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Parabase

Freudig war vor vielen Jahren,

Eifrig so der Geist bestrebt,

Zu erforschen, zu erfahren,

Wie Natur im Schaffen lebt.

Und es ist das ewig Eine,

Das sich vielfach offenbart;

Klein das Große, groß das Kleine,

Alles nach der eignen Art.

Immer wechselnd, fest sich haltend,

Nah und fern und fern und nah,

So gestaltend, umgestaltend -

Zum Erstaunen bin ich da.

Goethe



Meinen geliebten Eltern
ohne die all dies nicht möglich gewesen wäre
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1 Introduction and Overview

As a collective effort of connected individuals, our world is structured by human
activity in many different ways: we are surrounded by global networks of communi-
cation, transportation, trade, social relations and media, all of which are examples
for complex networks. Also Nature provides us with an abundance of examples,
such as the human brain, or gene regulatory networks. But what are complex net-
works? In everyday language, ‘complex’ is used as the opposite of ‘simple’, i.e. as
a synonym of ‘complicated’. A system with a large accumulation of interacting
elements would certainly qualify to be called complex in this sense, but the concept
of complexity can be made more precise than that [BP97, GM94, Zie01]: it is not
only the sheer number of individual elements that matters but also the architec-
ture and the strength of the interactions between them which shape the collective
dynamics of a complex network. The collective dynamics however is in practice nei-
ther predictable from, nor reducible to, its individual elements, making the study of
those complex network models that are ‘simple enough’ to be actually manageable
especially interesting (cf. e.g. [Est10]).

Due to the rapid technological advance, the decipherment of enormously complex
natural networks is currently in progress. For example, our knowledge about the
brain or the human genome is growing continuously. Basically, our desire to under-
stand the mechanisms inherent to such networks suggests an approach comprised
of two parts. Firstly, we need to develop models that sensibly represent the basic
structures of the networks at both microscopic and macroscopic level. Secondly, we
have to derive appropriate rules which govern the dynamic interactions.

The seemingly very different types of networks specified above share very basic
similarities, such as abstract patterns or simple organizing principles. Generally,
order is an essential property of physical systems describing Nature. All natural
complex systems are ordered macroscopically to some degree (cf. also [Whi05]).
In some cases, this order is obvious and easily quantified. For instance, snowflakes
show a high level of order, a six-fold symmetry [BJL01], but patterns can also be
observed in different systems and over very different length scales (cf. e.g. [Kur84,
NNS97, Bal01]). On the one hand, order can be viewed as a static property of
structural organization, while on the other hand, it can also be an important aspect
of collective dynamics. We discuss both these aspects successively in the following
paragraph.

A classical example of structural order is a crystal where atoms form a perfectly
periodic array. Theoretical studies first focussed on these ’perfect’ systems consist-
ing of such simple structures. Regular topologies like lattices, all-to-all coupled units
or mean field models and the other extreme – totally random networks [Gil59, Bol01]
– are thought to be almost completely understood.

A question which dates back to the sixties changed this approach, namely: “what
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is the probability that any two people, selected arbitrarily from a large population,
such as that of the United States, will know each other?” [TM69]. A more interest-
ing formulation, however, takes into account that, although two persons may not
know each other directly, they may share one or more mutual acquaintances. In this
sense, any two people are connected through an acquaintance chain. This concept,
known as the ‘six degrees of separation’, refers to the idea that every person is on
average approximately six jumps on the social network away from any other person
on Earth.

Inspired by this concept, Watts and Strogatz published a seminal work [WS98]
essentially founding the science of complex network theory [Est10]. They charac-
terized the small-world phenomenon as the combination of a small path length –
meaning that a pair of nodes is connected by only a few edges on average – and a
high clustering coefficient – meaning that two nodes connected to a common node
are also connected to each other with a high probability. From description in theory
they were also able to show the small-world phenomenon to be a feature of several
examined real-world networks.

Finally, they converted this idea into a simple model to artificially create small-
world networks. Here, the crucial point is that this model interpolates between
totally regular and totally random topologies. Starting with a ring where units only
communicate with their direct neighbors, ring connections between neighbors are
cut with a probability q and connected to randomly chosen nodes somewhere else in
the ring. Due to this rewiring associated with the creation of shortcuts, the average
path length drastically decreases. Simultaneously this architecture still exhibits high
local clustering. These two properties were suggested to be particularly supportive
of synchronization, the adjustment of the internal dynamics of individual elements
due to an interaction [PRK01]. Indeed, several detailed studies support this view by
showing that at fixed coupling strength small-world networks tend to synchronize
for lower connectivity, i.e. fewer connections in the network, than many other classes
of networks [BP02, WS98].

Synchronization is intimately related to dynamical order. Here, individual pro-
cesses in different parts of a system are well adjusted and the system is capable of
exhibiting coordinated performance. The brain is the archetype of such a system
where the functioning is based on dynamical order [Buz06]. Information process-
ing and control of body functions in the brain are performed by billions of coupled
individual elements called neurons. They interact with each other by sending and
receiving patterns of electrical activity. Through the collective dynamics of neu-
rons the brain can efficiently model the processes in the ‘real’ world. Thus, almost
all living beings are intrinsically based on concepts of dynamical order. However,
even in simple inert physical systems, coordinated action of individual elements can
spontaneously develop. Coupled Josephson junctions [Wie96, FPW06] may generate
microwave radiation, whereas coordination in semiconductor lasers [KVM00, WP08]
may result in an output power that is much larger than expected.

Moreover, synchronization is one of the most frequently observed collective dy-
namics in many physical and biological systems [ADK+08, PRK01, Str04, Boc08].
Often, synchronization is advantageous and desired, for instance in secure com-
munication [KKK02]. In other circumstances however, it can also be detri-
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Chapter 1. Introduction and Overview

mental and undesired. For instance, strong synchronous activity is associated
with pathological effects in the brain. It is believed to trigger epileptic seizures
[MC01, MPBT04, NCA+04, LBH09, Mil10] and to initiate the tremor in patients
with Parkinson disease. The resting Parkinson tremor appears to be caused by a
population of neurons located in the thalamus and the basal ganglia, which fire in
a synchronized and intrinsically rhythmic manner. This synchronized firing acts
as a pacemaker for activating pre-motor areas and the motor cortex which in turn
leads to the tremor with a similar frequency [EK90]. Here it is important to under-
stand the synchronization mechanisms in detail and to find possible mechanisms to
desynchronize these cells [PHT05].

A broad area of research has emerged which studies the conditions under which
the coupled units synchronize and when they do not [Str01, NMLH03, PC98]. The
resulting findings suggest important key properties of the topological influence on
network synchronizability, i.e. the capability of a network to synchronize at all.
However, they do not tell much about the speed of synchronization given that a
network synchronizes in principle.

For any real system, it matters a great deal how fast the units synchronize or
whether the network interactions fail to coordinate the units’ dynamics on time
scales relevant to the system’s function (or dysfunction), cf. [ZTGW04, ZLPT07,
JMT08, ZBH09]. The applications range from consensus dynamics of distributed
decision-making problems for interacting groups of agents [OS05] to questions from
neuroscience about the speed of the visual processing or olfactory discrimination
could be [UM03, TFM96]. Anyway this question is far from being understood com-
pletely and currently under active investigation [TWG04, TGW06, Tim06, QHS+08,
QHC+08]. In particular, it is largely unknown how fast small worlds synchronize
which leads us to one of the main question addressed in this thesis: what is the
typical time scale for synchronization? This means how fast can network units co-
ordinate their dynamics if they are not directly interconnected but interact on large
networks of regular, random or small-world topology?

We address this question in Chapter 3 of this thesis. We present the first system-
atic study of asymptotic synchronization times for networks with topologies ranging
from completely ordered, grid-like, to completely disordered, random, including the
intermediate, partially disordered class of topologies, the small worlds. So far it has
been studied analytically for fully random networks only [TGW06]. Furthermore,
we extend the formalism of master stability functions [PC98] to quantify the collec-
tive time scale for synchronizing systems, so far only used to determine whether a
system may synchronize or not. We find that the synchronization times strongly and
systematically depend on the network topology. In particular, at fixed in-degree,
stronger topological randomness induces faster synchronization, whereas at fixed
path length, synchronization is slowest for intermediate randomness in the small-
world regime. Randomly rewiring real-world neural, social and transport networks
confirms this picture [GHGT10, GGT11].

Since the seminal work of Watts and Strogatz about small worlds, many differ-
ent networked systems, ranging from the internet [BKMR00], power grids [WS98],
and airline traffic [ASBS00], to polymers [JSB00], metabolic pathways [WF01] and
neural circuits [AY92] have been discovered that all share these two basic charac-
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teristics: high clustering and short average path lengths (in other words, the small-
world effect). These topological features of small-world networks underlie collective
dynamics such as synchronization, diffusion or relaxation processes [PRK01]. Such
processes occur in various fields, ranging from opinion formation in social networks
[PLR05] and consensus dynamics of agents [OS05], to synchronization in biological
circuits [BCDLR10, MMZ04] and relaxation oscillations in gene regulatory networks
[McM02, GdBLC03, TYHC03]. In particular, the asymptotic dynamics on a small
world is characterized by the spectrum of its graph Laplacian [CDS80]. Lapla-
cian eigenvectors [BL07] have received only sporadic attention although they arise
in many research fields, from mathematical biology to combinatorial optimization.
In general, the study of graph spectra is extremely useful and can be very prof-
itable. The founders of Google computed the Perron-Frobenius eigenvector of the
web graph and became billionaires as consequence [HK03, BH09].

Although the small-world models based on rewiring have received massive at-
tention both theoretically and in applications (as certified by the huge number of
references to the original work [WS98]), for most of their features analytical predic-
tions are not known to date, cf. [NMW00]. In particular, the spectrum of small-
world Laplacians has only been studied for several specific cases and numerically
[Mon99, JJ01, BP02, MO04, KvM11], but a general derivation of reliable analytic
predictions is still missing.

Consequently, an analytical expression for the complete small-world spectrum is
derived in Chapter 4. It is based on a two-stage mean field approximation we intro-
duced and results in a single formula that covers the entire spectrum from regular
to strongly randomized topologies. In doing so we are able to explain the simulta-
neous dependencies on network size, average degree of nodes and the randomness q
of the order of unity, where standard Random Matrix Theory can be applied. Our
results [GGT12] allow for analytical insight into empirically observed features of
dynamics on small-world networks from various research fields, including biology,
physics, engineering and social science.

Besides the small-world architecture, there is another network structure beyond
the two extremes of totally regular and random ones, known as the scale-free topol-
ogy [AB00, DM01, AB02, Cal07] since it is characterized by a heavy-tailed distribu-
tion of degree per node with no characteristic scale. For neural circuits this means,
although most neurons display local connectivity, a small number of hub neurons,
characterized by long-range connections linking large numbers of cells, can confer
synchronicity on the network. Thus, the presence of hub neurons, which act as
super-connected nodes, has been postulated as a substrate for widespread neural
synchronization. Intriguingly, by stimulating single hub neurons one may remove
the synchronous collective oscillations completely. When the stimulation is switched
off, the synchronicity , but if a non-hub unit driven in the same way, the oscillation
stays almost identically as in the undriven state.

Such synchronous oscillations constitute one of the most dominant collective
dynamics of complex networks. They occur not only in circuits of nerve cells
(neurons) [BH99, Buz06, OLPT10], but in a large range of systems, ranging
from metabolic and gene regulatory networks within cells to food webs of cross-
feeding species [MHH98, WM00] or even to oscillations in the global climate system
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Chapter 1. Introduction and Overview

[SR94, SvRE98]. Thus, understanding the functional role of hubs – not only in
neuronal circuits – is a task of paramount importance and has recently attracted
widespread attention [Per10, ZLZK10, SHK07, MS08, ASW+06, SR07]. However,
the mechanisms underlying the suppression of global oscillations in a neurobiological
system have not yet been understood.

We address this question in Chapter 5. We set up a detailed theoretical framework
and numerically investigate different neuronal network models to reveal potential
mechanisms that underlie the experimentally discovered phenomena.

Large parts of this thesis revolve around our articles [GHGT10, GGT11, GGT12].
Thereby, Chapter 3 is based on [GHGT10, GGT11] whereas Chapter 4 is based on
[GGT12]. Work in Chapter 5 has not yet been published.

The thesis is organized as follows. The introduction given in Chapter 1 is followed
by Chapter 2 which provides the fundamentals used throughout. Here we provide
basic notions from graph theory and outline the different types of considered dynam-
ics – Kuramoto phase oscillators coupled via phase differences, higher-dimensional
periodic Rössler systems coupled diffusively as well as neural circuits with inhibitory
delayed pulse-coupling – and the underlying network topology.

In Chapter 3 we set up the theoretical framework used to study the synchroniza-
tion time. In this context we explain methods to measure the synchronization time
numerically and present first simulations illustrating the decay of perturbations to
full synchrony. In Section 3.4 we derive methods to predict the synchronization
times semi-analytically (eigenvalues still have to be determined via numerical diag-
onalization). In particular, we are the first who systematically extend the master
stability function formalism [PC98] – so far only used to determine whether a sys-
tem is stable or not – to the prediction of the synchronization time. In Section 3.5
we compare the analytical predictions for the synchronization times and the re-
sults obtained by extensive computer simulations for network ensembles with fixed
in-degree, with fixed average path length and with fixed betweenness centrality, fol-
lowed by an analysis of generic network ensembles. Comparing network ensembles
with a fixed number of edges, it is shown that those in the small-world regime syn-
chronize faster than regular networks but slower than random networks. This is ex-
pected intuitively – the characteristic path length is monotonically decreasing while
rewiring – and in accordance with the result for synchronizability [BP02, WS98].
Hence, we fix the average characteristic path length and again investigate the de-
pendence of synchronization time on the network’s topology. We find that, for a
fixed average characteristic path length, networks in the small-world regime again
synchronize slower than random networks, but this time even slower than regular
networks: we see a non-monotonic dependence on the topological randomness. We
compare network ensembles with fixed topological quantities like the betweenness
centrality as well as generic ensembles for Kuramoto, Rössler and pulse-coupled
oscillators. Moreover, we make analytical predictions of the synchronization times
for periodic Rössler systems and observe remarkable similarities between the syn-
chronization times for the Kuramoto and pulse-coupled oscillators. In Section 3.6
the study of synchronization times for real-world networks, rewiring them towards
fully random networks, confirms our theoretical results.

In Chapter 4 we introduce a two-stage mean-field theory which well approximates
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the actual small-world spectra. We derived a single master formula that covers the
entire spectrum from regular to strongly randomized topologies. The analytic ex-
pression explicates the simultaneous dependencies on network size, average degree
and randomness q. Numerical diagonalization of Laplacians of directed and undi-
rected networks shows that the analytic prediction well approximates the actual
eigenvalues, except for extreme parameter settings, such as q → 1. In particular,
the two largest eigenvalues, the smallest eigenvalue and the bulk spectrum are well
predicted.

In Chapter 5 we discuss recent experimental findings on the functional role of
neuronal hubs and present approaches to uncover possible mechanisms that may
explain the discovered phenomenon.

The thesis is summarized in Chapter 6 including a discussion of future work.
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2 Fundamentals

In this chapter we give a basic introduction to graph theory. We are only present-
ing the notions necessary for the purpose of this thesis. Furthermore, we will focus
on directed graphs, but will provide accordant definitions for undirected graphs,
which can be considered as special cases of directed graphs. For a more complete
introduction see e.g. [New10, Wil96, Bol98]. In addition, we introduce the dynam-
ical oscillator models we will use throughout this thesis as well as their underlying
network structure.

2.1 Basic notions from graph theory

2.1.1 Graphs and the adjacency matrix

A graph is a collection of vertices joined by edges. Later we will also refer to the
vertices as nodes and to the edges as links.

Throughout this thesis we represent a graph by the adjacency matrix A. It is
an N×N matrix where N equals the number of vertices of the graph with elements
Aij such that

Aij =

{

1 if there is an directed edge from j to i 6= j
0 otherwise

. (2.1.1)

This definition includes the direction of an edge: it runs from the second index to
the first. Therefore, these graphs are called directed graphs.

Undirected graphs are included if Aij = Aji for all i, j. Thus, the adjacency
matrix A for undirected graphs is symmetric, whereas it is in general asymmetric
for directed graphs. With eq. (2.1.1) we exclude edges that connect vertices to
themselves, so-called self-loops. We will not allow multi-edges, more than one edge
between the same pair of vertices, either.

2.1.2 Degrees and paths

In a directed network each vertex has two degrees. The in-degree kin
i counts the

ingoing edges connected to vertex i, while the out-degree kout
i counts its outgoing

edges. In terms of the adjacency matrix they can be written as

kin
i =

N
∑

j=1

Aij , kout
j =

N
∑

i=1

Aij . (2.1.2)

The number of edges M in a directed network is equal to the total number of
ingoing tips of edges at all vertices, or equivalently, to the total number of outgoing
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2.1. Basic notions from graph theory

tails of edges at all vertices. Thus,

M =

N
∑

i=1

kin
i =

N
∑

j=1

kout
j =

N
∑

i,j

Aij . (2.1.3)

For an undirected graph it simplifies to just one degree denoted by ki which counts
the edges connected to vertex i:

ki =
N
∑

j=1

Aij . (2.1.4)

But each edge in an undirected graph has two ends, thus the number of edges here
results in

M =
1

2

N
∑

i=1

ki =
1

2

N
∑

i,j

Aij . (2.1.5)

A path in a network is any sequence of nodes such that every consecutive pair
of nodes in the sequence is connected by an edge. But while the contained edges in
undirected graphs can be traversed in both directions, the edges in directed networks
have to be traversed following the right orientation.

The length of a path is the number of edges traversed along the path. We can
easily calculate the number of paths of length p between any pair of vertices: Aij

is one if there is an edge from vertex j to vertex i for both directed and undirected
graphs. Then the product AikAkj is one if there is a path of length two between
these vertices via k. Thus, the total number of paths of length two from vertex j
to vertex i can be written as

N
∑

k=1

AikAkj = A2
ij (2.1.6)

from which can be deduced by induction that the number of paths of length p from
vertex j to vertex i is given by Ap

ij .

2.1.3 Shortest paths, connectivity, betweenness and

clustering

A length of special interest is the length of a geodesic path or length of a shortest
path lij. This is a path such that there exists no shorter path between two nodes.
We can now formally define the length of a shortest path from vertex j to vertex
i as

lij := min
{

r ∈ N | Ar
ij 6= 0

}

. (2.1.7)

The shortest path length lij is symmetric for undirected networks, which is in general
not the case for directed ones. Then, the average shortest path length of a graph
is given by

L =
1

N (N − 1)

N
∑

i,j=1
i 6=j

lij . (2.1.8)

16



Chapter 2. Fundamentals

1
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Figure 2.1: Strongly connected components. In this here are two strongly
connected subgraphs (shaded areas). However, the whole graph is only
weakly connected. For the shaded left subgraph, the sequence 1 →
2 → 3 → 4 → 5 → 2 → 4 → 1 → 5 is a directed path that solves ’Das
Haus vom Nikolaus’, a German puzzle for children. In graph theory,
such a sequence is known as Eulerian path since every edge in that
subgraph is traversed exactly once. Can you find such a path in the
right subgraph?

If there is no r ∈ N that satisfies eq. (2.1.7), then the vertex j is called disconnected
from vertex i and we set lij := ∞. Otherwise vertex j is called connected to vertex
i. A directed graph is called strongly connected if every vertex j is connected to
every other vertex i in the graph, i.e. lij < ∞ for all i, j in the graph. It is called
weakly connected if lij < ∞ or lji < ∞ for all i, j in the graph, i.e. if there exists
either a directed path or an inverted directed path between each pair of vertices i
and j. An undirected graph is simply called connected if each pair of vertices in the
graph is connected, i.e. lij <∞ for all i, j in the graph.

Closely related to the shortest path length is the betweenness centrality [Fre77]. It
measures the extent to which a vertex lies on shortest paths between other vertices.
The local betweenness centrality of a vertex i is then defined as the number of
shortest paths that pass through it as

bi =
∑

(j,k)

n
(j,k)
i , (2.1.9)

where the sum runs over all possible pairs of vertices (j, k) in the graph and

n
(j,k)
i =

{

1 if vertex i lies on the shortest path from vertex k to vertex j
0 otherwise

.

(2.1.10)
Note that we count the shortest paths in either direction seperately, which means
that in an undirected graph each path is effectively counted twice. In exchange, we
can apply this definition unmodified to directed graphs as well.

We obtain the global betweenness centrality B by averaging the bi over the
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2.1. Basic notions from graph theory

l

j

k

i

Figure 2.2: Clustering in undirected networks. The clustering coefficient of
vertex i is 1/3. Of the possibilities of its neighbours j, k and l to be con-
nected to each other (dashed lines) only one is actually realized (solid
line), i.e. one triangle (shaded area) out of three possible triangles is
realized.

N vertices, i.e.,

B =
1

N

N
∑

i=1

bi . (2.1.11)

Another important quantity in graph theory is the clustering coefficient. Given
that two nodes are connected to a joint third, it measures the likelihood that they
are connected to each other as well. Therefore, the local clustering coefficient ci
denotes the actual number divided by the possible number of triangles containing a
given node i (Fig. 2.2). The local clustering coefficient ci for undirected graphs can
be written as

ci =
1
2

∑

j

∑

k AijAjkAki

1
2
ki(ki − 1)

=
A3

ii

ki(ki − 1)
, (2.1.12)

where ki is the degree (2.1.4) and the sum counts the number of paths of length
three which start and end at vertex i, i.e. the number of realized triangles (cf.
eq. (2.1.6)).

The generalization to directed networks is not straightforward: In this thesis we
use the extension proposed in [Fag07] where we count the number of all possible
triangles independent ofã the orientation of their edges (see Fig. 2.3). This number
of all possible triangles that contain vertex i is given by

ktot
i (ktot

i − 1)− 2kbi
i , (2.1.13)

where

ktot
i = kout

i + kin
i (2.1.14)
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Figure 2.3: Clustering in directed networks. There are eight different triangles
containing vertex i. The second row can be obtained from the first row
by interchanging nodes j and k along with their attached edges.

is the total degree of vertex i and

kbi
i =

∑

j 6=i

AijAji = A2
ii (2.1.15)

the number of bilateral edges between vertex i and its neighbours, i.e. the number
of vertices which are connected to vertex i and simultaneously vertex i is connected
to. This leads to

ci =
1
2

∑
j 6=i

∑
k 6=(i,j)(Aij+Aji)(Ajk+Akj)(Aki+Aik)

ktot
i (ktot

i −1)−2kbi
i

(2.1.16)

=
1
2
(A+AT)3ii

ktot
i (ktot

i −1)−2kbi
i

. (2.1.17)

The global clustering coefficient C is then in both cases obtained by averaging
the ci over the N vertices, i.e.,

C =
1

N

N
∑

i=1

ci . (2.1.18)

2.1.4 Spectral properties and the graph Laplacian

Closely related to the adjacency matrix A which encodes the entire structure of a
network is another matrix that can tell us much about the network structure: the
graph Laplacian. To clarify its origin let us say a few words on diffusion. It describes
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2.2. Network structure and dynamics

the spread of particles through random motion from regions of higher concentration
to regions of lower concentration. These processes could be also considered on
networks such as information spreading in social networks. Therefore suppose some
substance on a network of which an amount ψi is located at node i. Then

dψi

dt
= C

N
∑

j=1

Aij(ψj − ψi) (2.1.19)

gives the rate at which ψi is changing, C being the diffusion constant and Aij the
adjacency matrix elements (2.1.1). Rewriting (2.1.19) leads to

dψi

dt
− C

N
∑

j=1

(Aij − kiδij)ψj = 0 , (2.1.20)

where δij is the Kronecker delta and ki the degree (2.1.4). Defining

Λij = Aij − kiδij , (2.1.21)

we recognize the structure of the ordinary diffusion equation, except that the el-
ements of the Laplacian operator ∇2 are replaced by the matrix elements of Λ.
Hence, Λ is called the graph Laplacian, although its importance reaches far be-
yond diffusion.

Equation (2.1.21) defines the graph Laplacian of undirected networks. Its spec-
trum is real with the eigenvalues λi ordered as 0 = λ1 ≥ λ2 ≥ . . . ≥ λN . The
number of zero eigenvalues of the Laplacian matrix is equal to the number of con-
nected components of the graph.

For directed networks we will use the graph Laplacian defined as

Λij = Aij − kini δij , (2.1.22)

where the degree ki in undirected networks has been substituted for the in-degree
kini (2.1.2).

The eigenvalues λi of directed graphs are complex and ordered as 0 = Reλ1 ≥
Reλ2 ≥ . . . ≥ ReλN . The number of zero eigenvalues of the Laplacian matrix is
equal to the number of strongly connected components of the directed graph.

2.2 Network structure and dynamics

2.2.1 The small-world topology

Consider a graph of N nodes on a one-dimensional ring lattice with periodic bound-
ary conditions. Each node receives directed links from its kini /2 nearest neighbors
on both sides (for simplicity of presentation we take k and N to be even in this
thesis). Furthermore, the in-degree kini = kin for all i is the same for all nodes (see
Fig. 2.4).
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Chapter 2. Fundamentals

Figure 2.4: Rewiring directed networks. (Cartoon for N = 10, k = 4). Sin-
gle realizations of rewiring for directed networks. From left to right:
q = 0 (regular ring network), q = 0.1 (’small world’) and q = 1 (ran-
dom network). While rewiring with probability q the in-degree kin for
each node stays fixed: this can be observed here for a reference node’s
incoming edges highlighted in red.

10-5 10-4 10-3 10-2 10-1 1
0

0.5

1

topological randomness q

clustering

small-world
regime

shortest
path length

Figure 2.5: Small worlds. In the small-world regime the clustering is high, but
the average shortest path length has decreased significantly (N = 1000,
kin = 20, averaged over 100 network realizations, clustering coefficient
and average shortest path length normalized to one for q = 0).

Randomness is introduced by rewiring where we adapt the standard small-world
(SW) model of Watts and Strogatz [WS98] to directed networks [Fag07]. We ran-
domly cut each tail of an outgoing edge with probability q ∈ [0, 1] (also referred
to as topological randomness) and rewire it to a node chosen uniformly at random
from the whole network (avoiding double edges and self-loops). We do, however,
allow the edge to be rewired back to its original position.

An important observation here is that as q varies the in-degree of each node (and
with it the average in-degree of the network) is still kin (see Fig. 2.4). This is due
to the fact that we only rewire the tails of outgoing edges.

The directed small-world networks behave as in the original Watts-Strogatz model
[WS98] (see Fig. 2.5). Starting with fully regular networks, i.e. the topological
randomness q equals zero, the clustering coefficient 〈C(q, kin)〉 ((eq. 2.1.18)) and
the average path length 〈L(q, kin)〉 (eq. 2.1.8) both are large. Here 〈 . 〉 denotes
averaging over network realizations at given q and k. On the other side, fully
random networks, i.e. for q = 1, occupy a small clustering coefficient 〈C(q, kin)〉
and a small average path length 〈L(q, kin)〉.
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2.2. Network structure and dynamics

In between, we observe a regime for small randomness q where the clustering
coefficient 〈C(q, kin)〉 is still large in comparison to the fully regular networks, but
the average path length 〈L(q, kin)〉 has already decreased significantly: this regime
characterized by these two topological quantities is the small-world regime.

2.2.2 Oscillator dynamics on networks

In the following, we briefly introduce the different oscillator models mainly used
throughout Chapter 3. Abstractly speaking, oscillators are patterns that return to
their original state, in the same orientation and position, after a finite number of
generations.

We will investigate three different oscillator types: phase oscillators coupled via
phase differences, the Kuramoto oscillators [Kur84, ABV+05], higher-dimensional
periodic and chaotic systems coupled diffusively, the Rössler oscillators 2.2.2 as well
as neural circuits with inhibitory delayed pulse-coupling, in the following referred
to as pulse-coupled oscillators [MS90].

In each of the three models, the oscillators are coupled via a coupling matrix J
which is proportional to the adjacency matrix A defined in eq. (2.1.1).

The entries Jij ≥ 0 of the coupling matrix consist of a global coupling constant
σ and are normalized to guarantee that each oscillator i is getting the same input.

The matrix elements Jij are therefore

Jij =

{

σ/kin
i if j is connected to i 6= j

0 otherwise
, (2.2.1)

and Jii = 0 for the diagonal elements.

Kuramoto oscillators

Consider N Kuramoto oscillators that interact on a directed network. Here, the dy-
namical variable of each oscillator is xi := θi ∈ S1 = 2πR/N, i.e. a one-dimensional
phase, with its interaction function H(θi, θj) := sin(θj −θi). Therefore, the dynam-
ics of phases θi(t) of oscillators i with time t satisfy

dθi
dt

= ωi +
∑

j

Jij sin(θj − θi) for i ∈ {1, ..., N} , (2.2.2)

where ωi is the natural frequency of oscillator i. We consider identical oscillators in
this thesis, i.e. ωi = ω for all oscillators i.

Rössler oscillators

We also consider a network of Rössler oscillators, both in the chaotic and in the
periodic regime. Each elementary Rössler oscillator is described by three variables
{x(t), y(t), z(t)}. The collective dynamics of N coupled, identical Rössler oscillators
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Chapter 2. Fundamentals

(i ∈ {1, 2, ..., N}) are governed by the equations

dxi
dt

=− yi − zi +

N
∑

j=1

Jij(xj − xi), (2.2.3)

dyi
dt

=xi + ayi, (2.2.4)

dzi
dt

=b+ zi(xi − c), (2.2.5)

where a, b and c are fixed parameters.
To study the Rössler system in the periodic regime we set the parameters to

a = 0.2, b = 1.7, c = 5.7. Analogously setting the parameters to a = 0.2, b = 0.2,
c = 5.7 the chaotic regime is gained.

Pulse-coupled oscillators

Moreover, we investigate the collective dynamics of pulse-coupled (neural) oscilla-
tors [JMT08, MS90].

In this case, the dynamical oscillator variables are the membrane potentials Vi(t)
and delayed discrete output pulses satisfying

dVi
dt

= I − γVi +

N
∑

j=1; j 6=i

∑

m∈Z

Jijδ (t− (tj,m +∆)) , (2.2.6)

where I is a suprathreshold external current I > 1 and γ the dissipation of the
system. Here, each potential Vj relaxes towards I > 1 and is reset to zero whenever
it reaches a threshold at unity,

Vj(t
−) = 1 ⇒ Vj(t) := 0, tj,m := t, andm 7→ m+ 1 . (2.2.7)

At these times tj,m, neuron j sends a pulse that after a delay ∆ > 0 changes the
potential of post-synaptic neurons i in an inhibitory (negative) manner according
to (2.2.6) with σ < 0 in (2.2.1).

Equivalently to these ordinary differential equations, there is a simplified approach
which represents the state of a one-dimensional oscillator not by its membrane
potential but by a phase that encodes the time to the next spike in the absence of
any interactions. The state of an individual oscillator j is then represented by a
phase-like variable φj ∈ (−∞, 1] that increases uniformly in time,

dφj/dt = 1 . (2.2.8)

Upon crossing the firing threshold, φj(t
−) = 1, at time t oscillator j is instanta-

neously reset to zero, φj(t) = 0, and a pulse is sent. After a delay ∆ this pulse is
received by all oscillators i connected to j and induces an instantaneous phase jump
given by

φi((t +∆)+) = U−1 (U(φi(t+∆) + Jij) (2.2.9)
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2.2. Network structure and dynamics

Here, the coupling strengths from j to i are taken to be purely inhibitory (σ < 0
in (2.2.1)) and normalized according to (3.1.3). The rise function U , which medi-
ates the interactions, can be derived from (2.2.6) [TWG03], and turns out to be
monotonically increasing, U ′ > 0, concave (down), U ′′ < 0, and represents the
subthreshold dynamics of individual oscillators. Note that the function U needs to
be defined on the entire range of accessible phase values. In particular, inhibitory
coupling can lead to negative phase values φi < 0.
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3 Speed of Complex Network

Synchronization

In this Chapter we present our results related to the first of the main questions raised
in the introduction: What is the typical time scale for synchronization, i.e.how fast
can oscillators coordinate their dynamics if they are not directly interconnected but
interact on large networks of regular, random or small-world topology?

We address this question by computer simulations as well as analytical predic-
tions. All results are derived for the simplest of all regular states, the synchronous
periodic state, in which all oscillators exhibit identical dynamics. However, also
other settings are imaginable: cluster states in which two or more groups of syn-
chronized oscillators exist [EPG95, EPG98] or systems with inhomogeneities in the
dynamical and topological parameters [DTD+04] can be treated similarly. We study
the effect of topology on the synchronization time of directed networks which exhibit
different dynamics introduced in the previous Chapter: Kuramoto phase oscillators
coupled via phase differences (2.2.2), higher-dimensional periodic Rössler systems
coupled diffusively (2.2.2) as well as neural circuits with inhibitory delayed pulse-
coupling (2.2.2). Synchronization time is a measure of how quickly the network
re-synchronizes after being perturbed from a synchronized state.

We present the first systematic study of asymptotic synchronization times for
networks with topologies ranging from completely ordered, grid-like, to completely
disordered, random, including the intermediate, partially disordered class of topolo-
gies, the small worlds. So far it has been studied analytically for fully random
networks only [TGW06].

This Chapter is organized as follows. In Section 3.1 we first introduce the concept
of synchronization time in networks of coupled oscillators, the central quantity of
this Chapter. We then present first simulations including the numerical measure-
ment of synchronization times. In Section 3.4 we derive analytical predictions for the
synchronization times. In partiicular, we extend the master stability function for-
malism [PC98] to determine the synchronization speed. In Section 3.5 we compare
the analytical predictions for the synchronization times and the results obtained
by extensive computer simulations for network ensembles with fixed in-degree, with
fixed average path length and with fixed betweenness centrality, followed by an anal-
ysis of generic network ensembles. In Section 3.6 the study of synchronization times
for real-world networks – rewiring them towards fully random networks – confirms
our theoretical results. We close in Section 3.7 with a summary and a discussion of
further work.
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3.1. Synchronization in networks of coupled oscillators

3.1 Synchronization in networks of coupled

oscillators

We assume identical oscillators which leads to identical or complete synchronization.
The equation of motion for the uncoupled oscillators is given by

dxi

dt
= F (xi) , (3.1.1)

where the m-dimensional vector xi = {xi,1, ..., xi,m} refers to the components of
each oscillator i ∈ {1, ..., N} and F : Rm 7→ R

m defines the dynamics. Although
each oscillator evolves in an m-dimensional state space, we consider couplings via
one coordinate only.

Therefore, we can describe the connection of N oscillators in a directed network
by a coupling matrix J that consists of zero and non-zero elements to specify which
oscillators are coupled to which other ones. Thus, the coupling matrix J is propor-
tional to the adjacency matrix A defined in eq. (2.1.1).

The matrix elements Jij are given by

Jij =

{

σ/kin
i if j is connected to i 6= j

0 otherwise
, (3.1.2)

where σ is a global coupling constant and 1/kin
i a normalization factor that guar-

antees a homogeneous total input

N
∑

j=1

Jij = kin
i

σ

kin
i

= σ (3.1.3)

such that no specific oscillator receives distinguished couplings.
Directly related to the coupling matrix J is the scaled graph Laplacian Λ propor-

tional to the one introduced in eq. (2.1.22) in Chapter 2

Λij = Jij(1− δij)− σδij , (3.1.4)

where δij is the Kronecker-delta. Its eigenvalues λi are complex and ordered as
0 = Reλ1 ≥ Reλ2 ≥ . . . ≥ ReλN . The number of zero eigenvalues of the Laplacian
matrix is equal to the number of strongly connected components (SCCs) of the
network. Thus, if the second-largest eigenvalue λ2 equals zero, the network is split
in more than one SCC. Then, it is impossible for the network to achieve a completely
synchronized state, which is only possible for strongly connected subnetworks. We
are therefore considering networks with only one SCC throughout this thesis, which
means Reλ2 > 0.

We describe the dynamics of the interaction by a function H that is a vector
function of dimension m of the dynamical variables of two connected oscillators.
We assume that this function H is the same function for each pair of connected
oscillators. For example, H for the Rössler oscillators [Roe76] is a 3×3 matrix that
only picks out the x-component to couple to the other oscillators.
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Chapter 3. Speed of Complex Network Synchronization

The coupled equations of motion become

dxi

dt
= F (xi) +

N
∑

j=1

JijH(xi,xj) , (3.1.5)

where Jij > 0 acts on each oscillator. Since we want to examine the case of identical
synchronization, the equations of motion become the same for all oscillators when
the system is synchronized. In the synchronous state all oscillators’ variables are
equal to the same dynamical variable:

x1(t) = x2(t) = . . . = xN(t) = s(t) , (3.1.6)

where s(t) is the subspace defined by the constraints in eq. (3.1.6), the synchroniza-
tion manifold. We assume H(s(t), s(t)) = 0. Furthermore, we assume stability of
this state which means that small arbitrary perturbations to each xj die out in the
long time limit.

In addition to these dynamical systems with continuous-time coupling we will
investigate the pulse-coupled systems introduced in Section 2.2.2 as well in the
following.

3.2 The speed of synchronization in simulations

We consider directed regular, small-world and random networks which are character-
ized by increasing rewiring, the topological randomness q. By tuning this parameter
we interpolate between regular ring networks (q = 0), small worlds (low q ≪ 1) and
fully random networks (q = 1) as has been explained in detail in Section 2.2.1.

To analyze the purely topological impact on the synchronization times, we study
the network dynamics in its simplest setting: we consider strongly connected net-
works with fixed in-degree kin and homogeneous total input coupling strengths (en-
coded in the coupling matrix J (2.2.1)) such that full synchrony is achieved from
sufficiently close initial conditions for all coupling strengths σ [Tim06].

First simulations for three different kinds of oscillators (see Fig. 3.1) show that
synchronization becomes an exponential process after some short transients for all
fractions q ∈ [0, 1] of randomness. Thus the distance

d(t) = max
i,j

dist(xi(t),xj(t)) (3.2.1)

from the synchronous state decays as

d(t) ∼ exp(−t/τ) (3.2.2)

in the long time limit, where dist(x,x′) is a function measuring the distance between
the two appropriate phase variables x and x′, taking into account possible periodic
boundary conditions.

The characteristic time scale τ in (3.2.2) is what we call the synchronization time
in the following. However, there exist systems as well where the transient until the
exponential decay is not negligible [ZTGW04, ZLPT06, JMT08, ZBH09, TMK10].
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Figure 3.1: Time scales of synchronization of oscillator networks for topological
randomness q ∈ {0, 0.02, 1} (in-degree fixed at k = 20). left col-
umn a: Kuramoto oscillators (σ = 1); b: diffusively coupled periodic
Rössler oscillators (a = 0.2, b = 1.7, c = 5.7, σ = 2); c: pulse-coupled
oscillators (I = 1.01, γ = 1, σ = −0.2, ∆ = 0.1). See equations (3.2.3)
– (3.2.5) for the definitions of the variable differences. Plotted in the
bottom row are the logarithmized decaying distances (see equations
(3.2.2), (3.4.4), (3.4.7) and (3.4.23)).

As one can see in Fig. 3.1 this decay is similar for Kuramoto, Rössler and pulse-
coupled oscillators. It depicts the differences of the phase variables (which we have
introduced in detail already in Section 3.4) of ten reference oscillators to the corre-
sponding means denoted by [ . ]:

∆K,i(t) = Θi(t)− [Θj(t)]j , (3.2.3)

∆R,i(t) = xi(t)− [xj(t)]j , (3.2.4)

∆PC,i(t) = φ̃i(t)−
[

φ̃j(t)
]

j
, (3.2.5)

with

φ̃i(t) =

{

φi(t) if φi(t) ≤ 0.5 ,
φi(t)− 1 if φi(t) > 0.5

(3.2.6)
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Chapter 3. Speed of Complex Network Synchronization

’K’ stands for Kuramoto, ’R’ for Rössler and ’PC’ for pulse-coupled oscillators and
these abbreviations will be kept throughout this thesis.

In contrast to the continuous-time dynamics of the Kuramoto and Rössler oscil-
lators, for the pulse-coupled oscillators the phases are measured at discrete ’spiking’
times of a reference oscillator. For the 3-dimensional Rössler oscillators only the
x-coordinates are shown here. The actual dynamical variables for all systems have
been introduced in Chapter 2.
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3.3. Quantifying the small-world regime

3.3 Quantifying the small-world regime

The small-world regime (Section 2.2.1) is characterized by a high global clustering
coefficient C (eq. 2.1.18) and a low average shortest path length L (eq. 2.1.8).

To quantitatively fix the small-world regime we take

〈L(q, k)〉
L(0, k)

< 0.5 and
〈C(q, k)〉
C(0, k)

> 0.85 (3.3.1)

throughout this thesis (see Fig. 3.2). However, our results are not sensitive to a
change of these values.
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Figure 3.2: Quantifying the small-world regime. The small-world regime is
determined by an (a) low shortest path length (green area in a) and
a (b) high clustering (green area in b) (see eq. (3.3.1)). The aver-
age shortest path length 〈L(q, k)〉 and the global clustering coefficient
〈C(q, k)〉 are averaged over 100 network realizations.

As the topological randomness q is changed from zero to one the network contin-
uously interpolates between regular and random topologies. This structural change
induces changes in the corresponding graph Laplacian’s spectrum and thus has a di-
rect influence on the synchronization speed as is explained in detail in the following
Section 3.4.
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3.4 Analytical predictions for the synchronization

time

In this Section we derive analytical predictions for the synchronization times of the
different oscillator types introduced in Section 2.2.2. Additionally, we add remarks
on the simulations, the chosen initial conditions and the numerical measurement of
the synchronization time.

3.4.1 Kuramoto oscillators

The fully synchronous state defined in (3.1.6) here takes the form

θi(t) ≡ θj(t) =: θ(t) (3.4.1)

As the synchronous periodic orbit analyzed is isolated in state space, the relaxation
time continuously changes with possible inhomogeneities, so the qualitative results
obtained below are generic and also hold in the presence of small heterogeneities,
cf. [DTD+04].

Furthermore, starting from random initial phases in the range [0, π] the syn-
chronization dynamics shows a fast transient. After this fast initial evolution all
phases are quite similar and the sine function in (2.2.2) can be well approximated
by its argument. Linearizing (2.2.2) close to the synchronous state (3.4.1) phase
perturbations defined as

δK,i(t) := θi(t)− θ(t) (3.4.2)

evolve according to

dδK,i

dt
=
∑

j

ΛijδK,j(t) for i ∈ {1, ..., N}. (3.4.3)

Here the stability matrix coincides with the graph Laplacian defined in (3.1.4).
Close to every invariant trajectory the eigenvalue λ2 of the stability matrix Λ

that is second largest in real part dominates the asymptotic decay in the long time
limit

dK(t) ∼ exp(−t/τK) . (3.4.4)

The distance dK(t) is given by (3.2.1) where dist(θ, θ′) for Kuramoto oscillators is
the circular distance between the two phases θ and θ′ on S1.
λ2 here determines the asymptotic synchronization time which is given by

τK = − 1

Reλ2
. (3.4.5)

3.4.2 Rössler oscillators

The evolution of perturbations is characterized by measuring the Euclidean dis-
tances

dij(t) =
√

(xi(t)−xj(t))2+(yi(t)−yj(t))2+(zi(t)−zj(t))2 (3.4.6)
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between the states of all N(N − 1)/2 possible pairs of oscillators (i, j). The
asymptotic synchronization time is then determined via the decay of the maximal
distance

dR(t) = max
i,j

dij(t). (3.4.7)

The extended master stability function formalism

A general approach to determine the synchronization time for continuous systems
described by (3.1.5)– alternative to the one taken for the Kuramoto oscillators,
which does not work for the Rössler oscillators – is to extend the master stability
function (MSF) formalism introduced in [PC98] (cf. also [PC90, HCP94b]). Note
that this approach does not work for the pulse-coupled oscillators, where the phases
are measured at discrete times. But recently, the formalism has been extended to
units with time-delayed couplings [KER+09] and to units which are nearly identical
[SBN09].

So far this formalism has only been used to determine the stability of networks
of coupled oscillators [FJC+00, HCLP09] and nearly all studies have focussed on
symmetric undirected networks. More recent studies have also considered directed
networks (see e.g. [HCAB05, CQH+10, Bre10]).

Note that we focus on Rössler oscillators coupled via the x-coordinate, but other
coupling structures could be treated analogously [Pec98].

Defining infinitesimal perturbations to the synchronous state (3.1.6) in the system
described by Eq. (3.1.5) as

δR,i = xi(t)− s(t) (3.4.8)

we get the variational equation

dδR,i

dt
= DF (s)δR,i −

N
∑

j=1

ΛijDH(s, s)δR,i, (3.4.9)

where the matrix Λ is the graph Laplacian defined in (3.1.4), DF (s) and
DH(s, s) are the Jacobians evaluated along the trajectory s(t).

For the above Rössler system with diffusive coupling via the x-coordinate the
Jacobian matrices for this block are given by

DF (x, y, z) =





0 −1 −1
1 a 0
z 0 x− c



 (3.4.10)

and

DH(x, y, z) =





1 0 0
0 0 0
0 0 0



 (3.4.11)

The transformation δ′

R = O−1δR, where O is a matrix whose columns are the set
of the Laplacian’s eigenvectors, diagonalizes the set of equations (3.4.9) and hence
leads to a set of decoupled blocks of the form

dδ′

R,i

dt
= [DF (s)− λiDH(s, s)] δ′

R,i, (3.4.12)
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Figure 3.3: Master stability functions h1,γ (3.4.14) for the Rössler oscilla-
tors. a: periodic regime (parameters set to a = 0.2, b = 1.7, c = 5.7).
b: chaotic regime (parameters set to a = 0.2, b = 0.2, c = 5.7).
The black contours show the MSF equal to zero, i.e. separate the stable
from the unstable regions.
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Figure 3.4: The eigenvalue distribution of the graph Laplacian directly
links to the system’s stability and synchronization dynamics.
a: in gray the whole complex spectrum of the graph Laplacians in the
ranges q ∈ [0, 1] and k ∈ [10, 100], blue: eigenvalues for q = 0, k = 50
(purely real due to the initial ring symmetry), red: eigenvalues in the
SW regime with q = 0.02, k = 50, green: eigenvalues for q = 1, k = 50.
b: zoom to the real axis, eigenvalues for k = 50 and q ∈ {0, 0.02, 1}
with colors as above. c: Evaluating the master stability function h1,γ :
each eigenvalue λi (for i ∈ {2, . . . , N}) of a network realization (points
and colors as in a and b) leads to a largest Lyapunov exponent h1,i
(3.4.14) – if all these are negative the system synchronizes and the
maximal exponent h1,max determines the asymptotic synchronization
time (3.4.15).

with the λi being the eigenvalues of the Laplacian matrix Λ. The above-given
Jacobians evaluated in the synchronized state s(t) are the same for each block,
hence the blocks only differ by the scalar multiplier λi.

Thus these blocks could be evaluated all at once by setting

dδ′

R,i

dt
= [DF (s)− γDH(s, s)] δ′

R,i (3.4.13)

in dependence on the complex coupling parameter γ = α + iβ. The imaginary
part β may be interpreted as a ’rotation’ taking place between the several decaying
eigenmodes of the system [PCJ+97].

The system actually synchronizes if

h1,i = lim
t→∞

1

t
log

|δ′

R,i(t)|
|δ′

R,i(0)|
< 0 (3.4.14)
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for all i ∈ {2, . . . , N}. Here h1,i is the largest Lyapunov exponent corresponding to
the mode of eigenvalue λi (see e.g. [Ott93]).

The largest Lyapunov exponent h1,γ in dependence on the complex coupling pa-
rameter γ is also called the master stability function and plotted in Fig. 3.3 for
the periodic and chaotic Rössler oscillators. We calculate the largest Lyapunov
exponent following the numerical procedure described in [HCLP09]. It is evident
that the λ1 = 0-mode is parallel to the synchronization manifold while all the other
modes are transverse to it.

To obtain the asymptotic synchronization time we extract the largest Lyapunov
exponent h1,i with the minimal absolute value out of the N −1 maximal exponents,
namely

h1,max = max
i≥2

h1,i. (3.4.15)

The synchronization time for the Rössler oscillators is then given by

τR = − 1

h1,max
. (3.4.16)

h1,max dominates the decay towards the synchronized state, but note the nonlinear
dependence on the eigenvalues of the Laplacian matrix (3.4.12). Only for the simple
1-dimensional Kuramoto oscillators there is a direct relation, since here there is
linear and unbounded coupling, i.e. the larger the global coupling the faster the
synchronization speed.

In order to find a value for the global coupling parameter σ - encoded in Λ accord-
ing to (3.1.4) - that leads to synchronization, one calculates the whole spectrum of
possible eigenvalues (see Fig. 3.4) to guarantee that each one is located in the stable
region, i.e. in the region where the MSF takes only negative values. Note that the
MSF for uncoupled periodic Rössler oscillators is zero, while the MSF for uncoupled
chaotic Rössler oscillators is positive. This means that the minimal global coupling
constant needed to achieve synchronization is always larger for the chaotic Rössler
oscillators than for the periodic ones.

In particular, this means that there is an upper limit on the size of a stable,
synchronous array of chaotic Rössler oscillators [HCP94a, HPC95].

3.4.3 Pulse-coupled oscillators

The synchronous state s(t) defined in (3.1.6) here takes the form

φi(t) = φ0(t) (3.4.17)

for all i, which is a self-consistent solution assuming that all neuronal oscillators fire
at the same time. Here all oscillators display identical phases φ0(t) on a periodic
orbit such that φ0(t+ T ) = φ0(t) with the period

T = ∆+ 1− α (3.4.18)

where
α = U−1(U(∆) + σ). (3.4.19)
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3.4. Analytical predictions for the synchronization time

Note that here in contrast to the Kuramoto oscillators the period is different from
the one of a free oscillator [TWG02].

A perturbation

δPC(0) =: δPC = (δPC,1, . . . , δPC,N) (3.4.20)

to the phases is defined as

δPC,i = φi(0)− φ0(0) . (3.4.21)

The initial condition for the phases of the pulse-coupled oscillators is a random
perturbation δPC from the globally synchronized state δPC = 0. The perturbation
components δPC,i are each drawn independently from a uniform distribution on
[−δ, δ]. The condition δ < ∆

2
derived in [TGW06] (recall that ∆ is the delay time)

ensures that the globally synchronized state is stable. This guarantees that all
pulse-coupled oscillators reach the threshold before any pulses are received.

A sufficiently small perturbation δPC asymptotically converges exponentially with
time to a constant vector. Subtracting the asymptotic phase shift,

δ
′
PC(t) := δPC(t)− lim

s→∞
δPC(s), (3.4.22)

the distance

dPC(nT ) := max
i

|δ′PC,i(nT )| (3.4.23)

from the synchronous state (δ′PC,i ≡ 0) decays as

dPC(nT ) ∼ exp(− nT

τPC

) (3.4.24)

as n→ ∞, defining a synchronization time τPC.
To understand how the speed of synchronization depends on the dynamical and

network parameters, we analyze how perturbations δPC to the synchronous state
evolve in time. Following [TWG02] we first define a nonlinear stroboscopic map

δPC(nT ) = G̃(δPC

(

(n− 1)T )
)

(3.4.25)

for the perturbations. Note that δPC(T ) = δPC(0) since no spikes are received
before all the oscillators reach the phase threshold for the first time. Hence we first
apply the map G̃ in the first period when spikes are received i.e. for n ≥ 2.

Considering the first order approximation of this period-T map one gets a linear
iterative map G given by

δPC,i(nT ) =
N
∑

j=1

GijδPC,j

(

(n− 1) T
)

, n ≥ 2, (3.4.26)

for the perturbations δPC,i(nT ) of spike times close to the synchronous orbit of
period

T = ln
(

I/(I − 1)
)

. (3.4.27)
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The matrix elements Gij are defined as

Gij =







pi,m − pi,m−1 if j is connected to i 6= j
pi,0 if j = i
0 otherwise

(3.4.28)

where the variables pi,m (m ∈ {1, . . . , ki}) encode phase jumps evoked by all pulses
up to the mth one received [TWG02]. Since the matrix elements (3.4.28) are dif-
ferences of these pi,m , matrix elements Gij and Gij′ with j 6= j′ have in general
different values depending on the order of incoming signals.

This multi-operator problem [TW08] is induced by the structure of the network
together with the pulsed interactions, in particular, by the order of the components
of δ(0). For networks with homogeneous, global coupling different matrices G can be
identified by an appropriate permutation of the oscillator indices. But in general this
is impossible. However, here we focus on the leaky integrate-and-fire (LIF) dynamics
where the matrix G becomes independent of the rank order of the perturbations
[TGW06]. Here U takes the form

U(φ) :=
I

γ
(1− e−γφ). (3.4.29)

In order to obtain the matrix elements Gij we first calculate

U ′(φ) = Ie−γφ (3.4.30)

and

U−1(y) =
1

γ
ln
(

1− yγ

I

)−1

. (3.4.31)

Furthermore we calculate

U−1(U(∆) + Jij) =
1

γ
ln
(

e−γ∆ − γ

I
Jij

)−1

(3.4.32)

and
U ′(U−1(U(∆) + Jij)) = Ie−γ∆ − γJij. (3.4.33)

This leads to

pi,m :=
U ′(U−1(U(∆) +

∑m
l=1 Jijl))

U ′(U−1(U(∆) + Jij))

=
Ie−γ∆ − γ

∑m
l=1 Jijl

Ie−γ∆ − γJij
(3.4.34)

where the sum
∑m

l=1 Jijl with m ∈ {1, . . . , ki} counts up to the mth signal received
by neuron i during the considered period.

For homogeneous inhibitory coupling, σ/k < 0 for each existing connection, the
elements of the stability matrix are given by

Gij =







g0/k if j is connected to i 6= j
1− g0 if j = i
0 otherwise

(3.4.35)
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3.4. Analytical predictions for the synchronization time

with

g0 =
γσ

Ie−γ∆ + γσ
. (3.4.36)

We let vi for i = 1, 2, . . . , N be the eigenvectors of G with corresponding eigen-
values |g1| > |g2| ≥ . . . ≥ |gN |. G is a stochastic matrix and all diagonal entries
satisfy Gii > 0. Hence, the matrix is aperiodic which implies that the eigenvalue
g1 = 1 is the largest and is unique, which can be shown with the Geršgorin circle
theorem (see e.g. [Var05]) and the Perron-Frobenius theorem [HC99, BL07]. The
eigenvector corresponding to the eigenvalue g1 = 1 is v1 = (1, 1, . . . , 1)T since the
row-sums of G are equal to one. Recall that this means the distance vector dPC(n)
does not tend to zero as n→ ∞, but instead to a uniform phase shift (3.4.22)

lim
s→∞

δPC(s) =: δ∞ (3.4.37)

which has all components equal, (δ∞)i = δ∞ for all i (i.e. all the neurons are at the
same phase and hence in a globally synchronized state). Furthermore, recall that
the distance from the globally synchronized state is given by

dPC(nT ) := max
i

|δ′PC,i(nT )| (3.4.38)

as defined in (3.4.23). Using the fact that g1 = 1, v1 = (1, 1, . . . , 1)T and rewriting
δPC as a linear combination of the basis of eigenvectors gives

δ
′
PC(nT ) = δPC(nT )− δ∞ (3.4.39)

= Gn
δPC(T )− δ∞ (3.4.40)

= Gn

(

N
∑

i=1

βivi

)

− δ∞v1 (3.4.41)

= (β1 − δ∞)v1 +

N
∑

i=2

βig
n
i vi . (3.4.42)

Since (δPC(nT )− δ∞) → 0 as n → ∞ and |gi| < 1 for i ≥ 2 it follows from
(3.4.42) that

lim
n→∞

[

(β1 − δ∞)v1 +
N
∑

i=2

βig
n
i vi

]

= (β1 − δ∞)v1 = 0 (3.4.43)

and hence

β1 = δ∞ . (3.4.44)

This leaves us with

δ
′
PC(nT ) =

N
∑

i=2

βig
n
i vi . (3.4.45)
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Then, since g2 is the second largest eigenvalue, taking the infinity norm in (3.4.42)
gives

dPC(nT ) = max
j

∣

∣

∣

∣

∣

∣

(

N
∑

i=2

βig
n
i vi

)

j

∣

∣

∣

∣

∣

∣

(3.4.46)

= |β2gn2 |max
j

∣

∣

∣

∣

∣

∣

(

v2 +

N
∑

i=3

βi
β2

(

gi
g2

)n

vi

)

j

∣

∣

∣

∣

∣

∣

(3.4.47)

∼ |β2| |g2|n max
j

|v2,j| (3.4.48)

where ∼ means ‘is asymptotically equal to (as n→ ∞)’.
Taking the logarithm of (3.4.48) gives

log (dPC(nT )) ∼ n log |g2|+ c , (3.4.49)

where c is a constant given by

c = log |β2|+ logmax
j

|v2,j | . (3.4.50)

On the other hand dPC(n) asymptotically defines the synchronization time by

dPC(nT ) ∼ |β2|max
j

|v2,j | exp
(

− nT

τPC

)

(3.4.51)

which after taking the logarithm gives

log(dPC(n)) ∼ c− nT

τPC

(3.4.52)

with the constant c from eq. 3.4.50. Comparing (3.4.49) with (3.4.52) leads to

τPC = − T

log |g2|
. (3.4.53)

We numerically find the second largest eigenvalue of the matrix G and use this to
analytically calculate the synchronization time (3.4.53). To minimize the influence
of specific rewired networks and perturbations we average over 100 realizations to
obtain the average synchronization time 〈τPC〉. As for the Kuramoto system, the
prediction of synchronization times based on the eigenvalues of the matrix G well
agrees with those obtained from direct numerical simulation (Fig. 3.5).
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Figure 3.5: Comparing specific network ensembles. Solid lines indicate net-
work ensembles with fixed in-degree kin = 50, with fixed average path
length 〈L〉 = 3.5 and with fixed betweenness centrality 〈B〉 = 0.35.
The small-world regime (3.3.1) is located between the dashed lines.

3.5 Synchronization time in dependence on

topological randomness and degree

In this Section we study the dependence of the synchronization time on the topo-
logical randomness q and on the in-degree kin. Following the original approach of
Watts and Strogatz we first examine ensembles with a fixed in-degree kin and later
generalize to generic network ensembles. As an overview, the localization of the
different ensembles kin(q) is depicted in Fig. 3.5.

3.5.1 Choice of network ensembles

We want to study the synchronization times with the emphasis on their behavior in
the small-world regime which is defined by Eq. (3.3.1) and highlighted in Fig. 3.5
as the shaded region.

While the curves of the network ensembles with fixed in-degree kin and those
with fixed average path length 〈L〉 cross the small-world regime, this is not the
case for the curves of the ensembles with fixed betweenness centrality 〈B〉 (see e.g.
[Fre77], cf. also Chapter 2). However, we depicted the curve for these ensembles
representatively to illustrate that one can not necessarily find curves of ensembles
with a fixed topological observable that cross the small-world regime as desired. For
instance, the same holds for the curves of network ensembles with fixed clustering
coefficient 〈C〉.

To determine the synchronization times for these specific ensembles we use the
derived analytical predictions in (3.4.5), (3.4.16) and (3.4.53), average them over
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Chapter 3. Speed of Complex Network Synchronization

100 network realizations and compare them to the synchronization times obtained
via simulations. These results for the synchronization times are averaged over 100
realizations of networks and perturbations.

For the Kuramoto and pulse-coupled oscillators, determining the eigenvalues of
the stability matrices of networks yields synchronization time estimates that agree
well with those found from direct numerical simulations.

Only for the Rössler oscillators the synchronization times obtained from the nu-
merical measurement of the decaying maximal distances (3.2.2) show small but
systematic deviations from the analytically predicted ones. These deviations may
be due to inaccuracies in determining the Euclidean distances that oscillate (see the
decaying x-coordinates only in Fig. 3.1, b).

3.5.2 Monotonicity: networks with fixed in-degree

This section is dedicated to the dependence of average synchronization time
〈τ (q, kin)〉 on the topological randomness q for standard Watts-Strogatz ensembles
of networks with fixed in-degree kin.
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Figure 3.6: Monotonic dependence of the synchronization time 〈τ〉 on the
topological randomness q for fixed in-degree kin = 50. The
small-world regime (3.3.1) is located in the shaded region between the
dashed lines. Simulation results (symbols with standard deviations)
for synchronization times of Kuramoto (blue, circle), Rössler (green,
triangle) and pulse-coupled oscillators (red, square) in comparison to
analytical predictions based on equations (3.4.4), (3.4.7) and (3.4.23)
(solid lines), cf. also Fig. 3.5 for the localization of the network ensem-
bles with fixed in-degree. 100 realizations were carried out in order to
average over network topologies (and in simulations additionally over
perturbations). Parameters as in Fig. 3.1.
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3.5. Dependence on topological randomness and degree

We see in Fig. 3.6 that 〈τ (q, kin)〉 is monotonically decreasing with the topolog-
ical randomness q and systematically depends on the network topology: Regular
ring networks (q → 0) are typically relatively slow to synchronize. We find that
increasing q towards the small-world regime induces shorter and shorter network
synchronization times, with small worlds synchronizing a few times faster than
regular rings. Further increasing the randomness q induces even much faster syn-
chronization, with fully random networks (q → 1) synchronizing fastest (two orders
of magnitude faster than small worlds in our examples).

Thus, in network ensembles with fixed in-degree small worlds just occur inter-
mediately during a monotonic increase of synchronization speed, but are not at all
topologically optimal regarding their synchronization time.

One could try to explain this dependence heuristically by the decrease of the
average characteristic path length. Indeed, the dependence of 〈L (q, kin)〉 on q is also
monotonically decreasing in a similar fashion. It is intuitive that as the characteristic
path length decreases, oscillators can communicate more efficiently and this leads
to faster and more efficient synchronization.

3.5.3 Non-monotonicity: ensembles with fixed average path

length

We therefore systematically study the synchronization time for generalized Watts-
Strogatz ensembles of networks, specified by a function kin(q), where the average
path length 〈L〉 is fixed while the degree of randomness q varies. We fix the average
characteristic path length 〈L (q, kin)〉 = 3.5 as this gives us a wide range of q values.
However, the results below are not sensitive to a change of this specific value, cf.
also [GHGT10]. We do not take kin < 10 as the networks are in general no longer
strongly connected for larger q values. For each of these in-degrees kin a value of the
topopolgical randomness q(kin) is determined. Note that the standard deviations
are larger for smaller q values. This is because we are rewiring a small number
of edges here (Nkin/q on average) and rewiring one edge more or less may have a
strong effect on L(q, kin) as it may add a long-range connection where there was
not one previously. Note that kin decreases in a non-linear fashion as q increases
for networks with 〈L (q, kin)〉 = 3.5. When we increase q, we decrease the in-
degree kin. Thus, it might be expected that the amount of coupling each oscillator
receives also decreases. This would affect the synchronization time [TWG04]. We
remove this factor by keeping the input each oscillator receives fixed (3.1.3) as q
varies. By doing this, we have reduced the effect of changing the in-degree kin

on the synchronization time. Surprisingly, the synchronization time of network
ensembles with fixed average characteristic path length non-monotonically depends
on the topological randomness (Fig. 3.7). In particular, networks with intermediate
randomness in the small-world regime synchronize slowest.

Chaotic Rössler oscillators

We additionally investigate Rössler oscillators in the chaotic regime (see Sec-
tion 2.2.2). Here, some difficulties arise (cf. also Section 3.4.2):
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Figure 3.7: Non-monotonic dependence of the synchronization time 〈τ〉 on
the topological randomness q with fixed average path length
〈L〉 = 3.5. The small-world regime (3.3.1) is located in the shaded re-
gion between the dashed lines. Simulation results (symbols with stan-
dard deviations) for synchronization times of Kuramoto (blue, circle),
Rössler (green, triangle) and pulse-coupled oscillators (red, square) in
comparison to analytical predictions based on equations (3.4.4), (3.4.7)
and (3.4.23) (solid lines), cf. also Fig. 3.5 for the localization of the
network ensembles with fixed average path length. 100 realizations
were carried out in order to average over network topologies (and in
simulations additionally over perturbations). Parameters as in Fig. 3.1.

In order to find an optimized value for the global coupling parameter σ - encoded
in Λ according to (3.1.4) - that leads to synchronization, one notes that it is impos-
sible to guarantee that each eigenvalue is located in the stable region, i.e. in the
region where the master stability function takes only negative values (see Fig. 3.3).
This is mainly due to the fact that the MSF for uncoupled chaotic Rössler oscilla-
tors is positive. This means that the minimal global coupling constant needed to
achieve synchronization is always larger for the chaotic Rössler oscillators than for
the periodic ones with the consequence that large eigenmodes may become unsta-
ble. In particular, this means that there is an upper limit on the size of a stable,
synchronous array of chaotic Rössler oscillators [HCP94a, HPC95].

However, we numerically obtained results by only taking these network and per-
turbation realizations into account that lead to complete synchronization. For the
chaotic Rössler oscillators as well, the synchronization time of network ensembles
with fixed average characteristic path length non-monotonically depends on the
topological randomness (Fig. 3.8). Still it remains an open task to confirm the
synchronization times for the chaotic Rössler oscillators obtained numerically with
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Figure 3.8: Simulations for chaotic Rössler oscillators indicate a non-
monotonic dependence of the synchronization time 〈τ〉 on the
topological randomness q as well (fixed 〈L〉 = 3.5). The small-
world regime (3.3.1) is located in the shaded region between the dashed
lines. Only simulation results are plotted. 100 realizations of synchro-
nizing chaotic Rössler oscillators (a = 0.2, b = 0.2, c = 5.7, σ = 6)
were carried out in order to average over network topologies (and in
simulations additionally over perturbations).

analytical predictions.
Since faster synchronization times are apparently not only related to the decrease

of the average path length, we investigated the dependence on other topological
observables which have been suggested to control whether or not a network actually
synchronizes [NMLH03, LKJ06, GSKK06, MZK05b, ADGPV06, ZK06, CHQ+08].
As already mentioned – in general – it is not possible to find curves of ensembles
with a fixed topological observable that cross the small-world regime as desired.

Representatively, an ensemble with fixed betweenness centrality B(kin, q) is shown
in (Fig. 3.9). Curves of ensembles with fixed clustering coefficient or with one of the
other mentioned topological observables show a similar dependence, but also cover
no q values in the small-world regime at all or only a small range.

3.5.4 Generic nonlinear dependence of synchronization time

on randomness and degree

How does synchronization speed vary with randomness for more general ensembles
kin(q)? A systematic study of the synchronization time as a function of both in-
degree kin and randomness q (Fig. 3.10) reveals an interesting nonlinear dependence.

Firstly, it confirms that for all networks with fixed in-degree kin the synchro-
nization time is monotonic in the randomness q and the small-world regime at
intermediate randomness is not specifically distinguished.
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Figure 3.9: Monotonic dependence of the synchronization time 〈τ〉 on
the topological randomness q with fixed betweenness central-
ity 〈B〉 = 0.35. Ensembles with fixed betweenness centrality do not
cover any q values in the small-world regime. Simulation results (sym-
bols with standard deviations) for synchronization times of Kuramoto
(blue, circle), Rössler (green, triangle) and pulse-coupled oscillators
(red, square) in comparison to analytical predictions based on equa-
tions (3.4.4), (3.4.7) and (3.4.23) (solid lines), cf. also Fig. 3.5 for the
localization of the network ensembles with fixed betweenness central-
ity. 100 realizations were carried out in order to average over network
topologies (and in simulations additionally over perturbations). Pa-
rameters as in Fig. 3.1.

Secondly, the two-dimensional function 〈τ(q, kin)〉 implies that ensembles of net-
works with fixed path lengths all exhibit a non-monotonic behavior of the synchro-
nization time, with slowest synchronization for intermediate randomness.

Thirdly, considering graph ensembles characterized by any other smooth function
kin(q), q ∈ [0, 1], shows that this is a general phenomenon and the specific choice of
an ensemble kin(q) is not essential.

In fact, as illustrated in Fig. 3.10, for any generic network ensemble kin(q) (in-
cluding ensembles with fixed in-degree, fixed path length and fixed betweenness
centrality as special choice (see Figures 3.5, 3.6, 3.7 and 3.9)) the synchronization
speed 〈τ(q, kin(q))〉 is either intermediate or slowest, but never fastest at intermedi-
ate randomness, in particular in the small-world regime. It is remarkable that this
seems to hold universally as the synchronization times are similar for Kuramoto
oscillators (Fig. 3.10, a), periodic (Fig. 3.10, b) and chaotic [GHGT10] Rössler os-
cillators and pulse-coupled oscillators (Fig. 3.10, c). All dynamical oscillator models
considered show the same qualitative behavior, although the absolute values of the
synchronization times differ from model to model due to the specific choice of the
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system parameters.

3.5.5 Similarity between Kuramoto and pulse-coupled

oscillators

Comparing the synchronization times for Kuramoto and pulse-coupled oscillators
in Fig. 3.10 both show a striking similarity. The question poses itself whether the
synchronization times can be mapped on each other?

Therefore we will investigate the evolution of perturbations δ(t) in both systems:
For the Kuramoto oscillators we have

δK(t) = eReλ2tδ(0) (3.5.1)

while perturbations in the pulse-coupled system propagate like

δPC(nT ) = |g2|n δ(0). (3.5.2)

Obtaining similar synchronization times for both dynamics demands requires these
perturbations to evolve in the same way. Setting nT := t the crucial eigenvalues
should satisfy

Reλ2 =
log |g2|
T

. (3.5.3)

Comparing the structure of the two relevant matrices G (3.4.35) and Λ (3.1.4)
(see Fig. 3.11), we obtain the following relation for the respective eigenvalues a2
and λ2:

λ2 =
cK
cPC

g2 − 1 (3.5.4)

where the quotient cK/cPC depends on the system parameters

cK =σK (3.5.5)

cPC =
γσPC

Ie−γ∆ + γσPC

. (3.5.6)

Note that σK > 0 while σPC < 0. Setting the parameters in the way that this
quotient and the period T (T is close to one anyhow) are both equal to one, we get

1 + log |g2| = Re g2 provided |g2| ≈ 1 , Re g2 ≈ 1. (3.5.7)

This means that synchronization times obtained for networks of pulse-coupled os-
cillators and for the same structured networks of Kuramoto oscillators are equal if
the second largest eigenvalue of matrix A satisfies Re g2 ≈ 1 and |g2| ≈ 1, in the
sense that |log |g2|| ≪ 1. This is in general the case for large networks, for which
the stochastic matrix A has N eigenvalues with real parts in [−1, 1].
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Figure 3.10: Universal nonlinear dependence of synchronization time on
in-degree kin and topological randomness q. No generic ensem-
ble kin(q) exhibits fastest synchronization in the small-world regime.
a: Kuramoto oscillators, b: Rössler oscillators, c: pulse-coupled os-
cillators; logarithmic color scales. Parameters chosen as in Fig. 3.1.
Synchronization times are obtained from equations (3.4.5), (3.4.16)
and (3.4.53), cf. also Fig. 3.5 for the localization of the specific
network ensembles studied in previous sections. (modified from
[GHGT10, GGT11])
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3.6 Real-world networks

original network totally randomized network

p = 0 p = 1 

Figure 3.12: Randomizing real-world networks. Depicted is a social network
(inmates in prison [VDHS+03]): the original one (p = 0) in compari-
son to its totally randomized network (p = 1).

For Watts-Strogatz small-world model networks we have found that the synchro-
nization speed is either intermediate or slowest, but never fastest in the small-world
regime. Moreover, keeping the in-degree fixed, the model networks synchronize the
faster the more random they are. To support that this monotone relation also holds
in much more generality we considered various real-world networks: an air trans-
port network [CPSV07], a social network [VDHS+03], a neural network [AY92], an
organisational network [CP04] and a human travel network [BHG06].

3.6.1 Randomizing real-world networks

Randomization is performed by rewiring the existing connections with a probability
p ∈ [0, 1]. Note that the rewiring probability p and the topological randomness q
are two different quantities. Here we start with the original real-world network
(p = 0), which may be in the small-world regime already. The rewiring process is
performed as explained in Section 2.2.1: only the outgoing edges of the directed
links are rewired, which means that each node’s in-degree stays constant during
the rewiring. Having considered networks with the same in-degrees for all nodes
so far, these in-degrees may vary in real-world networks: But due to the rewiring
routine the network’s initial in-degree distribution is kept constant during rewiring.
Thus it is not uncommon for a single strongly-connected component (SCC) network
to split to several ones [Tim06]. If splitting occurs the rewiring is repeated until
the resulting network consists of one SCC only again. All measured quantities are
averaged over 100 network realizations.
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Figure 3.13: Real-world networks consistently synchronize several times
slower than their randomized counterparts (air transport net-
work: the US airports with the largest amount of traffic [CPSV07],
social network: inmates in prison [VDHS+03], neural network: C.
Elegans [AY92], organisational network: research team in a manu-
facturing company [CP04], human travel network: based on the tra-
jectories of dollar bills [BHG06]). a: Clustering coefficients 〈C〉. b:
Average shortest path lengths 〈L〉. c: Synchronization times 〈τ〉. d:
Synchronization times 〈τ〉 relative to the average path length 〈L〉. In-
set: the synchronization times for C. Elegans divided by the average
path length 〈L〉 show slightly non-monotonic behavior. All quantities
are averaged over 100 network realizations. Dashed lines are only a
guide to the eye.

3.6.2 Randomized real-world networks synchronize faster

The studied real-world networks show small-world behavior: gradually randomizing
these networks, their clustering coefficients and their average path lengths mono-
tonically decrease (Fig. 3.13, a and b). Only the clustering coefficient of the human
travel network partly shows a non-monotonic behaviour. This network is extremely
large (464670 nodes) in comparison to the other networks (≈ 100 – 500 nodes).

We found that all real-world networks consistently synchronized several times
slower than their randomized counterparts (Fig. 3.13, c). For all networks, the
synchronization times monotonically increase with increasing random rewiring. For
all but the neural circuit of C. Elegans [AY92], this holds even for ensembles with
fixed average path length; for the latter we observed non-monotonic dependence
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Chapter 3. Speed of Complex Network Synchronization

with slowest synchronization for intermediate randomness (Fig. 3.13, d).

3.7 Summary and discussion

In this Chapter we investigated the effect of topology on the speed of synchronization
for various oscillator types, intrinsic dynamics and coupling schemes: phase oscil-
lators coupled via phase differences, higher-dimensional periodic systems coupled
diffusively as well as neural circuits with inhibitory delayed pulse-coupling and con-
sistently found qualitatively the same results. We derived analytical predictions for
the asymptotic synchronization times, including an extension of the master stability
function to determine how fast the system actually synchronizes. We compared the
synchronization speed for different network ensembles:

Firstly, we found that for networks of fixed in-degree k, the average synchroniza-
tion time 〈τ〉 is monotonically decreasing with the topological randomness q. Com-
paring different fixed-k ensembles small-world networks always synchronize quicker
than regular networks.

Secondly, the intuitive idea that this is due to the decrease in average characteris-
tic path length 〈L(q, k)〉 does not provide a complete explanation: Instead of fixing
the in-degree, we fixed the average characteristic path length. For such ensembles
networks in the small-world regime synchronize slower than regular networks and
the synchronization speed non-monotonically depends on the topological random-
ness q. The in-degree k is monotonically decreasing with q and so does the clustering
coefficient 〈C(q, k)〉. So neither of these topological properties alone gives an ob-
vious explanation and the phenomenon results from an interplay between several
network properties. For example, the faster synchronization of regular networks
than of small-world networks may be due to the in-degree k being large. This is
not because the total coupling strength Jij = kσ is high, as we kept this fixed for
all (k, q)-pairs, but may be because the oscillators receive the coupling effect from
a large number of oscillators. However, we also see fast synchronization for random
networks where k is small and so the same total coupling amount is received from far
fewer interacting oscillators. So the explanation for the non-monotonic dependence
is non-trivial.

Thirdly, we investigated the dependence on other topological observables apart
from small-world properties: network ensembles with fixed betweenness centrality
have been displayed as an example, but yet a simple explanation for the nonlinear
dependence is missing.

Furthermore, we studied the full nonlinear dependence of the synchronization time
on the in-degree k and the topological randomness q for generic network ensembles.
We found that fastest synchronization is essentially impossible in the small-world
regime, except for highly artificial ensembles. This statement holds for all observed
dynamics. In particular, the synchronization times for the Kuramoto and pulse-
coupled oscillators are strikingly similar.

It would be interesting to extend the analysis started in Section 3.5.5 to find out
under which conditions the synchronization times for Kuramoto oscillators could be
approximated by or even analytically mapped on the times for the pulse-coupled
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oscillators.
We found that small worlds in general never synchronize fastest. Specifically, in

networks with fixed average path length, synchrony is consistently fast for regular
rings, fastest for completely random networks, and slowest in the intermediate small-
world regime (Fig. 3.5). It is an astonishing result that this holds across various
oscillator types, intrinsic dynamics and coupling schemes: phase oscillators coupled
via phase differences, higher-dimensional periodic systems coupled diffusively as well
as neural circuits with inhibitory delayed pulse-coupling.

In particular, small-world topologies are not at all special and may synchronize
orders of magnitude slower than completely random networks. So generically the
small-world regime either exhibits slowest synchronization or just exhibits no ex-
tremal properties regarding synchronization times.

Given the variety of the investigated dynamical systems our results indicate that
this is a universal phenomenon.

Our investigations of real-world networks support this view. Although the con-
sidered networks may be in the small-world regime already, rewiring still strongly
increases the synchronization speed, even for ensembles with fixed average path
length. It remains an open question why rewiring typically implies faster synchro-
nization.

In this Chapter we focused on systems with fixed size N . In the Watts-Strogatz
ensemble the scaling of quantities such as the average path length L or the clustering
coefficient C with the system size depends heavily on q [WS98], e.g. L ∼ N for
q = 0 and L ∼ logN for q = 1. Therefore, it would be an interesting question to
study how the results illustrated in Fig. 3.10 change with N and what would be the
appropriate definition of the small-world regime and other generalized ensembles
with given structural features as a function of the system size.

Additionally an understanding or even an analytical description of the curves
of same synchronization times in Fig. 3.10 is extremely helpful for finding further
relations between the topology and the dynamics of complex networks. In partic-
ular, it is an interesting question to understand the behavior of the second largest
eigenvalue of the Laplacian as a function of q for fixed k and N .

We address these questions – amongst others – in the next Chapter 4.
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4 Small-World Spectra in Mean

Field Theory

In this Chapter we derive analytic expressions for the small-world spectra based on
a two-stage mean field approximation that we introduce. A single formula covers
the entire spectrum from regular via small-world to strongly randomized topologies,
explaining also the simultaneous dependencies on network size N , average degree
k and randomness q. Numerical diagonalization of Laplacians of undirected and
directed networks shows that the analytic prediction well approximates all actual
eigenvalues, except for extremal parameter settings such as q of the order of unity,
where standard Random Matrix Theory can be applied.

Small-world models based on rewiring have received widespread attention both
theoretically and in applications, as demonstrated by the huge number of references
pointing to the original work [WS98]. But for most of their features analytical
predictions are not known to date ([BW00]; for a mean field solution of the average
path length see [NMW00]). In particular, the spectrum of small-world Laplacians
has been studied for several specific cases and numerically [Mon99, JJ01, BP02,
MO04, KvM11], but a general derivation of reliable analytic predictions is still
missing.

In general, the study of the graph Laplacian is extremely important since the
Laplacian is intimately connected to the structure of its underlying network (see
e.g. [Bol98, BL07]). Therefore, a broad area of research is related to its study
and in particular, to the study of its spectrum [MZK05b, Chu05, MZK05a, AC05,
DNM06, SDM08, BJ08, MM08] (cf. also Chapter 2).

The structural features of complex networks – encoded in the graph Laplacian –
underly their collective dynamics such as synchronization, diffusion, relaxation and
coordination processes [PRK01, Str01]. Such processes occur in various fields rang-
ing from opinion formation in social networks [PLR05] and consensus dynamics of
agents [OS05] to synchronization in biological circuits [BCDLR10, MMZ04] and re-
laxation oscillations in gene regulatory networks [McM02, GdBLC03]. In particular,
the asymptotic dynamics is characterized by the graph Laplacian.

This Chapter is organized as follows. In Section 4.1 we first present rewiring
‘on average’, a new mean field rewiring proposed by us. Based on this rewiring,
we derive a single formula that covers the entire spectrum from regular to strongly
randomized topologies in Section 4.2. Then we investigate the ordering of the mean
field eigenspectrum in Section 4.3, in particular, whether the index l = 2 is always
related to the second-largest eigenvalue. In Section 4.4 we investigate the accuracy
of our predictions via systematic numerical checks for the extreme eigenvalues. For
the topological randomness q of the order of unity, standard Random Matrix Theory
helps out in Section 4.5. Finally, we study the entire spectrum in Section 4.4. We
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4.1. A new mean field rewiring

a

b

c

Figure 4.1: Rewiring ‘on average’. (Cartoon for N = 16 and k = 4) Single re-
alizations of rewiring for (a) undirected and (b) directed networks; (c)
mean field rewiring. From left to right: q = 0 (regular ring network),
q = 0.1 (’small world’) and q = 1 (random network). The regular ring
network is the same for (a), (b) and (c). Adapted from [GGT12].

close in Section 4.7 with a summary and a discussion of further work.

4.1 A new mean field rewiring

Consider a graph of N nodes on a one-dimensional ring lattice with periodic bound-
ary conditions. Each node receives links from its k/2 nearest neighbors on both sides
(k is chosen to be even). Randomness is introduced by rewiring. Following [WS98]
for undirected networks, we first cut each edge with probability q. Afterwards the
cut edges are rewired to nodes chosen uniformly at random from the whole network
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Chapter 4. Small-World Spectra in Mean Field Theory

(avoiding double edges and self-loops). Similarly, for directed [Fag07] networks,
we first cut all out-going edges with probability q and rewire their tips afterwards
(avoiding double edges and self-loops as well).

The generic asymptotic relaxation dynamics on such a network is characterized
by its graph Laplacian Λ (see also equations (2.1.21) and (2.1.22)) defined by its
elements

Λij = Aij(1− δij)− kiδij (4.1.1)

for i, j ∈ {1, . . . , N}, where Aij are the elements of the adjacency matrix (one for
an existing edge and zero for no edge), ki is the degree of node i (replaced by
the in-degree for directed networks) and δij is the Kronecker-delta. Note that the
spectrum of the Laplacian for a directed network is complex while the spectrum for
an undirected one is real.

4.2 Derivation of an analytical expression for the

entire small-world spectrum

To analytically predict the Laplacian spectrum of the network models in dependence
of the network size N , the average degree k and the topological randomness q, we
introduce ’rewiring on average’, as depicted in Fig. 4.1 in comparison to both other
rewiring procedures for undirected and directed networks. First we define a circulant
mean field Laplacian

Λ̃mf =





















c0 c1 c2 · · · cN−1

cN−1 c0 c1 c2
...

cN−1 c0 c1
. . .

...
. . .

. . .
. . . c2

c1
c1 · · · cN−1 c0





















. (4.2.1)

For the initial ring (q = 0), Eq. (4.2.1) is exact and the matrix elements take the
form

ci =







−k if i = 0
1 if i ∈ {1, . . . , k

2
, N − k

2
, . . . , N − 1} = S1

0 if i ∈ {k
2
+ 1, . . . , N − k

2
− 1} = S2 ,

(4.2.2)

where we classify the elements into those representing the original ring S1 and those
representing absent edges S2 outside that ring.

For given q > 0, instead of rewiring each edge independently with a certain
probability to obtain a specific randomized network, we now ’rewire on average’ to
obtain a mean field version of the randomized network ensemble: Firstly, the average
total weight qkN/2 representing all edges to be rewired is subtracted uniformly
from the weights of existing edges of S1. Secondly, the rewired weight is distributed
uniformly among the total ’available’ weight in the whole network. The latter is
given by

f =
N(N − 1)− (1− q)kN

2
, (4.2.3)
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where each edge is assumed to carry at most weight one. Of this total, the weight

f1 =
qkN

2
(4.2.4)

is available in S1 and

f2 =
N(N − 1)− kN

2
(4.2.5)

in S2. The fraction f1/f is then assigned to elements representing edges in S1 and
the fraction f2/f to those representing S2. Therefore, an individual edge in S1 gets
the additional weight

w1 =
f1
f

qkN
2
kN
2

=
q2k

N − 1− (1− q)k
, (4.2.6)

and an edge in S2 gets the new weight

w2 =
f2
f

qkN
2

N(N−1)−kN
2

=
qk

N − 1− (1− q)k
. (4.2.7)

Thus, in our mean field theory the elements of the Laplacian (4.2.1) of a network
on N nodes with degree k after rewiring with probability q are given by

ci =







−k if i = 0
1− q + w1 if i ∈ S1

w2 if i ∈ S2 .
(4.2.8)

The mean field Laplacian defined by (4.2.1) and (4.2.8) by construction is a
circulant matrix with eigenvalues [GVL96, LT85, Gra01]

λ̃mf
l =

N−1
∑

j=0

cj exp

(−2πi(l − 1)j

N

)

. (4.2.9)

Observing the structure in Fig. 4.2 we immediately obtain the trivial eigenvalue
for l = 1:

λ̃mf
1 =

N−1
∑

j=0

cj exp

(−2πi(l − 1)j

N

)∣

∣

∣

∣

l=1

(4.2.10)

=

N−1
∑

j=0

cj = −k + k(1− q + w1) + (N − k − 1)w2 = 0 , (4.2.11)

which is common to all networks (for all q, N , and any k ≤ N − 1) and reflects the
invariance of Laplacian dynamics against uniform shifts, as seen from the associated
eigenvector ṽ1 = (1, . . . , 1)T.

To obtain the remaining eigenvalues for l ∈ {2, . . . , N} we first define

xl := exp

(−2πi(l − 1)

N

)

, (4.2.12)
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Figure 4.2: The banded structure of the mean field graph Laplacian. It
has the weights w̄1 = 1 − q + w1 for ci|i ∈ S1 and w2 for ci|i ∈ S2.
For q = 0 and hence w̄1 = 1 and w2 = 0 the exact ring Laplacian is
reobtained.

c′ :=
1− q

k
+ qc′′ (4.2.13)

and

c′′ :=
q

N − 1− (1− q)k
. (4.2.14)

This leads to

λ̃mf
l =− k + kc′

k
2
∑

j=1

xjl + kc′′
N−1− k

2
∑

j= k
2
+1

xjl + kc′
N−1
∑

j=N− k
2

xjl (4.2.15)

=− k + kc′

k
2
∑

j=1

xjl + kc′

k
2
∑

j=1

xN−j
l + kc′′





N
2
− k

2
−1

∑

j=1

x
N
2
+j

l +

N
2
− k

2
−1

∑

j=1

x
N
2
−j

l + x
N
2

l



 ,

(4.2.16)

where we have exploited the additional transposition symmetry Λ̃mf =
(

Λ̃mf
)T

which implies cj = cN−j. Applying the Euler formula [GR07].

exp (iα) = cos (α) + i sin (α) , (4.2.17)
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4.2. A single formula for the entire small-world spectrum

the complex summands cancel and we get

λ̃mf
l = −k+ 2kc′

k
2
∑

j=1

cos

(

2π(l − 1)j

N

)

+ x
N
2
l kc

′′



2

N
2
− k

2
−1

∑

j=1

cos

(

2π(l − 1)j

N

)

+ 1



 .

(4.2.18)
Furthermore, applying the trigonometric identity [GR07]

n
∑

j=0

cos(jα) = cos

(

n + 1

2
α

)

sin
(nα

2

) 1

sin(α
2
)
+ 1 (4.2.19)

=cos
(nα

2

)

sin

(

n + 1

2
α

)

1

sin(α
2
)

(4.2.20)

=
1

2

(

1 +
sin
(

(n + 1
2
)α
)

sin(α
2
)

)

, (4.2.21)

yields

λ̃mf
l = −k + kc′





sin
(

(k+1)(l−1)π
N

)

sin
(

(l−1)π
N

) − 1



+ x
N
2
l kc

′′
sin
(

(N−k−1)(l−1)π
N

)

sin
(

(l−1)π
N

) (4.2.22)

Taking advantage of additional identities – only valid for l ∈ Z (Fig. 4.3) –

x
N/2
l = (−1)l−1 , (4.2.23)

(−1)l−1 sin(α) = sin(α + (l − 1)π) (4.2.24)

and the symmetry
sin(−α) = − sin(α) , (4.2.25)

the expression simplifies to

λ̃mf
l =− k + kc′





sin
(

(k+1)(l−1)π
N

)

sin
(

(l−1)π
N

) − 1



 + (−1)l−1kc′′
sin
(

(−(k+1)+N)(l−1)π
N

)

sin
(

(l−1)π
N

)

(4.2.26)

=− k + kc′





sin
(

(k+1)(l−1)π
N

)

sin
(

(l−1)π
N

) − 1



 + kc′′
sin
(

(−(k+1)(l−1)+2N(l−1))π
N

)

sin
(

(l−1)π
N

) (4.2.27)

=− k + kc′





sin
(

(k+1)(l−1)π
N

)

sin
(

(l−1)π
N

) − 1



− kc′′
sin
(

(k+1)(l−1)π
N

)

sin
(

(l−1)π
N

) (4.2.28)

=− k − kc′ + k (c′ − c′′)
sin
(

(k+1)(l−1)π
N

)

sin
(

(l−1)π
N

) (4.2.29)

for l ∈ {2, . . . , N}.
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Figure 4.3: Interpolating the eigenvalues. Eqs. (4.2.22) and (4.2.29) both con-
tain the eigenspectrum λ̃mf

l for l ∈ {2, . . . , N} correctly (green circles).
But while λ̃mf

l in Eq. (4.2.22) includes λ̃mf
1 as liml→1 λ̃

mf
l = λ̃mf

1 = 0 as
well, λ̃mf

l in Eq. (4.2.29) does not: To further simplify expressions, we
have used identities (4.2.23) and (4.2.24) only valid for l ∈ Z.

4.3 The ordering of the mean field spectrum

The spectrum obeys the symmetry

λ̃mf
l = λ̃mf

N−l+2 , (4.3.1)

but is unordered otherwise, i.e. the index l does neither denote eigenvalues with
decreasing real part as for the eigenvalues λi of the graph Laplacian Λ (3.1.4) nor
eigenvalues with decreasing absolute value as for the eigenvalues gi of G (3.4.35).

As we argue below the expression λ̃mf
2 (= λ̃mf

N due to (4.3.1)) always constitutes
the second largest eigenvalue. The only term depending on l in eq. (4.2.29) is the
ratio

sin
(

(k+1)(l−1)π
N

)

sin
(

(l−1)π
N

) . (4.3.2)

We therefore study the function

f(x) =
sin ((k + 1)x)

sin x
, (4.3.3)

with

x =
(l − 1)π

N
(4.3.4)
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Figure 4.4: λ̃mf

2 (= λ̃mf

N by symmetry) always constitutes the second
largest eigenvalue. Functions f(x) (4.3.3), the oscillating function
sin((k + 1)x) and the envelope function 1/ sin(x) are plotted with

x = (l−1)π
N

∈ (0, π) for k = 10. Obviously, a larger k leads to more
roots of f(x), but otherwise functions show the same characteristics
for all k ≤ N − 1: f(x) has a local maximum at x = 0 and decreases
strictly monotonically up to the following minimum. For larger x the
envelope function guarantees that all values up to x = π/2 are smaller
than f(xl=2 =

π
N
).

and x ∈ (0, π/2). Due to the symmetry (4.3.1) the interval (0, π/2) covers the
entire spectrum (4.2.29). The function f(x) on x ∈ (0, π/2) is the product of the
oscillating function sin((k + 1)x) and a strictly monotonically decreasing function
1/ sin(x). Therefore, it is a damped oscillation with period of 2π/(k + 1) and with
the amplitude decreasing as 1/ sin(x) (Fig. 4.4).

At x = 0 we apply the Theorem of l’Hospital to calculate the following limits.
There is a removable singularity

lim
x→0

f(x) = k + 1 (4.3.5)

with

lim
x→0

f ′(x) = 0 and lim
x→0

f ′′(x) = −1

3
k(k2 + 3k + 2) < 0 , (4.3.6)

i.e. a local maximum.

In order to show that the index l = 2 is always associated with the second largest
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Figure 4.5: Important points of the function f(x). The function f(x) is
plotted for k = 100. The boundary points (green, eq. (4.3.9)) of
the function f(x) and the envelope function 1/ sin(x), roots of f(x)
(purple, eq. (4.3.8)) and the x-value xl=2 (blue, eq. (4.3.8), N = 1000)
corresponding to the eigenvalue λ2 are highlighted.

eigenvalue, we first determine its x-value. It is given by

xl=2 =
π

N
. (4.3.7)

Since the roots of the function f(x) are located at

xroot,r =
rπ

k + 1
(4.3.8)

for r ∈ Z. Thus, xl=2 is always smaller than the first root xroot,1 (4.3.8) of the
function f(x) (Fig. 4.5).

The boundary points of function f(x) and the envelope function 1/ sin(x) are
given by

xb,r =
4πr + π

2(k + 1)
. (4.3.9)

for r ∈ Z.
The function f(x) is bounded from above by the envelope function 1/ sin(x) for

all x > xb,0 with

xb,0 =
π

2(k + 1)
(4.3.10)

being the first boundary point of function f(x) and its envelope function (r = 0 in
eq. (4.3.9)) (Fig. 4.5).
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4.4. Extreme eigenvalues

The first derivative of f(x) stays negative at least up to the first root (r = 1 in
eq. (4.3.8)) at

xroot,1 =
π

(k + 1)
. (4.3.11)

The first root xroot,1 is always larger than the first boundary point xb,0 (4.3.10).
To summarize, the function f(x) has a local maximum at x = 0 and is then strictly

monotonically decreasing up to xb,0 (4.3.10). Then, for all x > xb,0 the function f(x)
takes values smaller than or at most equal to the values of the envelope function
1/ sin(x), which is strictly monotonically decreasing in the considered domain (see
Figures ?? and 4.5).

Thus, if the xl=2 (4.3.7) is smaller than the first boundary point xb,0 (4.3.10), the
eigenvalue λ2 constitutes indeed the second largest eigenvalue.

Comparing equations (4.3.7) and (4.3.10), this is the case for N ≥ 2(k + 1), i.e.
for k < N/2.

Numerical investigations suggest that the eigenvalue λ2 always constitutes the
second largest eigenvalue independent from the chosen values for the parameters N ,
k and q. However, monotonicity considerations are not that evident for k > N/2.

The other extremal eigenvalue λ̃mf
min can not be that easily assigned to a fixed

index. It is possible to find good estimates for the index at which the smallest
eigenvalue λ̃mf

min always occurs. However, for the purposes of this thesis we simply
define it as

λ̃mf
min = min

l
λ̃mf
l . (4.3.12)

4.4 Extreme eigenvalues

As the offset of each eigenvalue (4.2.29) equals k, we consider the scaled eigenvalues

λmf
l (N, k, q) =

λ̃mf
l (N, k, q)

k
(4.4.1)

in the following to allow for a consistent analysis for different k.
We first focus on the second largest eigenvalue since long time dynamics are

dominated by it (see Chapter 3). For l = 2, eq. (4.2.29) simplifies to

λmf
2 (N, k, q) =− 1 + c′





sin
(

(k+1)π
N

)

sin
(

π
N

) − 1





+ c′′





sin
(

(k+1)π
N

)

sin
(

π
N

)



 . (4.4.2)

The analytic prediction (4.4.2) well fits with the typical eigenvalues of actual
small-world networks obtained by numerical diagonalization, cf. Fig. 4.6. It turns
out that the analytic prediction is accurate for both undirected and directed net-
works, and for all but very small relative degrees k/N < 0.05. For small k, the
prediction still is a good guide for the general dependence of the second largest
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Figure 4.6: Accuracy of analytic prediction of the second largest eigen-
values from regular to randomized networks. Numerical mea-
surements for undirected (×) and directed (#) networks in comparison
with the analytical mean field predictions (Eq. (4.4.2), solid lines) as a
function of q, for different degrees k. The error bars on the numerical
measurements are smaller than the data points (N = 1000, each data
point averaged over 100 realizations).

eigenvalue on q, but shows some deviation from the numerical results. Moreover,
the prediction (4.4.2) well approximates the actual dependence of λ2 for all but
very large q, thus including regular rings, small-world and even more substantially
randomized network topologies.

4.4.1 Approximation for small degrees

Expanding eq. (4.4.2) up to O(N2) as N → ∞ yields

λmf
2 (N, k, q) ≃− q − (1 + k(1− q))q

N
(4.4.3)

− (k + 1)(k + 2) π2(1− q) + 6q(k + 1− kq)2

6N2
. (4.4.4)

For q = 0 we recover the known approximation for symmetric regular ring net-
works

λmf
2 (N, k, 0) ≃ −(k + 1)(k + 2) π2

6N2
. (4.4.5)

The approximation (4.4.4) well agrees with eq. (4.4.2) up to values of k < N/2,
but still is a good guide for even larger degrees k, cf. Fig. 4.7.

63



4.4. Extreme eigenvalues

ç

ç

ç

ç

ç
ç

ç
ç

ç ç

ç

ç

ç

ç

ç
ç

ç
ç ç ç

ç
ç

ç
ç

ç
ç

ç ç ç ç

ç ç ç ç ç ç ç ç ç ç

�

�

�

�
�

�
� � � �

�

�

�

�
�

�
� � � �

�
�

�
�

� � � � � �
� � � � � � � � � �

50 500 1000

-1

-10-1

-10-2

-10-3

degree k

R
e
Λ

2

� undir.

ç dir.

- - ana. approx.

-
q=0

-
q=0.01

-
q=0.16

-
q=0.64

Figure 4.7: Scaling of the real part of the second largest eigenvalue for
fixed network size. The analytical approximations obtained from
the expansions in eq. (4.4.4) are depicted by the dashed lines. The
error bars on the numerical measurements are smaller than the data
points, N fixed to 1000.

4.4.2 Scaling with network size

How does the second largest eigenvalue depend on the network size? Fixing the
edge density d = k/N for large N ≫ 1 ensures that networks stay connected and
yields the prediction

λmf
2 (d, q) ≃ −1 +

(1− d)(1− q)

(1− d(1− q))dπ
sin(dπ) (4.4.6)

in the limit N → ∞.
Our analytic prediction (4.4.6) again well approximates the real part of the second

largest eigenvalue in dependence on the edge density d for networks of size above
about N = 500 nodes, for both undirected and directed networks, cf. Fig. 4.8. For
edge densities other than that displayed (d = k/N = 0.1 and d = 0.5, Fig. 4.8
(b),(c)) the real parts of the second largest eigenvalue show qualitatively the same
asymptotic behaviour.

4.4.3 The smallest eigenvalue

The smallest eigenvalue λmin defined in eq. (4.3.12) is also an important indicator for
synchronization properties, in particular for the synchronizability (see e.g. [BP02]).

Here, the analytic prediction (4.4.2) again well fits with the actual eigenvalues
obtained by numerical diagonalization, cf. Fig. 4.9. It turns out that the analytic
prediction is accurate for both undirected and directed networks. The prediction
(4.4.2) well approximates the actual dependence of λmin for small q, thus including
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Figure 4.8: Second largest eigenvalues in dependence on edge density and
network size. a: Numerical measurements for directed (#) and undi-
rected (×) networks (error bars smaller than the data points) in com-
parison with the analytic mean field prediction (4.4.6) forN = 2000. b:
Asymptotic (N → ∞) real parts of the second largest eigenvalues λ2 in
dependence on the network size N for fixed edge density d = k/N = 0.1
(q-values and symbols as in (a)). c: Asymptotic (N → ∞) real parts
of the second largest eigenvalues λ2 in dependence on the network size
N for fixed edge density d = k/N = 0.5 (q-values and symbols as in
(a)).
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Figure 4.9: Accuracy of analytic prediction of smallest eigenvalues from
regular to randomized networks. Numerical measurements for
undirected (×) and directed (#) networks in comparison with the ana-
lytical mean field predictions (Eq. (4.4.2), solid lines) as a function of q,
for different degrees k. The error bars on the numerical measurements
are smaller than the data points (N = 1000, each data point averaged
over 100 realizations).

regular rings and small worlds. The prediction is still a good guide for the general
dependence of the second largest eigenvalue on q, but shows some deviation from the
numerical results for larger q, i.e. for substantially randomized network topologies.

4.5 Analytical predictions for random topologies

via Random Matrix Theory

To analytically predict the second largest eigenvalues for the graph Laplacians of
undirected and directed networks close to q = 1 (see the shaded area in Fig. 4.6)
we consult Random Matrix Theory [Wig51] (cf. also [Por65, Meh91, TV09, ER05]).
For a review of synchronization in networks with random interactions cf. [FJD06].

Firstly, we consider the undirected networks associated with symmetric matrices.
Here, every connection between a pair of nodes i and j 6= i is present with a given
probability P .

Secondly, we consider the directed networks associated with asymmetric matrices.
Here, all nodes have the same in-degree kini = kin. Each of the kin nodes that is
connected to node i is independently drawn from the set of all other nodes in the
network with uniform probability.

Given a sufficiently large network size N and a sufficiently large k (respectively,
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a sufficiently large kin) we numerically find that the set of non-trivially eigenvalues
resemble disks of radii r′ for undirected networks and r for directed networks (cf.
also [TWG04, TGW06]).

Recall from eq. (4.1.1) that the graph Laplacian is obtained by shifting all eigen-
values of the adjacency matrix by −k. At least, this is exact for directed networks
where the in-degree kini = k for all nodes i stays fixed during the whole rewiring
procedure. For undirected networks there are small deviations from node to node
but the average degree equals k. However, numerical simulations confirm that shift-
ing here again the eigenvalues of the symmetric adjacency matrix by the negative
average degree −k is feasible. Thus, we consider the adjacency matrices in the fol-
lowing, Asym for undirected and Aasym for directed networks and later shift them by
−k.

4.5.1 Ensembles of symmetric and asymmetric random

matrices

First, consider N × N symmetric matrices A = AT with real elements Aij . We
constrain the diagonal entries to vanish Aii = 0 and we denote its N eigenvalues
by λk. The elements Aij (i < j) are independent, identically distributed random
variables according to a probability distribution ρ(Aij). Due to [MF91, FM91,
SC02] there is only one non-trivial ensemble with independent identically distributed
matrix elements that differs from the Gaussian one, the ensemble of sparse random
matrices is the only non-trivial ensemble with independent identically distributed
matrix elements that differs from the Gaussian one. Thus there are exactly two
universality classes, i.e. classes which do not depend on the probability distribution
ρ(Aij), but are determined by matrix symmetry only. Every ensemble of matrices
within one of these universality classes exhibits the same distribution of eigenvalues
in the limit of large matrices, N → ∞, but the eigenvalue distributions are in general
different for the two classes. To obtain symmetric matrices, one chooses Aij = Aji

and Aii = 0 for both ensembles. Thus the arithmetic mean of the eigenvalues is
zero,

[λi]i :=
1

N

N
∑

i=1

λi =
1

N

N
∑

i=1

Aii = 0 (4.5.1)

and the ensemble variance of the matrix elements scale like

σ2 =
〈

A2
ij

〉 .
=
r2

N
(4.5.2)

for N ≫ 1.
For the Gaussian symmetric ensemble, it is known [Wig51, Meh91] that the distri-

bution of eigenvalues ρsym
Gauss(λ) in the limit N → ∞ is given by Wigner’s semicircle

law

ρsym
Gauss(λ) =

{

1
2πr2

√
4r2 − λ2 if |λ| ≤ 2r

0 otherwise.
(4.5.3)

The ensemble of sparse matrices [BR88, Rod88, FM91, MF91, RAKK05, GT10] ex-
hibits a different eigenvalue distribution ρsym

sparse(λ) that depends on the finite number
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k of nonzero entries per row and approaches the distribution ρsym
Gauss(λ) in the limit

of large k such that
lim
k→∞

ρsym
sparse(λ) = ρsym

Gauss(λ). (4.5.4)

It is important to note that in the limit of large N the distributions ρsym
sparse and ρsym

Gauss

eigenvalues depend only on the one parameter r, that is derived from the variance
of the matrix elements (4.5.2).

For real, asymmetric matrices (independent Aij and Aji), there are no analytical
results for the case of sparse matrices but only for the case of Gaussian random
matrices. The Gaussian asymmetric ensemble yields the distribution of complex
eigenvalues in a disk in the complex plane [Gir85, SCSS88]

ρasym
Gauss(λ) =

{

1
πr2

if |λ| ≤ r
0 otherwise

(4.5.5)

where r from Eq. (4.5.2) is the radius of the disk that is centered around the origin.
Like in the case of symmetric matrices, this distribution also depends only on one
parameter r, that is derived from the variance of the matrix elements.

4.5.2 Undirected random networks

The real symmetric adjacency matrix Asym is an N×N matrix that satisfies Asym
ij =

Asym
ji and Asym

ii = 0.
Furthermore, the matrix elements of Asym are independent up to the symmetry

constraint Asym
ij = Asym

ji . They are equal to 1 with probability

P =
〈ki〉
N − 1

≈ k

N
, (4.5.6)

and equal to 0 with probability 1− P .
Thus, the variance σ2 is given by

σ2 = P (1− P ) =
k

N
(1− k

N
) . (4.5.7)

Therefore, the eigenvalues are located in a disc of radius

r′ = 2r (4.5.8)

with

r = σ
√
N (4.5.9)

=

√

k

N
(1− k

N
)
√
N (4.5.10)

=

√

k − k2

N
(4.5.11)

centered around the origin.
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4.5.3 Directed random networks

The real asymmetric adjacency matrix Aasym has exactly k elements equal to one
per row. Therefore, its elements have an average

[

Aasym
ij

]

=
1

N

N
∑

j=1

Aasym
ij =

k

N
(4.5.12)

and a second moment

[

Aasym
ij

2
]

=
1

N

N
∑

j=1

Aasym
ij

2
=

k

N
. (4.5.13)

Thus, the variance

σ2 =
[

Aasym
ij

2
]

−
[

Aasym
ij

]2
(4.5.14)

is given by

σ2 =
k

N
− k2

N2
. (4.5.15)

If we assume that the eigenvalue distribution for directed networks with fixed
in-degree is similar to those for random matrices [TWG04, TGW06], we obtain a
prediction

r2 ≈ Nσ2 (4.5.16)

from Eq. (4.5.2), which yields

r ≈
√

k

N
− k2

N2

√
N (4.5.17)

=

√

k − k2

N
(4.5.18)

for the radius of the disk of eigenvalues centered around the origin.

4.5.4 Predictions for the scaled graph Laplacians

To obtain predictions for the eigenvalues of the appropriate graph Laplacian we
have to consider the shift by −k, discussed in the beginning of this section, and the
scaling factor 1/k introduced in eq. (4.4.1).

With it and eq. (4.5.11), the second largest eigenvalues for undirected networks
close to q = 1 (Fig. 4.10, (a)) are well predicted by

λwsc
2 (N, k, 1) =

1

k

(

2

√

k − k2

N
− k

)

(4.5.19)

= 2

√

1

k
− 1

N
− 1 , (4.5.20)
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Figure 4.10: Accuracy of analytic prediction of the second largest eigen-
values close to q = 1. a: Numerical measurements for undirected
(×) networks in comparison with the analytical predictions λwsc

2 via
Wigner’s semi-circle law (Eq. (4.5.20), solid lines), for different de-
grees k. b: Numerical measurements for directed (#) networks in
comparison with the analytical predictions λrmt

2 from the theory of
asymmetric random matrices (Eq. (4.5.22), solid lines). The error
bars on the numerical measurements are smaller than the data points
(N = 1000, each data point averaged over 100 realizations). Dashed
lines are only a guide to the eye.
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the real parts of them for directed networks close to q = 1 (Fig. 4.10, (b)) with
eq. (4.5.18) by

λrmt
2 (N, k, 1) =

1

k

(
√

k − k2

N
− k

)

(4.5.21)

=

√

1

k
− 1

N
− 1 . (4.5.22)

Note that λwsc
2 (N, k, 1) in eq. (4.5.20) acquires a positive value for too small k-

values and a sufficiently large network size N (cf. [FDBV01]). However, for the
k-values we investigated (Fig. 4.10, (a) and (b)), the second largest eigenvalues are
well predicted by both eqs. (4.5.20) and (4.5.22).

4.6 The entire spectrum in mean field theory

To gain further insights into the entire spectrum we study the density of states ρ(λ)
(cf. e.g. [FDBV01]) as defined in its discrete form, i.e. for finite network size N , by

ρ(λ) =
1

N

N
∑

j=1

δ(λ− λj) , (4.6.1)

where δ is the Dirac delta function. The evaluation of (4.6.1) for the analytic mean
field predictions and for the numerically obtained eigenvalues of undirected and
directed networks are shows good qualitative agreement, cf. Fig. 4.11 for all but
large topological randomness q → 1. Spectra for networks with parameters other
than N = 1000 and k = 50 yield qualitatively the same structure. Thus, the largest
and smallest eigenvalues, the location and form of bulk peak as well as the entire
structure of eigenvalues are well approximated up to q of order 1 by the mean field
predictions derived analytically.

4.7 Summary and discussion

In this Chapter we introduced a simple two-stage mean-field rewiring scheme which
we used to derive analytical predictions for the spectra of graph Laplacians. Sys-
tematic numerical checks confirm that this prediction is accurate for the second
largest eigenvalue for all but very small degrees or very large topological random-
ness. For very small k, our analytic prediction still serves as a valuable guide for
the overall dependence all topological parameters. For q close to unity, our mean
field prediction can be complemented by existing results from random matrix the-
ory. Besides the second largest and smallest eigenvalues, that already give valuable
information about initial and asymptotic relaxation dynamics, the bulk spectrum
as well as the fine structure of the spectrum is well approximated by our analyt-
ical prediction. In particular, the spectral prediction include regular rings, small
worlds, and substantially more randomly rewired networks and undirected as well
as directed ones.
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Figure 4.11: Analytics predicts structure of entire spectrum. Densities of
states (eq. (4.6.1) for (a) undirected, (b) directed and (c) mean field
networks (N = 1000, k = 50). Dashed white lines show the ex-
treme eigenvalues obtained numerically for undirected and directed
networks. The solid black lines show the mean field prediction for
the extreme eigenvalues. Densities of states for directed and undi-
rected networks are averaged over 100 realizations for a fixed q-value,
while the mean field density is analytically determined by eq. (4.2.29).
Adapted from [GGT12].
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In particular, our theoretical predictions agree well with the eigenvalues obtained
numerically over almost the entire range of topological randomness q, thereby com-
pleting previous attempts based on perturbation theory for q ≪ 1 [Mon99, BP02].

Although the mean field rewiring is undirected, eigenvalues for directed networks
are approximated more accurately and in a wider range of q-values, which is in
particular related to the fact that the predictions for the undirected second-largest
eigenvalues at q = 1 are larger in real part than the directed ones, while all the
mean field eigenvalues converge to −1 at q = 1. For ‘small’ k-values the mean field
approximation becomes less accurate, which may be due to the fact that the ring
structure is destroyed more easily while rewiring. Additionally, the bulk spectra
spread much more drastically with q than for larger k-values.

The simple mean field approach presented here definitely leads to an essential
reduction of computational efforts when studying randomized (regular or small-
world) network models. It may be extended to rewiring approaches starting from
other than ring-like structures, for instance to two or three dimensions, as for in-
stance, relevant for neural network modeling [SB09]. Checking with appropriate
models, it may thus serve as a powerful tool to predict or deduce the relations
between structural and dynamical properties of randomized networks.

Furthermore, the analysis of the mean field spectrum presented here could be
extended to the Laplacian eigenvectors. Studies of the Laplacian eigenvectors are
rare although there are fascinating results as well. For instance, the discrete analogs
of solutions of the Schrödinger equation on manifolds can be investigated on graphs
(cf. e.g. [BL07]).
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5 Hubs Orchestrate Synchrony

In this Chapter we present possible mechanisms determining how synchronous
population activity in developing neuronal networks may be suppressed by tar-
geted stimulation of so-called functional hubs based on recent experimental find-
ings in neuroscience [BGP+09]. We ask the reader to understand that we
do not provide an introduction to theoretical neuroscience here. Instead, see
e.g. [Tuc88, KJJ96, DA01, GK02, Buz06]. The work we present in this Chapter
– unpublished of the time of writing – originates from a collaboration with Birgit
Kriener (Institute of Mathematical Sciences and Technology, Norwegian University
of Life Sciences, �As, Norway) and Marc Timme.

Besides the small-world architecture, there is another network structure beyond
the two extremes of totally regular and random ones, known as the scale-free topol-
ogy [AB00, DM01, AB02, Cal07] since it is characterized by a heavy-tailed dis-
tribution of degree per neuron with no characteristic scale. While most neurons
display local connectivity, there is a small number of hub neurons – characterized
by the large numbers of cells they connect to – that have long-range connections.
However, whether hubs are in fact present within neural assemblies has just been ex-
perimentally examined recently [BGP+09]. Here, a morphological analysis revealed
scale-free features in a functional topology of developing hippocampal networks.
The high-connectivity (HC) neurons are a sub-population of γ-amino-butyric-acid-
releasing (GABAergic) interneurons with widespread axonal arbors.

Intriguingly, stimulating a single HC or hub neuron completely suppresses global
synchronous activity. When the stimulation is switched off, the synchronous activity
returns. If a low-connectivity (LC) or non-hub neuron is driven in the same way,
synchronous activity remains almost identically as without stimulation.

Such synchronous oscillations constitute one of the most dominant collec-
tive dynamics of complex networks. They occur not only in circuits neurons
[BH99, Buz06, OLPT10], but in a large range of systems: ranging from metabolic
and gene regulatory networks within cells [WF01, McM02, GdBLC03, TYHC03] to
food webs of cross-feeding species [MHH98, WM00] or even to oscillations in the
global climate system [SR94, SvRE98]. Thus, to understand the functional role of
hubs – not only in neuronal circuits – is a question of paramount importance and
has recently attracted attention [Per10, ZLZK10, SHK07, MS08, ASW+06, SR07].
However, the mechanisms underlying the suppression of global oscillations in a neu-
robiological system have not yet been understood. Understanding those mechanisms
based on the phenomena observed in [BGP+09] is the main aspect we address in
this Chapter.
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5.1. Experimental findings

5.1 Experimental findings

Recently, experimental studies of the developing hippocampus of rat and mouse
revealed that the functional connectivity – i.e. the connectivity defined in terms
of correlations in the activity between neurons – follows a scale-free topology that
includes the presence of functional hubs.

Using multibeam two-photon excitation of hippocampal slices together with flu-
orescent probes to study multineuron activity, Bonifazi et al. [BGP+09] determined
that the connectivity within the networks was distributed as a power law, i.e. that
the out-degree distribution is given by P (k) ∼ (kout)

−α
, with α ≈ 1.1 . . . 1.3 (see

Fig. 5.1).
First, single neurons were recorded using whole cell patch-clamp (current-clamp).

They found that phasic stimulation of a small number of cells, which they designated
hub neurons, induced rhythmic synapse-driven synchronizations, or giant depolariz-
ing potentials (GDPs). Noting that these hub neurons are γ-aminobutyric acidÐre-
leasing (GABAergic) interneurons (INs) with long axonal arborizations, they next
performed paired recordings where ’follower’ neurons were recorded in voltage-clamp
mode. These paired recordings revealed that hub neurons have lower action po-
tential thresholds and receive more excitatory postsynaptic potentials (EPSPs).
Finally, using cell-attached and whole-cell recordings, they present evidence that
firing of hub neurons is indeed involved in spontaneous synchronization. Bonifazi
et al. [BGP+09] presume that two distinct classes of hub neurons, the first display-
ing long axons spanning regions with sparse collaterals, and the second showing a
basket-like morphology with a dense but local arborization pattern, play a crucial
role at early development stages, when GABA plays a complex role.

Furthermore, the neural circuits considered exhibit pronounced oscillations in
their natural in vivo state that are to a very rough approximation periodic and
exhibit a characteristic inter-peak time-interval (Fig 5.2).

Intriguingly, already externally driving single hub neurons (those with particularly
large out-degree) may remove the collective oscillations completely (Fig 5.2). When
the stimulation is switched off, they may emerge back. If a non-hub unit driven in
the same way, the oscillation stays almost same as in the undriven state.

Thus the main overall question we want to address in the following is: What are
the possible mechanisms removing the oscillations in the neurobiological system?

5.2 The scale-free topology

The neural circuit models we consider exhibit a power-law out-degree distribution
P (k) ∼ (kout)

−α
. We abbreviate kout by k in the following as long as this does not

lead to any confusion. In [BGP+09] it has been found that α equals approximately
1.3 (see Fig. 5.1)).

To create such a network we firstly generate, for each neuron independently, a
random out-degree k according to this power law and, secondly, randomly link uni-
formly to presynaptic neurons. For practical reasons, we create a continuous random
number between two bounds, x ∈ [kmin, kmax] and set k = round(x) thereafter. The
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Figure 5.1: Analysis of multineuron calcium activity reveals a scale-free
topology in the developing hippocampus. A: (1) Two-photon cal-
cium fluorescence image of a rat hippocampal slice (scale bar: 100 µm.
DG: dentate gyrus). (2) Detected contours of the cells from the fluo-
rescence image shown in (1). Red dots are the 10 highest-connectivity
neurons in the represented network; gray lines mark the out-degree
links of one HC neuron. (3) Probability distribution plot of the frac-
tion of out-degree links over the total population of active neurons
(gray line, N = 3224 neurons in four slices). A power-law distribution
with a slope of γ = 1.3 ± 0.1 (n = 4) is indicated in black. The inset
shows the location of the 30 highest-connectivity neurons (≈ 1 % of the
population, red dots) on a schematic representation of the hippocam-
pus. B: Same as A, but at x20 magnification (scale bar: 100 µm, sl:
stratum lucidum; sp: stratum pyramidale; so: stratum) and for a pop-
ulation of 7588 neurons; similar probability distribution of out-degree
links (γ = 1.1±0.1, n = 45). The probability threshold for HC neurons
was fixed to 40 % (red-shaded area). The inset indicates the location
of HC neurons (red dots) on a schematic representation of the CA3b/c
region of the hippocampus. Note that we use α instead of γ in this
thesis. Adapted from [BGP+09].
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5.2. The scale-free topology

A B
LC Neuron HC Neuron

1
1

Links (%)

P
ro

b
a
b
ili

ty

0.0001

0.001

0.01

0.1

10 1001

Time (min)

0

100

200

300

400

500

0 2 4 6 8in
te

rG
D

P
in

te
rv

a
l
(%

)

Cell stim.

2 2

3 3

Links (%)

P
ro

b
a
b
ili

ty

0.0001

0.001

0.01

0.1

10 1001

in
te

rG
D

P
in

te
rv

a
l
(%

)

Time (min)

Cell stim.

0

100

200

300

400

500

0 2 4 6 8

sl

so

sl

so

1

P
ro

b
a
b
ili

ty

Links (%)

0.0001

0.001

0.01

0.1

10 1000

2 2

H
u
b
 f
ir
in

g
(H

z
)

0

10

20

A
c
ti
v
e
 c

e
lls

(%
)

+40 pA

0

2

4

3 6 9

Time (min)

i ii iii

C

Figure 5.2: Stimulation of HC but not LC neurons affects network dy-
namics. A: Data from a representative LC interneuron. (1) The
green arrow indicates the position in the pooled power-law distribution
of out-degree links (Fig. 5.1, B) of the recorded neuron. Red-shaded
area indicates the HC region. The right contour plot shows the position
(solid red dot) and out-degree connections (gray lines) of the illustrated
LC interneuron (scale bar, 100 µm). (2) Phasic current-clamp stimu-
lation (200-ms pulses of 75-pA current every 10 s, gray area) of the LC
interneuron while being imaged did not affect the occurrence of GDPs
(detected from the calcium activity). The interval between GDPs as a
function of time is plotted. B: Same as (A) but for a representative HC
interneuron. Phasic stimulation of the HC interneuron [same protocol
as (A,2)] significantly decreased GDP frequency. C: Perturbations
of network dynamics induced by the stimulation of HC in-
terneurons. An HC interneuron preventing GDPs when stimulated.
Graphs in (2) show the fraction of active cells (top histogram), as well
as the cell firing frequency (bottom), as a function of time. Peaks of
synchronous activity (GDPs) disappear when the membrane potential
of the cell is depolarized by continuous positive current injection (40
pA). Current-clamp traces show the activity in the HC neuron in rest-
ing (i and iii) and stimulated (ii, gray) conditions. The black arrow
indicates the time when a significant effect on network dynamics starts.
Adapted and modified from [BGP+09].

bounds are of practical relevance since if k is too small for one (or more) neurons,
the network might not be strongly connected (see Chapter 2), and k is unbounded,
it could be larger than the actual network size N considered. Given the density (or,
experimentally, the histogram)

ρ(x) = Cx−α for x ∈ [kmin, kmax] , (5.2.1)
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the distribution function is given by

P (X ≤ x) = F (x) =

∫ x

kmin

ρ(x′)dx′ (5.2.2)

=
C

α− 1

[

x′
−α+1

]kmin

x
, (5.2.3)

where

C̃ =
1

k
−(α−1)
min − k

−(α−1)
max

(5.2.4)

is fixed by the normalization condition F (kmax) = 1. The inverse F−1 of F is given
by

F−1(u) =

(

kmin
−(α−1) − u

C̃

)− 1
α−1

. (5.2.5)

Now drawing a random number U from the uniform distribution on [0, 1] and ap-
plying the inverse distribution function results in a random variable X = F−1(U)
that has the density ρ according to eq. (5.2.1).

5.3 Pulse-coupled oscillators revisited

To get first insight into possible mechanisms we again consider the pulse-coupled
oscillators introduced in Section 2.2.2.

We consider N pulse-coupled oscillators (referred to as neurons in the following)
with delay time ∆ and coupled via the coupling matrix J as defined in eq. (2.2.1)
with σ < 0, i.e. we consider purely inhibitory coupling and a homogeneous input is
guaranteed by normalizing with the factor 1/kin

i (see eq. 3.1.3).
Recall the rise function from (3.4.29) which mediates interactions

Ui(φ) :=
Ii
γ
(1− e−γφ) , (5.3.1)

where Ii is the temporally constant input current of neuron i and γ the dissipation
of the system. So far we have only considered identical neurons, i.e. Ii = I for
all neurons i. In this case for identical local units and homogeneous total input
coupling strengths, the fully synchronous state φi(t) = φ0(t) with the collective
period (3.4.18) exists (see also eq.(3.1.6)).

If we now introduce non-homogeneous driving,

Ii = I +∆Ii (5.3.2)

and we change (one or more of) the∆Ii smoothly from zero, the synchronous state is
continuously transformed into a close-to-synchronous one, with the phase dynamics
φi(t) smoothly deviating (with parameters ∆Ii) from the synchronous one φ0(t).

Given sufficiently small driving inhomogeneities ∆Ii such a close-to-synchronous
periodic orbit (CSPO) is guaranteed to exist [DTD+04]. Here, gradually introduc-
ing inhomogeneities to an input-homogeneous system that exhibits a completely
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Figure 5.3: Phase spreads induced by driving a hub and a low-connected
pulse-coupled oscillator in a network of 500 oscillators. Phases
of all oscillators are plotted whenever a reference oscillator has been
reset, i.e. at times ts. The axis s is thus discrete and nonlinear. Top
row (a): The driven LC neuron (blue) reacts the strongest. Bottom
row (b): The driven HC neuron (blue) reacts again the strongest with
the induced phase shift being approximately the same. (Parameters:
N = 500, γ = 0.8, σ = −0.2).

synchronous, periodic orbit leads to a split of phases close to synchrony. When this
phase split becomes too large (of the order of the delay ∆), the CSPO breaks down.
In more detail, the CSPO ceases to exist if the heterogeneity is sufficiently large
such that at least one neuron i (out of all N neurons) receives at least one spike
(out of all spikes from its postsynaptic neurons) before it actually spikes itself. In
other words, the CSPO breaks down if the conditions

φj − φi < ∆ (5.3.3)

for all neurons j connected to neuron i are not satisfied for at least one i. Thus, a
sufficient – but not necessary condition – for the CSPO to exist is φj − φi < ∆ for
all i, j ∈ {1, . . . , N}.

Thus, for this theoretical setup, our main question about possible mechanisms
that suppress oscillations translates to the question: What are possible mechanisms
destroying a CSPO?

To get an intuition about how the driving signals induce phase shifts given a
network topology, we perform simulations where only one driving signal ∆Ii in
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Figure 5.4: The maximal phase differences induced by driving a hub and
a low-connected neuron. a: Considering the whole population of
neurons, there is no significant difference between driving a HC or
LC neuron (the driven neuron react the strongest (see Fig 5.3, blue
lines)). The induced maximal phase difference is proportional to the
driving signal ∆I. b: Considering the population without the driven
neuron there is a significant difference between driving a HC or LC
neuron. Again the induced maximal phase difference is proportional to
the driving signal ∆I. (Parameters: N = 500, leak γ = 0.8, σ = −0.2).

eq. (5.3.2) is nonzero (only one neuron i∗ receives extra input).

Firstly, we create a scale-free topology as explained above. To get an impression
whether driving a hub would have more impact on the phase spread than driving a
non-hub, we choose the neuron with the minimal out-degree as the non-hub or LC
neuron to be driven, the one with the largest out-degree as the hub or HC neuron
to be driven.

In Fig. 5.3, the resulting phase spreads for both the LC and the HC neuron are
depicted. The first observation is that the driven neuron react strongest, i.e. |∆φi∗|
is largest. This agrees with results from [Tim07]. This |∆φi∗| is approximately of
the same order for both the LC and the HC neuron. However, the impact on the
neurons connected to the driven one (only one for the LC neuron in Fig. 5.3, b) are
strongly unequal.

To quantify these effects we smoothly increase the induced inhomogeneities ∆Ii∗
(Fig. 5.4). The induced maximal phase spreads increase proportionately to the
input currents. With the phase spreads of the driven neurons being the maximal
ones, there is no significant difference between driving the LC and the HC neuron
(Fig. 5.4, a). However, excluding the driven neuron the stronger phase spread
induced by the hub neuron gets apparent (Fig. 5.4, b).

Our simulations support the view that if only one unit is driven, the maximally
possible phase split is achieved between the actually driven unit and some other
unit. This supports the hypothesis that driving single units in a pulse-coupled
system may induce similar effects to those obtained for continuous time phase-
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coupled oscillators [Tim07]. This work numerically suggests that if only one unit is
driven, the maximally possible phase split is achieved between the actually driven
unit and some other unit. Here, in almost the same manner, the driving neuron i∗ is
the one that creates the transition to asynchrony, i.e. breaks one of the inequalities
(5.3.3), either as i∗ = j or as i∗ = i.

In order to be able to obtain analytical results, we will have to slightly modify
the proposed framework. We may exclude the phase of the driven neuron from
the phases considered for the determination of the maximal phase differences (see
Fig. 5.4, b). Alternatively, we have to slightly modify the model, e.g. by incorporat-
ing a refractory period as in [RL11]. However, to figure out the decisive mechanisms
relevant to destroying a CSPO (or underlying the suppression of global oscillations
in the neurobiological system, respectively) we first numerically investigate biophys-
ically more realistic neuron models.

5.4 Biophysically more realistic neuron models

To better understand the effects observed by [BGP+09] we now try a slightly more
realistic modeling approach that takes into account temporally extended synaptic
inputs modeled as conductances. Once having reproduced the phenomenon, we
should then be able to reduce it to the building blocks necessary to uncover possible
mechanisms that lead to a breakdown of the oscillations in the neurobiological
system.

5.4.1 Conductance-based leaky integrate-and-fire neurons

First, we model the network as a population of conductance-based leaky integrate-
and-fire (cLIF) point neurons together with an excitatory background population
modeled as Poisson point processes. Here, the first population represents GABAer-
gic interneurons (IN), the second pyramidal neurons (pyr). The subthreshold mem-
brane potential dynamics of each IN is given by

dV (t)

dt
= − (Ileak(t) + Isyn,exc(t) + Isyn,inh(t)) /Cm , (5.4.1)

with membrane capacitance Cm and excitatory (exc) and inhibitory (inh) synaptic
input currents

Isyn,exc/inh(t) = gexc/inh(t)
(

Vm(t)− Eexc/inh

)

, (5.4.2)

where

gsyn,exc/inh(t) =
∑

k

g0,exc/inh

(t− tk)

τsyn,exc/inh

e1−(t−tk)/τsyn, exc/inhH(t− tk) , (5.4.3)

are the synaptic conductances modeled as α-functions with time constants
τsyn,exc/inh, tk denotes the spike arrival times and H(t) is the Heaviside step function.

Finally,
Ileak(t) = gleak (Vm(t)−Erest) , (5.4.4)
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is the leak current with leak conductance gleak.
Whenever V (t) reaches a threshold value Vth, the neuron emits a spike and V (t+)

is reset to the resting potential Vrest where it is clamped during a refractory time
τref . Eexc/inh are the reversal potentials of the excitatorily and inhibitorily acting
ion channels, respectively, at which flux of ions reverses directionality. Hence, if
V (t) < Einh the net inhibitory current actually acts depolarizingly on V (t) (and vice
versa for excitatory currents). In mature neurons this is rarely the case since V (t) is
usually above Einh ∼ −75mV which is of the order of the resting potential, and thus
it is quite save to assume that inhibitory currents act hyperpolarizingly, i.e. driving
V (t) away from threshold. In immature developing hippocampal networks however
Einh = EGABA ∈ [−46,−36]mV [BAGTK07] and “inhibitory” (GABA-mediated)
currents can actually be depolarizing.

We moreover assume short-term plasticity of the IN synapses [TPM98] mimicking
the limited resources of synaptic neurotransmitter and its reuptake:

Isyn,i(t) =
∑

j

Jijsact,ij(t) , (5.4.5)

with Jij being the absolute coupling strength and the sact,ij(t) determined by

dsrec(t)

dt
= −sinact

τrec
− usrecδ(t− tk) (5.4.6)

dsact(t)

dt
= −sact

τsyn
+ usrecδ(t− tk) (5.4.7)

dsinact(t)

dt
= −sact

τsyn
− sinact

τrec
, (5.4.8)

where srec, sact and sinact are the fractions of synaptic resources in recovered, active
and inactive states, respectively. Furthermore, τsyn is the time constant of the
synaptic current, τrec the recovery time constant and u is the effective use of synaptic
resources, which increases with spikes if facilitation is included.

5.4.2 Choice of parameters

Parameters were taken – when possible – from [BGP+09] and the review
[BAGTK07], cf. Table (5.4.2). Synaptic short-term plasticity parameters were cho-
sen as presented in Table (5.4.2). All simulations were performed with the NEST
simulator [GD07].

Fig. (5.5) shows 20 s of spiking and population activity of 1000 neurons under
different stimulus conditions, cf. figure caption for details. The same direct current
stimulus that was applied in the experiments (40 pA) was applied to a subset of in
this case 11 out of 27 HC neurons from t = 4 s to t = 8 s. The GDPs are suppressed.
The same stimulus applied to a subset of 11 LC neurons does not suppress GDPs.

This reproduces some of the observations from the experiments reported in
[BGP+09], however there it sufficed to stimulate just one HC neuron to suppress
GDP generation. This might in part be explained by insufficient knowledge of
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Quantity Description Value

V HC
rest resting potential of HC IN -66 mV

V LC
rest resting potential of LC IN -64 mV

V HC
th threshold potential of HC IN -53 mV

V LC
th threshold potential of LC IN -39 mV

gHC
l leak conductance of HC IN 2.64 nS

gLC
l leak conductance of LC IN 2.36 nS

CHC
m membrane capacitance of HC IN 65 pF

CLC
m membrane capacitance of LC IN 54 pF

EPSPHC EPSP of HC IN 2.1 mV

EPSPLC EPSP of LC IN 2.6 mV

Istim stimulation direct current 40 pA

EGABA reversal potential of response to GABA -40 mV

Eexc reversal potential of response to exc currents 0 mV

τsyn,inh synaptic time constant of interneurons 0.5-0.7 ms

τsyn,exc synaptic time constant of pyramidal neurons 0.4-0.7 ms

gHC
0 conductance coefficient of HC IN 22.7 nS

gLC
0 conductance coefficient of LC IN 25.4 nS

τref refractory time 2 ms

Table 5.1: All parameters besides the last seven are directly taken from [BGP+09].
EGABA in INs in early development is reported to be between −46 mV
and −36 mV in [BAGTK07].

Quantity Description Value

τsyn time constant of PSC 0.5-0.7 ms

A PSC amplitude 10 pA

τrec time constant of recovery 1000 ms

τfac time constant of facilitation 0 ms

U facilitation parameter 0.5

Table 5.2: Parameters for the short-term plasticity synapses. For a description of
the model see [TPM98].

neuron parameters, the oversimplified neuron model itself, and also lack of knowl-
edge about the actual underlying network structure. Only the functional network
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structure was estimated in the experiments by calcium imaging, which has limited
resolution and might be biased towards strongly active neurons.
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Figure 5.5: Depolarization of conductance-based leaky integrate-and-fire
neurons. Spike activity (upper panel) and population activity (lower
panel) of a network of size 1000. Neuron labeling is from low con-
nectivity (LC) neurons (1) to high connectivity (HC) neurons (1000).
Synchronous events are initiated in the HC part of the network and
spread across the network. At t = 4 s to t = 8 s some of the HC
neurons are depolarized by a current of 40 pA, synchronous events are
suppressed, while a stimulation at t = 12 s to t = 16 s of some of
the LC neurons slightly increases population rate but does not affect
network synchrony. The rate of the Poisson input mimicking the pyra-
midal neuron input was chosen as 90/s to both LC and HC neurons
weighted (the weight equals the area of the evoked PSP when stimu-
lated by a unit δ-pulse at resting potential) by EPSPLC and EPSPHC,
respectively.

The inter-GDP-interval distribution (see Fig. 5.6 (a)) was estimated from 500 s
of ongoing (unperturbed) activity with parameters as in Fig. 5.5. Note, that the
time scale is off: in the experiments the frequency of GDPs is about 0.01/s, while
in the simulation here it is approximately 2/s.

For fixed network structure the GDP frequency is mainly determined by the
parameters of the short-term depression of synapses. If e.g. the recovery time τrec is
doubled, also the inter-GDP-interval distribution is shifted towards twice the mean
inter-GDP-interval, cf. Fig. 5.6 (b).

GDPs are initialized in the HC subpopulation and spread to the LC population,
see Fig. 5.7 (a). The same is observed in the experiments [BGP+09]. Moreover,
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Figure 5.6: Inter-GDP-intervals. a: Distribution of inter-GDP-intervals esti-
mated from 500 s of unperturbed activity of the network shown in
Fig. 5.5. The mean value is at approximately half a second (0.47 s). b:
If τrec is varied with all other parameters fixed we observe an almost
linear relationship between the mean inter-GDP-interval and τrec with
a slope ∼ 0.5

spontaneous upward (depolarizing) fluctuations in the Poissonian pyramidal input
can trigger GDPs, cf. Fig. 5.7 (b). Hence, intrinsically bursting pyramidal activity
could be the actual pacemaker of GDP activity, facilitated by depolarizing INs (see
[Sip05]).

Note, that the main difference between HC and LC neurons is the threshold value:
that for HC neurons lies much closer to the resting potential of the cells and hence
given the same effectively depolarizing input the HC cells are more likely to spike,
i.e. more excitable than the LC cells. Indeed, in simulations we observe that though
on average the membrane potential of the LC neurons is higher in absolute terms,
the distance of this averages to the respective thresholds is larger in LC neurons
than in HC neurons, see Fig. 5.8 (a).

5.4.3 Mechanisms of GDP generation and suppression

GDP generation

The underlying mechanism of GDP generation thus appears to be the following.
Some HC neurons get activated by random fluctuations in the pyramidal input and
send spikes to both other HC neurons as well as to the LC neurons. The other HC
neurons respond first since they are closer to threshold. The massive HC activation
then spreads to the LC neurons and causes some of them to spike. The synchronous
event soon dies out due to synaptic depression and refractoriness. To underline the
individual levels of processing in the neuron and its synapses Fig. 5.8 (b) shows
the time course of the synaptic conductance ginh(t), the membrane potential V (t),
the resulting current Isyn,inh(t) and the depression of synaptic strength measured by
sact(t) of an HC neuron during a GDP.
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Figure 5.7: Initiation of GDPs. a: Raster plot of spike times. GDPs originate
in the densely connected HC population (the uppermost 27 neurons)
and spread to the rest of the network. This is also observed in the ex-
periments by [BGP+09]. b: GDPs (red) mostly coincide with upwards
fluctuations in the pyramidal population activity (blue). If these are
exceptionally strong and close-by the inter-GDP-interval can be shorter
than average, see e.g. at around 4 s. The stronger synaptic depression
leads to a longer next interval. Hence, it is to be expected that if the
pyramidal activity was oscillating, that frequency could also act as a
pacemaker for the GDP activity as suggested by [Sip05].

GDP suppression

When stimulated by a depolarizing direct current neurons fire at higher frequency.
With each emitted spike, however, their synapses get more and more depressed
(we excluded facilitation). In effect the stimulated neurons get decoupled from
the rest of the network, and also those neurons that fire in response have in turn
weaker impact on their post-synaptic target neurons the more they spike. This
has a strong effect on GDP activity when HC neurons are stimulated, since they
drive the network activity, while there is no noticeable effect when LC neurons are
stimulated.

Though it is unclear if synaptic vesicle depletion is a determining factor for the
inter-GDP-interval statistics, it is conceivable that other formally very similar re-
covery mechanisms with longer time constants play a role.

In the following we will now analyze the further role of network topology, neuron
properties and synapse properties in the generation of GDPs.

5.4.4 Random network topology

Random networks (cf. also Section 4.5) are networks in which connections between
any two different neurons are established in a Bernoulli-type fashion with a con-
nection probability P , such that no neuron pair is considered more than once. The
ensemble of network topologies that is generated in this way thus belongs to the class
of fixed-P Erdös-Rényi graphs. In the last section we saw that synchronous network
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Figure 5.8: Temporal averages of membrane potentials. a: The mean mem-
brane potential in all stimulation paradigms (‘0’ stands for no stimulus
applied, ‘HC stim’ and ‘LC stim’ for the case where some HC or LC
neurons were depolarized, respectively) is much closer to threshold for
HC neurons (red) than for LC neurons (blue). Moreover, the LC neu-
rons are on average closer to the reversal potential (−40 mV) than the
HC neurons, hence (V (t)− EGABA) is on average smaller for LC neu-
rons. The closer V (t) is to the reversal potential at the arrival time of
a spike, the smaller Isyn,inh that neuron receives. b: Individual example
traces of the membrane potential (blue), conductance (red), resulting
synaptic current (green) and synaptic activation variable (black) during
a GDP. The more the neuron spikes, the more depressed its synaptic
activation becomes in response.

events are generated in the dense part of the network, i.e. the HC subpopulation.
Since the LC population is hence enslaved by the driving HC population and not
actively taking part in GDP generation, we expect that random networks should
show spontaneous synchronization as well, given they have a certain connection
density P .

To analyze the impact of the slightly different neuron parameters in LC and
HC neurons (cf. Table 5.4.2), we impose an additional constraint on the networks
by fixing the in-degree of all neurons to the expectation value kin = PN exactly,
similar to the condition already introduced in Section 5.3. Then the same fraction
of neurons as before is randomly assigned to have HC-parameters, while the rest
has LC-parameters.

Indeed, for a network of identical size N = 1000 and number of HC-neurons as
before, however random connectivity with probability P = 0.4, stable network syn-
chronization is observed (here τsyn,inh = 0.5ms and τsyn,exc = 0.4ms). Moreover, the
same depolarizing direct current stimulation as before can suppress GDPs, pointing
towards the important role of the neuron parameter differences between HC and
LC neurons.
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Figure 5.9: Depolarization of conductance-based leaky integrate-and-fire
neurons in random networks. Spike activity (upper panel) and
population activity (lower panel) of a random network of size 1000 with
connection density P = 0.4. Neuron labeling is from low-connectivity
(LC) neurons (1) to high-connectivity (HC) neurons (1000). Syn-
chronous events are initiated in the HC part of the network and spread
across the network. At t = 10 s to t = 20 s some of the HC neu-
rons are depolarized by a current of 40 pA, synchronous events are
suppressed, while a stimulation at t = 30 s to t = 40 s of some of
the LC neurons slightly increases population rate but does not affect
network synchrony. The rate of the Poisson input mimicking the pyra-
midal neuron input was chosen as 110/s to both LC and HC neurons
weighted by EPSPLC and EPSPHC, respectively.

5.4.5 Current-based neurons with δ-shaped post-synaptic

currents

In current-based LIF neurons the impact of synaptic inputs on the membrane po-
tential V (t) does not depend on the value of V (t) itself. Moreover, we assume post-
synaptic currents in response to spike pulses to have no temporal extent, i.e. they
are modeled as δ-pulses. The subthreshold dynamics of the neuron is fully linear
and governed by the differential equation

dV (t)

dt
= −V (t)

τm
+
Isyn,exc + Isyn,inh

Cm

, (5.4.9)
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Figure 5.10: Hyperpolarization of current-based leaky integrate-and-fire
neurons. Spike activity (upper panel) and population activity (lower
panel) of the same network as in Fig. 5.5. At t = 4 s to t = 8 s
some of the HC neurons are hyperpolarized by a current of −40 pA,
synchronous events are suppressed, while a stimulation at t = 12 s to
t = 16 s of some of the LC neurons does not affect network synchrony.
The excitatory input current was a direct current.

with

Isyn,exc = CmJexc
∑

j∈exc

δ(t− tj,k − d) (5.4.10)

Isyn,inh = CmJinh
∑

j∈inh

δ(t− tj,k − d) (5.4.11)

with post-synaptic potential amplitudes Jinh/exc in mV, the delay d, and the mem-
brane time constant τm = Cm/gleak. tj,k denotes the k-th spike time of input neuron
j. To keep activity levels similar and mimic the effectively excitatory impact of
the GABA-ergic neurons in early development, we choose the coupling strengths
JHC
inh = 2.27 and JLC

inh = 2.54. All other parameters were the same as given in Table
(5.4.2). The pyramidal input is modeled as a depolarizing direct current as well,
such that in effect the neurons are LIF oscillators, coupled however by synapses
with short-term plasticity.

Simulations show that a fast synchronous mode arises that is only kept from
exploding by synaptic depression, see Fig. 5.10. Stimulation with a depolarizing
direct current has no suppressing effect on this mode, however a hyperpolarizing
current applied to HC neurons can in fact suppress synchronous activity, while
the same stimulus to the LC neurons does not (Fig.5.10), given the pyramidal
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depolarizing input current is chosen adequately.
The mechanism behind this is similar to the one discussed in Section 5.4.1: the

HC neurons are driver neurons due to their higher rate in response to the same
excitatory input, while the LC neurons are more hyperpolarized and – if adjusted
like this – need the HC input spikes to cross threshold at all. If a depolarizing
current shuts off part of this drive, the LC neurons stay below threshold and GDP
events do not occur.

5.5 Summary and discussion

In this Chapter, we first investigated single-variable pulse-coupled oscillators where
the question about possible mechanisms that remove oscillations in the neurobio-
logical system translates into the question about possible mechanisms destroying a
close-to-synchronous periodic orbit [DTD+04]. We numerically made first observa-
tions that driving hub neurons do indeed have more impact on the phase spread
than driving a non-hub neuron. The maximal induced phase spread, however, is
about equal in both cases. Thus, the theoretical framework based on previous works
[DTD+04, Tim07] does not suffice to explain the experimentally observed phenom-
ena. Nevertheless, our simulations support the hypothesis that driving single neu-
rons in a pulse-coupled system may induce effects of local heterogeneity similar to
those obtained for continuous time phase-coupled oscillators in [Tim07]. In order
to be able to obtain analytical results, we will have to slightly modify the pro-
posed framework. We may exclude the phase of the driven neuron from the phases
considered for the determination of the maximal phase differences (see Fig. 5.4,
b). Alternatively, we have to slightly modify the model, e.g. by incorporating a
refractory period as in [RL11].

To better understand the effects observed by [BGP+09] we then investigated a
slightly more realistic modeling approach that takes into account temporally ex-
tended synaptic inputs modeled as conductances. In this way we could include
the basic observation from early developing hippocampal networks that GABA –
a neurotransmitter that in mature networks mediates inhibition – can depolarize
immature cells. This is due to the fact that at very early stages of neuron devel-
opment the corresponding channel has a much higher reversal potential than at
later stages. We moreover assumed synapses with short-term plasticity, such that
whenever a spike is transmitted recovery to full transmission capability takes a finite
time. This mimics the depletion of synaptic vesicles which contain neurotransmitter
and need to be recreated after each activation of the synapse.

Including the various neuron parameters that Bonifazi et al. [BGP+09] estimated
from their experiments into our simulation leads to very similar GDP activity as
observed in the experiments, and most of all the same stimulus that was used to
suppress GDPs there accomplished suppression in the simulations as well. However,
the inter-GDP-interval turned out to be much shorter than observed in experiments.
This point can however be resolved by increasing τrec in the synaptic dynamics.

Judging the validity of our results is not straight-forward since a lot of further
assumptions, besides synaptic depression, went into the set-up of the simulation:
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e.g. the size of conductance amplitudes g0 (cf. Eq. 5.4.3), the total input from the
pyramidal population encoded by its rate, or the synaptic time constants. The latter
turn out to be quite small ∼ 0.5 ms. If they are larger, GDP generation breaks
down and activity becomes irregular. Increasing the synaptic time constant also
likely increases the net current that is transmitted. A rescaling of the evoked post-
synaptic potential by rescaling g0 (cf. Eq. 5.4.3) could resolve part of this problem,
however in the highly nonlinear conductance-based neuron this is not a straight-
forward task. Spiking activity also becomes irregular when the rate of the pyramidal
population becomes too high. Further investigation is necessary to understand how
these findings relate to biology, however, mature neuronal networks typically have
asynchronous irregular spiking activity, so it is interesting to speculate that these
observations relate to the changes in synaptic gain and pyramidal input during cell
maturation and network development [BAGTK07].

One further shortcoming of our modeling results so far is the fact that in ex-
periments it suffices to stimulate a single HC neuron to suppress GDPs. In our
simulation runs we needed to stimulate at least 5 neurons to obtain the same effect.
We used the average neuron parameter values reported in [BGP+09]. Introducing
more variation in these parameters might partially resolve this issue.

The main finding of this Chapter is that it is indeed rather the differences in
neuron parameters, most of all in the effective distance to firing threshold, that
make HC neurons so important for network dynamics. Topology plays a minor role,
since simulations of random networks lead to similar results as those of scale-free
networks. However, the random networks needed to be quite dense in comparison
to scale-free networks and even in comparison to fully mature networks. Especially,
in early network development connectivity is still sparse, so assuming that GDPs
play a pivotal role in this phase, sparse scale-free structures are a low-wiring cost
solution.

We further mapped the main GDP generation mechanism – HC neurons drive
the otherwise mostly silent LC neurons to fire whenever there is a spontaneous acti-
vation in the densely connected HC subpopulation – back to oscillator neurons that
are connected by synapses with activity dependent short-term depression. There,
a hyperpolarizing current is able to shut down the HC drive and suppress global
network synchronization. Preliminary work suggests that one can map the mecha-
nism to an essentially two-dimensional oscillator problem. To further formalize and
mathematically analyze that reduced modeling approach is work in progress.

Though such a more general model might have interesting applications in many
real-world phenomena, a biologically motivated model such as the network of
conductance-based neurons is of much help in actually interpreting and understand-
ing the specific neuroscientific system at hand, and continuation of the analysis of
this more complex model is in progress as well.
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6 Conclusions

In this thesis, we studied the impact of complex network topologies on the synchro-
nization dynamics of coupled oscillators. We investigated different oscillator types,
intrinsic dynamics and coupling schemes: phase oscillators coupled via phase dif-
ferences, higher-dimensional periodic systems coupled diffusively as well as neural
circuits with inhibitory delayed pulse-coupling. All these dynamical systems are
idealizations of systems occurring in nature.

To provide an immediate application of the work in this thesis we investigated
more realistic neuron models, in particular current-based and conductance-based
leaky integrate-and-fire point oscillators in order to explain recent experimental
findings.

The work presented in the thesis hinges on three main questions:
1. How does the speed of synchronization depend on network topology? On

the spectrum from completely ordered grid-like networks, intermediately ordered
networks in the small world regime to completely unordered random networks, which
class of topologies is most conducive to synchronization?

2. Can the topological features of small-world networks be predicted analytically,
thereby bypassing the enormous computational effort required in constructing these
networks?

3. What role do hub neurons in a network with scale-free topology play in the
emergence and destruction of globally synchronous oscillations?

The answers to these questions are supplemented by theoretical work to derive a
mean field approximation for calculating the spectra of networks in the small-world
regime. This work has wide ranging applicability outside the context of this thesis
given enormous importance of small-world networks in biology, physics, engineering
and the social sciences which in the past had to rely on numerical efforts alone.

In the first part (Chapter 3), we investigated the impact of topology on the
speed of synchronization of various oscillator types, intrinsic dynamics and coupling
schemes: phase oscillators coupled via phase differences, higher-dimensional peri-
odic systems coupled diffusively as well as neural circuits with inhibitory delayed
pulse-coupling and consistently found qualitatively the same results. We derived
analytical predictions for the asymptotic synchronization times, including an exten-
sion of the master stability function to determine the synchronization speed of the
system.

We found that small-world networks never synchronize fastest. This result is
surprising as previous workcite [BP02, WS98] suggested that small-world networks
might be particularly supportive to synchronization. Our results however show that
regarding speed of synchronization they are not special at all.

In particular, in network ensembles with fixed average path length, synchrony
is consistently fast for regular rings, fastest for completely random networks, and

93



slowest in the intermediate small-world regime. It is an astonishing result that holds
across various oscillator types, intrinsic dynamics and coupling schemes: phase os-
cillators coupled via phase differences, higher-dimensional periodic systems coupled
diffusively as well as neural circuits with inhibitory delayed pulse-coupling. Thus,
our results indicate that this is a universal phenomenon. Our investigations of real-
world networks support this view. Although the considered networks may be in
the small-world regime already, rewiring still strongly increases the synchronization
speed, even for ensembles with fixed average path length. It remains an open ques-
tion why rewiring typically implies faster synchronization. In addition, we could
extend our analysis of the asymptotic synchronization time to additional other time
scales relevant for the system’s function or dysfunction, respectively.

In Section 3.5.5 we found a surprising similarity between Kuramoto and pulse-
coupled oscillators. An interesting question poses itself under which conditions the
synchronization times of the former can approximated by or even be mapped onto
those of the latter.

In the second part (Chapter 4), we introduced a simple two-stage mean field
rewiring to analytically derive predictions for the spectra of graph Laplacians. Sys-
tematic numerical checks confirm that our prediction is accurate for the second
largest eigenvalue and even for the smallest eigenvalue for all parameter values ex-
cept for small degrees or very high topological randomness of the order of unity for
the second largest eigenvalue and up to q-values corresponding to the small-world
regime for the smallest eigenvalue, respectively. For smaller k, our analytic predic-
tion still serves as a valuable guide for the overall dependence on all topological pa-
rameters. For q close to unity, our mean field predictions are well complemented by
standard random matrix theory. Besides the second largest and smallest eigenvalues
that give valuable information about initial and asymptotic relaxation dynamics,
the bulk spectrum and the fine structure of the spectrum are also well approximated
by our analytical prediction.

In particular, the spectral prediction includes regular rings, small worlds, and sub-
stantially more randomly rewired networks and undirected as well as directed ones.
Thus, our theoretical predictions agree well with the eigenvalues obtained numeri-
cally over almost the entire range of topological randomness q, thereby improving
upon previous attempts based on perturbation theory for q ≪ 1 [Mon99, BP02].

Interestingly, eigenvalues for directed networks are approximated more accurately
and in a wider range of q-values, in spite of the mean field rewiring being undirected.
This is in particular related to the fact that the predictions for the undirected
second-largest eigenvalues at q = 1 are larger in real part than the directed ones,
while all the mean field eigenvalues converge to the eigenvalue −1 at q = 1.

The simple mean field approach presented here definitely leads to an essential
reduction of computational efforts when studying randomized (regular or small-
world) network models. As a future task it may be extended to rewiring approaches
starting from other than ring-like structures, e.g. to two or three dimensions, as
for instance, relevant for neural network modeling [SB09]. Checking with appropri-
ate models, it may thus serve as a powerful tool to predict the relations between
structural and dynamical properties of randomized networks.

The observed decreasing accuracy of the mean field approximation for ‘small’ k-
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Chapter 6. Conclusions

values leads to an interesting task for further work. We can apply our rewiring on
average to the slightly modified Watts-Strogatz small-world model [NW99]. Here,
instead of rewiring existing links, extra links, often called shortcuts are added be-
tween pairs of nodes chosen at random, but no links are removed from the initial
ring structure. This may lead to a better approximation for low connectivity since
it is not possible to destroy the initial ring structure.

In the third part (Chapter 5), we first reviewed the experimental findings with the
emphasis on the reported phenomenon that stimulating a single hub neuron may
completely remove global collective oscillations, while driving a non-hub neuron the
same way does not significantly affect the oscillations. Furthermore, we suggested
an approach to implement the discovered scale-free topology in our modeling.

Firstly, using the abstract single-variable pulse-coupled oscillators the question
about possible mechanisms that remove oscillations in the neurobiological system
translates into the question: What are possible mechanisms for destroying a close-
to-synchronous periodic orbit [DTD+04]? Numerically, we confirmed that driving a
hub neuron does indeed have more impact on the phase spread than driving a non-
hub neuron. The maximal induced phase spread, however, is about equal in both
cases. Thus, the theoretical framework based on previous works [DTD+04, Tim07]
does not suffice to explain the experimentally observed phenomena. Nevertheless,
our simulations support the hypothesis that driving single neurons in a pulse-coupled
system may induce effects of local heterogeneity similar to those obtained for con-
tinuous time phase-coupled oscillators in [Tim07].

Secondly, we investigated biophysically more realistic models to uncover possible
mechanisms. Indeed, we could switch off global oscillations by targeted stimulation
of hub neurons – which does not work for non-hub neurons – and thus reproduced
parts of the experimental phenomena. In this context, the main finding is that the
variety of neuron parameters, in particular the effective distance to firing thresh-
old, that make HC neurons so important for network dynamics. Furthermore, our
results suggest that the topology plays a minor role. We mapped the main GDP
generation mechanism – HC neurons drive the otherwise mostly silent LC neurons
to fire whenever there is a spontaneous activation in the densely connected HC
subpopulation – back to oscillator neurons that are connected by synapses with ac-
tivity dependent short-term depression. There, a hyperpolarizing current is able to
shut down the HC drive and suppress global network synchronization. Preliminary
work suggests that one can map this mechanism to an two-dimensional oscillator
problem.

In this thesis we were only able to present a snapshot of the work on the role of
hub neurons. Ongoing work is progressing along two axes; firstly, a reduced model
is analyzed mathematically which could have interesting applications outside of the
neuroscientific context. At the same time the more realistic model of conductance-
based neurons is studied in order to provide insight into the experimentally observed
phenomena of globally synchronous oscillations. There remain many problems to be
solved, but a promising basis for future studies in this direction has been established.
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If the brain were simple enough for us to understand it, we would be too simple to
understand it.

— Ken Hill
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Table 6.1: List of abbreviations. Additional abbreviations used in Chapter 5 are
listed in Tables 5.4.2 and 5.4.2 on page 84.

Abbreviation Description Reference Page

cLIF conductance-based leaky integrate-and-fire 5.4 84
CSPO close-to-synchronous periodic orbit 5.3 81
EPSP excitatory postsynaptic potential 5 78
exc excitatory 5.4 84
GABA γ-amino-butyric-acid 5 77
GDP giant depolarizing potential 5 77
HC high-connectivity 5 77
IN interneuron 5 77
inh inhibitory 5.4 84
K Kuramoto oscillators 3.1 29
LC low-connectivity 5 77
LIF leaky integrate-and-fire 3.4.3 37
MSF master stability function 3.4.2 32
NEST Neural Simulation Technology 5.4 83
PC pulse-coupled oscillators 3.1 29
PSC post-synaptic current 5.4 86
pyr pyramidal neurons 5.4 84
R Rössler oscillators 3.1 29
SCC strongly connected component 2.1.3 17
SW small world 2.2.1 20
syn synaptic 5.4 84
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Table 6.2: List of symbols. Additional symbols used in Chapter 5 are listed in
Tables 5.4.2 and 5.4.2 on page 84.

Symbol Description Reference Page

A adjacency matrix 2.1.1, eq. (2.1.1) 15
B betweenness centrality 2.1.3, eq. (2.1.11) 18
C clustering coefficient 2.1.3, eq. (2.1.18) 19
dK maximal distance (Kuramoto) 3.4.1, eq. (3.4.4) 31
dPC maximal distance (pulse-coupled) 3.4.3, eq. (3.4.23) 36
dR maximal distance (Rössler) 3.4.2, eq. (3.4.7) 32
D . . . Jacobian 3.4.2 32
δK perturbation (Kuramoto) 3.4.1, eq. (3.4.2) 31
δPC perturbation (pulse-coupled) 3.4.3, eq. (3.4.21) 36
δR perturbation (Rössler) 3.4.2, eq. (3.4.8) 32
∆ delay 2.2.2, eq. (2.2.6) 23
f total weight 4.2, eq. (4.2.3) 56
F free dynamics function 3.1, eq. (3.1.1) 26
G stability matrix 3.4.3, eq. (3.4.35) 37

G̃ nonlinear stroboscopic map 3.4.3 36
γ dissipation 2.2.2, eq. (2.2.6) 23
h Lyapunov exponent 3.4.2 34
h1,γ master stability function 3.4.2, eq. (3.4.14) 34
H interaction function 3.1, eq. (3.1.5) 27
I external current 2.2.2, eq. (2.2.6) 23
J coupling matrix 2.2.2, eq. (2.2.1) 22
k degree 2.1.3, eq. (2.1.4) 16
kbi number of bilateral edges 2.1.3, eq. (2.1.14) 18
kin/kout in-/out-degree 2.1.3, eq. (2.1.2) 15
ktot total degree 2.1.3, eq. (2.1.14) 18
lij length of a shortest path 2.1.3, eq. (2.1.7) 16
L average shortest path length 2.1.3, eq. (2.1.8) 16
Λ (scaled) graph Laplacian 2.1.4, eqs. (2.1.22), (2.1.21) 20

Λ̃mf(Λmf) (scaled) mean field graph Laplacian 4.2, eq. (4.2.9) 58
M number of edges 2.1.3, eqs. (2.1.3),(2.1.5) 15/16
N graph (network) size 2.1.1 15
P link probability in Erdös-Rényi graphs 4.5 68
p rewiring probability 3.6 50
φi phases (pulse-coupled) 2.2.2, eq.(2.2.6) 23
q topological randomness 2.2.1 21
ρ density of states 4.6, eq. (4.6.1) 73
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Table 6.3: List of symbols. Additional symbols used in Chapter 5 are listed in
Tables 5.4.2 and 5.4.2 on page 84.

Symbol Description Reference Page

σ global coupling constant 2.2.2 21
τK synchronization time (Kuramoto) 3.4.1, eq. (3.4.5) 31
τPC synchronization time (pulse-coupled) 3.4.3, eq. (3.4.53) 39
τR synchronization time (Rössler) 3.4.2, eq. (3.4.16) 35
Θi phases (Kuramoto) 2.2.2 22
T period (pulse-coupled) 3.4.3, eqs. (3.4.18), (3.4.27) 35/36
U rise function 2.2.2, 3.4.3, eq. (3.4.29) 23;37
Vi membrane potential 2.2.2, eq. (2.2.6) 23
w1, w2 weights for individual edges 4.2, eqs. (4.2.6), (4.2.7) 58
ωi oscillator frequencies (Kuramoto) 2.2.2, eq. (2.2.2) 22
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