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1 Introdu
tion1.1 An OverviewThe aim of this thesis is the extension of the fun
tional renormalization group (FRG)formalism [64, 75, 76, 87℄ to treat non-equilibrium situations or, in other words,we reformulate the FRG-equations in terms of the Keldysh method [45℄ whi
h isthe standard te
hnique to treat systems out of equilibrium. As simplest non-trivialappli
ation to test the potential and weakness of the non-equilibrium FRG we 
hoosethe single impurity Anderson model (SIAM) [4℄. This model represents the paradigmfor 
orrelation e�e
ts in 
ondensed matter physi
s and it is at the heart of a largerange of experimental and theoreti
al investigations. In parti
ular, the SIAM 
an be
onsidered as the standard model for des
ribing the physi
al properties of 
ertainnanostru
tures and mesos
opi
 systems, su
h as quantum dots. A quantum dot
an be viewd as a small region (in the next se
tion we will pre
ise what �small�means) 
onsisting of semi
ondu
tor material, where ele
trons are 
on�ned by e.g.ele
trostati
 potentials, by means of ele
tron beam lithography and mole
ular beamepitaxy. The next paragraphs are dedi
ated to a short introdu
tion regarding theexperimental s
enario and the theoreti
al interpretation of the 
hara
teristi
s ofquantum dots. At the end of the present 
hapter we give the reader a �roadmap�whi
h will guide him through this thesis.1.2 Experimental Aspe
ts1.2.1 Introdu
tion and Fabri
ation Te
hniqueA quantum dot is an arti�
ially stru
tured system where the motion of parti
les is
on�ned in all three spatial dimension, that 
an be �lled with ele
trons (or holes).The dot 
an be 
oupled via tunnel barriers to reservoirs, with whi
h ele
trons 
anbe ex
hanged (see Fig. 1.1). By atta
hing 
urrent and voltage probes to the reser-voirs, we 
an measure the ele
troni
 properties. The dot is also 
oupled 
apa
itivelyto one or several gate ele
trodes, whi
h 
an be used to tune the ele
trostati
 po-tential of the dot with respe
t to the reservoirs. The previous des
ription showsthat a quantum dot is a rather general devi
e, there 
onsequently exist many dif-ferent realizations: For instan
e single mole
ules trapped between ele
trodes [67℄,normal metal [68℄, super
ondu
ting [85℄, semi
ondu
tor lateral [49℄ or verti
al dots5



1 Introdu
tion

Figure 1.1: S
hemati
 pi
ture of a quantum dot in (a) a lateral geometry and (b) in averti
al geometry. The quantum dot is 
onne
ted to sour
e and drain reservoirs via tunnelbarriers, allowing the 
urrent through the devi
e, to be measured in response to a biasvoltage, VSD and a gate voltage, VG.
[51℄. The ele
troni
 properties of quantum dots are dominated by two e�e
ts. First,the Coulomb repulsion between the ele
trons on the dot leads to an energy 
ost foradding an extra ele
tron to the dot. Due to this 
harging energy, tunneling of ele
-trons to or from the reservoirs 
an be dramati
ally suppressed at low temperatures;this phenomena is 
alled Coulomb blo
kade [5℄. Se
ond, the 
on�nement in all threedimensions leads to quantum e�e
ts that strongly in�uen
e the ele
tron dynami
s.One parti
ularly frequent and well reprodu
ed realization starts from heterostru
-tures of GaAs and AlGaAs grown by mole
ular beam epitaxy (see Fig. 1.1). Bydoping the AlGaAs layer with Si, free ele
trons are introdu
ed. These a

umulateat the GaAs/AlGaAs interfa
e, typi
ally 50 − 100 nm below the surfa
e, forminga two-dimensional ele
tron gas (2DEG), a thin (approx. 10nm) sheet of ele
tronsthat 
an only move along the interfa
e. The 2DEG 
an have a high mobility andrelatively low ele
tron density (typi
ally 105 − 107cm2/V s and 1 − 5 ∗ 1015/m2, re-spe
tively. The low ele
tron density results in a large Fermi wavelength (approx. 40nm) and a large s
reening length, whi
h allows to lo
ally deplete the 2DEG withan ele
tri
 �eld. This ele
tri
 �eld is 
reated by applying a negative to metal gateele
trodes on top of the heterostru
ture (see Fig. 1.1 (a)). Ele
tron-beam lithogra-phy enables fabri
ation of gate stru
tures with dimensions down to a few tens ofnanometers (Fig. 1.1), yielding lo
al 
ontrol over the depletion of the 2DEG withroughly the same spatial resolution. Small islands of ele
trons 
an be isolated fromthe rest of the 2DEG by 
hoosing a suitable design of the gate stru
ture, thus 
reat-ing quantum dots. Finally, low-resistan
e (Ohmi
) 
onta
ts are made to the 2DEGreservoirs. To a

ess the quantum phenomena in GaAs gated quantum dots, theyhave to be 
ooled down to 10-100mK.6



1.2 Experimental Aspe
ts

Figure 1.2: Lateral quantum dot devi
e de�ned by metal surfa
e ele
trodes. (a) S
hemati
view. Negative voltages applied to metal gate ele
trodes (dark gray) lead to depletedregions (white) in the 2DEG (light gray). Ohmi
 
onta
ts (light gray 
olumns) enablebonding wires (not shown) to make ele
tri
al 
onta
t to the 2DEG reservoirs. (b)-(
)S
anning ele
tron mi
rographs of a few-ele
tron single-dot devi
e (b) and a double-dotdevi
e (
), showing the gate ele
trodes (light gray) on top of the surfa
e (dark gray). Thewhite dots indi
ate the lo
ation of the quantum dots. Ohmi
 
onta
ts are shown in the
orners. White arrows outline the path of 
urrent JDOT from one reservoir through thedot(s) to the other reservoir. For the devi
e in (
), the two gates on the side 
an be used to
reate two quantum point 
onta
ts, whi
h 
an serve as ele
 trometers by passing a 
urrent
JQPC . Note that this devi
e 
an also be used to de�ne a single dot.

7



1 Introdu
tion1.3 Two Parameter Regimes: Coulomb Blo
kadeand Kondo1.3.1 Single Ele
tron Tunneling and Coulomb Blo
kadeAs we have already mentioned in the previous paragraph, experimental te
hniqueslike ele
tron beam lithography and mole
ular beam epitaxy, permitted the realiza-tion of mesos
opi
 stru
ture where is possible to 
on�ne a small amount of ele
tronsin a spatial region of a few nanometers. One of the most interesting dis
overy, inthese mesos
opi
 systems, was the single ele
tron tunneling (SET) ([17, 23℄), namelythe possibility to let �ow, in a 
ontrolled way, through the quantum dot one ele
tronat a time. The s
ope of this se
tion is to explain in whi
h parameter range one 
anobserve single ele
tron tunneling and from whi
h experimental quantity 
an be de-du
ed that SET is indeed happening. In the linear regime the transport propertiesof mesos
opi
 systems 
an be represented by the 
ondu
tan
e G de�ned as
G = lim

(VL−VR)→0

[
J

VL − VR

]

,where J is the 
urrent �owing from the left to the right ele
trode and VL,R arethe Fermi ele
tro
hemi
al potentials µL,R divided by the ele
troni
 
harge. Beforepro
eeding further we have to distinguish two parameter regimes. First we look atthe limit in whi
h the dot-leads 
oupling energy Γ is small 
ompared to the Coulombenergy U on the island (Coulomb-blo
kade regime, Fig. 1.3 and Fig. 1.3.2 (
)) andthen the 
ase where Γ 
annot be negle
ted any more (see the next paragraph andFig. 1.5 (a)-(b)).The experimental eviden
e of the single ele
tron tunneling [43, 80℄ has been re-vealed for the �rst time by the periodi
 behaviour of the linear 
ondu
tan
e G asfun
tion of the gate potential VG (see Fig. 1.3). The peaks in Fig. 1.3 
orrespondto the �ow of an ele
tron from the left lead to the right one through the dot. Themodel explaining su
h a behaviour is usually 
alled Coulomb blo
kade [43, 90℄. Itis based on simple ele
trostati
 
onsideration we are going to elu
idate. If we haveele
troni
 
harge Q on the island its energy is
E =

Q2

2CT
,where CT represents the total 
apa
itan
e between of dot. Now, if the potentialdrop between the gate and the island is VG, the total ele
trostati
 energy of the dotis given by

E = −QVG +
Q2

2CT
. (1.1)The �rst terms indi
ates the potential energy between the gate terminal (positively
harged) and the 
entral region, while the se
ond takes into a

ount the repulsive8



1.3 Two Parameter Regimes

Figure 1.3: Condu
tan
e G as fun
tion of the gate voltage VG in the parameter regime(Coulomb blo
kade) where the leads-dot 
oupling energy Γ is negligible 
ompared to theCoulomb repulsion U.intera
tion among the 
harges on the dot. Equation (1.1) 
an be reexpressed (apartfrom a 
onstant term) as
E =

(Q−Q0)
2

2CT

,with Q0 = CTVG. For any given value of VG (and thus of Q0), the 
harge on the dotadjustes itself to minimize the energy. Neverthless, be
ause of the 
harge quantiza-tionQ = Ne, for a givenQ0, we 
an only have dis
rete energy levels (see Fig. 1.4). As
N N+1N-1 N+2N-2

e2/2CT

E

Q(e)

(a) Q0 = Ne

N N+1N-1 N+2

E

Q(e)

(b) Q0 = (N+1/2)e

Figure 1.4: Total energy of a quantum dot plotted as fun
tion of the elementar ele
troni

harge. (a) Shows the 
ase with a non-degenerate energeti
 minimum: Q0 = Ne, (b)degenerate: Q0 = (N + 1/2)e.soon as Q0 = Ne, the energy is minimized by an integer number of ele
trons and thein
rease or the de
rease of the 
harge ±e 
osts an a
tivation energy 
orrespondingto (see Fig. 1.4 (a))
EA =

e2

2CT
. 9



1 Introdu
tionOn the other hand, if Q0 = (N + 1
2
)e, then the states 
hara
terized by Q = Ne and

Q = (N +1)e are degenerate (see Fig. 1.4 (b)) so that the 
harge �u
tuates betweenthese two values, even at zero temperature, without any energeti
 expense. Fromthe experimental point of view this means that the 
ondu
tan
e is di�erent fromzero for all value of VG with
VG = Q0/CT = (N +

1

2
)e/CT .For all other values of VG the 
ondu
tan
e is very small or zero. This is the reasonwhy, at low temperatures, we observe periodi
ally spa
ed 
ondu
tan
e peaks. Theperiod is determined by VG = e

CT
and 
orresponds to the variation of VG whi
h isne
essary to let Q0 pass from (N + 1

2
)e to (N + 3

2
)e.1.3.2 Kondo RegimeConsider now the situation in whi
h Γ the 
oupling parameter between dot and leadsis not negligible any longer (Kondo regime) [11, 22℄). In this limit G as fun
tionof the gate voltage presents di�erent features (see Fig. 1.3.2 (a) (b)) 
ompared tothe Coulomb blo
kade regime shown in Fig. 1.3 and in Fig. 1.3.2 (
). The most
hara
teristi
 aspe
t is that the peaks now form pairs. Peaks belonging to the samepair show a 
omparable width (see Fig.1.3.2 (a) (b)) and their spa
ing is determinedby the Coulomb repulsion U = e2

2CT
. On the other hand, between di�erent pairs weobserve a spa
ing greater then U and di�erent peak widths.This behaviour 
an be explained assuming that in an ele
troni
 state we 
annotinsert more then two ele
trons with opposite spin. In fa
t, if we wish to add a thirdele
tron, we are for
ed to insert it in a state whi
h is di�erent from the one o

upiedby the previous pair. As dire
t 
onsequen
e the spa
ing between peak pairs takesinto a

ount both U and the energy di�eren
e between the two su

essive energeti
levels ∆ε [11, 22℄), resulting in a total spa
ing given by U + ∆ε. If we look atthe valleys in Fig. 1.3.2 (a) (b), we �nd that the intra-pair ones show a higher
ondu
tan
e 
ompared to the inter-pair valleys. The reason for this behaviour liesin the number of ele
trons present on the island. The valley between two pairedpeaks 
orresponds to a dot o

upied with an odd number of ele
trons, therefore theunpaired ele
tron 
an intera
t with the 
harges at the Fermi level in the leads, givingrise to a Kondo singlet bound state between them (see next paragraph). The singletin
reases the dot density of state (DOS) at the Fermi level (see next paragraphsand Fig. 1.8 ), whi
h in
reases the 
ondu
tan
e too. If we lower the temperature

T the peaks tend to be
ome narrower and higher (even in the limit in whi
h Γ isnot small), neverthless the intra-pair 
ondu
tan
e valley in
reases while the inter-pair one de
reases, letting the 
ondu
tan
e be
ome small. We observe exa
tly theopposite phenomenon in
reasing the temperature, be
ause an in
rease of T tends10



1.3 Two Parameter Regimes

Figure 1.5: Temperature dependen
e of zero-bias 
ondu
tan
e G through two di�erentspatial states on the dot. (a), Paired peaks 
orresponding to the two spin states for ea
hspatial state be
ome better resolved with in
reasing temperature from 90 mK (full line) to400 mK (dashed). The intra-pair valleys be
ome deeper and the peaks be
ome narrower.(b), From 400mK (dashed line) to 800mK (dotted) the paired peaks near VG = −70mVbroaden. The peaks near VG = −25mV are still be
oming better resolved even at 800mK, as they have larger Γ. (
), When Γ is redu
ed (as illustrated by shorter and narrowerpeaks), U in
reases relative to ∆ε, so peak pairing is no longer evident. Be
ause the Kondophenomenon is suppressed, peaks be
ome narrower as temperature is de
reased at all Tdown to our base temperature of 90 mK. Full line is for 90 mK, dotted line for 800 mK.
11



1 Introdu
tionto destroy the spin 
orrelations between the ele
trons of the 
entral region and theleads, letting the 
ondu
tan
e relative to the intra-pair valley 
ollapse.1.4 Theoreti
al Interpretation1.4.1 Quantum Dots and Magneti
 Impurities in MetalsGlazman and Raikh [21℄ noted that quantum dots 
an be related to metals dopedwith magneti
 impurities in su
h a way that the dot, o

upied by just one ele
tron,plays the role of the impurity and the ele
trodes represent the metal matrix in whi
hthe impurity is embedded.They understood that, even if ele
troni
 transport is in prin
iple forbidden bythe Coulomb blo
kade, it 
an still o

ur by means of the Kondo e�e
t [47℄. Thisidea has been veri�ed experimentally later by Ralph and Buhrman [71℄ and thenby Goldhaber-Gordon [22℄ and Cronenwett et al. [11℄, [34℄. A detailed dis
ussionof the Kondo e�e
t is far beyond the s
ope of this work (the interested reader isreferred to the book by A.Hewson [34℄), here we just give some basi
 introdu
tionon the Kondo Physi
s.The original problem stems from the anomalous behaviour of the resistivity ρ asfun
tion of temperature T in metal doped with magneti
 impurities. Experimentallyit was observed that the the resistivity of su
h metals does not simply de
rease,when the temperature is lowered, but it shows a minimum and then it begins togrow again before it saturates [24, 34, 59℄. The explanation of this behaviour 
anbe found in the spin-�ip s
attering between the spins of the 
ondu
tion ele
tronsand the magneti
 impurity. The latter 
an be seen as a s
attering 
enter whoseintera
tion with the 
ondu
tion ele
trons 
auses the spin �ip s
attering. This kindof intera
tion appears when the temperature is low enough to suppress thermal�u
tuations, a dire
t 
onsequen
e is the anomalous resistivity behaviour.Below a 
hara
teristi
 temperature, also 
alled Kondo temperature TK , the spinof the impurity forms a many-body state with the band ele
trons. This means thatif we want to 
reate a spin triplet between the host and the ele
trons we must breakup the many-body state or in other words we should give to the system an energywhi
h is larger then the binding energy TK of this many-body state. Therefore thespin �ip s
attering, at T < TK , is frozen out and the Kondo e�e
t saturates.1.4.2 Transport due to the Kondo E�e
tThe analogies between quantum dots and metals doped with magneti
 impurities[21, 22, 49, 71℄ permit us to explain the 
harge transport through quantum dots inthe Coulomb blo
kade regime by means of the Kondo e�e
t.12



1.4 Theoreti
al InterpretationThe standard approa
h to des
ribe the phenomenology of quantum dots is basedon the single impurity Anderson model SIAM [4℄, given by the Hamiltonian
H =

∑

~kσα

ε~kσαc
†
~kσα

c~kσα

+
∑

σ

εσd
†
σdσ + U

(

n↑ −
1

2

)(

n↓ −
1

2

)

+
∑

~kσα

[

V~kσαc
†
~kσα

dσ + h.c.
]

, (1.2)where c, d denote the operators for the 
ondu
tion ele
trons and the impurity degreesof freedom and nσ = d†σdσ. U represents the Coulomb repulsion on the impurity site,
V~kσα is the hopping term whi
h permits an ele
tron of the leads to jump onto thedot and vi
e versa. Finally α = L,R distinguishes the left and right reservoir. Thespin indi
es σ 
an take the values up or down (↑, ↓) and the band waveve
tor ~k runsthrough all values of the �rst Brillouin zone of the leads.

Figure 1.6: Pi
torial representation of the impurity Anderson model: The dot in the 
entralregion, subje
t to the Coulomb repulsion U , is 
oupled via VK to the left and right leadswhi
h are here at the same ele
tro
hemi
al potential. An additional ele
trode Vg 
ontrols
apa
itively the 
harge on the dot.Looking at Fig. 1.7 (a) (b) 
harge transport from the left ele
trode to the rightone (whi
h are kept at a 
onstant bias VL −VR = µL−µR

e
) is permitted if the the dotlevel is lo
ated in the following energeti
 interval (see Fig. 1.6)

µL < εd < µR.Now assume that the temperature is mu
h lower than the energeti
 spa
ing betweentwo levels |∆ε| of the 
entral region, therefore it 
an be treated as if it 
onsisted ofjust a single level. If we now let �ow another ele
tron on the dot then the level ispushed up by an energy
∆ε = εd + U. 13



1 Introdu
tion

Figure 1.7: (a) Tunnel pro
ess through the quantum dot. Transport 
an take pla
e if
µR < εd < µL. If the temperature T is low enough then the energeti
 spa
ing ∆ε is toolarge to permit an ele
tron to jump from an energeti
 level to the next one → single-levelquantum dot. (b) Pi
torial des
ription of the transport in the Coulomb blo
kade regimethrough the Kondo e�e
t: virtual tunneling transition whose end e�e
t is always a doto

upied by a single ele
tron, but with opposite spin.
14



1.5 Guide to this WorkTherefore the level is shifted above the energy interval previously de�ned, thusmaking transport impossible at �rst sight. In reality we 
an have virtual tunnelingtransitions due to the dot-leads 
oupling whi
h 
an indu
e a spin �ip between the
entral region (see Fig. 1.7 (b)) and the leads. A
tually, these spin �ip pro
esses giverise to the formation of a singlet state between the ele
tron on the island end the onesin the leads (Kondo e�e
t [11, 22, 34℄). The presen
e of su
h a singlet is 
onne
tedto a s
attering resonan
e at the Fermi level (see Fig. 1.8). Experimentally thisadditional spe
tral weight, due to manybody e�e
ts, manifests itself in an in
reaseof the 
ondu
tan
e between the Coulomb peaks, i.e. in the intra-pair valley regionshown in Fig. 1.3.2 (a) (b).

Figure 1.8: S
hemati
 energy diagram of the SET, showing an ele
tron droplet separatedby tunnel barriers from 
ondu
ting leads. Sin
e the number of ele
trons in the droplet isodd, the lo
al density of states exhibits a sharp Kondo resonan
e at the Fermi level. Thebroad resonan
e at energy ε0 represents a transition from nd = 0 → nd = 1, while the oneat ε0 + U 
orresponds to a transition from nd = 1 → nd = 2.
1.5 Guide to this WorkThe present thesis is divided into six 
hapters and two appendi
es. In the next
hapter we dis
uss in detail the Keldysh method, whi
h is the standard te
hniquefor the des
ription of non-equilibrium quantum manybody problems. The third
hapter is dedi
ated to the renormalization group. It will fo
us on the extension ofthe fun
tional renormalization group (FRG) to non-equilibrium situations. First of15



1 Introdu
tionall we will show the di�eren
es between equilibrium and non-equilibrium and thenthat the FRG 
an be extended to treat, at least formally, also time dependent non-equilibrium situations and not only the stationary 
ase (
onstant external �eld).In the last three 
hapters we will a

ompany the reader through our results, forthe transport parameters, the 
urrent J and 
ondu
tan
e G, 
al
ulated with thenon-equilibrium FRG.We will 
on
entrate on the simplest 
ase, namely a situation where we negle
tthe energy dependen
e of the quantities entering into the FRG equations. We alsodis
uss the in�uen
e of an applied magneti
 �eldB, in order to distinguish the 
ontri-butions of di�erent spin 
hannels to the transport parameters, and the temperature
T. Summary and 
on
lusion will �nish this work.

16



2 The Keldysh Method2.1 Introdu
tionThe physi
al properties of a system in equilibrium 
an be extra
ted from the Greenfun
tion de�ned as1
G(1, 2) = −i〈T̂ ψH(1)ψ†

H(2)〉, (2.1)where ψH(1) represents a �eld operator in the Heisenberg pi
ture whi
h annihilatesan ingoing parti
le at point x1 and at the time t1, while ψ†
H(2) 
reates an outgoingparti
le at x2, t2. T̂ stands for the time order operator, whi
h pla
es the operatorsa

ording to the time argument with the latest time to the left [29, 52, 59℄. Themean value is 
al
ulated with respe
t to the Gibbs distribution fun
tion. From thestatisti
al point of view it makes no no di�eren
e if we 
al
ulate the mean value ofa system in equilibrium with respe
t to the exa
t wave fun
tion of the stationarystate of the 
losed system or by means of the Gibbs distribution of the system in athermal bath. In the �rst 
ase the result will be a fun
tion of the energy and thenumber of parti
les and in the se
ond of the temperature and the 
hemi
al potential.The situation 
hanges as soon as we treat systems out of equilibrium. We have to
al
ulate averages with respe
t to states whi
h are not ne
essarely the ground stateor even eigenstates of the system, but resulting from initial 
onditions determined byexternal �elds, preparation, et
 [40, 45, 54, 82℄. As dire
t 
onsequen
e (see Se
tions2.2-2.4) we are obliged to introdu
e four Green fun
tions, taking into a

ount theex
itation spe
trum and the distribution fun
tion separately. Moreover, the 
orre-lation fun
tions we are going to analyze 
ontain only real variables. This permits usto avoid the analyti
 
ontinuation (as ne
essary in the Matsubara te
hnique), whi
h
an be a 
umbersome task, in parti
ular if results are known only numeri
ally.2.2 Greens Fun
tions in Non-EquilibriumBefore explaining the mathemati
al details of the non-equilibrium perturbation the-ory, we �rst prefer to present the basi
 idea and fun
tions on whi
h it bases. Inthe next se
tion we will then apply it to the easiest 
ase, namely to the non inter-a
ting Fermi gas and �nally in the Paragraph 2.4 we will explain the perturbative1For brevity we restri
t ourselves to fermions. The formula for bosons is identi
al ex
ept for adi�erent sign. 17



2 The Keldysh Methodexpansion. Let us start de�ning2
G(1, 2) = −i〈TKψH(1)ψ†

H(2)〉. (2.2)The quantity G(1, 2) depends separately on the pair of variables (1, 2) and notonly on their di�eren
e, as in equilibrium. Compared to the �usual� time orderingoperator the one in the Eq. (2.2) 
arries an index K, whi
h des
ribes a path startingat t = −∞ up to t = +∞ and then ba
k again in the opposite dire
tion. Su
h apath is also 
alled Keldysh 
ontour (see Fig. 2.1) [45℄. Starting from the de�nition
Figure 2.1: The Keldysh 
ontour: Start the time evolution at time t = −∞ up to t = +∞(blue line) and then ba
k from t = +∞ up to t = −∞ (red line).Eq. (2.2) we now displa
e the times t1, t2, on the Keldysh 
ontour in all possibleways [29, 52℄. Sin
e we have only two times to play with, there are just four possible
ombinations and to ea
h one 
orresponds a 
ertain Green fun
tion, whi
h will belabeled by means of two upper indi
es, ea
h of them representing the upper (−) orthe lower bran
h (+) of the Keldysh 
ontour. We obtain

G−−(1, 2) = −i〈TψH(1)ψH(2)†〉 = (2.3)
= −iθ(t1 − t2)〈ψH(1)ψH(2)†〉 + iθ(t2 − t1)〈ψH(2)†ψ†

H(1)〉,where t1, t2 ∈ CK−, (G time-ordered) and CK− is the upper bran
h of the 
ontour;
G++(1, 2) = −i〈T̃ ψH(1)ψH(2)†〉 = (2.4)

= −iθ(t2 − t1)〈ψH(1)ψH(2)†〉 + iθ(t1 − t2)〈ψH(2)†ψH(1)〉,with both times on the lower bran
h of the 
ontour t1, t2 ∈ CK+ (G antitime-ordered);
G+−(1, 2) = −i〈ψH(1)ψH(2)†〉, (2.5)(G greater) with t1 ∈ CK+ , t2 ∈ CK−, and �nally
G−+(1, 2) = i〈ψH(2)†ψH(1)〉, (2.6)(G lesser) where we have t1 ∈ CK−, t2 ∈ CK+. The last two Green fun
tions arenot time-ordered and moreover 
ouple the two bran
hes of the 
ontour. From the2Here and in the following we set ~ = 118



2.3 Greens Fun
tions for the Ideal Fermi Gasprevious de�nitions it follows that Eqs. (2.3)-(2.6) are not independent, but haveto obey the 
onstraint
G−− +G++ = G−+ +G+−. (2.7)One 
an introdu
e two more Green fun
tions

GA(1, 2) = iθ(t2 − t1)〈{ψH(1), ψ†
H(2)}〉 =

= θ(t2 − t1)[G
−+(1, 2) −G+−(1, 2)], (2.8)

GR(1, 2) = −iθ(t1 − t2)〈{ψH(1), ψ†
H(2)}〉 =

= θ(t1 − t2)[G
+−(1, 2) −G−+(1, 2)], (2.9)the retarded and advan
ed Green fun
tions de�ned exa
tly as in equilibrium. They
an be written in terms of G+−, G−+ a

ording to

GR = G−− −G−+ = G+− −G++, (2.10)
GA = G−− −G+− = G−+ −G++. (2.11)From the de�nitions (2.3)-(2.4) follows, be
ause of the antihermi
ity of their argu-ments, that

G−−(1, 2) = −G++(2, 1). (2.12)The lesser and greater fun
tions, are antihermiti

G−+(1, 2) = −[G−+(2, 1)]∗ , G+−(1, 2) = −[G+−(2, 1)]∗. (2.13)This means that their Fourier 
omponents are purely imaginary. Consider now thenon-equilibrium stationary and spa
e-homogeneous 
ase. Thanks to the spa
e andtime transational invarian
e, all 
orrelation fun
tions, now again, depend only onthe di�eren
es of their arguments t = t1 − t2,x = x1 −x2. It is then possible to takethe Fourier transform with respe
t to su
h di�eren
es, whi
h dire
tly leads to therelations

G−−(ω,p) = −[G++(ω,p)]∗,

GA(ω,p) = [GR(ω,p)]∗.2.3 Greens Fun
tions for the Ideal Fermi GasThe physi
al meaning of the previously introdu
ed Green fun
tions 
an be illustratedthrough a simple example, namely the non intera
ting Fermi gas in its homogeneousand stationary state [52℄. Start from the Eq. (2.5) in whi
h we substitute for the
ψ-operators the free-�eld expansion expli
itely written in the variables x, t as

ψ̂H(t,x) =
1

V
1
2

∑

p

âpe
(i[px−ε(p)t+µt]), (2.14)
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2 The Keldysh Method
ψ̂†

H(t,x) =
1

V
1
2

∑

p

â†
p
e(−i[px−ε(p)t+µt]),where ap, a

†
p
are the usual annihilation and 
reation operators, ε(p) = p

2

2m
and µ isthe 
hemi
al potential. With this substitution we obtain

〈ψ(x, t)ψ†(x′, t′)〉 =
1

V

∑

p,p′

e{i[px−p
′
x
′]}e{−it[ε(p)+µ]−it′[ε(p′)+µ]}〈âpâ

†
p′〉. (2.15)For free �elds the anti
ommutation relation

{âp, â
†
p′} = δp,p′,holds, so that

〈âpâ
†
p′〉 = δp,p′{1 − 〈â†

p′ âp′〉} =

= δp,p′{1 − fp},where fp is the Fermi distribution fun
tion only for the 
ase in whi
h we treat a gasin equilibrium, otherwise it represents a-priori unkown fermioni
 non-equilibriumdistribution fun
tion. Inserting the last relation into Eq. (2.15) results in the ex-pression
〈ψ(x, t)ψ†(x′, t′)〉 =

1

V

∑

p

e{i[p(x−x
′)]}e{−i[ε(p)+µ](t−t′)}{1 − fp}. (2.16)By taking the Fourier transform with respe
t to x − x′ and t − t′ of Eq. (2.16) we�nally obtain

G−+
0 (ω,p) = −2πi{1 − fp}δ(ω − εp + µ). (2.17)We 
an now apply the same pro
edure to the other 
orrelation fun
tions with theresult
G+−

0 (ω,p) = 2πifpδ(ω − εp + µ), (2.18)
G−−

0 (ω,p) = [ω − ε(p) + µ+ iη]−1 ± 2πifpδ(ω − εp + µ), (2.19)
G++

0 (ω,p) = −[G−−
0 (ω,p)]∗, (2.20)

GR
0 (ω,p) = [ω − ε(p) + µ+ iη]−1 = [GA

0 (ω,p)]∗. (2.21)From the physi
al point of view Eqs. (2.17)-(2.18) 
ontain informations about thestate of the system (through the distribution fun
tion) and the ex
itation spe
trum20



2.4 Perturbative Expansion(through the delta fun
tion). The spe
ial form of Eq. (2.21) de
ouples the infor-mation about the ex
itation spe
trum and the state of the system des
ribed bythe non-equilibrium distribution fun
tion fp [10, 12℄. Before �nishing this se
tion,it is worth to explain how the physi
al pi
ture 
hanges when we return ba
k toequilibrium. The non-equilibrium distribution fun
tion fp then be
omes the usualFermi distribution and 
onsequently the 
orrelation fun
tions be
ome fun
tions ofthe temperature and the 
hemi
al potential. This means that this formalism 
analso be applied to des
ribe systems in equilibrium at T 6= 0.2.4 Perturbative ExpansionThe 
onstru
tion of the perturbation theory for systems in non-equilibrium followsthe same steps as the equilibrium 
ase at T = 0 [52℄. In order to illustrate how thete
hnique works we 
hoose, as example, Eq. (2.2) for the time-ordered Green fun
-tionG−−.When we 
hange the representation from the Heisenberg to the intera
tionpi
ture, we obtain [53℄
G−−(1, 2) = −i〈 ˆS−1TCK

[ψ̂(1)ψ̂†(2)Ŝ]〉, (2.22)where ψ̂, ψ̂† are free �elds and
Ŝ = Ŝ(−∞,+∞) = TKexp{−i

∫ +∞

−∞

V̂ (t)dt},

Ŝ−1 = Ŝ(+∞,−∞) = T̃Kexp{−i
∫ −∞

+∞

V̂ (t)dt}.

V̂ (t) is the intera
tion operator in the intera
tion pi
ture. In the following we will
onsider, just for simpli
ity reasons, a one-parti
le intera
tion
V̂ (t) = ψ̂(t)

†
Û(t)ψ̂(t).The quantities Ŝ, Ŝ−1 represent the s
attering matri
es on the two bran
hes of theKeldysh 
ontour and they 
ontain both the intera
tion term and the external �eldwhi
h drives the system away from equilibrium. In other words the Keldysh path
an be seen as a representation of the s
attering pro
esses indu
ed by Ŝ, Ŝ−1. In Eq.(2.22) the average is 
al
ulated with respe
t to a state 
onsisting of non intera
tingparti
les and su
h a state 
an be an any state, and not only the ground state. If wewere in equilibrium and at T = 0, then we should 
al
ulate the average with respe
tto the ground state, therefore the a
tion of ˆS−1 
ould be negle
ted, be
ause it would
orrespond just to a multipli
ation by a phase fa
tor. On the other hand, any stateaway from equilibrium does not transform into itself under the a
tion of Ŝ−1, butthe resulting state 
an be thought as a superposition of ex
ited states 
oming from21



2 The Keldysh Methodall possible di�usion pro
esses indu
ed by the intera
tion term and by the external�eld. This is the reason why Ŝ−1 
annot be negle
ted any longer when we performthe perturbative expansion. As dire
t 
onsequen
e we have a dupli
ation of thedegrees of freedom be
ause we have now to perform a double expansion (one forboth s
attering matri
es), whose 
ontra
tions will involve and mix both sides of the
ontour. This gives rise to the four di�erent Green fun
tions we have previouslyintrodu
ed (Se
tion 2.2). At �rst glan
e it seems to be an expensive pri
e to pay,but it avoids us to handle the a priori unknown states at t = ∞ when propagatingthe system from t = +∞ to t = −∞, where the system's state is known [29, 41, 59℄.As already anti
ipated, the Feynmann diagrams of the non-equilibrium perturbationtheory are the result of the double expansion of the operators Ŝ, ˆS−1 appearing inEq. (2.22). Su
h diagrams 
onsitute a sum of terms whose basi
 elements are theWi
k 
ontra
tions of operators pairs. Let us begin by expanding the Eq. (2.22) upto �rst order in the one-parti
le intera
tion. We see that the resulting expression
an be divided in two parts
〈TKψ̂(1)ψ̂†(2)[−i

∫

ˆψ(3)†V (3)ψ̂(3)d4x3]〉+ (2.23)
+〈[TK̃i

∫

ψ̂†(3)V (3)ψ̂(3)d4x3]TKψ̂(1)ψ̂†(2)〉.The �rst one takes into a

ount the produ
t of the zero-order term of Ŝ−1 multi-plied by the �rst-order one of Ŝ, the se
ond term is built the other way round. Inequilibrium we would have only the �rst term of Eq. (2.23). The two terms mustthen be 
ontra
ted, resulting in the following produ
ts
〈TKψ̂(1)ψ̂†(2)[−iψ̂†(3)U(3)ψ̂(3)]〉 = G−−

0 (3, 2)G−−
0 (1, 3), (2.24)

〈TK̃ [iψ̂†(3)Uψ̂(3)]TKψ̂(1)ψ̂†(2)〉 = G−+
0 (1, 3)G+−

0 (3, 2) (2.25)of bare Greens fun
tions. In Eq. (2.25) appear the lesser and greater free Greenfun
tions sin
e we have taken two 
ontra
tions involving operators belonging to twodi�erent parts of the Keldysh 
ontour. Note that none of them is time-orderedbe
ause they mix the two sides of the 
ontour. On the other hand, in Eq. (2.24)all operators live on the upper side of the 
ontour, therefore we 
an have only timeordered fun
tions. Equations (2.24) and (2.25) are represented graphi
ally in Fig.2.2. V denotes the intera
tion potential, the arrows are the bare 
orrelation fun
tions
G0, and the signs (−,+), stand for the upper and lower bran
h of the 
ontour. Nowwe have all the elements to write expli
itely the time ordered Green fun
tion up tothe �rst order in V

G
(−−)
(1) (1, 2) = −i4

+∞∫

−∞

d3x3dt3[G
−−
0 (1, 3)G−−

0 (3, 2)(−V (3))+

22



2.4 Perturbative Expansion
+

=+iU(x)
-

=-iU(x)

1-

3- 3+

2- 2-1-Figure 2.2: The dashed lines represent the bare intera
tion vertex, the 
ontinous lines thepropagators 
onne
ting two points on the Keldysh 
ontour.
+G−+

0 (1, 3)G+−
0 (3, 2)V (3)].The last equation indu
es a dependen
e in G−−

(1) not only on G−−
0 , but also on G(−+)

0 .As we will see in the following, the higher the order of the expansion and the more
ompli
ated will be su
h a dependen
e. If we pro
eed further and take a look at thenext order (O(V 2)), we �nd the graphs depi
ted in Fig. 2.3 whose 
orresponding
- -

--

+ +

-- - -

+ -

- +

- -

Figure 2.3: Se
ond order s
attering pro
ess, for the one-parti
le, intera
tion taking 
are ofall possible sign 
ombination of the internal inde
es.expression reads
G−−

(2) (1, 2) = −i6
+∞∫

−∞

d3x4d
3x3dt3dt4

[G−−
0 (1, 4)G−−

0 (4, 3)G−−
0 (3, 2)V (3)V (4)+ 23



2 The Keldysh Method
G−+

0 (1, 4)G+−
0 (4, 3)G−−

0 (3, 2)V (3)(−V (4))+

G−−
0 (1, 4)G−+

0 (4, 3)G+−
0 (3, 2)V (3)(−V (4))+

G−+
0 (1, 4)G++

0 (4, 3)G+−
0 (3, 2)V (3)V (4)].The external legs are 
hara
terized by two �xed minus signs, while the two internalones must be 
ontra
ted in all possible ways. Out of all possible 
ontra
tions G−−

(2)a
quires a dependen
e on all bare 
orrelation fun
tions, resulting in a lenghty and
ompli
ated analyti
al stru
ture3. From the 
ontour point of view this 
orrespondsto pla
e the internal degrees of freedom in all possible ways on both sides of the
ontour.Up to now we have analyzed, just for simpli
ity reasons, only one-parti
le inter-a
tion, but the same arguments also hold for any kind of intera
tion. From now wewill fo
us on two-parti
le intera
tion
V (t) = ψ†(t)ψ†(t)U(t)ψ(t)ψ(t).Until now we have 
onsidered 
ontributions up to se
ond order, but it is possibleto represent the exa
t G−− in a 
ompa
t graphi
al way as shown by Fig. 2.44.
= + +

+ +

- - - - - -
- -

- + + -
+ +

+ - - +
-+----+-Figure 2.4: Compa
t diagrammati
 form of the Dyson equation for the exa
t G−− writtenin the Keldysh language.The bold arrows stand for the exa
t Green fun
tions, the thin ones denote the bare
orrelation fun
tions and the 
ir
les represent the selfenergy 
ontributions. On
eagain the external legs have �xed signs, while the internal ones take into a

ountthe four possible 
ombinations of +,− signs, resulting in the selfenergies in Fig. 2.4depi
ted. The full G−− 
an then be written as

G−−(1, 2) = G−−
0 (1, 2) +

+∞∫

−∞

d3x3d
3x4dt3dt4 (2.26)3The same holds also for the other three 
orrelation fun
tions ( Eqs. (2.4)-(2.6) )4The other exa
t 
orrelation fun
tions (Eq.(2.4)-(2.6)) have the same internal stru
ture too, what
hanges are just the signs of the external legs whi
h de�ne the Green fun
tion we are 
onsidering.24



2.5 A useful Transformation
[G−−

0 (1, 4)Σ−−(4, 3)G−−(3, 2)+

G−+
0 (1, 4)Σ++(4, 3)G+−(3, 2)+

G−+
0 (1, 4)Σ+−(4, 3)G−−(3, 2)+

G−−
0 (1, 4)Σ−+(4, 3)G+−(3, 2)].The selfenergy fun
tions or selfenergies are represented by graphs whi
h 
annot besepareted in two parts by 
utting just one 
ontinous line (one parti
le irredu
ible).They 
an be summed as blo
ks depending on the order of the perturbation theorywe are 
onsidering. In Fig. 2.5 we show as an example the diagrams up to these
ond order in U for Σ−− and Σ+−.

Figure 2.5: Selfenergies: Σ−− and Σ−+ up to se
ond order.2.5 A useful TransformationIn order to render the previously presented formalism easier to handle it is 
onvenientto introdu
e a matrix notation, whi
h permits to treat all 
orrelation fun
tions aton
e. To this end we de�ne
Σ̂ =

(
Σ−− Σ−+

Σ+− Σ++

)

,

Ĝ =

(
G−− G−+

G+− G++

)

.With this matri
es it is possible to rewrite the set of Dyson equations for the variousGreen fun
tions in a 
ompa
t matrix form as
Ĝ(1, 2) = Ĝ0(1, 2) +

+∞∫

−∞

d3x3d
3x4dt3dt4[Ĝ0(1, 4)Σ̂(4, 3)Ĝ(3, 2)]. (2.27)
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2 The Keldysh MethodWe 
an now introdu
e the di�erential operator5
Ĝ−1

0,1 = i
∂

∂t1
+

∆1

2m
+ µ, (2.28)whi
h has the property [41, 53℄̂

G−1
0,1Ĝ0(1, 2) = σ̂zδ(1 − 2),where
σ̂z =

(
1 0
0 −1

)

.With this de�nition we 
an rewrite the Eq. (2.27) as
Ĝ−1

0,1Ĝ(1, 2) = σ̂zδ(1 − 2) +

+∞∫

−∞

d3x3dt3[σ̂zΣ̂(4, 3)Ĝ(3, 2)]. (2.29)This is a system of four integro-di�erential equations whi
h are formally indepen-dent of the non-intera
ting state (sin
e G0 does not appear in Eq. (2.29)), whi
hnow enters as initial 
ondition. In passing we emphasize that Eq. (2.29) is 
om-pletely general, it for example holds in the non-stationary 
ase and also for spatiallyinhomogeneous situations.Equation (2.27) does not re�e
t expli
itely the relation (2.29) among the Greenfun
tions. It 
an be made manifestly by a linear transformation
R̂ =

1√
2

(
1 1
−1 1

)

,with whi
h we obtain
Ĝ′ = R̂−1ĜR̂ =

(
0 GA

GR GK

)

,

Σ̂′ = R̂−1Σ̂R̂ =

(
ΣK ΣR

ΣA 0

)

,where
ΣK = Σ−− + Σ++5If we di�erentiate with respe
t to the se
ond variable t2 then we must 
hange the sign of thetime derivative obtaining
Ĝ−1

0,2 = −i ∂
∂t2

+
∆2

2m
+ µ,

G−1
0,2G

−−

0 (1, 2) = δ(1 − 2).
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2.5 A useful Transformationand
GK := G−+ +G+− = G−− +G++,For ΣR and ΣA one �nally obtains, by means of Σ−− + Σ++ = −(Σ+− + Σ−+) [52℄,the relations

ΣR = Σ−− + Σ−+,

ΣA = Σ−− + Σ+−.We should remark that the transformation used here is not unique, in fa
t 
onven-tionally a di�erent transformation is adopted, whi
h leads to the Green fun
tion[72℄
Ĝ

′′

=

(
GR GK

0 GA

)

.Let us write expli
itely Eq. (2.27) for the transformed matrix G′

(
0 GA

GR GK

)

=

(
0 GA

0

GR
0 GK

0

)

+ (2.30)
+∞∫

−∞

d3x3d
3x4dt3dt4

[
0 GA

0 ΣaGa

GR
0 ΣRGR (GR

0 ΣK +GK
0 ΣA)GA +GR

0 ΣRGK

]

.From the o� diagonal elements we obtain the expressions for the retarded and ad-van
ed Green fun
tions as
GR,A(1, 2) = GR,A

0 (1, 2) +

+∞∫

−∞

d3x3d
3x4dt3dt4 (2.31)

[GR,A
0 (1, 4)ΣR,A(4, 3)GR,A(3, 2)].The solution to (2.31) des
ribes the ex
itation spe
trum of the problem we arestudying. The lower right matrix element of Eq. (2.30) 
ontains the informationabout the thermodynami
 state of the system. Applying the di�erential operator

Ĝ−1
(0),1 to it, the 
ompli
ated expression simpli�es to

Ĝ−1
(0),1G

K(1, 2) =

+∞∫

−∞

d3x3dt3[Σ
K(1, 3)GA(3, 2) + ΣR(1, 3)GK(3, 2)], (2.32)where we made use of the relation ([41℄)

Ĝ−1
(0),1G

K
(0) = Ĝ−1

(0),1[G
−+
0 +G+−

0 ] = 0As before, the system (2.31) and (2.32) does not expli
itely 
ontain the thermo-dynami
 state of the non-intera
ting system. It enters only through the initial
ondition to (2.32), whi
h 
an be seen as a quantum me
hani
 generalization of theBoltzmann equation. 27
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3 Fun
tional RenormalizationGroup3.1 Introdu
tionThe reliable 
al
ulation of physi
al properties of intera
ting quantum me
hani
alsystems presents a formidable task. Typi
ally, one has to 
ope with the interplay ofdi�erent energy-s
ales possibly 
overing several orders of magnitude even for simplesituations. Approximate tools like perturbation theory, but even numeri
ally ex-a
t te
hniques 
an usually handle only a restri
ted window of energy s
ales and arefurthermore limited in their appli
ability by the approximations involved or the 
om-putational resour
es available. In addition due to the divergen
e of 
ertain 
lasses ofFeynman diagrams some of the interesting many-parti
le problems 
annot be ta
kledby straight forward perturbation theory. The situation be
omes even more involvedif one is interested in properties o� equilibrium, in parti
ular time-dependend situ-ations. As dis
ussed in Chapter 2, the standard approa
h for su
h 
ases is based onthe Keldysh formalism for the time evolution of Green fun
tions. In order to studyintera
ting systems, in parameter regimes that 
annot be a

essed by perturbationtheory, novel theoreti
al methods have been devised re
ently. These approa
hesare based on the general 
on
ept of the renormalization group [88℄ by means ofwhi
h one starts from high energy s
ales, in order to avoid infrared divergen
ies,and works ones way down to the desired low energy region in a systemati
 way,whi
h depends on the parti
ular problem to analyze. In parti
ular, for intera
tingquantum many-parti
les systems in equilibrium two di�erent s
hemes attempting aproblem independent pres
ription have been developed during the nineties. One isthe �ow-equations te
hnique [20, 86℄, the other is a �eld theoreti
al approa
h whi
hwill be explained in the 
ourse of the present 
hapter.This method starts from a fun
tional representation of the partition fun
tion ofthe system, serving as generating fun
tional for Green fun
tions. It has be
omeknown as fun
tional renormalization group (FRG) [64, 69, 75, 87℄. The aim of this
hapter is to derive an extension of the FRG formalism to non-equilibrium. Thegeneral idea is to set up a generating fun
tional, using an appropriate a
tion on theKeldysh 
ontour (see se
tion 3.2),through whi
h we obtain our 
orrelation fun
tionsas fun
tional derivatives. We will see that the extension to non-equilibrium does not
hange the formal stru
ture of the FRG. However, there is a pri
e to pay, viz one29



3 Fun
tional Renormalization Grouphas to 
are for the Keldysh indi
es. Ea
h of them takes into a

ount a bran
h of theKeldysh 
ontour. As dire
t 
onsequen
e we obtain a system of di�erential equations,whi
h shows a tensor stru
ture with respe
t to the Keldysh inde
es resulting in more
ompli
ated form 
ompared to the equilibrium 
ase. It is also important to point outthat the formalism we are going to present is 
ompletely general and therefore 
anbe applied to bosoni
 or fermioni
 systems in stationary state or to time-dependentproblems.Before �nishing this se
tion, it is important to mention that the Keldysh te
hnique
ontains the equilibrium theory (as soon as we turn o� the external �eld whi
h drivesthe system out of equilibrium) both at T = 0 and at �nite temperatures. Besides,sin
e the Keldysh method relies on real variables, we do not need, in 
ontrast to theMatsubara te
hnique, any analyti
al prolongation from the imaginary axis to thereal one. This will permit to the non-equilibriumFRG to treat equilibrium situationstoo (see Se
tions 5.3 and 6.3.1), avoiding the analyti
al prolongation whi
h may be,for some problems, a 
umbersome step 1.3.2 Extension to Non-EquilibriumThe derivation of the non-equilibrium FRG s
heme 
losely follows the general linesgiven in [30, 31℄. To this end, we will �rst develop a formulation that allows toexpress all interesting quantities via fun
tional derivatives of a generating fun
tionalwhose 
hoi
e has been inspired by Kameneev's approa
h [41℄. To set up a fun
tionalintegral representation of the generating fun
tional respe
ting the Keldysh timeordering, we de�ne the matrix
Ĝ(ξ, ξ′) :=

(
G−−(ξ, ξ′) G−+(ξ, ξ′)
G+−(ξ, ξ′) G++(ξ, ξ′)

)where the matrix elements are given by Eq. (2.3)-(2.6). The arguments ξ, ξ′ are a
ombination of all relevant quantum numbers, position and time. For all quantitiesliving on the Keldysh 
ontour we introdu
e the short hand notation
(
ψ̄,Oψ

)
= i

∫ +∞

−∞

dξdξ′ψ̄(ξ)O(ξ, ξ′)ψ(ξ′) ,1In 
ontrast to the Matsubara te
hnique, where the frequen
y and the temperature are arti�
iallylinked by the relation (fermioni
 
ase)
ωn =

π(2n+ 1)

β
,within the non-equilibrium FRG the dynami
al degrees of freedom and the temperature arede
oupled.30



3.2 Extension to Non-Equilibriumwhere O is a matrix in the Keldysh indi
es and
ψ(ξ, ξ′) =

(
ψ−(ξ, ξ′)
ψ+(ξ, ξ′)

) (3.1)is a ve
tor of �elds (Grassmann for fermions or 
omplex for bosons) with the timeargument of ψ− on the upper bran
h of the Keldysh 
ontour and ψ+ a time argumenton the lower. Later it will also prove useful to Fourier transform from time t tofrequen
y ω. One then has to repla
e t in ξ by ω. The integrals over ξ and ξ′stand for summations over the quantum numbers and integrations over spa
e andtime or frequen
y. The following steps 
an be performed with ξ either 
ontainingtime or frequen
y. The generalization of the fun
tional integral representation ofthe partition fun
tion to non-equilibrium is [41℄
Ξ =

1

Ξ0

∫

Dψ̄ψ exp

{

(ψ̄,
[

Ĝ0

]−1

ψ) − iSint

(
{ψ̄}, {ψ}

)
}

, (3.2)
Ξ0 being a normalization fa
tor given by

Ξ0 =

∫

Dψ̄ψ exp

{

(ψ̄,
[

Ĝ0

]−1

ψ)

}

.The matrix Ĝ0 denotes the propagator of a suitably 
hosen referen
e system and Sintrepresents an arbitrary intera
tion term. In order to build the generating fun
tionalfor the m-parti
le Green fun
tions we have to insert in Eq. (3.2) external sour
e�elds η, η̄ a

ording to (for the standard pro
edure in equilibrium see for example[65℄
W ({η̄}, {η}) =

1

Ξ0

∫

Dψ̄ψ exp

{(

ψ̄,
[

Ĝ0

]−1

ψ

)

− iSint({ψ̄}, {ψ})

−
(
ψ̄, η

)
− (η̄, ψ)

}
. (3.3)Taking the logarithm of the latter equation we �nally get the generator of the (
on-ne
ted) m-parti
le Greens fun
tions

Wc ({η̄}, {η}) = ln [W ({η̄}, {η})] . (3.4)The (
onne
ted) m-parti
le Green fun
tion G(c)
m 
an be then obtained by taking thefun
tional derivatives with respe
t to the ve
tors η

G(c)
m (ξ′1, . . . , ξ

′
m; ξ1, . . . , ξm) = (ζi)m δm

δη̄ξ′1
. . . δη̄ξ′m

δm

δηξm
. . . δηξ1

W(c) ({η̄}, {η})
∣
∣
∣
∣
η=0=η̄

.(3.5)At this point it's important to underline that, sin
e the �elds η have two 
omponents(depending on the bran
h of the Keldysh 
ontour), the (
onne
ted) m-parti
le Green31



3 Fun
tional Renormalization Groupfun
tions, resulting from Eq. (3.5), must be read as tensors with respe
t to theKeldysh indi
es. Before giving a pra
ti
al example of how su
h a tensor form arises,let us perform one further step whi
h will bring us to the de�nition of the generatingfun
tional for the one-parti
le irredu
ible vertex fun
tions γm. Introdu
ing the �elds
φξ = i

δ

δη̄ξ

Wc ({η̄}, {η}) ,

φ̄ξ = ζi
δ

δηξ

Wc ({η̄}, {η}) ,where ζ = ±1 and the upper sign applies to boson �elds. We 
an perform a Legendretransformation
Γ
(
{φ̄}, {φ}

)
= −Wc ({η̄}, {η}) − i

(
φ̄, η
)
− i (η̄, φ) + i

(

φ̄,
[

Ĝ0

]−1

φ

)

. (3.6)With the help of Eq. (3.6), we de�ne γm as
γm (ξ′1, . . . , ξ

′
m; ξ1, . . . , ξm) = (i)m δm

δφ̄ξ′1
. . . δφ̄ξ′m

δm

δφξm
. . . δφξ1

Γ
(
{φ̄}, {φ}

)

∣
∣
∣
∣
∣
φ=0=φ̄

.(3.7)Note that in 
ontrast to the usual de�nition of Γ, whi
h 
onsists of the �rst threeterms in Eq. (3.6) only [65℄, we have added a term (

φ̄,
[

Ĝ0

]−1

φ

). The reason forintrodu
ing this term will be
ome 
lear in the next se
tion. The general relationbetween the G(c)
m and γm 
an be found in text books [65℄. For the 1-parti
le Greenfun
tion we obtain

G1(ξ
′; ξ) = Gc

1(ξ
′; ξ)

= i
δ

δη̄ξ′1

δ

δηξ1

Wc = −ζĜξ′,ξ ,

=

[

γ1 − ζ
[

Ĝ0

]−1
]−1

ξ′,ξwhere
Ĝξ′,ξ =

[[

Ĝ0

]−1

− Σ̂

]−1

ξ′,ξ

,with the proper one parti
le selfenergy Σ̂. This implies the relation Σ̂ = ζγ1. Notethat in the last equation the matrix stru
ture appears not only with respe
t to ξand ξ′ but also with respe
t to the Keldysh indi
es. We now intend to show howthe tensor stru
ure of the verti
es arises starting from the general expression
Gc

m (ξ′1 . . . , , ξ
′
m; ξ1, . . . , ξm) = (3.8)32



3.3 The Flow Equations
= (ζi)m δm

δη̄ξ′1
. . . δη̄ξ′m

⊗ δm

δηξm
. . . δηξ1

Wc ({η̄}, {η})
∣
∣
∣
∣
η=0=η̄

.We look at the easiest 
ase m = 1. We have two fun
tional derivatives with respe
tto the ve
tors η, whi
h 
an be made expli
it by using a tensor produ
t notation
Gc

1(ξ
′, ξ) = (ζi)

δ

δη̄ξ′
⊗ δ

δηξ
Wc ({η̄}, {η})

∣
∣
∣
∣
η=0=η̄

,leading to the matrix
Gc

1 (ξ′1, ξ1) = (ζi)

(
δ2Wc

δη̄−(ξ′))δη−(ξ)
δ2Wc

δη̄−(ξ′)δη+(ξ)
δ2Wc

δη̄+(ξ′)δη−(ξ)
δ2Wc

δη̄+(ξ′)δη+(ξ)

)

= (3.9).
=

(
G−−

1 (ξ′, ξ) G−+
1 (ξ′, ξ)

G+−
1 (ξ′, ξ) G++

1 (ξ′, ξ)

)

.The extension to higher order is evident. For m = 2 we get a four index tensor andso on for higher values of m. In pra
ti
e we have to add, for ea
h m, two inde
es
oming from all the possible 
ombinations of the Keldysh 
omponents of the �eldsin the fun
tional derivative. On
e more we want to emphasize that our formalismhas been formulated without assuming translational invarian
e up to now.3.3 The Flow EquationsNow that we have pointed out how the Keldysh 
on
ept modi�es the stru
ture ofthe Green fun
tions, we 
an start to derivate the FRG �ow equations, following thesteps in [30, 31℄. In Eq. (3.2) and (3.3) we repla
e the nonintera
ting propagatorby a propagator ĜΛ
0 depending on a parameter Λ ∈ [Λ0, 0] and require

ĜΛ0
0 = 0 , ĜΛ=0

0 = Ĝ0 , (3.10)i.e. at the starting point Λ = Λ0 no degrees of freedom are �turned on� while at
Λ = 0 full system is re
overed. In models with infrared divergen
ies Λ 
an be usedto regularize the problem. In equilibrium this is often be a
hieved by implementing
Λ as an infrared 
uto� in momentum or energy. One of the advantages of theFRG approa
h over other RG s
hemes is that one is not restri
ted to these 
hoi
esand other ways of introdu
ing the parameter Λ have turned out to be useful forequilibrium problems [35, 61℄. All that is required to derive the fundamental �owequations are the 
onditions Eq. (3.10). In our appli
ation of the non-equilibriumFRG to the steady state transport through an intera
ting quantum dot it is naturalto implement Λ as an energy 
uto�. However, su
h a 
hoi
e must not be the naturalone in 
ases where one is interested in studying time-dependent phenomena. In33



3 Fun
tional Renormalization Groupthis situation the propagator and the vertex fun
tions in general depend on thevarious spatial and time variables individually and there is no obvious momentumor energy 
uto� s
heme. Within the FRG several ways of introdu
ing Λ 
an beworked out, 
ompared and the one best suited for the problem under investigation
an be identi�ed.Through ĜΛ
0 the quantities de�ned in Eqs. (3.2) to (3.7) a
quire a Λ-dependen
e.Taking the derivative with respe
t to Λ results in a fun
tional di�erential equationfor ΓΛ. From this, by expanding in powers of the external sour
es, an in�nitehierar
hy of 
oupled di�erential equations for the γΛ

m is obtained. Although thesteps in the derivation are formally equivalent to Ref. [30, 31℄, be
ause of the real-time formulation additional fa
tors i and signs appear in several pla
es. We thusbelieve that it is helpful to present the details of the derivation.As a �rst step we di�erentiate Wc,Λ with respe
t to Λ, whi
h after straightforwardbut lenghty algebra (see Appendix 3) leads to
d

dΛ
Wc,Λ = ζ Tr (Q̂ΛĜ0,Λ

)

+ iζTr (Q̂Λ δ
2Wc,Λ

δη̄δη

)

+

(
δWc,Λ

δη
, Q̂Λ δWc,Λ

δη̄

)

. (3.11)Considering φ and φ̄ as the fundamental variables we obtain from Eq. (3.6)
d

dΛ
ΓΛ
(
{φ̄}, {φ}

)
= − d

dΛ
Wc,Λ

(
{η̄Λ}, {ηΛ}

)
−

−
(

φ̄,
d

dΛ
ηΛ

)

−
(
d

dΛ
η̄Λ, φ

)

+
(

φ̄, Q̂Λφ
)

.Applying the 
hain rule and using Eq. (3.11) this leads to
d

dΛ
ΓΛ = −ζ Tr (Q̂ΛĜ0,Λ

)

− iζTr (Q̂Λ δ
2Wc,Λ

δη̄ΛδηΛ

)

,where the last term in Eq. (3.6) 
an
els a 
orresponding 
ontribution arising inEq. (3.11), thus a posterior justifying the in
lusion of this term. Extending thewell known relation [65℄ between the se
ond fun
tional derivatives of Γ and Wc tonon-equilibrium we obtain the fun
tional di�erential equation
d

dΛ
ΓΛ = −ζ Tr (Q̂ΛĜ0,Λ

)

− Tr (Q̂ΛV1,1

φ̄,φ
(ΓΛ, Ĝ0,Λ)

)

, (3.12)where V1,1

φ̄,φ
stands for the upper left blo
k of the matrix

Vφ̄,φ(Γ
Λ, Ĝ0,Λ) =







i δ
2ΓΛ

δφ̄δφ
− ζ

[

Ĝ0,Λ
]−1

i δ
2ΓΛ

δφ̄δφ̄

iζ δ2ΓΛ

δφδφ
−
{

i δ
2ΓΛ

δφδφ̄
+

([

Ĝ0,Λ
]−1
)T
}







−1 (3.13)
34



3.3 The Flow Equationsand the upper index T denotes the transposed matrix. To obtain di�erential equa-tions for the γΛ
m whi
h in
lude selfenergy 
orre
tions we express Vφ̄,φ in terms of ĜΛinstead of Ĝ0,Λ. This is a
hieved by de�ning

Uφ̄,φ = i
δ2ΓΛ

δφ̄δφ
− γΛ

1and using
ĜΛ =

[[

Ĝ0,Λ
]−1

− ζγΛ
1

]−1

, (3.14)whi
h leads to
d

dΛ
ΓΛ = −ζ Tr (Q̂ΛĜ0,Λ

)

+ ζTr [ĜΛQ̂ΛṼ1,1

φ̄,φ
(ΓΛ, ĜΛ)

]

, (3.15)with
Ṽφ̄,φ

(

ΓΛ, ĜΛ
)

=

[

1 −
(
ζĜΛ 0

0
[

ĜΛ
]T

)(

Uφ̄,φ i δ
2ΓΛ

δφ̄δφ̄

(iζ) δ2ΓΛ

δφδφ
ζU t

φ̄,φ

)]−1

, (3.16)
Q̂Λ =

d

dΛ

[

ĜΛ
0

]−1

. (3.17)It is important to note that Uφ̄,φ as well as δ2ΓΛ

δφ̄δφ̄
and δ2ΓΛ

δφδφ
are at least quadrati
 in theexternal sour
es. The initial 
ondition for the exa
t fun
tional di�erential equation(3.15) 
an either be obtained by lengthy but straightforward algebra, whi
h we arenot going to present here, or by the following simple argument: At Λ = Λ0, Ĝ0,Λ0 = 0(no degrees of freedom are �turned on�) and in a perturbative expansion of the γΛ0

mthe only term whi
h does not vanish is the bare two-parti
le vertex. We thus �nd
ΓΛ0

(
{φ̄}, {φ}

)
= Sint

(
{φ̄}, {φ}

)
. (3.18)By expanding Ṽ in a geometri
 series

Ṽφ̄,φ = 1 + ζĜΛUφ̄,φ + ĜΛUφ̄,φĜ
ΛUφ̄,φ+ (3.19)

+ζ3i2ĜΛ δ2Γ

δφ̄δφ̄

[

ĜΛ
]T δ2Γ

δφδφ
+ . . .and ΓΛ with respe
t to the external sour
es

ΓΛ
(
{φ̄}, {φ}

)
=

∞∑

m=0

(iζ)m

(m!)2

∑

ξ′1,...,ξ′m

∑

ξ1,...,ξm

γΛ
m (ξ′1, . . . , ξ

′
m; ξ1, . . . , ξm)

×φ̄ξ′1
. . . φ̄ξ′mφξm

. . . φξ1 . 35



3 Fun
tional Renormalization Groupan exa
t in�nite hiera
hy of �ow equations for the γΛ
m 
an be obtained. Consideras simplest example the �ow equation for the single-parti
le vertex γ1 (selfenergy).It 
an be derived by taking the expansion Eq. (3.19) up to �rst order in U , insertit into Eq. (3.15), repla
e ΓΛ on both sides with the expansion (3.20) and 
ompareexpressions with the same powers in the �elds, i.e. for γ1 up to order m = 1. Thispro
edure leads to the expression

d

dΛ
γΛ

1 (ξ′; ξ) = ζ
d

dΛ
Σ̂Λ(ξ′, ξ)

= Tr [ŜΛγΛ
2 (ξ′, ·; ξ, ·)

]

, (3.20)whi
h 
an be visualized by the diagram in Fig. 3.1. In order to avoid any possible
k k’ k k’Figure 3.1: Diagrammati
 form of the �ow equation for γΛ

1 . The slashed line stands forthe single s
ale propagator ŜΛ.misunderstanding it is worth to explain that the tra
e in (3.20) represents morethan the usual matrix tra
e. It 
ontains all possible sums (integrals, series, tra
e,
ontra
tions) over the internal variables (quantum numbers, time, frequen
y, et
),or in other words, over all variables not expli
itely written. In Eq. (3.20) appearsthe so-
alled single s
ale propagator (the slashed line in Fig. 3.1)
ŜΛ = ĜΛQ̂ΛĜΛ , (3.21)and the quantity γΛ

2 (ξ′, ·; ξ, ·) denotes the matrix obtained by keeping the indi
es ξand ξ′ �xed. We thus arrive at an expression that is formally identi
al to Eq. (19) in[30, 31℄. The di�eren
e appears in the matrix stru
ture, whi
h now also 
ontains theindex 
omponents for the bran
hes of the Keldysh 
ontour. To make this expli
it,we write out Eq. (3.20) with respe
t to the Keldysh indi
es.
ζ
d

dΛ
Σαβ,Λ(ξ′, ξ) = Tr

∑

µν

Sµν,Λγαν;βµ,Λ
2 (ξ′, ·; ξ, ·) . (3.22)Apparently, the derivative of γΛ

1 is determined by γΛ
1 (impli
itely through ŜΛ) andthe two-parti
le vertex γΛ

2 . Thus an equation for γΛ
2 is required. Here we only showthe diagrammati
 form of γΛ

2 in Fig. 3.2, its derivation will be given in the nextse
tion.36



3.3 The Flow Equations
k2 k’2

k1 k’1

k2

k1

k’2

k’1

k2 k’2

k2 k’2

k1 k’1k’2

k’1

k2

k1k’2 k2

k1 k’1

k’k

k k’1 1

22

ζ

k’ k1 1

ζ

ζ

Figure 3.2: Diagrammati
 form of the �ow equation for γΛ
2 . The slashed line stands forthe single s
ale propagator ŜΛ, the unslashed line for ĜΛ.Sin
e the only di�eren
e between the Eq. (3.20) and the analogous equation in[30, 31℄ are the two 
ontour inde
es, it 
an be interesting to have a more expli
itexpression of Eq. (3.20) in order to see how these two inde
es 
hange the stru
tureof the �ow equation in non-equilibrium. We have to start again from Eq. (3.20) andwrite expli
itely the right hand side in its tensor form

ζ
d

dΛ

(
Σ(ξ′, ξ)−−,Λ Σ(ξ′, ξ)−+,Λ

Σ(ξ′, ξ)+−,Λ Σ(ξ′, ξ)++,Λ

)

= Tr (SΛγΛ
2 (ξ′, · · · ; ξ, · · · )

)
= (3.23)

= Tr 


(
S−−,Λ S−+,Λ

S+−,Λ S++,Λ

)








(
γ−−,Λ

2 γ−+,Λ
2

γ+−,Λ
2 γ++,Λ

2

)−− (
γ−−,Λ

2 γ−+,Λ
2

γ+−,Λ
2 γ++,Λ

2

)−+

(
γ−−,Λ

2 γ−+,Λ
2

γ+−,Λ
2 γ++,Λ

2

)+− (
γ−−,Λ

2 γ−+,Λ
2

γ+−,Λ
2 γ++,Λ

2

)++













where the matrix elements γΛ

2 are tensors in the variables not expli
itely written,i.e. [γΛ
2 (ξ′, · · · ; ξ, · · · )

]

q′,q
= γΛ

2 (ξ′, q′; ξ, q).In Eq. (3.23) the produ
t between ŜΛ and γΛ
2 (ξ′, · · · ; ξ, · · · ) must be read asa 
ontra
tion among the Keldysh inde
es, resulting in a sum of produ
ts amongblo
ks having the same index pair. It is also important to point out that be
ause ofthe hierar
hi
al stru
ture of our equations we get always a link between 2m-ordervertex fun
tion and 2(m+ 1)−order one. This means that ( 
ase m = 1) on the lefthand side of Eq. (3.23) we have a two index tensor and on the right hand side a
ontra
tion between the Keldysh inde
es of a two index tensor ŜΛ and a four indexone γΛ

2 . The same 
ontra
tion stru
ture remains at higher orders but it is obviouslymu
h more 
ompli
ated. This point will be
ome 
lear in the next se
tion, where westudy the �ow equation of γ2. 37



3 Fun
tional Renormalization Group3.4 Flow Equation for the Two-Parti
les VertexTo obtain the �ow equation for ˆ̇Σ we have expanded Eq. (3.16) in a geometri
series up to �rst order and ΓΛ Eq. (3.20) in the external sour
es up to the or-der m = 2. In order to �nd the �ow equation for the vertex fun
tion, γ̇2, wejust have to pro
eed one step further, namely expand Eq. (3.16) up to the se
-ond order and ΓΛ up to third (m = 3). After 
omparison of the terms withthe same power in the �elds we obtain a di�erential equation for γΛ
2 , whi
h doesnot only 
ontain γΛ

1 - impli
itly via the propagators � and γΛ
2 , but also the three-parti
le vertex γΛ

3 . This three-parti
le vertex depends on the four-parti
le vertexet
. It is generi
ally impossible to solve the full set of in�nitely many 
oupleddi�erential equations. In appli
ations one has to trun
ate it, and this is usuallydone at m = 2, i.e. one repla
es all verti
es with m > 2 by their initial values,whi
h for typi
al problems en
ountered means γm = 0 for m > 2. The trun
atedequation for γΛ
2 then reads (see Eq. (15) by Karras
h at al. [42℄ and Fig. 3.2):

d

dΛ
γαβγδ,Λ(ξ′1, ξ

′
2; ξ1, ξ2) =

∑

µ,ν,ρ,η

∫

dξ3dξ
′
3dξ4dξ

′
4

(

Gρη,Λ(ξ′3, ξ3)Sνµ,Λ(ξ4, ξ
′
4)
[
γαβρν,Λ(ξ′1, ξ

′
2; ξ3, ξ4)γ

ηµγδ,Λ(ξ′3, ξ
′
4; ξ1, ξ2)

]

− Gηρ,Λ(ξ3, ξ
′
3)Sνµ,Λ(ξ4, ξ

′
4)
[
γαµγη,Λ(ξ′1, ξ

′
4; ξ1, ξ3)γ

ρβνδ,Λ(ξ′3, ξ
′
2; ξ4, ξ2)

]

+ γαργν,Λ(ξ′1, ξ
′
3; ξ1, ξ4)γ

µβηδ,Λ(ξ′4, ξ
′
2; ξ3, ξ2)

− γβµγη,Λ(ξ′2, ξ
′
4; ξ1, ξ3)γ

ρανδ,Λ(ξ′3, ξ
′
1; ξ4, ξ2)

− γβργν,Λ(ξ′2, ξ
′
3; ξ1, ξ4)γ

µαηδ,Λ(ξ′4, ξ
′
1; ξ3, ξ2)

]
)

. (3.24)Equation (3.24) has a 
ompli
ated form 
onsisting of sums and integrals overtimes or frequen
ies and quantum numbers in
luding spins and 
ontra
tions overthe Keldysh indi
es. The main di�eren
e to equilibrium is the presen
e of mixed
ontra
tions regarding the Keldysh indi
es of the matri
es Ĝ and Ŝ and the four-index tensors γ2. At this point it is worth to give some more insight 
on
erningthe relation between the dynami
al inde
es and the Keldysh ones appearing in theGreens fun
tions and in the tensor γ2.From the topologi
al stru
ture of the �ow-equations (see Fig. 3.2) we see that ea
hKeldysh index is stri
tly 
onne
ted to a dynami
al one. For instan
e, in Gνµ(ξ4, ξ
′
4)the index ν is linked to ξ4 and µ to ξ′4. This means that if we permute ︷︸︸︷νµ → ︷︸︸︷

µν ,then we have to rotate the 
orresponding dynami
al inde
es ︷ ︸︸ ︷ξ4, ξ
′
4 →

︷ ︸︸ ︷

ξ′4, ξ4 too. Itis also important to note that the permutation of ea
h dynami
al index indu
es afa
tor ζ in the vertex, i.e. a minus sign for fermions , whi
h is not true for thepermutation of two Keldysh indi
es, be
ause they do not represent any physi
alvariable su
h as impulse, spin et
. In parti
ular we have to distinguish two 
ases38



3.4 Flow Equation for the Two-Parti
les Vertexwhen we permutate the �rst or the se
ond pair of Keldysh inde
es in γΛ
2 . In the �rst
ase we have to transpose ea
h blo
k matrix (see Eq. (3.23) ), in the se
ond 
asethe blo
k matri
es remain un
hanged but we must transpose the entire tensor.
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3 Fun
tional Renormalization Group
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4 Stationary Transport through aQuantum Dot4.1 Introdu
tionIn the previous 
hapter we developed the formal extension of the FRG in non-equilibrium in a form whi
h was as general as possible. We obtained a hierar
hyof di�erential equations, whi
h we had to trun
ate at a 
ertain level to obtain amanageable set of equations. Note that even within this trun
ated system theremaining set of di�erential equations must typi
ally still be further approximatedto allow a numeri
al solution [2, 36℄.The goal of the present 
hapter is to apply our formalism to the single impurityAnderson model SIAM des
ribing the transport properties of a single-level quantumdot under a 
onstant bias at T = 0. As dis
ussed in the introdu
tion, the SIAMis the simplest model displaying non trivial many-body e�e
ts. Furthermore, theFRG equations are simple enough to in prin
iple allow for a full treatment of thetrun
ated system in
luding all time or frequen
y dependen
e. However, as �rst step,we will 
on
entrate on the stationary 
ase and will introdu
e further approximationsto redu
e the 
omplexity of the FRG equations.Let us start by deriving the analyti
al expressions of the non-intera
ting dot Greenfun
tions of the SIAM, as next step we will approximate the vertex by a energy-indipendent one and dis
uss how the mathemati
al form of the non-equilibrium �owequations will 
hange. The limit VB → 0, will serve as test 
ase where we will showthat our non-equilibrium FRG is able to reprodu
e the results in equilibrium [2℄.We will show in parti
ular that, even with su
h a drasti
 approximation, we areable to reprodu
e, at least qualitatively, the results regarding the 
urrent J andthe di�erential 
ondu
tan
e G, whi
h have been obtained by several authors withperturbation theory [16, 33℄.4.2 The Non-Intera
ting CaseThe SIAM has already been introdu
ed in detail in the �rst 
hapter (see Se
tion1.4.2). A parti
ularly simple 
ase, where we 
an 
al
ulate all Keldysh fun
tionsexa
tly, is the non-intera
ting limit U = 0. Besides, serving as an exer
ise to obtaina feeling for the stru
ture of these 
orrelation fun
tions, the results of the following41



4 Stationary Transport
Figure 4.1: Graphi
al representation of Σ̂(0)
al
ulations are also ne
essary to initialize the FRG equations set up in the nextse
tion. The starting point to derive the 
orrelation fun
tions is the Dyson equationwritten in a matrix form

Ĝd,(0)(ω) =
[(
ĝd,(0)

)−1 − Σ̂(0)

]−1

, (4.1)where Ĝd,(0), ĝd,(0), Σ̂(0) are the matri
es
Ĝd,(0) =

(
G−−

d,(0) G−+
d,(0)

G+−
d,(0) G++

d,(0)

)

, (4.2)
ĝd,(0) =

(
g−−

d,(0) g−+
d,(0)

g+−
d,(0) g++

d,(0)

)

, (4.3)
Σ̂(0) =

V 2

2N

∑

~kα

(
G−−

~kα(0)
G−+

~kα(0)

G+−
~kα(0)

G++
~kα(0)

)

, (4.4)(see Fig. 4.1 ) where we assume that εk,L = εk,R and VL = VR = V/
√

2. The meaningof the fa
tor √2 will be
ome 
lear later. We need the expli
it expressions of the freeGreen fun
tions for the dot and the ele
trodes. They read [52℄
G−−

~kα(0)
(ω) =

1

ω − ε~k + µα + iδ

+2iπf(ε~k)δ(ω − ε~k + µα) ,

(4.5)
G++

~kα(0)
(ω) = −

[

G−−
~kα

(ω)
]∗

, (4.6)
G−+

~kα(0)
(ω) = 2iπf(ε~k)δ(ω − ε~k + µα) , (4.7)

G+−
~kα(0)

(ω) = −2iπf(−ε~k)δ(ω − ε~k + µα) (4.8)42



4.2 The Non-Intera
ting Casefor the leads and
g−−

d(0)(ω) =
1

ω − ε+ µ+ iδ

+2iπf(ε)δ(ω − ε+ µ) ,

(4.9)
g++

d(0)(ω) = −
[

g−−
d(0)(ω)

]∗

, (4.10)
g−+

d(0)(ω) = 2iπf(ε)δ(ω − ε+ µ) , (4.11)
g+−

d(0)(ω) = −2iπf(−ε)δ(ω − ε+ µ) (4.12)for the dot. Inserting Eq. (4.5)-(4.8) into Eq. (4.4) and then into Eq. (4.1) togetherwith Eq. (4.9)-(4.12), we obtain the dot free Green fun
tion in a matrix form
Ĝd,0(ω) =

1

(ω − VG)2 + Γ2
(4.13)

(
ω − VG − iΓ[1 − F (ω)] iΓF (ω)

−iΓF (−ω) −(ω − VG) − iΓ[1 − F (ω)]

)

,where F (±ω) := fL(±ω) + fR(±ω) and fα(±ω) := f(±(ω − µα)) are the Fermifun
tions of the reservoirs and Γ = πV 2NF , (with NF the density of states at theFermi level in the reservoirs) is the tunnel rate between the leads and the dot.We now explain the pro
edure to derive the matrix elements in Eq. (4.13). Letus, for instan
e, start by 
al
ulating the selfenergy 
omponent
Σ−−

(0) =
V 2

2N

∑

~kα

G−−
~kα(0)

. (4.14)First of all we transform the sum over ~k into an integral
1

N

∑

~κ

→
∞∫

−∞

dωN(ω)over the density of states N(ω). At this point we introdu
e a se
ond approximation(�at band) for the density of states in whi
h N(ω) is
N(ω) =

{

NF , if |ω| < D

0, else . (4.15)Therefore we may write Eq. (4.14) as
Σ−−

(0) =
V 2

2

∑

α

NF

D∫

−D

dω G−−
~kα(0)

(ω). (4.16)
43



4 Stationary TransportSubstitute Eq. (4.5) into the integral (4.16). The Dira
 delta, in the se
ond term ofEq. (4.5) simpli�es the 
al
ulation of (4.16), leading to the de�nition
∑

α

D∫

−D

dωf(ε~kα)δ(ω − ε~k + µα) = fL(ε~k) + fR(ε~k) := F (ω).The integral with respe
t to the �rst term of Eq. (4.5) 
an be easily 
al
ulated inthe limit D ≫ ε (wideband limit)
D∫

−D

dω
1

ω + µα − ε
= ln

[
D + ε

D − ε

]

→ 0,leading to the result
Σ−−

(0) =
V 2

2

∑

α

NF

D∫

−D

dω G−−
~kα(0)

(ω) = iΓ
∑

α

fα(ε~k) := iΓF (ω). (4.17)The same pro
edure has to be repeated in order to 
al
ulate the other 
omponents of
Σ̂(0). By inserting the matrix elements of Σ̂(0), together with equations (4.9)-(4.12)into Eq. (4.1), we obtain by a straightforward 
al
ulation the following matrixelements, whi
h 
orrespond to the free Green fun
tions of the dot

G−−
d,0 (ω) =

ω − VG − iΓ [1 − F (ω)]

(ω − VG)2 + Γ2
, (4.18)

G++
d,0 (ω) = −[G−−

d,0 (ω)]∗ , (4.19)
G−+

d,0 (ω) = i
ΓF (ω)

(ω − VG)2 + Γ2
, (4.20)

G+−
d,0 (ω) = −i ΓF (−ω)

(ω − VG)2 + Γ2
. (4.21)4.3 Flow equationsWe start from the equation (3.23)

ζ
d

dΛ
Σαβ,Λ(ξ′, ξ) = Tr

∑

µν

Sµν,Λγαν;βµ,Λ
2 (ξ′, ·; ξ, ·) (4.22)for the selfenergy and negle
t the energy dependen
e in the vertex

γαν;βµ,Λ
2 (ξ′, ξ1; ξ, ξ2) → γαν;βµ,Λ

2,ξ′,ξ1,ξ,ξ2
. (4.23)44



4.3 Flow equationsThe single parti
le quantum numbers ξ in the right hand side of Eq. (4.23) representthe spin index only. As dire
t 
onsequen
e Σ̂ does not depend on energy any longer.The resulting �ow equation for the selfenergy be
omes
ζ
d

dΛ
Σαβ,Λ

ξ′,ξ = Tr
∑

µ,ν

Sµν,Λγαν;βµ,Λ
2,ξ′,·;ξ,· . (4.24)Using the antisymmetry of γΛ

2 in the spin indi
es and the spin 
onservation imposedby the stru
ture of the intera
tion we 
an further simplify Eq. (4.24) by introdu
ingthe �owing intera
tion Uαβγδ,Λ de�ned as
γαβ;γδ,Λ

σ′
1,σ′

2;σ1,σ2
= δσ′

1,σ1
δσ′

2,σ2
Uαβ;γδ,Λ − δσ′

2,σ1
δσ′

1,σ2
Uβα;γδ,Λ . (4.25)As last step we spe
ify how the parameter Λ is introdu
ed. Sin
e we are interestedin a stationary situation, i.e. the propagators only depend on the time di�eren
e

t− t′, all equations 
an be transformed into frequen
y spa
e and one natural 
hoi
eis a frequen
y 
uto� of the form
ĜΛ

d,0(ω) = Θ (|ω| − Λ) Ĝd,0(ω) (4.26)with Λ0 → ∞ [30℄. Evaluating Ŝ by means of the Morris lemma [30, 64℄ results in(see Appendix 1 and 2)
ŜΛ(ω) → δ(|ω| − Λ)ĜΛ(ω), (4.27)with
ĜΛ

d (ω) =
1

[

Ĝd,0(ω)
]−1

− Σ̂Λ

, (4.28)where we used that Σ̂Λ does not depend on energy. Inserting Eq. (4.25)-(4.27) intoEq. (4.24), we arrive at the following expression
d

dΛ
Σαβ,Λ = − 1

2π

∑

γ,δ

∑

ω=±Λ

Gγδ,Λ
d (ω)

(
2Uαδβγ,Λ − U δαβγ,Λ

) (4.29)for the �ow equation of the selfenergy. Finally, the initial 
ondition for the self-energyis lim
Λ0→∞

Σ̂Λ0 = 0, whi
h means that we begin with an intera
tion-free problem.Con
erning the �ow equation for γ2 the starting point is Eq. (3.24) in whi
h wesubstitute Eq. (4.23). The result 
an be further simpli�ed by taking advantage ofspin and energy 
onservation, whi
h implies that Ĝ and Ŝ are diagonal with respe
tto ξ3 = ξ′3 and ξ4 = ξ′4. As far as Eq. (4.25) is 
on
erned, spin 
onservation 
an bewritten as σ1 = σ′
1, σ2 = σ′

2 and σ1 = σ̄2. Note that su
h relations do not hold forthe 
orresponding Keldysh indi
es (see Se
tion 3.4). The integrals over ω3′ and ω4′as well as the sums over σ′
3 and σ′

4 
an then be performed straightforwardly. Using45



4 Stationary TransportMorris lemma [64℄, we 
an rewrite the matrix produ
t of Ĝ and Ŝ as (see Appendix1 and 2)
ĜΛ(ω)ŜΛ(ω′) → 1

2
δ(|ω′| − Λ)ĜΛ

d (ω)ĜΛ
d (ω′) ,where Ĝ is de�ned in Eq. (4.28). The δ-fun
tion 
an be used to perform another ofthe frequen
y integrals, and the remaining one 
an be evaluated be
ause of energy
onservation of the two-parti
le vertex. Using the spin independen
e of the Greenfun
tion for zero magneti
 �eld, this leads to

d

dΛ
γαβγδ,Λ

σ′
1,σ′

2;σ1,σ2
=

1

4π

∑

ω=±Λ

∑

σ3,σ4

∑

µ,ν,ρ,η

(

Gρη,Λ
d (ω)Gνµ,Λ

d (ω)γαβρν,Λ
σ′
1,σ′

2;σ3,σ4
γηµγδ,Λ

σ3,σ4;σ1,σ2

−Gηρ,Λ
d (ω)Gνµ,Λ

d (ω)
[

γαµγη,Λ
σ′
1,σ4;σ1,σ3

γρβνδ,Λ
σ3,σ′

2;σ4,σ2
+ γαργν,Λ

σ′
1,σ3;σ1,σ4

γµβηδ,Λ
σ4,σ′

2;σ3,σ2

−γβµγη,Λ
σ′
2,σ4;σ1,σ3

γρανδ,Λ
σ3,σ′

1;σ4,σ2
− γβργν,Λ

σ′
2,σ3;σ1,σ4

γµαηδ,Λ
σ4,σ′

1;σ3,σ2

])

. (4.30)Comparing Eq. (4.30) to Eq. (20) in Karras
h et al. [42℄, where similar approxima-tions were made in equilibrium, we see that we have two more terms be
ause of theKeldysh indi
es. In the �rst term appears G̃ρη,Λ
d , while its transpose G̃ηρ,Λ

d enterseverywhere else. As initial 
ondition we have to set
γαααα,Λ0

2 (ξ′1, ξ
′
2; ξ1, ξ2) = αiU

(
δσ1,σ′

1
δσ2,σ′

2
− δσ1,σ′

2
δσ2,σ′

1

)
. (4.31)Using the antisymmetry of γΛ

2 in the spin indi
es and spin 
onservation (Eq. (4.25))we 
an further simplify Eq. (4.30) �nally leading to the �ow equation
d

dΛ
Uαβγδ,Λ =

1

4π

∑

ω=±Λ

∑

µ,νρ,η

(

Gρη,Λ
d (−ω)Gνµ,Λ

d (ω)
[
Uαβρν,ΛUηµγδ,Λ + Uβαρν,ΛUµηγδ,Λ

]

−Gηρ,Λ
d (ω)Gνµ,Λ

d (ω)
[
2Uαµγη,ΛUρβνδ,Λ − Uαµγη,ΛUβρνδ,Λ − Uµαγη,ΛUρβνδ,Λ

+2Uαργν,ΛUµβηδ,Λ − Uαργν,ΛUβµηδ,Λ − Uραγν,ΛUµβηδ,Λ − Uµβγη,ΛUαρνδ,Λ

−Uρβγν,ΛUαµηδ,Λ
]
)

. (4.32)From the initial value of γΛ
2 at Λ = Λ0 → ∞ given in Eq. (4.31) we 
an read o� asthe initial value for Uαβγδ,Λ0

Uαααα,Λ0 = αiU ,while all other 
omponents are zero. In other words, we take as initial 
onditionsthe bare intera
tion.The system of di�erential equations for Σ̂Λ and UΛ Eq. (4.29)-(4.32) will beanalyzed later this 
hapter. The selfenergy obtained from its numeri
al integration,must be inserted into the expressions for the 
urrent and the 
ondu
tan
e we aregoing to dis
uss in the next se
tion.46



4.4 Current4.4 CurrentFor the model (1.2) the 
urrent is given by the Meir-Wingreen formula [63, 89℄
J =

1

2
(JL + JR) =

ieΓ

2π~

+∞∫

−∞

dω [fL(ω) − fR(ω)]
[
G+−

d (ω) −G−+
d (ω)

] (4.33)with fL,R(±ω) := [1 + exp {±β(ω − µα)}] . The full intera
ting one-parti
le Greenfun
tions of the dot are denoted by G+−
d (ω), G−+

d (ω) and JL/R are the 
urrentsa
ross the left and right dot-lead 
onta
ts
JL(R) = ±ieΓ

π~

∞∫

−∞

dω
[

fL(R)(−ω)G̃−+
d (ω) + fL(R)(ω)G̃+−

d (ω)
]

,respe
tively. Substitute into Eq. (4.33) the expressions of the full Greens fun
tions
G+−

d (ω), G−+
d (ω) leading to the following expression for J

J =
ieΓ

2π~

+∞∫

−∞

dω [fL(ω) − fR(ω)]
2i[Γ − ℑmΣα,β]

∆̃
(4.34)with

∆̃ =
∣
∣ω − VG + iΓ [1 − F (ω)] − Σ−−(ω)

∣
∣
2
+
[
ΓF (ω) −ℑmΣ−+(ω)

]
,

F (ω) = fL(ω) + fR(ω).Equation (4.34) plays a 
entral role in the 
ourse of this work, sin
e it is the formulawe will adopt to 
al
ulate the transport parameters.Before going further it is ne
essary to explain in more detail how the energyindependent selfenergies a�e
t the original form of the Meir-Wingreen Formula. Letus 
ome ba
k now to Eq. (4.33). It has been written in a somewhat unusual form,not employing the original relation [63, 89℄
GR

d (ω) −GA
d (ω) = −2πiρd(ω), (4.35)where ρd(ω) = −ℑm[GR(ω)]

π
denotes the dot's one-parti
le spe
tral fun
tion. Thereason is that, as soon as we negle
t the energy dependen
e of the selfenergies Σαβ ,

GR,(A)(ω) = G−−(ω) −G−+,(+−)(ω) 47



4 Stationary Transportdoes not hold any longer. This 
an be seen by inserting Gαβ(ω) in the previousequation to obtain
GR

d (ω) = −
ω − Vg − i

[

Γ + ℑmΣ−− − ℑmΣ−+

]

∆̃(ω)
, (4.36)

GA
d (ω) = −

ω − Vg − i

[

Γ + ℑmΣ−− + ℑmΣ−+ − 2Γ(F (ω) + F (−ω))

]

∆̃(ω)
.A simple 
omparison between the imaginary parts of these two relations dire
tlyshows that GR(ω) 6= [GA(ω)]∗, unless at least Σ−+, is energy dependent and absorbsthe last term in the bra
kets in the expression for GA

d (ω). However, what still holds,even in the energy-independent 
ase, is the relation G+− − G−+ = −2πiρd(ω) andthis is the reason why we have adopted G+−
d (ω) −G−+

d (ω).Before 
on
luding this se
tion we 
ompare and dis
uss the expressions ofℑm[GR
d (ω)]and G+−

d (ω) −G−+
d (ω).

ℑm[GR
d (ω)] =

[

Γ + ℑmΣ−− − ℑmΣ−+

]

∆̃(ω)
, (4.37)

G+−
d (ω) −G−+

d (ω) =

[

Γ − ℑmΣ−+

]

∆̃(ω)
. (4.38)From the last two equations we observe that the di�eren
e between them lies in theterm ℑmΣ−−. In non-equilibrium, for not too large Coulomb intera
tions (U/Γ ≈ 5)the imaginary part of Σ−− is negligible 
ompared to Γ and to ℑmΣ−+, therefore we
ould still write the Meir Wingreen formula in its original form. In any 
ase, forgenerality reasons we prefer to keep Eq. (4.33). Swit
hing o� the bias, but stayingat T = 0, we obtain ℑmΣ−+,ℑmΣ−− → 0 and thus re
over exa
tly

GA
d (ω) −GR

d (ω) = 2πiρd(ω).In passing we note that, even in an equilibrium situation (see Chapter 6 for a detailedillustration), but at �nite temperature T 6= 0 the imaginary parts ℑmΣ−+, ℑmΣ−−are not zero, resulting again in the breaking of Eq. (4.35).Another quantity of interest, whi
h will be dis
ussed more in detail in the followingis ∆J = JL − JR [33℄. Sin
e no 
harge is produ
ed on the quantum dot, ∆J = 0in the exa
t solution. Using again the results of Meir-Wingreen [63℄ and Wingreenand Meir [89℄, the expression for ∆J be
omes48



4.5 Lowest order approximation
∆J = −Γ

π

∞∫

−∞

dω
F (ω) [ℑmΣ−+(ω) − ℑmΣ+−(ω)] − 2ℑmΣ−+(ω)

∆̃(ω)
. (4.39)Depending on the type of approximation used ∆J = 0 might either hold for allparameters [84, 89℄ or not [33℄. We note that ful�lling ∆J = 0 is, however, notsu�
ient for an approximation to provide reliable results. E.g. the self-
onsistentHartree-Fo
k approximation ful�lls ∆J = 0, but nonetheless does not 
apture the
orre
t physi
s even in equilibrium [34℄.4.5 Lowest order approximationBefore studying the 
oupled system for Σ̂Λ and γΛ

2 we begin with the simpler 
asewhere we repla
e γΛ
2 on the right hand side of Eq. (4.22) by the antisymmetrizedbare intera
tion and 
onsider only the �ow of Σ̂. With this repla
ement Eq. (4.22)redu
es to

d

dΛ
Σ∓∓,Λ = ±iU

∫
dω

2π
S∓∓,Λ(ω) . (4.40)Within this approximation the selfenergy is always time or frequen
y independentand no o�-diagonal terms, in the Keldysh 
ontour indi
es, are generated. It leads to,at least qualitatively, good results in equilibrium [2℄, where the �ow equations 
anin addition be solved analyti
ally. With Σ̂Λ being diagonal in the Keldysh indi
es,a straightforward 
al
ulation permits us thus to rewrite Eq. (4.40) as

d

dΛ
Σ∓∓,Λ = ±iU

2π

∑

ω=±Λ

G∓∓
d,0 (ω)

∆(ω)
− Σ±±,Λ

(
G++

d,0 (ω)

∆(ω)
− Σ−−,Λ

)(
G−−

d,0 (ω)

∆(ω)
− Σ++,Λ

)

−
(

G−+
d,0 (ω)G+−

d,0 (ω)

∆(ω)2

) ,(4.41)where
∆(ω) = G−−

d,0 (ω)G++
d,0 (ω) −G−+

d,0 (ω)G+−
d,0 (ω)

= − 1

(ω − VG)2 + Γ2
.EquilibriumWe now fo
us on T = 0. In a �rst step we dis
uss the equilibrium situation, that is

VB = µL − µR → 0. Then we obtain the de
oupled system
d

dΛ
Σ∓∓,Λ = i

U

π

VG ± Σ∓∓,Λ

[(Λ ± iΓ)2 − (VG ± Σ∓∓,Λ)2]
, (4.42)49



4 Stationary Transportwhi
h 
an be solved analyti
ally. We �rst note that with Σ++,Λ = −
[
Σ−−,Λ

]∗ bothequations are equivalent. For Σ−−,Λ we obtain with the de�nition σΛ = VG + Σ−−,Λthe solution
iσΛJ1(

πσΛ

U
) − (Λ + iΓ)J0(

πσΛ

U
)

iσΛY1(
πσΛ

U
) − (Λ + iΓ)Y0(

πσΛ

U
)

=
J0(

πVG

U
)

Y0(
πVG

U
)
, (4.43)where Jn and Yn are the Bessel fun
tions of �rst and se
ond kind. The desiredsolution of the 
uto� free problem is obtained by setting Λ = 0, i.e.

σJ1(
πσ
U

) − ΓJ0(
πσ
U

)

σY1(
πσ
U

) − ΓY0(
πσ
U

)
=
J0(

πVG

U
)

Y0(
πVG

U
)
. (4.44)whi
h is pre
isely the result Eq. (4) obtained by Karras
h et al. [2℄. It is, however,important to note that in the imaginary-time formulation of the fRG, the di�erentialequation has a di�erent stru
ture. It is real and has a positive de�nite denominator.Thus, while the solutions at Λ = 0 are identi
al for the imaginary-time and real-timeformulations, the �ow towards Λ = 0 will show di�eren
es. As we will see next, the
omplex nature of the di�erential equation (4.42) 
an lead to problems 
onne
tedto its analyti
al stru
ture when attempting a numeri
al solution. For small U/Γ noparti
ular problems arise. As an example the result for the �ow of Σ−−,Λ as fun
tionof Λ for U/Γ = 1 and VG/Γ = 0.5 obtained with a standard Runge-Kutta solver isshown in Fig. 4.2. Consistent with the analyti
al solution Eq. (4.44), the imaginarypart (dashed line) goes to zero as Λ → 0, while the real part (solid line) rapidlyapproa
hes the value given by formula Eq.(4.44).However, for larger values of U/Γ the numeri
al solution be
omes unstable ina 
ertain regime of VG. A typi
al result in su
h a situation is shown in Fig. 4.3.The di�erent 
urves were obtained as follows: The full and dashed ones from thenumeri
al solution starting with Σ−−,Λ0 = 0 at Λ0 → ∞, the dash-dotted and dottedby integrating the di�erential equation (4.42) ba
kwards from Λ = 0 with the 
orre
tsolution for Λ = 0 as given by formula Eq. (4.44) as initial value. The 
rosses �nallyare the results from the analyti
al solution Eq. (4.43). Evidently, there exists a
rossing of di�erent bran
hes of solutions to the di�erential equation for Λ/Γ ≈ 1and the numeri
al solution with starting point Λ = ∞ pi
ks the wrong one as Λ → 0.The reason for this behavior is that for large U there exists a 
ertain V a

G su
h that
V a

G + Σ−−,Λp = Λp + iΓ with real Λp, resulting in a pole in the di�erential equation(4.42). For VG 6= V a
G this pole does not appear for real Λp, but as shown in Fig. 4.4,

ℑmΛp 
hanges sign at V a
G, whi
h in turn indu
es a sign 
hange on the right hand sideof the di�erential equation, leading to the behavior observed in Fig. 4.3. There alsoexists a se
ond 
riti
al value V b

G su
h that for VG > V b
G we �nd ℑmΛp < 0 and theinstability has vanished again. Obviously, this instability, whi
h leads to problemsin the numeri
al solution, limits the appli
ability of the present approximation tosu�
iently small values of U . This is di�erent from the imaginary-time approa
h by50



4.5 Lowest order approximation
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Figure 4.2: Flow of Σ−−,Λ/Γ with Λ/Γ for U/Γ = 1, VG/Γ = 0.5, and VB = 0. The full
urve shows the real part, the dashed the imaginary part of Σ−−,Λ.Andergassen et al.,[2℄ where this simple approximation leads to qualitative 
orre
tresults even for values of U signi�
antly larger than Γ.4.5.1 Non-equilibriumWe now turn to the 
ase of �nite bias voltage VB. As a typi
al example, the �ow of
Σ−−,Λ for U/Γ = 1 (full and dashed 
urves) and 5 (dashed-dotted and dotted 
urves)for VG/Γ = 0.5 at VB/Γ = 0 (equilibrium) and VB/Γ = 1 is shown in Fig. 4.5. Sin
ethe results for Σ++,Λ are related to those for Σ−−,Λ by Σ++,Λ = −

[
Σ−−,Λ

]∗ we donot show them here. The VB dependen
e of the 
urves for ℜe [Σ−−,Λ
] (thi
k lines)looks sensible. For VB 6= 0 an imaginary part of order U2 is generated in the �owwhi
h does not vanish for Λ → 0 (see the thin dotted line). Causality requires thatthe relation [52℄

Σ−−(ω) + Σ++(ω) = −
[
Σ−+(ω) + Σ+−(ω)

] (4.45)must hold for the exa
t solution. Be
ause of Σ−+(ω) = Σ+−(ω) = 0, the �niteimaginary part of Σαα leads to a breaking of the 
ondition Eq.(4.45) to order U2 atthe end of the FRG �ow. This is 
onsistent with the fa
t that by negle
ting the �owof the vertex terms of order U2 are only partially kept in the present FRG trun
ations
heme. The weak breaking of 
ausality 
an also be understood as a 
onsequen
e ofour approximation leading to a 
omplex, energy-independent self-energy: The o�-diagonal 
omponents, being related to the distribution fun
tions for ele
trons and51



4 Stationary Transport
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Figure 4.3: Flow of Σ−−,Λ/Γ with Λ/Γ for U/Γ = 15, VG/Γ = 6, and VB = 0. The full anddashed 
urves show real and imaginary part obtained from the integration Λ = ∞ → Λ = 0,the dashed-dotted and dotted 
urves real and imaginary part obtained from an integration
Λ = 0 → Λ = ∞, using the solution from (4.44) as initial value for Σ−−,Λ. The 
rossesdenote the analyti
al solution (4.43).holes, respe
tively, in general have di�erent support on the energy axis. The energyindependen
e makes it impossible to respe
t this stru
ture here.For our further dis
ussion the order U2 violation of Eq.(4.45) means that wemay not rely on relations like Eqs. (4.35) but have to work with Gαβ, thus thesomewhat unusual formula (4.33). A naive appli
ation of ΣR = Σ−− −Σ−+ and useof G+−

d −G−+
d = 2iℑmGR

d would have led to unphysi
al results. That working with
G+−

d −G−+
d is still sensible 
an be seen from a straightforward evaluation leading to

G+−
d (ω) −G−+

d (ω) = (4.46)
−2i

Γ

|ω − VG + iΓ [1 − F (ω)] − Σ−−|2 + Γ2F (ω)F (−ω)

F (ω) = fL(ω) + fR(ω)whi
h is purely imaginary with a de�nite sign. Inserting the expression Eq. (4.46)into the formula Eq. (4.33), one 
an 
al
ulate the 
urrent and thus the 
ondu
tan
e.Sin
e we are at T = 0, an expli
it expression for the 
urrent of the 
uto� free problem(at Λ = 0) 
an be obtained by noting that with µL = VB/2, µR = −VB/2 one has
fL(ω)− fR(ω) = Θ(VB/2− |ω|) and F (±ω) = 1 for ω ∈ [−VB/2, VB/2], whi
h leads52



4.5 Lowest order approximation
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tion of VG. For U/Γ = 15 and 20 there exist aninterval [V a
G, V

b
G] where ℑmΛp > 0, while for small U or VG 6∈ [V a

G, V
b
G] we always have

ℑmΛp < 0.to
J =

Γ2

π

VB/2∫

−VB/2

dω
1

|ω − VG − Σ−−|2 + Γ2

=
Γ

π

Γ

Γ∗

∑

s=±1

s arctan

(

V ∗
G + sVB

2

Γ∗

) (4.47)with the abbreviations
V ∗

G = VG + ℜeΣ−− , (4.48)
Γ∗ =

√

Γ2 + (ℑmΣ−−)2 . (4.49)Equation (4.47) for the 
urrent is equivalent to the nonintera
ting expression butwith renormalized parameters V ∗
G and Γ∗, whi
h depend on the intera
tion as wellas the bias and gate voltage.An example for the di�erential 
ondu
tan
e as fun
tion of VG obtained from Eq.(4.47) for U/Γ = 2 and several values of VB is shown in Fig. 4.6, where G0 = 2e2/h53
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Figure 4.5: Flow of Σ−−,Λ/Γ with Λ for U/Γ = 1 and 5 for VG/Γ = 0.5 at VB/Γ = 0 and
1 (thi
k 
urves: real part; thin 
urves: imaginary part). The 
urve for ℑmΣ−−,Λ/Γ at
U/Γ = 1 and VB/Γ = 1 (thin dashed line) lies on top of the 
orresponding zero bias 
urveand is thus not visible.(after reintrodu
ing e and ~). In
reasing VB leads, as expe
ted, �rst to a de
rease ofthe 
ondu
tan
e 
lose to VG = 0 and later to a splitting of order VB. Sin
e we willdis
uss a more re�ned s
heme in
luding parts of the �ow of the two-parti
le vertexnext, we do not intend to dwell too mu
h on the results of this simplest approxima-tion. We note in passing that for VG = 0 due to parti
le-hole symmetry we obtainfrom the di�erential equation (4.41) that Σ−− = 0 independent of U . Consequentlythe 
urrent J 
al
ulated via Eq. (4.47) and the 
ondu
tan
e are independent of
U , too, and given by the 
orresponding expressions for the nonintera
ting system.As we will see in the next se
tion, this de�
ien
y will be 
ured by the approximatein
lusion of the vertex �ow. In the present approximation the 
urrent 
onservation
∆J = 0 holds for all parameters as Σ−+ = Σ+− = 0 [
f. Eq.(4.39)℄.4.6 Flowing vertexA more re�ned approximation is obtained when we insert the �owing two-parti
levertex γΛ

2 as given by expression Eq. (4.30) in the 
al
ulation of the self-energy Eq.(5.1). By this we introdu
e an energy-dependen
e of the self-energy [30℄. However,be
ause the size of the resulting system of di�erential equations be
omes extremelylarge if the full frequen
y dependen
e is kept (for a dis
ussion on this in equilibriumsee Hedden et al. [30℄), we only keep the �ow of the frequen
y independent part54



4.6 Flowing vertex

-10 0 10
VG/Γ

0

0,2

0,4

0,6

0,8

1
G

/G
0

VB/Γ=0

VB/Γ=0.5

VB/Γ=1

VB/Γ=5

Figure 4.6: Condu
tan
e normalized to G0 = 2e2/h as fun
tion of VG for U/Γ = 2 andseveral values of the bias voltage VB .of the vertex, an additional approximation whi
h again has su

essfully been usedin equilibrium [42℄. As a 
onsequen
e we again end up with a frequen
y indepen-dent Σ̂Λ. The resulting expression for the self-energy (see Se
tion 4.3) is given byEq. (4.29). This approximation leads to a surprisingly a

urate des
ription of thetransport properties in equilibrium. In parti
ular it is superior to the lowest orderapproximation in
luding only the bare vertex.
EquilibriumWe again begin with the dis
ussion of the solution to Eq. (4.29) in equilibrium.Results for the �ow of Σ−−,Λ are presented in Fig. 4.7 for U/Γ = 1 (left panel)and U/Γ = 15 (right panel) for VG = U/2. Sin
e Σ++,Λ = −

[
Σ−−,Λ

]∗ only one
omponent is shown. The stars in Fig. 4.7 denote the solutions of the imaginary-time equations taken from Karras
h et al. [42℄. Note that for U/Γ = 15 and
VG/Γ > 6 the simple approximation Eq.(4.41) showed an instability, while with the�owing vertex the system is stable even for these large values of U and reprodu
esthe 
orre
t equilibrium solutions for Λ → 0 [42℄. The reason for this is that the �owof the vertex redu
es the resulting e�e
tive intera
tion below the 
riti
al value inthe instability region [42℄. 55



4 Stationary Transport
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Figure 4.7: Flow of Σ−−,Λ/Γ with Λ for U/Γ = 1 (left panel) and U/Γ = 15 (right panel)at VG = U/2 and VB = 0. The full 
urves show the real part, the dashed the imaginarypart of Σ−−,Λ. The stars at the verti
al axis denote the values as obtained from theimaginary-time FRG [42℄.NonequilibriumFor the same parameters as in Fig. 4.7 we present the resulting �ow with �nitebias VB/Γ = 1 in Fig. 4.8. In addition to the 
urves for real (solid lines) andimaginary part (dashed lines) of Σ−− a third 
urve is displayed, the imaginary partof Σ−+ (dashed-dotted lines), whi
h now is generated during the �ow. Note that
ℜeΣ−+,Λ = 0 and Σ+−,Λ =

[
Σ−+,Λ

]∗. Furthermore, we always �nd ℑmΣ−+,Λ < 0.For U/Γ = 15 (right panel in Fig. 4.8) we have res
aled ℑmΣ−+,Λ by a fa
tor 102 tomake it visible on the s
ale of Σ−−,Λ. Sin
e Σαβ,Λ is a 
omplex energy independentquantity Eq. (4.45) is again not ful�lled. We note that the error is still of order U2,but for �xed VG and VB it is signi�
antly smaller than in the simplest trun
ations
heme dis
ussed above. The energy-independen
e of the self-energy allows to derivean analyti
al expression for the 
urrent at T = 0 similar to Eq.(4.47), whi
h due tothe appearan
e of Σ−+ now be
omes
J =

Γ

π

Γ̃

Γ∗

∑

s=±1

s arctan

(

V ∗
G + sVB

2

Γ∗

) (4.50)
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urves show the real part, the dashedthe imaginary part of Σ−−,Λ, the dot-dashed the imaginary part of Σ−+,Λ. The real partfor the latter is zero.with V ∗
G as in Eq. (4.48) and1

Γ̃ = Γ −ℑmΣ−+ > Γ (4.51)
Γ∗ =

√

Γ̃2 + (ℑmΣ−−)2 .where Σαβ is taken at Λ = 0. Thus, the only 
hange to the expression (4.47) is aformal repla
ement Γ → Γ̃ in J/Γ. Equation (4.50) is of the same stru
ture as for thenonintera
ting 
ase with VG and Γ repla
ed by renormalized parameters. However,the two self-energy 
ontributions Σ−− and Σ−+ enter distin
tively di�erent in theexpression for the 
urrent. While ℑmΣ−− solely plays the role of an additional life-time broadening, ℑmΣ−+ dire
tly modi�es the tunneling rate both in the prefa
torof J and in the expression for the life-time broadening. A problem o

urs whenusing the results of the present approximation in Eq. (4.39), leading to
∆J =

2Γ

π

∞∫

−∞

dω ℑmΣ−+ [1 − F (ω)] (4.52)
1

|ω − VG + iΓ [1 − F (ω)] − Σ−−|2 + [ΓF (−ω) + ℑmΣ+−] [ΓF (ω) −ℑmΣ−+]1We remember the reader that, in the Eq 4.51, ℑmΣ−+ 6= 0 only when we take into a

ount thevertex 
ontributions. 57
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Figure 4.9: The 
urrent di�eren
e ∆J is plotted versus U/Γ for VB/Γ = 5 and VG/Γ = 2.The plot shows a quadtrati
 behaviour of ∆J as fun
tion of U/Γ.The requirement ∆J = 0 is only ful�lled for VG = 0, be
ause then Σ−− = 0 andthe integrand is asymmetri
 with respe
t to ω. Thus our approximation for theenergy-independent �owing vertex violates 
urrent 
onservation for VG 6= 0 in non-equilibrium. We veri�ed that ∆J ∼ U2 (see Fig. 4.9) whi
h is 
onsistent withthe fa
t that not all terms of order U2 are kept in our trun
ated FRG pro
edure.How does ∆J behave in the limit VB → 0? To see this we note that, be
ause
ℑmΣ−+ does not depend on the sign of VB and furthermore goes to zero as VB → 0,
ℑmΣ−+ VB→0∼ V 2

B (see Fig. 4.10). Consequently, ∆J
VB→0∼ V 2

B and hen
e the violationof 
urrent 
onservation vanishes in the linear response regime VB → 0.In Fig. 4.11 we show the 
urrent at VG = 0 as fun
tion of VB for U/Γ = 1, 6 and
15. With in
reasing U the 
urrent for intermediate VB is strongly suppressed. Inaddition there o

urs a stru
ture at low VB, whi
h turns into a region of negativedi�erential 
ondu
tan
e with in
reasing U . The appearan
e of su
h a shoulder in the
urrent was observed in other 
al
ulations as well [16, 32, 33℄. However, whetherthe negative di�erential 
ondu
tan
e we �nd for still larger values of U (
.f. Fig.4.12) is a true feature of the model or rather an artifa
t of the approximations usedis presently not 
lear and should be 
lari�ed in further investigations. However,negative di�erential 
ondu
tan
e has also been observed in a slave-boson treatmentof the model [83℄.Keeping VG = 0 �xed, we 
an 
al
ulate the 
ondu
tan
e G = dJ/dVB as fun
tionof VB for di�erent values of U . The results are 
olle
ted in Fig. 4.12. In 
ontrastto the simple approximation without �ow of the vertex, the 
ondu
tan
e is now58
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Figure 4.10: ℑmΣ−+/Γ as fun
tion of the bias voltage VB/Γ for several gate voltages VGand Coulomb intera
tions U/Γ. The plot shows a quadrati
 behaviour of ℑmΣ−+/Γ asfun
tion of the bias voltage whi
h tends to zero in the limit VB/Γ → 0.strongly dependent on U , ex
ept for VB = 0, where due to the unitary limit at
T = 0 we always �nd G = G0. As already anti
ipated from the 
urrent in Fig. 4.11, aminimum in G starts to form around VB/Γ ≈ 0.5 for U/Γ > 5, whi
h is a

ompaniedby a peak at VB/Γ ≈ 2. A similar behavior in the 
ondu
tan
e was observed in aperturbative treatment [16℄, whi
h in 
ontrast to our 
urrent approximation involvesthe full energy-dependen
e in the self-energy. This at least qualitative agreement� we of 
ourse 
annot resolve stru
tures like the Hubbard bands with an energyindependent self-energy � again supports our 
laim that despite the violation of therelation Eq.(4.45) we 
an obtain reasonable results from Gαβ.We �nally dis
uss the variation of the 
ondu
tan
e with VG for �xed U and VB.We again emphasize, that for VG 6= 0, ∆J = 0 only holds to leading order in U .In Fig. 4.13 we present the 
urves for two di�erent values of U , namely U/Γ = 1(upper panel in Fig. 4.13) and U/Γ = 15 (lower panel in Fig. 4.13). In the former
ase, the variation of G with VB is rather smooth, as is to be expe
ted from the
urrent in Fig. 4.11. For large U , we observe an extended plateau at zero bias,whi
h is a manifestation of the fa
t that in the strong 
oupling regime a pinningof spe
tral weight at the Fermi energy o

urs. This feature is also observed in theimaginary-time fRG as well as in NRG 
al
ulations.[42℄ In
reasing VB qui
kly leadsto a similarly extended region of negative di�erential 
ondu
tan
e, whi
h, assumingthat this result is a true feature of the model, therefore seems to be linked to the59
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Figure 4.11: Current normalized to J0 = G0
Γ
e (after reintrodu
ing e and ~) as fun
tionof VB for U/Γ = 1, 6 and 15 and VG = 0. For U/Γ = 15 we �nd a region of negativedi�erential 
ondu
tan
e in the region |VB/Γ| ≈ 0.5 (
.f. Fig. 4.12).�Kondo� pinning. We note that it is unlikely that the appearan
e of the negativedi�erential 
ondu
tan
e is related to the breaking of 
urrent 
onservation at order

U2 as it also appears for VG = 0 where ∆J = 0. For large VB multiple stru
turesappear in G, whi
h are related to the energy s
ales VB and U .
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Figure 4.12: Di�erential 
ondu
tan
e G as fun
tion of VB for VG = 0 and various valuesof U . For U/Γ > 5 a distin
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5 Transport Properties in aMagneti
 Field5.1 Introdu
tionThis se
tion is dedi
ated to the analysis of the in�uen
e of an external magneti
 �eld
B on the transport properties of a single-level quantum dot under a 
onstant appliedbias VB at T = 0. We dis
uss how the 
urrent J and the di�erential 
ondu
tan
e Gare a�e
ted by B and by the 
ompetition between magneti
 �eld and bias voltage.We show in parti
ular that B is responsible for a swit
hing behaviour in J as fun
tionof VB. Interesting are also the individual 
ontributions of spin up and down ele
trons,split by the presen
e of the magneti
 �eld, to the transport parameters. To testour non-equilibrium FRG we have again studied, as limiting 
ase, the equilibriumsituation (VB = 0), in order to 
ompare the results of the imaginary-time FRG[42℄. In the next paragraph we will show the �ow equations for the non-equilibriumFRG in an applied magneti
 �eld, then we present the results. The equilibriumlimit VB = 0 is shown and explained �rst, afterwards we dis
uss how the transportparameters J,G behave as fun
tions of the bias-voltage with magneti
 �eld. Finallywe 
onsider the range of appli
ability of the non-equilibrium FRG in the presen
eof B.5.2 Flow Equations in a Magneti
 FieldA spin dependent quantum dot 
onsisting of a single level εσ, 
oupled to left and rightleads (whose ele
trons are non intera
ting and in equilibrium) through the energyindependent terms V~kσα, and subje
ted to Coulomb repulsion U, 
an be des
ribedby the Anderson Hamiltonian [4℄ (see Se
tion. 1.4.2 ). The only di�eren
e withrespe
t to the non magneti
 
ase is that the magneti
 �eld B splits the dot level inits �up� and �down� 
omponents

ε↑,(↓) = VG ±B/2introdu
ing de fa
to a spin-dependen
e of the dot level, whi
h must be now takeninto a

ount as additional parameter. In Se
tion. 4.3 we have already dis
ussed the�ow equations of a single-level quantum dot without magneti
 �eld, therefore we63



5 Transport Propertiesshow now only the 
hanges due to the spin dependen
e in the �ow equations. Asin the previous 
hapter, in addition to the trun
ation of the hierar
hy of di�erentialequations, obtained in the FRG, we negle
t the energy dependen
e of the selfenergy
Σ and the vertex fun
tion γ2. The system of di�erential equations we are going tointegrate is then given by

d

dΛ
Σαβ,Λ

σ′
1,σ1

= − 1

2π

∑

ω=±Λ

∑

σ′
2,σ2

∑

µν

Gµν,Λ
d (ω)γανβµ,Λ

2,σ′
1,σ′

2,σ1,σ2
, (5.1)

d

dΛ
γαβγδ,Λ

σ′
1,σ′

2;σ1,σ2
=

1

4π

∑

ω=±Λ

∑

σ3,σ4

∑

µ,νρ,η

(

Gρη,Λ
σ3,d (−ω)Gνµ,Λ

σ4,d (ω)γαβρν,Λ
σ′
1,σ′

2;σ3,σ4
γηµγδ,Λ

σ3,σ4;σ1,σ2

−Gηρ,Λ
σ3,d (ω)Gνµ,Λ

σ4,d (ω)
[

γαµγη,Λ
σ′
1,σ4;σ1,σ3

γρβνδ,Λ
σ3,σ′

2;σ4,σ2
+ γαργν,Λ

σ′
1,σ3;σ1,σ4

γµβηδ,Λ
σ4,σ′

2;σ3,σ2

−γβµγη,Λ
σ′
2,σ4;σ1,σ3

γρανδ,Λ
σ3,σ′

1;σ4,σ2
− γβργν,Λ

σ′
2,σ3;σ1,σ4

γµαηδ,Λ
σ4,σ′

1;σ3,σ2

])

. (5.2)
In expressions (5.1) and (5.2) Ĝσ,d is given by Eq. (4.28). The initial 
onditionsfor the system (5.1)-(5.2) have been already dis
ussed in Se
tion 4.3. Eq. (5.1)and (5.2), 
ompared to system obtained in Se
tion 4.3 (without the presen
e ofa magneti
 �eld), show a more 
ompli
ated stru
ture whi
h manifests itself in aspin-dependent �ow for the selfenergy and the vertex. As further step, we applythe same parametrization for the vertex whi
h we have introdu
ed in the previous
hapter (see Eq. (4.25)) leading to the �ow equations

d

dΛ
Σαβ,Λ

σ = − 1

2π

∑

ω=±Λ,γ,δ

(

Gγδ,Λ
d,σ (ω) + Gγδ,Λ

d,σ̄ (ω)
)

Uαβγδ,Λ − Gγδ,Λ
d,σ (ω)Uβαγδ,Λ, (5.3)
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5.2 Flow Equations in a Magneti
 Field
d

dΛ
Uαβγδ,Λ =

1

4π

∑

ω=±Λ

∑

µ,νρ,η

(

Gρη,Λ
σ̄ (−ω)Gνµ,Λ

σ (ω)
[
Uαβην,ΛUρµγδ,Λ

]

+Gρη,Λ
σ (−ω)Gνµ,Λ

σ̄ (ω)
[
Uβαην,ΛUµργδ,Λ

]
−

[

Gηρ,Λ
σ (ω)Gνµ,Λ

σ (ω) + Gηρ,Λ
σ̄ (ω)Gνµ,Λ

σ̄ (ω)
]

Uαµγη,ΛUρβνδ,Λ −
[
Gηρ,Λ

σ (ω)Gνµ,Λ
σ (ω)

]
Uαµγη,ΛUβρνδ,Λ −

[

Gηρ,Λ
σ̄ (ω)Gνµ,Λ

σ̄ (ω)
]

Uµαγη,ΛUρβνδ,Λ +
[

Gηρ,Λ
σ (ω)Gνµ,Λ

σ (ω) + Gηρ,Λ
σ̄ (ω)Gνµ,Λ

σ̄ (ω)
]

Uαργν,ΛUµβηδ,Λ −

[
Gηρ,Λ

σ (ω)Gνµ,Λ
σ (ω)

]
Uαργν,ΛUβµηδ,Λ −

[

Gηρ,Λ
σ̄ (ω)Gνµ,Λ

σ̄ (ω)
]

Uραγν,ΛUµβηδ,Λ −

Gηρ,Λ
σ (ω)Gνµ,Λ

σ̄ (ω)
[
Uµβγη,ΛUαρνδ,Λ

]
+

Gηρ,Λ
σ̄ (ω)Gνµ,Λ

σ (ω)
[
Uρβγν,ΛUαµηδ,Λ

]
)

. (5.4)By investigating the vertex stru
ture of the full �ow at Λ = 0 it turns out, however,that symmetries, implied by the parametrization, are broken for large voltages andmagneti
 �elds. Due to the signi�
antly redu
ed numeri
al e�ort for integrating Eq.(5.3) and Eq. (5.4), it remains interesting to examine its value as an approximation.Comparing the full �ow a

ording to Eqs. (5.1) and (5.2) with the parametrizedone (Eqs. (5.3) and (5.4)) we observe a good agreement, at low VB, for Σ−+,Λ (seeFig. 5.1 (b)), while deviations appear in Σ−−,Λ (Fig. 5.1 (a)). However, sin
e
|Σ−+,Λ| ≫ |Σ−−,Λ|, this does not a�e
t the behaviour of experimentally relevantquantities like 
ondu
tan
e G as fun
tion of the gate voltage, even for larger B (seeFig. 5.2). In
reasing the bias voltage, we obtain, for small B (see Fig. 5.4, full 
urveand 
ir
les), again a good agreement.As soon as we in
rease the magneti
 �eld, Im Σ−+,Λ shows deviations (see Fig.5.3) whi
h even a�e
t numeri
al values and the shape of the 
ondu
tan
e (see Fig.5.4). In parti
ular, the �ow of the parametrized system gives rise to a small real
omponent of Σ+−,Λ at Λ = 0 (Fig. 5.3 (b)), whi
h a
tually should not exist, andleads to unphysi
al breaking of the parti
le-hole symmetry.After integration of system Eqs. (5.1)-(5.2) or Eqs. (5.3)-(5.4) we insert theresulting selfenergy into the Meir-Wingreen formula for the 
urrent [19, 63℄

Jσ =
ieΓ

2π~

∫

dǫ [fL(ǫ) − fR(ǫ)]
(
G+−

d,σ (ǫ) −G−+
d,σ (ǫ)

)
. (5.5)In passing we observe that, with respe
t to the non-magneti
 
ase, we have tosubstitute into the expressions of the free Green fun
tions of the dot (Eqs. (4.18)-65



5 Transport Properties
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Figure 5.1: (a) Flow of real (full 
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rosses) of Σ−−,Λ
↓ /Γ, for VG/Γ = 0, U/Γ = 5, VB/Γ = 1, B/Γ = 0.116 The 
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5.2 Flow Equations in a Magneti
 Field
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Figure 5.2: Total 
ondu
tan
e G = G↑ +G↓ normalized to G0 = 2e2/h as fun
tion of VGfor U/Γ = 5, VB = 1 and several values of B/Γ.
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ept for VB/Γ = 3(4.21)) the bare dot level with the spin-dependent one
ε → ε↑,↓ = VG ± B/2.5.3 Results5.3.1 Equilibrium CaseBefore studying the stationary non-equilibrium 
ase at T = 0, we 
onsider theequilibrium situation, namely the limit VB = µL−µR = 0. The latter 
an be seen asa test for our non-equilibrium FRG whi
h should reprodu
e the imaginary-time FRGresults [42℄. Let us begin with the di�erential 
ondu
tan
e G as fun
tion of the gatevoltage VG with and without a magneti
 �eld in the strong 
oupling regime U

πΓ
> 1.In Fig. 5.5 (a) we 
ompare the total 
ondu
tan
e G = G↑ + G↓ for di�erent valuesof B with the results obtained by Karras
h et. al [42℄. We note, that for VB/Γ = 0our 
al
ulations perfe
tly reprodu
e the results of Karras
h et. al [42℄. We see that,as soon as the magneti
 �eld in
reases, G starts to split in two peaks indi
ating the�up� and �down� 
ontributions, whi
h re�e
ts the splitting in the spe
tral fun
tion.For an extensive dis
ussion of the linear response results with an applied magneti
�eld we refer the reader to the seminal paper by Karras
h et. al [42℄. As last remark68
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5 Transport Propertieswe note that also the individual spin 
ontribution agree perfe
tly with [42℄ as shownin Fig. 5.6.5.3.2 Non-EquilibriumSwit
hing on the bias voltage VB we observe di�erent behaviours of the 
ondu
tan
e
G as a fun
tion of the gate voltage VG depending on the 
ompetition between thevoltage and the magneti
 �eld. In Fig. 5.5, we present G as fun
tion of VG for a�xed Coulomb intera
tion U/Γ = 5 and VB/Γ = 0, 1, 3, 5 for di�erent values of B.We observe a drasti
 
hange of the stru
ture due to the interplay of VB and B. Inparti
ular, we see that for small bias (VB/Γ = 1) and �elds (B/Γ = 0.116), G 
onsistsof just two peaks separated by U. If we now in
rease the value of the magneti
 �eld,the 
ondu
tan
e, at small VG, initially strongly in
reases (dashed and dot-dashed
urves in Fig. 5.5 (b)), the peaks disappear and a small plateau appears. In
reasing
B further, the plateau disappears and we get ba
k the two peaks separated by arather deep valley and two shoulders whose spa
ing is ∆ ≈ U + VB.This behaviour 
an be explained as follows: The spe
tral density is split by VB intwo peaks moving the spe
tral weight to higher frequen
ies and de
reasing it in theregion ω ≈ 0. Swit
hing on B we observe an additional split of ea
h peak, due tothe spin 
ontributions. In
reasing then B, the two external peaks move away fromea
h other and the internal ones get 
loser and even merge enhan
ing the spe
tralweight at ω ≈ 0. As dire
t 
onsequen
e we observe an enhan
ement of G, whi
hmanifests itself in a small plateau for VG/U ≈ 0 (see Fig. 5.5 (b)). With a furtherin
rease of B, the "merged" peaks move away from ea
h other, leading to a 
ollapseof the 
ondu
tan
e, and disappearan
e of the plateau. Completely di�erent is thebehaviour for VB/Γ = 3 and VB/Γ = 5 (Fig. 5.5 (
) and (d)). We �nd a non-monotoni
 de
rease of G with the magneti
 �eld. In addition the �eld dependen
eis initially weaker than in Fig. 5.5 (b). We interpret this behaviour in the followingway: For large VB, the Fermi window in eg. Eq. (5.5) will lead to an averagingover a large energy region. Thus stru
tures due to the magneti
 �eld at too smallenergies will be washed out.5.3.3 Current and Condu
tan
e as Fun
tion of the AppliedBiasThe non-monotoni
 behaviour of G(VG = 0) is an interesting feature we want toexplore in somewhat more detail in the following. To this end we 
al
ulated the
urrent J and the di�erential 
ondu
tan
e G = dJ/dVB, at VG/Γ = 0 and U/Γ = 5,as fun
tion of the applied bias for di�erent values of B. The results are 
olle
ted inFig. 5.7. Compared to the non-magneti
 
ase (full line) we see that a �nite magneti
�eld B basi
ally indu
es two features. First, as is also for the 
ase for B = 0, at large70
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Γ
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ondu
tan
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tion of the bias voltage VB/Γ for VG/Γ = 0, U/Γ = 5, and several values of B

U, we observe a small region of negative di�erential 
ondu
tan
e. More interesting isthe appearen
e of an almost unitary 
ondu
tan
e peak at VB ≈ 2B for intermediate�elds. For large �elds the features is suppressed again. Thus we observe that B 
ana
t as a swit
h, in
reasing the 
urrent dramati
ally in the voltage range VB ≈ B.For VB ≫ B the 
urves tend to the same values, so that B does not in�uen
e the
urrent any longer. This behaviour 
an be explained by noting that when VB ≈ 2B,the ele
tro
hemi
al potentials µL,R of the leads are 
lose to the split dot levels,respe
tively, therefore the tunnel probability from the leads to the dot is enhan
edas long as the VB = µL − µR ≈ 2B.Let us �nally dis
uss in whi
h range of parameters the non-equilibrium FRGfurnishes reliable results. In Fig. 5.8 we show the transport parameters plotted asfun
tion of the magneti
 �eld for di�erent bias voltages in the weak ( U
πΓ

< 1, Fig.5.8 (a) ) and intermediate 
oupling regime ( U
πΓ
> 1, Fig. 5.8 (b) ). While for U

πΓ
< 1we did not �nd any parameter regime with a breakdown of the FRG, we see thatfor U

πΓ
> 1 the 
urves a
quire a dis
ontinuity in G (see Fig. 5.8 (b) 
urve with

VB/Γ = 1). In
reasing VB the dis
ontinuity disappears but (for VB/Γ = 2..3) the
ondu
tan
e overshoots the unitary limit in the range 1 < B < 2. This means thatour approa
h is not reliable in this parameter range and possibly for larger magneti
�elds. It would be interesting to see whether an energy-dipendent selfenergy andvertex fun
tion 
an extend the range of appli
ability of the non-equilibrium FRG.71
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5.3 ResultsAt higher bias VB ≥ U the plot does not show this problem any longer.
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6 Temperature Dependen
e of theTransport Parameters6.1 Introdu
tionThe aim of this 
hapter is the study of the in�uen
e of the temperature T on thetransport properties of a single-level quantum dot under a 
onstant applied bias VB.First, we will again 
onsider, as limiting 
ase, the equilibrium situation VB/Γ = 0.We will 
ompare our results regarding the 
ondu
tan
e G as fun
tion of the gatevoltage VG, for several values of T, to the ones 
oming from the numeri
al renormal-ization group (NRG) [88℄. Then we will see how T a�e
ts the selfenergies resultingfrom the numeri
al integration of the system Eq. (4.29)-(4.32). Furthermore, wewill show how the 
urrent J and the di�erential 
ondu
tan
e G are a�e
ted by thetemperature and we will see that the transport parameters, 
al
ulated by means ofthe non-equilibrium FRG, reprodu
e very well the ones obtained by Hersh�eld etal. [33℄ with perturbation theory up to se
ond order in the Coulomb repulsion U .At the end of this 
hapter we will show that the non-equilibrium FRG 
an be usednot only when a �nite temperature and the magneti
 �eld B are applied separately,but, as long as the Coulomb intera
tion is not too large, B and T 
an be �swit
hedon� together. In parti
ular we will show how the interplay of these two s
ales a�e
tsthe transport through a single-level quantum dot.6.2 Temperature Dependen
e of the SelfenergiesIn this se
tion we dis
uss how the energy-independent selfenergies, at the end of the�ow Λ = 0, are a�e
ted by the temperature T, for the ele
tron-hole symmetri
 
ase
VG/Γ = 0 and in a sligthly asymmetri
 situation where VG/Γ = 0.1 . The essentialstru
ture of the �ow equations Eq. (5.1)-(4.30) is not modi�ed by the introdu
tionof a �nite temperature T 6= 0.We note in parti
ular that the T−dependen
e appearsin the system of di�erential equations only through the Fermi fun
tions in the fourfree dot Green fun
tions Eq. (4.18)-(4.21).As usual we begin our analysis with the equilibrium 
ase VB/Γ = 0 (see Fig. 6.1(b)). What we see is that the real part of Σα,α,Λ=0 remains 
onstant in T and equalto zero for the ele
tron-hole symmetri
 
ase. As soon as we move a little bit awayfrom VG/Γ = 0, ℜe[Σα,α,Λ=0] is no longer 
onstant, it in
reases and saturates at75



6 Temperature Dependen
elarger temperatures. The imaginary part of Σα,α,Λ=0 (for VG/Γ = 0.1) is equal tozero in the range T/Γ ≈ 0 . . . 1 and then it moves slightly away from zero like in thenon-equilibrium 
ase at T = 0.
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Figure 6.1: (a) Imaginary part Σ+−,Λ/Γ, plotted versus T/Γ (dashed line VG/Γ = 0, dots
VG/Γ = 0.1 ) for U/Γ = 5, VB/Γ = 0. (b) Flow of real part Σ++,Λ/Γ in the same range ofparameter of (a).Interesting is also the behaviour of the imaginary part of Σ+−,Λ=0 (see Fig. 6.1(a)). ℑm[Σ+−,Λ=0] grows with some power law, for small T, then it raises qui
klyfor intermediate T and �nally saturates at larger temperatures. To summarize, we
an say that, in equilibrium, the temperature a
ts on the selfenergies in the samequalitative way as the bias voltage VB did in the 
ase T = 0. Swit
hing on theexternal voltage VB we observe a di�eren
e in the ℑm[Σ+−,Λ=0] (see Fig. 6.2 (b))with respe
t to the equilibrium 
ase. Now ℑm[Σ+−,Λ=0] does not start from zero,at T/Γ = 0, be
ause VB generates o�-diagonal 
omponents (at T/Γ = 0) whi
hrenormalize the tunneling rate in the expression of the 
urrent and of the life-timebroadening (see Eq. 4.50-4.51) The gate voltage VG, at least in the small range
0 < VG/Γ < 0.1, does not a�e
t the temperature behaviour of ℑm[Σ+−,Λ=0]. The
T−dependen
e of ℜe[Σαα,Λ=0] (see Fig. 6.2 (a)) is not essentially modi�ed by theintrodu
tion of VB with respe
t to the equilibrium situation.It is interesting to observe that T has a stronger in�uen
e on Σ+−,Λ=0 than on
Σαα,Λ=0. The imaginary part of Σ+−,Λ=0 is enhan
ed by roughly a fa
tor three inthe range 0 < T/Γ ≈ 1, while the real part of Σαα,Λ=0 grows slowly and its values76
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Figure 6.2: The same parameters range of Fig. 6.1 ex
ept for VB/Γ = 1.remain rather small. This re�e
ts itself in the expression for 
urrent Eq. (4.33),sin
e in the integrand of Eq. (4.33) the 
ontributions 
oming from ℑm[Σ+−,Λ=0] aremu
h more relevant then the ones due to Σαα,Λ=0.6.3 Results6.3.1 EquilibriumThis se
tion is dedi
ated to the dis
ussion of the temperature behaviour of the
ondu
tan
e G as fun
tion of the gate voltage VG in the limit VB/Γ = 0.We 
ompare the results 
oming from the non-equilibrium FRG with the onesobtained by the numeri
al renormalization group (NGR)[88℄ (see Fig. 6.3 and Fig.6.5 ). In 
ontrast to the previous 
hapters, where we 
ompared the non-equilibriumFRG (at VB/Γ = 0) to the imaginary-time FRG, we have to take into a

ountanother method (NRG) to 
ompare our results in equilibrium, sin
e the imaginary-time FRG does not furnish reliable results at �nite temperatures. This 
ould be dueto the fa
t that, within non-equilibrium FRG, no analyti
al prolongation is needed,while this is a problemati
 step for the imaginary-time FRG.The good quality of the results, if T is not too high, is mainly due to two fa
-tors: First, the Coulomb intera
tion is not too large (U/Γ = 5), therefore thenon-equilibrium FRG 
an rea
h the same qualitative results given by perturbation77
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Figure 6.3: Total 
ondu
tan
e G = G↑ +G↓ (normalized to G0 = 2e2

h ) as fun
tion of thegate voltage VG, for U/Γ = 5, VB/Γ = 0, B/Γ = 0 and for several temperature T. The dot
urves represent the results 
oming from the NRG.theory. Se
ond, the di�eren
e G+− − G−+ shows a similar behaviour with respe
tto the spe
tral density 
al
ulated by means of the NRG (see Fig. 6.4 ). In therange between −0.5 < VG/U < 0.5 we note that, at T 6= 0, G is not monotoni
.The reason for this is due to the fa
t that the di�eren
e G+− −G−+, 
al
ulated at
ω = 0, in
reases in the range 0 < VG/U < 0.5 and then de
reases again (see Fig.6.4), therefore resulting in the non monotoni
 behaviour depi
ted in Fig. 6.3 . Forlarger values of VG/U the di�eren
e G+− −G−+ does not depend any longer on thetemperature and we re
over again the nonintera
ting 
ase.The agreement between the non-equilibrium FRG and the NRG remains good alsoin an applied magneti
 �eld B as witnessed by Figure 6.5 . In the parameter rangein whi
h B/Γ > T/Γ the 
ondu
tan
e peaks, 
orresponding to the individual spin
ontributions (spa
ed by ≈ U/Γ ), are prominent. As soon as T/Γ ≈ B/Γ, the tem-perature be
omes the dominating energy s
ale and the 
hara
teristi
s peaks indu
edby the applied magneti
 �eld strongly de
rease in magnitude and then disappear,signalling that the 
orrelation between the dot and the leads has disappeared too.6.3.2 Current and Condu
tan
e as Fun
tion of the AppliedVoltageWe begin this se
tion showing the 
urrent voltage 
hara
teristi
s, for di�erent tem-peratures T, obtained with the non-equilibrium FRG (see Fig. 6.6). By 
omparingour results with the ones obtained by Hersh�eld et al. [33℄, with perturbation theory78



6.3 Results

0

0,2

0,4

0,6

0,8

1

G
(+

-)
- 

G
(-

+
)

Vg/Γ=0
Vg/Γ=0.5
Vg/Γ=1
Vg/Γ=1.5
Vg/Γ=2
Vg/Γ=2.5

-2 0 2
ω/Γ

0

0,2

0,4

0,6

0,8

1

G
(+

-)
- 

G
(-

+
)

(a)

(b)

Figure 6.4: Comparison between G+−
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d (
ontinuous 
urves represent results 
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π (slashed 
urves represent the results 
oming from theNRG ) as fun
tion of the frequen
y ω, for U/Γ = 5 and for several values of the gatevoltage VG. In the upper plot (a) T/Γ = 0.1, in the lower one T/Γ = 0.25.
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Figure 6.5: The same parameter range of Fig. 6.3 ex
ept for B/Γ = 0.58.up to se
ond order in the Coulomb repulsion U, we observe that the non-equilibriumFRG is 
apable to reprodu
e the qualitative behaviour of the 
urrent 
al
ulatedusing perturbation theory [33℄. What we see is that the sharp 
urrent in
rease at
T/Γ = 0, for small voltages, whi
h is followed by a shoulder and then by a linearbehaviour, is smeared out by the temperature (dotted 
urve in Fig. 6.6 ) and �nallyit is 
ompletely suppressed at larger T (dashed 
urve) in favour of a almost linear
urrent-voltage 
hara
teristi
s. This is due to the fa
t that T tends to destroy the
orrelation between the dot and the leads, represented by the spe
tral fun
tion [37℄.As dire
t 
onsequen
e a de
rease in J follows together with the disappearean
e ofall manybody e�e
ts in the 
urrent.In the plot (see Fig. 6.7) we show that within our approa
h several parameterssu
h as B, VB and T 
an 
oexist as long as the Coulomb intera
tion U is not toolarge. Roughly speaking the higher U the lower is the magneti
 �eld appli
ableand the lower is the temperature range in whi
h the non-equilibrium FRG furnishesreliable results. In Figure 6.7 (a)-(b) the 
urrent is plotted versus the applied voltagein an external magneti
 �eld, for several temperatures. We see that B tends to shiftthe 
urrent peak to larger VB, but even in a parameter range where B > T (see
urve at T/Γ = 0.1), we observe that a small temperature is enough to smear outthe 
urrent peak. Furthermore, if we in
rease B up to B/Γ = 0.8, then we have, forlow temperatures (see 
urve at T/Γ = 0.05), a small dis
ontinuity signalling that weare outside of the range of appli
ability of the non-equilibrium FRG. In any 
ase, as80
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Figure 6.6: Current (normalized to J0 = G0
Γ
e ) as fun
tion of VB/Γ for VG/Γ = 0,

U/Γ = 7.51, and several values of T.soon as T is raised the dis
ontinuity disappears together with the peak, this meansthat the temperature starts to be the dominating energeti
 s
ale.6.3.3 Condu
tan
e as Fun
tion of BIn the following we 
onsider the behaviour of the 
ondu
tan
e G as fun
tion of themagneti
 �eld, in and o�-equilibrium, for several values of T. Starting from theequilibrium situation, we see that, for low temperatures (
ontinuous 
urve in Fig.6.8 (a)), we still have a relativly sharp peaked G. As B grows G de
reases andat B/Γ ≈ 0.8 appears a dis
ontinuity and a small region of negative 
ondu
tan
e,whi
h again indi
ates the failure of our method. Enhan
ing the temperature, butremaining in the range in whi
h 0 < B/Γ ≈ 0.8, the 
ondu
tan
e peak is repla
edby a region with 
onstant G up to B/Γ ≈ 0.8 and then G de
reases qui
kly, withoutshowing any kind of dis
ontinuity.The reason for su
h a behaviour may be found in the interplay between B and Twhi
h takes pla
e in the range 0 < T/Γ ≈ 0.75. In this range the temperature is notstrong enough to suppress the 
entral peak of the spe
tral density 
ompletely. Thelatter is lowered and broadened indi
ating a lowering of the 
orrelation between thedot and the ele
trodes [37℄. This means that, as soon as B is large enough to splitthe spe
tral density into two subpeaks (at B/Γ ≈ 1), the spe
tral weight is shifted81
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Figure 6.7: Total 
urrent: Jtot = J↑ + J↓ (normalized to J0 = 2G0
Γ
e ) as fun
tion ofthe bias voltage for VG/Γ = 0, U/Γ = 5, B/Γ = 0.8 (a), B/Γ = 0.6 (b) and for severaltemperatures.
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6.3 Resultsfar from the Fermi level and G 
ollapses.At larger temperatures (above T/Γ = 0.75), the spe
tral weight is far from theFermi level be
ause the resonan
e representing the 
orrelation between the dot andthe leads does not exist any longer [37℄. What remains is just a 
onstant 
ondu
-tan
e signalling that T has washed out the 
entral resonan
e in the spe
tral density.Swit
hing on the bias voltage (see Fig. 6.8 (b)), we observe a dis
ontinuity for small
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Figure 6.8: Total 
ondu
tan
e: Gtot = G↑ + G↓ (normalized to G0 = 2Γ
e ) as fun
tion ofthe magneti
 �eld for VG/Γ = 0, U/Γ = 5, VB/Γ = 0 (a), VB/Γ = 1 (b) and for severaltemperatures.temperatures in the range 0 < T/Γ ≈ 0.1, whi
h makes the result and therefore themethod meaningless. As soon as we 
onsider higher T the problem disappears andwe see that the 
ondu
tan
e peak is shifted to larger values of B, due to the interplaybetween VB and B (see Se
tion 5.3.3). In any 
ase the peak is again, as expe
ted,not stable versus T. In fa
t we have now another parameter (VB) whi
h tends tosuppress the 
entral resonan
e in the spe
tral density, therefore the temperaturein�uen
e together with B and T destroys the peak in G.
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7 Summary and OutlookThis work was motivated by the question whether the FRG formalism 
an be ex-tended to des
ribe the non-equilibrium properties of an intera
ting quantum many-body system. We were able to derive a formalism that 
an be used to set up asystem of di�erential equations for e.g. irredu
ible vertex fun
tionsAlthough the derivation of the non-equilibrium FRG �ow equations is formallyidenti
al to the imaginary-time one, the �nal equations show a more 
ompli
atedtensor stru
ture. This additional tensor stru
ture is due to the ne
essity to intro-du
e additional indi
es taking 
are of time ordering or, more formally, the di�erentbran
hes of the Keldysh 
ontour. We saw that this formalism is su�
iently gen-eral to treat both fermions and bosons at T ≥ 0. Moreover, the derivation of thenon-equilibrium FRG �ow equations does not depend on the assumption of a sta-tionary state of the system in question. This means that it 
an be adopted todes
ribe time-dependent phenomena, too. A further advantage, with respe
t to theimaginary-time FRG, is due to the fa
t that the non-equilibrium FRG relies on realquantities. This means that the non-equilibrium FRG does not need any analyti
alprolongation to the real axis whi
h 
an be a problemati
 step in 
ertain 
ases.Sin
e the FRG leads to an in�nite hierar
hy of 
oupled di�erential equations, onehas to introdu
e approximations, at least a trun
ation at a 
ertain level. Typi
allyone negle
ts the �ow of the three-parti
le vertex. As it has been demonstrated inRef. [30℄ for the imaginary-time FRG, one 
an solve the remaining system of �owequations for simple models like the single impurity Anderson model (SIAM) numer-i
ally, keeping the full energy-dependen
e. Due to the fa
t that the vertex fun
tion
arries three 
ontinuous frequen
y arguments in addition to the dis
rete quantumnumbers of the system, su
h a 
al
ulation is 
omputationally quite expensive. Toredu
e the numeri
al e�ort, further approximations 
an be introdu
ed. A parti
u-larly important and su

essful one is obtained by negle
ting the energy dependen
eof the vertex fun
tions [2℄, whi
h already leads to a surprisingly a

urate des
riptionof lo
al and transport properties of intera
ting quantum dots in the linear responseregime.As a simple but nontrivial appli
ation to test our non-equilibrium FRG, we 
hosethe single impurity Anderson model (SIAM). The reason for this 
hoi
e is that theSIAM represents the paradigm for 
orrelation e�e
ts in 
ondensed matter physi
s.Besides, it is the standard model for the des
ription of the transport properties ofintera
ting single-level quantum dots to whi
h this work has been dedi
ated.First, we analyzed the �easiest� 
ase, namely we applied the non-equilibrium FRG85



7 Summary and Outlookformalism to the SIAM with �nite bias voltage in the stationary state at T = 0.It turned out, that for the simplest approximation where only the �ow of the self-energy is kept, the analyti
 stru
ture of the di�erential equation leads to problemsin the numeri
al solution. In addition, this approximation leads to a violation of the
ausality relation (Eq. 4.45) to order U2. The �rst problem was resolved by in
ludingthe two-parti
le vertex in the �ow at least up to the largest intera
tion 
onsideredhere (U/Γ = 15). At the present stage this was for 
omputational reasons done byassuming it to be energy-independent, yielding again an energy-independent self-energy. Although this approximation also violates Eq. (4.45) to order U2 for a �xed
VG and VB the error is signi�
antly smaller 
ompared to the simplest s
heme. Wewere able to obtain reasonable expressions and numeri
al results for the 
urrent andthe 
ondu
tan
e using the fun
tions Gαβ(ω) instead of GR(ω) in the 
urrent formula.We reprodu
ed nonequilibrium features of the 
urrent and di�erential 
ondu
tan
eknown from the appli
ation of other approximate methods to the SIAM.In the more advan
ed trun
ation s
heme and for VG 6= 0, the 
urrent 
onservation
∆J = 0 only holds to leading order in U . This defe
t 
an be tra
ed ba
k to the energyindependen
e of the two-parti
le vertex, leading to �nite, but energy-independent
Σ−+ and Σ+−. Unfortunately this de�
ien
y 
annot be 
ured by assuming a 
oarse-grained energy dependen
e of the form

F (ω) =







2, if ω < VB/2

1, if − VB/2 < ω < VB/2

0, if VB/2 < ω.

(7.1)sin
e su
h a minimal energeti
 latti
e is too raw to be able to 
apture the behaviourof the selfenergy, leading therefore to unphysi
al results.Furthermore, we applied an external magneti
 �eld B in order to observe thee�e
t of B on the transport properties of a single-level quantum dot. We saw that,even within our 
rude approximation, the non-equilibrium FRG furnished reasonableresults 
on
erning the transport parameters J and G, as long as Coulomb energy andmagneti
 �eld are not too large. Besides, we introdu
ed a further approximation,namely we negle
ted the spin-dependen
e in the vertex fun
tion γ2 (but not for theselfenergy) and we 
ompared the results with the spin-dependent 
ase, showing andexplaining in whi
h range of parameters this se
ond approximation 
an be adopted.A parti
ularly interesting observation is the swit
hing behaviour in the 
urrent,whi
h we 
ould explain with the interplay of the di�erent stru
tures we got in thespe
tra as fun
tion of the gate voltage and B. We also showed that, as soon as thebias voltage is swit
hed o� (VB → 0), we reobtain, as expe
ted, the linear responseresults [42℄. This means that the non-equilibrium FRG 
an be also applied to treatsystems in equilibrium.Finally, we 
onsidered the temperature dependen
e in the non-equilibrium FRG.As �rst we analyzed the equilibrium 
ase 
omparing our results with the ones 
oming86



from the numeri
al renormalization group (NRG). In 
ontrast to the imaginary-timeFRG, the non-equilibrium FRG furnishes rasonable results, in small and interme-diate 
oupling regime, at �nite temperatures. This 
ould be due to the fa
t that,within non-equilibrium FRG, no analyti
al prolongation is needed, while this is aproblemati
 step for the imaginary-time FRG. Afterwards, we studied the tempera-ture dependen
e of the transport parameters with and without an applied magneti
�eld.More interesting is the fa
t that, for intermediate Coulomb repulsion U/Γ ≈ 5, thenon-equilibrium FRG 
an des
ribe the transport properties of a single-level quantumdot when several external parameters su
h as the bias, the magneti
 �eld and thetemperature are swit
hed on. This is one of the most interesting results we haveobtained be
ause, up to now, a theory that allows to a

ess intermediate 
oupling,bias voltage, magneti
 �eld and temperature on a unique footing is missing.The main problem still to solve is the introdu
tion of the energy dependen
e inthe non-equilibrium FRG �ow equations, in order to get rid of 
ausality problemsand to see whether the energy dependen
e 
an extend the range of appli
ability ofour method to larger U and to larger B and T.
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8 Appendi
es8.1 The Morris LemmaIn this appendix we want to show how to handle produ
ts involving a Dira
 deltafun
tion multiplied by a fun
tion whose argument 
ontains a Heaviside step fun
tion[64℄:
δ(x)f (Θ(x)) . (8.1)First of all introdu
e two "smeared" fun
tions
f (Θε(x)) , δε(x)where f(Θε)(x) is an any fun
tion whi
h remains 
ontinuous in the limit ε→ 0 and

δε(x) := − d

dx
Θε(x) → δ(x)as ε → 0. Out of the last two equations and from the Newton-Liebnitz theorem we
an write Eq.(8.1) as

δ(x)f (Θ(x)) = lim
ε→0

δε(x)f (Θε(x)) = lim
ε→0

d

dx

∫ Θε(x)

0

dtf(t)

∣
∣
∣
∣
∣
x′=x

= (8.2)
=

d

dx

[

θ(x)

∫ 1

0

f(t)dt

]

= δ(x)

∫ 1

0

dtf(t) , (8.3)In order to obtain the Eq. (8.3), we have supposed that it is possible to ex
hangethe limit with the derivative, moreover we have used the following relation:
d

dx

[

lim
ε→0

∫ Θε(x)

0

f(t)dt

]

=

{
d
dx

∫ 1

0
f(t)dt for x > 0

0 for x < 0The r.h.s. of Eq. (8.3) is what we need to handle (as we will see in the nextparagraph) equations involving the single s
ale propagator SΛ and produ
ts betweenit and the Green fun
tions GΛ. 89



8 Appendi
es8.2 Expressions Involving the Single S
alePropagatorIn order to be able to treat and simplify produ
ts involving SΛ GΛ we will applybasi
ally what we have learnt in the previous se
tion regarding the Morris lemma.We begin with the easiest 
ase, namely the single s
ale propagator, then we will takeinto a

ount the produ
t SΛGΛ. In the following we won't use the hat to indi
atethe matri
es, but keep in mind that SΛ and GΛ must be rad as matri
es with respe
tto the Keldysh indi
es. We start with the de�nition of the 
uto�-Green fun
tionsand single s
ale propagator
GΛ

0 (ω) = Θ(|ω| − Λ)GΛ
0 (ω), (8.4)

GΛ
( ω) =

1

(GΛ
0 (ω))

−1 − ΣΛ(ω)
,

SΛ(ω) = GΛ(ω)
d

dΛ

[(
GΛ

0 (ω)
)−1
]

GΛ(ω). (8.5)Inserting the Eq. (8.4) into Eq. (8.5)
SΛ(ω) = GΛ(ω)

d

dΛ
[G0(ω)]−1

[
(Θ(|ω| − Λ))−1]GΛ(ω) =

GΛ(ω)[G0(ω)]−1 [−δ(|ω| − Λ)]
[
(Θ(|ω| − Λ))−2]GΛ(ω) =Multiplying in the matrix sense G0 ∗G−1

0 = 1 to the right results in
GΛ(ω)

[
G−1

0 Θ(|ω| − Λ)
]
[−δ(|ω| − Λ)G0(ω)]

[
G−1

0 Θ(|ω| − Λ)
]
GΛ(ω) =

[

GΛ(ω)GΛ,−1
0

]

[−δ(|ω| − Λ)G0(ω)]
[

GΛ,−1
0 (ω)GΛ(ω)

]

,where we have used Eq. (8.4) in the last step. Applying the Dyson equation moroverdelivers
SΛ(ω) =

[
1

1 −GΛ
0 (ω)ΣΛ(ω)

]

[−δ(|ω| − Λ)G0(ω)]

[
1

1 − ΣΛ(ω)GΛ
0 (ω)

]Substituting the right square bra
ket, by means of the Dyson equation using
1

1−GΛ
0 ΣΛ = G−1

0
1

1−ΣΛGΛ
0
and applying the matrix identity [AB]−1 = B−1A−1 to theprevious expression we obtain

SΛ(ω) =
1

[1 − ΣΛ(ω)GΛ
0 (ω)]

2G0(ω)δ(|ω| − Λ). (8.6)90



8.3 Derivation of Eq. (3.11)Eq. (8.6) must now be rewritten through the Morris lemma
1

[1 − ΣΛ(ω)GΛ
0 (ω)]

2G0(ω)δ(|ω| − Λ) → G0δ(|ω| − Λ)

∫ 1

0

dx
1

[1 − xΣΛ(ω)GΛ
0 (ω)]

2 =

= δ(|ω| − Λ)
1

(G0(ω))−1 − ΣΛ(ω)
.Therefore we 
an write

SΛ(ω) → δ(|ω| − Λ)
1

(G0)−1(ω) − ΣΛ(ω)
. (8.7)8.2.1 More Compli
ated Produ
tsWe are now interested in simpli�
ations of produ
ts involving

SΛ(ω)GΛ(ω′) (8.8)Inserting Eq. (8.7) into Eq. (8.8) we obtain
SΛ(ω)GΛ(ω′) =

[

δ(|ω| − Λ)
1

(G0)−1(ω) − ΣΛ(ω)

]

∗ 1

(G0(ω′))−1 − ΣΛ(ω′)
.We then right right-multiply with G0(ω

′)Θ(|ω′| − Λ)

[

δ(|ω| − Λ)
1

(G0)−1 − ΣΛ(ω)

]

∗ G0(ω
′)Θ(|ω′| − Λ)

1 − ΣΛ(ω′)GΛ
0 (ω′)

=

[

δ(|ω| − Λ)
1

(G0)−1 − ΣΛ(ω)

]

∗ Θ(|ω′| − Λ)

(G0)−1(ω′) − ΣΛ(ω′)
.Out of the latter 
an we therefore write Eq. (8.8) as

SΛ(ω)GΛ(ω′) → δ(|ω| − Λ)Θ(|ω′| − Λ)GΛ(ω)GΛ(ω′). (8.9)8.3 Derivation of Eq. (3.11)The goal of this se
tion is the detailed derivation of Eq. (3.11). To this end startwith the logarithm of the generator of the 
onne
ted Green fun
tions
Ln

[

WΛ ({η̄}, {η})
]

:= Wc,Λ ({η̄}, {η}) = (8.10)91



8 Appendi
es
Ln

[
1

ΞΛ
0

∫

Dψ̄ψ exp

{(

ψ̄,
[

ĜΛ
0

]−1

ψ

)

− iSint({ψ̄}, {ψ}) −
(
ψ̄, η

)
− (η̄, ψ)

}
]

,with
ΞΛ

0 =

∫

Dψ̄ψ exp

{(

ψ̄,
[

ĜΛ
0

]−1

ψ

)}

.Di�erentatiating Wc,Λ with respe
t to Λ results in
dWc,Λ

dΛ
=

1

WΛ

∫

Dψ̄ψ d

dΛ

[
1
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= Ẇc,Λ . (8.11)We now have to evaluate the derivative appearing in the integrand in Eq. (8.11)obtaining
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(
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,leading us by insertion into Eq. (8.11)
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8.3 Derivation of Eq. (3.11)by means of the substitution into Eq. (8.12) we obtain1
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+
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alar produ
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lm,0 do not depend on ψ, therefore they 
an be moved out of theintegral
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F ({η̄}, {η}) . (8.14)The integral in the �rst term of Eq. (8.14) is exa
tly the de�nition of the 1-parti
leGreen fun
tion
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ount the se
ond term of Eq.(8.15) and use again Eq. (8.13)together with
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8 Appendi
es
ψ̄m = −i δ

δηm

.Eq. (8.15) then be
omes
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.The se
ond term of Eq. (8.16) 
an be arranged as s
alar produ
t
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.By applying the 
y
li
 property of the tra
e to the �rst term of Eq. (8.18) we obtain
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,where the ζ fa
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omes from the Grassmann rules. The latter expression, insertedinto Eq. (8.18), and then into Eq. (8.17) permits us to �nally obtain Eq. (3.11)
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