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Introduction

The theory of dynamical systems has its origins in the equations of motion of Newto-
nian mechanics. Henri Poincaré’s initial work [85] laid the foundations for the modern
theory of dynamical systems which draws from various mathematical disciplines includ-
ing topology, geometry, analysis, and algebra [46]. Deterministic dynamical systems
describe temporal evolutions on some space Y, that is, an element of Y is assigned to
every point in time. This evolution is deterministic in the sense that it is completely
determined by a given rule—there is no stochastic component determining these dy-
namics. In other words, if the present state y € Y of the system is known any future
state can be unambiguously calculated from the present state y using the evolution
rule. More formally, any such evolution—the trajectories or orbits of the system—is a
function z : I — Y where I C R is some index set of real numbers R, either discrete
or connected [56]. In the former case we say that the dynamical system has discrete
time, in the latter the system is referred to as a continuous time dynamical system.
We will always assume that 0 € I. The value 2(0) = y is called the initial condition
of the orbit z. If for a given initial condition not only the future but also the past
is uniquely determined by a deterministic rule then we call such a dynamical system
reversible.

Despite the fact that the future states of the system can be calculated exactly, it turns
out that there are dynamical systems which exhibit “complicated” dynamics. Suppose
that we have a notion of proximity on the space Y. One property that leads to
such complicated dynamics is sensitive dependence on initial conditions. In contrast
to the situation where initial conditions close to each other will lead to trajectories
that stay close, this means that even the smallest change in initial condition will
eventually lead to a separation of trajectories. This property is usually associated
with what is referred to as chaotic dynamics. Chaotic dynamical systems exhibit, in
spite of their deterministic nature, features of random motion. The so-called maximal
Lyapunov exponent [10] is a way to measure the separation for a given orbit; if it
takes a positive value then—averaged over time—trajectories close to this orbit drift
away exponentially fast. A famous system that can exhibit such chaotic motion is
given by the Lorenz equations [65]. Chaotic dynamics have been observed in a wide
range of both low and high-dimensional deterministic dynamical systems [76]. An
important class of differentiable dynamical systems that may exhibit chaotic dynamics
are so-called (uniformly) hyperbolic systems [56, 98]. Here, system is characterized by
distinct local expanding and contracting directions at every point of Y and thus the
local properties are linked to global features of the dynamical system.

If the rule that defines the evolution of a deterministic dynamical system depends on
a parameter, the dynamics of the system may undergo transitions as the parameter
is varied. One says that a system bifurcates if its orbits undergo a change in their
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dynamical equivalence class as a parameter is changed [42, 60]. In other words, at
bifurcation points, the dynamics change qualitatively, for example through the emer-
gence of new particular solutions such as a fixed point (an orbit z with z(t) = & for all
t € I). For instance, the transition from “simple” to more complex, chaotic dynamics
as described above through the variation of a parameter corresponds to one or more
bifurcations. These transitions are one of the main topics of this thesis.

The emergence of chaotic dynamics for dynamical systems on some real manifold un-
derlies certain restrictions. Let RY denote the N-dimensional vector space over the
real numbers and suppose that the space Y is a subset of RV of integer dimension.
We focus on discrete time dynamical systems whose evolution is given by iterating
a function f : Y — Y. For these systems, chaotic dynamics can occur even if Y is
one-dimensional. A well known example is the iteration of the logistic family, a col-
lection of maps on the real line that depend on one real parameter [76]. For certain
parameter values, its dynamics exhibit exponential separation of trajectories. In fact,
the iteration of the logistic map is a special case of a classical topic studied in holo-
morphic dynamics (complex dynamics): the iteration of complex valued polynomials
on the complex plane [71]. In complex dynamics one subdivides the plane into two
completely invariant sets: the Fatou set, where trajectories with close initial conditions
stay close and its complement, the Julia set, on which the dynamics are chaotic.

For continuous time dynamical systems on subsets Y C RY, the situation is slightly
different. We will concentrate on those continuous time dynamical systems for which
the dynamics are given by a differential equation. The dynamics of these systems are
defined by a field of velocity vectors and its orbits are the integral curves. For example,
if Y is some connected compact n-dimensional real manifold, the Poincaré-Bendixon
theorem states that for n < 3 any solution of a dynamical system on such a manifold
must be either periodic or quasiperiodic [56, 97]. Thus, the minimal dimension in
which chaotic dynamics can occur is dimension three.

Dynamics and Symmetry

Dynamical systems on some smooth manifold ¥ may have additional structure such as
symmetries. Suppose a group I' acts on Y. A dynamical system on Y has symmetry
group I if it is [-equivariant, that is, if the action of I' on Y is “compatible” with the
dynamics. When iterating a function f, compatibility corresponds to the condition
that the group action commutes with f. For continuous time dynamics given by a
system of differential equation on Y of order one, the action has to commute with
the vector field that defines the differential equation. The presence of symmetries has
several immediate consequences [39, 40]. For any orbit z of the dynamical system, any
image of  under the group action is also an orbit of the system. Furthermore, the
symmetry gives rise to dynamically invariant subspaces since any fixed point subspace
of the group action is dynamically invariant. Hence, the possible dynamics of systems
with symmetry may be restricted as the state space Y is subdivided by these flow-
invariant subspaces. The study of continuous time dynamical systems with symmetry
is the topic of the first part of this thesis.
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In particular, we study systems of interacting oscillatory units that are commonly used
in the modeling of physical systems. Examples include the dynamics of flashing fireflies,
superconducting Josephson junctions, and oscillations in neural networks [82, 105]. A
phase oscillator is characterized by a single phase-like variable that takes values on the
one-dimensional torus R/277Z. We consider systems of IV interacting oscillators where
each oscillator is driven by its own intrinsic frequency and all other oscillators. The
interaction of two oscillators is determined by the value of a so-called coupling function
of their phase differences. The dynamics are thus given by a differential equation on
an N-dimensional torus. Such systems of coupled phase oscillators arise as averaged
phase descriptions of weakly coupled, higher-dimensional limit cycle oscillators [7], for
instance, neural oscillators [17, 55]. The most famous example of such systems are the
Kuramoto equations where the coupling is given by a sine function [1, 59].

The possible dynamics of these coupled phase oscillators depend on both the choice
of the intrinsic frequencies and the coupling function. If the intrinsic frequencies are
distinct, there is a rich repertoire of possible dynamics including chaos [87]. The situa-
tion changes drastically when all intrinsic frequencies are the same. Then the system is
symmetric with respect to the permutation of the oscillators as they become indistin-
guishable. Whereas the dynamics of symmetric higher-dimensional oscillators may be
chaotic [74], the dynamics of symmetric phase oscillators with sine coupling becomes
highly degenerate as they reduce to an effective two-dimensional system [107, 108].
This is due to the existence of N — 2 independent constants of motion, the so-called
Watanabe—Strogatz constants of motion [68]. If the coupling function contains more
than one nontrivial Fourier coefficient, heteroclinic trajectories may occur. Previously,
there had not been a single example of a coupling function giving rise to chaotic dy-
namics for systems of coupled phase oscillators with full permutational symmetry. This
provides the main questions to be answered in the first part of this thesis. Are there
coupling functions that give rise to chaotic dynamics? From a symmetry point of view,
we ask if it is due to symmetry alone that the system cannot be chaotic, or whether it
is the rather special form of the coupling that causes the degeneracy.

As the first crucial result, we show that there are in fact families of coupling functions
that lead to the emergence of chaos in symmetric coupled phase oscillator systems.
Here, chaos is characterized by positive maximal Lyapunov exponents, which were
determined numerically. Since the coupling only depends on the phase differences, the
N-dimensional system may be reduced to (N —1)-dimensional dynamics. We find that
chaos in the system of symmetric phase oscillators is not only present in dimension
four, the smallest dimension for which chaotic dynamics can occur, but also for some
higher-dimensional systems.

The emergence of chaos leads to a number of follow-up questions. Chaotic attractors
in dynamical systems with symmetries may have symmetries themselves. We system-
atically study the symmetries of the chaotic attractors for four oscillators and show
that there are attractors of all possible symmetries. Moreover, one may ask which
bifurcations lead to the emergence of chaos. A numerical bifurcation analysis shows
that there is an abundance of both local and global bifurcations that are linked to the
creation and destruction of the chaotic attractors.
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The case of even coupling functions requires special attention as they give rise to
additional symmetries. Dynamical systems may have so-called time reversing sym-
metries [61]. Whereas I'-equivariance says that for any trajectory x and any v € T’
the image vz is also an orbit of the system, the existence of a reversing symmetry o
implies that oz is a solution when time is reversed. This implies that for any trajectory
there is a trajectory with inverse stability properties. Furthermore, the sets of fixed
points of reversing symmetries are of interest as they may give rise to certain families
of particular solutions [38]. In addition to the equivariance, such reversing symmetries
are present in our system of coupled phase oscillators for even coupling functions. An
even coupling function is invariant under the reflection in the origin. It is this ad-
ditional property which implies the existence of reversing symmetries. Furthermore,
when solving the equations of motion for a system of four oscillators with even cou-
pling numerically, we observe only periodic orbits. This motivates the main question
for the last section of the first part: what are the dynamics of phase oscillators with
even coupling functions? Does the existence of reversing symmetries cause degeneracy,
for example through constants of motion which lead to the periodic dynamics?

For phase oscillators with even coupling functions there are in fact constants of motion
for some coupling topologies. This is the result presented in the last section of the
first chapter. Even though the question about the existence of constants of motion of
the fully symmetric system in arbitrary dimension is still open, there is a constant of
motion for rings of oscillators. The main result may be stated in form of the following
theorem.

Theorem A. There exists a constant of motion for rings of Kuramoto-like phase os-
cillators of any length N with even coupling. In particular, for N = 3 this constant
of motion generalizes the Watanabe—Strogatz constant of motion for coupling functions
with one nonzero Fourier coefficient to arbitrary even coupling functions.

See Section 1.3 and in particular Proposition 1.3.3 for a more precise formulation of
this statement.

Theory of Chaos Control

Even though deterministic dynamical systems may yield essentially unpredictable long-
term dynamics, other properties of such chaotic systems give rise to interesting appli-
cations. Within the remainder of this section, we focus on discrete time dynamical
systems given by the iteration of some function f : RY — RY. Furthermore, we sup-
pose that I C Z. Recall that a periodic orbit is an orbit that returns to its initial
condition after some finite time 7T, i.e., there exists a T' > 0 such that x(t + T) = z(t)
for all t € I. These periodic orbits may be classified with respect to their local dynam-
ics, i.e., the dynamical behavior of trajectories whose initial conditions are contained
in a small neighborhood of the periodic orbit. If there is an open neighborhood of the
periodic orbit such that all trajectories with initial conditions within this neighborhood
converge to the periodic orbit then it is called stable. Otherwise the periodic orbit is
called unstable. Sets supporting chaotic dynamics may contain infinitely many unsta-
ble periodic orbits. For example, under some additional conditions, there are explicit
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inequalities quantifying the (exponential) growth of periodic orbits in hyperbolic dy-
namical systems [44, 56]. Moreover, in one complex dimension, Julia sets are actually
the closure of the union of all unstable periodic orbits [71].

The basic idea of so-called “chaos control” is to render some of these unstable peri-
odic orbits stable. The method presented in the seminal work by Ott, Grebogi, and
Yorke [79] employs arbitrarily small perturbations to an “accessible” system parame-
ter. These perturbations make use of the dynamics in the vicinity of a specific periodic
orbit of a certain class, leading to convergence towards the periodic orbit. To apply this
control method, both location and stability properties of the unstable periodic orbit
have to be known. Hence, for some applications, a different control scheme—Predictive
Feedback Control [26]—is better suited as a chaos control method. In Predictive Feed-
back Control, predictions about the future state of the system are fed back into the
dynamics as a control signal. This method requires little a priori knowledge about the
system and it is non-invasive, i.e., the control perturbation vanishes upon convergence.
At the same time, Predictive Feedback Control provides an easy-to-implement control
scheme for the stabilization of unstable periodic orbits.

Although convergence speed may be crucial in applications, most of the existing lit-
erature on Predictive Feedback Control ignores this topic. Take, for example, an
autonomous robot whose behavior is determined by the dynamics of a single chaotic
dynamical system [102]. Depending on the sensory input, the controller stabilizes a
periodic orbit of a certain period which is embedded in the original chaotic dynamics.
The periodic motion is then translated into movement and gait patterns. In such a
setup, the speed of stabilization of periodic orbits is directly related to the reaction
time to new sensory inputs. Hence, a fast chaos control method improves the robot’s
ability to cope with a rapidly changing environment. Speed of convergence is even
more important if chaos control is applied in a medical setting; chaos control may be
used to restore a periodic rhythm of the heart during an episode of cardiac dysrhyth-
mia [36]. The analysis of this chaos control method with respect to convergence speed
is subject of the second half of this thesis.

To solve this problem, we develop an algorithm to adapt the control parameter of
Predictive Feedback Control to optimize for convergence speed. Suppose that we want
to stabilize a given fixed point. To apply Predictive Feedback Control, a control signal
is added to the original function f whose iteration gives rise to chaotic dynamics. The
perturbed system corresponds to a function which is a linear interpolation between
the map f and the identity map id on RY defined by id(y) = y for all y € RV,
The control parameter p € [0, 1] determines what point on the interpolating line the
system is mapped to; variation of p leads to bifurcations from regular to chaotic
dynamics. At the same time, the choice of control parameter influences convergence
speed. There is an interval of control parameters for which the fixed point is stable,
so, in order to achieve optimal convergence speed, one would like to pick the value
for which convergence is fastest. A main result of Chapter 2 is the development of an
adaptive algorithm to optimize convergence speed. The theorem below summarizes
the result for the local dynamics.
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Theorem B. Suppose that f is a suitable function whose iteration gives rise to chaotic
dynamics on a set A C RN . Then there exists an algorithm that optimizes asymptotic
convergence speed by tuning the control parameter online. More precisely, for every
stabilizable unstable periodic orbit there exists a neighborhood in which the algorithm
mazximizes a certain lower bound for asymptotic convergence speed. This lower bound
s given by a suitable matriz norm which approximates the spectral radius up to some
bounded value and is arbitrarily close at the initial condition.

See Theorem 2.2.8 for a more precise formulation of this result. This local result may
be used to characterize some statistical properties of the dynamics. By assuming the
existence of some ergodic invariant measure on the set A, we are able to calculate the
probability of convergence towards a given periodic orbit if the control is turned on at
an arbitrary point in time. We subsequently apply these results to the logistic family
and confirm convergence numerically.

It turns out that Predictive Feedback Control itself suffers from an inherent speed
limit. Note that the adaptation algorithm described above optimizes speed within the
bounds of Predictive Feedback Control; it acts as a supplement which tunes the con-
trol parameter within the regime of stabilization. In hyperbolic systems the strength
of local contraction and expansion is determined in a linear approximation by the
eigenvalues of the derivative of f at the fixed point. Optimal asymptotic convergence
speed for Predictive Feedback Control depends strongly on the largest value associated
to the expanding directions; the larger this value, the slower the fastest convergence
speed. Since periodic orbits of higher periods—fixed points of the corresponding iterate
of f—tend to be more unstable this implies that convergence is slow even if the control
parameter is chosen optimally. Is it possible to overcome this inherent limitation of
Predictive Feedback Control while maintaining its advantages?

We show in Chapter 3 that it is indeed possible to significantly boost convergence
speed, even for periodic orbits of larger periods. The key idea is to “stall” control, i.e.,
to skip the application of the control perturbation periodically and thus make use of
the original uncontrolled dynamics. This works because the slowest direction, which is
the leading direction for the convergence, corresponds to a direction of fast attraction
of the original dynamics. Balancing repulsion and attraction leads to dynamics which
yield fast convergence from all directions and, therefore, fast overall convergence. Since
the effect of stalling depends on the local stability properties of a periodic orbit, this
aspect is studied systematically in Section 3.2. Thus, choosing the control parameter
optimally for stalled control may significantly speed up convergence compared to clas-
sical Predictive Feedback Control. Moreover, this Stalled Predictive Feedback Control
is not only capable of stabilizing more unstable periodic orbits but the speedup also
persists when initial conditions are distributed randomly on the chaotic attractor.

Convergence of Stalled Predictive Feedback Control may be fast when the control
parameter is chosen optimally, but how do we find the optimal value? To tackle
this problem, we apply and compare different adaptation algorithms for the control
parameter of Stalled Predictive Feedback Control. With an objective function that
takes local stability into account, standard algorithms may be used to optimize for
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convergence speed [35]. As a proof of concept, we develop a hybrid algorithm for
the control parameter in order to amend Stalled Predictive Feedback Control. This
algorithm increases the control parameter until the dynamics come close to a periodic
orbit where it then behaves like gradient descent optimizing for speed. The important
result presented towards the end of the last chapter is that the addition of adaptation
to Stalled Predictive Feedback Control yields a universal and fast chaos control scheme.
While it retains most of the advantages of Predictive Feedback Control, adaptation
renders the new control mechanism universally applicable as it lifts the requirement
that the parameters be fine-tuned a priori. At the same time, one obtains reliable
convergence when control is turned on at an arbitrary point in time.

Structure of this Thesis

In summary, this thesis is split into two parts. In the first part, in Chapter 1, we study
the dynamics of symmetrically coupled phase oscillators and show that chaos is indeed
possible in such systems. Moreover, we study the dynamical mechanisms that lead
to the emergence of chaos. Chapter 1 contains results from a published article [15]
as well as a manuscript in preparation [13]. Part II of this thesis is dedicated to
the theory of chaos control and the problem of convergence speed. In Chapter 2, we
develop an adaptation method that tunes the control parameter of Predictive Feedback
Control online to optimize convergence speed. The main results of this chapter are
published [14]. In the final Chapter 3, we show that Predictive Feedback Control
suffers from an inherent speed limit, in particular, when one tries to stabilize periodic
orbits of large period. This speed limit can be overcome by stalling control. Some of
the results presented in Chapter 3 have been submitted for publication [11, 12]. In
the outlook towards the end of this thesis we summarize some interesting follow-up
research questions that are motivated by the results in the main text. Answering these
questions will require further effort in the future.






Part |I.

Equivariant Dynamical Systems

13






1. Chaos in Symmetric Oscillator Systems

Models of coupled oscillators describe various collective phenomena in natural and
artificial systems, including synchronization of flashing fireflies, and superconducting
Josephson junctions, oscillatory activity of neural networks, and oscillations in chemical
reaction kinetics [82, 105]. In particular, phase-coupled oscillators arise naturally as
the averaged weak coupling limit of more general limit cycle oscillators [7, 106]. The
Kuramoto model [59] and its extensions have been successful at suitably describing
the dynamics of a variety of real systems, they are extensively studied numerically,
and are reasonably well understood analytically [1]. Let T := R/27Z denote the one-
dimensional torus and suppose that g : T — R is a 27-periodic function. The evolution
of the phase ¢ (t) € T of the k-th oscillator is determined by the ordinary differential

equation
N

depg 1
_ 1 v 1.1
G Sty jEZlg(wc ©5) (1.1)

where k € {1,..., N} and thus g is referred to as the coupling function.

For the original Kuramoto model the coupling function g has a single Fourier mode,
g = sin. Due to the existence of constants of motion, the dimension of such systems
can be reduced to low dimensions [68, 77, 107], implying that solutions are either
periodic or quasi-periodic. For coupling functions with two or more Fourier components
the collective dynamics may be much more complicated. The emergence of stable
heteroclinic switching is one example [5, 6]. While more irregular, chaotic dynamics
for identical all-to-all coupled systems appear in amplitude oscillators [74], chaos for
phase oscillators (1.5) has only been observed for non-identical phase oscillators [66, 87].
This motivates the main question of this chapter. Are inhomogeneities are necessary
for the occurrence of such dynamics in networks of phase oscillators? Until recently
there had been no explicit example of a fully symmetric system of phase oscillators
that exhibit chaotic dynamics.

One of the central results presented here [15] is the fact that there exist coupling
functions ¢ that give rise to chaotic dynamics in homogeneous, globally coupled sys-
tems (1.5). Furthermore, for these coupling functions the system exhibits chaotic
fluctuations of the order parameter

1 N
=% Z exp(ipr)- (1.2)

where ¢ denotes the imaginary unit. This observable encodes important information
about the dynamics, such as the level of synchronization. Moreover, in the classical
Kuramoto model, the full complex order parameter (1.2) acts as a mean field variable

15
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enabling closed-form analysis [104]. Generalized order parameters can be used to study
synchronization in systems with more general coupling functions [23, 24]. The smallest
dimension in which chaotic dynamics can and does occur in such systems is for the
case of four oscillators. Attracting chaos is also found for five and seven oscillators and
sets with chaotic dynamics for and infinite family of dimensions.

In this chapter, we study the emergence of chaos in symmetrically coupled phase
oscillators and the dynamical mechanisms that give rise to such complicated dynamics.
This chapter includes and extends upon the recently published preliminary results [15].
After recalling basic definitions and general properties of systems of coupled phase
oscillators with symmetry, we give a family of coupling functions that yields chaotic
dynamics for four oscillators in Section 1.2. Both local and global bifurcations are
involved in the creation of the chaotic attractors and we find examples of attractors
of all possible (setwise) symmetries. Attracting chaos is also present for the same
family of coupling functions in higher dimensions. At the same time, a bifurcation
analysis reveals that the case of even coupling functions is important for the occurrence
of chaos. This is studied subsequently in Section 1.3. We discuss the existence of
constants of motion for low-dimensional generalized Kuramoto systems before giving
some concluding remarks and open questions.

1.1. Equivariant Dynamics

The system of coupled phase oscillators described above is an example of a smooth
dynamical system on a real manifold defined by differential equations. In this section,
we collect some basic definitions from dynamical systems theory and equivariant dy-
namics before recalling some properties of the system of phase oscillators on the torus.
Let Z, N, and R denote the sets of integers, natural, and real numbers, respectively.
Suppose that 91 is a smooth N-dimensional manifold. Its tangent bundle 79 is the
vector bundle which is the disjoint union of all the tangent spaces 7,90 for all p € 9;
cf. [62]. Refer, for example, to [10, 42, 56] for a more detailed exposition of the terms
introduced below.

Dynamical Systems and Symmetry

A continuous time dynamical system on 9 is defined as follows. A smooth vector field
X 9N — TN assigns to every p € M an element of the corresponding tangent space
T,90t and these vectors vary smoothly in p. In other words, a vector field X is a section
of the tangent bundle. These vectors may be interpreted as “velocity vectors” thus
defining an (autonomous) dynamical system through an ordinary differential equation.
Solutions x : R — 91 that satisfy

dx

— =X(z

& (x)

are called trajectories or orbits. For a set A C 91 let A denote its topological closure.
The long-term dynamics of a given trajectory z are described by its w-limit and «a-limit
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sets,

ﬂ{ Ylt>T1} o ﬂ{ )|t < =T},

TEN TEN

respectively. A trajectory x is called a fixed point or equilibrium if x(t) = p for all ¢
and a periodic orbit or limit cycle if there exists a 7 > 0 such that z(7) = z(0).
Their stability is determined by the eigenvalues of the linearization of the vector field
at the orbit and they are called stable if the real part of all eigenvalues is smaller
than zero. Suppose p,q € 9 are equilibria. A trajectory x is called homoclinic if
w(z) = a(x) = {p} and heteroclinic if w(z) = {p}, a(x) = {¢}; a homoclinic trajectory
approaches the same equilibrium in forward and backward time whereas a heteroclinic
trajectory “joins” two different equilibria.

The dynamics in the vicinity of a trajectory x are described by the dynamics of the
linearized system. Let dX (¢) = d X[, denote the Jacobian of X at x(t). The temporal
evolution v(t) € T, along a trajectory x(t) of an initial perturbation vy := v(0) is
given by the variational equation

dv

— =dX(¢)v. 1.3

L ax() (13)
Suppose that || - ||y is some suitable vector norm on 79 (for example, a norm induced
by a Riemannian metric) and || - || is a suitable matrix norm on RN¥*¥. Suppose that

supseg |[dX ()|lm < C < co. The Lyapunov exponents are then defined for an initial
perturbation vg by

A(wo) = limsup 7 ! - log ()] (1.4)

Recall that this function takes up to N different values on T})9 and its maximum,
the maximal Lyapunov exponent Apax, is taken for Lebesgue-almost-all initial per-
turbations vg. The Lyapunov exponents characterize the average rate of exponential
divergence of trajectories along a trajectory. A positive maximal Lyapunov exponent
means that the dynamics are sensitive to changes of the initial condition which is a
typical feature of chaotic dynamics [33].

Suppose that U C 9. In order to define an attractor, recall that a set V is called a
neighborhood of V' if U is contained in its (topological) interior. Moreover, A C 9 is
called Lyapunov-stable for a dynamical system on 9 if for every neighborhood V of A
there exists an open neighborhood W of A such that for any trajectory x with initial
condition x(0) € W we have z(t) € V for all ¢t > 0.

Definition 1.1.1 (as in [39]). Suppose a differential equation defines a dynamical
system on a smooth manifold M. A set A C M is an attractor if it is Lyapunov-stable,
closed, connected, and the w-limit set of a trajectory.

A symmetry is additional property of the dynamical system and imposes restrictions
not only on the possible solutions but also on the bifurcations in such systems; see for
example [39, 40] for more details. Suppose I' is a group that acts on the manifold 90t.
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Definition 1.1.2. A wvector field X on 9 is called T'-equivariant if X “commutes”
with the action of I', i.e., X oy =dvyo X for all v € I' where dy denotes the induced
action on the tangent bundle.

A dynamical system that is defined by a I'-equivariant vector field is also called a
I'-equivariant dynamical system. The group I' determines the symmetry of the system
itself and an immediate consequence is that for every solution z of a I'-equivariant dy-
namical system ~yx is also a solution for every v € I'. Furthermore, equivariance gives
rise to flow-invariant subspaces. For every subgroup A C I' the corresponding fixed
point subspace Fix(A) := {p € M | yp = p for all v € A} are dynamically invariant.
Equivariant dynamical systems may give rise to solutions that have symmetries them-
selves. We thus define the symmetries of a specific set A C I as follows.

Definition 1.1.3. The subgroup Stab(A) :={~v €T | y(a) = a for all a € A} is called
the group of instantaneous symmetries and 3(A) :={~v €T | v(A) = A} is the group
of symmetries on average of A.

Remark 1.1.4. These subgroups are typically referred to as (pointwise) stabilizers or
fixators in the literature on group theory.

The instantaneous symmetries Stab(A) keep every point in A fixed at each point in
time whereas symmetries on average preserve the set as a whole. Clearly, we have
Stab(A) C X(A) as a subgroup. Recall that the group of instantaneous symmetries is
constant along a trajectory. This implies that the group of instantaneous symmetries
of an attractor as defined above is generically the same. This fact indicates that
the definition of an attractor given in Definition 1.1.1 is rather restrictive; Milnor
attractors [69, 70] may display a wider range of symmetries, including the possibility
of several different instantaneous symmetries at the same time.

Symmetries of dynamical systems may be intertwined with the temporal evolution of
the system. There may be additional (time) reversing symmetries [61]. Dynamical
systems with reversing symmetries are related to both Hamiltonian and equivariant
dynamics.

Definition 1.1.5. A dynamical system defined by a vector field X on a smooth man-
ifold MM is said to have reversing symmetry o : IM — M if o is invertible and

In contrast to a I'-equivariant dynamical system where for every solution = the group
translate vz is also a solution for any v € T, the presence of a (time) reversing sym-
metry has a slightly different implication. Suppose that a dynamical system has a
reversing symmetry ¢. Then for any solution z the image under the reversing sym-
metry oz is a solution when time is reversed. Thus, for any attractor A there is a
repeller p(A) and any solution that lies on the fixed point sets must have stability
properties compatible with the symmetry, e.g., there are no sinks or sources.
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Equivariant Systems of Phase Oscillators

This terminology now applies to the dynamical system defined through the ordinary
differential equations (1.1) on the N-dimensional torus T?. We focus on the homoge-
nous system, i.e., let us assume that wy = w for all k € {1,..., N} for the remainder of
this chapter. First, we collect some basic properties of this system as presented in [7].
As a consequence, we obtain a first observation: chaos can only occur in systems of
four or more oscillators.

Let Sy denote the group of permutations of N symbols and write T = (Tq,...,Tn)
for T € {¢, 1, ®,V}. The dynamical system defined by

dpp 1 X

— = — —p;) = 1.

T CYTN j§:1g(sok pj) = Pr(p) (1.5)
for k=1,...,N is Sy x T! equivariant where Sy acts by permuting indices and T*

through a phase shift [72]. Introducing phase differences v¢; := ¢; — ¢1 for each
j €{l,...,N} eliminates the phase-shift symmetry. The reduced system on TN~1! is
given by
N N
P (ng ) - zg<—wj>> W), (1.6)
7=1 7j=1
fork=2,...,N.

Suppose P = {Pi,...,P,} is a partition of {1,...,N}, that is P, C {1,...,N},
Uity P ={1,...,N}, and P. N Ps = () for v # s. For all partitions P the subspaces

Fp:={¢|¢;=nif jk € P, forcach r} ¢ TV (1.7)

are flow-invariant as fixed point subspaces of some action of a subgroup of Sy on
the indices. The subspaces divide TN~1 in (N — 1)! invariant (N — 1)-dimensional
simplices [7], each one corresponding to a specific ordering of the phases modulo 27.
We refer to one of these subspaces

C:={9Y|0=tp <thp<-- <ty <2r}cTN! (1.8)

as the canonical invariant region; cf. Figure 1.1. There is a Z/NZ symmetry on the
canonical invariant region that is generated by

f : (07¢27-~-7wN) = (071/}3 —w%---ﬂ/fN _¢272ﬂ_¢2)' (19)
and the “splay state” P i.e., the phase-locked solution with Yjp1 = 2% for 5 =
1,..., N —1in reduced coordinates, is the only fixed point of this action at the centroid

of this region.

As a first observation, we note that chaos cannot occur for systems of three or fewer
oscillators. The reduced system for N = 2,3 evolves on a one- resp. two-dimensional
torus. Hence, the minimal dimension for the system to exhibit chaotic dynamics is
N = 4 according to the Poincaré-Bendixon theorem [97] which states that every solu-
tion of a continuous time dynamical system on manifolds of dimension less than three,
which are smooth, compact, and connected, must be either periodic or quasiperiodic.



20 CHAPTER 1. CHAOS IN SYMMETRIC OSCILLATOR SYSTEMS

(a) N=3 (b) N=4

Figure 1.1.: The canonical invariant region C is an (N — 1)-dimensional simplex and
its faces B ¢ TN~! have Stab(B) = S3. The solid dots represent the
fully synchronized solution and the empty dots the splay state at the cen-
troid. Solid lines represent subsets A of TN~! with Stab(A4) = Sy_1,
i.e., all but one oscillator are synchronized, and dotted lines subsets with
Stab(A) = Sy X Sy/2, that is, two pairs of N/2 synchronized oscillators.
The group Z/NZ acts by “rotating” the simplex along the solid lines;
cf. Appendix A.1.

1.2. Chaos in Symmetric Oscillators

Chaotic dynamics can only occur in systems of four or more oscillators. In this section,
we show that there are families of coupling functions that give rise to chaotic dynamics
in four dimensions. In addition, we study the symmetry properties of the chaotic
attractors found in these systems and the bifurcations that lead to the appearance of
chaos. In the last part of this section we present results on chaotic dynamics for five
and more oscillators.

Chaos for Four Oscillators

We choose a parametrization of the coupling function ¢ in (1.5) by considering a
truncated Fourier series

4
g(p) = ak cos(kp + &). (1.10)
k=1
with constant parameters ay = —2, as = —2, ag = —1, and a4 = —0.88. In particular,

we restrict ourselves to the two-parameter family given by the parametrization

(€1,62,83,€4) = (m, —m,m +m2,m + 12) (1.11)
where 11 and 79 are real valued parameters.

We find that for this family of coupling functions there is a region in parameter space
where the dynamics are chaotic. Within this chapter, chaos is characterized by a
positive value of the numerically computed maximal Lyapunov exponent A .x. The
function A\pay = max {Amax,0} is depicted in Figure 1.2 (and 1.5). The maximal
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Figure 1.2.: Chaos for N = 4. The maximal Lyapunov exponent is positive in a region
of parameter space. The coupling function parametrized by (1.11) and the
initial condition was fixed.

Lyapunov exponents were calculated by integrating the variational equation (1.3) and
integration ranged over tens of thousands of time units after discarding a transient of
several thousand time units; cf. Appendix A.1 for details.

What are the possible symmetries of chaotic attractors A for systems of coupled phase
oscillators (1.5)7 By definition, the symmetry group of A is a subgroup of I' = Sy x T.
Suppose that A € TV is an attractor with trivial instantaneous symmetry. Since the
flow-invariant subspaces, which divide TV into the canonical invariant region and
its images under the group action, have nontrivial instantaneous symmetry we have
Y(A) C Z/NZ as a subgroup. In particular, for N = 4 any chaotic attractor must have
trivial instantaneous symmetry because all subsets of T# with nontrivial instantaneous
symmetry are of dimension two or smaller. For four oscillators, the setwise symmetries
of any chaotic attractor therefore must be one of the four subgroups of Z/4Z (up to
conjugacy).

By the use of so-called detectives, i.e., by encoding the symmetry properties of dy-
namics in a suitably large space on which I' acts, the symmetry groups of the chaotic
attractors may be calculated systematically [4, 39]. Here, we employed the I' = Z/47Z
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(a) Size of the symmetry group with respect to the parametrization (1.11)
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Figure 1.3.: All possible symmetries of the chaotic attractors are present for N = 4.
Panel (a) shows the parameter dependence of the cardinality of the group
Y(A) if Apax > 0.01 and zero otherwise for fixed initial condition; cf. Fig-
ure 1.2. Panels (b)—(d) show attractors with different symmetries for the
parameter values indicated by black dots in Panel (a). We have r; = 0.138
in Panel (a), 71 = 0.0598 in Panel (b), 71 = 0.1104 in Panel (c), and
n2 = 0.05586 in all panels.
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equivariant map

y: TV 5 R e (y1(9),12(0)) = (sin(pr — ¢3),sin(ps — ¢4)) (1.12)

to calculate the symmetry properties of minimal distances to the points (1,1), (—1,1),
(—1,-1), and (1,—1); cf. Appendix A.1. The resulting cardinalities of 3(A) for chaotic
attractors, i.e., when the maximal Lyapunov exponent A ,x exceeds a threshold of 0.01,
are plotted in Figure 1.3(a) in dependence on the values of the parameters (n1,72). In
fact, there are chaotic attractors of all possible symmetries on average. Some examples
are shown in Figure 1.3 by use of the Z/4Z-equivariant projection

II:C— R? xR,

b (4. B, (1-13)

where R is the complex valued order parameter (1.2). On the image of the canonical
invariant region under the projection, the group Z/47Z acts by rotating around the axis
(0,0,R); cf. Appendix A.1.

Chaos persists if the coupling function is replaced by a piecewise affine one (not shown).
Calculation of the maximal Lyapunov exponent reveals a region in parameter space
where Apax is positive when replacing cos in (1.10) by the continuous piecewise affine
2m-periodic function function defined by

1 for ¢ € [0,% — 1),
5—¢ forge[5- ’2+1)

coz(¢) = ¢ —1 forgzﬁe[K -1),
—Z 49 f0r¢€[77r—13”+1)
1 for ¢ € [2F +1,2n).

However, in contrast to smooth coupling functions, we only found examples of chaotic
attractors with trivial and Z/2Z symmetry.

Bifurcation analysis. A parameter-dependent dynamical system undergoes a bifur-
cation if the dynamics change qualitatively, i.e., its dynamic equivalence class changes,
as parameters are varied smoothly. An example is the period doubling of a stable peri-
odic orbit; at the bifurcation point the existing periodic orbit becomes unstable and a
new periodic orbit emerges with a period twice as large as the original periodic orbit;
cf. Figure 1.4. In particular, a dynamical system undergoes one or more bifurcations
when stable dynamics disappear and chaotic attractors emerge. Hence, a bifurcation
analysis is essential in the understanding of the transition to chaos. For example, a
typical route to chaos is through an infinite sequence of period doublings. Details on
bifurcation theory may be found, for example, in [42, 60].

Note that the parametrization (1.11) gives rise to a symmetry in parameter space
when reflecting in the origin (n1,72) = (0,0) given by the map (n1,m2) — (—n1, —12)
and reversing time. Let ®772 denote the vector field ® for the coupling function
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(a) Period doubling (b) Homoclinic doubling (¢) Two heteroclinics

Figure 1.4.: Overly simplified sketch of some bifurcations. The bifurcation parameter
is denoted by A with bifurcation taking place at Ag, and p, g are equilib-
ria. Period doubling and homoclinic doubling are depicted in Panels (a)
and (b), respectively. Panel (c¢) shows the existence of two heteroclincs
at Ao which leads to two branches of heteroclinc orbits.

given by the truncated Fourier series (1.10) with parametrization (1.11). Suppose
¢ =(p1,...,0nN) is a solution of (1.5) with right hand side given by ®"72. We have

d(— T
(dfk) _ _@217772((’0) _ _(I)k 1, 772(_(’0) (1‘14)
for k = 1,...,N and therefore —p is a solution of the system with parameters

(—m,—n2) when time is reversed. In other words, every solution for (n;,72) has a
corresponding solution for (—n;, —n2) with inverse stability properties and therefore
every bifurcation point has a symmetric counterpart.

We calculated bifurcation lines numerically by using the numerical continuation soft-
ware AUTO/HomCont! Figure 1.5 shows an overlay of some of the bifurcation lines
with the values for the maximal Lyapunov exponent when initial conditions were cho-
sen randomly on the canonical invariant region. Chaos arises through different period
doubling cascades and vanishes at a saddle-node bifurcation of periodic trajectories,
i.e., where two periodic trajectories of opposite stability annihilate each other. Recall
that homoclinic trajectories, similar to periodic ones, may “double” [47, 49]; addi-
tional “revolutions” are added before the homoclinic loop is closed; cf. Figure 1.4.
Such bifurcations may occur at homoclinic flip bifurcation where the exact nature of
the bifurcation depends on the eigenvalues at the equilibrium [48]. In our system, the
bifurcation lines that bound the chaotic region from the left and top emanate from
a homoclinic flip bifurcation with an inclination flip (Figure 1.5, Label A). Here the
eigenvalues at the equilibrium of the reduced system are such that infinitely many
higher homoclinics and period doubling curves emanate from this bifurcation point.
We find and continue the 2- and 3-homoclinics, as shown in Figure 1.5.

Choosing initial conditions randomly (in contrast to fixed initial conditions as in Fig-
ure 1.2) reveals a large part of parameter space with multistability as depicted in

!"Numerical continuation of the bifurcations was done with AUTO-07p by E. J. Doedel et. al. [29, 30]
(available at http://indy.cs.concordia.ca/auto/) which includes HomCont and an implemen-
tation of Lin’s method [64] to find higher homoclinics.


http://indy.cs.concordia.ca/auto/

1.2. CHAOS IN SYMMETRIC OSCILLATORS 25

0.14

0.08
0.12 y
g
«<
0.06 0.1 %5
[}
=
Q
o
0.08 4
N E >
S 0.04 ] 2
L 1 0.06 §
Fold of LC =
1 —
PD L1004 B
0.02 c;é
L1 0.02 =

0 T T T T T T I 0
0 0.03 0.06 0.09 0.12 0.15 0.18
m

Figure 1.5.: Chaos for N = 4 overlaid with the numerically calculated bifurcation lines.
Here, initial conditions were chosen randomly on the canonical invariant
region for every pair (n1,72). In “sprinkled” regions, for example close to
Label B, stable and chaotic dynamics coexist. PD* are period doubling
lines of the kth doubling in a given period doubling cascade. Hom" are
the k-homoclinics either emanating from the homoclinic flip bifurcation or
from the heteroclinic bifurcation. Note that there are multiple bifurcation
lines passing through (n1,72) = 0. Refer to the main text for a detailed

explanation of the labels A-D.

Figure 1.5. Here, attracting chaos coexists with one or more stable periodic trajecto-
ries. The bifurcation analysis shows how these stable limit cycles are related to other
global bifurcations in the system. The region of multistability on the right hand side
of the chaotic region close to Label B is due to the existence of a stable limit cycle that
is destroyed in a saddle node bifurcation of limit cycles (Figure 1.5, Label B). This
stable limit cycle undergoes period doubling, yielding the bifurcation lines that bound
the lower part of the chaotic region. The period doubling lines bifurcate in global bi-
furcations, both homoclinic and heteroclinic [49]. They end in homoclinic bifurcations
(Figure 1.5, Label C) which collide with another fixed point to give multiple hetero-
clinic loops (Figure 1.5, Label D); cf. Figure 1.4(c). The two heteroclinic trajectories
which are present at the bifurcation point may be continued separately (not shown).

Note that the lines corresponding to both the homoclinic flip bifurcation and the
homoclinic-to-heteroclinic bifurcations emanate from the origin in (71, 72) parameter
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Figure 1.6.: Emergence of chaos in higher-dimensional systems. Overlapping regions
where the maximal Lyapunov exponent exceeds 0.01 for N € {4,5,7}.
The darker the color, the more N for which the condition holds. The
magnification in Panel (b) shows that there is a wedge-like region pointing
towards (11, 72) = 0 of positive maximal Lyapunov exponents for every N.

space. As discussed above, these bifurcation lines are linked to the main lines involved
in the emergence and destruction of the chaotic dynamics. This indicates that at the
origin there may be the crucial bifurcation which gives rise to the bifurcation structure
involved in the emergence of chaos for systems of four oscillators.

Chaos for Five or More Oscillators

Analyzing the same region of parameter space for N > 4 yields attracting chaos in
systems of N =5 and N = 7 oscillators in large regions. Figure 1.6 shows an overlay of
regions for three different N; regions are shaded where the Lyapunov exponent exceeds
0.01 and darker areas indicate that several N satisfy this condition. Clearly, there is a
single coupling function for which attracting chaos is present for all N =4, N =5, and
N = 7. Intriguingly, we did not find chaotic attractors for any N € {6,8,9,...,13} in
the entire region of parameter space considered in Figure 1.6(a).

The parametrization of the coupling function by a truncated Fourier series raises the
question how many Fourier components the coupling function needs to contain for
chaos to occur. For N = 5 we also measured positive Lyapunov exponents when the
coupling was chosen to be through the simpler coupling function

g(¢) = —0.2cos(¢p + 1) — 0.04 cos(2¢ — d2)

where d1, 02 are real parameters as in [6]. Hence, in dimension five, coupling functions
with only two Fourier components suffice to generate chaotic dynamics whereas for
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Figure 1.7.: Positive maximal Lyapunov exponents for asymmetric 4-cluster states
for large systems, N = KM + L(q,M) > 4. Here, the parame-
ter ¢ parametrizes the deviation from the symmetric cluster state and L
is the corresponding integer dimension (coupling function (1.11) with
71 = 0.1104 and 72 = 0.05586).

N =4, we did not find an example with less than four components. In particular, using
n =mn1 = ne and a4 as parameters for N = 4, we found that the onset of chaos occurs
for values of a4 larger than one half (not shown), i.e., for coupling functions (1.10) the
amplitude of the fourth harmonic has to be large enough for chaos to occur.

From the above, it is clear that for systems of size N = KM with K € {4,5,7}
there are chaotic invariant sets lying in flow-invariant subspaces for coupling functions
yielding positive maximal Lyapunov exponents Apax; cf. Figure 1.6. For instance, for
K = 4, these spaces are given by partitions P = {P,..., P4} with |P;| = M for
j € {1,...,4}. For N large, cluster states close to the symmetric four-cluster state
may be parametrized by partitions P = {Py, ..., Py} with % = %—I—q and ‘ij\}" = %—%
for j € {2,3,4} where the parameter ¢ characterizes the deviation from the symmetric
state. We calculated positive maximal Lyapunov exponents for the system reduced to
these near-symmetric cluster states as depicted in Figure 1.7. However, the dynamics
on flow-invariant surfaces may have a variety of stability properties with respect to
the dynamics of the full system [3]. Hence, these chaotic invariant sets in subspaces
close to the symmetric cluster state may be transversally repelling, possibly yielding
non-chaotic long-term dynamics.

The origin (n1,12) = 0 of parameter space where the phase shift parameters are zero,
i.e., where the coupling function (1.10) is even, plays a special role in the emergence
of chaos. As discussed above, for the considered systems of four oscillators, many of
the lines corresponding to bifurcations that are involved in the appearance of chaos
emanate from the origin. Furthermore, for both cases N = 5 and N = 7 in which
attracting chaos was found, positive maximal Lyapunov exponents are measured in a
wedge-like region close to the origin; cf. Figure 1.6(b). Thus, the bifurcations taking
place at the origin seem to be important for the appearance of chaos not only for four
but also for a larger number of oscillators.
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1.3. Dynamics for Even Coupling Functions

An even coupling function g is a function that is invariant under the reflection —¢ — ¢,
i.e., g(—¢) = g(¢). This symmetry of the coupling function itself has implications for
the dynamics of the generalized Kuramoto equations (1.5) as it imposes additional
constraints on the dynamics. At the same time, for an even coupling function, the
fully synchronized solution ¢*"¢(t) = (wt,...,wt) bifurcates as all eigenvalues of the
linearization pass through zero [7]. First, we study special properties of the system of
symmetric phase oscillators if the coupling function is even. We show that there are
constants of motion for rings of coupled phase oscillators and discuss the implications
of these results for fully coupled systems towards the end of this section.

For a dynamical system defined by a vector field X on a smooth manifold 91 recall the
following estimate for the sum of all Lyapunov exponents (1.4) as given, for example,

n [10].

Lemma 1.3.1. Suppose that the vector field X defines a differential equation on a
smooth manifold M and x is a solution thereof with initial condition x(0). For any
basis (v1,...,vn) of the tangent space V := T, )9 we have

n

1
limsuptRe(/ trace (dX (¢ ) < Z)\ (vj)

t—o00

In particular, the basis of V' can be chosen such that (vy) evaluate to the r distinct
values of the Lyapunov exponent, i.e., X can be interpreted as the mean Lyapunov
exponent.

We apply this lemma to the generalized Kuramoto equations (1.5) with an even cou-
pling function g.

Corollary 1.3.2. If the coupling of the generalized Kuramoto equations (1.5) is given
by an even coupling function g then the mean Lyapunov exponent is bounded from below
by zero, 0 < A.

Proof. The Jacobian of the generalized Kuramoto equations (1.5) with an even cou-
pling function ¢ at ¢ € TV is given by

> 9 (e —pj) for k=1
?{)’“ S g ’ (1.15)
Pele —¢'(or —pe)  otherwise

where the prime denotes differentiation with respect to the argument. Note that the
derivative ¢’ is odd and therefore the trace of the Jacobian is equal to zero. The
inequality of Lemma 1.3.1 proves the assertion. O

Hence, either all Lyapunov exponents vanish or there is at least one positive Lyapunov
exponent. In other words, the dynamics are either degenerate or chaotic.
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If the coupling function is even then there are reversing symmetries for the generalized
Kuramoto system (1.5). For any o € T!, the map g, : ¢ = —@ + « is a reversing
symmetry. For coupling functions that can be written as (1.10) this reversing symmetry
corresponds to the degenerate point (11,12) = 0 = (=11, —n2) of the symmetry (1.14)
of parameter space.

Consider the reduced dynamics of the phase differences ¢ as given by (1.6). For
even coupling functions g the system has a reversing symmetry ¢ : ¥ — — since
V(1) = U(—1) and therefore

do(v) _  dy _

—U(y) = —W(a(¥))-

.~ dt
Of particular interest are the fixed point subspaces

Fix(o) = {w e TNt ‘ o(v) = w} = {0, 7}V!

as they give rise to particular solutions such as homoclinic and heteroclinic orbits.
Moreover, equilibria in Fix(g) may locally give rise to specific families of periodic
solutions [38]. For N > 2 we have Fix(0) N C =: Fix¢(0) C dC where 9 denotes the
topological boundary of a set. Hence, any g-invariant point lies on the boundary of
the canonical invariant region, which consists of the flow-invariant subspaces Fp for
certain partitions P. Furthermore, as the cardinality of Fix(p) is finite, there are only
finitely many trajectories that pass through this fixed point space.

The additional symmetries for even coupling functions and in particular the conse-
quences of Corollary 1.3.2 motivate the question of whether the dynamics are degen-
erate for such coupling functions. This would be the case if there were constants of
motion.

Dynamics of Three Oscillators and Rings

Consider a system of N nearest neighbor coupled phase oscillators on the N-torus TV
with coupling given by a 2m-periodic real-valued coupling function g. The evolution
of the phases p(t) = (p1(t),...,on(t)) € TV is governed by the ordinary differential
equations

dor

5 =99k = er-1) + 9(0k — k) (1.16)
for k = 0,...,N — 1 (with indices taken modulo N). Let Z/NZ act on the phases
¢ by permuting indices. The dynamical system defined by (1.16) is I' = Z/NZ x T

equivariant.

Proposition 1.3.3. Consider the dynamics of a ring of oscillators as given by (1.16)
and suppose that the coupling function g is even. Let f be an antiderivative of g, i.e.,
f'=g. Then

V= ), f(s%u) - %(2)) (1.17)

peZ/NZ

s a constant of motion, i.e., its value is constant along any trajectory.
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Proof. Define the shorthand notation g, ;. := g (¢; — ¢x). Without loss of generality
we consider the dynamics in a “rotating frame,” i.e., w = 0. Since g is even we have
8k = 8 ;- Taking the derivative with respect to ¢y yields

8VN . 2 2
87%% = (gk:,k-H - gk,k—l) (gkz,k-i-l + gk,k—l) = 8k k+1 — Bk k1"

The derivative Nl
dV; —~ 0Vn d
N Z N APk _ 0
k=0

dt Dy, dt
vanishes as every g;;,; appears twice in the sum, once with a positive and once with
a negative sign. Thus, Vjy is constant along trajectories. O

Remark 1.3.4. This constant of motion is very similar to the constant of motion found
for finite lattices of phase oscillators [81]. In fact, rings of coupled phase oscilla-
tors (1.16) are also Hamiltonian systems [32].

For three oscillators, N = 3, the dynamical equations for the all-to-all coupled gen-
eralized Kuramoto equations (1.5) and the ring coupling topology (1.16) coincide.
Thus, V3 is a constant of motion for the (S5 x T)-equivariant system (1.5). De-
fine s, = sin (5(¢; — ¢r)), sjr = sjlk for j,k € N,x € R, and the cyclic products
S* = sy shys5. If functions Wi, Wy : TV — R differ only by an invertible affine
transformation, i.e., if there exists an invertible affine map 7 such that (W) = Wa,
write W1 = Ws. Suppose that the even coupling function is given in the form of a
Fourier series
o0
9(6) = 3 ax cosko). (118)
k=0
Since S® may be written as a sum of cosines by using basic trigonometric identities,
we find that ~
~ ag k
Vi = —S 1.19
=y (119
k=1
satisfies V3 = 173 Note that the constant of motion ‘73 vanishes on the boundary of the
canonical invariant region C. Figure 1.8 shows contour lines of this constant of motion
for some coupling functions.

At the same time, it is well known that (1.5) has constants of motion for coupling func-
tions with only one nonzero Fourier coefficient and any number N of oscillators [108].
One of these Watanabe-Strogatz (WS) constants of motion is given by

. Pp1) — Pp(2
Vs [ sm(”()2”()>: I Sone- (1.20)
pEZ/NZ PEL/NZ

For N = 3 and a coupling function with only one nonzero Fourier coefficient ax with
K € N, the WS constant of motion and V3 are equivalent since V3WS = S! and therefore

‘/3 = V3WS

after rescaling time. Hence, the constant of motion for rings of three oscillators and
Watanabe—Strogatz constant of motion are essentially the same.
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Figure 1.8.: Some contour lines of the constant of motion Vi for three oscillators for
some even coupling functions (1.18) on the canonical invariant region C;
cf. Figure 1.1(a). Recall that the canonical invariant region is a two-
dimensional simplex given by the ordering 0 = 11 < Y9 < 13 with vertices
(0,0,0), (0,0,27) and (0,27, 27), i.e., the fully synchronized state. The

(©)

nontrivial Fourier coefficients of the coupling function are a; = 1 and
ap = 1 in Panel (a), a1 = =2, ag = —2, a3 = —1, and a4y = —0.88 as
in (1.10) in Panel (b), and a1 = —2, ag = —2, a3 = —1, and ag = 10 in
Panel (c).

Four Oscillators

For four all-to-all coupled oscillators with dynamics given by (1.5) the situation is
different; in contrast to the ring topology the “cross coupling terms” g(p1 — ¢3) and
g(p2 — p4) enter the dynamical equations. For three oscillators, the constant of motion
interpolates the Watanabe—Strogatz constant of motion for a single Fourier component.
For N =4 and coupling function g = cos, this constant of motion evaluates to

(o) — ¢
Vit = 11 siaper = 11 Slﬂ( p(1)2 pm)) (1.21)
pEZ/AZ pEZ/AZ

= > COS(%(D - %(2)) — cos(p1 — p3) — cos(p2 — @4)
pEZ/AZ (1.22)

— cos(p1 — 2 + @3 — Pa).

Note that, in addition to the extra terms that involve the cross coupling phase dif-
ferences, the functions constituting the constant of motion have the same symmetry
properties as the coupling function itself. By contrast, for three oscillators this func-
tion was odd as the integral of cos. So far, we have not been able to find a constant of
motion for N = 4.

However, there is numerical evidence that a constant of motion may exist even for four
oscillators and an arbitrary even coupling function. Solving the equations of motion for
even coupling functions shows that the orbits are periodic. Examples of such periodic
orbits for the coupling function given by (1.10) with phase shift parameters {; = 0
for all j are shown in Figure 1.9. At the same time, the calculation of the entire
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Figure 1.9.: Regular dynamics for four all-to-all coupled oscillators and an even cou-
pling function (1.18). All solutions are periodic and have different symme-
tries on average depending on initial conditions. The projection is through
the equivariant projection (1.13).

Lyapunov spectrum shows convergence of all Lyapunov exponents to zero for various
even coupling functions (not shown).

Even though we only found periodic orbits for four phase oscillators with even coupling,
these may be quite complicated”. For an even coupling function with four nontrivial
Fourier modes, that is with g as (1.10) with ; = 0 for all j, and parameters a; = —2,
az = —2, a3 = —1, and a4 = 10 there are various periodic orbits that exhibit “spiraling”
motion® as shown in Figure (1.10). The dynamical origin of these periodic orbits for
even coupling functions is still unknown.

2This observation is due to Pete Ashwin.
3Note that for these parameter values the parameters for the numerical solver have to be chosen
carefully to obtain proper solutions, in particular with respect to the time step.
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Figure 1.10.: Changing one amplitude parameter, a4, of the coupling function (1.18) to
a4 = 10 yields complicated periodic trajectories for some initial conditions
in addition to “simple” periodic orbits. Initial conditions are ¢(0) =
(0,4.8188, 4.8862, 5.0751) in Panel (a), ¢(0) = (0,4.8238, 3.8251, 2.0564)
in Panel (b), (0) = (0,1.6756,5.0189, 5.3693) in Panel (c), and ©(0) =
(0,0.9361,2.2935,5.9977) in Panel (d). The projection is given by the
equivariant projection (1.13).
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1.4. Discussion

We showed that chaotic dynamics and also chaotic fluctuations of the order parameter
are possible for systems of phase coupled oscillators in the presence of full Sy x T-
symmetry. Chaos is found not only for the smallest dimension in which chaos can
occur, N = 4, but also for larger numbers of oscillators. The same family of coupling
functions also yields attracting chaos for N = 5 and N = 7 but, interestingly, not
for any other N less than fourteen. Note that the regions for which the maximal
Lyapunov exponent is positive for N € {4,5,7} in (n,72) parameter space differ
drastically; cf. Figure 1.6. Furthermore, chaotic dynamics are found on flow-invariant
subspaces for an infinite family of dimensions N, where k € N. The question whether
there are coupling functions that gives rise to attracting chaos for N = 6 or N > 8
is still open. At the same time, one might ask whether there exists a single coupling
function g that gives rise to chaotic attractors for all, or at least an infinite number of
dimensions N, acting as a “universal chaos function.”

That chaotic dynamics are possible for symmetrically coupled phase oscillators has
implications for some applications. For example, the observation of chaotic dynamics
in experimental setups of phase oscillators (see for example [58]) cannot necessarily
traced back to inhomogeneities induced by the experimental setup and environmental
noise. It might rather be an intrinsic property of the system itself.

For an even coupling function the system has additional (reversing) symmetries. For
three oscillators the dynamics are determined by a constant of motion. This constant
of motion is not only a generalization of the constant of motion found by Watanabe
and Strogatz [108] for the classical Kuramoto equations to general coupling functions
but it is also related to constants of motion found for rings of identical oscillators [81].
It hence describes a link between two previously unrelated quantities, at least for
N = 3. At the same time, writing this constant of motion in the form (1.19) provides
a direct relationship between the dynamics and the coupling function; note that the
appearance of the Fourier coefficients of the coupling function somewhat justifies the
ansatz of expanding the coupling function as a Fourier series rather than choosing
some other basis. The existence of a similar expression for larger dimensions N might
give insight into what features of the coupling function are crucial for the emergence
of chaos as the system bifurcates from the even coupling case. This way one might
obtain a hint at how to construct a “universal coupling function” as discussed above.

In particular, the existence of a single constant of motion for four oscillators with even
coupling would imply non-chaotic dynamics as the effective dimension of the system
is reduced to two. An expression for such a constant of motion (if it exists) could
also clarify the role of the origin of parameter space as the crucial bifurcation point for
emergence of chaotic dynamics; it may indicate which bifurcations happen close to this
point. A similar line of argumentation applies if there was a constant of motion for
a larger number of oscillators leading to a system that is at least partially integrable.
Unfortunately, the efforts to find such a constant of motion for just N = 4 have been
unsuccessful so far, motivating the question whether it exists at all and, if it does,
what role the “cross coupling terms” play. At the same time, the existence of rather
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complicated periodic orbits, as depicted in Figure 1.10, is an indication that even if a
constant of motion exists, it might not be possible to find a simple expression for it.

For the classical Kuramoto equations, the continuum limit, i.e., the limit as N — oo,
and the finite dimensional system are closely related. In the Kuramoto system, the
coupling function has only one nontrivial Fourier component and for both finite IV
and the continuum limit, the system reduces to effectively two-dimensional dynamics
[68, 77]. Thus, chaotic dynamics cannot occur. This relationship, however, depends
on the special form of the coupling function which implies that the case of a general
coupling function is more subtle. The question remains whether chaotic dynamics are
possible in the continuum limit of (1.5)7 And if so, how would that relate to systems
of finitely many oscillators studied in this thesis?

Coupled phase oscillators arise naturally as the averaged limit of weakly coupled limit
cycle oscillators [7]. Chaotic dynamics are observed for ensembles of globally coupled
identical Ginzburg-Landau oscillators [43, 75] but it was believed that the amplitude
degree of freedom is crucial for the emergence of these chaotic dynamics. Our results
show that this is in fact not the case because even for phase oscillators, i.e., in the
absence of any amplitude degree of freedom, chaos can occur. Conversely, the possi-
bility of chaos in the limiting case of symmetrically coupled phase oscillators suggests
that ensembles of higher-dimensional limit cycle oscillators support a wide range of
intricate dynamics, including chaos.

Compared to the classical Kuramoto equations, the dynamics of identical, globally
coupled phase oscillators with more general coupling functions remain poorly under-
stood. We demonstrated that they may support rather complicated dynamics and
investigated the mechanisms involved in the emergence of such dynamics. Finally, we
highlighted some of the important research questions motivated by our findings. Even
though these questions are beyond the scope of this thesis, tackling them may lead to
a better understanding of the dynamics of symmetrically coupled phase oscillators.
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2. Adaptation for Predictive Feedback
Control

Typically, chaotic attractors contain infinitely many unstable periodic orbits [56].
These can be seen as a “skeleton” for the chaotic attractor [8, 21, 22], therefore re-
vealing important information about the dynamics of the system itself. By suitable
perturbations the stability of these unstable periodic points can be changed; a control
perturbation may render them stable. Apart from its theoretical importance, such
“chaos control” has not only been hypothesized to be a mechanism exploited in bi-
ological neural networks [91] but has also found its way into many applications [95]
including chaotic lasers, stabilization of cardiac rhythms [36], and more recently into
the control of autonomous robots [94, 102].

In the last twenty years, different methods for stabilizing unstable periodic orbits have
been suggested. The seminal work by Ott, Grebogi, and Yorke (OGY) [79] and its
implementations employ arbitrarily small perturbations of a parameter of the system
to stabilize a known unstable periodic orbit of a discrete time dynamical system. A
successful application of the OGY method, however, requires prior knowledge about
or online analysis of the dynamics (for example by analyzing the evolution of the
system [100]) to determine fixed points and their stability properties.

A different approach is given by Predictive Feedback Control (PFC) [26, 86] which
overcomes this disadvantage. In this approach, the future state of the dynamics, which
is calculated from the current state, is fed back into the system to stabilize a periodic
orbit. This is similar to time-delayed feedback control [89] with the difference that
a prediction about the future state (rather than a past state) is used for the control
signal. Predictive Feedback Control is noninvasive, i.e., the control strength vanishes
upon convergence, and is extremely easy to implement. In fact, it is a special case
of a recent effort to stabilize all periodic points of a discrete time dynamical system
[92, 93] which is also closely related to nonlinear successive overrelaxation methods
[16, 109]. Tt has been extensively studied [19, 20, 28, 83, 84] and extended [25, 31, 57]
with respect to its original purpose as a tool for examining the structure of chaotic
attractors.

In any real-world application, not only the existence of parameters for which stabiliza-
tion takes place but also speed of convergence is of crucial importance. For example,
if a robot is controlled by stabilizing periodic orbits in a chaotic attractor [102], the
time it needs to react to a changing environment is bounded by the time the system
needs to converge to a periodic point of a given period. Hence, for Predictive Feedback
Control one desires to tune the control parameter such that the spectral radius of the
unknown periodic point to which the system converges is minimized. Previous works
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on feedback chaos control have not considered convergence speed while maintaining
its simplicity in terms of implementation. Adaptation of the control parameter has
an impact on convergence speed. However, existing adaptation mechanisms [63, 102]
have two major shortcomings: they do not optimize for speed, and, for adaptation of
a heuristic nature, they may adapt the parameter to regimes where stabilization fails.

To approach the problem of optimizing convergence speed, we introduce an adaptation
method that overcomes these shortcomings. It is defined within the framework of
Predictive Feedback Control and adaptively tunes the control parameter online to
achieve optimal asymptotic convergence speed. In the following section we review
the Predictive Feedback Control method and introduce the notation that will be used
throughout this chapter. In Section 2.2 we present our adaptation method and prove
its convergence properties. As an example, the well-known logistic map is studied both
analytically and numerically in the two subsequent Sections 2.4 and 2.5. Finally, we
give some concluding remarks. The results presented in this chapter are published
in [14].

2.1. Predictive Feedback Control

In this section we give some basic definitions and recall some facts about Predictive
Feedback Control to set the stage for the results presented in the sections to come.
A differentiable map f : RY — RY gives rise to a discrete time dynamical system
through the evolution equation

Tr+1 = f(wk) (2.1)
with z, € RN for all k € Z. Let

fr=foforof
|

p times

denote the p-fold composition of f. The sequence xp with k € N is called an orbit of
the dynamical system with initial condition xg. If f°P(x) = x for all & > 0, we say
that the orbit is periodic with period p. As above, let

Fix(f) = {z € RV | () = 2}

be the set of fixed points, i.e., periodic points of period one. Note that any periodic
orbit of period p is a fixed point of the pth iterate of the map f so within this chapter
we will use the expressions “fixed point” and “periodic orbit” interchangeably.

Let A ¢ RY be a compact forward invariant subset of RY with respect to f, i.e.,
f(A) C A. If periodic points are dense in A and f maps transitively, i.e., for every
pair of non-empty open sets U,V C A, there is a non-negative integer n such that
fo(U)NV # 0, then we call A a chaotic set. Julia sets [71] in one complex dimension,
as described below, are examples of such chaotic sets. Let df|, denote the derivative
of f at x € RN and let id : RY — RY denote the identity map.
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Definition 2.1.1. A fized point x* € Fix(f) is called attractive or stable if all eigen-
values of df|,+ are of absolute value smaller than one, i.e., if the spectral radius of the
matriz df|,+ is smaller than one. The value of the spectral radius is referred to as the
asymptotic convergence rate towards an attractive fized point.

Remark 2.1.2. 1f p is the convergence rate of a stable fixed point, then convergence is
fast for small p. In the following, we will mostly talk about asymptotic convergence
speed which will be either 1 — p or p~! depending on what is convenient in the con-
text. Either one of these quantities coincides with the traditional notion of speed, i.e.,
convergence is fast if the value is large.

For a fixed point z* let B(z*) = {zg € RN | f¥(xo) = xx — z* as k — oo} denote
its basin of attraction. If x* is stable then there is an open neighborhood V of z*
with V' C B(x*). Attractive periodic orbits of period p are attractive fixed points
of f°P; the stability properties of x* € Fix(f°P) are determined by the eigenvalues
of d(f°P)|z+. By the chain rule, the stability properties are the same for any point
z*, f(x*), ..., fPP=D(z*) of the periodic orbit.

The results of [93] are now summarized as follows.

Proposition 2.1.3. Suppose that x* € Fix(f) and the matrices df|;+ and df|~ — id
are real, nonsingular, and diagonalizable. If g,, is the map obtained from f through the
transformation

S, M) « f = id +pMi(f —id) =: gu

then there exist a parameter pu > 0 and an orthogonal matriz My € O(n) such that x*
is an attractive fized point of g,,. In particular, for p # 0 the transformation S(u, My)
preserves the set of fized points, that is, Fix(f) = Fix(g,).

In fact, it can be shown that the number of matrices M, needed to stabilize all fixed
points of a given map f is quite limited [19]. The choice of M} depends on the local
stability properties of fixed points and there are types of fixed points that can be
stabilized for My € {£id}. Let C denote the set of complex numbers and suppose
that x; € C where j € {1,...,n} are the eigenvalues of dg, |, for a given 2* € Fix(f).
We denote by

00+ () = jonax {Ix;1}

the spectral radius of dg, .+, i.e., the maximum of the absolute values of the eigenvalues
of the derivative of g, at *. We have

dguls = id +uMy(df, — id). (2.2)

for all 2 € RY. In other words, the proposition above ensures the existence of ;i and
My (z*) for a given x* € Fix(f) such that the transformation S(u, My) gives o+ (1) < 1;
cf. Figure 2.1. Therefore, with these parameters, the fixed point z* of f is an attracting
fixed point for g,.

The results above are directly related to predictive feedback chaos control methods. A
transformation 75, : f > g is called a chaos control transformation if g can be written
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0 Moo 1
Control parameter p

Figure 2.1.: Sketch of the dependence of the spectral radius g~ () on p for some fixed
point x* according to Proposition 2.1.3.

as g = f 4+ nc with control perturbation ¢ : RV — RN and n € R. Note that for
My, € {£id} the transformations S(Mj, i) are chaos control transformations since

gu = f+ A F p)(id—f) (2.3)

with 7 = 1 F . Therefore, we will refer to these transformations S(u, M) as PFC
transformations. In fact, we may treat My € {£id} simultaneously by considering
Mj, = id and choosing the parameter p from the interval [—1, 1].

The results of Proposition 2.1.3, however, give little information about the speed of
convergence, except for the fact that when decreasing p towards zero, convergence
takes longer and longer as the spectral radius approaches one. In the vicinity of a
stabilized fixed point, convergence is at least linear and the rate of convergence is
bounded from above by the quantity o,+(x). In order to obtain an adaptation method
that increases the speed of convergence, we therefore have to minimize g+ (@) using the
control parameter pu. For a random initial condition, we do not know to which fixed
point x* (if any) the trajectory will converge. We only have a converging sequence
zr — z*. In other words, we are looking for a way to obtain a sequence pr — foo
where

. .. and assumptions of
Hoo = SUP { w>0 ‘ Vi >0 0 () < 0ae (i) Prop. 2.1.3 are satisfied } (2:4)

is the optimal p to minimize gz«(p). Define Ao := 02+(lieo). In applications, the
control parameter p plays a double role; on the one hand, it can be used to turn
chaos control on and off, 4 = 1, and on the other hand, it is the crucial parameter for
stabilizing the periodic orbits and determining the speed of convergence.

Let card denote the cardinality of a set. For parameters p € N and pg > 0 define the
class of functions

Fuo,p) =4 f | card ({z* € Fix(fP) | 0z+(10) < 1 for My =id}) >0} .

The sets F(uo, p) are the functions f with a chaotic set that have at least one periodic
orbit of period p which can be stabilized for the given parameters.
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2.2. An Adaptation Method for Accelerating Chaos Control

Predictive Feedback Control is a chaos control scheme that depends on one real param-
eter, the control parameter pu. For a certain class of fixed points, there exists a value
of p such that these fixed points are stable fixed points of the PFC-transformed dynam-
ical system. At the same time, the choice of control parameter influences the speed of
convergence. In this section, we develop an adaptive algorithm which tunes the control
parameter to achieve optimal convergence speed. After proving the local convergence
properties of the resulting chaos control method, we discuss how to determine features
of the global dynamics from invariant measures on the chaotic attractor.

Within this section suppose that f € F(ug,p) for some pg > 0 and, without loss
of generality, we may assume p = 1 since we can replace f with the pth iterate.
Suppose that g, is the transformed map after applying S(u,id). Furthermore, we
assume that for all times k& < 0 the system evolves according to Equation (2.1), i.e.,
with n =1 — u = 0, along a trajectory of points in the chaotic set A. At time k =0
the control parameter p is set to pg. Therefore, because of the assumptions on f,
there is at least one periodic orbit of period p on the chaotic attractor which is now an
attracting periodic orbit. Let Fix®(f) denote the set of these stabilized fixed points.

Close to a Fixed Point

Recall two facts: first, for any contraction h on a Banach space (Y,] - ||), i-e., a map
that satisfies

1h(z) = h(y)ll < Lllz -y

with a Lipschitz constant L < 1, the Banach Fixed Point Theorem gives the existence
of a unique fixed point z*. For an initial condition z¢g € Y and xj, = h°*(zq) we have the
error estimates ||z* — | < % |lxo — 1] and [|zkr1 — zx|| < L ||xg — xk—1]]. Second,
if h: U — RY is a differentiable map on an open set U C R then it is is Lipschitz
continuous on any compact C' C U. Let || - ||¢ denote the supremum of the operator
norms induced by a norm || - || on C' and dh denotes the total derivative. We have

[7(z) = h(y)ll < lldhllc -z = yll,
for all z,y € C.

Let z* € Fix*(f) be fixed. According to Proposition 2.1.3 there exists a A9 < 1 for
= po sufficiently small such that oz«(up) < Ag. Therefore, there exists a vector
norm || - || such that we have ||dgu|+|lop < Ao for the induced operator norm; cf. Fig-
ure 2.2(a). We will omit the index indicating the operator norm when it is clear from
the context. Henceforth all norms denote this vector norm and the induced operator
norm, respectively.

Let B(r,x) denote a ball of radius r > 0 centered at x and by B(r, ) denote its closure.
Assume that for € small enough there is a constant K > 0 such that

<K |l2* — ] (2.5)

1yl | = lldgple|
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Figure 2.2.: (a) An appropriately chosen norm approximates the spectral radius from
above with 0.+ (po) < ||dguela|| < Ao. (b) According to Condition (2.5),
|dgu|a, || lies in a K ||z* — xy||-tube around ||dg,|,«||. While iterating, this
tube becomes smaller and smaller. As another consequence of (2.5), we

have Hdgu|$\|m in a Ke-tube around ||dg,|s+||. Therefore, for ¢ small

enough, there is Lo < 1 such that ||dg#0|w||m < Lg.

for all  with ||z* — x| < € independent of u. This condition is depicted in Fig-
ure 2.2(b). Now we can choose ¢ < & such that Hdguo|x||m < 1. In other words,
for sufficiently small 6y > 0 there exists an € € (0, é) such that

Hdguo‘mHm < Ao +dp <1

The choice of & (corresponding to the size of the ball around x*) depends on g, o,
and dg.

Definition 2.2.1. A function f € F(po,1) that satisfies Condition (2.5) is called
admissible with initial control parameter ug (or simply po-admissible). For such a
function f, the tuple (uo, K, e, Mo, d0) defined above is referred to as initial adaptation
parameters for x*. The ball B(e,x*) is called the initial adaptation neighborhood.

Remark 2.2.2. Condition (2.5) is satisfied if f has a bounded second derivative on
Fix®(f) due to the functional dependence of the derivative of g, on u as given by (2.2)
and the reverse triangle inequality.

Algorithm 2.2.3. Suppose that f is a pp-admissible function with =* € Fix*(f) and
let (uo, K, e, o, 00) be initial adaptation parameters. Define the convergence accelera-
tion algorithm for initial conditions xo € B(e,z*) by the following steps:

Step 1 (iterate): Calculate 1 = gy, (x0).
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Figure 2.3.: (a) Inequality (2.6a) does not always have to be satisfied. (b) After a finite
time x the function [(u) is below Lg for some p since xp — z*.

Step 2 (optimize p): Set Lo := Ao + 09. Minimize the “cost function” ||dgu|e, || with
respect to € (0,1) under the conditions

9K Lo
1) i= gl | + (272 ) oo = 1] < Lo, (2:60)

w mazximal, (2.6b)

cf. Figure 2.3.

Step 3 (set quantities): If the minimization under constraints of Step 2 returns a result
Hopt, then set

K1 = Hopt,
K Lo
M i= lgula |+ (75 ) o =l
KL
1= (7 ) oo =l and
Ly := X\ +61.

Otherwise set py1 := g, A\1 := Ao, 01 := dg, and L1 := Lyg.
Repeat these steps with all indices increased by one.

The goal now is to prove the applicability and convergence of this adaptive algorithm.
First, we prove that Algorithm 2.2.3 yields a sequence zp with k& € N that converges
to the specified fixed point.

Lemma 2.2.4. Suppose that f is admissible and x* € Fix*(f). For all initial con-
ditions xq in the initial adaptation neighborhood B(e,x*) the iteration according to
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Algorithm 2.2.3 yields a trajectory x — x* as k — oo which converges to the fized
point.

Proof. If the optimization process does not give a result, convergence is ensured by
Proposition 2.1.3 and the Banach Fixed Point Theorem.

Without loss of generality, suppose that optimization yields a result for K = 1. Then
because of (2.5), (2.6a), and the error estimate of the Banach Fixed Point Theorem
we have

Il

1491 || =2y < 19 o | + K [|l21 —
< NGy [ | + 2K [ — 27

9K Lo
< g ol + (172 ) lloa =

=L <Ly<l1.

Therefore, the point z; is contained in a ball around the fixed point z* on which the
map g,, is a contraction with contraction coefficient L;. An analogous calculation is
valid for subsequent optimization steps for k£ > 1. O

The lemma above ensures that the adaptation does not compromise convergence against
the stabilized fixed point. But will optimization actually take place? For a map with
K = 0, adaptation is not necessary since ||dgu|.+|| = ||dguls,| and therefore we can
set u straight to the optimal value.

Lemma 2.2.5. Suppose that [ is admissible with initial control parameter pg and
let (po, K, e, o,00) be initial adaptation parameters for x* € Fix*(f). If x¢ is an
element of the initial adaptation neighborhood B(e,x*) then, while iterating according
to Algorithm 2.2.3, Inequality (2.6a)

2K Ly,
Iguderall + (7 ) o = ol < L

is be satisfied for infinitely many k € N.

Proof. By definition we have ||dgu,|ao| < Lo = Ao + do with 6o > 0. Hence, we have
l|dguo =] < Lo. Suppose that kg is the first index for which the optimization under
constraints yields a result. Note that L; = Lg for k < k.

Let ¢ > 0 be such that ( < Lo — ||dgu,|e=||- Since zp — z* as k — oo according
to Lemma 2.2.4, the sequence zj, is a Cauchy sequence with respect to || - ||. More-
over, we have ||dgu,lz|| = ||dguelz*|l. Therefore, there exists an x € N such that

(3522) wn1 — ull < § and [[[dgp e || = |dgplwy, lI] < §- We obtain
¢

9K Ly
2

¢
I4guolenl + (7 ) It = el < [dgpolerl] + 5 +
Therefore, Inequality (2.6a) will be satisfied after maximally x =: k¢ steps.

xT*

< [ldgpuo || + ¢ < Lo-

By increasing all indices above by kg, the same argument gives a x; for which optimiza-
tion of Step 2 yields a result. Inductively, we obtain a sequence x; with [ € N of indices
for which Inequality (2.6a) is satisfied. This completes the proof of the assertion. [



2.2. AN ADAPTATION METHOD FOR ACCELERATING CHAOS CONTROL 47

Remark 2.2.6. Although the adaptation method gives a sequence gy that minimizes
the norm while ensuring convergence, it is not clear how often optimization yields a
result. Additional conditions on the map f, such as requiring monotonicity of ||dg,|s, ||
in zp, influence how often the parameter p will be adapted. On the other hand,
additional constraints make the theory less broadly applicable.

If Inequality (2.6a) is satisfied for some k£ > 0, then, because ||dg,|.+| depends con-
tinuously on p, it holds for a whole closed neighborhood of pg. This gives pg1q with
ldguy, i |2+ || < |ldgp, |o~|| unless [[dg, is constant on that interval.

xT*

Definition 2.2.7 ([50]). Let o(M) denote the spectral radius of a matriz M € RN*N,
A matriz norm || - || on RVNXN s called minimal for M if o(M) = | M]||.

The following theorem summarizes the results we have obtained so far on the conver-
gence properties of the adaptation algorithm.

Theorem 2.2.8. Suppose that [ is admissible with initial control parameter g and
suppose that x* € Fix®(f) with initial adaptation parameters (po, K, e, Ao, ). Then,
for any initial condition o € B(e,z*) in the initial adaptation neighborhood, Algo-
rithm 2.2.3 minimizes an upper bound for the spectral radius gz=(i).

In particular, if the induced operator norm || - ||op is minimal for dg,.
at least linearly with asymptotic convergence rate Aoo-

»*, 1t converges

Remark 2.2.9. For dimension N = 1, the Euclidean norm is minimal for any matrix.

Proof of Theorem 2.2.8. Lemmas 2.2.4 and 2.2.5 ensure convergence against the fixed
point z* and adaptation of the control parameter y after a maximum of finitely many
iterations.

By construction, p tends to a value which minimizes the norm of the derivative of g,
at «* as k — oo. For arbitrary dimension N we have g+ () < [|dgule|. If in
addition the norm is minimal, in the limit the spectral radius is minimized, yielding
optimal asymptotic convergence speed, i.e., g — floo- ]

Remark 2.2.10. One could also use convergence acceleration transformations [99] in
order to get a better approximation to g,«(u). However, to exploit the acceleration
within the framework of this theory, one would have to have suitable error estimates
for the transformed sequence.

The choice of the size of the ball B(e,z*) depends on the desired estimate of the
contraction constant. It is clearly bounded from above since we have to make sure
that there is a contraction. On the other hand, it is desirable to take a neighborhood
as large as possible to make the method applicable to as many initial conditions as
possible.

From Local to Global

Consider the situation where the control is turned on at an arbitrary point in time.
We choose indices such that this time is k¥ = 0. In general, the initial condition zg
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for the adaptation method is unknown, and it is likely to be outside of the initial
adaptation neighborhood B(e, z*). One possible scenario is the existence of a chaotic
attractor that makes up part of the old chaotic attractor and ending up in its basin of
attraction when the control is turned on. Another likely scenario is to have xg close
to the boundary of the basin of attraction of one of the stabilized fixed points. An
initial condition close to the basin boundary implies a long transient iteration before
the adaptation method becomes applicable.

We want to quantify the latter scenario. We may assume that the initial condition xzg
is distributed according to some ergodic f-invariant measure on A [33]. This implies in
particular that z¢ does not lie on any periodic orbit; see also [56, 67] for other measure
theoretic aspects of dynamical systems. This approximates the situation in which the
dynamics evolved on the chaotic set for “a long time,” z = f(xg_1) for k£ < 0, after
having been initialized with a generic initial condition. Thus, m(U) is the probability
that xg € U at time k = 0 for any measurable subset U C A.

Let B(e(z*),2*) denote the initial adaptation neighborhood for z* € Fix®(f) as defined
above. Since we assume f to be pg-admissible, there is at least one such ball of positive
radius. Define

Wwi=V= < U B(s(x*),:v*)) NA
z*€Fix®(f)

to be the part of the union of all these neighborhoods on the attractor. Thus, if V

is measurable, m(V) is a lower bound for the probability that the adaptation method

described above converges if the dynamics evolved on the chaotic set before the pa-
rameter p is set to pg at a random point in time. Furthermore, we define

Vi := < U gZS;”(V)) N A.
1<k

By definition, P, = m(Vj) is a lower bound on the probability that the algorithm
will converge after letting the transformed system evolve for k time steps after being
initialized with p = po at time k& = 0.

As k tends to infinity, the set Vi will converge to the union of the basins of attraction
of the stabilized fixed points. Hence, we obtain a function

¢(po) :== lim m(Vg)
k—o0

depending on the initial parameter po. The value ¢ = liminf,, o ¢(uo) for some
€ ]0,1] determines the size of the basin of attraction of the stabilized fixed points.

2.3. Adaptive Predictive Feedback Control for the Logistic
Family

As an example, we apply the PFC transformation to the family of logistic maps given
by the quadratic polynomials ¢,(z) = rz(1 — x) with the real parameter 1 < r < 4. Tt
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is well known that there are parameter values for which the dynamics are chaotic on
some subset A of the unit interval I = [0,1]. In particular, for » = 4 the whole unit
interval is a chaotic set. Here, we study the period one orbits; higher periods can be
treated similarly.

Calculating the Adaptation Parameters

First, we want to calculate the initial adaptation parameters for the adaptation method
described in the previous section. The second derivative of ¢, exists everywhere on R
and is bounded on compact subsets. Within this section let A’ denote the derivative of
a differentiable function h. Here, we treat the two cases My € {+id} simultaneously
by taking u € [—1, 1] for the transformed function

Gur (@) = S(p, My)(6r)(2) = & + p(lr(2) — 2).

For . = 1 we obtain the original system and around p = 0 either of the two cases, that

is My = id when p is positive and M = —id when pu is negative.
Since |gy; .(x)| = |u| [€/(x)| = 2r || for all 2 € I, the maximum of |gj; | in u is taken

for |u| = 1. We have
“g:L,T(J:H - |9L,r(y)|’ < |g:1,r(x) - g;,'r(y” < 122;( |gz,r(a)| |5C - y|

for all z,y € I which implies that Condition (2.5) is fulfilled for a constant K = 8,
which is independent of the parameter r and the sign of M.

The two fixed points of £, are z* = 0 and z* = % The derivatives at the fixed points
are g, .(0) = 1+ p(r — 1) and g;”(%) =1— u(r —1). Hence, * = 0 is stable for
negative p (M = —id) and z* = ”;rl for positive p (M) = id). To apply the adaptive
method, the initial parameters need to be determined as in Section 2.2: for a given ug
the bound Ag can be calculated directly from the derivative g/’m’r. Furthermore, we
have to find € that defines the initial adaptation neighborhood of z* for the initial
condition zp and a given initial p9. From the local stability and (2.5) we obtain that

convergence is ensured if

Ao =14 |po|(r—1)> -1, (2.7a)
Ke — |pol (r—1) <0, (2.7b)
Ke + |pol (r—1) < 2. (2.7¢)

For either 2* this gives |po| < —2. This results in a bound for the size of the neigh-
borhood of x* in which the map is a contraction,

2 — po(r—1) No(r—l)}'

(2.8)

€<m1n{ K s K

The optimal bound & < # is achieved for po(r — 1) = 1.

It is desirable to choose € as large as possible (to cover as many initial conditions as
possible) while keeping the whole expression on the left-hand side of Inequality (2.7a)
as small as possible (a smaller contraction constant Lg leads to stronger contraction).
This choice depends on the initial guess pg, cf. Inequality (2.8).
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Remark 2.3.1. The chaotic set A depends on the choice of the parameter r, so we
obtain a family of chaotic sets A,. Note that we do not necessarily have 0 € A,
or ’7—1 € A,.. We have A4 = I so that the two fixed points are contained in Aj4.
Otherwise, for a given fixed point z*, the value of € has to be chosen large enough such
that A, N B(e, z*) # 0.

The constant parameters K = 8 and g, Ao, and € as given by (2.7) together with an
approximation of the measure on A are the basis of the calculations of lower bounds
for the probability of convergence in the following section.

PFC on the Complex Plane

The quadratic polynomial defining the logistic map can also be seen as a polynomial
over the complex numbers. Iteration of complex polynomials is a classical example in
one-dimensional complex analytic dynamics, and the theory developed there can tell us
something about the effect of the PFC transformation S(u, Mj,) for My, € {+id}. Here,
this geometric point of view allows us to calculate the full basin of attraction of the
stabilized fixed points. In particular, we also obtain convergence for general, complex
valued initial conditions in a neighborhood of the periodic orbits in the complex plane.

Recall some notions from one-dimensional complex dynamics [71]. Suppose f: C — C
is holomorphic. A point z € C = C U {oo} is said to be in the Fatou set F(f) if there
is an open neighborhood U of z on which the family of iterates G := {f°* | k € N} is
normal, i.e., for every sequence in G there is a subsequence that converges uniformly
on compact subsets of U. Its complement is called the Julia set J(f) and constitutes
the boundary of all Fatou components which contain any stable periodic orbit. Both
of these sets are forward and backward invariant with respect to the map f. The Julia
set is a chaotic set in our sense. Henceforth, we denote the complex variable by z.

Let f € C[z] be a complex polynomial. Note that the PFC transformed map g, again
is a polynomial of the same degree as f in the complex variable z unless f is constant
or 4 = 0. A member of the logistic family is given by a polynomial of degree two.
The dynamics of quadratic polynomials are conjugate to the dynamics of a polynomial
22+c, where ¢ € C is a parameter. Recall that w € C is a critical point of f if f/(w) = 0.
For a quadratic polynomial, the complex valued parameter ¢ may be characterized in
terms of the orbit of the only finite critical point w = 0; the points for which that orbit
is bounded constitute the Mandelbrot set M. For ¢ € M there can be bounded Fatou
components corresponding to the basin of attraction of a stable periodic orbit.

The logistic family described above is dynamically conjugate to polynomials 2%+ ¢ with
¢ € [—2,1], the intersection of M with the real axis. The PFC transformed map g, ,
for ¢, is again is a quadratic polynomial with real coefficients. For the logistic family,
any g, is therefore conjugated to a quadratic polynomial 22 + ¢ with real parameter ¢
since only those polynomials keep the real axis invariant. By conjugation with a Mobius
transformation 4, i.e., solving ¥ o g, , o ¥~ = 22 4 ¢,(1u), one obtains the relationship
between the real parameter ¢ and the control parameter p # 0 for a given r. A quick
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Figure 2.4.: Julia sets for parameters p = —0.65 (left) and p = —0.2 (right) for M; =
—id. The Julia set of g, 4 is depicted in blue, whereas the Julia set of the
original map, i.e., the unit interval, is depicted in gray. The fixed points

3

2* = 0 and 2* = y are marked by black dots. Shaded circles indicate

B(e, z*) for po = p.

calculation yields

) = 1 (1= 12— 17).

Hence, varying the parameter p results in a “shift” of the dynamics up the real axis
until it approaches ¢ = i as i — 0. From the equation above, one can also see that the
dynamics of g, are conjugated for =1 and p = —1, the former case corresponding
to the unperturbed system.

What does stabilization of fixed points mean in terms of complex analytic dynamics?
An unstable fixed point is contained in the Julia set. The goal of stabilization is to
turn this fixed point into a stable one, i.e., so that it now belongs to a bounded Fatou
component. In other words, the transformation should deform the Julia set in such a
way that it does not contain the targeted periodic point anymore.

Let us consider the logistic map for 7 = 4 in more detail. The Julia set J({,—4) = I
is equal to the whole unit interval. The probability distribution m is given by a
beta distribution with both parameters equal to % (see, for example, [27]), i.e., with
probability density function

p(z) = (71'56%(1 - m)%)_l .

Suppose M; = id and p is small enough. Now z* = % is the stabilized fixed point. In
the previous section we calculated the maximum size of the ball around the fixed point
for which the adaptation method works straight away. This radius is given by & < %
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Figure 2.5.: Julia sets for parameters p = —0.65 (left) and p = —0.2 (right) for M; =
id. The Julia set of g, 4 is depicted in blue, whereas the Julia set of the
original map, i.e., the unit interval, is depicted in gray. The fixed points
z¥ =0 and 2" = % are marked by black dots. Shaded circles indicate

B(e, z*) for po = p.

and

Py = m(Vy) < m(B(e, ) A 1) :m({gg) :/; 7756((1136_:17)

2
= — (arctan (\/§> — arccot (\ﬁ)) ~ 0.1895.
T 5

In Figure 2.4, one can see that the whole unit interval is contained in the bounded
Fatou component. Backward iteration takes this set closer to the boundary of this
Fatou component. For pg small, we therefore have

o(po) = 1,

Py < P, = m(Vg) <1, and ¢ = 1. This means that the whole unit interval I is
contained in the basin of attraction of the stabilized fixed point. In other words, for
an initial condition distributed on I according to the distribution m, the orbit will
converge to the stabilized periodic point with probability one.

The picture is slightly different for M} = —id and p small enough. Now, z* = 0 is the
stabilized fixed point. Again we have ¢ < % and therefore

Py = m(Vy) < m(B(e, ") N ) :m<{0, ;D :/0é m((jx_x)

— 2 arccot (ﬁ) ~ 0.2301.

s

In this case backward iteration yields a different result, as can be seen in Figure 2.5.
Part of the set of initial conditions I is in the basin of attraction of infinity, and
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the intersection with the Julia set is exactly the fixed point z* = 5. Therefore, the
probability of convergence with a random initial condition distributed on I according
to m is less than one. Integrating the probability density function gives

dx 2
o) = [ =2
0 mr2(l—xz)2 3

Therefore, we have ¢ = % and Py < m(Vg) < % In contrast to the case M = id,

this means that for My = id and z* = 0 a trajectory with an initial condition on [
distributed according to m will diverge with a probability of one-third.

LY

When considering higher periods of such a polynomial map, the Julia sets are more
complicated as the degree of the iterated polynomial rises exponentially with increasing
period. The situation changes qualitatively when considering the Predictive Feedback
Control dynamics of higher-dimensional maps f : RN — R by interpreting them as
functions f : CV — CV. In general, the dynamics of holomorphic, higher-dimensional
maps are more diverse since even low-dimensional invertible maps give rise to rich
dynamics [52].

2.4. Numerical Results

To compare the speed of the adaptive method (ACC) with the original PFC chaos
control in a real-world application, we performed numerical simulations for the logistic
map ¢4. The results for My = id, uo € [0, 1], and periods one and two are summarized
in Figure 2.6. One can clearly see that for most initial values of the control parameter,
the adaptive method yields an increase in convergence speed. The results for M = —id
and period one are similar, but the convergence probability is lower (not shown) in
accordance with the results of the previous section; cf. Figure 2.5. There is only one
orbit of period p = 2 which is stabilized for p > 0. Thus, when attempting to stabilize
a period two orbit for pu < 0, trajectories will converge to one of the fixed points. A
nonoptimized, ad hoc choice of parameters for the adaptive method of K = 8 and
Lo = 0.99 (independent of the initial condition) was employed in the simulations. The
criterion for convergence time T was given by |z — z7_1| < 10710, Reliability was
determined after convergence by checking for the correct (targeted) period.

The convergence reliability, i.e., the fraction of trials where the above criterion is
fulfilled after some time 7', is not improved by the adaptive method. However, it
is possible to amend the adaptation method to lead to convergence for most initial
conditions zg within the convergent regime, independent of the initial value of the
control parameter yg (the modified method is denoted by ACCD). When adapting, the
ACC method has to check whether Criterion (2.6a) is fulfilled. If this is not the case
after R iterations, the modified method simply scales u by a certain factor v < 1. To
prevent u from becoming too small, we impose a threshold 6 > 0 below which u cannot
decay. In other words, the modified method ACCD will automatically decrease u
towards zero to reach the convergence regime if Inequality (2.6a) is not satisfied within
a given number of steps.
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Figure 2.6.: Speed and reliability comparison of the original PFC chaos control (1 = o
fixed) and both ACC and ACCD for the logistic map ¢4 with p =1 (left)
and p = 2 (right). Times are plotted only if more than 1% of initial values
lead to convergence to the correct period. Gray shading indicates the
convergence reliability; dark gray corresponds to all methods converging,
and light gray to the reliability of ACCD. Convergence time T is given by
|z — 27_1| < 10719 calculated for 1000 random initial conditions after a
transient of random length.

The modified method ACCD behaves like the original ACC method for initial values
of p in the convergent regime while leading to convergence outside of it; cf. Figure 2.6
(here R =50, v = 0.7, § = 0.1 for period p = 1, and 6 = 0.05 for period p = 2). Failure
of convergence that is due to the existence of a range of diverging initial conditions,
however, will persist, even with the decay. The results are similar for a broad parameter
range (e.g., decay rate v € [0.65,0.99] and decay kick-in time R € [10,100]). For a decay
rate too close to one or a too large decay kick-in time, it will take many iterations to
reach the convergent interval. On the other hand, if the decay kick-in time is too small
or does not exist at all, the sequence of control parameters p decreases even if it is in
the convergent interval as Inequality (2.6a) is not fulfilled all the time, unnecessarily
increasing convergence time.

2.5. Discussion

In this chapter, we presented an adaptive method to optimize the control parameter of
Predictive Feedback Control for optimal convergence speed. Since Predictive Feedback
Control provides a one-parameter control scheme to stabilize periodic orbits, which is
noninvasive and easy to implement, the addition of adaptation retains the advantages
of the control method. In contrast to ad hoc or heuristic adaptation methods, we prove
that our adaptive method leads to convergence to a periodic orbit. Adaptive Predictive
Feedback Control ensures convergence in a neighborhood of a periodic orbit which was
stabilized by the PFC transformation. Assuming the existence of an ergodic invariant
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measure on the chaotic set, one obtains a bound on the probability of convergence if
control is switched on at an arbitrary point in time. Such an estimate does not only
reveal some global features of the dynamics and the control method as will be discussed
below, but is also useful for applications. The logistic family provided an example for
which the adaptation parameters may be calculated explicitly. Note that even though
these results are stated in the framework of discrete time dynamical systems, they
may also be applied to stabilizing continuous time systems after discretization such as
taking Poincaré sections.

Our method was stated in the general context of “chaotic sets.” In general, such
sets do not need to be local or even global attractors of the dynamical system. In
fact, the Julia sets considered in the example are repelling rather than attracting.
In applications, however, an attractor would be desirable such that the process of
stabilization becomes repeatable. That is, after the control perturbation is turned
off by choosing the appropriate value for the control parameter, the dynamics would
return to the attractor and the process could be started over again.

Apart from its importance for the adaptive algorithm, the probabilities given in Sec-
tion 2.2 reveal information about the chaos control method itself. It allowed us to
calculate the size of the basin of attraction for varying p in our example. Decreasing p
always leads to slower convergence since the eigenvalues approach one as p — 0. So
is it possible to find an optimal pg for a given map? Since any adaptation method
increases the computational cost of the chaos control method, a priori estimates of
such crucial quantities are of importance. Furthermore, the choice of the stabilization
matrix M}, depends on the type of fixed points in the chaotic attractor. Hence, global
statistics for a given map f of the periodic orbits and their stability properties might
yield some a priori estimates.

Our numerical studies of the logistic family suggest that it is possible to get reliable
convergence without a priori knowledge of the exact values for the parameters. A slight
modification of the method yields a hybrid method that finds the regime of control
parameter in which the dynamics converge online before adapting the parameter to the
optimal value. This simplification, however, comes at a cost in convergence speed. By
definition, PFC cannot distinguish between periodic orbits of periods p and ¢ if ¢ is a
divisor of p. Our numerical calculations, however, indicate that this does not influence
reliability of the chaos control method. This is most likely caused by the exponential
growth of the number of periodic orbits. In the future, it would be desirable to add a
mechanism that rigorously distinguishes between the target period and its divisors to
prove optimal convergence.

An adaptation method for chaos control is a step towards solving the intuitively con-
tradictory problem of optimizing speed while maintaining simplicity in the implemen-
tation of the control. By leaving the actual control method unchanged, however, one
may optimize convergence speed only within the inherent limitations of the control
scheme. What is the best convergence speed that may be achieved by using adapta-
tion? It turns out that the restrictions imposed by Predictive Feedback Control are
rather severe. In particular, the increasing instability of periodic orbits of higher peri-
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ods lead to a slowdown in optimal convergence speed. This problem will be addressed
in the following chapter.



3. Stalling Predictive Feedback Control

We have seen that Predictive Feedback Control [26, 86] is well suited for applications. It
requires little to no prior knowledge about the system to be controlled, it is non-invasive
(i.e., control strength vanishes upon convergence) and it is very easy to implement due
to the nature of the control transformation which is determined by a prediction about
the future state of the system. It hence overcomes some of the shortcomings of, for
example, the control method proposed by Ott, Grebogi, and Yorke [79]. The speed of
convergence to a stabilized fixed point depends on the control parameter of Predictive
Feedback Control. In the previous chapter, it was shown that this control parameter
can be tuned online for optimal convergence speed, which means that in the best
case the control parameter converges to the value for which the highest asymptotic
convergence speed is achieved.

But how fast is the best asymptotic convergence speed actually? It turns out that
for a given fixed point the convergence speed at the optimal value of the control
parameter strongly depends on the local stability properties of the fixed point. In
particular, the larger the absolute value of the eigenvalue corresponding to the strongest
repelling direction, the slower the asymptotic convergence speed becomes even when
the control parameter is chosen optimally. Considering that unstable periodic orbits in
chaotic attractors typically become more and more unstable with increasing period [22],
this implies that Predictive Feedback Control suffers from an inherent “speed limit”
as convergence to periodic orbits of larger period becomes slower and slower. For
applications this implies that stabilization of highly unstable periodic orbits is difficult.
In particular, any method optimizing speed within the PFC framework, for instance
the adaptation presented in Chapter 2, is therefore subject to the same limitation.

In this chapter we introduce Stalled Predictive Feedback Control (SPFC), an extension
of Predictive Feedback Control, which can overcome this “speed limit” while maintain-
ing most of the advantages of Predictive Feedback Control. We derive conditions for
the local stability properties of periodic orbits that imply stabilizability and evaluate
them for some specific examples. Furthermore, we propose an adaptation mechanism
that is capable of tuning the control parameter online to the regime where convergence
can take place and converging to the value for best asymptotic convergence speed. The
resulting adaptive SPFC is an easy-to-implement, non-invasive, and broadly applica-
ble chaos control method that stabilizes even periodic orbits of large periods reliably
without the need to fine-tune parameter values.

This chapter extends work recently submitted for publication [12] and is organized
as follows. In the next section, we adapt the notation from the previous chapter and
illustrate the limitations of Predictive Feedback Control. In the second section, Stalled
Predictive Feedback Control is defined and we identify regimes in parameter space in

o7
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which stabilization is successful. In Section 3.3, we apply our algorithm to some
maps with chaotic dynamics and calculate and compare convergence speeds across
different control methods. Adaptive methods for the control parameter are explored
in Section 3.4 before giving some concluding remarks.

3.1. Limitations of Predictive Feedback Control

In this section, we adapt the notation from Section 2.1 in order to be more explicit
about the period dependency and discuss the limitations of Predictive Feedback Con-
trol. Suppose that f : RV — RY is a chaotic map, i.e., f is differentiable and its
iteration given by the evolution equation x4 = f(x) gives rise to a set A C RY with
a dense set of unstable periodic orbits. Recall that Fix(f) = {z* € RN | f(2*) = 2*} is
the set of fixed points of f and id the identity map on RY. The main result motivating
Predictive Feedback Control, Proposition 2.1.3 in the previous chapter, can be restated
as follows.

Proposition 3.1.1. Suppose that Fix*(f) C Fix(f) is the set of fixed points for which
both df|z+ and d f|«—id are nonsingular and diagonalizable (over C). For some matriz

M € RNXN et Fx(f, M) C Fix*(f) denote the set of fived points such that for each
x* € Fx(f, M) there exists u € (0,1) for which x* is a stable fized point of the map g1
obtained by the transformation

S(p, M) : f—=id+uM(f —id) = gu,1- (3.1)

There exist finitely many orthogonal matrices My with k= 1,..., K such that

K

Fix*(f) = (J Fx(f, My).

k=1

Write f, := f°P for the pth iterate of f where p € N. Again, we use the terms
fixed point and periodic orbit interchangeably depending on what is convenient in
the context. Define the set of periodic orbits of minimal period p as Fix(f,p) =
{z* € Fix(fp) | f°U(x*) # «* for ¢ < p}. Furthermore, define Fix*(f,p) = Fix(f,p) N
Fix*(fp) and

Fix(f, p) = Fix"(f,p) N (Fx(fy, id) U Fx(fy, — id)).

Predictive Feedback Control is a consequence of Proposition 3.1.1 when f is being
replaced by f,; cf. Chapter 2.

Corollary 3.1.2. Letp € N. For every z* € Fixy(f,p) there exists a p € (—1,1) such
that x* is a stable fized point of the Predictive Feedback Control method given by the
iteration

Trr1 = Gup(r) = fplar) + 0z — fplar))

with n =1 — p and control perturbation c, p(z) =n(xr — fp(zk)).
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Figure 3.1.: The local stability properties around a “typical” periodic orbit of the two-
dimensional system (3.4) of the controlled system depend (piecewise) lin-
early on the control parameter pu.

The elements of Fixy (f, p) are referred to as PFC-stabilizable periodic orbits of period p.
The cardinality of the set Fixy(f,p) depends on the chaotic map f and contains roughly
half of the periodic orbits of a given period in two-dimensional systems [84, 93].

Since the function g,, is a linear interpolation between f, and id in the space of
differentiable functions, the derivative of g, , at x € RY is given by (2.2),

dguple = id +p(dfpl. —id).

Fix a point 2* € Fix*(f,p). Suppose that A; denote the eigenvalues of df,|,+ where
J = 1,...,N. The local stability of g, at x* is readily computed; the eigenvalues of
dgupls+ are

Ri() = 1+ p0y — 1) (3.2)

for j = 1,...,N. Hence, we have z* € Fixy(f,p) iff there exists a po € (—1,1)
such that the spectral radius o(dguyplsx) = max;—1,. n|~;(po)| is smaller than one.
In particular, for a two-dimensional system these are the periodic orbits of saddle
type with local dynamics given by the eigenvalues A\; € (—1,1) and Ao < —1 [84].
The dependency of the local stability properties on the control parameter p and the
resulting spectral radius for a typical periodic orbit is depicted in Figure 3.2. Note
that optimal convergence speed is achieved for the value of i that corresponds to the
minimal spectral radius.

The crucial observation now is that convergence speed becomes increasingly slow for
increasing instability. Suppose that xz* is a PFC-stabilizable fixed point of a two-
dimensional system with stability determined by A1, A2 as above, we have

o0(dguplax) =1 as g — —o0.

inf
{n] o(dgu,ple*)<1}
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Figure 3.2.: Best, average, and worst asymptotic convergence speed for periodic or-
bits of the two-dimensional map (3.4) approach one exponentially with
increasing period p.

The same argument holds in higher dimensions if the fixed point to stabilize has both
repelling and attracting directions. As the periodic orbits become increasingly un-
stable on average for large periods [22], asymptotic convergence speed decreases. Let
0% in(x*) = inf, 0(dg, p|s+) denote the spectral radius of the linearization at a peri-
odic orbit z* for the optimal parameter value and card the cardinality of a set. The
slowdown can be explicitly calculated by evaluating the functions

_ =1— min min (), o
Py(p) a* €Fix} (f.p) “min (") .
1
po(p) =1 — — Onin(T7), (3.30)
9 card(Fixg (f, p)) x*eF%(ﬂp)
1 max g l'* ’ 3.3¢
Bg(p) % eFiXE(f:p) len( ) ( )

that correspond to the best, average, and worst asymptotic convergence speed for all
periodic orbits of a given period respectively.

Remark 3.1.3. Note that all convergence times and speeds for a period p orbit pre-
sented in this chapter are scaled to evaluations of f,. Therefore, with respect to the
number of evaluations of the map f, one has to keep in mind that they increase linearly
with increasing period.

Suppose that l1; = —22,l10 = 5.9,l37 = —6.6, and lso = 0 and define the sigmoidal
function o(x) = (1 + exp(—z))~!. Consider the map f : R? — R? given by

f(l‘l, 332) = (1110'(33‘1) + l120'(33‘2) — 3.4, l210'($1) + l220’(.7)2) + 3.8). (3.4)

Iteration of this map describes the evolution of a two-dimensional neuromodule and
gives rise to a chaotic attractor [80]. The values of the functions (3.3) are depicted in
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Figure 3.2. One can clearly see that even the lower bound on asymptotic convergence
speed for the PFC method, corresponding to the smallest spectral radius as determined
by 1 —p,, approaches one on average for increasing periods.

3.2. Stalled Predictive Feedback Control

Is there a method that is capable of stabilizing highly unstable periodic orbits while
maintaining the advantages of Predictive Feedback Control? The main result presented
in this chapter is that the origin of the slowdown motivates a modified chaos control
method. In this section we introduce Stalled Predictive Feedback Control and study
the local stability of unstable periodic orbits with respect to this method. By looking
at the geometry of the local dynamics, one obtains an intuitive explanation for the
increased performance of the new control method.

Stalled Predictive Feedback Control provides an extension of standard Predictive Feed-
back Control which is capable of overcoming this speed limit. Define 1°0 := id for a

map .

Definition 3.2.1. Suppose that the iteration of F : RN — RN defines a dynamical
system. For My € {xid} and p € R let S(p, My)(F) = id+uMy(F —id) =: G,
denote the map obtained by applying the Predictive Feedback Control transformation;
cf. Proposition 3.1.1. For parameters m,n € Ng = NU{0} and p € R, the iteration of

H{™™ = (F)™ 0 (G,)°™. (3.5)

is referred to as Stalled Predictive Feedback Control.

Remark 3.2.2. The function H, L(Lm’n) defined above stalls Predictive Feedback Control
in the following sense. In the PFC method, the control signal is applied at every point
in time. By iterating H, ﬁm’n) we “stall” the application of the control perturbation by
adding extra evaluations of the original, uncontrolled map F.

For the rest of this chapter, we adopt the period-dependent notation of the previous
section where the uncontrolled dynamics were given by iterating f : RV — RY. Stalled
Predictive Feedback Control is given by the iteration of

hyp = hfﬂ;”) = (fp)™" o (gup)”™ (3.6)
where m,n € Ny are the parameters. By definition, we have th},l) = fp and we recover
the original PFC method for h,(},;,o) = gup- In general, we will omit the superscript

(m,n) unless the choice is important.

Local Stability of Periodic Orbits for /,,

The local stability properties of , , can be calculated from f, and g, ;. By definition
we have Fix(f,) C Fix(h, ). Suppose that 2* € Fix*(f, p) and the eigenvalues of d f, |,
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are given by A\; where j =1,..., N. Note that the eigenvectors of dg, |+ and dfp|.-
are the same. Hence, the local stability properties of h, ) are readily computed from
the A\; and the local stability properties of the PFC transformed map g, , as given
by (3.2). The eigenvalues of the Jacobian of h,, at z* evaluate to

Ag = Ny ()™ = N2 (14 (g — )™
for j =1,..., N. Hence, local stability at «* is given by the spectral radius

Q(dhu,p

) = Al
o*) j:Hllf}?le il

If all eigenvalues are of modulus smaller than one, the fixed point x* is stable for A, ,,.

Definition 3.2.3. A periodic orbit x* € Fix*(f,p) is called SPFC-stabilizable if there
are parameters m,n € No and p € (—1,1) such that

g(dhgj;;"nx*) < 1.

Let Fix; (f,p) denote the set of SPFC-stabilizable periodic orbits, and, clearly,

Fixy (f,p) C Fix; (f,p),
that is every PFC-stabilizable periodic orbit is also SPFC-stabilizable.

To compare the “performance” of Stalled Predictive Feedback Control with that of orig-

inal Predictive Feedback Control we have to rescale the stability properties. Since hfﬂ;n)

contains n + m evaluations of f, we take the (m + n)th root to obtain functions

~

1
(m,m, ) = | X7 (14 p(y = D)™™

n

where j = 1,..., N. With the parameter o = we thus obtain an equivalent set of

m+n
functions
Lo, ) = [N (14 p(y = 1) (3.7)
for j = 1,..., N which determine the local stability properties of h,, rescaled to a

single evaluation of f,. Conversely, for any rational o € [0,1] N Q we obtain a pair
(m,n). In the following, we refer to both o and m, n as stalling parameters, depending
what is convenient in the context. When using the stalling parameter «, we may also
write h; .

Rescaled local stability of Stalled Predictive Feedback Control for a given periodic
orbit z* € Fix*(f,p) of period p is hence determined by the stability function

Ox* (Oé, ,U) = j:maxN lj (Oé, M) (38)
In comparison to the original Predictive Feedback Control, Stalled Predictive Feed-
back Control depends on two parameters: the control parameter p and the stalling
parameter «.
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Conditions for Stabilizability

To derive conditions for SPFC-stabilizability, consider some general properties of func-
tions of type (3.7). Fix w € C* := C\{0}. Let S' := {2z€C||z|] =1} = R/27Z
denote the unit circle. We will choose a realization to describe elements of S' depend-
ing on what is convenient in the context. Consider the function L, : R? — R given
by

Lu(on ) 1= ool [1+ e — 1)

By definition, we have L,,(0,0) = 1 and in a sufficiently small open ball V' around
(0,0) the function L,, is differentiable and the derivative is bounded away from zero.
Hence, in this ball the curve defined by

Vo = {(avu) eV | Lw(avu) = 1}

is a one-dimensional submanifold of R2. If V is chosen small enough, it may be written
as a disjoint union

V=VoUV,.UV_

where Vi = {(a,pu) € V | Ly(a,p) > 1} and Vo = { (a,pu) € V | Lyy(a, pn) < 1}.

The goal is to get a linearized description close to the origin. Let grad denote the
gradient and (-,-) the usual Euclidean scalar product. Define the line

y(w) = {= € B | (grad(Lw)|(0g), %) =0} (3.9)
which is tangent to Vj at the origin. Let
H:={xz¢e R? | (grad(Luw)|(0,0), %) < 0}

denote one of the half planes defined by the line y(w). Moreover, the sets Q; :=

i~
((32) ’%

) denote the open segments of S! that lie in one of the four quadrants of R?.

Definition 3.2.4. Suppose that w € CX. The connected subset Cy, := HNS! is called
the domain of stability of w. For a tuple w = (wy,...,wy) € (C*)V define the domain
of stability to be

N

Co = Cu,- (3.10)

j=1
If Co N (Q1UQy) # 0 then the tuple W is called stabilizable.

In a sufficiently small neighborhood U C V of the origin, the “linearized” version of V_
is given by the set H N U.

Lemma 3.2.5. If the domain of stablity Cy, of a tuple w = (wy,...,wy) € (C*)N is
nonempty then there exist (po, o) such that Ly, (po, ) < 1 for all j =1,...,N. If
the tuple w is stabilizable then then ag may be chosen such that ag > 0.
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Figure 3.3.: Stabilizability regions for w € C are shown in Panel (a) and the cor-
responding domains of stability Cy,, as given by (3.10), for each Ry in
Panels (b)—(d). Here, we use the abbreviation grL,, = grad(Lu)|,0)-

Proof. Suppose that V_ and H are defined as above. Because of continuity, for every
w € C* there exists an open ball B,, C V_ NH that is tangent to the origin. If a tuple

W = (wi, ..., wy) has nonempty domain of stability Cy then
N
B:= (] Bu, #0.
j=1

By construction, any (ug, ap) € B has the desired property.

If in addition w is stabilizable then the intersection BN { (z,y) € R? |2 > 0} is not
empty. This proves the second assertion. ]

The domain of stability is determined by the gradient of L,, at the origin. Let In denote
the (real) natural logarithm. We have grad(Ly)|(0,0) = (In |w|, Re(w) — 1). Define

Ri:={ze€C|Re(z) >1},
Ry:={zeC||z| <1},
R3:={ze€C||z| >1, Re(z) <1}.

These regions are sketched in Figure 3.3(a). If w € Ry then || grad(Ly)|o0l™" -
grad(Ly)|(0,0) € @1 and therefore Q3 C Cy. Similarly, if w € Ry then @1 C Cy and
if w € R3 then Q2 C C,, (Figure 3.3(b)—(d)). For w on the boundary of the Ry the
gradient lies on one of the coordinate axes and we obtain similar conditions.

These observations have implications for stabilizability for a tuple (w1, ..., wy): if for
any fixed k € {1,2,3} all w; € Ry, for j = 1,..., N then the tuple is stabilizable.
Furthermore, if either w; € Ry U R3 or w; € Ro U R3 for all j = 1,..., N then the
tuple is stabilizable. For any other combination the condition of stabilizability is more
difficult; in two dimensions linear dependence of the gradients tells us for (w, ws) with
w1 € Ry and wy € Ry the tuple is stabilizable iff

In(Jwa|) Re(w1) # In(Jwy|) Re(ws). (3.11)

Note that this condition is satisfied for a set of zero Lebesgue measure.
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Remark 3.2.6. Note that stabilizability is not affected by taking the complex conju-
gate. Hence, conjugate complex numbers have the same stabilizability properties.

For w = 0 the function Ly has a discontinuity at @« = 0. In case a > 0 we have
Lo(c, 1) = 0 and for @« = 0 and p € (—1,1) we have Lo(0, u) = 1 — p. Therefore, define
the domain of stabilizability of zero to be Cy = {0, §} U Q1 U Q4. For o > 0, stabiliz-
ability of a tuple with one component equal to zero may be reduced to stabilizability
of the “reduced” tuple where the zero entry is omitted.

With the notation as above, we are now able to relate these general results to the local
stability properties of a given periodic orbit.

Definition 3.2.7. Suppose that * € Fix*(f,p) is a periodic orbit of f and suppose
that the eigenvalues of dfpl.+ are given by \;j with j = 1,...,N. The periodic orbit
is called locally stabilizable if the tuple X = (A1,...,\N) is stabilizable as a tuple, as
defined in Definition 3.2.J.

This definition links the notion of stabilizability of a tuple defined above and the local
dynamics close to a periodic orbit. Recall the notion of uniform hyperbolicity [56].
Suppose that a differentiable function f defines a discrete time dynamical system
on RV, We call an f-invariant set A C RY hyperbolic if for every 2 € A no eigenvalue
of df|, is of absolute value one; refer to the Outlook for a more detailed discussion of
hyperbolicity.

Proposition 3.2.8. Suppose that the chaotic map f : RY — RN gives rise to a
hyperbolic attractor and for x* € Fix*(f,p) let A = (A1,...,AN) denote the eigenvalues
of dfple=. If a* is locally stabilizable then x* is SPFC-stabilizable. Moreover, if the
domain of stability C satisfies

then x* is PFC-stabilizable.

Proof. If a periodic orbit z* is locally stabilizable, then tuple A is stabilizable. Thus,
according to Lemma 3.2.5, there are parameters (o, f10) such that Ly, (o, to) < 1
for all j = 1,..., N simultaneously. Recall that local stability of hj0 , at 2™ is given
by lj(a,p) = Ly;(a, pt) according to Equation (3.7). Therefore, local stability of a
periodic orbit is equivalent to the existence of parameters (ay, o) with oy > 0 and

o(dhS2 [,) < 1.

which proves the first statement.
If {2,371 N C) # 0 then there exists a parameter 4 such that o(dh, lz+) < 1. Since

Stalled Predictive Feedback Control reduces to classical Predictive Feedback Control
for a stalling parameter of a = 0, the claim follows. O

The conditions derived for stabilizability of tuples translate directly into conditions on
the local stability properties of a periodic orbit. For dynamics in two dimensions we
obtain the following immediate consequence.
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Figure 3.4.: Local stability explains why stalling chaos control speeds up convergence.
Iteration of g,, takes a trajectory to the periodic orbit z* along the
(weakly stable) direction of the originally stable manifold (Panel (a)).
Stalling control accelerates convergence by taking advantage of the fast
convergence speed along the stable manifold (Panel (b)) leading to fast
overall convergence speed. The length of the gray arrows scale inversely
with the corresponding value of the eigenvalue and illustrate convergence
speed.

Corollary 3.2.9. Suppose that f : R2 — R? is a chaotic map where all periodic orbits
are of saddle type with eigenvalues \1, Ay that satisfy condition (3.11), i.e., we have

In(|A2]) Re(A1) # In(|A\1]) Re(A2).
Then all periodic orbits are SPFC-stabilizable.

Remark 3.2.10. The number of constraints for stabilizability grows with increasing
dimension of the dynamical system. In order to determine the absolute number of
periodic orbits which are stabilizable for higher dimensional systems, a more detailed
knowledge about the “average” local stability properties of periodic orbits is needed.

Since the system is real, complex eigenvalues of the derivative will always come in
complex conjugate pairs. According to Remark 3.2.6 above, this actually results in an
effective decrease of the number of constraints.

A Geometric Interpretation

Why does Stalled Predictive Feedback Control increase asymptotic convergence speed?
Consider a periodic orbit z* of saddle type in a two-dimensional system where contrac-
tion along the stable direction is given by A\; € (—1, 1) and expansion along the unstable
manifold by Ay < —1. As discussed in Section 3.1, these are the PFC-stabilizable pe-
riodic orbits. Suppose that jiop; > 0 is the value of the control parameter for which
the spectral radius of the linearization of the PFC-transformed map g,, , takes its min-
imum. For Ay < —1 we have pop ~ 0 and therefore k;(popt) ~ 1 determines the
asymptotic convergence speed of the dominating direction if the periodic orbit is sta-
bilized. Therefore the trajectory will approach the periodic orbit along the direction
corresponding to Ap; cf. Figure 3.4. The slowdown of Predictive Feedback Control is
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Figure 3.5.: Stalling PFC leads to fast convergence from all directions to a periodic
orbit x* for small pu. In this cartoon for two dimensions the direction
of the arrows indicates stability and the length the absolute value of the
corresponding eigenvalue.

caused by the fact that for highly unstable periodic orbits, the trajectories converge
to the originally stable manifold along which convergence is slow in the transformed
System.

Stalling PFC exploits exactly this property. First, iteration of g, , takes the trajectory
closer to the stable manifold. Second, iteration of f, leads to fast convergence along
the stable manifold while diverging from the stable manifold; cf. Figure 3.4. Thus,
asymptotic convergence speed of hy, is increased by making use of the (increasing)
stability of the stable direction. For given stalling parameters m, n the optimal value of
the control parameter p is close to the zero of ko(u). For this value, convergence to the
stable direction is strongest, taking full advantage of the fast convergence given by \;
along the stable manifold of the chaotic map f. The resulting local stability properties
are sketched in Figure 3.5. The question of how to chose the stalling parameters m,n
will be addressed in the following section.

3.3. Convergence Speed for Chaotic Maps

In the previous section we analyzed the stability properties of the SPFC method for
periodic orbits in dependence of their stability properties. The improvements due
to stalling can be calculated explicitly for some “typical” two and three-dimensional
chaotic maps.

With ol (%) = inf, o 0.+ (c, ) denoting the rescaled stability of the linearization for
the optimal parameter values, we calculated the functions

D —1—  min he (x¥), 3.12a
Pr(p) im0 (%) (3.12a)
1 h
ph(p) =1~ T x Qmin(x*)7 (312b)
card(Fix; (f,p)) z*GF%(f,p)
p,(p) =1— max oh(a%) (3.12¢)

x* €Fixj (f,p)

numerically in the same fashion as (3.3) to asses the scaling of optimal asymptotic
convergence speed of Stalled Predictive Feedback Control for a given chaotic map
across different periods. That is, for every periodic orbit of f of minimal period p
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Figure 3.6.: Stability analysis for a periodic orbit of period p = 5 of the map (3.4)
with local stability given by A = (A, \2) = (1.46 - 1079,16.698) yields
a region in parameter space in which it is stable. Panel (a) shows the
stability function (3.8) and the lines defined by (o, ) = 1 with [; as
given by (3.7). The domain of stability C around (a, ) = 0 is depicted
in Panel (b). Note that this periodic orbit cannot be stabilized using the
PFC method.

we calculated the spectral radius at the optimal parameter values and then took the
minimum, maximum, and mean of these values. In particular, 1 — Py, is the upper
limit and 1 — p;, is the lower limit for the best asymptotic convergence speed of all
SPFC-stabilizable periodic orbits of a given period p rescaled to one evaluation of f,.

The increase of the number of stabilizable orbits for PFC and SPFC can be quantified
by looking at the fractions of stabilizable periodic orbits that are given by

card(Fix} (f,p)) _ card(Fixy(f,p))
card(Fix(f,p)) and \P) = card(Fng(f,p)) 7

vn(p) = (3.13a)

respectively.

Stabilizability for Chaotic Maps

Consider the two-dimensional neuromodule (3.4) discussed above and let z* be some
periodic orbit. The stability function describes local stability at «*; cf. Figure 3.6. The
region of stability in («, pt)-parameter space is bounded by the lines [;(a, u) = 1 where
j = 1,2. The intersection of the half planes defined by the lines (3.9) gives the sector
C that describes stability around (a, ) = 0 where A = (A1, A\2) are the eigenvalues
of dfy|e+; cf. Section 3.2. Note that for fixed «, the range of p which yields stability
becomes smaller for larger a.

To compare the scaling of the spectral radius across periods, we plotted the func-
tions (3.3) and (3.12) in Figure 3.7. The original PFC method exhibits asymptotic con-
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Figure 3.7.: Stalling PFC increases optimal asymptotic convergence speed for the 2D-
Neuromodule (3.4). SPFC yields period-independent asymptotic conver-
gence speed. At the same time, more periodic orbits can be stabilized.
The fraction of stabilizable orbits is shaded in gray; dark indicates stabi-
lizability for both with and without stalling, light indicates stabilizability
for SPFC only.

vergence speeds that approach one exponentially for increasing period. A fit of p, cor-
responding to the best asymptotic convergence speed, by a function ¢(x) = a exp(—bz)
yields a slope of b = 0.1334. By contrast, stalling the control significantly improves
this scaling. We obtain values close to zero for all periods p € {1,...,20} and hence
period-independent asymptotic convergence speed in terms of evaluations of f,. A fit
with an exponential function of p, (p), i.e., the worst convergence speed, yields an

exponent of b = 3.8112 - 1078,

Qualitatively similar results are obtained for other two-dimensional chaotic maps such
as the Hénon map [45] (see [12] for more details) and the Tkeda map [53] (not shown).

As an example of a three-dimensional system, we analyzed a three-dimensional exten-
sion of the Hénon map [9] given by

flx1,x9,23) = (a — azg — bxs, x1, 1,‘2) (3.14)

with parameters a = 1.76,b = 0.1. Stability properties of a periodic orbit of period
p = 6 are depicted in Figure 3.8.

Due to additional constraints on stabilizability, the situation is different compared to
the two-dimensional example above. In our example, the periodic orbits have a two-
dimensional unstable manifold. If both eigenvalues corresponding to that manifold are
real, the regime of stability depends on their sign and distance. If they have opposite
signs, the periodic orbit cannot be stabilized, neither with nor without stalling. In case
both eigenvalues have the same sign, the situation is depicted in Figure 3.8; there is a
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Figure 3.8.: Stability properties for a fixed point of period p = 6 of the three-
dimensional Hénon map (3.14) with local stability given by A =
(A1, A2, A3) = (3.1125- 1078, —4.6072, —6.9734) show a region where stabi-
lization is successful. The stability function (3.8) is depicted in Panel (a)
and the domain of stability Cy in Panel (b); cf. Figure 3.6.

maximal value for o beyond which stabilization fails. For a pair of complex conjugate
eigenvalues, the stability properties depend on the quotient of the real and imaginary
part; cf. Figure 3.11. In particular, if the imaginary part is large, optimal asymptotic
convergence speed is achieved for the PFC method, i.e., for a choice of n = 0.

When looking at the scaling of optimal asymptotic convergence speed across periods
we have to distinguish between two cases (Figure 3.9). For even periods, we obtain a
period-invariant scaling of both the mean and the best optimal asymptotic convergence
speed similar to the two-dimensional system. While the upper bound on convergence
speed will also increase to one due to the existence of periodic orbits with complex
conjugate pairs, it will typically stay above the best convergence speed for the original
PFC method. For odd periods, the number of periodic orbits with complex conjugate
pairs of eigenvalues corresponding to the unstable directions is large. Therefore, we
see the same performance as for the PFC method. Interestingly, for larger odd periods
p > 10 stalling becomes more effective at increasing optimal asymptotic convergence
speed, boosting the best speed close to one.

A similar scaling behavior is present in other three-dimensional examples; period-
independent scaling for even periods p is observed for a three-dimensional neuromod-
ule [80] (not shown).

Convergence Speed in Applications

The scaling of the spectral radius indicates only the best possible asymptotic conver-
gence speed for Stalled Predictive Feedback Control, i.e., the speed for the linearized
dynamics. We ran simulations to compare the convergence speed for the full nonlinear
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Figure 3.9.: Stalling Predictive Feedback Control yields period-independent scaling for
periodic orbits of even period for the three-dimensional Hénon generaliza-
tion (3.14). Effectivity of stalling for odd periods increases with increasing
period. The number of stabilizable periodic orbits (3.13) roughly doubles
for higher periods as indicated by the shading; cf. Figure 3.7.

system with the theoretical results for the linearized dynamics. In order to approxi-
mate a real-world implementation where control is turned on at a “arbitrary point in
time” initial conditions were distributed randomly on the attractor according to the
chaotic dynamics; cf. Section 2.2.

To evaluate convergence speed of Stalled Predictive Feedback Control, we compared
the speed of g, , = h?‘,p with hg, , for both o = 371 and a = (p+1)~!. In terms of the
parameters m, n, a value of & = 37! corresponds tom =2, n=1and a = (p+1)~! to
m = p, n = 1. In our implementation, convergence time is the first time 7" satisfying

H$T - 77Z)(‘/L‘T)H < Oconv, (315)

where 1 is one of the functions above; refer to Appendix A.2 for details on the algo-
rithm. Convergence was only achieved if the criterion was fulfilled before a timeout of
Tiimeout = 3000 iterations. The convergence times were rescaled to evaluations of f,
to make them comparable. To calculate the best theoretical convergence time, we
calculated the smallest spectral radius

(&7

= min  inf o(dh®
L (p) z*€Fixj (f,p) M Q( P

:v*)

for all periodic orbits of a given period p with variable p while keeping the stalling
parameter a(m, n) fixed. Convergence time for the linear system may be approximated
by ||z — 2. || = [|2* — 20|| (p*(p))”. For an initial separation ||z* — z¢|| = dini, a quick
calculation yields that the convergence criterion (3.15) is first satisfied for

T= <ln<9;:v> - 111(1 — pa(p))) ln(ga(p))_l =:7%p). (3.16)
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Figure 3.10.: Although the best convergence times obtained from numerical simula-
tions as shown in Panel (b) cannot match the theoretical values of the
linearized system given by (3.16), (Panel (a)), stalling PFC increases
both the overall convergence times as well as the scaling across periods.
Numerical simulations for the two-dimensional neuromodule (3.4) were
performed with initial conditions distributed randomly on the chaotic at-
tractor. Dashed lines represent an approximate fit with an exponential
function solely for visual orientation to indicate the general scaling be-
havior. Note that in the numerical simulations convergence of PFC fails
for some periods.

Thus, 7*(p) is the convergence time of the linearized system with convergence crite-
rion (3.15) for an initial condition xo with (period-independent) initial separation di;.
For the simulations presented here, we chose Ogony = 107 and di,; = 0.1.

The results are shown in Figure 3.10. The errorbars depict mean and standard de-
viation for all 500 runs with initial conditions given by transient iteration of random
length on the attractor; cf. Appendix A.2. The value of the control parameter p in the
numerical simulations was chosen for each period to be the optimal value that yielded
at least a fraction of 0.95 of convergent initial conditions. In other words, p was chosen
to yield the optimal speed with at least 95% reliability.

As predicted by the calculation of the spectral radius, stalling PFC leads to an in-
crease in convergence speed across all periods. A scaling of convergence times (scaling
is indicated by dashed lines) which is almost period-independent as observed in the
theoretical calculations cannot be achieved in our simulations. This is due to several
factors. First, in contrast to the linearized dynamics, the numerical simulations take
the full nonlinear system into account. This includes the influence of the transient dy-
namics and the increasing complexity of the phase space (the number of fixed points
increases with increasing period) on convergence times. Second, in the theoretical cal-
culations we consider only the fixed point for which convergence is fastest. However,
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Figure 3.11.: For periodic orbits with unstable directions given by a pair of complex
conjugated eigenvalues only few choices of the stalling parameter allow
for stabilization (in particular for m > 1). The local stability of this
period p = 5 orbit of the three-dimensional Hénon map (3.14) orbit are
determined by A = (A1, A2, A3) = (0.0933 + 4.66734,0.0933 — 4.66734i,0).
Optimal performance is achieved for the PFC method, i.e., with n = 0;
cf. Figures 3.6 and 3.8

even in our simulations, stalling improves both absolute convergence times was well
as their scaling across periods compared to classical PFC. Furthermore, it increases
the number of periods that can be stabilized. For some periods, only Stalled Pre-
dictive Feedback Control yields convergence within a reasonable time. The scaling of
the convergence speeds is independent of whether the stalling parameter is fixed or
scales with p. However, a period-dependent stalling parameter will generally reduce
the standard deviation of the different convergence times.

Relation to Earlier Results

Stalled Predictive Feedback Control as defined in Definition 3.2.1 is a proper exten-
sion of the PFC method. In fact, the iteration of hS’ll) has been considered before in
the context of Predictive Feedback Control when trying to overcome the odd number
limitation [73, 96] as well as in the context of an experimental setup where measure-
ments are time-delayed [18]. These studies were only concerned with whether or not
fixed points can be stabilized, completely ignoring the aspect of convergence speed.
Although for systems of dimension N < 3 stalling control increases the number of
fixed points that can be stabilized; even for N = 3 there are points that can be stabi-
lized using PFC but not using SPFC when the stalling parameter « is as large as in
[18, 73, 96] (Figure 3.11). Hence, the introduction of an arbitrary stalling parameter is
the key to both maximizing the number of fixed points subject to stabilization through
PFC as well as minimizing the convergence speed.
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The idea of periodically turning control on and off has been mentioned before in the
literature on control theory; both “act-and-wait” control [54] and “intermittent” con-
trol [37] are stated for linear control problems in discrete and continuous time. At the
same time, for linear control problems with many control parameters, “pole placement”
techniques [101] are used to control the eigenvalues of the linearization. By contrast,
SPFC aims at stabilizing many unstable periodic orbits of a given nonlinear system
maintaining the simplicity of the simple one-parameter feedback control scheme. The
situation where control is turned on at an arbitrary point in time as described above
is of particular interest; here, the system is likely to be far from the linear regime. As
shown above, stalling PFC improves performance even in this situation.

Stalling Predictive Feedback Control is also related to a recent application of chaos
control [102]. Because of implementation restraints, Steingrube et. al. effectively it-
erated fog,,. In some sense, this is similar to iterating hff ;’01), but the stability
analysis is not straightforward since one has to keep track of the (changing) point on
the periodic orbit to be stabilized. Moreover, both SPFC and the method employed
in [102] are related to an effort by Polyak [86] to introduce a generalized PFC method,
which is able to stabilize periodic orbits with an arbitrary small perturbation. This
method, however, is limited in applicability, because the control perturbation depends
on predictions of the state of the system many time steps in the future.

3.4. Adaptation for Stalled Predictive Feedback Control

In the previous sections, we showed that for an optimal choice of parameters the asymp-
totic convergence speed of Predictive Feedback Control can be significantly increased
by stalling control. This speedup is not only of theoretical nature, but also persists in
an implementation with random initial conditions. The question that arises naturally
is how to find the set of optimal parameter values for a given chaotic map f. If no
a priori estimates are available, we show that adaptation methods provide a way to
tune the control parameters online for optimal convergence speed.

Here, we focus on the case where the stalling parameter o = (p+ 1)~! (corresponding
to a choice of m = p, n = 1) is fixed and p > 0 is subject to adaptation. Thus, within
this section, consider the iteration of

hup = hily).

We review a simple adaptation scheme before proposing a hybrid gradient adaptation
rule. Both adaptation mechanisms are explored numerically and we find that the latter
scheme leads to fast and highly reliable adaptation across different periods for initial
conditions distributed randomly on the chaotic attractor.

Simple and Gradient Adaptation

First, recall a simple adaptation scheme proposed, for example, in [102]. Suppose that
the period p is fixed within this subsection. A suitable objective function for finding a



3.4. ADAPTATION FOR STALLED PREDICTIVE FEEDBACK CONTROL 75

periodic point of period p is given by

Gi(z,p) = || fp(x) — 2|

for some vector norm || - || on RY. For y = 0 the map hg, reduces to some iterate of f
and adaptation should lead to sequences xy — z* and pu — p* with «* € Fix(f,) and
on(a, *) < 1. The objective function above suggests a simple adaptation rule (SiA)
with

Apg = v(p)Gi(xk, p) (3.17)

where v(p) is the (possibly period-dependent) adaptation parameter and dynamics of
W given by
po =0, ppr1 = pr + Apg. (3.18)

This adaptation rule increases the control parameter y monotonically. Suppose that z*
is a fixed point of f, i.e., fy(z*) = 2*. If we have a converging sequence x;, — z* as
k — oo then the sequence Apuy tends to zero. In other words, adaptation stops in the
vicinity of a fixed point * of f,.

For this adaptation mechanism, the quantity Apuy is extremely easy to calculate and
yields decent results in applications [102]. Adaptation, however, strongly depends on
the choice of the adaptation parameter v(p). If v(p) is too small, it will take a long
time to reach a regime in which convergence takes place. On the other hand, if v(p) is
too large and the interval M of possible values of p in which convergence takes place
is rather narrow, it is possible that ui > sup M for some k, even if yu; € M for some
values [ < k. Hence, it is possible for the control parameter to “jump out of” the range
of stability. Also, note that by construction, this simple adaptation will not optimize
for asymptotic convergence speed. For small v(p), adaptation will stop close to the
boundary of the convergent regime, leading to slow asymptotic convergence speed.

Adaptation may be improved, if the objective function takes local stability into account.
For some matrix norm || - ||, such an objective function is given by

Ga(x, 1, p) = [[dhyplel]

Since any matrix norm is an upper bound for the spectral radius, minimizing the norm
potentially leads to increased convergence speed as discussed in Chapter 2. At the
same time, for a generic point on the attractor, this objective function is highly non-
convex with steep slopes (Figure 3.12) making straightforward minimization through,
for example, gradient descent [35] difficult.

We therefore propose an adaptation rule that combines aspects of simple adaptation
as reviewed above and the objective function Ga. Let 0, denote the derivative with
respect to u, and define ©(x) = tanh ((pG1(z,p))~'). Consider the modified gradient
adaptation rule (GrA) given by (3.18) with

Ap = A(p) (G1(z, p) — ptanh (O(zx)0.Ga(hyp(xk), 1, p))) - (3.19)

This adaptation rule has the following properties. For Gi(x,p) > 0, i.e., away from a
period p orbit 2* € Fix(f}), we have ©(x) ~ 0. Therefore, adaptation is dominated by
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Figure 3.12.: The objective function Ga(x, i, p) is nonconvex for a generic point = on
the attractor leading to a difficult optimization problem.

the first term and leads to adaptation as given by the simple adaptation rule (3.17) to
increase p to reach a regime of convergence. On the other hand, in the vicinity of a
fixed point we have O(z) ~ 1 and G1(z,p) ~ 0. Hence, adaptation occurs by bounded
gradient descent and the dynamics of the control parameter p are perpendicular to the
level sets of the objective function G2 towards a (local) minimum. The bound induced
by the tanh prevents large fluctuations of the objective function G from leading to a
too large change of the control parameter p.

The adaptation parameter v(p) again determines the size of the adaptation steps. In
contrast to the simple adaptation method, the modified gradient adaptation adapts
bidirectionally in order to minimize both objective functions G; and G4 as depicted in
Figure 3.13(a). Clearly, the control parameter is adapted to the regime of stability of a
periodic orbit by the modified gradient adaptation and Aug — 0 as optimal asymptotic
convergence speed is achieved. Statistics for a large number of initial conditions show
that the population mean (uy) for many runs is already close to the optimal value
after only 70 iterations; cf. Figure 3.13(Db).

Convergence Reliability

To assess the performance of the adaptive Stalled Predictive Feedback Chaos Control
algorithm in a real-world application we performed large scale numerical simulations for
the two-dimensional neuromodule (3.4). The setup was as described in Section 3.3 with
the incorporation of the adaptation mechanisms just discussed; cf. Appendix A.2 for
more details on the algorithm. The scaling of the adaptation parameter was given by
v(p) = %2 and for every 1 we iterated for 500 initial conditions on the chaotic attractor.
To determine reliability, i.e., the fraction of runs where the trajectory converged to a
periodic orbit of the desired period, we checked the period of the limiting periodic
orbit (if any) to a threshold of # = 1075,

As discussed above, the adaptation parameter vq influences both speed and reliability.
The results for period p = 5 are plotted in Figure 3.14. Gradient adaptation not only
decreases the total number of time steps needed to fulfill the convergence criterion but
it also decreases the overall variation across runs (the standard deviation is depicted
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Figure 3.13.: In contrast to simple adaptation (SiA), gradient adaptation tunes the con-
trol parameter to the value where optimal convergence speed is achieved.
The dynamics for a single run are shown in Panel (a) and the dotted lines
depict the value of the objective function Gs. Statistics for 1000 runs are
shown in Panel (b). The shading indicates values of the stability function
smaller than one and the value yielding optimal asymptotic convergence
speed is depicted by a dashed line. The target period was p = 2 for the
two-dimensional neuromodule (3.4) with adaptation parameter v = 1073
and n =1, m = 2. Here, ( - ) denotes the population mean.

as an error bar). Of particular interest for applications is the range where convergence
is highly reliable. In contrast to the simple adaptation scheme, for gradient adapta-
tion the range of adaptation parameter values leading to highly reliable convergence
is broadened. On the one hand, the gradient adaptation method optimizes for conver-
gence speed, thereby increasing the chance that the convergence criterion is fulfilled
before the timeout. At the same time, the bidirectional adaptation prevents the con-
trol parameter from leaving the regime of convergence. Gradient adaptation therefore
improves both overall convergence speed while reducing the variation and increasing
overall reliability.

The improvement of reliability compared to the simple adaptation scheme can be seen
across all periods; cf. Figure 3.15. The broad range of adaptation parameters giving
highly reliable convergence allows for the choice of an adaptation parameter vg that
will lead to reliable convergence across different periods, effectively eliminating this
parameter.

Similar results are obtained for numerical simulations for other two- as well as three-
dimensional chaotic maps (not shown). Convergence speed of p, to the optimal param-
eter value can be further increased by using higher order methods, such as Newton’s
method (not shown). The use of higher order methods (also with respect to compar-
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Figure 3.14.: Gradient adaptation decreases the overall convergence times and the vari-
ation thereof when compared to simple adaptation for target period p = 5.
Furthermore, the range of reliable convergence, depicted by the shading
in the background, is broadened. The fraction of convergent runs to a
periodic orbit of the correct period is shaded in dark gray (reliable con-
vergence) and to an incorrect period in light gray.
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Figure 3.15.: Gradient adaptation increases the overall reliability of convergence across
periods compared to simple adaptation. Reliability, i.e., the percentage
of convergent runs to periodic orbits of the target period p, is depicted
by the color of the shading for the adaptation parameter vy and hence
more dark areas correspond to higher overall reliability.
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ing simple and gradient adaptation) comes with a higher absolute computational cost.
For any implementation the improvement always needs to be related to the effective
improvement.

3.5. Discussion

Stalling control is a way to overcome the inherent speed limit of Predictive Feedback
Control. Optimal convergence speed of Predictive Feedback Control decreases for in-
creasingly unstable periodic orbits. Thus, Predictive Feedback Control yields poor
performance for periodic orbits of large periods which are typically highly unstable. In
this chapter, we introduced Stalled Predictive Feedback Control, an extension of clas-
sical Predictive Feedback Control, which may overcome this limitation. It is motivated
by the local dynamics that are the cause of the slowdown in the first place and makes
use of the uncontrolled dynamics. As an extension of Predictive Feedback Control, it
not only inherits certain desirable features from Predictive Feedback Control but it is
also capable of stabilizing more periodic orbits. Stalled Predictive Feedback Control
thus provides a noninvasive and easy-to-implement control scheme to stabilize peri-
odic orbits, those, for example, which are embedded in chaotic attractors. Again, our
method also applies to continuous time dynamics if suitably discretized (e.g., through
a Poincaré map).

As discussed above, Stalled Predictive Feedback Control is related to approaches that
have been put forward before. We derived conditions for stabilizability with respect to
the local stability properties of a given periodic orbit as well as the control and stalling
parameters. Whereas for certain similar ideas the choice of stalling parameters was
rather ad hoc, our analysis allows for a suitable choice of parameters; cf. Section 3.3.
We also showed that for certain “typical” dynamical systems, Stalled Predictive Feed-
back Control yields an almost period-independent performance in the linear regime.
In contrast to classical linear control theory, we highlighted that this improvement in
performance predicted for the linearized dynamics also carries over to the full non-
linear system with initial conditions distributed randomly on the chaotic attractor.
Moreover, for a fixed stalling parameter, Stalled Predictive Feedback Control is still a
one-parameter control scheme.

Adaptation mechanisms may further improve chaos control as they provide a way to
tune the adaptation parameter online to a suitable value. We have seen that they not
only reduce the need for such a priori parameter determination but they also allow for
an increase in both speed and reliability. In contrast to previously proposed adapta-
tion [63, 102], the hybrid algorithm presented here also adapts for optimal convergence
speed. A broad range of parameters allows for a period-independent choice of the
adaptation parameter, hence giving a chaos control method with a set of parameters
for which many periodic points of most periods can be quickly and reliably stabilized.
Adaptation using the objective function (3.17) also prevents the system from converg-
ing to one of the periodic orbits potentially induced by stalling control. However, as
our adaptation method merely serves as a proof of concept, it still leaves room for im-
provement. In particular, the cap of adaptation speed through the sigmoidal function
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is a major source of slowdown. Moreover, adaptation could be extended to the stalling
parameter a.

For an efficient implementation, one might like to keep the stalling parameters m,n as
small as possible since they directly influence the number of evaluations of f, needed for
a single time step for SPFC. This may be accomplished, for instance, by taking m +n
into account when choosing the stalling parameter. Such a penalty directly translates
into an ordering of possible stalling parameters «. A different approach is given by
extending Stalled Predictive Feedback Control to a “fractional stalling parameter,” i.e.,
to allow for stalling by composing the PFC transformed map with f°? for ¢ < p. With
such stalling, however, one needs to track the point of the periodic orbit, as discussed
in Section 3.3, rendering the theoretical analysis more cumbersome.

With increasing dimension of the dynamical system the number of constraints on the
local stability properties as given by (3.7) to stabilize periodic orbits also increases.
In contrast to two-dimensional systems, even with a nonzero stalling parameter not
all the periodic orbits can be stabilized. However, the qualitative results regarding
convergence speed remain the same as indicated by the three-dimensional example with
periodic orbits with two-dimensional unstable manifold. First, there is a large subset
of stabilizable periodic orbits for which asymptotic convergence speed is essentially
period-independent as described above. Second, stalling Predictive Feedback Control
increases the number of stabilizable periodic orbits. A priori estimates of the local
stability properties and calculation of attractor dimensions would be desirable for a
determination of the efficiency of Stalled Predictive Feedback Control.

The problems induced by the additional constraints in higher dimensions could poten-
tially be overcome by tuning the eigenvalue corresponding to some eigenvector sepa-
rately, for example by increasing the number of control parameters. From a mathe-
matical point of view, a different approach would be to allow the control parameter
to take complex values, turning the problem into one of complex dynamics in several
complex variables as discussed in Chapter 2.

Conversely, the local stability properties and the resulting shape of the stability func-
tion may actually be exploited. On the one hand, the local stability conditions may
provide “attractor design principles” such that the attractor contains many unstable
periodic orbits that our Stalled Predictive Feedback Control method is capable of sta-
bilizing. On the other hand, one may stabilize specific periodic orbits through the
choice of stalling parameters. The range of control parameters p that allow for stabi-
lization for any given stalling parameter a > 0 becomes more narrow as the stalling
parameter « increases towards one. As a result, different local stability properties
of the unstable periodic orbits allow for the stabilization of a specific set of periodic
orbits.

Further exploration of these important questions, however, is beyond the scope of this
thesis and should be addressed in further research.



Outlook

In this thesis, we took two distinct points of view to understand the properties of
chaotic dynamical systems. In the first part we studied what restrictions symmetry
imposes on dynamical systems with respect to the emergence of chaos. We took a
different perspective in Part II, one which focused more on the practically useful fea-
tures of chaotic dynamics: chaos may be exploited in applications through so-called
“chaos control” which we studied with respect to convergence speed. The properties
of chaotic dynamics link these two distinct points of view on the same topic. In this
section, we discuss some aspects concerning both dynamical systems with symmetry
and chaos control before giving some open questions and future perspectives.

Recently, there have been efforts to combine the two aspects of symmetry and chaos
control [88]. Dynamical systems with symmetry have specific properties imposed by
the action of the symmetry group. These properties may actually be taken advantage
of when it comes to stabilizing periodic orbits in equivariant dynamical systems. Thus,
one might additionally be able to exploit symmetry to raise convergence speed. For
example, are any symmetries particularly useful in terms of fast stabilization of sym-
metric chaos? Hence, combining the two aspects of symmetry and chaos control will
likely bear new, interesting questions for further research.

Uniformly hyperbolic dynamical systems are an important class of differentiable dy-
namical systems which may exhibit chaotic dynamics since global aspects are related to
local properties. Recall that a system is uniformly hyperbolic if its local dynamics are
characterized by distinct expanding and contracting directions at every point [56, 98].
For iterated maps this means that the derivative has no eigenvalue on the unit circle.
The condition is similar for systems defined by vector fields, but in addition we have a
neutrally stable direction in the direction of the trajectory. Hence, to a certain extent,
local expansion and contraction are uniform on the whole set on which the dynamical
system is defined since no changes in local stability are possible. Recently, computer-
aided ways to prove hyperbolicity have been developed [2, 51] which may be applicable
to our system of coupled phase oscillators studied in Part I of this thesis. Even though
an implementation is beyond the scope of this thesis, this may be a way to rigorously
prove hyperbolicity of the chaotic attractors we have found.

Uniform hyperbolicity is also an advantageous property for the application of Predictive
Feedback Control and Stalled Predictive Feedback Control; cf. Part II of this thesis.
Recall that Predictive Feedback Control is applicable only if the eigenvalues of the
derivative at the periodic orbit are not equal to one. This condition is always satisfied
for uniformly hyperbolic dynamical systems. Furthermore, a large number of periodic
orbits is desirable for certain applications such as the robot for which a periodic orbit
is mapped to a behavioral pattern [102]. Under some additional assumptions, the
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number of periodic orbits of hyperbolic dynamical systems increases exponentially
with increasing period. The Fatou conjecture states that hyperbolicity is a “common”
property of dynamical systems [34, 41]. Originally stated for quadratic maps on the
Riemann sphere, it claims that hyperbolicity is dense for an open set of parameters.
However, it is believed that the conjecture is true for a wider class of dynamical systems.
If the Fatou conjecture is true, this means that Predictive Feedback Control and its
extensions are in fact applicable to a large class of dynamical systems.

The individual aspects covered in the two parts of this thesis motivate further inves-
tigation by themselves. Some questions were already formulated and discussed in the
respective chapters. Within the remainder of this section, we highlight a few open
problems that we find to be of particular interest.

In Chapter 1 we found that there are coupling functions for which the dynamical sys-
tem defined by generalized Kuramoto equations (1.5) exhibits chaotic dynamics. For
the family of coupling functions given in the first chapter, however, attractive chaos
was found only for some smaller dimensions, namely for N = 4,5,7. Even though
there is chaos in flow-invariant subsets for larger dimensions it is likely that this chaos
is transversally repelling. Thus, the question remains whether there are coupling func-
tions that give rise to chaotic attractors for larger IV, or whether there is a “universal
chaos function,” i.e., a function for which there are chaotic attractors for the sys-
tem (1.5) for all, or at least an infinite number of dimensions N. And if there are such
functions, what are their fundamental building blocks? Furthermore, the relationship
between the continuum limit and the finite dimensional case needs to be clarified. For
coupling functions with only one Fourier mode, i.e., the classical Kuramoto equations,
the Ott—Antonsen ansatz [77, 78] has implications for the dynamics in finite dimen-
sions [68]. What are the limitations imposed by more than one nontrivial Fourier
component regarding the applicability of this ansatz?

For even coupling functions, it would be desirable to uncover the origin of the regularity
of the solutions seen for the case of four oscillators. Since we were unsuccessful at
finding a constant of motion for four or more oscillators the question remains whether
there exist one or more constants of motion at all. Recall that for coupling functions
with a single Fourier mode, we have N — 2 constants of motion. Moreover, if the
coupling function is even then for N = 3 oscillators this constant of motion generalizes
to a constant of motion for an arbitrary even coupling function as shown in Section 1.3.
Is there a way to interpolate between these two cases? As discussed above, uncovering
such a constant of motion might be a way to predict the bifurcation structure when
the reversing symmetry is broken.

In Chapter 3 we demonstrated that stalling Predictive Feedback Control has a positive
effect on convergence speed. At the same time, we noted that the number of constraints
on the eigenvalues of the periodic orbits to be stabilized grows with the system dimen-
sion. Is there a way to effectively predict the efficiency of Stalled Predictive Feedback
Control for a given map, for example through the estimation of the entirety of local
stability properties? Conversely, one might want to ask what properties a map has
to have for its periodic orbits to be optimally stabilizable. From the results above it
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seems that periodic orbits with “clustered” local stability properties, i.e., those with
eigenvalues that are contained in as few small balls as possible in the complex plane,
have the best optimal asymptotic convergence speed.

Adaptation methods for Stalled Predictive Feedback Control were introduced merely
as a proof of concept. Our implementation and the choice of parameters still leave
room for improvement. Even though the hybrid gradient adaptation method is mo-
tivated by convergence results for gradient adaptation methods [35], a more rigorous
treatment would be desirable. For instance, a proof of convergence as presented for the
adaptation method presented in Chapter 2 might clarify the overall impact of adap-
tation on the system’s dynamics. Also note that when evaluating the overall effect of
a speedup achieved through adaptation, one has to take numerical efficiency into ac-
count. In particular for dynamical systems of larger dimension, any objective function
that involves the numerical evaluation of derivatives is numerically costly. In some
cases, it might be more efficient in terms of overall performance to retain a simpler
adaptation scheme since the higher numerical cost of any more involved adaptation is
not compensated by the improvement in convergence speed due to adaptation.

Although our chaos control methods were stated for discrete time dynamical systems,
they may be applied to continuous time dynamics through discretization by, for in-
stance, a Poincaré map. Then again, it would be desirable to optimize existing chaos
control methods, such as Pyragas control [89, 90], used to control continuous time
dynamics directly for convergence speed. It turns out that through the analysis of
delay differential equations [103] one may obtain an objective function that takes local
stability of an unstable equilibrium close to a Hopf bifurcation into account. Adapta-
tion with respect to this objective function might be a first step towards an adaptive
method to accelerate chaos control of continuous time dynamical systems; a full treat-
ment however is beyond the scope of this thesis.

In conclusion, the analysis of the emergence of chaos and its control may be seen as
two different approaches to understanding the dynamics on chaotic attractors. Not
only does each approach engender a complementary set of research questions but also
the combination of both gives rise to interesting problems. Phase coupled oscillators
provide an example of systems which exhibit rich dynamics despite strong structural
constraints. Then again, the intricate properties of chaotic attractors may be exploited
by effective chaos control methods. Further progress will no doubt come from contin-
uing to pursue questions about both the structural as well as the practically useful
properties of network dynamical systems.






A. Numerical Implementation

Although some comments on the numerics were already given in the main text above,
this section covers some more details on the implementation of the numerical simula-
tions. In the first section, we cover some implementation aspects of the calculations
performed in Part I. These include the integration of the variational equation to cal-
culate the maximal Lyapunov exponent, some properties of the projection II which
was used to plot solutions of the dynamical equations, and finally some details on
the calculation of the symmetry groups of the chaotic attractors. The second section
covers some aspects from Part II, in particular Chapter 3. We elaborate on the algo-
rithm used to perform the simulations for Stalled Predictive Feedback Control with
and without adaptation.

A.1. Chaos in Oscillators

Calculation of the maximal Lyapunov exponent \,... To calculate the maximal
Lyapunov exponent, we integrate the variational equation (1.3),

dv

— =A(t Al
A, (A1)
where A(t) = dX (t) denotes the Jacobian along a given trajectory. Write the pertur-
bation v as v = exp(r)u with (logarithmic) length r(¢) € R and direction u(t) € S :=
{z € RY| ||lz|| = 1} on the unit sphere. With this substitution, Equation (A.1) is

equivalent to

du dr

Taking the Euclidean scalar product (-, -) with u we obtain

% = (A(t)u,u) — <(31;L,U> = (A(t)u, u)

since we have (z,p) =0 forallp € SV and z € TpSN, i.e., any tangent space at a given
point p of the sphere is perpendicular to the vector defining this point. Note that r
is the logarithmic length of the perturbation and its integrated value corresponds to
the maximal Lyapunov exponent for all most all initial conditions v(0). Hence, the
system (A.1) is equivalent to

dr

& = (A u) (A2)
du dr

i A(t)u — Uy (A.3)
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which provides an efficient way to calculate the maximal Lyapunov exponent Ap.x as
the length of the perturbation is given in logarithmic scale already.

A program to solve this set of equations was implemented in C/C++ with the GSL!
classes and functions. A standard Runge-Kutta scheme with a fixed time step (typ-
ically At = 0.05 time units) was employed to solve the dynamical equations nu-
merically. Integration to determine the maximal Lyapunov exponent ranged within
25000-30000 time units. Fixed initial conditions were given by an ad hoc choice of

©(0) = (¢1,. .., pN) with

 fi+1 for N <6
$j = % for N > 6.

For simulation with random initial conditions, the initial conditions were sampled
uniformly on the canonical invariant region C; cf. Section 1.1. Before the calculation
of the maximal Lyapunov exponent, a transient of some length was discarded to allow
the dynamics to converge to an attractor.

There is a possibility of stable heteroclinic cycles lying on the flow-invariant bound-
ary of the canonical invariant region C. These will cause the numerically calculated
maximal Lyapunov exponent to take positive values. To take this into account we
calculated the closest approach to the boundary dC after discarding the transient. If
the closest approach was less then a threshold of 1073 was set to zero. However, this
criterion was not fulfilled in the calculations performed for any of the figures shown in
this thesis.

Properties of the projection II. Consider a system of four oscillators, i.e., N = 4, and
recall the following definitions from Chapter 1. The action of Z/4Z on the canonical
invariant region C is generated by

fi(0a¢27--~,¢N)'—>(07¢3—¢2a~--71/1N—¢2;27T—¢2);

cf. Equation (1.9). Note that the group Z/NZ is isomorphic to the group of Nth
roots of unity. Let ¢ := exp ( — %') denote one of the primitive fourth roots of unity
that generates Z/47Z, i.e., Z/4Z = (¢). The group Z/4Z acts on R? = C by complex
multiplication, i.e., the group action is given by

a:7Z/4Z x C — C,

(k,z) — k2. (4-4)

Let I := [0, 1] denote the unit interval. Thus, the group Z/47Z acts on R? x I through
the map a x id.
These group actions give rise to a Z/47Z-equivariant (noninjective) map
I:C—R*x1,
¥ (y(¥), [R(4)])

!GNU Scientific Library, available online at http://www.gnu.org/software/gsl/.

(A.5)
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075 £
IR 0.5 |
II
e 0.25

Figure A.1.: Image of the edges of the canonical invariant region C in R? x I. The line
styles are the same as in Figure 1.1. Note that two opposite solid lines
are mapped onto the same solid line since II(Ey(T)) = II(E2(T)) and
II(Ey(T)) = II(E5(T)).

as defined in Chapter 1, Equation (1.13), where R denotes the order parameter (1.2).
One easily verifies that the diagram

sok

C———¢C

ol |n

CxI——CxI
¢k xid

commutes for any k € Z/4Z. Thus, the action of the group Z/4Z on the canonical
invariant region C corresponds to a rotation of the complex plane C by an angle of —7.

For four oscillators, the canonical invariant region is a three-dimensional simplex whose
edges may be parametrized by a parameter o € T through the functions

Eo(a) = (07 a, a, a);

Ey (CY) = (07 0,0, —Oé),

EQ(a) = (07 0, —a, 0)7

Eg(Oé) = (07 —qQ, 07 O)
which correspond to edges with instantaneous symmetry group Sy—_1 and

E4(a) = (07 07 a? a)?

E5(Oé) = (07 a, &, 0)
with instantaneous symmetry So x Ss. Note that the group action of Z/47Z permutes
the edges. With indices in Z/4Z, we have Fy1 = £ o Ej. Furthermore, for the last
two edges we have F5 = o By and —Fy = £ o F5. The images of the edges under the

projection IT are curves in R? x I as depicted in Figure A.1. For the fully synchronized
state and the splay state, we have
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Figure A.2.: A comparison of the approximation of the size of the group of symmetries
on average (A.6) (cf. Figure 1.3) with the ergodic averages Q% and Q4
shows good agreement; values close to zero in Panels (b) and (c) indicate
the presence of Z/27 and 7 /47 symmetry, respectively.

Symmetries of the attractor. We use the projection (A.5) to calculate the symmetry
of chaotic attractors. Suppose that p; = (77 (1+1i), j = 1,...,4, and define di(p,T) :=
min;«7 |a(e(t)) — px|. Calculate

P((p,T) = (dl((va)7d2(907T)7d3(§07T)7d4(907T)) € R4‘

For A = w(y), P(e,T) = (P1, P2, P3, Py) and given threshold # > 0 evaluate the
function

S(A,T) = card{j ‘ P - kgihpk‘ < 9} . (A.6)

The value of f](A,T) is some measure of symmetry for the group S; acting on R*
by permuting indices and served as an approximation for the size of the group of
symmetries on average in Figure 1.3.

The value of f](A) for a threshold of § = 1072 is in good agreement with the ergodic av-
erages of the image under the equivariant projection II; cf. Figure A.2 for a comparison
with fixed initial conditions. These are given by

1 T
Q3le) = 7 | sinea(t) = ea(®) e (A7)
1 rT
Q3(0) = 7 [ sin(ea(®) = ea(0) dt (A3)
Qalp) = % /0 ' sin(p1(t) — w3 (t)) sin(pa(t) — pa(t)) dt. (A.9)

The functions Qé with j € {a,b} take the average over either one component of the
projection (A.5) and Q4 takes a combined average. Hence, Q2 encodes Z/27Z symmetry
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Parameter Description Value in simulations
Oaiv Divergence threshold 106

0cony Convergence threshold 10~13

Osame Tolerance for two points to be the same 106

Heap Adaptation parameter divergence threshold )

Ttimeout Maximum number of iterations 3000

Table A.1.: Parameters for the numerical simulations to evaluate the performance of
stalling Predictive Feedback Control and adaptation.

and Q4 symmetry with respect to Z/47Z. A value close to zero of these averages
indicates the presence of the corresponding symmetries; see for example [4, 39] for a
more comprehensive treatment of these so-called detectives.

A.2. Chaos Control

Implementation of large scale simulations. To evaluate the performance of Stalled
Predictive Feedback Control we performed numerical simulations. The software was
implemented in C/C++ making use of the GSL libraries. In particular, derivatives
were calculated numerically using the GSL built-in functions.

A given number of runs was performed for a given hy; ,. The control parameter y may

be subject to adaptation with adaptation parameter vy and v(p) = %0 as explained
above. The parameters of the simulation algorithm are summarized in Table A.1. Each
run consists of the following steps where k is the index of the current time step.

Step 0 (Initialization):

(1) Initialize adaptation according to the current adaptation rule (3.18). No
adaptation corresponds to pug = v(p) and Auy = 0 for all k.

(2) Sample & € RY from a probability distribution with support on some (map
dependent) subset of the basin of attraction of the chaotic attractor. Sample
T{ ans uniformly from the set {1,...,2000}. Calculate the initial condition

T = fO(Ttrans) (i.))

with Tirans = Tipans + 250, after some transient iteration. Thus, the minimal

transient iteration is 251 time steps to allow the orbit to converge to the
attractor. Set k := 0.

While K < Tiimeout and ||zx || < O4iv repeat the following steps.
Step 1 (Iterate): Calculate xyy1 = hi, ,(7k), ptgr1 = pg + Apg, and k =k + 1.

Step 2 (Divergence check): End loop if ||zg| > 0aiv (divergence) or py > picap (diver-
gence of the control parameter). In this case return convergence failure.
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Step 3 (Convergence check): If ||z — xp—1|| < conv and || fp(xr—1) — -1l < Osame
then execute the following steps. The second condition ensures convergence to a
periodic orbit of f. Note that this additional condition does not lead to any extra
numerical cost as f,(xx) is needed to evaluate hf ,(zx). Refer to Section 3.5 for
a discussion of the role of adaptation.

(1) Calculate periodic orbit z, f(zk), ..., fP(zk).

(2) If || foUxg) — k|| > Osame for 1 < g < p—1and || fP(xk) — k|| < Osame then
return successful convergence. Otherwise return convergence to incorrect
period.

If the loop ends without a result then return convergence failure. The resulting con-
vergence times were rescaled to the number of evaluations of f, before any statistic
was evaluated.
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