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Abstract

Hyperplane location problems as well as line location problems as a special case

have been of great interest in mathematics for a long time. A lot of people have

been and still are interested in the question of how to locate a hyperplane for a

variety of reasons.

In this thesis, we consider the location of median lines when there is a restriction

on the slope of the line to locate as well as the more general location of median

hyperplanes when there is a restriction on the slope vector of the hyperplane to

locate. We are given a set of existing facilities in R
2 or R

n and we are searching

for a new facility that is a line or a hyperplane, respectively, minimizing the sum

of distances between the existing facilities and the new facility while satisfying a

restriction on its slope.

We investigate this problem in the plane R
2 using different distance measures,

namely the vertical distance, the horizontal distance, the rectangular distance and

finally distances derived from arbitrary norms. We present what kind of different

geometrical features these problems have if we let the restriction vary and which

features all of them share. Afterwards we generalize our results for the location

of a median line using vertical distance to the location of a median hyperplane

using vertical distance. We will prove that there exists an optimal trajectory that

is continuous for this problem and we will present a method to construct such an

optimal trajectory exploring the geometrical properties of the problem. Finally we

give an idea of how to generalize the results concerning hyperplane location with

vertical distance to hyperplane location problems using other distances. On our

way we will point out that there is a strong connection between the location of a

hyperplane with a restriction on the slope and the RLAD regression problem from

the field of robust statistics.
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Chapter 0

Introduction and basic concepts

0.1 Introduction

Facility location has become a vast field in applied mathematics. There are a lot

of problems and applications that can be tackled with locational analysis, for an

overview see e.g. [DH02]. In this work we want to consider line location problems in

the plane with restrictions on the slope of the line as well as hyperplane location

problems with a restriction on the slope. Hyperplane location problems are a

generalization of line location problems since in R
2 the hyperplanes are exactly

the lines. Line location as well as hyperplane location in general is in a way an

extension of classical facility location.

In classical facility theory we have a set of existing facilities in the plane with non-

negative weights indicating the importance of the different facilities. We search

for a location of one or more new facilities in such a way that the new facilities

are as close as possible to the existing ones. Common objective functions are for

example the median function or the center function. The median function is the

(weighted) sum of distances between the existing facilities and the new facilities,

while the center function gives the maximum (weighted) distance between the

existing facilities and the new facilities. The aim is to minimize these functions.

Of course there are many more objective functions possible, for example ones with

negative weights or functions derived by special distance measures between the

existing facilities and the new ones. Moreover, a lot of extensions of these problems

7



8 0.1. INTRODUCTION

are possible, for example by restrictions on the location of the new facilities. An

overview about the topic of classical facility location in the plane is for example

given in [LMW88, Ham95, Pla95].

In the case of hyperplane location, we not only want to locate a single point

in R
n but a hyperplane. Our aim is still the same: We want to minimize the

distance between a given set of existing facilities in R
n and the new hyperplane.

In the special case of n = 2 this is the classical line location. Hyperplane location

belongs to the area of locating dimensional facilities such as paths, lines, line

segments, trees, circles, hyperplanes or hyperspheres. Problems of this kind have

been extensively studied in networks (for an overview see [HSL93] or [MB96]), but

there are also studies about the location of dimensional structures in the plane or in

R
n, for example [Sch99, DBMS04, BJS09, BCH09, Kör11]. Locating a hyperplane

in R
n with a restriction on the slope obviously is a special case of hyperplane

location in R
n.

One nice thing about hyperplane location and line location in particular is that

it plays an important role in a variety of different mathematical fields. We want

to present a number of examples in order to give an idea in which mathematical

fields such problems can arise.

One problem from the field of location theory that leads to locating a

line with a restriction on the slope is the problem of locating a line seg-

ment. In [Sch99], the line segment location problem with vertical dis-

tance in the plane is described. Given a real number l0 > 0 and a set

Ex = {Ex1, Ex2, . . . , Exm} of points in the plane representing the existing

facilities, we are looking for a line segment S with Euclidean length l0 such

that the sum of vertical distances (or the maximum vertical distance) be-

tween the existing facilities and the line segment is minimized. It is shown

in [Sch99] that in order to solve the line segment location problem it is suf-

ficient to solve a line location problem with vertical distance and a certain

restriction on the slope of the line. We will discuss this type of problem in

Chapter I.

Another field in which hyperplane location problems are of interest is com-
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putational geometry. The linear l1 approximation problem for example

seeks a vector x ∈ R
n to minimize the deviation between Ax with A ∈ R

m×n

and b ∈ R
m in the sense of the l1-norm, i.e. the objective function is the

sum of the absolute values of the deviations. This is indeed a hyperplane

location problem. If n = 2, we have again a line location problem. This kind

of problem is for example studied in [BR73] or [KM93].

Line location problems as well as hyperplane location problems in general are

well-known in the field of robust statistics. They play an important role

in the field of regression analysis. Finding a regression line corresponds to

a line location problem using some special function to measure the distance

between a set of given data points and the regression line. Since statisticians

usually deal with a large amount of data, they are especially interested in

finding regression hyperplanes in R
n which again corresponds to a hyperplane

location problem with the appropriate function to measure the distance be-

tween data points in R
n and the regression hyperplane. Problems of this

kind are for example investigated in [Ric64, Sha71, PFTV86, Edg88, GP02].

A more recent topic in robust statistics is regularized regression analy-

sis. The objective functions in this field are of the form “loss + penalty”,

where the “loss” part is again some special function to measure the dis-

tance between the given set of data points and the regression hyperplane,

while the “penalty” part is usually the l1-norm of the slope of the regression

hyperplane.

The problem of finding a regularized regression hyperplane corresponds to

the problem of locating a hyperplane using some special distance with a

restriction on the slope of the hyperplane. This is why we will point out

the connection between our problem and a special problem in the field of

regularized regression - namely the so-called RLAD regression - in detail in

Chapter II. We will discuss this connection for the special case of a regression

line as well as for the general case of a regression hyperplane. Surveys about

this type of problems can be found in [Tib96, EHJT04, WGZ06, RZ07].

As one can see, hyperplane location problems as well as the special case of line

location problems are of interest in various fields of mathematics. In this work, we
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0.2. BASIC CONCEPTS OF LINE LOCATION AND
HYPERPLANE LOCATION WITH A RESTRICTION ON THE

SLOPE

will mainly focus on line location problems with a restriction on the slope. There

seems to be known very little about these problems in the literature, this is why

we want to discuss them in this work. In Chapter I, Chapter III, Chapter IV and

in parts of Chapter VI we will discuss line locating problems with a restriction on

the slope considering different distances. In Chapter V and parts of Chapter VI

we discuss the general case of locating a hyperplane in R
n with a restriction on

the slope considering different distances.

0.2 Basic concepts of line location and hyper-

plane location with a restriction on the slope

Since the main part of this work addresses the location of a line with a restriction

on the slope, we want to start with the description of the basic concept of such a

problem. In order to do so, let E = {(x1, y1), . . . , (xn, yn)} ⊆ R
2 be a set of existing

facilities in the plane with weights wi ∈ R+ and let d be a distance function on the

plane, i.e. d((xi, yi), (xj, yj)) defines a distance between facility (xi, yi) and facility

(xj , yj). The weights might indicate the importance of the different facilities.

There are many possibilities to choose a distance function, the Euclidean distance

or the rectangular distance are for example common distance functions. We now

search for a location of a new facility (x, y) ∈ R
2 that minimizes the weighted sum

of distances defined by d between the existing facilities and the new facility (x, y),

which means that we have to solve an optimization problem of the following form:

min
n∑

i=1

wid((x, y), (xi, yi)).

In our special case, the new facility that has to be located is a line la,b with slope

a ∈ R ∪ {∞} and intercept b ∈ R and we will let wi = 1 for every existing facility

(xi, yi) ∈ E . Here, a ∈ R ∪ { ∞} means that the new line can be a non-vertical

line with slope a ∈ R and intercept b ∈ R, that is
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la,b = {(x, y) ∈ R
2 : y = ax + b},

or a vertical line with infinite slope passing the point (b, 0), that is

l∞,b = {(x, y) ∈ R
2 : x = b}.

We will see in Chapter I that we only have to investigate non-vertical lines la,b

with a, b ∈ R when we talk about the vertical distance.

We can now formulate the optimization problem of locating a line:

min
n∑

i=1

d((xi, yi), la,b). (Pd)

This function is called unweighted median function, this is why we will call an

optimal line of this problem a median line as well. The distance d((xi, yi), la,b)

between an existing facility (xi, yi) ∈ E and a line la,b is given by the distance

between (xi, yi) and its nearest point on the line, that is to say

d((xi, yi), la,b) = min
(x,y)∈l

d((xi, yi), (x, y)).

Up to now, (Pd) is a classical line location problem. We will now introduce a

restriction on the slope of the line:

min
n∑

i=1

d((xi, yi), la,b) (Pd(s))

s.t. |a| ≤ s

where s ≥ 0.

This is the class of problems we have in mind when we talk about locating a line

with a restriction on the slope. We will discuss how to solve (Pd(s)) for any s ≥ 0

using different distance measures d. Moreover we will see what different features

(Pd(s)) has for different distance measures. In Chapter I we start with the problem
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0.2. BASIC CONCEPTS OF LINE LOCATION AND
HYPERPLANE LOCATION WITH A RESTRICTION ON THE

SLOPE

of locating a line with a restriction on the slope using the vertical distance. We

show that there exists what is called an optimal trajectory that is continuous in s.

Based on the results in this chapter we will investigate the problem (Pd(s)) with d

being the horizontal distance in Chapter III. Bringing the results of Chapter I and

Chapter III together, in Chapter IV we deal with the problem (Pd(s)) when d is

the rectangular distance. Finally, we will generalize our results to the problem of

line location with a distance function derived from an arbitrary norm in Chapter

VI.

In Chapter V we will consider the problem of locating a hyperplane with a re-

striction on the slope using the vertical distance. Nevertheless we shortly want

to describe the basic concept of locating a non-vertical hyperplane with a restric-

tion on the slope in general since we want to discuss the possibility of extending

the results derived for the vertical distance to problems with horizontal distance

and rectangular distance in Chapter VI. We will introduce the vertical distance

between points in the R
n as well as the vertical distance between a point and a

hyperplane in Section V.1.

In this work we only want to investigate the location of non-vertical hyperplanes.

We will see in Chapter V and Chapter VI why this is sufficient for the problems

that we consider.

Let a = (a1, . . . , ak) ∈ R
k and b ∈ R. Any non-vertical hyperplane H can be

expressed as Ha,b with

Ha1,...,ak ,b = {(x1, . . . , xk, y) ∈ R
k+1 : y = a1x1 + a2x2 + . . . + akxk + b}.

As we already mentioned, the problem of locating a hyperplane with a restriction

on the slope is of course a generalization of the line location problem with a

restriction on the slope (Pd(s)). Therefore we want to use a notation very similar

to the one we use for (Pd(s)). Let

E = {(x11, x12, . . . , x1k, y1), . . . , (xn1, xn2, . . . , xnk, yk)} ⊆ R
k+1

be the set of existing facilities in the R
k+1. Again we let d be a distance function

defined on R
k+1 that defines a distance between two points in the R

k+1. We search
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for the location of a new facility that is a non-vertical hyperplane Ha1,...,ak ,b such

that the sum of distances defined by d between the existing facilities in E and

Ha1,...,ak,b is minimized. In other words we want to solve the following optimization

problem:

min
n∑

i=1

d((xi1, . . . , xik, yi), Ha1,...,ak,b) (Pd(s))

s.t. ||a||1 = |a1| + . . . + |ak| ≤ s

where s ≥ 0. As in the case of line location, the distance d((xi1, . . . , xik, yi), H)

between an existing facility (xi1, . . . , xik, yi) ∈ E and a hyperplane Ha1,...,ak,b is given

by the distance between (xi1, . . . , xik, yi) and its nearest point on the hyperplane:

d((xi1, . . . , xik, yi), Ha1,...,ak,b)

= min
(x1,...,xk,y)∈Ha1,...,ak,b

d((xi1, . . . , xik, yi), (x1, . . . , xk, y)).

What we are going to show in Chapter V is that there exists an optimal trajectory

for the problem with vertical distance (Pver(s)) that is continuous in s. This is

the generalisation of the statement about the existence of a continuous optimal

trajectory for the line location problem with vertical distance we made in Chapter

I to the case of hyperplane location.

In Chapter VI we will discuss if the results derived in Chapter V can be carried

over to the corresponding hyperplane location problems with horizontal distance

and rectangular distance.





Chapter I

Locating lines with a restriction

on the slope using vertical

distance

In this chapter we want to consider the problem (Pd(s)) if the distance d is the

vertical distance. We will provide the definition of the vertical distance between

two points as well as the vertical distance between a point and a line and start

with a summary of important results for the line location problem with vertical

distance. Afterwards we give a more formal description of our problem with a

restriction on the slope and develop a solution path continuous in s providing an

optimal solution for any s, a so called continuous optimal trajectory.

I.1 Line location with vertical distance

In this section we briefly want to summarize some important results concerning

line location with vertical distance. Our main focus will lie on the work of [Sch99].

First of all, to understand line location with vertical distance one has to know

what we have in mind when talking about vertical distance. For this reason we

give a definition of the vertical distance between two points in the plane.

Definition I.1.1. Let (x1, y1), (x2, y2) ∈ R
2. The vertical distance between (x1, y1)

15



16 I.1. LINE LOCATION WITH VERTICAL DISTANCE

and (x2, y2) is defined as

dver(x, y) =







|y2 − y1| if x1 = x2

∞ else.

This distance does not seem to be very useful at a first glance, since the vertical

distance between most of the points in R
2 will be equal to ∞. On the other

hand, if we look at the distance between a point and a non-vertical line, we will

generally get a vertical distance which is finite. Following the idea of the distance

between a single point and a set of points, the vertical distance between a point

x = (x1, y1) ∈ R
2 and a non-vertical line

l = la,b = {(z1, z2) ∈ R
2 : z2 = az1 + b}

is given by the length of the vertical segment between x and l:

dver(x, l) = min
(z1,z2)∈l

dver((x1, y1), (z1, z2))

= dver((x1, y1), (z1, z2)) with (z1, z2) = (x1, ax1 + b)

= |y1 − (ax1 + b)|

In the special case that l is a vertical line and x /∈ l the vertical distance between

x and l is dver(x, l) = ∞, whereas dver(x, l) = 0 for all (z1, z2) ∈ l.

Assume that a set of existing facilities E = {(x1, y1), . . . , (xn, yn)} is given. We

want to locate a non-vertical line la,b in such a way that the sum of vertical distances

between the existing facilities and the line is minimized. We call this the line

location problem with vertical distance and our objective function is of the form
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min ||y − (ax + be)||1 = min
n∑

i=1

|yi − (axi + b)| (Pver)

= min
n∑

i=1

dver((xi, yi), la,b)

= fver(a, b)

with e = (1, . . . , 1)t ∈ R
n.

Note that a vertical line can never be optimal for (Pver) unless all existing facilities

are lying on a vertical line, in other words all existing facilities share the same first

coordinate xi = x for all i ∈ {1, . . . , n}. In this special case, the vertical line

passing through the point (x, 0) is optimal for (Pver). Since this case is trivial we

will neglect it in the following, which is why we only have to investigate non-vertical

lines la,b with a, b ∈ R for the rest of this chapter.

One way to cope with (Pver) is to use methods of classical facility location. Another

one is to use geometric properties of the line location problem. In [Sch99], both

approaches are used to discuss such problems. We want to focus mainly on the

use of geometric properties.

In order to take advantage of the geometric properties of (Pver), we will now

introduce a dual interpretation of line location problems with vertical distance like

it is done in [Sch99].

The following transformation T which maps points to non-vertical lines and vice

versa will be crucial for our dual interpretation.

Definition I.1.2. We define the following transformation T :

For any point (x, y) ∈ R
2 let T (x, y) define a non-vertical line

T (x, y) := l−x,y = {(a, b) : b = −xa + y},

and for any non-vertical line la,b let T (la,b) define a point

T (la,b) := (a, b).
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The space of all transformed points and lines will be called the dual space.

The essential feature of the transformation T defined as above is that vertical

distances between straight lines and points are invariant under T , as the following

lemma will show.

Lemma I.1.1. ([Sch99]) Let (x, y) ∈ R
2 be a point and l a line. Then

dver((x, y), l) = dver(T (l), T (x, y)).

In particular it holds that (x, y) ∈ l ⇔ T (l) ∈ T (x, y).

Proof. See [Sch99].

Using this lemma, the following theorem can be proven.

Theorem I.1.1. ([Sch99]) The location of a line minimizing the sum of vertical

distances to a given set of points {(x1, y1), . . . , (xn, yn)} is equivalent to the loca-

tion of a point minimizing the sum of vertical distances to a given set of lines

{T (x1, y1), . . . , T (xn, yn)}.

Proof. Nothing left to prove after Lemma I.1.1.

In the dual space we are therefore searching for a point (a, b) that minimizes the

sum of vertical distances to a given set of straight lines. For a point (a, b) in the

dual space our objective function fver can be rewritten as

fver(a, b) =
n∑

i=1

dver((xi, yi), la,b)

=
n∑

i=1

dver((a, b), l−xi,yi
).

This tells us that a point (a, b) minimizes the "dual" objective function if and only

if la,b is an optimal line for the line location problem with vertical distance in our

initial space.
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Figure I.1.1. An example with three existing facilities and an optimal solution l∗

for the unrestricted problem (Pver).

Using the dual interpretation of the line location problem with vertical distance,

we can state a candidate set for an optimal solution to the problem. Let

L = {l−xi,yi
= T (xi, yi) : i = 1, . . . , n}

be the set of straight lines given by the set of facilities {(x1, y1), . . . , (xn, yn)} and

the transformation T . This set of lines partitions the dual R2 into cells C ∈ C. In

each cell, the sign of (yi −axi −b) does not change for all i = 1, . . . n, meaning that

the objective function fver =
n∑

i=1
|yi − (axi + b)| is linear on each cell. Since fver is

also a convex function, our problem (Pver) is a piecewise linear convex problem.

Since f is linear on each cell, there exists an optimal solution (a∗, b∗) of (Pver) which

is a vertex of a cell (see for example Theorem 1.3, [Sch99]). This is due to the well-

known fundamental theorem of linear programming (see e.g. [NW88]). Because

all vertices of a cell are an intersection of at least two lines l−xk,yk
, l−xl,yl

∈ L,

the optimal line la∗,b∗ must pass through at least two of the given facilities in

the primal space, namely (xk, yk) and (xl, yl) due to Lemma I.1.1. This means

that there always exists an optimal line for the line location problem with vertical

distance which passes through at least two of the existing facilities.

Example I.1.1. Consider the given set of three existing facilities E = {(x1, y1),
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Figure I.1.2. Transformed existing facilities and optimal solution (a∗, b∗) for (Pver)
in the dual space.

(x2, y2), (x3, y3)} with

(x1, y1) = (−1, 2) =: x1,

(x2, y2) = (1,
3

2
) := x2 and

(x3, y3) = (2, −3) =: x3.

Figure I.1.1 shows the set of existing facilities as well as an optimal solution l∗ for

the unrestricted vertical problem (Pver). The dual space including the transformed

existing facilities li = T (xi), i = 1, 2, 3 and the transformed optimal solution

(a∗, b∗) = T (l∗) is shown in Figure I.1.2.

Example I.1.2. Consider the given set of four existing facilities E = {(x1, y1), . . . ,

(x4, y4)} with

(x1, y1) = (−1, 0) =: x1,

(x2, y2) = (1, 2) =: x2,

(x3, y3) = (2, −1) =: x3 and

(x4, y4) = (3, 1) =: x4.
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Figure I.1.3 shows the set of existing facilities as well as an optimal solution l∗ for

the unrestricted vertical problem (Pver). The dual space including the transformed

existing facilities li = T (xi), i = 1, . . . , 4 and the transformed optimal solution

(a∗, b∗) = T (l∗) is shown in Figure I.1.4.
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Figure I.1.3. An example with four existing facilities and an optimal solution l∗

for the unrestricted problem (Pver).
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Figure I.1.4. Transformed existing facilities and optimal solution (a∗, b∗) for (Pver)
in the dual space.
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I.2. LOCATING LINES WITH VERTICAL DISTANCE AND A

RESTRICTION ON THE SLOPE

I.2 Locating lines with vertical distance and a

restriction on the slope

In the previous section, we summarized how to find a candidate set for (Pver)

by using the geometric properties of the problem. However, in this text we are

interested in the problem of locating a line when we have a restriction on the slope

of our line. In this section we want to use the results of Section I.1 in order to

find a candidate set for our problem as well. In fact, we will present more than

just a candidate set. We will demonstrate how to find a solution to our problem

independent of the restriction we put on the slope.

Before we start we want to recall the formulation of our problem for a given s ≥ 0:

min fver(a, b) = min
n∑

i=1

|yi − (xia + b)| (Pver(s))

s.t. |a| ≤ s

This problem corresponds to a line location problem with vertical distance with

a constraint. Therefore we are going to use the dual space introduced in the

previous section in order to solve (Pver(s)) for any s ≥ 0. Again we have a set

of existing facilities E = {(x1, y1), . . . , (xn, yn)} and we want to locate a line la,b

which minimizes the sum of vertical distances to the facilities. But this time the

slope a of the line must satisfy −s ≤ a ≤ s for a positive real number s.

In the dual space this corresponds to the following problem: Given a set of lines

L = {l−x1,y1 , . . . , l−xn,yn
} we want to locate a point (a, b) in such a way that a

satisfies |a| ≤ s.

This additional constraint corresponds to a slight change in the cell structure of

the dual space: In addition to the given lines in L we have to consider the two

vertical lines passing the a-axis at s and −s, respectively. In the case of a vertical

line we talk of an infinite slope, therefore we denote these additional lines by l∞,s

and l∞,−s. Regarding the new cell structure, some of our former cells are split into

two new cells. A solution feasible to Pver(s) has to be a point in a cell which lies

between l∞,s and l∞,−s. In other words we get a subpartition of the partition of
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the dual R2 induced by the lines in L.

Therefore the sign of yi − (xia + b) still does not change in each cell for all i which

means that our problem is still piecewise linear and convex. As a consequence,

there exists again an optimal solution (a∗, b∗) which is a vertex of a cell. However,

we have to be careful since such a vertex of a cell does not necessarily need to be

an intersection of at least two lines corresponding to given facilities. It can rather

be an intersection of a single line l−xi,yi
corresponding to a given facility and one

of the lines l∞,s or l∞,−s corresponding to the restriction of the slope.

This means that there need not exist an optimal line in the initial space passing

through at least two of the existing facilities, but there always exists an optimal

line passing through at least one of the existing facilities. We summarize this result

in a theorem.

Theorem I.2.1. There exists a line optimizing (Pver(s)) that passes through at

least one of the given facilities.

Proof. Following our explanations above there is nothing left to prove.

This observation yields a candidate set for our problem (Pver(s)): Any vertex of a

cell satisfying |a| ≤ s is a candidate for an optimal solution. The vertices satisfying

|a| > s need not to be considered since they are infeasible for (Pver(s)). In other

words, any line either passing through at least two existing facilities or passing

through at least one existing facility and having slope s or −s is a candidate for

an optimal line.

Example I.2.1. Consider the same set of existing facilities as in Example I.1.1.

Figure I.2.1 shows the dual space of the restricted problem (Pver(s)) with s =

1 including the transformed existing facilities li = T (xi), i = 1, 2, 3, the two

additional vertical lines corresponding to the restriction on the slope and an optimal

solution (a∗(1), b∗(1)) to (Pver(1)).

Example I.2.2. Now consider the same set of existing facilities as in Example

I.1.2. Figure I.2.2 shows the dual space of the restricted problem (Pver(s)) with

s = 1
2

including the transformed existing facilities Li = T (xi), i = 1, 2, 3, 4, the

two additional vertical lines corresponding to the restriction on the slope and an
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Figure I.2.1. Transformed existing facilities, additional restrictions on the slope
and optimal solution (a∗(1), b∗(1)) for (Pver(1)) in the dual space.

optimal solution (a∗, b∗) to (Pver(
1
2
)). (a∗, b∗) is the same as in Example I.1.2 since

the optimal solution to (Pver) is also feasible for (Pver(
1
2
)).

As we already mentioned before, we want to present a method of finding a solution

to (Pver(s)) for any s. Again we denote by E = {(x1, y1), . . . , (xn, yn)} the set of

given facilities in the plane. Let la,b be a straight line with slope a and intercept

b. We distinguish between the two sets

R(la,b) = {(xi, yi) ∈ E : yi − (axi + b) > 0} and

L(la,b) = {(xi, yi) ∈ E : yi − (axi + b) < 0},

where the set R(la,b) corresponds to the set of facilities in E lying above the line

la,b while L(la,b) corresponds to the set of facilities in E lying below this line.

In order to establish another useful feature of an optimal solution to (Pver(s)) we

provide the definition of a pseudo-halving line which has been introduced in [Sch99]

as a generalisation of the definition of a halving line. In [KM93], halving lines are

introduced for Euclidean line location problems. To be more precise, in [Sch99]

and [KM93] the terms of pseudo-halving hyperplanes and halving hyperplanes,

respectively, are introduced for hyperplane location problems. We will use this

fact in Chapter V.
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Figure I.2.2. Transformed existing facilities, additional restrictions on the slope
and optimal solution (a∗, b∗) for (Pver(1

2 )) in the dual space.

Let E = {(x1, y1), . . . , (xn, yn)} be a set of given facilities in R
2 with weights wi,

W =
∑n

i=1 wi as well as B+
l and B−

l the two open half-spaces in R
2 separated by l.

Definition I.2.1. ([KM93]) A line l which is the affine hull of two of the existing

facilities and which satisfies both inequalities

∑

(xi,yi)∈B−
l

wi <
1

2
W

and
∑

(xi,yi)∈B+
l

wi <
1

2
W

is called halving line.

Note that the set {(xi, yi) ∈ B−
l } corresponds to the set L(l) in our notation and

the set {(xi, yi) ∈ B+
l } corresponds to the set R(l) in our notation, respectively.

[KM93] showed that for the Euclidean case with l2-norm all median lines are

halving ones. Something similar is used in [MN80] for locating lines in the plane:

[MN80] uses the equivalent inequation

|
∑

(xi,yi)∈B−
l

wi −
∑

(xi,yi)∈B+
l

wi| <
∑

(xi,yi)∈l

wi
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and shows that it holds for all median lines in the Euclidean case. Since this

needs not to be true for distances derived from other norms, [Sch99] introduced

the definition of a pseudo-halving line.

Definition I.2.2. ([Sch99]) A line l is called pseudo-halving if

∑

(xi,yi)∈B−
l

wi ≤
W

2
and

∑

(xi,yi)∈B+
l

wi ≤
W

2
.

Sticking again to our notation and in addition regarding the case with weights

wi = 1 for all i a line la,b is pseudo-halving if

|L(la,b)| ≤
n

2
and

|R(la,b)| ≤
n

2
.

[Sch99] has shown that all lines optimal for the unrestricted problem (Pver) are

pseudo-halving. The next theorem will show that this is true as well for any line

which is optimal to (Pver(s)). To prove this theorem, we first need the definition

of a median to a weighted set of numbers.

Definition I.2.3. (see for example [Hay81], [Kre91], [Sch99]) Let c1, c2, ..., cM be

a set of real numbers and let w1, w2, ..., wM be positive weights, wm ≥ 0, m =

1, . . . , M . Let furthermore be W =
M∑

m=1
wm the sum of all weights. Then

median{(cm, wm) : m = 1 . . . M} =

{

x :
∑

m:cm<x

wm ≤
W

2
and

∑

m:cm>x

wm ≤
W

2

}

is the set of all medians to the weighted set of numbers cm.

Now we can prove the following proposition which we again need to prove the next

theorem. This proposition is a slightly different version of a statement shown for

example in [Sch99], [Hay81] or [Ham95] since in our case we have a restriction on
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a. Anyway, since the slope is kept fixed, this does not affect the proof. From now

on we denote by

Mopt
ver(s) :={(a, b) : |a| ≤ s and fver(a, b) ≤ fver(a

′, b′) for all (a′, b′)

satisfying |a′| ≤ s}

the set of optimal solutions to (Pver(s)).

Proposition I.2.1. Let E = {(xi, yi), i = 1 . . . n} be a set of existing facilities,

(a∗, b∗) ∈ Mopt
ver(s) and

f̄ : R → R

b 7→
n∑

i=1

|a∗xi − yi + b|.

A value b∗ minimizes f̄ if and only if b∗ ∈ median{(yi − a∗xi, 1) : i = 1 . . . n}.

Proof. “⇒” The function f̄ is piecewise linear and convex.

Suppose b∗ optimizes f̄ but b∗ /∈ median{(yi −a∗xi, 1)}. Without loss of generality

we can suppose that
∑

i:yi−a∗xi<b∗

1 >
n

2
.

Now there exists an ǫ > 0 so that

{i : yi − a∗xi < b∗} = {i : yi − a∗xi < b∗ − ǫ} and

{i : yi − a∗xi ≥ b∗} = {i : yi − a∗xi ≥ b∗ − ǫ}.

But then it holds that

f̄(b∗ − ǫ) =
∑

i:yi−a∗xi<b∗

(b∗ − ǫ − (yi − a∗xi))

+
∑

i:yi−a∗xi≥b∗

((yi − a∗xi) − b∗ + ǫ)
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=
∑

i:yi−a∗xi<b∗

(b∗ − (yi − a∗xi)) +
∑

i:yi−a∗xi≥b∗

((yi − a∗xi) − b∗)

+ ǫ

Ñ

∑

i:yi−a∗xi≥b∗

1 −
∑

i:yi−a∗xi<b∗

1

é

< f̄(b∗) + ǫ
Ån

2
−

n

2

ã

= f̄(b∗),

which contradicts the assumption of optimality of b∗.

“⇐” Let b∗ ∈ median{(yi −a∗xi, 1)}. For ǫ > 0 small enough it can be shown that

f̄(b∗ − ǫ) ≥ f̄(b∗) and f̄(b∗ + ǫ) ≥ f̄(b∗)

similarly to the proof of the other direction. By convexity of f̄ the optimality of

b∗ follows.

Having everything we need at hand, we are able to prove the announced theorem.

Theorem I.2.2. A line l∗ optimal for (Pver(s)) is pseudo-halving.

Proof. Let l∗ = la∗,b∗ = {(x, y) ∈ R
2 : y = a∗x + b∗} be an optimal solution to

(Pver(s)), that is in particular |a∗| ≤ s.

Keep a∗ fixed and look at the following function defined in b:

f̄(b) =
n∑

i=1

|a∗xi − yi + b|.

Since (a∗, b∗) is optimal to (Pver(s)) use

fver(a
∗, b) = f̄(b) ∀b ∈ R

and conclude that b∗ minimizes f̄ . Therefore b∗ is a median of the set {(yi−a∗xi, 1) :

i = 1 . . . n} according to Proposition I.2.1.

By Definition I.2.3 it now holds that

∑

i:yi>a∗xi+b

1 = |R(la∗,b∗)| ≤
n

2
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Figure I.2.3. The solid line segments give the path of pseudo-halving lines for
Example I.1.1. One can see that the optimal solution (a∗, b∗) to (Pver) lies on the
path.

and
∑

i:yi<a∗xi+b∗

1 = |L(la∗,b∗)| ≤
n

2
.

This shows that l∗ is pseudo-halving.

We have shown that an optimal line for (Pver(s)) has to be pseudo-halving. This

result allows a nice visualization of a new candidate set which is a subset of the set

of all vertices in the dual space. The set of all pseudo-halving lines in the primal

space gives a path in the dual space. We will refer to this path as the path of

pseudo-halving lines. If n is an odd number, this path is a sequence of segments

of lines in L (cf. Figure I.2.3). If n is even, there are segments of lines in L that

bound the path of median lines from above and others that bound the path from

below (cf. Figure I.2.4). The new candidate set is the set of all cell vertices that

lie on the path of pseudo-halving lines.

In order to find an optimal solution for (Pver(0)) we have to find out where the

path of pseudo-halving lines intersects the b-axis of the dual space. Again we have

to distinguish two cases:

Assume without loss of generality that the existing facilities (xi, yi) ∈ E are sorted

in such a way that

y(1) ≤ . . . ≤ y(n).
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Figure I.2.4. The solid line segments plus the marked areas they are enclosing
give the path of pseudo-halving lines for Example I.1.2. Again the optimal solution
(a∗, b∗) to (Pver) lies on the path.

If the number of existing facilities n is odd, an optimal solution to (Pver(0)) is

the line l0,yk∗ with yk∗ = y(⌈ n
2

⌉). The value yk∗ is exactly the median of the sorted

sample y(1), . . . , y(n).

On the other hand, if the number of existing facilities n is even, the intersection

M of the path of pseudo-halving lines and the b-axis of the dual space is generally

a set of several points. We can write it as

M = {(0, y) ∈ R
2 : y( n

2
) ≤ y ≤ y( n

2
+1)}.

Any line l0,y with (0, y) ∈ M is an optimal solution to (Pver(0)). This is due to the

fact that fver(0, y( n
2

)) = fver(0, y( n
2

+1)) and our problem is a convex optimization

problem. The values of y( n
2

) and y( n
2

+1) correspond to what sometimes is called the

lower median or the upper median of the sorted sample y(1), . . . , y(n), respectively.

This means that we know how to locate a horizontal line in order to minimize

the sum of vertical distances to the existing facilities. These conclusions are in

analogy to the conclusions concerning 1-facility median problems in [Ham95]. We

summarize them in a lemma.

Lemma I.2.1. If the number of existing facilities n is odd, the line l0,y(⌈ n
2 ⌉)

in the
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primal space corresponding to the point (0, y(⌈ n
2

⌉)) in the dual space is optimal for

(Pver(0)).

If the number of existing facilities n is even, any line l0,y in the initial space cor-

responding to a point (0, y) satisfying y(n
2 ) ≤ y ≤ y(n

2
+1) is optimal for (Pver(0)).

Proof. Nothing left to prove.

Now that we know a solution to our problem if s = 0, we want to explore the

behaviour of the optimal solutions if we increase s little by little, meaning that we

allow our optimal line to become steeper little by little. Our aim is to solve the

problem for any s ≥ 0, which in other words means that we want to know how the

set of optimal solutions

Mopt
ver(s) = {(a∗(s), b∗(s)) : |a∗(s)| ≤ s and fver(a

∗(s), b∗(s)) ≤ fver(a, b)

∀(a, b) : |a| ≤ s}

for our problem (Pver(s)) looks like for every positive s. Putting things together,

we are interested in the set

M∗ := {Mopt
ver(s) : s ≥ 0}.

Such a set is called an optimal location trajectory (see for example [BC91]). We

will show that M∗ corresponds to a solution path in the dual space.

Assume that there exists a horizontal line l0,b that is optimal for the unrestricted

line location problem (Pver). Then a solution optimal for (Pver(0)) stays optimal

for (Pver(s)) while we are increasing s. Obviously there can be more optimal

solutions to (Pver(s)) than the ones we found for (Pver(0)), but still we are done

with this case since we at least know some optimal solution. In this case, our

solution path in the dual space is a single point on the b-axis or a segment of the

b-axis, depending on whether n is odd or even. Therefore we will assume that there

exists no horizontal line which is optimal for (Pver) for the rest of this section, this

means we assume |a| > 0 for all lines la,b optimal for (Pver).

The assumption that there exists no optimal line which is horizontal in addition to

the convexity of the objective function yields a nice statement about the optimal
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solutions of our unrestricted problem.

Theorem I.2.3. Let Mopt
ver := {(a∗, b∗) : fver(a

∗, b∗) ≤ fver(a, b)∀(a, b) ∈ R
2} and

let (0, b) /∈ Mopt
ver ∀ b ∈ R. Then either a∗ > 0 holds for all (a∗, b∗) ∈ Mopt

ver or

a∗ < 0 holds for all (a∗, b∗) ∈ Mopt
ver .

Proof. By assumption it is true that (0, b) /∈ Mopt
ver ∀ b ∈ R.

Let B∗
1 = (a∗

1, b∗
1), B∗

2 = (a∗
2, b∗

2) ∈ Mopt
ver with a∗

1 > 0 and a∗
2 < 0. The set Mopt

ver is

convex since (Pver) is a convex problem. But then

λB∗
1 + (1 − λ)B∗

2 ∈ Mopt
ver ∀ λ ∈ (0, 1).

Choose λ := −
a∗

2

a∗
1−a∗

2
. It can easily be shown that λ ∈ (0, 1) and therefore (0, b′) ∈

Mopt
ver with b′ = λb∗

1 + (1 − λ)b∗
2, which is a contradiction to the assumption.

This means that if no optimal line is horizontal either all lines which are optimal

for (Pver) have positive slope or all lines which are optimal for (Pver) have negative

slope. In other words, there cannot exist (a, b), (a′, b′) ∈ Mopt
ver with a > 0 and

a′ < 0.

Suppose we know whether all optimal lines for the unrestricted line location prob-

lem have positive or negative slope. Can we use this information to make a state-

ment about the sign of the slope of an optimal line for (Pver(s))? The following

theorem gives an answer to this question.

Theorem I.2.4. Let Mopt
ver(s) be the set of optimal solutions to (Pver(s)).

If a∗ > 0 for all (a∗, b∗) ∈ Mopt
ver then

(a∗(s), b∗(s)) ∈ Mopt
ver(s) ⇒ a∗(s) ≥ 0.

for all s ≥ 0 Analogously it holds for all s ≥ 0 that if a∗ < 0 for all (a∗, b∗) ∈ Mopt
ver

then

(a∗(s), b∗(s)) ∈ Mopt
ver(s) ⇒ a∗(s) ≤ 0.

Proof. Assume a∗ > 0 for all (a∗, b∗) ∈ Mopt
ver . Let (â∗, b̂∗) ∈ Mopt

ver .

If s = 0 it holds that a = 0 for all (a, b) feasible to (Pver(0)), therefore a = 0 for

all (a, b) ∈ Mopt
ver(0) in particular.
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Assume that there exists a solution (a∗(s), b∗(s)) to (Ps) satisfying a∗(s) < 0 for an

arbitrary s > 0. fver is convex and (â∗, b̂∗) is optimal to the unrestricted problem,

that is to say for all λ ∈ (0, 1) it holds that

fver(λa∗(s) + (1 − λ)â∗, λb∗(s) + (1 − λ)b̂∗)

≤ λfver(a
∗(s), b∗(s)) + (1 − λ)fver(â

∗, b̂∗)

≤ λfver(a
∗(s), b∗(s)) + (1 − λ)fver(a

∗(s), b∗(s))

= fver(a
∗(s), b∗(s))

Choose λ = − â∗

a∗(s)−â∗ . Then λ ∈ (0, 1) and the following equation holds:

fver(λa∗(s) + (1 − λ)â∗, λb∗(s) + (1 − λ)b̂∗) = fver(0, λb∗(s) + (1 − λ)b̂∗)

≤ fver(a
∗(s), b∗(s)).

Assume

fver(0, λb∗(s) + (1 − λ)b̂∗) = fver(a
∗(s), b∗(s)).

Then all inequalities above have to satisfy equality. Therefore it follows directly

that

fver(â
∗, b̂∗) = fver(a

∗(s), b∗(s)).

This is a contradiction to the assumption that a > 0 ∀ (a, b) ∈ Mopt
ver , therefore

fver(0, λb∗(s) + (1 − λ)b̂∗) < fver(a
∗(s), b∗(s))

must hold, which is a contradiction to the optimality of (a∗(s), b∗(s)) since the

solution (0, λb∗(s) + (1 − λ)b̂∗) is feasible for (Pver(s)). The proposition follows.

In case a∗ < 0 for all (a∗, b∗) ∈ Mopt
ver the proposition can be proven analogously.

If an optimal solution for (Pver) is known, the previous theorem makes sure that

we only have to search one half-space for an optimal solution to (Pver(s)) for all

s > 0, namely the half-space in which all optimal solutions of (Pver) are included

according to Theorem I.2.3. Therefore we can modify our candidate set again:

The new candidate set is the set of all cell vertices that lie on that part of the path
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of pseudo-halving lines which lies in the half-space containing all optimal solutions

to the unrestricted line location problem.

Up to now we have reduced the candidate set for our restricted problem step by

step. But what we really want to know is how to find an optimal solution for our

problem (Pver(s)) for an arbitrary s. The following theorem states how this can

be done.

Theorem I.2.5. If a > 0 for all (a, b) ∈ Mopt
ver , for any problem (Pver(s)) with

s ≤ a∗ := min{a : (a, b) ∈ Mopt
ver} it holds that all optimal solutions (a∗(s), b∗(s))

satisfy a∗(s) = s.

If a < 0 for all (a, b) ∈ Mopt
ver , for any problem (Pver(s)) with s ≤ a∗ := min{|a| :

(a, b) ∈ Mopt
ver} it holds that all optimal solutions (a∗(s), b∗(s)) satisfy a∗(s) = −s.

Proof. First assume a > 0 for all (a, b) ∈ Mopt
ver .

Let 0 < s ≤ a∗ arbitrarily. We already know that all optimal lines of (Pver(s))

have to have positive slope as well due to Theorem I.2.4. Assume there exists an

(â, b̂) ∈ Mopt
ver(s) with â < s. If s = a∗ := min{a : (a, b) ∈ Mopt

ver} then (â, b̂) is an

optimal solution to (Pver) which is a contradiction to the choice of a∗.

Let therefore 0 < s < a∗. Since â < s and a∗ > s there exists a λ ∈ (0, 1) in such

a way that

λâ + (1 − λ)a∗ = s.

But we know that fver is a convex function and therefore

fver(λâ + (1 − λ)a∗, λb̂ + (1 − λ)b∗) ≤ λfver(â, b̂) + (1 − λ)fver(a
∗, b∗)

< λfver(â, b̂) + (1 − λ)fver(â, b̂)

= fver(â, b̂)

which is a contradiction to the optimality of (â, b̂) since (λâ + (1 − λ)a∗, λb̂ + (1 −

λ)b∗) is of course feasible for (Pver(s)). Since s has been chosen arbitrarily the

proposition follows.

If a < 0 for all (a, b) ∈ Mopt
ver it is analogously shown that all (a∗(s), b∗(s)) ∈ Mopt

ver(s)

satisfy a∗(s) = −s.
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Figure I.2.5. The solid line segments give the solution path for Example I.1.1. For
any s > 0 we get an optimal solution to (Pver(s)) lying on this path. The path ends
in the optimal solution (a∗, b∗).

Putting our results of this section together, especially Lemma I.2.1 as well as

Theorem I.2.4 and Theorem I.2.5, this results in a solution path for (Pver(s)) in

the dual space. If we want to solve (Pver(s)) for any s ≥ 0, we only have to follow

this path. It starts at the b-axis in the dual space with the intersection of the axis

and the path of pseudo-halving lines (Lemma I.2.1). From there we move along

the path of pseudo-halving lines towards (a∗, b∗) as defined in Theorem I.2.5. The

direction in which we move is well-defined due to Theorem I.2.4 and Theorem

I.2.3. We follow this path until we reach an optimal solution for the unrestricted

problem (Pver), namely (a∗, b∗). This is where our solution path ends since (a∗, b∗)

stays optimal for any (Pver(s)) with s > a∗. Like this, the solution path enables

us to give an optimal solution to (Pver(s)) for every s (cf. Figures I.2.5 and I.2.6).

This path is the visualization of the optimal location trajectory M∗ mentioned

earlier in this section. Note that we can choose (a(s), b(s)) ∈ Mopt
ver , s ≥ 0, such

that the corresponding optimal trajectory is continuous in s and gives a unique

solution for every s. Depending on whether the number of existing facilities is odd

or even, we can choose the unique path of pseudo-halving lines or the unique path

of lower median lines as such a continuous optimal trajectory, respectively.

While this is easy to see in the case of line location, we will see in Chapter V that

it is not trivial to prove the existence of such a continuous optimal trajectory in
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Figure I.2.6. The solid line segments plus the marked area they are enclosing give
the solution path for Example I.1.2. For any s > 0 we get either one optimal solution
or a set of optimal solutions for (Pver(s)) lying on this path. The path ends in the
optimal solution (a∗, b∗).

the more general case of hyperplane location with vertical distance. We will give

a detailed proof for the existence of a continuous optimal trajectory in the general

case in Section V.3.

Up to now, we have to know an optimal solution to (Pver) in order to know in

which direction the solution path runs. It would be preferable to have a method of

finding out about the direction of the solution path without knowing an optimal

solution. Therefore we end this section with the following theorem.

Theorem I.2.6. Let ǫ > 0 and let (xk∗ , yk∗) be an existing facility which is con-

tained in an optimal line for (Pver(0)). Such a facility exists due to Lemma I.2.1

and it holds that

k∗ =







(⌈n
2
⌉) if n is odd

(n
2
) else.

a) Let the number of existing facilities n be odd.

If
∑

i∈R(l0,yk∗ )

xi −
∑

i∈L(l0,yk∗ )

xi < 0
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then

f(−ǫ, xk∗ǫ + yk∗) < f(ǫ, −xk∗ǫ + yk∗)

for some ǫ > 0. If otherwise

∑

i∈R(l0,yk∗ )

xi −
∑

i∈L(l0,yk∗ )

xi > 0

then

f(ǫ, −xk∗ǫ + yk∗) < f(−ǫ, xk∗ǫ + yk∗)

for some ǫ > 0 accordingly.

b) Let the number of existing facilities n now be even.

If
∑

i∈R(l0,yk∗ )

xi −
∑

i∈L(l0,yk∗ )

xi < |xk∗|

then

f(−ǫ, xk∗ǫ + yk∗) < f(ǫ, −xk∗ǫ + yk∗)

for some ǫ > 0. If otherwise

∑

i∈R(l0,yk∗ )

xi −
∑

i∈L(l0,yk∗ )

xi > |xk∗|

then

f(ǫ, −xk∗ǫ + yk∗) < f(−ǫ, xk∗ǫ + yk∗)

for some ǫ > 0 accordingly.

Remark I.2.1. The line lǫ,−xk∗ǫ+yk∗ corresponds to the line passing through the

point (xk∗ , yk∗) with slope ǫ. It therefore corresponds to the line one gets by twisting

the line optimal to (Pver(0)) in the point (xk∗ , yk∗) a little bit.

Analogously l−ǫ,xk∗ǫ+yk∗ corresponds to the line one gets by twisting the line optimal

to (Pver(0)) in the point (xk∗ , yk∗) a little bit in the opposite direction.

Starting with a = 0 and restricting the slope by |ǫ|, Theorem I.2.5 guarantees that

there exists an optimal line with slope ǫ or −ǫ, respectively. In fact there exists
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an optimal solution to (Pver(ǫ)) lying on the median path, that is to say it exists

an optimal line with slope ǫ or −ǫ, respectively, still passing through the point

(xk∗ , yk∗) since we can chose ǫ sufficiently small so that there is no intersection

(a, b) between two of the lines in the dual space induced by the existing facilities

with 0 < |a| ≤ ǫ. Therefore either l−ǫ,xk∗ǫ+yk∗ or lǫ,−xk∗ǫ+yk∗ has to be an optimal

line. Since there is no intersection (a, b) between two of the lines in the dual space

satisfying |a| ≤ ǫ, it holds that

R(lǫ,−xk∗ǫ+yk∗ ) = R(l0,yk∗ ), L(lǫ,−xk∗ǫ+yk∗ ) = L(l0,yk∗ )

and

R(l−ǫ,xk∗ǫ+yk∗ ) = R(l0,yk∗ ), L(l−ǫ,xk∗ǫ+yk∗ ) = L(l0,yk∗ ).

This theorem provides information about which one of these two lines is optimal.

At the same time it provides an even stronger result: Since all optimal solutions

to the problems (Pver(s)) with s ≥ 0 have the same sign according to Theorem

I.2.4, this theorem provides information about the direction of the solution path

with increasing s.

Proof. Let n be odd. In order to simplify the notation we write R and L instead

of R(l0,yk∗ ) and L(l0,yk∗ ), respectively.

∑

i∈R

xi −
∑

i∈L

xi < 0.

(∗)
⇒

∑

i∈R

xi −
∑

i∈L

xi < (|R| − |L|)xk∗

⇒
∑

i∈R

(xi − xk∗) −
∑

i∈L

(xi − xk∗) < 0

⇒ 2 ·

(
∑

i∈R

(xi − xk∗) −
∑

i∈L

(xi − xk∗)

)

< 0

⇒
∑

i∈R

(xi − xk∗) −
∑

i∈L

(xi − xk∗) <
∑

i∈L

(xi − xk∗) −
∑

i∈R

(xi − xk∗)
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⇒ ǫ ·

(
∑

i∈R

(xi − xk∗) −
∑

i∈L

(xi − xk∗)

)

− |R|yk∗ + |L|yk∗ +
∑

i∈R

yi −
∑

i∈L

yi

< ǫ ·

(
∑

i∈L

(xi − xk∗) −
∑

i∈R

(xi − xk∗)

)

− |R|yk∗ + |L|yk∗ +
∑

i∈R

yi −
∑

i∈L

yi

⇒
∑

i∈R

(yi + ǫxi − ǫxk∗ − yk∗) +
∑

i∈L

(−yi − ǫxi + ǫxk∗ + yk∗)

<
∑

i∈R

(yi − ǫxi + ǫxk∗ − yk∗) +
∑

i∈L

(−yi + ǫxi − ǫxk∗ + yk∗)

(∗∗)
⇒

∑

i∈R

dver ((xi, yi), l−ǫ,xk∗ǫ+yk∗ ) +
∑

i∈L

dver ((xi, yi), l−ǫ,xk∗ǫ+yk∗ )

<
∑

i∈R

dver ((xi, yi), lǫ,−xk∗ǫ+yk∗ ) +
∑

i∈L

dver ((xi, yi), lǫ,−xk∗ǫ+yk∗ )

⇒ f(l−ǫ,xk∗ǫ+yk∗ ) < f(lǫ,−xk∗ǫ+yk∗ )

Here (∗) holds because of the fact that |R| = |L| and (∗∗) holds because of the

fact that

R(lǫ,−xk∗ǫ+yk∗ ) = R, L(lǫ,−xk∗ǫ+yk∗ ) = L

as well as

R(l−ǫ,xk∗ǫ+yk∗ ) = R, L(l−ǫ,xk∗ǫ+yk∗ ) = L,

as we already mentioned above.

The case
∑

i∈R

xi −
∑

i∈L

xi > 0

can be proven analogously.

Let n be even now and let

∑

i∈R

xi −
∑

i∈L

xi < xk∗ .

⇒
∑

i∈R

xi −
∑

i∈L

xi < (|R| − |L|)xk∗

because of the fact that |R| = |L| + 1. The proposition b) can now be proven in
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an analogous manner to a).

Likewise the case
∑

i∈R

xi −
∑

i∈L

xi > xk∗

can be proven analogously.

This theorem not only allows us to check in which direction the continuous solution

path of (Pver(s)) will proceed, it implicitly provides a method of checking what

sign an optimal solution for (Pver) does have as well as of finding such an optimal

solution by following the solution path until we get stuck in some point which then

corresponds to an optimal line.

Example I.2.3. Consider one more time the existing facilities in Example I.1.2.

We have l0,yk∗ = l0,0 and therefore R(l0,yk∗ ) = {x2, x4} while L(l0,yk∗ ) = {x3}.

This gives us

∑

i∈R(l0,yk∗ )

xi1 −
∑

i∈L(l0,yk∗ )

xi1 = 1 + 3 − 2 = 2 > 1 = |xk∗|,

which means that our solution path runs in the positive direction. This result is in

agreement with Figure I.2.6.



Chapter II

An excursion to statistics: RLAD

regression and its relation to

locating lines and hyperplanes

We already mentioned in Section 0.1 that there exists an interest in line location in

different fields of mathematics. In this chapter we want to present an application

in statistics for which we can use our results about line location with vertical

distance.

Linear regression is a field of statistics in which results about line location are very

useful. As a matter of fact, the problem of finding a regression line is nothing else

than the problem of locating a line using a certain function to measure the distance

between the given points and the line. A lot of publications have considered

problems of this type, for example [Ric64, Sha71, PFTV86, SW87, Edg88, GP02].

We want to present a regression method, namely the Regularized Least Absolute

Deviations (RLAD) regression introduced by [WGZ06], and point out that the

optimal trajectory of the problem of locating a line with vertical distance with a

restriction on the slope we developed in the previous section provides in fact a

path of optimal estimators for RLAD regression.

Linear regression is an important field in data analysis. We face the following

problem: A variable Y is supposed to be described through a vector x ∈ R
k of k

independent predictor variables. Then Y is called the response variable. Linear

41
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regression assumes the following linear relationship between Y and x:

Y = βkxk + . . . + β1x1 + β0 + ǫ,

where ǫ ∈ R is a random non-observable error and β0, . . . , βk ∈ R are unknown

parameters. The aim is to estimate the unknown parameters. Suppose we obtain n

samples to do so. Let y = (y1, ..., yn)t ∈ R
n be the vector of the n observations for

the response variable Y and x1 = (x11, . . . , xn1)t, . . . , xk = (x1k, . . . , xnk)t ∈ R
n the

n different observations for the k different predictor variables. We can summarize

the observations for the predictor variables in an n × k-matrix X ∈ R
n×k where

each row corresponds to a sample and each column corresponds to a predictor,

that is to say X = [x1 . . . xk]. Now linear regression assumes

y = eβ0 + Xβ + ǫ,

where e = (1, ..., 1)t ∈ R
n, β = (β1, . . . , βk)t and ǫ ∈ R

n being a stochastical error.

From now on, we denote by [Xe] ∈ R
n×(k+1) the n×(k+1)-matrix consisting of the

matrix X and the vector e added in the last column. If ǫ has normal distribution

with constant variance and is independent of x, the well-known Ordinary Least

Squares (OLS) estimator provides an optimal estimator of β and β0 by minimizing

the sum of the l2-norm of the residuals:

Ñ

β̂

β̂0

é

= arg min

Ñ

||y − [Xe]

Ñ

β

β0

é

||2

é2

,

There are two main difficulties linked to the OLS.

One problem is that the OLS is very sensitive to outliers which can lead to very

bad results if ǫ is not normally distributed, e.g. if it has heavy-tailed distribution.

This is why robust methods minimize other functions of residuals than the l2-

norm. One example for a robust method is the Least Absolute Deviations (LAD)

regression, which minimizes the l1-norm of the residuals:
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Ñ

β̂

β̂0

é

= arg min ||y − [Xe]

Ñ

β

β0

é

||1. (PLAD)

A number of works have confirmed that LAD estimation is more robust to outliers

than the OLS estimator, e.g. [Sha71, HJKP90, MM01, GP02, GP04].

Another problem is that linear regression often leads to coefficients which have

low bias but large variance (see for example [Tib96]). Therefore it is tried to give

up a little bias to reduce the variance of the estimator by shrinkage methods in

order to improve the overall performance of the estimator. One of these shrinkage

methods is the so-called Least Absolute Shrinkage and Selection Operator (LASSO)

introduced by [Tib96]. It minimizes a function that consists of the l2-norm of the

residuals and a penalty term:

Ñ

β̂

β̂0

é

= arg min

Ñ

||y − [Xe]

Ñ

β

β0

é

||2

é2

+ λ||β||1.

Even if it is controversial whether the overall performance of the estimator can be

improved in general or not, this regularization method has a nice property: Some

of the coefficients can be shrunk exactly to 0 when λ is chosen properly due to the

l1-penalty on the coefficient vector. This is what is called an automatic feature

selection (see for example [Tib96]).

As an alternative, [WGZ06] introduced the so-called Regularized Least Absolute

Deviations (RLAD) regression in a try to combine the pleasant features of the

LAD estimator and the LASSO. RLAD regression solves the following optimization

problem:

min || y − [Xe]

Ñ

β

β0

é

||1

︸ ︷︷ ︸

LAD-part

+ λ||β||1
︸ ︷︷ ︸

LASSO−part

, (PRLAD(λ))

where λ ≥ 0 is a tuning parameter.

Due to the LAD part, the RLAD estimator is less sensitive to outliers. The

LASSO part effects that it can perform automatic feature selection. Again a little

bias might be traded against a lower variance in the hope of improving the overall

performance.
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A problem of the LASSO and therefore as well of the RLAD is that it is not clear

how to choose λ in order to get a good estimator. The quality of the estimator

can vary significantly with the choice of a different λ. Therefore statisticians are

especially interested in analysing how solutions to (PRLAD(λ)) behave for different

values of λ.

We now want to look at RLAD regression as a bicriterial optimization problem.

Using well-known results from multicriterial optimization, we will be able to show

that we can use the results of the previous section in order to give optimal RLAD

regression lines for any λ. For an introduction into the field of multicriterial opti-

mization see for example [Ehr05]. We consider the following bicriterial problem:

min
(β,β0)∈Rk+1

f(β, β0), (Pbi)

where f = (f1, f2) with

f1(β, β0) = ||y − [Xe]

Ñ

β

β0

é

||1

and

f2(β, β0) = ||β||1.

This means that f1 represents the LAD-part of the problem while f2 represents

its LASSO-part. These two objective functions are conflicting with each other:

Obviously, for f2 it would be best to chose β equal to zero, but that could lead

to a very bad function value of f1. Therefore it is not obvious how to define an

“optimal” solution for the bicriterial problem. In multicriterial optimization, the

concept of so called Pareto optimal solutions is often used.

Definition II.0.4. ([Ehr05]) A solution b∗ = (β∗, β0
∗)t ∈ R

k+1 is called Pareto

optimal to (Pbi) if there is no b = (β, β0)
t ∈ R

k+1 such that fi(b) ≤ fi(b
∗), i = 1, 2,

and fi(b) < fi(b
∗) for an i ∈ {1, 2}.

Furthermore, it is often distinguished between weakly Pareto optimal points and

strictly Pareto optimal points. Therefore we introduce these notions as well.

Definition II.0.5. ([Ehr05]) b∗ = (β∗, β0
∗) ∈ R

k+1 is called weakly Pareto opti-



II. AN EXCURSION TO STATISTICS: RLAD REGRESSION AND
ITS RELATION TO LOCATING LINES AND HYPERPLANES 45

mal if there is no b = (β, β0) ∈ R
k+1 such that f(b) < f(b∗), i.e. fi(b) < fi(b

∗) for

i = 1, 2.

b∗ = (β∗, β0
∗) ∈ R

k+1 is called strictly Pareto optimal if there is no b = (β, β0) ∈

R
k+1, b 6= b∗ such that f(b) ≤ f(b∗).

In multicriterial optimization, there exist several concepts of how to find Pareto

optimal solutions. One of these concepts is the so called weighted sum scalarization.

If we look at our problem (Pbi), weighted sum scalarization works like this: Instead

of looking at our bicriterial problem (Pbi) we now put a nonnegative weight λi ∈

R+, i = 1, 2, on each of our functions f1 and f2 and minimize the weighted sum

of these two functions. Let Λ = (λ1, λ2) ∈ R
2
+ be the vector of weights, then the

weighted sum scalarization of our problem (Pbi) looks like this:

min
(β,β0)t∈Rk+1

λ1 · f1(β, β0) + λ2 · f2(β, β0). (P (Λ))

Note that if we put λ1 = 1 and λ2 = λ with λ ≥ 0 we get exactly the prob-

lem (PRLAD(λ)). Now we can use the following theorem to identify the optimal

solutions to the RLAD problem as weakly Pareto optimal solutions for (Pbi).

Theorem II.0.7. ([Ehr05]) Let (Pbi) be a bicriterial problem and (P (Λ)) the cor-

responding sum scalarization problem. If the objective space of (P (Λ)) is convex

and λ ∈ R
2
+ \{0}, then the optimal solutions for (P (Λ)) are weakly Pareto optimal

solutions for (Pbi).

The assumptions of this theorem are satisfied by our problem (PRLAD(λ)) since

the objective space is obviously convex and Λ = (1, λ) with λ ≥ 0 is an element of

R
2
+ \ {0}. As we already mentioned this problem is a weighted sum scalarization

of our problem (Pbi), therefore the optimal solutions to (PRLAD(λ)) are weakly

Pareto optimal for (Pbi).

Another concept for finding Pareto optimal solutions is the ǫ-constraint method.

It was introduced by [HLW71]. Applying this method to our problem (Pbi), we

only minimize one of the two functions f1 and f2 whereas a constraint is put on

the other one. In our case, we are interested in minimizing f1 while putting a
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constraint on f2. The resulting problem looks like this:

min f1(β, β0) (P (ǫ))

s.t. f2(β, β0) ≤ ǫ,

where ǫ ∈ R. The next theorem shows that we can find optimal solutions to

(PRLAD(λ)) for arbitrary λ ≥ 0 by solving (P (ǫ)) for every ǫ ≥ 0.

Theorem II.0.8. (see e.g. [Ehr05])

a) Suppose (β̂, β̂0) is a solution to min
(β,β0)∈Rk+1

λ1 · f1(β, β0) + λ2 · f2(β, β0).

If λ1 > 0 there exists a ǫ̂ so that (β̂, β̂0) solves the problem (P (ǫ)).

b) If (β̂, β̂0) solves the problem (P (ǫ̂)) there exists a Λ ∈ R
2
+ \{0} so that (β̂, β̂0)

solves the problem (P (Λ)).

Since in our problem (PRLAD(λ)) we have λ1 = 1 fixed, this theorem ensures that

we are able to find optimal solutions to (PRLAD(λ)) with λ ≥ 0 by solving (P (ǫ))

with a certain ǫ.

If we now name the constraint s instead of ǫ, we know that the following problem is

an equivalent formulation of (PRLAD(λ)), therefore we will denote it by (PRLAD(s)):

min ||y − [Xe]

Ñ

β

β0

é

||1 (PRLAD(s))

s.t. ||β||1 ≤ s

with s ≥ 0. Every optimal solution to (PRLAD(s)) corresponds to an optimal

solution to (PRLAD(λ)) with a certain λ.

Let us now consider (PRLAD(s)) for k = 1, e.g. there exists only one predictor

variable x and therefore only one coefficient β ∈ R. We assume again that we

obtain n samples. Let y = (y1, . . . , yn) be the vector of observations for the
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response variable and x = (x1, . . . , xn) the vector of observations for the predictor

variable. We get the optimization problem

min ||y − xβ − eβ0||1 (PRLAD(s))

s.t. |β| ≤ s

or equivalently

min
n∑

i=1

|yi − βxi − β0| (PRLAD(s))

s.t. |β| ≤ s

with s ≥ 0.

This is the problem of locating a RLAD regression line lβ,β0 in the plane with a

restriction on the slope, namely |β| ≤ s, in such a way that the sum of vertical dis-

tances to a given set of data points {(x1, y1), . . . , (xn, yn)} is minimized. This corre-

sponds exactly to our problem of locating a line with vertical distance and a restric-

tion on the slope. If we let β = a and b = β0 as well as E = {(x1, y1), . . . , (xn, yn)}

then (PRLAD(s)) and (Pver(s)) are identical problems. In fact, (Pver) and (PLAD)

are identical as well. Therefore the solution path we provided for (Pver(s)) in

Chapter I is also a solution path for RLAD regression with k = 1.

Note that for the RLAD regression, Theorem I.2.4 in Section I.2 is particularly

interesting. As we mentioned earlier in this chapter, statisticians are interested in

solving (PRLAD(s)) for any s ≥ 0 since it is not clear how to choose s in order to

get a good estimator in the first place. Having Theorem I.2.4 at hand, it is still

not clear how to choose s but at least we can be sure that our RLAD regression

line has the same sign in slope as a LAD regression line no matter how we choose

the s.

Up to now we only stressed the equivalence between the problem of finding a

RLAD regression line and the problem of locating a line with a restriction on the

slope. Comparing (PRLAD(s)) for arbitrary k to the formulation of the hyperplane
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location problem with a restriction on the slope (Pver(s)) in Chapter V, it is easy

to see that the above equivalence holds for any k. In other words, the problem of

locating a RLAD regression hyperplane is equivalent to the problem of locating

a hyperplane with a restriction on the slope using the vertical distance. This is

not a surprise since the location of a hyperplane with a restriction on the slope is

a generalization of the problem of locating a line with a restriction on the slope.

Nevertheless, it is a nice fact that the solution path we construct in Section V.4 is

a solution path for RLAD regression in the R
k+1 as well.



Chapter III

Locating lines with a restriction

on the slope using horizontal

distance

In Chapter I we dealt with line location using vertical distance when there is a

restriction on the slope of the line. As we already mentioned we want to look

at line location problems using different kinds of distances. In this chapter, we

consider line location problems with horizontal distance dhor and a restriction on

the slope.

Our aim is to provide a solution path like we did for (Pver(s)). Therefore we

first introduce the horizontal distance and the problem that we will consider. We

will see that there is a strong connection between the horizontal distance and the

vertical distance which we can put to account in order to apply the results we

have presented in Chapter I. This is why we will analyse the relationship between

line location with vertical distance and line location with horizontal distance when

there is a restriction on the slope in both cases.

49
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III.1 Locating lines with horizontal distance and

a restriction on the slope

We start with the definition of the horizontal distance between two points as well

as between a point and a line.

Definition III.1.1. (See for example [Sch99])

Let x, y ∈ R
2. Then we define the horizontal distance between x and y as

dhor(x, y) =







|y1 − x1| if x2 = y2

∞ otherwise.

The horizontal distance between a point x ∈ R
2 and a line l we define as

dhor(x, l) = min
y∈l

dhor(x, y)

Note that for a horizontal line l = l0,b = {(x, y) : y = b}, the horizontal distance

between a point x and the line l is either dhor(x, l) = 0 if the line passes through

x or dhor(x, l) = ∞ else.

Let again E = {(x1, y1), . . . (xn, yn)} be the set of existing facilities. The problem

of locating a line using horizontal distance can be formulated as

min
n∑

i=1

dhor((xi, yi), l).

A horizontal line cannot be optimal for this problem unless all existing facilities

are lying on a horizontal line, in other words all existing facilities share the same

second coordinate yi = y for all i ∈ {1, . . . , n}. In this special case, the horizontal

line l0,y is optimal. Since this case is trivial we will neglect it in the following.

Furthermore, we assume that no vertical line is optimal for this problem. Our

next step will be to reformulate our problem and it will become clear that this

assumption corresponds to the one we already made in Chapter I, namely that

there exists no horizontal line which is optimal to the unrestricted vertical problem

in the rotated plane. We will see later on that this assumption is not a restriction
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Figure III.1.1. An example with three existing facilities and an optimal solution
l∗ for the unrestricted problem (Phor).

since we would be able to find an optimal line that is vertical if there existed one.

As we already mentioned, there is a strong connection between the horizontal and

the vertical distance.

Let x̃ = (x, y) ∈ R
2 and let la,b be a non-vertical-line with slope a and intercept

b. Assume that we rotate the whole coordinate system counterclockwise by 90◦

about the origin. This rotation transforms (x, y) to (−y, x) and la,b to l− 1
a

,− b
a
.

It is easy to see that the horizontal distance between a point (x, y) and a line

la,b is equivalent to the vertical distance between the corresponding point and the

corresponding line in the rotated system. Therefore the following equations hold

for the horizontal distance (see also e.g. [Sch99]):

dhor(x̃, la,b) = dver

(

(−x2, x1), l− 1
a

,− b
a

)

= |x1 −
x2

a
+

b

a
|

= |
1

a
(x2 − ax1 − b)|

=
1

|a|
dver(x̃, la,b).
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The unrestricted problem of locating a line with horizontal distance can now be

reformulated like this:

min fhor(a, b) = min
n∑

i=1

dhor((xi, yi), la,b) (Phor)

= min
1

|a|

n∑

i=1

dver((xi, yi), la,b)

= min
n∑

i=1

dver((−yi, xi), l− 1
a

,− b
a
)

= min
n∑

i=1

dver((−yi, xi), lα,β)

with α = −1
a

and β = − b
a
.

We will denote the vertical problem in the rotated system corresponding to (Phor)

by

min fver(α, β) = min
n∑

i=1

dver((−yi, xi), lα,β) (P̃ver)

and its set of optimal solutions by

M̃opt
ver = {(α∗, β∗) : fver(α

∗, β∗) ≤ fver(α, β) ∀(α, β) ∈ R
2}.

Remember that we made the assumption that no vertical line is optimal to (Phor).

With the corresponding vertical problem in the rotated system at hand, it is easy

to see why this assumption corresponds to the one that there exists no horizontal

line which is optimal to the unrestricted vertical problem we made in Chapter I:

Assuming that no vertical line is optimal for (Phor) is equivalent to assuming that

there is no horizontal line that is optimal for (P̃ver) in the rotated system.

We can now treat the unrestricted problem of locating a line with horizontal dis-

tance as the unrestricted problem of locating a line with vertical distance in the

plane rotated counterclockwise by 90◦. We can use the dual space of the rotated

plane to find an optimal solution for (P̃ver) and retransform the point first to the
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rotated plane and then back to the unrotated plane where we get an optimal line

for (Phor). Theorem I.2.3 provides us what we need to easily prove the following

theorem.

Theorem III.1.1. Let Mopt
hor := {(a∗, b∗) : fhor(a

∗, b∗) ≤ fhor(a, b)∀(a, b) ∈ R
2}

and let no vertical line be optimal for (Phor). Then either a∗ > 0 holds for all

(a∗, b∗) ∈ Mopt
hor or a∗ < 0 holds for all (a∗, b∗) ∈ Mopt

hor.

Proof. We already know that (Phor) and (P̃ver) are equivalent with α = −1
a

and

β = − b
a
. Since there is no optimal line for (Phor) that is vertical, there exists no

optimal solution to (P̃ver) with α = 0.

Assume there exist (a∗, b∗), (â, b̂) ∈ Mopt
hor satisfying a∗ > 0 and â < 0, respectively.

This corresponds to (α∗, β∗), (α̂, β̂) ∈ M̃opt
ver satisfying α∗ < 0 and α̂ > 0. Since

(P̃ver) is a convex problem, it holds that

λ(α̂, β̂) + (1 − λ)(α∗, β∗) ∈ M̃opt
ver ∀ λ ∈ (0, 1).

Choose λ := − α∗

α̂−α∗ . It can easily be shown that λ ∈ (0, 1) and therefore (0, β ′) ∈

M̃opt
ver with β ′ = λβ̂ +(1−λ)β∗. But this means that there exists a vertical line that

is optimal for the problem (Phor), which is a contradiction to our assumption.

Up to this point, we know how to handle the horizontal problem. But again, we

are interested in the problem of locating a line with horizontal distance when there

is a restriction on the slope. This problem can now be formulated as

min fhor(a, b) = min
n∑

i=1

dhor((xi, yi), la,b) (Phor(s))

s.t. |a| ≤ s

where s ≥ 0.

If we want to reformulate this problem again as a problem with vertical distance,

we can look at the rotated coordinate system as we did before. What we get is
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the following problem:

min fhor(a, b) = min
n∑

i=1

dver((−yi, xi), l− 1
a

,− b
a
)

s.t. |a| ≤ s

with s ≥ 0 or equivalently

min fver(α, β) = min
n∑

i=1

dver((−yi, xi), lα,β) (P̃ver(s̃))

s.t. |α| ≥ s̃

with α = −1
a
, β = − b

a
and s̃ = 1

s
.

Unfortunately, what we get is not longer a convex problem. While the objective

function of (P̃ver(s̃)) is again convex, the constraint is not convex any more. There-

fore we are not able to apply our results of Section I.2 to solve this problem in

contrast to the unrestricted case.

However, we are still able to prove that the solution path of a horizontal problem

shares most of the properties that characterize the solution path of a vertical

problem. Before we do that, we want to point out that the assumption that there

exists no vertical line optimal to (Phor) is indeed no restriction.

If we want to solve (Phor(s)) for any s ≥ 0 we start with s = 0 and let s grow.

Therefore it makes sense to start with s̃ = ∞ if we want to solve (P̃ver(s̃)) for any

s̃ ≥ 0 since s̃ = ∞ corresponds to s = 0. With growing s we let the corresponding

s̃ shrink and solve (P̃ver(s̃)) in order to get solutions for (Phor(s)). We do this until

we get an optimal solution for the unrestricted problem (Phor). But this problem

corresponds to (P̃ver(0)) and therefore we would indeed be able to find an optimal

solution (α∗, β∗) with α∗ = 0 if there existed one. This type of solution would

correspond to a vertical line optimal for (Phor) which means that we would be able

to find a vertical line optimal to (Phor) if there existed one.
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Now we want to show that most of the properties characterizing the solution path

of a problem with vertical distance still hold for the solution path of a problem with

horizontal distance. We start with the following property that finds its counterpart

in the vertical case in Theorem I.2.1.

Theorem III.1.2. There exists a line optimizing (Phor(s)) that passes through at

least one of the given facilities.

Proof. (Phor(s)) is equivalent to (P̃ver(s̃)). If we consider the dual space of the

rotated coordinate system, we still have a cell structure given through the lines

corresponding to the existing facilities and the two vertical lines corresponding

to the given restriction. Even though the constraint is not convex any more, the

objective function fver is still convex and piecewise linear on each cell. Therefore

there exists an optimal solution (α∗, β∗) that is a vertex of a cell. Such a vertex

can be the intersection of two lines corresponding to existing facilities or of a line

corresponding to an existing facility and a line corresponding to a restriction. In

either case such a vertex corresponds to a line passing through at least one of the

existing facilities in the rotated coordinate system. Since (P̃ver(s̃)) and (Phor(s))

are equivalent, this gives us a line that is optimal for (Phor(s)) in the unrotated

coordinate system which still passes through one of the existing facilities.

Next we want to show that all lines optimal for (Phor(s)) with s > 0 are pseudo-

halving which means that Theorem I.2.2 still holds in the horizontal case excluding

s = 0. We have to exclude the case s = 0 because all horizontal lines are optimal

with an objective function value equal to ∞ if not all of the existing facilities are

located on a horizontal line. If all the existing facilities are located on a horizontal

line, this line is of course optimal and it is obviously pseudo-halving as well. In

either case, for s = 0 one can find optimal solutions that are pseudo-halving but

it is not true in general that all optimal lines are pseudo-halving.

In order to prove that Theorem I.2.2 holds for s > 0 we will first prove the following

lemma.

Lemma III.1.1. Let E = {(x1, y1), . . . , (xn, yn)} be the set of existing facilities

and let la,b be a line. Let furthermore Ẽ = {(−y1, x1), . . . , (−yn, xn)} be the set of

rotated existing facilities and let lα,β be the rotated version of la,b.
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If la,b is pseudo-halving in the unrotated coordinate system, then lα,β is pseudo-

halving in the rotated coordinate system and vice versa.

Proof. Assume that

yi > axi + b

for an (xi, yi) ∈ E . This means that the point (xi, yi) lies above the line la,b in the

unrotated plane. This is equivalent to

xi < α(−yi) + β,

meaning that the point (−yi, xi) lies below the corresponding line lα,β in the rotated

plane. In the same way it can be shown that a point lying below a line in the

unrotated plane corresponds to a point lying above the corresponding line in the

rotated plane. It therefore holds that

|R(la,b)| = |L(lα,β)|

and

|L(la,b)| = |R(lα,β)|.

By definition of a pseudo-halving line the lemma follows.

Using the previous lemma we can prove the following theorem.

Theorem III.1.3. A line l∗ optimal for (Phor(s)) with s > 0 is pseudo-halving.

Proof. Note that in the proof of Theorem I.2.2 we did not use the fact that |a| ≤ s.

Therefore we can show that any optimal solution to (P̃ver(s̃)) is pseudo-halving

using exactly the same proof with the slight difference that we assume |α| ≥

s̃. Lemma III.1.1 assures that a pseudo-halving line in the unrotated plane is

pseudo-halving if the corresponding line in the rotated plane is pseudo-halving.

Since (Phor(s)) and (P̃ver(s̃)) are equivalent, any optimal solution to (Phor(s))

corresponds to an optimal solution to (P̃ver(s̃)). Since any optimal solution to

(P̃ver(s̃)) with s̃ < ∞ is pseudo-halving, so is any optimal solution to (Phor(s))

with s > 0.
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Now we know that any optimal solution to our horizontal problem still has the

pseudo-halving property if s > 0 and that we can choose optimal solutions having

the pseudo-halving property if s = 0. In fact, up to now we have not found

significant differences between the solution path of the vertical problem and the

solution path of the horizontal problem. Unfortunately, this will change if we try

to prove a direct analogon of Theorem I.2.4. In order to prove this theorem we

used the fact that the vertical problem has a convex constraint. As we already

mentioned earlier, the horizontal problem is equivalent to a vertical problem with

non-convex constraint. In the horizontal case, it is not longer true that all optimal

solutions to (Phor(s)) have the same sign in slope as the optimal solutions to (Phor)

for any s > 0.

Example III.1.1. Let E = {(0, 0), (−3, 5), (1, 6)} be the set of given facilities. An

optimal solution for the unrestricted problem (Phor) is (6, 0) which means in other

words that the line l6,0 with slope 6 and intercept 0 is optimal for (Phor). Theorem

III.1.1 provides that all lines that are optimal for (Phor) have positive slope. If we

look at the problem (Phor(1)) now, it turns out that an optimal solution is (−1, 2)

or the line l−1,2 with slope −1 and intercept 2, respectively. Therefore an analogon

of Theorem I.2.4 cannot hold. In fact it has not even to be true that the slope of

all optimal lines of a restricted problem (Phor(s)) with a fixed s share the same

sign. If we look at (Phor(
1
2
)) we find out that (−1

2
, 7

2
) and (1

2
, 11

2
) are both optimal

solutions while they definitely do not share the same sign in slope.

Like the previous example already suggests if you look at it closely, even if we are

not able to prove a direct counterpart of Theorem I.2.5, we fortunately are able

to prove a theorem that is closely related to Theorem I.2.5. In order to do so, we

first prove the following lemma.

Lemma III.1.2. For any problem (P̃ver(s̃)) with s̃ ≥ α∗ := max{|α| : (α, β) ∈

M̃opt
ver} it holds that all optimal solutions (α∗(s̃), β∗(s̃)) satisfy |α∗(s̃)| = s̃.

Proof. Without loss of generality let α ≥ 0 for all (α, β) ∈ M̃opt
ver and let s̃ ≥ α∗ :=

max{|α| : (α, β) ∈ M̃opt
ver}.

Assume there exists a (α̂, β̂) ∈ M̃opt
ver(s̃) with |α̂| 6= s̃ meaning that either α̂ > s̃ or

α̂ < −s. If s̃ = α∗ either of these cases is a contradiction to the choice of α∗.
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Let now be s̃ > α∗. If α̂ > s̃ there exists a λ ∈ (0, 1) in such a way that

λα∗ + (1 − λ)α̂ = s̃

since we assumed that α∗ < s̃. We know that fver is convex, therefore the following

inequalities hold:

fver(λα∗ + (1 − λ)α̂, λβ∗ + (1 − λ)β̂) ≤ λfver(α
∗, β∗) + (1 − λ)fver(α̂, β̂)

< λfver(α̂, β̂) + (1 − λ)fver(α̂, β̂)

= fver(α̂, β̂).

This is a contradiction to the optimality of (α̂, β̂) since (λα∗ + (1 −λ)α̂, λβ∗ + (1 −

λ)β̂) is feasible for (P̃ver(s̃)).

If â < −s̃ there exists a λ ∈ (0, 1) in such a way that

λα̂ + (1 − λ)α∗ = −s̃

since we assumed that α∗ > −s̃. Again we have

fver(λα̂ + (1 − λ)α∗, λβ̂ + (1 − λ)β∗) ≤ λfver(α̂, β̂) + (1 − λ)fver(α
∗, β∗)

< λfver(α̂, β̂) + (1 − λ)fver(α̂, β̂)

= fver(α̂, β̂)

due to the convexity of fver. Once more this contradicts the optimality of (α̂, β̂)

since (λα̂ + (1 − λ)α∗, λβ̂ + (1 − λ)β∗) is feasible for (P̃ver(s̃)).

This lemma enables us to prove the following theorem.

Theorem III.1.4. For any problem (Phor(s)) with s ≤ a∗ := min{|a| : (a, b) ∈

Mopt
hor} it holds that all optimal solutions (a∗(s), b∗(s)) satisfy |a∗(s)| = s.

Proof. Again we can use the fact that (Phor(s)) corresponds to (P̃ver(s̃)).
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Figure III.1.2. Let E = {(−1, 2), (1, 3
2 ), (2, −3)}. The solid line segments give the

solution path for the horizontal case. The path runs along the path of pseudo-halving
lines in the negative direction until it ends in the optimal solution (a∗, b∗).

Lemma III.1.2 provides that for any s̃ ≥ α∗ := max{|α| : (α, β) ∈ M̃opt
ver} all

optimal solutions (α∗(s̃), β∗(s̃)) to (P̃ver(s̃)) satisfy |α∗(s̃)| = s̃.

Since s̃ = 1
s

and α = −1
a
, s̃ ≥ α∗ corresponds to s ≤ a∗ := min{|a| : (a, b) ∈ Mopt

hor}.

Furthermore we know that any optimal solution (α∗(s̃), β∗(s̃)) to (P̃ver(s̃)) corre-

sponds to an optimal solution (a∗(s), b∗(s)) to (Phor(s)). The fact that all optimal

solutions (α∗(s̃), β∗(s̃)) to (P̃ver(s̃)) satisfy |α∗(s̃)| = s̃ therefore corresponds to the

statement that all optimal solutions to (Phor(s)) satisfy |a∗(s)| = s. This is exactly

what we wanted to show.

The previous theorem assures that all optimal solutions to any restricted horizontal

problem that excludes all optimal solutions to the unrestricted problem as well as

all optimal solutions to the restricted horizontal problem (P (a∗)) that allows an

optimal solution to the unrestricted problem for the first time have to lie on the

boundary of the set of feasible solutions. In contrast to the vertical case we do not

know the sign of the slope of an optimal solution for a restricted horizontal problem

in the first place as we already noticed in Example III.1.1. This means that the

solution path can “jump” from one side of the b-axis to the other one and back

again at some points that we still have to determine. Figure III.1.2 and Figure

III.1.3 show two different types of solution paths for the horizontal problem. In
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Figure III.1.3. Let E = {(0, 0), (−3, 5), (1, 6)}. The solid line segments give the
solution path for the horizontal case. There are two values of s where the sign of
the slope of optimal solutions of (Phor(s)) changes, namely s = 1

2 and s = 4.

Figure III.1.2 there are no jumps, the solution path starts at a = 0 and runs into

the direction of the optimal solution (a∗, b∗) = (−5
3
, 1

5
) of the unrestricted problem

following the path of pseudo-halving lines. As a matter of fact the solution path

of the horizontal problem is identical to the one of the vertical problem (compare

Figure I.2.5).

In Figure III.1.3 there are two points at which the solution path jumps from one

side of the b-axis to the other one. It starts at a = 0 and runs into the direction

of the optimal solution (a∗, b∗) = (6, 0) until s = 1
2
. Then the path continues

from s = −1
2

in the negative direction until s = 4. Now the path jumps again to

the other side of the b-axis running there until (a∗, b∗) is reached. Note that all

the time the path follows the path of pseudo-halving lines. We summarize this

observations in the following lemma.

Lemma III.1.3. There need not exist a continuous optimal trajectory for the

problem (Phor(s)).

Proof. Since III.1.3 provides an example for a problem with no continuous optimal

trajectory there is nothing left to prove.

Up to now, all we know is that the optimal solutions to (Phor(s)) might change

their sign in slope at some point, but we do not know where this point actually
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is. Therefore we will show how to find out whether or not the sign changes and if

so where it changes in the following. Again we will use (P̃ver) and its dual space.

Afterwards we will give examples in order to clarify our approach.

Look at (P̃ver). Without loss of generality assume that all optimal solutions of

(P̃ver) have positive slope.

Let (α̂, β̂) ∈ M̃opt
ver in such a way that α̂ := max{α : (α, β) ∈ M̃opt

ver}. Since

(α̂, β̂) ∈ M̃opt
ver it holds that fver(α̂, β̂) ≤ fver(−α̂, β̄) for all β̄ such that (−α̂, β̄)

corresponds to a pseudo-halving line. If the number of existing facilities is even,

let (−α̂, β̄) be the unique point lying on the lower median path at −α̂. We know

that a solution path of the rotated problem (P̃ver) has to start in (α̂, β̂).

Let

S := {(α, β) : |α| ≥ α̂, (α, β) is the intersection of l−yi,xi
and l−yj ,xj

}

with (xi, yi) 6= (xj , yj) ∈ E . Since E is of finite cardinality S has to be of finite

cardinality as well. Assume S = {(α1, β1), . . . (αk, βk) : k ∈ N} and assume

additionally that S is sorted in such a way that

|α1| < |α2| < . . . < |αk|.

We now want to look at the intervals

[α̂, |α1|), [|α1|, |α2|), . . . , [|αk−1|, |αk|), [αk, ∞)

as well as

(−∞, −|αk|], (−|αk|, −|αk−1|], . . . , (−|α2|, −|α1|], (−|α1|, −|α̂|].

On each of these intervals no other two lines corresponding to existing facilities

intersect. Therefore all points (α, β) with α in the same interval lying on the

median path or the lower median path if the number of existing facilities is even

belong to the same cell. The median path on such an interval can therefore be

described by a line l−y,x corresponding to one of the existing facilities. Since we

want to know whether the optimal solutions of (P̃ver(s̃)) change signs in slope we
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have to compare the objective function values of (s̃, β) and (−s̃, β ′) where (s̃, β)

and (−s̃, β ′) are points lying on the (lower) median path. If we want to know how

the value of the objective function changes with growing s̃, all we have to know

is how β and β ′ change, respectively, since we know that |α| = s̃ for all optimal

solutions. Since we can describe the (lower) median path by a line on each interval,

we can easily compute how β and β ′ change with growing s̃ and therefore how the

optimal value of the objective function changes on an interval as described below:

Remember that we already know that fver(α̂, β̂) ≤ fver(−α̂, β̄). If we now know

how the value of the objective function changes on [α̂, |α1|) and (−|α1|, −|α̂|],

respectively, we can tell whether the solution path will jump to the other side of the

b-axis or not: If the value increases faster on the interval (−|α1|, −|α̂|] than on the

interval [α̂, |α1|) there cannot be a solution to (P̃ver(s̃)) with s̃ ∈ (−|α1|, −|α̂|]. In

other words, the solution path will not jump from one side of the b-axis to the other

one on this interval. If the value increases faster on the interval [α̂, |α1|) than on the

interval (−|α1|, −|α̂|] there exist two possibilities: Either the length of the intervals

is big enough such that there exists an s̃ ∈ [α̂, |α1|) with fver(s̃, β̄) = fver(−s̃, β̄ ′).

This would mean that the solution path jumps to the other side of the b-axis. Or

the length of the intervals is not big enough such that there exists a s̃ ∈ [α̂, |α1|)

with fver(s̃, β̄) = fver(−s̃, β̄ ′). Then again the path would not jump.

Now that we know whether

fver(α1, β̄) ≤ fver(−α1, β̄ ′)

or

fver(α1, β̄) ≥ fver(−α1, β̄ ′)

we can do the same for the intervals [|α1|, |α2|) and (−|α2|, −|α1|] and so on. By

doing so, we get all points at which the solution path for the rotated problem

jumps from one side of the β-axis to the other one. Retransforming this to the

solution path of the horizontal problem this gives us all points at which the path

jumps from one side of the b-axis to the other one.

Let us now look at the following examples.

Example III.1.2. Let E = {(−1, 2), (1, 3
2
), (2, −3)}. Note that these are the same
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existing facilities as in Figure III.1.2, therefore we already know that the solution

path of the horizontal problem has no jumps in it. We now want to verify this

using the approach as described above.

In the rotated coordinate system we have Ẽ = {(−2, −1), (−3
2
, 1), (3, 2)}. The opti-

mal solution to the unrestricted problem is given by (3
5
, 1

5
). The set of intersections

S as defined above is

S = {(
3

5
,
1

5
), (4, 7)}.

Therefore we will look at the intervals

[
3

5
, 4), [4, ∞), (−∞, −4] and (−4, −

3

5
].

We know that fver(
3
5
, 1

5
) ≤ fver(−

3
5
, 1

10
), which means that the solution path starts

in the point (3
5
, 1

5
). Since all intersections have a positive α-value the median path

corresponding to lines with a negative slope α can be represented by a single line on

the whole interval (−∞, −3
5
], namely l 3

2
,1. If s̃ grows by ∆s̃ then β̄ will therefore

grow by ∆s̃ · (−3
2
). The new point on the median path can therefore be calculated

by

(αnew, β̄new) = (−(
3

5
+ ∆s̃),

1

10
− ∆s̃ ·

3

2
).

This enables us to calculate how the function value will change on the interval

(−∞, −3
5
] with growing s̃:

fver(αnew, β̄new) = fver(−(
3

5
+ ∆s̃),

1

10
− ∆s̃ ·

3

2
)

= fver(−
3

5
,

1

10
) − ∆s̃ · (

∑

i∈L

xi −
∑

i∈R

xi)

+ ∆s̃ · (−
3

2
) · (|L| − |R|).

In other words, if s̃ grows by ∆s̃ the function value will grow by
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∆fver

∆s̃
=
∑

i∈L

xi −
∑

i∈R

xi

= −(−2 − 3) = 5

since |L| = |R| = 1.

Now that we know how the value of the objective function behaves on the interval

(−∞, −3
5
] we have to focus on the positive intervals. We will start with the interval

[ 3
5
, 4). On this interval, the median path can be represented by the line l2,−1. If s̃

grows by ∆s̃ then β̄ will therefore grow by ∆s̃ · 2. The new point on the median

path can therefore be calculated by

(αnew, β̄new) = (
3

5
+ ∆s̃,

1

5
+ ∆s̃ · 2).

Again we can compute how the function value will change on this interval with

growing s̃:

fver(αnew, β̄new) = fver(
3

5
+ ∆s̃,

1

5
+ ∆s̃ · 2)

= fver(
3

5
,
1

5
) + ∆s̃ · (

∑

i∈L

xi −
∑

i∈R

xi) + ∆s̃ · 2 · (|L| − |R|).

If s̃ grows by ∆s̃ the function value will grow by

∆fver

∆s̃
=
∑

i∈L

xi −
∑

i∈R

xi

= 3 − (−
3

2
) =

9

2
.
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But this means that the value of the objective function on the interval (−4, −3
5
]

increases faster than on the interval [ 3
5
, 4), therefore the solution path will not

jump to the other side of the b-axis on this interval.

All that is left to do is to look at the interval [4, ∞) and do the same analysis as

above. On this interval, the median path can be represented by the line l 3
2

,1 again.

It is easy to see that we start with the point (4, 7). The considerations we already

did before tell us that

fver(4, 7) ≤ fver(−4, −5)

This time β̄ will grow by ∆s̃ · 3
2

if s̃ grows by ∆s̃. The new point on the median

path can now be calculated by

(αnew, β̄new) = (4 + ∆s̃, 7 + ∆s̃ ·
3

2
).

One more time we can compute how the function value will change on the interval

with growing s̃:

fver(αnew, β̄new) = fver(4 + ∆s̃, 7 + ∆s̃ ·
3

2
)

= fver(4, 7) + ∆s̃ · (
∑

i∈L

xi −
∑

i∈R

xi) + ∆s̃ ·
3

2
· (|L| − |R|).

and therefore

∆fver

∆s̃
=
∑

i∈L

xi −
∑

i∈R

xi

= 3 − (−2) = 5.

But this means that the value of the objective function on the interval (−∞, −4] in-

creases with the same rate as on the interval [4, ∞). Since fver(4, 7) ≤ fver(−4, −5)

the solution path will again not jump to the other side of the b-axis on this interval.
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Putting these considerations together and retransforming it to the dual space of

the unrotated problem we get exactly what we already knew from Figure III.1.2:

The solution path of this horizontal problem has no jumps in it. It starts at s = 0

running into the negative direction until it reaches the optimal solution (−5
3
, 1

3
).

Example III.1.3. Let now E = {(0, 0), (−3, 5), (1, 6)}. Note that these are the

same existing facilities as in Figure III.1.3, therefore we already know that the

optimal solutions to (Phor(s)) will change signs in slope at s = 1
2

and again at

s = 4. Again we want to verify this using the approach as described above.

In the rotated coordinate system we have Ẽ = {(0, 0), (−5, −3), (−6, 1)}. The

optimal solution to the unrestricted problem (P̃ver) is given by (−1
6
, 0). The set of

intersections S as defined above is

S = {(−
1

6
, 0), (

3

5
, 0), (−4, −23)}.

Therefore we will look at the following intervals:

[
1

6
,
3

5
), [

3

5
, 4), [4, ∞)

and

(−∞, −4], (−4, −
3

5
], (−

3

5
, −

1

6
].

We know that

fver(−
1

6
, 0) =

23

6
≤

25

6
= fver(

1

6
, 0)

which means that the solution path starts in the point (−1
6
, 0). First we look at the

intervals [ 1
6
, 3

5
) and (−3

5
, −1

6
]. The median path on [ 1

6
, 3

5
) can be represented by l0,0.

Therefore β̄ stays the same on this interval no matter how s̃ grows. This means

that only α changes as s̃ grows, the new point on the median path is

(αnew, β̄new) = (
1

6
+ ∆s̃, 0).
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As in Example III.1.2, this enables us to calculate how the function value will

change on the interval (1
6
, 3

5
] with growing s̃:

fver(αnew, β̄new) = fver(
1

6
+ ∆s̃, 0)

= fver(
1

6
, 0) + ∆s̃ · (

∑

i∈L

xi −
∑

i∈R

xi).

In other words, if s̃ grows by ∆s̃ the function value will grow by

∆fver

∆s̃
=
∑

i∈L

xi −
∑

i∈R

xi

= −5 − (−6) = 1.

On the interval (−3
5
, −1

6
], the median path can be represented by l6,1. If s̃ grows by

∆s̃ then β̄ will therefore grow by ∆s̃ · (−6).

The new point on the median path can be calculated by

(αnew, β̄new) = (−(
1

6
+ ∆s̃), 0 − ∆s̃ · 6).

We compute how the function value will change on this interval with growing s̃:

fver(αnew, β̄new) = fver(−(
1

6
+ ∆s̃), 0 − ∆s̃ · 6)

= fver(−
1

6
, 0) − ∆s̃ · (

∑

i∈L

xi −
∑

i∈R

xi)

+ ∆s̃ · (−6) · (|L| − |R|),

meaning that if s̃ grows by ∆s̃ the function value will grow by

∆fver

∆s̃
=
∑

i∈L

xi −
∑

i∈R

xi

= −(−5 − 0) = 5.
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This shows that the value of the objective function increases much faster on the

interval (−3
5
, −1

6
] than on the interval [ 1

6
, 3

5
). We want to find out if there exists an

s̃ ∈ [ 1
6
, 3

5
) in such a way that (P̃ver(s̃)) has an optimal solution with positive α. To

put it in other words, we want to find out if there exists a ∆s̃ so that s̃+∆s̃ ∈ [ 1
6
, 3

5
)

and

fver(−(
1

6
+ ∆s̃), −∆s̃ · 6) = fver(

1

6
+ ∆s̃, 0)

⇔
23

6
+ ∆s̃ · 5 =

25

6
+ ∆s̃ · 1

⇔ ∆s̃ =
1

12
.

Since 1
6

+ 1
12

= 1
4

∈ [ 1
6
, 3

5
) and because of the rates with which the values of the

objective function increase on the intervals [ 1
6
, 3

5
) and (−3

5
, −1

6
], respectively, we

know that the solution path has to jump from the point (−1
4
, −1

2
) to the point (1

4
, 0)

in order to run in positive direction from there.

Now we know that

fver(
3

5
, 0) =

23

5
≤ 6 = fver(−

3

5
, −

13

5
)

which means that the solution path starts for s̃ ∈ [ 3
5
, 4) in the point (−1

6
, 0). Next

we have to look at the intervals [ 3
5
, 4) and (−4, −3

5
]. The median path on [ 3

5
, 4) can

be represented by l5,−3. If s̃ grows by ∆s̃ then β̄ will therefore grow by ∆s̃ · 5. The

new point on the median path can therefore be calculated by

(αnew, β̄new) = (
3

5
+ ∆s̃, 0 + ∆s̃ · 5).

Now we calculate how the function value will change on the interval [ 3
5
, 4) with

growing s̃:
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fver(αnew, β̄new) = fver(
3

5
+ ∆s̃, 0 + ∆s̃ · 5)

= fver(
3

5
, 0) + ∆s̃ · (

∑

i∈L

xi −
∑

i∈R

xi)

+ ∆s̃ · 5 · (|L| − |R|),

which means that the function value will grow by

∆fver

∆s̃
=
∑

i∈L

xi −
∑

i∈R

xi

= 0 − (−6) = 6.

if s̃ grows by ∆s̃. On the interval (−4, −3
5
], the median path can still be represented

by l6,1. Therefore if s̃ grows by ∆s̃ the function value will still grow by ∆fver

∆s̃
= 5

as we already computed above.

This shows that the value of the objective function now increases faster on the

interval [ 3
5
, 4) than on the interval (−4, −3

5
]. We want to find out if there exists a

s̃ ∈ [ 3
5
, 4) in such a way that (P̃ver(s̃)) has again an optimal solution with negative α

meaning that we would have to jump back to the other side of the β-axis. Therefore

we check whether there exists a ∆s̃ so that s̃ + ∆s̃ ∈ [ 3
5
, 4) and

fver(−(
3

5
+ ∆s̃), −

13

5
− ∆s̃ · 6) = fver(

3

5
+ ∆s̃, 0 + ∆s̃ · 5)

⇔ 6 + ∆s̃ · 5 =
23

5
+ ∆s̃ · 6

⇔ ∆s̃ =
7

5
.

Since 3
5

+ 7
5

= 2 ∈ [ 3
5
, 4) and because of the rates with which the values of the

objective function increase on the intervals [ 3
5
, 4) and (−4, −3

5
], respectively, we

know that the solution path has to jump from the point (2, 7) to the point (−2, −11)

in order to run in negative direction from there.
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This again tells us that

fver(−4, −23) = 23 ≤ 25 = fver(4, 17)

which means that the solution path starts for s̃ ∈ [4, ∞) in the point (−4, −23).

What is left to do is to look at the intervals [4, ∞) and (−∞, −4]. The median

path on [4, ∞) can still be represented by l5,−3. Therefore if s̃ grows by ∆s̃ the

function value will still grow by ∆fver

∆s̃
= 6 as we already computed above. On the

interval (−∞, −4], the median path can be represented by l5,−3 as well. Therefore if

s̃ grows by ∆s̃ the function value will as well grow by ∆fver

∆s̃
= 6 like on the interval

[4, ∞). This shows that the value of the objective function on the interval (−∞, −4]

increases with the same rate as on the interval [4, ∞). Since fver(−4, −23) ≤

fver(4, 17) there are no more “jumps” in the solution path.

Retransforming these considerations to the solution path in the dual space of the

unrotated problem (Phor), we know that the solution path starts at s = 0 running

in the positive direction until s = 1
2
. There it jumps from the point (1

2
, 11

2
) to the

point (−1
2
, 7

2
) in order to continue in the negative direction. It keeps running in

negative direction until s = 4, then again it jumps from the point (−4, 0) to the

point (4, 2). From there it keeps running in positive direction until it reaches the

optimal solution (6, 0).

If we take a look at Figure III.1.3 we will notice that these results again correspond

exactly to the solution path shown there.

III.2 The relationship between line location us-

ing vertical distance and line location using

horizontal distance

As we have seen, there is a strong connection between the vertical and the horizon-

tal distance. Let again E = {(x1, y1), . . . , (xn, yn)} be the set of existing facilities.

Assume we want to locate a line with vertical distance and another one with hori-

zontal distance. In other words, we are searching for optimal solutions to (Pver(s))

and (Phor(s)), respectively. Is there any connection between the solutions of these
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two problems?

If we want to find an answer to this question one way to do so is to compare the

optimal trajectories of these problems. Fortunately, both trajectories run in the

same dual space, therefore it is convenient to compare them. Both solution paths

start with a horizontal line and then the absolute value of the slope increases until

we reach an optimal solution for (Pver) or (Phor), respectively.

In this section we want to conclude some statements about the relationship of line

location problems with vertical and horizontal distances and a restriction on the

slope. For the rest of this section, we assume without loss of generality that there

exists no horizontal line which is optimal to (Pver) as well as that there exists no

vertical line which is optimal to (Phor).

The first idea one might have is the following: Theorem I.2.3 states that all lines

optimal for (Pver) share the same sign in slope meaning that either all lines optimal

to (Pver) have positive slope or they all have negative slope. Theorem III.1.1 states

the same for all lines optimal for (Phor). It would be a nice property if all lines

optimal for (Pver) and all lines optimal for (Phor) shared the same sign in slope. For

the optimal trajectories that would mean that an optimal trajectory of the vertical

problem and one of the horizontal problem would end in the same half-space of the

dual space no matter how the trajectories behave if s ∈ (0, |â|) with (â, b̂) ∈ Mopt
hor.

In other words, even if the trajectory of the horizontal problem might jump from

one side of the b-axis to the other one in the end it would end up on the same side

as the trajectory of the vertical problem.

Unfortunately, this is not true in general. The optimal lines of (Pver) and the

ones of (Phor) do not have to share the same sign in slope as Figure III.2.1 shows.

The solid line is optimal for (Pver) with existing facilities E = {(−0.25, −3), (1, 0),

(−0.5, 1), (0.5, 4)}. The dashed line is optimal for (Phor) with the same existing

facilities. Obviously they do not share the same sign in slope.

But even if we cannot say whether the slopes of the optimal solutions of (Pver) and

(Phor) share the same sign or not, we can make a statement about their absolute

values. A similar statement can be found in [MN80].

Lemma III.2.1. If (â, b̂) ∈ Mopt
hor and (a∗, b∗) ∈ Mopt

ver then |â| ≥ |a∗|.
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Figure III.2.1. Let E = {(−0.25, −3), (1, 0), (−0.5, 1), (0.5, 4)}. The solid line is
optimal for (Pver) while the dashed one is optimal for (Phor).

Proof. Assume |a∗| > |â|. Then

fhor(â, b̂) =
1

|â|

n∑

i=1

dver((xi, yi), lâ,b̂)

≥
1

|â|

n∑

i=1

dver((xi, yi), la∗,b∗)

>
1

|a∗|

n∑

i=1

dver((xi, yi), la∗,b∗)

= fhor(a
∗, b∗)

which is a contradiction to (â, b̂) ∈ Mopt
hor.

We will use this lemma for some of the proofs in the next section. Now we want to

prove a theorem that will help us to understand the horizontal trajectory better.

This theorem establishes a nice connection between the two optimal trajectories.

Theorem III.2.1. Let E = {(x1, y1), . . . , (xn, yn)} be the set of existing facilities

and let (a∗, b∗) ∈ Mopt
ver in such a way that |a∗| = min{|a| : (a, b) ∈ Mopt

ver}. If

s ∈ (0, |a∗|] the optimal solutions to (Pver(s)) and (Phor(s)) share the same sign in

slope.
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Proof. Without loss of generality we assume that all optimal solutions of (Pver)

have positive slope. Theorem I.2.4 states that then all optimal solutions of (Pver(s))

have positive slope for all s ≥ 0 and therefore for all s ∈ (0, a∗] in particular.

Let s′ ∈ (0, a∗] and assume that there exists an optimal solution to (Phor(s
′))

having negative slope, that means it exists a (a′, b′) ∈ Mopt
hor(s

′) with a′ < 0. Since

(a′, b′) is optimal it holds that

fhor(a
′, b′) ≤ fhor(a, b) ∀(a, b) : |a| ≤ s′.

Let (ã, b̃) be an optimal solution to (Pver(s
′)). By our assumption and by definition

of (Pver(s
′)) it holds that ã ≥ 0 and ã ≤ s′. Therefore it must hold that

fhor(a
′, b′) ≤ fhor(ã, b̃).

Theorem I.2.5 and Theorem III.1.4 provide that ã and a′ satisfy ã = s′ and |a′| = s′,

respectively, because s′ ≤ a∗ ≤ min{|a| : (a, b) ∈ Mopt
hor} due to Lemma III.2.1.

But we already know from Section III.1 that then it holds that

fhor(a
′, b′) ≤ fhor(ã, b̃)

⇒
1

|a′|
fver(a

′, b′) ≤
1

|ã|
fver(ã, b̃)

⇒
1

s′
fver(a

′, b′) ≤
1

s′
fver(ã, b̃)

⇒ fver(a
′, b′) ≤ fver(ã, b̃).

Therefore (a′, b′) is optimal for (Pver(s
′)) as well which is a contradiction to The-

orem I.2.5. Our theorem follows.

In fact, the previous theorem tells us more about optimal trajectories. Not only

that all optimal solutions to (Pver(s)) and (Phor(s)) share the same sign in slope

as long as s ∈ (0, a∗], in fact we can find optimal trajectories that are identical.

Theorem III.2.2. We can find optimal trajectories of (Pver(s)) and (Phor(s)) such

that they are identical on the interval [0, a∗].

Proof. Let us choose the optimal solutions of (Phor(0)) that are pseudo-halving as a
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start of the trajectory of (Phor(s)) what we can do as we mentioned in Section III.1.

Then all optimal solutions to (Pver(s)) as well as to (Phor(s)) have to be pseudo-

halving (see Theorem I.2.2 and Theorem III.1.3) or at least are pseudo-halving

by choice in the case of s = 0. Moreover, all optimal solutions to (Pver(s)) and

(Phor(s)) have to lie on the boundary of the set of feasible solutions (see Theorem

I.2.5 and Theorem III.1.4). Together with Theorem III.2.1 that means that the we

can find optimal trajectories of the vertical and the horizontal problem that are in

fact identical on the interval [0, a∗].

This is what you can observe in Figure III.2.2 and Figure III.2.3. There you can see

optimal trajectories of the vertical and the horizontal problem with given facilities

E = {(−0.25, −3), (1, 0), (−0.5, 1), (0.5, 4)}. We already looked at optimal lines

for the corresponding unrestricted problems in Figure III.2.1 therefore we already

know that the optimal solutions do not share the same sign in slope. The optimal

solution for (Pver) is (−2
3
, 2

3
). You can observe that the trajectories are indeed

identical for s ∈ [0, 2
3
]. The trajectory of the horizontal problem does not jump to

the other side of the b-axis until s > 2
3
. Since optimal trajectories of the vertical

and the horizontal problem are identical for s ∈ [0, a∗] we can of course apply

Theorem I.2.6 in order to find out in which direction the horizontal path will start

to run. Unfortunately this does not help us too much because we still have to

examine the trajectory for jumps.
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Figure III.2.2. The shaded area is the solution path of (Pver) with given facilities
E = {(−0.25, −3), (1, 0), (−0.5, 1), (0.5, 4)} in the dual space. It runs in the negative
direction until it reaches the optimal solution (a∗, b∗) = (−2

3 , 2
3)
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Figure III.2.3. The shaded area is the solution path of (Phor) with given facilities
E = {(−0.25, −3), (1, 0), (−0.5, 1), (0.5, 4)} in the dual space. It is identical to the
solution path of (Pver) for s ∈ [0, 2

3 ]. From the optimal solution (−2
3 , 2

3 ) for (Pver)
it continues to run in the negative direction until s = −4

3 . There it jumps to the
positive half-space and starts running in the positive direction until it reaches the
optimal solution (a∗, b∗) = (28

3 , −2
3) for (Phor).





Chapter IV

Locating lines with a restriction

on the slope using l1-distance

In this chapter we will consider the problem of locating a line with a restriction on

the slope using yet another distance, namely the rectangular distance l1. We will

introduce this distance and the formulation of our problem in the following. After

doing so, we will point out how this distance is connected to the vertical as well

as to the horizontal distance and how we can make statements about the solution

path for this new problem using the results we already have for the vertical and the

horizontal problem. In order to do so, we will assume that there is no horizontal

line optimal to (Pver) and no vertical line optimal to (Phor) as we did in Chapter

I and Chapter III, respectively, throughout the whole chapter. Even if it seems

straight-forward at a first glance, there has some work to be done before we can

benefit from our previous results. Theorem I.2.5 as well as Theorem III.1.4 will

again play an important role in this chapter.

IV.1 Line location with rectangular distance

We first give a formula for the rectangular distance between a point (x, y) ∈ R
2 and

a non-vertical line la,b. This formula is well-known and can be found for example

in [MN83], [MT83] or [Sch99].

77
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Lemma IV.1.1. Let la,b be a non-vertical line and (x, y) ∈ R
2. Then the rectan-

gular distance between this point and the line is given by

l1((x, y), la,b) = min{|xa − y + b|,
1

|a|
|xa − y + b|}

= min{dver((x, y), la,b),
1

|a|
dver((x, y), la,b)}

= min{dver((x, y), la,b), dhor((x, y), la,b)}.

The following inequalities hold (see e.g. [Sch99]):

l1((xi, yi), la,b) =







dver((xi, yi), la,b) if |a| < 1

dhor((xi, yi), la,b) if |a| > 1

dver((xi, yi), la,b) = dhor((xi, yi), la,b) if |a| = 1.

The unrestricted problem of locating a non-vertical line with rectangular distance

has the form

min
n∑

i=1

l1((xi, yi), la,b). (Pl1)

To solve this problem, it is enough to determine a line optimal for (Pver) and one

that is optimal to (Phor) and to choose the line with smaller objective function

value. Since we already know that for both problems (Pver) and (Phor) there exists

an optimal line that passes through at least two existing facilities and that all

optimal lines are pseudo-halving, this also holds for an optimal solution to (Pl1).

Lemma IV.1.2. ([Sha78],[MT83],[MN83],[Sch99])

For the rectangular distance l1 the following criteria hold.

a) There exists a line optimal for (Pl1) passing through two of the existing fa-

cilities.

b) All lines optimal for (Pl1) are pseudo-halving.

If we deal with the rectangular problem we have to consider three different cases.

Let (a∗, b∗) ∈ Mopt
ver with a∗ = min{|a| : (a, b) ∈ Mopt

ver} and (â, b̂) ∈ Mopt
hor with
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â = min{|a| : (a, b) ∈ Mopt
hor}, respectively. The three different cases that can occur

are the following:

• |a∗| ≤ 1, |â| ≤ 1,

• |a∗| > 1, |â| > 1,

• |a∗| ≤ 1, |â| > 1.

The case |a∗| > 1 while |â| ≤ 1 cannot occur due to Lemma III.2.1 which states

that |a∗| ≤ |â|. We want to record some observations for the different cases.

Lemma IV.1.3. a) If |a∗| ≤ 1 and |â| ≤ 1 then fver(a
∗, b∗) ≤ fhor(â, b̂).

b) If |a∗| > 1 and |â| > 1 then fver(a
∗, b∗) > fhor(â, b̂).

Proof. a) Since (a∗, b∗) ∈ Mopt
ver and |â| ≤ 1 the first part of the lemma follows:

fver(a
∗, b∗) ≤ fver(â, b̂)

≤
1

|â|
fver(â, b̂)

= fhor(â, b̂).

b) Since (â, b̂) ∈ Mopt
hor and |a∗| > 1 the second part of the lemma follows:

fver(a
∗, b∗) >

1

|a∗|
fver(a

∗, b∗)

= fhor(a
∗, b∗)

≥ fhor(â, b̂).

For the case |a∗| ≤ 1 while |â| > 1 we cannot make any proposition: It might

happen that fver(a
∗, b∗) ≤ fhor(â, b̂) but it might as well happen that fver(a

∗, b∗) ≥

fhor(â, b̂).
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Of course there is a strong connection between the sign in slope of optimal solutions

to (Pl1) and the sign in slope of optimal solutions to (Pver) or (Phor) due to the

formula of the rectangular distance. This connection depends strongly on the three

cases that we mentioned above. We conclude the following lemma.

Lemma IV.1.4. Let E = {(x1, y1), . . . , (xn, yn)} be the set of existing facilities.

Furthermore, let Mopt
l1

, Mopt
ver and Mopt

hor be the sets of optimal solutions to (Pl1),

(Pver) and (Phor), respectively. Depending on two of the different cases mentioned

above the following equivalences hold.

If |a∗| ≤ 1 and |â| ≤ 1 then a > 0 for all (a, b) ∈ Mopt
l1

⇔ a > 0 for all (a, b) ∈ Mopt
ver .

Analogously a < 0 for all (a, b) ∈ Mopt
l1

⇔ a < 0 for all (a, b) ∈ Mopt
ver .

If |a∗| > 1 and |â| > 1 then a > 0 for all (a, b) ∈ Mopt
l1

⇔ a > 0 for all (a, b) ∈ Mopt
hor.

Analogously a < 0 for all (a, b) ∈ Mopt
l1

⇔ a < 0 for all (a, b) ∈ Mopt
hor.

Proof. We only prove the statements for a > 0.

We start with the case |a∗| ≤ 1 and |â| ≤ 1.

“⇒“ Assume a > 0 for all (a, b, ) ∈ Mopt
l1

. Since

l1((xi, yi), la,b) = min{dver((xi, yi), la,b), dhor((xi, yi), la,b)}

for any (a, b) ∈ Mopt
l1

it is either (a, b) ∈ Mopt
ver or (a, b) ∈ Mopt

hor. We know

that |a∗| ≤ 1 and |â| ≤ 1. Therefore we know that fl1(a, b) = fver(a, b) in

either case. But then (a, b) ∈ Mopt
ver has to hold. Due to our assumption that

there is no horizontal line optimal for (Pver) this means that a > 0 for all

(a, b) ∈ Mopt
ver due to Theorem I.2.3.

”⇐” Assume a > 0 for all (a, b) ∈ Mopt
ver . Lemma IV.1.3 tells us that fver(a

∗, b∗) ≤

fhor(â, b̂). Therefore and because of

l1((xi, yi), la,b) = min{dver((xi, yi), la,b), dhor((xi, yi), la,b)

if (a′, b′) ∈ Mopt
l1

then (a′, b′) ∈ Mopt
ver must hold. By assumption it follows

that a′ > 0.

Now we look at the case |a∗| > 1 and |â| > 1.
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“⇒“ Assume a > 0 for all (a, b, ) ∈ Mopt
l1

. Since

l1((xi, yi), la,b) = min{dver((xi, yi), la,b), dhor((xi, yi), la,b)}

for any (a, b) ∈ Mopt
l1

it is either (a, b) ∈ Mopt
ver or (a, b) ∈ Mopt

hor. We know

that |a∗| > 1 and |â| > 1. Therefore we know that fl1(a, b) = fhor(a, b) in

either case. But then (a, b) ∈ Mopt
hor has to hold. Due to our assumption

that there is no vertical line optimal for (Phor) this means that a > 0 for all

(a, b) ∈ Mopt
hor due to Theorem III.1.1.

”⇐” Assume a > 0 for all (a, b) ∈ Mopt
hor. Lemma IV.1.3 tells us that fver(a

∗, b∗) ≥

fhor(â, b̂). Therefore and because of

l1((xi, yi), la,b) = min{dver((xi, yi), la,b), dhor((xi, yi), la,b)

if (a′, b′) ∈ Mopt
l1

then (a′, b′) ∈ Mopt
hor must hold. By assumption it follows

that a′ > 0.

Again we cannot make a similar proposition in the third case. What we of course

know is that either (a, b) ∈ Mopt
ver for all (a, b) ∈ Mopt

l1
or (a, b) ∈ Mopt

hor for all (a, b) ∈

Mopt
l1

depending on whether fver(a
∗, b∗) ≤ fhor(â, b̂) or fver(a

∗, b∗) ≥ fhor(â, b̂).

Therefore even in the third case we get again that all optimal solutions to (Pl1)

share the same sign in slope. We just cannot say which sign it will be. We want

to finish this section with the following proposition.

Proposition IV.1.1. The following holds:

If a∗ 6= 0 for all (a∗, b∗) ∈ Mopt
l1

then either a∗ > 0 for all (a∗, b∗) ∈ Mopt
l1

or a∗ < 0

for all (a∗, b∗) ∈ Mopt
l1

.

Proof. This is a direct consequence of Theorem I.2.3 and Lemma IV.1.4 as well as

of our remark following Lemma IV.1.4.
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IV.2 Line location with rectangular distance and

a restriction on the slope

In order to consider the problem of locating a line with rectangular distance and

a restriction on the slope, we first give its formulation. Let E = {(x1, y1), . . . ,

(xn, yn)} be the set of existing facilities. We can formulate the problem as follows:

min fl1(a, b) = min
n∑

i=1

l1((xi, yi), la,b) (Pl1(s))

s.t. |a| ≤ s

for s ≥ 0. In the following we want to find out how a solution path for this

rectangular problem looks like. In other words we are again interested in an

optimal trajectory of the problem.

From now on until the end of this section let (a∗, b∗) ∈ Mopt
ver with a∗ = min{|a| :

(a, b) ∈ Mopt
ver} and (â, b̂) ∈ Mopt

hor with â = min{|a| : (a, b) ∈ Mopt
hor}, respectively. In

order to find out how the solution path for the rectangular problem looks like we

have to distinguish the three different cases that we already mentioned in Section

IV.1:

• |a∗| ≤ 1, |â| ≤ 1,

• |a∗| > 1, |â| > 1,

• |a∗| ≤ 1, |â| > 1.

Case 1: |a∗| ≤ 1, |â| ≤ 1

Theorem IV.2.1. If |a∗| ≤ 1 and |â| ≤ 1 the solution path of the rectangular

problem equals exactly the solution path of the vertical problem.

Proof. We already know from Lemma IV.1.3 that in this case the optimal solutions

of the unrestricted rectangular problem are identical to the optimal solutions of the

unrestricted vertical problem. This means that our trajectory for the rectangular
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problem will stop in (a∗, b∗). Now we have to look at the restricted problem.

We know from Theorem III.2.2 that we can find trajectories for the vertical and

the horizontal problem that are identical on [0, a∗]. Since the trajectory stops in

(a∗, b∗) this yields that the solution path of the rectangular problem and the one

of the vertical problem are in fact identical. To be more precise, both optimal

trajectories, the one of the vertical problem and the one of the horizontal problem,

are identical to the one of the rectangular problem.

Example IV.2.1. Let E = {(−1, −1), (1, 1), (−1
2
, 1

4
)} be the set of existing facili-

ties. It is easy to see that (a∗, b∗) = (â, b̂) = (1, 0) and therefore |a∗| ≤ 1 as well

as |â| ≤ 1. Theorem III.2.1 yields that the solution paths of (Pver) and (Phor) are

identical on the interval [0, a∗]. Therefore the solution path of (Pl1) equals indeed

the solution path of the vertical problem. In fact, in this case the rectangular so-

lution path equals the horizontal solution path as well. All of the three different

problems share the same solution path.

Case 2: |a∗| > 1, |â| > 1

Theorem IV.2.2. If |a∗| > 1 and |â| > 1 the solution path of the rectangular

problem equals exactly the solution path of the horizontal problem.

Proof. We already know from Lemma IV.1.3 that in this case the optimal solutions

of the unrestricted rectangular problem are identical to the optimal solutions of the

unrestricted horizontal problem. Now we have to look at the restricted problem.

From Theorem III.2.2 we know that the solution path of the vertical problem

and the solution path of the horizontal problem are identical as long as s ≤ |a∗|.

Therefore the solution path of the rectangular problem is of course identical to

both solution paths by definition of the rectangular distance.

Lemma III.2.1 yields |â| ≥ |a∗|. If |â| = |a∗| we are done. Let us now assume

|â| > |a∗| and let |a∗| < s ≤ |â|. Look at (Pl1(s)) and let (a, b) ∈ Mopt
hor(s). Since

(a, b) ∈ Mopt
hor(s) and |a∗| > 1 the following inequalities hold:
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fver(a
∗, b∗) >

1

|a∗|
fver(a

∗, b∗)

= fhor(a
∗, b∗)

≥ fhor(a, b)

Therefore for any s satisfying a∗ < s ≤ â any (a, b) ∈ Mopt
hor(s) is optimal for

(Pl1(s)) as well. Actually this is due to the fact that the horizontal distance and

the rectangular distance are identical if a > 1.

Together this yields that the solution path of the rectangular problem and the one

of the horizontal problem are in fact identical.

Example IV.2.2. Consider the given set of existing facilities E = {(0, 0), (3, 5),

(1, 6)}. An optimal solution for (Pver) is (a∗, b∗) = (5
3
, 0) while (â, b̂) = (6, 0) is

an optimal solution for (Phor) and (Pl1). Figure IV.2.1 shows the solution path of

the rectangular problem. It is identical to the solution path of the vertical problem

until s = 5
3
. Then it follows the solution path of the horizontal problem along the

a − axis until it reaches the optimal solution (6, 0). Since the solution path of the

horizontal problem is also identical to the one of the vertical problem for s ∈ [0, a∗),

the solution path of the rectangular problem is indeed identical to the one of the

horizontal problem.

Case 3: |a∗| ≤ 1, |â| > 1

This case is a bit more problematic than the two cases before. We already saw in

Section IV.1 that it is not as easy to make statements about the solution path of

this problem as in the two other cases.

As in the previous case we can first benefit from the fact that the solution paths

of the vertical problem and the horizontal problem are identical for s ≤ |a∗|.

Therefore we know how the solution path of the rectangular problem looks like for

these s. Furthermore we already know that the rectangular distance corresponds
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Figure IV.2.1. The solid line shows the solution path of the rectangular problem
in Example IV.2.2. The point (a, b) is an optimal solution to (Pver) while the point
(a∗, b∗) is an optimal solution for (Phor) as well as for (Pl1).

to the vertical distance for a ≤ 1. But this tells us that (a∗, b∗) is in fact optimal

for all (Pl1(s)) with |a∗| ≤ s ≤ 1.

Lemma IV.2.1. The rectangular solution path equals the solution path of the ver-

tical problem on the interval [0, a∗] and is constantly equal to the optimal solution

(a∗, b∗) of (Pver) on the interval [a∗, 1].

Proof. There is nothing left to prove after our considerations above.

But what happens if s > 1? We will split this case into two subcases.

a) fver(a
∗, b∗) ≤ fhor(â, b̂)

If fver(a
∗, b∗) ≤ fhor(â, b̂) then obviously (a∗, b∗) ∈ Mopt

l1
. Therefore (a∗, b∗) stays

optimal for (Pl1(s)) even if s > 1. As in the first case the solution path of the

rectangular problem equals the solution path of the vertical problem.

b) fhor(â, b̂) < fver(a
∗, b∗)

This second subcase is the less trivial case. We know that we still have to follow

the solution path of the vertical problem until we reach a∗. Since (a∗, b∗) ∈ Mopt
ver

and by definition of the l1-distance it is obvious that (a∗, b∗) is also optimal to any

problem (Pl1(s)) with s ∈ (|a∗|, 1] (see Lemma IV.2.1). This means that we get
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Figure IV.2.2. The existing facilities of Example IV.2.3 in the initial space. The
line l∗ is an optimal line for the unrestricted problems (Phor) and (Pl1). The line l′

is optimal for the unrestricted vertical problem (Pver).

somehow stuck in the optimal solution to the vertical problem. On the other hand

we know that (â, b̂) is optimal to (Pl1), therefore we should jump to the solution

path of the horizontal problem at some point.

Example IV.2.3. Consider the set of existing facilities E = {x1, x2, x3} with

x1 = (0, 0),

x2 = (−3, 5) and

x3 = (1, 6).

This is the same set of existing facilities as in Example III.1.1. The points (1
4
, 23

4
)

and (6, 0) are optimal solutions of (Pver) and (Phor), respectively. Since

fhor(6, 0) =
23

6
<

23

4
= fver(

1

4
,
23

4
)

the point (6, 0) is an optimal solution for (Pl1) as well.

We know how the solution path of the rectangular problem looks like on the interval

[0, 1], namely like the solution path of the vertical problem on [0, 1
4
], since (1

4
, 23

4
)

stays optimal for any (Pl1(s)) with s ∈ (1
4
, 1]. What we do not know yet is how the
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Figure IV.2.3. The dual space of Example IV.2.3 including the transformed ex-
isting facilities, an optimal solution (a, b) for (Pver) and an optimal solution (a∗, b∗)
for (Phor) and (Pl1).

solution path looks like for s ∈ (1, 6]), we only know that it has to end in the point

(6, 0).

Figure IV.2.2 shows the set of existing facilities as well as optimal solutions l∗

and l′ of the unrestricted rectangular problem (Pl1) and the unrestricted vertical

problem (Pver), respectively. The dual space including the transformed existing

facilities plus the transformed optimal lines T (l∗) = (â, b̂) and T (l′) = (a∗, b∗) = is

shown in Figure IV.2.3.

In order to examine the behaviour of the solution path of the rectangular problem

for s ∈ (1, |â|) we define the following functions:

v : R → R

s 7→ min
b∈R

fver(s, b)

and

h : R → R

s 7→ min
b∈R

fhor(s, b).

These definitions make sure that v(a∗) = fver(a
∗, b∗) and h(â) = fhor(â, b̂).
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We define another function med : R → R which maps a real number s to an

element of the set median{(−xis + yi, 1) : i = 1 . . . n} in the following way:

med(s) = b∗(s) := min{b : b ∈ (median{(−xis + yi, 1) : i = 1 . . . n})}.

This means that the tuple (s, med(s)) corresponds to the unique point lying on

the median path in the dual space at a = s if the number of existing facilities n

is odd or to the lowest point lying on the median path in the dual space at a = s

sometimes called the lower median if the number of existing facilities n is even. In

particular there always exists a line l−xi,yi
passing through (s, med(s)).

Using Theorem I.2.2 and the function med defined in the above way the function

v can be written as

v(s) = min
b

fver(s, b)

= fver(s, b∗(s))

=
n∑

i=1

|yi − xis − b∗(s)|

and h as

h(s) = min
b

fhor(s, b)

= fhor(s, b∗(s))

=
1

|s|

n∑

i=1

|yi − xis − b∗(s)|.

Therefore it is of interest to know some features of b∗(s) or in other words of the

function med in order to examine the behaviour of v and h. The following lemma

provides some interesting features.

Lemma IV.2.2. The function med is piecewise linear and continuous on R.

Proof. First we want to show that med is piecewise linear.

Let (a1, b1), . . . , (ak, bk) be the intersections of the lines l−xi,yi
in the dual space

and assume a1 < a2 < . . . < ak. Then med is linear on any interval (aj , aj+1) for
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all j ∈ {0, . . . , k + 1} if we set a0 := −∞ and ak+1 := ∞ since for any λ ∈ (0, 1)

and s1, s2 ∈ (aj , aj+1)

med(λs1 + (1 − λ)s2) = b∗(λs1 + (1 − λ)s2)

= min{b : b ∈ (median{(−xi(λs1 + (1 − λ)s2) + yi, 1) :

i = 1, . . . n})}

(⋆)
= λ min{b : b ∈ (median{(−xis1 + yi, 1) : i = 1 . . . n})}

+ (1 − λ) min{b : b ∈ (median{(−xis2 + yi, 1) :

i = 1 . . . n})}

= λb∗(s1) + (1 − λ)b∗(s2)

= λmed(s1) + (1 − λ)med(s2).

The equation (⋆) holds since no two lines l−xi,yi
and l−xl,yl

intersect on the interval

(aj , aj+1).

This shows that med is a piecewise linear function and all that is left to prove

is the continuity of med. Since med is piecewise linear on the intervals (aj, aj+1)

it is obvious that med is continuous on these intervals. We only have to check

continuity in the aj, j = 1 . . . k.

By definition of the aj and b∗(s) it holds that there exists a line l−xl,yl
such that

for all s ∈ (aj−1, aj) this line passes (s, b∗(s)). In the same way there exists a

line l−xm,ym
such that for all s ∈ (aj, aj+1) this line passes (s, b∗(s)). Again by

definition of b∗ it must hold that l−xl,yl
and l−xm,ym

intersect at aj which means

exactly that

lim
s→aj+

b∗(s) = lim
s→aj−

b∗(s).

Therefore med is continuous on R.

Having that med is continuous we easily get the following proposition.
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Proposition IV.2.1. The function

v : R → R

s 7→
n∑

i=1

|yi − xis − b∗(s)|

is continuous on R.

Proof. Since v is a composition of finitely many functions which are continuous on

R it is continuous on R itself.

This proposition instantly leads to another proposition concerning the continuity

of h.

Proposition IV.2.2. The function

h : R → R

s 7→
1

|s|

n∑

i=1

|yi − xis − b∗(s)|

is continuous on R \ {0}.

Proof. h is defined on R \ {0} and as a composition of finitely many functions

which are continuous on R \ {0} it is continuous on that domain.

Now we can use the statement about continuity of h to show that there has to

exist an a ∈ (1, â) or an a ∈ (â, −1) in such a way that h(a) = fver(a
∗, b∗).

Lemma IV.2.3. If |a∗| ≤ 1 while |â| > 1 and f(â, b̂) < f(a∗, b∗) there exists an

a′ ∈ [1, â] or an a′ ∈ [â, −1], respectively, satisfying h(a′) = fver(a
∗, b∗).

Proof. We already know that h(1) ≥ fver(a
∗, b∗) and h(−1) ≥ fver(a

∗, b∗), re-

spectively, and that h(â) = fhor(â, b̂) < fver(a
∗, b∗). If h(1) = fver(a

∗, b∗) or

h(−1) = fver(a
∗, b∗), respectively, then we are done.
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Let us assume h(1) > fver(a
∗, b∗) and h(−1) > fver(a

∗, b∗), respectively. h is

continuous on R\{0} by Proposition IV.2.2 and therefore in particular continuous

on [1, â] or [â, −1], respectively. Now the intermediate value theorem makes sure

that there exists an a′ ∈ (1, â) or an a′ ∈ (â, −1) depending on the sign of â

satisfying the stated property. This completes the proof.

We will see later on that this a′ is exactly the point where we move out of the

minimum of the vertical problem and jump to the solution path of (Phor). In order

to do so we need some statements about monotonicity properties of v and h.

Lemma IV.2.4. Assume a > 0 for all (a, b) ∈ Mopt
ver . Then v is monotonically

decreasing on (−∞, a∗] and monotonically increasing on [a∗, ∞).

Proof. Let R(a′) := {a : a′ ≤ a ≤ ∞} for any a′ < 0. Since a > 0 ∀ (a, b) ∈ Mopt
ver

it is Mopt
ver ⊆ int(R(a′)). Therefore the problem

min fver(a, b)

s.t. a /∈ int(R(a′))

has an optimal solution (a′, b(a′)) with suitable b(a′) for any a′ < 0 according

to the so called boundary theorem (Randsatz), see [Ham95]. Since any optimal

solution lies on the median path (Theorem I.2.2), there exists an optimal solution

(a′, b∗(a′)). Let v(a′) = fver(a
′, b∗(a′)) := z∗. For a /∈ int(R(a′)) it must hold

v(a) = fver(a, b∗(a)) ≥ z∗.

Therefore it holds for all a < a′ that v(a) ≥ v(a′) which means that v is monoton-

ically decreasing on (−∞, 0).

From Section I.2 it is already known that v is monotonically decreasing on [0, a∗].

To complete the proof we have to show that v is monotonically increasing on

(a∗, ∞).

Let (a∗
max, b∗

max) ∈ Mopt
ver such that a∗

max = max{a : (a, b) ∈ Mopt
ver}.

If a′ ∈ (a∗, a∗
max] then v(a′) = v(a∗) = v(a∗

max) since fver is convex in a and

(a∗, b∗), (a∗
maxb∗

max) ∈ Mopt
ver .
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Figure IV.2.4. The function v for Example IV.2.3. One can easily see that v is
continuous and quasiconvex on R. It reaches its minimum in (a∗, v(a∗)) = (1

4 , 23
4 )

where v(a∗) = fver(a∗, b∗). On the interval (−∞, 1
4 ) v is monotonically decreasing

while it is monotonically increasing on (1
4 , ∞).

If a′ > a∗
max then let R(a′) := {a : −∞ ≤ a ≤ a′}. Again we use the boundary

theorem to complete the proof. It is true that Mopt
ver ⊆ int(R(a′)). Therefore the

problem

min fver(a, b)

s.t. a /∈ int(R(a′))

has an optimal solution (a′, b∗(a′)). But since a /∈ int(R(a′)) for all a ≥ a′ it holds

that

v(a) = fver(a, b∗(a)) ≥ fver(a
′, b∗(a′)) = v(a′).

Therefore v is monotonically increasing on (a∗, ∞) which completes the proof.

Remark IV.2.1. In the case a < 0 ∀ (a, b) ∈ Mopt
ver we can prove analogously

that v is monotonically decreasing on (−∞, a∗
max) and monotonically increasing on

(a∗
max, ∞) using a slightly different definition of a∗

max: a∗
max = max{|a| : (a, b) ∈

Mopt
ver}.

The previous lemma has the nice side effect that we easily get the following propo-

sition.
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Proposition IV.2.3. v is quasiconvex on R.

Proof. Any function decreasing up to a point and increasing from that point on is

quasiconvex (see e.g. [Jun08]).

We still need some information about monotonicity of h. The following lemma

provides the information needed.

Lemma IV.2.5. If a > 0 ∀ (a, b) ∈ Mopt
hor then h is monotonically decreasing on

(0, â] and monotonically increasing on [â, ∞) as well as monotonically increasing

on (−∞, 0).

If a < 0 ∀ (a, b) ∈ Mopt
hor then h is monotonically decreasing on (−∞, â] and

monotonically increasing on [â, 0) as well as monotonically decreasing on (0, ∞).

Proof. Assume a > 0 for all (a, b) ∈ Mopt
hor. This means that â > 0 in particular.

We want to use the fact that we know about the monotonicity properties of v due

to Lemma IV.2.4 in order to show the monotonicity properties of h. We know that

h(a) = min
b∈R

fhor(a, b)

= min
β∈R

fver(−
1

a
, β)

= min
β∈R

fver(α, β)

with α = −1
a

because the horizontal distance in our initial space is equal to the

vertical distance in the rotated space. Let

ṽ : R → R

s̃ 7→ min
β∈R

fver(s̃, β)

with s̃ = 1
s

be the function in the rotated space that corresponds to v in the initial

space. Then it has to hold that

h(a) = min
β∈R

fver(α, β)

= ṽ(α)
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due to Theorem III.1.4.

We know that â ∈ Mopt
hor and â > 0 by assumption. This tells us that α̂ =

−1
â

< 0 is an optimal solution to (P̃ver) and by definition of â it holds that

α̂ = max{|α| : (α, β) ∈ M̃opt
ver}. Lemma IV.2.4 or rather Remark IV.2.1 tell

us that ṽ is monotonically increasing on [α̂, ∞) and monotonically decreasing on

(−∞, α̂].

First we want to show that h is monotonically decreasing on (0, â].

Let (a1, b∗(a1)) ∈ Mopt
hor(a1) and (a2, b∗(a2)) ∈ Mopt

hor(a2) such that

0 < a1 < a2 ≤ â.

This means that

h(a1) = ṽ(α1) and h(a2) = ṽ(α2)

with α1 = − 1
a1

and α2 = − 1
a2

, respectively. Note that in the rotated space it holds

that

α1 < α2 ≤ α̂ < 0.

Since ṽ is monotonically decreasing on (−∞, α̂] it must hold that

ṽ(α1) ≥ ṽ(α2)

which directly gives us

h(a1) ≥ h(a2)

and therefore h is monotonically decreasing on (0, â].

Next we want to show that h is monotonically increasing on [â, ∞). Let therefore

(a1, b∗(a1)), (a2, b∗(a2)) ∈ R
2 such that

0 < â ≤ a1 < a2.

It is

h(a1) = ṽ(α1) as well as h(a2) = ṽ(α2).
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In the rotated space it holds that

α̂ < α1 < α2 < 0.

Since ṽ is monotonically increasing on [α̂, ∞) it holds that

ṽ(α1) ≤ ṽ(α2)

and therefore

h(a1) ≤ h(a2)

as well. It follows that h is monotonically increasing on [â, ∞).

Finally we want to show that h is monotonically increasing on (−∞, 0). Let now

(a1, b∗(a1)), (a2, b∗(a2)) ∈ R
2 such that

a1 < a2 < 0.

Again it is

h(a1) = ṽ(α1) as well as h(a2) = ṽ(α2).

This gives us

0 < α1 < α2

in the rotated space. We know that ṽ is monotonically increasing on (0, ∞) and

therefore

ṽ(α1) ≤ ṽ(α2).

In the end we get that

h(a1) ≤ h(a2),

in other words we get that h is monotonically increasing on (−∞, 0).

This is all we had to show. If a < 0 ∀ (a, b) ∈ Mopt
hor our statements can be proven

analogously.

Corollary IV.2.1. Let |a∗| ≤ 1 while |â| > 1 and f(â, b̂) < f(a∗, b∗) and let a′ be

the real number satisfying h(a′) = fver(a
∗, b∗) which exists due to Lemma IV.2.3.

Then the solution path of the rectangular problem is equal to the solution path of
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Figure IV.2.5. The function h for Example IV.2.3. h is continuous on R \ {0}
and reaches its minimum in (â, g(â) = (6, 23

6 ) where h(â) = fhor(â, b̂). On the
intervals (−∞, 0) and (6, ∞) h is monotonically increasing while it is monotonically
decreasing on (0, 6).

the vertical problem on the interval [0, |a′|] and to the one of the horizontal problem

on [|a′|, |â|].

Proof. Right at the beginning of this case it is stated that the solution paths of

(Pl1) and (Pver) are the same on [0, a∗] or [a∗, 0], respectively, depending on whether

a > 0 for all (a, b) ∈ Mopt
ver or a < 0 for all (a, b) ∈ Mopt

ver , and that (a∗, b∗) stays

optimal for (Pl1(s)) as long as s ≤ 1. Moreover, since h is monotonically decreasing

on (0, |â|] and therefore on [1, |â|] in particular and monotonically increasing on

[−|â|, 0) and therefore on [−|â|, −1] in particular (Lemma IV.2.5), (a∗, b∗) even

stays optimal for (Pl1(s)) until s reaches |a′| , where a′ is the real number described

in Lemma IV.2.3 satisfying h(a′) = fver(a
∗, b∗). Again by monotonicity of h we get

that h(s) ≤ fver(a
∗, b∗) for any s with s ∈ (|a′|, |â|]. This means exactly that we

switch from the solution path of the vertical problem to the one of the horizontal

problem as soon as we reach |a′|.

At this point we are able to put all the achievements up to now together to get

a solution path for (Pl1): We follow the solution path of the vertical problem

until we reach s = |a∗| (Lemma IV.2.1). (a∗, b∗) stays optimal for Pl1(s) until

s reaches |a′| (Corollary IV.2.1). At s = |a′| we get (a′, b∗(a′)) as an optimal
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solution to (Pl1(|a′|)) satisfying fl1(a∗, b∗) = fl1(a′, b∗(a′)). From now on we follow

the solution path of the horizontal problem improving the value of the objective

function until we reach the optimal solution (â, b̂) (again Corollary IV.2.1).

Remark IV.2.2. It is important to note that most of the results concerning prop-

erties of the functions v, h and med are general results even if stated during the

examination of the special Case 3. Only Lemma IV.2.3 and Corollary IV.2.1 make

use of the additional assumptions while all other results concerning v, h and med

are of general nature.

Up to now we only stated the existence of such an a′. There is no doubt that it

would be even better to know how to find it. Therefore we will finish this section

demonstrating how to construct a′ as a convex combination of two known points.

We search for an a′ that satisfies fhor(a
′, b∗(a′)) = fver(a

∗, b∗) while at the same

time (a′, b∗(a′)) is an optimal solution for the problem

min fhor(a, b)

s.t. |a| ≤ |a′|.

What we already know is that (a′, b∗(a′)) has to correspond to a pseudo-halving

line and therefore has to lie on the median path in the dual space (see Lemma

III.1.1). Furthermore (a∗, b∗) and (â, b̂) are in each case intersections of at least

two lines corresponding to existing facilities in the dual space (see Section I.1) and

the following inequalities hold:

fver(a
∗, b∗) < fhor(a

∗, b∗),

fhor(â, b̂) < fver(a
∗, b∗).

Let A := {(a, b) : |a∗| ≤ |a| ≤ |â|, (a, b) being an intersection of at least two

lines in the dual space lying on the (lower) median path}. Using our definition of
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b∗(a) we can rewrite A as

A :={(a, b∗(a)) : |a∗| ≤ |a| ≤ |â|, (a, b∗(a)) being an intersection of at least

two lines in the dual space}.

Then A 6= ∅ because (a∗, b∗), (â, b̂) ∈ A. Since A has finitely many elements we

write A as A = {(ai, b∗(ai)) : i = 1, . . . , k, k ∈ N} with a1 = a∗ and ak = â.

Assume without loss of generality that the elements of A are sorted in such a way

that

|a∗| = |a1| < |a2| < . . . < |ak| = |â|.

Now we check for every (ai, b∗(ai)) ∈ A whether fhor(ai, b∗(ai)) > fver(a
∗, b∗) or

fhor(ai, b∗(ai)) < fver(a
∗, b∗). If there is a point (ai, b∗(ai)) in A satisfying

fhor(ai, bi) = fver(a
∗, b∗) we are done.

We choose (aj , b∗(aj)) in such a way that

|aj| = min{|ai| : (ai, b∗(ai)) ∈ A, fhor(ai, bi) < fver(a
∗, b∗)}

Such an (aj , b∗(aj)) always exists since (â, b̂) ∈ A and fhor(â, b̂) < fver(a
∗, b∗).

By the way we have chosen (aj, b∗(aj)) we know that

fhor(aj, b∗(aj)) < fver(a
∗, b∗) and

fhor(ai, b∗(ai)) > fver(a
∗, b∗) ∀i < j.

Now we choose the “neighbour” (aN , b∗(aN )) of (aj , b∗(aj)) that satisfies

fhor(aN , b∗(aN)) > fver(a
∗, b∗)

by

aN = max{ai : |ai| < |aj | and sgn(aN) = sgn(aj)}

if such an aN exists or as aN = a∗ otherwise. The point (aN , b∗(aN)) satisfies

fhor(aN , b∗(aN)) > fver(a
∗, b∗) since by choice of aN it must hold that N < j.

There exists no intersection (a, b) of two or more lines lying on the (lower) median
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path satisfying |aN | < |a| < |aj| and sgn(a) = sgn(aj), therefore there exists a line

l−xl,yl
∈ {l−xi,yi

: i = 1, . . . , n} passing through (aN , b∗(aN )) as well as (aj, bj) in

such a way that any point (a, b) satisfying |aN | < |a| < |aj| and sgn(a) = sgn(aj)

which lies on the (lower) median path can be written as (a, −xla + yl).

This means exactly that there exists a line l−xl,yl
representing the section of the

(lower) median path between aN and aj .

Furthermore any a satisfying |aN | < |a| < |aj| and sgn(a) = sgn(aj) can be written

as a convex combination of aN and aj , that is to say as λaN + (1 − λ)aj with a

λ ∈ (0, 1).

Putting this together we can write any point (a, b) satisfying |aN | < |a| < |aj | and

sgn(a) = sgn(aj) which lies on the (lower) median path as

(λaN + (1 − λ)aj, −(λaN + (1 − λ)aj)xl + yl) with λ ∈ (0, 1).

We are now searching for a λ̄ ∈ (0, 1) which yields

fhor(λ̄aN + (1 − λ̄)aj, −(λ̄aN + (1 − λ̄)aj)xl + yl) = fver(a
∗, b∗). (⋆)

Such a λ̄ has to exist since fhor(aj , b∗(aj)) < fver(a
∗, b∗) and fhor(aN , b∗(aN )) >

fver(a
∗, b∗) while fhor is continuous on (aN , aj) if sgn(aN) = sgn(aj) = 1 or on

(aj , aN) if sgn(aN) = sgn(aj) = −1, respectively.

We use the sets

L := {i : −xi(λaN + (1 − λ)aj) + yi < −xl(λaN + (1 − λ)aj) + yl ∀ λ ∈ (0, 1)}

and

R := {i : −xi(λaN + (1 − λ)aj) + yi > −xl(λaN + (1 − λ)aj) + yl ∀ λ ∈ (0, 1)}
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to derive an alternative formulation of fver(λaN +(1−λ)aj, −(λaN +(1−λ)aj)xl +

yl):

fver(λaN + (1 − λ)aj , −(λaN + (1 − λ)aj)xl + yl)

=
∑

i∈R

λ(aj − aN) · xi − ajxi + yi

− |R| · (λ · (aj − aN) · xl − ajxl + yl)

+ |L| · (λ · (aj − aN ) · xl − ajxl + yl)

−
∑

i∈L

λ(aj − aN) · xi − ajxi + yi

= λ · (
∑

i∈R

((aj − aN ) · xi) −
∑

i∈L

((aj − aN) · xi) + (|L| − |R|) · ((−aN + aj) · xl))

+
∑

i∈R

(−ajxi + yi) −
∑

i∈L

(−ajxi + yi) + (|L| − |R|) · (−ajxl + yl)

All we have to do now to get a formula for λ̄ is to substitute the formula for fver

above into (⋆) and solve the equation for λ̄.

For the sake of a simplified notation we put z∗ := fver(a
∗, b∗). We can get rid of

the absolute value in (⋆) by putting

|λ̄aN + (1 − λ̄)aj | = sgn(aj)λ̄aN + sgn(aj)(1 − λ̄)aj

= sgn(aj)(λ̄aN + (1 − λ̄)aj)

If sgn(aN ) = sgn(aj) this is easy to see. But this is also also true if sgn(aN) 6=

sgn(aj).

Assume for instance sgn(aj) = −1 and sgn(aN) = 1. By choice of aN we know

that in this case aN = a∗. Then |λ̄aN + (1 − λ̄)aj| > 1 since otherwise

fver(λ̄aN + (1 − λ̄)aj , −(λ̄aN + (1 − λ̄)aj)xl + yl) < fver(a
∗, b∗)

due to
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fhor(λ̄aN + (1 − λ̄)aj , −(λ̄aN + (1 − λ̄)aj)xl + yl)

=
1

|λ̄aN + (1 − λ̄)aj |
fver(λ̄aN + (1 − λ̄)aj , −(λ̄aN + (1 − λ̄)aj)xl + yl)

= fver(a
∗, b∗)

and 1
|λ̄aN +(1−λ̄)aj |

> 1. The last equation is due to (⋆). This is a contradiction to

optimality of (a∗, b∗). Since we assumed that |a∗| ≤ 1 and we know that aN = a∗

it has to hold that sgn(λ̄aN + (1 − λ̄)aj) = −1 and |λ̄aN + (1 − λ̄)aj| > 1.

Therefore it is actually true that

|λ̄aN + (1 − λ̄)aj | = sgn(λ̄aN + (1 − λ̄) · (λ̄aN + (1 − λ̄)aj)

= (−1) · (λ̄aN + (1 − λ̄)aj)

= −λ̄aN − (1 − λ̄)aj

= sgn(aj)λ̄aN + sgn(aj)(1 − λ̄)aj .

In the case sgn(aj) = −1 and sgn(aN) = 1 the argumentation is analogous.

In the end we obtain the following formula to calculate λ̄:

λ̄ =
z1

z2

with

z1 := z∗ sgn(aj)aj +
∑

i∈L

(−ajxi + yi) −
∑

i∈R

(−ajxi + yi) − (|L| − |R|) · (−ajxl + yl)

and

z2 := − z∗ · (sgn(aj)aN − sgn(aj)aj) +
∑

i∈R

((aj − aN) · xi) −
∑

i∈L

((aj − aN ) · xi)

+ (|L| − |R|) · ((−aN + aj) · xl) .
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Figure IV.2.6. Solution path in the dual space for the rectangular problem in
Example IV.2.3. The point (a, b) is an optimal solution to (Pver), the point (a′, b′)
is a point as described in Lemma IV.2.3 and (a∗, b∗) is an optimal solution to (Phor)
as well as to (Pl1).

Example IV.2.4. We want to calculate a′ for our Example IV.2.3. A look at

Figure IV.2.3 might be helpful.

First we have to determine the set A. In our case, A = {(1
4
, 23

4
), (−5

3
, 0), (6, 0)}.

Note that (1
4
, 23

4
) = (a∗, b∗) and (6, 0) = (â, b̂). Obviously

fhor(a
∗, b∗) > fver(a

∗, b∗)

and

fhor(â, b̂) < fver(a
∗, b∗).

Furthermore it is

fhor(−
5

3
, 0) =

23

5
<

23

4
= fver(a

∗, b∗).

Therefore we choose (−5
3
, 0) as (aj, b∗(aj)). Since there is no other ai ∈ A with

sgn(ai) = −1 we choose (1
4
, 23

4
) as (aN , b∗(aN)). The line l−xl,yl

passing (aN , b∗(aN))

and (aj , b∗(aj)) is l3,5, therefore R = {3} and L = {1}.

This is all we have to know to calculate λ̄ using the formula above:
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λ̄ =
23
4

· 5
3

+ 5
3

· 0 + 0 −
Ä

5
3

· 1 + 6
ä

− (1 − 1) · (5
3

· (−3) + 5)

−23
4

· (−1
4

− 5
3
) + (−5

3
− 1

4
) · 1 −

Ä

(−5
3

− 1
4
) · 0
ä

+ (1 − 1)(−1
4

− 5
3
) · (−3)

=
4

19
.

Therefore we get

a′ = λ̄a∗ + (1 − λ̄)â =
4

19
· (

1

4
) +

15

19
· (−

5

3
) = −

24

19

and finally (a′, b∗(a′)) = (−24
19

, 23
19

). It is easy to see that

fhor(a
′, b∗(a′)) = fver(a

∗, b∗).

Now we can provide the whole solution path of the rectangular problem, it is shown

in Figure IV.2.6. For s ∈ [0, 1
4
) it looks like the solution path of the vertical

problem. Then it stays in (1
4
, 23

4
) until s = a′ where it switches to the solution path

of the horizontal problem. The solution path of the rectangular problem and the

one of the horizontal problem are identical for s ∈ (|a′|, â).

Figure IV.2.7 shows the graph of f where f is the following function:

f : R → R

s 7→ min
b∈R

fl1(s, b).

Finally, Figure IV.2.8 shows the objective function values of the optimal solutions

of (Pl1(s)) denoted by z∗(s). This visualizes once more that the solution path gets

stuck in (a∗, b∗) until s reaches a′ and then jumps to the horizontal solution path

until it reaches the optimal solution (â, b̂). From there on the value of the objective

function is of course constant for all (Pl1(s)).
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Figure IV.2.7. Graph of the function f as defined in Example IV.2.4.
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Figure IV.2.8. Function values of the optimal solutions of (Pl1(s)) with existing
facilities as in Example IV.2.4 or Example IV.2.3, respectively.



Chapter V

Locating hyperplanes with a

restriction on the slope using

vertical distance

In this chapter we want to examine the problem of locating a hyperplane with a

restriction on the slope using the vertical distance. Obviously, locating lines with a

restriction on the slope using the vertical distance is a special case of this problem

since the usual lines in R
2 are the hyperplanes in R

2. Therefore we will see that

there are a lot of parallels between this chapter and Chapter I. However, it is more

difficult to guarantee the existence of an optimal trajectory which is continuous

in the higher dimensional case than it was in the case of locating lines. We will

present how the existence of such a trajectory can be shown and how it can be

constructed.

In order to get there we will start with introducing the definition of the vertical

distance between a point and a hyperplane as well as summarizing known results for

the problem of locating a hyperplane using vertical distance without a restriction.

105
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V.1 The problem of locating hyperplanes using

vertical distance

In this section we want to summarize some important results connected to hyper-

plane location with vertical distance. As in Section I.1, we mainly focus on results

out of [Sch99]. Most of the results explicitly stated in [Sch99] are for the problem

of locating a hyperplane using horizontal distance but it can be easily seen by

rotation that the most important ones hold for the problem with vertical distance

as well.

Remember that we are given a set of existing facilities

E = {(x11, . . . , x1k, y1), . . . , (xn1, . . . , xnk, yn)} ⊆ R
k+1

and we want to locate a hyperplane H in such a way that the sum of vertical

distances between the hyperplane and the existing facilities is minimized. We

already stated in Section 0.2 that a non-vertical hyperplane H can be written as

Ha,b with a ∈ R
k and b ∈ R, namely

Ha,b = {(x1, . . . , xk, y) ∈ R
k+1 : y = a1x1 + . . . + akxk + b}.

The vertical distance between a point x := (x1, ..., xk, y) ∈ R
k+1 and a hyperplane

H is given by

dver(x, H) =







|y − (x1 · a1 + . . . + xk · ak + b)| if H = Ha,b is non-vertical

0 if H is vertical and x ∈ H

∞ if H is vertical and x /∈ H.

Therefore the hyperplane location problem with vertical distance is of the form

min
n∑

i=1

dver((xi1, . . . , xik, yi), H). (Pver)

From now on for the rest of this chapter we assume that E contains at least k + 2
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affinely independent points. If this is not the case, the problem is trivial since all

median hyperplanes H contain the whole set E of existing facilities.

As we already mentioned in Section 0.2, we only have to investigate non-vertical

hyperplanes in this chapter. The reason is that a vertical hyperplane H cannot be

optimal to (Pver) unless all existing facilities are contained in H . Since we assumed

that E contains at least k + 2 affinely independent points this cannot be the case

and we can neglect vertical hyperplanes for the rest of this chapter.

We can now reformulate our problem (Pver) as

min fver(a1, . . . , ak, b) (Pver)

= min
n∑

i=1

dver((xi1, . . . , xik, yi), Ha1,...,ak,b)

= min
n∑

i=1

|yi − (xi1a1 + . . . + xik
ak + b)|

= min ||y − (Xa + be) ||1

with X ∈ R
n×k being the matrix

X :=











x11 x12 . . . x1k

x21 x22 . . . x2k

...
...

. . .
...

xn1 xn2 . . . xnk











and e := (1, . . . , 1)t ∈ R
n.

As in the case of locating lines, we introduce a dual interpretation of hyperplane

location problems with vertical distance in order to profit from the geometric

properties of (Pver). The following transformation T̃ is a generalisation of the

transformation T defined in Definition I.1.2. While T maps a point in R
2 to a non-

vertical line and vice versa, T̃ maps a point in R
k+1 to a non-vertical hyperplane

and vice versa. This transformation can also be found in [Sch99].

Definition V.1.1. We define the following transformation T̃ :
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For any point (x1, . . . , xk, y) ∈ R
k+1 let T̃ (x1, . . . , xk, y) define a hyperplane

T̃ (x1, . . . , xk, y) := H−x1,...,−xk,y

= {(a1, ...ak, b) : b = −x1a1 − . . . − xkak + y},

and for any non-vertical hyperplane Ha1,...,ak,b let T̃ (Ha1,...,ak,b) define a point

T̃ (Ha1,...,ak,b) := (a1, . . . , ak, b).

The space of all transformed points and hyperplanes will be referred to as the dual

space. As in the two dimensional case we have the nice property that T̃ preserves

the vertical distances between points and hyperplanes.

Lemma V.1.1. Let (x1, . . . , xk, y) ∈ R
k+1 be a point and Ha1,...,ak,b a non-vertical

hyperplane. Then

dver((x1, . . . , xk, y), Ha1,...,ak,b) = dver(T̃ (Ha1,...,ak,b), T̃ (x1, . . . , xk, y)).

In particular it holds that

(x1, . . . , xk, y) ∈ Ha1,...,ak,b ⇔ T̃ (Ha1,...,ak ,b) ∈ T̃ (x1, . . . , xk, y).

Proof.

dver((x1, . . . , xk, y), Ha1,...,ak,b) = |y − (x1a1 + . . . + xkak + b)|

= | − y + x1a1 + . . . + xkak + b|

= dver((a1, . . . , ak, b), H−x1,...,−xk,y)

= dver(T̃ (Ha1,...,ak,b), T̃ (x1, . . . , xk, y)).

This lemma directly proves the following theorem.

Theorem V.1.1. The location of a hyperplane Ha1,...,ak ,b that minimizes the sum
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of vertical distances to a given set of points

E = {(x11, . . . , x1k, y1), . . . , (xn1, . . . , xnk, yn)}

is equivalent to the location of a point (a1, . . . , ak, b) ∈ R
k+1 minimizing the sum

of vertical distances to a given set of hyperplanes

{T (x11, . . . , x1k, y1), . . . , T (xn1, . . . , xnk, yn)}.

Proof. Nothing left to prove after Lemma V.1.1.

Instead of searching for a hyperplane that minimizes the sum of vertical distances

to the existing facilities we can now search for a point in the dual space minimizing

the sum of vertical distances to the set of dual hyperplanes corresponding to the

existing facilities. For a point (a1, . . . , ak, b) in the dual space the objective function

can be written as

fver(a1, . . . , ak, b) =
n∑

i=1

dver((a1, . . . , ak, b), H−xi1,...,−xik,y)

=
n∑

i=1

dver((xi1, . . . , xik, y), Ha1,...,ak,b).

As in the line location case this equation shows why our notation fver(a1, . . . , ak, b)

for the objective function of (Pver) makes perfect sense. A point (a1, . . . , ak, b)

minimizes fver(a1, . . . , ak, b) if and only if Ha1,...,ak ,b is a hyperplane optimal for

(Pver).

The set of transformed existing facilities H := {T̃ (xi1, . . . , xik, yi) : i = 1 . . . n}

partitions the dual R
k+1 into cells C ∈ C. On each such cell C, the objective

function fver is linear due to the same argument as in the special case of line

location: The sign of |yi−(a1xi1 +. . .+akxik +b)| does not change on C. Therefore,

like in the special case of line location, the problem of locating hyperplanes using

vertical distance (Pver) is a piecewise linear convex problem since fver is still convex

in the higher dimensional case.

It is well known from optimization theory that there exists an optimal solution

(a∗
1, . . . , a∗

k, b∗) in the dual space that is a vertex of a cell C. Since a vertex of
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a cell is an intersection of at least k + 1 hyperplanes corresponding to affinely

independent points in the initial space there exists a hyperplane minimizing the

sum of vertical distances to the existing facilities passing through k + 1 affinely

independent existing facilities. We summarize this in the following lemma.

Lemma V.1.2. ([Sch99]) There exists a hyperplane minimizing the sum of vertical

distances

fver(a1, . . . , ak, b) =
n∑

i=1

dver((xi1, . . . , xik, yi), Ha1,...,ak,b)

and passing through k + 1 affinely independent existing facilities.

Proof. There is nothing left to prove after the discussion above. For a more detailed

proof of the corresponding statement for horizontal distances see [Sch99].

Example V.1.1. Let

E = {(x11, x12, y1), (x21, x22, y2), (x31, x32, y3), (x41, x42, y4)} ⊆ R
3

be the set of existing facilities with

(x11, x12, y1) = (−12,
3

2
, 1), (x21, x22, y2) = (2, −4, −1),

(x31, x32, y3) = (−1, −2, −3) and (x41, x42, y4) = (8, −3, 4).

This is an example with k = 2 and n = 4. If we look at the dual space of this

problem, we are given the set of hyperplanes H = {H1, H2, H3, H4} with

H1 = H12,− 3
2

,1, H2 = H−2,4,−1, H3 = H1,2,−3 and H4 = H−8,3,4.

Lemma V.1.2 tells us that there exists an optimal solution to the unrestricted prob-

lem (Pver) passing through k + 1 affinely independent existing facilities. Therefore

it is sufficient to check the objective function values of the points

(a1, a2, b)123 = (−
30

23
, −

68

23
, −

235

23
), (a1, a2, b)124 = (

51

94
,
82

47
,
230

47
),

(a1, a2, b)134 = (
57

41
,
226

41
,
386

41
) and (a1, a2, b)234 = (

4

5
,
1

5
, −

9

5
),
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where (a1, a2, b)i,j,k corresponds to the intersection of Hi, Hj and Hk ∈ H. It is

easy to check that (a1, a2, b)124 provides the best objective function value, namely

fver((a1, a2, b)124) = 363
94

, and therefore (a1, a2, b)124 is an optimal solution for

(Pver).

Finally, we want to provide a lemma which tells us that every hyperplane min-

imizing the sum of vertical distances to the existing facilities is pseudo-halving.

Remember that we already introduced the concept of pseudo-halving lines in Sec-

tion I.2. This is just a special case of the concept of pseudo-halving hyperplanes

which has been introduced in [Sch99] as-well. Considering only the special case

without weights or to be more precise the case with wi = 1 for all i = 1, . . . , n and

our notation

R(Ha1,...,ak,b) = {(xi1, . . . , xik, yi) ∈ E : yi − (a1xi1 + . . . + akxik + b) > 0}

L(Ha1,...,ak,b) = {(xi1, . . . , xik, yi) ∈ E : yi − (a1xi1 + . . . + akxik + b) < 0}

for a hyperplane Ha1,...,ak,b, we get the following definition.

Definition V.1.2. ([Sch99]) A hyperplane H is called pseudo-halving if

∑

(xi1,...,xik,yi)∈L(H)

1 = |L(H)| ≤
n

2
and

∑

(xi1,...,xik,yi)∈R(H)

1 = |R(H)| ≤
n

2
.

Now we can formulate the following lemma.

Lemma V.1.3. ([Sch99]) Every hyperplane H∗ minimizing

fver(a1, . . . , ak, b) =
n∑

i=1

dver((xi1, . . . , xik, yi), H)

is pseudo-halving.

Proof. We will not give a detailed proof of the lemma here. However, the proof

of this lemma is more or less analogous to the proof of Theorem V.2.2 in Section

V.2.



112
V.2. FIRST RESULTS ON LOCATING HYPERPLANES WITH A

RESTRICTION ON THE SLOPE

Lemma V.1.3 together with Lemma V.1.2 give a finite candidate set for (Pver):

Any hyperplane H that passes k + 1 affinely independent existing facilities while

it is pseudo-halving is a candidate for an optimal solution to (Pver).

V.2 First results on locating hyperplanes with a

restriction on the slope

In Section V.1 we summarized the results for the unrestricted problem (Pver). As

we have seen, a candidate set for the unrestricted problem of locating a hyperplane

is known. We want to use the presented results and expand them to the problem

we are interested in throughout this chapter, that is the location of a hyperplane

that minimizes the sum of vertical distances to a set of existing facilities when

there is given a restriction on the slope of the hyperplane to be located. Before we

start, remember the formulation of our problem for a given s ≥ 0:

min fver(a1, . . . , ak, b) = min
n∑

i=1

|yi − (xi1a1 + . . . + xikak + b)| (Pver(s))

s.t. ||a||1 = |a1| + . . . + |ak| ≤ s.

The main goal of this chapter is to show that there exists an optimal trajectory

for our problem that is continuous in s. In other words, first we want to be able to

solve the problem (Pver(s)) for any s ≥ 0 and next we want to show that we can

select elements from the solution sets of the different problems (Pver(s)), s ≥ 0, in

such a way that the trajectory these elements describe in R
k+1 is continuous. Our

trajectory will start with a solution for the problem (Pver(0)) and finally end up

in an optimal solution for the unrestricted problem (Pver).

In order to solve (Pver(s)) for any s ≥ 0, we want to use the dual space introduced in

Section V.1 again. For simplification of our notation we denote an existing facility

by (xi, yi) instead of (xi1, . . . , xik, yi). Let now E = {(xi, yi) ∈ R
k+1 : i = 1, . . . , n}

be the set of existing facilities. In a similar way, we use Ha,b short for a hyperplane

Ha1,...,ak,b. Now we want to locate a hyperplane Ha,b such that the sum of vertical
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distances to the existing facilities (xi, yi) ∈ E is minimized while ||a||1 ≤ s holds.

In the dual space, this corresponds to the following problem: Given a set of hy-

perplanes H = {H−x1,y1, . . . , H−xn,yn
} where −xi means (−xi1, . . . , −xik) locate a

point (a, b) ∈ R
k+1 that minimizes the sum of vertical distances to the existing

hyperplanes such that ||a||1 ≤ s holds.

As in the case of line location, the restriction on the a-vector leads to a different

cell structure in the dual space compared to the unrestricted case. As a matter

of fact, we have to add several hyperplanes to the set of existing hyperplanes H.

These are the hyperplanes described by all possible equations

δ1a1 + . . . + δkak = s

with δj being +1 or −1. In other words, we have to add 2k hyperplanes of the

form H = {(a, b) : δ1a1 + . . . + δkak = s} to H which is in line with adding just 2

lines in the case of line location.

They define a kind of a “tube” around the b-axis in the dual Rk+1 in which an

optimal solution to (Pver(s)) has to lie. We denote the set of additional hyperplanes

by H′.

In addition to the hyperplanes coming from the restriction on the a-vector we want

to consider the k different hyperplanes of the form

Hj = {(a, b) ∈ R
k+1 : aj = 0}.

By H′′ we denote the set of these hyperplanes. This is new in comparison to the

case of line location. We will see later on that this set of hyperplanes is very useful

for the geometrical interpretation of the optimal trajectory.

The hyperplanes in H ∪H′ ∪H′′ again induce a cell structure on the dual space, in

other words they partition the dual Rk+1 into cells C̃ ∈ C̃. Since this new partition

is a subdivision of the partition induced by H alone, the sign of yi − (a1xi1 + . . . +

akxik, b) still does not change on each cell C̃ for all i, therefore (Pver(s)) is still a

piecewise linear convex problem. This results in the fact that again there exists

an optimal solution (a∗, b∗) ∈ R
k+1 that is a vertex of a cell C̃. Unfortunately this

vertex does no longer have to be an intersection of k+1 hyperplanes corresponding
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to k + 1 affinely independent existing facilities. It can actually happen that this

vertex is an intersection of at least k hyperplanes of the set H′ ∪ H′′ and only one

single hyperplane H−xi,yi
∈ H.

Note that it may happen that k + 1 or more hyperplanes of the set H′ ∪ H′′

intersect but this intersection cannot correspond to a vertex of a cell. No matter

which hyperplanes of this set intersect, if (ā, b̄) is in the intersection so is (ā, b)

for all b ∈ R. Therefore an intersection of hyperplanes of the set H′ ∪ H′′ is at

least one-dimensional. This assures that one of the hyperplanes corresponding to

an existing facility is needed to describe a vertex of a cell C̃ ∈ C̃.

Therefore all we can say about optimal solutions of (Pver(s)) so far is that there

always exists an optimal hyperplane in the initial space that passes trough at least

one of the existing facilities. This is the statement of our first theorem of this

chapter.

Theorem V.2.1. There exists a hyperplane optimizing (Pver(s)) that passes

through at least one of the given facilities.

Proof. Following the argumentation above yields the proof of this theorem.

Next we can prove that still any optimal hyperplane is pseudo-halving in the

restricted case. The corresponding statement for the unrestricted case was given

in Lemma V.1.3 of the previous section. There you can also look up the definition

of a pseudo-halving hyperplane if needed. The subsequent theorem is analogous to

Theorem I.2.2 in Section I.2. As in the case of line location, we need a proposition

first that is the generalization of Proposition I.2.1 to the case of hyperplanes. For

a definition of a median of a set of numbers, see Definition I.2.3 in Section I.2.

Proposition V.2.1. Let E = {(xi1, . . . , xik, yi) ∈ R
k+1, i = 1 . . . n} be a set of

existing facilities and let (a∗
1, . . . , a∗

k, b∗) ∈ R
k+1 be an optimal solution for (Pver(s)).

Define a real-valued function of a real variable

f̄ : R → R

by

b 7→
n∑

i=1

|a∗
1xi1 + . . . + a∗

kxik − yi + b|.
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The value b∗ minimizes f̄ ⇔ b∗ ∈ median{(yi−(a∗
1xi1+. . .+a∗

kxik), 1) : i = 1 . . . n}.

Proof. “⇒” The function f̄ is piecewise linear and convex.

Suppose b∗ optimizes f̄ but b∗ /∈ median{(yi − (a∗
1xi1 + . . . + a∗

kxik), 1)}. Without

loss of generality we can suppose that

∑

i:yi−(a∗
1xi1+...+a∗

k
xik)<b∗

1 >
n

2
.

Now there exists an ǫ > 0 so that

{i : yi − (a∗
1xi1 + . . . + a∗

kxik) < b∗} = {i : yi − (a∗
1xi1 + . . . + a∗

kxik) < b∗ − ǫ}

{i : yi − (a∗
1xi1 + . . . + a∗

kxik) ≥ b∗} = {i : yi − (a∗
1xi1 + . . . + a∗

kxik) ≥ b∗ − ǫ}.

But then it holds that

f̄(b∗ − ǫ) =
∑

i:yi−(a∗
1xi1+...+a∗

k
xik)<b∗

(b∗ − ǫ − (yi − (a∗
1xi1 + . . . + a∗

kxik)))

+
∑

i:yi−(a∗
1xi1+...+a∗

k
xik)≥b∗

((yi − (a∗
1xi1 + . . . + a∗

kxik)) − b∗ + ǫ)

=
∑

i:yi−(a∗
1xi1+...+a∗

k
xik)<b∗

(b∗ − (yi − (a∗
1xi1 + . . . + a∗

kxik)))

+
∑

i:yi−(a∗
1xi1+...+a∗

k
xik)≥b∗

((yi − (a∗
1xi1 + . . . + a∗

kxik)) − b∗)

+ ǫ

Ñ

∑

i:yi−(a∗
1xi1+...+a∗

k
xik)≥b∗

1 −
∑

i:yi−(a∗
1xi1+...+a∗

k
xik)<b∗

1

é

< f̄(b∗) + ǫ
Ån

2
−

n

2

ã

= f̄(b∗),

which contradicts the assumption of optimality of b∗.

“⇐” Let b∗ ∈ median{(yi − (a∗
1xi1 + . . . + a∗

kxik), 1)}. For ǫ > 0 small enough it

can be shown similarly to the proof of the other direction that

f̄(b∗ − ǫ) ≥ f̄(b∗) and f̄(b∗ + ǫ) ≥ f̄(b∗).
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By convexity of f̄ the optimality of b∗ follows.

This is all we need to prove the following theorem.

Theorem V.2.2. Any hyperplane H∗ which minimizes

fver(a, b) =
n∑

i=1

dver((xi, yi), Ha,b)

s.t. ||a||1 ≤ s

is pseudo-halving.

Proof. The proof of this theorem works analogous to the proof of Theorem I.2.2

in Section I.2.

Let H∗ = Ha∗
1,...,a∗

k
,b∗ be an optimal solution to (Pver), therefore in particular it

holds that ||a∗||1 ≤ s.

Keep a∗ ∈ R
k fixed and look at the function

f̄(b) =
n∑

i=1

dver((xi, yi), Ha∗,b)

=
n∑

i=1

|yi − (a∗
1xi1 + . . . + a∗

kxik + b)|

which is a function of a real variable b. We can now look at the minimization

problem

min f̄(b). (P)

Since H∗ is optimal for (Pver(s)), one optimal solution to (P ) is b∗. But this means

that b∗ is a median of the set {(yi − (a∗
1xi1 + . . . + a∗

kxik; 1) : i = 1, . . . , n} due to

Proposition V.2.1. In other words, it holds that

∑

i: yi>a∗
1xi1+...+a∗

k
xik+b

1 = |R(H∗)| ≤
n

2
as well as

∑

i: yi<a∗
1xi1+...+a∗

k
xik+b

1 = |L(H∗)| ≤
n

2

by definition of a median of a set of numbers.

This already tells us that H∗ is a pseudo-halving hyperplane and we are done.
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The fact that an optimal hyperplane for (Pver(s)), s ≥ 0, has to be pseudo-halving

leads to the following corollary.

Corollary V.2.1. The set {b ∈ R : (a, b) is optimal to (Pver)} is bounded for any

s ≥ 0.

Up to now, we know that any optimal solution to (Pver(s)) is a pseudo-halving

hyperplane and that there exists an optimal hyperplane that corresponds to a

vertex of a cell in the dual space. Before we go on, we want to introduce some

notation. From now on for the rest of this chapter, we denote the sets of optimal

solutions of (Pver) and (Pver(s)) by Mopt
ver ⊆ R

k+1 and Mopt
ver(s) ⊆ R

k+1, respectively,

as we did in the case of line location.

Note that once we have reached an optimal solution for the unrestricted problem

(Pver), this solution will be optimal for all following restricted problems. Define

s∗ := min{||a||1 : (a, b) ∈ Mopt
ver}.

Lemma V.2.1. Let (a∗, b∗) ∈ Mopt
ver with ||a∗||1 = s∗. Then (a∗, b∗) ∈ Mopt

ver(s) for

all s ≥ s∗.

Proof. Since (a∗, b∗) is an optimal solution for the unrestricted problem and it is

feasible for (Pver(s)) for all s ≥ s∗, (a∗, b∗) obviously is an element of Mopt
ver(s) for

all s ≥ s∗.

Next we want to show that for any optimal hyperplane Ha,b of a problem (Pver(s))

such that 0 ≤ s ≤ s∗ it must hold that ||a||1 = s. This is due to the convexity of

our problem as we will show in the subsequent theorem.

Theorem V.2.3. Let (a∗, b∗) ∈ Mopt
ver with ||a∗||1 = s∗ where s∗ is defined as

s∗ := min{||a||1 : (a, b) ∈ Mopt
ver}. If s ∈ [0, s∗] then for all (a, b) ∈ Mopt

ver(s) it holds

that ||a||1 = s.

Proof. If s∗ = 0 that would mean that there exists an optimal solution for (Pver)

satisfying a = 0. In this case, our statement is true.

Assume that s∗ > 0. Let s ∈ [0, s∗] and assume that there exists a (a, b) ∈ Mopt
ver(s)

such that ||a||1 < s.
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If s = s∗, then obviously it holds that (a, b) ∈ Mopt
ver since Mopt

ver(s∗) ⊆ Mopt
ver . But

then it holds that ||a||1 < ||a∗||1 and (a, b) ∈ Mopt
ver which is a contradiction to the

definition of s∗.

Let now finally be s ∈ [0, s∗). Then ||a′||1 > s for all (a′, b′) ∈ Mopt
ver . In particular

it holds that ||a∗||1 > s and it is

fver(a, b) > fver(a
∗, b∗) (⋆)

since otherwise (a, b) ∈ Mopt
ver which leads to the same contradiction as we had in

the case above.

Since we assumed ||a||1 < s and ||a∗||1 > s, there exists a λ ∈ (0, 1) such that

||λa + (1 − λ)a∗||1 = s.

Then (λa + (1 − λ)a∗, λb + (1 − λ)b∗) is feasible for (Pver(s)) and

fver(λa + (1 − λ)a∗, λb + (1 − λ)b∗) ≤ λfver(a, b) + (1 − λ)fver(a
∗, b∗)

< λfver(a, b) + (1 − λ)fver(a, b)

= fver(a, b)

where the first inequality holds due to the convexity of fver and the second one due

to (⋆). But this is a contradiction to (a, b) ∈ Mopt
ver(s) and the theorem follows.

The preceding theorem tells us that an optimal solution to (Pver(s)), 0 ≤ s ≤ s∗,

has to lie on the boundary of the “tube” around the b-axis defined by the set of

hyperplanes we denoted by H′. This is a special case of the boundary theorem we

already mentioned on page 91.

Summarizing our results so far, it is sufficient to consider all hyperplanes Ha,b

corresponding to a vertex (a, b) of a cell C̃ ∈ C̃ in the dual space which is pseudo-

halving and satisfies ||a||1 = s as candidates for an optimal solution to (Pver(s)).
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V.3 The existence of a continuous optimal tra-

jectory

For the rest of this chapter, our goal will be to show that there exists an optimal

trajectory for our problem (Pver(s)) which is continuous and to give an idea of how

to construct it. First we will see that it is possible to find (a∗(s), b∗(s)) ∈ Mopt
ver(s)

in such a way that a∗
j (s) is piecewise linear in s for all j ∈ {1, . . . , k} as well as b∗(s)

is piecewise linear in s. We can use this fact to show that there exists a continuous

optimal trajectory via the well-known Michael selection theorem. This theorem

was first introduced in [Mic56]. In order to do so, we will have to learn a bit about

so-called set-valued maps. Note that in literature, there are different expressions to

denote the same concept of set-valued maps, e.g. multivalued functions or point-

to-set mappings. A nice introduction to this topic can be found in [AF90]. As

soon as we have shown the existence of such a continuous optimal trajectory, we

want to present a method of how to construct one.

From now on we assume that there exists no optimal solution (a∗, b∗) ∈ Mopt
ver of

(Pver) such that ||a∗||1 = 0. This is no restriction because if there exists such a

solution (a∗, b∗) it is of course optimal for (Pver(s)) for any s ≥ 0 (see Lemma

V.2.1), and therefore an optimal trajectory is given by the single point (a∗, b∗).

In order to deal with set-valued maps, we first have to learn how a set-valued map

looks like. Therefore we start off with the definition of such a map.

Definition V.3.1. ([AF90]) Let X and Y be topological spaces. A set-valued map

F

F : X → 2Y

where 2Y is the power set of Y is characterized by its graph Graph(F ), the subset

of the product space X × Y defined by

Graph(F ) := {(x, y) ∈ X × Y : y ∈ F (x)}.

F (x) often is referred to as the image or the value of F at x.

A set-valued map is said to be non-trivial if its graph is not empty, i.e., if there

exists at least an element x ∈ X such that F (x) is not empty.
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F is called strict if all images F (x) are not empty.

Note that the function

F ∗ : R+
0 → 2R

k+1

s 7→ Mopt
ver(s)

is a strict set-valued map since R and R
k+1 are obviously both topological spaces

and Mopt
ver(s) is not empty for all s ≥ 0 since we know that there always exists an

optimal hyperplane (see Theorem V.2.1). We therefore can interpret the set of

optimal solutions of (Pver(s)) as the image of F ∗ while F ∗ is characterized by its

graph Graph(F ∗) = {(s, (a, b)) ∈ R×R
k+1 : (a, b) ∈ Mopt

ver(s)}, the set of all tuples

of s and an optimal solution for (Pver(s)).

What we want to find out is if there is a way to choose one element (a(s), b(s)) ∈

Mopt
ver(s) out of each set Mopt

ver(s), s ≥ 0, in such a way that the function t : R → R
k+1

defined through

t : R+
0 → R

k+1

s 7→ (a(s), b(s))

is continuous in s. Note that the function t defined through our choices of

(a(s), b(s)) ∈ Mopt
ver(s), s ≥ 0, now maps a s ≥ 0 to one single point (a(s), b(s)) in

R
k+1 which corresponds to a hyperplane Ha(s),b(s) optimal for (Pver(s)). The fact

that we call this function t already gives a hint that this function in fact gives us

the continuous optimal trajectory we are looking for if we choose the (a(s), b(s))

in the right way. Independent from the choice of (a(s), b(s)) it gives us an optimal

trajectory in any case. Such a continuous function t corresponds to what is called

a selection in [Mic56].

Definition V.3.2. ([Mic56]) Let X and Y be topological spaces and let F : X →

2Y be a set-valued function. Then a selection of F is a continuous f : X → Y

such that

f(x) ∈ F (x)

for every x ∈ X.
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Therefore in terms of set-valued analysis, we are interested in finding a selection

t of the set-valued mapping F ∗. To be more precise, we first want to prove that

there exists such a selection. As we already mentioned at the beginning of this

section, we want to apply the Michael selection theorem in order to prove the

existence. We will now state the theorem and afterwards we will discuss what

features we have to prove for our set-valued function F ∗ in order to apply it. If

you are interested in a proof of the theorem, look up Theorem 3.2′′ in [Mic56].

Theorem V.3.1 (Michael selection theorem). Let X be a paracompact T1-space

and let Y be a Banach space. If F : X → 2Y is a lower semicontinuous set-valued

map with non-empty convex closed values then there exists a selection f : X → Y

of F .

In order to apply the Michael selection theorem we have to check several things.

To be able to do so, we need a short excursion to the field of general topology. We

will not go into too much detail here, but for completeness of our work we want

to show briefly that it is sensitive to apply the Michael selection theorem to our

problem. First of all we have to check whether R is a paracompact T1-space. Let

us therefore recall what characteristics define a T1-space and a paracompact space,

respectively. These definitions can be found in numerous books about topology,

e.g. [Kel55].

Definition V.3.3. A topological space is a T1-space iff each set which consists of

a single point is closed.

Fortunately, we have to deal with (R, | · |) which is a space that has a lot of nice

features. It is easy to see that (R, | · |) is indeed a T1-space once you know the

definition of such a topological space.

In order to give the definition of a paracompact space in the terms of [Kel55], we

first have to define a regular space.

Definition V.3.4. A topological space is regular iff for each point x and each

neighbourhood U of x there is a closed neighbourhood V such that V ⊂ U .

Definition V.3.5. A topological space is paracompact iff it is regular and each

open cover has an open locally finite refinement.
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As we already mentioned above, we do not want to go into detail here, but it is

stated in [Sto48] that any metric space is paracompact. Therefore (R, | · |) is of

course paracompact as a metric space.

Now we know that R fulfils everything we need it to fulfil in order to be able to

apply the Michael selection theorem. Next, it is well-known that Rk+1 is a Banach

space, therefore we will not get any problem here.

We already mentioned that F ∗ is a strict set-valued map which means that it has

non-empty values. What we need to show is that the values of F ∗ are convex and

closed. In other words, we have to show that Mopt
ver(s) is convex and closed for any

s ≥ 0.

It is well-known in optimization theory that the set of optimal solutions of a convex

problem is a convex set. Since Mopt
ver(s) is the set of optimal solutions of the convex

problem (Pver(s)) for any s, we know that Mopt
ver(s) is a convex set. Remember that

Mopt
ver(s) = {(a, b) ∈ R

k+1 : ||a||1 ≤ s and fver(a, b) ≤ fver(a
′, b′) ∀ (a′, b′)

satisfying ||a′||1 ≤ s}.

We know that b is bounded for (a, b) ∈ Mopt
ver(s) due to the pseudo-halving property

of an optimal hyperplane (see Corollary V.2.1). Moreover, as the set of optimal

solutions of (Pver(s)), Mopt
ver(s) is either a vertex of a cell C̃, a facet of a cell C̃

or a whole cell C̃ ∈ C̃, where C̃ are the cells defined through the set of hyper-

planes corresponding to existing facilities together with the set of hyperplanes

corresponding to the restriction on the slope in the dual space and the hyper-

planes Hj = {(a, b) ∈ R
k+1 : aj = 0} with j = 1, . . . , k, i.e. H ∪ H′ ∪ H′′ if we put

it as in Section V.2. Therefore Mopt
ver(s) is indeed a closed set for any s ≥ 0.

Putting it all together, we have that R is a paracompact T1-space, R
k+1 is a

Banach space and F ∗ : R+
0 → 2R

k+1
is a set-valued map with non-empty convex

closed values. What we do not have up to now is that F ∗ is lower semicontinuous.

Unfortunately, this is not trivial to prove directly by just applying the definition

of a lower semicontinuous set-valued function which we will get to know soon.

This is why we take a detour and show that there exist functions a, b such that
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(a(s), b(s)) ∈ Mopt
ver(s) for all s ≥ 0 and furthermore aj(s) is piecewise linear in s

for all j = 1 . . . k as well as b(s) is piecewise linear in s. That will help us to show

that F ∗ is indeed lower semicontinuous.

Let us start with the definitions of lower semicontinuity, upper semicontinuity and

continuity of a set-valued function. Once again, these definitions can be found for

example in [AF90].

Definition V.3.6. A set-valued map F

F : X → 2Y

is said to be lower semicontinuous in x if for any open set V ∈ 2Y such that

F (x) ∩ V 6= ∅ there exists a neighbourhood U ⊆ X of x such that F (x′) ∩ V 6= ∅

for any x′ ∈ U .

F is said to be upper semicontinuous in x if for any open neighbourhood V of F (x)

there exists a neighbourhood U of x such that F (x′) ⊆ V for all x′ ∈ U .

Finally, F is said to be continuous in x if it is lower semicontinuous and upper

semicontinuous in x.

A set-valued map is said to be continuous ( lower semicontinuous, upper semicon-

tinuous) if it is continuous (lower semicontinuous, upper semicontinuous) in x for

all x ∈ X.

As we mentioned before, in order to show that F ∗ is lower semicontinuous we first

want to show that there exist (a(s), b(s)) ∈ Mopt
ver(s), s ≥ 0, in such a way that

aj(s) is piecewise linear in s for all j = 1 . . . k as well as b(s) is piecewise linear in

s. We need some notation here.

Let us choose an arbitrary s̃ ≤ min{||a||1 : (a, b) ∈ Mopt
ver} and keep it fixed.

Assume that (a(s̃), b(s̃)) ∈ Mopt
ver(s̃) is an optimal solution to (Pver(s̃)). Note that

the choice of (a(s̃), b(s̃)) need not to be unique.

We denote by A+, A− and A the sets of indices

A+ := A+(a(s̃), b(s̃)) = {j : aj(s̃) > 0} ⊆ {1, . . . , k},

A− := A−(a(s̃), b(s̃)) = {j : aj(s̃) < 0} ⊆ {1, . . . , k} and
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A := A(a(s̃), b(s̃)) = A+ ∪ A−.

Recall that in Section V.2 we denoted by H the set of hyperplanes in the dual space

that correspond to one of the existing facilities and by H′′ the set of hyperplanes

of the form Hj = {(a, b) ∈ R
k+1 : aj = 0} for j = 1, . . . , k. Next we want

to define a set V that contains the indices of all hyperplanes that pass through

(a(s̃), b(s̃)) while either belonging to H or H′′. Remember that (xi1, . . . , xik, yi)

with i = 1, . . . , n denote the existing facilities. In order to avoid double entries in

the set V, we rename the hyperplanes Hj ∈ H′′ by

Hn+j := Hj

and we get

H′′ = {Hn+j : j = 1, . . . , k}

= {Hi : i = n + 1, . . . , n + k.}

Now we can denote by VH, VH′′ and V the sets of indices

VH := VH(a(s̃), b(s̃)) = {i : (a(s̃), b(s̃)) ∈ Hi}

= {i : yi − (
∑

j∈A

aj(s̃)xij + b(s̃)) = 0} ⊆ {1, . . . , n},

VH′′ := VH′′(a(s̃), b(s̃)) = {i : (a(s̃), b(s̃)) ∈ Hi} ⊆ {n + 1, . . . , n + k} and

V := VH ∪ VH′′ ⊆ {1, . . . , n + k}.

We will refer to the set A as the active set of (a(s̃), b(s̃)) because it contains all

indices of entries in a(s̃) that are “active” in the sense that they are non-zero.

The set V contains all indices of hyperplanes in the dual space that pass through

(a(s̃), b(s̃)) not corresponding to a restriction on the a-vector. Therefore we will

refer to V as the set of passing hyperplanes of (a(s̃), b(s̃)).

Furthermore we will refer to VH as the set of passed facilities of (a(s̃), b(s̃)) since

this set contains all indices of existing facilities that correspond to a hyperplane

in the dual space passing through (a(s̃), b(s̃)). In other words, the hyperplane in

the initial space corresponding to the point (a(s̃), b(s̃)) passes through all existing
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facilities (xi, yi) with i ∈ VH.

To VH′′ we will refer as the inactive set of (a(s̃), b(s̃)). The following remark will

clarify why we do so.

Remark V.3.1. There exists a strong connection between A and VH′′: It holds

that j ∈ A if and only if i = n + j /∈ VH′′. This is easy to see by just looking at

the definitions of A and VH′′, respectively.

Due to Remark V.3.1 it is easy to see that if an entry aj(s̃) of a(s̃) is “inactive” in

the sense that aj(s̃) = 0 then the corresponding index n + j is an element of VH′′ .

Therefore it makes sense to refer to VH′′ as the inactive set of (a(s̃), b(s̃)).

Remark V.3.2. Note that there always exists an optimal solution (a(s), b(s)) of

(Pver(s)), s ≥ 0, such that the set of passed facilities VH is non-empty. This is due

to Theorem V.2.1.

We know from Theorem V.2.3 that ||a(s̃)||1 = s̃ holds. In addition we can assume

that (a(s̃), b(s̃)) is a vertex of a cell C defined by H ∪ H′ due to Theorem V.2.1.

Since H∪H′∪H′′ gives a subpartition of the cell partition induced by H∪H′, we can

actually assume that (a(s̃), b(s̃)) is a vertex of a cell C̃ ∈ C̃ defined by H∪H′ ∪H′′,

the set of hyperplanes in the dual space. Without loss of generality, we furthermore

assume that V is nonempty (see Remark V.3.2) and that sgn(b(s)) = 1.

Now we define two nonnegative real numbers s and s by

s := inf{s′ : for all s satisfying s′ ≤ s ≤ s̃ there exists (a(s), b(s)) ∈ Mopt
ver(s)

s.t. A+(a(s), b(s)) = A+, A−(a(s), b(s)) = A− and V(a(s), b(s)) = V}

and

s := sup{s′ : for all s satisfying s̃ ≤ s ≤ s′ there exists (a(s), b(s)) ∈ Mopt
ver(s)

s.t. A+(a(s), b(s)) = A+, A−(a(s), b(s)) = A− and V(a(s), b(s)) = V},

respectively.

Remark V.3.3. Remember that we have chosen (a(s̃), b(s̃)) ∈ Mopt
ver(s̃) for a fixed

s̃. What we actually want to do in order to get a trajectory is to let s vary.
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Note that we defined s and s in the way that starting in s̃, the next time that

there exists no optimal solution (a(s), b(s)) to (Pver(s)) with A+(a(s), b(s)) = A+,

A−(a(s), b(s)) = A− and V(a(s), b(s)) = V will be in s if we decrease s̃ or in s if

we increase s̃. This means that in s as well as in s some changes to A or V have

to occur. This will play an important role later on.

Our aim is to show that there exist (a(s), b(s)) ∈ Mopt
ver(s), s ≥ 0, such that aj(s)

is piecewise linear in s for all j = 1 . . . k and in addition b(s) is piecewise linear in

s. For the time being we want to restrict ourselves to the interval (s, s) and we

show that there exist (a(s), b(s)) ∈ Mopt
ver(s), s ≥ 0, such that aj(s) is linear in s

for all j = 1 . . . k and in addition b(s) is linear in s on (s, s). Two cases can occur:

Either (s, s) is not a real interval, that is s = s = s̃. Then we pick (a(s̃), b(s̃)) as

an optimal solution to (Pver(s̃)) and we are done.

The more interesting case is the one where (s, s) is a real interval with s̃ ∈ (s, s).

We want to show that for s ∈ (s, s), we can choose certain (a(s), b(s)) from the set

{(a, b) : (a, b) ∈ Mopt
ver(s), A+(a, b) = A+, A−(a, b) = A− and V(a, b) = V}

(which is nonempty due to the definition of s and s) in such a way that our chosen

(a(s), b(s)) are linear in s. Let us denote these (a(s), b(s)) by

Mopt
lin (s, s) := {(a(s), b(s)) : s ∈ (s, s), (a(s), b(s)) ∈ Mopt

ver(s), A+(a(s), b(s))

= A+, A−(a(s), b(s)) = A− and V(a(s), b(s)) = V}.

We look at the problem
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min
n∑

i=1

dver((a, b),H−xi,yi
) (P̃ (s))

s.t.
∑

j∈A+

aj −
∑

j∈A−

aj = s

∑

j∈A

ajxij + b = yi ∀ i ∈ VH

aj ≥ 0 ∀j ∈ A+

aj ≤ 0 ∀j ∈ A−

aj = 0 ∀j with n + j ∈ VH′′

b ≥ 0.

By the way we defined (P̃ (s)) it is obvious that (a(s̃), b(s̃)) is an optimal solution

for (P̃ (s̃)). We want to reformulate (P̃ (s)) in order to clarify that it is a linear

program. Afterwards we will see that (a(s̃), b(s̃)) is indeed a basic solution to

(P̃ (s̃)) which will help us to show the linearity of the (a(s), b(s)) ∈ Mopt
lin (s, s). We

start with the following lemma.

Lemma V.3.1. It holds that the sets R(a(s), b(s)) and L(a(s), b(s)) as defined in

Section V.1 are identical for all (a(s), b(s)) ∈ Mopt
lin (s, s), meaning that

R(a(s), b(s)) = R(a(s̃), b(s̃))

and

L(a(s), b(s)) = L(a(s̃), b(s̃))

for all (a(s), b(s)) ∈ Mopt
lin (s, s).

Proof. It is true by definition of s and s that all (a(s), b(s)) ∈ Mopt
lin (s, s) have the

same set of passing hyperplanes V. In particular, they have the same set of passed

facilities VH.

Assume that there exists an index i such that i ∈ L(a(s1), b(s1)) while i /∈

L(a(s2), b(s2)) with (a(s1), b(s1)), (a(s2), b(s2)) ∈ Mopt
lin (s, s) and s1 < s2. Since

the set of passed facilities is VH for both (a(s1), b(s1)) and (a(s2), b(s2)), it has



128
V.3. THE EXISTENCE OF A CONTINUOUS OPTIMAL

TRAJECTORY

to hold that i ∈ R(a(s2), b(s2)). But this can only happen if the hyperplane cor-

responding to i intersects the hyperplanes corresponding to the indices in VH in

(aintersect, bintersect) ∈ R
k+1 such that ||aintersect||1 = s′ with s′ ∈ (s1, s2). This

would mean that i ∈ VH(a(s′), b(s′)) for (a(s′), b(s′)) ∈ Mopt
lin (s, s) and therefore

VH(a(s′), b(s′)) 6= VH, a contradiction.

We can rewrite the objective function fver by

fver(a, b) =
n∑

i=1

dver((a, b), H−xi,yi
)

=
∑

i∈R(a,b)

yi − (a1xi1 + . . . + akxik + b)

+
∑

i∈L(a,b)

a1xi1 + . . . + akxik + b − yi

=
∑

i∈R(a,b)

yi −
∑

i∈L(a,b)

yi

+ a1(
∑

i∈L(a,b)

xi1 −
∑

i∈R(a,b)

xi1)

+ a2(
∑

i∈L(a,b)

xi2 −
∑

i∈R(a,b)

xi2)

+ . . .

+ ak(
∑

i∈L(a,b)

xik −
∑

i∈R(a,b)

xik)

+
∑

i∈L(a,b)

b −
∑

i∈R(a,b)

b.

For the time being, we are only interested in s ∈ (s, s) which means that the term
∑

i∈R(a,b) yi −
∑

i∈L(a,b) yi is a constant. To be more precise, the sets R(a(s), b(s))

and L(a(s), b(s)) are constant for all (a(s), b(s)) ∈ Mopt
lin (s, s) due to Lemma V.3.1.

Therefore the above mentioned sum is not important for minimization and can

be left out. In the following, we will denote the constant sets R(a(s), b(s)) and

L(a(s), b(s)) by R and L, respectively.
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Let A = {j1, . . . , jm} ⊆ {1, . . . , k} and assume without loss of generality A+ =

{j1, j2, . . . , jl} while A− = {jl+1, jl+2, . . . , jm} with l ≤ m. Define

cν :=







∑

i∈L
xij −

∑

i∈R
xij for ν = 1 . . . m

|L| − |R| for ν = m + 1.

Then it is c = (c1, . . . , cm+1)
t ∈ R

m+1. Our variables we denote by a′ where

a′ := (aj1, . . . , ajm
, b)t ∈ R

m+1.

Now the dimensions of c and a′ fit together in the sense that we can look at cta′.

It holds that

fver(a, b) = cta′

for all (a, b) with active set A and set of passing hyperplanes V.

Note that such an active set A = {j1, . . . , jm} directly implies an inactive set

VH′′ = {n + j : j /∈ A} due to Remark V.3.1.

If we now assume VH = {i1, . . . , iq} ⊆ {1, . . . , n} and define a matrix A ∈

R
(q+1)×(m+1) by

A :=











1 . . . 1 −1 . . . −1 0

xi1j1 . . . xi1jl
xi1jl+1

. . . xi1jm
1

...
. . .

...
...

. . .
...

...

xiqj1 . . . xiqjl
xiqjl+1

. . . xiqjm
1











and a vector ỹ(s) ∈ R
q+1 by

ỹ(s) := (s, yi1, . . . , yiq
)t

we can rewrite (P̃ (s)) for s ∈ (s, s) as
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min cta′ (P̃ (s))

s.t. Aa′ = ỹ(s)

a′
µ ≥ 0 for µ = 1 . . . l

a′
µ ≤ 0 for µ = l + 1 . . . m

a′
µ ≥ 0 for µ = m + 1.

We assume without loss of generality that m ≥ q and that the rank of A is q + 1.

Otherwise the system of linear equations Aa′ = ỹ(s̃) has exactly one or none

solution or there exist linearly dependent rows of A which can be left out. In the

first case, (P̃ (s̃)) is not interesting as an optimization problem. The latter case

corresponds to a degenerate case where there intersect more than q+1 hyperplanes.

With the reformulation at hand, it is obvious that (P̃ (s)) is a linear program for

s ∈ (s, s). Now we want to prove the following lemma.

Lemma V.3.2. Let s̃ ≥ 0 such that (s, s) is a real interval with s̃ ∈ (s, s) and let

(a(s̃), b(s̃)) ∈ Mopt
ver(s̃) be an optimal solution for (Pver(s̃)) with active set A =

A+ ∪ A− where A+ = {j1, . . . , jl} and A− = {jl+1, . . . , jm} and set of passed

hyperplanes VH = {i1, . . . , iq}. Furthermore let (P̃ (s)) be the linear program

min cta′ (P̃ (s))

s.t. Aa′ = ỹ(s)

a′
µ ≥ 0 for µ = 1 . . . l

a′
µ ≤ 0 for µ = l + 1 . . . m

a′
µ ≥ 0 for µ = m + 1

as formulated above.

Then a′(s̃) := (a(s̃)j1, . . . , a(s̃)jm
, b(s̃))t is an optimal basic solution for (P̃ (s̃)).

Proof. We already know that a′(s̃) is an optimal solution to (Pver(s̃)) by choice of

(a(s̃), b(s̃)) and definition of a′(s̃).

The way we constructed the alternative program (P̃ (s̃)) makes sure that a′(s̃) :=

(a(s̃)j1, . . . , a(s̃)jm
, b(s̃))t is a vertex of the polyhedron defined by the constraints of
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(P̃ (s̃)). But the vertices of this polyhedron correspond to feasible basic solutions

for (P̃ (s̃)) which is a well-known fact in linear optimization theory. This shows

that a′(s̃) is indeed an optimal basic solution to (P̃ (s̃)).

Actually, choosing (a(s̃), b(s̃)) and constructing (P̃ (s̃)) based on A and V already

makes sure that a basis B of A such that AB = A leads to an optimal solution for

(P̃ (s̃)). This is a nice fact which leads to a result that will help us when we want

to construct an optimal trajectory for (Pver(s)) explicitly.

Lemma V.3.3. Let s̃ ≥ 0 such that (s, s) is a real interval with s̃ ∈ (s, s) and

let (a(s̃), b(s̃)) ∈ Mopt
ver(s̃) and a′(s̃) be defined as in the previous lemma, let A =

{j1, . . . , jm} and VH = {i1, . . . , iq}. If B is a basis of A such that a′(s̃) = A−1
B ỹ(s̃)

it holds that AB = A and m = q. In particular, B is the only basis of A.

Proof. From Lemma V.3.2, we know that a′(s̃) is a basic solution to the linear

problem (P̃ (s̃)). This means that there exists a basis B of A such that

a′(s̃) = A−1
B ỹ(s̃).

Remember that we assume rank(A) = q + 1 and m ≥ q. Since A has rank(A) =

q + 1, it must hold that AB ∈ R
(q+1)×(q+1) and therefore a′(s̃) = A−1

B ỹ(s̃) ∈ R
q+1.

On the other hand, we know that by choice of a′(s̃) it holds that a′(s̃) ∈ R
m+1

with a′(s̃)µ 6= 0 for µ = 1, . . . , m + 1 and therefore a′(s̃)B = a′(s̃) ∈ R
m+1. But

that means that q = m and therefore AB = A. Since q = m there cannot exist

another different basis and therefore B is the unique basis of A.

Lemma V.3.2 together with Lemma V.3.3 tell us that (a(s̃), b(s̃)) can be written

as

a′(s̃) = A−1ỹ(s̃)

as an optimal basic solution a′(s̃) of (P̃ (s̃)). To be more precise, it holds that

a′(s̃)µ = x̃µ1 · s̃ +
m∑

ν=1

x̃µ(ν+1)ỹ(s̃)ν







> 0 for µ = 1 . . . l and µ = m + 1

< 0 for µ = l + 1 . . . m.



132
V.3. THE EXISTENCE OF A CONTINUOUS OPTIMAL

TRAJECTORY

where x̃µν are the entries of A−1. Note that these entries only depend on the given

entries of the existing xi ∈ R
k.

This observation leads to a theorem that is crucial for the proof of the existence

of (a(s), b(s)) ∈ Mopt
ver(s), s ∈ (s, s), such that aj(s) is linear in s for all j = 1 . . . k

and in addition b(s) is linear in s.

Theorem V.3.2. Let A ∈ R
(q+1)×(m+1) be the matrix in (P̃ (s)). It holds that

m = q and for any s ∈ (s, s) the only basis of A is B such that AB = A.

Proof. For any s ∈ (s, s), the matrix A in (P̃ (s)) is indeed the same as in (P̃ (s̃))

since the entries of A only depend on the given entries of the existing xi ∈ R
k as

we already mentioned above. Therefore B with AB = A is a basis of A for any

s ∈ (s, s) due to Lemma V.3.3. This lemma also tells us that q = m, therefore B

is the only basis of A.

If s ∈ (s, s) with s 6= s̃, the only thing that changes in (P̃ (s)) is the ỹ-vector,

namely ỹ(s)1 = s instead of ỹ(s̃)1 = s̃ as it was the case in (P̃ (s̃)). However, it is

true that ỹ(s)ν = ỹ(s̃)ν for any ν 6= 1.

Now that we know that B with AB = A is a basis of A for any s ∈ (s, s) due to

Theorem V.3.2, let us look at A−1ỹ(s).

A−1ỹ(s)µ = x̃µ1 · s +
m∑

ν=1

x̃µ(ν+1)ỹ(s̃)ν

= (s − s̃)x̃µ1 + x̃µ1 · s̃ +
m∑

ν=1

x̃µ(ν+1)ỹ(s̃)ν

= (s − s̃)x̃µ1 + a′(s̃)µ.

This defines a feasible solution to (P̃ (s)) for any s ∈ (s, s) since (P̃ (s)) is a linear

program for s ∈ (s, s) and as such it has an optimal basic solution. Since B

with AB = A is the only basis of A due to Theorem V.3.2, A−1ỹ(s) is an optimal

solution to (P̃ (s)) and therefore in particular feasible. But this means that

A−1ỹ(s)µ







> 0 for µ = 1 . . . l and µ = m + 1

< 0 for µ = l + 1 . . . m.
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If we define a′(s) by

a′(s) := A−1ỹ(s)

for all s ∈ (s, s) we get that a′(s) is an optimal basic solution to (P̃ (s)) for any

s ∈ (s, s). Alternatively, we can write a′(s) as

a′
µ(s) = (s − s̃)x̃µ1 + a′(s̃)µ, µ = 1, . . . , m + 1.

Lemma V.3.4. Let s ∈ (s, s) and let a′(s) = A−1ỹ(s). Then a′(s) is an optimal

basic solution for (P̃ (s)).

Proof. This lemma is a direct consequence of the definition of a′(s) and Theorem

V.3.2.

Finally, we know that there exist optimal solutions a′(s) for (P̃ (s)), s ∈ (s, s), in

such a way that a′(s)µ is linear in s for µ = 1, . . . , m + 1.

Theorem V.3.3. Let s ∈ (s, s) and let a′(s) = A−1ỹ(s) be defined as above. Then

a′(s) is an optimal solution for (P̃ (s)) and a′(s) is linear in s for µ = 1, . . . , m+1.

Proof. Fortunately, there is nothing left to prove. Due to Theorem V.3.2 and

Lemma V.3.4 we know that a′(s) is the unique optimal basic solution to (P̃ (s))

for any s ∈ (s, s), and as such we can write all a′(s) as

a′
µ(s) = (s − s̃)x̃µ1 + a′(s̃)µ, µ = 1, . . . , m + 1,

a′(s)µ clearly is linear in s for µ = 1, . . . , m + 1

Up to now, we showed that there exist solutions to our problem (P̃ (s)) constructed

from an optimal solution for (Pver(s̃)) which are linear in s in each component. Re-

member that our actual aim is to show that there exist optimal solutions (a(s), b(s))

of (Pver(s)), s ≥ 0, such that a(s)j is piecewise linear in s for j = 1, . . . , k as well

as b(s) is piecewise linear in s.

Remember that A = {j1, . . . , jm}. Note that a′(s) corresponds to a feasible solu-

tion (a(s), b(s)) for (Pver(s)) for all s ∈ (s, s) with
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a(s)jµ
= a′(s)µ for jµ ∈ A

a(s)j = 0 for j /∈ A and

b(s) = a′(s)m+1.

It is clear by definition of (a(s), b(s)) that it has active set A and set of passing

hyperplanes V for all s ∈ (s, s). What we want to show is that (a(s), b(s)) defined

as above is an element of Mopt
lin (s, s) for all s ∈ (s, s), that is to say (a(s), b(s)) in

addition to the aforementioned properties is an optimal solution to (Pver(s)) for

all s ∈ (s, s).

Theorem V.3.4. Let s ∈ (s, s) and let (a(s), b(s)) be defined as above. Then

(a(s), b(s)) ∈ Mopt
lin (s, s).

Proof. Let s ∈ (s, s) and assume that (a(s), b(s)) /∈ Mopt
lin (s, s). By the choice

of the interval (s, s) there exists an optimal solution (â(s), b̂(s)) to (Pver(s)) such

that (â(s), b̂(s)) ∈ Mopt
lin (s, s). This means (â(s), b̂(s)) has active set A and set of

passing hyperplanes V. Additionally, it holds that

fver(â(s), b̂(s)) < fver(a(s), b(s)).

If we again define â′(s) by just considering the entries of â(s) that are nonzero and

b̂ as we did before â′(s) is a feasible solution to (P̃ (s)). By the way we constructed

(a(s), b(s)) we know that the corresponding a′(s) is an optimal solution to (P̃ (s)),

which means that

cta′(s) ≤ ctâ′(s).

But we know that

cta′ = fver(a, b)

for all (a, b) with active set A and set of passing hyperplanes V by construction of

c and a′. Since both (â(s), b̂(s)) and (a(s), b(s)) fulfil this condition it follows that
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fver(a(s), b(s)) ≤ fver(â(s), b̂(s)),

a contradiction.

Therefore it holds that (a(s), b(s)) ∈ Mopt
lin (s, s).

Putting our results together we get the following corollary.

Corollary V.3.1. There exist (a(s), b(s)) ∈ Mopt
ver(s), s ∈ (s, s), in such a way

that a(s)j is linear in s for all j = 1 . . . k as well as b(s) is linear in s.

Proof. Let s ∈ (s, s). If we choose (a(s), b(s)) as in Theorem V.3.4, we know that

(a(s), b(s)) is an optimal solution to (Pver(s)). Due to the choice of (a(s), b(s)) and

Theorem V.3.3, a(s)j is linear in s for all j = 1 . . . k and b(s) is linear in s.

We already mentioned in Remark V.3.3 that in s as well as in s some changes have

to occur concerning the active set A or the set of passing hyperplanes V. Now we

want to specify how these changes look like.

In order to do so, note that the linearity of (a(s), b(s)) on the interval (s, s) has a

geometrical interpretation. So far, we denoted by C the set of cells defined through

the hyperplanes H ∈ H in the dual space corresponding to existing facilities.

If we consider the hyperplanes H ∈ H′ in the dual space that correspond to a

restriction on the a-vector and all hyperplanes Hj ∈ H′′, j = 1, . . . , k, in addition,

we get the set of cells C̃. Let us now introduce a third set of cells we want to

denote by C′, namely the set of cells induced by the partition of the dual Rk+1

given by all hyperplanes corresponding to existing facilities and all hyperplanes

Hj , j = 1, . . . , k. Sticking to our notation, C′ is the set of cells induced by the

hyperplanes in H ∪ H′′.

Lemma V.3.5. Let (s, s) be a real interval with s̃ ∈ (s, s). If we choose

(a(s), b(s)) ∈ Mopt
ver(s) for s ∈ (s, s) as we described before, the obtained opti-

mal trajectory limited to the interval (s, s) follows an edge of a cell C ′ ∈ C′ defined

by the sets of hyperplanes H and H′′.

Proof. Remember that all (a(s), b(s)) lying on our optimal trajectory for s ∈ (s, s)

share the constant active set A = {j1, . . . , jm} as well as the constant set of passing
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hyperplanes V, which means that they share the constant set of passed facilities

VH = {i1, . . . , iq} in particular.

The set of passed facilities VH tells us that our (a(s), b(s)) lie in the intersection of

the q hyperplanes H−xi1
,yi1

, . . . , H−xiq ,yiq
. The active set A together with Remark

V.3.1 tells us that our (a(s), b(s)) lie in the intersection of the k − m hyperplanes

Hj with j /∈ A as well. We know from Theorem V.3.2 that it is m = q. Altogether

we get that our (a(s), b(s)) lie in the intersection of k hyperplanes from the set

H ∪ H′′ and since we are in the R
k+1, these k hyperplanes define an edge of a cell

C ′ ∈ C′.

As long as we can find a feasible solution (a(s), b(s)) to (Pver(s)) lying on the edge

of C ′ defined by A and V this solution will be optimal as well since it corresponds to

an optimal basic solution a′(s) of (P̃ (s)). Anyhow, if we let s decrease or increase

we will eventually reach a vertex of C ′ and our trajectory can no longer follow the

same edge.

Reaching a vertex of C ′ at some ŝ means that another hyperplane H ∈ H ∪ H′′

intersects with the k hyperplanes which define the edge of C ′. In other words,

another index i /∈ V joins the set of passing hyperplanes to define V(ŝ) = V ∪

{i}. Note that if the index i /∈ V that joins the new set of passing hyperplanes

corresponds to a hyperplane H−xi,yi
∈ H, that is i ∈ {1, . . . , n}, this means that

the index i corresponding to the existing facility (xi, yi) joins the set of passed

facilities VH(ŝ) = VH ∪ {i}. If on the other hand the index i /∈ V that joins

the new set of passing hyperplanes corresponds to a hyperplane Hi ∈ H′′, that is

i ∈ {n + 1, . . . , n + k}, this means that the index i joins the inactive set VH′′(ŝ) =

VH′′ ∪ {i}. Due to Remark V.3.1 this is equivalent to the corresponding j ∈ A

leaving the active set and therefore aj becoming zero, that means A(ŝ) = A \ {j}.

Remark V.3.4. In [EHJT04] and in [WGZ06], the action of a(s)j with j ∈ A

becoming zero with changing s as well as the action of an index i /∈ VH joining V

with changing s is called an event.

We want to stick to this notation: Whenever a new index i corresponding to a

hyperplane H ∈ H ∪ H′′ joins the set of passing hyperplanes V at some s we

will say that an event happens in s in the following. Depending on whether the

joining index i corresponds to a hyperplane in H or in H′′, an event is equivalent
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to an index i /∈ V corresponding to an existing facility joining the set of passing

hyperplanes V, or the set of passed facilities VH to be more precise, or to a(s)j

becoming zero for some j ∈ A to an index i /∈ V corresponding to an existing

facility joining the set of passing hyperplanes V, or the set of passed facilities VH

to be more precise.

In general, it can of course happen that more than one event takes place at a time.

Therefore, like [EHJT04] do for their LASSO regression method, we assume a one

at a time condition, which means that each change of V only involves a single

index i. This is equivalent to the condition that the changes of A never involve

more than a single index j, the ones of VH never involve more than a single index

i and in addition either A changes or VH changes, never both at the same time.

This can always be realized by changing the y values of the existing facilities the

slightest bit which should not have too much impact on the value of our objective

function.

Assuming this condition, only one event happens at a time. Anything we will

present here would work in a “many at a time“ situation as well, here the one at

a time condition is just a technical detail for simplicity of notation. It is more

interesting when it comes to the construction of an optimal trajectory.

As we already pointed out, our (a(s), b(s)) follow an edge of a cell C ′ ∈ C′ defined

by A and V until we reach a vertex of C ′. Now that we introduced the notion of

an event in Remark V.3.4, it is easy to see that this is equivalent to saying that A

and V of our (a(s), b(s)) are constant until an event happens. Note that s and s

are defined in the way that starting in s̃, the next event will take place in s if we

decrease s and in s if we increase s. In other words, (a(s), b(s)) and (a(s), b(s))

are different vertices of a cell C ′ ∈ C′.

Remember that we distinguished between the two cases of (s, s) being just a single

point, namely s̃, and (s, s) being a real interval with s̃ ∈ (s, s). As a matter of

fact, the first case is equivalent to assuming that an event has happened in s̃ (or

to assuming that our starting solution (a(s̃), b(s̃)) is a vertex of a cell in C′) while

the latter case is equivalent to assuming that no event has happened in s̃ (or to

assuming that our starting solution (a(s̃), b(s̃)) is no vertex of a cell in C′).

The results of this section up to now enable us to show that there exists an optimal
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trajectory to (Pver(s)) which is piecewise linear in each component.

Theorem V.3.5. There exist (a(s), b(s)) ∈ R
k+1 such that (a(s), b(s)) ∈ Mopt

ver(s),

s ≥ 0, and a(s)j as well as b(s) are piecewise linear in s. In other words, there

exists an optimal trajectory for (Pver(s)) which is piecewise linear in each compo-

nent.

Proof. First of all note that we are only interested in an optimal trajectory for

s ∈ [0, s∗] with

s∗ = min{||a||1 : (a, b) ∈ Mopt
ver}.

Then we can stop since an optimal solution (a(s∗), b(s∗)) ∈ Mopt
ver(s∗) to the re-

stricted problem (Pver(s
∗)) has to be an optimal solution to the unrestricted prob-

lem (Pver) as well and this means that (a(s∗), b(s∗)) is optimal for any (Pver(s))

with s > s∗ (see Lemma V.2.1).

Assume that M = {(a1, b1), . . . , (at, bt)} is the set of all vertices (a, b) of cells in

C′ such that ||a||1 ∈ [0, s∗]. This set is finite since there only exist finitely many

vertices of cells in C′. This is because a vertex of a cell in C′ corresponds to the

intersection of k +1 hyperplanes of the set H∪H′′ and there can only exist finitely

many of intersections of k + 1 hyperplanes since H and H′′ are finite sets. Since

M is a subset of the finite set of all vertices of cells in C′ it has to be a finite set

itself.

Let us assume without loss of generality that

||a1||1 ≤ ||a2||1 ≤ . . . ≤ ||at||1.

Let s1 := ||a1||1, . . . , st := ||at||1 and let S = {s1, . . . , st}. We assume without loss

of generality that

s1 < s2 < . . . < st.

We can do that because if si = sj for some i, j ∈ {1, . . . , t} we just skip one of

them from S without losing any information.

Note that there exists a (a, b) ∈ M with ||a||1 = 0. This is true because for any

optimal solution (a, b) to (Pver(0)) it has to hold that ||a||1 = 0 (otherwise (a, b) is

not feasible) and furthermore Theorem V.2.1 tells us that there exists an optimal
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solution to (Pver(0)) that passes through at least one of the existing facilities.

Therefore this optimal solution is an intersection of the k hyperplanes in H′′ and

one hyperplane H−xi,yi
∈ H, which means that it is a vertex of a cell in C′. Hence

we know that s1 = 0.

Moreover, our trajectory has to end in a vertex, in other words there exists a

(a, b) ∈ M with ||a||1 = s∗. In order to see that, assume that (a(s∗), b(s∗)) is not

a vertex, then it lies on an edge e of a cell C ′ ∈ C′. There exist s and s such

that s∗ ∈ (s, s) and (a(s), b(s)) as well as (a(s), b(s)) are vertices of C ′ delimiting

the edge e. We can find feasible solutions (a(s), b(s)) to (Pver(s)) for s ∈ (s∗, s)

lying on the same edge e of C ′ as (a(s∗), b(s∗). These solutions are optimal to

(Pver(s)) since they correspond to optimal basic solutions a′(s) to (P̃ (s)). Since

(a(s∗), b(s∗)) is optimal to (Pver(s)) for all s ≥ s∗ (see Lemma V.2.1) and fver

is linear on C ′, this means that all (a(s), b(s)) with s ∈ (s, s) lying on the edge

e are optimal to the unrestricted problem (Pver). But this is a contradiction to

s∗ = min{||a||1 : (a, b) ∈ Mopt
ver}. Hence we know that st = s∗.

Now we have finitely many intervals

(s1, s2), . . . , (st−1, st)

such that there exists no vertex (a, b) of a cell in C′ with ||a||1 ∈ (si, si+1) for

s ∈ {1, . . . , t − 1}. Since we know that s1 = 0 and st = s∗, these intervals together

with 0, s2 . . . , st−1, s∗ cover the whole interval [0, s∗] that we are interested in.

Corollary V.3.1 together with our considerations concerning events and vertices of

cells in C′ assures that on each interval (si, si+1) with i = 1, . . . , t − 1 we can find

(a(s), b(s)) ∈ Mopt
ver(s) in such a way that a(s)j is linear in s for all j = 1 . . . k as well

as b(s) is linear in s. There exist only finitely many of these intervals, therefore

we can choose any (a(s), b(s)) ∈ Mopt
ver(s) for s ∈ (0, s2, . . . , s∗) in addition and

what we get is an optimal trajectory for (Pver(s)) which is piecewise linear in each

component.

Remark V.3.5. Remember that our starting solution (a(s̃), b(s̃)) is a vertex of

a cell C̃ induced by H ∪ H′ ∪ H′′ by assumption (see page 125). This is why we

were able to prove that there exists an optimal trajectory that is piecewise linear

running along edges of cells C̃ ∈ C̃ and in particular passing through (a(s̃), b(s̃)).
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While this is a nice property of an optimal trajectory from the geometrical point

of view, it is important to note that if we drop the assumption of (a(s̃), b(s̃)) being

a vertex of a cell C̃ ∈ C̃ we can still prove the existence of a piecewise linear

optimal trajectory passing through (a(s̃), b(s̃)) using similar techniques as the one

we presented here. In other words, independent from our choice of a starting

solution (a(s̃), b(s̃)) ∈ Mopt
ver(s̃) for a fix s̃ we can construct an optimal trajectory

that is piecewise linear and at the same time passes through (a(s̃), b(s̃)).

Finally, we want to use the existence of a piecewise linear optimal trajectory to

prove that F ∗ is lower semicontinuous. Then we have everything we need at hand

to apply the Michael selection Theorem V.3.1.

Theorem V.3.6. The set-valued map

F ∗ : R+
0 → 2R

k+1

s 7→ Mopt
ver(s)

is lower semicontinuous.

Proof. We want to show that F ∗ is lower semicontinuous. Remember that F ∗ is

lower semicontinuous in ŝ if for any open set V ∈ 2R
k+1

such that F ∗(ŝ) ∩ V 6= ∅

there exists a neighbourhood U ⊆ R such that ŝ ∈ U and F ∗(s) ∩ V 6= ∅ for any

s ∈ U .

Let V ∈ 2R
k+1

be open such that F ∗(ŝ) ∩ V 6= ∅. In other words, there exists an

optimal solution to (Pver(ŝ)) in V , i.e. Mopt
ver(ŝ)∩V 6= ∅. Let (a(ŝ), b(ŝ)) ∈ Mopt

ver(ŝ)∩

V . Then there exists an open ǫ-neighbourhood Vǫ(a(ŝ), b(ŝ)) of (a(ŝ), b(ŝ)) such

that Vǫ(a(ŝ), b(ŝ)) ⊆ V .

We want to show that there exists an open neighbourhood Uδ = (ŝ − δ, ŝ + δ) of ŝ

such that F ∗(s) ∩ Vǫ(a(ŝ), b(ŝ)) 6= ∅ for any s ∈ Uδ.

Remember that we can choose (a(s), b(s)) ∈ Mopt
ver(s) for s ≥ 0 in a way that

the corresponding optimal trajectory is piecewise linear in s and passes through

(a(ŝ), b(ŝ)) due to Remark V.3.5. We only want to discuss the case where we start

in a vertex (a(ŝ), b(ŝ)) ∈ Mopt
ver(s) of a cell C̃ induced by H ∪ H′ ∪ H′′ here. If

(a(ŝ), b(ŝ)) is not a vertex, similar considerations to the one we present here lead

to the same result.
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Let M = {(a1, b1), . . . , (at, bt)} again be the set of all vertices (a, b) of cells in C′

such that ||a||1 ∈ [0, s∗] and furthermore s1 := ||a1||1, . . . , st := ||at||1 as well as

S = {s1, . . . , st} as in the proof of Theorem V.3.5. Again we assume without loss

of generality that

s1 < s2 < . . . < st.

We can choose (a(s), b(s)) ∈ Mopt
ver(s) in a way that (a(s), b(s)) is linear in s for

s ∈ (si, si+1) due to Theorem V.3.5. If (a(ŝ), b(ŝ)) is a vertex of a cell C̃ this means

that the corresponding optimal trajectory moves along an edge of a certain cell

C1 ∈ C′ for s ∈ (si, si+1), i ∈ {1, . . . , t − 1}, see Lemma V.3.5.

We have to distinguish between three cases: The easiest case is that ŝ ∈ (si, si+1)

for i ∈ {1, . . . , t − 1}, in other words there exists no vertex (a, b) ∈ M with

||a||1 = ŝ and therefore no event takes place in ŝ.

The second case is that ŝ ∈ {s1, . . . , st} but still no event takes place in ŝ. Geo-

metrically this means that there exists a vertex (a, b) ∈ M of a cell C ∈ C′ with

||a||1 = ŝ but it is not a vertex of the cell C1 we are considering, that is to say

C 6= C1.

The third case is that ŝ ∈ {s1, . . . , st} and an event takes place in ŝ. The geomet-

rical interpretation of this case is that there exists a vertex (a, b) ∈ M of C1 ∈ C′

with ||a||1 = ŝ.

Case 1

First, let ŝ ∈ (si, si+1) for i ∈ {1, . . . , t − 1}. We can choose δ small enough such

that (ŝ − δ, ŝ + δ) ⊆ (si, si+1).

Due to Theorem V.3.5, we can find (a(s), b(s)) ∈ Mopt
ver(s) such that (a(s), b(s)) is

linear in s for s ∈ (ŝ−δ, ŝ+δ). To be more precise, we can find an optimal solution

(a(s), b(s)) to (Pver(s)) with s ∈ (ŝ − δ, ŝ + δ) such that it has the same active set

as well as the same set of passing hyperplanes as (a(ŝ), b(ŝ)) and it holds that

aj(ŝ) =







(ŝ − s)c(j) + a(s)j for j ∈ A

a(s)j = 0 else

b(ŝ) = (ŝ − s)c(b) + b(s)
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where the c(j) and c(b) are real numbers derived from the entries of the matrix A

belonging to the alternative program (P̃ (ŝ)) defined as on page 127.

By definition of F ∗ it is clear that (a(s), b(s)) ∈ F ∗(s). Due to the linearity of

(a(s), b(s)) it is clear that we can choose δ small enough such that (a(s), b(s))

actually is a point in Vǫ(a(ŝ), b(ŝ)) for s ∈ (ŝ − δ, ŝ + δ).

Now we found out that there exists an open neighbourhood (ŝ − δ, ŝ + δ) of ŝ such

that F ∗(s) ∩ Vǫ(a(ŝ), b(ŝ)) 6= ∅ for any s ∈ (ŝ − δ, ŝ + δ) which means that F ∗ is

lower semicontinuous in ŝ. Since ŝ was chosen arbitrarily such that ŝ ∈ (si, si+1)

for i ∈ {1, . . . , t−1} it follows that F ∗ is lower semicontinuous in any s ∈ (si, si+1)

for i ∈ {1, . . . , t − 1}.

Case 2

In this case we assume that ŝ ∈ {s1, . . . , st} but still no event takes place in ŝ.

Assume that ŝ = sî with î ∈ {2, . . . , t − 1}.

Note that ŝ = s1 or ŝ = st cannot hold since we already noted in the proof of

Theorem V.3.5 that our trajectory has to start and to end in vertices of cells in

C′. Therefore there exist vertices corresponding to s1 = 0 and to st = s∗ that we

have to consider.

Let us now look at the interval (sî−1, sî). We can choose (a(s), b(s)) ∈ Mopt
ver(s) such

that our trajectory moves along a certain edge e of a cell C1 ∈ C′ for s ∈ (sî−1, sî)

due to Lemma V.3.5. We know that there exists a vertex (a, b) of a cell C2 ∈ C′

such that ||a||1 = sî and furthermore (a, b) /∈ e by assumption. Therefore there

exists another vertex (a(si), b(si)) with ||a||1 = si > sî delimiting the edge e for

growing s, si ∈ {sî+1, . . . , st}. This means that we can find a (a(sî), b(sî)) lying on

the edge e that is feasible for (Pver(sî)). Moreover, we can find (a(s), b(s)) lying

on the edge e feasible for (Pver(s)) for all s ∈ (sî, sî+1). Since all of these solutions

correspond to optimal basic solutions a′(s) to (P̃ (s)), s ∈ [sî, sî+1), they will be

optimal to (Pver(s)).

Putting this together, we get that we can find (a(s), b(s)) ∈ Mopt
ver(s) such that

(a(s), b(s)) is linear in s for s ∈ (sî−1, sî+1) which puts us back to Case 1. Therefore
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F ∗ is lower semicontinuous in sî in particular.

Case 3

In this case we again assume that ŝ ∈ {s1, . . . , st} but this time an event happens

in ŝ.

We first assume that ŝ = sî with sî ∈ {s2, . . . , st−1}. Then (a(sî), b(sî)) is the

vertex of a cell C ∈ C′ corresponding to sî. Let δ > 0 be small enough such that

sî − δ ∈ (sî−1, sî) as well as sî + δ ∈ (sî, sî+1).

Moreover, let A and V be the active set and the set of passing hyperplanes for all

s ∈ (sî−1, sî) and let A(a(sî), b(sî)) and V(a(sî), b(sî)) be the active set and the

set of passing hyperplanes for (a(sî), b(sî)) ∈ Mopt
ver(sî) such that

A(a(sî), b(sî)) = A \ {j′} for a j′ ∈ A and V(a(sî), b(sî)) = V

or

A(a(sî), b(sî)) = A and V(a(sî), b(sî)) = V ∪ {i′} for an i′ /∈ VH.

Due to our notion of an event and the one at a time condition we assumed (see

Remark V.3.4), these are the only two possibilities of how A(a(sî), b(sî)) and

V(a(sî), b(sî)) can look like. Note that in either case (a(sî), b(sî)) corresponds

to a feasible solution a′(sî) for (P̃(s
î−1,s

î
)(sî)) where (P̃(s

î−1,s
î
)(s)) is the alternative

linear program defined for s ∈ (sî − δ, sî) ⊆ (sî−1, sî). Furthermore it holds that

fver(a(sî), b(sî)) = cta′(sî) by definition of c and a′(sî) (see Page 129) and therefore

a′(sî) is an optimal solution to (P̃(s
î−1,s

î
)(sî)). Now we can express (a(sî), b(sî)) as

aj(sî) =







(sî − s)c(j) + a(s)j for j ∈ A \ {j′}

a(s)j = 0 else

b(sî) = (sî − s)c(b) + b(s)

if A(a(sî), b(sî)) = A \ {j′} for a j′ ∈ A and V(a(sî), b(sî)) = V or as
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aj(sî) =







(sî − s)c(j) + a(s)j for j ∈ A

a(s)j = 0 else

b(sî) = (sî − s)c(b) + b(s)

if A(a(sî), b(sî)) = A and V(a(sî), b(sî)) = V ∪ {i′} for an i′ /∈ VH using a s ∈

(sî − δ, sî). Here, the c(j) and c(b) are real numbers derived from the entries of

the matrix A belonging to (P̃(s
î−1,s

î
)(s)).

In other words in either case we can find (a(s), b(s)) ∈ Mopt
ver(s) such that (a(s), b(s))

is linear in s for s ∈ (sî − δ, sî]. Like in Case 1 it holds that (a(s), b(s)) ∈ F ∗(s) by

definition of F ∗ and due to the linearity of (a(s), b(s)) for s ∈ (sî − δ, sî) we can

choose δ small enough such that (a(s), b(s)) actually is a point in Vǫ(a(sî), b(sî))

for s ∈ (sî − δ, sî).

Now we have to check what happens if s ∈ (sî, sî + δ) ⊆ (sî, sî+1). But we can

deal with this case analogously to the considerations above: Let now A and V

be the active set and the set of passing hyperplanes for all s ∈ (sî, sî + 1) and

let A(a(sî), b(sî)) and V(a(sî), b(sî)) still be the active set and the set of passing

hyperplanes for (a(sî), b(sî)) ∈ Mopt
ver(sî). Again we have that

A(a(sî), b(sî)) = A \ {j′} for a j′ ∈ A and V(a(sî), b(sî)) = V

or

A(a(sî), b(sî)) = A and V(a(sî), b(sî)) = V ∪ {i′} for an i′ /∈ VH.

due to our one at a time assumption. In either case (a(sî), b(sî)) corresponds to

a feasible solution a′(sî) for (P̃(s
î
,s

î+1)(sî)) where (P̃(s
î
,s

î+1)(s)) is the alternative

linear program defined for s ∈ (sî, sî + δ) ⊆ (sî, sî+1) and in addition it holds that

fver(a(sî), b(sî)) = cta′(sî). Therefore a′(sî) is an optimal solution to (P̃(s
î
,s

î+1)(sî)).
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This time we can express (a(sî), b(sî)) as

aj(sî) =







(s − sî)c(j) + a(s)j for j ∈ A \ {j′}

a(s)j = 0 else

b(sî) = (s − sî)c(b) + b(s)

if A(a(sî), b(sî)) = A \ {j′} for a j′ ∈ A and V(a(sî), b(sî)) = V or as

aj(sî) =







(s − sî)c(j) + a(s)j for j ∈ A

a(s)j = 0 else

b(sî) = (s − sî)c(b) + b(s)

if A(a(sî), b(sî)) = A and V(a(sî), b(sî)) = V ∪ {i′} for an i′ /∈ VH using a s ∈

(sî, sî + δ). Here, the c(j) and c(b) are real numbers derived from the entries of

the matrix A belonging to (P̃(s
î
,s

î+1)(s)).

So this time we can find (a(s), b(s)) ∈ Mopt
ver(s) such that (a(s), b(s)) is linear in s

for s ∈ [sî, sî + δ). This leads to the conclusion that we can choose δ small enough

such that (a(s), b(s)) actually is a point in Vǫ(a(sî), b(sî)) for s ∈ (sî, sî + δ).

Summarizing our results so far we get that there exists an open neighbourhood

(sî − δ, sî + δ) of sî such that F ∗(s) ∩ Vǫ(a(sî), b(sî)) 6= ∅ for any s ∈ (sî − δ, sî + δ)

which means that F ∗ is lower semicontinuous in sî.

We have chosen ŝ = sî ∈ {s2, . . . , st−1} arbitrarily, therefore F ∗ is lower semicon-

tinuous in any s ∈ {s2, . . . , st−1}.

What is left to check is whether F ∗ is lower semicontinuous in ŝ = s1 and ŝ = st.

Since our optimal trajectory starts in s1 = 0 it is sufficient to show that there

exists a δ such that [s1, s1 + δ) is an open neighbourhood of s1 with F ∗(s) ∩

Vǫ(a(s1), b(s1)) 6= ∅ for any s ∈ [s1, s1 + δ). This can be done analogously to the

second part of the considerations concerning the case ŝ ∈ {s2, . . . , st−1} above.

Furthermore our optimal trajectory ends in st = s∗, therefore it is sufficient to

show that there exists a δ such that (st −δ, st] is an open neighbourhood of st with
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F ∗(s) ∩ Vǫ(a(st), b(st)) 6= ∅ for any s ∈ (st − δ, st]. This can be done analogously

to the first part of the considerations concerning the case ŝ ∈ {s2, . . . , st−1} above.

Putting all considerations together we showed that F ∗ is lower semicontinuous in

s ≥ 0.

Remark V.3.6. It is true that we showed more than just the lower semicontinuity

of F ∗. In fact, we already showed that there exists a continuous optimal trajectory

during the proof of Theorem V.3.6.

First of all we showed in Case 2 that there exist s ∈ S such that the corresponding

vertex is not of interest concerning our optimal trajectory. Therefore we need not

to consider these vertices any longer and we can skip the corresponding s-values

from the set S. What we get now is a set S ′ = {s1, . . . , sq} of s-values such that

the vertices corresponding to these values are the only vertices of cells in C′ lying

on the optimal trajectory we want to consider. In other words, the set S ′ gives us

all s-values in which an event takes place. It is important to note that it is still

s1 = 0 and sq = s∗ which means that our trajectory starts and ends in a vertex of

a cell in C′. This is equivalent to s /∈ {s1, st} in Case 2.

We already knew that we can find (a(s), b(s)) ∈ Mopt
ver(s) for s ∈ (si, si+1), i ∈

{1, . . . , q−1}, such that (a(s), b(s)) is linear in s (see Theorem V.3.5). What we did

during the proof is to show that there exists a (a(si), b(si)) for si ∈ {s2, . . . , sq−1}

such that (a(si), b(si)) can be derived from an optimal solution for (P̃(si−1,si)(s)) as

well as from an optimal solution for (P̃(si,si+1)(s)). This tells us that for s ր si as

well as for s ց si it holds that (a(s), b(s)) −→ (a(si), b(si)) for i = 2, . . . , q − 1.

Furthermore s1 and sq can be derived from optimal solutions for (P̃(s1,s2)(s)) and

(P̃(sq−1,sq)(s)), respectively, providing that

(a(s), b(s)) −→ (a(s1), b(s1)) for s ց s1

and

(a(s), b(s)) −→ (a(sq), b(sq)) for s ր sq.

Putting this together we have that the (a(s), b(s)) corresponding to an optimal so-

lution a′(s) to (P̃(si,si+1)(s)) for s ∈ (si, si+1), i = 1, . . . , q − 1, together with the
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(a(s), b(s)) chosen as in the proof of Theorem V.3.6 for s ∈ S ′ = {s1, s2, . . . , sq}

give us a continuous optimal trajectory for our problem (Pver(s)), s ≥ 0. Geomet-

rically, our continuous optimal trajectory starts in a vertex of a cell C1 ∈ C′, from

there it moves along an edge of C1 that is connected to this vertex until it reaches

another vertex where it changes to an edge of a cell C2 ∈ C′ connected to this

vertex and so on. We will come back to the geometrical properties of our optimal

trajectory in the next section.

Note that the existence of a continuous optimal trajectory does not necessarily

imply that F ∗ in Theorem V.3.6 is continuous. If we were interested in continuity

of F ∗ we would have to check whether F ∗ is upper semicontinuous in addition to

the lower semicontinuity.

For completeness of this section we want to state the following proposition which

approves the existence of a continuous optimal trajectory.

Proposition V.3.1. There exists an optimal trajectory t,

t : R+
0 → R

k+1

s 7→ (a(s), b(s)),

of (Pver(s)), s ≥ 0, that is continuous in s.

Proof. Since we can understand a trajectory as a selection of the set-valued map

F ∗ and because we used the main part of this section to show that the Michael

selection theorem can be applied in our case, the proposition follows directly from

Theorem V.3.1.

V.4 How to construct a continuous optimal tra-

jectory

In this section we want to show how a continuous optimal trajectory for our prob-

lem (Pver(s)) with s ≥ 0 can be constructed. The previous section provides us
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everything we need to construct such a trajectory.

As in the two-dimensional case, we start with s = 0. We know that there exists

an optimal solution to (Pver(0)) such that the hyperplane in the initial space cor-

responding to it passes through at least one of the existing facilities (see Theorem

V.2.1). Furthermore we know that any optimal solution has to satisfy the pseudo-

halving property (see Theorem V.2.2). Therefore an optimal solution must be of

the form (0, . . . , 0, b) such that b is a median of the set {yi : i = 1 . . . n}.

If the number of different y-values is odd we start with (0, . . . , 0, b(0)) such that

b(0) is the unique median of the set {y1, . . . , yn} as our unique optimal solution.

If the number of different y-values is even there might exist more than one op-

timal solution since there might exist more than one median. Any (0, . . . , 0, b)

such that b is a median of the set {y1, . . . , yn} is an optimal solution because all

these (0, . . . , 0, b) share the same objective function value. In this case, we choose

(0, . . . , 0, b(0)) to be the optimal solution for (Pver(0)) such that b(s) is the lower

median of the set {y1, . . . , yn}. Note that this again is a unique choice.

In the following, we want to let s grow and give a solution for any (Pver(s)) until

we reach s∗ such that we get an optimal solution (a(s∗), b(s∗)) for (Pver(s
∗)) which

is at the same time an optimal solution for the unrestricted problem (Pver). Then

we can stop because this (a(s∗), b(s∗)) is an optimal solution for any (Pver(s)) with

s > s∗ as well (see Lemma V.2.1).

Knowing our starting point of the trajectory (0, . . . , 0, b(0)) we can give the set

of passing hyperplanes and the active set of this point. We know that the corre-

sponding hyperplane in the initial space passes through at least one of the existing

facilities. For the time being, let us assume that it passes through exactly one.

This means that in the dual space there is exactly one hyperplane H−xi′ ,yi′ pass-

ing through the point (0, . . . , 0, b(0)), namely the one such that yi′ is the median

or the lower median of the set {yi : i = 1 . . . n}, respectively. Therefore the

set of passing hyperplanes is V(0, b(0)) = {i′, n + 1, . . . , n + k} which we can

split up into the set of passed facilities VH(0, b(0)) = {i′} and the inactive set

VH′′(0, b(0)) = {n + 1, . . . , n + k}. Note that (0, . . . , 0, b(0)) is a vertex of a cell in

C′ since it is the intersection of k + 1 hyperplanes in H ∪ H′′.

The active set is even more easy to name. Since a(0)j = 0 for all j = 1, . . . , k the
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active set obviously is the empty set, A(0, b(0)) = ∅. Note that |VH(0, b(0))| = 1

while |A(0, b(0))| = 0. During the construction of the trajectory we will mainly

focus on the active set A and the set of passed facilities VH in the following since

the inactive set can always be derived directly from the active set due to Remark

V.3.1.

If we let s become non-zero, it makes perfect sense that some of the a(s)j will

become non-zero as well. In fact, exactly one of the a(s)j will become non-zero,

i.e. A(a(s), b(s)) = {j′} for some j′ ∈ {1, . . . , k}, and the set of passed facilities

will stay constant, that is VH(0, b(0)) = VH(a(s), b(s)), such that |VH(a(s), b(s))| =

|A(a(s), b(s))| holds. This is due to Lemma V.3.3. As long as A(a(s), b(s)) = {j′}

and VH(a(s), b(s)) = {i′}, we know that there exists an optimal solution (a(s), b(s))

of (Pver(s)) such that

sgn(aj′(s))aj′(s) = s and

aj′(s)xi′j′ + b(s) = yi′.

This is due to Lemma V.3.4. We know that aj′(s) and b(s) are both linear in s

as long as V and A are constant due to Theorem V.3.3. If we write ∆s instead of

s to indicate that we change our current s which is in fact s = 0 by ∆s, i.e. to

s = 0 + ∆s, we can write aj′(s) and b(s) as

aj′(s) = aj′(0) +
daj′

ds
· ∆s

=
daj′

ds
· ∆s

and

b(s) = b(0) +
db

ds
∆s

= yi′ +
db

ds
∆s,

respectively, where the derivatives
daj′

ds
and db

ds
can be derived from the following
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system of equations

sgn(aj′(s))
daj′

ds
= 1

daj′

ds
xi′j′ +

db

ds
= 0.

Therefore we know how an optimal solution to (Pver(s)) looks like until an event

happens. As we already mentioned, an event can happen when a coefficient in

the active set becomes zero or an additional hyperplane joins the set of passed

facilities (see Remark V.3.4), in other words when an additional hyperplane in

H∪H′′ intersects with the hyperplanes that are already corresponding to an index

in the set of passing hyperplanes.

Up to now, only aj′(s) is active. Let ∆s1 give the change of s such that aj′(s)

becomes zero again. It is easy to see that aj′(s) only becomes zero if ∆s1 = 0

which cannot be the case since we want to let s grow constantly. Therefore we set

∆s1 to ∞ which means that aj′(s) increases with growing s if sgn(aj′(s)) = 1 or

decreases with growing s if sgn(aj′(s)) = −1, respectively, and it will never become

zero.

This means that the only event that can happen here is that a new hyperplane joins

VH. A hyperplane H−xi,yi
, i ∈ {1, . . . , n} \ {i′} joins VH if it passes (a(∆s), b(∆s)),

that is if the residual for i

resi(a(∆s), b(∆s)) := res((a(∆s), b(∆s)), H−xi,yi
) = yi − (a(∆s)j′xij′ + b(∆s))

becomes zero. Note that we can determine the derivatives of the residuals as long

as A and V are constant using the derivatives
daj′

ds
and db

ds
:

resi(a(∆s), b(∆s))

= yi − ((aj′(0) +
daj′

ds
· ∆s)xij′ + (b(0) +

db

ds
· ∆s))

= resi(a(0), b(0)) − (
daj′

ds
· ∆s · xij′ +

db

ds
· ∆s)
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and therefore
dresi

ds
= −(

daj′

ds
· xij′ +

db

ds
).

Now the residual of i becomes zero if

∆s2
i =

resi(a(0), b(0))

(
daj′

ds
· xij′ + db

ds
)

and we define ∆s2 as

∆s2 = min{∆s2
i : i /∈ V}.

If ∆s2
i < 0 for one i we set ∆s2

i = ∞ since we want to let s grow constantly.

We can now determine the stepsize ∆s until the first event happens:

∆s = min{∆s1, ∆s2}.

As we already mentioned, when we start in s = 0 the stepsize will be ∆s = ∆s2.

As soon as we know this, we can give a solution to (Pver(s)) for any s ∈ [0, ∆s],

namely (a(s), b(s)) with

aj(s) =







daj′

ds
· ∆s if j = j′

0 else

and

b(s) = yi′ +
db

ds
∆s.

Therefore, if we want to know what the trajectory looks like when we let s grow,

we have to find out which one of the aj becomes non-zero and what sign it is going

to have. Remember that we can write the objective function fver as
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fver(a, b) =
∑

i∈R(a,b)

yi −
∑

i∈L(a,b)

yi

+ a1(
∑

i∈L(a,b)

xi1 −
∑

i∈R(a,b)

xi1)

+ a2(
∑

i∈L(a,b)

xi2 −
∑

i∈R(a,b)

xi2)

+ . . .

+ ak(
∑

i∈L(a,b)

xik −
∑

i∈R(a,b)

xik)

+
∑

i∈L(a,b)

b −
∑

i∈R(a,b)

b.

For s = 0 this gives us

fver(a(0), b(0)) =
∑

i∈R

yi −
∑

i∈L

yi

+
∑

i∈L

b(0) −
∑

i∈R

b(0)

=
∑

i∈R

yi −
∑

i∈L

yi

+ |L| · yi′ − |R| · yi′.

We only write R and L here instead of R(a(0), b(0)) and L(a(0), b(0)), respectively,

because the sets R(a(s), b(s)) and L(a(s), b(s)) are constant as long as s ∈ [0, ∆s]

(see Lemma V.3.1).

Since we want to minimize our objective function, we have to find out how the

value fver changes if one aj becomes non-zero. We already know that VH = {i′}

with i′ being the (lower) median of {yi : i = 1, . . . , n} and because we keep the

set of passing hyperplanes constant, it must hold that

yi′ = aj(s) · xi′j + b(s)
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for s ∈ [0, ∆s] if aj becomes non-zero. Therefore the new b-value at s is

b(s) = yi′ − aj(s) · xi′j

= b(0) − aj(s) · xi′j.

This together with the fact that R and L are constant on [0, ∆s] enables us to

write the new objective function value at s as

f(aj(s), b(s)) =
∑

i∈R

yi −
∑

i∈L

yi

+ aj(s)(
∑

i∈L

xij −
∑

i∈R

xij)

+ |L| · (b(0) − aj(s) · xi′j) − |R| · (b(0) − aj(s) · xi′j)

= fver(a(0), b(0))

+ aj(s) · (
∑

i∈L

xij −
∑

i∈R

xij + (|R| − |L|) · xi′j).

Note that the expression
∑

i∈L
xij −

∑

i∈R
xij + (|R| − |L|) · xi′j gives us the change of

the value of fver in s if aj becomes non-zero, that is

dfver(aj(s), b(s))

ds
=
∑

i∈L

xij −
∑

i∈R

xij + (|R| − |L|) · xi′j

if s ∈ [0, ∆s].

Remember that we assumed that there exists exactly one hyperplane corresponding

to an existing facility passing trough (0, . . . , 0, b(0)). If this is not the case, that is

to say there is more than one such hyperplane that passes (0, . . . , 0, b(0)), we first

have to calculate
(

dfver(aj(s),b(s))

ds

)

i
for each index i corresponding to a hyperplane

passing through (0, . . . , 0, b(0)) by setting VH = {i} and then we choose i′ as

arg min
i

{

Ç

dfver(aj(s), b(s))

ds

å

i

}

and go on as described above.
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Our aim was to choose some j′ and the sign of aj′ such that the objective function

is minimized. In order to do so, we have to choose j′ as

j′ := arg max
j∈{1,...,k}

|
∑

i∈L

xij −
∑

i∈R

xij + (|R| − |L|) · xi′j |

and the sign of aj′ as

sgn(aj′(s)) = − sgn(
∑

i∈L

xij′ −
∑

i∈R

xij′ + (|R| − |L|) · xi′j′).

Then we can compute solutions (a(s), b(s)) with active set A = {j′} and set of

passed facilities VH = {i′} for s ∈ [0, ∆s] by computing
daj′

ds
, db

ds
and ∆s as we

described above. Additionally we know that the change of the value of fver is

dfver(a(s), b(s))

ds
=
∑

i∈L

xij′ −
∑

i∈R

xij′ + (|R| − |L|) · xi′j′.

This tells us how an optimal trajectory looks like on the interval [0, ∆s] until a

first event happens. Due to our one at a time condition (see Remark V.3.4), one

of the residuals becomes zero which means that the corresponding index i′′ /∈ VH

joins the set of passing hyperplanes. Note that we already mentioned that the first

event cannot be aj′(s) becoming zero. If there are more than just one indices in

the active set an event can of course be that one of the active coefficients become

zero again.

Now we get a new set of passed facilities, namely Vnew
H = {i′, i′′}, while the active

set stays constant, that is Anew = A = {j′}. Therefore it holds that |Vnew
H | =

|Anew| + 1, so in the next step one hyperplane has to leave VH or a new index j′′

has to enter the active set A, in other words an additional coefficient aj′′(s) has

to become non-zero. This is due to Lemma V.3.3 in the previous section.

The next task is now to find out which of the hyperplanes should leave the set

of passed facilities or which of the coefficients should become non-zero in order

to obtain optimal solutions of (Pver(s)) on another interval [∆s, ∆s + ∆snew]. In

order to make this decision, we can compute the change of the objective function

value with changing s for any possible variant and then choose the one which is
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the best option.

Let us first consider the case in which one of the hyperplanes leaves VH, that is

either i′ or i′′ has to leave VH. Denote by î the one coordinate that has to leave

the set of passed facilities, î ∈ {i′, i′′}. In either case we know that
daj′

ds
= ±1

depending on the sign of aj′(s) and we can calculate db
ds

by solving the following

system of equations:

sgn(aj′(s))
daj′

ds
= 1

daj′

ds
xîj′ +

db

ds
= 0.

It is easy to see that the new function value is

fver(a(s), b(s)) = fver(a(∆s), b(∆s))

+ ∆snew · (
daj′

ds
· (
∑

i∈L

xij′ −
∑

i∈R

xij′) + (|L| − |R|) ·
db

ds
)

In this case we get

dfver(a(s), b(s))

ds
=

daj′

ds
· (
∑

i∈L

xij′ −
∑

i∈R

xij′) + (|L| − |R|) ·
db

ds

Now we consider the case in which an additional coefficient j′′ becomes non-zero.

The set of passed facilities is VH = {i′, i′′} constantly. Any j ∈ Ac is a candidate

to become non-zero. If we want to check how fver changes for aj(s) becoming

non-zero we have to consider two cases, namely the case sgn(aj(s)) = 1 and the

one with sgn(aj(s)) = −1. We know the sign of aj′(s) since aj′(s) is piecewise

linear in s. Therefore we can calculate
daj′

ds
,

daj

ds
and db

ds
in both cases by solving

the system of equations
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sgn(aj′(s))
daj′

ds
+ sgn(aj(s))

daj

ds
= 1

daj′

ds
xi′j′ +

daj

ds
xi′j +

db

ds
= 0

daj′

ds
xi′′j′ +

daj

ds
xi′′j +

db

ds
= 0.

But then we get that

fver(a(s), b(s)) = fver(a(∆s), b(∆s)) + ∆snew · (
daj′

ds
(
∑

i∈L

xij′ −
∑

i∈R

xij′)

+
daj

ds
(
∑

i∈L

xij −
∑

i∈R

xij) + (|L| − |R|) ·
db

ds
)

and therefore

dfver(a(s), b(s))

ds
=

daj′

ds
(
∑

i∈L

xij′ −
∑

i∈R

xij′) +
daj

ds
(
∑

i∈L

xij′′ −
∑

i∈R

xij′′)

+ (|L| − |R|) ·
db

ds
.

If we have computed dfver(a(s),b(s))
ds

for each possible case we look at the minimum

of all these derivatives of fver. Two different cases can occur here.

Case 1 (no improvement)

If the minimum is a positive number or zero, none of the possible variants leads to

an improvement of our objective function value. That means that (a(∆s), b(∆s))

is not only an optimal solution for (Pver(∆s)) but also for (Pver) at the same time

and therefore we are done because we know a continuous optimal trajectory on

the interval [0, ∆s] which is indeed the whole optimal trajectory.
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Case 2 (improvement)

If the minimum derivative is negative, we know which event actually takes place

in order to get optimal solutions for (Pver(s)) with s ∈ [∆s, ∆s + ∆snew].

If the cardinality of A and the one of VH is one in the optimal case, we know
daj′

ds

and db
ds

and can compute the derivatives of all residuals resi with i /∈ VH as we did

above:
dresi

ds
= −(

daj′

ds
· xij′ +

db

ds
).

In the end we can again calculate ∆s1
new and ∆s2

new and we get that ∆s1
new = ∞

and

∆s2 = min{∆s2
i new : i /∈ V}

where

∆s2
i new =

resi(a(∆s), b(∆s))

−dresi

ds

Note that in this case ∆s2 cannot be ∞ because that would mean that we do not

get an improvement of fver which we already handled in Case 1. Now we finally

get ∆snew as

∆snew = min{∆s1
new, ∆s2

new}

and we know how an optimal trajectory looks like on the interval [∆s, ∆snew].

If on the other hand the cardinality of A and VH is two now in the optimal case,

we get slightly different computations. We know
daj′

ds
,

daj′′

ds
and db

ds
. In this case, it

is possible that the next event that takes place is that one of the active coefficients

becomes zero. Therefore we have to calculate ∆s1
j new for j ∈ A as

∆s1
j new = −

aj(∆s)
daj

ds

,

the way we have to change s such that aj(s) becomes zero. We define ∆s1
new as

∆s1
new = min{∆s1

j′ new, ∆s1
j′′ new}.

Again, if one of the ∆s1
j new is less than zero, we set ∆s1

new = ∞.

Since we have two coefficients that are non-zero, the derivative of a residual resi
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with i /∈ VH can be computed in the following way:

dresi

ds
= −(

daj′

ds
· xij′ +

daj′′

ds
· xij′′ +

db

ds
).

All that is left to do can be done analogously to the first case: Calculate ∆s2
i new

as

∆s2
i new =

resi(a(∆s), b(∆s))

−dresi

ds

and ∆s2
new as

∆s2 = min{∆s2
i new : i /∈ V}

and choose ∆snew as

∆snew = min{∆s1
new, ∆s2

new}.

Again we know how an optimal trajectory looks like on the interval [∆s, ∆s +

∆snew].

In either case we get an optimal trajectory on the interval [∆s, ∆snew], and there-

fore altogether we know a continuous optimal trajectory on the interval [0, ∆s +

∆snew]. The continuity derives from the fact that aj(s) is linear in s on (0, ∆s) as

well as on (∆s, ∆s+∆snew) for all j = 1 . . . k, likewise b(s) is linear in s on (0, ∆s)

and on (∆s, ∆s + ∆snew) and furthermore it holds that

aj(s) → aj(∆s) for s ր ∆s as well as for s ց ∆s

for all j = 1 . . . k and

b(s) → b(∆s) for s ր ∆s as well as for s ց ∆s,

which is due to our construction of (a(s), b(s)) (see Remark V.3.6).

If we go on like that, we can construct a continuous optimal trajectory little by

little.

In the following, we want to describe one general step in our construction process.

Let us assume that we know (a(ŝ), b(ŝ)) ∈ Mopt
ver(ŝ) for a certain ŝ ≥ 0 and assume

that no event has happened in ŝ. Then we also know the active set A and the set
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of passed facilities VH of (a(ŝ), b(ŝ)). We know that we can find optimal solutions

(a(s), b(s)) of (Pver(s)) for growing s which have the same active set as well as the

same set of passed facilities as (a(ŝ), b(ŝ)) until s reaches the point where an event

happens due to Lemma V.3.4. Since we assumed that no event has happened in

ŝ, we know that as long as no event happens we can find (a(s), b(s)) that satisfy

the following system of equations:

∑

j∈A

sgn(aj(s))aj(s) = s and

∑

j∈A

aj(s)xij + b(s) = yi ∀ i ∈ VH.

Note that we can solve this system since |VH| = |A| according to Lemma V.3.3.

Theorem V.3.3 assures that aj(s), j ∈ A, and b(s) are linear in s. We can calculate

the derivatives of aj(s), j ∈ A and b(s) with respect to s by solving

∑

j∈A

sgn(aj(s))
daj

ds
= 1 and

∑

j∈A

daj

ds
xij +

db

ds
= 0 ∀ i ∈ VH.

Therefore, as long as no event happens we can write (a(s), b(s)) as

aj(s) =







aj(ŝ) +
daj

ds
· ∆s if j ∈ A

0 else

b(s) = b(ŝ) +
db

ds
· ∆s.

This gives us an optimal solution (a(s), b(s)) of (Pver(s)) until an event happens.

Now we have to calculate the stepsize ∆s such that the next time an event takes

place is ŝ + ∆s. One type of event that can happen is that one of the active

coefficients becomes zero again, that is to say aj(s) = 0 for one j ∈ A. For each

j ∈ A we can calculate when this is going to happen since we know the derivatives

of the aj :
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∆s1
j = −

aj(ŝ)
daj

ds

.

If one of the ∆s1
j is negative we set it to ∞ for the same reason we did that when

starting with s = 0. Therefore the next time an active coefficient leaves the active

set is ŝ + ∆s1 with ∆s1 being

∆s1 = min{∆s1
j : j ∈ A}.

The other type of event is that one of the hyperplanes corresponding to an existing

facility subscripted by i /∈ VH joins the set of passed facilities, in other words one

of the residuals

resi(a(s), b(s)) := res((a(s), b(s)), H−xi,yi
) = yi − (

∑

j∈A

aj(s)xij + b(s)), i /∈ VH

becomes zero. It is easy to check that resi can be rewritten as

resi(a(s), b(s)) = resi(a(ŝ), b(ŝ)) − (
∑

j∈A

daj

ds
· ∆s · xij +

db

ds
· ∆s)

and therefore we can calculate the derivatives of the residuals

dresi

ds
= −(

∑

j∈A

daj

ds
· xij +

db

ds
), i /∈ VH.

Now that we know these derivatives, we can easily compute ∆s2
i for i /∈ VH such

that resi(a(s), b(s)) becomes zero for ŝ + ∆s2
i :

∆s2
i =

resi(a(ŝ), b(ŝ))

−dresi

ds

.

One more time we set ∆s2
i = ∞ if ∆s2

i < 0 for an i /∈ VH. Since we want to know

when the first event of this type will happen we set

∆s2 = min{∆s2
i : i /∈ VH}.
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Knowing ∆s1 and ∆s2, we let

∆s = min{∆s1, ∆s2}

and we know that the first event will happen at ŝ + ∆s. Therefore we know a

continuous optimal trajectory on the interval [ŝ, ŝ + ∆s]. Additionally, knowing

the derivatives of the aj and of b it is easy to see that the derivative of the optimal

objective function value with respect to s is

dfver(a(s), b(s))

ds
=
∑

j∈A

(
∑

i∈L

daj

ds
xij −

∑

i∈R

daj

ds
xij

)

+ (|L| − |R|) ·
db

ds
.

Finally, we have to decide how to continue after an event has happened. As in

the case were we started with s = 0, we have to check all possible combinations

of active sets and sets of passed facilities that can occur and choose the one that

delivers the best objective function value. At s = ŝ + ∆s it is |VH| = |A| + 1 no

matter if ∆s = ∆s1 or ∆s = ∆s2. Due to Lemma V.3.3 and the one at a time

condition, all possible combinations of active sets and sets of passed facilities are

either of the form Anew = A while Vnew
H = VH \ {i} for an i ∈ VH or of the form

Anew = A ∪ {j} for a j /∈ A while Vnew
H = VH. In either case, again it holds that

|Anew| = |Vnew
H | and we can calculate the derivatives daj

ds
for j ∈ Anew and db

ds
for

every possible combination starting from the respective system of equations

∑

j∈Anew

sgn(aj(s))aj(s) = s and

∑

j∈Anew

aj(s)xij + b(s) = yi ∀ i ∈ Vnew
H .

This enables us to calculate the respective derivative of the objective function value

with respect to s for each possible combination

dfver(a(s), b(s))

ds
=

∑

j∈Anew

(
∑

i∈Lnew

daj

ds
xij −

∑

i∈Rnew

daj

ds
xij

)

+ (|Lnew| − |Rnew|) ·
db

ds
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and we choose the minimum of all these derivatives if it is negative. If the minimum

is positive we can stop because the objective function value will not get any better

and we have reached an optimal solution for the unrestricted problem (Pver).

Knowing the combination of Anew and Vnew
H that leads to optimal solutions we

can go on calculating the stepsize ∆s as we did above and so on until we reach an

optimal solution for the unrestricted problem.

Remark V.4.1. We assumed that we start with ŝ such that no event has happened

in ŝ. If we start in ŝ such that an event has happened in ŝ, we have to start with

what has been the second step in our considerations above. First we have to decide

which combination of an active set and a set of passing hyperplanes leads to the

best objective function value and then we can go on with what has been the first

step before and calculate a stepsize ∆s.

As in the two-dimensional case, the continuous optimal trajectory that we con-

structed in this section has a nice geometrical interpretation in the dual Rk+1. We

already hinted at this fact in Remark V.3.6.

Remember that we are given a cell structure on this dual space induced by the

hyperplanes H−xi,yi
corresponding to the existing facilities (xi, yi), i = 1 . . . n,

together with the hyperplanes Hj = {(a, b) ∈ R
k+1 : aj = 0}, j = 1, . . . , k. In

Section V.2 we called the set of hyperplanes corresponding to existing facilities

H and the set of hyperplanes Hj we called H′′. Furthermore we denoted by C′

the cells induced by the hyperplanes in H ∪ H′′. Additional hyperplanes are given

through the restriction on the slope, the set of these hyperplanes we called H′.

Note that H′ is dependent on s while H as well as H′′ do not change with s.

What we do to construct our optimal trajectory is that we start with a point

(a(0), b(0)) that is a (lower) median of the set {yi : i = 1 . . . n}. Note that

(a(0), b(0)) is a vertex of a cell C1 ∈ C′ as we already pointed out at the beginning

of this section as well as in Remark V.3.6. The set of feasible solutions Mver(0) is

just the b-axis of the dual space. Now we let s grow. The set of feasible solutions

Mver(s) which is defined through the hyperplanes in H′ becomes what we called a

kind of a tube around the b-axis, namely

Mver(s) = {(a, b) ∈ R
k+1 : ||a||1 ≤ s}.
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Our optimal trajectory follows the edge of the cell C1 on which we have chosen

(a(0), b(0)) giving us for any s the point (a(s), b(s)) lying on the edge of C1 as

well as on the surface of the tube defined by Mver(s) (see Lemma V.3.5). The

trajectory follows this edge chosen at s = 0 until it reaches a vertex of C1. From

this vertex, it will follow the edge of a cell C2 ∈ C′ such that the point lying on

this edge as well as on the surface of the tube defined by Mver(s) gives the best

objective value for (Pver(s)) until it reaches a vertex of C2 and so on. Therefore

our trajectory is moving along different edges of cells C ∈ C′ while it always stays

on the surface of Mver(s) given through the set H′ with growing s.

Remark V.4.2. One can also construct a continuous optimal trajectory for our

problem (Pver) by applying the Karush-Kuhn-Tucker conditions to the optimization

problem

min ||y − [Xe]

Ñ

a

b

é

||1 + λ||a||1, (PRLAD(λ))

with λ ≥ 0 being a tuning parameter, y = (y1, . . . , yn)t ∈ R
n, a = (a1, . . . , ak)t ∈

R
k, b ∈ R and [Xe] ∈ R

n×(k+1) being the matrix

[Xe] =











x11 . . . x1k 1

x21 . . . x2k 1
...

. . .
...

...

xn1 . . . xnk 1











.

Basically, this is what is done in [WGZ06]. Here it is important to note that we

have shown the equivalence of the above optimization problem (PRLAD(λ)) and the

problem (Pver(s)) in Chapter II.

Since we are more interested in the geometrical nature of the trajectory we have

chosen the approach of capitalizing on the geometrical properties of the cell struc-

ture in the dual space.

Remark V.4.3. We already mentioned the equivalence of the two optimization

problems (Pver(s)) and (PRLAD(λ)) in the previous remark. Due to this equivalence,

the optimal trajectory we constructed in this section is an optimal solution path for

the RLAD regression as well, as we already pronounced at the end of Chapter II.
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We want to present an easy example to demonstrate the construction of a contin-

uous optimal trajectory that we described in this section. We use the setting that

we already used in Example V.1.1, that is we have again k = 2 and n = 4.

Example V.4.1. Let the set of existing facilities E = {(x1, y1), (x2, y2), (x3, y3),

(x4, y4)} ⊆ R
3 be as in Example V.1.1. We want to construct the complete optimal

trajectory on the interval [0, 215
94

] since we know that (51
94

, 82
47

, 230
47

) is an optimal

solution to (Pver) and therefore s∗ = ||a||1 = 215
94

.

We start the solution path in s = 0 with (0, 0, b(0)), b(0) being the lower median of

the set {1, −1, −3, 4}. Therefore we start with (a(0), b(0)) = (0, 0, −1), the value

of the objective function being fver(a(0), b(0)) = 9. As the intersection of H−x2,y2,

H1 and H2, the point (a(0), b(0)) = (0, 0, −1) is a vertex of a cell in C′.

Now we have to check which one of the coefficients will join the active set A first.

We know that the set of passed facilities is VH = {2} and this gives us L = {3}

and R = {1, 4}. We choose the coefficient as

arg min
j

{
dfver(aj(s), b(s))

ds
},

therefore we calculate
dfver(aj(s),b(s))

ds
for j = 1, 2 regarding that VH = {2}. We get

dfver(a1(s), b(s))

ds
= −1 − (−12 + 8) + 2 = 5

and

dfver(a2(s), b(s))

ds
= −2 − (

3

2
− 3) − 4 = −

9

2
,

so j = 1 is the first coefficient joining the active set. The sign of a1(s) will be

sgn(a1(s)) = −1.

Now we have A = {1} and VH = {2}. We know that (a1(s), 0, b(s)) has to satisfy

the following system of equations

−a1(s) = s

2a1(s) + b(s) = −1
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as long as no event happens. This enables us to calculate the derivatives of a1(s)

and b(s) with respect to s by solving

da1

ds
= −1

2
da1

ds
+

db

ds
= 0.

We get that da1

ds
= −1 and db

ds
= 2. Note that a1(s) will never become zero with

growing s which is why we set ∆s1 = ∞.

Now we can calculate the derivatives of the residuals for all i /∈ VH:

dres1

ds
= −(12 + 2) = −14

dres3

ds
= −(1 + 2) = −1

dres4

ds
= −(−8 + 2) = 6.

The stepsizes ∆s2
i for i /∈ V can be calculated using the residuals of the respective

hyperplanes at s = 0.

∆s2
1 =

2

14
=

1

7

∆s2
3 =

−2

3
= −

2

3

∆s2
4 =

5

−6
= −

5

6
,

therefore we get ∆s2
1 = 1

7
while ∆s2

3 = ∆s2
4 = ∞. This gives us ∆s2 = 1

7
.

Finally we have to choose ∆s as

min{∆s1, ∆s2},

therefore ∆s = 1
7

and we know that the first event will take place at s = 1
7
. Note

that we in fact know what kind of event that will be, namely i = 1 will join the set

of passed facilities VH.

For s = 1
7

we therefore get (a1(1
7
), a2(

1
7
), b(1

7
)) = (−1

7
, 0, −5

7
) as an optimal so-

lution with active set A = {1} and set of passed facilities VH = {1, 2}. Note
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that (a1(1
7
), a2(

1
7
), b(1

7
)) is the intersection of H−x1,yi

, H−x2,y2 and H2, hence it is

a vertex of a cell in C′. The value of the objective function is fver(−
1
7
, 0, −5

7
) =

9 − 1
7

· 5 = 58
7

. Moreover we know that (a1(s), a2(s), b(s)) with

a1(s) = −1 · s

a2(s) = 0

b(s) = −1 + 2 · s

gives us an optimal solution to (Pver(s)) for any s ∈ [0, 1
7
].

Now that we have |A| = 1 while |VH| = 2 we have several options of what should

happen next. Either j = 2 might join the active set or one of the two elements in

VH might leave the set of passed facilities. We have to check which of these options

is the best one in terms of the derivative of fver with respect to s.

Let us start with the different possible cases of one hyperplane leaving VH.

• A = {1}, VH = {2}

Note that now it is R = {4} and L = {1, 3}. Since the derivatives of a1(s) and

b(s) are the same as above we get

dfver

ds
= −((−12 − 1) − 8) + 2 = 23.

• A = {1}, VH = {1}

First we have to calculate the derivatives of a1(s) and b(s) by solving

da1

ds
= −1

−12
da1

ds
+

db

ds
= 0

and we get da1

ds
= −1 and db

ds
= −12. Since it is L = {3} and R = {2, 4} in this

case, we get
dfver

ds
= −(−1 − 8 + 12) + 12 = 9.
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What is left to check is the case with j = 2 joining the active set, distinguishing

the cases a2(s) > 0 and a2(s) < 0.

• A = {1, 2}, VH = {1, 2}

Again we first have to calculate the derivatives of a1(s), a2(s) and b(s). Solving

−
da1

ds
+ sgn(a2(s))

da2

ds
= 1

−12
da1

ds
+

3

2

da2

ds
+

db

ds
= 0

2
da1

ds
− 4

da2

ds
+

db

ds
= 0

we get da1

ds
= 11

17
, da2

ds
= 28

17
and db

ds
= 90

17
if sgn(a2(s)) = +1 while we get da1

ds
= −11

39
,

da2

ds
= −28

39
and db

ds
= −30

13
if sgn(a2(s)) = −1. Since we have L = {3} and R = {4}

in both cases, we can calculate the derivatives of fver as

dfver

ds
=

11

17
· (−9) +

28

17
· 1 = −

71

17

if sgn(a2(s)) = +1 and

dfver

ds
= −

11

39
· (−9) −

28

39
· 1 =

71

39

if sgn(a2(s)) = −1.

Looking at the derivatives of fver of all different cases shows that the one with j = 2

joining the active set with positive sign is the only case with negative derivative.

Therefore this case yields the best objective function values and our new active set

becomes A = {1, 2} with positive a2(s) while our new set of passed facilities is

VH = {1, 2}.

Since we already know the derivatives of a1(s) and a2(s) we can calculate the

stepsize

∆s1
1 = −

−1
7

11
17

=
17

77

while it is

∆s1
2 = ∞.
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Altogether we get ∆s1 = 17
77

.

Now we have to calculate the stepsizes ∆s2
3 and ∆s2

4. In order to do so we need

the residuals at s = 1
7
:

res3(a(
1

7
), b(

1

7
)) = −3 − (

1

7
−

5

7
) = −

17

7

res4(a(
1

7
), b(

1

7
)) = 4 − (−

1

7
· 8 −

5

7
) =

41

7
.

We get the stepsizes by calculating

∆s2
3 =

−17
7

11
17

· (−1) + 28
17

· (−2) + 90
17

= −
289

161
and

∆s2
4 =

41
7

11
17

· 8 + 28
17

· (−3) + 90
17

=
697

658
.

Since ∆s2
3 is negative we have to set ∆s2

3 = ∞ and get ∆s2 = 697
658

. We choose

∆s = min{
17

77
,
697

658
} =

17

77

and know how the trajectory looks on the interval [ 1
7
, 4

11
], namely

a1(s) = −
1

7
+

11

17
· (s −

1

7
),

a2(s) =
28

17
· (s −

1

7
) and

b(s) = −
5

7
+

90

17
· (s −

1

7
)

for s ∈ [ 1
7
, 4

11
].

For s = 4
11

we get the optimal solution (a( 4
11

), b( 4
11

)) = (0, 4
11

, 5
11

) with objective

function value fver(a( 4
11

), b( 4
11

)) = 81
11

. The active set now is A = {2} while the set

of passing hyperplanes is VH = {1, 2}. Again (a( 4
11

), b( 4
11

)) is a vertex of a cell in

C′ as the intersection of H−x1,yi
, H−x2,y2 and H1.

At this point again we have to check which possible options our trajectory has to

continue and which one of these gives the best objective function value. We start

with the different possible cases of one hyperplane leaving VH.
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• A = {2}, VH = {1}

In this case we have L = {3} while it is R = {2, 4}.

We can calculate the derivatives of a2(s) and b(s) with respect to s by solving

da2

ds
= 1

3

2
·

da2

ds
+

db

ds
= 0

and get da2

ds
= 1 and db

ds
= −3

2
. Therefore it is

dfver

ds
= −2 − (−4 − 3) +

3

2
=

13

2
.

• A = {2}, VH = {2}

The derivatives of a2(s) and b(s) derived from

da2

ds
= 1

−4 ·
da2

ds
+

db

ds
= 0

are da2

ds
= 1 and db

ds
= 4. Since L = {1, 3} and R = {4} we get

dfver

ds
= (

3

2
− 2 + 3) + 4 =

13

2

again.

The other case we have to check is j = 1 joining the active set again but this time

having positive sign. Note that j = 1 joining the active set again with negative sign

does not make any sense since otherwise sgn(a1(s)) · a1(s) + sgn(a2(s)) · a2(s) = s

does not hold any more.
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• A = {1, 2}, VH = {1, 2}, sgn(a1(s)) = +1

Solving

da1

ds
+

da2

ds
= 1

−12
da1

ds
+

3

2

da2

ds
+

db

ds
= 0

2
da1

ds
− 4

da2

ds
+

db

ds
= 0

gives us da1

ds
= 11

39
, da2

ds
= 28

39
and db

ds
= 30

13
. We have L = {3} and R = {4} and

therefore
dfver

ds
=

11

39
· (−1 − 8) +

28

39
· (−2 + 3) = −

71

39
.

Therefore we choose A = {1, 2} with a1(s) and a2(s) being positive as our new

active set and our new set of passed facilities is VH = {1, 2}. Since a1(s) and

a2(s) as well as the derivatives of a1(s) and a2(s) are all positive in this case we

get the stepsizes

∆s1
1 = ∞

and

∆s1
2 = ∞,

therefore it is ∆s1 = ∞.

We still have to calculate the stepsizes ∆2
i for i /∈ V:

∆s2
3 =

−30
11

−11
39

+ 28
39

· (−2) + 30
13

= −
1170

253

∆s2
4 =

51
11

11
39

· 8 + 28
39

· (−3) + 30
13

=
1989

1034

where

res3(a(
4

11
), b(

4

11
)) = −

30

11

and

res4(a(
4

11
), b(

4

11
)) =

51

11
.

Therefore we get ∆s2
3 = ∞ and so it is ∆s = ∆s2

4 = 1989
1034

. This gives us the optimal
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trajectory on the interval [ 4
11

, 215
94

] through

a1(s) =
11

39
· (s −

4

11
),

a2(s) =
4

11
+

28

39
· (s −

4

11
) and

b(s) =
5

11
+

30

13
· (s −

4

11
)

for s ∈ [ 4
11

, 215
94

]. Note that for s = 215
94

we get (a(215
94

), b(215
94

)) = (51
94

, 42
47

, 230
47

) which

is indeed an optimal solution to (Pver), see Example V.1.1. Moreover it is a vertex

of a cell in C′ as the intersection of H−x1,y1, H−x2,y2 and H−x4,y4. The new active

set is A = {1, 2}, the set of passed facilities is VH = {1, 2, 4} and the value of the

objective function is fver(a(215
94

), b(215
94

)) = 363
94

.

Nevertheless we want to check whether our construction method would stop in

the optimal solution, even if we do not want to do it in every detail. It is easy

to see that the only event that could actually happen is i = 2 leaving the set of

passed facilities. If any other hyperplane leaves VH the solution would no longer be

pseudo-halving and therefore cannot be optimal. On the other hand, the residual

of i = 3 will never become zero since ∆s2
3 = ∞. No coefficient will leave the active

set since a1(s) and a2(s) are both positive and so are their derivatives.

Let therefore A = {1, 2} and VH = {1, 4}. Now we can calculate the derivative of

the objective function value with respect to s. We see that

dfver

ds
=

53

49
> 0.

Therefore this case would not lead to a better value of the objective function and

we can stop at s = 215
94

.

Remember that in the case of line location with vertical distances we had the nice

result that the sign of the slope of any line optimal to (Pver(s)), s ≥ 0, is the same

as the sign of the slope of an optimal solution to the unrestricted problem (Pver)

(see Theorem I.2.4). This means that the sign of the slope of a line optimal to a

restricted problem is always the same as the sign of the slope of a line optimal to

the unrestricted problem no matter how s is chosen since all optimal lines to the

unrestricted problem have the same sign in slope (see Theorem I.2.3).
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Figure V.4.1. The coefficients of the solutions on the optimal trajectory con-
structed in Example V.4.1 with growing s. The dashed vertical lines indicate were
events happen.

It would be good to have an equivalent result for the case of hyperplane location

as well. A generalization of the result in the case of line location could be the

following statement: If (a∗, b∗) is the optimal solution for the unrestricted problem

(Pver) lying on the optimal trajectory following the (lower) median path that we

can construct it holds that for any s ≥ 0 and the appropriate optimal solution

(a(s), b(s)) of the restricted problem (Pver(s)) lying on the same optimal trajectory

sgn(a(s)j) = sgn(a∗
j ) is true for all j ∈ {j : a∗

j 6= 0 and a(s)j 6= 0}. Unfortunately

this is not true in general as Example V.4.1 shows. The optimal solution for the

unrestricted problem (Pver) that is lying on the optimal trajectory is (a∗
1, a∗

2, b∗) =

(51
94

, 42
47

, 230
47

), therefore sgn(a∗
1) = 1. If we choose s ∈ (0, 4

11
) the sign of a1(s)

is sgn(a1(s)) = −1 and therefore obviously sgn(a1(s)) 6= sgn(a∗
1). Figure V.4.1

illustrates that a1(s) changes its sign in s = 4
11

.

But it is possible to show a weaker result by taking advantage of the fact that we

can construct a continuous optimal trajectory.

Lemma V.4.1. Let

t : R+
0 → R

k+1

s 7→ (a(s), b(s))
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be a continuous optimal trajectory of our problem (Pver(s)) and let (a∗, b∗) ∈ Mopt
ver

be the optimal solution to (Pver) lying on t. There exists a s′ such that 0 ≤ s′ <

||a∗||1 and for all s > s′ it holds that

sgn(a(s)j) = sgn(a∗
j) for all j ∈ {j : a∗

j 6= 0 and a(s)j 6= 0}

where (a(s), b(s)) ∈ Mopt
ver(s) is the optimal solution to (Pver(s)) lying on the tra-

jectory t.

Proof. We know that t is continuous in s and therefore it is in particular continuous

in s∗ := ||a∗||1. If we choose ǫ > 0 small enough then

sgn(a(s)j) = sgn(a∗
j) for all j ∈ {j : a∗

j 6= 0 and a(s)j 6= 0}

for all s ∈ (s∗ − ǫ, s∗) when (a(s), b(s)) is the appropriate optimal solution to

(Pver(s)) lying on the trajectory t. This is due to the continuity of t in s∗.

But then we can choose s′ as s′ = s∗ − ǫ̂ with ǫ̂ being the supremum of all ǫ that

are small enough to fulfil the condition above and we are done.





Chapter VI

Extensions

In this chapter we want to extend some of the results of the previous chapters to

a more general frame. In the first section we look at the location of a line in the

normed plane. Afterwards we discuss whether it is possible to preserve some of the

results presented in Chapter V for hyperplane location problems using horizontal

distance and rectangular distance as it was the case for the location of a line.

VI.1 Locating lines in the normed plane with a

restriction on the slope

In Chapter I and Chapter III we examined the location of a line with a restriction

on the slope using the vertical distance and the horizontal distance, respectively.

In this section, we deal with the problem of locating a line with a restriction on the

slope when the distance measure d is derived from an arbitrary norm. We will show

that there is a strong connection to the vertical case as well as to the horizontal

case and that most of the results derived in Chapter I and Chapter III still hold

if the distance measure is derived from a norm. In order to do so, the results

concerning the unrestricted location of a line using a distance measure derived

from a norm presented in [Sch99] will be helpful. Due to the connection to the

vertical distance and the horizontal distance, the extension to distance measures

derived from a norm needs not to be discussed in all detail.

We start with the geometric definition of a norm.

175
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Definition VI.1.1. ([Min67]) Let B be a compact convex set in R
n with nonempty

interior which is symmetric with respect to the origin. Let x ∈ R
n. Then define

the norm γ : R
n → R as

γ(x) := inf{λ > 0 : x ∈ λB}.

It is well known that γ satisfies the properties

γ(x) ≥ 0 (1)

γ(x) = 0 ⇔ x = 0 (2)

γ(λx) = |λ|γ(x) and (3)

γ(x + y) ≤ γ(x) + γ(y). (4)

for all x, y ∈ R
n and λ ∈ R, see the following lemma. This lemma also ensures

that all norms can be characterized by their unit balls B.

Lemma VI.1.1. ([Min67]) The following hold:

1. Let γ be given as in Definition VI.1.1. Then γ satisfies (1) - (4).

2. Let γ : Rn → R≥0 be given such that γ satisfies (1) - (4). Then its unit ball

Bγ = {x ∈ B
n : γ(x) ≤ 1}

is a compact convex set with nonempty interior which is symmetric with

respect to the origin.

Now we want to formulate our problem with a distance measure derived from a

norm γ. Let E = {(x1, y1), . . . , (xn, yn)} ⊆ R
2 be the set of existing facilities and

let d be a distance measure derived from a norm with unit ball B. Our aim is to

locate a non-vertical line la,b such that the sum of distances to the existing facilities

is minimized. We will only investigate non-vertical lines in this section. This is in

line with our approach in Chapter III and again this is not a restriction. In order

to determine the distance between a point (x, y) and a line la,b we can dilate the

unit ball around (x, y) until it touches the line.
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Lemma VI.1.2. ([Sch99]) Let d be a distance derived from a norm with unit ball

B. Then for any line la,b and any point (x, y) in the plane

d((x, y), la,b) = min{|λ| : ((x, y) + λB) ∩ la,b 6= ∅}.

Now that we know how the distance between a point and a line looks like we can

formulate our problem as

min fd(a, b) = min
n∑

i=1

d((xi, yi), la,b) (Pd(s))

s.t. |a| ≤ s

with s ≥ 0.

In order to verify that most of the results derived in Chapter I and Chapter III hold

for a metric derived from a norm as well, we first have to define another location

problem. As it is done in [Sch99] for the unrestricted line location problem, we

first introduce the t-distance. Afterwards we consider the problem of locating a

line with a restriction on the slope using the t-distance which will lead to the

connection between a metric derived by a norm and the vertical distance.

We prefer a geometrical approach here. An alternative - and more analytical -

approach would be to use the formula for distances derived by norms between a

point and a hyperplane presented in [PC01].

Definition VI.1.2. ([Sch99]) Let t ∈ R
2 be a given direction. For two points x

and y in the plane define the t-distance dt(x, y) by

dt(x, y) := γt(y − x),

where

γt(x) :=







|α| if x = αt

∞ else.

The t-distance between a point (x, y) and a line la,b can be determined as in the

following lemma.



178
VI.1. LOCATING LINES IN THE NORMED PLANE WITH A

RESTRICTION ON THE SLOPE

Lemma VI.1.3. ([Sch99]) For t ∈ R
2, (x, y) ∈ R

2 and any line la,b ⊆ R
2

dt((x, y), la,b) := min{|λ| : (x, y) + λt ∈ la,b}

where min ∅ := ∞.

Note that the t-distance is a generalisation of dver and dhor since the length

of the horizontal line segment from (x, y) to la,b is given by de1((x, y), la,b) =

dhor((x, y), la,b) while the length of the vertical line segment is given by

de2((x, y), la,b) = dver((x, y), la,b), where e1 and e2 are the unit vectors of R2.

We can now look at the optimization problem

min fdt
(a, b) = min

∑

(xi,yi)∈E

dt((xi, yi), la,b) (Pdt
(s))

s.t. |a| ≤ s

The next lemma shows how to draw a connection between a problem of the type

(Pdt
(s)) and a vertical problem.

Lemma VI.1.4. ([Sch99]) Let p, q ∈ R
2 and D be a linear transformation with

1. D(p) = q

2. det(D) 6= 0.

Then for all (x, y) ∈ R
2

dq(D(x, y), D(la,b)) = dp((x, y), la,b),

where D(la,b) := {D(x, y) : (x, y) ∈ la,b}.

Such a transformation D exists whenever p 6= 0 and q 6= 0. Using Lemma VI.1.4

with p = t and q = e2 we get

de2(D(x, y), D(la,b)) = dt((x, y), la,b)
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for all (x, y) ∈ R
2. For our objective function this means that

min
∑

(xi,yi)∈E

dt((xi, yi), la,b) = min
∑

(xi,yi)∈E

dver(D(xi, yi), D(la,b)).

Now we have to check what happens to our set of feasible solutions Mdt
=

{(a, b) : |a| ≤ s}. We only want to investigate lines which have a slope that

is different from the “slope of t“ which is defined as st = t2

t1
since a line with slope

st can only be optimal to (Pdt
(s)) if all existing facilities lie on that line. This is

a trivial case and can be neglected.

Two cases can occur depending on the transformation D. Denote by (x̃, ỹ) and lã,b̃

a transformed point D(x, y) and a transformed line la,b, respectively.

One type of feasible set for the vertical problem in the transformed system is of

the form

M̃1
dver

= {(ã, b̃) : s̃1 ≤ ã ≤ s̃2}

with s̃1 < 0 and s̃2 > 0. Here, s̃1 is connected to −s and s̃2 is connected to s in the

untransformed system in the way that it is a = −s if ã = s̃1 and a = s if ã = s̃2.

The second type of feasible set that can occur is of the form

M̃2
dver

= {(ã, b̃) : ã ≤ s̃1 ∨ ã ≥ s̃2},

again it is s̃1 < 0 and s̃2 > 0. This time, s̃1 is connected to s and s̃2 is connected

to −s in the untransformed system in the same sense as in the first case.

Altogether we know that the problem (Pdt
(s)) is equivalent to a problem (P̃ver(s̃))

with vertical distance of the form

min
n∑

i=1

dver((x̃i, ỹi), lã,b̃) (P̃ver(s̃))

s.t. (ã, b̃) ∈ M̃dver

with M̃dver
∈ {M̃1

dver
, M̃2

dver
}.

From now on we will assume that there exists no (a, b) ∈ Mopt
dt

optimal to the

unrestricted problem (Pdt
) such that the slope of the corresponding line la,b is

equal to the slope st of the vector t, that is a = t2

t1
. This is equivalent to assuming
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that no vertical line is optimal for the corresponding vertical problem M̃opt
ver in the

transformed system which is in line with the assumption that no vertical line is

optimal to (Pver) we made in Chapter I as well as to the one that no horizontal

line is optimal to (Phor) we made in Chapter III. As it was the case in the earlier

chapters, this is again no restriction.

This is all we need to prove the following theorem.

Theorem VI.1.1. For all distances dt the following criteria hold.

1. For all s ≥ 0 there exists some (a, b) ∈ Mopt
dt

(s) optimal for (Pdt
(s)) such that

the corresponding line la,b passes through at least one of the existing facilities.

2. All lines optimal for (Pdt
(s)) are pseudo-halving.

3. Let s∗ = min{|a| : (a, b) ∈ Mopt
dt

}. For all s ∈ [0, s∗] it holds that |a| = s if

(a, b) ∈ Mopt
dt

(s).

Proof. Keep in mind that we can reformulate (Pdt
(s)) as

min
n∑

i=1

dver((x̃i, ỹi), lã,b̃) (P̃ver(s̃))

s.t. (ã, b̃) ∈ M̃ver

with M̃ver ∈ {M̃1
ver, M̃2

ver}.

1. Let us look at the dual space of the vertical problem in the transformed

system. Our existing facilities again imply a cell structure and since we

are looking at a problem with vertical distance we already know that our

objective function is linear on each cell.

Let us first assume that M̃ver = M̃1
ver. As in the vertical case the restriction

on the slope gives us two additional vertical lines in the dual space passing

the ã−axis at s̃1 and s̃2, respectively. Therefore it exists an optimal solution

(ã, b̃) for (P̃ver(s̃)) that corresponds to a vertex of a cell in the dual space

following the same argumentation as in the proof of Theorem I.2.1. But if

(ã, b̃) is a vertex of a cell in the dual space that means that the corresponding

line passes through at least one of the existing facilities. This means that
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D−1(lã,b̃) is a line optimal for (Pdt
(s)) that passes through at least one of the

existing facilities since D is a linear transformation and therefore

(x, y) ∈ la,b ⇔ D(x, y) ∈ D(la,b).

Now we assume that M̃ver = M̃2
ver. As a matter of fact, it can be shown that

there exists a line lã,b̃ optimal to (P̃ver(s̃)) such that the corresponding point

(ã, b̃) in the dual space is a vertex of a cell implied by the lines corresponding

to the existing facilities and the two vertical lines given through the restric-

tion on the slope in analogy to Theorem III.1.2. Again D−1(lã,b̃) gives us a

line optimal to (Pdt
(s)) passing through at least one of the given facilities.

2. It is shown in [Sch99], Theorem 3.1, that the pseudo-halving property is not

affected by the transformation D. Showing that any optimal solution to

(P̃ver(s̃)) is pseudo-halving can be done analogously to the proof of Theorem

I.2.2.

3. Let s ∈ [0, s∗]. To prove the third statement we can show that for all optimal

solutions (ã, b̃) of (P̃ver(s̃)) it has to hold that either ã = s̃1 or ã = s̃2. This

can be done analogously to the proof of Theorem I.2.5 if M̃ver = M̃1
ver or

analogously to the proof of Theorem III.1.4 if M̃ver = M̃2
ver. But this means

exactly that (a, b) = D−1(ã, b̃) satisfies either a = −s or a = s, in other

words it is indeed |a| = s.

Remark VI.1.1. Note that for t-distances we cannot state a result that is a direct

analogon to Theorem I.2.4, in other words it does not need to hold that all lines

optimal to the restricted problem (Pdt
(s)) share the same sign in slope. We cannot

do better than we did in the third statement of Theorem VI.1.1. The reason is the

same as it was in Chapter III for (Phor(s)): The corresponding problem (P̃ver(s̃))

does not have to be convex any more. In fact, it is not convex if M̃ver = M̃2
ver. It

is not hard to see that this is the case if the slope of the vector t is less than s, that

is t1

t1
< s.
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We already mentioned that the horizontal distance is a special case of the t-distance,

and therefore it is an example for a problem with t-distance having a corresponding

problem (P̃ver(s̃)) that is not convex. As a consequence, there need not exist a

continuous optimal trajectory to our line location problem with t-distance (Pdt
(s)).

Up to now we have shown that most of the results derived in Chapter I and

in Chapter III hold again if we consider t-distances. The original aim of this

section was to carry the results of these chapters over to distances derived from

a norm. Fortunately [Sch99] provides the connection between any norm γ with

corresponding distance d and the distances dt.

Lemma VI.1.5. ([Sch99]) Let γ be a norm and d the corresponding distance. Let

(x, y) ∈ R
2 and la,b be a line. Then

d((x, y), la,b) = min
t∈R2, γ(t)=1

dt((x, y), la,b).

Lemma VI.1.6. ([Sch99]) Let γ be a norm and d the corresponding distance. Let

la,b be a line. Then there exists a t ∈ R
2 with γ(t) = 1 such that

d((x, y), la,b) = dt((x, y), la,b) for all (x, y) ∈ R
2.

We can now prove the following theorem.

Theorem VI.1.2. For all distances d derived from norms the following criteria

hold.

1. For all s ≥ 0 there exists some (a, b) ∈ Mopt
d (s) optimal for (Pd(s)) such that

the corresponding line la,b passes through at least one of the existing facilities.

2. All lines optimal for (Pd(s)) are pseudo-halving.

3. Let s∗ = min{|a| : (a, b) ∈ Mopt
d }. For all s ∈ [0, s∗] it holds that |a| = s if

(a, b) ∈ Mopt
d (s).

Proof. 1. Suppose la∗,b∗ is an optimal line that does not pass through one of the

existing facilities. Choose t∗ such that d((xi, yi), la∗,b∗) = dt∗((xi, yi), la∗,b∗)

for all (xi, yi) ∈ E according to Lemma VI.1.6.



VI. EXTENSIONS 183

From Theorem VI.1.1 we know that there exists a line lâ,b̂ optimal to (Pdt∗ (s))

that passes through at least one of the existing facilities.

Now let t̂ be such that d((xi, yi), lâ,b̂) = dt̂((xi, yi), lâ,b̂) for all (xi, yi) ∈ E

according to Lemma VI.1.6. Then we get:

fd(a∗, b∗) =
n∑

i=1

d((xi, yi), la∗,b∗)

=
n∑

i=1

dt∗((xi, yi), la∗,b∗)

≥
n∑

i=1

dt∗((xi, yi), lâ,b̂)

≥
n∑

i=1

dt̂((xi, yi), lâ,b̂) due to Lemma VI.1.5

=
n∑

i=1

d((xi, yi), lâ,b̂)

= fd(â, b̂) ≥ fd(a∗, b∗) due to the optimality of la∗,b∗ .

Therefore lâ,b̂ is an optimal line that passes through one of the existing fa-

cilities.

2. Assume that there exists a line la∗,b∗ optimal to (Pd(s)) that is not pseudo-

halving, that is without loss of generality |L(a∗, b∗)| > n
2
. With the same

notation as in the first part of this proof we can conclude from Theorem

VI.1.1 that any line lâ,b̂ optimal to (Pdt∗ (s)) satisfies

|L(â, b̂)| ≤
n

2
and |R(â, b̂)| ≤

n

2
.

Since la∗,b∗ cannot be optimal for (Pdt∗ (s)) according to Theorem VI.1.1, we

get

fd(a∗, b∗) =
n∑

i=1

dt∗((xi, yi), la∗,b∗)

>
n∑

i=1

dt∗((xi, yi), lâ,b̂)

≥ fd(â, b̂)
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contradicting the optimality of la∗,b∗ .

3. Assume that there exists a line la∗,b∗ optimal for (Pd(s)) with s ∈ [0, s∗] such

that |a| < s. Again we want to use the same notation as in the first part of

this proof. From Theorem VI.1.1 we can conclude that any line lâ,b̂ optimal

for (Pdt∗ (s)) satisfies |â| = s.

Since la∗,b∗ cannot be optimal for (Pdt∗ (s)) according to Theorem VI.1.1, we

get

fd(a∗, b∗) > fd(â, b̂)

using the same argumentation as we did in the second part of this proof.

This again contradicts the optimality of la∗,b∗ .

Theorem VI.1.2 tells us that most of the important results presented for the vertical

distance in Chapter I and the horizontal distance in Chapter III can be carried over

to problems with a distance derived from a norm. Note that the third statement

in Theorem VI.1.2 allows that there does not exist a continuous optimal trajectory

for (Pd(s)), the trajectory might jump from one side of the a-axis to the other one

and back as it already was the case when considering problems using the horizontal

distance in Chapter III or problems using the t-distance earlier in this section.

VI.2 Locating hyperplanes with a restriction on

the slope considering horizontal and rect-

angular distance - an outlook

In this section we want to discuss the possibility of carrying over results derived

in Chapter V for hyperplane location with vertical distance to the case of locating

hyperplanes with a restriction on the slope first with horizontal distance and then

with rectangular distance. Remember that in the case of line location we were able

to show that most of the results derived for line location with vertical distance in

Chapter I hold as well for the problem with horizontal distance (see Chapter III)
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and the one with rectangular distance (see Chapter IV). The major difference

between the problem with vertical distance on the one hand and the one with

horizontal distance as well as the one with rectangular distance on the other hand

was that the continuity of the optimal trajectory was lost.

Even if we do not want to discuss in detail which of the results in Chapter V

can be carried over to other distances, we want to give an idea of why we think

that there is a very good chance that most of the results concerning the vertical

distance will hold again when considering problems with horizontal distance and

rectangular distance, respectively.

Let us start with discussing the problem of locating a hyperplane with a restriction

on the slope using the horizontal distance. Let E = {(x1, y1), . . . , (xn, yn)} ⊆ R
k+1

again be the set of existing facilities. Assume that no horizontal hyperplane as

well as no vertical hyperplane is optimal to the unrestricted problem of locating a

hyperplane that minimizes the sum of distances between the existing facilities and

the new hyperplane. This assumption is in line with the assumption we made in

Chapter III that no horizontal line as well as no vertical line is optimal to (Phor).

Again, it is no restriction to assume this.

The problem that we want to solve is the following optimization problem

min fhor(a, b) = min
n∑

i=1

dhor((xi, yi), Ha,b) (Phor(s))

s.t. ||a||1 ≤ s

with s ≥ 0. The horizontal distance between a point (x, y) ∈ R
k+1 and a hyper-

plane H is defined as

dhor((x, y), H) = min
(x′,y′)∈H

dhor((x, y), (x′, y′)).

For the horizontal distance between a point (x, y) and a non-vertical, non-

horizontal hyperplane Ha,b the following formula is known (see e.g. [Sch99]):
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dhor((x, y), Ha,b) = |
1

a1
(a1x1 − (y −

k∑

j=2

aj − b)|

= |
1

a1
|dver((x, y), Ha,b).

When we say that we consider it as very likely that most of the results derived

in Chapter V can be carried over to (Phor(s)), what we have in mind is that the

following statements are very likely to be true:

1. For all s ≥ 0 there exists some (a, b) ∈ Mopt
dhor

(s) optimal for (Pdhor
(s)) such

that the corresponding hyperplane Ha,b passes through at least one of the

existing facilities.

2. All hyperplanes optimal for (Pdhor
(s)) are pseudo-halving.

3. Let s∗ = min{||a||1 : (a, b) ∈ Mopt
dhor

}. For all s ∈ [0, s∗] it holds that ||a||1 = s

if (a, b) ∈ Mopt
dhor

(s).

The reason why we assume that these results hold in the horizontal case is that

we think the problem (Phor(s)) is equivalent to a problem (P̃ver(s̃)) with verti-

cal distance as it is the case when locating a line. What we need to prove this

is to show that there exists a transformation T : R
k+1 → R

k+1 that satisfies

two conditions: First, T has to satisfy dhor((x, y), Ha,b) = dver(T (x, y), T (Ha,b))

for all (x, y) ∈ R
k+1 and all non-vertical, non-horizontal hyperplanes Ha,b. Sec-

ond, the transformed set of feasible solutions, that is M̃ver(s̃) = {(ã, b̃) : Hã,b̃ =

T (Ha,b) s.t. (a, b) ∈ Mhor(s)}, must be connected to the set of feasible solutions

Mhor(s) = {(a, b) : ||a||1 ≤ s} of (Phor(s)) in a nice way. “In a nice way” means

that a hyperplane Hã,b̃ corresponding to a point (ã, b̃) lying on the boundary of the

feasible region in the dual space of the problem (P̃ver(s̃)) should lead to a hyper-

plane Ha,b = T −1(Hã,b̃) corresponding to a point (a, b) lying on the boundary of

the feasible region in the dual space of (Phor(s)). Furthermore the feasible region

in the dual space of (P̃ver(s̃)) should be bounded by 2k hyperplanes in some way

as it is the case in the dual space of (Phor(s)).
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It is easy to find a transformation T that satisfies the first condition. Take for

example the transformation T that maps each point (x1, . . . , xk, y) to the point

(−y, x2, x3, . . . , xk, x1) and each hyperplane Ha,b to the hyperplane

H− 1
a1

,−
a2
a1

,−
a3
a1

,...,−
ak
a1

,− b
a1

.

Now it is

dver(T (x, y), T (Ha,b)) = dver((−y, x2, x3, . . . , xk, x1), H− 1
a1

,−
a2
a1

,−
a3
a1

,...,−
ak
a1

,− b
a1

)

= |x1 − (
y

a1
−

k∑

j=2

aj

a1
−

b

a1
)|

= |
1

a1
(a1x1 − (y −

k∑

j=2

aj − b)|

= dhor((x, y), Ha,b).

Unfortunately it is not that easy to see what happens to the set of feasible solutions

under this transformation. Anyway, even if we do not know yet which transforma-

tion to choose we still think that there exists a transformation such that (Phor(s))

is equivalent to a vertical problem (P̃ver(s̃)) while the set of feasible solutions has

the properties we need to carry over the results 1.-3. from the vertical case to the

horizontal case. Note that the transformed set of feasible solutions M̃ver(s̃) needs

not to be convex any more, therefore there need not exist a continuous optimal

trajectory for (Phor(s)).

Assume that it is possible to prove statements 1.-3. for the horizontal case by

showing the equivalence between (Phor(s)) and a problem (P̃ver(s̃)) with vertical

distance. Note that the horizontal distance dhor gives the distance between two

points in the R
k+1 in the e1-direction while the vertical distance dver gives the

distance between two points in the R
k+1 in the ek+1-direction, where e1 and ek+1

are the first and the (k + 1)-th unit vector of Rk+1. Let us define the distances in

the other directions e2, . . . , ek as
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de
ĵ
((x, y), Ha,b) = |

1

aĵ

(aĵxĵ − (y −
∑

j∈{1,...,k}\{ĵ}

aj − b)|

= |
1

aĵ

|dver((x, y), Ha,b) for ĵ ∈ {2, . . . , k}

If we assume that for the unrestricted problem (Pdej
), j = 2, . . . , k, there exists no

optimal hyperplane that is parallel to one of the xj-axes or the y-axis we obtain

that statements 1.-3. hold for (Pdej
(s)) as well analogous to the horizontal problem

(Phor(s)).

Finally, the rectangular distance between a point (x, y) ∈ R
k+1 and a hyperplane

Ha,b ⊆ R
k+1 is given by

l1((x, y), Ha,b) = min
j=1,...,k+1

dej
((x, y), Ha,b).

Therefore statements 1.-3. also hold for (Pl1(s)).

Summarizing this section, we presented our argument for the assumption that most

of the results derived in Chapter V for (Pver(s)) can be carried over to problems

considering the horizontal distance or distances in the direction of unit vectors in

general. This would directly lead to the statement that most of the results derived

for (Pver(s)) hold for the problem of locating a hyperplane with a restriction on

the slope using the rectangular distance as well since the rectangular distance

between a point and a hyperplane is the minimum of all distances in ej-direction,

j = 1, . . . , k + 1, between this point and the hyperplane.

It is needless to say that the assumptions we expressed in this section have to be

proven in detail before it is certain that we can indeed carry over our results of

Chapter V to other distances. Especially the existence of a problem (P̃ver(s̃)) with

vertical distance that is equivalent to the horizontal problem (Phor(s)) has to be

ascertained. These tasks are left to future work.
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