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Errata

• Introduction, page 1: The direction of signaling between axons and dendrites was stated
ambiguously.
The sentence should have been: “Also since Ramón y Cajal, we know that the communication
between two cells via a synapse is a one-way process, where an electrical signal from the
axon of a pre-synaptic cell is communicated to the dendrites of a post-synaptic cell.”

• Higher order degree, page 20: The stated formula was incorrect.
The higher order degree is correctly given by k(n)

i = ∑j(An)ji, and in particular the second

order degree is given by k(2)
i = ∑j(A2)ji.
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Chapter 1

Introduction

Hippocrates (460–379 B.C.) was among the first to describe the brain as the seat of sensation and
intelligence [1], but it is only since the 19th century and the work of Ramón y Cajal, that we have
been able to isolate the neuron as the principal unit of computation in the brain and the synapse as
the principal mode of interaction among neurons [2]. These two components together give rise to
the neuronal networks of the human brain, linking together approximately 86 billion neurons, which
are supported by about the same number of non-neuronal cells [3–5]. Also since Ramón y Cajal,
we know that the communication between two cells via a synapse is a one-way process, with the
dendrites of the pre-synaptic cell providing the input in the form of an electrical signal, and the axon
of a post-synaptic cell acting as the output. This electrical pulse in neurons is known as the action
potential (often simply called a spike or neuronal firing). It is mediated by ion channels in the neuron’s
membrane, and was studied quantitatively by Hodgkin and Huxley in the squid axon [6, 7].

The temporal patterns of action potentials across the population of neurons constitute the
dynamics of the network. Numerous studies have revealed the sparsity of the neural code, i. e.
the relatively low average firing frequency of the neuronal population [8]. For instance in rat
somatosensory cortex, neurons were found to be active only once for every 20s on average [9, 10].
The neuronal network in the brain is also sparse in terms of the connectivity, i. e. the overall
probability of connection between two neurons [11]. The reason for both kinds of sparsity is likely
the high metabolic cost of the brain itself and its neuronal activity, which is reflected in the fact
that even though the brain contributes only about 2% of body mass in adult humans, the energy
consumption of the metabolism of the brain at rest is about 20% [12, 13].

This sparsity is one of the reasons why there is an increasing interest in neuroscience to uncover
the structure of neuronal networks, the wiring diagram of neuronal circuitry. This is especially
pursued on the large scale of structures in the brain, building on historic findings which have
correlated specific neuronal functions with certain regions of the brain by studying patients
with lesions in these areas [4, 14, 15]. A wealth of studies using functional magnetic resonance
imaging (fMRI) have shown in recent years that metabolic activity in different regions of the
brain correlates with behavioral patterns such as decision-making, learning and even states of
self-reflection [16–19]. However, while such studies are valuable to determine in which regions of
the brain a given activity is prevalently carried out, they do not allow us to study the microscopic
dynamics. This makes it difficult, based on the described methods, to answer at some point what
may be called the ultimate question of modern neuroscience: Not where does the brain carry out its
function, but how.

On a finer length scale, it is known that neuronal processes in the brain find a path across
centimeters of length guided by chemical gradients and other mechanisms of axon guidance,
yielding an enormous degree of specificity of the connection structure [20–23]. Recently, in networks
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2 CHAPTER 1. INTRODUCTION

Figure 1.1: Bright-field image of a fully grown in vitro network of hippocampal rat neurons at
21 days in vitro. Image taken using a difference interference contrast microscope at the Max Planck
Institute for Biochemistry, Martinsried.

of dissociated neurons in vitro, Feinerman et al. succeeded in building basic logic devices by
making use of patterned substrates to achieve a guided network topology [24]. Thus, is the key
to understanding the brain in the neuronal circuitry, i. e. in the network structure of synaptic
connections between neurons?

A tight inter-relation between structure and dynamics

There is some evidence that the network structure is at least not the only important key for neuronal
function. The latter is represented by the dynamics of the neuronal system, but while the network
structure underlies the dynamics, it does not determine it directly. It has been shown that even
topologically static networks of neurons are able to display a wide range of activity patterns, with
dynamics that are typically complex and highly irregular [25–28]. As a consequence of this richness
in dynamics, even in networks of highly simplified model neurons, very different dynamical
patterns can exist on the same structural network substrate [29, 30]. The structure of a network can
thus be said to restrict, but not determine dynamics.

In particular, it was recently shown that the same structural network can display a range of
dynamical patterns which can be switched by way of brief perturbations, without altering the
neuronal connectivity [31, 32]. The function that a network can perform is therefore much richer
than its structural foundation. We conclude that the synaptic connectivity of a network is not the
full story — to learn about the way that neuronal function is embedded in neuronal networks, it is
necessary to study structure and dynamics together, and to understand the complex inter-relation
between the two, rather than each of them in isolation.

In this thesis, we aim to improve our knowledge about this relation between structure and
dynamics in vitro by analyzing and modeling signs of non-randomness in neuronal activity
patterns. We will combine analytical and numerical analysis to answer the following questions:
To what degree do aspects of the structural topology determine the observed patterns of activity
in neuronal networks? What can we learn about the structure of the neuronal network based on
observing its activity?

We hope that the answers we give for simplified systems can in the future contribute to the
knowledge about the development and evolution of synaptic structure in the behaving organism.
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In vitro networks of cultured neurons

In order to make these questions tractable, in the present work we focus on networks of dissociated
neuronal networks in vitro, which in recent years have become an important model system for the
study of connectivity and spiking activity [33–43]. In these cultured networks, neurons are taken out
of embryonic tissue by means of a mechanic and enzymatic protocol and are placed on a substrate,
initially in isolation from each other. Within hours, however, neurons start to form axons and
dendrites. In the absence of external guidance cues or external stimuli as present in the brain, the
neurons connect and give rise to the formation of a self-organized network of neurons [44–46] (see
Fig. 1.1 for an example of a fully developed cultured network).

Coinciding with the maturation of the synapses, spontaneous electrical activity (action poten-
tials) starts to arise in the cultured cells and the whole network begins to be active [47,48]. As such,
in vitro neuronal networks have the potential to better reveal the relationship between structure
and dynamics that might be hidden in the intact brain by layers of additional complexity which is
absent in vitro. Thus, the activity which is observed in vitro can be seen as a window into the more
complex dynamics in vivo.

In particular, while the resulting wiring diagram in vitro is artificial due to the different chemical
environment during development and is thus different from the intact tissue [49], some features of
the connectivity might be preserved. In this case, it would be highly interesting to understand the
cause of this similarity. Are there intrinsic mechanisms in the neurons which guide the connections?
These are questions to which the answer is currently unknown, but which we are beginning to
understand more by way of the techniques described in this thesis.

More generally, in the absence of stimuli, how much does the network structure determine the
network dynamics? And on the other hand, can we study non-random activity patterns in vitro
and learn about the self-organized structure of the network?

Bursting dynamics in vitro

Probably the most prominent feature of neuronal activity in vitro are network bursts: The firing
activity in the population of neurons is increasingly synchronized with higher age of the culture,
until at about 4–6 days in vitro, when the network finally displays spiking activity that recruits a
large fraction of the neurons in the network for up to 200ms of high-frequency, synchronous firing
(see Fig. 1.2A) [34,52]. So-called full bursts ignite the whole network, with individual neurons often
spiking multiple times.

Bursts have been found in a range of neuronal systems in vitro, mostly studied in cultures of
dissociated hippocampal neurons [38,42,53–55] and dissociated cortical neurons [37,43,46,52,56,57],
but have also been found in slices of hippocampal tissue [58, 59] and leech ganglia [60].

The onset of a burst shows a shape which can be approximated very well by an exponential
rise (see Fig. 1.2B), indicating that just before a burst, the neurons in the network are highly
excitable and activity spreads in an avalanche-like manner through the population. This activity
quickly reaches saturating levels and then decays back to baseline firing rates when fatigue effects
— potentially combined with the delayed onset of firing of the inhibitory sub-population — set in.

In bursts, despite the homogeneous limit of global activation, the onset is actually determined
by diverse and precise patterns [37, 61]. Eytan and Marom found that in cultured cortical networks
the temporal structure of activity preceding a network burst was surprisingly hierarchical rather
than random. A small subset of neurons, called the leader neurons, were firing consistently tens
of milliseconds before others [51]. Early firing is therefore not based purely on chance — there is
order in the spike times at the burst onset. The activity of these neurons could indeed be used to
predict an upcoming network burst event [50, 51]. This early firing property of a given neuron was
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A

B C

Figure 1.2: Previous studies of burst onset dynamics in vitro. (A) The temporal development of
population firing rate in terms of number of spikes across all recording electrodes within a window
of 20ms (black line). Exact spike times are indicated by vertical lines on the bottom of the panel.
Aborted bursts (red spikes) remain under the threshold (dashed line) while full bursts recruit the
whole network and are characterized by an onset phase (blue vertical lines) and a bursting phase
(violet vertical lines). The first recorded spike (leader) of each population event is shown as a larger
vertical line. Shown is a recording from a multi-electrode array in vitro. Panel reproduced with
permission from [50]. (B) The average firing during burst onset of 5796 network spikes together
with an exponential fit (black line). Inset shows the time-dependent averaged firing frequency of
the whole burst. (C) Stability of firing rate heterogeneity is shown as the averaged probability of
firing at the onset of a burst for bursts recorded during one hour for intervals separated by 6 hours.
Panels B and C reproduced with permission from [51].
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found to be stable across many hours [51,62], as shown in Fig. 1.2C. But what are the characteristics
that cause a neuron to be active earlier than others?

Eckmann et al. hypothesize that there must exist a sub-network of leaders spread homoge-
neously across the culture, which are active first, and then serve to ignite the rest of the network [50].
Yet, the nature and origin of this sub-network was unclear. For instance, is the non-randomness in
dynamics necessarily reflected in non-randomness in the network structure? It might be that the
non-stationary condition inherent in the burst onset serves to amplify finite-size variations in the
network, without systematic network structure.

There is some indication a priori that, if such a subset of neurons exists, the topological structure
in the network is an important factor in determining the firing dynamics in this regard. For instance,
Soriano et al. showed in a study on externally stimulated cultures that the probability of activation
of a neuron was determined by the number of synaptic inputs [63]. In detailed simulations of
neuronal systems, a positive correlation between leadership and the number of inputs was found
empirically by training a linear classifier on the parameters of the model neurons [64]. A number
of studies have examined the ability of an element of a network to synchronize its activity with the
global population, all indicating that the network topology has an influence [65–71]. Furthermore,
Schwab et al. showed in a theoretical study that the existence of communities of neurons of high in-
degree determines whether the network is able to display rhythmic bursting activity [72]. However,
is this equally true at the onset of spontaneous, aperiodic burst events in neuronal networks?
Indeed, whether or not it is possible to predict the dynamics of neuronal firing based on the
network, i. e. the degree to which the network topology constrains the onset dynamics, is unclear.

In Part I of this thesis, we address the question of what the determining factors in mathematical
models of neuronal networks are, that cause a neuron to be among the subset of early firing cells.
Studying simple mathematical neuron models, we obtain closed expressions for the expected time
of first firing. To first order in terms of the network topology surrounding a given neuron, the
first firing time is determined by a logarithmic dependence on the number of input connections a
neurons has, confirming indeed a strong influence of the network topology. We also obtain higher
order approximations of the surrounding topology of a given neuron in analogy to a Bethe-Peierls
approach [73,74], which allows for an accurate prediction of the expected first firing time of each
neuron. While the first firing time for a neuron in the context of a particular burst is of course
a stochastic process, the expected first firing time is found to be a deterministic function of the
structural topology.

This structure, however, is in the case of experimentally recorded networks unknown a priori.
As the structure constrains the firing dynamics of the network, at least to some degree, an intriguing
question is whether the dynamics constrains in any way the set of possible underlying network
structures.

Identification of the structural topology

At present, reliable statistical measures to reconstruct the connectivity in large-scale networks are
unavailable. This is despite the considerable efforts made in neuroanatomy, electrophysiology
and imaging [75–81] since 1986, when White et al. presented the first major systematic result by
extracting an exhaustive map of the neuronal connectivity in Caenorhabditis elegans based on serial
electron microscopy [82]. However, such a reconstruction has remained elusive for any other
organism to the present day [83].

It is known that the same structural topology can give rise to different effective connectivities
represented by patterns of activity [32], and the challenge is to find, if possible, based on observa-
tions of the dynamics of the network, a statistical description that identifies the unique structural
topology as closely as possible. While it is clear that network structure can constrain the possible
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Figure 1.3: Patch-clamp recordings by Song et al. to extract neuronal connectivity. (A) Four example
pyramidal cells in cultured tissue from layer V of rat visual cortex. (B) The left panel shows a
current-clamp recording of the activity in cell 3 (shown in red) just after a spike was triggered in
cell 1 (shown in blue). The sharp peak in cell 1 corresponds to the action potential, after which the
membrane voltage decays back to the resting level, and the more broad, less pronounced peak in
cell 3 below corresponds to the post-synaptic potential due synaptic currents from cell 1. The right
panel shows the reversed direction, showing the activity in cell 1 after a spike occurred in cell 3.
Both panels reproduced with permission from [84].

patterns of network activity, to identify the effect of this restriction in a non-trivially small number
of signals (neurons) is far from obvious due to the interactions that make up the network, enabling
dynamics that are much richer than a static network might at first glance be able to sustain. In a
sense, this is the inverse of the question stated above: We now ask whether it is possible to predict
the network topology based on observing non-randomness in the activity, given the fact that the
neuronal dynamics is non-linear and non-stationary.

A related question is whether it is at all possible, based on observing the network dynamics, to
distinguish connectivity motifs which lead to very similar dynamical motifs. Consider the case of
indirect causation, where in one scenario, neurons A and B are connected by a direct link, A→ B,
and in another scenario the connection is indirect via a third neuron C, as in A→ C→ B. Another
important case is co-causation, where one aims to distinguish the cases A→ B and A← C→ B. A
reconstruction algorithm must be able to distinguish the two cases reliably, even in the common
case of calcium imaging recordings where the temporal resolution of the recording is such that it
cannot resolve the precise temporal order of activity.
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To this day, the single most reliable technique to extract synaptic connectivity is based on
multiple simultaneous patch-clamp recordings, developed in the 1980s by Sakmann and Neher [85,
86]. In this approach, fluctuations in the membrane voltage of multiple neurons are recorded
simultaneously, and the response of neurons to a current-induced spike in one cell is used to
determine the existence and strength of mono-synaptic connectivity between them. Fig. 1.3A
shows four example cells in a cultured slice of rat visual cortex. They are simultaneously recorded
and the height of the post-synaptic potential is taken as evidence for the strength of the synaptic
connection (see Fig. 1.3B), if the time delay between pre- and post-synaptic events is short enough
such that mono-synaptic transmission is indeed ensured. Even though impressive numbers of
pairs of neurons have been studied across cultures [49,84] the method is nevertheless extremely
difficult to scale to a larger number of neurons in the same culture.

On the other end of the length scale, a wealth of studies endeavors to reconstruct connectivity
between regions of the brain, the majority of which is based on electroencephalography (EEG)
or fMRI signals [87]. Most of them are based on cross-correlation algorithms to find connected
voxels or using generalizations of this approach [88–92]. The macro-scale reconstruction results
are proposed to aid in the diagnosis of Alzheimer’s disease [93], chronic pain [94, 95], multiple
sclerosis [96] and epilepsy [97]. Functional MRI has also been used to study changes in large scale
brain connectivity in patients with severe physical brain injuries [98, 99].

Significant progress has also been made to reconstruct the connectivity based on three di-
mensional images of tissue obtained by way of electron-microscopy, particularly in the tracing
procedure employed to label axons and dendrites [77, 79, 100,101]. While determining if neuronal
branches are near is increasingly accurate, it is still difficult to determine the presence and weight
of a putative synaptic connection. Significant work was also done by explicitly assuming a specific
mathematical model of the underlying dynamics of the system [102,103]. One popular model is
the class of Generalized Linear Models [104, 105] which have indeed been combined with Bayesian
inference to reconstruct first spike times from calcium fluorescence time series and then to infer
the connectivity [106]. While achieving very good performance for simulated data sets, the perfor-
mance for experimental recordings is difficult to estimate due to the constraints the model imposes,
which may or may not be accurate for some or all of the cells under observation.

To obtain an actual circuit diagram with single-cell resolution in larger neuronal assemblies of
hundreds or thousands of neurons it is generally regarded that statistical tools have to be employed
on the basis of recordings of the activity of a population of neurons [107–110]. In this context,
it is necessary to define what constitutes a causal influence of one neuron on another, a question
with no single answer [111]. In the 1950s and 60s Granger and Wiener developed a measure of
causality based on predictability: a time series A was said to be causally influencing another time
series B when the fact of observing A was helpful in predicting the future states of B [112, 113].
This concept of causality is still used today, and it coincided with Shannon’s development of
information theory [114]. Even though Shannon himself was criticizing the trend [115], his ideas
were soon used in a broad range of different applications, including the forecasting of time series.
Importantly for the present work, in 2000 Schreiber developed a model-free generalization of
Granger’s work called Transfer Entropy [116].

As described above, a reliable description of the network topology of neuronal networks in
vitro is necessary. To this end, in Part II of this thesis we aim at reconstructing, based on the
observed dynamics of a neuronal network, the structural connectivity of the network. As a first
step, we analyze how much information can be retrieved about the network topology based on the
fact of it displaying bursting spiking dynamics, given the significant influence of the topology on
the burst onset dynamics described above. It turns out, however, that very different networks can
display bursting dynamics of the same inter-bust interval distributions, and thus a classification of
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the network structure based on bursting alone is impossible.
To identify mono-synaptic interactions based on the complete observed dynamics, we propose a

measure of causality based on Transfer Entropy. Crucially for reliable reconstruction, this formalism
is modified to capture the interactions between neurons that are faster than what the recording is
able to resolve.

Analyzing the effective connectivity in the different dynamical states displayed by the network,
which in the present application are identified indirectly via the population averaged signal,
we find dramatically different connectivities for each state. The degree of overlap between the
effective connectivity and the structural connectivity is also different. Crucially for our question,
we find that there exists a regime where the mapping between dynamics and structural topology
is more direct than for other dynamical states, namely the regime of firing rates lower than in
the case of synchronous bursting, and higher than the resting state. Conditioning out analysis
to this regime results in a very good reconstruction performance. We call this novel measure of
causal interaction, incorporating instantaneous interactions as well as state-dependency, Generalized
Transfer Entropy (GTE).

Its performance is systematically studied using simulated signals, revealing a reliable recon-
struction quality in terms of the rate of correctly identified links. In the special case of simple
networks with a highly local connectivity, even linear causality measures can yield a reasonable
reconstruction quality, but only GTE is performing well across network topologies. Moreover, we
show that in contrast to other methods, GTE is unbiased in the sense that reconstructed topological
quantities show a good linear correlation with the ground truth values. Thus, we have found a
reliable way of identifying the structural topology from the observed dynamics.

Closing the loop

An interesting question is whether, making use of the inferred topology, it is possible to predict the
onset time of neuronal activation preceding a network burst. Indeed, in Part III of this work we
show that it is possible to predict the burst onset dynamics this way. A very precise prediction is
achieved for simulated networks, and we demonstrate that early firing is indeed at least in part a
result of the network topology also in biological networks.

The analysis verifies that the work presented in this thesis is self-consistent. Additionally, we
show that even though the reconstruction of connectivity and the detection of burst onset times for
individual neurons are subject to noise, the errors in prediction are low enough to allow for the
presented analysis.

In short, in this thesis we study the tight inter-relation between structure and dynamics in
networks of neurons in vitro. Despite the highly complex nature of this relation, we are going
to show that much can be learned from the structure about the dynamics and vice versa, if the
complex nature of the interaction is taken into account. We hope that the present work will,
aside from the practical results described above and in the following chapters, lead to a deeper
understanding of the co-evolution of structure and dynamics in neuronal networks.



Part I

Burst onset spiking dynamics
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Chapter 2

Discrete time dynamics

As a first step towards the analysis of the temporal order of activation preceding a network burst
in cultured networks, we analyze activity patters in discrete-time mathematical models of neurons.
While the correspondence of the parameters of these models is less direct than in the continuous-
time model which will be considered later (see Chapter 4) they provide a simplified mathematical
framework, making the study of firing times more tractable.

Discrete-time integrate-and-fire models have repeatedly been used to understand the dynamics
of burst and avalanche dynamics and generation [117–122]. Of particular interest was the charac-
teristics of the model that would lead to a distribution of avalanche sizes that follows a power-law
distribution which had been found in certain biological systems, most notably in neuronal cultures
of neocortical neurons [123] or cultured slices of coronal tissue [61]. More recently, such avalanches
have also been found in vivo in anesthetized cats [124].

While the model system we are studying is taken from the same literature [119], the question
we are asking is different. Rather than studying avalanche size distributions, we are here interested
in the onset dynamics of such avalanches or burst, to address the question of which neurons in
the network model would fire first during a time period immediately preceding a burst. The
mathematical simplicity of the discrete-time integrate-and-fire model will allow us to determine
analytically what the common characteristics of early firing neurons are. In particular, we will
determine whether the dynamics of the system in this regard can be described in terms of the
network structure.

2.1 Model characteristics

In discrete-time integrate-and-fire models, each node i is characterized by a variable ϑi(t), corre-
sponding to the membrane potential of real neurons. The value of this potential is initially drawn
from a uniform distribution on the interval [0, 1[.

The N nodes are connected on a directed graph, characterized by a number of C connections
between them. In this thesis, we always consider the more biologically realistic case where the
network is sparse rather than fully connected as in [120], i. e. where C � N(N − 1) [13]. This
graph is represented formally by a binary adjacency matrix A, with element Aij = 1 if there exists
a link i → j and Aij = 0 otherwise. The in-degree ki of each node is then given by ki = ∑j Aji,
and the out-degree correspondingly by kout

i = ∑j Aij. We denote the average in-degree across the
population by µ = 1/N ∑i ki.

Initially, in each time step a node is chosen at random, and it receives an external input current
of homogeneous amplitude, such that Iext

i (t) ∈ {0, Iext
0 }. In the present work, we used Iext

0 = 0.025

11
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as in [120].

ϑinit
i (t + 1) = ϑi(t) + Iext

i (t) (2.1)

This is done until there is at least one node in the network with ϑinit
i (t) > 1, corresponding to the

first spike or action potential in the network. Each preceding time step is computed the following
way: 1

ϑi(t + 1) = ϑi(t)−Θ(ϑi(t)− 1) + α
N

∑
j=1

Aijξ j(t− 1) (2.2)

The Heaviside function Θ(ϑi(t)− 1) denotes the mechanism of spike generation and the reset of
membrane potential.2 If such a threshold crossing occurs at time t in node i, it releases a current to
its post-synaptic neighbors, and the binary indicator function ξi(t) is set to 1. Otherwise, ξi(t) = 0.
The amplitude that is added to the membrane potential of the post-synaptic neighbors is the
connection strength, α. As the onset of a burst is governed by excitatory activity, we will only
consider connections of a homogeneous, positive connection strength α = 0.1. Note that the
dynamical system described here is unit-less in the sense that the sub-threshold voltage of the
membrane potential is bound in the interval [0, 1[, and therefore the connection strength α is also
unit-less.

The simulation ends when there is a time step without any active node, as the external stimula-
tion is considered to be slow and weak in comparison with the internal synaptic dynamics [119].
This results in a clear temporal separation of simulated events into a noise-driven regime, according
to ϑinit

i (t), and a purely deterministic regime of higher neuronal activity described by ϑi(t).

2.2 Two types of outcomes

The general dynamical nature of the resulting activity depends crucially on what would be the
branching ratio in a branching process, i. e. the expected number of post-synaptic neurons that
become active upon activation of one pre-synaptic neuron [125]. It is known that in a purely
random or fully connected graph, a branching ratio of exactly 1 results in a critical state of the
network, where the activity of a single node can have the full range of effects from none to the
excitation of the whole network [119, 120, 126]. Indeed, the regime of a branching ratio close to 1
has been shown to be optimal for information transmission [127].

A system is super-critical if the branching ratio is greater, and sub-critical if it is less than one,
corresponding to the average tendency of the number of active neurons to grow or to shrink over
time.

We will now develop the corresponding branching ratio in the present model. If the distribution
of membrane voltage across the unit interval is uniform, then the probability that the resulting
voltage is super-threshold, after adding one amount α to it, is given by α itself, as long as α ≤ 1. It
follows that in such a case the branching ratio, which we will denote by γ, is given by:

γ = α
C
N

= α µ. (2.3)

1Importantly in these models, ϑi(t) may not depend on the membrane potential of any other node at the same time step
ϑj(t), j 6= i because then the dynamics would depend of the order in which the nodes are evaluated.

2As the membrane potential ϑ is upon spiking reduced by 1 in the next time step. This means that ϑ is not constrained to
the unit interval, if a node receives a synaptic input potential greater than 1, and will continue firing for some time even if
the input current were to be switched off.
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Figure 2.1: Full and aborted bursts in a discrete-time integrate-and-fire model. The top row shows
examples for aborted bursts (see text), and the bottom row shows full bursts. For each case, the left
column displays the activity of one example event as a raster plot, and the right column shows four
example events in terms of the number of activated nodes per time step. The activity on the left
hand side corresponds to the blue curve on the right hand side panel. Note that the vertical axis on
the two plots on the right hand side is different. Note also that the activity shown in the top left
panel is an exceptionally long aborted burst — over 90% of aborted bursts last shorter than 10 time
steps in this simulation. Shown are simulations based on a random graph with N = 500 nodes and
a branching ratio of γ = 1.2.

To get the experimentally observed behavior [50] of the co-existence of both full bursts and aborted
bursts (activity that excites a portion of the network, but that does not propagate through the
whole network) we therefore constrain the model to the parameter regime of γ > 1.

Note that we are here only modeling the onset behavior of a burst. We therefore identify the
simulated firing activity which settles in a steady, high firing rate regime with the experimentally
observed full burst, and simulated activity that falls back to zero firing rate with the aborted bursts.
In a real network, factors not included in our model, such as synaptic depression due to depletion
of neurotransmitter vesicles upon repeated firing would bring the activity back to the baseline
firing rate [128, 129].

Examples of realizations of such activity is shown in Fig. 2.1, showing the two distinct types
of activity that the models displays. On the one hand, the population firing rate as a function
of time (which by construction always starts at one node, see above) either decays to zero in the
immediately preceding time step (indicative of the failure of the first node to elicit activity in any
other) or grows shortly but then decays back to zero a small number of time steps afterwards.

Indeed, we find that for 3000 simulations, the activity always decayed back to zero if at no
point in time there were more than 10% of the network activated (not shown). On the other hand,
activity that had reached the high firing rate steady state never decayed back to zero for the 500
time steps that were simulated (not shown), indicating a clear separation between the two activity
patterns.
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The reason for this separation of dynamical behaviors is found in the probabilistic nature
of activation. Again assuming a uniform distribution of membrane potential and denoting the
probability of connection p = C/(N(N− 1)), then the average number of nodes M(t + 1) that will
be activated by one pre-synaptic node (M(t) = 1) is given by a binomial expression:

E(M(t + 1)) =
N−1

∑
k=0

k P(M(t + 1) = k) =
N−1

∑
k=0

k
(

N − 1
k

)
(p α)k (1− p α)N−k−1 (2.4)

One consequence of this is that there is a sizable probability that the burst will abort in just the
second time step:

P (M(t + 1) = 0) =
(

N − 1
0

)
(1− p α)N−1 = (1− p α)N−1. (2.5)

For the network shown in Fig. 2.1, γ = 1.2 and p = 0.028 and therefore P (M(t + 1) = 0) = 0.30.
The origin of the separation of activity in the two regimes (full and aborted) is now clear: For low
numbers of activated nodes M� N, the activity is dominated by finite size effects, resulting in a
significant probability to be absorbed by the boundary at M = 0. In the limit M→ N, the activity
is dominated by the supercritical branching ratio γ > 1 and its probability to abort will be zero.

2.3 Different topologies

So far we have been considering Erdős-Renyı́ random graphs, i. e. graphs that are completely
determined by the number of nodes N and the probability of connection p = C/(N(N − 1)).
Additionally, we now consider networks that have a topologically non-random structure by
making the probability of connection depend on the spatial distance between two neurons. Such a
dependence on distance has been observed in slices of cortical tissue [84].

To generate networks with distance-dependent topology, we first assign each node a two
dimensional position on a square of d = 1mm length. The assignment is random with the only
restriction being a minimum distance of dmin = 10µm to previously placed neurons, corresponding
to the typical diameter of the cell bodies of pyramidal neurons [33,130,131]. The connections are
then drawn from a connection probability shaped by a Gaussian kernel of the following form, given
a characteristic length scale of the system λ = d/

√
N and the distance r between two neurons,

p(r) = exp
(
−(r/λ)2

)
. (2.6)

To generate the graph, we randomly select two nodes i and j with Aij = 0, draw a random
number w from a uniform distribution on the unit interval and generate the link i→ j if w < p(r).
This process is repeated until the target number of connections C is reached.

The effect of introducing, by way of the process described above, non-random topological
structure into the network dynamics given by Eq. 2.2 is shown in Fig. 2.2. The top panel shows
how the introduction of the distance dependent connectivity leads to nodes that have a higher
in-degree if they are clustered spatially — in the random connectivity, there is by construction no
correlation between position and in-degree. A side effect of the local connectivity kernel is the
introduction of degree-degree correlations: The in-degree of node connected to a high in-degree
node tends to be high as well. With the parameters of d, λ and C presented above, we reached
typically values of degree-degree correlation of C1 ≈ 0.4.
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Figure 2.2: The effect of topological structure on onset firing probability. Top panel shows simulated
neurons on planar substrate, left on a random graph, right with local connection probability. Color
coded is their in-degree k as generated by their respective connection probabilities (see text). The
bottom panel shows the firing probability of 50 example neurons at time ∆t relative to the onset of
a full burst. Shown are simulations with γ = 1.2.
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Local connectivity kernels also bring about clustering in the adjacency matrix. Generalizing the
clustering coefficient to directed networks, the full clustering index was introduced in [132] as:

CD
i =

(A + AT)3
ii

2 (dtot
i (dtot

i − 1)− 2 dbidir
i )

(2.7)

Here we have used the total degree dtot
i = din

i + dout
i and the number of bidirectional connections

of a node dbidir
i = ∑i(A2)ii. In the following, we will denote by CC the population average of CD

i .
To study the differences in neuronal dynamics before the onset of a burst, we have computed

the average firing frequency by averaging over simulated full bursts, defining ∆t = 0 as the point
where for the first time in a given simulation instance, more than 20% of the neurons in the network
were active. We have plotted the resulting firing probabilities in the bottom panel of Fig. 2.2.
Due to the steep rise in the average firing frequency across the network during the burst onset,
all of the neurons show a monotonically rising firing probability as time increases. The firing
frequency for the majority of nodes quickly approaches one at about ∆t = 8. There are, however, a
number of nodes which do not reach the maximum firing frequency of 1 spike per time step and
by construction this set must contain all those nodes with an in-degree ki of less than 1/α. For the
random graph shown in the left panel of Fig. 2.2, the number of these nodes is given by:

N f <1 = N
d1/α−1e

∑
k=0

(
N − 1

k

)
pk (1− p)N−k−1 ≈ 0.239 N. (2.8)

Interestingly, regardless of the fact that the peak firing probability is different for some nodes, in
the case of the random graph the transition between zero and maximum firing probability occurs
between ∆t = 0 and ∆t = 10 for all neurons (see Fig. 2.2, bottom left panel). This situation changes
dramatically when analyzing in the same way the dynamical behavior of the locally clustered
topology (see Fig. 2.2, bottom right panel). Now there is a shift in time from node to node which can
be of the order of 20 time steps. As the width in real time of one discrete time step can be identified
approximately with the duration of synaptic transmission (2–4 ms [128, 133]), this matches the
experimental observation of Eytan and Marom that early firing neurons are “consistently recruited
tens of milliseconds before others” [51].

2.4 The expected value of the first firing time

We now aim to quantify the above observations in terms of the expected value of the first firing
time of each neuron in the simulated networks. First we calculate from the preceding analysis,
resulting in the time-dependent firing probability P f

i (t), the probability of each neuron i to fire for

the first time relative to the burst onset, P f 1
i (t).

P f 1
i (t) = P f

i (t)
t−1

∏
t′=−∞

P f
i (t′) (2.9)

The result is plotted, again on the left hand side for the random graph and on the right hand side
for the local graph, in the top panel of Fig. 2.3. The plots are generated from the same simulations
as the ones used for Fig. 2.2.

The expected first firing time t̂i — the property on which we will focus our attention for the
rest of this chapter — can of course be directly calculated from Eq. 2.9 as the first moment of P f 1

i (t).
In the bottom panel of Fig. 2.3, t̂i is plotted against in-degree for all the nodes in the simulations.
Neurons with a higher degree have in general a lower first firing time, indicative of the fact that
they tend to experience higher than average input currents.
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Figure 2.3: Topological structure enhances variability in onset first firing probability. Top panel
shows the probability of 50 example neurons to fire for the first time during the onset of a burst
extracted from simulations. The bottom panel shows, for each of the N = 500 neurons in the
simulated networks, the expected value of the first firing (time relative to the mean of the popula-
tion) against the in-degree of the respective node. The inset shows a histogram of expected first
firing time across the population, with the number of occurrence on the vertical axis. Shown are
simulations with γ = 1.2, identical to those of Fig. 2.2.
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Figure 2.4: Rise before burst is exponential and can be predicted analytically. Shown are population-
averaged firing probabilities of bursts simulated on a random graph with γ = 1.2, compared to
an exponential fit (left panel, red curve) and the analytical prediction developed in the main text
(right panel, green curve).

In a random graph, the spread in expected first firing times is moderate (standard deviation
of 1.59), as shown in the histogram in the inset of the bottom left panel of Fig. 2.3. The width of this
distribution is significantly increased compared with a standard deviation of 3.81 as indicated by
the bottom right panel of Fig. 2.3.

2.4.1 Prediction of the first firing time

To better understand the characteristics that cause neurons to fire earlier than others, we now
develop an analytical expression for the expected value of their first firing time. From Eq. 2.2 we
know that the time that a neuron fires for the first time t̂ is completely determined by its synaptic
input, the threshold (here set to 1) and the initial value of the membrane voltage ϑi(t0).

ϑi(t0) +
t̂

∑
t=t0

I(t) = 1 (2.10)

We now approximate the discrete-time input current I(t) by a continuous mean-field firing fre-
quency F(t), i.e.

ϑi(t0) + α ki

∫ t̂

t0

F(t) dt = 1. (2.11)

From the experimental evidence we know that the initial rise in the population average of the
firing frequency is exponential (see Fig. 1.2B). Indeed we find that we can such a curve even to the
numerical simulations discussed above. An example of this is shown in the left panel of Fig. 2.4. It
is clear that the onset of a burst in our simulations can be described accurately by an exponential.

We can actually predict the form of this exponential rise from the model parameters. To
estimate the parameters a and b in F(t) = a bt, we need only to assume the rise to be comparable
to a branching process and to remember how ∆t was defined earlier. The former means ignoring
the existence of loops and bidirectional connections, which is a good approximation as long as
the average firing frequency is low, such that the resulting effect of loops on the activity pattern is
negligible. Note that the approximation will also be more precise in random graphs, where the
probability of loops and bidirectional connections is lower overall. Given this assumption, b = γ

by definition (see above and Eq. 2.3). The second parameter a is then simply given by the way we
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defined the burst onset: ∆t = 0 is the point in time where P0 = 20% of nodes in the network were
active.

F(t) = P0 γt (2.12)

The result for an example network is plotted in the right panel of Fig. 2.4. Despite the somewhat
crude approximations made, there is a very good agreement between simulation and prediction
over an interval of about 20 time steps. This covers with good accuracy the relevant region between
small firing rates on the left hand side and high firing rates after the first firing time on the right
side of this interval. We note however that the firing rate on the left side is lower than expected.
This is due to the bias of only examining activity that developed into a full burst. Therefore, the
average activity in the initial region, where the activity is decisive for determining whether it will
develop into a full burst or abort (due to finite size effects, see discussion above) is overestimated
and the slope higher than expected from the exponential rise.

We can now plug the above approximation of Eq. 2.12 for F(t) into Eq. 2.11 (omitting the index i
for readability):

γt̂ − γt0 =
(1− ϑ0) log γ

α P0 k
(2.13)

This we can solve, substituting Γ = 1/ log(γ):

t̂(ϑ0, k) = Γ log
{

1− ϑ0

α P0 Γ k
+ expt0/Γ

}
. (2.14)

We can average out the dependence of t̂ on ϑ0 knowing that the probability distribution of ϑ0 is
drawn from a uniform distribution on the unit interval at the start of each event.

t̂(k) =
∫ 1

0
dϑ0 t̂(ϑ0, k)

= −Γ {D k log(D k)− (1 + D k) log(1 + D k) + 1 + log(α P0 Γ k)} (2.15)

Note that we have substituted D = α P0 Γ exp(t0/Γ). The first two terms correspond to the start of
the integration from t0 and are typically small compared to the other terms, because D is small.
Neglecting those terms, we end up with the following equation:

t̂(k) =
1

log γ

{
log

log γ

α P0 k
− 1
}

. (2.16)

This equation corresponds to the solution if we had taken the limit t0 → −∞. The precise value
for t0 might be determined from the right panel of Fig. 2.4 where the average firing rate deviates
from the exponential rise. We will not attempt to determine its value analytically here. As a choice
of t0 corresponds to an offset in time common to all neurons in the network (as long as t0 � t̂(k)
from Eq. 2.16 for any k in the network), we will fix this degree of freedom by setting the mean of
the population to zero.

2.4.2 Higher order degree

So far we have only considered the simplest form of a mean-field approximation, namely a
neuron receiving the input current directly from the mean field. In the actual network, the
input a node receives comes of course from its neighbors (see Fig. 2.5 for an illustration). We
therefore want to consider also the next neighbors in our calculation, analogously to a Bethe-Peierls
approximation [73,74]. This can be done very simply by realizing that under static conditions, the
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Figure 2.5: Illustration of first and second order mean-field approximation. On the left, only the
neuron in question (shown in dark blue) is modeled, receiving input directly from the mean field,
simply multiplied by its input degree. On the right, we include the nearest neighbors (shown in
light blue) explicitly, who are now the ones receiving the mean field input. This is indicated by the
dashed circle, with neurons within the circle are treated explicitly, while neurons outside the circle
are treated as being part of the mean field.

output firing rate of the model neurons is just the inverse of the number of input spikes that a
neuron needs to once cross the unit interval between zero and threshold:

f out
i =

α ki f in
i

1
(2.17)

An obvious but instructive consequence of this is that the ratio between stationary output and
input rate of a representative neuron with an average number of inputs ki = µ is just given by γ.

The second-order equivalent to Eq. 2.11 can then be written using the second order degree
k(2)

i = (A2)ii. Note that this ignores all links that are not feed forward, i. e. that deviate from the
directionality illustrated in Fig. 2.5, from the mean field to the node i in question.

ϑi(t0) + α2 k(2)
i

∫ t̂

t0

F(t) dt = 1 (2.18)

As the difference to Eq. 2.11 is constant with respect to the integration over both time and ϑ0,
we can immediately write down the solution by comparing with Eq. 2.16:

t̂(2)(k) =
1

log γ

{
log

log γ

α2 P0 k(2)
− 1
}

. (2.19)

2.4.3 Degree-degree correlations

We note that while the first order solution of Eq. 2.11 depends on the degree ki only, Eq. 2.19 requires
the knowledge of the second order degree k(2)

i , and thus the whole adjacency matrix A. We can find
an approximate solution between these extremes by making use of Pearson’s correlation coefficient
between the degree of connected nodes, which we will denote by the degree correlation C1. This
coefficient C1 is zero in random networks, but positive in networks such as the locally clustered
networks discussed above.

Let kA and kB be the degree of two nodes. We assume that they are drawn from Gaussian distri-
butions with means µA and µB and variances σ2

A and σ2
B. We will assume that they are correlated

with a given Pearson’s coefficient C1. We know then that their joint probability distribution is the
following [134]:
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P(kA, kB) =
1

2π σA σB

√
1− C2

1

exp

{
− z

2(1− C2
1)

}

with z =
(kA − µA)2

σ2
A

− 2 C1 (kA − µA) (kB − µB)
σA σB

+
(kB − µB)2

σ2
B

. (2.20)

Since kA and kB come from the same underlying process generating degrees, we will assume
their mean and standard deviation to be the same, so that µA = µB = µ and σA = σB = σ. It is
then straightforward to derive P(kB|kA) since we know P(kA):

P(kB|kA) =
1√

2π(1− C2
1) σ

exp

{
− (C1(kA − µ)− (kB − µ))2

2σ2 (1− C2
1)

}
(2.21)

The maximum of this distribution is therefore at the point where the denominator inside of the
exponential term is zero, and the degree that corresponds to this peak is given by:

kmax
B (kA, C1) = C1 (kA − µ) + µ (2.22)

As expected, kmax
B is equal to µ in random networks (C1 = 0) and between kA and µ for positive

degree-degree correlated networks such as the locally structured networks discussed above.
Eq. 2.22 leads to the following approximation, simplifying the second-order one of Eq. 2.19:

Neuron i with degree ki receives input from its neighbors, which we assume to all have equal
degree k(corr) = C1 (ki − µ) + µ as above. As a result, we have a second-order equation that
requires much less knowledge of the whole adjacency matrix, but only of an average statistic of the
topology of the network, namely the degree-degree correlation coefficient C1.

t̂(corr)(k) =
1

log γ

{
log

log γ

α2 P0 k(corr)
− 1
}

(2.23)

Comparing this with the first-order solution of Eq. 2.16 we find that this yields an effective degree,
keff

i , different from the structural degree ki:

keff
i = α ki [C1(ki − µ) + µ] (2.24)

Note that the effective degree has a quadratic dependence on ki, corresponding e.g. for C1 > 0 to
the fact that high-degree nodes receive input from nodes whose degree is also above the mean on
average.

2.5 Comparison of numerical and analytical results

The analytical predictions of the expected first firing time developed in the last section can be
directly compared to the numerical results (such as the data of the bottom panel of Fig. 2.3).

2.5.1 Random graphs

In a random graph, the expected onset time can be calculated very precisely using the analytical
formalism developed above (see Fig. 2.6). For both values of γ shown, the first order approximation
according to Eq. 2.16 yields a good prediction of the numerically evaluated onset time t̂ across
the range of onset times, with an uncertainty of approximately half a time step. This prediction
performance is even increased when going to the second order approximation according to Eq. 2.19,
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Figure 2.6: The expected first firing time in a random graph can be predicted analytically. Shown
are, for the two cases γ = 1.2 (left column) and γ = 1.4 (right column) numerical results and
analytical prediction with different methodologies. In each plot, the expected first firing time
was evaluated from simulations (see text) and the neurons were sorted according to this time on
the x-axis, yielding the blue curves. In each row, a different analytical prediction method is used
and compared to the numerical times. The first order approximation (red curves, top panel), the
second order approximation (middle panel) and the degree-correlation approximation (bottom
panel). Insets are scatter plots of the same data points, showing numerical (horizontal axis) versus
analytically predicted onset time (vertical axis) in units of time steps.
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reducing the uncertainty to approximately 0.3 time steps (middle panel). Again, this accuracy is
conserved across the population, including the outliers of onset time of very early and very late
firing neurons. The bottom graph of Fig. 2.6, showing the prediction using the degree-correlation
approximation of Eq. 2.23, is by construction identical to the top graph for the first order solution,
because keff

i = ki for negligible degree-degree correlation (see Eq. 2.24).
In all cases, the Pearson’s correlation coefficient of numerical against analytical value (see insets)

is p > 0.96, in the case of the second order approximation in fact p > 0.99. This highlights the very
good quality of the analytical predictions in the case of random graphs.

2.5.2 Locally clustered graphs

The situation is more complicated for locally clustered networks, as introduced in Chapter 2.3. The
left column of Fig. 2.7 illustrates this, plotting the prediction performance analogously to the case
of random graphs (see Fig. 2.6). The first order approximation (Fig. 2.7, top left panel) displays
a reduced slope of the predicted onset time, indicative of a reduced predicted variance of the
distribution of onset times across the network. Especially for the neurons with the latest firing times,
the prediction is off by over 10 time steps. There is, however, still a good linear correlation between
measured and calculated onset time, yielding a Pearson’s correlation coefficient of p = 0.76. The
same observations are true for the case of γ = 1.4 (Fig. 2.7, top right panel), even if the reduced
overall spread of onset times due to the faster rise of the overall activity results in a slightly better
correlation of p = 0.83.

The second order approximation (Fig. 2.7, middle row) yields a much better approximation for
the majority of neurons: The predicted onset time follows the numerical result much better due to
an increased slope for both cases of γ plotted. We also observe a correction at the end of late onset
times, even if the amount of this correction is still insufficient.

The degree-correlated approximation of Eq. 2.23 yields an interesting middle ground between
first and second order. Taking into account the degree-correlations in the network does yield the
increase in slope observed for the second order approximation and therefore a large improvement
in prediction quality for the large majority of neurons. It however does not show any improve-
ments at the right tail of late onset times, indicating that these nodes are exceptional in that the
degree correlation of these nodes is different (in fact, lower) than the population average used for
estimating the coefficient C1.

2.5.3 Higher order correlations

The last observation leads to the question if we need to include higher order terms in our calcula-
tions, rather than just second order. It is easy to see that we can generalize Eq. 2.16 and Eq. 2.19 to
a solution of arbitrary order n (with n ∈N\{0}) in the following way:

t̂(n)(k) =
1

log γ

{
log

log γ

αn P0 k(n)
− 1
}

with k(n) = (An)ii. (2.25)

Clearly, taking into account the assumptions that led to Eq. 2.19, there is a trade-off: A low
order will ignore higher-order correlations in the topology, while the higher-order solutions ignore
loops and feed-backward links.

The top panel of Fig. 2.8 shows the result of Eq. 2.25 for n = 5 for the local networks of Fig. 2.7.
Now, despite the fact that the prediction accuracy in the range of medium first firing times is
virtually unchanged, we see a dramatic improvement in predicting the behavior of the very late
firing time neurons. The correlation coefficient is significantly higher than in the case of n = 2,
resulting in p = 0.859 for γ = 1.2 and p = 0.926 for the case of γ = 1.4.
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Figure 2.7: First firing time in a locally clustered graph can be approximated analytically. Layout
of plots and prediction methods used are identical to the case of Fig. 2.6. The best accuracy is
achieved in the regions of moderate onset time.
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Figure 2.8: Dependence of the predicted first firing time on the order of topological expansion.
The top panel shows comparisons of the numerically evaluated expected first firing time (data
identical to Fig. 2.7) with the calculated value using the 5th order approximation. Insets are scatter
plots of the same data points showing numerical (horizontal axis) against calculated (vertical axis)
expected first firing time in units of time steps. The middle row shows, for both values of γ, the
correlation between numerical and predicted first firing time against the order n of the calculation.
The bottom row shows the precision of the calculated standard deviation of the distribution of
first firing times in terms of the fraction σ(analytical)/σ(numerical). A fraction of 1 indicates an
exact prediction of the standard deviation, while e.g. a fraction greater than 1 indicates that the
predicted first firing times have a broader distribution than the numerically evaluated ones. Shown
are simulations on a locally clustered graph.
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Note that going to higher order beyond n = 3 has virtually no effect on the random graphs of
Fig. 2.6 beyond increasing the accuracy in prediction. For n = 5, the resulting correlation coefficient
is p = 0.998 for γ = 1.2 and p = 0.997 for the case of γ = 1.4.

Going back to the local topology, we are now in a position to examine the trade-off described
above. The correlation between numerically measured and analytically predicted first firing times
has a peak around n = 4 (see Fig. 2.8, middle row). Beyond the correlation itself, the width of the
resulting distribution of expected first firing time across the population has its maximum in the
same region, crossing the optimal ratio of 1 between n = 5 and n = 6 (see Fig. 2.8, bottom row).
There is clearly an optimal order around n = 5, which was also shown above, even if this optimal n
is not known a priori. This indicates the high quality of analytical prediction of the expected onset
time in discrete-time integrate-and-fire models, given that the structural neighborhood (given by
the order n) is taken into account.



Chapter 3

Quorum percolation

There has recently been an interest in the neurosciences in percolation models, i. e. studying an
initially unconnected graph which shows, as an increasing number of vertices are added to it, a
phase transition in terms of the largest connected group of nodes. At this transition point, structures
appear that span the entire system, where before there were only isolated clusters of nodes.

Percolation models have long been studied for understanding phase transitions in random
media [135–137]. More recently and closer to the topic of this thesis, percolation theory has been
applied to study the activity dynamics of neuronal cultures [40, 63, 138].

In our study [139] we have applied this knowledge to understand the burst onset dynamics
in a quorum percolation model of neuronal activity. As will be discussed in detail below, the
quorum percolation model relies on a fraction of nodes that is excited externally to start activity.
Consequently, it is suited to the analysis of activity following global stimulation, as indeed it was
developed in the context of in vitro cultures and their response to global bath stimulation [63, 138,
140]. It is interesting to analyze the onset dynamics under these circumstances, in comparison with
the results of Chapter 2, given the finding that leaders were identical in spontaneous and evoked
activity [51].

3.1 Model characteristics

Just like the integrate-and-fire dynamics in Chapter 2, quorum percolation (QP) is a discrete-time
model on a directed graph. Each node on the graph is characterized by a binary state variable si(t).

si(t + 1) = si(t) + (1− si(t)) Θ

{
∑

j
Aijsj(t)−m

}
(3.1)

Consequently, a node is switched to 1 (the on state) when at least a quorum of m active input nodes
is achieved. Afterwards, it remains in this state for all following time steps. There is no noise in the
system, so the latter effect is the only way for a node to switch to the on state.

The graph employed, represented by the adjacency matrix A, is random apart from a prescribed,
Gaussian degree distribution with mean µk and standard deviation σk which is cut at both ends,
such that the degree distribution is zero below kmin and above kmax. We will always assume
m > kmin for otherwise there would be nodes which can never be activated by their presynaptic
neighbors. For each node, a degree ki is drawn from this distribution, and a number of links are
randomly connected from i to the rest of the network.

A simulation consists of generating a network of nodes (all in the off state), switching a random
fraction f of nodes to the on state and evaluating Eq. 3.1 until the number of active nodes is
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Figure 3.1: A typical realization of the quorum percolation model. (A) Plotted is the fraction of
neurons in the on state Φ(t) as a function of time step. (B) For the same simulation, the average
in-degree k of the neurons which were activated in the respective time step. (C) For the same
simulation, the color-coded histogram of the degree of the activated nodes in each time step, which
makes this plot a detail view of panel B. The parameters used for this simulation were N = 50,000,
m = 15, f = 0.079, kmin = 20, µk = 75, σk = 25, kmax = 120.

constant for one time step.

A typical realization of this process in terms of the fraction of active nodes in the network Φ(t)
is shown in Fig. 3.1A. The initial value at t = 1 is given by the parameter f , corresponding to a
random fraction of nodes which are set to on. By virtue of the QP model, Φ(t) must rise strictly
monotonically or abort, and there is indeed a slightly upward tilted slope for the following time
steps. At about t = 21 there is a sharp rise in the number of activated neurons, reaching Φ(t) = 1
at time step 25. Analyzing the dynamics in terms of the average degree of activated nodes in a
given time step (see Fig. 3.1B) we find that the high-degree nodes tend to be activated earlier. The
average degree then decreases until reaching its lowest value at the last step. The last value is
indeed less than half of the average degree in the network, indicating that the nodes activated
in the last time step had an in-degree just barely over kmin. This is confirmed when plotting the
actual degree distributions of activated nodes in Fig. 3.1C. The first time step is by construction
a realization of the bounded Gaussian degree distribution described above, which is followed
by a long period of sparse, high-degree activation and then a short period with high numbers of
activated neurons of rapidly decreasing average degree.

It turns out that this model can have two distinct outcomes, as in the case of the discrete-time
integrate-and-fire model discussed in the preceding chapter. Finite-size effects can lead to an
aborted burst when not enough nodes are recruited initially to display the sharp rise seen in



3.2. DERIVING THE DEGREE DISTRIBUTION 29

Fig. 3.1A.

3.2 Deriving the degree distribution

(The work of the manuscript [139] was a collaborative effort, with the main contribution of the
author of this thesis being the comparison of QP to integrate-and-fire models and the extension
to structured topologies presented in the next section. The following analytical calculation is
primarily the work of Tsvi Tlusty.)

We can understand the behavior of this system better if we split the nodes into k-classes of
all nodes having a certain number of input connections k. We then denote by Φk(t) the firing
probability of this k-class. It follows that the total firing probability is given by:

Φ(t) = ∑
k

pkΦk(t). (3.2)

The mean-field solution for these classes can then be calculated using Ψk, the probability of a
neuron from a k-class to have more than m active inputs.

Φk(t + 1) = f + (1− f ) Ψk(Φ(t)); with Ψk =
k

∑
l=m

(
k
l

)
Φl(1−Φ)k−l (3.3)

In the limit of large µk and large m, we can replace Ψk by a step function Θ(k Φ(t) − m),
corresponding to the point where Φ(t) is just large enough (super-threshold) such that k Φ(t) = m.

Φk(t + 1) = f + (1− f ) ∑
k

pk Θ(k−m/Φ(t))

= f + (1− f )P
(

m
Φt

)
(3.4)

Here we have made use of the cumulative degree distribution P(k) = ∑∞
k pk. The time continuous

variety of this equation is given by:

Φ̇(t) = f −Φ(t) + (1− f ) P(m/Φ(t)) (3.5)

The beauty of this treatment is that we can now derive analytically the required degree dis-
tribution which is needed to get the (initially) exponential shape found in [51]. If the onset is of
the shape Φ(t) ∝ exp(α t) for some growth constant α, then plugging this into Eq. 3.5 yields the
following:

P
(

m
Φ(t)

)
=

(1 + α) Φ(t)− f
1− f

(3.6)

We can substitute q = m/Φ(t) to find a power-law in the degree distribution.

pk = − d
dq

P(q)|q=k =
(1 + α) m

1− f
1
k2 (3.7)

Note, however, that this calculation is only valid for the early onset of a burst, and we still expect
the majority of the nodes to follow a Gaussian degree distribution [63, 138]. The solution is
therefore a Gaussian distribution with a right tail that has a power-law shape with pk = B k−2. The
two distributions are joined together at a certain degree ktail by the expectation that 10% of the
neurons are part of the power-law distribution, as the burst grows (after the pre-burst) by a factor
of 10 [50, 139]. This distribution is shown in Fig. 3.2A.
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Figure 3.2: Gaussian degree distribution combined with a power-law right tail. (A) The degree
distribution for a network of N = 500,000 neurons in linear and log-log scale (inset). The Gaussian
distribution on the left (with parameters µk = 75, σk = 31 and kmin = 20) and the power-law tail on
the right hand side (parameters B = 15.65 and kmax = 4,680) are joined at ktail = 150. (B) A typical
simulation with the degree distribution shown in panel A. The fraction of active nodes Φ(t) (solid
blue line) is plotted together with its temporal derivative (solid red line). The dashed lines are
based on iterating a mean-field approximation based on Eq. 3.3 (derivation not shown, see [139]).
Both panels reproduced with permission from [139].

The effect of this degree distribution on the percolation dynamics is indeed as expected, with
an exponential growth phase until about t = 30, followed by a super-exponential rise phase until
Φ(t) = 1 (see Fig. 3.2B).

3.3 Effect of degree-degree correlations

To compare these results with those of the discrete-time integrate-and-fire model, where we saw
an exponential growth even in random graphs, it is necessary to examine if deviations from the
random graph — apart from a skewed degree distribution as discussed above — can lead to
similar effects. In the integrate-and-fire case, positive degree-degree correlations caused an increase
in variance in the onset times on individual neurons, and might therefore lead to a temporal
development of the average activity Φ(t) which is better described by an exponential.

For the networks to display a given value of the degree-degree correlation coefficient C1, a
random pair of links is selected and crossed, such that A→ B and C → D becomes A→ D and
C → B. This change is accepted if the resulting C1 of the network is closer to the target value, and
reversed otherwise. This procedure is repeated until the target value is reached with an error of
less than 10-3. A large number of bursts are then simulated in the resulting network. Each burst
was time shifted such that it crossed the fraction of Φ = 0.2 at time zero, and extended on both
ends by constant extrapolation to allow for averaging over all simulated bursts.

It turns out that such a change towards higher C1 does not increase the exponential phase of
the burst onset, but only marginally increases the slope of the onset of activity, shortening the time
until the network reaches the fully saturated state at Φ(t) = 1 (see Fig. 3.3). The reason for this
can be found in the work of Tlusty and Eckmann in [141]. They showed that for small networks
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Figure 3.3: Dependence of Φ(t) on degree correlations in the underlying network. (A) Plotted are
traces of Φ(t), averaged over 1000 bursts. Simulation were performed with networks of N = 5,000
which were based on a random graph (top panel) or engineered to display an degree-degree
correlation coefficient C1 of 0.5 (bottom panel). (B) Magnified plot of the onset of the bursts for
networks with degree correlation ranging from 0 (blue line) to 0.5 (red line), again averaged over
1000 bursts each.
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such as those in the simulations and those studies experimentally, where the number of nodes N is
much smaller than a critical number N∗, the network structure is therefore effectively free of loops.
This results in a quasi-random percolation dynamics, despite the topological structure imposed
here.

We conclude that in quorum percolation models of the relevant system sizes, early firing time
is determined by the in-degree k — or equivalently by voltage threshold (see [50, 139]) here set
to 1 — and not by the higher-order topological structure in the network. This is in contrast to the
results obtained in the discrete-time integrate-and-fire models. Their activity patterns are more
similar to spontaneous neuronal activity where the larger topological neighborhood determines
the expected firing time.



Chapter 4

Leaky integrate-and-fire dynamics

Building on the two previous chapters, we now study the onset dynamics in a biologically more
realistic model system, to test the previous findings in a setting which allows for direct comparison
of parameters and time scales with the biologically measurable quantities. The gold standard
of such mathematical neuron models is the leaky integrate-and-fire model [142, 143] originally
developed by Lapicque in 1907 [144]. It has since been generalized to include dynamic synaptic
conductances and other detailed parts of the system, and its dynamical behavior has been studied
in great detail [66, 145–147].

Importantly for the purpose of the present study, Tsodyks et al. have developed a model of a
depressive synapse, in which the synaptic strength is reduced after repeated firing of the pre-synaptic
neuron, caused by a depletion of neurotransmitter vesicles at the synaptic cleft [128, 129, 148, 149].
The pool of available neurotransmitters is refilled by diffusion of vesicles to the synapse, and thus
the effective synaptic strength recovers over time. This class of synapses is known to generate
bursts as seen in cultured networks, i. e. activity that synchronizes across the population over a
short time window of less than 200ms [129, 150].

Such a system allows for the analysis of the spontaneous activity of a large number of biologi-
cally more realistic model neurons, to study what the determinants of early onset firing are, and to
what extent the results are comparable to the discrete-time case.

4.1 Model characteristics

In contrast to the previous chapters, the leaky integrate-and-fire (LIF) model1 is a continuous
time model. Its sub-threshold dynamics are defined by the following differential equation for the
membrane voltage Vi(t) of a given neuron i [128, 129]:

τm
dVi(t)

dt
= −Vi +

Isyn(t)
gl

. (4.1)

Accordingly, the membrane voltage will decay (leak) with the membrane constant τm = 20ms to
a resting voltage (here set to zero without loss of generality). The only sub-threshold deviations
from this exponential decay can come from synaptic currents Isyn(t) that the cell receives, resulting
in a change in membrane voltage according to the leak conductance gl = 50pS. If the membrane
voltage of this neuron reaches a given threshold Θ = 20mV, the voltage is reset to zero for the
refractory period τ0 = 20ms and post-synaptic neurons will receive an input synaptic current.

1Simulations of the leaky integrate-and-fire model are performed using the Neural Simulation Technology (NEST) [151–
153].
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The synaptic current is itself given by a differential equation, determined by an exponential
decay according to the synaptic time constant τsyn = 2.0ms and inputs from pre-synaptic neighbors
or external inputs, both resulting in exponentially decaying pulses of current:

dIsyn(t)
dt

= −
Isyn

τs
+ αint

N

∑
j=1

∑
k

Aji Eji(t) δ(t− tk
j − td) + αext ∑

l
δ(t− tl

ext,i − td). (4.2)

The spike times of a neuron j form the set {tk
j }, arriving after a delay time td = 1.5ms in the form

of input current at neuron i if the two cells are connected as determined by the adjacency matrix A,
i. e. if Aji = 1, and if there is a non-vanishing fraction of available neurotransmitters at this synapse,
i. e. if Eji(t) > 0. In such a case, the amplitude of the current pulse is further determined by the
(homogeneous and constant) internal synaptic weight αint. Note that the parameters are standard
values for leaky integrate-and-fire models [66, 154], and that the determination of the exact value
of αint will be discussed below.

On the other hand, current pulses may arrive at neuron i from the outside, mimicking back-
ground activity and thermal noise in the ion channels of each neuron [48]. The time points
of these spikes form the set {tl

ext,i}. They are drawn independently according to an average
rate νext = 1.6Hz and with constant amplitude αext = 4.0pA.

The fraction of available neurotransmitters at a given synapse is modeled according to the
following formula, differentiating between resources in the effective state Eji(t), which is respon-
sible for mediating the actual synaptic current, the recovered state Rji(t), and the implied inactive
state Iji(t) = 1− Rji − Eji [128, 129].

dEji(t)
dt

= −
Eji

τinact
+ U Rji ∑

k
δ(t− tk

j )

dRji(t)
dt

= − 1
τrec

(
1− Rji − Eji

)
(4.3)

After a pre-synaptic spike, a fraction U = 0.3 of the synaptic resources of a given synapse in the
recovered state is entering the effective state, and are then converted to the inactive state with the
rate 1/τinact, where τinact = 3.0ms. From the inactive state, synaptic resources are transferred back
to the recovered state with slow time constant τrec = 500ms [129].

4.2 Adaptive burst rates

The rate of bursting in the network νburst is typically 0.1Hz for in vitro cultures, and in particular
of the experiments studied in Part II of this thesis. To obtain such a rate in our simulations, we
employ an iterative scheme to find an internal synaptic strength consistent with the targeted burst
rate.

Starting from an initial value of αint = 5.0pA, the synaptic strength is iteratively increased
until the measured burst rate in the simulation changes for the first time. In the following steps,
we use linear extrapolation of the last two burst rates and synaptic weights to predict the weight
consistent with the targeted burst rate. This is repeated until the value of αint is such that the
network bursting rate is 0.10 ± 0.01Hz.

The distribution of the fraction of active nodes across time is bimodal, with the most probable
fraction being less than 10%, and with more than 90% within a fully developed burst. Consequently,
we measure the burst rate by defining a burst to occur when more than 40% of the population is
active in a window of 50ms (the time scale of burst onset, see Fig. 1.2). Given that less than 0.5% of
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Figure 4.1: Spiking activity and bursting in networks with random and local topology. The raster
plots of spiking activity across the population (top row) show a switching behavior between
low-frequency asynchronous spiking and synchronized burst-like dynamics. The middle row
shows the same data, but plotted as a function of the fraction of nodes that were active within
a window of 50ms. Simulation were performed on a random graph (left column) and a local
topology generated with λ = 0.25mm (right column). Burst rates were 0.10 ± 0.01Hz (averaged
over 60 minutes of simulated time) in both cases. The bottom panels are raster plots, magnified
to show a detailed view of an example burst along a temporal window of 300ms. In the case of
the local topology (bottom right panel) neurons have a 2D-spatial position which correlates with
the topology, as neurons that are closer to each other in Euclidean space are more likely to be
connected. Reordering them according to their y-coordinate in Euclidian space reveals that there is
a spatial component also to burst generation. This particular burst is ignited in the lower part of
the culture and then elicits behavior in the upper part. Note that such a spatial component is not
present in the random graph, and therefore a reordering would have been a random permutation
in the case of the random graph.
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data points show an active fraction between 0.2 and 0.8, this measure of bursting rate is robust
against selection of the threshold.

The result of such a simulation on a random graph is shown in the top left panel of Fig. 4.1. As
expected from the results of [128, 129], the raster plot reveals a two-state dynamics, switching from
non-bursting to bursting regime. This behavior is again plotted below in terms of the fraction of
active nodes in the network over time (see the left middle panel of Fig. 4.1). The active fraction
fluctuates around zero, but then shows peaks during bursts, where consistently over 95% of nodes
are firing at least once in a 50ms time window, confirming that the bursts in the simulations are
indeed recruiting the whole network as seen in vitro [51, 61].

4.3 Random and local topologies

So far we have only considered leaky integrate-and-fire neurons on a random graph. In real
biological networks in vitro, there often are correlations between the spatial position of a node,
and the topology of the network graph that surrounds it, resulting in a connection probability that
depends on the spatial distance between two connected nodes [37, 49, 84].

To account for possible locality of connections, we will consider — in addition to the random
graphs discussed above — networks where the probability density of connection between two
neurons i and j at positions−→xi and−→xj has a Gaussian shape, characterized by the length scale λ. We
therefore assign each neuron in the network a random position on a two-dimensional square of side
length 1mm, drawing each coordinate independently from a uniform distribution. Coordinates
are rejected only if they would place a neuron closer than a minimum distance of dmin = 10µm to
previously placed cells.

P(r) = P0(N, λ) exp

{
(−→xi −−→xj )2

λ2

}
(4.4)

To have networks that are local, but still comparable to the random case, the average probability of
connection is set to be equal in both cases. This ensures that the random network is indeed the
limit of the local networks for λ→ ∞. Therefore, we employ a two-step algorithm: In the first step,
we set P0 = 1, generate the connections and the resulting number of connections C0 is recorded.
Then, the links are discarded and regenerated with a new P0 = C/C0, where C is the average target
number of links given by the average probability of connection p via C = p N(N− 1). Throughout
this work, we only consider networks and values of λ where C0 > C and thus P0 < 1.

The net result of this procedure is an adjacency matrix A where the topology is correlated with
the spatial position of the neurons. The simulation of spiking activity is then performed as for
the random graph. Note that the adaptive algorithm described above resulted in significantly
weaker connection strength αint for the local connectivities, yielding for instance values of 5.2pA
for λ = 0.25mm and 6.5pA for λ = 0.75mm, while yielding 6.6pA in the case of the random graph.
For details see Table 5.1.

The resulting spiking activity is plotted in the right column of panels in Fig. 4.1. Analogously
to the random graph, the activity is clustered between two distinct types of activity: low-frequency
spontaneous activity and high-frequency synchronized bursts (see top right panel of Fig. 4.1). The
same is visible in the fraction of active nodes, with firing probabilities again reaching above 95% as
in the random case (see Fig. 4.1, middle right panel). Interestingly, the spatial aspect of the network
topology results in bursting dynamics that now have a spatial component: When reordering the
neurons according to their position in Euclidean space, the geometrical development of firing
activity within a network burst becomes apparent. For instance, the example burst shown in the
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bottom right panel of Fig. 4.1 is ignited in the bottom half of the network and proceeds through to
elicit neurons in the top half of the simulated culture.

4.4 Analytical prediction of the first firing time

It turns out that the expected first firing time of a neuron in the simulated networks can be predicted
analytically to a good degree of accuracy. Proceeding in a similar manner as in Chapter 2, we now
develop a solution of this problem. In general, such a solution is only possible in the context of
constant or periodic Gaussian stochastic inputs [155–157] which is inherently not applicable at the
burst onset. Thus, the following calculations are based on a noise-free mean-field ansatz.

In a first order approximation, we assume a monotonically rising, exponential firing fre-
quency of the mean field resulting in a synaptic current from one pre-synaptic neuron Isyn,m f (t) =
α a exp(b t). The parameter b is given from the experiment as b = 45.0s-1 [51], and without loss of
generality we set a = 1, which will be discussed later in the text.

We can simplify the question of solving Eq. 4.1 for the membrane voltage to the question of at
which point in time the input current Isyn(t) will be strong enough such that the voltage reaches
the threshold Θ. We will denote this threshold current Î = Θ/R and its position in time by t̂(1)

such that Isyn(t̂(1)) = Î. We can immediately solve for the first firing time t̂(1):

Î = α a k exp(b t̂(1)) ⇒ t̂(1) =
1
b

log
Î

α a k
. (4.5)

To take the nearest neighbors into account in a second-order approximation in analogy with
Chapter 2, we make use of the fact that the input-output firing rate under stationary conditions
(constant input current Iin) is known [143].

f (Iin) = H(R Iin −Θ)
[

τ0 + τm log
R Iin

R Iin −Θ

]−1
(4.6)

Here we have denoted by H the Heaviside step function, by R the membrane resistance and
by τ0 the refractory period. Again assuming that the change in current is slow compared to the
membrane time constant, we can write down the input current into a given neuron due to one
input neuron, which in turn has k(2) inputs:

I(1)
syn(k(2), t) = α H(α a R k(2) exp(b t)−Θ)

[
τ0 + τm log

α a R k(2) exp(b t)
α a R k(2) exp(b t)−Θ

]−1

(4.7)

This relationship is plotted in Fig. 4.2A for different values of the second-order input degree k(2).
For the same exponentially rising firing frequency of the mean field, a higher number of the
second-order degree serves to amplify the current from the mean field and thus leads to an earlier
firing onset of the second-order neuron. After an approximately linear period in each case, the
first-order input current saturates as the second-order firing frequency approaches its theoretical
limit of 1/τ0.

For the networks used in the simulations shown in Fig. 4.1, the shown degrees correspond
approximately to the range of degrees present in the network (mean degree 12.1, standard deviation
3.4). Thus, the expected first firing time of a neuron with only one input connection would be in a
range of about 30ms, depending on its second-order degree.

If we further assume that the average degree µk � 1, we can approximate the second-order
degree distribution by a delta distribution. Thus, we can finally write the synaptic current due to
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Figure 4.2: Analytical prediction of the first spike time. (A) For different values of the second-order
input degree, the synaptic current into a first-order neuron from one pre-synaptic second-order
neuron receiving exponentially rising input currents from the mean field is plotted. For a higher
number of the second-order degree the second-order neuron starts to fire earlier in time, showing
an approximately linear rise of the firing frequency, and thus the output current for about 50ms,
after which the output current saturates. The horizontal line indicates the threshold current Î, i. e.
the current which would be sufficient to drive the first-order neuron to spike from the plotted
current alone. (B) The two terms of the second order solution for the expected first firing time. The
first term is shown in blue, the second term is shown in red. Note that we refer to the first term as
the first-order term because it is the first-order solution, even if it depends on the second-order
degree when it is part of the second-order solution. The sum of the two terms would give the
solution itself, for the respective degrees.
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the second-order input neurons as simply a multiplication of Eq. 4.7 by the first-order input degree.

I(1)
syn(k(1), k(2), t) = α k(1) H(α a R k(2) exp(b t)−Θ)

[
τ0 + τm log

α a R k(2) exp(b t)
α a R k(2) exp(b t)−Θ

]−1

(4.8)

For the regime in time where the Heaviside function is positive, i. e. α a R k(2) exp(b t) > Θ, which
can be rewritten using Eq. 4.5 as t > t̂(1)(k(2)), the solution with regard to the onset time can be
calculated by way of standard algebraic manipulations, yielding:

t̂(2) =
1
b

log
{

Θ eD

α a R k(2) (eD − 1)

}
with D =

α k(1)

Î τm
− τ0

τm
. (4.9)

We can rewrite this equation in a more intuitive form.

t̂(2) = t̂(1)(k(2)) +
1
b

log
{

eD

eD − 1

}
(4.10)

The two terms of this sum are plotted in Fig. 4.2B. Both terms depend on the respective degree, but
the second-order term (the second term shown above) shows a strong dependence on the degree
only for low degrees k < µk, and approaches a constant value for higher degree.

4.5 Comparison to simulated data

To allow for the comparison of the analytical solutions Eq. 4.5 and Eq. 4.10 with numerical simula-
tions, the first firing times need to be extracted from the simulations. This is done in an analogous
way to the case of the discrete-time integrate-and-fire-case, i. e. by extracting from the observed
firing rates relative to a burst the probability to fire for the first time, and from this in turn the
expected first firing times.

For simulations lasting 60 minutes of simulated real time, we detect burst events as events
when the fraction of active neurons crossed from below a threshold of 20% of neurons with a time
window of 5ms [50]. We then pruned events such that those remaining had a minimum distance
of 200ms from each other, in order to avoid the effect of transient firing rate fluctuations shortly
before or after adjacent events in our analysis. In a next step, the threshold crossing time was
calculated with sub-sampled resolution using a linear interpolation of the averaged signal, and
the individual firing rate signal of neurons was aligned such that the threshold crossing of the
population average occurred at time t = 0. Thus, this averaging resulted in an average burst across
events for each neuron. As described above (see also Eq. 2.9) this enables the extraction of the
probability to fire for the first time relative to the burst onset.

As the choice of t = 0 at the burst threshold is arbitrary, we proceed again (cf. Section 2.4.1) by
fixing the mean of the distributions of both numerical and analytically determined onset times to
zero. The initially arbitrary choice of a is thus fixed, since any value of a corresponds to a constant
time offset due to a exp(b t) = exp(b (t + toff)) with toff = a/b.

The result of this analysis for the random graph, i. e. for activity patterns as shown in the
left column of Fig. 4.1, is shown in Fig. 4.3. For the first-order solution, the prediction of onset
times follows the numerical data closely, with an error shown as the standard deviation of the
difference between simulation and prediction of 3.42ms. Furthermore, there is also a very clear
linear correlation between the numerical and analytically evaluated onset times (see inset of the
left panel of Fig. 4.3), yielding a Pearson’s correlation coefficient of 0.835.

The second-order solution further improves on the first-order prediction, resulting in a corre-
lation coefficient of 0.877 as shown in the inset of the right panel of Fig. 4.3. On the other hand,
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Figure 4.3: Prediction of the expected first firing time at the onset of a burst in a random graph of
leaky integrate-and-fire neurons. For neurons sorted according to their expected first firing time
(blue line) as extracted from simulations, the analytical prediction is plotted according to the first-
order (left panel) or second-order (right panel) solution. The insets are scatter plots of numerical
(horizontal axis) against analytically predicted first firing time (vertical axis) in milliseconds relative
to the burst onset.

the standard deviation of the prediction error is 3.90ms, so there is a slight increase in the average
difference between simulation and prediction due to an increased slope of the prediction across the
sorted population.

When comparing the prediction errors with Chapter 2, it is worth pointing out that the predic-
tion is made more difficult by an increased heterogeneity in the model parameters: Contrary to the
discrete time dynamics, the simulation is not reset after each burst, so that temporal long-range
correlations of the activity of consecutive burst events cannot exist in the discrete-time models
studied before. In the leaky integrate-and-fire case, such correlations do exist while being neglected
in the analytical solution presented above. This results for instance in a positive correlation be-
tween the number of action potentials in one burst and the time it takes until the next burst is
elicited, as neurotransmitter resources are more depleted and take a longer time to be regenerated.
The analytical calculations also neglect the small but non-vanishing firing probability of neurons
outside of a burst, due to their external inputs or non-bursting internal activity, which can affect
the numerical evaluation of the first spiking time due to busting (see above).

In the case of local topologies generated according to Section 4.3 for two cases of λ, Fig. 4.4
shows the numerical result next to the analytical predictions. For the first case of λ = 0.25mm,
the first-order solution shows a good agreement, with a Pearson’s correlation coefficient between
simulation and prediction of 0.827 and a standard deviation of the prediction error of 4.59ms
(see top left panel of Fig. 4.4). Note that the deviation is partly dominated by a single outlier as
visible by the peak at very late onset times — the standard deviation of the prediction error when
removing this single neuron was only 3.67ms. The second order solution is slightly improved in
the sense of an improved linear correlation with a Pearson’s coefficient of 0.888. The prediction
error is at a standard deviation of 7.24ms, or 4.53ms without the outlier neuron as above, indicating
a local topology with correlations that go beyond first order and the outlined approximation to
second order (using k(2) as the average degree of the neighbors of a given node).

The case of λ = 0.75mm is a network in between the very local topology described above,
where connectivity in the 1mm2 plane is dominated by the spatial local neighborhood, and the
random topology discussed before (λ→ ∞). The prediction displays a high linear correlation with
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Figure 4.4: Prediction of the expected first firing time at the onset of a burst in a locally structured
graph of leaky integrate-and-fire neurons for different values of the length scale of typical con-
nections λ (in millimeters). For neurons sorted according to their expected first firing time (blue
line) as extracted from simulations, the analytical prediction is plotted according to the first-order
(top row), second-order (middle row) or “explicit” 2nd order solution (bottom row). The insets are
scatter plots of numerically (horizontal axis) against analytically predicted first firing time (vertical
axis) in milliseconds relative to the burst onset.
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coefficients of 0.888 for the first order solution and 0.909 for the second order solution. As before
however, the prediction error increases from first to second order, here from 5.39ms to 6.68ms
(24%).

Overall the local topologies display a picture that is similar to the random topology: A good
prediction for the first order solution, showing a very good linear correlation (Pearson’s correlation
of p > 0.8 in all cases) and is even improved when going to second order. However, the second
order prediction slightly overestimated the width of the distribution of onset times.

The source of the remaining error in predicting the expected first firing time can be better
understood — and the prediction quality further improved — in the following way: In the outliers
pointed to above, the proposed error is caused by assuming that the individual degrees of the
neighbors of a neuron can be substituted by the average degree, denoted above as k(2). However,
finite-size effects in the network simulated here (N = 100) can potentially lead to large errors.
However one can calculate the numerical solution to the analog of Eq. 4.10 without this averaging
step.

Î = α ∑
j∈C

H(R kj Im f (t̂(2e))−Θ)

[
τ0 + τm log

R kj Im f (t̂(2e))

R kj Im f (t̂(2e))−Θ

]−1

(4.11)

Here we have denoted with C the set of indices of neighbors of the neuron of interest, and by Im f (t)
the time-dependent current from the mean field to the neighbors due to a single second-order
connection. In effect, k j are the number of input connections of the neighbors. Note that the first
order degree k(1) is, in this equation, present only implicitly as the length of the set C.

The bottom row of Fig. 4.4 shows the results of numerically solving Eq. 4.11 for the onset
time t̂(2e), denoted as such as the “second-order explicit” solution. For both λ = 0.25mm and
λ = 0.75mm, the reconstructed values follow the simulation results much better, and the prediction
error is dramatically reduced, with 69% and 81% of neurons showing a prediction error of less
than 3ms. On the other hand, there are some neurons (less than 3%) whose predicted onset time
is more than 20ms earlier than the the simulated one, showing higher order correlations in the
topology, leading to a small number of outlier nodes whose connectivity in terms of the input
degree of their neighbors is low, but who are linked to tightly connected, early firing groups.
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Reconstruction of network
connectivity
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Chapter 5

Neuronal activity as shaped by
network structure

The overarching finding of the previous study of mathematical models of neuronal connectivity and
activity was that the dynamical nature of the burst onset is dominated by the connectivity matrix of
the underlying network, highlighting the effect of network structure on spiking dynamics. Given
this strong interdependence, we seek here to extract the structural connectivity from recordings.
Such a reconstruction, ultimately aiming for a map of the circuitry of the brain, has remained a
hard, and largely unsolved problem to the present day, as described in Chapter 1.

The complexity in this question arises from the fact that any measure of causal influence is
a priori not necessarily a measure of synaptic connectivity. In general, there are three forms of
interaction in the study of neuronal ensembles, called structural, functional and effective connectiv-
ity [88, 158, 159]. Whereas functional connectivity refers to correlation between signals, effective
connectivity is the result of a causality measure such as Transfer Entropy. Structural connectivity,
on the other hand, refers to the underlying physical network structure determined by synaptic
connections. As will be shown below, effective connectivity as a representation of the ongoing
network dynamics can be measured in a number of ways, and knowledge of the system at hand is
necessary to determine if and when this effective connectivity might overlap with the structural
connectivity.

The object of any measure of (effective) connectivity is a measure of the activity or the dynamics
of the individual parts of a dynamical system. Here, we will use calcium imaging recordings as
an indirect, but experimentally reliable indicator of time-dependent neuronal activity. Calcium
fluorescence imaging has in recent years become a standard tool to quantify activity of a population
of neurons [138,160–162]. In this technique, the fluorescent dye is inserted into the culture medium
where it diffuses through the membranes of neurons into the cell bodies. Depending on the calcium
concentration inside of a given cell, Ca2+ ions can bind to the dye. In the event of an action potential,
calcium channels open, the calcium concentration inside the cell transiently increases and more
calcium binds to the dye, and unbinds some time later. The rates of binding and unbinding are
such that during an action potential, the concentration of calcium bound to the dye rises very
steeply on a time scale of 1–3ms and decays on a much slower time scale of about 1–2s depending
on the dye used [163–166]. The net effect of this is that the amplitude of observed fluorescence
traces show an approximately linear relationship to the density of action potentials in time [59],
making calcium imaging an indirect but reliable indicator of neuronal activity.
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5.1 Experimental recordings of calcium fluorescence

In this work, we make use of the fluorescent dye Fluo-4 [167], to record the calcium activity from
cultured in vitro networks from hippocampal neurons from rat embryonal tissue. These neurons
have been dissociated from the brain tissue, have grown in a nutritious medium onto a glass
substrate and have spontaneously formed networks. After 3–4 days in vitro (DIV) the neurons
begin to be spontaneously active, showing asynchronous activity patterns that synchronize to
bursts after about 7 days in vitro [168]. As the onset of a burst is dominated by excitatory
connections, we will focus on networks where no inhibition is present (with the exception of
Chapter 9). In the culture, this is done by adding a concentration of 40µM bicuculline, a GABAA

antagonist. See Appendix A for details on the experimental preparation.
An example of such a culture in shown in Fig. 5.1A. Neurons, having a typical diameter of 10µm,

are clearly visible as white round dots in the bright field image. A region of interest (ROI) is selected
manually for each cell that is distanced enough from other neurons such that the ROI selections do
not overlap.

The fluorescence activity can thus be recorded over time for hundreds or thousands of neurons
simultaneously, at a temporal resolution of 50Hz. Five example traces from a set of N = 1720
neurons are shown in the left panel of Fig. 5.1B. Baseline activity is separated by bursts, after which
the fluorescence slowly decays back to the resting level. Beside the bursts, small fluctuations can
be seen, corresponding to low-frequency asynchronous activity.

This bursting activity is even more clearly visible in the population average of the fluorescence
(see left panel of Fig. 5.1C). The switching between asynchronous and synchronous phases of
activity can then be conveniently plotted as the histogram of the mean fluorescence over the
full duration of the recording (see left panel of Fig. 5.1D). The majority of time points exhibit
low-level activity, as indicated by the Gaussian-like peak on the left side of the histogram. This
Gaussian corresponds to regions in time where the population firing rate is low. The other end
of the histogram, the high-fluorescence tail, corresponds to network bursts and thus a peak in
the mean fluorescence of the culture. As can be seen from the histogram and the traces of mean
fluorescence, this event is less frequent by about two orders of magnitude, but will nevertheless
dominate network activity and fluorescence while it is active.

5.2 Simulation of calcium fluorescence

To complement the experimental recordings and to be able to benchmark the performance of
causality measures, we again refer to simulated time series. The basis of these simulations is the
standard current-based leaky integrate-and-fire model as discussed in Chapter 4, and as defined
by the equations 4.1, 4.2 and 4.3.

Simulations are performed on a network of N = 100 neurons on one of two families of
networks: Locally clustered networks (see Section 4.3) which are generated according to a Gaussian
kernel dictating the decay of connection probability with distance, and non-locally clustered networks.
The latter correspond to networks which are engineered to display a given value of the average
clustering coefficient, which is defined on the graph topology alone, without a dependence of the
connectivity on the spatial position. Local clustering has been observed in observed in neuronal
systems [49, 84], as well as non-local clustering [22, 170], making both important model systems for
real biological networks.

As the networks in the models discussed in this thesis are all directed networks, a generalization
of the clustering index for undirected networks must be chosen. As before, we will make use the
full clustering coefficient (see Eq. 2.7).
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Figure 5.1: Calcium imaging recordings from in vitro cultures and simulations. (A) Bright field
(left panel) and dark field fluorescence image (right panel) of a small subset of a cultured neuronal
network at DIV 12. Bright spots in both panels correspond to neuronal cell bodies. (B) Five
example traces of manually selected neurons of the culture shown in panel A (left panel) and of
a simulated network (right panel). (C) The population average of the fluorescence, highlighting
the presence of network burst events, of the networks shown in panel B. (D) A histogram of the
average fluorescence as shown in panel C over 60 minutes of recorded (left panel) or simulated
time (right panel). Figure reproduced with permission from [169].
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To generate non-locally clustered networks, first a random graph is generated according to
given probability of connection p. Then two links, A→ B and C→ D with A, B, C and D all being
different neurons, are chosen at random and crossed, resulting in the connections A → D and
C→ B. If the full clustering index CC of this new topology is closer to the target value, the change
is kept and otherwise discarded. This procedure is repeated until the target clustering coefficient is
reached with an accuracy greater than 0.1%.

Note that both the non-locally clustered networks and the locally clustered networks contain
the random graph as a limiting case. As discussed before, the local networks display this limit as
the length scale of the system λ → ∞, whereas the non-locally clustered networks display it at
CC = p, i. e. the clustering coefficient of a random graph is by definition given by the probability
of connection (see Eq. 2.7).

The simulation of calcium fluorescence time series, for a sample point acquired at time t, is
based on a standard model from the literature [171] and thus on the spike times from the leaky
integrate-and-fire model. The calcium concentration bound to the simulated fluorescent dye is
determined by an exponential decay with slow time constant τCa = 1.0s and instantaneous positive
offsets of amplitude ACa = 50µM for each of the nt action potentials that the respective neuron
elicits. We have omitted here for readability the index i for each neuron.

[Ca2+]t − [Ca2+]t−1 = − ∆t
τCa

[Ca2+]t−1 + ACa nt (5.1)

The calcium concentration is convolved with a saturating Hill function with saturation concentra-
tion Kd = 300µM, and Gaussian white noise ηt with mean zero and a standard deviation of 0.03 is
added, corresponding to spontaneous fluctuations of the fluorescence and camera (photodetector)
noise.

Ft =
[Ca2+]t

[Ca2+]t + Kd
+ ηt (5.2)

To further increase the realism in the simulations, we have (unless otherwise noted) included
an artifact for light scattered between ROIs which are close to each other [172, 173]. The light
scattering cannot be fully eliminated using deconvolution techniques due to the limited field
of view, inaccuracies in inferring the value of the scattering radius λsc and anisotropies in the
recording medium. The parameters of the simulation are λsc = 0.15mm and Asc = 0.15, with the
latter denoting the (residual) amplitude of this artifact.

Fsc
i,t = Fi,t + Asc

N

∑
j=1,j 6=i

Fj,t exp
{
−
(
dij/λsc

)2
}

(5.3)

Here dij denotes the spatial distance between neuron i and neuron j. The length scale used for
simulations in this work is shown compared to an example network in Fig. 5.2.

Five example traces of a resulting simulation are plotted in the right panel of Fig. 5.1B. Similarly
to the case of real recordings, periods of relative silence are broken by network bursts, visible as
peaks in the simulated time series. The bursts are again visible more clearly in the population
average of the fluorescence (see the right panel of Fig. 5.1C). The histogram in the right panel of
Fig. 5.1D highlights the similar structure of the average fluorescence over time when compared to
the real recordings.

Note that for an improved sampling of probability distributions, our analysis will later be based
on the difference signal ∆Ft = Ft − Ft−1 rather than the fluorescence time series itself.
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Figure 5.2: Radius of the light scattering artifact used in simulations of calcium fluorescence.
Plotted are cell positions of a network of neurons (black dots) on a square of length 1mm, and the
scattering radius λsc superimposed over three example neurons (shown in light green). Figure
reproduced with permission from [169].

non-locally clustered locally clustered
CC 〈αint〉 (pA) s.d. of αint λ (mm) 〈αint〉 (pA) s.d. of αint

0.1 6.604 0.146 0.25 5.207 0.171
0.2 6.156 0.124 0.50 6.241 0.166
0.3 5.719 0.054 0.75 6.481 0.150
0.4 5.361 0.113 1.00 6.556 0.230
0.5 5.274 0.067 1.25 6.505 0.158
0.6 5.214 0.209 1.50 6.519 0.113

Table 5.1: Synaptic weights in networks of different topological indices. For networks generated
according to a given topological index, CC or λ, the average synaptic weight αint and the corre-
sponding standard deviation, across 6 networks of the given type, is shown. For details on the
adaptive simulation see Section 4.2. Table reproduced with permission from [169].

5.3 Burst characteristics for different network topologies

An interesting first question is how much information can be retrieved about the statistical prop-
erties of the underlying network topology from the observation of bursts alone. If, for instance,
only locally clustered networks were showing bursting behavior, we might derive the degree of
clustering from the histograms of fluorescence as shown in Fig. 5.1D.

This question can be studied by systematically by varying the topological parameters in the
network ensembles described above and observing the resulting activity (see Fig. 5.3). Three
networks, each prescribed with very different values of the full clustering coefficient, are simulated
according to the adaptive procedure (see Section 4.2) aiming for a target bursting rate of 0.1 Hz.
Despite the fact that the underlying network as well as the synaptic weights in the simulation
are different (see Table 5.1 for the actual values) there is no clear distinction to be made from the
activity patterns shown. Furthermore, even the distributions of inter-burst intervals (IBIs) are
strikingly similar in shape for all networks. The same is true when comparing simulations for the
locally clustered ensemble, varying the length scale λ (not shown).
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Figure 5.3: Spiking activity showing bursting for a range of clustering coefficients. (A) For three
values of CC (0.1 corresponding to a random graph) we plot the resulting spiking activity, for a
target bursting rate of 0.1Hz. (B) Inter-burst interval (IBI) distributions for the three simulations
shown in panel A, with the vertical line indicating the mean of the distribution. Insets show
cartoon networks having the same clustering coefficient as those of the simulated networks. Figure
reproduced with permission from [169].

We conclude that the observation of bursting patterns alone does not allow for the determina-
tion the network topology, and that more precise measures, relating neuronal activity with the
underlying topology, are necessary.



Chapter 6

Measuring causality

The definition of any measure of effective connectivity, relating dynamics to interactions, is built
on a specific definition of causal interactions.

In this chapter, we will present standard measures of causality, and then develop the novel
approach of this thesis. Note that because of the improvements we will develop later, the formulas
given in the following two sections are given as in the literature — the formulas which will be
used in Chapter 8 and thereafter, to compare the reconstruction quality of different approaches, are
stated in Section 6.4.4.

6.1 Linear measures

As outlined in Chapter 1, the first attempts to measure causality were based on the assumption of
the linearity of the causal effect. The most well-known approach, still widely used today, is based
on Pearson’s cross correlation coefficient. This coefficient is used to compute the cross-correlogram,
i. e. the correlation between the target time series x (consisting of S data points) and the putative,
time-shifted source time series y for different lags. The peak in the cross-correlation is identified to
adjust for a causal shift in the time series.

XCY→X = max
∆t=1...tmax

{
corr

(
x(S−∆t)

S , y(S−∆t)
S−∆t

)}
(6.1)

Here we denote by x(l)
t the vector in time of length l, namely {xt, xt−1, ..., xt−l+1}. In practice, the

cross-correlation for a given shift decays rapidly for larger lag times. In this work we always use a
value of tmax = 60ms.

The cross-correlation method (XC) has been used to measure causal influences in particular
based on macro-scale recordings [89, 91, 92], but also in studies with single-cell precision based on
fluorescence imaging data or multi-electrode recordings [38, 42, 103, 158, 174].

Later, Granger developed what became known as Granger causality (GC) based on the Wiener-
Granger concept of causality as improved prediction [113]. GC has in recent years been applied
neurosciences infer connectivity structures [175–177].

GC is defined as follows: Assuming that the present value of a time series xt is determined by
its last k time steps, this present value can be predicted up to an error η0

t .

xt =
k

∑
l=1

a0
l xt−l + η0

t . (6.2)
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This prediction can be compared to another linear forecasting model, namely one that takes into
account the putative source time series yt, resulting in a prediction error η1

t .

xt =
k

∑
l=1

a1
l xt−l +

k

∑
m=1

b1
m yt−m + η1

t (6.3)

Granger causality (GC) is defined as the log ratio between the variances of these prediction errors,
as expressed by the covariance matrix Γ0 for the univariate regression and Γ1 for the bivariate case:

GCY→X = log
(Γ0)0,0 + (Γ0)1,1

(Γ1)0,0 + (Γ1)1,1
. (6.4)

6.2 Non-linear measures

Since a linearity assumption limits the applicability of a measure, generalizations to the non-linear
case were developed by making use of information theory. Generalizing the cross-correlation
measure XC, the Mutual Information between two stochastic variables A and B is defined as the
Kullback-Leibler distance between the joint probability distribution P(A, B) and the product
distribution P(A) P(B) [178]. The two distributions are identical, and thus the distance vanishes,
only if the two variables are independent of each other. Thus, Mutual Information (MI) measures
the degree to which they are dependent on each other. For two time series xt and yt, the MI score
is defined, analogously to XC, as the maximum found for a range of time lags.

MIY→X = max
∆t=1...tmax

{
∑ P(xn, yn−∆t) log2

P(xn, yn−∆t)
P(xn) P(yn−∆t)

}
(6.5)

The sum is defined over all possible values of xt and yt, with tmax defined as above for XC. The
number of all possible values is necessarily finite as the plug-in estimation of probabilities is used,
counting frequencies in a number of b = 20 bins in each dimension. Note that the choice of this
particular bin number is motivated by the low dimensionality of the joint probability distribution
P(xn, yn−∆t), which allows for a relatively high bin number. We have however checked for the
robustness of the MI score regarding this number, finding no significant change for the range
20± 5. Details on the estimation of probability densities and alternative estimation methods are
presented in Appendix B. The logarithm with the base of 2 ensures that the unit of MI is bits.

Just as the linear measures described above, MI was applied in numerous studies to infer
connectivity in neuronal systems [159, 179, 180], but also in the context of genetic networks [181].

In 2000, Schreiber published a new measure of causality as a generalization of Granger causality
called Transfer Entropy (TE) [116, 182]. TE has been used to infer connections in gene regulatory
networks [183] as well as in neuronal systems based on spike times [184–186] and on multi-unit
signals of neuronal activity [187–189].

If xt and yt are stationary Markov processes of some finite length k, such that P(xt+1|x
(k+1)
t ) =

P(xt+1|x
(k)
t ), then we can calculate the Kullback-Leibler distance between two models of the

process X, namely one based on its past alone P(xt+1|x
(k)
t ) and one including the past of the

process Y in the model, P(xt+1|x
(k)
t , y(k)

t ).

TEY→X = ∑ P(xt+1, x(k)
t , y(k)

t ) log2
P(xn+1|x

(k)
t , y(k)

t )

P(xn+1|x
(k)
t )

(6.6)

The sum is defined over all possible values of xt+1, x(k)
t and y(k)

t . Binning is again used to estimate
the transition probabilities from time series, but as the dimensionality is higher especially for
Markov orders k > 1, we use b = 3 bins. An estimation with low bin number can actually be
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seen as a symbolic representation of the fluorescence time series, which has been shown to be
an effective strategy to estimate TE [190]. For a discussion of alternative strategies to estimate
conditional probability densities without binning, see Appendix B.

It is easy to show that TE is equal to the difference of two Mutual Information terms by
expanding the conditional probabilities. Here, we have denoted with I(A, B) = H(A)− H(A|B)
the Mutual Information between time series A and B, without varying the lag as done above in
Eq. 6.5.

TEY→X = ∑ P(xt+1, x(k)
t , y(k)

t ) log2
P(xn+1, x(k)

t , y(k)
t ) P(x(k)

t ) P(xt+1)

P(x(k)
t , y(k)

t ) P(xn+1, x(k)
t ) P(xt+1)

= I(xt+1; x(k)
t , y(k)

t )− I(xt+1; x(k)
t ) (6.7)

Interestingly, Barnett et al. showed recently that TE and Granger causality are indeed equivalent
for Gaussian random variables [191].

In summary, TE is advantageous to other measures of causality as it relies on the established
notion of Wiener-Granger causality, but extends to a non-linear regime. It requires — apart from
the very weak assumption of a Markov process of some order k, an upper bound of which can
easily be estimated from the expected leak time constants — no assumptions about the dynamics
of calcium fluorescence or of neuronal firing.

6.3 Measuring reconstruction performance

Before elaborating further on solutions to the network reconstruction problem, it is important
to define a measure of the quality of a reconstruction, i. e. to which extent the value a given
causality measure — such as those described above — overlaps with the structural, mono-synaptic
connectivity that we aim to identify.

The central question is whether a reconstructed link is indeed present in the ground truth topol-
ogy (a true positive) or is spuriously introduced by way of an imperfect reconstruction procedure (a
false positive). Directly related is the question of the correct or incorrect non-existence of links which
are absent from the reconstruction (true negatives and false negatives, respectively). This of course
assumes that the ground truth is known, limiting the analysis to the extent of simulated data.

Such an overlap between true and reconstructed variables is traditionally and conveniently
quantified with a Receiver operating characteristic (ROC) [178, 192, 193]. Let Θrec be an arbitrary
threshold, then we define the reconstructed adjacency matrix as the thresholded matrix of the
measure of causality for each pair of links. Formally, for two neurons i and j, denoting by Zij
the value of the causality measure in question (for the link i→ j), the corresponding entry of the
binary, reconstructed adjacency matrix is (Arec)ij = H(Zij − Θrec). Thus, for each value of the
threshold Θrec we obtain a binary, reconstructed adjacency matrix Arec, which we compare to the
ground-truth adjacency matrix A to obtain, for instance, the fraction of true positives TP and the
fraction of false positives FP.

TP = P(t = 1|r = 1) (6.8)

FP = P(t = 0|r = 1) (6.9)

Here we have denoted with t the true value of a given link, and with r its reconstructed counterpart.
Analogously, we define the fraction of true negatives TN and of false negatives FN.



54 CHAPTER 6. MEASURING CAUSALITY

TN = P(t = 0|r = 0) (6.10)

FN = P(t = 1|r = 0) (6.11)

An ROC curve is then given by plotting TP on the vertical axis against FP on the horizontal axis, for
the entire range of possible values of the threshold Θrec. The result is a curve from the point (0,0)
for thresholds above the maximum of Z to the point (1,1) for thresholds below the minimum of Z.
Values on the diagonal correspond to the characteristic of a random choice, with ROCs above the
diagonal corresponding to reconstructions which are better than random.

To be able to quantify the reconstruction quality across networks in a single number, we define
the fraction of true positives at a value of 10% of false positives as the reconstruction performance.

6.4 Extending Transfer Entropy

It turns out that applying TE directly to the analysis of calcium fluorescence time series yields
unsatisfactory results, as will be shown later. There are two general properties of the dynamical
system under study which need to be incorporated. This will be the purpose of the two following
sections.

6.4.1 Same-bin interactions

As described above, calcium fluorescence imaging allows for the recording of hundreds or thou-
sands of neurons simultaneously. A downside of this is technique, however, is that in practice the
rate of image acquisition cannot be increased arbitrarily. While the current generation of cameras
is able to record in excess of 100 frames per second (fps), their efficiency of recording is limited
such that an ever greater light intensity is needed to get images of reasonable signal-to-noise ratio.
Yet as the light needed for fluorescent dyes is from the UV spectrum, increased light intensity leads
to bleaching, i. e. neurons are damaged up to the point where the maximum recording duration in
high frame rate two-photon recording can be below one minute [131, 194–196].

In the experiments shown in Fig. 5.1, a recording rate of 50Hz was used, corresponding to the
typical rate of recording in such experiments [24, 106, 162, 171, 197]. This allows for continuous
recording of 1 hour without any signs of bleaching or altered firing dynamics (see Fig. A.1).

Therefore, each image frame in the recording has a temporal width of 20ms, much larger than
the synaptic delay time, which can be faster than 2ms [198–200]. Recognizing this fact, we define a
first step towards a new causality measure by allowing for instantaneous (same-bin) interactions
between the Markov processes by modifying Eq. 6.6.

TEsame-bin
Y→X = ∑ P(∆xt+1, ∆x(k)

t , ∆y(k)
t+1) log2

P(∆xn+1|∆x(k)
t , ∆y(k)

t+1)

P(∆xn+1|∆x(k)
t )

(6.12)

Note that the first index of the process Y is now t + 1. This allows to capture interactions on a time
scale shorter than the sampling width, thereby increasing dramatically the information gained for a
given number of samples (examples of reconstruction performance, comparing TE and TEsame-bin,
will be shown in Section 7.5). As described above (see Section 5.2), TE is computed based on the
difference signal ∆xt, as its distribution is more Gaussian-like, which improves sampling for a
given number of bins.
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6.4.2 Identification of the dynamical state

One of the assumptions behind Transfer Entropy is the stationarity of the time series in question.
Due to the switching behavior seen in neuronal networks in vitro, this assumption is valid only to
some degree — the time series is at least approximately stationary in piece-wise manner, between
and within bursts. Across these different phases, the dynamical nature of activity will be different
— varying for instance from synchronous to asynchronous firing times — and this dynamical nature
will be reflected in different networks of effective connectivity.

We can identify this dynamical nature in the histogram of the population mean of the fluores-
cence (see Fig. 6.1A), showing a peak on the left corresponding to low average fluorescence caused
by low-frequency, asynchronous firing, and a long tail on the right corresponding to ongoing
network bursts and high values of the average fluorescence. We denote this average fluorescence
by gt, based on the fluorescence time series of individual neurons xi,t:

gt =
1
N

N

∑
i=1

xi,t. (6.13)

To calculate the effective connectivity for each of the different parts of these dynamical states
separately, we define as TEstate-dep. the effective connectivity based on Eq. 6.12 for all data points
where the mean fluorescence gt is within a given range (indicated in Fig. 6.1 by roman numer-
als) Ri = [glow, ghigh], i = {I, II, ..., VII}. Effectively, this means that we calculate the effective
connectivity TEstate-dep. based on the sets of points in time T = {t : glow

i ≤ gt ≤ ghigh
i }.

TEstate-dep.
Y→X (R) = ∑ P(∆xt+1, ∆x(k)

t , ∆y(k)
t+1|gt ∈ R) log2

P(∆xn+1|∆x(k)
t , ∆y(k)

t+1, gt ∈ R)

P(∆xn+1|∆x(k)
t , gt ∈ R)

(6.14)

Interestingly, the reconstruction performance as defined in Section 6.3 depends heavily on
the range which is used to determine the effective connectivities (see Fig. 6.1B, blue curve). The
reconstruction performance shows a very high value of 70% of true positives at 10% of true
positives for the lowest region I. For the ranges II to IV, the performance is acceptable at about
40% TP, while decreasing back to chance level (10% TP) for the highest ranges.

However these estimates are based on sample numbers which differ by large amounts —
by almost two orders of magnitude when comparing range VII to range I — which makes the
comparison of reconstruction performance biased since the transition probabilities underlying TE
can be better estimated based on more data points. When correcting for this bias by restricting the
calculation in each region to be based on an identical number of data points, a different picture
emerges (see Fig. 6.1B, red curve). The reconstruction performance of range I is now poor at
about 20% TP, while the range with the highest reconstruction performance is now range II, shifting
the maximum towards higher values of the mean fluorescence. The higher regions have generally
slightly lower performance as in the case of full numbers. Note that the performance generally has
to be lower, as a lower number of samples was used in all regions that was lower (or equal in the
case of region VII) than before.

The actual reconstructed networks (see Fig. 6.1C, plotted with the restriction to equal sample
numbers) confirm the intuition that the effective connectivity depends on the dynamical state
of the network as revealed by the average fluorescence. The lowest range I corresponds to a
noise-dominated part of the dynamics, where the stochastic firing is not sufficient to drive spiking
activity that is informative about the topology in the fluorescence time series. On the other end of
the spectrum, the high ranges VI and VII are dominated by synchronous groups of neurons firing
together within a network burst (which is due to a higher cross-correlation of the fluorescence
signals within the highly inter-connected groups visible in the network reconstructions as dense
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Figure 6.1: Effective connectivity is heavily dependent on the dynamical state of the network.
(A) The histogram of the population average of the (simulated) fluorescence signal gt across
60 minutes of simulated real time, representing the switching behavior from low-frequency firing
activity (region I) to bursting activity (region VII). (B) For data points corresponding to each of
the seven regions indicated on top in roman numerals, the reconstruction performance in terms
of the fraction of true positives at 10% of false positives is shown in blue. The red line shows the
same performance, but restricting the number of data points in each region to the number of data
points in region VII, thereby using an equal number of data points for each region. (C) For each
of the latter reconstructions based on an equal number of data points, the links corresponding to
the top 10% of TE values of an example network is shown, plotting false positives in red and true
positives in green (top row). Below are plotted, again for each region, the ROC curves across six
networks. In all panels, shaded areas and error bars correspond to 95% confidence intervals across
six networks. Figure reproduced with permission from [169].
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communities, not shown). Only in the middle ranges, and especially range II, is the spiking activity
in the system of a frequency high enough to be dominated by mono-synaptic interactions (rather
than isolated firing events driven by noise), and it is in these ranges that indeed a reconstruction
with a good overlap between effective and structural connectivity is achieved.

6.4.3 Generalized Transfer Entropy

Transfer Entropy is a measure of causality which has been used with much success for the analysis
of network connectivity. For the present application, we have described an extension to same-bin
interactions in Eq. 6.12 and have discussed the state-dependency according to Eq. 6.14 above. As
a result, we combine the individual advantages of the lower ranges of the average fluorescence
— corresponding to dynamical ranges of asynchronous activity of low to medium firing rates — by
considering in our analysis all data points when the average fluorescence is below a conditioning
level g̃.

We therefore defined in [169] the Generalized Transfer Entropy (GTE) of Markov order k:

GTEY→X = ∑ P(∆xt+1, ∆x(k)
t , ∆y(k)

t+1|gt < g̃) log2
P(∆xn+1|∆x(k)

t , ∆y(k)
t+1, gt < g̃)

P(∆xn+1|∆x(k)
t , gt < g̃)

. (6.15)

The conditioning level is consequently chosen, in the following sections, to be on the right of the
Gaussian-like peak in the fluorescence histogram by one standard deviation, where the histogram
deviates from a Gaussian fit. The reconstruction is however robust against the precise choice of
this conditioning level, as will be shown later in Section 7.3.

6.4.4 Causality measures in comparison to GTE

One of the advantages of the improvements to TE we developed above is that they are general
enough to be applied to other measures of causality as well. Including these improvements in all
cases in the following chapters allows for the unbiased comparison of different measures.

In the case of linear measures, the conditioning is applied by considering only the subset of
data points where the average fluorescence is below the conditioning level g̃, i. e. all time points
T = {t : gt < g̃} such that the signal is given by x̃ = {xt : t ∈ T}. The time series ∆x̃ then refers,
as before, to the difference signal of x̃.

XCY→X = max
∆t=0...tmax

{
corr

(
∆x̃(S−∆t)

S , ∆x̃(S−∆t)
S−∆t

)}
(6.16)

Granger Causality is defined similarly to the literature notation defined in [113], note only the
use of the conditioned time series x̃t and ỹt and that the index of the first term in the sum over ỹt is
zero. Apart from these modifications, GC is defined as described in detail in Section 6.1.

∆x̃t =
k

∑
l=1

a0
l ∆x̃t−l + η0

t

∆x̃t =
k

∑
l=1

a1
l ∆x̃t−l +

k−1

∑
m=0

b1
m ∆ỹt−m + η1

t

⇒ GCY→X = log
(Γ0)0,0 + (Γ0)1,1

(Γ1)0,0 + (Γ1)1,1
(6.17)
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Mutual Information is defined in the language of probability theory, therefore we can apply
the extension to the difference signal and conditioning in the same notation as it was originally
developed for GTE.

MIY→X = max
∆t=0...tmax

{
∑ P(∆xn, ∆yn−∆t|gt < g̃) log2

P(∆xn, ∆yn−∆t|gt < g̃)
P(∆xn|gt < g̃) P(∆yn−∆t|gt < g̃)

}
(6.18)

The thus modified causality measures allow for a fair comparison between GTE and other
methods when studying their respective reconstruction performance.



Chapter 7

GTE reconstruction of simulated
synaptic connectivity

Having developed an appropriate measure of causality which is applicable to the system of calcium
fluorescence time series of neuronal networks, we will now analyze and quantify its performance
under various experimentally relevant conditions, focussing as a first step on the reconstruction of
excitatory connections only. Next to the goal of reconstructing a large fraction of true positives at
a small fraction of false positives, a question of particular importance is whether it is possible —
with GTE as described in the previous chapter, or with other measures of effective connectivity —
to reconstruct the statistics of the topological properties in the network.

7.1 GTE performance in clustered networks

7.1.1 Non-locally clustered networks

In non-locally clustered networks as described in Section 5.2, GTE achieves a very good reconstruc-
tion performance, displaying a sharp rise in the ROC curve for high thresholds (see Fig. 7.1A). The
performance level, as given by the fraction of TP at a fraction of 10% of FP, is 75%, yielding true
positives with excellent accuracy. This performance is indeed even better than other studies based
on TE using precise spike times [185]. Only for lower thresholds and therefore higher numbers
of reconstructed links does the fraction of false positives start to increase as well, leading to a
drop in ROC slope. This performance is conserved across networks, as demonstrated by the small
confidence intervals around the mean.

Indeed in these networks, not only is the reconstruction performance very good, but the
reconstructed network matches the ground truth one very well in terms of the distributions of
topological indices) — as will be shown later, especially in the case of linear measures, the former
is not a sufficient condition for the latter. The two distributions for the clustering coefficient are
very similar in terms of mean and variance, even if a small underestimation of CC is visible. The
same is true for the distribution of in-degrees. Note the noise in the histograms due to the fact that
there is only one date point per neuron in these cases. There is also a slight under-estimation of the
average spatial distance of the connections in the network (see Fig. 7.1B, bottom panel). Indeed
there is mostly an over-estimation of the frequency of low-distance links within a distance interval
indicating that this is an effect caused by light-scattering artifacts (λsc = 0.15mm, see Section 5.2).

Importantly, GTE is able to reconstruct the clustering index of networks engineered to display a
wide range of CC values with good accuracy (see Fig. 7.1C), as quantified by a Pearson correlation

59
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Figure 7.1: Reconstruction performance in non-locally clustered topologies. (A) Receiver-operating
characteristic (ROC) of the GTE reconstruction based on simulated fluorescent time series from
non-locally clustered networks. Shaded areas correspond to 95% confidence intervals across six
networks. (B) In one example network, the real (blue curve) and reconstructed (red) distributions
of topological properties of the network are shown, namely the full clustering coefficient CC
(top panel), the in-degree (middle) and the spatial distance between connected neurons (bottom
panel). Reconstructed network based on the top 10% of GTE values. (C) Correlation between real
and reconstructed clustering coefficients, for a range of networks engineered to display a given
clustering coefficient between 0.1 and 0.6. Lines correspond to different measures of causality,
namely XC (blue curve), MI (red curve) and GTE (yellow curve). Error bars correspond to 95%
confidence intervals across six networks, and the dashed line marks the identity (perfect result).
As before, reconstructed networks are based on the top 10% of links. Shown are results based on a
network of N = 100 nodes with a clustering coefficient of CC = 0.5, with the exception of panel C.
The conditioning level used was g̃ = 0.112. Figure reproduced with permission from [169].
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Figure 7.2: Reconstruction quality of the complementary topological properties, i. e. (A) the
clustering index of networks generated according to a given length scale and (B) the average
connection distance in networks engineered to display a given value of CC. Plots are based on the
top 10% of links, with conditioning levels of g̃ = 0.084 for the non-locally clustered networks of
panel A, and of g̃ = 0.112 for the local networks of panel B. Lines correspond to different measures
of causality, namely XC (blue curve), MI (red curve) and GTE (yellow curve). Error bars correspond
to 95% confidence intervals across six networks, and the dashed line marks the identity (perfect
result). Note that as the value of the horizontal axis is first averaged across networks and then
sorted according to the ground truth value, the linear interpolation indicated by the lines need not
be single-valued. Figure reproduced with permission from [169].

coefficient of r = 0.92. The linear measure reconstructs clustered networks with CC ≈ 0.7
throughout, and therefore cannot be used to determine the clustering level from the fluorescence
signal. The non-linear measure MI does show a clear correlation of reconstructed to ground truth
CC, but underestimates the true value for higher CC values.

To complete this analysis, in Fig. 7.2A the correlation of the reconstructed average connection
length is plotted against the structural value. For non-locally clustered topologies there is no
connection between connection probability and spatial distance, and is therefore given purely
by the finite-size fluctuations of different realizations of the random graph. Nevertheless, it is
important to note that the non-linear measures MI and GTE do provide an estimate of the average
connection distance with reasonable accuracy. Note also that the reconstructed length scale is
dramatically underestimated using the XC measure as before.

7.1.2 Locally clustered networks

For the case of locally clustered networks, i. e. networks created with a connection probability
which depends on the spatial distance as described in Section 2.3, reconstruction quality displays a
broader range of values — due to the finite size of the network relative to the length scale λ — while
still displaying a high average performance of 60% TP at 10% FP (see Fig. 7.3A). In local networks,
this reconstruction performance can even be assessed visually: Fig. 7.3B shows an example of a
reconstructed network in relation to the structural ground-truth network. Many links are correctly
identified by GTE, with a small fraction of spurious long-range links and a bias towards more
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Figure 7.3: Reconstruction performance in locally clustered topologies. (A) ROC curve of the GTE
reconstruction based on simulated fluorescent time series from locally clustered networks. Shaded
areas correspond to 95% confidence intervals across six networks. (B) Network graph of the ground
truth network with links shown in red (top panel) and the reconstructed network (based on the top
10% of GTE values) with true positives shown in green and false positives shown in red (bottom
panel). (C) In one example network, the real (blue curve) and reconstructed (red) distributions of
topological properties of the network are shown, namely the full clustering coefficient CC (top
panel), the in-degree (middle) and the spatial distance between connected neurons (bottom panel).
Reconstructed network again based on the top 10% of GTE values. (D) Correlation between real
and reconstructed average connection lengths, in terms of spatial distance, for a range of networks
engineered according to a Gaussian profile of the probability of connection with length scale λ.
Lines correspond to different measures of causality, namely XC (blue curve), MI (red curve) and
GTE (yellow curve). Error bars correspond to 95% confidence intervals across six networks, and
the dashed line marks the identity (perfect result). As before, reconstructed networks are based on
the top 10% of links. Shown are results based on a network of N = 100 nodes with a length scale
of λ = 0.25mm, with the exception of panel C. The conditioning level used was g̃ = 0.112. Figure
reproduced with permission from [169].
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Figure 7.4: Dependence of reconstructed average degree and clustering coefficient on the thresh-
old Θrec. (A) Plotted is the average degree of a reconstruction based on a threshold Θrec such that a
given fraction of links reconstructed (horizontal axis). (B) For three example networks where the
ground truth topology had a given value of CC, the reconstructed value of CC is plotted. In both
panels, the light grey bar corresponds to the fraction of links present in the ground truth topology,
and typically chosen for reconstructions in the simulated networks (see text). Figure reproduced
with permission from [169].

tightly clustered groups of links.
The reconstruction performance of estimating topological quantities is plotted in Fig. 7.3C. The

clustering bias visible in the network graph is indeed present, yielding an average CC of 0.59 instead
of 0.41 for the structural network. The degree distribution is broadened, and the distribution shows
a small bias towards lower connection distances. This bias is, however, not an effect consistently
present across realizations of networks (see Fig. 7.3D). Instead, on average there is a very good,
linear correlation (Pearson’s correlation of r = 0.97) between real and reconstructed length scales
for both MI and GTE. Only XC shows a reconstructed length scale which is constant and irrespective
of the average connection distance of the ground truth network, in analogy to the case of locally
clustered networks in Fig. 7.1C.

A lower value of the connection length scale λ in a network naturally yields a higher value of
the clustering index CC. It is therefore important that GTE shows a good linear correlation between
real and reconstructed CC with a correlation coefficient of r = 0.98 (see Fig. 7.2B). Interestingly,
in this situation MI actually performs better than GTE, despite having a lower reconstruction
performance overall. Note also that the linear measure again shows a reconstructed value that
does not depend on the ground truth topology.

7.2 Dependence of reconstructed quantities on threshold

It is important to note that the reconstructed quantities do of course depend on the chosen
threshold Θrec. As the threshold directly determines the number of links in the network, the
relation between average degree of the reconstruction and fraction of links reconstructed is by
construction linear (see Fig. 7.4A).

The dependence of the reconstructed clustering coefficient on Θrec is less trivial. For a random
graph, the reconstructed clustering coefficient is by definition (see Eq. 2.7) given by the fraction
of links itself, because in a random network the latter is identical to the probability of closing a
given loop, and thus on the probability of connection. The deviations from the diagonal therefore
correspond to deviations of the reconstructed network from the random graph. The reconstructed
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Figure 7.5: Reconstruction performance across causality measures and conditioning levels in the
non-locally clustered ensemble. Shown are reconstruction based on simulation without light
scattering (top row) and with light scattering (bottom row). Each column corresponds to a different
causality measure, namely (from left to right) XC, GC, MI and GTE of Markov order 1 and of
Markov order 2. In each panel, the average reconstruction performance across three networks is
plotted as color code, for a given conditioning level g̃ (horizontal axis) and a certain clustering
index of the underlying networks (vertical axis). Figure reproduced with permission from [169].

value of CC, for higher values of the true CC, shows either a peak or plateau. Interestingly
and usefully for the application discussed here, there is a good agreement between real and
reconstructed CC between a fraction of positives between 5% and 10% (perhaps not too surprisingly,
given the good reconstruction performance described above). This corresponds well to the fraction
of links actually chosen in panels B and C of Fig. 7.1, motivated by the expected number of
ground-truth links.

7.3 Dependence on causality measure and conditioning

GTE is able to quantitatively extract important features of the network topology across a wide
range of networks, as demonstrated by Figures 7.1C and 7.3D and by Fig. 7.3 and as discussed
above. In this section the detailed dependence on the value of the conditioning level, the causal-
ity measure used and the existence of light scattering artifacts will be discussed. The latter is
conceptually important, because it introduces an experimentally unavoidable artifact which is
small in amplitude, but linear in nature. Such artifacts are common in a range of recordings and
causality analysis, because some form of cross-talk between time series (recording sites) is often
present [189, 201, 202] and may, due to the inherent additivity in terms of signal amplitude, prove
hazardous for causality measures relying on the assumed linearity of the interaction.
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7.3.1 Non-locally clustered networks

In networks from the non-locally clustered network ensemble and without the light scattering
artifact, a very good reconstruction performance is achieved across the higher values of CC and
and for a broad range of conditioning levels (see top row of Fig. 7.5). For lower values of CC, the
range of conditioning levels with reasonable reconstruction gets smaller, showing an unsatisfactory
reconstruction at CC = 0.1, corresponding approximately to the random graph. Interestingly,
there is no correlation between reconstruction performance and reconstructed topological indices
(compare Fig. 7.1C and Fig. 7.2A), indicating that the high-clustering topology is indeed an artifact
of XC itself.

The GC reconstruction shows poor performance overall, with only a small range of conditioning
levels with good reconstruction for higher CCs, and a poor performance for networks of low CCs,
indicating the inadequacy of regression-based measures for the inherently non-linear neuronal
interaction dynamics. It is then not surprising that MI is performing much better, with a range
of conditioning levels for high values of CC that only diminishes for the smallest values of the
clustering coefficient. GTE of Markov order k = 1, as well as for k = 2, show a very good
reconstruction performance across conditioning levels. The reconstruction performance for the
lowest value CC = 0.1 is comparable to the XC reconstruction.

If the light-scattering artifact — which is always present in real recordings — is included in the
simulation of the fluorescence time series, a dramatically different picture emerges (see bottom
row of Fig. 7.5). The reconstructions based on XC and GC now shows virtually no resemblance
to the structural topology, reflected in a random performance across all values of CC and for all
conditioning levels. This confirms the point made above in that the introduction of a weak but
linear interaction term is enough to completely derail causality measures which assume linearity.

Consistently, then, is that the reconstruction performance based on MI is not dramatically
changed, as it is a measure from information theory which is not based on a linearity assumption.
Interestingly though, the reconstruction performance of GTE of Markov order k = 1 is dramatically
reduced as well. Finally, the only measure for which a range of conditioning levels exists which
yields consistent reconstruction performance across all values of CC, is GTE of Markov order k = 2,
as indicated by the yellow stripe in the bottom right panel of Fig. 7.5 at g̃ ≈ 0.1.

It can be concluded that, in order to achieve a reconstruction that is robust across all values of
the clustering index CC and including the experimentally realistic light scattering artifact, two
ingredients (in addition to the improvements as described in Section 6.4) are needed: First, the
measure of causality needs to be non-linear, and second, the measure must be able to take into
account interactions on more than one time scale.

7.3.2 Locally clustered networks

For locally clustered networks, a similar picture emerges as in the case of non-locally clustered
networks, even if the overall reconstruction quality is less optimal across all causality measures
(see Fig. 7.6). This is due to the near-randomness of networks with characteristic length scales λ

which are comparable or even larger than the system size d = 1mm.
Across causality measures, without the light-scattering artifact there exists a range of condi-

tioning levels for which a good quality of reconstruction can be achieved for the lowest, most
local value of λ = 0.25. For higher values of λ and therefore less locally structured networks, the
reconstruction quality decays. This must indeed be that case as the networks are indeed identical
random graphs for CC = p and λ→ ∞.

With light scattering, the picture changes insofar as all measures — with the exception of GTE
of higher Markov order — show a reconstruction quality which is very good for the most local
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Figure 7.6: Reconstruction performance across causality measures and conditioning levels in the
locally clustered ensemble. Shown are reconstruction based on simulation without light scattering
(top row) and with light scattering (bottom row). Each column corresponds to a different causality
measure, namely (from left to right) XC, GC, MI and GTE of Markov order k = 1 and for k = 2.
In each panel, the average reconstruction performance across three networks is plotted as color
code, for a given conditioning level g̃ (horizontal axis) and a characteristic length scale λ of the
underlying networks (vertical axis). Figure reproduced with permission from [169].
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networks, but is not robust to an increase in λ. This good performance for λ = 0.25 is explained
by an overlap of the structural connectivity and the erroneously inferred effective connectivity
caused by light scattering artifacts (λsc = 0.15). The light scattering leads to an increase in
spurious, local inferred links which are consistent with the structural connectivity only in this
special case — for higher values of λ this overlap is no longer present and the reconstruction
performance vanishes accordingly. Only GTE of Markov order k = 2 shows good reconstruction
performance of about 40% of TP not only for the most local networks, but shows a range at around
g̃ ≈ 0.1 where a reasonable reconstruction is possible across all networks.

Note that for both the non-locally clustered ensemble discussed above as well as for the locally
clustered ensemble, the range of optimal conditioning levels is consistent with the logic developed
in Section 6.4.2 as it is a value on the right side of the Gaussian-like side of the histogram, where
the distribution deviates from a Gaussian form — see Fig. 6.1A for a histogram of fluorescence
levels from the local clustering ensemble.

7.4 Comparison to Bayesian approach

Previously, the probably most established approach to reconstruct the connectivity of a neuronal
assembly based on calcium imaging was developed by Mishchencko et al. [106]. It makes use of
a sophisticated Bayesian inference algorithm to first detect precise spike times, and in a second
stage to infer the parameters of an assumed generalized linear model (GLM). While for the case of
simulations, based on a GLM and the same model of calcium fluorescence as used in the present
work, the reconstruction performance has indeed been shown to be very good, even distinguishing
excitatory and inhibitory connection with a good degree of accuracy [106].

The problem of Bayesian methods is founded in the reliance of the reconstruction algorithm
on a specific mathematical model of neuronal dynamics and calcium fluorescence. The inference
of the parameters of the (correct) model can indeed be highly accurate, but there is always the
danger that the assumed dynamics are too restrictive for a data set from experimentally recorded
networks. The problem is amplified when using an inference using multiple steps, as done in [106],
where errors and biases can propagate to disrupt the final reconstruction result in a way that is
extremely hard to disentangle a posteriori.

In an example case, we have applied the algorithm of [106] to a network from the locally
clustered network ensemble; see Fig. 7.7A for a raster plot of spike times and Fig. 7.7B for a plot
of the resulting fluorescence signals from three example neurons in the network. We find that
the inferred spike times, using the algorithm of Mishchencko et al. as published in detail in [171],
display a different pattern than the ground-truth spike times (see Fig. 7.7C). While the network
bursts are correctly identified, indicated by many inferred action potentials around the time of
bursting, the inferred rate of firing in between bursts is virtually zero. For one particular neuron,
on the other hand, there is an homogeneously high firing rate overall, with a firing rate that exceeds
the true rate by far.

These biases result in a effective connectivity, represented by the connection weights of the
inferred GLM, that is dominated by these biases of spike detection. As a result, the overlap between
the inferred weights and the structural topology is small, and the ROC curve is very close to the
diagonal representing a random choice (see Fig. 7.7D).

7.5 Dependence on extension to Transfer Entropy

The previous sections have demonstrated the improvements of GTE as compared to traditional
causality measures such as a cross-correlation based approach, Mutual Information or Granger
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Figure 7.7: Reconstruction performance of the Bayesian approach by Mishchencko et al. in [106].
(A) Ground-truth spike times for a simulated example network from the locally clustered ensemble
shown in Fig. 7.3. (B) For the same network, three example fluorescence signals showing bursts
and sparse, non-bursting activity. (C) Reconstructed spike times according to [106]. (D) ROC
curve of the reconstruction based on the reconstructed synaptic weights, showing a reconstruction
quality that is close to random.



7.6. DEPENDENCE ON SAMPLE NUMBER 69

Causality. Here, the performance gain by each of these individual improvements to GTE will be
quantified.

The reconstruction quality of raw TE (based on the difference signal) is, for both network
ensembles, below the diagonal in the ROC plot, indicating a reconstruction quality which is worse
than random choice (see Fig. 7.8A). This lack in performance is due to misinterpreted, spurious in-
teractions because TE ignores the time delay which is most informative and which in the simulated
recordings belongs to a delay of zero image frames. Consequently, after introducing instantaneous
interactions, the performance level dramatically increases by over 50% of true positives (at 10% of
false positives). The effect of only conditioning TE, again neglecting instantaneous interactions,
results in an increase of about 40% TP in the non-locally clustered ensemble, and of about 20% TP
in the locally clustered ensemble. Only when combining the two improvements to GTE as defined
in Eq. 6.15 can a performance level of over 50% TP be achieved in both ensembles.

An alternative way of quantifying the quality of a reconstruction is by plotting Positive prediction
curves (PPCs) [185]. For these plots, denoting with #TP the (absolute) number of true positives and
by #FP the number of false positives in a given reconstruction, Garofalo et al. define the true-false
ratio TFR as the fractional difference of the two.

TFR =
#TP− #FP
#TP + #FP

(7.1)

TFR therefore is a measure of how much more likely it is for a randomly chosen link from the
reconstruction to be a true positive, rather than a false positive. Note that the denominator
#TP + #FP is simply the total number of reconstructed links.

Fig. 7.9 displays the PPCs for the reconstructions shown in Fig. 7.8A. Apart from the raw TE
reconstruction, the TFR is positive for a range of the total number of reconstructed links. Note
that this already constitutes a marked improvement over the results of [185]. In particular, the
reconstructions based on TEsame-bin shows good performance. GTE itself shows a peak at a very
good TFR of about 0.5, and stays positive until about 1,500 links (15%), highlighting the fact that
true positives outnumber false positives for a broad range of the selected threshold Θrec. For high
values of the number of reconstructed links, the TFR by construction converges for any measure to
the rate TFR∞ = 2 p− 1, which for the networks studied here is equal to -0.67.

7.6 Dependence on sample number

The reconstruction performance also depends on the number of samples available. The reconstruc-
tions shown in this chapter were performed with 60 minutes of simulated time at an image rate of
50Hz, resulting in a sample number for each neuron of S = 180,000 samples. As fewer samples
deteriorate the estimates of the transition probabilities, the reconstruction performance decreases
with lower numbers of samples (see Fig. 7.8B). Plotted is the performance against sample number
divisor s, i. e. by using only a reduced number of samples S′ = S/s for the GTE reconstruction.
After a reduction in sample size by a factor of 5 (36,000 samples), the performance level of GTE is
about 40%, and still shows a performance significantly better than random choice for a sample
number divisor of s = 15. A longer recording time should lead to an even better reconstruction (see
insets in Fig. 7.8B) yet such a recording is presently unattainable (see discussion in Section 6.4.1).

7.7 Dependence on system size

An interesting question is what the limit of performance is as the size of the system increases,
especially in light of the fact that the real recording that will be analyzed in Chapter 8 contain on
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Figure 7.8: Reconstruction performance of individual extensions of Transfer Entropy, and due
to sample number. (A) ROC curves for different extensions of TE, for the networks from the
non-locally clustered ensemble as shown in Fig. 7.1 (left panel) and from the locally clustered
ensemble as in Fig. 7.1 (right panel). Curves are based on the original formulation of TE based on
the difference signal of the fluorescence (blue curve), including same-bin interactions (red curve),
alternatively including conditioning (yellow) and including both, yielding GTE itself (green curve).
(B) The dependence of the reconstruction performance of GTE across six networks, from both
ensembles as in panel A, against sample number divisor (see main text). Insets show that same
data, but plotted with the sample number itself as the horizontal axis. Shaded areas and error bars
correspond to 95% confidence intervals across six networks. Figure reproduced with permission
from [169].
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Figure 7.9: Positive-prediction curves individual extensions based on Transfer Entropy, showing
the result from six networks from the non-locally clustered network ensemble (left panel) and from
the locally clustered ensemble (right panel). Underlying reconstructions and color code identical
to Fig. 7.8A. Figure reproduced with permission from [169].

Figure 7.10: Dependence of GTE reconstruction quality on conditioning level and system size.
Shown is the reconstruction quality in terms of fraction of true positives at 10% of false positives.
Note the logarithmic vertical scale, encompassing network sizes ranging from Nmin = 30 (bottom
of panel) to Nmax = 4,000 (top of panel).



72 CHAPTER 7. GTE RECONSTRUCTION OF SIMULATED SYNAPTIC CONNECTIVITY

the order of a thousand neurons (regions of interest).
The dependence of reconstruction performance of a local topology when changing system

size N from tens to thousands is obtained by rescaling the associated length scales λ and λsc

appropriately with a factor of 1/
√

N. This simulates a recording obtained simply by increasing
the recorded area, “zooming out” of the culture such that more neurons fit inside the field of view.
Note that this results in a total number of connections that scales linearly with the number of
neurons, rather than quadratically if the overall probability of connection was constant.

It turns out that the reconstruction performance actually increases with system size (see
Fig. 7.10). At the same time, the range of conditioning levels is broadened for which an excellent
reconstruction performance is achieved.



Chapter 8

Experimental recordings of in vitro
networks

Plots of experimental recordings of in vitro networks were already, presented in Chapter 5, high-
lighting the similarity of the statistics of mean fluorescence between simulations and recordings.
The developed causality measure GTE was benchmarked in Chapter 7, allowing now for the
application of GTE to these experimental recordings. We note that as stated previously, these are
early mature cultures between 9 and 12 days in vitro (DIV), where inhibition was blocked such
that the network activity was driven exclusively by excitatory connections.

8.1 Excitatory connectivity of in vitro networks

8.1.1 Cultured network at 12 DIV

The resulting network activity for a culture of 12 DIV was displayed in Fig. 5.1. Applying GTE,
to the fluorescence recordings obtained by selecting manually a number of N = 1720 clearly
distinguishable neurons (regions of interest), yielded, after thresholding for the top 5% of GTE
values reconstructed networks (see Fig. 8.1A). The threshold was chosen such that the average
degree is consistent with that found in the literature [55, 63].

The GTE reconstruction reveals a markedly non-trivial network topology (see top panel of
Fig. 8.1B). To analyze the reconstruction result — given that, for experimental recordings, the
ground truth topology is of course not known — the distributions of topological indices are
compared against the distributions of the same indices after randomizing the adjacency matrix
in one of two ways: A partial randomization is done by randomizing the target of all links, thereby
keeping the number of outgoing links for all nodes constant; and a full randomization, which
randomizes the source and target of all links, keeping only the total number of links in the network
preserved. This procedure allows for the differentiation of different biases in the reconstruction.

In the case of the connection lengths, the GTE reconstruction displays a broadened degree
distribution with 6.3% of neurons having degree k > 200, much more than would be expected from
a Poisson degree distribution as found in a random graph (see top left panel of Fig. 8.1B). On the
other hand, we find no sign of a scale-free degree distribution (i. e. a power-law distribution [203])
reported elsewhere [51, 174, 204] as there are no neurons in the network with degree k > 350.

The distribution of connection lengths is markedly non-local, with only a minor, statistically
insignificant tendency towards lower average values. The distribution of CC values across the
population is significantly higher than in a random graph with a mean of 0.09 (compared to a mean
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Figure 8.1: GTE reconstruction of the excitatory connectivity of an in vitro network at 12 DIV.
(A) For an example subset of selected neurons (indicated by black dots) in the culture (49 out of
a total number of N = 1720) the top 5% of reconstructed links are plotted (red arrows). (B) His-
tograms of reconstructed topological quantities, namely the in-degree (left column), connection
length (middle column) and full clustering index are plotted for a reconstruction using GTE (top
row) and XC (bottom row). Each panel compares the actual reconstruction (yellow) with two
randomizations; a partial randomization which randomizes only the target of all links in the
reconstructed network (red) and a full randomization maintaining only the total number of links
in the network with randomizes source and targets of all links (shown in blue). Figure reproduced
with permission from [169].
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CC of 0.05). The mean of the partial randomization is not significantly different from the random
level, indicating that there is genuine clustering present in the network, beyond just the broadened
degree distribution.

The reconstruction based on XC shows different properties (see bottom panel of Fig. 8.1B). The
degree distribution here is much less broadened compared to the GTE reconstruction, and the
distribution of connection lengths is visibly shifted towards smaller connection lengths and a more
local topology. This effect is complemented by a much larger average clustering coefficient of
CC = 0.17. Interestingly, these effects are analogous to the error symptoms discovered for synthetic
data in Section 7.1, where XC — independently from the ground truth topology — inferred an
artificially high clustering coefficient and a low average connection distance.

8.1.2 Cultured network at 9 DIV

Calcium fluorescence recordings obtained from a younger network of hippocampal neurons at
9 days in vitro is shown in Fig. 8.2A. The signals demonstrate that bursting activity has already
developed. Note that signs of sub-bursting firing activity is sometimes visible in the time before
the bursts.

A subset of the GTE reconstruction of the same recording is plotted in Fig. 8.2B. Interestingly,
the reconstructed properties share many similarities with the ones from the culture at 12 DIV
(see top row of Fig. 8.2C). The degree distribution is again broadened, and the average CC again
slightly elevated as compared to the random graph with the same number of connections; in fact
the average clustering coefficient is now 0.11, higher than in the case of 12 DIV. Interestingly, the
probability for connections to display a small connection length is now elevated, likely due to the
younger age of the culture.

The XC reconstruction shows the same symptoms as for the case of the culture of 12 DIV,
displaying a sharper degree distribution than GTE, and more importantly a much more local, more
highly clustered connectivity (see bottom row of Fig. 8.2C).

Note that while the non-local topology is in contrast with connectivities found in slices of
cortical tissue [49] it is entirely consistent with connection lengths obtained from GFP staining of
dissociated cultures such as the ones used here (see Fig. A.1).

8.2 State-dependency in experimental recordings

The choice of correct conditioning level for the reconstructions studied above was motivated by
the arguments developed for the state-dependency seen in simulated data (see Fig. 6.1). This
logic was transferred to the analysis of experimental recordings due to the general nature of the
logic developed, and based on the similar structure in in histograms of average fluorescence (see
Fig. 5.1D) indicating a general similarity in firing and fluorescence dynamics in simulated and
recorded data sets. It is nevertheless interesting to compare state-dependency between simulations
and recordings.

We first note that, comparing the two experimental recordings shown above to a simulated
fluorescence time series, the similarity in general behavior of the fluorescence dynamics (see top
row of Fig. 8.3). After splitting the time series, in analogous manner the the procedure of Fig. 6.1,
into four regions I to IV, the resulting networks can be analyzed regarding different topological
quantities (see middle and bottom row of Fig. 8.3).

For each of the four regions and each of the three data sets, the average clustering coefficient CC
and the average connection length are plotted. Note that the thresholds used for experimental
recordings and simulations are different (5% and 10%, respectively) due to the different system
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Figure 8.2: GTE reconstruction of the excitatory connectivity of an in vitro network at 9 DIV.
(A) Example traces of the fluorescence signal of five example neurons (top panel) is plotted
together with the population average (bottom panel). (B) For an example subset of selected
neurons (indicated by black dots) in the culture (39 out of a total number of N = 1668) the top 5% of
reconstructed links are plotted (red arrows). (C) Histograms of reconstructed topological quantities,
namely the in-degree (left column), connection length (middle column) and full clustering index are
plotted for a reconstruction using GTE (top row) and XC (bottom row). Each panel compares the
actual reconstruction (yellow) with two randomizations; a partial randomization which randomizes
only the target of all links in the reconstructed network (red) and a full randomization maintaining
only the total number of links in the network with randomizes source and targets of all links
(shown in blue). Figure reproduced with permission from [169].
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Figure 8.3: Dependency of reconstructed topological quantities on dynamical state in experimental
recordings and simulations. For three data sets, both from experimental recordings and simulations,
the average histograms are plotted (top row), color-coded (from blue to red) to indicate four ranges
of average fluorescence. For each of these ranges, the average clustering coefficient CC (middle row)
and the average connection length (bottom row) are shown, based on reconstructions according
to TEstate-dep. (see Eq. 6.14). The data sets used are “experiment A”, corresponding to the 12 DIV
recording shown in Fig. 8.1, “experiment B”, denoting the 9 DIV recording shown in Fig. 8.2,
and “simulation” (right column) which is the locally clustered topology shown in Fig. 7.3. Figure
reproduced with permission from [169].
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size, as discussed above. Interestingly, it turns out that while individual CC values are different,
the general structure — with the lowest CC value being calculated in region I, followed by a rise in
region II and a peak in region III — is conserved across data sets. Similarly, the lowest average
connection length is observed in range III, again across all datasets. These results further support
the argument developed that the conditioning can indeed be transferred to fluorescence signals
from experimental recordings.



Chapter 9

Extending GTE to inhibitory
connections

So far, only excitatory connections have been considered. The simulations were done using only
excitatory links, and the experimental recordings were performed with cultured treated with
bicuculline to block inhibitory synapses. In real networks, however, about 20% of neurons are
inhibitory neurons, [47, 63] so a natural question is whether or not inhibitory interactions can be
revealed with the methodology presented above.

The work in this chapter has been done in cooperation with Javier Orlandi of the University of
Barcelona and is to be considered preliminary.

9.1 Reconstruction of both inhibitory and excitatory links

In principle, there is no reason why GTE should not be able to reliably reconstruct inhibitory
connections. Because GTE measures causal interactions and precisely because of its independence
of a specific model, there are in principle no modifications necessary to reconstruct inhibitory
connections. All that is necessary is an influence of the respective interaction on the transition
probabilities of the fluorescence time series, and such an effect is clearly present both for excitation
and inhibition due to the change in post-synaptic firing probability upon pre-synaptic firing. GTE
should, in effect, be related more to the absolute value of the strength of a synaptic interaction. Note
that this effect, if true, is very positive for the extension to inhibitory connections as it actually
negates the need for a modifying GTE, but it poses the new problem, discussed later in the next
section, of differentiating excitatory and inhibitory links.

The stated hypothesis can be tested in a minimal, non-bursting network model, consisting of
N = 100 neurons, of which 25 neurons have excitatory projections, and 25 neurons have inhibitory
projections (see left panel of Fig. 9.1). Each neuron from the sub-populations projects to other
5 neurons, which in turn do not have any outgoing connections, making the topology free of loops.
Each neuron in the network receives independent Poissonian input spike trains of rate νext = 30Hz
and weight αext = 1pA, while the internal synaptic weight is set to αext = 2.8pA. The synaptic
time constant of inhibitory connections is τs = 6ms, twice the value of excitatory connections. All
other parameters are as stated above for the purely excitatory networks. Note that because there
are no bursts in this minimal model, no conditioning is used when evaluating GTE.

The resulting GTE values are plotted in the right panel of Fig. 9.1. The links in the ground-truth
topology are reconstructed with excellent accuracy, separated by a factor of 2-5 in terms of GTE
value from the background. Due to the low temporal resolution of the recording, thus making the
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Figure 9.1: Minimal network model with both excitatory and inhibitory links present, showing the
adjacency matrix (left) and the reconstructed GTE values (right panel). In the adjacency matrix,
excitatory links are shown in black, and inhibitory links are shown in red. Note that links are
defined here as column-to-row, i. e. a link i → j corresponds in the matrix plot to row j and
column i.

identification of directionality of links more difficult, the “mirrored” connections of especially the
excitatory ground-truth links also yield elevated GTE values. This is however not the case for the
inhibitory sub-population, which is most likely due to the longer time constants of post-synaptic
inhibitory potentials.

Interestingly, and confirming the hypothesis stated above, there is no significant difference in
GTE amplitude between the true positive links for excitation and inhibition.

9.2 Identification of inhibitory links

Being able to reconstruct both excitatory and inhibitory links is only part of the task of extending
GTE to excitatory connections. As GTE yields the absolute value of a causal interaction in terms of
the Kullback-Leibler distance between two conditional probability distributions, it is a priori not
clear whether the distinction between excitatory and inhibitory links can be made.

Note that the nature of the influence of the type of the connection on the transition probabilities
is by definition different, at least on average or disregarding noise: Excitation leads to an increase
in post-synaptic firing probability, and thus potentially to an increase in post-synaptic fluorescence
amplitude. Inhibition, on the other hand, leads to a decrease in post-synaptic firing probability, thus
potentially avoiding a post-synaptic increase in post-synaptic fluorescence amplitude, and thereby
leading actually to a decrease in post-synaptic fluorescence amplitude due to its exponential decay.

Thus, it should be possible to differentiate the two types of connections not based on their GTE
score, but on the individual terms of the sum that makes up GTE (cfr. Eq. 6.15). This hypothesis is
tested, again for the case of the minimal model network, in Fig. 9.2. The logic developed above
is clearly visible, with excitatory and inhibitory links showing opposite average values for terms
corresponding to simultaneous firing (label “PNNPN” in Fig. 9.2) or firing only of the source node
(label “NNNPN”). Naturally and as stated before, the connection between fluorescence and firing
can only be made on average due to the effect of noise.
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Figure 9.2: Separation of the GTE scores from the analysis of Fig. 9.1 into different terms, for all
the excitatory links (panel A), the the inhibitory links (panel B) and the false links (panel C). GTE
is calculated with Markov order k = 2 and b = 3 bins, the latter indicated by “P” (positive), “X”
(neutral) and “N” (negative) according to the slope of the fluorescence signal. The five-letter labels
then correspond in turn, for source Y and target X, to xt, xt−1,xt−2, yt and yt−1. A label of “PPPNX”
thus stands for the GTE term corresponding to a continuous rise of the target signal, and a sudden
decline of the source signal. Note that only a selection of the 35 = 243 terms is shown. The mean
across the respective terms of all relevant links is indicated by the dark blue line, with the light
blue lines indicating the width of twice of the standard deviation.
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Based on this analysis, at least in the minimal network model the distinction between excitatory
and inhibitory synapses can clearly be made, with very high accuracy. Note that we have not even
exploited the possibility of combining different terms of GTE to improve the accuracy, neither have
we made use of the fact that synapses of neurons are prevailingly all excitatory or all inhibitory
(often called, slightly incorrectly, Dale’s law [200, 205]). Both aspects could be used to improve the
identification of excitatory versus inhibitory links, especially for experimental recordings.



Chapter 10

Summary

Existing measures of causality are inadequate to measure interactions in the complex data sets
of fluorescence imaging recordings due to non-linear dynamics, non-stationarity and insufficient
temporal precision of typical recordings. Analyzing these problems, we have developed a simple
but crucial extension to Transfer Entropy, a causality measure from information theory, which we
call Generalized Transfer Entropy.

We have systematically tested and benchmarked GTE to reconstruct excitatory connections
based on simulated fluorescence signals, finding very good performance across networks and
network ensembles. GTE even allowed for the reconstruction of statistical properties of the network
topology such as the clustering index or the typical connection length. Furthermore, the robustness
of GET was extensively demonstrated.

Applying these results and the developed method to the analysis of experimental recordings, we
found non-trivial topological features including a broadened degree distribution and an elevated
clustering coefficient.

We have also presented preliminary results of extending GTE for use with networks which have
both excitatory and inhibitory links, showing that, at least in model networks, the new measure is
suitable for that purpose as well.

Apart from the direct results presented here regarding calcium fluorescence imaging, we point
out that due to its general form, GTE could directly be applied to spike data or entirely different
time series. It is therefore our hope that GTE will find applications, beyond neuroscience, in the
field of statistical network reconstruction in general.
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Part III

Predicting dynamics based on
reconstructed topology
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Chapter 11

The interplay between network
structure and dynamics

A natural question arising from the previous parts of this thesis — having developed analytical
predictions of the dynamics in model neuronal networks in Part I, and having developed an
approximate method to reconstruct the topology based on the neuronal dynamics in Part II — is
whether it is possible to predict the dynamics of the network based on the reconstructed network
topology. This is especially interesting in light of the finding of Part I, where in all model systems
studied, the common determining factor for the expected first firing time was the local network
topology surrounding the neuron in question.

11.1 Determining the onset time from data

In a first step towards answering this question, the average first firing time at the onset of a burst
for each neuron has to be estimated from the data. Given the nature of the experimental recordings,
spike times are not available directly, but only affecting the amplitude of the calcium fluorescence
recordings indirectly (see Chapter 5). Consequently, our analysis must go beyond what was done
in Part I, where the probability to fire for the first time at the onset of a burst P f 1

i (t) was available
directly (see for instance Eq. 2.9). Here, what is available is only the shape of the fluorescence
signal during a burst, which increases, starting from the baseline level, at a time we call the onset
time t0. This onset time might, relative to the population mean, be different for each neuron in the
network.

In the following, the onset time will be extracted from the fluorescence time series. To compare
its value with the analytical predictions developed earlier, we will assume that the value of the
onset time corresponds at least approximately to the expected first firing time. This is motivated
by the fact that the change in firing rate at the onset of a burst is much faster than the decay of
the fluorescence signal. This allows for the fluorescence amplitude — given the experimental
observation that the latter is approximately directly proportional to the number of action potentials
involved [59, 81] — to be taken as an approximate measure for the firing rate of each neuron. Thus,
a shift in time of the fluorescence amplitude before a burst compared to the population average can
be seen as a shift in firing rate exactly corresponding to the distribution of values of t̂ as developed
in Part I.

The reliable extraction of the onset time requires one to first determine the average burst shape
for each neuron, relative to the burst shape of the population average. To this end, the population
averaged signal was thresholded at a level ΘF to determine burst onset times. The individual burst
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Figure 11.1: Fitting alpha functions to average bursts to determine onset times. Shown are, for
a simulated network (left) and an experimental recording (right panel), the averaged bursts for
four example neurons (indicated as colored dots, with each color corresponding to a different
neuron) together with the fitted curves (shown as solid lines in the same color code). Insets are
histograms of the resulting onset times t0 across the respective population. The time t = 0 (vertical
line) indicates the point where the globally averaged burst (averaged not only across burst events
but also across the population) crosses the respective thresholds, which were ΘF = 0.6 for the
simulation and ΘF = 40% of the range for experimental recordings (traces here are shown after
subtraction of the mean value).

events for each neuron were then aligned in time by determining the time of threshold crossing to
sub-millisecond precision by way of linear interpolation of the fluorescence signal. By averaging
across events, this results in an average burst shape for each neuron. To represent the rise of
the burst from a baseline level F0, an alpha function χ(t), characterized by the onset time t0, the
amplitude A and time constants τR for the rise and τD for the decay, is then fitted to these burst
shapes.

χ(t) = F0 + A
exp(−(t− t0)/τD)

exp(−(t− t0)/τR) + 1
(11.1)

The result of this procedure for four example neurons of a simulation based on a locally clustered
topology (as shown in the right panel of Fig. 5.1B) is plotted in the left panel of Fig. 11.1. The
fit indicates a good overlap between the data and the assumed shape χ(t), resulting in a small
mean-squared error across the population (not shown).

In the case of experimental recordings, corresponding to the cultured network analyzed in
Fig. 8.2, the onset is slower (see right panel of Fig. 11.1), resulting in a rise time constant of
τR = 0.043± 0.004s (mean± standard deviation) compared to the simulations with a mean value
of τR = 0.010s. The rise time constant was fixed in both cases to τR = 2.0s.

11.2 The distribution of onset times

The distribution of onset times for simulated networks was quite narrow, with a range of values
with t0 = –2.0± 3.3ms (mean± standard deviation), as shown in the inset of the left panel of
Fig. 11.1.

For experimental recordings, the distribution was more Gaussian-like and much more broad
(see inset of the right panel of Fig. 11.1), yielding onset times of t0 = –3.6± 15.8ms. Note that the
number of burst events from which the average shape was determined (31 events) was much lower
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than in the case of the simulation (250 events), due to a low burst rate for this culture. This fact
may contribute to this broad distribution, in addition to the heterogeneity expected in biological
neuronal networks.
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Chapter 12

Network reconstruction can predict
onset times

Having extracted the burst onset time for each neuron, a quantitative comparison to the predicted
onset times — based on the reconstructed topologies using GTE from Part II — can be made.

12.1 Onset time prediction in simulated networks

In a simulation, the onset time of each neuron can be assesses with good accuracy from the shape
of the average burst event. The predicted value for the onset time can then be calculated based
on the first order approximation to the leaky integrate-and-fire dynamics of Eq. 4.5, and on the
GTE-reconstructed network topology yielding, for a given threshold ΘTE, the in-degrees ki for all
neurons.

For a fraction of 20% of links, the resulting scatter plot relating measured and predicted onset
time is shown in the top left panel of Fig. 12.1. The width of the distribution of onset times is
over-estimated by a factor of about two. A correlation between measured (“real”) and predicted
values of a Pearson’s coefficient of 0.29 is achieved. This correlation depends on the fraction of
links taken from the GTE reconstruction (see top right panel of Fig. 12.1).

The bottom panel of Fig. 12.1 shows the same network and simulations, but predicting the
onset time with the second order approximation of Eq. 4.10, thereby necessarily taking a larger
topological neighborhood of each node into account. Taking for the degree distributions found
for the top 20% of links, this results in an excellent correlation coefficient of 0.76, indicating a high
precision of the predicted onset times and by extension the reconstructed topology. Note also the
range of real and reconstructed onset times is now virtually identical.

It turns out that the quality of this prediction depends crucially on the fraction of links in the
reconstructed network (see bottom right panel of Fig. 12.1). Starting from a low fractions of links,
the resulting correlation coefficient rises up to a peak at 0.76 for a fraction of links of 0.2, and
decreases for higher fractions. The reason for this behavior is most likely in the strong (negative
logarithmic) dependence of the prediction of the expected first firing time t̂ on a low numbers of
links, and therefore the sensitivity of the onset time prediction to errors in the reconstructed degree
distribution for that low fraction of links and therefore a low average degree of each node. For
higher numbers of links, the true positives of the reconstruction are washed out by a large fraction
of false positives (see e.g. Fig. 7.4).

Nevertheless, given the number of assumptions involved in deriving both the measured and
the predicted onset times, this high correlation constitutes a remarkable agreement.
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Figure 12.1: Comparison between measured and predicted onset time in a non-locally clustered,
simulated network. For the network obtained from the top 20% of links, the predicted onset times
are plotted in the left column against measured onset time, according to the first order equation t̂(1)

(top panel) and the second order equation t̂(2) (bottom panel). In the right column, the Pearson’s
correlation coefficient between measured and predicted onset time (of the corresponding order, see
left column) is plotted for different numbers of included links, i. e. thresholds ΘTE.
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Figure 12.2: Comparison between measured and predicted onset time in a cultured network at
9 DIV of dissociated neurons. For the network obtained from the top 5% of links, the predicted
onset times are plotted against measured onset time, according to the first order equation t̂(1) (left
panel). The Pearson’s correlation coefficient between measured and predicted onset time is shown
for different numbers of included links, i. e. thresholds ΘTE (right panel).

12.2 Onset time prediction in experimental recordings

For an experimental recording, the first order correlation between measured and predicted onset
time is weaker than for simulations, yielding a Pearson’s coefficient of 0.24 (see left panel of
Fig. 12.2). Also, the width of the distribution of onset times is again overestimated, resulting
in a standard deviation of the prediction of 27.3ms against value of 10.1ms for the measured
distribution.

It is interesting to see that the dependence of the correlation on the number of links has a similar
shape than for the case of simulations in the sense that there is a drop at low numbers of links,
followed by a peak at higher numbers (see right panel of Fig. 12.2). The fact that the second order
prediction results in a reduced correlation coefficient of 0.11 (not shown) seems to confirm this
hypothesis, as it depends on a larger topological neighborhood of the neuron in question and is
therefore more susceptible to errors in the reconstructed topology.

Despite the fact that value of the Pearson’s coefficient is lower, we find that it is statistically
highly significant, with an estimated error of ±0.0027 obtained via standard bootstrapping.
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Part IV

Discussion
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Chapter 13

Structure and dynamics

In networks of neurons, there is a complex relation between the structure of the network, given by
the synaptic connections, and the dynamics of the network, given by patterns of action potentials
in the population. Structural patterns do not determine, but rather restrict the possible dynamics,
and vice versa.

In the present work, this complex relation was studied in silico and in vitro based on signatures
of non-randomness in the activity, such as bursting events and early firing neurons. Both the effects
of structure on the dynamics, as well as what can be learned about the structure by observing the
dynamics, were studied to enable a better analysis of neuronal networks in vitro and, in the future,
in vivo.

13.1 First firing times in silico determined by structure

Spontaneous activity in discrete time

The onset of network bursts shows surprising signs of non-randomness in the order of activation.
A small subset of neurons consistently fires ahead of the population burst [50,51]. The question
is whether this early firing can be explained based on the topological structure of the underlying
network.

We studied various mathematical model networks, highlighting different aspects of the neu-
ronal dynamics. In the simple but illustrative model of discrete-time integrate-and-fire neurons,
the origin of the non-random, hierarchical mode of activity at the onset of a burst was investigated.
We could show that the exponential shape of the population burst onset can be predicted from the
corresponding branching process dynamics and thus, directly from the known model parameters.
The expected value of the first firing time can then be calculated as a function of the input current
that a given neuron receives. We demonstrated that this first firing time, being indicative of
a neuron’s ability to fire before the bulk of the network and thus potentially act as a leader of
activation, can be calculated directly from the basic model parameters. To first order in terms of the
topological neighborhood, we find analytically a negative logarithmic dependence of the first firing
time on the in-degree k. The numerical analysis based on simulations confirms this prediction and
thus the strong influence of the network structure on firing activity in the population.

We showed how the introduction of non-random topological structure increases the range
of expected first firing times in the network to tens of milliseconds, as reported in experimental
studies [51]. Taking into account a larger topological neighborhood of each cell, the quality of
prediction was further improved. In particular in non-random topologies, we found that early
firing times are determined with very good accuracy by the network topology, if a higher order of
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the included neighborhood is taken into account in the calculation.

Evoked activity in a quorum percolation model

In quorum percolation (QP) systems, the firing dynamics were studied after the excitation of a
significant fraction of nodes. The expected firing times were again found to be primarily dependent
on the local topology, with neurons with higher in-degree firing earlier than others.

We demonstrated analytically that in such a system it is possible to determine the degree
distributions that are necessary to have an initially exponential rise in the population firing rate at
the onset of a burst. The result is a Gaussian degree distribution with a power-law tail, such that a
small group of neurons with very large degrees does exist in the network. As described in detail
later, we do not find such a power-law tail in the structural topology of biological networks, and
we will discuss the reasons behind this discrepancy.

Apart from the skewed degree distributions, the influence of higher order correlation on the
dynamics was demonstrated to be small. In fact, it was shown by Tlusty and Eckmann that
percolation graphs of the studied size behave essentially as if they were free of loops [141]. It
is interesting that the higher-order correlations in the topology induced by a positive degree-
degree correlation, which go beyond the presence of loops, did not have a stronger effect on the
dynamics. This indicates that the graph also behaves as random in this regard, contrary to the
effect seen in the integrate-and-fire model. We will discuss the difference in findings between QP
and integrate-and-fire below, after presenting findings obtained using a model in continuous time.

Spontaneous activity in leaky integrate-and-fire models

The leaky integrate-and-fire (LIF) model is a biologically more realistic model system, as it allows
for quantitative comparisons with all experimentally observed parameters and includes non-trivial
neuronal dynamics in the response to stimuli. In this thesis, we studied the effect of variability of
the expected first firing times preceding a burst in this system, finding analytical solutions that
to first order parallel the results from the discrete time models. We find, however, that the higher
order solutions differ from their discrete time counterparts due to the non-trivial input-output
transfer function of the firing rate in the LIF model. This results in a pronounced effect of higher
order correlations in the topology for low numbers of the input degree k, indicating a high first
order input degree as a necessary condition for a neuron to fire earlier than others.

We showed that the expected first firing time can be predicted with high accuracy, despite
the inherent non-stationarity of the burst onset, by taking into account the first and second order
topology around each neuron in the network. The dominating influences on firing time are the
input degree of a node and the topological surroundings. If a node is highly connected, and its
neighbors are highly connected as well, there is a high likelihood that the neuron will belong to the
group of early firing neurons. These findings are consistent with earlier studies pointing out the
importance of the network topology for synchronization behavior [67].

Interestingly, in the integrate-and-fire models the calculated onset time had a logarithmic
shape depending on the in-degree (see for instance Eq. 2.16 for the discrete-time integrate-and-fire
and Eq. 4.5 for the leaky integrate-and-fire first-order solutions). Even with a Gaussian degree
distribution, this would lead to a skewed first firing time distribution that displays a long tail of
late firing times, in agreement with experimental observations [62].

We point out an important difference between the integrate-and-fire models and the quorum
percolation (QP) case: The former simulates spontaneous activity, whereas the latter requires the
ignition of a significant fraction of the population before activity can propagate. As such, QP is
a model for externally evoked, stimulated activity. In this sense, it is interesting that only in the
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integrate-and-fire models are higher-order correlations an important factor. This indicates that
integrate-and-fire models are not only more biologically realistic, but are, crucially for the present
application, better suited for the study of the onset dynamics because the onset is not skipped by
externally igniting a fraction of the network. It was found in recordings using multi-electrode array
that the neurons firing earlier at the onset of a burst event in the culture are identical to those firing
earlier than others in response to stimuli [51, 206], so there is necessarily some overlap between
the two regimes, as indicated in the present analytical work on the dependence on the first-order
degree in both cases. However, the dynamics of the onset of spontaneous bursting activity can
only be fully understood by including the higher order topological neighborhood and thus higher
order topological correlations.

This answers a crucial question stated by Eckmann et al. in [50] about whether the early firing
neurons are part of a special sub-network, distributed throughout in the culture. We find that
the early firing neurons are part of a highly-connected subset of the population, and thus directly
by virtue of their higher degree more likely to be connected to each other. We will discuss more
features of this sub-network later.

A question that remains is whether or not the effect of early firing neurons is possible in random
networks in the experimentally observed magnitude. An indication that this is not the case can be
found in the necessity to include higher order terms in the analytical calculations for both discrete
and continuous time models, because thus, the higher order degree distributions do not average
out as can be expected in a purely random graph. We found that the topological neighborhood
also determines early firing in a topologically non-random but otherwise homogenous network.
A possibility is, however, that in vitro parameters like the voltage threshold might be correlated
with the structure in such a way that neurons with a higher number of connections display a
higher threshold. Such a mechanism does indeed exist, and is called homeostasis, i. e. the fact that
neurons which receive a high average input current down-regulate their synaptic efficacy over
time [207–209]. This principle is nevertheless compatible with the expected case that neurons with
a higher local connectivity have a higher firing rate, because the range of adaption in terms of
the synaptic weight is relatively small. While for instance the input degree varies by a factor of
over 20 in the in vitro networks (see Fig. 8.1B), the output firing rate of a neuron exposed to an
extended period of complete elimination of the input current due to tetrodotoxin-blocked synaptic
transmission shows, after wash-out, an increase in firing rate of only a factor of about 2 [35, 210].
Thus, homeostasis is too weak to account for the observed variability in expected first firing times.

Nevertheless, we can not rule out such a possibility in general, without knowledge about the
structure that underlies the observed dynamical features in vitro.

13.2 Connectivity can be reconstructed based on dynamics

Thus, the findings discussed above motivated the study of the synaptic connectivity of in vitro
networks based on large-scale observations of the network dynamics. We focus here on recordings
of calcium fluorescence imaging, which allows for the simultaneous recording of a large population
of neurons for up to 60 minutes without damaging the cell culture. The fact that the network
topology poses restrictions on the system dynamics, as discussed above, leads to the question of
whether the observed dynamics might in turn restrict the compatible network structure, which
would make a reconstruction possible.

The knowledge about the topology in cultured networks is limited at present, as most studies
in these systems are either lacking in single-cell resolution, restricted to low numbers of cells such
as patch-clamp techniques [49,84], or are based on a specific model of the underlying dynamics,
such as assuming linearity as in [174] or inferring the parameters of a generalized linear model in a
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Bayesian sense as in [106,211]. Specific models are problematic in a conceptual sense, when striving
towards the solution with the least number of assumptions necessary, but also for more practical
reasons, because an explicit model necessarily restricts the compatible dynamics of each cell to a
given model domain. Due to the high variability inherent in biological networks, deviations from
the assumed dynamics will occur and will introduce biases which can be difficult to isolate due to
the complex architecture of the algorithm.

GTE and the state of the art

By way of improving on the methods described above, we have proposed a novel model-free
measure of causality rooted in information theory as an extension of Transfer Entropy, which
we have called Generalized Transfer Entropy (GTE). This measure is inherently non-linear and
directly applicable to the signal of calcium fluorescence, despite the low temporal resolution of
typical calcium recordings, and without the need to first infer the set of spike times in the network
(using for example a method as in [171]). Even without precise spike times, GTE achieves a
reconstruction performance in excess of those found in other studies based on spike times thanks
to the inclusion of instantaneous interactions in the model-free framework and the possibility to
take into account the inherent non-stationarity of the network activity due to bursting. The latter is
done by conditioning the analysis on temporal ranges of relatively low-frequency spiking activity,
thereby focussing on the causal effect of asynchronous mono-synaptic interactions. The effect
of structure on the dynamics is highly complex, and thus the effective connectivity does not in
general reflect mono-synaptic aspects of the network activity but higher-order correlations, but it
is nevertheless possible to find ranges in the dynamical regime of the population where, given an
appropriate measure of effective connectivity, there is an overlap between structural and effective
connectivity. This overlap can indeed be used, by GTE, to reconstruct values for true (directed)
links that are significantly higher than for false links (see Chapter 7 of this thesis and detailed
discussion below).

For comparison, we have applied the Bayesian method of [171] — this being the first step in the
reconstruction method presented in [106] — to infer the spike times from the simulated fluorescence
signal. However, the algorithm failed to identify inter-burst activity for all but one neuron in
the network, yielding a reconstruction quality very close to the random result (see Fig. 7.7). The
systematic bias in detecting spike times was due to an erroneous inference of the change in calcium
concentration caused by a single action potential — for signals with a high maximum fluorescence
amplitude, network bursts were identified as single-neuron events. Given that the presented case
is just one possible problem in relation to one of a large number of parameters in the model, it
seems unclear how such biases are to be avoided when analyzing experimental data sets. We point
out that while the simulation that we used to generate surrogate data sets consist of a number of
parameters as well, what is needed is a measure of causality that is model-free, as is GTE.

Another alternative to GTE, the method of reconstructing functional connectivity by Bonifazi et
al. [174], is based on cross-correlations and is indeed similar to the XC score as defined in Eq. 6.16.
To allow for comparisons of the reconstruction performance, we point out the key differences:
The algorithm of Bonifazi does not include conditioning, and potential links corresponding to a
peak in the cross-correlogram at a time lag of zero are pruned from the reconstructed network.
As discussed in Section 6.4.1, in our case the latter leads to a dramatic decrease in reconstruction
quality, regardless of whether the cross-correlogram is computed based on the raw fluorescence (as
in [174]) or on the conditioned signal (as in the present work). In the latter case, for instance, the
performance level of a reconstruction from the non-locally clustered ensemble as in Fig. 7.1A is
reduced from 80% to 35% (not shown). As such, while the method proposed in [174] may help in
identifying hubs of functional connectivity, it is not able to identify the structural connectivity of a
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neuronal population.
We note that due to the fact that GTE is model-free, it is immediately applicable not only

to recordings using different fluorescent dyes or different microscopy set-ups, but also to the
analysis of spike times or other time series, even to time series unrelated to neuroscience. It
is also directly applicable to in vivo recordings, and can benefit from future improvements in
imaging technology [131, 212, 213] or by way of opto-genetical tools [77, 214], as will be discussed
in Chapter 14.

GTE yields reliable reconstruction

To be able to benchmark GTE, we have generated surrogate fluorescence time series using an
integrate-and-fire model with short-term synaptic depression. We also included a light scattering
artifact, that makes the simulated fluorescence signal significantly more biologically and experimen-
tally realistic than competitor approaches. We have then systematically studied the performance of
GTE in Part II, indicating the robustness of the GTE measure to parametric variations, for instance
in conditioning level or system size. It was indeed found that GTE is robust to the light scattering
artifacts where linear measures of causality are not, which is a finding that very likely parallels the
study of [189], where TE was found to be robust to cross-talk between EEG electrodes.

A common argument against pairwise causality measures is their supposed inability to distin-
guish between different connection motifs. It is indeed interesting to examine two cases, namely the
case of indirect causation, differentiating the two scenarios A→ C and A→ B→ C, and co-causation,
in which the challenge is to differentiate B ← A → C and B ↔ C. It might be asked whether
in particular the same-bin interactions included in GTE might not render such a differentiation
impossible. While it is true that higher-order correlations in the signal are, with the exception
of conditioning which depends on the whole population, not included in the GTE measure, it is
precisely the purpose of conditioning to be able to exclusively analyze a subset of time points
where the activity in the network is dominated by mono-synaptic, i. e. pairwise interactions. To ex-
emplify this, we have identified, for an example network from the locally-clustered topologies (see
Fig. 7.3B), each case where an co-causation motif occurred, in both the true and the reconstructed
topology, and where there were no links B→ C or C → B. We then analyzed, in the reconstructed
network, how often a link B→ C was spuriously inferred, finding the correct result in 79% of the
cases (11314 out of 14325). Similarly we studied the case of indirect causation, finding that in only
2954 out of 14206 cases (21%) was the incorrect link identified as positive by the reconstruction.

We further studied whether this reconstruction quality extends to chains of length 4 as well,
i. e. A → B → C → D. For the same example network we have examined all instances where
such a chain existed in the structural topology, and where there were no shortcuts, i. e. where the
links A→ C, A→ D of B→ D were not present. From the remaining set, in analogy to the cases
presented above we examined the cases where the chain was also present in the reconstructed
topology, and finally evaluated how often a spurious connection A→ D was inferred. We found
again a high fraction of correctly inferred non-existent links of 87% (62 out of 71 cases), confirming
the high reliability of GTE in inferring connectivity motifs even in higher order.

We have also shown, based on simulated calcium fluorescence, that GTE can correctly estimate
the level of clustering in a network (see Fig. 7.1C). Note that what was plotted was the full clustering
coefficient, according to the definition by Garofalo [132]. There are four other generalization of
the clustering index to the case of directed networks, emphasizing for instance the existence of
loops or indirect links (so-called Middleman clustering). We have checked for the linear relation
between true and reconstructed clustering to hold for all five of these definitions, finding a
virtually identical performance in each case. This further indicates the ability of GTE to reconstruct
connectivity motifs without bias. The only exception to this that we found, is the systematic
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over-representation of bidirectional connections in the reconstructed networks, this being the
trade-off for the reconstruction performance gain due to the inclusion in GTE of instantaneous
interactions.

The only requirement for our method is that in the conditioned regions, there is still significant
spiking activity; otherwise, there is little useful information about the interactions in the signal
between bursts. However, we note that on the one hand, the conditioned regime does contain
the early burst onset, which should prove informative while not being synchronous, and, on the
other hand, activity patterns without activity between bursts is rare; see e.g. [53], where even in
the 8% of cultures with epileptic-like activity patterns a number of inter-burst spikes are visible.

We have also demonstrated the increasing performance level of GTE with larger system size,
contrary to the behavior found in pairwise maximum entropy models [215]. Thus, we find GTE to
be applicable without restriction to experimental recordings.

Reconstruction of in vitro networks

We have applied GTE to experimental recordings of the calcium fluorescence activity of in vitro
cultures with purely excitatory connections, as a first step. In cultures ranging from 9 to 12 days in
vitro, we find a highly non-random but also non-local connectivity, characterized by a broadened
degree distribution and an elevated clustering coefficient. Thus despite the self-organized nature
of development in vitro in the absence of sensory stimuli, we find a rich topological structure.

The reconstructed topology is consistent with available results from other studies based on
studying the connectivity of a small number of neurons across various networks of cultured tissue.
These studies have revealed, however, a systematic over-representation (compared to the random
network) of a number of clustering motifs [49, 84]. The origin of this elevated clustering cannot be
reliably identified at this point — a plausible candidate mechanism of axonal guidance would be
fasciculation, which provides a weak binding force of new axons to already existing ones [216–218],
and may enhance this clustering property not only in vivo, but also in vitro.

The topology we found is also in agreement with the argument detailed above: Early firing
neurons, in the experimentally observed variability of firing times, exist not in random networks
but in structured networks, as now confirmed by the reconstruction.

Interestingly, the corresponding reconstruction based on the cross-correlogram between two
fluorescence signals shows symptoms in parallel to the simulations, showing a local structure
of connections and a high clustering coefficient (see Fig. 7.3D). This is especially interesting in
the light of [174], where strongly clustered hub cells were found using a cross-correlation based
algorithm.

The exact numbers for topological properties of the network depend on the fraction of links
accepted as positives (see Fig. 7.4) which can a priori only be estimated from the expected num-
bers of links for each system from the literature. We note, however, that even if an estimate of
the probability of connection was unavailable for some system, a relative comparison between
networks, retaining the same number of reconstructed links would still be possible. Also we note
that the reconstructed topological properties are relatively robust against change in threshold —
when doubling the fraction of included links from 5% to 10% in the experimental recording of
Fig. 8.1, the average clustering coefficient changed from 0.090± 0.010 (mean± standard deviation)
to 0.157± 0.011, whereas in a random graph, an increase by 100% would be expected. The average
connection length changed only marginally from 852± 463µm to 855± 464µm.

We have checked for consistency of the reconstructed, non-local topology by way of GFP
staining (see Fig. A.1C), finding good agreement. Such a finding is also confirmed by the available
literature on this subject [41, 197, 219].

Finally, we have found no evidence for the studied biological networks to be structurally
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scale-free, i. e. showing a structural degree distribution following a power-law [203]. The question
of whether cultured networks from dissociated neurons or from slices show a scale-free degree
distribution is currently highly debated [38,51,174,204]. The varied technical and mathematical
sophistication of the applied methods suggests that scale-free distribution can arise in functional
connectivity of networks which are not inherently scale-free, but this remains to be tested. What
we do find in the cultured networks studied in this thesis is the small world property, where the
co-existence of long and short-range connections lead to a small average path length between any
two neurons in the network [220, 221].

In the QP model, only a scale free degree distribution was consistent with the exponential rise
of the average firing frequency at the onset of a burst. We can now conclude that we found no such
degree distribution in the structural connectivity, but hypothesize that, in agreement with the work
by Bonifazi et al., the functional degree distribution is likely scale free as a result of the globally
synchronous onset stimulus.

Based on the GTE reconstruction, we find hints that another factor may contribute to the
appearance of the sub-network of early firing neurons and their homogenous distribution in the
culture [50]: We observed a small but statistically significant correlation of p = 0.16 for the culture
of Fig. 8.1 between in-degree of a neuron and the average length of its incoming connections. For
the younger culture of Fig. 8.2 on the other hand, we found no correlation, yielding p = −0.02.
This opens up the intriguing possibility that after a certain maturation, during which there is
longer axonal and dendritic outgrowth, this subnetwork spans the entire culture due to its longer
processes. The origin of these findings would be interesting to examine more in detail in the future,
and indeed with GTE we now have the tool to study it.

Reconstructing inhibitory connections

In a minimal network model, we have demonstrated that GTE is in principle capable of detecting
excitatory as well as inhibitory links without modification; this can be seen as a demonstration of
the advantage of the model-free design. We showed that, similar to other studies using Transfer
Entropy [185, 186], the non-linear measure of causality used results in a measure related to the
absolute value of the synaptic strength. We also showed how in principle, the two types of
connection could be distinguished after the reconstruction based on the individual terms of the
GTE formula.

For the case that, for whichever reason, a reconstruction of both inhibition and excitation is
not possible, or if it turns out that the distinction between the two cannot be made based on GTE,
we propose an alternative two-step strategy: First, all the excitatory links are reconstructed while
blocking inhibition as done above, and then, after wash-out, the inhibitory links are reconstructed
in an isolated manner by blocking excitatory links. In the latter case, spontaneous activity would
have to be restored chemically as in [222].

We have indeed obtained, in cooperation with Javier Orlandi from the University of Barcelona,
preliminary results based on simulations showing that such a two-step reconstruction can yield
very good reconstruction results. In the simulated networks, which were from the non-locally
clustered ensemble, both the excitatory and inhibitory links could be identified based on their
respective recordings with a performance level of more than 70% each. A caveat is, however, that
while the elicitation of spontaneous activity has been demonstrated in cultured slices [222], this
has to our knowledge not been attempted in dissociated networks.
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13.3 First firing times in vitro can be predicted based on GTE
reconstruction

We have combined the results described above to test the possibility of predicting the average first
firing time, in simulations as well as in cultured networks, based on the reconstructed topology.
Since we found that structure restricts the compatible dynamics in vitro and vice versa, we asked
whether we can indeed use the inferred topology to predict, at least to some degree, the observed
dynamics.

We found a remarkably good agreement for simulations (p = 0.76) for an elevated number of
links, which was chosen due to the sensitivity of the analytical solution to low degree numbers.
For the experimental recordings, a linear correlation with p = 0.244 was achieved. In light of the
approximations involved in both the predicted onset time, as well as in extracting the onset time
from experimental recordings with low signal-to-noise ratio, this can be seen as a surprisingly high
value. Statistical significance was tested and confirmed using a standard bootstrapping method.

The fact that the resulting analytics overestimate the range of expected onset times can likely
be attributed at least in part to homeostatic effects, i. e. the fact that neurons which receive a high
average input current down-regulate their synaptic efficacy over time [35, 209], as discussed in
detail above.

The fact that we were able to close the structure–dynamics loop this way opens up the intriguing
question: Is it possible to predict the response of the system to arbitrary stimuli? For instance,
Shahaf et al. showed that in vitro, the temporal order of neuronal activation can be used to reliably
predict the spatial location of a stimulating electrode [223]. Based on the work presented above, by
making use of the analytical work and the reconstructed topology, this temporal order of activation
might be predicted, thus gaining further insight into the onset dynamics in neuronal networks.

13.4 Summary

In the present work, the interplay between dynamics and network topology in in vitro networks of
neurons has been studied from two different, reciprocal perspectives.

In model systems of neuronal dynamics, the expected first firing time of a given neuron relative
to the population was studied and calculated analytically, in order to understand the driving forces
behind the hierarchical development of bursting activity (Part I). As the firing dynamics were
shown to be dependent on the network topology, we developed statistical methods to quantify
causal interactions and to infer the synaptic topology from recordings of the activity. We then
applied these measures to experimental recordings of the calcium fluorescence signal of cultured
neurons (Part II). Further, it was shown in Part III that the two perspectives can be joined to predict
aspects of the dynamics in simulated as well as in experimental recordings based on the inferred
network topology.

We hope that the findings presented in this thesis will help to further illuminate the development
of structure in neuronal networks in vitro as well as in vivo, by aiding in the determination of the
individual underlying mechanisms that shape the circuitry in the brain, and ultimately neuronal
function in the brain.



Chapter 14

Outlook

In the future, we hope that the results of this thesis will be useful in the study of neuronal
dynamics and the underlying network structure. We here discuss the potential advantages of other
technologies to further develop the current work.

14.1 Technological advances

Progress in a number of fields promises to open up the possibility to probe neuronal systems on an
unprecedented temporal and spatial resolution, facilitating the analysis of the structure as well as
the dynamical properties of neuronal networks.

For instance, advances in two-photon imaging technology may allow for the recording of
calcium imaging signals at a frame rate comparable, or even higher, than the rates in this work [160,
196]. Two-photon microscopy is not constrained to the surface, but is able to record from cells
inside of neuronal tissue [194, 195]. Further, two-photon microscopy is a versatile tool that can
be used to stimulate as well as record from neuronal populations [202] or can be used to guide
patch-clamp recordings to calculate functional connectivities [81].

Another promising field for the analysis of neuronal populations is opto-genetics, where
genetically encoded fluorescent markers are attached to living cells [214, 224, 225], eliminating the
problem of bleaching and resulting cell damage as discussed in the present work. Opto-genetical
tools have indeed been used to reveal to connectivity in Drosophila [226], or to identify the location
of synapses [227], which has the potential be used in conjunction with statistical inference methods
anatomical data to reconstruct synaptic connectivities [228].

The combination of the two fields can results in obvious synergies, which are beginning to be
exploited to extract information about neuronal circuitry [77, 229]. Already today for instance, it is
possible to record from a large part of brain of a genetically modified, behaving zebrafish [230].

14.2 Future work

Presently, the key challenges which remains regarding the reconstruction of synaptic connectivity
based on GTE are the extension to inhibition and the improved experimental benchmarking of
the formalism. For the former, inhibition has already been studied in small model networks in
this thesis (see Section 9.2) and preliminary analysis of a two-step approach has been discussed
above. In the future, a deeper analysis of the differentiation and the analysis of experimental
recordings without blocking of inhibitory synapses would be of great value for applications, as it
would allow to reconstruct the complete connectivity map of a given neuronal network. It would
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also allow for a new analysis of the firing time dynamics, because while the onset of a burst is
dominated by excitatory synaptic currents, inhibition has been shown to also play a role in the
temporal organization of activity [43, 122].

In a next step, an improved assessment of the prediction accuracy for experimental recording
would be desirable. A number of strategies might be employed. The most precise ground-truth
test would be attained by recording the fluorescence activity of a culture of neurons, and then to
patch, in as many iterations as possible for a given network, two neurons to determine whether
they are connected mono-synaptically. To maximize the statistical information gained from such
test, the selection of neurons should be unbiased and random. However a biased course of action,
aiming to confirm the strongest GTE connections, is also feasible. Such a strategy might also make
use of parallel-patch techniques which are starting to be available [231].

In the short term, a simple experiment might be to mechanically divide a culture of neurons,
and to assess the GTE connectivity before and after the cut. For a given number of reconstructed
links C′, resulting in an average probability of a reconstructed connection p′ = C′/N(N − 1),
an estimate of the fraction of false positives FP (see Eq. 6.9) is given simply by the number of
spuriously reconstructed links joining the two parts of the culture. Together with an estimate of
the true probability of connection p, an ROC curve can be calculated:

TP =
p′ − FP (1− p)

p
. (14.1)

Since the likelihood of a spurious link across populations is for all practical applications smaller
than a spurious link within a population, the resulting ROC curve is a lower bound to the true
reconstruction performance.

In the long term, due to the generality of the measure we have proposed, we hope that it will
find applications in reconstructing functional connectivity in a range of systems. For the application
of synaptic connectives among neuronal cell populations, the combination of imaging technologies
with opto-genetic markers is a promising route, for which the developed measure should be
ideal. This is especially the case since, even though we have restricted ourselves in this work
to the simpler case of planar in vitro networks, GTE can be immediately applied to the analysis
of in vivo recordings. For in vivo systems which do not show bursting dynamics, we expect
the reconstruction performance to be actually higher than shown for the in vitro systems. The
strength of the conditioning approach is then still in exposing the state dependency of the effective
connectivity; in vivo, this conditioning might be applied not only regarding the fluorescence level
but also regarding the type of stimulus provided.

We hope the formalisms developed in this thesis will be helpful to study the topological
structure in neuronal networks in more detail, starting with the in vitro situation. A particularly
interesting aspect would the analysis of pathological connectivity profiles, which are currently
studied only in the context of functional interactions [78, 232], and the role of hub neurons charac-
terized by their high in-degree — similar to the early firing neurons studied in this thesis — which
have been proposed to play a major role in epilepsy [233].

Another key challenge of neuroscience where we hope to be able to contribute in the future is
the study of the development of neuronal circuits. In this thesis, we have considered short-term
synaptic plasticity, since it is a prominent feature of the firing dynamics of neuronal networks [128,
149]. In the brain, the network connectivity is evolving over time, shaped not only by transient
effects but by a co-evolution of structure and dynamics that has been called symbiotic [234,235].
For instance, after the initial circuitry has been set up by processes of axon guidance exogenous to
the neurons, the development of pattern formation in the early visual system depends critically
on waves of spontaneous activity to act as guiding system to align and correlate the synaptic
connections of neighboring cells [236]. In the adult brain, the synaptic connectivity in the brain is
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continued to be shaped by dynamical processes dependent on learning and experiences [234,237,
238]. For instance by studying the statistical properties of a neuronal network during growth or
after changes due to learning, we hope that the techniques developed in this thesis will aid in the
study of the dynamical nature of the structural connectivity.



108 CHAPTER 14. OUTLOOK



Part V

Appendix

109





Appendix A

Experimental preparation

In this chapter an overview is given of the experimental procedure to obtain, from in vitro cell
cultures, the calcium imaging recordings studied earlier. The experimental preparation follows
in general the process outlined in [63], and a detailed description and list of chemicals is given
in [169].

The experimental recordings analyzed in this thesis were from dissociated cortical neurons of
Sprague-Dawley embryonic rats at 19 days of development. Neurons were dissociated and plated
on glass, which had been coated with Poly-L-Lysine to enhance neuronal adhesion on the glass
surface. Thus, after 5 days of incubation, a typical cell density between 500–700mm2 is achieved.

It is known that spontaneous activity in the networks begins to occur at 3–4 days in vitro (DIV)
and that the GABA switch, the point where the GABAergic synapses change from being excitatory
to inhibitory, occurs at 6–7 DIV. [54, 63, 239] The networks studied for this thesis are recorded
at 9–12 DIV. At this point, neurons are well connected, with connection lengths in the range of
millimeters (see Fig. A.1C).

For recording calcium fluorescence, cultures were incubated for 60 minutes in the presence
of 0.4% of the calcium dye Fluo-4-AM (Invitrogen), after which the dye was washed off and the
medium replaced. Next, the culture was placed in a Zeiss inverted microscope equipped with
a Hamamatsu Orca Flash 2.8 high-speed CMOS camera, allowing for the acquisition of a field
of view of approximately 2.2× 1.1mm2 at a resolution of 648× 312 with 8 bit greyscale colors.
Images were initially recorded at 100Hz and then resampled to 50Hz which — besides the benefits
in signal-to-noise ratio — is preferential as it allows for a better comparison with other work using
time widths of 20ms [24, 106, 162, 171, 197].

This setting allowed for the stable recording of activity for up to 60 minutes without bleaching or
drift in the fluorescence signal (see Fig. A.1A). Note that in this recording, as Part II of the present
work, activity which is based on excitatory synapses only. Thus, before recording, inhibitory
synaptic transmission had to be blocked by applying a concentration of 40µM bicuculline, a
GABAA antagonist. This blocking lead typically increased the fluorescence amplitude of burst
events, while lowering the burst rate, as shown in the example traces in Fig. A.1B. This result is
consistent with [54] — non-withstanding a large variability across cultures, for instance, in about
29% of cultures (2 out of 7) studied in the context of the present work, the burst rate was actually
higher with inhibition blocked than before.
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Figure A.1: (A) Long-term stability over 40 minutes of an example experimental recording at
12 DIV (inhibition blocked) at 100 frames/second. (B) Switching dynamics with (top panel) and
before adding bicuculline to block inhibitory synapses (bottom panel), of an example culture
recorded at 9 DIV. (C) GFP-labelled example cells demonstrating typical axon lengths at 12 DIV.
Figure reproduced with permission from [169].



Appendix B

Estimators of probability densities

The causality measures discussed in Part II depend by definition on probability distributions,
which are a priori unknown and must be inferred from samples data points. The problem of
estimating probability densities is a fundamental one, and has received much attention, especially
in the context of estimating Mutual Information and Transfer Entropy [116, 182, 240–242].

For the common case of a signal which is defined in discrete time points (determined by a
constant sampling rate) and a continuous amplitude such as membrane voltage or fluorescence
signal, there are two types of strategies applicable: Either the continuous amplitude is discretized
into a range of intervals, typically of equal width, and a correction (de-biasing) is applied afterwards
to estimate the true value of the entropy [243–245] or, secondly, indirect methods to estimate
entropy based on statistical properties can be employed (binless estimators, see discussion below).

De-biasing is, for the application presented in this thesis, of lesser interest as for the reconstruc-
tion the absolute values of Transfer Entropy are irrelevant — what is relevant is the rank ordering
of the values corresponding to each putative link in the network. We have checked however, that a
straight-forward extrapolation of TE estimates to infinite sample number according to [246] has no
significant effect on reconstruction performance.

B.1 Binless estimators

We will here consider a class of binless estimators of entropy which are based on nearest-neighbor
statistics,1 originally developed by Kozachenko and Leonenko in 1987 [248]. For a number of
S samples, the set {λi}, where λi is the distance of each sample point xi to its nearest neighbor,
yields an asymptotically unbiased expression of the entropy [248, 249].

H ≈ 1
S

S

∑
i=1

log2 λi + log2 [2 (S− 1)] +
γ

log 2
(B.1)

Here, γ denotes the Euler-Mascheroni constant.
Estimating Mutual Information requires the estimation of the difference of two entropies, which

is sensitive to small errors in estimation. To address this problem, Kraskov et al. developed an
estimator based on k nearest neighbors [250]. It is based on the maximum norm in the joint
space Z = (X, Y), defined as ‖z− z′‖ = max{‖x− x′‖, ‖y− y′‖}. Let then be ε(i)/2 the distance
from sample point zi to its kth neighbor, and εx(i)/2 and εy(i)/2 the distances, projected on the
respective subspaces. We then denote by nx(i) the number of samples whose distance from xi

1The nearest neighbor search was implemented using the exact limit of the Fast Library for Approximate Nearest
Neighbors (FLANN) of Muja et al. [247].
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Figure B.1: Comparison of GTE reconstruction performance using different estimators of probabil-
ity densities. For a simulation from the non-locally clustered network ensemble (CC = 0.5) as in
Fig. 7.1A, the reconstruction performance is plotted as a function of sample number, in a linear
scale (left panel) and a log-linear scale (right panel).

is less than ε(i)/2, and analogously for the subspace Y. Kraskov et al. show that an estimate of
the Mutual Information can be derived using the digamma function ψ(x), with angled brackets
indicating the average across sample points.

I(X, Y) = ψ(k)− 〈ψ(nx + 1) + ψ(ny + 1)〉+ ψ(S) (B.2)

Intuitively, this estimator is preferable to estimate Mutual Information as, due to the projection of
nearest-neighbor distances on the individual subspaces, the remaining bias is not any more different
as is would be when applying a Leonenko-type estimator to samples of different dimensionally.

A further refinement in the context of nearest-neighbor strategies for estimating Transfer
Entropy was proposed in 2007 by Frenzel and Pompe [251]. Their estimate for Partial Mutual
Information I(A; B|C) can be directly applied to Transfer Entropy, as can be easily shown:

I(y(k)
t−1; xt|x(k)

t−1) = I(xt; x(k)
t−1, y(k)

t−1)− I(xt; x(k)
t−1)) = TEY→X . (B.3)

Partial Mutual Information (PMI) is estimated by the following equation, making use of the
harmonic numbers h(n) = −∑n

i=1 i−1, where N... are again the respective projections on the
sub-spaces [251].

I(X; Y|Z) = 〈h(Nxz(t)) + h(Nyz(t))− h(Nz(t))〉 − h(k− 1) (B.4)

B.2 Application to the estimation of GTE

To estimate GTE of Markov order k from fluorescence time series, the joint probability densities
must be sampled in a sample space of dimensionality 2 k + 1. As the most robust performance in
the present case is achieved for Markov order k = 2 (see Part II), the sample space is 5-dimensional.

In principle, it is known that the resulting probability distributions are dependent on the
estimation technique used [182,241]. For the purpose of network reconstructions, only the resulting
rank ordering of estimated values (rather than the absolute value) is relevant; nonetheless here we
analyze the influence of different estimation techniques on the resulting reconstruction quality.

We have systematically studied the achieved performance level for each of the estimators
described above (see Fig. B.1). At a fraction of 10% of false positives, 10% of true positives
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correspond to the performance of a random choice, and both the Leonenko (Eq. B.1) and Kraskov
(Eq. B.2) are below this level in performance. Of the binless estimators, only the one according
to Frenzel et al. (Eq. B.4) is achieving performance levels higher than random choice. None of
them however is as data-efficient as the plug-in estimate using binning, indicating the difficulty of
estimating probability densities of high dimensionality and limited sample number.

As the estimation of Transfer Entropy relies on the difference of individual estimates, it might
be interesting to compare the estimates with estimates based on appropriately shuffled data
(bootstrapping), generating new data sets while maintaining the auto-correlation function [252,253].
Such a procedure has the advantage of getting rid of the problem of estimating densities with
different dimensionality entirely. It turns out however that such a procedure has no significant
benefit in terms of the performance level (not shown).

It is also worth pointing out, that the computational time needed for the Leonenko estimator
was higher than binning by an order of magnitude, and higher by three orders of magnitude for
the Kraskov and Frenzel estimators.

In summary, due to the high dimensionality and the finite number of experimentally available
sample points, we have with the exception of this chapter relied on the plug-in estimation method,
which derives its high performance from the transformation of the fluorescence time series in a
quasi-symbolic representation (due to low bin number). Such a transformation has been shown to
be highly efficient in terms of the needed number of samples to achieve a certain accuracy in the
TE estimate [190].



116 APPENDIX B. ESTIMATORS OF PROBABILITY DENSITIES



List of figures

1.1 Bright-field image of a fully grown in vitro network of hippocampal rat neurons . 2
1.2 Previous studies of burst onset dynamics in vitro . . . . . . . . . . . . . . . . . . . . 4
1.3 Patch-clamp recordings by Song et al. to extract neuronal connectivity . . . . . . . 6

2.1 Full and aborted bursts in a discrete-time integrate-and-fire model . . . . . . . . . 13
2.2 The effect of topological structure on onset firing probability . . . . . . . . . . . . . 15
2.3 Topological structure enhances variability in onset first firing probability . . . . . . 17
2.4 Rise before burst is exponential and can be predicted analytically, in a discrete-time

I&F model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5 Illustration of first and second order mean-field approximation . . . . . . . . . . . 20
2.6 The expected first firing time in a random graph can be predicted analytically . . . 22
2.7 First firing time in a locally clustered graph can be approximated analytically . . . 24
2.8 Dependence of the predicted first firing time on the order of topological expansion 25

3.1 A typical realization of the quorum percolation model . . . . . . . . . . . . . . . . . 28
3.2 Gaussian degree distribution combined with a power-law right tail . . . . . . . . . 30
3.3 Dependence of the burst onset in the QP model on degree correlations . . . . . . . 31

4.1 Spiking activity and bursting in networks with random and local topology . . . . . 35
4.2 Analytical prediction of the first spike time in a leaky I&F model . . . . . . . . . . . 38
4.3 Prediction of the first firing time at the onset of a burst in a random graph of leaky

integrate-and-fire neurons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.4 Prediction of the first firing time at the onset of a burst in a locally structured graph

of leaky integrate-and-fire neurons . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.1 Calcium imaging recordings from in vitro cultures and simulations . . . . . . . . . 47
5.2 Radius of the light scattering artifact used in simulations . . . . . . . . . . . . . . . 49
5.3 Spiking activity showing bursting for a range of clustering coefficients . . . . . . . 50

6.1 Effective connectivity depends on the dynamical state of the network . . . . . . . . 56

7.1 Reconstruction performance in non-locally clustered topologies . . . . . . . . . . . 60
7.2 Reconstruction quality of the complementary topological properties . . . . . . . . 61
7.3 Reconstruction performance in locally clustered topologies . . . . . . . . . . . . . . 62
7.4 Dependence of reconstructed average degree and clustering coefficient on the threshold 63
7.5 Reconstruction performance across causality measures and conditioning levels in

the non-locally clustered ensemble . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
7.6 Reconstruction performance across causality measures and conditioning levels in

the locally clustered ensemble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

117



118 LIST OF FIGURES

7.7 Reconstruction performance of the Bayesian approach by Mishchencko et al. . . . 68
7.8 Reconstruction performance of individual extensions of Transfer Entropy, and due

to sample number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
7.9 Positive-prediction curves individual extensions based on Transfer Entropy . . . . 71
7.10 Dependence of GTE reconstruction quality on conditioning level and system size . 71

8.1 GTE reconstruction of the excitatory connectivity of an in vitro network at 12 DIV 74
8.2 GTE reconstruction of the excitatory connectivity of an in vitro network at 9 DIV . 76
8.3 Dependency of reconstructed topological quantities on dynamical state in experi-

mental recordings and simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

9.1 Reconstruction for a minimal network model with both excitatory and inhibitory links 80
9.2 Separation of the GTE scores from the analysis of Fig. 9.1 into different terms . . . 81

11.1 Fitting alpha functions to average bursts to determine onset times . . . . . . . . . . 88

12.1 Comparison between measured and predicted onset time in a non-locally clustered,
simulated network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

12.2 Comparison between measured and predicted onset time in a cultured network at
9 DIV of dissociated neurons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

A.1 Influence of bleaching and bicuculline on recorded activity, and axon outgrowth at
typical ages of cultured networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

B.1 Comparison of GTE reconstruction performance using different estimators of proba-
bility densities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114



Bibliography

[1] Finger S (1994) Origins of neuroscience: A history of explorations into brain function. New
York: Oxford University Press.

[2] Ramón y Cajal S (1967) The structure and connexions of neurons. In: Nobel Lectures:
Physiology or medicine 1901-1921, Amsterdam: Elsevier Publishing Company.

[3] Lent R, Azevedo FAC, Andrade-Moraes CH, Pinto AVO (2011) How many neurons do you
have? Some dogmas of quantitative neuroscience under revision. European Journal of
Neuroscience 35: 1–9.

[4] Mai JK, Paxinos G (2011) The human nervous system. London: Academic Press, Inc., 3rd
edition.

[5] Herculano-Houzel S (2012) The remarkable, yet not extraordinary, human brain as a scaled-
up primate brain and its associated cost. Proceedings Of The National Academy Of Sciences
Of The United States Of America 109: 10661–10668.

[6] Hodgkin AL, Huxley AF (1952) Currents carried by sodium and potassium ions through the
membrane of the giant axon of Loligo. Journal of Physiology 116: 449–472.

[7] Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its
application to conduction and excitation in nerve. Journal of Physiology 117: 500–544.

[8] Shoham S, O’Connor DH, Segev R (2006) How silent is the brain: Is there a ”dark matter”
problem in neuroscience? Journal of Comparative Physiology A 192: 777–784.

[9] Brecht M, Sakmann B (2002) Dynamic representation of whisker deflection by synaptic poten-
tials in spiny stellate and pyramidal cells in the barrels and septa of layer 4 rat somatosensory
cortex. The Journal of physiology 543: 49–70.

[10] Brecht M, Roth A, Sakmann B (2003) Dynamic receptive fields of reconstructed pyramidal
cells in layers 3 and 2 of rat somatosensory barrel cortex. The Journal of physiology 553:
243–265.
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[30] Neves FS, Timme M (2012) Computation by switching in complex networks of states. Physical
Review Letters 109: 018701.

[31] Timme M, Wolf F, Geisel T (2002) Coexistence of regular and irregular dynamics in complex
networks of pulse-coupled oscillators. Physical Review Letters 89: 258701.

[32] Battaglia D, Witt A, Wolf F, Geisel T (2012) Dynamic effective connectivity of inter-areal brain
circuits. PLoS Computational Biology 8: e1002438.

[33] Dichter MA (1978) Rat cortical neurons in cell culture: Culture methods, cell morphology,
electrophysiology, and synapse formation. Brain Research 149: 279–293.



BIBLIOGRAPHY 121

[34] Kamioka H, Maeda E, Jimbo Y, Robinson HP, Kawana A (1996) Spontaneous periodic
synchronized bursting during formation of mature patterns of connections in cortical cultures.
Neuroscience Letters 206: 109–112.

[35] Desai NS, Rutherford LC, Turrigiano GG (1999) Plasticity in the intrinsic excitability of
cortical pyramidal neurons. Nature Neuroscience 2: 515–520.

[36] Lau P, Bi G (2005) Synaptic mechanisms of persistent reverberatory activity in neuronal
networks. Proceedings Of The National Academy Of Sciences Of The United States Of
America 102: 10333–10338.

[37] Wagenaar DA, Pine J, Potter SM (2006) An extremely rich repertoire of bursting patterns
during the development of cortical cultures. BMC Neuroscience 7: 1–18.

[38] Srinivas KV, Jain R, Saurav S, Sikdar SK (2007) Small-world network topology of hippocampal
neuronal network is lost, in an in vitro glutamate injury model of epilepsy. The European
Journal of Neuroscience 25: 3276–3286.

[39] Feinerman O, Segal M, Moses E (2007) Identification and dynamics of spontaneous burst
initiation zones in unidimensional neuronal cultures. Journal of Neurophysiology 97: 2937–
2948.

[40] Eckmann JP, Feinerman O, Gruendlinger L, Moses E, Soriano J, et al. (2007) The physics of
living neural networks. Physics Reports 449: 54–76.

[41] Erickson J, Tooker A, Tai YC, Pine J (2008) Caged neuron MEA: A system for long-term
investigation of cultured neural network connectivity. Journal of Neuroscience Methods 175:
1–16.

[42] Gandolfo M, Maccione A, Tedesco M, Martinoia S, Berdondini L (2010) Tracking burst
patterns in hippocampal cultures with high-density CMOS-MEAs. Journal of Neural Engi-
neering 7: 056001.

[43] Baltz T, de Lima AD, Voigt T (2010) Contribution of GABAergic interneurons to the develop-
ment of spontaneous activity patterns in cultured neocortical networks. Frontiers in Cellular
Neuroscience 4: 1–17.

[44] Huettner JE, Baughman RW (1986) Primary culture of identified neurons from the visual
cortex of postnatal rats. Journal of Neuroscience 6: 3044–3060.

[45] Shefi O, Golding I, Segev R, Ben-Jacob E, Ayali A (2002) Morphological characterization of in
vitro neuronal networks. Physical Review E 66: 021905.

[46] van Pelt J, Corner MA, Wolters PS, Rutten WLC, Ramakers GJA (2004) Longterm stability
and developmental changes in spontaneous network burst firing patterns in dissociated rat
cerebral cortex cell cultures on multielectrode arrays. Neuroscience Letters 361: 86–89.

[47] Marom S, Shahaf G (2002) Development, learning and memory in large random networks of
cortical neurons: Lessons beyond anatomy. Quarterly Reviews of Biophysics 35: 63–87.

[48] Faisal AA (2012) Noise in neurons and other constraints. In: Le Novère N, editor, Computa-
tional Systems Neurobiology, Dordrecht: Springer Netherlands. pp. 227–257.

[49] Holmgren C, Harkany T, Svennenfors B, Zilberter Y (2003) Pyramidal cell communication
within local networks in layer 2/3 of rat neocortex. Journal of Physiology 551: 139–153.



122 BIBLIOGRAPHY

[50] Eckmann JP, Jacobi S, Marom S, Moses E, Zbinden C (2008) Leader neurons in population
bursts of 2D living neural networks. New Journal of Physics 10: 1–19.

[51] Eytan D, Marom S (2006) Dynamics and effective topology underlying synchronization in
networks of cortical neurons. Journal of Neuroscience 26: 8465– 8476.

[52] Maeda E, Robinson H, Kawana A (1995) The mechanisms of generation and propagation of
synchronized bursting in developing networks of cortical neurons. Journal of Neuroscience
15: 6834–6845.

[53] Arnold F, Hofmann F, Bengtson C, Wittmann M, Vanhoutte P, et al. (2005) Microelectrode
array recordings of cultured hippocampal networks reveal a simple model for transcription
and protein synthesis-dependent plasticity. Journal of Physiology 564: 3–19.

[54] Cohen E, Ivenshitz M, Amor-Baroukh V, Greenberger V, Segal M (2008) Determinants of
spontaneous activity in networks of cultured hippocampus. Brain Research 1235: 21–30.

[55] Jacobi S, Soriano J, Segal M, Moses E (2009) BDNF and NT-3 increase excitatory input
connectivity in rat hippocampal cultures. The European Journal of Neuroscience 30: 998–
1010.

[56] Pasquale V, Martinoia S, Chiappalone M (2010) A self-adapting approach for the detection of
bursts and network bursts in neuronal cultures. Journal of Computational Neuroscience 29:
213–229.

[57] Kanagasabapathi TT, Massobrio P, Barone RA, Tedesco M, Martinoia S, et al. (2012) Functional
connectivity and dynamics of cortical–thalamic networks co-cultured in a dual compartment
device. Journal of Neural Engineering 9: 036010.

[58] Kleindienst T, Winnubst J, Roth-Alpermann C (2011) Activity-dependent clustering of func-
tional synaptic inputs on developing hippocampal dendrites. Neuron 72: 1012–1024.

[59] Takano H, McCartney M, Ortinski PI, Yue C, Putt ME, et al. (2012) Deterministic and stochas-
tic neuronal contributions to distinct synchronous CA3 network bursts. Journal of Neuro-
science 32: 4743–4754.

[60] Mazzoni A, Broccard FD, Garcia-Perez E, Bonifazi P, Ruaro ME, et al. (2007) On the dynamics
of the spontaneous activity in neuronal networks. PLoS ONE 2: e439.

[61] Beggs JM, Plenz D (2004) Neuronal avalanches are diverse and precise activity patterns that
are stable for many hours in cortical slice cultures. Journal of Neuroscience 24: 5216–5229.

[62] Ham MI, Bettencourt LM, McDaniel FD, Gross GW (2008) Spontaneous coordinated activity
in cultured networks: Analysis of multiple ignition sites, primary circuits, and burst phase
delay distributions. Journal of Computational Neuroscience 24: 346–357.

[63] Soriano J, Martinez MR, Tlusty T, Moses E (2008) Development of input connections in
neural cultures. Proceedings Of The National Academy Of Sciences Of The United States Of
America 105: 13758–13763.

[64] Zbinden C (2011) Leader neurons in leaky integrate and fire neural network simulations.
Journal of Computational Neuroscience 31: 285–304.

[65] Golomb D, Hansel D (2000) The number of synaptic inputs and the synchrony of large,
sparse neuronal networks. Neural Computation 12: 1095–1139.



BIBLIOGRAPHY 123

[66] Brunel N (2000) Dynamics of sparsely connected networks of excitatory and inhibitory
spiking neurons. Journal of Computational Neuroscience 8: 183–208.

[67] Belykh I, De Lange E, Hasler M (2005) Synchronization of bursting neurons: What matters in
the network topology. Physical Review Letters 94: 188101.

[68] Chavez M, Besserve M, Le Van Quyen M (2011) Dynamics of excitable neural networks with
heterogeneous connectivity. Progress in Biophysics and Molecular Biology 105: 29–33.

[69] Zhao L, Bryce BI, Netoff T, Nykamp DQ (2011) Synchronization from second order network
connectivity statistics. Frontiers in Computational Neuroscience 5: 1–16.

[70] Maheswaranathan N, Ferrari S, VanDongen AM, Henriquez CS (2012) Emergent bursting
and synchrony in computer simulations of neuronal cultures. Frontiers in Computational
Neuroscience 6: 1–11.
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