ψ : S → RRd
, (x, y, f) 7→ yf(· − x)

is (Bd × (B ∩ (0,∞))× 2G, C(Rd))-measurable.

2. Let A ∈ 2{1,...,n} \ ∅ and B ⊂ S a bounded Borel set. Then, Π(IA(Z(t)) ∩ B) is a
random variable.

3. Π1,Π2 and Π3 are point processes (cf. Dombry and Eyi-Minko, 2011).
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Proof. 1. It suffices to verify that Ψ−1(Cs1,...,sm("
m
i=1(ai, bi))) is measurable for any

sj ∈ Rd, aj < bj ∈ R, j = 1, . . . ,m, m ∈ N. We have

Ψ−1(Cs1,...,sm("
m
i=1(ai, bi)))

=
⋃

f∈G

⋃

t∈Rd

{t} ×
(

max
i=1,...,m

ai
f(ti − t)

, min
i=1,...,m

bi
f(ti − t)

)
× {f}

=
⋃

f∈G

⋃

q1,q2∈Q+
q1<q2

{
t : (q1, q2) ⊂

(
m

max
i=1

ai
f(ti − t)

,
m
min
i=1

bi
f(ti − t)

)}
× (q1, q2)× {f}.

As each f ∈ G is measurable, sets of the type {t ∈ Rd : f(ti − t) ∈ B} are
measurable for any B ∈ B. Therefore, Ψ−1(Cs1,...,sm("

m
i=1(ai, bi))) ∈ Bd × (B ∩

(0,∞))× 2G.

2. We consider

{ω : Π(IA(Z(t)) ∩B) = k}

=
⋃

n0∈N

∞⋂

m=n0

( ⋃

y∈Qn

{
ω ∈ Ω : Z(t) ∈ "

n
i=1

(
yi −

1

m
, yi +

1

m

)
,

Π

(
Ψ−1

({
f ∈ RRd

: f(ti) ∈
(
yi −

1

m
, yi +

1

m

)
, i ∈ A,

f(tj) ≤ yj −
1

m
, j /∈ A

})
∩B

)
= k

})

By the first part of this proposition, Ψ is a measurable mapping and we get that
{ω : Π(IA(Z(t)) ∩B) = k} is measurable.

3. For any bounded Borel set B ⊂ S the second part of this proposition yields that
Π1(B) = 0, Π2(B) =

∑
A∈2{1,...,n}\∅Π(IA(Z(t)) ∩ B) and Π3(B) = Π(B) − Π2(B)

are measurable. Thus, Π1, Π2 and Π3 are point processes (Daley and Vere-Jones,
1988, Cor. 6.1.IV).

5.2 Blurred Sets, Scenarios and Limit Considerations

This section mainly deals with the analysis of the distribution of the set of critical
points, Π2. As this set has the intensity measure zero conditional on an event Z(t) = z

of probability zero, this distribution cannot be calculated straightforward. We need to
borrow arguments from martingale theory, taking limits of probabilities conditional on
the observations being in small intervals containing z. By this condition, the set of critical
points gets blurred. We distinguish between different scenarios denoting which points
influence the different observations. Using general bounds for the rate of convergence of
the intensity of these sets, we can prove that each observation is generated by exactly
one point of Π (Proposition 5.5), which restricts the number of scenarios that occur
with positive probability. According to the blurred sets, the scenarios get blurred, as
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well. The blurred scenarios are not exactly the same as the scenarios conditional on
blurred observations, but much more tractable. However, it can be shown that both
events asymptotically yield the same conditional probability (Theorem 5.6). Based on
these considerations, the independence of Π1, Π2 and Π3 conditional on Z(t) is shown
(Theorem 5.7). This allows us to simulate Π2 and Π3 independently. Furthermore, Π3

turns out to be easily simulated (Theorem 5.7).

Let

Fm = σ

({
Z(ti) ∈

(
k

2m
,
k + 1

2m

]
, i = 1, . . . , n, k ∈ N0

})
.

Then, {Fm}m∈N is a filtration and F∞ :=
⋂

m∈NFm = σ(Z(t)). For z > 0, let jm(z) ∈ N
be such that z ∈ Am(z) with

Am(z) =

(
jm(z)

2m
,
jm(z) + 1

2m

]
.

Then, we have Am(z)
m→∞−→ {z} monotonically and {ω ∈ Ω : Z(t) ∈ Am(z)} ∈ Fm.

Furthermore, let

K
(m)
t,z =

⋃

z̃∈Am(z)

Kt,z̃ = {(x, y, f) ∈ S : yf(t− x) ∈ Am(z)},

K
(m)
t,z =

⋃

z̃∈Am(z)

Kt,z̃ =
{
(x, y, f) ∈ S : yf(t− x) ≤ jm(z) + 1

2m
,

yf(ti − x) ∈ Am(zi) for some i ∈ {1, . . . , n}
}
,

and Kt,z
(m)

=
⋂

z̃∈Am(z)

Kt,z̃ =

{
(x, y, f) ∈ S : yf(ti − x) >

jm(zi) + 1

2m

for some i ∈ {1, . . . , n}
}

= K
t,

jm(z)+1
2m

.

These definitions imply that

K
(m)
t,z ∩Kt,z

(m)
= ∅ and K

(m)
t,z ∪Kt,z

(m)
= K

t,
jm(z)
2m

.

We call these sets the blurred sets belonging to Z(t) conditional on Z(t) ∈ Am(z). This
notation is due to the fact that we have

Z(t) ≤ jm(z) + 1

2m
⇐⇒ Π(Kt,z

(m)
) = 0.

Furthermore, as

K
(m)
t,z ∩K(m)

ti,zi
=

{
(x, y, f) ∈ S : yf(ti − x) ∈ Am(zi), yf(t− x) ≤ jm(z) + 1

2m

}
,

we get that

Π(K
(m)
ti,zi

∩K(m)
t,z ) ≥ 1, i = 1, . . . , n ⇒ Z(t) >

jm(z)

2m
.
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Thus, we obtain

Z(t) ∈ Am(z) ⇐⇒ Π(K
(m)
ti,zi

∩K(m)
t,z ) ≥ 1, i = 1, . . . , n ∧ Π(Kt,z

(m)
) = 0. (5.4)

In particular, for fixed z ∈ (0,∞)n, the point process Π(· ∩ S \ (K
(m)
t,z ∪ Kt,z

(m)
)) is

independent of the event Z(t) ∈ Am(z).

Based on these blurred sets, we define the blurred intersection sets

I
(m)
A (z) = K

(m)
t,z ∩

⋂

i∈A
K

(m)
ti,zi

\
⋃

j∈Ac

K
(m)
tj ,zj

, A ∈ 2{1,...,n} \ ∅.

We note that K
(m)
t,z can be written as a disjoint union of I

(m)
A (z), A ∈ 2{1,...,n} \ ∅.

Lemma 5.2. For any A ∈ 2{1,...,n} \∅ and z > 0, we have Λ
(
I
(m)
A (z)

)
∈ O(2−m), where

Λ(·) is given by (5.2).

Proof. It suffices to show that

Λ
(
K

(m)
ti,zi

)
∈ O(2−m), i = 1, . . . , n. (5.5)

By a straightforward computation we get

Λ
(
K

(m)
ti,zi

)
= EF

(∫

Rd

∫ jm(zi)+1

2mF (ti−t)

jm(zi)

2mF (ti−t)

1

u2
du dx

)

= EF

(∫

Rd

F (ti − x) dx

)
·
(

1
jm(zi)
2m

− 1
jm(zi)+1

2m

)
=

1
2m

jm(zi)
2m

jm(zi)+1
2m

.

Using the fact that limm→∞
jm(zi)
2m = zi, the assertion of the Lemma follows.

In Section 5.3, a more precise notion about the speed of convergence of 2−mjm(zi) → zi
will be useful.

Lemma 5.3. For any ε > 0, with probability one we have

lim inf
m→∞

2m(1+ε) min
i=1,...,n

(
jm(Z(ti)) + 1

2m
− Z(ti)

)
= ∞

and lim sup
m→∞

2m(1+ε) max
i=1,...,n

(
jm(Z(ti))

2m
− Z(ti)

)
= −∞.

Proof. We present the proof of the first assertion. The second one can be shown analo-
gously. For the first assertion, it suffices to show that

lim inf
m→∞

2m(1+ε)

(
jm(Z(ti)) + 1

2m
− Z(ti)

)
= ∞, i = 1, . . . , n.

Let a ∈
(
0, 12
)
and m ∈ N large enough such that

∞∑

k=1

2−m 1

(k2−m)2
exp

(
− 1

k2−m

)
≤ 2

∫ ∞

0

1

x2
exp

(
−1

x

)
dx = 2. (5.6)
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Then, we have

P

(
jm(Z(ti)) + 1

2m
− Z(ti) ≤ a2−m

)

=
∞∑

k=1

P
(
(k − a)2−m ≤ Z(ti) ≤ k2−m

)

=
∞∑

k=1

exp

(
− 1

k2−m

)
·
(
1− exp

(
− 1

(k − a)2−m
+

1

k2−m

))

=
∞∑

k=1

exp

(
− 1

k2−m

)
·
(
1− exp

(
− 1

k2−m
· a/k

1− a/k

))

≤
∞∑

k=1

exp

(
− 1

k2−m

)
·
(

1

k2−m
· 2a
k

)
,

where we used the fact that 1− exp(−x) ≤ x for all x > 0. Employing (5.6), we get for
a = C2−mε with C > 0 and m large enough that

P

(
jm(Z(ti)) + 1

2m
− Z(ti) ≤ C · 2−m(1+ε)

)

≤ 2C · 2−mε
∞∑

k=1

2−m exp

(
− 1

k2−m

)
·
(

1

(k2−m)2

)
≤ 4C · (2ε)−m.

Therefore, the probabilities above are summable with respect tom and the Borel-Cantelli
lemma yields

P

(
lim inf
m→∞

2m(1+ε)

(
jm(Z(ti)) + 1

2m
− Z(ti)

)
< C

)

= P

(
lim sup
m→∞

{
ω ∈ Ω :

jm(Z(ti)) + 1

2m
− Z(ti) ≤ C · 2−m(1+ε)

})
= 0

for any C > 0. This completes the proof.

Now, we relate the points in K
(m)
t,z to the corresponding “blurred” intersection sets by

introducing disjoint “blurred” scenarios

E
(m)
{nA}(z) = E

(m)

{nA, A∈2{1,...,n}\∅}(z)

= {ω ∈ Ω : Π(I
(m)
A (z)) = nA, A ∈ 2{1,...,n} \ ∅, Π(K(t,z)

(m)
) = 0}

with {nA, A ∈ 2{1,...,n} \ ∅} ∈ N1 where

N1 =

{
{nA, A ∈ 2{1,...,n} \ ∅},

∑

A: i∈A
nA ≥ 1, i = 1, . . . , n

}
.

Thus, we have

{ω : Z(t) ∈ Am(z)} =
⋃

{nA}∈N1

E
(m)
{nA}(z)
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and the union is obviously disjoint. In the same way, dropping the (m) in the definition,
we specify scenarios E{nA}(z).

Now, we show that

P(∃i ∈ {1, . . . , n} : Π(Kti,Z(ti)) ≥ 2) = 0.

To this end, we first verify that, with probability one, Π2 has no points which can be
removed without any effect on Z(t). We consider scenarios E{nA}(Z(t)) with {nA} ∈ N2.

Here, N2 is the ensemble of all sets {nA, A ∈ 2{1,...,n} \ ∅} such that there exists some
A∗ ∈ 2{1,...,n} \ ∅ with

n∗A =

{
nA∗ − 1, A = A∗,

nA, else.

and {n∗A} ∈ N1. Thus, {nA} ∈ N2 if and only if E{nA}(Z(t)) remains an allowable
scenario after removing one point.

Lemma 5.4. With probability one, we have

P


 ⋃

{nA}∈N2

E{nA}(Z(t))

∣∣∣∣∣ Z(t) = z




= lim
m→∞

P


 ⋃

{nA}∈N2

E
(m)
{nA}(z)

∣∣∣∣∣ Z(t) ∈ Am(z)


 = 0.

In particular, limm→∞ P
(
Π(K

(m)
t,z \Kt,Z(t)) > 0

∣∣∣ Z(t) ∈ Am(z)
)
= 0.

Proof. By Lévy’s “Upward” Theorem (see Rogers and Williams, 2000, Thm. 50.3), we
a.s. have

∑

{nA}∈N2

P
(
E{nA}(Z(t)) | Z(t) = z

)
= lim

m→∞

∑

{nA}∈N2

P
(
E{nA}(Z(t)) | Z(t) ∈ Am(z)

)
.

Noting that ⋃

{nA}∈N2

E{nA}(Z(t)) ⊂
⋃

{nA}∈N2

E
(m)
{nA}(z),

it suffices to show the equation

lim
m→∞

∑

{nA}∈N2

P(E
(m)
{nA}(z)

∣∣Z(t) ∈ Am(z)) = lim
m→∞

∑
{nA}∈N2

P(E
(m)
{nA}(z))

∑
{nA}∈N1

P(E
(m)
{nA}(z))

= 0. (5.7)

for every z > 0. Corresponding to each E
(m)
{nA}(z) with {nA} ∈ N2 there exists some

E
(m)
{n∗

A}(z) with {n∗A} ∈ N1 as in the definition of N2. For A∗ ∈ 2{1,...,n} \ ∅, let N2,A∗ be

the set of all {nA} ∈ N2 with n∗A∗ = nA∗ − 1. Then, for fixed m ∈ N, the left-hand side
of (5.7) is less than or equal to

∑

A∗∈2{1,...,n}\∅

∑
{nA}∈N2,A∗ P(E

(m)
{nA}(z))

∑
{nA}∈N1

P(E
(m)
{nA}(z))

66



5.2. Blurred Sets, Scenarios and Limit Considerations

=
∑

A∗∈2{1,...,n}\∅

∑
{nA}∈N2,A∗

(
∏

A∈2{1,...,n}\∅
e−Λ(I

(m)
A ) Λ(I

(m)
A (z))nA

nA!

)
· exp(−Λ(K

(m)
t,z ))

∑
{nA}∈N1

(
∏

A∈2{1,...,n}\∅
e−Λ(I

(m)
A ) Λ(I

(m)
A (z))nA

nA!

)
· exp(−Λ(K

(m)
t,z ))

=
∑

A∗∈2{1,...,n}\∅

∑
{nA}∈N2,A∗

Λ(I
(m)
A∗ (z))

nA∗ ·




∏
A∈2{1,...,n}\∅

A 6=A∗

Λ(I
(m)
A (z))nA

nA!


 · Λ(I

(m)
A∗ (z))nA∗−1

(nA∗−1)!

∑
{nA}∈N1

∏
A∈2{1,...,n}\∅

Λ(I
(m)
A (z))nA

nA!

≤
∑

A∗∈2{1,...,n}\∅

Λ(I
(m)
A∗ (z))

∑
{n∗

A}∈N1

1
n∗
A∗+1

∏
A∈2{1,...,n}\∅

Λ(I
(m)
A (z))n

∗
A

n∗
A!

∑
{nA}∈N1

∏
A∈2{1,...,n}\∅

Λ(I
(m)
A (z))nA

nA!

≤
∑

A∗∈2{1,...,n}\∅
Λ(I

(m)
A∗ (z)),

where we embedded N2,A∗ into N1 by identifying {nA} with the corresponding {n∗A}.
By Lemma 5.2, we get equality (5.7), i.e. the first assertion of the lemma. Furthermore,

Π(K
(m)
t,z \Kt,Z(t)) > 0 and Z(t) ∈ Am(z) imply that Π(· ∩K(m)

t,z ) contains points which
can be removed without affecting Z(t) ∈ Am(z). This is,

lim
m→∞

P
(
Π(K

(m)
t,z \Kt,Z(t)) > 0

∣∣ Z(t) ∈ Am(z)
)

≤ lim
m→∞

∑

{nA}∈N2

P
(
E

(m)
{nA}(z)

∣∣ Z(t) ∈ Am(z)
)
= 0.

Thus, the second assertion of this lemma is verified.

The following proposition is also stated in a more general setting in Dombry and Eyi-
Minko (2011), Prop. 2.2.

Proposition 5.5. For any fixed t1, . . . , tn ∈ Rd we have

P(Π(Kti,Z(ti)) ≥ 2 for some i ∈ {1, . . . , n}) = 0.

Proof. It suffices to show P(Π(Kti,Z(ti)) ≥ 2) = 0 for all i ∈ {1, . . . , n}. Now, let
i ∈ {1, . . . , n} be fixed. Then, conditioning on Z(ti) only, we get

P
(
Π(Kti,Z(ti)) ≥ 2 | Z(ti) = z

)
= P


 ⋃

{nA}∈N2

E{nA}(Z(ti))

∣∣∣∣∣ Z(ti) = z


 = 0

for almost every z > 0 by Lemma 5.4. This yields the desired result.
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Figure 5.1: The event ∆m in the proof of Thm. 5.6. Black crosses: data (ti, Z(ti)),

black line: Kt,Z(t), grey area: K
(m)
t,Z(t), black dots: Π(· ∩ K

(m)
t,Z(t)). Left:

Π(K
(m)
t,Z(t) \Kt,Z(t)) > 0. Right: Π(I{1}(Z(t))) = 1 > 0 = Π(I

(m)
{1} (Z(t)))

By Proposition 5.5, almost surely one of the scenarios E{nA}(z) with
∑

A: i∈A nA = 1
for all i ∈ {1, . . . , n} occurs.

Theorem 5.6. With probability 1 we have

1. P(E{nA}(Z(t)) | Z(t) = z) = lim
m→∞

P(E
(m)
{nA}(z) | Z(t) ∈ Am(z))

for any {nA} ∈ N1,

2. P
(
Π2(Bj) = rj , j = 1, . . . , k, Π3(Bj) = rj , j = k + 1, . . . , l

∣∣ Z(t) = z
)

= lim
m→∞

P
(
Π(K

(m)
t,z ∩Bj) = rj , j = 1, . . . , k,

Π(Bj \ (K(m)
t,z ∪Kt,z

(m)
)) = rj , j = k + 1, . . . , l

∣∣ Z(t) ∈ Am(z)
)

for any Bj ⊂ S, rj ∈ N, j ∈ {1, . . . , l}.
Proof. 1. Lévy’s “Upward” Theorem (Rogers and Williams, 2000, Thm. 50.3) yields

P(E{nA}(Z(t)) | Z(t) = z) = lim
m→∞

P(E{nA}(Z(t)) | Z(t) ∈ Am(z))

with probability 1. It remains to verify

lim
m→∞

P(E
(m)
{nA}(Z(t)) | Z(t) ∈ Am(z)) = lim

m→∞
P(E{nA}(Z(t)) | Z(t) ∈ Am(z))

(5.8)

where P(E
(m)
{nA}(Z(t)) | Z(t) ∈ Am(z)) equals P(E

(m)
{nA}(z) | Z(t) ∈ Am(z)) by

definition.

To this end, we consider the symmetric difference ∆m of the events E
(m)
{nA}(Z(t))

and E{nA}(Z(t)). Note that any element of ∆m satisfies Π(K
(m)
t,Z(t) \Kt,Z(t)) > 0

(cf. Figure 5.1, left) or Π(IA(Z(t))) > Π(I
(m)
A (Z(t))) for some A ∈ 2{1,...,n} \ ∅

(cf. Figure 5.1, right). The second kind of event occurs if there is a point of Π in

IA(Z(t)) ∩ (
⋃

j /∈AK
(m)
tj ,Z(tj)

). As this set vanishes for any Z(t) > 0 as m → ∞, we

get that

{ω ∈ Ω : Π(IA(Z(t))) > Π(I
(m)
A (Z(t)))} ց ∅, m→ ∞,
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for any A ∈ 2{1,...,n} \ ∅, and therefore

lim
m→∞

P(Π(IA(Z(t))) > Π(I
(m)
A (Z(t)))) = 0.

This yields
∫ ∞

0
lim

m→∞
P
(
Π(IA(Z(t))) > Π(I

(m)
A (z))

∣∣ Z(t) ∈ Am(z)
)
P(Z(t) ∈ dz)

= lim
m→∞

P
(
Π(IA(Z(t))) > Π(I

(m)
A (Z(t)))

)
= 0

using dominated convergence and the fact that
∫ ∞

0
P
(
Π(IA(Z(t))) > Π(I

(m)
A (z))

∣∣ Z(t) ∈ Am(z)
)
P(Z(t) ∈ dz)

=
∑

z∈(2−mN)n

P
(
Π(IA(Z(t))) > Π(I

(m)
A (Z(t)))

∣∣ Z(t) ∈ Am(z)
)
P(Z(t) ∈ Am(z))

= P
(
Π(IA(Z(t))) > Π(I

(m)
A (Z(t)))

)
.

Therefore, we have

lim
m→∞

P
(
Π(IA(Z(t))) > Π(I

(m)
A (z))

∣∣ Z(t) ∈ Am(z)
)
= 0 (5.9)

for any A ∈ 2{1,...,n} \ ∅ and almost all z > 0. All in all, we end up with

lim
m→∞

∣∣∣P
(
E

(m)
{nA}(Z(t))

∣∣ Z(t) ∈ Am(z)
)
− P

(
E{nA}(Z(t))

∣∣ Z(t) ∈ Am(z)
)∣∣∣

≤ lim
m→∞

∑

A∈2{1,...,n}\∅
P
(
Π(IA(Z(t))) > Π(I

(m)
A (z))

∣∣ Z(t) ∈ Am(z)
)

+ lim
m→∞

P
(
Π(K

(m)
t,z \Kt,Z(t)) > 0

∣∣ Z(t) ∈ Am(z)
)

= 0 a.s.

by (5.9) and by the second part of Lemma 5.4. Thus, we get (5.8).

2. Let B1, . . . , Bk, Bk+1, . . . , Bl ∈ Bd × (B ∩ (0,∞))× 2G. Then, each of the events

{
Π2(Bj) 6= Π(K

(m)
t,Z(t) ∩Bj) for any j = 1, . . . , k

}

and
{
Π3(Bj) 6= Π(Bj \ (K(m)

t,Z(t) ∪Kt,Z(t)
(m)

)) for any j = k + 1, . . . , l
}

implies that Π(K
(m)
t,Z(t) \Kt,Z(t)) > 0. Therefore, for any r1, . . . , rl ∈ N, we have

lim
m→∞

∣∣∣P
(
Π2(Bj) = rj , j = 1, . . . , k,

Π3(Bj) = rj , j = k + 1, . . . , l
∣∣∣ Z(t) ∈ Am(z)

)

− P
(
Π(K

(m)
(t,z) ∩Bj) = rj , j = 1, . . . , k,

Π(Bj \ (K(m)
(t,z) ∪Kt,z

(m)
)) = rj , j = k + 1, . . . , l

∣∣∣ Z(t) ∈ Am(z)
)∣∣∣
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≤ lim
m→∞

P
(
Π(S ∩K(m)

(t,z))−Π2(S) > 0
∣∣∣ Z(t) ∈ Am(z)

)
= 0.

by the second part of Lemma 5.4. This verifies the assertion.

These results enable us to show the independence of Π1, Π2 and Π3 conditional on Z(t)
and to calculate the conditional distribution of Π3. The results can also be found in
Dombry and Eyi-Minko (2011), Thm. 3.1, obtained by a different approach.

Theorem 5.7. 1. With probability 1, the point processes Π1, Π2 and Π3 conditional
on Z(t) are stochastically independent.

2. The process Π3 | Z(t) = z has the same distribution as Π \ (Kt,z ∪ Kt,z) with
probability 1.

Proof. 1. Since Π1 ≡ 0 a.s., we only have to show the independence of Π2 and Π3

conditional on Z(t). Let B1, . . . , Bk, Bk+1, . . . , Bl ∈ Bd × ((0,∞) ∩ B) × G and
r1, . . . , rl ∈ N0. The second part of Theorem 5.6 yields

P(Π2(Bj) = rj , j = 1, . . . , k, Π3(Bj) = rj , j = k + 1, . . . , l
∣∣ Z(t) = z)

= lim
m→∞

P(Π(K
(m)
(t,z) ∩Bj) = rj , j = 1, . . . , k,

Π(Bj \ (K(m)
(t,z) ∪Kt,z

(m)
)) = rj , j = k + 1, . . . , l

∣∣ Z(t) ∈ Am(z)).

By (5.4) the process Π(· ∩S \ (K(m)
t,z ∪Kt,z

(m)
)) is independent of the event Z(t) ∈

Am(z). Hence,

P(Π2(Bj) = rj , j = 1, . . . , k, Π3(Bj) = rj , j = k + 1, . . . , l
∣∣ Z(t) = z)

= lim
m→∞

P(Π(K
(m)
(t,z) ∩Bj) = rj , j = 1, . . . , k

∣∣ Z(t) ∈ Am(z))

· P(Π(Bj \ (K(m)
t,z ∪Kt,z

(m)
)) = rj , j = k + 1, . . . , l)

= P(Π2(Bj) = rj , j = 1, . . . , k
∣∣ Z(t) = z)

· lim
m→∞

P(Π(Bj \ (K(m)
(t,z) ∪Kt,z

(m)
)) = rj , j = k + 1, . . . , l

∣∣ Z(t) ∈ Am(z))

= P(Π2(Bj) = rj , j = 1, . . . , k
∣∣ Z(t) = z)P(Π3(Bj) = rj , j = k + 1, . . . , l

∣∣ Z(t) = z),

where we use the same arguments as before.

2. For any sets B1, . . . , Bl ∈ Bd × (B ∩ (0,∞)) × G and r1, . . . , rl ∈ N0, the second
part of Theorem 5.6 implies

P(Π3(Bj) ≤ rj , j = 1, . . . , l
∣∣ Z(t) = z)

= lim
m→∞

P(Π(Bj \ (K(m)
t,z ∪Kt,z

(m)
)) ≤ rj , j = 1, . . . , l

∣∣ Z(t) ∈ Am(z))

= lim
m→∞

P(Π(Bj \ (K(m)
t,z ∪Kt,z

(m)
)) ≤ rj , j = 1, . . . , l)

= P(Π(Bj \ (Kt,z ∪Kt,z)) ≤ rj , j = 1, . . . , l).
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Here, we use that the process Π(· ∩ S \ (K
(m)
t,z ∪ Kt,z

(m)
)) is independent of the

event Z(t) ∈ Am(z) and the fact that we have a monotone limit.

By the second part of Theorem 5.7 the process Π3 | Z(t) = z can be easily simulated by
unconditionally simulating Π and restricting it to Rd × (0,∞)×G \ (Kt,z ∪Kt,z).

We close this section by noting that there exists a more general version of Theorem 5.6
which we will need for simulation. Let B1, . . . , Bk,∈ Bd × ((0,∞) ∩ B)× G be pairwise
disjoint with

⋃k
j=1Bj = S. We introduce generalized “blurred” scenarios

E
(m)

{n(j)
A }

(z) = E
(m)

{n(j)
A A∈2{1,...,n}\∅, j=1,...,k}

(z)

= {Π(I(m)
A (z) ∩Bj) = n

(j)
A , A ∈ 2{1,...,n} \ ∅, j = 1, . . . , k, Π(K(t,z)

(m)
) = 0}

with n
(j)
A ∈ N0 such that

∑k
j=1

∑
A: i∈A n

(j)
A ≥ 1 for i ∈ {1, . . . , n}.

Analogously, generalized scenarios E{n(j)
A }(z) are defined. Then, in exactly the same way

as Theorem 5.6, the following theorem can be shown.

Theorem 5.8. With probability 1 we have

P(E{n(j)
A }(Z(t)) | Z(t) = z) = lim

m→∞
P(E

(m)

{n(j)
A }

(z) | Z(t) ∈ Am(z))

for any scenario E{n(j)
A }(z) with

∑k
j=1

∑
A: i∈A n

(j)
A ≥ 1 for all i ∈ {1, . . . , n}.

The remainder of the chapter will address the problem of simulating Π2 | Z(t) = z.
We propose a procedure consisting of two steps. First, we draw a scenario E{nA}(Z(t))
conditional on Z(t) = z. Then, the points of Π2 corresponding to this scenario are
simulated.

5.3 Calculations in the Case of a Finite Number of Shape

Functions

As shown in Section 5.2, all we need for calculating P(E{nA}(Z(t)) | Z(t) = z) is

the exact asymptotic behaviour of Λ(I
(m)
A (z)). In particular, we have to analyse the

behaviour of the intersection of two curves Kti,zi+δi∩Ktj ,zj+δj for |δi|, |δj | small. Explicit
calculations turn out to be quite involved. Therefore, we restrict ourselves to the case
d = 1. Furthermore, the intersection depends on the derivative of the shape function.

We calculate the asymptotics of Λ(I
(m)
A (z)) for |A| = 1 (Proposition 5.13), |A| = 2

(Proposition 5.9) and |A| ≥ 3 (Proposition 5.11), see Figure 5.2. In the latter case,

the rate of convergence of Λ(I
(m)
A ) cannot be determined exactly. Nevertheless, the

conditional probability of any scenario can be calculated (Theorem 5.16).
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Figure 5.2: Blurred intersection sets for |A| = 1, |A| = 2 and |A| = 3. Black crosses:
data (ti, Z(ti)), dashed black lines: Kti,Z(ti), black line: Kt,Z(t), grey area:

K
(m)
t,Z(t), black area: I

(m)
A (Z(t)) with |A| = 1 (left), |A| = 2 (middle) and

|A| = 3 (right).

First we assume that G is a finite space of functions f : R → (0,∞) such that the
intersections

Mc,t0 = {t ∈ R : f(t) = cf(t0 + t)} (5.10)

are finite for all c > 0, t0 ∈ R, f ∈ G. This implies that each set IA(z), A ∈ 2{1,...,n} \ ∅,
|A| ≥ 2, z > 0, is finite. W.l.o.g. we assume that PF ({f}) > 0 for all f ∈ G.

Proposition 5.9. Let t1, t2 ∈ R, z1, z2 > 0 such that

I{1,2}(z) = {(t0, y0, f)}.

Furthermore, let f be continuously differentiable in a neighbourhood of ti− t0 and t2− t0
with

z1f
′(t2 − t0) 6= z2f

′(t1 − t0). (5.11)

Then, we have

Λ(I
(m)
{1,2}(z)) =

2−2m

y20|z1f ′(t2 − t0)− z2f ′(t1 − t0)|
PF ({f}) + o(2−2m).

Proof. We note that (t0, y0, f) satisfies the equation

f(t1 − t0)

z1
=
f(t2 − t0)

z2
= y−1

0 .

Let

H : (−z,∞)× R → R, (δ, t) 7→ f(t1 − t)

z1 + δ1
− f(t2 − t)

z2 + δ2
.

Then, H(0, t0) = 0 and

∂H

∂t
(0, t0) = −f

′(t1 − t0)

z1
+
f ′(t2 − t0)

z2
6= 0
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5.3. Calculations in the Case of a Finite Number of Shape Functions

due to (5.11). The implicit function theorem yields the existence of a neighbourhood
V of 0 and a continuously differentiable function h : V → R such that H(δ, h(δ)) = 0.
Using the notation (tδ, yδ, f) = I{1,2}(z+ δ) we get h(δ) = tδ and the equality

f(t1 − tδ)

z1 + δ1
=
f(t2 − tδ)

z2 + δ2
= y−1

δ .

As h is continuously differentiable, we obtain t0 − tδ ∈ O(||δ||), and a Taylor expansion

of f yields

f(ti − tδ) = f(ti − t0)− f ′(ti − t0) · (tδ − t0) + o(||δ||). (5.12)

Let g(t) = f(t− t0). Thus, using (5.12), tδ is given implicitly by

g(t1)− g′(t1) · (tδ − t0)

z1 + δ1
=
g(t2)− g′(t2) · (tδ − t0)

z2 + δ2
+ o(||δ||),

which implies the explicit representation

tδ = t0 +
δ1g(t2)− δ2g(t1)

z1g′(t2)− z2g′(t1)
+ o(||δ||). (5.13)

Plugging in (5.13) into (5.12) yields

y−1
δ =

f(t1 − tδ)

z1 + δ1
=

g(t1)

z1 + δ1
− g′(t1)

z1
· δ1g(t2)− δ2g(t1)

z1g′(t2)− z2g′(t1)
+ o(||δ||).

As f and δ 7→ tδ = h(δ) are C1-functions, all the terms o(||δ||) are continuously differ-
entiable for small ||δ||. Therefore, the mapping

Φ : V → R× (0,∞), δ 7→ (tδ, y
−1
δ )

is continuously differentiable near the origin. Calculating the partial derivatives explic-
itly, we obtain

det(DΦ(δ)) = − g2(t1)

z21 · (z1g′(t2)− z2g′(t1))
+ o(1). (5.14)

As det(DΦ(0)) 6= 0, the inverse function theorem allows to regard Φ as a diffeomorphism
restricted to an appropriate neighbourhood of 0. Thus, considering the transformed
Poisson point process Π̃ =

∑
i∈N δ(Si,U

−1
i ) on R× (0,∞) whose intensity measure is the

Lebesgue measure, we get

Λ({I{1,2}(z+ δ), zi + δi ∈ Am(zi), i = 1, 2})

=

∫

Φ((Am(z1)−z1)×(Am(z2)−z2))
PF ({f}) d (t, y)

=

∫

(Am(z1)−z1)×(Am(z2)−z2)
| det(DΦ(δ))| · PF ({f}) dδ

=

∫

(Am(z1)−z1)×(Am(z2)−z2)

1/y20 + o(1)

|z1g′(t2)− z2g′(t1)|
PF ({f}) dδ.
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We note that the term o(1) is continuous w.r.t. δ and therefore the integrands can be
locally bounded by (

1/y20
|z1g′(t2)− z2g′(t1)|

− εm

)
PF ({f})

from below, and by (
1/y20

|z1g′(t2)− z2g′(t1)|
+ εm

)
PF ({f})

from above for all (δ1, δ2) ∈ (Am(z1)− z1)× (Am(z2)− z2) with m large enough and an
appropriate sequence (εm)m∈N with εm ց 0. This implies that the integral has the form

2−2m · 1/y20
|z1g′(t2)− z2g′(t1)|

· PF ({f}) + o(2−2m)

which is the desired result.

Remark 5.10. 1. Using z1
f(t1−t0)

= z2
f(t2−t0)

= y0 we get that the equality

z1f
′(t2 − t0) = z2f

′(t1 − t0)

holds if and only if

∂

∂t

z1
f(t1 − t)

∣∣∣∣
t=t0

=
∂

∂t

z2
f(t2 − t)

∣∣∣∣
t=t0

,

i.e. if and only if the two sets of admissible points, Kt1,z1 and Kt2,z2 , are tangents
to each other in (t0, y0, f) which is an event of probability zero by Assumption
(5.10). Therefore, (5.11) is satisfied a.s.

2. If I{1,2}(z) consists of a finite number of points,

I{1,2}(z1, z2) = {(t(1)0 , y
(1)
0 , f1), . . . , (t

(k)
0 , y

(k)
0 , fk)},

we get

Λ(I{1,2}(z)) = 2−2m ·
k∑

j=1

P({fj})
y20 · |z1f ′j(t2 − t

(j)
0 )− z2f ′j(t1 − t

(j)
0 )|

+ o(2−2m).

Proposition 5.11. Let t1, . . . , tl ∈ R, z1, . . . , zl > 0, l ≥ 3 such that

I{1,...,l}(z) = {(t0, y0, f)}.
Let f : R → (0,∞) be continuously differentiable in a neighbourhood of t1− t0, . . . , tl− t0
with (5.11). Then, we have

Λ(I
(m)
{1,...,l}(z)) ≤

2−2m

y20|z1f ′(t2 − t0)− z2f ′(t1 − t0)|
PF ({f}) + o(2−2m).

For any C > 0, ε > 0, there exists mC,ε ∈ N such that

Λ(I
(m)
{1,...,l}(z)) ≥ C2−2m(1+ε)

for all m ≥ mC,ε.
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Proof. The first assertion follows immediately from Proposition 5.9 by the fact that

l⋂

i=1

K
(m)
ti,zi

⊂ K
(m)
t1,z1

∩K(m)
t2,z2

.

In order to verify the second assertion, we recall results from the proof of Proposition
5.9: we showed the existence of a C1-function (δ1, δ2) 7→ tδ1δ2 defined in an appropriate
neighbourhood V of (0, 0) such that

f(t1 − tδ1δ2)

z1 + δ1
=
f(t2 − tδ1δ2)

z2 + δ2
.

Now, we consider the C1-functions

Hi : V × (−zi,∞) → R, (δ1, δ2, δi) 7→
f(t1 − tδ1δ2)

z1 + δ1
− f(ti − tδ1δ2)

zi + δi
, i ∈ {3, . . . , l}.

As Hi(0, 0, 0) = 0 and ∂Hi
∂δi

(0, 0, 0) = f(ti−t0)
z2i

6= 0, we get the existence of a continuously

differentiable function hi defined on a neighbourhood of (0, 0) such that

f(t1 − tδ1δ2)

z1 + δ1
=

f(ti − tδ1δ2)

zi + hi(δ1, δ2)
. (5.15)

Using Taylor expansions of g(·) = f(· − t0) of first order, employing Equation (5.13),
and solving Equation (5.15) yields

hi(δ1, δ2) =
g(ti)

g(t1)
δ1 +

zig
′(t1)− z1g

′(ti)
g(t1)

g(t2)δ1 − g(t1)δ2
z1g′(t2)− z2g′(t1)

+ o(|δ1|) + o(|δ2|). (5.16)

So, there are constants c1,i, c2,i such that hi(δ1, δ2) = c1,iδ1 + c2,iδ2 + o(|δ1|) + o(|δ2|).
Let A

(i)
m = Am(zi) − zi for i ∈ {1, . . . , n}. We are interested in those pairs (δ1, δ2) ∈

A
(1)
m × A

(2)
m with hi(δ1, δ2) ∈ A

(i)
m . By Lemma 5.3, for any C ′ > 0, ε > 0, we have

that (−C ′2−m(1+ε), C ′2−m(1+ε)) ∈ A
(i)
m , i = 1, . . . , n, for m large enough. Therefore,

hi(δ1, δ2) ∈ A
(i)
m is guaranteed for |δ1| < C′2−m(1+ε)

3|c1,i| and |δ2| < C′2−m(1+ε)

3|c2,i| if m is suffi-

ciently large.
By the same argumentation for all i ∈ {3, . . . , l}, we get that the existence of all hi(δ1, δ2)
is ensured for

|δ1| <
C ′2−m(1+ε)

3maxi=3,...,l |c1,i|
, |δ2| <

C ′2−m(1+ε)

3maxi=3,...,l |c2,i|
(5.17)

for m large enough. Furthermore, to ensure δ1 ∈ A
(1)
m , δ2 ∈ A

(2)
m , we have to add the

conditions |δ1|, |δ2| < C ′2−m(1+ε). With Cj = max{1, 3maxi=3,...,l |cj,i|} for j = 1, 2, this
yields

Λ({I{1,...,l}(z+ δ), δi ∈ A(i)
m , i = 1, . . . , l})

≥ Λ

({(
tδ1δ2 ,

z1 + δ1
f(t1 − tδ1δ2)

, f

)
, |δj | <

C ′

Cj
2−m(1+ε), j = 1, 2

})

=
(C ′)22−2m(1+ε) · PF ({f})

y20C1C2|z1f ′(t2 − t0)− z2f ′(t1 − t0)|
+ o(2−2m(1+ε))

where we use the same argumentation as in the proof of Proposition 5.9. This completes
the proof.
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Remark 5.12. Note that Proposition 5.11 does not provide exact asymptotics which we
need to determine P(Π({(t0, y0, f)}) = 1 | Π(I{1,...,l}(z)) = 1, Z(t) = z) for (t0, y0, f) ∈
I{1,...,l}(z) and |I{1,...,l}(z)| > 1. However, we can get exact results by conditioning on
Z(ti) being in intervals of different size for each i ∈ {1, . . . , l} instead of Z(ti) ∈ Am(zi)
for all i = 1, . . . , l. We will choose these intervals such that some restrictions on the
intersection sets vanish asymptotically and we can resort to the results on the intersection
of two curves.

The calculations in the proof of Proposition 5.11 yield

|hi(δ1, δ2)| ≤ (|c1,i|+ o(1)) · |δ1|+ (|c2,i|+ o(1)) · |δ2| ≤ 2−m(|c1,i|+ |c2,i|+ o(1))

for (δ1, δ2) ∈ A
(1)
m ×A(2)

m . Thus, for any ε > 0, we can replacem by ⌊m(1−ε)⌋ in Equation

(5.17) and get that hi(δ1, δ2) ∈ A
(i)
⌊m(1−ε)⌋ holds for |δ1| < C′2−⌊m(1−ε)⌋(1+ε)

3|c1,i| ∼ 2ε
2m2−m

and |δ2| < C′2−⌊m(1−ε)⌋(1+ε)

3|c2,i| ∼ 2ε
2m2−m for m large enough. Therefore,

hi(δ1, δ2) ⊂ A
(i)
⌊m(1−ε)⌋, i = 3, . . . , l

for all δ1 ∈ A
(1)
m ⊂ (−2−m, 2−m], δ2 ∈ A

(2)
m ⊂ (−2−m, 2−m] if m is sufficiently large. This

implies

{
I{1,...,l}(z+ δ), δ1 ∈ A(1)

m , δ2 ∈ A(2)
m , δi ∈ A

(i)
⌊m(1−ε)⌋, i = 3, . . . , l

}

=
{
I{1,...,l}(z+ δ), (δ1, δ2) ∈ A(1)

m ×A(2)
m , hi(δ1, δ2) ∈ A

(i)
⌊m(1−ε)⌋, i = 3, . . . , l

}

=

{(
tδ1δ2 ,

z1 + δ1
f(t1 − tδ1δ2)

, f

)
, δ1 ∈ A(1)

m , δ2 ∈ A(2)
m

}

and, therefore

Λ
({
I
(m)
{1,...,l}(z+ δ), δ1 ∈ A(1)

m , δ2 ∈ A(2)
m , δi ∈ A

(i)
⌊m(1−ε)⌋, i = 3, . . . , l

})

=
2−2mPF ({f})

y20|z1f ′(t2 − t0)− z2f ′(t1 − t0)|
+ o(2−2m).

By conditioning on Z(t) ∈ Am(z1) × Am(z2) × "i=3,...,lA⌊m(1−ε)⌋(zi), for I{1,...,l}(z) =

{(t(1)0 , y
(1)
0 , f1), . . . , (t

(k)
0 , y

(k)
0 , fk)} for some l ≥ 3, we can apply Lévy’s “Upward” Theo-

rem (Rogers and Williams, 2000, Thm. 50.3) and end up with

P(Π({(t0, y0, f)}) = 1 | Π(I{1,...,l}(Z(t))) = 1, Z(t) = z)

= lim
m→∞

P
(
Π
({

(tδ1δ2 , yδ, f) : δ1 ∈ A(1)
m , δ2 ∈ A(2)

m , δi ∈ A
(i)
⌊m(1−ε)⌋, i ≥ 3

})
= 1

∣∣∣

Π(I{1,...,l}(Z(t))) = 1, Z(t) ∈ Am(z1)×Am(z2)× "i=3,...,lA⌊m(1−ε)⌋(zi)
)

=
PF ({f})

y20|z1f ′(t2 − t0)− z2f ′(t1 − t0)|
·




k∑

j=1

PF ({fj})
(y

(j)
0 )2|z1f ′j(t2 − t

(j)
0 )− z2f ′j(t1 − t

(j)
0 )|




−1

.

(5.18)
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Note that Lévy’s Upward Theorem implies that, with probability one, the right hand
side of (5.18) does not depend on the choice of the labelling.

Thus, despite the lack of exact convergence rates of Λ(I
(m)
{1,...,l}(z)), the distribution of

Π(· ∩ I{1,...,l}(Z(t))) | Π(I{1,...,l}(Z(t))) = 1 can be determined exactly.

Proposition 5.13. Let f ∈ G, t ∈ Rn, z > 0 such that f is continuously differentiable
in a neighbourhood of ti − t0 for all (t0, y0, f) ∈ Kt,z ∩ ⋃n

l=1
l 6=i

(Kti,zi ∩ Ktl,zl), i.e. all

(t0, y0, f) ∈ Kti,zi involved in an intersection, for all i ∈ {1, . . . , n}.
We denote the projection of the set I{i}(z)∩ (R× (0,∞)×{f}) onto its first component
in R by

D
(f)
i = {t ∈ R : (t, y, f) ∈ I{i}(z) for some y > 0}.

Then, we have

Λ
(
I
(m)
{i} (z) ∩ (R× (0,∞)× {f})

)
= 2−m · PF ({f}) ·

∫

D
(f)
i

f(ti − t)

z2i
dt+ o(2−m). (5.19)

Proof. First, we note that by renumbering, it suffices to show the result for i = 1.

The idea of this proof is to assess the set D
(f)
1 by the sets D

(m)
1,min from below and D

(m)
1,max

from above. Here, D
(m)
1,min consists of all first components of I

(m)
{1} (z) which are not part

of any intersections I
(m)
A (z), A ) {1} and D

(m)
1,max is the set of the first components of

⋃
A⊃{1} I

(m)
A (z). Analogously, Λ

(
I
(m)
{i} (z) ∩ (R× (0,∞)× {f})

)
can be bounded from

below and above by replacing D
(f)
1 in (5.19) by the sets D

(m)
1,min and D

(m)
1,max , respectively.

We will show that the difference, which consists of blurred intersections I
(m)
A (z), A ) {1},

vanishes asymptotically.

Let A
(i)
m = Am(zi)− zi. Then, for any δ ∈ "

n
i=1(−zi,∞) we define

D
(f)
1,δ =

{
t ∈ R :

(
t,
z1 + δ1
f(t1 − t)

, f

)
∈ I{1}(z+ δ)

}

=

{
t ∈ R :

z1 + δ1
f(t1 − t)

< min
i=2,...,n

zi + δi
f(ti − t)

}
. (5.20)

Thus, defining D
(m)
1,min =

⋂
δ∈×n

i=1A
(i)
m
D

(f)
1,δ and D

(m)
1,max =

⋃
δ∈×n

i=1A
(i)
m
D

(f)
1,δ , we get

D
(m)
1,min ⊂ D

(f)
1 ⊂ D

(m)
1,max .

On the other hand, we have
{
(t, y, f) ∈ R× (0,∞)× {f} : t ∈ D

(f)
1,min , yf(t1 − t) ∈ Am(z1)

}

⊂ I
(m)
{1} (z) ⊂

{
(t, y, f) ∈ R× (0,∞)× {f} : t ∈ D

(f)
1,max , yf(t1 − t) ∈ Am(z1)

}
. (5.21)

Now, let t ∈ D
(m)
1,max \D(m)

1,min . Then, by definition of D
(f)
1,min and D

(f)
1,max , there exist δ

(1),

δ(2) ∈ ×n
i=1A

(i)
m such that t ∈ D

(f)

1,δ(1)
, but t /∈ D

(f)

1,δ(2)
. That is, by Equation (5.20),

z1 + δ
(1)
1

f(t1 − t)
< min

i=2,...,n

zi + δ
(1)
i

f(ti − t)
and

z1 + δ
(2)
1

f(t1 − t)
≥ min

i=2,...,n

zi + δ
(2)
i

f(ti − t)
.
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5. Conditional Sampling of Mixed Moving Maxima Processes

By continuity arguments, a δ ∈ ×n
i=1A

(i)
m exists such that

z1 + δ1
f(t1 − t)

= min
i=2,...,n

zi + δi
f(ti − t)

,

i.e. t ∈ T
(m)
1 = {t ∈ R : (t, y, f) ∈ ⋃A: {1}(A I

(m)
A (z) for some y > 0}. Thus,

D
(m)
1,max \D(m)

1,min ⊂ T
(m)
1 . (5.22)

By definition, T
(m)
1 denotes the set of first components involved in any blurred intersec-

tion and we have T
(m)
1 ց T1 = {t ∈ R : (t, y, f) ∈ ⋃A: {1}(A IA(z) for some y > 0} as

m→ ∞ and T1 is finite by Assumption (5.10). Therefore, dominated convergence yields

∫

T
(m)
1

f(t1 − t) dtց 0, m→ ∞. (5.23)

Thus, by Equations (5.21) and (5.22) we get

Λ
(
I
(m)
{1} (z) ∆

{
(t, y, f) ∈ R× (0,∞)× {f} : t ∈ D

(f)
1 , yf(t1 − t) ∈ Am(z1)

})

≤ Λ
({

(t, y, f) ∈ R× (0,∞)× {f} : t ∈ D
(f)
1,max , yf(t1 − t) ∈ Am(z1)

} ∖

{
(t, y, f) ∈ R× (0,∞)× {f} : t ∈ D

(f)
1,min , yf(t1 − t) ∈ Am(z1)

})

≤ Λ
({

(t, y, f) ∈ R× (0,∞)× {f} : t ∈ T
(m)
1 , yf(t1 − t) ∈ Am(z1)

})

= PF ({f})
∫

A
(1)
m

∫

T
(m)
1

f(t1 − t)

(z1 + δ1)2
dt dδ1 = PF ({f})

∫

A
(1)
m

o(1)

(z1 + δ1)2
dδ1 ∈ o(2−m).

The last equality follows from Equation (5.23). Hence, we have

Λ(I
(m)
{1} (z)) = PF ({f})

∫

D
(f)
1

∫

A
(1)
m

f(t1 − t)

(z1 + δ1)2
dδ1 dt+ o(2−m)

= 2−m · PF ({f}) ·
(∫

D
(f)
1

f(t1 − t)

z21
dt+ o(1)

)

which completes the proof.

Now, we can use Theorem 5.6 in order to compute the conditional probabilities

P(E{nA}(Z(t)) | Z(t) = z) = lim
m→∞

P(E
(m)
{nA}(z) | Z(t) ∈ Am(z))

= lim
m→∞

P(E
(m)
{nA}(z))

∑
{ñA}∈N0

P(E
(m)
{ñA}(z))

(5.24)

where N0 =
{
{nA : A ∈ 2{1,...,n} \ ∅} :

∑
A: i∈A nA = 1, i = 1, . . . , n

}
.

78
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As the sets I
(m)
A (z), A ∈ 2{1,...,n} \ ∅, are pairwise disjoint and the sequences Λ(I

(m)
A (z))

tend to zero for m→ ∞ by Lemma 5.2, we get

P(E
(m)
{nA}(z)) ∼ exp(−Λ(K(t,z)))

∏

A: nA=1

Λ(IA(z)). (5.25)

Considering (5.24), we can restrict ourselves to those scenarios with the slowest rate
of convergence to zero. Propositions 5.9, 5.11 and 5.13 yield that scenarios involving
intersections of at least three sets are always of a dominating order. Therefore, the
unknown terms from Proposition 5.11 are cancelled out.

Example 5.14. Let F (x) = f(x) =: 1√
2π

exp(−x2

2 ) a.s. Furthermore, let Z(t1) =

Z(t2) = a where t1 = −b and t2 = b for constants a, b > 0. Then, we get

I{1}(a, a) =

{(
t, a

√
2π exp

(
(−b− t)2

2

)
, f

)
: t < 0

}

I{2}(a, a) =

{(
t, a

√
2π exp

(
(b− t)2

2

)
, f

)
: t > 0

}

I{1,2}(a, a) =

{(
0, a

√
2π exp

(
b2

2

)
, f

)}
.

By the formulae from Propositions 5.9 and 5.13, we get

Λ(I
(m)
{1} (a, a)) =

2−m

a2

∫ 0

−∞

1√
2π

exp

(
−(−b− t)2

2

)
dt+ o(2−m) ∼ 2−m

a2
Φ(b) (5.26)

Λ(I
(m)
{2} (a, a)) =

2−m

a2

∫ ∞

0

1√
2π

exp

(
−(b− t)2

2

)
dt+ o(2−m) ∼ 2−m

a2
Φ(b) (5.27)

Λ(I
(m)
{1,2}(a, a)) =

2−2m( 1a
1√
2π

exp(− b2

2 ))
2 + o(2−2m)

∣∣∣a b√
2π

exp(− b2

2 )− a −b√
2π

exp(− b2

2 )
∣∣∣
∼ 2−2m

2a3b
√
2π exp( b

2

2 )
. (5.28)

Here, there are two scenarios satisfying |Π ∩ Kt1,z1 | = |Π ∩ Kt2,z2 | = 1 and Equations
(5.26)–(5.28) yield

P
(
Π(I{1,2}(a, a)) = 1

∣∣ Z(−b) = Z(b) = a
)
=

a(2b
√
2π exp( b

2

2 ))
−1

Φ(b)2 + a(2b
√
2π exp( b

2

2 ))
−1
,

P
(
Π(I{1}(a, a)) = Π(I{2}((a, a))) = 1

∣∣

Z(−b) = Z(b) = a
)
=

Φ(b)2

Φ(b)2 + a(2b
√
2π exp( b

2

2 ))
−1
.

Note that the probability that the observations are generated by two different points of
Π increases as a gets smaller. This is due to the fact that Π gets more intense as the
second component decreases.

Using the formulae above, the limits of the conditional probabilities can always be calcu-
lated explicitly except for those cases where two scenarios exist, both involving different
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5. Conditional Sampling of Mixed Moving Maxima Processes

terms which cannot be determined exactly (cf. Proposition 5.11). This may happen only
if two sets A1 = {i1, . . . , ir} and A2 = {j1, . . . , js}, r, s ≥ 3, A1 ∩A2 6= ∅, exist such that

JA1(Z(t)) 6= ∅ , JA2(Z(t)) 6= ∅ and JA1∪A2(Z(t)) = ∅, (5.29)

where

JA(Z(t)) =
⋃

B⊃A

IB(Z(t)) = Kt,Z(t) ∩
⋂

i∈A
Kti,Z(ti), A ∈ 2{1,...,n} \ ∅.

In all other cases, the terms as in Proposition 5.11 are cancelled out. Note that we work
with sets of the type JA(Z(t)) in order to avoid case-by-case analysis for all the sets
IB(Z(t)) with B ⊃ A.

Lemma 5.15. Let G consist of functions which are continuously differentiable a.e.
Then, for any fixed set {t1, . . . , tn} ⊂ R we have

P(Z(t) satisfies (5.29)) = 0.

Proof. We proof that condition (5.29) has probability 0 for all fixed index sets A1, A2 ⊂
{1, . . . , n}. By renumbering, we may assume A1 = {1, . . . , r} and A2 = {q, . . . , q+s−1}
with q ≤ r. Assume that P(Z(t) satisfies (5.29)) > 0. In a first step we only consider
those realizations of Z(t1), . . . , Z(tr) with JA1(Z(t1), . . . , Z(tr)) 6= ∅. Then, by the
calculations in Propositions 5.9, 5.11 and 5.13, we get that

P(Π(I
(m)
A1

(Z(t1), . . . , Z(tr))) = 1) /∈ O(2−2m(1+ε))

for any ε > 0 and

P(Π(I
(m)
B1

(Z(t1), . . . , Z(tr))) = 1,Π(I
(m)
B2

(Z(t1), . . . , Z(tr))) = 1) ∈ O(2−3m)

for any B1, B2 ⊂ A1, B1 ∩B2 = ∅. This yields Π(JA1(Z(t1), . . . , Z(tr))) = 1 a.s.
Similarly, for almost every Zq, . . . , Zq+s−1 such that JA2(Z(tq), . . . , Z(tq+s−1)) 6= ∅, we
have Π(JA2(Z(tq), . . . , Z(tq+s−1))) = 1. As

{ω : Z(t) satisfies (5.29)}
⊂ {ω : JA1(Z(t1), . . . , Z(tr)) 6= ∅} ∩ {ω : JA2(Z(tq), . . . , Z(tq+s−1)) 6= ∅},

we have Π(JA1(Z(t1), . . . , Z(tr))) = 1 and Π(JA2(Z(tq), . . . , Z(tq+s−1))) = 1 for Z(t)
satisfying (5.29) almost surely. Therefore, we get P(Π(Kti,Z(ti)) ≥ 2) > 0 for every
i ∈ A1 ∩A2 since JA1∪A2(Z(t)) = ∅. This is a contradiction to Proposition 5.5.

From the considerations above and Lemma 5.15 we immediately derive the following
result.

Theorem 5.16. Let G consist of functions which are continuously differentiable a.e.
Then, with probability one,

P(E{nA}(Z(t)) | Z(t) = z) = lim
m→∞

P(E
(m)
{nA}(z) | Z(t) ∈ Am(z))

can be calculated explicitly via the formulae given in Propositions 5.9, 5.11, 5.13 and
Remark 5.12.
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5.3. Calculations in the Case of a Finite Number of Shape Functions

Remark 5.17. We may also consider the case that G is countable. However, to trans-
fer the results of the finite case, we have to ensure uniform convergence of the blurred

intersection sets which is needed to compute
∑

nA:
∑

A:i∈A nA=1 P(E
(m)
{nA}(z)) in the denom-

inator of Equation (5.24). To this end, we have to impose some additional conditions.
For example, we could assume that, for almost every z > 0, there is only a finite number
of shape functions involved in the intersection sets IA(z), |A| ≥ 2.

We are still left with simulating Π2 | Z(t) = z given the occurrence of a scenario E{nA}(z)
with

∑
A: i∈A nA = 1 for all i ∈ {1, . . . , n}, that is, we are interested in

P


 ⋂

A: nA=1

{Π2(CA × (0,∞)× {f}) = 1}
∣∣∣∣ E{nA}(z)




for CA ⊂ R, f ∈ G with (CA × (0,∞)× {f}) ∩ IA(z) 6= ∅. Using Theorem 5.8 with sets
BA = CA × (0,∞)× {f}, A ∈ 2{1,...,n} \ ∅, we get that

P


 ⋂

A: nA=1

{Π2(IA(z) ∩BA) = 1}
∣∣∣∣ E{nA}(z)


 = lim

m→∞

∏

A: nA=1

Λ(I
(m)
A (z) ∩BA)

Λ(I
(m)
A (z))

.

Thus, each random vector (TA, FA) ∈ R × G, A ∈ 2{1,...,n} \ ∅, which is defined by
Π2(({TA} × (0,∞) × {FA}) ∩ IA(Z(t))) = 1 if Π2(IA(Z(t))) = 1, can be simulated
independently.
The distribution of (TA, FA) depends on the cardinal number of A. If A = {i} for some
i ∈ {1, . . . , n}, we have

P(TA ∈ B,FA = f) =
PF ({f})

∫
D

(f)
i ∩B f(ti − t) dt

∑
g∈G PF ({g})

∫
D

(g)
i

g(ti − t) dt
, B ∈ B.

For |A| ≥ 2, let IA(z) = {(t(1)0 , y
(1)
0 , f1), . . . , (t

(k)
0 , y

(k)
0 , fk)}. Then, we get

P(TA = t
(j)
0 , FA = fj) =

PF ({fj})
(y

(j)
0 )2|z1f ′

j(t2−t
(j)
0 )−z2f ′

j(t1−t
(j)
0 )|

∑k
j′=1

PF ({fj′})
(y

(j′)
0 )2|z1f ′

j′ (t2−t
(j′)
0 )−z2f ′

j′ (t1−t
(j′)
0 )|

, j = 1, . . . , k.

Thus, we end up with the following procedure for calculating the conditional distribution
of Z(t0) given Z(t) = z with t0, t1, . . . , tn ∈ R, z > 0.

1. Compute the conditional probabilities (5.24) for all the scenarios E{nA}(z) and
generate a random scenario following this distribution.

2. For a given scenario E{nA}(z), set Π2 =
∑

{A: nA=1} δ(TA,UA,FA)}, where the law of
(TA, FA) is given above and UA = minni=1

zi
FA(ti−TA) .

3. Independently, sample points (Si, Ui, Fi)i∈N from Π3(·) = Π(· \ (K(t,z) ∪K(t,z))).
Then, Z(t0) = max{A: nA=1} (UA · FA(t0 − TA)) ∨maxi∈N (Ui · Fi(t0 − Si)).
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5. Conditional Sampling of Mixed Moving Maxima Processes

In the next section, we will point out the capability of this exact approach by comparing
it to other algorithms in the simple case of a deterministic shape function which is
continuously differentiable. In Section 5.5, we address the computational burden of this
algorithm.

5.4 Comparison with Other Algorithms

Recently, Wang and Stoev (2011) proposed an algorithm for exact and efficient condi-
tional sampling for max-linear models

Z(ti) = max
j=1,...,p

aijYj , i = 0, . . . , n,

where Yj , j = 1, . . . , p, are independent standard Fréchet random variables.

Rewriting Z from (5.1) as an extremal integral (see Stoev and Taqqu, 2005)

Z(t) =
∑

f∈G
PF ({f})

∫e

R
f(t− u)M1(du), t ∈ R,

where M1 is a random sup-measure on R w.r.t. the Lebesgue measure, we can see that
Z can be approximated arbitrarily well by a max-linear model, e.g. by

ZM,h(t) = h max
l=−M,...,M−1

j=1,...,k

PF ({fj}) · fj
(
t−

(
l +

1

2

)
h

)
· Yj,l, M ∈ N, h > 0,

where G = {f1, . . . , fk}. Then, we have ZM,h(t)
p−→ Z(t), t ∈ R, as M → ∞, h→ 0.

We also consider another approach based on the assumption of a multi-gaussian model
(cf. Chilès and Delfiner, 1999, p. 381). The data are transformed such that the marginal
distribution is Gaussian. As the marginals of Z are known to be standard Fréchet, the
corresponding transformation is given by

Ψ : (0,∞) → R, x 7→ Φ−1(Φ1(x)),

where Φ is the standard normal distribution function and Φ1 = exp(−1/x) is the stan-
dard Fréchet distribution function. The transformed random field Y = Ψ(Z) is station-
ary and second-order. As the covariance function C of Y can hardly be computed for
general shape functions f1, . . . , fk, we estimate it using maximum likelihood techniques,
for instance, from a large parametric class like the Whittle-Matérn class

κ̃ν,c(h) =
(c||h||)ν
2ν−1Γ(ν)

Kν(c||h||), ν, c > 0,

assuming that Y is a Gaussian random field. Under this assumption, the conditional
distribution can be sampled easily as described in Section 2.1. Afterwards, the sample
has to be retransformed via

Ψ−1 : R → (0,∞), y 7→ Φ−1
1 (Φ(y)).
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To compare different methods, we need a measure for the goodness-of-fit of a distribution.
Here, we use the continuous ranked probability score (CRPS) which is defined as

CRPS(F1, x) = −
∫ ∞

−∞
(F1(y)− 1{y≥x})

2 dy,

where F1 is a cumulative distribution function and x ∈ R (see Gneiting and Raftery,
2007). Note that CRPS(F1, F2) :=

∫
CRPS(F1, x)F2(dx) is a strictly proper scoring

rule, i.e.
CRPS(F2, F2) ≥ CRPS(F1, F2)

for all cumulative distribution functions F1, F2. If F1 and F2 both belong to measures
with finite first moment, equality holds if and only if F1 = F2. Assuming that F1 has a
finite first moment, by Lemma 2.1 in Baringhaus and Franz (2004), the CRPS can be
calculated via

CRPS(F1, x) =
1

2
EF1 |X −X ′| − EF1 |X − x|, (5.30)

which shows CRPS(F1, F1) = −1
2EF1 |X −X ′| ≤ 0. Here, X, X ′ ∼ F1 are independent

random variables.

In order to compare different algorithms for getting a realization from the conditional
distribution Z(t0) | Z(t), we consider K samples Z1, . . . , ZK of the random field Z.

For each method m, we get an empirical distribution function F
(m)
i by drawing k times

from the (approximated) conditional distribution of log(Zi(t0)) | Zi(t), i = 1, . . . ,K,

and calculate CRPS(F
(m)
i , log(Zi(t0))) via (5.30). Here, we do the log-transformation

to Gumbel marginals to ensure that the conditional distribution has finite expectation.

Then, a measure for the goodness-of-fit is the mean score (Gneiting and Raftery, 2007)

CRPSK,m =
1

K

K∑

i=1

CRPS(F
(m)
i , log(Zi(t0))).

Furthermore, we consider the mean absolute error of the logarithmic conditional median

MAEK,m =
1

K

K∑

i=1

∣∣∣log
(
(F

(m)
i )−1(0.5)

)
− log(Zi(t0))

∣∣∣ .

Here, for computational reasons, we choose the Gaussian extreme value process (Smith,
1990) which has the deterministic shape function

f(x) = ϕ(x) =
1√
2π

exp

(
−1

2
x2
)
.

Furthermore, let n = 4, t = (−2,−1, 1, 2) and t0 = 0. Figure 5.3 shows two realizations of
Z(·), the first one is sampled unconditionally and the second one is based on conditional
sampling of the first one.

The conditional distribution F
(m)
i is calculated based on a sample of size k = 100 simu-

lated in R (Ihaka and Gentleman, 1996; R Development Core Team, 2011). The perfor-
mance is measured via CRPSK,1 /MAEK,1 (conditional sampling via the Poisson point
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−3 −2 −1 0 1 2 3

0
2

4
6

8

Gaussian extreme value process
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Conditional Gaussian extreme value process

Figure 5.3: Left: Construction of Z. The grey dots represent the points (Si, Ui · Fi(0))
with Π =

∑
i∈N δ(Si,Ui,Fi), the black line is one realization of Z. The black

dots mark Z(t). Right: Construction of Z conditional on Z(t).

m = 1 m = 2 m = 3

CRPSK,m -0.135 -0.359 -0.251

MAEK,m 0.197 0.506 0.338

Table 5.1: Results of the simulation study for f(x) = ϕ(x) and K = 1000.

process), CRPSK,2 /MAEK,2 (conditional sampling for a max-linear model withM = 5
and h = 0.1 using the R package maxLinear (Wang, 2010)) and CRPSK,3 / MAEK,3

(conditional sampling via transformation to Gaussian marginals) with K = 1000 sam-
ples. As already mentioned, the latter approach requires the knowledge of the covariance
structure of the transformed random field. This is assessed by first simulating data from
this model on a dense grid repeatedly and then estimating the scale and the smooth-
ness parameter of a Whittle-Matérn covariance model based on maximum likelihood
techniques implemented in the R package RandomFields (Schlather, 2012). The param-
eters for the first and second method are chosen such that these methods have a similar
running time, while the last method runs much faster.

The results of the simulation study are shown in Table 5.1. Here, CRPSK,1 andMAEK,1

can be interpreted as reference values as the first method is exact. We note that con-
ditional sampling for max-linear models performs worse than conditional sampling via
transformation to Gaussian marginals.

For further analysis and comparison of these methods we do not restrict ourselves to
pointwise prediction, but have a look at the sample paths. Additionally, pointwise
quantile estimation of the conditional distribution can be done including the special
case of the conditional median which can be seen as an analogon to kriging. In case
of conditional sampling via the Poisson point process and conditional sampling of a
max-linear model, the quantiles have to be estimated from the empirical conditional
distribution. For sampling via Gaussian transformation, the quantiles can be calculated
directly by the means of Kriging result and variance.
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5.5. Reduction of Computational Burden

Figure 5.4 shows five sample paths and the median of the Gaussian extreme value process
conditional on

a. observations at four locations −2, −1, 1, 2,

b. observations at eleven locations −2.5,−2, . . . , 2, 2.5.

In general, conditional simulation via the Poisson point process yields sample paths which
capture the main features of the process quite well. Even in the case of four observations,
parts of the sample path are reconstructed exactly with a positive probability. For eleven
observations most of the sample path is restored with high probability.
The results of conditional sampling of the max-linear model are similar to the first
method in case of four observations. For eleven observations, however, the method fails
because of model misspecification. As the data do not match the discretized model, some
observations cannot be reconstructed. For some realizations of the Gaussian extreme
value process, this problem even occurs in case of four observations. This is the main
reason for the bad results of this method in the simulation study above.
Gaussian transformation yields conditional sample paths which are structurally very
different from the true ones. However, for eleven observations the deviations from the
original sample path are quite small.

5.5 Reduction of Computational Burden

Now, we deal with the computational costs of the above algorithm. The computing time
increases linearly with |G| and exponentially with n due to the fact that, for any function
f ∈ G, the intersections of the curves

{(
t,

Z(ti)

f(ti − t)

)
: t ∈ R, f(ti − t) > 0

}
, i = 1, . . . , n,

and the corresponding intensities have to be calculated. Furthermore, these intersection
sets have to be combined to scenarios. The following example shows that the number of
scenarios with positive probability may grow exponentially:

Example 5.18. Assume that t1 < t2 < . . . < tn ∈ R, PF is degenerated and Z(t) = z

such that there are no intersections of three or more curves and two curves Kti,zi and
Ktj ,zj intersect if and only if |i − j| = 1. Furthermore, we assume that I{i}(z) is non-
empty for i = 1, . . . , n.
Let R(n) denote the number of scenarios with a positive probability conditional on n
observations. Then, there are R(n − 1) scenarios (with positive probability) satisfying
Π(I{n}(z)) = 1 and R(n − 2) scenarios with Π(I{n−1,n}(z)) = 1. Thus, we get the
recurrence formula R(n) = R(n − 1) + R(n − 2) with R(1) = 1 and R(2) = 2. Hence,
R(n+ 1) equals the n-th Fibonacci number and grows exponentially.

We note that the calculation of all the intersection sets of dominating order, i.e. all
the intersections of at least three curves, is unavoidable as these will be included in Π2

with probability one — if non-empty. Depending on the algorithm used for determining
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Figure 5.4: Comparison of the Gaussian extreme value process with different types
of conditional simulations: a. simulations conditional on four observations
at −2, −1, 1, 2, b. simulations conditional on eleven observations at
−2.5,−2, . . . , 2, 2.5. In both cases the original Gaussian extreme value pro-
cess (top left), conditional samples via the Poisson point process (top right)
and conditional results for a max-linear approximation (bottom left) and an
approximation by Gaussian transformation (bottom right) are shown. Black
crosses: observations, coloured lines: conditional sample paths, black line:
conditional mean.
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5.5. Reduction of Computational Burden

these intersections, the intersections of two curves may be found with low additional
computational costs, e.g. by evaluating the function

t 7→
(
1{ z1

f(t1−t)
=mini=1,...,n

zi
f(ti−t)

}, . . . ,1{ zn
f(tn−t)

=mini=1,...,n
zi

f(ti−t)

}
)
.

However, storing all these intersections which are needed for conditional sampling might
be very demanding. Therefore, we aim to reduce at least the required memory.

To this end, we consider the shape functions involved in the point process Π2. As
Π(Kt1,Z(t1)) = . . . = Π(Ktn,Z(tn)) = 1 a.s. by Proposition 5.5, there are well-defined
random variables Θ1, . . . ,Θn such that Π(Kti,Z(ti) ∩ R × (0,∞) × {Θi}) = 1, i.e. Θi

denotes the shape function generating the ith observation, i = 1, . . . , n. By the results
of Section 5.2 and 5.3, the computation would become easy if Θ = (Θ1, . . . ,Θn) was
known. Therefore, it might be promising to do conditional sampling of Z | Z(t) = z in
the following way:

1. Choose θ = (θ1, . . . , θn) according to the distribution π(·) of Θ | Z(t) = z

2. Sample Π2 | Z(t) = z, Θ = θ.

3. Simulate Π3.

So, we are stuck to the problem to compute the distribution π of Θ given Z(t). By
summing up all the generalized scenarios including Θ = θ, we get

P(Θ = θ | Z(t) = z) = lim
m→∞

P(Θ = θ, Z(t) ∈ Am(z))∑
θ∈Gn P(Θ = θ, Z(t) ∈ Am(z))

.

as an immediate consequence of Theorem 5.8. The explicit calculations can be done by
means of the results in Section 5.3.
As already mentioned above, we have to consider the intersections of at least three
curves Kti,zi , i = 1, . . . , n, separately. There are sets B1(z), . . . , Bl(z) ⊂ {1, . . . , n} such
that |Bj(z)| > 2, IBj(z)(z) 6= ∅ and IB̃j

(z) = ∅ for all B̃j ) Bj(z), j = 1, . . . , l. We

assume that l = l(z) is maximal, which means that the set of all indices involved in
intersections of at least three curves is given by B≥3(z) =

⋃l
j=1Bj(z). By Lemma 5.15,

the sets B1(z), . . . , Bl(z) are pairwise disjoint and we get Π(IBj(Z(t))(Z(t))) = 1 a.s., in
particular |{Θi : i ∈ Bj(Z(t))}| = 1 a.s. for any j ∈ {1, . . . , l}. As Π(Kti,Z(ti)) = 1 a.s.,
we have that P(Π(J{i,j}(Z(t))) > 0 | Z(t) = z) = 0 for any i ∈ B≥3(z), j /∈ B≥3(z)
which means that only intersection sets IB(z) satisfying either B ⊂ B≥3(z) or B ⊂
B≤2(z) = Bc

≥3(z) have to be considered. Therefore, the random vectors (Θi)i∈B≥3(z)

and (Θj)j∈B≤2(z) are independent conditional on Z(t) = z. In practice, the set of shape
functions involved in intersections IB(z), |B| ≥ 3, is very small. Thus, the simulation of
{Θi | Z(t), i ∈ B≥3(z)} is fast.

By the considerations above we get

P(Θ = θ, Z(t) ∈ Am(z))

= cm({θj , j ∈ B≤2(z)}) ·
l∏

j=1


∑

fj∈G
Λ(I

(m)
Bj

(z) ∩ (R ∩ (0,∞) ∩ {fj}))
∏

i∈Bj

1θi=fj


 .
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5. Conditional Sampling of Mixed Moving Maxima Processes

where cm({θj , j ∈ B≤2(z)}) ≥ 0 is a constant depending only on {θj , j ∈ B≤2(z)}.
As no three elements of {Ktj ,zj (z), j ∈ B≤2(z)} intersect, Propositions 5.9 and 5.13

yield that cm({θj , j ∈ B≤2(z)}) ∈ O(2−|B≤2(z)|·m) and we get

cm({θj , j ∈ B≤2(z)}) /∈ o(2−|B≤2(z)|·m)

⇐⇒ Ktj ,zj ∩Kt,z ∩ (R× (0,∞) ∩ {θj}) 6= ∅ for all j ∈ B≤2(z). (5.31)

For simulating π(· | {θi, i ∈ B≥3(z)}) we notice that it might still be very challeng-
ing to calculate the probabilities for large G, in particular if B≤2(z) is large. The
computational burden can be eased by MCMC techniques like Gibbs sampling (cf.
Lantuéjoul, 2002; Gaetan and Guyon, 2010) restricted to components in B≤2(z) us-
ing that Q = {(θi)i∈B≤2(z) : π(x | {θj , j ∈ B≥3(z)}) > 0} = "i∈B≤2(z) Qi with
Qi = {θi ∈ G : Kti,zi ∩Kt,z ∩ (R× (0,∞) ∩ {θi}) 6= ∅} by Equation (5.31).
The convergence of Gibbs sampling is guaranteed by Theorem 4.4 in Gaetan and Guyon
(2010) – assuming that all the conditional distributions π(· | θ(i)) can be simulated
exactly, where θ(i) = (θ1, . . . , θi−1, θi+1, . . . , θn) .

Again, as G can be very large or even infinite, the calculation of the probabilities involved
in π(· | θ(i)) might cause some problems. Therefore, sampling from π(· | θ(i)) is done by
a standard Metropolis-Hastings algorithm (Metropolis et al., 1953; Hastings, 1970) with
proposal transition probability q(f, g) = PF ({g}), f ∈ Qi, g ∈ G ⊃ Qi, and acceptance

probability min
{
1, π(g|θ

(i))PF ({f})
π(f |θ(i))PF ({g})

}
(see Gaetan and Guyon, 2010).

Thus, we get the probability of transition from f to g by

P (f, g) =




PF ({g})min

{
1, PF ({f})

PF ({g})
π(g|θ(i))
π(f |θ(i))

}
, f 6= g,

1−∑h∈Qi\{f} P (f, h), f = g,
(5.32)

where π(g|θ(i))
π(f |θ(i)) =

π(g|θ(i), Θi∈{f,g})
π(f |θ(i), Θi∈{f,g}) can be calculated by the formulae from Section 5.3.

Proposition 5.19. For π(· | θ(i))-a.e. initial value f ∈ Qi, the Markov chain with
transition kernel P converges to π(· | θ(i)) in total variation norm, i.e.

sup
A∈G

∣∣∣P k(f,A)− π(A | θ(i))
∣∣∣ k→∞−→ 0.

Proof. By Theorem 4.1 in Gaetan and Guyon (2010) (see also Tierney, 1994) we have
to verify that P is π(· | θ(i))-irreducible, π(· | θ(i))-invariant and aperiodic. To show
irreducibility, we just note that P (f, g) = 0 implies π(g | θ(i)) = 0 as PF ({f}),PF ({g}) >
0. Invariancy w.r.t. π(· | θ(i)) holds because of π(· | θ(i))-reversibility

π(f | θ(i))P (f, g) = min{PF ({g})π(f | θ(i)),PF ({f})π(g | θ(i))} = π(g | θ(i))P (g, f).

Furthermore, we get aperiodicity because of P (f, f) ≥ PF ({f}) > 0 for all f ∈ G.

We end up with the following MCMC algorithm for π(·):

1. Determine B≥3(z) and simulate Θi, i ∈ B≥3(z).
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5.6. Approximation in the Case of an Infinite Number of Shape Functions

2. Start with initial values θ ∈ Q.

3. Choose i ∈ B≤2(z) according to a uniform distribution on G and simulate g ac-
cording to π(· | θ(i)) by the above Metropolis algorithm.

4. Update θi := g and go to 3.

The main advantage of drawing Θ | Z(t) first, instead of drawing scenarios directly, is
that intersection sets are much smaller and therefore less memory is needed. However,
still all the intersections of at least three curves have to be calculated first.

5.6 Approximation in the Case of an Infinite Number of Shape

Functions

Here, we drop the assumption that G is finite. Note that the measurability of Π2 and
Π3 is still an open question if G is uncountable. We present an approximation of the
distribution of Z(t0) given Z(t) based on a finite number of shape functions.

Let Γ1,Γ2, . . . be independent copies of F where F is defined as at the beginning of this
chapter. Then, given Γ1, . . . ,ΓN , we define

ZN (t) = max
i∈N

U
(N)
i F

(N)
i (t− S

(N)
i ), t ∈ Rd, (5.33)

where (S
(N)
i , U

(N)
i , F

(N)
i ), i ∈ N, are the points of a Poisson point process Π(N) =∑

i∈N δ(S(N)
i ,U

(N)
i ,F

(N)
i )

on Rd × (0,∞)× {Γ1, . . . ,ΓN} with intensity measure

Λ(A×B × {Γk}) =
1

N

∫

A

∫

B

1

u2
du ds, A ∈ Bd, B ∈ B ∩ (0,∞), k ∈ {1 . . . , n}.

Theorem 5.20. For any z > 0, it holds

Π(N) | ZN (t) ≤ z
d−→ Π | Z(t) ≤ z

as N → ∞. In particular, ZN (t0) | ZN (t) ≤ z
d−→ Z(t0) | Z(t) ≤ z.

Proof. We note that it suffices to show

lim
N→∞

P(Π(N)(Mj) = nj , j = 1, . . . , l | ZN (t) ≤ z)

= P(Π(Mj) = nj , j = 1, . . . , l | Z(t) ≤ z) (5.34)

for z > 0 and sets Mj = (aj , bj) × (cj ,∞) × Gj ⊂ Rd × (0,∞) × G which are pairwise
disjoint. First, we consider the distributions of Z and ZN , respectively. It holds that
P(Z(t) ≤ z) = exp(−EH), where

H =

∫

Rd

max
i=1,...,n

F (ti − t)

zi
dt.
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5. Conditional Sampling of Mixed Moving Maxima Processes

We define H1, . . . , HN replacing F by Γ1, . . . ,ΓN , respectively. Then, we have

P(ZN (t) ≤ z) = EΓ1,...,ΓN
(P(ZN (t) ≤ z | Γ1, . . . ,ΓN )) = E

(
exp

(
− 1

N

N∑

k=1

Hk

))
.

As the sets M1, . . . ,Ml are pairwise disjoint, the joint distribution of Π and Z(t) can be
rewritten as

P(Π(Mj) = nj , j = 1, . . . , l, Z(t) ≤ z)

= P(Z(t) ≤ z) ·
l∏

j=1

P

(
Π

(
Mj ∩

{
(x, y, f) ∈ S : y ≤ min

i=1,...,n

zi
f(ti − x)

})
= nj

)

= P(Z(t) ≤ z)

·
l∏

j=1

P

(
Π

({
(x, y, f) ∈ (aj , bj)× (cj ,∞)×Gj : y ≤ min

i=1,...,n

zi
f(ti − x)

})
= nj

)
.

Thus, we get

P(Π(Mj) = nj , j = 1, . . . , l, Z(t) ≤ z) = exp(−EH)
l∏

j=1

(EH(j))nj

nj !
exp(−EH(j)),

where

H(j) =

∫ bj

aj

((
1

cj
− max

i=1,...,n

F (ti − t)

zi

)
∨ 0

)
1{F∈Gj} dt, j = 1, . . . , l.

Analogously, we can define H
(j)
k replacing F by Γk in the definition of H(j) for j =

1, . . . , l, k = 1, . . . , N . This yields

P(Π(N)(Mj) = nj , j = 1, . . . , l, ZN (t) ≤ z)

= E


exp

(
− 1

N

N∑

k=1

Hk

)
l∏

j=1

1

nj !

(
1

N

N∑

k=1

H
(j)
k

)nj

exp

(
− 1

N

N∑

k=1

H
(j)
k

)
 .

As H1, . . . , HN ∼i.i.d. H and H
(j)
1 , . . . , H

(j)
N ∼i.i.d. H

(j) for j = 1, . . . , l with E|H| ≤
∑n

i=1
1
zi
< ∞ and H(j) <

∏d
i=1(bji−aji)

cj
, the Strong Law of Large Numbers yields that

1
N

∑N
k=1Hk → EH and 1

N

∑N
k=1H

(j)
k → EH(j) a.s. as N → ∞. Thus, dominated

convergence yields (5.34) and P(ZN (t) ≤ z) −→ P(Z(t) ≤ z), which verifies the first
assertion.

The second assertion follows immediately by rewriting

{ω ∈ Ω : Z(t0) ≤ z} = {ω ∈ Ω : Π({(x, y, f) ∈ S : yf(t0 − x) > z}) = 0}.
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5.7. Application to the Brown-Resnick Process

If G is countable, we have

lim
N→∞

Π
(N)
3 (·) | (ZN (t) = z)

d
= lim

N→∞
Π(N)

(
· \ (Kt,z ∪Kt,z)

)

d
= Π(· \ (Kt,z ∪Kt,z)

d
= Π3(·) | (Z(t) = z),

where we used the first part of Theorem 5.20 and applied the second part of Theorem
5.7 to the processes Z and ZN . This motivates to improve the approximation Π ≈ Π(N)

by Π(·) ≈ Π
(N)
2 (·) + Π3(·), i.e. by the following procedure:

1. Simulate points (TA, UA, FA) of Π
(N)
2 | Z(t) = z as described in Sections 5.3 and

5.5.

2. Independently of Π
(N)
2 , sample points (Si, Ui, Fi) from Π3 | Z(t) = z which is de-

fined by Π3(·) = Π
(
· ∩ (R× (0,∞)×G) \ (Kt,z ∪Kt,z)

)
analogously to the second

part of Theorem 5.7.

Then, Z(t0) ≈ max
{A: nA=1}

(UA · FA(t0 − TA)) ∨max
i∈N

(Ui · Fi(t0 − Si)) .

5.7 Application to the Brown-Resnick Process

We will apply the method of conditional sampling via the Poisson point process to the
original Brown-Resnick process (Brown and Resnick, 1977).

Let {Wi(t), t ∈ R}, i ∈ N, be independent copies of a standard Brownian motion and
— independently of the Wi’s — let

∑
i∈N δŨi

be a Poisson point process on (0,∞) with

intensity measure u−2 du. Then,

Z(t) = max
i∈N

(
Ũi exp

(
Wi(t)−

|t|
2

))
, t ∈ R,

defines a stationary max-stable process with standard Fréchet margins.

Recently, this process was generalized (Kabluchko et al. 2009; for further details see
Chapter 4) and its mixed moving maxima representation (5.1) was given explicitly (En-
gelke et al., 2011).

This is,

Z(t)
d
= max

i∈N

(
Ui ·

1

2
exp(−Ri(t− Si))

)
, t ∈ R, (5.35)

where
∑

i∈N δ(Si,Ui,Ri) is a Poisson point process on R × (0,∞) × C(R) with intensity
measure ds u−2 du PR(df) and PR is the law of the process

R(t) = 1t<0R
(−)(−t) + 1t≥0R

(+)(t).

Here, {R(−)(t), t ≥ 0}, {R(+)(t), t > 0} are independent Bessel processes of a three-
dimensional Brownian motion with drift 1

2 in its first component (cf. Rogers and Pitman,
1981), i.e.

R(−)(t)
d
= R(+)(t)

d
=
√
(W1(t) + |t|/2)2 +W2(t)2 +W3(t)2,
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where W1,W2 and W3 are independent standard Brownian motions.
We will use the results obtained in the previous sections to sample from the conditional
distribution of the Brown-Resnick process. However, the sample paths of exp(−R(·))
do not satisfy the assumptions of Propositions 5.9, 5.11 and 5.13. In particular, the
sample paths are not continuously differentiable almost everywhere. To overcome this
drawback, we do not use the exact sample paths F (·) = exp(−R(·)), but the sample
paths evaluated on a grid and interpolated linearly in between.
We show that this procedure is correct in the limit. Let T = {tz, z ∈ Z} ⊂ R with
. . . < t−2 < t−1 < t0 < t1 < t2 < . . . such that limz→−∞ tz = −∞, limz→∞ tz = ∞
and ||T || = supz∈Z(tz − tz−1). Let {(t, FT (t)), t ∈ R} be the polygonal line through the
points {(t, F (t)), t ∈ T}. Furthermore, define ZT (t) as in (5.35), replacing F by FT .

Proposition 5.21. For ||T || → 0 we have ZT (t) → Z(t) in probability for all t ∈ R.
In particular,

ZT (t0) | (ZT (t) ∈ B)
d−→ Z(t0) | (Z(t) ∈ B)

for all Borel sets B ⊂ Rn with P(Z(t) ∈ B) > 0 and P(Z(t) ∈ ∂B) = 0.

Proof. W.l.o.g. we assume ||T || ≤ 1
2 . Then, we have

∫

R

1

2
FT (t) dt ≤

∑

z∈Z
sup

t∈[z−1/2,z+1/2]

1

2
FT (t)

≤
∑

z∈Z

(
sup

t∈[z−1,z]

1

2
F (t) + sup

t∈[z,z+1]

1

2
F (t)

)

=
∑

z∈Z
sup
t∈[0,1]

F (z + t) =
∑

z∈Z
exp

(
− inf

t∈[0,1]
R(z + t)

)
.

We show that the rhs is L1-integrable. To this end, we assess

E

(
∑

z∈Z
exp

(
− inf

t∈[0,1]
R(z + t)

))

≤ 2 lim sup
n→∞

n∑

k=0

E

(
exp

(
− inf

t∈[0,1]
R(k + t)

))

≤ 2 lim sup
n→∞

n∑

k=0

E

(
exp

(
− inf

t∈[0,1]

∣∣∣∣W (k + t) +
k + t

2

∣∣∣∣
))

≤ 2 lim sup
n→∞

n∑

k=0

E

(
exp

(
−
∣∣∣∣W (k) +

k

2

∣∣∣∣+ sup
t∈[0,1]

∣∣∣∣W (k + t)−W (k) +
t

2

∣∣∣∣

))

≤ 2E

(
exp

(
sup
t∈[0,1]

∣∣∣∣W (t) +
t

2

∣∣∣∣

))
· lim sup

n→∞

{
1 +

n∑

k=1

E

(
exp

(
−
∣∣∣∣W (k) +

k

2

∣∣∣∣
))}

.

where W is a standard Brownian motion.
By Landau and Shepp (1970) there exists some ε > 0 such that

E



exp


ε
(

sup
t∈[0,1]

∣∣∣∣W (t) +
t

2

∣∣∣∣

)2




 <∞.
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5.7. Application to the Brown-Resnick Process

Since |x| ≤ 1
4ε+εx

2 for any x ∈ R, this implies that E(exp(supt∈[0,1] |W (t)+ t
2 |)) is finite.

Furthermore, using that
∫∞
x0

exp
(
−1

2x
2
)
dx < 1

x0
exp

(
−x2

0
2

)
for all x0 > 0, we have

E

(
exp

(
−
∣∣∣∣W (k) +

k

2

∣∣∣∣
))

=

∫ ∞

−k/2
e−x−k/2 1√

2πk
exp

(
−x

2

2k

)
dx+

∫ −k/2

−∞
ex+k/2 1√

2πk
exp

(
−x

2

2k

)
dx

=
1√
2πk

(∫ ∞

−k/2
exp

(
−(x+ k)2

2k

)
dx+ exp(k)

∫ −k/2

−∞
exp

(
−(x− k)2

2k

)
dx

)

=
1√
2π

(∫ ∞
√
k
2

exp

(
−x

2

2

)
dx+ exp(k)

∫ ∞

3
√
k

2

exp

(
−x

2

2

)
dx

)

≤ 2√
2πk

exp

(
−k
8

)
+ exp(k)

2

3
√
2πk

exp

(
−9k

8

)
=

8

3
√
2πk

exp

(
−k
8

)
.

All in all, we get

E

(
∑

z∈Z
exp

(
− inf

t∈[0,1]
R(z + t)

))
≤ 2C lim sup

n→∞

(
1 +

n∑

k=1

exp

(
−k
8

))
<∞.

As we have an integrable majorizing random variable, dominated convergence yields

lim
||T ||→0

E

(∫

R

∣∣∣∣
1

2
FT (s− t)− 1

2
F (s− t)

∣∣∣∣ dt
)

= E

(
lim

||T ||→0

∫

R

∣∣∣∣
1

2
FT (s− t)− 1

2
F (s− t)

∣∣∣∣ dt
)

= 0, s ∈ R, (5.36)

as F is continuous and integrable.
By Theorem 2.1 in Stoev and Taqqu (2005), Equation (5.36) is equivalent to ZT (s)

p−→
Z(s) for all s ∈ R. As

P(||(Zt(s1), . . . , ZT (sm))− (Z(s1), . . . , Z(sm))|| > ε) ≤
m∑

i=1

P
(
|ZT (si)− Z(si)| >

ε

m

)
,

we get that all finite-dimensional marginal distributions of ZT converge in probability
and therefore also weakly. Thus, for Borel sets A ⊂ R, B ⊂ Rn with P(Z(t) ∈ B) > 0
and P(Z(t0) ∈ ∂A) = P(Z(t) ∈ ∂B) = 0, we get

lim
||T ||ց0

P(ZT (t0) ∈ A | ZT (t) ∈ B) = lim
||T ||ց0

P(ZT (t0) ∈ A,ZT (t) ∈ B)

P(ZT (t) ∈ B)

=
P(Z(t0) ∈ A,Z(t) ∈ B)

P(Z(t) ∈ B)
= P(Z(t0) ∈ A | Z(t) ∈ B)

which completes the proof.

Still, for any fixed T , the range of 1
2FT is uncountable. Therefore, we have to use the

approximation introduced in Section 5.6.
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5. Conditional Sampling of Mixed Moving Maxima Processes

We compare this approximation to conditional sampling based on the approach of Wang
and Stoev (2011) and the Gaussian marginals approach, see Section 5.4.
To compare these procedures, we simulate K = 100 independent samples of Z on the
set {t0, t1, t2, t3, t4} with t0 = 0, t1 = −2, t2 = −1, t3 = 1 and t4 = 2. We calculate
the CRPS by sampling k = 50 times from the (approximate) conditional distribution of
log(Z(t0)) given Z(t). Let CRPSK,1a / MAEK,1a and CRPSK,1b / MAEK,1b denote
the CRPS / MAE based on two variants of conditional sampling of the Poisson point
process for K samples, CRPSK,2 /MAEK,2 the CRPS /MAE of the approach by Wang
and Stoev (2011) and CRPSK,3 / MAEK,3 the CRPS / MAE based on transformation
to Gaussian marginals. For the Poisson point process approach, we chose N = 1000
for the number of shape functions on the grid T = {−7,−6.95,−6.9, . . . , 6.9, 6.95, 7}.
However, if we restrict ourselves to a finite number of shape functions, the intersection
set IB(z) with |B| ≥ 3 is most likely empty, even though Z(ti), i ∈ B, may be determined
by the same (s, u, f) ∈ Π. Therefore, we do not only consider “exact” intersections, but
also intersections which occur if the function values differ up to a given tolerance, i.e.
we assume (t, y, f) ∈ IB(z) with y = mini=1,...,n

zi
f(ti−t) if

zi
f(ti − t)

< min {y + ε, y(1 + ε)} ⇐⇒ i ∈ B

for some given tolerance ε > 0. The simulation study is performed for ε = 10−6

(CRPSK,1a / MAEK,1a) and for ε = 10−3 (CRPSK,1b / MAEK,1b). Thus, by con-
struction, CRPSK,1a / MAEK,1a does not contain any intersection of more than two
curves, but CRPSK,1b / MAEK,1b does. For the Wang-Stoev-approach, we choose
M = 5, h = 0.05 and the same N = 1000 shape functions. The parameters are chosen
such that the first and the second method have similar running times. For the transfor-
mation to Gaussian marginals, we can calculate the bivariate marginal distributions of
Y (·) = Φ−1(Φ1(Z(·))) and get

P(Y (t1) ≤ y1, Y (t2) ≤ y2) =
2∏

i=1

Φ(yi)
Φ
(

1
2

√
|t1−t2|−(−1)i log(log Φ(y1)/ log Φ(y2))/

√
|t1−t2|

)

.

Deriving the bivariate density, we obtain

∂2

∂y1∂y2
P(Y (t1) ≤ y1, Y (t2) ≤ y2)

= P(Y (t1) ≤ y1, Y (t2) ≤ y2)
ϕ(y1)ϕ(y2)

Φ(y1)Φ(y2)

·
[
∏

i=1,2

Φ(
√

|t1 − t2|/2− (−1)i log(log Φ(y1)/ log Φ(y2))/
√

|t1 − t2|)

+
exp

(
−1

2

(
|t1−t2|

4 + log(log Φ(y1) log Φ(y2)) + log2
(
log Φ(y1)
log Φ(y2)

)
/|t1 − t2|

))

√
2π|t1 − t2|

]
.

This enables us to compute the covariances EY (t1)Y (t2) by numerical integration. How-
ever, as this is very time-consuming and inaccurate, we just fit a covariance function κ̃ν,c
of Whittle-Matérn type by maximum likelihood estimation in RandomFields.
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5.8. The Discretized Case

m = 1a m = 1b m = 2 m = 3

CRPSK,m -0.347 -0.413 -0.332 -0.341

MAEK,m 0.487 0.526 0.466 0.469

Table 5.2: Results of the simulation study for the Brown-Resnick process with N = 1000
and K = 100.

The results are presented in Table 5.2. Here, all the methods have almost the same ac-
curacy, at least if ε = 10−6 (m = 1a). However, the last method runs much faster than
the others. Furthermore, we notice the difference between CRPSK,1a and CRPSK,1b in-
dicating that considering approximate intersections of at least three curves yields worse
results. This is because these intersections involve incorrect shape functions. Further-
more, they lead to degenerated conditional distributions which are not supposed to
occur in the case of the Brown-Resnick process. Thus, in this case, the approximation
of the mixed moving maxima process seems to be appropriate only if we do not consider
intersections of three or more curves.

5.8 The Discretized Case

By now, we have considered the general model (5.1). The procedure we proposed is
exact in the case of a finite number of shape functions which are sufficiently smooth.
However, as the example of the Brown-Resnick process in Section 5.7 illustrates, we may
run into problems if these assumptions are violated.
Now, we modify our general model (5.1) and use a discretized version

Z(t) = max
i∈N

(
U

(p)
i · F (p)

i (t− S
(p)
i )
)
, t ∈ pZd, (5.37)

where (S
(p)
i , U

(p)
i , F

(p)
i )i∈N are the points of a simple Poisson point process Π(p) on pZd×

(0,∞)×G with p > 0 and a countable set G ⊂ (0,∞)pZ
d
. The intensity measure of Π(p)

is given by

Λ({s} ×B × {g}) =
∑

z∈Zd

δpz(ds)×
∫

B
u−2 du× PF ({g})

where PF is a probability measure belonging to a G-valued random variable F with
E(
∑

z∈Zd F (pz)) = 1.

Using the same notation as before, we get the same results as in Section 5.2. However,
all the calculations can be done explicitly without any further assumptions on f ∈ G.
We get the following results:

Proposition 5.22. Let B = {i} ⊂ {1, . . . , n}, z ∈ Rn and

Di(z) = {(x, f) ∈ pZd ×G : (x, y, f) ∈ I{i}(z) for some y ∈ R}.
Then, we have

Λ(I
(m)
{i} (z)) =

1

2m

∑

(x,f)∈Di(z)

f(ti − x)

zi
PF ({f}) + o(2−m).

95



5. Conditional Sampling of Mixed Moving Maxima Processes

Proposition 5.23. Let B ∈ 2{1,...,n} \ ∅, |B| > 1 and z ∈ Rn such that

IA(z) = {(xj , yj , fj), j = 1, . . . , l(z)}

with l(z) > 0. Then, for m large enough, we have

Λ(I
(m)
B (z)) =

l(z)∑

j=1

1

yj
PF ({fj}) ·

(
min
i∈A

2mzi
jm(zi)

−max
i∈A

2mzi
jm(zi) + 1

)

In particular, Λ(I
(m)
B (z)) ∈ O(2−m), but Λ(I

(m)
B (z)) /∈ O(2−m(1+ε)) for any ε > 0.

By these formulae, all the scenario probabilities can be calculated. As the intensity
of each intersection set has the same rate of convergence, only scenarios with minimal
Π(Kt,z) occur.

We note that our model is very close to the model investigated by Wang and Stoev
(2011). To see this, we calculate that

P(Z(t1) ≤ z1, . . . , Z(tn) ≤ zn) = exp


−

∑

f∈G

∑

z∈Zd

max
i=1,...,n

f(ti − pz)PF ({f})
zi


 .

Therefore, we get that

Z
d
= max

z∈Zd
max
f∈F

(
f(· − pz)PF ({f})Z(z)

f

)
,

where the random variables Z
(z)
f , z ∈ Zd, f ∈ G, are independently standard Fréchet

distributed.
This means, the model (5.37) is a max-linear model and the exact conditional distribution
can be calculated via the algorithm of Wang and Stoev (2011) if G is finite and the
support of each f ∈ G is finite. However, the algorithm of conditional sampling of
the Poisson point process and the algorithm of Wang and Stoev (2011) do not work
in exactly the same way. According to the latter algorithm one samples from each

random variable Z
(z)
f . This procedure corresponds to simulating the largest point of Π

in (0,∞)×{pz}×{f} for each z ∈ Z, f ∈ G. The first algorithm includes the simulation
of points in Π until a terminating condition given in Theorem 4 of Schlather (2002) is
met. Computational experiments show that both algorithms yield identical results. Also
the technical results are related.
For example, the occurrence of a scenario J ⊂ Zd ×G (in the notation of Wang/Stoev)

corresponds to the event that Π2 consists of |J | points (pz,mini=1,...,n
Z(ti)

f(ti−pz) , f) with

(z, f) ∈ J . By this correspondence, the statements

• Π(Kt,z) is minimal a.s.

• an occurring hitting scenario J satisfies |J | = r(J (A,x)) a.s. (Wang and Stoev,
2011)

are equivalent, both claiming that the number of points generating the observation
(t, z) is minimal. Hence, although the approaches look quite different, there are similar
observations and results in Wang and Stoev (2011) and in this section.
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6 Conditional Sampling of Brown-Resnick

and Extremal Gaussian Processes

Besides mixed moving maxima processes, there are basically two further models for max-
stable processes which are frequently used in applications: so-called extremal Gaussian
processes (Schlather 2002; for applications see Blanchet and Davison 2011, Davison and
Gholamrezaee 2011, for example) and Brown-Resnick processes (Kabluchko et al. 2009;
for applications see Buishand et al. 2008 and Eckert et al. 2011), which we already
considered in Chapter 4.
In this chapter, we will analyse the problem of conditional sampling for both types of
processes. As both models are also based on Poisson point processes, we will adapt
arguments and methods from Chapter 5 to this framework. However, as the finite-
dimensional marginal distributions of extremal Gaussian and Brown-Resnick processes
are absolutely continuous w.r.t. the Lebesgue measure, formulae for conditional distribu-
tions can be derived more directly using derivatives of the exponent measure. Recently,
this way has been taken successfully by Dombry et al. (2011) and Dombry and Ribatet
(2012) based on the work of Dombry and Eyi-Minko (2011). But, as we have seen in
Chapter 5, the results of Dombry and Eyi-Minko (2011) cannot be applied directly if
the finite-dimensional marginals of the max-stable random field are not absolutely con-
tinuous w.r.t. the Lebesgue measure. Therefore, we will independently derive the same
results as Dombry et al. (2011) and Dombry and Ribatet (2012), using the arguments
from Chapter 5 which can be used in a more general context.

After a short introduction to a general model pooling both types of processes, we con-
sider a partition of the underlying Poisson point process (Section 6.1). Following the
approach of Chapter 5, in Section 6.2, we analyse “blurred” intersection sets to calcu-
late probabilities for different scenarios. Finally, we deal with the distribution of those
points of the underlying Poisson point process which generate the observations within a
scenario (Section 6.3).

Let Π̃ =
∑

i∈N δUi be a Poisson point process on (0,∞) with intensity u−2 du defined
on a probability space (Ω,A,P). Independently, let {Wi(t), t ∈ Rd}i∈N be independent
copies of a Gaussian random field {W (t), t ∈ Rd}, which will be specified separately for
the two types of processes.
Then, the extremal Gaussian process (Schlather, 2002) is defined by

ZS(t) = max
i∈N

(
Ui ·max

{√
2πWi(t), 0

})
, t ∈ Rd, (6.1)

where W is a stationary zero mean Gaussian random field with standard variance.
The Brown-Resnick process is given by

ZBR(t) = max
i∈N

(
Ui · exp

(
Wi(t)−

σ2(t)

2

))
, t ∈ Rd, (6.2)
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6. Conditional Sampling of Brown-Resnick and Extremal Gaussian Processes

where W is a zero mean Gaussian random field with stationary increments and variance
σ2(·). Recall that the distribution does not depend on the variance σ2(·), but only on
the variogram γ of the underlying Gaussian process W , i.e.

ZBR(t)
d
= max

i∈N

(
Ui · exp

(
Wi(t)−Wi(0)−

γ(t)

2

))
, t ∈ Rd,

(cf. Thm. 4.1). Henceforth, we assume W (0) = 0 a.s. for the Brown-Resnick process.
Both the extremal Gaussian process and the Brown-Resnick process define stationary
max-stable processes with standard Fréchet margins. Pooling both models, we write

Z(t) = max
i∈N

(Ui · f(t,Wi(t))) , t ∈ Rd, (6.3)

where the link function f : Rd×R → [0,∞) either has the form f(t, y) = max{
√
2πy, 0}

(for the extremal Gaussian process) or f(t, y) = exp(y− γ(t)/2) (for the Brown-Resnick
process).

This chapter aims to sample from Z(·) conditional on its values at some fixed loca-
tions t1, . . . , tn ∈ Rd. In the following, we will assume that the joint distribution of
(W (t1), . . . ,W (tn)) is non-degenerated and thatW (·) has continuous sample paths. Un-
der these assumptions, we will determine the distribution of the Poisson point process

Π =
∑

i∈N
δ(Ui,Wi)

on (0,∞)×C(Rd) conditional on Z(t1), . . . , Z(tn). The intensity measure Λ of Π is given
by

Λ(A×B) =

∫

A
u−2 du · PW (B), A ⊂ (0,∞), B ∈ C(Rd), (6.4)

where PW is the probability measure belonging to W (·) and C(Rd) denotes the Borel-σ-
algebra on C(Rd) w.r.t. uniform convergence on compact sets (see Section 3.3).

6.1 Random Partition of Π

For A ∈ 2{1,...,n}, we consider the random measure ΠA defined by

ΠA(·) = Π
(
· ∩
{
(u,w) ∈ (0,∞)× C(Rd) : uf(ti, w(ti)) = Z(ti), i ∈ A,

uf(tj , w(tj)) < Z(tj), j /∈ A
})
.

We will show that the random sets ΠA are point processes.

Proposition 6.1. For any A ∈ 2{1,...,n}, the random set ΠA is a point process.

Proof. First, we note that the mapping

Ψ : (0,∞)× C(Rd) → C(Rd), (u,w(·)) 7→ uf(·, w(·))

is well-defined as W (·) has continuous sample paths. This also implies the continuity
of γ(·). Furthermore, Ψ is ((B ∩ (0,∞)) × C(Rd), C(Rd))-measurable since the mapping
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6.2. Blurred Sets

w(·) 7→ f(·, w(·)) is continuous, i.e. uniform convergence of a sequence {wn(·)}n∈N ⊂
C(Rd) on compact sets implies uniform convergence of {f(·, wn(·))}n∈N ⊂ C(Rd) on
compact sets.
Now, let M ∈ (B ∩ (0,∞))× C(Rd) be bounded and k ∈ N. Then,

{ω ∈ Ω : ΠA(M) = k}

=

∞⋃

n0=1

∞⋂

m=n0

⋃

y∈Qn

{
ω ∈ Ω : Z(t) ∈ "

n
i=1

(
yi −

1

m
, yi +

1

m

)
,

Π

({
(u,w) ∈ (0,∞)× C(Rd) : uf(ti, w(ti)) ∈

(
yi −

1

m
, yi +

1

m

)
, i ∈ A,

uf(tj , w(tj)) < yj −
1

m
, j /∈ A

}
∩M

)
= k

}

is measurable, i.e. ΠA is a point process.

Proposition 6.1 allows for considering the point process

Π∗ =
⋃

A∈2{1,...,n}\∅
ΠA

which consists of all the points within Π which contribute to the maximum (6.3) at
locations t1, . . . , tn. In particular, we have

∑
A: i∈AΠA((0,∞) × C(Rd)) ≥ 1 for all

i ∈ {1, . . . , n}. By the definition of Z, there is no point of Π in the set

X (Z(t)) = {(u,w) ∈ (0,∞)× C(Rd) : uf(ti, w(ti)) > Z(ti) for some i ∈ {1, . . . , n}}.

Therefore, we get Π = Π∗ ∪ Π∅, which corresponds to the classification of Φ+
K and Φ−

K

in Dombry and Eyi-Minko (2011).

6.2 Blurred Sets

We will calculate the explicit distribution of Π∗ and Π∅ conditional on Z(t) = z. How-
ever, Z(t) = z is an event of probability zero. To end up with a regular version of the
conditional probability, we will use martingale arguments similar to Chapter 5. Most of
the notation is the same as in Chapter 5, however, as we deal with different spaces, we
recap and modify the definitions we need. Again, we consider filtrations

Fm = σ({Z(ti) ∈ (ki · 2−m, (ki + 1) · 2−m], i = 1, . . . n}, (k1, . . . , kn) ∈ Nn)

for m ∈ N. Furthermore, for z ∈ (0,∞), let jm(z) ∈ N such that z ∈ Am(z) =
(jm(z) · 2−m, (jm(z) + 1) · 2−m]. Then, by Lévy’s “Upward” Theorem (cf. Rogers and
Williams, 2000, Thm. 50.3) we get that

P(ΠA(BA) = kA, A ∈ 2{1,...,n} | Z(t) = z)

= lim
m→∞

P(ΠA(BA) = kA, A ∈ 2{1,...,n} | Z(t) ∈ Am(z)) (6.5)
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6. Conditional Sampling of Brown-Resnick and Extremal Gaussian Processes

for BA ∈ (B ∩ (0,∞))× C(Rd), kA ∈ N0, A ∈ 2{1,...,n}.

Conditioning on Z(t) ∈ Am(z), the blurred point processes Π
(m)
A,z (·) = Π(·∩ I(m)

A (z)) with

I
(m)
A (z) =

{
(u,w) ∈ (0,∞)× C(Rd) : uf(ti, w(ti)) ∈ Am(zi), i ∈ A,

uf(tj , w(tj)) ≤
jm(zj)

2m
, j /∈ A

}

for A ∈ 2{1,...,n} (cf. Chapter 5), turn out to be useful tools to analyse the distribution
of Π.

Similar to the decomposition above, conditional on Z(t) ∈ Am(z), we have that Π =⋃
A∈2{1,...,n} Π

(m)
A (z) since Z(t) ∈ Am(z) implies that the set

Xm(z) =

{
(u,w) ∈ (0,∞) : uf(ti, w(ti)) >

jm(zi) + 1

2m
for some i ∈ {1, . . . , n}

}

does not contain any points of Π.

Remark 6.2. For any z ∈ (0,∞)n, the equivalence

Z(t) ∈ Am(z) ⇐⇒
∑

A: i∈A
Π

(m)
A,z ((0,∞)× C(Rd)) ≥ 1, i = 1, . . . , n ∧ Π(Xm(z)) = 0

holds. In particular, Π
(m)
∅,z is independent of the event Z(t) ∈ Am(z) for any fixed

z ∈ (0,∞)n.

By Remark 6.2, the point processes {Π(m)
A,z , A ∈ 2{1,...,n}} are directly linked to Z(t). To

describe the joint distribution of Π
(m)
A,z , A ∈ 2{1,...,n}, we need to calculate the intensity

of sets of type {(u,w) ∈ (0,∞)×C(Rd) : u · f(ti, w(ti)) ∈ [ai, bi], i = 1, . . . , n} for some
0 ≤ ai < bi <∞.

Let (W (t1), . . . ,W (tn)) ∼ N (0,Σ), Σ ∈ Rn×n with |Σ| = det(Σ) > 0. Then, in the case
of extremal Gaussian processes, we get

Λ
({

(u,w) ∈ (0,∞)× C(Rd) : u ·max{
√
2πw(ti), 0} ∈ [ai, bi], i = 1, . . . , n

})

=

∫ ∞

0

1

u2

∫

"n
i=1(ãi,bi]

1

(2πu)n|Σ| 12
exp

(
−1

2

yTΣ−1y

2πu2

)
dy du,

where ãi = ai for ai > 0 or ãi = −∞ for ai = 0.
Change of variables v = u−2 and employing the definition of the Gamma function
(Abramowitz and Stegun, 1965, Formula 6.1.1) lead to

Λ
({

(u,w) ∈ (0,∞)× C(Rd) : u ·max{
√
2πw(ti), 0} ∈ [ai, bi], i = 1, . . . , n

})

=

∫

"n
i=1(ãi,bi]

∫ ∞

0

v
n−1
2

2(2π)n|Σ| 12
exp

(
−1

2

yTΣ−1y

2π
v

)
dv dy
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=

∫

"n
i=1(ãi,bi]

Γ(n+1
2 )

π
n−1
2 (yTΣ−1y)

n+1
2 |Σ| 12

dy =

∫

"n
i=1(ãi,bi]

C(n)

|Σ| 12 (yTΣ−1y)
n+1
2

dy (6.6)

with C(n) = Γ
(
n+1
2

)√
π
1−n

(cf. Dombry and Ribatet, 2012).

In the case of Brown-Resnick processes, we transform to Gumbel margins and get

Λ

({
(u,w) ∈ (0,∞)× C(Rd) : u · exp

(
w(ti)−

γ(ti)

2

)
∈ [ai, bi], i = 1, . . . , n

})

=

∫ ∞

0

1

u2
P

(
u · exp

(
W (ti)−

γ(ti)

2

)
∈ [ai, bi], i = 1, . . . , n

)
du

=

∫ ∞

−∞
e−uP

(
u+W (ti)−

γ(ti)

2
∈ [log ai, log bi], i = 1, . . . , n

)
du

=

∫ ∞

−∞
e−u

∫

"n
i=1[ãi,b̃i]

1√
2π

n|Σ|1/2
exp

(
−1

2
(y − 1nu)

TΣ−1(y − 1nu)

)
dy du

where ãi = log(ai) +
γ(ti)
2 , b̃i = log(bi) +

γ(ti)
2 for i = 1, . . . , n. This yields

Λ

({
(u,w) ∈ (0,∞)× C(Rd) : u · exp

(
w(ti)−

γ(ti)

2

)
∈ [ai, bi], i = 1, . . . , n

})

=

∫

"n
i=1[ãi,b̃i]

∫ ∞

−∞
exp

(
−1

2
(1TnΣ

−11n)

(
yTΣ−11n − 1

1TnΣ
−11n

− u

)2
)

du

· 1
√
2π

n|Σ| 12
exp

(
−1

2
yTΣ−1y

)
exp

(
1

2

(yTΣ−11n − 1)2

1TnΣ
−11n

)
dy

=

∫

"n
i=1[ãi,b̃i]

(1TnΣ
−11n)

− 1
2

√
2π

n−1|Σ| 12
exp

(
−1

2
yTΣ−1y

)
exp

(
1

2

(yTΣ−11n − 1)2

1TnΣ
−11n

)
dy

=

∫

"n
i=1[ãi,b̃i]

(1TnΣ
−11n)

− 1
2

√
2π

n−1|Σ| 12
exp

(
−1

2
yT
(
Σ−1 − Σ−11n1

T
nΣ

−1

1TnΣ
−11n

)
y

)

· exp
(
− 1TnΣ

−1

1TnΣ
−11n

y

)
exp

(
1

2

1

1TnΣ
−11n

)
dy. (6.7)

To compare our result to Dombry et al. (2011), we apply a logarithmic transformation
and get the density

λ(z) = C exp

(
−1

2
(log z)TQ log z+ L log z

) n∏

i=1

1

zi
, z > 0,

where

Q = Σ−1 − Σ−11n1
T
nΣ

−1

1TnΣ
−11n

,

L =
1

2

(
1TnΣ

−1γ(t)− 2

1TnΣ
−11n

1Tn − γ(t)T
)
Σ−1,

C =
(1TnΣ

−11n)
− 1

2

√
2π

n−1|Σ| 12
exp

(
−1

8
γ(t)TQγ(t) +

1

2

1TnΣ
−1γ(t) + 1

1TnΣ
−11n

)
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=
(1TnΣ

−11n)
− 1

2

√
2π

n−1|Σ| 12
exp

(
1

2

(1TnΣ
−1 γ(t)

2 − 1)2

1TnΣ
−11n

− 1

2

γ(t)T

2
Σ−1γ(t)

2

)
.

Note that the normalizing constant C differs from the one calculated by Dombry and
Eyi-Minko (2011) and Dombry et al. (2011), which is

C̃ =
(1TnΣ

−11n)
− 1

2

√
2π

n−1|Σ| 12
exp

(
1

2

(1TnΣ
−1γ(t)− 1)2

1TnΣ
−11n

− 1

2
γ(t)TΣ−1γ(t)

)
.

This difference also affects the scenario probabilities calculated later and yields a different
conditional distribution.

We are interested in the asymptotic behaviour of these intensity measures for |bi−ai| → 0
for i ∈ A ⊂ {1, . . . , n}. The assessments, which need to be done for specifying the
asymptotics, rely on the following lemma.

Lemma 6.3. Let ti ∈ Rd, 0 < ai < bi for i = 1, . . . , n and (W (ti))
n
i=1 ∼ N (0,Σ)

with |Σ| > 0. Furthermore, let A ∈ 2{1,...,n} \ ∅, yA = (yi)i∈A for any vector y =
(y1, . . . , yn)

T ∈ Rn. Then, the functions

ΨS : "i∈A [ai, bi] → (0,∞), yA 7→
∫

"i/∈A(0,bi]

C(n)

|Σ| 12 (yTΣ−1y)
n+1
2

dyAc ,

ΨBR : "i∈A [ãi, b̃i] → (0,∞),

yA 7→
∫

"i/∈A(−∞,b̃i]

(1TnΣ
−11n)

− 1
2

√
2π

n−1|Σ| 12
exp

(
−1

2
yTΣ−1y +

1

2

(yTΣ−11n − 1)2

1TnΣ
−11n

)
dyAc ,

are continuous. Here ãi = log ai +
γ(ti)
2 and b̃i = log bi +

γ(ti)
2 for i = 1, . . . , n. For

A = {1, . . . , n}, ΨS and ΨBR are understood as the mapping of yA to the respective
integrand.

Proof. First, we note that ΨS and ΨBR are strictly positive as they are integrals of
strictly positive functions over a set of positive measure. The finiteness of the integrals
will be shown as a byproduct of the proof of the continuity of ΨS and ΨBR. For showing
the continuity, we first note that both functions have the form yA 7→

∫
ψ(yA, yAc) dyAc ,

and thus fit in the framework of parameter-dependent integrals. Therefore, we can
recourse to well-known continuity results in this area, e.g. Schilling (2005), Thm. 11.4.
As the continuity of yAc 7→ ψ(yA, yAc) is obvious for any yA ∈ dom(ΨS) and yA ∈
dom(ΨBR), respectively, and as the function ψ is measurable in both cases, it suffices
to show that there is an integrable majorant η(yAc) with |ψ(yA, yAc)| < η(yAc) for all
yA ∈ dom(ΨS) with yAc ∈ "i/∈A(0, bi] and yA ∈ dom(ΨBR) with yAc ∈ "i/∈A(−∞, b̃i],
respectively.

In both cases, the construction will be done in the following way: First, we use Equations
(6.6) and (6.7) to write ψ as an integral w.r.t. some variable u ranging from 0 to ∞. The
integrand contains some multivariate Gaussian density f(Y1,...,Yn) which we decompose
to fYAc · fYi∗ |YAc · fYA\{i∗}|Y{i∗}∪Ac . The last factor is bounded by a constant, the second
one by a function not depending on yi∗ . Finally, the integral is decomposed to show
finiteness.
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First, we construct a majorant for ψS : Let i
∗ ∈ A. We start with (6.6) and decompose

the joint density to get

ψS(yA, yAc) ≤
∫ ∞

0

1

u2
1

(2πu)n−|A||ΣAc | 12
exp

(
−1

2

yTAcΣ
−1
Ac yAc

2πu2

)

· 1

(2πu)|A||Σ{i∗}|Ac | 12 |ΣA\{i∗}|Ac∪{i∗}|
1
2

· exp
(
−1

2

(yi∗ − Cov(W (ti∗), (W (ti))i∈Ac)Σ−1
Ac yAc)2

2πu2Σ{i∗}|Ac

)
du

≤
∫ ∞

0

1

u2
1

(2πu)n−|A||ΣAc | 12
exp

(
−1

2

yTAcΣ
−1
Ac yAc

2πu2

)

· C

u|A|−1

1

2πτu
exp

(
−1

2

(yi∗ − cT yAc)2

2πτ2u2

)
du (6.8)

for an appropriate constant C > 0, the variance τ2 := Σ{i∗}|Ac > 0 and the vector

c := Cov(W (ti∗), (W (ti))i∈Ac)Σ−1
Ac ∈ Rn−|A|. Here, by an expression of the form ΣA1 ,

we denote the covariance matrix of (W (ti))i∈A1 and, by ΣA1|A2
, the covariance matrix

of (W (ti))i∈A1 conditional on (W (ti))i∈A2 for sets A1, A2 ⊂ {1, . . . , n}.
Note that exp

(
−1

2
(yi∗−cT yAc )2

2πτ2u2

)
is the only term in (6.8) that depends on yA, and that

it can be bounded by

η̃S(y
c
A) =

{
exp

(
−1

2
(ai∗−cT yAc )2

2πτ2u2

)
+ exp

(
−1

2
(bi∗−cT yAc )2

2πτ2u2

)
, cT yAc /∈ [ai∗ , bi∗ ]

1, cT yAc ∈ [ai∗ , bi∗ ].

Thus, we have

ψS(yA, yAc) ≤
∫ ∞

0

1

u2
Cη̃S(yAc)

(2π)n−|A|+1unτ |ΣAc | 12
exp

(
−1

2

yTAcΣ
−1
Ac yAc

2πu2

)
du := ηS(yAc).

Now, we show that ηS is integrable.

∫

"i∈A(0,bi]
ηS(yAc) dyAc

≤
∫ ∞

0

C

u2+|A|−1

∫

Rn−|A|

1

(2πu)n−|A||ΣAc | 12
exp

(
−1

2

yTAcΣ
−1
Ac yAc

2πu2

)

· 1

2πτu

(
exp

(
−1

2

(ai∗ − cT yAc)2

2πτ2u2

)
+ exp

(
−1

2

(bi∗ − cT yAc)2

2πτ2u2

))
dyAc du

+

∫ ∞

0

C

2πτu2+|A|

∫

{yAc∈Rn−|A|: cT yAc∈[ai∗ ,bi∗ ]}

1

(2πu)n−|A||Σ| 12

· exp
(
−1

2

yTAcΣ
−1
Ac yAc

2πu2

)
dyAc du
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=

∫ ∞

0

C

u2+|A|−1

∫

Rn−|A|

1

(2πu)n−|A|+1|ΣAc∪{i∗}|
1
2

·
(

exp

(
− 1

2

(yTAc , ai∗)Σ
−1
Ac∪{i∗}

(
yTAc , ai∗

)T

2πu2

)

+ exp

(
− 1

2

(yTAc , bi∗)Σ
−1
Ac∪{i∗}

(
yTAc , bi∗

)T

2πu2

))
dyAc du

+

∫ ∞

0

C

2πτu2+|A|P(uc
T
√
2π(W (ti))i∈Ac ∈ [ai∗ , bi∗ ]) du

≤
∫ ∞

0

C

2πu2+|A|

(
exp

(
−1

2

a2i∗

2πu2

)
+ exp

(
−1

2

b2i∗

2πu2

))
du

+
∑

i∈Ac

∫ ∞

0

C

2πτu2+|A|P

(
|W (ti)| >

ai∗

(n− |A|)||c||∞
√
2πu

)
du

≤
∫ ∞

0

C

2πu2+|A|

(
exp

(
−1

2

a2i∗

2πu2

)
+ exp

(
−1

2

b2i∗

2πu2

))
du+

∫ ∞

ε

C(n− |A|)
2πτu2+|A| du

+

∫ ε

0

2C
√
2π(n− |A|)2||c||∞
2πτu2+|A|−1ai∗

exp

(
−1

2

a2i∗

2π||c||2∞(n− |A|)2u2
)

du (6.9)

for some sufficiently small ε > 0 as 1 − Φ(x) ≤ x−1ϕ(x) for any x > 0. Here, Φ and ϕ
are the standard normal distribution and density function, respectively. The integrals
on the right hand side of (6.9) are finite. Therefore, ΨS is continuous.

Next, we assess ψBR: Again, with (6.7) and i∗ ∈ A, the common density can be decom-
posed yielding that ψBR(yA, yAc) can be bounded by

∫ ∞

−∞

exp(−u)
√
2π

n−|A||ΣAc | 12
exp

(
−1

2
(yAc − 1n−|A|u)

TΣ−1
Ac (yAc − 1n−|A|u)

)

· 1
√
2π

|A||Σ{i∗}|Ac | 12 |ΣA\{i∗}|Ac∪{i∗}|
1
2

· exp
(
−
(
yi∗ − (u+Cov(W (ti∗), (W (ti))i∈Ac)Σ−1

Ac (yAc − 1n−|A|u))
)2

2Σ{i∗}|Ac

)
du

≤
∫ ∞

−∞

exp(−u)
√
2π

n−|A||ΣAc | 12
exp

(
−1

2
(yAc − 1n−|A|u)

TΣ−1
Ac (yAc − 1n−|A|u)

)

· C√
2πτ

exp

(
−
(yi∗ − (1− cT1n−|A|)u− cT ycA)

2

2τ2

)
du (6.10)

for an appropriate constant C > 0, the variance τ2 := Σ{i∗}|Ac > 0 and the vector c :=

Cov(W (ti∗), (W (ti))i∈Ac)Σ−1
Ac ∈ Rn−|A|. To dispose of the dependency on yA, we bound

the term exp
(
− (yi∗−(1−cT 1n−|A|)u−cT ycA)2

2τ2

)
in (6.10) uniformly for all yA ∈ "i∈A[ãi, b̃i] by

η̃BR(y
c
A, u) =





exp
(
− (ãi∗−(1−cT 1)u−cT yAc )2

2τ2

)
+ exp

(
− (b̃i∗−(1−cT 1)u−cT yAc )2

2τ2

)
,

(1− cT1)u+ cT yAc /∈ [ãi∗ , b̃i∗ ]

1, (1− cT1)u+ cT yAc ∈ [ãi∗ , b̃i∗ ]

.
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Thus, we get

ψBR(yA, yAc) ≤
∫ ∞

−∞

Cη̃BR(yAc , u)√
2πτ

exp(−u)
√
2π

n−|A||ΣAc | 12

· exp
(
−1

2
(yAc − 1u)TΣ−1

Ac (yAc − 1u)

)
du =: ηBR(yAc).

We assess the integral
∫
"i/∈A[ãi,b̃i]

ηBR(yAc) dyAc by

∫ ∞

−∞
Ce−u

∫

Rn−|A|

1
√
2π

n−|A||ΣAc | 12
exp

(
−1

2
(yAc − 1u)TΣ−1

Ac (yAc − 1u)

)

· 1√
2πτ

(
exp

(
−(ãi∗ − (1− cT1)u− cT yAc)2

2τ2

)

+ exp

(
−(b̃i∗ − (1− cT1)u− cT yAc)2

2τ2

))
dyAc du

+

∫ ∞

−∞

Ce−u

√
2πτ

∫

{yAc : (1−cT 1)u+cT yAc∈[ãi∗ ,b̃i∗ ]}

1
√
2π

n−|A||ΣAc | 12

· exp
(
−1

2
(yAc − 1n−|A|u)

TΣ−1
Ac (yAc − 1n−|A|u)

)
dyAc du

=

∫ ∞

−∞
Ce−u

∫

Rn−|A|

1
√
2π

n−|A|+1|ΣAc∪{i∗}|
1
2

(
exp

(
−1

2

(
yAc − 1u
ãi∗ − u

)T

Σ−1
Ac∪{i∗}

(
yAc − 1u
ãi∗ − u

))

+ exp

(
−1

2

(
yAc − 1u

b̃i∗ − u

)T

Σ−1
Ac∪{i∗}

(
yAc − 1u

b̃i∗ − u

)))
dyAc du

+

∫ ∞

−∞

Ce−u

√
2πτ

P(u+ cT (W (ti))i∈Ac ∈ [ãi∗ , b̃i∗ ]) du

≤
∫ ∞

−∞
Ce−u 1√

2πγ(ti∗)

(
exp

(
−(ãi∗ − u)2

2γ(ti∗)

)
+ exp

(
−(b̃i∗ − u)2

2γ(ti∗)

))
du

+

∫ ∞

−∞

Ce−u

√
2πτ

P(cT (W (ti))i∈Ac > ãi∗ − u) du

= C exp

(
γ(ti∗)

2

)(
exp(−ãi∗) + exp(−b̃i∗)

)
+

∫ ∞

u0

Ce−u

√
2πτ

du

+

∫ u0

−∞

Ce−u

√
2πτ

∑

i∈Ac

P

(
|W (ti)| >

ãi∗ − u

(n− |A|)||c||∞

)
du

≤ C exp

(
γ(ti∗)

2

)(
exp(−ãi∗) + exp(−b̃i∗)

)
+
Ce−u0

√
2πτ

+
2C√
2πτ

∑

i∈Ac

∫ u0

−∞
e−u (n− |A|)||c||∞

√
γ(ti)√

2π(ãi∗ − u)
· exp

(
− 1

2γ(ti)

(
ãi∗ − u

(n− |A|)||c||∞

)2
)

du

105



6. Conditional Sampling of Brown-Resnick and Extremal Gaussian Processes

for u0 < 0 and |u0| large enough, where we used that 1− Φ(x) ≤ x−1ϕ(x) for all x > 0.
As these integrals are finite, ΨBR is continuous.

Lemma 6.4 describes the joint distribution of Π
(m)
A , A ∈ 2{1,...,n}.

Lemma 6.4. For any t ∈ Rd·n, z ∈ Rn, {kA, A ∈ 2{1,...,n} \ ∅} ⊂ N and Λ defined as in
(6.4), we have

P(Π
(m)
A,z ((0,∞)× C(Rd)) = kA, A ∈ 2{1,...,n} \ ∅, Z(t) ∈ Am(z))

= exp(−Λ(X (z))) ·


 ∏

|A|≥1

2|A|kA




−m

·


 ∏

|A|≥1

cA(z)
kA

kA!
+ o(1)


 , (6.11)

where

cA(z) = cSA(z) = ΨS(zA)

in case of extremal Gaussian processes and

cA(z) = cSA(z) =
ΨS(log(z)A + (γ(ti)/2)i∈A)∏

i∈A zi

in case of Brown-Resnick processes.

Proof. By Equations (6.6) and (6.7) we get

Λ(I
(m)
A ) =

∫

"i∈A2−m·(jm(zi),jm(zi)+1]
ΨS(z) dyA

and

Λ(I
(m)
A ) =

∫

"i∈A2−m·(log(2−mjm(zi)),log(2−m(jm(zi)+1))]+γ(ti)/2
ΨBR(z) dyA,

respectively. As ΨS and ΨBR are continuous on any compact set by Lemma 6.3, the
integrals equal 2−m|A|cA(z) + o(2−m|A|). The assertion follows from the facts that

P
(
Π

(m)
A,z ((0,∞)× C(Rd)) = kA, A ∈ 2{1,...,n} \ ∅, Z(t) ∈ Am(z)

)

= exp(−Λ(Xm(z)) ·
∏

A∈2{1,...,n}\∅

Λ(I
(m)
A (z))kA

kA!
exp

(
−Λ(I

(m)
A (z))

)
,

that Λ(Xm(z)) → Λ(X (z)) and that Λ(I
(m)
A (z)) → 0 as m→ ∞.

Now, we consider the distribution of each ΠA. As Lemma 6.4 already suggests, Π∗
does not contain any points which can be removed without affecting Z(t), i.e. for each
i ∈ {1, . . . , n}, there is exactly one j ∈ N such that (Uj ,Wj) satisfies

Uj · f(ti,Wj(ti)) = Z(ti).

The following result is also stated in Dombry and Eyi-Minko (2011), Prop. 2.2, in a
slightly modified form and more general framework.
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Proposition 6.5. Let t ∈ Rd·n and

N =

{
{kA, A ∈ 2{1,...,n} \ ∅} :

∑

A: i∈A
kA ≥ 1 for all i ∈ {1, . . . , n},

∑

A: i∈A
kA > 1 for some i ∈ {1, . . . , n}

}
.

Then, with probability one,

∑

{kA}∈N
P
(
ΠA((0,∞)× C(Rd)) = kA, A ∈ 2{1,...,n} | Z(t) = z

)

= lim
m→∞

∑

{kA}∈N
P
(
Π

(m)
A,z ((0,∞)× C(Rd)) = kA, A ∈ 2{1,...,n} \ ∅ | Z(t) ∈ Am(z)

)
= 0.

Proof. By Equation (6.5), we have

∑

{kA}∈N
P(ΠA((0,∞)× C(Rd)) = kA, A ∈ 2{1,...,n} \ ∅ | Z(t) = z)

= lim
m→∞

∑

{kA}∈N
P(ΠA((0,∞)× C(Rd)) = kA, A ∈ 2{1,...,n} \ ∅ | Z(t) ∈ Am(z)).

Furthermore, as
∑

A: i∈AΠA(·) ≤
∑

A: i∈AΠ
(m)
A (·), we get that

⋃

{kA}∈N
{ω ∈ Ω : ΠA,z((0,∞)× C(Rd)) = kA, A ∈ 2{1,...,n} \ ∅, Z(t) ∈ Am(z)}

⊂
⋃

{kA}∈N
{ω ∈ Ω : Π

(m)
A,z ((0,∞)× C(Rd)) = kA, A ∈ 2{1,...,n} \ ∅, Z(t) ∈ Am(z)}

and both sets are subsets of E(m)(z) =
⋃

{kA}∈N∩{0,1,2}2n−1 E
(m)
{kA}(z), where

E
(m)
{kA}(z) = {ω ∈ Ω : Π

(m)
A,z ((0,∞)× C(Rd)) ≥ kA, A ∈ 2{1,...,n} \ ∅, Z(t) ∈ Am(z)}.

Therefore, it suffices to show

lim
m→∞

P(E(m)(z)) = 0. (6.12)

By Lemma 6.4, we can assess

P(Π
(m)
A,z ((0,∞)× C(Rd)) ≥ kA)

≤ P(Π
(m)
A,z ((0,∞)× C(Rd)) = kA) +

Λ(I
(m)
A )kA

kA!
P(Π

(m)
A,z ((0,∞)× C(Rd)) > 0)

= 2−|A|m
(
ckAA
kA!

+ o(1)

)
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and therefore, for any {kA} ∈ N ∩ {0, 1, 2}2n−1,

P(E
(m)
{kA}(z)) = 2

−m
∑

A∈2{1,...,n}\∅(|A|·kA) ·


 ∏

A∈2{1,...,n}\∅

ckAA
kA!

+ o(1)


 · exp (−Λ(X (z)))

≤ 2−m(n+1) ·


 ∏

A∈2{1,...,n}\∅
max(c2A, 1) + o(1)


 · exp (−Λ(X (z))) .

Hence, we get

P(E(m)(z)) ≤ 32
n−1 · 2−m(n+1) ·


 ∏

A∈2{1,...,n}\∅
max(c2A, 1) + o(1)


 · exp(−Λ(X (z))).

Furthermore,

P(Z(t) ∈ Am(z))

≥ P(Π{i}((0,∞)× C(Rd)) = 1, i = 1, . . . , n, |ΠA| = 0, |A| > 1, Z(t) ∈ Am(z))

= 2−mn

(
n∏

i=1

c{i} + o(1)

)
· exp(−Λ(X (z))).

Therefore, we get

P(E(m)(z) | Z(t) ∈ Am(z)) ≤ 2−m

∏
A∈2{1,...,n}\∅ max(c2A, 1)

3 · 3−2n ·∏n
i=1 c{i}

+ o(2−m),

which implies Equation (6.12) and hence closes the proof.

Thus, we may restrict our attention to events {ΠA((0,∞)×C(Rd)) = kA, A ∈ 2{1,...,n}\∅}
with

∑
A: i∈A kA = 1 for i = 1, . . . , n. Replacing ΠA by Π

(m)
A (z), Lemma 6.4 yields that

events of the type {Π(m)
A,z ((0,∞) × C(Rd)) = kA, A ∈ 2{1,...,n} \ ∅, Z(t) ∈ Am(z)} with

kA satisfying these constraints, all have the same rate of convergence 2−nm. We aim to

describe events involving ΠA in terms of Π
(m)
A (Z(t)). This will be done in Theorem 6.7.

For the proof of this theorem we will need the following lemma.

Lemma 6.6. For almost every z ∈ Rn, the term

P
(
Π

(m)
A,z 6≡ ΠA for some A ∈ 2{1,...,n} \ ∅

∣∣ Z(t) ∈ Am(z)
)

vanishes as m→ ∞.

Proof. We consider the set

∆ =
⋃

A: |A|≥1

{ω ∈ Ω : Π
(m)
A,z 6≡ ΠA, Z(t) ∈ Am(z)}.
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Furthermore, we define S = (0,∞)× C(Rd) and

∆1 =



ω ∈ Ω :

∑

A: |A|≥1

Π
(m)
A,z (S) >

∑

A: |A|>1

ΠA(S), Z(t) ∈ Am(z)



 .

First, let ω ∈ ∆1. Then, as
∑

A: i∈AΠ
(m)
A,z (S) ≥

∑
A: i∈AΠA(S) ≥ 1 for all i ∈ {1, . . . , n}

by construction, there exists an index i0 ∈ {1, . . . , n} with
∑

A: i0∈AΠ
(m)
A,z (S) > 1. There-

fore,

ω ∈
⋃

{kA}∈N
{ω ∈ Ω : Π

(m)
A,z (S) = kA, A ∈ 2{1,...,n} \ ∅, Z(t) ∈ Am(z)}.

For any ω ∈ ∆ \ ∆1, we have
∑

A: A≥1ΠA(S) =
∑

A: |A|≥1Π
(m)
A (S) (and this means

∑
A: A≥1ΠA(·) ≡

∑
A: |A|≥1Π

(m)
A (·) since we have∑A: A≥1ΠA(·) <

∑
A: |A|≥1Π

(m)
A (·) by

definition), but that there are some (u,w) ∈ S and some A such that ΠA({(u,w)}) = 1,

but Π
(m)
A,z ({(u,w)}) = 0. Then, ΠA(·) ≤

∑
A′⊃AΠ

(m)
A′,z(·) implies that there is a set A′ ) A

such that Π
(m)
A′,z({(u,w)}) = 1. Let j ∈ A′ \A. Then, as ΠA({(u,w)}) = 1 and j /∈ A,

∑

Ã: j∈Ã
Π

(m)

Ã
(S) ≥

∑

Ã: j∈Ã
ΠÃ(S) + |{(u,w)}| >

∑

Ã: j∈Ã
ΠÃ(S) ≥ 1.

All in all, we end up with

∆ ⊂
⋃

{kA}∈N
{ω ∈ Ω : Π

(m)
A (S) = kA, A ∈ 2{1,...,n} \ ∅, Z(t) ∈ Am(z)}

and the assertion follows by Proposition 6.5.

Theorem 6.7. For A ∈ 2{1,...,n}, let kA ∈ N and BA ∈ B×C(Rd). Then, with probability
one,

P(ΠA(BA) = kA, A ∈ 2{1,...,n} | Z(t) = z)

= lim
m→∞

P(Π
(m)
A,z (BA) = kA, A ∈ 2{1,...,n} | Z(t) ∈ Am(z)).

Proof. By Equation (6.5), it suffices to show

lim
m→∞

P(ΠA(BA) = kA, A ∈ 2{1,...,n} | Z(t) ∈ Am(z))

= lim
m→∞

P(Π
(m)
A,z (BA) = kA, A ∈ 2{1,...,n} | Z(t) ∈ Am(z)). (6.13)

Noting that Π
(m)
∅,z (·) ≤ Π∅(·) ≤ Π

(m)
∅,z (·) +∑A: |A|≥1Π

(m)
A,z (·) for Z(t) = z, we have

∣∣P(ΠA(BA) = kA, A ∈ 2{1,...,n}, Z(t) ∈ Am(z))

− P(Π
(m)
A,z (BA) = kA, A ∈ 2{1,...,n}, Z(t) ∈ Am(z))

∣∣

≤ P(Π
(m)
A,z 6≡ ΠA for some A ∈ 2{1,...,n} \ ∅, Z(t) ∈ Am(z)).

Thus, Lemma 6.6 yields (6.13), i.e. the assertion.
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Plugging in the results of Lemma 6.4 into Theorem 6.7 for all {kA, A ∈ 2{1,...,n} \ ∅}
with

∑
A: i∈A kA = 1 for all i ∈ {1, . . . , n}, we get that

P(ΠA((0,∞)× C(Rd))) = kA, A ∈ 2{1,...,n} \ ∅ | Z(t) = z)

=

∏
A: kA=1 cA∑




k̃A:
∑

A: i∈A k̃A=1

for all i∈{1,...,n}





∏
A: k̃A=1 cA

. (6.14)

Equation (6.14) enables us to sample from the distribution of the (finitely many) events
{ΠA((0,∞)×C(Rd)) = kA, A ∈ 2{1,...,n} \ ∅, Z(t) = z} conditional on Z(t) = z. Given
such an event, the formulae given in Lemma 6.4 and Theorem 6.7 allow for sampling the
points of {ΠA, kA = 1} independently. To achieve conditional sampling from Π(·) =
Π∗(·) + Π∅(·), we have to analyse the distribution of Π∅ given Z(t) = z. The following
result is also stated in Dombry and Eyi-Minko (2011), Thm. 3.1.

Theorem 6.8. Let t ∈ Rd·n be fixed.

1. Conditional on Z(t) = z, the point processes Π∗ and Π∅ are stochastically inde-
pendent.

2. With probability one, Π∅(·) | Z(t) = z has the same distribution as Π(· \ X (z)).

Proof. 1. Let B1, . . . , Bk, Bk+1, . . . , Bl ∈ (B ∩ (0,∞)) × C(Rd) and r1, . . . , rl ∈ N.
Then, by Theorem 6.7, we get

P
(
Π∗(Bj) = rj , j = 1, . . . , k, Π∅(Bj) = rj , j = k + 1, . . . , l

∣∣ Z(t) = z
)

= lim
m→∞

P

( ∑

A: |A|≥1

Π
(m)
A,z (Bj) = rj , j = 1, . . . , k,

Π
(m)
∅,z (Bj) = rj , j = k + 1, . . . , l

∣∣∣∣ Z(t) ∈ Am(z)

)

By Remark 6.2, Π
(m)
∅,z is independent of

∑
A: |A|≥1Π

(m)
A,z and of the event Z(t) ∈

Am(z). Hence,

P
(
Π∗(Bj) = rj , j = 1, . . . , k, Π∅(Bj) = rj , j = k + 1, . . . , l

∣∣ Z(t) = z
)

= lim
m→∞

P

( ∑

A: |A|≥1

Π
(m)
A,z (Bj) = rj , j = 1, . . . , k

∣∣∣∣ Z(t) ∈ Am(z)

)

· P
(
Π

(m)
∅,z (Bj) = rj , j = k + 1, . . . , l

∣∣∣∣ Z(t) ∈ Am(z)

)

= P
(
Π∗(Bj) = rj , j = 1, . . . , k

∣∣ Z(t) = z
)

· P
(
Π∅(Bj) = rj , j = k + 1, . . . , l

∣∣ Z(t) = z
)

which shows the independence of Π∗ | Z(t) = z and Π∅ | Z(t) = z.

2. Let B1, . . . , Bk ∈ B × C(Rd) and r1, . . . , rl ∈ N. Then, Theorem 6.7 yields

P
(
Π∅(Bj) = rj , j = 1, . . . , l

∣∣ Z(t) = z
)
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= lim
m→∞

P
(
Π

(m)
∅,z (Bj) = rj , j = 1, . . . , l

∣∣ Z(t) ∈ Am(z)).

From Remark 6.2 we get that Π
(m)
∅,z is independent of the event Z(t) ∈ Am(z),

which implies

P
(
Π∅(Bj) = rj , j = 1, . . . , l

∣∣ Z(t) = z
)
= lim

m→∞
P
(
Π

(m)
∅,z (Bj) = rj , j = 1, . . . , l

)

= P
(
Π(Bj \ X (z)) = rj , j = 1, . . . , l

)
.

Here, we use that Π
(m)
∅,z (·) = Π(· \ X (m)(z)) and that X (m)(z)

m→∞−→ X (z).

By the second part of Theorem 6.8 we have

max
i∈N

(
Ũi · f(·, W̃i(·))

)
| (Z(t) = z)

d
= Z(·) | Z(t) < z,

where (Ũi, W̃i)i∈N are the points of Π∅. The process on the rhs can be easily simulated
using any Poisson point process representation of the extremal Gaussian process or the
Brown-Resnick process as described in Chapter 4, respectively, and rejecting all the
points not satisfying Z(t) < z.
Composing all these considerations, we end up with the following procedure to sample
from Z(·) | Z(t) = z (Dombry et al., 2011; Dombry and Ribatet, 2012):

1. Calculate the probabilities of all the scenarios {ΠA((0,∞) × C(Rd)) = kA, A ∈
2{1,...,n} \ ∅} conditional on Z(t) = z with

∑
A: i∈A kA = 1 for i ∈ {1, . . . , n} (cf.

Equation (6.14)). Draw a scenario from this distribution.

2. Independently, sample points (UA,WA) from each ΠA, A ∈ 2{1,...,n}\∅ with kA = 1.

3. Generate an independent simulation of Z(·) | Z(t) < z. Take the maximum of all
the samples.

An efficient implementation of the first step is not straightforward as one has to deal with
an exploding number of scenarios with a positive probability as n increases. Dombry
et al. (2011) propose an MCMC algorithm to cope with this problem. While the third
step can be done by the considerations above, the implementation of the second step
needs some further work. This will be the issue of the next section.

6.3 On the Distribution of Π∗ within a Scenario

In this section, we will deal with the distribution of ΠA | ΠA((0,∞) × C(Rd)) = 1
for A ∈ 2{1,...,n} \ ∅. More precisely, we consider the distribution of the random vector
(UA,WA) ∈ (0,∞)×C(Rd), which is well-defined by ΠA({(UA,WA)}) = 1 conditional on
|ΠA| = 1. In Dombry et al. (2011) and Dombry and Ribatet (2012), all finite-dimensional
marginal distributions of the random field {UA · f(t,WA(t)), t ∈ Rd} are given. These
are multivariate Student distributions in the case of extremal Gaussian processes and
multivariate log-normal distributions in the case of Brown-Resnick processes. However,
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there are only few details how to sample from these distributions. Therefore, we have
another look at this problem reducing it to the well-known problem of conditional sam-
pling for Gaussian processes. We distinguish between extremal Gaussian processes and
Brown-Resnick processes.

6.3.1 Extremal Gaussian Processes

We simulate from (UA,WA) in a two-step procedure, sampling from both components
separately. Considering UA first, for an arbitrary set B ∈ B ∩ (0,∞) we get

P(UA ∈ B | ΠA((0,∞)× C(Rd)) = 1, Z(t) = z)

= P(ΠA(B × C(Rd)) = 1 | ΠA((0,∞)× C(Rd)) = 1, Z(t) = z)

=
P(ΠA(B × C(Rd)) = 1 | Z(t) = z)

P(ΠA((0,∞)× C(Rd)) = 1 | Z(t) = z)

=

∫
B u

−2
∫
"i/∈A(−∞,zi]

1

(2πu)n|Σ| 12
exp

(
−1

2
yTΣ−1y
2πu2

)
dyAc du

∫∞
0 u−2

∫
"i/∈A(−∞,zi]

1

(2πu)n|Σ| 12
exp

(
−1

2
yTΣ−1y
2πu2

)
dyAc du

where we used Equation (6.8), Lemma 6.4 and Theorem 6.7. Thus, the density of UA

has the form

P(UA ∈ du | ΠA((0,∞)× C(Rd)) = 1, Z(t) = z) (6.15)

= κ(A, z) · u−2 · P(
√
2πuW (ti) ∈ dzi, i ∈ A,

√
2πuW (tj) < zj , j /∈ A) du,

for some κ(A, z) > 0 and any u > 0. Sampling from this density is quite involved, but
can be done by MCMC methods, for example.

In a second step, we consider the distribution of WA conditional on UA. For a set
C ∈ C(Rd), we have

P(UA ∈ B, WA ∈ C | ΠA((0,∞)× C(Rd)) = 1, Z(t) = z)

= P(ΠA(B × C) = 1 | ΠA((0,∞)× C(Rd)) = 1, Z(t) = z)

=
P(ΠA(B × C) = 1 | Z(t) = z)

P(ΠA((0,∞)× C(Rd)) = 1 | Z(t) = z)

= κ(A, z)

∫

B
u−2 · P(W (·) ∈ C,

√
2πuW (ti) ∈ dzi, i ∈ A,

√
2πuW (tj) < zj , j /∈ A) du.

By Equation (6.15), we get the conditional distribution

P(WA ∈ C | UA = u, Z(t) = z)

= P

(
W ∈ C

∣∣∣∣ W (ti) =
zi√
2πu

, i ∈ A, W (tj) <
zj√
2πu

, j /∈ A

)
.

Thus, conditional on UA, the distribution of WA equals a conditional distribution of the
stationary Gaussian random field W (·). One way to sample from this distribution is
conditioning on (W (ti))i∈A by kriging (cf. Section 2.1) and rejecting all the realizations
with W (tj) ≥ zj√

2πu
for some j ∈ Ac.
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6.3.2 Brown-Resnick Processes

One way to tackle the problem in the case of Brown-Resnick processes is to use an
analogous procedure to the case of extremal Gaussian processes. Then, the first step of
this procedure could be skipped if we had ti = 0 for some i ∈ A as W (0) = 0 a.s., which
means that UA = Z(0).

In general, we have 0 /∈ {t1, . . . , tn}. Nevertheless, we can make use of the degenerated
distribution at the origin if we consider the Poisson point process

Π̂ =
∑

i∈N
δUi exp(Wi(·)−γ(·)/2)

instead of Π =
∑

i∈N δ(Ui,Wi) and use the fact that this process is stationary by Propo-

sition 5 in Kabluchko et al. (2009). Let i∗ ∈ A and C ∈ C(Rd). Then, we have

P

(
UA · exp

(
WA(·)−

γ(·)
2

)
∈ C

∣∣∣∣ ΠA((0,∞)× C(Rd)) = 1, Z(t) = z

)

= P
(
Π̂
(
{g ∈ C(Rd) : g ∈ C, g(ti) = zi, i ∈ A, g(tj) < zj , j /∈ A}| = 1

∣∣∣

Π̂
(
{g ∈ C(Rd) : g(ti) = zi, i ∈ A, g(tj) < zj , j /∈ A}

)
= 1,

Π̂
(
{g ∈ C(Rd) : g(ti) = zi}

)
= 1 for all i ∈ {1, . . . , n},

Π̂
(
{g ∈ C(Rd) : g(tj) > zj for some j ∈ {1, . . . , n}}

)
= 0
)

= P
(
Π̂
(
{g ∈ C(Rd) : g(· − ti∗) ∈ C, g(ti − ti∗) = zi, i ∈ A,

g(tj − ti∗) < zj , j /∈ A}
)
= 1

∣∣∣

Π̂
(
{g ∈ C(Rd) : g(ti − ti∗) = zi, i ∈ A, g(tj − ti∗) < zj , j /∈ A}

)
= 1,

Π̂
(
{g ∈ C(Rd) : g(ti − ti∗) = zi}

)
= 1 for all i ∈ {1, . . . , n},

Π̂
(
{g ∈ C(Rd) : g(tj − ti∗) > zj for some j ∈ {1, . . . , n}}

)
= 0
)

= P
(
UA · eWA(·−ti∗ )−γ(·−ti∗ )/2 ∈ C

∣∣ ΠA((0,∞)× C(Rd)) = 1, Z(t− ti∗) = z
)

Thus, we have to consider the distribution of Π conditional on Z(0). Up to now, we
excluded this case. However, we can redo all the computations above, reducing the
dimension of the domain of integration w.r.t. y by one and restricting the domain of
integration w.r.t. u. We end up with

P
(
UA · eWA(·−ti∗ )−γ(·−ti∗ )/2 ∈ C

∣∣ ΠA((0,∞)× C(Rd)) = 1, Z(t− ti∗) = z
)

= P
(
ΠA

(
{(u,w) ∈ (0,∞)× C(Rd) : u · exp(w(· − ti∗)− γ(· − ti∗)/2) ∈ C}

)
= 1

∣∣∣

ΠA((0,∞)× C(Rd)) = 1, Z(t− ti∗) = z
)

= lim
m→∞

P(ΠA({(u,w) : uew(·−ti∗ )−
γ(·−ti∗ )

2 ∈ C}) = 1 | Z(t− ti∗)∈ Am(z))

P(ΠA((0,∞)× C(Rd)) = 1 | Z(t− ti∗) ∈ Am(z))
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= P

(
eW (·−ti∗ )−

γ(·−ti∗ )

2 ∈ C

zi∗
, W (ti − ti∗)−

γ(ti − ti∗)

2
∈ d log

(
zi
zi∗

)
, i ∈ A,

W (tj − ti∗)−
γ(tj − ti∗)

2
< log

(
zj
zi∗

)
, j /∈ A

)

· P
(
W (ti − ti∗)−

γ(ti − ti∗)

2
∈ d log

(
zi
zi∗

)
, i ∈ A,

W (tj − ti∗)−
γ(tj − ti∗)

2
< log

(
zj
zi∗

)
, j /∈ A

)−1

= P

(
eW (·−ti∗ )−

γ(·−ti∗ )

2 ∈ C

zi∗

∣∣∣∣W (ti − ti∗)−
γ(ti − ti∗)

2
= log

(
zi
zi∗

)
, i ∈ A,

W (tj − ti∗)−
γ(tj − ti∗)

2
< log

(
zj
zi∗

)
, j /∈ A

)

which is the conditional distribution of a transformed Gaussian random field. We can
sample from this distribution using standard techniques for conditional sampling of
Gaussian intrinsic random functions (e.g. conditioning by kriging, cf. Delfiner, 1976;
Chilès and Delfiner, 1999). Recall that this is not the distribution of ΠA itself, but all
we need to sample from Z(·) | Z(t).
Thus, we are able to simulate from extremal Gaussian processes and Brown-Resnick
processes conditional on data (ti, Z(ti))i∈N. For results on simulation studies and appli-
cations to real data see Dombry et al. (2011) and Dombry and Ribatet (2012).
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