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Abstract

This thesis comprises studies on the two major domains of motor control –

posture and movement – with special focus on human upper limbs.

Endeffector stiffness characterises the resistance of the arm against external

disturbances in the hand coordinate frame, and is the key quantity to study

arm posture. This thesis presents a method for stiffness estimation in three-

dimensional endeffector space. The approach enables us to study stiffness in

natural postures throughout the daily used workspace. Derived stiffness is tested

in the light of results known from classical studies on human upper limbs re-

stricted to a horizontal plane. A variation of stiffness direction and size with

hand position as well as with arm posture is found. While the direction of

highest stiffness is shown to be aligned with the hand-shoulder axis in planar

studies (cf. Flash and Mussa-Ivaldi, 1990), it turns out to be approximately in

a line with the forearm axis in the unrestrained arm. This suggests that major

compensations of external disturbances are accomplished at shoulder level.

The second part of this thesis deals with human arm movements under time

pressure in left- as well as right-handed participants using both preferred and

non-preferred hand. A framework to set up virtual parcours to asses via-point

movements in combination with an obstacle avoidance task has been developed.

Hand trajectories were analysed with respect to dynamic characteristics. Fur-

thermore, an uncertainty about the movement task was imposed by revealing

the final movement target just when the participants had to choose on which

side – either left or right – to pass the obstacle. Using this bottleneck of pro-

cessing the new information about the task and its transformation into a motor

command allows to study the participants’ decision behaviour.

It turns out that with increasing time pressure – or better: rush in execu-

tion – attention is more and more (with)drawn from sensory input towards a

focus on the own behavioural pattern. Participants who show fast execution

of the trials also show a strong stereotypisation of movement direction choice.

If an initial overrepresentation of movement targets on the right side was pre-

sented, the preferred direction always coincided with it. For overemphasation

of left target locations, not all participants preferred this direction, but some

the opposite one. These phenomena were rather independent of handedness and

used hand. One possible explanation could be found in cultural imprinting of

rightwards movements in reading, time lines, and also visual communication.

A direct response to the presented target locations can be excluded on several
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time scales, especially in the fast participants. Behaviour is shown to mainly

depend on the own behavioural history. Furthermore, stereotypisation increased

with increasing movement speed. This heuristic that saves computation time in

critical situations and the organisation of subsequent error corrections can serve

as an inspiration for the design of flexible but fast robot controllers.
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Chapter 1

Introduction

1.1 Motivation

Humans constantly interact with their environment and produce a vast variety

of arm postures and movements as well as fluent transitions between them in

every day life. In these processes the interplay between the control strategy

applied by the nervous system and the biomechanical apparatus of the body is

highly optimised. This close interaction forms the motor system during the early

developmental stages of the individual. It is a challenge in the field of motor

control to reveal characteristic features of the system and to design experimental

procedures to shed light on the underlying control mechanisms. This research

not only targets at an understanding of our bodies, but also on new ideas for

the field of prosthesis and robotics.

Arm movements are characterised by position, speed, accuracy and stability.

The control of these important features also inspires the design of control strate-

gies for robots. The stability of the limb against external disturbances is char-

acterised by the so-called stiffness. If it is discussed in a Cartesian coordinate

frame attached to the hand it is called endeffector stiffness. This key quantity

in studies of arm posture summarises the spring-like behaviour of the limb, and

serves as a measure of the resistance against external disturbances. Since it is not

only influenced by passive material properties but also can be adapted actively

(cf. Franklin et al., 2007; Gomi and Osu, 1998), robotisists became interested

in it (see eg. Yang et al., 1993; Migliore et al., 2005; Diftler et al., 2011).
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This thesis studies two major aspects of motor control: posture and move-

ment. In the first part, a setup for estimating human endeffector stiffness in

three-dimensional space is developed. Classical approaches usually examined

endeffector stiffness in the arm which is restricted to a horizontal plane in front

of the shoulder and lead to two-dimensional estimates. The method, which I

developed, overcomes this restriction and can be used to study stiffness patterns

in the natural workspace of the human arm. Specifically the approach can be

used to assess endeffector stiffness in three-dimensional hand space. In com-

bination with additional tracking methods also joint stiffness calculation could

be accomplished. Slight asymmetries in the estimated stiffness data are taken

as a hint to the relation of control strategies to the existing hardware. In the

second part, asymmetry in stereotypical arm movements is studied in right- and

left-handed participants using both their preferred and non-preferred hand to

carry out via-point movements to a final movement target that can be located

either left or right behind an obstacle. Since the final target location was not

revealed at the beginning of the movement but just at a critical time when the

decision whether to pass the obstacle at the left or the right side already should

be made, participants had to guess a direction based on previous experience or

own assumptions about the setup. Our results indicate no effect of handedness

in decisions on compositional arm movements. Furthermore, the participants

showed a stronger bias towards movements to one or the other side for passing

the obstacle, the faster their movements were. This velocity dependence of the

stereotypicity of directional choices can be understood as a “heuristic” in hu-

man motor decision behaviour to simplify the task. A discussion of this idea

in relation to cultural impriting is provided, and consequences for the design of

robot control strategies to handle motor tasks under time pressure are drawn.

1.2 Outline and contributions

This section provides an overview of the main contributions of the presented

thesis and lists relevant publications.

• In Chapter 2 I provide a detailed view of my developed approach of mea-

suring arm stiffness in the redundant human arm1 in natural postures in

everyday workspace. The technical part includes a toolbox which allows

1“Redundant” refers to the larger number of degrees of freedom (four joint angles) that can
be controlled by the central nervous system compared to the number of dimensions available
at the endeffector. Given an endeffector position, joint angles are not uniquely defined.



automated offline analysis of the measurements. Moreover, the perfor-

mance of the approach is analysed.

Relevant publications: Fiedler (2007), Fiedler et al. (2008).

• Chapter 3 shows the results of applying the presented technique to esti-

mate endeffector stiffness in several locations in workspace and in different

external force fields. A number of classical arm stiffness results could be

reconstructed in three-dimensional space. I confirmed the position- and

posture-dependence of stiffness magnitude and orientation. However, I

found that the direction of highest stiffness tends to be aligned approx-

imately with the forearm axis, and not with the hand-shoulder axis as

suggested in the literature.

Relevant publications: Fiedler and Herrmann (2009b).

• In Chapter 4 I present a general framework that can be used for de-

signing experiments that target on motor planning, trajectory generation,

and motor decision behaviour in humans. The framework provides means

for a user-friendly arrangement of movement targets in a virtual reality

setup as well as simplified hardware control of the utilised robot manipu-

lator. In addition, I outline the specific application of this toolbox for the

implementation of a two-alternative forced-choice motor task.

Relevant publications: Fiedler et al. (2010).

• Chapter 5 contains the results of the analysis of this motor task in the

light of trajectory planning and replanning. Furthermore, a detailed anal-

ysis of movement timing and velocities during a critical phase of task

execution is presented. Handedness as well as hand usage are examined

in their influence on the replanning process. Also a discussion of the re-

planning process in cases of erroneous motor decisions and an analysis in

terms of the superposition of movement primitives can be found in this

chapter.

Relevant publications: Fiedler and Herrmann (2011).

• Chapter 6 highlights typical decision behaviour which is a stereotypical

choice of mainly one movement direction. I relate this phenomenon to the

strategy of passing the intermediate movement target and study possible

influencing factors, such as own behavioural history and previously per-

3



ceived visual stimuli. Finally, a nonlinear model of the underlying process

is presented.

Relevant publications: Fiedler et al. (2010).

Detailed plots showing data from individual participants are placed in the Ap-

pendices and accompanied with a summarising figure in the section where they

are discussed.

1.3 Personal note

This thesis has to be understood as a computer scientists excursion into the

field of motor control

- to learn about the way of thinking in a field that deals with natural sub-

jects instead of fully controllable2 automata, and

- to learn from nature for the design of more performant devices to achieve

an increased acceptance by humans.

In the following different perspectives are adopted. Classical motor control ap-

proaches to the topics of human endeffector stiffness, and motor decisions and

trajectory formation under time pressure are taken. Before discussing results

within the respective contexts a number of technical questions, such as mea-

surement refinements, are treated. Furthermore, from time to time I make

some philosophical side notes about how specific results may serve as a source

of inspiration for robot and prosthesis design.

2“Controllable” not to be understood in a control-theoretical reading.



Chapter 2

Setup and evaluation of a stiffness

measurement technique

2.1 Arm stiffness in biological motor control

2.1.1 Theoretical background

Motor control deals with the information processing in preparation of and the

generation of posture, movement, and skilled actions. Several theories have been

suggested to unify the underlying processes. For example, posture as well as

movement can be thought as being generated by the same sort of commands.

The nervous system defines a sequence of muscle activations (cf. Bizzi et al.,

1984), which are also called virtual trajectory (cf. Hogan, 1985).1 Feldman

(1966) developed this so-called equilibrium point hypothesis. To understand

its keystone one can consider the example of a single joint: an agonist and

antagonist activation pattern is given as a descending signal (which means it is

sent from the brain “downwards” to the body) to impose a flexion or extension

at the joint. For each point in this sequence the muscles transform the activation

into forces by contracting (according to their torque-length characteristics (cf.

Mussa-Ivaldi et al., 1993)). These forces are balanced (or in equilibrium) in a

certain posture. Figure 2.1 illustrates the force-length characteristics of agonist

and antagonist (bold curves) as well as the resulting characteristics (thin line).

1 Movement and even more so, posture, are defined by the activity in sensory motor loops,
whereas here for the moment only the open-loop aspect is considered.
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The equilibrium point is characterised also by its dynamical properties. An

external force that is exerted on the joint causes the control mechanism to

react by a temporary deflection. Furthermore, the muscle activation results in

a typical stiffness at the equilibrium point. It stabilises the endeffector against

external disturbances. Given a fixed equilibrium point stiffness can be found as

the slope of the resulting net characteristics.

Simply speaking, movement is generated by matching the virtual trajectory

to the actual one. The quality of the match is evaluated from the interplay

between forces arising from the movement and the ones resulting from arm

stiffness.

Figure 2.1: Illustration of muscular force-length
characteristics at a single joint: A given activa-
tion results in a muscle length that produces a cer-
tain force. Stiffness is the linear approximation
to the net result of all involved characteristics (cf.
Feldman, 1966).

This interplay between controlled and intrinsic properties of a biomechanical

system has found a lot of attention in the history of behavioural neuroscience.

Most existing studies examined endeffector and joint stiffness in a plane. Usable

degrees of freedom of the arm are reduced by fixation with cuffs or ropes from

the ceiling to support the upper arm. Flash and Mussa-Ivaldi (1990) studied

posture in a horizontal plane at shoulder height and showed that endeffector

stiffness depends on hand position and varies throughout the workspace. They

found direction of the highest stiffness aligned with the hand-shoulder axis and

provided a discussion of the relation of this fact to joint stiffness.

Flash and Gurevich (1991) drew a line to levels of muscle activation and

proposed a linear superposition model that explained the constant endeffector

stiffness in cases of additional external loads in terms of a compensation for

thereby additionally imposed forces at joint level. Tsuji et al. (1995) estimated

not only endeffector stiffness but also contributions of inertia and viscosity dur-

ing the displacement.



Acosta et al. (2000) stated that static stiffness is influenced not only by

length-tension characteristics2 but also by crossbridge elasticity and the tonic

stretch reflex. In movement the situation becomes much more complex as in-

teraction moments can no longer be ignored (see Tsuji et al., 1995).

According to Buneo et al. (1997) the brain must have an internal model of

the arm to do posture-dependent transformation for the prediction of torque

directions. These authors also found that humeral rotation does not influence

torque direction, however, elevation and azimuth do matter along with the plane

of arm and elbow angle.

Gomi and Kawato (1996) argue against the equilibrium point hypothesis

stating that joint stiffness is too small to stem from the proposed simple mecha-

nisms. Furthermore, they showed that the equilibrium point trajectories some-

times cannot be reasonably well computed from measured stiffness and torques.

Gomi and Osu (1998) studied the influence of cocontraction and force pro-

duction on stiffness. They found that cocontraction changes shape and orien-

tation. In force production joint stiffness is proportional to single-joint torque

of the according joint, while the cross-joint stiffness is correlated to the elbow

torque. Changes in joint stiffness are used to regulate endeffector stiffness for

interaction with the environment.

Osu and Kawato (1999) studied cocontraction and force production by means

of EMG and stiffness. Monoarticular muscles produce stiffness for posture, biar-

ticular ones contribute to movement and force production.

A later study Franklin and Milner (2003) suggest a linear dependence of all

stiffness entries on elbow and shoulder torque (which contradicts Gomi and Osu

(1998)). Simulations showed that all joint stiffness coefficients need to vary with

net torque to gain stability. On application of increased force, they found also

increased stability - presumably caused by cocontraction.

Darainy et al. (2004) show that impedance control involves learning and

adaption. They experimentally confirmed that there are at least two indepen-

dent commands for cocontraction: one for the elbow and two-joint muscles; and

one for the shoulder muscles. Forces along a single axis rotate the stiffness in

the course of learning, isotropic forces give rise to a general increase.

Franklin et al. (2007) showed that for reaching movements in divergent force

fields the major axis of stiffness rotates towards the instability (i.e. stiffness

2First studied by Rack and Westbury (1969) who found that in isometric conditions higher
activations of the muscle results in a higher stiffness.
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increases in direction of force field). This is an additional proof that there is

control of limb impedance and selective adaption to environment.

“The posture of the arm at a given hand location does depend on the starting

location of the movement and that, consequently,” (Soechting et al., 1995, p.

6271). Donders’ law does not apply to arm movements. Purely kinematic

modelling is not sufficient for the prediction of final posture. These results

established the working hypothesis that final posture minimises the work that

is needed to transport the arm there.

Sanger (2000) suggests principle component analysis as a method to study

the combined properties of controller and musculoskeletal system.

By presenting the benefits of the consideration of interaction torques in

movement data analysis Ketchama et al. (2004) put further emphasis on the

importance of biomechanical aspects to movement generation.

Stiffness patterns of the human motor system and their stabilising effects

inspired the field of robotics to apply stiffness control (which not only targets

joint angles but also joint stiffnesses using a specific setup of servo motors)

resulting in a desirable increase in movement stability even in the presence of

unpredictable external disturbances (cf. eg. Yang et al., 1993; Migliore et al.,

2005). This important step in robotics contributed to studies on human-robot

interaction where the whole situation is too complex for analytical modelling

which is typically applied to highly structured industrial setups.

2.1.2 Methods for stiffness estimation

Various research groups apply methods of stiffness measurement that use specif-

ically designed robot manipulators. First single joint measurements (hold and

release paradigm) in humans were carried out by Feldman (1966). Bizzi et al.

(1984) used a single joint manipulator to impose angular displacements in a

monkey’s arm during movement. Interestingly, (assisting) displacements were

rather large (up to 30 degrees in a movement of 60 degrees).

Mussa-Ivaldi et al. (1985) pioneered in measuring multi-joint stiffness using a

custom-made two-link planar manipulator. They imposed PD-controlled step-

like (small3 ) hand displacements in eight directions (120 ms physiologically

induced ramp, 1.5 s holding phase), and measured the restoring forces.

38-14mm.



Tsuji et al. (1995) used a strong manipulator to impose PD-controlled dis-

placements. They recorded the restoring forces, and estimated inertia, viscosity,

and stiffness from the data.

Gomi and Kawato (1996) developed a parallel link drive air-magnet floating

manipulandum which could exert higher forces. They studied hand movements

of 40 cm amplitude (about 1s duration) along a reference trajectory. Small push-

pull displacements in the range of 6-8mm were imposed for about 200ms before,

during and after movement. Franklin et al. (2007) used a slightly different pro-

tocol: 100ms push, 100ms hold, 100ms pull.

Xu and Hollerbach (1998) extended their existing 1D setup to work in 2D

and worked on a parameter identification scheme for moving arms. They im-

posed a torque to the joints and tracked the angular displacement to characterise

reflex activity in multi-joint systems. Furthermore, a voluntary contribution to

rapid motor responses was revealed (see e.g. Pruszynski et al., 2008).

Acosta et al. (2000) developed a very strong manipulator to impose stochas-

tic displacements of different frequencies during movement and record restoring

forces. Peak-to-peak displacement was about 40mm. The plane where the

measurement are carried out is rotatable. They used a parameter identification

scheme originally published by Perreault et al. (1999).

2.2 System setup

2.2.1 Experimental method

Fundamentals

The idea of the procedures and methods here is similar to that from previous

studies in the horizontal plane, yet there are two major differences:

• recordings were done in three-dimensional (hand) space with four degrees

of freedom at the arm, thus in the situation of underdeterminance;

• for technical reasons this redundancy in the system did not allow a defini-

tion of displacements, but only the imposition of displacing forces. Hence,

displacements were recorded.

Subjects maintained their posture against external disturbances. They were

explicitly told to not voluntarily interfere with the effects the external forces

might have on their hand. Instead, their attention was drawn to one of two

9



distraction tasks: either counting from one to three during the displacement

phase, or reading English words from a screen. Participants in the experiment

with the second condition were kept completely näıve about the basic idea of

the experiment. To strengthen the belief in the distraction task, they even

were equipped with a microphone which was pretended to be tested before the

experiments began.

Procedure

Figure 2.2: Subject standing in front of the ma-
nipulandum. The exact position is well-defined by
markers on the walls and on the floor. Her back is
supported by a wall to prevent swaying. She holds
the handle of the manipulandum. The wrist is fix-
ated. Visual feedback for hand positioning is pro-
vided on a computer screen.

Subjects stood in front of a six-joint manipulandum (see Appendix A.2 for

technical details) with their back leaned to a wall to prevent swaying (cf. Fig-

ure 2.2). Standing posture was kept constant using markers on the floor and the

wall, so that the participants could take a break, whenever they wished to, with-

out imposing additional bias to the recorded data by choosing a different posture

afterwards. The subjects grasped the handle of the machine which could move

freely in three-dimensional space. Their wrists were restrained with a brace

to prevent movements. Before starting the actual experiment the participants

could get used to the frictionless movements with the handle in their hands. The

manipulandum was used to track their hand position and the orientation of the

handle, as well as to apply forces to the hand during the displacement phase of

each trial. During positioning phase, visual feedback of the hand position as well

as handle orientation was provided on a computer screen (in a block-world-like

fashion using OpenGl). A red ball indicated the hand, an attached cone the

handle of the machine (cf. Figure 2.3 B).

Hand drift monitoring Before each recording session the steadiness of the

subjects’ hand was tested in a 60 seconds postural task. The subject had to

bring the hand into a starting position guided by visual feedback and then

keep it there for 60 seconds. During this time visual feedback was switched off.

Afterwards, these data then were used to estimate a hand drift speed threshold



0

5

10

15

D
is

pl
ac

em
en

t [
m

m
] A

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

Time [ms]

F
or

ce
 [N

]

Figure 2.3: Schematic drawing of force and displacement traces (A) as well as pro-
vided visual feedback (B-D) of a typical session. A: Upper graph: Euclidean dis-
tance of a reference point at the subject’s hand to the starting point of the experiment.
Lower graph: Force strength applied by the machine to the subject’s hand. After
an initial positioning phase (t < 0) with zero force, a displacing force is ramped on
(0 < t < 250ms), resulting in a displacement of the hand. B: Visual feedback during
positioning phase. The blue ball indicates the starting position. The red ball with
red grid for improved depth perception represents the subject’s hand. The red stick
attached to the ball indicates the direction of the handle of the machine. C: On precise
positioning of the hand at the starting point visual feedback is turned green. D: Dur-
ing the application of the force feedback of the hand and starting position is occluded.
The computer screen shows a word which has to be read by the participant.

vthres which was used during data evaluation to define what had to be considered

as the individual ’no hand movement’.

It was made sure that the subjects held the handle in a reproducible way by

showing them to markers on the handle and instructing them to release it and

grasp it again until they internalised a consistent grasp.

Definition of a trial A typical trial consisted of three phases (see Figure 2.3):

Starting phase: The participants had to bring their hand to a starting po-

sition displayed as a blue ball on the computer screen. Starting position was

reached when being with the hand as close to the start position ~xs as a prede-

fined precision ds required. ds was chosen according to the subjects’ steadiness

of the hand and typically ranged between 0.5 mm and 1.5 mm. On successful

positioning the red feedback sphere for the hand turned green. This starting po-

sition had to be held for a time ts (typically around 600 ms). The combination of

11



Figure 2.4: The twelve
directions of the displacing
forces are chosen centre-out
in an icosahedron.

Table 2.1: Directions of the twelve displacing
forces (s = 0.618).

1 2 3 4
(0,-s, 1) (0, s, 1) (1, 0, s) (1, 0, -s)

5 6 7 8
(s, 1, 0) (-s, 1, 0) (0, s, -1) (0, -s, 1)

9 10 11 12
(-1, 0, s) (-1, 0, -s) (s, -1, 0) (-s, -1, 0)

ds and ts was chosen based on the individual hand drift speed threshold vthres.

After an additional random delay between 100 and 300ms the displacement

phase began 4.

Displacement phase: Visual feedback of hand and starting position was

switched off. Instead, the screen was kept black, if the participant had to do

the counting task, or showed a randomly chosen English word5 which had to

be read out loudly in the reading distraction task. Simultaneously, a displacing

force was ramped on. Force direction was randomly chosen centre-out of a set

of twelve directions uniformly distributed on a sphere (cf. Figure 2.4 and Table

2.1) Force strength was individually chosen based on a set of test trials such

that the resulting displacement was small in the sense of stiffness measuring

paradigms (cf. Mussa-Ivaldi et al. (1985)).

Movement phase: After counting or after the word was read from the screen

the participants had to move their hand to the opposite direction as where the

force came from. This was done to indicate a clear end of the trial. Then (after

2.5 to 3 s) the displacing force was switched off again.

Sessions Each session with a new subject began with three to five test repeti-

tions of 36 displacements. The strength of the displacing force first was chosen

based on a gender and sports training state based heuristics, and then adjusted

in course of the testing time to cause small displacements. The test recordings

furthermore allowed the participant to get used to the setup.

4This random delay in combination with the distraction task prevented the participants
from anticipatory changes in arm stiffness (cf. Biryukova et al., 1999).

5Ispell dictionary, version 3.2.06 on Suse 9.0



Afterwards the experiment began according to one of the protocols. Usually

data for one protocol with different setup parameters were recorded in one

session.

Each experimental session was followed by another drift monitoring minute

which was used to judge the fatigue caused by the session.

Furthermore, forearm and upper arm length were determined after visually

estimating the rotation axes of the joints.

Available protocols

Three main protocols which target on the role of the most relevant influencing

variables – force, position and, posture – were implemented.

In the position variation protocol, the starting position of the hand was

given. Since the subject’s arm comprises four degrees of freedom, one was not

determined by the task. For a given hand position this means that the rotation

angle of the elbow around the hand-shoulder axis could be chosen at comfort.

Recordings were done in various hand positions all over the workspace

In the posture variation protocol all degrees of freedom of the arm were

predefined. This protocol involved an initial test of the working range of the

participants’ arm for a given hand position ~xs: First the subject had to bring

the hand to the starting position ten times. The average elbow rotation around

the hand-shoulder axis ~oc(c denotes comfort) was approximated by the mean

angle between the handle of the manipulandum and the z-axis of the external

workspace. Since only one additional degree of freedom had to be assessed this

measure was sufficient to uniquely define the elbow rotation with regard to the

natural limits of the joints (cf. Winter (2005)). Afterwards the subject was told

to rotate the elbow as far as possible anti-clockwise around the hand-shoulder

axis while still keeping the hand in starting position ~xs. After ten of these

calibration rotations the maximal rotation limit ~om(m denotes maximum) was

calculated as the average over all maximally met rotations.

These average handle orientations ~oc and ~om were used to define the handle

orientations for the experiments:

• ~o1 = ~oc

• ~o2 = ~oc +
1
3~om

• ~o3 = ~oc +
2
3~om
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A trial was started if the direction of the handle matched the predefined ori-

entation better than a given threshold. For current pointing direction ~h of the

handle and given orientation ~o the criterion

|~h− ~o < 0.1|
✞

✝

☎

✆2.1

was applied. It was intended to measure stiffness for the arm in these three

postures (comfortable, elbow lifted by one third of the maximum elevation, and

elbow lifted by two thirds of the maximum elevation) for several hand position.

Due to the demanding procedure of repeatedly bringing the arm into the starting

postures, leading to early abortions of the sessions or very high variance in

the data this protocol was mainly expected to work in athletic participants.

This could successfully been shown in one participant with a strong sports

background.

The external force field protocol is a version of the position variation protocol

with a constant force acting against the subject’s hand all over the experiment.

The strength of the external force field and the starting position were varied.

Remark on the underlying assumptions

There are a number of parameters influencing the quality of the recorded data.

Here is a list of the assumptions underlying our approach .

1. Grasping of the handle is assumed to be perfectly stable and reproducible

after releasing the handle. We have reduced the effects of grasp variations

by restraining the wrist, by definition of the grasping position on the

gimbal, as well as by averaging of several grasps.

2. Wrist restriction is thought to be optimal and should lead to only 4DoF at

the arm. Here the necessary compromise between the discomfort induced

by the restraining bandage and the remaining movability of the wrist has

been shifted as much as possible towards immobilisation of the wrist joint.

3. Errors in anthropomorphic measurements are assumed not to affect the

qualitative results. Measurements were repeated under different condi-

tions and averaged. Compared to the more critical structural assumptions

e.g. of mono-centric joints, the numerical errors can be neglected.

4. Estimation of joint angles from snapshot data is assumed to be correct (at

least in vertical plane).



5. Force displacements are sufficiently small so that they do not alter the

equilibrium position.

While the caveats 3 and 4 would only matter in case of joint stiffness estimation,

which turned out to be not feasible, and caveat 5 could be prevented by means

of accommodation trials where force strength was adjusted, caveat 1 and 2

remained present throughout the experiments. Therefore, according variations

were suppressed as much as possible.

2.2.2 Data processing

Displacement extraction
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Figure 2.5: Illustration of data extraction during holding phase: Upper plot: Time
course of the distance of the hand from the starting position for an example trial.
Holding phase - where measurement of the displacement takes place - is marked with
a red bar. Lower plot: Speed trace which is used to make the judgement about the
holding phase.

Figure 2.5 shows an example of the time course of the hand displacement.

The plateau between 600 and 1200 ms is called holding phase. The extent of the

displacement is measured during this interval. Since the hand position is not

completely steady throughout this holding phase a heuristic has been developed

to decide what still can be considered as holding and what has to be rejected as

spurious movements. For this purpose the hand position data ~x (t) is smoothed

(using sliding mean with a window size of 10 data points), the velocity ~v (t) is

computed using numerical differentiation and projected to the force direction ~F .

If this resulting velocity ~v~F
(t) is smaller than the drift speed threshold vthres,
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the hand is considered as still. The drift speed threshold vthres is computed

based on 60s recording of keeping the starting position before the measurement

session. For each instant of time the hand speed is computed and binned into

a speed histogram (see Figure 2.6). vthres is chosen so that 98 percent of this

speed data is below it. Typical values are around 3.0mm/s which resemble

typical definitions of ’hand in rest’ from previous studies (eg. McIntyre et al.

(1996)).
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Figure 2.6: Endeffector speed his-
togram of 30 seconds of posture main-
tenance in the starting position with-
out external disturbances. Individual
drift speed threshold is set such that it
is higher than 98 percent of all speed
counts. Red dotted line indicates vthres
at 2.79 mm/s.

Figure 2.7: Illustration of “correc-
tions”, i.e. major changes in endeffector
position that do not stem from an undis-
turbed decay of an oscillation around
the equilibrium point. Left: Speed-
displacement diagram of a trial with a
correction of about 2 mm in the end.
Right: Speed-displacement of a trial
without correction. Black arrows indi-
cate the movement.

The displacement in each spatial direction was extracted for the complete

holding phase for final computation of the mean displacement of that trial.

This automated processing was supported by manual check with a visual

detection of the holding phase. The very few spurious trials were sorted out

this way.

Analysis of voluntary corrections Since voluntary corrections6 by the par-

ticipant - i.e. moving the arm back towards the ’felt approximation’ of the start-

ing point - would severely corrupt the results, a check for corrections is applied.

6I applied Feldman’s definition of corrections (for details see Mihaltchev et al., 2005;
Foisy and Feldman, 2006).



For this purpose phase plots of single trials were analysed. Figure 2.7 shows the

phase plots of two trials, one without correction where the trajectory comes to

rest within the first two zero crossings of velocity, and one with correction where

the final holding point moves further away from where it was originally directed

to. It has to be assumed that in these trials the participants made voluntary

corrections.

To compensate for this shift in the equilibrium position the displacement

value from the time of the correction onset was taken. This results in a dis-

placement error in submillimeter range, compared to one up to 5 mm7 when

accepting the corrupted final displacement.

2.2.3 Stiffness estimation

Endeffector stiffness estimation in posture

Assuming a rigid-body model of the arm movement in joint space (as done in

Biess et al. (2007); also cf. Tee et al. (2004)) with three degrees of freedom at

the shoulder (η,θ,ξ) and one at the elbow (φ) summarised in the joint posture

~q = (η, θ, ξ, φ) the arm dynamics can be written as

M (~q) ~̈q + C
(

~̇q, ~q
)

~̇q +N (~q) = ~τd.
✞

✝

☎

✆2.2

M denotes the inertia matrix, C the Coriolis matrix (including centrifugal force

components), and N the gravitational torques. In the interaction with an ex-

ternal force Fext this torque has to be produced additionally to move the arm.

Hence, the resulting joint torque has to be

~τ = −J (~q)
T ~Fext + ~τd,

✞

✝

☎

✆2.3

with J being the Jacobian of the transformation from hand to joint space.

Joint stiffness R reflects the resistance of the arm (posture) against external

(torque) displacements, hence

R =

(

δτi
δqj

)

i,j=1..4

.
✞

✝

☎

✆2.4

7This value is the maximum over all participants. Average correction size is between 2 and
3 mm.
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This can be rewritten as

R = JT

(

δFi

δxj

)

i,k=1..4

(

δxk

δqj

)

k,j=1..4

J +
dJT

d~q
~F .

✞

✝

☎

✆2.5

Since endeffector stiffness is estimated in the static condition, only

K =

(

δFi

δxj

)

i,k=1..4

✞

✝

☎

✆2.6

remains after the switch to hand space.

Stiffness estimation Equation 2.6 was implemented using least square op-

timisation for applied forces d~F resulting in an endeffector displacement d~x.

Since the displacement is not too large, the equilibrium is kept.

Visualisation of endeffector stiffness For visualisation purposes the not

necessarily symmetric stiffness matrix K is decomposed into a antisymmetric

Ka and a symmetric part Ks according to

Ks =







Kxx 0.5 (Kxy +Kyx) 0.5 (Kxz +Kzx)

0.5 (Kxy +Kxy) Kyy 0.5 (Kyz +Kzy)

0.5 (Kxz +Kzx) 0.5 (Kyz +Kzy) Kzz







✞

✝

☎

✆2.7

and K = Ka +Ks (cf. Mussa-Ivaldi et al. (1985)). While the former represents

the rotational part of stiffness, the latter contains all conservative components.

The symmetric part of endeffector stiffness now can be visualised by interpreting

Ks as a transformation which acts on a sphere of unit displacements, resulting

in a distribution of restoring forces that has the shape of an ellipsoid (which is

the generalised version of the stiffness ellipse in Flash and Mussa-Ivaldi (1990)).

A longer extension of the ellipsoid indicates a high stiffness in this direction.

2.2.4 Stiffness visualisation and characteristics

Visualisation

Endeffector stiffness is depicted as an ellipsoid that graphically shows the result-

ing restoring forces to unit displacements in the according directions. This a gen-

eralisation of the stiffness ellipse suggested by Flash and Mussa-Ivaldi (1990).

The major axis of the ellipsoid indicates the direction of highest stiffness, i.e.



the direction where the least displacement can be imposed using a given force

strength. The minor axes point in directions of lower stiffness (allowing larger

displacements).

In all pictures an additional colormap (ranging from blue to red for values

[cmin,cmax]) is used to give a better impression of the third dimension that

is missing in the plots. The upper value of the colour range provides a coarse

estimate of the largest stiffness involved. Furthermore, images always show two

views of the ellipsoid, one from the right side of the subject and one looking

towards the computer screen from the participant’s eye plane.

Orientation, size and shape of the stiffness ellipsoid

For a comparison of different stiffnesses K1 and K2 a set of measures was gen-

erated, using three-dimensional generalisations of the visually inspired ideas

presented by Flash and Mussa-Ivaldi (1990). Let K1 be a symmetric stiffness

matrix with eigenvectors ~λ1, ~λ2, and λ3 (with ~λ1 ≤ ~λ2 ≤ ~λ3), and according

eigenvalues e1, e2, and e3. Furthermore, let K2 be also symmetric with eigen-

vectors ~µ1, ~µ2, and ~µ3 (with ~µ1 ≤ ~µ2 ≤ ~µ3), and according eigenvalues f1, f2,

and f3. The size of the stiffness ellipsoid can be associated to its volume

V =
4

3
πe1e2e3.

✞

✝

☎

✆2.8

The shape can be read from the ratios of the eigenvalues

r1 =
e1
e2

and r2 =
e2
e3

.
✞

✝

☎

✆2.9

For the relative orientation of the ellipsoid of K2 to the one of K1 the angle φ

between their major axes ~λ1 and ~µ1 has to be considered, as well as the angle

ξ between the orthogonal projection of ~µ3 into the ~λ2-~λ3 plane

~µ′

3 = ~µ3 −
~µ3 ∗ ~λ1

|~λ1|2
~λ1

✞

✝

☎

✆2.10

and ~λ3.

When only considering one ellipsoid the relative orientation to a fixed coor-

dinate frame can be taken (with ~µ1 = (0, 0, 1)
T
, ~µ2 = (0, 1, 0)

T
, ~µ3 = (1, 0, 0)

T
).

In the following, φ is referred to as tilt, and ξ as twist with respect to a given

frame of reference.
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Discussion of stiffness orientation

According to a derivation by Flash and Mussa-Ivaldi (1990), in the nonredun-

dant two-dimensional case the orientation of endeffector stiffness K can be dis-

cussed in terms of single- and two-joint muscle contribution to the according

joint stiffness R = JTKJ with J being the Jacobi matrix of the transformation

from joint to hand space. The decomposition of joint stiffness into contributions

from single-joint muscles at the shoulder Rs, and at the elbow Re, and two-joint

muscles Rt leads to

R =

[

Rs +Rt Rt

Rt Rt +Re

]

.
✞

✝

☎

✆2.11

For Rt = Re = 0 and Rs 6= 0 the major axis of K points along the forearm

(with an according eigenvalue of Rs/(l
2
f sin

2 θe)). In the contrary case of Rt =

Rs = 0 and Re 6= 0 the major axis of K points along the radial axis of a polar

coordinate system attached to the shoulder (with the eigenvalues coinciding at

r2Re/(l
2
ul

2
f sin

2 θe)), with r being the distance between hand and shoulder). An

alignment of the major axis of K with the upper arm axis can be found for

Re = Rs = 0 and Rt 6= 0 (non-zero eigenvalue Rt/(l
2
f sin

2 θe)).

2.3 Discussion of the reliability of the method

2.3.1 Pilot study

Before collecting data for stiffness estimation, important parameters of the ex-

periment were tested in their effects. These parameters are: positioning preci-

sion (maximal distance from starting point to still consider it as reached), po-

sitioning time (minimal time of correct positioning in the starting point in the

above mentioned sense), ramping time (time till the displacing force is switched

on completely), force strength (strength of the displacing force), and duration

of one trial.

Subjects

In a pilot study the setup was tested in three right-handed subjects (2 male,

1 female), aged between 26 and 28. Their vision was normal or corrected to

normal. None of the participants reported any neuromotor arm dysfunction.



Hand drift with and without support from the back

For an evaluation of hand drift speed (in order to judge hand ’steadiness’ later

on) the subjects were asked to keep their hand in a predefined (central) posi-

tion for 60 seconds. Hand position was tracked throughout this time. Visual

feedback of the endeffector position on the screen was occluded. Figure 2.8

shows a comparison of two cases: (A) the participant standing freely in front

of the manipulandum, (B) the participant is allowed to lean to a wall. From

endeffector tracking (left subfigure) it can be seen clearly that the support by

a wall reduces the drift in endeffector position. Moreover, breathing artifacts

(oscillation of about 1 mm amplitude) can be seen in x-direction (along the

participants forearm) due to mechanical coupling8. Furthermore, leaning to the

wall reduces the velocity spectrum (see right subfigure) by excluding sway com-

ponents, resulting in a more frequent occurrence of lower drift speeds. So the

backrest is an essential constituent of the setup.
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Figure 2.8: Comparison of endeffector drift characteristics of one participant standing
freely and supported by a wall. Left: Coordinate deviation from starting point over
time. Right: Speed histogram of both cases.

Calculation of the expected drift The distribution of possible deviations

in all three directions of space for a given time interval δt is calculated using

~x (t+ δt)−~x (t). Table 2.2 shows a comparison of expected deviations for freely

standing participants and the ones supported by a wall.

In a second set of tests different force fields were applied during the whole

test to evaluate their influences on hand steadiness. On average they slightly

8Breathing effects during holding phase are negligible in the sense that for a breathing rate
of about 14 times in a minute one breath takes more than four seconds compared to holding
phases of only up to one second.
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Table 2.2: Expected endeffector deviations in mm within given time windows

time window 0.5 s 1.0 s
direction of deviation x y z x y z

standing free 0.48 0.17 0.16 0.82 0.27 0.28
supported by wall 0.18 0.13 0.12 0.32 0.22 0.20

reduced endpoint variability in terms of a narrower speed histogram. So the

protocol using external force fields did not suffer from an increase in additional

noise.

2.3.2 Estimation of variability

Every measurement is influenced by a certain amount of noise resulting from

various sources. Due to the rather small amount of data the measured variability

may not completely resemble the true span of natural variability in the system.

This led to the conclusion that the mean of the data cannot be recklessly taken

as a solid basis for stiffness estimation. Therefore, a more elaborate statistical

technique was considered.

The algorithm that is presented in the following provides not only an esti-

mate for endeffector stiffness and the according variability based on a sample

of recordings but also results in a suggestion of an optimal number of trials for

each participant.

N-fold cross-validation

The procedure introduced in this section is also referred to as “leaving n data

points out” (or short: LnO)9. Consider a set of N measurements {(Fi, dxi)} (for

simplicity just 1D here) with force Fi and displacement dxi. From this data set

now M samples are drawn without repetition to form an ensemble EM . Now,

stiffness KM,1 is calculated from it by minimising the cost function

C =
∑

j∈ind(EM )

|Fj −KM,1dxj |
✞

✝

☎

✆2.12

(least square fit). To judge the variance this procedure is repeated P times to

produce the estimates KM,2 to KM,P . The variance depicted in dependence on

9LnO is a bootstrapping method (cf. eg. Freedman and Peters, 1984).



the number of data points left out for the estimation results in a distribution that

suggests two regimes: one where many data points are used and the variance is

small, and one where only few data points are used and the according variance

is high (cf. Figure 2.9 for a 1D example). The intersection of the two lines

produced by a bilinear fit to the data gives an estimate of the optimal number

of data points needed for a reliable estimation.

Table 2.3 shows the estimated stiffness along with the variance and the

optimal number of data points needed for a reliable estimation.Although the

optimum depends on the individual runs of the LnO algorithm for each num-

ber of repetitions a consistent suggestion for the variance and the number of

data points is given. For all experimental data the LnO has been run with 50

repetitions.

Table 2.3: Dependence of estimated stiffness on number of repetitions in LnO algo-
rithm

Number of Estimated stiffness Optimal number of
repetitions +/- variance left-out data points

10 0.488 +/- 0.024 37
20 0.523 +/- 0.023 36
30 0.505 +/- 0.024 39
40 0.503 +/- 0.028 38
50 0.475 +/- 0.023 37
60 0.506 +/- 0.027 37
70 0.491 +/- 0.025 37
80 0.514 +/- 0.025 37
90 0.499 +/- 0.027 38
100 0.506 +/- 0.025 35
110 0.484 +/- 0.028 37
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Figure 2.9: Illustration of LnO algorithm. Standard deviation in 1D stiffness es-
timate in dependence on the number of left-out data points. After creation of vir-
tual data ensembles from 50 noisy ’measurements’ of the system (noise uniformly
distributed, fraction 0.4 of correct position). By randomly leaving out n data points
and calculating stiffness and standard deviation from them, a bi-linear fit to standard
deviation is used to find the optimal trade-off between minimal number of measure-
ments and low variability (found at intersection of linear approximations). This leads
to an estimation of the variance as well as to the necessary number of trials. Green
and red line indicate best fitting lines to data (blue dots). Green: many data points
used, thus, low variance (but big recording effort), red: few data points used, hence
the outliers and noise dominate.



Chapter 3

Arm stiffness in three-dimensional

space

3.1 Participants

18 right-handed subjects (aged 20 to 43) participated in this series of experi-

ments. Ten of them completed the position protocol, eight the force field, and

one in addition the posture protocol. As in the pilot study, their vision was

normal or corrected to normal, and none of the participants reported any neu-

romotor arm dysfunction.

3.2 Endeffector stiffness in three-dimensional space

3.2.1 Variation of hand stiffness with hand position

Stiffness in the sagittal plane

Force-induced displacements without additional load were carried out in twelve

healthy subjects in several locations of the daily used workspace (6 repetitions

for each force direction)1. In the ’long line’ protocol seven positions (10cm apart

each) were recorded. These data are available from two subjects. A ’short line’

1Consistency in the choice of the non-predefined degree of freedom (rotation of the elbow
around hand-shoulder axis) was found across participants, in accordance with Tillery et al.
(1995).
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of only four positions (with again 10cm distance between neighbouring hand

locations) was recorded in six participants. Data from further four subjects

covers recording positions off from the line in front of the right shoulder.

Figures 3.1 show the position dependence of endeffector stiffness in the ’long

line’ condition. It can be seen that the major axis of hand stiffness tends to

be aligned with the forearm axis. According to Section 2.2.4 this suggests that

a significant degree of stiffness is produced at the shoulder while keeping the

elbow (as well as the shoulder-elbow interaction component of stiffness) in a

reactive range with a rather low stiffness.
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Figure 3.1: Endeffector stiffness along a vertical line in front of the participant’s
shoulder. Studied hand positions were 10 cm apart, three above and three below the
central position (which is 90 degrees at the elbow, and zero at the shoulder). Left:

Data from female participants. Right: Data from male.

An analysis that only considers the orientation of the endeffector stiffness is

shown in Figure 3.2. The angle between x-axis and major axis of endeffector

stiffness remains almost unchanged throughout recording positions. This is

caused by the standard way of grasping the handle and afterwards bringing it

to starting position (which causes a rightwards rotation of about 90 degrees).
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Figure 3.2: Tilt of endeffector stiffness with respect to the external coordinate frame.
Subfigures contain angels to z-axis, y-axis and x-axis.

Figures 3.3 and 3.4 show the overall endeffector stiffness pattern of six näıve2

subjects.

3.2.2 Symmetric versus antisymmetric stiffness component

Table 3.1: Fractions norm of antisymmetric stiffness to norm of symmetric stiffness
in two subjects who were aware of the special emphasis of posture maintenance in the
experiment.

Subject Centre Centre Centre Centre Centre Centre Centre
-30 cm -20 cm -10 cm +10 cm +20 cm +30 cm

KF 0.035 0.039 0.029 0.028 0.028 0.028 0.013
MS 0.073 0.042 0.021 0.018 0.058 0.033 0.021

For protocols the antisymmetric component of endeffector stiffness was com-

puted, and its 2-norm was set in relation to the one of the symmetric stiffness.

2The experiment was done with distraction task to read English words from the screen.
Since the probands’ main focus lay on reading correctly and loudly, they were näıve about the
strong motor control of the experiment.
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Figure 3.3: Endeffector stiffness along a short vertical line in front of the participant’s
shoulder. Studied hand positions were 10 cm apart, starting with a table height of 100
cm. Left: Data from female participant. Colour scale of stiffness (ranging from blue
to red): [-600, 600]. Middle: Data from another female. Colour scale of stiffness:
[-400, 400]. Right: Data from male participant. Colour scale of stiffness: [-400, 400.].
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Figure 3.4: Endeffector stiffness along a short vertical line in front of the participant’s
shoulder. Studied hand positions were 10 cm apart, starting with a table height of 100
cm. Data from three more female participants. Left: Colour scale of stiffness: [-400,
400]. Middle: Colour scale of stiffness: [-700, 700]. Right: Colour scale of stiffness:
[-200, 200].

In general this fraction was low, indicating that the antisymmetric stiffness

component is negligible (cf. Mussa-Ivaldi et al., 1985).

The overview of the fractions in ’well-informed’ and ’näıve’ subjects in Tables

3.1 and 3.2 shows an interesting difference. Participants who were not especially

reminded of the importance of the postural task (but instead reinforced in the

distraction task of reading English words from the screen) show a higher rota-

tional component. This gives rise to the surmise that the antisymmetric part of

stiffness can be voluntarily suppressed (at least to some extent) during this the

measurement in the redundant arm.



Table 3.2: Fractions norm of antisymmetric stiffness to norm of symmetric stiffness
in six subjects who completed the experiment with emphasis on the word reading
distraction task.

Subject Table Table Table Table
at 100 cm at 110 cm at 120 cm at 130 cm

NP1 0.027 0.030 0.048 0.048
NP2 0.076 0.227 0.223 0.105
NP3 0.015 0.062 0.063 0.041
NP4 0.030 0.025 0.085 0.088
NP5 0.147 0.166 0.237 0.240
NP6 0.085 0.110 0.128 0.102

3.2.3 Hand stiffness in external force fields

This section contains data about endeffector stiffness in constant external force

fields. My aim was to show that the presence of such a force does not affect

endeffector stiffness since it is compensated by additional torques at joint level

(as suggested by Flash and Gurevich, 1991). That means calculating endeffector

stiffness by using the applied probing forces and resulting hand deviations should

lead to the ’same’ stiffness estimates (with a reasonable variance) for different

force conditions.

Figures 3.5 show stiffness estimates for two different hand positions (centre

and 20 cm above centre) and three conditions of the external force field (bottom:

-3N, middle: 0N, top: 3N). Figures 3.6, and 3.7 show further stiffness estimates

for the same force conditions applied to the hand in central position. Visual

impression already shows a non-neglectable difference between the ellipses of

the same participant. This indicated that with the given technique it is not

feasible to obtain ’the same’ endeffector stiffness for different external force

fields. Variability in grip and posture, as well as a not completely fixed wrist

(pronation/supination can not be fully suppressed with a cuff that is comfortably

mounted at the hand) may account for this problem.

For a numeric test of the consistency of available data for a single hand

position the data were split up by recording batches (two batches with three

times all twelve displacements) and stiffness estimates K̄1 and K̄2 as well as

according variances s21 and s22 were calculated by means of LnO(50). A t-test
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according to

t =
K̄1 + K̄2

(s21 + s22)/50
.

✞

✝

☎

✆3.1

results in the rejection of the assumption that the two stiffnesses are equal.

Even though this states the obvious, the application of the t-test has to be read

cum grano salis since splitting up the recorded data in two batches violates the

previously shown limit of required data (cf. Section 2.3.2).

Further modelling, like extending the idea from Flash and Gurevich (1991)

to the four-dimensional joint system, is not possible at this point. Even if it

was, a detailed discussion was required concerning the results in the light of an

error estimation for the transformation from hand to joint space. The rather

coarse method of estimating joint angles from standardised photographs would

cast doubt on the results. Other facts like

• different ways of grasping the handle of the machine,

• no full immobility of wrist rotation (cuff only impedes flexion/extension

and abduction/adduction), and

• shoulder position can only be ensured with a precision (since the par-

ticipant can easily modify it by eg. stretching her/his back) and is not

monitored constantly (eg. by optical tracking or EMG) during trials

result in even further uncertainties about the joint angles during holding phase.
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Figure 3.5: Estimated endeffector stiffness for one participant with arm in Left

two plots: central position (6 repetitions). Right two plots: 20 cm above central
position (3 repetitions). Height in plot corresponds to applied force strength. Force
factor of displacements: 1.5. Colour scale left: blue -300, red 300. Left subplot:

Side view. Right view: View towards subject.
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Figure 3.6: Estimated endeffector stiffness for two other participant with arm in
central position (6 repetitions). Left two plots: female, centre position, 3N external
force field, force factor: 1.3. Right two plots: female, centre position, 3N external,
force factor 1.7. Colour scale left: blue -300, red 300. Left subplot: Side view.
Right view: View towards subject.
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Figure 3.7: Estimated endeffector stiffness for two other participant with arm in
central position (6 repetitions). Left two plots: male, centre position, 3N external
force field, force factor 2.0. Right two plots: male, centre position, force factor 1.7.
Colour scale left: blue -300, red 300. Left subplot: Side view. Right view: View
towards subject.

3.2.4 Variation of hand stiffness with arm posture

The idea of the posture variation protocol was to show the correlation between

the rotation about the hand-shoulder axis for various hand locations and the

respective endeffector stiffnesses.

During the definition phase of the postures at the beginning of the recording

a comfortable posture ~oc with the elbow at individually chosen height and an

extreme posture ~om with the elbow at maximum height were set up. The partic-

ipant had to get into these postures eleven times. Table 3.3 shows the precision

of these first accommodation trials in terms of tilt and twist (cf. Section 2.2.4)

of the handle compared to the fixed external coordinate frame.
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Figure 3.8 shows the average handle orientations produced at the time short

before the onset of the displacement. The linear change in tilt and twist of

the handle verifies the presented procedure of assessing the rotation about the

hand-shoulder axis. While the direction of the handle is reproduced consistently

(low variation in tilt with respect to the x-axis of external coordinate frame)

due to the experimental condition for the start of a trial (cf. Section 2.2.1),

the rotational component of the handle showed a greater variance. This is

mainly caused by changes between single recording batches when the participant

releases the handle.

Table 3.3: Handle orientation
(tilt φ, twist ξ) during production
of comfortable ~oc and maximum
posture ~om in eleven accommoda-
tion trials. The external coordi-
nate frame is taken as a reference.

~oc ~om
φ 126.61◦ 64.56◦

±16.33◦ ±3.42◦

ξ 70.27◦ 5.72◦

±22.32◦ ±1.83◦

Figure 3.8: Average handle ori-
entation at the start of the dis-
placements in terms of tilt (angle
with x-axis of external coordinate
frame) and twist (rotation around
x-axis).

10

20

30

40

50

60

70

O
1

O
2

O
3

T
ilt

 [ 
° 

]

40

50

60

70

80

90

O
1

O
2

O
3

T
w

is
t [

 ° 
]

Due to the enormous muscular demands during the highly repetitive postural

task, recordings could only be successfully finished for one participant. Subjects’

ability to consistently reproduce the challenging postures was limited due to

fatigue. In the following this data set is discussed.

Table 3.4 summarises variability in handle orientation during holding phase

in dependence on displacing force direction. Handle orientations at the start

of the displacement were taken as reference such that the data comprises the

effect of the displacement on posture. It can be seen that all changes in handle

orientation during the trial are negligible.

The change in the orientation of the estimated stiffness ellipsoids with record-

ing posture can be seen in Figure 3.9. The left upper subfigure indicates that the



Table 3.4: Relative discrepancy (tilt φ, twist ξ) between handle orientations at start
of the displacement and during the holding phase. Variation in φ and ξ serves as a
measure of consistency of posture during displacement. The size of φ and ξ reflects
the effect of the displacement on posture.

φ ~o1 ~o2 ~o3
F1 0.016◦ ± 0.053◦ 0.025◦ ± 0.083◦ 0.013◦ ± 0.045◦

F2 0.026◦ ± 0.085◦ 0.015◦ ± 0.049◦ 0.067◦ ± 0.224◦

F3 0.011◦ ± 0.036◦ 0.021◦ ± 0.069◦ 0.027◦ ± 0.089◦

F4 0.018◦ ± 0.061◦ 0.055◦ ± 0.182◦ 0.046◦ ± 0.153◦

F5 0.011◦ ± 0.038◦ 0.015◦ ± 0.049◦ 0.007◦ ± 0.023◦

F6 0.016◦ ± 0.055◦ 0.013◦ ± 0.045◦ 0.020◦ ± 0.068◦

F7 0.016◦ ± 0.055◦ 0.040◦ ± 0.133◦ 0.094◦ ± 0.315◦

F8 0.025◦ ± 0.085◦ 0.024◦ ± 0.080◦ 0.056◦ ± 0.186◦

F9 0.007◦ ± 0.022◦ 0.050◦ ± 0.168◦ 0.054◦ ± 0.181◦

F10 0.070◦ ± 0.232◦ 0.013◦ ± 0.045◦ 0.052◦ ± 0.175◦

F11 0.012◦ ± 0.040◦ 0.004◦ ± 0.014◦ 0.021◦ ± 0.069◦

F12 0.021◦ ± 0.071◦ 0.010◦ ± 0.033◦ 0.016◦ ± 0.053◦

ξ ~o1 ~o2 ~o3
F1 0.009◦ ± 0.030◦ 0.023◦ ± 0.078◦ 0.015◦ ± 0.051◦

F2 0.013◦ ± 0.045◦ 0.025◦ ± 0.085◦ 0.021◦ ± 0.071◦

F3 0.006◦ ± 0.020◦ 0.014◦ ± 0.045◦ 0.011◦ ± 0.037◦

F4 0.020◦ ± 0.068◦ 0.018◦ ± 0.058◦ 0.015◦ ± 0.051◦

F5 0.008◦ ± 0.026◦ 0.024◦ ± 0.081◦ 0.012◦ ± 0.042◦

F6 0.004◦ ± 0.012◦ 0.020◦ ± 0.066◦ 0.025◦ ± 0.085◦

F7 0.012◦ ± 0.041◦ 0.014◦ ± 0.046◦ 0.033◦ ± 0.109◦

F8 0.023◦ ± 0.075◦ 0.015◦ ± 0.050◦ 0.025◦ ± 0.082◦

F9 0.009◦ ± 0.028◦ 0.024◦ ± 0.080◦ 0.024◦ ± 0.078◦

F10 0.015◦ ± 0.049◦ 0.020◦ ± 0.067◦ 0.020◦ ± 0.067◦

F11 0.016◦ ± 0.053◦ 0.007◦ ± 0.022◦ 0.012◦ ± 0.040◦

F12 0.001◦ ± 0.004◦ 0.012◦ ± 0.040◦ 0.010◦ ± 0.034◦
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Table 3.5: Orientation of major axis
of stiffness in dependence on elbow el-
evation (determined by handle orien-
tation).

Elbow Angle Angle Angle
with with with
x-axis y-axis z-axis

upper 93.65◦ 76.19◦ 14.29◦

middle 97.72◦ 80.93◦ 11.95◦

down 78.32◦ 98.14◦ 165.69◦

Table 3.6: Eigenvalues of symmetric
endeffector stiffness with constant hand
position for various elbow heights.

Elbow Kmax Kmed Kmin
pos.
up 462.09 134.51 126.19

± 25.33 ± 4.87 ± 4.00
middle 484.24 145.48 106.94

± 33.80 ± 6.42 ± 5.68
down 430.84 140.30 122.99

± 26.79 ± 5.65 ± 4.44

angle between the major axis of the stiffness and the external coordinate system

rises in relation to z-axis and drops referring to the x-axis when increasing the

angle between the orientation of the handle and the external coordinate frame

(lifting the elbow). So stiffness direction is influenced by posture in a consistent

way. The twist of the handle remains about the same throughout postures. The

lower part of Figure 3.9 shows that also the orientation between major axis of

stiffness and handle changes with posture. So the stiffness ellipsoid is not just

’dragged’ to another orientation because of being fixed to the handle or the

arm but changes throughout workspace. Since all other joint angles remain the

same, this effect may result from the redundancy in the arm. This opens the

interesting possibility of assessing joint stiffness by studying its traces in the

variation of the hand stiffness components, if it can be accomplished to record

in more participants different hand locations in the daily workspace.
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Figure 3.9: Upper: Relation of average orientation of stiffness ellipsoid to average
handle orientation, both in terms of outer tilt and outer twist (with respect to the
external coordinate frame). Subsubfigures from left to right: Frame I: normal
coordinate frame (twist in x- plane, z-axis used for tilt computation). Frame II:

y-axis serves for tilt. Frame III: x-axis used for tilt computation. Lower: Relation
of average orientation difference between major axis of stiffness ellipsoid and average
handle orientation to average handle orientation (both in terms of tilt and twist with
respect to the external coordinate frame). Subsubfigures from left to right: Frame I:

normal coordinate frame. Frame II: y-axis serves for tilt. Frame III: x-axis used
for tilt computation.
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Figure 3.10: Upper: Average orientation of stiffness ellipsoid in terms of tilt and
twist. Frame I: normal coordinate frame. Frame II: y-axis serves for tilt. Frame

III: x-axis used for tilt computation. Lower: Average orientation difference between
stiffness ellipsoid and average handle orientation in terms of tilt and twist. Frame I:

normal handle coordinate frame. Frame II: handle y-axis serves for tilt. Frame III:

handle x-axis used for tilt computation.



3.3 Discussion

The developed method for endeffector stiffness measurements in the redundant

arm in postures of the natural workspace using small force-induced hand dis-

placements was proven to be successful in producing consistent results in agree-

ment with classical results.

3.3.1 Technical and individual challenges

Technical problems like tuning of the strength of the displacing force and its

ramping time were solved effectively. Further challenges like the reliable re-

production of grasping the handle and the complete immobilisation of forearm

pronation/supination had to be solved at the individual level of the participants

and could be only monitored to some extent. In the end, this led to variability

in arm position which cannot be neglected in its effects on arm stiffness.

3.3.2 Recording time as a practical limit

The usage of the specific manipulandum which only could produce small forces

and was not usable for PD-controlled displacements3 caused long session dura-

tions. Well-trained participants could handle three sets of the twelve displacing

forces in ten minutes, and needed an intersession break of between three and

five minutes. Yet the majority of probands needed about 15 minutes to com-

plete the same number of trials. Intersession breaks were usually also longer

(up to 10 minutes), and additional breaks of about two minutes were taken dur-

ing recording time. So between 26 and 50 minutes were needed to accumulate

enough data for one experimental condition in one hand location.

3.3.3 Reproduction and extension of classical results

The independence of stiffness from constantly acting external force

fields could not be shown consistently. The reduced data quality (cf. Sec-

tion 3.3.4) set limits to further tracing of the origin of this problem. It might

be that the compensation of additionally arising torques at joint level could

not be compensated at single joint level due to muscle configuration, so that

results different from the classical ones would have to be expected. A further

3Non-controllable oscillations at different frequencies, which changed with the participants’
level of muscular cocontraction, lead to force kicks that would have harmed the hardware, if
they were repeated too often.
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explanation could be that the applied measurement technique caused artifacts

due to the redundancy of the system.

We demonstrated successfully the position and posture dependence

of endeffector stiffness. Contradictory to results of studies in a horizon-

tal plane at shoulder height we found that the direction of highest stiffness was

aligned with the forearm direction (which coincides with the latest findings of

Krutky et al. (2010)), suggesting a low effect of elbow stiffness and two-joint

muscle contribution, while a higher stiffness was kept at the shoulder. So in-

teractions with the environment predominantly induced displacements at elbow

level. Assuming this as a general principle the weak immobilisation of elbow

pronation/supination along with the muscle configuration at the forearm could

be considered crucial for the problems in showing consistent compensation of

external force fields.

3.3.4 Distinguishability of positions

Although Figure 3.1 is quite suggestive in terms of variation of endeffector stiff-

ness with hand position, statistical discrimination using a t-test according to

Equation 3.1 failed. Furthermore splitting up the ten repetitions of one hand

position in the long line experiment into two data batches and comparing re-

sulting stiffnesses also led to the judgement that data could not originate from

the same distribution. The above mentioned individual challenges strongly con-

tributed to this variability. This fact limits the usability of the achieved data in

the modelling context, where clearly distinguishable data sets of joint stiffnesses

would be needed. A planned extension of the geodesic model from Biess et al.

(2007) was cancelled up for this reason.

3.3.5 Summarising judgement of the method

The presented method allows us to qualitatively study endeffector stiffness in

virtually all arm postures of the daily workspace. Unfortunately, when it comes

down to compete in accuracy with established methods sufficient precision can-

not be assured in terms of convincing p-values, given the ethical limits (to session

durations) of motor control experiments in humans. Nevertheless, the technique

is applicable to gaining general results such as the forearm alignment of end-

effector stiffness. These insights can be used for conclusions about strategies

which may be implemented in the central nervous system for interactions with

the environment.



Chapter 4

An experimental framework for

movement studies

4.1 Introduction

In course of a day humans produce a vast variety of arm postures and move-

ments. To systematically study specific features of the planning and execution

process, this multitude of possibilities has to be narrowed down by presenting a

well-defined task where possible variables influencing the process of interest are

controllable.

For this purpose we1 designed a configurable virtual reality setup that can

be utilised for a wide range of motor control studies. The hardware comprises

a robot manipulator, called manipulandum, that can track hand positions and

orientation in three-dimensional space at a very high precision, as well as ex-

ert forces to the hand of the participant. Furthermore, the setup contains a

computer screen for visual feedback.

Software control elements were wrapped up in a toolbox. Its key element,

which is the so-called “Simulator”, provides an interface for the configuration of

three-dimensional virtual parcours that can contain movement targets, obstacles

and configurations of surrounding walls. Properties such size, shape, color, as

well as visibility and haptic rendering of the virtual objects, and changes of

these properties in time can be specified using configuration files written in a

1Alexander Wolf prepared the ground for some of the presented experiments by conducting
valuable pre-studies.
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script language developed by us, or using a user-friendly graphical user interface

which we designed for quick online interaction with the setup any time during

the experiments.

Virtual objects and obstacles can be presented at specific positions on the

computer screen with different timings to study via-point and obstacle avoid-

ance movements. Generated data then can be analysed with respect to timing,

trajectory characteristics, or any other features of interest.

After a general introduction of the developed framework for movement stud-

ies in three-dimensional space I present a specific utilisation of the setup for a

two-alternative forced-choice task. The aim of this task is to examine how

humans handle motor decision tasks under subjective time pressure. For this

purpose trajectory formation and error correction is analysed in Chapter 5, and

an “event-based” study of decision tendencies and preferences is provided in

Chapter 6.

Further technical details about the experimental framework can be found in

Appendix A.4.2, and give an idea of the wide range of experimental schemes

that are possible with the presented environment

4.2 General methods

4.2.1 Setup overview

(a) Participant in front of the hardware
setup including robot manipulator and com-
puter screen during conduction of the exper-
iment.

(b) Scheme of an experiment designed with
the Simulator. The figure shows all possi-
ble target locations along with their names
which are used throughout this thesis.

Figure 4.1: Overview of the setup and of the specific parcours used for the subsequent
studies.



The setup was designed to study human arm movements in a set of tasks

which are inspired by everyday movements. It is configurable to pose a large

variety of motor task, such as point-to-point movements, via-point movements,

obstacle avoidance tasks, mace tasks, as well as static or “dynamic” combina-

tions of them. In this context, dynamic refers to changes of the target and

obstacle configuration over time.

The system hardware comprises a robot manipulandum and a computer

screen, which both are placed on a height-adjustable laboratory table. The

software for configuring and running the experiments is wrapped up in the so-

called Simulator. It provides a configurable virtual reality parcours which can be

displayed on a computer screen (or on head-mounted displays, if visual feedback

of the arm should be excluded). The positions of targets and obstacles in the

three-dimensional (work-) space can be defined comfortably using a custom-

made setup script language (see Appendix A.4.2 for specification). An example

parcours is displayed in Figure 4.1(b).

Machinery

For executing movements in the parcours, the participants interact with a high

performance manipulandum (SensAble Phantom 3.0 6DoF, see Appendix A.2

for technical details). They grasp a handle which is attached to a light-weighted

mechanical arm that can move freely and quasi-frictionless in three-dimensional

space. Additional three degrees of freedom allow a wide range handle rotations

with respect to the machine arm. Hand movement trajectories are recorded by

tracking a well-defined point of the handle, so that in general tracking precision

in sub-millimetre range is possible.2 Besides tracking, the manipulandum is

furthermore utilised to haptically render surfaces of virtual walls and obstacles

using a spring-like simulation of contact forces. At each instant of time3 the force

exerted to the hand is proportional to the distance the virtual representation of

the hand already moved into the according object.

The manipulandum has a preferred working range of 45 cm to the left and

to the right, 90 cm upwards from the point of initialisation4, and 15 cm towards

the participant as well as 15 cm towards the table. In this range all servo motors

2This precision refers to tracking the gimbal joint of the manipulandum. Only under
completely determined circumstances (especially in the way of grasping the handle) the values
can be transformed into an exact hand position. This kind of highly precise tracking was not
necessary for the movement studies presented in Chapters 5 and 6.

3The haptic loop runs at a frequency of 1000Hz.
4In the initialisation posture all joints of the machine are at 90 degrees.
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reliably produced the commanded forces. This range (or any sub-range of it) is

called workspace in the following.

4.2.2 Details on virtual reality

The workspace is mapped to a three-dimensional visual representation on a

scale of 1:2 and displayed on a computer screen by means of central perspective

(usage of OpenGl) to provide visual feedback of setup to the participant. The

x-y plane of this virtual space is parallel to the plane of the screen. Borders of

the workspace are rendered visually as light-grey walls and haptically by force

production when a hand position “behind” the wall was detected. The partici-

pant’s hand is represented by a blue sphere in the virtual parcours. The position

of this feedback sphere is updated at 250Hz, so the movement is perceived as

continuous. For technical purposes distance in the virtual world is measured in

“units”. One unit corresponds to a distance of 25 cm in the real world.

Movement targets are represented by coloured spheres on the screen. Their

size is adjustable in the configuration script (see Table A.4 in Appendix A.4.2).

The default size is 0.04 units.

For subsequent studies I constrained the the working range of the manip-

ulandum to a box of 50 cmx 50 cmx 3.75 cm around the centre of the box of

optimal performance, since I was only interested in quasi-planar trajectories.

The borders of the corresponding bounding box in the virtual setup were de-

fined as -1 and 1 in x- as well as in y-direction. Furthermore, invisible walls were

inserted at -0.075 and 0.075 units in z-direction. The rectangular obstacle used

for the presented studies had a size 1.2 x 0.05 units (30 cm1.25 cm in endeffector

space) and was located in the lower half of the screen (cf. Figure 4.1(b)).

4.2.3 Simulator

The Simulator toolbox for the experiment is written in C++ and comprises

a world editor, a target positioner and randomiser, a protocol editor, and a

compilation of analysis scripts.

World editor This set of C++ classes provides means to create a block world

setup. All basic properties of the objects can be set here. Objects in the

virtual world can be rendered visually and haptically5. Graphical rendering

5To increase the variety of applications these rendering modes are optional.



is done using OpenGl. Haptic properties of the virtual objects are simulated

using collision detection routines from the OpenHaptics library operating the

Phantom manipulator in the HL mode6.

Target positioner After definition of a number of world objects their po-

sitions and timing of occurrence can be scheduled using the methods of the

target positioner. Further properties, such as colour and size, are also acces-

sible. The randomiser provides means to create random time series of target

locations with various statistical properties. It produces a sequence of locations

of all non-stationary targets given an initial specification of limiting values (cf.

Appendix A.4.2 for details). Further object properties can also be altered ran-

domly.

Protocol editor The protocol edition contains a number of predefined exper-

iments and provides the option to adjust all session parameters manually using

a custom-made script language (see Appendix A.4.2 for an example protocol).

Data analysis scripts Beside trajectory and timing information, the data ac-

cumulated throughout sessions contains specific markers that indicate important

events, such as arriving in a or leaving a target. Typical steps of data analysis

are marker extraction and calculation of average movement durations are sum-

marised in a number of shell scripts. For the analysis of via-point movements

with three targets a further compilation of scripts was written. A number of

shell scripts, which can run on the lab machine while the participants do their

experiments, help to get a quick overview of the individual performance7 in

course of a session and on average. A more detailed data analysis can be carried

out using a number of MATLAB scripts which I wrote for via-point movements

with three targets.

6HL denotes “high-level” operation mode. In this mode hardware-related issues as well as
scheduling necessary control loops on the operating system are hidden from the user, who can
only use a small number of specific functions for direct interaction with the machine.

7Performance measures are, for example, trial completion time, timing of and peak veloc-
ities at critical points in the setup, and, if an obstacle is presented, the choice of movement
direction around the obstacle.
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4.3 Specific protocol for subsequent studies

4.3.1 Framework of the “Probability experiment”

The studies presented here were based on the so-called probability experiment.

The workspace contained one obstacle and three movement targets. The par-

ticipants had to start their trials in a fixed starting position, and then move

through a via-point T1, around the obstacle towards a final target T2. T2 was

not visible at the beginning of a trial, but appeared on arrival in T1 in specific

locations behind the wall. For the presented studies only two T2 locations were

used, one on the left behind the wall, and one on the right. In this experimental

protocol the probability of T2 to occur in any of these spots can be defined,

along with the option to hide T2 until T1 is reached. The average probability of

T2 to occur on either side was set to 0.45. The remaining 10 percent were used

for “catch trials” where T2 was placed in the middle behind the obstacle.

4.3.2 Specification of a trial

Given the above framework, we defined a trial with the following restrictions:

The participant had to move from a starting point through an intermediate

target to a final point T1 passing the obstacle at that side which caused the

shortest trajectory. Revealing the location of the final target just upon arrival

in the intermediate point caused some uncertainty that had to be bridged by a

’good guess’.

Screenshots of a typical trial are depicted in Figure 4.2A-D. Workspace bor-

ders (not in the figure) and the obstacle were displayed all the time. The

subfigures illustrate the following steps of the trial:

0. Initial setup: The starting point and the first movement target T1 were

displayed. The participant had to move the hand to the starting position.

1. On correct positioning of the hand in the starting position: After a random

delay the starting sphere turned green. A movement towards target T1

had to be initiated. There was no time limit.

2. On arrival in T1: The target sphere turned green, and the location of

target T2 was revealed: randomly either left or right behind the wall, or

at the centre in 10 percent catch trials. A time limit counter was started



and a rectangular region of 0.8 x 0.08 units around T1 had to be left within

the next 350ms.8

3. Successful completion of the trial: The participant moved without any

long breaks to target T2, passing the obstacle at the correct side.

A trial was considered valid (or successful), if the time restriction in T1 was

met and the shortest way around the obstacle was taken, and invalid (or un-

successful) otherwise. Furthermore, trials with failing to catch target T1 and

proceeding around the wall had to be repeated.

Figure 4.2: Visual feedback of a typical trial. White arrows were just added for sake
of illustration here. A: Get into starting position. B: Move through target T1. C:

Continue moving around the obstacle. D: Successful arrival in target T2.

The locations of target T2 were computed based on random numbers r

between 0 and 1. If the number was smaller than the “neutral probability”

pn = 0.1, target T2 was placed in the centre behind the wall to produce a catch

trial. If r was larger than pn but smaller than p = 0.65 T2 is placed on the left

side behind the wall. Otherwise it was placed on the right.9

For each trial the trajectory, and the timing of important events, such as

leaving the start position (tS), arriving in target T1 (tT1), passing the wall10

TW and arrival in target T2 (tT2), were recorded.

4.3.3 Technical details

Participants could choose whether to sit or stand in front of the setup (manip-

ulandum and computer screen) which was placed on a height-adjustable table.

Standing was defined as standing freely in a neutral upright posture in front

of the setup, sitting was defined as sitting on a chair with a backrest and low

8Participants were not aware of the shape of this penalty window even when trying to find
it out.

9In general all (logically consistent) desired combinations of pn and p (within [0, 1]) are
possible.

10which is passing its y-coordinate
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arm rests that do not interfere with any of the movements. The manipulandum

was always positioned in front of the active arm so that no occlusions of the

screen occurred during movement. The average distance of the eye plane to the

computer screen was 85 cm.

All via-point movements were executed in a quasi-frontoparallel11 plane

which at the same time was parallel to the feedback screen (cf. Figure 4.1(a)).

Hand positions were recorded in three-dimensional space at 90Hz along with a

time stamp.

4.3.4 Experimental procedure

Four session with 250 successful trials each were recorded for both the dominant

and the non-dominant hand of all participants. For intersession and intersubject

comparison in each session the same sequence s of T2 locations was used. It was

chosen specifically to contain a mild initial overrepresentation of T2 at the right

side. For a better understanding of the time course, Figure 4.3(a) shows the time

course of the instant directional bias (relative frequency of right minus relative

frequency of left presentations; for details see Section 6.3.1), accumulated over

the whole time series (green graph), as well as computed for each time step based

on the data of the last 30 trials (red graph). While the accumulative averaging

reveals the overall tendency, the local averaging emphasises local fluctuations.

It can be seen that there is an initial ’overrepresentation of right’ during the

first 50 trials. For a balanced presentation, the “overhang” is compensated later

on by a stronger emphasis of T2 positions on the left with up to 11 repetitions

around trial 140 and 8 repetitions around trial 250 (see Figure 4.3(b) for counts

of occurring sequence lengths).

Since local fluctuations in the series of presented T2 location turned out to

be crucial, I introduced two experimental conditions:

initR refers to the initial overrepresentation stated above, and indicates

the usage of the series s as it is shown in Figure 4.3, and

initL stands for an inversion of the same sequence (“left” and “right”

swapped), and contains an initial overrepresentation of the left

T2 location.

Both conditions were used in participants of either handedness.

11Since subjects are not fixated to anything in the lab, their upper body orientation can
only be called approximately parallel to the screen.
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(b) Counts of sequences of subsequent
occurrences of T2 presentations at same
side – left, centre, or right – behind the
obstacle. (“Seq. length” indicates the
length of the sequence of repetitions.)

Figure 4.3: Statistical properties of the presented series of final target locations of
the experimental condition initR . The time course of differences between relative
fraction of right and the relative fraction of left behind the wall presentations of target
T2 show an initial overhang to the right (first 50 trials). Nevertheless, there were two
long sequences of T2 being positioned on the left side behind the obstacle.

4.4 Participants

Participants

Sixteen healthy adults (aged 19 to 42) with normal or corrected to normal

vision participated in the experiments. Eight of them were left- and eight right-

handed.12 They were assigned to two groups, such that four probands of each

handedness participated in the experiments based on initR, and initL, respec-

tively. All participants performed four sessions with their dominant and four

with their non-dominant hand.

The completion of 259 valid trials usually took between 13 and 22 minutes.

Participants had to take a break of at least five minutes between sessions, but

were free to extend it if they needed more time.

They were encouraged to state their thoughts about the experiment freely.

This should prevent them from developing silent hypothesis.

For a clear discussion of individual behaviour in the following chapters abbre-

viations containing two upper-case letters are used to distinguish probands.

12Before starting the experimental session they were asked to estimate their hand-eye coor-
dination on a scale between 1 (completely uncoordinated) and 10 (perfect coordination).
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Chapter 5

Planning and replanning of fast

movements

5.1 Introduction

During the experiments, which I conducted, participants had to carry out

dozens of via-point movements with obstacle avoidance. Their movements were

recorded in terms of hand positions in three-dimensional space along with a

time stamp. These trajectories are subject to change during the process of ac-

commodation with the setup. Afterwards they can be considered as relatively

constant. Their timing, especially the timing of correcting movements in case

of an erroneous decision where to move, can provide important insights into

movement planning.

Therefore, this chapter deals with a study of trajectory formation in the

introduced setup for via-point movements with obstacle avoidance, and analyses

direct movements where the shortest way to the final movement target was

chosen immediately after T1, and replanned movements with an initial “kink”

– or excursion – into the wrong direction.

The introductory Section 5.2 summarises major approaches to movement

planning, trajectory formation and error correction. After some methodological

comments in Section 5.3, I discuss the timing issues of the participants’ move-

ments in important stages of the task completion. For example, the processing



time for the revealed location of the final movement target can be estimated by

analysing data of trials containing a directional correction.

Then, single quasi-straight movement segments are modelled using bell-

shaped velocity profiles which are accepted “identifiers” – or at least correlates –

of movement primitives1 (cf. Plamondon et al., 1993; Flash and Hochner, 2005).

As described in Section 4.3.2 participants had only limited information about

the final target location when having to make their decision about whether to

pass a central obstacle at the left or right side. Based on the experience from

previous trials and maybe based on temporary hypotheses about the occurrence

of target T2 they had to make a guess. In a non-neglectable number of trials

this guess was wrong2.

After an initial start to the wrong side the movement was corrected by a

return. This correction is also modelled using symmetric continuous bell-shaped

velocity profiles. First, the initial phase of correct movements to either side

was modelled accordingly to extract the corresponding ’primitive’, and second,

the correction was introduced as a superposed ’primitive’ which is started at

a time tcrit after the onset of the erroneous movement. tcrit turned out to

be comparable to the ’auto-pilot’ threshold (cf. Pisella et al. (2000)), which

is the time when a jump in location of the movement target is visible in the

trajectory of the executed movement. This suggests that similar mechanisms are

involved, and opens the door for follow-up studies of replanning interruptions

using transcranial magnetic stimulation targeting on specific circuitry of the

posterior parietal cortex known be involved in the online control of visually

guided movements.

Furthermore, peak velocities and timing of the wrong movements and ac-

cording corrections allow to discuss the influence of handedness and used hand

in dependence on movement direction. It turned out that neither handedness

nor hand usage has any significant effect on replanning characteristics. Shape

and timing of kinks to the left and the right were symmetric in both hands.

1Primitives are considered to be the basic building blocks of complex motor behaviour.
This theory significantly reduces the amount of computation that the nervous system would
have to carry out during movement planning and execution.

2See Section 6.4.1 for a strategy to keep this number high to provoke corrections for further
studies of the replanning process.
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5.2 Trajectory formation and motor primitives

5.2.1 Motor planning

Flash and Hogan (1985) developed a model for the generation of unconstrained

coordinated multi-joint movements. They found that point-to-point movements

result in approximately straight trajectories with bell-shaped tangential velocity

profiles. Furthermore they discuss the reduction of tangential velocity when

producing curved hand paths, and summarised this finding in the so-called two-

third power law which allows a quantitative analysis of this pattern.

5.2.2 Primitives

In the field of motor control, primitives or elementary behaviours have a long

tradition as building blocks of complex behavioural patterns. The idea can

be traced back to studies of muscle synergies (cf. Finley et al., 1968). Already

Arbib (1975) discusses their role and importance as elementary structures for the

formation of complex actions in natural and artificial systems. The efficient com-

bination of elementary constituents at the spinal cord level of the frog was shown

by Mussa-Ivaldi et al. (1994). By stimulation they could show vector summation

of force fields, that were subsequently discussed as the building blocks of ’a rich

grammar of motor behaviours’ (cf. Mussa-Ivaldi and Bizzi, 2000). Recent stud-

ies emphasise the advantages of a set of primitives for sensorimotor integration

(see eg. Flash and Hochner, 2005) and imitation learning (Demiris and Hayes,

1999), and discuss concatenation strategies (cf. Breteler et al., 2003) as well as

timing aspects at muscular level (cf. Pruszynski et al., 2010). A number of sub-

sequent studies then tried to utilise these ideas in the field of robotics (cf. eg.

Mataric, 2000).

5.2.3 Error correction

Archambault et al. (2011) studied the temporal evolution of motor intention,

and the role of dorsal premotor and motor cortex in jumping-target reaches

in monkeys. The found that after a target jump the plan of the movement

to the initial target is smoothly changed into a plan for a movement heading

towards the new target. Arguing on the basis of time lags in the neural activity

they suggest that premotor cortex where the earliest correction signal could be



found encodes commands from higher-order areas, while parietal regions are

responsible for kinematics estimation.

The correction of errors in movement generation can be understood from two

perspectives. One can assume that a constant tracking of movement precision

on the basis of an internal model supports online corrections (cf. Gomi, 2008).

Another idea which is supported by studies in monkeys (cf. Fishbach et al.,

2005) suggests that no continuous control process but intermittent corrections

are utilised by the central nervous system.

5.2.4 Autopilot

Pisella et al. (2000) studies movements towards a target jumped in a fraction

of the trials. They found that first traces of the change towards the new target

location could be found already about 150 ms after target jump, and it was

rather hard to suppress the tendency to follow this change in location.

5.3 Data processing and modelling

5.3.1 Trajectory-based data processing

Hand position tracking at 90 Hz lead to relatively smooth trajectories, so

that additional filtering was neither necessary nor desirable due to the tradeoff

between data optimisation and filtering artifacts. Effects of ’invisible’ high-

frequency fluctuations during velocity approximation were prevented by choos-

ing an appropriate approximation method. Although data was recorded in

three-dimensional endeffector space, trajectory analysis was only conducted in

the x-y plane fronto-parallel to the participant, and parallel to the computer

screen, because of the limited movement possibilities in z-direction (maximum

7.5 percent compared to freedom in x- and y-direction).

Velocity approximation with local noise reduction

Endeffector velocity was approximated in a three-point estimation which uses

the secant3 line through the points (ti−d, xi−d) and (ti+d, xi+d):

vi =
xi+d − xi−d

ti+d − ti−d

.
✞

✝

☎

✆5.1

3It was based on the classical secant method v (t) =
x(t+h)−x(t−h)

2h
and lead to an approx-

imate error of E =
−a(τ)

6
h2 for t− h <= τ <= t+ h.
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Figure 5.1: Performance of velocity approximation for three different step sizes d

in case of noisy sine wave (one period, 2 seconds, sampled at 10Hz), in dependence
on noise amplitude (white noise). Averages are computed from 100 repetitions of
’measuring’ the noisy system. Left: Average fitting error per data point compared to
noise-free case. Right: Average difference in mean compared to noise-free case.

The advantage of this method is that upon appropriate choice of d it produces

rather reliable velocity estimates even when data is noise corrupted. Figure 5.1

shows the results of applying the algorithm to one period of a sine wave with

a duration of 2 seconds which was sampled at 10 Hz. Data was corrupted by

additional white noise of different amplitudes. Ten data samples were generated

at each noise level for velocity estimation with three different (sufficiently small)

step sizes d. Estimation errors were summed over the whole period (compared to

the noise-free case) and the difference in the mean (again compared to the noise-

free case) was computed. Averages were computed over the samples. It can be

seen that the method leads to an error reduction. For processing experimental

data d = 3 turned out to be a reliable choice.

Kinks in the trajectory as traces of the replanning process

When originally expecting target T2 in another location, and, hence, initiating

a movement to the wrong direction, the participant was forced to replan in order

to avoid repeating the trial. This results in a turnaround in the movement (cf.

lower left or right subfigure of Figure 5.3) which is called ’kink’ throughout this

work.

Automated kink detection was implemented based on the geometric judge-

ment criterion that would be applied by a human ’kink detector’: There is a

kink, if for the movement segment between target T1 and arrival at wall height



there is an extremum (which does not only cover very few data points) in x-

direction to the opposite side than where the movement finally heads.

5.3.2 Bell-shaped velocity profiles and replanning

The velocity trace of a straight point-to-point movement starting at T0 with a

duration of T and a maximum velocity of vm was found to be bell-shaped (cf.

Plamondon et al., 1993). I chose the minimum jerk related symmetric bell due

to the fact that its higher derivatives remain zero at the tails causing smooth

on- and offsets of the movements. The velocity profile can be written as

v (t) = V (t− T0)
2(t− (T0 + T ))2

✞

✝

☎

✆5.2

(cf. Flash and Hogan (1985)) with a velocity factor V = vm/((t − T0)
2(t −

(T0 + T ))2). These ’bells’ are considered to be connected to building blocks of

behaviour (cf. Henis and Flash (1995)).

Bell-shaped velocity profiles of correct direct movements towards tar-

get T2

A correction in movement direction (eg. first moving right, then moving left) can

be thought of as an overlay of two velocity profiles according to v = (1− α) v1+

v2. The first movement which started at time T01 and would have lasted T1 with

a peak velocity of vm1 is stopped within α seconds after the onset T02 of the

second one (duration T2, peak velocity vm2).

For this superposition of an incorrect movement with an according correc-

tion, I (least-square) fit Equation 5.2 to the data from correct movements to

either side until the movement got decelerated. Deceleration takes place when

approaching the curve around the obstacle. The detour to the wrong side never

showed such a wide extent.

Before processing, for sake of simplicity the movement onset is determined

using a velocity threshold of one percent of the peak velocity of the trial.

Double bell-shaped velocity profiles

To study timing and peak velocities of replanning processes the model from

Equation 5.2 was extended to be applicable to the two opposing phases of a kink:

the excursion to the wrong direction, and the correction. This was accomplished

by overlaying two bell-shapes v1, v2 with maximum velocities of different signs
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(sgn (vm1) = −sgn (vm2)) according to v = (1− α) v1+v2 for the first α seconds4

after the onset of v2). Only the x-component of the movement is considered.
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Figure 5.2: Overlapping velocity profiles. After the onset of v2 at T02 v1 fades away.

Adaptive parameter determination for overlapping velocity profiles

Given the x-velocity trace between the time of reaching target T1 and the time

of reaching wall height in one trial {vt, TT1 ≤ t ≤ TW } the optimal parameters

T01, T1, vm1, T02, T2, vm2 can be computed based on the following error function

E. For sake of simplicity vt is written as v (t) and v̂2 (t) := v2 (t) − v (t).

Overlapping velocity profiles (T01 + T1 ≥ T02, cf. left subfigure of Figure 5.2)

the approximation error consists of five components:

Eover (T01, T1, vm1, T02, T2, vm2) =
∑

t<T01

v (t)
2
+

<T02
∑

t=T01

(v1 (t)− v (t))
2

✞

✝

☎

✆5.3

+

T02+α
∑

t=T02

((

1−
t− T02

α

)

v1 (t) + v̂2 (t)

)2

+

T02+T2
∑

t>T02+α

(v̂2 (t))
2
+

∑

t>T02+T2

v (t)
2
.

Because of some parameters occurring as limits of summation, a mixed ap-

proach is chosen: vm1 and vm2 are computed by the gradient descent vnewmi =

voldmi = −ǫ δE
δvmi

, i = 1, 2, for appropriately chosen initial values and ’traditional’

4Typical values ranged around 0.6 ms.



cooling of ǫ (cf. Rosenblatt, 1958). The gradient descent for the remaining pa-

rameters is simulated by evaluating the according error functions for slightly

altered parameters (e.g. in case of T01: Eover (T01 + ǫT , T1, vm1, T02, T2, vm2)

and Eover (T01 − ǫT , T1, vm1, T02, T2, vm2)) and then taking the step into the

best direction. ǫT again is cooled down over time in a way that guarantees

convergence. In the implementation it has to be considered that a shift by ǫT

can change the overlap state of v1 and v2.

Good initial values are provided by using the first two local extrema E1 and

E2 of v: vE1 = v (TE1), vE2 = v (TE2), and the root v0 = v (t0)
5 such that

vm1 = vE1, vm2 = vE2, T01 = 0, T1 = 2tE1, T02 = t0, and T2 = t0 − 2tE2.

T01 can be seen as the time that the participant spends in T1 to get most

information out of the system before deciding. T02 can be considered as the time

needed for replanning if this phenomenological approach of bell-shaped velocity

profiles is valid. α indicates the time needed to fully abort the initial wrong

movement.

This model provides deeper insights in the timing of what is going on when

participants change their minds as a reaction to new information about the

environment.

Extrema The assumption of the bell shape Equation 5.2 leads to a first deriva-

tive w.r.t t

v̇ (t) = 2 (V (t− T0) (t− (T0 + T )) (2t− 2T0 − T )) ,
✞

✝

☎

✆5.4

which leads to the maximum vmax = V
16T

4 at t = T
2 .

5.4 Results of trajectory-based analysis

5.4.1 General results on task performance

Typical trajectories For each presented T2 location participants could pro-

duce two kinds of trajectories of valid movements: one heading “directly” to-

wards T2 on the shortest way, or one first showing a movement into the wrong

direction which has to be replanned and “substituted” by a correct one. Fig-

ure 5.3 shows typical examples of direct movements to the left and the right,

5It exists due to the theorem of Bolzano.
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as well as replanned ones. Furthermore, trajectories of movements heading to-

wards T2 in the centre are depicted. Replanned movements towards the centre

occurred only rarely in a few participants, so they are not separately discussed

in the following.
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Figure 5.3: These example trajectories show important cases of trajectories that
are created by the participants. Left column: Direct movement to the left, and
movement with a “kink” towards the right before heading left. Centre column:

Direct movements towards the central target, passing the wall on the right or the left
side. Right column: Direct movement to the right, and movement with a “kink”
towards the left before heading right. Note that the circles indicate the time of the
according events, not target sizes.

Success statistics of producing valid trials It is not trivial that the par-

ticipants manage to keep the time constraint around target T1 while still hitting

the relatively small target. Table 5.1 summarises the number of necessary tri-

als in order to produce the required amount of 250 valid trials6, and indicates

that the posed task is indeed feasible. The imposed timing constraints only

caused an additional work load of about five percent. No systematic differences

concerning the influence of handedness or used hand could be found.

6Only data of the initR condition is displayed. For initL the proportions were quite alike.



Table 5.1: Number of trials that were needed to produces 250 valid ones, grouped
by handedness and used hand. The dominant hand was used first in all participants.
Data from one left-handed person using the right hand is missing.

Session 1 Session 2 Session 3 Session 4
Right-handed, RIGHT 285 +/- 9 263 +/- 12 259 +/- 4 259 +/- 3
Right-handed, left 277 +/- 14 262 +/- 4 263 +/- 9 260 +/- 6
Left-handed, LEFT 313 +/- 39 273 +/- 9 273 +/- 8 270 +/- 7
Left-handed, right 278 +/- 12 263 +/- 4 259 +/- 6 260 +/- 7

Massive training leads to a decrease in trial completion time The av-

erage trial duration can be taken as a measure for task performance. For analysis

each participant’s movements of the same kind towards non-centre targets T2

were pooled for averaging. The final average of these mean trial durations is

depicted in Figure 5.4(a) for the initL condition, and in Figure 5.4(b) for initR,

respectively. The mild decrease in these completion times can be interpreted

as the participants getting more and more used to the task. No significant ef-
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(a) Average trial completion times in condi-
tion initL.

1 2 3 4
0

1

2

3

Session number

A
vg

 tr
ia

l d
ur

at
io

n 
[s

] Straight left

1 2 3 4
0

1

2

3

Session number

A
vg

 tr
ia

l d
ur

at
io

n 
[s

] Straight right

1 2 3 4
0

1

2

3

Session number

A
vg

 tr
ia

l d
ur

at
io

n 
[s

] Kink, then left

 

 

RR
Rl

 

 

LL
Lr

1 2 3 4
0

1

2

3

Session number

A
vg

 tr
ia

l d
ur

at
io

n 
[s

] Kink, then right

(b) Average trial completion times in condi-
tion initR.

Figure 5.4: The averaged average duration of trials split by handedness and used
hand (RR - right-handed using right hand, Rl - right-handed using left hand, LL - left-
handed using left hand, Lr - left-handed using right hand), as well as movement type
(straight left/right; kink, then left/right) show a mild decrease in course of sessions.

fects of handedness and used hand can be found on overall trial duration. The

eye-catching drop in completion time for right-handed subjects using their right

hand in leftwards movements7 in the initR condition in Figure 5.4(b) stems from

7It can be seen for “straight left” as well as “kink, then right” movements.
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the fact that these kind of movements were rather seldom and only occurred in

two of the fastest participants.

5.4.2 Trajectory timing and replanning
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Figure 5.5: Average horizontal component of movement velocity in T1 across partic-
ipants reflects choice of movement direction. Individual error bars show handedness
and used hand conditions: LL - left-handed using the left hand, Lr - left-handed using
the right hand, Rl - right-handed using the left hand, RR - right-handed using the
right hand.

Strategy in target T1 The arrival in T1 was critical for further proceed-

ing in the task, since the final movement target was revealed. Due to the time

restriction in this area, the participants had to make up their mind before reach-

ing T1. It turned out that the horizontal component of their hand velocity in

T1 in each trial already reflected the choice of the upcoming movement (see

averages of the session average of vx in Figure 5.5; velocity was estimated using

the secant method from Equation 5.1 with a window size of d = 3). Leftwards

movements were preceded by negative horizontal velocity component, rightwards

movements showed a positive one in T1.8

Participants were instructed to execute fast and smooth movements without

any stops in T1. But the tradeoff between continuing the movement and keeping

as much time as possible for processing the location of T2 resulted in individual

strategies which can be characterised by the velocity of passing the intermediate

target. The ones who went slower gave themselves more time to process the final

8The large variability between handedness and hand conditions for leftwards movements
in the case of initR has to be traced back to its origin in the fact that this movement direction
was chosen rather seldom.



target location than those approaching T1 in a fast way (cf. Figures 5.9(a) and

5.9(a) which illustrate the relation between the average velocity in T1 and the

average delay there on an individual level). Figure 5.6 provides an analysis

on the level of averages over single sessions of individual participants. The

average delay in target T1 is the time difference between reaching this point and

accelerating to a horizontal velocity vx larger than 0.012 units/s (3mm/s) 9 . On

average it decreases, because the overall speed vx in either direction increases

in both experimental conditions ( initL - Figure 5.6(a), initR - Figure 5.6(b)).

(cf. Figure 5.6).
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(b) Absolute velocity vx in T1 limits passage
time, biased to the right.

Figure 5.6: Effects of passage strategy in intermediate target T1 on responsiveness
to initial directional bias. Velocity determines time available for information accumu-
lation. Circles indicate average absolute horizontal velocity and delay in T1 of single
sessions of individual participants. The error bar indicates the trend calculated by
averaging in 5 bins equally distributed between minimal and maximal velocity.

Peak velocities and their timing during obstacle avoidance The move-

ment between the targets T1 and T2 reflects the individual choice of the partici-

pant in each trial. Traces of replanning – which are “turnarounds” with ensuing

movements to the opposite side - or with respect to velocity, decelerations with

ensuing acceleration of opposite sign – occur, if the participant’s choice does not

match presented T2 location. These two classes of movements – straight and

replanned ones – are analysed in the following.

Since most interesting phenomena again appear in horizontal direction, I

again limit the analysis to vx. After the discussion of the onset of the di-

rectional excursion in T1 in the previous paragraph, now the other two main

9which is considered to be movement in Section 2.2.2
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characteristics – the timing and the magnitude of peak velocity – remain to be

studied. These factors may reveal differences between the movements with the

left and the right hand in participants of either handedness.

Figures 5.7(a) and 5.7(b) show the average timing of peak velocities of direct

movements across participants for both experimental conditions. The upper row

presents data for straight movements to the left or to the right. The lower row

shows both the average timing of the velocity peak of the wrong excursion, as

well as of the correcting part. Assessing roughly, handedness and used hand do

not seem to play a consistent role. All estimates of mean horizontal velocity of

the right-handed using the right hand (RR), the right-handed using the left hand

(Rl), the left-handed using the left hand (LL), and the left-handed using the

right hand are about the same. Since these average values for each session were

calculated based on the averages of individual participants, important details

might have been smeared out. For a more detailed comparison of the behaviour

with the dominant hand and with the non-dominant one, Figures 5.7(c) and

5.7(d) show the average differences between peak timing using either hand.

Averages were calculated from the average differences between the sessions of

dominant and non-dominant hand in individual participants. Sessions which

did not show movements to the direction of interest in one hand were excluded

from calculation.

For straight movements in the condition initR (Figure 5.7(d)) it can be seen

that right-handed individuals used to show a later velocity peak in the non-

dominant hand, compared to the dominant one (resulting in negative differ-

ences), while in the left-handed the opposite seemed to occur.

In the initL condition the peak timing of straight movements was more bal-

anced between the dominant and the non-dominant hand in participants of

either handedness. Only right-handed subjects showed an imbalance towards

later peak velocities in the dominant hand compared to the non-dominant one

for straight movements to the left in the first two sessions.

The timing of velocity peak of the wrong excursions to either side in par-

ticipants of either handedness in both experimental conditions initL and initR

appears to be balanced. That means replanning leads to an “early” peak10 at

about the same time, and suggests that the “replanning signal” is given at about

the same time in all participants, independent of handedness and used hand.

Note that the increased difference in timing of kinks to the left for left-handed

10compared to the peak time of the straight movement in the according direction



participants in condition initR is likely to result from the imbalance in data due

to the rare occurrence of kinks to the left in case of usage of the right hand.

Figures 5.8(a) and 5.8(b) depict the average peak velocities which on average

are approximately the same for straight excursions to either side, as well as for

corrected movements with a kink. This holds for both experimental conditions

(initL, initR).

The differences between dominant and non-dominant hand in the peak veloc-

ities are slightly imbalanced between left- and right-handed participants. Posi-

tive differences in the right-handed participants show that they execute slightly

faster movements with their (dominant) right hand. Negative differences in

the left-handed ones show that they tended to execute movements with slightly

higher peak velocities with their (non-dominant!) right hand. These effects can-

not be consistently shown at acceptable levels of statistical acceptance, therefor

further data would be needed for a final conclusion about its origin and signifi-

cance.

Figures 5.9 and 5.10 provide an analysis of the relation of the absolute mag-

nitude of horizontal velocity in T1 and the measures that were studied above

on the level of global averages. For direct movements to either side a depen-

dence of mean absolute peak velocity on the mean absolute horizontal velocity

in target T1 can be seen (cf. Figure 5.9(a) for initL condition, Figure 5.9(b)

for initR). Interestingly, the relation does not show a continuing proportionality

but saturates up at a mean absolute peak velocity of about 1.3 units/s. Also

higher mean absolute peak velocities of excursions into the wrong direction and

of subsequent correcting movements coincide with higher mean absolute hori-

zontal velocity components (cf. Figure 5.9(c) for initL condition, Figure 5.9(d)

for initR) and seem to saturate up at a certain level (0.8 units/s for excursions,

2.5 units/s for corrections). This suggests that these limits to peak velocities

emerge from the interplay of the setup and the “universal”11 solutions the cen-

tral nervous system makes use of – for example, motor primitives – which are

invariant in their major characteristics across participants. In studies of human

point-to-point movements these motor primitives are usually associated with a

typical pattern of acceleration and deceleration that leads to bell-shaped veloc-

ity profiles (cf. Plamondon et al., 1993) which are symmetric in their simplest

version. Higher peak velocities are not feasible in this context of self-paced

movements. They would require too strong deceleration which would result in

11“Universal” in this context may mean a pattern that occurs throughout different individ-
uals.
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way higher forces resulting from movement dynamics. Hence, they would make

the movement less “desirable” in terms of energy consumption.

Most interestingly, the timing of the peak velocities of the kinks in Fig-

ure 5.10(a) (for the condition initL) and Figure 5.10(b) (for the condition initR)

remains constant independent of the velocity in T1 in both experimental condi-

tions, and – since the latter also modulates the peak velocity – independent of

the actual velocity of the wrong excursion. After on average 257ms (0.255 +/-

0.028ms for initL, 0.260 +/- 0.028ms for initR) a deceleration can be observed

in wrong hand excursions of all participants, no matter which handedness they

have, which hand they use or under which experimental condition they executed

the task. Furthermore, also the timing of the second peak (which stems from

the correcting movement) in the horizontal component of endeffector velocity is

independent off the velocity in the intermediate target.

Moreover, one can find a strong correlation between the average absolute

horizontal peak velocity of the kinks and the average absolute horizontal peak

velocity of the correcting movements (see Figure 5.11). The faster a participant

executes the excursions into the wrong direction, the faster also the according

corrections are.

Furthermore, the average trial completion time of replanned movements re-

sembles the average trial completion time of the direct movements with an

additional offset. If this offset is associated with the time until the replanning

shows effects in the trajectory, a “regularity” in movement time can be stated.

Table 5.2: Reliability of the linear regression in Figures 5.11 and 5.12 in terms of
t-values.

Parameter
Figure 5.11 Figure 5.12

initL initR initL initR
Slope 24.239 21.991 18.501 19.766
Intersection 2.748 1.296 4.591 1.906

Taken together with the above-mentioned results this strongly suggests a

scheduling of the replanning process in the time domain. So this study lines up

with a number of other studies that state separate planning of geometric and

temporal aspects of movements (cf. Sosnik et al., 2004; Torres and Zipser, 2002,

2004).



5.4.3 Modelling of direct movements

Single bell shapes were fitted to the direct movements heading left- and right-

wards to the wall. Only the piece of the trajectory between target T1 and left or

right passage of wall height was used. Averages for each session were computed

split by handedness and used hand. Movement onset was defined as one percent

of peak velocity (which corresponds to the definition of ’no movement’ used in

the stiffness section) and shifted to t = 0 for sake of normalisation. The validity

of this estimation during the deceleration towards the wall pass has to be taken

cum grano salis since the trajectory is curved in this phase. Only the initial

acceleration was needed later on for modelling the replanning process.

Figure 5.13 summarises the results. The lower left subfigure (left-handed

using non-dominant hand) is only based on data from three instead of four

participants. There were no significant differences between left- and rightwards

movements within the groups. Movements were completed within about 800 ms.

Peak velocities were about 2 units per second. Movements with the dominant

hand were slightly faster than the ones with the non-dominant hand, especially

throughout the first sessions. Since this effect attenuated for later sessions it can

be attributed to the neglected usage of this hand in movement tasks of everyday

life (cf. Goble and Brown, 2008a).

5.4.4 Replanning in terms of bell-shaped velocity profiles

The bell-shaped approximations from the previous section were now used for

modelling the correction of movement direction. The average profile of the di-

rect movements to one side is chosen to be the erroneous choice that needs to be

corrected. Figure 5.14 contains an overview of the average duration of the cor-

recting movement (Figure 5.14(a)) and its peak velocity (Figure 5.14(b)) for all

combinations of handedness and used hand in the initR condition. This suggests

that timing and traces of replanning processes are independent of handedness

and used hand.

Table 5.3 summarises the average replanning times until the information

about the real location of target T2 is processed and in case of an erroneous

choice of movement direction results in an endeffector acceleration towards the

correct side. The results agree with the timing known from the ’auto-pilot’ stud-

ies (see Pisella et al., 2000). They reported shortest latencies of about 120 ms.
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Table 5.3: Average latency in seconds until correction could be found in the trajectory
in terms of begin of acceleration towards the other side. Since the latency does not
differ significantly for different directions of correction, all data from one session is
treated at once (abbreviations: LL - left-handed using left hand, RR - right-handed
using right hand, Lr - left-handed using right hand, Rl - right-handed using left hand).

Session 1 Session 2 Session 3 Session 4
LL 0.139 ± 0.061 0.140 ± 0.070 0.149 ± 0.044 0.169 ± 0.056
RR 0.135 ± 0.043 0.177 ± 0.089 0.159 ± 0.133 0.215 ± 0.058
Lr 0.140 ± 0.036 0.189 ± 0.018 0.202 ± 0.069 0.141 ± 0.042
Rl 0.167 ± 0.037 0.243 ± 0.103 0.187 ± 0.043 0.182 ± 0.052

5.4.5 On the question of symmetry of replanning process

The very similar onset times (cf. Table 5.3), durations and peak velocities

of movement corrections in left- and right-handed participants, as well as in

participants of one handedness using different hands (cf. Figure 5.14) strongly

suggest that the replanning process happens independently off handedness and

used hand, and, hence, can be called symmetric with respect to them.
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(a) Timing of peak velocities in condition
initL. For replanned movements (lower row)
the earlier peak belongs to the aborted ex-
cursion to the wrong side.
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the earlier peak belongs to the aborted ex-
cursion to the wrong side.
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(c) Mean time difference of peak velocities
between dominant and non-dominant hand
in condition initL
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(d) Mean time difference of peak velocities
between dominant and non-dominant hand
in condition initL

Figure 5.7: The averaged average timing of peak velocity by handedness and used
hand, and according time differences between dominant and non-dominant hand for
each handedness condition. Upper row of subfigures: Straight movements. Lower row
of subfigures: Movements with kink. Average time of peak velocity of the kink as well
as of the correcting movement are displayed.
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(a) Average horizontal peak velocities in con-
dition initL. For replanned movements (lower
row) the peak velocity with the lower abso-
lute value belongs to the aborted excursion
to the wrong side.

1 2 3 4
-3

-2

-1

0

Straight left

Session

A
vg

 v
pe

ak
 [u

ni
ts

/s
]

1 2 3 4

0

1

2

3

Session

A
vg

 v
pe

ak
 [u

ni
ts

/s
]

Straight right

 

 

RR
Rl

 

 

LL
Lr

1 2 3 4
-4

-2

0

2

4
Kink, then left

Session

A
vg

 v
pe

ak
 [u

ni
ts

/s
]

1 2 3 4
-4

-2

0

2

4
Kink, then right

Session

A
vg

 v
pe

ak
 [u

ni
ts

/s
]

(b) Average horizontal peak velocities in
condition initR. For replanned movements
(lower row) the peak velocity with the lower
absolute value belongs to the aborted excur-
sion to the wrong side.
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Figure 5.8: The averaged average horizontal peak velocities between T1 and wall
height, split by handedness and used hand. Upper row of subfigures: Straight move-
ments. Lower row of subfigures: Movements with kink. Average peak velocity of the
kink as well as of the correcting movement are displayed.
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(b) Peak velocity of direct movements in
dependence on velocity in T1. Condition
initR.
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(c) Peak velocities of kinks and replanned
movements in dependence on velocity in T1.
Condition initL.
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Figure 5.9: Effects of passage strategy in intermediate target T1 on overall movement
performance. Velocity in T1 determines time available for information accumulation.
Circles indicate average delay or velocity of single sessions of individual participants.
The error bar shows the trend calculated by averaging in 5 bins equally distributed
between minimal and maximal delay or velocity.
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Figure 5.10: Effects of passage strategy in intermediate target T1 on overall move-
ment performance. Velocity in T1 determines time available for information accu-
mulation. Circles indicate average delay or velocity of single sessions of individual
participants. The error bar shows the trend calculated by averaging in 5 bins equally
distributed between minimal and maximal delay or velocity.
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(a) Peak velocity of correcting movements
in dependence on peak velocity of the kink.
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Figure 5.11: Relation between first and second mean absolute peak velocities of
corrected trials. First peak |v1st ext| corresponds to excursion to the wrong side, second
peak |v2nd ext| to correcting movement. Kinks to the left and the right are taken
together for the session average. Dots indicate average velocities of single sessions of
individual participants. The regression line is added for emphasis of the relation.
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Figure 5.12: Relation between average trial completion times of direct and replanned
movements. Movements to the left and the right are taken together for the session
average, kinks to the left and the right, respectively. Dots indicate average velocities
of single sessions of individual participants. The regression line is added for emphasis
of the relation.
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Figure 5.13: Descriptive modelling using bell-shaped velocity profiles: Average move-
ment duration and peak velocity of direct movements (to the left (red) and to the right
(blue)) for all sessions of all participants of the initR condition. Subplots are divided
by handedness and used hand: upper row - session with dominant hand, lower row -
session with non-dominant hand. Left column - left-handed participants, right column
- right-handed.

69



1 2 3 4

0.5

1

1.5

Left-handed, LEFT hand

Session

D
ur

at
io

n 
[s

]

 

 

1 2 3 4

0.5

1

1.5

Right-handed, RIGHT hand

Session

D
ur

at
io

n 
[s

]

1 2 3 4

0.5

1

1.5

Left-handed, right hand

Session

D
ur

at
io

n 
[s

]

1 2 3 4

0.5

1

1.5

Right-handed, left hand

Session

D
ur

at
io

n 
[s

]

corr. to left
corr. to right

(a) Duration of correcting movements.

1 2 3 4
-2

0

2

4
Left-handed, LEFT hand

P
ea

k 
ve

lo
ci

ty
[u

ni
ts

/s
]

Session

 

 

1 2 3 4
-2

0

2

4
Right-handed, RIGHT hand

P
ea

k 
ve

lo
ci

ty
[u

ni
ts

/s
]

Session

1 2 3 4
-2

0

2

4
Left-handed, right hand

P
ea

k 
ve

lo
ci

ty
[u

ni
ts

/s
]

Session
1 2 3 4

-2

0

2

4
Right-handed, left hand

P
ea

k 
ve

lo
ci

ty
[u

ni
ts

/s
]

Session

-v
min

 corr. to left

v
max

 corr. to right

(b) Peak velocity of correcting movements.

Figure 5.14: Average movement duration and peak velocity of the correcting move-
ment (to the left (red) and to the right (blue)) for all sessions of all participants of the
initR condition. Subplots are divided by handedness and used hand.



5.5 Summary of trajectory-based analysis

Major findings of this study are:

1. Although participants were instructed to move quickly and without a

break in the intermediate target, the spectrum of individually employed

strategies of dealing with the information bottleneck ranged from rather

slow movements that provided as much time as possible for processing of

the T2 location to fast movements that lead to frequent corrections.

2. Upper bounds to absolute peak velocities of each class of movements seem

to emerge from the interplay between the setup and the motor control

principles employed for solving the task. Since these limits are invariant

across participants, also the employed principles, which may be motor

primitives, seem to share main characteristics across participants.

3. While participants who are slower in the intermediate target also show

lower peak velocities, faster participants only show peak velocities up to

a certain threshold which seems to be imposed by the system.

4. Replanning processes in each hand are symmetric in timing and peak

velocities when comparing corrections from left to right and right to left

(cf. Section 5.4.5). Furthermore, the replanning process is symmetric in

both hands of individual participants.

5. Moreover, the replanning process is also symmetric in participants of dif-

ferent handedness.

6. The timing of the movement corrections is equal across participants irre-

spective of handedness or used hand. The peak velocity of the excursion

to the wrong side can be found at 0.257 +/- 0.028ms, the velocity peak

of the correction at 0.712 +/- 0.094ms.

7. Furthermore, the average trial completion time remained invariant12 when

comparing cases of direct movements to replanned ones. These timing

issues provide further evidence for the separate planning of geometric and

timing aspects of the movement.

12with a short processing delay
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8. The correction of erroneous choices of movement direction can be modelled

sufficiently by only considering the horizontal component of endeffector

velocity.

9. Replanning seems not to be affected by the spacial extend of the excursions

or velocity magnitudes, but by the time needed for sensory processing and

according reaction to the unexpected situation.

10. Modelling reveals latencies of the replanning process between 130 and

250ms which match the “autopilot” threshold known from other studies

(eg. Pisella et al., 2000).



Chapter 6

Motor decisions under time

pressure

6.1 Introduction

Reaching movements are governed by mainly unconscious estimates about the

reliability of the own sensory system as well as about properties of the envi-

ronment(cf. Koerding and Wolpert, 2006). In the following, the formation and

adjustment of these estimates, more specifically the so-called prior, is examined

(cf. Fiedler et al., 2010).

The study presented in this chapter aims at showing how humans handle a

motor decision task under subjective time pressure, and at revealing the “strat-

egy” that is applied to successfully cope with the task requirements of a two-

alternative forced-choice setting. Knowledge about according regularities would

be beneficial to robotics where often hardware constraints meet time constraints

and limit the scope of applications. Heuristics inspired by nature could be of

great importance in this context.

Furthermore, a better understanding of human motor decisions plays a key

role in studying involved neural substrates during decision1 and error correction

in case of erroneous choices. The results presented here base on the experiment

described in Chapter 4 where the delay needed for visual processing serves

1See Cisek and Kalaska (2010) for a review of recent studies on the underlying neural
mechanisms, and Deco and Rolls (2005) for a mathematical framework accounting for further
effects, such as visual attention.
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as source of uncertainty. Although the necessary information for the choice

was present at the time when the decision had to be made, the bottleneck

of processing forces the participants to rely on their “general idea” about the

distribution of target locations from previous trials.

Dependent on the experimental condition (initL or initR) the distribution

of the final movement target was biased to one or the other side during the

first tens of trials. By these means it could be shown that the formation of

this “general idea” - or better: this prior - happened in dependence on previous

decisions rather than on objectively presented data.

In contrast to purely cognitive decisions (such as choosing a letter from

a set on the screen) motor decisions involve additional constraints related to

properties of the motor system that have to be considered when it comes to the

choice between different movements. The structured setup that is used for this

study helps to disentangle some aspects of decision and planning interactions

at the example of human upper limb movements by

• giving only two global movement alternatives (left or right),

• raising uncertainty by time critical presentation of information that is

crucial for the decision making, and

• potentially making use of biophysically caused movement preferences.

On this basis I discuss the role of availability of information about the en-

vironment, and of additional motor-related constraints – such as handedness

and used hand – as well as the role of attention. The reactions to wrong deci-

sions manifest as excursion into the wrong direction, or – how these traces of

replanning are called in the following – so-called “kinks” in the hand trajectory.

These replanning reactions are studied with respect to certain aspects such as

the timing of replanning and stereotypisation effects in movement choices which

then lead to a discussion of motor primitives. The in depth understanding of

the replanning process in terms of frequency of occurrence and causality can be

used as the basis for follow-up studies which target at the brain regions that are

involved in complex motor tasks.

A major distinction between the study presented in this chapter and classical

motor decision studies is the relative time pressure which was imposed to the

participants. Classical modelling using the reliability of sensor values eg. in a

Bayesian approach will not be able to fully assess all information that is used

for the decision.



I show that with rising individual time pressure (rush in execution) more and

more attention is drawn from perception towards the own behaviour which shows

stereotypical patterns (see Section 6.4.3). For subsequent trials this is shown

by statistical means in Section 6.4.1, for sequences up to a length of 30 trials

using linear autoregressive modelling of the attention span in Section 6.4.2, and

in general using a non-linear bifurcation model in Section 6.4.4. Furthermore, I

show that the “default” choice of movement direction can be influenced by an

initial directional overemphasis If this “bias” suggests a movement to the right,

it is adopted by all fast participants independent of handedness and used hand

(which are 85 percent of all sessions). The remaining slow ones show a balanced

decision behaviour without strong preference of one or the other side. If the

“bias” is in favour of the left, it only was matched by 60 percent of the fast

participants. The other 40 percent of the fast subjects chose the right side for

stereotypical repetition. The slow ones (25 percent of all sessions) again showed

a balanced decision behaviour. Again handedness and used hand do not seem

to be the major influencing variables.

6.2 Motor decisions

Motor decisions usually are studied in tasks where the individuals – be it an-

imals, be it humans – have enough time to accumulate the needed informa-

tion, and then can decide based on this material. Recent studies, for example,

Westendorff et al. (2010) and Mattia et al. (2010) focus on the involvement of

different brain areas during formation of the motor plan and its execution.

Westendorff et al. (2010) studied the relative timing of motor-goal decisions in

monkey dorsal premotor cortex and parietal reach region. During target pre-

sentation and movement execution a memory period of 800ms up to 2 s was

present up to 2 s was imposed. Mattia et al. (2010) developed an idea based on

coordinated activity of neural populations in a theoretical model, and used it

to study the temporal pattern of the involvement of different local neural pop-

ulations in motor decision processes (in a countermanding task in nonhuman

primates). In an fMRI study Soon et al. (2008) examined precursors of human

motor decisions in a “self-paced” decision task where participants were shown a

sequence of slides with letters at 2Hz as “time indices”. At any arbitrary time

they could decide to press one of two buttons. The time of the awareness of

their decision was matched with the slide that they perceived in this moment.
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Precursors of their decision could be found in their brain activity in prefrontal

and parietal cortex up to 10 seconds before the decision came to awareness.

Earliest predictive information was found in frontopolar and parietal cortex.

6.2.1 Bayesian decision theory and accumulation of evi-

dence

Bayesian decision theory suggests how the central nervous system deals with

the uncertainty that arises by noise in sensory signals and natural variabil-

ity in motor outputs (cf. Koerding and Wolpert, 2006). Koerding and Wolpert

(2006) suggest that these ambiguities are solved by means of Bayesian statistics

by assigning probabilities to the according modalities and integrating the new

information into a coherent image. That means, for the estimations of the posi-

tion of one of our limbs the felt or seen location is combined with the previously

experienced uncertainty of the involved sensory channels – which is also called

prior. Decisions then are made rationally based on cost estimates which, for

example, consider energy consumption of potential movements. The prior is

constantly adjusted to provide a solid basis for the decisions no matter whether

the situation is already known or a new movement is learnt.

Trommershaeuser (2009) stated that despite humans are bad in estimating

the frequency of rare events in cognitive decision task, they perform well in

equivalent motor decision tasks. After reformulating the problem in terms of

Bayesian decision theory, she discussed resulting insights about how humans

deal with uncertainty induced by noisy sensors during sensory-motor decisions.

6.2.2 Handedness and decisions

Not only energy consumption but also system preferences such as handedness

can influence decision behaviour. Asymmetries in limb performance and related

differences in sensory processing play an important role in the generation of

motor behaviour (cf. Goble and Brown, 2008b). The dynamic dominance theory

of handedness suggests that different sides are specialised in different aspects

of motor tasks (trajectory control vs. postural control) (see Sainburg, 2002).

Differences in sensory processing range from a longer time spent for visually

monitoring the dominant hand in bimanual reaching tasks (cf. Honda, 1982)

to different degrees of utilisation of proprioceptive feedback in the dominant



vs. non-dominant hand (for further details see Goble and Brown, 2008b), and

thereby also may influence motor decisions.

6.3 Data processing and modelling

6.3.1 Event-based data processing

Representation of presented target locations and initially chosen move-

ment direction

For an analysis of preferences in movement direction, the ’originally chosen’

movement direction behind target T1 is extracted as the direction of movement

in the first 100 ms behind target T1. Further corrections are not considered

here. On a trial by trial basis the series {x} of chosen movement directions

(also referred to as ’behaviour’) is generated to code the movement direction

behind T1:

xi =







−1, left
0, invalid
1, right

sj =







−1, left
0, centre
1, right

✞

✝

☎

✆6.1

The time series {s} furthermore denotes the presented locations of target

T2 behind the wall (also referred to as ’stimuli’). Note that {x} and {s} are

longer than 250 trials since they also contain non-valid trials for further analysis.

x̄ =
∑

xi denotes the average behavioural preference of a whole session, x̄i the

average up to trial i. s̄ and s̄j are defined accordingly.

Probability estimation based on frequencies

Accumulative averaging To monitor the global trends in a time series {y}

an accumulative average (focusing on yi = 1)

P y
R (t) =

1

t

t
∑

τ=1

δ (yτ − 1)
✞

✝

☎

✆6.2

can be chosen for all trials t. P s
R is the relative frequency of presented locations

of target T2 on the right side behind the obstacle (denoted by R). P x
R refers

to the participants behaviour and reflects the fraction of movements to the

right behind target T1. Due to the symmetry of the setup only one side of
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representation (and direction of movement) - the one encoded by 1 - needs to be

considered in this computation. From Section 4.3.2 it is clear that P s
R (t) = 0.45.

P s
L (t) = 0.45 and P s

C (t) = 0.1 for an according calculation. If on average the

participant is able to keep track of the presented series, his choices cause P x
R to

be in the expected range of 0.55+ /− 0.05 dependent on the fraction of ’centre’

presentations which also result in a rightwards movement.

On one hand, this averaging technique gives a good idea about the general

tendency in what the participant is doing, but, on the other hand, it also smears

out finer fluctuations in the directional choice towards higher trial numbers. To

compensate for this drawback, a second averaging method is chosen to study

the finer time course.

Accumulative averaging with limited window size To get a clearer idea

of what is happening during the second half of the sessions, I chose to use a

’sliding average’ that only uses data from a window of size M from the previous

trials for averaging

P y
R (t) =

1

M

M
∑

j=0

δ (yt−j − 1)
✞

✝

☎

✆6.3

6.3.2 Linear model of the decision process

Linear model of directional choices

To study the influence of presented target locations and own behaviour of previ-

ous trials on the current behaviour a linear auto-regressive model with additional

sensor input is been chosen. Consider the behaviour xt in trial t as being in-

fluenced by the p previous behaviours xt−1, ..., xt−p as well as by the current

sensor value st and the q previous ones st−1, ..., st−q.

xt =

p
∑

i=1

aixt−i +

q
∑

j=0

bjst−j

✞

✝

☎

✆6.4

When using this model with fixed values for p and q for a whole session, I refer

to it as ARMAX(p,q). When using it for smaller fractions M of data points

from a session, and then moving this window of evaluation through the data

to get an idea about the time course of the change in the coefficients, I call it

sliding ARMA, or short SARMAX(p,q,M).



Parameter adaption

For given p and q the coefficients ai, bj can be found using least square fit based

on a sufficient amount of data to average out local fluctuations.

6.3.3 Nonlinear model of the directional choice

Nonlinear model Since it is shown below (in Section 6.4.1) that P x
R does

not approach to the expected range of 0.55 + /− 0.05 on the long run I derive

a nonlinear model that accounts for ongoing internal processes leading to this

bias in choice. It may be called nonlinear dynamics model of prior formation.

The time course of the participant’s prior reflected in the initial choice of

movement direction shows two major features:

• a rather quick development towards a constant threshold during the ses-

sion, and

• a slower adjustment of this threshold between the sessions and to some

extend also during them.

It is shown in Section 6.4.1 that the directional tendency during the session is

induced by a slight bias in the presented sequence of target T2 to the left or the

right. If target T2 is slightly more often presented at the right side, then the

participant develops the strategy to take rightwards movements as the default,

i.e. P x
R (t) → 1 for many repetitions. Accordingly, P x

R (t) → 0 for a slight bias

to the left. Both fixed points are stable, given a constant P s
R (t) on the long run.

It is to assume that the presented sequence of target T2 locations is perfectly

balanced at all time scales there will be no bias in the participant’s choice of

movement directions2. In the model this can be accomplished by an unstable

fixed point at P x
R (t) = 0.5. For sake of simplicity the central presentation of

target T2 in the catch trials is neglected in this model.

Let P x
R (t) be the participant’s tendency to move to the right behind target

T1 in the t-th trial. The simplest model

P x
R (t+ 1) = F [P x

R (t)]
✞

✝

☎

✆6.5

with the above sketched features is a symmetric nonlinear dynamic with three

fixed points (see Fig. 6.1). The dynamical evolution of P x
R (t) has to be at least

2But this still would have to be confirmed, since ’perfect balance’ is practically not possible
and possible approximations would result in a completely predictable switching of locations.
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Figure 6.1: Nonlinear dynamics of prior evolution. Unstable fixed point at 0.5, stable
ones at P−∞ = 0.5− Λ and P∞ = 0.5 + Λ

a third-order polynomial of the structure

g (x) = α (x− 0.5)− β (x− 0.5)
3
+ 0.5.

✞

✝

☎

✆6.6

with α > 1, β > 0, and for convenience α = 1+ ǫ. Since one needs g (0.5) = 0.5,

as well as g (0) = 0 and g (1) = 1 to resemble experimental data, α and β depend

on each other according to

1

2
α−

1

8
β −

1

2
= 0.

✞

✝

☎

✆6.7

This finally means that

β = 4ǫ.
✞

✝

☎

✆6.8

Some experimental evidence shows that the stable fixed points are not always

exactly 1, but slightly below. To account for this, let P∞ > 0, with P∞ = 0.5+Λ

(see Fig. 6.1). Since g (P∞) = P∞ Equation 6.6 leads to

αΛ− βΛ3 = Λ,
✞

✝

☎

✆6.9

what finally means that

β =
α− 1

Λ2
=

ǫ

Λ2
.

✞

✝

☎

✆6.10

For P∞ = 1 one gets back to Equation 6.8.



It furthermore has to be ensured that the transform g (x) does not drop after

P∞. With Equation 6.6, and 6.10 one gets

g (x) = (1 + ǫ)

(

x−
1

2

)

−
ǫ

Λ2

(

x−
1

2

)3

+
1

2
.

✞

✝

☎

✆6.11

and

g′ (x) = (1 + ǫ)−
3ǫ

Λ2

(

x−
1

2

)2

.
✞

✝

☎

✆6.12

Thus, g′ (x = P∞) = 1− 2ǫ which is greater than 0 for ǫ < 0.5 what is true for

all cases.

For the practical evaluation of the model, ǫ can be assessed using

ln (1 + ǫ) =
1

τ
,

✞

✝

☎

✆6.13

with τ being the time constant of where the prior does not change significantly

anymore (cf. Nonlinear Dynamics textbooks).

Parameter estimation of nonlinear autoregressive model of the prior

Instead of manually tuning parameters after graph inspection the best ǫ, Λ and

Pstart can be found using a simple algorithm that minimises the prediction error

E =

N
∑

t=1

|Pr (t)− Pmodel
r (t) |

✞

✝

☎

✆6.14

for given search intervals and search step size for each of the parameters. Each

session is treated like this.

6.4 Results of event-based modelling

6.4.1 Stereotypical decision patterns

Bias in terms of kink counts The participants’ chosen direction of move-

ment was detected behind target T1 where they either moved to the right to

catch T2 at the right behind the wall, or to the left, respectively. Given 250

trials of which 112 to 114 were dedicated to each side, the directional prefer-

ence can be narrowed down to the error in the guess of movement direction.

Tables A.1 (condition: initR) and A.2 (condition: initL) in the appendix give

an overview of these errors which are referred to as ’kinks’ due to their shape in
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Table 6.1: Coarse classification of responsiveness to an initially overrepresentation
of one T2 location (initL - left, initR - right). Type pro-bias means preference of
that direction, anti-bias preference of the opposite, mixed indicates a mix of both
preferences in different sessions, and no bias stands for a balanced behaviour. (One
left-handed participant in initL condition in non-dominant hand is missing.)

Overall behaviour

initL
Left-handed Right-handed
dom. ndom. dom. ndom.
hand hand hand hand

pro-bias 1 1 3 2
anti-bias 1 2 1 2
mixed 1 1 - -
no bias 1 0 - -

total number 4 4 4 4
of subjects

Overall behaviour

initR
Left-handed Right-handed
dom. ndom. dom. ndom.
hand hand hand hand

pro-bias 2 3 4 3
anti-bias - - - -
mixed 2 - - -
no bias - - - 1

total number 4 3 4 4
of subjects



the trajectory3. Table 6.1 summarises the results using a coarse classification

of behaviour in terms of responding to the initially overrepresented direction in

all session (pro-bias), preferring the opposite direction in all sessions (anti-bias),

showing balanced choices throughout sessions (no bias), and different levels of

response to the overemphasised direction ranging from pro-bias to anti-bias in

different sessions (mixed).

Given initR, we can see that almost all participant – no matter whether right-

or left-handed – using either hand preferred the direction which was overem-

phasised during the first 50 trials. There was noone who preferred movements

to the opposite side. The ones who did not show this suggestibility remained

with an approximately balanced number of choices of movements to the left and

to the right.

In initL, the situation gets more complicated, and differences between sub-

jects of different handedness became apparent. All right-handed participants

got “biased” to prefer movements in one direction. Three out of four chose

the initially overrepresented direction using the dominant hand. Two out of

four chose this direction using the non-dominant hand. Whereas from the left-

handed subjects only one out of four chose to pick this direction when using

the dominant hand, and two other participants when using their non-dominant

hand. Furthermore, one participant did not get biased at all in any session in

the dominant hand, and again another subject showed the full range of getting

biased – from no bias in the first session over bias in one of the directions, then

again showing no bias, and finally a preference of the opposite direction.

In the Section 6.4.3 I come up with a discussion of this phenomenon in the

light of different amounts of attention that is drawn to visual versus kinesthetic

modalities.

Connection between movement speed and kink counts The absolute

horizontal velocity |vx| in target T1 has been shown to be related to the av-

erage performance in individual trials. Figure 6.2 now gives a first idea about

the connection of the (average) local measure and the global kink count mea-

sure. While slower movements result in a broader range of erroneous directional

choices, higher velocities typically entail a higher number of errors.

Connection between movement speed and responsiveness to direc-

tional “suggestions” Furthermore, the individual behaviour when passing

3A further working definition of the terminus was given in Section 5.3.1
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(a) Velocity in T1 affects number of errors
in movement direction, biased to the left.
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(b) Velocity in T1 affects number of errors
in movement direction, biased to the right.

Figure 6.2: Effects of passage strategy in intermediate target T1 on number of
movements that have to be corrected in direction. Velocity determines time available
for information accumulation. Circles indicate average velocity of single sessions of
individual participants. The error bar shows the trend calculated by averaging in 5
bins equally distributed between minimal and maximal velocity.

the intermediate target strongly influences the overall responsiveness to the bias.

Figure 6.3(a) and 6.3(b) show relation between the average horizontal velocity

vx in T1 and the overall probability of choosing a movement to the right in the

end of a session. Individual dots indicate single sessions of single participants.

From the average horizontal velocity of a session it is possible to predict the

average preference of the movement direction.

Local statistics and global behaviour A look on the local statistics of the

time series of each session, and the differences between them revealed a first idea

why participants get biased. Figure A.1 shows how the previously shown final

target location of the previous trial influences the choice of movement direction

in the next step. For right-handed subjects either being biased to the left or the

right, we can already see the tendency to prefer the direction of the bias from

the first session on, no matter which location of target T2 had been shown in

the previous trial. This holds for data from the dominant hand as well as from

the non-dominant hand. Preference of the biased direction further increased

throughout sessions. In left-handed participants using their dominant hand the

initial susceptibility the bias was less pronounced. In the ’right bias’ condition

a similar increase in preference of the biased direction can be found. In the ’left

bias’ condition up to now only data from two participants using the dominant
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Figure 6.3: Effects of passage strategy in intermediate target T1 on responsiveness
to initial directional bias. Velocity determines time available for information accu-
mulation. Circles indicate average delay or velocity of single sessions of individual
participants. The error bar shows the trend calculated by averaging in 5 bins equally
distributed between minimal and maximal delay or velocity.

hand, and one using the non-dominant hand is available, so it is hard to tell

whether the attenuation of the directional preference is systematic or just a

side effect of the small number of participants. Figure 6.4 further summarises

Figure A.1 by highlighting the influence of previously shown T2 location on the

preference to move towards or opposite to the initially overrepresented direction.

A coincidence of all graphs from all presentation conditions means that the

choice is independent of the presented target location.

Figure 6.5 summarises Figure A.2 from the Appendix, and provides insight

on the question whether participants just tend to chose the same movement

direction as in the previous trial. One might get this suspicion since it would

serve as a simple “explanation” for the setup using an initial overrepresentation

of one direction. Each graph in Figure 6.5 shows the difference between the

probability to chose the same movement direction again and to do chose the

opposite one. Thus, values around zero indicate “balance” between doing the

same thing again and doing the opposite. Positive values stand for the tendency

to repeat the same movement again and again, negative values indicate the in-

clination to try a movement to the other side in the next trial. Note that “same”

and “opposite” always refers to the previously chosen movement direction (red

graph: left, green graph: right). So, positive values in the green graph indicate

a preferred choice of movements to the right, negative values in the green indi-
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(b) Condition initR.

Figure 6.4: Consistency of directional choices in subsequent trials evaluated in rela-
tion to the ”biased” direction. Difference of pro- and anti-”bias” choices of movement
direction. In subfigures: Different graphs show different conditions of previously shown
target T2 location. Data is split by handedness and used hand: The left column con-
tains data for left-handed participants, right one for right-handed, respectively.

cate the same. Hence, symmetry with respect to the abscissa between the two

graphs shows a strong preference of one direction. Coincidence of both graphs

indicates the same underlying strategy for both directions of movements.

In the condition initR (Figure 6.5(b)) a clear preference to repeat rightwards

movements can be read from the positive values in the green graphs and the

negative ones in the red ones for right-handed participants using both hands,

as well as left-handed participants using the non-dominant hand. An exception

are the left-handed subjects using their dominant hand. Throughout all sessions

they showed balanced choices of same and opposite movement direction, given

a movement to the left in the previous trial. This suggests that there is a weak

contribution of handedness.

Figure A.2 illustrates the dependence of directional choice on previously

preferred movement direction. It raises further ideas about the tendencies found

in Figure A.1, which dealt with sensory data.

For studying possible reasons of the bias in kink counts in dependence on

bias in the presented series of target T2 locations and on other parameters such

as handedness and used hand the limit probability P x
∞

is calculated. It not only

comprises kinks but also direct movements to the right, and cases of a central

target T2 in which a rightwards movement is chosen. Dotted graphs in Figures

6.15 and 6.16 show P x
∞

for each participant of the biased-to-the-right condition.

(Figures 6.17 and 6.18 show the results for bias to the left.) The upper row
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Figure 6.5: Consistency of directional choices in subsequent trials evaluated in rela-
tion to the ”biased” direction. Difference of pro- and anti-”bias” choices of movement
direction. Different graphs show different conditions of cased of previously chosen
movement direction. Data is split by handedness and used hand: The left column
contains data for left-handed participants, right one for right-handed, respectively.

contains data from the dominant hand, the lower from the non-dominant one.

In most participants P x
∞

saturates up to a value significantly distinct from the

expected range of 0.5+/−0.05. Major exceptions are the right-handed KF using

the left hand and the left-handed MT using the left hand (who did not converge

to one decision pattern but changes them throughout sessions). Furthermore,

there are tendencies to stay with P x
∞

close to 0.5 + /− 0.05 in the first session

of the right-handed CK using the left hand, the beginning of first session of

the right-handed DB using the right hand, and in the first two sessions of the

left-handed SA using the left hand. This suggests that hand usage may play a

role. But it does not look like the only influencing parameter.

6.4.2 Linear model of attention span

Error pattern from linear modelling The usage of the ARMA model with

different window sizes can be understood as a local examination of (maybe sub-

conscious) attention windows in the presented sequence of target locations as

well as in the own decision behaviour. The resulting error pattern provides - sim-

ilar to recurrence plots (Eckmann et al., 1987) - ’hidden’ information about the

two time series. Figure 6.6 summarises two specific cases of decision strategies.

Figure 6.6(a) depicts the ARMA error pattern for artificial data with an un-

derlying oscillating choice of movement directions, that repeats every 15 trials.
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Figure 6.6: Illustration of the average “decision behaviour” of oscillating or random
choices of movement direction in terms of estimated prior and ARMA error pattern.

This period is visible in the error cutoff at a behavioural window size of about

15. Figure 6.6(c) shows the resulting average error pattern of ten randomly

generated sequences of left- and rightwards movements. This strategy results in

a bar of high error aligned with the behavioural axis. Further perceivable sim-

ple strategies4 can be discussed as limit cases of the above discussed strategies:

The alternating choice of left and right in subsequent trials would result in an

oscillation with period 2, a constant choice of only rightwards movements would

have period one, resulting in the narrow bars of the respective width aligned

with the sensory axis.

The resulting modelling errors for the application of the model with differ-

ent time horizons to the data from biasing-to-the-right sessions is depicted in

Figures A.5, A.6, A.7 and A.8, for biasing-to-the-left in Figures A.9, A.10, A.11

and A.12. ’Memory’ of the own behaviour p (ordinate in figures) as well as the

history q of the series of T2 locations (abscissa in figures) ranges from one to

30 steps back. Four subfigures in a row represent four sessions of one subject.

Colour code is kept constant across for all subfigures (red indicates a high, blue

low modelling error). In both figures data from three different subjects (con-

dition: bias to the right) is depicted. The left block of sessions was produced

using the dominant hand, the right block using the non-dominant one.

The modelling error diagrams provide an overview of the dynamics of the

prior development. High modelling errors for a few steps back in behavioural

history but for all depicted window sizes of sensory history (i.e. lines parallel

4They are so low-dimensional that the estimation of the according ARMA coefficients (cf.
Section 6.3.2) would become singular.



to abscissa) indicate a behaviour that is mainly focuses on what has been done

in previous time steps throughout the session. This kind of time series is rather

easy to predict. If some sensory history is considered, the plot shows an ap-

proximately rectangular or triangular shape of the high modelling errors. This

kind of more ’grounded’ behaviour leads to responsiveness to the bias. Linear

predictability is still good. More complex behaviour, such as no final settling

with a strategy (which means that there is no convergence to an average ratio

of choosing one or the other direction of movement, i.e. P∞ keeps on drift-

ing), results in sudden error in- and decreases in for some window sizes, visually

noticeable as ’bands’ (cf. first session of the first participant in Figure A.12).

In the right-handed participants and for the majority of the left-handed ones,

it can be seen that the modelling error mainly depends on the size of the time

window p in the own behaviour. This suggests that the participants mainly

focus on their behaviour from previous sessions, and less on the target location

that is actually presented.

However, there is a small number of sessions where q does play a role (e.g.

in participant MT of the left-handed ones). These participants also produce a

lower P x
∞
. This may rise the idea that this limit probability changes dependent

on the intersection with abscissa of a line separating low from high modelling

error.
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Figure 6.7: Average weight
of currently presented target
location in dependence on the
velocity in target T1. Data
points show average values of
single sessions of all partic-
ipants who were biased to
the right. Error bars present
the averages of 14 bins along
speed axis.

The left subfigure of Figure 6.7 furthermore suggests that there is no direct

connection between movement speed in target T1 and the average responsive-

ness to the current stimulus. The extent of attention drawn to the perceived

location of target T2 in the previous trial drops for speeds higher than 1.2 unit-
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s/s. The right subfigure supports the criticality of this speed threshold. For

slower movements all kind of coefficients (mainly between 0 and 1 since partic-

ipants tend to follow their previous initial action in at least a fraction of the

trials) can occur, showing the individual differences in decision strategy, whereas

participants tend to stick stronger to their previous action when executing for

faster movements.

Sensor-behaviour tradeoff For a first-order approximation to the behavioural

dynamics ARMA was applied with only one step of behaviour and sensor mem-

ory (p = 1, q = 1). Interestingly, in all subjects both resulting sensor coefficients

b0 and b1 are way lower than the behaviour coefficient a1. A low b0 is to be

expected, since it simply indicates that there is not enough time to process the

presented location of target T2. In general the large difference a1 − b1 shows

the great emphasis on one’s own behaviour. It furthermore relates to the limit

probability P x
∞

as suggested in Figure 6.8: The greater the focus on one’s own

behaviour is on average, the larger is P x
∞
. This gives a possible explanation

(or better: hypothesis) for the sensitivity to an initial bias. The participants

perceive some properties of the time series and then gets stuck with their “con-

clusion” from it which then gets amplified in the “behaviour loop” (see Section

6.3.3 for a extension of this idea).

Do modelling errors reveal differences in motor decision strategy?

The significant drop of the modelling error for sensor window sizes smaller than

30 (cf. Figures A.5, A.6, A.7 and A.8) in some participants which seems to

coincide with a matching P x
∞

indicates that they do memorise and consider

sequences of perceived stimuli to a certain extend. Intuitively, this fact may

result in a less stereotypical choice of movement direction behind target T1.

6.4.3 Correctness vs. simplicity under time pressure

Figure 6.8 and 6.9 show the relation between P∞ and the differences a1 − b0

(left subfigure) and a1−b1 (right subfigure). It can be seen that for usage of the

right hand when being confronted with a bias to the right, participants easily

get stuck with the bias to that side, however, using the left hand does not as

frequently lead to susceptibility to the bias. Furthermore, different levels of

responsiveness to the bias can be seen. If one thinks of a1 − b1 as the difference

in emphasis between the own behavioural tendency (behind target T1) in the
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Figure 6.8: Linear dependence, condition bias to the right: Relation between limit
prior and the differences of coefficients from linear prediction of behaviour with p = 1
and q = 1. Subsubplots indicate handedness and hand usage: Top left: Left-handed
using dominant hand. Top right: Right-handed using dominant hand. Bottom

left: Left-handed using non-dominant hand. Bottom right: Right-handed using
non-dominant hand.
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Figure 6.9: Linear dependence, condition bias to the left: Relation between limit
prior and the differences of coefficients from linear prediction of behaviour with p = 1
and q = 1. Subsubplots indicate handedness and hand usage: Top left: Left-handed
using dominant hand. Top right: Right-handed using dominant hand. Bottom

left: Left-handed using non-dominant hand. Bottom right: Right-handed using
non-dominant hand.
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previous time step (represented by a1) and the perception in the previous trial

(represented by b1), there is a connection between this focus on the modality

and the frequency with which participants end up to have moved to the right

in a session. The stronger they rely on what they have done in the past, the

stronger the initial bias is able to influence their behaviour.
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Figure 6.10: Condition bias to the right: Relation between the differences of coeffi-
cients from linear prediction of behaviour with p = 1 and q = 0, and the velocity in
target T1. Subsubplots indicate handedness and hand usage: Top left: Left-handed
using dominant hand. Top right: Right-handed using dominant hand. Bottom

left: Left-handed using non-dominant hand. Bottom right: Right-handed using
non-dominant hand. Colour code is used for participants: Right-handed: blue - CK
red - EE, green - DB, magenta - KF. Left-handed: cyan - BK, black - SA, yellow -
MT, white - JS.

Furthermore there is a connection between movement speed and overall limit

probability (as Figure 6.12 suggests). From the left subfigure it can be seen

that for higher movement speed (above 1.2 units/s) an initial biasing to the

left in general leads to an increased preference to move to the left, and initial

overemphasising of the T2 location at the right causes participants to produce

more rightwards movements. This can be seen as another hint towards the

idea that the strategy (more attention to visual evidence versus greater focus

on own behavioural tendencies during previous trials) does influence the final

overall behavioural performance.

Furthermore, the right subfigure of Figure 6.12 allows a more detailed anal-

ysis of this phenomenon with an eye on handedness and used hand. If the

direction of the bias agrees with the used hand in general a behaviour with

accordingly absolute values of P∞ is shown. If the direction of bias does not
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Figure 6.11: Condition bias to the left: Relation between the differences of coeffi-
cients from linear prediction of behaviour with p = 1 and q = 1, and the velocity in
target T1. Subsubplots indicate handedness and hand usage: Top left: Left-handed
using dominant hand. Top right: Right-handed using dominant hand. Bottom

left: Left-handed using non-dominant hand. Bottom right: Right-handed using
non-dominant hand. Colour code is used for participants: Right-handed: blue - DL,
red - JA, green - KW, magenta - MB. Left-handed: cyan - BK2, black - MB, yellow -
RW, white - YB.

coincide with the used hand, only higher velocities result in high (right-biasing)

or low (left-biasing) P∞. In this condition slower velocities result in a mixed

behaviour with movement preferences in varying degrees of P∞. This suggests

that another tradeoff is considered. For example, slower velocities allow sensory

information to be considered earlier.5

6.4.4 “Internal” dynamics subserving directional choice

Nonlinear autoregressive modelling

The results of an unrestricted parameter optimisation6 for ǫ, Λ, and Pstart as well

as the resulting prediction error are summarised in Figure 6.13 for bias to the

right, and Figure 6.14 for bias to the left. Subplots contain data in dependence

on handedness and used hand: upper row shows parameters for dominant hand,

side of columns corresponds to which hand is dominant. Table 6.2 and 6.3

show the exact values, and give an overview of the development of the average

5In general this is feasible to at least some extend due to the 350ms ’long’ time window
for leaving the proximity of target T1.

6’Unrestricted’ means that Pstart < P∞ are admissible.
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Figure 6.12: Left: Relation between P x

∞
and average velocity on arrival in target

T1 for each session by all participants. Data is split by imposed bias: initial bias
to the left (red) or to the right (blue). Right: Same as on the left, but split by
handedness and used hand: Upper row: Bias to the right. Lower row: Bias to
the left. Left column: Left-handed participants. Right column: Right-handed
participants. Data from usage of dominant hand is depicted with dots, data from
usage of nondominant hand is depicted with circles.

parameters ǫ, P∞, and Pstart over sessions, grouped by handedness and used

hand. Figures 6.15 and 6.16 show data and model of the process for bias to the

right, Figures 6.17 and 6.18 for bias to the left.

This phenomenological model suggests that there is a stronger influence of

the parameter used hand on the behaviour than of the parameter handedness.

In the biasing-to-the-right condition participants who use the right hand quicker

stick to the bias than the ones using the left hand. This suggests that effects of

hand usage dominate the ones of handedness.
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Figure 6.13: initR Left: Model parameters ǫ (blue), Λ (red) and Pstart (green) for
unrestricted nonlinear dynamics model as a function of sessions. Right: Averages. Left
and right subplots are split by handedness and used hand: Upper left subsubplot: left-
handed subjects using their left hand. Upper right subsubplot: right-handed subjects
using their right hand. Lower left subsubplot: left-handed subjects using their right
hand. Lower right subsubplot: right-handed subjects using their left hand.
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Figure 6.14: initL Left: Model parameters ǫ (blue), Λ (red) and Pstart (green) for
unrestricted nonlinear dynamics model as a function of sessions. Right: Averages. Left
and right subplots are split by handedness and used hand: Upper left subsubplot: left-
handed subjects using their left hand. Upper right subsubplot: right-handed subjects
using their right hand. Lower left subsubplot: left-handed subjects using their right
hand. Lower right subsubplot: right-handed subjects using their left hand.
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Table 6.2: Accumulative averaging for P x

r : Overview of the development of the
average parameters ǫ, Pstart and P∞, and summed modelling error over sessions,
grouped by handedness and used hand, condition bias to the right. Column “H”
indicates handedness, columns “HU” informs about hand usage.

ǫ
H HU Session 1 Session 2 Session 3 Session 4
R R 0.26 +/- 0.18 0.38 +/- 0.14 0.47 +/- 0.17 0.50 +/- 0.00
R l 0.29 +/- 0.28 0.34 +/- 0.21 0.39 +/- 0.43 0.33 +/- 0.22
L L 0.42 +/- 0.29 0.14 +/- 0.09 0.15 +/- 0.09 0.19 +/- 0.17
L r 0.35 +/- 0.26 0.35 +/- 0.26 0.33 +/- 0.14 0.27 +/- 0.23

Pstart

H HU Session 1 Session 2 Session 3 Session 4
R R 0.61 +/- 0.06 0.90 +/- 0.06 0.91 +/- 0.07 0.89 +/- 0.07
R l 0.68 +/- 0.20 0.71 +/- 0.21 0.75 +/- 0.23 0.84 +/- 0.23
L L 0.56 +/- 0.05 0.61 +/- 0.23 0.71 +/- 0.28 0.74 +/- 0.25
L r 0.73 +/- 0.16 0.92 +/- 0.06 0.95 +/- 0.00 0.95 +/- 0.00

P∞

H HU Session 1 Session 2 Session 3 Session 4
R R 0.80 +/- 0.06 0.93 +/- 0.03 0.94 +/- 0.06 0.94 +/- 0.08
R l 0.77 +/- 0.18 0.83 +/- 0.18 0.85 +/- 0.20 0.88 +/- 0.22
L L 0.69 +/- 0.10 0.71 +/- 0.17 0.86 +/- 0.10 0.89 +/- 0.07
L r 0.87 +/- 0.03 0.95 +/- 0.05 0.97 +/- 0.03 0.97 +/- 0.03

error
H HU Session 1 Session 2 Session 3 Session 4
R R 11.17 +/- 7.83 7.38 +/- 1.28 4.95 +/- 3.81 5.97 +/- 3.63
R l 12.63 +/- 8.32 6.21 +/- 3.68 7.32 +/- 4.07 4.95 +/- 3.75
L L 13.11 +/- 5.16 13.83 +/- 9.64 6.90 +/- 0.86 8.60 +/- 2.63
L r 7.79 +/- 1.41 7.15 +/- 0.90 3.60 +/- 3.03 8.19 +/- 1.78



Table 6.3: Accumulative averaging for P x

r : Overview of the development of the
average parameters ǫ, Pstart and P∞, and summed modelling error over sessions,
grouped by handedness and used hand, condition bias to the left. Column “H” again
indicates handedness, columns “HU” informs about hand usage.

ǫ
H HU Session 1 Session 2 Session 3 Session 4
R R 0.35 +/- 0.37 0.52 +/- 0.09 0.29 +/- 0.25 0.30 +/- 0.23
R l 0.28 +/- 0.19 0.34 +/- 0.20 0.50 +/- 0.00 0.50 +/- 0.00
L L 0.35 +/- 0.27 0.50 +/- 0.00 0.34 +/- 0.21 0.31 +/- 0.21
L r 0.35 +/- 0.35 0.19 +/- 0.21 0.08 +/- 0.03 0.26 +/- 0.25

Pstart

H HU Session 1 Session 2 Session 3 Session 4
R R 0.36 +/- 0.21 0.29 +/- 0.23 0.33 +/- 0.15 0.34 +/- 0.18
R l 0.37 +/- 0.24 0.42 +/- 0.47 0.37 +/- 0.51 0.38 +/- 0.49
L L 0.60 +/- 0.24 0.47 +/- 0.43 0.54 +/- 0.32 0.61 +/- 0.29
L r 0.54 +/- 0.06 0.60 +/- 0.16 0.53 +/- 0.17 0.57 +/- 0.26

P∞

H HU Session 1 Session 2 Session 3 Session 4
R R 0.72 +/- 0.19 0.81 +/- 0.17 0.80 +/- 0.12 0.86 +/- 0.05
R l 0.80 +/- 0.18 0.97 +/- 0.03 0.98 +/- 0.03 0.95 +/- 0.05
L L 0.78 +/- 0.18 0.92 +/- 0.03 0.86 +/- 0.07 0.81 +/- 0.09
L r 0.69 +/- 0.06 0.76 +/- 0.17 0.74 +/- 0.22 0.80 +/- 0.18

error
H HU Session 1 Session 2 Session 3 Session 4
R R 15.71 +/- 2.76 9.69 +/- 3.43 7.90 +/- 2.90 9.52 +/- 3.39
R l 17.77 +/- 16.01 4.39 +/- 2.92 5.07 +/- 2.24 4.99 +/- 3.93
L L 9.49 +/- 2.21 12.63 +/- 6.60 11.02 +/- 2.95 11.01 +/- 5.61
L r 19.88 +/- 6.21 12.75 +/- 5.89 11.00 +/- 5.03 10.11 +/- 7.76
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Figure 6.15: Nonlinear modelling of prior in right-handed subjects (limited to 250
trials), condition: bias to the right. Dots - real prior. Line - model. Four sessions
per subfigure (1st - blue, 2nd - red, 3rd - green, 4th - magenta). Left column contains
data from dominant hand of participant, right column data from non-dominant hand.
Each row is a new participant (CK, EE, DB, KF).
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Figure 6.16: Nonlinear modelling of prior in left-handed subjects (limited to 250
trials), condition: bias to the right. Dots - real prior. Line - model. Four sessions
per subfigure (1st - blue, 2nd - red, 3rd - green, 4th - magenta). Left column contains
data from dominant hand of participant, right column data from non-dominant hand.
Each row is a new participant (BK, SA, MT, JS).
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Figure 6.17: Nonlinear modelling of prior in right-handed subjects (limited to 250
trials), condition: bias to the left. Dots - real prior. Line - model. Four sessions per
subfigure (1st - blue, 2nd - red, 3rd - green, 4th - magenta). Left column contains data
from dominant hand of participant, right column data from non-dominant hand. Each
row is a new participant (DL, KW, MB, JA).
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Figure 6.18: Nonlinear modelling of prior in left-handed subjects (limited to 250
trials), condition: bias to the left. Dots - real prior. Line - model. Four sessions per
subfigure (1st - blue, 2nd - red, 3rd - green, 4th - magenta). Left column contains data
from dominant hand of participant, right column data from non-dominant hand. Each
row is a new participant (BK2, MG, RW, YB).
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6.5 Summary of event-based analysis

Since the participants’ motor decisions had to be made in a limitted amount

of time, not only “classical” dimensions like reliability of sensory data has to

be considered but also the individual internal “idea” about the scene plays an

important role. Participants did not have enough time for sensing carefully, so

they had to guess based on the information accumulated during previous trials.

Interestingly, it turned out that there is no direct reference to these previ-

ously presented target locations (and also not to sliding averages of the occu-

rance). Instead, stereotypical choice pattern which are grounded in the own

behavioral history emerged and manfested throughout the sessions.

The faster the movements were executed – which coincides with less time

available for proper processing of the real locations of the final movement tar-

get – the stronger particpants preferred a single movement direction (to the

left, or to the right). For an initial overemphasis the right target position all

participants consistently got stuck with this direction, if the showed stereotyp-

icity. For an initial overrepresentation of final movement targets on the left side

behind the obstacle only a fraction of all “biased” participants chose to stick

to this side. This phenomenon appeared to be independent of handedness and

used hand. This may give rise to the conjecture, that the “defualt” direction is

chosen according to our experience in everyday life where in our Western cul-

ture7 the direction towards the right is emphasised strongly (reading direction,

pointing of axes and timelines).

Linear modelling revealed that those who do not end up completely biased,

show a pattern in their prior evolution that is not linearly capturable with

a consistent performance (cf. Section 6.4.2). Due to the complexity in their

strategy and possibly ongoing strategy changes, also the non-linear model shows

medium performance.

Under time pressure participants showed a partial neglect of sensory – here:

visual – information and a focus on the own rather repetetive behaviour. This

suggests that motor decisions are not only based on sensory data and according

reliability estimates in combination with costs of potential movements. The

decisions are but also influenced by task restrictions and “heuristics” which

may be difficult to be implemented in terms of Bayesian decision theory.

7Most of the participants came from Germany, one from Belarus, and one from Turkey.



The results suggest that in cases of time pressure only a tiny patch of in-

formation about the environment is picked up and then amplified to serve as a

decision heuristics, if the according costs for replanning are bearable.

Major findings of this study are:

1. Repetitious tasks are solved by withdrawing perceptual attention and sub-

stituting it by simpler internal dynamics as a first approximation to the

external demands and according error corrections if necessary. (Sections

6.4.2 and 6.4.3)

2. Decisions can be influenced by small biases in the presented stimuli. (Sec-

tion 6.4.1)

3. The processes underlying this evolution of a prior that allows this kind

of biasing can be accomplished using a nonlinear model of the symmetry

breaking in the decision task.
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Chapter 7

Overall summary

Humans constantly interact with their environment for instance by producing

a vast variety of arm postures and movements. Besides spatial and temporal

accuracy often the stability against external disturbances plays an important

role in the complex tasks of everyday life. Arm stiffness is an important quan-

tity to study endeffector stability. It quantifies the relation between the force

strength of the external disturbance and the resulting displacements of the limb,

hence, it summarises the aspects of the spring-like behaviour of the limb. Clas-

sically, it was estimated in single joint postures (Feldman, 1966; Bizzi et al.,

1984) and in postures throughout a horizontal plane in front of the shoulder

(Mussa-Ivaldi et al., 1985). Further approaches examined the stability during

planar movements and, apart from stiffness, also identified inertia and viscos-

ity (Tsuji et al., 1995; Gomi and Kawato, 1996). By utilizing a rotatable plane

as measurement space stiffness estimates in three dimensions became possible

(cf. Acosta et al., 2000). However, due to the complex custom-made setup it is

difficult to transfer this method to other fields of application in other places.

For studies of arm postures throughout the natural workspace it is desirable

to assess stiffness patterns in more than two dimensions. The resulting knowl-

edge about arm stiffness in 3D not only may help to understand the utilisation

of the multiple degrees of freedom in the human arm during simple tasks of

everyday life, but also serve as basis for movement studies where the role of dy-

namic stability is explored in the interplay between static stiffness components

and dynamically arising forces. Unfortunately, only few labs, who may be inter-

ested in combining stiffness measurements with other techniques of studying the



human sensorimotor system, are equipped with such highly developed custom-

made devices required for existing approaches. The development of simplified

measurement technique, which could be implemented rather easily in different

labs, would help to integrate stiffness into various setups targeting other motor

control related aspects (for example by means of TMS).

These two key points – the need for a third dimension in stiffness measure-

ments and the need for a transportable setup using out-of-the-shelf device –

incited me to come up with a stiffness measurement method, which can be used

in the redundant arm to assess endeffector stiffness in a Cartesian coordinate

frame attached to the hand. I developed a protocol that uses force-induced

displacements into twelve directions in hand space, and a method of assessing

the reliability of the estimated stiffness matrix.

It is not trivial that such a procedure works in the redundant human arm for

the following two reasons: Firstly, in the majority of the experiments only the

hand position was defined. There were no further instructions how to choose

the missing degree of freedom1. Secondly, the probands were not even pointed

to this underdetermination. Interestingly, it turned out that all subjects per-

fectly managed to consistently repeat the same posture given “natural defaults”

over and over again throughout 120 repetitions for a given hand location (see

Sections 2.3.2 and 3.2.1).

Moreover, further restrictions to achieve a completely defined arm posture

lead to severe difficulties in the task. Under these circumstances, subjects found

it difficult to repeat the measurement even only 60 times per given posture. The

additional refinement in posture definition seems to intervene in natural fatigue

compensation mechanisms. This finally leads to a reduced operationality of

the according “posture protocol”, so that can be absolved only by athletes (cf.

Section 3.2.4. Nevertheless, the “position protocol” works fine also in näıve

subjects under different degrees of distraction from the actual motor task.

Two methods of distraction were tested: a) counting “one, two, three” and

b) reading English words from the screen. Both were successfully used in more

than 10 participants. The major distinction between counting and reading was

the completion time of the task. While counting on average could be finished

within 2 to 2.5 s, for reading a time of up to 3 s had to be granted. These differ-

ences in temporal performance can serve as a guideline for future applications

of the presented task variations: In challenging experiments producing massive

1Joint space in the experiments comprised three degrees of freedom at the shoulder and
one at the elbow.

105



amounts of data per participant, it is more appropriate to limit the distraction

task to counting to give the subjects time to keep their state of motivation con-

stant. On the other hand, in experiments that aim to show regularities across

a big population of individuals, the reading task should be employed. This

would foster the interestingness of the experiment and also disguise the actual

variables of interest.

It should be remembered that arm stiffness is rather fragile to voluntary

corrections by the participants in case of a strong focus on what is going on

with their hand. Unfortunately, this vulnerability cannot be excluded from the

presented method. Any improvement in this context would require the produc-

tion of relatively high forces at high frequencies, as done by Acosta et al. (2000).

But even these approaches still suffer from the susceptibility to cocontraction

and other voluntarily controllable and even subconsciously produced2 changes

in muscle activation, which then directly influence arm stiffness.

The application of the introduced method using predefined hand positions

in the natural workspace of the human arm lead to stiffness estimates that

show a strong position dependence. This is consistent with classical studies

(Mussa-Ivaldi et al., 1985) that stated the dependence of arm stiffness on arm

configuration. But in contrast to those studies on the human arm kept in a

horizontal plane at shoulder height I found endeffector stiffness aligned with

forearm direction rather than with the hand-shoulder axis. This suggests a low

effect of elbow stiffness and two-joint muscle contribution to the overall stabil-

ity, while a higher stiffness is kept at the shoulder. This finding is consistent

with a recent study by Krutky et al. (2010), who mainly concentrate on the

sensitivity of stretch reflexes in the human arm to interactions between limb

and environmental mechanics. The difference between stiffness orientation in

an arm restricted to a plane and an arm acting in the natural workspace is likely

to be modulated by the different activation pattern of the involved muscles. In

planar studies the arm was supported by a rope from the ceiling, which carried

a significant amount of the weight of the arm so that muscles mainly reacted

to externally imposed changes in their length (Flash and Mussa-Ivaldi, 1990).

Unfortunately, I could not experimentally tackle this question of the involve-

ment of different groups of muscles in supported versus unsupported postures

in the horizontal plane at shoulder height, because the unsupported condition

would require a number of highly trained participants, who can stand the highly

2Such alterations, for example, can be made in reaction to individually perceived instabil-
ities, as the studies in Franklin et al. (2007) suggest.



repetitive procedure in arm postures which usually are not adopted in everyday

life.

In another set of experiments I examined the effect of a constantly acting

external force field on arm stiffness. Flash and Gurevich (1991) suggested that

the additionally arising torques are compensated at joint level by a linear super-

position of the individual joint contributions. They showed that this mechanism

results in an unchanged endeffector stiffness compared to force-free cases. Cru-

cially, their modelling was conducted in joint space. The calculation of the joint

angles corresponding to a given hand displacement is straightforward in the

nonredundant case. In the redundant case additional assumptions about the

choice of the “missing” degree of freedom would have to be made to derive joint

angles as well as a regularised inverse of the Jacobian for stiffness transformation

(cf. Section 2.2.3). In my experiments endeffector stiffness indeed turned out

to be invariant under external force fields of different strengths and directions

(cf. Section3.2.3).

Although participants did not perceive the procedure as severely more tiring,

data showed an increased variability resulting in less reliable stiffness estimates.

For a transformation of the results into joint space reliable estimates of the joint

angles are needed. In principle this is accomplishable, since the manipulandum

tracks position and orientation of the handle. Yet practically the transformation

of these data to joint angle estimates does not lead to the desired results. The

non-neglectable variability in nevertheless consistent of grasping the handle of

the machine3 results in a variability in handle orientations, which then is further

amplified by the nonlinear transformation into joint space of the human arm.

An additional source of uncertainty are the anthropomorphic measurements,

which have to be carried out to assess a) the exact location of the participants

shoulder relative to the machine, b) upper arm length, and c) forearm length.

Taken together, the resulting variability countermines further analysis of the

recorded stiffness patterns in joint space.

This limitation to the applicability of the presented approach – when it

comes to high precision joint space analysis – can be compensated by additional

joint angle estimation using optical tracking methods4. Therefore, the devel-

oped technique of stiffness measurements could be an interesting augmentation

of studies that deal with motor control related questions in laboratories that

3“Consistent” shall be understood according to the definition in Equation 2.1.
4Due to the massive amount of metal used in the SensAble Phantom 3.0 6DoF one has to

refrain from using magnetic trackers.
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are not exclusively focused on high-precision stiffness estimates but more in-

terested in the general picture how stiffness varies in the execution of tasks of

the everyday life and how according stiffness patterns then could be utilised

for robot control. The knowledge about naturally arising static and dynamic

stability and how it can be utilised for facilitating the successful completion of

specific actions is of great importance to the safety and acceptability of robotic

systems. By providing means to assess endeffector stiffness in three-dimensional

space even in laboratories that are not specialised on high-performance stiffness

measurements the approach, which I presented, can help to increase this safety

and acceptability.

The motor systems of higher life forms is highly organised and able to gen-

erate appropriate movements in a vast variety of situations. This flexibility

and optimality always stimulated robotic approaches and already resulted in a

high number of fascinating applications, like the salamandra robot using neu-

romechanical simulations by Ijspeert (2001) or the RunBot, which is the world’s

fastest running robot, using a combination of reflexive and adaptive neuronal

control schemes by Manoonpong et al. (2007).

Control strategies employed by the human motor system may especially pro-

vide new ideas for control principles of prostheses and even robot arms. To ap-

propriately study various characteristics of human arm movement an adequately

configurable framework is needed. For my studies presented in this thesis a

toolbox for the generation of various movement tasks in three-dimensional end-

effector space was developed (cf. Section 4.2). This toolbox contains a number

of preconfigured experiments involving point-to-point and via-point movements

as well as a a custom-made script language that can be used to configure own

experimental paradigms. (cf. Section A.4.2). The resulting visual scene is

rendered as a virtual reality and can be displayed on almost arbitrary devices5.

Usually computational models of human decision behaviour take a rather

long time until they produce the desired output, because computation time

increases exponentially with the complexity of the decision problem. Their

performance can be enhanced by the usage of heuristics. These strategies serve

as guidelines for good decisions, e.g. by providing optimised starting values for

employed algorithms, and are often inspired by human decision behaviour. In

5For the presented experiments a computer screen was used. In a number of further exper-
iments also head-mounted video glasses showed a great performance and helped to suppress
visual feedback of the arm.



robotics, control principles often rely on a full model of the available hardware

(or body) and decisions have to be made on the basis of numerical solutions

of the according differential equations. If time is limited these approaches may

reach their limits in terms of computation time. Heuristics, which could serve

as sources of naturally inspired default values, may help at this point. They

can be derived from the optimal solutions humans come up with in motor tasks

under time pressure.

The study presented in this thesis targets at understanding such “heuristics”

in human decision behaviour. For this purpose a two-alternative forced-choice

motor task was implemented in the above mentioned framework. Participants

performed obstacle avoidance in combination with a via-point task. Each trial

started with a downward movement towards an intermediate target. When ar-

riving at the via-point the location of the final target is revealed which indicates

whether the obstacle was to be circumvented on its right or left side. The task

was spatially symmetric. The participants had to take the shortest way towards

the final movement target. Movements that were initiated into the wrong direc-

tion had to be corrected by a turnaround. Providing information that is crucial

for the successful completion of the trial at a well-defined instant of time helped

to disentangle the participants initial idea about the final movement target lo-

cation and their sensory-motor reaction to the actually presented one, especially

in cases of erroneous decisions. To induce time pressure during execution of the

trials a “time tolerance band” was introduced. This rectangular area around

the intermediate target had to be left within 350ms6.

In this setup decision behaviour may have been influenced by several pa-

rameters, of which I will only name some in the following. The frequency of

occurrence of the final movement target certainly plays a role. There also may

be hardware-related preferences, such that the usage of the right hand may

enforce movements to the right, and vice versa. An additional regulating pa-

rameter could be the time available for the decision, which also may also be

associated with the reliability of the gathered information. A further source

of influence is the complex phenomenon of history-dependence in the system.

Current decisions may be affected by the stimuli that have been perceived and

movements that have been executed in the past. There are different ways how

the system could keep track of this history: Evidence needed for decisions could

6This time threshold was experimentally derived and matched best the tradeoff between
urging the participant to move smoothly through the via-point and causing frustration because
of too strict requirements for the successful completion of trials.
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be accumulated a) in total, or b) over a finite time window. Furthermore, effects

of forgetting – which would downscaling of the importance of “older” informa-

tion – could be present in various possible “implementations”. For combinatory

reasons only a small fraction of combinations of the above mentioned aspects

could be considered in the present study.

Due to the strong history-dependence of the human motor system – ranging

from learning effects to altered modulation of contractile response of muscle fi-

bres in dependence on their previous activation (cf. Nigg et al., 2000)– I decided

to concentrate on the processing of the presented target locations and the role of

perceptual and behavioural history. For this reason the time series of presented

locations of the final movement target was chosen to be “balanced”, that means

final movement targets occurred equally often on the left and on the right side

behind the obstacle. Moreover, the exact structure of the long7 time series was

kept constant across sessions and participants. This way I excluded averaging

phenomena due to different local subsequences. The exact “time course” of

the series was chosen such that it contained an initial overrepresentation of one

target location during the first tens of trials (sessions with overhang to the left

were called “initL” and with an overhang to the right “initR”). To study the

role of handedness and hand usage all experiments were conducted in left- as

well as right-handed individuals, both using their dominant and non-dominant

hand.

First of all, participants managed to mainly produce successful trials (with

on average only five percent invalid ones) but were not able to report about

the shape of the tolerance region. They only reported an overall feeling of rush

or time pressure. But although all participants were confronted with the same

time restriction they came up with a spectrum of “solutions” to the motor task.

When taking the average horizontal velocity in the via-point as a measure of

execution speed8 and, furthermore, considering the peak velocities of the direct

movements around the obstacle it can be seen that usually slow passage of the

intermediate target coincided with lower peak velocities, and faster passage was

accompanied by high higher ones (cf. Section 5.4.1). However, the average peak

velocities seemed to have an upper bound of 1.5 units/s in all participants of

both experimental conditions no matter how fast they passed the intermediate

target. Similar limits also hold for the average peak velocities of excursions

7More than 250 trials in each session (cf. Section 4.3.4).
8Due to the close proximity to the obstacle the vertical component is negligible in this

region.



into the wrong direction as well as the average peak velocities of the correcting

movements. These limits are likely to be induced by the setup.

Although implicitly not being allowed to stop in the via-point participants

significantly slowed down in this area. One may wonder whether this slowdown

provided them with sufficient time to process the presented location of the final

movement target before making their decision where to move. The answer is a

clear “no”. Participants already make up their mind where to move way before

reaching the via-point.9. The horizontal velocity in the intermediate target

already serves as a reliable predictor for the chosen movement direction.

The possible strategies of choosing a movement direction when having no in-

formation about the future location can be rather diverse. i) Participants could

extrapolate directly from the location of the previous trial – by just moving

there again. ii) They also could try to predict the next target location based on

a sequence of trials in the direct past. iii) They maybe could also try to estimate

an overall frequency of occurrence and act accordingly. All of these hypotheses

were tested on the data available from 16 probands10 who participated in four

subsequent sessions (containing 250 successful trials each) both in their domi-

nant and their non-dominant hand. On average over a session participants did

not focus on the target location shown in the previous trial (cf. Section 6.4.1).

It can be also shown that specific windows (or patches of history) of the series of

target locations in direct past are unlikely to have been considered for the deci-

sion (cf. Section 6.4.2). Interestingly, subjects also did not seem to keep track of

the overall presentation statistics, because otherwise their behaviour would have

approximately matched the balanced presentation frequency (cf. Section 6.4.4).

Instead, most of the participants showed a strong preference of one movement

direction. This direction appeared to be independent of handedness and used

hand but coincided with the initial bias of the experimental condition in case of

initR. In this experimental condition all participants decided to take rightward

movements as “default”. However, in the experiments using the initL condition

not all participants picked up this initially suggested bias towards the left. Some

of them decided to prefer the right, some of them the left, and a few showed a

behaviour that approximately that was closer to matching the statistics of the

presented target locations on the long run than to being biased to either side.

9Further attempts to trace the decision back in time – which means tracing it back in
hand trajectory – are bound to fail due to the required high accuracy of hitting the via-
point. Directional preferences can only unfold in the trajectory in the very proximity of the
intermediate target.

10Eight left-handed, eight right-handed – four of each handedness in each experimental
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Again this pattern seems to be independent of handedness and hand usage (cf.

Section 6.4.1). Modelling attempts using presented target locations and individ-

ual choices of previous trials showed a great focus on what had been done in the

past but neglected the importance of the presented locations (cf. Section 6.4.2).

This constellation lead to the assumption of an internal nonlinear amplification

of individual behavioural tendencies. During the first few trials initial “hints”

on the location statistics are picked up in a more or less individual way – result-

ing in the preference of leftward movements in some, and rightward movements

in other probands – and manifest in a decision default on the long run (cf. Sec-

tion 6.3.3). A nonlinear approach with a bifurcation as its key element can be

used to successfully model this increasing focus on perceived cues that turn into

strong directional biases in the experimental data (cf. Section 6.4.4).

In contrast to the consistently emerging preference of always rightward move-

ments in the initR condition, initL not always lead to a preferences of leftward

movements. This may result from the cultural imprinting of rightwards move-

ments in reading, time lines, and also visual communication in our society. The

learnt but probably often unconscious “default” expectation of the world being

biased to the right strongly influences everyday decisions and may also play an

important role in the context of motor decision. If the cues in the first tens

of trials of a session match this expectation the default choice can be made

without the need of further considerations. However, if the initial phase of a

session shows a pattern that does not completely fit with the expectation further

processing is required. Different outcomes in the level of biasedness in different

participants may result from a number of mechanisms at this point. The in-

dividual degrees of attention to the distributions target locations is crucial for

the detection of this initial imbalance in the stimuli. Furthermore, the individ-

ually perceived level of time pressure modulates the time that can be taken for

further consideration of these cues. Taken together these factors give an idea

about why some probands end up with the default choice even in case of initL

while others follow the initially presented bias.

Interestingly, the individual averages of the horizontal velocity in the in-

termediate target not only show directional preferences but also reveal an in-

teresting phenomenon about the sensitivity to the directional bias: the faster

participants on average pass the via-point the stronger their final directional

bias to one or the other side is. The algebraic sign of the average velocity fur-

thermore indicates the direction of the bias (cf. Figure 6.3 in Section 6.4.1).

This suggests that in cases of time pressure only a tiny patch of information



about the environment is picked up and then amplified to serve as a decision

heuristics, if the according costs for replanning are bearable.

In the given setup erroneous directional choices have to be corrected into

a passing movement around the obstacle in the direction of the shortest way

between the intermediate and the final movement target. The delay until this

replanning act manifests as a deceleration in the horizontal component of hand

velocity is on average highly consistent and similar across participants indepen-

dent of handedness, hand usage or experimental condition. Processing of the

information about the target location and initiating an according reaction to the

discrepancy between planned and appropriate movement direction took about

257 +/- 28ms. This delay matches average delays known from as the “auto-

pilot” threshold (cf. Pisella et al., 2000), which represents the earliest time when

a reaction to a target jump is detectable in hand trajectory. Also the timing of

the peak of the correcting movement is relatively constant across participants

(independent off their movement speed!) at about 712 +/- 94ms. Furthermore,

a linear relation between peak velocity of the excursion into the wrong direction

and peak velocity of the correction could be found (cf. Section 5.4.2).

In addition to the setup-induced limits to peak velocities in cases of direct

and also replanned movements as well as the regular timing of the replanning

even when compared across participants this is consistent with the assumption

of movement primitives for according submovements. For a detailed analysis of

the replanning process of erroneous movements I used symmetric bell-shaped

velocity profiles with three degrees of freedom11 (cf. Plamondon et al., 1993),

which are applicable for the quasi-straight movement segments between via-

point and the passage of the horizontal centre line of the obstacle. First I derived

the average movement primitives for direct movements to the left and the right of

single sessions of individual participants. Then I modelled replanned movements

based on the direct movement into the wrong direction – that is smoothly faded

out after a reaction time needed to process the new stimulus – and on another

correcting primitive towards the right direction. This superposition lead to

earlier replanning times in the range of (and even earlier than) the earliest

auto-pilot thresholds of 120ms. These replanning times reflect the onset of the

replanning before it results in detectable changes in hand trajectory.

In the second part of my thesis I presented a two-alternative forced-choice

task to study the interacting factors during the complex process of human mo-

11Start and end time of the primitive, and peak velocity.
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tor decisions under time pressure. Although handedness and hand usage play

an important role in everyday life their effects on the decision process in the

presented task did not significantly influence the probands behaviour. Due to

the limited time granted for processing of the according stimuli, also direct

observations of the presented scene only played a minor role. Instead, mostly

unconscious initial ideas about the distribution of target locations – which might

result in a vague intuition at most – and the amplification of the individual be-

havioural pattern in response to these ideas were shown to be the main factors

in the decision process. Under time pressure participants on average tended to

quickly repeat their own behaviour and, thus, showed stereotypical choices of

movement directions. The heuristic, which can be derived from this decision

behaviour, contains a significant preference of the culturally imprinted direc-

tion of movements. A first guess about the environmental statistics can serve

as a basis for initial decisions. The preference of these directional decisions –

practically: the frequency of choosing them instead of other alternatives – then

can increased over time. By using this type of default bahviour the problem

of the often too time-consuming decision process, which would have to be car-

ried out in each decision situation again, can be changed into the derivation

of a sufficiently good initial guess about the presented environment. Resulting

behaviour probably would seem “somehow natural” to human observers and,

hence, increase acceptance of robots in everyday life.
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Appendix

A.1 Supplementary material

A.1.1 Overview of behavioral regularities in subsequent

trials

A.1.2 Full compilation of sessionwise ARMA error plots

A.1.3 Kink count tables

A.1.4 Error correction in terms of bell-shaped velocity

profiles
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Table A.1: Kink counts of initR condition, split by handedness, hand usage, and
session. K2L = kink to the left, K2R = kink to the right.

Right-handed
Used right hand

Subj. CK EE
Sess. 1 2 3 4 1 2 3 4
K2R 89 111 113 110 67 91 87 95
K2L 10 4 0 0 13 10 8 10

Used left hand
K2R 61 79 108 114 90 100 101 104
K2L 38 28 9 0 5 6 4 4

Right-handed
Used right hand

Subj. DB KF
Sess. 1 2 3 4 1 2 3 4
K2R 85 100 104 104 94 101 105 94
K2L 13 14 2 2 15 8 7 14

Used left hand
K2R 61 79 108 114 90 100 101 104

106 111 111 108 45 42 58 55
K2L 38 28 9 0 5 6 4 4

Left-handed
Used left hand

Subj. BK SA
Sess. 1 2 3 4 1 2 3 4
K2R 79 95 95 94 32 53 94 103
K2L 9 3 4 7 52 57 7 7

Used right hand
K2R 93 95 103 98 92 109 114 104
K2L 11 8 2 8 12 7 1 7

Left-handed
Used left hand

Subj. MT JS
Sess. 1 2 3 4 1 2 3 4
K2R 57 46 32 33 64 65 81 91
K2L 37 61 81 87 34 29 22 13

Used right hand
K2R 95 112 111 108 95 112 111 108
K2L 13 3 0 2 13 3 0 2



Table A.2: Kink counts of initL condition, split by handedness, hand usage, and
session. K2L = kink to the left, K2R = kink to the right.

Right-handed
Used right hand

Subj. DL KW
Sess. 1 2 3 4 1 2 3 4
K2R 37 34 23 13 53 9 16 15
K2L 75 89 91 93 73 99 89 88

Used left hand
K2R 17 5 9 15 78 114 110 109
K2L 85 97 100 99 25 1 6 4

Right-handed
Used right hand

Subj. JA MB
Sess. 1 2 3 4 1 2 3 4
K2R 49 56 74 93 37 9 7 18
K2L 39 36 32 13 69 96 101 96

Used left hand
K2R 70 102 112 115 4 1 3 1
K2L 35 10 5 1 104 107 109 111

Left-handed
Used left hand

Subj. BK2 MG
Sess. 1 2 3 4 1 2 3 4
K2R 46 56 64 68 34 44 101 102
K2L 52 49 49 35 63 75 17 14

Used right hand
K2R 70 95 96 92 90 88 38 41
K2L 37 16 12 29 20 31 58 77

Left-handed
Used left hand

Subj. RW YB
Sess. 1 2 3 4 1 2 3 4
K2R 19 18 13 23 62 96 77 82
K2L 89 98 96 82 49 23 24 37

Used right hand
K2R 93 107 113 105 60 25 11 11
K2L 22 5 6 11 42 81 94 100
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(a) Right-handed, condition initL.
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(b) Right-handed, condition initR.
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(c) Left-handed, condition initL.
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(d) Left-handed, condition initR.

Figure A.1: Influence of previously perceived target T2 location on directional choices
in subsequent trials. Normalisation done within group of trials the same previous
location of the final movement target. Plots show fraction of trials that went to the
left (blue bars) and to the right (red bars) to all trials with the given previously shown
location of target T2. Upper rows of subfigures contain data from dominant hand,
lower rows from non-dominant hand.
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(a) Right-handed, condition initL.
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(b) Right-handed, condition initR.
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(c) Left-handed, condition initL.
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(d) Left-handed, condition initR.

Figure A.2: Influence of previously chosen movement direction on directional choices
in subsequent trials. Normalisation done within group of trials the same previous
choice of movement direction. Plots show fraction of trials that went to the left (blue
bars) and to the right (red bars) to all trials with the given previous behaviour. Upper
rows of subfigures contain data from dominant hand, lower rows from non-dominant
hand. Numbers of participants same as in Figure A.1
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(a) Right-handed, condition initL.
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(b) Right-handed, condition initR.
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(c) Left-handed, condition initL.
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(d) Left-handed, condition initR.

Figure A.3: Influence of previously perceived target T2 location on directional choices
in subsequent trials. Normalisation done with respect to all trials. Plots show fraction
of trials that went to the left (blue bars) and to the right (red bars) to all trials with
the given previously shown location of target T2. Upper rows of subfigures contain
data from dominant hand, lower rows from non-dominant hand.
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(a) Right-handed, condition initL.
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(b) Right-handed, condition initR.
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(c) Left-handed, condition initL.
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Figure A.4: Influence of previously chosen movement direction on directional choices
in subsequent trials. Normalisation done with respect to all trials. Plots show fraction
of trials that went to the left (blue bars) and to the right (red bars) to all trials with
the given previous behaviour. Upper rows of subfigures contain data from dominant
hand, lower rows from non-dominant hand.
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Figure A.5: Prediction errors for right-handed participants using dominant hand
(biased to the right): Summed differences for behaviour prediction in dependence on
time horizons p in presented directions and q in own behaviour.
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Figure A.6: Prediction errors for right-handed participants using non-dominant hand
(biased to the right): Summed differences for behaviour prediction in dependence on
time horizons p in presented directions and q in own behaviour.
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Figure A.7: Prediction errors for left-handed participants using their dominant hand
(biased to the right): Summed differences for behaviour prediction in dependence on
time horizons p in presented directions and q in own behaviour.



10 20 30

5

10

15

20

25

30  

Time horizon q (sensor)

BK 2010 06 25 B

 T
im

e 
ho

riz
on

 p
 (

be
ha

v.
)

0.1

0.2

0.3

0.4

10 20 30

5

10

15

20

25

30  

Time horizon q (sensor)

BK 2010 06 25 C

 T
im

e 
ho

riz
on

 p
 (

be
ha

v.
)

0.1

0.2

0.3

0.4

10 20 30

5

10

15

20

25

30  

Time horizon q (sensor)

BK 2010 06 25 D

 T
im

e 
ho

riz
on

 p
 (

be
ha

v.
)

0.1

0.2

0.3

0.4

10 20 30

5

10

15

20

25

30  

Time horizon q (sensor)

BK 2010 06 25 E

 T
im

e 
ho

riz
on

 p
 (

be
ha

v.
)

0.1

0.2

0.3

0.4

10 20 30

5

10

15

20

25

30  

Time horizon q (sensor)

SA 2010 06 25 H

 T
im

e 
ho

riz
on

 p
 (

be
ha

v.
)

0.1

0.2

0.3

0.4

0.5

10 20 30

5

10

15

20

25

30  

Time horizon q (sensor)

SA 2010 06 25 I

 T
im

e 
ho

riz
on

 p
 (

be
ha

v.
)

0.1

0.2

0.3

0.4

0.5

10 20 30

5

10

15

20

25

30  

Time horizon q (sensor)

SA 2010 06 25 J

 T
im

e 
ho

riz
on

 p
 (

be
ha

v.
)

0.1

0.2

0.3

0.4

0.5

10 20 30

5

10

15

20

25

30  

Time horizon q (sensor)

SA 2010 06 25 K

 T
im

e 
ho

riz
on

 p
 (

be
ha

v.
)

0.1

0.2

0.3

0.4

0.5

10 20 30

5

10

15

20

25

30  

Time horizon q (sensor)

MT 2010 06 23 B

 T
im

e 
ho

riz
on

 p
 (

be
ha

v.
)

0.1

0.2

0.3

0.4

0.5

10 20 30

5

10

15

20

25

30  

Time horizon q (sensor)

MT 2010 06 23 C

 T
im

e 
ho

riz
on

 p
 (

be
ha

v.
)

0.1

0.2

0.3

0.4

0.5

10 20 30

5

10

15

20

25

30  

Time horizon q (sensor)

MT 2010 06 23 D

 T
im

e 
ho

riz
on

 p
 (

be
ha

v.
)

0.1

0.2

0.3

0.4

0.5

10 20 30

5

10

15

20

25

30  

Time horizon q (sensor)

MT 2010 06 23 E

 T
im

e 
ho

riz
on

 p
 (

be
ha

v.
)

0.1

0.2

0.3

0.4

0.5

Figure A.8: Prediction errors for left-handed participants using their non-dominant
hand (biased to the right): Summed differences for behaviour prediction in dependence
on time horizons p in presented directions and q in own behaviour.
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Figure A.9: Prediction errors for right-handed participants using dominant hand
(biased to the left): Summed differences for behaviour prediction in dependence on
time horizons p in presented directions and q in own behaviour.
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Figure A.10: Prediction errors for right-handed participants using non-dominant
hand (biased to the left): Summed differences for behaviour prediction in dependence
on time horizons p in presented directions and q in own behaviour.
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Figure A.11: Prediction errors for left-handed participants using their dominant
hand (biased to the left): Summed differences for behaviour prediction in dependence
on time horizons p in presented directions and q in own behaviour.



10 20 30

5

10

15

20

25

30  

Time horizon q (sensor)

BK 2011 03 03 C

 T
im

e 
ho

riz
on

 p
 (

be
ha

v.
)

0.1

0.15

0.2

0.25

0.3

0.35

10 20 30

5

10

15

20

25

30  

Time horizon q (sensor)

BK 2011 03 03 D

 T
im

e 
ho

riz
on

 p
 (

be
ha

v.
)

0.1

0.15

0.2

0.25

0.3

0.35

10 20 30

5

10

15

20

25

30  

Time horizon q (sensor)

BK 2011 03 03 E

 T
im

e 
ho

riz
on

 p
 (

be
ha

v.
)

0.1

0.15

0.2

0.25

0.3

0.35

10 20 30

5

10

15

20

25

30  

Time horizon q (sensor)

BK 2011 03 03 F

 T
im

e 
ho

riz
on

 p
 (

be
ha

v.
)

0.1

0.15

0.2

0.25

0.3

0.35

10 20 30

5

10

15

20

25

30  

Time horizon q (sensor)

MG 2010 10 23 C

 T
im

e 
ho

riz
on

 p
 (

be
ha

v.
)

0.2

0.3

0.4

0.5

0.6

0.7

10 20 30

5

10

15

20

25

30  

Time horizon q (sensor)

MG 2010 10 23 D

 T
im

e 
ho

riz
on

 p
 (

be
ha

v.
)

0.2

0.3

0.4

0.5

0.6

0.7

10 20 30

5

10

15

20

25

30  

Time horizon q (sensor)

MG 2010 10 23 E

 T
im

e 
ho

riz
on

 p
 (

be
ha

v.
)

0.2

0.3

0.4

0.5

0.6

0.7

10 20 30

5

10

15

20

25

30  

Time horizon q (sensor)

MG 2010 10 23 F

 T
im

e 
ho

riz
on

 p
 (

be
ha

v.
)

0.2

0.3

0.4

0.5

0.6

0.7

10 20 30

5

10

15

20

25

30  

Time horizon q (sensor)

RW 2011 03 01 C

 T
im

e 
ho

riz
on

 p
 (

be
ha

v.
)

0.2

0.4

0.6

10 20 30

5

10

15

20

25

30  

Time horizon q (sensor)

RW 2011 03 01 D

 T
im

e 
ho

riz
on

 p
 (

be
ha

v.
)

0.2

0.4

0.6

10 20 30

5

10

15

20

25

30  

Time horizon q (sensor)

RW 2011 03 01 E

 T
im

e 
ho

riz
on

 p
 (

be
ha

v.
)

0.2

0.4

0.6

10 20 30

5

10

15

20

25

30  

Time horizon q (sensor)

RW 2011 03 01 F

 T
im

e 
ho

riz
on

 p
 (

be
ha

v.
)

0.2

0.4

0.6

10 20 30

5

10

15

20

25

30  

Time horizon q (sensor)

YB 2011 03 04 C

 T
im

e 
ho

riz
on

 p
 (

be
ha

v.
)

0.1

0.2

0.3

0.4

0.5

10 20 30

5

10

15

20

25

30  

Time horizon q (sensor)

YB 2011 03 04 D

 T
im

e 
ho

riz
on

 p
 (

be
ha

v.
)

0.1

0.2

0.3

0.4

0.5

10 20 30

5

10

15

20

25

30  

Time horizon q (sensor)

YB 2011 03 04 E

 T
im

e 
ho

riz
on

 p
 (

be
ha

v.
)

0.1

0.2

0.3

0.4

0.5

10 20 30

5

10

15

20

25

30  

Time horizon q (sensor)

YB 2011 03 04 F

 T
im

e 
ho

riz
on

 p
 (

be
ha

v.
)

0.1

0.2

0.3

0.4

0.5

Figure A.12: Prediction errors for left-handed participants using their non-dominant
hand (biased to the left): Summed differences for behaviour prediction in dependence
on time horizons p in presented directions and q in own behaviour. (BK2, MG, RW,
YB
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Figure A.13: Average velocity profiles of direct movements (red) and corrected ones
(green) generated by adaptive bell fits for vx (t) between arrival in target T1 (tT1)
and wall pass (TW ) for right-handed participants in experimental condition of bias
to the right. Left column contains data from dominant hand, right column from the
non-dominant one. Upper row of each subfigure contains kinks to the left, lower row
kinks to the right, respectively. Columns of the subfigures indicate sessions. Kinks to
the left have to be understood cum grano due to their sparseness in this experimental
condition (see Section 6.4.1). No green graph means that there were no according
movements. (CK, EE, DB, KF)
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Figure A.14: Average velocity profiles of direct movements (red) and corrected ones
(green) generated by adaptive bell fits for vx (t) between arrival in target T1 (tT1)
and wall pass (TW ) for left-handed participants in experimental condition of bias to
the right. Left column contains data from dominant hand, right column from the
non-dominant one. Upper row of each subfigure contains kinks to the left, lower row
kinks to the right, respectively. Columns of the subfigures indicate sessions. Kinks to
the left have to be understood cum grano due to their sparseness in this experimental
condition (see Section 6.4.1). No green graph means that there were no according
movements. (BK, SA, MT, JS)
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Figure A.15: Average velocity profiles of direct movements (red) and corrected ones
(green) generated by adaptive bell fits for vx (t) between arrival in target T1 (tT1)
and wall pass (TW ) for right-handed participants in experimental condition of bias
to the left. Left column contains data from dominant hand, right column from the
non-dominant one. Upper row of each subfigure contains kinks to the left, lower row
kinks to the right, respectively. Columns of the subfigures indicate sessions. Kinks to
the right have to be understood cum grano due to their sparseness in this experimental
condition (see Section 6.4.1). (DL, KW, JA)
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Figure A.16: Average velocity profiles of direct movements (red) and corrected ones
(green) generated by adaptive bell fits for vx (t) between arrival in target T1 (tT1)
and wall pass (TW ) for left-handed participants in experimental condition of bias to
the left. Left column contains data from dominant hand, right column from the non-
dominant one. Upper row of each subfigure contains kinks to the left, lower row kinks
to the right, respectively. Columns of the subfigures indicate sessions. Kinks to the
right have to be understood cum grano due to their sparseness in this experimental
condition (see Section 6.4.1). (MG, RW)
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A.2 Technical details of the SensAble Phantom 3.0

6DoF

The SensAble Phantom 3.0 6DoF is a high-performance that tracks specific

point at the handle and also handle orientation with a very high precision.

Besides research applications it can also be utilised for teleoperation or virtual

assembly or prototyping.

The exact size1 of its translational workspace is 838 x 584 x 406mm. Its ro-

tational workspace of the handle covers 297 degrees (yaw), 260 degrees (pitch),

and 335 degrees (roll). The nominal position resolutions are 0.02mm in trans-

lations, 0.0023 degrees in pitch and yaw, and 0.0080 degrees in roll. It can exert

peak forces up to 22N. Continuous exertable forces are only guaranteed up to

3N. Practically it turned out that forces up to 5N work reliable for applications

in motor control studies with human probands.

Operated with the OpenHaptics toolkit the machine can be controlled using

two operation modes: HD and HL. HD denotes “device level”. The user has

rather direct, i.e. low-level, control of position tracking and force exertion. HL

indicates the “high-level” operation mode. This mode provides a number of

functions for comfortable interaction with the device.

A.3 Toolbox for stiffness data analysis

The toolbox for stiffness data analysis provides modular MATLAB implemen-

tations of all methods for raw data analysis from Section 2.2.2, reliable stiffness

estimation from Section 2.2.3, and visualisation and characterisation of endef-

fector stiffness from Section 2.2.4.

The following functions comprise the main functionality, and can be used

for a basic analysis:

• function getDataSmoothProjThres( dataFileStart, resultFile,

wdh, rampTime )

Processes all files that begin with dataFileStart2 and were generated

in a recording block of wdh repetitions of the twelve displacing forces

1All technical data is taken from SensAble (2006).
2All displacement files are labelled according to the applied force forceNum and the

number repNum of the repetition of this force in the individual block according to
dataFileStart.forceNum.repNum.



which were ramped on within rampTime ms. Endeffector velocity

is projected onto the displacing force vector for the detection of the

holding phase. The resulting displacement for each repetition of each

of the forces is logged into the resultFile along with the force vec-

tor.

• function leaveOutForSigma( datenDat, anz, resultFile )

Applies the N-fold cross-validation procedure (with anz repetitions)

from Section 2.3.2 to the force-displacement data from datenDat (a

results file of the previous function). The resulting stiffnesses are

stored in the resultFile for statistical inspection.

• function list of K = lnoStiffness( n, m, datenDat, resultFile)

This function directly applies theN-fold cross-validation procedure (with

n repetitions of drawing data samples of size m) to the force-displacement

data from datenDat, and stores the best stiffness estimate along with

the estimated variance in the resultFile.

• function Kreturn=findStiffnessWithSigma( stiffnessLNOfile )

Finds the best stiffness estimate for the stiffnessLNOfile which was

generated by leaveOutForSigma.

• function drawStiffnessEllipsoid( K, pos )

Visually displays the symmetric part of the stiffness maxtrix K in the

current MATLAB plot at the position that is defined by the three

components of the vector pos.

Their MATLAB documentation3 provides further links to and instructions

for additional functions that are highly configurable.

A.4 Toolbox for timed via-point movements

A.4.1 Script language for specification of experiments

The listing in Table A.3 shows the definition of a protocol for an experimental

session. Predefined high-level types for via-point movements with a starting

3 help nameOfFunction
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position, one intermediate target, one obstacle and a final movement target

behind the obstacle are

• FirstExperiment,

• ProbabilityExperiment,

• ProbabilityDelay, and

• ProbabilityScaleDelay4.

Setup parameters (cf. Table A.4) can be changed by setting the according

setup values. Further session parameters are available in Table A.5, and refer

to specific functionality of the Simulator.

The Boolean PopUp parameter allows to hide the position of the final move-

ment target until the participant’s hand reaches the intermediate target. In

ProbabilityScaleDelay experiments the revealing of the final movement tar-

get is done upon arrival in a hidden intermediate target at a configurable fraction

of hiddenTargetHeight of the distance between starting position and the first

movement target. The startPositionAngle allows to control the angle be-

tween starting position and first movement target T1. -90 means approaching

T1 from the left, 90 from the right, respectively.

In the combinator TYPE1 each value of parameter one is combined with all

of parameter two before taking he next value. TYPE2 applies the same strategy

the other way around for parameter two and parameter one. The combinator

MIX changes both parameters at the same time.

The generators UP, DOWN, and RANDOM work as the names suggest by in-

creasing or decreasing the value or picking up a random one. The generator

OUTSIDE IN generates a sequence from an interval of indices by starting at one

end of the interval, picking the value, jumping to the other end, picking the

value, jumping back to the previous end, picking the next value that has not

been taken before, and so on. So {1,2,3,4} transforms to {1,4,2,3}. INSIDE OUT

works the other way around, starting in the middle of the sequence.5

All session definitions have to start with the keyword new followed by the

specification of the Experiment in the next line. The keyword end indicates the

4The low-level types BallsAndWalls and BasicProbability were only introduced for sake
of structure, and provide important functionality for the types of experiments in subsequent
rows of the listing.

5If the middle falls between two values, the one further to the right is taken.



end of the session definition. One protocol file has to contain contain at least

one sessions.

Furthermore, all experiment types (using their default values) are accessible

through the graphical user interface which can be used upon a right-click on the

screen.

A.4.2 Hierarchy of experimental types and their default

settings

Figure A.17: UML overview of relation between preconfigured types of experiments.

Figure A.17 shows a coarse overview of available tpes of experiments. Data

fields and methods are ommited for sake of clearness. The class BallAndWall

provides basic functionality that can be used to display almost arbitrary set-

tings of movement targets (balls) and obstacles (walls). FirstExperiment im-

plements an example setup which also was used to give participants the time to

accomodate with the sstem before starting the actual experiment.

Basic functionality of handling timing and frequency of occurance of obsta-

cles and movement targets is provided by the BasicProbability. In addition

ProbabilityExperiment and ProbabilityDelay provide implementations of

specific options for efficient fine-tuning of specific experiments. Technical de-

tails on ProbabilityExperiment are given in Section 4.3.1. Table A.5 gives

an overview of experimental parameters that can be used for designing specific

setups.
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Table A.3: Left: Protocol used for training sessions. Param1, Param2, Repetitions,
and Combinator are just mentioned for sake of illustration here. They contained the
default values. Target T2 was shown from the beginning of a trial on. Right: Protocol
used for experiment. Setup 3 specifies the probability of catch trials with T2 in the
centre behind the obstacle. Setup 6 defines the number of repetitions for a single
session. Setup 10 is used for setting the tolerance time in which the region of T2 has
to be left. The ProbabilityExperiment by default reveals the location of T2 when
reaching T1.

new

Experiment FirstExperiment

Repetitions 1

Param1 xpos

Generator1 SHUFFLE

Resolution1 2

Range1 -0.8 0.8

Param2 angle

Generator2 SHUFFLE

Resolution2 5

Range2 -60 60

Combinator MIX

end

new

Experiment ProbabilityExperiment

Param1 probability

Range1 0.5 0.5

Resolution1 1

Repetitions 1

Param2 angle

Range2 0 0

Resolution2 1

Setup 3 0.1

Setup 6 250

Setup 10 0.35

end

Table A.4: Overview over experimental parameters and their default values. Restric-
tions upon parameters were set for practical purposes, and have to be obeyed during
definition. Violations lead to abortion of the session.

Class ParamIndex Parameter Restriction
BallsAndWalls 1 centerWallLength ]0, 2[

2 TargetSize ]0, 1[
FirstExperiment 3 PopUp 0, 1

4 repeatOvershoots 0, 1
BasicProbability 3 neutralProbability [0, 1]

4 mean targetPosition ]− 1, 1[
5 mean probability ]− 1, 1[
6 repetitions ]0, 1000[
10 timeTolerance

ProbabilityDelay 7 startPositionAngle [−90, 90]
ProbabilityScaleDelay 11 hiddenTargetHeight [0, 1]



Table A.5: Overview over further experimental parameters.

Name Description Values
Param[1/2] first/second varying parameter xpos, angle

probability

Range[1/2] lower and upper limit of double (checked
range of first/second parameter for consistency)

Resolution[1/2] number of (equally spaced) values integer
of parameter range

Generator[1/2] how parameter range is parsed UP, DOWN, SHUFFLE
INSIDE OUT

OUTSIDE IN

Combinator combination method for both TYPE1, TYPE2,
prameters to form pairs of trials MIX
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Appendix B

List of own publications

Fiedler (2007) School on Cognition and Action (Poster)

Fiedler et al. (2008) Computational Neuroscience Meeting (Poster)

Martius et al. (2008) IEEE IROS (Paper)

Fiedler and Herrmann (2008) GGNB Opening Ceremony (Poster )

Fiedler (2009) Göttingen Meeting of the German Neuroscience Society (Poster)

Fiedler and Herrmann (2009b) Conference on Progress in Motor Control

(Poster)

Fiedler and Herrmann (2009a) GGNB Science Day (Poster)

Fiedler et al. (2010) Bernstein Conference on Computational Neuroscience

(Poster)

Fiedler and Herrmann (2011) Computational Neuroscience Meeting (Poster,

Conference Paper)
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