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Chapter 1

Introduction

Quantum field theory has developed from the first steps it took as the straightfor-
ward application of 1920s quantum theory methods on classical fields to the modern
picture of fields as elementary constituents in nature, but still remained a mystery
regarding important conceptual questions. While the standard model of particle
physics is a renormalizable quantum field theory, which produces extremely accu-
rate and experimentally verified predictions for high energy physics, the perturbative
techniques used for these predictions resemble a collection of recipes lacking a sig-
nificant amount of mathematical understanding of the appearing entities. Already
the appearance of non-linear functions of distributions does not rely on well-posed
definitions.

On the one hand we are fortunate, that this situation, persisting for several
decades now, allows the ignorance of the mathematical problems of quantum field
theory for physicists interested in detailed results for high energy phenomenology.
This has made the rapid progress in this field possible.

On the other hand this is at the same time a misfortune, as in many modern
quantum field theory books students are not informed about and thus not sensitized
for these problems.

This thesis is set up in the conceptual framework of axiomatic quantum field the-
ory, which tries to construct quantum field theories within a consistent mathematical
framework described by a set of axioms.

Axiomatic Quantum Field Theory. Although Hilbert published his mathemat-
ical problems [Hil] before all the groundbreaking developments of quantum physics
and relativity in the early twentieth century, his text on the sixth problem could not
match better the task axiomatic quantum field theory is concerned with. Framed
by the reference to the situation at that time the central sentence is timeless:1

The investigations on the foundations of geometry suggest the prob-
lem: To treat in the same manner, by means of axioms, those physical
sciences in which mathematics plays an important part; in the first rank
are the theory of probabilities and mechanic.

1This and the following two quotation originate form [Hil].
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2 CHAPTER 1. INTRODUCTION

In his following description of the roles of mathematicians and physicists, one can
perhaps recognize an ideal situation of a symbiosis of a mathematical physicist deal-
ing with axiomatic quantum field theory and a phenomenologically interested quan-
tum field theorist. Hilbert writes:

The mathematician will have also to take account not only of those
theories coming near to reality, but also [...] of all logically possible
theories. He must be always alert to obtain a complete survey of all
conclusions derivable from the system of axioms assumed.

In axiomatic quantum field theory the systems of axioms try to express certain basic
properties, which realistic theories should have. Still specific models investigated
most often have unrealistic symmetries or dimensions of space-time. Although these
choices are made because of the relative simplicity of these theories and not for
reasons of completeness, they match the idea, that also unrealistic models within a
realistic framework promote our view on quantum field theory.

The discussion of the sixth problem in [Hil] ends with

Further, the mathematician has the duty to test exactly in each in-
stance whether the new axioms are compatible with the previous ones.
The physicist, as his theories develop, often finds himself forced by the
results of his experiments to make new hypotheses, while he depends,
with respect to the compatibility of the new hypotheses with the old ax-
ioms, solely upon these experiments or upon a certain physical intuition,
a practice which in the rigorously logical building up of a theory is not
admissible. The desired proof of the compatibility of all assumptions
seems to me also of importance, because the effort to obtain such proof
always forces us most effectually to an exact formulation of the axioms.

Unfortunately this ideal symbiosis is not reached in quantum field theory, as we have
already mentioned above.

While the interaction picture is used widely in perturbative calculations in quan-
tum field theory, it is shown by Haag’s theorem (cf. [Haa55, EF06]) not to exist, if
one rigorously arguments with general properties of quantum field theories. Because
of the empirical successes of perturbation theory this rigorous result is ignored by
most quantum field theorists. The reason, why and under which limitations per-
turbation theory using the interaction picture, which has to be seen as a tool for
calculations in quantum field theory, leads to correct results, remains unknown.

The Wightman axioms for correlation functions on Minkowski space in the fifties
(published in the sixties [SW]) and later the Osterwalder-Schrader axioms for Eu-
clidean Green’s functions in the seventies [OS73] took a central place in axiomatic
quantum field theory. They collect the properties coming from the physical intuition,
which a quantum field theory resp. equivalent problems in probability theory should
have on the level of their correlation functions resp. their Schwinger functions.

With his axioms Wightman wanted to tackle, the “Main Problem of quantum
field theory”, as it is called in the book [SW]:
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[...]either to show that the idealizations involved in the fundamen-
tal notions of the theory (relativistic invariance, quantum mechanics,
local fields, etc.) are incompatible in some physical sense, or to recast
the theory in such a form that it provides a practical language for the
description of elementary particle dynamics.

Already there it has been seen, that the Wightman axioms are consistent, as they
are satisfied in free field theories. In a review of the situation in [FRS07] the authors
point towards the second possibility of the “Main problem”, when the investiga-
tions within different axiomatic approaches to quantum field theory including the
Wightman axioms are evaluated:

None of them indicates a necessary failure or inconsistency of the
framework of QFT.

Also in their book Wightman and Streater declared the goal to show, that there
is an interacting theory satisfying his set of axioms. While this has been successful
in low space-time dimensions, a four-dimensional interacting quantum field theory
waits to be constructed. This would be a great step on the way to the long-term
goal of a rigorous mathematical basis of gauge theories, which nature is obviously
governed by. For the latter, however, it is known, that in general gauge theories lack
a Hilbert space, which is an essential ingredient of the Wightman axioms. To present
knowledge in Coulomb gauge the chance survives with a canonical quantization on
a Hilbert space found for this case.

An important result within the Wightman approach is the Wightman reconstruc-
tion theorem. It shows, that the field representations within a theory are determined
up to unitary equivalence by the collection of all Wightman (correlation) functions
in this theory. This means, that this collection carries all information on this theory.

In chapter 2 the Wightman axioms and results from global conformal theories are
reviewed. These theories are a good candidate to achieve the goal of an interaction
four-dimensional quantum field theory.

The aim of the research project, which constitutes this thesis, is to enlarge the
group of candidates with certain expedient properties to supersymmetric theories
with global conformal symmetry.

One of these properties is the possibility to use a conformal partial wave ex-
pansion. In the conformal case and – in the consequence of this thesis – also the
superconformal case this partial wave expansion leads to simple conditions equiva-
lent to the positivity conditions for these correlation functions. This condition is one
of the Wightman axioms needed for the probability interpretation of the correlation
functions. It is extremely difficult to test, also because this has to be done for all
n-point correlation functions.

Superconformal Symmetry. In the early beginnings of supersymmetry [WZ74,
MPS76, AMS76, AMS77, AMS78] four-dimensional N = 1 superconformal field the-
ories came into the focus of several researchers. But due to the mainly perturbative
approach to supersymmetric field theories, in which non-trivial theories could not
sustain conformal invariance, the mainstream attached to super-Poincaré symmetry.
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Still insights in the conformal invariance of supersymmetric non-Abelian gauge
theories at renormalization group fixed points with vanishing β-function ([Sei95] and
more recently [IW03, IW04, BIWW05]) brought new interest to a non-perturbative
analysis of superconformal field theories in the mid-90s. The very recent study of
new supergravity models with the potential to resolve some problems of minimal
supersymmetric standard models [FKL+10a, FKL+10b] could possibly again renew
attention on this topic. Here big emphasis is given to the underlying superconformal
symmetry.

Chiral superfields gathered most attention not only because of their prominent
role in supersymmetry through the construction of F-Term Lagrangians and as suit-
able multiplets containing elementary particles, but also for the sake of their relative
simplicity. This thesis focuses on chiral and anti-chiral superfields as well, as it comes
to correlation functions.

In the eighties the two authors of [DP85a, DP85b, DP87] concentrated on a
group theoretical approach to extended conformal supersymmetry.

A later series of papers started also with results for chiral superfield in N = 1
[HW99, HW97, HW96b], but it focused afterwards the analysis of theories with
extended superconformal symmetry on analytic superspace (e.g. [HW96a, HSW98,
EHSW00, EHP+00, HH03, HH04]). This approach is purely on-shell. It was shown,
that there are no nilpotent invariants of up to four points of analytic superspace
[EHW99, HSSW00]. This is enough to investigate chiral/anti-chiral four-point func-
tions, but cuts the perspective to deal with more general superfields.

Another line of work concentrated first on correlation functions of only chiral
superfields for N = 1[Osb99, DO01a]. While the two point function is a pure contact
term, which does not fulfill the Wightman axioms, the three point function is only
consistent with the Ward identities, if the total R-charge is one. These publications
already introduce part of the notation, which we also use in this thesis. Later papers
then mainly dealt with N = 4 [AEPS02, DO02, DO03, DO04, DO06].

A more general approach closely related to [Osb99] is found in the work of Park
[Par98, Par99]. He has derived implications of superconformal symmetry on corre-
lation functions of arbitrary quasi-primary fields. For that purpose all invariants of
the N -extended superconformal group for all N ≥ 1 were constructed on ordinary
super Minkowski space. It is stated, that correlation functions with vanishing R-
charge are functions of these invariants. For the case of non-vanishing R-charge the
correlation functions are nilpotent and depend on a larger set of invariants, which
are not required to be invariant under the R-symmetry.

In chapter 3 we review the basics of supersymmetry and superspace, which we
see as a tool to organize fields of Minkowski space related by supersymmetry within
one superfield on superspace. Then the superconformal group is discussed follow-
ing mainly the work in [Par99]. We also look at the field representation of super-
symmetry and superconformal symmetry as multiplets on Minkowski space and as
superfields on superspace.

Chapter 4 investigates the three- and four-point invariants for N = 1 from
[Par99]. It is argued, that there are only 10 independent invariants of four points:
two cross ratios and eight nilpotent invariants. This is an important result in this
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thesis because it shows, that inN = 1 superconformal symmetry fewer invariants are
needed to express any superconformal four-point function with vanishing R-charge
than thought hitherto ([Par99] argues it to be maximally 16). With this result
we find all monomials of nilpotent invariants, which are independent in a way, so
that we have a unique expansion for every four-point invariants in these nilpotent
invariants. We also proof the uniqueness within theorem 4.1. At last we go into
the technical details, so that we are able to change to alternative sets of four-point
invariants needed in the following chapter.

The correlation functions of superconformal chiral and anti-chiral scalar super-
fields are discussed in chapter 5. Two- and three-point functions do not need a
long discussion. We mainly state existing results for vanishing and non-vanishing
R-charge. The discussion of four-point functions of chiral and anti-chiral scalar su-
perfields, which is given only for vanishing R-charge, is arranged around the proof of
theorem 5.1 giving a specific form especially suitable for the transfer of results from
global conformal to global superconformal theories, but valid for all superconformal
theories. In this proof we start from the general form of scalar four-point functions
and look at the chiral and anti-chiral restriction imposed on this form. This gives
us insight in the cancellation of terms from different invariants. The nilpotent in-
variants appear in a differential operator, which is applied in the proven form of
the superconformal four-point function to the invariant function appearing in the
conformal four-point function of the lowest component fields of the chiral and anti-
chiral superfields. After this proof we treat the special case of rational four-point
functions. This rationality is a consequence of global (super)conformal symmetry.

Chapter 6 finally gives the first results and the outlook on the transfer of results
from global conformal to global superconformal four-point functions. In the first
part pole bounds are investigated and in the second part the partial wave expansion
is discussed.

In the appendix we have chapters containing the conventional choices and use-
ful equations, appendix A, the superconformal algebra, appendix B, details of the
invariants, which are needed in the main text, appendix C, and useful Maple proce-
dures for calculations with invariants, appendix D. The discussion of superconformal
four-point invariants without R-symmetry, which is not needed for the rest of the
thesis, can be found in appendix C.4.
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Chapter 2

Global conformal field theory

After more than eighty years of work on quantum field theory, we look back on an
enormously successful story, which lead to a standard model of particle physics with
stunningly precise matches of theoretical calculations and experimental results. Still
there are significant mathematical problems left to reach a status of the theory as
reached in quantum mechanics, where one can speak of a mathematically complete
and consistent formalism. A better mathematical understanding of QFT could lead
us to non-perturbative results, which we still lack in most situations. This makes the
efforts to rigorously construct a four-dimensional interacting quantum field theory
and to show, that it fulfills certain axioms implied by the physical interpretation of
the theory, especially worthwhile – even if it is reached in a simplified toy-model at
first.

One of the consequences from physical interpretation, which has taken center
stage, is the needed positivity of the inner product of the Hilbert space of states,
which persistently resists its verification because of the complicated properties of
products of fields in interacting theories. This positivity goes back to the probability
interpretation of such inner products appearing as correlation functions in QFT.
Consequently one needs the positivity of all correlation functions and the compliance
of Schwarz inequalities of correlation functions. This is one of the Wightman axioms,
which are the most prominent set of axioms for QFT. 1

Conformal field theory in higher (than two) dimensions got into the focus of a
constructive approach on the basis of the Wightman axioms in the past decade. It
investigates these theories on a compactified space-time, on which the covariance of
the fields being conformal representations on Minkowski space – and not a covering
space – is postulated, leading to the global conformal invariance (GCI) of the Wight-
man function, the correlation functions in this framework. Here the focus lies on the
construction of a non-trivial quantum field theory in four dimensions on the com-
pactification of Minkowski space, R1,3. The rationality of the correlation functions
has been proven and bilocal fields made a transfer of methods from two dimensional
conformal field theories possible. Concerning the positivity axiom conformal partial

1In the last 50 years investigations starting from suitable sets of axioms – name giving to the
field of axiomatic quantum field theory – led to significant results. A quite recent status report can
be found in [FRS07].

7
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wave analysis has provided an access for its validation with explicit results for GCI
four-point functions.

In this chapter we first take a short look at the Wightman axioms and then
summarize results for GCI field theories focussing the partial wave expansion and
its role for the investigation of Wightman positivity.

2.1 Wightman axioms

The book [SW] published in 1964 contained Wightman’s set of axioms in a form,
which is the basis of work on the construction of quantum field theories on Minkowski
space down to the present date. It combines the focus on the correlation functions
as actual observables with expectations for a physically realistic local quantum field
theory. These correlation functions are given as tempered distributions and the
axioms are given as properties of these so-called Wightman functions evaluated at
arbitrary test functions from Schwartz space.

Here we leave this more general frame and look at Wightman functions given as
vacuum expectation values of products of fields. Consequently we state Wightman
axioms on these fields, which are defined as operator valued distributions. These
axioms are not more fundamental, as one could think at first, because the Wight-
man reconstruction theorem states, that up to unitary equivalence the theory is
determined by its Wightman functions [SW].

We state the axioms for a space-time M together with a space-time symmetry
group, G. This may be Poincaré symmetry on Minkowski space, R1,3 as in [JO00]
or conformal symmetry on conformally compactified Minkowski space as reviewed
in [Wag]. Here we leave these entities undetermined:

• Hilbert space and symmetry group: The space-time symmetry group,
G, has a unitary representation U acting on the state space, H, a separable
Hilbert space. It leaves an element Ω ∈ H, the vacuum vector, invariant. It
is unique up to a factor. The commuting generators of the translations have
joint spectrum in the closure of the forward lightcone.

• Covariant fields: The fields, φi, as well as its hermitian conjugate, are oper-
ator valued distributions. A dense subset, DH, of H is spanned by these fields
φif , f ∈ S(M), acting on the vacuum, Ω. They transform under g ∈ G as

U(g)φ(f)U(g)−1 = ω(g)φ(f ◦ g−1) , (2.1.1)

where ω(g) is a finite dimensional representation of g.

• Locality: Two fields, φ(f) and χ(g), commute resp. anti-commute depending
on their spin, if the support of f and the support of g are space-like separated.

• Completeness: Every subset of DH, which is invariant under the action of
the fields, is also dense in H.
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When one wants to make contact between these axioms and known realistic quantum
field theories, the problem starts right in the first sentence in combination with the
second item: it is far from obvious, that there is a separable Hilbert space spanned by
the fields. The positive definiteness of the inner product on H and so the positivity
of all Wightman functions has to be tested. Therefore we look at the properties
of the Wightman functions resulting from the above axioms. We have the n-point
Wightman functions evaluated at n-point of M :

Wn(x1, . . . , xn) = 〈Ω, φ1(x1) . . . φn(xn)Ω〉 = 〈φ1(x1) . . . φn(xn)〉 . (2.1.2)

• Invariance: Because of the covariance of the fields and the invariance of
the vacuum, the Wightman functions are invariant with respect to space-time
transformations, g ∈ G:

W ′n =
⊗
n

ω(g)Wn ◦ g−1 =Wn . (2.1.3)

• Locality: For space-like separated points xi and xi+1, i ∈ {1, . . . , n} we have

Wn(x1, . . . , xi, xi+1, . . . , xn) =Wn(x1, . . . , xi+1, xi, . . . , xn) . (2.1.4)

• Wightman-positivity: From the positivity of the norm of the Hilbert space
follows the condition, that for all finite sequences of test functions, fp,∑

p,q

∫
Mp+q

f̄(xp, . . . , x1)
〈
φ∗1(x1) . . . φ∗p(xp)φp+1(xp+1) . . . φp+q(xp+q)

〉
·f(xp+1, . . . , xp+q) ≥ 0 . (2.1.5)

• Spectral condition: As the Wightman functions are translation invariant,
they are functions of the differences, xi − xi+1, i ∈ {1 . . . n− 1}, The Fourier
transformation of the Wightman functions with respect to these variables has
its support in the n-fold tensor product of the completion of the forward cone
as a consequence of the spectrum of the translation generator.

Especially the Wightman-positivity is a crucial property, which has to be shown,
when a quantum field theory is constructed according to the other properties.

2.2 Global conformal invariance and rationality of cor-
relation functions

Global conformal invariance is the invariance of the correlation functions under
a single-valued action of the fourfold cover G = SU(2, 2) of the conformal group
whenever x and gx, g ∈ G, both belong to Minkowski space. This definition is stated
in [NST02a].

For conformal symmetry we have in eq. (2.1.1) a cocycle ω(g, x) instead of ω(g).
Global conformal invariance implies a much stronger locality condition as the one



10 CHAPTER 2. GLOBAL CONFORMAL FIELD THEORY

of the Wightman axioms. As a pair of time-like separated points can be mapped
by conformal transformations into space-like separated points, the Huygens’ prin-
ciple holds. Two fields evaluated at two points, which are not light-like separated,
commute resp. anti-commute.

The field representations, being unitary representations of SU(2, 2), are labeled
following [Mac77] by the scaling dimension, d ∈ R, and (j1, j2), the labels of a
finite dimensional irreducible representation of SL(2,C) (specifically on Minkowski
space). These representations are induced from the ones of the compact subgroup
S(U(2)× U(2)) and their scaling dimension has a lower limit depending on (j1, j2):

j1 = 0∨ j2 = 0 ⇒ d ≥ j1 + j2 + 1 , j1 6= 0∧ j1 6= 0 ⇒ d ≥ j1 + j2 + 2 . (2.2.1)

In [NT01] it has been shown, that global conformal invariance, locality, trans-
lation invariance and spectral conditions imply, that all Wightman functions are
rational functions:

Wn(x1, . . . , xn) = P(x1, . . . , xn)
∏

1≤k<l≤n

[
(xk − xl)2 + iε(x0

k − x0
l )
]−µkl , (2.2.2)

where the pole degrees, µkl, have an upper bound, which only depends on the
two fields, φk and φl, belonging to the representations (dk, j1k, j2k) and (dl, j1l, j2l),
respectively:

µkl ≤
[[
dk + j1k + j2k + dl + j1l + j2l

2
− 1− δj1kj2l δj2kj1l δdkdl

2

]]
, (2.2.3)

where, for r ∈ R, n = [[r]] ∈ Z is the number, such that n ≤ r and n+ 1 ≥ r.
The highest pole contributing here is the one of the two point function, if it does

not vanish anyway. This is just the cause of the Kronecker deltas. If the charges are
not identical and thus the two point function is zero, the corresponding pole bound
of the four-point function is equal to the one of the truncated part of this correlation
function .

In the case of two fields with identical charges, the truncated four-point func-
tion has in general a stronger bound for these two fields than the whole four-point
function, which contains the two point function of these fields(cf. [NT01]). Hence
the bound of the truncated four-point function is generally eq. (2.2.3) without the
Kronecker deltas. For identical charge we then get:

〈. . . ψ∗(xi) . . . ψ(xj) . . .〉T ∼
[
(xi − xj)2 + iε(x0

i − x0
j )
]−µij (2.2.4)

with µij ≤
[[
d+ j1 + j2 −

1

2

]]
= d+ j1 + j2 − 1 .

Here the field ψ has the quantum numbers (d, j1, j2) and the ∼ here means, that the
whole function looks like eq. (2.2.2).

For real scalar fields belonging to the representations (d, 0, 0) these pole bounds
get especially simple. For the truncated four-point function of four such fields with
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the same scaling dimension, d, are given in [NST02a]:

WT
sc.,4(d)(x1, . . . , x4) = Wsc.,4(x1, . . . , x4)−Wsc.,2(x1, x2)Wsc.,2(x3, x4)

−Wsc.,2(x1, x3)Wsc.,2(x2, x4)−Wsc.,2(x1, x4)Wsc.,2(x2, x3)

=

[
(x1 − x3)2(x2 − x4)2

]d−2

[(x1 − x2)2(x2 − x3)2(x3 − x4)2(x1 − x4)2]d−1

∑
i,j≥0

i+j≤2d−3

cijs
itj

(2.2.5)

with

s =
(x1 − x2)2(x3 − x4)2

(x1 − x3)2(x2 − x4)2
, t =

(x1 − x4)2(x2 − x3)2

(x1 − x3)2(x2 − x4)2
. (2.2.6)

But only
[[
d2/3

]]
coefficients are independent because of the locality properties of

this Wightman function:

cij = cji and cij = ci(2d−3−i−j) = c(2d−3−i−j)j , (2.2.7)

which leaves cij with i ≤ j ≤ 2d−3−i
2 .

In the next section we will look at the partial wave expansion and show, how
the coefficients of this expansion can be related to the finite number of independent
amplitudes, which are left after the evaluation of pole bounds and locality properties
for identical fields in the four-point function.

2.3 Partial wave expansion

The analysis of bilocal fields brought deeper insight into the structure of the Wight-
man functions. These fields, Vl(x1, x2), appear in an operator product expansion of
two neutral scalar fields:

φ1(x1)φ2(x2) = Wsc.,2(x1, x2) +
d−1∑
l=1

 1

4π
[
(x1 − x2)2 + iε(x0

1 − x0
2)
]
d−l

Vl(x1, x2)

+ : φ1(x1)φ2(x2) : . (2.3.1)

This splits the operator product into the different twist contributions, which is the
difference of dimension and rank. In [NST02a] the main focus lies on scalar fields
with scaling dimension 2. Based on that publication it has been shown in [NRT08],
that models of these fields can be reduced to free fields. In [NST02b] the authors
started to look at d = 4 fields with the possible interpretation as a gauge invariant
Lagrangian in mind. The next paper, [NST03], has led to another possibility to
write down the truncated four point Wightman function, eq. (2.2.5), for d = 4.
This contains different five independent coefficients and has been the starting point
for the example of the partial wave expansion of these correlation functions detailed
in [NRT05].
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The partial wave expansion of a four-point function is defined by the insertion of
projectors, Πk,L, which project onto each symmetric traceless representation (2k +
L,L/2, L/2) and, of course, form a partition of the unit:

Wsc.,4(4)(x1, . . . , x4) = 〈φ(x1)φ(x2)φ(x3)φ(x4)〉
=
∑
k,L

〈φ(x1)φ(x2)Πk,Lφ(x3)φ(x4)〉

= 〈φ(x1)φ(x2)〉 〈φ(x3)φ(x4)〉
∑
k,L

Bk,Lβk,L(s, t) . (2.3.2)

For a four-point function of identical fields, the sum only contains the vacuum con-
tribution, k = L = 0, all positive even twists, 2k, and all non-negative even spins L
(cf. [NST03, NRT05]).

With [DO01b] we get the partial waves, βk,L, as functions of chiral variables, u
and v, defined by uv = s and (1− u)(1− v) = t:

βk,L =
uv

u− v
(Gk+L(u)Gk−1(v)−Gk+L(v)Gk−1(u)) , (2.3.3)

where Gn(z) is the product of a monomial of its argument and a hypergeometric
function, which depends on the scaling dimensions of the fields. General formulas
for this function, G, are e.g. given in [Wag] for two and four dimensions.

We sketch now, how this form of the partial waves is reached. They are eigen-
functions of a differential operator, which one gets from the Casimir operator,

C =
1

2
MµνMµν +

1

2
(PµK

µ +KµP
µ)−D2 , (2.3.4)

with the generators of the conformal algebra Mµν , Pµ, Kµ and D. As this Casimir
operator has the irreducible positive energy representations of the conformal group
as eigenvectors and so the projections in the partial expansion are just projections
onto the eigenspaces of C, it is inserted in the four-point function,

〈φφCφφ〉 , (2.3.5)

to get the partial waves. Commuting it with the fields one can pull it out of the
four-point function and gets a differential operator, in which the hypergeometric
differential operator is found. It acts on the function of cross ratios s and t in the
four-point function. This is the one mentioned above, which has the partial waves
as eigenfunctions.

The next step of the calculation of the partial wave expansion consists of the
substitution of variables in the expression of the four-point function in terms of
finitely many independent amplitudes from the section 2.2 by the chiral variables.
After multiplication by u−v

uv to compensate the factor in (2.3.3), the result can be
brought into a form, which is a finite linear combination of terms,(
ui or

(
u

1− u

))(
vj or

(
v

1− v

)j)
−
(
vi or

(
v

1− v

))(
uj or

(
u

1− u

)j)
,

(2.3.6)
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with i, j ≥ 0. One still needs to expand these terms into functions Gn(z) with the
help of a few expansion rules:

zp =
∑

n∈p+N0

(−1)n−p(p)n−p
2

(n− p)! (n+ p− 1)n−p
Gn(z) , (2.3.7)

(
z

1− z

)p
=

∑
n∈p+N0

(p)n−p
2

(n− p)! (n+ p− 1)n−p
Gn(z) . (2.3.8)

Here (i)j = (i+j−1)!/(i−1)! is the rising factorial, also called Pochhammer symbol.
Sorting the terms leads to

〈φ(x1)φ(x2)φ(x3)φ(x4)〉 = 〈φ(x1)φ(x2)〉 〈φ(x3)φ(x4)〉
uv

u− v
∑
m,n

Xm,n (Gm(u)Gn(v)−Gm(v)Gn(u)) .

(2.3.9)

Relabeling the indices the comparison with eq. (2.3.2) with eq. (2.3.3) inserted
provides the partial wave coefficients

Bk,L = (Xk+L,k−1 −Xk−1,k+L) . (2.3.10)

We have seen in this section, how we get the partial wave coefficients explic-
itly from an expression of the four-point function, which has only finitely many
monomials in conformal cross ratios s and t. In [NRT05] the explicit results for the
coefficients Bk,L are given for four identical field with scaling dimension 4.

However, the described steps can be performed for any such expression. We
discuss in chapter 6, how the results for superconformal chiral scalar four-point
functions can give such an expression for a scalar conformal four-point function
contained in it. Furthermore we see, that the partial wave expansion – computed as
described in this section – could be directly promoted to the whole superconformal
four-point function.

2.4 Wightman positivity

Now we know, how to write a four-point function, as an infinite sum: the partial wave
expansion. Of cause, this is much less compact than its original form, but it grants us
access to the conditions, which finitely many independent amplitudes left at the end
of section 2.2 have to fulfill, so that this four-point function is Wightman positive.
Thus it gives a piece of the puzzle to construct a model following the Wightman
axioms: Only if all Wightman functions are Wightman positive, the model lives on
a Hilbert space, as such a space has a positive definite inner product. Only then
its Wightman functions have a sensible physical interpretation as probabilities. But
the investigation of all n-point functions is still not the sufficient condition, because
also Cauchy-Schwarz inequalities resulting from the mixed terms in eq. (2.1.5) have
to be considered. Actually, this has been achieved only in two dimensions so far and



14 CHAPTER 2. GLOBAL CONFORMAL FIELD THEORY

led to the proof already mentioned above, that there are only free models with fields
having scaling dimension d = 2 (cf. [NRT08]).

As mentioned in [NRT05] the certain positivity of the four-point function of
massless scalar free fields leads to the conclusion, that all partial waves are positive,
because all coefficients in its partial wave expansion are strictly positive.

Hence the Wightman positivity of any four-point function is equivalent to the
condition

Bk,L ≥ 0 . (2.4.1)

In the case of four identical scaling dimensions d = 4 (cf. [NRT05]) a compact
set with non-vanishing open interior of possible five-tuples of amplitudes is left by
these conditions. Higher order correlation functions are discussed in [BMRW09] and
a very recent preprint [NRW11].



Chapter 3

N = 1 Superconformal field
theories

The obvious shortcomings of the otherwise enormously successful standard model
of particle physics, such as the absence of particle masses, triggered a flood of the-
oretical ideas. On this path beyond the standard model some theories have been
developed over several decades now, but still wait for empirical proof.

At this moment many hope for the near future to solve the puzzle of mass gener-
ation by the Higgs mechanism, when Higgs particles can be found by the detectors of
the Large Hadron Collider. The same experiments at this proton collider could also
possibly find first particles predicted by one of the most influential developments of
physics beyond the standard model: Supersymmetry.

Supersymmetric theories have not any more the strict separation of space time
symmetries and internal symmetries, which is demanded, if one sticks to ordinary
symmetry algebras. With the help of Z2-graded algebras called superalgebras, which
use not only commutators, but also anticommutators, one can construct space time
symmetries, which also relate fermions with bosons and vice versa.

The success of supersymmetry can found in its ability to potentially explain
several unsolved problems at once.

First there is the hierarchy problem, which is given by the many orders of mag-
nitudes between the different energy scales in the standard model. Pertubative
calculations have to be extremely fine tuned because of this fact. While supersym-
metry does not change the scales, which leave some physicist ill at ease, it provides
cancellation of contributions from bosons and fermions in pertubative calculations,
which give the smallness of the electro-weak scale some kind of naturalness. This
can be seen as a solution to a technical issue, as pertubative calculations are only
tools applied on quantum field theories.

When the supersymmetry is broken, which is needed to match our empirical
knowledge of particle physics,the possible existence of heavy particles, which have
not been detected yet, is another consequence of supersymmetry and could bring an
explanation to hitherto unexplained experimental data. Dark matter has been indi-
rectly proven to exist e.g. by its gravitational influence on galactic rotation curves
and by graviational lensing. A supersymmetric particle is a promising candidate for

15



16 CHAPTER 3. N = 1 SUPERCONFORMAL FIELD THEORIES

it. Also several extremely high energetic cosmic rays have been observed, which can
not be explained by the standard particle zoo. But a heavy supersymmetric particle
with a low cross section with normal matter could trigger such high energy particles
from space.

In this thesis the unbroken superconformal symmetry group is taken as space
time symmetry group, which contains super Poincare symmetry. Already the first
supersymmetric theories discussed had superconformal symmetry (cf. [WZ74, DS74,
HLS75]), but as the focus went to physically realistic theories most work was done
on theories with super Poincare symmetry.

Still superconformal symmetry has not only toy-model qualities. Insights in
the conformal invariance of supersymmetric non-Abelian gauge theories at renor-
malization group fixed points with vanishing β-function ([Sei95] and more recently
[IW03, IW04, BIWW05]) brought new interest to a non-perturbative analysis of su-
perconformal field theories in the mid-90s. The very recent study of new supergrav-
ity models with the potential to resolve some problems of minimal supersymmetric
standard models [FKL+10a, FKL+10b] could possibly again renew attention on this
topic. Here big emphasis is given to the underlying superconformal symmetry.

In this chapter we first have a look at the supersymmetry algebra and then define
superspace as a coset of the group of supertranslations. In section 3.3 superconformal
symmetry is discussed. The transformation properties of superspace coordinates lead
to those of intervals, which we need in the next chapter to construct superconformal
invariants.

In section 3.4 field representations of the supersymmetry and of superconformal
symmetry are discussed. First we investigate multiplets of fields on Minkowski space
and then see, how these are grouped in superfields defined on superspace.

3.1 Super-Poincaré algebra

Supersymmetry is generated by operators Qα and their hermitian conjugates Q†α =
Q̄α̇. They are Weyl spinors and relate fermionic fields to bosonic fields and vice versa.
They are part of a supersymmetric extension of the Poincaré algebra, the N = 1
Super-Poincaré algebra. This is a graded algebra, which can be calculated solely
from the Poincaré algebra and the choice of the constant in the anti-commutator of
Qα and its conjugate, {

Qα, Q̄α̇
}

= 2σµαα̇Pµ , (3.1.1)

with the translation generator, Pµ = (H,−P). This is done e.g. in [QKS10] and we
will here summarize it here.1

Apart from the factor the expression in eq. (3.1.1) is determined by the index
structure and it is this cause, which also gives the form of two of the other missing
(anti-)commutators.

The commutator of Q and Pµ can only be proportional to σµQ̄. With the Jacobi

1In appendix A Pauli matrices and other choices within the possibities of conventions are given.
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identity of Pµ, P ν and Q it can be shown to vanish,

[Q,Pµ] = 0 . (3.1.2)

The anti-commutator of Q with itself has to get its indices from a contraction of
the anti-symmetrized product of sigma-matrices , i/4 (σµσ̄ν − σν σ̄µ), and the gen-
erator of Lorentz transformations, Mµν . But the anti-commutator commutes with
Pµ, as we have just seen, and this contraction does not. Thus it is a consequence of
Poincaré symmetry, that the generators of supersymmetry anti-commute:

{Q,Q} = 0 . (3.1.3)

From the facts, that the supersymmetry generator, Qα, is on the one hand a
spinor and on the other hand transforms unitarily under Lorentz transformations
with the operator U = exp(−i/2ωµνM

µν), one can read off the commutator with
Mµν ,

[Q,Mµν ] =
i

4
(σµσ̄ν − σν σ̄µ)Q . (3.1.4)

A symmetry with respect to tranformations of the supersymmetry generators
multiplying them by a u(1) phase factor, called R-symmetry, leads to the following
commutation relation:

[Q,R] = −i
1

2
Q . (3.1.5)

This commutator is frequently taken to be part of the super Poincaré symmetry. The
factor is convention and corresponds here to the one we have in the superconformal
algebra in app. B. Other internal symmetries commute with the Super-Poincaré
algebra. The (anti-)commutators of Q̄ are given by the conjugation of the ones of
Q.

3.2 Superspace

This section defines superspace as a coset of the supertranslational group, which is
the quotient of the super Poincare group and the Lorentz group. Together with the
properties of the Graßmann variables this can be found in a compact form e.g. in
[QKS10]. The general element of the translational supergroup is given by

g(z) = ei(xµPµ+θαQα+Q̄α̇θ̄
α̇) , (3.2.1)

where we find the supersymmetry generators, Qα and Q̄α̇, and the generator of
translations in Minkowski space Pµ. The parameters zM =

(
xµ, θα, θ̄α̇

)
are the

coordinates of superspace. θα and θ̄α̇ are Graßmann-valued spinors. This space we
denote as R4|4 because of four real and four Graßmann coordinates.

The composition of two of these group elements can be calculated with the help
of the supersymmetry algebra:

g(z1)g(z2) = g(z3) = ei(xµ3Pµ+θ3Q+Q̄θ̄3) (3.2.2)

with xµ3 = xµ1 + xµ2 + iθ1σ
µθ̄2 − iθ2σ

µθ̄1 , (3.2.3)

θα3 = θ1 + θ2 , (3.2.4)

θ̄α3 = θ̄1 + θ̄2 . (3.2.5)
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With the composition of two infinitesimally separated elements of this group we get
the supertranslationally invariant one form, eM =

(
eµ, dθα, dθ̄α̇

)
:

g(z)g(z + dz) = g(z3) = ei(eµPµ+dθQ+Q̄dθ̄) (3.2.6)

with eµ = dxµ + idθσµθ̄ − iθσµdθ̄ . (3.2.7)

This brings us to the invariant supersymmetric interval length and the exterior
derivative on superspace :

e2 = ηµνe
µeν , (3.2.8)

d = eMDM =
(
dxµ + idθσµθ̄ − iθσµdθ̄

) ∂

∂xµ
+ dθαDα − dθ̄α̇D̄α̇ (3.2.9)

with the covariant derivatives, DM =
(
∂µ, Dα, D̄α̇

)
,

D =
∂

∂θ
− iσµθ̄

∂

∂xµ
, (3.2.10)

D̄ = − ∂

∂θ̄
+ iθσµ

∂

∂xµ
. (3.2.11)

The actual reason for the results in this paper to be only valid for N = 1 is the
property

θαθβ = −1

2

(
ε−1
)αβ

θθ̃ , (3.2.12)

θ̄α̇θ̄β̇ =
1

2

(
ε̄−1
)α̇β̇ ˜̄θθ̄ (3.2.13)

with the anti-symmetric 2× 2 matrices
(
ε−1
)αβ

and
(
ε̄−1
)α̇β̇

(cf. appendix A).
For the discussion of chiral and anti-chiral superfields it is convenient to use

chiral and anti-chiral coordinates, which are respectively defined by

x+
µ = xµ − iθσµθ̄ , (3.2.14)

x−
µ = xµ + iθσµθ̄ . (3.2.15)

The covariant derivatives for these coordinates are

D̄+ = − ∂

∂θ̄
, D+ =

∂

∂θ
− 2iσµθ̄

∂

∂x−µ
, (3.2.16)

D− =
∂

∂θ
, D̄− = − ∂

∂θ̄
+ 2iθσµ

∂

∂x+µ
. (3.2.17)

As we will see in the following chapters the correlation functions are expressed in
terms of the following intervals

xµ
īj

= xi−
µ − xj+µ − 2iθjσ

µθ̄i , (3.2.18)

θαij = θαi − θαj , (3.2.19)

θ̄α̇ij = θ̄α̇i − θ̄α̇j , (3.2.20)
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which transform homogeneously under superconformal transformations, as we will
see in the end of section 3.3.2

We define hermitian 2× 2 matrices – written with straight characters – for any
four-vector, vµ, as the contraction with Pauli matrices,

vαα̇ = vµσµαα̇ , (3.2.21)

ṽα̇α = vµσ̄α̇αµ . (3.2.22)

For the interval, xīj
µ, (cf. eq. (3.2.18)) the inverses of these matrices are

xīj
−1 =

x̃īj
xīj

2
, x̃−1

īj
=

xīj
xīj

2
. (3.2.23)

3.3 Superconformal symmetry

We define superconformal transformations, as coordinate transformations of super-
space, which change the infinitesimal supersymmetric length interval in eq. (3.2.8)
only by a local scale factor, Ω (z, g):

e2(z′) = Ω2 (z, g) e2(z) . (3.3.1)

This is satisfied by supersymmetric versions of the finite transformations known from
conformal symmetry (cf. [Par98]):

• Supertranslation:

x′µ = xµ + aµ + iασµθ̄ − iθσµᾱ , (3.3.2)

θ′ = θ + α , (3.3.3)

θ̄′ = θ̄ + ᾱ (3.3.4)

with aM = (aµ, α, ᾱ) ∈ R4|4.

• Superdilation:

x′µ = |τ |xµ , (3.3.5)

θ′ = τ
1
2 θ , (3.3.6)

θ̄′ = τ̄
1
2 θ̄ (3.3.7)

with τ
1
2 ∈ C.

• Super-Lorentz-transformations:

x′µ = (ew)µνx
ν , (3.3.8)

θ′ = θe
1
4
wµνσµσ̄ν , (3.3.9)

θ̄′ = θ̄e−
1
4
wµν σ̄µσν (3.3.10)

with the tensor exponential defined by its series expansion and the antisym-
metric tensor wµν = −wνµ, w ∈ so(1, 3).

2The spinoral indices will be omitted in most of the paper and a tilde is used to indicate lower
indices of the spinors.
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• Special superconformal transformation3:

x′+
µ

=
xµ+ − b

µ
−x

2
+ + 2βσµx̃+θ̃

1 + x2
+b

2
− − 2xν+b−ν − 8ββ̃θθ̃ − 4βθ̃ + 4βb−x̃+θ̃

, (3.3.11)

θ′ =
θ − θx+b̃− + 4βθθ̃ − i ˜̄βx̃+ − i ˜̄βb̃−x

2
+ + 4iβθx+β̄

1 + x2
+b

2
− − 2xν+b−ν − 8ββ̃θθ̃ − 4βθ̃ + 4βb−x̃+θ̃

, (3.3.12)

x′−
µ

=
xµ− − b

µ
+x

2
− + 2˜̄θx̃+σ

µβ̄

1 + x2
−b

2
+ − 2xν−b+ν − 8˜̄θθ̄ ˜̄ββ̄ − 4˜̄θβ̄ + 4˜̄θx̃−b+β̄

, (3.3.13)

θ̄′ =
θ̄ − b̃+x−θ̄ + 4β̄ ˜̄θθ̄ − ix̃−β̃ − ib̃+β̃x

2
− + 4iβ̄βx−θ̄

1 + x2
−b

2
+ − 2xν−b+ν − 8˜̄θθ̄ ˜̄ββ̄ − 4˜̄θβ̄ + 4˜̄θx̃−b+β̄

(3.3.14)

with bM =
(
bµ, β, β̄

)
∈ R4|4. Here we used the same notation as in eqns.

(3.2.14) and (3.2.15): b±
µ = bµ∓ iβσµβ̄. The straight characters denote again

the matrix resulting from the contraction with the Pauli matrices (cf. eqns.
(3.2.21) and (3.2.22)).

The special superconformal transformations are written here for chiral and anti-
chiral coordinates, because the equations for x+ and x− are shorter than the one
for x. The latter, of course, is just half of the sum of the former two and so it is for
their transformations.

The form of the transformations of x+ and x− also gives a glimpse on a property,
which may be taken as a defining property for continuous superconformal transfor-
mations, as it was done in [BK95]. The superconformal transformation of chiral
coordinates are functions of chiral coordinates again and the corresponding state-
ment is true for anti-chiral coordinates.

The superdilations can be split into a conformal contribution, the dilations, and
a contribution of supersymmetry, the R-symmetry, if we define τ

1
2 = λ

1
2 ei 1

2
Ω with

λ ∈ R+ and the phase Ω ∈ R (eiΩ ∈ S1):

• Dilation:

x′µ = λxµ , (3.3.15)

θ′ = λ
1
2 θ , (3.3.16)

θ̄′ = λ
1
2 θ̄ . (3.3.17)

• R-symmetry:

x′µ = xµ , (3.3.18)

θ′ = ei 1
2

Ωθ , (3.3.19)

θ̄′ = e−i 1
2

Ωθ̄ . (3.3.20)

3In [Par98] the expressions in the derivation of this transformation suffer from contradicting
signs. The correct formulas appear in [Par99].
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Once the generator of infinitesimal superconformal transformations is found, one
is quickly led to the superconformal algebra. In [Par99] this generator is calculated
and for N = 1 that result gets:

L = hµ∂µ + ζD + ˜̄ζ ˜̄D , (3.3.21)

where
(
hµ, ζ, ζ̄

)
has the components

hµ =
1

2
tr
(
σµh̃

)
, (3.3.22)

ζ = −i
1

8
D̄h̃ , (3.3.23)

˜̄ζ = i
1

8
D̃h (3.3.24)

with

h̃ = σµx̃+bx̃− − x̃−

(
1

4
wµνσ

µσ̄ν − 1

2
λ− 4θβ̃

)
(

1

4
wµν σ̄

µσν +
1

2
λ+ 4 ˜̄βθ̄

)
x̃+ + 2Ωθ̄θ + 4i

(
ᾱθ − θ̄α

)
+ ã . (3.3.25)

The commutator of two copies of this generator is, of course, again of this form, as
the algebra has to close:

[L1,L2] = L3 (3.3.26)

This contains the information, how the coefficients for an infinitesimal transforma-
tion looks like, which results from two successive arbitrary infinitesimal supercon-
formal transformations. In app. B we see, how this also gives us the superconformal
algebra in terms of its basic generators and state the whole algebra.

Furthermore the same information is contained in the matrix commutator with
(4|1) × (4|1) supermatrices, which means, that it has a block structure with 4 × 4
and 1× 1 real components on the diagonal and the rest Graßmann components, (cf.
[Par99]) of the following kind:

M =


1
4wµν σ̄

µσν + 1
2λ+ i1

6Ω −iã 2ᾱ

−ib 1
4wµνσ

µσ̄ν − 1
2λ+ i1

6Ω 2β̃

2 ˜̄β 2α i2
3Ω

 . (3.3.27)

This is a general supertraceless supermatrix with

BMB−1 = −M † (3.3.28)

and

B =

 0 1 0
1 0 0
0 0 −1

 . (3.3.29)

But most important is, that these supermatrices allow us to identify the super-
conformal group with the (16|8) dimensional group SU(2, 2|1) generated by these
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supermatrices, as demonstrated in [Par99]. As we have done already above, left of
the vertical dash real components and on the other side Graßmann components are
considered. In summary we have the following infinitesimal parameters. Two four-
vectors, aµ and bµ, two real parameters, λ and Ω, and the six Lorentz parameters,
ω ∈ so(1, 3), are in total 16 real parameters and thus one more – the R-symmetry –
than the conformal transformations in four dimensions have. The Graßmann spinors
α, ᾱ, β and β̄ have eight components.

We continue in the line of [Par99], when we define the following element of the
supermatrix representation of the superconformal group,

G(g) = e−M(g) , (3.3.30)

with an element, g, of the superconformal group.

A subgroup is the one of the supertranslations, of which we have already seen
a representation in eq. (3.2.1) and thus know, that its parameters form superspace
by definition. The restriction of the representation in eq. (3.3.30) to this subgroup
is given by parameters (aµ, α, ᾱ) and all other parameters are zero. If we identify
these nonzero parameters again with superspace and calculate the exponential, we
get the following form of elements of this representation of the supertranslational
group:

GT (z) =

 1l2×2 −ix̃+ 2θ̄
0 1l2×2 0
0 2θ 1

 . (3.3.31)

There is a unique decomposition of any element G(g) into GT (bµ, β, β̄)G0(g).

This enables us to get any point in superspace represented by a (2|1) × (4|1)
supermatrix from the origin of superspace:

Z(z) = GT (z)Z0 = GT (z)

 0 0
1l2×2 0

0 1

 =

 −ix̃+ 2θ̄
1l2×2 0
2θ 1

 . (3.3.32)

Under a superconformal transformation, g : z → z′, GT is mapped to GT (z′),

GT (z′) = G(g)−1GT (z)G0(z, g) , (3.3.33)

with a G(g) as in eq. (3.3.30) and a suitable element G0(z, g) ∈ G0. This can be
easily verified for an infinitesimal transformation, where

GT (z′) = (1 +M)GT (z)(1− M̂0) ⇒ δGT (z) = MGT (z)−GT (z)M̂0 (3.3.34)

with G(g) = e−M , G0(z, g) = e−M̂0(z,g),

M̂0(z, g) =


ŵ(z) + 1

2 λ̂(z) + i1
6 Ω̂(z) 0 0

−ib̂(z) ˜̂w(z)− 1
2 λ̂(z) + i1

6 Ω̂(z) 2
˜̂
β

2
˜̂̄
β 0 i1

3 Ω̂

 , (3.3.35)
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where the parameters are functions of z:

ŵ(z) =
1

4
wµν σ̄

µσν + 4 ˜̄βθ̄ + x̃−b− 1

2
tr
(

4 ˜̄βθ̄ + x̃−b
)

1 , (3.3.36)

˜̂w(z) = −ŵ(z)† , (3.3.37)

λ̂(z) =
1

4
∂µh

µ(z) , (3.3.38)

Ω̂(z) = Ω + 6θbθ̄ + 6i
(
θβ̃ + ˜̄βθ̄

)
, (3.3.39)

˜̂
β(z) = −i

1

4
σµ∂µζ̄

˜̂̄
β(z) =

˜̂
β(z)† (3.3.40)

with hµ and ζ̄ from eqns. (3.3.22) and (3.3.24), respectively.
Now we can write the transformation of Z(z) in eq. (3.3.32), as

δZ(z) = MZ(z)− Z(z)H(z, g) , (3.3.41)

where H(z) is defined as

M̂0(z, g)Z0 = Z0H(z, g) . (3.3.42)

We also need the following conjugate of Z(z) to get in the end the representation
of the superconformal group, which acts on R4|4:

Z̄(z) = Z̄0GZ(z)−1 =

(
1l2×2 0 0

0 0 1

)
GZ(z)−1 =

(
1l2×2 ix̃− −2θ̄

0 −2θ 1

)
.

(3.3.43)
It changes under infinitesimal superconformal transformations as

δZ̄(z) = H̄(z, g)Z̄(z)− Z̄(z)M (3.3.44)

with H(z) given by
Z̄0M̂0(z, g) = H̄(z, g)Z̄0 . (3.3.45)

We now get back to finite transformations of Z(z) and Z̄(z). We first note, that
for continuous finite transformations, z → z′, we can find a path zt with t ∈ [0, 1] in
superspace, such that z0 = z and z1 = z′ and infinitesimally separated points on this
track are related to each other by an infinitesimal superconformal transformation.
For any function of superspace this can be formulated as a differential equation using
the generator of infinitesimal transformations, L from eq. (3.3.21):

∂

∂t
f(zt) = Lf(zt) . (3.3.46)

If we take this function to be Z(z), we get

∂

∂t
Z(zt) = MZ(zt)− Z(zt)H(zt, g) , (3.3.47)

where we take the behaviour of the function Z under infinitesimal transformations
directly from equation (3.3.41).
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This is solved by
Z(zt) = etMZ(z)K(z, t, g) (3.3.48)

with the appropriate K(z, t, g), which is the unit matrix for t = 0 and solves

∂

∂t
K(z, t, g) = −K(z, t, g)H(zt, g) . (3.3.49)

We are interested here in the finite transformation given by t = 1, just write
K(z, g) = K(z, 1, g) and insert G(g) again:

Z(z′) = G(g)−1Z(z)K(z, g) . (3.3.50)

In comparison to eq. (3.3.33) we find, that the form of K(z, g) is given by the
part of the matrix M̂0(z, g) in eq. (3.3.35):

G0(z, g)Z0 = e−M0(z,g)Z0 = Z0K(z, g) ⇒ K(z, g) =

(
L(z+, g) 2Σ(z, g)

0 u(z, g)

)
.

(3.3.51)
As L(z+, g) results only from the component of M0 in the middle, it can be easily
shown, that it only depends on chiral coordinates, z+ = (x+, θ). Furthermore we
can, of course, split it into its determinant and an element L̂(z+, g) ∈ SL(2,C):

Ω+(z+, g) = det (L(z+, g)) , (3.3.52)

L̂(z+, g) =
L(z+, g)

Ω+(z+, g)
1
2

. (3.3.53)

Because of the triangular structure of K(z, g) and also of the lower right 2× 2 block
in M0(z, g), we can directly get u(z, g). It is just the exponent of the negative lower
right component of M0(z, g):

u(z, g) = e−i 1
3

Ω̂(z,g) = Υ(z, g)−
1
3 ∈ U(1) , (3.3.54)

where we also introduced Υ(z, g), which is frequently used in the following.
Analogously we get the transformation of Z̄(z):

Z̄(z′) = K̄(z, g)Z̄(z)G(g) (3.3.55)

with

K̄(z, g) =

(
L̄(z−, g) 0

2Σ̄(z, g) u−1(z, g)

)
, (3.3.56)

Ω−(z−, g) = det
(
L̄(z−, g)

)
= Ω+(z+, g)∗ , (3.3.57)

ˆ̄L(z−, g) =
L̄(z−, g)

Ω−(z−, g)
1
2

= L̂(z+, g)† ∈ SL(2,C) , (3.3.58)

Σ̄(z, g) = Σ(z, g)† . (3.3.59)

We also define for later use

Ω(z, g) =
√

Ω+(z+, g)Ω−(z−, g) . (3.3.60)
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These matrices K(z, g) and K̄(z, g) are the key to the construction of invariants
because they give the transformation rules for the superconformal intervals, out of
which the invariants are build. We see this point, if we take the product,

Z̄(z1)Z(z2) =

(
ix̃1̄2 −2θ̄12

−2θ12 1

)
(3.3.61)

with the intervals in eqns. (3.2.18)-(3.2.20). The superconformal transformation of
this product is given by eqns. (3.3.50) and (3.3.55):

Z̄(z′1)Z(z′2) = K̄(z1, g)Z̄(z1)Z(z2)K(z2, g) . (3.3.62)

This results in the following rules for the components of Z̄(z1)Z(z2):

x̃′1̄2 = L̄(z1−, g)x̃1̄2L(z2+, g) , (3.3.63)

θ′12 = −iΣ̄(z1, g)x̃1̄2L(z2+, g) + u−1(z1, g)θ12L(z2+, g) , (3.3.64)

θ̄′12 = −iL̄(z1−, g)x̃1̄2Σ(z2, g) + L̄(z1−, g)θ̄12u(z2, g) . (3.3.65)

The first line is one of the essential transformation rules, which we need in the next
chapter. For another one we first have to look at its inverse:(

x̃−1
1̄2

)′
= (L(z2+, g))−1 x̃−1

1̄2

(
L̄(z1−, g)

)−1
(3.3.66)

The product of this one with eq. (3.3.64) has the remarkable property, that it
transforms only with terms depending on z1:(

θ12x̃−1
1̄2

)′
= −iΣ̄(z1, g)L̄−1(z1−, g) + u−1(z1, g)θ12x̃−1

1̄2
L̄−1(z1−, g) . (3.3.67)

Of cause, we can find a similar expression for θ̄21 because of their relation by complex
conjugation. Here we can see this easily, if we swap the indices 1 and 2 in eqns.
(3.3.66) and (3.3.65) and take the product of the results:(

x̃−1
2̄1
θ̄21

)′
= −iL−1(z1+, g)Σ(z1, g) + L−1(z1+, g)x̃−1

2̄1
θ̄21u(z1, g) . (3.3.68)

These transformation properties lay the basis for the superconformal invariants,
which we discuss in the next chapter.

3.4 Supersymmetric and superconformal field represen-
tations

In this section we first take a look at some field representations of supersymmetry
alone and then see, how we proceed from these representations to the ones of the
superconformal algebra. They can be expressed as supermultiplets, which contain
several component fields living on Minkowski space. We restrict the discussion of
these multiplets to the scalar ones, which are also the starting point on the way to
scalar superconformal multiplets. Afterwards we use Graßmann variables to arrange
the component fields in a multiplet in one superfield living on superspace.
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3.4.1 Supersymmetry multiplets

The starting point is a complex scalar field, φ(xµ), which correspond to a represen-
tation of the Poincaré symmetry with spin 0. One can construct a representation of
supersymmetry from this field, if one applies the supersymmetry generators, Q and
Q̄, to it. The results have to be spinoral and can be defined as a factor times the
fields χ and χ̄:

[φ,Qα] = iχ̃α , (3.4.1)[
φ, Q̄α̇

]
= i ˜̄χα̇ . (3.4.2)

Note that χ and χ̄ are looked at as independent spinor fields here. Then one can
apply the supersymmetry operators to these two new spinoral fields and define new
fields again. But at this stage one has restrictions from the supersymmetry algebra.
For example, the anticommutator,

{χ̃α, Qβ} = {[φ,Qα] , Qβ} = 2iMαβ , (3.4.3)

appears in the following graded Jacobi identity, which has only two term because Q
anticommutes with itself:

{[φ,Qα] , Qβ}+ {[φ,Qβ] , Qα} = 0 . (3.4.4)

The consequence is, that
Mαβ = εαβM . (3.4.5)

In this way one can continue and finds, that the multiplet has a finite number of
components, as the algebra leads to a closure of the supersymmetric transformations
within the component fields. Thus all (anti-)commutators of the component fields
with the supersymmetry generators are finally given by these component fields or
derivatives of them. For the chiral multiplet – a restriction of this general multiplet,
which we discuss below – all steps are given, for example, in [Soh85]. The infinitesi-
mal supersymmetric transformations can be expressed with the help of infinitesimal
spinoral entities, η and η̄:

δf = −i
[
f, ηQ+ Q̄η̄

]
, (3.4.6)

where f stands for any component fields. Thus we get the following infinitesimal
variations under supersymmetry transformations:

δφ = ηχ̃+ ˜̄χη̄ , (3.4.7)

δχ = −2ηM − i˜̄ησ̄µ∂µφ− ˜̄ηṼ , (3.4.8)

δχ̄ = 2η̄N + iσ̄µη̃∂µφ− Ṽη̃ , (3.4.9)

δM = ˜̄λη̄ − 1

2
i∂µχσ

µη̄ , (3.4.10)

δN = ηλ̃+
1

2
iησµ∂µχ̄ , (3.4.11)

δVµ = ησµλ̄+ λσµη̄ +
1

2
iησν σ̄µ∂

νχ̃− 1

2
i∂ν ˜̄χσ̄µσν η̄ , (3.4.12)
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δλ = −2ηD − i˜̄ησ̄µ∂µN −
1

2
iησν σ̄µ∂νVµ , (3.4.13)

δλ̄ = 2η̄D + iσ̄µη̃∂µM +
1

2
iσ̄µσν η̄∂νVµ , (3.4.14)

δD =
1

2
i∂µ
(
ησµλ̄− λσµη̄

)
. (3.4.15)

This is the general multiplet
(
φ, χα, χ̄α̇,M,N, Vµ, λ

α, λ̄α̇, D
)
. It has four complex

(pseudo-)scalars4, one complex vector field and so sixteen bosonic components in
total and four complex Weyl spinors, so that the fermionic components have also
altogether sixteen real degrees of freedom. This equality of the number of bosonic
and fermionic field components is generally fulfilled.

We get smaller multiplets by suitable restriction on this general one. One of
them is just the restriction to real bosonic components and in consequence χ̄ = χ†

and λ̄ = λ†.
In this thesis we will concentrate on the chiral multiplet, for which we restrict

the transformation properties. We demand, that[
φ, Q̄α̇

]
= 0 . (3.4.16)

This leads to the smallest possible multiplet in four dimensions. It contains only
three fields: two complex scalars and a Weyl spinor. φ has to be complex because
otherwise the conjugation of eq. (3.4.16) and (3.1.1) shows, that φ is constant.

We define the Weyl spinor a bit different to fit a commonly used normalization
for chiral fields:

[φ,Qα] = i
√

2ψ̃α . (3.4.17)

This way one splits the factor two in eq. (3.4.3) into two parts, as we evaluate the
algebra and define F to get

{ψα, Qβ} = i
√

2εαβF . (3.4.18)

Then the infinitesimal transformations of the chiral multiplet, (φ, ψ,m), are given
by

δφ =
√

2ηψ̃ , (3.4.19)

δψ = −i
√

2˜̄ησ̄µ∂µφ+
√

2ηm , (3.4.20)

δm = −i
√

2∂µψσ
µη̄ . (3.4.21)

Chiral supermultiplets are essential for the supersymmetric extension of the stan-
dard model. In the standard model left-handed and right-handed components of
fermions have different gauge transformations. So in a minimal supersymmetric ex-
tension they have to have different spin 0 superpartner and thus be contained in
different multiplets. Chiral multiplets contain only one Weyl fermion, which can be
either the right- or left-handed components. Consequently all fundamental fermions

4These transformation properties are perhaps clearer in four component notation (e.g. [Soh85])
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in the Minimal Supersymmetric extension of the Standard Model (MSSM) are con-
tained in chiral multiplets (cf. e.g. [Sha03]).

Alternative to the definition of the chiral multiplet by the restriction in eq.
(3.4.16) one can demand the commutator with Q to vanish. This condition is also
fulfilled by the complex conjugate of φ. Following this thought we call the complex
field in the following commutator φ∗:

[φ∗, Qα] = 0 . (3.4.22)

This defines the antichiral multiplet, which has the following supersymmetric trans-
formation properties:

δφ∗ =
√

2 ˜̄ψη̄ , (3.4.23)

δψ̄ = i
√

2ησµ∂µφ
∗ +
√

2η̄m∗ , (3.4.24)

δm∗ = i
√

2ησµ∂µψ̄ . (3.4.25)

3.4.2 Superconformal multiplets

So far we have discussed multiplets on the basis of the super-Poincaré algebra. As
this is a subalgebra of the superconformal algebra, we proceed from the general
supersymmetric multiplets to the general superconformal multiplets applying the
additional symmetry. If we look at the superconformal algebra given in appendix B,
we find, that the key is the action of the special superconformal generators Kµ, S and
S̄, where the latter two are given as the commutator of Kµ and the supersymmetry
generators Q and Q̄.

While Wigner’s little group method for ordinary conformal symmetry views mo-
mentum space (cf. [Wig39]), we look at the little group here at the origin of position
space. The little group in the superconformal case contains the Lorentz transforma-
tions, dilations, special superconformal and R-symmetry transformations. Moreover
there are further restrictions – in contrast to conformal symmetry – from the commu-
tators of the special superconformal generator and the supersymmetry generators.

As mentioned above, the general supersymmetry multiplet in eqns. (3.4.7)–
(3.4.15) is the starting piont. We do not compute the whole multiplet here, as this
would be too lengthy and not needed, as we only discuss in the following the chiral
and anti-chiral multiplets. The following steps lead to the general superconformal
multiplet:

• It is evaluated at xµ = 0 and we focus first on the action of the little group
on φ, as the other component fields result form the repeated application of
supersymmetry transformations on this field. We have the commutators,

[φ(0), D] = iηφ(0) , (3.4.26)

[φ(0), R] = iκφ(0) , (3.4.27)

[φ(0),Mµν ] = Σµνφ(0) , (3.4.28)

[φ(0),Kµ] = 0 , (3.4.29)
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The last commutator states a result already here, which follows from eq.
(3.4.40) below. The algebraic relations of the generators determine those of
the representations η, κ and Σµν of the dilations, the R-symmetry and the
Lorentz transformations, respectively. Taking the last one as irreducible, the
other two have to be constants, as we expect for the scaling dimension, η, the
R-charge, κ.

• The action of the little group generators on the other component fields at
the origin can be calculated with the supersymmetric transformations of the
supersymmetry multiplet at the origin, the superconformal algebra and Jacobi
identities. This also determines their quantum numbers η and κ in relation to
the ones of φ. For the component fields φ, χ, χ̄, M , N , Vµ, λ̄, λ, D have the
scaling dimensions η(φ) + ∆η, where ∆η is 0, 1/2, 1/2, 1, 1, 1, 3/2, 3/2, 2,
respectively, and the R-charges κ(φ)+∆κ, where ∆κ is 0, 1/2, −1/2, 1, −1, 0,
1/2, −1/2, 0,respectively. As the supersymmetry generators, Q and Q̄, have
R-charges 1/2 and −1/2, respectively (cf. eqns. (B.0.29) and (B.0.30)), the
repeated application of these generators cause the R-charges of the component
fields accordingly.

• On the component fields the matrix representation of Mµν on the rest of the
multiplet has to be established. This can be done with the help of the Jacobi
identities with component fields f , Q resp. Q̄ and Mµν . This way one gets
from the representation on f to the representation of the higher component
field in the (anti-)commutators [f,Q} resp.

[
f, Q̄

}
. The fields φ, M and N

have the same Lorentz representation, Σµν ,

[φ(0),Mµν ] = Σµνφ(0) , (3.4.30)

[M(0),Mµν ] = ΣµνM(0) , (3.4.31)

[N(0),Mµν ] = ΣµνN(0) . (3.4.32)

The first two fermions turn out to transform with the following matrix repre-
sentation of the Lorentz transormations:

[χ(0),Mµν ] = = χ(0)

(
Σµν +

1

4
i (σµσ̄ν − σν σ̄µ)

)
, (3.4.33)

[χ̄(0),Mµν ] =

(
Σµν −

1

4
i (σ̄µσν − σ̄νσµ)

)
χ̄(0) . (3.4.34)

These are in general reducible, as they are the tensor product, Σ⊗(1/2, 0) and
Σ⊗(0, 1/2), respectively, of the representation Σ with some parameters (j1, j2)
and the mentioned spinoral representations of the Lorentz algebra. Here the
representation of the bosonic fields above, Σµν , appears again, which depends
on the specific multiplet and is implicitly multiplied in this equation by a unit
matrix. The calculations, which lead to these commutators use some handy
identities given in the appendix in eqns. (A.1.13)–(A.1.17).

For the higher component fields the calculation of the Jacobi identities involves
also derivatives of component fields. We give an example for their Lorentz
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transformation calculated with the help of the commutator [Mµν , Pρ] (cf. eq.
(B.0.4)):

[∂ρφ,Mµν ] = Σµν∂ρ − ηµρ∂νφ− ηνρ∂µφ . (3.4.35)

As mentioned already we skip the rest, which we will not need for the further
discussion.

• The special superconformal generator, Kµ, is the last generator of the little
group of the point xµ = 0, for which we have to figure out its representation
on the component field. At this point we can already show, which fields may
appear in the commutators. The key is its commutator with the dilation
generator, D,

[Kµ, D] = −iKµ . (3.4.36)

The Jacobi identity of Kµ, D and an arbitrary component field at the origin,
f(0), leads to a condition on the scaling dimension, ηκµ(f), of the representa-
tion, κµ(f), of Kµ on the field, f ,

0 = [[Kµ, D] , f(0)] + [[D, f(0)] ,Kµ] + [[f(0),Kµ] , D] (3.4.37)

= −i [Kµ, f(0)] + iηf [f(0),Kµ]− [κµ(f), D] (3.4.38)

= κµ(f)
(
1− ηf + ηκµ(f)

)
(3.4.39)

⇒ ηκµ(f) = ηf − 1 . (3.4.40)

ηf is the scaling dimension of the field, f . The linearity of the transformation
only allows terms with component fields and their derivatives. The derivatives
lead to higher scaling dimensions. Thus there is no term, which can hold this
condition for the lower component fields, φ, χ and χ̄. Also M and N must
have a trivial representation of Kµ: Only φ has the right scaling dimension,
but cannot be put into a linear term, which is a four-vector.

• The (anti-)commutators of the component fields and the spinoral generators of
the special superconformal algebra, S and S̄, are necessary for the next step,
when we investigate the non-trivial commutators with Kµ. We state some of
them here. We use the vanishing commutators of Kµ, which we know from
the last step, in the Jacobi identity of φ, Kµ and Q resp. Q̄. One summand
contains the commutator of Kµ and Q resp. Q̄, which is essentially S̄ resp. S
(cf. (B.0.24)). The other two summands vanish, so that[

φ(0), S̄
]

= [φ(0), S] = 0 . (3.4.41)

From this we can climb the ladder with Q and Q̄ again to get the results
for the other components. Once more we look at the results with the fields
evaluated at the origin, which are a bit shorter and can be translated to other
coordinate points giving back the terms, which we save here. From suitable
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Jacobi identities of a component field, f , Q or Q̄ and S or S̄ it follows, that

{χ̄(0), S} =
{
χ(0), S̄

}
=
[
M(0), S̄

]
= [N(0), S] = 0 , (3.4.42)

{χ(0), S} = −2Γ−φ(0) ,
{
χ̄(0), S̄

}
= 2Γ̄+φ(0) , (3.4.43)

[M(0), S] = (Γ− − 2i) χ̃(0) ,
[
N(0), S̄

]
= − ˜̄χ(0)

(
Γ̄+ − 2i

)
,(3.4.44)

(3.4.45)

where

Γ± = iηφ −
1

4
(σµσ̄ν − σν σ̄µ) Σµν ± 3iκφ , (3.4.46)

Γ̄± = iηφ −
1

4
(σ̄µσν − σ̄νσµ) Σµν ± 3iκφ . (3.4.47)

For the other component fields we again need to consider the (anti-)commu-
tators with the derivatives of component fields. Jacobi identities of S resp. S̄,
Pµ and the component field lead to the results:

[∂µφ(0), S] = −σµ ¯χ(0) , (3.4.48)[
∂µφ(0), S̄

]
= χ(0)σµ , (3.4.49)

{∂µχ, S} = −2iΓ−∂µφ(0)− σµσ̄ν (iVν(0)− ∂νφ(0)) , (3.4.50)

{∂µχ̄(0), S} = 2iσµε̄N(0) , (3.4.51){
∂µχ(0), S̄

}
= 2iεσµM(0) , (3.4.52){

∂µχ̄(0), S̄
}

= 2iΓ̄+∂µφ(0)−
(
iVν(0) + ∂νφ(0)

)
σ̄νσµ . (3.4.53)

• At last we return to the special conformal generator, Kµ. Vρ is the lowest
component field, for which the commutator with this generator does not vanish.
It can now be easily calculated from the first part of eq. (3.4.43), because we
have

[
Q̄,Kµ

]
= −S̃σµ. Furthermore we need the vanishing commutators of

Kµ and χ and the non-vanishing commutator of Kµ and ∂νφ:

[∂νφ(0),Kµ] = −2Σµνφ(0)− 2iη ηµνφ(0) , (3.4.54)

where η is as above the scaling dimension of φ. With this we get

[Vν(0),Kµ] = (2iΣµν − 2η ηµν − i tr(Γ−σµσ̄ν))φ(0) . (3.4.55)

One can already see from the fields appearing in all these commutators and the
knowledge of the commutators of component fields and Q or Q̄, which we find
implicitly in eq. (3.4.7) et sqq., that this superconformal multiplet will close.

Here we want to look at the chiral and anti-chiral multiplets, which are defined
by the restrictions [

Q̄, φ
]

= 0 resp. [Q,φ∗] = 0 . (3.4.56)

This also leads to a relation between the scaling dimension and the R-charge for these
representations. For the chiral field we follow this from the vanishing commutator,

0 =
[{
Q̄, ˜̄S

}
, φ(0)

]
(3.4.57)

= −2i [D,φ(0)]− i (σ̄µσν − σ̄νσµ) [Mµν , φ]− 6i [R,φ(0)] , (3.4.58)
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with the help of eq. (B.0.27) and implicit unit matrices again. As this is zero for all
values of the indices, the second summand has to be zero separately from the first
and the third one. This restricts the possible Lorentz representations of φ. The first
and third summand give the relations

ηch = −3κch . (3.4.59)

Analogous to this, but with
[{
Q, S̃

}
, φ∗
]

we get the relation for anti-chiral multi-

plets,
ηa−ch = 3κa−ch . (3.4.60)

The values for scaling dimension and R-charge of a multiplet are defined here as
those of the lowest component field in it. We can finally give the superconfor-
mal transformations of the chiral multiplet analogously to the way we already gave
the supersymmetry transformations of the supersymmetric general multiplet in eq.
(3.4.7) et sqq.. Only three component fields are left and we also split the factor
2 from the anti-commutator

{
Q, Q̄

}
in two parts, as we have done for the chiral

supersymmetric multiplet above. For the chiral multiplet the commutators with Kµ

all vanish. So we have all transformations, which lead from one component field to
another one grouped in the following commutators, with which define

δscf(x) = −i
[
f(x), ηQ+ Q̄η̄ + ζS + S̄ζ̄

]
. (3.4.61)

Here we want the commutators of the fields at any point of Minkowski space and
not only the origin. The translation of the fields, f, is given by

eixµPµf(0)e−ixµPµ = f(x) . (3.4.62)

For the translation of a (anti-)commutator both operators in it are translated and
this way we get from all the (anti-)commutators with fields at the origin, which we
have calculated in this section, to the (anti-)commutators of the fields at x:

eixµPµ [f(0), O} e−ixµPµ =
[
f(x), eixµPµOe−ixµPµ

}
=

[
f(x),

∞∑
i=1

ii

i!
xµ1 . . . xµi [Pµ1 , [. . . , [Pµi , O]]]

}
.

(3.4.63)

But this is not much to do for eq. (3.4.61), as the commutator of the translation

generator and S resp. S̄ is just σµ
˜̄Q resp. −Q̃σµ. Here the sequence already

terminates because the commutator of the latter two with Pµ is zero. Thus we have

eixµPµ [f(0), ζS] e−ixµPµ = [f(x), ζS] +
[
f(x), ζσµ

˜̄Q
]
. (3.4.64)

eixµPµ
[
f(0), S̄ζ̄

]
e−ixµPµ =

[
f(x), S̄ζ̄

]
−
[
f(x), Q̃σµζ̄

]
, (3.4.65)

We now plug this into eq. (3.4.61) and get

δscf(x) = −i
([
f(x), ξQ+ Q̄ξ̄

]
+ eixµPµ

[
f(0), ζS + S̄ζ̄

]
e−ixµPµ

)
, (3.4.66)



3.4. SUSY AND SUPERCONFORMAL FIELD REPRESENTATIONS 33

where we defined

ξ = η − ˜̄ζσ̄µ , ξ̄ = η̄ + σ̄µζ̃ . (3.4.67)

In the end we find

δscφ =
√

2ξψ̃ , (3.4.68)

δscψ = −i
√

2˜̄ξσ̄µ∂µφ+
√

2ξm−
√

2ζΓ−φ , (3.4.69)

δscm = −i
√

2∂µψσ
µξ̄ −

√
2ζ (Γ− − 2i) ψ̃ , (3.4.70)

with Γ− given by eq. (3.4.46) and the mentioned different definitions for the chiral
fields in contrast to the general multiplet,

√
2ψ = χ and m =

√
2M .

Analogously we get to the anti-chiral multiplet writing φ∗ instead of φ to dis-
tinguish the lowest component field of chiral and anti-chiral multiplet and with√

2ψ̄ = χ̄ and m∗ =
√

2N :

δscφ
∗ =

√
2 ˜̄ψξ̄ , (3.4.71)

δscψ̄ = i
√

2ξσ̄µ∂µφ+
√

2ξ̄m∗ +
√

2Γ̄+ζ̄φ , (3.4.72)

δscm
∗ = i

√
2ξσµ∂µψ̄ −

√
2 ˜̄ψa

(
Γ̄+ − 2i

)
ζ̄ , (3.4.73)

with Γ̄+ given by eq. (3.4.47).

3.4.3 Superfields

We have found supersymmetric and superconformal field representations in the last
section. Given as multiplets they contain several fields, for which the transformation
rules have to be given. We see in this section, that they can be given in a more handy
form on superspace. These representations on superspace are called superfields and
can be given just by their indices, quantum numbers and the constraints, which
define them.

The general superfield is given by its expansion with respect to the Graßmann
variables, where the component fields of the general multiplet (cf. eqns. (3.4.7)–
(3.4.7)) appear as coefficient fields:

F (xµ, θ, θ̄) = φ(xµ) + θχ̃(xµ) + ˜̄θχ̄(xµ) + θθ̃M(xµ) + ˜̄θθ̄N(xµ) +
(
θσµθ̄

)
V µ

+θθ̃ ˜̄θλ̄(xµ) + ˜̄θθ̄θλ̃(xµ) + θθ̃ ˜̄θθ̄D(xµ) . (3.4.74)

Below we also discuss a representation of the generators of supersymmetry transfor-
mations on superspace, which gives back the transformation rules for the component
fields, when it is applied to this expansion. The supersymmetric case and supercon-
formal case differs in the respective representations of symmetry transformations on
superspace acting on this superfield.

This general superfield can now be restricted by conditions, which lead to simpler
superfields. The scalar chiral superfields, Φ, are defined by

D̄+Φ
(
xµ+, θ, θ̄

)
= 0 (3.4.75)
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and the scalar anti-chiral superfields, Φ̄, by

D−Φ̄
(
xµ−, θ, θ̄

)
= 0 . (3.4.76)

Here chiral and anti-chiral coordinates and the corresponding covariant derivatives
(eqns. (3.2.16) and (3.2.17)) are already used, which is very convenient, as these
conditions then simply mean, that chiral and anti-chiral fields do not depend on θ̄
and θ, respectively.

The constraints have the corresponding consequences on the expansion of the
superfields in Graßmann variables, θ and θ̄. As superfields are operator-valued
distributions on superspace, the coefficients of this expansion are operator-valued
distributions on Minkowski space – the coefficient fields – and form altogether a
representations on Minkowski space. These are the multiplets, which we discussed
in the last section, and we show this on the example of scalar chiral and anti-chiral
superfields in this section. Because of eqns. (3.4.75) and (3.4.76) their expansions
in θ and θ̄ using chiral resp. anti-chiral coordinates are

Φ
(
xµ+, θ

)
= φ

(
xµ+
)

+
√

2 θψ̃
(
xµ+
)

+ θθ̃ m
(
xµ+
)
, (3.4.77)

Φ̄
(
xµ−, θ̄

)
= φ∗

(
xµ−
)
−
√

2 ˜̄θψ̄
(
xµ−
)
− ˜̄θθ̄ m∗

(
xµ−
)
. (3.4.78)

If we change coordinates to Minkowski space, the expansion gets longer, as the
coefficient fields, f , are each expanded again,

f
(
xµ+
)

= f (xµ)− iθσν θ̄∂
νf (xµ)− 1

4
θθ̃ ˜̄θθ̄∂ν∂

νf (xµ) , (3.4.79)

f
(
xµ−
)

= f (xµ) + iθσν θ̄∂
νf (xµ)− 1

4
θθ̃ ˜̄θθ̄∂ν∂

νf (xµ) . (3.4.80)

And so we have

Φ
(
xµ, θ, θ̄

)
= φ (xµ) +

√
2 θψ̃ (xµ) + θθ̃ m(xµ)− iθσν θ̄∂

νφ (xµ) (3.4.81)

+
i√
2
θθ̃ ∂νψ(xµ)σν θ̄ − 1

4
θθ̃ ˜̄θθ̄∂ν∂

νφ (xµ) , (3.4.82)

Φ̄
(
xµ, θ, θ̄

)
= φ∗

(
xµ−
)
−
√

2 ˜̄θψ̄
(
xµ−
)
− ˜̄θθ̄ m∗

(
xµ−
)

+ iθσν θ̄∂
νφ∗ (xµ)(3.4.83)

+
i√
2

˜̄θθ̄ θσν∂νψ̄(xµ)− 1

4
θθ̃ ˜̄θθ̄∂ν∂

νφ (xµ) . (3.4.84)

We can represent the supersymmetry algebra and the superconformal algebra as
differential operators on functions on superspace. For the supersymmetry algebra
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these operators acting on F
(
xµ, θ, θ̄

)
are defined by

[F, Pµ] = PµF = −i∂µF , (3.4.85)

[F,Q] = QF =

(
i
∂

∂θ
− σµθ̄∂µ

)
F ; , (3.4.86)

[
F, Q̄

]
= Q̄F =

(
i
∂

∂θ̄
− θσµ∂µ

)
F , (3.4.87)

[F,Mµν ] = MµνF = −i

(
xµ∂ν − xν∂µ +

1

4
θ (σµσ̄ν − σµσ̄ν)

∂

∂θ

−1

4

[
(σ̄µσν − σ̄µσν) θ̄

]
α̇

∂

∂θ̄α̇

)
F . (3.4.88)

The infinitesimal supersymmetry transformations of the chiral and the anti-chiral
multiplets, which we have seen in eqns. (3.4.19)–(3.4.21) and (3.4.23)–(3.4.25), can
be extracted from the superfields with the operator, −i

(
ηQ− Q̄η̄

)
:

δΦ
(
xµ, θ, θ̄

)
= −i

(
ηQ− Q̄η̄

)
Φ
(
xµ, θ, θ̄

)
, (3.4.89)

δΦ̄
(
xµ, θ, θ̄

)
= −i

(
ηQ− Q̄η̄

)
Φ̄
(
xµ, θ, θ̄

)
. (3.4.90)

For the superconformal transformations of the superfields, we get back to the
discussion of superconformal transformations in section 3.3. Following the discussion
of [Par99] it is enough to choose for a quasi-primary superfield, F

(
xµ, θ, θ̄

)
, which

transforms as(
xµ, θ, θ̄

) g→
(
xµ′, θ′, θ̄′

)
F ′
(
xµ′, θ′, θ̄′

)
= F

(
xµ, θ, θ̄

)
D
(
xµ, θ, θ̄; g

)
, (3.4.91)

a representation, D
(
xµ, θ, θ̄; g

)
, of the subgroup of the stability group at z = 0,

SL (2,C) × U (1) × D. This subgroup is generated by the elements L̂(z+, g) from
eq. (3.3.53), Υ(z, g) from eq. (3.3.54) and Ω(z, g) from eq. (3.3.60) of the respective
factors. These go back to Lorentz transformation, dilation and R-symmetry, but
include in their definition all parameters of superconformal transformations because
of the integration.

For scalar superfields the SL (2,C)-representation is trivial, as it has no (spinoral)
indices. The rest is in this case

D
(
xµ, θ, θ̄; g

)
= Ω(z, g)−ηΥ(z, g)−κ . (3.4.92)

In the case of chiral and anti-chiral superfields one finds, that the relation between
η and κ leads to the following transformation rules,

Φ′
(
xµ+
′
, θ′
)

= Ω+(z+, g)−ηΦ
(
xµ+, θ

)
, (3.4.93)

Φ̄′
(
xµ−
′
, θ̄′
)

= Ω−(z−, g)−ηΦ̄
(
xµ−, θ̄

)
, (3.4.94)

because

Ω±(z±, g) = Ω(z, g)Υ(z, g)∓
1
3 . (3.4.95)
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The infinitesimal transformations of these superfields are given by

δ̃Φ
(
xµ+, θ

)
= −

(
L+ ηλ̂(z)− i

3
ηΩ̂(z)

)
Φ
(
xµ+, θ

)
, (3.4.96)

δ̃Φ̄
(
xµ−, θ̄

)
= −

(
L+ ηλ̂(z) +

i

3
ηΩ̂(z)

)
Φ̄
(
xµ−, θ̄

)
, (3.4.97)

where we have L from eq. (3.3.21). The sums of the functions of z, which appear
in these two expressions, depend only on z+ and z−, respectively.

If the functions are inserted and all parameters of the superconformal transfor-
mations except ε, ε̄, β and β̄ are set to zero, one can compare this with the results
from eqns. (3.4.68)–(3.4.70) and (3.4.71)–(3.4.73), which only contain the transfor-
mations, which relate different component fields of the multiplets. The two versions
differ by a factor of i, which is convention, and in the version in this section the
lowest component fields φ and φ∗ are scalar fields.



Chapter 4

Invariants

Correlation functions in conformal field theories are the product of two factors. One
factor is a conformally invariant function, which includes all their degrees of freedom,
i.e. all model specific content. The other one establishes the correct transformation
properties of the contained fields. Thus the knowledge about conformal invariants n
points lays the basis for all further considerations on n-point conformal correlation
functions.

For superconformal field theory the superspace formalism (sections 3.2 and 3.4.3)
allows to merge all n-point correlation functions of component fields of a supermul-
tiplet into one n-point function of the corresponding superfields. While the former
correlation functions depend on normal space-time, the latter are functions of n
points of superspace. Analogous to the conformal case the degrees of freedom of
these superconformal correlation functions are contained in a function of supercon-
formal invariants.

Therefore we construct all superconformal invariants of three and four points
of superspace in this chapter and discuss their properties. While there is no two
point invariant just as for conformal symmetry on Minkowski space, the three point
invariants are novelties concerning this comparison.

In this analysis invariant functions are grouped into fully invariant ones (or
full invariants), which are invariant under the full superconformal group, which we
discussed in section 3.3, and partially invariant ones (or partial invariants) without
the R-symmetry, as superconformal symmetry may also be defined without this part.
The focus lies on the full invariants, as in chapter 5 we discuss almost exclusively
correlation function with vanishing R-charge, which depend only on them.

All possible fully invariant functions of three points are functions of just one
invariant, which is nilpotent and is our choice in section 4.1. There are also two
partial invariants of three points.

In sections 4.2 and 4.3 the discussion of four-point invariants is much more
intricate. There are non-nilpotent and nilpotent invariants. Every partial invariants,
which is not R-symmetric and thus not a full invariant, is nilpotent.

Among the full invariants we choose a set, with which all fully invariant functions
of four points of superspace can be expressed. This set contains two non-nilpotent
and eight nilpotent invariants. We illuminate some properties of the invariants in

37



38 CHAPTER 4. INVARIANTS

this set, which are crucial for the further discussion. All possible monomials of
the nilpotent invariants are constructed and a subset of them is chosen to provide
a unique expansion of arbitrary fully invariant functions with respect to nilpotent
invariants. The coefficients of this expansion are functions of the two selected non-
nilpotent invariants.

We also give some expansions of invariants, which we encounter, but are not in
the chosen set. Furthermore we go on to prepare for the next chapter introducing
set of four nilpotent invariants, which appear in the form of the four-point function,
which forms theorem 5.1. Partial invariants of four-points can be found in appendix
C.4.

4.1 Three-point invariants

The reason for the existence of superconformal three point invariants is the interval
in (3.2.18), which is not symmetric under exchange of its indices. Therefore there
are six different intervals xīj for i 6= j ∈ {1, 2, 3}.

They transform homogeneously according to eq. (3.3.63). If we now define the
following two functions of three points, given once with contravariant and once with
covariant indices,

X̃1+ = −x1̄3
−1x2̄3x2̄1

−1 , X1+ = −x̃−1
2̄1

x̃2̄3x̃−1
1̄3

, (4.1.1)

X̃1− = x1̄2
−1x3̄2x3̄1

−1 , X1− = x̃−1
3̄1

x̃3̄2x̃−1
1̄2

, (4.1.2)

they both have the same properties under superconformal transformations:

X1±
′ = (L(z1+, g))−1 X1±

(
L̄(z1−, g)

)−1
(4.1.3)

= Ω (z1, g)−1
(
L̂(z1+, g)

)−1
X1±

(
ˆ̄L(z1−, g)

)−1
. (4.1.4)

For the second part we used equations (3.3.53), (3.3.58) and (3.3.60).
With the squares of the four-vectors corresponding to X̃1+ and X̃1−

X2
1+ =

x2
2̄3

x2
2̄1
x2

1̄3

, X2
1− =

x2
3̄2

x2
3̄1
x2

1̄2

, (4.1.5)

which transform as
X2

1±
′
= Ω (z1, g)−2X2

1± , (4.1.6)

it is obvious, that the quotient of these is invariant under superconformal transfor-
mations including R-symmetry and thus is a full invariant:

J1 =
X2

1+

X2
1−

=
x2

2̄3
x2

3̄1
x2

1̄2

x2
3̄2
x2

1̄3
x2

2̄1

. (4.1.7)

This invariant function of three points has the constant 1 as leading term, because
the squares of intervals, x2

īj
, become symmetric in their indices, if the Graßmann

variables are set to zero.
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We substract this leading constant and define the following nilpotent three point
invariant

I3PF = J1 − 1 . (4.1.8)

This is more convenient for the expression of the three point function later on,
because the third power of I3PF already vanishes and so a power series with respect
to this invariant terminates after second order.

That the degree of I3PF is three, can be more easily seen, if it is written in
another way. In order to do so, we define two Graßmann spinors,

Θ1 = i
(

˜̄θ21x2̄1
−1 − ˜̄θ31x3̄1

−1
)
, (4.1.9)

Θ̄1 = i
(

x1̄3
−1θ̃13 − x1̄2

−1θ̃12

)
. (4.1.10)

Lowering the indices we see with eqns. (3.3.67), (3.3.68), (3.3.53), (3.3.58) and
(3.3.54), that they transform as

Θ̃′1 = (Ω+(z1+, g))−
1
2 (Υ(z1, g))−

1
3 L̂−1(z1, g)Θ̃1 , (4.1.11)

˜̄Θ1

′
= (Ω−(z1−, g))−

1
2 (Υ(z1, g))

1
3 ˜̄Θ1

ˆ̄L−1(z1, g) . (4.1.12)

They give a relation between X̃1+ and X̃1−:

X̃1− = X̃1+ − 4iΘ̄1Θ1 . (4.1.13)

If we plug this into eq. (4.1.7), expand the denominator with the help of eq. (A.2.10)
and substract 1 again, we find the new expression for I3PF ,

I3PF = −4i
Θ1X1+Θ̄1

X2
1+

. (4.1.14)

In the construction of J1 we first defined X1±. In their superconformal transfor-
mations the terms from the transformation of the points z2 and z3 cancel. This, of
course, can also be done with the indices cyclically permuted, which would lead to
analogously defined X2± and X3±. The ratios of all three pairs, Xi±

2, are equal to
J1, which is not effected by the permutation of the indices. Another possibility to
construct a three point invariant takes the trace of X1+X̃1−, which is nothing more
than the product of the corresponding four-vectors:

−
tr
(
X1+X̃1−

)
2
√
X1+

2X1−
2

=
X1+

µX1−µ√
X1+

2X1−
2
. (4.1.15)

This can also be expressed in terms of I3PF :

X1+
µX1−µ√

X1+
2X1−

2
= 1− 1

2
I3PF . (4.1.16)

It turns out, that there are no ways to construct fully invariant functions of
three points of superspace, which are not functions of I3PF . They would still have
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to contain only X1+, Θ1 and Θ̄1 (eqns. (4.1.1), (4.1.9) and (4.1.10)) and R-symmetry
demands the pairing of the latter two.

But if we skip R-symmetry, two other possibilities open up leading to partial
scalar invariants, which we need for the expressions of three-point functions of only
chiral and of only anti-chiral superfields.

The contraction of the spinors from eqns. (4.1.9) and (4.1.10) with themselves
transform under superconformal symmetry already quite simply:

Θ′1Θ̃′1 = (Ω(z1, g))−1 (Υ(z1, g))−1 Θ1Θ̃1 , (4.1.17)

˜̄Θ′1Θ̄′1 = (Ω(z1, g))−1 Υ(z1, g) ˜̄Θ1Θ̄1 . (4.1.18)

With a look on the transformation properties of X2
1+ in eq. (4.1.6) we can choose a

normalization, which eliminates the dependence of the superconformal transforma-
tions on the dilations and gives us two partial invariants:

Θ1Θ̃1√
X2

1+

,
˜̄Θ1Θ̄1√
X2

1+

. (4.1.19)

There is no difference in a possible choice replacing X2
1+ by X2

1− because of eq.
(4.1.13). The difference between these two contains Θ1 and Θ̄1, which vanishes in
these fractions due to their nilpotency.

The product of these two partial invariants is proportional to the square of I3PF

again.

4.2 Non-nilpotent four-point invariants

While the three-point invariants are nilpotent apart from leading constants, the
construction of four-point invariants has also to lead to at least two independent
non-nilpotent invariants. This can be said before the first calculation within super-
symmetry, because these invariants or functions of them have to become ordinary
conformal cross ratios, if the Grassmann variables are set to zero. We see, that we
only find full non-nilpotent invariants. In section 4.3 we discuss full nilpotent invari-
ants and leave partial R-symmetry violating nilpotent invariants to the appendix
C.4.

At first we need to clarify, what we understand as independent non-nilpotent
invariants. We regard a set of non-nilpotent invariants to be independent, if there is
no function of the invariants in this set and any nilpotent invariants, which is iden-
tical zero. Equivalently one can say, that such a set is independent, if the contained
invariants with Grassmann variables set to zero are algebraically independent.

Thus there actually cannot be sets with more than two independent non-nilpotent
four-point invariants, because there are only two algebraically independent confor-
mal cross ratios.
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4.2.1 Cross ratios

In analogy to the conformal case cross ratios can be constructed. The intervals xµ
īj

transform homogeneously (eq. (3.3.63)) and their squares are only left with chiral
and anti-chiral factors from dilations:

x2
īj

′
= Ω− (zi−, g) Ω+ (zj+, g)x2

īj . (4.2.1)

With four point there is not only the possibility to cancel these factors in the trans-
formations in ratios like the three point invariant J1, but they also drop out in the
following cross ratios:

x2
r̄sx

2
t̄u

x2
r̄ux

2
t̄s

. (4.2.2)

They reduce for vanishing Graßmann variables to the ordinary conformal cross ra-
tios. There are six different superconformal cross ratios and their inverses.

We define analogously to eqns. (4.1.1) and (4.1.2)

X̃1(i−1)+ = −x1̄4
−1xī4xī1

−1 , (4.2.3)

X1(i−1)+ = −x̃−1
ī1

x̃ī4x̃−1
1̄4

,

X̃1(i−1)− = x1̄i
−1x4̄ix4̄1

−1 , (4.2.4)

X1(i−1)− = x̃−1
4̄1

x̃4̄ix̃
−1
1̄i

,

i = 2, 3, and analoguosly to (4.1.5)

X2
1(i−1)+ =

x2
ī4

x2
ī1
x2

1̄4

, X2
1(i−1)− =

x2
4̄i

x2
4̄1
x2

1̄i

, (4.2.5)

with i = 2, 3. The cross ratios can be expressed in terms of the six X’s from eqns.
(4.1.5) and (4.2.5). Let us pick out two cross ratios:

I1 =
x2

1̄4
x2

3̄2

x2
1̄2
x2

3̄4

=
X1−

2

X1(2)+
2 , (4.2.6)

I2 =
x2

1̄4
x2

2̄3

x2
1̄3
x2

2̄4

=
X1+

2

X1(1)+
2 . (4.2.7)

One gets also the nilpotent invariant of three points – ignoring the added constant
1 – with the corresponding indices replaced:

J1(i) =
X2

1(i)+

X2
1(i)−

, (4.2.8)

with i = 1, 2. These relate the cross ratios with each other, so that we can express
the other four cross ratios in terms of the two in eqns. (4.2.6) and (4.2.7) and the
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J ’s:

I3 =
x2

3̄2
x2

4̄1

x2
3̄1
x2

4̄2

= J−1
1 J1(1)I2 , (4.2.9)

I4 =
x2

2̄4
x2

3̄1

x2
2̄1
x2

3̄4

= J1I1I−1
2 , (4.2.10)

I5 =
x2

2̄3
x2

4̄1

x2
2̄1
x2

4̄3

= J1J1(2)I1 , (4.2.11)

I6 =
x2

1̄3
x2

4̄2

x2
1̄2
x2

4̄3

= J1J
−1
1(1)J1(2)I1I−1

2 . (4.2.12)

There are no other non-nilpotent invariants, which cannot be expressed by I1,
I2 and nilpotent invariants, as we will see in the following paragraph.

4.2.2 Other non-nilpotent invariants

As we have seen, the construction of the invariants starts from a homogeneously
transforming interval, which is xīj .

There are many possibilities for combinations of the intervals xīj for 1 ≤ i, j ≤ 4,
which are invariant. Still they are built from basic variables, which result from the
elimination of the transformation terms.

The variables X1± and X1(i)± are already invariant under the transformations of
all points but z1. Non-nilpotent functions of four points with this property have to
be built with these variables and invariants. It is useful for the further calculations
to introduce a normalization,

X̂µ
1± =

X1±
µ(

X2
1(1)+X

2
1(1)−

) 1
4

, (4.2.13)

X̂µ
1(i)± =

X1(i)±
µ(

X2
1(1)+X

2
1(1)−

) 1
4

, (4.2.14)

with i = 1, 2. These are already vectors, which transform as(
X̂µ

1±

)′
= X̂ν

1±R̂
µ
ν (z, g) , (4.2.15)(

X̂µ
1(i)±

)′
= X̂ν

1(i)±R̂
µ
ν (z, g) , (4.2.16)

where

σνR̂µν (z, g) = L̂(z+, g)σµ
ˆ̄L(z−, g) . (4.2.17)

Hence any contraction of one of these vectors with another is a scalar non-nilpotent
invariant. However, we have seen in equation (4.1.13), that the difference between a
plus and a minus sign in the indices is only a nilpotent term. Thus the insertion of
this or the analogous equation into any of the invariants will give a relation between
two non-nilpotent invariants, in which their difference is a nilpotent invariant.
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To write down these relations explicitly we first need to introduce the spinors,

Θ̃1(i−1) = i
(
x̃−1

4̄1
θ̄41 − x̃−1

ī1
θ̄i1
)
, (4.2.18)

˜̄Θ1(i−1) = i
(
θ1ix̃

−1
1̄i
− θ14x̃−1

1̄4

)
, (4.2.19)

analogous to eqns. (4.1.9) and (4.1.10). Furthermore it is also here convenient to
introduce a normalization also for all these spinoral functions of three points:

Θ̂1 =
Θ1(

X2
1(1)+X

2
1(1)−

) 1
8

, (4.2.20)

ˆ̄Θ1 =
Θ̄1(

X2
1(1)+X

2
1(1)−

) 1
8

, (4.2.21)

Θ̂1(i) =
Θ1(i)(

X2
1(1)+X

2
1(1)−

) 1
8

, (4.2.22)

ˆ̄Θ1(i) =
Θ̄1(i)(

X2
1(1)+X

2
1(1)−

) 1
8

. (4.2.23)

Now an example to the mentioned relations can be given compactly: With the
equation of X̂µ

1(2)+ and X̂µ
1(2)− analogous to eq. (4.1.13) we get the following differ-

ence of two non-nilpotent invariants:

X̂1(1)+ · X̂1(2)− − X̂1(1)+ · X̂1(2)+ = 2iX̂µ
1(1)+Θ̂1σµ

ˆ̄Θ1 . (4.2.24)

As there are two invariants on the left hand side of the equation, the right hand side
must be a nilpotent invariant. Analogously a couple of similar relations between
other non-nilpotent invariants can be written down.

Three contractions of the vector invariants, however, are actually nilpotent apart
from a constant leading term. These are X̂1(1)± · X̂1(1)±, which are

√
J1,
√
J1
−1 and

a function of J1 and another nilpotent invariant.

Moreover X̂µ
1+, Θ̂1 and ˆ̄Θ1 can be expressed in terms of X̂µ

1(i)±, Θ̂1(i) and ˆ̄Θ1(i):

Xµ
1+ = Xµ

1(1)+ −X
µ
1(2)− + 2iΘ1(1)σµΘ̄1(2) , (4.2.25)

Θ1 = Θ1(1) −Θ1(2) , (4.2.26)

Θ̄1 = Θ̄1(1) − Θ̄1(2) . (4.2.27)

Eq. (4.1.13) then also determines X̂µ
1−. Hence the two invariants,(

X̂1(2)−

)2
, X̂1(2)− · X̂1(1)+ , (4.2.28)

are a set of two independent non-nilpotent scalar invariants. All other contractions
of the vector invariants in eq. (4.2.13) or functions of these – in fact this means all
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Figure 4.1: A part of the tree starting from x1̄2
2/x1̄3

2 for the construction of invariants
as ratios of superconformal intervals. The continuous boxes are the invariants, which
end a branch, because they have an index 2 in the interval last added to the denominator.
The dashed boxes contain an invariant, which is given by the ratio of two three point
functions, X̂1± and X̂1(i)± and thus end the branch.

scalar non-nilpotent invariants – can be expressed in terms of them and nilpotent
invariants. The cross ratios, of course, are no exception because one only has to
put hats on all X’s in eqns. (4.2.6), (4.2.7) and (4.2.8). As the X’s appear only in
quotients of two of them there, the normalization cancels down. These equations of
invariants can be solved for the cross ratios, so that we see, that all non-nilpotent
invariants can also be expressed by two cross ratios and nilpotent invariants.

This whole construction building invariant functions can be started in a way,
in which analogously to eq. (4.2.13) either X2(i)±, X3(i)± or X4(i)± are defined
and so one is left with non-trivial transformations only for the coordinates z2, z3

and z4, respectively. But this would result in the same calculations with indices
permuted. For the cross ratios we have already noted, that a permutation of the
indices again gives one of the cross ratios given by (4.2.2). We have seen, that all
the other non-nilpotent invariants in this section can be expressed in terms of two
superconformal cross ratios and nilpotent invariants. Thus a permutation of the
indices in these invariants does not lead to invariants, which are independent of
those already written down here and the mentioned different ways lead to the same
result.

As mentioned above it is already obvious from ordinary conformal invariants,
that there can be only two non-nilpotent invariants, which are independent. Here
we have seen, how the asymmetry of the superconformal invariants only gives rise
to a lot of non-nilpotent invariants related to each other by nilpotent invariants.
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More invariant ratios. An especially interesting subset of non-nilpotent invari-
ants are those, which are ratios of squares of superconformal intervals, xīj

2, or square

roots of these ratios. While squares of the variables, X̂1± and X̂1(i)±, their inverses
and then, of course, cross ratios belong to it, mixed contractions of the former vari-
ables are not of this form.

With 56 invariant ratios of squared superconformal intervals, which themselves
can be formed with X̂2

1± and X̂2
1(i)±, all other invariant ratios can be formed.

The calculations in Maple, which lead to this result can be found in D.5. In
summary one can start with an arbitrary squared superconformal interval – here x1̄2

2

– and devide it in a first step by x1̄3
2 because this cancels the transformation term

associated to the index 1̄. All other starting possibilities are given by permutations
of the indices throughout the calculations.

One continues to multiply alternately to the numerator and the denominator
the possible intervals, which just eliminate the transformation terms of the last
added factor, which has not yet been eliminated, but do not cancel down with
other intervals in the ratio. The list of possible terms forms a tree and this tree
grows despite of the terminating condition for single branches: A new term in the
denominator, which just has 2 as second index, ends a branch.

Further terminating conditions are added to get to the goal. The variables
X̂2

1± and X̂2
1(i)± can only appear in pairs with their inverses. So the hats cancels.

Whenever any variable X1±
2 or X1(i)±

2 appears together with any of the inverses in
the ratio of a branch, it is terminated. Although part of this ratio is not expressed
by these variables, nothing is missed, as this part appears in all possible other
combinations in other branches (possibly belonging to a tree with permuted indices).
This condition does not lead to invariants, but prevents endless loops. A part of the
tree starting from x1̄2

2/x1̄3
2 is depicted in figure 4.1.

The simplest of the ends of branches are the appearances of cross ratios. At the
end there are seven branches, which end with the first terminating condition and so
with finished invariant ratios in this tree.

x1̄2
2x4̄3

2

x1̄3
2x4̄2

2
=

X̂2
1(2)−

X̂2
1(1)−

, (4.2.29)

x1̄2
2x2̄3

2x3̄1
2

x1̄3
2x2̄1

2x3̄2
2

=
X̂2

1+

X̂2
1−

, (4.2.30)

x1̄2
2x2̄3

2x4̄1
2

x1̄3
2x2̄1

2x4̄2
2

=
X̂2

1+

X̂2
1(1)−

, (4.2.31)

x1̄2
2x2̄3

2x3̄4
2

x1̄3
2x2̄4

2x3̄2
2

=
X̂2

1+X̂
2
1(2)+

X̂2
1(1)+X̂

2
1−

, (4.2.32)

x1̄2
2x4̄3

2x3̄1
2

x1̄3
2x4̄1

2x3̄2
2

=
X̂2

1(2)−

X̂2
1−

, (4.2.33)
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x1̄2
2x2̄3

2x3̄4
2x4̄1

2

x1̄3
2x2̄4

2x3̄1
2x4̄2

2
=

X̂2
1+X̂

2
1(2)+

X̂2
1(1)+X̂

2
1(1)−

, (4.2.34)

x1̄2
2x4̄3

2x2̄1
2x3̄4

2

x1̄3
2x4̄1

2x2̄4
2x3̄2

2
=

X̂2
1(2)−X̂

2
1(2)+

X̂2
1(1)+X̂

2
1−

. (4.2.35)

The second one is J1 and so essentially a nilpotent invariant.
As all have the form of ratios of the variables X̂2

1± and X̂2
1(i)±, this shows together

with the permuted trees from the other starting possibilities, that all invariant ratios
of squared superconformal intervals can be expressed in this form.

At last in this section we want to give the following relations of these three-point
variables to cross ratio, J1 and J1(i):

X̂2
1+ =

√
x1̄2

2x4̄1
2x1̄4

2x2̄3
4

x2̄4
2x4̄2

2x2̄1
2x1̄3

4
=

√
I2I5

I6
=
√
J1(1)I2 , (4.2.36)

X̂2
1− =

√
x2̄1

2x4̄1
2x1̄4

2x3̄2
4

x2̄4
2x4̄2

2x1̄2
2x3̄1

4
=

√
I1I3

I4
=
√
J1(1)J1

−1I2 , (4.2.37)

X̂2
1(1)+ =

√
x1̄2

2x4̄1
2x2̄4

2

x4̄2
2x2̄1

2x1̄4
2

=
√
J1(1) , (4.2.38)

X̂2
1(1)− =

√
x4̄2

2x2̄1
2x1̄4

2

x1̄2
2x4̄1

2x2̄4
2

=

√
1

J1(1)
, (4.2.39)

X̂2
1(2)+ =

√
x2̄1

2x4̄1
2x1̄2

2x3̄4
4

x2̄4
2x4̄2

2x1̄4
2x3̄1

4
=

√
I3

I1I4
=
√
J1(1)J1

−1I1
−1I2 , (4.2.40)

X̂2
1(2)− =

√
x2̄1

2x1̄2
2x1̄4

2x4̄3
4

x2̄4
2x4̄2

2x4̄1
2x1̄3

4
=

√
I2

I5I6
=
√
J1(1)J1

−1J1(2)
−1I1

−1I2 .(4.2.41)

These equations are very useful to find bugs in procedures calculating with these
entities.

4.3 Nilpotent four-point invariants

In the last section we already stumbled over a few nilpotent invariants of four points.
Here we construct full nilpotent invariants systematically. The rest of the partial
invariants is left to appendix C.4.

We establish a set of invariants, which generates all full four-point invariants.
This set contains ten independent full invariants – two non-nilpotent and eight
nilpotent –, which is a significant reduction compared to the number in [Par99],
where for N = 1 sixteen invariants have been counted as presumably independent.
For this result we show, that the additional six invariants in [Par99], which are of
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higher order in Graßmann variables than the other eight nilpotent invairants, can
be expressed by our set of ten invariants.

Then dependencies of monomials of the eight nilpotent invariants are investi-
gated. This leads to a set of monomials, which is some kind of basis for full in-
variants, if we allow the coefficients to be functions of non-nilpotent invariants. In
the discussion of these monomials the independence of the eight nilpotent invari-
ants, which appear here, of course, as the monomials of degree one, is shown, which
establishes the minimality of the whole generating set of ten invariants mentioned
above.

4.3.1 Construction

The nilpotent invariants may contain ˆ̃Θ1(j) and
ˆ̄̃
Θ1(j) (cf. eqns. (4.2.18) and

(4.2.19)), for which only the superconformal transformations of z1 are non-trivial.
Because of eqns. (3.3.67) and (3.3.68) they transform as

ˆ̃Θ1(j)

′
=

(
Ω(z1, g)

Ω+(z1+, g)

) 1
2

L̂−1(z1+, g) ˆ̃Θ1(j)u(z1, g) , (4.3.1)

ˆ̄̃
Θ1(j)

′
=

(
Ω(z1, g)

Ω−(z1−, g)

) 1
2

u−1(z1, g)
ˆ̄̃
Θ1(j)

ˆ̄L−1(z1−, g) . (4.3.2)

If we consider eqns. (4.2.16) together with eq. (4.2.17), we see, that we can build

invariants with ˆ̃Θ1(j),
ˆ̄̃
Θ1(j) and X̃1(i)±. There have to be an equal number of ˆ̃Θ1(j)

and
ˆ̄̃
Θ1(j), so that the factors from dilatation and R-symmetry drop out. Then

only all indices have to be contracted to get a scalar nilpotent invariant. In other
words we get a generating set of the nilpotent invariants, if we look at all possible
contractions of these spinors and spinoral matrices, such that there is the same
number of contractions of dotted and undotted indices. In the following we see,
that all of these contractions are functions of only ten invariants, of which eight are
nilpotent.

There are many possible sets of eight independent nilpotent invariants one can

choose. Here the choice is the set of all possible contractions of Θ̂1(j),
ˆ̄Θ1(j), X̂1(1)+

and X̂1(2)− with lowest non-vanishing order O(θθ̄) in Graßmann variables:

I1ij = X̂µ
1(1)+Θ̂1(i)σµ

ˆ̄Θ1(j) = − ˆ̄̃
Θ1(j)

ˆ̃X1(1)+
ˆ̃Θ1(i) , (4.3.3)

I2ij = X̂µ
1(2)−Θ̂1(i)σµ

ˆ̄Θ1(j) = − ˆ̄̃
Θ1(j)

ˆ̃X1(2)−
ˆ̃Θ1(i) , (4.3.4)

with i, j = 1, 2 and

ˆ̃X1(1)+ =
−x1̄4

−1x2̄4x2̄1
−1(

X2
1(1)+X

2
1(1)−

) 1
4

, (4.3.5)

ˆ̃X1(2)− =
x1̄3
−1x4̄3x4̄1

−1(
X2

1(1)+X
2
1(1)−

) 1
4

. (4.3.6)
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Next we want to express one of these invariants, I111, as an example, in terms of the
supersymmetric intervals. Together with I222 and a combination of all Iijk, which
we will find in section 4.3.3 to be related to the three point invariant discussed
above, it belongs to a group of invariants, which is especially relevant for the next
chapter. They also have a particularly simple structure because except for their
normalization they contain only the variables of three points in superspace . I111

even contains in the numerator and the denominator only the variables of the points
z1, z2 and z4. Still it has its correct place here among the four point invariants
because the normalization is exchangeable, for example, by any other square root of
X2
i(j)+X

2
i(j)−, which all have the same transformation properties. Furthermore it is

needed for completeness.

We plug eqns. (4.3.5), (4.2.18) and (4.2.19) into I111 (eq. (4.3.3)) and multiply
for simplicity by the normalisation:√

X2
1(1)+X

2
1(1)−I111 = −

(
θ12x̃−1

1̄2
− θ14x̃−1

1̄4

)
x1̄4
−1x2̄4x2̄1

−1
(
x̃−1

4̄1
θ̄41 − x̃−1

2̄1
θ̄21

)
.

(4.3.7)

When we expand the brackets, three of four terms shorten already because the
matrices appearing here square to a scalar times the identity matrix (cf. eqns.
(A.2.1) and (3.2.23)). With the help of eqns. (A.2.2) and (A.2.4) we can break
down the remaining products. We gets√

X2
1(1)+X

2
1(1)−I111

= − x2̄4
2

x2̄1
2x1̄4

2

[
θ12x̃

−1
2̄4
θ̄41 − 4iθ12x̃

−1
1̄2
θ̄12θ12x̃

−1
4̄1
θ̄41 − 4iθ12x̃

−1
2̄4
θ̄24θ41x̃

−1
4̄1
θ̄41

−4iθ12x̃
−1
1̄2
θ̄12θ24x̃

−1
2̄4
θ̄41 − 4iθ12x̃

−1
1̄2
θ̄12θ24x̃

−1
4̄1
θ̄41

−16θ12x̃
−1
1̄2
θ̄12θ24x̃

−1
2̄4
θ̄24θ41x̃

−1
4̄1
θ̄41

−θ12x̃
−1
1̄2
θ̄21 − θ12x̃

−1
2̄4
θ̄21 + 4iθ12x̃

−1
1̄2
θ̄12θ24x̃

−1
2̄4
θ̄21

+θ14x̃
−1
2̄4
θ̄21

−θ14x̃
−1
4̄1
θ̄41 − θ14x̃

−1
2̄4
θ̄41 + 4iθ14x̃

−1
2̄4
θ̄24θ41x̃

−1
4̄1
θ̄41

]
pl̄a

t

zh̄a
l
.(4.3.8)

The summands are still grouped corresponding to the terms they originate from,
which is also visible from the respective first interval θij and last interval θ̄ij , which
stayed unchanged.

Now we switch indices in some intervals, so that always the pair 41 and not 14

appears and for all other pairs the first index is the lower one. This sorting rule is
also often applied later on. We find, that the group of four terms θij x̃

−1
2̄4
θ̄kl can be

pulled together and gives θ24x̃
−1
2̄4
θ̄24. Also the higher order terms can be simplified,

so that we can express the large bracket only by

ρij = θij x̃
−1
īj
θ̄ij . (4.3.9)
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At last we divide by the normalisation and get

I111 =

√
x2̄4

2x1̄2
2x4̄1

2

x4̄2
2x2̄1

2x1̄4
2

[
− ρ41 − ρ12 − ρ24

−4i (ρ12ρ41 + ρ12ρ24 + ρ24ρ41)

+16ρ12ρ24ρ41

]
pl̄a

t

zh̄a
l
. (4.3.10)

The square root can also be written in terms of ρ’s with eq. (A.2.11). If we plug
this in for the three factors in the denominator, the superconformal intervals cancel
and only the following product is left in the radicand, which is J1(1):

J1(1) = (1 + 4iρ24) (1 + 4iρ12) (1 + 4iρ41) . (4.3.11)

The square root of it is√
x2̄4

2x1̄2
2x4̄1

2

x4̄2
2x2̄1

2x1̄4
2

= X1(1)+
2 =

√
J1(1)

=
(
1 + 2iρ24 + 2ρ24

2
) (

1 + 2iρ12 + 2ρ12
2
) (

1 + 2iρ41 + 2ρ41
2
)
,

(4.3.12)

If we plug this into eq. (4.3.10), we get

I111 = −ρ41 − ρ12 − ρ24 + 2i
(
ρ41

2 + ρ12
2 + ρ24

2 + 4ρ24ρ12 + 4ρ41ρ12 + 4ρ24ρ41

)
+10

(
ρ2

24ρ12 + ρ24ρ
2
12 + ρ2

24ρ41 + ρ24ρ
2
41 + ρ2

41ρ12 + ρ41ρ
2
12

)
+ 52ρ24ρ12ρ12

−8i
(
ρ2

24ρ
2
12 + ρ2

41ρ
2
12 + ρ2

24ρ
2
41 + 7ρ12ρ24ρ

2
41 + 7ρ12ρ

2
24ρ41 + 7ρ2

12ρ24ρ41

)
,

(4.3.13)

which we simplify in the following significantly until we get the expression in eq.
(4.3.18). It is already considered, that not only cubes of the ρ’s, but also products
like ρ12ρ

2
24ρ

2
41 vanish (the latter because θ12 = −θ24 − θ41).

From the study of the third and fourth power of I111, which vanish, one can
expect further equations of combinations of ρ’s, which vanish, and simplify the
expression without expanding all ρ’s.

We start with the fourth power (cf. eq. (4.3.10)),

I4
111 = 6ρ2

24ρ
2
12 + 6ρ2

41ρ
2
12 + 6ρ2

24ρ
2
41 + 12ρ12ρ24ρ

2
41 + 12ρ12ρ

2
24ρ41 + 12ρ2

12ρ24ρ41

= 0 . (4.3.14)

This eliminates already three fourth order terms in eq. (4.3.13). We implemented
this and the following identities, which we retrieved this way, in Maple with the help
of the function ”algsubs”, which substitutes algebraic expression. It allows to imple-
ment all identities, which result from nilpotency, without the effort to implement the
nilpotency itself. The term, to which it is applied, should only have been expanded
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before. Thus in every of the following steps all of the identities listed before that
step are already used.

The next one regards the third power. But this is a rather long expression,which
we can write down in a more illustrative way with the help of two other identities.
For one of those we multiply it by ρ12, which still has to be zero:

I111
3ρ12 = 3ρ2

24ρ
2
41 + 3ρ12ρ24ρ

2
41 + 3ρ12ρ

2
24ρ41 = 0 . (4.3.15)

Similarly the product with ρ41 is

I111
3ρ41 = −3ρ2

12ρ
2
41 − 3ρ12ρ24ρ

2
41 − 3ρ2

12ρ24ρ41 = 0 . (4.3.16)

The third possibility of such a product with ρ24 is already zero with these conditions.
Looking at the third power we notice, that one can use eq. (A.2.12) to get a

shorter expression:

I111
3 = −3ρ2

24ρ12 − 3ρ24ρ
2
12 − 3ρ2

24ρ41 − 6ρ12ρ24ρ41 − 3ρ2
12ρ41 − 3ρ2

41ρ24

−3ρ2
41ρ12 + 12iρ2

41ρ
2
24 + 12iρ12ρ24ρ

2
41 + 12iρ2

12ρ
2
41

= −3ρ2
24ρ12 − 3ρ24ρ

2
12 + 3ρ2

24ρ14 + 6ρ12ρ24ρ14 + 3ρ2
12ρ14

−3ρ2
14ρ24 − 3ρ2

14ρ12

= 0 . (4.3.17)

Note, that ρ2
41 = ρ2

14. For the implementation of this condition in the computer
algebra worksheet to be consistent with our previous steps, we have used the first
longer expression. Alternatively one can also take eq. (A.2.12).

At this point we also get the result for I111, which is certainly not subject to any
vanishing higher degree terms, because only one of these has not already disappeared.

Corollary. The invariant I111 can be expressed with ρ’s (cf. eq. (4.3.9)) alone:

I111 = −ρ41 − ρ12 − ρ24 + 2i
(
ρ41

2 + ρ12
2 + ρ24

2 + 4ρ24ρ12 + 4ρ41ρ12 + 4ρ24ρ41

)
+32ρ41ρ12ρ24 . (4.3.18)

The other nilpotent invariants, Iijk, can not be written in terms of ρ’s alone, as
there is no cancellation with the normalization, which here led to the factor X1(1)+

2

in eq. (4.3.10). In appendix C.1 we list the lowest order terms of these invariants.
There we see, that already to this order most of the other invariants are significantly
more complicated than I111.

Other possible contractions of Θ̂1(i) and ˆ̄Θ1(j). How can the other possible
contractions mentioned above be expressed in terms of the invariants Iijk and two
non-nilpotent invariants? The other nilpotent invariants with the leading term of
order θθ̄ are contractions with X̂1(1)− and X̂1(2)+. But in analogy to eq. (4.1.13)
these two matrices differ only in higher order of Grassmann variables, so that we
find, that

ˆ̄̃
Θ1(j)

ˆ̃X1(1)−
ˆ̃Θ1(i) = I1ij − 4i

ˆ̄̃
Θ1(j)

ˆ̄Θ1(1)Θ̂1(1)
ˆ̃Θ1(i) , (4.3.19)

ˆ̄̃
Θ1(j)

ˆ̃X1(2)+
ˆ̃Θ1(i) = I2ij + 4i

ˆ̄̃
Θ1(j)

ˆ̄Θ1(2)Θ̂1(2)
ˆ̃Θ1(i) . (4.3.20)
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In order to get to the promised result and trace all other nilpotent invariants back to
the chosen ones, we need to express nilpotent invariants with leading term of order(
θθ̄
)2

, which were still regarded to be independent in [Par99], in terms of these eight.
This is one of the steps, which only work for N = 1. The properties of the

spinors in eqns. (3.2.12) and (3.2.13) propagate to similar properties of the spinoral
functions of three points in these invariants:

Θ̂α
1(j)Θ̂

β
1(j) = −1

2

(
ε−1
)αβ

Θ̂1(j)
ˆ̃Θ1(j) , (4.3.21)

ˆ̄Θα̇
1(j)

ˆ̄Θβ̇
1(j) =

1

2

(
ε̄−1
)α̇β̇ ˆ̄̃

Θ1(j)
ˆ̄Θ1(j) . (4.3.22)

Together with the properties of the sigma matrices we find, that most of the nilpotent
invariants with leading order

(
θθ̄
)2

are just products of the chosen eight nilpotent
invariants. To see this we start with the products. Eq. (4.3.21) can be used in
products of two invariants with the same spinor Θ̂1(j).

I1jiI1jk = X̂µ
1(1)+Θ̂1(j)σµ

ˆ̄Θ1(i) X̂
ν
1(1)+Θ̂1(j)σν

ˆ̄Θ1(k)

=
1

2
Θ̂1(j)

ˆ̃Θ1(j)X̂
µ
1(1)+X̂

ν
1(1)+

ˆ̄̃
Θ1(i)σ̄µσν

ˆ̄Θ1(k)

=
1

2
X̂2

1(1)+Θ̂1(j)
ˆ̃Θ1(j)

ˆ̄̃
Θ1(i)

ˆ̄Θ1(k) . (4.3.23)

For the last step we use eq. (A.1.9). If this equation is contracted with a symmetric
tensor Y µν , one can relabel the indices in one of the summands and gets

Y µν σ̄µσν = Y µ
µ1l2×2 . (4.3.24)

With this applied we essentially end up with the desired invariants with leading
order

(
θθ̄
)2

. An analogous calculation gives those invariants with twice the same
ˆ̄Θ1(j):

Θ̂1(i)
ˆ̃Θ1(k)

ˆ̄̃
Θ1(j)

ˆ̄Θ1(j) =
2

X̂2
1(1)+

I1ijI1kj . (4.3.25)

As the contractions are commutative, we have eight of nine possible combinations

of the four contracted spinors Θ̂1(i)
ˆ̃Θ1(k)

ˆ̄̃
Θ1(j)

ˆ̄Θ1(l). For the ninth we can use neither
eq. (4.3.21) nor eq. (4.3.22) because there are no fitting pairs. Still it is equal to a
combination of four nilpotent invariants from our selection:

Θ̂1(1)
ˆ̃Θ1(2)

ˆ̄̃
Θ1(1)

ˆ̄Θ1(2) =
1

X̂1(1)+

(I111I122 + I112I121) . (4.3.26)

This equation can be shown rewriting the bracket on the right-hand side:

(I111I122 + I112I121)

= X̂µ
1(1)+X̂

ν
1(1)+

(
Θ̂1(1)σµ

ˆ̄Θ1(1)Θ̂1(2)σν
ˆ̄Θ1(2) + Θ̂1(1)σµ

ˆ̄Θ1(2)Θ̂1(2)σν
ˆ̄Θ1(1)

)
= X̂µ

1(1)+X̂
ν
1(1)+Θ̂α

1(1)
ˆ̄Θα̇

1(1)Θ̂
β
1(2)

ˆ̄Θβ̇
1(2)

(
σµαα̇σνββ̇ − σµαβ̇σνβα̇

)
. (4.3.27)
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Remark. With eqns. (4.3.23), (4.3.25) and (4.3.27) we have expressed all six in-

variants of the form Θ̂1(i)
ˆ̃Θ1(j)

ˆ̄̃
Θ1(k)

ˆ̄Θ1(l), which have been counted in [Par99] as
persumably independent, in terms of the invariants, Iijk, and non-nilpotent invari-
ants.

One can show even more with the following property of sigma matrices.

Lemma 4.1. Let Y µν be an arbitrary symmetric tensor. With the Pauli matrices,
σµ,

Y µν
(
σµαα̇σνββ̇ − σµαβ̇σνβα̇

)
= Y µ

µεαβ ε̄α̇β̇ . (4.3.28)

Proof. The combination of sigma matrices in the brackets times the symmetric ten-
sor is anti-symmetric in the permutation of the two undotted indices as well as the
two dotted indices. In consequence it can only be non-zero for α 6= β and α̇ 6= β̇.

So the remaining terms have only summands in the bracket, which are of one of
the following four forms:

σµ11̇σν22̇ σµ12̇σν21̇ σµ21̇σν12̇ σµ22̇σν11̇ . (4.3.29)

Thus these terms only do not vanish, if the two Pauli matrices in each of these
products are either both diagonal (σ0 and σ3) or both antidiagonal (σ1 and σ2) and
only one of the summands in the bracket survives. Of a total of 512 summands in
all components in eq. (4.3.28) there 32 summands left at this point. Let us look at
this point only at the component with α = α̇ = 1 and β = β̇ = 2 and insert the
elements of the the Pauli matrices now:

Y 00 − Y 03 + Y 30 − Y 33 − Y 11 + iY 12 − iY 21 − Y 22 = Y µ
µ . (4.3.30)

For the other three non-vanishing components of the left-hand side of equation
(4.3.28) we get analogous results, so that finally we are left with the right-hand
side

Plugged into eq. (4.3.27) this directly proofs eq. (4.3.26).

Finally there could be independent contractions of Θ̂1(j),
ˆ̄Θ1(j), X̂1(1)+ and X̂1(2)−

with more spinoral matrices than one between the spinors.
For more than two matrices in a row, at least one of them appears double. If it

is necessary, these can be brought next to each other using eq. (A.1.9) and then one
has the situation of eq. (4.3.24).

Most possibilities with two matrices can be reduced to the chosen set of invariants
with eqns. (4.3.21), (4.3.22), (4.3.24). For the rest, where there are no equal indices,
which allow those possibilities, one finds identities raising and lowering spinoral
indices or using eq. (A.1.9) and thus switching the indices with the result, that
there are only three independent invariants of this kind left:

Θ̂1(1)X̂1(1)+
ˆ̃X1(2)−

ˆ̃Θ1(2)
ˆ̄̃
Θ1(1)

ˆ̄Θ1(2) , (4.3.31)

Θ̂1(1)
ˆ̃Θ1(2)

ˆ̄̃
Θ1(1)

ˆ̃X1(1)+X̂1(2)−
ˆ̄Θ1(2) , (4.3.32)

Θ̂1(1)X̂1(1)+
ˆ̃X1(2)−

ˆ̃Θ1(2)
ˆ̄̃
Θ1(1)X̂1(1)+

ˆ̃X1(2)−
ˆ̄Θ1(2) . (4.3.33)
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For all of them we need to look at the equation, which we have shown in lemma 4.1.
When we choose a convenient symmetric tensor and multiply the equation (4.3.28)
by suitable terms, we see, that they are no new independent invariants.

We start with the invariant (4.3.31). In order to find this invariant among the
terms, which eq. (4.3.28) provides, we take Y µν = X̂µ

1(1)+X̂
ν
1(1)+ and we multiply

this equation from the right by ˆ̃X1(2)−, so that,

X̂µ
1(1)+X̂

ν
1(1)+

(
σµαα̇σνββ̇ − σµαβ̇σνβα̇

)(
ˆ̃X1(2)−

)α̇γ
= X̂2

1(1)+εαβ ε̄α̇β̇

(
ˆ̃X1(2)−

)α̇γ
.

(4.3.34)

We now multiply the spinors Θ̂1(1),
ˆ̃Θ1(2) on both sides of this equation:

Θ̂1(1)X̂1(1)+
ˆ̃X1(2)−

ˆ̃Θ1(2)

(
X̂1(1)+

)
ββ̇
−
(

Θ̂1(1)X̂1(1)+

)
β̇

(
X̂1(1)+

ˆ̃X1(2)−
ˆ̃Θ1(2)

)
β

= −X̂2
1(1)+

ˆ̃Θ1(1)β

(
Θ̂1(2)X̂1(2)−

)
β̇
. (4.3.35)

Finally we resort and multiply by the inverse of X̂1(1)+ from the left and then by

the spinors,
ˆ̄̃
Θ1(1) and ˆ̄Θ1(2),

Θ̂1(1)X̂1(1)+
ˆ̃X1(2)−

ˆ̃Θ1(2)
ˆ̄̃
Θ1(1)

(
X̂1(1)+

)−1
X̂1(1)+

ˆ̄Θ1(2)

= −Θ̂1(1)X̂1(1)+
ˆ̄Θ1(2)

ˆ̄̃
Θ1(1)

ˆ̃X1(2)−
ˆ̃Θ1(2) −

ˆ̄̃
Θ1(1)

ˆ̃X1(1)+
ˆ̃Θ1(1) Θ̂1(2)X̂1(2)−

ˆ̄Θ1(2)

= I112I221 + I111I222 . (4.3.36)

This is exactly the invariant (4.3.31). With an analogous calculation we also can
express the second invariant (4.3.32). To do so one takes Y µν = X̂µ

1(2)−X̂
ν
1(2)− and

multiplies eq. (4.3.28) from left by ˆ̃X1(1)+. The fitting multiplications by the inverse

of X̂1(2)− and the spinors then lead to the result,

Θ̂1(1)
ˆ̃Θ1(2)

ˆ̄̃
Θ1(1)

ˆ̃X1(1)+X̂1(2)−
ˆ̄Θ1(2) = I121I212 + I111I222 . (4.3.37)

For the third invariant (4.3.33) we multiply eq. (4.3.28) by itself and contract the
indices, so that one summand has – after expanding the brackets – the form of the
matrices between the spinors in this invariant.

ε̄α̇δ̇εβδ ε̄β̇ε̇εγεX̂µ
1(1)+X̂

ρ
1(1)+

(
σµαα̇σρεε̇ − σµαε̇σρεα̇

)
·X̂ν

1(2)−X̂
λ
1(2)−

(
σνδδ̇σλγγ̇ − σνδγ̇σλγδ̇

)
= X̂2

1(1)+X̂
2
1(2)−δα

βδγ̇
β̇ . (4.3.38)
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We multiply this equation with the spinors and get

Θ̂1(1)X̂1(1)+
ˆ̃X1(2)−

ˆ̃Θ1(2)
ˆ̄̃
Θ1(1)X̂1(1)+

ˆ̃X1(2)−
ˆ̄Θ1(2) + Θ̂1(1)X̂1(1)+

ˆ̃X1(2)−X̂1(1)+
ˆ̄Θ1(1)

·Θ̂1(2)X̂1(2)−
ˆ̄Θ1(2) − 2X̂1(1)+ · X̂1(2)− Θ̂1(1)X̂1(1)+

ˆ̄Θ1(1) Θ̂1(2)X̂1(2)−
ˆ̄Θ1(2)

+Θ̂1(1)X̂1(1)+
ˆ̄Θ1(1) Θ̂1(2)X̂1(2)−

ˆ̃X1(1)+X̂1(2)−
ˆ̄Θ1(2)

= X̂2
1(1)+X̂

2
1(2)−Θ̂1(1)

ˆ̃Θ1(2)
ˆ̄̃
Θ1(1)

ˆ̄Θ1(2) . (4.3.39)

We have already seen, that the terms with products of three matrices can be reduced
to sums of only one matrix between the spinors. Hence we conclude, that the
invariant (4.3.33) is equal to an expression of only the eight nilpotent invariants,
which we have chosen in the beginning of this section and non-nilpotent invariants.
Thus this section concludes with the corollary:

Corollary. There are no fully invariant contractions of ˆ̃Θ1(j),
ˆ̄̃
Θ1(j) and X̃1(i)±,

which cannot be expressed by the chosen set of ten invariants.

Contractions, which do not have an equal number of ˆ̃Θ1(j) and
ˆ̄̃
Θ1(j), are not

full, but only partial invariants, which are discussed in appendix C.4.

4.3.2 Monomials of nilpotent invariants

At this point we can now in principle express all scalar nilpotent invariant func-
tions of four points of superspace in terms of the eight invariants in eqns. (4.3.3)
and (4.3.4) and non-nilpotent invariants. Now we also want to choose a basis of
polynomials of these nilpotent invariants, which consists of monomials of the eight
nilpotent invariants. In the next section we see, that any full four-point invariant
can be expanded as such a polynomial, if one allows the coefficients to be functions
of non-nilpotent invariants, e.g. the superconformal invariants.

Because third powers of each of the spinors in eqns. (4.2.18) and (4.2.19) vanish
and because of some identities, which we show in this section, the number of possible
linear independent monomials of the nilpotent invariants is only 36 including zeroth
and first degree.

The following set I is chosen and sorted by degree and consecutive numbers here:

I0,1 = (1) , (4.3.40)

I1,1...8 = (I111, I112, I121, I122, I211, I212, I221, I222) ,

I2,1...18 =
(
I111

2, I112
2, I121

2, I122
2, I111I112, I111I121, I111I122, I112I121,

I112I122, I121I122, I111I221, I122I221, I111I222, I122I211, I111I212

I122I212, I112I221, I212I221) ,

I3,1...8 =
(
I2

111I122, I
2
111I222, I

2
112I121, I

2
112I221, I

2
121I112, I

2
121I212, I

2
122I111, I

2
122I211

)
,

I4,1 = I2
111I

2
122 ,

with i, k, j, l = 1, 2. They are sorted with the first index being the degree.
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In the following the relations between the monomials, which have been left out
in the choice of the subset, and the chosen ones are given using properties of the
Pauli matrices and eqns. (4.3.21)-(4.3.22).

Both of the latter equations are applied for the following cases of products of
two invariants containing the same spinors Θj and Θ̄k with j, k = 1, 2:

I1jkI2jk =
1

4
X̂µ

1(1)+X̂
ν
1(2)−tr(σµσ̄ν)Θ̂1(j)

ˆ̃Θ1(j)
ˆ̄̃
Θ1(k)

ˆ̄Θ1(k) (4.3.41)

=
X̂µ

1(1)+X̂1(2)−µ

X̂2
1(1)+

I1jkI1jk (4.3.42)

for j, k = 1, 2. In the last step we used eq. (A.1.11) for the trace and eq. (4.3.25) to
get to I1jk’s.

Only either eq. (4.3.21) or eq. (4.3.22) can be used to get

I2jkI2mn =
X̂2

1(2)−

X̂2
1(1)+

I1jkI1mn (4.3.43)

for j, k,m, n = 1, 2 with j = m ∨ k = n. The first step to show this is the same
calculation as for eqns. (4.3.23) and (4.3.25). X̂1(1)+ in the latter equations is just

replaced by X̂1(2)− here. In a second step we use eqns. (4.3.23) and (4.3.25) to get
the right hand side of (4.3.43).

The rest of the monomials of degree 2, which are not elements of I2,i and have not
been expressed by them, can only be expressed in terms of two or more monomials
from I2,i. This rest devides into three different cases of monomials IijkIlmn:

1. i = 1, l = 2, (j 6= m ∧ k = n) ∨ (j = m ∧ k 6= n),

2. i = 1, l = 2, j 6= m ∧ k 6= n,

3. i = l = 2 j 6= m ∧ k 6= n.

There are four of the first case, one of the second and one of third case,which are
not elements of I2,i.

Case 1: In this case only either (4.3.21) or (4.3.22) can be used and not both as
in eq. (4.3.41). As i 6= j, the sigma matrices are not contracted with a symmetric
tensor, as in eq. (4.3.43). But still the latter way leads to success, if we symmetrize
the products in the following way:

I1jkI2mn + I2jkI1mn (4.3.44)

Here we continue the calcuation now for j = m ∧ k 6= n and keep in mind, that for
j 6= m ∧ k = n things work analoguesly. So we have:

I1jkI2jn + I2jkI1jn =
(
X̂µ

1(1)+X̂
ν
1(2)− + X̂µ

1(2)−X̂
ν
1(1)+

)
Θ̂1(j)σµ

ˆ̄Θ1(k) Θ̂1(j)σν
ˆ̄Θ1(n)

= 2
X̂µ

1(1)+X̂1(2)−µ

X̂2
1(1)+

I1jkI1jn . (4.3.45)
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Due to the symmetrization the situation is the same as in eq. (4.3.43). The factor
two comes from the contraction of the tensor in the brackets.

This calculation actually shows us the cause, why I111I212, I111I221, I212I122 and
I221I122 are elements of the set I. They are needed to express the four monomials
I211I112, I211I121, I112I222 and I121I222:

I211I112 = 2X̂µ
1(1)+X̂1(2)−µI111I112 − I111I212 , (4.3.46)

I211I121 = 2X̂µ
1(1)+X̂1(2)−µI111I121 − I111I221 , (4.3.47)

I112I222 = 2X̂µ
1(1)+X̂1(2)−µI112I122 − I212I122 , (4.3.48)

I121I222 = 2X̂µ
1(1)+X̂1(2)−µI121I122 − I221I122 . (4.3.49)

This is one of the choices, that could be taken freely. Any of the monomials on the
left hand side could have been chosen as an element of I instead of the element at
the very right of the equations.

Case 2: This case consists of the monomial I121I212. The symmetrization of the
respective first indices is not enough here because we face the same problem as in
eq. (4.3.26), that neither (4.3.21) nor (4.3.22) can be applied. So we need more
monomials to express I121I212, so that we can apply lemma 4.1 also here:

I121I212 + I112I221 + I111I222 + I122I211 (4.3.50)

=
(
X̂µ

1(1)+X̂
ν
1(2)− + X̂µ

1(2)−X̂
ν
1(1)+

)
Θ̂α

1(1)
ˆ̄Θα̇

1(1)Θ̂
β
1(2)

ˆ̄Θβ̇
1(2)

(
σµαα̇σνββ̇ − σµαβ̇σνβα̇

)
= 2

X̂µ
1(1)+X̂1(2)−µ

X̂2
1(1)+

(I111I122 + I112I121) .

In the last line we get twice the same contraction of four-vectors and we use eq.
(4.3.26) to get back to the I1jk’s. Also this illuminates the choice of I. I121I212

could replace any of the three other monomials in the first line of this equation.

Case 3: At last the monomial I211I222 is just I111I122 with X̂µ
1(1)+ replaced by

X̂µ
1(2)−. So the calculation is nothing but (4.3.26), which is once applied in one

direction with the replacement just mentioned and then applied “backwards” in its
original form. The result is:

I211I222 + I212I221 =
X̂2

1(2)−

X̂2
1(1)+

(I111I122 + I112I121) . (4.3.51)

The choice of I212I221 within I is, of course, free as well.
Now we have come to an end of the discussion of monomials of degree 2, many

of the identities given above can be used to relate monomials of degree 3. However,
there are still products of three different nilpotent invariants like I111I112I121, which
are neither in our selection nor can be reduced directly to the chosen monomials
with the equations we have had. But obviously there are pairs of spinoral functions
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of three points in these monomials, for which eqns. (4.3.21) and (4.3.21) can be
applied.

First of all we see, that all monomials, which we need to look at here, are of the
form IijkIljoImno for two reasons. First, as there are only two possible values for
each second index, two of them have to be the same. The same is true for the third
indices. Second, if both the second and the third indices are the same in the same
two invariants in the monomial, one can apply either eq. (4.3.41) or eq. (4.3.43) to
those two and gets a monomial in I.

Now we apply eqns. (4.3.21) and (4.3.22) to IijkIljoImno:

IijkIljoImno = X̂µ
1(i)+/−

X̂ν
1(l)+/−

X̂ρ
1(m)+/−

Θ̂1(j)σµ
ˆ̄Θ1(k)Θ̂1(j)σν

ˆ̄Θ1(o)Θ̂1(n)σρ
ˆ̄Θ1(o)

= −1

4
Θ̂1(j)

ˆ̃Θ1(j)
ˆ̄̃
Θ1(o)

ˆ̄Θ1(o)X̂
µ
1(i)+/−

X̂ν
1(l)+/−

X̂ρ
1(m)+/−

Θ̂1(n)σρσ̄νσµ
ˆ̄Θ1(k),

where 1(·)+/− is either 1(1)+ or 1(2)−. At this point there are two distinct cases:
Either l = m ∨ l = i or i = m 6= l.

In the first case there is a product of two Pauli matrices contracted with a
symmetric tensor, so that we can use eq. (4.3.24). At last we apply eq. (4.3.25) and
get

IljkIljoImno = −1

2

X̂2
1(l)+/−

X̂2
1(1)+

I1jo
2Imnk , (4.3.52)

IijkIljoIlno = −1

2

X̂2
1(l)+/−

X̂2
1(1)+

I1jo
2Iink . (4.3.53)

For the second case two Pauli matrices have to be interchanged with the help of
(A.1.9), so that we can procede as in the first case. We can also already insert eq.
(4.3.25) and have

IijkIljoIino = −1

2

1

X̂2
1(1)+

I1jo
2X̂µ

1(i)+/−
X̂ν

1(l)+/−
X̂ρ

1(i)+/−
Θ̂1(n) (2ηνρ − σν σ̄ρ)σµ ˆ̄Θ1(k)

= −
X̂ν

1(1)+X̂1(2)−ν

X̂2
1(1)+

I1jo
2Iink +

1

2

X̂2
1(i)+/−

X̂2
1(1)+

I1jo
2Ilnk . (4.3.54)

Finally we are left with only one monomial of degree 4, which we need to relate
to the one from I, so that all other can be given by the latter one using also the
equations, which we have calculated for the monomials of lower degree. This missing
link is I112

2I121
2. But one can easily see, that it is equal to I2

111I
2
122. Eq. (4.3.26)

has to be plugged in only twice

I112
2I121

2 = X̂1(1)+Θ̂1(1)
ˆ̃Θ1(1)

ˆ̄̃
Θ1(2)

ˆ̄Θ1(2) X̂1(1)+Θ̂1(2)
ˆ̃Θ1(2)

ˆ̄̃
Θ1(1)

ˆ̄Θ1(1) . (4.3.55)

We can sort this expression differently, which directly leads us to the desired mono-
mial I4,1:

I112
2I121

2 = X̂1(1)+Θ̂1(1)
ˆ̃Θ1(1)

ˆ̄̃
Θ1(1)

ˆ̄Θ1(1) X̂1(1)+Θ̂1(2)
ˆ̃Θ1(2)

ˆ̄̃
Θ1(2)

ˆ̄Θ1(2) = I111
2I122

2 .
(4.3.56)
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The following corrolary results from the discussion of products of nilpotent invariants
in this section and the construction of the four-point invariants in the preceding
sections.

Corollary. Any full four-point invariant can be expressed as a linear combination
of the monomials Iij with coefficients, which are functions of two fixed independent
non-nilpotent invariants.

In the next section we finalize this notion by the proof, that this forms a unique
expansion.

4.3.3 Expansion of invariant functions in nilpotent invariants

The transformation properties of superconformal variables leave no room for super-
conformal invariants, which cannot be expressed by those, which we constructed
above. Any invariant function can be given in terms of a finite expansion into nilpo-
tent invariants with coefficients, which are functions of non-nilpotent invariants. In
the following theorem we give a unique expension of this kind with the help of the
set I.

Theorem 4.1. Let f be an arbitrary invariant function of four points of superspace.
Then it can be expanded as

f (I1, I2, Iijk) =

4∑
p=1

np∑
q=1

fp,q (I1, I2) Ip,q (4.3.57)

and the coefficient functions fp,q (I1, I2) are uniquely determined.

From the last sections we know, that the set I is a sufficiently large set because
all monomials of Iijk can be expressed by those in this set and the superconformal
cross ratios I1 and I2. This leaves the uniqueness to be shown. For this we have
to show, that there are no dependencies between the invariants in the set I. This
task is divided in this section into the smaller questions, if the monomials of each
degree are independent from each other. For degree one we present first a method,
which focuses on the lowest order of these invariants. Afterward we show the same
differently within a lemma and two other lemmas will provide the second and third
degree. At the end we show the theorem by essentially combining the lemmas.

We now show, that all eight nilpotent invariants are independent, meaning, that
non of them can be expressed by the others and non-nilpotent invariants. In order
to do so, we look at the lowest order of these invariants given in appendix C.1.

I111 and I222 are especially simple, also in lowest order. Here we use the comment
”l.o.” above the equals sign to express the equality to lowest order in Graßmann
variables:

I111
l.o.
= −θ12x̃−1

12 θ̄12 − θ24x̃−1
24 θ̄24 + θ14x̃−1

14 θ̄14 . (4.3.58)

The latter can be derived from this – just as any I2jk can be derived from one I1nm

– with a look on eqns. (4.3.3) and (4.3.4). The normalizations in the denominators



4.3. NILPOTENT FOUR-POINT INVARIANTS 59

are the same, which is in lowest order x24
2/
(
x21

2x14
2
)
. Indices in the numerator

differ between I111 and I222. 1 is replaced by 2 and so with the three point functions
(eqns. (4.2.13), (4.2.18) and (4.2.19)) inserted, 2 is replaced by 3 therein. So we
multiply eq. (4.3.58) by the normalization, replace each index 2 by 3 and divide by
the normalization again to get

I222
l.o.
=
x12

2x43
2

x13
2x42

2

(
−θ13x̃−1

13 θ̄13 − θ34x̃−1
34 θ̄34 + θ14x̃−1

14 θ̄14

)
. (4.3.59)

The key to show the independence of the invariants are terms, which appear in the
other six Iijk. They contain terms with a product of three Pauli matrices, which
cannot be simplified in the same way as in Iiii. E.g. in the lowest order of I112, as
it is given in eq. (C.1.6), we find θ13x̃−1

13 x̃12x̃−1
24 θ̄24. With the help of the relations

between different intervals the indices of x̃ij can be changed with the cost of other
terms of the form θ31x̃klθ̄42 mostly with some factor of intervals squares, but a term
with three Pauli matrices always survives.

For the Graßmannian intervals, θij and θ̄ij , there is in each case one unique way,
in which terms with three sigma matrices can be simplified, so that maximally two
of these terms survive, which cannot be united.

We now look at all these terms ignoring the indices of the intervals, xij , because
they can be arranged to be the same in all invariants. We leave out all other terms
or prefactors:

I112 : θ31xxxθ̄41 − θ31xxxθ̄21 , (4.3.60)

I121 : θ21xxxθ̄31 − θ41xxxθ̄31 , (4.3.61)

I122 : θ31xxxθ̄41 − θ41xxxθ̄31 , (4.3.62)

I211 : θ41xxxθ̄21 − θ21xxxθ̄41 , (4.3.63)

I212 : θ41xxxθ̄21 − θ31xxxθ̄21 , (4.3.64)

I221 : θ21xxxθ̄31 − θ21xxxθ̄41 . (4.3.65)

These terms would have to match to give a relation between these invariants. Also
no factor of a non-nilpotent invariant could change this because in lowest order
these are just combinations of conformal cross ratios. So in order to get a vanishing
combination containing these six invariants necessarily the Grassmannian intervals
would have to cancel in the summands above.

One can start at any invariant and finds, that there is only one way to achieve
this. At the end this one combination does not vanish overall. For example, we
can start with I112. Its first summand is also in I122. The difference of these two
invariants contains:

I112 − I122 : θ41xxxθ̄31 − θ31xxxθ̄21 . (4.3.66)

We continue in this way always adding or subtracting the invariant, which cancels
one of the summands. This way we have to go through all six invariant to finally
end up with the total cancellation of the terms with three Pauli-matrices:

I112 − I122 + I211 − I212 + I121 − I221 : 0 . (4.3.67)
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As this algorithm goes through all terms in eqns. (4.3.60)-(4.3.65), which all appear
twice, it is indifferent, at which term it is started or which route it takes. Thus this
is the only possible combination.

The question to pose at this point is, if this combination is independent from the
two nilpotent invariants we looked at before, I111 and I222. Starting from another
perspective answers this question.

As already stated above, I111 and I222 times their normalization are essentially
the same functions, but once with variables z1 z2 and z4 and once with z1, z3 and
z4. But we have seen already a third possibility in the construction of the three
point invariant. I3PF (cf. eq. (4.1.14)) has the same function with z1 z2 and z3 in
the numerator with a different denominator and a factor of −4i:

I3PF = −4iΘ̂1X̂1+
ˆ̄Θ1

1

X̂2
1+

(4.3.68)

= −4iI0
1

X̂2
1+

. (4.3.69)

In the last step we define the invariant I0
1, which has the same normalization as

I111 and I222.
At this point we need only to plug eqns. (4.2.25)-(4.2.27) into I0 and find the

combination in eq. (4.3.67) in it:

I0 = I111 − I112 − I121 + I122 − I211 + I212 + I221 − I222 (4.3.70)

−4i
(
2I2

112 − 2I111I112 − 2I112I122 + I111I122 + I112I121

)
+4I2

111I222 + 8I2
112I121 .

The last step in establishing the independence of the eight Iijk hence is to show the
independence of I111, I222 and I0.

We have seen in eq. (4.3.68), that the normalization can be changed with the
help of cross ratios. These non-nilpotent invariants are irrelevant to our discussion
of the independence, as we defined it above. So we look at the lowest order of I111

with z2 replaced by z3 instead of I222, which means nothing else, but dropping the
cross ratio in eq. (4.3.59)

x13
2x42

2

x12
2x43

2
(I222)l.o. = −θ13x̃−1

13 θ̄13 − θ34x̃−1
34 θ̄34 + θ14x̃−1

14 θ̄14 . (4.3.71)

For I0 we get similarly:

x13
2x24

2

x14
2x23

2
(I0)l.o. = −θ12x̃−1

12 θ̄12 − θ23x̃−1
23 θ̄23 + θ13x̃−1

13 θ̄13 . (4.3.72)

One could now expand the terms in such a way, that only θ1i, x̃−1
1i and θ̄1i were left

to get down to a set of variables, which are unsubstitutable among themselves. But
we actually already have such a set with the terms θij x̃

−1
ij θ̄ij as one entity. If we

1This invariant is the negative of IΣ in [Knu11]
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would substitute the individual intervals by sums of other intervals, mixed terms
would appear, which could not be taken together in any other way than back to
the form we started from. As we see that each of the three invariants contains one
θij x̃

−1
ij θ̄ij , which the other two do not, hey have to be independent.
There is another possibility to show, that the eight invariants Iijk are indepen-

dent, but it does not give the insight into the lowest order structure of these invari-
ants, which we will also use in the discussion of the four-point function. Nonetheless
we go through these calculations now as well because it is also the way to show the
independence of the higher order monomials.

We want to show the following:

Lemma 4.2. Let αijk (I1, I2) be functions of non-nilpotent invariants, so that

2∑
i,j,k=1

αijk (I1, I2) Iijk = 0 (4.3.73)

then
∀i, j, k ∈ {1, 2} : αijk = 0 . (4.3.74)

Proof. If we multiply eq. (4.3.73) by I122
2I111, only two summands survive because

of the nilpotency:

0 = α111I111
2I122

2 + α211I111I211I122
2 = (α111 + α211A) I111

2I122
2 , (4.3.75)

where eq. (4.3.41) is used with the abbreviation A =
X̂µ

1(1)+
X̂1(2)−µ

X̂2
1(1)+

. These two

summands are also left, if eq. (4.3.73) is multiplied by I122
2I211:

0 = α111I111I211I122
2 + α211I211

2I122
2 = (α111A+ α211B) I111

2I122
2 . (4.3.76)

This time eq. (4.3.41) is used in the first summand and eq. (4.3.43) in the other

one with B =
X̂2

1(2)−

X̂2
1(1)+

. We substract now eq. (4.3.75) times A from eq. (4.3.76), so

that the first summands cancel:

α211

(
B −A2

)
I111

2I122
2 = 0 . (4.3.77)

I111
2I122

2 and the bracket are not zero, so that we conclude α211 = 0 and plugged
in above also α111 = 0.

This can be repeated with the other three pairs of coefficients, α112 and α212,
α121 and α221 and α122 and α222. For each of these three pairs eq. (4.3.73) must be
multiplied with two monomials of third degree analoguesly to the above calculations.
These monomials are – in the same order as the pairs coefficients above – I121

2I112

and I121
2I212, I112

2I121 and I112
2I221 and I111

2I122 and I111
2I222.

This gives the result, that all coefficients have to be identically zero.

Now we want to proof the independence of the monomials of higher degree with
this method. If we look at the monomials of third degree, we notice, that they are
just those, with which we multiply eq. (4.3.73) in the last proof. This makes the
proof of their independence stated by the next lemma especially simple.
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Lemma 4.3. Let αl (I1, I2) with i = 1, . . . , 8 be functions of non-nilpotent invari-
ants, so that

8∑
l=1

αl (I1, I2) I3,l = 0 (4.3.78)

then

∀l ∈ {1, . . . 8} : αl = 0 . (4.3.79)

Proof. As for lemma 4.2, eq. (4.3.78) has to be multiplied by the appropriate terms,
so that we get systems of equations of two coefficients, αl, each. We have the
following factors and the corresponding pairs of coefficients:

I122, I222 : α1, α2 ; (4.3.80)

I121, I221 : α3, α4 ; (4.3.81)

I112, I212 : α5, α6 ; (4.3.82)

I111, I211 : α7, α8 . (4.3.83)

The systems of equations are exactly the same as in the last proof and so also lead
to the desired result here.

Finally we are left with the monomials of second degree, which require some
steps of calculation more because the eighteen coefficients do not pair up so nicely.

Lemma 4.4. Let αl (I1, I2) with i = 1, . . . , 18 be functions of non-nilpotent invari-
ants, so that

18∑
l=1

αl (I1, I2) I2,l = 0 (4.3.84)

then

∀l ∈ {1, . . . 18} : αl = 0 . (4.3.85)

Proof. The first four coefficients can be singled out by the appropriate factor. If eq.
(4.3.84) is multiplied by I2

122, I2
121, I2

112 or I2
111, the terms with the coefficients α1

till α4, respectively, survive. Hence these four coefficients have to be zero.

Also here we find four pairs as in the other two cases. The following factors
segregate the respective pairs of coefficients:

I121I122, I221I122 : α5, α15 ; (4.3.86)

I112I122, I212I122 : α6, α13 ; (4.3.87)

I121I111, I221I111 : α9, α16 ; (4.3.88)

I112I111, I212I111 : α10, α12 . (4.3.89)

Here we treat the first line and then see, how the others analoguosly follow. The fol-
lowing two equations form after the multiplication of eq. (4.3.84) with the mentioned
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factors:

α5I111I112I121I122 + α15I111I212I121I122 = −1

2
(α5 + α15A) I2

111I
2
122

= 0 , (4.3.90)

α5I111I112I221I122 + α15I111I212I221I122 = −1

2

(
α5A+ α15

(
2A2 −B

))
I2

111I
2
122

= 0 . (4.3.91)

A and B are the same as in eqns. (4.3.75) and (4.3.76). For the respective first
equal signs the identities between monomials, which appear and are not in I, and
those within this set are used (cf. eqns. (4.3.52), (4.3.54) and (4.3.56)). If the first
equation is multiplied by A and subtracted from the second, this results in a familiar
equation:

− 1

2
α15

(
A2 −B

)
I2

111I
2
122 = 0 . (4.3.92)

So the two coefficients are zero.
For the other pairs again eqns. (4.3.52), (4.3.54) and (4.3.56) are all, that is

needed to show, that the resulting system of equations is not different from the one
above. At this point all but six coefficients have been shown to be zero. There
are no appropriate factors, with which we could separate these six coefficients into
smaller groups. So we deal with a system of six equations with six unknowns. This
system results from the multiplications with exactly the six monomials, to which
the six coefficients belong. There is no problem, that we have not proven their
independence yet. If they would depend on each other, the system of equations
would be under-determined, which would show in the course of solving it.

The following equations, which are already simplified, result from the multipli-
cation of eq. (4.3.84) by I111I122, I112I121, I111I222, I211I122, I112I221 and I212I221:(

α7 −
1

2
α8 + α13A+ α14A−

1

2
α17A− α18

(
A2 − 1

2
B

))
I2

111I
2
122 = 0 , (4.3.93)(

−1

2
α7 + α8 −

1

2
α13A−

1

2
α14A+ α17A+ α18A

2

)
I2

111I
2
122 = 0 , (4.3.94)(

α7A−
1

2
α8A+ α13B + α14A

2 − 1

2
α17B −

1

2
α18AB

)
I2

111I
2
122 = 0 , (4.3.95)(

α7A−
1

2
α8A+ α13A

2 + α14B −
1

2
α17B −

1

2
α18AB

)
I2

111I
2
122 = 0 , (4.3.96)(

−1

2
α7A+ α8A−

1

2
α13B −

1

2
α14B + α17B + α18AB

)
I2

111I
2
122 = 0 , (4.3.97)(

−α7

(
A2 − 1

2
B

)
+ α8A

2 − 1

2
α13AB −

1

2
α14AB+

+α17AB + α18B
2
)
I2

111I
2
122= 0 . (4.3.98)

The subtraction of eq. (4.3.96) from (4.3.95) leaves only α13 and α14:

α13

(
B −A2

)
+ α14

(
A2 −B

)
= 0 ⇒ α14 = α13 . (4.3.99)
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Once more we used the fact, that B − A2 is not zero. In the next step we subtract
on the one hand eq. (4.3.93) times A from eq. (4.3.95) and on the other hand eq.
(4.3.94) times A from eq. (4.3.97):

α13

(
B −A2

)
− 1

2
α17

(
B −A2

)
− α18

(
BA−A3

)
= 0 ,(4.3.100)

−1

2
α13

(
B −A2

)
− 1

2
α14

(
B −A2

)
+ α17

(
B −A2

)
+ α18

(
BA−A3

)
= 0 .(4.3.101)

With α14 plugged in, the sum of these two equations determines α17 to be zero and
– with this result and one of these equations – α13 = Aα18. Now these results can
also be used to simplify eq. (4.3.94):

− 1

2
α7 + α8 = 0 . (4.3.102)

Eq. (4.3.95) then is

3

4
α7A = −α13

(
1

2
B +A2

)
. (4.3.103)

Yet unused we finally multiply eq. (4.3.98) by A and plug all previous results in,
so that only α13 is left in it. The multiplication would not be needed, because A is
invertable. So it is only for convenience, so that we end up with

α13
2

3

(
B −A2

)
= 0 . (4.3.104)

Thus α13 has to vanish and all other coefficients with it except α17, which we already
found out to be zero.

With these three lemmas not much more is needed to prove the theorem.

Proof of theorem 4.1: From the calculations in the proofs of the lemmas one can see,
that the vanishing of the coefficients already follows, if we start from the assump-
tion, that the linear combination only vanishes in lowest non-vanishing order of the
invariants. For i = 1, 2, 3 we have

nl∑
l=1

αl (I1, I2) Ii,l
l.o.
= 0 ⇒ αl (I1, I2) = 0 . (4.3.105)

The reason is the non-nilpotency of the difference
(
B −A2

)
. This makes it also

impossible, that a combination of monomials of degree i is equal to one or a combi-
nation of monomials of a higher degree j > i.

This establishes the independence of all monomials in I and shows the uniqueness
of the expansion (4.3.57).
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4.3.4 Algorithmic calculations with explicit expansions of cross ra-
tios and other functions of superspace coordinates

In eq. (4.3.57) we took the invariants I1 and I2 as arguments of the coefficient
functions. But every other pair of non-nilpotent invariants can be used, if it is
not possible to express one invariant of this pair by the other one and nilpotent
invariants. In this section we see, how we can take advantage of the nilpotency of
the monomials from section 4.3.2 and apply an algorithm, which allows us to replace
the non-nilpotent invariants in the expansions of the kind of theorem 4.1 by other
non-nilpotent invariants. The discussion here is completed by the Maple procedures
in appendix D, which handle these expansions.

For the computation of expansions in this paragraph we have to start with the
arguments X1(2)−

2 and X1(1)+µX1(2)−
µ because we encounter products of nilpotent

invariants, which have to be brought into the correct form for the expansion with
the help of the equations gathered in section 4.3.2. As we have not expressed these
two arguments by another pair of nilpotent invariants, yet, we inevitably get these
arguments in the coefficient functions. But later in this paragraph we reach this
point and then are able to transfer the result to coefficient functions of cross ratios.

For these calculations it is also needed to express X̂2
1(1)+ in terms of the nilpotent

invariant I111. This can be done in an iterative way, which already stops after the
second step here, but is a prototype to other calculations later on, especially when
one wants to replace one pair of non-nilpotent invariants by another. The key lies
in an equation, in which the studied invariant – here actually X̂2

1(1)− – appears
once with no or a non-nilpotent factor and another time multiplied with a nilpotent
invariant.

We begin with the three point functions X̂2
1(1)+ and X̂2

1(1)−. These are particu-

larly simple because the ratio cancels down, if we plug the normalization into X̂2
1(1)+

and X̂2
1(1)−,

X̂2
1(1)+ =

X1(1)+
2√

X1(1)+
2X1(1)−

2
=

√
X1(1)+

2

X1(1)−
2 =

√√√√X̂2
1(1)+

X̂2
1(1)−

, (4.3.106)

X̂2
1(1)− =

X1(1)−
2√

X1(1)+
2X1(1)−

2
=

√
X1(1)−

2

X1(1)+
2 =

√√√√X̂2
1(1)−

X̂2
1(1)+

. (4.3.107)

We see, that they are the inverse of one another. In the respective last steps the
ratio is expanded by the normalization.

The following equation gives us the possiblilty to calculate the expansions of one
of these two functions (cf. eq. (4.1.13)):

X̂µ
1(i)− = X̂µ

1(i)+ + 2iΘ̂1(i)σ
µ ˆ̄Θ1(i) . (4.3.108)
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The square of this is

X̂2
1(1)− = X̂2

1(1)+ + 4iΘ̂1(1)X̂1(1)+
ˆ̄Θ1(1) − 4Θ̂1(1)σ

µ ˆ̄Θ1(1)Θ̂1(1)σµ
ˆ̄Θ1(1)

= X̂2
1(1)+ + 4iI111 − 16

I111
2

X̂2
1(1)+

, (4.3.109)

where in the second line eq. (A.2.7) provides the last summand and I111 is plugged
in (cf. eq. (4.3.3)). This equation can be solved for the radicand in the last step of
eq. (4.3.107). When we also use, that X̂2

1(1)− = 1/X̂2
1(1)+, we get

X̂2
1(1)−

X̂2
1(1)+

= 1 + 4iI111X̂
2
1(1)− − 16I111

2X̂4
1(1)− . (4.3.110)

The square root is

X̂2
1(1)− =

√√√√X̂2
1(1)−

X̂2
1(1)+

= 1 + 2iI111X̂
2
1(1)− − 6I111

2X̂4
1(1)− , (4.3.111)

At this point we can start an iteration, which leads to the desired expansion. We
plug this equation first into the first order (of I111) term and then into the resulting
new second order term:

X̂2
1(1)− =

1

X̂2
1(1)+

= 1 + 2iI111 − 10I111
2 . (4.3.112)

At the end the inverse is given by eq. (A.2.10), so that the other three point variable
is

X̂2
1(1)+ =

1

X̂2
1(1)−

= 1− 2iI111 + 6I111
2 . (4.3.113)

With eq. (4.3.112) we can also get X̂2
1(2)+ in terms of X̂2

1(2)− and Iijk. We

rearrange eq. (4.3.108) for i = 2 and take the square,

X̂2
1(2)+ = X̂2

1(2)− − 4iI222 − 16
I122

2

X̂1(1)+

= X̂2
1(2)− − 4iI222 − 16I122

2 − 32iI111I122
2 + 160I111

2I122
2 . (4.3.114)

The next few expansions are just the ones, which we still need to be able to
switch to expansions with coefficient functions of superconformal cross ratios. We
shorten the expressions with the help of

X1 = X̂µ
1(1)+X̂1(2)−µ , (4.3.115)

X2 = X̂2
1(2)− , (4.3.116)

X3 = 1 + X̂2
1(2)− − 2X̂µ

1(1)+X̂1(2)−µ . (4.3.117)



4.3. NILPOTENT FOUR-POINT INVARIANTS 67

The square of eq. (4.2.25) is

X̂2
1+ = X3 − 2iI111 + 4iI112 − 4iI212 + 6I111

2 − 16I112
2 . (4.3.118)

Because the equations get longer, we introduce 36-tuple with the coefficients inside,
which are defined as

(F0,1|F1,1, . . . , F1,8|F2,1, . . . , F2,18|F3,1, . . . , F3,8|F4,1) =

4∑
0=1

ni∑
j=1

Fi,jIi,j . (4.3.119)

This way we can compactly write down the following results:

I0 = (0|1,−1,−1, 1,−1, 1, 1,−1|0,−8i, 0, 8i, 0, 0, 0, 0, 0,−4i,−4i, 0, 0, 0, 0|4, 0, 8,
0, 0, 0, 0, 0|0) , (4.3.120)

X̂2
1− = X̂2

1+ + 4iI0 − 16
I0

2

X̂2
1+

(4.3.121)

= (X3|2i, 0,−4i, 4i,−4i, 0, 4i,−4i| − 10, 0,−16,−16, 0, 32, 0, 32, 0, 0, 0, 0,−16,

−16, 0, 0, 0, 0| − 16i,−32i, 0,−32i, 0, 0, 0, 0|160) . (4.3.122)

With the functions of three points, X̂2
1± and X̂2

1(i)± we can also compute the cross
ratios as such expansions:

I1 = X1−
2

X1(2)+
2 =

(
X3

X2

∣∣∣∣ 2i

X2
, 0,
−4i

X2
,

4i

X2
,
−4i

X2
, 0,

4i

X2
,
4i− 8iX1

X2
2

∣∣∣∣ −10

X2
, 0,
−16

X2
,
−16X1

X2
2 , 0,

32

X2
, 0,

16X2 + 32X1

X2
2 , 0, 0, 0,

−16

X2
2 , 0, 0,

−16

X2
2 ,
−8

X2
2 , 0, 0

∣∣∣∣ 0, −32iX1

X2
2 , 0,

−16iX2 − 32iX1

X2
2 ,

−40i

X2
2 , 0,

−64i

X2
2 ,
−32i

X2
2

∣∣∣∣ 224X1

X2
2

)
, (4.3.123)

I2 = X1+
2

X1(1)+
2 = (X3|2i (X3 − 1) , 4i, 0, 0, 0,−4i, 0, 0| − 10 (X3 − 1) ,−16, 0, 0,−8,

0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0|0, 0, 0, 0, 0, 0, 0, 0|0) . (4.3.124)

These equations can also be used to get the expressions of X1 and X2 in terms of
these two invariants. We weaken the definition in (4.3.119) and let the coefficients
also be functions of other non-nilpotent invariants. Of course, in such an expansion
the coefficients are not unique, but it is useful as a shorthand notation for the
purpose here. We will not distinguish the notation and use the same bracket, as it
is always possible to look at the coefficients and see, which non-nilpotent invariants
appear. We exchange the left-hand side of eq. (4.3.124) and the first coefficient in
the bracket:

− X3 = (−I2|2i (X3 − 1) , 4i, 0, 0, 0,−4i, 0, 0| − 10 (X3 − 1) , . . .) . (4.3.125)

We get to our goal with two iterative steps. We plug this expansion now into
the first order coefficients in the same equation, which has influence on the higher
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coefficients after resorting the terms in the expansion. Here only one first order
coefficient, 2i (X3 − 1), is not constant. What we actually compute is

X3 = (I2|2i,−4i, 0, 0, 0, 4i, 0, 0|10 (X3 − 1) , . . .)

−2iI111 (I2| − 2i (X3 − 1) ,−4i, 0, 0, 0, 4i, 0, 0|10 (X3 − 1) , . . .)

= (I2|2i (1− I2) ,−4i, 0, 0, 0, 4i, 0, 0|6 (X3 − 1) , 16, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0|0, 0, 0, 0, 0, 0, 0, 0|0) . (4.3.126)

If we plug this into the coefficient of I111
2, we see that only the zeroth order coefficient

survives in the product with I111
2:

X3 = (I2|2i (1− I2) ,−4i, 0, 0, 0, 4i, 0, 0|6 (I2 − 1) , 16, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0|0, 0, 0, 0, 0, 0, 0, 0|0) . (4.3.127)

This is the first half on the way to the expansion with coefficient functions of two
cross ratios. Eq. (4.3.123) is the starting point for the other half. We calculate the
inverse with the help of eq. (D.4.1) and get

1

I1
=

(
X2

X3

∣∣∣∣ −2iX2

X3
2 , 0,

4iX2

X3
2 ,
−4iX2

X3
2 ,

4iX2

X3
2 , 0,

−4iX2

X3
2 ,

4i(−1 + 2X1)

X3
2

∣∣∣∣
2
X2 (2− 4X2 + X3)

X3
3 , 0, 0, 16

−1 + X1

X3
2 , 0, −16

X2

X3
3 , 0, 16

1− X3

X3
2 , 0,

16
X2

X3
3 , 0, −16

1

X3
2 , −16

X2 (−1 + 4X1)

X3
3 , −32

X2 (−1 + 2X1)

X3
3 ,

16
2X2 − X3

X3
3 , 8

2X2 − X3

X3
3 , 0, 32

X2

X3
3

∣∣∣∣ 16iX2 (2 + 7X2 − (6− 4X3)X1)

X3
4 ,

32i((2 + X3)X1 − 2X2)

X3
3 , 0,

16i(3X2 + X2
2 − 2(X3 + X2)X1)

X3
3 ,

−8i(3− 12X2 + (16X2 − 8)X1 + 3X2
2 + 4X1

2)

X3
4 ,

0,
−32 i

X3
3 ,

32i(−3 + X2 + 2X1)

X3
3

∣∣∣∣
−32(12X1

3 − (24 + 20X2)X1
2 + (36X2 + 15 + 7X2

2)X1 − 22X2 − 4X2
2))

X3
4

)
.

For this problem we programmed a Maple procedure (cf. D.2), which can replace
X2 by any invariant, in which the zeroth order is a monomial, in which X2 appears
with the degree 1. This is the case here. So the procedure subtracts the zeroth order
term and the left hand side, so that they exchange places and divides by the factor
of X2 – here 1/X3 –, which is now on the left hand side. This way it leaves X2 there.
Then it substitutes

X1 =
1

2
(1 + X2 − X3) , (4.3.128)

and inserts eq. (4.3.127) everywhere in the right power. Furthermore it goes through
the iterative steps to replace all X2 by the current intermediate result.
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The final result is

X̂2
1(2)− =

(
I2

I1

∣∣∣∣ 2i
2− I2

I1
, − 4i

I1
, − 4i

I1
,

4i

I1
, − 4i

I1
,

4i

I1
,

4i

I1
, 4i
I1 − 1

I1

∣∣∣∣ 6I2 − 16

I1
,

16

I1
,

−16

I1
, 16
I1 − 1

I1
, 0,

32

I1
, 0,

32

I1
, 0, 0, 0, 0, −16

I1
, −16

I1
, 0, 0, 0, 0

∣∣∣∣
−16i

I1
, −32i

1− I1

I1
, 0, −32i

I1
, 0, 0, 0, 0

∣∣∣∣ 160
1− I1

I1

)
(4.3.129)

=
I2

I1
− 2i
I2

I1
I111 + 4i

1

I1
I0 + 4iI222 + 6

I2

I1
I111

2 − 16
1

I1I2
I0

2 + 16
I1

I2
I222

2

+32i
I1

I2
I111I222

2 − 64i
I1

I2
2 I222

2I0 + 32
I2 + 4I1 − I1I2

I2
2 I111

2I222
2 .(4.3.130)

With this equation and eq. (4.3.127) any invariant, which is given in form of eq.
(D.1.1) can now be transformed into the expansion

F̌ (I1, I2, I111, . . . , I222)

=

4∑
i=0

ni∑
j=1

F̌i,j (I1, I1) Ii,j . (4.3.131)

The procedure, which does this job, is similar to the one we used to get eq. (4.3.129)
(cf. appendix D.3). This can then be applied to the product of two unknown
invariants in eqns. (D.1.5)-(D.1.8) with Fi,j and Gi,j replaced by the F̌i,j and Ǧi,j
and results in the equations of the coefficient functions Ȟi,j (I1, I1) of the product
Ȟ = F̌ Ǧ.

With the equations and procedures to calculate the inverse and the square root
(cf. D.4) one can compute the expansions of all invariants, which we encounter in
this thesis. In eqns. (4.3.112) and (4.3.113) we had already X̂2

1(1)+ and X̂2
1(1)− =

1/X̂2
1(1)+. For X̂2

1+ we can use (4.2.7):

X̂2
1+ = X̂2

1(1)+I2

= I2 − 2iI2I111 + 6I2I111
2 . (4.3.132)

The inverse is then, of course, proportional to X̂2
1(1)−. If we look at further functions

of three points it is often shorter to write them with the help of I0, as in eq. (4.3.130):

X̂2
1(2)+ =

I2

I1
− 2i
I2

I1
I111 + 4i

1

I1
I0 + 6

I2

I1
I111

2 − 16
1

I1I2
I0

2

−32i
1

I1I2
I112

2I121 + 160
1

I2
I111

2I222
2 , (4.3.133)

1

X̂2
1(2)+

=
I1

I2
+ 2i
I1

I2
I111 − 4i

I1

I2
2 I0 − 10

I1

I2
I111

2 + 16
I1

I2
2 I111I0

+96i
I1

I2
2 I111

2I0 , (4.3.134)
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1

X̂2
1(2)−

=
I1

I2
+ 2i
I1

I2
I111 − 4i

I1

I2
2 I0 − 4i

I1
2

I2
2 I0 − 10

I1

I2
I111

2 − 32
I1

3

I2
3 I

2
222

+16
I1

I2
2 I111I0 + 16

I1
2

I2
2 I111I222 − 32

I1
2

I2
3 I0I222 + 96i

I1

I2
3 I111I0

2

−32i
I1

2

I2
4 I222I0

2 − 96i
I1

3

I2
3 I111I222

2 + 288i
I1

3

I2
4 I0I222

2

+32
I1

2 (I1 + 7I2 − 7I1I2)

I2
4 I111

2I222
2 . (4.3.135)

With all these squares of functions of three points, their inverses and a procedure to
calculate their products one quickly gets to the three point invariants J1 and J1(i)

and the other cross ratios Ii.

J1 = 1− 4i
1

I2
I0 +

8

I2
I111I0 + 40i

1

I2
I111

2I0 , (4.3.136)

J1(1) = 1− 4iI111 + 8I111
2 , (4.3.137)

J1(2) = 1− 4i
I1

I2
I222 − 32

I1
2

I2
2 I

2
222 + 8

I1

I2
I111I222 − 16

I1

I2
2 I0I222 + 8i

I1

I2
I111

2I222

+32i
1

I2
2 I111I0

2 − 32i
I1

I2
3 I222I0

2 − 96i
I1

2

I2
2 I111I222

2 + 224i
I1

2

I2
3 I0I222

2

−64
I1 (3I1 − 7I2 + I1I2)

I2
3 I111

2I222
2 , (4.3.138)

I3 = I2 − 4iI2I111 + 4iI0 + 8I2I111
2 − 16

I2
I0

2 + 8I111I0 + 24iI2
111I0 , (4.3.139)

I4 =
I1

I2
− 4i

I1

I2
2 I0 + 8

I1

I2
2 I111I0 + 40i

I1

I2
2 I111

2I0 , (4.3.140)

I5 = I1 − 4i
I1

I2
I0 − 4i

I1
2

I2
I222 − 32

I1
3

I2
2 I

2
222 + 8

I1

I2
I111I0 + 8

I1
2

I2
I111I222

−32
I1

2

I2
2 I0I222 − 24i

I1

I2
I111

2I0 − 24i
I1

2

I2
I111

2I222 + 64i
I1

I2
2 I111I0

2

−64i
I1

3

I2
2 I111I222

2 + 320i
I1

3

I2
3 I0I222

2 + 320
I1

2 (I1 + I2 − I1I2)

I2
3 I111

2I222
2 ,

(4.3.141)

I6 =
I1

I2
− 4i
I1

I2
I111 − 4i

I1

I2
2 I0 − 4i

I1
2

I2
2 I222 − 24

I1

I2
I2

111 − 32
I1

3

I2
3 I

2
222 + 24

I1

I2
2 I111I0

+24
I1

2

I2
2 I111I222 − 32

I1
2

I2
3 I0I222 + 40i

I1

I2
2 I111

2I0 + 40i
I1

2

I2
2 I111

2I222

+128i
I1

I2
3 I111I0

2 − 64i
I1

2

I2
4 I111I0

2 − 128i
I1

3

I2
3 I111I222

2 + 256i
I1

3

I2
4 I0I222

2

−64
I1

2 (3I1 − I2 + I1I2)

I2
4 I111

2I222
2 . (4.3.142)

It is remarkable, that all expansions in this section with coefficient functions of the
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cross ratios except X3 can be rewritten in a form, in which they only contain three
nilpotent invariants, I111, I0 and I222. They all have in common, that they are ratios
of squared superconformal intervals, xīj

2, or the square root of such ratios.

4.3.5 Alternative nilpotent invariants

In the last section we have encountered already the invariant I0, which is a function
of all Iijk and has an especially simple structure. This invariant, I111 and I222 differ
only in their indices apart from their normalization, which is the same for all three.
To simplify calculations one can replace any of the other six Iijk by I0. We will see
that we are led automatically to this replacement in our discussion of the four point
function.

If we look at the form of I111 in eq. (4.3.10), we find another possibility to get
an even simpler invariant looking at the mixed terms of second order in ρ’s. These
also appear in I2

111. So one can replace them by squares of ρ’s by computing

T111 =
I111√
J1(1)

+ 2i
I2

111

J1(1)

= −ρ41 − ρ12 − ρ24 + 2i
(
ρ41

2 + ρ12
2 + ρ24

2
)

−16
(
ρ2

24ρ12 + ρ24ρ
2
12 + ρ2

24ρ41 + ρ24ρ
2
41 + ρ2

41ρ12 + ρ41ρ
2
12 + 2ρ24ρ12ρ12

)
−32i

(
ρ2

24ρ
2
12 + ρ2

41ρ
2
12 + ρ2

24ρ
2
41 + 4ρ12ρ24ρ

2
41 + 4ρ12ρ

2
24ρ41 + 4ρ2

12ρ24ρ41

)
.

(4.3.143)

We devide by the factor in eq. (4.3.10), which is just
√
J1(1), and the corresonding

square in the first line.

With the equations (4.3.14)–(4.3.17), which we have found on the way to the
expression of I111 in terms of ρ’s (eq. (4.3.18)), we also get a simple result for T111,
which is certainly does not contain any vanishing higher degree terms, because here
all of these have already disappeared:

T111 = −ρ41 − ρ12 − ρ24 + 2i
(
ρ41

2 + ρ12
2 + ρ24

2
)
. (4.3.144)

This invariant has not only a very short expression in terms of the superconformal
intervals, but also has the property, that only signs change, if one switches the indices
of the ρ’s (cf. once more eq. (A.2.11)). For the expansion of this invariant directly
in terms of our standard set of invariants we insert eq. (4.3.112) into its definition
and get

T111 = X̂2
1(1)−I111 + 2iX̂4

1(1)−I111
2 (4.3.145)

= I111 + 4iI111
2 . (4.3.146)

The factor X1(1)−
4 in the second summand just reduces to 1 because it is multiplied

by I2
111.

Of course, we can get other invariants of this kind by replacing the indices of
the points this one depends on. If we replace the index 2 by 3, we get an invariant,
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which we can write down in terms of I222 and X̂2
1(2)+:

T222 =
1

X̂2
1(2)+

I222 + 2i
1

X̂4
1(2)+

I2
222 (4.3.147)

= −ρ41 − ρ13 − ρ34 + 2i
(
ρ41

2 + ρ13
2 + ρ34

2
)
.

Here we inserted into eq. (4.3.145), that X̂2
1(1)+ is the inverse of X̂2

1(1)−. Then there

is a quotient of I111 and X̂2
1(1)+ and the normalizations cancel. The indices can be

replaced and the ratio can be expanded by the normalization again leading to the
just stated result.

If one replaces instead the index 4 by 3, one gets the third invariant of this kind,
which we will later need:

T0 =
1

X̂2
1+

I0 + 2i
1

X̂4
1+

I2
0 (4.3.148)

= ρ13 − ρ12 − ρ23 + 2i
(
ρ12

2 + ρ23
2 − ρ13

2
)
.

A bit more complex is the case of the fourth invariant, which we need in the expres-
sion of the four-point function, which we show in the next section. We start from
the nilpotent invariant I212 and expand its definition (4.3.4) with the help of eq.
(A.2.3).

I212 =

x4̄3
2

x4̄1
2x1̄3

2√
X1(1)+

2X1(1)−
2

(
θ43x̃

−1
4̄3
− θ14x̃

−1
1̄4

+ 4iθ14x̃
−1
1̄4
θ̄14θ43x̃

−1
4̄3

)
x̃4̄1(

x̃−1
4̄1
θ̄41 − x̃−1

2̄1
θ̄21

)
. (4.3.149)

The factor in front of the first bracket is X̂2
1(2)−. We devide by it here and find the

following structure:

I212

X̂2
1(2)−

= ρ14 +
[
θ43x̃

−1
4̄3
x̃4̄1

(
x̃−1

4̄1
θ̄41 − x̃−1

2̄1
θ̄21

)
− θ14x̃

−1
2̄1
θ̄21

]
+4iρ14

[
θ43x̃

−1
4̄3
x̃4̄1

(
x̃−1

4̄1
θ̄41 − x̃−1

2̄1
θ̄21

)
− θ14x̃

−1
2̄1
θ̄21

]
. (4.3.150)

The two square brackets are identical and we define −t212 to be this square bracket.
We continue to expand it and use in the term, which contains x̃−1

2̄1
and x̃−1

4̄3
, that

x̃4̄1 = x̃2̄1 + x̃4̄3 − x̃2̄3 − 4iθ̄42θ31 . (4.3.151)

We finally find, that

I212

X̂2
1(2)−

= ρ14 − t212 − 4iρ14t212 , (4.3.152)

t212 = θ43x̃
−1
4̄3
θ̄24 + θ13x̃

−1
2̄1
θ̄21 − θ43x̃

−1
4̄3
x̃2̄3x̃

−1
2̄1
θ̄21

−4iθ43x̃
−1
4̄3
θ̄24θ13x̃

−1
2̄1
θ̄21 . (4.3.153)
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Now we define the invariant, which we are ultimately interested in. We eliminate
the mixed term ρ14t212 by subtracting a multiple of the square of this invariant:

T212 = I212

X̂2
1(2)−

− 2i I212
2

X̂4
1(2)−

= ρ14 − t212 − 2i
(
ρ14

2 + t212
2
)

(4.3.154)

−16
(
ρ14

2t212 − ρ14t212
2
)

+ 32iρ14
2t212

2 .

(4.3.155)

At this point we can use the higher powers of T212, which vanish, to simplify the
expression here. With the help of computer algebra this can be done quite easily.
We have declared the three terms in t212 and ρ14 as variables, but not resolved their
structure. Naturally, one then has to demand a lot of conditions, that none of them
appears with a power, that is too high. These have been already sixteen conditions
like third powers or (

θ43x̃
−1
4̄3
θ̄24

)2
θ43x̃

−1
4̄3
x̃2̄3x̃

−1
2̄1
θ̄21 = 0 , (4.3.156)(

θ43x̃
−1
4̄3
θ̄24

)2
ρ14

(
θ13x̃

−1
2̄1
θ̄21

)2
= 0 , (4.3.157)

θ43x̃
−1
4̄3
θ̄24 ρ14

2 θ13x̃
−1
2̄1
θ̄21θ43x̃

−1
4̄3
x̃2̄3x̃

−1
2̄1
θ̄21 = 0 . (4.3.158)

The forth power of T212 is computed to be

T212
4 = 6

[
ρ14

2
(
θ13x̃

−1
2̄1
θ̄21

)2
+
(
θ13x̃

−1
2̄1
θ̄21

)2 (
θ43x̃

−1
4̄3
θ̄24

)2
+ρ14

2
(
θ43x̃

−1
4̄3
x̃2̄3x̃

−1
2̄1
θ̄21

)2
+ ρ14

2 θ43x̃
−1
4̄3
θ̄24

2 − 2
(
θ13x̃

−1
2̄1
θ̄21

)2
ρ14θ43x̃

−1
4̄3
θ̄24

−2 θ13x̃
−1
2̄1
θ̄21 ρ14

2 θ43x̃
−1
4̄3
x̃2̄3x̃

−1
2̄1
θ̄21 − 2 θ13x̃

−1
2̄1
θ̄21 ρ14

2 θ43x̃
−1
4̄3
θ̄24

−2 θ13x̃
−1
2̄1
θ̄21 ρ14

(
θ43x̃

−1
4̄3
θ̄24

)2 − 2 ρ14
2 θ43x̃

−1
4̄3
θ̄24θ43x̃

−1
4̄3
x̃2̄3x̃

−1
2̄1
θ̄21

+4 θ13x̃
−1
2̄1
θ̄21 ρ14 θ43x̃

−1
4̄3
θ̄24θ43x̃

−1
4̄3
x̃2̄3x̃

−1
2̄1
θ̄21

]
= 0 . (4.3.159)

As written in the last line this has to be zero just as the next result, which uses this
one already:

T212
3ρ14 = 3

[
θ13x̃

−1
2̄1
θ̄21 ρ14

(
θ43x̃

−1
4̄3
θ̄24

)2
+
(
θ13x̃

−1
2̄1
θ̄21

)2
ρ14θ43x̃

−1
4̄3
θ̄24

−
(
θ13x̃

−1
2̄1
θ̄21

)2 (
θ43x̃

−1
4̄3
θ̄24

)2
−2 θ13x̃

−1
2̄1
θ̄21 ρ14

(
θ43x̃

−1
4̄3
θ̄24

)
θ43x̃

−1
4̄3
x̃2̄3x̃

−1
2̄1
θ̄21

]
= 0 . (4.3.160)

We continue on this path and find two more equations of lowest order
(
θθ̄
)4

:

T212
3θ13x̃

−1
2̄1
θ̄21 = 3

[
θ13x̃

−1
2̄1
θ̄21 ρ14

2 θ43x̃
−1
4̄3
x̃2̄3x̃

−1
2̄1
θ̄21 −

(
θ13x̃

−1
2̄1
θ̄21

)2
ρ14

2

−θ13x̃
−1
2̄1
θ̄21 ρ14

2 θ43x̃
−1
4̄3
θ̄24

+
(
θ13x̃

−1
2̄1
θ̄21

)2
ρ14 θ43x̃

−1
4̄3
θ̄24

]
= 0 , (4.3.161)
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T212
3θ43x̃

−1
4̄3
x̃2̄3x̃

−1
2̄1
θ̄21 = 3

[
θ43x̃

−1
4̄3
θ̄24 ρ14

2 θ43x̃
−1
4̄3
x̃2̄3x̃

−1
2̄1
θ̄21 −

(
θ43x̃

−1
4̄3
θ̄24

)2
ρ14

2

−θ13x̃
−1
2̄1
θ̄21 ρ14

2 θ43x̃
−1
4̄3
θ̄24

+θ13x̃
−1
2̄1
θ̄21 ρ14

(
θ43x̃

−1
4̄3
θ̄24

)2]
= 0 . (4.3.162)

The last possible product of this kind, T212
3θ43x̃

−1
4̄3
θ̄24, is already zero with these

conditions. At last the third power is still a long expression, but also the last to get
to the final form of T212:

T212
3 = 3 ρ14

2 θ43x̃
−1
4̄3
x̃2̄3x̃

−1
2̄1
θ̄21 − 3 ρ14

2 θ43x̃
−1
4̄3
θ̄24 − 3 ρ14

2 θ13x̃
−1
2̄1
θ̄21

+3ρ14

(
θ43x̃

−1
4̄3
x̃2̄3x̃

−1
2̄1
θ̄21

)2 − 6ρ14θ43x̃
−1
4̄3
x̃2̄3x̃

−1
2̄1
θ̄21θ43x̃

−1
4̄3
θ̄24

−6ρ14θ43x̃
−1
4̄3
x̃2̄3x̃

−1
2̄1
θ̄21θ13x̃

−1
2̄1
θ̄21 + 3ρ14

(
θ43x̃

−1
4̄3
θ̄24

)2
+6ρ14θ43x̃

−1
4̄3
θ̄24θ13x̃

−1
2̄1
θ̄21 + 3ρ14

(
θ13x̃

−1
2̄1
θ̄21

)2−3θ43x̃
−1
4̄3
θ̄24

(
θ13x̃

−1
2̄1
θ̄21

)2
+6θ43x̃

−1
4̄3
x̃2̄3x̃

−1
2̄1
θ̄21θ43x̃

−1
4̄3
θ̄24θ13x̃

−1
2̄1
θ̄21 − 3

(
θ43x̃

−1
4̄3
θ̄24

)2
θ13x̃

−1
2̄1
θ̄21

+12i
[
ρ14

2θ43x̃
−1
4̄3
θ̄24θ13x̃

−1
2̄1
θ̄21 − ρ14

(
θ43x̃

−1
4̄3
θ̄24

)2
θ13x̃

−1
2̄1
θ̄21

−ρ14θ43x̃
−1
4̄3
θ̄24

(
θ13x̃

−1
2̄1
θ̄21

)2]
= 0 . (4.3.163)

With all these conditions we finally find

T212 = ρ14 − θ43x̃
−1
4̄3
θ̄24 − θ13x̃

−1
2̄1
θ̄21 + θ43x̃

−1
4̄3
x̃2̄3x̃

−1
2̄1
θ̄21

−2i
[
ρ2

14 +
(
θ43x̃

−1
4̄3
θ̄24

)2
+
(
θ13x̃

−1
2̄1
θ̄21

)2
+
(
θ43x̃

−1
4̄3
x̃2̄3x̃

−1
2̄1
θ̄21

)2
−2
(
θ43x̃

−1
4̄3
θ̄24 + θ13x̃

−1
2̄1
θ̄21

)
θ43x̃

−1
4̄3
x̃2̄3x̃

−1
2̄1
θ̄21

]
+16θ43x̃

−1
4̄3
x̃2̄3x̃

−1
2̄1
θ̄21θ13x̃

−1
2̄1
θ̄21θ43x̃

−1
4̄3
θ̄24 . (4.3.164)

The four invariants introduced in this section can replace I111, I0, I222 and I212,
whenever it seems convenient. This may take place because of their simpler structure
and especially because of their derivatives, as we will see in section 5.3. Also we have
already seen in the last section, that the three invariants I111, I0 and I222 obviously
are connected to invariant ratios of superconformal intervals, which we expanded in
these invariants in eqns. (4.3.133)–(4.3.142) and several scattered other examples.
Because the corresponding three invariants T111, T0 and T222 are calculated from
only these three nilpotent invariants, they are connected in the same way to these
ratios.



Chapter 5

Correlation functions

Correlation functions of observables given in form of fields are the standard re-
sults of theoretical calculations in quantum field theory, which can be compared
to experimental data, e.g. the scattering amplitudes with results from high energy
collider experiments. These scattering amplitudes in the S-matrix are calculated
from time-ordered correlation functions with the LSZ-formula, which goes back to
the publication of H. Lehmann, K. Symanzik, and W. Zimmerman, [LSZ55].

A perturbation series gives an empirically successful approximation for a small
interaction. For strong couplings one can either look at lattice approximation, which
are limited due to available computer power, or one has to find a way to get ex-
act – because of the rampant perturbative approach often called non-perturbative
– results. In the perturbation theory in quantum field theory there are mathemat-
ical problems with the appearing entities: The definition of non-linear functions of
distributions is not clarified, the convergence of the perturbation series remains an
open question and the used interaction picture conflicts Haag’s theorem. Haag’s
theorem1 states, that the interaction picture is inconsistent with basic properties
of interacting relativistic quantum field theories, such as translation invariance. It
remains open, why the mainstream approach leads to empirically correct results
despite the ignorance of Haag’s theorem.

The standard model of particle physics consists of gauge theories. Although the
Wightman approach cannot be directly used for gauge theories because of the ab-
sence of a Hilbert space in the mathematical sense – the norm is indefinite –, the
situation is better in Coulomb gauge as recognized in the context of the Christ-
Lee model and the Gribov-Zwanziger approach, [CL80, Zwa81, BZ81]. Within the
Wightman approach the Wightman reconstruction theorem shows, that the correla-
tion functions contain all information to recover the whole theory. This means, that
from all n-point Wightman functions satisfying the Wightman axioms the existence
of a separable Hilbert space with a vacuum vector and a field with a domain dense
in the Hilbert space and containing the vacuum vector can be found and is unique
up to unitary equivalence.

1Haag’s theorem has been formulated first in [Haa55]. A historical review on versions, proofs
and reception can be found in [EF06].
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Symmetries provide the most direct possibility to learn something about the non-
perturbative structure of correlation functions. In this thesis we study Wightman
functions, which are correlation functions without time-ordering2 as defined within
the Wightman axiomatic approach.

In the main part of this chapter we investigate the implications of N = 1 super-
conformal symmetry, as given by representations of the four-fold cover SU(2, 2|1),
on chiral scalar three- and four-point functions. In this case anomalous dimensions
appear in the theory in contrast to the case, when we deal with global supercon-
formal symmetry. The latter has only representations directly on Minkowski space
or on superspace, if we express fields of a multiplet on Minkowski space within one
superfield, and do not have representations on a larger covering space. In section
5.3.4 we see the special properties of the – now rational – four point functions in
this case.

This prepares the study of the positive energy condition for the chiral scalar
four-point function in these global superconformal theories. It enables us to directly
transfer the partial wave expansion for scalar conformal four-point functions to their
supersymmetric pendant in section 6.2.

Only the consequences of the superconformal symmetry and the restrictions of
the superfields are discussed here without any reference to a specific model.

First of all we look at the general transformation properties of superconformal
correlation functions. While the superfields transform covariantly under supercon-
formal transformations, as seen in (3.4.91), the correlation function stays invariant:〈

Ψ′
ξ1
1 (z1) . . .Ψ′

ξn
n (zn)

〉
=
〈

Ψξ1
1 (z1) . . .Ψξn

n (zn)
〉
. (5.0.1)

One can plug in the superfield transformations here. This leads to a factor
directly determined by these transformation properties times a function with the
following properties (cf. [Par99]). This function transforms homogeneously and is
in general a function of n−2 variables. In the case of vanishing total R-charge of the
correlation function, which is the sum of the R-charges of the superfields therein, it
is an invariant function.

Non-vanishing correlation functions of the component fields always have a van-
ishing total R-charge. So the total R-charge of a correlation function of superfields
has to vanish for it to be non-nilpotent. For non-vanishing total R-charge and thus
nilpotent correlation functions of scalar chiral superfields, the Ward identities seem
to be rather restrictive: It was shown in [Osb99], that the total R-charge of the three
point function has to be 1.

Here the nilpotent case will only be touched in the repective ends of the discus-
sions of the two and the three point function. So in rest of the chapter we have for
the R-charges κi of the superfields in a n-point function

n∑
i=1

κi = 0 . (5.0.2)

2The time-ordering is needed in the perturbative approach to handle integrations over the whole
space-time of inserted powers of the interaction term.
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In general the scalar n-point function in superconformal field theory is a function of
all invariants of n points times a factor due to the superconformal transformations
of the n fields (cf. [Par99]):

〈S1 . . . Sn〉 =
F (n-point invariants)∏n

l,m=1; l 6=m x
2
l̄m

∆lm
, (5.0.3)

where

∆lm = − 1

2(n− 1)(n− 2)

n∑
i=1

ηi +
1

2(n− 2)
(ηl + ηm) +

3

2n
(κl − κm) . (5.0.4)

Here we are interested in chiral scalar superfields. As these depend only on the
chiral variables, one immediately sees, that there is no way to construct a three
point invariant with only half the Graßmann variables. Therefore the three point
function can be easily written down in the next section, as it was already done in
e.g. [Osb99].

A four point function with vanishing total R-charge depends on two chiral and
two anti-chiral variables (here (x1−, θ̄1), (x2−, θ̄2), (x3+, θ̄3) and (x4+, θ̄4)), as will be
seen in section 5.3. This leads to the problem, that there is only one superconformal
cross ratio given by eq. (4.2.2) depending only on these four variables, namely
I2. But there have to be two independent non-nilpotent superconformal four-point
invariants, because there are two conformal four-point invariants, on which the four-
point functions of the component fields depend. One possibility is the construction
of a trace invariant as the second non-nilpotent invariant (cf. [Osb99]).

Here two superconformal cross ratios, I1 and I2, and the set of nilpotent in-
variants I from eq. (4.3.40) will be used to get an expression for the four-point
functions. This will simplify conclusions from properties of global conformal field
theories to global superconformal field theories.

With the help of the chirality conditions applied to the four-point function, the
dependence on all these invariants can be reduced to a dependence only on two cross
ratios with a fixed universal differential operator applied to the rest of the resulting
expression of the correlation function, which is essentially the four-point function of
the lowest order component fields of the superfields and contains the model specific
information.

For rational four-point functions this differential operator can be applied to their
power series. The coefficients of this power series turn out to be the same as those
of the conformal four-point function of the scalar fields, which are the lowest com-
ponents of the chiral and anti-chiral fields.

5.1 The two-point function

Here we recall the superconformal scalar chiral two point function with vanishing
R-charge. Because of the equal absolute value of the R-charge of the two scalar
fields they have to have the same scaling dimension, η. We have seen, that there are
no two-point invariants. So the two-point function is up to a constant completely
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determined by the superconformal transformations of the two scalar superfields, just
as for all other superfields. If we plug the superfield transformations into eq. (5.0.1)
we get〈

Φ̄′1 (z1−) Φ′2 (z2+)
〉

= Ω−(z1−, g)ηΩ+(z2+, g)η
〈
Φ̄′1
(
z′1−
)

Φ′2
(
z′2+

)〉
. (5.1.1)

We have already found the functions on superspace with this transformation prop-
erty in eq. (4.2.1). There can only be one. If there were two, the quotient of both
would be an invariant of two points, which does not exist. So we end up with〈

Φ̄1

(
xµ1−, θ̄1

)
Φ2

(
xµ2+, θ2

)〉
= C

1

(x2
1̄2

)η
. (5.1.2)

From (3.2.18) one easily verifies the conditions on the two-point function given by
the restrictions (3.4.75) and (3.4.76),〈

D1−Φ̄1Φ2

〉
= 0

〈
Φ+

1 D̄2+Φ2

〉
= 0 . (5.1.3)

R-symmetry violating two point function A very special two point function
of two chiral superfields is given in [Osb99]. Only if the sum of the R-charges of the
two superfields is three, it does not vanish. In this case it is given by a pure contact
term:

〈Φ1 (z1+) Φ2 (z2+)〉 = Cδ4 (x1+ − x2+) θ12
2 , η1 + η2 = 3 . (5.1.4)

This two-point function conflicts with the Wightman axioms, as it violates the spec-
tral condition given in section 2.1.

5.2 The three-point function

The three-point function is also determined up to a constant just like the ordinary
conformal three-point function. But in contrast to the two-point function this is
due to the restrictions of the specific type of fields. The three point function with
vanishing R-charge discussed here either contain one or two chiral superfields and
correspondingly two or one anti-chiral superfields. Here we look at the latter case
keeping in mind, that the former case calculates analoguesly. From eq. (5.0.1) we
get the following transformation properties for the chiral scalar three point function:〈

Φ̄′1 (z1−) Φ′2 (z2+) Φ′3 (z3+)
〉

= Ω−(z1−, g)η1Ω+(z2+, g)η2Ω+(z3+, g)η3 (5.2.1)〈
Φ̄′1
(
z′1−
)

Φ′2
(
z′2+

)
Φ′3
(
z′3+

)〉
with η1 = η2 + η3. This is fulfilled by the function〈

Φ̄1

(
xµ1−, θ̄1

)
Φ2

(
xµ2+, θ2

)
Φ3

(
xµ3+, θ3

)〉
=
f3PF (I3PF )

x2η2

1̄2
x2η3

1̄3

, (5.2.2)

The denominator totally accounts for the factors from the transformation and leaves
the function f3PF of the superconformal invariant.
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However, also here the chiral and anti-chiral constraints of the chiral and antichi-
ral superfields have to be satisfied. Eqns. (3.4.75) and (3.4.76) have to hold for the
fields in the correlation functions and so the derivatives of the correlation functions
have to vanish.

D1−
〈
Φ̄1Φ2Φ3

〉
= 0 , D̄2+

〈
Φ̄1Φ2Φ3

〉
= 0 , D̄3+

〈
Φ̄1Φ2Φ3

〉
= 0 , (5.2.3)

If we now choose the restriction of the chiral field Φ2 (z2+) to be examined further
we only have to derive the invariant I3PF and get two summands:

D̄2+I3PF = − ∂

∂θ̄2

(
x2

2̄3
x2

3̄1
x2

1̄2

x2
3̄2
x2

1̄3
x2

2̄1

− 1

)
= 4i

x2
2̄3
x2

3̄1
x2

1̄2

x2
3̄2
x2

1̄3
x2

2̄1

(
θ23x̃

−1
2̄3
− θ21x̃

−1
2̄1

)
. (5.2.4)

We expand the function f3PF in a Taylor series, which terminates because the third
power of I3PF is zero:

f3PF (I3PF ) = f(3PF,0) + f(3PF,1)I3PF + f(3PF,2)I
2
3PF . (5.2.5)

We can now look at the lowest order θ̄, which has to vanish independently.

D̄2+

〈
Φ̄′1 (z1−) Φ′2 (z2+) Φ′3 (z3+)

〉 l.o.
= 4i

f(3PF,1)I3PF

x2η2
12 x

2η3
13

(
θ23x̃

−1
23 − θ21x̃

−1
21

)
. (5.2.6)

Obviously only f3PF,1 = 0 can accomplish this. But this also leaves no possibilities
to cancel terms of the derivative of I2

3PF in the next order, so that also f3PF,2 = 0.
Already with only one of the three restrictions from eq. (5.2.3) the chiral/anti-chiral
three point function is fixed up to a constant, C = f(3PF,0), and has the known form:

〈
Φ̄1

(
xµ1−, θ̄1

)
Φ2

(
xµ2+, θ2

)
Φ3

(
xµ3+, θ3

)〉
=

C

x2η2

1̄2
x2η3

1̄3

. (5.2.7)

In the same way one finds the expression for two anti-chiral and one chiral
superfield: 〈

Φ̄1

(
xµ1−, θ̄1

)
Φ̄2

(
xµ2−, θ̄2

)
Φ3

(
xµ3+, θ3

)〉
=

C

x2η1

1̄3
x2η2

2̄3

. (5.2.8)

with η3 = η1 + η2.

In eq. (5.0.3) we have seen Park’s general form of scalar n-point functions. Here
we want to see in the following short calculation, how the chiral three point function
fits into this form, which is

〈
Φ̄1

(
xµ1−, θ̄1

)
Φ2

(
xµ2+, θ2

)
Φ3

(
xµ3+, θ3

)〉
=

fPark (I3PF )∏3
l,m=1; l 6=m x

2
l̄m

∆lm
. (5.2.9)

It contains an arbitrary function of the three-point invariant, I3PF . Again the re-
strictions (3.4.75) and (3.4.76) and so the differential equations, have to be satisfied.
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But it is easier to rewrite the denominator with the help of the identities relating
the ∆lm with each other:

∆12 + ∆13 = η1 , (5.2.10)

∆12 + ∆32 = η2 , (5.2.11)

∆13 + ∆23 = η3 , (5.2.12)

∆21 + ∆31 = ∆21 + ∆23 = ∆31 + ∆32 = 0 . (5.2.13)

Here we used eq. (5.0.4) with n = 3, eqns. (3.4.59) and (3.4.60) with the corre-
sponding signs. With these identities we get

1∏3
l,m=1; l 6=m x

2
l̄m

∆lm
=

J1
∆21

x2η2

1̄2
x2η3

1̄3

. (5.2.14)

The derivatives only vanish, if the whole does not depend on I3PF any more. So
with eq. (4.1.8) the function fPark (I3PF ) is

fPark (I3PF ) = (I3PF + 1)−∆21 . (5.2.15)

And also here the calculations are analogous, which lead to the function, which is
needed to fit the three point function of two anti-chiral and one chiral field into the
form of Park. Due to the different sign for the index 2, when we use eq. (3.4.60)
instead of eq. (3.4.59), the identities for ∆lm change correspondingly and we get
again the same function in the numerator, although the denominator in (5.2.8) is
different:〈

Φ̄1

(
xµ1−, θ̄1

)
Φ̄2

(
xµ2−, θ̄2

)
Φ3

(
xµ3+, θ3

)〉
=

(I3PF + 1)−∆21∏3
l,m=1; l 6=m x

2
l̄m

∆lm
. (5.2.16)

This recapitulation of two- and three-point functions in the light of the chiral and
anti-chiral restrictions has shown, how exactly analogous results to the ordinary
conformal case come out within supersymmetry.

R-symmetry violating three point function In eq. (4.1.19) we listed the
only two three point invariants of superconformal symmetry without R-symmetry.
They have an R-charge of 1 and −1, respectively. With these there is the special
case of two three point functions of three anti-chiral superfield respectively three
chiral superfields, which violate R-symmetry and have the same total R-charges as
these invariants. Thus the sums of the scaling dimensions of the three anti-chiral
superfields, as well as the three chiral superfields has to be three. They were given
in [Osb99] and we write them down here pointing out the invariant in it:

〈
Φ̄1

(
xµ1−, θ̄1

)
Φ̄2

(
xµ2−, θ̄2

)
Φ̄3

(
xµ3−, θ̄3

)〉
=

C

x2̄1
2η2x3̄1

2η3
X

2(η1− 3
2)

1+

Θ1Θ̃1√
X2

1+

, (5.2.17)

〈
Φ1

(
xµ1+, θ1

)
Φ2

(
xµ2+, θ2

)
Φ3

(
xµ3+, θ3

)〉
=

C

x1̄2
2η2x1̄3

2η3
X

2(η1− 3
2)

1+

˜̄Θ1Θ̄1√
X2

1+

,(5.2.18)
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with η1 + η2 + η3 = 3 in both cases.
We now pick the latter to demonstrate, that the right hand side has the correct

transformation properties, while the form of three point function of only anti-chiral
superfields can be shown analogously.

With eqns. (4.2.1), (4.2.15), (4.2.17) and (4.1.12) we find, that the right hand
side transforms as X

2(η1− 3
2)

1+

x1̄2
2η2x1̄3

2η3

˜̄Θ1Θ̄1√
X2

1+

′ = Υ1 (z1) Ω− (z1−, g)−η2−η3−(η1− 3
2)Ω+ (z1+, g)−(η1− 3

2)

Ω+ (z2+, g)−η2Ω+ (z3+, g)−η3

 X
2(η1− 3

2)
1+

x1̄2
2η2x1̄3

2η3

˜̄Θ1Θ̄1√
X2

1+

 .

(5.2.19)

This can be simplified with the condition, that the sum of the scale dimensions is
three and eq. (3.4.95): X

2(η1− 3
2)

1+

x1̄2
2η2x1̄3

2η3

˜̄Θ1Θ̄1√
X2

1+

′ = Ω+ (z1+, g)−η1Ω+ (z2+, g)−η2Ω+ (z3+, g)−η3 (. . .) ,

(5.2.20)
where the dots are the same as in the bracket above. This is exactly the transforma-
tion of the three point function of three chiral superfields. One can check, that the
anti-chiral and chiral constraints of these three point function are satisfied. It can
be relatively complicated to perform the derivatives directly in comparison to the
alternative way permuting the indices. As these three point functions have to be in-
variant under such permutations for certain points in superspace, one can cyclically
permute them in these cases and gets for each of the three indices an expression
of the three point functions, in which the respective derivative is trivial. These are
the derivatives with respect to θi for the three point function in eq. (5.2.17) and
with respect to θ̄i for the three point function in eq. (5.2.18). A similar argument
is already given in the publication [Osb99], while he also uses the properties caused
by the nilpotency of Θ1 and Θ̄1.

In a following publication [DO01a] about correlation functions of only chiral
superfields only infinitesimal transformations of a smaller symmetry group are con-
sidered. These correlation functions can be written down by only chiral variables,
so that no cancellations of terms of anti-chiral variables are needed.

5.3 The four-point function

In this section we express the four-point function in terms of the set of four-point
invariants, which we have chosen in the sections 4.2.1 and 4.3. These seem especially
promising in order to be able to trace properties of this four-point function back to
properties of conformal scalar four-point functions. This expectation is based on
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the fact, that the two superconformal cross ratios reduce to conformal cross ratios
and all nilpotent invariants vanish, if the Graßmann variables are set to zero. The
coefficients belonging to the superconformal cross ratios in an expansion of a rational
four-point function, as we have them in section 5.3.4, are not changed in this step
and no change in the summations are needed, as it would be, if we used other
non-nilpotent invariants, which are no cross ratios.

First of all the general form of the scalar four-point function given by eq. (5.0.3)
for n = 4 can be rewritten with the help of I1, I2, J1, J1(1) and J1(2):

〈S1 . . . S4〉 = I1
Λ34I2

Λ24J1
∆43−∆31J1(1)

−∆43−∆41J1(2)
∆43

(
x1̄2

2

x2̄1
2

)Σ1

(5.3.1)(
x2̄3

2

x3̄2
2

)Σ2
(
x2̄4

2

x4̄2
2

)Σ3
(

x2̄3
2

x1̄2
2x1̄3

2

)Ξ
F (I1, I2, I111, . . . , I222)

x1̄3
2(η3−η2)x1̄4

2η4x2̄3
2η2

with

Λlm = ∆lm + ∆ml = −1

6

4∑
i=1

ηi +
1

2
(ηl + ηm) , (5.3.2)

Σ1 = ∆21 + ∆31 + ∆41 =
1

2
η1 −

3

2
κ1 , (5.3.3)

Σ2 = ∆31 + ∆32 + ∆34 =
1

2
η3 −

3

2
κ3 , (5.3.4)

Σ3 = ∆41 + ∆42 + ∆43 =
1

2
η4 −

3

2
κ4 , (5.3.5)

Ξ =
1

2
(η1 + η2 − η3 − η4) , (5.3.6)

where eq. (5.0.2) is used to calculate Σ1, Σ2 and Σ3. Because the invariant prefactors
pulled out can be expressed in terms of the invariants, which are the arguments of
F , we can define a new function f4PF , so that

〈S1 . . . S4〉 =

(
x1̄2

2

x2̄1
2

)Σ1
(
x2̄3

2

x3̄2
2

)Σ2
(
x2̄4

2

x4̄2
2

)Σ3
(

x2̄3
2

x1̄2
2x1̄3

2

)Ξ

f4PF (I1, I2, I111, . . . , I222)

x1̄3
2(η3−η2)x1̄4

2η4x2̄3
2η2

. (5.3.7)

In general the function f4PF has the expansion

f4PF =
4∑
i=0

ni∑
j=1

fi,j (I1, I2) Ii,j (5.3.8)

with respect to the nilpotent invariants (4.3.40), where the coefficients are functions
of the two cross ratios. If the Graßmann variables are set to zero, the superconformal
four-point function passes into the conformal four-point function. The cross ratios
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reduce to conformal cross ratios and all Ii,j with i > 1 vanish. Thus the function
f0,1 is the function appearing in the scalar four-point function of conformal field
theory.

We want to see, what consequences the restrictive conditions defining chiral and
anti-chiral superfields have on the scalar four-point functions, eq. (5.3.7). In order
to get a general expression of the chiral scalar four-point functions with vanishing
total R-charge, the following four differential equations have to be solved:

D1−
〈
Φ̄Φ̄ΦΦ

〉
= 0 , D2−

〈
Φ̄Φ̄ΦΦ

〉
= 0 , (5.3.9)

D̄3+

〈
Φ̄Φ̄ΦΦ

〉
= 0 , D̄4+

〈
Φ̄Φ̄ΦΦ

〉
= 0 .

The following theorem states the solution of the differential equations.

Theorem 5.1. All chiral/anti-chiral scalar four-point functions with vanishing total
R-charge are of the form〈

Φ̄1 (z1−) Φ̄2 (z2−) Φ3 (z3+) Φ4 (z4+)
〉

= D f0,1 (I1, I2)

x1̄3
2(η3−η2)x1̄4

2η4x2̄3
2η2

(5.3.10)

with the zeroth order coefficient, f0,1, of the expansion of f4PF with respect to the
nilpotent invariants (eq. (5.3.8)) and a fixed, universal differential operator

D = e
4i T (I1, I2, I111,...,I222) I1 ∂

∂I1 . (5.3.11)

The fixed function T is nilpotent and will be given in the course of the proof
in eq. (5.3.44). The exponential with the derivatives has to be understood in form
of its Taylor expansion with only finitely many terms because of the nilpotency of T .

Proof. This proof goes over most of the rest of this section. To underline its structure
the two important parts, into which it divides, each form their own subsection. The
first gives results in lowest order, which are needed to start iterative steps completing
the proof in the second subsection.

But first we have to rewrite the problem in a more appropriate form. The
starting point is the general scalar four point function. The chiral/anti-chiral scalar
four-point function has to be of the same form, eq. (5.3.7).

However, scale dimensions and R-charges of the chiral and anti-chiral superfields
fulfill eqns. (3.4.59) and (3.4.60). Consequently Σ1 = Σ2 = Σ3 = 0 (eqns. (5.3.3)-
(5.3.6)) and with eq. (5.0.2) also Ξ = 0. Thus the four-point function reduces
to

〈S1 . . . S4〉 =
f4PF (I1, I2, I111, . . . , I222)

x1̄3
2(η3−η2)x1̄4

2η4x2̄3
2η2

. (5.3.12)

The derivatives in the differential equations (5.3.9) applied to the denominator of
this form and to the superconformal cross ratio, I2 are zero. Thus for the differential
equations to be satisfied the derivatives of the function f4PF have to vanish. These
derivatives can be evaluated using the expansion (5.3.8):

Df4PF =

3∑
i=0

ni∑
j=1

∂fi,j
∂I1

(DI1) Ii,j +

4∑
k=1

nk∑
l=1

fk,lDIk,l (5.3.13)
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with D ∈
{
D1−, D2−, D̄3+, D̄4+

}
.

The sum over i ends at i = 3 because the product of I4,1 and the derivative of
I1 is zero due to their nilpotency. We now show, that this is the case.

The derivative of I1 either vanishes or contains a term, which is in lowest order
proportional to the derivative of nilpotent functions of three points. We have the
following derivatives:

D1−I1 = D̄4+I1 = 0 , (5.3.14)

D2−I1 = I1 (−4i)
(
x̃−1

3̄2
θ̄32 − x̃−1

1̄2
θ̄12

)
, (5.3.15)

D̄3+I1 = I1 (4i)
(
θ32x̃−1

3̄2
− θ34x̃−1

3̄4

)
. (5.3.16)

We want to relate these expressions to lowest order of ˜̄Θ1(2), Θ̃1 and ˜̄Θ1. The
lowest order expressions of the nilpotent invariants can be found in appendix C.1.
We can directly see from eq. (C.1.13), that the derivative D2−I0 is proportional to
the lowest order of the first expression:

D2−I0
l.o.
=
x14

2x23
2

x13
2x24

2

(
x̃−1

12 θ̄12 − x̃−1
32 θ̄32

)
, (5.3.17)

where the antisymmetry of the lowest order intervals was used.

On the other hand this is also given by eq. (C.1.21) and so is proportional to
Θ̃1. Together with eq. (4.2.26) the product I111

2I222
2D2−I1 thus can be given as a

sum of one term of third power of Θ̃1(1) and one of third power of Θ̃1(2), so that it
vanishes.

The lowest order of the other derivative, eq. (5.3.16), is proportional to a sum
of two derivative of nilpotent invariants:

D̄3+I0 +
x14

2x23
2

x12
2x43

2
D̄3+I222

l.o.
=

x14
2x23

2

x13
2x24

2

(
θ32x̃−1

32 − θ13x̃−1
13

)
(5.3.18)

+
x14

2x23
2

x13
2x24

2

(
θ13x̃−1

13 − θ34x̃−1
34

)
. (5.3.19)

With the help of eqns. (C.1.22), (C.1.18) and (4.2.27) we find this to be a sum

of three terms containing either ˜̄Θ1(1) or ˜̄Θ1(2). Hence the product of this derivatives

and I111
2I222

2 also has to vanish.

5.3.1 Lowest Graßmannian order

The structure of eq. (5.3.13), which has to vanish, suggests to look at the lowest a
priori non-vanishing order, θ resp. θ̄, because it clarifies the relation between the
function f0,1 and the functions f1,l: In this lowest order we have to have

∂f0,1

∂I1
(DI1) +

8∑
l=1

f1,lDI1,l = 0 . (5.3.20)
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So the problem breaks down to the cancellation of the derivatives of the four-
point invariants in lowest order. With the help of the calculations above we will
quickly find a term of the form of the second summand, which is the negative first
summand. Then we show, that there are no sums

∑8
l=1 f1,lDI1,l, which vanish on

their own.
We have to look closer on the proportionalities mentioned above around eqns.

(5.3.15) and (5.3.17) and eqns. (5.3.16) and (5.3.18). The first pair of equations
gives

D2−I1
l.o.
= 4iI1

x13
2x24

2

x14
2x23

2
D2−I0 l.o. . (5.3.21)

In lowest order I0 (eq. (4.3.70)) is a sum of invariants Iijk:

I0
l.o.
= I111 − I112 − I121 + I122 − I211 + I212 + I221 − I222 , (5.3.22)

The second pair leads us to

D̄3+I1
l.o.
= 4iI1

(
x13

2x24
2

x14
2x23

2
D̄3+I0 l.o. +

x13
2x24

2

x12
2x43

2
D̄3+I222

)
. (5.3.23)

The first summand here has the same factor as the right hand side in eq. (5.3.21),
while the second summand has not appeared before because D2−I222 = 0. So we
find as part of a special solution

8∑
l=1

f1,lI1,l = −4iI1

(
I2
−1I0 + I1I2

−1I222

) ∂f0,1

∂I1
+ . . . . (5.3.24)

Here the conformal cross ratios appearing in eqns. (5.3.21) and (5.3.23) are replaced
by I1 and I2

−1, as there is no difference in lowest order.
But this is not the complete special solution we search for, as it only solves two

of four equations given by the condition (5.3.20). It is still necessary to look at the
derivatives D1− and D̄4+ and see, if these derivatives of the terms found here cancel,
or if additional terms are needed.

Starting with D̄4+ we only need (cf. eq. (C.1.12))

4iI1
2I2
−1D̄4+I222 = 4iI1

(
θ34x̃−1

34 − θ14x̃−1
14

)
, (5.3.25)

because the derivative of I0 vanishes. There is one nilpotent invariant, which has
the same derivative up to a factor of cross ratios. From eq. (C.1.10) we get

D̄4+I212
l.o.
=
x12

2x34
2

x13
2x24

2

(
θ34x̃−1

34 − θ14x̃−1
14

)
, (5.3.26)

With the appropriate factor these two derivatives cancel and furthermore D2−I212 =
0 and D̄3+I212 = 0, so that it does not influence the cancellation of the derivatives
of I1. Finally the derivative D1− of the resulting combination is

−4iI1

(
I2
−1D1−I0 + I1I2

−1D1−I222 − I1I2
−1D1−I212

)
l.o.
= −4iI1

(
−x̃−1

12 θ̄12 + x̃−1
13 θ̄13 − x̃−1

13 θ̄13 + x̃−1
14 θ̄14 + x̃−1

12 θ̄12 − x̃−1
14 θ̄14

)
= 0 . (5.3.27)
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Thus we have our special solution, but there may still be possible ways, in which
the derivatives of the nilpotent invariants with appropriate factors of cross ratios
cancel on their own. These would have to appear in the most general solution to our
problem. So we define the functions f1,l (I1, I2) as a term canceling the derivative
of f0,1 and the rest:

f1,1 = −4iI1I2
−1∂f0,1

∂I1
+ g1,1 , (5.3.28)

f1,2 = 4iI1I2
−1∂f0,1

∂I1
+ g1,2 , (5.3.29)

f1,3 = 4iI1I2
−1∂f0,1

∂I1
+ g1,3 , (5.3.30)

f1,4 = −4iI1I2
−1∂f0,1

∂I1
+ g1,4 , (5.3.31)

f1,5 = 4iI1I2
−1∂f0,1

∂I1
+ g1,5 , (5.3.32)

f1,6 = −4iI1

(
I2
−1 − I1I2

−1
) ∂f0,1

∂I1
+ g1,6 , (5.3.33)

f1,7 = −4iI1I2
−1∂f0,1

∂I1
+ g1,7 , (5.3.34)

f1,8 = 4iI1

(
I2
−1 − I1I2

−1
) ∂f0,1

∂I1
+ g1,8 . (5.3.35)

At this point we will interrupt the proof of theorem 5.1 in order to show, that all
functions g1,l are zero.

B

Lemma 5.1. Let g1,l(I1, I2) be functions of non-nilpotent invariants, so that

8∑
l=1

g1,lDI1,l = 0 (5.3.36)

then
∀l ∈ {1, . . . , 8} : g1,l = 0 . (5.3.37)

The vanishing derivative seems to be a weaker condition than in lemma 4.2. Still
we find here, that it is actually equivalent.

Proof. Due to the product rule we have

8∑
l=1

g1,lDI1,l = D

8∑
l=1

g1,lI1,l −
8∑
l=1

(Dg1,l) I1,l . (5.3.38)

Only the first order contains the lowest order, so that to lowest order the following
equality holds

8∑
l=1

g1,lDI1,l
l.o.
= D

8∑
l=1

g1,l .I1,l . (5.3.39)
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So the derivative of the sum has to be zero. Thus the sum can only contain terms of
the form θ34 . . . θ̄12 apart from the anti-symmetry of the Graßmannian intervals. The
only term in all eight nilpotent invariants, Iijk, which looks like this, is contained in
I212 (cf. eq. (C.1.5)-(C.1.12)),

I212 : θ34x34x̃23x12θ̄12 . (5.3.40)

This is also the cause, why this invariant has already played a special role above.

Similar to the explanation in section 4.3.3 significant constraints follow just from
the terms with three Pauli matrices like this one, because the terms of this type
have to be combined in a way to have the desired form as well. If we look at eqns.
(4.3.60)-(4.3.63) and (4.3.65), the only way to achieve this is:

I112 + I121 − I122 + I211 − I221 . (5.3.41)

This combination can be completed to the lowest order of I0 with the help of the
other three invariant.

So we are left with only four invariants, I111, I212, I222 and I0. When the
coefficient functions are redefined appropriately, we can look at linear combinations
of these instead of (5.3.39). To get the vanishing derivatives, these combinations
may only contains terms of the form, θ34 . . . θ̄12.

But three of these four invariants only contain terms, θij x̃
−1
ij θ̄ij , with the same

indices for θ and θ̄. Only I212 has two other summands, θ34x̃−1
34 θ̄24, θ13x̃−1

12 θ̄12. These
two are inappropriate to get from any θij x̃

−1
ij θ̄ij to the desired form. The coefficient

functions have to be zero.

With the help of lemma 5.1 we know, that the special solution given by eqns.
(5.3.28)-(5.3.35) with g1,l = 0 is already the general solution of the lowest order of
the differential equations, which we have to solve to show theorem 5.1. So all f1,j

are fully determined by the f0,1.

Now we rewrite this solution in a convenient way. To this order the differential
equations are satisfied by

f4PF =

(
1 + 4iT ′I1

∂

∂I1

)
f0,1 (I1, I2) +O

((
θθ̄
)2)

, (5.3.42)

where

T ′ =
I6√
J1(1)

I212 −
I4√
J1(1)

I222 −
1

I3
√
J1(1)

I0 (5.3.43)

is a fixed function of four-point invariants. Here the factors we had before are
replaced by factors with cross ratios, I3, I4 and I6 (eqns. (4.2.9), (4.2.10) and
(4.2.12)), and J1(1) (eq.(4.2.8)). These differ only in higher order, which can be
done here with the effect, that the coefficient functions in higher orders change cor-
respondingly. The new factors just eliminate the overall prefactors of the nilpotent
invariants in all orders, which simplifies calculations in the following.
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5.3.2 Iterative conclusion to higher Graßmannian orders

Eq. (5.3.42) shows exactly, what restrictions follow from the lowest non-vanishing
(i.e. first) order of the differential equations (5.3.9). If one looks beyond first order
of Graßmann variables, one simplifies matters even more going over to a new set
of three nilpotent invariants replacing the three appearing in eq. (5.3.43). Using
(4.3.9) they are given by eqns. (4.3.147), (4.3.148) and (4.3.164).

They have especially simple expressions in terms of the variables θi, θ̄j and x̃īj
and differ only in second and higher orders from those in eq. (5.3.43). Consequently
T ′ is replaced by

T = T212 − T222 − T0 , (5.3.44)

which still solves the differential equations to first order. This new set of invariants
is especially suitable because it allows the iteration from lowest to higher orders. We
prepare these steps with a lemma. We show the equation, which is the basis of the
iterative steps. Afterwards we see, that there are also at higher orders no possible
other combinations of invariants, which could appear in the four-point function.

With the new function T we find the following equation, instead of the corre-
sponding one with T ′, which we have found to be only valid in lowest order.

Lemma 5.2.
DI1 = −4iI1DT . (5.3.45)

Proof. The derivatives of the invariants T111, T212, T222 and T0 can be found in
appendix C.2. They add to the derivatives of T :

Plugged into eq. (5.3.45) this already ends this prove.

Now we have to bring eq. (5.3.20) back into our mind. We can write down the
corresponding equation with the results we have so far with the new invariants. This
is nothing else than the summands with lowest order θ resp. θ̄ of the derivative of
eq. (5.3.42) with T ′ replaced by T :

D

(
1 + 4iTI1

∂

∂I1

)
f0,1 (I1, I2) =

∂f0,1

∂I1
DI1 + 4i (DT ) I1

∂f0,1

∂I1
+O

((
θθ̄
)2)

.

(5.3.46)

The O
((
θθ̄
)2)

here is a summand from the product rule in the second term, which

we will get to later. One directly sees, that the two summands cancel because of
lemma 5.2. These two summands do not only cancel in their lowest order, but
completely as they are written down here. This is remarkable because we just
demanded the cancellation of the lowest orders in the derivation of eq. (5.3.42).
Because of this fact there are no complicated remainders left by the cancellation in
lowest order, as it would have been with the set of invariants we started with.

The coefficient functions have been redefined twice now corresponding to the
steps, in which I0 was introduced and in which T ′ was replaced by T . So we call
the so far undetermined coefficient functions hk,l with k ≥ 2 and have

f4PF =

(
1 + 4iTI1

∂

∂I1

)
f0,1 (I1, I2) +

4∑
k=2

nk∑
l=1

hk,lIk,l . (5.3.47)
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If we now look at the derivative of the whole four point function in eq. (5.3.13)
we are left with half the product rule of eq. (5.3.46) and the other terms of order(
θθ̄
)
θ resp.

(
θθ̄
)
θ̄ and higher. If we plug in eq. (5.3.45), we get the following:

Df4PF = 16I1
∂

∂I1

(
I1
∂f0,1

∂I1

)
TDT +

3∑
i=2

ni∑
j=1

(Dhi,j) Ii,j

+

4∑
k=2

nk∑
l=1

hk,lDIk,l . (5.3.48)

Exterminating the lowest order left here (
(
θθ̄
)
θ resp.

(
θθ̄
)
θ̄), which has to be

zero, we can write down an equation with one side, which depends only on T , I1

and I2 (as argument of f0,1):

18∑
l=1

h2,lDI2,l
l.o.
= −16I1

∂

∂I1

(
I1
∂f0,1

∂I1

)
TDT . (5.3.49)

Thus there is the following special solution for the coefficient functions h2,l on
the left hand side, in which they also only depend on these three invariants,

18∑
l=1

h2,lI2,l
l.o.
= −8

(
TI1

∂

∂I1

)2

f0,1 (I1, I2) . (5.3.50)

Now we have to discuss the question of uniqueness of the solution. That is tanta-
mount to the proof of the following lemma.

Lemma 5.3. Let αl (I1, I2) be functions of these two invariants, so that

18∑
l=1

αlDI2,l
l.o.
= 0 (5.3.51)

then
∀l ∈ {1, . . . , 18} : αl = 0 . (5.3.52)

This is not obvious, although we have proven already lemma 4.4. As we have
seen in the proof of lemma 5.1, it is in principle possible, that such a combination
of the derivatives of nilpotent invariants vanished, while the combination with the
same coefficient functions of only the nilpotent invariants does not.

The proof of this lemma can be found in appendix C.3.1. It consists of a lengthy
calculation, which is not needed for the argumentation here.

Here we can again redefine the higher order coefficients h3,l and h4,1, so that the
general solution of the differential equations, which we solve here, can be written
down in the following form:

f4PF =

(
1 + 4iTI1

∂

∂I1
− 8

(
TI1

∂

∂I1

)2
)
f0,1 (I1, I2) +

4∑
k=3

nk∑
l=1

h′k,lIk,l . (5.3.53)
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If we take the derivative of this, we find, that one term of the product rule of the
new term is of lowest order 3 in θθ̄ and is left after the cancellations following lemma
5.2. This term comes from the derivative of all but T 2:

− 8T 2

[
∂

∂I1

((
I1

∂

∂I1

)2

f0,1 (I1, I2)

)]
(−4iI1DT ) . (5.3.54)

The whole derivative of eq. (5.3.53) is

Df4PF = 32i

(
I1

∂

∂I1

)3

f0,1 (I1, I2)T 2DT +

ni∑
j=1

(Dhi,j) Ii,j

+
4∑

k=3

nk∑
l=1

hk,lDIk,l . (5.3.55)

In the same way as for the last step we get the term of the next order as the
solution from the lowest order of this derivative again,

8∑
l=1

h3,lDI3,l
l.o.
= −32i

(
I1

∂

∂I1

)3

f0,1 (I1, I2)T 2DT , (5.3.56)

so that we can just write it down:

f4PF =

(
1 + 4iTI1

∂

∂I1
− 8

(
TI1

∂

∂I1

)2

− 32

3
i

(
TI1

∂

∂I1

)3
)
f0,1 (I1, I2)

+h′′4,1I4,1 . (5.3.57)

We only need to look at the uniqueness of the solution also here:

Lemma 5.4. Let αl (I1, I2) be functions of these two invariants, so that

8∑
l=1

αlDI3,l
l.o.
= 0 (5.3.58)

then
∀l ∈ {1, . . . , 8} : αl = 0 . (5.3.59)

Also the proof of this lemma is given in the appendix in section C.3.2.
For the last step we take the derivative of eq. (5.3.57):

Df4PF = −32

3
4

(
I1

∂

∂I1

)4

f0,1 (I1, I2)T 3DT + hk,lDI4,1 .

Here there is no difference between the lowest order and the exact result, as no terms
in higher orders are possible due to the nilpotency of T . Hence the function f4PF is

f4PF =

(
1 + 4iTI1

∂

∂I1
− 8

(
TI1

∂

∂I1

)2

− 32

3
i

(
TI1

∂

∂I1

)3

+
32

3

(
TI1

∂

∂I1

)4
)
f0,1 (I1, I2) . (5.3.60)
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As this is the expansion of the exponential in eq. (5.3.11), this finishes the proof
of theorem 5.1.

The dependence on nilpotent invariants has been totally fixed and the supercon-
formal four-point function of scalar chiral and anti-chiral superfields is left with no
more degrees of freedom than the scalar conformal four point function.

The four point function in eq. (5.3.10) is not explicitly given in terms of the
chiral and anti-chiral coordinates z1−, z2−, z3+ and z4+. I1 and the differential
operator D depend on θ2 and θ̄3. These terms, of course, cancel.

Theorem 5.1 has to be seen here as the link to integrate the scalar chiral/anti-
chiral four point function into the system of nilpotent invariants, which we have
analyzed in the last chapter. The proof includes the analysis of derivatives of these
nilpotent invariants, which could be transferred to chiral/anti-chiral four point func-
tions, which are not scalar.

5.3.3 Expression with one other non-nilpotent invariant

We investigate now, how the four-point function looks, if it is expressed in terms
of a different choice of non-nilpotent invariants. More specifically, the new choice
consists of a different pair of superconformal cross ratio. As the superconformal
cross ratios – just as the conformal ones – have the property, that one goes over into
another one under permutation of the indices, we just look at the expressions of the
rest of the four point function under such a permutation.

The example we look at here is the exchange of I1 by I6. This is especially
interesting for the next chapter because conformal four point functions are given by
the inverses of the zeroth order of I2 and I6, for example, in the paper [NRT05] about
the partial wave expansion of scalar global conformal four-point functions. The
coefficients of the results there can then be directly compared to the superconformal
four-point function here.

We start with a look at the four-point function as in eq. (5.3.7). The following
equation expresses the replacement, which we want to perform:

f4PF (I1, I2, I111, . . . , I222) = f
(6)
4PF (I6, I2, I111, . . . , I222) . (5.3.61)

But we do not start with the function on the left side and plug in I1 as a function
of I6, I2, and Iijk, which we could get from eq. (4.3.142), if we solve it for I1 with
the help of iterative insertion.

We rather take the iteration equation, eq. (5.3.45), and interchange the indices
3 and 4 in it. Thereby I1 gets I6 and we get a new function T (6) instead of T ,

DI6 = −4iI6DT
(6) . (5.3.62)

As the third and fourth derivative, which D stands for, are D̄3+ and D̄4+, only
the corresponding two equations switch. This also shows the limits, in which the
superconformal cross ratios can be easily replaced, because we need exactly these
equations with the derivatives D for the four point function, eq. (5.3.7), and may
not exchange indices between chiral and anti-chiral fields.
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Now we interchange the indices in the function T = T222 + T0 − T212. For the
first two summands this is simple, as T222 gets −T222 using (A.2.12) and T0 gets T111

(cf. eqns. (4.3.147), (4.3.148) and (4.3.144)). The replacement of T212, however, is a

nilpotent invariant, which we have not given a name so far and now name T
(6)
212. Its

expression with superconformal intervals is (4.3.164) with the indices replaced. But
we learn more about it, if we plug eq. (4.3.4) into (4.3.154) and change the variables
therein. We see, that the appearing three point variables X̃1(2)− (eq. (4.2.4)), Θ̃1(1)

(eq. (4.2.18)) and ˜̄Θ1(2) (eq. (4.2.19)) change to the variables X̃1(2)+, Θ̃1 and − ˜̄Θ1(2),
respectively. So, if we define

T
(6)
212 = I

(6)
212 − 2iI

(6)
212

2
, (5.3.63)

we have

I
(6)
212 =

˜̄Θ1(2)X̃1(2)+Θ̃1

X1(2)+
2 . (5.3.64)

With eq. (4.2.26) and the relation of X̃1(2)+ and X̃1(2)− analogues to eq. (4.1.13) we

can rewrite this in terms of invariants Iijk and X̂2
1(i)±,

I
(6)
212 =

˜̄Θ1(2)

(
X̃1(2)− + 4iΘ̄1(2)Θ1(2)

)(
Θ̃1(1) − Θ̃1(2)

)
X1(2)+

2

= − I212

X1(2)+
2 +

I222

X̂2
1(2)+

+ 8i
I112I122

X̂2
1(1)+X̂

2
1(2)+

− 8i
I122

2

X̂2
1(1)+X̂

2
1(2)+

. (5.3.65)

In the last line we used eq. (4.3.25). Plugged into eq. (5.3.63) it is possible to
simplify the result with the help of eq. (4.3.43). Also one could replace X̂2

1(1)+ by

I111 with eq. (4.3.113). But at this point this is not significant.

We now need to see, that the iteration works also with the new equation (5.3.62)
and gives us a very similar result in the new variables in comparison to the old

ones. The starting point is an expansion of the function f
(6)
4PF as in theorem 4.1, but

with I1 replaced by I6. This expansion exists and is unique, because it is a simple
corollary of this theorem, that any independent pair of non-nilpotent invariants can
replace I1 and I2 in this expansion. I1 and I2 can always be given as a function of
the new pair of non-nilpotent invariants and the nilpotent monomials, Ip,q, which
can be plugged into the expansion in theorem 4.1.

We get the analogous version of eq. (5.3.13),

Df
(6)
4PF =

3∑
i=0

ni∑
j=1

∂f
(6)
i,j (I6, I2)

∂I6
(DI6) Ii,j +

4∑
k=1

nk∑
l=1

f
(6)
k,l (I6, I2)DIk,l , (5.3.66)

where f
(6)
i,j (I6, I2) are the coefficient functions of the expansion of f

(6)
4PF . Because

the calculation has just two indices exchanged, it is clear, that as in the proof of
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theorem 5.1 all coefficient functions f
(6)
1,j have to be determined by f

(6)
0,1 , so that the

derivatives cancel in lowest order. This leads to (cf. eq. (5.3.47))

f
(6)
4PF =

(
1 + 4iT (6)I6

∂

∂I6

)
f

(6)
0,1 (I6, I2) +O

((
θθ̄
)2)

. (5.3.67)

As just a change of variables is discussed here, which cannot add degrees of freedom,
we skip most part of the proof of theorem 5.1 about vanishing linear combination
and the iteration then is straight forward. Eq. (5.3.62) leads three times to the next
higher order and we get analogously to eq. (5.3.60)

f
(6)
4PF =

(
1 + 4iT (6)I6

∂

∂I6
− 8

(
T (6)I6

∂

∂I6

)2

− 32

3
i

(
T (6)I6

∂

∂I6

)3

+
32

3

(
T (6)I6

∂

∂I6

)4
)
f0,1 (I6, I2) . (5.3.68)

Finally we write the bracket as an exponential and have the four-point function in
the new form:

〈
Φ̄1 (z1−) Φ̄2 (z2−) Φ3 (z3+) Φ4 (z4+)

〉
= e

4i T (6)I6 ∂
∂I6︸ ︷︷ ︸

D(6)

f
(6)
0,1 (I6, I2)

x1̄3
2(η3−η2)x1̄4

2η4x2̄3
2η2

.

(5.3.69)

So the change from the function f0,1 (I1, I2) to f
(6)
0,1 (I6, I2) is compensated by the

one from T to T (6).

5.3.4 Rational four-point functions

In the remaining part of this chapter the case of rational four-point function is
discussed, which leads to an expression containing only z1−, z2−, z3+ and z4+. It was
shown in [NT01], that in global conformal field theory all correlation functions are
rational. As a consequence of global conformal symmetry of the correlation functions
of component fields this is also the case for supersymmetric theories with this space-
time symmetry. If the correlation functions of all combinations of component fields
of a multiplet are rational, the correlation function of the corresponding superfield
also has to be rational.

In rational four-point functions the function f0,1 is a power series:

f0,1 (I1, I2) =
∑
k1,k2

f0,1,k1,k2I1
k1I2

k2 . (5.3.70)

The differential operator applied to this leads to

Df0,1 (I1, I2) =
∑
k1,k2

f0,1,k1,k2 e
4i T k1I1

k1︸ ︷︷ ︸
≡I′1

I2
k2 . (5.3.71)

This is rewritten now as a function of chiral and anti-chiral variables. We also
define here the invariant I ′1, which we simplify and get an expression in terms of
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these variables in eq. (5.3.76). Only θ34, θ21 and xīj with i = 1, 2 and j = 3, 4 may
appear. Because of the exponential function in (5.3.71) it is useful to express x1̄2,
x3̄4 and x3̄2 by the ”allowed“ intervals times an exponential function with nilpotent
exponent. One finds, that

x2
1̄2 =

(
xµ

1̄3
− xµ

2̄3

)2
e

4i
(
θ23x̃−1

1̄2
θ̄21−2i(θ23x̃−1

1̄2
θ̄21)

2
)
, (5.3.72)

x2
3̄4 =

(
xµ

1̄3
− xµ

1̄4

)2
e

4i
(
θ43x̃−1

3̄4
θ̄13−2i(θ43x̃−1

3̄4
θ̄13)

2
)
, (5.3.73)

x2
3̄2 = x2

2̄3e
−4i(ρ23−2iρ23

2) (5.3.74)

using ρ23 from eq. (4.3.9).

This is inserted in the cross ratio I1. The exponents in eqns. (5.3.72)-(5.3.74)
multiplied with these powers cancel most of the exponent in eq. (5.3.71). The
following four-point function remains:

〈
Φ̄1 (z1−) Φ̄2 (z2−) Φ3 (z3+) Φ4 (z4+)

〉
=

∑
k1,k2

f0,k1,k2I ′1
k1I2

k2

x1̄3
2(η3−η2)x1̄4

2η4x2̄3
2η2

. (5.3.75)

with

I ′1 = e4i(γ−2iγ2) x2
1̄4
x2

2̄3(
xµ

1̄3
− xµ

2̄3

)2 (
xµ

1̄3
− xµ

1̄4

)2 (5.3.76)

and

γ =
θ34x1̄4x̃1̄3x2̄3θ̄21(

xµ
1̄3
− xµ

2̄3

)2 (
xµ

1̄3
− xµ

1̄4

)2− x1̄3
2
(
θ34x2̄3θ̄21 + θ34x1̄4θ̄21 − θ34x1̄3θ̄21

)(
xµ

1̄3
− xµ

2̄3

)2 (
xµ

1̄3
− xµ

1̄4

)2 . (5.3.77)

Setting the Grassmann variables to zero, the exponent in (5.3.76) vanishes and thus
I ′1 passes into a conformal cross ratio just like I2 does. Hence the coefficients f0,k1,k2

are also those of the four-point function of the lowest component fields, which are
scalar conformal fields.

If we now look again at the four-point function expressed with the superconformal
cross ratio I6 instead of I1, we see, that the differential operator D(6) and the

function f
(6)
0,1 in eq. (5.3.69) result from the interchange of the indices 3 and 4 in

comparison to the case above. Thus applying this differential operator to the series
expension of this function is the same calculation with different indices and results
in

〈
Φ̄1 (z1−) Φ̄2 (z2−) Φ3 (z3+) Φ4 (z4+)

〉
=

∑
k1,k2

f
(6)
0,k1,k2

(
I ′6
−1
)k1

I2
k2

x1̄3
2(η3−η2)x1̄4

2η4x2̄3
2η2

. (5.3.78)

with

I ′6
−1

= e
−4i

(
γ(6)−2i(γ(6))

2
) (
xµ

1̄4
− xµ

2̄4

)2 (
xµ

1̄3
− xµ

1̄4

)2
x2

1̄3
x2

2̄4

, I2 =
x2

1̄4
x2

2̄3

x2
1̄3
x2

2̄4

(5.3.79)
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and

γ(6) =
θ43x1̄3x̃1̄4x2̄4θ̄21(

xµ
1̄4
− xµ

2̄4

)2 (
xµ

1̄3
− xµ

1̄4

)2 − x1̄4
2
(
θ43x2̄4θ̄21 + θ43x1̄3θ̄21 − θ43x1̄4θ̄21

)(
xµ

1̄4
− xµ

2̄4

)2 (
xµ

1̄3
− xµ

1̄4

)2 .

(5.3.80)
Here we have switched over from I ′6 to I ′6

−1 by changing the sign of the index k1. Now
the two variables of the expansion, I ′6 and I2, do not only pass into any conformal
cross ratios, but into those in eq. (2.2.6) used in the expressions of global conformal
invariant four-point functions in that chapter, when the Graßmann variables are set
to zero.

Finally we want to give the relation between the coefficients f
(6)
0,k1,k2

and f0,k1,k2 .
In order to do so we just need to look at zeroth order in Graßmann variables. The

conformal cross ratios
(
I ′6
−1
)

0
= η1, (I ′1)0 and (I2)0 = η2 – the index zero denotes

the zeroth order part – fulfill the following relation:(
I ′1
)

0
= (I2)0

(
I ′6
)

0
. (5.3.81)

If we plug this into eq. (5.3.75), we can introduce new sumation indices k′1 = −k1

and k′2 = k1 + k2, so that∑
k1,k2

f0,k1,k2I ′1
k1I2

k2 l.o.
=
∑
k′1,k

′
2

f0,−k′1,k′2+k′1

(
I ′6
−1
)k′1I2

k′2 . (5.3.82)

As eqns. (5.3.75) and (5.3.78) contain the same correlation function. the expansion
on the right hand side must be the one in (5.3.78) and we can identify

f
(6)
0,k1,k2

= f0,−k1,k2+k1 . (5.3.83)

The scalar four-point function can be reached without all the nilpotent invariants
in this chapter, but then also without the perspective beyond the scalar case. In
[PSD11] the four-point function of two chiral and two anti-chiral superfields all
having the same scaling dimension are given using a trace invariant and I2. This
trace invariant is given by

tr
(
x2̄3
−1x1̄3x1̄4

−1x2̄4

)
= 1− I ′1

−1
+ I2

−1 (5.3.84)

with I2 and I ′1 from eqns. (4.2.7) and (5.3.76), respectively.
There is another reason, which opposes the use of this trace invariant. If a

rational four-point function is written as a power series with this invariant and
I2, the coefficients would be resorted in comparison to eq. (5.3.75) and the step
from global conformal to global superconformal four-point function would be more
complicated.
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Chapter 6

From conformal to
superconformal pole bounds and
partial wave expansion

In this chapter we get back to the result for global conformal field theories in
chapter 2. At this point we are now able to transfer these results to global su-
perconformal theories, which means in analogy to global conformal invariance, that
these theories are invariant under the single valued action of the superconformal
group SU(2, 2|1), whenever both z and the gz, g ∈ SU(2, 2|1), belong to the super-
Minkowski space. Representations on covering spaces of Minkowski space (multiplets
formulation) respective superspace (superfields formulation) are excluded.

This amounts to global conformal invariances for all component fields in a super-
conformal superfield. Thus the consequences of global conformal invariance for GCI
fields and their correlation functions apply to each such component field. But these
fields are not independent. They are connected by supersymmetry transformations:
By definition the supersymmetry generators, Q and Q̄, relate them. but in section
3.4.2 we have seen, that also the special conformal generators, S, S̄ and Kµ, mix
the component fields. This mixing goes back to their relation to the supersymmetry
generators. So it is sufficient to concentrate on the latter here.

This chapter is devided in two parts. The first is devoted to pole bounds and
the second takes a look at the partial wave expansion, which we have discussed in
section 2.3. The strategy is similar for both parts. We review, what we know about
the component fields from GCI and then see, which consequences the properties of
one component field has for the others because of their relation by supersymmetry.
This relation is already given by the form of the superfield, which simplifies matters.

6.1 Pole bounds

The pole bounds of the correlation functions given in section 2.2 only depend on
the represenations the contained fields belong to. Even more the pole bound for a
distance of two specific points xi and xj in Minkowski space only depends on the
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representation of the two fields, which are functions of these points in the correlation
function. We can write down the bounds following eq. (2.2.3) for all pairs of compo-
nent fields, which appear in the superconformal correlation function of superfields,
if we expand these superfields.

We study the four-point function of a chiral scalar superfield, Φ, and its anti-
chiral hermitian conjugate, Φ̄ = Φ†. Eq. (5.3.78) for four scalar fields of the same
scaling dimension d (d = η2 = η3 = η4 in (5.3.78) and d = η1 = η3 + η4 − η2) is

〈
Φ̄
(
x1−, θ̄1

)
Φ̄
(
x2−, θ̄2

)
Φ (x3+, θ3) Φ (x4+, θ4)

〉
=

∑
k1,k2

f
(6)
0,k1,k2

(
I ′6
−1
)k1

I2
k2

x1̄4
2dx2̄3

2d
.

(6.1.1)

The function f
(6)
0,k1,k2

has been introduced in eq. (5.3.61).
The superfields have the expansion in eqns. (3.4.77) and (3.4.78) in the corre-

sponding chiral and anti-chiral Graßmann variable. Because the four-point function
only contains terms with some power of θiθ̄j with i = 3, 4 and j = 1, 2, only nine-
teen of the in general 81 terms do not vanish. As factors, with which the coefficient
functions are multiplied, are not important for our discussion here, we just list the
terms in the expansion of eq. (6.1.1) without them:

• 〈φ∗ (x1−)φ∗ (x2−)φ (x3+)φ (x4+)〉,

• θ3

〈
˜̄ψφ∗ψ̃φ

〉
θ̄1, θ4

〈
˜̄ψφ∗φψ̃

〉
θ̄1, θ3

〈
φ∗ ˜̄ψψ̃φ

〉
θ̄2, θ4

〈
φ∗ ˜̄ψφψ̃

〉
θ̄2,

• θ3θ4

〈
˜̄ψ ˜̄ψψ̃ψ̃

〉
θ̄1θ̄2,

• θ3θ̃3 〈m∗φ∗mφ〉 ˜̄θ1θ̄1, θ4θ̃4 〈m∗φ∗φm〉 ˜̄θ1θ̄1, θ3θ̃3 〈φ∗m∗mφ〉 ˜̄θ2θ̄2,

θ4θ̃4 〈φ∗m∗φm〉 ˜̄θ2θ̄2 ,

• θ3θ4

〈
m∗φ∗ψ̃ψ̃

〉
˜̄θ1θ̄1, θ3θ4

〈
φ∗m∗ψ̃ψ̃

〉
˜̄θ2θ̄2,

• θ3θ̃3

〈
˜̄ψ ˜̄ψmφ

〉
θ̄1θ̄2, θ4θ̃4

〈
˜̄ψ ˜̄ψφm

〉
θ̄1θ̄2,

•
(
θ3θ̃3

)
θ4

〈
m∗ ˜̄ψmψ̃

〉(
˜̄θ1θ̄1

)
θ̄2,
(
θ4θ̃4

)
θ3

〈
m∗ ˜̄ψψ̃m

〉(
˜̄θ1θ̄1

)
θ̄2,(

θ3θ̃3

)
θ4

〈
˜̄ψm∗mψ̃

〉(
˜̄θ2θ̄2

)
θ̄1,
(
θ4θ̃4

)
θ3

〈
˜̄ψm∗ψ̃m

〉(
˜̄θ2θ̄2

)
θ̄1,

•
(
θ3θ̃3

)(
θ4θ̃4

)
〈m∗m∗mm〉

(
˜̄θ1θ̄1

)(
˜̄θ2θ̄2

)
.

All these correlation functions of component fields depend on the same chiral vari-
ables as the first one. They are not all independent. Each item groups correlation
functions, which are related to each other because of the locality of the four-point
function of superfields. Here we only take a look at very few of them. We start with
the zeroth order, which is the four-point function of complex scalar fields. So we set
the Graßmann variables to zero in eq. (6.1.1) and get in lowest, i.e. zeroth order,

〈φ∗ (x1−)φ∗ (x2−)φ (x3+)φ (x4+)〉 l.o.
=

∑
k1,k2

f
(6)
0,k1,k2

sk1tk2

x14
2dx23

2d
. (6.1.2)
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We only need the lowest order, because we are only interested in the coefficients,

f
(6)
0,k1,k2

, which are the same whether we have chiral variables or coordinates of
Minkowski space on the right hand side. One could expand the chiral coordinates,
which the exact expression of the left hand side contains and has additional to the
four-point function of the scalar component fields on Minkowski space also four-point
functions of vector fields, which are completely determined by derivatives of the one
of the scalar fields (cf. eqns. (3.4.81), (3.4.83) and (3.4.74)). This is the same for
the four-point functions of the higher independent component fields, which we listed
above, because there is no mixing in the expansions: While in the expansion in chiral
variables the indices of θ and θ̄ are always different, expanding the chiral variables
always leads to pairs of θ and θ̄ with the same indices.

As the pole bounds are more restrictive for the truncated part of the four-point
function, we want to know, which summands contain the rest of the four-point
function. As we know, that the two-point functions of two scalar fields, φi and φj ,
are proportional to xij

−2d, one quickly finds

〈φ∗(x1−)φ∗(x2−)〉 〈φ(x3+)φ(x4+)〉 : (k1, k2) = (−d, d) , (6.1.3)

〈φ∗(x1−)φ(x3+)〉 〈φ∗(x2−)φ(x4+)〉 : (k1, k2) = (0, d) , (6.1.4)

〈φ∗(x1−)φ(x4+)〉 〈φ∗(x2−)φ(x3+)〉 : (k1, k2) = (0, 0) . (6.1.5)

These poles are generally the maximal poles in the four-point function. The second
and the third line considers poles of fields, which actually are in the four-point
function. These terms are not in the truncated four-point function, as we also see
below, and so the corresponding pole bounds in the truncated four-point function
are lower in comparison to the whole four-point function. This is not the case for
the first line, but here the two-point functions are already zero. Consequently the

term f
(6)
0,−d,d also does neither appear in the truncated four-point function nor in the

whole four-point function.

Now we can write down the poles, which the summands in the truncated four-
point function have together with the denominator. We also give the bounds, which
follow from eq. (2.2.4) in the case of the two fields being φ∗ and φ and from eq.
(2.2.3) and with the fact, that the two-pint function is zero in this case, otherwise:

µ12 = µ34 = −k1 ≤ d− 1 , (6.1.6)

µ13 = µ24 = k1 + k2 ≤ d− 1 , (6.1.7)

µ14 = µ23 = d− k2 ≤ d− 1 . (6.1.8)

Hence the coefficients f
(6)
0,k1,k2

can only be different from zero within the bounds

k1 ≥ −d+ 1 , k2 ≥ 1 and k1 + k2 ≤ d− 1 . (6.1.9)

For d = 4, which we take as an example here throughout this section, these are
21 possible values in a triangle in the k1-k2 plane with corners (k1, k2) = (−3, 1),
(−3, 6) and (2, 1).
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But the coefficients are related by the locality property to each other. If we
permute the indices 1 and 2 the four-point function gets

〈φ∗ (x2−)φ∗ (x1−)φ (x3+)φ (x4+)〉 l.o.
=

∑
k1,k2

f
(6)
0,k1,k2

sk1td−k1−k2

x14
2dx23

2d
. (6.1.10)

This has to be the same as the original one and by redefining the index k2 →
d− k1 − k2 we get the relation

f
(6)
0,k1,k2

= f
(6)
0,k1,d−k1−k2

. (6.1.11)

This leaves in the case of d = 4 twelve coefficients independent. The permutation of
the indices 3 and 4 leads to the same restriction.

Next we have to determine
〈

˜̄ψφ∗ψ̃φ
〉

. For this we have to expand some terms

of eq. (6.1.1). These terms have to have solely the Graßmann variables θ3 and θ̄1,
which can either come from γ(6), which is part of I ′6, (eqns.(5.3.79) and(5.3.80)) or
from the expansion of x1̄3. We only need the first order in θ3θ̄1 and the zeroth order
of all other Graßmann variables. On the way to the expansion of I ′6

−1 we find

(
x1̄3

2
)n

=
(
x13

2
)n [

1− 4in
θ3x13θ̄1

x13
2

]
+ . . . , (6.1.12)(

xµ
1̄3
− xµ

1̄4
2
)n

=
(
x34

2
)n [

1− 4in
θ3x43θ̄1

x13
2

]
+ . . . , (6.1.13)

The inverse of these terms is given by eq. (A.2.10). Thus we get for the more difficult

part of I ′6
−1k1

:[(
xµ

1̄4
− xµ

2̄4

)2 (
xµ

1̄3
− xµ

1̄4

)2
x2

1̄3
x2

2̄4

]k1

= sk1 + 4ik1θ3

(
x13

x13
2
− x43

x34
2

)
θ̄1s

k1 + . . . . (6.1.14)

From the exponential of γ(6) we can easily read off the terms:

e−4iγ(6)
= 1− 4iθ3

x13x̃14x24 − x14
2

=x23︷ ︸︸ ︷
(x24 + x13 − x14)

x12
2x34

2

 θ̄1 + . . . . (6.1.15)

The lowest order of the square of γ(6) is already to high to be relevant here. In
summary and together with the expansion of x1̄3 in I2 we find, that

2θ3

〈
˜̄ψφ∗ψ̃φ

〉
θ̄1 =

∑
k1,k2

4iθ3

[
x13

x13
2
k2 +

(
x13

x13
2
− x43

x34
2
− x13x̃14x24 − x14

2x23

x12
2x34

2

)
k1

]
θ̄1

f
(6)
0,k1,k2

sk1td−k1−k2

x14
2dx23

2d
. (6.1.16)

We see, that the expansion has led to factors, which increase the degrees of some of
the poles. On the other hand the fermions appearing here are representations of the
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conformal group with
(
d+ 1

2 , 0,
1
2

)
and

(
d+ 1

2 ,
1
2 , 0
)
. This weakens the pole bounds

slightly. This effect could be compensated by the stronger poles from the expansion
above, but we find

µ12 = µ34 = 1− k1 ≤ d , (6.1.17)

µ13 = 1 + k1 + k2 ≤ d , (6.1.18)

µ14 = µ23 = d− k2 ≤ d , (6.1.19)

µ24 = k1 + k2 ≤ d− 1 , (6.1.20)

and in the end the allowed range is even larger as compared with (6.1.9):

k1 ≥ −d+ 1 , k2 ≥ 0 and k1 + k2 ≤ d− 1 . (6.1.21)

A special case is k1 = k2 = 0. Here the summand in the eq. (6.1.16) is zero

independent of the coefficient f
(6)
0,k1,k2

. But this coefficient has been already excluded
in the truncated part of the scalar four-point function in eq. (6.1.2).

The other four-point functions may lead to further restriction. It is not necessary
to do the whole expansion and calculate these functions completely. If we look at
the appearing terms in (6.1.1), we can already see, which powers of the intervals
appear in a specific correlation of function of the component fields.

For example, for
〈

˜̄ψ ˜̄ψψ̃ψ̃
〉

we have to find the terms, which contain θ3θ4θ̄1θ̄2.

Actually we only need the denominators of the canceled down terms. From the
square of γ(6) we get a factor 1/

(
x12

4x34
4
)

additional to the poles in the scalar four-

point function. The expansion of the different appearances of xīj
2 or

(
xµ
k̄l
− xµm̄n

)2

with i = k or j = l leads to additional factors 1/xij
2, 1/xkm

2 or 1/xln
2. Thus then

poles of the different summands give the following inequalities with the pole bounds
for the truncated four-point function:

µ12 = µ34 = 2− k1 ≤ d , (6.1.22)

µ13 = µ24 = 1 + k1 + k2 ≤ d , (6.1.23)

µ14 = µ23 = 1 + d− k2 ≤ d . (6.1.24)

This time we get stricter bounds for k1 and k2 than in eq. (6.1.9):

k1 ≥ −d+ 2 , k2 ≥ 1 and k1 + k2 ≤ d− 1 . (6.1.25)

Finally we want to mention here only one other restriction from a single term in

the correlation function 〈m∗φ∗mφ〉. This term has to contain θ3θ̃3
˜̄θ1θ̄1 in eq. (6.1.1).

It comes from
(
γ(6)

)2
. It is easy to see, that there is a part in the numerator, which

does not cancel with denominator x12
4x34

4. No term can give a stronger contribution
to the following two poles:

µ12 = µ34 = 2− k1 ≤ d . (6.1.26)

This is equivalent to
k1 ≥ −d+ 2 . (6.1.27)
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So k1 is not more restricted than in (6.1.25). In our example, d = 4, 15 possible
summands are left and 9 may be different from each other.

These are the results we obtained so far. In this way one can continue with the
rest of the correlation functions of component fields and it seems, that with higher
component fields and their correlation functions k1 seems to get more and more
restricted, as far as one can guess from two steps of stronger restrictions, which we
have found so far.

6.2 Partial wave expansion

The form of the GCI four-point function of real scalar fields with scaling dimension
d = 4 is known from [NRT05]. The coefficients of the partial wave expansion were
calculated from the five constant in it, But this case is not applicable in the context
of chiral and anti-chiral superfields. We have seen in section 3.4.2, that scalar chiral
superfields always have a complex scalar field as their lowest component field. In
the four-point function of two anti-chiral and two chiral superfields we thus have
even for equal scaling dimensions only two pairs of identical fields and these pairs
are related by Φ̄ = Φ†.

This leads to more possibly non-vanishing independent amplitudes in the four-
point function of these four complex scalar fields compared to the case of four real
scalar fields discussed in [NRT05]. The reason is, that there are less identities
between coefficients because only one identity (eq. (6.1.11)) instead of those in
eq. (2.2.7) comes from the locality property.

If one wants to transfer the results of [NRT05] and the constraints from positivity
discussed therein, one has to look at other supermultiplets. The general multiplet
can be restricted by the condition V † = V to get the general real multiplet.

Still the more general result on partial wave expansions also apply to the four-
point function of scalar chiral superfields. Also the method to calculate the coef-
ficients of this expansion described in section 2.3 can be used for the explicit cal-
culation of partial wave expansion of the four-point function of four complex scalar
fields, as they are contained in the four-point function of superfields.

We have already seen, that the function of cross ratios appearing in the conformal
scalar four-point function of the lowest component fields, φ and φ∗, is the same as
the one in the superconformal scalar chiral/anti-chiral four-point function of the
superfields, Φ and Φ̄. In the former case this function is evaluated at the conformal
cross ratios and in the latter case its arguments are superconformal cross ratios. The
cause is the reduction of the superconformal four-point function to the conformal
four-point function for vanishing Graßmann variables:〈

Φ̄1Φ̄2Φ3Φ4

〉
|θi=0,θ̄j=0 = 〈φ∗1φ∗2φ3φ4〉 =

f(s, t)

x13
2(η3−η2)x14

2η4x23
2η2

. (6.2.1)

Because of the global conformal invariance, which we assume here, this function is
rational:

f(s, t) =
∑
k1,k2

f
(6)
0,k1,k2

sk1tk2 . (6.2.2)
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From pole bounds only a finite number of terms may not vanish in this sum. As
detailed in section 2.3 the partial wave expansion can be calculated for 〈φ∗φ∗φφ〉, if
we substitute the cross ratios here by chiral variables, u and v, and use expansion
formulas to get to the partial wave coefficients. This is, of course, increasingly
difficult for more summands in (6.2.2) and also for higher scaling dimension and less
identical fields. A promising eventually non-trivial candidate could be the example
from the last section with d = 4 and fields Φ†3 = Φ†4 = Φ̄1 = Φ̄2.

In the end we have a set of partial wave coefficients, BkL, which give the expan-
sion of the superconformal four-point function for vanishing Graßmann variables:〈

Φ̄1Φ̄2Φ3Φ4

〉
|θi=0,θ̄j=0 =

1

x13
2(η3−η2)x14

2η4x23
2η2

∑
k,L

Bk,LβkL(s, t) . (6.2.3)

This sum is equal to the function in the numerator in eq. (6.2.1). We have
seen in theorem 5.1, that the whole superconformal four-point function results from
the conformal four-point function of the lowest component fields, if we replace the
conformal cross ratios by superconformal ones and apply a differential operator, D
to it, which is to the lowest order equal to 1. But in that theorem the conformal
cross ratios have not been s and t, yet. Later in section 5.3.3 we found out, that
we have to take the similar differential operator, D(6), in order to start from the
conformal four-point function in terms s and t.

This is also true after the expansion into partial waves:〈
Φ̄1Φ̄2Φ3Φ4

〉
=

1

x1̄3
2(η3−η2)x1̄4

2η4x2̄3
2η2

∑
k,L

Bk,LD(6)βkL(I6
−1, I2) . (6.2.4)

Because of the rationality of the four-point functions of the component fields,
we have the possibility to write this without the differential operator: To get eq.
(5.3.78) we have seen, that the application of the differential operator to the function
f(I6

−1, I2) is equal to the function f(I ′6
−1, I2) with I ′6

−1 from eq. (5.3.79). As this
is only caused by rationality of the function f the same has to be true for each
partial wave, which can also be expanded as a power series. Hence we have〈

Φ̄1Φ̄2Φ3Φ4

〉
=

1

x1̄3
2(η3−η2)x1̄4

2η4x2̄3
2η2

∑
k,L

Bk,LβkL(I ′6
−1
, I2) . (6.2.5)

Thus we have a partial wave expansion of the superconformal four-point function.
A chiral or anti-chiral superfield representation is determined by the representa-

tion of their lowest component conformal field, because in contrast to the general case
the R-charge is given by the scaling dimension. This suggest the assumption, that
we have a more general analogy of the conformal and the chiral/anti-chiral supercon-
formal situation. For the superconformal Casimir operator, Csuco., analogous to C in
(2.3.4), we then expect, that irreducible positive energy representations of the super-
conformal group on chiral superspace, i.e. chiral superfields, are eigenvectors. The
corresponding differential operator, Csuco.,I6−1,I2 , acting on the f(I6

′−1
, I2) should

then have the superconformal partial waves, βkL(I ′6
−1, I2), as eigenfunctions. The
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partial waves being the same functions the differential operator,Csuco.,I6−1,I2 , has to

be equal to the conformal one, Cs,t, with s and t replaced by I6
−1 and I2, as it does

not matter, which name the variables in the equation for the eigenvalues have.
If one has calculated for a concrete case the coefficients of the partial wave

expansion, Bk,L, one can then also analyze the restrictions on the amplitudes, on
which these coefficients depend, coming from positivity. As the partial waves are
shown to be all positive from free field calculations (cf. [NRT05]), all coefficients
have to be separatly positive.

The coefficients, Bk,L, here in this superconformal four-point function are the
same as the ones in the conformal scalar four-point function. But the other four-point
functions of the higher component fields have also partial wave expansions. After we
have seen, that the pole bounds from different component four-point functions have
different results on the superconformal four-point function, the question is, if also the
different partial wave expansions have different results on the superconformal level
and thus positivity of each one restricts the amplitudes in a different way leading to
altogether stronger restrictions.

To check this one has to work out partial wave expansions of four-point functions
with less identical fields, weaker pole bounds due to φi 6= φj

∗, with fields with higher
scaling dimensions and with fermionic fields. These correlation functions have more
amplitudes, which are independent in the conformal case. But these amplitudes
have to be related by their role as component correlation functions in the superior
structure.

This approach would be rather tedious, but eventually it is not needed. We have
already gotten a large simplification due to the pole bounds of higher component
fields in comparison to the conformal case with the same identities from locality.

But the transfer of the conformal partial wave expansion for scalar lowest com-
ponent fields also means a transfer of the conditions from positivity on the partial
wave coefficients in consideration of eq. (6.2.5). Then one can also ask the following
question on the other direction: Can we extract information on the positivity of the
other component correlation functions from the correlation function of superfields?
This could lead to a significant simplification compared to the calculation of the
partial wave expansions of all four-point functions of component field.



Chapter 7

Conclusion

This thesis builds a basis for further investigations of N = 1 superconformal invari-
ance in four dimensions. Most of the results are valid for general superconformal
field theories, but we also emphasized at specific points the specialties of global
superconformal symmetry.

The investigation of scalar invariants has taken place under the most general
conditions in the main text for partial and full three point invariants and full four-
point invariants and in the appendix for partial four-point invariants.

Three and four-point functions with vanishing R-charge of general scalar super-
fields can be expressed with ten invariants. Two are non-nilpotent and eight are
nilpotent. This is a significant reduction to the former knowledge, that counted 16
invariants for N = 1.

We have also seen, that there will not be a further reduction of the number
of invariants, as none of these ten invariants can be expressed by the others. Even
more we have listed all independent monomial of the non-nilpotent invariants, which
by definition cannot be expressed by a linear combination of the other nilpotent
monomials with coefficients, which are functions of non-nilpotent invariants. This
led to an expansion of any four-point invariant in these nilpotent invariants with
coefficient functions depending on two non-nilpotent invariants, which is unique
after the choice of the ten invariants is fixed.

In the context of these expansions this thesis contains several sections describing
computational methods and in the appendix procedures for Maple, which are useful
for the calculations with four-point invariants.

The chosen form of the chiral/anti-chiral scalar four-point function and the proof,
which leads to it from the general scalar four-point function, are not only useful in the
context of global superconformal field theories, but more generally starting points
for further investigations. First it appears novel, that a superconformal four-point
function is essentially expressed as the conformal four-point function of the lowest
component fields evaluated at superconformal instead of conformal cross ratios, on
which a differential operator is applied. Second the calculations are given in a form,
which makes it easy to see, how the chiral and anti-chiral restrictions act and lead to
the proven form of their four-point function. One can, for example directly see, that
there are only three of four restrictions used in the lowest order calculations of the
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proof of theorem 5.1 and the fourth is then fulfilled automatically (cf. eq. (5.3.27)).
This already means in combination with the iteration condition used afterwards for
the higher orders, that a four-point function with two chiral, only one anti-chiral – or
the other way around – superfield and a more general fourth superfield has a solution
also fixed by the lowest component fields. However, it remains to be checked, if or
if not this is also the most general solution to the restrictions.

The mentioned differential operator results from a simple equation, which relates
terms of different orders of nilpotent invariants in the four-point function for all
chiral and anti-chiral restrictions of the four-point function simultaneously. Eq.
(5.3.45) is valid for all four derivatives with respect to Graßmann variables from
these restrictions. It has on the one side the derivative of a nilpotent invariant,
which lowers the order in Graßmann variables of the term by eliminating one of
these variables. On the other side the derivative acts on a non-nilpotent invariants,
which produces a nilpotent factor and raises the order in Graßmann variables. Thus
the two terms originating from different orders in the four-point function meet in
the middle, when the derivative is applied to it. Such equations are central in
order to determine the dependences between different orders or equivalently different
component fields within correlation functions of superfields .

In the last chapter we have started the investigation of global superconformal
symmetry within the framework of constructive/axiomatic field theory. The aim
is to find a model, which fulfills the Wightman axioms, especially the positivity of
all correlation functions and Schwarz inequalities from mixed terms. The aim is to
show, that it is an interacting model. This is a tremendous task, if one looks at the
problems in the discussion of the four-point functions, and sees, that this is only a
first step. Global superconformal models add more possibilities to the global con-
formal models, for which partial wave analysis can be used for this task. Due to the
supersymmetry relating different component fields in a multiplet the superconformal
models are subject to different combinations of pole bounds than global conformal
models. One can apply the partial wave analysis to correlation function restricted
by these pole bounds and gets different expansions and different conditions from
positivity on the coefficients in these expansions. If positivity conditions leave for a
global conformal model only the possibility, that it is free, a similarly complicated
superconformal model might – in a logic sequence – be the next case to investigate,
before moving on to more complicated global conformal models.

With supersymmetry research in axiomatic field theory spreads in a new direction
in order to broaden its view on structures in quantum field theory.



Appendix A

Conventions and useful
equations

The conventions in this thesis are those of [Par99]. The Minkoski metric is ηµν =
diag(+1,−1,−1,−1).

A.1 Pauli matrices

The Pauli matrices σµαα̇ are given by

σ0 =

(
1 0
0 1

)
, (A.1.1)

σ1 =

(
0 1
1 0

)
, (A.1.2)

σ2 =

(
0 −i
i 0

)
, (A.1.3)

σ3 =

(
1 0
0 −1

)
. (A.1.4)

We can raise the spinoral indices with anti-symmetric matrices
(
ε−1
)βα

and
(
ε̄−1
)β̇α̇

and lower them with their inverses εαβ and ε̄α̇β̇, where we have ε12 = ε̄1̇2̇ =
(
ε−1
)21

=(
ε̄−1
)2̇1̇

= 1. One also finds for the inverses,

(
ε−1
)βα

= −εβα ,
(
ε̄−1
)β̇α̇

= −ε̄β̇α̇ . (A.1.5)

For the Pauli matrices we use the notation,

(σ̄µ)β̇β =
(
ε−1
)βα (

ε̄−1
)β̇α̇

σµαα̇ , (A.1.6)

and also have the relation,

ε (σ̄µ)t ε̄ = −σµ . (A.1.7)
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A Pauli matrix contracted with another one is

(σµ)αα̇ (σµ)ββ̇ = 2εαβ ε̄α̇β̇ (A.1.8)

From the relation of Pauli matrices,

σµσ̄ν + σν σ̄µ = 2ηµν , (A.1.9)

we get a the following useful equation

σρ (σ̄µσν − σ̄νσµ) = (σµσ̄ν − σν σ̄µ)σρ + 4ηµρσν − 4ηνρσµ , (A.1.10)

which fits the frequent situation, in which the Pauli matrix σρ has to “brought to
the other side” of the antisymmetrization of Pauli matrices. The trace of a product
of two Pauli matrices is

tr(σµσ̄ν) = 2ηµν , (A.1.11)

For four Pauli matrices we get,

1

2
tr(σµσ̄νσρσ̄λ) = ηµνηρλ + ηµληνρ − ηµρηνλ + iεµνρλ . (A.1.12)

Products of two Pauli matrices multiplied by the matrix ε resp. ε−1 have the
following properties,

(σµ)αα̇ (σ̄ν)α̇γ εγβ − (σν)βα̇ (σ̄µ)α̇γ εγα , (A.1.13)(
ε−1
)αγ

(σµ)γα̇ (σ̄ν)α̇β = −
(
ε−1
)βγ

(σν)γα̇ (σ̄µ)α̇α . (A.1.14)

It follows, that the antisymmetrization with respect to the four-vector indices is
symmetric in the spinoral indices. We have

(σµσ̄ν − σν σ̄µ)α
γεγβ = (σµσ̄ν − σν σ̄µ)β

γεγα (A.1.15)

and the corresponding equation with ε−1 multiplied from the other side.

The same can, of course, be done also with the product of Pauli matrices turned
around:

(σ̄µ)α̇α (σν)αγ̇
(
ε̄−1
)γ̇β̇

= − (σ̄ν)β̇α (σµ)αγ̇
(
ε̄−1
)γ̇α̇

, (A.1.16)

(σ̄µσν − σ̄νσµ)α̇γ̇
(
ε̄−1
)γ̇β̇

= (σ̄µσν − σ̄νσµ)β̇ γ̇
(
ε̄−1
)γ̇α̇

. (A.1.17)

Also here the analogous equations with ε̄ multiplied from the other side are true.
Any vector vµ can be written as 2× 2 hermitian matrices by the contractions with
Pauli matrices,

vαα̇ = vµσµαα̇ , (A.1.18)

ṽα̇α = vµσ̄α̇αµ . (A.1.19)
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A.2 Superconformal intervals

If we contract the superconformal interval, xīj
µ in these ways, the product is,

xīj x̃īj = xīj
21l2×2 . (A.2.1)

Different intervals are related by

xīk = xīj + xj̄k + 4iθ̃jk
˜̄θij , (A.2.2)

x̃īk = x̃īj + x̃j̄k − 4iθ̄ijθjk . (A.2.3)

We can switch the indices with the help of

xīj = −xj̄i + 4iθ̃ji
˜̄θji . (A.2.4)

Written with four-vectors this is

xīj
µ = −xj̄iµ + 2iθjiσ

µθ̄ji . (A.2.5)

Products of spinoral intervals, θij and θ̄ij , can often be simplified with the help of
eqns. (3.2.12) and (3.2.13). With these equations one can show for these intervals,

θijσ
µθ̄ij θijσ

ν θ̄ij =
1

2
ηµνθij θ̃ij

˜̄θij θ̄ij , (A.2.6)

θijσ
µθ̄ij θijσµθ̄ij =

4

y2

(
θijyθ̄ij

)
, (A.2.7)

where yµ may be any vector or vector-valued function with invertable square. The
analogues equations are also true for other spinors, which fulfill equations (3.2.12)
and (3.2.13), such as Θ1(j) and Θ̄1(j) (cf. eqns. (4.3.21) and (4.3.22)).

We frequently use the abbreviation

ρij = θij x̃
−1
īj
θ̄ij , (A.2.8)

such as in the following case. The square of eq. (A.2.5) can be simplified as

xīj
2 = xj̄i

2 − 4ixj̄i
µθjiσµθ̄ji − 4θjiσ

µθ̄ji θjiσµθ̄ji

= xj̄i
2
(
1− 4iρji − 16ρji

2
)
, (A.2.9)

using eq. (A.2.7) for the second line.

Let a variable or function y = y0 + y1 consist of a non-nilpotent part y0 and a
nilpotent part y1 containing Graßmann spinors, θ and θ̄. If the nilpotent part has
an overall Graßmann factor, y1 = θ (. . .) or y1 = (. . .) θ̄, its third power already
vanishes. So its inverse can be calculated by an expansion around y1 = 0, which
ends after the second order term:

1

y
=

1

y0
− 1

y0
2
y1 +

1

y0
3
y1

2 . (A.2.10)
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This can be used to calculate

1

xīj
2

=
1

xj̄i
2

(1 + 4iρji) . (A.2.11)

The squares of ρij appearing in the first and second order term of the expansion
cancel. With the help of eqns. (A.2.4) ,(A.2.6), (A.2.7) and (A.2.11) we find

ρij = −ρji + 4iρji
2 . (A.2.12)



Appendix B

N = 1 superconformal algebra

In section 3.3 we have studied the different superconformal transformations. In eqns.
(3.3.2) through (3.3.20) we encountered all parameters defining the specific trans-
formations. Here we chose the split into dilations and R-symmetry (eqns. (3.3.15)–
(3.3.20)) rather than the expression in terms of superdilations (eqns. (3.3.5)–(3.3.5)).
This way any superconformal transformation is given by the set of parameters,(
(aµ, α, ᾱ) , λ,Ω, wµν ,

(
bµ, β, β̄

))
∈ R4|4×R+×R×R6×R4|4, These belong to trans-

lations of superspace or supertranslations, dilations, R-symmetry transformations,
Lorentz transformations and special superconformal transformations, respectively.
The corresponding generators are

(
Pµ, Q, Q̄,D,R,Mµν ,Kµ, S, S̄

)
.

From two successively executed infinitesimal superconformal transformations (cf.
eq. (3.3.26)) the superconformal algebra, these generators fulfill, can be deduced.
The N extended algebra is given in the appendix of [Par99]. We first have the
super-Poincaré algebra as in section 3.1:

[Pµ, Pν ] = 0 , (B.0.1)

[Pµ, Q] =
[
Pµ, Q̄

]
= {Q,Q} =

{
Q̄, Q̄

}
= 0 , (B.0.2){

Q, Q̄
}

= 2σµPµ , (B.0.3)

[Mµν , Pρ] = i (ηµρPν − ηνρPµ) , (B.0.4)

[Mµν , Q] =
1

4
i (σµσ̄ν − σν σ̄µ)Q , (B.0.5)[

Mµν , Q̄
]

= −1

4
iQ̄ (σ̄µσν − σ̄νσµ) , (B.0.6)

[Mµν ,Mρσ] = i (ηµρMνσ − ηµσMνρ − ηνρMµσ + ηνσMµρ) . (B.0.7)

Another copy of this algebra is also a subalgebra of the superconformal algebra. It
is given by the conjugate subalgebra und superinversion. This special superconfor-
mal algebra contains the generators

(
Kµ, S, S̄,Mµ,ν

)
. Of cause, it also contains eq.

(B.0.7) and

[Kµ,Kν ] = 0 , (B.0.8)

[Kµ, S] =
[
Kµ, S̄

]
= {S, S} =

{
S̄, S̄

}
= 0 , (B.0.9){

S, S̄
}

= 2σµKµ , (B.0.10)
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[Mµν ,Kρ] = i (ηµρKν − ηνρKµ) , (B.0.11)

[Mµν , S] =
1

4
i (σµσ̄ν − σν σ̄µ)S , (B.0.12)[

Mµν , S̄
]

= −1

4
iS̄ (σ̄µσν − σ̄νσµ) . (B.0.13)

We also find the conformal Lie algebra consisting of all commutators without spinoral
generators, which we had so far in eqns. (B.0.1), (B.0.4), (B.0.7), (B.0.8) and
(B.0.11), and

[Pµ,Kν ] = 2i (Mµν + ηµνD) , (B.0.14)

[D,Pµ] = −iPµ , (B.0.15)

[D,Kµ] = iKµ , (B.0.16)

[D,D] = [D,Mµν ] = 0 . (B.0.17)

The rest of the commutators with the dilation operators are

[D,Q] = −i
1

2
Q , (B.0.18)[

D, Q̄
]

= −i
1

2
Q̄ , (B.0.19)

[D,S] = i
1

2
S , (B.0.20)[

D, S̄
]

= i
1

2
S̄ , (B.0.21)

We have encountered now all generators except the R-symmetry generator R. But
this we also find in the missing (anti-)commutators of the other generators:

[Pµ, S] = σµ
˜̄Q , (B.0.22)[

Pµ, S̄
]

= −Q̃σµ , (B.0.23)

[Kµ, Q] = σµ
˜̄S , (B.0.24)[

Kµ, Q̄
]

= −S̃σµ , (B.0.25)

{Qα, Sβ} = −2iεαβD −
1

2
i
(
σµαα̇ (σ̄ν)α̇γ − σναα̇ (σ̄µ)α̇γ

)
εγβMµν + 6iεαβR ,

(B.0.26){
Q̄α̇, S̄β̇

}
= 2iε̄α̇β̇D −

1

2
iε̄β̇γ̇

(
(σ̄µ)γ̇α σναα̇ − (σ̄ν)γ̇α σµαα̇

)
Mµν + 6iε̄α̇β̇R ,

(B.0.27){
Q, S̄

}
=

{
Q̄, S

}
= 0 . (B.0.28)

The prefactor of the R-symmetry operator R in the last two anti-commutators is
conventional and leads to the relation of the scaling dimension and the R-charge of
chiral and antichiral superfields in eqns. (3.4.59) and (3.4.60).
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Finally the commutators with R are

[R,Q] = −i
1

2
Q , (B.0.29)[

R, Q̄
]

= i
1

2
Q̄ , (B.0.30)

[R,S] = i
1

2
S , (B.0.31)[

R, S̄
]

= −i
1

2
S̄ , (B.0.32)

[R,R] = [R,D] = [R,Pµ] = [R,Kµ] = [R,Mµν ] = 0 . (B.0.33)

This completes the superconformal algebra consisting of all (anti-)commutators in
this chapter.
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Appendix C

Details on Invariants

C.1 Lowest order of the nilpotent invariants Iijk and
their derivatives

In this section we provide a list of the lowest order terms of the nilpotent invariants,
Iijk and I0, from eqns. (4.3.3), (4.3.4) and (4.3.70). They and their derivatives
are needed for the proof of theorem 5.1. The lowest order of the invariants are
presented here in terms of the lowest order of the supersymmetric intervals (eq.
(3.2.18)-(3.2.20)) for i, j = 1, 2, 3, 4 and i 6= j:

xīj
l.o.
= xij = xi − xj . (C.1.1)

For their derivatives we abbreviate with the help of the lowest order of the functions
of three points, X̃1(1)+, X̃1(2)−, X̃1+ (eqns. (4.2.3), (4.2.4) and (4.1.1)) and the
corresponding matrices with lower indices:

X̃1(1)+
l.o.
= x12

−1 − x14
−1 ≡ X̃1(1)0 , (C.1.2)

X̃1(2)−
l.o.
= x13

−1 − x14
−1 ≡ X̃1(2)0 , (C.1.3)

X̃1+
l.o.
= x12

−1 − x13
−1 ≡ X̃1 0 . (C.1.4)

These expressions do not differ for an index + instead of − and vice versa.
We start with Iijk for i, j, k = 1, 2:

I111
l.o.
= −θ12x̃−1

12 θ̄12 − θ24x̃−1
24 θ̄24 + θ14x̃−1

14 θ̄14 , (C.1.5)

I112
l.o.
= −θ14x̃−1

24 θ̄24 + θ14x̃−1
14 θ̄14 − θ13x̃−1

13 θ̄12 + θ13x̃−1
13 x̃12x̃−1

24 θ̄24 , (C.1.6)

I121
l.o.
= −θ24x̃−1

24 θ̄34 − θ12x̃−1
13 θ̄13 + θ14x̃−1

14 θ̄14 − θ24x̃−1
24 x̃23x̃−1

13 θ̄13 , (C.1.7)

I122
l.o.
= −x12

2x34
2

x13
2x24

2

(
θ34x̃−1

34 θ̄34 + θ14x̃−1
34 θ̄14 + θ13x̃−1

13 θ̄13

)
+
x14

2x23
2

x13
2x24

2

(
θ34x̃−1

23 θ̄13 + θ13x̃−1
13 θ̄13

)
− 1

x13
2x24

2

(
θ14x14x̃24x23θ̄13 − θ13x23x̃12x14θ̄14

)
, (C.1.8)
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I211
l.o.
= −θ24x̃−1

24 θ̄24 − θ14x̃−1
24 θ̄14 − θ12x̃−1

12 θ̄12

−x14
2x23

2

x13
2x24

2

(
θ24x̃−1

23 θ̄12 − θ12x̃−1
12 θ̄12

)
+

1

x13
2x24

2

(
θ14x14x̃34x23θ̄12 − θ12x23x̃13x14θ̄14

)
, (C.1.9)

I212
l.o.
= −x12

2x34
2

x13
2x24

2

(
θ34x̃−1

34 θ̄24 + θ13x̃−1
12 θ̄12 − θ14x̃−1

14 θ̄14

)
+

1

x13
2x24

2
θ34x34x̃23x12θ̄12 , (C.1.10)

I221
l.o.
= −x12

2x34
2

x13
2x24

2

(
θ14x̃−1

34 θ̄34 − θ14x̃−1
14 θ̄14 + θ12x̃−1

12 θ̄13

)
+

1

x13
2x24

2
θ12x12x̃13x34θ̄34 , (C.1.11)

I222
l.o.
= −x12

2x43
2

x13
2x42

2

(
θ13x̃−1

13 θ̄13 + θ34x̃−1
34 θ̄34 − θ14x̃−1

14 θ̄14

)
. (C.1.12)

At last the combination I0 of these invariants, which is essentially the three point
invariant times cross ratios (cf. eq. (4.3.69)), is given by

I0 =
x14

2x23
2

x13
2x24

2

(
−θ12x̃−1

12 θ̄12 − θ23x̃−1
23 θ̄23 + θ13x̃−1

13 θ̄13

)
. (C.1.13)

Their derivatives are

D1−Iijk
l.o.
= −i

X1(k)0X̃1(i)0

X1(1)0
2 Θ̃1(j) , (C.1.14)

D2−Iij2
l.o.
= 0 , (C.1.15)

D2−Iij1
l.o.
= ix̃−1

12

X̃1(i)0

X1(1)0
2 Θ̃1(j) , (C.1.16)

D̄3+Ii1k
l.o.
= 0 , (C.1.17)

D̄3+Ii2k
l.o.
= i ˜̄Θ1(k)

X1(i)0

X1(1)0
2 x13

−1 , (C.1.18)

D̄4+Iijk
l.o.
= −i ˜̄Θ1(k)

X1(i)0

X1(1)0
2 x14

−1 , (C.1.19)

D1−IΣ
l.o.
= −i

X1 0X̃1 0

X1(1)0
2 Θ̃1 , (C.1.20)

D2−IΣ
l.o.
= ix̃−1

12

X̃1 0

X1(1)0
2 Θ̃1 , (C.1.21)

D̄3+IΣ
l.o.
= −i ˜̄Θ1

X1 0

X1(1)0
2 x13

−1 , (C.1.22)

D̄4+IΣ
l.o.
= 0 , (C.1.23)
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where the index 0 denotes the zeroth order in Graßmann variables of the respective
variable and i, j, k = 1, 2.

C.2 Derivatives of the nilpotent invariants T111, T212, T222

and T0

The derivatives of T111, T222 and T0 in eqns. (4.3.144), (4.3.147) and (4.3.148), re-
spectively, with respect to the Graßmann variables can be easily calculated, because
with eq. (A.2.12) one can always convert it into an expression, in which the deriva-
tive only acts on the intervals θij resp. θ̄ij in the appearing ρij ’s (cf. eq. (4.3.9)).
The cause is the dependence of the supersymmetric intervals, xīj , only on the (anti-
)chiral variables zi− and zj+ (cf. eq. (3.2.18)). For example, T111 can be brought
into the following convenient forms

T111 = ρ14 − ρ12 − ρ24 + 2i
(
−ρ14

2 + ρ12
2 + ρ24

2
)

(C.2.1)

= ρ14 + ρ21 − ρ24 + 2i
(
−ρ14

2 − ρ21
2 + ρ24

2
)
. (C.2.2)

The first line then directly gives the derivatives with respect to θ1, while the second
line is used for the one with repect to θ2. Both are useful for θ̄4:

∂

∂θ1
T111 = x̃−1

1̄4
θ̄14 − x̃−1

1̄2
θ̄12 + 4i

(
−x̃−1

1̄4
θ̄14ρ14 + x̃−1

1̄2
θ̄12ρ12

)
, (C.2.3)

∂

∂θ2
T111 = x̃−1

1̄4
θ̄14 − x̃−1

1̄2
θ̄12 + 4i

(
−x̃−1

1̄4
θ̄14ρ14 + x̃−1

1̄2
θ̄12ρ12

)
, (C.2.4)

∂

∂θ̄3
T111 = 0 , (C.2.5)

∂

∂θ̄4
T111 = x̃−1

1̄4
θ̄14 − x̃−1

2̄4
θ̄24 + 4i

(
−x̃−1

1̄4
θ̄14ρ14 + x̃−1

2̄4
θ̄24ρ24

)
. (C.2.6)

Analogously we get the results for T222,

∂

∂θ1
T222 = x̃−1

1̄4
θ̄14 − x̃−1

1̄3
θ̄13 + 4i

(
−x̃−1

1̄4
θ̄14ρ14 + x̃−1

1̄3
θ̄13ρ13

)
, (C.2.7)

∂

∂θ2
T222 = 0 , (C.2.8)

∂

∂θ̄3
T222 = x̃−1

4̄3
θ̄43 − x̃−1

1̄3
θ̄13 + 4i

(
−x̃−1

4̄3
θ̄43ρ43 + x̃−1

1̄3
θ̄13ρ13

)
, (C.2.9)

∂

∂θ̄4
T222 = x̃−1

1̄4
θ̄14 − x̃−1

3̄4
θ̄34 + 4i

(
−x̃−1

1̄4
θ̄14ρ14 + x̃−1

3̄4
θ̄34ρ34

)
, (C.2.10)
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and for T0,

∂

∂θ1
T0 = x̃−1

1̄3
θ̄13 − x̃−1

1̄2
θ̄12 + 4i

(
−x̃−1

1̄3
θ̄13ρ13 + x̃−1

1̄2
θ̄12ρ12

)
, (C.2.11)

∂

∂θ2
T0 = x̃−1

1̄3
θ̄13 − x̃−1

1̄2
θ̄12 + 4i

(
−x̃−1

1̄3
θ̄13ρ13 + x̃−1

1̄2
θ̄12ρ12

)
, (C.2.12)

∂

∂θ̄3
T0 = x̃−1

1̄3
θ̄13 − x̃−1

2̄3
θ̄23 + 4i

(
−x̃−1

1̄3
θ̄13ρ13 + x̃−1

2̄3
θ̄23ρ23

)
, (C.2.13)

∂

∂θ̄4
T0 = 0 . (C.2.14)

Finally we take the derivatives of T212 (cf. eq. (4.3.164)):

∂

∂θ1
T0 = x̃−1

1̄4
θ̄14 − x̃−1

1̄2
θ̄12 + 4i

(
−x̃−1

1̄4
θ̄14ρ14 + x̃−1

1̄2
θ̄12ρ12

)
, (C.2.15)

∂

∂θ2
T0 = 0 , (C.2.16)

∂

∂θ̄3
T0 = 0 , (C.2.17)

∂

∂θ̄4
T0 = x̃−1

1̄4
θ̄14 − x̃−1

3̄4
θ̄34 + 4i

(
−x̃−1

1̄4
θ̄14ρ14 + x̃−1

3̄4
θ̄34ρ34

)
. (C.2.18)

C.3 Products of nilpotent invariants and their deriva-
tives

There are products of nilpotent invariants, Iijk, with derivatives of them with respect
to the Graßmann variables, which do not vanish, although the product without the
derivative is zero because of the nilpotency. An example is (cf. eq. (C.1.19))

I111
2I122D̄4+I112

l.o.
=

(
ˆ̄̃
Θ1(1)

ˆ̃X1(1)+
ˆ̃Θ1(1)

)2
ˆ̄̃
Θ1(2)

ˆ̃X1(1)+
ˆ̃Θ1(2)

(
i ˜̄Θ1(2)

X̃1(1)0

X1(1)0
2 x14

−1

)
,

(C.3.1)

where the index zero again denotes the zeroth order order in Graßmann variables of
the respective variable.

Still for some such monomials it is easy to show, that they vanish for all four
derivatives, D ∈

{
D1−, D2−, D̄3+, D̄4+

}
. If we take the derivative of Iijk

3, we im-
mediately get

Iijk
2DIijk = 0 . (C.3.2)

Furthermore the derivative of the vanishing product Iijk
2Iljk with l 6= i is

0 = 2IljkIijkDIijk + Iijk
2DIljk . (C.3.3)

The first summand is zero because of eq. (C.3.2), as IljkIijk is equal to a non-
nilpotent factor times Iijk

2.
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C.3.1 Proof of Lemma 5.3

Lemma 5.3 (restated). Let αl (I1, I2) be functions of these two invariants, so
that

18∑
l=1

αlDI2,l
l.o.
= 0 (C.3.4)

then

∀l ∈ {1, . . . , 18} : αl = 0 . (C.3.5)

Proof. We use the same strategy as in the proof of lemma 4.4. We multiply eq.
(C.3.4) by I2,k for all k = 1, . . . , 18 and get 18 equation,

0
l.o.
= I2,k

18∑
l=1

αlDI2,l =
∑

(q,r,s,t,u,v)

αl IimnIjop︸ ︷︷ ︸
I2,k

D IqrsItuv︸ ︷︷ ︸
I2,l

. (C.3.6)

The sum on the right side is over a set of tuples, (q, r, s, t, u, v), which contains the
18 tuples, which are I2,l.

We immediately see, that a number of summands are zero. If k ≤ 4, then m = o
and n = p and eq. (C.3.3) only leaves terms with (m 6= r∨n 6= s)∧ (m 6= u∨n 6= v).
The other way around is, of course, also true. If l ≤ 4, then r = u and s = v and eq.
(C.3.3) only leaves terms with (r 6= m∨ s 6= n)∧ (r 6= o∨ s 6= t). Due to the product
rule there may not be four times the same Θ1(i) and Θ̄1(i), i = 1, 2, in one summand.
This gives the conditions (m+ o+ r + u)mod 4 6= 0 and (n+ p+ s+ v)mod 4 6= 0.
Furthermore for every invariant, Iqrs, the four derivatives, D1−,D2−,D̄3+ and D̄4+,
vanish or leave in lowest order a term proportional to Θ1(r) or Θ̄1(s) (cf. eqns.
(C.1.14)–(C.1.19)). So terms can only be non-zero in one of these derivatives, if
m + o + r + u = 6 or n + p + s + v = 6. This gives eighteen equations, which are
valid for all four invariants. For these we apply the product rule in each summand.
There are three cases,

IimnIjopDIqrsItuv

=


IimnIjopIqrsDItuv m = o = u ∨m = p = v
IimnIjopItuvDIqrs m = o = r ∨m = p = s
IimnIjopIqrsDItuv + IimnIjopItuvDIqrs else.

(C.3.7)

At last we can replace each product of three invariants in front of a derivative by an
invariant I3,h with h ∈ {1, . . . , 8}, if it is not yet one of the latter. We call this set
of simplified equations Eall. The remaining summands in these equations have the
form I1ij

2ImnoDIpqr with new indices i, j,m, n, o, p, q, r = 1, 2 and n 6= i and o 6= j
and n = q ∨ o = r.

To get equations, which are easier to solve, we do not look at all derivatives
at once, but only on one. Eq. (C.3.4) is assumed to vanish for each of the four
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derivatives in this lemma. The derivative D2− of the invariants, Iij2, vanishes.
D2−Iij1 has an overall factor Θ1(j) in lowest order. This leaves only the summands

I1ij
2ImnoDIpn1 with n 6= i and o 6= j. We denote this set of equations as E2 refering

to the derivative D2−.
This set of equations now contains already very simple ones. For the second and

the forth equation – numbered by k in eq. (C.3.6) – only one term is left,

2α3I112
2I121D2−I121 = 0 , (C.3.8)

2α1I122
2I111D2−I111 = 0 . (C.3.9)

Thus α1 = α3 = 0.
At this point we need the following two identities, which are valid to lowest order

and can be easily seen with the help of eq. (C.1.16) and eq. (A.1.9),

I2ijD2−I2i1
l.o.
=

X1(2)0
2

X1(1)0
2︸ ︷︷ ︸

=:A0

I1ijD2−I1i1 , (C.3.10)

I1ijD2−I2i1 + I2ijD2−I1i1
l.o.
=

X1(1)0 ·X1(2)0

X1(1)0
2︸ ︷︷ ︸

=:A1

I1ijD2−I1i1 . (C.3.11)

These can be used for the further simplification of E2. This way the first equation
of E2 gets,(

α10I111
2I122 + α12A1I111

2I122 − α12I111
2I222

)
D2−I121 = 0 . (C.3.12)

If we now look at

I1ijD2−I1i1
l.o.
= i

X1(2)0
2

X1(1)0
4 x̃−1

12 Θ̄1(j)Θ1(i)Θ̃1(i) , (C.3.13)

I2ijD2−I1i1
l.o.
= i

1

2X1(1)0
4 x̃−1

12 X̃1(1)X1(2)Θ̄1(j)Θ1(i)Θ̃1(i) , (C.3.14)

they differ by linear independent hermitian matrices. Thus the coefficient functions
in eq. (C.3.12) of these two terms have to be separately zero. It follows α10 = α12 =
0. Similar we get from the tenth equation of E2 using α1 = 0,

− 1

2
(α5I111 + α15I211) I122

2D2−I111 = 0 , (C.3.15)

the next two vanishing coefficient functions, α5 = α15 = 0.
If we look at this stage at the second equation of Eall and choose the derivative

D̄4+, we are left with

α6I112
2I121D̄4+I111 + α11I112

2I221D̄4+I111 = 0 . (C.3.16)

As in the two cases above, it follows α6 = α11 = 0.
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As in the proof of lemma (4.4) we cannot separate subsets of the six coefficient
functions, αi, with i = 7, 8, 13, 14, 17, 18, from the other coefficient functions. With
the help of the identity,

I1jk
2IpmnD2−Ilm1

l.o.
= I1mk

2IpjnD2−Ilj1 , (C.3.17)

which we only need in lowest order and in this order can be shown easily with
eqns. (C.1.16), (4.3.21) and (4.3.22), we simplify the 7th, 13th, 14th, 17th and 18th
equation of E2:

0
l.o.
=

(
A0A1α17 +A0

2α18 +
1

2
A0α7 −A0A1α14 +

1

2
A0A1α14

)
I122

2I111D2−I111

+

(
A1α8 −A1α7 −

1

2
A0α13 −

1

2
A0α14

)
I122

2I211D2−I111 , (C.3.18)

0
l.o.
=

(
A0α17 +A0A1α18 +

1

2
A0α13 +A0α14

)
I122

2I111D2−I111

+

(
α8 −

1

2
α7

)
I122

2I211D2−I111 , (C.3.19)

0
l.o.
=

(
−1

2
A0α17 −

1

2
A0A1α18 +A0α14

)
I122

2I111D2−I111

+

(
−1

2
α8 +

1

2
A0α18 +A1α13 + α7

)
I122

2I211D2−I111 , (C.3.20)

0
l.o.
=

(
−1

2
A0α17 −

1

2
A0A1α18 +A1α7 +A0α13 +A1

2α14

)
I122

2I111D2−I111

+

(
1

2
A0α18 −

1

2
α8 +A1α14

)
I122

2I211D2−I111 , (C.3.21)

0
l.o.
=

(
α7 −

1

2
α8 −

1

2
A1α17 −A1

2α18 +
1

2
A0α18 +A1α13 +A1α14

)
·I122

2I111D2−I111 +

(
1

2
α17 +A1α18 − α14

)
I122

2I211D2−I111 , (C.3.22)

with A0 = X1(2)0
2/X1(1)0

2 and A1 =
(
X1(1)0 ·X1(2)0

)
/X1(1)0

2. Every bracket in
these five equations has to be zero. There is only the trivial solution, α7 = α8 =
α13 = α14 = α17 = α18 = 0.

As we have shown for most coefficient functions, that they are zero, the other
ones, α2, α4, α9 and α16, appear in very simple equations. The third equation of
Eall – the one, for which eq. (C.3.4) is multiplied by I2,3 – for D̄3+ simplifies to

(α9I112 + α16I212) I121
2D̄3+I122 = 0 , (C.3.23)

so that α9 = α16 = 0. The first and the third equation of Eall for either D1− or D̄4+

now only contain α4 and α2, respectively, and it directly follows α2 = α4 = 0. This
completes the proof.
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C.3.2 Proof of Lemma 5.4

Lemma 5.4 (restated). Let αl (I1, I2) be functions of these two invariants, so
that

8∑
l=1

αlDI3,l
l.o.
= 0 (C.3.24)

then

∀l ∈ {1, . . . , 8} : αl = 0 . (C.3.25)

Proof. We multiply eq. (C.3.24) by I1,p = Iijk and can split the summands in three
groups,

0
l.o.
=

8∑
(m,n,r,s,t)=̂l=1

αlIijkDI1mn
2Irst =

∑
(m,n,r)=̂l∈S1,p

αlIijkDI1mn
2Irjk

+
∑

(n,r,s)=̂l∈S2,p

αlIijkDI1jn
2Irmk

+
∑

(m,r,t)=̂l∈S3,p

αlIijkDI1mk
2Irjn ,

(C.3.26)

with m 6= s and n 6= t on the left hand side, m 6= j and n 6= k on the right hand side
and sets S1,p,S2,p,S3,p ⊂ {1, . . . , 8}, which are disjunct for each p. The sums are
over indices l of I3,l in eq. (C.3.24), which correspond to tuples of indices appearing
in the monomial I3,l, when it is written in terms of Irst.

We look at the derivatives in the second and third sum in eq. (C.3.26):

IijkDI1jn
2Irmk = IijkI1jnIrmkDI1jn

= −1

2

(
KirI1jk

2I1mn + LirI1jk
2I2mn

)
DI1jn , (C.3.27)

IijkDI1mk
2Irjn = IijkI1mkIrjnDI1mk

= −1

2

(
K ′irI1jk

2I1mn + L′irI1jk
2I2mn

)
DI1mk , (C.3.28)

with suitable functions Kir, Lir, K
′
ir and L′ir resulting from eqns. (4.3.52), (4.3.53)

and (4.3.54).

For k = 2 and for the derivative D2− the third sum on the right hand side of eq.
(C.3.26) vanishes (cf. eq. (C.1.15)). Because of (C.3.27), n = 1 and eq. (C.1.16)
the appearing derivative in the second sum is in lowest order proportional to Θ1(j)

and this sum also is zero. Hence

0
l.o.
=

8∑
(m,n,r,s,t)=̂l=1

αlIij2DI1mn
2Irst

l.o.
=

∑
(m,r)=̂l∈S1,p

αlIij2D2−I1m1
2Irj2 . (C.3.29)
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This sum has only two terms, as m 6= j. For the possible i = 1, 2 we get with the
help of eqns. (4.3.41) and (4.3.43) the following two equations,

0
l.o.
= 2

(
αl1 +

X̂1(1)+ · X̂1(2)−

X̂2
1(1)+

αl2

)
I1j2I1m1D2−I1m1 , (C.3.30)

0
l.o.
= 2

(
X̂1(1)+ · X̂1(2)−

X̂2
1(1)+

αl1 +
X̂2

1(2)−

X̂2
1(1)+

αl2

)
I1j2I1m1D2−I1m1 . (C.3.31)

As
[(

X̂1(1)+ · X̂1(2)−

)
/X̂2

1(1)+

]2
6= X̂2

1(2)−/X̂
2
1(1)+, we end up with αl1 = αl2 = 0,

which means in this case, k = 2, α1 = α2 = α3 = α4 = 0.

For j = 1 and for the derivative D̄3+ the second sum vanishes (cf. eq. (C.1.17)).
Because of (C.3.28), m = 2 and eq. (C.1.18) the appearing derivative in the third
sum is in lowest order proportional to Θ̄1(k) and this sum also is zero.

0
l.o.
=

8∑
(m,n,r,s,t)=̂l=1

αlIi1kDI1mn
2Irst

l.o.
=

∑
(n,r)=̂l∈S1,p

αlIi1kD3+I12n
2Ir1k . (C.3.32)

This case has an overlap with the one, k = 2, so that we only have one unsolved
pair of equations here,

0
l.o.
=

(
α7 +

X̂1(1)+ · X̂1(2)−

X̂2
1(1)+

α8

)
I111

2I122D̄3+I122 , (C.3.33)

0
l.o.
=

(
X̂1(1)+ · X̂1(2)−

X̂2
1(1)+

α7 +
X̂2

1(2)−

X̂2
1(1)+

α8

)
I111

2I122D̄3+I122 . (C.3.34)

Thus we have α7 = α8 = 0.

For the remaining two coefficient functions, which appear in the equations eq.
(C.3.26) for j = 2 and k = 1 with the derivative D2−, we simplify these equations
using eqns. (C.3.10) and (C.3.11),

0
l.o.
=

[
(α5 + α6A1) I112

2I121 − α5I112
2I221

]
D2−I121 , (C.3.35)

0
l.o.
=

[
α6A0I112

2I121 + α5I112
2I221

]
D2−I121 . (C.3.36)

Already one of these equations together with eqns. (C.3.13) and (C.3.14) results in
α5 = α6 = 0.

C.4 R-symmetry violating partial four-point invariants

As we saw in the end of the discussion of three point invariants, there are a few
more invariants of superconformal symmetry without R-symmetry than of the whole
superconformal group.
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We are left with only few possibilities for further invariants. They have to be
build from the basic three point functions we defined for the construction of the
full four-point invariants. As the non-nilpotent functions X̂1(1)+ and X̂1(2)− have
been combined in all possible ways already in section 4.2, the new invariants have
to contain the spinors. These can either be directly contracted among themselves
or combined with both X̂1(1)+ and X̂1(2)−, which results in the following list:

Gij = Θ̂1(i)
ˆ̃Θ1(j) , (C.4.1)

G3 = Θ̂1(1)X̂1(1)+
ˆ̃X1(2)−

ˆ̃Θ1(2) , (C.4.2)

Ḡij =
ˆ̄̃
Θ1(i)

ˆ̄Θ1(j) , (C.4.3)

Ḡ3 =
ˆ̄̃
Θ1(1)

ˆ̃X1(1)+X̂1(2)−
ˆ̄Θ1(2) . (C.4.4)

Some questions have to be addressed now:

1. Why are this all possibilities?

2. How do monomials of these invariants relate to each other and to the invariants
of the full superconformal group?

3. And which mixed monomials of invariants of the smaller symmetry groups
(G’s) and the full superconformal group (I’s) are there and how do they relate
to each other?

Question 1: As the invariants only containing the spinors are actually already
at first glance all possible combinations, this is more a question of the relations to
other combinations, which contain X̂1(1)+ and X̂1(2)−. We discuss this only for the
invariant G3. Ḡ3 can be dealt with analoguesly.

If there are, instead of the two different spinors in G3, twice the same spinors,

Θ̂1(i)X̂1(1)+
ˆ̃X1(2)−

ˆ̃Θ1(i) , (C.4.5)

one can use eq. (4.3.21) and gets a non-nilpotent invariant X̂µ
1(1)+X̂1(2)−ν and Gii.

If the two matrices between the spinors are the same, one can use the property
of the Pauli matrices contracted with a symmetric tensor (cf. eq. (4.3.24)) and gets
again one of the invariants we already know and G12.

Furthermore X̂1(1)+ and X̂1(2)− can be exchange with eq. (A.1.9), which gives

an additional term with X̂µ
1(1)+X̂1(2)−µ and G12. By raising and lowering indices the

two spinors in G3 can be exchanged, which also exchanges X̂1(1)+ and X̂1(2)− and
brings us back to the last sentence.

At last one could think of the possibility to have more than two matrices between
the spinors. These would be again X̂1(1)+ and X̂1(2)− or functions of them. So one

could resort the matrices and contract pairs of X̂1(1)+ and pairs of X̂1(2)− and ends
up with the G′s listed above.

Therefore there are no other possibilities for further independent invariants.
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Question 2: Due to their nilpotency not many products are possible among these
invariants. There are only two independent ones, which do not lead again to the
known invariants of the full superconformal group:

G11G22 and Ḡ11Ḡ22 . (C.4.6)

They are each related to other products:

G11G22 = −2G12
2 = −2

G12G3

X̂µ
1(1)+X̂1(2)−ν

= −2
G3

2

X̂2
1(1)+X̂

2
1(2)−

, (C.4.7)

Ḡ11Ḡ22 = −2Ḡ2
12 = −2

Ḡ12Ḡ3

X̂µ
1(1)+X̂1(2)−ν

= −2
Ḡ2

3

X̂2
1(1)+X̂

2
1(2)−

. (C.4.8)

We are left with products of G’s and Ḡ’s. All products of Gij and Ḡkl are equal

to invariants of lowest order
(
θθ̄
)2

, which were discussed in eqns. (4.3.25), (4.3.23)
and (4.3.26). This has to be the case, because a product of one G and one Ḡ
has vanishing R-charge. So it has to be invariant under R-symmetry and thus an
invariant of the full superconformal group.

A bit more complicated are the products involving G3 or Ḡ3:

GiiḠ3 = Θ̂1(i)
ˆ̃Θ1(i)

ˆ̄̃
Θ1(1)

ˆ̃X1(1)+X̂1(2)−
ˆ̄Θ1(2) (C.4.9)

= −
(
ε−1
)αβ

Θ̂1(i)
ˆ̃Θ1(i) X̂1(1)+αα̇

ˆ̄Θα̇
1(1) X̂1(2)−ββ̇

ˆ̄Θβ̇
1(2)

= 2Θ̂1(i)X̂1(1)+
ˆ̄Θ1(1)Θ̂1(i)X̂1(2)−

ˆ̄Θ1(2)

= 2I1i1I2i2 .

In the third line eq. (4.3.21) is used. This works analoguesly with the help of eq.
(4.3.22) in order to show

G3Ḡii = 2I11iI22i . (C.4.10)

For the missing products we need another small equation for the spinors, which
directly follows from the property of the Pauli matrices (A.1.8):

Θ̂α
1(i)

ˆ̄Θα̇
1(j) =

1

2
Θ̂1(i)σ

µ ˆ̄Θ1(j)σ̄
α̇α
µ . (C.4.11)

Together with eq. (A.1.9) we find

G12Ḡ3 = Θ̂1(1)
ˆ̃Θ1(2)

ˆ̄̃
Θ1(1)

ˆ̃X1(1)+X̂1(2)−
ˆ̄Θ1(2) (C.4.12)

= −1

2
Θ̂1(1)σ

µ ˆ̄Θ1(2)
ˆ̄̃
Θ1(1)

ˆ̃X1(1)+

(
2X̂1(2)−µ − σµ

ˆ̃X1(2)−

)
ˆ̃Θ1(2)

= I212I121 + I111I222 .

In the same way one can show, that

G3Ḡ12 = I112I221 + I111I222 . (C.4.13)
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Question 3: To answer this question we give a list of all monomials of G’s, Ḡ’s and
Iijk sorted according to their degree in the rows and their R-charge in the columns:

2 1 0 -1 -2

Gij , G3 I1,i Ḡij , Ḡ3

G11G22 G12I1,i I2,i Ḡ12I1,i Ḡ11Ḡ22

G12I2,i for i = 6, 7, 9, 13 I3,i Ḡ12I2,i for i = 5, 7, 10, 13
I4,i

Once more with the help of eqns. (4.3.21) and (4.3.22) all other mixed monomials
of G’s and I’s, which do not vanish, can be expressed by those listed above. For
second degree we get

G11Ii2k = −2G12Ii1k , (C.4.14)

G22Ii1k = −2G12Ii2k , (C.4.15)

G3I11k = G12X̂
2
1(1)+I21k , (C.4.16)

G3I22k = G12X̂
2
1(2)−I12k , (C.4.17)

G3I12k = G12

(
2X̂µ

1(1)+X̂1(2)−µI12k − X̂2
1(1)+I22k

)
, (C.4.18)

G3I21k = G12

(
2X̂µ

1(1)+X̂1(2)−µI21k − X̂2
1(1)+I11k

)
, (C.4.19)

Ḡ11Iij2 = −2Ḡ12Iij1 (C.4.20)

Ḡ22Iij1 = −2Ḡ12Iij2 (C.4.21)

Ḡ3I1j1 = Ḡ12X̂
2
1(1)+I2j1 , (C.4.22)

Ḡ3I2j2 = Ḡ12X̂
2
1(2)−I1j2 , (C.4.23)

Ḡ3I1j2 = Ḡ12

(
2X̂µ

1(1)+X̂1(2)−µI1j2 − X̂2
1(1)+I2j2

)
, (C.4.24)

Ḡ3I2j1 = Ḡ12

(
2X̂µ

1(1)+X̂1(2)−µI2j1 − X̂2
1(1)+I1j1

)
. (C.4.25)

Due to these equations also mixed monomials of third degree can always be written
in a way, which contains G12 or Ḡ12 and no other G’s. Furthermore we can use
eqns. (C.4.14) and (C.4.20) twice to relate some of the remaining monomials with
each other:

G12Ii1kIn2m = −1

2
G11Ii2kIn2m = G12Ii2kIn1m , (C.4.26)

Ḡ12Ii1kIn2m = −1

2
Ḡ11Ii2kIn2m = Ḡ12Ii2kIn1m . (C.4.27)

If we now multiply eqns. (4.3.47), (4.3.48), (4.3.50) and (4.3.51) by G12 and use eq.
(C.4.26), we get relations for the monomials G12I2,l for l = 11, 16, 14, 18, respec-
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tively:

G12I111I221
(C.4.26)

=
1

2
(G12I111I221 +G12I211I121) (C.4.28)

(4.3.47)
= X̂µ

1(1)+X̂1(2)−µG12I111I121 ,

G12I122I212
(C.4.26)

=
1

2
(G12I122I212 +G12I222I112) (C.4.29)

(4.3.48)
= X̂µ

1(1)+X̂1(2)−µG12I112I122 ,

G12I122I211 +G12I111I222
(C.4.26)

=
1

2
(G12I121I212 +G12I112I221 +G12I111I222+

+G12I122I211) (C.4.30)

(4.3.50)
= X̂µ

1(1)+X̂1(2)−µ (G12I111I122 +G12I112I121)

(C.4.26)
= X̂µ

1(1)+X̂1(2)−µG12I111I122 ,

G12I211I222
(C.4.26)

=
1

2
(G12I211I222 +G12I212I221) (C.4.31)

(4.3.51)
= X̂2

1(2)− (G12I111I122 +G12I112I121)

(C.4.26)
= X̂2

1(2)−G12I111I122 .

Analoguesly equations can be derived for the third order monomials containing Ḡ12

with the help of eq. (C.4.27) and the one referred to above the equal sign:

Ḡ12I111I212
(4.3.46)

= X̂µ
1(1)+X̂1(2)−µḠ12I111I112 , (C.4.32)

Ḡ12I122I221
(4.3.49)

= X̂µ
1(1)+X̂1(2)−µḠ12I121I122 , (C.4.33)

Ḡ12I122I211
(4.3.50)

= X̂µ
1(1)+X̂1(2)−µḠ12I111I122 − Ḡ12I111I222 ,

Ḡ12I211I222
(4.3.51)

= X̂2
1(2)−Ḡ12I111I122 . (C.4.34)

This end the discussion of the monomials containing G’s and the discussion of the
parital four-point invariants.
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Appendix D

Calculations using Maple

D.1 Procedures for the calculation of expansions
in terms of monomials of Iijk

With all the identities from section 4.3.2 we can compute the coefficients of the
expansion of any product of two invariant functions. We define the functions F and
G to have the expansions (cf. theorem 4.1 and eq. (4.3.119))

F
(
X̂2

1(2)−, X̂1(1)+ · X̂1(2)−, I111, . . . , I222

)
=

4∑
i=0

ni∑
j=1

Fi,j

(
X̂2

1(2)−, X̂1(1)+ · X̂1(2)−

)
Ii,j ,

(D.1.1)

G
(
X̂2

1(2)−, X̂1(1)+ · X̂1(2)−, I111, . . . , I222

)
=

4∑
i=0

ni∑
j=1

Gi,j

(
X̂2

1(2)−, X̂1(1)+ · X̂1(2)−

)
Ii,j .

(D.1.2)

Their product is the function H

H
(
X̂2

1(2)−, X̂
µ
1(1)+X̂1(2)−µ, I111, . . . , I222

)
= (F G)

(
X̂2

1(2)−, X̂
µ
1(1)+X̂1(2)−µ, I111, . . . , I222

)
, (D.1.3)

=

4∑
i=0

ni∑
j=1

Hi,j

(
X̂2

1(2)−, X̂
µ
1(1)+X̂1(2)−µ

)
Ii,j . (D.1.4)

Then the coefficients Hi,j are

H0,1 = F0,1G0,1 (D.1.5)

∀i ∈ {1, . . . , 8} : ,

H1,i = F1,iG0,1 + F0,1G1,i

∀i ∈ {1, . . . , 4} : ,

H2,i = F2,iG0,1 + F0,1Gi + F1,iG1,i + F1,i+4G1,i+4X̂
2
1(2)−

+F1,iG1,i+4X̂
µ
1(1)+X̂1(2)−µ + F1,i+4G1,iX̂

µ
1(1)+X̂1(2)−µ ,

129
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H2,5 = F2,5G0,1 + F0,1G2,5 + F1,1G1,2 + F1,2G1,1 + F1,6G1,5X̂
2
1(2)−

+F1,5G1,6X̂
2
1(2)− + 2(F1,2G1,5 + F1,5G1,2)X̂µ

1(1)+X̂1(2)−µ ,

H2,6 = F2,6G0,1 + F0,1G2,6 + F1,1G1,3 + F1,3G1,1 + F1,7G1,5X̂
2
1(2)−

+F1,5G1,7X̂
2
1(2)− + 2(F1,3G1,5 + F1,5G1,3)X̂µ

1(1)+X̂1(2)−µ ,

H2,7 = F2,7G0,1 + F0,1G2,7 + F1,4G1,2 + F1,2G1,4 + F1,6G1,8X̂
2
1(2)−

+F1,8G1,6X̂
2
1(2)− + 2(F1,2G1,8 + F1,8G1,2)X̂µ

1(1)+X̂1(2)−µ ,

H2,8 = F2,8G0,1 + F0,1G2,8 + F1,3G1,4 + F1,4G1,3 + F1,8G1,7X̂
2
1(2)−

+F1,7G1,8X̂
2
1(2)− + 2(F1,3G1,8 + F1,8G1,3)X̂µ

1(1)+X̂1(2)−µ ,

H2,9 = F2,9G0,1 + F0,1G2,9 + F1,1G1,6 + F1,6G1,1 − F1,2G1,5 − F1,5G1,2 ,

H2,10 = F2,10G0,1 + F0,1G2,10 + F1,1G1,7 + F1,7G1,1 − F1,3G1,5 − F1,5G1,3 ,

H2,11 = F2,11G0,1 + F0,1G2,11 − F1,2G1,8 − F1,8G1,2 + F1,4G1,6 + F1,6G1,4 ,

H2,12 = F2,12G0,1 + F0,1G2,12 − F1,3G1,8 − F1,8G1,3 + F1,4G1,7 + F1,7G1,4 ,

H2,13 = F2,13G0,1 + F0,1G2,13 + F1,1G1,4 + F1,4G1,1

+2X̂µ
1(1)+X̂1(2)−µ(F1,3G1,6 + F1,6G1,3) + X̂2

1(2)−(F1,5G1,8 + F1,8G1,5) ,

H2,14 = F2,14G0,1 + F0,1G2,14 + F1,2G1,3 + F1,3G1,2

+2X̂µ
1(1)+X̂1(2)−µ(F1,3G1,6 + F1,6G1,3) + X̂2

1(2)−(F1,5G1,8 + F1,8G1,5) ,

H2,15 = F2,15G0,1 + F0,1G2,15 + F1,6G1,7 + F1,7G1,6 − F1,5G1,8 − F1,8G1,5 ,

H2,16 = F2,16G0,1 + F0,1G2,16 + F1,1G1,8 + F1,8G1,1 − F1,3G1,6 − F1,6G1,3 ,

H2,17 = F2,17G0,1 + F0,1G2,17 + F1,2G1,7 + F1,7G1,2 − F1,3G1,6 − F1,6G1,3 ,

H2,18 = F2,18G0,1 + F0,1G2,18 + F1,5G1,4 + F1,4G1,5 − F1,3G1,6 − F1,6G1,3 ,

H3,1 = F3,1G0,1 + F0,1G3,1 + F2,1G1,4 + F1,4G10 + F2,13G1,1 + F1,1G2,13

+2iX̂µ
1(1)+X̂1(2)−µ(F1,3G1,6 + F1,6G1,3) + iX̂2

1(2)−(F1,5G1,8 + F1,8G1,5)

−1

2
(F1,1G2,14 + F2,14G1,1 + F1,3G2,5 + F2,5G1,3 + F1,2G2,6 + F2,6G1,2)

+X̂µ
1(1)+X̂1(2)−µ(F1,1G2,18 + F2,18G1,1 + F1,5G2,13 + F2,13G1,5)

−X̂µ
1(1)+X̂1(2)−µ(F1,5G2,14 + F2,14G1,5) + X̂2

1(2)−(F1,5G2,18 + F2,18G1,5)

−1

2
X̂2

1(2)−(F1,5G2,17 + F2,17G1,5) +
1

2
X̂2

1(2)−(F1,1G2,15 + F2,15G1,1

+F1,7G2,9 + F2,9G1,7 + F1,6G2,10 + F2,10G1,6) ,

H3,2 = F3,2G0,1 + F0,1G3,2 + F13G1,1 + F1,1G13 + F2,13G1,4 + F1,4G2,13

+2iF1,8G1,8X̂
2
1(2)− + 2iF1,4G1,8X̂

µ
1(1)+X̂1(2)−µ + 2iF1,8G1,4X̂

µ
1(1)+X̂1(2)−µ

−1

2
(F1,2G2,8 + F2,8G1,2 + F1,4G2,14 + F2,14G1,4 + F1,3G2,7 + F2,7G1,3)

+X̂µ
1(1)+X̂1(2)−µ(F1,4G2,16 + F2,16G1,4 + F1,8G2,13 + F2,13G1,8)

−X̂µ
1(1)+X̂1(2)−µ(F1,8G2,14 + F2,14G1,8) + X̂2

1(2)−(F1,8G2,16 + F2,16G1,8)

−1

2
X̂2

1(2)−(F1,8G2,17 + F2,17G1,8) +
1

2
X̂2

1(2)−(F1,4G2,15 + F2,15G1,4

+F1,7G2,11 + F2,11G1,7 + F1,6G2,12 + F2,12G1,6) ,
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H3,3 = F3,3G0,1 + F0,1G3,3 + F11G1,3 + F1,3G11 + F2,14G1,2 + F1,2G2,14 (D.1.6)

−1

2
(F1,1G2,7 + F2,7G1,1 + F1,4G2,5 + F2,5G1,4 + F1,2G2,13 + F2,13G1,2)

−i(F1,6G1,8 + F1,8G1,6)X̂2
1(2)− − 2i(F1,2G1,8 + F1,8G1,2)X̂µ

1(1)+X̂1(2)−µ

+X̂µ
1(1)+X̂1(2)−µ(F1,6G2,14 + F2,14G1,6)− X̂µ

1(1)+X̂1(2)−µ(F1,1G2,11

+F2,11G1,1 + F1,6G2,13 + F2,13G1,6 + F1,4G2,9 + F2,9G1,4)

−1

2
X̂2

1(2)−(F1,5G2,11 + F2,11G1,5 + F1,6G2,18 + F2,18G1,6 + F1,6G2,16

+F2,16G1,6 + F1,8G2,9 + F2,9G1,8) ,

H3,4 = F3,4G0,1 + F0,1G3,4 + F12G1,2 + F1,2G12 + F2,14G1,3 + F1,3G2,14 (D.1.7)

−1

2
(F1,1G2,8 + F2,8G1,1 + F1,4G2,6 + F2,6G1,4 + F1,3G2,13 + F2,13G1,3)

−i(F1,8G1,7 + F1,7G1,8)X̂2
1(2)− − 2i(F1,3G1,8 + F1,8G1,3)X̂µ

1(1)+X̂1(2)−µ

+X̂µ
1(1)+X̂1(2)−µ(F1,3G2,17 + F2,17G1,3 + F1,7G2,14 + F2,14G1,7)

−X̂µ
1(1)+X̂1(2)−µ(F1,1G2,12 + F2,12G1,1 + F1,7G2,13 + F2,13G1,7

+F1,4G2,10 + F2,10G1,4) + X̂2
1(2)−(F1,7G2,17 + F2,17G1,7)

−1

2
X̂2

1(2)−(F1,5G2,12 + F2,12G1,5 + F1,7G2,18 + F2,18G1,7 + F1,7G2,16

+F2,16G1,7 + F1,8G2,10 + F2,10G1,8) ,

H3,5 = F3,5G0,1 + F0,1G3,5 + F10G1,8 + F1,8G10 + F2,16G1,1 + F1,1G2,16

+
1

2
(F1,5G2,14 + F2,14G1,5)− 1

2
(F1,3G2,9 + F2,9G1,3 + F1,6G2,6 + F2,6G1,6

+F1,1G2,17 + F2,17G1,1 + F1,7G2,5 + F2,5G1,7 + F1,2G2,10 + F2,10G1,2)

+X̂µ
1(1)+X̂1(2)−µ(F1,5G2,16 + F2,16G1,5)− 1

2
X̂2

1(2)−(F1,5G2,15 + F2,15G1,5)

−X̂µ
1(1)+X̂1(2)−µ(F1,1G2,15 + F2,15G1,1 + F1,7G2,9 + F2,9G1,7

+F1,6G2,10 + F2,10G1,6) ,

H3,6 = F3,6G0,1 + F0,1G3,6 + F11G1,7 + F1,7G11 + F2,17G1,2 + F1,2G2,17

+
1

2
(F1,1G2,11 + F2,11G1,1 + F1,6G2,13 + F2,13G1,6 + F1,4G2,9 + F2,9G1,4)

−1

2
(F1,2G2,16 + F2,16G1,2 + F1,8G2,5 + F2,5G1,8 + F1,2G2,18 + F2,18G1,2

+F1,5G2,7 + F2,7G1,5) + X̂2
1(2)−(F1,6G2,15 + F2,15G1,6)

+X̂µ
1(1)+X̂1(2)−µ(F1,2G2,15 + F2,15G1,2 + F1,6G2,17 + F2,17G1,6) ,

H3,7 = F3,7G0,1 + F0,1G3,7 + F12G1,6 + F1,6G12

+
1

2
(F1,1G2,12 + F2,12G1,1 + F1,7G2,13 + F2,13G1,7 + F1,4G2,10 + F2,10G1,4)

−1

2
(F1,3G2,16 + F2,16G1,3 + F1,8G2,6 + F2,6G1,8 + F1,3G2,18 + F2,18G1,3

+F1,5G2,8 + F2,8G1,5) + X̂µ
1(1)+X̂1(2)−µ(F1,3G2,15 + F2,15G1,3)

+X̂2
1(2)−(F1,7G2,15 + F2,15G1,7) ,
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H3,8 = F3,8G0,1 + F0,1G3,8 + F13G1,5 + F1,5G13 + F2,18G1,4 + F1,4G2,18

+
1

2
(F1,8G2,14 + F2,14G1,8) + X̂µ

1(1)+X̂1(2)−µ(F1,8G2,18 + F2,18G1,8)

−1

2
(F1,2G2,12 + F2,12G1,2 + F1,7G2,7 + F2,7G1,7 + F1,4G2,17 + F2,17G1,4

+F1,3G2,11 + F2,11G1,3 + F1,6G2,8 + F2,8G1,6)

−X̂µ
1(1)+X̂1(2)−µ(F1,4G2,15 + F2,15G1,4 + F1,7G2,11 + F2,11G1,7 + F1,6G2,12

+F2,12G1,6)− 1

2
X̂2

1(2)−(F1,8G2,15 + F2,15G1,8) ,

H4,1 = F4,1G0,1 + F0,1G4,1 + F3,2G1,1 + F1,1G3,2 + F3,1G1,4 + F1,4G3,1

+F13G10 + F10G13 + F2,13G2,13 + F3,4G1,2 + F1,2G3,4 + F3,3G1,3

+F1,3G3,3 + F11G12 + F12G11 + F2,14G2,14 − 10F1,8G1,8X̂
2
1(2)−

−10F1,4G1,8X̂
µ
1(1)+X̂1(2)−µ − 10F1,8G1,4X̂

µ
1(1)+X̂1(2)−µ

+2iX̂µ
1(1)+X̂1(2)−µ(F1,4G2,16 + F2,16G1,4 + F1,8G2,13 + F2,13G1,8)

−2iX̂µ
1(1)+X̂1(2)−µ(F1,8G2,14 + F2,14G1,8) + 2iX̂2

1(2)−(F1,8G2,16 + F2,16G1,8)

−iX̂2
1(2)−(F1,8G2,17 + F2,17G1,8) + iX̂2

1(2)−(F1,4G2,15 + F2,15G1,4 + F1,7G2,11

+F2,11G1,7 + F1,6G2,12 + F2,12G1,6)− 1

2
(F2,6G2,7 + F2,7G2,6 + F2,5G2,8

+F2,8G2,5 + F2,13G2,14 + F2,14G2,13)

+X̂µ
1(1)+X̂1(2)−µ(F1,4G3,5 + F3,5G1,4 + F1,8G3,1 + F3,1G1,8 + F2,13G2,16

+F2,16G2,13 + F1,1G3,8 + F3,8G1,1 + F1,5G3,2 + F3,2G1,5 + F2,13G2,18

+F2,18G2,13 + F1,3G3,6 + F3,6G1,3 + F1,7G3,3 + F3,3G1,7 + F2,14G2,17

+F2,17G2,14 + F1,2G3,7 + F3,7G1,2 + F1,6G3,4 + F3,4G1,6)

−2iX̂µ
1(1)+X̂

2
1(2)−µ(F1,4G2,15 + F2,15G1,4 + F1,7G2,11 + F2,11G1,7 + F1,6G2,12

+F2,12G1,6) + 2iX̂µ
1(1)+X̂

2
1(2)−µ(F1,8G2,18 + F2,18G1,8)

−iX̂µ
1(1)+X̂1(2)−µX̂

2
1(2)−(F1,8G2,15 + F2,15G1,8)

−1

2
X̂µ

1(1)+X̂1(2)−µ(F2,14G2,16 + F2,16G2,14 + F2,13G2,17 + F2,17G2,13

+F2,7G2,10 + F2,10G2,7 + F2,5G2,12 + F2,12G2,5 + F2,6G2,11 + F2,11G2,6

+F2,8G2,9 + F2,9G2,8 + F2,18G2,14 + F2,14G2,18)

+X̂2
1(2)−(F1,5G3,8 + F3,8G1,5 + F1,7G3,6 + F3,6G1,7 + F1,6G3,7 + F3,7G1,6

+F1,8G3,5 + F3,5G1,8 + F2,16G2,16 + F2,17G2,17 + F2,18G2,18)

+(X̂µ
1(1)+X̂1(2)−µ)2(F2,16G2,18 + F2,18G2,16 + F2,14G2,15 + F2,15G2,14)

−(X̂µ
1(1)+X̂1(2)−µ)2(F2,13G2,15 + F2,15G2,13 + F2,9G2,12 + F2,12G2,9

+F2,10G2,11 + F2,11G2,10) +
1

2
X̂2

1(2)−(F2,13G2,15 + F2,15G2,13 + F2,9G2,12

+F2,12G2,9 + F2,10G2,11 + F2,11G2,10)

−1

2
X̂2

1(2)−(F2,16G2,17 + F2,17G2,16 + F2,18G2,17 + F2,17G2,18)

−1

2
X̂µ

1(1)+X̂1(2)−µX̂
2
1(2)−(F2,15G2,16 + F2,16G2,15 + F2,15G2,18 + F2,18G2,15)

+X̂µ
1(1)+X̂1(2)−µX̂

2
1(2)−(F2,15G2,17 + F2,17G2,15) + (X̂2

1(2)−)2(F2,15G2,15) .

(D.1.8)
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We programmed a computer algebra procedure, ProdExpaInv(a,b), with these
equations, which enabled us to quickly calculate these products. With a small
procedure, PowerExpaInv(F,n), repeating this product n − 1 times, the power of
an invariant can be calculated.

Also a linear combination procedure, LinComExpaInv(k1,F1,k2,F2), taking a
linear combination k1F1 +k2F2 by calculating it for every component of the 36-tuple
has often been helpful.

D.2 Replacing X̂2
1(2)− by other non-nilpotent invariants

The input variables are

• the expansion, a:=array(1..36,...), of the invariant, which shall replace
X̂2

1(2)−,

• a new variable name, va, for the same invariant, which shall appear in the
resulting expansion of X̂2

1(2)−, and

• the expansion, nxterm, which shall be inserted for X3 (cf. eq. (4.3.117)),
depending only on I2 named I2v therein.

We used the latter to replace X3 by I2 with the help of eq. (4.3.127).
In the whole procedure we replace all appearances of X̂1(1)+ · X̂1(2)− by X̂2

1(2)−
(=:X2mX2m) and the variable Xterm representing X3. After the variable declaration
we check, that X2mX2m only appear with degree 1.

> X2mX2mErsetzen:=proc(a,va,nxterm)

local i,j,k,l1,l2,tmp1,tmp2,tmp3,temp0,coeff0,bastmp, Xterm;

bastmp:=array(1..36,sparse);

tmp1:=array(1..36,sparse);

tmp2:=array(1..36,sparse);

tmp3:=array(1..36,sparse);

if degree(subs(X1pX2m=1/2*(-Xterm+X2mX2m+1),a[1]),X2mX2m)<>1 and

ldegree(subs(X1pX2m=1/2*(-Xterm+X2mX2m+1),a[1]),X2mX2m)<>1

then return("err:degree",degree(a[1],X2mX2m));

end if;

The coefficient of X̂2
1(2)− is determined. The first component of the temporary result

tmp1 – this component is already final – is just the new variable name divided by
this coefficient. The negative values of other the components are divided by the
coefficient are copied. Thus we have brought these components to the other side of
the equation, which is given by the expansion a, and isolated X2mX2m. tmp2 is used
as a buffer for intermediate results to avoid circle assignmets and differs only from
tmp1 by the vanishing element tmp2[1].

coeff0:=coeff(subs(X1pX2m=1/2*(-Xterm+X2mX2m+1),a[1]),X2mX2m)

tmp1[1]:=va/coeff0;
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tmp2[1]:=0;

for i from 2 to 36 do

tmp1[i] := simplify(-subs(X1pX2m=1/2*(-Xterm+X2mX2m+1),a[i])

/coeff0);

tmp2[i] := simplify(-subs(X1pX2m=1/2*(-Xterm+X2mX2m+1),a[i])

/coeff0);

end do;

For the range of degrees of Xterm in the lowest components tmp1[1] we compute
the linear combination of the expansion tmp2 and the powers of nxterm times the
corresponding coefficients. This way the variable Xterm is completely replaced in
the lowest component.

temp0:=tmp1[1];

for j from ldegree(temp0,Xterm) to degree(temp0,Xterm) do

tmp1:=LinComExpaInv(1,tmp2,coeff(temp0,Xterm,j),

PowerExpaInv(nxterm,j));

for i from 1 to 36 do

tmp2[i] := tmp1[i];

end do;

end do;

Now the loop over the other components begins. We need a copy, tmp3, of the
intermediate result, tmp1, which is not changed within the loops, that follow further
down.

for k from 2 to 36 do

if tmp1[k]<>0 then

for j from 1 to 36 do

tmp3[j] := tmp1[j];

end do;

The procedure is programmed only for the case, that there are no components with
negative powers of X2mX2m. The component, tmp2[k] has to be set to zero, so
that this component with the needed replacement can be calculated together with
the changes of the higher components and added to the expansion tmp2. This is
essentially done as for the lowest component, but for both variables X2mX2m and
Xterm. The procedure ProdExpaInv is used to calculate the monomials of these
variables and the multiplication with a basis element bastmp, which is zero for all
components but k.

temp0:=tmp1[k];

tmp2[k]:=0;

bastmp[k]:=1;

if ldegree(temp0,X2mX2m)>=0 then

for l1 from ldegree(temp0,X2mX2m) to degree(temp0,X2mX2m) do

for l2 from ldegree(temp0,Xterm) to degree(temp0,Xterm) do



D.3. CHANGE OF COEFFICIENT FUNCTIONS 135

tmp1:= LinComExpaInv(1,tmp2, coeff(coeff(temp0,Xterm,l2)

,X2mX2m,l1), simplify(subs(X1pX2m=1/2*(-Xterm+X2mX2m+1),

prodExpaInv(bastmp,ProdExpaInv( PowerExpaInv(nxterm,l2),

PowerExpaInv(tmp3,l1))))));

for i from 1 to 36 do

tmp2[i] := tmp1[i];

end do;

end do;

end do;

The variable for the basis element bastmp has to be set to zero again, so that it can
be used for the next k again.

else return("negative power of X2mX2m");

end if;

end if;

bastmp[k]:=0;

end do;

return(eval(tmp1));

end proc;

If we use the expansion of the inverse of I6 as input a and take 1/I6v for va, we get
the expansion of X̂2

1(2)− in terms of the variables I6v and I2v. If instead a is the
expansion of I1 and va is I1v, the elements of the resulting array are expressed in
terms of I1v and I2v.

D.3 Change of coefficient functions from dependence on
X̂2

1(2)− and X̂1(1)+ · X̂1(2)− to dependence on I2 and I1

or I6

The result from the procedure in the last section and the expansion of X3 in terms
of I2 can now be used for the replacement of X̂2

1(2)− and X̂1(1)+ · X̂1(2)− in any
expansion of an invariant. We present the procedure here for the replacement with
I6 and I2. But, if the expansion of X̂2

1(2)− in terms of I1 and I2 in eq. (4.3.129)

is used, these two superconformal cross ratios are the replacements of X̂2
1(2)− and

X̂1(1)+ · X̂1(2)−. The argument a is an expansion of an invariant in form of an array

with 36 elements depending on the variables X2mX2m and X1pX2m standing for X̂2
1(2)−

and X̂1(1)+ · X̂1(2)−.

> ErsetzenEI:=proc(a)

local i,j,k,l1,l2,tmp1,tmp2,temp0,bastmp,nxt,X2t;

bastmp:=array(1..36,sparse);

tmp1:=array(1..36,sparse);

tmp2:=array(1..36,sparse);
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The variables nxt and X2t contain the expansions of X3 and X̂2
1(2)−.

nxt:= vector([I2v, 2*I-2*I*I2v, -4*I, 0, 0, 0, 4*I, 0, 0,

-6+6*I2v, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0]);

X2t:= vector([1/I6v, 2*I/I6v, 0, 0, 0, 0, 0, 0, 0, -10*1/I6v,

0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0]);

So we need to substitute X̂1(1)+ · X̂1(2)−.

for j from 1 to 36 do

tmp2[j] := simplify(subs(X1pX2m=1/2*(-Xterm+X2mX2m+1),a[j]));

end do;

The rest of the procedure works in the same way as the one in section D.2.

for k from 1 to 36 do

if tmp2[k]<>0 then

temp0:=tmp2[k];

tmp2[k]:=0;

bastmp[k]:=1;

for l1 from ldegree(temp0,X2mX2m) to degree(temp0,X2mX2m) do

for l2 from ldegree(temp0,Xterm) to degree(temp0,Xterm) do

tmp1:=LinComExpaInv(1,tmp2,coeff(coeff(temp0,Xterm,l2),

X2mX2m,l1),simplify(subs(X1pX2m=1/2*(-Xterm+X2mX2m+1),

ProdExpaInv(bastmp,ProdExpaInv( PowerExpaInv(nxt,l2),

PowerExpaInv(X2t,l1))))));

for i from 1 to 36 do

tmp2[i] := tmp1[i];

end do;

end do;

end do;

end if;

bastmp[k]:=0;

end do;

return(simplify(eval(tmp1)));

end proc;

With this procedure we get the expansions with coefficient functions depending on
superconformal cross ratios and want to do calculation with them. The linear com-
bination procedure, LinComExpaInv, can still be used for them. But the usage of
the product procedure, ProdExpaInv, would lead to term with X2mX2m and X1pX2m

again. To avoid this one can generate most of the source code of a new prod-
uct procedure, ProdEI, if we apply the substitution procedure, ErsetzenEI, to the
result of the old product, ProdExpaInv(a,b), with arrays a:=array(1..36) and
b:=array(1..36) with elements, which are not further declared:
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> erg:=ErsetzenEI(ProdExpaInv(a,b)):

> print(seq([`erg[`,i,`]:=`,erg[i],`;`],i=10..36));

D.4 Expansions of inverses and square roots of invari-
ants

With a procedure for the product of two expanded invariants – e.g. ProdExpaInv

or ProdEI – the calculation of the inverse can also be easily implemented, as the
inverse, for example, of function F (cf. eq. (4.3.119)) is given by(

1

F

)(
X̂2

1(2)−, X̂
µ
1(1)+X̂1(2)−µ, I111, . . . , I222

)

=

4∑
h=0

1

F0,0
(1+h)

− 4∑
i=1

ni∑
j=1

Fi,jIi,j

h

. (D.4.1)

We have generated the square route procedure from the above mentioned product
procedure, ProdExpaInv(a,b), with the following few lines of source code

> erg:=ProdExpaInv(tmp,tmp):

> a:=array(1..36):

> print(seq([`tmp[`,i,`]:=`,solve(erg[i]=a[i],tmp[i]),`;`],

i=1..36));

The equations can be solved one by one in the sequence, because in each solution
tmp[i] there are only other tmp[j], which belong to lower order invariants. Thus, if
one takes the printed output of this sequence into the source code of the procedure,
every assignment of a variable tmp[i] only contains variables calculated before.

D.5 Combinatorics of non-nilpotent invariants

In this section we generate all invariants, which are ratios of squares of supercon-
formal intervals, xīj

2. We describe the combinatorial approach used for this task in
the paragraph about more invariant ratios surrounding eqns. (4.2.29)–(4.2.35).

In these calculation we treat all trees, of which we have discussed an example in
that paragraph, simultaneously. We need a whole bunch of variables to keep track
of our progress. We symbolize a squared interval, xīj

2, as a list, [i,j]. We assign
different variables for numerators and denominators, so that these variables always
appear in pairs. zaehler and nenner stand for the ratio currently treated with their
numerator and denominator, respectively. zaehlerliste and nennerliste are the
major working list for all generated elements of the tree, also the intermediate ones.
So zaehlerliste[i] and nennerliste[i] are numerator and denominator of one
ratio. counter counts in its first element the number of elements of one of these two
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equally long lists. In the second element the number of elements of current length,
which is the number of intervals, [i,j], in a numerator or denominator, is counted.

Now the stocks of 24 trees are generated. Of cause, one could take less, if one
arguments, that there are inverses of each other among these 24, but then one would
have to argue also, which selection is taken, so that one does not miss invariants.
Taking all 24 guarantees completeness and the extra calculations are not noticeable.

We get all ratios xīj
2/xīk

2 and count them in counter[2]

> counter:=[0,0];

zaehler:=[];

nenner:=[];

for i from 1 to 4 do

for j from 1 to 4 do

if i<>j then

zaehler:=[[i,j]];

for k from 1 to 4 do

if j<>k and i<>k then

nenner:=[[i,k]];

zaehlerliste:=[op(zaehlerliste),zaehler];

nennerliste:=[op(nennerliste),nenner];

counter[2]:=counter[2]+1;

end if;

end do;

end if;

end do;

end do;

Because in each round of the contained while-loop the numerators and the de-
nominators of the ratios get longer and longer, this current length is counted by
anzahlzaehler. The lists, endzaehler and endnenner, are filled with lists of nu-
merators resp. denominators of completed invariants in groups with the same length
starting with length 1. So endzaehler[l,p,q] is the squared interval, [i,j], which
is the q’th interval in the numerator of the p’th finished invariant with l squared
intervals on each side of the fraction line. The number of finished invariants with the
same length i is counted as an element of a list, endzaehlerzahl[i]. As we still
need counter[2], we use a temporary counter, countertmp, to count the number
of new ratios of length anzahlzaehler+1 generated in the current round.

anzahlzaehler:=1;

endzaehlerzahl:=[0];

endzaehler:=[[]];

endnenner:=[[]];

settmp1:=[];settmp2:=[];

ctmp1:=0;ctmp2:=0;

while counter[2]<>0 do

countertmp:=0;
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The for-loop goes through all ratios generated in the last round with the length
anzahlzaehler. For each ratio the numerator and the denominator are taken out
of zaehlerliste and nennerliste. Also one needs the last added interval, [i,j],
in the denominator, which is assigned to letzternenner.

for i from 1 to counter[2] do

zaehler:=zaehlerliste[counter[1]+i];

nenner:=nennerliste[counter[1]+i];

letzternenner:= nenner[anzahlzaehler];

After the first round, in which there cannot appear an invariant, we test here, if for
any of the found invariants its numerator and denominator can be simultaneously
found in the current numerator and denominator, zaehler and nenner. This re-
quires the simultaneous appearance of all intervals of the invariant in the current
ratio. If this is not the case, testb2 is set to zero. And if it is the case for any of the
invariants found so far, testb is set to one. This is one of the terminating conditions,
which are described in section 4.2.2 and prevents infinite loops and double invariants
in the resulting list.

testb:=0;

if anzahlzaehler>1 then

for l from 2 to anzahlzaehler do

if not endzaehler[l]=[] then

for p from 1 to endzaehlerzahl[l] do

testb2:=1;

for q from 1 to l do

print('test', counter[2],i,l,p,q);

if not member(endzaehler[l,p,q],zaehler) or not

member(endnenner[l,p,q],nenner) then

testb2:=0;

end if;

end do;

if testb2=1 then

testb:=1;

end if;

end do;

end if;

end do;

end if;

For the branches, which are not terminated, the first question to ask is, if a new
invariant has been finished with zaehler and nenner, which is the other terminat-
ing condition (letzternenner[2]=zaehler[1,2]; this case is treated in the else

below).

if testb=0 then

if letzternenner[2]<>zaehler[1,2] then
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Now one new interval for the numerator and one for the denominator is searched.
The new element for the numerator has be [j,letzternenner[2]] for some j un-
equal to letzternenner[2], so that it does not appear in the denominator, yet.
Otherwise it would cancel down. Once found, it is assigned to letzterzaehler.
The new denominator, [letzterzaehler[1],k], for some k unequal to the number
letzterzaehler[1], has to fulfill the corresponding condition. If both could be
found, it is saved as new ratio in the lists zaehlerliste and nennerliste and the
counter is incremented.

for j from 1 to 4 do

if not member([j,letzternenner[2]],nenner) then

if j<>letzternenner[2] then

letzterzaehler:=[j,letzternenner[2]];

for k from 1 to 4 do

if [letzterzaehler[1],k]<>letzterzaehler then

if not member([letzterzaehler[1],k],zaehler) then

if k<>letzterzaehler[1] then

zaehlerliste:=[op(zaehlerliste),[op(zaehler),

letzterzaehler]];

nennerliste:=[op(nennerliste),[op(nenner),

[letzterzaehler[1],k]]];

countertmp:=countertmp+1;

end if;

end if;

end if;

end do;

end if;

end if;

end do;

This else belongs to the query, if we have not found a new invariant. Thus for the
answer “no” – so in the case of a new invariant – we have to save this invariant
in the lists endzaehler[anzahlzaehler] and endnenner[anzahlzaehler], which
contain those of the currently treated length anzahlzaehler, and increment the
corresponding counter endzaehlerzahl[anzahlzaehler].

else

endzaehler[anzahlzaehler]:= [op(endzaehler[anzahlzaehler]),

zaehler];

endzaehlerzahl[anzahlzaehler]:= endzaehlerzahl[

anzahlzaehler]+1;

endnenner[anzahlzaehler]:= [op(endnenner[anzahlzaehler]),

nenner];

end if;

end if;

After the for-loop over all ratios of one length is finished, we have to increment
the variable for the length anzahlzaehler and bring counter up to date. The lists
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for the resulting invariants and their numbers get their new elements for the next
length, if there is a next round of the while-loop. For every length we print the
invariants found so far.

end do;

anzahlzaehler:=anzahlzaehler+1;

counter[1]:=counter[1]+counter[2];

counter[2]:=countertmp;

if counter[2]<>0 then

endzaehlerzahl:=[op(endzaehlerzahl),0];

endzaehler:=[op(endzaehler),[]];

endnenner:=[op(endnenner),[]];

end if;

print(counter,endzaehlerzahl, endzaehler,endnenner);

end do;

In the fourth round of the while-loop, no ratio is found any more, which can be
made longer under the stated conditions. The longest ratios in the lists have four
intervals in the numerator and four in the denominator. In the end the 24 trees
contain altogether 648 elements and lead to 12 invariants of length 2, 32 of length 3
and 12 of length 4.

They are those of eqns. (4.2.29)–(4.2.35) and all possible permutations of indices
and can all be expressed by the set of ten invariants, which we choose in sections
4.2 and 4.3.
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