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1 Introduction

1.1 An Overview

The aim of this thesis is the extension of the functional renormalization group (FRG)
formalism |64, 75, 76, 87| to treat non-equilibrium situations or, in other words,
we reformulate the FRG-equations in terms of the Keldysh method |45] which is
the standard technique to treat systems out of equilibrium. As simplest non-trivial
application to test the potential and weakness of the non-equilibrium FRG we choose
the single impurity Anderson model (STAM) [4|. This model represents the paradigm
for correlation effects in condensed matter physics and it is at the heart of a large
range of experimental and theoretical investigations. In particular, the SIAM can be
considered as the standard model for describing the physical properties of certain
nanostructures and mesoscopic systems, such as quantum dots. A quantum dot
can be viewd as a small region (in the next section we will precise what “small”
means) consisting of semiconductor material, where electrons are confined by e.g.
electrostatic potentials, by means of electron beam lithography and molecular beam
epitaxy. The next paragraphs are dedicated to a short introduction regarding the
experimental scenario and the theoretical interpretation of the characteristics of
quantum dots. At the end of the present chapter we give the reader a "roadmap”
which will guide him through this thesis.

1.2 Experimental Aspects

1.2.1 Introduction and Fabrication Technique

A quantum dot is an artificially structured system where the motion of particles is
confined in all three spatial dimension, that can be filled with electrons (or holes).
The dot can be coupled via tunnel barriers to reservoirs, with which electrons can
be exchanged (see Fig. 1.1). By attaching current and voltage probes to the reser-
voirs, we can measure the electronic properties. The dot is also coupled capacitively
to one or several gate electrodes, which can be used to tune the electrostatic po-
tential of the dot with respect to the reservoirs. The previous description shows
that a quantum dot is a rather general device, there consequently exist many dif-
ferent realizations: For instance single molecules trapped between electrodes [67],
normal metal [68|, superconducting [85], semiconductor lateral [49] or vertical dots
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Figure 1.1: Schematic picture of a quantum dot in (a) a lateral geometry and (b) in a
vertical geometry. The quantum dot is connected to source and drain reservoirs via tunnel
barriers, allowing the current through the device, to be measured in response to a bias
voltage, Vgp and a gate voltage, V.

[51]. The electronic properties of quantum dots are dominated by two effects. First,
the Coulomb repulsion between the electrons on the dot leads to an energy cost for
adding an extra electron to the dot. Due to this charging energy, tunneling of elec-
trons to or from the reservoirs can be dramatically suppressed at low temperatures;
this phenomena is called Coulomb blockade [5|. Second, the confinement in all three
dimensions leads to quantum effects that strongly influence the electron dynamics.
One particularly frequent and well reproduced realization starts from heterostruc-
tures of GaAs and AlGaAs grown by molecular beam epitaxy (see Fig. 1.1). By
doping the AlGaAs layer with Si, free electrons are introduced. These accumulate
at the GaAs/AlGaAs interface, typically 50 — 100 nm below the surface, forming
a two-dimensional electron gas (2DEG), a thin (approx. 10nm) sheet of electrons
that can only move along the interface. The 2DEG can have a high mobility and
relatively low electron density (typically 105 — 107em?/Vs and 1 — 5 % 105 /m?, re-
spectively. The low electron density results in a large Fermi wavelength (approx. 40
nm) and a large screening length, which allows to locally deplete the 2DEG with
an electric field. This electric field is created by applying a negative to metal gate
electrodes on top of the heterostructure (see Fig. 1.1 (a)). Electron-beam lithogra-
phy enables fabrication of gate structures with dimensions down to a few tens of
nanometers (Fig. 1.1), yielding local control over the depletion of the 2DEG with
roughly the same spatial resolution. Small islands of electrons can be isolated from
the rest of the 2DEG by choosing a suitable design of the gate structure, thus creat-
ing quantum dots. Finally, low-resistance (Ohmic) contacts are made to the 2DEG

reservoirs. To access the quantum phenomena in GaAs gated quantum dots, they
have to be cooled down to 10-100mK.
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Figure 1.2: Lateral quantum dot device defined by metal surface electrodes. (a) Schematic
view. Negative voltages applied to metal gate electrodes (dark gray) lead to depleted
regions (white) in the 2DEG (light gray). Ohmic contacts (light gray columns) enable
bonding wires (not shown) to make electrical contact to the 2DEG reservoirs. (b)-(c)
Scanning electron micrographs of a few-electron single-dot device (b) and a double-dot
device (c), showing the gate electrodes (light gray) on top of the surface (dark gray). The
white dots indicate the location of the quantum dots. Ohmic contacts are shown in the
corners. White arrows outline the path of current Jpor from one reservoir through the
dot(s) to the other reservoir. For the device in (c), the two gates on the side can be used to
create two quantum point contacts, which can serve as elec trometers by passing a current
Jopc - Note that this device can also be used to define a single dot.
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1.3 Two Parameter Regimes: Coulomb Blockade
and Kondo

1.3.1 Single Electron Tunneling and Coulomb Blockade

As we have already mentioned in the previous paragraph, experimental techniques
like electron beam lithography and molecular beam epitaxy, permitted the realiza-
tion of mesoscopic structure where is possible to confine a small amount of electrons
in a spatial region of a few nanometers. One of the most interesting discovery, in
these mesoscopic systems, was the single electron tunneling (SET) (|17, 23]), namely
the possibility to let flow, in a controlled way, through the quantum dot one electron
at a time. The scope of this section is to explain in which parameter range one can
observe single electron tunneling and from which experimental quantity can be de-
duced that SET is indeed happening. In the linear regime the transport properties
of mesoscopic systems can be represented by the conductance G defined as
) J
¢ (VLEIXI/%)—’O [VL - VR:| ’

where J is the current flowing from the left to the right electrode and Vi p are
the Fermi electrochemical potentials py, g divided by the electronic charge. Before
proceeding further we have to distinguish two parameter regimes. First we look at
the limit in which the dot-leads coupling energy I' is small compared to the Coulomb
energy U on the island (Coulomb-blockade regime, Fig. 1.3 and Fig. 1.3.2 (¢)) and
then the case where I' cannot be neglected any more (see the next paragraph and
Fig. 1.5 (a)-(b)).

The experimental evidence of the single electron tunneling [43, 80] has been re-
vealed for the first time by the periodic behaviour of the linear conductance G as
function of the gate potential Vi (see Fig. 1.3). The peaks in Fig. 1.3 correspond
to the flow of an electron from the left lead to the right one through the dot. The
model explaining such a behaviour is usually called Coulomb blockade |43, 90]|. It
is based on simple electrostatic consideration we are going to elucidate. If we have
electronic charge () on the island its energy is
Q2
2C7’
where Cr represents the total capacitance between of dot. Now, if the potential
drop between the gate and the island is V5, the total electrostatic energy of the dot
is given by

E =

2

E=— — . 1.1
QVG+20T (1.1)

The first terms indicates the potential energy between the gate terminal (positively
charged) and the central region, while the second takes into account the repulsive
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Figure 1.3: Conductance G as function of the gate voltage Vg in the parameter regime
(Coulomb blockade) where the leads-dot coupling energy I" is negligible compared to the
Coulomb repulsion U.

interaction among the charges on the dot. Equation (1.1) can be reexpressed (apart
from a constant term) as

_ 2
g Q-
207
with Qg = C7Vg. For any given value of Vi (and thus of @), the charge on the dot
adjustes itself to minimize the energy. Neverthless, because of the charge quantiza-
tion @@ = Ne, for a given )y, we can only have discrete energy levels (see Fig. 1.4). As

B} Q,=Ne S () Qo=(N+1/2)e

N2 N1 N N+l Ne2  2© N-1 N N+ N+2

Figure 1.4: Total energy of a quantum dot plotted as function of the elementar electronic
charge. (a) Shows the case with a non-degenerate energetic minimum: Qo = Ne, (b)

degenerate: Qg = (N + 1/2)e.

soon as ()9 = Ne, the energy is minimized by an integer number of electrons and the
increase or the decrease of the charge +e costs an activation energy corresponding

to (see Fig. 1.4 (a))

62

Ey=——.
A7 90,
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On the other hand, if Qy = (V + %)e, then the states characterized by @Q = Ne and
Q) = (N +1)e are degenerate (see Fig. 1.4 (b)) so that the charge fluctuates between
these two values, even at zero temperature, without any energetic expense. From
the experimental point of view this means that the conductance is different from
zero for all value of Vi with

Vo = Qo/Cr = (N + %)Q/CT-

For all other values of Vi the conductance is very small or zero. This is the reason
why, at low temperatures, we observe periodically spaced conductance peaks. The
period is determined by Vg = eT and corresponds to the variation of V5 which is

Cr
necessary to let Qo pass from (N + L)e to (N + 2)e.

1.3.2 Kondo Regime

Consider now the situation in which I' the coupling parameter between dot and leads
is not negligible any longer (Kondo regime) |11, 22|). In this limit G as function
of the gate voltage presents different features (see Fig. 1.3.2 (a) (b)) compared to
the Coulomb blockade regime shown in Fig. 1.3 and in Fig. 1.3.2 (¢). The most
characteristic aspect is that the peaks now form pairs. Peaks belonging to the same
pair show a comparable width (see Fig.1.3.2 (a) (b)) and their spacing is determined
by the Coulomb repulsion U = % On the other hand, between different pairs we
observe a spacing greater then U and different peak widths.

This behaviour can be explained assuming that in an electronic state we cannot
insert more then two electrons with opposite spin. In fact, if we wish to add a third
electron, we are forced to insert it in a state which is different from the one occupied
by the previous pair. As direct consequence the spacing between peak pairs takes
into account both U and the energy difference between the two successive energetic
levels Ae [11, 22|), resulting in a total spacing given by U + Ae. If we look at
the valleys in Fig. 1.3.2 (a) (b), we find that the intra-pair ones show a higher
conductance compared to the inter-pair valleys. The reason for this behaviour lies
in the number of electrons present on the island. The valley between two paired
peaks corresponds to a dot occupied with an odd number of electrons, therefore the
unpaired electron can interact with the charges at the Fermi level in the leads, giving
rise to a Kondo singlet bound state between them (see next paragraph). The singlet
increases the dot density of state (DOS) at the Fermi level (see next paragraphs
and Fig. 1.8 ), which increases the conductance too. If we lower the temperature
T the peaks tend to become narrower and higher (even in the limit in which I' is
not small), neverthless the intra-pair conductance valley increases while the inter-
pair one decreases, letting the conductance become small. We observe exactly the
opposite phenomenon increasing the temperature, because an increase of T tends

10



1.3 Two Parameter Regimes

125
1.00 |
0.75
0.50
0.25
1.26
1,00
0.75
0.50
0.25
0.020 ==

G (¢2/h)

0.015
0.010

0.005

Figure 1.5: Temperature dependence of zero-bias conductance G through two different
spatial states on the dot. (a), Paired peaks corresponding to the two spin states for each
spatial state become better resolved with increasing temperature from 90 mK (full line) to
400 mK (dashed). The intra-pair valleys become deeper and the peaks become narrower.
(b), From 400mK (dashed line) to 800mK (dotted) the paired peaks near Vg = —70mV
broaden. The peaks near Vg = —25mV are still becoming better resolved even at 800
mK, as they have larger T'. (¢), When T is reduced (as illustrated by shorter and narrower
peaks), U increases relative to Ae, so peak pairing is no longer evident. Because the Kondo
phenomenon is suppressed, peaks become narrower as temperature is decreased at all T
down to our base temperature of 90 mK. Full line is for 90 mK, dotted line for 800 mK.
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to destroy the spin correlations between the electrons of the central region and the
leads, letting the conductance relative to the intra-pair valley collapse.

1.4 Theoretical Interpretation

1.4.1 Quantum Dots and Magnetic Impurities in Metals

Glazman and Raikh [21] noted that quantum dots can be related to metals doped
with magnetic impurities in such a way that the dot, occupied by just one electron,
plays the role of the impurity and the electrodes represent the metal matrix in which
the impurity is embedded.

They understood that, even if electronic transport is in principle forbidden by
the Coulomb blockade, it can still occur by means of the Kondo effect [47]. This
idea has been verified experimentally later by Ralph and Buhrman [71] and then
by Goldhaber-Gordon [22| and Cronenwett et al. [11], [34]. A detailed discussion
of the Kondo effect is far beyond the scope of this work (the interested reader is
referred to the book by A.Hewson [34]), here we just give some basic introduction
on the Kondo Physics.

The original problem stems from the anomalous behaviour of the resistivity p as
function of temperature 7" in metal doped with magnetic impurities. Experimentally
it was observed that the the resistivity of such metals does not simply decrease,
when the temperature is lowered, but it shows a minimum and then it begins to
grow again before it saturates |24, 34, 59|. The explanation of this behaviour can
be found in the spin-flip scattering between the spins of the conduction electrons
and the magnetic impurity. The latter can be seen as a scattering center whose
interaction with the conduction electrons causes the spin flip scattering. This kind
of interaction appears when the temperature is low enough to suppress thermal
fluctuations, a direct consequence is the anomalous resistivity behaviour.

Below a characteristic temperature, also called Kondo temperature Tk, the spin
of the impurity forms a many-body state with the band electrons. This means that
if we want to create a spin triplet between the host and the electrons we must break
up the many-body state or in other words we should give to the system an energy
which is larger then the binding energy Tk of this many-body state. Therefore the
spin flip scattering, at T' < Tk, is frozen out and the Kondo effect saturates.

1.4.2 Transport due to the Kondo Effect

The analogies between quantum dots and metals doped with magnetic impurities
[21, 22, 49, 71| permit us to explain the charge transport through quantum dots in
the Coulomb blockade regime by means of the Kondo effect.

12



1.4 Theoretical Interpretation

The standard approach to describe the phenomenology of quantum dots is based
on the single impurity Anderson model STAM |4], given by the Hamiltonian

_ LAt
0 = ngaacgaacgaa

koa
1 1
+Z€odldg —+ U (nT — 5) (nl — 5)

+ Z [VEMCTEMCZU + h.c.} , (1.2)

koo

where ¢, d denote the operators for the conduction electrons and the impurity degrees
of freedom and n, = did_. U represents the Coulomb repulsion on the impurity site,
Vz ., is the hopping term which permits an electron of the leads to jump onto the
dot and vice versa. Finally a = L, R distinguishes the left and right reservoir. The
spin indices o can take the values up or down (7, |) and the band wavevector k runs

through all values of the first Brillouin zone of the leads.

Figure 1.6: Pictorial representation of the impurity Anderson model: The dot in the central
region, subject to the Coulomb repulsion U, is coupled via Vi to the left and right leads
which are here at the same electrochemical potential. An additional electrode V, controls
capacitively the charge on the dot.

Looking at Fig. 1.7 (a) (b) charge transport from the left electrode to the right
one (which are kept at a constant bias V;, — Vi = #.=F2) is permitted if the the dot

level is located in the following energetic interval (see Fig. 1.6)

pur < &g < UR.

Now assume that the temperature is much lower than the energetic spacing between
two levels |Ag| of the central region, therefore it can be treated as if it consisted of
just a single level. If we now let flow another electron on the dot then the level is
pushed up by an energy

Ae =4+ U.

13
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€4+ U

1 €+ U (b)

Figure 1.7: (a) Tunnel process through the quantum dot. Transport can take place if
Ur < eq < pr. If the temperature T is low enough then the energetic spacing Ae is too
large to permit an electron to jump from an energetic level to the next one — single-level
quantum dot. (b) Pictorial description of the transport in the Coulomb blockade regime
through the Kondo effect: virtual tunneling transition whose end effect is always a dot
occupied by a single electron, but with opposite spin.

14



1.5 Guide to this Work

Therefore the level is shifted above the energy interval previously defined, thus
making transport impossible at first sight. In reality we can have virtual tunneling
transitions due to the dot-leads coupling which can induce a spin flip between the
central region (see Fig. 1.7 (b)) and the leads. Actually, these spin flip processes give
rise to the formation of a singlet state between the electron on the island end the ones
in the leads (Kondo effect [11, 22, 34]). The presence of such a singlet is connected
to a scattering resonance at the Fermi level (see Fig. 1.8). Experimentally this
additional spectral weight, due to manybody effects, manifests itself in an increase
of the conductance between the Coulomb peaks, i.e. in the intra-pair valley region
shown in Fig. 1.3.2 (a) (b).

eo+U
ep=0|

® ©
N

Figure 1.8: Schematic energy diagram of the SET, showing an electron droplet separated
by tunnel barriers from conducting leads. Since the number of electrons in the droplet is
odd, the local density of states exhibits a sharp Kondo resonance at the Fermi level. The
broad resonance at energy gg represents a transition from ngy = 0 — ng = 1, while the one
at eg + U corresponds to a transition from ng =1 — ng = 2.

1.5 Guide to this Work

The present thesis is divided into six chapters and two appendices. In the next
chapter we discuss in detail the Keldysh method, which is the standard technique
for the description of non-equilibrium quantum manybody problems. The third
chapter is dedicated to the renormalization group. It will focus on the extension of
the functional renormalization group (FRG) to non-equilibrium situations. First of

15
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all we will show the differences between equilibrium and non-equilibrium and then
that the FRG can be extended to treat, at least formally, also time dependent non-
equilibrium situations and not only the stationary case (constant external field).
In the last three chapters we will accompany the reader through our results, for
the transport parameters, the current J and conductance G, calculated with the
non-equilibrium FRG.

We will concentrate on the simplest case, namely a situation where we neglect
the energy dependence of the quantities entering into the FRG equations. We also
discuss the influence of an applied magnetic field B, in order to distinguish the contri-
butions of different spin channels to the transport parameters, and the temperature
T. Summary and conclusion will finish this work.

16



2 The Keldysh Method

2.1 Introduction

The physical properties of a system in equilibrium can be extracted from the Green
function defined as'

G(1,2) = =i(Tu ()P} (2), (2.1)

where 1y (1) represents a field operator in the Heisenberg picture which annihilates
an ingoing particle at point x; and at the time ¢, while 1/1}{(2) creates an outgoing
particle at xo, ts. T stands for the time order operator, which places the operators
according to the time argument with the latest time to the left [29, 52, 59]. The
mean value is calculated with respect to the Gibbs distribution function. From the
statistical point of view it makes no no difference if we calculate the mean value of
a system in equilibrium with respect to the exact wave function of the stationary
state of the closed system or by means of the Gibbs distribution of the system in a
thermal bath. In the first case the result will be a function of the energy and the
number of particles and in the second of the temperature and the chemical potential.
The situation changes as soon as we treat systems out of equilibrium. We have to
calculate averages with respect to states which are not necessarely the ground state
or even eigenstates of the system, but resulting from initial conditions determined by
external fields, preparation, etc [40, 45, 54, 82|. As direct consequence (see Sections
2.2-2.4) we are obliged to introduce four Green functions, taking into account the
excitation spectrum and the distribution function separately. Moreover, the corre-
lation functions we are going to analyze contain only real variables. This permits us
to avoid the analytic continuation (as necessary in the Matsubara technique), which
can be a cumbersome task, in particular if results are known only numerically.

2.2 Greens Functions in Non-Equilibrium

Before explaining the mathematical details of the non-equilibrium perturbation the-
ory, we first prefer to present the basic idea and functions on which it bases. In
the next section we will then apply it to the easiest case, namely to the non inter-
acting Fermi gas and finally in the Paragraph 2.4 we will explain the perturbative

'For brevity we restrict ourselves to fermions. The formula for bosons is identical except for a
different sign.
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2 The Keldysh Method

expansion. Let us start defining?

G(1,2) = —i(Trbu (D} (2)). (2.2)

The quantity G(1,2) depends separately on the pair of variables (1,2) and not
only on their difference, as in equilibrium. Compared to the "usual” time ordering
operator the one in the Eq. (2.2) carries an index K, which describes a path starting

at t = —oo up to t = +oo and then back again in the opposite direction. Such a
path is also called Keldysh contour (see Fig. 2.1) [45]. Starting from the definition
Ck -
e
Ck+ L

Figure 2.1: The Keldysh contour: Start the time evolution at time ¢ = —oo up to t = 400
(blue line) and then back from ¢ = 400 up to t = —oo (red line).

Eq. (2.2) we now displace the times t¢1,%2, on the Keldysh contour in all possible
ways [29, 52|. Since we have only two times to play with, there are just four possible
combinations and to each one corresponds a certain Green function, which will be
labeled by means of two upper indices, each of them representing the upper (—) or
the lower branch (+) of the Keldysh contour. We obtain

G (1,2) = —i(Tyu()yu(2)’) = (2.3)
= —if(ty — t2) (W (1) (2)7) +i6(ts — 1) (Yu (2) Ty} (1)),

where t1,ty € Ck_, (G time-ordered) and Ck_ is the upper branch of the contour;

G™(1,2) = —i(Tvp(yu(2)7) = (2.4)
= —if(t2 — t1) (Y (V) pu(2)T) +i0(t, — t2)(¥u(2)vu (1)),

with both times on the lower branch of the contour t1,t, € Ck, (G antitime-
ordered);

G*(1,2) = —i{wr (1)vu(2)"), (2.5)
(G greater) with t; € Ok, ,t2 € Ck_, and finally
G™(1,2) = i(Yu(2)Teu(1)), (2.6)

(G lesser) where we have t; € Ck_,t; € Ck,. The last two Green functions are
not time-ordered and moreover couple the two branches of the contour. From the

2Here and in the following we set i = 1

18



2.3 Greens Functions for the Ideal Fermi Gas

previous definitions it follows that Eqs. (2.3)-(2.6) are not independent, but have
to obey the constraint

G +GtT =G1T+GT. (2.7)
One can introduce two more Green functions

GA(1,2) = Bty — tr)({ebu (1), 0} (2)}) =
= 0Oty —t1)[G"T(1,2) — GT(1,2)], (2.8)

GR(L2) = —ib(t — t2)({tn (1), 61y (2)}) =
= 6(t - 1)[GT(1,2) - GH(L,2)) (2.9)

the retarded and advanced Green functions defined exactly as in equilibrium. They
can be written in terms of GT—, G~ according to

GR=G— -G T=G" -G, (2.10)
GA=G -G =GT1T-G™. (2.11)

From the definitions (2.3)-(2.4) follows, because of the antihermicity of their argu-
ments, that

G~ (1,2) = -GTH(2,1). (2.12)
The lesser and greater functions, are antihermitic
GH(1,2) = —[GH), GH(1,2) = G (2,1 (2.13)

This means that their Fourier components are purely imaginary. Consider now the
non-equilibrium stationary and space-homogeneous case. Thanks to the space and
time transational invariance, all correlation functions, now again, depend only on
the differences of their arguments t = t; —t5, x = X1 — Xo. It is then possible to take
the Fourier transform with respect to such differences, which directly leads to the
relations

G~ (w,p) = —[G"(w,p)]",
G (w,p) = [G*(w,p)]".

2.3 Greens Functions for the Ideal Fermi Gas

The physical meaning of the previously introduced Green functions can be illustrated
through a simple example, namely the non interacting Fermi gas in its homogeneous
and stationary state [52]. Start from the Eq. (2.5) in which we substitute for the
-operators the free-field expansion explicitely written in the variables x, t as

N 1 )
Y (t,x) = T Z GpeliPx—e@)itputl) (2.14)
1
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2 The Keldysh Method

1/; (t,x) Zgﬁ (—ilpx—=(p)t+ut))

where ap, aI) are the usual annihilation and creation operators, e(p) = % and p is
the chemical potential. With this substitution we obtain

<1/J(X t)lpT(X t V Z {i[px—p’x']yel—itle(P)+n] it "le(p’ )+u]}<d fLL> (2-15)
p;p’

For free fields the anticommutation relation

Sty
{alp, ap/ — 5p7p/,
holds, so that
(ap &L> = pp{l — (@ 'ap>}_
= Opp {1l — Jfp},
where f;, is the Fermi distribution function only for the case in which we treat a gas
in equilibrium, otherwise it represents a-priori unkown fermionic non-equilibrium

distribution function. Inserting the last relation into Eq. (2.15) results in the ex-
pression

(h(x, )ut(x, 1) Ze{l[px X} pf=ile(p)+ul(t—t) }{1 fol. (2.16)

By taking the Fourier transform with respect to x — x’ and t — ¢’ of Eq. (2.16) we
finally obtain
Gy (w,p) = —2ri{1 — fy}o(w — £p + ). (2.17)

We can now apply the same procedure to the other correlation functions with the
result

Gy (w,p) = 2mifpd(w —ep + u), (2.18)

Gy (w,p) = w—e(p)+pu+in " £2mifpd(w —ep + p),

(2.19)
Gif(w,p) = —[Go (w,p)], (2.20)
Gi(w,p) = [w—e(p)+p+in ™ =[Gyw,p)" (2.21)

From the physical point of view Eqgs. (2.17)-(2.18) contain informations about the
state of the system (through the distribution function) and the excitation spectrum

20



2.4 Perturbative Expansion

(through the delta function). The special form of Eq. (2.21) decouples the infor-
mation about the excitation spectrum and the state of the system described by
the non-equilibrium distribution function f, [10, 12|. Before finishing this section,
it is worth to explain how the physical picture changes when we return back to
equilibrium. The non-equilibrium distribution function f, then becomes the usual
Fermi distribution and consequently the correlation functions become functions of
the temperature and the chemical potential. This means that this formalism can
also be applied to describe systems in equilibrium at 7" # 0.

2.4 Perturbative Expansion

The construction of the perturbation theory for systems in non-equilibrium follows
the same steps as the equilibrium case at T'= 0 [52|. In order to illustrate how the
technique works we choose, as example, Eq. (2.2) for the time-ordered Green func-
tion G~~. When we change the representation from the Heisenberg to the interaction
picture, we obtain |53|

G (1,2) = —i(S e, [$(1)41(2) S]), (2.22)

where ’QZJ, @/A)T are free fields and

A A +Cx> A
S = S(—o0,+00) = Tkexp{—i V(t)dt},

—00
~ ~ ~ - A
St = S(400, —00) = Trexp{—i V(t)dt}.
+o0
V(t) is the interaction operator in the interaction picture. In the following we will
consider, just for simplicity reasons, a one-particle interaction

V(1) = b T
The quantities S, S~ represent the scattering matrices on the two branches of the
Keldysh contour and they contain both the interaction term and the external field
which drives the system away from equilibrium. In other words the Keldysh path
can be seen as a representation of the scattering processes induced by S, Sl In Eq.
(2.22) the average is calculated with respect to a state consisting of non interacting
particles and such a state can be an any state, and not only the ground state. If we
were in equilibrium and at 7" = 0, then we should calculate the average with respect
to the ground state, therefore the action of S—! could be neglected, because it would
correspond just to a multiplication by a phase factor. On the other hand, any state
away from equilibrium does not transform into itself under the action of g_l, but
the resulting state can be thought as a superposition of excited states coming from
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2 The Keldysh Method

all possible diffusion processes induced by the interaction term and by the external
field. This is the reason why S~1 cannot be neglected any longer when we perform
the perturbative expansion. As direct consequence we have a duplication of the
degrees of freedom because we have now to perform a double expansion (one for
both scattering matrices), whose contractions will involve and mix both sides of the
contour. This gives rise to the four different Green functions we have previously
introduced (Section 2.2). At first glance it seems to be an expensive price to pay,
but it avoids us to handle the a priori unknown states at £ = co when propagating
the system from ¢t = 400 to ¢ = —oo, where the system’s state is known [29, 41, 59|.
As already anticipated, the Feynmann diagrams of the non-equilibrium perturbation
theory are the result of the double expansion of the operators S, S~ appearing in
Eq. (2.22). Such diagrams consitute a sum of terms whose basic elements are the
Wick contractions of operators pairs. Let us begin by expanding the Eq. (2.22) up
to first order in the one-particle interaction. We see that the resulting expression
can be divided in two parts

(T (1) / GOV (3)0(3)dhs]) + (2.23)

Tei / O3V (3)6(3)d s T (1)4(2)).

The first one takes into account the product of the zero-order term of S=1 multi-
plied by the first-order one of g, the second term is built the other way round. In
equilibrium we would have only the first term of Eq. (2.23). The two terms must
then be contracted, resulting in the following products

(T (1)1 (2) [~ (3)U3)P(3)]) = Gy~ (3,2)Gy(1,3), (2.24)
(T[0! 3) U Tr(1)91(2)) = G+ (1,3)GF(3,2) (2.25)

of bare Greens functions. In Eq. (2.25) appear the lesser and greater free Green
functions since we have taken two contractions involving operators belonging to two
different parts of the Keldysh contour. Note that none of them is time-ordered
because they mix the two sides of the contour. On the other hand, in Eq. (2.24)
all operators live on the upper side of the contour, therefore we can have only time
ordered functions. Equations (2.24) and (2.25) are represented graphically in Fig.
2.2. V denotes the interaction potential, the arrows are the bare correlation functions
Gy, and the signs (—,+), stand for the upper and lower branch of the contour. Now
we have all the elements to write explicitely the time ordered Green function up to
the first order in V

+oo

GEI_)_)(LQ) = —z’4/d3x3dt3[G5—(1,3)G5—(3,2)(—V(3))+

—00
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2.4 Perturbative Expansion

Figure 2.2: The dashed lines represent the bare interaction vertex, the continous lines the
propagators connecting two points on the Keldysh contour.

+G, (1, 3)GE(3,2)V(3)].

The last equation induces a dependence in G(_l)_ not only on G, ~, but also on G(()_+).
As we will see in the following, the higher the order of the expansion and the more
complicated will be such a dependence. If we proceed further and take a look at the
next order (O(V?)), we find the graphs depicted in Fig. 2.3 whose corresponding

Figure 2.3: Second order scattering process, for the one-particle, interaction taking care of
all possible sign combination of the internal indeces.

expression reads
“+o00

G(_2)_(1, 2) = —iﬁ / d3$4d31’3dt3dt4

—00

Gy~ (1, 4)Go~(4,3)Go~(3,2)V(3)V(4)+
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2 The Keldysh Method

Gy (LG (4,3)Gy (3, 2V3)(=V(4)
Gy (1,4)Gy " (4,3)G(3,2)V(3)(=V(4))

Gy (LG (4,3)Gi(3,2)V(3)V (4)].

(_
(_

_|_
+

The external legs are characterized by two fixed minus signs, while the two internal
ones must be contracted in all possible ways. Out of all possible contractions G(_z)_
acquires a dependence on all bare correlation functions, resulting in a lenghty and
complicated analytical structure®. From the contour point of view this corresponds
to place the internal degrees of freedom in all possible ways on both sides of the
contour.

Up to now we have analyzed, just for simplicity reasons, only one-particle inter-
action, but the same arguments also hold for any kind of interaction. From now we
will focus on two-particle interaction

V(t) = 0" (O (OU 09 () ().

Until now we have considered contributions up to second order, but it is possible
to represent the exact G~~ in a compact graphical way as shown by Fig. 2.4

Figure 2.4: Compact diagrammatic form of the Dyson equation for the exact G~ written
in the Keldysh language.

The bold arrows stand for the exact Green functions, the thin ones denote the bare
correlation functions and the circles represent the selfenergy contributions. Once
again the external legs have fixed signs, while the internal ones take into account
the four possible combinations of +,— signs, resulting in the selfenergies in Fig. 2.4
depicted. The full G~ can then be written as

+oo
G (1,2) =Gy (1,2) + /d3m3d3x4dt3dt4 (2.26)

—0o0

3The same holds also for the other three correlation functions ( Eqgs. (2.4)-(2.6) )
4The other exact correlation functions (Eq.(2.4)-(2.6)) have the same internal structure too, what
changes are just the signs of the external legs which define the Green function we are considering.

24



2.5 A useful Transformation

G (1,4)S7+(4,3)G(3,2)].

The selfenergy functions or selfenergies are represented by graphs which cannot be
separeted in two parts by cutting just one continous line (one particle irreducible).
They can be summed as blocks depending on the order of the perturbation theory
we are considering. In Fig. 2.5 we show as an example the diagrams up to the
second order in U for ¥~~ and X7,

9 e
I |

== |+ 0N+ 5 N o
e T A
— \\-/
= =+ TR
e + N~ +
—LZ += ' l + —GE@?-*--

Figure 2.5: Selfenergies: ¥~ and ¥~ up to second order.

2.5 A useful Transformation

In order to render the previously presented formalism easier to handle it is convenient
to introduce a matrix notation, which permits to treat all correlation functions at

once. To this end we define
- DI Vs
X= ( PO RamD Sa s ) J

A G- Gt
G = ( Gt— Gt+ ) :
With this matrices it is possible to rewrite the set of Dyson equations for the various
Green functions in a compact matrix form as
+0o0o
é@mzau@+/E%&wmm@MAﬁ%amam. (2.27)

—00
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2 The Keldysh Method

We can now introduce the differential operator®

A 0 Ay
Gil=i—+— 2.98
0,1 Zatl + m + 22 ( )

which has the property [41, 53]

GylGo(1,2) = 6.6(1 — 2),

. (10
U’Z—O—l'

With this definition we can rewrite the Eq. (2.27) as

where

“+00
GoiG(1,2) = 6.6(1—2) + / dPasdts[6.3(4,3)G(3,2)). (2.29)

—00

This is a system of four integro-differential equations which are formally indepen-
dent of the non-interacting state (since Gy does not appear in Eq. (2.29)), which
now enters as initial condition. In passing we emphasize that Eq. (2.29) is com-
pletely general, it for example holds in the non-stationary case and also for spatially
inhomogeneous situations.

Equation (2.27) does not reflect explicitely the relation (2.29) among the Green
functions. It can be made manifestly by a linear transformation

. 1 1 1
=g ()

N A A 0 GA
G/:RIGR:<GR GK)’
K xR
40 )

with which we obtain

where

D FE T A

5If we differentiate with respect to the second variable ¢, then we must change the sign of the

time derivative obtaining

A 0 As
Golo 2 22
0,2 Zat2 + m +/1‘7

Go3Gy (1,2) =6(1-2).
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2.5 A useful Transformation

and
GE =G T +GT =G + G,

For £ and ¥4 one finally obtains, by means of ¥~ + X+ = —(X+~ + £F) [52],
the relations

=y 42T,

A=Y 45
We should remark that the transformation used here is not unique, in fact conven-
tionally a different transformation is adopted, which leads to the Green function

|72]
N GR GK

Let us write explicitely Eq. (2.27) for the transformed matrix G’

0 G4 0 G
7 0 GaxeGe
3 3 0
/ 4"wad"wedtadis { GESRGR (GETK 4 GETA)GA + GESRGH

From the off diagonal elements we obtain the expressions for the retarded and ad-
vanced Green functions as
+oo

GPA(1,2) = GEA(1,2) + / d>w3d®zydtsdty (2.31)

— 00

(GEA(1,4)2R4 (4, 3)GA(3,2)).

The solution to (2.31) describes the excitation spectrum of the problem we are
studying. The lower right matrix element of Eq. (2.30) contains the information
about the thermodynamic state of the system. Applying the differential operator
GA(_OL to it, the complicated expression simplifies to

+oo
C:(—()§,1GK(1,2) = /d3x3dt3[ZK(1,3)GA(3,2)+ZR(1,3)GK(3,2)], (2.32)

where we made use of the relation (|41])

A1 ~K A1 [+ +-1 —

GaGo) = GoulGe " + G 1=0
As before, the system (2.31) and (2.32) does not explicitely contain the thermo-
dynamic state of the non-interacting system. It enters only through the initial
condition to (2.32), which can be seen as a quantum mechanic generalization of the
Boltzmann equation.
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3 Functional Renormalization
Group

3.1 Introduction

The reliable calculation of physical properties of interacting quantum mechanical
systems presents a formidable task. Typically, one has to cope with the interplay of
different energy-scales possibly covering several orders of magnitude even for simple
situations. Approximate tools like perturbation theory, but even numerically ex-
act techniques can usually handle only a restricted window of energy scales and are
furthermore limited in their applicability by the approximations involved or the com-
putational resources available. In addition due to the divergence of certain classes of
Feynman diagrams some of the interesting many-particle problems cannot be tackled
by straight forward perturbation theory. The situation becomes even more involved
if one is interested in properties off equilibrium, in particular time-dependend situ-
ations. As discussed in Chapter 2, the standard approach for such cases is based on
the Keldysh formalism for the time evolution of Green functions. In order to study
interacting systems, in parameter regimes that cannot be accessed by perturbation
theory, novel theoretical methods have been devised recently. These approaches
are based on the general concept of the renormalization group [88] by means of
which one starts from high energy scales, in order to avoid infrared divergencies,
and works ones way down to the desired low energy region in a systematic way,
which depends on the particular problem to analyze. In particular, for interacting
quantum many-particles systems in equilibrium two different schemes attempting a
problem independent prescription have been developed during the nineties. One is
the flow-equations technique |20, 86], the other is a field theoretical approach which
will be explained in the course of the present chapter.

This method starts from a functional representation of the partition function of
the system, serving as generating functional for Green functions. It has become
known as functional renormalization group (FRG) [64, 69, 75, 87]. The aim of this
chapter is to derive an extension of the FRG formalism to non-equilibrium. The
general idea is to set up a generating functional, using an appropriate action on the
Keldysh contour (see section 3.2),through which we obtain our correlation functions
as functional derivatives. We will see that the extension to non-equilibrium does not
change the formal structure of the FRG. However, there is a price to pay, viz one
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3 Functional Renormalization Group

has to care for the Keldysh indices. Each of them takes into account a branch of the
Keldysh contour. As direct consequence we obtain a system of differential equations,
which shows a tensor structure with respect to the Keldysh indeces resulting in more
complicated form compared to the equilibrium case. It is also important to point out
that the formalism we are going to present is completely general and therefore can
be applied to bosonic or fermionic systems in stationary state or to time-dependent
problems.

Before finishing this section, it is important to mention that the Keldysh technique
contains the equilibrium theory (as soon as we turn off the external field which drives
the system out of equilibrium) both at 7' = 0 and at finite temperatures. Besides,
since the Keldysh method relies on real variables, we do not need, in contrast to the
Matsubara technique, any analytical prolongation from the imaginary axis to the
real one. This will permit to the non-equilibrium FRG to treat equilibrium situations
too (see Sections 5.3 and 6.3.1), avoiding the analytical prolongation which may be,
for some problems, a cumbersome step .

3.2 Extension to Non-Equilibrium

The derivation of the non-equilibrium FRG scheme closely follows the general lines
given in [30, 31|. To this end, we will first develop a formulation that allows to
express all interesting quantities via functional derivatives of a generating functional
whose choice has been inspired by Kameneev’s approach [41]. To set up a functional
integral representation of the generating functional respecting the Keldysh time
ordering, we define the matrix

A n o G__(€>€/) G_+(€>€/)
G(£7£> T ( G+_(§,§/) G++(§,§’) )

where the matrix elements are given by Eq. (2.3)-(2.6). The arguments &, ' are a
combination of all relevant quantum numbers, position and time. For all quantities
living on the Keldysh contour we introduce the short hand notation

+oo

(0,00) =i / dEdED(E)O(E, €€ |

—00

'In contrast to the Matsubara technique, where the frequency and the temperature are artificially
linked by the relation (fermionic case)

o = W(Znﬁ—l— 1),

within the non-equilibrium FRG the dynamical degrees of freedom and the temperature are
decoupled.
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3.2 Extension to Non-Equilibrium

where O is a matrix in the Keldysh indices and
Y-(&,¢)

(&, &) = < 3.1
= e 3
is a vector of fields (Grassmann for fermions or complex for bosons) with the time
argument of 1»_ on the upper branch of the Keldysh contour and ¢, a time argument
on the lower. Later it will also prove useful to Fourier transform from time t to
frequency w. One then has to replace t in & by w. The integrals over £ and &’
stand for summations over the quantum numbers and integrations over space and
time or frequency. The following steps can be performed with £ either containing

time or frequency. The generalization of the functional integral representation of
the partition function to non-equilibrium is [41]

== [piven{w.[a] v - isw (0101} 32

=0

Zp being a normalization factor given by

2= [Diven {@.[a] 0}

The matrix Go denotes the propagator of a suitably chosen reference system and S
represents an arbitrary interaction term. In order to build the generating functional
for the m-particle Green functions we have to insert in Eq. (3.2) external source
fields n, 77 according to (for the standard procedure in equilibrium see for example
[65]

Wik b = = [Pivesn{ (4 [60] " v) - iswltin oy
(o)~ ()} (3.3

Taking the logarithm of the latter equation we finally get the generator of the (con-
nected) m-particle Greens functions

We () {ny) =Y ({77}, {n})] - (3.4)

The (connected) m-particle Green function GY) can be then obtained by taking the
functional derivatives with respect to the vectors n

om om
577% e (577]57/71 (Sngm e 57751

W ({i}, {n}) (3.5)

n=0=7

GO (&, &, Em) = (CO)™

At this point it’s important to underline that, since the fields 7 have two components
(depending on the branch of the Keldysh contour), the (connected) m-particle Green
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3 Functional Renormalization Group

functions, resulting from Eq. (3.5), must be read as tensors with respect to the
Keldysh indices. Before giving a practical example of how such a tensor form arises,
let us perform one further step which will bring us to the definition of the generating
functional for the one-particle irreducible vertex functions +,,. Introducing the fields

b = %ﬁw (. {n}).

be = aéi%wc (). ().

where ( = £1 and the upper sign applies to boson fields. We can perform a Legendre
transformation

({6} 46) =W (ah ) =i (o) = 1)+ (3. [Ga] o) . )
With the help of Eq. (3.6), we define ~,, as

o o

Vm(giv”wg;n;glv""gm) - <Z)m5§g£’5§g£’ 6¢§ 5¢§

L ({o}.{e})] (37

¢=0=¢

Note that in contrast to the usual definition of I, which consists of the first three
|
terms in Eq. (3.6) only |65, we have added a term (gb, [Go} gb) The reason for

introducing this term will become clear in the next section. The general relation
between the G and Ym can be found in text books |65]. For the 1-particle Green
function we obtain

G1(£5€) = Gi(£s9)
)

where

£

with the proper one particle selfenergy 3. This implies the relation & = (v1- Note
that in the last equation the matrix structure appears not only with respect to &
and & but also with respect to the Keldysh indices. We now intend to show how
the tensor strucure of the vertices arises starting from the general expression

G$n(§177£;n7£1775m>: (38)
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o o

= Q‘m - —®
(¢4) Ongr ... 0Ny, e, - - Oy

we (i}, {n})

n=0=7
We look at the easiest case m = 1. We have two functional derivatives with respect
to the vectors 7, which can be made explicit by using a tensor product notation

Gi(£,€) = (CZ)— ® —Wc {7}, {n})

n=0=7
leading to the matrix
52Wc 52w
G5 (&.61) = (¢0) ( e © ) = (3.9)
5n+(5’)5n ©  on4(€)on(6)

_ ( Gy (£,8) Gi(¢,€) )

S\ GI(E,8) G )
The extension to higher order is evident. For m = 2 we get a four index tensor and
so on for higher values of m. In practice we have to add, for each m, two indeces
coming from all the possible combinations of the Keldysh components of the fields
in the functional derivative. Once more we want to emphasize that our formalism
has been formulated without assuming translational invariance up to now.

3.3 The Flow Equations

Now that we have pointed out how the Keldysh concept modifies the structure of
the Green functions, we can start to derivate the FRG flow equations, following the
steps in [30, 31]. In Eq. (3.2) and (3.3) we replace the noninteracting propagator
by a propagator GA depending on a parameter A € [Ag, 0] and require

Gho=0 |, GM'=G,, (3.10)

i.e. at the starting point A = Ay no degrees of freedom are “turned on” while at
A = 0 full system is recovered. In models with infrared divergencies A can be used
to regularize the problem. In equilibrium this is often be achieved by implementing
A as an infrared cutoff in momentum or energy. One of the advantages of the
FRG approach over other RG schemes is that one is not restricted to these choices
and other ways of introducing the parameter A have turned out to be useful for
equilibrium problems [35, 61|. All that is required to derive the fundamental flow
equations are the conditions Eq. (3.10). In our application of the non-equilibrium
FRG to the steady state transport through an interacting quantum dot it is natural
to implement A as an energy cutoff. However, such a choice must not be the natural
one in cases where one is interested in studying time-dependent phenomena. In
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3 Functional Renormalization Group

this situation the propagator and the vertex functions in general depend on the
various spatial and time variables individually and there is no obvious momentum
or energy cutoff scheme. Within the FRG several ways of introducing A can be
worked out, compared and the one best suited for the problem under investigation
can be identified.

Through G2 the quantities defined in Eqs. (3.2) to (3.7) acquire a A-dependence.
Taking the derivative with respect to A results in a functional differential equation
for TA. From this, by expanding in powers of the external sources, an infinite
hierarchy of coupled differential equations for the 42 is obtained. Although the
steps in the derivation are formally equivalent to Ref. [30, 31|, because of the real-
time formulation additional factors ¢ and signs appear in several places. We thus
believe that it is helpful to present the details of the derivation.

As a first step we differentiate W with respect to A, which after straightforward
but lenghty algebra (see Appendix 3) leads to

apoa .02 SWeh . syeh
A A A0, - A A
—dAW —(Tr (Q G )+z§Tr (Q S )+( e = ) . (3.11)

Considering ¢ and ¢ as the fundamental variables we obtain from Eq. (3.6)

—PA ({}.{¢}) = W“A ({7} A} -

- d oy d s <* A )
) (b))
Applying the chain rule and using Eq. (3.11) this leads to

62WCA
5 oA ) ’

d o
— I = (Tr < AGO’A> 1¢Tr
ST = (T (Q ¢
where the last term in Eq. (3.6) cancels a corresponding contribution arising in
Eq. (3.11), thus a posterior justifying the inclusion of this term. Extending the
well known relation [65] between the second functional derivatives of I' and W* to
non-equilibrium we obtain the functional differential equation

diAPA —( Tr (QAC;O,A> ~Tr <QAV$§:;(FA,CA¥O’A)) ’ (3.12)

where V%; stands for the upper left block of the matrix

—1 -1
52rA A0,A 52PA
A A0A V5a50 ¢ [GO ] Y5965
V5,615, GO%) = o e (Taoa] )" (3.13)
165956 5ass T [G ’ ]
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and the upper index 7" denotes the transposed matrix. To obtain differential equa-
tions for the 42 which include selfenergy corrections we express V3. in terms of ah

instead of GOA. This is achieved by defining

52TA
Uao =Tz~
and using
R | -1
ah = [[GQA] - mA] , (3.14)
which leads to
d A A A0,A A AAYHL,L A AA
T —cfn-(g c:7)-+<n} P} o) V¢¢07,C¥)], (3.15)
with
R -1
~ . CGA 0 Z/{* 52FA
Vs (P G =:[1—-< R Tee Vs . (3.16)
< ) o[m] (i) e,
. d 1
ot = — [GA] . (3.17)

It is important to note that U , as well as §¢1;¢ and 5¢F¢ are at least quadratic in the
external sources. The initial condition for the exact functional differential equation

(3.15) can either be obtained by lengthy but straightforward algebra, which we are
not going to present here, or by the following simple argument: At A = Ay, GO =
(no degrees of freedom are “turned on”) and in a perturbative expansion of the
the only term which does not vanish is the bare two-particle vertex. We thus find

% ({0}, {¢}) = S ({0}.{0}) - (3.18)

By expanding Vin a geometric series
f/q;@ = 1+ CGAYAUQ;@ + CAT'AUQ;@CAT'AUQ;#)—I— (3.19)

3,2 A 0T [ap)7 07T
gwaF}ww+

and '™ with respect to the external sources

Z Z 77?1(617)5%7,751)76771)

o 51 ..... € E1,nm

o

*({o} {e}) =

Xg; .- be, Be - - Py
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an exact infinite hierachy of flow equations for the 42 can be obtained. Consider
as simplest example the flow equation for the single-particle vertex 7 (selfenergy).
It can be derived by taking the expansion Eq. (3.19) up to first order in U, insert
it into Eq. (3.15), replace I'* on both sides with the expansion (3.20) and compare
expressions with the same powers in the fields, i.e. for v, up to order m = 1. This
procedure leads to the expression

d d -
d_A%\(gl; § = Cd—AZA(f/>f)
= T 8860 (3.20)

which can be visualized by the diagram in Fig. 3.1. In order to avoid any possible

Kk K’ K K’

Figure 3.1: Diagrammatic form of the flow equation for 7{\. The slashed line stands for
the single scale propagator S*.

misunderstanding it is worth to explain that the trace in (3.20) represents more
than the usual matrix trace. It contains all possible sums (integrals, series, trace,
contractions) over the internal variables (quantum numbers, time, frequency, etc),
or in other words, over all variables not explicitely written. In Eq. (3.20) appears
the so-called single scale propagator (the slashed line in Fig. 3.1)

SY = GrOAGM, (3.21)

and the quantity 2 (&', -;€,-) denotes the matrix obtained by keeping the indices &
and &’ fixed. We thus arrive at an expression that is formally identical to Eq. (19) in
[30, 31]. The difference appears in the matrix structure, which now also contains the
index components for the branches of the Keldysh contour. To make this explicit,
we write out Eq. (3.20) with respect to the Keldysh indices.

d .
Cd_Azaﬁ’A(é-/? éﬁ) =Tr ZS#V,A,VSW,[;H,A(&;/, . 57 ) ' (322)
iy

Apparently, the derivative of v is determined by 72 (implicitely through S’A) and
the two-particle vertex 75‘. Thus an equation for 75\ is required. Here we only show
the diagrammatic form of ¥4 in Fig. 3.2, its derivation will be given in the next
section.
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3.3 The Flow Equations

R e,

Ky ki ki ki

y ko ¥ ki y ko y ki
ELE R

kl/\kl kz/\kz kl/\kz kz/\kl

Figure 3.2: Diagrammatic form of the flow equation for 74'. The slashed line stands for
the single scale propagator S*, the unslashed line for G*.

Since the only difference between the Eq. (3.20) and the analogous equation in
[30, 31| are the two contour indeces, it can be interesting to have a more explicit
expression of Eq. (3.20) in order to see how these two indeces change the structure
of the flow equation in non-equilibrium. We have to start again from Eq. (3.20) and
write explicitely the right hand side in its tensor form

rE)yA I e\—+A
CIA ( §E§':§;+—,A §E§/:g++,l\ ) = Tr (8" (¢,-+36-2)) = (3.23)

A +A N\ T ——A -+
n gy | (T ) (T )
_ T < S+_’A S++’A ) Yo Y2 . Yo Ve .
ST ST RN IR
vt ot vttt
where the matrix elements ~2' are tensors in the variables not explicitely written,
1.€. [79(£/7 e 757 T )] q.q = 75\(5,7 q/7 57 Q>
In Eq. (3.23) the product between S* and Ao+ €,--+) must be read as
a contraction among the Keldysh indeces, resulting in a sum of products among
blocks having the same index pair. It is also important to point out that because of
the hierarchical structure of our equations we get always a link between 2m-order
vertex function and 2(m + 1)—order one. This means that ( case m = 1) on the left
hand side of Eq. (3.23) we have a two index tensor and on the right hand side a
contraction between the Keldysh indeces of a two index tensor S and a four index
one 5. The same contraction structure remains at higher orders but it is obviously

much more complicated. This point will become clear in the next section, where we
study the flow equation of ~s.
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3 Functional Renormalization Group

3.4 Flow Equation for the Two-Particles Vertex

To obtain the flow equation for 3 we have expanded Eq. (3.16) in a geometric
series up to first order and I'* Eq. (3.20) in the external sources up to the or-

der m = 2. In order to find the flow equation for the vertex function, 5, we
just have to proceed one step further, namely expand Eq. (3.16) up to the sec-
ond order and T® up to third (m = 3). After comparison of the terms with

the same power in the fields we obtain a differential equation for ¥4, which does
not only contain v{- implicitly via the propagators and 72, but also the three-
particle vertex vé\. This three-particle vertex depends on the four-particle vertex
etc. It is generically impossible to solve the full set of infinitely many coupled
differential equations. In applications one has to truncate it, and this is usually
done at m = 2, i.e. one replaces all vertices with m > 2 by their initial values,
which for typical problems encountered means ~,, = 0 for m > 2. The truncated
equation for 72 then reads (see Eq. (15) by Karrasch at al. [42] and Fig. 3.2):

d
TTMEL G 6 6) = D / d@d@&d&(

/"L7V7P7n

G (€5, €3) SN (€4, €1) [V (EL €63 &, €)M (€5, €05 6, &)
— G, 88N, €) [y (ELL €4 €1, E)Y N (€5, 61 €4, &)
N &y, EPMNELL 6 65, &)
= APTR(EL, €4 &0, E)YPN TN (€8, €15 64, Eo)

— vﬁ””’”’A(iéa£§,;51,54)7““"5’A(£2,£1;53,52)]) . (3.24)

Equation (3.24) has a complicated form consisting of sums and integrals over
times or frequencies and quantum numbers including spins and contractions over
the Keldysh indices. The main difference to equilibrium is the presence of mixed
contractions regarding the Keldysh indices of the matrices G and S and the four-
index tensors 7. At this point it is worth to give some more insight concerning
the relation between the dynamical indeces and the Keldysh ones appearing in the
Greens functions and in the tensor 7.

From the topological structure of the flow-equations (see Fig. 3.2) we see that each
Keldysh index is strictly connected to a dynamical one. For instance, in G"*(&4, &)
the index v is linked to & and p to &). This means that if we permute "I;,u\ — ’ﬁy\,

A
then we have to rotate the corresponding dynamical indeces &4, & — &, &, too. It
is also important to note that the permutation of each dynamical index induces a
factor ¢ in the vertex, i.e. a minus sign for fermions , which is not true for the
permutation of two Keldysh indices, because they do not represent any physical
variable such as impulse, spin etc. In particular we have to distinguish two cases
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3.4 Flow Equation for the Two-Particles Vertex

when we permutate the first or the second pair of Keldysh indeces in +2. In the first
case we have to transpose each block matrix (see Eq. (3.23) ), in the second case
the block matrices remain unchanged but we must transpose the entire tensor.
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4 Stationary Transport through a
Quantum Dot

4.1 Introduction

In the previous chapter we developed the formal extension of the FRG in non-
equilibrium in a form which was as general as possible. We obtained a hierarchy
of differential equations, which we had to truncate at a certain level to obtain a
manageable set of equations. Note that even within this truncated system the
remaining set of differential equations must typically still be further approximated
to allow a numerical solution |2, 36].

The goal of the present chapter is to apply our formalism to the single impurity
Anderson model STAM describing the transport properties of a single-level quantum
dot under a constant bias at 7' = 0. As discussed in the introduction, the STAM
is the simplest model displaying non trivial many-body effects. Furthermore, the
FRG equations are simple enough to in principle allow for a full treatment of the
truncated system including all time or frequency dependence. However, as first step,
we will concentrate on the stationary case and will introduce further approximations
to reduce the complexity of the FRG equations.

Let us start by deriving the analytical expressions of the non-interacting dot Green
functions of the SIAM, as next step we will approximate the vertex by a energy-
indipendent one and discuss how the mathematical form of the non-equilibrium flow
equations will change. The limit Vg — 0, will serve as test case where we will show
that our non-equilibrium FRG is able to reproduce the results in equilibrium [2].
We will show in particular that, even with such a drastic approximation, we are
able to reproduce, at least qualitatively, the results regarding the current J and
the differential conductance GG, which have been obtained by several authors with
perturbation theory [16, 33].

4.2 The Non-Interacting Case

The SIAM has already been introduced in detail in the first chapter (see Section
1.4.2). A particularly simple case, where we can calculate all Keldysh functions
exactly, is the non-interacting limit U = 0. Besides, serving as an exercise to obtain
a feeling for the structure of these correlation functions, the results of the following
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4 Stationary Transport

& _ < »

(0)

Figure 4.1: Graphical representation of i](o)

calculations are also necessary to initialize the FRG equations set up in the next
section. The starting point to derive the correlation functions is the Dyson equation
written in a matrix form

. L . -t
Gd,(())(w)z[(gd,(())) —2(0)} , (4.1)

where Gd ,0)> 9d,(0 E(o are the matrices

o (G Gl
4.0 = G+— G++ ’

d,(0) d,(0)
(4.2)
. (95,(_0) gd_,(+o>>
d,(0) — _ )
9ao) 90
(4.3)
—— —+
2(0) — V_2 ( Gka(O) Gﬁa(o) ) (4.4)
+- ++ ’ '
2N Ta Gka(O GEa(O)

(see Fig. 4.1 ) where we assume that ¢, , = ex g and V, = Vg = V/+/2. The meaning
of the factor v/2 will become clear later. We need the explicit expressions of the free
Green functions for the dot and the electrodes. They read |52]

1

G0 = o= 5t Mo + 10 (4:5)
+2im f(ep)0(w — € + pa)

G W) = =[G W) " (4.6)

Gty @) = 2im (s — g + o) (47)

oW = —2imf(—ep)d(w — g+ pa) (4.8)
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4.2 The Non-Interacting Case

for the leads and

_ 1
90\ = ST TR (4.9)
+2imf(e)o(w — e+ p),
gin@ = = law@] (4.10)
Japy(w) = 2inf(e)d(w —e+p), (4.11)
Japyw) = —2inf(=e)d(w e+ p) (4.12)

for the dot. Inserting Eq. (4.5)-(4.8) into Eq. (4.4) and then into Eq. (4.1) together
with Eq. (4.9)-(4.12), we obtain the dot free Green function in a matrix form

. 1
Gaol) = (o i (4.13)
< w— Vg —il[l = F(w)] il F(w) )
—iI'F(—w) —(w—=Vg) —il'[l — F(w)] ’

where F(d+w) := fr(fw) + fr(*w) and f,(+w) := f(£(w — pa)) are the Fermi
functions of the reservoirs and I' = 7V2Np, (with Np the density of states at the
Fermi level in the reservoirs) is the tunnel rate between the leads and the dot.

We now explain the procedure to derive the matrix elements in Eq. (4.13). Let
us, for instance, start by calculating the selfenergy component

Xo) = IN Z Fa(0)’ (4.14)

First of all we transform the sum over k into an integral
1
N Z — [ dwN(w)

over the density of states N(w). At this point we introduce a second approximation
(flat band) for the density of states in which N(w) is

N(w) = {NF, if |w| < D (415)

0, else .

Therefore we may write Eq. (4.14) as

So) = ZNF/dw G @)- (4.16)
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4 Stationary Transport

Substitute Eq. (4.5) into the integral (4.16). The Dirac delta, in the second term of
Eq. (4.5) simplifies the calculation of (4.16), leading to the definition

3 / A f (e,)6(w — 5 + o) = Frle5) + Frlep) == F(w).

The integral with respect to the first term of Eq. (4.5) can be easily calculated in
the limit D > ¢ (wideband limit)

D
1
/dwizln {D+€} — 0,
W fho — € D —¢
-D

leading to the result
D
I o » '
2(0) = ? Z NF / dw GEa(O)(w) = ZFZ fa(&f];) = ZFF(Q}) (417)
a ) o

The same procedure has to be repeated in order to calculate the other components of
(o). By inserting the matrix elements of (), together with equations (4.9)-(4.12)
into Eq. (4.1), we obtain by a straightforward calculation the following matrix
elements, which correspond to the free Green functions of the dot

w—Vg—il'[l — F(w)]

Cirw) = e (4.18)
Giow) = —[GaoW)", (4.19)
Gailw) = i = (;)+ - (4.20)
Giy(w) = —i - EZ?/S; i = (4.21)

4.3 Flow equations

We start from the equation (3.23)

d .
CRENE Q) =Ty i (e ) (4.22)
uv

for the selfenergy and neglect the energy dependence in the vertex

av;Bu,A av;Bu,A
Yo on (£/7 fl; £7 52) - 7275/76575752 . (4.23)
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4.3 Flow equations

The single particle quantum numbers £ in the right hand side of Eq. (4.23) represent
the spin index only. As direct consequence X does not depend on energy any longer.
The resulting flow equation for the selfenergy becomes

1 za“ Ty Smtygiet (4.24)

Using the antisymmetry of 2 in the spin indices and the spin conservation imposed
by the structure of the interaction we can further simplify Eq. (4.24) by introducing
the flowing interaction U*?*7%A defined as

aﬁf\/(iA — , 5
01,05;01,02 o1,01%05,02

U — 601 50601 0y UM (4.25)

As last step we specify how the parameter A is introduced. Since we are interested
in a stationary situation, i.e. the propagators only depend on the time difference
t — ', all equations can be transformed into frequency space and one natural choice
is a frequency cutoff of the form

Ghow) =0 (lw] — A) Gap(w) (4.26)

with Ag — oo [30]. Evaluating S by means of the Morris lemma [30, 64] results in
(see Appendix 1 and 2)

SMw) = 3(Jw| = NG (w), (4.27)
with )
i (w) = (4.28)

where we used that 3% does not depend on energy. Inserting Eq. (4.25)-(4.27) into
Eq. (4.24), we arrive at the following expression

A s _ Z S G w) (2 e (4.29)

dA ﬁ/éw +A

for the flow equation of the selfenergy. Finally, the initial condition for the self-energy

is Ahm o — 0, which means that we begin with an interaction-free problem.
0—00

Concerning the flow equation for ~, the starting point is Eq. (3.24) in which we
substitute Eq. (4.23). The result can be further simplified by taking advantage of
spin and energy conservation, which implies that G and S are diagonal with respect
to & = & and & = £). As far as Eq. (4.25) is concerned, spin conservation can be
written as 01 = 0], 09 = 04 and 07 = 5. Note that such relations do not hold for
the corresponding Keldysh indices (see Section 3.4). The integrals over wy and wy
as well as the sums over ¢} and o) can then be performed straightforwardly. Using
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4 Stationary Transport

Morris lemma [64], we can rewrite the matrix product of G and S as (see Appendix
1 and 2)

SN — 23~ GG

where G is defined in Eq. (4.28). The d-function can be used to perform another of
the frequency integrals, and the remaining one can be evaluated because of energy
conservation of the two-particle vertex. Using the spin independence of the Green
function for zero magnetic field, this leads to

i aByo,A gpnA V,u,A( )fya,@pl/A fyn,ufy(SA
dAny’l,aé;Ul,ag 2 : 2 : 2 : 01,05;03,04 103,04;01,02

w £A 03,04 p,v,0m

gnpA( )gwl\( ) apyn,A pBYE,A apyv,A KB, A
703704;01,0370370'2;04702 03,03;017047047%;03,02
_ ~ABpynA pavd, A _ ABpwsA pamnd, A
70&04;0170370370’1;04,02 70&,03;0170470470’1;03,02 : (4'30)

Comparing Eq. (4.30) to Eq. (20) in Karrasch et al. [42], where similar approxima-
tions were made in equilibrium, we see that we have two more terms because of the
Keldysh indices. In the first term appears GZ"’A, while its transpose GZP’A enters
everywhere else. As initial condition we have to set

5 G560 6) = 0l (i, ~ ) - (43)

Using the antisymmetry of 44 in the spin indices and spin conservation (Eq. (4.25))
we can further simplify Eq. (4.30) finally leading to the flow equation

d
aﬁ oA , V , afpr,A o, Bapv, A 6,
d Y 47r § : § : (gpn u ( ,) [U pv A rrmmy [y Bepv Ay }

w==%A p,vp,n
gﬁﬁv ( )gl% ( )[QUOCM’YU7AUP5V5yA — poesmArrBprd A _ prueyn, A rypBrd,A

+2Uocpw7/\ P A _ propyv, AryBund, A _ rpoyv, ArruBnd.A _ pruByn A raprs, A
_UpﬁwvAUa/m&A]) ) (4.32)

From the initial value of ¥4 at A = Ag — oo given in Eq. (4.31) we can read off as
the initial value for U*87%A0
Uaaaa,Ao — aill ’

while all other components are zero. In other words, we take as initial conditions
the bare interaction.

The system of differential equations for 3% and UA Eq. (4.29)-(4.32) will be
analyzed later this chapter. The selfenergy obtained from its numerical integration,
must be inserted into the expressions for the current and the conductance we are
going to discuss in the next section.
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4.4 Current

4.4 Current

For the model (1.2) the current is given by the Meir-Wingreen formula [63, 89

T =5t = 1o [ dolfu) ~ fa@)) [6@) - G @) (439

—00

with fr p(fw) = [1 +exp {£H(w — pta)}] . The full interacting one-particle Green
functions of the dot are denoted by GJ~(w), G; " (w) and Ji g are the currents
across the left and right dot-lead contacts

. F 0 _ ~
Jur) = i% dw [fL(R)(—W)GEJF(W) + frr) (w)Gy ™ (w) ] ;

— 00

respectively. Substitute into Eq. (4.33) the expressions of the full Greens functions
Gi ™ (w), G5 (w) leading to the following expression for .J

“+o00
. . _ Y a76
=20 [ i) - fale L3

— 00

J (4.34)

with
A=|w-Vo+il[l - FW)] - ()| + [[F(w) - SmE ()],

F(w) = fo(w) + fr(w).

Equation (4.34) plays a central role in the course of this work, since it is the formula
we will adopt to calculate the transport parameters.

Before going further it is necessary to explain in more detail how the energy
independent selfenergies affect the original form of the Meir-Wingreen Formula. Let
us come back now to Eq. (4.33). It has been written in a somewhat unusual form,
not employing the original relation [63, 89]

Gl (w) — Gi(w) = —2mipalw). (4.35)
where py(w) = =SmlGT@l - genotes the dot’s one-particle spectral function. The
reason is that, as soon as we neglect the energy dependence of the selfenergies >

GEA (W) =G (w) — G (W)
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4 Stationary Transport

does not hold any longer. This can be seen by inserting G**(w) in the previous
equation to obtain

w—V, - z{r +QImE - — %m2—+]

GHw) = — X0 , (4.36)

w—V,—i [F +3mME" + SmEY Tt — 2T (F(w) + F(—W)}
Gi(w) = —

A(w)
A simple comparison between the imaginary parts of these two relations directly
shows that G®(w) # [GA(w)]*, unless at least ¥~ is energy dependent and absorbs
the last term in the brackets in the expression for Gf(w). However, what still holds,
even in the energy-independent case, is the relation Gt~ — G=1 = —27ipy(w) and
this is the reason why we have adopted G}~ (w) — G; " (w).

Before concluding this section we compare and discuss the expressions of Sm[GH(w)]

and G7~ (w) — G5 (w).

[F 4+ QmE— — %mZ_JF]

SIm|GF(w)] = N , (4.37)
{F - %mZ_JF]
Gi (@) = 67" (w) = 3 = (438)

From the last two equations we observe that the difference between them lies in the
term SmX~~. In non-equilibrium, for not too large Coulomb interactions (U/T" = 5)
the imaginary part of ¥~ is negligible compared to I and to SmX~", therefore we
could still write the Meir Wingreen formula in its original form. In any case, for
generality reasons we prefer to keep Eq. (4.33). Switching off the bias, but staying
at T = 0, we obtain SmX ™1, 3mX~" — 0 and thus recover exactly

G (w) — Gl (w) = 2mipa(w).

In passing we note that, even in an equilibrium situation (see Chapter 6 for a detailed
illustration), but at finite temperature T' # 0 the imaginary parts SmX =1, ImX~~
are not zero, resulting again in the breaking of Eq. (4.35).

Another quantity of interest, which will be discussed more in detail in the following
is AJ = J, — Jr |33|. Since no charge is produced on the quantum dot, AJ = 0
in the exact solution. Using again the results of Meir-Wingreen [63] and Wingreen
and Meir [89], the expression for AJ becomes
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4.5 Lowest order approximation

N _g 7° L, Fw) [SmEH(w) - ggzz;—(w)] S w) g

Depending on the type of approximation used AJ = 0 might either hold for all
parameters [84, 89| or not [33]. We note that fulfilling AJ = 0 is, however, not
sufficient for an approximation to provide reliable results. E.g. the self-consistent
Hartree-Fock approximation fulfills AJ = 0, but nonetheless does not capture the
correct physics even in equilibrium [34].

4.5 Lowest order approximation

Before studying the coupled system for S and v4 we begin with the simpler case
where we replace v5 on the right hand side of Eq. (4.22) by the antisymmetrized
bare interaction and consider only the flow of ¥. With this replacement Eq. (4.22)
reduces to

d dw

d—A2$$’A::|:iU/§S$$’A(W) . (440)

Within this approximation the selfenergy is always time or frequency independent
and no off-diagonal terms, in the Keldysh contour indices, are generated. It leads to,
at least qualitatively, good results in equilibrium |2|, where the flow equations can
in addition be solved analytically. With $A being diagonal in the Keldysh indices,
a straightforward calculation permits us thus to rewrite Eq. (4.40) as

Gag @) _ st

izﬂF%A _ :i:ﬂ Z Aw)
dA 2 G (w) o G7(w) G wEt s W)\
wzj[A( aer ¥ 7A) ( e e
(4.41)
where
Aw) = G (W)Gigw) = Gag(w)Gjg (w)
B 1
(w — V(;)2 +12 -
Equilibrium

We now focus on T'= 0. In a first step we discuss the equilibrium situation, that is
Ve = pur — pur — 0. Then we obtain the decoupled system

d U Vi + NFFA
— NFRA = 4.42
dA "TIALID)R — (Vg £oFrh)2)’ (442)
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which can be solved analytically. We first note that with X THA = — [E“vA}* both
equations are equivalent. For ¥~ we obtain with the definition o = Vg + X4
the solution

: (4.43)

oM (%) = (A + D) Jo(FH) ()
MY (T8 — (A +iD)Yo(R22)  Yo(TR)

where J, and Y, are the Bessel functions of first and second kind. The desired
solution of the cutoff free problem is obtained by setting A = 0, i.e.

o h(F) ~Th(FF) _ Jo(72) (4.44)
oYi(F) ~Th()  Yo(72)

which is precisely the result Eq. (4) obtained by Karrasch et al. [2|. It is, however,
important to note that in the imaginary-time formulation of the fRG, the differential
equation has a different structure. It is real and has a positive definite denominator.
Thus, while the solutions at A = 0 are identical for the imaginary-time and real-time
formulations, the flow towards A = 0 will show differences. As we will see next, the
complex nature of the differential equation (4.42) can lead to problems connected
to its analytical structure when attempting a numerical solution. For small U/T" no
particular problems arise. As an example the result for the flow of ¥~ as function
of A for U/T' =1 and V/T' = 0.5 obtained with a standard Runge-Kutta solver is
shown in Fig. 4.2. Consistent with the analytical solution Eq. (4.44), the imaginary
part (dashed line) goes to zero as A — 0, while the real part (solid line) rapidly
approaches the value given by formula Eq.(4.44).

However, for larger values of U/I' the numerical solution becomes unstable in
a certain regime of V. A typical result in such a situation is shown in Fig. 4.3.
The different curves were obtained as follows: The full and dashed ones from the
numerical solution starting with ¥~70 = 0 at Ag — 00, the dash-dotted and dotted
by integrating the differential equation (4.42) backwards from A = 0 with the correct
solution for A = 0 as given by formula Eq. (4.44) as initial value. The crosses finally
are the results from the analytical solution Eq. (4.43). Evidently, there exists a
crossing of different branches of solutions to the differential equation for A/T" ~ 1
and the numerical solution with starting point A = oo picks the wrong one as A — 0.
The reason for this behavior is that for large U there exists a certain V§ such that
VEé + Yol = A, + i with real A,, resulting in a pole in the differential equation
(4.42). For Vi # V& this pole does not appear for real A, but as shown in Fig. 4.4,
SmA, changes sign at V&, which in turn induces a sign change on the right hand side
of the differential equation, leading to the behavior observed in Fig. 4.3. There also
exists a second critical value V& such that for Vg > V§ we find SmA, < 0 and the
instability has vanished again. Obviously, this instability, which leads to problems
in the numerical solution, limits the applicability of the present approximation to
sufficiently small values of U. This is different from the imaginary-time approach by
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Figure 4.2: Flow of ¥~ 7A/TI" with A/T" for U/T = 1, Vg/T' = 0.5, and Vg = 0. The full
curve shows the real part, the dashed the imaginary part of =4

Andergassen et al.,[2| where this simple approximation leads to qualitative correct
results even for values of U significantly larger than I

4.5.1 Non-equilibrium

We now turn to the case of finite bias voltage Vz. As a typical example, the flow of
¥~ for U/T = 1 (full and dashed curves) and 5 (dashed-dotted and dotted curves)
for Vi /T' = 0.5 at Vg /T" = 0 (equilibrium) and Vp/I" = 1 is shown in Fig. 4.5. Since
the results for Xt H4 are related to those for 3= by LtTA = — [2="A1" we do
not show them here. The V5 dependence of the curves for Re [E“vA] (thick lines)
looks sensible. For Vz # 0 an imaginary part of order U? is generated in the flow
which does not vanish for A — 0 (see the thin dotted line). Causality requires that
the relation |52]

5T (w) + 2 (w) = - [N w) + 57 (w)] (4.45)

must hold for the exact solution. Because of X" (w) = ¥t~ (w) = 0, the finite
imaginary part of X% leads to a breaking of the condition Eq.(4.45) to order U? at
the end of the FRG flow. This is consistent with the fact that by neglecting the flow
of the vertex terms of order U? are only partially kept in the present FRG truncation
scheme. The weak breaking of causality can also be understood as a consequence of
our approximation leading to a complez, energy-independent self-energy: The off-
diagonal components, being related to the distribution functions for electrons and

51



4 Stationary Transport
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Figure 4.3: Flow of ¥~ 7A/T" with A/T for U/T = 15, Vg/T' = 6, and Vg = 0. The full and
dashed curves show real and imaginary part obtained from the integration A = co — A = 0,
the dashed-dotted and dotted curves real and imaginary part obtained from an integration
A =0 — A = oo, using the solution from (4.44) as initial value for ¥~7*. The crosses
denote the analytical solution (4.43).

holes, respectively, in general have different support on the energy axis. The energy
independence makes it impossible to respect this structure here.

For our further discussion the order U? violation of Eq.(4.45) means that we
may not rely on relations like Eqs. (4.35) but have to work with G*°, thus the
somewhat unusual formula (4.33). A naive application of X% =37~ — X~ and use
of G}~ — Gt = 2iImGH would have led to unphysical results. That working with
G+~ — G, " is still sensible can be seen from a straightforward evaluation leading to

G (@) = Gt (w) = (1.46)
) T
"o —Va+iT [1— F(@)] =5 + T2F(w) F(—w)

F(w) = fu(w) + fr(w)

which is purely imaginary with a definite sign. Inserting the expression Eq. (4.46)
into the formula Eq. (4.33), one can calculate the current and thus the conductance.
Since we are at T' = 0, an explicit expression for the current of the cutoff free problem
(at A = 0) can be obtained by noting that with pu;, = Vi/2, ug = —Vp/2 one has
fro(w) = frlw) =060(Vp/2 —|w|) and F(+w) =1 for w € [-Vp/2, Vp/2], which leads
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Figure 4.4: Imaginary part of A, determined from (4.43) and Vg + X~ ~" = A, + [ for
different values of U and Vp = 0 as function of Viz. For U/T' = 15 and 20 there exist an
interval [V, V23] where SmA, > 0, while for small U or Vi ¢ [V& VE] we always have
SImA, < 0.

to
Vi/2
2 1
J = — d
s / u}|uJ—VG—E—_|2+I“2
—Vp/2
Ir Ve + s
= —— s arctan ¢ 72 2 (4-47)
T I I
s==+1
with the abbreviations
Vi = Vo4 ReX ™, (4.48)
" = I2+(Sm¥—)2. (4.49)

Equation (4.47) for the current is equivalent to the noninteracting expression but
with renormalized parameters V4 and I'*, which depend on the interaction as well
as the bias and gate voltage.

An example for the differential conductance as function of Vg obtained from Eq.
(4.47) for U/T = 2 and several values of Vz is shown in Fig. 4.6, where Gy = 2¢%/h
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Figure 4.5: Flow of ¥~ 7A/I" with A for U/T' =1 and 5 for Vg/T' = 0.5 at Vz/T' = 0 and
1 (thick curves: real part; thin curves: imaginary part). The curve for SmE__’A/F at
U/T =1 and Vg/T =1 (thin dashed line) lies on top of the corresponding zero bias curve
and is thus not visible.

(after reintroducing e and £). Increasing Vg leads, as expected, first to a decrease of
the conductance close to Vi = 0 and later to a splitting of order Vg. Since we will
discuss a more refined scheme including parts of the flow of the two-particle vertex
next, we do not intend to dwell too much on the results of this simplest approxima-
tion. We note in passing that for Vi; = 0 due to particle-hole symmetry we obtain
from the differential equation (4.41) that ¥~~ = 0 independent of U. Consequently
the current J calculated via Eq. (4.47) and the conductance are independent of
U, too, and given by the corresponding expressions for the noninteracting system.
As we will see in the next section, this deficiency will be cured by the approximate

inclusion of the vertex flow. In the present approximation the current conservation
AJ = 0 holds for all parameters as X~ = X+~ =0 [cf. Eq.(4.39)].

4.6 Flowing vertex

A more refined approximation is obtained when we insert the flowing two-particle
vertex ) as given by expression Eq. (4.30) in the calculation of the self-energy Eq.
(5.1). By this we introduce an energy-dependence of the self-energy [30|. However,
because the size of the resulting system of differential equations becomes extremely
large if the full frequency dependence is kept (for a discussion on this in equilibrium
see Hedden et al. [30]), we only keep the flow of the frequency independent part
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4.6 Flowing vertex

G/G,

Figure 4.6: Conductance normalized to Gy = 2¢%/h as function of Vg for U/T = 2 and
several values of the bias voltage Vp.

of the vertex, an additional approximation which again has successfully been used
in equilibrium [42]. As a consequence we again end up with a frequency indepen-
dent 7. The resulting expression for the self-energy (see Section 4.3) is given by
Eq. (4.29). This approximation leads to a surprisingly accurate description of the
transport properties in equilibrium. In particular it is superior to the lowest order
approximation including only the bare vertex.

Equilibrium

We again begin with the discussion of the solution to Eq. (4.29) in equilibrium.
Results for the flow of ¥~74 are presented in Fig. 4.7 for U/T" = 1 (left panel)
and U/T" = 15 (right panel) for Vg = U/2. Since St+* = — [S=74]" only one
component is shown. The stars in Fig. 4.7 denote the solutions of the imaginary-
time equations taken from Karrasch et al. [42]. Note that for U/I' = 15 and
Ve /T > 6 the simple approximation Eq.(4.41) showed an instability, while with the
flowing vertex the system is stable even for these large values of U and reproduces
the correct equilibrium solutions for A — 0 [42]. The reason for this is that the flow
of the vertex reduces the resulting effective interaction below the critical value in
the instability region [42].
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Figure 4.7: Flow of ¥~—/T with A for U/T =1 (left panel) and U/T" = 15 (right panel)
at Vg = U/2 and Vg = 0. The full curves show the real part, the dashed the imaginary
part of X~—. The stars at the vertical axis denote the values as obtained from the
imaginary-time FRG [42]

Nonequilibrium

For the same parameters as in Fig. 4.7 we present the resulting flow with finite
bias Vp/I' = 1 in Fig. 4.8. In addition to the curves for real (solid lines) and
imaginary part (dashed lines) of ¥~ a third curve is displayed, the imaginary part
of ¥~ (dashed-dotted lines), which now is generated during the flow. Note that
Rex A = 0 and A = [Z_J“Ar. Furthermore, we always find Im- 4 < 0.
For U/T = 15 (right panel in Fig. 4.8) we have rescaled Im¥ =+ by a factor 102 to
make it visible on the scale of Y=, Since 2*%" is a complex energy independent
quantity Eq. (4.45) is again not fulfilled. We note that the error is still of order U?,
but for fixed Vi and Vg it is significantly smaller than in the simplest truncation
scheme discussed above. The energy-independence of the self-energy allows to derive
an analytical expression for the current at 7" = 0 similar to Eq.(4.47), which due to
the appearance of ¥~ now becomes

I I

r T Ve + s
J=—= s arctan <G782> (4.50)
s==+1
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Figure 4.8: Flow of ¥~—4/T" and =t /T" with A for U/T = 1 (left panel) and U/T' = 15
(right panel), Vig/T' = U/2 and Vp/I" = 1. The full curves show the real part, the dashed
the imaginary part of ==, the dot-dashed the imaginary part of ¥~ The real part
for the latter is zero.

with V5 as in Eq. (4.48) and!

I=T-Q9mx " >T (4.51)

= \/f‘2 + (SmE—)%.

where X% is taken at A = 0. Thus, the only change to the expression (4.47) is a
formal replacement I' — T in J/T'. Equation (4.50) is of the same structure as for the
noninteracting case with Vi and I' replaced by renormalized parameters. However,
the two self-energy contributions ¥~~ and X~ enter distinctively different in the
expression for the current. While 3mX~~ solely plays the role of an additional life-
time broadening, SmY ™" directly modifies the tunneling rate both in the prefactor
of J and in the expression for the life-time broadening. A problem occurs when
using the results of the present approximation in Eq. (4.39), leading to

o)

B [1— F(w)] (4.52)

™

—00

AJ

1
lw—Vg+ il [l — Fw)] =2 4+ [[F(—w) + SmE+-] [[F(w) — SmX—+]

'We remember the reader that, in the Eq 4.51, SmX~1 # 0 only when we take into account the
vertex contributions.
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Figure 4.9: The current difference AJ is plotted versus U/T for Vg /T' =5 and Vi/T = 2.
The plot shows a quadtratic behaviour of AJ as function of U/T.

The requirement AJ = 0 is only fulfilled for V; = 0, because then >~ = 0 and
the integrand is asymmetric with respect to w. Thus our approximation for the
energy-independent flowing vertex violates current conservation for Vi # 0 in non-
equilibrium. We verified that AJ ~ U? (see Fig. 4.9) which is consistent with
the fact that not all terms of order U? are kept in our truncated FRG procedure.
How does AJ behave in the limit Vg — 0?7 To see this we note that, because
ImX~T does not depend on the sign of Vz and furthermore goes to zero as Vg — 0,

ImE—+ 2" V2 (see Fig. 4.10). Consequently, AJ "% V2 and hence the violation
of current conservation vanishes in the linear response regime Vz — 0.

In Fig. 4.11 we show the current at V; = 0 as function of Vi for U/I' = 1, 6 and
15. With increasing U the current for intermediate Vg is strongly suppressed. In
addition there occurs a structure at low Vg, which turns into a region of negative
differential conductance with increasing U. The appearance of such a shoulder in the
current was observed in other calculations as well [16, 32, 33]. However, whether
the negative differential conductance we find for still larger values of U (c.f. Fig.
4.12) is a true feature of the model or rather an artifact of the approximations used
is presently not clear and should be clarified in further investigations. However,
negative differential conductance has also been observed in a slave-boson treatment
of the model [83].

Keeping Vi = 0 fixed, we can calculate the conductance G = d.J/dVp as function
of Vp for different values of U. The results are collected in Fig. 4.12. In contrast
to the simple approximation without flow of the vertex, the conductance is now
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Figure 4.10: SmX~" /T as function of the bias voltage Vg /T for several gate voltages Vg
and Coulomb interactions U/I". The plot shows a quadratic behaviour of ImX~1/T" as
function of the bias voltage which tends to zero in the limit Vi /T' — 0.

strongly dependent on U, except for Vg = 0, where due to the unitary limit at
T = 0 we always find G = Gy. As already anticipated from the current in Fig. 4.11, a
minimum in G starts to form around Vg /I &~ 0.5 for U/I" > 5, which is accompanied
by a peak at Vz/T' &~ 2. A similar behavior in the conductance was observed in a
perturbative treatment [16], which in contrast to our current approximation involves
the full energy-dependence in the self-energy. This at least qualitative agreement
— we of course cannot resolve structures like the Hubbard bands with an energy
independent self-energy — again supports our claim that despite the violation of the
relation Eq.(4.45) we can obtain reasonable results from G

We finally discuss the variation of the conductance with Vg for fixed U and Vp.
We again emphasize, that for Vg # 0, AJ = 0 only holds to leading order in U.
In Fig. 4.13 we present the curves for two different values of U, namely U/T" = 1
(upper panel in Fig. 4.13) and U/T" = 15 (lower panel in Fig. 4.13). In the former
case, the variation of G with Vjz is rather smooth, as is to be expected from the
current in Fig. 4.11. For large U, we observe an extended plateau at zero bias,
which is a manifestation of the fact that in the strong coupling regime a pinning
of spectral weight at the Fermi energy occurs. This feature is also observed in the
imaginary-time fRG as well as in NRG calculations.|42| Increasing Vg quickly leads
to a similarly extended region of negative differential conductance, which, assuming
that this result is a true feature of the model, therefore seems to be linked to the
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4 Stationary Transport

Figure 4.11: Current normalized to Jy = Gog (after reintroducing e and h) as function
of Vg for U/T' = 1, 6 and 15 and Vg = 0. For U/T’ = 15 we find a region of negative
differential conductance in the region |Vp/I'| &~ 0.5 (c.f. Fig. 4.12).

“Kondo” pinning. We note that it is unlikely that the appearance of the negative
differential conductance is related to the breaking of current conservation at order
U? as it also appears for V; = 0 where AJ = 0. For large V3 multiple structures
appear in GG, which are related to the energy scales Vg and U.
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4.6 Flowing vertex

G/IG

Figure 4.12: Differential conductance G as function of Vg for Vg = 0 and various values
of U. For U/T" > 5 a distinct minimum around Vp/T" &~ 0.5 appears.

Figure 4.13: Differential conductance G as function of Vi for different values of Vz and
U/T" =1 (upper panel) and U/T" = 15 (lower panel). Note the extended plateau at Vg =0
for U/T' = 15, which is a manifestation of the pinning of spectral weight at the Fermi level.
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5 Transport Properties In a
Magnetic Field

5.1 Introduction

This section is dedicated to the analysis of the influence of an external magnetic field
B on the transport properties of a single-level quantum dot under a constant applied
bias Vg at T' = 0. We discuss how the current J and the differential conductance G
are affected by B and by the competition between magnetic field and bias voltage.
We show in particular that B is responsible for a switching behaviour in J as function
of V. Interesting are also the individual contributions of spin up and down electrons,
split by the presence of the magnetic field, to the transport parameters. To test
our non-equilibrium FRG we have again studied, as limiting case, the equilibrium
situation (Vg = 0), in order to compare the results of the imaginary-time FRG
[42|. In the next paragraph we will show the flow equations for the non-equilibrium
FRG in an applied magnetic field, then we present the results. The equilibrium
limit Vg = 0 is shown and explained first, afterwards we discuss how the transport
parameters J, G behave as functions of the bias-voltage with magnetic field. Finally
we consider the range of applicability of the non-equilibrium FRG in the presence

of B.

5.2 Flow Equations in a Magnetic Field

A spin dependent quantum dot consisting of a single level €, coupled to left and right
leads (whose electrons are non interacting and in equilibrium) through the energy
independent terms V_ . and subjected to Coulomb repulsion U, can be described
by the Anderson Hamiltonian [4] (see Section. 1.4.2 ). The only difference with
respect to the non magnetic case is that the magnetic field B splits the dot level in
its "up” and "down” components

€T7(l) = VG + B/2

introducing de facto a spin-dependence of the dot level, which must be now taken
into account as additional parameter. In Section. 4.3 we have already discussed the
flow equations of a single-level quantum dot without magnetic field, therefore we
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5 Transport Properties

show now only the changes due to the spin dependence in the flow equations. As
in the previous chapter, in addition to the truncation of the hierarchy of differential
equations, obtained in the FRG, we neglect the energy dependence of the selfenergy
>} and the vertex function 5. The system of differential equations we are going to
integrate is then given by

d [0 V OCV
TS = Z SN gr M wpset (5.1)

w *Aol,o0 pv

d
aﬁfy& A on, A v, A aBpv,A nuyo,A
dA Vol ohso1,00 Z Z Z g037 g047d (w>701702,03,04703704,01702
w +A 03,04 1, vpm
_oneA v, A apyn, A pBYE,A apyv,A uBnd,A
o3,d (w)g047d (w) [70'1704;01,03703,0'2;04702 + 701703,01,04704@&;03,02

_ A BuymA pavd, A _ B A pamd, A ]) ‘ (5_2)

70§704;01703 03,01;04,02 705703;01704 04,01;03,02

In expressions (5.1) and (5.2) G,4 is given by Eq. (4.28). The initial conditions
for the system (5.1)-(5.2) have been already discussed in Section 4.3. Eq. (5.1)
and (5.2), compared to system obtained in Section 4.3 (without the presence of
a magnetic field), show a more complicated structure which manifests itself in a
spin-dependent flow for the selfenergy and the vertex. As further step, we apply
the same parametrization for the vertex which we have introduced in the previous
chapter (see Eq. (4.25)) leading to the flow equations

d 1
ﬁxgm\ _ 5 Z ( 'y(SA( )+ g-y(SA( )) [7eBY8A _ gc'lyi;A(w)Uﬁa’y&A’ (5.3)
w==+A7v,0
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ggp, guu, [Uﬁﬁ’YMAUQH’?‘;vA] ) . (5.4)

By investigating the vertex structure of the full flow at A = 0 it turns out, however,
that symmetries, implied by the parametrization, are broken for large voltages and
magnetic fields. Due to the significantly reduced numerical effort for integrating Eq.
(5.3) and Eq. (5.4), it remains interesting to examine its value as an approximation.
Comparing the full flow according to Eqgs. (5.1) and (5.2) with the parametrized
one (Egs. (5.3) and (5.4)) we observe a good agreement, at low Vg, for X~ (see
Fig. 5.1 (b)), while deviations appear in ¥~ (Fig. 5.1 (a)). However, since
|X=FA| > |X74|, this does not affect the behaviour of experimentally relevant
quantities like conductance G as function of the gate voltage, even for larger B (see
Fig. 5.2). Increasing the bias voltage, we obtain, for small B (see Fig. 5.4, full curve
and circles), again a good agreement.

As soon as we increase the magnetic field, Im X~ shows deviations (see Fig.
5.3) which even affect numerical values and the shape of the conductance (see Fig.
5.4). In particular, the flow of the parametrized system gives rise to a small real
component of T4 at A = 0 (Fig. 5.3 (b)), which actually should not exist, and
leads to unphysical breaking of the particle-hole symmetry.

After integration of system Eqs. (5.1)-(5.2) or Eqgs. (5.3)-(5.4) we insert the
resulting selfenergy into the Meir-Wingreen formula for the current [19, 63|

Jo =220 [ de[£u(6) — Fal0)] (G5 (6) ~ G (@) (5.5

In passing we observe that, with respect to the non-magnetic case, we have to
substitute into the expressions of the free Green functions of the dot (Eqgs. (4.18)-
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Figure 5.1: (a) Flow of real (full curve and stars) and imaginary part (dashed curve and
crosses) of X, /T, for Vg/I' = 0, U/T = 5, V/T = 1, B/T = 0.116 The continu-
ous lines represent the solutions of Egs.(5.1),(4.30), the symbols the parametrized version
Fqs.(4.29),(4.32). (b) Flow of 3 /T
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Figure 5.2: Total conductance G = Gt + G| normalized to Gy = 2¢2/h as function of Vg
for U/T =5, Vg = 1 and several values of B/T.
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Figure 5.3: The same parameters range as in Fig.1 except for Vg/T' =3 and B/T = 1. In
(b) the real part of =1 has been rescaled by a factor ten to make it visible.
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Figure 5.4: The same parameters range as in Fig.2 except for Vp/I' = 3

(4.21)) the bare dot level with the spin-dependent one

E—&, = ngl:B/Q

5.3 Results

5.3.1 Equilibrium Case

Before studying the stationary non-equilibrium case at 7" = 0, we consider the
equilibrium situation, namely the limit Vg = py — ugr = 0. The latter can be seen as
a test for our non-equilibrium FRG which should reproduce the imaginary-time FRG
results [42]. Let us begin with the differential conductance G as function of the gate
voltage Vi with and without a magnetic field in the strong coupling regime % > 1.
In Fig. 5.5 (a) we compare the total conductance G = G} + G| for different values
of B with the results obtained by Karrasch et. al [42]. We note, that for Vz/T' =0
our calculations perfectly reproduce the results of Karrasch et. al [42]. We see that,
as soon as the magnetic field increases, G starts to split in two peaks indicating the
“up” and "down” contributions, which reflects the splitting in the spectral function.
For an extensive discussion of the linear response results with an applied magnetic
field we refer the reader to the seminal paper by Karrasch et. al [42]. As last remark
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Figure 5.5: Total conductance G = G4 + G| normalized to Gy = 2¢%/h as function of
Ve/U for U/T = 5, Vg/T' = 0,1,3,5 and several values of B/T'. The black curves are
obtained from the imaginary-time FRG.
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Figure 5.6: Individual spin contributions to the total conductance in the same parameters
regime as in Fig. 5.2
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we note that also the individual spin contribution agree perfectly with [42] as shown
in Fig. 5.6.

5.3.2 Non-Equilibrium

Switching on the bias voltage Vg we observe different behaviours of the conductance
G as a function of the gate voltage Vi depending on the competition between the
voltage and the magnetic field. In Fig. 5.5, we present G as function of V for a
fixed Coulomb interaction U/T" = 5 and Vg /T' = 0,1, 3,5 for different values of B.
We observe a drastic change of the structure due to the interplay of V3 and B. In
particular, we see that for small bias (Vz/I" = 1) and fields (B/I" = 0.116), G consists
of just two peaks separated by U. If we now increase the value of the magnetic field,
the conductance, at small Vi, initially strongly increases (dashed and dot-dashed
curves in Fig. 5.5 (b)), the peaks disappear and a small plateau appears. Increasing
B further, the plateau disappears and we get back the two peaks separated by a
rather deep valley and two shoulders whose spacing is A ~ U + V3.

This behaviour can be explained as follows: The spectral density is split by Vg in
two peaks moving the spectral weight to higher frequencies and decreasing it in the
region w =~ 0. Switching on B we observe an additional split of each peak, due to
the spin contributions. Increasing then B, the two external peaks move away from
each other and the internal ones get closer and even merge enhancing the spectral
weight at w =~ 0. As direct consequence we observe an enhancement of G, which
manifests itself in a small plateau for V;/U ~ 0 (see Fig. 5.5 (b)). With a further
increase of B, the "merged" peaks move away from each other, leading to a collapse
of the conductance, and disappearance of the plateau. Completely different is the
behaviour for Vg/I' = 3 and Vp/I' = 5 (Fig. 5.5 (¢) and (d)). We find a non-
monotonic decrease of G with the magnetic field. In addition the field dependence
is initially weaker than in Fig. 5.5 (b). We interpret this behaviour in the following
way: For large Vg, the Fermi window in eg. Eq. (5.5) will lead to an averaging
over a large energy region. Thus structures due to the magnetic field at too small
energies will be washed out.

5.3.3 Current and Conductance as Function of the Applied
Bias

The non-monotonic behaviour of G(Vg = 0) is an interesting feature we want to
explore in somewhat more detail in the following. To this end we calculated the
current J and the differential conductance G = dJ/dVp, at V/T' =0 and U/T" = 5,
as function of the applied bias for different values of B. The results are collected in
Fig. 5.7. Compared to the non-magnetic case (full line) we see that a finite magnetic
field B basically induces two features. First, as is also for the case for B = 0, at large

70



5.3 Results

— B/Il'=0
— B/l'=0.6
B/l'=0.8 s

Figure 5.7: Total current (normalized to Jy = Gog, with G = 2¢%/h) and conductance as
function of the bias voltage Vg /I' for Vi /T' = 0, U/’ = 5, and several values of B

U, we observe a small region of negative differential conductance. More interesting is
the appearence of an almost unitary conductance peak at Vg ~ 2B for intermediate
fields. For large fields the features is suppressed again. Thus we observe that B can
act as a switch, increasing the current dramatically in the voltage range Vg ~ B.
For Vi > B the curves tend to the same values, so that B does not influence the
current any longer. This behaviour can be explained by noting that when Vp ~ 2B,
the electrochemical potentials py r of the leads are close to the split dot levels,
respectively, therefore the tunnel probability from the leads to the dot is enhanced
as long as the Vg = up — up =~ 2B.

Let us finally discuss in which range of parameters the non-equilibrium FRG
furnishes reliable results. In Fig. 5.8 we show the transport parameters plotted as
function of the magnetic field for different bias voltages in the weak (% < 1, Fig.
5.8 (a) ) and intermediate coupling regime (< > 1, Fig. 5.8 (b) ). While for £ <1
we did not find any parameter regime with a breakdown of the FRG, we see that
for L& > 1 the curves acquire a discontinuity in G (see Fig. 5.8 (b) curve with
Vi/T = 1). Increasing Vp the discontinuity disappears but (for Vz/T' = 2..3) the
conductance overshoots the unitary limit in the range 1 < B < 2. This means that
our approach is not reliable in this parameter range and possibly for larger magnetic
fields. It would be interesting to see whether an energy-dipendent selfenergy and
vertex function can extend the range of applicability of the non-equilibrium FRG.
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Figure 5.8: Total conductance normalized to Gy = 2¢?/h plotted versus B/T for Vg /T' = 0,
and several values of Vg in Weak (U/T" = 1, (b)) and strong coupling regime (U/T = 5,

(a))
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At higher bias Vg > U the plot does not show this problem any longer.
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6 Temperature Dependence of the
Transport Parameters

6.1 Introduction

The aim of this chapter is the study of the influence of the temperature 7" on the
transport properties of a single-level quantum dot under a constant applied bias V3.
First, we will again consider, as limiting case, the equilibrium situation Vg /T" = 0.
We will compare our results regarding the conductance G as function of the gate
voltage Vi, for several values of T, to the ones coming from the numerical renormal-
ization group (NRG) [88|. Then we will see how T affects the selfenergies resulting
from the numerical integration of the system Eq. (4.29)-(4.32). Furthermore, we
will show how the current J and the differential conductance G are affected by the
temperature and we will see that the transport parameters, calculated by means of
the non-equilibrium FRG, reproduce very well the ones obtained by Hershfield et
al. [33] with perturbation theory up to second order in the Coulomb repulsion U.
At the end of this chapter we will show that the non-equilibrium FRG can be used
not only when a finite temperature and the magnetic field B are applied separately,
but, as long as the Coulomb interaction is not too large, B and T" can be “switched
on” together. In particular we will show how the interplay of these two scales affects
the transport through a single-level quantum dot.

6.2 Temperature Dependence of the Selfenergies

In this section we discuss how the energy-independent selfenergies, at the end of the
flow A = 0, are affected by the temperature T, for the electron-hole symmetric case
Ve/T' =0 and in a sligthly asymmetric situation where Vi /I' = 0.1 . The essential
structure of the flow equations Eq. (5.1)-(4.30) is not modified by the introduction
of a finite temperature 7" # 0. We note in particular that the T'—dependence appears
in the system of differential equations only through the Fermi functions in the four
free dot Green functions Eq. (4.18)-(4.21).

As usual we begin our analysis with the equilibrium case Vg /T" = 0 (see Fig. 6.1
(b)). What we see is that the real part of ¥%**=0 remains constant in T and equal
to zero for the electron-hole symmetric case. As soon as we move a little bit away
from Vg /T = 0, Re[L>**=9] is no longer constant, it increases and saturates at

75



6 Temperature Dependence

larger temperatures. The imaginary part of X%*=0 (for V;/I' = 0.1) is equal to
zero in the range T'/T" =~ 0...1 and then it moves slightly away from zero like in the
non-equilibrium case at T = 0.
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Figure 6.1: (a) Imaginary part ©+ =" /T, plotted versus T/T' (dashed line Vg/T' = 0, dots

Vg /T =0.1) for U/T =5, Vg/T' = 0. (b) Flow of real part ¥*4/I" in the same range of
parameter of (a).

Interesting is also the behaviour of the imaginary part of X+—A=0 (see Fig. 6.1
(a)). Sm[E+=A=9 grows with some power law, for small T, then it raises quickly
for intermediate 7" and finally saturates at larger temperatures. To summarize, we
can say that, in equilibrium, the temperature acts on the selfenergies in the same
qualitative way as the bias voltage Vp did in the case T = 0. Switching on the
external voltage Vi we observe a difference in the Sm[ST=470] (see Fig. 6.2 (b))
with respect to the equilibrium case. Now Sm[S+74=0] does not start from zero,
at T/I' = 0, because Vp generates off-diagonal components (at 7'/T" = 0) which
renormalize the tunneling rate in the expression of the current and of the life-time
broadening (see Eq. 4.50-4.51) The gate voltage Vg, at least in the small range
0 < Vg/T' < 0.1, does not affect the temperature behaviour of Sm[X+=4=%]. The
T—dependence of Re[X***=0] (see Fig. 6.2 (a)) is not essentially modified by the
introduction of Vg with respect to the equilibrium situation.

It is interesting to observe that 7" has a stronger influence on X+—*=0 than on
»oA=0 The imaginary part of ¥*74=0 is enhanced by roughly a factor three in
the range 0 < T/T" ~ 1, while the real part of =0 grows slowly and its values
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Figure 6.2: The same parameters range of Fig. 6.1 except for Vp/I' = 1.

remain rather small. This reflects itself in the expression for current Eq. (4.33),
since in the integrand of Eq. (4.33) the contributions coming from Im[X+=4=0] are
much more relevant then the ones due to 2**A=0,

6.3 Results

6.3.1 Equilibrium

This section is dedicated to the discussion of the temperature behaviour of the
conductance G as function of the gate voltage Vi in the limit Vg /T" = 0.

We compare the results coming from the non-equilibrium FRG with the ones
obtained by the numerical renormalization group (NGR)[88] (see Fig. 6.3 and Fig.
6.5 ). In contrast to the previous chapters, where we compared the non-equilibrium
FRG (at Vg/I' = 0) to the imaginary-time FRG, we have to take into account
another method (NRG) to compare our results in equilibrium, since the imaginary-
time FRG does not furnish reliable results at finite temperatures. This could be due
to the fact that, within non-equilibrium FRG, no analytical prolongation is needed,
while this is a problematic step for the imaginary-time FRG.

The good quality of the results, if T is not too high, is mainly due to two fac-
tors: First, the Coulomb interaction is not too large (U/I' = 5), therefore the
non-equilibrium FRG can reach the same qualitative results given by perturbation
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GIG,

Figure 6.3: Total conductance G = Gy + G| (normalized to Gy = 2%) as function of the
gate voltage Vi, for U/T' =5, V/I' =0, B/I" = 0 and for several temperature 7. The dot
curves represent the results coming from the NRG.

theory. Second, the difference Gt~ — G~ shows a similar behaviour with respect
to the spectral density calculated by means of the NRG (see Fig. 6.4 ). In the
range between —0.5 < V5 /U < 0.5 we note that, at 7" # 0, G is not monotonic.
The reason for this is due to the fact that the difference G~ — G~ calculated at
w = 0, increases in the range 0 < Vi /U < 0.5 and then decreases again (see Fig.
6.4), therefore resulting in the non monotonic behaviour depicted in Fig. 6.3 . For
larger values of V; /U the difference G~ — G~ does not depend any longer on the
temperature and we recover again the noninteracting case.

The agreement between the non-equilibrium FRG and the NRG remains good also
in an applied magnetic field B as witnessed by Figure 6.5 . In the parameter range
in which B/T" > T'/T" the conductance peaks, corresponding to the individual spin
contributions (spaced by ~ U/I" ), are prominent. As soon as T'/I" ~ B/I, the tem-
perature becomes the dominating energy scale and the characteristics peaks induced
by the applied magnetic field strongly decrease in magnitude and then disappear,
signalling that the correlation between the dot and the leads has disappeared too.

6.3.2 Current and Conductance as Function of the Applied
Voltage

We begin this section showing the current voltage characteristics, for different tem-
peratures T, obtained with the non-equilibrium FRG (see Fig. 6.6). By comparing
our results with the ones obtained by Hershfield et al. [33], with perturbation theory
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Figure 6.4: Comparison between G;L_ — Gcfr (continuous curves represent results coming
Im[GF]

from the FRG) and p = —~—"— (slashed curves represent the results coming from the

NRG ) as function of the frequency w, for U/T" = 5 and for several values of the gate
voltage V. In the upper plot (a) T/T" = 0.1, in the lower one T'/T' = 0.25.
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Figure 6.5: The same parameter range of Fig. 6.3 except for B/I" = 0.58.

up to second order in the Coulomb repulsion U, we observe that the non-equilibrium
FRG is capable to reproduce the qualitative behaviour of the current calculated
using perturbation theory [33]. What we see is that the sharp current increase at
T/T" = 0, for small voltages, which is followed by a shoulder and then by a linear
behaviour, is smeared out by the temperature (dotted curve in Fig. 6.6 ) and finally
it is completely suppressed at larger T' (dashed curve) in favour of a almost linear
current-voltage characteristics. This is due to the fact that T' tends to destroy the
correlation between the dot and the leads, represented by the spectral function [37].
As direct consequence a decrease in J follows together with the disappeareance of
all manybody effects in the current.

In the plot (see Fig. 6.7) we show that within our approach several parameters
such as B, Vg and T can coexist as long as the Coulomb interaction U is not too
large. Roughly speaking the higher U the lower is the magnetic field applicable
and the lower is the temperature range in which the non-equilibrium FRG furnishes
reliable results. In Figure 6.7 (a)-(b) the current is plotted versus the applied voltage
in an external magnetic field, for several temperatures. We see that B tends to shift
the current peak to larger Vi, but even in a parameter range where B > T (see
curve at T'/T" = 0.1), we observe that a small temperature is enough to smear out
the current peak. Furthermore, if we increase B up to B/I" = 0.8, then we have, for
low temperatures (see curve at T'/T" = 0.05), a small discontinuity signalling that we
are outside of the range of applicability of the non-equilibrium FRG. In any case, as
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125 | | | | | | |

Figure 6.6: Current (normalized to Jo = Gog) as function of Vp/T' for Vg /T' = 0,
U/T = 7.51, and several values of T.

soon as 71" is raised the discontinuity disappears together with the peak, this means
that the temperature starts to be the dominating energetic scale.

6.3.3 Conductance as Function of B

In the following we consider the behaviour of the conductance G as function of the
magnetic field, in and off-equilibrium, for several values of T. Starting from the
equilibrium situation, we see that, for low temperatures (continuous curve in Fig.
6.8 (a)), we still have a relativly sharp peaked G. As B grows G decreases and
at B/T" ~ 0.8 appears a discontinuity and a small region of negative conductance,
which again indicates the failure of our method. Enhancing the temperature, but
remaining in the range in which 0 < B/I" & 0.8, the conductance peak is replaced
by a region with constant G up to B/I' =~ 0.8 and then G decreases quickly, without
showing any kind of discontinuity.

The reason for such a behaviour may be found in the interplay between B and T'
which takes place in the range 0 < T'/T" & 0.75. In this range the temperature is not
strong enough to suppress the central peak of the spectral density completely. The
latter is lowered and broadened indicating a lowering of the correlation between the
dot and the electrodes [37]. This means that, as soon as B is large enough to split
the spectral density into two subpeaks (at B/I" & 1), the spectral weight is shifted
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Figure 6.7: Total current: Jy; = J; + J; (normalized to Jy = 2G0£) as function of
the bias voltage for Vo/I' = 0, U/I"' = 5, B/T' = 0.8 (a), B/T' = 0.6 (b) and for several
temperatures.
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far from the Fermi level and G collapses.

At larger temperatures (above T'/T" = 0.75), the spectral weight is far from the
Fermi level because the resonance representing the correlation between the dot and
the leads does not exist any longer |37|. What remains is just a constant conduc-
tance signalling that 7" has washed out the central resonance in the spectral density.
Switching on the bias voltage (see Fig. 6.8 (b)), we observe a discontinuity for small

— T/r=0.025
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(@ T/IF=0.75
— TIr=25

| | = T/r=0.25)
- = T/r=0.3
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B/l

Figure 6.8: Total conductance: Gy = Gt + G| (normalized to Gg = 2%) as function of
the magnetic field for Vgo/I' = 0, U/T' = 5, Vg/T' = 0 (a), Vp/I' = 1 (b) and for several
temperatures.

temperatures in the range 0 < T'/T" ~ 0.1, which makes the result and therefore the
method meaningless. As soon as we consider higher T the problem disappears and
we see that the conductance peak is shifted to larger values of B, due to the interplay
between Vg and B (see Section 5.3.3). In any case the peak is again, as expected,
not stable versus 7. In fact we have now another parameter (Vz) which tends to
suppress the central resonance in the spectral density, therefore the temperature
influence together with B and 7' destroys the peak in G.
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7 Summary and Outlook

This work was motivated by the question whether the FRG formalism can be ex-
tended to describe the non-equilibrium properties of an interacting quantum many-
body system. We were able to derive a formalism that can be used to set up a
system of differential equations for e.g. irreducible vertex functions

Although the derivation of the non-equilibrium FRG flow equations is formally
identical to the imaginary-time one, the final equations show a more complicated
tensor structure. This additional tensor structure is due to the necessity to intro-
duce additional indices taking care of time ordering or, more formally, the different
branches of the Keldysh contour. We saw that this formalism is sufficiently gen-
eral to treat both fermions and bosons at 7" > 0. Moreover, the derivation of the
non-equilibrium FRG flow equations does not depend on the assumption of a sta-
tionary state of the system in question. This means that it can be adopted to
describe time-dependent phenomena, too. A further advantage, with respect to the
imaginary-time FRG, is due to the fact that the non-equilibrium FRG relies on real
quantities. This means that the non-equilibrium FRG does not need any analytical
prolongation to the real axis which can be a problematic step in certain cases.

Since the FRG leads to an infinite hierarchy of coupled differential equations, one
has to introduce approximations, at least a truncation at a certain level. Typically
one neglects the flow of the three-particle vertex. As it has been demonstrated in
Ref. [30] for the imaginary-time FRG, one can solve the remaining system of flow
equations for simple models like the single impurity Anderson model (STAM) numer-
ically, keeping the full energy-dependence. Due to the fact that the vertex function
carries three continuous frequency arguments in addition to the discrete quantum
numbers of the system, such a calculation is computationally quite expensive. To
reduce the numerical effort, further approximations can be introduced. A particu-
larly important and successful one is obtained by neglecting the energy dependence
of the vertex functions [2|, which already leads to a surprisingly accurate description
of local and transport properties of interacting quantum dots in the linear response
regime.

As a simple but nontrivial application to test our non-equilibrium FRG, we chose
the single impurity Anderson model (STAM). The reason for this choice is that the
SIAM represents the paradigm for correlation effects in condensed matter physics.
Besides, it is the standard model for the description of the transport properties of
interacting single-level quantum dots to which this work has been dedicated.

First, we analyzed the "easiest” case, namely we applied the non-equilibrium FRG
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formalism to the SIAM with finite bias voltage in the stationary state at 7" = 0.
It turned out, that for the simplest approximation where only the flow of the self-
energy is kept, the analytic structure of the differential equation leads to problems
in the numerical solution. In addition, this approximation leads to a violation of the
causality relation (Eq. 4.45) to order U2. The first problem was resolved by including
the two-particle vertex in the flow at least up to the largest interaction considered
here (U/T" = 15). At the present stage this was for computational reasons done by
assuming it to be energy-independent, yielding again an energy-independent self-
energy. Although this approximation also violates Eq. (4.45) to order U? for a fixed
Ve and Vi the error is significantly smaller compared to the simplest scheme. We
were able to obtain reasonable expressions and numerical results for the current and
the conductance using the functions G*?(w) instead of GF(w) in the current formula.
We reproduced nonequilibrium features of the current and differential conductance
known from the application of other approximate methods to the STAM.

In the more advanced truncation scheme and for Vi; # 0, the current conservation
AJ = 0 only holds to leading order in U. This defect can be traced back to the energy
independence of the two-particle vertex, leading to finite, but energy-independent
¥~* and X7 ~. Unfortunately this deficiency cannot be cured by assuming a coarse-
grained energy dependence of the form

2, if w< VB/2
Flw)=121, if —Vy/2 <w < Vy/2 (7.1)
0, ifVB/2<w.

since such a minimal energetic lattice is too raw to be able to capture the behaviour
of the selfenergy, leading therefore to unphysical results.

Furthermore, we applied an external magnetic field B in order to observe the
effect of B on the transport properties of a single-level quantum dot. We saw that,
even within our crude approximation, the non-equilibrium FRG furnished reasonable
results concerning the transport parameters J and GG, as long as Coulomb energy and
magnetic field are not too large. Besides, we introduced a further approximation,
namely we neglected the spin-dependence in the vertex function 42 (but not for the
selfenergy) and we compared the results with the spin-dependent case, showing and
explaining in which range of parameters this second approximation can be adopted.
A particularly interesting observation is the switching behaviour in the current,
which we could explain with the interplay of the different structures we got in the
spectra as function of the gate voltage and B. We also showed that, as soon as the
bias voltage is switched off (Vz — 0), we reobtain, as expected, the linear response
results [42]. This means that the non-equilibrium FRG can be also applied to treat
systems in equilibrium.

Finally, we considered the temperature dependence in the non-equilibrium FRG.
As first we analyzed the equilibrium case comparing our results with the ones coming
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from the numerical renormalization group (NRG). In contrast to the imaginary-time
FRG, the non-equilibrium FRG furnishes rasonable results, in small and interme-
diate coupling regime, at finite temperatures. This could be due to the fact that,
within non-equilibrium FRG, no analytical prolongation is needed, while this is a
problematic step for the imaginary-time FRG. Afterwards, we studied the tempera-
ture dependence of the transport parameters with and without an applied magnetic
field.

More interesting is the fact that, for intermediate Coulomb repulsion U/T" & 5, the
non-equilibrium FRG can describe the transport properties of a single-level quantum
dot when several external parameters such as the bias, the magnetic field and the
temperature are switched on. This is one of the most interesting results we have
obtained because, up to now, a theory that allows to access intermediate coupling,
bias voltage, magnetic field and temperature on a unique footing is missing.

The main problem still to solve is the introduction of the energy dependence in
the non-equilibrium FRG flow equations, in order to get rid of causality problems
and to see whether the energy dependence can extend the range of applicability of
our method to larger U and to larger B and T.
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8 Appendices

8.1 The Morris Lemma

In this appendix we want to show how to handle products involving a Dirac delta
function multiplied by a function whose argument contains a Heaviside step function
[64]:

o(x)f (O(x)). (8.1)

First of all introduce two "smeared" functions

f(©:()), 0-(x)
where f(O.)(x) is an any function which remains continuous in the limit ¢ — 0 and

de(x) == —%@E(z) — 0(x)

as € — 0. Out of the last two equations and from the Newton-Liebnitz theorem we
can write Eq.(8.1) as

- (8.2)

Oc(x)
3(o)f (O(a)) = liyi(o) (Oxle)) =t 2= [ ats(n

=z

- % [Q(z) /Olf(t)dt] = §(x) /01 dtf(t) (8-3)

In order to obtain the Eq. (8.3), we have supposed that it is possible to exchange
the limit with the derivative, moreover we have used the following relation:

¢ lhm [ f(t)dt] [ dson o
0

dzx |e—0 0 for <0
The r.hs. of Eq. (8.3) is what we need to handle (as we will see in the next

paragraph) equations involving the single scale propagator S* and products between
it and the Green functions G*.
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8.2 Expressions Involving the Single Scale
Propagator

In order to be able to treat and simplify products involving S* G* we will apply
basically what we have learnt in the previous section regarding the Morris lemma.
We begin with the easiest case, namely the single scale propagator, then we will take
into account the product S*G™. In the following we won’t use the hat to indicate
the matrices, but keep in mind that S* and G® must be rad as matrices with respect
to the Keldysh indices. We start with the definition of the cutoff-Green functions
and single scale propagator

Gy (w) = O(lw| = N)Gg (W), (8.4)
Grw) = ! ,
O G e
SMw) = GA(w)diA (@) 6 ), (8.5)
Inserting the Eq. (8.4) into Eq. (8.5)
d » . B
Stw) = GA(w)d—A[Go(w)] [(O(lw] = A) ] GMw) =

GMW)[Go(@)] 7 [=6(|w| = M [(O(w| = A) ] GH(w) =
Multiplying in the matrix sense G * Gg' = 1 to the right results in

GMw) [G5'O(lwl = M)] [=d(|w| = A)Go(w)] [GgO(lw] = A)] GH(w) =

@)™ (ol - M) (6 @) @)]

where we have used Eq. (8.4) in the last step. Applying the Dyson equation morover
delivers

') = [ - 96 [ e

Substituting the right square bracket, by means of the Dyson equation using

W = Gglm and applying the matrix identity [AB]™! = B~1A~! to the

previous expression we obtain

1
1 - SAOG) (W)

Shw) = 2Go(w)o(jw| = A). (8.6)
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8.3 Derivation of Eq. (3.11)

Eq. (8.6) must now be rewritten through the Morris lemma

1
[1 = ZMw)Gg(w)]

3Go(W)3(|w] = A) — God(|w| = A) / . xzui)m(w)f )

= o(jw] = A)

1
(Go(w)) ™ = B w)

Therefore we can write

SMw) = 0(|w| — A) (8.7)

1
(Go)™H(w) = XA (w)

8.2.1 More Complicated Products

We are now interested in simplifications of products involving

SMw)GM (W) (8.8)
Inserting Eq. (8.7) into Eq. (8.8) we obtain

1 } . 1
(Go)~Hw) = ZA(w) ] (Go(w) ™ — EA(w')

SMw)GM () = [6<|w| Y

We then right right-multiply with Go(w")O(|w’'| — A)

1 Go()O(| — A)
l‘“""‘ Ny 2A<w>} TS W)

B | __e(w|-N)
{5(‘“" A><Go>—1—zA<w>} (Co) () — SA (W)’

Out of the latter can we therefore write Eq. (8.8) as

SHw)GMw') = 8(|jw] = 1O ('] = A)GHwW)GH (). (8.9)

8.3 Derivation of Eq. (3.11)

The goal of this section is the detailed derivation of Eq. (3.11). To this end start
with the logarithm of the generator of the connected Green functions

In [wA (i}, {n}>] — W () {n}) = (8.10)
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n| g5 [Piven { (5. [6] " 0) — iSultBh () - Gn) ~ )}

=4 = / Dbt exp { (w, e w) } .

Differentatiating YW with respect to A results in

R L e (D))

X exp {—iSint - (@5777) — (7, w)}
— ypeh (8.11)

with

We now have to evaluate the derivative appearing in the integrand in Eq. (8.11)
obtaining

g (1] )} - i) (5[] ) -
(&)= {(F e )},

leading us by insertion into Eq. (8.11)

dVd\X,A _ Ml}A (_E?)SQ / D exp { (&, Gh] _1¢) } F(ah{nh+  (812)

e [ (@, ] B w) e { (2.c] o)} # 6 tab.

where F ({ii}, {n}) := exp {=iSe ({¢}, {¢'}) — (¢,n) — (7,¢) } . Explicitely writing
£ = [ Do (w, e]” w) ew{ (0. (6] 0)
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by means of the substitution into Eq. (8.12) we obtain'
c,A WA 3 Y S
e =i ar | Do (w, [GO] w) exp{<w, [GO] w) } "
=0
_ _ [aa]7t T aal—
sy | DO (w, ] w) e { (5. [c8] " v) b o,
=0

Let us look at the first term of the previous equation in terms of a coordinate
representation of a scalar product

<¢,{ } )—szlglmo V- (8.13)

The factors gﬁ;ol do not depend on 1, therefore they can be moved out of the
integral

W i) Y [ <wzwm>exp{<zz, {G] w)}m{ﬁ},{nm

m,l

e <¢{ ]_lw)exp{(w, ] o) braa . e

The integral in the first term of Eq. (8.14) is exactly the definition of the 1-particle
Green function

(Gl = i (¥ithm)o,

which we reexpress in a trace form

d c, A . -1
Z\j\ — T ([GQA] Gé‘) + (8.15)

N Djﬁw <¢, ] a w) e { (0. [63] o) .

Let us take into account the second term of Eq.(8.15) and use again Eq. (8.13)
together with

.0
wl_zé_ﬁlu

Wt = o [piven{ (5.[é8] " v) b tan o,

=0

Here we have used
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- J
o
Eq. (8.15) then becomes
d c, A . -1
Z\j\ = Tr ([GO’A} GQ) - (8.16)

Z (s o5 ) ([ e { (] ")} om).

The second term of Eq. (8.16) can be arranged as scalar product

AWt oa] ! 1 (6 A1
=T ([GM} G{}) vy (57_7 G, 57}) WA (8.17)

which can be furtherly transformed according to

Zﬁ (%7[A0,'A]G5(577)WA smwe (%,[AO"A}E(%) e _

(8 [~0A=ld - SWeA [ oa1=15Weh
— _ c 1
ol "dg )i (B [ 7]6%) - e
where we used
Wek = LnWwh]

in the first step, from which follows
WA = VO

By applying the cyclic property of the trace to the first term of Eq. (8.18) we obtain

AT =T t 52 c,A 52 A b oA —1
iTr [ O’A} al Y ey (2Y [ O’A] G,
0no7 01107
where the ( factor comes from the Grassmann rules. The latter expression, inserted
into Eq. (8.18), and then into Eq. (8.17) permits us to finally obtain Eq. (3.11)

d];\j:/\ =—Tr <[GO’A} -1 Gf}) LiCTy (5?7/7\(;:71\ [ . 0}\} _Gl) » (5]2);,,\’ [ A 0,'A} —Gld];\)nc’/\) |
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