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Introduction 

1.1. Dementia 

Dementia is not a specific disease but rather an overall term that describes gradual 

deterioration of memory functioning such as concentration, memory and judgement which 

affects a person’s ability to perform daily activities. The diagnosis of dementia requires a 

gradual decline of cognitive function that impedes daily functioning, accompanied by 

aphasia, apraxia, agnosia. There are many other conditions that can cause symptoms of 

dementia, including some that are reversible, such as thyroid problems and vitamin 

deficiencies. 

 

1.1.1. Dementia types 

Dementia may be categorized based on the cause as well as clinical observations often 

evaluated posthumously. The most common type of dementia is Alzheimer’s disease (AD). It 

accounts for 60 to 80% of the cases. The second most prevalent form of dementia is the 

vascular dementia often suffered by patients after stroke. This occurs largely due to brain 

injuries. Mild Cognitive Impairment (MCI) deemed to be a transitional stage between normal 

aging and dementia (Grundman et al., 2004), is rather a term than a specific disease. It 

describes memory loss apparent to the individual, and those around them. The memory loss is 

supported by formal memory tests, but other features of dementia are absent. MCI could be 

due to stress, anxiety, depression or physical illness. People with MCI usually have impaired 

memory but no impairments in other areas of brain function, such as planning or attention, 

and no significant problems in everyday living. 

Fronto-temporal dementia with Parkinsonism linked to chromosome 17 (FTDP-17) covers a 

range of conditions, including Pick’s disease, frontal lobe degeneration and dementia 

associated with motorneurone disease (Foster et al., 1997; Kowalska et al., 2002; Litvan et 

al., 1996; Neary et al., 1998). These are caused by damage to the frontal lobe and/or the 

temporal parts of the brain involved in behaviour, emotional and language skills. Overall 

occurrence is less frequently than other conditions like AD. However, it is a significant cause 

in younger people below age 65 and the second or third most common dementia in age group 

(Ratnavalli et al., 2002; Rosso et al., 2003; Taipa et al., 2012). 
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Parkinson’s disease (PD), a progressive degenerative disorder of the central nervous system 

that leads to impaired motor skills, speech and cognition (Jankovic, 2008) and dementia with 

Lewy bodies (DLB) are two neurodegenerative disorders diagnosed by the presence of lewy 

bodies and Lewy neurites. Dementia with Lewy bodies accounts for about 10% of dementias 

in elderly people (McKeith et al., 1996). Many people who are initially diagnosed with 

Parkinson's disease later go on to develop a dementia that closely resembles DLB (Aarsland 

and Kurz, 2010; Aarsland et al., 2005). DLB is characterized by core clinical 

neuropsychiatric features of fluctuating cognitive function, visual hallucinations and 

spontaneous parkinsonian motor signs (McKeith et al., 2004; McKeith et al., 2005).  

Other forms of dementia include Huntington’s disease (HD) characterized by a progressive 

neurodegeneration and cognitive decline, uncontrollable physical movements called chorea 

and changes in personality (Walker, 2007). Wernicke-Korsakoff syndrome (WKS) is a 

clinical manifestation of alcohol abuse and thiamine deficiency that causes changes in vision, 

ataxia and memory impairment (Kopelman et al., 2009). Although different cortical regions 

might be affected, memory loss is the cardinal observation with the diseases. 

 

1.1.2. Alzheimer’s disease 

Alzheimer’s disease (AD) discovered and named after Alois Alzheimer is a debilitating 

disorder that severely affects cognitive abilities considerably accelerating the rate of 

developing dementia compared to age-associated cognitive decline (Berchtold and Cotman, 

1998). Clinically, the disease is initially characterized by subtle short-term memory problems, 

difficulty remembering names, apathy, depression and orientation disturbances. As the 

disease progresses, higher cognitive functions: (impaired judgment, disorientation, confusion, 

behaviour changes and difficulty speaking, swallowing and walking) become affected and the 

patients become entirely dependent. AD accounts for 60 to 80% of all dementia cases and 

could be both familial and sporadic. AD is currently estimated to affect 1/8
th

 (13%) of 

persons older than 65 years (Alzheimer’s Association 2009) and up to 50% of persons older 

than 85 years. In 2001, the incidence of AD patients in Europe is estimated to reach 4.9 

million people and expected to double by 2040 (Ferri et al., 2005) and current global 

incidence is estimated to be 18 million people and this might surge to 34 million by 2025 

(http://www.searo.who.int/en/Section1174/Section1199/Section1567/Section1823_8066.htm) 
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and unless an alternative medical therapeutics is discovered correspondingly, medical 

expenses will also continue to surge.  

 

1.1.2.1. Risk factors and Pathology of Alzheimer’s disease 

Risk factors of AD are multivariate in nature and probably AD is caused by a complex 

interaction of environmental and genetic factors. Aging processes are major non-genetic 

definitive risk factors and the propensity to develop the disease increases considerably in 

people above the age of 65 years (Brookmeyer et al., 1998). Strong genetic association with 

the disease is due to autosomal dominant mutations in 3 genes: APP, Presenilins (PS1 and 

PS2) but account for less than 5% of AD cases (Bertram, 2008). It is yet to be known the 

proportion of the disease that is influenced by single nucleotide polymorphisms (SNPs) in 

other genes. Other risk factors include alcohol, blood pressure, diabetes mellitus, 

homocysteine, hormone therapy, inflammation, nutritional antioxidants and physical activity 

(http://www.alzrisk.org/). Post-traumatic stress disorder (PTSDs) and low educational level 

have also been linked with AD (Letenneur et al., 1999; Yaffe et al., 2010; Zhang, 1990). 

Posthumous examination of AD brain exhibit mainly two key pathological hallmarks: 

extracellular senile amyloid plaques and intracellular neurofibrillary tangles (NFTs) (Kosik et 

al., 1986). Plaques are product of the main genetic components of the disease Amyloid 

Precusor Protein (APP) gene in which dominant mutations potentiate Aβ generation. APP 

dosage can also accelerate AD since Down syndrome patients with an extra copy of 

chromosome 21, on which APP is encoded, develop early onset AD. Also, mutations of the 

presenilin genes, which encode an essential subunit of the gamma-secretase that is critical for 

the final step of APP cleavage to generate Aβ-peptides, will result in early onset AD (Haass 

and Selkoe, 2007; Selkoe and Podlisny, 2002). Data obtained in transgenic mouse models 

(Palop et al., 2006; Palop and Mucke, 2010) and identification of cognitive intact human 

beings with high plaque load (Snowdon, 1997) however caution against the interpretation that 

plaques and plaque-associated dystrophic neurites as the main substrate of cognitive decline 

in AD. The second hallmark of AD, intracellular NFTs made up of hyperphosphorylated tau 

(Kosik et al., 1986; Nukina and Ihara, 1986; Wischik et al., 1988; Wood et al., 1986), 

correlate more closely with cognitive decline in AD than plaques (Braak and Braak, 1995; 

Giannakopoulos et al., 2003) establishing a causal role for tau hyperphosphorylation and 

neurofibrillary tangles in AD, despite lack of causal mutation(s) in tau in classical AD. 

http://www.alzrisk.org/
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Altered tau function continued to gain relevance in AD field and it was recently reported that 

ectopic expression of tau mediates the toxic Aβ function. Furthermore contextual memory 

and motor task were rescued by suppression of tau in transgenic mice carrying a mutant tau 

(Ittner et al., 2010; Roberson et al., 2007). Mutant tau is also involved in another type of 

dementia the familial FTDP-17 (Foster et al., 1997). Stability of microtubule impacted by tau 

is affected by phosphorylation (Higuchi et al., 2005; Weingarten et al., 1975; Zhang et al., 

2004).  Truncated tau was recently shown to have a higher tendency of aggregation than its 

native form suggesting participation of a possible proteolytic modification of tau in tangle 

formation (Filipcik et al., 2009; McMillan et al., 2011). Although the link of NFT and 

plaques pathology to neuronal and synaptic loss is unclear (Wenk, 2003) the progressive 

reduction in brain volume is a key aspect of AD pathogenesis (Karow et al., 2010). Besides, 

reactive astrogliosis, Lewy bodies, aggregates of α-synuclein  are also observed in the brains 

of AD patients (Kotzbauer et al., 2001). Furthermore, amyloid may be deposited in the walls 

of cerebral blood vessels (cerebral amyloid angiopathy) thus hindering cerebral blood flow 

which culminates in vascular dementia, the second prevalent form of dementia seemingly 

observed in stroke.  

 

1.1.2.3. Genetic Risk Factors and Amyloid Hypothesis 

Aβ-oligomers are defining lesions associated with Familial AD (FAD). Mutations in APP, a 

400 kb gene located in the mid portion of the long arm of chromosome 21 (Goldgaber et al., 

1987; Tanzi et al., 1987) that encodes APP protein and the PS1 and PS2 genes, which encode 

the subunits of the γ-secretase that processes APP have been strongly implicated in FAD. 

These mutations rather cause an early onset of the disease. APP is a type 1 membrane 

glycoprotein that undergoes proteolytically ectodomain shedding from α-secretase (Selkoe 

and Podlisny, 2002), a disintegrin metalloproteinases, ADAM 10 and ADAM 17 (Buxbaum 

et al., 1998; Lammich et al., 1999) acting as α-secretases. Alternatively, APP is cleaved by a 

membrane anchored aspartyl protease called β-secretase, β-site cleavage enzyme (BACE) 

sixteen amino acid (aa) residues N-terminal proximal to the α-secretase site (Vassar and 

Citron, 2000). Constitutive cleavage of the retained membrane C-terminal fragment CTF-83 

and C99 (Fig. 1) releases the p3 peptide that comprises of residues 17-40/42 of Aβ, Aβ 

respectively (Selkoe and Podlisny, 2002) and the APP intracellular domain (AICD) believed 

to localize in both cytoplasm and nucleus (Cupers et al., 2001; Kimberly et al., 2001; Sastre 

et al., 2001). Functionally, APP may be involved in in cell adhesion, neuronal survival, 
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synaptogenesis, vesicular transport, neuronal migration, modulation of synaptic plasticity, 

neurite outgrowth and insulin and glucose homeostasis (Mark et al., 1997a; Mark et al., 

1997b; Perez et al., 1997; Qiu et al., 1995; Turner et al., 2003; Zheng et al., 1995). In 

addition, inheritance of variants of Apolipoprotein E4 (ApoE- ε4) does have a gene dosage 

effect (Corder and Woodbury, 1993; Farrer et al., 1997) thus increasing one’s risk of 

developing the disease (usually late-onset).  

 

Fig.1.1: Schematic diagram showing the processing of 

Amyloid precursor protein (APP).APP cleavage by α-

secretase within the Aβ domain precludes the 

amyloidogenic pathway producing a sAPPα and a C-

terminus fragment product, CTF83. Alternative 

cleavage by β-secretase generates sAPPβ and CTF99. 

Subsequent cleavage of γ-secretase CTF83 and 99 

releases shorter fragment, p3, Aβ respectively and 

AICD. Inadequate clearance and accumulation of the 

Aβ aggregates to form oligomers and plaques. AICD 

is believed to translocate to the nucleus and activates 

gene expression upon binding of Tip60. 

 

1.1.2.4. Sporadic Alzheimer’s disease and Environmental influence 

The genetic component of AD is appreciably well studied but does not fully explain the cause 

of all AD cases. Almost 95% of the cases until now cannot be explained by genetics hence 

considered to occur sporadically. Sporadic AD (SAD) rather manifests late in life contrary 

FAD. Late stage occurrence, thus suggests a concomitant increased imbibitions of toxic 

components like heavy metal poisoning thus genome-environment interaction, altered 

genomic plasticity (epigenetics) and possibly its involvement in the disease (Fischer et al., 

2010; Takiguchi et al., 2003; Zhao et al., 1997). 

 

 

1.1.2.5. Insulin/ insulin like growth factors in the brain 

Insulin is an evolutionarily conserved hormone produced by the pancreas and acts 

downstream of neuronal signals to integrate metabolic output with reproductive capacity 

(Burks et al., 2000; Fielenbach and Antebi, 2008; Garofalo, 2002; Tissenbaum and Ruvkun, 

1998). The canonical insulin signalling pathway can also be activated by insulin-like growth 
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factors, IGF-I and IGF-II. Insulin and IGFs are developmentally expressed in many brain 

areas by neuro-epithelial lineages. In the adult brain IGF-I/II but not insulin is produced in 

some brain areas (Aguado et al., 1994; Ayer-le Lievre et al., 1991; Bach et al., 1991; 

Sandberg et al., 1988). Instead insulin largely crosses the blood brain barrier by a receptor-

dependent mechanism (Baura et al., 1996; Yu et al., 2006). Insulin/IGFs act by binding to 

insulin or IGF receptors. In spite of the promiscuous manner of interaction between them and 

their receptors, downstream signalling usually recruits the same specific intracellular 

cascades: Phosphoinositide 3-kinase (PI3K)-Akt and Ras-Mitogen-activated protein kinase 

(MAPK) pathways which modulate gene transcription and a myriad of downstream kinase-

phosphatase that ultimately affect key cellular processes such as protein synthesis, autophagy, 

glucose and fat metabolism necessary elements for learning and establishment of memory, 

apoptosis, resistance to oxidative stress, longevity, stress response and fertility (de la Monte, 

2009; Tatar et al., 2003). Impaired insulin signalling can result in weight gain, lethargy, 

memory disturbances, hunger and high blood pressure. Intranasal administration of insulin 

enhances the verbal memory, acute thermoregulatory and gluco-regulatory response to food 

intake (Benedict et al., 2011; Craft et al., 2012), suggesting that CNS insulin contributes to 

the control of the whole-body energy homeostasis in humans. IGF-II was also recently shown 

to be involved in both coding of memory and necessary for fear extinction (Agis-Balboa et 

al., 2011; Chen et al., 2011).  

 

1.1.2.6. Insulin and Aβ-degradation in AD 

Amyloid-β degradation is mediated by a number of proteases including insulin degrading 

enzyme (IDE) or insulysin, a zinc binding metalloprotease and matrix metalloprotease 9 

(MM9) and neprisylin (Backstrom et al., 1996; Iwata et al., 2001; Qiu et al., 1998). In light of 

this, mice generated lacking IDE showed 50% decrease in Aβ degradation (Farris et al., 

2003) and age associated decrease in IDE was reported in the brain (Affholter et al., 1990; 

Espinosa et al., 1991; Farris et al., 2004) thus linking insulin (diabetes) function to Aβ-

processing, AD pathogenesis. Interestingly, mutations in IDE have been observed to cause 

diabetes in a rat model of type II diabetes mellitus and also result in enhanced cerebral 

deposition of Aβ (Farris et al., 2004).  
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1.2. Memory mechanisms in the adult brain 

Memory is an organism's ability to store, retain, and recall information and experiences. 

Memory is a fundamental process without which we are not capable of doing anything except 

for simple reflexes and stereotyped behaviours. In a society constantly changing, we are 

defined by experience: feeling, wanting, perceiving, curiosity etc. Therefore memory can be 

defined as behavioural changes induced by experience. Learning is therefore the process 

leading to the acquisition of such behavioural changes. At the helm of affairs controlling the 

coding is the brain which is the organ responsible for what we call the mind. This also 

implies that there are different forms of memory. Some of which concern events and facts 

and are available to us consciously and other types that are unconscious. Some memory types 

persist whilst others are ephemeral and fade over time suggesting different forms of memory 

depending on duration of occupation of thought and intensity. Concepts regarding memory 

types are further described below.  

 

1.2.1. Short term and long term memories 

Memory can be distinguished on the basis of duration and molecular demands. Short term 

memory (STM) lasts between minutes to hours (Goelet et al., 1986; Tully and Quinn, 1985) 

while long term memory (LTM) lasts hours to days. The human brain has vast capacity to 

consolidate memory that is subsequently available for a long period of time. This is 

facilitated by learning and encoding it in a stable way, therefore retrieval is dependent on how 

information is stored. Coding of LTM involves stages such as learning and storage. Memory 

storage involves consolidation. This makes it robust easy to retrieve. Stimulus intensity could 

also influence the state of memory coding. 

 

1.2.2. Declarative and Non-declarative memories 

Memory is a collection of mental abilities that depend on different systems within the brain. 

Careful studies can isolate memory from perception and other intellectual abilities and 

examine each kind of memory separately.  The most important distinction between forms of 

memory divides our conscious recall of facts and events about our world and experience 

(declarative memory) (Ullman, 2004) from various skills, habits, and reactions we remember 

without conscious effort (non-declarative memory). Declarative memory can also be divided 

into episodic memory that stores specific personal experiences and semantic memory that 

http://en.wikipedia.org/wiki/Information


Introductions Assessment of Epigenetic profile in Alzheimer’s disease 

 

8 
 

stores factual information (Tulving, 1972). Episodic memory handles information about 

where, when and how one experienced an event. Both hippocampus and pre-frontal cortex 

(PFC) are involved in declarative memories (Eichenbaum, 2001; Levine et al., 2004) and 

shown to be facilitated by sleep (Ellenbogen et al., 2006). However, PFC is involved in 

episodic memory more than semantic memory (Levine et al., 2004). Impairment of 

declarative memory affecting formation of both new and retrieval of old memories is called 

amnesia and memory loss affecting knowledge of what someone once knew is called 

an agnosia. Procedural memory, the most vital task of non-declarative memory and handles 

specific procedure involving cognitive and motor skills often gradually acquired over time. 

Striatal neurons are involved in this memory processing (Kreitzer, 2009) and the cerebellum 

is an integral part of this memory type processing (Saywell and Taylor, 2008).   

 

1.2.3. Associative memory 

Memory organization in which the memory is accessed by its content (as opposed to an 

explicit memory eg. postal address is referred to as associative memory. Organisms retrieve 

information more efficiently when it is linked to other related information. Hence reference 

cues are "associated" with actual memory contents until a desirable match (or set of matches) 

is found. First described by Ivan Pavlov, a solicited response in a form of salivation was 

obtained when a dog was presented with food which served as the unconditioned stimulus 

(US). A second stimulus that did not elicit salivation when presented alone (sound of a bell) 

was chosen as the conditioned stimulus (CS).  However, when the US was coupled with the 

CS and presented to the dog, it was observed that after repeated training, the dog began to 

salivate; a response termed a conditional response (CR). In rodents, fear conditioning 

paradigm is used in testing associative memory (Blanchard and Blanchard, 1969). Tone or 

light is often employed as the CS and electric shock as the US. Re-exposure of a mouse to 

only CS (previously subjected to the CS followed by a mild electric shock) cringes at one 

spot, shivers and stops any exploratory behaviour. This phenomenon is called ‘freezing’ and 

requires an intact hippocampal network (Kim and Fanselow, 1992).  

 

1.2.4. Spatial Memory 

Spatial memory employs the information conveyed from visio-proprioception to form 

geographical representation of our environment enabling us to navigate. This is made 

http://www.dana.org/WorkArea/linkit.aspx?LinkIdentifier=id&ItemID=9760
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possible by the help of bearings and spatial cues, associated with paths traversed. Spatial 

memory is measured in rodents using the Morris Water Maze task developed by Richard 

Morris (Morris, 1981). The rodent is required to locate a hidden platform in a pool of opaque 

water with the help of visual cues provided. The escape latency; the time required by the 

animal to find the platform inversely correlates with duration of training. Retention of 

acquired memory is then tested after training for several days by exposing the animal to the 

pool without the platform.  Spatial memory acquisition and consolidation is dependent on the 

hippocampus (Crusio and Schwegler, 2005; Rossi-Arnaud et al., 1991; Schwegler and 

Crusio, 1995).  

 

1.3. Anatomical view of memory coding and molecular mechanisms 

Memory consolidation correlates with structural and molecular changes in different brain 

parts. New synapse and new neurons are born leading to more connections to other cells, 

enhanced neurotransmitter release capacity and activation of cascades leading to long lasting 

effect of transduced signals. Lesion and neuro-imaging studies demonstrated the involvement 

of different cortical regions during activities. Credence is lent from the famous H.M. case. He 

had both his left and right medial temporal lobe (MTL) surgically removed as a result of the 

bicycle accident which led to persistent epileptic seizures. Although, nearly two-thirds of his 

hippocampus, parahippocampal gyrus and amygdala were removed along with his MTLs 

(Scoville and Milner, 1957), his perception, abstract thinking and reasoning ability were not 

affected. In addition, his ability to learn new motor skills were also not affected (Corkin, 

2002). Even so he suffered severe anterograde amnesia: inability to form new lasting 

memories and loss of cognitive ability (Scoville and Milner, 1957) demonstrating the extent 

of task division and independence of different cerebral pathways. The case also orchestrates 

the organizational levels of the brain with some regions such as the hippocampus serving as 

cortical conduits for memory processing and storage. Signal transduction in neurons can be 

modified in a stimulus dependent manner either by post-translational modifications e.g. 

phosphorylation of a receptor or via de-novo transcription of gene. STM is largely dependent 

on existing neuronal circuits (Tarnow, 2009) and is de novo protein synthesis independent 

(Castellucci et al., 1989; Kandel, 2001). In contrast LTM and Long Term Potentiation (LTP),  

which is considered as a molecular correlate of LTM, are however, dependent on protein 

synthesis (Costa-Mattioli and Sonenberg, 2008; Kandel, 2001; Lisman et al., 2002). Gene 

expression is however, regulated by epigenetic mechanisms discussed below. 
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1.5. Epigenetic gene expression and its role in Cognitive function 

The warehouse of genetic material, DNA of most living being is the nucleus. The limited 

space due to length is overcome by nature’s design for packaging these essential materials in 

the form of chromosomes made of sub-packing units called histones in association with the 

DNA making up the chromatin. The basic structure of chromatin consists of nucleosome, 

which comprises ~147 bp of DNA wrapped around an octamer of core histones (Kouzarides, 

2007). The octamer is composed of two (H2A-H2B) histone dimers and a tetramer of H3 and 

H4 with histone H1 as a linker. The chromatin structure is however, extremely plastic and 

offers an important mechanism to translate environmental stimuli into alterations in gene 

expression, which was termed by Conrad H. Waddington as “Epigenetic”. This is the 

inheritance of changes in gene expression and self-perpetuating marks without mutations in 

the underlying genetic components. Covalent modifications of DNA and histones enable the 

chromatin to assume mainly two main states: euchromatin, which makes gene accessible and 

the counter state of heterochromatin.   

 

1.5.1. Chromatin plasticity 

Access to the gene by the transcriptional machinery allowing gene expression is determined 

by the state of chromatin. This is dependent on the modifications that are on both the DNA 

and as well the histones. The N-termini of histones are susceptible to modifications such as 

acetylation, phophorylation, methylation, ubiquitination, sumoylation and ADP-ribosylation 

(Strahl and Allis, 2000; Vaquero et al., 2003). Apart from histones tail modifications, DNA 

can also be methylated and hydroxymethylated (Cannon-Carlson et al., 1989; Gold et al., 

1964; Kriaucionis and Heintz, 2009). Histone modifications have important roles in 

transcriptional regulation, DNA repair (Huertas et al., 2009) DNA replication, alternative 

splicing (Luco et al., 2010) and chromosome condensation (Kouzarides, 2007). 

 

1.5.1.1. DNA Methylation 

DNA methylation is an important biological process that regulates gene expression in living 

organisms. It is the earliest known epigenetic modification. Altering of DNA on 5-position of 

cytosine (C) that precede guanosine in CpG dinucleotides of gene promoters has profound 

impact on transcriptional states and cellular identity and serves as a critical epigenetic mark 

by modifying DNA-protein interactions. As such methylation modulates core epigenomic 
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processes; including gene expression, X-chromosome inactivation (Goto and Monk, 1998), 

silencing of repetitive elements, imprinting (Li et al., 1993), and regulation of centromeric 

and telomeric heterochromatin (Bourc'his et al., 2001). Maintenance of this is essential to 

avoid perturbation of the cellular integrity. 

 

1.5.1.1.1. Setting and Resetting of Methylation  

DNA methylation occurs in three different nucleotide sequence contexts: CG, CHG, and 

CHH (where H= C, T, or A). Methylation patterns in the genome are established by DNA 

methyltransferases, (MTases), which catalyze transfer of CH3 to C5 of cytosine and adenine 

residues. Transmethylation proceeds generally through a nucleophilic SN2 attack of a target 

atom onto the sulfonium-bound methyl group of S-adenosyl-L-methionine (Fig. 1.2) 

(Klimasauskas and Weinhold, 2007). Methylation is established by three active DNA 

methyltransferase (DNMT) 1, 3a and 3b (Bird and Macleod, 2004; Goll and Bestor, 2005) 

although 5 methyltransferases have been described until now. The first group, de-novo 

methyltransferase DNMT3a and DNMT3b preferentially methylates unmethylated cytosines 

on both strands. The DNMT3 family contains a third member, DNMT3L, which is required 

for establishing maternal genomic imprinting, despite being catalytically inactive (Bourc'his 

et al., 2001). DNMT1 is believed to be copying already existing methylation profile in the 

genome, maintaining DNA methylation profile. It recognizes an already hemi-methylated 

strand and adds methyl groups to cytosine on the complementary strand. The last member 

DNMT2 is believed to methylate tRNAs (Goll et al., 2006) and targeted deletion had no 

impact on global DNA methylation of the cell (Okano et al., 1998).  

Reversal of methylation pattern is an area of intense deliberation. Cytosines are relatively 

underrepresented probably due to deamination of methylated cytosines to thymines making 

the overall frequency of CpGs within the genome less than statistically expected (Herman 

and Baylin, 2003). In spite of their relative underrepresentation, CpG dinucleotides can be 

accumulated in small stretches of DNA called CpG islands (CGI). CGIs are often associated 

with gene promoter regions and are usually unmethylated. In contrast, about 80% of the CpG 

dinucleotides outside CpG islands are methylated (Bird, 2002; Herman and Baylin, 2003). 

Stepwise conversion of methylated cytosine to hydroxymethylcytosine was recently 

described to be the mechanism of removal of demethylation (Cannon-Carlson et al., 1989). 

On-going works might shed light on exact mechanism and the enzymes involved. Alternative 
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mechanism was believed to be due to Growth arrest and DNA Damage inducible 45β 

(GADD45β) (Gavin et al., 2012; Matrisciano et al., 2011).  

 

 

 

 

 

 

 

1.5.1.1.2. Relevance of Global Methylation Pathway 

Imbalance in DNA methylation may lay the appropriate ground for the threshold of 

developing diseases to be reached with ease as methylation is unique and critical for health 

and is involved in a plethora of events. Methylation plays a pivotal role in establishing and 

maintaining an inactive state of a gene by rendering the chromatin structure inaccessible to 

the transcription machinery. Neuro-developmental disorders immunodeficiency, centromeric 

instability, and facial anomalies (ICF) involving deregulation of both coding genes and 

repetitive elements (Hansen et al., 1999; Okano et al., 1999; Xu et al., 1999) and Rett 

syndrome (Amir et al., 1999; Chao et al., 2007; Moretti and Zoghbi, 2006) are due to 

mutations in DNMT3B and methyl CpG binding domain protein 2 (MeCP2) respectively. 

Loss of DNA methylation can induce embryonic lethality as observed with DNMT1 deletion 

leading death around day (E) 8.5-9. DNMT1 mutant retain only one-third of the normal 

amount of DNA methylation (Li et al., 1992). Duplication of section of spinal vertebrae in the 

posterior portion of the body due to mutations in Axin, an inhibitor of Wnt in a twin study 

was mimicked by aberrant methylation of the promoter of Axin (Oates et al., 2006). A 

positive correlation in methylation with parameters of myelination was observed during 

development thereby increasing methylation capacity in animal studies (Crang and Jacobson, 

1982). Down syndrome and spina bifida were shown to result from deficiency in methylation 

due to mutations in MTFHR, essential in the methylation pathway lead to decreased B12 

(Hobbs et al., 2000; James et al., 1999).  

Methylation of Cytosine Fig. 3: Reaction mechanism illustrating 

transfer of methyl group to cytosine of 

DNA from S-Adenosyl methionine to 

which methyl group is coupled to the C5 

thereby forming 5-methylcytosine. This is 

an essential component of CpG islands in 

promoter region of genes methylation is 

largely involved in down regulation of 

genes. 

 

of the 

  

                                                                                   

 

Fig. 1.2: Reaction mechanism 

illustrating transfer of methyl group to 

cytosine of DNA from S-Adenosyl 

methionine to which methyl group is 

coupled to the C5 thereby forming 5-

methylcytosine. This is  an essential 

component of CpG islands in promoter 

region of genes methylation is largely 

involved in down regulation of genes. 

Methylation of Cytosine 
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Role of methylation is not only restricted to developmental processes rather it is global and 

also involved in learning paradigms. In contextual fear conditioning paradigm, dynamic 

effect of methylation leading to regulation of genes have been observed (Day and Sweatt, 

2010; Miller et al., 2010; Miller and Sweatt, 2007). Both inhibition of DNMTs in the 

hippocampus using both 5-Aza, RG-108 and conditional forebrain and neuron-specific 

deletion of DNMT1 and DNMT3a produced the same deleterious effect on memory-

associated neuronal plasticity, providing a vital cellular link of learning deficits induced by 

jamming DNA methylation (Feng et al., 2010; Levenson et al., 2006; Miller et al., 2010; 

Miller and Sweatt, 2007).  

 

1.5.1.2. Histone acetylation 

Histone modifications on lysine tail are different ranging from acetylation, methylation, 

ubiquitylation, crotonylation and phosphorylation. However, one of the modifications which 

have been consistent with gene expression and also one of the focuses of this study is histone 

acetylation and will be discussed more in depth.  Histone hype-racetylation and hypo-

acetylation are associated with elevation and repression of gene expression respectively 

(Kurdistani et al., 2004; Li et al., 2007). Acetylation is believed to lower the positive charge 

on the N-terminal tails of histones thus reducing interaction with the negatively charged 

DNA-histone interaction (Lee et al., 1993; Zhang et al., 1998). 

 

1.5.1.2.1. Dynamic regulation of gene expression by HATs and HDACs 

Histone acetylation conferring an open state on chromatin is set by Histone acetyltransferases 

(HATs), enzymes which add an acetyl group to lysine residues on histone tails (Narlikar et 

al., 2002). HATs are divided into two main types: Type A and Type B HATs (Narlikar et al., 

2002). Type A HATs can be further subdivided into three families: the GNAT family, the 

MYST family and the P300/CBP family (Narlikar et al., 2002). The type A HATs play 

essential roles in gene transcription regulation, DNA damage response and repair 

(Avvakumov and Cote, 2007). The type B HATs have not been very well characterised so 

far. A known member, HAT1 is involved in the acetylation of newly formed histones during 

chromatin assembly (Parthun, 2007), catalyses the acetylation of lysines 5 and 12 on histone 

H4 and is also involved in DNA repair (Benson et al., 2007).  
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The effect of HATs are counteracted by eighteen histone deactylases (HDACs) classified into 

4 classes (class I, IIa, IIb, III and IV) primarily on basis of protein sequence similarity and co-

factor dependence counteract. Class I HDACs comprise HDAC1, 2, 3 and 8 are homologs of 

RPD3 are constitutively nuclear proteins and are widely expressed (Taunton et al., 1996). 

They associate with multi-protein repressor complexes such as Sin3A, NcoR/SMRT, 

CoREST, Mi2/NuRD and EST1B (Inche and La Thangue, 2006). Hdac8 is the only fully 

functional enzyme in isolation (Hu et al., 2000; Lee et al., 2004). HDAC1 has a deacetylase 

activity in embryonic stem (ES) cells (Haberland et al., 2009b). Hdac1and Hdac2- null mice 

die before embryonic day 10.5 (E10.5) and 24 h after birth respectively due to excessive 

proliferation of cardiomyocytes (Lagger et al., 2002; Montgomery et al., 2007). Over-

expression of Hdac1 had no overt detrimental effect on memory formation whereas Hdac2 

reduced spine density, synapse number and cognition when over-expressed in a neuron-

specifically in mice and loss of Hdac2 was found to be beneficial (Guan et al., 2009). 

Additionally, Loss of Hdac3 is shown to cause defective DNA double-stranded break repair 

(Bhaskara et al., 2008) and Hdac8 is however essential for skull formation (Haberland et al., 

2009a). 

Class-II HDACs are sub-divided into two classes: class-IIa HDACs (4, 5, 7 and 9) and class-

IIb HDACs (6 and 10) which undergo stimulus-dependent nucleo-cytosplasmic shuttling. 

HDAC5 and HDAC9 are enriched in the muscle, HDAC7 in the endothelial cells and 

thymocytes and HDAC4 is abundant in the brain and growth plates of the skeleton 

(Haberland et al., 2009b) and over-expression was protective in retina ganglion cell 

degeneration (Chen and Cepko, 2009). HDAC 5 and 9 have been shown to be essential for 

cardiovascular growth and development (Chang et al., 2004). HDAC9 modulates motor 

innervations of skeletal muscle (Mejat et al., 2005). HDAC9 and 10 inhibition can also 

prevent homologous recombination (Kotian et al., 2011). An interesting study has shown that 

HDAC4 is exported out of the nucleus upon spontaneous electrical stimulation in neurons 

(Chawla et al., 2003). However, in the same study, HDAC5 translocation required the 

stimulation of calcium flux (Chawla et al., 2003). This shows that, in neurons, HDAC4 and 

HDAC5 could be associated with neuronal activity. With exception of inhibition of HDAC6 

might be beneficial for the treatment of AD by virtue of its cytoplasmic residence and 

deacetylation of α-tubulin leading to its instability (Haggarty et al., 2003; Hubbert et al., 

2002; Verdel et al., 2000).  HDAC11 is the only member of class IV.  
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Class III (Silent Information Regulator-2 (Sir2)-related protein (sirtuin) HDACs have 7 

members, SIRT 1-7 that share homology with the yeast SIR2. Unlike class I and II HDACs 

that have Zn
2+ 

as a cofactor, the sirtuins require NAD
+
 as cofactor. These enzymes are 

promiscuous and fidelity to histones is not guaranteed. Therefore the name HDAC and HAT 

might be a misnomer and instead these enzymes might simply be referred to as lysine 

deacetylases (KDACs) and lysine acetyltransferases (KATs). 

 

 

 

 

 

 

 

1.5.1.2.2. Modes of Inhibition of HDACs  

The gene expression has gained relevance in the field of cancer and targeting of HDACs 

using synthetic inhibitors had had important influence on some cancer forms like leukaemia 

for which SAHA has been approved by the FDA for clinical use. In spite of the high 

recognition of beneficial role HDAC inhibitors have had so far on experimental 

neurodegenerative diseases, none has being approved for clinical due to their unspecific 

mode of action and secondly a setback from the ability to cross the blood brain barrier. 

Largely, HDAC inhibitors are divided into 4 groups: short chain fatty acids, hydroxamic 

acids, cyclic tetrapeptides and benzamides described below 

Short chain fatty acids (SCFA): This group of inhibitors are generally not very potent 

requiring concentrations in the mM range; however, they serve as useful tool in studying 

mechanisms and structures of HDAC inhibitors. Notable examples of inhibitors are the 

valproic acid and butyrate shown to be helpful in restoring cognition in APPPS1-21 mice 

(Govindarajan et al., 2011; Ricobaraza et al., 2009). Hydroxamic acids: Required in the range 

of of micromolar to subnanomolar concentrations and deemed to be potent inhibitors of 

HDACs. TSA derived from Streptomyces and Suberoylanilide hydroxamic acids (SAHA) 

 Fig.1.3: Gene regulation mediated by chromatin 

modification. A: A cell with chromosome of condensed 

nucleosome as a result of reduced acetylation acetyl 

group shown with the yellow bubbles and DNA wound 

around the nucleosome. B: Opened chromatin resulting 

from increased acetylation on lysine residues of histone 

leading to the relaxation of DNA and chromatin 

interaction. mRNA trancription is then enabled by 

allowing of RNAPII to traverse the chromatin. 

 

 

 

Regulation of Histone Acetylation 
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also have inhibitory effects. SAHA inhibits HDACs by binding to a zinc ion in the catalytic 

domain of the enzyme, thus preventing the deacetylation of histones (Finnin et al., 1999). 

This was postulated to be the mechanisms of inhibition of other hydroxamates. Cyclic 

tetrapeptides: These are believed to inhibit HDACs through the use of the epoxyketone group 

that is used to alkylate the catalytic pocket of HDACs. Depsipeptide, the best know HDAC 

inhibitor from this group, has antitumor activity against chronic lymphocytic leukaemia and 

myelogenous leukaemia and other refractory neoplasms. Benzamides: MS-275 and CI-994 

are the two most well known synthetically derived inhibitors of HDACs in this group. Zn
2+ 

ion binding of the benzamide is believed to be the mechanism of inhibition of HDACs. 

 

1.5.1.2.3. Physiological inhibitors of HDACs: Sphingosine 1-phosphate (S1P) 

Aside the small synthetic molecules described above, inhibition of HDACs physiologically is 

in different forms like phosphorylation, s-nitrosylation, acetylation and polyubiquitylation 

leading to sequestration from site of action. Phosphorylation also leads to docking/binding to 

a site which makes the bound enzyme ineffective. Sub-cellular localization also serves to 

regulate the enzymatic function of the HDACs. Another but quite recent level of inhibition of 

class I HDACs namely: Hdac1 and Hdac2 that has been described is through the activity of 

Sphingosine kinase 2. This inhibition occurs through phosphorylation of sphingolipid to 

generate Sphingosine 1-phosphate (S1P). Sphingosine (2-amino-4-octadecene-1,3-diol), an 

18-C amino alcohol with an unsaturated hydrocarbon chain, which forms a primary part 

of sphingolipids, a class of cell membrane lipids that include sphingomyelin. Sphingosine is 

generated by either stepwise biosynthesis from serine and palmitoyl-CoA or hydrolysis from 

sphingomyelin by sphingomyelinases (SMases) to ceramide which then serves as substrate 

for ceramidase to generate sphingosine (Andrieu-Abadie and Levade, 2002; Clarke et al., 

2006; Hannun and Obeid, 2002). Two sphingosine kinases SPHK1 and SPHK2 have been 

cloned and characterized, they mediate phosphorylation of sphingosine in vivo (Kohama et 

al., 1998; Liu et al., 2000) to yield S1P. SphK1 and SphK2 share overall homology however, 

they display different catalytic properties, sub-cellular locations, tissue distribution, and 

temporal expression patterns during development. SphK1 is mainly localized to the cytosol, 

while SphK2 is mainly nuclear (Kohama et al., 1998; Liu et al., 2000) and shuttling between 

the cytosol and the nucleus, and mainly associates with chromatin but not detected in the 

nucleoplasm.  

http://en.wikipedia.org/wiki/Amino_alcohol
http://en.wikipedia.org/wiki/Sphingolipid
http://en.wikipedia.org/wiki/Cell_membrane
http://en.wikipedia.org/wiki/Lipid
http://en.wikipedia.org/wiki/Sphingomyelin
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1.6.1. Role of S1P in Alzheimer’s disease 

S1P a unique and potent signalling lipid with broad effects on cytoskeleton dynamics and cell 

growth, proliferation, differentiation, survival, migration, apoptosis, calcium homeostasis, 

neurite retraction and angiogenesis (Huang et al., 2009; Moriue et al., 2008; Roztocil et al., 

2009; Takuwa et al., 2010). S1P has been implicated with many cellular functions such as 

chemotaxis, thereby inducing lymphocyte egression from secondary lymphoid organs and 

migration of eosinophils and mast cells to sites of inflammation (Spiegel and Milstien, 2003). 

Most of the physiological functions attributed to S1P so far have been linked to the binding to 

G protein–coupled receptors (Lee et al., 1998; Spiegel and Milstien, 2003). Lipid rafts 

enrichment of sphingolipids, glycerophospholipids and cholesterol suggested their 

involvement in APP processing (Castro et al., 2009; Grosgen et al., 2010). This hypothesis 

was tested by depletion of sphingolipid using an inhibitor of serine-palmitoyl-CoA. Findings 

of this experiment alluded to the beneficial role of sphingosine as increased levels of Aβ-42 

were observed by depleting sphingolipid biosynthesis, interestingly, the levels/ratio of Aβ-42 

was restored upon addition of sphingosine (Sawamura et al., 2004). Furthermore, sphingosine 

levels have previously been reported to be decreased in AD (He et al., 2010). The role of 

sphingolipids became more interesting as nuclear S1P has been shown to have inhibitory 

effect on class 1 Hdacs. The finding that S1P and SphK2 are part of a co-repressor complex, 

that modulate histone acetylation and gene expression opens an interesting scenario both for 

nuclear lipid signalling and class I HDAC regulation. 

 

1.8. Objective of the study 

Recent studies suggest that epigenetic mechanisms contribute to the pathogenesis of 

Alzheimer’s disease (AD). The aim of this work was to further elucidate the role of DNA 

methylation and  histone acetylation in AD. With this end in view, I employed the APPPS1-

21 mouse model for amyloid pathology and first performed a detailed characterization of 

learning behaviour in these mice in order to identify the time point marking the onset of 

cognitive deficits.  

To investigate a potential role of DNA-methylation in AD pathogenesis, I decided to take a 

specific approach by analysing the regulation and role of insulin binding protein 7 (IGFBP7). 

This was based on the fact that insulin and IGFs, as well as IDE, have been implicated with 

AD. Although IGFBPs have received less attention, previous data from our laboratory 

http://en.wikipedia.org/wiki/Lipid_signaling
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demonstrated that IGFBP7 is linked to the pathogenesis of post traumatic stress disorder, 

which is a risk factor for sporadic AD (Agis-Balboa et al., 2011; Yaffe et al., 2010).  

The second aim of my thesis was to further elucidate the role of histone-acetylation in AD 

pathogenesis. Using the same APPPPS1-21 mouse model, my plan was to describe histone-

changes that are accompanied by the onset of memory disturbances and to further study the 

mechanistic cause of such deregulation.  
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2. Materials and methods 

2.1. Materials  

2.1.1. Chemicals and reagents 

Acetic acid 

Acrylamide 

Agarose 

Ammonium persulfate 

Ampicillin 

Ampuwa 

Arabinoside Cytosine  

B27-Suppplement 

bFGF 

BSA 

Bromophenol blue 

CaCl2.2H2O  

Chloroform 

DAPI 

DEPC 

dNTPs 

DNA Marker 

DTT 

Dynabeads 

EDTA 

EGTA 

Ethanol 

Ethidium bromide 

Formaldehyde 

Gentamicin 

Glutamax 

Glutamine 

Glycerol 

Glycine  

Guanidine hydrochloride 

Roth, Karlsruhe 

Roth, Karlsruhe 

Roth, Karlsruhe 

Roth, Karlsruhe 

Applichem, Darmstadt 

Fresenius AG, Bad Homburg  

Sigma, Deisenhofen 

Gibco/Life Technology, Aukland 

Roth, Karlsruhe 

Roth, Karlsruhe 

Roth, Karlsruhe 

Roth, Karlsruhe 

Applichem, Darmstadt 

Vectarshield, Burlingame, CA 

Sigma, Deisenhofen 

Bioline, Luckenwalde 

Fermentas, Heidelberg 

Roth, Karlsruhe 

Invitrogen, Oslo 

VWR, Leuven 

Fermentas, Heidelberg 

Roth, Karlsruhe 

Roth, Karlsruhe 

Applichem, Darmstadt 

Applichem, Darmstadt 

Gibco/Life Technology, Aukland 

Gibco/Life Technology, Aukland 

Roth, Karlsruhe 

Applichem, Darmstadt 

Roth Karlsruhe 
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HEPES 

Horse serum 

Insulin 

KCl 

LiCl 

Dulbecco’s MEM  

β-Mercaptoethanol 

Methanol 

MgCl2 

Milk powder 

MNase  

NaF 

NaH2PO4 

Na2HPO4 

NaOH 

NaCl  

Neurobasal-A-Medium 

Pierce Protein A/G Plus-Agarose 

Proteinase K 

Roti-Quant for Bradford 

SeeBlue Plus2 loading dye  

Nonidet 

Paraformaldehyde 

PBS 

Penicillin/Streptomycin  

Peptone 

Phenol 

PMSF 

Sodium acetate 

Sodium azide, NaN3 

Sodium orthovanadate 

Sodium dodecyl sulphate 

Salmon sperm DNA 

Sucrose 

Roth, Karlsruhe 

PAN Biotech, Aidenbach  

Sigma, Deisenhofen 

VWR, Leuven 

Applichem, Darmstadt 

Biochrom, Berlin 

Roth, Karlsruhe 

Roth Karlsruhe 

Roth Karlsruhe 

Roth Karlsruhe 

Roth Karlsruhe 

VWR, Leuven 

VWR, Leuven 

VWR, Leuven 

Roth Karlsruhe 

Applichem, Darmstadt 

Gibco/Life Technology, Aukland 

Pierce/Thermo-Scientific, Rockford  

Roth, Karlsruhe 

Roth, Karlsruhe  

Fermentas, Heidelberg 

Fluka, Aldrich Deisenhofen 

Roth, Karlsruhe  

Roth, Karlsruhe  

Roth, Karlsruhe 

Sigma, Deisenhofen 

Applichem, Darmstadt 

Applichem, Darmstadt 

Applichem, Darmstadt 

Applichem, Darmstadt 

Sigma, Deisenhofen 

Roth, Karlsruhe 

Applichem, Darmstadt 

Applichem, Darmstadt 



Materials and methods Assessment of Epigenetic profile in Alzheimer’s disease 

 

21 
 

TEMED 

Transferrin 

Tris 

Triton-X-100 

TRI-reagent 

Tween-20 

Yeast extract 

 

Roth, Karlsruhe 

Sigma, Deisenhofen 

Applichem, Darmstadt 

Roth, Karlsruhe 

Sigma, Deisenhofen 

Roth, Karlsruhe 

Applichem, Darmstadt 

2.1.2. Solutions, buffers and media  

Agarose gel electrophoresis buffers 

50 X TAE (Tris-Acetate-EDTA) preparation protocol 

  242 Tris base, 57.1 mL Acetic acid, 100 mL 0.5 M EDTA (before use shake 

  vigorously). Add H2O to 1 L and adjust pH to 8.5 using KOH 

SDS-PAGE buffers: 40% Acrylamide stock solution, Acrylamide 29.2% (w/w), Bis- 

  acrylamide, 0.8% (w/w), solution in H2O 

APS solution (10%):  Ammonium persulfate in H2O 

Running buffer (5x) for 5 L: 75.5 g Tris/HCl (pH 8.3), 360.0 ml Glycine, 25.0 g SDS  

  pH 8.3 

Sample buffer (2x): 0.5 M Tris/HCl (pH 6.8), 20% Glycerol, 10% β-Mercaptoethanol, 4% 

  SDS 

Separating gel (12%) per ml: 1.6 µl H2O, 1.3 µl of 1.5 M Tris/HCl (pH 8.3), 0.05 µl of  

  10% SDS and 10% APS, 2.0 µl of 30% acrylamide mix and 0.002 µl of  

  TEMED  

Stacking gel (5%) per ml: 0.68 µl H2O, 0.13 µl of 1.0 M Tris/HCl (pH 6.8), 0.01 µl of 

  10% SDS and  10% APS, 0.17 µl of 30% acrylamide mix and 0.001 µl of  

  TEMED  

Transfer buffer: 5.8 g Tris-HCl, 2.92 g Glycine, 20% Methanol, 3.7 ml 10% SDS,  

  ddH2O to 1000 ml 

2.1.3. Frequently used buffers and solutions 

TX-Extraction buffer: 50 mM Tris-HCl, pH 7.4, 150 mM NaCl, 1 mM EDTA, 1%  

  Nonidet P40 (IPTGAL) and 0.1 % SDS 

4% PFA (Fixation buffer): 4 g PFA in PBS dissolved with few drops of 10 M NaOH, pH 

  7.4, PBS to 100 ml  

2.1.4. Native ChIP Buffers 

Hypotonic solution: 320 µl of 500 mM EDTA, pH 8.0 and adjust volume to 800 ml 
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Dounce buffer: 0.242 g Tris, 0.163 g MgCl2, 0.03 g CaCl2, adjust pH to 7.5 and volume to 

  200 ml with ddH2O 

FSB Buffer: 20 ml of 500 mM EDTA, pH 8.0, 4.85 g of Tris, 5.84 g of NaCl, adjust pH to 

  7.5 and volume to 200 ml 

Low Salt buffer: 2 ml of 10% SDS, 2 ml Triton X-100, 0.8 ml of 500 mM EDTA, pH 8.0, 

  4ml of 1 M Tris-HCl, pH 8.0, 10 ml of 3M NaCl adjust volume to 200 ml 

High Salt Buffer: 2 ml of 10% SDS, 2 ml Triton X-100, 0.8 ml of 500 mM EDTA, pH 8.0, 

  4ml of 1 M Tris-HCl, pH 8.0, 33 ml of 3M NaCl adjust volume to 200 ml 

0.1 M PMSF (phenylmethanesulfonylfluoride, M.W.=174.19 g/mol): 0.017 g/ 1 ml of  

Isopropanol 

TE Buffer: 2 ml of 1 M Tris, pH 8.0, 0.4 ml of 500 mM EDTA, pH 8.0, adjust volume to 

  200ml with ddH2O 

Elution buffer: 0.21 g NaHCO3, 2.5 ml of 10% SDS and adjust volume to 25 ml with ddH2O 

Lysis Buffer (10X) for proteinase K digestion: 

  7.78g Tris-HCl, 5 ml of 500 mM EDTA, pH 8.0, 10 ml of 10% SDS, 5.85 g 

  NaCl, adjust pH 8.0 and make up volume to 50 ml 

Lithium Chloride buffer: 2 ml IGEPAL-CA 630, 2 g Sodium Deoxycholate, 2.12 g LiCl 

  0.4 ml of 500 mM, EDTA, pH 8.0, and 2ml of 1 M Tris, pH 8.0, adjust  

  volume  to 200 ml 

3M Sodium Acetate: 19.69 g anhydrous sodium acetate (M.W.=82.03), adjust pH to 5.2  

  with concentrated acetic acid and volume to 80 ml  

3M 1,4-Dithio-DL-threitol (DTT) (M.W. = 154.3): 1g/2ml autoclaved ddH
2
O 

2.1.5. Cell culture media 

Primary Neuronal culture (PNC) media: 

HANKS solution: 6 g D-Glucose, 500 μl Gentamicin (stock solution 10 mg/ml) 0.35 g  

 NaHCO3, 2.383 g HEPES, pH adjusted to 7.3-7.4 

Dissection solution: 240 ml HANKS, 0.72 g Albumin, bovine, 0.347 g MgSO4 

Digestion solution: 0.8 g NaCl, 0.035 g NaHCO3, 0.037 g KCl, 0.099 g Na2HPO4, 100 ml 

  H2O, pH adjust to 7.3-7.4 

Culture medium A: 0.5 g D-Glucose, 0.2 ml (12.5 mg/ml) Insulin, 90 ml MEM Eagle, 1 ml 

  (200 mM) Glutamax, 0.05 ml (10 mg/ml) Gentamicin, 10 mg Transferrin, 10 

  ml Horse serum 

Culture medium B: 100 ml Neurobasal-A-Medium, 50 μl Gentamicin, 125 μl bFGF, 250 μl 

  L-Glutamine, 2 ml B27 Supplement, 125 μl 4 mM stock Cytosine-arabinoside 

30% Sucrose: 30 g of Sucrose dissolved in 100 ml of PBS, pH 7.4  
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Media for bacteria: LB Medium (pH 7.5), 1% Peptone, 1% NaCl, 0.5% Yeast extract 

LB-Agar (pH 7.5): 1% Peptone, 1% NaCl, 0.5% Yeast extract, 1.5% Agar 

The LB medium was prepared with distilled water, autoclaved and stored at 4
o
C. 

PBS buffer: 8 mM Na2HPO4, 140 mM NaCl, 2 mM KH2PO4, 2.7 mM KCl, pH 7.4 

TBST (10x) : 12.11g Tris, 87.66g NaCl, 5ml Tween 20, 1g NaN3, Water up to 1L 

PBS-BSA 0.1%:  9 ml PBS, 1 ml (10 mg/ml stock) BSA  

Buffers for MeDIP 

10x IP buffer:100 mM Na-Phosphate pH 7.0, 1.4 M NaCl (MW: 58.44 g/mol) and 8.2 g, 

   0.5 % Triton X-100         

1 M Na-Phosphate pH 7.0: 

  39 ml 2 M NaH2PO4,  31.2 g, 61 ml (2 M) Na2HPO4 35.6 g in 100 ml H2O  

100 mM (0.1M) Na-Phosphate, pH 7.0: 

  39 ml 200 mM NaH2PO4, 61 ml 200 mM Na2HPO4, 100 ml H2O  

3M NaAcetate, pH 4.8-5.2 

 

2.1.6. Sterilization of Solutions and Equipment 

Heat insensitive solutions were sterilized at 121°C for 20 min in an autoclave (Provit 2200, 

Holzner GmbH). Heat sensitive solutions were filtered through a disposable sterile filter (0.22 

μm pore size).  

 

2.1.7. Drugs and Antibiotics 

2.1.7.1. Antibiotics 

The stock solutions were filtered through sterile disposable filters and stored at -20°C. Before 

usage, antibiotics were added after the autoclaved medium had cooled down to a temperature 

lower than 55°C. Stock solution (Ampicillin 100 mg/ml).  
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2.1.7.2. Drugs 

Drug Company 

Metapyrine Serumwerk, Bernburg 

Ketamine  Medistar Arzneimittel, Arschberg 

Xylazine Riemser Arzneimittel, Greifswald 

Isoflurane Abbot, Wiesbaden 

Mouse IgG Santa cruz Biotechnology, CA 

IGFBP7 recombinant protein R&D Systems, Minneapolis 

 

2.1.8. Kits and Equipments 

Kit/Equipments Company 

MethylCollector Active Motif, Belgium 

Mini Plasmid Kit Qiagen, Hilden 

MTT Assay  Cayman, Ann Arbor 

Nucleobond PC 2000 column kit  Machery-Nagel, Dueren 

One-day ChIP kit  Diagenode, Belgium 

RT-PCR kit Roche, Mannheim 

QIA quick Gel Extraction kit  Qiagen, Hilden 

Hamilton syringe Hamilton Company, Nevada 

Videomot systems  TSE Systems, Bad Homburg 

Syringe pump   WPI, Sarasota FL USA 

Stereotactic device myNeurolab, Leica 

      

2.1.9. Synthetic Oligonucleotides 

The synthetic oligonucleotides used in this study were ordered from Sigma-Aldrich 

(Deisenhofen, Germany). The oligonucleotides were dissolved in water to a stock 

concentration 100 pmol/μl. The working solution was made up of concentration 10 pmol/μl. 

 

2.1.9.1. Plasmids, Generation of Constructs and Bacterial strains 

Adenoviral associated viral constructs of Sphk2 was generated and bacterial strain from the 

SURE cell (E. coli) and transformed by electroporation.   

 

2.1.9.1.1. Isolation of Nucleic acids (Small scale isolation of Plasmid DNA) 

A single E. coli colony was inoculated in 3.0 ml of LB medium with ampicillin and incubated 

in shaker for 16 hrs at 37°C at speed of 150 rpm. Bacteria was harvested by centrifuging at 

4000xg for 10 min. Plasmid DNA was isolated according to the QuickLyse Mini-prep 

protocol (Qiagen, Hilden).  
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2.1.9.1.2. Large Scale Preparation of Plasmid DNA 

A single clone was inoculated in 5 ml LB medium with appropriate antibiotic as a pre-culture 

for 8 hrs in 37°C shaker. This pre-culture was further inoculated at a dilution of 1:250 in LB 

medium with appropriate antibiotic and was cultured overnight at 37°C. The bacterial culture 

was harvested by centrifuging at 6000xg for 15 min at 4°C. The pellet was re-suspended in 

45 ml of S1+RNase A (Nucleospin). Forty-five millilitres of S2 (Nucleospin) was added and 

mix gently by inverting 6-8 times without vortexing. The mixture was incubated for 

maximum of 5 min at RT. Then, 45 ml of pre-chilled Buffer S3 was added and the mixture 

inverted 6-8 times for a homogeneous suspension to form. The solution was then incubated 

on ice for 5 min. The solution was then centrifuged for 50 min. During this time the 

Nucleobond column and filter paper were equilibrated with 20 ml of Buffer N2. The clear 

lysate was then loaded onto the equilibrated Nucleobond Column and washed with 35 ml of 

Buffer N3. Elution of plasmid DNA was done with 22 ml of Buffer N5. To precipitate DNA, 

18 ml of Isopropanol was added and the solution centrifuged at 15000g for 30 min at 4
o
C. 

The pellet was dissolved in 2 ml of TE buffer. The DNA was then purified by adding 1:10 of 

3M Sodium acetate and 2.5 volumes of ice-cold 100% ethanol. The mixture was centrifuge at 

4
o
C for 30 min at maximum speed. The DNA pellet was washed once with 7 ml of 70% 

ethanol and centrifuged at maximum speed for 10 min 4
o
C. The DNA pellet was dried for 30 

min and reconstituted in final volume of 500 µl TE buffer. 

 

2.1.9.2. Isolation of Genomic DNA from mouse tails 

STE buffer: 12.5 ml 2 M Tris-HCl, 12.5 ml 100 mM EDTA, 2 M NaCl, 10% SDS, H2O 

  added to 250 ml 

Genomic DNA was extracted by incubating 1cm of mouse tails obtained from the animal 

house in 360 μl of STE buffer and 15 μl of Proteinase K for 3 hrs on a Thermomixer 5436 for 

3 hrs at full speed. The lysed tail samples were then spun down for 20 min at 13000 rpm and 

the supernatant taken and precipitated with an equal amount of isopropanol. The solution was 

then spun again at full speed for 20 min and the pellet was washed with 500 μl 70% ethanol 

added and spun at full speed for 20 min. The ethanol was discarded and the precipitated DNA 

air dried and 50 μl of water was added and dissolved. 
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2.1.9.3. Isolation of total RNA from tissues and cultured cells 

Total RNA from brain samples was extracted using the Tri-Reagent (Sigma-Aldrich, 

Deisenhofen). The Tri-Reagent is a monophasic solution of phenol and guanidine 

isothiocyanate. Autoclaved and RNase away treated homogenizers and tubes were used for 

the extraction. The tissue was homogenized in 500 µl of Tri-Reagent and incubated for 5 min 

and 500 µl extra reagent added. The solution was then incubated at RT for 5 min. Afterwards, 

200 µl of CHCl3 was added and vortexed to obtain a homogeneous mixture. The suspension 

was then incubated at RT for 5 min. To obtain a pure RNA, the mixture was centrifuged at 

12000 xg for 15 min at 4°C and the colourless aqueous phase was transferred into a new 

microfuge tube. Isopropanol, 500 µl was then added and the mixed vigorously and incubated 

at -20°C for 30 min after which the mixture was centrifuged at 12000 xg for 30 min at 4°C. 

The supernatant was then discarded and the pellet washed twice with 75% Ethanol and 

dissolved in 50 µl of DEPC-H2O.  

 

2.1.9.4. Determination of Nucleic Acid Concentrations 

Nano-drop-spectrophotometer was used to determine the concentration and quality of nucleic 

acid by measuring absorption of the samples at 260 nm and 280 nm respectively.  

 

2.1.9.5. Nucleic acid electrophoresis (Agarose gel electrophoresis of DNA) 

Gel electrophoresis is the technique by which mixture of charged macromolecules, especially 

nucleic acids and proteins are separated in an electrical field according to their mobility 

which is directly proportional to macromolecule’s charge to mass ratio. Agarose gels are used 

to electrophorese nucleic acid molecules from as small as 50 bp to more than 50 kb, 

depending on the concentration of the agarose and the precise nature of the applied electrical 

field (constant or pulse). Usually, 1 g of agarose was added in 100 ml of 0.5x TAE buffer and 

boiled in the microwave to dissolve the agarose. The agarose solution was cooled to about 

60°C before adding 3 μl ethidium bromide (10 mg/ml) and poured into a horizontal gel 

chamber. The 0.5x TAE buffer was used also as electrophoresis running buffer in the gel 

chamber. The DNA samples were mixed with 5x loading buffer and then loaded into the 

wells of the gel. The electrophoresis was carried out at a steady voltage (50-120 V). The size 

of the DNA fragments on agarose gels was determined by extrapolating the size from a DNA 
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size marker which was also loaded along with the samples in a separate lane of the gel. After 

electrophoresis, the DNA in the gel was photographed using a UV gel documentation system.  

 

2.1.9.6. Isolation of DNA fragments from Agarose gel 

In order to purify PCR product and enzymatically digested product from excess primers, 

nucleotides and cut fragments, products were first run of Agarose gel of appropriate 

percentage and excised. Three volumes of excised product is added and melted at 37
o
C for 5 

min. One volume of Isopropanol was added and the mixture added to a column provided 

(Qiagen) and centrifuged at RT at 13000 rpm for 1 min. The flow-through was decanted and 

750 µl of PE buffer added to the column and again centrifuged at 13000 rpm. The outflow 

was discarded and residual buffer remove by repeating the centrifugation step. The column 

was then put onto a new microfuge tube and the bound DNA eluted with 30 µl of EB buffer 

and concentration determined at the Nano-drop (Peqlab).  

 

2.1.9.7. Enzymatic Restriction of DNA. 

For oriented cloning, approximately 2 µg of both vector and PCR products were digested 

with an appropriate restriction enzyme from Fermentas for about 10 min to 1 hr to ensure 

complete digestion. The products were then loaded onto 1.5% Agarose gel. The resolved 

DNA was excised from the gel and then purified. The cleaned product was ligated to AAV 

vector with hSyn promoter. 

 

2.1.9.8. Ligation of DNA fragments 

Ligation of linearized DNA in to a vector was carried out using the reaction below: 

  25-50 ng vector DNA (linearized), 50-100 ng insert DNA, 1 μl 10x ligation 

  buffer (or 5 μl of 2x ligation buffer), 0.3 μl T4 DNA ligase (5 U/μl), in a total 

  volume of 10 μl with H2O   

 

2.1.9.9. Preparation of Electro-competent E.coli bacteria 

The competent bacterial cells were generated by a physical cell wall modification that 

facilitates DNA uptake. LB medium (100 ml) was inoculated with a single colony of E. coli 
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and the culture was grown at 37°C to OD600 = 0.6. Bacteria were centrifuged (10 min, 4°C, 

3000xg) and the pellet was re-suspended in 50 ml of sterile 50 mM sCaCl2 solution (4°C) and 

incubated on ice for 30 min. The suspension of bacteria was centrifuged (10 min, 4°C, 

3000xg) and the pellet was re-suspended in 10 ml of sterile 50 mM CaCl2 solution (4°C) with 

15% glycerol. The mixture was dispensed into aliquots of 50 μl quick chilled in liquid 

nitrogen and stored at -80°C.  

 

2.1.9.10. Transformation of Electro-competent bacteria cells 

Transformation of the bacteria was done by gently mixing one aliquot of the competent 

bacterial cells (50 μl) with 1 μl of ligated product on ice. The bacteria-DNA complex was 

then transferred to the cuvette, and electroporated. Thereafter, 300 μl of S.O.C. medium was 

added to the bacteria plated on LB-agar plates containing appropriate antibiotic.  

 

2.1.10. Polymerase Chain Reaction 

Polymerase Chain Reaction (PCR) is a very sensitive and powerful technique that is widely 

used for the exponential amplification of specific DNA sequences in vitro by using sequence 

specific synthetic oligonucleotides (primers) in the field of molecular biology. The general 

principle of PCR is based upon a pair of oligonucleotide primers that are designed so that a 

forward or sense primer directs the synthesis of DNA towards a reverse or antisense primer, 

and vice versa. In a PCR, a heat stable Taq DNA polymerase catalyses the synthesis of a new 

DNA strand complementary to a template DNA from 5' to 3' direction by a primer extension 

reaction, resulting in the production of the DNA region flanked by the two primers. It allows 

unlimited amplification of specific template that may be present at very low concentrations in 

any sample. Amplification is done in an automatic thermocycler. The reaction composition is  

  20-50 ng DNA, 0.5 μl forward primer (5 pmol), 0.5 μl reverse primer (5 pmol)

   0.5 μl 2 mM dNTPs, 2.5 μl 10x PCR buffer, 0.75 μl 50 mM , MgCl2, 0.1 μl 

  Taq DNA Polymerase (5 U/μl), up to 25 μl with H2O 

A standard PCR program is for 35 cycles with denaturation at 95°C for 30 sec, annealing at 

60°C for 35 sec and extension at 72°C for 1 min.  
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2.1.10.1. Reverse Transcription PCR (RT-PCR) 

mRNA isolated was reverse transcribed into cDNA with Transcriptor First Strand cDNA 

Synthesis Kit (Roche Applied Science) according to the manual. Generally amplification of 

mRNA up to 4 kb was done using the Random hexamer primers. For detection of mature 

miRNA, miScript Reverse Transcriptase Mix (Qiagen) optimized blend of enzymes 

comprising poly (A) polymerase was used according to the manufacturer’s protocol. 

 

2.1.10.2. Quantitative real time PCR (qPCR) 

Comparative analysis of differences in gene expression for different treatments and 

genotypes was done using the qPCR. Specific primers and respective universal library probes 

as well as SYBR reaction mix was obtained from Roche Applied Science 

(https://www.roche-appliedscience.com/sis/rtpcr/upl/). Once cDNA is synthesized, a serial 

dilution of 1:5, 1:10, 1:50, 1:100, 1:500 and 1:1000 were made out of 5-10 µl pooled from 

each sample with 1:10 serving as calibrator.  The working solution of the treatments was 

usually 1:10. Amplification of diluted samples is done with the protocol below. 

For mRNA: 5.05 µl PCR grade H2O, 0.15 µl forward and reverse primers (20 µM) 7.5 µl 

  LC480 Master-mix (2x conc., Roche Applied Science) and 0.15 µl UPL (10 

  µM, Roche Applied Science) + 2 µl cDNA per sample. 

  

 

 

 

For miRNA, the SYBR Green PCR system from Qiagen was used and the protocol is below. 

For miRNA: 5 µl PCR mix (Qiagen), 1 µl Universal Primer 1 and Primer Assay and 2 µl 

  H2O + 1 µl cDNA. 

 

 

 

qPCR for mRNA amplification 

Step Temperature Time Number of cycles 

Initial denaturation 95
o
C 5min 1 

Amplification 95
o
C 

60
o
C 

72
o
C 

10s 

30s 

1s 

 

30x 

Cooling 40
o
C 30s  

https://www.roche-appliedscience.com/sis/rtpcr/upl/
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2.1.11. Nucleic Acid Sequencing 

Sequencing of nucleotides was out-sourced in the sequencing facility (www.seqlab.de). A 

total reaction mix of 7 µl consisting of 700 µg of plasmid DNA and appropriate volume of 

water and 2 µl of (20 µM) Primers (each of them in a different reaction tube). The obtained 

sequences were anlyzed with a BLAST program (Altschul et al., 1990) by using the sequence 

database from either Genbank (www.ncbi.nlm.nih.gov) or EMBL (www.ebi.ac.uk).  

 

2.1.12. Primer names Sequence 

Name Sequence 

Sphk2-cDNA-F CCGGAATTCCGCATGGCCCCACCACCACTACTGCCAGT 

Sphk2-cDNA-R CCGACCGGTCGCGGCTTGTGGCTTTTGACCTGCAGGCCC 

 

 

Table 1a: (Human) Primer-Sequences for ChIP-qPCR analysis Gene Sequence  

Primer Sequence (5’- 3’) Forward Sequence (5’- 3’) Reverse 

SPHK2-prom TACCACGATCCGGACTTCTC CTCCCAGATCCCTTTCTTCC 

Ex1-Sphk2 ACTGACTAGCCGGGCGATA TGCTAGCTACACGCATCTCG 

Ex2-SPHK2 CTGAAGGTCAGGCCAGGA CTGGTCCTGCTGCTCCTCCT 

Ex3-SPHK2 TTTGCCCTCACCCTTACATC GAAGTAGGCCGCTGAGTCTG 

PRKCD prom AACAGGAAGAGCAGGAGTGG AAGGGGCCCATTTTACAGAG 

PRKCD ex3 GCCGACCATGTATCCTGAGT TGCCATTGTTCTTCTTGCAG 

PRKCD ex5 CAGTCTATGCGCGCAGTGAGGA AAAGTCTTTGCACACAGAACAGA 

IGFBP2 GCTGTTTGGGTCTAGCTTGG GTTCAGTTCGCGAGGACTTC 

IGFBP4 TGTACGCTTTACCCCACCTC CTCAGTCTCCCACCGAGAAA 

IGFBP5 AGCAGCAACGTTGAGTGATG TTTTCGAAGTTGAGCCCTTG 

IGFBP7 MET  AAATTAGAGGGTGGAAGAGTCGT CTACTAACGTCGAAAAATAAACGAA 

IGFBP2 MET GCTGTTTGGGTCTAGCTTGG GTTCAGTTCGCGAGGACTTC 

IGFBP4 MET TGTACGCTTTACCCCACCTC CTCAGTCTCCCACCGAGAAA 

 

 

 

 

 

qPCR for miRNA/ChIP DNA amplification 

Step Temperature Time Number of cycles 

Initial denaturation 95
o
C 5min 1 

Amplification 95
o
C 

55-65
o
C 

72
o
C 

10s 

30s 

1s 

45x 

Melting 95
o
C 10s 1x 

Cooling 40
o
C 30s 1x 

http://www.seqlab.de/
http://www.ebi.ac.uk/
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Table 1b: Human qPCR primer sequences for mRNA Gene Sequence, UPL# 

Primer Sequence (5’- 3’) Forward Sequence (5’- 3’) Reverse UPL# 

HDAC1 CCAAGTACCACAGCGATGAC TGGACAGTCCTCACCAACG 58 

HDAC2 GGGTTGTTTCAATCTAACAGTCAA CAACATTACGGATTGTGTAGCC 25 

HDAC3 TCTGGGCTGTGATCGATTG CTTGACATATTCAACGCATTCC 89 

HDAC4 GTGGTAGAGCTGGTCTTCAAGG GACCACAGCAAAGCCATTC 24 

HDAC5 TTGACATCACCGCAGCTC CGACCTGACATCCCATCC 4 

HDAC6 AGTTCACCTTCGACCAGGAC GCCAGAACCTACCCTGCTC 58 

HDAC7 TGATCCGGGTGCACAGTA CCCAGGAGTCTGGACAGG 45 

HDAC8  GGCAGTTGGCAACACTCAT GTCAAGTATGTCCAGCATCGAG 52 

HDAC9  GCAGGCTGCTTTTATGCAA TGTTTCTCTAATCCATCCATGC 71 

HDAC10  TGGGAAGCTCCTGTACCTCTT GGCTGGAGTGGCTGCTATAC 42 

HDAC11  ATCACGCTCGCCATCAAG GGCATCAAGATCAATGATGGTA 80 

p300  TGGAGGAATGCCCAACAT GGCAACTGGAGTCACCAGAC 60 

SPHK1 ATCCAGAAGCCCCTGTGTAG TGGTGACCTGCTTCATAGCC 3 

SPHK2 TGAATGGACACCTTGAAGCA CGGTCAGCTCCTGGTCTG 18 

SGPP2  GACCCTTATTTATCCAGAAGATTGAT CAAGACATCCTTGGCCACTT 9 

SGPL1  GGGTCCCATTGACGAAGAT TGGCAGTGTTCCTGGAGATA 10 

PRKCD  ATTATCCCCGCTGGATCAC CTTGGTTGGTTCCCTTTCAA 80 

DNMT1  GATGTGGCGTCTGTGAGGT CCTTGCAGGCTTTACATTTCC 66 

DNMT3A CCTGAAGCCTCAAGAGCAGT TGGTCTCCTTCTGTTCTTTGC 46 

DNMT3B  AGAGGGACATCTCACGGTTC GGTTGCCCCAGAAGTATCG 84 

IGFBP1 CCATGTCACCAACATCAAAAA CCTTGGCTAAACTCTCTACGACTC 12 

IGFBP2 GGTGGCAAGCATCACCTT ACCTGGTCCAGTTCCTGTTG 25 

IGFBP3 AACGCTAGTGCCGTCAGC CGGTGTTCCTCCGACTCAC 1 

IGFBP4 CCTCTACATCATCCCCATCC GGTCCACACACCAGCACTT 44 

IGFBP5 CTACCGCGAGCAAGTCAAG GTCTCCTCGGCCATCTCA 77 

IGFBP6 TGACCATCGAGGCTTCTACC CATCCGATCCACACACCA 52 

IGFBP7  GGCCCAGAAAAGCATGAA GGATGCATGGCACTCATATTC 20 

GAPDH  AGCCACATCGCTCAGACAC GCCCAATACGACCAAATCC 60 

 

 

Table 2a: (Mouse) Primer-Sequences used for ChIP-qPCR analysis Gene Sequence 

Primer Sequence (5’- 3’) Forward Sequence (5’- 3’) Reverse 

Sphk2-prom TGCACTTCTACGCATTTTGC TTAGGCTCGTTCAGGCTTGT 

Ex1-Sphk2 ACCACAATTTGGGTTTCTCG TCCCTTTACCCCTGGAGAGT 

Ex3-Sphk2 CCTAGGAGTGCTTGGGACTG CGCTGTATGTGTAGGGCTTG 

Ex4-Sphk2 AAATCACCCCTGAATTGCTG CTGTCTGTATGAGGTTGAAGGACA 

Ex6-Sphk2 ACTGCTCGCTTCTTCTCTGC CACTGCACCCAGTGTGAATC 

Prkcd prom CTTCCATGGCTTCTCCTTTG CAGCAGAAATCAGCCAGTCA 

Prkcd ex3 AGCCCACCATGTATCCTGAG CCTTGCCGTTGTTCTTCTTG 

Prkcd ex5 TTGCAAACAGTCTATGCGTAGTG TTGCACACAGAACAGAAGGTG 

Prkcd ex12 CAGAGCTGAAGGGCAAAGAC TACAGATGAGGTGGGTGAGG 

Prkcd ex16 AAATGCTCATCGGCCAGTC GTCCTTGGATTCCTTGGTGA 

Igfbp7-Prom CCCAGACCCACGAGAATTTA CTGTCCTCACTCTGCAGCAC 

Igfbp2-Prom CGGGACTCACTCAAGGTCAT GAGCCTGTGCTTTTGTCTCC 

Igfbp4-Prom CGCGGTCTCTAGAGGTTGAC ACGAAGGGGATGTTGATTTG 
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Table 2b: Mouse qPCR primer sequences for mRNA Gene Sequence, UPL Probe  

Primer Sequence (5’- 3’) Forward Sequence (5’- 3’) Reverse UPL# 

Hprt1  TCCTCCTCAGACCGCTTTT CCTGGTTCATCATCGCTAATC 95 

Myst2 AACTTCCAGGGCAAGGAGAT  AATGTCCACGGGATTCACA  72 

Myst3 CTCGTGTTTACCTCCCGTGT AGATGGGGATTGGTTCAGC  38 

Myst4 GCAACAAAGGGCAGCAAG  AGACATCTTTAGGAAACCAAGACC 19 

Hdac1 TGCTGGACTTACGAAACAGC GTCGTTGTAGGGCAGCTCAT 81 

Hdac2 CTCCACGGGTGGTTCACT  CCCAATTGACAGCCATATCA  45 

Hdac3 TTCAACGTGGGTGATGACTG  TTAGCTGTGTTGCTCCTTGC  32 

Hdac4 CACACCTCTTGGAGGGTACAA  AGCCCATCAGCTGTTTTGTC 53 

Hdac5 GAGTCCAGTGCTGGTTACAAAA  TACACCTGGAGGGGCTGTAA  105 

Hdac6 GAAGGAGGAGCTGATGTTGG  TCATGTACTGGGTTGTCTCCAT  64 

Hdac7 GCCCTTGAGAGAACAGTCCA  CCAAGGGCTCAAGAGTTCTG  45 

Hdac8 GCAGCTGGCAACTCTGATT  GTCAAGTATGTCCAGCAACGAG 63 

Hdac9 TTGCACACAGATGGAGTGG  GGCCCATAGGAACCTCTGAT  32 

Hdac10  TTCCAGGATGAGGATCTTGC  ACATCCAATGTTGCTGCTGT  60 

Hdac11  ATCATGGCAGGGAAGCTG CACTGGAGCAGTGGTGGA 77 

Gcn5 GAAGAGGACCCTCATCCTCA GGAGAATTTGCCCCGTAGAT 60 

pCAF GGAGAAACTCGGCGTGTACT CAGCCATTGCATTTACAGGA 13 

p300  ACATGATGCCTCGGATGAC TAGGGGGCTGTGGCATATT 64 

Cbp  CAGGCAGGTGTTTCACAGG  GCATGTTCAGAGGGTTAGGG  1 

SphK1 GAAGCGATGCGAAGATAGAGA GAGGGTGTCTGGCGACT 10 

SphK2 AGGAAACTCGGCCAGACAC TCCTAGGCTCTTGGCTTGTG 17 

Sgpp1 GAATACAGCATGCCCTCCAC GCCCGTAGATAAGAGGATACTGC 15 

Sgpp2 TGTCCAGAAGATTGGTTGTGA CCACTTCAGGATGTCCTTGG 9 

Sgpl1 GGATGACTTGTTCCCTCTTCA TTTCCGTTCCCCCAGAAG 93 

Prkcd  CAAGAAGAACAACGGCAAGG TGCACACACATCAGCACCT 20 

Dnmt1 TTTGCCAGGTTCAATAAGACG CGTCATCATGAAGGTAGAGTTGG 15 

Dnmt3a tv1 AACGGAAACGGGATGAGTG ACTGCAATTACCTTGGCTTTCT 75 

Dnmt3b AATCCAGGGCCTTCTTTCAG TGGCACCCTCTTCTTCATTC 94 

Igfbp1  CGGTCATCACCTGGAAGAAG TGGACAGCTATATTGACATGGTCT 25 

Igfbp2  GCGGGTACCTGTGAAAAGAG CCTCAGAGTGGTCGTTCATCA 62 

Igfbp3  GCAGCCTAAGCACCTACCTC TCCTCCTCGGACTCACTGAT 1 

Igfbp4  AAGATCGTGGGGACACCTC GTGGGTACGGCTCTGTGAG 1 

Igfbp5  GGCGAGCAAACCAAGATAGA AGGTCTCTTCAGCCATCTCG 77 

Igfbp6  GGGCTCTATGTGCCAAACTG CCTGCGAGGAACGACACT 110 

Igfbp7  CCCTCCATGAAATACCACTGA GGCTGTCTGAGAGCACCTTT 110 

 

 

2.2. Primary Neurons Preparation 

Mice were decapitated and the whole brain was isolated and put into dissection medium on 

ice. The hippocampus was carefully dissected and put into a new petri dish with dissection 

medium on ice and cut into small pieces for easy digestion. The pieces were then collected 

into a centrifuge tube and washed two times with dissection medium. Five millilitres of 

HANKS solution was added to the hippocampal tissues and incubated on ice for 5 min. The 

tissues were then digested at RT for 5 min with sterile filtered solution of 6 mg of trypsin and 

60 μg DNAse (Sigma, Deisenhofen) (2 KUnits/μl) in 2 ml of digestion solution at 37
o
C for 

10 min. The digestion solution was removed upon centrifugation and the tissues washed three 

times with culture medium. The hippocampal tissues were afterwards triturated in 1 ml of 
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dissection medium to dissociate the cells. The homogenate was then added to a pre-wet 

strainer and washed with 4 ml culture medium. Ten microlitres of cell suspension was taken 

counting with a Neubauer chamber. The pre-incubated culture plates with coverslips coated 

with poly-D-Lysine and laminin (BD Bioscience, Heidelberg) were then taken out of the 

incubator and seeded in dissection medium with about 250000-500000 cells per well. The 

cells were then incubated at 37ºC for 30 min in a 5% CO2. Culture medium was then added to 

the cultured neurons. After overnight incubation with medium, cells were washed with PBS 

to remove cell debris and dead cells. Next, the cultured neurons were inoculated in culture 

medium B after fourth day. Medium was changed every two days till the day of neuronal cell 

analysis.  

 

2.2.1. Trypsinization of Eukaryotic cells 

The eukaryotic cells were washed with sterile PBS and incubated in a minimal amount of 

trypsin-EDTA solution (0.5 g/l trypsin, 0.2 g/l EDTA) at 37°C, until cells detached from the 

plastic surface. The process was checked under an inverted microscope. The trypsin reaction 

was inhibited by addition of growth medium containing FBS. The trypsin solution was 

removed by centrifugation at 3000xg for 10 min. The cells were re-suspended in an 

appropriate volume of cell culture medium and transferred into a new flask.  

 

2.2.2. Cryopreservation and thawing of Eukaryotic cells 

Trypsinised cells were spun down (3000xg for 5 min) in 4 ml of growth medium. The 

supernatant was aspirated and the cells were re-suspended in ice-cold freezing medium 

(DMEM, 20% FBS, 10% DMSO). Aliquots of the cells were frozen for 1 hr at - 20°C, 

afterwards they were transferred to -80°C for 3 hrs and then stored in a liquid nitrogen 

container. For revitalization, the frozen cells were quickly thawed and the cells were diluted 

in a suitable amount of growth medium. 

 

2.2.3. Cell viability assay 

To assess cell death in cultured cells, primary cultured neurons were treated with either 

IGFBP7. The viability of the cells was then evaluated using the MTT cell Proliferation Assay 

Kit (Cayman, Catalog No. 10009365) according to the manufacturer’s recommendation. 
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2.3. Animals and behaviour testing 

2.3.1. Contextual Fear Conditioning Paradigm 

Mice (C57Bl6/J, Janvier) were housed under standard conditions with free access to food and 

water. All experiments were carried out in accordance with the animal protection law and 

were approved by the District Government of Germany. Behaviour testing was performed as 

described previously (Fischer et al., 2007) using TSE Systems apparatuses and software as 

well as Freeze Scan software (Clever Systems). In brief mice were single housed and 

habituated to the testing room at least 3 days before behaviour experiments. To measure 

associative learning we employed the contextual fear-conditioning paradigm. The training 

consisted of a single exposure to the conditioning context (3 min) followed by a single 

electric foot shock (0.70 mA, constant current for 2 seconds) and the memory test was 

performed 24 h later (Figure 2). During the 3 min memory test, the freezing behaviour was 

determined every 10 seconds. For each mouse, a total of 18 measurements were taken. The 

freezing behaviour was quantified by calculating the number of measurements when the 

mouse showed a freezing behaviour divided by the total number of measurements. (% 

Freezing = Freezing counts/18 *100). The testing cage was carefully cleaned with 70% 

ethanol and then dried before placing new mice in the cage.  

 

2.3.2. Novel object Recognition (N.O.R) 

The novel object recognition test is evaluates the desire in rodents to explore novelty by 

showing preference to a novel object over familiar ones. This test consists of three phases: 

habituation, training and testing. Mice were put in an open field and allowed to explore for 5 

min to habituate. The following day two similar objects in size and shape are introduced and 

again the mice were made to explore for 5 min. This is repeated until anxiety levels are 

observed to be appreciably reduced compared to the first day of object exposure. The mice 

were then test on the object recognition task which again involves two similar object 

introduced to the mice for the first time on the day of testing. The mice were again allowed to 

explore for 5 min after which they are returned to home cage. After 5 min the mice were 

brought back to the arena with one of the objects changed with a novel one and again allowed 

to explore for 5 min. Exploration was scored on the basis of sniffing, direct contact with the 

object. The index for scoring is calculated as percent time spent with novel object with the 

relation below. 
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                time spent with novel object 

      time spent with both familiar and novel object 

  

2.3.3. Morris Water Maze (MWM) 

The water maze (Morris, 1981) training was performed in a circular tank (diameter 1.2 m) 

filled with opaque water (1.5 Liters SAKRET Tiefengrund). A platform (11 x 11 cm) was 

submerged 1 cm below the water’s surface in the centre of the target quadrant. The 

swimming path of the mice was recorded by a video camera and analyzed by the Videomot 2 

software (TSE). Four trials per day was performed by gently lowering the mice into the pool 

from different spatial cues and allowed to swim for 60 s. A mouse that is not able to find the 

platform was aided by tail guide to the platform. The mouse was then allowed to rest for 10 

min before the next section is initiated. Probe test (Memory retention) was performed by 

removal of the platform and the mice allowed for 60 s to swim. 

 

2.3.4. Elevated Plus Maze 

Elevated plus maze was performed to test the anxiety levels of the mice. This test is based on 

the principle of rodent preferring narrow, dark and closed spaces over open and bright places. 

The maze consists of four arms, two walled arms facing each other and two unfenced. Each 

arm is of length 45 cm and 10 cm broad. The walled arms are of height 30 cm. The anxiety 

level is tested in the mice by introducing them into the centre of the maze facing the open arm 

and allowed to explore for 5 min. Tracking of the mice was done by the VideoMot2, Version 

7.5 The anxiety level was determined by plotting the percentage time spent in both close and 

open arms (Lister et al., 1987; Rodgers and Cole1993). The elevation of the maze from the 

ground is 40 cm.  

 

2.4. Mouse strains 

2.4.1. Genotyping of APPPS1-21 mice 

Mouse lines generated were housed in the animal facility of European Neuroscience Institute, 

Goettingen and C57BL/6J strains were used for the breeding. Food was provided ad libitum. 

APPPS1-21 mice were genotyped using the protocol below. Only the PCR for the APP gene 

    100% =

= 
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was performed using a Mastercycler ep gradient S (Eppendorf, Hamburg, Germany) using 

DreamTaqTM as the mouse line was generated to have co-inheritance of both APP and PS1 

gene. The laboratory materials, which are not listed here, were bought from Janvier, France. 

 

 

 

 

2.5. Implantation of microcannulae and in vivo intrahippocampal manipulations 

In order to implant microcannulae, mice were provided at least 3 days before operation with 

water containing 3ml/L of Sodium metamizol. The mice were anaesthetised with a cocktail of 

120 mgkg
-1

/8 mgkg
-1 

of ketamine/xylazine. The coordinates for drilling holes were 

determined based on the position of the target region according to the Mouse Brain Atlas 

(Paxinos and Franklin). The head of mice were fixed in a Benchmark stereotaxic Instrument. 

The skin and the connective tissue above the skull were carefully removed. The exposed skull 

was then cleaned with PBS. Using a clean 0.5 driller, two holes 2 mm apart (1 mm from on 

each side from the medial line ) were bilaterally drilled in the mice skull (-1.70 mm posterior 

relative to bregma). Any bleeding was cleaned with a cotton swab soaked in PBS and 1.5 mm 

microcannula was carefully mounted on the skull. The microcannulae were fixed with dental 

cement. The head was kept fixed until the cement hardened and the microcannula was 

adequately fixed. Upon solidification of the dental cement, the mouse was wrapped up in a 

soft paper towel and warmed on a warm plate (37°C) for 10 min and finally returned to its 

home cage. Mice implanted with microcannulae were individually housed and observed for a 

week before commencement of experiments. During the administration of drugs, mice were 

anesthetized with Isoflurane. 0.5 mL of Isoflurane was pipetted on a small tissue paper, 

which was placed in 0.5 L beaker. The mice were place in the beaker until they were 

anesthetized. The drugs were bilaterally injected for one minute into the hippocampus by 

using a 1.5 mm injector. After one minute, the injector remained in the microcannulae for 

additional 10 second. After the injection, the dummy was placed in the microcannulae and the 

mice were carefully returned to their home cages.  

 

Genotyping PCR forAPPPS1-21 mice 

Step Temperature Time Number of cycles 

Initial denaturation 95
o
C 5min 1x 

Amplification 95
o
C 

60
o
C 

72
o
C 

10s 

30s 

1s 

30x 

Cooling 40
o
C 30s 1x 
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2.6. Protein lyses, Sub-cellular fractionation and Immunoblotting 

The hippocampus tissue was isolated and prepared as previously described (Fischer et al., 

2007) and was immediately kept in liquid nitrogen. The frozen tissue was kept at -80°C at all 

times until usage. Brain tissue was homogenized in TX-buffer (50 mM Tris HCl, 150 mM 

NaCl, 2mM EDTA,1% Triton-100, 1% NP-40, 0,1% SDS), subjected to the Bioruptor 

(Diagenode) for 15 min (High; 30 seconds ON, 30 seconds OFF). Next, the lysate was 

centrifuged at 12000 rpm for 10 min. The supernatant was used for immunobloting. Another 

method for protein isolation was Subcellular fractionation of hippocampus, which was made 

by using the Proteo Extract. Subcellular Proteome Extraction Kit (Calbiochem) to isolate 

cytosolic, membrane and nucleus protein fractions from Hippocampus tissue. 500 μL of ice 

cold Extraction buffer I with 2,5 μL Protease Inhibitor Cocktail were added to the tissue, 

which was homogenized with a sterile stroke and incubated for 10 min at 4°C with gentle 

agitation on an a shaker. Lysate was pellet by centrifugation at 4°C at 750 rcf for 10 min. 

Supernatant, containing the cytosolic fraction (Fraction I) was removed and stored on ice. 

Pellet was re-suspended with 500 μl ice cold Extraction Buffer II and 2.5 μL Protease 

Inhibitor Cocktail. After incubation at 4°C for 30 min by gentle agitation, insoluble material 

was pelleted at 5500 rcf for 10 min. Supernatant containing the membrane fraction (Fraction 

II) were removed and stored on ice. Pellet were re-suspended by gentle flicking the tube with 

250 μL Extraction Buffer III and 2.5 μL Benzonase Nuclease and incubated for 10 min at 4°C 

by gentle agitation. Next the sample was centrifuged at 8500 rcf for 10 min. The supernatant 

containing the nuclear fraction (Fraction III) was removed and stored on ice. The protein 

concentration was determined using Bradford protein assay (Bradford, 1976). In brief 3μL of 

sample was mix with 997 µl of 1x Bradford dye (Bradford stock solution 5x). The dilution 

was made with PBS 7.0 pH). The mixture was incubated for 5 min. Next, the concentration 

was measured in a spectrometer. The desired sample fraction was then mixed with 5x loading 

dye and was heated for 5 min in 95°C. Samples (40μg of the total lysate or 10-20μg of 

nuclear fraction lysate) were loaded on 12% acreylamide gel (Laemmli, 1970; performed as 

in (Fischer et al., 2007) for total of 2.5 h (45 min 60V followed by 105 min 120V). The 

protein was then transferred onto a nitrocellulose membrane and then blocked with 5% milk 

powder in TBST for 1 h. Next, the membranes were incubated with first antibody for 1-2 

days. Membranes were incubated for 45 min with fluorescent secondary antibodies (1:15,000 

in 0.5% milk in TBST), and then washed with TBST 3x 10 min. Before quantification using 

an Odyssey Infra-red Imager (Li-Cor), the membranes were washed with PBS briefly. It was 

made sure that responses were within the linear range. 
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2.7. Immunoprecipitation        

2.7.1. Chromatin Immunoprecipitation (ChIP) 

Basically two ChIP processes have been performed. Native ChIP was employed for post 

mortem tissues described below and one day ChIP for the mouse samples. For (Jackson, 

1978; Solomon, 1988; modified for whole tissue experiments by Diagenode company and our 

lab) the DNA-shearing Kit and One-Day ChIP Kit protocol from Diagenode (Diagenode, 

Belgium) was used according to the manufacturer’s protocol. The following modifications 

were made to optimize the procedure for hippocampal tissue. Tissue was homogenized with 

twice the amount of the different buffers indicated during pre-shearing. DNA shearing was 

performed the Bioruptor (Diagenode) with the following settings (25 min in total, High, 30 s 

ON, 30 s OFF). Sheared chromatin samples were incubated for 60 min with 4μl of antibody 

in ultra sonic bath. Subsequently, the antibody-antigen complex was further incubated with 

pre-blocked beads and an extra of 500μl of ChIP buffer for 60 min. Rather than 

recommended the beads were washed twice. The antibody-beads complex was incubated for 

45 min in the presence of Proteinase K. Purified DNA was analyzed on a Bioanalyzer 

(Agilent) using pico-RNA chip. For native ChIP employed in the processing of post mortem 

tissues. Adjusted volume of Dounce buffer (Section 2.1.4) is added according to the weight 

of brain tissue. The tissue was then homogenized with 5 strokes and appropriate volume of 

0.5 u/µl Micrococcal Nuclease (MNase) added followed by EDTA to a final concentration of 

10 mM to stop the reaction. The lysed tissue was hypotonized using 0.2 mM EDTA and 0.2 

M Benzamidine added and PMSF and incubated for 1 h with vortexing at regular intervals of 

10 min, 3 M DTT (1/2000) was then added and the solution centrifuged at 4000 rpm for 10 

min at 4
o
C. 500 µl of the supernatant was then taken for immuno-selection and 200 µl used as 

input. Immuno-selection was performed by adding fresh 1/10 sample volume of 10x FSB 

buffer (Section 2.1.4). Appropriate antibody was then added and vortexed at medium power. 

The mixture was then incubated for 1 h in ultrasonic bath. Meanwhile protein G-Agarose 

beads was washed with 1.4 ml FSB buffer and blocked with 15 µl of Salmon sperm DNA (10 

mg/ml) for 20 min at 4
o
C on a rotating wheel. Supernatant was removed after centrifugation 

at 2500 rpm for 3 min. Then 200 µl of FSB per sample was added and the beads equally 

distributed in new microfuge tubes. This was achieved by comparing the levels after 

centrifuging at 1500 rpm for 1 min. The antibody-chromatin complex was then added to the 

beads and incubated on a wheel for 1 h 4
o
C. Unbound protein was removed by centrifuging at 

1500 rpm for 3 min and supernatant discarded. Washing of the complex was performed 
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sequentially using low and high salt buffers, lithium chloride and TE buffer (section). Fresh 

250 µl of Elution buffer was added at RT and vortexed at medium power and rotated for 15 

min at RT. Supernatant was collected after centrifugation at 2500 rpm for 2 min. This step is 

repeated and the eluate pooled. Then 10 µl of 0.5 M EDTA and 25 µl of 0.8 M Tris-HCl, pH 

6.5 were added. Proteinase K (1/200) was added and incubated at 52
o
C for at least 2.5h. 

Phenol-CHCl3 purification was performed with 500 µl and incubated at RT for 5 min. 

Aqueous phase was transferred to a new tube after centrifugation for 5 min at 13000 rpm. A 

mixture of glycogen, 2 µl and 50 µl of 5 M Sodium acetate was added and 1.375 µl of 100% 

ethanol added and vortexed vigorously. The samples were then incubated at -80
o
C over-night. 

The next day, the samples were centrifuged at 13000 rpm for 25 min at 4
o
C. The pellet was 

then washed with ice cold 75% ethanol and centrifuge at 14000 rpm for 10 min 4
o
C. The 

supernatant was discarded and the pellet air-dried and then dissolved in 50 µl of H2O.  

 

2.7.2. Co-immunoprecipitation 

Whole hippocampal tissue was lysed using the lysis buffer including 0.25 mM of sodium 

orthovanadate. Hundred microlitres of lysate was taken and diluted in 100 µl of lysis buffer. 

An input of 40µl of the diluted sample was taken and stored at -20
o
C. For immuno-selection, 

2.5 µl of SphK2 (Abcam 92607) was added and incubated at 4
o
C for 2-3 h on a rotating 

wheel. During the incubation, protein A beads were washed, 100 µl per sample with 200 µl 

of lysis buffer. The beads were centrifuged at 5000 rpm at RT for 1 min and supernatant 

discarded. The washing was repeated once. After the incubation, the complex was spun 

briefly and transferred to the beads. This was then further incubated for 2-3 h at 4
o
C on a 

rotating wheel. Unbound protein was removed after the incubation step by collecting the 

supernatant into a new microfuge tube after centrifugation at 5000 rpm for 1 min. The 

complex was then washed sequentially with buffer I and II and supernatant discarded. Sixty 

microlitres of 2x Laemlli buffer was then added and boiled at 95
o
C for 5 min. The mixture 

was centrifuged at RT for 1 min at 5000 rpm and the supernatant collected and used for 

western-blot. 

 

2.7.3. Methylated DNA Immunoprecipitation 

Two-5 µg of isolated DNA (using the phenol-ChCl3) dissolved in 200 µl of TE buffer was 

used for methylated DNA immunoprecipitation. The DNA was sheared by sonication to 
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obtain 200-500 bps. Approximately, 4 µg (160l) of sonicated DNA and volume adjusted to 

450 µl. The DNA was denatured at 95
o
C and immunoselected for 5mC antibody for 2 h on a 

rotating wheel at 4
o
C after addition of 51 µl of 10x IP buffer. Meanwhile dynabeads are 

washed during the incubation step with PBS-BSA 0.1 % for 5 min. The beads were collected 

with magnetic rack and re-suspended in 40 µl per sample IP buffer and then added to the 

mixture. The mixture was incubated for 2 h at 4
o
C. Afterwards, the beads were collected 

using a magnetic rack and washed with 700 µl 1x IP buffer at RT for 10 min with shaking at 

800 rpm. Washing was repeated twice. The beads were then collected and re-suspended in 

250 µl Proteinase K digestion buffer and 3.5 µl Proteinase K and incubated for 3 h at 50
o
C. 

The DNA was then cleaned with phenol-CHCl3-isoamylalcohol 25:24:1. The DNA was 

precipitated with 400 mM NaCl and 1 µl of glycogen. Two volumes of Ethanol was added 

and incubated at -20
o
C for 20 min and centrifuged for 25 min at 13000 rpm at 4

o
C. 

Supernatant was removed and washing step repeated with 500 µl of 70% Ethanol and finally 

obtained DNA was dissolved in 40 µl of TE buffer. qPCR was then run on the samples and 

loaded on a 2% agarose gel for 40 min. 

 

2.7. Antibodies 

Antibodies Company Dilutions Antibodies Company Dilutions 

Primary antibodies 

Sphk2(Rb) Abcam 1:1000 β-Actin (Ms) Santa-Cruz 1:2000 

Sphk1 Abcam 1:1000 Hdac1 (Rb) Santa cruz 1:1000 

Ac-H3K9 (Rb) Millipore 1:5000 Hdac2 (Ms) Abcam 1:1000 

Ac-H3K14 (Rb) Millipore 1:2500 Hdac2 (Rb) Santa cruz 1:1000 

Ac-H4K5 (Rb) Millipore 1:2000 Hdac3 (Rb) Santa cruz 1:1000 

Ac-H4K8 (Rb) Millipore 1:1000 Hdac8 (Rb) Santa cruz 1:1000 

Ac-H4K12 (Rb) Abcam 1:5000 Hdac10 (Rb) Santa cruz 1:500 

Ac-H4K16 (Rb) Millipore 1:2000 H4 Abcam 1:500 

Dnmt3a (Rb) Cell Signalling 1:1000 Akt1 (Ms) Abcam 1:1000 

Dnmt1 (Rb) Cell Signalling 1:1000 IGFBP7 (Rb) Abcam 1:1000 

Dnmt3b (Rb) Cell Signalling 1:1000 p-Akt(308) Abcam 1:1000 

Prkcd (Rb) Santa cruz 1:500 GAPDH (Ms) Chemicon 1:1000 

5mC Eurogentec 5 µl per IP DAPI Vectashield 1:10000 

 

Secondary antibodies 

Antibodies Company Dilutions Host 

Anti rabbit IgG 800 nm Li-COR 1:15000 Goat 

Anti rabbit IgG 680 nm Li-COR 1:15000 Goat 

Anti mouse IgG 800 nm Li-COR 1:15000 Goat 

Anti mouse IgG 680 nm Li-COR 1:15000 Goat 

Alexa 488 anti mouse Invitrogen 1:500 Donkey 

Cy3 anti rabbit Jackson immunoreseach 1:500 Goat 
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2.8. HAT/HDAC Activity 

To specifically measure activity of HATs and HDACs in the nucleus, sub-cellular 

fractionation of hippocampal was performed using the Calbiochem Kit (ProteoExtract® 

Subcellular Proteome Extraction, Calbiochem 539790-1KIT). Nuclear fractions were then 

used in the determination of activity of the enzymes. HAT assay was performed using the 

HAT Assay Kit (BioVision, K332-100) according to the manufactures protocol. HDAC assay 

was performed using the Fluorometric HDAC assay kit (BioVision, k330-100) according to 

the manufactures protocol. Briefly, 120 μg of nuclear extract were incubated for 4 h with the 

assay mix in Greiner 96 U Bottom Transparent Polystyrol plate. Analysis was performed 

using a TECAN Infinite 200 Elisa plate reader and all determinations were performed at 430 

nm.  

 

2.9. Perfusion and Immunohistochemistry 

In order to implant microcannulae, mice were anesthetized with 0.1 mg/kg of Temgesic. Mice 

were anesthetized with a sub-cutaneously injection of 0.1 mg/kg of Temgesic dissolved in 

NaCl and then perfused by transcardial injection with ice-cold PBS followed by 4% PFA. 

Brain samples were then dissected out and kept in 30% sucrose solution for at least three days 

and then cryo-sectioned. For immunohistochemistry the brain sections were washed three 

times with PBS for 5 min each and then permeabilized with 0.2% Triton-X for 30 min at 4ºC. 

The sections were then washed three times with PBS for 5 min and incubated in 5% BSA for 

1 hr at RT and then washed again for three times with PBS for 5 min. The brain sections were 

then incubated with primary antibody (2.1.12) at RT for 2 h in 2% BSA solution. The slides 

were washed after the primary antibody incubation with PBS three times for 15 min and 

incubated in secondary antibody (2.1.12) for 2 h at RT in 1% BSA solution. Sections were 

afterwards incubated in DAPI (1:10000) for 20 min. The sections were then mounted cover-

slips and sealed with Mowiol. 

 

2.9.1. Confocal microscopy and Image acquisition 

Fluorescence pictures were acquired and later quantified using Leica SP2 AOBS confocal 

microscope with Leica confocal Software (LCS). Gain and background settings were 

identical to all groups compared per experiments. In addition, all pictures per experiment 

containing all the groups compared were taken in the same microscope session without 
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switching off the laser or changing any settings. Prior to the beginning of the pictures 

acquisition, the laser was allowed to heat up and proximally 30 blank picture slices were 

taken to achieve optimal laser power. A multi-line Argon laser and two Helium Neon lasers 

were used in the microscope. Two sequential images (lambda scan) were acquired by exciting 

fluorochromes. Images were acquired with identical parameters: pixel time 8 μs/pixel (time 

acquisition 10 sec), 1024 pixels x 1024 pixels resolution, pinhole: 1 airy unit for 496-508 nm 

emission wavelengths.  

 

2.10. Bioinformatics and Statistical Analysis (Computer analysis) 

Sequences obtained from Seqlab were aligned using program BLAST and other programs 

from National Centre for Biotechnology Information (NCBI) (www.ncbi.nlm.nih.gov). For 

restriction analysis of DNA sequence NEBcutter V2.0 program was used 

(http://tools.neb.com/NEBcutter2/index.php. For densitometric quantification of gel pictures 

Image J software (http://rsb.info.nih.gov/ij/) was used. Levels of MeDIP DNA were 

measured using the Image J software. The promoter was analysed using the TRED 

(http://rulai.cshl.edu/cgi-bin/TRED/tred.cgi?process=home). CpG islands were identified using the 

software (http://www.uscnorris.com/cpgislands2/cpg.aspx) and methylated DNA primers on 

promoters were designed (http://www.urogene.org/methprimer/index1.html). TargetScan and 

miRanda were used for computational prediction of miRNA targets 

(www.targetscan.com/release 5.1) and (www.miRanda.org). Data of qPCR, western blotting 

and behavioral studies are expressed as mean ± s.e.m (standard error mean) unless stated 

otherwise significance was defined performing student’s t-test and ANOVA. Methylation of 

DNA was modelled with ChemSketch 

(http://www.acdlabs.com/resources/freeware/chemsketch/).  

 

 

 

 

 

 

http://rulai.cshl.edu/cgi-bin/TRED/tred.cgi?process=home
http://www.uscnorris.com/cpgislands2/cpg.aspx
http://www.targetscan.com/release%205.1
http://www.miranda.org/
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3. Results 

Part I 

3.1. The role of DNA methylation in Aging and Alzheimer’s disease 

DNA methylation has been implicated with memory function but its role in AD is less well 

defined. The starting point to this project was a previous finding by our lab showing that 

IGFBP7 is dynamically regulated during fear extinction, a model for post-traumatic stress 

disorder (PTSD) (Agis-Balboa et al., 2011). Here elevated levels of IGFBP7 were associated 

with PTSD-like phenotypes in mice. Our unpublished data show that during fear extinction 

IGFBP7 levels are regulated via dynamic DNA-methylation, which is in line with differential 

DNA-methylation of IGFBP7 in cancer cells (Kanemitsu et al., 2000; Lin et al., 2007; Wang 

et al., 2008a). Moreover, increased serum levels of IGFBP7 have been observed in diabetic 

patients and insulin resistance (IR) (Kutsukake et al., 2008; Lopez-Bermejo et al., 2006) and 

AD patients (unpublished).  This is interesting; since IR is a risk factor for AD and 

deregulated insulin/IGFs signalling has been implicated with AD pathogenesis. Considering 

the fact that in addition to altering insulin signalling, PTSD is a severe risk factor for 

developing AD at old age (Yaffe et al., 2010) it is tempting to hypothesize that environmental 

stressors affect DNA-methylation of IGFBP7 which in turn lead to elevated IGFBP7 levels, 

may contribute to AD pathogenesis. A role for IGFBPs has so far not been tested in AD and 

the following experiments were designed to test this hypothesis. 

 

3.1.1. Aberrant IGFBP7 expression in Alzheimer’s disease 

It was first set out to determine the expression of IGFBPs levels in human AD patients. Post 

mortem samples from the prefrontal cortex of age-matched individuals with a similar post-

mortem delay were chosen for analysis (Fig. 3.1.1A and B). Determination of the levels of 

IGFBP1-7 via qPCR was first done. No difference in expression was detected for IGFBP1-6 

in AD patients relative to the control group (Fig. 3.1.1C). In contrast, IGFBP7 was found to 

increase significantly in AD samples relative to controls (Fig. 3.1.1C, p=0.0092). Elevated 

levels of mRNA translated into increased amount of protein i.e. increased IGFBP7 levels was 

observed in the AD samples by immunoblot analysis (Fig. 3.1.1D, p=0.0003). A key pathway 

activated by insulin/IGFs to maintain cellular integrity is the Akt/PI3K-pathway (Cheng et 

al., 2010; Sesti, 2006). When the total level of Akt was determined no significant difference 

was observed between control and AD patients however, the level of p-Akt, a mark for Akt 
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activation, was found to be significantly reduced in patients compared to the control samples 

(Fig. 3.1.1E, p=0.0358). 

  

Fig. 3.1.1: Comparison of IGFBPs levels between controls and AD patients. A: Age of patients used for post 

mortem analysis. B: Post mortem delay in individuals used showing no significant difference between controls 

and AD patients. C: qPCR analysis shows that IGFBP7 mRNA was significantly increased in AD patients. D: 

Left panel shows immunoblot analysis of IGFBP7 protein levels significantly increased in AD patients and right 

panel shows representative immunoblot E: Left panel shows immunoblot analysis of reduced p-Akt levels in AD 

patients. Right panel shows representative immunoblot images of reduced activation of Akt in AD patients. Data 

was normalized to β-Actin. No. of controls=7 and AD=14. Error bars indicate s.e.m. (*p<0.05, **p<0.01 and 

***p<0.001). 

In sum these data show that IGFBP7 levels are increased in AD patients which correlates 

with reduced Akt signalling, the major downstream pathway activated by the insulin/IGF 

cascade. 

 

3.1.2. CpG Methylation on the Promoter IGFBP7 was lower than controls 

Published (Nakae et al., 2001; Wajapeyee et al., 2010) as well as unpublished data from our 

group demonstrate the regulation of IGFBP7 by dynamic DNA methylation. Therefore 

methylated DNA immunoprecipitation (MeDIP) was performed to study the impact of DNA-

methylation on deregulated IGFBP7 levels in AD. Assessment of methylated cytosine levels 

within the promoter of IGFBP7 revealed a significant reduction in AD compared to controls 

but not within the promoters of IGFBP2 and IGFBP4 (Fig 3.1.2A, p=0.0333) suggesting that 
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decreased DNA methylation contributes to elevated IGFBP7 levels. DNA methylation is 

regulated by DNA methyltransferases (Bird and Macleod, 2004; Goll and Bestor, 2005). 

Thus the enrichment of the DNA methyltransferases DNMT1 and DNMT3a at the IGFBP7 

promoter using ChIP analysis was determined (Fig. 3.1.2B and C). Reduced levels of 

DNMT1 (Fig. 3.1.2B, p=0.0065) and DMNT3a (Fig. 3.1.2C, p=0.0085) at the IGFBP7 

promoter in AD patients were observed. This effect was specific since similar levels of 

DNMT1 and DMNT3a were detected at the promoter regions of IGFBP2 and IGFBP4 (Fig 

3.1.2 B and C).  

 

Fig. 3.1.2: Aberrant expression of IGFBP7 in post mortem tissue correlates with altered methylation pattern. A: 

MeDIP analysis revealed reduced levels of methylated cytosine at the promoter of the IGFBP7. No significant 

difference was observed on the promoters of IGFBP2 and IGFBP4. B: ChIP analysis revealed reduced 

enrichment of DNMT1 on the promoter of IGFBP7 and no difference on the promoter of IGFBP4. C: ChIP 

analysis revealed reduced enrichment of DNMT3a on the promoter of IGFBP7 and no difference on the 

promoter of IGFBP2 and IGFBP4. N=5 and error bars indicate s.e.m (*p<0.05 and **p<0.01). 

 

3.1.3. Characterization of 4-5 month in APPPS1-21 mice 

Post-mortem analysis of human brain tissue is suitable as an initial experiment to test our 

hypothesis on the role of IGFBP7 in AD pathogenesis. To perform further mechanistic 

studies, the APPPS1-21 mouse (Radde et al., 2006) that is characterized by an early onset of 

amyloid pathogenesis was used. The aim was to investigate IGFBP7 regulation during the 

longitudinal course of pathogenesis, especially memory disturbances. Thus, we first set our 

experiments to detect the earliest time point of memory disturbances in APPPS1-21 mice. 

Four to 8 month old mice were subjected to a battery of behavioural tests. Obtained data 

show that explorative behaviour measured via the open field test was similar in 4 month old 

APPPS1-21 and wild type/control mice. Basal anxiety was measured as the percentage of 
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time spent in the corners vs. the centre region of the open field arena. No difference was 

found amongst groups (Fig.3.1.3A). However, when mice were subjected to the elevated plus 

maze test (EPM), which is a more sensitive test for basal anxiety, APPPS1-21 mice were 

observed to show reduced anxiety levels indicated by the fact that APPPS1-21 mice spent 

more time in the open arms of the maze when compared to control mice (p=0.0001, 

Fig.3.1.3B). Next, memory formation was assessed. First the novel object recognition test 

that depends on the hippocampus and cortical regions was employed. When tested for LTM 

there was no significant difference amongst groups. However, while wild type control mice 

showed a preference to the novel object that was significantly above chance level, APPPS1-

21 mice did not perform better than chance, suggesting the novel object recognition learning 

was mildly impaired in 4-5 month old APPPS1-21 mice (Fig.3.1.1C). The mice were then 

tested for associative memory task using the contextual fear conditioning paradigm. There 

was no difference in activity during the training and in response to the electric foot shock 

amongst groups. Freezing behaviour, which indicates associative memory, was measured 24h 

later in a memory test. There was no difference amongst groups, showing that associative 

memory is intact in 4 month-old APPPS1-21 mice (Fig. 3.1.3D). Next mice were subjected to 

the hippocampus-dependent Morris water maze test, a common measure for spatial memory. 

The escape latency throughout the training was similar amongst groups (Fig.3.1.3E). There 

was also no difference in the swimming speed (Fig.3.1.3G). However, when subjected to the 

probe test in order to measure spatial memory retrieval, control mice spent more time in the 

target quadrant when compared to APPPS1-21 mice (Fig.3.1.1F). In fact, only control mice 

showed a significant preference for the target quadrant when compared to the other quadrants 

(p=0.0001). Latency to target quadrant and target platform were increased in APPPS1-21 

mice compared to controls (Fig.3.1.3I and J). 
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Fig.3.1.3: Behavioural characterization revealed earliest deficit in 4-5 month old APPPS1-21 mice. A: Open 

field showed similar motor activity in WT and APPPS1-21 mice. B: Elevated plus maze revealed reduced 

anxiety in APPPS1-21 relative to controls. Left panel shows no difference in activity as distance covered was 

the same for both groups. C: Controls mice showed significant preference in LTM in N.O.R test relative to 

chance levels whilst the transgenic mice did not. D: Fear conditioning revealed no difference between the two 

groups. Right panel shows activity during pre electric shock (ES) and ES while right panel shows memory 

assessed 24 h post ES. E: Spatial memory acquisition showed nearly no difference between the two groups. F: 

Memory retention was observed to be significantly different between control and APPPS1-21 mice. Left panel 

shows analysis of probe test in 4-5 month old mice and right panel shows representative trace pattern of 

swimming in control and APPPS1-21 mice in the pool. G: Swimming speed was not different between WT and 

APPPS1-21 mice H: Latency to TQ was also not different. I: Latency to target platform was observed to be 

significantly different between WT and APPPS1-21 mice. J: More distance was covered by the wild type than 

APPPS1-21 mice in target quadrant. (n=14) (*p<0.05, **p<0.01 and ***p<0.001). 

In conclusion these data suggest that 4-5 month old APPPS1-21 mice exhibit mild cognitive 

deficit in memory tasks. These mice also show anxiety phenotype. 

 

3.1.4. Age dependent Cognitive deterioration in APPPS1-21 mice 

The data shown in fig. 3.1.3 demonstrated that 4-5 month old APPPS-21 mice show early 

signs of memory impairments that recapitulate the situation observed in MCI and AD patients 
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where spatial navigation is amongst the first cognitive domains to be impaired while 

associative memory is relatively intact. Here we tested a memory function in 8-9 month old 

APPPS1-21 and control mice. When subjected to the open field test, explorative behaviour 

was similar amongst groups (Fig. 3.1.4A). Basal anxiety measured in the open field test by 

centre vs. corner activity was also similar amongst groups. When anxiety was measured in 

the more sensitive EPM test APPPS1-21 mice showed reduced anxiety. Thus, APPPS1-21 

mice spent more time in the open arms when compared to the control group (Fig. 3.1.4B, 

p=0.0089). Associative memory was tested using the contextual fear conditioning paradigm. 

The explorative behaviour during the training was similar amongst groups. Interestingly, 

APPPS-21 mice showed an increased response to the electric foot-shock (Fig. 3.1.4C). In 

spite of this finding, in comparison to the control group APPPS1-21 mice showed 

significantly reduced freezing behaviour during the memory test indicating impaired 

associative memory formation in 8 month old APPPS1-21 mice (Fig. 3.1.4C, p=0.0115). 

Spatial memory was tested using the Morris water maze test. There was a non-significant 

trend for reduced escape latency in APPPS1-21 mice (Fig. 3.1.4D). During the probe test, 

APPPS1-21 mice showed a severely impaired preference for the target quadrant indicating 

impairment in spatial memory (Fig. 3.1.4E). These data show that in 8-9 month old APPPS1-

21 mice, associative and spatial memory function were impaired. Based on this observation, 

we decided to choose 4-6 month old APPPS1-21 mice to further test the role of IGFBP7, 

since these mice serve as a model for an early phase of the disease.  
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Fig.3.1.4: Behavioural characterization revealed earliest deficit in 8 month old APPPS1-21 mice. A: Open field 

showed similar motor activity in WT and APPPS1-21 mice. B: Elevated plus maze showed difference between 

WT and APPPS1-21. Right panel shows activity in the maze which was not different between the groups. Left 

panel shows reduced anxiety in APPPS1-21 mice relative to controls. C: Fear conditioning revealed impaired 

learning in APPPS1-21 compared to WT mice. Right panel shows activity of mice prior and during the ES. Left 

panel shows memory test assessed 24 h post ES. D: Learning curve showed non-significant difference in the 

memory acquisition between WT and APPPS1-21 mice. E: Left panel: Representative swim trace during the 

probe test: Right panel: Analysis of probe test (memory retention) was observed to be significantly impaired in 

APPPS1-21 mice compared to controls. F: Swimming speed showed no difference between the two groups of 

mice. G: Latency to TQ was not different between the groups however there is a trend toward protracted time by 

the APPPS1-21 mice to get to the TQ. H: A non-significant trend towards increased latency to the target 

platform by the APPPS1-21 mice was observed although. I: A non-significant distance covered in the TQ was 

observed between the WT compared to the APPPS1-21 mice (*p<0.05, **p<0.01 and ***p<0.001).  

 

3.1.5. IGFBP7 levels in APPPS1-21 mice 

Firstly, longitudinal characterization of 4-6 month-old mice was done to determine change in 

methylation. MeDIP was performed and assessment of methylated cytosine enrichment 

within the promoter of Igfbp7 revealed a significant reduction in 6 month old APPPS1-21 

mice compared to 4 month APPPS1-21 mice (Fig 3.1.5A, p=0.0375) indicating deregulation 
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of DNA-methylation starting in 6 month APPPS1-21 mice. Then the mRNA levels of 

IGFBP1-7 in 6-month old APPPS1-21 and control mice were measured. While the levels of 

IGFBP1-6 were similar amongst groups, a mild yet significant increase in IGFBP7 mRNA 

was detected in the hippocampus of APPPS1-21 mice (Fig. 3.1.5B). Next IGFBP7 protein 

levels were analysed. In line with this datum, a robust increase in IGFBP7 protein in 

APPPS1-21 mice was detected (Fig.3.1.5C). Having established that IGFBP7 levels increase 

in APPPS1-21 mice, enrichment of DNMTs at the IGFBP7 promoter was determined. ChIP 

analysis revealed a significant decrease of DNMT3a at the IGFBP7 promoter (Fig. 3.1.5D, 

*p<0.05, one-way ANOVA) and a trend was observed for DNMT1 (Fig. 3.1.5E). Assessment 

of enrichment of DNMT3a and DNMT1 showed no difference on the promoter of both 

IGFBP2 and IGFBP4 (Fig. 3.1.5D and E).  

 

Fig.3.1.5: Deregulation of methylation in 6-month old APPPS1-21 mice. MeDIP revealed a significant change 

between 4- and 6-month old APPPS1-21 mice. Left and right panels show gel image and quantification of 

methylated cytosine enrichment on the promoter of Igfbp7 respectively. B: Evaluation of mRNA of Igfbps 

revealed an increase in the Igfbp7 in APPPS1-21 compared to wild type at 6 month of age. C: Immunoblot of 

Igfbp7. Left panel: showing representative image of Igfbp7 in control and APPPS1-21 mice. Right panel: 

showing quantification of the levels of Igfbp7 and normalized to β-Actin. D: Significant reduction of DNMT3a 

using ChIP on the promoter of Igfbp7 (one way ANOVA, Kruskal Wallis test *p<0.05) in APPPS1-21 mice 

relative to controls with no difference on Igfbp2 and Igfbp4. E: Decreased level of DNMT1 enrichment on the 

promoter of Igfbp7 with no difference on Igfbp2 and Igfbp4 in 6 month old APPPS1-21 mice was observed. 

(n=3). Error bars indicate s.e.m. (*p<0.05). 
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In fact, impairment in associative memory and spatial memory was observed in 6-month old 

in APPPS1-21 mice relative to controls (See appendix, Fig. 4). 

 

3.1.6. Recombinant IGFBP7 impairs memory formation in-vivo 

So far our data suggest that IGFBP7 levels increase early in AD patients and in AD mouse 

models. However, a role for IGFBP7 in memory function has not been tested so far.  To 

analyse if IGFBP7 plays a role in memory formation mice were implanted with 

microcannulae into the dorsal hippocampus and injected one hour prior to fear conditioning 

training with recombinant IGFBP7 (1 µl of 0.25 µg/µl per hemisphere). Associative memory 

was analysed 1 h later. When compared to the vehicle group, IGFBP7 treated mice showed a 

severely reduced freezing behaviour (p=0.0026, Fig. 3.1.6B) indicating impaired associative 

memory formation. When tissue from CA1 region of the hippocampus was analysed, it was 

observed that IGFBP7-treated mice showed reduced p-Akt levels (Fig.3.1.6C, p=0.0157) 

confirming that IGFBP7 administration had a direct impact on hippocampal signalling. To 

further test the effect of IGFBP7 on spatial memory, mice were implanted with 

microcannulae and then subjected to open field exploratory test to assess their motor 

function. No difference was observed in time spent in corners vs. centre of the open field 

arena (Fig. 3.1.6D). The mice were then divided into two groups and subjected to spatial 

memory test. The mice were administered with mouse-IgG (Santa cruz, CA) and IGFBP7 

directly after the last training section. When compared to the vehicle group, IGFBP7 treated 

mice showed an increased latency to find the hidden platform (Fig. 3.1.6E, two way ANOVA 

showed treatment effect on memory acquisition) indicating impaired spatial memory 

formation. Analysis of probe test showed that both groups learnt beyond chance levels but 

IgG-treated mice spent significantly more time in TQ compared to IGFBP7-treated mice (Fig. 

3.1.6F, p=0.0001). Comparison of time spent in TQ by IgG- to IGFBP7-treated mice also 

showed significant difference between the groups (Fig. 3.1.6F, p=0.0347). 
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Fig.3.1.6: Over-expression of recombinant IGFBP7 impairs associative memory. A: Scheme of injection and 

behavioural experiments B: Intra-hippocampal injection of recombinant IGFBP7 impairs fear memory. C: 

Administration of IGFBP7 an hour before fear conditioning led to reduced levels of p-Akt assessed an hour after 

FC compared to vehicle group. Left panel shows representative images of immunoblot and right panel shows 

relative levels of p-Akt to Akt. Data was normalized to β-Actin. (Vehicle, n=5 and Igfbp7, n=6). D: Open field 

evaluation of motor function of mice implanted with microcannulae for intra-hippocampal injections. E: Upper 

panel shows experimental paradigm for intra-hippocampal administration of IGFBP7 and IgG during the 

training session of the Morris water maze test. Injection was repeated throughout all 8 training sessions. Lower 

panel shows spatial learning curve.  F: Probe test shows the target preference during the test performed 24h after 

the last training session. Note that IGFBP7-treated mice showed impaired target preference indicative of 

impaired spatial consolidation (n=10,9). Upper and lower panels show analysis and representative traces 

respectively. Error bars indicate s.e.m. (*p<0.05, **p<0.01 and ***p<0.001). 

 

3.1.7. Increased levels of IGFBP7 affect cell viability 

Since IGFBP7 is a known inhibitor of cell proliferation (Lin et al., 2007; Ruan et al., 2006; 

Tomimaru et al., 2012; Wajapeyee et al., 2010) we wondered whether elevated IGFBP7 

levels would affect cellular viability of neuronal cells. Thus we treated primary hippocampal 

neurons that were in culture for 21 days with IGFBP7 (0.5 µg/µl). Subsequently we 

performed an MTT assay (Cayman, Ann Arbor MI Catalog No. 10009365). The optical 

density was then measured to assess the number of viable cells. From the absorbance 

measurement at 570 nm, it was observed that viability was reduced in a dose dependent 

manner suggesting that elevated IGFBP7 levels exhibits detrimental effect on neuronal cells. 
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Fig. 3.1.7: Reduction of cell survival upon 

exposure to recombinant IGFBP7 treatment. 

Primary neuronal cells aged 21d.i.v. were treated 

with recombinant Igfbp7 for 24 h. Cells were then 

collected for viability assay (n= 5). Error bars 

indicate s.e.m. c=control and 1, 2 and 5 

corresponding to volume of IGFBP7 used. 

(*p<0.05). 

 

3.1.8. Immunization ameliorates Cognitive deficit.  

Based on the findings described above, it was hypothesized that inhibiting IGFBP7 function 

could be a suitable strategy to treat memory impairment in AD. To test this possibility, 

microcanulae was implanted into the hippocampus of 6 month-old APPPS1-21 mice. Upon 

recovery, over the time course of 48h, mice received two injections of an antibody against 

IGFBP7 or vehicle (PBS) spaced at 24 h intervals (Fig. 3.1.8A). The mice were then 

subjected to contextual fear conditioning training and tested for associative memory function 

after 24 h (Fig. 3.1.8A). Wild type mice that received PBS injection were used as an 

additional control group.  The activity during the training and the response to the foot-shock 

was similar in all the three groups (Fig. 3.1.8B). Interestingly, when memory test was 

performed 24h later it was found that APPPS1-21 mice treated with the IGFBP7ab displayed 

significantly increased memory function when compared to the vehicle group (Fig. 3.1.8C).  

In line with this data we detected impaired p-Akt levels in vehicle treated APPPS1-21 mice 

when compared to vehicle treated wild type mice. This effect was rescued in IGFBP7ab 

treated APPPS1-21 mice. In sum these data suggested that re-establishing insulin/IGFs to the 

wild type levels might be beneficial and help to ameliorate cognitive impairment. It however, 

remained to be established if it does affect other forms of memory like spatial memory. 
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Fig.3.1.8: Intra-hippocampal immunization against IGFBP7 ameliorates associative memory. A: Scheme of 

antibody immunization against IGFBP7 before fear conditioning and memory test assessed 24 h later. B: 

Activity of mice pre and post shock showed no difference amongst the groups. C: Administering of antibody 

against Igfbp7 reinstates fear memory in APPPS1-21 mice. (Behavioural analysis WT, n= 7, APPPS1-21 with 

PBS, n=8 and APPPS1-21 with antibody against Igfbp7, n= 9). D: The level of p-Akt modification in APPPS1-

21 mice immunized with antibody against Igfbp7 was restored, comparable to WT levels. Upper panel shows 

representative image of immunoblot of Akt and p-Akt and lower panel shows relative quantification of p-Akt to 

Akt. (For western blot n=3 was used for all three conditions and normalized to β-Actin). Error bars indicate 

s.e.m. (*p<0.05 and **p<0.01). 
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Part II 

3.2. Reduced Nuclear Sphingosine kinase 2 activity underlies altered ac-H4K12 

acetylation in Alzheimer’s disease. 

Previous data from our laboratory has suggested that changes in histone-acetylation, 

especially deregulated acetylation of H4K12, marks the onset of memory disturbances in the 

aging brain (Peleg et al., 2012). The aim of the following experiments was to test if 

deregulated histone-acetylation can also be detected in early stages of Alzheimer’s disease 

and to elucidate the underlying mechanisms. 

 

3.2.1. Decreased ac-H4K12 in APPPS1-21 mice at 4-5 month old  

Our data described in section 3.1.3 have shown that cognitive deficits can first be observed in 

4-5 month old APPPS1-21 mice (See Fig. 3.1.3). Thus we isolated hippocampal tissue from 4 

month old APPPS1-21 mice and control littermates and performed quantitative immunoblot 

analysis to measure the bulk acetylation of H3K9, H3K14, H4K5, H4K8, H4K12 and 

H4K16. Only H4K12 acetylation was significantly reduced in 4 month-old APPPS1-21 mice 

when compared to wild type control (p=0.0390, Fig.3.2.1A and B). To further confirm that 

bulk changes in H4K12 acetylation translate into altered chromatin structure we analysed 

Prkcd gene which is deregulated in the aging brain and in AD pathogenesis (Hsiao et al., 

2011; Peleg et al., 2010). First qPCR analysis revealed a significant reduction of Prkcd 

expression in the hippocampus of APPPS1-21 mice when compared to controls (p=0.0002, 

Fig. 3.2.1C). In line with these data, quantitative immunoblot analysis showed that the protein 

levels of Prkcd were significantly reduced in APPPS1-21 mice compared to WT (p=0.0286, 

Fig. 3.2.1D). Next we measured ac-H3K9 and ac-H4K12 levels along the Prkcd gene via 

ChIP analysis. Unlike H3K9 acetylation which showed no difference using a partial genomic 

walking ChIP-qPCR approach, H4K12 acetylation showed a gradual decrease along the 

coding region while levels at the promoter site were unaffected (Fig. 3.2.1E). This is in 

agreement with previous findings showing that deregulation of ac-H4K12 is linked to the 

coding region of genes and is implicated with disturbed transcriptional elongation (Peleg et 

al., 2010; Wang et al., 2008b). These data suggest that ac-H4K12 is amongst the first histone-

modifications to be deregulated in the hippocampus of APPPS1-21 mice at the onset of 

memory dysfunction. 
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Fig.3.2.1: Reduced level of Prkcd paralleled reduced ac-H4K12 levels on bulk level. A: Quantification of 

acetylation on specific lysine residues on histones H3 and H4 showed reduction inac-H4K12. B: Representative 

images of immunoblot of acetylated lysine residues on histones H3 and H4. C: A reduced mRNA level of Prkcd 

was observed in APPPS1-21 mice. D: Quantitative immunoblot revealed reduction in Prkcd levels in APPPS1-

21 mice with left and right panels showing representative image and quantification respectively.  E: 

Immunohistochemical analysis showed reduced fluorescence intensity (F.I.) of Prkcd in APPPS1-21 compared 

to WT mice. F: Quantification of immunohistochemistry showing reduced levels of Prkcd in APPPS1-21 

compared to WT. G: ChIP analysis of enrichment on genomic locations on Prkcd. Partial genomic walking 

showing no difference on the enrichment of ac-H3K9 on Prkcd and H: Partial genomic walking showing 

gradual decrease of ac-H4K12 along the coding regions of Prkcd with significant reduction on exon12 and no 

change on the proximal part of the gene. Scale bar: 500 µm. Error bars indicate s.e.m. (*p<0.05 and 

***p<0.001). 

 

3.2.2. Increased HDAC activity in APPPS1-21 mice 

To evaluate the mechanisms that underlie decreased H4K12 acetylation in APPPS1-21 mice, 

we measured the expression of HATs via qPCR analysis. None of the HATs investigated 

were differentially regulated in the hippocampus of APPPS1-21 when compared to the 

control group (Fig. 3.2.2A). Since mRNA levels not always correlate with protein production 

we also measured the total HAT activity. No difference in hippocampal HAT activity was 

found amongst groups (Fig. 3.2.2B). The deficit in H4K12 acetylation might also be 

attributed to increased HDAC activity. Indeed, hippocampal HDAC activity was increased in 

APPPS1-21 mice when compared to the control group, although it was borderline significant. 

(Fig. 3.2.2C, p=0.0832). The HDAC activity assay does not distinguish amongst individual 
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HDACs. Thus, we analysed whether distinct HDACs would be up-regulated in APPPS1-21 

mice. The levels of all 11 zinc-dependent HDACs were measured via qPCR and a significant 

increase in HDAC2 mRNA was observed when compared to the control group. Subsequently, 

HDAC protein levels were analysed. No difference was observed amongst groups. The 

finding that despite an increase in HDAC2 mRNA levels, HDAC2 protein was not increased 

in APPPS1-21 mice, was further confirmed using two different HDAC2 antibodies (Fig. 

3.2.2E).  

 
 

Fig.3.2.2: Molecular characterization of 4 month old APPPS1-21 mice revealed increased Hdac activity.  A: 

mRNA of HATs evaluated showed no difference between WT and APPPS1-21 mice. B: In-vitro HAT assay 

performed with nuclear fraction of hippocampal lysates showed no difference also between the two groups. C: 

In-vitro Hdac activity measured with nuclear fraction of hippocampal lysates showed a non-significant increase 

in APPPS1-21 mice compared to WT. D: Analysis of mRNA of HDACs showed a significant increase in Hdac2 

compared to the WT whilst the remaining other 10 HDACs did not change significantly. All expression analysis 

was normalized to Hprt1. E: Representative image of protein levels of HDACs evaluated with quantification 

showing no difference between the two groups. Data normalized to β-Actin. F: Analysis of immunoblots of 

Hdacs level in mice. The blots were normalized to β-Actin. Error bars indicate s.e.m. (*p<0.05). 

 

3.2.3. Sphingosine kinase levels mediate increased HDAC activity in APPPS1-21 mice 

The finding that HDAC activity was increased in APPPS1-21 mice despite the fact that none 

of the HDACs was altered on the protein level was puzzling. The finding that HDAC2 

mRNA levels increase without affecting the total HDAC2 protein levels might indicate that 
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HDAC2 mRNA changes present part of an early compensatory response. Since HDAC2 has 

been implicated with H4K12 acetylation in the context of memory formation (Guan et al., 

2009; Yamaguchi et al., 2010) we speculated that other mechanisms may affect HDAC 

activity, especially HDAC2 in APPPS1-21 mice. A recent study reported that HDAC2 

activity is inhibited by the natural occurring Sphingosine-1 phosphate (S1P) which is 

generated by SphK1 and 2 (Hait et al., 2009). Thus, we hypothesized that S1P function might 

contribute to decreased H4K12 acetylation and memory disturbances in APPPS1-21 mice. 

First we measured the levels of SphK1, SphK2 and the Sphingosine phosphatase Sgpp1 and 

Spgg1 in the hippocampus of APPPS1-21 and control mice. SphK1 and SphK2 mRNA levels 

were decreased in the hippocampus of APPPS1-21 mice. In addition the levels of 

sphingosine-1-phosphate phosphatase 2 (Sgpp2) were increase in APPPS1-21 mice. 

Quantitative immunoblot analysis confirmed a decrease in both SphK1 and SphK2 protein 

level in APPPS1-21 mice. However, only SphK2 down-regulation in APPPS1-21 mice 

reached significance (Fig. 3.2.3B). So far our data suggest the intriguing possibility that the 

increased HDAC activity observed in 4 month old APPPS1-21 mice might be due to reduced 

S1P signalling which acts as a natural inhibitor of HDAC function. Previous data showed that 

SphK2 associates with HDAC2 (Hait, et al., 2009). To further test this hypothesis that 

reduced SphK2 levels contribute to increased HDAC activity we measured SphK2 binding to 

HDAC2 via CoIP in nuclear lysates obtained from APPPS1-21 and control mice.  Our data 

showed that the interaction of Hdac2 with SphK2 was significantly reduced in APPPS1-21 

mice when compared to WT (p=0.0417, Fig. 3.2.3C).  

 

Fig.3.2.3: A reduced level of SphK2 mRNA in 4 month old APPPS1-21mice is not regulated by histone 

acetylation. A: qPCR showing reduced mRNA levels SphK1 and SphK2 and an increase in Sgpp2 levels. B: 

Protein levels showed a significant reduction in SphK2. Left panel showing representative immunoblot images 

of SphK1 and SphK2. Right panel: showing quantification of immunoblot.  C: CoIP showing reduction in the 

amount of bound Hdac2 protein with SphK2. Left panel showing representative immunoblot images of Hdac2 

binding to SphK2. Right panel shows quantification of immunoblot.  Error bars indicate s.e.m. (*p<0.05 and 

**p<0.01). 
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To investigate whether down-regulation of SphK2 itself could be due to altered histone-

acetylation as part of a feed-back mechanism we used ChIP-qPCR to measure hippocampal 

ac-H3K9 and ac-H4K12 acetylation within the Sphk2 gene. No difference was found amongst 

APPPS1-21 and control mice (Fig 3.2.3i). 

  

Fig. 3.2.3i: A: qPCR of ChIP DNA showed no difference between WT and APPPS1-21 mice on promoter and 

exons 1 and 3 but with an increase on exon4 on Sphk2 in the APPPS1-21 mice. B: Ac-H4K12 showed no 

difference in the enrichment on probed genomic locations on Sphk2. Error bars indicate s.e.m. 

 

3.2.4. Reduced Sphingonsine signalling in human AD patients 

To correlate observed difference in mice in post-mortem tissues, Braak and Braak 

classification done posthumously based on the advancement of the disease, was used and 

stages I-III stages of disease were selected on the premises of disease onset and progression 

being dynamic and take place over time. It is conceivable therefore that insults culminating in 

decreased acetylated histones with time become so pronounced at late stages of the disease or 

heavily compensated. To test this, we first determined bulk changes by immunoblot on ac-

H3K9 and ac-H4K12.  Quantitative analysis revealed altered ac-H3K9 and ac-H4K12, which 

suggested a temporal effect and progressive deterioration of acetylated histone (Fig. 3.2.4A). 

Then the expression of PRKCD was determined and a perfect overlap of observed effect in 

mice was obtained (Fig. 3.2.4B, p=0.0052), a reduction in AD patients compared to non-

demented people. The protein level of PRKCD was also found to be significantly reduced in 

the AD patients (Fig. 3.2.4C, p=0.0455). Furthermore ChIP of the above mentioned histone 

modifications revealed pronounced decrease of enrichment of these sites along the whole 

gene i.e. PRKCD promoter and coding regions (Fig 3.2.4D and E).  
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Fig. 3.2.4: Gene expression levels in AD compared to controls A: Western blot with ac-H3K9 and ac-H4K12 

showed significant difference between control and demented samples. Right and left panels show quantification 

and representative images of ac-H3K9 and ac-H4K12 respectively. B: PRKCD level is significantly reduced in 

AD patients. C: Immunoblot revealed reduction in the levels of Prkcd in AD patients. Right and left panels show 

quantification and representative images of Prkcd respectively. D: ChIP performed with ac-H3K9 on genomic 

locations probed and E: Analysis of ac-H4K12 ChIP also showed significant reduction of both modifications on 

different genomic sites. Error bars indicate s.e.m. (*p<0.05 and **p<0.01). 

 

To elucidate further in the human samples, the levels of HDACs were analyzed by qPCR. 

Again it was found that all the HDACs looked at did not change significantly except for 

HDAC6 which might mean a compensatory response. On the other hand until now HDAC6 

seems not to be located in the nucleus and therefore the observed effect could be cytoplasmic. 

The levels of SPHK2 and its isozymes and metabolizing proteins were then analyzed. It was 

found that unlike SPHK1 which showed no significant decrease in between the groups, 

SPHK2 mRNA was significantly reduced (Fig.3.2.5C) and the protein level was also 

significantly reduced (Fig.3.2.5, p=0.0233). It was also observed that the levels of S1PR1, 

one of the G protein coupled receptors through which S1P act was observed to increase 

significantly which could be interpreted as a compensatory process. SGPL1, a lyase which 

irreversibly cleaves the S1P to generate phosphoethanolamine and hexadecenal was also 

observed to show significant reduction (Fig.3.2.5C, p=0.0270), again pointing out to a 

compensatory mechanism possibly as a result of a deficit in SPHK2 activity. Since BB I-III is 

quite an advance stage of the disease, it was decided to check if the SPHK2 was regulated by 

histone acetylation. qPCR on ChIP samples immunoprecipitated with ac-H3K9 showed only 

reduction on the promoter of SPHK2 and not the other genomic locations looked at 
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(Fig.3.2.5F). On the contrary, ac-H4K12 did not show difference on the promoter of SPHK2 

however, a further look into the coding regions namely exons 1 and 2 showed significant 

reduction on the enrichment of ac-H4K12 on these positions (Fig. 3.2.5E). 

 

Fig.3.2.5: Expression of HDAC mRNA in controls and AD samples. A: No differential expression of HDACs 

except for HDAC6 mRNA was observed in AD compared to controls.  B: Protein levels showed no changes in 

HDAC1, 2, 4 and 10 levels. Right and left panels show quantification and representative images of HDACs 

respectively and data normalized to β-Actin. C: Reduced levels of SPHK2 and SGPL1 levels observed in 

demented patient and S1PR1 was observed to increase in AD indicating a compensatory response. D: Protein 

levels of SPHK2 showed significant reduction. Right and left panels show quantification and representative 

images of SPHK2 respectively. Data was normalized to GAPDH and E: ChIP with ac-H3K9 and ac-H4K12 

showed differential enrichment on probed genomic locations on SPHK2. Error bars indicate s.e.m. (*p<0.05). 

 

3.2.6. SphK2 is differentially expressed during memory consolidation 

The findings described above prompted us to speculate whether SphK2 mediated sphingosine 

signalling would play a role in memory formation under physiological conditions. Previous 

data established that fear conditioning training leads to a transient up-regulation of 

hippocampal histone-acetylation 1h afterwards. To elucidate the involvement of SphK2 in the 

mechanism leading to increased histone acetylation upon fear conditioning, mRNA was 

extracted from hippocampal tissues from naïve and fear conditioned mice (1 h) after fear 

conditioning training. qPCR analysis showed that SphK2 but not SphK1 levels were 

increased in fear conditioned mice when compared to the control group (Fig. 3.2.6A, 

p=0.0406). Elevated SphK2 mRNA levels were accompanied by significantly increased 

SphK2 protein levels when measured 1h after the training (Fig. 3.2.6A, p=0.0074). It has 
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been shown that Hdac2 negatively regulates memory  formation (Guan et al., 2009) and 

SphK2 binds both Hdac1 and Hdac2 and its activity remodels chromatin by phosphorylating 

sphingolipid which then binds to Hdac1 and Hdac2 and dissociates them from the chromatin 

(Hait et al., 2009). In light of this we performed Co-IP with SphK2 and found less interaction 

of Sphk2 with Hdac2. Implication of this result is dissociation of Hdac2 from the complex 

and corresponding increase in histone acetylation. This might however, mediate nuclear 

export of Hdac2. To address this question, immunoblot was performed with cytoplasmic 

fraction of mice subjected to fear condition and naïve ones. Quantification revealed a trend of 

increased Hdac2 in the cytoplasmic fraction of fear conditioned mice (Fig. 3.2.6C). On the 

contrary, Hdac1 level was however, found to increase (Fig.3.2.6D). This indicated a possible 

eviction of Hdac2 from the complex upon binding with Sphingosine-1 phosphate. However, a 

pronounced nuclear export was not observed suggesting that there is an appreciable nuclear 

retention of Hdac2 but not associated with the complex hence increased histone acetylation. 

 

Fig.3.2.6: Fear conditioning of mice led to increased expression of SphK2 in mRNA and protein levels. A: 

Right panel indicates analysis of mRNA by qPCR showing increase in the levels of SphK2 upon fear 

conditioning but not SphK1. Left panel shows immunoblot of increased levels of SphK2 protein 1h after fear 

conditioning. B: CoIP of SphK2 revealed interaction of the SphK2 and Hdac2.  Note reduced level of interaction 

of SphK2 with Hdac2 upon fear learning, an indication of nuclear exit. C: Relative cytoplasmic levels of Hdac2 

1h after fear conditioning training showed only a trend which suggest possible nuclear retention but not 

associated with the complex. Upper and lower panels show representative immunoblot images and 

quantification respectively.  D: CoIP of SphK2 revealed non-significant increase in the level of Hdac1 

associated with SphK2 upon fear conditioning suggesting a possible complex composition change upon eviction 

of Hdac2. (*p<0.05 and **p<0.01). 
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4. Discussions 
 

4.1.1. The role of DNA Methylation in Alzheimer’s disease 

Due to the involvement of methylation in multiple biological processes it is reasoned that the 

slightest perturbation could lead to a disease condition. In this part of the work we have 

studied the role of DNA methylation in AD pathogenesis by specifically investigating a gene 

known as natural inhibitor of cell proliferation and survival, IGFBP7. The expression profile 

of IGFBP7 was significantly increased in both AD and APPPS1-21 mice (our data), a finding 

supported by the work of Kutsukake showing increased levels of IGFBP7 in diabetic patients 

(Kutsukake et al., 2008). Published data in cancer research have shown that IGFBP7 is 

regulated by methylation (Lin et al., 2007; Wang et al., 2008a). Enrichment of DNMTs on the 

promoter of IGFBP7 in AD patients is significantly reduced compared to controls although 

there was only a trend towards reduction in APPPS1-21 mice compared to controls. The 

finding that AD brains have reduced methylation profile is highly important as work by 

Mastroeni and colleagues showed compromised DNA methylation profile in identical twins 

who are nearly 100% genetically identical mediates the development of dementia/AD 

(Mastroeni et al., 2010). Furthermore, an inverse correlation of age and DNA methylation has 

been observed (Bishop et al., 2010; Heyn et al., 2012) suggesting that altered DNA 

methylation might underlie age-related cognitive decline. This was further substantiated by 

work of others highlighting the importance of DNA methylation in not only repressing genes 

that negatively impact on cognition (our study), but also specific non-promoter enrichment 

involving transcription of gene essential for learning and neurogenesis (Oliveira et al., 2012; 

Wu et al., 2010). In fact, methylation is highly important by virtue of its involvement in a 

number of cognitive-related diseases like Rett syndrome and ICF (Amir et al., 1999; Hansen 

et al., 1999). In addition, we also observed up-regulation of Dnmt3a and Dnmt3b upon 

associative learning (Appendix Fig.1) thus confirming the observation of Miller and 

colleagues. Nucleoside based inhibitor were used in their study to demonstrate impairment of 

memory upon inhibition of methylation (Miller et al., 2010; Miller and Sweatt, 2007) 

indicating that indeed DNA methylation is essential not only for organogenesis and their 

maintenance but rather it is also important for memory formation as well. Thus our study 

specifically linked differential enrichment of DNMTs on the promoter of IGFBP7 leading to 

altered levels in AD.  
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4.1.2. Regulation of DNMTs in APPPS1-21 mice 

Profiling of the enrichment of methylation on the promoter of Igfbp7 using ChiP-qPCR 

showed decreased enrichment of both DNMT1 and DNMT3a indicating that deregulation of 

Igfbp7 in APPPS1-21 and AD is mediated through altered promoter methylation levels. The 

deregulation in APPPS1-21 mice was observed not to be due to transcription as the mRNA of 

the Dnmts was not significantly different at this age. Some known miRNAs involved in post-

transcriptional regulation of Dnmt1 and 3a were then assessed. We observed a differential 

expression of the miR-29 family (Appendix Fig.2). While miR-29a was unexpectedly 

decreased significantly in APPPS1-21 mice, miR-29b was significant increased in APPPS1-

21 mice. Previous findings showed down-regulation of miR-29 as underlying cause of 

increased BACE levels in AD (Boissonneault et al., 2009; Hebert et al., 2008). In addition, 

miR-29b has also been linked with regulation of DNMTs (Fabbri et al., 2007; Meunier et al., 

2012). Our data therefore suggest that miR-29a might be more involved in regulating BACE 

levels whilst miR-29b regulates the level of DNMTs. The observed result also showed that 

the regulation of Dnmts was through inhibition of translation rather than degradation of 

mRNA  (Filipowicz et al., 2008) since the mRNA of the DNMTs were not different in 

APPPS1-21 mice compared to controls. Differential expression of miRNAs in AD or 

APPPS1-21 mice is further supported by recently published work which showed deregulation 

of the miRNAoame upon exposure to Aβ-peptides (Schonrock et al., 2010) suggesting that 

amyloid might exert its effect by destabilizing the miRNAoame of an organism.  

 

4.1.3. Altered insulin signalling exacerbates AD like pathology 

In this study, we employed a biased approach based on previous work published from our 

group showing regulation of IGFBP7 is necessary for fear extinction (Agis-Balboa et al., 

2011) and further asked if IGFBP7 affects insulin/IGF function in AD  due to similarity 

between signalling cascades affected in diabetic patients and AD. To test the role of IGFBP7 

in learning we mimicked increased levels of IGFBP7 in AD by administering IGFBP7 intra-

hippocampally to wild type mice. Upon testing on associative memory task and spatial 

memory tasks, IGFBP7 treated mice showed impaired memory formation relative to vehicle 

(PBS/IgG) treated group, an indication of increased IGFBP7 negatively impacts on memory 

formation. This finding further highlights the essential role of insulin/IGFs signalling in 

memory formation. Published work showed AD-like pathologies (β-amyloidosis and 

tauopathy) and negative effects on memory are exacerbated with selective depletion of 
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insulin producing pancreatic β-cells using streptozotocin (STZ) in the 5XFAD and the pR5 

mice that express P301L mutant human tau mouse model (Devi et al., 2012; Ke et al., 2009) 

which suggested that altered insulin function can affect both amyloidosis and tauopathy. 

Hence decreasing insulin/IGFs levels can lead to SAD. Therefore IGFBP7 negatively impact 

on cognitive functions.  

 

4.1.4. IGFBP7 impairs memory formation in by dampening activation of Akt  

Insulin/IGFs signalling are evolutionary conserved pathway and act through a number of 

downstream cascades and notable amongst them is the Akt/PI3K pathway  known to be anti-

apoptotic and critical for the survival of cells and signalling in the brain (Brazil et al., 2004; 

Cheng et al., 2010; Kim and Feldman, 2012; Sesti, 2006). In the study, activated Akt was 

decreased in both AD patients and APPPS1-21 mice relative to controls. Administration of 

IGFBP7 to wild type mice also dampened level of p-Akt. Both impaired spontaneous 

alternation behaviour upon administration of Aβ-1-42 and reduced adult “neurogenesis” were 

linked with reduced activation of Akt (Gang et al., 2011; Knobloch and Mansuy, 2008; Li et 

al., 2008; Pearson-Leary and McNay, 2012; Wang et al., 2004). Besides, Akt could also 

forestall other effects like apoptosis and tau hyperphosphorylation by inhibition of BAD, a 

Bcl family member involved in apoptosis, GSK3α/β (Datta et al., 1997; Phiel et al., 2003; 

Zhao et al., 2006). The evidence presented further suggests that activation of Akt is 

neuroprotective and inhibition of IGFBP7 to avail insulin/IGFs could have a therapeutic 

effect on AD. Recently, the involvement of IGF-II was documented in both fear learning and 

extinction (Agis-Balboa et al., 2011; Chen et al., 2011) further strengthening the involvement 

of insulin/IGFs signalling in cognition and AD.   

 

4.1.5. Targeting of IGFBP7 to restore insulin signalling  

Intra-hippocampal inhibition of IGFBP7 ameliorates contextual fear learning in APPPS1-21 

mice. Control and anti-IGFBP7 treated APPPS1-21 (six month-old) mice showed enhance 

associative memory compared to vehicle treated APPPS1-21 mice. No statistical difference 

was observed between control and anti-IGFBP7-treated mice. This finding is highly 

interesting suggesting that targeting IGFBP7 could serve as a therapeutic treatment for AD. 

The finding is in agreement with data obtained by inducing experimentally diabetes using 

STZ which exacerbates AD-like pathology (Devi et al., 2012; Ke et al., 2009) and cause 
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impairment in spatial memory (Shingo et al., 2012) suggesting the involvement of insulin 

signalling in AD. Furthermore, intranasal spray of insulin enhances verbal memory and 

working memories in both animals and human (Benedict et al., 2011; Craft et al., 2012; 

Dominguez et al., 2012). Rodriguez-Rivera and colleagues also reported that insulin 

sensitizing drug like rosiglitazone improved fear memory in Tg2576 mouse model 

(Rodriguez-Rivera et al., 2011) supporting our data that targeting IGFBP7 to increase 

availability of insulin/IGFs to their receptors could have a beneficial effect on cognitive 

functions. Besides these observations, insulin receptor β-Subunit haplo-insufficiency impairs 

both hippocampal LTP and recognition memory in mice (Nistico et al., 2012). 

Synaptogenesis and neurogenesis are other possible means by which inhibition of IGFBP7 

could also facilitate memory formation by affecting in APPPS1-21 in an Akt dependent 

manner however, the brevity of the protocol favoured direct effect. Nevertheless availability 

of insulin/IGFs might help in deciding the fate of developing new-born neurons. A possible 

impact of Insulin/IGFs in the brain on transcription and translation (Shi et al., 2003) might 

also have been overlooked. In a nutshell altered insulin/IGFs function in the brain does 

negatively affect neuronal integrity and cognitive function and enhancing insulin/IGFs 

function might intervene therapeutically. 

 

4.1.6. Conclusions and summary 

In this study, we found altered IGFBP7 expression in post-mortem AD patient and APPPS1-

21 mice. This finding correlated with altered DNMTs expression and reduced DNA-

methylation profile of the IGFBP7 promoter in APPPS1-21 mice and AD brain. As a 

consequence, altered activation of Akt was observed in AD when compared to control 

situations. Mimicking increased levels of IGFBP7 in wild type mice showed a similar effect 

on Akt activation and impaired memory function in wild type mice. To evaluate the 

therapeutic potential of IGFBP7 inhibition, an antibody approach was used. APPPS1-21 mice 

treated with anti-IGFBP7 showed improved associative memory formation compared to 

vehicle treated APPPS1-21 mice. No significant difference was observed between control and 

anti-IGFBP7 treated mice. These data are highly interesting and suggest that targeting 

IGFBP7 could have a therapeutic effect on AD. 
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Chapter II 

4.2. Role of Sphingosine kinase 2 in AD 

An in depth analysis involving a longitudinal study of APPPS1-21 mouse model revealed 

several changes at different time points indicating that there is indeed deterioration with time 

and therefore the need for early therapeutic intervention. To follow up on the early cognitive 

deficit observed at 4 months of age led us to identify increased HDAC activity due to low 

levels of SphK2 expression. 

 

4.2.1. Impaired spatial memory in 4-5 months old APPPS1-21 mice 

Impaired spatial navigation of the early deficits observed in AD (Iachini et al., 2009; Laczo et 

al., 2010) and can be tested in rodents using the Morris water maze test. Our data showed that 

4-5 months old APPPS1-21 mice showed first impairments in this test. Specifically, retrieval 

of consolidated long term memories was impaired at this time point. Impairment in spatial 

memory became more pronounced in 8-9 months old APPPS1-21 indication progression of 

the disease. This indicates that deterioration of spatial memory occurs early in APPPS1-21 

mice and deteriorates temporally. It also shows the facial validity of the disease since spatial 

memory is one of the earliest forms of memory impaired in AD patients usually preceding 

other forms of memory impairments such as associative learning (Hamann et al., 2002; Laczo 

et al., 2010). In line with this, associative learning was intact in 4-5 month old APPPS1-21 

mice and only impaired in 8-9 month old mice. Another behavioural trait observed to be 

significantly different between controls and 4-5 months old APPPS1-21 mice is anxiety. This 

was not pursued further as it is largely a complex trait involving different cortical regions like 

hippocampus, amygdala, medial prefrontal cortex (Bannerman et al., 2004; Bertoglio et al., 

2006; LeDoux, 2000; Muller et al., 1997; Petrovich et al., 2001) and eventually converging 

on the hypothalamus (LeDoux, 2000; Maren and Fanselow, 1995). The findings of this work 

therefore showed impaired spatial memory in APPPS1-21 mice.  

 

4.2.2. Four month old APPPS1-21 mice showed reduction in ac-H4K12 

Evaluation of hippocampal histone-acetylation in 4-month old APPPS1-21 and control mice 

revealed decreased ac-H4K12 while other histone-modifications were unaffected at the bulk 

level. Post-mortem AD brains also revealed significant reduction in ac-H4K12. Altered 
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chromatin modification has been implicated in AD. In fact previous work either showed 

global change with pan acetylated histone antibodies, 50% response of ac-H4 in APP/PS1 

mice upon associative learning (Francis et al., 2009) and reduced ac-H4 in CA3 region of the 

hippocampus in Tg2576 mice (Ricobaraza et al., 2009). Advanced age analysis of APPPS1-

21 mice revealed global deregulation of histone modifications (Govindarajan et al., 2011). 

This was supported by the findings in post-mortem AD brain that also showed altered ac-

H3K9 compared to controls. In light of this our study therefore specifically identified ac-

H4K12 as the earliest site to be changing in APPPS1-21 mice and is associated with spatial 

memory decline. While I failed to detect deregulation of HDAC proteins that would correlate 

with altered H4K12 acetylation, deregulation of SphK2 paralleled ac-H4K12 in the APPPS1-

21 mouse model. However, at terminal stages as observed in AD patients, a global 

deregulation of histone-acetylation was observed. The finding of this work is not only 

important for diagnosis but also suggests that there might be a specific enzyme or enzyme 

complex mediating the effect and its modulation would be necessary to stall the progression 

and ameliorate it. As a transcriptional read-out of altered ac-H4K12 in 4-months old 

APPPS1-21 mice, we evaluated the expression profile of Prkcd. We found a pronounced 

reduction in Prkcd mRNA which translated into reduced protein levels. “Partial genomic 

walking” revealed that this was ac-H4K12 dependent since significant difference on exon 12 

was observed but not at the promoter while ac-H3K9 was not different on all probed genomic 

locations in APPPS1-21 mice indicating that ac-H4K12 is essential for elongation and aids 

the traversal of RNAPII (Peleg et al., 2010; Wang et al., 2008b). The cleavage of p35 to p25 

is regulated by Prkcd (Hsiao et al., 2008; Patrick et al., 1999; Tseng et al., 2002; Zhao et al., 

2009). In spite of beneficial effect of short-lived activity of p25 on memory formation, 

prolonged effects due to accumulation of p25 has been shown to be toxic (Fischer et al., 

2005; Hsiao et al., 2008; Patrick et al., 1999; Tseng et al., 2002). Another study showed that 

altered ac-histones in AD and attributed the changes to Hdac2. In fact, Hdac2 activity could 

be inhibited by Prkcd as it also phosphorylates Sp1 which then binds to Hdac2 leading to its 

nuclear exit (Tsai et al., 2011) thereby suggesting Prkcd as a molecular target in addressing 

both increased Hdac activity as well as regulation of p25 levels.  The data suggest that 

restoring Prkcd to controls levels might help in mitigating molecular and behavioural changes 

observed in APPPS1-21 mice and in AD. Frail cognitive performance in APPPS1-21 mice 

could also be an indication of altered Prkcd function. It is known that Prkcd levels are altered 

upon social isolation and this results in impaired memory abilities (Hsiao et al., 2011). In a 

nutshell, an altered level of Prkcd in APPPS-21 mice and AD patients is observed due to 
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deregulated epigenome hence either failure to transcribe or stalling of RNAPII after 

initiation. 

 

4.2.3. Targeting Sphingosine kinase 2 to reinstate histone acetylation in AD 

My data showed that HDAC activity increased in APPPS1-21 mice when compared to 

controls. HAT activity remained unchanged. This finding is in line with recent data showing 

that HDAC inhibitors administered both acutely and chronically ameliorate cognitive decline 

in AD-like mouse models namely: Ckp25, APPPS1-21, APPPS1/Δ9 and Tg-2576 (Fischer et 

al., 2007; Francis et al., 2009; Govindarajan et al., 2011; Kilgore et al., 2010; Ricobaraza et 

al., 2009) and supports the view that HDACs are causatively involved in AD pathogenesis. 

Despite increased HDAC activity I failed to detect significant differences in HDAC 

expression in APPPS1-21 and control mice using immunoblot suggesting that the increase in 

activity is not due to altered protein levels. There is evidence that especially H4K12 

acetylation is affected by HDAC2 (Graff et al., 2012; Guan et al., 2009; Yamaguchi et al., 

2010). However, the relative amount of HDAC2 did not change based on our immunoblot 

data using two different antibodies. These data prompted me to analyse the expression of 

Sphk2, which was recently described as a natural inhibitor of Hdac1/2 (Hait et al., 2009) and 

expression profile in the mouse brain from Allen brain atlas (http://www.brain-map.org/) 

revealed high levels in the hippocampus (Appendix Fig.3). Expression analysis of SphK2 in 

AD patients showed a significant decrease compared to controls. This finding is quite 

interesting as SphK2 and it product, S1P were reported to be decreased in AD (He et al., 

2010). The isoenzyme SphK1 was also observed to be down-regulated in APPPS1-21. 

Interestingly knockdown of SphK1 has been reported to impair LTP in hippocampal slice and 

deficit in spatial memory (Kanno et al., 2010). In sum altered levels of SphKs were observed 

in our experimental conditions and likely the cause of increased HDAC activity in APPPS1-

21 mice. 

To present further evidence that increased activity of HDACs in APPPS1-21 mice is possibly 

due to SphK2-mediated increase in Hdac2 activity, we carried out a CoIP from nuclear 

lysates of APPPS1-21 mice and mice subjected FC where increased histones acetylation have 

been observed since SphK2 is known to interact with the chromatin (Hait et al., 2009). 

Interestingly, our data showed that reduced SphK2 levels in APPPS1-21 mice translate into 

less interaction of Hdac2 and SphK2. This would lead to reduced generation of S1P, hence 

http://www.brain-map.org/
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increased activity of Hdac2 in APPPS1-21 mice. This is supported by our finding that 

subjecting mice to associative learning led to a reduced interaction between HDAC2 and 

SphK2 and on the contrary, increased interaction with Hdac1. A possible explanation for this 

observation could be that Hdac2 underwent nuclear/chromatin exit upon chromatin 

remodelling due to S1P meanwhile Hdac1 does not exit the nucleus. Based on these data we 

argue that inhibition of Hdac2 would have a therapeutic effect on AD due to the following 

reasons. First of all, Prkcd which was found in our study to be down-regulated was reported 

to have a potential inhibitory effect on Hdac2 inducing its nuclear exit (Tsai et al., 2011). 

Secondly, SphK2 also found in our study do inhibit the activity of Hdac2 by inducing its 

nuclear exit. Our observations are further supported by previous publications showing that 

manipulation of S1P by a knock-out approach of SphK1 led to impairment of spatial memory 

and LTP in hippocampal slices (Kanno et al., 2010). Also S1P has been shown to be 

deregulated in AD (He et al., 2010). In our study, a self perpetuating effect of SphK2 was 

observed increasing its mRNA and protein significantly upon fear conditioning which was 

unexpected if it regulates learning. These data suggest a scenario in which SphK2 can exert 

its effect in a more pronounced fashion thus inhibiting Hdac2 and enhancing de-condensation 

of chromatin and more access to RNAPII hence transcription. In addition, SphK2 is activated 

and act as protective manner upon ischemic damages (Pfeilschifter et al., 2011). 

 

4.2.4. Conclusions  

In this part of the work I identify a specific enzyme involved in reduced histone acetylation in 

AD. I found that ac-H4K12 is the first histone-modification to be altered in 4 month old 

APPPS1-21 mice and that this change is not explained by altered HDAC or HAT levels but 

rather correlated with altered SphK2 levels which affect HDAC2 activity.   
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5. Summary 
 

AD is caused by multivariate factors with a convergent insult to neuronal integrity leading to 

cognitive decline and neurodegeneration. To develop an efficient therapeutic strategy for 

treatment of AD calls for a deeper understanding of the biochemical mechanisms that leads to 

neuronal dysfunction and cell death. The data presented here further support the view that 

epigenetic factors are involved in AD pathogenesis.  

In a first approach I was able to show that memory dysfunction in APPPS1-21 mice is linked 

to elevated DNA-methylation of IGFBP7, a critical regulator of insulin and IGF signalling. 

Similar data was observed in human AD patients. Moreover, mimicking elevated levels 

IGFBP7 in wild type mice resulted in memory impairment. In turn, targeting IGFBP7 

reinstated memory function APPPS1-21 mice. Thus, my data shows that epigenetic 

regulation of IGFBP7 contributes to the pathogenesis of AD and that targeting IGFBP7 could 

be a novel therapy to treat AD. Furthermore, IGFBP7 could be a suitable biomarker to detect 

disease onset and progression, a possibility that has been suggested before and is currently 

further investigated by our laboratory. 

In the second part of my thesis I show that altered hippocampal histone acetylation correlates 

with memory impairment in APPPS1-21 mice. Especially ac-H4K12 acetylation was 

amongst the earliest histone-marks that were decreased. In contrast to my initial hypothesis I 

found that deregulated sphingosine-signalling - that affects HDAC activity - rather than 

changes in HDAC protein levels itself, are likely to be responsible for this effect. 

In conclusion, my data show that epigenetic mechanisms are affected in AD pathogenesis and 

that specifically epigenetic regulation of IGFBP7 and SphK2-mediated histone-modifications 

could lead to the development if suitable biomarker and novel therapeutic strategies.  
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Appendix 
 

 

Fig. 1: Expression of Dnmts 1 h after fear conditioning. A: Activity of naïve and fear conditioned mice showed 

no difference prior to shock. B: A test of associative memory showing that fear conditioned mice showing 

freezing while the naïve mice did not. C: The expression level of three Dnmts after FC revealed no change in 

expression levels of Dnmt1 but Dnmt3a and Dnmt3b showing significant difference after FC.  

 

Fig. 2: Altered expression of miRNA cluster in APPPS1-21 mice. A: Immunoblot showing reduction in Dnmt3a 

levels in APPPS1-21 compared to controls. B: miR-29a showing significant reduction in APPPS1-21 compared 

to controls whilst miR-29b (one-way ANOVA, Bonferroni *p<0.05) is increased significantly in APPPS1-21 

mice relative to controls. N=4. This indicates that regulation of Dnmt3a might be due to miR-29b. Error bars 

indicate s.e.m. 

 

Fig. 3: In-situ hybridization showing the expression levels of SphK2 in brain. Enhanced expression could be 

seen in the Hippocampal formation of the brain compared to other regions (Adapted from Allen brain Atlas). 
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Fig.4: Behavioural characterization of 6-month old APPPS1-21 mice. A: Open field showed similar motor 

activity in WT and APPPS1-21 mice. B: Elevated plus maze showed difference between WT and APPPS1-21. 

C: Fear conditioning revealed no difference between the two groups. One way ANOVA revealed significantly 

impaired associative memory in APPPS1-21 mice relative to controls. D: Spatial memory acquisition showed 

difference between the two groups. E: Memory retention was observed to be significantly impaired in APPPS1-

21 mice relative to controls. F: Representative swimming traces during probe test showing wild type in the 

upper panel shows analysis of probe test in 6-month old mice and lower panel shows representative trace pattern 

of swimming in control and APPPS1-21 mice in the pool (*p<0.05). Error bars indicate s.e.m. 
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