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Abstract

Weniger als 5 Minuten Verspätung:
Wir bitten um Ihre Verstandnis und Geduld.
Mehr als 5 Minuten Verspätung:
Wir bitten um Ihre Entschuldigung.

DEUTSCHE BAHN

Mathematical optimization is a vital area in applied mathematics. Even if it came into
existence about few decades ago, this field underwent not only theoretical advances.
Many research efforts have been spent to study large-scale real-world applications.
The enormous progress made in computer science together with the development of
sophisticated numerical and algorithmic techniques are the reasons for the success in
dealing with the large amount of data now available for the description of a practical
problem.

In view of this background, solving a practical problem by means of applied math-
ematics is much more than applying mathematics. Implementation skills are of im-
portance as well as the ability to communicate with practitioners and scientists from
other disciplines. The proximity and interaction with computer science and statistic
supply us with a spectrum of new ideas and techniques.

This application-oriented thesis deals with delay propagation in railway system, in
particular with identifying dependencies among delays. The idea is to combine two
different fields: stochastic and optimization. A stochastic approach points out rela-
tionship among variables representing (arrival/departure) delays of the trains at the
stations of their journey. These dependencies are then transformed with a linear re-
gression procedure into capacity constraints of a rescheduling problem. Finally the
optimization problem is solved and the robustness of the new solution is checked
through a comparison with the one of the uncapacitated model of the problem.

Nowadays, railway transportation needs to become more and more competitive, so
new features are required to improve the planning process. In daily operations the
goal is to compensate perturbations of the scheduled timetable, in particular to meet
in a better way the passengers’ needs concerning transfers and changes. This leads
to the delay management problem. Delay propagation is often considered as one of
the main reasons for the poor attractiveness of railway transport. In fact, a better re-
scheduling of the timetable in order to minimize the disadvantages for the passengers
will be possible if the critical points of the system are known. This includes knowl-
edge about dependencies among delays, in order to be able to point out where the
source delays are and how they spread out into the system. Delays and their behavior
in railway systems have recently been investigated by [32], [40], [61], [72], [80] . . . .
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We distinguish, as usual in the literature (see e.g. [54]), between two types of de-
lay: source delays, i.e. delays that are caused from the outside and not from other
trains (see “Urverspätungen” in [73]), which usually spread out into the system induc-
ing a second kind of delay, called ”forced delay” (see “Folgeverspätungen” in [73]).
We further distinguish between the following three types of delay propagation:

1. propagation along the same train. Delay is carried over along the path of each
delayed train, i.e. if a train starts with a delay it is likely to reach its next station
with a forced delay (propagation along a driving activity), and if it arrives at a
station with a delay it will probably depart with a delay (propagation along a
waiting activity);

2. propagation from one train to another due to connections. If a connecting train
waits for a delayed feeder train, the delay of the feeder train may spread out to
the connecting train (propagation along a transfer activity);

3. propagation from one train to another due to the limited capacity of infrastruc-
ture. If two trains share the same infrastructure (a part of a track or a platform)
one of them has to wait until the other has left (propagation along a headway).

The first two types of delay propagation are easy to handle from an analytical point of
view, since the minimal duration of every activity is known and is hence an explicit
(i.e. given) parameter. However, the third kind of delay propagation is more compli-
cated to deal with. This is due to the fact that it requires a detailed knowledge of the
track system on a microscopic level.

In Chapter 1 an overview about approaches dealing with the third type of delay prop-
agation is given.

In Chapter 2 the delay management problem is introduced. It deals with reactions
in case of delays in public transportation. The timetable problem is formulated as a
linear programming introducing the notion of Activity-on-arc Project Network (see
[51]). The arrivals and departures of the trains in all the stations of their journey are
regarded as the nodes of the network (we refer to them as the events of the system).
The edges are defined by the scheduled activities of the system: waiting activities,
driving activities and connections. Classical formulations of the timetable problem
as Resource Constrained Project Scheduling problem (Ref: [64]) or as Job Shop
Scheduling problem (Ref: [17] and [18]) are presented. The NP-hardness of these
formulations could be proved. Models suggested by other research groups are intro-
duced to stress advantages and drawbacks with respect to the model considered in this
thesis. In contrast to all these classical approaches, the goal of this work is to propose
a procedure which enables us to detect dependencies among delays of the third type
without explicit knowledge of all details of the infrastructure.

In Chapter 3 a stochastic approach to identify dependencies, called Tri-graph (see [75]
and [76]), is presented. This is a simplified graphical modeling approach in which full
conditional modeling is carried out in small subgraphs with only three vertices that
will be then combined into the full model. The variables of the rescheduling problem
are the events of an Activity-on-arc Project Network for the timetable problem in rail-
way systems. The delay measurements of each event in this model correspond to the
observations of the variables. Analyzing the dependencies of these variables with the
Tri-graph method yields links among the events of the system, i.e. among the arrival
and departure events of the trains in the stations. These links represent on one side the
dependencies arising during the driving, waiting or transfer activities and on the other
side the information about the third type of delay propagation, namely the propagation
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due to capacity constraints that we are looking for. These “virtual activities” can be
interpreted as inequalities that represent a lower bound for the re-scheduled time of
an event ensuring that an event can not happen before another event has taken place:
for example a train can enter in a station only if its assigned platform is free. Hence
the “virtual activity” does not belong to the set of activities of the problem (waiting,
driving and transfers), but it can be considered as a precedence constraint in the rail-
way problem that has to be satisfied to avoid infrastructure conflicts (using the same
track or the same platform) due to the limited capacity of the track system and to the
operational rules of the security system.
The idea of our approach is to describe the delay propagation by using these virtual
activities instead of the classical inventory constraints that are commonly used in re-
scheduling problems (see Chapter 2). Indeed, the Tri-graph method has the advantage
to be able to identify even complex dependencies without “a priori” knowledge of
the track system. Moreover, compared to other statistical methods, Tri-graph is appli-
cable also when the data sample is small compared to the number of random variables.

Chapter 4 presents the outcomes of the application of the Tri-graph method to real-
world data of German railway, corresponding to some stations within the Harz area in
Germany. The data has been provided by Deutsche Bahn within the context of a larger
project named DisKon (see [11]) and it consists of delay data of all trains at all stations
over a period of nine months. Apart from the delay, we also have information about
the timetable and the infrastructure in this region, such that we are able to compare
the stochastic results with the analytical constraints of the classical formulation of the
problem. Moreover, a comparison with the outcomes of other standard techniques
(in particular with Full Conditional Graph and with Covariance Graph) has been per-
formed as validation of the theoretical results presented in Chapter 3.

In Chapter 5 an analysis, from a theoretical and practical point of view, of the mod-
eling of the delay and the virtual activities has been carried out in order to transform
the edges resulting from the Tri-graph procedure into time constraints for the delay
management problem. Four possible linear regressions have been considered and the
approximation errors have been compared considering two different strategies: the
first strategy was to consider as the best-fit polynomial approximation the one that has
the minimal sum of the deviations squared (least squares error), the second strategy
was based on a robust estimator so that it will be relatively unaffected by outlying
values (Huber’s error).

In Chapter 6 we introduce the concept of robustness and we test the “virtual” capac-
itated model of the problem according to three possible criteria: number of violated
capacity constraints, cost (in second) of the violations and price (in second) to trans-
form the solution into a feasible one for the Microscopical model. In order to have
a larger set of observations, a new dataset is introduced as well as the corresponding
numerical results associated to it. We applied the Tri-graph method with different
values of the quantile and we transformed the outputs into sets of constraints for the
timetable problem applying the linear regression described in Chapter 5. The ‘virtual”
capacitated models are solved using an heuristic algorithm and the solutions are com-
pared with the ones of the uncapacitated model according to the three defined criteria.

The results show that the Tri-graph method is able to locate the most important head-
ways of the problem. It does not suffer so much of the transitivity property as the
Covariance Graph (hence its output is much smaller) and it is much easier to apply
than the Full Independence Covariance Graph, since it is defined on the covariance
matrix. Moreover the sets of “virtual” constraints obtained from its output (expecially
in the case of absence of multistatistical correction) improve the robustness of the
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(uncapacitated) solution in around 90% of the considered scenarios. Concerning the
choice of the quantile, it was not possible to highlight any strong difference among
the 5% and 10% values. Therefore we do suggest to consider the set of constraints
corresponding to the Tri-graph method without multistatistical correction with a 5%
quantile as “virtual” constraints.



Acknowledgments

When you arise in the morning, give thanks
for the morning light, for your life and
strength. Give thanks for your food and the
joy of living. If you see no reason for giving
thanks, the fault lies with yourself.

TECUMSEH SHAWNEE CHIEF (1768-1813)
American-Indian Warrior

During this period, that I definitely consider a journey, many people accompanied my
work on this thesis in various respects. I am deeply indebted to all of them whose
aid, stimulating suggestions and encouragement helped me in all the time of research
and writing of this thesis. I would like to express my gratitude to all of them: for that
journey, for its lessions and also for the help they offered me in my “personal” fight
against the German language.
Danke! Ihr habt das alles erst möglich gemacht!

In particular I would like to express all my gratitude to my supervisor, Prof. Dr. ANITA

SCHÖBEL, who introduced me to the field and community of railway network problems
and who offered a fertile working environment, encouragement and support ever since.

I am obliged to Prof. Dr. AXEL MUNK and Prof. Dr. STEPHAN WAACK who both agree to
become co-referees for this thesis.

A hearthfelt thanks goes to HARALD BÖRNER at Deutsche Bahn for always giving his
ears and sympathy.

I also want to show my gratitude to Dr. JULIANE SCHÄFER at ETH Zürich for the fruitful
discussions about Tri-graph.

A special mention goes to the optimization group (ANDREAS GINKEL, MICHAEL SCHACHTE-

BECK, Dr. SILVIA SCHWARZE and Dr. SUSANNE WEIßMANN) for sharing information about
public transportation systems and for giving me useful advice.

I really appreciate the countless discussions with Dr. THOMAS HOTZ: you had really
an incredible patience!

I owe thanks to the Deutsche Forschungsgemeinschaft and the Graduirtenkolleg
“Identifikation in mathematischen Modellen: Synergie stochastischer und numerischer
Methoden” for the financial support.



VI

I am indebted to Johannes Schuldt, who helped me to solve (some of) my starting
technical problems with R and Python.

My thanks are extended to the whole Institute for Numerical and Applied Mathe-
matics for providing me an excellent working surroundings. I very much enjoy the
time spent with academic colleagues and I want to thanks them for their help, support,
interest and valuable hints. I won’t name you all here, I hope to meet you again . . .
preferably not in Goslar.

Moreover I want to thank all the persons that share some (“un-mathematical”) time of
their life with me: thanks Anne for your “oldness” (and for the funny “Rødgrød med
fløde” even I still cannot pronounce it), thanks Chiara for every single E-mail and for
believing in me when I found it difficult to believe in myself, thanks Christian for your
selfless support (like during our walk, running around the Kiessee), thanks Claudiu for
your “nonchalance” (expecially speaking about postcards), thanks Emmanuel for our
“movie-time”, thanks Gian Luca for your unconditional everything (this is more than
I deserve), thanks Juri for your special vision of the everyday life, thanks Michel for
my daily dose of irony (my dear old sparring partner), thanks Mihaela for your Salsa
rhythm, thanks Mohammad for your midnight communicativeness, thanks Nouman
for your easy-going energy (“ohne dich, Party nicht”), thanks Olena for saying what
I have needed to hear instead of what I have wanted to hear, thanks Sonia for your
beat and strength, thanks d. Stefano to remind me which are the important things in
my life, thanks Ulrich for trusting me with your thoughts and disappointments, thanks
Yuliya for your radiant splendor (and the great idea about how to use shopping carts),
thanks Xiaoqin for your calm and patience (expecially listening me letting off my
steam) and for your incredible timing (“Mensch”), thanks God for keeping me sane
. . . and if I forgot to mention someone, thanks a lot to accept my apologize.

Certainly my family took on the hardest part - bearing my absence and when I was
present, my moods. Grazie.

Last but not least: thanks G’Ma for just have been out of scale!

I have no other words to say Thanks, but I mean that with all my heart.



Contents

Abstract I

1 Introduction to the Problem 1
1.1 Timetabling and Resource Allocation . . . . . . . . . . . . . . . . . 1

1.1.1 Railroad traffic control system . . . . . . . . . . . . . . . . . 2
1.2 Analysis of delay propagation . . . . . . . . . . . . . . . . . . . . . 5
1.3 Research objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Panorama of possible approaches . . . . . . . . . . . . . . . . . . . . 7

2 Analytical Description 13
2.1 Formulation of the Problem . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 NP-completeness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 [CTM-3] is NP-hard . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4 Shop Scheduling Problem . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5 [CTM-4] is NP-hard . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.6 Capacity-Constrained Problem . . . . . . . . . . . . . . . . . . . . . 27
2.7 Train traffic deviation handling using TS and SA . . . . . . . . . . . 29
2.8 Resource Constrained Project Scheduling Approach . . . . . . . . . . 32
2.9 [RCTM] is NP- hard . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.10 Pointing out the difference between [RCTM] and [CTM-4] . . . . . . 36
2.11 Identifying dependencies through a stochastic approach . . . . . . . . 40

3 Stochastic Approach 43
3.1 Probability and Independence . . . . . . . . . . . . . . . . . . . . . . 43
3.2 Statistical test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3 Chi-squared Test on a Contingency Table . . . . . . . . . . . . . . . 45
3.4 Graphical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4.1 Graph: notation and terminology . . . . . . . . . . . . . . . . 48
3.5 Continuous method . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.5.1 Full Conditional Independence Graph . . . . . . . . . . . . . 53
3.5.2 Covariance Graph . . . . . . . . . . . . . . . . . . . . . . . 53
3.5.3 Tri-graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.5.4 Some examples . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.5.5 Some theoretical results . . . . . . . . . . . . . . . . . . . . 60

3.6 Statistical Multicorrection . . . . . . . . . . . . . . . . . . . . . . . 64
3.7 Tri-graph estimation algorithm . . . . . . . . . . . . . . . . . . . . . 65
3.8 Complexity of the Algorithm . . . . . . . . . . . . . . . . . . . . . . 65



VIII

4 Numerical Results 69
4.1 The DisKon Project . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.1.1 The raw data . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.1.2 Working with the data . . . . . . . . . . . . . . . . . . . . . 72

4.2 Outputs of the samples W − 30 and W − 195 . . . . . . . . . . . . . 74
4.3 Outputs of some subsamples of W − 195 . . . . . . . . . . . . . . . . 79
4.4 Outputs of the Saturdays and Sundays samples . . . . . . . . . . . . 83
4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5 Modeling delays and virtual constraints 87
5.1 Distribution of the delays . . . . . . . . . . . . . . . . . . . . . . . . 87
5.2 How to represent delays . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.3 Modeling train delays in Urban Networks . . . . . . . . . . . . . . . 90
5.4 Some considerations about the normal distribution. . . . . . . . . . . 93
5.5 About the covariance . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.6 Writing the “virtual” constraints . . . . . . . . . . . . . . . . . . . . 97

5.6.1 Four alternatives . . . . . . . . . . . . . . . . . . . . . . . . 99
5.6.2 Least squares error . . . . . . . . . . . . . . . . . . . . . . . 102
5.6.3 Empirical comparison . . . . . . . . . . . . . . . . . . . . . 104
5.6.4 Robust Estimators . . . . . . . . . . . . . . . . . . . . . . . 109
5.6.5 Slope and intercept . . . . . . . . . . . . . . . . . . . . . . . 110

6 About the Robustness 121
6.1 Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.2 The system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.3 Final consideration . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7 Conclusion 135

A Maximum Likelihood Estimation 137
A.1 A short introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
A.2 Computational Problem . . . . . . . . . . . . . . . . . . . . . . . . . 138
A.3 The Likelihood Ratio Test . . . . . . . . . . . . . . . . . . . . . . . 138
A.4 Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

Bibliography 141

Curriculum Vitæ 146



List of Figures

1.1 Timetable Scheduling Project . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Home signal limits and block sections . . . . . . . . . . . . . . . . . 3
1.3 Home signal limits with intermedium interlocking signals . . . . . . . 4
1.4 Train gate controller automat (from [40]) . . . . . . . . . . . . . . . . 9

2.1 Example of Public Transportation Network . . . . . . . . . . . . . . 14
2.2 Example of Activity-on-arc Project Network . . . . . . . . . . . . . . 15
2.3 Blocks sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 Explanation of the parameter rie . . . . . . . . . . . . . . . . . . . . 33
2.5 Makespan vs. total tardiness . . . . . . . . . . . . . . . . . . . . . . 38

3.1 Example of undirected cycle in the railway system . . . . . . . . . . 49
3.2 Example of the separation concept on a graph . . . . . . . . . . . . . 51
3.3 Example without cycles in the Full Conditional Independence Graph 55
3.4 Example with cycles in the Full Conditional Independence Graph . . 56
3.5 Example of Covariance Graph as subgraph of Full Conditional Inde-

pendence Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.6 single track line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.7 Tri-graph coincides with FCIG . . . . . . . . . . . . . . . . . . . . . 59
3.8 Triangular connection . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.9 Tri-graph coincides with CG . . . . . . . . . . . . . . . . . . . . . . 61

4.1 Harz area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.2 Location of the considered stations . . . . . . . . . . . . . . . . . . . 71

5.1 The variable Max(S,T) . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.2 Offsets of the linear regression . . . . . . . . . . . . . . . . . . . . . 98

6.1 Concept of robustness . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.2 Robustness criteria: headways function . . . . . . . . . . . . . . . . 129
6.3 Robustness criteria: second function . . . . . . . . . . . . . . . . . . 130
6.4 Robustness criteria: price function . . . . . . . . . . . . . . . . . . . 131
6.5 Robustness criteria: Comparison for NC 5% . . . . . . . . . . . . . . 132

7.1 . . . just an “ironic” conclusion . . . . . . . . . . . . . . . . . . . . . . 136

A.1 Likelihood function with local minima . . . . . . . . . . . . . . . . . 138
A.2 MLE errors of type I and II . . . . . . . . . . . . . . . . . . . . . . . 140





List of Tables

2.1 Reductions among objective functions . . . . . . . . . . . . . . . . . 24
2.2 Particular addition to Table 2.1 . . . . . . . . . . . . . . . . . . . . . 25
2.3 Reductions among constraints of the Job Shop Scheduling problem . . 26

4.1 Characteristic of the samples W − 30 and W − 195 . . . . . . . . . . 73
4.2 Outputs of the Contingency Table test for the samples W − 30 and

W − 195 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.3 Output of the Covariance Graph for the samples W − 30 and W − 195 75
4.4 Output of the Tri-graph for the sample W − 30 . . . . . . . . . . . . 76
4.5 Output of the Tri-graph for the sample W − 195 . . . . . . . . . . . . 76
4.6 Comparison of different methods on the samples W − 30 and W − 195 77
4.7 Outputs of the Tri-graph for the samples MWF − 117, TT − 78 and

Mo − 39 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.8 Comparison of Tri-graph outputs for the samples W − 195, MWF −

117, TT − 78 and Mo − 39 . . . . . . . . . . . . . . . . . . . . . . . 79
4.9 Outputs of the Tri-graph for the sample Tu − 39 . . . . . . . . . . . . 80
4.10 Output of the Tri-graph for the sample We − 39 . . . . . . . . . . . . 80
4.11 Output of the Tri-graph for the sample Th − 39 . . . . . . . . . . . . 81
4.12 Output of the Tri-graph for the sample Fr − 39 . . . . . . . . . . . . 81
4.13 Comparison of the outputs of the Tri-graph for samples W − 195,

Mo − 39, Tu − 39, We − 39, Th − 39 and Fr − 39 . . . . . . . . . . 82
4.14 Comparison of the virtual edges for the samples W − 195, Mo − 39,

Tu − 39, We − 39, Th − 39 and Fr − 39 . . . . . . . . . . . . . . . 82
4.15 Comparison of virtual edges for the samples W − 195, MWF − 117,

TT − 78 and Mo − 39 . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.16 Output of the Tri-graph for the sample S a − 39 . . . . . . . . . . . . 84
4.17 Output of the Tri-graph for the sample S u − 39 . . . . . . . . . . . . 84
4.18 Characteristic of the samples S a − 39 and S u − 39 . . . . . . . . . . 85

5.1 Comparison of LSE on edges TG (no corr.) for the samples W − 30,
W − 195, S a − 39 and S u − 39 . . . . . . . . . . . . . . . . . . . . 105

5.2 Comparison of LSE mean on edges TG (no corr.) for the samples
W − 30, W − 195, S a − 39 and S u − 39 . . . . . . . . . . . . . . . . 105

5.3 Comparison of LSE on the virtual connections (no corr.) for the sam-
ples W − 30, W − 195, S a − 39 and S u − 39 . . . . . . . . . . . . . 106

5.4 Comparison of LSE mean on the virtual connections (no corr.) for the
samples W − 30, W − 195, S a − 39 and S u − 39 . . . . . . . . . . . 106



XII LIST OF TABLES

5.5 Comparison of LSE on edges TG (no corr.) for the samples MoWeFr−
117, TuTh − 78 and Mo − 39 . . . . . . . . . . . . . . . . . . . . . 107

5.6 Comparison of LSE mean on edges TG (no corr.) for the samples
MoWeFr − 117, TuTh − 78 and Mo − 39 . . . . . . . . . . . . . . . 107

5.7 Comparison of LSE on the virtual connections (no corr.) for the sam-
ples MoWeFr − 117, TuTh − 78 and Mo − 39 . . . . . . . . . . . . 108

5.8 Comparison of LSE mean on the virtual connections (no corr.) for the
samples MoWeFr − 117, TuTh − 78 and Mo − 39 . . . . . . . . . . 108

5.9 Mean of slope and intercept on all the edges of TG (no corr.) for the
samples W − 30, W − 195, S a − 39 and S u − 39 . . . . . . . . . . . 112

5.10 Mean of slope and intercept on all the edges of TG (no corr.) for the
samples MoWeFr − 117, TuTh − 78, and Mo − 30 . . . . . . . . . . 113

5.11 Mean of slope and intercept on all the waiting activities (no corr.) for
the samples W − 30, W − 195, S a − 39 and S u − 39 . . . . . . . . . 114

5.12 Mean of slope and intercept on all the waiting activities (no corr.) for
the samples MoWeFr − 117, TuTh − 78, and Mo − 30 . . . . . . . . 115

5.13 Mean of slope and intercept on all the driving activities (no corr.) for
the samples W − 30, W − 195, S a − 39 and S u − 39 . . . . . . . . . 116

5.14 Mean of slope and intercept on all the driving activities (no corr.) for
the samples MoWeFr − 117, TuTh − 78, and Mo − 30 . . . . . . . . 117

5.15 Mean of slope and intercept on all the “virtual connection” (no corr.)
for the samples W − 30, W − 195, S a − 39 and S u − 39 . . . . . . . 118

5.16 Mean of slope and intercept on all the “virtual activities” (no corr.) for
the samples MoWeFr − 117, TuTh − 78, and Mo − 30 . . . . . . . . 119

6.1 Outcome of the Tri-graph for the samples 2HH, 4HH and 6HH . . . 124
6.2 Number of violated headways . . . . . . . . . . . . . . . . . . . . . 126
6.3 Percentage of violated headways . . . . . . . . . . . . . . . . . . . . 126
6.4 Cost in seconds of the violated headways . . . . . . . . . . . . . . . 127
6.5 Percentage of the cost in seconds of violated headways . . . . . . . . 127
6.6 Price in seconds of correction . . . . . . . . . . . . . . . . . . . . . . 128
6.7 Percentage of price in seconds of correction . . . . . . . . . . . . . . 128
6.8 Nr. of scenarios with improvement w.r.t. the uncapacitated model . . . 133



1
Introduction to the Problem

Delay is preferable to errors.

THOMAS JEFFERSON (1743-1826)
3rd President of the United States

1.1 Timetabling and Resource Allocation

A (re-)scheduling of the railway-timetable is a project involving a considerable amount
of money, personnel and equipment. It is usually initiated either by some need of the
railway system or by some particular customers’ requests (e.g. soccer world champi-
onship). According to the definition of project management and resource allocation
given in [64], its life cycle can be schematized into five consecutive phases.
Starting point is the timetable concepting phase in which some proposals and analyses
are considered in order to decide whether or not the project will be performed. The
timetable definition phase fixes the objectives of the project (e.g. minimizing the total
traveling time of the trains), the different tasks to be performed (e.g. journeys of the
trains) and the resources (trains, tracks, platforms, crews, . . . ) that will be assigned to
the project. Then, in the project planning phase, every task is decomposed into a se-
quence of precedence-related activities. The time and the resource estimations provide
the total duration and the resource requirements for every activity as well as temporal
constraints between activities related by a precedence relationship. The result of this
analysis can be represented in a network modeling the activies and the prescribed pri-
ority list among them. Moreover the timetable constraints define temporal windows
bounded by the earliest and latest starting times as well as slack times, in respect of
the resources availability. The last issue of the timetable is the most complicated and
consists in allocating the limited resources to the execution of the activities. During
this phase, called timetable execution phase, it must be checked if any suggested deci-
sion is against the schedule that has been established in the planning phase. In case of
conflict the resource allocation has to be performed again to guarantee the feasibility
of the project. The last step, timetable termination phase, consists in evaluating the
new timetable to facilitate future management of the project.
The process can be schematically represented as in Figure 1.1.

The complexity of resource allocation comes from the interaction among activities
by explicit and implicit dependencies, which may be subject to some degree of un-
certainty. Explicit dependencies are given by the precedence relationships among
activities arising from technical or organizational requirements. In this work, these
dependencies will be transformed into temporal constraints. The limited resources
give implicit dependencies among activities that can be formulated as resource con-
straints for all the activities competing for the same resource (it is also possible to add
a penalty in the object function to avoid excesses).
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Figure 1.1: Timetable Scheduling Project

In the timetable allocation problem time windows are assigned to every activity cor-
responding to feasible execution time, taking into consideration all the temporal and
resource constraints (the so called resource-constrained problem).
Within the Resource allocation sub-phases it is possible to distinguish two subprob-
lems: sequencing and time-constrained project scheduling.
The sparsity of resources implies the definition of another precedence relationship
among activities during the resource allocation task, that can be express by temporal
constraints. In contrast to the previous ones, these new constraints depend on subjec-
tive decisions to build up the priority list of activities, that is the core of the timetable.
The schedule of time-constrained project is based on computing a feasible solution,
given all the temporal constraints, that also optimizes an object function representing
the goal of the project.

1.1.1 Railroad traffic control system

Railroads publish documents that help railroaders understanding how trains are to be
moved across their systems. Employees are required to study these documents, to
have them available while working and to meticulously obey them. These documents
define the procedures by which operations will be conducted: the "when and how" of
railroading. Accordingly the employee timetable is more detailed than the passenger
one and contains a treasure of detailed information about the railroad and how it oper-
ates: for example it indicates the geographical location of facilities (switches, tracks,
. . . ) and distances in kilometers to help the workers controlling which type of author-
ity is in effect for each piece of track. Every train must have the authority to occupy
a track before it can be moved and even if there are different kinds of authorities (e.g.
maintenance people must also have the authority to be on or to obstruct a track), usu-
ally only one type is in effect on any given piece of a track.
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Examples of rules that have to be considered during the reschedule of a timetable are:

• security distance: the headway must be calculated in order to satisfy all security
rules of the system, e.g. the breaking space required to stop a vehicle;

• maximal speed: in every block of tracks, for every kind of train, it is defined
a speed limit in order to avoid conflicts. This boundary defines the minimal
possible duration of the journey and consequently the available slack time;

• kind of train: due to particular characteristic of the machines, not all trains can
travel on all blocks.

Even if the rules are quite straight, it is in any case necessary to direct train move-
ments. Before giving a small introduction to the authorities that govern the decision
process (see also [14] and [15]) we prefer to introduce the concept of blocks (see [54]).

In a railroad system we can distinguish between two different kinds of tracks: station
tracks and tracks of the open line. The first type can be found only inside a kind of
station that is called Bahnhof in German. A Bahnhof is a set of tracks limited by op-
posing home signals, with at least a turnout, where trains may depart, pass by, arrive,
overtake and turn. The tracks outside the home signal limits are part of the open line
set (Figure 1.2).
The signals that allow a train to leave the home signal limits are called exit signals
(Figure 1.3). All the other signals inside a Bahnhof are called intermedium interlock-
ing signals and they identify the limits of the track sections inside the home signal
limits (that can not be referred to as block section). They govern either a junction
station or a crossover station (that are junctions or crossovers inside a station).

Figure 1.2: Home signal limits and block sections

According to these definitions we can introduce the most common kind of authorities:
interlocking signal, centralized traffic control, track warrant control, direct traffic con-
trol and speed limits.

Interlocking signals
Interlocking signals allow movements within the limits of the interlocking plant
bounded by those signals. As the name implies, they are appliances (once mechanical,
now electronic) that are designed so that conflicting movements cannot be authorized.
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Figure 1.3: Home signal limits with intermedium interlocking signals

They can be manually or automatically controlled. The second type is the most com-
mon, for example in remote crossings of two railroads, and usually operates on a
first-come-first-served base (but this rules can be changed to whatever the operator
decides).
To unlock the signal so that it can be cleared again for another train, it is necessary to
check the following conditions:

• the block section and the overlap must be clear;

• the train must have passed the signal at the end of the block section;

• the signal at the end of the block section must be in stop position.

These conditions can be verified with a sequence locking, i.e. a section can only be
released after the next section has been occupied.

Centralized Traffic Control
The Centralized Traffic Control, also called Traffic Control System, is commonly
found on high-or-medium-density lines, where the signal equipment cost can be jus-
tified by the reduction in train delays. Conceptually it is a series of interblocking
signals controlled by a dispatcher. Trains are governed by signal indicators, some of
which provide movement authorities (a "green/red light") in order to prevent conflict-
ing authorities. From a console the dispatcher remotely controls signals and powered
switches so that the trains need only to observe the controlled signals to obtain move-
ment authority.

Track Warrant Control
The Track Warrant Control authorizes the dispatcher to verbally instruct the train to
proceed, usually via radio. The dispatcher selects the stations and blocks of tracks
among which the train may move. The authority is limited on the basis of "not in
effect until after the arrival of . . . ". The train crew writes the instructions on a Track
Warrant Form and repeats them to the dispatcher for verification. When only this au-
thority is used nothing prevents the dispatcher from erroneously issuing overlapping
or conflicting warrants. Therefore computers are usually used to check for conflicts to
minimize the effects of (human) errors.
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Direct Traffic Control
Direct Traffic Control is similar in execution and application to Track Warrant Control,
but the railroad is subdivided into pre-defined "blocks." The dispatcher authorizes a
train to proceed in one or more of the blocks but does not have the flexibility in the
selection of authority boundaries available under Track Warrant Control.

Speed limits
Speed limits authorize any train to move at a speed that allows it to avoid conflicts.
This is the railroad equivalent of aviations visual flight rules. A "speedmaster" may
direct speed movements, but does not provide movement authorities. Trains and en-
gines must still watch out for each other.

Each system of train movement authorities must also include provision for protecting
maintenance vehicles and workers, as well as any work train that may be moving back
and forward within a section of track.

1.2 Analysis of delay propagation

Even if a timetable that respects all the constraints and rules is given, it is always
possible that somewhere in the system a problem occurs and so delays arise. Since
delays are interactions among many random variables involved in the railway system
(people, vehicles, infrastructure, weather, . . .), it is difficult to prevent them.
We can subdivide the delays into two main classes:

primary delays (also called source delay) are caused on a train from the outside and
not from other trains (e.g. malfunctioning of infrastructure, bad weather condi-
tions, accident at road-railroad crossing, . . .);

secondary delays (also called forced delay) are forced by earlier delays or other trains
(e.g. sharing of the same infrastructure, fixed connections, transfer in crew
schedules, . . .).

The main reasons for a delay to appear are:

• bad weather conditions;

• individual driving behavior of the engine drivers, that can affects the way train
movements take place;

• strong fluctuations in boarding/transferring time of passengers;

• delayed setting up of the required route by the dispatchers or by the automatic
train regulation;

• obstacles on the rail;

• sharing of the same infrastructure among a large number of rolling stocks (with
different characteristics).

Except the last one that is a secondary delay, all the other reasons represent source
delays that are not easily controllable in order to prevent delay propagation. In par-
ticular, it is not always possible to avoid that the delay of a single train affects several
other trains. On the contrary, the propagation of delays is the main source for delays.
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Delay propagation occurs because, on the one hand, there is a large number of trains
using the same infrastructure, whereas on the other hand, the signaling systems im-
pose strong restrictions on the way these trains are operated (e.g. security rules, . . .).
The punctuality of the system can be improved by preventing or reducing delay prop-
agation.

1.3 Research objectives

We focus our attention on the analysis of delay propagation: railway stations or single
tracks are considered as the bottlenecks of the system (in a Bahnhof, as defined in
the previous section, a train can wait for a green light either to reach or to leave a
particular track, and a single track implies a priority list).

Such “fault” will reduce what is here called the infrastructure capacity. The concept of
capacity is loosely defined, for a specific part of the railway line it usually expresses
the maximum number of trains per time unit that could possibly operate on the line.
This maximum number of trains is normally considered as a constant but precisely
stated it is not, since it does depend not only on the hard technical facts that are cap-
tured in the functional and technical state, but also on how the trains are scheduled in
the timetable and on the mixture of speed among the trains (e.g. if on a single track
one train at a time is alternatively dispatched in each direction, fewer train can travel
on it than if two trains at a time are alternatively dispatched in the same direction on
it). Therefore the “value” of the capacity will be different if calculated for different
periods of the day. In this work we consider the concept of capacity as one of the
constant parameters of the system.

It results that the Bahnhof areas of the network have a limited (infrastructure) capacity
compared to other block sections, due to the larger occupation time of infrastructure
(e.g. the platform tracks) and the extra safety margins that are required to set up
and release routes at crossings and switches. Consequently delay propagation is most
likely to be expected in these areas since:

• trains arriving/traveling/departing in time receive a red signal if the block sec-
tion ahead is still occupied by a delayed train (e.g. if two trains need to use the
same junction to reach the assigned platform);

• trains may be forced to stop longer than planned at a platform to maintain con-
nections.

Moreover since the safety level on the railway network has a very high importance,
when faults occur rather then reduce the security distance, delays are allowed, slow-
ing down or even stopping other trains in order to prevent catastrophic consequences.
Therefore the railway system is very sensitive to disturbances on the timetable. The
timetable in fact is designed so that it should be feasible (i.e. no delays or conflicts) if
no disturbances occur. To make the timetable more “robust” in case of disturbance (i.e.
the performance of the system will not be so sensitive to (small) deviations from the
scheduled timetable) slack times are introduced. Obviously the easiest way to avoid
the delay propagation would be to choose bigger slack times. It is always possible to
design a timetable so that passengers train will stop several minutes at each station
to be sure that there will be enough time for boarding and/or scheduled connections.
These actions in fact reduce the variability of the travel time but that results in longer
scheduled traveling times for the passengers. Another possibility will be to run fewer
trains on a particular line, then automatically we will have larger time margins and
hence a more robust timetable, but we will also reduce the utilization of the capacity
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of the system, i.e. the money spent on the infrastructures will not be well “invested”.
Since these approaches are not acceptable (either for the passengers or from the rail-
way system), to prevent the propagation of delays it is necessary to identify the depen-
dencies between primary and secondary delays. In such a way we may be able to find
an optimal compromise among all the conditions that the system has to satisfy, so that
all the passengers will be able to reach their final destination with the minimal delay.
This can imply some missing connections to limit the propagation of the perturbation
on the timetable.
Delay propagation analysis can be a useful tool to verify whether the capacity of the
system is sufficient for a given timetable at a predefined level of punctuality (if not,
the infrastructure management might decide to adjust or extend the existing infras-
tructure). In addition it provides new criteria for the timetable designers in order to
obtain insights in how to optimize a timetable concept by adding buffer times to the
“most sensitive" train successions.

In this thesis we will focus our attention on the analysis of delay propagation to
find appropriate wait and depart decisions in delay management.

1.4 Panorama of possible approaches

The Train Timetable Problem is nowadays a well known problem and much progress
has already been achieved in particular concerning the delay management. In a contest
of an overall view, we will give in the next pages a short description of a few models
that have been applied to delay propagation and/or prediction, drawing attention on
some of their drawbacks. In particular we will introduce the following techniques:
Process Algebra (see [5] or [9]), Markov Chain (see [80]), Linear Regression (see
[13]), Wakob’s Approach (see [23]). Detailed explanations on the application of the
procedure and on the results can be found in the quoted articles.
Instead of the method that will be tested in this work, a stochastic technique originally
applied in the genetic field, will be separately presented in Chapter 3.

Process Algebra
Process Algebra is an active area of research in computer science and corresponds
to an algebraic approach to the study of concurrent processes to ensure that they are
correctly designed.
The word Algebra denotes that we take an algebraic or axiomatic approach in describ-
ing the behavior. So a Process Algebra is then any mathematical structure satisfying
the axioms given for the basic operators. Within this structure calculations with pro-
cesses that are the elements of the Process Algebra can be performed (by the axioms).
The basic operators and the axioms must be defined according to the concurrent sys-
tem under examinations (see [5]). Hence a deep knowledge of the process that has to
be simulated is required.
Concurrent systems consist of a possibly huge number of components that not only
work independently but also communicate with each other from time to time (e.g the
railway signaling system). If the total amount of states is quite large, the number of
possible actions can become too big to be considered.
In the deterministic case, the focus of Process Algebra is on verifying that the ex-
ectution of specific actions is guaranteed by a fixed deadline after some event has
happened, e.g that if a train is approaching a railroad crossing, then bars must be
guaranteed to be lowered on due time.
In the stochastic case, instead, are considered systems, whose behavior cannot be
deterministic predicted as it fluctuates according to some probability distribution.
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Due to economical reason, these systems are referred to as shared resources systems
because there is a varying number of demands competing the same resources. The
consequences are mutual interference, delays due to contention, and varying service
quality. In this case, the focus of process algebra is on evaluating the performance
of the systems: e.g. in the railway system we may be interested in minimizing the
average train delay or studying the characteristics of the flow of passengers.
Since these process can describe just certain aspects of behavior, disregarding oth-
ers, they are always considered an abstraction of the “real” behavior of the system.
Moreover a huge amount of details has to be taken into account (e.g. interconnec-
tion and synchronization structure, allocation and management of resources, real time
constraints,. . . ) so that it is necessary to have a close collaboration of many people
with different skills in the project.
As applicative example we introduce the case of train-gate-controller presented in
[40]. The problem is composed by three components: a train, a gate and a controller.
A train approaches a gate from a great distance with a speed between 48 and 52 m/s.
As soon as it passes the detector signal placed (1000 m) backward from the gate, an
approaching signal is sent to the controller. The train may slow down (speed between
40 and 52 m/s) and pass the gate. As soon as it passes the detector placed (100 m)
forward from the gate, an exit signal is sent to the controller. A new train may come
after the current one has passed the second detector, but only at a security distance
(1500m). The gate is able to receive lower and raise signals from the controller at any
time. As soon as the gate receives a lower signal, it lowers from 90◦ to 0◦. As soon
as it receives a raise signal, it raises from 0◦ to 90◦. The controller is able to receive
approaching and exit signals from the train detectors at any time. When the controller
receives an approaching signal, it sends a lower signal to the gate. When it receives
an exit signal, a raise signal is sent to the gate. Because of security procedure, an
approaching signal should always cause the gate to go down, and exit signals should
be ignored while the gate is going down. The train gate controller specifications have
following environment variables:

• x for the distance of train from gate;

• r for the angle of gate with the ground (90◦ up, 0◦ down);

• d for possible delay controller;

• y for speed of the train.

It is assumed that initially there is no train at a distance smaller than 1400 m from the
gate, the gate is open and the controller is idle. In transition labels, x,r,d denote values
of variables before the transition. The primed variables x

′

,r
′

,d
′

represent values of
variables in the new location after the transition. The problem can be represented
with three graphs as in Figure 1.4. The complete system of commands to describe
the system requires more than three pages and it can be found in [40]. In any case
it should be evident that the need of different graphs (one for the trains, one for the
signals and one for the infrastructure) make the procedure neither easy to define nor
easy to understand.
In the last years many Process Algebras have been formulated, extended with data,
time, mobility, probability and stochastic (e.g. [9]). Unluckily they have not always
been satisfactory, because the presence of concurrency, communication, synchroniza-
tion and nondeterminism makes the study of the correctness of concurrent systems
particularly difficult, expecially when the structure is not regular.

Markov Chain
Markov Chains are a special case of random processes which can be used to model
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Figure 1.4: Train gate controller automat (from [40])

various processes in queuing theory and statistics.
A random process is a collection of random variables X indexed by some set T taking
values in some sets I.

• T is the index set, usually time (in the delay management T = Z but it can also
be chosen as R or R+);

• I is the state spaces (in the delay management I = Z+ but it can also be R or
{1 . . . n} or {a, b, c}).

We classify random processes according to both the index set (discrete or continuous)
and the state space (finite, countable or uncountable, continuous) A random process
is called Markov Chain if conditioned on the current state of the process, its future is
independent of its past. Mathematically we can write this property as

P(X(t+1) = it+1|X(t) = it, . . . , X(1) = i1, X(0) = i0) = P(X(t+1) = it+1|X(t) = it)

where P(A|B) is the conditional probability defined by

P(A|B) =
P(A ∩ B)

P(B)

The definition states that only the present state gives information on the future be-
havior of the process. Knowledge of the history of the process does not add any new
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information.
The controlling factor in a Markov Chain is the transition probability, i.e. a condi-
tional probability for the system to go to a particular new state given the current state
of the system. This means that we get fairly efficient estimates if we can determine
the proper transition probabilities.
A Markov Chain can be applied to predict the next state of a system, given the infor-
mation of the system in the previous states. Under the assumption that the Markov
property is valid, it is possible to neglect all the information coming from the history
of the process except the most recent one. So the transition probability is defined as

p(i, j) = P(X(t + 1) = j|X(t) = i)

and it does not depend on the time t. Intuitively this value gives the “rules of the game"
since it is the basic information needed to describe a Markov Chain and, due to the
definition of probability, we must have

p(i, j) ≤ 1 ∀i, j and
∑

j

p(i, j) = 1 ∀i

A state j is said to be accessible from state i (written i → j) if, given that we are in
state i, there is a non-zero probability that at some time in the future, we will be in
state j.

In the railway system, the variables X1, . . . , Xn ∈ Z can represent the delays of the
considered trains in the system. Then the Markov property can be explained as fol-
low: the value of the delays of the trains at time t, (x1,t, . . . , xn,t), depends only on the
previous measurement of their value, i.e. (x1,t−1, . . . , xn,t−1).
A recent application of Markov chains for the railway-timetable problem is [80], in
which different distributions (and hence probability functions) are considered to eval-
uate the level of punctuality (e.g number of punctual trains) of the systems in case of
delay.

Regression Model
Another approach often used in the railway delay management is the linear regression
model (see [13] or [49]). Let’s consider a response variable, also called dependent
variable, Y ∈ R (in our case the delay of an event), and some explanatory variables
(independent variables) X1, . . . , Xp−1 ∈ R (delays of ”previous” events).
The regression model tries to explain Y through a systematic component based on the
Xi and an error ε to cover possible discrepancy:

Y = r(X1, . . . , Xp−1) + ε

As first assumption we suppose that the function r(·) is linear, so that we can rewrite
the model as

Y = β0 + β1X1 + . . .+ βp−1Xp−1 + ε

If we suppose that we have more than one response variable Y1, . . . ,Yn we get the
system of equalities:

Yi = β0 + β1Xi1 + . . .+ βp−1Xi(p−1) + εi ∀i = 1, . . . , n

where for each Yi we can consider a different set of explanatory variables Xi1, . . . , Xip−1 ∈

R. If we define the vector Y = (Y1, . . . ,Yn)
T , the error vector ε = (ε1, . . . , εn)

T , the
regression parameter β = (β0, . . . , βp−1) and the regression matrix

X =


1 X11 X12 . . . X1n
1 X21 X22 . . . X2n
...

...
...

. . .
...

1 X(p−1)1 X(p−1)2 . . . X(p−1)n


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containing the values of the p explanatory variables, we can rewrite the model as
Y = βX + ε.
As second order hypothesis we consider (homoscedasticity):

E(ε) = 0
Var(ε) = σ2In ∃σ2 > 0 unknown

rank(X) = p

so that
E(Y) = µ = βX and Var(Y) = σ2In

If all that hold, we have defined a linear model that is particularly suited for the
mathematical description of problems arising from controlled experiments, where
experimenters can control the values taken by relevant factors to examine the corre-
sponding values of the response variables. In this setting, X contains the value of the
experimental factors, which are non-stochastic since they are chosen by the experi-
menters. The error term is due to measuring errors (which explains its name) and,
if the instruments are not biased, it follows that E(ε) = 0. Finally, if the various
experiments are conducted in such a way not to influence each other, then the stochas-
tic independence assumption is satisfied, implying uncorrelated errors. To be able to
define the probability distribution of Y , we introduce an alternative criterion to the
Likelihood principle that would require additional hypothesis on the distribution of ε.
We choose β such that it minimizes ||Y − µ|| =

√
(Y − βX)T (Y − βX) = Q(β) (Least

Squares Error). This method will be applied in Chapter 5 to evaluate the coefficient
of the ”virtual activities”, i.e. the capacity constraints related to the outcome of the
Tri-graph method (see Sections 2.11, 3.5.3 and 5.6).
In case the matrix X is regarded as non-stochastic, we can use the model to predict
the values of Y . Consideration of non-stochastic X is supported by the following
argument. In most common cases, the distribution of the explanatory variables does
not contain any information on the relationship with the response variables, since we
are interested in making interferences on this relationship not on the distribution of
the explanatory variables. Therefore, we examine the variables conditionally on the
values taken by X. In other words, we can operate within the conditional principle,
which stipulates that interferences should be based not on the distribution itself but on
the conditional distribution.
The main problem we found out in the application of this procedure is the choice of
the variable X that should be considered in the definition of the model to evaluate the
propagation of the delays. In fact this choice is strictly dependent on the knowledge
of the set of dependencies of the system, that is the aim of this thesis. Therefore
there is a really good interaction between Tri-graph method and linear regression: the
first procedure identifies the dependencies, whereas the second one gives the specific
“degree” of dependencies, i.e. the slope (see Chapter 5).

Wakob’s Approach
Wakob has proposed an analytical framework for capacity assessment of railway sta-
tions which is based on queuing theory. More precisely, he applies queuing theory to
predict the waiting time incurred by the simultaneous arrival and random processing
of two trains as isolated part of the infrastructure.
Wakob’s approach does not provide a queuing model for an entire railway station, but
it proposes an analytical framework for capacity planning. It partitions the station into
specific parts of the infrastructure (blocks, switches, platforms,. . . ) and it describes
the performance of them as single element (single server) instead of the station as a
whole.
Let a set C consists of basic infra-element s1, s2, . . . , sp and assume that C carries the
single server identity. If an arbitrary infra-element si, i ∈ {1, . . . , p} of C is occupied
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by one train, then the server identity implies that all other infra-elements inside C are
blocked. Consequently C can not be used by any other train during the same time slot.
So C can be seen as a "Teilfahrstraßenknoten" (TFK), i.e. as common parts of several
routes. Wakob’s Approach assumes that all the TFKs have infinite queuing space, to
prevent a train from getting locked/blocked if a queue has reached its capacity, and
that allows the approach to consider the TFKs separately. Since the size of a TFK is
small compared to the length of a train, several TFK will be occupied simultaneously.
Other assumptions of the method are Erlang distribution for the interarrivals processed
at a TFK and for the service times, and random arrival order of the trains. The method
evaluates the average time of a queue by the Pollackzek-Khintchine formula. In order
to calculate the total amount of waiting time it evaluates the mean queue length by
Little’s formula, so that the total waiting time is computed by multiplicating the ex-
pected queue length by the predefined observation period.
The approximation is very accurate but the waiting times are generally larger than
those obtained via simulations. Moreover, it is a “timetable”-free approach, hence it
cannot be compared with daily observations since a specific timetable can not be used
to verify or falsify it. Therefore this method should only be adopted as a first approxi-
mation for the capacity assessment of railway stations. The studied cases indicate that
the approach is indeed able to locate the bottlenecks section in a station. However,
it seems to be rather uncomfortable for the practical use by railway staff due to the
substantial efforts that are required to implement and to mantain the algorithms.
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Analytical Description

It is not worthwhile to travel in the first
class. You will arrive with the same delay of
the second one.

$crooge McDuck
fictional Scottish character created by Carl Barks

2.1 Formulation of the Problem

The scheduling of a timetable can be considered as a project in which a set of inter-
acting tasks (journeys of the trains) require time (e.g. driving time, waiting time . . . )
and resources (e.g. tracks, platforms . . . ) to be completed.
Given two sets, T for the trains and V for the stations, that have to be studied, we
represent the railway system by a network, the so called Public Transportation Net-
work PT N = (V,B) in which every node represents a station and every edge is a set
of (blocks of) tracks connecting two different stations (see an example in Figure 2.1).

The PTN is intuitive but the information it contains is not enough to study the problem
from an analytical point of view. Accordingly we will instead consider the so called
Activity-on-arc Project Network N = (E,A) (Ref: [51] and [54]).
We define a set of events E corresponding to the arrivals and departures of all trains in
all stations of their journeys, and a set of activities A (driving along an edge, waiting
in a station or connection between two trains) so that

(2.1) E = Edep ∪ Earr

where
Edep = { (t, v, dep) : t ∈ T v ∈ V : t departs from v}
Earr = { (t, v, arr) : t ∈ T v ∈ V : t arrives in v}

and

(2.2) A = Adrive ∪Await ∪Achange

where

Adrive = { ((t, v, dep), (t, u, arr)) ∈ Edep × Earr : (v, u) ∈ B}

Await = { ((t, v, arr), (t, v, dep)) ∈ Earr × Edep}

Achange ⊆ { ((t, v, arr), (t ′, v, dep)) ∈ Earr × Edep : t, t ′ ∈ T }

and the set of guaranteed connections contained inAchange should be defined according
to the passengers’ needs.
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Figure 2.1: Example of Public Transportation Network

The graph in Figure 2.2 is a small example of how an Activity-on-arc Project Network
looks like when two connections between two trains are possible.

We define now the parameters

wi weight of event i ∈ E
πi scheduled time of event i ∈ E
di source delay associated to event i ∈ E, di ≥ 0
La minimal duration of activity a ∈ A

and the variables

yi secondary delay of event i ∈ E
xi re-scheduled time of event i ∈ E

so that

(2.3) xi = πi + yi and yi ≥ di

If we consider just delays of the first type (propagation along the same train) and of
the second type (propagation from one train to another due to connections), we can
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Figure 2.2: Example of Activity-on-arc Project Network

write our Timetable Model [TM-1] as:

min
∑
i∈E

wixi(2.4a)

x j − xi ≥ La ∀a = (i, j) ∈ A(2.4b)
xi ≥ πi + di ∀i ∈ E(2.4c)
xi − πi ≤ T ∀i ∈ E(2.4d)
xi ∈ Z

+ ∀i ∈ E(2.4e)

The objective Function (2.4a) is equivalent to the delay function
∑
i∈E

wiyi since we

defined xi = πi + yi, where the scheduled timetable πi is a constant parameter of our
model.
The constraints represent the time limits of our problem:

• (2.4b) the real duration of an activity must respect the (technically) minimal
one, i.e. the real duration must be larger than the given lower bound;

• (2.4c) the real timetable must respect the scheduled one and the delays;

• (2.4d) the delay of an event must be smaller than the period T of the model;

• (2.4e) the variables xi are in Z+ since minutes (or seconds) are the minimal time
units of the system.

Constraint (2.4d) is an (“implicit”) condition in a periodic timetable. If the delay of
a train at one station yi is greater than the period T (yi > T ), it is preferable (in order
to avoid delay propagation) to cancel the train and ask the passengers to get on the
next scheduled train. This condition gives an upper bound for delays, that can be
interpreted as a deadline for every activity of the system. The Timetable Model can be
read as a problem in which every activity has to be executed inside a time window (i.e.
a time interval) defined by the scheduled timetable and the (“pre-defined”) deadline:

xi ≥ πi + di and xi − πi ≤ T

that is
xi ∈ [πi + di, πi + T ]
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This is a broad interpretation of these “implicit” constraints since, inside a periodic
timetable, every set of trains traveling on the same route has a specific period, which
is usually smaller than the general period T . For example Hannover and Göttingen are
connected by a train every hour, but the trains between the main station in Hannover
and the Hannover airport have a higher frequency. Therefore it makes sense to con-
sider, instead of the constant period T , a specific period Ti that depends on the route
of train t corresponding to event i. We can rewrite the Timetable Model as [TM-2]

min
∑
i∈E

wixi(2.5a)

x j − xi ≥ La ∀a = (i, j) ∈ A(2.5b)
xi ≥ πi + di ∀i ∈ E(2.5c)
xi − πi ≤ Ti ∀i ∈ E(2.5d)
xi ∈ Z

+ ∀i ∈ E(2.5e)

In case of its feasibility, [TM-2] can be solved by the critical path method (CPM)
which looks for a longest path in the event-activity-network. In a connected network
there always exists a longest path between two nodes if and only if it does not contain
any direct cycle with positive length. We can assume the absence of direct cycles with
positive length since the event-activity-network is a time-expanded network such that
a cycle would represent a sequence of meaningless precedences.
Now we introduce in the [TM-2] the third type of delay (propagation from one train
to another due to limited capacity of infrastructure), that is the one we mainly want
to investigate. A possible way to proceed is to avoid any overlapping between two
consecutive events. This can be interpreted as a capacity constraint since formally we
forbid that two trains can use simultaneously the same track/platform.
To mathematically define these capacity constraints we could use the following Ca-
pacitated Timetable Model [CTM-1]

min
∑
i∈E

wixi(2.6a)

x j − xi ≥ La ∀a = (i, j) ∈ A(2.6b)
xi ≥ πi + di ∀i ∈ E(2.6c)
xi − πi ≤ Ti ∀i ∈ E(2.6d)
gi je(x j − xi − La) ≥ 0 ∀i, j ∈ S e(2.6e)

where a = (i, k) ∈ Adrive

(1− gi je)(xi − x j − La ′) ≥ 0 ∀i, j ∈ S e(2.6f)

where a ′ = ( j, k ′) ∈ Adrive

xi ∈ Z
+ ∀i ∈ E(2.6g)

gi je ∈ {0, 1} ∀i, j ∈ E ∀e(2.6h)

Here S e refers to the set of (departure) events that use the same edge e of the underly-
ing physical network in their next (driving) activity and gi je is a binary variable equal
to 1 if event i ∈ S e happens before event j ∈ S e on the edge e, 0 otherwise. The
Constraints (2.6e) and (2.6f) are the capacity constraints on every edge: before a new
(driving) activity starts on the edge, the previous scheduled one must have been com-
pleted (and to define the considered driving activities we introduced the corresponding
arrival events k and k ′ of the two trains). These constraints are more restrictive than
what we need. In practice, two trains can simultaneously use the same edge. To guar-
antee the safety while doing so, each edge is separated into blocks as introduced in
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Figure 2.3: Blocks sections

Section 1.1.1, an example of blocks on a single track is shown in Figure 2.3. We hence
rewrite [CTM-1] in a more detailed formulation. Firstly we define the set M as the
blocks (part of tracks or platforms) of the system. For every block m ∈ M we also
define a set S m of events in Edep that have to take place on it. Besides we introduce a
new binary variable gi jm equal to 1 if event i ∈ S m happens before event j ∈ S m, zero
otherwise, and a new parameter hi jm, called headway, corresponding to the security
distance that events i and j have to respect on block m. The Capacitated Timetable
Model can be written as [CTM-2]

min
∑
i∈E

wixi(2.7a)

x j − xi ≥ La ∀a = (i, j) ∈ A(2.7b)
xi ≥ πi + di ∀i ∈ E(2.7c)
xi − πi ≤ Ti ∀i ∈ E(2.7d)
gi jm(x j − xi − hi jm) ≥ 0 ∀m ∈ M ∀i, j ∈ S m(2.7e)
(1− gi jm)(xi − x j − h jim) ≥ 0 ∀m ∈ M ∀i, j ∈ S m(2.7f)
xi ∈ Z

+ ∀i ∈ E(2.7g)
gi jm ∈ {0, 1} ∀m ∈ M ∀i, j ∈ S m(2.7h)

Note that (2.7e) and (2.7f) can be replaced by

gi jm(x j − xi − hi jm) ≥ 0 ∀m ∈ M ∀i, j ∈ S m(2.7e ′)

(1− gi jm)(xi − x j − h jim) ≥ 0 ∀m ∈ M ∀i, j ∈ S m(2.7f ′)

where hi j = max
m∈M

i, j∈S m

hi jm. This choice reduces significantly the number of parameters of

the system since we do not need anymore to introduce the concept of block into the
model. Hence we will get a formulation really similar to [CTM-1] but with sharper
capacity constraints (i.e. (2.7e ′) and (2.7f ′) instead of (2.6e) and (2.6f) ).
The model can be linearized or treated using disjunctive constraints (see the investi-
gation in [60]).

To simplify a little bit the notation we introduce two new parameters

π̃i = πi + di and T̃i = Ti − di
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so that [CTM-2] can be rewritten as [CTM-3]

min
∑
i∈E

wixi(2.9a)

x j − xi ≥ La ∀a = (i, j) ∈ A(2.9b)
xi ≥ π̃i ∀i ∈ E(2.9c)
xi − π̃i ≤ T̃i ∀i ∈ E(2.9d)
gi jm(x j − xi − hi jm) ≥ 0 ∀m ∈ M ∀i, j ∈ S m(2.9e)
(1− gi jm)(xi − x j − h jim) ≥ 0 ∀m ∈ M ∀i, j ∈ S m(2.9f)
xi ∈ Z

+ ∀i ∈ E(2.9g)
gi jm ∈ {0, 1} ∀m ∈ M ∀i, j ∈ S m(2.9h)

If there exists a source delay that is “big enough”, the solution xi = π̃i ∀i ∈ E is not
any longer a feasible one.
Next we show that [CTM-3] is an NP-hard problem.

2.2 NP-completeness

Many mathematical problems are known to be NP-complete and discovering that
property on a model is usually the first step of a long work on the problems, even if
that correspond also to a low priority in looking for an efficient, exact algorithm. The
notation, the theorems and lemmas reported in this section, wove as introduction into
NP-completeness theory, are drawn from the book of Garey and Johnson [30].
The time complexity function for an algorithm expresses the largest amount of time it
requires to solve a problem instance of a given size. Of course, this function is not
well-defined until we do not fix the way to determine the input length of a problem
and which computers are going to be applied. Nevertheless these choices have a small
effect on the broad distinction made in the NP-completeness theory.
To distinguish which algorithms are “efficient enough” and which are “too inefficient”
is difficult, since it depends on the situation we want to consider. However computer
scientists recognized a simple distinction between polynomial and exponential time
algorithms that offers considerable insight into these matters.
A polynomial time algorithm is defined to be one whose time complexity function is
O(p(n)) for some polynomial p(n), i.e. there exists a constant c so that the complexity
function f (n) is bounded by | f (n)| ≤ c|p(n)| for all values of n ≥ 0, where n is used
to define the input length.
Any algorithm whose complexity function cannot be bounded in this way is called
exponential time algorithm, although it should be noted that this class of algorithms
includes also those whose complexity function is not normally regarded as an expo-
nential function, e.g. nlog(n).
Most exponential time algorithms are merely variations on exhaustive search, whereas
polynomial time algorithms are generally made possible through the gain of some
deeper insight into the structure of the problem. There is a wide agreement that a
problem has not been “well-solved” until a polynomial time algorithm is known for
it. Hence we refer as intractable a problem so hard that no polynomial time algorithm
is known. This is a rough approximation of the formal use of “intractable” due to the
fact that, although exponential time algorithms are known for many problems, only
few of them are regarded as being very useful in practice.
This definition of “intractable” turns out to be essentially independent from the partic-
ular encoding scheme and the computer model used for determining time complexity
since it can be verified that standard schemes used in practice for any particular prob-
lem always seem to differ at most polynomially from each other. Similar comments
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can be made for the choice of computer models.
The class of problems that can be solved with a polynomial time algorithm is defined
as P, while the problems which solutions can be verified in polynomial time are re-
ferred as NP. An alternative informal definition of the NP-class refers to “all the
problems that can be solved in polynomial time by a nondeterministic Turing ma-
chine” (for a complete reference see [30]). A nondeterministic Turing machine is
formed by parallel Turing machines that can take many computational paths simul-
taneously, without being able to comunicate with each other. A Turing machine is a
theoretical computing machine invented by Alex Turing (1937) to serve as an ideal-
ized model for mathematical calculations.
A problem belonging to the P-class is always also an NP-problem, i.e. P ⊆ NP.
It is an important open question to understand ifP = NP. There is a theory developed
by Cook ([22]) which provides strong evidence that P , NP.
Before we introduce the notion of NP-completeness, it is necessary to point out two
important concepts.

Firstly that, technically, the only problems which can be defined as NP-complete are
problems for which the answer is either yes or no. Thus an optimization problem must
be rephrased as a feasibility problem (i.e. decision problem) in order to put it into the
desired form. We may associate with each problem a decision problem by defining a
threshold k for the corresponding objective function f . This decision problem is: does
there exist a feasible solution S such that f (S ) ≤ k? When a problem is formulated
as a decision problem there is an important asymmetry between those input whose
output is “yes” and those whose output is “no”. A “yes” answer can be certified by
a small amount of information, the feasible schedule S with f (s) ≤ k. Given this
certificate, the “yes” answer can be verified in polynomial time. This is not the case
of the “no” answer.

Secondly the notion of reduction. Given two decision problems Q and R, we say that
Q reduces to R (denoted by Q ∝ R) if there exists a polynomial time function g that
transforms inputs of Q into inputs of R such that x is a “yes”-input of Q if and only if
g(x) is a “yes”-input of R.

input Q
pol //

��

input R

��
sol Q sol R

pol
oo

The importance of polynomial transformation comes from the following lemmas:

Lemma 2.1 [30] If Q ∝ R, then R ∈ P implies Q ∈ P (and equivalently Q < P
implies R < P).

Lemma 2.2 [30] If Q ∝ R and R ∝ S , then Q ∝ S .

A problem Q is called NP-complete if Q ∈ NP and for all R ∈ NP we have R ∝ Q.
Moreover the NP-completeness means that any algorithm used to solve such prob-
lems in its full generality is likely to require exponential time in the worst case and
thus is impractical except for relatively small input, where it is possible to implement
it in such a way to find “rapidly” optimal solutions.
Therefore if a single NP-complete problem could be solved in polynomial time, all
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problems in NP could be solved in polynomial time and we would have P = NP.
The proof of NP-completeness of a problem is divided into two parts. Firstly show-
ing that the problem can be solved in polynomial time by a nondeterministic Turing
machine. This is rather technical and therefore we are going to omit this part of the
proof. The main part of the proof of NP-completeness is the “reduction”. We must
show that a knownNP-complete problem Q can be reduced, or transformed, into our
problem R, i.e. given a specific input q for the problem Q we must show how to find
a corresponding input r to problem R, such that the answer for r is “yes” if and only
if the answer for q is “yes”. Moreover the input length of r and the time needed to
generate it must be bounded by polynomial functions of the input length measured for
problem Q.
Summarizing to prove that new problems are NP-complete we can refer to the fol-
lowing theorem:

Theorem 2.3 [30] If Q and R belong to NP, Q is NP-complete and Q ∝ R, then R
is NP-complete.

We introduced the notion of NP-completeness for decision problems, although usu-
ally we are not dealing with this kind of problems but rather with optimization prob-
lems, i.e. minimization/maximization problems with a specific objective function.
An optimization problem is called NP-hard if the corresponding decision problem is
NP-complete. Therefore asNP-hard are defined those problems which can be solved
with an algorithm that can be transformed into one for solving any otherNP-problem.
Consequently NP-hard problems are “at least as hard as any NP-problem”, but they
might be harder.

2.3 [CTM-3] is NP-hard

To prove the NP-hardness of [CTM-3] we introduce a well-known NP-complete
problem: Sequencing within Intervals Problem [SIP] (Ref: [30]) . The [SIP] deter-
mines whether it is possible to find a feasible schedule for the tasks c of a finite set C,
with a given duration lc, in order to obey temporal restrictions (the execution has to
happen inside a pre-defined time interval), with at most one task ever being executed
at a time. A formal description of [SIP] is the following: given the durations of the
activities lc and temporal restrictions as minimal starting times pc and deadlines tc, we
are looking for a function σ : C → Z+ such that for each c ∈ C , σc ≥ pc, σc + lc ≤ tc
and, if c ′ ∈ C\{c}, then either σc ′ + lc ′ ≤ σc or σc ′ ≥ σc + lc. This decision problem
is NP-complete, so every optimization problem associated with it results NP-hard,
no matter which objective function is chosen.
As objective function we consider the minimization of the weighted total flow time of
the problem, i.e. the sum of the weighted completion times of the tasks in the set C.
Accordingly to the definition of [SIP], we can write the problem as IP in such a way
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to evidence the likeness with our formulation of [CTM-3].

min
∑
c∈C

wcσc(2.10a)

σc ≥ pc ∀c, c ′ ∈ C(2.10b)
σc + lc ≤ tc ∀c, c ′ ∈ C(2.10c)
gcc ′(σc − σc ′ + lc) ≤ 0 ∀c, c ′ ∈ C(2.10d)
(1− gcc ′)(σc ′ − σc + lc ′) ≤ 0 ∀c, c ′ ∈ C(2.10e)
σc ∈ Z

+ ∀c, ∈ C(2.10f)
gcc ′ ∈ {0, 1} ∀c, c ′ ∈ C(2.10g)

where the binary variable gcc ′ = 1 if task c is executed before c ′, 0 else. Consequently
a task c is started at time σc, it is completed at time σc + lc, it cannot be started
before time pc, it must be completed by time tc, and its execution cannot overlap the
execution of any other task c ′.
We are now going to show that [SIP] can be rewritten as a special case of [CTM-3]
and hence we will have that

Proposition 2.4 Capacitated Timetable Model [CTM-3] is an NP-hard problem.

Proof: We show that [SIP] reduces to [CTM-3], i.e. [SIP]∝[CTM-3].
Given an instance of [SIP] we interpret the tasks c ∈ C as events i ∈ E of the problem
[CTM-3] and obtain an instance of [CTM-3] by the following correspondences. We
define E = Edep = C and also S m = C since we consider just one block,M = {m}.
Then we are able to define the parameters of [CTM-3] as follows.

π̃i = pi ∀i ∈ E
T̃i = (ti − pi) − li ∀i ∈ E

hi jm = li ∀i, j ∈ E

leaving the wi as they are given in [SIP], where Ti ≥ 0 otherwise the problem would
be infeasible, since it would be required to complete a task in less than its minimal
execution time. We also define La = −∞ so that Constraint (2.9b) can be neglected
from the model.
Now we have to show that x is a feasible timetable for [CTM-3] if and only if σ is
feasible for [SIP].
x is a feasible solution of [CTM-3] if and only if x satisfies (2.9b), (2.9c), (2.9d), (2.9e)
and (2.9f). According to the identification written above, we have that x is a feasible
solution of [CTM-3] if and only

xi ≥ pi ∀i ∈ E
xi ≤ ti − li ∀i ∈ E

gi jm(x j − xi − li) ≥ 0 ∀i, j ∈ E ∀m ∈ M
(1− gi jm)(xi − x j − li) ≥ 0 ∀i, j ∈ E ∀m ∈ M

xi ∈ Z
+ ∀i ∈ E

gi jm ∈ {0, 1}

Considering the identity xi = σi, these constraints coincide with (2.10b), (2.10c),
(2.10d), (2.10e) and (2.10f). Hence it results that x is a feasible solution of [CTM-3]
if and only σ is a feasible solution of [SIP]. Furthermore, since for both problems
we consider the same objective values (weighted total flow time) and the schedule x
coincides with σ, we have that σ is an optimal solution of [SIP] if and only if x is an
optimal solution of [CTM-3].
Hence [CTM-3] is NP-hard.

�
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Although we proved that our problem isNP-hard, we are not satisfied with this result
since for the proof we referred to a timetable with specific periods Ti introduced in the
Constraint (2.5d).
We remove now these parameters and consider the problem [CTM-4]

min
∑
i∈E

wixi(2.11a)

x j − xi ≥ La ∀a = (i, j) ∈ A(2.11b)
xi ≥ π̃i ∀i ∈ E(2.11c)
gi jm(x j − xi − hi jm) ≥ 0 ∀m ∈ M ∀i, j ∈ S m(2.11d)
(1− gi jm)(xi − x j − h jim) ≥ 0 ∀m ∈ M ∀i, j ∈ S m(2.11e)
xi ∈ Z

+ ∀i ∈ E(2.11f)
gi jm ∈ {0, 1} ∀m ∈ M ∀i, j ∈ S m(2.11g)

We are going to prove that [CTM-4] isNP-hard by showing that it is a generalization
of a Job Shop Scheduling problem.

2.4 Shop Scheduling Problem

According to the notation of [30] and [16], the general Shop Scheduling Problem
may be defined as follows. We have m machines, M = {M1, . . . ,Mm}, and n jobs,
j ∈ {1, . . . , n}, such that each job j consists of a collection of operations k ∈ {1, . . . , n j}.
The set of all the operations corresponding to all the possible jobs is denoted as K and

its cardinality is N =

n∑
j=1

n j. Every operation is associated with a processing time

pk and a specific machine mk ∈ {M1, . . . ,Mm} where it has to be processed. Each
operation can be processed only by one machine and each machine can process only
one operation at a time. Furthemore there may be defined some other restrictions like:
a release time for the first operation of every job or a deadline for every job, pre-
emption (or job splitting, i.e. job processing may be (several times) interrupted and
resumed later on, either on the same machine or on another one), unitary processing
time, precedence relations between the operations or batches (i.e. sets of jobs that
must be processed jointly on one machine). We call a solution feasible if it satisfies
all the restrictions used to define the scheduling problem.
The problem is to find a feasible schedule σ : K → Z+ that minimizes some (regular)
objective functions of the completion times of the jobs, C j = σn j + pn j , j ∈ {1, . . . , n}

(where n j is the index of the last operation of job j).
The Job Shop Scheduling problem is a special case of the general Shop Scheduling
in which every job j consists of an ordered sequence of operations ( j1, . . . , jn j) which
must be executed in this order since there exist precedence constraints of the form
jk −→ jk+1.
It is also assumed that two consecutive operations of the same job j cannot be executed
on the same machine, i.e. m jk , m jk+1 for k ∈ {1, . . . , n j −1}. Hence a schedule, that is
an allocation of the operations to time intervals to machines, is a feasible solution for
the job shop scheduling problem, if it respects all the precedence constraints between
the operations, the condition on the changing of machines between two consecutive
operations and the capacity constraints.
Again the problem is to find a feasible solution that minimizes some (regular) objec-
tive functions of the completion times of the job.
The majority of known results for the Job Shop Scheduling problems has been ob-
tained for makespan minimization, i.e. Cmax = max

j=1...n
C j and for the minimization
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of the total flow time, i.e. the minimization of the sum of the job completion times,
n∑

j=1

C j. Nevertheless other objective function can be considered. For example if we

introduce a due date d j associated to every job j ∈ J, we can define for every job j its:

lateness L j = (C j − d j)
earliness E j = max(0, d j − C j)
tardiness T j = max(0,C j − d j)
absolute deviation D j = |C j − d j|

squared deviation S j = (C j − d j)
2

unit penalty U j =

{
1 if C j − d j ≥ 0
0 else.

With each of these functions f j we can get four possible objective functions: max j∈J f j,
max j∈J w j f j,

∑
j∈J f j and

∑
j∈J w j f j, where the parameters w j are weight linked to

every job j. According to [16], the most commonly used objective functions are:

• makespan Cmax = max
j=1...n

C j;

• total flow time
n∑

j=1

C j;

• weighted total flow time
n∑

j=1

w jC j;

• maximum lateness Lmax = max
j=1...n

L j;

• total tardiness
n∑

j=1

T j;

• weighted total tardiness
n∑

j=1

w jT j;

• total unit penalty
n∑

j=1

U j;

• weighted total unit penalty
n∑

j=1

w jU j

From here forth we extend the concept of reduction to objective functions meaning
that an objective function reduces to another if the Job Shop Scheduling problem with
one of these objective functions reduces to a Job Shop Scheduling problem with the

other objective function. Hence
n∑

j=1

f j reduces to
n∑

i=1

w j f j by setting w j = 1 ∀ j

and Cmax,
n∑

j=1

C j,
n∑

j=1

w jC j reduce to Lmax,
n∑

j=1

T j,
n∑

j=1

w jT j respectively by setting

d j = 0 ∀ j.
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Cmax↓
n∑

j=1

C j Lmax

↓ ↘ ↓ ↘
n∑

j=1

w jC j

n∑
j=1

T j

n∑
j=1

U j

↘ ↓ ↓
n∑

j=1

w jT j

n∑
j=1

w jU j

Table 2.1: Reductions among objective functions

Furthemore we have that Lmax reduces to
n∑

j=1

T j and
n∑

j=1

U j:

Lmax ≤ k ⇔ max
j=1...n

(C j − d j) ≤ k

⇔ C j − d j ≤ k ∀ j⇔ C j − (d j + k) ≤ 0 ∀ j⇔ max{0,C j − (d j + k)} ≤ 0 ∀ j

Since the maximum between zero and a quantity x is equal to zero (max{0, x} = 0) if
and only if the quantity x is not positive (x ≤ 0). We can write

Lmax ≤ k ⇔ n∑
j=1

max{0,C j − (d j + k)} ≤ 0

Considering the new deadlines d
′

j = d j +k ∀ j, we get a new definition of the tardiness
as T

′

j = max{0,C j − (d
′

j)} ∀ j, hence

Lmax ≤ k ⇔ n∑
j=1

T
′

j ≤ 0

⇔ n∑
j=1

U
′

j ≤ 0 .

As drawn in [16] these reductions can be represented graphically as in Figure 2.1.
where an arrow A → B indicates a reduction of A to B. From now on we will use the
symbol → to indicate the reduction of a single function (or constraint) to another one.
To indicate the reduction of a problem to another one we will consider the symbol ∝
as done in Section 2.2.
Therefore if it has been proved that a problem isNP hard given one of these objective
functions, then the problem is also NP hard given all the other objective functions
that can be reached in the graph moving from the given objective function following
the direction of the arrows.

For our specific timetable problem we introduce further objective functions:
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∑N
k=1 Hk
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∑N
k=1 Jk
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∑n
j=1 w jC j //

&&MMMMMMMMMM

∑n
j=1 w jT j
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∑N
k=1 wkHk

// ∑N
k=1 wk Jk

Table 2.2: Particular addition to Table 2.1

• total task-flow time
N∑

k=1

Hk where Hk is the completion time of task k ∈ K;

• weighted total task-flow time
N∑

k=1

wkHk;

• total task-tardiness
N∑

k=1

Jk where Jk = max{0,Hk − dk} is the tardiness of task

k ∈ K given a deadline dk;

• weighted total task-tardiness
N∑

k=1

wk Jk.

Likewise we have that
N∑

k=1

fk reduces to
N∑

k=1

wk fk by setting wk = 1 ∀k ∀ j and
N∑

k=1

Hk,

N∑
k=1

wkHk reduce respectively to
N∑

k=1

Jk,
N∑

k=1

wk Jk by setting dk = 0 ∀k ∀ j. Moreover

we have that
n∑

j=1

C j and
n∑

j=1

T j reduce respectively to
N∑

k=1

wkHk and
N∑

k=1

wk Jk by set-

ting wk = 1 if k = n j for some j ∈ J, and wk = 0 otherwise. Similarly
n∑

j=1

w jC j

and
n∑

j=1

w jT j reduce respectively to
N∑

k=1

wkHk and
N∑

k=1

wk Jk by setting wk = 0 for all

k , n j and letting wn j as given.
These reductions are depicted in Figure 2.2.

Similarly there are reductions between the constraints of the problem as shown in [16].
In Table 2.3, we represent some of these reductions, where ◦ indicates the absence of
the restriction. In the first column of Table 2.3 it is written that if the JSS problem is
NP-complete in case of 2 machines, then it will be NP-complete also in case of an
arbitrary number m of machines and hence in the case where the number of machines
of the problem is not specified. While the second column means that if the problem is
NP-complete in absence of precedence constraints, then it will also beNP-complete
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machine precedence release time deadline processing time nr. of jobs
2 ◦ ◦ ◦ pk = 1 2↓ ↓ ↓ ↓ ↓ ↓
3 prec r j d j pk = p 3↓ ↓ ↓
m ◦ n↓ ↓
◦ ◦

Table 2.3: Reductions among constraints of the Job Shop Scheduling problem

if we define some precedence among the jobs. The other columns can be analogously
interpreted.

2.5 [CTM-4] is NP-hard

We want to prove that [CTM-4] is NP-hard, therefore we introduce the planning ver-
sion of [CTM-4], denoted by [CTM-4p], which is obtained by replacing Constraints
(2.11c) by

(2.11c ′) xi ≥ 0

Since (2.11c ′) is a special case of (2.11c), where the feasibility of π does not mat-
ter since di can be chosen arbitrarily, we obtain that [CTM-4p] is a special case of
[CTM], hence the NP-hardness of [CTM-4p] yields the NP-hardness of [CTM-4].
Accordingly, our goal is to show that [CTM-4p] is NP-hard.
To this end we consider the Job Shop Scheduling problem defined by m machines, n
jobs with an arbitrary number of operations (k ∈ K) where each of them associated to
a proceeding time (pk) and a machine (mk). As in the previous section we define N as
the total number of operations of the problem and n j as the index of the last operation
of job j.
Furthermore, let a set of precedence constraints Aprec ⊆ K × K be given, where a
pair (i, j) ∈ Aprec (with operations i and j belonging to different jobs) corresponds to
the requirement that i has to be processed before j is allowed to start. The goal is to
find a schedule σ : K → Z+ so that all precedence constraints are satisfied and the
total flow time, i.e. the sum

∑
j∈J C j =

∑
j∈J σn j + pn j of all completion times of all

jobs is minimized. We denote this problem as Jm|prec|
∑n

j=1C j as usually done in
literature.
By setting wk = 1 if k = n j and wk = 0 else, we can reduce Jm|prec|

∑n
j=1C j

to a Job Shop Scheduling problem with a new objective function
∑

k∈K wkHk =∑
k∈K wk(σk + pk), i.e. we minimize the sum of completion times over all operations

(total task flow time).

Proposition 2.5 The Jm|prec|
∑N

k=1 wkHk reduces to the planning version of Capac-
itated Timetable Model [CTM-4p].

Proof: We reduce [CTM-4p] to the job shop scheduling problem with total task flow
time. We choose the blocks M = {M1, . . . ,Mm} as the machines of the Job Shop
Scheduling problem, define the set of trains as T := J, and add a departure and an
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arrival event for each operation, i.e.

Edep := {idep
k : k ∈ K}

Earr := {iarr
k : k ∈ K}

For each job j ∈ J consisting of operations ( j1, j2, . . . , jn j) we define Adrive :=

( jdep
k , jarr

k ) for k = 1, . . . , n j and Await := ( jarr
k , jdep

k+1) for k = 1, . . . , n j − 1. Finally,
Achange := Aprec. Then we can define the parameters of [CTM-p] as

La = pi for all a = (i, j) ∈ Adrive ∪Achange

La = 0 for all a = (i, j) ∈ Await, and
hi jm = pi for all i, j ∈ Edep with mi = m j = m,

where mi and m j are the machines on which operations i and j are scheduled. We
leave wi as they are given in Jm|prec|

∑
k∈K wkHk. The result of [CTM-4p] then is a

timetable x, from which we obtain σ : N → Z+ by the identity σ(i) = xi.
For the correctness, we show that x is an optimal timetable for [CTM-4p] if and only
if σ is optimum for Jm|prec|

∑N
k=1 wkHk.

x is a feasible solution of [CTM-4p] if and only if x satisfies (2.11b), (2.11c ′), (2.11d)
and (2.11e). According to the definition above it results that x is a feasible solution of
[CTM-4p] if and only if

x j − xi ≥ pi ∀a = (i, j) ∈ Adrive ∪Achange

gi jm(x j − xi − pi) ≥ 0 ∀m ∈ M ∀i, j ∈ S m

(1− gi jm)(xi − x j − p j) ≥ 0 ∀m ∈ M ∀i, j ∈ S m

xi ∈ Z
+ ∀i ∈ E

Due to the identity σ(i) = xi, we have that x is a feasible solution of [CTM-4p] if and
only if σ is a feasible solution of Jm|prec|

∑N
k=1 wkHk.

Furthermore, since the objective function of both the problems is the weighted total
flow time, and since the schedule x coincides with σ, we can conclude that σ is an
optimal solution of Jm|prec|

∑N
k=1 wkHk if and only if x is an optimal solution of

[CTM-4p].
�

2.6 Capacity-Constrained Problem

In the previous section we showed that our model [CTM-4] is a generalization of a
Job Shop Scheduling problem with precedence constraints and release times. In such
a problem the capacity constraints are represented by inequalities in the form

(2.12) gi jm(x j − xi − pi) ≥ 0

that can be read as: before a new task j can be processed on one machine m the pre-
vious task i on it must be completed. The precedence is given by the binary variables
gi jm as explained in the previous sections.
This is one of the many approaches that can be applied to represent the capacity con-
straints. Here we want to introduce another way to deal with these constrains: the
Resource Constrained Project Scheduling Problem (RCPS).

In particular we will show that the RCPS, in the case of the railway system, can be
seen as a generalization of the Job Shop Scheduling problem.
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Resource Constrained Project Scheduling Problem (RCPS) and its application
to train timetables
RCPS involves assigning tasks of a project to a resource or a set of resources with
limited capacity, in order to meet some predefined objectives. We suppose that every
task has just one execution mode and both its duration and its resources requirements
are assumed to be fixed. We also require to complete a task once it is started on a
machine. In the case of the railway system, the tasks are the trains traveling into the
system which have to be assigned to blocks of tracks and platforms in the railway
network in order to guaranteed the desired trips and connections. We suppose that the
sequence of blocks that a train will use is determined and all the traveling times are
known. We also suppose that a train will receive a red light on a track outside a station
only to prevent dangerous situation (i.e. no preemption is allowed).
Hence the project can be represented as a graph where the nodes correspond to the
events of the trains E and the arcs to the precedence relationships among them. If an
arc a = (i, j) appears in the graph, then event i must be completed prior to performing
event j.
Resources are characterized in terms of their availability (capacity) to perform tasks
in each time periods of the problem and the maximal resource availability is constant.
Thus we can define for every block of the system m ∈ M a maximal capacity km,
so that the total consumption of this resource in every period of time τ satisfies the
condition ∑

i∈E

rimτ ≤ km ∀m ∈ M and ∀τ

where

rimτ =

{
1 if event i uses block m at time τ
0 else

represents the consumption of the resource m at time τ due to event i.

Proposition 2.6 The Job Shop Scheduling problem is a special case of the Resource
Constrained Project Scheduling Problem.

Proof: We consider a special case of RCPS in which every block has a capacity of
one, i.e. km = 1 ∀m ∈ M. In other words, we are claiming that just one task at a time
can use a machine. Furthermore we define cm as the necessary time for a task to be
completed on machine m (plus the time to set up the machine for the next task). The
next task that can take place on the machine m cannot start before ci jm units of time
from the beginning of the previous task on the machine, i.e.

x j − xi ≥ ci jm

If we identify ci jm with pi and we fix the priority order so that j has to be executed
before i (i.e. gi jm = 1), we get exactly the Job Shop Scheduling Constraint (2.12). �

Remark 2.7 In the case of the railway system this corresponds to consider as block
the single tracks/platforms of the railway system, so that, due to security rules, only
one train at a time can be on at it. cm is defined as the necessary time for a train to
pass through the block m (plus the “security distance” time). The next event that can
take place on the block m cannot start before ci jm units of time from the beginning of
the previous event on the block.

In Section 2.8 we are going to present a possible formulation of the renewable resource
constraints for the Capacitated Timetable Model under the RCPS method. Meanwhile
we present another possible formulation of the problem that has been presented in [71]
in order to compare our notation with other possible ones.
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2.7 Train traffic deviation handling using TS and SA

The timetable problem has been studied in detail by a research group of the Blekinge
Institute of Technology, Karlshamm, Sweden (see [72]). Their formulation includes
many aspects that have not been considered in the described [CTM-4] model. For
example they define a set of constraints to decide if a connection should be kept or
not. Therefore we prefer here to present the “Swedish” model in its original form
and to compare afterwards this formulation with the one introduced in the previous
sections to highlight the similarities.
We report here the legend of the ”Swedish” formulation as explained in [72].

Sets:
T = set of trains;

B = set of blocks;

Ki = set of ni events for train i, where i ∈ T so Ki = {1 . . . ni};

L j = set of m j events for block j, where j ∈ B so Li = {1 . . .mi}.

Parameters:
the index i is associated with a train (i ∈ T ), while j is the index for the blocks ( j ∈ B). k denotes the index of the event of

a train (k ∈ Ki) and l the events of a block (l ∈ L j). Thus the same event can belong both to a set Ki and a set L j.

gblock
j = minimum time separation between occupation of train associated with block j;

cdelay
ik = penalty per time unit for delays for event k and train i;

dik = minimum running time for event k of train i;

binitial
ik = initial start of event k of train i according to the timetable;

einitial
ik = initial end of event k of train i according to the timetable;

bearliest
ik = earliest start (due to imposed delay) of event k of train i;

eearliest
ik = earliest end of event k of train i;

atrain
jl = train occupying block j during event l on the block;

aevent
jl = corresponding index of event l of block j within the list of events of train atrain

jl ;

hik = binary value equal to 1 if the events k for train i starts from a station where the start time is fixed, else 0;

f con
ik = binary value equal to 1 if the events k for train i has a connecting train that should wait, else 0;

f train
ik = specifies the connecting train of event k for train i if f con

ik = 1 else 0;

f event
ik = index of the connecting event of train i and event k if f con

ik = 1 else 0;

f gap
ik = specifies min time difference between end of event k of train i and its connecting event if f con

ik = 1 else 0;

ccon
ik = fixed penalty cost for missing the connection of event k for train i if f con

ik = 1 else 0;

ccon2
ik = penalty cost per minute for missing the connection of event k for train i if f con

ik = 1 else 0;

K = constant with a large positive value that covers the time period of the optimization problem.

Variables:
xbegin

ik = start time of event k for train i;

xend
ik = end time of event k for train i;

zik = magnitude of delay for event k for train i;

ycon
ik = time difference between end of event k for train i plus f gap

ik and start of its connecting event;

ucon
ik = binary variable, specifies if event k for train i has missed its connecting event , equal to 1 if ycon

ik > 0, else 0;

s jlν = binary variable, specifies if event l on block j occurs before or after event l + ν, where ν ∈ {1 . . . (m j − j)},

i.e. equal to 1 if event l happens before event l + ν.

The “Swedish” model considers two possible different objective functions:

(2.13) min
∑
i∈T

zi,ni
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to minimize the total delay of the traffic system (i.e. the sum of the final delays of the
trains when they arrive at their final destinations)

and

(2.13 ′) min
∑
i∈T

∑
k∈Ki

[cdelay
ik zik + ccon

ik ucon
ik ]

to minimize the total cost calculated assigning a cost to every minute of delay of every
single train and a penalty for every missing connection.
Just one of the two objective functions is considered at a time.

Subject to the constraints:

xend
ik ≤ xbegin

ik+1 i ∈ T, k ∈ {1 . . . (ni − 1)}(2.14a)

xend
ik = xbegin

ik + dik i ∈ T, k ∈ Ki(2.14b)

xbegin
atrain

j,l+νa
event
j,l+ν

− xend
atrain

jl aevent
j,l
≥ gblock

j s jlν − K(1− s jlν) j ∈ B, l ∈ {1 . . . (m j − 1)}(2.14c)

ν ∈ {1 . . . (m j − l)}

xbegin
atrain

j,l+νa
event
j,l+ν

− xend
atrain

jl aevent
j,l
≤ Ks jlν − (1− s jlν)· j ∈ B, l ∈ {1 . . . (m j − 1)}(2.14d)

· (gblock
j + datrain

jl aevent
j,l

+ datrain
j,l+νa

event
j,l+ν

) ν ∈ {1 . . . (m j − l)} i ∈ T,

k ∈ Ki : hik = 1

xbegin
ik ≥ binitial

ik i ∈ T, k ∈ Ki(2.14e)

xbegin
ik ≥ bearliest

ik i ∈ T, k ∈ Ki(2.14f)

xend
ik ≥ eearliest

ik i ∈ T, k ∈ Ki(2.14g)

xend
ik − einitial

ik ≤ zik i ∈ T, k ∈ Ki : f con
ik = 1(2.14h)

xbegin
f train

jk f event
jk

− xend
ik + ycon

ik ≥ f gap
jk i ∈ T, k ∈ Ki : f con

ik = 1(2.14i)

ycon
ik ≤ Kucon

ik i ∈ T, k ∈ Ki(2.14j)

xikbegin, xend
ik , zik, ycon

ik ≥ 0 i ∈ T, k ∈ Ki(2.14k)
ucon

ik binary i ∈ T, k ∈ Ki(2.14l)

sikν binary j ∈ B, l ∈ {1 . . . (m j − 1)}
(2.14m)

ν ∈ {1 . . . (m j − l)}

A short explanation of the constraints can be given as:

(2.14a) every event must be completed before the next event in the train list starts;

(2.14b) every event ends after its run time;

(2.14c) minimum time separation between event l and the successive event l + ν to
use the same block in case l happens before l + ν;

(2.14d) the reverse of (2.14c) can be applied in the opposite case: l + ν happens
before l;

(2.14e) the scheduled timetable for start activities must be respected;

(2.14f) if there is a delay the new departure time can not be scheduled before the
earliest possible start;
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(2.14g) the scheduled timetable for end activities must be respected;

(2.14h) the magnitude of the delay for every event is recordable by variable zik;

(2.14i) specify how large is the gap between two trains to penalize missed connec-
tions;

(2.14j) activation of the binary variables.

We can compare this model with the one presented in Section 2.1 if we introduce a
new constant M (that is a number “big enough"), a new parameter bM for the capacity
constraints, and a new binary variable za for the missing connections (za = 1 if the
connection is kept, else 0), then

(2.13) is equivalent to (2.4a);

(2.14a) and (2.14b) correspond to (2.4b);

(2.14c) and (2.14d) can be rewritten as |x j − xi| ≥ bM;

(2.14e), (2.14f) and (2.14g) correspond to (2.4c);

(2.14h) is equivalent to xi − πi ≤ yi;

(2.14i) and (2.14j) can be rewritten as x j − xi − Mza ≥ La;

Constraint |x j−xi| ≥ bM can be linearized by introducing a boolean variable zi j defines
as

zi j =
0 if x j − xi ≥ bM

1 else

and a new constant M1 so that

zi j(x j − xi − bM) = 0
zi j + z ji = 1

We conclude that the two models can describe the same aspects of the problem and
that the main difference between them is the choice of the indices of the variables.
The Swedish model considers different sets of indices hence it can describe more in
details the constraints of the problem. But this choice results in a heavier formulation
which is not easily readable. This is one of the reasons we prefer to adopt the model
presented in Section 2.1 even if in an simplified version. Another one is that we do
not want to consider the optimization problem itself, but the interaction it can have
with the stochastic methods that will be introduced in Chapter 3.

For the record we write hereafter the linearization of the Swedish Mix Integer Linear
Programming (MILP) model that is applied during the experiments. It is based on the
replacement of the fixed cost for a missing connection by a dynamic one ccon2

ik so that
(2.13 ′) can be rewritten as

(2.13 ′′) min
∑
i∈T

∑
k∈Ki

[cdelay
ik zik + ccon2

ik ycon
ik ]

and on the assignment of fixed values to the binary variables sikν so that Constraints
(2.14c) and (2.14d) can be rewritten together in a single inequality

xend
atrain

jl aevent
jl

+ gblock
j ≤ xbegin

atrain
j,l+1a

event
j,l+1

j ∈ B(2.14c ′)

l ∈ {1 . . . (m j − 1)
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The problem to be solved is:

Minimize: (2.13)
or
(2.13 ′′)

Subject to: (2.14a),(2.14b),(2.14c ′), (2.14e)-(2.14i) and (2.14k)

The Linear Programming is dealt with an iterative two-level process. The lower bound
is to allocate the start and end times for each train and the blocks it will occupy ac-
cording to a fixed order of trains for each block (Linear Programming LP). The upper
bound is to determine the order of the trains on the blocks, which is carried out by
using two heuristics, either Tabu Search (TS) or Simulated Annealing (SA). Hence,
the IP model calculates the effects of the modifications carried out by the heuristic(s).
The general procedure, independent of which heuristic is used, is as follow: given
a disturbance, a program calculates if the disturbance has any impact, and if so, it
calls a method that clears all events that ended before the disturbed event occurred.
All events that started but not ended before the disturbance appeared are assigned the
value of their initial starting time to their earliest starting time, except the one that was
disturbed, which gets a value according to the delay. Then one of the two heuristics is
used to create and evaluate different solutions by making swaps of neighboring events
for the block (one at a time).
Not all the swaps need to be considered since some of them may be infeasible. The
feasibility of a swap is checked by a specific algorithm. Swapping two trains that will
meet is only possible if the order of trains in the other blocks allows it. The neigh-
borhood used in TS and SA is then further reduced by considering only the swap that
satisfy also a constraint on the dual variable of (2.14c ′). This dual variable indicates
how much we could gain by letting two trains occupy the same block simultaneously
for one additional unit of time. Thus, the only moves allowed are feasible moves
which correspond to a potential reduction of the objective function value.
The swaps are carried out by switching places between two events in the event list
vector of a block. After each swap, the LP is run in order to optimize the start and
end times of each event. The values of the objective function used are compared to
the best value found so far, and the process is repeated until a stopping condition is
satisfied (depending on which heuristic is applied).

2.8 Resource Constrained Project Scheduling Approach

The train scheduling problem with capacity constraints can be formulated according
to the project planning with resource conflicts model presented in the article “Project
Scheduling with inventory constraints” of Neumann-Schwindt ([52]). A train in fact
can be seen as a project that to be completed, i.e. to reach the final destination of
its journey, has to be processed in a sequel of machines (stations connected by routes
in the network), which have limited capacity (limited number of platforms/tracks) as
described in Section 2.5.
We define for every train the path (corresponding to tracks and platforms) that it is
going to use. We introduce a set E of resources which elements are the edges and
nodes of the PTN, so E = V ∪ B. For every element in E we assign a capacity R
corresponding to the number of trains that can use the same resource simultaneously.

R : E → Z
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R
e
=

 1 single track
2 double tracks
. . .

Due to mathematical reasons, we also define a lower bound for the capacity

Re = 0 ∀ e ∈ E

For every activity inA ′ = Adrive ∪Await we define a function

(2.16) e : A ′ → E

that indicates which resource e ∈ E is used to perform the activity a ∈ A ′.
It is also necessary to define a function that expresses the level of “consumption" of a
resource and this is done through another function that gives the status of a train with
respect to a particular resource.

(2.17) r : E × E → {−1, 0, 1}

rie =

 1 if ∃ j ∈ E : a = (i, j) ∈ A ′ satisfies e(a) = e
−1 if ∃ j ∈ E : a = ( j, i) ∈ A ′ satisfies e(a) = e
0 otherwise

We try to explain this parametric function with a visual example.

Figure 2.4: Explanation of the parameter rie

In Figure 2.4 case (A) the train has just departed from a station (event i), so it is using
the block of track e1 and this resource is occupied, hence rie1 = 1. In the second
case (B1) the train has just arrived in a station (event k) so it is not using the track e1
anymore (then rke1 = −1) but it has to wait (e.g. for fixed connections) on a platform
e2 of the station (case B2) so the parameter rke2 = 1. When it departs form the station
(event j, case C1) it lets the platform e2 free (so r je2 = −1) and it occupies the block
of tracks e3 (case C2), then r je3 = 1. And so on...
So the capacity of an element e ∈ E with respect to a given time t and a timetable Π
is sufficient if

(2.18) Re ≤ re(Π, t) ≤ Re ∀t ≥ 0

where

(2.19) re(Π, t) =
∑

i∈A(Π,t)

rie
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A(Π, t) = {i ∈ E : πi ≤ t}

and the parameter πi represents the scheduled timetable of event i.
If a delay occurs in the system, we will not consider the scheduled timetable πi but the
new timetable xi, i.e. A(X, t) = {i ∈ E : xi ≤ t} and the corresponding re(X, t).
We can describe this alternative formulation of the Capacitated Timetable Model
[CTM-4] as [RCTM]

min
∑
i∈E

ωixi(2.20a)

x j − xi ≥ La ∀a = (i, j) ∈ A(2.20b)
xi ≥ πi + di ∀i ∈ E(2.20c)

Re ≤ re(X, t) ≤ Re ∀e ∈ E and t ≥ 0(2.20d)
rie ∈ {−1, 0, 1} ∀e ∈ E ∀i ∈ E(2.20e)
xi ∈ Z ∀i ∈ E(2.20f)

The parameter ωi, La, πi, di, rie are given and (2.20d) is the capacity constraints de-
scribed previously in this section.
This model is an adaptation of the model presented by Neumann and Schwindt and we
are going to point out the four major differences between the two models in Section
2.10.

2.9 [RCTM] is NP- hard

To show that [RCTM] is NP-hard we could have reduced it to the [CTM-4] model,
which has been proved to be NP-hard in Section 2.5. Instead we prefer to introduce
another proof based on the Minimum Parallel Processor Scheduling problem, MPPS.
We consider a special case of [RCTM], if we can prove that this special case is NP-
hard then also the generalized problem must be NP-hard.
We consider a special network with only one line e connecting two stations (for exam-
ple Hannover Messe and Hannover Hauptbahnhof). This line has a capacity R

e
= m

so no more than m trains can travel simultaneously on this line (the number of tracks
between two stations in a big city can reasonably considered bigger than 2, hence we
have m ≥ 2) and we do not consider the capacity of the station itself since it is usu-
ally bigger then the one of the single line passing through it. Moreover we neglect
all the waiting and changing activities, i.e. Await = Achange = ∅. In other words we
are interested in rescheduling the events in E considering just driving activitiesAdrive.
Moving from these considerations we can rewrite the capacity Constrain (2.19) as

r(Π, t) =
∑

i∈A1(Π,t)

ri +
∑

j∈A2(Π,t)

r j

where we neglect the index e since we are considering just one line and where

A1(X, t) = {i ∈ Edep : xi ≤ t}
A2(X, t) = { j ∈ Earr : x j ≤ t}.

Due to (2.20b) we have that x j ≥ xi + La ∀a = (i, j) ∈ Adrive, hence we can rewrite
A2(X, t) as

A2(X, t) = {i ∈ Edep : xi + La ≤ t a = (i, j) ∈ Adrive}.
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since we neglect preemption on the traveling time. Now we notice that ri can be equal
to one if and only if i ∈ Edep and it can be equal to −1 if and only if i ∈ Earr. The
capacity constraint can be now written as

r(X, t) =
∑

i∈A1(X,t)

ri −
∑

j∈A2(X,t)

r j

where r j = −r j ∀ j ∈ A2(X, t), and this is equivalent to

r(X, t) =
∑

i∈Ã1(X,t)

ri

where Ã1(X, t) = {i ∈ Edep : xi ≤ t ≤ xi + La a = (i, j) ∈ Adrive}.
Therefore we can rewrite [RCTM] as [RCTM-2]

min
∑

i∈Edep

ωixi(2.21a)

xi ≥ πi + di ∀i ∈ Edep(2.21b)
0 ≤ r(X, t) ≤ m ∀t ≥ 0(2.21c)

ri ∈ {0, 1} ∀i ∈ Edep(2.21d)

xi ∈ Z
+ ∀i ∈ Edep(2.21e)

where we neglect the precedence constraints since we consider just departure events
and driving activities.
If we consider the case in which one of the source delay di is considerably large com-
pared to the scheduled timetable, then the solution xi = π̃ = πi + di is not anymore
feasible and the rescheduling problem can be compared to a scheduling problem and
hence we can prove that it is NP-hard.
To this end we introduce now the Minimum Parallel Processor Total Flow Time
Scheduling Problem (MPPS) as given in [47]: given a number of processors m ∈ Z+

and a set of operations O, every o ∈ O is associated with a release time ro and a length
lo, we look for a m-processor schedule σ : T → Z+

0 such that the number of tasks that
are executed at time t cannot exceed m (i.e. no overlapping is allowed) and such that
the time required to schedule all operations is minimized.
To model this problem it is a standard procedure to introduce a binary variable u such
that uo = 1 if the operation o is in execution at time t, 0 otherwise,

uo =

{
1 if σo ≤ t ≤ σo + lo
0 otherwise

so that u(Σ, t) =
∑

o∈(O,t)

uo ≤ m ∀t where (O, t) = {o ∈ O : σo ≤ t ≤ σo + lo}.

The problem can be written as [MPPS]:

min
∑
o∈O

ωo(σo + lo)(2.22a)

σo ≥ ro ∀o ∈ O(2.22b)
0 ≤ u(Σ, t) ≤ m ∀t ≥ 0(2.22c)
uo ∈ {0, 1} ∀o ∈ O(2.22d)
σo ∈ Z

+ ∀o ∈ O(2.22e)

[MS] is NP-hard (as proved in [47]).
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Proposition 2.8 [MS] ∝ [RCTM-2]

Proof: We interprete the events i ∈ Edep as operation o ∈ O, so we can identify the
release time π̃i = ri and the length La = lo. Moreover we can identify the scheduling
functions x : Edep → Z+ and σ : O → Z+ so that it results Ã1(X, t) = (O, t).
x is an optimal solution of [RCTM-2] if and only if σ is an optimal solution of [MS]
since the two objective functions differ just for a constant (i.e.

∑
o∈O

lo). Consequently

we state that [RCTM-2] is NP-hard. �

2.10 Pointing out the difference between [RCTM] and
[CTM-4]

The first difference between our [RCTM] model and the model presented by Neumann
and Schwindt in [52], is the fact that we are not going to study the makespan of the
problem, that is minimizing the completion time of the last activity of the project
min maxi∈V xi, but the total flow time of it, that is minimizing the sum of the completion
time of all the activities in the project min

∑
i∈V

xi.

Neumann and Schwindt focused their attention on the minimization of the starting
point of the last activity of the system, we want instead to minimize the sum of the
delays.

Lemma 2.9 In the uncapacitated case, the two objective functions min max
i∈E

xi and

min
∑
i∈E

xi are equivalent.

Proof: We are working on a network N = (E,A). If N is not connected, then there
exists at least one node i ∈ E that can not be reached through any path from any other
node in E, i.e. whatever will happen this node will not be influenced from what hap-
pens in any other node of N . Therefore we are allowed to neglect this case and to
consider N connected.
Both the makespan and the total tardiness problems have to satisfy the Constraints
(2.20b) and (2.20c) (i.e. precedence constraints and earliest starting times). These
constraints are defined through some positive integer parameters La, πi and di (ex-
pressed in minutes or seconds). We suppose that:

• no activity can be interrupted after it has been started;

• no activity can start before the beginning of the project;

• the project ends when every activity has been completed.

Under these hypothesis, both problems can be solved by finding the longest path, i.e.
the longest sequence of tasks related by precedence constraints, needed to fulfill the
specified constraints.
In the uncapacitated model, precedence constraints are the only bonds on the execu-
tion of the jobs. If there would be no precedence constraints at all the optimal solution
would be given by the sum of the durations of the single jobs (since JSS does assume
precedence constraints among the tasks of every job). In case of precedence con-
straints among jobs, minimizing the longest path, we minimize not only the earliest
starting time of all the tasks that belong to it, but also the earliest starting time of all
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the tasks related to them by precedence constraints. Hence we do not only minimize
the completion time of the project (makespan) but also its total flow since this solution
gives the earliest starting time of every activity.
To find this solution we are going to use a variation of the algorithm of the Distance
Matrix.
The distance matrix is defined as W = (wi j)i, j∈E such that

• wii = 0, where 0 indicates the first "dummy" activity;

• w0i = πi + di earliest starting time of activity i given precedence constraints;

• wi j = max
k∈E : (k, j)∈A

(wik + La) where i, j ∈ E, i , j, a = (k, j) ∈ A.

wi j longest direct walk from i to j.

Algorithm of the Distance Matrix

Given a diagraph N = (E,A)
• Step 1 i, j ∈ E

if i = j wi j = 0
else i , j

if (i, j) ∈ A
if i = 0 w0 j = π j + d j

else wi j = La where a = (i, j)
else wi j = −∞

• Step 2 i, j, k ∈ E
if wik > −∞ and wk j > −∞

if wi j ≤ wik + wk j wi j = wik + wk j

The sequence of steps of the algorithm does not depend on the chosen objective
function (makespan and/or total tardiness), hence except for the output, the solution
procedure is exactly the same in both cases. �

It is still necessary to prove that the solution of the algorithm is the optimal one.

Lemma 2.10 The earliest starting times w0i processed by the Distance Matrix algo-
rithm is a feasible solution for [CTM-4].

Proof: We want to show that the constraints (2.4b) and (2.4c) are satisfied.
The definition of the longest direct walk in the case i = 0 is:

w0 j = max
k∈E : (k, j)∈A

(w0k + La) where j ∈ E, j , 0, a = (k, j) ∈ A

This can be rewritten as

w0 j = max{π j + d j, max
k∈E\{0, j} : (k, j)∈A

(w0k + La)}

where the case k = j , 0 has been highlighted with respect to the case k ∈ E \ {0, j}.
Since w0i is the earliest starting time of activity i given the precedence constraints we
have that x j, the re-scheduled timetable of event j, must be bigger than it, i.e. x j ≥ w0i.
Hence x j ≥ π j + d j, i.e. (2.4c) is fulfilled. Furthermore

w0 j ≥ max
k∈E\{0, j} : (k, j)∈A

(w0k + La)
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Thus w0 j ≥ (w0k + La) ∀k ∈ E \ {0, j} : (k, j) ∈ A.
The re-scheduling problem is a minimization problem, therefore the new timetable of
an activity in the optimal solution will be scheduled as early as possible, i.e. x j = w0i.
Hence we have x j ≥ xk + La ∀k ∈ E \ {0, j} : (k, j) ∈ A, i.e. Constraint (2.4b) is also
fulfilled.
In other words w0i is a feasible solution. �

Remark 2.11 Since the network is connected, there exists a longest path from i to j
if and only if there does not exist any direct cycle with positive length.
We can assume the absence of direct cycles with positive length since they would
represent an impossible sequence of precedences.

Figure 2.5: Makespan vs. total tardiness

To verify that the two objective functions are not equivalent in the capacitated case,
we can consider the network in Fig. 2.5.

Example 2.12
Two trains t and s are leaving from station A and they have to follow the same single
track line until station B where their paths separate: the first train is going to station
C and the second is going to D. Suppose that the durations of the activities along the
arcs are as follows:

Lt
AB = 50 and Lt

BC = 40 for train t

Ls
AB = 45 and Ls

BD = 35 for train s

We have two possible cases:

A: t moves before s. The train s can not overtake the train t until they reach the sta-
tion B, so it has to go slower and follow the other train, i.e. its traveling time
between A and B will not be Ls

AB = 45 but L
s
AB = Ls

AB + (Lt
AB − Ls

AB) =
45 + (50 − 45) = 50. The arrival times at the final destinations will be
xt

C = 50+ 40 = 90 minutes and xs
D = 50+ 35 = 85 minutes.

B: s moves before t. The arrival times will be xt
C = 50 + 40 = 90 minutes and

xs
D = 45+ 35 = 80 minutes

If we now consider the makespan problem both possibilities give the same solution
(the last activity ends after 90minutes) but, if we consider the total tardiness problem,
it is clear that the case B is better than the case A (265 minutes of total traveling time
against 275).
In this example we omitted the fact that the trains have to respect a security distance
but if we fix it, e.g. dAB = 3 minutes, the difference between the two objective func-
tions become even more clear.
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A: t moves before s. Again is L
s
AB = 50+ 3 as explained before. The arrival times at

the final destinations will be xt
C = 50+40 = 90minutes and xs

D = 53+35 = 88
minutes since the second train has to respect also the security distance.

B: s moves before t. The arrival times will be xt
C = 3 + 50 + 40 = 93 minutes and

xs
D = 45+ 35 = 80 minutes

In that situation the minimal makespan is reached in the case A (90 minutes against
93) instead the minimal total tardiness comes from the case B (274 minutes against
284). C

The second difference is that we limited the value of “resources consumption / replen-
ishment" to the set {−1, 0, 1}.

The third difference is that we fixed the lower bound for the capacity to zero.

The fourth difference is the way we are going to consider the equation (2.20d) of
the model, the resource constraint. This constraint is not linear so, to linearize it, we
introduce a new parameter M = max

i∈E
( T − xi ) + 1 where T is an upper bound for

the timetable (e.g. the period of the timetable), and new variables vit ∈ {0, 1} defined
through the following inequalities:

vit ≤ 1+
(t − xi)

M
(2.23)

vit ≥
(t − xi) + ε

M
(2.24)

where ε is a positive constant smaller than one, i.e. ε ∈ (0, 1). We have then the
following proposition.

Proposition 2.13 For all xi, vit satisfying xi ≥ 0, vit ∈ {0, 1}, (2.23) and (2.24), we
have:

vit = 1 ⇔ t ≥ xi

.

Proof: First we notice that M > 0 since the definition of T > 0, therefore there always
exists an event scheduled before time T (at least the starting event).

vit = 1
Replacing the value of vit into (2.23) we have

0 ≤
(t − xi)

M
⇒ (t − xi) ≥ 0

that is t ≥ xi. Moreover (2.24) yields M ≥ (t − xi) + ε which is satisfied for
M = max

i∈E
(T − xi) + 1 since T ≥ t ∀t and ε < 1 by definition.

t ≥ xi

Then
(t − xi) + 0.5

M
> 0. From (2.24) we obtain the vit > 0, i.e. vit = 1 since

vit ∈ {0, 1}. Moreover (2.23) is satisfied for both vit = 0 and vit = 1.

�
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We can rewrite the function re(X, t) defined in (2.19) as

(2.25) re(X, t) =
∑
i∈E

rievit

and the Linearized Capacitated Timetable Model [LCapTM] is

min
∑
i∈E

xi(2.26a)

x j − xi ≥ La ∀a = (i, j) ∈ A(2.26b)
xi ≥ πi + di ∀i ∈ E(2.26c)

Re ≤
∑
i∈E

rievit ≤ Re ∀e ∈ E and t ∈ [0,T ](2.26d)

vit ≤ 1+
(t − xi)

M
∀i ∈ E and t ∈ [0,T ](2.26e)

vit ≥
(t − xi) + 0.5

M
∀i ∈ E and t ∈ [0,T ](2.26f)

vit ∈ {0, 1} ∀i ∈ E(2.26g)
xi ∈ Z

+ ∀i ∈ E(2.26h)

where M = maxi∈E(T − xi).
The new problem arising from this formulation is the increasing number of binary
variables vit necessary to define the model.

Proposition 2.14 The cardinality of the set of parameters vit grows to infinity as the
period T of the problem increases.

Moreover [LCapTM] is NP-hard since it can be reduced to the MS problem which
has been proved to be NP-hard ([52] or [30] for the makespan objective function, or
[48] for weighted total flow time objective function).

Since it is not easy to get around the NP-hardness of the analytical constrained
models, we looked for other possible approaches and we suggest now a new approach
based on the concept of “virtual activities”.

2.11 Identifying dependencies through a stochastic ap-
proach

Our aim is to simplify the formulation of [CTM-4] without a loss of quality of the
solution so that, even if the obtained Macromodel will not contain all the information
of the corresponding Micromodel, its optimal solution will have such a quality level
then it will not be necessary to re-run the Micro- and Macromodel many times to find
a conflict-free solution for the rescheduling problem.
Instead of using all capacity constraints for each block as in [CTM-4] we want to
apply a stochastic procedure which points out the critical points of the system, in
particular the location of the source delays and how they spread out into the system.
We can reduce the [CTM-4] formulation by restricting the set of capacity constraints
to a smaller set of abstract constraints which contains just these critical points.
Using the delays of each event in this model as random variables we use a stochastic
approach to analyze the dependencies among these variables. This method, that will
be explained in details in Chapter 3, reveals the dependencies among the events of
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the system, i.e. among the arrival and departure events of the trains in the stations.
These dependencies represent information about all three types of delay propagation.
While delay propagation of type 1 and 2 belongs to driving, waiting and changing
activities, delay propagation of type 3 does not correspond to any a ∈ A. Hence we
introduce a set of “virtual activities” Avirtual describing the dependencies of type 3
which have to be identified by the stochastic approach. The “virtual” activities ensure
that an event can not happen before another event has taken place: that means, for
example, that a train can enter in a station only if its assigned platform is free. Hence
a “virtual activity” does not belong to the set of activities defined in A but it can be
considered as a precedence constraint in the railway problem that has to be satisfied
to avoid infrastructure conflicts (using the same track or the same platform) due to the
limited capacity of the track system and to operational rules of the security system.
The resulting model is similar to [CTM-3]:

min
∑
i∈E

xi(2.27a)

x j − xi ≥ La ∀a = (i, j) ∈ A(2.27b)
xi ≥ πi + di ∀i ∈ E(2.27c)

x j ≥ v1i jxi + v2i j ∀i, j ∈ E such that a = (i, j) ∈ Avirtual(2.27d)

xi ∈ Z
+ ∀i ∈ E(2.27e)

where we replace Constraints (2.6e) and (2.6f) with linear dependency constraints
between pairs of events connected with “virtual” edges in the set Avirtual (2.27d) and
the parameters v1i j and v2i j will be estimated by the stochastic approach (see Section
5.6). We call these constraints virtual activities.





3
Stochastic Approach

I would rather discover a single casual
relationship, than be king of Persia.

DEMOCRITUS (450BC-370BC)
pre-Socratic Greek philosopher

In Chapter 2 we defined an analytical (Macro-)model for the railway system based on
the Activity-on-arc Project Network. Moving from those definitions, we introduce in
this chapter some stochastic approaches, that help us to identify the critical points of
the system, i.e. the points where a detailed observation of the process (Micromodel)
would be suitable to solve the possible conflicts among trains.
Our aim is to find an alternative formulation for the resource constraints of the Capac-
itated Timetable Model, in order to increase the quality of the solution of the Macro-
model, i.e. to reduce the amount of conflicts in the Macro-solution so that the use of
Micromodel could be limited.

3.1 Probability and Independence

The term experiment is used to refer to any process whose outcome is not known in
advance. The sample space associated with an experiment is the set of all possible
outcomes and it is usually denoted by Ω.
The goal of probability theory is to compute the probability of various events of inter-
est. Intuitively, an event is a statement about the outcome of an experiment. Formally,
an event A is a subset of the sample space, i.e. A ⊆ Ω. Since events are just sets,
we can perform the usual operations of the set theory on them: union, intersection,
complement . . .
In particular we say that two events A and B are disjoint if their intersection is the
empty set, A ∩ B = ∅.
A probability is a way of assigning numbers to events that satisfies the following ax-
ioms:

• for any event A ⊆ Ω, 0 ≤ P(A) ≤ 1;

• P(Ω) = 1;

• for any countable sequence of disjoint events P(∪∞
i=1Ai) =

∑∞
i=1 P(Ai).

In words, the probability is a positive function, normalized to one, that when applied
to the union of disjoint events is equal to the sum of the probabilities of each event.
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A probability space (Ω,A, P) is a measure space with a measure P that satisfies the
probability axioms. A is the σ-algebra over the set Ω. In our further argumentation,
we will always assume that Ω = Rp where p is chosen according to the dimension of
the multivariate variables of the model, A is the corresponding Borel σ-algebra and
P is a suitable probability function. It is a much debated question, which probability
P should be chosen (see Section 5.1). For the graphical approach we will assume a
normal distribution of the variables.
A random variable X is a measurable function from a sample space to the measurable
space of possible values of the variable, X : Ω → Ω

′

. In this thesis just real-valued
random variables will be considered, i.e. X : Ω→ R.
A fundamental concept in probability and statistic theory is the one of independence.
Two events A and B in Ω are said to be (marginally) independent if

P(A ∩ B) = P(A) P(B)

In particular two random variables X and Y are independent if

P({X = x,Y = y}) = P({X = x} ∩ {Y = y}) = P({X = x}) P({Y = y})

for every possible choice of the values x and y. In general, “misusing” the notation,
we will write that two random variables X and Y are independent if

P(X ∩ Y) = P(X) P(Y)

If the probability of an event B is strictly positive, i.e. P(B) , 0, we can define the
conditional probability of two events A and B through the ratio

P(A|B) =
P(A ∩ B)

P(B)

thus an equivalent definition of independence would be P(A|B) = P(A). That can be
read as: knowing that B occurs, does not change the probability that A occurs.
Analogously we can define this property for two random variables X and Y:

P({X = x}|{Y = y}) =
P({X = x} ∩ {Y = y})

P({Y = y})

The central concept in graphical methods is the conditional independence.
We consider three random variables X,Y and Z. If X and Y are independent in the
conditional distribution given each possible value Z, i.e

P(X ∩ Y |Z) = P(X|Z)P(Y |Z)

then we say that X and Y are conditionally independent given Z and we write X y
Y | Z. This notation is due to Dawid (1979), who discussed alternative characteriza-
tions of this property.
It can be also useful to consider the notion of irrelevance, in the sense that we can
interpret the statement X y Y | Z as: "If we know Z, any information about Y is
irrelevant in the knowledge of X".

3.2 Statistical test

A statistical test provides a mechanism for making quantitative decisions about a pro-
cess or processes [33]. The intent is to determine whether there is enough evidence
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to “reject” a conjecture or hypothesis about the process. The conjecture is called the
null hypothesis. Not rejecting may be a good result if we want to continue to act as if
we “believe” the null hypothesis is true. Or it may be a disappointing result, possibly
indicating we may not yet have enough data to “prove” something by rejecting the
null hypothesis. A classic use of a statistical test is to check wherever two random
variables, X and Y , are independent or not. The hypotheses of the test, are hence so
defined: “null hypothesis” the variables are independent; “alternative hypothesis” the
variables are dependent. The null hypothesis is so called, because it proposes some-
thing initially presumed true. It is rejected only when it becomes evidently false. That
is, when there exists a certain degree of confidence that the data do not support the
null hypothesis. This confidence is reached through the application of some statistical
test, in our case the Chi-squared Test on a Contingency Table.
In other words, the null hypothesis is a statement about a belief. We may doubt that
the null hypothesis is true, which might be why we are "testing" it. The alternative
hypothesis might, in fact, be what we believe to be true. The test procedure is con-
structed so that the risk of rejecting the null hypothesis, when it is in fact true, is small.
This risk α is often referred to as the significance level of the test. By having a test
with a small value of α, we feel that we have actually “proved” something when we
reject the null hypothesis. The choice of α is somehow arbitrary, although in prac-
tice values of 1%, 5% and 10% are common. A value α = 5% implies that the null
hypothesis is rejected 5% of the time when it is in fact true. Hence, the significance
level is the probability that the null hypothesis will be rejected in error when it is true
(a decision known as a Type I error, or "false positive").
The risk of failing to reject the null hypothesis when it is in fact false is not chosen
by the user but is determined, as one might expect, by the magnitude of the real dis-
crepancy. This risk β is usually referred to as the Type II error. Large discrepancies
between reality and the null hypothesis are easier to detect and lead to small errors
of the second kind; while small discrepancies are more difficult to detect and lead to
large errors of the second kind. Also the risk β increases as the risk α decreases.
Different α-levels have different advantages and disadvantages. A very small α-level
(say 1%) is less likely to be more extreme than the critical value and so is more signif-
icant than high α-level values (say 10%). However, smaller α-levels run greater risks
of failing to reject a false null hypothesis (a Type II error or "false negative"), and so
have less statistical power.

In particular a Chi-squared Test is any statistical hypothesis test in which the test
statistic has a Chi-squared distribution when the null hypothesis is true, or anyone in
which the probability distribution of the test statistic (assuming the null hypothesis
is true) can be approximated by a Chi-squared distribution as closely as desired by
making the sample size large enough. A quantity has a Chi-squared distribution with
r degrees of freedom if it can be rewritten as the sum of the squares of r standard
normal independent variables (mean zero and variance equal to one).
Given a significance level α, the outcome of the test is compared with the critical value
of a Chi-squared variable with the corresponding number of degrees of freedom. The
“null hypothesys” is rejected if the value of the test is bigger than the critical value.

3.3 Chi-squared Test on a Contingency Table

An easy test to check the independence of variables is the Chi-squared Test on a Con-
tingency Table (see [77]). This is based on the concept of conditional probability.
From a data set we consider two random variables X and Y . Willing to test if they are
independent, we define two hypotheses:
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“null hypothesis”: the variables are independent;
“alternative hypothesis” : the variables are dependent.
We can think of the following situation: the values of the random variables X and Y
can be subdivided respectively into r and s classes. As notation we have:

• n total number of observations;

• h and v class-indexes for X and Y;

• nhv number of elements belonging to the intersection of the classes Xh and Yv.

We can write the Contingency Table as

n11 n12 n13 . . . n1v . . . n1s n1
n21 n22 n23 . . . n2v . . . n2s n2
...

...
...

...
...

...
nh1 nh2 nh3 . . . nhv . . . nhs nh
...

...
...

...
...

...
nr1 nr2 nr3 . . . nrv . . . nrs nr

n1 n2 n3 . . . nv . . . ns n

where nh and nv are the partial sums on a line and on a column respectively, i.e.

nh =
∑

v

nhv and nv =
∑

h

nhv .

The joint distribution of X and Y is given by the probabilities πhv = P(X = h,Y = v),
i.e. the probability that a single observation belongs to both the classes Xh and Yv.
We suppose that the observations are independent, i.e. every observation “chooses”
the classes h and k without being influenced from any previous observations. Then
the quantities Nhv, i.e. the random variables that correspond to the results nhv, can be
represented with a multinomial distribution of size n and parameters πhv:

[N11,N12, . . . ,Nrs] ∼ M(n, π11, π12, . . . , πrs)

We are interested in the null hypothesis that the variables X and Y are independent i.e.

(3.1) P(X = h,Y = v) = P(X = h)P(Y = v)

If we define

πh = P(X = h) =
∑

v

πhv and πv = P(Y = v) =
∑

h

πhv

we can then rewrite the “null hypothesis” (i.e. the variables are independent) as

πhv = πhπv for every h and v

The Chi-squared Test is

T =
∑
h,v

(Nhv − nπhπv)
2

nπhπv

The parameters πh and πv are nuisance parameters, since we are not interested in them.
We approximate them through the data

π̂h =
Nh

n
and π̂v =

Nv

n
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Thus the test can be rewritten as

(3.2) T =
∑
h,v

(Nhv − NhNv
n )2

NhNv
n

The quantity T has a Chi-squared distribution with a number of degrees of freedom
equal to

ν = (number of classes) − 1− (number of nuisance parameters)

The number of classes is given by the product rs. Concerning the nuisance param-
eters, we observe that π̂r is fixed once we define π̂1, π̂2 . . . π̂r−1 since the probability
is normalized to one, i.e.

∑
h

π̂h = 1. Therefore we need to approximate just r − 1

respectively s − 1 parameters. Then we have

ν = rs − 1− (r − 1) − (s − 1) = (r − 1)(s − 1)

Given a desired significance level, we can compare the value of (3.2) with the critical
values of a Chi-squared variable characterized by (r − 1)(s − 1) degrees of freedom:
i.e. the independence (null) hypothesis is refused if the value of T is bigger than the
critical value.

In the delay problem the variables X and Y can be seen as two random variables
corresponding to the delays of two events in the graph. In our case the (two) classes
for every variable correspond to the states:

• punctuality (e.g. earlier arrival or delays smaller than 3 minutes);

• delay (e.g. delays bigger than 3 minutes).

Thus in our case r = s = 2 and v = 1.
Applying the Contingency Table Test directly to every possible pair of variables we
can check if there exists a dependency between the variables. What we would like to
do is to look for more complex dependencies, in fact we want to see not only if two
variables are independent, but also if they are independent given all the other variables
and in particular given a third variable, i.e. if there exist a third variable that can ex-
plain the dependence (e.g given at one station two guaranteed connections, between
the arrival event of train t1 and both the departure events of trains t2 and t3. We do not
expect any direct dependence between the two departure events, since their similar
behavior can be explained through the arrival event).
The idea of considering triples of variables arises from the Tri-graph, a stochastic
graphical model that will be explained later in this chapter (Subsection 3.5.3). There-
fore given two variables X and Y corresponding to two different events in the system,
we will consider a third variable Z (chosen among all other variables of the system
except X and Y) and we will define two contingency tables PZ and DZ . In any of
these tables we will insert the observed values of the pair (X,Y), corresponding to the
days in which the variable Z is punctual (PZ) or delayed (DZ) as defined above.
Then the test given by Formula (3.2) will be applied to both PZ and DZ to check the
”null hypothesis” under the constraint of punctuality/delay of the third variable. We
will repeat this step for every pair of events (X,Y) and for every possible choice of the
third variable Z except the variables forming the considered pair, i.e. Z , X,Y .
The alternative hypothesis (X and Y are dependent) will be “accepted” if the direct
contingency table test rejected the null hypothesis and given any third variable Z, the
null hypothesis will be accepted in at least one table PZ or DZ (i.e. there does not
exist any third variable Z that can explain the dependence between X and Y). This
procedure should allow a direct comparison between the results of the method and the
ones of the stochastic methods that will be introduced later in this chapter.
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3.4 Graphical Methods

Graphical methods have their origin in several scientific areas and they can be con-
sidered as a marriage between probability theory and graph theory. They provide a
natural tool for dealing with uncertainty and complexity. The basic idea is the no-
tion of modularity, so that a complex system can be built by combining simpler parts.
Probability theory provides the glue whereby the parts are combined, ensuring that
the system as a whole is consistent and providing ways to interface models and data.
Graph theory provides both an intuitively appealing interface by which humans can
model highly-interacting sets of variables as well as a data structure that lends itself
naturally to design general-purpose algorithms. Therefore we can define them as a
sort of multivariate analysis that uses graphs to represent models.
Probabilistic graphical models are graphs in which the nodes represent random vari-
ables and the (lack of) arcs represent conditional independence assumption. Hence
they are a compact representation of joint probability distribution.
There are two main kinds of graphical models: undirected and directed (but it is also
possible to have a model with both directed and undirected arcs, called chain graph).
Undirected graphical models, also known as Markov networks, are more popular but
they are not the most suitable to be applied in the railway system since a timetable
is based on a sequence of actions in time and hence of ordered variables. Directed
graphical models, also known as Bayesian networks, are then the one that will be con-
sidered in this thesis. Note that despite the name, Bayesian networks do not necessary
imply a commitment to Bayesian methods; rather they are so called because they use
Bayes’ rules for interference.
In a directed graphical model an arc from A to B can be informally interpreted as indi-
cating that A "causes" B. Directed cycles are disallowed in the railway systems since
they would represent an impossible sequence of precedences, but undirected cycles
are still possible.

Example 3.1 (Undirected cycle in the railway system)
We consider two trains t and s. We suppose that s is an Euro City (EC) traveling
from Basel to Berlin, and that t is an Inter City Express (ICE) traveling from Münich
to Hamburg. Their journeys will lead them to Kassel, where passengers of the train t
have the possibility to change to train s. Here, even if train s arrives after t, it will leave
the station first due to a fixed priority list (e.g. internal decision to give precedence
to ICE trains). Between Kassel and Göttingen, both trains have to use the same line,
so in Göttingen the passengers of train s have the possibility to change to train t to
reach their final destination. The problem is represented in Figure 3.4 both in the form
of Public Transport Network and of Activity-on-arc Project Network, which is more
intuitive to understand.

C

3.4.1 Graph: notation and terminology

In graphical modeling the dependence pattern between variables is associated with a
graph in which vertices encode the random variables and edges encode conditional
dependence between the variables. Hence before going deeply into this topic, it is nec-
essary to recall some definitions of the Graph Theory (the following notation refers to
[45]).
A graph G = (V, E) is defined through a set of vertices V and a set of edges E that is
a subset of V × V .
Edges (v,w) ∈ E with both (v,w) and (w, v) in E are called undirected, whereas an
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Figure 3.1: Example of undirected cycle in the railway system

edge (v,w) with its opposite (w, v) not in E is called directed.
The graphs we consider are directed, that is, they contain only directed edges drawn
as arrows, v → w, thus we can identify edges with ordered pairs of vertices (v,w).
If S ⊂ V is a subset of the vertex set, it induces a subgraph GS = (S , ES ), where
the edge set ES = E ∩ (S × S ) is obtained from G by keeping all edges with both
endpoints in S .

Given two nodes v,w ∈ V , we say that they are adjacent, v ∼ w, if there exists an
edge between v and w, without distinction between v → w and w → v. The set of
vertices that are adjacent to a vertex is denoted as ne(v). We say that v is a parent of w
if there exists an edge v → w, then w is called a child of v. The set of parents of w is
denoted as pa(w) and the children of v is denoted as ch(v). If there is a directed path
from v to w, then v is called an ancestor of w and w is called a descendent of v. The
set of ancestors of w is denoted as an(w) and the set of descendents of v is denoted as
de(v).

These definitions can be extended to set of nodes. Given a set S ⊂ V we define:

• ne(S ) = (∪v∈S ne(v))\S ;

• pa(S ) = (∪v∈S pa(v))\S ;

• ch(S ) = (∪v∈S ch(v))\S ;

• an(S ) = (∪v∈S an(v))\S ;

• de(S ) = (∪v∈S de(v))\S ;

The boundary bd(S ) of a subset S of vertices is the set of vertices in V \ S that are
adjacent to vertices in S , i.e. bd(S ) = ne(S ) \ S .

A path (of length m) is a sequence of vertices v0, v1 . . . vm such that vi ∼ vi+1 ∀i ∈
{0 . . .m − 1}.
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A path is directed if vi → vi+1 ∀i ∈ {0 . . .m − 1}.
If v0 = vm the (directed) path is called a (directed) cycle. An m-cycle is a path of
length m such that v0 = vm.
If there is a directed path from v to w we say that v leads to w and write v 7→ w. If
both v 7→ w and w 7→ v we say that v and w are connected and write v 
 w. The
corresponding equivalence classes [v], where

w ∈ [v] ⇔ v
 w

are the (strong) connectivity components of G. If v ∈ S ⊂ V , the symbol [v]S denotes
the (strong) connectivity component of v in GS .
A subset S ⊂ V is said to be a (v,w)-separator if all paths from v to w intersect S .
Thus in an undirected graph S is a (v,w)-separator if and only if [v]V\S , [w]V\S .
The subset S 3 of V is said to separate the subsets S 1 and S 2 of V if it is a (v,w)-
separator for every v ∈ S 1 and w ∈ S 2.
If bd(v) ⊂ S for all v ∈ S , we say that S is an ancestral set. In a directed graph a set
S is ancestral if and only if an(v) ⊂ S for all v ∈ S . In an undirected graph, the an-
cestral sets are union of connectivity components. The intersection of a collection of
ancestral sets is again ancestral. Hence for any subset S of vertices there is a smallest
ancestral set containing S which is denoted by An(S ).
A tree is a connected, undirected graph without cycles. It has a unique path between
two vertices. A forest is an undirected graph where all connectivity components are
trees. The name forest arises from the concept that a forest consists only of (possibly
disconnected) trees.
Chain graphs are graphs where the vertex set V can be partitioned into numbered sub-
sets, forming a so-called dependence chain V = V(1)∪ . . .∪V(m) such that all edges
between vertices in the same subset are undirected and all edges between vertices in
different subsets are directed, pointing from the set with lower number to the one with
higher number. Such graphs are characterized by having no directed cycles and the
connectivity components form a partitioning of the graph into chain components. A
graph is a chain graph if and only if its connectivity components induce undirected
subgraphs. An undirected graph is a special case of chain graph. A directed, acyclic
graph is a chain graph with all chain components consisting of one vertex.
For a chain graph G we define its moral graph Gm as the undirected graph with the
same vertex set but with v and w adjacent in Gm if and only either v → w or w → v
or if there are s1, s2 in the same chain component such that v → s1 and w → s2.
If no edges have to be added to form the moral graph, the chain graph is said to be
perfect. The name moral graph arises from the connection (marriage) of nodes that
have a common child.

In graphical modeling, the focus is on models under which some conditional inde-
pendence relations of the form X y Y | (some other variables) holds (see [25]). In
particular, we focus on models for which these relations take the form X y Y | (the
rest), whereas “the rest” means all other variables in the model. For such a model,
we can construct an undirected graph G = (V, E) where V is the set of variables in
the model and E consists of edges between variable pairs that are not conditionally
independent given the rest. In other words, for all pairs {X,Y} such that X y Y | (the
rest), the edge between X and Y is omitted; for all other pairs, an edge is drawn. Thus
if two variables are not adjacent, then they are conditional independent given the rest.
This is known as the pairwise Markov property for undirected graphs.
Graph separation is a very important example of a model for the conditional indepen-
dence on undirected graphs. Let S 1,S 2 and S 3 be subsets of the vertex set V of a finite
undirected graph G = (V, E), the global Markov property states

if S 3 separates S 1 from S 2 in G then S 1 y S 2 | S 3 .
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As example we consider four variables W, X, Y and Z for which we know that
W y Z | (X,Y) and Y y Z | (W, X). The edges {W,Z} and {Y,Z} must be absent
from the graph on V = {W, X,Y,Z}. We obtain the graph shown in Figure 3.2, from
which we can infer that W y Z | X and Y y Z | X.

Figure 3.2: Example of the separation concept on a graph

The global Markov property allows a simple translation from a graph-theoretic prop-
erty, separation, to a statistical property, conditional independence.
That is S 1 and S 2 are conditional independent given S 3 if every path from (a node in)
S 1 to (a node in) S 2 passes through (at least one node in ) S 3. An analogous model
can be defined also for directed graphs introducing the concept of moral graphs. Given
S 1,S 2 and S 3 subsets of the vertex set V of a finite directed graph G = (V, E), then the
direct Markov property is

if S 3 separate S 1 from S 2 in Gm
An(S 1∪S 2∪S 3)

then S 1 y S 2 | S 3

where Gm
An(S 1∪S 2∪S 3)

is the moral graph of the smallest ancestral set containing S 1 ∪
S 2 ∪ S 3.

As a particular case, we can consider S 1 = {vi}, S 2 = {v j} and S 3 = {vk}, sub-
sets of V . So the vertices vi and v j are independent given vk, if every path from vi to
v j in the moral graph Gm

An({vi,v j,vk})
includes the vertice vk. We will write vi y v j | vk.

In general the procedure to check whether two nodes vi and v j are independent given
a set S , i.e. vi y v j | S , can be schematized as follows:

1. consider the ancestral set of {vi, v j} ∪ S , that is An({vi, v j} ∪ S ) = A;

2. draw the subgraph corresponding to the ancestral set GA ⊂ G;

3. construct the moral graph of GA, Gm
A :

• connecting with undirected edges all pairs of vertices in pa(v) ∀v ∈ A ;
• replacing all the edges in GA with undirected edges;

4. check if there does not exist any path connecting vi and v j in Gm
A that does not

involve any node of S (i.e. if S is separating vi and v j on Gm
A ).

In this thesis, we will consider directed graphs with no directed cycles since in the
railway network these would represent a set of impossible precedence constraints. In
fact the railway timetable is a list of ordered time events. These can be enumerated in
such a way that i < j if and only if event i happens before event j.
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3.5 Continuous method

In this section we describe three graphical methods based on the hypothesis of multi-
variate normal distribution of the variables. Two of them (Full Conditional Indepen-
dence Graph and Covariance Graph) are classical methods, the third one (Tri-graph)
has been suggested in 2004 by Wille and Bühlmann (see [75] and [76]) and is the
method that will be mainly applied to this work.

Gaussian Assumption:
We suppose we have a p-dimensional random variable X = (X1 . . . Xp) with a multi-
variate normal distribution:

• mean µ = (µ1 . . . µp)

• covariance matrix Σ = (σi j)i, j∈{1...p} and σi j = cov(Xi X j)

• precision matrix Ω = Σ−1 = (ωi j)i, j∈{1...p}

• density fX =
1

(2π)
p
2

1

|Σ|
1
2

exp(− 1
2
(x − µ)TΣ−1(x − µ)) .

Under the Gaussian Assumption, we can rewrite the Markov property as follows:

Definition 3.2 [45] A multivariate normal distribution X = (X1 . . . Xp) follows the
(global) Markov property with respect to a graph G if for all vertices Xi and X j and
set of vertices K so that Xi,X j < K and K separates Xi and X j in G, it holds that
Xi y X j|{Xk : k ∈ K}

Besides we can introduce the notion of faithfulness

Definition 3.3 [76] A multivariate normal distribution X = (X1 . . . Xp) is faithful to
a graph G if for all vertices Xi and X j and set of vertices K so that Xi,X j < K and
Xi y X j|{Xk : k ∈ K}, it holds K separates Xi and X j in G.

Assuming that the covariance matrix Σ is regular such that the precision matrix Ω =
Σ−1 is well defined, the following theorem can be proved.

Theorem 3.4 [45] Assume that X = (X1 . . . Xp) has a multivariate normal distribu-
tion with mean µ and (regular) covariance matrix Σ, then it holds for every Xi, X j with
i , j that

Xi y X j|X{1,...,p}\{i, j} ⇐⇒ ωi j = 0

where Ω = (ωi j)i, j∈{1,...,p} = Σ−1 is the precision matrix of the distribution

The proof can be found in [45]. Moreover for the multivariate normally distributed
variables the notion of correlation (i.e. covariance equals to zero) and independence
are equivalent (see [46], [42], [43]) although in general this is not true. Hence the
following theorem holds.

Theorem 3.5 [46] Assume that X = (X1 . . . Xp) has a multivariate normal distribu-
tion with mean µ and covariance matrix Σ. Then for every Xi, X j in X with i , j we
have Xi and X j are uncorrelated if and only if they are independent.
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3.5.1 Full Conditional Independence Graph

In the Full Conditional Independence Graph (FCIG) an edge between two variables
Xi and X j is drawn if and only if the two variables are conditionally dependent given
all other variables of the system Xk ∀k ∈ {1 . . . p}\{i, j}.
Due to the Theorem 3.4, we can rewrite this condition as:

Definition 3.6 FCIG draws an edge Xi → X j ⇐⇒ ωi j =
ωi j
√
ωiiω j j

, 0

where ωi j is the element in the ith row and jth column of the precision matrix Ω.

The advantage of this method is the simultaneous inclusion of all the variables in
the evaluation of the dependencies, since computing the precision matrix requires to
consider the determinant of the covariance matrix. Its shortcoming is the numerical
implementation: to be able to calculate the inverse of the covariance matrix a large
sample of data is required to have an accurate estimation. Moreover to determine
which elements of the precision matrix are equal to zero, it is necessary to perform
a super exponential number of tests (Likelihood tests), and for a large number of
variables this is hardly feasible.

3.5.2 Covariance Graph

A natural choice to avoid the problem arising from the use of the precision matrix in
the FCIG would be to work directly with the covariance matrix. Then it would be
possible to work even with a small number of data and a large set of variables.
The Covariance Graph (CG) is based on this idea. It that draws an edge between two
variables Xi and X j if and only if the correlation coefficient of the two variables is
different than zero (see Theorem 3.5).

Definition 3.7 CG draws an edge Xi → X j ⇐⇒ ρi j =
σi j
√
σiiσ j j

, 0

where σi j is the element in the ith row and jth column of the covariance matrix Σ.

The obvious disadvantage of this method is the neglection of all the possible interac-
tions of other variables in the explanation of the dependency of a particular pair, i.e.
this method is not able to capture complex patterns.

3.5.3 Tri-graph

The Tri-graph (TG) (also called 0 − 1 conditional independence graph) is developed
from the combination of the previous two methods, and it can be seen “somehow”
between them (see [75] and [76]).
To evaluate the dependency of a couple of variables Xi and X j instead of considering
jointly all other variables, just a third one Xk is considered at a time, but the index k
is variated in the whole set of variables, i.e. k ∈ {1 . . . p}\{i, j}, so that all the possible
choices for the third variable will be iteratively considered. The name Tri-graph refers
indeed to the fact that triples of variables are considered.
With this procedure all the variables are considered to check the dependencies, but
one at a time and not all simultaneously as in the FCIG.
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What is explored is the set of values of the pairwise partial correlation coefficients,
that are defined as

(3.3) ωi j|k =
ρi j − ρikρk j√

(1− ρ2ik)(1− ρ2k j)

The pairwise partial correlation coefficient expresses the pairwise values of the cor-
relation between variables Xi, X j and Xk and its support is the interval [−1, 1]. It is
also called first order correlation (see [2] and [74]). Thus we can use partial correla-
tion to distinguish between the correlation between two variables due to direct casual
relationship from the correlation between the same two variables that originate via
intermediate variables or is directly due to other variables. If there is no difference
between wi j|k and ρi j then we can infer that the variable Xk has no effect. If the partial
correlation approaches to zero, the inference is that the original correlation between Xi

and X j is spurious, i.e. there is no direct causal link between the two original variables
because the control variable is either common anteceding cause or intermediate vari-
able. If the pairwise partial correlation coefficient is equal to zero, then the variable Xk

is able to explain the correlation between Xi and X j. In fact in this case the correlation
between Xi and X j (ρi j) can be expressed as the product of the correlation between Xi

and Xk (ρik) and X j and Xk (ρ jk), i.e. ρi j = ρikρ jk. Hence the variable Xk separates
the variable Xi and X j, i.e. Xi y X j|Xk. Partial correlation that remains significatively
different from zero, may be taken as indicators of a possible causal link. The definition
of the TG can be formalized as:

Definition 3.8 TG draws an edge Xi → X j if and only if ρi j , 0 and ωi j|k , 0
considering every k ∈ {1 . . . p}\{i, j} .

This definition can be re-read as: an edge between two variables Xi and X j is drawn if
and only if there does not exist any other variable Xk that can explain this dependency.

Through the definition of the set Ti j = {ρi j} ∪ {ωi j|k ∀k ∈ {1 . . . p}\{i, j}} we can
rewrite Definition 3.8 as

Definition 3.9 TG draws an edge Xi → X j if and only if τ = argmin
τi j∈Ti j

|τi j| , 0

Since this method is based on the covariance matrix (like the Covariance Graph),
it is possible to use it even if the sample of data is small compared to the number
of variables. Moreover it has the advantage to examine more complex correlation
structures than the direct correlation.

3.5.4 Some examples

To see how the three methods work, some small examples are introduced here.

Example 3.10
We consider five variables Xi with i ∈ {1 . . . 5}. Their multivariate normal distribution
is characterized by the following covariance matrix

Σ =


1 −1 −1 −1 −1

−1 2 1 1 1
−1 1 2 1 1
−1 1 1 2 1
−1 1 1 1 2





3.5 Continuous method 55

Since all the nondiagonal elements of the matrix are different from zero, the Covari-
ance Graph will connect every couple of variables.
The Full Conditional Independence Graph will give instead as a result a sort of “fork”,
connecting just the node X1 with all the other variables, since the corresponding pre-
cision matrix is:

Ω =


5 1 1 1 1
1 1 0 0 0
1 0 1 0 0
1 0 0 1 0
1 0 0 0 1


The CG and the FCIG are represented in Figure 3.3.

Figure 3.3: Example without cycles in the Full Conditional Independence Graph

To apply the Tri-graph method, we recall Definitions (3.3) and (3.8) and we compute
the value of the pairwise partial correlation coefficients:

(Xi,X j) Xk ωi j|k Edge
(1,2) ∀k , 0 Yes
(1,3) ∀k , 0 Yes
(1,4) ∀k , 0 Yes
(1,5) ∀k , 0 Yes
(2,3) 1 0 NO

(Xi,X j) Xk ωi j|k Edge
(2,4) 1 0 NO
(2,5) 1 0 NO
(3,4) 1 0 NO
(3,5) 1 0 NO
(4,5) 1 0 NO

Result: The TG coincides with the FCIG.
C

This is an excellent result, and we would like to get such a one-to-one correspondence
between TG and FCIG every time, however this is not always the case. Let us consider
another example.

Example 3.11
We slightly change the precision matrix of the previous example:

Ω ′ =


5 0.5 0.5 1 1
0.5 1.5 −0.5 0 0
0.5 −0.5 1.5 0 0
1 0 0 1 0
1 0 0 0 1


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The covariance matrix becomes

Σ ′ =


0.4 −0.2 −0.2 −0.4 −0.4

−0.2 0.85 0.35 0.2 0.2
0.4 0.35 0.85 0.2 0.2

−0.4 0.2 0.2 1.4 0.4
−0.4 0.2 0.2 0.4 1.4


The corresponding graphs for the CG and the FCIG are shown in Figure 3.4.

Figure 3.4: Example with cycles in the Full Conditional Independence Graph

Evaluating the pairwise partial correlation coefficients we get:

(Xi,X j) Xk ωi j|k Edge
(1,2) ∀k , 0 Yes
(1,3) ∀k , 0 Yes
(1,4) ∀k , 0 Yes
(1,5) ∀k , 0 Yes
(2,3) ∀k , 0 Yes

(Xi,X j) Xk ωi j|k Edge
(2,4) ∀k , 0 Yes
(2,5) ∀k , 0 Yes
(3,4) ∀k , 0 Yes
(3,5) ∀k , 0 Yes
(4,5) ∀k , 0 Yes

Result: The TG coincides with the CG.
C

In both examples the Full Conditional Independence Graph is a subgraph of the Co-
variance Graph, but this is not always the case.

Example 3.12
We consider five variables Xi with i ∈ {1 . . . 5}. Their multivariate normal distribution
is characterized by the following covariance matrix

Σ =


4 −1 −1 −1 −1

−1 2 0 0 0
−1 0 2 0 0
−1 0 0 2 0
−1 0 0 0 2


The resulting Covariance Graph is a fork connecting the first variable, X1, with all
other four variables (see Figure 3.5). The corresponding precision matrix is dense.
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Ω =


0.500 0.250 0.250 0.250 0.250
0.250 0.625 0.125 0.125 0.125
0.250 0.125 0.625 0.125 0.125
0.250 0.125 0.125 0.625 0.125
0.250 0.125 0.125 0.125 0.625


Hence in the Full Conditional Independence Graph all possible edges are drawn.

Figure 3.5: Example of Covariance Graph as subgraph of Full Conditional Indepen-
dence Graph

If we apply the Tri-graph procedure we get the following results:
(Xi,X j) Xk ωi j|k Edge

(1,2) ∀k , 0 Yes
(1,3) ∀k , 0 Yes
(1,4) ∀k , 0 Yes
(1,5) ∀k , 0 Yes
(2,3) 1 0 NO

(Xi,X j) Xk ωi j|k Edge
(2,4) 1 0 NO
(2,5) 1 0 NO
(3,4) 1 0 NO
(3,5) 1 0 NO
(4,5) 1 0 NO

Result: the TG does coincide with the CG and both graphs contain less edges than
the FCIG. C

Remark 3.13 The Tri-graph is always a subgraph of the Covariance Graph.

Before we move on investigating deeply the question in which instances the TG co-
incides with the FCIG, we examine if these theoretical examples correspond to real
cases of the railway network.

Example 3.14
Two stations v and u are connected by a single track line without any overlapping
point. Two trains t and s are scheduled to travel in different directions along this line.
Figure 3.6 shows the Activity-on-arc Project Network of the problem.

We suppose that train t leaves the station v with some delay (either due to a source
delay at the station v, e.g. longer time for the boarding and deboarding of the passen-
gers, or due to previous forced delays). Train s has to wait at station u until the arrival
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Figure 3.6: single track line

of train t (to receive the green light to proceed) since along the line there are no points
where the two trains can travel simultaneously. Train s will have a forced delay, that
might spread out along its journey.
We consider four variables corresponding to the delays at:

• Y1 the departure of train t from station v;

• Y2 the arrival of train t at station u;

• Y3 the departure of train s from station u;

• Y4 the arrival of train s at station v.

The following covariance matrix refers to such a situation with four events correspond-
ing to a single track line (between Seesen and Salz-Ringelheim) in the data file that
the Deutsche Bahn put on our disposal to test the Tri-graph procedure. More details
about the source file and the considered events are given in Chapter 4.

Σ =


3.243477 2.967419 2.903797 1.812586
2.967419 3.133233 3.095565 1.842816
2.903797 3.095565 3.833862 2.287471
1.812586 1.842816 2.287471 1.610345


Accordingly the precision matrix of the problem is:

Ω =


2.4797356 −2.4423586 0.6007953 −0.8496433

−2.4423586 3.9835325 −1.8817665 0.8635136
0.6007953 −1.8817665 2.9109165 −2.6577422

−0.8496433 0.8635136 −2.6577422 4.3644464


For the Tri-graph method, we compute the value of the pairwise partial correlation
coefficients:

(Xi,X j) Xk ωi j|k Edge
(1,2) ∀k , 0 Yes
(1,3) 2 = 0 NO
(1,4) 3 = 0 NO

(Xi,X j) Xk ωi j|k Edge
(2,3) ∀k , 0 Yes
(2,4) 3 = 0 NO
(3,4) ∀k , 0 Yes

Since we are considering real delay measurement, we used a Maximum Likelihood
test (see Appendix 7) to check if the elements of the covariance/precision matrix and
the pairwise partial correlation coefficient are zero. The quantile was set to 1%.
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Figure 3.7: Tri-graph coincides with FCIG

The results of the three methods are shown in Figure 3.7.

Result: The TG coincides with the FCIG.
C

Example 3.15
We consider three stations v, u, w among which three trains r, s and t are traveling,
such that the corresponding Activity-on-arc Project Network is the one shown in Fig-
ure 3.8.

Figure 3.8: Triangular connection

These three trains are pairwise connected at the three stations:

• r and s at station v;

• s and t at station u;

• t and r at station w.

Passengers have two possibilities to travel between v and w: either with the direct
train or using the connection between the other two trains of the system. E.g. to travel
from station v to w a passenger can take either train r or the connection between s and
t at station u. In reality such a situation occurs when it is necessary to have a high
frequency of trains among some stations but it is not possible to increase the number
of vehicles on duty.
We consider six variables corresponding to the delays at:
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• Y1 the departure of train r from station v;

• Y2 the departure of train s from station v;

• Y3 the arrival of train s at station u;

• Y4 the departure of train t from station u;

• Y5 the arrival of train t at station w;

• Y6 the arrival of train r at station w.

Supposing that the precision matrix Ω obtained from the delay data of the three trains
is

Ω =



1 0.5 0 0 0 1
0.5 4 1 0 0 0
0 1 3 0.5 0 0
0 0 0.5 2 1 0
0 0 0 1 1 0.3
1 0 0 0 0.3 2


the corresponding covariance matrix will be dense, thus the CG will give the complete
set of possible edges among the six variables as result, while the FCIG contains just
the edges of a cycle.
Evaluating the pairwise partial correlation coefficients for the Tri-graph we get:

(Xi,X j) Xk ωi j|k Edge
(1,2) ∀k , 0 Yes
(1,3) ∀k , 0 Yes
(1,4) ∀k , 0 Yes
(1,5) ∀k , 0 Yes
(1,6) ∀k , 0 Yes
(2,3) ∀k , 0 Yes
(2,4) ∀k , 0 Yes
(2,5) ∀k , 0 Yes

(Xi,X j) Xk ωi j|k Edge
(2,6) ∀k , 0 Yes
(3,4) ∀k , 0 Yes
(3,5) ∀k , 0 Yes
(3,6) ∀k , 0 Yes
(4,5) ∀k , 0 Yes
(4,6) ∀k , 0 Yes
(5,6) ∀k , 0 Yes

The three corresponding graphs are shown in Figure 3.9.

Result: The TG coincides with the CG.

In this case, the Tri-graph method identifies all possible dependencies without being
able to highlight the most important ones, as the FCIG does. C

3.5.5 Some theoretical results

In this section we present some theoretical results that explain why we defined the TG
as being positioned “somehow” in the middle between the CG and the FCIG.

Proposition 3.16 [76] If the distribution on X = (X1, . . . , Xp) is Gaussian and faith-
ful to the Full Conditional Independence Graph, then every edge in the Full Condi-
tional Independence Graph is also an edge of the Tri-graph, FCIG ⊆ TG.
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Figure 3.9: Tri-graph coincides with CG

Proof: .
We prove the statement by contradiction. Assume that an edge (Xi, X j) in the FCIG is
not in the TG. Then either σi j = 0 or ωi j|k = 0 for some k ∈ {1, . . . , p} \ {i, j}.
In the first case (σi j = 0), Xi and X j are (marginally) independent, i.e. they are
independent given all the other variables (Thus there can not exist a path P from Xi to
X j (and viceversa) otherwise the variables in the paths could explain the dependence
of Xi and X j, Xi y X j|{variables in the path P}. Then we could generalize the set to
Xi y X j|{Xk : k ∈ {1, . . . , n} \ {i, j} }, hence they will be dependent). Therefore they
must be in different connectivity components of FCIG, since X is faithful to the FCIG.
In the second case (ωi j|k = 0 for some k , {i, j}), it holds that Xi y X j|Xk. That can
be generalized to Xi y X j| {Xk : k ∈ {1, . . . , p} \ {i, j} and since X is faithful to FCIG,
it implies that Xi and X j are separated in the FCIG, i.e. there is no edge (Xi, X j) in the
FCIG. �

Proposition 3.17 [76] Assume that the distribution of X is Gaussian. Moreover, as-
sume that if Xi and X j are not adjacent in the Full Conditional Independence Graph,
then Xi and X j are either in different connectivity components of the Full Conditional
Independence Graph or there exists a vertex Xk that separates Xi and X j in the Full
Conditional Independence Graph. Then every edge in the Tri-graph is also an edge in
the Full Conditional Independence Graph.

Proof:
Assume that Xi and X j are not adjacent in the Full Conditional Independence Graph.
Then we either have:

• Xi and X j are in different connectivity components. Xi and X j are therefore
(marginally) independent, which implies ρi j = 0 and there is no edge between
them in the Tri-graph, or

• there exists some Xk with k ∈ {1, . . . , p} \ {i, j} that separates Xi and X j. Due to
the Markov property, we have Xi y X j|Xk and therefore ωi j|k = 0, which further
implies that Xi and X j are not adjacent in the Tri-graph.

�
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Due to Propositions 3.16 and 3.17, the TG and FCIG may coincide.
In particular all Gaussian distributions corresponding to trees are faithful (see [6]), so
that it holds (see [76])

Theorem 3.18 [76] If the Full Conditional Independence Graph of a Gaussian distri-
bution is a forest of trees (i.e. the graph does not contain any cycle) then the Tri-graph
and the Full Conditional Independence Graph coincide.

Tri-graph and the Full Conditional Independence Graph do also coincide in more
complicated scenarios, for example, if the distribution is Gaussian and faithful and
if the corresponding Full Conditional Independence Graph consists of sets of cliques
that (pairwise) share at most one (common) vertex.
From Proposition 3.16, we expect that sparse Full Conditional Independence Graphs
have fewer edges than the Tri-graph. From Theorem 3.18 we also expect that the
number of cycles will be an indicator for the difference between the number of edges
in the FCIG and in the TG. The larger the number of cycles, the larger the difference
in the number of edges.
As distributions are not always faithful, some FCIGs may also contain more edges
than the corresponding TGs.

Furthermore we can prove some results concerning the relation between the Tri-graph
and the Covariance Graph.

Proposition 3.19 The Tri-graph is a subgraph of the Covariance Graph, TG ⊆ CG.

Proof:
For every edge (Xi, X j) in TG we have ρi j , 0, hence the edge belongs also to the
CG. �

Theorem 3.20 If the Covariance Graph of a Gaussian distribution does not contain
any cycle, then the Tri-graph coincides with the Covariance Graph

Proof:
The CG has no cycle if there does not exist any triple of variables (i, j, k) such that
σi j , 0, σik , 0 and σ jk , 0 (due to the transitivity of the covariance).
Proposition 3.19 already states that TG ⊆ CG. By contraddiction we suppose that TG
⊂ CG, i.e. there exists an edge (i, j) in CG but not in TG. Hence we have that σi j , 0
but there exists an index k such thatωi j|k = 0where the pairwise partial correlation co-
efficient is defined as in (3.3). Writing explicitly the correlation coefficient as function
in the variance and in the correlation of the variables, we get:

ωi j|k =

σi j
√
σiiσ j j

−
σik√
σiiσkk

σ jk
√
σ j jσkk√(

1−
σ2ik
σiiσkk

)(
1−

σ2jk
σ j jσkk

)

=

1√
σiiσ j j

(
σi j−

σikσ jk
σkk

)
1√
σiiσ j j

√
(σiiσkk−σ2ik)(σ j jσkk−σ2jk)

σ2kk

=
σi jσkk−σikσ jk√

(σiiσkk−σ
2
ik)(σ j jσkk−σ

2
jk)

since the variance is a nonnegative quantity. Thus

ωi j|k = 0⇔ σi jσkk = σikσ jk
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Since σi j , 0 (the edge exists in the CG) and σkk , 0 (otherwise the variable Xk would
be a constant), it must be σikσ jk , 0, i.e. σik , 0 and σ jk , 0. Consequently the CG
contains a cycle. �

In general it is not possible to say which method between the CG and the FCIG will
point out less edges since the presence of null non-diagonal elements in the covariance
matrix does not imply the corresponding presence of null elements in the precision
matrix.

We still need to decide how to check if the pairwise correlation coefficients corre-
sponding to the different triples (Xi, X j, Xk) are different than zero, i.e. ωi j|k = 0
∀ k ∈ {1 . . . p} \ { i , j }.

Under the Gaussian assumption given in Section (3.5), this can be done with the
Likelihood Ratio test (see Appendix A) based on the hypotheses:

• null hypothesis, H0(i, j|k) : ωi j|k = 0 for k ∈ {1 . . . p}\{i, j};

• alternative hypothesis, H1(i, j|k) : ωi j|k , 0 for k ∈ {1 . . . p}\{i, j}.

Under the null hypothesis and the assumption that the data is independent identically
distributed (i.i.d.) the log-likelihood test has an asymptotically Chi-squared distribu-
tion. We call P-value P(i, j|k) the result of the Log-Likelihood Ratio test of the null
hypothesis H0(i, j|k) versus the alternative hypothesis H1(i, j|k).

An analogous procedure is defined for the marginal correlation of the pair of vari-
ables (Xi, X j), so that we will also have:

• null hypothesis, H0(i, j|0) : ρi j = 0;

• alternative hypothesis, H1(i, j|0) : ρi j , 0;

• P-value, P(i, j|0).

We can now reformulate Definition 3.9.

Definition 3.21 We draw an edge Xi → X j if and only if all the null hypotheses,
H0(i, j|0) and H0(i, j|k) ∀k, are rejected in all the Log-Likelihood Ratio tests.

Thus there is evidence for an edge Xi → X j if

max
k∈{0}∪{1...p}\{i, j}

P(i, j|k) < α

where α is the significance level for the test.
For deciding about a single edge between vertices Xi and X j it is not necessary to
correct α for the p − 1 multiple testings over all conditioning vertices k since the
following proposition can be proved.

Proposition 3.22 [76] Consider the single hypothesis (for some fixed pair (Xi,X j)):
H0(i, j): at least one H0(i, j|k∗) is true for some k∗ ∈ {0} ∪ {1 . . . p}\{i, j}. Assume for
all k ∈ {0} ∪ {1 . . . p}\{i, j} the individual test satisfies

PH̃0(i, j|k)[H0(i, j|k) rejected] ≤ α

where H̃0(i, j|k) = {H0(i, j|k) true} ∪ {H0(i, j|k ′) true or false (and compatible with
H0(i, j|k) for all k ′ , k ) }. Then the error of the first type

PH0(i, j)[H0(i, j|k) are rejected for all k ∈ {0} ∪ {1 . . . p}\{i, j}] ≤ α.
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Proof: Consider the hypothesis:

H0 = H0(i, j) : at least one H0(i, j|k∗) is true for some k∗

The probability for an error of the first type is:

PH0 [H0(i, j|k) rejected for all k] = PH0 [∩k{H0(i, j|k) rejected }]

≤ min
k
PH0 [H0(i, j|k) rejected ]

≤ PH0 [H0(i, j|k∗) rejected ]

≤ α.

�

Remark 3.23 Due to this proposition a lot of calculations will be saved and it is also
important to point out that the estimation for a Tri-graph is done in an exhaustively
manner. This is a very important difference from the Full Conditional Independence
Graph where it is often necessary to apply a non-exhaustive procedure in case of a
huge graph space.

3.6 Statistical Multicorrection

In [75] it was suggested to apply a correction to the results of the Likelihood Ratio
Test to reduce the error of first type: False Positive discovery rate (see Appendix 7).
The recommendation was about the Benjamini-Hochberg (BH) approach as presented
in [8] and [67]. The BH procedure for multiplying test is:

1. order the P-values arising from the m tests in a decreasing vector (of dimension
m), so that p[1] ≥ p[2] ≥ . . . ≥ p[m];

2. do not correct the first component of the vector (i.e. the maximum P-value
resulting from the test);

3. correct the other components by a factor directly proportional to the number of
tests and invertionally proportional to the position of the P-value in the array,
i.e. the corrected P-value will be p∗[i] = m

i p[i] where i ∈ {2, . . . ,m};

4. compare the corrected P-values with the desired quantile α: if p∗[i] ≤ α ac-
cept the alternative hypothesis (i.e. the estimated parameter is different than
zero, thus an edge is drawn) else accept the null hypothesis (i.e. the estimated
parameter is equal to zero, thus no edge is drawn).

This procedure is a generalization of the Bonferroni (B) correction, that is based on a
fixed correction of the P-values, i.e. p∗[i] = mp[i] ∀i ∈ {1, . . . ,m}.

In our problem we are more interested in reducing the error of second type (False
Negative discovery rate ), hence we tested the Tri-graph approach without correction
in order to be able to identify as many “virtual” connections as possible. We compared
this output with the results obtained by applying one of the previous corrections to
confront the size of the sets. Moreover we checked if the increased number of edges
(obtained without any corrections) corresponds also to an increased number of “vir-
tual” activities.
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Further on in this thesis we will refer to these three different corrections using the
following abbreviations:

• − for the absence of a correction;

• B for the Bonferroni correction;

• BH for the Benjamini-Hochberg correction.

3.7 Tri-graph estimation algorithm

We can schematize the Tri-graph algorithm as follow.

1. compute the P-values P(i, j|k) for all triples of variables (Xi, X j, Xk) where i, j ∈
{1, . . . , p}, i , j and k ∈ {0} ∪ {1, . . . , p} \ {i, j};

2. compute the maximum P-value for every pair (Xi, X j) = (X j, Xi):
Pmax(i, j) = max

k∈{0}∪{1,...,p}
P(i, j|k);

3. (in case) correct the maximum P-values over the
p(1− p)

2
multiple tests for all

pairs of vertices, Pmax,corr(i, j);

4. draw an edge between Xi and X j if and only if Pmax,corr(i, j) < α, where α is the
pre-specified significance level.

3.8 Complexity of the Algorithm

To calculate the complexity of the Tri-graph method we start evaluating the com-
plexity of the Mean of the Covariance (hence of the Variance) and of the correlation
coefficients.

Mean
Given a random variable X with n observations, {x1, . . . , xn}, to calculate its mean
it is necessary to sum all its observations and to divide this sum by the number of

observations, i.e. X̄ =
1

n

n∑
i=1

xi.

Hence n − 1 additions and 1 division are executed for a total of n operations.
The complexity of the Mean is O(n).

Covariance
Given two variables X and Y , each of them with n observations, to calculate the co-
variance it is necessary to sum the n products obtained by multiplying the deviation
of the ith observation of X from its mean X̄ with the corresponding deviation of the ith

observation of Y from its mean Ȳ and to divide the result by the number of observa-
tions we consider, i.e. cov(X,Y) = 1

n

∑n
i=1(xi − X̄)(yi − Ȳ).

We already evaluated the operations necessary for the mean, so we can neglect this
calculations in the argumentation. 2n subtractions, n multiplications, n − 1 additions
and 1 division (by n) have to be executed, in total 4n operations.
The complexity of the Covariance is O(n).
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Variance
The variance is a special case of the covariance, i.e. X = Y , and hence it necessitates
less operations. The difference of the observations from the mean need to be evaluated
only once. We have 3n operations.
The complexity of the Variance is O(n).

Correlation Coefficient
The correlation coefficient of X and Y is obtained by dividing the covariance of the

variables for the squared root of the product of their variances, i.e. ρXY =
cov(X,Y)√

Var(X)Var(Y)
.

Therefore a product, a square root and a division are computed, in total 3 operations
(assuming that variance and covariance have already been calculated).
Consequently also the complexity of the Correlation Coefficient is O(n).

If the Tri-graph is applied to p variables each of them provided with n observations
(where n is much smaller than p) it is necessary to compute the mean and the variance
of p variables (complexity O(pn)), and the covariance of 1

2
(p − 1)p pairs (complexity

O(np2)). In fact the covariance is symmetric (ρXY = ρYX), hence we can consider just
the pair of variables (i, j) where i is smaller than j. Accordingly, for the first variable
we compute its covariance regarding all the other (p − 1) variables, but for the second
one we need just to consider (p − 2) pairs since its covariance with the first variable
has already been evaluated. Analogous for the (p − 3) calculations regarding the third
variable and so on until the second-last variable that can be paired just with the last

one. Hence we have (p − 1) + (p − 2) + . . .+ 1 =

p−1∑
r=1

r =
1

2
(p − 1)p possible pairs.

To evaluate the covariance matrix we need np+(3n)p+ 1
2
(4n)(p−1)p = 2np2+2np

operations.
The resulting complexity is O(np2).

Likelihood test
To check if some non-diagonal elements of the covariance matrix or if some pairwise
partial correlation coefficients are different than zero the Likelihood test is applied. It
requires a fixed number of operations that we define as M and that is independent from
the number of variables and from the number of their observations. Before proceeding
we need to find out how many triples of variables (Xi, X j, Xk) where i, j, k ∈ {1, . . . , p},

i , j and k < {i, j}, can be considered starting from
1

2
(p − 1)p possible pairs.

It is important to underline that the triple (X j, Xi, Xk) is equivalent to (Xi, X j, Xk), but
both the triples (Xk, X j, Xi) and (Xi, Xk, X j) are not, so no matter which pair (i, j) we
are considering, we always have (p − 2) choices for the third index k. Since the num-

ber of possible pairs is 1
2
(p − 1)p we have

1

2
p(p − 1)(p − 2) possible triples. The

total number of operations is equal to M
2

p(p − 1)(p − 2).
The complexity of the Likelihood test is O(p3).

Maximum
Given a (p − 1)-dim array containing the P-values arising from the test (one for the
covariance and (p−2) for all the possible triples that can be built from the considered
pair), the maximum among them is calculated through a procedure that compares pairs
of values (either the first P-value of the array with the second one or the maximum
P-value found up to position i of the array with the (i+1)-th element). The complexity
of the Maximum is O(p) in the worst case.
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Statistical multi-correction
Finally a statistical multi-correction of the

1

2
p(p − 1) P-values (one for each pair

(Xi, X j)) is applied. This consists in multiplying the P-values by a factor that can be
calculated with at most 2 operations. Thus we have a complexity of O(p2) in this part.

On the whole we have a complexity of O(np2) to evaluate the covariance matrix,
a complexity of O(p3) for the Likelihood Ratio test and a complexity of O(p2) for the
statistical multi-correction. Since both n and p are bigger than 1, the complexity of
the statistical multi-correction is smaller than the previous ones, hence we can neglect
it. As result we get that the complexity of the Tri-graph is either O(p3) or O(np2).
Since we assumed that p is much larger than n, the Tri-graph overall complexity is
O(p3).





4
Numerical Results

The value of an idea lies in the using of it.
When I have fully decided that a result
is worth getting, I go ahead of it and make
trial after trial until it comes.
Just because something doesn’t do what you
planned it to do doesn’t mean it’s useless.

THOMAS ALVA EDISON (1847-1931)
American inventor and businessman

Computational issues must be resolved in order to the prove the practical value of
the Tri-graph approach in the identification of dependencies among train delays. In
fact the presented properties of this method would remain incomplete for the practical
problem if either it will be too difficult to implement or it will not point out the critical
points of the railway network.

4.1 The DisKon Project

Since years the Deutsch Bahn (DB) has been collecting data about disturbances of
the timetable, creating a quite huge data set. These information allow the study of
the system as a whole (from both a theoretical and a practical point of view). Aim
of the research is to find a way to improve the timetable minimizing the impact of
the occurring delays on the average delay of the passengers. In particular one of the
projects on which the DB embarked upon is the DisKon - Disposition und Konfliktlö-
sungsmanagement für die beste Bahn. Challenge of the project is to model a system
that is able to recognize the conflicts and to solve them in order to save resources and
avoid discriminations. Different universities, among which Georg-August-Universität
Göttingen, are collaborating on this project. The optimization group, lead by Prof.
Schöbel at the Institute for Numerical and Applied Mathematics (NAM), considers a
macro-formulation of the problem as a linear integer program (LIP). Focuses of the
research are both a one-criterial formulation based on the average delay of the pas-
sengerson as well as a bicriterial optimization based on one side on the delay of the
vehicles and on the other on the total amount of missed connections. A Micromodel
is considered to check the feasibility of the solutions.
Within the framework of this collaboration between the DB and the NAM Institute,
the contribution of this thesis to the project is the analysis of the dependencies among
train delays to identify the critical points of the railway system. These dependencies
are then transformed into constraints of the Macro-formulation of the LIP in order to
improve the robustness of the Macro-solution. This gave us the possibility to test the
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Tri-graph method using real data.

4.1.1 The raw data

In Autumn 2005, the Deutsch Bahn placed at disposal of the Optimization Group at
NAM a set of files containing measurements of real departure and arrival times of
regional trains in the following train stations:

• Bad Harzburg;

• Goslar;

• Herzberg;

• Oker;

• Salzgitter-Ringelheim;

• Seesen;

• Vieneburg;

• Wolfenbüttel.

These stations are located in the Harz region, a mountain range in northern Germany
that straddles the border between the states of Lower Saxony, Saxony-Anhalt and
Thuringia (see Figure 4.1 and Figure 4.2).

Figure 4.1: Harz area

The data are collected in tabular files each of them referring to arrivals and departures
in one of the stations over listed inside a three-month period. Altogether the files
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Figure 4.2: Location of the considered stations

correspond to a time window of nine months, between Saturday 1st January and Friday
30th September 2005 (exactly 39 weeks).
The tabular files contain infomation concerning:

• the identifying abbreviation of the station (e.g. HBHA for “Hauptbahnhof Bad
Harzbug”);

• the kind of event (i.e. Arrival or Departure);

• the day in which the event has been measured;

• the class of the train (i.e. a number specifying the type of the train: ICE, EC,
IC, RB . . .);

• the subclass of the train (i.e. a number specifying if the train is regular/special,
if it transports passengers or it is empty . . .);

• the identification number of the train;

• the scheduled time of the event;

• the measured (“real”) time in which the event took place;

• the delay, in minutes, of the event (i.e. the difference between the measured and
the scheduled time of an event);

• the direction in which the train is traveling (i.e. its next scheduled station).

Peculiarity of the file is to contain in its first half all the arrival events and in its second
half all the departure events, both groups are chronologically ordered.
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4.1.2 Working with the data

As we started to select the events that could be considered as input for the Tri-graph
approach, we noticed some unexpected peculiarities of the data files.

Firstly we observed that the registrations contained in the files correspond to dif-
ferent classes of trains (principally local and freight trains) traveling (with or without
passengers/cargo) on the considered track system. Freight trains and empty local
trains (i.e. local trains without passengers that have to be moved from one station
to another due either to logistic needs or maintenance) do not have to follow a fixed
timetable but they are allowed to proceed on a track whenever it is free or they are
forced to wait longer in a station to avoid disturbances on the regular traffic. The vari-
ance corresponding to their traveling times is very large, hence they are very difficult
to model. Therefore choosing the sample for the Tri-graph approach, we decided to
consider just events corresponding to passenger trains.

Afterwards we noticed that the measurements are precise just up to the minute. In
fact the departures or arrivals of some trains are correctly registered in the hour and
minute fields, but the field corresponding to the seconds, out of the 60 possible values,
assume just a few of them. Many trains always arrive or depart in perfect time, i.e. the
difference in seconds between the registered time and the scheduled one is constantly
zero. A constant value for the “seconds field” is registered also in case of delay, no
matter the magnitude of it in minutes. Nevertheless we decided to calculate the delays
in seconds, instead of minutes as given in the files, in order to profit of possible addi-
tional information.

Then we noted that in two stations (Oker and Wolfenbüttel) some events were strangely
registered: the same scheduled timetable was considered for both the arrival and the
departure of some trains. The personal of the Deutsche Bahn confirmed that these
sets of trains were not scheduled to stop in these stations. Thus we considered the
data related to the arrival of the trains (i.e. the ones reported in the first part of the
data files) as intermediate measurements of the delays and marked these events as
“special”, defining a (sort of) third kind of events.

Moreover, counting the occurrence of every event in the whole time window we
noticed double registrations of the same event. E.g. events corresponding to trains
traveling every working day (in the considered time window of 39 weeks) were occur-
ring more than 195 times where 195 = 39 · 5 (5 working days per week). In that case
we decided to consider just the first registration of the events per day, considering the
following ones as a repetition, even if their measured delays were not exactly the same.

In contrast with the previous point, for other events we had to face missing regis-
trations either of some fields of the file or of the whole event. We decided not to
generate any artificial data to avoid possible influences on the identification of the
dependencies and we preferred not to consider these events as suitable samples.

Finally it is important to highlight that the timetable on the weekends and festivi-
ties is slightly different than during the week, so we focused our attention principally
on the working days (i.e. from Monday to Friday) excluding all the festivities (Satur-
days and Sundays have been separately considered, see Section 4.4).

For the record we considered as national holidays (based on the Lower-Saxony calen-
dar) the following days:
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• Saturday 1st January 2005 (New Year’s Day);

• Friday 25th March 2005 (Good Friday);

• Sunday 27th March 2005 (Easter);

• Monday 28th March 2005 (Easter Monday);

• Sunday 1st May 2005 (Labour Day);

• Thursday 5th May 2005 (Ascension Day);

• Sunday 15th May 2005 (Whit-Sunday);

• Monday 16th May 2005 (Whit-Monday).

Summarizing we considered as possible trains for the sample:

• local trains

• transporting passengers

• traveling on weekdays

• on the Harz area

• in a time window of 9 months (January-September 2005).

In accordance with this list, we decided to proceed with two different strategies: on
one side we decided to maximize the number of events we could consider having a
reasonable amount of data for each of them, on the other side we maximize the num-
ber of occurrences per event keeping a reasonable chain of events.

Concerning the first strategy we consider a set of data pro event with a cardinality
equal to 30 reasonable. We found a sample of 928 events corresponding to 229 trains,
which consists of 358 waiting activities and 339 “driving” activities (the quotation
marks are used since some events in the chain are missing). Since there are no festiv-
ity days falling on Tuesday and Wednesday, we mainly focused our attention on those
days, choosing this sample. From now on we will refer to this sample as W − 30,
abbreviation of “weekdays - 30 observations”.

On the contrary, for the second strategy we wanted to have the set of events regis-
tered every weekday on the time window we got (i.e. 195 occurrences per event). We
found a set of 440 events corresponding to 118 trains, which consists of 161 waiting
activities and 152 “driving” activities (again the quotation marks refer to the absence
of some events in the chain). From now on we will refer to this sample as W − 195,
abbreviation of “weekdays - 195 observations”.

events trains # observations
W − 30 928 229 30
W − 195 440 118 195

Table 4.1: Characteristic of the samples W − 30 and W − 195
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4.2 Outputs of the samples W − 30 and W − 195

We started applying the Chi-Squared test on a Contingency Table (CT) (see Section
3.3) to the two samples introduced in the previous section, (W − 30 and W − 195).
Firstly we applied the classical version of the test (no multistatistical correction), in
which the values of two variables are registered on the single Contingency Table on
which the test is based. All the possible pairs (Xi, X j) in which j is bigger than i have
been tested. In fact i and j are the positions of the two events in the sample ordered
according to the scheduled timetable. Hence it would have no meaning to check if
an event could influence previously happened events. This method can be directly
compared with the Covariance Graph (CG) approach.
We tested three different values for the quantile, α ∈ {0.01, 0.05, 0.10}. Since the test is
thought to check the independence among variables, the values reported in the tables
are upper bounds of the possible dependency edges, obtained by subtracting at the
amount of possible pairs the cardinality of the pointed out set of independent pairs of
variables. We do refers to these highlighted pairs of dependent events as edges since
this term will be used for the output of graphical models (as explained in Section 3.4).
The results are three huge sets of edges, most of them due to the transitivity prop-
erty. Since the test has been thought to identify independencies, smaller values of the
quantile correspond to a higher number of rejected independence hypotheses. That
does not directly imply a higher number of dependencies among the variables but gives
us a rough approximation (Upper Bound also for CG) on the possible amount of them.

Reg. Trains - weekdays - 30 data
Corr. α Nr. Edges %

0.01 496 500 57.72
- 0.05 504 813 58.68

0.10 555 410 64.56
possible edges 860 256 100

Reg. Trains - weekdays - 195 data
Corr. α Nr. Edges %

0.01 124 512 64.46
- 0.05 131 767 68.22

0.10 149 209 77.25
possible edges 193 160 100

Table 4.2: Outputs of the Contingency Table test for the samples W −30 and W −195

Afterwards we applied a new version of the test based on triples of variables as ex-
plained in Section 3.3. A pair of variables (Xi, X j) with i smaller than j, will be
considered to be dependent not only if the Chi-Squared test on the direct contingency
table rejects the null hypothesis, but also if there does not exist any third variable that
can explain a dependence between them. Hence moving from the pairs of variables
(Xi, X j) pointed out by the classic contingency table method, we considered a third
variable Xk with index k ∈ {1, . . . , p}\{i, j} (where p is the total number of variables).
The observations of the pair (Xi, X j) are hence registered in two contingency table
Pk and Dk as explained in Section 3.3. The Chi-Squared test is then applied to both
tables. The variables Xi,X j are considered independent given Xk if the null hypothesis
is accepted in both the tests (one for Pk and one for Dk), otherwise we do consider
them dependent given Xk.
In other words we consider the variables Xi and X j independent given all other vari-
ables if there does not exist any variable Xk ∀k ∈ {1, . . . , n} \ {i, j}, such that the
variables Xi and X j can be defined as dependent given Xk. This method should be
directly comparable with the Tri-graph approach. However the output of this proce-
dure was empty, independently from the value of the quantile. Therefore we prefer to
neglect this procedure and to concentrate ourself on the graphical models presented in
Section 3.5.

The application of the FCIG method (see Section 3.5.1) was not possible since the
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observations corresponding to many pairs of variables, in particular the pairs of vari-
ables defining waiting activities, were strongly linearly dependent and hence it was
numerically impossible to evaluate the inverse of the covariance matrix. This strong
linear dependency is due to the nature of the events (waiting activities are usually
characterized by small slack times, hence the value of the departure delay often corre-
sponds to the value of the arrival delay of the train) and/or to a measurement procedure
that is exactly just up to minutes (as already highlighted in the previous section).

Applying the CG method (see Section 3.5.2) we had to face again the problem of
the transitivity property even if in a weaker form as in the Contingency Table test, as
it can be seen in Table 4.2.

Reg. Trains - weekdays - 30 data
Corr. α Nr. Edges %

0.01 27 385 3.18
- 0.05 45 019 5.23

0.10 59 911 6.96
possible edges 860 256 100

Reg. Trains - weekdays - 195 data
Corr. α Nr. Edges %

0.01 7 390 3.83
- 0.05 11 521 5.96

0.10 14 981 7.76
possible edges 193 160 100

Table 4.3: Output of the Covariance Graph for the samples W − 30 and W − 195

Finally we applied the TG approach. Its output, i.e. the identified dependent pairs of
variables, has been subdivided into five groups, corresponding to the kind of activity
they were representing:

• wait - waiting activities;

• drive - driving activities;

• drive2 - activities identified by pairs of events corresponding to the same train,
that are not exactly waiting or driving activities due to the loss of some events
of the journey sequence in the considered list of events;

• virtual - virtual activities, characterized by a (scheduled) time difference smaller
than 45 minutes;

• error - unclear activities characterized by a (scheduled) time difference bigger
than 45 minutes.

The considered Harz area is quite small, 45 minutes are a little bit more than the
scheduled traveling time between the two remotest stations, hence we can consider
this value as a period for our system. It is also important to remark that we do not
have any information about the scheduled connections between trains, thus we may
have included some change activities as “virtual” activities.

The results of the Tri-graph for the two samples are schematized in Tables 4.4 and 4.5,
in which the percentages of edges corresponding to the five groups defined above are
also reported. It is remarkable that the Tri-graph applied to the second sample, i.e. the
one with more observations, is able to identify more than 85% of the waiting activities
(with a peak of 95.8 in the case of no correction and a quantile α = 0.10). Concerning
the driving activities the percentage is not so high also because the lack of (data for)
some (arrival/departure) events in the train journey reduces the effect of the spread
of the delays (moreover there are some edges due to transitivity). The lowest peak
corresponds to 34.6% of identified driving activities and the highest peak to 90.8%.
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Regional Trains - weekdays - 30 data
activity

Correction Quantile Nr. Edges wait drive drive2 virtual error
α # # % # % # % # % # %

0.01 463 203 43.9 77 16.6 40 8.7 50 10.8 93 20.1
- 0.05 753 216 28.7 104 13.8 82 10.9 84 11.2 267 35.4

0.10 1 085 228 21.1 131 12.2 118 11.0 135 12.1 473 43.6
0.01 94 77 82.0 11 11.7 0 0.0 2 2.1 4 4.2

B 0.05 106 84 79.2 14 13.2 0 0.0 4 3.8 4 3.8
0.10 115 91 79.1 15 13.0 0 0.0 5 4.4 4 3.5
0.01 150 115 76.7 20 13.3 1 0.7 9 6.0 5 3.3

BH 0.05 182 131 72.0 25 13.7 4 2.2 10 5.5 12 6.6
0.10 190 135 71.1 25 13.2 5 2.6 11 5.8 14 7.3

possible edges 860 256

Table 4.4: Output of the Tri-graph for the sample W − 30

Regional Trains - weekdays - 195 data
activity

Correction Quantile Nr. Edges wait drive drive2 virtual error
α # # % # % # % # % # %

0.01 491 152 31.0 113 23.0 77 15.7 41 8.3 108 22.0
- 0.05 745 156 21.0 131 17.6 111 14.9 67 9.0 280 37.5

0.10 1 002 159 15.8 139 13.9 136 13.6 112 11.2 456 45.5
0.01 236 142 60.2 56 23.8 19 8.0 12 5.0 7 3.0

B 0.05 249 144 57.8 62 24.9 22 8.9 12 4.8 9 3.6
0.10 256 144 56.2 65 25.4 23 9.0 13 5.1 11 4.3
0.01 286 146 51.0 76 26.6 34 11.9 17 6.0 13 4.5

BH 0.05 321 147 45.8 85 26.5 40 12.5 21 6.5 28 8.7
0.10 342 148 43.2 91 26.6 45 13.2 24 7.0 34 10.0

possible edges 193 160

Table 4.5: Output of the Tri-graph for the sample W − 195
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When applied to the first sample, the Tri-graph is able to catch in the worst case 21.5%
of the waiting activities and 3.2% of the driving activities, and in the best case 63.7%
and 38.6% respectively.

In the tables it is clearly shown that the multiple statistical corrections reduce con-
siderably the percentage of “errors” of the procedure, but they also noticeably reduce
the amount of “virtual” connections pointed out.
This problem arises directly from the definition of multistatistical correction and it is
an open question to decide in which cases it is necessary to apply this procedure and
in which it will be better to avoid it (see [28]). Some researchers recommend adjusting
the P-values to prevent the findings of falsely claiming “statistical significance” (e.g.
[27]), others disagree with this strategy, because it is inappropriate and may cause
incorrect conclusions from the study (e.g. [58]).

Adjustments to the P-values are found on the logic that if a null hypothesis is true,
a significant difference may still be observed by chance, since just a sample and not
the entire population is observed. The chance of finding at least one test statistically
significant due to chance and of incorrectly declaring a difference increases propor-
tionally with the number of statistically independent tests performed simultaneously.
The opponents of P-value adjustments raise as objection that the significance of each
test will be interpreted according to how many output measures are considered in the
family-wise hypothesis, which has been defined ambiguously, arbitrarily and incon-
sistently by its advocates. The debate over the need for P-value adjustments focuses
upon our ability to make distinctions between different results. To date, the issues that
separate these two statistical fields remain unresolved. Moreover, other strategies may
be used in lieu of P-value adjustment (see [53]). In conclusion we can only quote the
word of [28] and [65]: disagreements over the use of various approaches should not
cause us to waver from our aim to produce valid and reliable research findings. There
are no “royal” roads to good research, because in science we are never absolutely
sure of anything.
Therefore willing to improve the quality of the Macrosolution of our linear program,
we prefer not to apply any statistical correction, getting in such a way the highest
number of “virtual” constraints.
Table 4.6 summarizes the results of the four procedures without multistatistical cor-
rection.

- RB - week - 30 data RB - week - 195 data
α CT CG TG FCIG CT CG TG FCIG

0.01 126.210 27.385 463 NA 52.626 7.390 491 NA
0.05 75.613 45.019 753 NA 35.344 11.521 745 NA
0.10 67.300 59.911 1085 NA 27.932 14.981 1002 NA

Table 4.6: Comparison of different methods on the samples W − 30 and W − 195

Even if it was not possible to do compare TG versus FCIG (the most interesting case
from our point of view since FCIG points out the dependencies between couples of
variables given all the other variables of the systems), it clearly results that the TG
is much more efficient than the CT and the CG, pointing out just the most relevant
dependencies.
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Regional Trains - Mon-Wed-Fri - 117 data
activity

Correction Quantile Nr. Edges wait drive drive2 virtual error
α # # % # % # % # % # %

0.01 443 146 33.0 91 20.5 55 12.4 40 9.0 111 25.1
- 0.05 656 152 23.2 111 16.9 79 12.0 66 10.1 248 37.8

0.10 893 153 17.1 121 13.5 101 11.3 91 10.2 427 47.8
0.01 192 132 68.8 32 16.7 12 6.3 10 5.2 6 3.1

B 0.05 203 134 66.0 38 18.7 13 6.4 11 5.4 7 3.4
0.10 206 134 65.0 40 19.4 13 6.3 12 5.8 7 3.4
0.01 242 141 58.3 49 20.2 20 8.3 16 6.6 16 6.6

BH 0.05 272 145 53.3 59 21.7 28 10.3 18 6.6 22 8.1
0.10 287 146 50.9 65 22.6 31 10.8 19 6.6 16 9.1

possible edges 193 160

Regional Trains - Tue-Thu - 78 data
activity

Correction Quantile Nr. Edges wait drive drive2 virtual error
α # # % # % # % # % # %

0.01 344 143 41.6 72 20.9 48 14.0 21 6.1 60 17.4
- 0.05 502 146 29.1 88 17.5 76 15.1 41 8.2 151 30.1

0.10 679 148 21.8 99 14.6 91 13.4 63 9.3 278 40.9
0.01 156 120 76.9 27 17.3 5 3.2 2 1.3 2 1.3

B 0.05 167 125 74.9 29 17.4 8 4.8 2 1.2 3 1.8
0.10 171 126 73.7 31 18.1 8 4.7 2 1.2 4 2.3
0.01 195 133 68.2 37 19.0 14 7.2 4 2.1 7 3.6

BH 0.05 211 135 64.0 40 19.0 18 8.5 7 3.3 11 5.2
0.10 218 136 62.4 43 19.7 19 8.7 9 4.1 11 5.0

possible edges 193 160

Regional Trains - Monday - 39 data
activity

Correction Quantile Nr. Edges wait drive drive2 virtual error
α # # % # % # % # % # %

0.01 253 128 50.6 39 15.4 27 10.7 17 6.7 42 16.6
- 0.05 390 134 34.4 59 15.1 46 11.8 32 8.2 119 30.5

0.10 545 136 25.0 67 12.3 64 11.7 52 9.5 226 41.5
0.01 74 68 91.9 3 4.1 0 0.0 1 1.4 2 2.7

B 0.05 85 75 88.2 5 5.9 1 1.2 1 1.2 3 3.5
0.10 91 78 85.7 6 6.6 2 2.2 1 1.1 4 4.4
0.01 107 89 83.2 7 6.5 1 5.6 1 0.9 4 3.7

BH 0.05 128 100 78.1 10 7.8 3 6.3 3 2.3 7 5.5
0.10 136 105 77.2 12 8.8 3 6.6 3 2.2 7 5.1

possible edges 193 160

Table 4.7: Outputs of the Tri-graph for the samples MWF − 117, TT − 78 and Mo − 39
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4.3 Outputs of some subsamples of W − 195

Moving from the dataset of the second strategy (Regional Train traveling every week-
day of the year, i.e. W195 data), we decided to test the Tri-graph approach on data-
subsets, to see how the number of observations can influence the outputs.
Initially we wanted to test the Tri-graph considering half and one quarter of the orig-
inal dataset, however, since the data are obtained by collecting the observations of
five weeksdays, we further decided to consider three fifths, two fifths and one fifth of
them. In such a way we could have an easier rule to select the samples, namely we
could consider the observations corresponding to three, two or a single weekday(s).
We chose the following set of days to define the subsets:

• {Monday,Wednesday,Friday} (referred as sample MWF − 117, abbreviation of
“Monday Wednesday Friday - 117 observations”);

• {Tuesday,Thursday} (referred as sample TT − 78, abbreviation of “Tuesday
Thursday - 78 observations”);

• {Monday} (referred as sample Mo − 39, abbreviation of “Monday - 39 observa-
tions”).

The comparison between the outputs of the sample W − 195 and its three subsamples
is schematized in Table 4.8. The percentage values show how many percent of the
edges pointed out using the dataset W − 195 (“reference edges”) have been found. It
is not possible to prove that all the edges pointed out by a subset belong also to the
reference set (since a connection between two trains can be guaranteed just on few
weekdays, e.g. Monday and Friday to satisfy the need of weekly commuters) but in
our checks we did not find any counter example to this statement.

Regional Trains - weekdays
Corr. α W − 195 Mon-Wed-Fri Tue-Thu Monday

# Edges # Edges % # Edges % # Edges %
0.01 491 443 98.7 344 70.1 253 51.5

- 0.05 745 656 88.1 502 67.4 390 52.3
0.10 1002 893 89.1 679 89.1 545 54.5
0.01 236 192 81.3 156 66.1 74 31.4

B 0.05 249 203 81.5 167 67.1 85 34.1
0.10 256 206 80.5 171 66.8 91 35.5
0.01 286 242 84.6 195 68.2 107 37.4

BH 0.05 321 272 84.7 211 65.7 128 39.9
0.10 342 287 83.9 218 63.7 136 39.8

possible edges 193 160

Table 4.8: Comparison of Tri-graph outputs for the samples W − 195, MWF − 117,
TT − 78 and Mo − 39

However we are not interested in the number of edges that the Tri-graph highlights.
Principally we want to consider the virtual connections that will be pointed out, since
these edges are the ones that will be transformed into new constraints for the timetable
problem. In Table 4.15 we summarize the results concerning the “virtual” activities.
The percentage values show how many percent of the “virtual” edges pointed out
using the dataset W − 195 (“reference virtual edges”) have been found.
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Regional Trains - Tuesday - 39 data
activity

Correction Quantile Nr. Edges wait drive drive2 virtual error
α # # % # % # % # % # %

0.01 231 128 55.4 40 17.3 16 6.9 9 3.9 38 16.5
- 0.05 358 133 37.2 52 14.5 49 13.7 23 6.4 101 28.2

0.10 493 139 28.3 64 13.0 68 13.8 39 7.9 183 37.1
0.01 93 82 88.2 10 10.8 0 0.0 0 0.0 1 1.1

B 0.05 106 91 85.8 13 12.3 0 0.0 0 0.0 2 1.9
0.10 110 92 83.6 16 14.5 0 0.0 0 0.0 2 1.8
0.01 124 95 76.6 20 16.1 5 4.0 1 0.8 3 2.4

BH 0.05 143 107 74.8 24 16.8 7 4.9 1 0.7 4 2.8
0.10 156 114 73.1 25 16.0 8 5.1 1 0.6 8 5.1

possible edges 193 160

Table 4.9: Outputs of the Tri-graph for the sample Tu − 39

Regional Trains - Wednesday - 78 data
activity

Correction Quantile Nr. Edges wait drive drive2 virtual error
α # # % # % # % # % # %

0.01 248 122 49.2 39 15.7 34 13.7 17 6.9 36 14.5
- 0.05 365 128 35.1 54 14.8 55 15.1 34 9.3 94 25.8

0.10 499 131 26.3 73 14.6 77 15.4 47 9.4 171 34.3
0.01 93 75 80.6 10 10.8 2 2.2 2 2.2 4 4.3

B 0.05 101 79 78.2 12 11.9 3 3.0 2 2.0 5 5.0
0.10 106 82 77.4 14 13.2 3 2.8 2 1.9 5 4.7
0.01 120 91 75.8 16 13.3 3 2.5 5 4.2 5 4.2

BH 0.05 134 98 73.1 17 12.7 6 4.5 7 5.2 6 4.5
0.10 139 99 71.2 20 14.4 6 4.3 7 5.0 7 5.0

possible edges 193 160

Table 4.10: Output of the Tri-graph for the sample We − 39
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Regional Trains - Thursday - 39 data
activity

Correction Quantile Nr. Edges wait drive drive2 virtual error
α # # % # % # % # % # %

0.01 254 123 48.4 38 15.0 31 12.2 17 6.7 45 17.7
- 0.05 396 133 33.6 54 13.6 47 11.9 37 9.3 125 31.6

0.10 552 136 24.6 61 11.1 64 11.6 55 10.0 236 42.8
0.01 70 63 90.0 4 5.7 1 1.4 1 1.4 1 1.4

B 0.05 86 77 89.5 5 5.8 1 1.2 1 1.2 2 2.3
0.10 93 82 88.2 7 7.5 1 1.1 1 1.1 2 2.2
0.01 108 93 86.1 8 7.4 2 1.9 1 0.9 4 3.7

BH 0.05 129 103 79.8 14 10.9 3 2.3 3 2.3 6 4.7
0.10 136 104 76.5 18 13.2 5 3.7 3 2.2 6 4.4

possible edges 193 160

Table 4.11: Output of the Tri-graph for the sample Th − 39

Regional Trains - Friday - 39 data
activity

Correction Quantile Nr. Edges wait drive drive2 virtual error
α # # % # % # % # % # %

0.01 257 124 48.2 45 17.5 28 10.9 21 8.2 39 15.2
- 0.05 367 129 35.1 64 17.4 43 11.7 25 6.8 106 28.9

0.10 510 130 25.5 72 14.1 60 11.8 44 8.6 204 40.0
0.01 88 79 89.8 2 2.3 3 3.4 3 3.4 1 1.1

B 0.05 94 81 86.2 4 4.3 4 4.3 4 4.3 1 1.1
0.10 100 86 86.0 4 4.0 4 4.0 5 5.0 1 1.0
0.01 120 97 80.8 8 6.7 7 5.8 6 5.0 2 1.7

BH 0.05 137 103 75.2 15 10.9 7 5.1 7 5.1 5 3.6
0.10 142 103 72.5 16 11.3 9 6.3 7 4.9 7 4.9

possible edges 193 160

Table 4.12: Output of the Tri-graph for the sample Fr − 39
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Regional Trains - weekdays - 39 data
total number of edges

Correction Quantile Nr. Edges Monday Tuesday Wednesday Thursday Friday
α 195 # % # % # % # % # %

0.01 491 128 51.5 231 47.0 248 50.5 256 51.7 257 52.3
- 0.05 745 134 53.3 358 48.1 365 49.0 396 53.2 367 49.3

0.10 1 002 136 54.4 493 49.2 499 49.8 552 55.1 510 51.0
0.01 236 68 31.4 93 34.3 93 34.4 70 29.7 88 37.3

B 0.05 249 75 34.1 106 42.6 101 40.1 89 35.7 94 37.8
0.10 256 78 35.5 110 43.0 106 41.4 93 36.3 100 39.1
0.01 286 89 37.4 124 43.4 120 42.0 108 37.8 120 42.0

BH 0.05 321 100 39.9 143 44.5 134 41.7 129 40.2 137 42.7
0.10 342 105 39.8 156 45.6 139 40.6 136 39.8 142 41.5

possible edges 193 160

Table 4.13: Comparison of the outputs of the Tri-graph for samples W −195, Mo−39, Tu−39, We−39,
Th − 39 and Fr − 39

Regional Trains - weekdays - 39 data
Virtual activities

Correction Quantile virtual Monday Tuesday Wednesday Thursday Friday
α 195 # % # % # % # % # %

0.01 41 17 41.5 9 22.0 17 41.5 17 41.5 21 51.2
- 0.05 67 32 47.8 23 34.3 34 50.7 37 55.2 25 37.3

0.10 112 52 46.4 39 34.8 47 42.0 55 49.1 44 39.3
0.01 12 1 8.3 0 0.0 2 16.7 1 8.3 3 25.0

B 0.05 12 1 8.3 0 0.0 2 16.7 1 8.3 4 33.3
0.10 13 1 7.7 0 0.0 2 15.4 1 7.7 5 38.5
0.01 17 1 5.9 1 5.9 5 29.4 1 5.9 6 35.3

BH 0.05 21 3 14.3 1 4.8 7 33.3 3 14.3 7 33.3
0.10 24 3 12.5 1 4.2 7 29.2 3 12.5 7 29.2

possible edges 193 160

Table 4.14: Comparison of the virtual edges for the samples W −195, Mo−39, Tu−39, We−39, Th−39
and Fr − 39
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Regional Trains - weekdays
Corr. α W − 195 Mon-Wed-Fri Tue-Thu Monday

# Virtual # Virtual % # Virtual % # Virtual %
0.01 41 40 97.6 21 51.2 17 41.5

- 0.05 67 66 98.5 41 61.2 32 47.8
0.10 112 91 81.3 63 56.3 52 46.4
0.01 12 10 83.3 2 16.7 1 8.3

B 0.05 12 11 91.7 2 16.7 1 8.3
0.10 13 12 92.3 2 15.4 1 7.7
0.01 17 16 84.1 4 23.5 1 5.9

BH 0.05 21 18 85.7 7 33.3 3 14.3
0.10 24 19 79.2 9 37.5 3 12.5

Table 4.15: Comparison of virtual edges for the samples W − 195, MWF − 117,
TT − 78 and Mo − 39

When no statistical correction is applied, the percentage of highlighted edges is not
so regular as in other cases but it is remarkable that with just one fifth of the original
data, the Tri-graph is able to point out half of the “reference virtual edges”. To check
if this result is a general one or if it is just due to the chosen sample, we tested the
Tri-graph also on the other weekdays (Tuesday to Friday). We refer to these samples
as Tu − 39, We − 39, Th − 39 and Fr − 39. This was the easiest rule to select other
samples with the same size of the “Monday-sample”.

The comparison among the different “day samples” has been summarized in Table
4.13. The percentages of pointed edges by the five samples are approximately fifty
percent in the case of no statistical correction.

However we are not interested in the number of edges that the Tri-graph highlights.
Principally we want to consider the “virtual” connections that will be pointed out
(these edges are in fact the ones that will be transformed into new constraints for the
timetable problem). Hence we compared also the results concerning the “virtual”
activities in Table 4.14.

With the only exception of Tuesday, that also gave the smallest percentage regard-
ing the total number of edges, the percentage of virtual connections that have been
highlighted in the single weekdays is around 40%. This is a really good outcome since
we are using just the 20% of the original data.
These results allow us to state, with cautious optimism, that also the output obtained
in the first strategy, i.e. W − 30, is close to the half of what we expect to have.

4.4 Outputs of the Saturdays and Sundays samples

For the record we include the outputs of the Tri-graph for the holidays timetable (Sat-
urdays and Sundays) where we considered:

• regional trains

• traveling every holiday (39 data)

• in the Harz area.
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Regional Trains - Saturday - 39 data
activity

Correction Quantile Nr. Edges wait drive drive2 virtual error
α # # % # % # % # % # %

0.01 327 149 45.6 58 17.7 36 11.0 25 7.6 59 18.0
- 0.05 517 161 31.1 88 17.0 60 11.6 45 8.7 163 31.5

0.10 665 164 24.7 97 14.6 86 12.9 61 9.2 257 38.6
0.01 111 87 78.4 19 17.1 2 1.8 3 2.7 0 0.0

B 0.05 121 93 76.9 21 17.4 3 2.5 3 2.5 1 0.8
0.10 126 97 77.0 21 16.7 3 2.4 3 2.4 2 1.6
0.01 146 106 72.6 24 16.4 4 2.7 7 4.8 5 3.4

BH 0.05 166 112 67.5 28 16.9 6 3.6 10 6.0 10 6.0
0.10 179 117 65.4 31 17.3 8 4.5 11 6.1 12 6.7

possible edges 152 076

Table 4.16: Output of the Tri-graph for the sample S a − 39

Regional Trains - Sunday - 78 data
activity

Correction Quantile Nr. Edges wait drive drive2 virtual error
α # # % # % # % # % # %

0.01 366 154 42.1 77 21.0 39 10.7 27 7.4 69 18.9
- 0.05 558 165 29.6 107 19.2 62 11.1 53 9.5 171 30.6

0.10 755 170 22.5 119 15.8 90 11.9 74 9.8 302 40.0
0.01 116 87 75.0 19 16.4 2 1.7 3 2.6 5 4.3

B 0.05 130 97 74.6 20 15.4 4 3.1 3 2.3 6 4.6
0.10 137 102 74.5 22 16.1 4 2.9 3 2.2 9 4.4
0.01 164 113 68.9 28 17.1 7 4.3 7 4.3 9 5.5

BH 0.05 190 122 64.2 36 18.9 10 5.3 10 5.3 12 6.3
0.10 200 125 62.5 40 20.0 11 5.5 10 5.0 14 7.0

possible edges 176 715

Table 4.17: Output of the Tri-graph for the sample S u − 39
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We have two sets of events with cardinality:

• 551 for Saturday;

• 594 for Sunday.

The sample corresponding to Saturday (S a − 39) is characterized by:

• 206 waiting activities;

• 206 “driving activities”.

and the one corresponding to Sunday (S u − 39) is characterized by:

• 221 waiting activities;

• 223 “driving activities”.

We use again the quotation marks for the driving activities since some events of the
chain are missing.

events waiting # driving
S a − 39 551 206 206
S u − 39 594 221 223

Table 4.18: Characteristic of the samples S a − 39 and S u − 39

Concerning these two samples, the Tri-graph method is capable to catch in the best
cases around 76% of the waiting activities, but not more than 50% of the driving
activities.

4.5 Conclusion

In this chapter we considered different samples of data built up from the files provided
by the Deutsch Bahn within the frame of the DisKon Project to the AG-optimization
group at NAM. We tested them with the stochastic approaches presented in Chapter 3:
Contingency Table, Full Conditional Independence Graph, Covariance Graph and Tri-
graph. These approaches were generally tested without a multistatistical correction,
only in the case of the Tri-graph two possible corrections were considered: Bonferroni
and Benjamini-Hochberg.
The outputs of the different methods (in absence of multistatistical corrections) were
compared to get a first impression of their powers.

The Contingency Table test has been designed to identify independencies between
variables and it seems weak in identifying (more complex) dependencies, principally
because it strongly suffers from the transitivity property. The “new” version suggested
in Chapter 3 was not able to strengthen the property of the classical formulation. Con-
sequently a direct comparison with Tri-graph was not possible. Only its classical
formulation could be compared with the Covariance Graph.



86 Numerical Results

The Full Conditional Independence Graph could also not be applied, since the cor-
relation matrices corresponding to the samples are strongly linearly dependent. The
inaccurate measurement of the delays (exactly just up to the minute and not up to the
second) and the small slack times associated to the waiting activities make it impossi-
ble to evaluate the precision matrix on which FCIG is based.

The Covariance Graph was easily applicable to the samples but the procedure suf-
fers, as the Contingency Table test, from the transitivity property (even if in a weaker
form), hence its output results into huge sets of edges. If we transformed all these
edges into virtual activities for the capacity model (as explained in Section 2.11), the
problem would contain a large amount of dominated constraints, i.e. unnecessary
constraints.

The Tri-graph procedure is capable to do a selective identification of edges and to
avoid most of the edges that can be referred to the transitivity property. Moreover
if the samples contain enough data (e.g. W − 195) it catches almost all the waiting
activities and most of the driving activities. In case the amount of avaliable data is
reduced to one fifth of the original size, it is still capable to catch 40% of the original
virtual activities.



5
Modeling delays and virtual

constraints

Liebe ist so unproblematisch wie ein
Fahrzeug. Problematisch sind nur die
Lenker, die Fahrgäste und die Straße.

FRANK KAFKA (1883-1924)
German writer

In this chapter, as the title suggests, we discuss how to represent the delays and how
to model the “virtual” constraints introduced in Chapter 2. In particular we look for a
definition of delay which is consistent with the assumption of multivariate distribution
required by the Tri-graph method (described in Chapter 3).

5.1 Distribution of the delays

The knowledge of delay distribution allows a better modeling of delay propagation
and consequently a better timetable (re-)scheduling. In fact a stable timetable should
be able to absorb small delays, whereas it has no sense to demand it to be stable for
larger delays. In other words, a timetable should not be stable for any possible delay
but the “common” cases of delay should be successfully resolvable most of the time.
To this end one needs information about the distribution of delays. Many studies have
been carried out but the results are not uniform.

It is necessary to emphasize that a direct comparison of the results in the literature
is not possible since the investigated variables are not always the same. However, we
can highlight some reasons for the discrepancies among them:

• different data sets, corresponding to different areas and/or countries;

• different sizes of data;

• outliers, i.e. very large values of the delays, that can deeply influence the results
having different effects depending on the size of the sample. Unfortunately there
is no (exact) standard method to detect them;

• absence of a standardized measuring method: the question is where and when
delays should be measured. When the engine passes a certain point or when the
last wagon passes? At the beginning or at the end of a platform, or at a point in
the middle?
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Another aspect that we must consider is that:

a probability distribution will never fit empirical data exactly.

We present here a small panorama of studies on delay distribution that can be found
in the literature.

Schwanhäusser (see [63]) developed in 1974 a stochastic approach for the esti-
mation of the mean queue length as function of the distribution of primary delays,
buffer time, mean headway, train sequence and priority. In his model he considered
a negative exponential distribution for the forced delays. It has the drawback that
negative arrival delays cannot be sampled.

A negative exponential distribution was also observed by Meng (see [50]) regard-
ing the excess of scheduled waiting times, i.e. the difference between the real waiting
time of a train at a platform and the scheduled one, and by Wendler and Naehring
(see [78]) for the (arrival and departure) delays of delayed trains recorded by the
Deutsche Bahn in the area of Nürberg.

Hermann (see [35]) analyzed the development of delays of long distance passen-
ger trains in the traffic control area of Frankfurt am Main and developed a model to
forecast the secondary delays in the network. He found a good fit of the Chi-square
and of the Weibull distributions with the observed primary delays and most of the
consecutive delays, while Gamma, negative exponential and Erlang distributions were
rejected for either primary or consecutive delays.

Negative exponential and Erlang distributions were instead pointed out by Higgins
and Kozan (see [36] and [37]) for the primary delays and the expected secondary
delays (which are determined from specified primary delays, implicitly assuming in-
dependence among them) in the Queensland Rail city train network, Australia.

Yuan (see [80]) considered the running times, the waiting times and the constraints at
signaling systems corresponding to empirical measurament at The Hague HS Station,
Holland as stochastic variables. His results pointed out:

• located shifted log-normal distribution for the arrival times at platforms and at
approach signals;

• Weibull distribution for nonnegative arrival delays, departure delays and free
waiting times in absence of hindrance from other trains (e.g. in absence of late
release of a block/platform due to delayed trains);

• Normal or Weibull distribution for occupancy times (i.e. the variation of the
train speed in case of different signal aspects).

In her diploma thesis Güttler (see [32]) analyzed a data set corresponding to some ICE
lines in Germany. Her work found out a mixture distribution of normal and log-normal
as best approximation for the distribution of the delay differences for the driving activ-
ities (i.e. variables corresponding to the difference between the departure delays and
the arrival delays of the considered trains at two consecutive stations of their journeys).

The complexity of the studies arises from the (undefined) relationships existing be-
tween causes and effects: the railway traffic follows deterministic rules, whose se-
lection and application depend on the choices of human operators. These choices
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may be different in similar situations and produce different effects on the circulation.
Therefore the identification of parameters depending upon human behavior (driver
behaviors, passenger boarding . . . ) has been proved to be complex to be taken into
account.

Accordingly, we state that the hypothesis of Normal distribution for the arrival and
departure delays, even if it can not be proved by testing historical data (in some cases
the distribution of the delays does not fit any known distribution), can not be rejected.

5.2 How to represent delays

Given the source delays di as parameter of the railway system, we introduced in Sec-
tion 2.1 a possible way to define the secondary delays. We do repeat in this section
the argumentation that brought us to formulate Equation (2.3) but basing our thinking
on the forced delay variables y rather than on the re-scheduled time variables x.

Initially we do consider a single train t ∈ T traveling along its scheduled route
represented by the sequence of events (i1, i2 . . . int).
If t is on time, then its delay at every event is zero, i.e. yi = 0 ∀i ∈ {1 . . . nt}.
Instead if during its journey (i.e. between events i − 2 and i − 1) it has a source delay
(di−1 > 0) then its forced delay will be initialized to the value of the corresponding
source delay, a nonnegative quantity (i.e. yi−1 = di−1).

The propagation of the delay can be limited by scheduled slack times. This is a
common technique used in the timetable scheduling as a remedy to minimize the ef-
fects of small irregularities. Slack times are usually added to running, waiting and
turn-overs times to increase the ability of the timetable to face the unpredictable dis-
turbances arising in operation. According to the notation introduced in Section 2.1,
we can define the slack time between two events i and j (such that a = (i, j) ∈ A) as
ci j = π j −πi − La, where πi is the scheduled timetable of event i and La is the minimal
duration of activity a = (i, j). If we assume that the slack time of train t between
events i − 1 and i is ci−1,i and we initialize its forced delay at event i − 1 with the
corresponding source delay yi−1 = di−1, then the secondary delay corresponding to
the next event of its journey is

(5.1) yi = yi−1 − ci−1,i

We want to avoid negative delays, i.e. earlier departures/arrivals of trains, because
they are neither allowed (departure) nor desired (earlier arrivals can generate bigger
problems than small delays since blocks that can be required by other trains will be
“unexpectly” occupied and the passengers service time will be smaller, see [50] and
[23]). Therefore we include the function max{., 0} in Equation (5.1)

(5.2) yi = max{yi−1 − ci−1,i, 0}.

Other source delays may also occur, hence yi = max{di, yi−1 − ci−1,i, 0}. In words, if
train t is capable to recover more time than the current delay, then it will be on time.
Now we want to introduce the effects of other trains on the delay of train t. The delay
of a train can depend on more than one previous event: e.g. the delay of a train in case
of fixed connections depends not only on its delay at the previous event of its journey
but also on the delays of the connected trains, if the connections are kept. In order to
extend Equation (5.2) including all these dependencies, we define a set of events that
can influence the timetable of a train t at a given event i

pa(i) = {k ∈ E : a = (k, i) ∈ A ∪Avirtual}



90 Modeling delays and virtual constraints

where A and Avirtual are defined as in (2.2) and (2.9f) respectively. In Graph theory
this set corresponds to the parent of the node i given a graph G = (E,A ∪ Avirtual)
(see Section 3.4.1).
The delay at event i is defined as in (5.2) plus possibly larger delays originating from
the connected events k:

(5.3) yi = max{yi−1 − ci−1,i, 0} + max
k∈pa(i)

{(yk − ck,i) − (yi−1 − ci−1,i), 0}

that can be rewritten as

(5.4) yi = max{ max
k∈pa(i)

(yk − ck,i), 0}.

since event i − 1 belongs certainly to the set pa(i). Including other possible source
delays we get yi = max{di,maxk∈pa(i)(yk − ck,i), 0}.

Remark 5.1 In case of large delays and/or small slack times, these definitions of
forced delays imply linear dependencies among the variables.

Remark 5.2 In particular it has been empirically checked that the slack time for the
waiting activities is relatively small even if compared to “common” delays, hence we
do expect strong limitations in the application of the Full Conditional Independence
Graph, due to the linear dependencies between variables.

Definitions (5.2) and (5.4) are quite intuitive and they have already been applied in the
prediction of delay, as shown in Section 5.3.

5.3 Modeling train delays in Urban Networks

Higgins and Kozan suggested in their article [37] a model to estimate expected positive
delays. We report here their formulation of the model, writing in bold type between
brackets the corresponding notation according to our formulation of the problem (see
Section 2.1, in particular model [CTM-2]). We prefer not to change the notation since
their formulation is mainly based on two index sets (one for the trains, the second for
the blocks of the system) while our formulation considers only one index set (the set
of events of the system).
In their model Higgins and Kozan consider the following specifications:

• delay: just positive delays are considered since early departures are not allowed
for passenger trains (secondary delay y);

• source delay: the delay of a train that is not caused by another train (source
delay d)

• minimum headway: the minimum length of time separating two trains traveling
on the same edge, which is determined by the length of the blocks in the edge
(headway h);

• link: a section of track on which only one train is permitted at any time (block
m);

• siding: a track link (a block) that can be used for the crossing and passing of
trains.

Moreover they distinguish among three kinds of delays:
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• direct delays of trains, i.e. source delays;

• knock-on delays to other trains, i.e. forced delays due to driving/waiting activi-
ties or to occupation of the scheduled block from a delayed train;

• delays due to late connections, where train connections include:

1. fixed connections;

2. fixed departure orders in a station;

3. commencements of a new service after arrival at the destination using the
same physical train, i.e. turn-overs of trains.

They consider also the following assumptions:

• scheduled times contain some slack time;

• if a train arrives earlier, it will wait until the scheduled departure;

• trains may have different upper average velocity;

• waiting times at a station are included in the scheduled traveling times;

• trains can bypass a delayed one if there is a free siding or parallel track avaliable;

• conflicts are solved on a “first come first serve” basis (i.e. FIFO);

• the capacity at a station is determined by the number of track links in it.

The following parameters are considered in the model:

I = set of train services for one cycle of the schedule, usually daily, (set of trains t ∈ T );

J = set of links for the whole suburban network (set of blocks m ∈ M);

Qi
j = set of remaining links from link j ∈ J along which train i ∈ I is scheduled to travel;

Ri
j = set of links prior to link j ∈ J along which train i ∈ I is scheduled to travel;

Qi = set of links along which train i ∈ I is scheduled to travel from origin to destination, i.e.

Qi = (Ri
j, j,Qi

j);

V i
j = the link immediately prior to link j ∈ J on which train i ∈ I is scheduled to travel, V i

j ∈ Ri
j;

Y i
j = scheduled departure time of train i ∈ I from link j ∈ Qi

j (scheduled time π);

T = duration of a source delay (value of the source delay variable d);

PRO(T, i, j) = probability that train i ∈ I will have a source delay of duration T on link j ∈ J (in [37] neg. exponential);

Ei
k j = amount of time train i ∈ I is able to recover between links k, j ∈ Qi ( scheduled slack time ck j).

The shortest possible travel time for train i ∈ I between these two links is Y i
k − Y i

j − Ei
k j i.e.

scheduled travel time minus slack time (minimal traveling duration La where a = (k, j));

CONN = set of train connections. A train connection takes place between train i ∈ I at link j ∈ J and

train l ∈ I at link h ∈ J. Links i, j ∈ J are located at the same station. (i, j, l, h) ∈ CONN

(set of connectionsAchange).

The output of the model corresponds to the following information:

PRS (T L, i, j) = probability that train i ∈ I has a current delay T L at the departure of link j ∈ J ;
1TCi

j = source delay of train i ∈ I at link j ∈ Qi (source delay d);
2TCi

j = delay of train i ∈ I at link j ∈ Qi as a result of knock-on delays;
3TCi

j = delay of train i ∈ I at link j ∈ Qi as a result of late connections;

TCi
j = delay of train i ∈ I at link j ∈ Qi, TCi

j =1 TCi
j +2 TCi

j +3 TCi
j (secondary delay y).
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Direct delays of trains
A train i ∈ I with a current delay T L has a source delay T at link k ∈ J, therefore its
delay at link j ∈ Qi

j is
max{T L − Ei

k j + T, 0}

where Ei
jk is the scheduled slack time from link k ∈ Ri

j to j ∈ Qi
j. Taking into account

all possible source delays T and current delays T L, the expected train delay of train
i ∈ I at link j ∈ Qi due to source delays is

(5.5) E(1TCi
j) =

∑
k∈Ri

j

∑
T

∑
T L

PRS (T L, i,V i
j) PRO(T, i, k) g1(i, k, j,T,T L)

where g1(i, k, j,T,T L) = max{T L + T − max(T L, Ei
jk), 0}.

Knock-on delay to other trains
We can distinguish two different cases: unidirectional and bidirectional track.

Unidirectional track
A train l ∈ I with a current delay T L suffers a source delay T on link k ∈ Q j. We
say that a train i ∈ I with a current delay of T M is in T

T L T MS l
k if it suffers a knock-on

delay due to train l. The set T
T L T MS l

k is ordered according to Y i
k so that every train

i ∈ T
T L T M S l

k is characterized by its position in the set T
T L T MPl j

k .
Note that a train i will not belong to set T

T L T MS l
k if it can bypass the train l.

Furthermore M j is defined as the minimum average time for a train to travel along
link j ∈ J.
Considering the scheduled slack time Ei

k j and just positive delays, the knock-on delay
to train i ∈ I at link j ∈ Di due to train l ∈ I is

g2(i, k, j, l,T,T L,T M) =


max{Y l

k + T + T L + T
T L T M Pl j

k Mk − T M − Y i
k − Ei

k j, 0}

if i ∈ T
T L T M S l

k

0 otherwise

Extending the formulation in order to include all possible values of source delays T
and current delays T L and T M we get

E(2TCi
j) =

∑
k

∑
T

∑
l

∑
T L

∑
T M

PRO(T, l, k) PRS (T M, i, k)

PRS (T L, l, k) g2(i, k, j, l,T,T L,T M)(5.6)

Bidirectional track
Under the assumption that in a delayed situation trains traveling in the same direction
have priority over opposite trains, the knock-on delay on a bidirectional track can be
defined as in (5.6) by adding the further condition that the set T

T L T MS l
k containts all

“same-direction” trains first (in ascending order with respect to Y i
k), followed by all

“opposite direction” trains.

Delay because of late connections
A scheduled connection between train i ∈ I and l ∈ I departing from links k ∈ Qi and
h ∈ Ql located in the same station is given, so that i cannot depart until l arrives, i.e.
Y i

k ≥ Y l
h. Given the scheduled slack time Ei

jk and supposing that i and l have current
delays T M and T L respectively and that there are just positive delays, the arrival delay
of train i ∈ I at link j ∈ Qi can be defined as

g3(i, k, l, h, j,T L,T M) = max{Y l
h + T M − Y i

k − T L − Ei
jk, 0}
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Taking into account all possible connections of train i at link j we get

E(3TCi
j) =

∑
k,l,h :

(i,k,l,h)∈CONN

∑
T L

PRS (T L, i,V i
k)

∑
T M

PRS (T M, l,V l
h) g3(i, k, l, h, j,T L,T M)(5.7)

Expected delay
Adding together the three delay components we obtain the overall expected delay of
train i ∈ I at link j ∈ Qi

(5.8) E(TCi
j) = E(1TCi

j) + E(2TCi
j) + E(3TCi

j)

This model to estimate expected delays (to trains or track links) has been tested on the
suburban railway network in Queensland, Australia. The model estimations of E(TC)
were compared to stochastic simulations, results of which were used to reflect actual
conditions.
The small model inaccuracy was reported to be due to the assessed distribution of
current delay, being slightly different from the actual distribution for some trains.

Principal aim of this model is to evaluate the average delay of every train of the
system. In future works, this average delay should be then added to the scheduled
timetable to get a new timetable that at the current state of reseach is not guaranteed to
be feasible, since no further checks are done concerning the capacity constraints of the
model. This model seems more suitable for a program which purpose is to reduce the
average delay of every train. Our formulation of the problem instead is based on the
minimization of the total delay of the system. Moreover our formulation guarantees
the feasibility of the “new timetable” for the problem.

5.4 Some considerations about the normal distribu-
tion.

In Section 5.2 we introduced a quite intuitive way to represent the delays. Before
applying it to our model, it is necessary to check if it satisfies the hypothesis of (mul-
tivariate) normal distribution as required by the Tri-graph method.

We consider a train t characterized by a sequence of event (t1, . . . , tn). At event i it
suffers a source delay di, whit di normally distributed, i.e. di ∼ N(µdi , σ

2
di
).

The hypothesis of normal distribution on a source delay is quite strong and is tightly
dependent on the concept of “delay”. If we consider just technical problems or faulty
signals as source delays, then these variables will always be nonnegative. In this case
an exponential distribution will be a more suitable hypothesis. But if we also consider
earlier arrivals in a station (earlier departures are not allowed) as source delays, then
the negative values become meaningful, especially observing that the effects of an
earlier arrival are usually more problematic than the ones of a positive delay (e.g.
they occupy a platform longer than expected [23]). An early arrival is an “uncom-
mon” situation and the dispatchers are not trained to face it up. Instead late arrivals
or departures are “common” situations and dispatchers know by experience which
decisions should be applied.
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Constant slack time
Firstly we consider the slack time c as a constant .
Thus the variable yi = di − c is also normally distributed, i.e. yi ∼ N ( µdi − c, σ2di

),
since it can be proved that if T ∼ N(µT , σ

2
T ) then every linear function of T , i.e.

S = a T + b where a ∈ R\{0} and b ∈ R, is normally distributed, i.e
S ∼ N ( a µT + b, a2 σ2T ) ( ♦ ).

Variable slack time
We defined the slack time as ca = π j − πi − La where a = (i, j) ∈ A, πi is the
scheduled timetable of event i and La is the minimal duration of activity a = (i, j). If
we now define the slack time as ca = π j − πi − L̃a where L̃a is the real duration of
activity a, then the slack time is not any longer a constant. We assume it is normally
distributed, i.e. c ∼ N(νc, σc), and independent from the source delay variable, i.e.
cov(di, c) = 0 (see Theorem 3.5). Then yi as sum of independent normal variables
(−c is normally distributed due to (♦) considering (a, b) = (−1, 0)) is normally dis-
tributed, i.e. y ∼ N(µdi + νc, σ

2
di

+ σ2c).

In general it has been proved (see [69]) that

Theorem 5.3 (Cramér) The set of proper components of a gaussian distribution with
variance σ2 > 0 consists precisely of the gaussian distributions with variance σ21
where 0 < σ21 < σ

2.

Where the components of a variable are defined as follows:

Definition 5.4 Given a random variable X, a random variable X1 is called a compo-
nent of X if there exists a random variable X2 such that X1 and X2 are independent
and X = X1 + X2.

In particular, for all a ∈ R the deterministic random variable Xa = a is a component
of every random variable, because X = Xa + (X + X−a) and Xa is independent from
all other random variables. Xa is called improper component. All other components
are said proper.
Therefore if we want to decompose the forced delay as sum of delays assuming a
normal distribution, we need to require that all its proper components (i.e. the source
delays and the previous forced delays) are normally distributed.

Introducing the maximum
Before introducing the case corresponding to the Definition (5.2), we discuss briefly
the general case of the maximum of two normally distributed variables, i.e.
U = max{S ,T } where S ∼ N(µS , σ

2
S ) and T ∼ N(µT , σ

2
T ).

If FS T (S ,T ) is the joint distribution function of S and T , then

FU(u) = FS T (u, u)

since the corresponding region in the plane is (see Figure 5.1)

{U ≤ u} = {max(S ,T ) ≤ u} = {S ≤ u} ∩ {T ≤ u}

.

Then
FU(u) = P({U ≤ u}) = P({S ≤ u} ∩ {T ≤ u}) = FS T (u, u).

In general if S 1, . . . , S n are normally distributed variables and U = max{S 1, . . . , S n},
we have FU(u) = FS 1...S n(u, . . . , u).
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Figure 5.1: The variable Max(S,T)

If S and T are independent, then FU(u) = FS (u)FT (u). Differentiating with respect
to u we get the density fU(u) = FS (u) fT (u) + fS (u)FT (u).
We can conclude that U is normally distributed if the joint distribution of S and T is
a multivariate normal distribution (see [3]).

Obviously in Definitions (5.2) and (5.4) the constant variable zero is not normally
distributed, thus yi has not a normal distribution. However we can roughly approx-
imate it through a normal distribution by considering it as a normally distributed
variable with missing data.

5.5 About the covariance

In general zero correlation between two random variables does not imply indepen-
dence, but in the case of normal distribution (see. [46], [42], [43]). This result can
not be extended to other distributions, since in the general case the necessary and
sufficient condition for independence is that every standardized function of the first
variable should have zero correlation with any standardized function of the second
variable (see [44]). Without the hypothesis of multivariate normal distribution, the
resulting Covariance Graph will have very little interest for us. The entailment “in-
dependence implies null correlation” will still be valid, but we could not any more
conclude that a null covariance implies independence. Thus we could not state any-
thing about the real meaning of the pointed edges.

It still remains to check if it is possible to recognize pairs of variables that have a
correlation different than zero independently from the distribution of the data, assum-
ing the definition of delay as given in (5.2). We can positively answer this question
since we can relate the covariance of two delay variables with the probability that one
of them will be bigger than a certain constant value (i.e. in our case the slack time
corresponding to the activity between the selected pair of variables).
According to Definition (5.2), given a random variable X representing the delay of
one event, the forced delay on a connected event is defined as Y = max{0, X − c}
where c is the slack time.

Y = max{X − c, 0} =

{
X − c if X > c
0 if X ≤ c

Lemma 5.5 Given two variables X and Y, such that X is a nonnegative variable and
Y = max{X − c, 0}, then cov(X,Y) ≥ Var(X) P(X > c)
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Proof: We consider two cases: P(X > c) = 0 and P(X > c) > 0.

First case: P(X > c) = 0, i.e. the propability that X is bigger than c is null.
Then Y is everywhere zero, hence the variables are uncorrelated, i.e. ρXY = 0.

Second case: P(X > c) > 0.
We define a binary random variable Z

Z =

{
1 if X > c
0 if X ≤ c

so that

cov(X,Y |Z) =

{
1 if Z = 1
0 if Z = 0

Through this quantity we can estimate the “direct” covariance of (X,Y)

E[cov(X,Y |Z)] = E[E[XY |Z] − E[X|Z]E[Y |Z]]
= E[XY |Z] − E[E[X|Z]E[Y |Z]]

We want now to show that E[XY |Z] = E[XY]. The first term is equal to

E[XY |Z] = E[XY |Z = 1]P(Z = 1) + E[XY |Z = 0]P(Z = 0)
= E[XY |Z = 1]P(Z = 1)

since when Z = 0 we have Y = 0 and hence XY = 0, while the second term is equal
to

E[XY] = E[XY |X > c]P(X > c) + E[XY |X ≤ c]P(X ≤ c)
= E[XY |X > c]P(X > c)

By definition Z = 1⇔ X > c, we can state that

E[XY |Z] = E[XY]

and furthermore that

E[cov(X,Y |Z)] = E[XY] − E[E[X|Z]E[Y |Z]]

Applying the formula cov(X,Y) = E[XY] − E[X]E[Y] we get

E[cov(X,Y |Z)] = cov(X,Y) + E[X]E[Y] − E[E[X|Z]E[Y |Z]]

= cov(X,Y) −
[
E[E[X|Z]E[Y |Z]] − E[X]E[Y]

]
It is equivalent to

cov(X,Y) = E[cov(X,Y |Z)] − cov(E[X|Z]E[Y |Z]])

since in general E[E[X|Z]] = E[X].
It remains to show that cov(E[X|Z]E[Y |Z]]) ≥ 0.

E[X|Z]] = E[X|Z = 1]P(Z = 1) + E[X|Z = 0]P(Z = 0)
E[Y |Z]] = E[Y |Z = 1]P(Z = 1) + E[Y |Z = 0]P(Z = 0)

= E[X − c|Z = 1]P(Z = 1)
= (E[X|Z = 1] − c)P(Z = 1)
= E[X|Z = 1]P(Z = 1) − cP(Z = 1)
= E[X|Z] − E[X|Z = 0]P(Z = 0) − cP(Z = 1)

As E[X|Z = 1] > E[X|Z = 0] and E[Y |Z = 1] > E[Y |Z = 0], we have

cov(E[X|Z]E[Y |Z]) ≥ 0
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and
cov(X,Y) ≥ E[cov(X,Y |Z)]

In conclusion
cov(X,Y) ≥ Var(X)P(X > c)

since E[cov(X,Y |Z)] = 0P(Z = 0) + var(X)P(Z = 1) = Var(X)P(Z = 1) =
var(X)P(X > c). �

In words, if the probability that the delay X is bigger than the slack time c, is strictly
positive and its variance is strictly positive (i.e. X is not a constant), we can recognize
values of the covariance between X and Y that are different than zero.

5.6 Writing the “virtual” constraints

In Section 2.11 we introduced our methodology to include the “virtual” activities aris-
ing from the Tri-graph (Equation (2.9f)) into our model. Our idea is to approximate the
random variable corresponding to the second component of the edge (i, j) ∈ Avirtual

pointed out by the Tri-graph, Y j, by a linear regression based on the random variable
corresponding to the first component of the edge, Yi, i.e. Y j = αi jYi + βi j. This can
be done by applying the linear least squares fitting technique, which is the simplest
and most commonly applied form of linear regression and provides a solution to the
problem of finding a fitting straight line through a set of points. In this section we
define the coefficients αi j and βi j.

Remark 5.6 To simplify the notation we will further on consider the linear regression
between the variables X and Y , Ỹ = aX + b, so that our thinking will not weighted
down by too many indices.

In practice, to calculate the coefficients a and b the vertical offsets from the (straight)
line are minimized rather than the perpendicular offsets (see Figure 5.2). This provides
a fitting function for the variable Y that estimates y for a given x, allows uncertainties
of the data points along the x- and y-axes to be easily incorporated, and also provides a
much simpler analytic form for the fitting parameters than the one obtained by using a
fit based on perpendicular offsets. In addition, the fitting technique can be easily gen-
eralized from a best-fit line to a best-fit polynomial when sums of vertical distances
are used. In any case, for a reasonable number of noisy data points, the difference
between vertical and perpendicular fits is quite small (as done in [29]) .

Vertical least squares fitting proceeds by finding the sum of the squares of the vertical
deviations in order to minimize it according to parameters a and b (see [29]).
We will follow the same procedure but working with the mean (see [79]), i.e.

n∑
i=1

ρLS E = E[Y − (aX + b)]2 =

n∑
i=1

[yi − axi − b]2

n

Note that this procedure does not minimize the perpendicular offsets. In addition,
although the absolute sum of distances might be a more appropriate quantity to min-
imize, use of the absolute value results in non-differentiability which requires a great
effort to be treated analytically. The square deviations from each point are therefore
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Figure 5.2: Offsets of the linear regression

summed, and the resulting residual is then minimized to find the best fit line.

We report here the calculation presented in [29].

The necessary conditions to minimize E[Y − (aX + b)]2 are{
∂
∂a E[Y − (aX + b)]2 = 0
∂
∂b E[Y − (aX + b)]2 = 0

Since

E[Y − (aX + b)]2 = E[Y2 − 2aXY − 2bY + a2X2 + 2abX + b2]
= E[Y2] − 2aE[XY] − 2bE[Y] + a2E[X2] + 2abE[X] + b2

we have {
∂
∂a E[Y − (aX + b)]2 = −2E[XY] + 2aE[X2] + 2bE[X] = 0
∂
∂b E[Y − (aX + b)]2 = −2E[Y] + 2aE[X] + 2b = 0

This leads to the system{
−E[XY] + aE[X2] + (E[Y] − aE[X])E[X] = 0
b = E[Y] − aE[X]

and to the solution {
a =

E[XY]−E[X]E[Y]
E[X2]−E2[X]

b = E[Y] − aE[X]

Recalling that:

• cov (X,Y) = E[XY] − E[X]E[Y];

• Var (X) = E[X2] − E2[X]

we can rewrite the coefficients as{
a =

cov (X,Y)
Var (X)

b = E[Y] −
cov (X,Y)
Var (X)

E[X]

Hence the linear regression can be written as

ỸLS E =
cov (X,Y)

Var (X)
X +
(
E[Y] −

cov (X,Y)

Var (X)
E[X]
)

= E[Y] +
cov (X,Y)

Var (X)
(X − E[X])(5.9)
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where the slope a represents the average charge in Y associated with a one-unit in-
crease in X. The intercept b is the fitted value of Y when X = 0 (see [29] and [79]).
The resulting value of the mean of the vertical deviations is

E[Y − (aX + b)]2 = E
[
Y −

cov (X,Y)
Var (X)

X −
(
E[Y] −

cov (X,Y)
Var (X)

E[X]
)]2

= E
[
Y2 − 2

cov (X,Y)
Var (X)

XY − 2E[Y] Y + 2
cov (X,Y)
Var (X)

E[X] Y

+
cov 2(X,Y)

Var 2(X)
X2 + 2

cov (X,Y)
Var (X)

E[Y] X − 2
cov 2(X,Y)

Var 2(X)
E[X] X

+E2[Y] − 2
cov (X,Y)
Var (X)

E[X]E[Y] +
cov 2(X,Y)

Var 2(X)
E2[X]

]
= E[Y2] − 2

cov (X,Y)
Var (X)

E[XY] − 2E2[Y] + 2
cov (X,Y)
Var (X)

E[X]E[Y]

+
cov 2(X,Y)

Var 2(X)
E[X2] + 2

cov (X,Y)
Var (X)

E[X]E[Y] − 2
cov 2(X,Y)

Var 2(X)
E2[X]

+E2[Y] − 2
cov (X,Y)
Var (X)

E[X]E[Y] +
cov 2(X,Y)

Var 2(X)
E2[X]

= (E[Y2] − E2[Y]) − 2
cov (X,Y)
Var (X)

(E[XY] − E[X]E[Y])

+
cov 2(X,Y)

Var 2(X)
(E[X2] − E2[X])

= Var(Y) − 2
cov (X,Y)
Var (X)

cov (X,Y) +
cov2(X,Y)

Var 2(X)
Var (X)

= Var (Y) −
cov 2(X,Y)

Var (X)

If we compare (5.1), i.e. Y = X − c according to the notation used in this section, with
Equation (5.9) we recognize a good agreement.
Our previous line of reasoning was based on the assumption of a positive correlation
between the two (delay) variables, i.e. cov(X,Y) = Var(X) and if we now calculate
cov(X, Ỹ) we get exactly:

cov(X, Ỹ) = cov(X, aX + b) = a cov(X, X) = cov(X,Y)

But cov(Y, Ỹ) = acov(Y, X) = Var(X) ≥ 0 that can be different than 1 according to
the value of Var(X).

According to Definition (5.2), we want a slope as close as possible to one, but we
also want a robust linear regression (and LSE is not). Hence we looked for alternative
possibilities to represent the linear regression of the delays, and we consider then the
increment of the “error” to judge if it would be reasonably acceptable.

5.6.1 Four alternatives

We considered four different alternative ways to calculate the coefficients a and b of
the linear regression Ỹ = aX + b and we compared them with the least squares (LSE).
We prefer not to use directly LSE regression since we do expect an arbitrary number
of large delays in the data and that can exceed the tolerance of LSE, i.e. the number
of “bad data” that LSE can tolerate without itself being affected by an arbitrary large
extent.

The four alternatives correspond to four different choices of the slope coefficient a
in the linear regression. Given a, the intercept is determined as b = E(Y) − aE(X).
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This choice of b assures that Y and its approximation aX + b have the same mean.
Moreover it minimizes the corresponding least squares error in case of fixed slope.
In fact if we fix the slope a and minimize the corresponding least square error, i.e.
E[Y − aX − b]2 with a fixed and constant, we can determine the intercept b as follows.
We consider the first and second derivatives of the least squares error in b, then get the
system of equations

{
∂
∂b E[Y − (aX − b)]2 = −2E[Y] + 2aE[X] + 2b = 0
∂2

∂b2 E[Y − (aX − b)]2 = 2

Thus the value

(5.10) b = E[Y] − aE[X]

corresponds to a minimum of the error function.

Our four alternatives for the slope are:

• (A) we require that Y and its approximation aX + b will have not only the same
mean, but also the same variance;

• (B) we define a = ρ, the correlation coefficient of Y and X;

• (C) we chose a = σ the covariance of Y and X;

• (C) we set a = 1.

Alternative A
We calculate aA and bA in such a way that the mean and the variance of Y and Ỹ will
be the same, i.e. {

E[Y] = E(Ỹ)
Var(Y) = Var(Ỹ)

This leads to the system {
E[Y] = aAE[X] + bA

Var(Y) = a2AVar(X)

The solution is  aA =
√

Var(Y)
Var(X)

bA = E[Y] −
√

Var(Y)
Var(X)

E[X]

Thus the first alternative for the linear regression approximation is

ỸA =

√
Var(Y)

Var(X)
X +
(
E[Y] −

√
Var(Y)

Var(X)
E[X]
)

= E[Y] +

√
Var(Y)

Var(X)
(X − E[X])(5.11)
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Alternative B
The value of a is fixed to the correlation of the variables, aB =

cov(X,Y)
√

Var(X)Var(Y)
, i.e.

aB = ρXY . According to (5.10) we get the coefficients aB =
cov(X,Y)

√
Var(X)Var(Y)

bB = E[Y] +
cov(X,Y)

√
Var(X)Var(Y)

E[X]

corresponding to the linear regression

ỸB =
cov(X,Y)√

Var(X)Var(Y)
X +
(
E[Y] −

cov(X,Y)√
Var(X)Var(Y)

E[X]
)

= E[Y] +
cov(X,Y)√

Var(X)Var(Y)
(X − E[X])(5.12)

We notice that the variance of ỸB is given by Var(ỸB) =
cov2(X,Y)

Var(X)Var(Y)
Var(X), therefore

it coincides with Var(Y) if and only if Var2(Y) = cov2(X,Y).

Alternative C
The value of a is fixed to the covariance of the variables, i.e. aC = cov(X,Y). Ac-
cording to (5.10) we get the coefficients{

aC = cov(X,Y)
bC = E[Y] − cov(X,Y)E[X]

corresponding to the linear regression

ỸC = cov(X,Y)X +
(
E[Y] − cov(X,Y)E[X]

)
= E[Y] + cov(X,Y)(X − E[X])(5.13)

the variance of ỸC is given by Var(ỸC) = cov2(X,Y)Var(X) that coincides with Var(Y)
if and only if cov2(X,Y) = 1.

Alternative D
The value of a is fixed to 1. According to (5.10) we get the coefficients{

aD = 1
bD = E[Y] − E[X]

corresponding to the linear regression

ỸD = X +
(
E[Y] − E[X]

)
= E[Y] + (X − E[X])(5.14)

The variance of ỸD is always equal to the variance of Y .

Remark 5.7 It is easy to see that (5.14) is a special case of all the previous ones: of
(5.11) and (5.13) if cov(X,Y) = 1 (since that implies Var(Y) = Var(X)), and of (5.12)
if ρXY = 1.
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5.6.2 Least squares error

Firstly we calculate the values of the mean of the sum of the squares of the vertical
deviations to see the error we commit with every alternative.

E[Y − ỸA]2 = E
[
Y −

√
Var(Y)
Var(X)

X −
(
E[Y] −

√
Var(Y)
Var(X)

E[X]
)]2

= E
[
Y2 − 2

√
Var(Y)
Var(X)

XY − 2E[Y] Y + 2
√

Var(Y)
Var(X)

E[X] Y +
Var(Y)
Var(X)

X2

+2
√

Var(Y)
Var(X)

E[Y] X − 2
Var(Y)
Var(X)

E[X] X + E2[Y]

−2
√

Var(Y)
Var(X)

E[X]E[Y] +
Var(Y)
Var(X)

E2[X]
]

= E[Y2] − 2
√

Var(Y)
Var(X)

E[XY] − 2E2[Y] + 2
√

Var(Y)
Var(X)

E[X]E[Y]

+
Var(Y)
Var(X)

E(X2) + 2
√

Var(Y)
Var(X)

E[X]E[Y] − 2
Var(Y)
Var(X)

E2[X] + E2(Y)

−2
√

Var(Y)
Var(X)

E[X]E[Y] +
Var(Y)
Var(X)

E2[X]

= (E[Y2] − E2[Y]) +
Var(Y)
Var(X)

(E[X2] − E2[X])

= −2
√

Var(Y)
Var(X)

(E[XY] − E[X]E[Y])

= Var(Y) +
Var(Y)
Var(X)

Var(X) −
√

Var(Y)
Var(X)

cov(X,Y)

= 2Var(Y) − 2
√

Var(Y)
Var(X)

cov(X,Y).

E[Y − ỸB]2 = E
[
Y −

cov(X,Y)
√

Var(X)Var(Y)
X −
(
E[Y] −

cov(X,Y)
√

Var(X)Var(Y)
E[X]
)]2

= E
[
Y2 − 2

cov(X,Y)
√

Var(X)Var(Y)
XY − 2E[Y] Y + 2

cov(X,Y)
√

Var(X)Var(Y)
E[X] Y

+
cov2(X,Y)

Var(X)Var(Y)
X2 − 2

cov(X,Y)
√

Var(X)Var(Y)
E[Y] X − 2

cov2(X,Y)
Var(X)Var(Y)

E[X]X

+E2[Y] − 2
cov(X,Y)

√
Var(X)Var(Y)

E[X]E[Y] +
cov2(X,Y)

Var(X)Var(Y)
E2[X]

]

= E[Y2] − 2
cov(X,Y)

√
Var(X)Var(Y)

E[XY] + 2
cov(X,Y)

√
Var(X)Var(Y)

E[X]E[Y]

−2E2[Y] +
cov2(X,Y)

Var(X)Var(Y)
E2[X] − 2

cov(X,Y)
√

Var(X)Var(Y)
E[X]E[Y]

+E2[Y] − 2
cov2(X,Y)

Var(X)Var(Y)
E2[X] − 2

cov(X,Y)
√

Var(X)Var(Y)
E[X]E[Y]

+
cov2(X,Y)

Var(X)Var(Y)
E2[X]

= (E[Y2] − E2[Y]) +
cov2(X,Y)

Var(X)Var(Y)
(E[X2] − E2[X])

−2
cov(X,Y)

√
Var(X)Var(Y)

(E[XY] − E[X]E[Y])

= Var(Y) +
cov2(X,Y)

Var(X)Var(Y)
Var(X) − 2

cov2(X,Y)
√

Var(X)Var(Y)

= Var(Y) +
cov2(X,Y)

Var(Y)
− 2

cov2(X,Y)
√

Var(X)Var(Y)
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E[Y − ỸC]2 = E
[
Y − cov(X,Y) X −

(
E[Y] − cov(X,Y)E[X]

)]2
= E

[
Y2 − 2cov(X,Y) XY − 2E[Y] Y + 2cov(X,Y)E[X] Y

+cov2(X,Y) X2 − 2cov(X,Y)E[Y] X + 2cov2(X,Y)E[X] X
+E2[Y] − 2cov(X,Y)E[X]E[Y] + cov2(X,Y)E2[X]

= E[Y2] − 2cov(X,Y)E[XY] − 2E2[Y] + 2cov(X,Y)E[X]E[Y]

+cov2(X,Y)E[X2] − 2cov(X,Y)E[X]E[Y] + 2cov2(X,Y)E2[X]

+E2[Y] − 2cov(X,Y)E[X]E[Y] + cov2(X,Y)E2[X]

= (E[Y2] − E2[Y]) − 2cov(X,Y)(E[XY] − E[X]E[Y])

+cov2(X,Y)(E[X2] − E2[X])

= Var(Y) − 2cov2(X,Y) + cov2(X,Y)Var(X)

= Var(Y) + cov2(X,Y)(Var(X) − 2)

E[Y − ỸD]2 = E
[
Y − X − (E[Y] − E[X])

]2
= E

[
Y2 − 2XY − 2E[Y] Y + 2E[X] Y + X2 + 2E[Y] X

−2E[X] X + E2[Y] − 2E[X]E[Y] + E2[X]
]

= E[Y2] − 2E[XY] − 2E2[Y] + 2E[X]E[Y] + E[X2] + 2E[X]E[Y]

−2E2[X] + E2[Y] − 2E[X]E[Y] + E2[X]

= (E[Y2] − E2[Y]) − 2(E[XY] − E[X]E[Y]) + (E[X2] − E2[X])

= Var(Y) − 2cov(X,Y) + Var(X)

= Var(Y − X)

since Var(aX + bY) = a2 Var(X) + 2ab cov(X,Y) + b2 Var(X).

Furthermore we check how much each alternative differs from the “optimal” ap-
proximation given by (5.9).

E[Y − ỸA]2 − E[Y − ỸLS E ]2 =

=
(
2Var(Y) − 2

√
Var(Y)
Var(X)

cov(X,Y)
)
−
(
Var(Y) −

cov2(X,Y)
Var(X)

)
= Var(Y) − 2

√
Var(Y)
Var(X)

cov(X,Y) +
cov2(X,Y)

Var(X)

=
( √

Var(Y) −
cov(X,Y)
√

Var(X)

)2
≥ 0
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that is equal to zero if the variables X and Y are positively correlated, i.e. ρXY = 1.

E[Y − ỸB]2 − E[Y − ỸLS E ]2 =

=
(
Var(Y) +

cov2(X,Y)
Var(Y)

− 2
cov2(X,Y)
√

Var(X)Var(Y)

)
−
(
Var(Y) −

cov2(X,Y)
Var(X)

)
=

cov2(X,Y)
Var(Y)

− 2
cov2(X,Y)
√

Var(X)Var(Y)
+

cov2(X,Y)
Var(X)

=
(

cov(X,Y)
√

Var(Y)
−

cov(X,Y)
√

Var(X)

)2
≥ 0

that is equal to zero either when the variables are uncorrelated, i.e. cov(X,Y) = 0
(that is not our case since the Tri-graph points out exactly the dependencies among
variables), or when the two variables have the same variance, i.e. Var(X) = Var(Y).

E[Y − ỸC]2 − E[Y − ỸLS E ]2 =

=
(
Var(Y) − 2cov2(X,Y) + cov2(X,Y)Var(X)

)
−
(
Var(Y) −

cov2(X,Y)
Var(X)

)
= cov2(X,Y)

(
Var(X) + 2− 1

Var(X)

)
= cov2(X,Y)

( √
Var(X) + 1√

Var(X)

)
≥ 0

that is equal to zero only if the variables are uncorrelated, i.e. cov(X,Y) = 0, since the
variance of a variable is always positive, but this is exactly the case we do not want by
definition of alternative C. Therefore we do expect a (large) positive error if we decide
to apply this alternative.

E[Y − ỸD]2 − E[Y − ỸLS E ]2 =

=
(
Var(Y) − 2cov(X,Y) + Var(X)

)
−
(
Var(Y) −

cov2(X,Y)
Var(X)

)
= 1

Var(X)
(Var2(X) − 2cov(X,Y)Var(X) + cov2(X,Y))

= 1
Var(X)

(Var(X) − cov(X,Y))2 ≥ 0

that is equal to zero if Var(X) = cov(X,Y).

5.6.3 Empirical comparison

To understand which alternative for the linear regression (A to D) is more suitable to
be applied in our model, we applied them to the total number of edges (and to the
set of “virtual connections”) pointed out from the Tri-graph for the samples W − 30,
W − 195, S a − 39, S u − 39, and the subsamples MoWeFr − 117, TuTh − 78 and
Mo − 39 (see Sections 4.2, 4.3 and 4.4).
The following tables report either the number of edges (or “virtual” connections) that
have minimal LSE in one of the four alternatives (A to D) with the corresponding
percentage on the total amount of edges considered, or the average value of the LSE
corresponding to the set of edges in the four alternatives (A to D) (in this table we
also include the mean of the least squares approximation given by Equation (5.9),
denominated as alternative LSE).
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Quantile Nr. Edges Regional Trains - weekdays - 30 data
α TG A % B % C % D %

0.01 463 269 58.1 101 21.8 13 2.8 80 17.3
0.05 753 413 54.8 170 22.6 38 5.0 132 17.5
0.10 1085 544 50.1 259 23.9 76 7.0 206 19.0

Quantile Nr. Edges Regional Trains - weekdays - 195 data
α TG A % B % C % D %

0.01 491 155 31.6 209 42.6 24 4.9 103 21.0
0.05 745 204 27.4 348 46.7 49 6.6 144 19.3
0.10 1002 241 24.1 494 49.3 85 8.5 182 18.2

Quantile Nr. Edges Regional Trains - Saturday - 39 data
α TG A % B % C % D %

0.01 327 180 55.0 73 22.3 11 3.4 63 19.3
0.05 517 271 52.4 117 22.6 27 5.2 102 19.7
0.10 665 323 48.6 162 24.4 46 6.9 134 20.2

Quantile Nr. Edges Regional Trains - Sunday - 39 data
α TG A % B % C % D %

0.01 366 201 54.9 80 21.9 17 4.6 68 18.6
0.05 558 279 50.0 131 23.5 44 7.9 104 18.6
0.10 755 358 47.4 170 22.5 80 10.6 147 19.5

Table 5.1: Comparison of LSE on edges TG (no corr.) for the samples W − 30,
W − 195, S a − 39 and S u − 39

Quantile Regional Trains - weekdays - 30 data
α LSE A B C D

0.01 0.526 1.806 1.625 1.10E+04 1.690
0.05 0.646 1.839 1.638 8.66E+03 1.821
0.10 0.800 1.752 1.732 9.05E+03 2.028

Quantile Regional Trains - weekdays - 195 data
α LSE A B C D

0.01 17.328 46.807 21.872 8.40E+05 38.537
0.05 12.713 32.920 15.900 5.54E+05 28.065
0.10 18.580 47.083 21.469 4.12E+05 31.378

Quantile Regional Trains - Saturday - 39 data
α LSE A B C D

0.01 0.654 0.704 1.048 4.44E+11 1.121
0.05 0.957 1.075 1.537 5.61E+11 1.678
0.10 1.177 1.367 1.804 5.45E+11 2.000

Quantile Regional Trains - Sunday - 39 data
α LSE A B C D

0.01 0.94 0.99 2.05 1.32E+04 2.41
0.05 2.38 2.64 4.43 1.29E+05 6.74
0.10 2.27 2.60 3.94 9.22E+04 5.85

Table 5.2: Comparison of LSE mean on edges TG (no corr.) for the samples W − 30,
W − 195, S a − 39 and S u − 39
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Quantile Nr. Virtual Regional Trains - weekdays - 30 data
α TG A % B % C % D %

0.01 58 30 60.0 17 34.0 0 0.0 3 6.0
0.05 84 50 59.5 24 28.6 2 2.4 8 9.5
0.10 135 72 53.3 34 25.2 8 5.9 21 15.6

Quantile Nr. Virtual Regional Trains - weekdays - 195 data
α TG A % B % C % D %

0.01 41 18 43.9 19 46.3 2 4.9 2 4.9
0.05 67 25 37.3 30 44.8 2 3.0 10 14.9
0.10 112 35 31.3 57 50.9 4 3.6 16 14.3

Quantile Nr. Virtual Regional Trains - Saturday - 39 data
α TG A % B % C % D %

0.01 25 18 72.0 5 20.0 1 4.0 1 4.0
0.05 45 30 66.7 8 17.8 2 4.4 5 11.1
0.10 61 36 59.0 16 26.2 2 3.3 7 11.5

Quantile Nr. Virtual Regional Trains - Sunday - 39 data
α TG A % B % C % D %

0.01 27 23 85.2 0 0.0 2 7.4 2 7.4
0.05 53 34 64.2 4 7.5 3 5.7 11 22.6
0.10 74 40 54.1 5 6.8 11 14.9 18 24.3

Table 5.3: Comparison of LSE on the virtual connections (no corr.) for the samples
W − 30, W − 195, S a − 39 and S u − 39

Quantile Regional Trains - weekdays - 30 data
α LSE A B C D

0.01 1.24 1.35 2.74 6.31E+02 2.83
0.05 0.98 1.08 2.01 4.08E+02 2.19
0.10 1.09 1.23 1.98 7.49E+02 2.35

Quantile Regional Trains - weekdays - 195 data
α LSE A B C D

0.01 2.18 4.25 34.31 9.96E+06 219.29
0.05 2.91 4.82 22.84 6.09E+06 137.85
0.10 2.77 4.44 14.84 3.65E+06 85.06

Quantile Regional Trains - Saturday - 39 data
α LSE A B C D

0.01 0.89 0.96 1.23 1.97E+04 1.59
0.05 1.75 1.96 2.76 1.13E+04 3.15
0.10 1.60 1.93 2.72 8.35E+03 3.23

Regional Trains - Sundays - 39 data
Quantile Regional Trains - Sunday - 39 data
α LSE A B C D

0.01 0.94 0.99 2.05 1.32E+04 2.41
0.05 2.38 2.64 4.43 1.29E+05 6.74
0.10 2.27 2.60 3.94 9.22E+04 5.85

Table 5.4: Comparison of LSE mean on the virtual connections (no corr.) for the
samples W − 30, W − 195, S a − 39 and S u − 39
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Quantile Nr. Edges Regional Trains - Mon-Wed-Fri - 117 data
α TG A % B % C % D %

0.01 443 160 36.1 154 34.8 21 4.7 108 24.4
0.05 656 212 32.3 246 37.5 53 8.1 145 22.1
0.10 893 249 27.9 353 39.5 101 11.3 190 21.3

Quantile Nr. Edges Regional Trains - Tue-Thu - 78 data
α TG A % B % C % D %

0.01 344 141 41.0 101 29.4 18 5.2 84 24.4
0.05 502 191 38.0 157 31.3 47 9.4 107 21.3
0.10 679 233 34.3 226 33.3 79 11.6 141 20.8

Quantile Nr. Edges Regional Trains - Monday - 39 data
α TG A % B % C % D %

0.01 253 113 44.7 73 28.9 11 4.3 56 22.1
0.05 390 166 42.6 112 28.7 32 8.2 80 20.5
0.10 545 212 38.9 170 31.2 57 10.5 106 19.4

Table 5.5: Comparison of LSE on edges TG (no corr.) for the samples MoWeFr−117,
TuTh − 78 and Mo − 39

Quantile Regional Trains - Mon-Wed-Fri - 117 data
α LSE A B C D

0.01 29.74 87.03 42.63 4.22E+06 69.48
0.05 22.24 64.05 31.59 2.85E+06 50.75
0.10 17.16 48.39 24.13 2.10E+06 38.86

Quantile Regional Trains - Tue-Thu - 78 data
α LSE A B C D

0.01 0.99 1.77 1.44 7.85E+03 1.96
0.05 1.54 3.10 2.22 5.84E+03 3.29
0.10 1.67 3.05 2.36 4.39E+03 3.72

Quantile Regional Trains - Monday - 39 data
α LSE A B C D

0.01 0.46 1.48 1.02 3.87E+05 1.14
0.05 0.70 1.44 1.25 3.28E+05 1.47
0.10 0.85 1.50 1.66 2.95E+05 2.06

Table 5.6: Comparison of LSE mean on edges TG (no corr.) for the samples
MoWeFr − 117, TuTh − 78 and Mo − 39
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Quantile Nr. Virtual Regional Trains - Mon-Wed-Fri - 30 data
α TG A % B % C % D %

0.01 40 18 45.0 17 42.5 1 2.5 4 10.0
0.05 66 26 39.4 30 45.5 3 4.5 7 10.6
0.10 91 32 35.2 39 42.9 7 7.7 13 14.3

Quantile Nr. Virtual Regional Trains - Tue-Thu - 39 data
α TG A % B % C % D %

0.01 21 8 38.1 11 52.4 1 4.8 1 4.8
0.05 41 12 29.3 22 53.7 5 12.2 2 4.9
0.10 63 16 25.4 32 50.8 7 11.1 8 12.7

Quantile Nr. Virtual Regional Trains - Monday - 39 data
α TG A % B % C % D %

0.01 17 9 52.9 5 29.4 2 11.8 1 5.9
0.05 32 14 43.8 9 28.1 4 12.5 5 15.6
0.10 52 20 38.5 20 35.8 7 13.5 5 9.6

Table 5.7: Comparison of LSE on the virtual connections (no corr.) for the samples
MoWeFr − 117, TuTh − 78 and Mo − 39

Quantile Regional Trains - Mon-Wed-Fri - 117 data
α LSE A B C D

0.01 2.59 8.39 91.78 4.66E+07 373.44
0.05 2.41 6.22 56.61 2.82E+07 228.25
0.10 3.03 6.65 42.52 2.05E+07 167.97

Quantile Regional Trains - Tue-Thu - 78 data
α LSE A B C D

0.01 0.89 1.10 2.09 18.93 3.33
0.05 1.63 2.18 2.64 42.54 4.20
0.10 1.94 2.73 2.80 65.19 4.20

Quantile Regional Trains - Monday - 39 data
α LSE A B C D

0.01 0.64 1.06 3.37 14143.59 3.92
0.05 0.93 1.27 2.79 7531.67 3.44
0.10 1.10 1.46 3.91 14693.54 4.71

Table 5.8: Comparison of LSE mean on the virtual connections (no corr.) for the
samples MoWeFr − 117, TuTh − 78 and Mo − 39
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Alternative B seems to be preferable when there are many data at hand. To check this
assertion we consider three subsamples of the data set corresponding to the second
strategy, i.e. the three subsets already considered in Section 4.3: MoWeFr − 117,
TuTh − 78 and Mo − 39.
Diminishing the number of observations for the sample, alternative A seems to be
preferable to alternative B. However it is not clear how many data we should have to
favor one of these alternatives. Moreover, observing the outputs there seems to be a
”dislike” of alternative C. This can be explained remembering that the covariance is
a measure of the linear dependency between two variables, hence it tends to smooth
the irregularities. With the least squares procedure we weighted a lot the outliers of
the data set (since we summed the squares of the vertical distances of the observations
from the linear regression line).
Outliers and influential data should not be ignored (at least without any further inves-
tigation), but they are problematic in linear models fit by least squares because they
can substantially influence the results of the analysis, and because they may indicate
that the model fails to capture important features of the data.
Unexpected was the position of alternative D, as penultimate. According to the defini-
tions given in Section 5.2, we expected it to be the most promising alternative among
the four. To check the correctness of Definition 5.4 and to make a survey of the var-
ious approaches, we evaluate the mean of the values of the intercept and of the slope
of the four linear regressions and we compare that with the one of the Least Squares
Error regression. Moreover to evaluate the impact of outliers we also considered two
further linear regressions (Huber’s method and Least Trimmed Squares) as explained
in the following section.
The results are to be found in tabular form at the end of this chapter (see Tables 5.9 -
5.16).

5.6.4 Robust Estimators

Robust estimation is an alternative approach to outliers in heavy-tailed error distribu-
tions. Properly formulated, robust estimators are almost as efficient as the least squares
error when the error is normally distributed, and much more efficient when the error
is heavy-tailed. In other words, these methods have a higher breakdown point, i.e.
the fraction of arbitrary “bad” data that the estimator can tolerate without being itself
affected to an arbitrarily large extent.
The simplest robust estimator is the least absolute values (LAV) objective function,
that corresponds to the sum of the absolute values

n∑
i=1

ρLAV = E|Y − (aX − b)| =

n∑
i=1

|yi − (axi + bi)|

n

This function is minimized by the median, which is much more resistant to outliers
than the mean (its breakdown point is 50% against the 0 breakdown point of the mean),
but it is less powerful than the mean if the errors are normally distributed. Moreover it
has an asymptote in 0, which makes a weighting approach difficult, expecially in the
railway problem where we do expect a lot of observations being (close to) zero, i.e.
punctuality.
Therefore we preferred to consider other objective functions which combine resis-
tance to outliers with greater robustness of efficiency.

Huber’s method (H)
The Huber objective function is a compromise between least squares and least abso-
lute values, behaving like the least squares in the center and like least absolute values
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in the tails:

ρH =

{
1
2
(Y − (aX − b))2 for |Y − (aX − b)| ≤ k

k|Y − (aX − b)| − 1
2
k2 for |Y − (aX − b)| > k

The problem consists in minimizing the sum of these errors mini∈{1,...,n} ρH(i).
The value k, which defines the center and the tails, is called tuning constant. A natural
choice is the double of the median absolute deviation, i.e. k ' 2mediani|yi −(axi −b)|
that corresponds to a 95% efficiency relative to the sample mean when the population
is normally distributed.

Least Trimmed Squares (LTS)
We report the method as explained in [29]. Given any possible choice of the parame-
ters (a, b), the squared residuals [yi − (axi + b)]2 are ordered from the smallest to the
largest, i.e. [y(1) − (ax(1) + b)]2 ≤ [y(2) − (ax(2) + b)]2 ≤ . . . ≤ [y(n) − (ax(n) + b)]2.
Then the coefficients a and b are selected in such a way to minimize the sum of the
smallest q squared residuals, that is

q∑
i=1

[y(i) − (ax(i) + b)]2

where q is some number smaller than n. The (high) breakdown point depends on how
q is chosen. Usually q = b n

2
c+ 1 (where the floor brackets indicate rounding down to

the next smallest integer, i.e. floor function). For this choice of q the breakdown point
is nearly 50%.

5.6.5 Slope and intercept

We evaluated the slope a and intercept b of the linear regression Ỹ = aX+b according
to the methods presented in the previous sections:

• least squares error (LSE);

• Huber’s method (H);

• least trimmed squares (LTS);

• alternative A;

• alternative B;

• alternative C;

• alternative D.

Our aim was to check if the slope a was close to one, as required by the delay defini-
tions given in Section 5.2.

We calculated the mean of the slope and intercept coefficients of the linear regres-
sion for the samples W − 30, W − 195, S a − 39, S u − 39 and the subsamples
MoWeFr − 117,TuTh − 78 and Mo − 39. As in the previous sections we considered
the output of the Tri-graph method without multistatistical correction. Furthermore
we subdived the outcome of the Tri-graph into three classes: waiting activities, driving
activities and “virtual” connections (neglecting all the edges belonging to error group)
as explained in Section 4.2 to see if there were substantial differences in the value of
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the slope.

Regarding the waiting activities the (mean of the) slope coefficient is really close
to one. This is in accordance with the small values (or the absence) of slack times
associated to this activity so that we can explain the deviation from one by measure-
ment errors. Hence, alternative D seems theoretically and empirically a good choice
to represent these activities.

Concerning the driving and the virtual activities, the dependence is not so prominent
as for the waiting activities. In the mean the coefficient a is smaller than one for both
types of activities. This can be due to the slack times used in practice (for driving
activities the slack is roughly 17% of the traveling time) and to changes in the priority
list during the disposition process: if a train has a huge delay, connections will not be
kept and the scheduled order of departures or arrivals will be changed.

To summarize we consider alternative A the most flexible regression for virtual con-
straints. However, there is a potential also in alternative B that should be further
investigated, expecially if the number of observations is big “enough”. Alternative C
is too much subject to outliers to become really interesting. Alternative D seems more
suitable for waiting activities.

According to alternative A, we may represent the virtual activities as

Y j ≥ E(Y j) +

√
VarY j

VarYi
(Yi − E(Yi))

Since xi = πi + yi we can rewrite them as

(X j − π j) ≥ E(Y j) +

√
VarY j

VarYi
((Xi − πi) − E(Yi))

that is
X j ≥ (π j + E(Y j)) +

√
VarY j

VarYi
(Xi − (πi + E(Yi)))

≥ E(X j) +
√

VarX j

VarXi
(Xi − E(Xi))

Hence we write the model [CTM-3] as:

min
∑
i∈E

xi

x j − xi ≥ La ∀a = (i, j) ∈ A

xi ≥ πi + di ∀i ∈ E

x j ≥ v1i jxi + v2i j ∀i, j ∈ E such that a = (i, j) ∈ Avirtual

xi ∈ Z
+ ∀i ∈ E

where

• Avirtual is the output of the Tri-graph method;

• v1i j =
√

VarX j

VarXi
slope of the regression;

• v2i j = E(X j) − v1i j E(Xi) intercept of the regression.
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6
About the Robustness

The investigator should have a robust faith,
and yet not believe.

CLAUDE BERNARD (1813-1878)
French physiologist

As introduced in Chapter 2, we are looking for a new way to identify the (most im-
portant) capacity constraints in order to improve the robustness of the (uncapacitated)
disposition timetable.
Robustness is the quality of a timetable of being able to withstand (small) delays. A
rescheduling system may be said to be “robust” if it is capable of coping well with
(unpredictable) variations in trains operating environment with minimal loss of func-
tionality and punctuality.
In this chapter we consider three different criteria to test the robustness of model
[CTM-3] presented in Section 5.6.5. Due to lack of information about the system
(expecially about the considered headways) to whom are referring the delays reported
on the files of the Deutsche Bahn presented in Chapter 4, we consider in this chapter
another system which has been provided by the Deutsche Bahn within the frame of the
ARRIVAL Project (Algorithm for Robust and online Railway optimization: Improv-
ing the Validity and reliAbility of Large scale systems). This system is also focused
on the Harz area, but it considers a larger site.
The tests presented in this chapter have been carried out in collaboration with the PhD
project of Michael Schachtebeck (AG Optimization, University of Göttingen), who
applied different (heuristic) algorithms as well as suggested different ideas on how to
check the robustness of the solutions.

6.1 Robustness

It is not trivial to define the concept of robustness for optimization problems. Several
definitions have been proposed (see for instance [4], [10] and [21]) to capture all the
peculiarities of the problem . Nevertheless the concept of robustness is much broader
to be easily enclosed in a definition.
In the most restricted sense, a robust timetable stays unchanged in every likely sce-
nario, that is: the solution provided for one instance (i.e. a particular set of in-
put parameters) should hold even if a perturbation of the parameters is registered.
In our case, the solution for the capacitated model without any source delay, i.e.
di = 0 ∀i ∈ E, should hold even when some positive source delays are measured,
e.g. di > 0 ∀i ∈ E ⊆ E. Clearly this definition is really strong and it requires the
introduction of huge slack times to be realizable. This would lead to both an “un-
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acceptable” increase of the traveling times and a lower level of exploitation of the
network (e.g. less trips per day on a line). Hence this definition of robustness is not
suitable in our case. A possible compromise is to require the timetable to hold just in
case of “small” delays, e.g. delays smaller than three minutes. In fact ”small” delays
occur very frequently, instead “big” delays are not so common.
Moreover it is reasonable to require that if a perturbation occurs, it will be possible to
maintain as much as possible a pre-computed solution taking into account some “soft”
recovery strategies. This concept can be expounded through a visual explanation (see
[21]).

Figure 6.1: Concept of robustness

Figure 6.1 can be read as: given an optimization problem P, a set of possible input
parameters and a set of available recovery strategy Arec, we define the corresponding
robustness problem RP. Every instance i of P can be associated to a set of feasible
solutions of the problem, F(i) 3 si. We define s∗i as the optimal solution for P given
the instance i. A robust algorithm takes i as input and outputs a feasible solution to
which it is possible to apply a recovery algorithm. That is given a perturbation j of
the input parameters, the solution si ∈ F(i) can be transformed into a feasible solution
s j ∈ F( j) for the input j applying the recovery strategy A. Solution si is then called
a robust solution. Clearly, robust solutions provided by a robust algorithm can be far
from the optimum. The distance between the robust solution and the optimal one is
referred as the price of robustness. The aim is to provide the “best” robust solution,
the problem is to define what we mean with the word “best”.

6.2 The system

The numerical results that will be further presented are based on data from the Harz
Region in the center of Germany. The dataset contains 598 stations, 92 vehicles and
31 lines, each line with two directions, for a period of 2 hours.
The events set is again formed by three kind of events: departures, arrivals and inter-
mediate measurements. Intermediate measurements of the delays are registered in the
stations where the trains are passing by without stopping. As in Chapter 4 we marked
them as special events.
We considered three cases:

• one period, i.e. two hours (denominated 2HH);
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• two periods, i.e. four hours (denominated 4HH);

• three periods, i.e. six hours (denominated 6HH);

that are characterized by

• 2HH : 3 349 events and 115 trains;

• 4HH : 6 695 events and 188 trains;

• 6HH : 10 040 events and 247 trains.

In every period there are a little bit more than one thousand capacity constraints. This
number increases to circa 4500 and 9000 for the two-periods samples (4HH) and the
three-periods samples (6HH) respectively, due to new bounds on trains belonging to
different periods and turn-overs.

We focused our attention principally on the line between Goslar and Oker both be-
cause it is the geographical center of the example presented in Chapter 4 and because
it is a double track line (so a quite easy structure).
We delayed randomly all the events taking place on this line with source delays be-
tween zero and twentyfive minutes:

di ∈ [0, 25] ∀i ∈ Edep
GO ∪ E

arr
GO

where

E
dep
GO = {i = (t, v, dep) ∈ Edep : v ∈ {Goslar,Oker} , t ∈ T }

Earr
GO = {i = (t, v, arr) ∈ Earr : v ∈ {Goslar,Oker} , t ∈ T }

The cardinality of both sets is equal to 4 in the case of the single period (2HH), hence
considering the samples 4HH and 6HH we delayed respectively 16 and 24 events. We
generated 133 scenarios with an average delay pro scenario of 643 seconds (minimum
source delay one minute, maximum twenty minutes) and applied the same graphical
methods presented in Chapter 3 to these datasets. Due to the absence (or to their
small values) of slack times for the waiting activities, we had to cope again with
the singularity of the covariance matrix, hence the Full Conditional Independence
Graph was not applicable. We do not present the results of the Covariance Graph
since its output is strictly dependent on the transitivity property. The transformation
of the highlighted edges into “virtual” activities of the problem results not only in
a large set of constraints but also in a highly dominated set of constraints, i.e.there
are many unnecessary constraints. We applied the Tri-graph considering two possible
multistatistical corrections or the absence of it (see Section 3.5.5) and three possible
values for the quantile, α ∈ {0.01, 0.05, 0.10}, as done in Chapter 4. We subdived the
outputs into five groups (see Table 6.1):

• waiting activities;

• driving activities;

• drive2 activities, i.e. edges connecting events of the same trains that can not be
classified in one of the previous sets;

• changing activities;

• “virtual” activities.
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one period - 2HH
activity

Correction Quantile Nr. Edges wait drive drive2 change virtual
α # # % # % # % # % # %

0.01 398 26 6.5 50 12.6 291 73.1 0 0.0 31 7.8
- 0.05 412 26 6.3 50 12.1 291 70.7 0 0.0 45 10.9

0.10 429 26 6.1 51 11.9 293 68.3 0 0.0 59 13.8
0.01 344 26 7.6 50 14.5 249 72.4 0 0.0 19 5.5

B 0.05 356 26 7.3 50 14.0 259 72.8 0 0.0 21 5.9
0.10 365 26 7.1 50 13.7 267 73.1 0 0.0 22 6.0
0.01 387 26 6.7 50 12.9 285 73.6 0 0.0 26 6.7

BH 0.05 392 26 6.6 50 12.8 290 74.0 0 0.0 26 6.6
0.10 394 26 6.6 50 12.7 291 73.9 0 0.0 27 6.9

possible edges 6 555

two periods - 4HH
activity

Correction Quantile Nr. Edges wait drive drive2 change virtual
α # # % # % # % # % # %

0.01 1587 99 6.2 192 12.1 1212 76.4 0 0.0 84 5.3
- 0.05 1704 99 5.8 193 11.3 1289 75.6 0 0.0 123 7.2

0.10 1777 99 5.6 194 10.9 1310 73.7 0 0.0 174 9.8
0.01 1067 69 6.5 138 12.9 5 0.5 0 0.0 17 1.6

B 0.05 1357 99 7.3 192 14.1 8 0.6 0 0.0 26 1.9
0.10 1368 99 7.2 192 14.0 8 0.6 0 0.0 28 2.0
0.01 1483 99 6.7 192 12.9 14 0.9 0 0.0 48 3.2

BH 0.05 1514 99 6.5 192 12.7 18 1.2 0 0.0 58 3.8
0.10 1531 99 6.5 192 12.5 19 1.2 0 0.0 66 4.3

possible edges 101 025

three periods - 6HH
activity

Correction Quantile Nr. Edges wait drive drive2 change virtual
α # # % # % # % # % # %

0.01 2963 165 5.6 337 11.4 2190 73.9 4 0.1 267 9.0
- 0.05 3270 166 5.1 339 10.4 2376 72.7 6 0.2 383 11.7

0.10 3423 167 4.9 340 9.9 2456 71.7 6 0.2 454 13.3
0.01 1678 123 7.3 245 14.6 1249 74.4 3 0.2 58 3.5

B 0.05 2250 163 7.2 336 14.9 1573 69.9 4 0.2 174 7.7
0.10 2273 163 7.2 337 14.8 1590 70.0 4 0.2 179 7.8
0.01 2257 165 7.3 337 14.9 1850 82.0 4 0.2 201 8.9

BH 0.05 2671 165 6.2 337 12.6 1951 73.0 4 0.1 214 8.0
0.10 2721 165 6.1 337 12.4 1993 73.2 4 0.1 222 8.2

possible edges 315 615

Table 6.1: Outcome of the Tri-graph for the samples 2HH, 4HH and 6HH



6.2 The system 125

It is important to remark that even if all events of the journey of every train are consid-
ered (i.e. we do not have any lack of information about the traveling time of the train
as it happened in the samples presented in Chapter 4), we still have to face with edges
in the set drive2. These edges can be referred to the effects of the transitivity property.
We did not define a set for “errors”, since it was difficult to formulate a criterion to
characterize them. The highlighted edges are spatially and temporally meaningful (i.e.
the nodes of every edge refer to events happening in close stations (or in the same sta-
tion) and with a reasonable time difference according to the distance of the stations).
Hence we decided not to portion any further the set of “virtual activities”.

In the case of the sample 6HH, the “virtual activities” have been transformed into
constraints using the linear regressions A, B and D suggested in Chapter 5. Regression
C has been omitted due to the poor results concerning the average approximation error.
The [CTM-3] model has then been solved and three different criteria to check the
robustness of the model have been considered:

1. number of violated capacity constraints of the micromodel (headway function);

2. sum of the cost (in seconds) of the violations (second function);

3. sum of the cost (in seconds) to transform the solution into a feasible one for the
micromodel (price function).

By cost we mean the difference between the values of the variables involved in the
violated capacity constraints, in the optimal Micromodel solution and in the optimal
“virtual model” solution of the problem. Tables 6.2, 6.4 and 6.6 report the number
of scenarios in which the corresponding set of “virtual” constraints (characterized
by the kind of multistatistical test and by the value of the quantile) gives a better,
equal or worse value than the uncapacitated model for the corresponding robustness
criterion. Tables 6.3, 6.5 and 6.7 report the minimal, average and maximal percentage
of improvement for the scenarios in which the sets of “virtual” constraints give a better
solution with respect to the value of the uncapacitated model.

Figures 6.2, 6.3 and 6.4 represent the three robustness criteria as functions (headway,
second and price functions). Each of them is composed of twelve pictures having as
abscissa values the considered scenarios and as ordinate values the numerical value
of the functions. Every column of pictures is characterized by a different linear re-
gression (alternative A, B and D (i.e. constant slope equals to one)) as explained in
the previous chapter). The first three rows show the comparison of the function ob-
tained from the Bonferroni (BO), Benjamini-Hochberg (BH) and no multistatistical
correction (NC) sets of “virtual constraints” for the three chosen values of the quantile
α ∈ {1%, 5%, 10%}. Last row presents the comparison of the functions obtained from
the sets NC 1%, NC 5% and NC 10% for the three regressions (A, B and D). The sce-
narios have been ordered according to the values of the functions obtained from the
NC sets with α = 10%. We considered three sorted (ascending) criteria corresponding
to the three linear regressions (A, B and D). All the twelve pictures in a figure have
the same order of scenarios, but the three figures have different sorted scenarios.

Figure 6.5 represents the three robustness criteria as functions (headway, second and
price functions) for the uncapacitated model, UM, and for the set NC 5% with the three
possible linear regressions (A, B and D). Concerning the second and third criteria it
can be easily seen that the values of the functions obtained from the uncapacitated
model are bigger than the one obtained from the other sets. Instead for the first cri-
terion it is not possible to show any predominance of the “virtual” set agains the
uncapacitated model.
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slope αA

Nr. violated BO BH NC
Headways 1% 5% 10% 1% 5% 10% 1% 5% 10%

better 0 0 0 72 72 71 83 29 29
equal 129 129 129 34 34 34 20 28 28
worse 4 4 4 27 27 28 30 76 76

slope αB

Nr. violated BO BH NC
Headways 1% 5% 10% 1% 5% 10% 1% 5% 10%

better 0 0 0 50 50 62 77 40 37
equal 122 122 122 46 46 38 20 24 25
worse 11 11 11 37 37 33 36 69 71

slope αD

Nr. violated BO BH NC
Headways 1% 5% 10% 1% 5% 10% 1% 5% 10%

better 0 0 0 65 65 66 77 36 16
equal 118 118 118 30 30 33 17 24 24
worse 15 15 15 38 38 34 39 73 93

Table 6.2: Number of violated headways

slope αA

% violated BO BH NC
Headways 1% 5% 10% 1% 5% 10% 1% 5% 10%
min % 0 0 0 5.56 5.56 5.88 5.56 5.56 5.56
mean % 0 0 0 10.33 10.33 11.92 14.34 13.37 13.37
max % 0 0 0 30.00 30.33 30.00 30.77 31.25 31.25

slope αB

% violated BO BH NC
Headways 1% 5% 10% 1% 5% 10% 1% 5% 10%
min % 0 0 0 5.56 5.56 5.88 5.56 5.88 5.88
mean % 0 0 0 11.70 11.70 12.03 14.37 14.94 15.34
max % 0 0 0 30.00 30.00 30.00 38.46 38.46 38.46

slope αD

% violated BO BH NC
Headways 1% 5% 10% 1% 5% 10% 1% 5% 10%
min % 0 0 0 5.56 5.56 5.88 5.88 5.88 5.88
mean % 0 0 0 10.52 10.52 12.13 14.07 12.82 10.53
max % 0 0 0 30.00 30.00 30.00 30.77 25.00 15.38

Table 6.3: Percentage of violated headways
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slope αA

Amount BO BH NC
seconds 1% 5% 10% 1% 5% 10% 1% 5% 10%
better 0 0 0 109 109 115 107 116 116
equal 129 129 129 1 1 0 0 0 0
worse 4 4 4 23 23 18 26 17 17

slope αB

Amount BO BH NC
seconds 1% 5% 10% 1% 5% 10% 1% 5% 10%
better 0 0 0 111 111 115 116 118 118
equal 122 122 122 0 0 0 0 0 0
worse 11 11 11 18 22 22 17 15 15

slope αD

Amount BO BH NC
seconds 1% 5% 10% 1% 5% 10% 1% 5% 10%
better 0 0 0 107 107 113 104 102 94
equal 118 118 118 3 3 1 0 0 0
worse 15 15 15 23 23 19 29 31 39

Table 6.4: Cost in seconds of the violated headways

slope αA

% amount BO BH NC
seconds 1% 5% 10% 1% 5% 10% 1% 5% 10%
min % 0 0 0 0.55 0.55 0.28 0.06 0.25 0.25
mean % 0 0 0 18.31 18.31 17.59 20.47 25.56 25.56
max % 0 0 0 42.93 42.93 44.47 40.70 56.30 56.30

slope αB

% amount BO BH NC
seconds 1% 5% 10% 1% 5% 10% 1% 5% 10%
min % 0 0 0 0.40 0.40 0.40 0.04 1.87 1.87
mean % 0 0 0 15.92 15.92 15.97 17.57 22.37 22.30
max % 0 0 0 34.71 34.71 37.75 43.79 46.47 48.03

slope αD

% amount BO BH NC
seconds 1% 5% 10% 1% 5% 10% 1% 5% 10%
min % 0 0 0 0.39 0.39 0.39 0.41 1.55 1.14
mean % 0 0 0 18.47 18.47 17.79 20.82 22.91 18.97
max % 0 0 0 45.28 45.28 48.32 45.83 53.31 49.43

Table 6.5: Percentage of the cost in seconds of violated headways
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slope αA

Amount BO BH NC
seconds 1% 5% 10% 1% 5% 10% 1% 5% 10%
better 104 108 108 97 97 98 101 113 113
equal 28 24 24 0 0 0 0 0 0
worse 1 1 1 36 36 35 32 20 20

slope αB

Amount BO BH NC
seconds 1% 5% 10% 1% 5% 10% 1% 5% 10%
better 115 125 125 89 89 90 94 116 116
equal 18 0 0 0 0 0 0 0 0
worse 0 0 0 44 44 43 39 17 17

slope αD

Amount BO BH NC
seconds 1% 5% 10% 1% 5% 10% 1% 5% 10%
better 107 119 119 94 94 95 99 111 107
equal 26 14 14 1 1 0 0 0 0
worse 0 0 0 38 38 38 34 22 26

Table 6.6: Price in seconds of correction

slope αA

% amount BO BH NC
seconds 1% 5% 10% 1% 5% 10% 1% 5% 10%
min % 2e-04 3e-04 3e-04 0.19 0.19 0.20 0.22 0.04 0.05
mean % 0.13 0.15 0.17 13.69 13.70 13.68 14.67 28.61 28.63
max % 0.52 0.52 0.64 80.41 80.41 80.41 82.96 93.05 93.05

slope αB

% amount BO BH NC
seconds 1% 5% 10% 1% 5% 10% 1% 5% 10%
min % 1e-04 2e-04 2e-04 0.32 0.32 0.32 0.01 0.53 0.57
mean % 0.29 0.30 0.34 15.00 15.00 15.00 16.53 28.48 28.61
max % 1.41 1.41 1.48 80.72 80.72 80.72 82.22 89.51 89.33

slope αD

% amount BO BH NC
seconds 1% 5% 10% 1% 5% 10% 1% 5% 10%
min % 3e-04 4e-04 4e-04 5e-04 5e-04 0.08 0.08 0.24 1.24
mean % 0.41 0.40 0.44 14.45 14.51 14.50 15.49 28.76 19.08
max % 1.99 1.99 1.99 80.26 80.26 80.26 82.82 85.50 83.56

Table 6.7: Percentage of price in seconds of correction
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Figure 6.2: Robustness criteria: headways function
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Figure 6.3: Robustness criteria: second function
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Figure 6.4: Robustness criteria: price function
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Figure 6.5: Robustness criteria: Comparison for NC 5%
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Headways Second Price
A B D A B D A B D

1% 0 0 0 0 0 0 104 115 107
BO 5% 0 0 0 0 0 0 108 125 119

10% 0 0 0 0 0 0 108 125 119
1% 72 50 65 109 111 107 97 89 94

BH 5% 72 50 65 109 111 107 97 89 94
10% 71 62 66 115 115 113 98 90 95
1% 83 77 77 107 116 104 101 94 99

NC 5% 29 40 36 116 118 102 113 116 111
10% 29 37 16 116 118 94 113 116 107

Total number of scenarios : 133

Table 6.8: Nr. of scenarios with improvement w.r.t. the uncapacitated model

The first criterion considered for the robustness (i.e. the number of violated capacity
constraints) does not show a significative improvement (just in the half of the sce-
narios there are betterments, also like a fifty-fifty probability). The source delays we
generate are not so big that the delay propagation extends itself to the whole consid-
ered area, hence the amount of capacity constraints involved in the problem is limited.
Nevertheless it is really useful to show the weakness of the Bonferroni correction,
which is not able to improve the solution of the uncapacitated model in any test (see
Tables 6.2 and 6.3). The improvements related to the other corrections are not so
significative to be considered as reasons to state the predominance of a particular set
of “virtual” constraints (as it can be seen in Figure 6.2).

Concerning the second criterion (i.e. the cost in seconds of the violations) we can see
that both Benjamini-Hochberg and no multistatistical correction improve the uncapac-
itated solution in more than 80% of the scenarios. The linear regression denoted by
B is more effective, improving the results in almost 90% of the scenarios. The Bon-
ferroni correction instead does not show any sign of betterments (see Tables 6.4 and
6.5 and Figure 6.3). Figure 6.3 shows clearly how the BO set performs worse than the
other sets, independently from the choice of quantile. The same figure also shows how
the NC sets overcome in performance the BH sets in most of the scenarios. Moreover
the values of the functions corresponding to the 1% NC sets are evidently higher than
the values of the sets 5% NC and 10% NC It is not possible to highlight any strong
difference between the sets NC 5% and NC 10%.

Only considering the third robustness criterion the Bonferroni correction shows some
improvements compared to the solution of the uncapacitated model, but they are so
small that we can neglect them. Instead both Benjamini-Hochberg and no multista-
tistical correction enhance the solutions up to 90% betterment (see Tables 6.6 and 6.7
and Figure 6.4). Figure 6.4 shows again a predominance of the NC sets against the
BH sets, and the similarity of the performance of NC sets in the case of 5% and 10%
quantile.

It is important to remark that the improvement in one criterion does not always imply
an improvement in the other two criteria. We found, however, a positive correlation
(with values 0.6) between the improvements in the second and third criteria. For
the BH and NC sets we observed in 75% of the scenarios an enhancement in both the
criteria. In the best case, when the price of correction is improved up to 90%, the value
of the second function is reduced of almost 85%. Concerning the capacity constraints
we can not identify any significative correlation with the other two robustness criteria.
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6.3 Final consideration

In average we could observe an improvement of 10% - 17% (with respect to all three
considered criteria) in the case of Benjamini-Hochberg multistatistical correction.
Avoiding multistatistical corrections delivers a slightly bigger improvement (15% -
20% for all the considered criteria).

Concerning the linear regression it is not easy to state which one of the suggested
models (A, B or D) is better. Their average values are really close to each other.

Alternative B seems to be slightly stronger with respect to the first two criteria. This
predominance can be due to the large amount of simulations executed (133 scenarios
can be seen as four and a half months of daily registrations), as already observed in
Chapter 5.

Alternative D also shows a quite good performance, which we ascribe to the definition
of very small slack times. The considered stations are really close to each other, hence
the traveling times are seldom bigger than fifteen minutes, especially thanks to the
intermediate delay measurements (events marked as special).

Even if the results do not show a clear predominance of our suggested model (no
multistatistical correction and regression A), this set of “virtual” constraints provides
a good improvement on the robustness of the solutions. The choice of a quantile of
10% does not bring a reasonable enhancement if compared to a 5% quantile.
To summarize, we do suggest to transform the dependencies corresponding to the Tri-
graph output without multistatistical correction and with a 5% quantile into “virtual”
constraints of the model, by the application of the linear regression A.
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Conclusion

Ich verstehe nur Bahnhof.

German idiomatic expression

In this thesis we have been concerned with the analysis of the capacity constraints in
the Delay Management problem for the railway system, from both a theoretical and a
practical point of view. As the title suggests, our aim was to find a new formulation
for the bonds, that could be inserted in the corresponding uncapacitated Macromodel
of the problem, increasing the robustness of the solution without requiring a detailed
knowledge of the system infrastructure.

The Delay Management problem has been described as a directed graph (Event-
Activity-Graph) and it has been proved to be NP-complete. Our formulation of the
problem has been compared to the ones of other research groups to highlight similar-
ities, advantages and drawbacks. Altogether it appears easily readable and adaptable
to represent all the aspects of the problem.

Core of the work was the investigation of the delay dataset through a stochastic anal-
ysis. The measured arrival and departure delays have been considered as observa-
tions of random variables, to which different stochastic algorithms (in particular three
graphical models) have been applied, in order to determine the dependencies among
the disturbances. Three methods have been used for the first time on the railway prob-
lem: two of them are classical procedures (Full Conditional Independence Graph and
Covariance Graph) while the third one (Tri-graph) has been introduced only in 2004
from Wille and Bühlmann (ETH Zürich). This method has in this thesis one of its first
applications outside the genetic field.

The graphical method procedures for the identification of the constraints have been
implemented in R and validated through applications to datasets reporting train de-
lays in the Harz area. These data have been placed at disposal of the Optimization
Group (Prof. A. Schöbel) of the NAM Institute in the context of the DisKon project
(Disposition und Konfliktlösungsmanagement für die beste Bahn). Different samples
have been tested to evaluate the influence of the amount of variables and observations
on the methods. The results obtained either using a multistatistical test (Bonferroni,
Benjamini-Hochberg) or without correction, have been compared for different values
of the quantile (1%, 5% and 10%). The edges pointed out by the Tri-graph have been
subdivided into four groups corresponding to waiting, driving, virtual activities and
errors. Due to the lack of information about the timetable on which the data are based,
it has not been possible to make any statement on the changing activities. Further
comparisons have been carried out just on the pointed “virtual” activities.

The Full Conditional Independence Graph method could not be applied but in small
samples, due to the singularity of the covariance matrix. The Covariance Graph is
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penalized by the transitivity property of the covariance, which largely increases the
cardinality of the output. The Tri-graph method, although not completely free from
the transitivity property, is able to confine its effects. When applied to a “large” data
sample the Tri-graph points out up to 90% of the original waiting activities and nearly
80% of the driving activities. Even if the size of the sample is reduced to one fifth of
the original, the Tri-graph is still able to capture 40% of the “virtual” activities.

As common in mathematics, we had to face with some challenging problems along
the way. Firstly, the assumption on the distribution of the delays. The analysis we
carried out could not prove the normal distribution of the variables required by the
graphical methods, but up to now it has not been possible to find any distribution that
fits the delays data in any possible contest. We can trace this problem back to the un-
availability of a standard procedure to measure the delays. Further researches on this
direction are recommended, to analyze properly the behavior of the railway system.
Secondly, the transformation of the edges pointed out by the Tri-graph method into
time constraints of the uncapacitated model. The solution we considered is a linear
regression on the pair of variables corresponding to each edge. This choice is quite
satisfactory, since it is coherent with the theoretical definition of the delay and the
slope of the approximation results really close to one in case of waiting activities.
In general, we should deeply consider the influence of the slack times in these con-
straints, especially in the case of driving and “virtual” activities.
Additional investigations on the robustness of the new formulation should be con-
ducted. A first step on this directions has already been done in the last chapter of
this thesis, where an analytical comparison between the Macromodel and our Meso-
model (i.e. Macromodel plus “virtual” constraints) has been performed. The concept
of robustness is however too broad to consider our analysis exhaustive. Nevertheless,
our model improves by 18% the robustness of the uncapacitated solution according
to the three considered criteria (number of violated headways, cost in seconds of the
violations and price in seconds to correct the violations).

Though the literature on capacitated problems and delay propagation is abundant, we
did not find any other research group that applied stochastic approaches to identify
the “important” capacity constraints of the model (whatever important means). The
stochastic analysis was limited to identify the distribution of the delays so that this
information could be used in the simulation of the delay propagation. This makes
difficult to judge the results we obtained so far, since they are the first of their kind.
But, as a Chinese proverb says, the journey of a thousand miles must begin with a
single step.

Figure 7.1: . . . just an “ironic” conclusion . . .
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I have no objection to the study of likelihood
as such.

Sir HAROLD JEFFREYS
English mathematician and statistician (1891-1989)

A.1 A short introduction

The best description of a phenomenon is that which provides the maximum probability
of arriving, as a result of measurements, at exactly those values of the quantities being
measured which have been actually obtained.

The concept of likelihood (see [24]) is closely related to the concept of probabil-
ity but while the probability speaks about future events, the likelihood is related to
past events, since it moves from the outcome.
When we speak about the probability of an event we are simply assuming some kind
of model, to which we can apply some law of probability to make inferences or pre-
dictions based on probabilistic information.
In the real world few things have fixed probabilities, so the notation of conditional
probability allows us to incorporate other potentially important variables into the
model:

P(X | P) = the probability of an event X depending on model parameter P

whereas X is the variable and P is constant. The likelihood is the hypothetical proba-
bility that a probabilistic model would yeld a specific outcome, i.e. an event that has
already occurred:

L(P | X) = likelihood of the model parameter P given the data X.

whereas P is the variable and X is fixed. For sensible models it is possible to see that
certain data are more probable than other data. The aim of the Maximum Likelihood
Estimator, MLE, is to find the hypotheses (e.g the parameter values) that make the
observed data most likely.

Definition A.1 The likelihood, L(H | X), of a hypothesis H given the data X and a
specific model, is proportional to the probability P(X | H), the constant of proportion-
ality being arbitrary: L(H | X) ≈ P(X | H)

Without loss of generality, we will consider L(H | X) = P(X | H). (♠)
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A.2 Computational Problem

There are some features of the previous definition which are worth emphasizing.

• Sometimes it is possible to define the likelihood as a differential function, some-
times not, so we have to evaluate it by points. If the model has a lot of parameters, the
space (of the parameters) will grow up very quickly and it will be virtually impossible
to evaluate the MLE exhaustively.

• If we do a lot of tests, we will have as outcome a large set of data, and we can
spend a lot of time just evaluating the coefficients of the likelihood function. Since
those coefficients are fixed we can omitted them but then, to keep a meaningful scale
for the likelihood function, we need to consider the ratio of the likelihood.

• It can also happen that in the likelihood function it is necessary to multiply a lot
of small numbers together. The result will end up very quickly as a number that is
too small to be represented by any calculator. A possible solution is to consider the
likelihood logarithm instead of the likelihood function. In fact one of the property of
the logarithmic function is log ( a · b ) = log ( a ) + log ( b ).
When we optimize the log-likelihood with respect to the parameters of the model
(note: we minimize the negative of the log-likelihood), we also optimize the likeli-
hood since there is a one to one relationship between numbers and their logarithm.
We will indicate the log-likelihood as LL(H | X).

• Occasionally there does not exist just a set of parameters that uniquely optimize
the log-likelihood, so we can have under identification models.

• If the log-likelihood has local minima, to avoid considering one of them as ap-
proximation for the parameters, it is necessary to iterate the procedure: some starting
points Ai (first guess values for the parameters) are specified and they are given as
input to some optimization algorithm that will find the (local) minima Bi.

Figure A.1: Likelihood function with
local minima

Ai are the first guesses ∀i
Bi (local) optimum found moving from Ai

We need to compare the Bi in order to choose the
(global) optimum, i.e. mini Bi

For the success of the procedure we need a well
specified model, an appropriate optimization algo-
rithm and sensible starting values.

A.3 The Likelihood Ratio Test

Generally our aim is not to estimate the parameters of the model, we just want to know
if they are (or not) different from some specific values (significantly different).
Given a paramenter ω, we fix a more restricted null hypothesis H0 : ω ∈ Ω0 (e.g
the parameter ω is equal to zero) and an alternative hypothesis H1 : ω ∈ Ω1 (e.g the
parameter ω is not zero) . The hypothesis H0 corresponds to the “reduced model” and
H1 to the “full model”.
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Definition A.2 The Log-likelihood Ratio of two hypotheses given a sample of data is
the ratio of the log-likelihood function evaluated in the two different cases.
The ratio is usually quoted as a function:

λ(X) =
LL(H0 | X)

LL(H1 | X)

One tends to favor H0 if the Log-Likelihood Ratio is high, and H1 if it is low. The
Likelihood Ratio indicates in which cases we should favor H0 over H1. The rejection
region is

R = {X : λ(X) < c}

where c is determined so that sup
ω∈Ω0

Pω(X ∈ R) = α. The difficulty is to express c as a

function of α, because λ(X) might be a complicated function of X.
Instead of λ(X) we consider the logarithm of λ(X).

log(λ(X)) = log
(LL(H0 | X)

LL(H1 | X)

)
Using the logarithm property log

(a
b

)
= log(a) − log(b), we can rewrite the ratio as

log(λ(X)) = LL(H0 | X) − LL(H1 | X).

or equivalently as −2 log(λ(X)) = 2[LL(H1 | X) − LL(H0 | X)] . In this case the rejec-
tion region is R = {X : −2 log(λ(X)) > k} where k = −2 log(c).
We still need to find an answer to the question: which distribution for λ or −2log(λ)
should we choose in order to compute c or k?.

Theorem A.3 IfΩ0 ⊆ Rq is a q-dimensional space and ifΩ0 ⊆ Ω1 is an r-dimensional
subspace, then the regularity conditions state

∀ω ∈ Ω0 : −2 log λ→ χ2q−r as n → ∞.
The regularity conditions required for this theorem can be found in [34]. They are
based on the assumption that the data constitutes an i.i.d. sample (of values in some
Euclidean data-space) with the same density (known except for the unknown para-
menter ω) and that the MLE is locally unique, consistent and asymptotically normal.
These conditions include the restriction that Ω0 contains an open neighborhood of
the true value of the paramenter ω and that Ω0 lies in some sufficiently small neigh-
borhood of this true value, not depending upon the size of the data sample. In other
words, the main regularity condition assumes that the unknown parameters under the
null hypothesis are not on the border of the parameter space of the unknown parame-
ters under the alternative hypothesis.
An asymptotic rejection region can now be given by simply computing the (1 − α)
quantile k = χ21−α,q−r. The likelihood rejection region is therefore

R = {X : −2 log(λ(X)) > χ21−α,q−r}

The theorem (A.3) gives a general way of building the rejection region, although the
result is just asymptotic, i.e. the size of the test is only approximatively equal to α (the
approximation becomes better when the sample n increases). A general answer to the
question “how large should n be?” is unfortunately not define.
To summarize, if we multiply the Likelihood Ratio test for a factor 2, we get a quantity
2[LL(H0 | X) − LL(H1 | X)] that has a Chi-squared distribution, χ2, with degree of
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freedom equal to the difference between the number of parameter being estimated
under H1 and H0. (E.g under the hypothesis H0 = (p = 0) and H1 = (p , 0), the
degree of freedom of the Log-Likelihood Ratio is 1) so that the result of the test can be
compared to the critical significance level of χ2 with the calculated degree of freedom.
If the value of the Log-Likelihood Ratio test is less then the critical value, we have no
reason to reject the null hypothesis.

A.4 Errors

Hypothesis tests are usually done in four steps:

1. formulate the null hypothesis H0 and the alternative one H1;

2. identify a statistic test (e.g. the Log-Likelihood Ratio test) to say if H0 is correct
or not;

3. compute the P-value, which is the probability of the hypothesis H0 being true;

4. compare the P-value with a significant value α. If the P-value is less than α, the
observed effect is statistically significant, so the alternative hypothesis is valid.

The value of the parameter α is chosen in a four level of significant scale:
• α = 0.01 if the P-value≤ α the test is high significant ⇒ we reject H0;
• α = 0.05 if the P-value≤ α the test is statistically significant ⇒ we reject H0;
• α = 0.10 if the P-value≤ α the test is is tending toward statistical significance⇒ we usually do not reject H0;
• α > 0.10 if the P-value> α the test is not statistically significant ⇒ we do not

reject H0.

Using statistic test to see if a hypothesis is significant or not, we can introduce some
errors. We distinguish between two kinds of error:

• Type I: False Positive, that is we reject H0 when it is true.
Possible reason: a not representative sample or presence of outliers.

• Type II: False Negative, that is we accept H0 when it is false.
Possible reason: a small size of the sample or a large variance of the data.

Figure A.2: MLE errors of type I and II
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