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If a man will begin with certainties, he shall end in doubts;
but if he will be content to begin with doubts, he shall end in certainties.

-Francis Bacon, The Advancement of Learning

1 Introduction

In this Chapter we consider the foundations of this work: After a short motiva-
tion on the use of robust optimization, we formally introduce uncertain optimization
problems, and lay out the structure, methodology and purpose of this work.

1.1 Motivation

In this thesis we deal with uncertainty — and how to end in certainty. It is a topic
everybody has collected their own experience with.

Let’s assume you have a lot of appointments and activities scheduled for today, and
let’s further assume that reading into this work is one of them — one of the more
pleasurable ones, of course! As you are likely to be a mathematically inclined person,
you might have put some thought into optimizing today’s schedule, assuming given
durations for each appointment.

However, what if this work catches you so compellingly that you find the originally
scheduled time horizon insufficient? Or, on the other extreme, what if you find it so
annoying you will barely read more than this very sentence?

Even though the latter does not seem to be the case, you might come to the conclusion
that your original schedule does not suit your needs anymore, and you will change it
accordingly. Robust optimization is the mathematical discipline that takes exactly this
uncertainty in the problem parameters into account — by finding solutions that are still
“good” when things happen to turn out differently.

How exactly this is done depends on the robustness concept applied. Depending on
your situation and character, you might prefer solutions that suit all possible parameter
realizations, solutions that can be cheaply repaired, or solutions that distribute a given
buffer budget over the critical times of the day.

Robust optimization is not new — in fact, its beginnings trace back to the 1970s.
However, partly due to the usually increased problem size when optimizing under un-
certainty, there has been a surge of literature only since the late nineties, when increased
computational power and software sophistication allowed to handle such complex mod-
els.

Since then, a large pool of robustness concepts have evolved, each of them with their
own advantages and disadvantages. As it is said in [Sti08]: “There is no silver bullet
for optimization under imperfect information.”, and no concept fits all needs.

Grossly oversimplifying the current situation of research in robust optimization, there
are basically two types of approaches: More theoretically-driven ones, that tend to
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produce models that can hardly be used for real-world problems, and application-
driven ones, that are often so narrowly tailored, they can barely be transferred to other
applications. In this work we try to bring the field of robust optimization further, in
an effort to bring theory and practice one step closer together.

1.2 Uncertain Optimization

We now introduce the general framework of uncertain problems that form the starting
point for robust optimization.

Uncertainty. Nearly every optimization problem suffers from uncertainty to some de-
gree, even if this does not seem to be the case at first sight. Two types of uncertainty
can be distinguished: Microscopic and macroscopic uncertainty.

Microscopic uncertainty includes:

1. Numerical errors. Storing any number on a computer system is only possible
up to a certain exactness, resulting in so-called floating-point errors that may
propagate. Although exact mixed-integer programming solvers do exist (e.g.,
[CKSW11]), they are typically several orders of magnitude slower than compet-
itive floating-point optimization software, and therefore not industrial standard.
In a representative experiment using NetLib instances, [BTNO0] report that op-
timal solutions to 13 of 90 considered instances violate constraints by more than
50%, when “ugly” coefficients are perturbed by only 0.01%. As these coefficients
are most likely not exact, but only truncated values, this is a warning that “small”
inaccuracy can create “very bad” solutions.

2. Measurement errors. Whenever mathematical models are applied to real-
world problems, they need to be supplied with data that was measured in some
way. These measurements may be intrinsically inexact, e.g., when the volume or
the weight of a body is determined, or only statistically representative, e.g., when
stemming from a survey. Even though these values may seem “reasonably exact”,
we see from the previous paragraph that their impact on the solution usefulness
can be large.

Macroscopic uncertainty includes:

3. Forecast errors. Knowledge about the future is seldom exact — as the most
prominent example for forecasting uncertainty, weather conditions are well-known
to have foiled plenty a schedule. They influence flight routes, driving speed,
harvest quality, and many more aspects of everyday life. Other examples are
demographic developments, or share prices.

4. Changing environments due to long-term solutions. When a problem
solution is put into practice in a long-term setting, the environment naturally
changes over the course of time. Timetables in public transport are one example,
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in which the same schedule might need to serve for rain, snow, wind, low and
high passenger demand, etc. Even though there might not be an error involved
when these conditions are identified beforehand, still one solution must be able
to suit very different scenarios.

In robust optimization — contrary to the setting of stochastic programming —, it is
typically not assumed that any probability distribution for the uncertainty is known.

In many cases however, there exists a so-called nominal scenario. Depending on the
uncertainty type, this may either be the coefficient of the given precision for numerical
errors (1), the measured value for measurement errors (2), the most likely forecast for
forecast errors (3), or an average environment for long-terms solutions (4).

Uncertain optimization problems. We consider optimization problems that can be
written in the form

(P) min f(z)
st. F(z) <0
re X,

where F': R™ — R™ describes the m problem constraints, f : R®™ — R is the objective
function, and X C R"™ is the variable space. In real-world applications, both the
constraints and the objective may depend on parameters which are uncertain. In order
to accommodate such uncertainties, instead of (P), the following parameterized family
of problems is considered:

(P(§)) min f(z, &)
s.t. F(z,8) <0
reX,

where F(-, &) : R” — R™ and f(-,&) : R” — R for any fixed ¢ € RM, which describes a
scenario that may occur.

Although it is in practice often not known exactly which values such a scenario &
may take for an optimization problem P(§), we assume that it is known that ¢ lies
within a given uncertainty set U C RM that represents the scenarios we assume to be
likely enough to be considered in our analysis.

The uncertain optimization problem corresponding to P(&) is then denoted as

(P(§),§el). (1.1)

Note that the uncertain optimization problem in fact consists of a whole set of pa-
rameterized problems, that is often even infinitely large. The purpose of robust opti-
mization models is to transform this family of problems into a single problem again.
The resulting robust problem is called the robust counterpart.
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The choice of the uncertainty set is of major impact not only on the type of robustness
that we consider, but also on the computational complexity of the robustness models,
and should be made carefully by the modeler. Also, the way the functions f and F
depend on £ leaves some freedom to the modeler’s decision - in the simplest case, &
coincides with the uncertain parameters of the given optimization problem.

Example 1.1. As an ezample, consider a linear program min{c'z : Az < b,z € R"}
with a coefficient matriz A € R™*™ q right-hand side vector b € R™ and a cost vector
ceR™ If Ab, and ¢ are treated as uncertain parameters, we write

P(A,b,c) min f(z,(A,b,c)) = c'x
s.t. F(x,(A,b,c))=Ax—b<0
r eR”,

ie., €= (A,bc) €ERM with M =n-m+n+m

However, it is also possible that the unknown parameters A,b,c may depend on
(other) uncertain parameters ¢ € RM where M need not be the number of uncertain
parameters of the given problem. For example, there might be M = 1 parameter £ € R
which determines all values of A,b,c. As an example imagine that the temperature
determines the properties of different materials. In such a case we would have

f(z, &) :R" xR — R, and
F(z,&) :R" xR = R,
where f(x,£) = c(€)tx and F(x,€) = A(&)x — b(€). Tt is also allowed that M is larger

than the number of parameters used for modeling the optimization problem.
For a given uncertain optimization problem (P (), € U), we denote by

F§) ={reXx: F(z,§) <0}

the feasible set of scenario £ € U. Furthermore, if there exists a nominal scenario, it is
typically denoted by é € U. The optimal objective value for a single scenario & € U is
denoted by f*(£).

We say that an uncertain optimization problem (P(§), ¢ € U) has convex (quasicon-
vex, affine, linear) uncertainty, when the function F'(x, -) is convex (quasiconvex, affine,
linear) for all z € X.

Common uncertainty sets. There are some types of uncertainty sets that are fre-
quently used in current literature. These include:

1. Finite uncertainty U = {51, .. ,{N}
2. Interval-based uncertainty U = [gl,él] X ..o X [§M,EM}

3. Polytopic uncertainty & = conv {51, e ,§N}

10
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4. Norm-based uncertainty U = {5 eRM: e —¢| < a}

5. Ellipsoidal uncertainty U = {§ eRM /M £2/52 < Q}

6. Constraint-wise uncertainty & = U X ... X Uy, where U; only affects constraint ¢

where conv {fl, e ,SN} = {Zf\il N Zfil A=1X€ Rf} denotes the convex hull
of a set of points. Note that this classification is not exclusive, i.e., a given uncertainy
set can belong to multiple types at the same time.

Example 1.2. We consider the uncertain optimization problem

P(&1,&) max 21 + 29
r1 <&
x2 < &2
r1,z2 € Ry

with (§1,§2) € U = [0,1] x [0,1]. We can classify that the problem has an interval-
based uncertainty, a polytopic uncertainty with respect to {(0,0),(1,0),(0,1),(1,1)}, a
norm-based uncertainty with respect to || - ||, and a constraint-wise uncertainty.

1.3 Methodology and Outline

Methodology. In this work we follow an application— and experiment—driven approach
to robust optimization, motivated by the paradigm of algorithm engineering, as de-
scribed in [San09] and [MHS10]. The outline is presented in Figure

This algorithm engineering cycle can be interpreted in the following way: Concrete
problem applications motivate the design of appropriate robustness models, which in
turn spark a mathematical analysis that increases the problem knowledge. On the other
hand, both model and analysis lead to algorithms, which are implemented in reusable
program libraries, and used for experiments. The experimental results in turn show
weak points of the model and the algorithm, and lead to a reconsideration of both. This
mutual influence therefore creates circles of problem investigation, whose linearization
form the basis for the structure of this work.

Generally speaking, this work lies in the fracture between modeling and solving.
While modeling a problem brings applications into the domain of mathematics, an
overemphasis of the theoretical analysis of models moves too far away from practice.
Solving a model on the other hand pushes mathematics back into practice, but an
overemphasis of this aspect cannot be effective (or science after all) without theoretical
analysis. We focus on both theoretical and practical modeling and solving aspects
trying to find a balance that combines the best of both worlds for robust optimization.

11
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Figure 1.1 Methodological structure.

Outline. The remainder of this work is structured as follows:

e In Chapter [2| current approaches to robust optimization are discussed.

e We introduce the new robustness concepts of RecFeas and RecOpt in Chapter
and derive theoretical properties as well as relations to and between the current
approaches to robustness as presented in Chapter

e In the two following chapters, we turn our attention to applications in robust
optimization. As solution approaches may highly differ, we separately consider
continuous problem applications in Chapter 4| including linear programming and
aperiodic timetabling, and discrete problem applications in Chapter |5 including
loadplanning, Steiner trees, periodic timetabling and the timetable information
problem.

e Algorithms need reusable software libraries to be brought into practice. Therefore,
Chapter @]deseribes the Robust Optimization Programming Interface (ROPI) that

connects solver interfaces with robust optimization algorithms.

e Chapter [7] concludes this work with a discussion of the presented results and an
outlook.

e In Chapter [8, the author’s contribution to each part of this work is presented.

12
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This implies the following relations between the chapters:

Ch.4
Ch.l —— Ch.2—— Ch.3 Ch.6 —— Ch.7
Ch.5

Note that also the sections in Chapter 4 and Chapter 5 can be read in parallel by a multi-
threaded reader — everybody else can at least skip sections here and still understand
the rest of the work.

13






2 Literature Review on Robust
Optimization Concepts

In this Chapter an overview to some of the current approaches to robust optimization
is given. We begin with the basic concept of strict robustness, and proceed with the
approach of Bertsimas and Sim, adjustable, recovery and light robustness, min max
regret optimization, and shortly consider the concepts of reliability, soft robustness,
uncertainty feature optimization, and Mulvey et al. We conclude this section with
some words on the relation to stochastic optimization.

2.1 Strict Robustness

A solution z € X to the uncertain problem (P(§),& € U) is called strictly robust if it
is feasible for all scenarios in U, i.e. if F(x,£) <0 for all £ € Y. The objective usually
follows the pessimistic view of minimizing the worst-case over all scenarios. Denoting
the set of strictly robust solutions with respect to the uncertainty set U by

SRWU) = () F(©),

&eu

the robust counterpart of the uncertain optimization problem is given as

(SR) min sup  f(z,§)
ceu

st.  z € SRU)
e X.

The first to consider this type of problems from the perspective of generalized linear
programs was Soyster [Soy73| for uncertainty sets U of type

U=Ki X...x Ky,
where the set K; contains possible column vectors A; of the coefficient matrix A. In

[Soy73| it is shown that (SR) can be formulated as a linear program if the sets K; are
compact and convex. Subsequent works on this topic include [Fal76] and [Thu80].

15
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However, building this approach into a strong theoretic framework is due to a series
of papers by Ben-Tal, Nemirovski and co-workers [BTN98, [BTN99, BTNO00]. A sum-
mary of their results can be found in the book [BTGN09]. They show that in case of
Euclidean balls K;, the resulting linear program can be explicitly stated, and further
studied the theory of strict robustness for various other uncertainty sets. For polyhedral
uncertainty sets U = conv{¢!,..., €V} with convex uncertainty in the objective and in
the constraints, they show that the robust counterpart maintains many properties of
the original program. For example, the strict robust counterpart (SR) of a linear pro-
gram is again a linear program, and also differentiability and convexity are transferred
from P(£) to (SR). They furthermore investigate strict robustness for uncertainty sets
U with constraint-wise uncertainty and with ellipsoidal uncertainty.

For infinite uncertainty sets, a scenario sampling approach has been analyzed in a
series of papers [CCO5) [CCO6, [CGO8|, [Call0]. They show that for a single uncertain
constraint

F(z,6) <0

of a convex optimization problem, the probability of the violation event V(z) = P{¢ €
U: F(x,&) > 0} is bounded by

P(V(a") > ) < z; <§V ) (1 -V,

where N is the sample size, and =* € R™ is the optimal solution with respect to
the sampled scenarios. This result holds under the assumption that every subset of
scenarios is feasible, and is independent of the probability distribution over Y. Also,
generalizations of this result to multiple constraints are presented.

Due to the high conservatism of strict robustness, further research in robust opti-
mization focused to a high degree on ways to relax this concept. We now describe some
of these approaches.

2.2 Bertsimas and Sim

One possibility to overcome the conservatism of strict robustness is to shrink the un-
certainty set Y. This has been conceptually introduced by Bertsimas and Sim in [BS04]
for linear programming problems. Their main assumption is that it is unlikely that all
coefficients of one constraint change simultaneously to their worst-case values, but only
constantly many.

Considering a constraint of the form

a1x1+ ... tapry, <Db

with an uncertainty U = {a € R" : a; € [a; — d;,a; + d;],i = 1,...,n}, a solution x
needs to fulfill

Z; Giwi+  max {Z diy; + (I — LFJ)dtyt} <b

|S|=T,te{L,...n}\s Li€S

16
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—y¢<mi§yi Vi:1,‘..,n

y=>0

for a given parameter I' € [0,n] and some values y, which are introduced to model the
absolute value of z. This means that only I' many uncertain coefficients may deviate
from their nominal value at the same time; but for all possible subsets a solution x
needs to be feasible.

The authors show that this model can be linearized by using the dual of the inner
maximization problem, which yields

n n
D diwi+ L+ ) pi<b
=1 =1

z2 +pi > diy; Vi=1,...,n
—Yi <z <Y Vi=1,...,n
p,y,z2 > 0.

In [BS04], the authors further present analytical probability bounds of constraint
violation and consider the price of robustness, i.e., the inferiority of the objective value
when robustness is taken into account, compared to what can be achieved in the nominal
model.

In [BS03], the authors apply this concept to discrete linear optimization problems,
and show that the programs can be reformulated analogously. They furthermore con-
sider combinatorial problems in which all decisions are binary and only the objective
function is uncertain, and present a solution algorithm that solves the robust counter-
part by solving a sequence of nominal problems. They apply this concept to the network
flow problem. The approach to combinatorial optimization problems has been gener-
alized in [Ata06] and [GST12]. Further applications include supply chain optimization
[BT06].

2.3 Adjustable Robustness

Motivated by two-stage stochastic programming, adjustable robustness as introduced
in [BTGGNO03|] decomposes the variables into two sets: The values for the here-and-
now variables have to be found in the robust optimization algorithm while the decision
about the wait-and-see variables can wait until the actual scenario & € U becomes
known.

We therefore assume that the variables z = (z,y) are splitted into z € X C R™ and
y € Y C R™ with ny +ns = n, where the variables « need to be determined before the
scenarios £ € U becomes known, while the variables y may be determined after £ has
been realized. The uncertain optimization problem (P(&),{ € U) is rewritten as

P() min f(z,y,&)
F(z,y,6) <0

17



2.3. ADJUSTABLE ROBUSTNESS

(x,y) € X x Y.

When fixing the here-and-now variables, one has to make sure that for any possible
scenario £ € U there exists y € Y such that (z,y,£) is feasible. The set of adjustable
robust solutions is therefore given by

SR={reX :VEelU yeY st. (x,y) € F(&)}
= ﬂ Prx(F(¢)),

geu

where for some set A C X XY, Prx(A) ={z € X : Jy € Y s.t. (x,y) € A} denotes
the projection of A on X.
The worst case objective for some x € &SR is given as

28R

T) =su inf xz,y,§).
) 565 y:(w,y)éf(é)f( b:¢)

The adjustable robust counterpart is then given as
min{z ™ (z) : 2 € aSR}.

Note that this setting is also useful if an uncertain problem with “helper variables”
is considered. A constraint of the form

n
Zaimi S b
=1

can be equivalently rewritten to the form

n
Zaﬂﬁ-y:b
i=1

y >0,

but the strictly robust counterpart of both problem formulations has a different mean-
ing. Considering y as an adjustable problem variable though, results in an equivalent
problem as the strictly robust counterpart of the formulation without y.

The adjustable robust counterpart is in general computationally intractable. In the
case of linear programs, it is shown in [BTGGNO3]| that for constraint-wise uncertainty,
the adjustable robust counterpart is equivalent to the strictly robust counterpart. Fur-
thermore, this is also the case when there is a compact set Y (x) for all feasible x such
that F(z,y,&) < 0 implies y € Y. [TTTO08] shows that the adjustable problem can be
reduced in the case of polytopic uncertainty, and quasiconvexity in the objective func-
tion. In [Ter(09], algorithms for the linear case are presented, including a cutting-plane
approach. In [BTBO0S]|, the adjustable robust counterpart of conic quadratic optimiza-
tion problems is considered. The uncertain network flow and design problem with

uncertain demand is considered in [AZ(07]. Further applications include circuit design
[MSO06].

18
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2.4 Light Robustness

The lightly robust counterpart of an uncertain optimization problem, as developed
in [FMO09] and [Sch10], requires a fixed nominal quality of the solution, and among
all solutions satisfying this standard, the concept asks for the most “robust” one in
the sense of constraint violation. Specifically, the lightly robust counterpart is of the
following form:

(LR) max Z w;Yi
i=1

st. f(z,&) < (1+p)F ()
F(z,) <~y VYe¢elU
z € X,vyeR™,

where w; models a penalty weight for the violation of constraint ¢ and p determines
the available budget. This approach is also combinable with the constraint relaxation
concept of Bertsimas and Sim.

Note that a constraint of the form F(z,&) < 0 is equivalent to a constraint AF'(z,§) <
0 for any A > 0; therefore, the coefficients w; play an important role in balancing the
allowed violation of the given constraints.

The lightly robust approach has been applied to timetabling [FMQ9, [FSZ09], and
timetable information |[GKMH™11].

2.5 Recovery Robustness

Similar to adjustable robustness, recovery robustness, which has been developed in
[CDS™07, [Sti08, [LLMS09, DDN09] and has independently also been used in [EMS09],
is a two-stage concept. Its basic idea is to allow a class of recovery algorithms A that
can be used in case of a disturbance. A solution z is called recovery robust with respect
to A if for any possible scenario £ € U there exists an algorithm A € A such that A
applied to the solution x and the scenario £ constructs a solution A(z, &) € F(£), i.e. a
solution which is feasible for the current scenario.
Hence, the basic model is the following:

(RR) min  f(z)
(z,A)eF(&)xA
st. Az, &) € F(§) Y€ el.

It can be extended by including the recovery costs of a solution x: Let d(A(x,§)) be a
possible vector-valued function that measures the costs of the recovery, and let A € A
be a limit on the recovery costs, i.e., A > d(A(x,§)) for all £ € Y. Assume that there is
some cost function g : A — R associated with \.
Setting
A(,6,0) € FI€) = d(A(z,6) <A A A(z,€) € F(E)

19
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gives the recovery robust counterpart with limited recovery costs:

(RR-LIM) min f(x) 4+ g(N)
(@, ANEF(E)x AxA

st. Alz, &) € F(¢) Ve eU.

Due to the generality of this robustness model, the computational tractability heavily
depends on the problem, the recovery algorithms and the uncertainty under consider-
ation.

Applications include recovery robust models for linear programming [Sti08], shunting
[CDS™07], timetabling |[CDST09b], platforming [CGSTOS|, the empty repositioning
problem [EMS09], railway rolling stock planning [CCG™12] and the knapsack problem
[BKKTI1].

2.6 Regret Optimization

Regret optimization differs from the other presented robustness concepts insofar it only
considers uncertainty in the objective function. Instead of minimizing the worst-case
performance of a solution, it minimizes the difference to the objective function of the
best solution that would have been possible in a scenario.

Let f*(&¢) denote the best objective value in scenario { € Y. The min-max regret
counterpart of an uncertain optimization problem with uncertainty in the objective is
then given by

(Regret) — min sup (f(z,€) - £(©))

feul
st. F(z) <0
e X.

For a survey on this concept, see [ABV(09] and [KY97].

If the original problem is polynomially solvable, there is an N-approximation algo-
rithm for finite uncertainty sets [ABV09], where N is the number of scenarios, and a
2-approximation algorithm for interval-based uncertainty [KZ06b].

Due to its generality, applications of this concept to concrete problems are abundant.
In [YKPO1], the concept is applied to the spanning tree problem with edge weights from
an interval-based uncertainty set, and further generalized to matroids in [YKPO7]. Its
approximation complexity for the shortest path, the spanning tree, and the knapsack
problem is analyzed in [ABV05].

2.7 Further Robustness Concepts

Reliability. Another approach to robust optimization is to relax the constraints of
strict robustness. This leads to the concept of reliability of Ben-Tal and Nemirovski

20
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[BTNOQ], in which the constraints F'(x,&) < 0 are replaced by F(z,&) <  for some
v € RY,. A solution = which satisfies

F(x,§) <~ forall { el

is called reliable with respect to v. The goal is to find a reliable solution which minimizes
the original objective function in the worst case. Similar to light robustness, one has
to be careful that the representation of the constraints does not affect the reliability of
the solution, otherwise one may obtain the counter-intuitive result that, although the
constraints F'(z, &) < 0 can also be written as U(F(x,&)) < 0 for any increasing ¥ with
U (0) = 0, what is understood by a robust solution may be different if one models the
constraints with F' or with W(F').

Soft Robustness. The basic idea of soft robustness as introduced in [BTBB10] is to
handle the conservatism of the strict robust approach by considering a nested family of
uncertainty sets, and allowing more deviation in the constraints for larger uncertainties.
Specifically, instead of an uncertainty set 4 C R a family of uncertainties {U(g) C
U}eso with U(e1) C U(eg) for all e9 > €1 is used. The set of soft robust solutions is
then given as

R={xecX:F(x,§) <eVEclU(e), e >0}.

Note that strict robustness is a special case with U(e) = U for all € > 0.

In [BTBBI0], the authors show that a solution to the soft robust problem counter-
part can be found by solving a sequence of strict robust problems using a bisection
approach over e, and analyze the numerical performance on a bond portfolio and an
asset allocation problem.

Uncertainty Feature Optimization. Instead of assuming that an explicit uncertainty
set is given, which may be hard to model for real-world problems, the uncertainty
feature optimization (UFO) approach [ESB11] rather assumes that the robustness of a
solution is given by an explicit function. For an uncertain optimization problem (P(£)),
let ;v : R® — RP be a measure for p robustness features. The UFO-counterpart of the
uncertain problem is then given by

(UFO) vecmax u(x)
s.t. F(z) <0
fl@) < (L+p)f()

T € X,
where f*(é) denotes the best objective value to the nominal problem. The authors
can show that this approach generalizes both stochastic optimization and the approach
of Bertsimas and Sim. In [Egg09], the UFO approach is applied to real-world airline
scheduling problems.
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2.8. RELATION TO STOCHASTIC OPTIMIZATION

Mulvey et al. Being actually a predecessor of the work of Ben-Tal et al, Mulvey,
Vanderbei and Zenios introduced in [MVZ95] a framework for robust optimization of
uncertain linear programs. We consider an uncertain optimization problem of the form

(P(B,C,e)) min c'z 4 d'y
s.t. Az =b
Br+Cy=e
r e R,y e RY?,
where = represents a vector of design variables that cannot be adjusted, and y a vector
of control variables that can be adjusted when the realized scenario becomes known. For

a finite uncertainty set & = {(B',C',el),..., (BN, CN,eMN)}, the robust counterpart
is given as
(Mul) min o(z,y, ... yN) +wp(zt, ... 2Y)
s.t. Az =b
Bia+Clyf+zi=€eVi=1,...,N
S ]RT,yi € Rﬁ“’,zi e R™,
The variables z* are introduced to measure the infeasibility in every scenario, i.e., the

deviation from the right-hand side. The function o represents the solution robustness.
It can be modeled as a worst-case function of the nominal objective

oz, yt,...,y"N) =cz+ max dy’

i=1,...,

or, when probabilities p’ are known, as an expected nominal objective. The function p
on the other hand represents the model robustness and depends on the infeasibility of
the uncertain constraints. Possible penalty functions are

N m
pzt, ... 2N = Zpi Zmax{o, 2
i=1  j=1

N
or = Zpi(zi)tzi.
i=1

As (Mul) is actually a bicriteria model, w is used as a scalarization factor to combine
both objectives.

2.8 Relation to Stochastic Optimization

Even though stochastic optimization considers a fundamentally different setting to ro-
bust optimization, some approaches can be easily transferred. For a discussion on the
differences between both concepts, see e.g. [BTGNO9|.
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Stochastic optimization is a well-established and thoroughly researched optimiza-
tion method, and this paragraph can only highlight some differences and similarities.
Introductions can be found in [BLI7] or [KW94], amongst others.

As the main difference to robust optimization, the existence of a probability distri-
bution P for the uncertainty set is assumed. Possible objective functions of stochastic
programming include

o the expected value Ep[f(z, €)],

o the expected utility —Ep[u(f(z,£))],

e a risk measure objective Ep[f(z,&)] + ARp[f(x, )],
o a Markowitz model Ep[f(z, €)] + Avarp|f(z, )],

e or a point estimate &p of U: f(z,Ep).

For uncertain constraints, possible stochastic reformulations include chance con-
straints

P:xeF(&))>1—k¢,

which are in general computationally difficult, or individual probabilistic constraints
P(&: Fiy(2,6) <0) > 1— ey,

which are easier to handle. So-called fat constraints demand feasibility for all scenarios,
and are therefore a direct connection to robust optimization.

As an example, the stochastic counterpart of an uncertain optimization problem
(P(£),& € U) for a finite uncertainty set U = {¢,..., &N} with probability distribution
{p1,...,pn} and a single uncertain constraint F' can be given as

N
min Y pif(x,¢)
=1

S.t. F(w,fz) < Mizi

N
sz‘zi <6
i=1

where the variables z are introduced to model chance constraints.

Note that a probability distribution might be difficult to obtain for real-world prob-
lems. Furthermore, minimizing the expected objective value makes sense for problems
in which the solution is often evaluated, but might be unwanted for once-in-a-lifetime
decisions like buying a life insurance, for which the robust optimization paradigm is a
considerable alternative.

In [Dem91]), the author considers solutions to the following problem:

N N
min Y pyl|f(2, %) = fH(E)P + D psl| max{F(£*), 0}

s=1 s=1
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2.8. RELATION TO STOCHASTIC OPTIMIZATION

reX,

i.e., he tries to find solutions that are “close” to feasibility and optimality in every
scenario. To do so, every single scenario is solved to optimality first. In [RWO9I1], a
similar model for multi-stage processes is considered.

For uncertain optimization problems with infinite uncertainty sets, a solution ap-
proach is Sample Average Approximation (SAA), which uses a finite subset of scenarios
instead. For all measurable functions f, convergence can be shown from the law of large
numbers, i.e., the sampled objective value converges to the original objective value.

As a final remark, we consider the relationship between stochastic and robust opti-
mization from the point of view of the uncertainty set. When determining the set of
possibly occurring scenarios, the problem modeler always needs to draw a line some-
where - although a meteor impact devastating a track is possible, it is so unlikely that
we may neglect its occurrence. In this sense, a robust solution that is feasible for all
scenarios is only feasible for all considered scenarios. Therefore we may argue that
a robust optimization problem has some kind of probability estimate included in its
uncertainty set as well.
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3 New Concepts and Relations

The following part considers two new approaches to robust optimization that draw
from a location-theoretic point of view on recovery in the solution space: Recovery-
to-Feasibility (RecFeas) in Section[3.1] and Recovery-to-Optimality (RecOpt) in Sec-
tion [3:2] After a detailed discussion of these approaches we conclude this Chapter
with some aspects of relations between robustness concepts in Section [3.3]

3.1 RecFeas

3.1.1 Introduction

In this section we propose a variation of recovery robustness based on geometric ideas,
that is applicable for a wide range of problems. In particular, an optimal solution
can be determined efficiently for linear programming problems for different types of
uncertainties. For more complex settings reduction approaches are proposed.

This section is structured as follows: We introduce our model recovery-to-feasibility in
Subsection and analyze the recovery-robust counterpart for finite scenario sets in
Subsection and for infinite scenario sets in Subsection In both subsections
we derive exact solution approaches finding the best robust solution with respect to the
recovery costs. We then turn our attention to algorithms for recovery-to-feasibility in
Subsection We consider an iterative approach for the case of a finite uncertainty
set, and a sampling approach for the case of an infinite uncertainty set.

The section is concluded by a summary of our results.

3.1.2 A New Model: Recovery-to-Feasibility

The idea of our model is based on the concepts of recovery robustness, in particular
on [LLMS09]. The main difference is that we replace the recovery algorithm by the
properties of some norm (similar to the approach for shunting in [CCGT12]) in order
to obtain an approach that is easier to apply, as well as geometrically intuitive. We
show that the complexity of the robust counterpart does not need to increase in our
approach; in fact, the recovery-robust counterpart of a linear programming problem
with polyhedral recovery costs stays a linear program. This even applies to infinite
scenarios sets in some relevant cases. We start by introducing some notation.
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3.1.2 A New Model: Recovery-to-Feasibility

Let a norm || - || : R™ — R be given. || - || should be chosen in such a way that the
induced metric represents the time or the costs needed to change the solution z € R”
into another solution y € R™ (e.g. by a given recovery algorithm). Norms are frequently
used in applications to model the recovery costs, e.g., in timetabling [LLMS09] or in
recovery robust linear programming [Sti08]. Let d(z,y) = ||y — z|| denote the distance
induced by the norm || - ||. For a closed non-empty set F C R" we define the distance
d(x,F) from a point = to the set F as

d(z, F) = mind
(z,F) min (z,y),

where the minimum exists.

Now let an uncertain optimization problem (P(&),¢ € U) including the set X C R"
of implementable decisions be given. In the recovery-robust counterpart RecFeas(i/),
we ask for a solution x € X which can be recovered with lowest possible costs in the
worst case. For a recovery robust solution z € X we hence require that for any scenario
& € U, it can be transformed into another solution y = y(z, &) which is feasible for &
(i.e. y € F(§)), and we minimize the costs d(x,y) of this recovery in the worst case.
Formally, given an uncertain optimization problem (P (&), ¢ € U), a distance function d
and a set X', we define the optimization problem

RecFeas(U) min supd(z, F(§)).
reX feu

If not specified otherwise, d is induced by an arbitrary norm and X = R™. The set X
of implementable decisions can be used to model different important issues. Indeed, X
may refer to technological or physical constraints on the variables (e.g. some variables
represent non-negative magnitudes, or there are precedence constraints between two
events), or may refer to modeling constraints (e.g. some variables are Boolean, and
thus they can only take the values 0 and 1). The inclusion of constraints makes also
sense in applications where a nominal scenario é is given and the solution x is required
to be feasible for this scenario, or X can (similar to light robustness) define a minimal
nominal standard of the robust solution x. In order to avoid non-existence of an optimal
solution we always assume that X is closed.

Let us denote the objective function of RecFeas(U) by

r(x,U) = supd(x, F(§))
ceu

and let us call r(z,U) the (recovery) radius of x with respect to Y. Let r*(U) denote
the best possible recovery radius (if it exists). Any optimal solution x* with

r(z*,U) =r*(U)

is called a center with respect to {F(§) : £ € U}. We may omit U in both r(z.U) and
RecFeas(U) if it is clear from the context which uncertainty set is meant.
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Chapter 3. New Concepts and Relations

The terminology used here is inspired by the connection of our recovery-to-feasibility
model to some location problems. In a classical location problem (known as the Weber
problem or as the Fermat-Torricelli problem, see e.g. [DKSWO01]) we have given a set of
points, called existing facilities, and we look for a new point minimizing the distances
to these given points. If the distance to the farthest point is considered as the objective
function, the problem is called the center location problem [PCI12]. The recovery-robust
counterpart RecFeas(U)

. k
min max d(xz, F(£))

of an uncertain optimization problem with a finite uncertainty set U can hence be
interpreted as a location problem in which the existing facilities are not points but
the sets F(&1),..., F(¢N). RecFeas(U) asks for a point z € X which minimizes the
maximum distance to the given sets. The notation of location theory is adapted by
calling such a point — which then is an optimal solution to RecFeas(U) — a center of
F(E),... . F(EY).

The connection between RecFeas(U) and (point) location problems becomes clearer
for specific shapes of the sets F(§). For instance, let the sets F(£) be scaled and
translated unit balls of the norm || - ||, i.e.

F(&)={y e R":d(y,c(§)) <r}

for some c(¢) € R™ for all £ € U and r € R>¢. In this case we obtain that

_ [ dwe(®) —r i d(z,e(€) >
d(z, F(§)) = { 0 if d(z,c(€)) <r

and it turns out that the center of the location problem with existing (point) facilities
{c(§) : € € U} is just an optimal solution to RecFeas(U).

Note that, instead of minimizing the maximum distance to all feasible sets, we may
also consider the problem of minimizing the sum of distances to all sets, which is known
as the median problem. However, in this section we focus on the center problem.

Let us now describe some general properties of problem RecFeas(i/). First observe
that, even when the function F' has a very simple form, the set F(£) may collapse from
being a very large set to become empty. For instance, for F(z,§) = 1 — x£, we have
that F(£) = [g,+00) for £ > 0, F(0) = 0, and F(§) = (—o0, ¢] for £ < 0.

Since d is induced by a norm we know that

0 <r(z,U) <+oo forall z € R", (3.1)

thus the optimal value of RecFeas(U/) is bounded by zero from below, but is +oo if
all points x have infinite radius r(z,U). This event may happen even when the sets
F(§) are always non-empty. Indeed, consider, for instance, X = R, F(&) = {£} for all
Eeld =R

One has, however, that finiteness of r(x, ) at one point implies finiteness everywhere,
and, in that case, the radius is Lipschitz-continuous, as shown in the following result.
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3.1.2 A New Model: Recovery-to-Feasibility

Lemma 3.1. Let an uncertain optimization problem (P(£),& € U) be given and let d
be induced by a norm. Suppose there exists xog € R™ such that r(xo,U) < +oo. Then,
r(z,U) < +oo for all z € R™. In such a case, the function x € R" —— r(z,U) is
Lipschitz-continuous with Lipschitz constant L = 1.

Proof. Take x € R™ and £ € U. Let y € F(&) such that d(zg, F(£)) = d(xo,y). We have
that

d(z, F(£)) d(z, y)

d(z,z0) + d(z0,y) = d(x,z0) + d(w0, F(§))

VARVAN

Hence,

rfneadgd(a:,}*(g)) < d(z,zo) + Igle%(d(mo,F(f)) < +o0.

Consequently, r(z,U) is finite everywhere.
We now show that the function is also Lipschitz-continuous. Let € > 0, and let
x, 7 € R"™. Take £* such that

e+d(xz, F(&")) = r(z,U).

Since F(&*) is closed, take also y' € F(£*) such that d(a/, F(£*)) = d(/, ).
Then,

r(x,U) —r(z',U) e+d(z, F(£)) —d(z', F(£))
€+ d(.’L‘, y,) - d(l’,, y,)

e+d(z,z’).

VAN VAN VAN

Since this inequality holds for any € > 0, we obtain
r(x,U) —r(2',U) < d(z,2"),
hence the function r(-,U) is Lipschitz-continuous with Lipschitz constant 1. ]

In what follows we assume finiteness of the optimal value of RecFeas(U), and thus
Lipschitz-continuity of r(-,U/). Hence, RecFeas({) may be solved by using standard
Lipschitz optimization methods [SK10].

A finite optimal value does not guarantee the existence of optimal solutions, even if
U is finite. This is shown in the following example:

Example 3.2. Consider the uncertain program
P() min f(z1,2)
s.t. 1 < &xqao

§r1 >0
332207
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Chapter 3. New Concepts and Relations

whereUd = {—1,1} is the uncertainty set, f(x1,x2) is any objective function and X = R.
The feasible sets of scenario & = —1 and scenario £ = 1 are given by:

F(-1) =
F(1) =

Both feasible sets are depicted in Figure (3.1 Since the sets have a common point at
infinity, it follows that

(5131,.732) S ]R2 cx1xe < —1, 21 <0, 9 > 0},
(z1,22) €R? : xyw9 > 1, 21,29 > 0.

{
{

inf r(z,U) =0,
z€ER?

but r(z,U) > 0 for all x € R?. Hence, an optimal solution to RecFeas(U) does not

exist.
"

1 fL’2

Figure 3.1 An example where an optimal solution to RecFeas(U) does not exist, even for
an uncertainty set U with only two scenarios.

For a given z € R” let us call £ € U a worst-case scenario with respect to x (and U)
it
d(x, F(§)) = r(z,U)

and let WC'(x,U) be the set of all worst-case scenarios, i.e. scenarios £ € U yielding
the maximal recovery distance for the solution x. Under certain assumptions, optimal
solutions z* have a set of worst-case scenarios WC (z*,U) with at least two elements,
as shown in the following result.

Lemma 3.3. Let an uncertain optimization problem (P(£),& € U) be given. Suppose
that U is finite, X = R™, and d is induced by a norm || - || and RecFeas(U) attains its
optimum at some z* € R™. Then, |WC(z*,U)| > 2.

Proof. Finiteness of U implies that the maximum of d(z*, F(£)) must be attained at

some . Hence, |WC(z*,U)| > 1. In the case that WC(z*,U) = {£*} for only one
scenario £* € U, we could move x towards F(§) and shrink r to obtain a better solution.
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3.1.2 A New Model: Recovery-to-Feasibility

Indeed, take y* € F(&*) such that d(z*,y*) = d(z*, F(£*)), and, for X € [0,1], define
T) as
xy=(1—=XN)z" + \y*.

Since, by assumption, WC(z*,U) = {{*} and U is finite, there exists € > 0 such that
d(z*, F(§)) <d(a*, F(§") —e  VE€U, {F#E"

Let us show that, for A close to zero, x) has a strictly better objective value than z*,
which would be a contradiction. First we have

d(zx, F(£7) < d(zay")
= (I=N]z" —y*| = (1 = Nd(z", F(£))
< d(z*, F(£9)) for A > 0.

For the remaining scenarios £ # £*,

dlzx, F(§) < inf (lox — 2 + =" —yl)
yeF(§)
= Alz" —y*|| +d(z", F(&))
< Alle" =yt +d(2™, F(EF)) —
<

g
d(a”, F(E)) for A< ———.
[J* — y*|]

Hence, for 0 < X\ < we would have that

e
lla*—y* |

rgleadcd(m,f(f)) <d(a", F(§) = Iglgd(m*af(ﬁ)%

contradicting the optimality of z*. O
If the finiteness assumption of Lemma [3.3] is dropped, not much can be said about

the cardinality of WC'(z,U), since this set can be empty or a singleton:
Example 3.4. LetU = {—1,1}x[1,00), and let F(x,(&1,&2)) = (—&1)(&ax—&1&2+&1).

It is easily seen that

F(_17§2) = [_17_1—’_5%]
3.2
FL&) = [L-2.1 (32)
For x =0, r(x,U) = 1, but there is no & € U with d(xz,F(§)) = 1. In other words,

wcoo,Uu) =0.
If we slightly modify the definition of U above, by considering

U=({-11} x[1,00)) U{(=1,0)},
and define F(z,(&1,&2)) as

F(, (51,52»:{ A R Ao

we have that F(&1, &) is defined as in (3.9) for (§1,&2) € {—1,1}x[1,00), and F(—1,0) =
{—1}. Hence, WC(0,U) = {(—1,0)}.
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We close this section by pointing out the relation between recovery-to-feasibility and
the concept of strict robustness of [BTGN09|]. To this end note that

SRWU) = () F(©)

feu

is the set of strictly robust solutions of (P(§),& € U).

Lemma 3.5. Let an uncertain problem (P(£),& € U) be given, let X = R™ and d be
induced by a norm. Let SR(U) be the set of strictly robust solutions and RecFeas(U) be
the recovery-robust counterpart. Then the following holds:

SR(U) # O if and only if r*(U) = 0.

In particular, if SR(U) # 0, the optimal recovery radius exists and any x € SR(U) is an
optimal solution to RecFeas(U).

Proof. Let x € SR(U). Then = € F(&) for all £ € Y. This means that d(x, F(£)) =0
for all £ € U. From we conclude r(z,U) = 0, hence x is an optimal solution to
RecFeas(U).

On the other hand, r(z,U) = 0 implies d(z, F(£)) < 0 for all £ € U. Since, by
assumption, F(§) is closed, this means that € F(&) for all £ € U, hence the set of
strictly robust solutions is not empty. O

A relation between recovery-to-feasibility and reliability (as in [BTNOQ]) is mentioned
in Theorem For a more detailed discussion of relations to robustness concepts
from the current literature, we refer to Section [3.3.1]

In the next two sections we investigate recovery-to-feasibility for two cases: In Sec-
tion [3.1.3] we look at problems with a finite uncertainty set ¢. Particular problems with
convex and with linear constraints are considered. In Section [3.1.4] we analyze the more
general case of uncertainty sets containing an infinite number of scenarios. Our goal in
this section is to identify special cases in which the infinite set ¢/ may be reduced to a
finite set such that the approaches of Section can be applied.

3.1.3 Recovery-to-Feasibility for a Finite Uncertainty Set

In this section we assume that ¢/ is finite, U = {¢!,..., &N}, This simplifies the analysis,
since we can explicitly search for a solution y* for every scenario ¢* € Y. Using the y*
as variables we may formulate RecFeas(U) as

min r

st F(y*, &) < Oforallk=1,...,N
d(x, y) < rforallk=1,...,N (3.3)
reX,relR
yFex forall k=1,...,N.
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3.1.3 Recovery-to-Feasibility for a Finite Uncertainty Set

Still such an optimization problem may be rather hard to solve because of the con-
straints defined by F and the possible nonlinearity of the distance constraint. Assuming
that the distance used is the Euclidean d?(-,-), we can write RecFeas(U) equivalently
as

i d*(z, F(£M)). 3.4

min max d-(z, F(£7) (3.4)

The function z — maxy, d?(z, F(¢)) is known to be d.c., i.e., it can be written as a

difference of two convex functions, and then the powerful tools of d.c. programming

may be used to find a globally optimal solution if RecFeas(!f) is low-dimensional [BC09,
BCHQ9], or to design heuristics for more general cases [AT05].

Convex programming problems. We start with optimization problems P (&) that have
convex feasible sets F(§) for all £ € U. This is the case if the function F' in the constraint

F(z,) <0

of P(&) is such that F(-,€) : R™ — R™ is quasiconvex for all scenarios .

Let us fix £. Let the distance d be induced by a norm. Then d(-, F(§)) : R" — R
describes the distance between a point and a convex set and hence is a convex function.
We conclude that r(x,U) is convex as the maximum of a finite set of convex functions.

Lemma 3.6. Let d be conver, let U be finite and let F (&) be conver and closed for all
Ee€U. Then, r(-,U) is a convex function.

Proof. By definition,
(o) = max_d(z, F()

=1,
We consider the functions

i(xr):= min d(z,y), t=1,...,N.
@)= min da.y)

For a fixed i € {1,..., N}, let x1,z9 and A € [0, 1] be given. Let y; € argmind(z1,y),
Y2 € argmind(z2,y). Then

fi()\xl + (1 — )\)332)

= min d(A\zy + (1 — N)zo, F(€
i (Az1 + (1 = Ao, F(£'))

d(Az1 + (1 — Mo, Ay + (1 — Nya), as F(£) is convex

<
< M(z1,y1) + (1 — N)d(x2,y2), as d is convex

Therefore, each of the functions f; is convex, and as the maximum of convex functions
is convex, so is r(-,U). O
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Lemma 3.7. Consider an uncertain optimization problem (P(£),{ € U) with quasi-
convex F(-,&) for any fized . Let U be a finite set and X C R™ be closed and convex.
Let d be induced by a norm. Then problem 1S a convex optimization problem.

In order to solve RecFeas(U) one can hence apply algorithms suitable for convex
programming, e.g. subgradient or bundle methods [SY06, HUL93|. In particular, since
RecFeas(U) is unconstrained, a necessary and sufficient condition for a point z* to be
an optimal solution is

0 € d(r(z*,U)),
i.e., if 0 is contained in the subdifferential of r at the point z*. By construction of
r(-,U), we obtain
0 € conv {0d(z*, F(&)) : £ e WC(z*,U)}

where WC'(x*,U) is the set of worst-case scenarios [HUL93].

Now, dd(z*, F(£)) can be written in terms of the subdifferential of the distance used,
see [CF02], where also easy representations for polyhedral norms or the Euclidean norm
are presented. Although we do not know much a priori about the number of worst-case
scenarios, we do not need to investigate all possible subsets but may restrict our search
to sets which do not have more than n + 1 elements. This may be helpful in problems
with a large number of scenarios but low dimension n for the decisions.

Theorem 3.8. Let U be finite with cardinality of at least n+ 1. Let X = R"™ and let d
be induced by a norm. Suppose RecFeas(U) attains its optimum at some x*, and that
for each &, the function F(-,€) is quasiconvex. Then there evists a subset U C U of
scenarios with 2 < |U| < n + 1 such that

r(U) = r(z*,U) = r(@*,U) = rlU).

Proof. Let x* be optimal for RecFeas(/). The result is trivial if r(z*,U) = 0 : take any
collection of n + 1 scenarios. Accordingly, we may assume 7(z*,U) > 0, which implies
that z* does not belong to all sets F(§).

By Lemma [3.3] [WC(z*,U)| > 2. If [WC(2*,U)| < n+ 1, then we are done. Oth-
erwise, |WC(z*,U)| > n + 1, we have by the optimality of z* and convexity of the
functions d(-, F(€)), that

0 € conv{dd(z*, F(§)): £ € WC(xz*,U)}
By Carathéodory’s theorem, WC(x*,U) contains a subset U, 1 < [U| < n+ 1 such that
0 € conv {Ad(z*, F(§)) : £ € U} . Such U clearly satisfies the conditions stated. O

Problems with linear constraints and polyhedral norms as recovery costs. As in the
section before, we assume to be given a finite uncertainty set & = {&',... &V}, Let
us now consider the case that all sets F(¢F), k = 1,..., N are polyhedral sets. More
precisely, we consider problems of the type

P(S) min f(z, £)
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3.1.3 Recovery-to-Feasibility for a Finite Uncertainty Set

s.t. F(x,8) := Az —b(&) <0

reX
with a finite uncertainty set 4 = {¢!,..., ¢V}, linear constraints for every ¢ € U and a
polyhedron X.
Furthermore, let us assume that the distance d is induced by a block norm ||- ||, i.e. a

norm for which the unit ball is a polytope, see [WWR85, (Wit64]. The most prominent
examples for block norms are the Manhattan (¢;) and the maximum ({) norm, which
both may be suitable to represent recovery costs. In the case that the recovery costs
are obtained by adding single costs of each component, the Manhattan norm is the
right choice. The maximum norm may represent the recovery time in the case that a
facility has to be moved along each coordinate (or a schedule has to be updated by a
separate worker in every component) and the longest time determines the time for the
complete update.

We also remark that it is possible to approximate any given norm arbitrarily close by
block norms, since the class of block norms is a dense subset of all norms, see [WWR85].
Thus, the restriction to the class of block norms may not be a real restriction in a
practical setting.

The goal of this section is to show that under the assumptions above, the recovery-
robust counterpart RecFeas(U) of the uncertain optimization problem (P(&), & € U) is
a linear program and a robust solution can hence be efficiently computed.

We start with some notation. Given a norm || - ||, let
B={zeR":|z]| <1}

denote its unit ball. Recall that the unit ball of a block norm || - || is a full-dimensional
convex polytope which is symmetric with respect to the origin. Since such a polytope
has a finite number S of extreme points, we may denote in the following the extreme
points of B as

Ext(B) ={e; : 1 <i < S}.

Since B is symmetric with respect to the origin, S € N is always an even number and
for any e; € Ext(B) there exists another e; € Ext(B) such that e; = —e;.

The following property is crucial for the linear programming formulation of RecFeas(!/).
It shows that it is sufficient to consider only the extreme points Ext(B) of a block norm
with unit ball B in order to compute ||z|| for any point x € R".

Lemma 3.9 ([WWRR85]). A4 block norm || - || has a characterization as

S S
| =min{26i:m=2@-ei, @»zowzl,...,s}.

i=1 i=1
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Lemma implies that we can compute ||z — y|| for any pair z,y € R" using a linear
program. Thus, our assumptions on the sets F(¢¥) and Lemma give rise to the
following linear formulation of RecFeas(i/) :

min 7
st AER)YF < b(eR) forallk=1,...,N
yF - = Zleﬁfei foral k=1,...,N
S8 < forallk=1,...,N (3.5)
x e X
r, BF > 0 forallk=1,...,N,i=1,...,8
z,y" e R" forallk=1,... N

Note that the first constraint is just the definition of the sets F(¢¥). Furthermore, the
second constraint together with the third constraint ensures that ||z — 3*|| < r for all
k=1,...,N. Therefore, the linear program is equivalent to the formulation
for a finite set of scenarios each of them having a polyhedron as feasible set and if a
block norm is used as distance measure. Consequently, we have shown that RecFeas(U/)
can be formulated as a linear program in this case. This is summarized in the following
result.

Theorem 3.10. Consider an uncertain optimization problem (P(§),€& € U) with linear
constraints F(x,£) = A(&)x — b(€) < 0 for any fived £. Let U = {€* : k =1,...,N}
be a finite set and let d be induced by a block norm || - || with extreme points e1, ..., eg.
Let X CR™ be a polyhedron. Then RecFeas(U) is given as the linear program .

If the number of constraints defining X and the number of extreme points of B
depend at most polynomially on the dimension n, then RecFeas(U) can be solved in
polynomial time.

We note that block norms may be generalized to the broader class of polyhedral
gauges where the symmetry assumption on the unit ball is dropped (see e.g. [NPQ9]).
Nevertheless, as it is readily shown that Lemma [3.9] applies to polyhedral gauges as
well, Theorem [3.10] also holds for distance functions derived from polyhedral gauges.

Problems with hyperplanes as feasible sets. We consider another special case in
which RecFeas(U) can be rewritten as a linear program, even though the distance
measure does not need to be derived from a block norm: For a € R™,b € R, let

P(a,b) min f(z, (a,b))
s.t. F(z,(a,b)) :=a'z —b=0
rTEeEX
with U = {(a',b"),...,(a™V,0™)}, a',...,a’ # 0. Concerning the distance measure d,
we assume that it is induced by a norm || - ||, and we allow X C R™ to be any polyhedral

set.
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RecFeas(U) is then given by
min r
st. d(w, Hpp o) <7 forallk=1,...,N
re X, reR,

where Hk pe = {z € R" : a'x = b*} denotes the hyperplane given by (a”,b*). Recall
the point-to-hyperplane distance [PCO01]

latx — bl
d(z,Hyp) = ————,
‘ lall®
where || - ||° denotes the dual norm to || - ||. As the values of ||a¥||° can be precomputed

and the absolute value linearized, we gain a linear program
min r
ko Kkt ko _
st. —rlla”||° <a"z—-b<r|ad"|° forallk=1,...,N (3.6)
re X,reR.

Corollary 3.11. Consider an uncertain optimization problem (P(a,b), (a,b) € U) with
linear constraints F(z,(a,b)) = a'x —b = 0,a € R, b € R and finite uncertainty set
U= {(a" k) :k=1,...,N} CR"1. Let X C R" be a polyhedral set and let d be
induced by a norm || - ||. Then RecFeas(U) is given by the linear program (3.6) and can
be solved in polynomial time, provided that the dual norm of || - | can be evaluated in
polynomial time.

Note that this result can even be extended to half-spaces as feasible solutions instead
of hyperplanes. In that case, the distance would be given by

where |a'z — b|t = max{a'z — b,0}, resulting in the linear program
min r
st. ab'z —b< rlla®||° for all k=1,...,N
r>0
reX,reR.

3.1.4 Reduction Approaches for Infinite Uncertainty Sets

In this section we consider the case of infinite uncertainty sets /. The main goal is to
reduce the set U to a smaller (maybe even finite) set U’ C U, such that a solution of
RecFeas(U’) is also a solution to RecFeas().

Some simple reductions can always be done: Similar to the reduction rules for set
covering problems [TSRBTI1], we obtain the following straightforward result.
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Lemma 3.12. Consider RecFeas(U) for some uncertain optimization problem
(P(€),& € U) with a closed set X C R™ and let d be induced by a norm. Let F(&) C
F(&) for 1,62 € U. Then scenario §&a may be ignored, i.e. RecFeas(U) is equivalent
to RecFeas(U \ {&2}).

Note that dependent on the definition of the optimization problem and the uncer-
tainty set U, often large classes of scenarios may be dropped. This is in particular the
case if the sets F() are nested.

In the following we are therefore interested in identifying a kind of core set U’ C U
containing a finite number of scenarios which are sufficient to consider in order to solve
the recovery-robust counterpart. More precisely, we look for a finite set I’ such that
RecFeas(U’) and RecFeas(U) are equivalent.

In the following we consider a polytope U with a finite number of extreme points
1 N
&8 el et
U = conv(U') where U' = {£',... &N},

Then many robustness concepts have (under mild conditions) the following prop-
erty: Instead of investigating all £ € U, it is enough to investigate the extreme points
€L ..., &N of Y. This leads to formulations of the robust counterpart which are of the
same type as the original problem. For example, for the strictly robust counterpart
SR(U) of an uncertain optimization problem (P(£),& € U = conv{¢!, ..., &N}) it is
known that

F(x,6) <0 for all £ € Y if and only if F(x,&¥) <0forall k=1,...,N,

if F(z,-) is quasiconvex for all z € X. Hence, under such conditions, it follows that
SR(U) is equivalent to SR({¢?, ..., ¢N}) if the uncertainty in the constraints and in the
objective is quasiconvex. In particular, if P(&) is a linear program and U a polyhedral
set, also the strictly robust counterpart RC(l{) is a linear program.

Unfortunately, a similar result for the recovery-to-feasibility counterpart does not
hold. This means that the solution of RecFeas(U’) for the set U’ does in general not
help for identifying a solution of RecFeas(U) with respect to the larger set U = conv(U'),
as demonstrated in the following example.

Example 3.13. Consider the following uncertain optimization problem:
P(ai,as,b) min f(z1,x2)

s.t. aix1 +asxe —b=0

r1, T € R,

where
U = conv {(1,0,0),(0,1,0),(1,1,2)}.

Let the recovery distance be the Fuclidean distance. Then the optimal solution with
respect to RecFeas(U'), where U' = {(1,0,0),(0,1,0),(1,1,2)}, is given by z* = (2 —
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N

1 =0

%1?1 + %.1‘2 =0

(a) Optimal solution w.r.t. the extreme points of  (b) Optimal solution w.r.t. the whole set U.
Uu.

Figure 3.2 RecFeas(U’) and RecFeas(U) may have different optimal solutions.

V2,2 —+/2), the midpoint of the incircle of the triangle that is given by the intersections
of the respective feasible solutions, see Figure|3.2(a).

On the other hand, this solution is not optimal anymore when the convex hull of U’
s taken into consideration. Indeed, by elementary geometry, one finds that

r(z*,U) = V2 - (2 - V2) =~ 0.828,

r(z,U) = \2 ~ 0.707,

where T = (%, %) Therefore, solving RecFeas(U') does not give an optimal solution to
RecFeas(U).

However, in the following we show that the center with respect to the sets F(£1), ..., F(¢V)
can at least be used as an approximation of the optimal solution to RecFeas(U) in
the sense that its reliability (as defined in [BTNO0], see also Section [2.7) is not too

bad, and derive cases in which RecFeas(conv{¢!,...,¢V}) is in fact equivalent to
RecFeas({¢',...,€V}). Let us denote

u = {¢,.... &M,

x as the center w.r.t. {F(£): & €U’} and

2 = r(2',U') be its radius w.r.t. U’

We start by showing that an optimal solution to RecFeas(U’) does not violate the
constraints F'(+,£),£ € U too much.
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Theorem 3.14. Let (P(£),£ € U) be an uncertain optimization problem. We assume
that Fi(z,-) is quasiconvex for alli = 1,...,m and all fizred x. Furthermore, let g¥(z) =
Fi(z, &%) be differentiable with bounded gradients ||VgF(z)|leo < 1 for all z € R™, for
alk=1,..., N.

We consider a closed set X C R™ and a polyhedral uncertainty set U = conv(U’),
U ={', ... &N}, Let d be induced by a norm || - || and let ¢ be such that ||z|1 < c||z||
for all x € R™.

Let z' be an optimal solution to RecFeas(U') and z' = r(a’,U') be the corresponding

radius. Then
Fi(2',6)<c-n-2/ VeelU, Vi=1,...,m,

i.e. o’ is reliable for (P(),€ € U) with respect to cnz'.

Proof. As z' is a center with radius 2’ there exist ¥, k = 1,..., N with F;(2*,¢F) =
gF(x*) <0fori=1,...,m and ||zF — 2/|| < 2.
Fix k and i. Then the mean value theorem (or, alternatively, the Taylor expansion
of gF at z¥) gives
gi (@) = gf (") + Vgl (Q) - (' — 2¥)

for a suitable ¢ € R"™. We estimate

gi(a) = gf(a")+Vgi(¢)- (2’ —a¥)
——

<0
< Vg (Q) - (@ — )
< Voo - lla" =¥ [k
< nel|a’ — "
< ez

Let € € U be arbitrary, then there exists A € R_]X such that £ = szl A\e€F and

Z,jcvzl Ar = 1. Due to the quasiconvex uncertainty in the constraints we conclude for
every component ¢ = 1,...,m that

N
Fi(‘rlv 5) = Fi(xlv Z Akgk)
k=1

N N
< F ! ¢k — k /
< max F;(2', £) = max g;' (')
< nez
which completes the proof. O

It would be desirable to bound not only the deviation in the constraints but also the
distance from the center z’ to any set F(€) for arbitrary £ € U. Unfortunately,

d(a', F(§)) < &
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does not necessarily hold if £ € U’ as Example demonstrates. However, for prob-
lems with specific structure, more can be said.

Theorem 3.15. Let (P(£),£ € U) be an uncertain optimization problem with uncer-
tainty set U = conv(U') with U' = {€',... &N}, Let F : R® x U — R be jointly
quasiconvex in the arguments (x,€). Let d be induced by a norm || - ||. Then, for any
x € R", the functionUd > & — d(x, F(§)) is quasiconvez. In particular, for all x € R™

ge(ﬁ%}((u') d(z, F(&)) = Tgé%{}fd(:fa]:(&)),

i.e. for any closed set X C R™ we have that RecFeas(U) and RecFeas(U') are equivalent.

Proof. Let z € R™ and ¢!,¢2 € U be given. Set a := max;—1 2{d(z, F(£%))}. We need
to show that, for any A, 0 < A < 1, we also have

d(z, F(1 = NEL+A?)) < a.

For i = 1,2, let y* € F(¢) such that ||y — z|| < . Since y* € F(£%), we have by the
quasiconvexity of F' that

F((1=N(e) + A% €%) < max {Fy.¢)} <o0.

(2

Hence,
(1=Ny' + 2 € F((1 =N+ ¢,

and

11 =Ny' + 22 =zl = [[(1=N(y' —2) + Ay* —2)|
< A =N =2+ MG - 2)|| < a

We finally obtain that
d(z, F((1 =N+ A7) < [[(1 = N)y' + 2 — 2 < a,

ie. U > & — d(x, F(£)) is quasiconvex.
Using this result we can conclude the second assertion: First, it is clear that

gegln%)({u,)d(x,f(ﬁ)) > Igé%{),(d(xw/r(g))

To see the other inequality, take some £ € conv(U'), i.e. there exist \g,k =1,..., N
with 0 < A\ <1forall k=1,...,N and Y5, A, = 1 such that &€ = S \&F. Due
to the quasiconvexity of d(z, F(-)), we obtain

N
d(x, F(€) = d(x, F(Y_ ")) < max_d(x, F(€")).
2
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This is true for all £ € conv(U’), thus we conclude

(el 15 T O) = 2y A FED)

O]

An important particular case of application of Theorem is the case in which

F(z,§) = G(x) = b(¢)

for a convex G and concave b (i.e. the uncertainty is in the right-hand side), since F' is
then jointly quasiconvex in (z,&).

Corollary 3.16. Let (P(£),£ € U) be an uncertain optimization problem with uncer-
tainty set U = conv(U') with U' := {€',... N}, Let X C R" be closed, d be induced
by a norm and let F(x,&) = G(z) — b(§) with a convex function G : R® — R and a
concave function b(€) : RN — R™. Then RecFeas(U) and RecFeas(U') are equivalent.

We remark that G must not depend on the scenario £. Example shows that
Corollary is not even true for a linear function F(z,§) = A(&)x — b(§): If the
matrix A is dependent on &, we cannot conclude that RecFeas() and RecFeas(U') are
equivalent.

Note that Corollary applies in particular for the special case that b(§) = b, i.e.
for uncertain convex optimization problems of the type

P(b) min{f(z): G(z) < b}. (3.7)
TeR™
In particular we know for P(b) that the center with respect to some finite set U’ solves
the uncertain problem with respect to U = conv(U’).
This means we can use the finite set U’ instead of & when solving RecFeas(lf) if the
conditions of the previous theorem apply. This is summarized next.

Corollary 3.17. Let (P(£),§ € U) be an uncertain optimization problem with un-
certainty set U = conv(U') with U' := {€',... &N} and with constraints F(z,&) =
G(x)—b(&) with a convex function G : R® — R and a concave function b(¢) : RN — R™.,
Let X CR™ be convex and closed and d be induced by a norm || - ||. Then RecFeas(U)
can be formulated as the following convex program:

min 7
st GyF) < b(&r) forallk=1,...,N
lyF —zl| < r forallk=1,...,N
- c X (3.8)
r € R
z,y" e R* forallk=1,...,N
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Combining this corollary with Theorem [3.10]from Section we obtain the follow-
ing result: The recovery-robust counterpart of an optimization problem with convex
uncertainty which is only in its right-hand side and with polyhedral uncertainty set
can be formulated as a linear program if a block norm is used to measure the recovery
costs. In particular, the recovery-robust counterpart of such a linear program under
polyhedral uncertainty sets and block norms as distance functions remains a linear
program.

Theorem 3.18. Let (P(£),£ € U) be an uncertain optimization problem with uncer-
tainty set U = conv(U') with U' = {&*,..., &N} and with constraints defined by a
polyhedron X C R™, linear functions F(z,§) = A(x) — b(§) for any fired £ € U and a
concave function b(€) : RN — R™. Furthermore, let || - || be a block norm.

Then RecFeas(U) can be formulated as linear program. If the terms defining X
and the number of extreme points of the block norm depend at most polynomially on
the dimension n, then the problem can be solved in polynomial time.

Proof. According to Theorem [3.16/ we can replace U by the finite set ¢’ in the recovery-
robust counterpart, i.e. we consider RecFeas({’) instead of RecFeas(U/). We are hence
left with a problem for which the assumptions of Theorem are satisfied yielding a
formulation as linear program. O

Note that many practical applications satisfy the conditions of Theorem Among
these are scheduling— and timetabling problems, where the uncertainty is the length of

the single tasks to be completed, and hence in the common linear formulations in the
right-hand side (see Section 4.2)).

3.1.5 Algorithms for RecFeas

We now consider two algorithms to solve RecFeas: In Section [3.1.5.1] an iterative ap-
proach for finite uncertainty sets is presented that alternately solves a location problem

for the robust solution, and a location problem for each of the scenarios, and a sampling
approach for infinite scenarios in Section [3.1.5.2

3.1.5.1 An lterative Approach

We consider an uncertain optimization problem (P(),& € U) with a finite uncertainty
set U = {4 ... N }. A typical RecFeas robust counterpart would then have a con-
straint structure as depicted in Figure For every scenario, a copy of the problem
needs to be solved, and constraints are added that model the distance function being
used. Every row corresponds to a constraint, and every column to a variable.

This problem structure is well-suited for Dantzig-Wolfe decomposition approaches,
which is a promising aspect for further research. In this section, we focus on the
related approach of alternately solving the master (location) problem, and each scenario
problem. Algorithm [I| describes this procedure in detail. Note that the presented
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Robust

Scenario 1

Scenario 2

Scenario 3

Distance constraints

Figure 3.3 Structure of a RecFeas problem with three scenarios.

version focuses on the center problem; for the median problem, we need to minimize
the sum of distances instead of the maximum distance in Step 5.
We explain Algorithm [T using an example.

Example 3.19. Assume that there are three scenarios U = {€',£2,€3} given, with the
following feasible sets:

]:(51) = [172] X [1’2]7 ]:(52) = [1’2] X [374]’ ]:(53) = [374] X [172]'

The recovery distance d is the Fuclidean distance, and the feasible set for the nominal
problem contains [0,4]x[0,4]. We would like to find the robust solution with the smallest
mazimum recovery distance to a feasible solution in every scenario.

The behavior of Algom'thm is shown in Figure . For the starting solution z(©) =
(0,0) we calculate the closest point y 0% from the set F(£'). We get y©O! = (1,1),
Y02 = (1,3) and yO3 = (3,1). We then solve a location problem with respect to these
three points to gain 1) = (2,2) as a center solution with (0) = \/2. The first iteration
of the algorithm ends, and we proceed to the second iteration.

We calculate the closest points y1)' = (2,2), y(2 = (2,3) and yM3 = (3,2), and
get a new center (2 = (2 + % 2,2+ %\/5) with radius r) = %\/5 The next iteration
will calculate the same values for y and for x again, and terminate: In this case, we
have found the optimal solution to RecFeas.

As a termination criterion, we considered the difference in the calculated robust
solutions per iteration. We show that this is well-defined, i.e., the algorithm converges
for any choice of e.

Lemma 3.20. Let the requirements of Algorithm be fulfilled. Then r®), k=0,1,...,

is a monotonically decreasing, converging sequence (for both the median and the center
case).
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Algorithm 1 (Iterative RecFeas)

Require: An uncertain optimization problem (P(£),£ € U) with a finite uncertainty
set U = {¢1, ... ,§N}, a distance measure d : X x X — R, and a tolerance ¢ > 0.
1: Set (¥ =0 and k = 0.
2: fori=1,...,N do
3: For fixed ), solve

min d(z®, 5
st y®i e F(gh
Let y®)7 be a resulting optimal solution.

4: end for
5: For fixed y®)7 i =1,..., N, solve
: Ak (k)
min max (), y0))

st. 2 e F(§)

Set (kY to be an optimal solution.

6: Set T(k) = maXi:17'..7N d(x(k+1)’ y(k)vl)
7. if k> 0 and |r® — r(*=D| < ¢ then
8: return z(*+1)

9:

else

10: Set k:=k+ 1.
11: Go to Step 2.
12: end if
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o’
2(0)

Figure 3.4 Example run of Algorithm

Proof. In the center case, we have

o € argnin { o d(ey ) 5o € FO).

€T ’Lfl,...,
and therefore,

(k) _ (k+1) , (R)i) < (k) , (k)i
r i:rga?de(w .Y )_i:rg{é?de(x Ly,

As we also have

y(k)ﬂ' € arg min {d(x(k), y):y € f(§i>} ’
y

we get

and therefore

which yields
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i.e., %) is monotonically decreasing. As it is also bounded from below by 0, it converges.
In the case of a median problem, this proof works analogously. ]

Corollary 3.21. Algorithm[1] terminates for every input.

Even though Lemma shows that the objective values r(*) converge, the solutions
calculated in every iteration do not necessarily converge, even in the case of convex sets
F(€),i=1,...,N and a convex distance measure d. A counterexample is already
presented in Example [3.2] where two closed, convex feasible sets are arbitrary close to
each other, but do not meet. The sequence of solutions is shown in Figure

F(&) F (&%)

O
o
o

o

Figure 3.5 Example for which the solutions of Algorithm |1/ do not converge.

However, we can conclude that the distance between the solutions converges.

Lemma 3.22. Let the requirements of Algorithm (1| be fulfilled. Then the sequence
d(:v(k+1),:v(k)), k=0,1,... is bounded (for both the median and the center case).

Proof. We know from Lemma that the sequence r¥) converges and is monotonically
decreasing. We have

d(fg(kﬂ)’x(k)) < d(x(chrl)’y(k),l) i d(y(k),l’x(k))
< max_d(zFTD 4 k)0 4 max d(z®) | y(k)0)

i=1,..,.N =1,...N
< (k+1) , (k)i (k) , (k—1),i
< max, d(x\"T ) 4 max d(z'"™,y )
— ) 4 p(k-D)
< op(k=1)

and therefore, d(z*+1), (¥} is bounded. The proof for the median case works analo-
gously. O
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However, even though d(z**1), z(F)) is bounded, it does not necessarily converge: As
an example, consider the space R? with the two scenarios F (&) = {(z1,72) : 2 > 1}
and F(£2) = {(z1,22) : 12 < —1}. We use the I, distance. Beginning with z° = (0,0),
we immediately have an optimal radius of 1, but may have a distance from z*) to
z* D of up to 2.

Furthermore, convergence of r*) and of d(z*t1), z(*)) neither shows the convergence
of ), nor that z(®¥) converges to a local optimum, if it converges at all. We present
two examples in Figure [3.6

F(&h) = F(&?)

O

(a) Non-convex feasible sets F(§). (b) Non-Euclidean recovery distance.

Figure 3.6 Two examples where Algorithm 1 converges, but solutions are not optimal.

In the first case, two scenarios ¢!, 2 are given with equal feasible sets F(£1) = F(£2).
These sets are not convex, as there is a spherical “hole” of infeasible solutions. We would
like to find a center with respect to the Iy distance. Algorithm 1 terminates for the
values of z, y' and y? as shown in Figure x minimizes the distance to y' and
y?, while y' and 3? both minimize the distance to z. However, x is a local maximum,
and the best objective value for (RecFeas) is 0, as SR = F(£1) = F(£2).

In the second case, we consider the [, norm and would like to minimize the maximum
distance to two intersecting halfspaces F(£1), F(€2). Again, SR # () and (RecFeas) has
an optimal solution with objective value 0. However, Algorithm 1 converges for the
points z, y' and 2 as shown in Figure x minimizes the distance to y' and y?2,
while ' and y? both minimize the distance to .

We now analyze circumstances where such cases are impossible.
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Lemma 3.23. Let the requirements of Algorithm [1] be fulfilled. Let d = Iy be the
FEuclidean distance, and F(§) be convexr and closed for all & € U. Let the algo-
rithm terminate after k steps with (x*,y™*, ... yN*) = (¢®+D yE)1 g R.N) —
(k) k=11 g (k=1).N) - Gy

H; .= {y™* +2: 28(y™* —2*) = 0,2 € R"}

and define dg(x) = mingey d(z,y). Then x* is minimizer of max;c1,.. N dp,(+).

Proof. We need to show that max;—; _ndpg,(x) > max;—1 __ndpy,(z*) for all z € R™.
Note that

) — (gt — )byt
e
We have
max di(z) = max L7 =F) = (0" — 2y
e $=heo¥ 7 =T
= max |<$_yz*’$*_yz*>|
i=1,...,.N Hyz* _ $*||2
= max |<x*_yl*’x*_y%w+<$—x*,x*—yz*>’
i=1,...,.N Hyz* — x*Hz
T el oy
=t v~ T

where £ = x* + 2. Now, assume that z is such that
<z,x* — yz*> <0

for all i with d(x*,y™) = r(z*), i.e. there is a separating hyperplane between x* and
the critical points y**. Therefore, for A small enough we have that

‘max_d(z* + Az, y") < max d(z*,y™)
1= AR 1= RS
which contradicts the assumption that Algorithm 1 terminated.
We conclude that that there is no z such that <z,x* — yz*> < 0 for all ¢ with
d(z*,y"*) = r(x*), and therefore

ly™ — 2|3
max dg,(r) > max ————= = max_ dg,(z")

i=1,.,N i=1.,N ||y — x*|ls  i=1,.,N
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Theorem 3.24. Let the requirements of Algorithm [1| be fulfilled. Let d = Iy be the
FEuclidean distance, and F(§) be convex and closed for all & € U. Let the algo-

rithm terminate after k steps with (x*,y™*, ... yN*) = (¢®+D yE)1 4 E.N) —
(aj(k),y(kfl)’l,...,y(kfl)’N). Then x* is a global optimum for RecFeas in the center
case.

Proof. We reconsider the tangential hyperplanes H; at the feasible points 3™ # x*:
H; = {y* 4+ z: 2'(y"* —2*) =0,z € R"}

Again, denote by dp(x) the distance of point x to the hyperplane H;, i.e. dy(z) =
mingey d(z,y). Because F (') is convex, we have dp,(z) < d(z, F(£')) < r(x) for all
x from the same halfspace as 2*. Furthermore, r(z*) = max;—;_ n dg,(z*), and z* is
minimizer of max;e1,. v dg, () due to Lemma

We consider a neighborhood V' C R™ of z* that lies in the same halfspace as z* for
all H;. Assume that there is 2’ € V such that r(z’) < r(z*). Then

r(z') <r(2z*) = max dg,(z*) < max_ dgy,(2") < r(z')
i=1,...,N i=1,...,N
and therefore r(z') = r(z*), i.e., z* is a local optimum. Due to Lemma [3.6 z* is also
a global optimum of RecFeas.

For points y* = z*, we get halfspaces that contain z*, and the corresponding sce-
narios are not in WC(z*,U) if r(z*) > 0. The case r(z*) = 0 is trivial. O

Theorem 3.25. We consider the center case. Let the requirements of Algorithm [1] be
fulfilled. Let d = ls be the Euclidean distance, and let F(£Y) be convex and closed for
all i € {1,...,N}. We assume that a unique optimizer of (RecFeas) exists, and that
d(:]:(kﬂ), x(k)) converges. Then the sequence r® k=01,..., converges to the optimal
value of RecFeas, and ¥, k = 0,1, ..., converges to the optimal solution of RecFeas.

Proof. Let x* be the optimal solution with radius r*.
We distinguish the following cases:

Lor(@®) = ¢ > ¥,
We claim that for all € > 0 there are K and § > 0 such that r(z*)) < r(z)+e¢ for all
k> K and z with d(z,z®*)) < §. To see this, first note that d(y*+17 y*)1) - 0
as F(£') is convex and d is strictly convex, and d(z*+D 2(*)) — 0. Set K such
that d(z*+D 2®)) < ¢/2 and d(y*+Y, y*)) < /2. Set § = €/2. For k > K, let
z with d(z, 2(®) < § be given, and let y* = argmin{d(z,y) : y € F(¢')}. Then
d(z,y') < d(z,y™") + dy",y)
< d(@™,y ") + d(, M) + ™y
< r(x®) 4+ 8/2+5/2
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<r(z®) + €

This proves the claim. Due to convexity of r and F(£°), we get for € and A small
enough:

r(z®) <ra® + (1= N)z*) + ¢
< Ar(x®) + (1= Mr(z*) + €

and therefore )

k)Y < *
r(x )_r(a:)—l—l_)\

This contradicts r(z(®)) — 7/ > r*.

. r(z®) = 7 =r* and () does not converge.

As z* is a unique optimal solution and r is continuous and convex, for all ¢ > 0
small enough there is § > 0 such that if 7(z) < r(z*) + ¢, then d(z,z*) < 4.
As r(x(k)) — r*, we conclude that infinitely many elements of () are in every
neighborhood of z*. As further d(z**1) z*)) — 0, we have that z(*) — z*,
which contradicts the assumption that z(*) does not converge.

. r(z®) = 7 =r* and (*) converges.

This case must hold as all other cases are shown to be impossible, which completes
the proof.

O]

Notice, however, that Theorem does not state the convergence of Algorithm

in general. Such a result remains an open question.

3.1.5.2 Scenario Sampling

As in Section we now consider RecFeas in the center case with an infinite un-
certainty set U. Assuming that none of the presented reduction approaches apply, we
can still find a heuristic solution to RecFeas by sampling a finite subset of scenarios.
Algorithm [2] summarizes this approach.

Algorithm 2 (Sampling RecFeas)

Require: An uncertain optimization problem (P(§),¢ € U), a distance measure d :

X x X = R, and a sample size N € N.

1: Draw a set U’ of N scenarios from U.
2: Solve RecFeas(U’). Let = be an optimal solution.
3: return x.
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This is motivated by the sample average approximation method (see Section [2.8))
from stochastic programming, where convergence is assured due to the law of large
numbers. However, in robust optimization, this is usually not the case: Consider the

function
)1 z€Q
f(w)_{o z€R\Q

on the interval [0, 1]. The expected value for f is 0 and will be found by sampling, but
not the maximum value of 1. An example of the same structure can be constructed to
show that sampling scenarios for RecFeas will not necessarily converge to the optimal
solution.

As the median with respect to an infinite set of scenarios is not necessarily finite,
we consider only the center case for RecFeas here. We analyze cases where sampling a
sufficiently large number of scenarios does converge to an optimal solution of RecFeas.
To do so, we make use of the following concepts from set-valued analysis, which can be
found in any textbook on the topic, e.g. [AF90].

Definition 3.26. Let F : X — 2Y be a set-valued function, and let dom(F) = {z €
X : F(z)#0}.

F is called lower hemicontinuous, if for every sequence x, € X that converges to
x* € X, and every y* € f(z*), there exists a sequence y, such that y, € F(x,) for all
n >N, and y, — y*.

Let A be a metric on X. F is called upper hemicontinuous, if for all x € dom(X)
and any neighborhood V' of F(x) there is € > 0 such that F(z') C V for all 2’ with
Az, 2') <e.

A set-valued function is called continuous, if it is lower and upper hemicontinuous.

Definition 3.27. A set-valued function F : X — 2Y has a closed graph if Gr(F) =
{(z,y) e X xY :y € F(x)} is a closed subset of X X Y.

Note that a set-valued function F' has a closed graph if and only if it satisfies the
following condition: If x, and y, are sequences in X and Y such that y, € F(z,) for
all n, z, — x and y,, — y, then y € F(z). We will further use the following theorems,
which can also be found e.g. in [AF90].

Theorem 3.28. Any upper-hemicontinuous set-valued function F : X — 2Y has a
closed graph. The converse is also true if Y is compact.

If we consider the set of feasible solutions F with respect to £ as a set-valued mapping
from U to R™, we can now conclude:

Theorem 3.29. Let an uncertain optimization problem (P(£),£ € U) be given, and let

F & F(E) be upper hemicontinuous. Let U be a dense subset of U C R™. Then
r(z,U") = r(x,U) for allz € X.
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Proof. Let x be given, and let £ € U be such that r(x,U) = d(z, F(§)). Let A be a
metric on R™. Then, for all € > 0 there is § > 0 such that

F(€) C B(F(©)) €' € Bs(e),
where B(F(€)) = {2/ € X : d(@/,F(€)) < ¢}, Bs(¢) = {€ € U : A(€,€) < 3}.

Therefore, d(z, F(£')) > d(z, F(§)) — € for all ¢ € Bs(£). On the other hand, we have
d(z, F(&)) > d(z, F(£)) for all & e U. As U’ is dense in U, for all § there is a scenario

& € Bs(&) NU'. Hence, as € — 0, we get r(x,U") = r(z,U). O

We now check if this theorem can be applied to the simple case of linear functions.

Lemma 3.30. The set-valued function F : R® x R — 28" (a,b) — {x € R" : a’z < b}
has a closed graph.

Proof. Let (ax,by) be a sequence with (ag,br) — (a,b), and let x; — = be such that
aixk < bg. Set ¢, = b, — aflxn > 0 for all n. As a%xn is the sum of the product of
converging sequences, ¢, is convergent. Consequently, ¢, — ¢ > 0, and a'z < b. O

Therefore, due to Theoremwe have that the function F : R" xR — 28" (a,b) —
{x € R" : alx < b} N X, where X is a compact set, is upper hemicontinuous. Also,
the intersection of upper hemicontinuous set-valued functions is upper hemicontinuous
again [AF90].

Note that Lemma easily extends to continuous functions a(§),b(£). We can
hence state the convergence of the sampling approach for uncertain linear programs:

Corollary 3.31. Let an uncertain optimization problem (P(§),& € U) with uncertain
linear constraints be given, and let all constraints depend continuously on £. Let X be
a compact set. Let (U(N)) be a sequence of subsets of U C R™, and A a metric on R™.
If for all ¢ € U and € > 0 there is a number K with A(§,U(N)) < € for all N > K,
then r(z,U(N)) — r(z,U) for allxz € X.

Corollary 3.32. Let the requirements of Corollary[3.31] be fulfilled. Then for allz € X
r(z, U\ {EL ..., €9)) = r(z,U)
for any set {€,...,65} CU of scenarios with U\ {€',...,€%} is dense in U.

In fact, Corollary is not restricted to uncertain problems with linear constraints
and continuous uncertainty, but can be extended to any continuous constraints F'.

Lemma 3.33. Let F : R" x R" = X, where X C R is a compact set, be continuous.

Then the set-valued function F' : R® — 2% F'(y) = {z € R* : F(z,y) < 0} is
upper-hemicontinuous.
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Proof. We show that F’ has a closed graph. Let x,, — z and v, — x be convergent
sequences with z,, € F'(y,) for all n. Then, F(z,,yn) < 0 and (zy,y,) is a convergent
sequence. Due to the continuity of F', we therefore have F(z,y) <0, ie.,x € F'(y). O

Note that if a function f : R” x R" — R, (z,y) — f(z,y) is continuous both the z
and the y component, it is also (jointly) continuous.

3.1.6 Summary and Conclusion

Table [3.1] summarizes the non-algorithmic results obtained in this section.

uncertainty | constraints uncertainty | rec. costs implementable | results
set U F(-,¢) F(x,-) d decisions X
finite quasiconvex | arbitrary norm convex and | - RecFeas(U) convex prob-

closed lem (Lemma [3.7))

X =R" - Reduction to Rcheas(ZZ)
for smaller sets U (Theo-
rem |ﬁ[)

finite linear arbitrary block norm | polyhedron - RecFeas(U) linear problem
(Theorem [3.10
polyhedron bounded quasiconvex | norm closed - solution w.r.t extreme
gradients points of U is reliable (The-
orem [3.14
polyhedron jointly quasiconvex norm closed - solution w.r.t. extreme
points of U is optimal (The-
orem [(3.15
polyhedron | convex quasiconvex, | norm closed - solution w.r.t extreme
right-hand points of U is optimal
side (Corollary [3.16
convex and | - RecFeas({/) convex prob-
closed lem (Corollary [3.17
polyhedron | linear quasiconvex, | block norm | polyhedron - RecFeas(U) linear problem
right-hand (Theorem -
side

Table 3.1 Summary of properties for the RecFeas(U/) depending on the optimization prob-
lem P(£), the uncertainty set U, the type of uncertainty, and the recovery costs.

Concerning the algorithmic results on RecFeas, we were able to show convergence
of the iterative procedure, and convergence of the sampling approach under certain
circumstances.
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3.2. RECOPT

3.2 RecOpt

3.2.1 Introduction

In the previous section, we analyzed the concept of recovering a robust solution to be
feasible in any scenario, minimizing the recovery distance given by a function d, i.e.,
minsupd(x, F
mig sup d(z, F(6)
So far we have ignored the nominal objective, which we may consider as an additional
side constraint, when we fix a minimal objective quality. Recovering not just to any
feasible solution, but even to an optimal one, is the focus of this section.
It is structured as follows: In the following section, we formally introduce the model
of recovery-to-optimality RecOpt. We consider a simplified sampling approach in Sec-
tion [3.2.3]and consider cases where an infinite uncertainty set can be reduced to a finite

set of scenarios in Section Finally, we discuss the issue of nominal feasibility of a
RecOpt solution in Section and conclude the analysis of RecOpt in Section

3.2.2 The Model: Recovery-to-Optimality

Let an uncertain optimization problem (P(§),§ € U) be given. For every £ € U,
denote by f*(§) the optimal objective value in the respective scenario. The recovery-
to-optimality counterpart (RecOpt) of the uncertain problem is then given by:

RecOpt i d(z,z*
(RecOpt) min e (2, 2%)

st. ate FE)Veelu

f@*,6) = f () veeu
reX,teXVeel

As before, we may also formulate RecOpt as a median problem instead of a center
problem. Figure [3.7] sketches the idea of the concept. We are given a finite uncertainty
set U = {€1,€2,¢3}, and (&%) denotes the unique optimal solution for scenario &%,
¢t = 1,2,3. Similar to RecFeas, this approach does not require the set of strictly robust
solutions SR to be non-empty, but it will always output some solution (if the single
scenarios are feasible). Note that even if SR # (), the outcome of RecOpt need not be
contained in SR as it is shown in Figure [3.7, which is different for RecFeas. This is
an advantage in many applications, since the objective value of the solution which will
be realized after the scenario becomes known is in these cases much better than the
objective value of a strictly robust solution.

In both RecFeas and RecOpt, we minimize the distance to sets. In fact, if we relax
the constraint

f@ 8 =f () VveEeUu
to

f@ < (M+p)f (&) VEeU
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feasible set for ¢!

feasible set for £’

feasible set for &3

2(€°)
Figure 3.7 The output z* of RecOpt using the Euclidean center is far away from the set of
strictly robust solutions SR; it hence has a much better objective value.

(RecOpt) and (RecFeas) become equivalent for a budget p that is large enough. There-
fore, (RecOpt) can be seen as (RecFeas) with additional constraints on the objective
value quality of the feasible solutions we recover to, i.e., we consider the recovery dis-
tance to the feasible sets

F (&) ={zeF): f.8) <A+p)f (&)}

Note that in particular, the results on both the iterative Algorithm [I]and the sampling
Algorithm [2 hold in this case. Note that {f(z,&) < (1+ p)f*(§)} is a convex set for
convex objective functions f.

Note that in order to apply Corollary we need to show that f*(&) is a continuous
function in &, if it is bounded in every scenario. To see this, we can proceed as follows:
We can show that linear constraints ax < b are lower hemicontinuous in (a,b); and
as the intersection of lower hemicontinuous maps is lower hemicontinuous again, if
the intersection is non-empty and both maps have non-empty interior [AF90], we can
conclude that the uncertain feasible polyhedron F(¢) is continuous in . Applying the
Maximum Theorem for set-valued functions then yields the continuity of f.

However, there is also a much simpler way if we make use of duality:

Assume that LP(&) is given as

If we assume that the optimal objective value is bounded in every scenario, we can use
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strong duality and consider the following problem LP’():

max 0
c(&)'x = b (&)y
A€z < b()
A&y > ¢(§)

z,y >0

Because the feasible set is given by upper hemicontinuous functions, we conclude that
the sampling approach converges, if w.l.o.g we intersect the feasible sets of LP" with a
compact set X C R*T™,

We consider a simple example. Let an uncertain linear optimization problem (LP(§),& €
U) be given, where Y = [0, 1] and

LP(§) max {1+ (1 — &)z
3
s.t. 14+ 29 < B
0<zi,z2<1
For the set of optimal solutions opt(§), we get

(conv{(0,1),(0.5,1)} if&=0

{(0.5,1)} if ¢ €]0,0.5]
opt(§) = { conv{(0.5,1),(1,0.5)} if£=0.5
{(1,0.5)} if € €]0.5, 1

(conv{(0.5,1),(1,1)} if&=1

The cases 0 < € < 0.5, £ = 0.5 and 0.5 < ¢ < 1 are depicted in Figure Note that
sampling U uniformly has a probability of 0 to find the case £ = 0.5. In particular, the
sampling approach does not “see” the optimal solutions conv{(0.5,1),(1,0.5)}.

However, opt is a lower hemicontinuous set-valued function, and d(z, F(0.5)) <
d(z, F(&)) for all £ in a neighborhood of 0.5. Therefore,

r(x,]0,0.5[U]0.5,1[) = r(«, [0, 1]).

3.2.3 A Simplified Sampling Approach to RecOpt

We now consider a solution approach to RecOpt that determines just a single optimal
solution to every scenario instead of the whole set. Note that this approach is optimal,
if the optimal solution in every scenario is unique.

It has the advantage that it can be applied whenever a solution algorithm 2l for
the original optimization problem is at hand, and significantly reduces the problem
complexity. The procedure is the following: First, choose a finite set of scenarios from
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(a) 0<€<05 (b) £=0.5 (e)05<¢<1

Figure 3.8 Optimal sets, depending on objective function x1 + (1 — &)xa.

the uncertainty set &. Then use the algorithm 2l to generate an optimal solution for
each of these scenarios. These solutions can be regarded as a set of points S C R”. In
the third step we calculate one point x € X which represents the set S by solving a
location problem.

Therefore, RecOpt reduces to a (classic) location problem where the given set of

facilities are singletons. For a finite set of points {x!,... i }, we denote this location
problem as
(Loc) mi}r\{l loc(z) = h(d(z,zb), ... d(z,2z))
HAS

where X is the decision space and h is a function that is usually monotonically in-
creasing in each of its arguments. In particular, for the median problem we have
loc(z) = Ef\il d(x%,r), and for the center problem loc(r) = maxY , d(z%,z). Note
that minimizing loc(z) = Y.~ | d?(z%, ) for the Euclidean distance d =I5 can be done
easily by taking the average of every coordinate and leads to the center of gravity of
zl, ..., 2N, the centroid.

RecOpt can now be heuristically solved using Algorithm [3]

Algorithm 3 (Singleton Sampling RecOpt)

Require: An uncertain problem P(§) with uncertainty set I, and an algorithm 2 for

solving P(¢) if the data £ € U is known.

1: Choose a set of scenarios {¢!,..., &N} CU.

2: Use A to solve P(¢%) for all i = 1,...,N. Let 2°, i = 1,..., N be the resulting
optimal solutions.

3: Find a robust solution z* by solving a location problem (Loc) in which the existing
points are z',..., zV.

4: return z*.

In the following we investigate RecOpt for norm-based distance functions d given as
d(z,y) = ||y — z|| for some norm || - ||.
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We now discuss some properties of the robust solution obtained by Algorithm
Suppose that the optimal solutions z', ..., 2" all satisfy some property, or lie within
some specific set. This may be the case, e.g., if some constraints of the problem P(¢)
are certain, or if they are likely to hold. We show that, under some conditions, the
output z* of Algorithm [3|also satisfies this property. We denote a distance d to be linear
equivalent to the Euclidean distance Iy if for all x,y € R™ it holds d(z,y) = lo(Tz, Ty)
for a regular linear transformation 7T

Theorem 3.34. Let z', ... 2N be optimal solutions to the scenarios €', ..., &N chosen
in Algorithm @ and let x* be the output of Algorithm @ Let Q(x') < 6,i=1,...,N,
for some convex function Q : R® — R, § € R. Then

Q") <9
if the objective function loc(x) that has to be minimized in (Loc) in step 3 takes the

following form:

1. loc(z) = Zfil d?(z*, ), where d? is the squared Euclidean distance.
2. loc(z) = Zfil d(z%, ), where d is linear equivalent to the Euclidean distance.
3. loc(x) = max¥ | d(z%,z), where d is linear equivalent to the Euclidean distance.

4. loc(x) = Zf\il d(x',z), where d is any l,-norm for 1 < p < oo and n = 2.

Proof. In case 1, x* is the center of gravity, i.e., * = % Ef\;l x'. Hence x* lies in the
convex hull of the existing facilities. For the Euclidean norm and any norm which is
linear equivalent to the Euclidean norm, it is shown in [Pla84] that the same property
holds in the cases stated in 2. and 3., i.e., * € conv({z!,.. .,xN}). For case 4, the
same holds due to [JL83]. We thus find positive A\;, i = 1,..., N with Efil A =1 and

z* = SN Aa'. From this we obtain

N
RSB ITIIED >

O]

The proof is based on the property that z* € conv{xz!,... 2}, which does in general
only hold for the cases mentioned in the theorem. For n > 2 and d not linear equiv-
alent to the Fuclidean distance, counterexamples to this property can be constructed
(see [Plag84]) and hence Theorem does not hold in these cases. The following con-
sequences follow directly from the theorem and are useful properties of the solutions
obtained by Algorithm
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Corollary 3.35. Let an uncertain linear optimization problem (LP(A,b,c),(A,b,c) =
£ cU) be given. Let x',...,zN be optimal solutions to the scenarios &, ... &N chosen
in Algorithm @ and let x* be the output of Algorithm @ Let loc(x) be as described in
Theorem [3.54, Then we have:

1. If the objective function value of all x* is better than o then also the objective
value of x* is better than c.

2. If some of the constraints of LP(A,b,c) are certain, i.e., if d'z® < §; (or dtz’ = §;)
holds for i =1,..., N then also d'z* < § (or d'z* =§).

3. If F is a convez set and z* € F for alli=1,...,N then it is sufficient to solve

min h(d(z!,z),...,d(z",z))
T€R™

instead of mingep h(d(xz',z),...,d(x",z)) in Step 3.

Lemma 3.36. Let (P(b)) be an uncertain problem with constraints Ax > b only de-
pending on the right-hand side. Let bel be the nominal scenario with b < b for all
beU. Let S CU be a finite set and let z° be an optimal solution to (P(b)) for all
b € S. Then the centroid, i.e. the solution to ming Y, ¢ ||z — 2°||3, is feasible for the
nominal scenario.

Proof. Let z € R™ be the centroid. For the kth constraint, we obtain:

S|

n n 1
;aki%:;ammzxf— Zzam @_|S|Zbk_|8|zbk

besS bES i=1 bes

O]

This result naturally extends to interval-based uncertainties of the form [b— e, b+ 4]
with > e, i.e., the nominal scenario does not need to be the smallest one.

3.2.4 Reduction Approaches for RecOpt

We now discuss how to choose a finite set of scenarios for Step 1 of Algorithm If
the uncertainty set U is finite (and not too large) we might be able to solve P(§) for
all £ € U. But how to proceed if U contains a very large or even infinite number of
possible scenarios?

The easiest answer is to run RecOpt with a large set of randomly generated scenarios
€Y, ..., &N in this case and proceed with Steps 2 and 3 as before. The outcome is an
approximate solution whose quality is numerically investigated in Section Note
that Algorithm [2 converges to the optimal solution of RecFeas for an increasing sample
size. Therefore, if the solution algorithm 2 returns a dense subset of optimal solutions
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when repeatedly applied to the same scenario, we can conclude that Algorithm |3| also
converges to an optimal solution of RecOpt. We now consider cases where we do not
need to sample a dense subset of scenarios to solve RecOpt to optimality.

In the following we consider the center problem

(Loc) gélgcl loc(z) = max {d(z*,2),...,d(z",2)} .

Theorem 3.37. LetU = conv{¢!,... N} CRM and let d(z,-) be convex in its second
argument. Let x : RM — R™ assign an optimal solution x(£) to any scenario &, and
assume that x is affine linear. By writing x* := x(&") for short we have

1. For all € €U: x(§) € conv{z!,...,aN}.

2. The center of z*, ..., xN with respect to the distance measure d solves RecOpt.

Proof. Let £ € U, i.e. there exist \;, i = 1,..., N with 0 < \; < 1, Zil\;l/\i — 1 and
§= Zz]\il ;&% Then we obtain

z(€) = (Z w) = (€)= N,
=1 =1 =1

ie. (&) € conv{x!,...,zV}. Concerning the second part of the theorem, define
r* = max;—1, n d(z¥, x') as the radius of the center 2* and let 7 be the best possible
objective value for RecOpt. Since r* < 7 it remains to show that the recovery radius
of z* with respect to U equals r*, i.e. that d(z*,z(§)) < r* for all £ € U.

To this end, let ¢ € U. Then z(¢) € conv{z!,..., 2V} and hence there are \;,
i=1,...,N, with 0 < \; <1, Zf\il Ai =1 and Z,fil \irt = x(€). Quasi-convexity of
d(xz*,-) yields

N
d(z*,z(§)) = d(z*, Z \izt) < I?faf{ d(z*, z%) = r*,
i=1

hence z* is in fact optimal for RecOpt. 0

This raises the question, when the solution mapping z is indeed affine linear. We
present some results on general linear programs with uncertain right-hand side, i.e.

(P(b)) min{c'z: Az =b,x > 0,2 € R"},bc U, (3.9)

where A € R™*",

Lemma 3.38. Consider (P(b)) with a convex uncertainty set U C RM and assume
that intUU) # 0, where int(UU) denotes the interior of U. Then xz : RM — R™ as
defined in Theorem [3.37 is an affine linear function if and only if there exists a basis
B C{1,...,n} with non-negative reduced costs and Aglb >0 forallbeld.

60



Chapter 3. New Concepts and Relations

Proof. e ”if’: Let B be such a basis. Since the reduced costs ¢/, — ¢, AR A, > 0
are independent of b and feasibility of the corresponding basic solution is ensured
for all b € U we know from linear programming theory that z(b) := (A5z'b,0) is
optimal for (P(b)). Hence, z(b) is an affine linear function.

e “only if’: Choose any b € int(U) and solve the linear program. This yields a
basis B with non-negative reduced costs and A5'0° > 0, i.e. z(0°) = (45'0°,0)
is an optimal solution.

As B € int(U) we can find for every unit vector e; € RM an ¢; and a direction
d; € {—1,+1} such that ‘
b =0+ eidie; €U

and Aglbi > 0. Hence, B is an optimal basis for b°,b', ..., 0™, ie. we have
z(b') = (A5'0",0) for i = 0,1,..., M. Due to our assumption z(b) is affine linear;
hence it is uniquely determined on the set of {8°,b',...,6M} of M + 1 affinely
independent points. This yields z(b) = (Aglb, 0) for all b € U, in particular we
have AR'b > 0 for all b € U.

O

We now investigate (P(b)) with the additional assumption that the uncertainty set
U C R™ (in this case, M = m) is symmetric with respect to some specified vector
b* € R™, that is, for all b € U there is a be U, such that b —b* = b* — b. We show that
in this case b* solves RecOpt. To this end, we first need the following lemma about the
center of a symmetric location problem.

Lemma 3.39. Let C' C R” be a compact set of points that is symmetric with respect
to x* € R™. Let d be a distance measure that has been derived from a norm, i.e.
d(z,y) = |ly — z|| for some norm || -||. Then z* is a center of C.

Proof. Let max,cc d(z,x*) = r and let y1,y2 € C be a pair of symmetric points (i.e.
y1 — x* = x* — yy) that maximizes the distance to z*. Let 2’ be any point. Applying
the triangle inequality and using that yi,x*, yo are collinear yields

2r = d(y1,27) + d(a", y2) = d(y1,y2) < d(y1,2") +d(2’, y2)
and therefore either r < d(y1,2’) or r < d(a’,y2) holds. We conclude that

max d(z, 2’) > max{d(y:,2'), d(yz, 2)} > 7,
e

hence z’ cannot be better than z*. O

Theorem 3.40. Let (P(b)), b € U be an uncertain linear program (3.9) and let U be
symmetric with respect to b* € R™. Let B be an optimal basis for (P(b*)) and assume
that Ag'b >0 for all b € U. Then x(b*) solves RecOpt.
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Proof. B is an optimal basis for every b € U, as A5'b > 0. Thus z(b) = AZ'b.
As U is a symmetric set with respect to b* and x an affine linear mapping, the set of
optimal solutions is symmetric with respect to z(b*) and we can apply Lemma O

This directly gives a result for all interval-based uncertainty sets.

Corollary 3.41. Let (P(b)), b€ U = {b € R™ : n < b <7} be an uncertain linear
program and let 9, € R™. Let b € U and let B be an optimal basis for (P(b)).
If Aglﬁ >0 and Aglﬁ > 0 both hold, then an optimal solution of RecOpt can be found

. . . /]
by solving (P(b*)) with b* := =5~

3.2.5 Nominal Feasibility

So far, we have ignored feasibility issues when determining the solution to RecOpt.
For mixed-integer linear programs, feasibility in the nominal case can be simply added
as a set of constraints to (Loc). However, the resulting location problem may become
computationally challenging, and algorithms for the nominal problem are usually not
applicable. Especially if there is a good black-box algorithm available for the nominal
problem, it would be preferable to avoid this situation. In this section, we present a
class of problems in which this is possible.
Consider an optimization problem with a big-M constraint of the form

Z a;x; < My

i=1,....,n

where x is continuous, and y is binary. Even though solving a location problem with
respect to a set of feasible solutions for this constraint may result in a solution (z*, y*)
with a fractional value for y*, it is always possible to complete x* to a feasible solution.
We formalize this concept:

Definition 3.42. Let P be an optimization problem, and let (X1, X2) be a partition of
the problem variables. We call P combinable with respect to the variables X1, if

T € PT‘Xl(.F)

for all x1 € conv{xzi, ..., 2N} and all sets of feasible solutions {(x1,23), ..., (x}, ]}
to P.

Note that the idea of Definition [3.42| is that the variables X5 can determined in a
feasible way, once the variables X; are fixed.

Theorem 3.43. Let (P(§),§ € U) be an uncertain optimization problem with finite

uncertainty, and let P(§) be combinable with respect to the variables x1. Let F(§) C
F (&) for all¢ eU. Let d be a distance measure of any of the types from Theorem 3.3/
that only depends on the variables x1. Then there is a solution to RecOpt that is feasible

for the nominal scenario.
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Proof. Let {x!,..., "} be optimal solutions to the scenarios {¢!, ..., ¢V}, respectively.
Let (2, 2%) be an optimal solution to the location problem (Loc). Due to Theorem [3.34]
we have 2} € conv{z},...,z)}. As P is combinable, there is an x4 such that (z7%, z5)
is feasible for the nominal problem. As d does not depend on the variables X, (27, 25)
has the same objective value for (Loc) as (27, z%), which completes the proof. O

Theorem [3.34] especially applies to mixed-integer problems in which the discrete vari-
ables are used for modeling constraints, and can be neglected for the recovery distance
measure. Even though we ignore them in the location problem, we can complete its
solution with feasible discrete values again.

Examples for combinable problems:

All constraints of the form Y a;z; < b and ) a;z; > b are combinable with respect
to all variable subsets. The only problematic cases are equality constraints. As an
example, consider a constraint of the form x1 + 10zy = 5, where z1 € R and xo € Z,
and the feasible solutions (5,0) and (—5,1). Setting z1 = 0 cannot be completed to a
feasible solution. The constraint x1 + x9 4+ 1023 = 5 with 1,22 € R and x3 € Z, on the
other hand, is combinable with respect to 1. An example for a mixed-integer problem
of this type is periodic timetabling - further details can be found in Section

3.2.6 Conclusion

In this section we considered an extension of RecFeas, where an additional constraint
on the nominal quality of a robust solution is added. Although the results on RecFeas
still apply, we can now consider a simplified problem formulation, where we do not
minimize the distance to a set of optimal solution, but just to a single solution we
determined using any algorithm that can be applied to the nominal problem. Being
computationally simpler, this approach is still optimal when the optimal solution of
every scenario is unique. We derived properties of solutions generated this way, and
determined further cases when such a solution is optimal, or nominally feasible.
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3.3 Relations between Concepts

3.3.1 RecFeas and RecOpt in the Landscape of Robust Optimization

In this section we discuss the relationship between RecFeas and RecOpt to the current
concepts of robust optimization. We begin with introducing two criteria to classify a
robustness concept:

One-stage/Two-stage. A general difference between all presented robustness con-
cepts is that some of them allow parts of the solutions to be updated when the parameter
realization becomes known, while others do not allow this possibility.

Robustness measure. Some of the robustness concepts do not consider robustness
as a “yes/no” criterion, but instead develop measures for the degree of robustness of a
solution.

Applying this classification scheme to the concepts of Chapter [2], we get the following
classification matrix:

One-stage Two-stage
robustness measure light robustness, recovery robustness,
reliability, RecFeas,
soft robustness, RecOpt
UFO
no robustness measure strict robustness, | adjustable robustness
Bertsimas and Sim,
regret optimization

Table 3.2 Robustness concepts.

Within this scheme, RecOpt and RecFeas are most similar to the concept of recovery
robustness. We now discuss similarities and differences to the various concepts in detail.

Strict robustness. As shown in Section RecFeas has an objective value of 0 if
and only if there is a strictly robust solution, i.e.,

r(z,U) =0 <= z € SR.

This relationship can be extended: Let any metric d : X x X — R be given. We
optimize lexicographically, by optimizing d(x,y) first, and then maxegy f(x,£). Then
this approach is a direct extension of strict robustness in the sense that if the strictly
robust counterpart is feasible, both solutions coincide, but it still yields a solution in
the case of SR = ().
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Bertsimas and Sim. Consider again the case of an uncertain constraint of the form
a1+ ...+ apxy <b

with an uncertainty 4 = {a € R" : a; € [a; — d;,a; + d;],i = 1,...,n}. Note that
the robust counterpart in the sense of Bertsimas and Sim is equivalent to the strictly
robust counterpart with respect to the uncertainty set

U ={aclU:[{ie{l,....,n}:a; #a;}| <T}

Therefore, we have that a vector z is feasible for the Bertsimas and Sim robust coun-
terpart if and only if r(z,U") = 0.

Adjustable robustness. We can consider RecFeas as an adjustable robust counter-
part. For a given uncertain optimization problem (P(&),{ € U) and distance measure
d(x,y), consider the uncertain problem

P'(¢) min d(z,y)

s.t. x € F(§)

y € F(&)
r,y eX

Considering y as a vector of adjustable variables, the adjustable robust counterpart of
(P'(€),€ € U) is then given as

dR i d(z, ¢
(adR) min masx (z,9°)

A

s.t. z € F(§)
Y e FE)VeEeU
:L‘,yf exveEel

which can be interpreted as the RecFeas counterpart of the original uncertain problem
(P(§),€ eU).

Recovery robustness. As already noted in the classification scheme, RecOpt and
RecFeas have the most conceptual similarities to recovery robustness. The main differ-
ence is that the recovery approaches in this work contain the recovery algorithm only
implicitly via the distance function d, and not explicitly via a set of possible recovery
algorithms A. What seems to be only a slight variation, offers the possibility to use
methods and concepts from location theory, that result in a rigorous analytical discus-
sion of solutions. In that sense the concepts derived in this work can be considered as
an evolution of recovery robustness.

Regret optimization. We show that min max regret optimization can be interpreted
as a recovery to optimality concept with a special distance function. We define

Ey) ={{elU: f(y.§) = ;,fleigl(f(y’,é)}
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and set

d(xay) = max [f(xvf) - f(yag)] :

EEE(Y)

For our purposes, we may set any value for d(z,y), if Z(y) = 0. Then both concepts
are equivalent:

Lemma 3.44. For a given x € X, it holds

max [(z, &) — F(@(¢),€)] = max d(w, 2(£)).

geu 3=
Proof.

max d(z, ()

= amax[7(0,€) — f(2(€).€)]

- rgle%} 5’611518:}((6)) F€) = F(().)]

Assume that for a given £ € U there is a scenario £’ € Z(z(&)) such that

Then also
f(xvgl) - f(x(5/)7§,) > f(xag) - f(x(g)af)

and therefore

I?e%);&’erga)((ﬁ)) €)= £((0). )]

which completes the proof. O

Reliability. We can consider the reliable counterpart of an uncertain optimization
problem (P(§),& € U) with respect to § as a strictly robust counterpart of the problem

P'(¢) min f(z, &)
s.t. F'(2,6) <0
T e X,
where F'(z,&) := F(x,§) — 0. Therefore, the same results on the relation between
RecFeas and strict robustness can be applied here.

Soft robustness. Setting r(z,U(¢)) = maxecy(e) d(w, F(§), the RecFeas counterpart
of an uncertain optimization problem with an uncertainty set as in soft robustness
would be to minimize the objective function mazesor(z,U(e). Similar to the strictly
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robust case, we have that the optimal objective value of the RecFeas counterpart is 0
if and only if there is a softly robust solution.

UFO. We may consider RecFeas and RecOpt as a special case of the UFO approag,h
with finite uncertainty set, where we neglect the budget constraint f(x) < (14 p)f*(&).

Set
d(z, F(£"))
plx) = :
(z, F(EY))

then both max;—; . n p(x); and Zfil wu(x); are possible linearizations of the multi-
criteria objective function used in UFO.

3.3.2 Worst-Case Scenarios

In this section we analyze a special case when the concepts of strict and adjustable
robustness coincide: The existence of a worst-case scenario. For an uncertain opti-
mization problem (P(§),£ € U) with

P(&) min f(z,y,$)
F(z,y,§) <0
(z,y) € X XY,

we shortly recall the definition of strict and adjustable robustness as presented in Sec-
tions 2.1 and 2.3

The set of strictly robust solutions is given by

SR = (1) F(&),

seu
and for (z,y) € SR, we evaluate the worst-case objective by
2R

z,y) = sup f(z,y,§).
ceu

The strict robust counterpart to P(§),& € U is given as
inf{z(z,y) : (z,y) € SR},

and we write 23 for short for the optimal objective value, if it exists.
The set of adjustable robust solutions is given by

SR={zeX:V¢elU yeY st. (z,y) € F(&)}
= ﬂPTX(]:(f))

geu
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where for some set A C X XY, Prx(A) ={z € X :Jy € Y s.t. (z,y) € A} denotes
the projection of A on X.
The worst-case objective for some = € aSR is given as
R .
z) = sup inf  f(z,9,6).
( ceu  yi(zy)er(§) )

z

The adjustable robust counterpart is then given as
inf{z™(z) : z € &R}

Analogously , we denote by z® its optimal value.

In many cases, a strictly robust solution has to be even more buffered than it would be
necessary if the scenarios were considered for themselves. This is formally expressed by
the value of the robustness gap of the strictly robust solution of an uncertain problem:

Definition 3.45 ([BTN98|). Robustness gap
The robustness gap of P is given by

R .
ap(P) = 27" —sup inf x,y,&) > 0.
gap(P) ceu (w,y)ef(é)f( we)

In the following, we assume that f is bounded below for all £ € U. Note that
Prx(SR) C &SR,

i.e., in general we have a larger choice for x if we use the concept of adjustable robustness
and hence have a chance to obtain better solution values for the respective robust
counterparts. We also cannot get worse, since

Ry =sup inf  f(x,9,6) <sup f(z,y,8) = 2T (z,y)
ceu 9:(z,H)EF(E) ceu

for all (z,y) € SR.

The drawback of adjustable robustness is its in general severe intractability. In
[BTGNO9], two special cases are presented when the task of solving the adjustable
robust counterpart becomes simple: For fized-recourse constraints with an uncertainty
set that is given as the convex hull of finitely many scenarios, and for constraint-
wise uncertainty, where the uncertain data ¢ can be split into blocks [¢1, ..., £™], such
that the ith constraint solely depends on &%, In the latter case, the adjustable robust
counterpart even becomes a strictly robust problem again.

We now consider further special cases in which strict and adjustable robust solutions
coincide, i.e., in which it does not help to keep variables at hold for a wait-and-see
decision. A crucial role for our results plays the existence of scenarios that are dominant
in the following sense:
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Definition 3.46. Worst-case scenarios
A scenario EVC € U is called a global worst-case scenario, if

FEVC) CF©) veel, (3.10)
and
F@,y,€"C) =sup f(z,y,8) V(z,y) e | JF(E (3.11)
ceu ceu

A scenario E¥WC € U satisfying (3.10) is called a feasibility worst-case scenario, while
scenarios EOYC € U satisfying are called objective worst-case scenarios.

If a parameter E2WC € RM that is not necessarily in U satisfies and
we call it a quasi-worst-case scenario.

Note that every global worst-case scenario is also a feasibility worst-case scenario
and an objective worst-case scenario, and every feasibility worst-case scenario is also a
quasi-worst-case scenario.

We prove the following implications of the existence of worst-case scenarios:

Jewe
% Th. B49]
eI gap(P) =0
S . Bas) Th. B50]
SIS Pry(SR) = aSR Z R = AR
Lem. BAT]
SR = F(£9MC)

We start with noting that feasibility worst-case scenarios already determine the set
of strictly robust solutions.

Lemma 3.47. Let (9 c U be a quasi-worst-case scenario. Then
F(EC) = R.

Proof. Since F(¢9WC) C F(¢) for all € € U we directly obtain that
gQWC’ ﬂ .F

gel
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We now show that SR C F(¢2WC). There is a set of scenarios {¢',...,6m} C U
such that Fj(z,y,&) = Fi(z,y,£8WY) for all (z,y) € X x Y. Let (z,y) € SR be
given. As Fj(z,y,£) < 0 for all i, we know that Fj(x,y,£2"¢) < 0 and therefore
(z,y) € F(E@WE), Together, F(£2WC) = SR. O

We now can show that for adjustable robustness, we have no larger choice for the
solutions for z than in strict robustness, if a feasibility worst-case scenario exists.

Theorem 3.48.
If there exists a feasibility worst-case scenario, it holds that Prx(SR) = aSR.

Proof. Since SR = F(¢FWC) due to Lemma and &R = (e Prx(F(£)), it is

enough to show that
Prx(F(E"VE) = (] Prx(F
ceu
To this end, we use again that F(¢FWC) C F(€) for all € € U, hence

Prx(F(EFVO)) C Pry <f<f)) vs eu

= Pryx(F(EF"9) € () Prx(F
geu

On the other hand, ¢¥"¢ € I. This means that

Prx(F(EFV) 2 () Prx(F(

Eel
O
Theorem 3.49.
If there exists a global worst-case scenario, the robustness gap is zero.
Proof.
Assume that there is a global worst-case scenario £V'¢ € ¢{. Then,
sup inf__ f(z,y,6) > inf - fl,y,€Y)
ceu (zy)EF(E) (z,y)€F(EVC)
Lem . woC
= inf TR
(I’y)esaf( y,§"%)
EqB10)
= sup f(z,y,&) = 25F
(ruy)eSR ceu
This means that
gap(P) = z¥ —sup inf  f(z,y,6) =0
gcu (z,y)eF(§)
O
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Theorem 3.50.

If the robustness gap is zero, then 2% = &%,

z

Proof.
To show that 2 < 2 et 2* € aSR be such that 2™ > > (2*) — ¢ for some £ > 0.
Because of gap(P) = 0, we have

R .
22V =sup inf z,v,
ceu (z,y)EF(E) f@:98)

<su inf x*,y,
B 565 y:(w*vy)EF(E)f( 0e)
=2 B(g*) <R ¢

On the other hand, we already know that ¥ > 2™ For ¢ — 0, we therefore have
R aR 0

ZP = 280,

We see that the existence of a global worst-case scenario yields the strongest implica-
tions. Experience from practical applications of robustness suggests that this condition
is indeed satisfied for numerous problem classes, in particular for interval-wise uncer-
tainty sets, which are in general not constraint-wise. Using these results, practitioners
are given tools to identify cases in which not both concepts have to be tested before-
hand, and the higher computational effort for solving the adjustable robust counterpart
may be avoided.
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4 Continuous Problem Applications

Following the methodology outlined in Section [I.3] we proceed to analyze the per-
formance of robustness concepts in practical applications. We begin with linear
programs from the well-known NetLib benchmark set [DG12] in Section [4.1] where
we compare RecOpt solutions to the nominal and strictly robust solutions, and com-
pare the quality of solutions generated by the iterative Algorithm [I]and the sampling
Algorithm [2] for RecFeas. We then consider aperiodic timetabling instances in Sec-
tion [4.2] where we can compare the concept of RecOpt to strict, light and recovery
robustness, as well as the nominal and the equally buffered solution.

4.1 Linear Programming

In this section we consider the performance of RecOpt and RecFeas on linear program-
ming instances. Using a benchmark set, we cannot assume knowledge about a certain
problem structure, but apply a generic problem reformulation instead. We begin with
RecOpt in Section [£.1.1] and turn to RecFeas in Section [£.1.2

4.1.1 RecOpt

In this section we present numerical results for the performance of RecOpt by randomly
disturbed problems taken from the NetLib [DG12] library. We begin with describing
the experimental environment and setup, and then discuss the results gained.

Environment. The RecOpt experiments described here were performed on an AMD
Quad-Core Opteron 2354 with 4 cores at 2.2 GHz and 33 GB RAM, running Ubuntu.
All linear programs were solved using Gurobi 3.0 [Gurl0].

Setup. We have to decide on how to measure distances between two solutions, rep-
resenting the “costs” for updating a solution. This measure depends on the problem
under consideration. In our experiments, we decided to use the Manhattan distance Iy
as a canonic choice for testing purposes.

Our goal is to compare our robust solutions according to RecOpt with the nominal
solution, i.e., the solution for the undisturbed scenario, and with the strictly robust
solution. To increase the likeliness of the existence of a strictly robust solution, we
modified the constraints of the NetLib problems using the following scheme.
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1. Choose an LP and consider it as nominal instance.

2. Modify every “="-constraint to a “<”-constraint.

3. Add the constraint that all variables are positive.

4. Check if there is still a finite optimum. If not, neglect this LP.

5. Create an index set J = {ji1,...,jn} by selecting a ratio of 0 < p < 1 of the
indices of the coefficient matrix A, restricted to its non-zero entries.

6. The uncertainty set for this instance is then given by
U={A:(1-qa;<a;<(1+qa; Vi€ J, a;=a;¥j ¢ T},

where ¢ represents the allowed deviation and A the coefficient matrix.

7. Calculate
a) the nominal solution,
b) the strictly robust solution,
c¢) and apply Algorithm (3| for
i. the center with respect to the Manhattan norm [,

ii. the center with respect to 1 with additional nominal feasibility, i.e.,
with feasibility to the nominal scenario,

iii. and the centroid.

Our modification in Step 2 increases the probability that a strictly robust solution
exists, while the modification in Step 3 helps us to calculate the strictly robust solution:
If all variables are greater or equal to zero, the worst case scenario and hence the strictly
robust solution can be easily calculated.

To find the I; centers, we used linear programming formulations. Furthermore, to
avoid exceptional long computation times, we added a time limit of 180 seconds to each
LP.

Of the 94 problems from NetLib, 22 had to be neglected by Step 4. Of the remaining
72 problems, 52 had a strictly robust solution and all solutions were found within the
time limit. For each of these 52 instances we calculated the five solutions mentioned in
Step 7.

For the first set of experiments, we set p = 0.4 and ¢ = 0.4, meaning that 40% of
the non-zero entries can deviate by up to 40%. An interpretation would depend on the
respective problem the LP models — say, bad weather conditions that disturb routes
in a routing problem. For the second set, we set p = 0.2 and ¢ = 0.8. In the former
example, this could be caused by traffic jam on some routes.
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p=04, ¢g=04 p=0.2, ¢g=0.8
feasibility objective radius feasibility objective radius
nominal 0.27 0.00 0.00 0.28 0.00 0.00
l1 center 0.28 2.18 -0.33 0.26 1.89 -0.40
l1 center w.n.f. 0.30 2.96 -0.32 0.31 2.55 -0.37
centroid 0.29 -0.98 -0.19 0.29 0.20 -0.14
strict robustness | 1.00 5.92 2.37 1.00 95.30 1.92

Table 4.1 Average feasibility, objective value ratio and recovery radius ratio of the 52
NetLib instances. “w.n.f.” abbreviates “with nominal feasibility”.

Results. Table gives an overview on the evaluation of these solutions for the two
choices of the parameters p, q.

For the column “feasibility” we evaluated every solution z* as follows: We randomly
picked 1,000 scenarios from the uncertainty set and counted for how many of them x*
is feasible; the average feasibility over all scenarios is shown. As expected, the strictly
robust solution is always feasible. The [; centers and the centroid nearly always have
slightly better feasibility than the nominal solution.

The column “objective” represents the relative change of the objective value. For a
solution with objective value x4y, we calculated

.. Lsol — Lnom
objective = ————

M
|$n0m‘

where x,om denotes the objective value of the nominal optimum. This means that
higher values represent more costly solutions. The table shows that the costs of the
strictly robust solutions dramatically increase, while the solutions calculated by RecOpt
have only slightly higher costs than the nominal solution, or even smaller ones — which is
possible, since a solution to RecOpt is not necessarily feasible for the nominal scenario.

The values of the column “radius” represent the approximate maximum recovery
costs. As it was the case in the objective column, we calculated the radius in relation
to the recovery radius of the nominal solution, i.e.,

. Tsol — T"nom
radius = —————,

Tnom

where ryom denotes the recovery costs for the nominal solution, and rg, the recovery
costs for the solution under consideration. It turns out that the recovery radius for the
strictly robust solutions is even higher than for the nominal solutions, while RecOpt
yields solutions with smaller recovery costs.

Summarizing, Table shows that RecOpt is a good choice for robust solutions
that do not need to be feasible for every scenario and combines the advantages of good
objective values with low repair costs.
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4.1.2 RecFeas

We now evaluate the performance of the Algorithms|l] and [2| for RecFeas on the NetLib
instances. As before, we begin with describing the experimental environment and setup,
and then discuss the computational results.

Environment. These experiments were conducted on an Intel Xeon X5650 with 6 cores
at 2.66 GHz and 99 GB RAM, running Ubuntu. Linear programs were solved using
Gurobi 5.0 [Gurl2].

Setup. We considered the smallest 20 instances of NetLib, and dropped those where
x = 0 is infeasible due to variable bounds. For the remaining 14 instances, we proceeded
as follows: We generated uncertainty sets U of the size 10, 20, 30, 40, and 50; 10 for
each size. Scenarios were generated by multiplying a random non-zero coefficient by a
random number from the interval [0.75, 1.25]. Infeasible scenarios are dropped until the
required number is generated. We then calculated the exact solution of the RecFeas
counterpart without nominal feasibility, and with respect to the center l; objective
function. Furthermore, for each of the 50 uncertainty sets, we sampled |U/|/2 scenarios
at random and solved the respective smaller RecFeas problem. Finally, we used the
iterative algorithm from Section with two different termination criteria: Once
if the difference between r*) and r*~1 is smaller than 103 - 7(0) (Iterative-A), and
once if it is smaller than 10~* - () (Iterative-B). For every solution, we measured the
running time and the recovery distance.

Results. The average computation time is shown in Table While the iterative
algorithm is slower for problems with a small uncertainty size, it scales better than
the sampling approach for increasing problem size, and is the fastest algorithm for
large instances. The number of iterations as presented in Table increases with the
uncertainty size.

|| Exact Sample Iterative-A Iterative-B
10 1.23 0.21 1.26 1.55
20 11.41 1.38 2.89 3.80
30 33.96 3.99 3.66 4.36
40 68.71 8.09 4.51 5.66
50 92.51 13.19 6.16 8.41

Table 4.2 Average computation time in s.

The comparison of objective values, however, is more ambiguous. In Table we
show the arithmetic mean of the recovery radii, and a normalized mean. Normalized
values were calculated a linear function that maps the best solution of an instance to
the value 0, and the worst solution to the value 1. When all solutions have the same
objective value, they are all normalized to 0.
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|U| | Tterative-A Iterative-B

10 2.21 2.67

20 2.66 3.41

30 2.62 3.25

40 2.85 3.54

50 2.99 4.68
Table 4.3 Average number of iterations.

Exact Sample Iterative-A Iterative-B
|U| | Mean Norm. | Mean Norm. | Mean Norm.| Mean Norm.
10 | 10.68 0.00 | 36.42 0.43 | 35.80 047 | 32.80 0.45
20 | 13.89 0.00 | 38.81 0.40 | 60.32 0.51 | 51.01 0.48
30 | 22.22 0.00 | 68.96 0.45 | 66.27 0.44 | 60.55 0.41
40 | 24.55 0.00 | 84.21 0.44 | 117.34 0.49 | 113.08 0.47
50 | 32.26 0.00 | 155.35 0.46 | 137.57 0.45 | 131.02 0.44

Table 4.4 Average recovery radius.

We note that the average optimal recovery radius increases for increasing uncertainty
set size, as we may expect. A comparison of the sampling approach and the iterative
approach does not indicate that one outperforms the other; in fact, they generate
To analyze their behavior in more detail, we
compare the rank between both algorithms, which we define as follows: If a solution of
an algorithm has a strictly better objective value than the solution of the other, it is
granted one point. We then calculate the average number of points for every uncertainty
set, and present the results in Table For instances with [U/| > 30, solutions of the
iterative approach are on average better than solutions of the sampling approach. We
remark that although the rank values are equal for || = 30, 40, 50, the instances where

solutions of about the same quality.

one approach dominates the other are different.

Table 4.5 Rank.

Finally, we compare all objective values of the sampling and the iterative approach
over all instances against each other in Figure A data point that is below the
identity function, which is plotted as the straight line, means that the solution from

|U| | Sample Iterative-B
10 0.29 0.29
20 0.43 0.14
30 0.21 0.36
40 0.21 0.36
50 0.21 0.36

the iterative approach has a better objective value than its sampling counterpart.
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Figure 4.1 Objective values for Sample and Iterative-B.

We find that although most data points are below the line, the iterative approach
performed significantly worse than the sampling approach on some instances with very
small recovery radius. We can explain this behavior from the setting of the experiment:
The iterative algorithm terminates when the objective value difference between two
iterations is below 10~%- 7). When the optimal solution has an objective value that is
close to 0, and 2(?) = 0 has a large recovery radius, the algorithm terminates too early.

4.1.3 Conclusion

We used instances from the LP benchmark set NetLib to compare solutions generated
by the concept RecOpt in different variations to the nominal and the strictly robust
solution. We remark that RecOpt and strict robustness aim at different objectives:
While the former minimizes the recovery distance to the respective optimal solutions,
the latter minimizes the objective value under maximum feasibility. Therefore, each
method excels in its own domain. The results show the trade-off between these different
objectives, which indicates a good performance of our approach.

Furthermore, for 33 of the 42 omitted NetLib instances, no strictly robust solution
exists. Hence, in particular for these instances the solutions calculated by RecOpt are
the better choice.

For the experiments concerning RecFeas, we compared the quality of heuristic algo-
rithms instead of concepts. We used the sampling and the iterative method to calculate
RecFeas solutions, and compared them to the exact robust solutions. We found that
even though they yield about the same level of robustness, the iterative approach per-
forms better when we ignore solutions with small optimal recovery radius, which were
hard to solve due to the termination criterion that was determined based on the start-
ing solution. Furthermore, running times of the iterative approach scale better for an
increasing uncertainty set size.
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4.2 Aperiodic Timetabling

4.2.1 Introduction

We now consider a problem that has received considerable attention in recent robust op-
timization literature — see, e.g., [DSNP09, [FM09, LLMS09]. The aperiodic timetabling
problem is one of significant importance in real-world applications where it is needed to
create timetables that stay “good” under the unavoidable small disturbances of daily
railway operations. Robust solutions usually lead to high buffer times, which in turn
yield high traveling times and thus unattractive timetables.

Contribution. In this section we compare some of the most prominent robustness con-
cepts from the literature, as well as the RecOpt approach, for the timetabling problem
on a real-world instance numerically.

We analyze two different macroscopic types of uncertainty: One that allows small
delays on all edges, and one that allows heavy delays on a restricted set of edges, and
show empirically that the structure of these determine which robustness concept fits
best.

Overview. In Section we formally introduce the aperiodic timetabling problem,
and discuss the application of robustness concepts in Section In Section we
describe an experimental study that compares these concepts on a real-world instance.

4.2.2 Problem Formulation

The problem we consider is the following: Let an event-activity-network (EAN) be
given, that is, a directed graph G = (€, .A) consisting of departure and arrival events

£ = gar gdep
and waiting, driving, changing and headway activities
A= Await U Adrive U Achange U Ahead

Driving activities A%V C £9P x 3T represent traveling from one station to another,
while waiting activities AVt C £47 x £49¢P pepresent staying of a train at a station
while passengers board and deboard. Changing activities AParee C garr . £dep pypdel
passengers who plan to change from one train to another at the same station, while
headways Abead C £49¢P 5 £4¢P are introduced to model safety distances between trains
sharing the same infrastructure.

Figure gives an example for the general structure of such a network. In station
A, passengers would like to change from a train of line 1 into a train of line 2 and vice
versa. In station B, there are passengers who change from line 2 to line 3.

Assigned to each of these activities (i,j) € A is a minimal duration Zij € N repre-
senting the technically possible lower time bound for an activity to take place, and a
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station A

station B

Figure 4.2 Detail of an Event-Activity-Network.

number w;; of passengers using activity (¢,7) € A. The task is to find node potentials
m; € R for all i € &, such that the sum of passenger traveling times w;;(m; — m;) over
all activities (i,j) € A is minimized for given passenger weights w;; under the time
restrictions m; — m; > ly; for each activity (i,7) € A. Its well-known mathematical
formulation is

(TT) min Y wy(m —m) (4.1)
(i,5)eA

st mp—m >l Y(i,7) €A (4.2)

>0 Vieék. (4.3)

We may also extend this problem by adding upper bounds w;; on activity durations
(i,j) € A. We will sometimes simply write [ = (lAij)(i’j)GA as the vector of all lower
bounds, and similarly m = (7;);c¢ as the vector of node potentials, for any given edge-
and node order. Note that the time restrictions form a totally unimodular matrix,
i.e. even though real node potentials might be considered as unrealistic in railway
operations, we will always find an integer optimal solution. Furthermore, (TT) is
feasible for all possible activity durations [ > 0 if the network does not contain any
directed cycle with positive length, infeasible otherwise.

4.2.3 Robustness Concepts

In order to hedge (TT) against delays in operation, we have to model the possible
disturbances first. Which (source) disturbances occur is in practice not known be-
forehand, since this depends on exterior influences like weather conditions or technical
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failures. Hence the activity durations are uncertain. Here we assume that the passen-
ger distribution w = (wjj)(; j)e, i-e., the number of passengers using each activity, is
known.

The first type of uncertainty we consider is one of uniform deviation. Imagine, for
example, bad weather conditions that slightly delay all trains on track equally. We
model this behavior with the following set of scenarios depending on s € R*, where s
controls the level of uncertainty:

Ui (s) = {l : Zij <l < (1+ S)sz Y(i,j) € Adrive Await’
lij — Zij V(Z,]) c Achange U Ahead}

The second type of uncertainty we analyze models the situation that only a restricted
number of activities may be delayed at the same time, but heavier. This may be the
case when good weather conditions hold but single trains are delayed by blocked tracks
or technical failures. For k > 1, we define

Us(k,s) := {1 : 1;; < lij < (14 8)lij Y(i,5) € D € A¥Ve U AV |D| = E,

lij = iij v(i,j) € A\ D}

Using Uz we assume that not all, but at most k lower bounds change to their worst
values in the same scenario, which can be interpreted in the sense of Bertsimas and
Sim [BS04] in the dual problem.

We may consider problem (TT) as an uncertain optimization problem
min { f(7) : F(m,1) <0}

w.r.t [, where the objective function f(m) = 3_; ;) 4 wij(m; — m;) does not depend on
and the constraints are given as F(m,l) = (I — Alr), where A is the node-arc incident
matrix of G, that is, a;e =1, if e = (j,7) fora j € £, a;e = —1,if e = (i,j) fora j € &,
and a;c = 0 else, and | € RMI contains the minimum activity durations. Note that
for Uy and Us, we have M = m. We now show how recent robustness concepts can be
applied to the timetabling problem.

Strict Robustness. The concept requires feasibility of a robust solution under all
possible scenarios, i.e. that F(x,£) <0 for all £ € U. For (TT) we obtain

(S-TT) min Y wi(m; —m) (4.4)
(i,5)eA

st. mj—m>1l; V(E,j)eAand Vield (4.5)

7> 0. (4.6)

(S-TT) is called the strict robust counterpart of (TT). In general, this leads to in-
finitely many constraints, depending on the choice of U. It is shown in [BTNO9S] that if
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U = conv{¢!, ... ¢V}, and F(x,-), f(z,-) are quasiconvex in ¢, then the strict robust
counterpart is equivalent to a program where the constraints only have to be satisfied
for &b,..., &N, This is evidently the case for (TT) with U as defined above. Omitting
redundant constraints we hence gain the following strict robust formulation for U :

(S-TT) min Y wy(m —m) (4.7)
(i,5)eA

st mp—m > (1+8)ly; ¥ (i,7) €A (4.8)

>0 (4.9)

In case of Us, the same result holds due to the fact that all but the listed constraints
become dominated by other scenarios — the scenario (1 4 s)f is a quasi-worst-case
in the sense of Definition Note that the guaranteed feasibility comes at a high
price, as the maximum buffer is put on every edge even though only a few may become
delayed.

Light Robustness. As before, let m be the number of constraints. Variables ~; are
introduced for each constraint ¢ = 1,...,m of the nominal problem that measure the
degree of relaxation needed for strict robustness. The goal is to minimize the sum of
these v; while guaranteeing a certain quality of the solution. Let the nominal scenario
be denoted by é € U and let z* > 0 be the optimal objective value of the nominal
problem. Then, for a given ¢, the light robustness approach to the timetabling problem
(TT) with uncertainty U corresponds the following program:

(L-TT) min » 7 (4.10)
st Y wi(m—m) < (1+6)z" (4.11)

m—m >l Y(i,j) €A (4.12)

mj—m > (1+8)y; —v; V(i,j) €A (4.13)

v,m >0 (4.14)

where we dropped dominated constraints. Note that [ is used as the nominal scenario.
Constraint dominates all other scenarios [ € U, and is therefore sufficient — again,
as (1+ s)[ is a quasi-worst-case. Also here Uy yields the same formulation as we can
again drop dominated constraints.

Recoverable Robustness. The concept of recoverable robustness was introduced by
Liebchen et al. in [LLMS09] and by Cicerone et al. in [CDS™09¢c, DDNP1IL ICDS™09al,
both groups also proposing applications to timetabling. The basic idea is to find a
robust solution that can be “repaired”, i.e., made feasible by delaying events, with low
costs as soon as the real scenario becomes known. In both papers [LLMS09) [CSSS08],
the sum of all arrival delays of the passengers and the maximum delay of each arrival
event are restricted by budget parameters A\; or \o. As these budget parameters might
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be difficult to estimate in advance, they are regarded as variables in [LLMS09] and
become part of the objective function with according weights, say g; and g2. Denoting
by w;, i € £2™, the number of passengers de-boarding at event 7, and assuming a finite
set of scenarios U, [LLMS09] suggest the following program:

(R-TT) min  »  wij(mj — m) + gidi + gako (4.15)
(3,7)€A
st om—m >y Y,j) €A (4.16)
mh—m >1; YIEU, VY (i,j) €A (4.17)
rt>m Vlel, Yie P (4.18)
Y (nf—m) <A VieUu (4.19)
iegarr
mh—m <) VIEU, Viec & (4.20)
A, do, >0 (4.21)

Regarding the number of variables, note that for each scenario a timetabling problem
has to be solved. The concept was originally designed for an uncertainty of type Uo,
meaning that (lfl) + |A| + 2 variables need to be created. For k > 1 this becomes
quickly intractable. For k = 1 exactly one activity is delayed per scenario and we may
write U = AVt J Adrive for short. The authors present a possibility to reformulate
the recovery robust timetabling problem in a more compact way by setting go = 0
and introducing a fixed recovery budget D instead of using A;. For every scenario e
variables y¢ = 7¢ — 7 € RI¢l are needed. Using slack variables f one obtains

(R2-TT) min > w(m —m) (4.22)

st. m—m— fij = iij V(i,j) € A
fig + 95 — i = sxijle) V(i,j) € A, Vee AVait | gdrive
D>yl Ve e AWty Adrive
foySom >0,

where y;j(e) = 1if e = (4, j) and zero else. In this formulation we changed the weights
w to be 1 for all nodes for better comparability with other models; however, also other
weights may be considered.

For the uncertainty U; we obtain a different formulation. Here it is sufficient to find a
recovery solution m%°"s* for only the worst-case scenario in which all activity durations
take their worst values. Hence, by setting w; = 1 for all i € £ again, (R-TT) simplifies
to

(R1-TT) min Z wii (T — ) + 1A + gaAa (4.27)
(i,5)eA
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s.t. ﬁj—ﬂiZlAij V(Z,])E.A

7]_;porst _ W;uorst > (1 + s)l}j V(’L,]) €A

w}‘m“ >m Vie€&
Hﬂ_worst _7TH1 S )\1

worst _ <A Vie&

)

M, Ao, 7,7 > 0.

RecOpt. We now consider the approach that aims to minimize the expected or the
maximum repair costs to an optimal solution of a scenario, measured in terms of a
distance function. Recall that the robust counterpart of this approach is in general
notation given as

(RecOpt) min supd(z, %)
T ceu

s.t. 2% is an optimal solution to (P(£)),

where d(z, 2¢) represents the recovery costs needed to update a timetable z to another
timetable z¢. Instead of the supremum also the average recovery costs may be consid-
ered. Since we recover not to a feasible, but to an optimal solution z¢, a strictly robust
solution has no recovery costs in (R-TT), but especially in timetabling will usually
have high recovery costs in the sense of (RecOpt). Recovery to optimality may also
mean to let events take place earlier which is reasonable when a timetable needs not be
adapted to the scenario during the operational phase, but the scenario is known some
time before — like in the case of track maintenance or exceptional weather forecasts.
Instead of solving (RecOpt) to optimality, we use the Algorithm [3|in which we create
a number of scenarios £, solve them separately, and find the robust solution by solving a
location problem in which the given facilities are the respective optimal solutions of the
instances (P(&)). Thus we apply the following algorithm to the timetabling problem:

Algorithm 4 (RecOpt-TT)

Require: A robust aperiodic timetabling instance (TT), a sample size N € N and a
distance measure d : RI¥l x RI€l — R,
1: Choose a subset S C U of N elements at random.
2. Create vectors 7! € RI€l by solving TT(l) for each I € S.
3: Find a vector 7 € RIl by minimizing the sum/maximum of distances d(m,w!) for
alll € S.
4: return A robust solution 7.

This algorithm is generically applicable to any other robust problem, but has to be
specified to its respective needs. In particular, we have to determine which distance
measure represents the recovery costs best, how many scenarios should be chosen, and
how they should be created.
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Note that this heuristic is easily applicable whenever a method for solving the nominal
problem is available. Only a generic location problem solver has to be used, while
existing algorithms need not be changed.

For our numerical evaluation we used the same recovery costs as in (R1-TT) and (R2-
TT), which is the ||-||;-distance, either in combination with a sum or a maximum, and we
added the squared Euclidean distance as third alternative. The resulting combinations
are shown in Table (4.6

Distance (recovery costs) | sum/max | Name | Calculation
di(z,y) = ||z — y|1 sum d; median argnr.lin7T Yoies Dice M — wf]l
di(z,y) = ||z —yl1 max dy center | argmin mflleeS Zzelg |7y — 7]
d3(z,y) = ||z — y|3 sum centroid 5 YoiesT

Table 4.6 Evaluated distance - sum/max combinations.

Note that we are free to add further restrictions to the location of 7. Since a nominal
infeasible timetable would not be of practical use, we additionally impose nominal
feasibility constraints and solve restricted location problems. We remark that there
can be an optimal dy center or median for the timetabling problem, that is not feasible
for the nominal scenario. In contrast to this, the centroid is always feasible.

Lemma 4.1. Let a (TT) instance with an uncertainty set Uy or Us be given, and let
d = d3. Then the robust solution calculated by the sum version of (RecOpt-TT) is
nominal feasible for any finite set S CU.

Proof. This follows directly from Lemma [3.36 O

Concerning the amount of sampled scenarios IV, we tested numerically how many
scenarios were needed for a convergence of solutions. This was already the case for less
than 100 instances on the instances described in Section [4.2.4

Note that the uncertainty U is a polyhedral set with a finite number of extreme
points, while Us is not convex for fixed k£ and s. By introducing slack variables f as in
(R2-TT), we may rewrite the constraints 7; — m; > l;; of the timetabling problem to

m; — fij = bij. We hence gain the following corollary to Lemma [3.38

Corollary 4.2. Let a (TT) instance with an uncertainty set U = conv{l',... IV} be
given. Let the optimal solution be unique in every scenario. Assume that there is a
basis B that is optimal for each scenario | € U. Then the di center with respect to
the solutions $ll, 2™ solves (RecOpt) applied to the timetabling problem optimally,
i.e. the choice S = {I*,...,IV} in Step 1 of (RecOpt-TT) leads to an exact optimal

solution.

Applying the theory from RecOpt to the timetabling problem, we may conclude:
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Corollary 4.3. Let a (TT) instance with uncertainty set Uy, be given. Let I* :=
(14 s/2)l and assume that there is a basis that is optimal for TT(1) and TT((1+ s)l).
Then any optimal solution to TT(l*) solves (RecOpt) for the timetabling problem for
every distance d that stems from a norm.

4.2.4 Numerical Studies

Environment. All computations were carried out on a Quad-Core AMD Opteron Pro-
cessor running at 2.2 GHz with 33 GB RAM using Gurobi 3.0 [Gurl0] under Ubuntu.

Problem instance and parameters. The instance was created using the LinTim tool-
box [GSS| for optimization in public transportation based on an intercity train network
with the size of the German IC/ICE railway system. The time horizon under consid-
eration consists of the eight-hour service period from 8 a.m. to 4 p.m., resulting in an
EAN with 379 activities and 377 events.

We set for (R1-TT) g1 = 50, go = 10,000 to gain a solution which is a good com-
promise in robustness as well as in objective value. The budget D for (R2-TT) was set
to 2000. The budget § for light robustness was set to 0.1, meaning that the objective
value of the lightly robust solution is allowed to deviate up to 10 percent with respect
to the nominal optimality. Furthermore, we tested a simple uniformly buffered solution
by multiplying all node potentials of the nominal optimum with 1.06, which increased
all activity durations by 6 percent, a method which is often applied in practice.

Concerning the choice of S C U for (RecOpt-TT), we tested two versions. In the
first, we restricted the choice to extreme points of U, in the second we chose uniformly
over the whole uncertainty set. Our results showed a better performance of the latter
approach regarding recovery costs to feasibility and optimality for U, but a slightly
better performance for the extreme points approach for Us. For the following evalua-
tions we present the (RecOpt-TT) solutions under this respective scenario choice: For
U1, the scenarios were chosen uniformly over the whole uncertainty set, for Us only
from the extreme points.

Setup. We tested the U algorithms for s = 0,...,0.3 and the algorithms for Uy with
s =0,...,1 and £k = 1. For each algorithm and iteration the following values were
measured:

e Objective value: }; e 4 wij(mj — i)
e Average relative buffer: 1/[A[(X_(; jyea(m; —mi)/lij) — 1

e Average costs, when recovering to feasibility: A large number of scenarios (9,
g=1,...,Q, (in that case Q = 1,000) chosen randomly from U; was created,
and for each of these scenarios the recovery costs were calculated by solving

min E 773 —

€€
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st m—ml > ULV (i,5) € A

7T,? >m Vie€.
Afterwards, the average of these objective values was taken.

e Worst-case costs when recovering to optimality: As for the calculation of the
recovery costs, scenarios ¢ for ¢ = 1,...,Q were created. Then the respective
timetable problem TT(l?) was solved and the dj-distance to the given solution
measured. The maximum of these distances is the optimality distance, an ap-
proximation to the d; radius.

e Feasibility: A large number of scenarios is chosen at random by an exponential
distribution of average 0.1. We did not choose uniform distribution, as solutions
easily tend to be infeasible and less insight is gained. For every scenario we tested
if the robust solution is feasible or not, and averaged the feasibility.

o Running times.

Evaluation.

Objective value. In Figure the objective values of the robustness concepts for U
and Uy are plotted against the control parameter s, describing the increasing uncer-
tainty of the input data. As expected, the values of the nominal solution are constant
throughout s, just like the buffered and the lightly robust solution. The fastest growing
costs are those of the strictly robust solution. They might be still acceptable for the
small disturbances of U, but they are clearly far too high for Us. The costs of the
recovery robust solutions are moderate in both cases. Concerning the (RecOpt-TT)
solutions, the costs grow moderately, though a bit faster than those of the recovery
robust solution, on U;, while they stay extremely low for Us.

nominal —— nominal ——
strict ——— / 3e+09 | S|'mﬁt —_— /
2e+09 light —— ight ——— /
buffer —— buffezr —
recovery 1 recovery
11 center 2.7e+09 | I1 center e
1.9e+09 [ 11 median I1 median - /
centroid =---e-- centroid --e-se-- /
2.4e+09
LBE+0Q [ /
e 2.1e+09 e
1.7e+09 et /
g e 1.8e+09 /
1.6e+09 | - Z
‘ 1.5e+09 i
0 0.05 0.1 0.15 0.2 0.25 0.3 0 0.2 0.4 0.6 0.8 1

Figure 4.3 Objective function for U (left) and Us (right) solutions against s.
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Average buffer. The average buffers are shown in Figure [£.4. Most strikingly, the
recovery robust solution for U, has even larger buffers than the strictly robust solution,
which is due to the fact that less weighted edges are buffered more. The lightly robust
solution shows an interesting behavior by being not monotone. The centroid, d; center
and median show a much larger increase in buffer times for U; than for is.

3 T T
L nominal —— R nominal
26 strict —— 28 strict pd
light —— light —— /
24 - buffer —— 2.6 | buffer
recovery 1 recovery 2 /
2.2 ¢ 11 center 2.4 11 center
I1 median ===w=w=- 11 median ===
2+ centroid 22 centroid -sees= /
2
1.8
1.6
/ 1.6 /
Rl I P D e S = 1.4
1.2 P g e e s 1 12
...... 2 Ly /
................ et
1 { ‘ 1 ‘ | ‘
0 0.05 0.1 0.15 0.2 0.25 0.3 0 0.2 0.4 0.6 0.8 1

Figure 4.4 Average buffer for U (left) and Us (right) against s.

Average recovery costs when recovering to feasibility. The recovery costs for
Uy and Uy algorithms are depicted in Figure Note the larger scale of the right
figure: Recovery costs are generally much higher for Us-type uncertainties. The nominal
solution performs worst for Uy, being followed by the buffered solution with a constant
offset stemming from the added 6 percent to activity durations. The recovery costs
of the lightly robust solution stay a little below those of the recovery robust solution,
while the (RecOpt-TT) solutions show the slightest increase. On the other hand, they
perform similar to the nominal solution for Us. Here the recovery robust solution has
slightly lower costs, being exceeded by the buffered and especially the light solutions
still.

350000 T T T
nominal norgtlﬂgi — p
strict trict —— d
300000 |- light /] 1e+06 , ight — /
recm?grf;:elr / recovery 2 p
250000 - 11 center 800000 11 center
11 median ---s--e- 11 median ---weeeer
200000 centroid = / centroid =--see

/ 600000

150000 / /
400000 /

100000 / /
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P MV

0.25 0.3 0 0.2 0.4 0.6 0.8 1

Figure 4.5 Average recovery costs to feasibility for U; (left) and Uy (right) against s.
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Worst-case recovery costs when recovering to optimality. Figure shows
the approximate maximum dj-distances to the optimal solutions of the uncertainty set.
The (RecOpt-TT) solutions perform very good in this category which shows that our
heuristic approach (RecOpt-TT) can be used to minimize this distance. For U; the
solutions gained by (RecOpt-TT) clearly outperform the other robust solutions while
they are comparable with some others for Us. Note that the strict robust solution
performs poorly under this measure, as solutions are generally over-buffered.

2.5e+06 T

400000 nominal — nominal ——
i strict ——
350000 F ?f;'ﬁ% —_ gl light ——
buffer / 2e+06 - buffe2r _—

300000 relcloveryl / / relclo(\:/grr%er
L medlan o S / / I1 median

250000

e // / 1.5e+06 |- centroid
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/ / ‘ 1e+06
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50000 / Pt /

o e 0 Z BN
0 0.05 0.1 0.15 0.2 0.25 0.3 0

Figure 4.6 Worst-case recovery costs to optimality for U; (left) and Us (right) against s.

Feasibility. Figure shows the average feasibility under exponential scenario distri-
bution. Note that all solutions except of the strictly robust solution strongly decrease
their feasibility for growing s in U4;. The lightly robust solution becomes infeasible as
soon as its budget is completely used, which is exactly when its objective value equals
the strictly robust solution (see Fig. . Only the centroid keeps a small probability
of feasibility throughout all values of s. For the Uy uncertainty, the situation changes
completely. The buffered and the lightly robust solution keep moderate feasibility even
for high values of s, while all other solutions (except of the strictly robust) stay low.
This is exactly the intension of the recovery-robust approaches: They improve their
nominal quality by allowing a repair phase and hence not aiming at feasibility for all
scenarios.

Running times. Figure [4.8) shows the running times of the algorithms. Most time-
consuming were the calculations of the d; center followed by the d; median and (R2-
TT). The higher running times for the dj-median and the centroid are due to the
presolving phase in which the optimal solutions of all scenarios in S needs to be calcu-
lated.

4.2.5 Conclusion

We applied the most prominent robustness to timetabling and compared them on a
real-world instance. Furthermore, we introduced a new approach, minimizing the re-
covery distances to a subset of scenarios, that is easily applicable to any robustness
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problem, whenever a method for solving the original problem is at hand. We have
shown that there are significant differences in the performance of the concepts depend-
ing on the type of uncertainty under consideration. Strict robustness, as an example,
is a considerable concept for U; uncertainty, but not an option for Us. Concerning
the (RecOpt-TT) solutions, especially the centroid approach gives good feasibility and
recovery properties with average costs on Uj, while the same approach for Us sticks
too closely to the nominal solution for having good robustness properties. We conclude
that it is crucial to choose the robustness concept to be applied to the specific problem
structure and the uncertainty set.
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5 Discrete Problem Applications

Until now, we have focused on continuous problem instances, in which we were able
to add a large computational overhead for robustness purposes. However, this is not
possible for many discrete problems, for which already the nominal case is computa-
tionally challenging. Therefore, we carefully adapt our robustness approaches to the
resources available. We consider the problem of loadplanning in intermodal transport
in Section [B.1] Steiner trees in Section periodic timetables in Section [5.3] and
timetable information in Section [5.4]

5.1 Robust Load Planning in Intermodal Transport

5.1.1 Introduction

Container-based transportation is a growing market. The transportation volume of
maritime container transport as well as the continental intermodal transport has in-
creased significantly in recent years. Intermodal transport uses different transportation
modes like roads, rails or ships. The goods are transported in load units (containers,
swap bodies or trailers) and change their transportation modes at bi- or trimodal ter-
minals. Most of the research has been carried out in the field of maritime container
terminals [SV08], whereas fewer research concerns road-rail or hinterland terminals.
The huge transportation volume leads also to an emerging research field of intermodal
rail-truck freight transport within the area of operations research [BMT04, BFJP12].

Here we study how different approaches of robustness can be applied to the load
planning problem of trains. For this purpose we use a model of load planning developed
in Bruns and Knust [BK12]. The objective of the load planning problem is to assign
load units to the wagons of a train and to choose compatible configurations while weight
restrictions and other restrictions have to be respected. A configuration defines how
many and which types of load units can be placed on a wagon. Weight restrictions
limit the payload of the wagons and the whole train. The aim of load planning is to
maximize the utilization of the train and to minimize the total costs in the terminal.
Contributions to the total costs are given by transportation costs for the load units
(for the transport from their current storage location to the assigned wagon) and setup
costs for changing the configurations of wagons.

The quality of the input data of the load planning problem differs depending on the
time of planning. We consider two different planning situations: pre-loading planning
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and planning-while-loading. The pre-loading planning phase takes place before train
loading begins. The information on the wagons of the train and the load units that
should be placed onto the train are given to the terminal operator by booking systems
of the railway companies. In this phase, the configurations of the wagons are fixed and
a preliminary assignment from load units to wagons is determined. For the planning-
while-loading process we assume that all information on load units and the train are
verified and possible variations to the information provided by the booking systems
are corrected. In this phase, there is no uncertainty left and the load units are finally
assigned to the wagons.

The aim of this section is to analyze different robustness concepts for the load plan-
ning problem. We focus on the concept of strict robustness and compare it with the
less conservative approach of adjustable robustness. For both concepts and for different
types of uncertainties we develop the respective robust counterparts based on a mixed-
integer linear programming (MIP) formulation. We show how these formulations can
be solved within a reasonable runtime and discuss the resulting robust solutions and
their usefulness for our application.

The remainder is organized as follows: In Section [5.1.2| we introduce the considered
problem, give a MIP formulation and specify different uncertainties. While in Section
[5.1.3] we discuss the concept of strict robustness, in Section [5.1.4) we deal with adjustable
robustness. After presenting computational experiments in Section [5.1.5] we conclude
with some remarks in Section [5.1.6

5.1.2 Problem Model

In this section we describe the load planning problem for trains in a container terminal
in more detail. We use a slightly modified version of the third mixed-integer linear
programming formulation of Bruns and Knust [BK12], which can be easily solved by
current MIP solvers.

In Section [5.1.2.1] we start by assuming that all information needed are given exactly
and formulate a mixed-integer programming model for the load planning problem. In
Section [5.1.2.2) we introduce a reformulated version. Afterwards, we extend the problem
to an uncertain optimization problem specifying which parameters are usually uncertain
and which values they can take — see Section [5.1.2.3

5.1.2.1 A MIP-Formulation for Load Planning

In this section we assume that all information needed to model the load planning prob-
lem are known. The load units are divided into three different categories: containers,
swap bodies, and trailers. In the following, swap bodies are treated as containers be-
cause they differ from containers only in the possibility of stacking, which is not relevant
here. Containers are 3-dimensional boxes that have four so-called corner castings which
are one part of the connector between containers and trucks, trains or ships. The other
part of the connection in rail transport are flexible pins on the wagons. The distances in
between the corner castings are standardized to 20 feet (5853 £+ 3 mm), 30 feet (8918 +
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4 mm) and 40 feet (11985 £+ 5 mm). Note that the corner castings do not have to be at
the corners of a container, some containers — and many swap bodies — have an overhang

above the corner castings. We categorize load units in four types t € 7 :={1,...,4}:
containers with 20, 30 and 40 ft corner castings distance and trailers.
There are n (approximately 80 in practice) load units ¢ = 1,...,n with lengths ¢;,

weights g; and overhangs over the corner castings u;; we assume that the overhangs to
both sides are similar. Let A/ := {1,...,n} be the set of all load units, all load units
of the same type t € T are grouped into sets N;.

Given is also an empty train consisting of m (approximately 20 to 30) wagons j €
M :={1,...,m} where each wagon j belongs to a wagon type ¢(j) € W. The train has
a given weight limit G which may not be exceeded by the total weight of the assigned
load units. The wagons can be used in different configurations which determine how
many and which load units can be loaded onto slots of a wagon. S; denotes the set
of all possible slots on a wagon of type 7. Let K, be the set of all valid physical
configurations for a wagon of type 7 € W. For a wagon j in configuration k € K. ;) the
binary coefficients ayrs encode if load unit type t € T fits onto slot s € S;:

I 1, if in configuration k load unit type t fits onto slot s
ths 0, otherwise.

For a wagon j in configuration k € K(;) the coefficients 8js € R denote the maximum
allowed overhang of a load unit on slot s € S;. For each wagon an initial configuration
is given. If a wagon setting is changed to another configuration, setup costs occur.
The binary coefficients H?k € {0,1} for wagons j € M and all configurations k € K.
for the corresponding wagon type ¢(j) indicate whether wagon j is initially used in
configuration k£ or not.

We assume that all load units are placed in a storage area of the terminal. For each
i € N and each j € M we denote by d;; the transportation costs for loading load unit
1 onto wagon j, mainly influenced by the distance between the storage place and the
wagon.

Beside the length restrictions we have to consider the following three weight condi-
tions:

(W1) The payload per bogie is restricted according to the wagon bogies and the track
the train runs on.

(W2) The payload on a bogie may not be larger than three times the payload on
the other bogie — otherwise, the probability for wagons jumping the rails would
increase.

(W3) The payload for each slot on the wagon is limited due to stability reasons.

To model the wagon weight restrictions we calculate the wagon bogie loads by the
lever principle. Figure[5.1] shows a wagon with two bogies A and B ,and two load units
11 and 72. The centers of mass of the load units are assumed to be in the middle of the
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Figure 5.1 Lever principle for weight distributions of wagon bogies.

load units, symbolized by arrows. In the figure three lengths are shown: The distance
d in between the bogie attachments, and the levers e; and es of the two load units
in relation to bogie A. Let g1 and go be the weights of the two load units and W be
the weight of the empty wagon. For this situation, the payload a of bogie A can be
calculated as

d— d— %%
a= ‘ i go + —, (5.1)

a It 2
symmetrically, for bogie B the resulting payload b is given by

(&) €9 1%
b= g+ 2. g+ —. 2
d g1 d g2 9 (5.2)

If more than two load units are loaded onto a wagon, for each additional load unit ¢ an
additive term % - gi for bogie A and % - g; for bogie B has to be taken into account.

For the MIP-formulation we need the following parameters to model the weight
restrictions. For a wagon of type 7 the coefficient 7, € R denotes the maximum
payload for its bogies, the parameter d, € R denotes the distance in between the bogie
attachments, and ¢t € R denotes the tare mass of the wagon. Furthermore, for a wagon
j of type 7 and a slot s € S; the coefficient d,5 € R denotes the maximum payload for
slot s and the value e;s € R is the lever for a load unit on slot s relating to the first
bogie.

We introduce the following decision variables in order to choose configurations for all
wagons and to assign load units to slots on the wagons:

® Yik € {0,1} for j € M,k € ’Cc(j) with

~_J 1, if configuration k is chosen for wagon j
Yik 0, otherwise.
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o zijs €{0,1} fori e N,j e M,s € Se(j) with

S 1, if load unit 7 is assigned to slot s on wagon j
s 0, otherwise.

Furthermore, we introduce auxiliary variables a;, b; € R measuring the bogie payloads
of wagon j. While a; denotes the payload for the front bogie of wagon j, b; is the
payload of the rear bogie. Then the mixed-integer linear program reads:

(LP) max Z Z Z (w1 + woy - b; + ws - gi) “ Tijs (5.3)
i€EN jEM €S, ;)
—wi(m—=Y" > K (5.4)
JEMKEK, )
— ws Z Z Z dij * Tijs (5.5)
ieN jeM SESC<]-)
s.t.

YooY m <t (i € N) (5.6)

JEM SGSC(j)
> =1 (i eM) (5.7)

kE/CC(]-)
> @ige— Y ks Yk <0 (JeEM,s€8y),teT) (5.8)

1€N} kE’Cc(j)
Z Ui Tijs — Z Brs - Yix <0 (j € M, s €Sy) (5.9)
iEN kEKC(]-)
-3 g D e D (e ) (5.10)
7 9i d.- ijs — 9 Vi .
iEN SESC(J-) e(9)
€c(4),s tc j .
bj — Z Z gi - % *Tijs = ;]) (] S M) (511)
iENSGSC(j) e(9)

a; <Yy  (JEM) (5.12)
bi <7y — (GEM) (5.13)
aj—3~bj <0 (]GM) (5.14)
bj—3-aj <0 (]EM) (5.15)
Z gi - Tijs < 6c(j),s (.7 eEM,se Sc(])) (516)

ieN

iEN jEM SESC(j)
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zijs €{0,1}  (1eN,jeM,s €Sy (5.18)

aj,bj eR (] S M) (5.20)
The parameters wi,...,ws > 0 in the objective function are coefficients weighting

the different components. While wy, ws, w3 weight the total number, total length and
total weight of assigned load units in , wy is the factor for the setup costs in
and ws is the factor for the transportation costs in . The setup costs for
changing a configuration are assumed to be constant, i.e. in the number of changed
configurations is minimized. We will write obj(x,y) for the objective function, when
the coefficients are clear from the context.

Constraints ensure that each load unit is assigned to at most one slot,
guarantees that for each wagon one associated configuration is chosen. Constraint
1j ensures that the types of all assigned load units are feasible, while constraints
represent the limits of the overhangs. Due to (5.10) and (5.11)) the auxiliary
Varlables a],b are set to the correct values. The payload of all bogies is restricted
due to and (5.13) (W1). Due to (5.14) and (5.15) the payload on a bogie may
not be larger than three times the payload on the other bogie (W2). Constraint
limits the maximum slot payloads (W3). Finally, the total weight limit of the train is

modeled by (5.17)). The domains of the variables are defined in (5.18)) to (5.20).

Example 5.1. We consider a small instance with n = 6 load units belonging to &
different types, m = 3 wagons belonging to 2 wagon types, and 2 slots for each wagon.
We assume that the load units have the types (1,1,1,2,2,3), the length of the overhangs
are (100,100,200, 100,200), and the weights (in tons) are (10,24, 26,36, 38,35). The
first and second wagon are of type one, the third is of type two. We assume that
the distances in between the bogie attachments are di = do = 11200 for all wagons.
Furthermore, a wagon of type one has an empty weight of W1 = 16 and a wagon of
type two has a weight of Wo = 17 tons.

Table shows information on the possible configurations where every row corre-
sponds to a configuration k € {1,...,5}. Each row contains the number of the config-
uration k and the corresponding wagon type. Furthermore, for the two possible slots s
on each wagon the feasible load unit types, the mazximum allowed overhangs By, the
levers e, and the mazimum payloads (in tons) are given.

A feasible solution where the load units 1,2,4, and 5 are loaded, is presented in Table
For the three wagons the chosen configurations as well as the assigned load units
are listed. The solution respects all length constraints for the configurations: for each
wagon a feasible configuration is chosen (constraint ), the types of the assigned
load units are compatible with it (constraint ), and the overhangs of all load units
are feasible (constraint (5.9)).

Finally, we consider the weight restrictions (W1)-(W3) (constraints to (5.16)))
and show exemplary that the load of the first wagon is feasible with respect to these
constraints. We have to consider the values d = 11200, e; = 1500, es = 8535, W = 16
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configu- | wagon slot 1 slot 2
ration type | type | Br1 | er1 | payload | type | Bk2 | ex2 | payload
1 1 {1} | 200 | 1500 23 {1} | 200 | 8535 24
2 1 {2} | 150 | 5600 36 {}
3 1 {3} | 200 | 5600 38 {}
4 2 {1} | 200 | 1600 18 {1} | 200 | 8500 26
5 2 {2} | 100 | 5600 38 {}

Table 5.1 Possible configurations of the wagons.

wagon configuration load units
slot 1 slot 2
1 (type 1) 1 1 (type 1) | 2 (type 1)
2 (type 1) 2 4 (type 2)
3 (type 2) 5 5 (type 2)

Table 5.2 A feasible solution.

(recall Figure for the meaning of these parameters). The allowed payload per
bogie is assumed to be v = 40, and the maximum payloads for the two slots are
01 = 23 and d3 = 24. The bogie loads of the first wagon can be calculated as a =
‘17%-914—‘1%57-924—% =22.37, and b = %'914’%'92“—% = 27.63. The solution is
feasible because

(W1) the bogie loads a, b are not greater than v = 40,
(W2) 1/3-a="7.46<b=27.63<3-a=67.11,

(W3) the weights g1 = 10, go = 24 of the assigned load units do not exceed the maximum
allowed weights d; = 23 and do = 24 for the slots.

5.1.2.2 Problem Reformulation

The presented problem formulation has two drawbacks from the point of view of robust
optimization: Firstly, equality constraints as given by and circumvent the
possibility to find a solution that is feasible for every possible scenario. Secondly, it
should be possible to determine the values of auxiliary variables like a; and b; when
scenario information becomes known, as they do not represent a choice of the decision
maker, but are introduced only to contain information within the MIP. Therefore, we
give an equivalent reformulation in which equality constraints and auxiliary variables
are removed.

By combining equations (5.10)) and (5.11)) with the inequalities (5.14) and (5.15)
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(which eliminates the auxiliary variables a; and b;), for all j € M we get

t.s
Tijs + Cg) <0

Z Z g’L ) (j)7s 7,]8 + Z Z

ieN 568@(]) C(] ieN SESC(J)

DD 33 3 g e ;W.%;c;ﬂ <

1eN SESC<]) ieN SES () (‘7

Reformulation yields

decii).s )
> g —(j)’ *Tijs < te(y) (G eM) (5.21)
ieN SESC(]) C(])
o — 3dy(; 4
% g #x <t GeM)  (522)
1eEN SESC(J> (J)

and, for inequalities ((5.12))-(5.13)):

1),s tc ] .
Z Z 9i - ( ) (j) * Tijs < Ye(§) — ;J) (] € M) (5'23)
zGNSGSC(]) v
te(y) ,
Z Z * Tijs < 70(]) 9 (] S M) (524)
’LGNSESC(]) ])

We hence obtain:

Lemma 5.2. Constraints -(5.15) are equivalent to constraints - .

Finally, to handle the problem constraints easier, we introduce a more compact prob-
lem formulation. We split the constraints into three classes: Those containing only
x-variables, constraints containing only y-variables, and constraints containing both.
We obtain

Ay =p (5.25)
Bz <q (5.26)
Cy+ Dx<r (5.27)
x,y binary (5.28)

where (|5.25)) represents constraint ., while (/5 represents constraints , (5.16
(5.17), (5.21)-(5.24). The coupling inequality ([5.27) covers constraints and . .
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5.1.2.3 Specifying the Uncertainty

As described in Section [5.1.1] almost inevitably the parameters used during problem
planning will differ from those that come up during operation. This calls for planning
in a robust way. In order to set up a robust optimization approach for load planning
we first have to identify which parameters are uncertain and which values they may
take. This is done in the following by specifying uncertainty sets. Note that in practice
nearly all parameters may be uncertain, but the following types are most common:
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1. The lengths of the overhangs of load units sometimes differ from the ones an-

nounced by the booking system. Hence, we assume that the parameter wu; for
each load unit i varies in an interval [u" 4%*], which results in the following
uncertainty set:

Uy ={ueR": umn < gy < um Y

. Often the weights g; of the load units differ, which may be modeled by the un-

certainty set '

Since it is very unlikely that the weights of all load units vary, analogously to the
approach of Bertsimas and Sim [BS04] we also consider the situation where only a
limited number I' € {0,...,n} of load unit weights may differ from the expected
weights. If we denote by g the expected (nominal) weights, the uncertainty set

Uy ={geR": 3T CN,|I| <T,
gi=gifori¢lI, g{”inggigg?”foriel}

says that the weights of at most I' load units differ in their given intervals. Note
that for I' = n, the set U equals Us.

For the computational results we analyze two variants of 3 . Normally we assume
that the weights g; of the load units are distributed around the nominal values. In
practice, sometimes also the extreme case occurs that a load unit which originally
has been booked as empty, is loaded. If g; denotes the maximum feasible payload
of load unit i, we model this situation as a special case of L{{ with gzmm =g (a

load unit does not become lighter) and ¢/"** := g;:

Uy ={geR":3I[CN,|I|<T,
gi=giforig¢gl, gi<g; <gforiel}.

Note that g; does not depend on the nominal weight g; since it is mainly influenced
by the size of the load unit. In principal such deviations might happen to any
load unit.

. Sometimes a wagon has some kind of bug, and as a consequence cannot be as-

signed any load unit. This uncertainty is not reflected in the problem’s parame-
ters used in (5.6))-(5.20). We hence introduce a bug parameter f; € {0,1} which
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indicates that wagon j has a bug when f; is zero and change constraint (5.8)) to

Z Tijs — Z ks fj “Yik <0 (jeM,se Sc(j),t eT) (5.29)
iE.A/t k‘E}CC(j)

This ensures that no load units are assigned to wagon j if it has a bug. Similar
to the uncertainty Us, it might be unrealistic to assume that all wagons have a
bug at the same time. Hence, we define the uncertainty set as

Uy ={fe{0,1}": Y f;=m-T}

JEM
for a parameter I' € {0, ..., m} saying that at most I' wagons may have a bug.

Note that for uncertainties U3 and Ui the case T' = 0 corresponds to the situation
where no parameter is uncertain. These cases are equivalent to the nominal problem
where robustness is not considered. We do not study an uncertainty set Uf because
the uncertainty in parameter u only affects constraints concerning individual load unit
assignments, but no groups of load unit assignment. So for I' > 0 we have U] = U;.
For the uncertainty L{g the case I' = m corresponds to the situation that all wagons
may have a bug; according to our previous definitions this could also be notated as
Usz. This set is not meaningful, since it contains the worst-case scenario f; = 0 for all
Jj € M, i.e., all wagons have a bug, which does not allow any assignment of load units.
In the following robustness models, we only consider the nominal objective function;
i.e., we may assume that all uncertainties above only affect the constraints of the load
planning problem, not the objective. Note that considering a worst-case maximization
problem instead would only make a difference for Uy and U3, as g is the only uncertain
parameter of the objective function.

To illustrate the uncertainty sets we apply some of them to the example introduced
at the end of Subsection [5.1.2.1] Considering uncertainty set U; if the overhangs of
load unit one and two are of the interval [100,200], the solution described in Table
is feasible for all scenarios. If we consider U and weights from the interval [23, 25], the
solution of Table is no longer feasible for all scenarios.

Having specified different types of uncertainties for the load planning problem, we
will in the following write LP(§),& € U to indicate that the problem depends on the
unknown parameters £ € U. As an example, LP(g),g € Us indicates that the weights
g are uncertain and stem from the uncertainty set Us. We furthermore specify one
nominal scenario §~ € U for each of our uncertainty sets: The nominal scenario o € U
contains the overhangs announced in the booking system, and the nominal scenario
for Us and leg is given by the nominal weight values §;. The nominal scenario for Z/{g
assumes that no wagon has a bug, i.e. fj =1 for all j € M.

The uncertainty U influences the coefficients of the matrix D in . We denote
this by writing D(u),u € U;, to make clear that D is actually a function that maps
scenarios to coefficients. Analogously, we write B(g) for g € Us, and C(f) for f € U3
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5.1.3 Strictly Robust Load Planning

Recall that a solution to an uncertain problem is called strictly robust if it is feasible for
any of the scenarios in the uncertainty set. Thus, in strictly robust load planning, we
would like to hedge against all possible scenarios by calculating a solution (x,y) that
is feasible for LP(§) for all £ € U. The resulting robust problems depend on the type
of uncertainty we consider. We denote the strictly robust problem for uncertainty set
U; by (SR;).

A typical application for this concept would be when the uncertainty is assumed
to be small, i.e., only minor changes in the problem parameters occur, and there is
no time during operations to be spent on changing the setup of the wagons or even
communicate changes in the load unit assignment to the human crane operators.

5.1.3.1 Uncertainty U/,

If we apply the first type of uncertainty to the problem, only the matrix D in constraints
(5.27)) is affected. Hence, we have to find (z,y) maximizing obj(z,y) such that

Ay =p (5.30)
Bx <q (5.31)
Cy+ D(u)x <r VYuelh (5.32)
x,y binary. (5.33)

As all variables x;j5 are non-negative, the worst-case for the inequality (5.9) can be
directly calculated by using the respective upper bounds of the uncertainty set U;.

Lemma 5.3. The strictly robust load planning problem with uncertainty set Uy is equiv-
alent to the following MIP:

(SRi) max obj(z, )

st Y Ul mo— Y By <0 (j € M,s € Syj)
ieN kel

(-6) — (5-8), (5-10) — (5.20)
Proof. Let F be the set of feasible solutions for (SR;), i.e.,

F = {(xay) Dol mijs — >0 PrsYjk <0V € M, s € Sy
ieN keke(s

1p _ , 5.10) — (5.20 }
and let

Fl= {(xay)5 > U = Tijs — > 5k3'yjk <0VjeM,s GSC(j),UGZ/{l,
ieN ke (5

—, 5.10) — 5.20}
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be the set of strictly robust solutions w.r.t. #;. We show F = F’. Due to u™%* € U
we have F C F'. Now let (z,y) € F' and assume there are & € U; and j, s such that
D ieN ai-xijs—Zke,cC(j> BrsYjk > 0. Asx >0, wehave Y ;o\ ti-Tijs < D i n U Tijs,
which is a contradiction. Therefore, 7' C F and hence F = F. O

Lemma shows that (SR;) is again a load planning problem, where the overhangs
are replaced by their respective worst-case values. Therefore, this approach can be
solved as efficiently as the nominal problem.

5.1.3.2 Uncertainty >

As the uncertainty set Us affects constraints ([5.26]), the problem we consider here
consists of finding a solution (z,y) maximizing obj(z,y) such that

Ay =p (5.34)
B(g)r <q Vg€l (5.35)

Cy+ Dzx<r (5.36)
x,y binary. (5.37)

For U; it was straightforward to see that the worst-case occurs if u; takes the value
u"**. We now look at Us: For constraints and we see that g; = g is
the worst-case. However, this is not so clear when looking at constraints —.

These inequalities can also be interpreted geometrically: If we want to maximize the
left-hand side of constraints (5.21]), for all wagons j and slots s with d.;) —4e.(;) s > 0
the weights g; of the assigned load units i have to be chosen as g/"**. These are the
load units where the distance from the attachment of bogie A to the center of mass

dcf ) see Figure All other load unit weights have to be chosen as

is smaller than
gmin
(2
Also, if we want to maximize the violation of constraints (5.22)), for all wagons j and
slots s with 4e(;) s — 3d.(;) > 0 the weights g; have to be chosen as g;"**. These are the
load units where the distance from the attachment of bogie A to the center of mass is
dgg; L . .
%, which is equivalent to the fact that the distance from the attachment
of bogie B to the center of mass is smaller than %. Again all other load unit weights
have to be chosen as g™".

larger than

Since all variables x;j; and the parameters d, are non-negative, for the worst-case
scenario we have to distinguish summands where d.(;) —4e.(;) s is positive and negative,
respectively. As described above, if d(;) — 4e(;) s is negative, g; has to be replaced by
g;""""; otherwise g; has to be replaced by ¢;"**. For the MIP-formulation we define new
parameters QZZ-TS eRforie N,7 € W,s € S; to replace g; in constraint where

max

g [ gmn ifd, —4e,s<0
Jirs =1 gmaz otherwise.
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In constraint (5.22]) for the worst-case scenario we replace g; by gi. . € Rfori e N, 7 €
W, s € §; with

oy g if der s —3d; <0

Girs =

g;"**, otherwise.

As for all wagons we know that e.(;) , as well as d.(jy — e.(;)s are positive, for con-
straints and @ again the maximum weights g/"** are the worst-case.

By using constraints @ and with the above described replacement of g; we
can now formulate a computationally tractable version of the strictly robust problem.

Lemma 5.4. The strictly robust load planning problem with uncertainty set Us is equiv-
alent to the following MIP:

(SRs) max obji(z,y)

s.t.
D g wijs < Sugj s (jeM,seS,y) (5.38)
ieEN
DD D 9y <G (5.39)
iEN jJEM s€8, ;)
c(j -4 c(j),s i
D D Gieye o)d—m *Tijs S o) (JeM) (5.40)
’LENSESC(J) C(J)
s 3dc j
Z Z gzc ),s ])d()(]) * Tijs < tc(j) (j & M) (541)
’LGNSGSC(J) e
,S tC j .
Z Z 9" ()(]) “Tijs < Ve(s) — % (jeM) (5.42)
ZENSESC(J) C J
tc j .
2, 2 4 7') Tijs < Ve(j) ~ ;” (7 €M) (5.43)

1EN SESC<])

6D - 9. 619 - 619

Proof. Let F be the set of feasible solutions for (SRs), and let F’ be the set of strictly
robust solutions w.r.t. Us. We show .7-" = ]-"’ . To show that F C F’ holds, we give
a scenario of Uy for inequalities (5.39) to . Due to constraints for each
i 6 /\/ at most one of the values gmm and gma‘” is used for the calculation of constraints
and - So the used values for g equal a scenario of Us. The same holds for
mequahties ) to where the values g/"** are used for all i € N.
Conversely, let (m y) E f " and assume there are § € Uy and 7, s such that one of the
inequalities (5.39) to is violated. As z > 0, this would imply that EZE NG Tijs <
Zze N Ii s Tigs, which is a contradiction. For constraints and we cannot

choose a § € Us that enlarges the left hand side because the Values gl <(i)s and g; o(j),s
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are chosen in a way to maximize the left-hand sides (since they include maximum values
for positive summands and minimum for negative ones). Therefore, 7' C F and hence
F=F. O]

Note that we did not construct a quasi-worst-case scenario in the sense of Sec-
tion [3.3.2] as the same parameter g; is chosen differently between the constraints.

5.1.3.3 Uncertainty U/}
We now consider the problem of finding (x,y) maximizing obj(x,y) such that
Ay =p
B(g)Jx<q VYgelUy

Cy+ Dx<r
x,y binary.

First, we consider a single uncertain constraint of the type

> Biy(g)z;<a Vgelsy (5.48)
j=1
for an arbitrary but fixed row ¢ and assume that we have variables x; for j =1,...,n.

Similar to [BS04], we determine the robust counterpart of this constraint. Let x be
fixed. Recall that g is the nominal value of g and let ¢*’¢ be the worst-case value of
g that maximizes the left-hand side of (| - Each component gwc is either equal to

min

g;"" or g;"** depending on the sign of the corresponding B;j-value. We denote by

n

B (x,T) = max Z(Bij(gwc) — Bij(9))zja; - Z a; <TI', a€{0,1}"

J=1 J=1

the worst-case for the left-hand side of constraint (5.48)). [’'(z,T') delivers the worst
possible deviation for a constraint, compared to the nominal parameter when x is fixed.
If we relax the integrality constraint for the variable o, we get

n

B(z,T) =max{ Y (Bij(g") — Bij(§)zja;: » a; <T, 0<a<1lp.  (5.49)
j=1 j=1

It is easy to see that §'(z,T) = (=, T).
Using formulation ([5.49)), we conclude that

ZBH (§)zj+ Bz, T) < ¢ & ZB” xj < g forall g e U (5.50)
7j=1
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We now consider the dual problem of ([5.49)):

n
BP(x,T) = min{Tz+ ij sz 4w > (Bij(9¢) — Bij(9)x; Vi=1,...,n,
j=1
z,mj >0Vj=1,...,n},

where z is the dual variable for constraint 2?21 aj < T'"and 7; is dual to o; < 1. Using
strong duality, we conclude:

Lemma 5.5. Constraint for fized i and a given x € {0,1}" holds if and only if

there are real numbers z, my, ..., T, such that

n n
Y Bij(@z;+Tz+) m<gq
j=1

j=1

z+m; > (Bij(9"°) — Bij(9))z; (G=1,...,n)
m; >0 G=1,...,n)
z>0

We are now in the position to reformulate the problem:

Theorem 5.6. For I' > 1, the strictly robust load planning problem with uncertainty
set U is equivalent to the following MIP:

(SRE) max obj(x,y)

s.t.
D wijs < begyys (7 € Mys € Sep)
ieEN
5.51)
S5 Y gea1:ED T D <6 55
iEN jEM sE€S,(j) ieEN
BT 7B (grer ) SN e 20 (ieN)  (553)
jEM sESc(j)
dc j 7460 i),8 .
SN a % 2y +T2E2 4 38D <4 (jeM) (5.54)
ieEN SESC(J-) C(]) iEN
deciy — 4ecs . )
Z+777(gé7'57§i) Z (])d ] Gs * Lijs 20 (Z€N7] GM)
SE€S.c(5) c(4)
(5.55)
deoiiy s — 3dg(i )
SN ae M CZijs + I‘z +> w <t (jeM) (5.56)
iEN sE€Sa(j) e(7) iEN
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dec(j 3dc(5)
BB BB g gy Y~ g >0 (ieN,jeM)
SGSC<]-) <(d)
(5.57)
ey — ey ) e .
> D gz"% zijo + DB 4+ 3 b8 <) % (jeM) (558
iEN SESC(j) C(‘j) iEN
R dc i) — €c(j),s . .
BT 4 BB (gpos g Jo gy >0 (i € N.jeM)
SES /s c(5)
E5e(h)
(5.59)
~ €c(j ,S tc j .
S Gy + TR Y A EE < D em) (5.60)
iEN s€S.(j e(7) ieN
€c(4),s . .
Z“rﬂ'_(gzmax_gi) Z d@’ “Zijs 2 0 (ieN,jeM)
SGSC(j) ()
(5.61)
63 - G9). G189 - E19 (5.62)
(61 620 62D 62 62D > (5.63)
7T- 7r- 7r- 77- 824 > ¢ (5.64)

Proof. By applying Lemma to the constraints ([5.17)) and (5.21))-(5.24)), the formu-
lation follows. Doing so is not necessary for constraints , since for each j and s at
most one of the variables z;;s may be equal to 1. Therefore, in (5.51]) we may simply
use the worst-case %" for this constraint. O

5.1.3.4 Uncertainty U3

We now consider the problem of finding a solution (z, y) maximizing obj(x,y) such that

Ay =p (5.65)
Bz < g (5.66)

C(f)y + Dz <r Vfeul (5.67)
x,y binary. (5.68)

As it turns out, this setting is too restrictive to assign any load unit at all.

Lemma 5.7. The strictly robust load planning problem with respect to the uncertainty
set Z/{?F for I' > 1 is equivalent to the MIP
(SRY) max obj(x,y)

s.t. Z Tijs < 0 (j eEM,se Sc(j),t S T) (5.69)
iEN:

77_~
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Proof. Let F be the set of feasible solutions of (SR}) and let F’ be the set of strictly
robust solutions w.r.t. Ui. We show F = F'. Obviously, we have 7 C F’. On the
other hand, let (x,y) be in F’. Assume that for a wagon j and a slot s € S,(;) there is
a type t and a load unit 7 € N; such that zijs = 1 holds. Then (z,y) is not feasible for
the scenario f; = 0, f, = 1 for h # j, which is in Ui . Therefore, z = 0 for (z,y) € F’
which implies 7 C F and hence F = F'. O

We have therefore shown that f = 0 is a quasi-worst-case scenario.

Lemma 5.8. In every feasible solution to (SRg) we must have x = 0, meaning that
no load unit is assigned at all.

Proof. Let (x,y) be a feasible solution to (SRL). From (5.69) we see that for all load
units i € N we have z;;5 = 0 for all j € M, s € S(;). O

5.1.4 Adjustable Robust Load Planning

In many applications it is unnecessarily restrictive to assume that a solution has to be
feasible for every possible scenario from the uncertainty set. Instead, we require only a
part of the variables to be fixed beforehand, while we allow the others to be chosen as
soon as the scenario becomes known. The former are called “here and now”-variables,
the latter “wait and see”, see Section

In the context of adjustable robust load planning, we search for a solution y, i.e. a
configuration of wagons, such that for every scenario ¢ from the uncertainty set U we
can find values for z, i.e., the assignment of load units to wagon slots, such that (x,y) is
feasible for LP(). Such a solution is called adjustable robust. The aim of the adjustable
robust counterpart (aSR) is to find an adjustable robust solution that performs best in
its worst-case. As before, we refer to the set of adjustable robust solutions with respect
to U as aSR(U).

For load planning, this approach is motivated by the two planning phases of pre-
loading and planning-while-loading as described in Section[5.1.1} As it is time-consuming
to change the configuration of a wagon — basically, a worker has to go around the whole
train —, but easily accomplished to put a load unit onto another wagon, we assume that
the assignment of load units to slots can be done when the realized scenario is revealed.

5.1.4.1 Uncertainty U/

Assuming that a wagon configuration y is fixed, the set of possible load unit assignments
in scenario u € U is given as

Fly, D(w) = {w: Ay =p, Bz < 4,Cy+ D(u)w < r}.

The adjustable robust load planning problem with respect to the uncertainty ; is then
stated as follows:

SR i bj(z,
(ST TR Ay Y
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st Vu e Uy P . 2PW e Fy, D(u)).

Note that the problem in this formulation is intractable; in fact, there are infinitely
many constraints and variables due to the infinite number of scenarios u € U; that need
to be considered. Nevertheless, we show that this problem is tractable in a different
formulation.

To analyze (aSR;), we make use of the results on worst-case scenarios as presented
in Section As the objective function is assumed to be certain, every feasibility
worst-case scenario is also a global worst-case scenario, and both Prx(SR) = aSR and
2B = 78R pold.

As has already been demonstrated in the proof of Lemma the existence of such
a scenario is indeed the case for the considered problem:

T

Lemma 5.9. v is a global worst-case scenario to (aSR;).

We can therefore conclude that instead of considering all infinitely many scenarios
u € Uy for (aSRy), we only need to consider u**. Therefore, solving (aSR;) simply
amounts to solving (SRy).

Corollary 5.10. Let (z*,y*) be an optimal solution to (SR1). Then y* is an optimal
solution to (aSRy).

5.1.4.2 Uncertainty >

Analogously to the setting in Section the problem we consider here is the
following:

SR i bj(x,
(aSRp)  max min = max = obj(z,y)

s.t. Vg € Uy 32B9 . 2B ¢ F(y, B(g)),
where
F(y,B(g)) :Z{fﬁ : Ay = p, B(9)r < ¢q,Cy+ Dz < r}.

Unfortunately, as discussed in Section there is no single worst-case scenario
as in U;. From an applied point of view, there is no set of load unit weights that
maximally disturbs the balance constraints of all wagon assignments at the same time;
from a theoretical point of view, each of the constraints ((5.21)) and (5.22)) has a different
worst-case.

Instead of reducing the infinite scenario set Us to a single scenario, we therefore
consider the following heuristic approach: We generate a finite subset G = {g*,..., ¢V}
of scenarios from Us, and solve

(aSRy)Y max 2z
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s.t. obj(xt,y) > = (i=1,...,N)
Ay=p

B(gH)z' < q (i=1,...,N)

Cy+Dz' <r (i=1,...,N)

z',y binary (i=1,...,N)

i.e., we find solutions (y, %) to every scenario ¢° € G.

As the number of restrictions in (a.SR2)Y grows for larger sets G, the objective value
decreases: Let G!' C G? C U, be finite sets. Then the optimal objective value of
(aSR3)Y" is not smaller than the optimal objective value of (a.SR;)9". In fact, as Us
is the largest set of scenarios that can be considered, the objective value of (aSR2) is
overestimated by this heuristic approach, i.e., for any finite set G C Us, the optimal
objective value for (aSR2)? is not smaller than the optimal objective value for (aSRy).
On the other hand, we may of course hope for more robustness for larger sets G.

5.1.4.3 Uncertainties U/} and U}

Similar to the discussion in Section the intractability of (aSR}) and (aSRY)
cannot be resolved by using a single, dominating scenario. Instead, the heuristic ap-
proach of using a finite subset of scenarios is applicable, and the relations presented at
the end of the previous section hold analogously.

5.1.5 Computational Experiments

In this section we report computational results for the robust load planning problem.
We evaluate the different concepts according to their nominal quality, i.e. the objective
value in case all parameters keep the values that were already assumed for planning,
and according to their robustness. To this end, we introduce a measure for robustness in
Section Then we analyze the concept of strict robustness by comparing the two
uncertainty sets U1 and Us in Section and investigating the effects the parameter
I has when it is introduced in the uncertainty sets U2 and Hg in Section Finally,
we discuss the concept of adjustable robustness in Section

Instances. All reported values are mean values for 20 load planning instances with
n between 37 and 85 load units, m from 24 to 38 wagons and an overall number of
configurations from 30 to 61 per instance. The test instances are motivated by real-
world settings and are described in more detail in [BK12]. The runtimes were restricted
to 20 minutes for each instance.

Environment. We used CPLEX 12.2 on a computer with an Intel Core 2 Duo, two
cores with 2.2 GHz, 4 GB RAM and Mac OS X 10.7.2.
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5.1.5.1 Measuring the Robustness of a Solution

In this subsection we specify how the interval borders of the uncertainty sets are chosen
in our experiments. Furthermore, we introduce a robustness measure of a solution and
show how it can be computed for the different uncertainty sets.

We define the robustness of a given solution (z, y) as the size of the largest uncertainty
set for which it is still strictly robust. To this end, we have to specify the size of our
uncertainty sets U. This can be done in different ways. For uncertainty sets Ui, Us and
Z/{g we assume a percental deviation of o around the nominal values which specifies the
size of the uncertainty sets. For example, for the uncertainty set U1 and a deviation of
o this means

U =U (o) = {ueR”:max{O,(l—a)-ﬂi} <wu; < (1—}—0)-&2}.

Due to the maximum-expression for the left border we assure that neither the length
nor the weight parameters are negative, this would not make any sense in practice.
Analogously, we may write Usz(c) and UL () in order to emphasize the dependence of
U on o. Similarly, we define the size of the uncertainty sets U3 and U} as T, i.e., as
the number of elements which may deviate.

In order to determine how robust a given solution is we use the following definition
which relies on the size of the uncertainty sets measured by a scalar parameter 6. Note
that 6 may be o or I'.

Definition 5.11. Let a solution (x,y) to an uncertain load planning problem LP(§), ¢ €
U be given and assume that the uncertainty set U = U(O) is dependent on some 0 € R.
Then the robustness of (x,y) is defined as

rob’ (z,1y) = max {9 : (x,y) s feasible for all £ € U(@)},

i.e. rob?(z,y) is the mazimal size of the uncertainty set for which (x,y) is still strictly
robust.

This definition can be applied to the uncertainty sets Uy = Ui (o), Us = Uz(o) and
UL = UL (o) resulting in a robustness function rob?(z,y). Analogously we may apply
the definition to U} and U and obtain the robustness function rob" (z,y).

In the following we show how to calculate the robustness of a given solution with
respect to Uy and Us according to Definition [5.11] For a fixed solution vector z =
(1,...,2zy,) we consider constraints of the type

ZBZ](E)(L'] < q; (570)
j=1

for an arbitrary row ¢ where h represents either the nominal overhangs @ or the nominal
weights g. To determine the worst-case that maximizes the left-hand side of (5.70) we
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introduce

R -1, ifBZ'j<0
Gij = 1, otherwise.
For constraint i let r; be the maximum percentage by which the values may deviate
from the nominal values A such that the constraint is still satisfied:
(1 + 0ij - TZ‘)Bij(iL)wj < q;. (5.71)
1

n

j
By solving equation (b.71]) for r; we get:
g — Y-y Bij(h)z;

O = (5.72)
Zj:l(@ij -75)Bij(h)z;

where the numerator is the slack of the constraint for the nominal values & and the
denominator is the sum of the contributions to the left-hand side of the vector h.

By taking the minimum of the r;-values for all constraints i, we obtain the overall
robustness of a given solution. Note that we assume a deviation of all elements at the
same time. Now we show how we can apply the general robustness equation (5.72) to
uncertainty sets U1 and Us.

For the uncertainty set U; we introduce 7" (z,y) for all pairs (j,s) € M x S;) of
slots s on wagon j with Zkelcc(j) Brs > 0 (i.e. in principle a load unit can be assigned

to this slot):

#9) o0, if ZkEch) Brs - Yik = Zie/\/ Tijs * Wi
T'is (x’@/) = Zkelcc(j) Brs Yik =2 ien Tijs Ui

ieN Tijs Wi

, otherwise

where for every load unit ¢ the value u; denotes the maximum real-world overhang of
the corresponding load unit type. The motivation of the co-definition is that we assume
that load units always belong to a real-world class. So if a load unit is booked as one
with 20 ft corner casting distance, we assume that at most a 26 ft load unit will be
delivered because no load units with greater overhang exist in the European setting we
analyzed. We assume that if a load unit with 20 ft corner casting distance is assigned to
a slot that allows to put a 26 ft load unit on top, there are no problems with feasibility
for any scenario. Note that this assumption is not affected by the minimal overhang of
the load unit. We do not assume any deviation for trailers because they do not have an
overhang in the same sense as containers or swap bodies do. So assignments of trailers
are assumed to be feasible for any scenario. Note that the value r(

45— (z,y) is also oo if
no load unit is assigned to slot s on wagon j.

Lemma 5.12. For the uncertainty set Uy with parameter o we have

rob’ (x,y) = min ABD
e (j,5)EMXS 5y 7° (z,y)
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For the uncertainty set Us we proceed as follows: For constraints ([5.38]) we introduce
the values

15.38) 50(

BBy = et 2ien 9i - Tijs
Js Y) = Z Gi v Tis )
ieN 9i " Tijs
for all pairs (j,s) € M x S, of slots s on wagon j.
For constraints ((5.39) we introduce

r(x’ y) = G- Zie]\/ ZjeM Zsesc(f) Gi - Tijs
ZiGN ZjeM ZSESC(J-) i - Tijs

For constraints (5.40) let

EA0) _ -1, ifd; —4e; s <0
Qirs— 1, otherwise.

To calculate the robustness w.r.t. constraints (5.40)), for every wagon j € M we
determine the value

de(iy—4eqs
G+ e "=Ce(i)ss | g
. tc(j) o Z’iEN ZSESC(j) gi de(j) Tijs
(5-40)
S ien Dcs,, 0D

i,c(g),s  J?

d.iy—4e. .
cg) ~4€c(s),s
de(j) s

Analogously for constraints (5.41)) let

N { —1, ifde, s —3d, <0

iTs 1, otherwise.

For every wagon j € M we define

- 467—»3_3d7 ..
(.47) te(i) = 2oien Zsese(j) 9i" —da,;  ~Yijs
Tj (IE, y) -

NS (-41) - ders—3dr
iEN SESc(j) inc(j)rs gl dC(j) xljs

For constraints (5.42)-(5.43|) we do not have to introduce g-values since all e.(;) ; as

well as d(j) — e(;),s are positive. For every wagon j € M let

te(h)

= de() Ce(i).s
5.42( ) V() — 2 dienN ZSESC(J-) 9ir —ag,  Tijs
3 T,y) =
! ’ - de()=€e()s
DieN Zsesc(j) 9i-—"a;, s
and
ol e
c(4) 5., Seld)ss .
.43 Ve(G) — T2 T Zie/\/ ZSESC 9 g Tigs
(5-43) — (7) c(g)
Tj (.%', y) - .

5oL Celids o
2ieN ZSESC<]~) 9" d,; "~ Vis
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Lemma 5.13. For the uncertainty set Us with parameter o we have

rob (@)= min B e,y). 1Bz, ), rED (a, ),
(j,S)EM Xsc(j) J J

5.41 5.42) 5.43)
r®8D(2,),rED (@,9),rED (@,y) }.

For uncertainty set U3 and its variant Hg we determine the robustness of a solution
as follows. For U} we keep the parameter o fixed and compute the largest I' for which
a given solution is still feasible. To do this, again we have to consider the robustness
according to the different constraints as for uncertainty set Us (see above). For each
constraint of the form

Y Bi(9)zj<a Vgely Uy (5.73)
j=1

we choose the vector g¥¢ which is the worst-case in the considered constraint for the

uncertainty set Us or U. g According to Lemma we have to solve the following MIP
to calculate the maximum robustness I':

max I’
n n
s.t. ZBZ](§)$] +T'z+ Zﬂ'j <gq
J=1 j=1
z+mj — (Bij(9"°) — Bij(g))x; > 0 G=1,...,n)
T 20 (j=1,...,n)
z>0

To determine I' we do not have to solve the stated MIP, but can determine I' in a
direct way: For each constraint we calculate its left-hand side for the nominal scenario
where no element deviates. Afterwards, we compute the change of the left-hand side
caused by choosing each load unit individually to be uncertain, which means that the
load unit is in the set I. By ordering these changes of the left-hand side in a decreasing
order it is easy to compute the robustness robg with respect to the analyzed constraint .
We have to add the ordered changes to the left-hand side as long as the constraint stays
feasible. The number of values that could be added without violating the constraint ¢
is the robustness robf. If we can sum up all changes, rob{ is not limited according to
constraint i. The overall robustness is equal to the minimum of the rob} -values over
all constraints .

Since it is not possible to calculate meaningful strict robust solutions for L{g (because
only z = 0 is feasible), the robustness of solutions is trivial for uncertainty set U2 .
For z = 0 all load units may deviate (i.e. rob'(0,y) = n), for all other solutions
rob' (z,y) = 0.
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5.1.5.2 Strict Robustness for the Uncertainty Sets U/; and U,

Setup. For each of the 20 test instances we calculated a strict robust solution for
varying values of o using the uncertainties U; and Us. Motivated from real-world
settings, we varied o from 0% to 1025% for U, while the range for Us is 0% up to
50%. For solutions to (SR;), we measure the average objective value, the minimal,
average, and maximal robustness rob? over all solutions that have bounded robustness,
and report for how many load unit assignments this is the case. For (SRz), we report
the average objective value, and the minimal, average and maximal robustness rob?.

Discussion of results. In Table we report computational results w.r.t. U;. The
columns contain the considered deviation o (in percent), the mean objective value,
the minimum, mean and maximum value of rob? over all instances (only considered
for occupied slots with limited robustness) as well as the percentage of slots for which
rob? is limited which means that the oco-case does not apply. These are slots that are
neither dedicated to trailers nor allow a maximum overhang which is not smaller than
the maximum real-world overhang wu; of the assigned load unit.

o(%) obj. minrob® mean rob® maxrob’ <oo (%)
0 | 1845.27 0.00 1.16 23.17 66.85

5 | 1762.28 6.39 23.42 51.66 47.01
10 | 1761.59 10.63 23.85 51.66 46.81
15 | 1752.70 16.78 57.16 532.68 46.29
20 | 1752.08 21.70 58.43 532.68 45.77
25 | 1694.96 32.72 74.95 532.68 39.39
35 | 1694.65 36.05 75.12 532.68 39.32
40 | 1694.65 43.83 75.55 532.68 39.32
45 | 1693.38 51.66 78.30 532.68 38.44
55 | 1642.93 61.52 252.86 769.57 32.52
65 | 1642.74 71.75 253.89 769.57 32.32
75 | 1641.57 77.10 256.08 769.57 32.32
80 | 1634.61 93.66 276.23 769.57 29.89
95 | 1634.03 118.71 308.67 769.57 29.19
120 | 1634.03 132.69 310.06 769.57 29.19
135 | 1632.82 144.93 313.95 769.57 29.19
145 | 1630.38 198.07 369.88 769.57 28.33
200 | 1621.21 226.70 620.50 859.51 23.92
230 | 1620.52 249.52 636.94 859.51 23.72
250 | 1620.52 271.85 638.05 859.51 23.72
275 | 1620.16 532.68 662.94 859.51 23.72
535 | 1615.95 679.02 742.37 859.51 22.94
680 | 1608.53 769.57 795.89 859.51 22.81
770 | 1608.53 825.12 832.00 859.51 22.81
830 | 1554.93 859.51 887.61 1020.49 22.29
860 | 1470.19 769.57 976.81 1020.49 16.79
885 | 1457.68 1020.49 1020.49 1020.49 12.10
1025 | 1439.40 - - - 0.00

Table 5.3 Computational results for strict robustness w.r.t. U.
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There are different greater steps of the objective values e.g. between 0% and 5%,
20% and 25% as well as between 45% and 55%. These greater steps can also be seen
in the change of the percentage of load units that have a limited robustness rob. The
runtimes are all about 1 second for each instance.

(%) obj. minrob’ mean rob® max rob”
0 1845.27 0.00 1.60 6.29
5 1819.19 5.01 6.22 11.77
10 1770.92 10.01 11.15 12.00
15 1684.12 15.05 15.48 17.86
20 1602.32 20.00 22.02 26.67
25 1564.62 25.00 26.15 31.03
30 1478.77 30.12 31.55 35.00
35 1411.70 35.00 36.22 38.18
40 1378.12 40.00 41.74 46.15
45 1344.56 45.00 45.68 46.15
50 1248.34 50.00 50.91 60.14

Table 5.4 Computational results for strict robustness w.r.t. Us.

The results of strict robustness w.r.t. Uy are shown in Table We report o,
the mean objective values as well as again the minimum, mean and maximum rob.
Runtimes are again in the order of a few seconds for each instance.

The results w.r.t. U and Uy are compared in Figures and In Figure[5.2
the uncertainty parameter o is plotted against the quotient of the objective value of
the resulting strictly robust solution and the nominal objective value (in percent).

We can note a qualitatively different behavior between the solutions to the uncer-
tainty sets Uy and Us. While for the latter one (which affects the weight of containers)
the objective value is smoothly reduced for increasing values of o, the former (which
affects the overhang of containers) shows the presence of plateaus in the plot. This is
due to the structure of the real-world instances used: Within the considered setting
of the European container market, there is only a small set of possible container sizes,
while this is not the case for the naturally continuous weights.

A similar behavior can be noted in Figure where for each o the mean objective
value of the solutions for the 20 example instances is plotted against its minimum,
mean and maximum robustness rob°. While in the case of Ui, the robustness of a
solution might increase drastically if the objective value is decreased only slightly, this
correlation is rather linear for Us.

Finally, Figure shows the robustness of solutions for different values of o. Note
that all values must lie above the diagonal, i.e. have a robustness larger than o, due to
the concept of strict robustness and our definition of robustness. However, the more the
robustness of a solution lies above the bisector, the more “implicit” robustness there
is. As the plots show, the lines tend to be closer to the bisector in the case of Uy than
for U;.

We also applied the uncertainty sets U; and Us simultaneously. This is possible as

115



5.1.5 Computational Experiments

U; and Us affect different constraints. The objective values for different sizes of the
uncertainty sets showed a mainly independent behavior for the uncertainty sets. If the
size of uncertainty set U4 is fixed while the size of U is varied, then the behavior is
similar to the case where only Uy is considered — of course, the objective values are
slightly worse. This is also the case if the roles of U; and Uy are exchanged.

We conclude from our experiments that studying robustness in detail is more impor-
tant for uncertainty of type U; than for Uy. While for the latter, the correlation between
objective value and robustness is rather linear, a large robustness gain at only small
costs is possible for the former. Therefore, for Us it generally suffices to add a security
buffer to the solution, while for /) the available data should be carefully considered.
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Figure 5.2 Solution quality in percent of nominal objective value for different o-values.
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Figure 5.3 Robustness rob” (in %) for different objective values.
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Figure 5.4 Robustness rob” (in %) for different o-values.

5.1.5.3 The Effects of T' when Restricting the Uncertainty Set

Setup. In order to analyze the impact of the parameter I' on strict robust solu-
tions, we solved (SRY) on the considered benchmark set using U3 with the values
o €4{0.1,0.2,0.3,0.4,0.5} and I" € {0, 1,...,9,10,20,...,80,85}, where 85 is the great-
est number of load units in one of our example instances. We measured the computation
time and determined the respective average values for the objective and rob". Further-
more, we calculated solutions using ﬁg for values T' € {0,1,...,9,10,20,...,80,85}
— note that o plays no role in this case. We chose g; as the minimum value that is
not smaller than g; and not smaller than 36 tons for load units with a corner casting
distance greater than 30 feet and trailers, or 30 tons for load units with 20 feet corner
casting distance.

Discussion of results. The results for strict robustness w.r.t. Ul are reported in
Table for different values of 0. Depending on the size of o for a sufficiently large
number I' the solutions of U4 equal those of Uy. E.g., for 0 = 40% and o = 50% the
value I' > 3 is large enough. In this situation rob" is unbounded (marked by -) because
the solution is feasible even if the weights of all load units are uncertain within the
intervals defined by o.

The results for Ug are presented in Table m The instances marked by ’ after the
number I' are calculated by the MIP-formulation (SRY). For all other instances (for
I' > 3) the introduced reformulation is only used for constraints which limit
the total weight of the train. For constraints — we do not have to use the
reformulation because in these constraints at most three positive x;;s can occur for the
example instances used. So there is no difference in using the worst-case formulations
stated in constraints —. If for at least one instance the calculation is stopped
after the time limit of 20 minutes, we mark the runtime by “*”. The runtimes for I" < 3
and the MIP-formulation (SRY) are all below 130 seconds with an average value of 60

117



5.1.5 Computational Experiments

seconds. On the other hand, if we use the reformulation only for constraints , for
I' > 3 the runtimes are in order of a few seconds.

Figures and illustrate these values. In Figure the ratio of the objective
value of a solution w.r.t. (SRY) to the objective value of the corresponding (SRz)-
solution (which corresponds to I' = n) is presented. For increasing values of I', both
objective values become equal, while the solutions to (SRY) are better for small values
of I'. As can be seen in the case of Ul , the objective values are only slightly better
than for Us. This means that the restriction that not all weights deviate from their
nominal value at the same time does not significantly increase the nominal quality of
a solution. This is different when considering Hg, where the increase in the objective
value is more significant.

The robustness rob' is presented in Figure “Implicit” robustness appears when-
ever rob is greater than I'. For both 43 and Hg, the qualitative behavior is roughly
the same. For values of I" larger than 40, the robustness of a solution can be increased
at nearly no additional costs. The reason therefore is that for I' larger than 40 and
uncertainty set Hg for our instances only between 27 and 47 (out of the potential 37
to 85) load units can be loaded on the train. Furthermore, the uncertainty set does
not affect load units with a nominal weight which is not smaller than g;. For Z/{g all
load unit weights increase if they get uncertain but for small weights the change is very
small and sometimes will not affect feasibility of assignments at all. This causes that
there is no difference if I' is increased above 40.

The effects of limiting the number of deviating elements (I') showed that it might
be worse for practitioners to restrict the number of deviating elements if the deviation
is independent of the nominal values (which is the case for Hg) and the number of
deviating elements is quite small. For U with a deviation around the nominal values
there is an increase in the objective values but below 1%.
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Figure 5.5 Ratio between objective value for limited and unlimited number of deviating
elements for different I'-values.
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Figure 5.6 Robustness rob" for different I'-values.

(%) 10 20 30 40 50

r rob" obj. rob" obj. rob"” obj. rob" obj. rob" obj.
1 1 1775.47 1 1611.03 1 1484.16 1 1379.85 1 1250.55
2 10 1774.74 2 1610.02 23 1479.86 2 1378.30 2 1248.10
3 10 177474 | 10 1610.02 | 23  1479.86 - 1378.12 - 1248.34
10 10 177474 | 10 1610.02 | 23  1479.86 - 1378.12 - 1248.34
20 20 1773.36 | 20 1608.16 | 23  1479.86 - 1378.12 - 1248.34
30 30 177213 | 30  1605.04 | 30  1479.51 - 1378.12 - 1248.34
40 41 1771.08 42 1602.76 - 1478.77 - 1378.12 - 1248.34
50 - 1770.92 - 1602.32 - 1478.77 - 1378.12 - 1248.34

Table 5.5 Robustness of strictly robust solutions w.r.t. U3 .
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r obj. rob!  time (sec)
0" | 1551.96 0 0.85

1’ | 1531.76 1 192.07 *
2’ | 1435.63 7 1200.00 *
3’ | 1437.66 7 1200.00 *
3 | 1443.15 7 8.59

10 | 1437.91 10 243.04 *
20 | 1406.90 20 245.15 *
30 | 1394.06 31 545.56 *
40 | 1392.31 - 423.05 *

Table 5.6 Robustness of strictly robust solutions w.r.t. Hg.
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5.1.5.4 Discussion of Adjustable Robust Solutions

For the discussion of adjustable robust solutions, there are plenty possible experiments
to consider. In this section, we present some of the most interesting results. In some
cases, as for the uncertainty set Us, we found that there is a worst-case scenario in all
conducted experiments, and therefore only briefly discuss this in the following.

Setup. In this experiment, we compare adjustable solutions to their strict robust

counterpart for Z/{QF and Hg, and analyze adjustable solutions for Z/13F .

We chose ¢ € {0.1,0.2,0.3,0.4,0.5} and I" € {0,1,...,9,10,20,30,40}. For each
parameter pair, and for 4} and Hg, we generated 10 initial scenarios using a uniform
distribution and used the heuristic approach as described in Section to calculate
adjustable solutions. We measured their objective value as the heuristic approxima-
tion of the objective function of (aSR}), and additionally by the following simulation:
We generated 10 independent test-scenarios, completed the adjustable solutions to a
solution of each of these scenarios, and measured the objective value of the completed

solutions.
For UL, we used again a set of 10 initial scenarios to calculate heuristic solutions for
I' € {0,...,9}, and additional 10 independent test-scenarios to evaluate the objective

value after completion to the best possible feasible solution in the respective scenario.

Discussion of results. As already noted at the beginning of this section, for all
our benchmark instances we found the existence of a worst-case scenario (see Defini-
tion in the case of Us. Though this does not need to be the case from a theoretical
point of view, the scenario g/"** dominated all other load weights. Therefore, adjustable
and strictly robust solutions are the same.

a(%) 10 20 30 40 50
r obj. time obj. time obj. time obj. time obj. time
1 1836.75 115 1829.80 135 1820.85 242 * | 1816.75 195 * | 1811.29 147
2 1833.26 147 1820.91 119 1804.33 214 * | 1800.99 228 * | 1803.07 262 *
10 1821.89 141 1776.27 240 * | 1742.40 300 * | 1723.56 433 * | 1692.73 326 *
20 1806.47 260 * | 1732.59 348 * | 1676.92 396 * | 1630.98 402 * | 1580.07 574 *
30 1799.21 283 * | 1687.70 307 * | 1599.04 317 * | 1536.12 219 * | 1450.87 83 *
40 1783.86 234 * | 1633.64 270 * | 1541.52 384 * | 1453.24 253 * | 1334.99 120 *
50 1748.46 259 * | 1606.87 369 * | 1496.17 335 * | 1391.83 126 1265.75 116

Table 5.7 Computational results for adjustable robustness w.r.t. 3.

Table shows the mean heuristic objective values of (a.SR}) and the mean compu-
tation times for 1. In Table 5.8/ computational results for the variant 1715 are presented.
The simulated objective values using the 10 test scenarios are shown in Figure

In Table we state computational results w.r.t. Z/[?I: . The mean runtimes with

a time limit of 20 minutes for L{:{ and the adjustable heuristic are between 400 and
600 seconds. For all computed I' for at least one example instance the time limit was
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121

(SRY) (aSRY) simulation
r obj. time obj. time (SRY)  (aSRY)
0’ | 1551.96 0.85 - - - -
1’ | 1531.76 192.07 * | 1842.33 142.92 | 1717.75 1840.54
2’ | 1435.63 1200.00 * | 1840.37 173.23 | 1683.34 1836.90
3 | 1437.66 1200.00 * | 1840.37 173.23 | 1681.60 1835.47
3 | 1443.15 8.59 1840.37 173.23 | 1680.30 1835.47
7 | 1443.15 7.47 1828.63 520.40 | 1675.67 1822.81
8 | 1442.99 4.78 1825.561 485.26 | 1680.69 1822.49
9 | 1440.46 242.72 * | 1824.06 571.27 | 1683.50 1817.90
10 | 1437.91 243.04 * | 1818.44 538.23 | 1680.16 1808.73
20 | 1406.90 245.15 * | 1760.19 554.52 | 1668.80 1761.58
30 | 1394.06 545.56 * | 1702.21 565.14 | 1621.53 1689.49
40 | 1392.31 423.05 * | 1638.34 846.25 | 1562.16 1598.12
all | 1392.31  303.51 * - - - -

T
Table 5.8 Computational results for strict and adjustable robustness w.r.t. U,.

Table 5.9 Computational results for adjustable robustness w.r.t U3 .

r obj. simA(min) | simA(mean) | simN(min) | simN(mean) | nomA
0 | 1845.27 - - - - 1845.27
1* | 1783.40 1790.53 1806.06 1783.92 1805.59 -

1 | 1798.85 1789.95 1804.11 1790.61 1805.12 1825.55
2 | 1758.44 1744.34 1765.16 1740.76 1764.99 1818.56
3 | 1720.13 1702.58 1724.76 1691.23 1719.75 1811.69
4 | 1676.80 1658.17 1683.16 1644.94 1674.58 1800.42
5 | 1636.00 1608.38 1639.34 1600.13 1630.57 1795.36
6 | 1589.55 1556.37 1594.29 1547.87 1582.48 1789.57
7 | 1537.91 1510.26 1544.64 1486.57 1532.11 1771.55
8 | 1495.36 1461.2 1500.27 1441.52 1482.52 1768.66
9 | 1444.63 1406.11 1445.87 1376.41 1429.66 1751.82
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Figure 5.7 Objective value ratio between (aSR}) and (SRY) for different I'-values.

reached. The simulated objective values of the adjustable solutions (simA) and the
nominal solutions (simN) are given. Furthermore, we computed the mean objective
values of the adjustable solutions for the nominal scenarios. In line 1* for the situation
where one wagon has a bug, all possible scenarios are considered as initial as well as
test scenarios. So the number of scenarios corresponds to the number of wagons. The
results show a slightly worse objective value as for the 10 initial scenarios, but there
is nearly no difference in the objective value for the simulation, i.e. the number of
considered initial scenarios is sufficient (at least for I' = 1).

The results of the simulation show that the later decision on the “wait and see”-
variables enables much better objective values than the offline optimization that is used
with strict robustness. Furthermore, the fixed y;x-values computed with the heuristic
for adjustable robustness permit slightly better objective values than the ones obtained
by strict robustness (or the nominal problem for U3 ).

The objective values for adjustable robustness w.r.t. ¢4 (reported in Table are
better than those of strict robustness (reported in Table , but also the simulated

values are, as Figure shows. The same holds for Hg, as shown in Table
Interestingly, the objective value compared to the strict robust counterpart is differ-
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ent, depending on the uncertainty set used. For U4 and Z/{?)F , a larger I' seems to indicate

a better (larger) ratio for adjustable robust solutions, while this is the opposite for ng.
This can be explained by the considered weights and the flexibility the “here and now”-
variables offer. For larger I' and U3 there are still load units of different weights which
could be assigned to the same slot. So the assignment of load units still offers some
flexibility. This is not the case for U g where for larger I' nearly all load units have their
maximum weights. So the flexibility of changing load unit slot assignments does not
enable much better solutions because load unit weights are nearly the same for all load
units that fit on a certain slot.

To conclude, using adjustable instead of strictly robust solutions for uncertainty sets
Ul and Ug can have a significant impact on the solution quality if in practice the time
is available to rearrange the assigned load units. If a practitioner is able to do so, he
may increase his gain in terms of the presented objective function by up to 10% in our
setting. For uncertainty set Z/I?F where a limited number of wagons can not be loaded at
all it is not so easy to achieve solutions that are much better than the solutions based
on the fixed configurations of the nominal solutions. As there is a worse objective value
for the nominal solution if no wagon has a bug, for uncertainty set L{:E it may not be
sensible to use adjustable solutions if the probability of at least one wagon having a
bug is not close to 1.

5.1.6 Concluding Remarks

We introduced the problem of determining load plans in intermodal transportation that
take different kinds of uncertainties into consideration. We presented two approaches
to include this uncertainty: Strict robust load plans, in which it is assumed that the
solution cannot be changed once it is implemented, and adjustable robust load plans,
that give the planner the possibility to react once the true problem parameters become
known.

For each robustness model and uncertainty set, we analyzed the computational
tractability and presented solution approaches. Their performance was analyzed in
comprehensive experiments on real-world instances that demonstrated that already at
small costs for the planner, the reliability of the solution can be significantly increased.

This suggests that robustness is an important aspect in real-world problems, and can
be taken into consideration even for large mixed integer programs with many technical
constraints.

We thank Marco Lenk (Deutsche Umschlaggesellschaft Schiene-Strafie mbH) for pro-
viding information about uncertainties in the practical load planning setting.
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5.2 Robust Steiner Trees

5.2.1 Introduction

Having considered approaches to robust counterparts that are based on integer pro-
gramming formulations in the previous section, we now consider approximation algo-
rithms. To do so, we use one of the classic NP-complete graph problems [Kar72|: The
Steiner tree problem (STP).

Definition 5.14. Let an undirected graph G = (V, E), a weight function ¢ : E — R
and a set of terminal nodes T C V be given. Finding a tree E' C E connecting all
terminal nodes, that minimizes the total weight c(E") = 3 g Ce, is called the Steiner
tree problem.

A direct flow-based MIP formulation is the following (see, e.g., [GM93]):

(STP) min Zcexe

ecF
st. fh+fi<xe Ve={i,j}€EhkeT
1 1=7
fRETE) = o G) =S -1 i=k VieV,keT
0 ieV\{kr}

z ez ferAT

where A = {(i,7) : {i,7} € E} is the set of directed edges (in both directions), 67 (i)
denotes all outgoing edges of node i, 6~ (i) all ingoing edges, and r € T is an arbitrary
root node.

We will write Steiner(T) as the set of all Steiner trees with respect to the terminal
nodes 7" for short; i.e., we rewrite (STP) to

(STP) min Zcexe
eck
s.t.  x € Steiner(T).

Let a be the approximation ratio of the best known algorithm 2 for (STP). Since
2005, the best-known algorithm achieved a ratio of ~ 1.55 [RZ05], which has been
recently improved to ~ 1.39 in a yet unreviewed work [BGRS11].

We assume that both the cost vector ¢ and the set of terminals T" are uncertain, and
consider the following finite uncertainty set of size IV:

U= {(Cl,Tl),...,(CN,TN)}

We define T* := | J, T*, and denote by (STP(c,T), (c,T) € U) the uncertain Steiner
tree problem.
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5.2.2 Robust Steiner Trees: The One-Stage Case

We now analyze robust counterparts to the uncertain Steiner tree problem.
In the strictly robust counterpart, we aim at minimizing the worst-case costs of a
Steiner tree that is feasible in every scenario. We transform (ST P(c,T), (¢,T) € U) to:

T i e
(SRST),) min max Zcex

T

eckE
st. x € Steiner(T*) Y k=1,...,N
<~
min z
s.t. zZZcE:per‘zl,...,N
eCE

x € Steiner(T™).

We now consider some heuristic algorithms for solving SRST7. A natural approach
to solve this problem would be to determine the worst-case per edge, and solve the
resulting worst-case problem.

Definition 5.15. Let an uncertain Steiner tree problem (STP(c,T),(c,T) € U) be
given. The edge-wise worst-case scenario is then gwen by (c¢*,T%), where ¢ =

k
maxXgeq1,...,N} Ce-

Note that in general, (¢*,T*) is neither an element of I, nor is it a quasi-worst-case
scenario.

Heuristic 1 for SRST;. Solve the edge-wise worst-case scenario using algorithm £2I.

The example presented in Figure shows that solving the edge-wise worst-case
scenario does not necessarily yield an optimal solution to SRST). Squares are used
as terminal nodes. Bold edges denote the Steiner tree with minimal edge costs in
each scenario. Here the optimal solution has a worst-case objective value of 8, while
Heuristic 1 returns a solution with worst-case objective value of 10. However, we can
show that the ratio of worst-case objectives is bounded.

Lemma 5.16. Heuristic 1 is an alN-approzimation algorithm for SRST;.
Proof. We can proof this lemma analogously to the proof of Proposition 2 from [ABV09].

Let 2’ be the solution generated by Heuristic 1, and let z* be an optimal solution of
SRST;. Let = be the optimal solution to ST P(c*,T*). Then we have that

k_ 1 * !

max E cor < E c, T

k=1...N eve — eve
eck k=1,...,.N
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(a) Scenario 1. (b) Scenario 2. (c) edge-wise worst-case

Figure 5.8 Heuristic 1 for SRST} is not optimal.
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This bound on the approximation ratio is tight, when the factor « is ignored, i.e., we
assume that the edge-wise worst-case scenario is solved to optimality. As an illustration,
consider the problem instance in Figure [5.9f On the upper path, there are N edges.
For each of these edges, there is a scenario in U that gives the respective edge the
costs M, and ¢ for all other edges. The costs of the edge on the lower path is always
NM —1. Now, the optimal solution to the edge-wise worst-case scenario uses the lower
path with total costs of NM — 1 in every scenario, while the upper path has total costs
of M + (N — 1)e in every scenario.

e/M e/M
e/M S e/M

NM -1

Figure 5.9 The approximation ratio of Lemma is tight.

Heuristic 2 for SRST;. Set ¢, = 1 Zfil ¢ for every edge, and determine a Steiner
tree for this scenario using algorithm 2.
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Lemma 5.17. Heuristic 2 is an alN-approzimation algorithm for SRST;.

Proof. Similar to the case of Heuristic 1, we can use an analogous proof as in [ABV(9]
for Proposition 1. Let 2’ be the solution generated by Heuristic 2, and let 2* be the
optimal solution to SRST;. Then,

N
max Zc <ZZC’§$'€

Lo eck k=1ecE
= NZ Z Ceo
k=1 ecE
N
< aN min Z cwe
z€Steiner(T*) 1

1 N
<an P
mESteme'r T*) N el ek

<aN min —N max E c’;xe
zeSteiner(T*) N k=1,..,N c
€

—aN max Zc
]

Heuristic 3 for SRST;. For every scenario, determine an optimal Steiner tree. Among
this set of solutions, choose the one with the best worst-case objective value.

Heuristic 3 is not an approximation algorithm — as an example, consider the problem
instance in Figure [5.10] Two scenarios with the corresponding optimal Steiner trees
are depicted. The worst-case objective value of both trees is 2M + 4, but there is a
solution with a worst-case objective value of 6.

5.2.3 Robust Steiner Trees: The Two-Stage Case

For the two-stage case, we assume the existence of two problem phases: A first phase
with incomplete problem information, in which edges can be chosen cheaply, and a
second, more expensive phase, in which the full problem information is revealed.

This problem is well-known in the setting of stochastic programming. More specif-
ically, let a finite uncertainty set & = {s',..., sV}, |U| = N, again be given, where

= (p*, ¥, Tk) and p” is the probability that scenario k occurs, ¢* the edge costs in
scenario k, and Tk the terminal nodes in scenario k. In general, there are no further
restrictions on c¥; however, for approximation algorithms we often assume an inflation
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(a) Scenario 1. (b) Scenario 2.

Figure 5.10 Example in which Heuristic 3 can become arbitrarily bad.

factor o, > 1 for each scenario, such that clg = orce. A direct formulation of the
two-stage stochastic STP as a MIP is then given by the following program:

N
(S-STP) min Z CeTe + Zpk Z chyk
eek k=1 eck
st. (z+y*) e Steiner(T*) YV k=1,...,N.

In the robust two-stage Steiner tree problem, we do not want to minimize the ex-
pected total costs, but the worst-case costs instead. We thus assume that no probabil-
ities p"C are known. As an integer program, we get

(SRST,) min Zcexe +z
eck
st. 2>y Vek=1,... N
eck
(x4 y*) € Steiner(T*)Vk=1,...,N

N-|E
BNIEI,

:UEIEB‘E|,yE z€eR.

Note that if c¥ < c., ¥k for an e € E, the optimal solution has z. = 0. In [DGRS05],
a 1ba-approximation algorithm is presented based on a relaxed multi-commodity-flow
formulation.
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Heuristic 1 for SRST2. From [DGRS05]: Using an LP-relaxation, we get an approx-
imation ratio of 15a.
We now consider further approximation algorithms.

Heuristic 2 for SRSTs. Set x = 0, and solve N separate Steiner tree problems using
algorithm 2{ to determine y.

Lemma 5.18. Heuristic 2 for SRST, is an a maX;e(1, .. N} o' -approzimation algorithm
for ¢, =o'ce, 0" > 1 forallie{l,...,N}.

Proof. Let (x*,y*) be an optimal solution to SRST,, and let (0,%') be an optimal
solution in scenario i. Let Aj,..., Ay be the costs 4; = >, o'c.y.. As Heuristic 2
solves all scenarios using the algorithm A, we assume that the algorithm output for
scenario 4 is given by (0,9) with Y, o'c.j¢ = B; < aA;.
It holds that
f(0,9) = max B; <amaxA; = af(0,79).

i=1,...,.N

Set j = argmax; A;. Then we have
Zcegg S f(x*vy*)7
e

as (37, 0) is an optimal solution for the STP in scenario j, and (z*,%*) has to consider
more scenarios. Therefore,

f(Ov’g) < Oéf(O,y) j Zceyg

= ao! =—"— < ac’ < amaxo’

fla*y*) = flz*,y7) fla*,y%) i
which completes the proof. O

Variant 1: Instead of setting x = 0, we set z. = 1 for all edges e that are used in
all scenario solutions ¥, i.e., in the first phase, we add the intersection of all scenario
solutions. As these edges would have been added in every scenario and as ¢, > c,
solutions of Variant 1 of Heuristic 2 never have a worse objective value than solutions
of the original heuristic. However, the approximation ratio does not improve.

Variant 2: Add an edge e in the first phase with probability equal to 1/N zie{l,...,N} YL

Heuristic 3 for SRST>. Ignore the second phase and use algorithm 2 to determine
a Steiner tree with respect to T and edge costs ¢, i.e., set y* = 0 for every scenario.

Lemma 5.19. Heuristic 3 for SRSTy is an (aN)-approzvimation for ¢. > ce, if
ﬂie{l,...,N} T # 0.
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Proof. Let (Z,0) be the optimal solution for SRST,, when y° = 0 for every scenario
i, and let (2,0) be the solution determined by Heuristic 3. Let (z*,y*) the optimal
solution for SRST. Then (2/,0) with 2, = 1, if 27 = 1 or if there is an i with y** = 1,
is a feasible solution with no added edges in the second phase, if ;. {(1,..N} T £ 0.

Therefore
Z CoTe < Z cel, < Z CeXy + Z Z céy:i.

eck eck eckE i€{l,...,N} ecE

and we have

[0 _ 10
flasy*) = fla*,y%)
=« 2 CeTe —

> cewy +max ) Lyt
<« Z Cele —
T cemEH /N Y ey
< aN 2, Cee —
D P D DDA
< aN

which completes the proof. O

The bound in Lemma is tight for a fixed a: As an example, consider a star-
shaped graph, in which the center node is always a terminal. For every other node,
there is exactly one scenario with ¢! = ¢ in which this node is a terminal, too. Then,
Heuristic 3 adds all edges to the solution, while in an optimal solution only one edge
per scenario needs to be added.

5.2.4 Experiments

In this experiment, we evaluate the empirical approximation ratio of the presented
one-stage algorithms.

Environment. All experiments were conducted on a PC with 96 GB main memory
and an Intel Xeon X5650 processor, running with 6 cores at 2.66 GHz and 12MB cache.
All code is written in C++ and has been compiled with g++ 4.4.3 and optimization
flag -O3. Mixed-integer programs are solved using Gurobi 5.0 [Gurl2] with default
parameters.

Instances. We use the “Testset B”-instances from the SteinLib [KMV00], which are
of comparably small size. An overview is given in Table We chose small-sized
problems as we solve the robust counterparts of the instances to optimality.
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Instance | V| |E| |T)|
b01 50 63 9
b02 50 63 13
b03 | 50 63 25
b04 50 100 9
b05 50 100 13
b06 | 50 100 25
b07 | 75 94 13
b08 | 75 94 19
b09 75 94 38
b10 75 150 13
b1l 75 150 19
b12 75 150 38
b13 | 100 125 17
bl4 | 100 125 25
bl5 | 100 125 50
bl6 | 100 200 17
b17 | 100 200 25
b18 | 100 200 50

Table 5.10 Testset B of SteinLib.

Setup. For every instance, we generate 20 uncertainty sets of two different types:
For the uncertainty U, we sample N = 10 scenarios with edge weights uniformly
distributed between [cc, 2¢.]. For the uncertainty Us, we sample only N = 5 scenarios
with edge weights that have a 95% chance to be ¢, and a 5% chance to be 5¢.. For every
instance and uncertainty, we solve the nominal problem and the robust counterpart, and
calculate the solutions of Heuristics 1, 2, and 3. For all robust approaches, we provide
the MIP solver with the nominal Steiner tree as a starting solution. We measure the
running time, the nominal objective value, and the worst-case objective value of every
solution. The instances b12 and b18 were ignored for our computations, as the nominal
solution took too long to be found (>300s).

Results. We first discuss the approximation ratios of Heuristics 1 and 2 under the
given setup. We have:

Lemma 5.20. For a finite uncertainty set U C X .cglce, oce] with o > 1 and U] = N,
Heuristic 1 and Heuristic 2 are ao-approximations to SRST].

Proof. We begin with Heuristic 1. Let 2’ be the solution generated by Heuristic 1, let
T be the optimal solution to STP(c*), and let z* be the optimal solution to SRST}.
Then

k_1 * !

max cx, < g c.T

k=1,....N ere — ere
eclk eckE
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* — * Lk
<a g CoTe < v E Cox,,

eckE eel
<o« g cexp < o0 max chat
k=1,..,N
eck eck

We now consider Heuristic 2. Let 2’ be the solution generated by Heuristic 2, and let
z* be the optimal solution to SRST;. Then
max c’ém’e <o Z cetl, < o Z Ll

k=1,...,.N
ecE eeE ecE

. /
< ao min E CeTe
xz€Steiner(T*
¢ () eclR

. 1 Z Z k
= o min N Cele
Stei T
veStemer(T*) IV 9~ N ek
. 1 k
< ao min —N max g CeTe
k=1,...,N
eck

e

zeSteiner(T*) N

= o max E rar
k= N
eck

(RS}

O

We now consider the experimental results for U as presented in Tables and
(.13l Note that the runtimes for the Heuristics 1 and 2 are about the same as in the
nominal case, while Heuristic 3 takes even longer than the exact solution. However, this
is likely to be due to the small problem size, and the scaling of the runtimes suggests
that Heuristic 3 will be faster for larger instances.

In Table we compare the respective nominal objective values of the solution.
All solution values are close-to-optimal, with only 0.93% deviation for the exact strictly
robust solution, and 1.48% for Heuristic 3. Similarly, the worst-case objective values
show only slight differences, with the nominal solution being on average 1.04% worse
than the exact solution, the Heuristics 1 and 2 slightly better, and Heuristic 3 worse
with 2.35%.

The reason for the small differences between the solutions can be found in the struc-
ture of the uncertainty set U;: The higher number of 10 scenarios and the uniform
distribution over the interval [c.,2c.] do not penalize heavily when robustness is ig-
nored; in fact, the nominal solution performs quite well in this setting.

However, this picture changes when we consider uncertainties of type Us. A compar-
ison of runtimes from Figure shows that instances are on average more difficult to
solve, especially for the exact approach. We mark instances for which at least one of
the 20 generated uncertain problems was not solved to optimality within a timelimit
of 300s with an asterisk (*).

The structure of Uy penalizes heavier when uncertainty is neglected, as only some
edges become more expensive, but when they do, the difference to the original weights
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Instance Nominal Exact Heuristic 1 Heuristic 2 Heuristic 3
b01 0.27 0.52 0.18 0.15 1.50
b02 0.11 0.62 0.27 0.30 3.50
b03 0.47 2.02 0.80 1.07 7.42
b04 0.12 0.52 0.18 0.39 2.04
b05 0.21 2.57 0.66 0.58 5.52
b06 1.82 30.15 2.82 2.61 25.39
b07 0.33 0.87 0.54 0.33 3.99
b08 0.33 1.41 0.71 0.67 8.28
b09 2.52 15.52 3.53 3.37 33.18
b10 0.51 3.85 1.03 0.86 8.79
b1l 2.65 15.87 3.01 2.76 28.75
b13 0.82 3.95 1.05 0.95 9.67
b14 1.49 15.98 2.25 1.96 20.80
b15 3.19 11.84 2.76 2.82 27.57
b16 2.19 21.91 3.63 3.72 36.66
b17 3.06 84.55 7.68 6.69 67.70
Average 1.26 13.26 1.94 1.83 18.17

Table 5.11 {;: Solution time in s.

Instance Nominal Exact Heuristic 1 Heuristic 2 Heuristic 3
b01 0.00 0.98 0.30 0.12 0.79
b02 0.00 0.96 0.30 0.00 1.08
b03 0.00 0.36 0.00 0.00 0.22
b04 0.00 1.19 0.08 0.00 1.53
b05 0.00 0.98 0.33 0.00 1.72
b06 0.00 0.86 0.04 0.04 2.66
b07 0.00 0.68 0.14 0.09 0.99
b08 0.00 0.72 0.05 0.00 0.38
b09 0.00 0.66 0.07 0.07 0.82
b10 0.00 0.35 0.12 0.00 2.56
b1l 0.00 1.65 0.23 0.11 1.88
b13 0.00 1.30 0.00 0.00 1.12
b14 0.00 1.02 0.30 0.06 1.96
bl5 0.00 0.66 0.09 0.03 1.40
b16 0.00 1.54 0.08 0.00 2.68
b17 0.00 0.99 0.15 0.08 1.91
Average 0.00 0.93 0.14 0.04 1.48

Table 5.12 U{;: Increase of nominal objective value with respect to optimal nominal objec-
tive value, in percent.
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Instance Nominal Exact Heuristic 1 Heuristic 2 Heuristic 3
b01 0.85 0.00 0.77 0.84 1.09
b02 0.70 0.00 0.61 0.70 1.13
b03 0.25 0.00 0.23 0.46 0.59
b04 0.56 0.00 0.69 0.56 1.89
b05 2.69 0.00 1.74 1.26 4.73
b06 2.16 0.00 1.62 1.99 5.25
b07 0.77 0.00 0.62 0.59 1.36
b08 0.37 0.00 0.34 0.37 0.73
b09 0.91 0.00 0.54 0.64 1.22
b10 0.39 0.00 0.37 0.39 3.26
b1l 1.34 0.00 0.81 0.98 2.45
b13 0.52 0.00 0.52 0.52 1.17
bl4 0.97 0.00 0.85 1.06 2.83
b15 1.17 0.00 0.81 0.78 2.47
b16 0.92 0.00 0.95 1.03 3.22
b17 2.05 0.00 1.61 1.88 4.21
Average 1.04 0.00 0.82 0.88 2.35

Table 5.13 U{;: Increase of worst-case objective value with respect to optimal worst-case
objective value, in percent.

is larger than for U;. Therefore, nominal and robust solutions differ more, which is
reflected in the increased nominal objective values, as can be seen in Table Inter-
estingly, solutions generated by Heuristic 3 have very good nominal objective values.
This can be explained by the fact that the algorithm considers only one scenario at a
time, while the other robust approaches consider all scenarios simultaneously.

Table shows that there are large differences in the worst-case objective values of
the solutions. For the average row, we ignored those instances that were not solved to
optimality in the exact formulation. For instance b15, as an example, both Heuristic 1
and 2 found on average better solutions than the exact approach did within 300s (with
small computation times). On average, Heuristic 1 and Heuristic 2 perform only 6.16%
or 5.17% worse than the optimal solution, respectively — compared to the approximation
guarantee of 500%, a promising result. Both the nominal solution and the solution
generated by Heuristic 3 perform significantly worse, with worst-case objective values
about 32% higher than the optimal solution.

As a conclusion, we note that the advantage of taking robustness into account
depends on the uncertainty under consideration. For uniformly distributed, highly-
sampled instances, both the nominal solution and its robust counterpart differ only
slightly. For uncertainty sets in which the scenarios may differ significantly, also the
robust solution performs very differently to the nominal solution. Furthermore, the
better the worst-case costs of a robust solution are compared to the nominal solution,
the harder is the MIP formulation to solve, and Heuristics 1 and 2 become attractive.
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Instance Nominal Exact Heuristic 1 Heuristic 2 Heuristic 3
b01 0.09 0.16 0.10 0.10 0.50

b02 0.11 0.82 0.20 0.20 1.04

b03 0.47 1.87 0.65 0.63 3.19

b04 0.12 0.25 0.15 0.14 0.79

b05 0.21 0.79 0.52 0.51 2.42
*b06 1.78 149.51 3.05 2.41 14.55
b07 0.15 1.09 0.33 0.29 1.51

b08 0.33 1.93 0.67 0.72 3.34
*b09 2.50 90.87 4.87 4.60 17.23
b10 0.52 6.55 1.01 0.93 4.35
*bll 2.63 141.95 3.40 3.06 16.06
b13 0.62 14.84 0.94 0.81 4.57
*b14 1.50 82.87 2.06 2.01 11.57
*b15 12.32 286.37 15.44 18.30 280.72
*b16 1.87 226.44 3.84 4.13 19.99
*b17 2.88 147.99 14.33 10.37 50.09
Average 1.76 72.14 3.22 3.08 27.00

Table 5.14 Uy: Solution time in s.

Instance Nominal Exact Heuristic 1 Heuristic 2 Heuristic 3
b01 0.00 5.61 2.26 11.46 0.30

b02 0.00 17.17 10.12 26.02 0.84

b03 0.00 6.01 4.75 13.37 0.47

b04 0.00 16.02 11.53 20.85 0.08

b05 0.00 12.21 8.52 17.05 0.00
*b06 0.00 12.54 10.04 19.06 0.74
b07 0.00 9.23 7.43 21.94 1.44

b08 0.00 6.35 7.12 15.96 0.87
*b09 0.00 4.20 4.86 9.14 1.52
b10 0.00 10.87 11.92 20.76 0.47
*bll 0.00 20.11 12.56 27.56 0.57
b13 0.00 10.15 8.24 18.30 1.00
*b14 0.00 5.72 5.81 9.64 0.85
*bl5 0.00 2.53 6.16 9.34 1.49
*b16 0.00 12.32 10.12 24.53 1.26
*bl17 0.00 7.71 7.71 22.63 1.22
Average 0.00 9.92 8.07 17.98 0.82

Table 5.15 Us: Increase of nominal objective value with respect to optimal nominal objec-
tive value, in percent.
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Instance Nominal Exact Heuristic 1 Heuristic 2 Heuristic 3
b01 11.13 0.00 3.80 6.09 11.29
b02 40.82 0.00 7.14 4.05 43.87
b03 15.57 0.00 3.54 5.20 15.65
b04 60.78 0.00 8.25 2.53 63.77
b05 61.57 0.00 6.35 3.47 55.76
*b06 44.00 0.00 6.19 3.53 42.61
b07 18.94 0.00 6.04 6.45 19.97
b08 22.79 0.00 4.96 5.87 20.94
*b09 15.05 0.00 6.02 5.76 17.23
b10 37.59 0.00 5.91 6.21 37.90
*bl1l 44.76 0.00 6.17 2.87 45.18
b13 26.52 0.00 9.48 6.71 26.12
*bl4 23.63 0.00 3.62 5.60 21.31
*b15 10.00 0.00 -8.16 -6.35 11.46
*b16 30.46 0.00 5.58 5.06 31.71
*bl17 34.03 0.00 7.15 8.87 32.09
*Average 32.86 0.00 6.16 5.17 32.81

Table 5.16 Us: Increase of worst-case objective value with respect to worst-case objective
value of exact strictly robust program under timelimit, in percent.

5.2.5 Conclusion

We considered approximation algorithms for the one-stage and two-stage robust Steiner
tree problem, and presented approximation ratios when possible. In a set of experi-
ments on SteinLib test instances, we evaluated the empirical approximation ratio, which
turned out to be significantly better than the theoretical bound. Furthermore, we found
that the type of uncertainty set under consideration has a large impact on the perfor-
mance and importance of robust solutions.
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5.3 Robust Periodic Timetabling

5.3.1 Introduction

In Section we already discussed how robustness models can be applied to aperiodic
timetabling problems that consider a finite time horizon. We now examine the case of
periodic timetabling problems, in which we assume that train arrivals and departures
repeat every 7' minutes for passenger convencience, see [LMOT, [(0di96, Nac98| [Lie06),
Pee03]. The model we use is based on the Periodic Event Scheduling Problem (PESP)
as introduced in [SU8Y|, where periodically reoccurring events need to be scheduled
according to given feasible time spans, minimizing the weighted sum of time differ-
ences. Successful applications of this model include the optimized timetable for the
underground railway of Berlin [Lie08], and the timetable for the largest Dutch railway
contractor, the Nederlandse Spoorwegen [KHAT09).

Methods to solve PESP instances most commonly include mixed-integer program-
ming techniques, see [LPWO08]. Recently, local search heuristics like the modulo network
simplez method [NOOS, [GST1a] have become a valuable alternative due to their ability
to tackle larger instances, as it is usually the case in real-world problems.

As delays create considerable passenger inconvenience as well as operational costs
and should not be neglected when designing a periodic timetable fit for practice, several
attempts have been made to find robust timetables, i.e., timetables that behave “well”
in a to be specified sense under the existence of delays.

Already the nominal PESP is strongly NP-hard and computationally difficult to
solve. Thus, complex robustness models are not a practical option. In [ESZ09], a linear
robustness objective is proposed, based on statistical evidence [KDV07]. The resulting
model is then solved by a commercial mixed-integer programming solver.

Contribution. In this section, we suggest to fit the robustness concept to the size of the
instance, and thus the available computational resources. We consider the application
of current robustness models to the timetabling problem, including RecOpt, for which
we show that the resulting MIP can be decomposed under certain circumstances. For
large-scale instances, we propose the usage of a bicriteria local search algorithm that
considers both robustness and travel time in each iteration, approximating the convex
hull of efficient solutions. For each robustness approach, we present numerical results.

Overview. In Section we describe the nominal periodic timetabling problem.
We introduce its uncertain formulation in Section [5.3.3] and discuss the application
of robustness concepts from the literature, before we consider RecOpt and RecFeas
for periodic timetabling in Sections [5.3.4] and [5.3.5l Finally, we discuss a local search
algorithm for finding a robust solution in Section and evaluate our approaches
experimentally in Section [5.3.7
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5.3.2 PESP and Periodic Timetabling

A periodic event i is a countably infinite set of events i,, p € Z, with occurrence times
t(ip) =t(@) +p-T

for a given period T, see [SU89]. A span constraint consists of an interval [l;;, u;;] C R
for a pair of events (4,j). The span constraint is satisfied if

(t(j) — t(4)) mod T € [lij, uij].

The PESP problem is given as follows: For a given finite set of events with a period
T and a finite set of span constraints, find a time ¢(7) for each periodic event i such
that all span constraints are satisfied. It is shown [SU89] that PESP is NP-hard by
transformation from the Hamiltonian Circuit Problem.

Based on the PESP, the periodic timetabling problem can be formulated by intro-
ducing event-activity-networks (EAN) as in Section to model the time-dependent
behavior of the various vehicles considered [Odi96]. Here the events are periodic in the
sense that all arrivals and departures are repeated in every period.

The goal is to find a timetable assigning a time m; := t(i) mod T' € R to each of
the events i € £ for a given period 7" such that the span constraints are satisfied, i.e.,
(mj —m;) mod T' € [l;j,u;;] for each activity (i,j) € A. As in the aperiodic case, the
objective in the timetabling problem is not only to search for a feasible solution, but
instead for an optimal one, namely we minimize the total passenger traveling time given
as

Z (7Tj — ﬂ'i) mod T — ll]
(1,j)eA

Instead of the event times m;,¢ € £, one can equivalently determine the slack y;; =
mj —m; — lj; for any edge (i,j) € A with lower bound /;;. Generally speaking, the slack
of an activity is the amount of time spent additionally to its minimum duration. Using
this concept, an alternative formulation (used by the modulo network simplex) has
been suggested in [Nac98]. Let 7 = (£, A7) be a spanning tree with its corresponding
fundamental cycle matrix I', then the periodic timetabling problem can be formulated
as follows:

(PTT) min Z wijyij = TravelTime(y)
(i,5)eA
Ny+1)=Tz
0 <wij < iy — i V(i,j) € A
yij € RV(i,5) € A
zij € ZV(i,j) € A\ A,

st (y,2) e F(l) :=

where y = (¥ij)@j)ea and I = (lij) ¢ jyea- For details and correctness we refer to
[Nac98|, Lie06]. As the variables z;; model the periodic character of the problem, they
will be referred to as modulo parameters.
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Note that the modulo parameters are the reason why this problem is NP-hard, and
for fixed variables z;; the timetabling problem becomes aperiodic. In this case, it is the
dual of a minimum cost flow problem that can be solved efficiently using the network
simplex method. On the other hand, the variables z are easily obtained for a given
slack vector y. For the sake of simplicity, we will therefore write y € F, when the values
of z are not important in the respective context.

5.3.3 Approaches to Robust Periodic Timetabling

We now briefly consider how some of the generic robustness concepts of Chapter 2] can
be applied to the periodic timetabling problem.

Uncertainty Sets We first give an uncertain formulation of the periodic timetabling
problem. As explained in Section different settings of uncertainty make sense,
depending on the real-world situation at hand. We focus on similar uncertainty sets as
in the aperiodic case, see Section

Up(s) = {l: I < lij < (1+s)li; V(i j) € AT U A™,
lij — lij V(’L,j) c Achange U Ahead}
Us(k,s) = {1 : 1;; < lij < (14 8)lij ¥(i,5) € D C A¥Ve U AV |D| = E,

lij = lij V(i,j) € A\ D}
Note that in the periodic setting, these sets have a different meaning than before. They
do not describe the delay of a single aperiodic activity (i.e., one train is delayed), but
the delay of every aperiodic activity that is represented by a periodic activity (i.e., every
train of the considered time horizon is delayed). This makes sense when we consider
delays that are generated by longer-lasting events, e.g., construction sites or weather
conditions.

The uncertain periodic timetabling problem is then given by (PTT(l),l € U) for
U=U(s)orU =Uk,s).

Strict Robustness. For U;, there exists a global worst-case scenario as defined in
SectionAThe scenario V¢ € U (s) with llVJVC = (1+s)l;j for (i, j) € Achangey ghead
and ZZVJV C= l;; otherwise, dominates all other scenarios of the uncertainty set. Therefore,
the strictly robust counterpart of the periodic timetabling problem for U is given by
(SR,) min TravelTime(y)
st (y,2) € FAWY),
i.e., a problem of type (PTT) again. In the case of Us, IWC is still a quasi-worst-case

scenario, and the problem of finding a strictly robust solution amounts to solving a
single scenario as well:

(SR,) min TravelTime(y)
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st (y,2) e FIVO)

This is due to the fact that "¢ dominates all scenarios from Us, and although it is not
included in Us, there is always a scenario that would dominate at least one constraint
for all vectors I’ < IWC — for Us, we have a quasi-worst-case scenario.

Light Robustness. In the lightly robust counterpart, we measure the degree of robust-
ness by how much constraints are violated. As the constraints I'y = Tz stem from the
periodicity of the problem and are needed to find a slack vector y that corresponds to
a node potential 7w, we do not allow any violation of these constraints. Instead, we only
allow violations of the lower and upper bounds on the activity durations. As possible
robust counterpart is then the following:

(LR)  min > (va+72)

acA
s.t. —fyégyagua—la+’ya2Vl€L{,a€A
D(y+1)=T=
Zwaya < (1+p)f*
acA

As " is a quasi-worst-case scenario, for both U (s) and Us(k, s) the robust counterpart
is equivalent to the robust counterpart that only considers "¢ i.e.

(LR)  min > (vs+72)

acA
st = <ya<ug—1VC4+42Vaec A
T(y+1)=T=
Zwaya <({A+p)f”
acA

Recovery Robustness. In [Sti0f|, the recovery robust counterpart of the uncertain
periodic timetabling for an uncertainty set

la, otherwise

lo+ A, ifd=
u’:{ le]R'“‘”:EaeAs.tla/:{A—i_ A }

is considered. Note that ¢/’ is finite and consists of the extreme points of an uncertainty
set similar to Ua(k, s). As there is a one-to-one relationship, a scenario [ € U’ can be
identified with an activity a € A. The recovery robust counterpart is then given by the
following program.

(RR) m}n Z Wij (71']' — 7 + TZZ‘J')
B i j)ea
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st. mj—mi+ fij + Tz =1;; V(i,5) € A
T — T + ﬁ-j + Tzij = uij Y(i,5) € A
VaelU',Z2€{0,1}:
fig +yi —yi 2 Axi(a)E (i, j) € A
fis +uf =y} = Axij(a)(1 - E) V(i,j) € A
D—d'y*>0
y* >0

where x;;(a) is 1, if a = (¢,7), and 0 otherwise.

5.3.4 RecOpt for Periodic Timetabling

We now consider how to apply the RecOpt approach to periodic timetabling.

Distance measure. As specified in Section it is crucial to identify a distance
measure between two solutions. There are multiple ways to do so (e.g., using the
difference of modulo parameters, or graph similarity between spanning tree structures),
and we focus on the difference of slack values as a canonical distance measure in this
section.

For two periodic timetables (y', 21), (32, 22), we define

d(('2"), % 2%) = |vs — v

acA

MIP formulation. For any given subset S of scenarios, we consider the following
problem:

(RecOpt)™**(8S) min maxd ((y, 2), (v, zl))
leS

st. (y,2) € F(I)

where (3!, 2!) is an optimal solution to the periodic timetabling problem under scenario
I. As noted in Section (RecOpt)™**(8S) can be linearized by writing
min c

st. e ) BLVIES
acA
—b <ya—yl <blViesS

(y,2) € F(I)

where the variables b, are introduced to model the absolute values. This problem can
be modified in several ways, depending on the preferences of the planner:
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e Instead of minimizing the worst-case recovery distance, the average recovery dis-
tance can be minimized, which is denoted by (RecOpt)*(S). The linearization
works analogously.

e In the given formulation, the nominal objective is included implicitly via the
solutions (3!, 2!). If a guaranteed nominal quality is desired, a constraint of the
form

Y waya < (1+p)f*

acA

can be added, where f* denotes the optimal objective value for the nominal
problem, and p the available budget.

Sampling heuristic. As the presented problem formulation has infinitely many vari-
ables for infinite scenario sets S, we cannot solve it directly using S = U; or Us. Instead
we sample a finite number of scenarios and solve a relaxed problem version.

Note that (RecOpt)"**(S) is not a PESP, and cannot be solved using the modulo
simplex anymore: In general, there is no solution induced by a spanning tree structure
that is optimal for (RecOpt)"**(S). While the former tend to set slack values to either
0 or ug — lg, the latter try to add buffer times. However, the modulo simplex can still
be used with the objective function of (RecOpt)™**(S), although this will slow down
the search procedure.

Special problem cases. As most of the presented robustness approaches turn out
to be computationally difficult, we consider a special case of the periodic timetabling
problem: We assume that Aj,cqq = 0 and v, —1l, =T —1 for all a € Achange, and denote
this problem as rPESP. This is only slightly restrictive from a practical point of view,
but significantly decreases the computational complexity of the problem, as we show
in this paragraph.

Lemma 5.21. Given an rPESP and a vector d € N\ Achangel ith 1, < d, < u, for all
a € A\ Achange, there is a feasible solution (y, z) with Y, = dg for all a € A\ Achange-

Proof. We construct (y,z) from a node potential . For every event e € & without
incoming drive- or wait-activity, set m. = 0. All other potentials are then defined using
the driving- and waiting times d. As u, —l, = T — 1 for all change activities a, no
lower or upper bound of an activity is violated, and the modulo parameters can be
canonically computed from the node potentials. O

Corollary 5.22. rPESP is combinable (see Deﬁnition with respect to y| 4\ 4

change *

Now, using rPESP alone does not make it possible to ignore the set F(I) when solving
(RecOpt)™**(8), i.e., reduce the problem to an unconstrained location problem. This
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can be seen when we consider a single circle C and two feasible solutions (y', z'), (32, 22).
For any convex combination A(y!, 2!) + (1 — \)(y?, 2?) with A € (0,1) it holds

> Owh (1= Ny2) = ATz + (1 - NT2E =T(Az + (1 - MN)2),
acC

which is in general not a multiple of T.

However, when we ignore the duration of change activities in the recovery distance
measure, we can solve RecOpt as a sequence of rPESP problems and an unconstrained
location problem:

Theorem 5.23. Let a finite set of scenarios S = {I',..., IV} for an rPESP be given.
Then, (RecOpt)™**(S) and (RecOpt)**(S) with respect to

4 (2", 5 22) = D |vs— vl

aeA\Achange

or

do (', 2h), (2, 2%) = - |ya — y2|

and (RecOpt)™ (S) with respect to

("% ) = > (-2’

aeA\Achange

can be solved by solving N rPESP problems and one polynomially solvable location
problem, if the optimal solution to every scenario is unique.

Proof. For every scenario I* in S, we denote the optimal solution of the respective rPESP
problem as (y¢, z*). For d} and d._, the arising location problems can be formulated as
linear programs and are thus polynomially solvable. For d¥, setting y, = % Zfi 1 vl
for alla € A\ Achange yields an optimal solution. Using Lemma we are then able
to complete these values to a feasible solution (y, z), which minimizes the respective
distance by definition. O

In the case of (RecOpt)™**(8) with I distance, the robust timetable can be easily
determined by setting y, = %(maXie{l,...,N} vl + mingeqr Ny yfl) for every activity
ac A \ -Achange-

From a practical point of view, the distance measures d’ from Theorem are
justified: In fact, if the recovery distance is supposed to measure the changes in the
operating schedule, we are mostly interested in what each driver needs to do differently
to the original schedule. Differences in a passenger’s change time can therefore be
neglected from the operator’s point of view.
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5.3.4 RecOpt for Periodic Timetabling

We now consider the nominal solution quality of a periodic timetable obtained this
way.

Theorem 5.24. For the periodic timetable (y, z) obtained by setting y, = % Zf\; v
for all a € A\ Achange, there holds

N
. 1 : -
TravelTime(y) < N g 1 TravelTime(y") + E Wqlg
—

i= aEAchangc

Proof.

TravelTime(y) = Z Wala
acA
S Z waya+ Z WalUg
ae-A\-Achange aEAchange

1 N
T SRS S S
aeA\Achange i=1 ae-Achange
1 N
SN 2L wat ), wa
i=1 ae-A\-Achange aEAehange

N
1 . ;
< ¥ E TravelTime(y") + g Wqlq

=1 ae-Achange
O

Note that the proof of Lemma [5.21] constructs a feasible timetable by setting . = 0
for the beginning of each line. The nominal quality of a timetable can be further
improved if the starting time of each line is calculated by solving an optimization
problem of the form:

min g WeCa

a€Achange
s.t. Cij = Ty — Ty(jy + dij + Tzi5 V(i,5) € Achange
Ca > la Va € Achange
0<xy <T-—-1VlieLl
z € RIF ¢ € RMehangel » ¢ 7lAchangel

where £ denotes the set of lines, /(i) denotes the unique line that event i € £ belongs
to, and d;; denotes the time a vehicle needs under the given driving- and waiting-times
to arrive at event j, minus the time needed to arrive at event i. The variables x; denote
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the offset of the starting time of a line (in the proof of Lemma these are set to
0), the variables z, are modulo parameters, and ¢, denotes the change time for change
activity a.

Heuristics for this type of problem have been considered in [HesI2]. All quality
guarantees that can be found for optimal solutions of this problem can be used to
improve the bounds presented in Theorem

5.3.5 RecFeas for Periodic Timetabling

We now consider the problem of recovering to a feasible solution instead of an optimal
one. We use the same distance measure as for RecOpt, ie. d((y*,z1), (y% 2%)) =
> wca |ve — y2|. For a scenario subset S of U or Us, (RecFeas)™**(S) is given as

max : ol
(RecFeas)™ " (S) min r{le%xd ((y, z), (', 2 ))

st. (y,2) € F(l)
(', 2" e F(I) Vi e S,

which can be rewritten to

min ¢
st c> Y WLVIES
acA
—b<ya—yi<tivies
(y,2) € F(I)

(', 2HYe F)yvieS

As it is the case for RecOpt, we may add a constraint that requires a certain nominal
quality, or minimize the average recovery distance instead of the maximum distance.
Also the sampling heuristic can be applied in this case, and RecFeas can be rewritten
to an integer linear program in the case of distance function that comes from a block
norm in both the center and median case.

Depending on the uncertainty set, RecFeas might become trivial to solve.

Theorem 5.25. (RecFeas)"**(U,) and (SRy) are either both infeasible, or any feasible
solution of (SR1) is optimal for (RecFeas)™""(Uy) as well.

Proof. (RecFeas)™""(U,) is feasible, iff (PTT)(l) is feasible for all I € U, which is
equivalent to feasibility of (PTT)(I"“)=(SR;). If they are feasible, then any solution
to (SR1) has 0 recovery costs and is thus optimal for (RecFeas)”*" (U). O

Note that this is not necessarily the case for Us, as I"'C ¢ Us. In fact, the following
example demonstrates that (RecFeas)™ " (Us) might be feasible, when (SRs) is not.
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5.3.6 A Local Search Heuristic

Example 5.26. Consider the following EAN:

1,2] [1,2]

>Q

1,3

The brackets next to each activity denote the lower and upper bounds, respectively. The
period is T > 3, and the uncertainty given by

U= {(l12,123) : 1 < 12,123 <2, l1g =1V I3 =1}

Then every scenario is feasible, and therefore (RecFeas)" " (U) as well, but the strict
robust counterpart is infeasible.

In our terminology of Section the reason for this difference between U; and Us
is that in the former case, ¢ is a feasibility-worst-case scenario, but only a quasi-
worst-case scenario in the latter case.

5.3.6 A Local Search Heuristic

We now assume that our problem instances are too large to be solved to optimality by
integer programming methods. Instead, we would like to apply a heuristical strategy
with only small computational overhead for robustness purposes. To do so, we calculate
solutions that follow a pre-defined buffer distribution.

5.3.6.1 The Modulo Simplex Heuristic for the Periodic Timetabling Problem

We briefly describe the method of [NOOQS] in this section. Extensions can be found in
[GS11al. Its main idea is to encode a solution as a spanning tree 7; U T, by setting the
modulo parameters of the tree edges to 0 and the duration of these activities either to
their respective lower or upper bound.

Definition 5.27. [NO0S] A spanning tree structure (7;,7T,) is a spanning tree T =
T U T, with an edge partition such that y;; is set to 0 on all edges (i,7) € T; and set to
wij — lij for all edges (i,7) € T.

A spanning tree structure uniquely determines a periodic timetable by calculating
the slack y;; for the missing edges (4, j) ¢ T such that the cycle condition I'(y+1) = Tz
of (PTT) holds. On the other hand, it is shown in [Nac98] that

(W) € Q.= conv{(ﬁ) \lij <mj—m+ T2y < w2 € LMy € R”}
z z
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is an extreme point of @Q if and only if it is a solution that is given by a spanning tree
structure. Thus it is sufficient to investigate only these solutions.

The modulo network simplex works as follows: As it is the case in the classic net-
work simplex method, a given feasible spanning tree solution is gradually improved by
exchanging tree and non-tree edges that lie in the same fundamental cycle, i.e., the
cycle that consists of the non-tree edge and its unique path in the spanning tree. This
is done with the help of a simplex-like tableau.

The objective value w'y is calculated by Z(i,j)géT WijYij + Z(m)e% wij(uij —lij). Let
¥ be the slack vector after pivoting edges e; and e;. By writing [y]7 := y mod T for
short and denoting by b;; the tableau entry for the edges e; and e;, the change in the
objective value when pivoting a non-tree edge e; and a tree edge e; to 7; is

wtyz] _ wty

= Z Wk [yk - Zk]yz} + wj [ + Z/J] + Z WYk — Z WEYk
v T

ke A\(TU{i}) keTy keA

T

. bk:j Yi

= Z Wi\ Yk = Vil T Yk | W + y] —Yj | — Wil
. i T l]

ke A\(TU{i})

while the change when pivoting to 7, is

Awij = wij —w

- > w([yk—[::j(yz’—uiJrli)L—yk)

ke A\(TU{i})
i — Ui+
+Wj<[y - +yj] _yj>_wz(z_uz+l)
bij T

Every non-zero entry of the left part of the table stands for a possible basis exchange
of a non-tree-arc with a tree-arc that lies on its induced fundamental cycle. However,
due to the modulo parameters, reduced costs as in the classic network simplex cannot
simply be read off in the tableau. In consequence, the resulting change of every entry of
the simplex tableau has to be calculated which results in a time-consuming complexity
ofc-(m—n+1)-(n—1)-(m—n+1) = O(m?*n +n3), where m = |A| and n = |€].
Furthermore, as the problem is not convex, many local optima exist, which is the reason
why methods of global optimization should be added.

In order to do so, we use the following correspondence between the pivoting operation
in the modulo network simplex method and cuts, i.e., sets {(i,j) € A:i € & and j €
EYU{(i,j) € A:i € & and j € &} for a partition £;UE = £. Every edge e of
a spanning tree canonically induces a fundamental cut by taking the two connected
components that appear when removing e. Pivoting a tree and a non-tree edge as it
is done in the modulo network simplex method can therefore be interpreted as shifting
slack from the edges of the corresponding fundamental cut to the non-tree edge. Thus,
the modulo network simplex searches iteratively for improving fundamental cuts.
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5.3.6 A Local Search Heuristic

Notation. Let a cut ¢ be given by its node partition E1WUE, and let § € R. We say
that we apply the cut ¢ with §, if the slack y;; is increased by 6 for all edges (i,j) with
i € &1, 7 € & and decreased by 0 for all edges (i,j) with i € &, j € 1. Moreover,
when the resulting modulo parameters are fized and a new spanning tree structure is
computed, the cut is called globally improving, if the objective value decreases.

To overcome local optima, any other class of cuts can be chosen, which will force
the full recomputation of the corresponding simplex-tableau. In that case, the modulo
parameters have to be fixed and the dual min-cost balanced flow problem has to be
solved in order to obtain a new spanning tree structure.

Figure [5.11] summarizes the main steps of the algorithm. The inner loop and outer
loop shown are used for our improvements in the next section.

5.3.6.2 Measuring Robustness

Assuming a robustness function Robustness : R4l — R is given, which evaluates how
capable a timetable is to handle delays, we would like to solve the bicriteria robust
periodic timetabling problem:

min  TravelTime(y)

max Robustness(y)

(RPTT) {

st (y,2) e F

There are many possibilities of how to design such a robustness function. One is
to generate a large number of random delays, and to measure their impact under
a given disposition rule, e.g., postponing every event as far as necessary to become
feasible again. However, even though this approach would represent the robustness of
a timetable very adequately, it is computationally too difficult to be included in the
optimization process.

We will therefore assume that Robustness(y) = rly is a linear function, and the
weights r, represent the benefit of buffering edge e € A. For the following consid-
erations, we use a robustness function that is motivated by the work of [FSZ09] and
[KDVOT]. Let pos(e) denote the position of a driving or waiting activity e within its cor-
responding trip trip(e), i.e., the path of the train serving the respective activity within
the EAN. We then define the robustness weight r. of a driving or waiting activity
e € Agrive U Await as

maxe {Fe } — Te
|A| - maxe {Fe } — Zel Tel
where 7 = (1 — e ) . (|trip(e)| — pos(e))

Te 1=

and the overall robustness of a timetable as

Robustness(y) := Z TeYe

eeAdriveUA’wait

148



“XordwIs JIomjou o[npout a1} Jo ssado1d or3ewaYdS TG NS4

Chapter 5. Discrete Problem Applications

. . ‘neaqe arepdn :
: Add : : :
: o A1CdY ' ‘nd [eyuauepuny Ajddy : :
m : 3 m ;
: pungfmy Suacuduy s1 uoyp.aado jord 2]q1snaf 159q VNE\: :
; : ( m . ;
9[qeIdWI], OIPOLIdJ : ‘o Suraoxdur 9[qIseay m ‘suonerado joA1d e 10§ : ‘nes[qe) xardwrs m prmions sox Supuueds o[qiseag
. e : c o e | : § : | dour)sul Furjqeldwi],
andinQ : © 10J yoIeas : S1S00 MU 2Je[Nd[eD) o[npour 2Je[nofeD) : S
%ES\MN:Q ON ‘uoyv.1ado S;.:w Sunoadur oN m
T mw.m_. ,.:EE
e e ane :
dooj 19)n0

149



5.3.6 A Local Search Heuristic

In preliminary experiments, this robustness function yielded the best results in the
sense that timetables that were buffered along this weight distribution turned out to
be more robust under random delays than timetables with other tested distributions.
However, any other set of robustness weights could be used if it was preferred.

5.3.6.3 Local Search for Robustness

We modify the modulo simplex algorithm in order to find the convex hull of Pareto
solutions by the e-constraint method [Mar67].

Let R be the minimal required robustness of a solution. In order to find a timetable
with robustness of at least R, we impose the following two rules on the local search
phase:

Rule 1.1: If the current robustness is greater or equal to R, choose a neighbor with
robustness greater or equal to R that minimizes the travel time.

Rule 1.2: If the current robustness is smaller than R, choose a neighbor that maximizes
the robustness.

Rule 1.1 makes sure that the local search does not violate the robustness constraint,
while Rule 1.2 forces the algorithm to try to satisfy the constraint again, should it be
violated. Therefore, the only possibility for the robustness constraint to be violated is
by means of phase 2.

For phase 2, the following rules hold:

Rule 2.1: If the current robustness is greater or equal to R, minimize the travel time
when rebuilding the spanning tree structure from the current modulo parameters.

Rule 2.2: If the current robustness is greater or equal to R, maximize the robustness
when rebuilding the spanning tree structure from the current modulo parameters.

Note that Rule 2.2 can only be applied, because the robustness objective Robustness
is a linear function. All other modifications can still be used for non-linear robustness
objectives. A schematic view on the algorithm is given in Figure[5.12] As the algorithm
does not necessarily converge, but can in fact endlessly switch between regions with
too less and regions with satisfactory robustness, an iteration limit is imposed. When
this limit is reached, the best solution found is returned.

We present an example in Figure [5.13] where we plot the travel time and robustness
for a single run of the algorithm. The minimal required robustness R is 14. When a
local minimum with respect to travel time is found in iteration 476, a connected cut is
applied that reduces travel time (Rule 2.1). The algorithm now strives to increase the
robustness to a feasible level (Rule 1.2). After failing to do so by getting stuck in a local
maximum with respect to robustness, a connected cut is applied that maximizes the
robustness again (Rule 2.2.). This continues until the iteration limit of 2000 is reached.
The best feasible solution is saved and the algorithm ends.
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Local Search MinCost Flow|
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Figure 5.12 Schematic overview of the algorithm.

5.3.7 Experiments

Trying to compare the recovery-to-optimality approach to the local search algorithm
from Section [5.3.6] may seem a natural experimental approach. However, we argue
that both approaches to robustness do not only differ in the problem size they are
designed for, but also in their definition of robustness, and should better be compared
to competitors from their own domain. Therefore, we compare the RecOpt approach
in Experiment 1 to strict robustness and the nominal solution, and compare the pareto
solutions of the local search algorithm to solutions generated using fixed buffer times
in Experiment 2. In other words: While the first experiment compares concepts, the
second experiment compares algorithms.

Environment. All experiments were conducted on a PC with 24 GB main memory
and an Intel Xeon E5520 processor, running with 4 cores at 2.26 GHz and 8MB cache.
Only one core was used and a fraction of the memory was used. All code is written in
C++ and has been compiled with g++ 4.4.3 and optimization flag -O3.

5.3.7.1 Experiment 1: Small and Medium Sized Instances

Test instances. We randomly generated two sets of instances: Denote by an instance
of size n an instance with n lines of length n, and 1.5n change activities. The lower
bound ;; for a driving or waiting activity (¢,j) is randomly chosen from the interval
[1,30], while the upper bound is chosen from [2l;;,2l;; + 40]. The period T is 60, and
change activities have durations from the interval [3,62]. The first set of generated
instances consists of instances of size from 5 to 11, 10 each, totalling to 70 instances.
The second set consists of instances of size from 20 to 30, 1 each, totalling to 11
instances.

Setup. In this experiment, we try to compare both the direct MIP formulation of
RecOpt with respect to do, and the separation approach to the strictly robust and the
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Figure 5.13 An example for the proposed algorithm.

nominal solution. For the smaller dataset we solved RecOpt, (SR) and (PTT) using
the MIP-solver Gurobi 5.0 [Gurl2]. For the larger dataset exact MIP solutions could
not be produced in reasonable time (runtimes > 1h), and the modulo simplex heuristic
was used instead. We solved the strictly robust and the nominal problem, and all
scenarios seperately. We then calculated the d3 median with respect to driving and
waiting activities for all scenarios, fixed these durations, and postoptimized the change
durations using Gurobi again, resulting in a heuristic RecOpt solution.

The uncertainty we consider is finite, consisting of N = |.A|/10 scenarios. In each
scenario, the lower bounds of |A|/5 activities are multiplied by a random factor from
[1.1,2].

Results. Calculation times were in the order of seconds. The results on both datasets
are presented in Figure While the solid lines represent the value of TravelTime,
the dashed lines give the recovery distance. As expected, the travel time of the RecOpt
solution is in between the travel time of the strictly robust and the nominal solution. For
increasing instance size, the strictly robust solution becomes unattractively expensive,
while the objective value of RecOpt keeps close to the nominal objective value.
Concerning the recovery distance, RecOpt yields the smallest costs, as expected.
Note that the distance is bounded by T' = 60 for the smaller instances, as we used the
ds center, while the d3 distance is not bounded. While both the strictly robust and

152



Chapter 5. Discrete Problem Applications

2e+06

50

1.5e+07

"Nominal
......... Recopt 4 5e+06
PR Strict
1.5e+06 | i 40 1.2e+07 | * 1 4e+06
2
o g o
£ § »n E
= § o F 1 3e+06
1e+06 s > ) 9e+06
> § 30 § >
© H > ©
" g 1 2e+06
&
500000 6e+06
20 |
Nominal 1e+06
Recopt
Strict
0 ‘ : 3e+06

5

6 7 8 9 10 11
Problem Size

(a) Small instances.

20 22 24 26 28 30
Problem Size

(b) Medium instances.

Figure 5.14 Results for experiment 1. Solid lines represent the travel time, dashed lines the
recovery radius.

the nominal solution are expensive to recover in the case of the small instances, this is
different for the larger instances, where the nominal solution shows a recovery distance
that is only slightly larger than the optimum.

The results show that both presented approaches to RecOpt are easily applicable for
instances of size up to 30, and suggest that solutions yield a good trade-off between
TravelTime and robustness in terms of recovery distance.

5.3.7.2 Experiment 2: Large Instances

Test instance and starting solution. The high-speed railway instance bahn-01 from
the LinTim-toolbox [GSS|] was used, which consists of 3664 events and 6381 activites, of
which are 2827 change-, and 3554 waiting- or driving-activities. The network consists of
250 stations and 55 trains. We intended the starting solution to maximize robustness,
therefore we fixed the maximally allowed slack for every driving and waiting activity,
and minimized the resulting weighted changing times, as this does not decrease the
robustness.

Setup. We proceed as follows: As the robustness of the starting solution, i.e., the
optimal solution of (RPTT) with respect to Robustness, is approximately 15.238, we
run the robust local search algorithm with R € {0,1,...,15}, where R is the minimal
required robustness, and an iteration limit of 2000. In order to evaluate the efficient
solutions found this way, we additionally calculate solutions using the original modulo
network simplex method on modified instances, where the robustness level is imple-
mented as a hard constraint on the lower activity bounds. Specifically, we distribute
a total slack of S € {0,A,2A,...,7TA} according to the distribution as described in
Section where A = |Agrive U Await|. It is not possible to use more slack than 7A
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5.3.8 Conclusion

this way without violating the upper bounds on the activities. Again, 2000 iterations
are used, and the efficient solutions determined.

Results. In Figure we present the efficient solutions as found by the robust
local search. Due to the iteration limit of 2000, robustness levels smaller than 7 did
not impose a restriction on the search process. Therefore, all of these runs yield ap-
proximately the same solutions, differing only by the randomized connected cuts.
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Figure 5.15 Pareto front of solutions.

For the efficient solutions, there seems to be a linear relationship between robustness
and travel time, with slope of approximately 1 - meaning that, in order to double the
robustness, also passengers need to travel twice as long. Furthermore, the gap between
the travel time of the most robust solution, and the travel time of the solution with a
robustness level of 15 is larger than would be expected in a linear relationship. This is
partially due to the algorithm design, which makes it possible to explore more solutions
when the robustness constraint is not tight.

The efficient solutions calculated by ensuring robustness by modifying the lower
bounds on the activities are compared to the robust local search solutions of the same
robustness level in Figure Out of 8 solutions, 6 are dominated, while on the
other hand, none of the efficient solutions of the robust algorithm is dominated. The
least squares fit lines are clearly separated. Table shows the respective objective
values. The computation time was approximately 1.5 seconds per iteration in all cases,
leading to a total runtime of 3000 seconds for every parameter setting.

5.3.8 Conclusion

We considered different approaches to include robustness in the periodic event schedul-
ing problem, proposing to chose the robustness model depending on the problem size
and thus available computational resources.

154



Chapter 5. Discrete Problem Applications

Efficient solutions, Efficient solutions,
rob. algorithm fixed bounds
Robustness  Travel Time Robustness  Travel Time
6.712 3.440
6.743 3.450
6.746 3.494
6.853 3.538
7.000 3.510
7.059 3.820
7.303 3.723
7.786 4.030
8.000 3.778
8.221 4.106
8.968 4.351
9.000 4.193
9.187 4.499
9.602 4.680
10.000 4.467
10.039 4.784
11.000 4.969
13.105 5.741
14.000 6.127
15.000 6.733
15.238 7.117

Table 5.17 Objective values of efficient solutions. Travel time values need to be multiplied
with 108.

For instances where mixed-integer programming can be applied, we presented a model
that minimizes the recovery distance to an optimal solution in every scenario, and
showed that this problem can be separated depending on the recovery measure. For
larger instances, we described a local search algorithm to find periodic timetables with
a prescribed robustness level.

In an experimental evaluation, we compared both approaches to competitors for the
respective problem size.
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5.4 Robust Timetable Information

5.4.1 Introduction

So far, we have considered both the problems of finding a timetable in the periodic and
in the aperiodic case, that still performs well under disruptions during operation. We
now consider a similar problem from the passenger’s point of view: Given a timetable
and a set of possible disruptions, what is a good way to travel from origin to destination?
We refer to this problem as the timetable information problem.

The classic timetable information problem is usually modelled as a shortest path
problem in either a time-expanded event-activity network or a time-dependent graph,
see [IMSWZ07] for a survey. The “reliability” of a path has been considered as an addi-
tional search criterion within a multi-criteria timetable information system by [DMS08].
[MS09] and [Sch09] study timetable information in the presence of delays. They show
that a massive stream of delay information and schedule changes can be efficiently
incorporated into the search for optimal paths. The robust shortest path problem has
found quite some attention in the literature, see [KY97, BS03|]. Uncertainties are mod-
eled by a set of known scenarios, where each scenario corresponds to a set of arc lengths
(or weights). The robust shortest path problem is to find among all paths the one that
minimizes the path length in the worst case over all scenarios. A related problem is the
robust deviation path problem which looks for a path such that the maximum difference
between the length of this path and the length of the shortest path over all realizations
is smallest. [YY98] have shown that the decision versions of both problems are weakly
NP-complete, even for layered graphs with only two scenarios. They also give dynamic
programming based pseudo-polynomial algorithms for network with a bounded number
of scenarios. [ABV05] give an fully-polynomial time approximation scheme for these
problems. For an unbounded number of scenarios the problem even becomes strongly
NP-hard. Scenarios where arc lengths have an interval range of possible realizations
have been studied by [KPY01]. For such scenarios, the robust shortest path problem
is trivially solved since the worst case appears when the lengths of all arcs are set to
their upper bounds. The robust deviation path problem, however, remains difficult,
even for several special cases, see |[AL04, [Zie04, KZ06a]. [KPYO0I] also showed that
a preprocessing procedure based on the knowledge of those arcs which are never on
shortest paths can be used to speed up the solution of the problem. They applied
these strategies to acyclic directed graphs in which arc lengths are non-negative inter-
vals. Their experimental study was restricted to graphs with up to 420 nodes which
is small compared with the graphs considered here. [MGD04] and [MGO05|] present ex-
act algorithms for general digraphs. [CLSNI1I] recently introduced stronger reduction
techniques applicable to general digraphs.

In [Biis09] an approximation algorithm for finding a minimal subgraph that contains
a shortest path for every scenario is provided in order to facilitate the recovery from a
chosen path in case of disturbances.
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Our contribution. The classic notion of strict robustness asks to find a solution which
is feasible for any scenario. Translated to timetable information this leads to the prob-
lem of identifying those transfers which will never break subject to the specified set
of delay scenarios. Surprisingly it turns out that already this problem of determining
strictly robust changing activities is strongly NP-hard. Due to this hardness result, we
use a conservative approximation, i.e. we forbid slightly more changing activities than
necessary to guarantee strictly robust solutions. To this end, we compute the maximum
amount of delay which can be accumulated for any arrival event. We succeed in de-
veloping a dynamic-programming approach for this delay accumulation problem which
runs in polynomial time for a realistic model of delay scenarios. We also transfer the
concept of light robustness to timetable information and develop a solution approach.
A lightly robust path is a path which may exceed the minimum travel time in the sce-
nario without any delays (the nominal scenario) by not more than a certain specified
amount but contains as few as possible changing activities which are not strictly robust
under these restrictions. For both concepts we study the price of robustness, originally
mentioned in [BS04]: How much longer is the travel time for a robust solution than for
a shortest path according to the published schedule? We parametrize the set of con-
sidered delay scenarios by the maximum size and number of (large) delays which may
occur. Each fixed parameter set can be interpreted as a level of robustness. In compu-
tational experiments with the schedule of high-speed trains within Germany of 2011,
we explore the trade-off between the level of guaranteed robustness and the increase in
travel time for both concepts. Strict robustness turns out to be too conservative, while
light robustness is promising: a modest level of guarantees is achievable at a reasonable
price for the majority of passengers.

Overview. In Section we formally introduce event-activity networks as mod-
els for timetable information and introduce and discuss delay scenarios. To provide
passengers with strictly robust timetable information, that is to find paths that are
maintained in every scenario, we need to identify the connections that cannot break.
In Section we study the computational complexity of finding these connections
and prove NP-hardness of this problem. Due to this hardness result, we afterwards
study the related delay accumulation problem which provides us with a subset of the
connections that are always maintained. We derive a dynamic-programming based al-
gorithm to solve this problem. In this way we can solve the NP-hard problem of strictly
robust timetable information heuristically in polynomial time. The concepts are ex-
tended to light robustness in Section We present results of our computational

study in Section

5.4.2 Timetable Information and Delay Models

Graph Model. As in Section we represent the timetable as an event-activity net-
work N = (€, A). We briefly repeat its definition: For every arrival and every departure
of a train at a station we define an event. We also have two virtual events, to be de-
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scribed below. The events & = &4 U Egep U Evirt are the nodes in the event-activity
network. The edges are called activities. There are three groups of activities we con-
sider: Agrive contains driving activities of a train between a departure and an arrival
event. Ayqi¢ contains waiting of a train within a station (i.e. between an arrival and
its following departure event), and Acpange contains possible changing activities, i.e.
transfers between the arrival of a train and the departure of another train (at the same
station). Additionally, there are virtual activities A, as described below.

As before, the timetable provides a time m; € N, usually in minutes, for each event ¢ €
&. For each activity a € A a length [, € N is given that represents the minimal duration
the activity has. A feasible timetable satisfies that m; — m; > [, for all a = (4, ) € A.
The slack time of an activity a = (i,j) € A is defined as s, := m; — m; — l,. For our
timetable information problem we furthermore have a request Req of a passenger. Such
a request is specified by an origin station, a destination station and a time tequest € N
specifying when the passenger can start her journey. In order to model such a request
in the event-activity network we add two virtual events, an origin event iy, and a
destination event i4.s; and the following set of virtual activities A,;+: We connect the
origin event to all events i € &y starting at the origin station and having m; > trequest,
and we connect all events j € &, belonging to the destination station and having
Tj 2> trequest tO idest- If the passenger is interested in a path with earliest arrival time
at her destination, we can solve this problem by determining a shortest path from g
to igest With respect to the following weights

T — ifa=(i,j)e A
Cq 1= Ti — trequest if @ = (ing> i) € Auirt (5.74)
0 if a = (J,%dest) € Avirt -

Summarizing, we denote the nominal timetable information problem as
P(&, A, 7, Req).

The output is a shortest path P* specified by its sequence of events, and the arrival
time at igess denoted by f(P*).

Delay scenarios. If everything runs smoothly the passenger would be satisfied with
such a shortest path. Unfortunately, delays are unavoidable. This is in particular
annoying if a connection on such a path may be missed. The passenger hence may
wish to have a reliable connection. To model the uncertainty we define a set of possible
exogenous delays, called source delays, each of them increasing the lower bound of
some activity duration /,. Examples are obstacles on the tracks that have to be cleared
before the train can pass or signalling problems. A scenario is hence given by a vector
d € NMuwaitUAdrive| T real world scenarios one often observes many small source delays,
but only a few large ones (which have a direct or indirect effect on a passenger’s path).
Similar to [BS04], we take this into account and introduce a vector e € NlAwaitUAdrive|
specifying for each driving or waiting activity a an upper bound ¢, for a “small delay”.

158



Chapter 5. Discrete Problem Applications

Moreover, we assume that each source delay is bounded by d;'** and that the total
number of “large” source delays (i.e., those with d, > ¢€,) is bounded by K for given
values of d;'** for all @ € A and an integer K. More precisely, the uncertainty set we
consider is given as

U:=uk .= {d € RMwaitHAarivel . 0 < d, < d™ for all a € Apair U Adrive,

€

HaeA:dy > el gK}. (5.75)

Delay propagation. When a scenario of source delays d € U occurs, it spreads out
through the network and results in new times m;(d) for the events i € £. The basic
rule how delays spread along driving, waiting and maintained changing activities is the
following: If the start event of an activity a = (i,7) is delayed, also its end event j
will be delayed, where the delay can be reduced by the slack time s,. I.e. we require
m(d) > m and

TI'j(d) Z Wl(d) + la + da (576)

for all activities a = (i,7) € Await U Agrive- For changing activities equation
does not necessarily have to hold: If holds for a changing activity we say that
the connection is maintained. If (5.76)) does not hold, we say that the connection
is not maintained or broken, meaning that passengers cannot transfer between the
corresponding events. This leads to a new set of changing activities which is denoted as
Achange(d). We assume that the decision whether a connection should be maintained
or not is specified by a fixed waiting time rule: Given a number wt, € N for every
changing activity, the connection is maintained if the departing train has to wait at
most wt, minutes compared to its original schedule.

Given these waiting time rules for a given delay scenario d we can propagate the
delay through the network along the activities in Agpive U Await U Achange(d), and thus
calculate the corresponding adapted timetable according to the following propagation
rule:

7j(d) = max {m;, max {mi(d) + lij + dij} } (5.77)
i (d)+l; <mjtwty;
where we set wt, = 00 Va € Await U Adrive and d'** = 0 Va € Acpange-

For the sake of tractability, this delay propagation model does not take microscopic
conflicts like blocked tracks or platforms into account. However, this kind of secondary
delays is captured by the small delays €, which may occur everywhere.

Timetable information under uncertainty. Both A and 7 are uncertain parameters for
finding the required timetable information since they both depend on the set of source
delays d. We hence specify the timetable information problem under uncertainty as

P(S, -Ad'riva Awaita Avimh Achange(d)v F(d), Req)7 del.
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5.4.3 Strictly Robust Timetable Information

Applied to timetable information the concept of strict robustness requires that the path
is “feasible” for all delay scenarios, i.e. that all its connections are maintained for any
of the scenarios d € U. The set of strictly robust paths is hence given by

SR = {P PN Achange - m Achange(d)}'
deu

In order to determine the set of strictly robust paths, we have to analyze for every
changing activity whether it is maintained in all scenarios:

(TT): Transfer-test. Given a changing activity a = (4, j) € Achange, does there exist
a delay scenario d € U such that a is not maintained?

The set of changing activities that are maintained for all scenarios d € U is called
the set of strictly robust activities and denoted by A®. Note that given A®, a strictly
robust path that has shortest travel time in the nominal case again can be easily
computed using a shortest path algorithm in N9 = (&, Ayait U Agrive U AR U Ayirt).

Theorem 5.28. For the uncertainty set UK, (TT) is strongly NP-complete, even if
€q =0 for all a € A.

Proof. Note that given a delay scenario d, the resulting delay in all node can be cal-
culated in polynomial time using the delay propagation rule . Hence, it can be
checked in polynomial time, whether a given changing activity a is maintained or not.

The completeness proof is done by reduction from (Minimum-cover), see [GJ79]. An
instance of (Minimum-cover) consists of

e aset M ={m! ... m"},
e a set of subsets S = {s1,..., s} with s; C M, and

e a natural number K.

The question to decide is whether there is a subset S’ of S with |S’| < K such that
every m'! € M is contained in at least one subset s; € S’. Without loss of generality
we assume that for every i, element m’ is contained in at least one set 5j.

Given an instance (M, S, K) of (Minimum-cover), we construct an instance of (TT),
consisting of an uncertainty set Z/{é( and an event-activity network N' = &€ U A. We
proceed in two steps: First, we describe the underlying infrastructure, i.e. train paths
and stations. Then, we present the resulting event-activity network.

The infrastructure network.
e There is a train trg, visiting g + 1 stations by, ..., bq.

e At every station b; for j = 1,...,q for every ¢ = 1,...,n, there are trains tr;'-
which for fixed 7 all run to the same station b’.
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e Furthermore, for every m’ € M that is contained in the set s; € S in the instance

. i ;
of (Minimum-cover), a train ¢r; runs from b; to b".

e For every i = 1,...,n at station b’ a train tr* starts and runs to the same station

b*.

e At b*, a train tr* starts toward station b**.

e For every j = 1,...,q, at station b; there is one more train ¢r; starting, which

runs to a station b'.

e At b there is a train tr’ departing to tr*.

An example of this construction for the set M = {m!, m?} and the set of subsets
S = {{m!', m?},{m!'}, {m?}} with n = 2 and q = 3 is shown in Figure

(o)

ooy

trl tr

=)

N
tr

®

t *
b** tr?
()

(b )

()

trgel

I —

N

Figure 5.16 Station network showing the reduction of (Minimum-cover) for the proof of NP-
completeness of (TT) for M = {m!,m?} and S = {{m!, m?}, {m!}, {m?}}.

We now describe the resulting event-activity network, including its time durations
and the set of possible delays.
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The event-activity network.

We assume a slack time and a maximal delay of 0 for all activities for which we
do not specify otherwise.

For trge;, the driving activities have a maximal delay of 2 and the waiting activities
a slack of 2. Therefore, any delay occurring on a driving activity of this train will
be consumed by the next waiting activity.

The waiting time of the changing activities between trg.; and tr§ is set to 2, thus
these connections will always be maintained.

The trains tr;- have a slack of 1 on their driving activities.

At b, there is a changing activity between tr} and tr’ with waiting time 1.

Also at b?, there is a changing activity between t}} and tr! with waiting time 2.
Hence, if and only if in the current delay scenario there is a delay of d,; > 1 on
the edge a; for a j such that m' € s;, a delay bigger than 1 is transferred to the
departure of train tr* at station b'.

The waiting time for the changing activity from tr’ to tr* is 1 for every i =
1,...,n. Thus

1. if in the current delay scenario for every ¢ = 1,...,n, thereis a j with d,; > 1
for which m® € s;, the departure of ¢7* is not delayed, and

2. if the departure of tr* is not delayed, either holds or there is no delay
bigger or equal to 1 in any a;.

At bj, there is a connection from trge to tr; with waiting time 2.
The trains ¢r; have a slack time of 1 on their driving activity.
The waiting time at b’ is 1 for every changing activity from a train ¢r; to tr'.

The waiting time for the changing connection from tr’ to tr* is 0.

Therefore, the departure and arrival of ¢’ is delayed by max; da; — 1 if and only if
at least one delay of da; > 1 occurs on trge. The corresponding event-activity network
to the example shown in Figure [5.16]is given in Figure [5.17}

We now claim that there is a delay scenario d* € Z/lg{ such that the connection a*
between the trains t7' and ¢r* is not maintained, if and only if there is a solution S’ to
the considered (Minimum-cover) problem.

Suppose there is such an S’. Then we set da; = 2 for every s; € S’. Then due to
the departure of tr* is not delayed. But as we saw before, the arrival of tr’ in b* is
delayed and because the waiting time of a* is 0, ¢* is not maintained.

Now suppose that there is no such S’. Therefore, due to Condition 2| only for delay
scenarios with d,; <1 for all j, the departure of ¢7* is not delayed. But for these delay
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b (o) b ) (b2)
O SRR oy AN oy SN ¢ S

Figure 5.17 Event-activity network with slack times and maximal delays showing the re-
duction of (Minimum-cover) for the proof of NP-completeness of (TT) for
M ={m!,m?} and § = {{m',m?},{m'}, {m?}}.

scenarios, because of the slack times on the trains ¢r;, the arrival of ¢’ is not delayed
either, and the connection a* is maintained. For any other delay scenario d € L{OK , tr*
is delayed with delay at least max{0, max; d; — 1}. Furthermore, for any delay scenario
the arrival of ¢r' will be delayed by at most max{0, max;d; — 1}. Thus connection a*
is maintained for any d € U({( . O

Note that this proof also holds when we assume the delays to be in Nj.

An intuitive explanation why transfer test is computationally hard is the following: A
changing activity a can either be maintained actively by holding a train in a station for
at most wt, minutes, or passively if the train that is entered has delay of its own due to
other reasons, i.e., whether a changing activity a = (i, j) is maintained or not depends
on the time values 7;(d) and 7;(d). Both values may or may not be influenced by the
same source delay of some earlier event. So the core difficulty is to decide whether
there is no delay scenario that simultaneously delays event ¢ by a certain amount but
does not delay event j too much.

We are not aware of any reasonable way to solve (TT) exactly. Still, we can calculate
a subset of the strictly robust connections using the following observation: Let a = (4, j)
be a changing activity. Then, if m;(d) < m; + s, + wt, for all d € U, a is maintained
for every delay scenario and hence a € A%, Thus the set of connections A% having
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this property is a subset of the strictly robust connections. Then, every path in the
network N (A%€) = (&€, Agrive U Await U A U Ayire) that contains only connections
from A% is a strictly robust path. Note that to check the above-mentioned property,
we only have to check whether the delay in ¢ can exceed s, + wt, or not. As we do not
have to mind the consequences of the delay in j, this problem turns out to be much
easier than (TT) as we will see in Section

Slightly generalizing, this leads to the related problem:

(DA): Delay accumulation. Given an event j* € £, an uncertainty set U and a
number D € N, does there exist a delay scenario d € U such that 7j«(d) = 7« + D ?

We now explain how to apply (DA). Consider again a changing activity a = (j*,i) €
Achange- If we solve (DA) for the event j* and corresponding D = s, + wtg + 1,
then the answer “no” proves that a € ASF. This is sufficient because of the following
monotonicity property: If there is a delay scenario which accumulates a delay of D
at some event j*, then it is also possible to generate every smaller delay at j* (the
latter is a consequence from Lemma below). Hence, solving (DA) for every a =
(7%,1) € Achange and corresponding D = s, +wt, + 1, we obtain a subset of the strictly
robust connections A% C A%F. Every path in the network A'(.A%¢) that contains only
connections from 4% is a strictly robust path. Thus given the network N (A%°), we
can solve the strictly robust timetable information problem heuristically in polynomial
time. A small observation that might be of theoretical interest is the following: (DA)
is equivalent to (TT) if the underlying undirected graph of the event-activity network
N = (&, A) is acyclic or if wt, = 0 holds for all a € Acpange-

5.4.4 Efficiently Solving Delay Accumulation

In the following we assume that the delays are natural numbers. This is a no restriction
in timetable instances because for all practical purposes time will discretized in time
steps (minutes, fractions of minutes, or seconds).

We show how problem (DA) can be solved in polynomial time. To this end we derive
properties of the delays that allow us to restrict our search to only a subset of delay
scenarios when solving (DA). Due to this result we are able to develop Algorithm
that solves (DA) in polynomial time and can hence be used to determine A%“. As
before, we consider an event-activity network A/ = (£, .A) and delay scenarios d on N.
For an event ¢ € £ and a delay scenario d we denote by d(i) the delay of event i, that
is d(i) := m;i(d) — ;.

To calculate d(i) directly, we can modify in the following way:

First note that for an activity (i,j) we have

d(l) + dij <wti; &+ Cl(l) + dij + lij <m+ lij + wt;;
54 Wl(d) + lij + dij < T + wtij
& Fi(d) + lij < mj + wty;.

where the last equivalence holds because
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o if (i,7) € Achange We have d;; =0
o if (4,7) ¢ Achange We have wt;; = oo.
Thus (5.77)) can be transformed to

d(j) = mj(d) — mj = max{m;, i-gl%?A {mi(d) + lij + dij}} — 7
Tri(d)%lijtjgﬂj+wtij

= maX{O, {nfﬁ(A {7TZ‘ + d(’L) + lij + dz‘j — ﬂ'j}}
ri(d)+.li;~J§7rj+wtij
= maX{O, max {d(Z) + dz‘j — Sij}}
i:(4,j)€EA
ﬁi(d)+lij§ﬂ'j+wti]’
= max{0, max {d(2) + dij — sij}}- (5.78)
s A,

Furthermore, by N (i) we will denote the events and activities of the network A
from which a directed path to 7 exists in AN'. We will refer to NV (i) also as the network
preceding i.

According to the delay propagation specified in (5.77)), delays on activities not lying
on a directed path toward j* cannot influence d(j5*). It hence suffices to consider only
the preceding network of an event i when calculating the possible delay at this event.

This is summarized in the following observation.

Lemma 5.29. Consider an event j* € € and a delay scenario d € UX with d(5*) = D.
Then it holds that d'(j*) = d(j*) for the delay scenario d' defined as

d = dg, ifaEN(j*)
“T00,  ifae N\NGH.

Note that if d € UX for a given K, also d’ € UX. Consequently, when trying to solve
(DA) for an event j* in N, from now on we will restrict to delay scenarios having only
delays in NV (5*).

In particular, in the following lemmata we show that we can assume that all delays lie
on one single path toward j*. This property is crucial for solving (DA). The following
lemma is a direct consequence of .

Lemma 5.30. If for an event j* € £ and a delay scenario d € UK it holds that
d(5*) > 0, then there is at least one non-empty directed path P toward j* such that for
every (i,j) € P

Fj(d) = Fi(d) + l;; + dij and (5.79)
wtij > Wz(d) — T — Siy- (5.80)

P contains at least one source delay.
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Proof. According to (5.76]),
g (d) > mi(d) + lij + dij.

Using mj = m; +1i; + 545, the delay propagation rule (5.77) guarantees that there always
is an a = (4,7) € A such that the relations in (5.79) and (5.80]) hold. O

We will call such a path P a critical path for j* and d. In the following we will
use the expression “a path P is maintained for delay scenario d” to express that all
connections on P are maintained in delay scenario d.

The observation of the following lemma will often be used in the following lemmata:

Lemma 5.31. Let j* € £ be an event, d € UK a delay scenario and P a critical path
for j* and d. Let d' be a delay scenario obtained by decreasing the source delay of delay
scenario d on one activity of P by 1. Then either

1. P is still a critical path for d' and j* and d'(j*) = d(5*) — 1,
2..d'(5%) > d(5*) -1, or

3. d'(5%) < d(j*) — 1 and P is not maintained for delay scenario d'. That is, there
is a connection (i,j) on P such that d(i) < wt;; + s;; and d'(i) > wt;; + s;j.

The next lemma shows that when we have a delay scenario causing a delay of D at
an event j*, we can also produce any amount of delay smaller than D at j* by reducing
the source delays in an appropriate way.

Lemma 5.32. Let d € UK be a delay scenario and j* € £ an event with d(j*) = D
for a D € NZ1. Then there is a delay scenario d’ with d!, < d, for every a € A and
d(j*)=D —1.

Proof. We define a topological ordering on N by saying that for two events i,j € &
1 < j if there is a directed path from 7 to j in N'. We show Lemma inductively
along the topological ordering.

First note that for all topologically minimal events 5%, we have that d(5*) = 0. Thus,
there is nothing to show for these events.

Now consider an event j* and suppose that the statement of the lemma has been
shown for all its predecessors. Let D := d(j*) be the delay caused by delay scenario d
in j*. We now describe how to construct a delay scenario d’ with d'(j*) = D — 1 and
d, < d, for all a € A. For that, we iteratively apply the following procedure:

Let P be a critical path for delay scenario d and event j*. Let j’ be the predecessor of
j7* on P. Then, due to , d(j') = D — djr j*y + s(;,j+)- Depending on the delay
d(jr j+y on the arc (j',j*) we distinguish the following cases.
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Lo If dgyr, *) > 0, let d denote the delay scenario defined by d(j/ 5y 1= dgjrge) — 1
and d, = d, for all a # (j',7%). Then, if P is still a critical path for j* and d,
(") = d(j tdgr gy =s(p,7) = (D=dgr oy 57,0+ (dgr oy = 1) =(50,4) = D1
and we set d' := d. Otherwise we obtain d( *) = D and repeat the procedure for
d:=d.

2. If d(jr j+y = 0, we have d(j') = D + s(j j«). Let d denote a delay scenario with
dq < dg for every a € A and d(j') = D + s(;s j+) — 1. Such a delay scenario exists
because of the induction hypothesis. Then, if P is still a critical path for j* and d,
d(57) = d(§')+dg gy =854y = (D=dgy oyt ) +Hdgr g =1) =5 gy = D1
and we set d’ = d.

Note that if (j', 7*) € Achange, We have wt(j j«y > d(j') —s(;7 j+) because otherwise
P could not be a critical path for d and j*. Thus it also holds that wi j«) >

d(j') — sy — 1 = d(j') — s(j¢ j+)» which means that (j’,7*) is maintained for

delay scenario d. Hence if P is not a critical path for d and 7%, it holds that
d(] ) > D — 1. In this case we repeat the procedure for d := d.

In every step of this procedure, the delay in j* is bigger or equal to D — 1. Furthermore,
the overall delay in the network is reduced. As the total amount of delay in the network
is finite, the procedure stops with a delay scenario d’ with d'(j*) = D — 1. ]

Corollary 5.33. If there is a delay scenario d € UX such that for an event j* € £ it

holds that d(j*) = D, then for every natural number D' < D, there is a delay scenario
d with d, < d, for every a € A and d'(j*) = D'.

The following Lemma, allows us to consider only delay scenarios where all delays
lie on a critical path toward the considered event in (DA). In cases where we are
interested in the delay of a specific event j*, we will refer to delay scenarios where all
occurring source delays lie on a critical path toward j* as path delay scenarios toward
7% or just as a path delay scenario whenever the event j* is implicitly specified. For the
sake of brevity, we will say that an event or an activity lies on a path delay scenario
instead of saying that it is contained in the critical path belonging to a path delay
scenario.

Lemma 5.34. Let j* be an event in & and d € UX a delay scenario. Then there is a
delay scenario d' € UX with d, < d, Ya € A and all activities a with d, > 0 lying on a
critical path P’ toward j* such that d'(5*) = d(j%).

Proof. Let the events be topologically sorted. We show this lemma inductively along
the topological ordering. First note that for all topologically minimal events j* it holds
that d(j*) = 0, thus there is nothing to show for these events. Now consider an event j*
and suppose that the statement of the lemma has been shown for all its predecessors.
We construct a path delay scenario for j* as follows:
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Let j’ be the predecessor of 7* on a critical pathAP’ for d and j*. Let AdA be a delay
scen@rio andAP be a path ending in j’ such that d, < d, for all a € A, d, = 0 for all
a ¢ P, and d(j') = d(j'). Such a delay scenario exists due to the induction hypothesis.
For j', d and P’ we apply the following procedure: A

Let d’ be the delay scenario with d’(j,,j*) i= dj j») and d, := d, for all a # (5',7%).
Then P’ is a critical path for d' and j'. Note that if (5/,j*) € Achange, it holds that
wtgr oy = d(J") + dgge ey = Sy = d'(7') + dijr joy = S(g+), thus (47, j*) is maintained
in delay scenario d’ and d'(j*) > d'(j') — d/(],d*) + 550 5+ = d(5*).

1. If and only if d'(j*) = d(j*), the union P’ U (5, j*) is a critical path for d’ and j*.
In this case, the statement of the lemma is shown.

2. Otherwise, due to Corollary [5 there is a delay scenario d such that d(j*) =
d(7*) and d, < d!, for all a € .A Let j be the predecessor of j* on a critical
path P for j* and d. If j = §/, dis a path delay scenario for ] and we are done.
Otherwise, we repeat the procedure after renaming j/ := j, d:=dand d :=d.

Note that every time Condition [I] is not met, the total amount of source delay is
decreased by at least one, therefore the procedure terminates in finite time. O

Considering only path delay scenarios is the basic idea behind the dynamic-programming
algorithm. Note that when d € UX for given K and e, also the path delay scenario d’
constructed like in Lemma is contained in UX. As a result, every feasible delay
scenario can be turned into a feasible path delay scenario causing the same delay in the
regarded event. Consequently, in the following for solving the problem (DA) we will
only look at path delay scenarios.

Using we observe the following:

Lemma 5.35. Let (i,7) € Agrive U Awair and D € N. If there is a path delay scenario
d € UK that contains (i,j) and at most k large source delays lie before j, such that the
delay in j is d(j) = D, then for d it holds that

o either d(i) > d(j) — €ij + si5 and at most k large delay scenarios lie before i, or
e d(i) > d(j) — dj}*" + sij and at most k — 1 large source delays lie before i.

Let (i,7) € Achange and D € N. If there is a path delay scenario d that contains (i,7)
and at most k large source delays lie before j, such that the delay in j is d(j) = D,
then for d it holds that

o d(j) — sij < wtij, d(i) > d(j) — sij and at most k large source delays lie before i.

Based on these observations, we can build a polynomial time dynamic-programming
algorithm which for a given event j* and a number D determines whether there is a
path delay scenario that causes a delay of D at j*. Starting with j*, the algorithm goes
backwards in the network and successively sets the event labels d(j, k) which indicate
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how much delay is needed at event j to cause a delay of D at j* under the assumption
that at most K — k large source delays on activities succeeding j are set. Algorithm
summarizes this in pseudo code.

Theorem 5.36. For a given event j* € £, an uncertainty set UX and a number D € N,
Algorithm 5] solves the problem (DA) in time O(|A|K):

o If there is a delay scenario d € UK with d(j*) = D, Algorithm@ returns “Yes”.

e Otherwise, Algorithm [5 returns “No”.
We first prove the following statement:

Lemma 5.37. Let N, L[EK, j* €&, a predecessor i € £ of j*, D € N, and a natural
number k < K be given. Let N denote the network we obtain from N be adding a
node i' and an arc (i',1) with d?;,“f) = o0o. Then the number d(i,k), as calculated in
Algorithm [3, is the minimal number x such that there is a path P from i to j* in N
and a delay scenario d € U* with d, = 0 Ya ¢ P such that for the delay scenario d
defined as

d o dy, ifae./\/
Tl oz difa=(i,9)

on N it holds that d(j*) = D.

Proof of Lemma[5.37. We show inductively that for an event i, once all activities a’ =
(i,7) € N(j%) have been regarded in steps the label d(i,k) has the required
property.

In Step d(5*, k) is correctly set to D for all k =1,2,..., K.

Let i be a predecessor of j* in N(j*) and denote by A(7, j*) all activities starting in
i in the network A(5*). Suppose that for an event ¢ we have already considered the
end events j of all outgoing activities o’ = (4, j) € A(4, %) and that for each such j the
induction hypothesis holds. Note that indeed, since the activities in A(5*) are ordered
topologically, under the induction hypothesis an activity a’ will not be considered before
all its successors in NV (5*) are examined and all labels d(j, k) for all k = 0,..., K and
all succeeding events j are permanently set. Denote

Ahange (i, j*) i={a" € A(i, 5*) N Achange : d(j, k) = 515 < wtij}
A%(i, 5%) =={a’ € A(i,5%) N (Adrive U Await) }-

Note that d(i) = d(i, k), hence according to Lemma we have

d(i, k) = min{z : P path from i to j*,3d € U* with d, = 0 Va ¢ P,
such that d(;*) = D}
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=min{ _ min _{dGk)+sij - e},

min d(j, k+ 1)+ sij — d7*},
T R

min {d(], k‘) +Sij}}

a/=(i,j) €Achange(i,j*)

as calculated by Algorithm [5]in Steps
]

Proof of Theorem[5.36, If the algorithm terminates with “No”, then for every event
i € N(5%) it holds that d(i,0) > 0. According to Lemma this implies that a
delay path cannot start in any event 7. Thus there is no path delay scenario in UX.
Due to Lemma we can conclude that there is no delay scenario d € UX such that
d(j*) = D.

If the algorithm terminates with a delay scenario d, there is an event jg such that
d(jo,k*) < 0 for a k* € {0,...,K}. Let P = (jo,j1,---,J1) with j; := j* be the path
from jo to j* corresponding to the path delay scenario d*. Inductively we see that due
to the construction of P we have

d(jl, k‘(jl) + k*) == d;ojl — Sjoj1 (581)
d(Jiv1, k(Giyr) + K%)= d(Gi, k(ji) + E*) + &, — Sjijia fori=1,...,01—1, (5.82)
where k(j;) is the number of large source delays before j; on path P in delay scenario
d*.
We now show inductively, that for all ¢ = 1,...,[ there is a path delay scenario
d* € UX with
d'(j;) = d(ji, k(ji) + k).
This follows directly from (5.81)) for d*(j1). Now suppose that the induction hypothesis
holds for ji,...,ji—1. From (5.78) it follows that
diil(ji) = diil(ji_l) + d;:ji—l = Sjiji-1 = d(ji-1, k(ji-1) + k*) + d;ijiﬁ — Sjiji—1
(5.83)
= d(ji, k(ji) + k7). (5.84)
The statement now follows from Lemma Thus there is a delay scenario d' € UK
such that
d'(j*) = d(j*,k(j*) + k*) = D.
Thus, Algorithm [5|is correct. Since every step inside the for-loops of the algorithm can
be executed in linear time, the total running time of the algorithm is in O(]A|K) with
K <|€&|.
O
The set A% can now be obtained by using Algorithm [5| for every a € Acpange With
D := s, + wt, + 1. The total complexity to do so is therefore O(|Al|Achange| K)-
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Algorithm 5 (Delay accumulation)

Require: Event-activity network N' = (£, A) with A topologically sorted (backwards),
uncertainty set X, event j*, number D
Ensure: “Yes”, if there is a delay scenario d € UX that causes a delay of at least D
in j*. “No” otherwise.
1: Set d(j, k) = oo, succ(j, k) =0forall k=1,...,K, j€€&.
2: Set d(j*,K)=D for k=1,2,..., K.
3: for a € A, topologically sorted backwards do
4: Let (i,7) = a.
5 fork=K K-1,...,1do
6: if a € Agrive U Await then
7: if d(i,k) > min{d(j, k) + sij — €i5,d(j, k + 1) + 555 — d{-?“} then
8: d(i, k) = min{d(j, k) + Sij — €ij, d(j,k+ 1)+ Sij — d?}ax ,
9: set succ(i, k) := (j, k) or succ(i, k) := (j, k + 1) respectively.
10: end if

11: else if a € Achange and d(j, k) < wt;; and d(i, k) > d(j, k) + s;; then
12: d(i, k) = d(j, k) + sij and succ(i, k) = (4, k)

13: end if

14: if d(i,k) <0 then

15: return “Yes”.

16: end if

17: end for

18: end for

19: return “No”.

5.4.5 Lightly Robust Timetable Information

Allowing only strictly robust solutions will often lead to paths with very long travel
time that will probably not be accepted by the passengers. A promising alternative is
light robustness. In our setting this means that the output for the passenger should
be a path with reasonable length, that is, its length should not exceed the length of a
nominal optimal path by too much. Among all solutions satisfying this criterion one
looks for the “most robust” one, which we define as the one with the fewest number
of for the unreliable transfers is given, weights can be introduced to differ between the
grade of unreliability for these activities.

For the robust timetable information problem we hence allow that the path gets
longer in order to make it more robust: Let f* := f(P*) denote the length of a shortest
path for a request Req = (u, v, trequest) in the undisturbed scenario, and B a parameter
bounding the allowed increase in travel time.

(Light-robust-path) Given a network ' = (£, A) a timetable 7, a request Req
consisting of an origin u, a destination v and a time trequest, and the set of strictly
robust changing activities AR, find a path P with length smaller or equal to f* + B
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that contains as few as possible changing activities not contained in AN,

Given the set of strictly robust changing activities A as defined in Section we
can find such a path using a shortest path algorithm minimizing the number of changing
activities classified as being not strictly robust in an event-activity network where we
exclude all events that take place later than f*+ B. This leads to the following lemma:

Lemma 5.38. Given the set of strictly robust connections AR, (Light-robust-path) can
be solved in time O(|A| + |E|log(|£])).

Proof. Our solution approach is the following: Let u and v be the origin and destination
of the considered passenger request and trcquest be its earliest starting time. First,
reduce the network such that it only contains events i € N (v) = (£(v), A(v)) with
i < trequest + f* + B. Now the reduced network contains only paths from u to v that
reach the destination within the required time limit. Within this network we look for
a path with a minimal number of activities in Acpange \ AR This can be done in time
O(JA(v)| + |E(v)|log(|E(v)])) = O(|A| 4 |€| log(|€])) using a shortest path algorithm by
weighting the activities in Acpange \ AR with e.g. 1, and use a cost of zero for all other
activities. O

Note that we assumed in the problem formulation of (Light-robust-path) that the set
of strictly robust activities A is given. As we have seen in Theorem determining
the set AR is strongly NP-hard in general. For finding a heuristic solution we can
again consider the subset A% instead of A%,

Compared to the approach of strictly robust timetable information, lightly robust
paths are not necessarily maintained under disruptions. However, since passengers may
be willing to sacrifice some robustness for shorter planned travel times, this trade-off
may be beneficial.

5.4.6 Empirical Evaluation

Environment. All experiments were run on a PC (Intel(R) Xeon(R), 2.93GHz, 4MB
cache, 47GB main memory under Ubuntu Linux version 10.10). Only one core has been
used by our program. Our code is written in C++ and has been compiled with g++
4.4.3 and compile option -O3.

Test instances and delay scenarios. Our computational study is based on the German
train schedule of 2011, from which we derived two event-activity networks, namely a
large-scale network with all trains (referred to as complete network) and a smaller
network restricted to high-speed trains of the train categories Intercity Express (ICE),
Intercity (IC), and Eurocity (EC), called high-speed network in the sequel. Table
states the main characteristics of both networks.

We generated transfer activities between pairs of trains at the same station, if the
departing train is scheduled to depart not later than 120 minutes after the arrival time
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characteristic high-speed network | complete network
# trains 870 38985
# events 37566 2041594
# stations 538 6866
# transfer activities 58610 6097308
aver. nominal travel time 433 min 410 min
aver. # transfers per query 1.75 1.88

Table 5.18 Characteristics of the two networks, given numbers correspond to two successive

days, namely March 10 and 11, 2011, and characteristics of test queries.

of the feeding train. Note that this gives us an implicit bound of 120 minutes for
the maximum delay that robust paths can compensate for. However, we believe that
this is sufficient for any reasonable strategy of robust pre-trip timetable information in
practice. We applied the following waiting rules: High speed trains wait for each other

at most 3 minutes. Trains of other train categories do not wait for each other.

Passenger path requests have been generated by randomly chosen origins and desti-
nations. Start times are chosen randomly in the interval of the first 12 hours of the day.
To avoid trivial requests, we included only those requests for which the distance be-
tween start and destination is at least 150km and which require in the nominal scenario
at least one transfer. The average travel time is 433 min and 410 min for the high-speed
and complete network, respectively. The average number of transfers required in the
optimal path in the nominal scenario is 1.75 and 1.88, again for the high-speed and

complete network, respectively.
In our experiments, we consider the scenario set X as defined in (5.75)). Our artificial
delay scenarios are characterized by three parameters, ¢, A, and K:

e The parameter € controls the maximal size of “small delays” which can occur in

our model on every activity. This parameter is from the set {0.011,,0.02,, . .

L, 0.10,),

i.e., small delays are chosen as a fraction of the nominal length [, of waiting and

driving activities.

e The second parameter A specifies the maximal size of a “large delay” if it occurs.
Here we add the constant A to the maximal small delay of the activity. In our

experiments, we used A € {5,10,15,20} (in minutes).

e Finally, our third parameter K specifies the maximum number of “large delays”
which may occur on a path. We assume that a passenger will be affected only
by a small number of such “large delays”, therefore we have K varied among

{0,1,2,3}.

Fach parameter set can be interpreted as defining a certain “level of guaranteed
reliability”: Strict robust timetable information will deliver only paths for which all
changing activities are immune against all delay scenarios described by this parameter
set. Hence, the larger we choose these parameters, the stronger guarantees we obtain.
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Rel. number of prohibited transfers for A=10 min. Rel. number of prohibited transfers for A=20 min.
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Figure 5.18 High-speed network: The fraction of transfer activities which are infeasible
according to delay accumulation for different parameter sets of the delay sce-
narios.

Experiment 1 — strictly robust transfer activities. In our first experiment, we want
to study how many transfer activities which exist in the nominal scenario are not strictly
robust? And how does this number depend on the parameters of the delay scenario? To
determine strictly robust transfer activities, we use our conservative over-approximation
Algorithm [5]to compute the set A**. The CPU time to compute A% is about 2 minutes
per parameter set for the high-speed network, while the complete German train network
requires about 124 hours per parameter set. Due to the excessive running times, we
used only a restricted set of parameter combinations for the complete train network.
However, for both types of networks we observe that a considerable fraction becomes
infeasible with increasing size of the delay parameters, see Figures and In
timetabling, one usually tries to optimize transfer times for transfer activities. This
leads for both network types to a certain base of about 5% of transfer activities which
are not strictly robust already if the “large delay” parameter is set to A = 5. But
Figure .19 also reveals that the complete network has a larger fraction of transfer
activities which become infeasible for larger delays (increased parameter A). In the
high-speed network, transfer times are either planned (and therefore short) or they are
relatively long (due to its partially periodic structure with a period length of one or
two hours), while this distribution is more balanced in the complete network. In this
sense, the high-speed network contains a larger “natural” slack.

Futhermore, more transfers are kept in the high-speed network due to the waiting
time rule:High-speed trains wait up to three minutes for each other while trains of
other categories do not wait for each other, which is why small delays are more easily
absorbed than in the complete network.

Experiment 2 — price of strict robustness. With this experiment we want to study
quantitatively by how much the planned travel time increases when we compare strictly
robust paths with nominal optimal paths. To this end, we have built 1000 random
requests (the same set for each parameter setting; in our evaluations we always average
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Rel. number of prohibited transfers
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Figure 5.19 Network comparison: Complete network (CN) vs. high-speed network (HN).
The fraction of transfer activities which are infeasible according to delay accu-
mulation for different parameter sets of the delay scenarios.

over these requests). As a basis for our comparison, for each request we determine the
earliest arrival time with respect to the planned schedule (nominal scenario). Among
all paths with earliest arrival time we determine the minimum number of transfers. To
solve these requests, we use a (standard) multi-criteria, time-dependent shortest path
algorithm. Our implementation reuses the approach described in [BGMI10]. For the
strictly robust requests the code has been extended to handle “forbidden transfers”.
More precisely, it is now possible to specify a list of forbidden transfers between pairs
of trains, as computed in Experiment 1 by delay accumulation.

Figure [5.20] shows the average relative increase in travel time induced by the strictly
robust paths found using our heuristic estimation of robust changing activities in com-
parison with optimal paths in the nominal scenario for the high-speed network. The
average travel time for the nominal paths is 433 minutes. This implies that the absolute
average increase of the travel time in minutes becomes quite large — even for moderate
parameter sets. As expected, Figure [5.20] clearly shows that the price of robustness
increases monotonically for increasing levels of guaranteed reliability; it grows roughly
linearly with respect to parameter e. Figure [5.21] compares the price of robustness for
the two types of networks. We observe that the increase in travel time is significantly
higher for the high-speed network than for the complete network. A considerable part
of the higher travel times goes hand in hand with a larger minimum slack time.

While these average increases are quite high, a closer look into the distribution of the
data reveals an interesting picture; see Figure which shows a cumulative diagram
for the percentage of passengers with < x minutes of travel time increase. Here we
use the parameter set K = 1, A = 20, and ¢ = 0.03, that is, we allow one large delay
of 20 minutes, and arbitrarily many small delays of 3% of the scheduled time for the
corresponding activity. The cumulative diagrams show an interesting pattern, with
clearly pronounced steps for a travel time increase of 60 and 120 minutes in the case
of the high-speed network, and an additional step at 180 minutes for the complete
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Average travel time increase for A=10 min. Average travel time increase for A=20 min.
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Figure 5.20 High-speed network: The average absolute and relative increase of travel time
(in minutes and in %, respectively) for quickest strictly robust paths over op-
timal paths in the nominal scenario for different parameter sets of the delay
scenarios.

network. These steps correspond to the period of 60 and 120 minutes by which many
train lines operate. Higher multiples of 60 minutes occur in the complete network for
queries with several transfers. For the high-speed network, already about 48% of the
test queries have no increase in travel time at all, while only 30% of the test queries for
the complete network have this property.

Experiment 3 — price of light robustness. Reusing the set of random requests from
Experiment 2, we analyze the price of light robustness based on the subset of robust
changing activities calculated using Algorithm [5] The maximum increase of travel time
over the nominally smallest travel time was bounded from above by the parameter
B (in minutes), with B € {60,120}. The added value of a lightly robust solution in
comparison with an optimal solution in the nominal scenario can be measured in two
ways:

1. How often is the solution of the lightly robust optimization problem even a strictly
robust one?

2. What is the effect on the minimum slack time for changing activities? This
number tells us for each passenger the minimum buffer time available for her
transfers.

Our detailed analysis starts with the high-speed network (HN). Figure (upper
left) shows the number of strictly robust paths among our 1000 test queries obtained
for the standard non-robust earliest arrival time algorithm (non-robust query), and the
corresponding numbers for the lightly robust counterparts with B = 60 and B = 120.
We observe that lightly robust optimization succeeds in many more cases than the non-
robust query in finding a strictly robust path within the given “extra time budget” B
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Average relative travel time increase Average min. slack time increase
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Figure 5.21 Network comparison: Complete network (CN) vs. high-speed network (HN).
The relative increase of travel time in % (left) and the average minimum slack
time increase in minutes (right), for quickest strictly robust paths over optimal
paths in the nominal scenario for different parameter sets of the delay scenarios.

for the travel time increase. We also evaluated by how much the minimum slack time for
changing activities increases (upper right part of Figure for lightly robust paths
in comparison with the nominal case. This measure clearly shows the added reliability
achievable by light robustness. The price to achieve this is a relatively moderate average
increase of travel time — much more acceptable than for strict robustness (see lower
part of the figure).

Figures and compare the two railway networks with respect to average slack
time increase, travel time increase, and the number of cases where the lightly robust
solution turns out to use only transfer activities that have been recognized as strictly
robust. The two measures for the added robustness are quite similar for both networks,
but the price to be paid in terms of increase of travel time seems to be slightly higher
for the complete network than for the high-speed network. This is due to the higher
train frequencies, which allow passengers to choose from a larger set of possible paths,
and therefore allow a better exploitation of the given additional travel time budget of
60 and 120 minutes, respectively.

Note that the characteristics of the query instances are similar for both networks.
Hence, the observation that more test queries yield strictly robust paths for ordinary
non-robust queries in the high-speed network than in the complete network is a network
property, which gives further support to the "natural slack” explanation, as given in
Experiment 1.

5.4.7 Conclusion

Two concepts for calculating robust passenger paths in public transportation networks
are proposed: One that searches for routes that will never fail for a given set of delay
scenarios, and one that finds the most reliable route within a given extra time. Both
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Figure 5.22 High-speed network (left) vs. complete network (right): The cumulative per-
centage of passengers with less than x minutes of travel time increase for the
parameter set K =1, A =20, and ¢ = 0.03.

problems can be solved efficiently when the set of strictly robust changing activities
AR is known. However, determining this set is strongly NP-complete. We propose a
dynamic-programming algorithm to find an approximation of this set. In an experimen-
tal study, we quantitatively evaluated both robustness concepts using the approximate
set of robust transfers. The trade-off between the wish to have more robust paths and
the resulting travel time is shown for different levels of protection against delays.
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Figure 5.23 Light robustness (high-speed network): The number of strictly robust paths
among 1000 test queries obtained for the standard non-robust earliest arrival
time algorithm (non-robust query) and the lightly robust counterparts with
B =60 and B = 120 (upper left). The average increase of minimum slack time
on the chosen lightly robust path in comparison with the nominal scenario
(upper right), the average increase of travel time in minutes and in % (lower
part).
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Figure 5.24 Light robustness: The average percentage increase of travel time in minutes
(left), and the average increase of minimum slack time on the chosen lightly
robust path in comparison with the nominal scenario (right) for different pa-
rameter sets of delay scenarios. High-speed network (HN) vs. complete network

(CN).
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Figure 5.25 Light robustness: The number of strictly robust paths among 1000 test queries
obtained for the standard non-robust earliest arrival time algorithm (non-
robust query) and the lightly robust counterparts with B = 60 and B = 120.
High-speed network (left) vs. complete network (right).
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6 ROPI: A Robust Optimization
Programming Interface

Robust optimization aims at pushing optimization techniques to practical applicabil-
ity. Thus, it is crucial to collect algorithms for robust optimization, and to make them
publicly available while being easy-to-use for the practitioner without working deeply
into the theoretical background. With ROPI we try to commit to this process. This
chapter outlines the basic properties and functionalities, and discusses the differences
to other available libraries.

6.1 Introduction

ROPI [Goel2b] is a freely available C++ library that facilitates the applicability of
robust optimization models. Following the algorithm engineering paradigm as described
in Section it implements most of the approaches to robust optimization that are
presented in this work.

ROPI can be downloaded from

http://num.math.uni-goettingen.de/ m.goerigk /ropi

In the following, we describe the status quo of robust optimization libraries in Sec-
tion the distinct library features of ROPI in Section and an example applica-
tion in Section This chapter is closed with a discussion of further extensions in

Section 6.5

6.2 Current Software for Robust Optimization

AIMMS for Robust Optimization. AIMMS [Par12], which stands for “Advanced In-
teractive Multidimensional Modeling System”, is a proprietary software that consists
of an algebraic modeling language (AML) for optimization problems, and an integrated
development environment (IDE) that also allows creating graphical user interfaces. It
therefore stands in close competition to other AMLs, such as AMPL or GAMS. In 2011,
Paragon Decision Technology, the developer of AIMMS, was part of the winning team
of the renowned Franz Edelman Award for Achievement in Operations Research and
the Management Sciences. AIMMS supports most well-known solvers, including Cplex,
Xpress and Gurobi.
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6.2. CURRENT SOFTWARE FOR ROBUST OPTIMIZATION

Since 2010, AIMMS offers a robust optimization add-on, which was developed in a
partnership with Aharon Ben-Tal. The extension only considers the concepts of strict
and adjustable robustness as introduced in Sections[2.1]and [2.3] Using the methodology
developed for these concepts, uncertainty sets can be given as the cross-product of
intervals, the convex hull of finitely many scenarios, or as an ellipsoid. While mixed-
integer programs under the first two kinds of uncertainty can be reformulated to mixed-
integer programs again, they become second-order cone programs in the latter case. The
respective transformation is automatically done when the model is translated from the
algebraic modeling language to the solver.

ROME. While AIMMS focuses on the work of Ben-Tal and co-workers, ROME [GS11¢]
(“Robust Optimization Made Easy”) takes its origins in the work of Bertsimas, Sim and
co-workers. ROME is built in the MATLAB environment, which makes it on the one
hand intuitive to use for MATLAB-users, but on the other hand lacks the versatility
of an AML. As a research project, ROME is free to use. It currently supports Cplex,
Mosel and SDPT3 as solver engines.

ROME considers polytopic and ellipsoidal uncertainty sets, that can be further spec-
ified using the mean support, the covariance matrix, or directional deviations. It then
transforms the uncertain optimization problem to the affinely adjustable robust coun-
terpart; this naturally includes the strictly robust counterpart as a special case.

YALMIP. Similar to ROME, YALMIP [Lo6f12] is a layer between MATLAB and solver
that allows the modeling of optimization problems under uncertainty. Nearly all well-
known solvers are supported, including Cplex, Gurobi and Xpress.

The robustness approach of YALMIP is via so-called filters: When presented a model
with uncertainty, the software checks if one of these filters applies to generate the ro-
bust counterpart. Currently, five of these automatic transformations are implemented.
A duality filter (which adds dual variables), an enumeration filter (which repeats con-
straints), an explicit maximization filter (where a worst-case scenario is used), the Pélya
filter (which samples scenarios), and an elimination filter (which sets variables affected
by uncertainty to 0 and is used as a last resort).

ROPI: A comparison. While each of the aforementioned has their own advantages,
ROPI approaches uncertain optimization from a different angle:

C++ interface. The usage of both YALMIP and ROME is restricted to uncertain
optimization problems that arise in MATLAB applications. For many academic and
industrial applications, this is not sufficient. AIMMS on the other hand grants more
flexibility due to its general modeling language, but still cannot compete with direct
solver advanced programming interfaces (APIs) in terms of control and speed. ROPI
grants the first C+4 API to communicate with solvers more directly.

Variety of robustness concepts. While YALMIP, ROME and AIMMS are biased
towards the “classic school” of robust optimization, i.e., the work of Ben-Tal, Ne-
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mirovski, Bertsimas, Sim, and co-workers, ROPI aims at providing a large choice of
possible robust counterparts for an uncertain problem. The user is able to compare the
results of various concepts, and choose the solution that best fits his needs.

We summarize some of the differences between the currently available robust opti-
mization software in Table 6.1l

AIMMS ROME YALMIP ROPI
Interface | AML MATLAB MATLAB C++
License | proprietary free free free
Robustness | strict strict strict strict
concepts | adjustable adjustable light
RecFeas
RecOpt
Uncertainty | polyhedral polyhedral polyhedral finite
ellipsoidal ellipsoidal conic (polyhedral)
norm ball

Table 6.1 Software comparison.

6.3 Library Features

6.3.1 Structure

ROPI is a C++ library providing two main features:

e A user-friendly MIP wrapper class that allows automatic transformation to solver-
specific MIP classes. Using this feature, MIPs can be generically written, and
solved with whatever solver is currently available. ROPI currently supports trans-
formation to Cplex-, Gurobi-, and Xpress-MIPs. Support for further solvers can
be easily added.

e The automatic transformation from a given uncertain MIP to a robust counter-
part. Currently implemented are the concepts of strict robustness, light robust-
ness, RecFeas and RecOpt.

In Figure the general structure of ROPI is presented.

Visible to the library user are three classes: “Solver”, “LP”, and “Robustness”. Each
hides its implementation and specified type within hidden classes, using the opaque
pointer technique (also known as pointer to implementation idiom). This creates the
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possibility for the user to specify which type of solver or robustness he would like to
use during runtime.

The currently implemented type of uncertainty is a finite set of scenarios U =
{€', ..., €N}, with further types coming in the next library version. Note that for strict
and light robustness, U7 can also be interpreted as a polytopic uncertainty set with
extreme points £. However, this reduction result does not hold for RecOpt or RecFeas
in general, as shown in Section

For RecOpt and RecFeas, types of distance measures are the [y distance
Soiy |z — yil, and the Iy distance max! ; |x; — y;|, while the recovery objective can
either be the median or the center. As the philosophy of ROPI is to return a MIP
robust counterpart for a given mixed-integer uncertain problem, we can only handle
these four cases. However, further algorithmic extensions can be used to handle other
distance measures.

6.3.2 Robustness Transformations

We now describe in detail how the robust counterpart to a problem is constructed. We
assume an uncertain optimization problem of the form

P(A,b) min c'z
s.t. Arx < by

Agl':bg
Agl‘Zbg
[ <zx<u
reX
with
Ay by
A=Ay |, b=|0b
As bs

to be given, with a nominal scenario (A% b%). Let the uncertainty set be

Ul = {(A4,bY,..., (AN, M)} CR™ " x R™. We show the different robust problem
counterparts ROPI can produce. The original MIP size is n variables, and m constraints
(plus variable bounds). We denote by Feas(z, A, b) the constraints Ajz < by, Asx = b,
and Aszx > bs.

Strict robustness. As described in Section the uncertain optimization problem
(P(A,b), (A,b) € Uf) is transformed to

min c'z
s.t. Feas(z, A7, ') Vj=0,...,N
[ <zx<u
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r e X.

The resulting MIP still consists of n variables, but the number of constraints increases
to N(m +1).

Light robustness. 1In a preprocessing step, solve P(fl, lN)), and let c'z* be the resulting
optimal objective value. The lightly robust counterpart as introduced in Section
for the uncertain optimization problem (P(&),¢ € Uf) is then given by

m
min Z%
i=1
s.t. dz < (14 p)cta*
Feas(z, A%, b°)
e <bi4AtVi=1,...,N
br <bh4+~2Vi=1,...,N
e >bh -~y Vi=1,...,N
e >bh - Vi=1,...,N
[ <zx<u
r e X,

where v = (v4,74,74)!. The presolving step thus consists of solving a MIP with n
variables and m constraints, and the resulting robust counterpart has n 4+ m variables,
and (N + 1)m + k constraints, where k is the number of equality constraints in the
uncertain optimization problem.

RecOpt, simple version. Solve P(A%,b%) for all i = 0,...,N. Let ' be an optimal
solution to problem P(A" b"). Depending on the recovery distance and the recovery
objective, return the problem

l loo

N n N
min Zzyzg min Zyj
j=1

j=11i=1

median s.t. — Yij <z —xz < Yij s.t. —Yj <z —.’Eg < Yj
Vi=1,...,n, j=0,...,N Vi=1,....,n, j=0,...,N
Feas(z, A%, 1°) Feas(z, A%, %)
[ <z <u [ <z <u
xeX,yeR%N xEX,yGRgO
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l loo

min 2 min z
- s.t. z >y,
t. > g :
ot Z*Z;y” Vi=1,...,N
center = .

Vi=1,...,N —yj <x—x] <y
gy <@ —ad <y, Vi=1,....,n, j=0,....,N
Vi=1,...,n, j=0,...,N Feas(x, A°, )
Feas(z, A%, 1°) <z <u
I<z<u HCEX,yERgO,ZGR

reX,yc RN 2R

The presolving step thus consists of (N + 1) problems with n variables and m con-
straints each. Concerning the resulting MIP size, we have:

#variables #constraints
median, [I; | n(N +1) nN +m
median, I | n+ N nN +m

center, [ n(N+1)+1 Nn+1)+m
center, oo | n+ N +1 Nn+1)+m

The constraints Feas(z, A?, b°) ensuring feasibility in the nominal scenario can be left
out if not desired, so does the constraint x € X, and the variable bounds | < z < wu,
especially for combinable problems.

RecOpt, extended version. In the extended version, we do not precompute the opti-
mal solutions to each of the scenarios, as they might be ambiguous. Instead, we only
use the respective optimal objective value to find a recovery robust solution that can
be recovered to any optimal solution for every scenario.

Solve P(AZ:, bi‘) for all i = 0,..., N, where i = 0 denotes again the nominal problem,
and let f*(A’,b") be the optimal objective value of problem P(A’,b"). Depending on
the recovery distance and objective, return the problem
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Iy loo
N n N
s 373 _—
j=1i=1 J=1
b —y <ai—al <y b —y; <ai—al <y
median 5.8 Yig = Ti = T3 = Vi st Yj S X — T S Y
Vi=1,....,n, j=0,...,N Vi=1,...,n, j=1,...,N
Feas(x, A°, %) Feas(x, A°, 1)
Feas(z?, A7 b)) Vj=0,...,N Feas(z?, A7, b)) Vj=0,...,N
ol = f* (A Y)Y =0,...,N ol = f*(AV)Vj=0,...,N
reX,yeRVN reX,yeRY
¥ eXVj=0,...,N ?eXVj=1,...,N
ll loo
min z min z
" s.t. zZ >y
st zz};%‘ Vji=1,...,N
center = ;
Vj=1,...,N —y; < —x] <y
gy <m—a? <y Vi=1,...,n, j=1,....N
Vi=1,...,n,j=1,....N Feas(z, A°,b°)
FB(IS(.T,AO,bO) Feas(xjaAjvbj) v] = Oa"'vN
Feas(x?, A7, b)) V¥j =0,...,N ol = fF(A ) Vj=0,...,N
cta:j:f*(Aj,bj)Vj:O,...,N reX,yeRY zeR
reX,yeRN 2 eR @ eXVj=1,...,N

PeXVj=1,...,N

The presolving consists of N problems with n variables and m constraints each. For
the robust counterpart, depending on whether we use the median or center, and on
which [, we have the following numbers of constraints and variables:

#variables #constraints
median, {; | n(2N + 1) Nn+m+1)+m
median, loo | n+ N +nN Nn+m+1)+m
center, [ n(2N +1)+1 Nn+m+2)+m
center, looc |+ N+nN+1 Nn+m+2)+m

RecFeas. For the RecFeas counterpart, we need to find a feasible solution in every
scenario, and a robust solution feasible in the nominal scenario, such that the recovery
distance is minimized. We get the following robust counterpart formulations:
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I

loo

N n
min Z Z Yij

N
min g Y
Jj=1

j=11i=1
median s.t. —yij <x;— ) <y s.t. —y; <z, —x <vyj
Vi=1,...,n, j=1,....N Vi=1,...,n, 5=1,...,.N
Feas(z?, A7 b)) Vj=0,...,N Feas(xz, A%, %)
Vj=1,...,N Feas(z?, A7, p7)Vj=0,...,N
reX,ye RN reX,yeRY
PeXxVj=1,...,N eXxVj=1,...,N
ll loo
min z min z
n s.t. z 2 y;
.t. > > X
center = i
Vj=1,...,N —yj <x—x] <y

—yij <x— ] <y

Vi=1,...,n, j=1,...,N

Feas(z, A%, 1°)

Feas(z?, A7 b)) Vj=0,...,N

zeX,yec RN 2R
?eXVj=1,...,N

Vi=1,...,n, j=1,....N
Feas(x, A%, %)
Feas(z?, A7, /) Vj =0,...,N
reX,yeRY¥ 2zeR
eXxVvj=1,...,N

Contrary to RecOpt, there is no presolving step necessary. Depending on whether
the median or center distance is minimized, and on the distance measure, we have the
following size of the robust counterpart:

#tvariables #constraints
median, l; | n(2N + 1) N(n+m)+m
median, loo | 7+ N +nN N(n+m)+m
center, I n(2N +1)+1 Nn+m+1)+m
center, looc |m+N+nN+1 Nn+m+1)+m

As it is the case for RecOpt, the user can choose whether to include nominal feasibility
and variable constraints, or not.

6.4 Example Applications

In this section we present some basic ROPI functionalities on an example problem.
Consider the following linear program given in fixed MPS format (taken from
http://Ipsolve.sourceforge.net /5.0 /mps-format.htm):
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NAME TESTPROB
ROWS
N COST
L LIM1
G LIM2
E MYEQN
COLUMNS
X COST 1 LIML 1
X LIM2 1
Y COST 4  LIM1 1
Y MYEQN -1
yA COST 9 LIM2 1
yA MYEQN 1
RHS
RHS1 LIM1 5 LIM2 10
RHS1 MYEQN 7
BOUNDS
UP BND1 X 4
LO BND1 Y -1
UP BND1 Y 1
ENDATA

In ROPI, it is possible to read in both the fixed and free MPS format. We can read it
in using simply

LP 1p;
lp.read_mpsfile("file.mps");

to get the following LP:

min z + 4y + 9z
s.t. z4+y <5
r +z2>10
—y+z2=7

0<x <4
-1<y<1

0<z
xz,y,z € R.

Now let us assume that some of the constraints are uncertain. We build an uncer-
tainty set U/ consisting of two scenarios that randomly disturb the right-hand side of
one constraint each. In ROPI, this can be achieved using

FiniteUncertainty unc;
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list<Con>* lpcons = 1lp.get_cons();
for (int i=0; i<2; ++i)
{
list<Con>::iterator it = lpcons->begin();
advance (it,rand ()% (1lpcons->size()));
FiniteScenario scen;
scen.rhs[*it] = (it->rhs) * (1 + (rand()%100)/400.0 - 1.0/8 );
unc.scenarios.push_back(scen);

3

The object unc now consists of two scenarios that modify the right-hand side of a
constraint by up to 25%. Assume now that we randomly generate the scenario set
U ={(5,10,8),(5,12,7)}. The optimal objective value for the nominal case is then 54,
while it is 62 and 80 in scenario 1 and 2, respectively.

We would like to solve the resulting uncertain optimization problem using the ex-
tended RecOpt counterpart with /1 norm and center objective function. To do so, we
create a robustness object that generates the required LP.

Robustness rob(&lp,ROB_RECOPT) ;
rob.set_uncertainty(unc) ;
RobustnessOptions opt;

opt.recobj = REC_CENTER;

opt.norm = NORM_L1;
opt.recopt_model = RECOPT_EXTENDED;
opt.solvertype = SOL_GUROBI;
rob.set_options(opt);

LP rc = rob.generate_robust();

Using only these couple of lines, we get the following robust counterpart for U:

min ¢
I’O—y0§5
294+ 20> 10
0 +20=7
$1—y1§5
b+ 2 > 10

{
{
{

s.t. Nominal case

Scenario 1

$2—y2§5

2 2
T+ 2> 12
—y2+ 22 =7
20+ 490 4+ 920 = 54
ol + 4y + 921 =62
2?2 + 4y + 922 =80

Scenario 2

Optimality
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Te—Ty <9
Nominal feasibility re +7, > 10
{ ry+r.=17
—ag Srw—xo §ag
Distance to nominal solution { —al <1y —y° <af
—aggrz—zogag
—aglg er—xl Saglﬁ
Distance to scenario 1 solution { —a; <y — yt < azl/
—aigrz—zl Sai
—ai <1y — 2 Sai
Distance to scenario 2 solution { —a2 < Ty — y? < a?
—aéﬁrz—ngaé!
al + ag +al <e
Objective constraints { al + all/ +al <ec
a? + af/ +a2<ec
0<a% 2t 22 r, <4
Variable bounds { 1<y 9yt 92 r, <1
0<% 21, 22 r,

'y 2 e R Vi€ {0,1,2}
Tz, Ty, Tz € R
al,al al € RVie{0,1,2}

z) Yy

In a preprocessing step, all scenarios are solved to optimality - in this case, using Gurobi
(determined by the solvertype option). The resulting robust counterpart is handed
back to the user, who can then proceed to solve it using a solver object:

Solver sol;

sol.init(&rc, SOL_CPLEX);

sol.solve();

if (sol.get_statios() == SOL_OPTIMAL)
sol.write_solition(cout,-1);

These lines generate a solver object, hand it the robust counterpart, and solve it using
Cplex. If the problem is solved to optimality, the solution is printed to the standard
output. In this example, the recovery robust solution turns out to be (4,0,7) with a
recovery distance of 2 to the three scenario solutions (4, —1,6), (3, —1,7), and (4,1, 8),
while the optimal nominal solution would be (4, —1,6).
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6.5 ROPI Extensions

Being an easily extensible library, ROPI still has room to grow. In this section, we
would like to highlight some aspects that will play a major role in the further library
development.

Further uncertainty types. As already described in Section there are plenty of
uncertainty types apart from finite uncertainty sets that are regularly used in the
literature. However, consisting of infinitely many scenarios, they cannot be used to
generate a generic robust counterpart directly, which is why the following aspect needs
to be integrated in ROPI as well:

Scenario reduction. Even for finite uncertainties, robust counterparts often contain
dominated constraints due to, e.g., worst-case scenarios. When constructing the robust
counterpart in ROPI, this dominance can be checked on-the-fly. The applicability of
reduction rules from infinite to finite uncertainty sets can be automatically checked, and
if they should not be applicable, systematic sampling can be used. These reduction
mechanisms are therefore related to the filters used in YALMIP.

Further robustness models. Furthermore, a direct extension is the implementation
of further robust counterparts. Besides the already implemented concepts of strict
and light robustness, recovery to optimality and recovery to feasibility, natural candi-
dates would be the approach of Bertsimas and Sim or Mulvey et al, minmax regret
optimization, or reliability.

Algorithmic plugins. The current philosophy of ROPI is to return a MIP robust coun-
terpart to a given uncertain MIP. However, not all approaches to robust optimization
presented in this work are based on integer programming techniques; further algorith-
mic approaches like the iterative procedure from Section [3.1.5.1] the sampling approach
from Section [3.1.5.2] or algorithms from facility location to solve problems with non-
linear distance measures can be added to the library.
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7 Discussion and Outlook

Robustness has plentiful meanings in the English language. The first step of robust
optimization, as in any mathematical discipline, is to find a definition in the strict
language of mathematics that is free of ambiguity. Unfortunately, being still a recent
field of research, neither has a shared definition of robustness been developed so far,
nor a concise classification scheme. What all robustness concepts have in common,
however, is that robustness is a beneficial property that is opposed to the nominal
solution quality.

Therefore, the trade-off between robustness and nominal quality, i.e., the price of
robustness, is crucial for the successful application of a robustness concept, where
“successful” needs to be understood in the vague sense of “satisfying the needs of a
real-world problem”. Determining this trade-off from an analytical point of view leads
to the problem that this is usually not the concept behavior we expect to see on real-
world instances.

The purpose of this work was to bridge the gap between theory and practise in robust
optimization. We hence claim that the methodology used is a natural approach to ro-
bustness. We introduced the versatile concepts of recovery-to-optimality and recovery-
to-feasibility, and analyzed their behavior analytically. But every real-world problem
has its particular requirements and uncertainty structure, and a generic concept needs
to adapt to the circumstances. We therefore considered a wide spectrum of continuous
and discrete problems, and discussed suitable robustness approaches. Table shows
an overview of all concepts and methods we applied to these problems.

We found that although the applicability of a robustness concept is determined by
the uncertain problem, the methods we can use to solve a resulting robust counterpart
depends on the computational complexity of the considered problem. Thus, a robust-
ness concept can be seen as a framework, which is then turned into an algorithm that
suits the concrete needs at hand.

We now discuss some further extensions of this work.

On the conceptual side, further research should focus on approaches that generalize
both RecFeas and RecOpt. One way to do this is the following: Let an uncertain
optimization problem (P(§),& € U) be given, and assume that the objective function

f does not depend on . As before, let f*(£) be the optimal objective value of the
nominal scenarios. We assume that f*(£) > 0. Consider the problem

min r
s.t. d(z, F(§,B)) <r+AXB) V¢ eU,Be[0,1]
reX
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Problem Type Problem Concepts Methods
Continuous Linear pro- e Strict e LP
grams (Netlib)
e RecOpt e iterative
e Reckeas e sampling
Continuous Aperiodic e Strict o LP
Timetabling
e Light
e Recovery
e RecOpt
Discrete Loadplanning e Strict e MIP
e Bertsimas & Sim
e Adjustable
Discrete Steiner Trees e Strict e MIP
e Adjustable e approximation
algorithms
Discrete Periodic e Strict e MIP
Timetabling
e RecOpt e local search
e Buffering
Discrete Timetable In- e Strict e dynamic  pro-
formation gramming
e Light

Table 7.1 Overview of experiments in this work.
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where

F(&B) ={z e F(): 1-DB)f(x) < [ ()}
A(+) denotes a function that relaxes the radius constraint depending on the nominal
solution quality that is given by B. We have that F(£,1) = F(§) and F(&,0) = {z €
X : x is optimal in scenario {}.
This problem is a generalization of both RecFeas and RecOpt in the sense that we
can model each concept with the right choice of A. When setting

hen B=1
)\(B):{O when

maxe1 g2eqq d(F(EY), F(€2))  else

the problem reduces to RecFeas, while it is equivalent to RecOpt when we set A\(B) =
0 VB € [0,1]. Tt seems promising to analyze how this concept behaves under different
relaxation functions A, and when it is still computationally tractable.

Another point of further research on RecFeas is the following iterative sampling algo-
rithm that can be used for infinite uncertainty sets: We begin with an empty sample set
0 = SO C Y and a starting solution z(?). In every iteration k, we determine a scenario
¢®) € Y that maximizes the distance d(z*~D, F(¢®))), and add it so the sample set
S*) = §tk=1) | {¢(F)}. We then determine a solution z(*) by solving RecFeas(S®). If
2®) = £(-=1) the algorithm has found an optimal solution to RecFeas(U/).

Concerning the solvability of

(k=1) _ ; (k1)
glea;jcd(x ,f(f)) glgyg}g&)d(w )5

we can dualize the inner problem ming¢r(¢) d(x(k_l), y) for fixed z* =1 and ¢, if the
recovery distance is polyhedral and and the uncertainty affine linear. For polytopic
uncertainty sets, the problem of determining £¥) in every iteration is therefore solvable
in polynomial time.

Also considering the problems we analyzed in this work, there are still many questions
open:
Timetabling. Further research will focus on a systematic evaluation of different types
of linear robustness functions; specifically, the robustness of a solution can be evaluated
in a posteriori by generating a large set of delays, and solving the resulting delay
management problem [SS10]. A necessary condition for a significant robustness function
would then be that timetables with equal robustness have equal a posteriori robustness,
irrespective of the travel time.

Loadplanning. The application of robustness models that give the planner a larger
choice on how to react to parameter changes, as in the concept of recoverable robustness,
is still an open issue.

Steiner Trees. A natural open problem for further research is to find constant-
factor approximations to the one-stage stricty robust problem, and approximations to
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the two-stage strictly robust problem that further improve the bound of 15« that as
developed in [DGRS05]. Another interesting aspect is to consider a two-stage concept
that includes the recovery costs not only in terms of increased second-stage edge costs,
i.e., we define a recovery distance measure d(7T",T?) that gives the costs of changing a
tree T' to a tree T2. We are then able to use the results and methodology of RecFeas
and RecOpt to find robust solutions that go beyond the concept of strict robustness.

Timetable Information. Again, further research includes to improve our algorithms
and to apply other robustness concepts, such as recovery robustness to the problem of
finding robust passenger paths. Here, a solution does not need to be feasible for all
scenarios, but whatever is going to happen, we want to have a recovery algorithm at
hand which is able to repair the solution if the scenario becomes known.
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8 Summary of Contributions

This work is based on several papers, and therefore includes ideas of many coauthors.
In this section we outline the author's contributions to each section.

Chapter [I] and 2]

The lecture on robust optimization held by Anita Schobel during the winter term
2009/2010 at the University of Gottingen is gratefully acknowledged. It was a great
introduction to the topic and laid the foundation to my understanding of robustness.

Chapter 3]

RecFeas. This Section is based on the joint work with Emilio Carrizosa, Mark Koérner
and Anita Schébel [CGKSTI]. Subsection on iterative and sampling approaches
was completely written by the author.

RecOpt. Some results of this section have been published in [GS11b] and [GS10] with
Anita Schobel.

Relations. The discussion of the relation between strict and adjustable robustness is
based on a joint work with Anita Schobel [GS12].

Chapter [4

Linear Programming. The experimental results on RecOpt were first presented in
[GS11D]. The experiments were implemented and conducted by the author himself,
and designed in joint work. The experiments on RecFeas are the author’s sole work.

Aperiodic Timetabling. Parts of this Section have been published in [GS10]. While
the theoretical work and the experimental design is coauthored with Anita Schobel, all
implementations and experiments were conducted by the author.

Chapter [5]

Load planning. The section on robust loadplanning is a joint work with Sigrid Knust,
Florian Bruns, and Anita Schébel. In particular the experiments were conducted by
Florian.
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Steiner trees. This section makes use of discussions with Petra Mutzel, Markus Chi-
mani, Bernd Zey, and Anita Schoébel. The proofs of the approximation ratios and the
experiments were the author’s work.

Periodic timetabling. Parts of this section on the local search heuristic have been
published as [Goel2al. The whole section is an individual work of the author.

Timetable information This section is based on the joint work |[GKMHT11] with
Martin Knoth, Matthias Miiller-Hannemann, Marie Schmidt and Anita Schobel. In
particular the experiments were conducted by Matthias and Martin.

Chapter [6]

The library idea, architecture, functionality and all implementations were the author’s
sole work.
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