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Chapter 1

Introduction and Overview

“There is no evidence that God ever intended the United States of Amer-
ica to have a higher per capita income than the rest of the world for
eternity.”

Robert M. Solow

This thesis is structured as a cumulative dissertation and combines three papers which are
treated seperately in this introduction.
The first paper is concerned with nonparametric regression. The world of regression is
basically divided into two different approaches. On the one hand, the parametric approach,
in which a model that follows a given family of functional forms is adapted to the data.
The disadvantage of this approach is obvious, since the optimal chosen representative can
be far away from what really generates the data. For example, a linear function is not able
to adapt to a potential curvature of the underlying data. When wanting to select the
appropriate parametric form, one is faced to the problem of choosing among infinitely
many different functional forms. Needless to say that this choice critical. Therefore, more
flexible methods have been proposed, which gets us to the approaches of nonparametric
regression for which no assumption about a specific functional form is needed, except of
smoothness. One of these approaches is the nonparametric kernel regression. We face the
situation that we have the data (X1,Y1), . . . ,(Xn,Yn), n ∈ N, following
Yi = m(Xi) + errori, i = 1, . . . ,n. The task is to estimate the functional value m(x), where
x is somewhere between the smallest and the largest Xi. Thereby, m(x) is estimated by a
weighted average of the Yi’s, where the weight function is called kernel and the width of
the interval over which averaging is performed is called bandwidth. The choice of the
bandwidth is a trade-off situation. On the one hand, a larger bandwidth provides more data
for the estimation, resulting in a smaller variance; on the other hand, data that are far away
from the regression point give less credible information about what happens at x, resulting
in a larger bias. One could say that the selection of the bandwidth is one of the



4 Introduction and Overview

fundamental model selection problems of nonparametric kernel regression. Bandwidth
selection methods deal with the sensitive choice of balancing variance and bias by
estimating the bandwidth from the data. The task of chapter (2) is to give a review that
explains and compares the bandwidth selection methods which are available in literature.
We discuss, implement and compare almost twenty selectors, complete by again almost 20
linear combinations of two seemingly negatively correlated groups of selectors of which
the six best are presented. By this means, we observe which methods behave similar and
find a certain ranking of methods, although no bandwidth selector performed uniformly
best. The paper was submitted in a statistical journal, coauthord with Stefan Sperlich and
Anja Schindler.
The second and third papers in this thesis are concerned with growth regressions. The
central motivation of the growth literature is to explain differences in the country’s growth
paths. The growth regressions therein usually inhabit proximate determinants of economic
growth and, depending on the paper and the special question its author wants to
investigate, some more determinants. The typically used and theoretically well justified
proximate determinants are the initial level of income, the share of capital being invested
in physical capital, a measure of human capital and the population growth. The list of
additional explanatory variables is a non-exhaustive enumeration. These variables could
for example be ethnic homogeneity, political freedom, political stability, foreign direct
investment or trade-policy openness, to mention a few. As a result, growth can be seen as a
theory of everything, producing contradictory results. As we find that this development is
critical, we stick very close to the aforementioned proximate determinants.
Obviously, the reason for incorporating the additional explanatory variables in growth
regressions is that the proximate determinants do not suffice to explain growth. One
famous example is that the growth performance of the sub-group of sub-Saharan African
countries is significantly worse than that of all other countries. This is especially
surprising, as a prominent stylized fact about economic growth is that when comparing two
otherwise similar countries, the one with the lower initial mean income will tend to see the
higher rate of growth. When wanting to explain this phenomenon, authors usually add
more variables to the growth regression and find that the coefficient of the dummy variable
identifying the group of sub-Saharan African countries, namely the Africa-Dummy, loses
its significance. Then it is concluded, that the set of extra variables must be the missing
variables in growth models and must therefore be added to growth regressions to explain
the real growth performance. However, it remains unclaer if the special unique output of
these variables only identifies sub-Saharan African countries and therefore acts like a
dummy, or if it really drives growth. Therefore, we find it necessary to derive statistical
facts about the Africa-Dummy. Chapter (3) deals with this. We develop a statistical
method that is able to identify the Africa-Dummy and can moreover be extended to derive
empirical facts about it. Open questions are: How does the Africa-Dummy interact with
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the other explanatory variables? To what extend is the parametric linear structure of
growth regressions responsible for the significance of the Africa-Dummy? How does the
Africa-Dummy evolve over time? Answers to these questions can be found in chapter (3).
Moreover, it gives a detailed introduction to the methodology of growth regressions,
explaining the advantages of some methods compared to others. The chapter is supposed
to be published together with Stefan Sperlich in a statistical journal.
The appearance of the Africa-Dummy already motivates the third paper. Basically, the
coefficient of the Africa-Dummy is a correction of the intercept for sub-Saharan African
countries. But what about the other coefficients? For example: Is there a reason to believe
that a poor country has the same returns to investments in physical capital than a rich
country? Let’s not only focus on the two distinct groups of sub-Saharan African and other
countries and instead, consider more generally the individual countries in the world and
concentrate on their output of measures of the income distribution; namely on poverty,
inequality and the share of income earned by their middle class. The literature shows that
these variables affect economic growth. Thereby, it is argued that a poor country behaves
different than a rich country. But this different bahaviour is not accounted for when
estimating mean coefficinets. Estimating mean coefficnets reveals more problems as the
following simplified example shows. Consider a growth regression of the form

growth = β ∗ (growth driver)+ error

and consider that the sample is clearly divided into poor and rich countries. First, it is very
likely to hold that βpoor 6= βrich 6= βmean. Therefore, the mean coefficient only reflects a
theoretical situation that might not be fulfilled in any of the country groups. Second, this
situation already indicates an endogeneity problem. For example, if poor countries have a
smaller return to the growth driver than the rich countries, this difference is very likely to
move simultaneously with the growth performance, as there must be some reason for that
the poor countries are poor and that the rich countries are rich. Third, there are problems
when putting the model to data. Poor countries have systematically weaker databases and
therefore, the estimation of βmean is highly suspicious to suffer from a sample selection
bias. All these problems are not present if we separate the two coefficients βpoor and βrich

from the beginning.
Chapter (4) deals with these problems. We formulate and apply a variable-coefficients
model, allowing for the possibility of a "continuous transition" from poor to rich. This
transition is explained by the country’s individual levels of poverty, inequality and the
share earned by its middle class in each year. Note that in this situation, the set of
explanatory variables is not extended, as the extra variables only explain the coefficients of
the proximate determinants. We investigate how these coefficients differ. The analysis is
conducted for the growth rate of the mean income, for that of the poorer twenty per cent of
the society and that of the richer twenty per cent. The chapter is supposed to be published
together with Stefan Sperlich in a statistical journal.
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Chapter 2

A Review and Comparison of
Bandwidth Selection Methods for
Kernel Regression

Over the last four decades, several methods for selecting the smoothing parameter,
generally called the bandwidth, have been introduced in kernel regression. They differ
quite a bit, and although there already exist more selection methods than for any other
regression smoother we can still see coming up new ones. Given the need of automatic
data-driven bandwidth selectors for applied statistics, this review is intended to explain and
compare these methods.

2.1 Introduction

Today, kernel regression is a common tool for empirical studies in many research areas.
This is partly a consequence of the fact that nowadays kernel regression curve estimators
are provided by many software packages. Even though for explorative nonparametric
regression the most popular and distributed methods are based on P-spline smoothing,
kernel smoothing methods are still common in econometric standard methods, for example
for estimation of the scedasticity function, estimation of robust standard errors in time
series and panel regression models. Still quite recently, kernel regression has experienced a
kind of revival in the econometric literature on treatment effect estimation and impact
evaluation, respectively. Nevertheless, until today the discussion about bandwidth
selection has been going on - or at least not be closed with a clear device or suggestion for
practitioners. Typically, software implementations apply some defaults which in many
cases are questionable, and new contributions provide simulations limited to show that the
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own invention outperforms existing methods in particularly designed cases. An explicit
review or comparison article can be found only about bandwidth selection for density
estimation, see Heidenreich, Schindler and Sperlich (2010) and references therein.

There are many, quite different approaches dealing with the problem of bandwidth
selection for kernel regression. One family of selection methods is based on the corrected
ASE criterion and uses ideas from model selection to choose an optimal bandwidth. To the
best of our knowledge this was first introduced by Rice (1984). A second family has
become quite popular under the name of cross-validation (CV) going back to Clark (1977).
A disadvantage of the CV approach is that it can easily lead to highly variable bandwidths,
see Härdle, Hall and Marron (1988). A recently studied way to improve it is the one-sided
cross-validation (OSCV) method proposed by Hart and Yi (1998). Alternatives to the ASE
minimizing and CV approaches are the so-called plug-in methods. They look rather at the
asymptotic mean integrated squared error where the unknown quantities, depending on the
density of the covariate, f (x), the regression function m(x), and the variance (function) of
the conditional response, are replaced by pre-estimates or priors, cf. for example Ruppert,
Sheather and Wand (1995). Finally, there exist various bootstrap approaches but mainly
focusing on the local optimal bandwidth for which reason they a comparison is hardly
possible. Cao-Abad and González-Manteiga (1993) proposed a smoothed bootstrap, and
González-Manteiga, Martínez Miranda and Pérez González (2004) a wild bootstrap
procedure, both requiring a pilot bandwidth to be plugged in. As it is the case for the
aforementioned plug-in methods, if we have an appropriate pilot or pre-estimator, then the
performance of these methods is typically excellent, else not. Asymptotics including the
rate of convergence of these methods was first studied by Hall, Marron and Park (1992).

We review a big set of existing selection methods for regression and compare them on a set
of different data for which we vary the variances of the residuals, the sparseness of the
design and the smoothness of the underlying curve. For different reasons we concentrate
on small and moderate samples and restrict to global bandwidths. Due to the complexity of
the problem we have had to be rather restrictive and decided to concentrate on designs and
models which we believe are interesting (with regard to their smoothness and statistical
properties rather than the specific functional form) for social and economic sciences. We
are aware that neither the set of methods nor the comparison study can be comprehensive
but hope it nevertheless may serve as a fair guide for applied researchers. Note that most of
them cannot be found in any software package. We are probably the first who implemented
all the here reviewed selection methods.

Suppose we have random pairs (X1,Y1), . . . ,(Xn,Yn), n ∈ N, where the Xi’s are explanatory
variables drawn from a continuous distribution with density function f . Without loss of
generality, we assume X1 < X2 < .. . < Xn. The Yi’s are response variables generated by the



2.1 Introduction 9

following model:
Yi = m(Xi)+σ(Xi)εi, i = 1, . . . ,n, (2.1)

with i.i.d. random variables εi with mean zero and unit variance. Further, σ2(x) = var(Y |x)
is finite, and the εi are independent of all X j. Assume one aims to estimate
m(x) = E(Y | X = x) for an arbitrary point x ∈ R.

Let K : R→ R be a kernel function that fulfills
∫

∞

−∞
K(u)du = 1,

∫
∞

−∞
uK(u)du = 0 and∫

∞

−∞
u2K(u)du =: µ2(K)< ∞. Furthermore, denote Kh(u) := 1

h K(u/h), where h ∈ R+ is
our bandwidth and or smoothing parameter. When speaking of kernel regression, there
exist slightly different approaches for estimating m(x). The maybe most popular ones are
the Nadaraya-Watson estimator proposed by Nadaraya (1964) and Watson (1964) and the
local linear estimator. Thinking of least squares estimation, the first one approximates
m(x) locally by a constant, whereas the latter one approximates m(x) locally by a linear
function. Before the local linear or more generally, the local polynomial smoother became
popular, a well known alternative to the Nadaraya-Watson estimator was the so-called
Gasser-Müller estimator, see Gasser and Müller (1979), which is an improved version of
the kernel estimator proposed by Priestley and Chao (1972). Fan (1992) presents a list of
the biases and variances of each estimator, see that paper also for more details. It is easy to
see that the bias of the Nadaraya-Watson estimator is large when | f ′(x)/ f (x)| is large, e.g.
for clustered data, or when |m′(x)| is large. The bias of the Gasser-Müller estimator looks
simpler, does not have these drawbacks and is design-independent so that the function
estimation in regions of sparse observations is improved compared to the
Nadaraya-Watson estimator. On the other hand, the variance of the Gasser-Müller
estimator is 1.5 times larger than that of the Nadaraya-Watson estimator. The local linear
estimator has got the same variance as the Nadaraya-Watson estimator and the same bias
as the Gasser-Müller estimator. When approximating m(x) with higher order polynomials,
a further reduction of the bias is possible but these methods require mode assumptions -
and in practice also larger samples. For implementation, these methods are less attractive
when facing multivariate regression, and several considered bandwidth selection methods
are not made for these extensions. Most of these arguments hold also for higher order
kernels. When comparing the local linear with the Gasser-Müller and the
Nadaraya-Watson estimator, both theoretical approaches and simulation studies show that
the local linear estimator in most cases corrects best for boundary effects, see also Fan and
Gijbels (1992) or Cheng, Fan and Marron (1997). Moreover, in econometrics it is
preferred to use models that nest the linear model without bias and directly provides the
marginal impact and elasticities, i.e. the first derivatives. All this is provided automatically
by the local linear but unfortunately not by the Nadaraya-Watson estimator. Consequently,
we will concentrate in the following on the local linear estimator. More precisely, consider

min
β0, β1∈R

n

∑
i=1

(Yi−β0−β1(Xi− x))2Kh(x−Xi) (2.2)
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where the minimizer can be expressed as a weighted sum of the Yi, i.e. 1/n∑
n
i=nWh,i(x)Yi.

Denote Sh, j = ∑
n
i=1 Kh(x−Xi)(Xi− x) j and consider the following two cases:

• If

det

(
Sh,0(x) Sh,1(x)
Sh,1(x) Sh,2(x)

)
= Sh,0(x)Sh,2(x)− (Sh,1(x))2 6= 0 (2.3)

the minimizer of (2.2) is unique and given below.

• If Sh,0(x)Sh,2(x)− (Sh,1(x))2 = 0 we distinguish between

� x = Xk for a k ∈ {1, . . . ,n} but Xk does not have its neighbors close to it such
that Kh(Xk−Xi) = 0 for all i 6= k such that Sh,1(xk) = Sh,2(xk) = 0. In this case,
the minimizing problem (2.2) is solved by β0 = Yk, and β1 can be chosen
arbitrarily.

� x 6= Xk for all k ∈ {1, . . . ,n}. Then the local linear estimator is simply not
defined as there are no observations close to x.

Summarizing, for our purpose we define the local linear estimator by

m̂h(x) =
1
n

n

∑
i=1

Wh,i(x)Yi (2.4)

with weights

Wh,i(x) =


nSh,2(x)Kh(x−Xi)−nSh,1(x)Kh(x−Xi)(Xi−x)

Sh,0(x)Sh,2(x)−Sh,1(x)2 , if Sh,0(x)Sh,2(x) 6= Sh,1(x)2,

n , if Sh,0(x)Sh,2(x) = Sh,1(x)2, x = xi

0 , else

if Wh,i(x)> 0 for at least one i. If Wh,i(x) = 0 ∀ i the local linear estimator is not defined.
Note that the matrix with entrances {Wh,i(X j)}i, j gives the so-called hat-matrix in kernel
regression.

Thanks to the very limited set of assumptions, such a nonparametric regressor is most
appropriate for explorative data analysis but also for further statistical inference when
model specification is crucial for the question of interest, simply because model
misspecification can be reduced here to a minimum. The main drawback is, however, that
if the empirical researcher has no specific idea about the smoothness of m(x) but - which is
commonly the case - he does not know how to choose bandwidth h. Indeed, one could say
that therefore the selection of smoothing parameters is one of the fundamental model
selection problems of nonparametric statistics. For practitioners this bandwidth choice is
probably the main reason for not using nonparametric estimation.

To the best of our knowledge there are hardly - and no recent - reviews available
comparing either theoretically or numerically the different existing bandwidth selection
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methods for regression. Some older studies to be mentioned are Rice (1984), Hurvich,
Simonoff and Tsai (1998), or Hart and Yi (1998). Yang and Tschernig (1999) compared
two plug-in methods for multivariate regression, and more recently, González-Manteiga,
Martínez Miranda and Pérez González (2004) compared a new wild bootstrap and cross
validation but with a focus on local bandwidths. None of these studies compared several
global bandwidth selectors for random designs. The aim was typically to introduce a new
methods and compare it with a standard method.

In the next section we briefly discuss three risk measures (or say objective functions) on
which bandwidth selection could and should be based on. In Section (2.3) and Section
(2.4) we introduce and discuss the various selection methods we could find in the
literature, separately for the three different risk measures. In Section (2.5) we present in
detail extensive simulation studies to compare all here discussed selection methods.
Section (2.16) concludes.

2.2 Typically used Risk Measures

We now address the problem of which bandwidth h is optimal, beginning with the question
what means ’optimal’. In order to do so let us consider the well known density weighted
integrated squared error (dwISE) and the mean integrated squared error (MISE), i.e. the
expectation of the dwISE, of the local linear estimator:

MISE(m̂h(x) | X1, . . . ,Xn) = E[ dwISE ] = E
[∫
{m̂h(x)−m(x)}2 f (x) dx

]
=

1
nh
||K||22

∫
S

σ
2(x)dx

+
h4

4
µ

2
2 (K)

∫
S
(m′′(x))2 f (x)dx+oP

(
1
nh

+h4
)
,

where f (x) indicates the density of X , ||K||22 =
∫

K(u)2du, µl(K) =
∫

ulK(u)du, and f the
unknown density of the explanatory variable X with the compact support S = [a,b]⊂ R.
Hence, assuming homoscedasticity, the AMISE (asymptotic MISE) is given by:

AMISE(m̂h(x) | X1, . . . ,Xn) =
1
nh
||K||22σ

2(b−a)+
h4

4
µ

2
2 (K)

∫
S
(m′′(x))2 f (x)dx, (2.5)

where the first summand is the mean integrated asymptotic variance, and the second
summand the asymptotic mean integrated squared bias; cf. Ruppert, Sheather and Wand
(1995). That is, we integrated squared bias and variance over the density of X , i.e. we
weight the squared error by the design. Finding a reasonable bandwidth means to balance
the variance and the bias part of (2.5). An obvious choice of defining an optimal
bandwidth is to say choose h such that (2.5) is minimized. Clearly, the AMISE consists
mainly of unknown functions and parameters. Consequently, the selection methods’ main
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challenge is to find appropriate substitutes or estimates. This will lead us either to the
so-called plug-in methods or to bootstrap estimates of the AMISE.

For estimating a reasonable bandwidth from the data we have to find an error criterion that
can be estimated in practice. Focusing on practical issues rises not only the question of
how to get appropriate substitutes for the unknown functions and parameters of (2.5) but
also the question of why we should look at the mean integrated squared error, i.e. a
population oriented risk measure, when we just need a bandwidth for our particular sample
at hand. If one does not take the expectation over the sample, i.e. considers the dwISE, one
finds in the literature the so-called ASE (for average squared error) replacing the
integration over the density of x by averaging over the sample. So this risk measure is a
discrete approximation of the (density-weighted) integration of the squared deviation of
our estimate from the true function. We define our ASE by

ASE(h) =
1
n

n

∑
j=1

(m̂h(X j)−m(X j))
2 w(X j), (2.6)

where we introduced an additional trimming or weight function w to eliminate summands
(m̂h(X j)−m(X j))

2 where X j is near to the boundary. Having the explanatory variables
ordered, we can simply set w(X j) = 1[Xl+1,Xn−l ] for a given l. By this means, we can reduce
seriously the variability of the ASE score function, see Gasser and Müller (1979). Denote
the minimizer of ASE by ĥ0. Note that the ASE differs from the MISE in two points; first
we do not integrate but average over the design, and second we do not take the expectation
with respect to the estimator. If one wants to do the latter, one speaks of the MASE with
optimal bandwidth h0. A visual impression of what this function looks like is given in
Figure (2.1). For the sake of illustration we have to anticipate here some definitions given
in detail at the beginning of our simulation Section (2.5). When we refer here and in the
following illustrations of this section to certain models, for details please consult Section
(2.5).

For now we denote a minimizer of any other score function by ĥ. Following Shibata
(1981), the bandwidth selection rule is called asymptotically optimal with respect to the
ASE risk measure, if and only if

lim
n→∞

ASE(ĥ)
ASE(ĥ0)

= 1 (2.7)

almost surely. If (2.7) is fulfilled, it follows easily that

ASE(ĥ)
ASE(ĥ0)

P→ 1 (2.8)

or nearly equivalently
ĥ
ĥ0

P→ 1, (2.9)
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Figure 2.1: ASE with w(X j) = 1[X6,X144] for n = 150 simulated data following Model 3

where P→ stands for convergence in probability. Note that optimality can also be defined
with respect to the other risk measures like MISE or MASE.

Before we start, we should emphasize that we consider the ASE risk measure as our
benchmark that should be minimized. All alternative criteria are typically motivated by the
fact that asymptotically they are all the same. We believe that in explorative nonparametric
fitting the practitioner is interested in finding the bandwidth that minimizes the (density
weighted) integrated squared error for the given data, she/he is not interested in a
bandwidth that minimizes the squared error for other samples or in average over all
possible samples.

2.3 Choosing the smoothing parameter based on ASE

Having said that, it is intuitively obvious that one suggests to use ASE estimates for
obtaining a good estimate of the ’optimal’ bandwidth h. Therefore, all score functions
introduced in this section are approaches to estimate the ASE function in practice when the
true function m is not known. An obvious and easy approach for estimating the ASE
function is plugging into (2.6) response Yj for m(X j). This yields the substitution estimate

p(h) =
1
n

n

∑
j=1

(m̂h(X j)−Yj)
2w(X j). (2.10)

It can easily be shown, that this is a biased estimator of ASE(h), see for example Härdle
(1992), chapter 5. One can accept a bias that is independent of h as in this case the
minimizer of (2.10) is the same as that of (2.6). Unfortunately this is not the case for p(h).

We present two approaches to correct for the bias. First the corrected ASE methods that
penalizes each summand of (2.10) when choosing h too small, and second the cross
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validation (CV) method that applies the leave one out estimator. Furthermore, we
introduce the most recent one-sided cross validation (OSCV) method which is a
remarkable enhancement of the classic CV.

2.3.1 The Corrected ASE

It is clear that h ↓ 0 leads to interpolation, i.e. m̂h(X j)→ Yj, so that the function to be
minimized, namely p(h), could become arbitrarily small. On the other hand, this would
surely cause a very large variance of m̂h what indicates that such a criterion function would
not balance bias and variance. Consequently, the corrected ASE penalizes when choosing
h too small in an (at least asymptotically) reasonable sense. We define

G(h) =
1
n

n

∑
j=1

(Yj− m̂h(X j))
2

Ξ

(
1
n

Wh, j(X j)

)
w(X j), (2.11)

where we use w(X j) = 1[Xl+1,Xn−l ] to trim near the boundary. Ξ(.) is a penalizing function
with first-order Taylor expansion

Ξ(u) = 1+2u+O(u2) , u→ 0. (2.12)

The smaller we choose bandwidth h the larger gets Wh, j(X j) and the penalizing factor
Ξ
(1

nWh, j(X j)
)

increases. By conducting a first-order Taylor expansion of G and
disregarding lower order terms it is easy to show that G(h) is roughly equal to ASE(h) up
to a shift that is independent of h. The following list presents a number of proposed
penalizing functions that satisfy the expansion Ξ(u) = 1+2u+O(u2) , u→ 0:

• Shibata’s model selector ĥS = argmin
h∈R+

GS(h), see Shibata (1981)

with ΞS(u) = 1+2u . (2.13)

• Generalized cross validation (GCV) ĥGCV = argmin
h∈R+

GGCV (h), see Craven and

Wahba (1979)
with ΞGCV (u) = (1−u)−2 . (2.14)

• Akaikes information criterion (AIC) ĥAIC = argmin
h∈R+

GAIC(h), see Akaike (1974)

with ΞAIC(u) = exp(2u) . (2.15)

• The finite prediction error (FPE) ĥFPE = argmin
h∈R+

GFPE(h), see Akaike (1970)

with ΞFPE(u) =
1+u
1−u

. (2.16)
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• Rice’s T (T) ĥT = argmin
h∈R+

GT (h), see Rice (1984)

with ΞT (u) = (1−2u)−1 . (2.17)

All these corrected ASE bandwidth selection rules are consistent for n→ ∞ and nh→ ∞ as
h ↓ 0. In practice they certainly exhibit some deficiencies. To mitigate the problems that
may occur for too small bandwidths, we will fix a data-adaptive lower bound for ĥ. Notice
that for h≤ hmin, j := min

{
X j−X j−1,X j+1−X j

}
(recall that the explanatory variables are

ordered for the sake of presentation), we get 1
nWh, j(X j) = 1 and 1

nWh,i(X j) = 0 for all i 6= j.
In this case the j’th summand of (2.11) is not defined if we choose Ξ(.) = ΞGCV (.) or
Ξ(.) = ΞFPE(.) but is Ξ(1) finite for all other penalizing functions such that the j’th
summand of (2.11) gets zero. This shows that for sufficient small bandwidths h the score
function G(h) is either not defined or can be arbitrarily small. This does surely not solve
the problem of balancing bias and variance of the local linear estimator. Therefore, we first
calculate the infimum of the set of all bandwidths for which (2.11) can be evaluated,

hmin,G = max{hmin,l+1, . . . ,hmin,n−l} . (2.18)

When minimizing G(h) for any of the above listed criteria, we used only the bandwidths h
that fulfill h > hmin,G, all taken from the grid in (2.18).

Figure (2.2) shows a plot of the corrected ASE score functions when using the Rice’s T
penalizing function. Not surprisingly, the optimal bandwidth that is related to the
simulated smooth model 10 shows a clear optimum whereas the corrected ASE function
corresponding to the rather wiggly regression m(x) in model 4 takes it smallest value at the
fixed (see above) minimum. However, even the smooth model might cause problems
depending on how the minimum is ascertained: often one has at least two local minimums.
These are typical problems of the corrected ASE bandwidth selection rules that we
observed for almost all penalizing function. Recall that the models used for these
calculations are specified in Section (2.5).

2.3.2 The Cross-Validation

In the following we present the CV method introduced by Clark (1977). To the best of our
knowledge he was the first who proposed the score function

CV (h) =
1
n

n

∑
j=1

(Yj− m̂h,− j(X j))
2w(X j) , (2.19)

where m̂h,− j(X j) is the leave one out estimator which is simply the local linear estimator
based on the data (X1,Y1), . . .(X j−1,Yj−1), (X j+1,Yj+1), . . . ,(Xn,Yn). In analogy to the ASE
function, the weights w(·) are used to reduce the variability of CV (h). We again apply the



16 A Review and Comparison of Bandwidth Selection Methods for Kernel Regression

Figure 2.2: The Corrected ASE Functions for n = 150 independent data following Model
4 and Model 10, respectively.

trimming w(X j) = 1[Xl+1,Xn−l ] to get rid of boundary effects. It can easily be shown that this
score function is a biased estimator of ASE(h) but the bias is independent of h. This
motivates the until today most popular data-driven bandwidth selection rule:

ĥCV = argmin
h∈R+

CV (h) . (2.20)

As for the corrected ASE bandwidth selection rules, the CV bandwidth selection rule is
consistent but in practice, curiously has especially serious problems as n→ ∞. The reason
is that this criterion hardly stabilizes for increasing n and the variance of the resulting
bandwidth estimate ĥ is often huge. Clearly, for h < hmin, j := min

{
X j−X j−1,X j+1−X j

}
we have similar problems as for the corrected ASE methods as then the local linear
estimator m̂h(X j) is not defined. Therefore, (2.19) is only defined if we fix h > hmin,CV with

hmin,CV := max{hmin,l+1, . . . ,hmin,n−l} . (2.21)

Although this mitigates the problems at the lower bound of the bandwidth scale (i.e. for
bandwidth approaching zero), Figure (2.3) exhibits similar problems for the CV as we saw
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Figure 2.3: The CV functions for n = 150 simulated data following Model 4 and Model
10, respectively.

them for the corrected ASE criteria. Figure (2.3) shows the CV score functions when data
followed model 10 and model 4. Again, for the wiggly model 4 we simply take the
smallest possible bandwidth whereas for the smooth model 10 we seem to have a clear
global minimum.

2.3.3 The One-Sided Cross-Validation

As mentioned above the main problem of CV is the lack of stability resulting in large
variances of its estimated bandwidths. As has been already noted by Marron (1986), the
harder the estimation problem the better CV works. Based on this idea, Hart and Yi (1998)
developed a new modification of CV.

Consider the estimator m̂ĥCV
with kernel K with support [−1,1] that uses the CV bandwidth

ĥCV . Furthermore, we consider a second estimator m̃b with smoothing parameter b based
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on a (selection) kernel L with support [0,1]. Then define

OSCV (b) =
1

n−2l

n−l

∑
i=l+1

(m̃−i
b (Xi)−Yi)

2, (2.22)

where m̃−i
b (Xi) is the leave-one-out estimator based on kernel L. Note that l must be at least

2. This ensures that in each summand of (2.22) at least l−1 data points can be used.
Denote the minimizer of (2.22) by b̂. The OSCV method makes use of the fact that a
transformation h : R+→ R+ exists, such that E(h(b̂))≈ E(ĥCV ) and
Var(h(b̂))<Var(ĥCV ). More precisely, (2.22) is an unbiased estimator of

σ
2 +E

[
1

n−2l

n−l

∑
i=l+1

(m̃b(Xi)−m(Xi))
2

]
.

Therefore, minimizing (2.22) is approximately the same as minimizing

E

[
1

n−2l

n−l

∑
i=l+1

(m̃b(Xi)−m(Xi))
2

]
. (2.23)

In almost the same manner it can be argued that minimizing MASE(h) is approximately
the same as minimizing CV (h). We denote the minimizer of (2.23) by bn and the MASE(h)
minimizer by hn. Using the results in Fan (1992) for minimizing the MASE-expressions,
dividing the minimizers and taking limits yields

hn

bn
→
[
||K||22

(µ2
2 (K))2 ∗

(µ2
2 (L))

2

||L||22

]1/5

=: C,

see Yi (2001). Note that the constant C only depends on known expressions of kernels K
and L. One can therefore define the data driven bandwidth selector

ĥOSCV =C · b̂. (2.24)

According to which selection kernel is used one gets different OSCV-values. A list of
recommended and well studied selection kernels is given in Table (2.1), see also Figure
(2.4). The transforming constants C of L1 to L4 are given together with the values µ2

2 (Li)

and ||Li||22 in Table (2.2).

As for the corrected ASE and CV bandwidth selection rules, the OSCV bandwidth
selection rule is consistent. Now consider the i’th summand of (2.22). Analogously to prior
discussions, (2.22) is only defined if b > bmin,lOSCV = max{Xl+1−Xl, . . . ,Xn−l−Xn−l−1},
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Table 2.1: Selection kernels for left OSCV.
Kernel Formulae

One Sided Quartic L1(x) = 15/8(1− x2)21[0,1]
Local Linear Epanechnikov L2(x) = 12/19(8−15x)(1− x2)1[0,1]
Local Linear Quartic L3(x) = 10/27(16−35x)(1− x2)21[0,1]
opt. Kernel from Hart and Yi (1998) L4(x) = (1− x2)(6.92−23.08x+16.15x2)1[0,1]

Table 2.2: Properties of the selection kernels for left OSCV.
Kernel µ2

2 (L) ||L||22 C

L1 0.148571 1.428571 0.8843141
L2 -0.1157895 4.497982 0.6363232
L3 -0.08862434 5.11357 0.5573012
L4 -0.07692307 5.486053 0.5192593

so that for minimizing (2.22) we consider only bandwidths b > hmin,CV . Because of

hmin,G = hmin,CV

= max{hmin,l+1, . . . ,hmin,m−l}

= max{min{Xl+1−Xl,Xl+2−Xl−1} , . . . ,min{Xn−l−Xn−l−1,Xn−l+1−Xn−l}}

≥max{Xl+1−Xl, . . . ,Xn−l−Xn−l−1}

= bmin,lOSCV

= 1/C ∗hmin,lOSCV

≥ hmin,lOSCV

this problem is much less serious for the OSCV than for the other methods. Due to the fact
that m̃b(x) uses only data that are smaller than the regression point x, the variance of m̃b(x)
reacts much more sensitive when decreasing b. This makes it more likely that the true
minimum of (2.22) is larger than bmin,lOSCV . And indeed, in our simulations the problem of
not finding the true minimum did not occur. Clearly, the OSCV score functions show a
wiggly behavior when choosing b small due to a lack of data when using data only from
one side. Moreover, this selection rule overweights the variance reduction. Figure (2.5)
demonstrates the problem: while for Model 4 we observe a clear minimum, for Model 10
we observe that the OSCV score function does not seem to visualize a punishment when b
is chosen disproportionately large. In what follows we will deal with this problem and
introduce modified OS kernels.

Note that the regression estimator used at the bandwidth selection stage, namely m̃b(x) in
(2.22), uses only the data Xi that are smaller than the regression point x. This explains the
notion left OSCV. For implementing the right OSCV, we use the kernel R(u) := L(−u).
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Figure 2.4: The One Sided Selection Kernels used for left OSCV.

Note that this kernel has support [−1,0] and therefore m̃b(x) uses only data at the right side
of x. The transforming constant C in (2.22) does not change. There is evidence that the
difference of left and right sided OSCV is negligible. Hart and Yi (1998) considered the
kernel estimator proposed by Priestley and Chao (1972) in an equidistant fixed and circular
design setting and argued that the OSCV score function using any left sided kernel L is the
same as the OSCV score function, when using its right sided version with kernel L(−u).
Furthermore, they conducted simulations with a fixed design setting using the local linear
estimator and argued that in all simulations they had done, a correlation of the minimizers
of the left and the right OSCV score function of larger than 0.9 was observed. Thus, in the
theoretical considerations we only concentrate on the left sided OSCV and assume that the
corresponding right sided OSCV has the same behavior.

When implementing the OSCV method one has to choose the one sided kernel L. Hart and
Yi (1998) calculated the asymptotic relative efficiency, i.e.

ARE(K,L) = lim
n→∞

E((ĥOSCV − ĥ0)
2)

E((ĥCV − ĥ0)2)
(2.25)

for different kernels for L. The setting was a fixed design using the kernel estimator for
estimating m. They observed an almost twenty-fold reduction in variance compared to the
CV method, when simply using the right kind of kernel L. They introduced two optimal
kernels. One of them is the one sided local linear kernel based on Epanechnikov that is
originally used for boundary correction in density estimation. For finding the optimal
kernel in our case we conducted a simulation study, where we simulated 30 times the data
(X1,Y1), . . . ,(Xn,Yn) for different data sets and different n. We compared the left OSCV
methods, when using the kernels listed up in Table (2.4).

We calculated the bandwidths (ĥ0)i, (ĥCV )i and (ĥOSCV )i (i = 1, . . . ,30) and then estimated
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Figure 2.5: The OSCV Functions based on 150 independent data (Xi,Yi).

ARE(K,L) by

ÂRE(K,L) =
∑

30
i=1((ĥOSCV )i− (ĥ0)i)

2

∑
30
i=1((ĥCV )i− (ĥ0)i)2

. (2.26)

The results in the case of n = 150 are given in Table (2.3). We observed that in seven out of
the twelve different cases using the kernel L4 is best, in only three cases L3 is best and
kernel L1 is only best in one case. When conducting the same simulation study with
n = 50, n = 100 and n = 200 we observed very similar results. Therefore, we decided to
use kernel L4 in the following simulation studies.

A plot of the left OSCV Function, when using kernel L4 is given in Figure (2.6). We
observe that the OSCV functions are very wiggly when we use the kernel L4 compared to
using kernel L1. The same wiggliness can be observed by using kernels L2 and L3. This
behavior can also be observed when plotting the OSCV functions based on other data sets.

Even though one-sided cross validation from the left or from the right should not differ
(from a theoretical point of view), in practice they do. To stabilize the behavior, Mammen,
Martinez-Miranda, Nielsen and Sperlich (2011) proposed to merge them to a so-called
double one-sided or simply do-validation (half from the left-sided, half from the
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Table 2.3: The estimated ARE(K,Li) i = 1, . . .4 and n = 150.
Model ÂRE(K,L1) ÂRE(K,L2) ÂRE(K,L3) ÂRE(K,L4) Best

1 5.828767 0.801370 0.915525 1.061644 L2

2 96.290685 1.152327 19.722925 1.170663 L2

3 6.928571 1.103896 1.032468 0.714286 L4

4 2.051266 1.014796 1.013574 0.071266 L4

5 1.541477 0.427530 0.427530 0.413856 L4

6 2.025299 2.015951 1.000943 1.013723 L3

7 2.674820 0.424460 0.250360 0.283453 L3

8 1.519437 1.002538 0.998917 0.997350 L4

9 3.474171 2.652201 2.651982 2.927879 L3

10 3.945909 1.010591 1.000613 0.999650 L4

11 47.943458 45.635282 38.257424 30.616100 L4

12 1.484678 0.998468 0.524996 0.997636 L3

right-sided OSCV bandwidth) for kernel density estimation and obtained amazingly good
results with that procedure.

2.3.4 Notes on the Asymptotic Behavior

During the last two decades, a lot of asymptotic results for the corrected ASE methods and
the CV method have been derived. Unfortunately, these asymptotic results are often only
derived in the fixed and equidistant design case, when a kernel estimator or the
Nadaraya-Watson estimator is considered. However, it is not hard to see that the results
discussed in the following carry over to the local linear estimator which asymptotically can
be considered as a Nadaraya-Watson estimator with higher order kernels.

Rice (1984) considered the kernel estimator

m̂h(x) =
1
nh

n

∑
i=1

K
(

x−Xi

h

)
Yi (2.27)

proposed by Priestley and Chao (1972) in an equidistant and fixed design setting. Using
Fourier-analysis, he analyzed the unbiased risk estimator of p(h) introduced by Mallows
(1976), and proved that its minimizer fulfills condition (2.9). He made some smoothness
assumptions on K and m and considered bandwidths in the range of Hn =

[
an−1/5,bn−1/5

]
for given a,b. Furthermore, he argued that this bandwidth selection rule is asymptotically
equivalent to the corrected ASE and the CV selection rules and therefore, the minimizers
of the corrected ASE functions also fulfill condition (2.9).

Härdle and Marron (1985) considered the Nadaraya-Watson estimator in a multivariate
random design setting. They proved the optimality condition (2.7) for the minimizer of the
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Figure 2.6: The left OSCV function using kernel L4.

CV score function with respect to the ASE, ISE and MASE risk measures for the CV
method. They made the assumption of h belonging to a range of possible bandwidths that
is wider than

[
an−1/5,bn1/5

]
so that the user of CV does not need to worry about the

roughness of the underlying curve m. Further assumptions are the existence of the
moments E(Y k|X = x), a Hölder continuous kernel K, i.e. |K(u)−K(ν)| ≤ L||u−ν ||ξ for
a ξ ∈ (0,1) and an L > 0,

∫
||u||ξ |K(u)|du < ∞, the Hölder continuity of f and m and that

the density f is bounded from below and compactly supported.

If conditions (2.8) and (2.9) are fulfilled for the bandwidth selection rules based on the CV
and the corrected ASE score functions the question of the speed of convergence arises.
Härdle, Hall and Marron (1988) considered the fixed and equidistant design case. They
assumed i.i.d. errors εi for which all moments exist, a compactly supported kernel with
Hölder continuous derivative and that the regression function has uniformly continuous
integrable second derivative. Let ĥ be any minimizer of a corrected ASE or the CV score
function. Then, as n→ ∞,

n3/10(ĥ− ĥ0)
L→ N(0,σ2) (2.28)

and

n3/10(ASE(ĥ)−ASE(ĥ0))
L→Cχ

2
1 (2.29)

hold, where σ and C are constants depending on the kernel, the regression function and the
observation error. It is interesting to observe that σ is independent of the particular
penalizing function Ξ() used. Taking the asymptotic rates of h’s and ASE’s into account,
one finds that condition (2.28) is of order n1/10 and condition (2.29) is of order n1/5. They
also show that the differences ĥ0−h0 and ASE(ĥ0)−ASE(h0) have the same small rates of
convergence. The authors conjecture that the slow rate of convergence of ĥ and ĥ0 is the
best possible in the minimax sense.

Chiu (1990) considered the unbiased risk minimizer using the kernel estimator in an
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equidistant, fixed design setting with periodic regression function (so-called circular
design). He made the assumptions of independent errors εi for which all moments exist,
some smoothness assumptions on the symmetric kernel K and m completed by technical
conditions for the circular design. He only considered bandwidths belonging to a range
that is slightly smaller than Hn. He pointed out that the normal distribution is not a good
approximation for ĥ because of its slow rate of convergence. Having finite samples in
mind, he reasoned that

n3/10(ĥ−h0)≈
bn/2c

∑
j=1

(Vj−2)wK( j), (2.30)

where V1, . . . ,Vbn/2c are i.i.d. χ2
2 -distributed random variables with weights wK( j) that only

depend on the kernel K. This approximation has got interesting implications. Having in
mind that the MASE minimizer is asymptotically the same as the ASE minimizer and that
the unbiased risk minimizer is asymptotically the same as the minimizer of the corrected
ASE’s and the CV score functions, it follows for example

n3/10(ĥCV −h0)≈
bn/2c

∑
j=1

(Vj−2)wK( j). (2.31)

When Hart and Yi (1998) computed the first twenty weights wK( j) ( j = 1,2, . . . ,20) and
for the quartic kernel K and n = 100, they observed that wK(1) and wK(2) are large and
negative but wK(3), . . . ,wK(20) much smaller and mostly positive. This confirms that the
distribution of ĥCV is skewed to the left.

Assuming some further smoothness assumptions on the one sided selection kernel L and
some technical conditions on L to be able to work with a circular design, they derived a
similar result to (2.31) for OSCV, namely

n3/10(ĥOSCV −h0)≈
bn/2c

∑
j=1

(Vj−2)wL( j). (2.32)

When they calculated the weights wL( j) ( j = 1,2, . . . ,20) in (2.28) for L4 and n = 100,
they observed that these were now smaller in magnitude and almost symmetric around
zero, indicating a symmetric distribution of ĥOSCV with small(er) variance.

Yi (2001) proved the asymptotic stability of the OSCV selection rule. More precisely, let
b0 be the MASE optimal bandwidth using selection kernel L and b̂ be the minimizer of the
unbiased risk estimator. This is asymptotically the same as the minimizer of the OSCV
score function, namely b̂CV . Then, for Cb0−h0 = oP(b̂−b0) with constant C,

lim
n→∞

E((n3/10(ĥOSCV −h0))
2) =C2V (L), (2.33)

where V (L) is a constant that only depends on the selection kernel L. As before, he
considered only an equidistant fixed design case, assumed normally distributed i.i.d.
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errors, some smoothness for m, K and L with symmetric and compactly supported kernel
K, and further technical conditions on m to be able to work with a circular design. Note
that, when taking the rates of convergence of ĥOSCV and h0 into account, one finds, that his
limit theorem (2.33) is of order n1/5.

2.4 Choosing the smoothing parameter based on (A)MISE

In contrast to the cross-validation and corrected-ASE methods, the plug-in methods try to
minimize the MISE or the AMISE. The conditional weighted AMISE of the local linear
estimator m̂h(x) was already given in (2.5). Minimizing w.r.t. h, leads to the
AMISE-optimal bandwidth (hAMISE), given by:

hAMISE =

(
||K||22 ·

∫
S σ2(x)dx

µ2
2 (K) ·

∫
S (m′′(x))2 f (x)dx ·n

)1/5

, (2.34)

where S = [a,b]⊂ R is the support of the sample X of size n. One has the two unknown
quantities,

∫
S σ2(x)dx and

∫
S (m

′′(x))2 f (x)dx, that have to be replaced by appropriate
estimates. Under homoscedasticity and using the quartic kernel, the hAMISE reduces to:

hAMISE =

(
35 ·σ2(b−a)

θ22 ·n

)1/5

, θrs =
∫

S
m(r)(x)m(s)(x) f (x)dx, (2.35)

where m(l) denotes the lth derivative of m.

The plug-in idea is to replace the unknown quantities by mainly three different strategies:

1. Rule-of-thumb bandwidth selector hrot :
The unknown quantities are replaced by parametric OLS estimators.

2. Direct-plug-in bandwidth selector hDPI:
Replace the unknown quantities by nonparametric estimates, where we need to
choose ’prior (or pilot) bandwidths’ for the two nonparametric estimators. In the
second stage we use a parametric estimate for the calculation of these bandwidths.

3. Bootstrap based bandwidth selection hSB and hWB:
The unknown expressions are estimated by bootstrap methods. In case of the smooth
bootstrap (giving hSB), again the unknown expressions in (2.35) are estimated, while
the wild bootstrap method (hWB) directly estimates the MISE of m̂h and minimizes
with respect to h. Both methods require a ’prior bandwidth’.

There also exists a bandwidth selector which does not require prior bandwidths but tries to
solve numerically implicit equations. This procedure follows the solve-the-equation
approach in kernel density estimation, see Park and Marron (1990) or Sheather and Jones
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(1991). However, the results of this bandwidth selector are not uniformly better than those
of the direct-plug-in approach (see Ruppert, Sheather and Wand (1995)) but require a
much bigger computational effort, and are therefore quite unattractive in practice.

For the first two strategies a parametric pre-estimate in some stage is required. We have
opted here for a piece-wise polynomial regression. For the sake of presentation assume the
sample to be sorted in ascending order. The parametric OLS-fit is a blocked quartic fit, i.e.
the sample of size n is divided in N blocks χ j =

(
Xb( j−1)n/Nc+1, . . . ,Xb jn/Nc

)
,

( j = 1, . . . ,N). For each of these blocks we fit the model:

yi = β0 +β1xi +β2x2
i +β3x3

i +β4x4
i + εi i = b( j−1)n/Nc+1, . . . ,b jn/Nc ,

giving
m̂Q j(x) = β̂0 j + β̂1 jxi + β̂2 jx2

i + β̂3 jx3
i + β̂4 jx4

i .

Then, the formula for the blocked quartic parametric estimator θ̂rs, with max(r,s)≤ 4, is
given by:

θ̂
Q
rs(N) =

1
n

n

∑
i=1

N

∑
j=1

m̂(r)
Q j
(Xi)m̂

(s)
Q j
(Xi)1{Xi∈χ j}.

Similarly, the blocked quartic estimator for σ2 is

σ̂
2
Q(N) =

1
n−5N

n

∑
i=1

N

∑
j=1

(Yi− m̂Q j(Xi))
21{Xi∈χ j}.

To choose N we follow Ruppert, Sheather and Wand (1995), respectively Mallows (1973):
take the N̂ from (1,2, . . . ,Nmax) that minimizes

Cp(N) =
RSS(N) · (n−5Nmax)

RSS(Nmax)
− (n−10N),

where RSS(N) is the residual sum of squares of a blocked quartic N-block-OLS, and

Nmax = max [min(bn/20c,N∗),1] ,

with N∗ = 5 in our simulations. Another approach to the blocked parametric fit is to use
nonparametric estimators for the unknown quantities in (2.35), see Subsection (2.4.2).

2.4.1 Rule-of-thumb plug-in bandwidth selection

The idea of the rule-of-thumb bandwidth selector is to replace the unknown quantities in
(2.35) directly by parametric estimates, i.e. for θ22 use

θ̂
Q
22(N) =

1
n

n

∑
i=1

N

∑
j=1

m̂(2)
Q j
(Xi)m̂

(2)
Q j
(Xi)1{Xi∈χ j}

=
1
n

jn/N

∑
i=( j−1)n/N+1

N

∑
j=1

(
2β̂2 j +6β̂3 jxi +12β̂4 jx2

i

)2
,
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and the estimator for σ2

σ̂
2
Q(N) =

1
n−5N

n

∑
i=1

N

∑
j=1

(Yi− m̂Q j(Xi))
21{Xi∈χ j}

=
1

n−5N

jn/N

∑
i=( j−1)n/N+1

N

∑
j=1

(
yi− β̂0 j + β̂1 jxi− β̂2 jx2

i − β̂3 jx3
i − β̂4 jx4

i

)2
(2.36)

The resulting rule-of-thumb bandwidth selector hrot is given by

hrot =

(
35 · σ̂2

Q(N)(b−a)

θ̂
Q
22(N) ·n

)1/5

,

which now is completely specified and feasible due to the various pre-estimates.

2.4.2 Direct plug-in bandwidth selection

In this approach the unknown quantities in (2.35) are first replaced by nonparametric
estimates. Then, for the nonparametric estimator of θ22 a bandwidth g is needed. An
obvious candidate is the bandwidth gAMSE that minimizes the AMSE (asymptotic mean
squared error) of the nonparametric estimator of θ22. Furthermore, a prior bandwidth
λAMSE has to be determined for the nonparametric estimator of σ2. These prior bandwidths
are calculated with a parametric OLS-block-fit.

A nonparametric estimator θ̂22(gAMSE) can be defined by

θ̂22(g) = n−1
n

∑
i=1

[
m̂(2)

g (Xi)
]2
, (2.37)

where we use local polynomials of order ≥ 2. As local polynomial estimates of higher
derivatives can be extremely variable near the boundaries, see Gasser, Kneip and Köhler
(1991), we apply some trimming, i.e.

θ̂
α
22(gAMSE) =

1
n

n

∑
i=1

[
m̂(2)(Xi)

]2
1{(1−α)a+αb<Xi<αa+(1−α)b}, (2.38)

here the data are truncated within 100 ·α% of the boundaries of support S = [a,b], for some
small α ∈ (0,1). Since for increasing α increases the bias, α must not be too large. In our
simulations we follow the proposition α = 0.05 of Ruppert, Sheather and Wand (1995).

The prior bandwidth gAMSE , i.e. the minimizer of the conditional asymptotic mean squared
error of θ̂22(g) is given by

gAMSE =

[
C2(K)

σ2 · (b−a)
|θ24|n

]1/7

(2.39)
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where the kernel dependent constant C2(K) for the quartic kernel is

C2(K) =

{
8505

13 if θ24 < 0
42525

26 if θ24 > 0

The two unknown quantities are replaced by (block-wise) quartic parametric fits. For the
prior estimation of σ2 one uses the same as for the rule-of thumb bandwidth selector (see
(2.36)). For θ24 we use:

θ̂
Q
24(N̂) =

1
n

n

∑
i=1

N

∑
j=1

m̂(2)
Q j
(Xi)m̂

(4)
Q j
(Xi)1{Xi∈χ j}

=
1
n

jn/N

∑
i=( j−1)n/N+1

N

∑
j=1

(
2β̂2 j +6β̂3 jxi +12β̂4 jx2

i

)
·24β̂4 j.

This gives first an estimate for the gAMSE , and afterwards for θ α
22.

The nonparametric estimator for σ2 is:

σ̂
2 = ν

−1
n

∑
i=1

[
Yi− m̂λAMSE (Xi)

]2
, (2.40)

where ν = n−2∑i wii +∑i ∑ j w2
i j with {wi j}n

i, j=1 is the hat-matrix of m̂λAMSE . The prior
bandwidth λAMSE is calculated as the minimizer of the conditional AMSE of σ̂2

1 , see
Ruppert, Sheather and Wand (1995). Hence, λAMSE is given by

λ̂AMSE =

[
C3(K)

σ̂4
Q(N̂)(b−a)(

θ̂ .05
22 (ĝAMSE)

)2
n2

]1/9

with the kernel dependent constant C3(K) = 146735
14339 .

Now, the direct-plug-in bandwidth hd pi is given by:

hDPI =

[
35

σ̂2(λ̂AMSE)(b−a)
θ̂ .05

22 (ĝAMSE)n

]1/5

.

2.4.3 Using smoothed bootstrap

The idea of is to apply bootstrap to estimate the MISE of m̂h or some specific parameters
of the regression or its derivatives. For a general description of this idea in nonparametric
problems, see Hall (1990) or Härdle and Bowman (1988), though they only consider fixed
designs. Cao-Abad and González-Manteiga (1993) discussed and theoretically analyzed
several bootstrap methods for nonparametric kernel regression. They proposed the smooth
bootstrap as an alternative to wild bootstrap because the wild bootstrap mimics the model
when the design is fixed. If one refers to the random design, i.e. not the ISE or ASE but
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MISE or MASE are of interest, hence the following resampling method is proposed: Draw
bootstrap samples (X∗1 ,Y

∗
1 ),(X

∗
2 ,Y

∗
2 ), . . . ,(X

∗
n ,Y

∗
n ) from the two-dimensional distribution

estimate

F̂n(x,y) =
1
n

n

∑
i=1

1{Yi≤y}

∫ x

−∞

Kg(t−Xi)dt,

where g is a prior bandwidth asymptotically larger than h, see below. Cao-Abad and
González-Manteiga (1993) state that, as the marginal density of X∗ is the kernel density
estimate of X given the original data and bandwidth g, and the marginal distribution of Y ∗

is the empirical distribution function of {yi}n
i=1, one has E∗(Y ∗ | X∗ = x) = m̂g(x), and a

natural estimator for Var(Y |x) is

σ̂
2
g (x) =

1
n

n

∑
i=1

WgiY 2
i − [m̂g(x)]

2 =Var∗(Y ∗ | X∗ = x). (2.41)

For the estimation of σ̂ assuming homoscedasticity, we average (2.41) over x = X∗i .
Additionally, a nonparametric estimator for θ22 is calculated as in formula (2.37) using
cubic splines on our bootstrap sample and with the same pilot bandwidth g. With an
estimate of σ2 and θ 2

2 at hand we can use formula (2.35) to calculate a smooth bootstrap
bandwidth ĥSB which is certainly still a function of the pilot bandwidth.

2.4.4 Using Wild Bootstrap

For early papers about the resampling plan of the wild bootstrap, see Cao-Abad (1991) or
Härdle and Marron (1991). For its special use in bandwidth selection, see
González-Manteiga, Martínez Miranda and Pérez González (2004). We will use their
estimation procedure of the MSE. As we are not interested in obtaining bootstrap samples
but in obtaining bootstrap estimates of the MASE, there is no need to introduce the
creating of bootstrap samples. The squared bootstrap bias and the bootstrap variance can
be calculated as

Bias∗h,g(x) =
n

∑
i=1

Whi(x)m̂g(Xi)− m̂g(x)

and

Var∗h,g(x) =
n

∑
i=1

(Whi(x))2(Yi− m̂g(Xi))
2,

where g is again a pilot bandwidth that has to be chosen. For the selection of bandwidth h
we are interested in the MISE or the MASE, an error criterion independent from x. For
simplicity we opted for the

MASE(g,h) =
1
n

n

∑
i=1

MSE∗h,g(Xi) (2.42)

with MSE∗h,g(x) =
[
Bias∗h,g(x)

]2
+Var∗h,g(x). To get consistent estimators, for both the wild

and the smooth backfitting, the pilot bandwidth g has to be larger (in
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sample-size-dependent rates) than bandwidth h. Having chosen g, the MASE only depends
on h so that minimizing (2.42) gives finally the optimal wild bootstrap bandwidth ĥWB. It
can be easily seen, however, that the necessity of choosing a pilot (or also called prior)
bandwidth, is the main disadvantage of the bootstrap methods.

2.4.5 Notes on the Asymptotic Behavior

It is clear that consistency can only be stated for the case where proper priors were used.
Consequently, the rule-of-thumb estimator has no consistency properties itself, because of
possible inconsistency of the there applied estimator for θ22. We therefore will concentrate
on results for the relative error of ĥDPI . Sheather and Jones (1991) stated for the
asymptotic behavior of ĥDPI

ĥDPI−hMISE

hMISE

P−→ D, (2.43)

and that the method used to estimate ĥDPI , is of order OP(n−2/7).
Here, D is the error θ

−1
22

[1
2 µ4(K2,3)θ24G2 +σ2(b−a)||K2,3||22G−5

]
with g = Gn−1/7 the

prior bandwidth and G > 0 its constant. This consistency statement is based on (2.39),
(2.40) with

σ̂
2(λ̂AMSE)−σ

2 = OP(n−1/2) ,

θ̂22(g)−1/5−θ
−1/5
22 '−1

5
θ
−6/5
22

[
θ̂22(g)−θ22

]
conditional on X1, . . . ,Xn. Both together gives

ĥDPI−hMISE

hMISE
'−1

5
θ
−1
22

[
θ̂22(g)−θ22

]
leading to our (2.43), see Sheather and Jones (1991) for details. We know already from
results of Fan (1992) and Ruppert and Wand (1994) that

hMISE = hAMISE +OP(n−3/5)

so that one can conclude from (2.43) to consistency with respect to hAMISE . The theoretical
optimal prior bandwidth g is obtained by choosing G such that D equals zero –
asymptotically not achievable, see Sheather and Jones (1991) for further discussion.

Cao-Abad and González-Manteiga (1993) studied in detail the statistical behavior of
smooth bootstrap. For early consistency results of the wild bootsrap, see Cao-Abad (1991).
The consistency of MSE estimation via wild bootstrap was proved in González-Manteiga,
Martínez Miranda and Pérez González (2004). The optimal prior bandwidth for the both,
the smoothed and the wild bootstrap is of order n−2/9, see for example Härdle and Marron
(1991). The specific expressions however, see for example Cao-Abad and
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González-Manteiga (1993) or González-Manteiga, Martínez Miranda and Pérez González
(2004), depend again on various unknown expressions so that we face similar problems as
for hrot and hPDI .

2.4.6 A Mixture of methods

As already has been found by others, while some methods tend to over-smooth others
undersmooth. In kernel density estimation it is even clear that the plug-in bandwidth and
cross-validation bandwidth are negatively correlated. Heidenreich, Schindler and Sperlich
(2010) studied the performance of bandwidths which are simple linear combinations of a
plug-in plus a cross-validation bandwidth. For kernel density estimation these bandwidths
turned out to perform pretty well in all of their simulation studies.

Motivated by these positive results we will also try out such mixtures of estimated
bandwidths in the context of kernel regression estimation. Like Heidenreich, Schindler and
Sperlich (2010) we will only consider linear mixtures of two bandwidths. In particular, we
again mix a CV bandwidth or a corrected ASE -based one with a plug-in or bootstrap
method based bandwidth. Depending on the weighting factor α ∈ (0,1), the mixed
methods are denoted as:

Mixmethod1,method2(α) = α · ĥmethod1 +(1−α) · ĥmethod2, (2.44)

where ĥ• denotes the optimal bandwidth to the respective method. We mix our bandwidth
in the three following proportions, i.e. α = 1/2, α = 1/3 and α = 2/3. As for all the
others, we calculate the according ASE value for the resulting new bandwidths to assess
the performance of the respective mix, see next Section.

2.5 Finite sample performance

Recall the MISE and MASE. Clearly, if
∫
( f (x))−1 dx is large, we expect a large integrated

variance and therefore, the optimal bandwidth gives more weight on variance reduction
and is therefore large. In cases of highly varying errors, i.e. a large σ2, the same effect is
observed. When the true underlying regression curve m(·) varies a lot, i.e.

∫
(m′′(x))2 dx is

large, a large integrated squared bias is expected so that the optimal bandwidth gives more
weight on bias reduction and therefore, chooses a small bandwidth. Clearly, some
selection methods will do better in estimating the bias, others in estimating the variance.
The same will hold for capturing the oscillation, say m′′(·) or the handling of sparse data
areas or skewed designs. As a conclusion, a fair comparison study requires a fair amount
of different designs and regression functions.
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For our data generating process we first have to choose the distribution of X . Then, we
have to consider which are reasonable functions for m(x). Finally, we have to assume a
value for the variance of the error term. We generated noisy data following the models
Yi = 1.5 · sin(k ·Xi)+σ · εi with ε ∼N (0,1) for different k’s, different σ ’s and a uniform
design, i.e Xi ∼U [−1,1], or a standard normal design, i.e. Xi ∼ N(0,1). We also
considered the performance of the methods where
Xi ∼ 1/2 ·N (−0.6,1/4)+1/2 ·N (0.3,1/3). Because the results are almost identical to
the uniform distribution, we do not show the results of this design in the consideration
below.

A list of all the models we used is given as:

Model σ Design k Model σ Design k

1 1 uniform 6 7 0.5 uniform 4
2 1 normal 6 8 0.5 normal 4
3 0.5 uniform 6 9 1 uniform 2
4 0.5 normal 6 10 1 normal 2
5 1 uniform 4 11 0.5 uniform 2
6 1 normal 4 12 0.5 normal 2

Random numbers following a normal mixture design are an example which may easily
yield a large integrated asymptotic variance. Furthermore, the data are bimodal (so that
two clusters are expected) and slightly skewed. Moreover,

∫
(m′′(x))2 dx becomes larger as

k increases so that a larger integrated squared bias is expected as k increases. The different
σ ’s affect the integrated variance of the local linear estimator.

The aim of this section is to compare the small sample performance of all methods
discussed in the previous sections. Remember the different methods: cross-validation,
corrected ASE, plug-in and bootstrap. We also compare these methods with different
mixtures of the classical cross-validation (CV) criterion respectively several correcting
ASE methods, with the rule-of-thumb and the direct plug-in estimate (PI1 and PI2 resp.).
The mixing procedure is to include one half of the optimal bandwidth ĥCV resp. an optimal
bandwidth of a corrected ASE method in different proportions with the optimal bandwidth
of PI1 or PI2, then we assess the corresponding ASE value for the mixed bandwidth. The
reason why this makes sense is that CV and corrected ASE methods tend to oversmooth
while the PI methods tend to undersmooth the true m(x).

All in all we present the following methods for estimation:

I cross-validation methods

1. CV: cross-validation

2. OSCV(L): one-sided cv (left)

3. OSCV(R): one-sided cv (right)
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4. DoV: do-validation

II corrected ASE methods

5. Shib: Shibata’s model selector

6. GCV: generalized cv

7. AIC: Akaikes information
criterion

8. FPE: finite prediction error

9. Rice: Rice’s T

III plug-in methods

10. PI1: rule-of-thumb plug-in

11. PI2: direct plug-in

IV bootstrap methods

12. SB: smooth bootstrap

13. WB: wild bootstrap

V mixtures of two methods

VI ASE: infeasible ASE

There are certainly many ways how to compare the selection methods. When having in
mind that different selectors are looking at different objective functions, it is already clear
that it cannot be fair to use only one criterion. Consequently, we compare the performance
by different performance measures, most of them based on the averaged squared error
(ASE), as this is maybe the one the practitioner is mainly interested in. More specific, the
considered measures are:

m1: mean(ĥopt)

mean of the selected bandwidths for the different methods

m2: std(ĥopt)

standard deviation of the selected bandwidths

m3: mean
[
ASE(ĥ)

]
classical measure where the ASE of m̂ is calculated (and averaged over the 500
repetitions)

m4: std
[
ASE(ĥ)

]
volatility of the ASE’s

m5: mean(ĥ−hASE)

’bias’ of the bandwidth selectors, where hASE is the real ASE-minimizing bandwidth

m6: mean
[
(ĥ−hASE)

2
]

squared L2 distance between the selected bandwidths and hASE

m7: mean
[
| ĥ−hASE |

]
L1 distance between the selected bandwidths and hASE

m8: mean
[
ASE(ĥ)−ASE(hASE)

]
= mean

[
| ASE(ĥ)−ASE(hASE) |

]
L1 distance of the ASE’s based on selected bandwidths compared to the minimal
ASE
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m9: mean
([

ASE(ĥ)−ASE(hASE)
]2)

squared L2 distance compared to the minimal ASE

In the following we will concentrate on the most meaningful measures, namely the bias of
the bandwidths selectors (m5), the means and standard deviations of the ASE’s (m3 and
m4), showed as box-plots, as well as the L1-distance of the ASE’s (m8).

Without loss of generality, we used the Quartic Kernel throughout, i.e.
K(u) = 15

16(1−u2)21{|u|≤1}. For both bootstrap procedures we tried several priors g but
will present only results for the well working choice g = 1.5 · ĥCV . All results are based on
the calculations from 500 repetitions. In our simulation study we tried all methods for the
sample sizes n = 25, n = 50, n = 100, and n = 200.

We will first compare all methods without the mixtures. In order to summarize the
different methods of choosing the optimal bandwidth, we first consider the selected
bandwidths and the corresponding bias for each method separately. Afterwards, we
compare the methods by various measures.

Before we start with the numerical outcomes for the different methods we should briefly
comment on the in practice also quite important questions of computational issues, in
particular the complexity of implementation and computational costs, i.e. the time required
to compute the optimal bandwidth along the considered methods. The fastest methods are
the so-called corrected ASE methods. The second best in speed performance are the
plug-in methods, where the rule-of-thumb plug-in is better than the direct plug-in. The fact
that we only consider one-dimensional regression problems and a local linear smoother
allows for an implementation such that the CV methods behave also quite good but
certainly worse than the plug-in. In our implementation and for the somewhat larger
sample sizes (in the end, we only consider small or moderate ones) the slowest were the
bootstrap based methods, in particular the smooth bootstrap. The direct plug-in and the
smooth bootstrap method turned out to be quite complex in programming. Note that in
general for more complex procedures the numerical results should be better than for the
other methods to legitimate the computational effort.

2.5.1 Comparison of the bias and L1-distance for the different bandwidths
(m5,m7)

Most of our numerical findings have been summarized in two figures: In Figure (2.7) we
show the biases (m5) and in Figure (2.8) the L1(h)-distances (m7) for all methods and
models, but only for sample sizes n = 25 and n = 200.

We first summarize the behavior of CV and GCV since they behave almost identically. For
the standard normal distribution (see right panel in Figure (2.7)), they are oversmoothing
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Figure 2.7: Comparison of the bias for sample sizes n = 25 (above) and n = 200 (below)

for all cases. For the uniform distribution the bias changes signs for increasing sample
size, i.e. the bigger n the more tendency to undersmooth. Compared to all competitors, the
L1-distances are relatively small for all models, see Figure (2.8). Because of the almost
identical behavior of these two methods we will only show CV in the next subsections
respectively in the pictures below.

OSCV-l, OSCV-r and DoV also oversmooth for the standard normal distribution but for
larger sample sizes the behavior improves considerably and compared to the competitors.
Conspicuous for the normal design is that for n = 25 with a high frequency of the sinus
function the values of m5 and m7 are very high. For the uniform distribution with n = 200
we cannot see any clear tendency to over- respectively undersmoothing, and the
L1-distance is almost zero, see also Figure (2.8). Because of the similar behavior of these
three methods, and because DoV generally behaves best, we will only consider DoV in the
following.

The bandwidth selection rules AIC, FPE and Rice from the second group are
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Figure 2.8: Comparison of the L1-distance for n = 25 (above) and n = 200 (below)

oversmoothing for the standard normal distribution. Only for n = 100, k = 2, and σ = 1
Rice undersmooths, and has an almost zero bias (not shown in the Figure (2.7)). For the
uniform design the three methods are almost always undersmoothing but in general show a
good performance respective to the bias. The most noticeable for these three methods is
that for n = 25 they behave better than CV, GCV and the one-sided CV methods, but for
n = 200 the AIC, FPE and Rice are just as good as CV, GCV and the one-sided CV (see
also Figure (2.8)). In comparison AIC, FPE and Rice seem to benefit less from increasing
sample sizes, i.e. although the bias respectively the L1(h)-distance is getting smaller in
absolute value it is not getting smaller in the same magnitude like CV, GCV and the
one-sided CV methods. In general, due to the bias, AIC, FPE and Rice show the best
performance, i.e. they do not fail and are often the best. Because of the similar behavior of
these three methods, and because Rice mostly behaves best, we will only consider Rice in
the next sections.

The Shib selection method is almost always undersmoothing for the uniform design. For
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the standard normal distribution it is oversmoothing for n = 25 but for the bigger samples
there is no clear tendency. The main difference to the other ASE corrected methods is that
Shib bandwidths are worse for the uniform design, but a little bit better for the normal
design.

The plug-in methods and SB are almost always undersmoothing over all designs and
sample sizes. They all undersmooth with a bias which is large in absolute value. For the
standard normal design, PI1 shows a good bias behavior for the smallest sample size
n = 25 and is best for the high frequency models. In general we can state for PI1, PI2 and
SB that for n = 25 they are as good as all the methods from group I and group II, but for
increasing sample size the value of the bias and the L1(h)-distance loose compared to the
other selectors. Hence, in the end, PI1, PI2 and SB seem to be worse than all the methods
from the first and the second group.

The remaining method to be compared is the wild bootstrap “WB”. From Figure (2.7) it
can be seen that the values are often out of range except for model 11 for both sample sizes
and model 9 for n = 25. In Figure (2.8) it can be seen that WB can only keep up with the
other methods for model 9 and model 11. These two models are the smoothest of all. But
WB is never the best method due to the bias and is best only for two special cases if we
compare the L1(h)-distances (model 9 for n = 25 and model 11 for n = 200). For the
wiggly designs WB fails completely and chooses always the largest bandwidth of our
bandwidth grid.

2.5.2 Comparison of L1 and L2-distances for the different bandwidths (m6,
m7)

We will now summarize the performance of the selection methods according to the
measures L1(h) and L2(h). In order to see the most important results, it is sufficient to
concentrate on k = 6 and σ = 1 as all further results are almost identical to these with
respect to the ordering of the considered methods (compare once again Figure (2.7) and
Figure (2.8)). All in all we provide here the comparison of the selection methods along
models 1, 2, 9 and 10. In Figure (2.9) we have plotted the resulting L1(h), and in Figure
(2.10) the L2(h). For each of the four models we show the values for all sample sizes, i.e.
for n = 25,50,100,200.

Considering the wild bootstrap method “WB”, we notice that it is only for model 9 (the
smoothest) not out of the range of our plots. But even for this model we had to use a wider
plotting range, because the L1(h) respectively L2(h) values turned out to be very large for
basically all methods. “WB” can only compete with the other selection methods in this
case, but for n = 100 and n = 200 is even here the worst of all methods. The cross
validation, say “CV”, method exhibits a pretty good performance for model 1; for sample
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Figure 2.9: L1(h) for each four models varying the sample size

size n = 50 it is indeed the best. For model 2 and model 10 it shows only bad
performances for n = 25 but good ones for the larger sample sizes. For model 9 it has an
average behavior. This changes if we extend the cross validation idea to one-sided and
do-validation. Indeed, for models 1, 2 and 10 “DoV” (and one-sided cross validation,
where do-validation is based on) behaves badly only for n = 25, because of the resulting
lack of information. It already behaves well for n = 50 and very well for not saying
excellently for larger samples with n = 100 and n = 200. For model 9 its L1(h)-
respectively L2(h)-values are even very good for n = 25. But for this very smooth model
and sample sizes n = 50, n = 100 and n = 200 the plug-in PI1 is the best selection method.
For model 10 PI1 is the best just for n = 25. Finally, “Shib” and “Rice” have an average
behavior for all models and sample sizes, only for model 1 they are best for small samples
with n = 25.

Summarizing we can say that the cross-validation methods need a sample size of at least
50 to perform well if we have a model that is not that smooth. For really smooth regression
problems, the plug-in “PI1” does well.
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Figure 2.10: L2(h) for each four models varying the sample size

2.5.3 Comparison of the ASE-values (m3,m4)

In this subsection we summarize the results for the ASE-values of the different measures,
i.e. the bandwidth that has been chosen for the respective method is inserted in the formula
for the ASE. This is done because it enables us to compare rather the resulting regression
performance than the bandwidths selected by the different methods. Needless to say, that
the smallest ASE-value is reached with the benchmark, i.e. the true ASE optimal
bandwidth. In our simulation we assumed twelve different models, i.e. we know the true
value for m(x) and the exact variance of the error term, what we do not in practice. For the
same reasons we mentioned in the last subsection, the results for k = 4 and σ = 0.5 are
skipped in the following. Hence, we compare only the boxplots of the selection methods
along our models 1, 2, 9 and 10.

The main conclusions from the ASE-distributions can be summarized as follows. Varying
the sample size, we can see from the boxplots, that for both designs, i.e. uniform design
(see figure (2.11)) and standard normal design (see figure (2.12)), the means and median
values for CV, DoV, Shib and Rice decrease with increasing sample sizes and decreasing
frequencies. With respect to the inter quartile range (IQR henceforth) and the standard
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Figure 2.11: ASE-values for X ∼U [−1,1] for all sample sizes

deviations it is almost the same with two exceptions. The first one is the IQR of DoV for
model 9 and n = 100 is smaller than for n = 200, but there are more outliers for n = 100.
The second one is Shib where the IQR increases with decreasing frequency in the uniform
design for n = 25, n = 50 and n = 100.

For the plug-in and the bootstrap methods the results look quite messy. With respect to the
IQR and the standard deviations, WB and PI1 clearly improve with increasing sample size.
For PI2 it is the same for model 1, 2 and 9, but for model 10 it is the other way round. For
SB the IQR and the standard deviation are getting larger with increasing sample size.

Now, we compare the methods for model 1 (see Figure (2.11), first row). DoV benefits
most from increasing sample size, i.e. for n = 25 DoV is worst of group I, group II and
PI1, but for n = 200 DoV is the overall best. CV and Rice behave very similar, and they
are the best selectors for n = 25, and 2nd best for n = 200. Shib shows a good behavior for
smaller sample sizes, but for n = 100 and n = 200 it has the largest IQR of group I and
group II. In general, the plug-in methods behave worse than groups I and II, and only a
little bit better than group IV.

The most noticeable of model 9 is that WB is the overall best method, there PI2 and SB
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Figure 2.12: ASE-values for X ∼ N(0,1) for all sample sizes

behave worst. That is because model 9 is the smoothest model, i.e. a large bandwidth is
optimal in this case. For n = 25 and n = 50 DoV is the best of I, II, and III, but for larger
sample sizes CV and Rice are doing better.

The results for model 2, the most wiggly design, can be seen in figure (2.12), first row. The
most interesting changes, compared to model 1, occur in the first four methods. There we
have more extreme outliers the bigger the sample size is. The reason for that is that these
methods have problems with outliers in the covariate X . Therefore, these outliers appear, if
there is a random sample having a big proportion of observations around zero but thin tails.
The behavior of the methods from group I and II is very similar, i.e. the chosen method
does not have a big effect on the results. Further outcomes are similar respectively
identical to model 1.

Finally, we consider the results for model 10 (see figure (2.12), second row). We state the
differences to model 2 (for both X ∼ N(0,1)) and model 9 (for both k = 2). In contrast to
model 2, the extremity of outliers does only increase a little bit with increasing sample size
which is due to the fact that the model is smoother. The difference to model 9 is that WB is
not the best method for model 10. This is maybe due to the fact that model 10 is more
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wiggly than model 9. But for both model 9 and model 10 selector WB does not fail
completely in contrast to model 1 and model 2. For WB we can therefore state that if m is
smooth enough this method can be used to estimate the bandwidth.

2.5.4 Comparison of the L1 and L2-distances of the ASE values (m8,m9)
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Figure 2.13: L1(ASE) for each four models varying the sample size

If we look at Figures (2.13) and (2.14), we can conclude that there is nothing new with
respect to the comparison of the considered bandwidth selection methods. One interesting
fact should be mentioned: the L1-distances do generally not decrease with increasing
sample size. In model 2 the L1-distances increase with increasing sample size for the
plug-in and bootstrap methods. In model 2 all L1 and L2-distances for WB are out of
range. For this model PI1 is the best method for n = 25 but for all other sample sizes the
CV and ASE-corrected methods behave better. PI2, WB and SB behave worse than the CV
and ASE-corrected methods for all sample sizes.

One interesting fact for the CV and ASE-corrected methods is that there is a gap between
n = 25 and the other sample sizes. That means, if we have a normal design respectively a
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Figure 2.14: L2(ASE) for each four models varying the sample size

more wiggly model (see model 1) combined with an extreme small sample size, PI1 will
be a good method in bandwidth estimation. Another mentionable fact is that for model 9,
the smoothest model, WB is the best method when looking at the L1 and L2 ASE values,
see Figures (2.13), (2.14). For model 10 WB is good, but not better than CV or corrected
ASE based methods. That means that the decision of using WB depends more on the
smoothness of m than on the smoothness of the distribution of X .

We mentioned in the beginning of Section (2.5) that PI2 and SB are more complicated to
implement, and especially SB has a notable computation time. If we look at all the results
we can say that PI2 and SB behave badly due to all the performance measures. Hence,
there is no reason for using these two methods for bandwidth estimation for the considered
models.

2.5.5 Comparison of different mixtures

Finally we tried to mix two methods in order to get better results than with only one
method. We tried to mix a method that tends to oversmooth with a method that tends to
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Figure 2.15: bias(h)

undersmooth the data. An obvious candidate is to mix the optimal bandwidth of the
classical cross-validation (CV) respectively of a correcting ASE methods with one of the
plug-in or a bootstrap optimal bandwidth. Recall that CV and corrected ASE methods tend
to oversmooth while the PI and bootstrap methods tend to undersmooth. The mixtures will
be compared with DoV which in the end is also a mixture, namely the left- and the
right-sided OSCV method, respectively.

Depending on the weighting factor α ∈ (0,1), the mixed methods are denoted as in
formula (2.44) by Mixmethod1,method2(α). We only try to mix methods having a good
performance. We also considered other mixtures, but the best results are obtained by
mixing CV and Rice with PI1. Hence, the results we present here are:

1 m11: MixCV,PI1(1/2)

2 m12: MixCV,PI1(2/3)

3 m13: MixCV,PI1(1/3)

4 m21: MixRice,PI1(1/2)

5 m22: MixRice,PI1(2/3)

6 m23: MixRice,PI1(1/3)

In fact, we did simulation for basically all two-folded mixtures but skip the presentation of
all the other methods for the sake of brevity and because they simply behave worse.
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Figure 2.16: L1(ASE)

Specifically, we decided to show the following six different mixtures: three CV-PI1, and
three Rice-PI1 mixtures.

In the Figures (2.15) and (2.16) we added DoV for obvious reasons mentioned above and
because this method exhibited a pretty good performance before. The bias behavior of PI1
is almost always worst, the only exception is model 2 with a sample size of 25, where CV
and DoV have the biggest bias. As already mentioned, the aim to mix methods was, to get
better results than with one single method. But, we see, that the bias values of the mixtures
are indeed better than for PI1 but worse than for CV or Rice. Only for model 2, the most
wiggly model, we can achieve the objective of improvement. For the L1 values we get
similar results, see Figure (2.16). In conclusion we can say, that the additional effort of
mixing different methods seems not to be justifiable.

2.6 Conclusions

The problem of bandwidth choice is basically as old as nonparametric estimation is. While
in the meantime kernel smoothing and regression has been becoming a standard tool for
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explorative empirical research, and can be found in any statistical and econometric
software package, the bandwidth selection can still be considered as an unsolved problem -
at least for practitioners. Quite recently, Heidenreich, Schindler and Sperlich (2010)
revised and compared more than thirty bandwidth selection methods for kernel density
estimation. Although they could not really identify one method that performs uniformly
better than all alternatives, their findings give clear guidelines at least for a certain class of
densities like we typically expect and find them in social and econometric sciences.

This article is trying to offer a similar revision, comparison and guidelines for kernel
regression. Though it is true that especially for large and huge data sets, today spline
regression, and in particular P-spline estimation is much more common than is the use of
kernel regression, the latter is still a preferred tool for many econometric methods.
Moreover, it has been experienced a kind of revival in the fairway of treatment and
propensity score estimation, smoothed likelihood methods and small area statistics (in the
latter as a competitor to spline methods for reasons of interpretation).

To the best of our knowledge we are the first providing such a comprehensive review and
comparison study for bandwidth selection methods in the kernel regression context. We
have discussed, implemented and compared almost twenty selectors, completed by again
almost 20 linear combinations of two seemingly negatively correlated (with respect to
signs of the bandwidth bias) selectors of which the six best have been shown here. For
different reasons discussed in the introduction we concentrated our study on local linear
kernel estimation.

We started with a review of the idea and definition of the methods, its asymptotics,
implementation and computational issues. Probably the most interesting results are
summarized in the last section, i.e. Section (2.5). We could see which methods behave
quite similar and found a certain ranking of methods although – like in Heidenreich,
Schindler and Sperlich (2010) – no bandwidth selector performed uniformly best.
Different to their study on density estimation, for regression the mixtures of methods could
not really improve compared to the single use of a selector, except the so-called
do-validation. This even turned out to be maybe even the best performing method though it
is not always easy to implement nor computationally very fast.

For the rather small data sets considered, also the classical cross validation still performs
well but should be replaced by generalized cross validation for increasing sample size.
Note that for our context and estimator, CV and GCV behaved almost equivalently for the
considered sample sizes. Nonetheless, already here and although we had rather wiggly as
well as rather smooth functions under consideration, OSCV and especially DoV
outperformed the classical CV. So it did for almost all models and sample sizes also
compared to the other methods, at least when looking at the distribution of ASE, see
Subsection (2.5.4). In our opinion, for the practitioner this is the most important measure.
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It should be mentioned that in the reduced set of selectors, the method proposed by Rice
(1984) did also a pretty fair job for the models and sample sizes considered in this article.
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Chapter 3

The Africa-Dummy in Growth
Regressions

The Africa-Dummy has been identified and different explanations for its appearance have
been published. In this paper, the issue of the empirical identification of the
Africa-Dummy is addressed. We introduce a fixed effects regression model to identify the
Africa-Dummy in one regression step so that its correlations to other coefficients can be
estimated. A semiparametric extension of this model checks whether the Africa-Dummy is
a result of misspecification of the functional structure. Furthermore, we show that
sub-Saharan African countries have a positive return to the population growth and when
adding interaction effects, the Africa-Dummy is even positive. Moreover, we show that the
Africa-Dummy changes dramatically over time and the punishment for sub-Saharan
African countries decreases incrementally since the mid-nineties. According to the
Augmented Solow Growth model, it was even insignificant since the end-nineties.
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3.1 Introduction

This paper focuses on the Africa-Dummy. We use the growth model by Mankiw, Romer
and Weil (1992) as a theoretic justification to run growth regressions. This model contains
simplifications as groups of countries possess certain characteristics that are hard to
measure and to incorporate, but represent systematic drivers for growth. For example
Barro, Mankiw and Sala-i-Martin (1995) mention that international capital markets have a
significant impact on growth rates, especially on the convergence of the poor countries.
Another unrealistic simplification is criticized by Islam (1995). He argues that countries
have fundamentally differing production functions so that comparisons between their
economies are difficult. Furthermore, the endowment with resources can be infinitely
substituted by capital. For example Georgescu-Roegen (1975) criticizes that this point of
view is too optimistic with respect to the limitations of technological progress. Other
variables that are correlated to economic growth but not incorporated in the growth model
are political factors (see Collier and Gunning (1999)), diseases especially AIDS (see Were
and Nafula (2003)), geographical factors and trade openness (see Sachs and Warner
(1997)), ethnic diversity (see Easterly and Levine (1997)) or historical reasons such as the
colonial heritage (see Price (2003)), to mention a few. Among others, these problems
result in empirical weaknesses. For example Barossi-Filho, Goncalves Silva and Martins
Diniz (2005) summarize that among most regressions the estimated capital share exceeds
the value obtained from the national accounts and that the estimated convergence rate is
usually too low. One example is the group of sub-Saharan African countries, meaning that
the model by Mankiw, Romer and Weil (1992) is not able to explain the growth in
sub-Saharan Africa, because its economic fundamentals incorporated in the model are not
as bad as their actual performance. The result is that, if an additional variable is added, that
only indicates the membership to sub-Saharan Africa, namely the Africa-Dummy, it has a
significant coefficient with a negative sign. Barro (1991) for example runs a cross-sectional
regression. This means that he holds an initial and a final time point fixed and calculates
the growth rates in this time horizon for each country before regressing them on several
explanatory variables. The result is a negative and significant Africa-Dummy. As African
countries started with a lower level of income, they should converge to the income
observed in regions that have similar characteristics. The presence of the Africa-Dummy
shows that this is not the case. There is a lot of literature addressing this issue. For
example Collier and Gunning (1999) mention that in 1975, 60% of all Africans lived in
regimes that were not legally elected and democratic structures are often not achievable in
the medium-term. Additionally, governments tend to implement lax monetary policies, not
considering the inflationary long-run effects. They also report of high corruption,
bureaucracy and a lack of public security. Another example is Were and Nafula (2003)
who show how diseases and especially AIDS affect economic indicators. In order to
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eliminate the Africa-Dummy, authors add variables to the growth regression. Sachs and
Warner (1997) focus on the effects of trade openness and landlocked status. They conclude
that a lack of liberalization and too restrictive foreign policies impair economic growth in
sub-Saharan Africa. Additionally, countries without access to the sea suffer from
comparative disadvantages. After controlling for these factors, the Africa-Dummy is no
longer significant. Easterly and Levine (1997) point out that ethnic diversity, measured in
units of spoken languages in a country, could influence the economic development in a
country. They argue that a strong mixture of different racial groups causes discord about
the public resources. Furthermore, diversified societies tend to civil war and lower
democratization. The authors are able to explain a large share of the cross-country
variation using this measure. Easterly and Levine (1997) link their result to the historical
background of sub-Saharan Africa. Like Arcand, Guillaumont and Jeanneney (2000)
express, the underlying problem of the continent stems from the ’carve-up’ among its
occupants during the 19th century. From the authors’ viewpoint, this colonial heritage still
causes economic drawbacks. Acemoglu, Johnson and Robinson (2001) bring up a
historical explanation that is based on the origins of the colonization. Price (2003) also
addresses the problem of determining the effects of colonial heritage on economic growth
in sub-Saharan Africa.
Adding variables to the growth regression in order to explain the Africa-Dummy is critical.
The extra variables identify unique characteristics of sub-Saharan Africa and therefore act
like the Africa-Dummy. For example Levine and Renelt (1992) test the causality of
different explanatory variables in growth regressions. They summarize that most of the
included variables are not robust and dependent on the model. Collier and Gunning (1999)
note that the addition of explanatory variables transfers the puzzle elsewhere. Furthermore,
many explanatory variables that are added in growth regressions do not necessarily
identify drivers for growth. Instead they are somehow correlated to what is not explained
by the growth model.
The naive way in which explanatory variables are added or deleted from growth models
motivates to only use the explanatory variables given by Mankiw, Romer and Weil (1992)
and to accept that the Africa-Dummy is present in the data. In this situation the task is to
derive statistical facts about it. First of all, we discuss how to estimate the Afrca-Dummy.
Hoeffler (2002) addresses this problem and finds that the significance of the
Africa-Dummy disapears when applying the System GMM. In this paper we discuss the
disadvantages of the System GMM and introduce a new method, namely the Two-Groups
Least-Square Dummy-Variable estimator. This estimation method has the advantages that
it is able to estimate the Africa-Dummy in one regression step, that it is consistent even if
the residuals are autocorrelated, that it is able to control for all fixed effects and that it does
not need the assumption of equal variances of the fixed effects. Estimating the coefficients
of the growth regression with the Two-Groups Least-Square Dummy-Variable estimator
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identifies a negative significant Africa-Dummy. This clear punishment for sub-Saharan
African economies increases if the return to investment in physical capital decreases, if the
return the depreciation rate increases or if the return to school attainment increases. We
check that the Africa-Dummy is not a result of misspecification of the functional structure,
as it does not disappear when applying a semiparamteric extension of the Two-Groups
Least-Square Dummy-Variable estimator. Furthermore, we add interaction effects and
observe that sub-Saharan African countries have clearly positive returns to the depreciation
rate and the Africa-Dummy is even positive and significant. Finally, we estimate the
evolution of the Africa-Dummy within the period we observe data. The main result is that,
when estimating exactly the regression equation that is motivated by the Augmented Solow
Model, we observe that is becomes insignificant and even positive in the recent years.
The paper is structured as follows. Section (3.2) is divided into three subsections.
Subsection (3.2.1) describes how the data are collected and subsection (3.2.2) describes
how business cycles are removed. Many authors conduct growth regression with numerous
variables and understand growth as a theory of everything. In this paper growth regressions
are all justified by the augmented Solow model. It is briefly described in subsection (3.2.3).
Section (3.3) deals with statistical methods to identify the Africa-Dummy. It is divided into
five subsections. Subsection (3.3.1) is about the underlying statistical model and contains
some notes about running the growth regressions. Subsection (3.3.2) deals with the System
GMM estimator and comments on its disadvantages. Subsection (3.3.3) discusses
estimators based on error components models and subsection (3.3.4) concentrates on
estimating with fixed effects. The Two-Groups Least-Square Dummy-Variable estimator is
introduced and identified as the best estimator to estimate country-specific dummy
variables. Finally, subsection (3.3.5) gives results on identifying the Africa-Dummy and
estimating the correlations of the Africa-Dummy and other coefficients.
Section (3.4) uses extensions of the Two-Groups Least-Square Dummy-Variable estimator
to derive facts about the Africa-Dummy. First of all, subsection (3.4.1) relaxes the
functional structure of the regression equation and checks if the Africa-Dummy is a result
of a misspecification of the functional structure. Second subsection (3.4.2) estimates the
interaction effects of the Africa-Dummy. Third, in subsection (3.4.3), a model is
introduced that estimates one Africa-Dummy for each year in the observation period.
Section (3.5) finally concludes.

3.2 Growth Regression and the Africa-Dummy

3.2.1 Data Collection

The objective is to collect long time-series for as many countries as possible for which we
can guarantee good data quality. The information sources for the empirical investigation
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are the Penn World Table 6.3 (PWT), World Bank’s World Development indicators and
Barro and Lee (2010). Except of population growth and human capital, all data come from
the PWT. It collects a broad range of macroeconomic time-series for almost all countries
published by Heston, Summers and Aten (2009). The beginning of a widespread
availability is 1960. Most variables are published until 2007, so that observations are
obtained for 48 periods. The sample could have been increased significantly but the quality
of the data for some countries is insufficient. Heston, Summers and Aten (2009) introduce
a country rating system based on the number of participations in worldwide benchmark
surveys, the variation of the accessible data and the quality of the statistical methods
applied. This results in a grading scheme from A to D with descending order. A rating of
D is regarded as too weak to be included in the sample. Therefore, only countries with a
grading from A to C are incorporated in the sample. Furthermore, we only incorporate
complete time-series for the relevant variables from 1960 to 2007. This also excludes
countries that where separated in a sub-period, for example Germany and the countries of
the Soviet Union. We excluded these countries because their incorporation would have
made it necessary to unify several countries to one country or to split one country in a
given period in several countries. The loss of data quality when doing this is unclear. We
ended up with 81 complete time-series, one for each of the 81 countries. The time-series
are 48 years long. The total sample size is therefore 3888.
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Figure 3.1: D grading in the PWT

The selection process of the data can cause a problem. Figure (3.1) shows that sub-Saharan
African countries are much more often affected by D grading than other regions. In
general, poor countries have weaker databases and are more likely to be excluded. The
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question is, whether the exclusion of the D graded data causes a significant violation of the
information that the whole sample would inhabit. Since we cannot reliably compare the
excluded and the included data, we cannot fully answer this question. However, when
deleting a poor country from the data set we make the countries of the reduced data look
richer than the countries of the original sample where. This means that, if there is a bias
when estimating the Africa-Dummy with the reduced sample, it is likely to have the
direction that it underestimates the punishment of sub-Saharan African countries. In the
same way, excluding the countries that where separated can cause a problem. The
countries that are excluded as a result of this rule do not show structurally similarities.
Therefore, if there is a sample selection bias resulting from this rule, we assume it to be
small. Table (3.1) lists the countries included in the data set.
The preparation of the variables mainly follows Hoeffler (2002) and Caselli (2005).
Because economic growth is a consequence of changes in the production function, the
output of the economy is measured as the real per worker gross domestic product (GDP).
This is a more precise measure of the country’s potential than the per capita GDP because
it answers the question how much each productive factor contributes on average to the
growth in its country. Per capita figures give information about the available income for
the average individual but since the participation rate in the workforce differs a lot, the per
capita GDP would be a distorted indicator of the production volume of the total workforce.
We denote the logarithm of the per worker GDP of country i at time t by yit .
The population growth refers to the working age population which is defined in the PWT
as all individuals from 15 to 64 years. We use the data for the total population and multiply
them with the share of adults in working age. We denote the growth rate of the working age
population of country i at time t by nit . Data for depreciation rates are not available. In the
literature there is accordance, as explained by Mankiw, Romer and Weil (1992), to expect
the capital to wear out by 3% per year. Similarly, the advance in productivity is 2% per
year for all countries. Therefore, the term ln(δ +g+nit) is approximated by ln(0.05+nit).
We denote the logarithm of the depreciation rate of country i at year t by lnnit .
The saving rate of the economy is approximated by the relative investment share of the real
GDP. These data should correctly measure the savings in the case of a closed economy. We
denote the logarithm of the share of country i at year t by lnskit .
The proxy for human capital is the educational attainment data from Barro and Lee (2010).
While the PWT contains yearly data, the data from Barro and Lee (2010) are given in five
years frequencies. The beginning of the observation period is 1950 and the end is 2010. In
order to transfer this variable into a yearly frequency, the missing values are extrapolated
by interpolation splines. When doing this, we have to be careful that we do not add an
artificial parametric structure to the data. Figure (3.2) shows a graph of the educational
attainments when applying natural splines. The points show the data obtained from Barro
and Lee (2010) and the lines represent the natural spline functions. Figure (3.2) is
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Table 3.1: Countries

Code Country Code Country Code Country

ARG Argentina AUS Australia AUT Austria
BEL Belgium BEN Benin BGD Bangladesh
BOL Bolivia BRA Brazil BRB Barbados
BWA Botswana CAN Canada CHE Switzerland
CHL Chile CHN China CMR Cameroon
COG Congo COL Colombia CRI Costa Rica
DNK Denmark DOM Dominican Republic ECU Ecuador
EGY Egypt ESP Spain FIN Finland
FJI Fiji FRA France GBR United Kingdom

GHA Ghana GRC Greece GTM Guatemala
HKG Hong Kong HND Honduras IDN Indonesia
IND India IRL Ireland IRN Iran
ISL Iceland ISR Israel ITA Italy
JAM Jamaica JOR Jordan JPN Japan
KEN Kenya KOR Korea LKA Sri Lanka
MEX Mexico MLI Mali MUS Mauritius
MWI Malawi MYS Malaysia NER Niger
NGA Nigeria NLD Netherlands NOR Norway
NPL Nepal NZL New Zealand PAK Pakistan
PAN Panama PER Peru PHL Philippines
PRT Portugal PRY Paraguay ROM Romania
RWA Rwanda SEN Senegal SGP Singapore
SLE Sierra Leone SLV El Salvador SWE Sweden
SYR Syria THA Thailand TTO Trinidad Tobago
TUN Tunisia TUR Turkey TZA Tanzania
URY Uruguay USA USA VEN Venezuela
ZAF South Africa ZMB Zambia ZWE Zimbabwe
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representative for all countries. They all have monotonically and linearly increasing shape.
Since the points do no not fluctuate a lot, we assume that the approximation error is
sufficiently small. We denote the logarithm of the educational attainment data from Barro
and Lee (2010) of country i and year t by lnattainit .

Figure 3.2: Interpolation of schooling

3.2.2 Smoothing

We collected four time-series, namely yit , lnnit , lnskit and lnattainit for each country i.
These time-series have a short term cyclical component and a trend component. The Solow
model addresses long run growth but not the cyclical fluctuations. Therefore, we smooth
the data. As the series have different magnitudes of short term fluctuations they have to be
treated in different ways. The series lnnit and lnattainit have only negligible short term
fluctuations and are therefore not to be smoothed. The series lnskit and yit have severe
cyclical components.
First of all, we consider the GDP per worker time-series. The easiest approach is linear
smoothing. It suggests taking the arithmetical averages over several years of the GDP’s per
worker so that for this sub-period only the mean enters the dataset. The most common
choice is the average over five years. Figure (3.3) shows the resulting growth rates when
applying five years averages. It shows the time-series of four countries that serve as
examples. The green points are the unsmoothed data. The horizontal black lines
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demonstrate the choice of the time periods. Their heights show the reduction of these five
points to one value. The blue bullets are the middle time points of each period. The sample
lasts from 1960 to 2007 so that data have to be excluded in order to obtain time periods of
the same length, namely five years. We excluded the values of the years 1960, 2006 and
2007. These points are labeled with a red star in figure (3.3) and their information is fully
lost. Especially in case of the Philippines where the last two observations represent
unusual jumps it seems not adequate to exclude this information from the sample. This is
the first disadvantage of linear smoothing. Moreover, the long run growth variation within
the time periods is fully lost. Another problem is the simultaneous smoothing of different
time-series that interact. For example the series lnskit has a different cyclical component
than yit . Taking five year averages smoothes these series in the same naive manner so that
the interactions of the long term components of the series are distorted. This problem is
especially severe when combining linear smoothed series with unsmoothed series. It is not
clear which values of the unsmoothed series should represent each time period. The
average however leads to over-smoothing and taking the starting values of each time period
would mean to make lagged variables enter the regression.
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Figure 3.3: Five years averages
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The disadvantages of linear smoothing give rise to look for another technique to remove
business cycles. A prominent example is the Hodrick and Prescott filter. The HP filter
decomposes a macroeconomic time-series τ̃t in a structural trend component τt , which
accounts for sustainable long-run growth and a cyclical component ct . In Hodrick and
Prescott (1997) it is shown how these elements can be separated. The series τt is obtained
due to

min
τt

T

∑
t=1

(τ̃t − τt)
2 +λ

T−1

∑
t=2

((τt+1− τt)(τt − τt−1))
2 .

The first term can be interpreted as measuring the goodness-of-fit of the trend component
with respect to the original series. The second part punishes for a high variation in the
transformed series τ̃t . Note that minimizing the variation and maximizing the goodness of
fit at the same time is a trade-off problem which is quantified by λ . The higher λ , the more
variation is removed from the data. For the choice of this parameter, there are rather weak
causal rationales. Hodrick and Prescott (1997) argue that λ = 1600 is a reasonable choice
for quarterly data which intuitively corresponds to a value of 400 for yearly data. On the
other hand, Baxter and King (1999) argue that λ should be chosen as the fourth power of a
change in the frequency. In our case this corresponds to 6.25. After observing the different
outputs of the smoothing with different smoothing parameters, we decided to chose
λ = 100. Figure (3.4) shows the smoothed series of the yearly growth rates of the four
countries Belgium, Kenya, Guatemala and Philippines. The grey points are the
unsmoothed data. The smoothed data are connected with lines. It can clearly be seen that
the disadvantages of linear smoothing are not shared by the HP filter.

When smoothing the series of lnskit it is hard to derive the adequate smoothing parameter
of one series from that of the other series. On the one hand, the series lnskit have more
variation than yit . On the other hand the former series are of much smaller magnitude than
the latter. Smoothing the two series simultaneously means that one series should not
appear to be over-smoothed compared to the other. Having this in mind, we choose the
smoothing parameter of lnskit by visual judgment. After observing the outputs of
smoothed series for different smoothing parameters we decided that λ = 25 is the
appropriate parameter. The result is given in figure (3.5). The HP filter performs satisfying
and is therefore selected to smooth the data.

3.2.3 The Augmented Solow Model

The neoclassical growth theory is based on the work by Solow (1956) and Swan (1956).
The theory of human capital accumulation tries to account for enhancements in technology
by replacing homogeneous work with education-based improvements of workers that are
regarded as investments in quality. Mankiw, Romer and Weil (1992) extend the Solow
model by human capital, test this ’augmented’ version and observe significant
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improvements in explanatory power. This model is the basis for growth regressions. We
briefly describe it in what follows.
The economic agents are households and firms. Furthermore, there are three commodities
and for each commodity there is a market. The commodities are output, capital and labor.
When considering the corresponding markets we assume that all individuals behave
rational and further information restrictions are not present. In the market for capital we
think of households owning the capital K(t) and lease it to the firms. The firms demand the
capital KD(t). The price is r(t) (real rental rate). In the market for labor the supply L̃(t)
comes from the households and the demand L̃D(t) comes from the firms. The price in the
labor market is w(t) (real wage rate). L̃(t) is not a measure of headcount. It can be
decomposed in a measure of working quality and a measure of the homogeneous supply
per person. We decompose

L̃D(t) = L(t)
1−α−β

1−α H(t)
β

1−α ,

where H(t) is the amount of human capital. In the market for output the supply consists of
the total output of firms Y (t) and the demand Y D(t) consists of what the households save
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Figure 3.4: HP Smoothing of yit
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(S(t) = sY D(t)) and what they consume (C(t) = (1− s)Y D(t)). We assume that investments
equal savings (I(t) = S(t)). The households decide how to distribute total savings between
gross investment and human capital. We assume that the summarized result of the
households’ decisions is that the fraction sKY D(t) = IK(t) is invested in physical capital
and the fraction sHY D(t) = IH(t) is invested in human capital. Clearly sK + sH = s and
I(t) = IH(t)+ IK(t). The supply of output follows a production function with the input
factors capital KD(t) and labor LD(t). The generated output is also influenced by the
productivity A(t) that characterizes the country’s transformation capabilities. The
improvement may consist of either of level of technology or of efficiency gains, meaning
the ability to combine the input factors in an optimal way. The aggregated production
function is

Y (t) = KD(t)αH(t)β (L(t)A(t))1−α−β

= A(t)1−α−β KD(t)α L̃D(t)1−α .
(3.1)

The price of the output market is normalized to one, so that other prices are measured in
units of the output price. Note that the fundamental difference between the input factors of
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Figure 3.5: HP Smoothing of lnskit
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the production function is that capital and labor are rival goods while the applied
technology can spillover to any entrepreneur in the economy what means that it is a public
good.
All three markets are assumed to be perfectly competitive so that the economic agents take
the prices as given and in each market the appropriate price adjusts such that LD(t) = L(t)
and KD(t) = K(t) and Y D(t) = Y (t). Necessarily, the two inputs capital and labor are paid
at their marginal products. Therefore, it holds

∂Y (t)
∂K(t)

= r(t) (3.2)

and
∂Y (t)
∂L(t)

= w(t). (3.3)

In this setting, α is the capital intensity and β is the labor intensity in the production
process. The labor force L(t) and the productivity level A(t) are assumed to grow
exogenously at rates n and g respectively. Therefore, it holds

L(t) = L(0)exp(nt) (3.4)

and
A(t) = A(0)exp(gt). (3.5)

In any period, the investment of the prior period will be transformed into new capital
minus the depreciation δ of the old capital stock. We express the production process in
terms of per effective worker units. (k(t) = K(t)/A(t)L(t) and y(t) = Y (t)/A(t)L(t)). The
growth of per effective worker capital over time is

k̇(t) = sKy(t)− (n+g+δ )k(t). (3.6)

Human capital behaves like its physical counterpart. The evolution of the per effective
worker unit of human capital (h(t) = H(t)/A(t)L(t)) is

ḣ(t) = sHy(t)− (δ +g+n)k(t). (3.7)

The model is (3.1), (3.2), (3.3), (3.4), (3.5), (3.6) and (3.7). The parameters of the model
are α , β , sK , sH , δ , n and g. Given the initial values A(0), K(0), H(0) and L(0), the model
will determine the dynamic evolution of the economy. Moreover, when assuming
diminishing returns to capital input (α +β < 1) the model converges as time goes to
infinity. The situation of convergence is called steady state. It is identified by k̇ = ḣ = 0. In
the steady state it holds that

k(t)≡ k∗ =

(
s1−β

k sβ

H

δ +g+n

)1/(1−α−β )

h(t)≡ h∗ =

(
sα

k s1−α

H

n+g+δ

)1/(1−α−β )

.

(3.8)
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Growth outside the steady state is determined by the evolution of k(t) given in (3.6) and of
h(t) given in (3.7). The capital stock of human and physical capital increases if the
economy fosters investments (sH or sK increases), or if the effective depreciation
(n+g+δ ) decreases. The model makes quantitative predictions about the speed of
convergence to steady state. Approximating around the steady state, the speed of
convergence at a given time point t outside the steady state is given by

∂ ln(y(t))
∂ t

= λ (ln(y∗)− ln(y(t))), (3.9)

with λ = (n+g+δ )(1−α−β ). Equation (3.9) implies that

ln(y(t))− ln(y(0)) = (1− exp(λ t)) ln(y∗)− (1− exp(λ t)) ln(y(0)), (3.10)

where y(0) is the income per effective worker at some initial date. This implies that if the
economy moves from the initial state 0 to the time point t halfway to steady state, it holds

1
2
=

ln(y(t))− ln(y(0))
ln(y∗)− ln(y(0))

= 1− exp(λ t)

which is equivalent to t = ln(2)/λ . If for example λ = 0.02 the economy moves halfway
to steady state in 34.65736 years. In general the larger λ the less time it takes the economy
to move halfway to steady state.
Equation (3.10) implies that outside the steady state it holds

ln(
Y (t)
L(t)

) = (1− exp(−λ t)) ln(A(0))+gt + exp(−λ t) ln(
Y (0)
L(0)

)

(1− exp(−λ t))
α

1−α−β
ln(sK)+(1− exp(−λ t))

β

1−α−β
ln(sH)

− (1− exp(−λ t))
α +β

1−α−β
ln(n+g+δ ).

This justifies the following regression equation

yit = ρ ∗ yi(t−1)+β1 ∗ lnnit +β2 ∗ lnskit +β3 ∗ lnnit +ηi +νit , (3.11)

where νit is an error with expectation zero.

3.3 Identifying the Africa-Dummy

3.3.1 Growth Regressions

Sampling Process: We denote the information of the dependent variable from some initial
time point 1 up to t by yt

i = (yi1, . . . ,yit) and the information of the exogenous variables
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from some initial time point 2 up to t by xt
i = (x′i2, . . . ,x

′
it). We assume that{(

yT
i ,x

T
i
)
, i = 1, . . . ,n

}
is a number of independent observations from the same

probability distribution, with finite first and second order moments.
Regression Equation: We are aiming for estimating (3.11) with the Africa-Dummy. (3.11)
is of the form

yit = ρyi(t−1)+ x′itβ +ηi +νit . (3.12)

The Africa-Dummy is a part of the country-specific effects

ηi = ηg +SSH ∗1SSH,i + η̃i, (3.13)

where E(η̃i) = 0, 1SSH,i equals 1 if country i belongs to the group of sub-Saharan African
countries and 0 else and ηg is the common intercept. When plugging (3.13) in (3.12) we
have

yit = ηg +ρyi(t−1)+ x′itβ +SSH ∗1SSH,i + η̃i +νit . (3.14)

We aim to estimate the parameters ρ , β , ηg, SSH and each η̃i.
Exogeneity: We assume

E(νit |1SSH,i,yt−1
i ,xT

i , η̃i) = 0. (3.15)

An implication of the assumption is that the errors νit are conditionally serially
uncorrelated. Namely for j > 0 it holds

E(νitνi(t− j)|1SSH,i,yt−1
i ,xT

i , η̃i) = 0.

By the law of iterated expectations it also holds that

E(νitνi(t− j)) = 0.

Second Moments of the Errors: We assume

E(νitν js) =

{
σ2

ν , if i = j and s = t
0, else.

(3.16)

This is a very strict assumption. When looking at how to estimate equation (3.14) we
discuss what happens if this assumption is violated. Furthermore, we assume that the
second moments of the country-specific errors exist.

The Country-Specific Effects: We observe
{(

yT
i ,x

T
i
)
, i = 1, . . . ,n

}
but we do not observe

the country-specific intercepts. The model by Mankiw, Romer and Weil (1992) indicates
that the total country-specific effect ηi is determined by the growth rate of technological
change g, the convergence rate λ and the initial level of technology A(0). g and λ are
assumed not to change between countries and over time. The initial endowment with
production technology cannot be expected to be constant in all countries. Mankiw, Romer
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and Weil (1992) mention several influences on A(0) like resources, climate or institutions.
They decompose A(0) in a common component that reflects the general productivity and a
component that reflects all country-specific characteristics. The assumption that η̃i and xit

are uncorrelated seems to be too strong. For example developed institutions can increase
the level of human capital in the population. We assume that η̃i is in general correlated to
every yi(s−1) and xis for all i and s.
Vector-Matrix-Notation: First of all, we stack the time-series data of (3.12):

ι = (1, . . . ,1)′ ∈ RT−1

yi = (yi2, . . . ,yiT )
′ ∈ RT−1

yi(−1) = (yi1, . . . ,yi(T−1))
′ ∈ RT−1

Xi = (xi2, . . . ,xiT ) ∈ RK×(T−1)

νi = (νi2, . . . ,νiT )
′ ∈ RT−1.

Equation (3.12) is

yi = ρyi(−1)+X ′i β +ηiι +νi ∈ RT−1.

Furthermore, we stack cross-sectional data:

y = (y′1, . . . ,y
′
n)
′ ∈ Rn(T−1)

y−1 = (y′1(−1), . . . ,y
′
n(−1))

′ ∈ Rn(T−1)

X = (X1, . . . ,Xn)
′ ∈ Rn(T−1)×K

C = In⊗ ι ∈ Rn(T−1)×n

η = (η1, . . . ,ηn)
′ ∈ Rn

ν = (ν ′1, . . . ,ν
′
n) ∈ Rn(T−1).

Equation (3.12) is

y = ρy−1 +Xβ +Cη +ν ∈ Rn(T−1). (3.17)

(3.14) is stacked in the same way. We assume without loss of generality that the data are
available in the form that exactly the first s rows belong to the group of sub-Saharan
African countries. Denote

η̃ = (η̃1, . . . , η̃n)
′ ∈ Rn,

ιn(T−1) = (1, . . . ,1)′ ∈ Rn(T−1) and

ιn(T−1),SSH = (1, . . . ,1︸ ︷︷ ︸
∈Rs(T−1)

, 0, . . . ,0︸ ︷︷ ︸
∈R(n−s)(T−1)

) ∈ Rn(T−1).
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(3.14) is in stacked form

y = ιn(T−1)ηg +ρy−1 +Xβ + ιn(T−1),SSH ∗SSH +Cη̃ +ν ∈ Rn(T−1). (3.18)

The Bias of the Within Group Estimator: Regression equations (3.12) and (3.14) have a
lagged dependent variable. Therefore, assuming exogeneity with respect to all variables,
including the lagged dependent variable, will cause a bias when estimating the coefficients.
This has been shown by Orcutt and Irwin (1948) and Kendall (1954) for time-series
models with fixed time-series length and has been extended by Nickell (1981) for panels
with fixed T (even if n→ ∞). In consequence, bias reduction procedures have been
proposed, for example Kiviet (1995), Hahn and Kuersteiner (2002) or Phillips and Sul
(2007). In the estimation methods that will be presented, the bias only occurs in the
regression step where the β ’s are estimated. Except of the Random Effects estimator, this
regression step is the same as applying the Within Group estimator. Therefore, we estimate
the bias of Within Group estimator using the precise formulas as n→ ∞ given by Phillips
and Sul (2007). Using

η̄ j = y j•− ρ̂WGy−1 j•− x′i•β̂WG

we can then see how mistakes in the Within Group estimation step affect the estimation of
the fixed effects. Afterwards we can estimate the bias of SSH using

ˆSSH = η̄A− η̄NA.

Since the true ρ is not known, we calculate biases for different ρ’s. The Within Group
estimator of the coefficient of the lagged variable is biased downwards and therefore we
use it as the smallest ρ to plug in. We calculate these biases for β̂WG since fluctuations
result in negligible small differences. The results are given in table (3.2). The biases of the
fixed effects listed in this table are the maximum of all absolute values of the biases of
each fixed effect. Table (3.2) shows that all biases, apart from that of the coefficient of the
lagged variable, are negligible small. Calculating biases when adding more exogenous
variables is not necessary since Phillips and Sul (2007) argue that the addition of
exogenous variables result in smaller biases. We therefore assume in regressions using the
Within Group estimator that the bias that results from the lagged variable (apart from that
of the coefficient of the lagged variable itself) is negligible small.

Two-Step Regressions: There are to ways to estimate the Africa-Dummy. The two-step
method first estimates (3.12) together with the country-specific effects which contain the
Africa-Dummy according to decomposition (3.13). In the second step the estimated
country-specific effects are used to estimate equation (3.13) and to obtain an estimator for
the Africa-Dummy. This method has the disadvantage that it does not use all the available
information from the correlations between the different variables of (3.14). The result is a
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Table 3.2: Biases

True Value Bias

ρ ρ (10−2) lnn (10−4) lnsk (10−4)

0.98971 -1.4298 7.1027 5.1380

0.99314 -1.3815 6.8523 3.7093

0.99657 -1.3302 6.5506 2.2294

1.00000 -1.2760 6.1961 0.7095

ρ lnattain (10−4) FE (10−17) SSH (10−17)

0.98971 -0.6022 2.9554 4.0494

0.99314 0.5347 2.8576 3.9813

0.99657 1.7158 2.7540 3.9082

1.00000 2.9316 2.6441 3.8292

consistent estimator with a large variance because the errors made in the first regression
step persist in the second regression step which itself generates an error. Moreover, this
method is not able to correctly estimate the correlations between the coefficients. The
other estimation method estimates (3.14) directly and does not share these disadvantages.

Lags: Running the regressions using exactly (3.14) has three drawbacks. First, the one year
growth time-series shows little variation so that the coefficient of the lagged dependent
variable is almost one and all other coefficients are very small. This is often called
spurious regression problem. Second, we only checked that the endogeneity bias caused by
the lagged dependent variable is small. Since the economy can choose its growth driving
parameters as reaction of a shock, the regression is suspected to suffer from an
endogeneity bias. It is natural to assume that the bias caused by the explanatory variables
is much smaller than that caused by the lagged dependent variable itself, which is already
negligibly small. Nevertheless, we do not know the exact correlation of explanatory
variables and the error and cannot give precise formulas for the bias as done by Phillips
and Sul (2007). Third, we aim for comparison of our results with that of other authors,
who refer their regressions to five year time horizons taking either averaged or initial
explanatory variables to represent the time horizons (see Hoeffler (2002)). Especially the
first two drawbacks mentioned allow impeaching the credibility of the results obtained by
the one year growth equation. Therefore, we estimate a lagged regression equation. Taking
lagged variables has two drawbacks. First, we move away from the situation described by
Mankiw, Romer and Weil (1992) and loose theoretic justification. Second, the model by
Mankiw, Romer and Weil (1992) deals with the evolution of the differences of the
logarithms of the subsequent GDP’s. These can only be interpreted as growth rates if the
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subsequent GDP’s are close to each other, since in this case a Taylor-Expansion shows that

ln(GDPt)− ln(GDPt−1)≈
GDPt −GDPt−1

GDPt−1
.

Time horizons from t−5 to t generate larger differences between the two growth rates than
time horizons from t−1 to t.
We obtain results with a regression with a five year lagged dependent variable and five year
lagged explanatory variables. Therefore xit = (lnni(t−5), lnski(t−5), lnattaini(t−5)) and the
dependent variable is the five year lagged GDP per worker. We also run the regression with
a one year lagged dependent variable and contemporary explanatory variables and
compare the results. Note that, if we obtain similar results, the aforementioned problems of
spurious regression and endogeneity for the one year lagged regression are very unlikely.

Large T problems: We discuss some well-known problems that often occur in case of large
n as well as large T panels. We discuss the spurious regression problem, the unit-root
problem and the cointegration problem. The spurious regression problem comes from the
literature of time-series analysis. The problem is known as one yielding a nonzero
β -coefficient when regressing two independent and individually integrated processes of
order one on one another. Phillips and Moon (1999) provide a concept that extends the
arguments about spurious regression in time-series analysis. They show that the issue of
spurious regression will not arise for the panel estimates, when the cross-sectional size
tends to infinity. In our case the cross-sectional size is 81 which is why we argue that we
do not have the problem of a spurious regression. The Unit-Root problem is concerned
with the inference of the autoregressive coefficient, when it equals one. When considering
the lagged series, the autoregressive coefficient is far away from one, which is why we
argue that this is not a problem in our case. There can also be a problem in case of
integrated explanatory variables of order one. More precisely, if xit = xit−1 + εit , Kao and
Chiang (2000) show that the fixed effects estimator is biased if εit and νit are correlated.
We see no reason for such a correlation and therefore estimate with OLS.

3.3.2 Why we do not use System GMM

Caselli, Esquivel and Lefort (1996) applied the Difference GMM to growth regression
using linear smoothed data with five year time horizons between 1960 and 1985. Bond,
Hoeffler and Temple (2001) note that the Difference GMM uses weak instruments because
the series of the logarithms of GDP’s per capita is highly persistent and recommend the
System GMM. Afterwards, many papers appear using System GMM. Roodman (2006)
gives access to System GMM by implementing it in Stata. Hoeffler (2002) addresses the
problem of estimating the Africa-Dummy in growth regressions and comes to the
conclusion that System GMM is the preferred method. We have the impression that the
System GMM is the leading method in growth regressions. As most authors use linear
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smoothing instead of applying the HP filter, their time-series are shorter which leads to less
instruments. The number of instruments when having time-series data with T = 48 is very
large. This causes problems. Furthermore, Hoeffler (2002) applies a two step method for
estimating the Africa-Dummy which leads to efficiency problems. Before discussing these
problems we give an account of the System GMM.
First of all, we stack the time-series data of model (3.12) and write it as

yi =Wiα +ηiι +νi

with Wi = (wi2, . . . ,wiT )
′ ∈ R(T−1)×(K+1), wit = (yi(t−1),x′it)

′ ∈ RK+1,
νi = (νi2, . . . ,νiT )

′ ∈ RT−1 and α = (ρ,β ′)′ ∈ RK+1. We assume the feedback assumption

E(νit |xi2, . . . ,xit ,yi1, . . . ,yi(t−1),ηi) = 0. (3.19)

This assumption was for example made by Hoeffler (2002) and is based on the idea that
the economy can chose its variables as a reaction of a shock. It follows from (3.19) that for
t = 3, . . . ,T

E((w′i2, . . . ,w
′
i(t−1))

′(νit −νi(t−1))) = 0 ∈ R(K+1)(t−2) (3.20)

holds. These are rDi f f = (K +1)(T −2)(T −1)/2 moment conditions. Note that

∆νi = Dνi = (νi3−νi2, . . . ,νiT −νi(T−1))
′ ∈ RT−2,

with

D =


−1 1 0 . . . 0 0
0 −1 1 0 0
...

. . .
...

0 0 0 . . . −1 1

 ∈ R(T−2)×(T−1).

Stacking these moment conditions gives

E(Z′iDνi) = 0 ∈ RrDi f f , (3.21)

where

Zi =


w′i2

w′i3 w′i2
. . .

w′i(T−1) . . . w′i2

 ∈ R(T−2)×rDi f f .

One can derive the Difference GMM Estimator by applying the usual GMM procedure
using (3.21). It was first proposed by Arellano and Bond (1991). Blundell and Bond
(1998) show that the instruments of the Difference GMM estimator are weak when the
autoregressive coefficient is close to one. The System GMM estimator augments the set of
moments of the Difference GMM estimator by additionally assuming moment conditions
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for the level equation. When doing this, Blundell and Bond (1998) observe a dramatic
efficiency gain when the autoregressive coefficient is close to one. Arellano and Bond
(1995) introduce the use of lagged differences as possible instruments for the equation in
levels. The equation in levels is (3.12) in the form

yit = ηg +w′itα + η̃i +νit = w̃′it α̃ +uit

with w̃it = (1,w′it)
′ ∈ RK+2, α̃ = (ηg,α

′)′ ∈ RK+2 and uit = η̃i +νit . Stacking time-series
data gives

yi = W̃iα̃ +ui ∈ RT−1,

with W̃i = (w̃i2, . . . , w̃iT )
′ ∈ R(T−1)×(K+2), ui = (ui2, . . . ,uiT ) ∈ RT−1. We assume that the

exogenous variables can be correlated to the fixed effects but the correlations of two
succeeding exogenous variables of the same country and the fixed effects have the same
magnitude

E(∆xitηi) = 0. (3.22)

Note that ∆xit = xit − xi(t−1). Furthermore, we assume that the correlations of yi2 and ηi

and that of yi1 and ηi are equal. This is the initial condition

E(∆yi2ηi) = 0. (3.23)

In this case, condition (3.23) also holds for all subsequent yit . This means that two
succeeding yit’s have the same correlation to ηi. It will be shown in this subsection that
especially in the case of growth regressions, where the autoregressive coefficient is close to
one, this initial condition is unlikely to be fulfilled. However, it follows from (3.22) and
(3.23) that

E(ηi(yi(t−1)− yi(t−2),x
′
it − x′i(t−1))

′) = E(ηi∆wit) for t = 3, . . . ,T.

(3.22) and (3.23) imply the (T −2)(K +1) moment conditions

E(∆wituit) = 0 for t = 3, . . . ,T.

Furthermore, it clearly holds that E(uit) = 0. We summarize all these
rLev = (T −2)(K +2) moment conditions by

E(Z′liui) = 0 ∈ RrLev (3.24)

with

Zli =



0 . . . 0
(1,∆w′i3)

. . .

(1,∆w′iT )


∈ R(T−1)×rLev .
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The equation in levels is yi = W̃iα̃ +ui ∈ RT−1 with moment conditions E(Z′liui) = 0. The
equation in differences is Dyi = DWiα +Dνi = DW̃iα̃ +Dui ∈ RT−2 with moment
conditions E(Z′iDνi) = E(Z′iDui) = 0. Stacking the levels equation on the differenced
equation yields

y†
i =W †

i α̃ +u†
i ∈ R2T−3,

with

y†
i =

(
yi

Dyi

)
∈ R2T−3, W †

i =

(
W̃i

DW̃i

)
∈ R(2T−3)×(K+2) and u†

i =

(
ui

Dui

)
∈ R2T−3.

Summarizing all r = rLev + rDi f f = (T −2)(K +2)+(K +1)(T −2)(T −1)/2 moment
conditions yields

E((Z†
i )
′u†

i ) = 0 ∈ Rr, (3.25)

with

Z†
i =

(
Zli 0
0 Zi

)
∈ R(2T−3)×r.

The System GMM estimator is

ˆ̃αSysGMM =

[
(

n

∑
i=1

(W †
i )
′Z†

i )An(
n

∑
i=1

(Z†
i )
′W †

i )

]−1

(
n

∑
i=1

(W †
i )
′Z†

i )An(
n

∑
i=1

(Z†
i )
′y†

i ). (3.26)

The optimal choice of the weighting matrix An is the inverse of Var((Z†
i )
′u†

i ).
Hoeffler (2002) addresses the problem of estimating the Africa-Dummy in growth
regressions. She applies a two-step regression, estimating (3.12) with an intercept first and
then regressing the residuals on the Africa-Dummy. This method has efficiency problems
that result from the variation induced by estimating the residuals in the first step and from
the GMM method in general. It is not surprising that Hoeffler (2002) observes that the
negative Africa-Dummy becomes insignificant. Furthermore, correlations between the
coefficients cannot be calculated with this method. Beside this, the System GMM has
more problems. We first discuss the problems that result from too many instruments and
motivate to reduce the number of instruments. Then, we discuss the effects of the
reduction of the instruments.
One general problem of GMM is a bias that occurs when too many instruments are used
(see Tauchen (1986) or Ziliak (1997)). Windmeijer (2005) observes a decreasing bias
when applying the Difference GMM if the instrument count is reduced. Arellano (2003)
gives analytical evidence for the bias when the number of observations and the length of
the time-series go to infinity.
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Furthermore, problems occur when estimating the optimal weighting matrix An. The
number of elements to be estimated is quadratic in the number of instruments and therefore
quartic in T . Moreover, the elements of the optimal matrix are fourth moments of the
underlying distributions because they are second moments of the result of differenced
variables times variables. Roodman (2009) notes that a common symptom for estimations
of the weighting matrix is that they are singular. Therefore, the generalized inverse rather
than the inverse is calculated. This can give results that are far away from the theoretical
ideal. The breakdown tends to occur as the number of instruments approaches n.
Therefore, n can be seen as a general benchmark for the number of instruments. We have
4554 instruments when estimating with the System GMM and n equals 81.
The Hansen J-Test (see Hansen (1982)) usually checks the validity of instruments, but as
for example Bowsher (2002) observes in simulation studies, a too large number of
instruments weakens the test dramatically. Roodman (2009) notes that in case of too many
instruments the weights of those moments that are least well satisfied are too small. We
conclude that we do not have a reliable test available that tells us how many and which
instruments to choose. This problem is especially severe as the initial condition (3.23) is
least likely to be fulfilled in case of highly persistent time-series as in our case. To
understand this we follow the arguments of Roodman (2009). If there exists a long-run
mean, it holds that

E(yit |ηg, η̃i,xT
i ) = E(yi(t+1)|ηg, η̃i,xT

i ),

which is equivalent to

yit =
x′i(t+1)β

1−ρ
+

ηg

1−ρ
+

η̃i

1−ρ
∀t.

Assuming that there exists such a long-run mean, we define the correlation of the
deviations from it to η̃i by

mit = E((yit − (
x′i(t+1)β

1−ρ
+

ηg

1−ρ
+

η̃i

1−ρ
))η̃i).

mit has got interesting properties. First of all, if the initial condition (3.23) holds for
example in t and therefore E(∆yi(t−1)uit) = 0, then this is equivalent to mi(t−2) = 0. This is
because

0 = E(∆yi(t−1)uit) = E(((ρ−1)yi(t−2)+ x′i(t−1)β +ηg + η̃i)η̃i)

is equivalent to

0 = E((yi(t−2)− (
x′i(t−1)β

1−ρ
+

ηg

1−ρ
+

η̃i

1−ρ
))η̃i) = mi(t−2).
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Furthermore, if assumption (3.22) holds, it follows that mit = ρmi(t−1). This is because

mit = E((yit − (
x′i(t+1)β

1−ρ
+

ηg

1−ρ
+

η̃i

1−ρ
))η̃i)

= E((yit − (
x′itβ

1−ρ
+

ηg

1−ρ
+

η̃i

1−ρ
))η̃i)

= E((ρyi(t−1)−
ρ

1−ρ
x′itβ −

ρ

1−ρ
ηg−

ρ

1−ρ
η̃i)η̃i)

= ρE((yi(t−1)− (
x′itβ

1−ρ
+

ηg

1−ρ
− η̃i

1−ρ
))η̃i)

= ρmi(t−1).

This means that if the system has been generating numbers, such that (3.23) holds once, it
also holds for all subsequent yit . The initial condition for an individual is for example
fulfilled if it has already achieved its long run steady state and is only fluctuating around it
with respect to νit . If the country is in its transition phase to its steady state, then the
difference to its long-run steady state can be uncorrelated to the individual error but this is
not necessarily the case. However, if ρ < 1 the correlations of the differences to the steady
state to the individual errors decrease with speed determined by ρ . The System GMM
offers the most help if ρ is close one and in which case the system is least likely to have
achieved the initial condition when the observation time begins. Therefore, when the
System GMM becomes especially necessary it is least likely to fulfill the underlying
assumptions that allow to apply it. The Hansen J-Test does not offer help to test the validity
of the moment conditions because of the large number of instruments. As the series of y is
highly persistent we conclude that it is very unlikely that the initial condition holds.
Roodman (2009) provides methods to reduce the instrument count. Limiting the lag-depth
to one gives an instrument count which is still far too large. Another method to reduce the
instrument count is collapsing. Suppose we do not assume that

E(Z′iDuit) = E((w′i2∆ui3,w′i3∆ui4w′i2∆ui4, . . . ,w′i(T−1)∆uiT , . . . ,w′i2∆uiT )
′) = 0 ∈ RrDi f f ,

but only assume that

E(Z′iDuit) = E((
T

∑
t=3

w′i(t−1)∆uit ,
T

∑
t=4

w′i(t−2)∆uit , . . . ,
T

∑
t=T

w′i(t−(T−2))∆uit)) = 0 ∈ R(T−2)(K+1).

This means that we sum up the instruments time-wise. In the same way we can collapse
the additional instruments for the System GMM estimator. Instead of assuming that
E((∆wi3ui3,∆wi4ui4, . . . ,∆wiT uiT )) = 0 , we assume that E(∑T

t=3 ∆wituit) = 0. The
instrument count is still far too large. The only way is to collapse and to reduce the
lag-depth. If we reduce the lag depth to two and collapse, we have 13 instruments. Note
that reducing the number of instruments makes it possible to apply the System GMM but
has large drawbacks in terms of efficiency.



3.3 Identifying the Africa-Dummy 73

Another problem of the Sytem GMM is that it needs the strict assumption that the residuals
are not correlated. When this assumption is slightly violated, Least-Squares estimators are
robust as they are still consistent but the System GMM suffers from a bias of unknown
magnitude.
We conclude that there is a dramatic loss of efficiency due to reducing the instrument
count. Additionally there is a dramatic loss of efficiency that results from the two-step
method. Therefore, the significance of the Africa-Dummy is hard to determine.
Furthermore, the correlations between the coefficients cannot be estimated with the
two-step method. Moreover, as it is not clear to what extend the residuals are correlated,
the System GMM suffers from a bias of unknown magnitude. Therefore, we do not use
System GMM.

3.3.3 The Hausman-Taylor Estimator

We estimate the coefficients of equation (3.14)

y = ιn(T−1)ηg +ρy−1 +Xβ + ιn(T−1),SSH ∗SSH +Cη̃ +ν

=W (ηg,SSH,ρ,β ′)′+u,

where W = (ιn(T−1), ιn(T−1),SSH ,y−1,X) ∈ Rn(T−1)×(K+3) and u =Cη̃ +ν ∈ RT−1. We
assume for the country-specific errors, that they are independent and that their common
variance is

Var(η̃i) = σ
2
η . (3.27)

The Random Effects model disregards the potential correlation of ηi to the exogenous
regressors. The simplest approach to estimate this model is to pool all data and then apply
OLS. The pooled estimator provides consistent estimates. As the errors uit are correlated, a
robust choice to estimate the coefficients yields more efficient estimates. The covariance
matrix of the vector ui = (ui2, . . . ,uiT ) is

Σui =


σ2

η +σ2
ν σ2

η . . . σ2
η

...
. . .

...
σ2

η . . . σ2
η σ2

η +σ2
ν

 ∈ R(T−1)×(T−1).

Therefore, the covariance matrix of the vector u = (u′1, . . . ,u
′
n)
′ ∈ Rn(T−1) is

Σ =


Σu1

. . .

Σun

 ∈ Rn(T−1)×n(T−1).

Applying GLS yields an unfeasible estimator of (ηg,SSH,ρ,β ′)′, namely

(W ′Σ−1W )−1W ′Σ−1y.
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The solution to this is the same as regressing the quasi-demeaned y on the quasi-demeaned
columns of W . If vector z is

z = (z12, . . . ,z1T ,z22, . . . ,z2T , . . . ,zn2, . . . ,znT )
′ ∈ Rn(T−1),

then the quasi-demeaned z is

z̃QD =(z12−θ z̄1•, . . . ,z1T−θ z̄1•,z22−θ z̄2•, . . . ,z2T−θ z̄2•, . . . ,zn2−θ z̄n•, . . . ,znT−θ z̄n•)
′ ∈Rn(T−1),

where

z̄i• =
1

T −1

T

∑
t=2

zit

and
θ = 1−

√
σ2

ν/((T −1)σ2
η +σ2

ν ).

To obtain a feasible version, we estimate the variances of the error components. The
pooled OLS estimator gives consistent estimates for the residuals uit which we denote by
ˆ̂uit and a consistent estimator of its variance which we denote by σ̂2

u . Consistent estimators
for the variances of the error components and θ are given by

σ̂
2
η̃ =

1
n(T −1)(T −2)/2− (K +3)

n

∑
i=1

T−2

∑
t=1

T−1

∑
s=t+1

ˆ̂uit ˆ̂uis,

σ̂
2
ν = σ̂

2
u − σ̂

2
η̃ ,

θ̂ = 1−
√

σ̂2
ν/((T −1)σ̂2

η + σ̂2
ν ).

(3.28)

We use θ̂ to obtain the quasi-demeaned W and y, namely W̃QD and ỹQD. The Random
Effects estimator is

(η̂gRE ,
ˆSSHRE , ρ̂RE , β̂

′
RE)
′ = (W̃ ′QDW̃QD)

−1W̃ ′QDỹQD. (3.29)

As the individual effects of (3.14) are correlated to the regressors, the Random Effects
estimator suffers from an endogeneity bias. Hausman and Taylor (1981) present an
Instrumental Variable estimator for estimating the coefficients of (3.14). Since the
Africa-Dummy already rules out systematic differences of the group of the sub-Saharan
African countries, we assume

E(1SSH,i ∗ η̃i) = 0. (3.30)

When demeaning the regression equation, all individual variables disappear. Furthermore,
we disregard the endogeneity bias induced by the lagged variable (see subsection (3.3.1))
and use (3.30). Then

Z = (ιn(T−1), ιn(T−1),SSH ,(In(T−1)− In⊗ ιι
′)y−1,(In(T−1)− In⊗ ιι

′)X) ∈ Rn(T−1)×(K+3)

is a matrix whose columns provide instruments. Hausman and Taylor (1981) propose to
use some of the explanatory variables as additional instruments. In our case we do not find
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a reason for that one of the explanatory variables is uncorrelated to the individual effects.
Applying the Instrumental Variable estimation method yields an estimator for
(ηg,SSH,ρ,β ′)′, namely (Z′W )−1Z′y. The solution to this is that β and ρ are estimated by
the Within Group estimator and ηg and SSH are estimated by η̄NA and η̄A− η̄NA

respectively, where we denote the average residual of country j by
η̄ j = y j•− ρ̂WGy−1 j•− x′i•β̂WG, the average residual of all non sub-Saharan African
countries by η̄NA = 1

n−s ∑
n
j=s+1 η̄ j and the average residual of all sub-Saharan African

countries by η̄A = 1
s ∑

s
j=1 η̄ j. Since we have error components, we apply 2SLS using

(3.28). This is the Hausman-Taylor estimator.
If conditional on the regressors, individual effects can be viewed as random draws from a
common population, we estimate with error components. One motivation for doing this
could be that the common population characteristics are of interest. In growth regression, it
is very unlikely that there is a common population. The effects of different countries are
highly heterogeneous. Furthermore, the performance of individual countries is of interest.
The disadvantage of Random Effects estimators is that it does not take this heterogeneity
of the fixed effects into account and it is not possible to examine the performance of
individual countries.

3.3.4 The Two-Groups Least-Square Dummy-Variable Estimator

The Least-Square Dummy-Variable estimator is the OLS estimator of ρ , β and of each ηi

in equation (3.12)

ρ̂LSDV = ρ̂WG, β̂LSDV = β̂WG and η̂LSDV,i = η̄i for i = 1, . . . ,n. (3.31)

Since (C′C)−1 = 1
T−1 In(T−1) the model can be identified. Equation (3.14) has n+2

country-specific regressors (an intercept, n country-specific errors and an Africa-Dummy).
When stacking this equation and considering the country-specific regressor matrix, it has
n+2 columns and n(T −1) rows from which only n rows are different to each other.
Therefore, the country-specific regressor matrix has rank n at the highest and the model
cannot be identified. Therefore, applying the Least-Square Dummy-Variable estimator
yields in applying a two-step regression, which has efficiency problems.
To be able to estimate (3.14) directly, we assume that the errors of the sub-Saharan African
countries sum up to zero and that the errors of the non-sub-Saharan African countries sum
up to zero separately

s

∑
i=1

η̃i = 0 and
n

∑
i=s+1

η̃i = 0. (3.32)

This assumption specifies two errors precisely

η̃s =−η̃1− η̃2− . . .− η̃s−1 and η̃n =−η̃s+1− η̃s+2− . . .− η̃n−1.
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Plugging (3.32) into (3.14) yields

y = ρy−1 +Xβ +CSSHηSSH +ν ∈ Rn(T−1), (3.33)

with

ηSSH = (ηg,SSH, η̃1, . . . , η̃s−1, η̃s+1, . . . , η̃n−1)
′ ∈ Rn

and

CSSH =



ι ι ι

...
...

. . .

ι ι ι

ι ι −ι · · · −ι

ι ι

...
. . .

ι ι

ι −ι · · · −ι


∈ Rn(T−1)×n,

where the lower right box refers to the non-sub-Saharan African countries and has n− s−1
columns and (n− s)(T −1) rows and the upper middle box refers to the sub-Saharan
African countries and has s−1 columns and s(T −1) rows. It is easy to check that

C′SSHCSSH = (T −1)

 Z1

Z2

Z3

 ∈ Rn×n,

with

Z1 =

(
n s
s s

)
∈ R2×2,

Z2 =


2 1 . . . 1

1 2
. . .

...
...

. . . . . . 1
1 . . . 1 2

 ∈ R(s−1)×(s−1),

and

Z3 =


2 1 . . . 1

1 2
. . .

...
...

. . . . . . 1
1 . . . 1 2

 ∈ R(n−s−1)×(n−s−1).

The inverses of Z1, Z2 and Z3 exist and are given by

Z−1
1 =

1
n− s

(
1 −1
−1 n/s

)
∈ R2×2,
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Z−1
2 =

1
s


(s−1) −1 . . . −1

−1 (s−1)
. . .

...
...

. . . . . . −1
−1 . . . −1 (s−1)

 ∈ R(s−1)×(s−1),

and

Z−1
3 =

1
n− s


(n− s−1) −1 . . . −1

−1 (n− s−1)
. . .

...
...

. . . . . . −1
−1 . . . −1 (n− s−1)

 ∈ R(n−s−1)×(n−s−1).

Therefore,

(C′SSHCSSH)
−1 =

1
T −1

 Z−1
1

Z−1
2

Z−1
3

 ∈ Rn×n.

Note that the existence of (C′SSHCSSH)
−1 is equivalent to that the columns of CSSH are

linear independent, meaning that the model can be identified. It is now easy to check that

MCSSH = In(T−1)−CSSH(C′SSHCSSH)
−1C′SSH = In(T−1)− In⊗ ιι

′ ∈ Rn(T−1)×n(T−1).

Therefore, ρ and β are estimated by the Within Group estimator. Furthermore,

η̂SSH = (C′SSHCSSH)
−1C′SSH(y− ρ̂WGy−1−X β̂WG).

Solving this gives the Two-Groups Least-Square Dummy-Variable estimator

ρ̂ = ρ̂WG, β̂ = β̂WG, η̂g = η̄NA, ˆSSH = η̄A− η̄NA,

ˆ̃η j = η̄ j− η̄A for j ∈ {1, . . . ,s−1}and ˆ̃η j = η̄ j− η̄NA for j ∈ {s+1, . . . ,n−1} .
(3.34)

With (3.34) and −η̃1− . . .− η̃s−1 = η̃s we have ˆ̃ηs = η̄s− η̄A and in the same manner
ˆ̃ηn = η̄n− η̄NA. The total country-specific effect of a sub-Saharan African country with
index j ∈ {1, . . . ,s} is η̂g + ˆSSH + ˆ̃η j = η̄ j and that of a non-sub-Saharan African country
with index j ∈ {s+1, . . . ,n} is η̂g + ˆ̃η j = η̄ j. Note that these are the country-specific
effects of the Least-Square Dummy-Variable estimator.
The advantage of the Two-Groups Least-Square Dummy-Variable estimator compared
with the Hausman-Taylor estimator is that it does not need the assumption of a common
population. Therefore, the effects of different countries are heterogeneous. Furthermore, it
allows to examine the performance of individual countries. The formulas of the
Hausman-Taylor estimator for estimating the intercept, the Africa-Dummy, ρ and β are
exactly the same as those of the Two-Groups Least-Square Dummy-Variable estimator but
the estimators for second moments are not. The Two-Groups Least-Square
Dummy-Variable estimator allows to reliably estimate the correlations of the
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Africa-Dummy to other regressors. Furthermore, as it does not use the inefficient
Instrumental Variable method, it is more efficient. Another example of the Least-Squares
method is that it remains being consistent even if the residuals are heteroscedastic and
slightly correlated.

3.3.5 Results

Tables (3.3) and (3.4) show the estimated coefficients and the standard errors. The
interpretation of the five year lagged model is similar to that of the one year lagged model
for all estimation methods. The coefficient of lnn is almost zero in the one year lagged
model and at least becomes negative significant on ten percent level in the five year lagged
model. It is surprising to see that the coefficient of lnattain is clearly negative. Figure (3.6)
shows this negative correlation when multiplying the dependent variable and lnattain by
the projection matrix that projects each vector on the orthogonal column space of that
spanned by all other explanatory variables. It can clearly be seen that the negative
coefficient is not a result of a misspecification of the functional structure or of influential
observations. The negative coefficient was for example also identified by Islam (1995). He
argues that the observed effect of human capital is either a measurement problem or relates
to a misspecification of this variable by the Augmented Solow model. The indicator by
Barro and Lee (2010) does not take the quality of schooling into account. It can be
observed that the school attainment according to Barro and Lee (2010) incrementally
increases for almost all countries but the growth rate does not. The result is a negative
coefficient. Pritchett (1996) argues that this result is robust, credible and provides three
possible explanations. First he argues that schooling does not necessarily create human
capital, second, the returns to education fall rapidly when the demand for educated labor is
stagnant and third, a large amount of human capital is used for growth hindering activities,
such as a bloated bureaucracy.

Table (3.3) shows the estimated coefficients of the error components models. Random
Effects suffers from an endogeneity bias and its results are slightly different than
Hausman-Taylor. Table (3.4) shows the estimated coefficients of the fixed effects models.
Least-Square Dummy-Variable and Two-Groups Least-Square Dummy-Variable give
similar results for the time- and country-varying coefficients but Least-Square
Dummy-Variable estimates a larger intercept with smaller standard errors and an equal
Africa-Dummy with much larger standard errors. Hausman-Taylor has larger standard
errors than Two-Groups Least-Square Dummy-Variable. The advantage of Two-Groups
Least-Square Dummy-Variable can also be seen when considering correlations. Table (3.5)
shows the correlations of the estimated coefficients and the estimated Africa-Dummy.
Least-Square Dummy-Variable does not estimate correlations at all. Random Effects and
Hausman-Taylor give similar results because they are both based on the idea of error
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components. Two-Groups Least-Square Dummy-Variable gives very different results
because it is based on the idea of including fixed effects as regressors. It does not need the
rather strict group-wise homogeneity assumption which is why we identify it as the best
estimator to calculate the correlations.
According to Two-Groups Least-Square Dummy-Variable the coefficient of the
Africa-Dummy is larger, the smaller the coefficient of lnn and lnattain and the larger the
coefficient of lnsk. Nevertheless, its correlations to the coefficient of lnattain and lnn are
small. In other words, if the return to investment in physical capital increases, the
punishment of belonging to sub-Saharan Africa decreases. Furthermore, if the return to the
depreciation rate or the school attainment increases, the punishment of belonging to
sub-Saharan Africa increases slightly.
We analyze the fixed effects estimated by the Two-Groups Least-Square Dummy-Variable
estimator. The total fixed effects are η̄i. The Two-Groups Least-Square Dummy-Variable
estimator is able to estimate the decomposition η̃i +ηg +SSH ∗1SSH;i . We denote
η̃i +ηg +SSH ∗1SSH;i by fixed effects and η̃i +ηg by corrected fixed effects. The corrected
fixed effects are larger than the fixed effects in case of a sub-Saharan African country and
equal for all other countries. Figure (3.7) shows boxplots of the fixed effects in the one
year lagged case. We observe that the distribution of the fixed effects is slightly skewed to
the left. In the one year lagged model it can be seen that adding the Africa-Dummy as a
regressor results in a more symmetric distribution of the remaining parts of the fixed
effects. The two outliers of the one year lagged model correspond to the sub-Saharan
African country Niger and the Latin American country Nicaragua. Even though Niger is

Figure 3.6: The negative coefficient of lnattain in the growth regression.
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affected by the correction, it remains being an outlier when considering the corrected
country-specific errors. Figure (3.8) shows that, when looking at the corrected fixed effects
and the fixed effects of the five year lagged model, the skewness is not completely
removed. The tails of the corrected fixed effect support a symmetric distribution but as the
median is closer to the first quartile than to the third quartile, the distribution is slightly
skewed to the left. Nevertheless, the corrected fixed effects of the five year lagged model
are slightly skewed to the left. When looking at the residuals, we observe a similar

Figure 3.7: Boxplot of the fixed effects for the one year lagged model.

Figure 3.8: Boxplot of the fixed effects for the five year lagged model.
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Table 3.3: Random Effects Estimators
RE RE (5) HT HT (5)

Intercept 0.1771*** 1.2100*** 0.1905*** 1.2894***

(0.0112) (0.0633) (0.0118) (0.0649)

lag y 0.9898*** 0.9000*** 0.9897*** 0.8926***

( 0.0011) (0.0059) (0.0011) (0.0061)

lnn -0.0002 -0.0282* 0.0008 -0.0240

( 0.0025) (0.0126) (0.0025) (0.0127)

lnsk 0.0277*** 0.0837*** 0.0275*** 0.0813***

( 0.0012) (0.0062) (0.0012) (0.0063)

lnattain -0.0148*** -0.0496*** -0.0150*** -0.0493***

( 0.0010) (0.0052) (0.0010) (0.0053)

SSH -0.0090 -0.1428*** -0.0109* -0.1551***

(0.0049 ) (0.0353) (0.0046) (0.0301)

* p :≤ 0.05 **≤ 0.01 ***≤ 0.001

behavior for the one year lagged model and the five year lagged model. Its distribution is
extremely heavy tailed and slightly skewed to the left. This indicates that more regressors
than those given by Mankiw, Romer and Weil (1992) contribute to explaining growth.
However, when adding a regressor to the growth model it is not clear whether it drives
growth or is only somehow correlated to what cannot be explained by the model without
that regressor.

3.4 More about the Africa-Dummy

3.4.1 Semiparametric Modeling

The growth model by Mankiw, Romer and Weil (1992) suggests the regression equation
(3.14) which has a linear functional structure. We investigate if a misspecification of this
functional structure is responsible for that the Africa-Dummy is negative and significant.
Figure (3.9) shows a simplified example of what could happen to the Africa-Dummy when
we relax the functional structure. Suppose we have only two individuals that follow two
different linear regression equations with the same slope but different intercepts. In figure
(3.9) we have a regressor that is uniformly distributed. The small input points between zero
and a third (the red points) have the small output y = 1+0.7x+ ε where ε ∼N (0,0.35).
The large input points between a third and one (the blue points) have the large output
y = 1.5+0.7x+ ε . In figure (3.9) the red line belongs to the equation y = 1+0.7x and the
blue line belongs to the equation y = 1.5+0.7x. The green dashed line belongs to the
nonlinear equation y = 2.05+0.39∗ log(x). When only looking at figure (3.9) it is not
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Table 3.4: Fixed Effects Estimators
LSDV LSDV (5) 2G LSDV 2G LSDV (5)

Intercept 0.1905*** 1.2894*** 0.1795*** 1.1343***

(0.0020) (0.0134) (0.0117) (0.0635)

lag y 0.9897*** 0.8926*** 0.9897*** 0.8926***

(0.0011) (0.0061) (0.0011) (0.0061)

lnn 0.0008 -0.0240 0.0008 -0.0240

(0.0025) (0.0127) (0.0025) (0.0127)

lnsk 0.0275*** 0.0813*** 0.0275*** 0.0813***

(0.0012) (0.0063) (0.0012) (0.0063)

lnattain -0.0150*** -0.0493*** -0.0150*** -0.0493***

(0.0010) (0.0053) (0.0010) (0.0053)

SSH -0.0109* -0.1551*** -0.0109*** -0.1551***

(0.0044) (0.0293) (0.0017) (0.0090)

* p :≤ 0.05 **≤ 0.01 ***≤ 0.001

Table 3.5: Correlations
Corr lnn Corr lnsk Corr lnattain Method

RE -0.5587 -0.0129 -0.0757 Direct

RE(5) -0.5588 -0.0487 -0.0266 Direct

HT -0.5605 -0.0112 -0.0753 Direct

HT(5) -0.5589 -0.0481 -0.0240 Direct

LSDV . . . Two Step

LSDV(5) . . . Two Step

2G LSDV -0.1170 0.5641 -0.0938 Direct

2G LSDV(5) -0.1279 0.5252 -0.0537 Direct

clear whether the data come from the two different linear processes with the same slope or
from one and the same nonlinear process. This example shows that different linear models
could be understood as one nonlinear model. This motivates to investigate if a significant
difference in the intercepts of the growth models of the group of sub-Saharan African
countries and that of all other countries disappear when relaxing the functional structure of
regression equation (3.14). In other words, the task is to investigate if the input variables
given in the model by Mankiw, Romer and Weil (1992) suffice in explaining sub-Saharan
Africa’s growth tragedy when simply relaxing the functional structure.

We use B-Splines of degree three with equidistant knots to relax the functional structure of
the variables lnn, lnsk and lnattain. The number of knots have to be chosen in a reasonable
way that takes the sample size as well as the number of regressors into account. Akaike’s
Information Criterion results in choosing models with too many parameters when having
large samples. The Bayesian Information Criterion punishes harder for choosing a lot of
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explanatory variables. Therefore, we chose the number of knots with respect to that it
minimizes the Bayesian Information Criterion. More precisely, we vary the number of
knots between three and ten and choose the combination that minimizes the Bayesian
Information Criterion. The result for the one year lagged model is zero knots for the
variables lnn and lnattain and one knot for the variable lnsk. The result for the five year
lagged model is one knot for all variables. When running these regressions we observe that
the coefficient of the lagged dependent variable increases from 0.9897 to 0.9920 in the one
year lagged model and decreases from 0.8926 to 0.8911 in the five year lagged model. The
intercept decreases from 0.1905 to 0.0322 in the one year lagged model and from 1.2894
to 0.8834 in the five year lagged model. The magnitude of the Africa-Dummy increases
slightly from −0.0109 to −0.0113 in the one year lagged model and from −0.1551 to
−0.1582 in the five year lagged model. However, in the one year lagged and five year
lagged case we observe a highly significant Africa-Dummy. We conclude that the
significance of the Africa-Dummy cannot be explained by a misspecification of the
functional structure.

3.4.2 Interaction Effects

In this subsection we discuss how the beta coefficients of (3.14) differ for sub-Saharan
African countries. We consider model (3.14) with interaction effects. Interaction effects
also allow for time varying punishments of sub-Saharan African countries. The results are
given in table (3.6).
First of all, we observe a positive significant interaction effect of the coefficient of lnn.
This means that it needs to be corrected for sub-Saharan African countries such that the

Figure 3.9: Interpolation of schooling
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resulting coefficient is positive. For the one year lagged model the total coefficient of lnn is
−0.0129+0.0357 = 0.0228 and for the five year lagged model
−0.0760+0.1535 = 0.0775. This is counterintuitive. Figure (3.10) shows boxplots for the
time-series of lnnit for the sub-Saharan African countries and other countries. We observe
that sub-Saharan African countries have a larger depreciation rate because of the larger rate
of population growth. Furthermore, the Inter Quartile Range is smaller with more outliers.
The positive coefficient of lnn of sub-Saharan African countries shows that the larger
population growth is advantageous for the growth of sub-Saharan African countries. The
difference of the total coefficient of lnn for sub-Saharan African countries and the
coefficient for all other countries overemphasizes sub-Saharan Africa’s punishment. The
Africa-Dummy is positive. A low population growth rate means that there is a low birth
rate or people die. For example conflicts or diseases cause high death rates but both reduce
the GDP as for example war costs money or diseases cause people not to work.
Furthermore, it can be seen from the interaction effect of the estimated coefficient of the
five year lagged model that the time-series of GDP per worker entails less autocorrelation
than that of the other countries. This also means that less variation is explained by the
GDP per worker time-series itself and indicates that other explanatory variables, such as
for example those given by the model of Mankiw, Romer and Weil (1992), contribute to
growth.
Moreover, in the one year lagged model, the interaction effect of lnattain is small and
positive but significant. However, the resulting coefficient is still negative and of large
magnitude.

Figure 3.10: lnnit stratified by sub-Saharan African and other countries
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Table 3.6: Estimating the coefficients of the growth regression with interaction effects
one year �ve year

Estimate Estimate

(S.E.) (S.E.)

Intercept 0.1588*** 1.0938***

(0.0134) (0.0724)

SSH 0.0646* 0.6151***

(0.0266) (0.1451)

lag y 0.9895*** 0.8976***

(0.0013) (0.0070)

Int. lag y 0.0020 -0.0397**

(0.0027) (0.0147)

lnn -0.0129*** -0.0760***

(0.0031) (0.0159)

Int. lnn 0.0357*** 0.1535***

(0.0052) (0.0265)

lnsk 0.0268*** 0.0752***

(0.0016) (0.0081)

Int. lnsk 0.0028 0.0145

(0.0025) (0.0129)

lnattain -0.0175*** -0.0498***

( 0.0013) (0.0070)

Int. lnattain 0.0047* 0.0017

(0.0020) (0.0108)

*p :≤ 0.05 **≤ 0.01 ***≤ 0.001

3.4.3 The Development of the Africa-Dummy

In this subsection we investigate how the Africa-Dummy evolves over time. Consider the
model

yit = ηg +ρyi(t−1)+ x′itβ +
T

∑
s=2

SSHs ∗dSSH,t(i,s)+ η̃i +νit , (3.35)

with t = 2, . . . ,T and i = 1, . . . ,n, where dSSH,t(i,s) = 1 if country i belongs to sub-Saharan
Africa and s = t and dSSH,t(i,s) = 0 else. We assume that this model has the same
statistical properties concerning the error structure and the fixed effects as (3.14). This
includes ∑

s
i=1 η̃i = 0 and ∑

n
i=s+1 η̃i = 0 to be able to identify the model. Stacking first

time-series and then cross-sectional data yields

y = ρy−1 +Xβ +(ιSSH ⊗ IT−1)SSH +Cη +ν ∈ Rn(T−1),
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Table 3.7: Coefficients with a time-varying Africa-Dummy
one year �ve year

Estimate Estimate

(S.E.) (S.E.)

Intercept 0.1832*** 1.2654***

(0.0117) (0.0636)

lag y 0.9911*** 0.8964***

( 0.0011) (0.0062)

lnn 0.0012 -0.0214

( 0.0025) (0.0128)

lnsk 0.0277*** 0.0834***

( 0.0013) (0.0065)

lnattain -0.0175*** -0.0510***

( 0.0012) (0.0065)

* p :≤ 0.05 **≤ 0.01 ***≤ 0.001

where SSH = (SSH2, . . . ,SSHT )
′ ∈ RT−1 , η = (ηg, η̃1, . . . , η̃s−1, η̃s+1, . . . , η̃n−1)

′ ∈ Rn−1

and

C =



ι ι

...
. . .

ι ι

ι −ι · · · −ι

ι ι

...
. . .

ι ι

ι −ι · · · −ι


∈ Rn(T−1)×(n−1).

Note that this matrix does not contain the time varying Africa-Dummies. The lower right
box refers to the non sub-Saharan African countries and has n− s−1 columns and
(n− s)(T −1) rows, the upper middle box refers to the sub-Saharan African countries and
has s−1 columns and s(T −1) rows and the first column refers to the intercept. The
complete dummy matrix with the Africa-Dummies is (ιSSH ⊗ IT−1,C) ∈ Rn(T−1)×(n+(T−1))

and has full column rank. In the same way we formulate the five year lagged model

yit = ηg +ρyi(t−5)+ x′i(t−5)β +
T

∑
s=6

SSHs ∗dSSH,t(i,s)+ η̃i +νit .

The results for the estimators of the coefficients are given in table (3.7). We observe that
the estimators of the coefficients of (3.35) are similar to those of (3.14). Figures (3.11) and
(3.12) show that the Africa-Dummy varies a lot over time. Apart from small bumps it
incrementally decreases until the beginning to mid-nineties and then increases rapidly in
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Figure 3.11: The Evolution of the Africa-Dummy in the one year lagged model

Figure 3.12: The Evolution of the Africa-Dummy in the five year lagged model

the recent years. When considering the one year lagged model it even becomes
insignificant. Furthermore, in the one year lagged model, the two very recent
Africa-Dummies are smaller than the ones before. It is not clear if this is related to a small
bump or a dramatic increase of Africa’s punishment. However, in the most recent years,
Africa’s punishment was of much smaller magnitude than before.
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3.5 Conclusion

By smoothing with the Hodrick-Prescott filter, we obtain yearly time-series that represent
the connection of one time-series of an economy to another. When doing this, the length of
the time-series is sufficiently large, so that the endogeneity bias that results from the lagged
dependent variable in growth regressions is negligibly small. Estimating the coefficients of
the growth regression with the Two-Groups Least-Square Dummy-Variable estimator
identifies a negative significant Africa-Dummy. This clear punishment for sub-Saharan
African economies increases if the return to investment in physical capital decreases, if the
return the depreciation rate increases, or if the return to school attainment increases.
The Two-Groups Least-Square Dummy-Variable estimator is also used to relax the
functional structure of the growth regression equation. We observe that the significance of
the Africa-Dummy does not disappear when applying a semiparametric model so that it
cannot be explained by a misspecification of the functional structure.
We observe that sub-Saharan African countries have clearly positive returns to the
depreciation rate. When adding interaction effects, the Africa-Dummy is even positive and
significant.
Finally, an extension of the Two-Groups Least-Square Dummy-Variable estimator
estimates the evolution of the Africa-Dummy within the period we observe data. It can
clearly be seen that Africa-Dummy changes over time. Apart from small bumps it
incrementally decreases until the beginning to mid-nineties and then increases rapidly in
the recent years. When estimating exactly the regression equation that is motivated by the
Augmented Solow Model, we even observe that is becomes insignificant in the recent
years.



Chapter 4

A Variable-Coefficients Model for
Assessing the Returns of Growth
Regressions for the Poor And The
Rich

Various papers demonstrate the importance of inequality, poverty and the size of the
middle class for economic growth. When explaining why these measures of the income
distribution are added to the growth regression, it is often mentioned that poor people
behave different than rich people which translates to the economy as a whole. However,
adding explanatory variables does not reflect this behavior. We formulate and apply a
variable-coefficients model and show that the coefficients of the growth regressions differ a
lot and this can be explained by the level of poverty, inequality and the middle class.
Furthermore, we investigate how the coefficients and therefore the growth path differs for
the poorer and for the richer part of the society. We argue that the differences in the
coefficients impeach, on the one hand, the credibility of that the mean coefficients are
informative, and, on the other hand, the credibility of the economic justification for
explaining the growth path of a country with mean coefficients. Moreover, we explain that,
when estimating mean coefficients, the estimation is likely to suffer from an endogeneity
and from a sample selection bias.

4.1 Introduction

The literature shows that the variables inequality, poverty and the size of the middle class
are important for economic growth. Usually the authors add the variables addressed in
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their special question to the growth regression and observe the effects of these variables.
When explaining why certain measures of the income distribution are added, it is often
explained that poor people behave different than rich people and therefore, the economies
as whole behave different according to their level of poverty, inequality and the size of
their middle class. However, adding explanatory variables does not reflect this behavior.
For example, it is hard to believe that a poor economy, in which a high number of poor
people cannot provide collateral and therefore, do not have access to the credit market, has
the same returns to investments in physical capital as a richer economy. This paper
empirically investigates the effects of measures of the income distribution on the
coefficients of the drivers for economic growth. More precisely, we consider three
parameters of the income distribution, namely poverty, inequality and the size of the
middle class and investigate the influence of each of these variables on the coefficients of
the drivers for growth proposed by Mankiw, Romer and Weil (1992). For this purpose, we
formulate and apply a variable-coefficients model. We focus on a panel data analysis using
data from several countries over time.
In what follows, we report the literature concerning the relationships of growth and
inequality, poverty and middle class. Afterwards, we explain, why these findings already
motivate estimating growth regressions with variable coefficients.
Concerning inequality, there is a lot of literature stating that the level of inequality affects
economic growth but there is no consensus about the size and direction of the effects. For
example Bourguignon (2004) reports a literature review on the relationship of inequality
and growth and finds that it is unclear whether inequality has positive or negative effects
on growth. However, all studies state that in an economy that is subject to a lot of
inequality, people behave different than in a more equal economy. There are four kinds of
studies investigating the effects of inequality on growth. First, the inverted U-shaped
relationship, second positive effects, third negative effects and fourth, the studies that
assert that the relationship between inequality and growth depends on other parameters and
is therefore not global.
First, there are studies arguing for the inverted U-shaped relationship. For example
Kuznets (1955) asserts that the inequality of developing countries increases at the
beginning of industrialization, before it converges to a lower level of inequality in
developed countries. This idea is called the Kuznet’s hypothesis. Galor and Tsiddon
(1997) argue that inequality increases in the early stage of growth, because the individual’s
investment in human capital depends mainly on the individual’s social origins. In a mature
economy, investment in human capital depends less on social origins. Other studies
supporting the Kuznet’s hypothesis are Banerjee and Newman (1993) and Aghion and
Bolton (1997). Banerjee and Duflo (2003) also argue that growth is an inverted U-shaped
function of the level of inequality.
Second, the studies supporting positive effects of inequality on growth are as follows.
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Kaldor (1956) argues that workers have a higher propensity of consumption compared
with entrepreneurs. This implies that the saving propensity of entrepreneurs is higher than
that of workers. Consequently in a more unequal economy, more investments will be
made, leading to higher growth. Saint-Paul and Verdier (1993) argue that in a more
unequal society, the median voter will elect a higher rate of taxation to finance public
education. Consequently, human capital increases and this leads to economic growth.
Galor and Tsiddon (1997) argue that in periods of technological inventions, which are
likely to occur in periods of high growth, inequality increases because individuals with a
high ability get more opportunities of earning money than others. Forbes (2000) asserts
empirically that inequality has positive effects on growth.
Third, the following studies support the negative effect of inequality on growth. Alesina
and Rodrik (1994) argue that inequality affects growth through democracy. A median voter
will support high taxation under high inequality, which impedes growth. Persson and
Tabelline (1990) assert empirically that equity is positively correlated with the rate of
growth. Persson and Tabellini (1994) argue that in an unequal society, political decisions
are more likely to produce economic policies that allocate less benefits to growth
promoting activities, such as accumulation of capital and productive knowledge. Alesina
and Perotti (1996) argue that inequality increases socio-political instability by fueling
social discontent. High socio-political instability creates uncertainty and deters investment,
and consequently growth. Rodrik (1998) argues that domestic conflicts, which can be
fueled by inequality, have detrimental effects on growth. Bourguignon (1998) emphasizes
the growing importance of the costs associated with investing in one’s protection when
violence increases. Go, Nikitin, Wang and Zou (2007) assert empirically that, as inequality
increases, economic performance deteriorates. Kurita and Kurosaki (2011) use household
data compiled in the Philippines and Thailand. The empirical results suggest that
inequality reduces growth. There are studies asserting that the effects of inequality on
growth are based on the credit market imperfection assumption. When credit market is not
perfect, lenders have difficulties in distinguishing investments which are likely to fail or
succeed, which is a typical situation of the asymmetric information. Lenders will demand
collateral to borrowers in response. Borrowers with low level of wealth cannot afford
collateral and their investment plans are likely to be wasted, leading to inefficiency and low
growth. This logic is applicable not only to the efficiency loss of physical investment, but
also to the efficiency loss of investment in human capital. Poor people have difficulties in
establishing business and financing education for themselves and their children. They also
have bad access to health care service. Piketty (1993), Galor and Zeira (1993), Banerjee
and Newman (1993), Aghion and Bolton (1997) and Go, Nikitin, Wang and Zou (2007)
use the imperfect credit market assumption.
Fourth, there are studies which cannot be sorted into the afore-mentioned three types of
effects of inequality on growth. They assert that the relationship between inequality and
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growth depends on other parameters. Benabou (1996) builds a model in which inequality
is associated with high growth in the short run, but not in the long run. Xia (2010) argues
that depending on the interest rate and the discount rate, inequality may have either
positive or negative effects on growth. Bandyopadhyay and Tang (2011) assert that the
effects of inequality may be positive or negative on growth depending on immigration
shocks and redistribution policy.
There is a consensus that poverty affects growth negatively. The following reasons for
poverty traps show that the people in the economies behave different and these differences
can be explained by being poor or rich. The effects of poverty traps on growth are
obviously negative. Moreover, any economy which excludes some segment of its
population from productivity faces an efficiency loss. Poverty traps come into existence
from various causes. First, investment in physical or human capital is only possible if a
certain level of income is attained so that saving is possible. Second, corrupt institutions,
an unequal allocation of property or customs that exclude parts of the society from
production may perpetuate poverty. Therefore, the poor faces a coordination problem,
which makes it unlikely that he experiences reformation. Third, high population growth
among the poor impairs the growth of the poor, because the same amount of capital
distributes among more people. Bowles, Durlauf and Hoff (2006) and Sachs, McArthur,
Schmidt-Traub and Kruk (2004) identify several causes for poverty traps. See Kraay
(2006), Lokshin and Ravallion (2004), Jalan and Ravallion (2004), Mesnard and Ravallion
(2006) and McKenzie and Woodruff (2006) for empirical works supporting the existence
of poverty traps.
Poverty has negative effects on growth under credit market imperfection, because poor
people have difficulties in borrowing since they do not have collateral, and even if it is
possible to borrow they have to pay high interest rates. This makes investment in physical
capital or human capital not attractive or even impossible. Perry, Lopez and Maloney
(2006) support the negative effects of poverty on growth under credit market imperfection.
They show negative effects of poverty on growth empirically. Lopez and Servén (2009)
argue that poverty deters investment and consequently growth and supports this
empirically. Ravallion (2010) argues that financial market development influences poverty
and at the same time, poverty may influence the development of the financial market. Then
poverty has even larger negative effects on growth. Furthermore, low nutritional intakes of
the poor deter the productivity and growth. This averse effect on productivity can also
influence the offspring of the poor. See Cunha and Heckman (2007) and Lopez and Servén
(2009). Azariadis (1996) argues that the poor may have higher preference on consumption
than saving, because of their lower life expectancy. Therefore, poverty is associated with
low saving and investment and leads to low growth.
According to the literature, the size of the middle class promotes economic growth. For
example Landes (1999) and Adelman and Morris (1969) find that the large size of the
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middle class is one of the reasons for industrialization and economic growth of Europe.
Alesina (1994) argues that in a society with bimodal income distribution, social conflicts
are more likely, which hinder growth. Birdsall, Graham and Pettinato (2000) and Sridharan
(2004) support that a minimum size of the middle class is crucial when wanting to reform.
Acemoglu and Zilibotti (1997) and Doepke and Zilibotti (2005) assert that a large middle
class promotes entrepreneurship. As the middle class demands high quality goods it
promotes growth for example in the model of Murphy, Schleifer and Vishny (1989).
Easterly (2001) supports the positive effect of the size of the middle class empirically. This
shows that the economy as a whole behaves more efficient, when the size of the middle
class is large.
The literature review shows that poverty, inequality and the size of the middle class affect
economic growth. The effects of poverty on growth are considered to be negative, whereas
there is no consensus on the effects of inequality on growth. The size of the middle class is
regarded as growth promoting. But if the economies behave so different according to these
variables, the question arises, how informative the mean returns to the drivers of economic
growth are. The literature review shows for example that there is no reason to believe that
poor countries have the same return to investments in physical capital than rich countries.
Imagine a growth regression of the form

growth = β ∗ (growth driver)+ error

and imagine that the sample is clearly divided into poor and rich countries. In this
situation, it is very likely to hold that βpoor 6= βrich 6= βmean. The mean coefficient only
reflects a theoretical situation that might not be fulfilled in any of the country groups.
Furthermore, the deviations from the mean coefficient are highly suspicious to move
simultaneously with the dependent variable, which implies an endogeneity problem. If for
example poor countries have a smaller return to the growth driver than the rich countries,
this difference is very likely to move simultaneously with the growth performance, as there
must be some reason for that the poor countries are poor and that the rich countries are
rich. Furthermore, there are problems when putting the model to data. Poor countries have
systematically weaker databases and therefore, the estimation of βmean is highly suspicious
to suffer from a sample selection bias. This is not the case if we separate the two
coefficients βpoor and βrich from the beginning.
In real growth regressions, we have many different growth drivers and a large set of
countries that cannot clearly be separated in the two distinct groups poor and rich.
However, the aforementioned problems are the same. The two-groups-example motivates
to estimate the growth regression with a variable-coefficients model in which a
"continuous transition" from poor to rich is possible. This transition is explained by the
country’s individual levels of poverty, inequality and middleclass in each year.
In this situation, there is another reason for estimating with variable coefficients. Many
authors add several variables to the growth regression and understand growth as a theory of
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everything. This however only shows that the added variables are somehow correlated to
what cannot be explained by the growth regression without these variables. It is not clear
whether these extra variables really identify drivers for growth. When only adding a lot of
variables to the growth regression, we loose economic justification. For this reason, we
aim to stay close to the growth model by Mankiw, Romer and Weil (1992), for which we
have economic justification. Estimating with variable coefficients allows staying close to
the underlying model, as the set of growth drivers is not extended.
This text is divided into four sections. Section (4.2) is itself divided into three subsections.
Subsection (4.2.1) gives an account of the augmented Solow growth model, deals with
collecting reasonable measures of the explanatory variables from the data and explains,
how growth regressions with these data are conducted. Subsection (4.2.2) deals with the
different estimation methods of growth regressions. We explain why random effects
models and the System GMM are unfavorable methods and explain the advantages of
estimating with fixed effects. When doing this, the endogeneity bias is identified to be
negligible small. This discussion allows formulating the desired variable-coefficients
model in subsection (4.2.3).
The results of estimation are given in section (4.3). It is divided into two subsections.
Subsection (4.3.1) gives the results of the variable-coefficients model applied to mean
growth per worker. It is shown that the growth driving coefficients differ dramatically and
this can, to a large extend, be explained by the amount of poverty and inequality and the
size of the middle class. But this motivates another question which is addressed in
subsection (4.3.2). If measures of the income distribution affect the growth behavior of the
economy, then how do the poorer and the richer part of the economy grow. We show that
the coefficients of the growth drivers of the growth of the richer part of the economy differs
greatly from that poorer part. These differences naturally affect the measures of the income
distribution, which in turn affect the growth path of the GDP per worker.
Section (4.4) finally concludes.

4.2 Statistical Modelling and Data Collection

4.2.1 The Model, the Data and Growth Regressions

In the last 20 years, many papers about growth empirics appeared. Usually, the authors add
some basic explanatory variables that have been identified as drivers for growth and extend
this set of variables by a special variable that is concerned with the topic the author wants
to investigate. Therefore, numerous variables have been added to growth regressions with
the consequence that growth can be seen as a theory of everything. It can be criticized that
the extra variables are only identified to be somehow correlated to what cannot be
explained by the basic explanatory variables, but they cannot be identified to be real drivers
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for growth. We use the growth model from Mankiw, Romer and Weil (1992) to justify the
growth regressions. This model explains the growth of the GDP per worker between an
initial time-point 0 and a final time-point t

ln(
Y (t)
L(t)

) = (1− exp(−λ t)) ln(A(0))+gt + exp(−λ t) ln(
Y (0)
L(0)

)

(1− exp(−λ t))
α

1−α−β
ln(sK)+(1− exp(−λ t))

β

1−α−β
ln(sH)

− (1− exp(−λ t))
α +β

1−α−β
ln(n+g+δ ).

(4.1)

L(t) is the labor force at time t and grows with rate n. Y (t) is the GDP at time t. It is
assumed that the fraction sK of the GDP is invested in physical capital and the fraction sH

is invested in human capital. A(t) is the productivity that characterizes the country’s
transformation capabilities. It grows with rate g. δ is the depreciation rate of capital.
Therefore, the total depreciation rate is n+g+δ . λ is the convergence rate. See Mankiw,
Romer and Weil (1992) for a more detailed description of these notations. This equation
motivates to collect time-series for every country and each time-point. We understand
every time-point in the time-series as an initial time-point to explain the GDP per worker
for the next time-point according to (4.1).
When estimating the parameters of this growth equation, the objective is to collect long
time-series for as many countries as possible for which we can guarantee good data
quality. The data to be collected are the per worker GDP’s, the depreciation rates, the
investments in physical capital and a series consisting of a proxy for human capital.
Koehler, Sperlich and Vortmeyer (2011) collect and smooth data for a wide range of
countries using the information sources Penn World Table 6.3 (PWT) published by Heston,
Summers and Aten (2009), World Bank’s World Development indicators and Barro and
Lee (2010). We describe their data set in what follows. The observations are obtained
yearly from 1960 to 2007 for 81 countries. Koehler, Sperlich and Vortmeyer (2011) collect
and smooth GDP’s per worker because this addresses the question how much each
productive worker contributes on average to the growth of his country, which is closer to
the model by Mankiw, Romer and Weil (1992) than the per capita values. As these series
follow business cycles, Koehler, Sperlich and Vortmeyer (2011) smooth the data using the
Hodrick-Prescott filter (see Hodrick and Prescott (1997)). The logarithm of the per worker
GDP of country i at time t is denoted by yit . The depreciation rate, according to the model
by Mankiw, Romer and Weil (1992), is the sum of the depreciation rate of capital, the
growth rate of productivity and the population growth. Koehler, Sperlich and Vortmeyer
(2011) approximate the sum of the depreciation rate of capital and the growth rate of
productivity by 5 % per year for all countries and collect data for the population growth of
the countries for each year. The series of the logarithm of the depreciation rate of country i
at year t is denoted by lnnit . The saving rate of the economy is approximated by the
relative investment share of the real GDP. As the series follow business cycles which are
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not addressed by the model by Mankiw, Romer and Weil (1992), Koehler, Sperlich and
Vortmeyer (2011) smooth the data. The logarithm of these series according to country i at
year t is denoted by lnskit . The basis for the proxy for human capital is the educational
attainment data from Barro and Lee (2010). In order to transfer this variable into a yearly
frequency, Koehler, Sperlich and Vortmeyer (2011) extrapolate the missing values by
interpolation splines. We denote the logarithm of the yearly educational attainment data of
country i and year t by lnattainit .
The data from Koehler, Sperlich and Vortmeyer (2011) are subject to a selection process.
Heston, Summers and Aten (2009) introduce a country rating system based on the number
of participations in worldwide benchmark surveys, the variation of the accessible data and
the quality of the statistical methods applied. This results in a grading scheme from A to D
with descending order. A rating of D is regarded as too weak to be included in the sample.
Therefore, only countries with a grading from A to C are incorporated in the sample.
Furthermore, only complete time-series are incorporated for the relevant variables. This
also excludes countries that were separated in a sub-period, for example Germany and the
countries of the Soviet Union, as their incorporation would have made it necessary to unify
several countries to one country or to split one country in a given period in several
countries. The loss of data quality when doing this is unclear. The selection process of
excluding countries that are D-graded can cause a problem. Poor countries have weaker
databases and are more likely to be excluded. Therefore, the estimation of the mean
coefficients of equation (4.1) would be highly suspicious to suffer from a sample selection
bias. However, the varying coefficients model is less prone to suffer from this sample
selection bias, as the level of poverty, inequality and middle class is controlled for. In the
same way, excluding the countries that were separated can cause a problem. But the
countries that are excluded as a result of this rule do not show structurally similarities.
Therefore, if there is a sample selection bias resulting from this rule, we assume it to be
very small.
For the purpose of collecting data for measuring poverty, inequality and the size of the
middle class, we use the income distribution data from Sala-i-Martin (2006). This ensures
that the different measures from the income distribution are calculated by one and the same
source of information. The data from Sala-i-Martin (2006) consist of complete time-series
from the year 1970 to the year 2000 of some points, at which the world distribution of
income is evaluated, for a large range of countries. The data contain two parts of
information. The first part is the GDP per capita which is available by the PWT. The
second part is the dispersion around the mean. To measure the dispersion, the first task is
to estimate the quintile income shares. When doing this, Sala-i-Martin (2006) uses the
microeconomic income surveys reported by Deininger and Squire (1999) and updated by
the United Nations University’s World Institute for Development Research. Obviously,
survey data are not available for every country and every year. For countries with good
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data quality, meaning that the GDP per capita is available and income surveys are reported
for various years, the quintiles are estimated from the survey data in the years in which
they are available and missing values are estimated using a linear time-trend forecast. For a
country for which the GDP per capita is available, but there is only one survey available,
the quintiles for the years in which no survey is available are estimated using the
information concerning the time-trends from neighboring countries for which various
surveys are available. Two countries are defined as neighbors, if they are in the same
region. The regions are those given by World Bank, namely East Asia and Pacific, Eastern
Europe and Central Asia, Latin America and the Caribbean, Middle East and North Africa
(MENA), South Asia, Sub-Saharan Africa, High-Income Non-OECD and High-Income
OECD. Having collected the quintiles for the countries for which at least one survey is
available, the quintiles of a country for which the GDP per capita but no survey is available
can be conducted by using the averaged information from the neighboring countries for
which at least one survey is available. Countries for which no GDP data are available are
excluded from the sample. Having collected these income shares, a kernel density
estimator is used to approximate the underlying density. When doing this, the choice of the
smoothing parameter is important (see Heidenreich, Schindler and Sperlich (2010)).
Sala-i-Martin (2006) decided to use the same appropriate bandwidth for all countries and
all years. Afterwards, the estimated density functions are evaluated at a hundred points.
The result is the data set from Sala-i-Martin (2006) consisting of the hundred points of the
estimated income distribution for 138 countries for every year, starting in the year 1970
end ending in the year 2000.
For measuring poverty, we use the fraction of the total population with income less than
one dollar per day. Following Sala-i-Martin (2006), one dollar refers to the price level of
1996. Sala-i-Martin (2006) reports a hundred evaluated points of the distribution of
income. From this, we plot the income distribution for each country and each year. Figure
(4.1) demonstrates this. The x-axis is the income level and the y-axis is the population. We
use natural splines to interpolate the points. The fraction of the total population with
income less than one dollar per day is the area A divided by the total area A+B in figure
(4.1). We denote this fraction of country i at year t by pov1dit .
For measuring inequality, we use the well known Gini coefficient. We checked that the
regression results do not change when using the Theil index instead of the Gini index. First
of all, we construct the Lorenz curve for each country and year. Figure (4.2) demonstrates
this. The x-axis is the cumulative share of people from lowest to highest incomes and the
y-axis is the cumulative share of income. The cumulative share of people from lowest to
highest incomes is constructed by adding up the population associated with the points
given by Sala-i-Martin (2006). The cumulative share of income is constructed by adding
up the corresponding incomes. We interpolate the points using interpolation splines. The
Gini coefficient is the area A divided by the area A+B in figure (4.2). We denote the Gini
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coefficient of country i at year t by giniit .
We use a relative definition for the middle class, as different countries with very different
levels of incomes are compared. Easterly (2001) proposes to use the income share
controlled by the middle three quintiles of the income distribution. This means that the
middle class is the share of the total income, that the middle sixty per cent of the
population earn. This can be easily constructed from the Lorenz curve. Let git be the
Lorenz curve of country i at year t and let popit be the total cumulative population. In this
situation, the relative middle class of country i at year t is

middleclassit =
git(0.8popit)−git(0.2popit)

git(popit)
.

Furthermore, we are interested in collecting the average incomes of the richest and the
poorest twenty per cent of a country. Usually, we use per worker GDP to calculate growth.
The number of workers is attained by multiplying the total population by the share of
working age population. The average per worker GDP for the richest and the poorest
twenty per cent is difficult to calculate from Sala-i-Martin (2006)’s data, as these data
correspond to per capita values. The effects of multiplying the share of working age
population by the average per capita GDP for the richest and the poorest twenty per cent

Figure 4.1: A sketch of the income distribution
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would be distorting, since the share of working age population is likely to differ greatly
between the poorest and the richest individuals of the country. Therefore, we use per capita
income to calculate the growth of the poorest and richest twenty per cent of the country. A
comparison of growth regressions for the total population, when using per capita GDP
instead of per worker GDP, shows that the quantitative differences are negligible small. We
construct the data from the Lorenz curve. The average GDP per capita of the poorest
twenty per cent of country i at year t is

git(0.2popit)

0.2popit
.

This measure was introduced by Ravallion and Chen (2003) for measuring pro-poor
growth. In the same way, the average GDP per capita of the richest twenty per cent of
country i at year t is

git(popit)−git(0.8popit)

0.2popit
.

The reference year of the Penn World Table 6.3 is 2005, whereas the reference year of
Sala-i-Martin (2006)’s data is 1996. As both data sets are combined, we multiply these

Figure 4.2: A sketch of the Lorenz curve. The Lorenz curve is the line between the
segments A and B.
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fractions by 80.31577/100, which is the Consumer Price Index of 1996 divided by that of
2005 from the World Bank. The series are subject of business cycles. Koehler, Sperlich
and Vortmeyer (2011) smooth the logarithm of the average GDP series using the filter by
Hodrick and Prescott (1997). They use the smoothing parameter 100. As we combine our
data with the data collected by Koehler, Sperlich and Vortmeyer (2011), we use the same
smoothing parameter for smoothing the price adjusted logarithm of the average GDP per
capita of the poorest twenty per cent of country i at year t and that of the richest twenty per
cent. We denote these variables by lnyrich,it and lnypoor,it respectively. When combining the
data by Koehler, Sperlich and Vortmeyer (2011) and those mentioned above, we end up
with complete time-series starting in 1970 and ending in 2000 for the 81 countries that the
data by Koehler, Sperlich and Vortmeyer (2011) contain.
Having collected the complete time-series for a large range of countries, equation (4.1)
justifies the following regression equation

yit = ρ ∗ yi(t−l)+ x′itβ +ηi +νit , (4.2)

where νit is an error with expectation zero, l is some lag depth and the vector xit consists of
the explanatory variables given by the model by Mankiw, Romer and Weil (1992). This
regression equation was for example used by Islam (1995). However, the assumption that
the β -coefficients are independent from the state of development of a country seems to be
strong. In this paper, we investigate how the β -coefficients change, when they are
dependent of measures of the income distribution of every country and every year. More
precisely, we assume

yit = ρyi(t−l)+ x′itβit +ηi +νit ,

where the βit’s are explained by a linear model with an intercept, poverty, inequality, the
middle class and their squared values.

4.2.2 Methods To Estimate Growth Regressions

In this subsection, we discuss the methods to estimate growth regressions with random
variable coefficients. It suffices to deal with estimating the regression equation of the form
(4.2), as the random-coefficients model consists of two regression equations that can be
written as one regression equation that has the form of a linear regression equation without
random coefficients. Furthermore, it suffices dealing with the case that the lag depth equals
one, as higher lag depths can be incorporated very easily. We denote yt

i = (yi1, . . . ,yit) and
xt

i = (x′i2, . . . ,x
′
it) and assume that{(

yT
i ,x

T
i
)
, i = 1, . . . ,n

}
is a number of independent observations from the same probability distribution with finite
first and second order moments. The errors νit are assumed to have zero means and finite
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second moments. We discuss three different ways to estimate growth regressions. First, the
Difference and the System GMM, second, the models based on the idea of error
components and third, the idea of estimating each fixed effect individually.
The widely known methods to estimate growth regressions based on the GMM procedure
are the Difference GMM and the System GMM. An application of the Difference GMM to
growth regression is given by Caselli, Esquivel and Lefort (1996) and of the System GMM
is given by Hoeffler (2002). These methods do not assume strict exogeneity. Instead they
only assume that at a given time-point, present and future residuals are uncorrelated to
present explanatory variables. Concerning growth regressions, this is based on the idea that
the economies are able to choose their drivers for growth as a reaction of a shock. This
assumption implies that lagged explanatory variables are valid instruments for the
regression equation in differences, in which the country-specific effects disappear.
Applying the usual GMM procedure on the equation in differences yields the Difference
GMM estimator. This was first proposed by Arellano and Bond (1991). Bond, Hoeffler and
Temple (2001) note that the Difference GMM uses weak instruments because the series of
the logarithms of GDP’s per capita is highly persistent and recommend the System GMM.
In general, Blundell and Bond (1998) show that the instruments of the Difference GMM
estimator are weak when the autoregressive coefficient is close to one. The System GMM
estimator augments the set of moments of the Difference GMM estimator by additionally
assuming moment conditions for the level equation. The additional assumption of the
System GMM estimator is that lagged explanatory variables are allowed to be correlated to
the fixed effects, but the correlation of two succeeding time-points and the fixed effects is
of the same magnitude. This implies that differenced explanatory variables are instruments
for the equation in levels. It suffices to assume this for all differenced x-variables and only
the difference of the first two lagged dependent variables, since it can be shown that in this
case, all subsequent differenced lagged dependent variables are also valid instruments.
This is what Blundell and Bond (1998) call the initial condition. When additionally
assuming these instruments for the equation in levels, Blundell and Bond (1998) observe a
dramatic efficiency gain when the autoregressive coefficient is close to one. Roodman
(2006) gives access to the System GMM by implementing it in Stata. There is no doubt,
that the System GMM is a very popular method for estimating growth regressions. We
now argue why we think that the System GMM not adequate for our purposes.
First of all, problems occur because of the large number of instruments. This results in a
bias for which Arellano (2003) gives analytical evidence when the number of observations
and the length of the time-series go to infinity. Windmeijer (2005) observes a decreasing
bias when applying the Difference GMM if the instrument count is reduced. This bias is a
general problem of GMM as shown by Tauchen (1986) or Ziliak (1997). Apart from the
bias, problems occur when estimating the optimal weighting matrix in the GMM
procedure, as the number of elements to be estimated is quadratic in the number of
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instruments and therefore quartic in T . Moreover, the elements of the optimal weighting
matrix are fourth moments of the underlying distributions, because they are second
moments of the result of differenced variables times variables. Roodman (2009) notes that
a common symptom for estimations of the weighting matrix is that they are singular.
Therefore, the generalized inverse rather than the inverse is calculated. This can give
results that are far away from the theoretical ideal. This breakdown tends to occur as the
number of instruments approaches n. Therefore, n can be seen as a general benchmark for
the number of instruments. In our case, the number of instruments is much larger than n.
The Hansen J-Test (see Hansen (1982)) usually checks the validity of instruments, but as
for example Bowsher (2002) observes in simulation studies, a too large number of
instruments weakens the test dramatically. Roodman (2009) notes that in case of too many
instruments the weights of those moments that are least well satisfied are too small. We
conclude that we do not have a reliable test available that tells us how many and which
instruments to choose. Because of the large number of instruments when the length of the
time-series is large, Roodman (2009) provides methods to reduce the instrument count.
This is limiting the lag-depth and collapsing. Collapsing means that instead of assuming
that all lagged explanatory variables are individual instruments for the equation in
differences, it is only assumed that the time-wise sum of the lagged variables is a valid
instrument and in the same way the additional instruments for the equation in levels are
time-wise summed up to one instrument. Applying one of these methods does not help to
reduce the instrument count to a level where the problems mentioned above are not
relevant. Applying both methods can reduce the instrument count dramatically, but
reducing the number of instruments makes it possible to apply the System GMM but has
large drawbacks in terms of efficiency.
Another problem of the System GMM is that it needs the very strict assumption that the
residuals are not correlated. When this assumption is slightly violated, System GMM
suffers from a bias of unknown magnitude. In growth regressions it is generally very
unlikely that the residuals are perfectly uncorrelated because growth can be a theory of
everything and therefore there are always drivers for growth which are not incorporated in
the growth regression.
Moreover, the initial condition is a very strict assumption and unlikely to be fulfilled in
growth regressions. Roodman (2009) shows that the validity of the initial condition is
equivalent to that the correlation of the deviations from the long-run mean of the series yit

and the fixed effect is zero. On the other hand, if the initial condition is not true when the
observation period begins, this correlation converts to zero. However, the speed of
convergence is dramatically slow if the autoregressive coefficient is close to one and this is
exactly the reason for using the System GMM rather than the Difference GMM. The
Hansen J-Test does not offer help to test the validity of the moment conditions, unless we
reduce the instrument count by limiting the lag depth and collapsing, which results in
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dramatic efficiency problems.
Because of either the efficiency problems when reducing the instrument count or the
technical problems when not reducing the instrument count, the bias of unknown
magnitude when the residuals are not perfectly homoscedastic and uncorrelated and the
lack of clarity of the validity of the assumptions that allow to apply the System GMM, we
do not use it.
In this paragraph, we give an account of Random Effects estimators. They assume that the
country-specific effects are independently drawn and come from similar distributions.
Random Effects estimators aim to derive facts about the process that generates the
country-specific effects. It is assumed that the explanatory variables and the
country-specific effects are uncorrelated, that the country-specific effects are independent,
that their variances exist and that these variances are equal. Furthermore, we assume strict
exogeneity even though we have a lagged variable. We will argue in this subsection that
the bias resulting from this assumption is negligible small. We decompose the
country-specific effects in the sum of a general intercept and a country-specific error. This
results in a regression equation with an error structure that consists of two components, the
violations of the fixed effect to its mean and the residual of the original regression
equation. In this situation, the simplest approach is to pool all data and then apply OLS.
The pooled estimator provides consistent estimates. The errors are correlated, as they
consist of two components from which one is time-constant. Therefore, a robust choice to
estimate the coefficients yields more efficient estimates. The disadvantage is that the
assumption that the explanatory variables and the country-specific errors are uncorrelated
is very unlikely to be fulfilled in growth regressions. The model by Mankiw, Romer and
Weil (1992) indicates that the total country-specific effect is determined by the growth rate
of technological change, the convergence rate and the initial level of technology. Whereas
the growth rate of the technological change and the convergence rate can assumed to be
constant across countries and over time, this is not true for the initial endowment with
production technology. Mankiw, Romer and Weil (1992) mention several influences on
initial endowment with production technology, like resources, climate or institutions.
These influences are correlated to the explanatory variables. For example developed
institutions can increase their level of human capital in the population. Therefore, the
assumption that the country-specific errors and the explanatory variables are uncorrelated
seems to be too strong. This results in an endogeneity bias of unknown magnitude.
Another problem of Random Effects estimators is the idea of viewing country-specific
effects as random draws from a common population. For example, there is no reason to
assume that the country-specific effects have one and the same equal variance.
Furthermore, when viewing country-specific effects as random draws from a common
population, is not possible to examine the performance of individual countries, as this is
simply not incorporated in the model. We conclude that the disadvantages of Random
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Effects estimators are the unrealistic assumptions of uncorrelation of the country-specific
effects and the explanatory variables and that the country-specific effects are random draws
from a common population. Because of these disadvantages, we do not use Random
Effects estimators.
The disadvantages of Random Effects estimators motivate to estimate each
country-specific effect as an individual parameter. The Fixed Effects estimator applies the
Least-Squares technique to estimate all coefficients of the growth regression equation,
including each country-specific effect as a single regressor. We assume strict exogeneity.
As the regression equation contains a lagged dependent variable, this assumption causes a
bias. This autoregressive bias has been shown by Orcutt and Irwin (1948) and Kendall
(1954) for time-series models with fixed time-series length and the results have been
extended by Nickell (1981) for panels with fixed T (but n→ ∞). In consequence, bias
reduction procedures have been proposed, for example Kiviet (1995), Hahn and
Kuersteiner (2002) or Phillips and Sul (2007). Phillips and Sul (2007) give precise
formulas for the bias of the Within Group estimator as n→ ∞. It suffices to look at the bias
of the Within Group estimator, because applying the Fixed Effects estimator of ρ and β is
the same as applying the Within Group estimator. Afterwards, we see how mistakes in the
Within Group estimation step affect the estimation of the fixed effects. Since the true ρ is
not known, we calculate biases for different potential values of ρ . The Within Group
estimator of the coefficient of the lagged variable is biased downwards and therefore we
use it as the smallest ρ to plug in. We calculate these biases for the Within Group estimator
of the β -coefficient, namely β̂WG, since fluctuations result in negligible small differences.
The results are given in table (4.1). Note that the length of the time-series equals 30. The
biases of the fixed effects listed in this table are the maximum of all absolute values of the
biases of each fixed effect. Table (4.1) shows that all biases, apart from that of the
coefficient of the lagged variable, are negligible small. Calculating biases when adding
more exogenous variables is not necessary since Phillips and Sul (2007) argue that the
addition of exogenous variables result in smaller biases. Note that, we only checked that
the endogeneity bias caused by the lagged dependent variable is small. Since the economy
can choose its growth driving parameters as reaction of a shock, the total endogeneity bias
is not known. It is natural to assume that the bias caused by the explanatory variables is
much smaller than that caused by the lagged dependent variable itself, which is already
negligibly small. We therefore assume in the regressions using the Within Group estimator
that the bias that results from the lagged variable (apart from that of the coefficient of the
lagged variable itself) is negligible small.

We conclude that the GMM estimators and Random Effects estimators have serious
disadvantages. Above all, they suffer from a bias of unknown magnitude. The bias when
assuming strict exogeneity and estimating with fixed effects can be shown to be negligible
small. Moreover, estimating with Least-Squares yields consistent estimates, even if the
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Rho Bias Rho Bias lnn Bias lnsk Bias lnattain Max Bias FE

0.9896 −2.569∗10−2 −1.049∗10−5 2.805∗10−4 −1.116∗10−4 5.016∗10−17

0.9922 −2.524∗10−2 −1.060∗10−5 1.847∗10−4 −0.183∗10−4 4.923∗10−17

0.9948 −2.477∗10−2 −1.101∗10−5 0.876∗10−4 0.772∗10−4 4.829∗10−17

0.9974 −2.429∗10−2 −1.173∗10−5 −0.105∗10−4 1.745∗10−4 4.731∗10−17

1 −2.380∗10−2 −1.278∗10−5 −1.094∗10−4 2.737∗10−4 4.632∗10−17

Table 4.1: The Nickell Bias with T = 30.

residuals are correlated. Furthermore, when estimating each country-specific effect
individually, we do not need the assumption that the country-specific effects come from a
common population. Therefore, we estimate each country-specific effect individually and
apply Least-Squares.
Before we do this, we discuss some well-known problems that often occur in case of large
n and T panels. We discuss the spurious regression problem, the unit-root problem and the
cointegration problem. The spurious regression problem comes from the literature of
time-series analysis. The problem is known as one yielding a nonzero β -coefficient when
regressing two independent and individually integrated processes of order one on one
another. Phillips and Moon (1999) provide a concept that extends the arguments about
spurious regression in time-series analysis. They show that the issue of spurious regression
will not arise for the panel estimates, when the cross-sectional size tends to infinity. In our
case the cross-sectional size is 81 which is why we argue that we do not have the problem
of a spurious regression. The Unit-Root problem is concerned with the inference of the
autoregressive coefficient, when it equals one. When considering the lagged series, the
autoregressive coefficient is far away from one, which is why we argue that this is not a
problem in our case. There can also be a problem in case of integrated explanatory
variables of order one. More precisely, if xit = xit−1 + εit , Kao and Chiang (2000) show
that the fixed effects estimator is biased if εit and νit are correlated. We see no reason for
such a correlation and therefore estimate with OLS.

4.2.3 The Variable-Coefficients Model

In this subsection, we introduce a variable-coefficients model, in which the coefficients are
dependent on an intercept, poverty, inequality and the size of the middle class. The
development of varying-coefficients models with applications in econometrics started in
the seventies. For example Wachter (1970) motivates to estimate wage equations with a
linear regression equation with variable coefficients. Singh, Nagar, Choudhry and Baldev
(1976) introduce a variable-coefficients model which allows incorporating time-trends in
the regression that explains the coefficients. A more generalized version of this model, in
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which some of the coefficients are functions of other exogenous variables, was introduced
by Amemiya (1978). Amemiya (1978) also applies this model to panel data. The
following model was indicated by Amemiya (1978) but not explicitly derived. We deal
with the case that the lag depth is one as further lag depths can be incorporated easily.
Regression equation (4.2) allows for variable intercepts across countries. Other parameters
of the model are constant. There is no reason to assume that the β -coefficients are constant
over time and individual countries and therefore, we assume that

yit = ρyi(t−1)+ x′itβit +ηi +νit . (4.3)

Incorporating one β -coefficient for every unit would mean to estimate n(T −1)k+n+1
parameters with only n(T −1) data. This does obviously not have a chance to work. We
assume that each βitk fulfills the following linear relationship

βitk = z̃′itγk +aitk,

where k ∈ {1,2,3}. z̃it consists of an intercept, poverty, inequality, the size of the middle
class and their squared values. When stacking the β -coefficients we haveβ1it

β2it

β3it

=

z̃′it 0 0
0 z̃′it 0
0 0 z̃′it


γ1

γ2

γ3

+

ait1

ait2

ait3

 ∈ R3. (4.4)

We denotez̃′it 0 0
0 z̃′it 0
0 0 z̃′it

= Zit ∈ R3×M ,

γ1

γ2

γ3

= γ ∈ RM and

ait1

ait2

ait3

= ait ∈ R3.

Moreover, we assume that

E(aita′js) =

{
Λ, if i = j and s = t and
0, else.

(4.5)

This means that the correlations of the β ’s do not change over time and across individuals

Λ =

λ11 λ12 λ13

λ21 λ22 λ23

λ31 λ32 λ33



=

 Var(βit1) Cov(βit1,βit2) Cov(βit1,βit3)

Cov(βit2,βit1) Var(βit2) Cov(βit2,βit3)

Cov(βit3,βit1) Cov(βit3,βit2) Var(βit3)

 for all i and t.

The residuals of (4.3) are uncorrelated and homoscedastic

E(νitν js) =

{
σ2, if i = j and s = t and
0, else.

(4.6)
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In this situation, when stacking the time-series data of (4.3)

yi = ρyi(−1)+ηiιT−1 +Xiβi +νi ∈ RT−1,

with

ιT−1 = (1, . . . ,1)′ ∈ RT−1,

yi(−1) = (yi1, . . . ,yi(T−1))
′ ∈ RT−1,

Xi =


x′i2

x′i2
. . .

x′iT

 ∈ R(T−1)×3(T−1),

βi = (β ′i2, . . . ,β
′
iT )
′ ∈ R3(T−1) and

νi = (νi2, . . . ,νiT )
′ ∈ RT−1.

Furthermore, we stack the time-series data of (4.4)

βi = Ziγ +ai ∈ R3(T−1),

with

Zi = (Z′i2, . . . ,Z
′
iT )
′ ∈ R3(T−1)×M and

ai = (a′i2, . . . ,a
′
iT )
′ ∈ R3(T−1).

Furthermore, it follows from (4.5)

E(aia′i) = IT−1⊗Λ ∈ R3(T−1)×3(T−1)

and from (4.6)
E(νiν

′
i ) = σ

2IT−1.

After stacking-time series data of (4.3), we additionally stack cross-sectional data

y = ρy−1 +Cη +Xβ +ν , (4.7)

with

y−1 = (y′1(−1), . . . ,y
′
n(−1))

′ ∈ Rn(T−1),

C = IT−1⊗ ι ∈ Rn(T−1)×n,

η = (η1, . . . ,ηn)
′ ∈ Rn,

X =


X2

X3
. . .

Xn

 ∈ Rn(T−1)×3n(T−1),

β = (β ′1, . . . ,β
′
n)
′ ∈ R3n(T−1) and

ν = (ν ′1, . . . ,ν
′
n)
′ ∈ Rn(T−1).
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Furthermore, after stacking time-series data of (4.4), we additionally stack cross-sectional
data

β = Zγ +a ∈ R3n(T−1), (4.8)

with

Z = (Z′1, . . . ,Z
′
n)
′ ∈ R3n(T−1)×M and

a = (a′1, . . . ,a
′
n)
′ ∈ R3n(T−1).

We plug (4.8) into (4.7)

y = ρy−1 +Cη +Xβ +ν

= ρy−1 +Cη+
X2

X3
. . .

Xn





Z1

Z2
...

Zn

γ +


a1

a2
...

an


+ν

= ρy−1 +Cη +


X1Z1

X2Z2
...

XnZn

γ +


X1a1

X2a2
...

Xnan

+ν

= ρy−1 +Cη +Wγ +u ∈ Rn(T−1),

with

W = (Z′1X ′1, . . . ,Z
′
nX ′n)

′ ∈ Rn(T−1)×M and

u = (a′1X ′1,a
′
2X ′2, . . . ,a

′
nX ′n)

′+ν ∈ Rn(T−1).

The regression equation

y = ρy−1 +Cη +Wγ +u ∈ Rn(T−1) (4.9)

has n+M+1 parameters. If the matrix

(y−1,C,W ) ∈ Rn(T−1)×(n+M+1)
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has full column rank, the model can be identified. The following calculation shows that
this model has uncorrelated but heteroscedastic errors

E
[
uu′
]
= E





X1a1

X2a2
...

Xnan

+ν





X1a1

X2a2
...

Xnan

+ν


′

=


X1E(a1a′1)X

′
1

X2E(a2a′2)X
′
2

. . .

XnE(ana′n)X
′
n

+σ
2In(T−1)

=



x′12Λx12
. . .

x′1T Λx1T
. . .

x′n2Λxn2
. . .

x′nT ΛxnT


+σ

2In(T−1)

∈ Rn(T−1)×n(T−1).

We conclude that when we estimate (4.3) using (4.4), with the assumptions (4.5) and (4.6),
it suffices to estimate equation (4.9). We now discuss how to estimate the coefficients of
(4.9). Applying OLS gives a consistent estimator, but as we have heteroscedasticity,
Generalized-Least-Squares yields a more efficient estimator. Amemiya (1978) proposed to
estimate the β ’s first, using

y = ρy(−1)+Cη +


X1

0
...
0

β1 +


0
X2
...
0

β2 + . . .+


0
0
...

Xn

βn +ν ∈ Rn(T−1)

and then estimate γ , Λ and σ2 using the estimated β ’s. This would mean to estimate
3n(T −1)+n+1 parameters with only n(T −1) data. This does obviously not have a
chance to work. One possibility to obtain a feasible estimator is to make use of the linear
structure of E(uu′) and formulate an auxiliary regression in the following way. We first
apply OLS to (4.9) and obtain consistent estimators for ρ , η and γ . Then, we extract the
residuals from this regression and regress the squared residuals on the variables given in
the linear structure of E(uu′) and estimate σ2, λ11, λ22, λ33, λ12, λ13 and λ23. The
reciprocal fitted values of this regression can be used as weights to estimate the coefficients
of (4.9). The idea is to iterate this, until the estimated coefficients ρ , η and γ do not change
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from one step to another up to a small but specified error. This method has the problem
that, when having estimated the residuals of (4.9) in one step, one has to find the λ ’s such
that the matrix Λ has the characteristics of a covariance matrix, such that it is symmetric
and positive definite, to obtain weights for the next step. Applying OLS on the auxiliary
regression does not guarantee this and results in negative weights. Estimating the Cholesky
decomposition of the matrix Λ is not possible because of the resulting multicollinearity.
Incorporating the symmetry condition is easy and it is possible to formulate inequality
conditions for the λ ’s, such that Λ fulfills some of the characteristics of a covariance
matrix. We could for example apply the method of Goldfarb and Idnani (1982) and
Goldfarb and Idnani (1983) to force the diagonal elements of Λ to be positive. We note that
the resulting optimization procedure that calculates the λ ’s itself has errors and we are not
sure if the result of iterated least-squares combined with the iterated solution of the
optimization procedure in every step converges to the desired result.
Therefore, we estimate the coefficients of (4.9) as follows:

(1) We estimate the coefficients of (4.9) in the first step using OLS,

(2) we extract the residuals,

(3) we estimate the coefficients of (4.9) again using least-squares with the reciprocal
squared residuals as weights.

Extracting the residuals from this regression (repeat step (2)) gives weights for the next
regression (repeat step (3)) and so on. We iterate this procedure, until the sum of squared
differences of the coefficients from one step to the next is smaller than 0.005. This ensures
that the average squared difference from one step to another is approximately 0.00005.

4.3 Results

4.3.1 The Effects on Economic Growth

In this subsection, we investigate the effects of poverty, inequality and the middle class on
the coefficients of the growth equation of the GDP per worker. Running the regressions
using a one year lagged dependent variable and contemporaneous explanatory variables
has three drawbacks. First, the one year growth time-series shows little variation so that
the coefficient of the lagged dependent variable is almost one and all other coefficients are
very small. This can lead to a spurious regression problem. Second, we only checked that
the endogeneity bias caused by the lagged dependent variable is small. Since the economy
can choose its growth driving parameters as reaction of a shock, the regression is suspected
to suffer from an endogeneity bias. It is natural to assume that the bias caused by the
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explanatory variables is much smaller than that caused by the lagged dependent variable
itself, which is already negligibly small. Nevertheless, we do not know the exact
correlation of explanatory variables and the error and cannot give precise formulas for the
bias as done by Phillips and Sul (2007). Third, we aim for comparison of our results with
that of other authors, who refer their regressions to time horizons, taking either averaged or
initial explanatory variables to represent the time horizons. Especially the first two
drawbacks mentioned allow impeaching the credibility of the results obtained by the one
year growth equation. Therefore, we estimate a lagged regression equation with
xit = (lnni(t−3), lnski(t−3), lnattaini(t−3)) ∈ R3 and the dependent variable is of the lag
depth three. Furthermore,

z̃it = (1, povi(t−3), pov2
i(t−3),ginii(t−3),gini2i(t−3),middleclassi(t−3),middleclass2

i(t−3))
′ ∈ R7,

which implies M = 21. In this case the time-series covers 31 years, namely from the year
1973 to the year 2003. Furthermore, the cross-sectional size is n = 81. When displaying
the estimated coefficients, we report the level of significance of the coefficient (.) by (.)∗∗∗

if the p-value is almost zero, (.)∗∗ if the p-value is smaller than 0.01, (.)∗ if the p-value is
smaller than 0.05 and (.) if the p-value is larger than 0.1. The estimated autoregressive
coefficient is 0.9318∗∗∗. The regression that explains β1, which is the coefficient of lnn is

β1it =−2.1952∗∗∗+1.3705∗∗∗povi(t−3)−3.4198∗∗∗pov2
i(t−3)+2.9553gini∗∗∗i(t−3)

−0.8132∗∗∗gini2i(t−3)+0.8917∗∗∗middleclassi(t−3)+2.9860∗∗∗middleclass2
i(t−3).

A graphical illustration of this is given in figure (4.4). The plots show the evolution of β1 if
the variables pov (upper left), gini (upper right) or middleclass (bottom left) change. For
the variables that are constant in each plot, we plug in the corresponding averaged
variables. The boxplots (bottom right) show the estimated coefficients stratified for
different country groups. When choosing the country groups, the task is to identify similar
countries and combine them to groups such that each group contains a minimum number
of representatives. We choose the groups Asia, Latin (which is identical to the Latin
America and Caribbean group defined by the World Bank), sub-Saharan Africa (SSA),
High Income (which consists of the High Income OECD and the High Income Non-OECD
group as defined by the World Bank and is denoted by HI) and the group of other countries
(which consists of the Middle East and North Africa group and the Eastern Europe group
as defined by the World Bank). The latter group mentioned is formed because the results
of their representatives are similar. The group of Asia consists of 11 countries, the Latin
group of 19, the SSA group of 17, the HI group of 27 and the group of other countries has
7 representatives. Figure (4.3) demonstrates graphically how the mean poverty rates (upper
left), the mean Gini rates (upper right) and the mean middle class rates (bottom middle) of
each of the groups evolve over time. Note that these figures differ from those obtained by
Sala-i-Martin (2006) because he addresses the total world distribution of income whereas
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Figure 4.3: The evolution of poverty, inequality and the middle class stratified for the
groups of countries.

we deal with country averages. This means that poor but populous countries like China or
India are dramatically underweighted. Furthermore, Sala-i-Martin (2006)’s data set
contains more countries. We observe that sub-Saharan African countries have the highest
poverty rates and the poverty rates of Asian countries decrease incrementally. All other
regions have much smaller poverty rates. While sub-Saharan African countries have high
poverty rates and Gini coefficients, Latin American countries only suffer from an extreme
and incrementally increasing inequality but not so much from extreme poverty. The
fraction earned by the middle class of Latin American countries incrementally decreases.
It is not surprising to see that the HI countries have the lowest inequality rates and the
largest rates of middle class. Figure (4.4) shows that differences in inequality and the
income earned by the middle class have a much larger impact on β1 than differences in the
poverty rate. The relationship of gini and middleclass to β1 is very similar, namely almost
linear and increasing. This forces β1 in two opposing directions, as countries with large
inequality usually have a small middle class and vice versa. Nevertheless, the fraction
earned by the middle class does not fully determine the rate of inequality. Therefore, the
increasing relationship of inequality and middle class to β1 motivates again to differentiate
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Figure 4.4: The effects of poverty, inequality and the middle class on β1 and the β1’s
stratified for the groups of countries.

the two variables. The poverty rate has a much smaller impact. We observe an inverted
U-shaped relationship. The returns of lnn are theoretically the largest, when inequality is
large even though the middle class earns a high fraction of the total income and a serious
fraction of the total population (approximately 20 %) earns below the poverty line. The
boxplots (bottom right) of figure (4.4) show how this transfers to the countries. The returns
to lnn are especially large for sub-Saharan African and HI countries. According to the
group of sub-Saharan African countries this result coincides with that of Koehler, Sperlich
and Vortmeyer (2011). We also show that the β1-coefficients of sub-Saharan African
countries have larger variation than other countries. The coefficients of the groups Latin
and Other are smaller on average and have less variation. It is interesting to see that not
only for HI and sub-Saharan African but also for other countries the returns to lnn can be
positive.
The estimated regression equation that explains the coefficient of lnsk is

β2it =−0.0519∗∗−1.2799∗∗∗povi(t−3)+3.7563∗∗∗pov2
i(t−3)−3.8873∗∗∗ginii(t−3)

+3.9307∗∗∗gini2i(t−3)+5.6845∗∗∗middleclassi(t−3)−7.3372∗∗∗middleclass2
i(t−3).

This is plotted in figure (4.5). It can be observed that poverty, inequality and the middle
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Figure 4.5: The effects of poverty, inequality and the middle class on β2 and the β2’s
stratified for the groups of countries.

class all have a remarkable impact on the coefficient of investment in physical capital. We
observe a U-shaped relationship for the variables pov and gini and an inverted U-shaped
relationship for the variable middleclass. Therefore, the returns to investments are the
highest, when poverty and inequality are either extraordinary low or large and the middle
class earns between 40 % and 45 % of the total income. Again, high inequality usually
goes hand in hand with a low share earned by the middle class and vice versa. The boxplots
of figure (4.5) show that sub-Saharan Africa which is characterized by large inequality,
small middle class and large poverty has the smallest returns to physical capital on average.
The coefficients are also subject to large variation. The coefficients of Asia show that the
underlying distribution is skewed and that the coefficients are also small on average. The
other groups have smaller variation and have larger coefficients on average. The largest
returns to physical capital are observed for Latin American countries. These countries are
characterized by small poverty rates but extreme inequality und a small middle class. The
group of sub-Saharan African countries shows that the returns to investments in physical
capital are small when extreme poverty goes hand in hand with extreme inequality.
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The estimated regression equation for the coefficient of lnattain is given by

β3it =−2.8512∗∗∗+0.6369∗∗∗povi(t−3)−0.4078∗∗∗pov2
i(t−3)+0.5740∗∗∗ginii(t−3)

+2.2057∗∗∗gini2i(t−3)+5.7917∗∗∗middleclassi(t−3)−2.3057∗∗∗middleclass2
i(t−3).

First of all, the majority of the estimated coefficients of lnattain are negative. This is
counterintuitive and indicates that years of schooling are not alone responsible for
measuring human capital. For example, the quality of schooling is not incorporated in this
variable. When estimating the growth regression equation without a variable-coefficients
model, Islam (1995) and Koehler, Sperlich and Vortmeyer (2011) also observe a negative
coefficient. Islam (1995) argues that the observed effect of human capital is either a
measurement problem or relates to a misspecification of this variable by the Augmented
Solow model. Koehler, Sperlich and Vortmeyer (2011) note that while school attainment
incrementally increases for almost all countries, the growth rate fluctuates a lot and the
final result is a negative coefficient. Pritchett (1996) argues that this result is robust,
credible and provides three possible explanations. First he argues that schooling does not
necessarily create human capital, second, the returns to education fall rapidly when the
demand for educated labor is stagnant and third, a large amount of human capital is used
for growth hindering activities, such as a bloated bureaucracy. Because of this
counterintuitive result we are careful when interpreting the coefficients. Moreover, the
boxplots in figure (4.6) show that the coefficients are not fundamentally different across
the country groups. However, figure (4.6) shows that high inequality, high poverty and a
large output of the variable middleclass cause a high return to school attainment.
Differences in poverty have a much smaller impact on the coefficient than inequality and
the share earned by the middle class.
The results clearly show that the poverty rate, the fraction of income earned by the middle
class and inequality force the coefficients to differ a lot. This basically shows two things
about estimating the usual growth regressions without varying coefficients, where the
means of the overall coefficients are addressed. First of all, if the economies behave
dramatically different according to these variables, the question arises how informative the
mean of these coefficients actually is. The countries behave different and none of the
observed country groups have coefficients like the overall mean. Therefore, the mean
coefficients reflect a theoretical situation that is not fulfilled by any of the country groups.
Second, when only estimating the mean coefficients of all countries, the regression is
highly suspected to suffer from an endogeneity problem. The individual deviations from
the means of the coefficients are very likely to move simultaneously with the level of
growth. For example the existence of a negative and significant Africa-Dummy (see
Koehler, Sperlich and Vortmeyer (2011)) shows that the poorest region with an
extraordinary large inequality and small middle class has systematically smaller growth
rates than all other countries. This indicates that the deviations from the means of the
coefficients of the growth equation of this group of countries, which is summarized in the
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Figure 4.6: The effects of poverty, inequality and the middle class on β3 and the β3’s
stratified for the groups of countries.
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coefficient of the Africa-Dummy, imply significantly lower growth.

4.3.2 The Effects on the Economic Growth of the Poor and the Rich

In subsection (4.3.1) we observed that measures of the income distribution affect the path
of economic growth. According to measures of inequality, poverty and the share earned by
the middle class, the economies behave in their specific way that might be totally different
to the growth path of the theoretical mean of all countries. This motivates to investigate
how the income distribution evolves. We investigate the growth path of the upper and the
lower twenty per cent of the society. Differences in the growth path of the poor and the
rich naturally affect measures of the income distribution which in turn affect growth as
seen in subsection (4.3.1). As discussed in subsection (4.2.1) we collected data for the
upper and lower twenty per cent of the society. These series consist of GDP’s per capita,
whereas the data used in (4.3.1) are GDP’s per worker which is preferred when working
with the model by Mankiw, Romer and Weil (1992). We do not have data for the GDP’s
per worker of the upper and lower twenty per cent and it would be distorting when
transforming the per capita values into per worker values, as the information of being a
potential worker is suspected to be highly correlated with the income. Therefore, we do
not compare the results obtained by estimating the growth path of GDP per worker with
those given in this subsection. Instead, we investigate how differences in the measures of
the income distribution affect the behavior of the poor and that of the rich and detect
similarities and differences. Therefore, we apply the model derived in subsection (4.2.3)
with dependent variables lnyrich,it for the investigation of the poorer twenty per cent and
lnypoor,it for the investigation of the richer twenty per cent.
The autoregressive coefficient for the poor is 0.9704 and that for the rich is 0.9366. This
demonstrates that the series of the dependent variable is more persistent for the poor than
for the rich.
The evolution of the coefficient of lnn of the poorer 20 per cent is

β1it, poor =−0.1806∗∗∗+1.9801∗∗∗povi(t−3)−5.0660∗∗∗pov2
i(t−3)+6.4187∗∗∗ginii(t−3)

−5.5026∗∗∗gini2i(t−3)−9.6406∗∗∗middleclassi(t−3)+13.4882∗∗∗middleclass2
i(t−3)

and that of the richer twenty per cent is given by

β1it, rich =−1.9793∗∗∗+1.3614∗∗∗povi(t−3)−3.2350∗∗∗pov2
i(t−3)+1.8338∗∗∗ginii(t−3)

−0.1519∗∗∗gini2i(t−3)2.4768∗∗∗middleclassi(t−3)+0.3237∗∗∗middleclass2
i(t−3).

This is graphically demonstrated in figure (4.7). As in subsection (4.3.1), averaged
variables are used for the variables held constant in each plot. First of all, it has to be noted
that the main drivers for the coefficient of lnn are inequality and the share of income of the
middle class. Differences in the poverty rate result in smaller differences of the β1’s. The
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Figure 4.7: The effects of poverty, inequality and the middle class on βlnn of the poorest
and richest twenty per cent

function β1 dependent on the rate of poverty follows an inverted U-shaped relationship for
the poor and the rich. The relationship of β1 to inequality and the share earned by the
middle class for the rich is almost linear and increasing. Again, as large inequality usually
goes hand in hand with a small share earned by the middle class, the increasing
relationships for both inequality and the share earned by the middle class forces the
coefficient in two opposite directions. Furthermore, it is interesting to observe that in case
of large inequality the coefficient for the poor is smaller than that for the rich whereas in
case of a small share of income earned by the middle class we observe a larger coefficient.
The case of very small inequality and a large share earned by the middle class also forces
the coefficient of lnn in opposing directions. Small inequality results in a smaller β1 for the
poor than for the rich and a large share earned by the middle class results in a larger β1.
The evolution of the coefficient of lnsk for the poorer 20 per cent of the population is

β2it =−3.9012∗∗∗−1.3569∗∗∗povi(t−3)+3.2247∗∗∗pov2
i(t−3)−9.5966∗∗∗ginii(t−3)

+12.1551∗∗∗gini2i(t−3)+25.0670∗∗∗middleclassi(t−3)−26.9079∗∗∗middleclass2
i(t−3)
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Figure 4.8: The effects of poverty, inequality and the middle class on βlnsk of the poorest
and richest twenty per cent

and for the richer twenty per cent is

β2it =−0.1896∗∗∗−1.1640∗∗∗povi(t−3)+2.5135∗∗∗pov2
i(t−3)−3.6437∗∗∗ginii(t−3)

+4.0661∗∗∗gini2i(t−3)+4.9471∗∗∗middleclassi(t−3)−5.7624∗∗∗middleclass2
i(t−3).

This is graphically demonstrated in figure (4.8). Differences in poverty result in smaller
differences of β2 than differences in inequality or middle class. It can clearly be seen that
the rich profit more from investments in physical capital if they do not share with the
middle class. On the other hand, in case of very large inequality, the return to investment
for the poor is much larger than that for the rich. The evolution of the coefficient of
lnattain for the poorer 20 per cent of the population is

β3it =−3.0506∗∗∗+1.3524∗∗∗povi(t−3)−3.9498∗∗∗pov2
i(t−3)+0.6753∗∗∗ginii(t−3)

−2.1525∗∗∗gini2i(t−3)6.1614∗∗∗middleclassi(t−3)−2.6327∗∗∗middleclass2
i(t−3)

and for the richer twenty per cent is given by

β3it =−2.8011∗∗∗+0.4760∗∗∗povi(t−3)−1.8265∗∗∗pov2
i(t−3)−1.3797∗∗∗ginii(t−3)

+4.2849∗∗∗gini2i(t−3)+7.9466∗∗∗middleclassi(t−3)−4.9629∗∗∗middleclass2
i(t−3).
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Figure 4.9: The effects of poverty, inequality and the middle class on βlnattain of the
poorest and richest twenty per cent

This is graphically demonstrated in figure (4.9). As observed when investigating the
growth of the per worker GDP, we observe that the coefficients are likely to be negative.
Because of this counterintuitive result, we have to be careful when interpreting the results.
What we do observe is that differences in poverty result in much smaller differences of β3

than differences in inequality and the share earned by the middle class. The impact of
inequality and middle class on β3 is similar for the poor and the rich. Investments in
human capital are slightly better for the rich in case an extremely small or extremely large
poverty rate.
The significance of the coefficients of the regressions for the poorer and the richer twenty
per cent shows that the measures of the income distribution affect the growth path of the
poorer twenty per cent in a different way than that of the richer twenty per cent. Note that
differences in the growth path of the poorer and the richer twenty per cent partially
determine measures of the income distribution. Furthermore, as shown in subsection
(4.3.1), measures of the income distribution affect the behavior of the economies which is
demonstrated by the differences in the returns of the growth drivers.
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4.4 Conclusion

Collecting long time-series of yearly frequency for a large range of countries allows
applying a variable-coefficients model, in which differences to the mean coefficient are
explained by poverty, inequality and the share of income earned by the middle class. The
results show that the coefficients are highly different and this can be explained by the level
of poverty, inequality and the share of income earned by the middle class.
There are several reasons for estimating with variable coefficients. First, adding measures
of the income distribution to the set of explanatory variables of the growth regression
alone, does not model the reason for adding these variables, namely that the poor behave
different than the rich. Furthermore, we loose economic justification when adding a lot of
variables to the growth regression. Second, the mean of the coefficients is not an
informative parameter of the growth equation because of the dramatically different outputs
of the different subgroups of the coefficients. Third, the differences of the coefficients to
their means are highly suspicious to move simultaneously with growth, which indicates an
endogeneity problem. Fourth, as poor countries have weaker databases and are therefore
more likely to be excluded from the data, the difference in the coefficients indicates a
sample selection bias when estimating mean coefficients.
Outstanding results are that sub-Saharan African countries have highly varying and large
returns to population growth and highly varying and small returns to physical capital. Latin
American countries experience highly negative returns to population growth and large
positive returns to physical capital. The high income countries also have large returns to
population growth and positive returns to physical capital. All country groups experience
negative returns to school attainment, which indicates once again that the variable does not
take important information, such as quality of schooling into account. When expressing
the coefficients as functions of poverty, inequality and the share of income earned by the
middle class, we observe that poverty has much smaller effects on the coefficients than
inequality and the share earned by the middle class. Large inequality usually goes hand in
hand with a small share earned by the middle class and vice versa. The fact that this tends
to move the coefficients in opposite directions demonstrates the importance of
incorporating both variables.
We also investigate the growth path of the poorer and the richer twenty per cent of the
society. First of all, we observe that the returns of the growth regression are highly
dependent on poverty, inequality and the share earned by the middle class. Furthermore,
the returns of the two subgroups of the total population are impacted in different ways.
Outstanding results are that in case of extremely high and extremely small inequality, the
return to population growth is smaller for the poor than for the rich, whereas in case of an
extremely small share earned by the middle class or an extremely large share earned by the
middle class, it is larger. Furthermore, in case of extremely large inequality the return to
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investment in physical capital is larger for the poor and in case of an extremely small share
earned by the middle class it is smaller. This shows again that small inequality and a large
share earned by the middle class or large inequality and a small share earned by the middle
class tend to force the coefficients in different directions. The differences of the returns
dependent on poverty for the poor and the rich are small. The aforementioned differences
of the poor and the rich naturally affect the parameters of the income distribution, which in
turn affect the growth path of the GDP per worker. This undermines again the importance
of considering the income distribution when modeling the growth path.



Chapter 5

Conclusion

The thesis consists of three papers, whose main conclusions are given separately in the end
of each chapter. The task of this chapter is to give a critical examination of the findings of
the thesis and to reflect the author’s personal view.
The first paper is concerned with bandwidth selection in nonparametric kernel regression.
Given the need of automatic data-driven bandwidth selectors for applied statistics, several
bandwidth selection methods have been introduced in kernel regression. They differ quite
a bit, and although there already exist more selection methods than for any other regression
smoother we can still see coming up new ones. In fact, the discussion about estimating the
optimal bandwidth has been going on for the last four decades. One could say that this
discussion is a never-ending story. The rising number of methods makes the practioner
experience a rising complexity. Nowadays, the practioner not really faces to the problem of
choosing the optimal bandwidth for the data set at hand; instead, the problem is rather to
choose the method that chooses the bandwidth. This gives the need for an exhaustive
report as presented in chapter (2). To the best of our knowledge, we are the first providing
such a comprehensive review and comparison study for bandwidth selection methods in
the kernel regression context. By this means, this essay not only contributes to the ongoing
discussion but also provides a basis for further discussion about optimal bandwidth choice.
However, an optimal choice that works best for all data sets we looked at could not be
given. Practitioners with some experience in nonparametric applications choose the
bandwidth using implemented standard routines or just by eye judgment. This method is
quite promising and in most cases adequate, especially for explorative statistics.
The second and third papers are concerned with growth regressions. The eye-catching
thing about growth regressions is that they are always conducted in a different way. First,
there is no consensus about which explanatory variables really drive growth. The range of
topics with their corresponding explanatory variables is so large, that growth can be seen
as a theory of everything. In an extreme case, the unique output of a large number of
explanatory variables only indentifies individual countries and therefore behaves like a
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dummy variable itself. Thereby, it is not clear whether these variables really drive growth.
This demands an economic model that regressions can be based on. We always justify our
regressions by the well known augmented Solow Model. Second, the range of statistical
methods used to estimate the coefficients of growth regressions is extremely large. Many
authors artificially shorten their time-series so that being technically able to apply the
highly popular and well-known GMM methods. Needless to say, that this is highly critical.
Some authors estimate with fixed effects, others apply a random effects estimator. All
these methods produce different results, giving a lot of space for economic interpretation.
This gives the need for an extensive discussion about the estimation method. Chapter (3)
as well as (4) entail such a discussion about which estimator works best for the
corresponding data set.
Chapter (3) is concerned with the Africa-Dummy in growth regressions. On the one hand,
a prominent stylized fact about economic growth is that when comparing two otherwise
similar countries, the one with the lower initial mean income will tend to see the higher
rate of growth. On the other hand, the growth performance of sub-Saharan African
countries is significantly worse compared to that of all other countries. The task of chapter
(3) is not to add more explanatory variables to the growth regression until the sub-group of
sub-Saharan African countries is fully identified and the Africa-Dummy disappears.
Instead, we find it necessary to derive statistical facts about sub-Saharan Africa’s growth
punishment. We develop a statistical method, that is able to identify the Africa-Dummy
and that can moreover be extended to derive empirical facts about it. Thereby, we show
how the Africa-Dummy interacts with the other explanatory variables, to what extend the
parametric linear structure of growth regressions is responsible for its appearance and how
it evolves over time.
While the Africa-Dummy is a correction of the intercept having to be made for the special
sub-group of sub-Saharan African countries, chapter (4) deals with differences in the other
coefficients. Without concentrating on the Africa-Dummy alone, we develop and apply a
variable-coefficients model where the coefficients are explained by the country’s individual
level of poverty, inequality and the share earned by its middle class. Thereby, we show that
the country’s coefficients differ a lot. The model allows dealing with widely criticized
drawbacks of growth regressions. First, it rules out the problem of a possible sample
selection bias, resulting from the fact that poor countries have weaker data bases and are
therefore more likely to be excluded from the data set. Second, it is more informative than
a model estimating the mean coefficients. Third, it deals with the problem that differences
to the mean coefficients move simultaneously with the dependent variable indicating an
endogeneity problem. Fourth, it gives an example of how extra variables can be added to
the growth regression without extending the set of explanatory variables proposed by the
underlying growth model that justifies the regression.
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