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Chapter 1 

 

General introduction 

 

 

 
 

 

 

 

Forest margin in the study area of Toro, showing the forest border of the Lore Lindu 
National Park (Sulawesi) in the background and cacao agroforestry in the foreground. 
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Tropical forests, biodiversity and human well-being 
Deforestation accompanies human development since centuries. While in historical 

times forest reduction occurred especially in the temperate zones of the industrialized 

Europe, major areas with deforestation are currently tropical rainforests (MEA 

2005). Taking into account some uncertainties in estimating deforestation rates, due 

to a lack of detailed remote sensing data, a net annual loss of primary tropical forest 

worldwide from 1990 – 2000 of 15.2 million hectares is a realistic estimation (FAO 

2001). Particularly Southeast Asia suffers from deforestation, with an annual 

deforestation rate of 0.91 % between 1990 and 1997, compared to Latin America 

(0.38 %) and Africa (0.43 %) (Achard et al. 2002). 

Forests, however, provide essential services for human well-being, comprising 

social, economic, ecological, cultural and spiritual needs (Forest Principles 1992). 

Maintenance of the world’s biodiversity is a major service provided by forest 

habitats and because all types of services relate to each other in different ways it is 

crucial for the maintenance of other services (see Chapter: Biodiversity and 

pollination). Biodiversity does not just respond to changes in climate, resource 

availability or disturbance, it also has the potential to influence ecosystem processes. 

The decline of biodiversity has therefore also focused attention on the implications of 

species losses for the maintenance of ecosystem functioning (Tilman et al. 2006). 

Provision of these services is at risk, when deforestation is ongoing at the current 

rate. 

However, species richness, as one scale of biodiversity, is under threat due to 

anthropogenically caused extinctions. Even careful estimations indicate a current 

species extinction rate several orders of magnitude higher than historical background 

rates (extinctions per million species per year due to natural processes) 

(Groombridge 1992, Regan et al. 2001). This is mainly a result of species loss in 

tropical forest, where 50 % or even 90 % of the world’s species occur in an area 

representing 6-7 % of the earth’s surface (Groombridge 1992). The main drivers of 

tropical deforestation are agricultural expansion, wood extraction and infrastructure 

extension with different agricultural activities consuming most of the primary 

tropical forest area (MEA 2005). Currently, agricultural land is still expanding in 70 

% of the world’s countries. One approach in conserving tropical biodiversity is 

bringing forests under protected status, but as it is difficult to put large enough areas 

of primary forest under total protection and effective protection particularly in 
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developing countries is often hard to implement, the maintenance of forest species in 

managed forest areas, such as agroforestry systems is of increasing interest. 

 

Agroforestry systems and conservation 
Agroforestry systems involve at least one woody perennial plant species and even in 

the simplest form they are ecologically and economically more complex, than 

monocropping systems (Nair 1993, Rice & Greenberg 2000). Management systems 

range from cacao and coffee agroforestry with diverse shade tree layers to low 

diverse oil palm plantations (Aratrakorn et al. 2006). Tropical cacao and coffee 

agriculture comprise a variety of differently intense used agroecosystems, integrating 

agroforestry with a high diversity of shadow tree species protecting especially the 

young crop plants against solar radiation, or unshaded monocultural plantations 

(Perfecto et al. 1997, Perfecto et al. 2007). Agroforestry systems offer several 

environmental services, such as soil improvement, carbon storage, water quality 

amelioration, flood prevention and conservation of biodiversity (Nair 2007). The 

potential of agroforestry systems due to the high diversity of the shadow tree 

community and the floral complexity of a multiple canopy layer including 

understorey (coffee and cacao) and overstorey (shadow and fruit trees), has focused 

scientific attention on agroforestry systems for the conservation of animal (Klein et 

al. 2002, Tylianakis et al. 2006, Dietsch et al. 2007, Steffan-Dewenter et al. 2007) 

and plant species (Backes 2001). The multiple canopy layers in tropical forests are 

crucial for species richness in the forests, but the contribution of the forest canopy for 

species richness depends on the taxon under examination. Most authors show highest 

diversity in the canopy of forested habitats (Erwin 1982, Dial et al. 2006), while a 

few found equal or more species for certain taxa in the understorey (Schulze et al. 

2001, Stork & Grimbacher 2006). Agroforestry systems perfectly match the 

requirements of food production and biodiversity conservation in ecoagriculture, but 

greater understanding of their conservation potential is necessary (Nair 2007). 

However, traditional coffee and cacao agroforestry is increasingly converted to sun-

grown monocultures, thereby putting environmental services at risk (Perfecto et al. 

1997, Siebert 2002). This land-use intensification has already been shown to reduce 

biodiversity (Perfecto et al. 1996, Donald 2004). 
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Biodiversity and pollination 
Expansion and intensification of agricultural landscapes on the cost of diverse 

systems such as agroforestry, do not just put species richness at risk, but also 

ecosystem functions (Perfecto et al. 2007, Priess et al. 2007, Steffan-Dewenter et al. 

2007). The link between biodiversity and ecosystem functioning is of increasing 

interest, as the maintenance of ecosystem functions is a powerful argument for 

decision makers in conservation of species richness (Hooper et al. 2005, Tilman et 

al. 2006). High species richness is hypothesized to increase a particular function due 

to niche complementarity from species-specific differences in resource use (Tilman 

et al. 1997, Hooper et al. 2005, Cardinale et al. 2006). A major ecosystem function 

in agricultural landscapes is the pollination of cash crops, which has recently been 

related to declining pollinator diversity (Kremen et al. 2002, Klein et al. 2003). 

Animal pollination, particularly via the taxon Apidae is extremely important for 

human food production (Klein et al. 2007), but under threat due to anthropogenic 

activities, reducing pollinator diversity (e.g. Steffan-Dewenter et al. 2002, 

Tscharntke et al. 2005, Biesmeijer et al. 2006). The reliance on a diverse native bee 

community for crop pollination is also increasing because managed colonies of the 

honeybee decline and wild bees may compensate for this (Kremen et al. 2002, Klein 

et al. 2003, Klein et al. 2007). 

 

Research objectives 

The objectives of the present work ‘Functional diversity of Hymenoptera along a 

gradient of agroforestry management in Indonesia’ were 

(1) to evaluate the contribution of agriculture, in particular agroforestry systems, for 

Hymenoptera richness  

(2) assess the importance of different strata for species richness in primary forests 

and agroforestry  

(3) to test the importance of Hymenoptera diversity for ecosystem functioning and 

(4) to assess the influence of habitat quality on temporal density patterns of a pest 

feeding wasp in agroforestry systems. 

The study was part of the subprogramme C3 (Plant-insect interaction and 

biodiversity on cacao in relation to local and regional land-use management) within 

the research programme SFB 552 ‘Stability of Rainforest Margins in Indonesia’ 

(STORMA), in the periphery of the Lore Lindu National Park (Sulawesi). 
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Study region and study systems 
The study took place in Central Sulawesi (Indonesia) on the western margin of the 

Lore Lindu National Park. Long isolation from the mainland and the location 

between the Wallace and Weber biogeographic line (Audley-Charles 1983) caused 

high endemism rates for several taxonomic groups on the island of Sulawesi, making 

it one focus area for global biodiversity conservation (Kessler et al. 2005, Sodhi et 

al. 2005, Veddeler et al. 2005). 

The National Park covers an area of about 2,290 km2 and includes lowland and 

montane forests with an altitude range of 200 – 2,610 m above sea level. In 2005 

average annual rainfall in the study area was 2480 mm, temperature 24.2 oC and 

humidity 84 %. 

 

a. b. 

 
 

Figure 1: Map of Sulawesi with the whole STORMA research area in pink a) and the location of the 

Lore Lindu National Park in Sulawesi b). The bold arrow is pointing at the exact location of Toro. 

Maps are provided by Dr. Stefan Erasmi, University of Göttingen. 

 
The Park is surrounded by different land-use systems, comprising agroforestry 

systems such as cacao (Coffea spp.) and coffee (Theobroma cacao), irrigated rice 

fields, slash-and-burn cultivation with annual crops, permanent rainfed cultivation 

with annual crops, and home gardens with mixed crops. In the 1990s, coffee has been 

reduced in favour of cacao in Sulawesi and other tropical regions, due to the rising 

 w 
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market price of this internationally-traded cash crop, leaving shaded cacao as the 

major agroforestry system (Belsky & Siebert 2003). 

The study sites were situated in the surrounding of the village Toro in the Kulawi 

Valley (E 120o2’, S 1o30’, 800-1100 masl), 100 km south of Palu, the capitol of the 

province Central Sulawesi. The landscape is formed by a small scaled mosaic of 

primary and disturbed submontane forests, agricultural areas, such as cacao 

agroforestry systems with different land-use intensities and openland, such as 

pastures, paddy field, fallow land and grasslands. We selected plots comprising 

primary forests, cacao agroforestry systems and openland. 

The primary forest plots were traditionally used for rattan extraction, but no timber 

extraction occurred and the canopy was closed. The plots were located within the 

national park and at least 300 m from the forest edge, to avoid edge effects.  

The agroforestry systems formed a gradient in land-use intensity, which was 

according to the composition of shade tree species. We distinguished three different 

intensities of land-use in the agroforestry systems: 

- Low management agroforestry systems include primary forest trees as shade trees, 

which retained after establishing cacao plantations in the understorey. Cacao is the 

first cash crop planted in these systems. Large tree density is lower, but the canopy 

structure resembles that of primary forest more than all other forested habitats. 

- Medium intensity agroforestry systems comprise a variety of shade tree species, but 

they were entirely planted by farmers or regrew after clear cutting. Planted trees 

include fruit and timber trees. No large trees from primary forests persisted and the 

canopy cover is less diverse and less dense compared to low intensity systems. 

- High intensity agroforestry systems had only a few planted shade tree species, such 

as Gliricidia sepium Jacq. and Erythrina subumbrans Hassk.. These legume species 

were non-native trees, planted to increase soil nitrogen content. The canopy was 

increasingly open and the duration of the plantation exceeded 20 years. 

All agroforestry plots underwent frequent agricultural activities, such as mechanical 

and rarely chemical herb removal, fertilization with litter ash, urea or TSP 

(Triplesuper-Phosphate) and pruning of the cacao trees. A dense herb layer remained 

during most time of the year. Besides cacao, farmers grew a variety of other cash 

crops in the herb layer and the understorey (e.g. Ananas comosus L. Merr., Capsicum 

annuum L., Coffea robusta Lind., Cucumis sativus L., Curcuma domestica Vahl., 

Cucurbita moschata Duch. ex Poir, Manihot esculenta Crantz., Solanum 
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lycopersicum L. and Vanillia planifolia Andr.) and many shadow trees also serve for 

fruit production (e.g. Arenga pinnata Merr., Artocarpus hererophyllus Lamk., Durio 

zibethinus Murr., Lansium domesticum Correa., Musa paradisiaca L., Nephelium 

lappaceum L. and Syzygium aromaticum M. & P.), making diverse and efficient 

multi crop plantations out of the agroforestry systems. In some high intensity plots, 

farmers started to remove all remaining shade trees, perpetuating the trend of land-

use intensification and simplification in agroforestry systems. 

The openland plots had trees of Gliricidia sepium used as living fences and were 

fallow land or sporadically used for cattle grazing and frequently planted with 

Arachis hypogaea L., Cucurbita moschata, Ipomoea batatas L. and Zea mays L. on 

small patches. They were closest to the village of all plots and located between paddy 

fields. 

We selected four replicates for each habitat type and each plot had a minimum core 

area of 30 x 50 meters with homogeneous land-use practices of the mentioned habitat 

type. 

 

Chapter outline 

In the second chapter I analyse the relationship between bee species richness and 

habitat quality in a tropical forested region. I compared tropical primary forests with 

different intensities of cacao agroforestry systems and openland in terms of bee 

species composition, using sweep netting along transect walks. I found highest total 

bee species richness in the openlands and lowest in the primary forests. However, 

species estimation and the additive partitioning method revealed that agroforestry 

systems had higher spatial beta diversity than the other habitat types. In addition, 

multidimensional scaling revealed that bee species communities in openlands were 

highly clustered, whereas the forested habitats had a much larger variety. The 

increased total bee species richness of the agroforestry systems compared to primary 

forests might be due to medium intensity anthropogenic disturbance and the high 

spatial heterogeneity of agroforestry systems because of high management diversity 

in the study area. Our findings point out the high potential of agricultural landscapes 

for the maintenance and even amelioration of a key functional group in the vicinity 

of the native habitat. 

In the third chapter I investigated the importance of the canopy along a management 

intensity gradient of forested habitats from primary forest to highly intense managed 
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agroforestry. I used standardized nesting possibilities (trap nests) to evaluate species 

composition of cavity nesting Hymenoptera in three different forest strata. Species 

richness in primary forests was highest in the canopy compared to intermediate 

height and understorey. This pattern reversed with land-use intensity, resulting in 

highest species richness in the understorey of high intensity agroforestry. 

Furthermore, agroforestry systems showed high spatial beta diversity and therefore 

significantly contributed to regional species richness. I discuss the influence of 

microclimate and food resource availability as the main factors shaping the observed 

patterns and show the uniqueness of primary tropical forests due to the importance of 

their canopy for species conservation. 

Chapter four addresses the contribution of species and functional richness to 

pollination and final crop yield due to niche partitioning. I observed and recorded the 

bee pollinator community in standardized pumpkin plantations in different habitats. 

Bee species showed characteristic spatiotemporal and size-related flower-visiting 

traits, allowing for classification of each species in distinct functional groups. 

Species and especially functional group richness were strongly related to seed set, as 

a surrogate of crop yield. This indicates increased ecosystem function due to 

complementary in resource use of different functional groups. 

In Chapter five I investigate seasonality of the tropical wasp Rhynchium 

haemorrhoidale (F.) (Eumenidae, Hymenoptera) along a land-use gradient from 

primary forest to high intensity agroforestry systems. R. haemorrhoidale is a solitary 

and cavity nesting pest predator and even in high intensity cacao agroforestry highly 

abundant. The species showed strong seasonality, independent of habitat type, in 

abundance and body size. I discuss a combination of various reasons for the observed 

patterns, such as climate, food supply and natural enemies (parasitoids, 

entomopathogenic organisms). 
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Relative contribution of cacao agroforestry, rainforest and 

openland to local and regional bee diversity 
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Apis dorsata (Fabr.) visiting Hyptis capitata (Jacq.) in a cacao 
agroforestry system in Toro, Sulawesi. 
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Summary 
Due to their potential in species conservation, agricultural landscapes become 

increasingly important to counteract global species loss, but little is known about the 

relative importance of natural habitats and different agricultural areas. We 

investigated tropical primary forest, cacao agroforestry systems of varying land-use 

intensity and openland in Sulawesi (Indonesia) in terms of their contribution to the 

native bee community on different spatial scales. Furthermore, we assessed the 

influence of canopy cover and flowering plants in the herb layer and understorey of 

the plots on bee diversity, because these characteristics shaped the habitat gradient 

from close canopy with few flowering plants in primary forests to non-forested, sun 

exposed habitats with high floral resources. 

Local bee density and diversity were highest in openland, followed by agroforestry 

systems and were lowest in primary forests, revealing the importance of herbaceous 

food resources, which were negatively correlated with canopy cover. In contrast, 

estimated numbers of bee species and beta diversity revealed highest regional bee 

richness in agroforestry systems, because of high community dissimilarity. The 

multidimensional scaling supported these findings, as the openland habitats showed 

highly clustered bee species communities. 

In conclusion, the bee community profited from the opening of the landscape as a 

result of agricultural activities, while agroforestry systems increased bee species 

richness especially on a regional scale due to high management diversity.  

 

Keywords: Apidae, biodiversity, Hymenoptera, land-use gradient, pollinator 

community. 
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Introduction 
More than 50 % of the world’s forests have been lost, mostly due to expanding 

agricultural land. This trend is ongoing in 70 % of the countries worldwide (MEA 

2005). Deforestation is threatening global biodiversity especially in biodiversity 

hotspots such as tropical Southeast Asia (Groombridge 1992, Castelletta et al. 2000, 

Giri et al. 2003). Many species can utilize both native and agricultural habitats, as 

shown for moths and mammals in the Neotropics (Ricketts et al. 2001, Daily et al. 

2003). Anthropogenic habitats might therefore be considered in conservation 

planning to reduce biodiversity loss (Daily 2001, Tscharntke et al. 2005 a). In 

particular coffee and cacao agroforestry, two globally important agricultural systems, 

receive growing attention for their potential in conservation of biodiversity (Perfecto 

et al. 1996, Klein et al. 2002, Tylianakis et al. 2006, Perfecto et al. 2007, Steffan-

Dewenter et al. 2007). They can provide appropriate surrogate habitats for many 

forest species, but the composition of these habitats is crucial for the maintenance of 

a native species community (Dietsch et al. 2007). Agroforestry systems include a 

range of different land-use intensities, from a diverse shade tree community 

containing primary forest tree species and a dense canopy cover to plantations with 

only a few planted shade tree species and low canopy cover (Perfecto et al. 2007). 

High biodiversity in agricultural landscapes is particularly important for the 

maintenance of ecosystem services, such as pollination (Kremen et al. 2002, Klein et 

al. 2003 a) and the most important group performing this ecosystem service are the 

Apiformes (Klein et al. 2007). However, the European honeybee is declining world 

wide, thereby increasing reliance on the diverse wild bee community for pollinating 

cash crops (Kearns et al. 1998, Klein et al. 2003 a, Kremen et al. 2004, Klein et al. 

2007). 

Studies relating the influence of disturbance and land-use intensity in different 

habitats to bee species composition apparently arrive to opposed conclusions. 

Agricultural intensification led to reduced species richness and abundance of the 

native bee community in North American watermelon fields (Kremen et al. 2002), 

while high anthropogenic disturbance lowered species richness of stingless bees in 

tropical forest habitats (Cairns et al. 2005). In contrast, bee species richness 

increased with decreasing forest cover in the landscape and was highest in 

agricultural fields compared to extensive forest, which resemble the natural habitat in 

a pine oak heath in a study of Winfree et al. (2007). Similarly, bee species richness 
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was higher in disturbed forests, compared to primary forest, in tropical Southeast 

Asia (Liow et al. 2001). Comparative studies of a broad range of habitats along a 

land-use intensification gradient from primary forests, managed agroforestry systems 

differing in land-use intensity to openland, and their relative contribution for bee 

species richness are missing. We expect that agroforestry systems increase species 

richness and density compared to primary forest due to increased floral density of 

herbs (including cash crops) and high management diversity. Furthermore, 

agroforestry systems might maintain higher species richness and density compared to 

openland, because forested habitats with open canopy offer both floral rewards and 

more suitable nesting sites for wood-nesting bee species (Klein et al. 2003 b). 

 

Methods 
STUDY REGIONS AND STUDY SITE 

The study was conducted in the western margin of the Lore Lindu National Park in 

Central Sulawesi (Indonesia) 100 km south of the region’s capital Palu. Study sites 

were located in an area of agricultural activity surrounding the village of Toro (E 

120o2’, S 1o30’, 800-1100 m above sea level) and in the primary forest where the 

village is embedded in. The landscape covers a mosaic of different habitats, from 

undisturbed primary and disturbed tropical forests to cacao agroforestry systems of 

differing management intensity and openland such as grasslands, pastures and paddy 

fields. We surveyed five different habitat types in our study region, comprising a 

range of environmental conditions. The five habitat types were primary forest (PF), 

three different management intensities of cacao agroforestry and openland (OL) such 

as grassland and fallow land with only few trees. We refer to a plot as a site with 

homogeneous land-use practices of the mentioned habitat type and with a minimum 

core area of 30 x 50 m. The cacao agroforestry systems formed a gradient according 

to the composition of shade tree species and associated canopy cover: LIA = low 

management intensity agroforestry with natural forest trees as shade trees. MIA = 

medium intensity agroforestry systems with a diverse shade tree community entirely 

planted by farmers. HIA = high intensity agroforestry plots with few planted shade 

tree species, mainly Gliricidia sepium (Jacq.) and Erythrina subumbrans (Hassk.). 

Forest distance was not significantly different between habitat types (r2 = 0.12, F3,11 

= 0.5, p = 0.69; OA: 113.5 ± 8.6, n = 3; HIA: 93.3 ± 9.9, n = 4; MIA: 115.3 ± 10.5, n 

= 4; LIA: 105.8 ± 18.9, n = 4). Four replicates were chosen for each habitat type, but 
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we were forced to abandon one primary forest plot and one openland plot. Extensive 

agricultural activities in these two plots, such as clear cutting and corn cultivation, 

fundamentally changed the habitat character. Canopy cover was measured with a 

spherical densiometer (Model-C, Robert E. Lemmon, Forest Densiometers, 5733 SE 

Cornell Dr., Bartlesville, OK 74006) in one meter height (below cacao tree canopy) 

from two persons independently at twelve positions within each plot and varied 

between habitats (primary forest plots: 90.9 % ± 5.1 %, n = 3; low intensity plots: 

90.5 % ± 1.9 %, n = 4; medium intensity plots: 85.5 % ± 4.7 %, n = 4; high intensity 

plots: 78.3 % ± 6.5 % , n = 4 and openland: 16.3 % ± 11.2 %, n = 3). Between cacao 

and shade trees farmers grew a variety of cash crops. Aubergine (Solanum 

melongena L.), chilli (Capsicum annuum L.), clove (Syzygium aromaticum L.), 

coffee (Coffea robusta Lind.), cucumber (Cucumis sativus L.), curcuma (Curcuma 

domestica Vahl.), pineapple (Ananas comosus (L.) Merr.), pumpkin (Cucurbita 

moschata Duch. ex Poir.), tapioca (Manihot esculenta Crantz.), tomato (Solanum 

lycopersicum L.) and vanilla (Vanillia planifolia Andr.) are among the most 

frequently planted crops contributing to the floral diversity within the plots. 

Furthermore, agroforestry systems passed a variety of agricultural activities 

throughout the year and differed in plot history. Both aspects contribute to the 

management diversity of agroforestry systems. 

 

SAMPLING OF BEE DIVERSITY 

Bees (Hymenoptera: Apiformes) were recorded during the morning between 10.30 

and 12.00 a. m. in a standardized way along six random transects each 4 m wide and 

30 m long. Each bee was caught if possible and the visited plant was noted. We 

additionally caught slow flying bees, which were searching for flowers, but we did 

not consider fast passing bees, as they may be ‘tourists’ that do not belong to the plot 

specific apifauna. To account for temporal species turnover, we conducted five 

sampling phases with each plot visited once per phase: 1: 22 March 2005 – 20 April 

2005, 2: 26 April 2005 – 03 June 2005, 3: 08 June 2005 – 21 July 2005, 4: 10 

January 2006 – 09 February 2006 and 5: 28 February 2006 – 17 March 2006. 

Affirmation and identification of difficult bee species was done by Stephan Risch 

from Leverkusen, Germany. Voucher specimens are kept at the Bogor Agricultural 

University (IPB) in Indonesia. Density of each flowering plant species and flower 

diversity in the herb layer and understorey were recorded subsequent to each transect 
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walk. Flower density of each plant species per transect was estimated, whereby 1 was 

equivalent to a single flower of one species and 100 to a species that covers the 

whole area with many flowers. The six transect walks per observation morning and 

plot covered almost half of the plot core area (720 m2). Plant species were identified 

with the help of Dr. Ramadhanil Pitopang from the Herbarium Celebense at the 

Tadulako University in Palu (Indonesia) using the local collection and library. For 

standardization we conducted transect walks only on sunny and calm days, but to test 

for the effect of minor daily climatic differences on bee species composition, we 

recorded temperature, humidity and light intensity. Measurements were done at the 

beginning, in the middle and at the end of each observation morning and then 

averaged. We used a thermo-, hygro- and luxmeter (Mavalux Digital, Gossen) at a 

height of 2 m in the centre of the plot. Temperature and humidity were measured in 

the shadow and light intensity in an area receiving full sun. Furthermore, we 

measured the slope of each plot with a clinometer (Suunto PM-5/360 PC) at four 

distances within each plot and the four values were averaged. 

 

STATISTICAL ANALYSIS 

In a Spearman’s rank correlation matrix, temperature, humidity and light intensity 

were collinear (temperature & humidity: N = 86, R = - 0.86, p < 0.001; temperature 

& light intensity: N = 67, R = 0.45, p < 0.001; humidity & light intensity: N = 66, R 

= - 0.47, p < 0.001). We therefore used a PCA to reduce the total number of variables 

and extract one main factor (from now on: “climate”), explaining 75 % of the total 

variance to be used as a continuous predictor in the following analysis. We 

conducted two general linear models (GLM) to identify the factors that structure the 

pollinator community. The models included number of bee species and number of 

bee individuals as response variables, habitat type and phase as categorical 

predictors, climate and number and density of flowering plant species as continuous 

variables. Due to collinearity of density and species richness of flowering plants, we 

alternated the order of both continuous predictors. Phase was included as random 

effect. Post-hoc tests for differences between habitat types used Tukey’s unequal N 

HSD (Honestly Significant Difference) test. Values per plot and sampling phase of 

response and predictor variables were used for the statistical analyses. To test 

whether plant density depends on canopy cover or other plot variables, we conducted 
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a general linear model with plant density as response variable and canopy cover, 

slope and plot altitude as continuous predictors. 

We applied species richness estimation using Michaelis-Menten means (Colwell & 

Coddington 1994) for each habitat type for a given sample size and calculated the 

percentage of recorded number of species from estimated number of species. We 

randomly reduced the number of samples for the agroforestry systems to three, 

because we had only three replicates for primary forest and openland. 

We used the additive partitioning method to test for the contribution of spatial 

species turnover per habitat type (beta_spatial) and temporal species turnover per 

habitat type (beta_temporal) to regional gamma diversity (Lande 1996, Crist & 

Verch 2006, Gabriel et al. 2006) such that beta = gamma – alpha diversity. Diversity 

was partitioned in alpha-diversity (average number of species per plot (= replicate)), 

spatial beta-diversity (species richness per habitat type minus species richness per 

plot, averaged per habitat type) and temporal beta-diversity (species richness per 

habitat type minus species richness per phase, averaged per habitat type). We 

randomly reduced the number of replicates in the three different agroforestry systems 

to three. For each alpha, beta_spatial and beta_temporal as response variable, we 

used one-way ANOVA with habitat type as categorical predictor to test for diversity 

differences between habitats.  

To measure the plant and pollinator community distance between the plots we used 

the multidimensional scaling method. Each input matrix consisted of a Bray-Curtis 

similarity index calculated between each plot. 

Statistical analyses were carried out in Statistica (StatSoft, Inc. 2004.), version 7. 

www.statsoft.com.). The Bray-Curtis similarity index and species richness estimation 

were calculated using EstimateS (Colwell, R.K. 2005, version 7.5. Persistent URL 

<purl.oclc.org/estimate>). Residuals were tested for a normal distribution and log 

transformed if necessary. We used type-I (sequential) sum of squares for each model. 

We give arithmetic mean ± standard error in the text. 

 

Results 
In total 1207 bees belonging to 53 species were caught from flowers (86 %) or 

during search flight for flowers (14 %). We could identify 75 different flowering 

plant species in all five habitat types, of which 38 species were visited by a bee 
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during transect observations. For the other plant species we can therefore not judge 

attractiveness for bees and they were not included in the analyses. 

The bee community was determined by habitat type and plant density (Table 1a). 

Bee species richness varied significantly across habitats, with significantly lower bee 

richness in primary forests (1.54 ± 0.27 species per plot and sampling phase, n = 15) 

compared to all other habitat types (openland: 9.8 ± 0.92, n = 15; low intensity 

agroforestry: 4.26 ± 0.53, n = 20; medium intensity agroforestry: 4.85 ± 0.49, n = 20; 

high intensity agroforestry: 4.45 ± 0.6, n = 20) and significantly higher richness in 

openland compared to low and high intensity cacao agroforestry systems (Figure 1). 

Bee richness increased with increasing density of flowering plants (Figure 2), 

whereas sampling phase, climate and plant richness had no significant influence on 

bee species richness (Table 1a). 

We found similar results for bee density. Habitat significantly influenced bee density. 

Primary forest habitats had significantly lower and openland has significantly higher 

bee densities compared to all other habitats (primary forest 2.62 ± 0.64 individuals 

per plot and sampling phase, n = 15; low intensity 8.58 ± 1.6, n = 20; med intensity 

8.4 ± 1.28, n = 20; high intensity 9.3 ± 1.92, n = 20 and openland 43.73 ± 5.58, n = 

15). Bee density increased with plant density, whereas sampling phase, climate and 

plant richness did not influence bee density (Table 1b).  

Plant density as the only significant continuous predictor was negatively correlated 

with canopy cover (Figure 3), but independent of slope and plot height. 

 
Table 1 General linear models for the factors that influence bee species richness a) and density b). 
Bold letters indicate significant effects. 
a) 

Bee species richness Effect DF SS MS F P 

Habitat fixed 4 15.03 3.76 14.66 < 0.0001 
Phase random 3 0.04 0.01 0.05 0.99 

Climate fixed 1 0.01 0.01 0.04 0.84 

Plant species richness fixed 1 0.04 0.04 0.16 0.69 

Plant density fixed 1 2.16 2.16 8.42 0.006 

Error  50 12.81 0.26   
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b) 

Bee density Effect DF SS MS F P 

Habitat fixed 4 41.46 10.36 22.91 < 0.0001 
Phase random 3 1.19 0.4 0.87 0.46 

Climate fixed 1 0.04 0.04 0.09 0.77 

Plant species richness fixed 1 0.008 0.008 0.018 0.9 

Plant density fixed 1 7.86 7.86 17.35 0.0001 

Error  50 22.64 0.45   

 
 

 

Figure 1 Mean ± standard error of bee species richness along a gradient of land-use intensification per 
plot and phase. Significant differences between habitat types (p < 0.05) are indicated by different 
letters. 
 

 

Figure 2 Bee species richness in relation to plant density per plot and phase. Bee species richness 
increases with increasing plant density. Different habitats are represented by different symbols. 
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Figure 3 Influence of canopy cover on plant density in the understorey. Plant density, quantified with 
an index from 1 to 100, is decreasing with increasing canopy cover. 

 
The estimators revealed that all agroforestry systems had higher numbers of species 

(HIA: 39.1, MIA: 45.4, LIA: 40.8) compared to openland (38.6), when sample size is 

similar and primary forest had by far the lowest number of species (9.7). 

Accordingly, the percentage of recorded number of species from estimated number 

of species was lowest in the agroforestry systems (HIA: 64 %, MIA: 57.3 %, LIA: 

53.9) compared to openland (80.2 %) and primary forest (72.2 %). 

The additive partitioning showed significant differences between the five habitats in 

terms of alpha-diversity (R2 = 0.58, F4,66 = 22.74, p < 0.0001). Primary forest plots 

had a lower alpha-diversity and openland had higher alpha-diversity compared to all 

other habitat types. Spatial beta-diversity (differences between plots of one habitat 

type) (R2 = 0.75, F4,10 = 7.52, p = 0.0046) was significantly lower in primary forests 

compared to all agroforestry systems but not to openland. Temporal beta-diversity 

(differences between phases of one plot) (R2 = 0.79, F4,20 = 18.53, p < 0.0001) was 

significantly lower in primary forest plots compared to all other habitat types (Figure 

4). 

Multidimensional scaling revealed that bee and plant species composition was 

formed by habitat type, because species communities were ordered along the two 

dimensions according to land-use intensity (see arrows in Figure 5 a) and b)), 

whereas low intensity agroforestry (fine rings) was more similar to primary forest 

plots than medium and high intensity agroforestry. Furthermore, the openland plots 

were more clustered than all other habitat types and especially the bee community in 

openland strongly differed from all other habitat types. 
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Figure 4 Additive partitioning of species richness along a land-use intensification gradient with the 
five habitat types. Black bars showing the alpha-diversity fraction, grey bars the spatial beta-diversity 
(diversity between replicates) and the white bars the temporal beta-diversity fraction (diversity 
between phases). Different letters indicate significant differences between diversity levels within each 
habitat type. 

 
 a)      b) 

  

Figure 5 Multidimensional scaling of a) bee and b) plant species community. Points represent the 
species composition of a certain habitat (PF – primary forest, LIA – low intensity agroforestry, MIA – 
medium intensity agroforestry, HIA – high intensity agroforestry, OL – openland) with four and three 
replicates, respectively, shown by numbers. Larger distances between the points indicate larger 
distances in species compositions. Rings were used to group primary forests, agroforestry systems and 
openland. Fine rings comprise the low intensity agroforestry plots to visualize the vicinity of species 
composition to primary forest. Changes in community composition from forest to low, medium and 
high agroforestry and up to openland follow the direction of the arrow. 

 
Discussion 
Openland plots had highest bee species richness and abundance compared to 

agroforestry and forest plots, whereas agroforestry management type did not affect 

bee species richness and abundance. Even though forested habitats are closer to the 
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natural vegetation type than un-forested habitats they do not appear to be major 

habitats maintaining high species richness (Liow et al. 2001, Winfree et al. 2007). 

We show that semi-natural habitats provided better food supply in the understorey 

due to high flower density (Potts et al. 2006), which was negatively correlated with 

canopy cover (Bruna & Ribeiro 2005, Lindh 2005), resulting in higher bee richness 

and density. Canopy cover in low intensity agroforestry systems was very similar to 

primary forests, but flowering plant density was higher and thus bee richness and 

abundance. However, we sampled the herb layer and the understorey of the forested 

plots, and sampling the canopy, in particular in the primary forest, may change the 

picture (Hoehn et al. submitted). 

Due to the high species richness in tropical regions only a small fraction of the total 

number of species can be sampled especially in hyperdiverse insect communities 

(Summerville & Crist 2005). Therefore, we estimated real bee species richness 

within our habitats and found that all three agroforestry systems had higher numbers 

of species not just compared to the species poor primary forest, but also openland at 

a given sample size, contradicting the findings of our first model. The low 

percentages of recorded numbers of species from estimated numbers of species 

indicate underestimation of real bee species richness in agroforestry systems, when 

the increased beta diversity is disregarded. Openland had a significantly higher alpha 

but not beta diversity compared to all other habitat types. Agroforestry systems had a 

higher spatial beta diversity compared to primary forests, but not openland. High 

spatial heterogeneity appeared to be responsible for increased beta diversity in 

agroforestry systems compared to what may have been expected from the high alpha 

diversity in openland. The multidimensional scaling supports the positive effect of 

spatial heterogeneity on bee species richness. Bee communities of openland plots 

were highly clustered comprising a smaller area compared to forested habitats, which 

appeared to cover a larger variety of species compositions. Hence, agroforestry 

systems may maintain high regional bee species richness due to high management 

diversity and medium intensity disturbance as shown by Winfree et al. (2006), 

enhancing floral abundance and spatiotemporal habitat heterogeneity. Canopy 

disturbances in primary forests occur frequently due to tree fall gaps, resulting in 

increased vegetation density and insect richness and compared to interior forest 

(Dirzo et al. 1992, Bruna & Ribeiro 2005, Horn et al. 2005, Wunderle et al. 2005). 

Anthropogenic disturbances in agroforestry systems, such as opening of the canopy, 
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appeared to simulate and promote the positive effect of natural tree fall on the plant 

and thereby the bee community in our study. Therefore, we would have obtained a 

different picture, if we did not sample the closed primary forest, but forest gaps or 

edges. 

Forested habitats offer nesting sites for many bee species (Klein et al. 2003 b, Brosi 

et al. 2007), while openland provides better food resources in the herb layer and bees 

are known to often bridge different habitats providing different resources 

(Tscharntke et al. 2005 b). Therefore, bee diversity of human-dominated habitats 

may often depend on large areas of natural habitats providing nesting resources 

(Steffan-Dewenter et al. 2002), but floral resources may be similar or even more 

important (Westphal et al. 2003). 

In conclusion, the different habitat types strongly differed in their relative 

contribution to the bee community. The land-use systems in our human dominated 

tropical landscape strongly increased local and regional pollinator species richness 

increasing heterogeneity of the landscape. Local species richness was highest in 

openland, but the high beta diversity of agroforestry systems levelled off this 

difference, resulting in similar gamma diversity. However, farmers tend to remove 

shade trees in coffee and cacao agroforestry, thereby simplifying these systems 

(Perfecto et al. 1996, Steffan-Dewenter et al. 2007).  

Such reduction of heterogeneity in tropical landscapes will further reduce overall 

biodiversity and associated ecological function such as pollination service of wild 

and crop plants provided by the bee communities. 
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Summary 
1. High species richness in tree canopies, compared to understorey, is often assumed 

to be a clue in understanding tropical biodiversity, while experimental evidence is 

mixed. Here, we tested the hypothesis that vertical diversity patterns reverse in a 

gradient from natural rainforest to intensified agroforestry. 

2. We studied the variability in vertical distribution patterns of species richness, 

community composition and trophic interactions of cavity-nesting Hymenoptera 

along a land-use gradient of tropical forests. We experimentally exposed 

standardized trap nests in four different habitat types from primary forest to high 

intensity cacao agroforestry and in three different heights from understorey to tree 

canopy. We collected 7450 trap-nesting individuals from 32 species and 269 

individuals from four parasitoid species attacking Rhynchium haemorrhoidale (F.) 

(Eumenidae, Hymenoptera). 

3. Vertical changes in diversity were contingent on land-use intensity. Forest canopy 

harboured more species than the understorey, whereas low and medium intensity 

agroforestry systems showed no stratification and high intensity plots had highest 

species richness in the understorey. Species composition in primary forests differed 

from that in agroforestry systems. Agroforestry systems showed similar species 

compositions within one stratum, indicating vertical preferences of agroforestry 

species independent of land-use intensity. 

4. In contrast to expectations, forest plots showed similar alpha and beta diversity, 

whereas beta diversity (between sites) was higher in high and medium intensity plots. 

Apparently, management heterogeneity increased this regional turnover in 

Hymenoptera richness. Further, forest and high intensity plots did not show higher 

beta (between strata) than alpha diversity, due to only one high-diversity stratum, i.e. 

the forest canopy and the understorey in high-intensity agroforestry plots. 

5. The observed pattern in species richness and composition from tree canopy to 

understorey reversed across the management gradient from primary forest to high 

intensity agroforestry. The changes may be due to vertical food resource distribution. 

In primary forests, the canopy and in high-intensity agroforests, the herb layer 

appeared to provide greater resources. In addition high heterogeneity in land-use 

practices and thereby, high beta diversity of agroforestry systems, contributed to 

regional biodiversity and should be taken into account in conservation plans, 



Chapter 3                                                   Vertical distribution of forest Hymenoptera 
____________________________________________________________________ 

35 

complementing the preservation of primary forest with its unique species 

composition. 

 

Keywords: Additive partitioning of biodiversity, agricultural management, bee and 

wasp diversity, land-use gradient, multidimensional scaling.  
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Introduction 
Conversion of tropical rainforests to agriculture is ongoing at an unprecedented rate, 

particularly in Southeast Asia (Achard et al. 2002, Giri et al. 2003). Destruction of 

natural habitats and human land-use intensification are the most important drivers for 

biodiversity loss, especially in regions with high proportions of endemic species 

(Brooks et al. 2002). Conservation planning should therefore include low-intensity 

agroforestry systems as one strategy to reduce biodiversity loss in managed tropical 

landscapes, since these systems have been shown to provide suitable habitats for 

numerous forest species (Dietsch et al. 2007, Steffan-Dewenter et al. 2007). Two 

globally important agroforestry systems receiving growing attention for their 

conservation potential, coffee and cacao agroforestry, include shade tree diversity 

that ranges from highly shaded, highly diverse forest gardens containing primary 

forest tree species to plantations with only a few planted shade tree species and low 

canopy cover (Perfecto et al. 2007).  

The importance of the forest canopy for insect diversity is of increasing interest (Le 

Corff & Marquis 1999, Schulze et al. 2001, Dial 2006, Roisin et al. 2006, Stork & 

Grimbacher 2006), as this vertical component of the habitat appears to be partly 

responsible for the high species richness of tropical rainforests (Erwin 1982, Fermon 

et al. 2005, Dial et al. 2006). In contrast, Stork & Grimbacher (2006) found that 

beetle diversity does not significantly differ between rainforest canopy and ground in 

the Australian rainforest. Consequently, variation in the vertical distribution patterns 

of different taxa may have important implications for management recommendations 

to improve conservation benefits from agroforestry systems. For example, flower 

availability in the forest canopy can be expected to result in higher species richness 

of flower visitors such as bees and wasps (e.g. Apiformes, Eumenidae, Pompilidae 

and Sphecidae) in the canopy compared to the ground. However, in managed 

agroforestry systems with a less dense canopy, herbaceous ground vegetation may 

also support diverse Hymenoptera assemblages (Klein et al. 2003). Therefore, we 

hypothesize that vertical diversity patterns reverse from natural rainforest to 

disturbed forested land-use habitats, although comparative studies of primary forests 

and managed agroforestry are lacking. Altered habitat structure might also change 

species composition in different strata and thus modify biotic interactions such as 

parasitism and predation, as shown by Tscharntke (1992) and Kaneko (2004). 

Parasitism might cause hosts to seek enemy free spatial (Scheirs & De Bruyn 2002, 



Chapter 3                                                   Vertical distribution of forest Hymenoptera 
____________________________________________________________________ 

37 

Stireman & Singer 2003, Singer et al. 2004, Zvereva & Kozlov 2006) or temporal 

(Strohm et al. 2001) refuges. 

We investigated whether assemblages of trap-nesting Hymenoptera change in species 

richness and composition in different vertical forest layers along a land-use gradient 

from primary tropical forest to agroforestry systems of increasing management 

intensity. We expected food resource availability to be responsible for the vertical 

patterns. Collecting and rearing Hymenoptera from standardized traps has proven to 

be a valuable research technique in landscape ecology (e.g. Gathmann et al. 1994, 

Steffan-Dewenter 2002, Tylianakis et al. 2005, 2007), allowing a systematic 

comparison of habitat and stratum type with respect to community structure and 

trophic interactions. Parasitism rates were used to test whether enemy free space 

(forest height, habitat type) was important, or whether parasitism was related to host 

density (e. g. Tscharntke 1992, Teder & Tammaru 2003). 

 

Methods 
STUDY AREA 

We conducted sampling in the surroundings of the village of Toro (E 120o2’, S 

1o30’, 800-1100 m above sea level) about 100 km south of the region’s capital Palu, 

on the western margin of the Lore Lindu National Park in Central Sulawesi, 

Indonesia. Annual rainfall in the study area in 2005 was 2480 mm, average 

temperature was 24.2 oC and humidity 84 %. The landscape in this area is dominated 

by primary and disturbed tropical mountain forests, cacao agroforestry systems of 

differing intensity, and openland such as grassland and paddy fields.  

 

STUDY DESIGN 

We selected plots representing a gradient in land-use intensity, ranging from closed 

and diverse primary forests with high buffering abilities for microclimatic conditions, 

to high intensity agroforestry systems. The habitat types were (A) primary forest and 

(B, C, D) three different intensities of cacao agroforestry. Trap nest were placed 

within an area of 30 x 50 m of each habitat plot. The cacao agroforestry systems 

formed a gradient according to the composition of shade tree species: B = Low 

management intensity agroforestry with primary forest trees as shade trees. C = 

Medium management intensity systems with a diverse shade tree community planted 

by farmers. D = High management intensity plots with only a few planted shade tree 
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species (mostly the legume trees Gliricidia sepium (Jacq.) and Erythrina subumbrans 

(Hassk.)). Land-use practices within the agroforestry plots comprised mechanical and 

chemical herb removal and fertilization (Appendix Table 1), whereas a dense herb 

layer persists during most of the year. Four replicates were chosen for each habitat 

type. To test whether the density of flowering plants influenced the vertical species 

distribution of Hymenoptera, we estimated density of flowers in the herb layer along 

six transects, each 4 m wide and 30 m long in the core area of the study plot. The 

scale ranged from one (a single flower of one species) to 100 (a species that covered 

the whole area with many flowers). Estimation of flower density was accomplished 

on three visits per plot (except for one B plot with only two visits), with each visit 

covering almost half of the plot’s core area (720 m2). 

 

TRAP NESTS 

Trap nests offer standardized nesting sites for above-ground nesting bees and wasps 

and can therefore be used to experimentally study these insects (Figure 1). They were 

constructed from PVC tubes with a length of 28 cm and a diameter of 14 cm. 

Internodes of the reed Saccharum spontaneum (L.) (Poaceae) with varying diameter 

(3 – 25 mm) and a length of 20 cm were inserted into these tubes to provide nesting 

sites (following Tscharntke et al. 1998). Twelve trap nests per plot (four in each 

stratum) were installed from October 2004 till September 2005 in three different 

heights from understorey (U) and intermediate tree height (I) to the canopy (C), 

where we placed the trap nests with a crossbow and a line. Trap nests were checked 

every month and bee and wasp larvae were reared for later identification. 

Understorey was defined as below the cacao tree canopy and trap nests were placed 

1.5 m above ground. Intermediate height trap nests were placed above the cacao tree 

canopy and below the shade tree canopy (four meters above the ground in high 

intensity plots and seven meters in primary forest, depending on canopy structure). 

Due to technical constraints we placed the canopy trap nests in the lower part of the 

shade tree canopy. Here, trap nest heights varied between habitat type due to 

different canopy heights, with higher nests in primary forests (19.13 ± 0.44 m, n = 

16) and low intensity agroforestry systems (20.89 ± 0.75 m, n = 16) and lower nests 

in medium (16.36 ± 0.62 m, n = 16) and high intensity agroforestry systems (15.29 ± 

0.84 m, n = 16). Sticky glue was applied every month to the edge of the PVC tube to 
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deter ants from colonizing the trap nests. Individuals from the four trap nests per plot 

and stratum and the whole year were pooled for analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 
STATISTICAL ANALYSIS 

Stratification within habitats: To test for differences between strata and habitat type 

we used mixed effects models for each habitat type with species richness as response 

variable and plot (random factor) and stratum (fixed factor) as categorical predictors. 

We use the term “abundance” for the number of brood cells in the trap nests. We 

fitted a mixed-effects model with flower density as dependent variable, and habitat 

type (fixed effect), plot (random effect nested in habitat type) and plot visit (fixed) as 

categorical predictors. 

Community distance between habitats and strata: We used multidimensional scaling 

to measure community similarities between habitats and strata. The Bray-Curtis 

similarity index between each height in each habitat type was used for the input 

matrix. 

Additive partitioning of diversity within region and habitat type: We used the 

additive partitioning method such that beta = gamma – alpha diversity, to test the 

contribution of stratification and replicate to the overall diversity per habitat type 

(Lande 1996, Crist & Veech 2006, Gabriel et al. 2006). We partitioned diversity per 

habitat type in alpha-diversity (average number of species per plot (= replicate) and 

height), between-plot-diversity (beta-plot) and between-strata-diversity (beta-strat) to 

test the contribution of stratification to species richness in different habitat types. For 

Figure1 Understorey trap nest in a cacao agroforestry 
system. 
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each alpha, beta-strat and beta-plot diversity, we used one-way ANOVA with habitat 

type as categorical predictor to test for diversity differences within habitat.  

Parasitism rate: To analyze whether parasitism rates changed between different 

heights and habitats we fitted a mixed effects model with parasitism rate of the most 

abundant eumenid wasp host Rhynchium haemorrhoidale (F.) as the dependent 

variable, and habitat type (fixed effect), plot (random effect nested in habitat type) 

and strata (fixed) as categorical predictors. We considered only parasitoid species 

which actively entered the nests (e.g. Chrysis sp.) and did not consider the few 

species which got into the nests via phoresis (transportation into the nest on the body 

of the nest building adult e.g. Trigonalyidae, Ripiphoridae). We used Spearman’s 

rank correlation to test whether parasitism rate depended on host density. 

ANOVA, GLM and multidimensional scaling were carried out in Statistica (StatSoft, 

Inc. 2004, version 7. www.statsoft.com.). The Bray-Curtis similarity index was 

calculated using EstimateS (Colwell, R.K. 2005, version 7.5. Persistent URL 

<purl.oclc.org/estimate>). All residuals were tested for a normal distribution and 

transformed if necessary. We used type-I (sequential) sum of squares for each model. 

We give arithmetic mean ± standard error in the text. 

 

Results 
In total we found 7,450 brood cells of 33 species including Apiformes, Eumenidae, 

Pompilidae and Sphecidae. The eumenid wasp Rhynchium h. (with the two 

subspecies R. h. haemorrhoidale (Fabricius) and R. h. umeroatrum (Gusenleitner)) 

accounted for 72 % of all trap-nesting individuals (Appendix Table 2). We also 

found 269 parasitoids of R. haemorrhoidale coming from four species (Chrysis sp. 1 

(smaragdula group), Chrysis sp. 2 (angolensis group), one ichneumonid wasp 

species and Leucospis sp.). 

 

STRATIFICATION OF SPECIES RICHNESS WITHIN HABITAT TYPES 

Species richness in primary habitats was strongly determined by stratum (r2 = 0.67, 

F2,6 = 10.5, p = 0.01). Tree canopies had significantly more species per site (4.5 ± 

0.65, n = 4) compared to the understorey (1.5 ± 0.5, n = 4) (Figure 2). In contrast, 

species richness in high intensity plots was higher in the understorey (7.5 ± 0.87, n = 

4) compared to the higher canopy (4.5 ± 0.29, n = 4; r2 = 0.53, F2,6 = 11.57, p = 

0.009). There was no significant stratification in species richness in low (r2 = 0.21, 
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F2,6 = 0.92, p = 0.45) and medium intensity (r2 = 0.19, F2,6 = 0.74, p = 0.52) 

agroforestry systems. Density of flowering plants in the understorey was 

significantly lower in primary forests (3.13 ± 1.1 %, n = 4) compared to the three 

agroforestry systems (B: 12.24 ± 1.43 %, C: 14.21 ± 1.18 %, D: 13.24 ± 1.96 %, n = 

4 respectively; r2 = 0.47, F3,29 = 6.7, p = 0.007). 

 

COMMUNITY SIMILARITY OF HABITAT TYPES AND STRATA 

Multidimensional scaling showed distinct species compositions between agroforestry 

systems and primary forests (Figure 3a)). Agroforestry systems were found to cluster 

independent of stratum, whereas primary forest had a different species composition 

with higher values along the dimension 1 axis. Within primary forests, species 

composition in the understorey was very different to composition at intermediate and 

canopy heights along the dimension 2 axis. We also analysed stratification within 

agroforestry systems separately after removing primary forest sites from the data set. 

Strata in agroforestry systems were ordered along the dimension 1 axis (Figure 3b)). 

Especially high and medium intensity plots showed similar species compositions 

within the same stratum (bold rings Figure 3b)). 

 

 

Figure 2 Mean ± standard error of species richness depending on habitat type and vertical stratum. 
Significant differences between strata within each habitat type (p < 0.05) are indicated by different 
letters. Black bars stand for understorey, grey bars for intermediate height and white bars for canopy. 
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a)      b) 

 

Figure 3 Multidimensional scaling of trap-nesting species with points representing the species 
composition of a certain stratum (U - understorey, I - intermediate height, C - canopy) in each habitat 
type (A – primary forest, B - low intensity agroforestry, C – medium intensity agroforestry, D – high 
intensity agroforestry). Higher distances between the points indicate higher distances in species 
compositions. a) All four habitat types are illustrated. Fine rings comprise primary forest and 
agroforestry systems respectively. The bold ring comprises the more similar intermediate and canopy 
strata of the primary forests. b) Only agroforestry systems are illustrated. Fine rings comprise one 
stratum of the three agroforestry system types. Bold rings comprise the more similar high and low 
intensity plots of one stratum. 

 
ADDITIVE PARTITIONING OF SPECIES RICHNESS WITHIN REGION AND HABITAT TYPE 

Primary forest and low intensity plots did not show differences in alpha and beta 

diversity (Primary forest: r2 = 0.28, F2,16 = 3.13, p = 0.07; low intensity plots: r2 = 

0.12, F2,16 = 1.1, p = 0.35). Alpha diversity was significantly lower than between plot 

diversity in medium (alpha diversity: 6.4 ± 0.51, n = 12; between plot diversity: 12 ± 

0.87, n = 4; r2 = 0.63, F2,16 = 13.79, p = 0.0003) and high intensity agroforestry plots 

(alpha diversity: 6 ± 0.46, n = 12; between plot diversity: 10.5 ± 0.65, n = 4; r2 = 

0.52, F2,16 = 8.75, p = 0.003). Further, alpha diversity was significantly lower 

compared to between strata diversity only in medium intensity plots (between strata 

diversity: 10.3 ± 1.45, n = 3) (Figure 4). 
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Figure 4 Additive partitioning of species richness within the four habitat types, with the black bar 
showing the alpha- diversity partition, grey bar the beta-diversity partition of between strata diversity 
and the white bar the beta-diversity partition of between plots (replicates) diversity. Different letters 
indicate significant differences between diversity levels within each habitat type. 

 
PARASITISM RATE 

Parasitism rate of the most abundant eumenid wasp R. haemorrhoidale was not 

influenced by habitat (r2 = 0.17, F3,21 = 2.16, p = 0.14) nor by height (r2 = 0.068, F2,21 

= 1.64, p = 0.217) or plot (r2 = 0.32, F12,21 = 1.3, p = 0.288), but Spearman’s rank 

correlation showed a strong positive correlation between parasitism rate and host 

density (R = 0.42, p = 0.007). We found similar results when we included all hosts 

and parasitoids (16 species) in the mixed effects model (habitat: r2 = 0.01, F3,30 = 

0.138, p = 0.94; height: r2 = 0.04, F2,30 = 1.12, p = 0.34, plot: r2 = 0.39, F12,30 = 1.79, 

p = 0.01). 

 

Discussion 
Our results showed that the vertical changes of Hymenoptera richness from the 

canopy to the understorey reversed from primary forests to high intensity agroforests. 

Hence, vertical biodiversity patterns can be mixed depending on the habitat type 

studied. This may be why published evidence reports findings from taxa showing 

highest diversity in the canopy (Erwin 1982, Fermon et al. 2005, Dial et al. 2006), 

whereas others found equally or even more species on the ground, for example in 

Coleoptera (Stork & Grimbacher 2006), fruit-feeding nymphalids (Schulze et al. 

2001) and termites (Roisin et al. 2006). In agroforestry systems with high land-use 

intensity species richness was highest in the understorey, presumably due to the thin 
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canopy allowing a rich herb layer, while low and medium intensity habitats were 

intermediate with no stratification of species richness. In terms of species community 

composition, primary forest plots differed in all three strata from agroforestry 

systems, due to changing species identity and abundance (total numbers of 

individuals: A - 182, B - 2021, C - 2550, D - 2697). However, vertical stratification 

in species composition of agroforestry systems was much more pronounced than the 

effect of agroforestry type, especially when only medium and high intensity plots 

were considered (Figure 3b). Consistency in species occurrence within agroforestry 

strata is well shown by species like Sceliphron rufopictum (Sm.) and 

Subancistrocerus clavicornis (Sm.), which have highest abundances in the canopy 

independent of agroforestry type, while species like Chalybion sp. and Pison sp.1 

were consistently concentrated in the understorey (Appendix Table 2). Thus, 

differences in shade tree species composition appeared to be less decisive than the 

effect of strata in agroforestry systems. Following Stork & Grimbacher (2006), Rader 

& Krockenberger (2006) and Schulze et al. (2001), we suggest that changes in 

vertical species richness and composition are due to vertical shifts in resource 

availability. Food resource availability for pollen and nectar feeding insects is 

highest in the sun-exposed and flower rich canopy of a primary forest (Schulze et al. 

2001), whereas in high intensity plots the understorey receives more sunlight 

allowing the development of a dense flowering herb layer. The canopy in high 

intensity plots consists of a few rarely flowering tree species and therefore provides 

only temporary food sources, whereas high tree diversity can assure a continuous 

nectar supply in a natural tropical forest or agroforest canopy. Several cavity-nesting 

species, for example R. haemorrhoidale, Auplopus levicarinatus (Wahis) and Epsilon 

manifestatum crassipunctatum (Gus.), occurred mainly in the canopy of the primary 

forests, while they had highest abundances in the understorey of agroforestry systems 

(Appendix Table 2). For the same reason, stratification might have been weaker in 

medium and low intensity plots, where nectar sources can be assumed to be more 

similarly distributed among strata. Food supply also appeared to be responsible for 

differences in species composition between understorey and the canopy in primary 

forests (Figure 3a), as many species appeared to depend on easy nectar supply in 

strata (see above), and few to the shaded primary forest understorey (Megachile 

sp.2). In addition to food resource distribution, nesting site availability and changes 

in microclimate such as wind and temperature may have influenced vertical 
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preferences (Szarzynski & Anhuf 2001, Potts 2005). Solar radiation and temperature 

are known to influence Vespidae in terms of nest building and foraging activity 

(Ishay & Lior 1990, Elisei et al. 2005). A relation between strata and diversity might 

therefore be due to the influence of canopy cover on climatic conditions. 

In contrast to our expectation, beta-diversity values per stratum were not higher in 

primary forest plots. The relatively low beta diversity in primary forest plots might 

be due to the dominance of the canopy, where most species occurred. In contrast, 

medium intensity plots showed significant higher beta than alpha diversity values, 

presumably because of similar dominance of each vertical stratum and a 

corresponding high vertical species turnover. In high intensity plots understorey 

becomes increasingly dominant with a similar effect like for primary forests and 

decreasing beta diversity values. In a comparison across habitat type, primary forest 

plots and low intensity agroforestry systems did not show higher beta diversity than 

medium and high intensity plots. Natural tropical forests are known to show patchy 

distribution of species (trees: He et al. 1997, carabids: Lucky et al. 2002), so our 

unexpected results indicate that agricultural habitats can contribute to high regional 

species turnover. The heterogeneity of historical (antecedent crops) and recent 

management (fertilizing, partial herb removal within the plots) of the medium and 

high intensity plots might be responsible for community dissimilarity among plots of 

the same habitat type (Appendix Table 1). However, primary forests are known to 

often act as a species source for agroforestry systems (Duelli & Obrist 2003, Floren 

& Deeleman-Reinhold 2005, Klein et al. 2006). Insect species that require primary 

habitats or late successional stages (Yu et al. 2006) and habitats with low disturbance 

levels (Tovar-Sanchez et al. 2004) may spillover across habitat edges to nearby 

agroecosystems (Bianchi et al. 2006, Rand & Louda 2006). 

Parasitism rate of R. haemorrhoidale was not influenced by habitat type or stratum. 

Hosts in primary forests and agroforests as well as in the canopy and understorey 

were similarly attacked by parasitoids, so that an enemy free space could not be 

found for this predaceous wasp, as found for phytopagous arthropods (Scheirs & De 

Bruyn 2002, Rossbach et al. 2006). The parasitoids were highly mobile (personal 

observation), actively searching for kairomones (Hoffmeister et al. 2000) and 

appeared to have easy access to all habitats and heights. Host density proved to be 

the only predictor of parasitism rate, supporting for example, findings in Lepidoptera 

(Costamagna et al. 2004, White & Andow 2005, Xuereb & Thiery 2006). 
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In conclusion, primary forest canopy was far more important for Hymenoptera 

richness than the understorey, contrasting with the vertical distribution in high 

intensity agroforestry. The relative importance of canopy richness decreased along 

the studied gradient in land-use intensity. Food resource availability appeared likely 

to be an important factor forming vertical pattern of species richness across this 

gradient of forested habitats, but also microclimatic conditions and nesting site 

availability might differ between strata. In addition, agroforestry habitats due to their 

varying history and land-use practices, greatly contributed to beta diversity, so the 

diversity of management practices should therefore be considered in regional 

conservation programs. 
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Appendix 
 
Table 1 Plot history and land-use practices of each replicate per habitat type according to a census of 
the plot owners in 2005. 

Habitat 
/Replicate 

Antecedent crop 
planted 

Fertilizing 
method 

Removal of the herb 
layer (times per year) 

B1 Coffee and sugar palm Litter ash mechanical (3 x) 
B2 Coffee  Nothing mechanical (4 x) 
B3 Coffee  Nothing mechanical (1 x) 
B4 Coffee  Nothing mechanical (n. s.) 
C1 unknown Litter ash mechanical (25 x) 
C2 Primary forest Nothing mechanical (4 x) 
C3 Clove Rotting litter mechanical (4 x) 
C4 Coffee, clove, peanut, 

corn and others 
KCL and Urea  mechanical and 

chemical (3 x) 
D1 Coffee  Nothing mechanical (4 x) 
D2 Corn Urea and TSP*  mechanical and 

chemical (3 x) 
D3 Paddy Nothing mechanical (4 x) 
D4 Homegarden Urea and TSP* mechanical (3 x) 

*Triplesuper-Phosphate 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 3                                                   Vertical distribution of forest Hymenoptera 
____________________________________________________________________ 

53 

Table 2 Trap nest species, trophic level (Poll - pollinator, Pred 1 - first order predator, Pred 2 - second 
order predator, Paras - parasitoid) and number of individuals per habitat type (A - primary forest, B - 
low intensity agroforestry, C - medium intensity agroforestry, D - high intensity agroforestry) and 
stratum (C - canopy, I - intermediate height, U - understorey). 

 

Species Troph. 
level 

AC AI AU BC BI BU CC CI CU DC DI DU 

Anthidiellum 
smithi 

Poll       3      

Auplopus 
humilis 

Pred 2     3       6 

Auplopus 
levicarinatus 

Pred 2 10 11  5 17 23  16 99 7 3 53 

Auplopus 
wallacei 

Pred 2 7 9 4 15  16  2 3  2  

Chalicodoma 
aterrima 

Poll 8 2  25 19 8 7 14 10 9 15 12 

Chalicodoma sp. Poll          4   
Chalicodoma 
terminalis 

Poll 2   7 13 22 1  1 5 9 15 

Chalicodoma 
tuberculata 

Poll     3 3 1  1    

Chalybion Pred 2 2  1 76 101 127  19 48 19 19 87 
Chrysis sp. 1 
(angolensis 
group) 

Paras    12 18 33 3 14 30 12 26 51 

Chrysis sp. 2 
(smaragdula 
group) 

Paras     1  12 14 4 7 4 24 

Delta 
campaniforme 
gracilior 

Pred 1       3      

Epsilon 
manifestatum 
crassipunctatum  

Pred 1 12   11 30  48 94 119 10 16 78 

Epsilon vechti  Pred 1         1    
Heriades sp. Poll       38      
Hylaeus sp.  
(Subgenus: 
Hoploprosopis) 

Poll      15  2     

Ichneumonidae Paras    2      1   
Isodontia 
aurifrons  

Pred 1 1          1  

Isodontia cestra Pred 1    4  10 9 8 16  7 13 
Isodontia sp. Pred 1            1 
Leucospis sp. Paras      1       
Megachile sp. 2 
(Subgenus: 
Megachile) 

Poll 8 11 58   5       

Megachile sp. 1 Poll 4    13 11  1 7 6 6 1 
Pepsis sp. Pred 2            1 
Phimenes 
fulvipenne  

Pred 1       1     1 

Pison sp. 1 Pred 2     22 42   6   41 
Pison sp. 2 Pred 2    3         
Rhynchium 
atrum atrum 

Pred 1       1    27 2 

Rhynchium 
haemorrhoidale 

Pred 1 24   478 307 555 319 509 1013 419 556 1187 

Sceliphron 
rufopictum 
rufopictum 

Pred 2    12  3 12  7 18 17 1 

Subancistro-
cerus clavicornis  

Pred 1 4   5   16 21  14   

Trypoxylon sp. 1 Pred 2     3 7       
Trypoxylon sp. 2 Pred 2       5    8  
Trypoxylon sp. 3 Pred 2     1  8      
Trypoxylon sp. 4 Pred 2  4           
Trypoxylon sp. 5 Pred 2        55 1    
Zethus 
celebensis 

Pred 1        3     
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Spatiotemporal complementarity of a pollinator 

community increases crop yield 
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Lasioglossum halictoides (Smith) visiting a flower of Cucurbita 
moschata (Duch. ex Poir.) in a pumpkin plantation. 
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Abstract 
Functional complementarity is one of the central mechanistic explanations provided 

for positive biodiversity-ecosystem functioning relationships, but little empirical 

evidence for complementarity within functional animal groups exists. This study 

related differences in functional traits of pollinating bees to the seed set of obligately 

cross-pollinated pumpkin across a land-use intensity gradient from tropical rainforest 

and agroforests to grassland. Pollinator diversity, but not abundance, was positively 

related to seed set of pumpkin. Diversity of functional groups (based on species-

specific differences in flower visitation traits: height and time of flower visitation, 

body size-related behaviour) explained even more of the variance in seed set (r2 = 45 

%) than did species richness (r2 = 32 %) highlighting the importance of 

complementarity. These results provide the first empirical evidence for 

spatiotemporal and behavioural mechanisms via which high natural pollinator 

diversity can increase pollination success in natural ecosystems. 

 

Keywords: Biodiversity, complementary resource use, crop pollination, ecosystem 

services, functional diversity, habitat modification, Hymenoptera, Indonesia, land-

use management. 
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Introduction 

Global biodiversity decline has focused attention on the implications of species 

losses for the maintenance of ecosystem functioning (Hooper et al. 2005, Balvanera 

et al. 2006, Tilman et al. 2006). Animal pollination contributes to 35 % of global 

food production (Klein et al. 2007), but anthropogenic activities such as habitat loss, 

habitat fragmentation, land-use intensification and use of agrochemicals have 

adverse effects on pollinator diversity (e.g. Steffan-Dewenter et al. 2002, Tylianakis 

et al. 2005, Biesmeijer et al. 2006), putting crop pollination services at risk (Kearns 

et al. 1998, Kremen et al. 2002, Steffan-Dewenter et al. 2005, Tscharntke et al. 

2005). The most important group performing this service are the Apiformes (Klein et 

al. 2007), but a world-wide decline in the number of managed colonies of the 

European honeybee has increased reliance on diverse communities of wild bees for 

supplying crop pollination services (Kearns et al. 1998, Klein et al. 2003 (b), 

Kremen et al. 2004, Ricketts 2004, Shuler et al. 2005, Klein et al. 2007).  

Recent studies have related declining pollinator diversity to the ecosystem function 

of pollination (Kremen et al. 2002, Klein et al. 2003 (b)). The literature about the 

biodiversity-ecosystem functioning relationship suggests that diverse assemblages 

might function better due to niche complementarity (Hooper et al. 2005, Balvanera et 

al. 2006, Cardinale et al. 2006), whereby a combination of many different species 

can extract more resources in space and time than a species-poor community 

(Cardinale et al. 2004, Fargione & Tilman 2005, Hooper et al. 2005, Cardinale et al. 

2006, Fontaine et al. 2006). The importance of this mechanism in natural pollinator 

communities is unknown. Pollinator communities might be structured by behavioural 

niche differentiation, but little is known about the pollinating habits of individual bee 

species. However, Larsen et al. 2005 used pollen deposition as a surrogate for 

pollination efficiency, and suggested that the presence of a single but effective 

species may be more important than niche complementarity. In most cases, pollinator 

abundance and flower visitation frequency have often been related to pollination 

success (Klein et al. 2003 (a), Morandin & Winston 2005, Vázquez et al. 2005, 

Degrandi-Hoffman & Chambers 2006, Morandin & Winston 2006). Therefore, the 

effect of pollinator diversity on pollination rates needs to control for possible 

covariation between diversity and abundance. 

Functional diversity has been suggested to be the most important component of 

diversity (e.g. Tilman et al. 1997, Hulot et al. 2000, Lavorel & Garnier 2002) and a 
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common approach to test the effects of biodiversity on ecosystem functioning is 

experimental manipulation of functional guild diversity (e.g. Lanta & Leps 2006, 

Moretti et al. 2006, Scherber et al. 2006). Species are often assigned to functional 

guilds based on a priori expectations of complementarity due to taxonomic, 

physiological or morphological traits. This approach has been mostly used for plant 

species (e.g. Tilman et al. 1997, Hooper & Dukes 2004, Roscher et al. 2004, 

Fargione & Tilman 2005) but also for pollinators (Fontaine et al. 2006). Here we test 

the effect of pollinating bee species richness and functional diversity on the number 

of seeds per fruit of a crop plant, pumpkin Cucurbita moschata Duch. ex Poir., in 

different agricultural habitats (grassland, agroforest and forest). We compare the bee 

species in terms of their behaviour (Chagnon et al. 1993), and quantify preferred 

pollinating height, the time of day at which they are active, and body size, which is 

strongly related to behaviour within and between pumpkin flowers (Table 1). We 

then use statistically significant differences in these parameters to group species into 

post-hoc functional guilds, and relate the effect of pollinator species and functional 

guild diversity to pollination success.  

We show that habitat modification affects species richness of pollinators, which in 

turn promotes pollination success of pumpkin. More importantly, however, we show 

for the first time that quantitative species-specific differences in pollinator traits, 

such as spatiotemporal species turnover and behavioral differences during flower 

visitation, underlie this positive effect of biodiversity on ecosystem functioning. 

 

Methods 

The study was conducted on the western margin of the Lore Lindu National Park in 

Central Sulawesi (Indonesia) in the surroundings of the village Toro (E 120o2’, S 

1o30’, 800-1100 m above sea level) about 100 km south of the region’s capital Palu. 

The land-use in this area is small scaled and dominated by natural and disturbed 

tropical forests, cacao agroforestry systems of differing management intensity, 

grasslands and paddy fields. As no honey bees are managed in this region, farmers 

completely rely on pollination services provided by the diverse native bee 

community. 

We selected 18 study plots in five different habitat types, which covered a range of 

environmental conditions and differed in the diversity of pollinator assemblages. The 

five habitat types were natural forest, three different management intensities of cacao 
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agroforestry and openland with few trees. We refer to a plot as a site with 

homogeneous land-use practices of the mentioned habitat type and a minimum core 

area of 30 x 50 m. The cacao agroforestry systems formed a gradient according to the 

composition of shade tree species: - low management intensity agroforestry with 

natural forest trees as shade trees (low-intensity). - Medium intensity systems with a 

diverse shade tree community planted by farmers (medium-intensity). - High 

intensity plots with few planted shade tree species (Gliricidia sepium (Jacq.) and 

Erythrina subumbrans (Hassk.)) (high-intensity). The number of shade tree species 

was strongly correlated with canopy cover (Spearman: R = 0.609, n = 18, p = 

0.0073) and corresponding microclimatic conditions such as temperature (Spearman: 

R = -0.489, p = 0.0001) and humidity (Spearman: R = 0.705, p < 0.0001). Four 

replicates were chosen for each habitat type, but we were forced to abandon one plot 

in the natural forest and one plot in the openland, as experimental pumpkin plants 

failed to grow. In our study plots, farmers grew a variety of field crops between the 

cacao and shade trees. Pumpkin, vanilla (Vanillia planifolia Andr.), chilli (Capsicum 

annuum L.), tapioca (Manihot esculenta Crantz.) and coffee (Coffea robusta Lind.) 

are among the most frequently planted crops contributing to the floral diversity 

within the plots.  

Pumpkin (Cucurbita moschata, Fam.: Cucurbitaceae) is a common cash crop in the 

research area, with several advantages for studies of plant-pollinator interactions. It is 

cultivated in all habitat types, has local economic value and it is a fast growing plant 

with highly attractive flowers for bees. The plant only sets seed after cross-

pollination and seed set is pollen limited so that pollination success can be directly 

measured (Walters & Taylor 2006). Pumpkin is a crawling and climbing plant, which 

allowed us to use twines to expose flowers at different heights. This three 

dimensional growth allows testing for niche differentiation in space. Finally, the 

opening time of flowers is restricted to approximately four hours in the morning 

which makes it possible to record almost the entire temporal pollinator turnover 

during this receptive phase of flowering. We planted experimental pumpkin patches 

of 2 x 5 m in each plot for observations of the pollinator community and 

measurement of the resulting seed set. We used liquid fertilizer to prevent soil 

nutrient availability from limiting fruit production. 

Pumpkin observations were conducted in three phases: 1: 26 April 2005 – 01 June 

2005, 2: 10 June 2005 – 21 July 2005 and 3: 10 January 2006 – 03 February 2006, 
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with each plot visited once per phase. Bee abundances in the openland plots were 

higher compared with the other habitat types, so in order to classify all occurring bee 

species according to body size-related flower visitation behaviour we visited 

grassland plots an additional one or two times. The specimens from this fourth and 

fifth phase were used only for the classification of bee species into functional groups, 

and were not included in the calculations of seed set, pollinator richness and 

abundance per plot. Pollinators were recorded in a standardized way for three and a 

half hours from 07:00 until 10:30 a.m. which encompassed most of the opening time 

of flowers each day (203 plot observation hours in total). We adjusted the number of 

flowers for each observation and removed excess flowers or added missing flowers 

in small jars to keep a constant number of five flowers across replicate pumpkin 

patches (Ishii 2006), which resembles the approximate number of large and 

ephemeral pumpkin flowers on an area of ten square meters per day. To add or 

remove flowers also allows standardization of the sex ratio per plot and control of 

flower height, which ranges form 0.1 to 1 meter in each plot. Analysis of flower 

preferences refers to single pumpkin flowers, characterized by their length of the 

corolla (cm), diameter of corolla edge (cm), height (m above ground) and sex 

(male/female). Observed bees were caught for identification and to avoid counting 

the same individual twice. The time of flower visitation and the body size-related 

behaviour of the pollinator species, such as within-flower movements, were noted 

(Table 1). We measured the diameter of the largest pollen transporting leg part 

(femur, tibia or first tarsi), including hair structures and noted other pollen 

transporting body parts to estimate a hierarchy between species in terms of the 

amount of pollen transferred. Stephan Risch (Leverkusen, Germany) supported bee 

species identification. Voucher specimens are kept at the Bogor Agricultural 

University (IPB) in Indonesia. 

Subsequent to the observation of pumpkin pollinators, the diversity and density of 

flowers in the herb layer and understorey were measured along six transects each 4 m 

wide and 30 m long. Flower density of each plant species on the transect was 

estimated, whereby 1 was equivalent to a single flower of one species and 100 a 

species that covers the whole area with many flowers. The transect walks per 

observation day and plot covered almost half of the plot core area (720 m2). 

Conspecific flowers act as a pollen source and may therefore enhance seed set in the 

experimental plot, particularly because pollinators often specialize temporarily on a 



Chapter 4                                                                                  Functional bee richness 
____________________________________________________________________ 

60 

single or a few plant species (Ishii 2006). To allow for this, farmer-sown pumpkin 

flowers in the plot were counted in a radius of approximately 50 m around the 

experimental pumpkin patch. Temperature, humidity and light intensity were 

measured every 30 min from 7.00 to 11.00 a.m. on each observation day at a height 

of 2 m using a thermo-, hygro- and luxmeter (Mavalux Digital, Gossen) in an area 

receiving full sun. Ripe pumpkin fruits were collected throughout the entire time the 

plants grew. The size of pumpkins was measured (girth in cm) and seeds were 

counted. We used mesh bags for eleven female flowers to test the effect of pollinator 

exclusion for fruit development. Nine flowers, each from a different plot, were hand-

pollinated by rubbing the dry anthers of at least three male flowers from different 

plots against the pistil of the female flower to estimate the maximum possible seed 

set when pollination is not limiting. We performed only eleven pollen exclusions and 

nine hand-pollinations in total, because pumpkin did not set fruits without cross 

pollination and there were no notable differences between hand-pollinated fruits 

from different habitat types in seed set (419 ± 17 SE seeds per fruit, n = 9). 

 

STATISTICAL ANALYSIS AND CLASSIFICATION SCHEME 

To identify the factors that structure the pollinator community, a general linear model 

(GLM) was used. The model included number of bee species and number of bee 

individuals as response variables (multivariate response), season (observation phase), 

habitat type and plot as categorical predictors and temperature, humidity, light 

intensity, density and diversity of flowering plant species and number of pumpkin 

flowers in the plot surrounding the pumpkin plantation as continuous variables. 

Because samples from the same plot in different seasons (phases) were non-

independent, plot and season were included as random effects and plot was nested in 

habitat type. Post-hoc tests for differences between habitat types used Tukey’s 

unequal N HSD (Honestly Significant Difference) test. Values per plot per sampling 

phase of response and continuous variables were used for the statistical analyses. 

To analyze the effects of variables that we hypothesized to have an influence on seed 

set, a GLM with seeds per fruit as the dependent variable was conducted. Bee 

abundance and richness were used as continuous predictors of seed set per fruit. In 

addition, the number of pumpkin flowers surrounding the plantation, humus 

thickness (nutrient supply), slope (water supply) and canopy cover (light availability) 

were added as covariates because they are likely to affect plant growth and thereby, 
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affect seed set. Habitat type was used as a categorical predictor. Mean values of bee 

observations, pumpkin flowers in the plot and measured abiotic variables per plot 

were used, because seed set data are available only at a plot level and not for each 

observation day. Due to a lack of female flowers in four plots (natural forest, low-

intensity, medium-intensity and high-intensity), the number of plots was reduced to n 

= 14.  

To test whether the stability of seed set was influenced by the bee community, the 

coefficient of variation (CV) for seeds per fruit was calculated (standard 

deviation/mean) for each plot. The CV was used as a dependent variable in a GLM, 

with habitat type as a categorical predictor and number of bee species and number of 

individuals of pollinators as continuous predictors. There were only one or two fruits 

produced in four plots, so an accurate CV could not be calculated and the data set 

was reduced to n = 10 for this part of the analysis. 

We tested whether species-specific spatial and temporal foraging preferences and 

body size-related behaviour within flowers differed significantly among species, 

such that this may lead to complementarity. We fitted two mixed-effects models, one 

with flower visiting height and one with flower visiting time as dependent variables, 

and habitat type (fixed effect), plot (random effect nested in habitat type) and species 

identity (fixed) as categorical predictors. We used Spearman’s rank correlation to test 

whether flower height and time of flower visitation were correlated, in both within 

and between species analyses. The twelve most abundant species were compared 

because they were abundant enough to allow statistical analyses.  

To test whether different bee species prefer a certain flower size, we used flower 

volume as a dependent variable and habitat type (fixed effect), plot (random effect 

nested in habitat type) and species identity (fixed) as categorical predictors. We 

calculated flower volume from the diameter (2r) and length (h) of the corolla with 

the formula for a cone as a close approximation for flower volume:    

                                                        V = 
3

²rh ××π                                         

We also sorted species into body size classes, as there was evidence that within- and 

between-flower behaviour is strongly influenced by body size (Stout 2000). Table 1 

shows four exemplary within- and between-flower pollinating traits which we could 

easily observe in the field and which characterize different size classes. We used the 

same twelve species as for the spatiotemporal differences, to ensure comparability. 
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We measured intertegular span of the pronotum and obtained five size classes (very 

small (VS): less than 1.5 mm, small (S): 1.5-2 mm, medium sized (M): 2.1-3 mm, 

large (L): 3.1-5 mm, and very large (VL): > 5 mm) (Table 1). 

To test differences in behaviour within flowers that may depend on body size, we 

conducted a GLM with duration of flower visitation at a single flower (in seconds) as 

the response variable and habitat type (fixed) and size class (fixed) as categorical 

predictors. We measured duration of flower visitation for Lasioglossum sp., 

Lasioglossum halictoides, Xylocopa dejeani and Xylocopa confusa. We described 

each species in terms of other behavioural traits within flowers that depend on body 

size by dividing them into categories. We recorded the number of visited pumpkin 

flowers and pollen distribution on the anther or pistil (due to bee movement on 

reproductive plant parts) during the field observations. 

We used a GLM with flower visiting height and flower visiting time respectively as 

dependent variables and habitat type (fixed effect), plot (random effect nested in 

habitat type) and body size class (fixed) as categorical predictors to test whether bee 

body size influences spatiotemporal flower visiting traits. Social bees played only a 

minor role in pumpkin pollination, thus social status was not included as a 

classification criterion. For a classification into functional guilds we used differences 

in the spatiotemporal and body size-dependent within-flower behavioural 

characteristics above. Species were assigned to the same guild if they did not differ 

significantly in any of these variables. 

 
Table 1: Bee behaviour within flowers and pollen deposition in relation to body size (size classes: 
VS–very small, S–small, M–medium, L–large and VL–very large). Duration of flower visitation 
(Mean ± SE in seconds) of four bee species. Pollen deposition: diameter of the pollen transporting leg 
part (fe = femur, ti = tibia, ta = first tarsi, in mm), remarks are additive pollen transporting body parts.  
 

 

 

 

 

 

 

 

 

Body 
size 
class 

Duration of flower 
visitation  

Number of 
visited 
flowers  

Pollen deposition  Pollen 
distribution 
on the stigma 

VS 52 ± 1.8b (n = 19) 
(Lasioglossum sp.) 

few Very low; 0.2-0.3 (Lasioglossum: 
fe, Trigona: ti); Lasioglossum: 
ventral abdomen, Trigona: none 

high 

S 214 ± 6.7a (n = 27) 
(Lasioglossum 
halictoides) 

few Low; 0.5 (Ceratina: ti, 
Lasioglossum: fe), ventral 
abdomen 

very high 

M unknown unknown Medium; 0.9-1.3 (Apis: ta, Nomia: 
fe), Apis: pronotum, Nomia: 
propodeum 

medium 

L unknown unknown High; 2.1 (Apis: ta, Amegilla: ti), 
pronotum 

low 

VL 21 ± 0.6b (n = 23) 
(Xylocopa 
confusa/dejeani) 

many Very high; 2.5-2.8 (ta), pronotum 
and abdominal tip 

low 
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We conducted a multiple regression model with seed per fruit as the response 

variable and bee species richness and number of functional guilds as covariates, to 

have a direct comparison of explanatory strength of the two approaches. To factor 

out abundance we regressed seed set against abundance and used the residuals from 

this model as the response variable. As functional diversity and species richness 

covary (Naeem 2002), we conducted two models (Table 3) with sequential Type I 

sums of squares. In the first model species richness was included ahead of functional 

diversity and vice versa in the second model. 

Statistical analyses were carried out in Statistica (StatSoft, Inc. 2004.), version 7. 

www.statsoft.com.). All residuals were tested for a normal distribution and 

transformed if necessary. We used type-I (sequential) sum of squares for each model. 

We give arithmetic mean ± standard error in the text. 

 

Results 

Pollinator exclusion by bagging female flowers caused plants to abort the fruit. In 

contrast, all hand-pollinated female flowers matured to seed bearing fruits. We found 

on average 2.72 ± 0.33 pumpkin flowers in the surrounding of each pumpkin plot (n 

= 14). In total 633 bee individuals from 25 species and nine genera were caught.  

The pumpkin pollinator community was strongly determined by habitat type. Both 

bee richness and abundance varied significantly across habitats (Richness: r2 = 0.252, 

F4, 52 = 4.03, p = 0.025; Abundance: r2 = 0.376, F4,52 = 4.99, p = 0.012). Bee species 

richness was significantly higher in openland (on average 4.9 ± 0.512 species per 

plot, n = 9) than in natural forests (2 ± 0.471 species, n = 9), but was not different 

from cacao agroforestry systems (low-intensity: 3 ± 0.618, medium-intensity: 3.16 ± 

0.297, high-intensity: 3.8 ± 0.534 species per plot per sampling phase, n = 12). Bee 

abundance was significantly higher in openland (21.3 ± 4.793 individuals, n = 9) 

compared to all other habitat types (natural forest: 3.6 ± 1.029, n = 9; low-intensity: 

6.273 ± 1.465, medium-intensity: 6.083 ± 0.957, high-intensity: 10.6 ± 2.718 

individuals on average, n = 12). Temperature showed significant positive correlations 

with number of bee species (r2 = 0.08, F1,52 = 7.8, p = 0.021) but not with number of 

individuals (r2 = 0.034, F1,52 = 3.17, p = 0.086).  

Bee species richness was the only significant predictor variable in the model for seed 

set per fruit (r2 = 0.452, F1,13 = 19.24, p = 0.022; Figure 1) whereas bee abundance 

did not significantly correlate with seed set. Mean number of seeds per fruit from 
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plots with high species richness (10 bee species) almost reached that of hand-

pollinated control flowers (Figure1), whereas low richness (4 species) led to just 50 

% of control seed set. Number of seeds per fruit was correlated with fruit size 

(Spearman: R2 = 0.635, p = 0.015), which is the economically most important trait. 
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Figure 1: Mean number of seeds per fruit, per pumpkin patch in relation to the number of bee species 
per pumpkin patch. Results for open-pollinated flowers are shown with black dots and continuous line 
and results for hand-pollinated bagged control flowers in 9 plots are shown with black circles and 
dashed line. 
 

 

 

Figure 2: Height and time of flowers preferred by each bee species. Arithmetic means and ± standard 
error are given. For mean values, standard error and significance levels see table 2. Numbers represent 
species identity: 1 - Nomia concinna, 2 - Lasioglossum sp., 3 - Apis cerana, 4 - Xylocopa dejeani, 5 - 
Nomia fulvata, 6 - Ceratina cognata, 7 - Trigona sp. 8 - Amegilla sp., 9 - Xylocopa confusa, 10 - 
Lasioglossum halictoides, 11 - Apis dorsata, 12 - Xylocopa nobilis. 
 

Stability (within-plot CV) in seed set was not affected by bee richness (r2 = 0.032, 

F1,7 = 0.25, p = 0.63), abundance (r2 = 0.036, F1,7 = 0.28, p = 0.614) or plot type (r2 = 

0.036, F4,7 = 0.071, p = 0.989). 
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Species differed in their spatial resource use (height of flowers: r2 = 0.142, F11,575 = 

9.712, p < 0.001), with Nomia concinna preferring the lowest, and Xylocopa nobilis 

preferring the highest flowers (Table 2, Figure 2). Pollinating height in one high-

intensity plot was significantly lower compared to two openland plots (r2 = 0.05, 

F13,575 = 3.2, p = 0.0001), while habitat had no influence (r2 = 0.04, F4,575 = 1.9, p = 

0.177) on pollinating height. Temporal species turnover showed even stronger 

differences, as almost all species differed significantly from each other in their 

preferred time of visitation (r2 = 0.2, F11,567 = 14.845, p < 0.001). The species that 

visited flowers earliest were Apis cerana, Xylocopa dejeani and Xylocopa confusa, 

whereas Xylocopa nobilis and Ceratina cognata appeared significantly later (Table 2, 

Figure 2). Flower visitation in one low-intensity cacao plot was on average earlier 

compared to one medium-intensity, high-intensity and openland plot (r2 = 0.08, 

F13,567 = 5.123, p < 0.001) and habitat had no influence (r2 = 0.03, F4,567 = 0.91, p = 

0.49). Species identity explained minor variance of the overall model for flower size 

(r2 = 0.04, F8,430 = 2.82, p = 0.0047), and as only Apis cerana (233 ± 37 cm3, n = 18) 

differed from Ceratina cognata (134 ± 20 cm3, n = 17) and Lasioglossum sp. (157 ± 

8 cm3, n = 137) in preferred flower size, we did not include flower size for further 

analyses.  

Body size was closely related to pollinating behaviour and each size class showed 

consistent patterns. Duration of a single flower visitation was significantly longer for 

small bees compared to very small and very large bees (r2 = 0.38, F2,65 = 20.11, p < 

0.001) (Table 1). Body size classes also differed in the number of flowers they 

visited. Very large bees checked two or three flowers mostly in their preferred height 

range, whereas small bees fed for a very long time but only on one flower. The 

amount of pollen transferred per flower visit was a consequence of species-specific 

anatomical characteristics, because larger bees had larger pollen-transporting 

surfaces such as the plumose ventral section of the abdomen and the dorsal part of 

the thorax or femur (Table 1). The within-flower movements are responsible for 

pollen transfer to the stigma. Small and very small bees landed directly on the petal, 

anther or pistil and then walked for a long time on anthers or pistil while feeding on 

pollen or nectar and thus distributing pollen. Due to their size, large and very large 

bees entered the flower directly without walking along the petals and remained 

between the petal and anther or pistil, while rubbing the pollen-carrying ventral part 

of the abdomen on the pistil of a female flower, or picking up pollen in case of a 
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male flower. High pollen transfer was restricted to a part of the pistil, since large 

bees could not move around the pistil as did small and very small bees (Table 1). 

 
Table 2: Mean ± standard error of flower visiting height, flower visiting time of day (local time ± 
minutes) and body size (size classes: VS–very small, S–small, M–medium, L–large and VL–very 
large) for each of the twelve most abundant species, resulting in a classification into eight functional 
guilds (from A to H). Significant differences (p < 0.05) are indicated by different letters (see Figure 
2). Species in one guild do not differ in any of the three traits. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
We found significant preferences of bee species for certain heights, but there was no 

clear pattern between body size to pollinating height, even though very small species 

pollinated significantly lower flowers (r2 = 0.1, F4,582 = 18.128, p < 0.001; 0.33 m ± 

0.026, n = 209) than small (0.672 m ± 0.03, n = 178), large (0.523 ± 0.048, n = 62) or 

very large species (0.544 ± 0.04, n = 91). In contrast, small bees pollinated 

significantly higher flowers compared to medium-sized bees (0.368 ± 0.042, n = 64). 

We found that medium sized (8:25 ± 6 min, n = 64), large (8:40 ± 7 min, n = 60) and 

very large (8:37 ± 6 min, n = 90) bees occurred significantly earlier compared to 

small (9:02 ± 3 min, n = 178) and very small bees (9:11 ± 3 min, n = 203; r2 = 0.08, 

F4,574 = 14.99, p < 0.001). 

 Classification scheme 
Species Flower visiting 

height  
(cm) 

Flower visiting 
time of day 

Body size (mm) 
and size class 

Guild 

Apis dorsata 0.8 ± 0.163ab  
(n = 7) 

9 : 04 ± 34abcd 
(n = 7) 

3.61 ± 0.04 (L)  
(n = 7) 

A 

Amegilla sp. 0.49 ± 0.049ab  
(n = 56) 

8:37 ± 6a  
(n = 54) 

4.19 ± 0.067 (L)  
(n = 7) 

A 

Nomia 
concinna 

0.24 ± 0.085bd 
(n = 8) 

9: 14 ± 20abcd 
(n = 8) 

2.63 ± 0.037 (M) 
(n = 5) 

B 

Nomia fulvata 0.4 ± 0.129ab  
(n = 7) 

9:24 ± 9acd  
(n = 7) 

2.67 ± 0.057 (M)  
(n = 7) 

B 

Ceratina 
cognata 

0.46 ± 0.079ab 
(n = 22) 

9:53 ± 5c 
(n = 22) 

1.88 ± 0.037 (S) 
(n = 5) 

C 

Lasioglossum 
halictoides 

0.7 ± 0.032ad 

(n = 156) 
8:55 ± 3ad 
(n = 156) 

1.97 ± 0.049 (S) 
(n = 6) 

D 

Lasioglossum 
sp. 

0.29 ± 0.027b 

(n = 165) 
9:08 ± 3d 
(n = 165) 

1.49 ± 0.028 (VS) 
(n = 9) 

E 

Trigona sp. 0.48 ± 0.062ab  
(n = 45) 

9:23 ± 8cd  
(n = 40) 

1.41 ± 0.021 (VS)  
(n = 8) 

E 

Xylocopa 
confusa 

0.63 ± 0.055acd 
(n = 39) 

8:33 ± 9ab 
(n = 39) 

7.59 ± 0.104 (VL) 
(n = 8) 

F 

Xylocopa 
dejeani 

0.4 ± 0.054bc 
(n = 44) 

8:26 ± 6ab 
(n = 44) 

6.52 ± 0.077 (VL) 
(n = 9) 

F 

Xylocopa 
nobilis 

0.9 ± 0.105ac 
(n = 8) 

9:52 ± 14cd 
(n = 8) 

8.03 ± 0.084 (VL) 
(n = 8) 

G 

Apis cerana 0.38 ± 0.05bc  
(n = 49) 

8:09 ± 6b  
(n = 49) 

2.65 ± 0.042 (M)  
(n = 8) 

H 
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In a model where bee species richness was included first, after abundance was 

factored out, only bee species richness was significantly positively correlated with 

seed per fruit. However, when functional guild diversity was included ahead of 

richness in a Type I SS model, species richness became non-significant, because 

functional guild diversity explained much more variation in seed set (Table 3).  

 
Table 3 Bee species richness and functional guild diversity in relation to seed set. Bold numbers 
indicate significant effects. 

 

 

 

 

 

 
Discussion 
Our results show how the ecosystem service of pollination can be promoted by 

functional pollinator diversity, based on species-specific traits driving 

complementary use of floral resources. Seed set increased strongly with bee richness, 

supporting previous studies that showed positive correlations between pollinator 

diversity and pollen deposition (Kremen et al. 2002) or fruit set (Klein et al. 2003 

(b)). We quantified species-specific and complementary resource use in pollination 

and relate this to final crop yield. In our study, bee species strongly differed in their 

preferred flower height, time of flower visitation and within-flower behaviour, which 

was related to body size.  

Spatiotemporal niche partitioning of pollinator communities (e.g. Willmer & Corbet 

1981, Tylianakis et al. 2005) include preferences of bee species to forage at certain 

heights, which may have been selected to minimize energy expenditure (Dafni & 

Potts 2004). Pumpkin exposes flowers at very different heights, thereby attracting 

pollinator species with different height preferences. Reduced species richness can 

therefore cause a lack of pollination at certain heights, thereby reducing average seed 

set within a plot.  

Willmer (e.g. Willmer 1983) and Stone (1994) discussed the relationship between 

behavioural and physiological determinants of circadian species-specific activity 

patterns, such as temporally structured foraging activity of hymenopterans, showing 

that certain species have precise daily times of foraging activity (Stone et al. 1999). 

1. Model r2 F1,11 p 
Bee species richness 0.32 6.68 0.025 
Functional guild diversity 0.15 3.15 0.103 
2. Model r2 F1,11 p 
Functional guild diversity 0.45 9.32 0.011 
Bee species richness 0.02 0.52 0.486 
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Most studies hold morphological traits (such as body size and colouring) responsible 

for the circadian niche partitioning of bees (Peereboom & Biesmeijer 2003), but also 

pollen release from principal food sources in the case of specialized bee species 

(Stone et al. 1999). In fact, we found that the bees of the three larger pollinator size 

classes occurred significantly earlier (during cooler morning hours) compared with 

smaller-sized bees. Hence, bee body size might affect flower visitation, but other 

traits may also influence circadian bee activity. Gimenes et al. (1996) hold the 

species’ response to the environmental light/dark cycle responsible for a coupling of 

circadian bee activity to the flower’s anthesis and withering. We expect that temporal 

species turnover is beneficial for pollination success, as not just the amount of 

transferred pollen will increase through time, but also the distribution of pollen. Two 

very large bee species (Xylocopa dejeani and X. confusa), for example, occurred very 

early in the morning, transferring large amounts of pollen, whereas Lasioglossum sp., 

Ceratina cognata and Trigona sp. occurred significantly later providing the 

distribution of the pollen already transferred by other species on the stigma. The 

temporal change of pollinator species from pollen transferring to pollen-distributing 

species may improve seed set due to a combination of both traits. Our study showed 

temporal differences in the activity of bees during a day, but bee communities are 

also known to show spatiotemporal turnover at longer time scales (between months) 

(Tylianakis et al. 2005), and this may affect complementarity in pollen transfer 

throughout the season. 

Our field observations revealed size dependent species-specific within- and between-

flower behavioural traits supporting the inclusion of body size as a third 

classification criterion (Table 1). We assume that complementarity in pumpkin 

pollination has been provided by two main pollination traits: the amount of 

transferred pollen and the distribution of pollen on the stigma (Chagnon et al. 1993). 

Whereas smaller species seem to be more important for pollen distribution on the 

stigma, by spending more time inside the flower and walking on stigmas and anthers, 

larger species increase the total amount of transferred pollen. Furthermore, we 

observed body size-dependent competition between bees (Pinkus-Rendon et al. 

2005) in plots with high pollinator densities, with smaller bees having been 

subordinate when they met larger species at the pumpkin flowers. However, due to 

low pollinator densities in almost all plots, competition was unlikely to have played 

an important role. 
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Published studies dealing with niche partitioning of pollinators focus on the 

relationship of complex flowers to the proboscis length and resource use by 

pollinators (Graham & Jones 1996, Fontaine et al. 2006). We showed species-

specific differences in pollinator traits characterized by distinct spatiotemporal 

resource partitioning, and found that high species numbers led to maximum seed set, 

equal to that observed in hand-pollinated fruits (Figure 1). Diversity of functional 

pollinator guilds, based on significant differences in preferences for flower height, 

time of flower visitation and body size-related within-flower behaviour, explained 

variation in seed set better than did species richness. The models (Table 3) suggest 

that interspecific differences in these functional traits are major drivers of high 

complementarity resulting in enhanced fruit set. 

In conclusion, we show how a native bee community may sustain pollination 

services without any managed honey bees. The species-rich bee community appeared 

to enhance pollination efficiency through complementarity in species-specific flower 

visitation traits, suggesting that a single or a few efficient species may not provide 

the same benefits as a rich community of functionally distinct species. Due to 

species-specific niche partitioning, a single functional group exploits only a portion 

of the overall resource. Our results provide a first step towards a mechanistic 

understanding of how pollinator diversity affects food production. Global changes 

greatly affect bee diversity (Biesmejer et al. 2006) and the associated loss of 

functional diversity threatens sustainable crop production (Klein et al. 2007). 

Conservation initiatives may profit from analyses proving economic benefits of 

maintaining high biodiversity in agricultural landscapes. 
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Chapter 5 

 

Spatiotemporal density patterns of a pest predator along 

a land-use gradient in tropical agroforestry 
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Rhynchium haemorrhoidale (F.) ♀ from a trap nest in Toro, 
Sulawesi. Photo by Susanne Schiele. 
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Summary 
Tropical species show year-round breeding activity due to favourable climatic 

conditions. However, most species display seasonal reproductive peaks, but little is 

known about underlying causes of temporal density patterns. We investigated 

seasonality of the pest predator Rhynchium haemorrhoidale (F.) (Eumenidae, 

Hymenoptera), in terms of changes in density in agroforestry systems of varying 

shade tree composition in Sulawesi (Indonesia) and the influence of climate, body 

size, parasitism and unknown mortality.  

Nesting of R. haemorrhoidale showed clear seasonality with rising activity in the wet 

season and lowest activity in the dry season. However, this activity was not directly 

correlated with changes in temperature. Wasp density increased when canopy cover 

decreased, possibly because less shade improves microclimatic conditions within 

agroforestry systems. Pupal body size was higher in June than in November 

indicating better food supply at the beginning of the dry season. High wasp densities 

in November, appeared to increase intraspecific competition, which led to food 

resource limitation, whereas body size between habitat types was similar suggesting 

that season superimposes the potential influence of habitat in terms of food supply. 

Seasonality in the tropics is less pronounced than in temperate zones. However, 

tropical organisms seemingly underlie strong seasonal fluctuations in population 

dynamics. The density of the investigated predator increased with land-use intensity, 

profiting from the opening of the canopy in agroforestry systems. Furthermore, the 

observed patterns appeared to be linked to seasonal climate, food supply and 

mortality by natural enemies. 

 

Keywords: Ecosystem functioning, host-parasitoid interactions, population dynamics, 

resource availability. 
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Introduction 
Density and reproduction of tropical species show mostly distinct temporal peaks 

even though breeding seems to be possible over the entire period (Brown & Shine 

2006). Hypothesized proximate causes for seasonality in tropical zones include 

abiotic factors, food limitation and parasitoid density (Harris & McDonald 2007, 

Richards & Coley 2007, Richards & Windsor 2007). For some taxa, such as shrews 

or butterflies, it has been shown that they synchronize breeding with optimal climatic 

conditions (Kemp 2001, Nicolas et al. 2005). Furthermore, habitat quality has been 

discussed to be a crucial factor influencing species density due to microclimatic 

conditions or food resource availability in tropical regions (Lambert et al. 2006, 

Richards & Windsor 2007). In this study we try to identify, whether primarily 

seasonal variation of habitat quality or top-down regulation by natural antagonists 

influence the density of an important pest predator in agroforestry systems of 

different land-use intensity throughout a year. We propose food supply, climate, 

parasitism rate and entomopathogenic infection to be responsible for fluctuations in 

species density between different seasons and month. 

Due to changes in larval food supply between season and habitat adult fitness, sex 

ratio, body size or mortality, as some crucial aspects of a predator’s population 

dynamic, might also vary (King 1996, Strohm & Linsenmair 1997, Cleary & van 

Ginkel 2004, Boggs & Freeman 2005). Predators are strongly affected by 

fluctuations in prey density (Forsman & Lindell 1997, Salamolard et al. 2000, 

Norrdahl & Korpimaki 2002). Even though generalist predators exploit a broader 

array of resources than specialists, which may enhance stability of population 

densities, they also face the problem of food limitation in space and time (Östman 

2005). Intraspecific competition of an insect predator, caused by high population 

density, can be one reason for low prey densities (Bommarco 1999). 

Beside larval food supply, climatic conditions are a second important factor, 

influencing the density of predacious wasp species. For some Hymenoptera, such as 

Vespidae, nesting activity is correlated with daily or seasonal changes in climate 

(Lima & Prezoto 2003, Elisei et al. 2005, Ribeiro et al. 2006). Temperature 

dependent activity of the nest-building adults influences generation times and 

population density due to different provisioning times (Strohm & Linsenmair 1998). 

In temperate zones ontogenesis of insects is strongly related to seasonality, including 
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specific hibernation stages as egg, larva, pupa or imago. Minor climatic fluctuations 

occur in tropical areas but might nevertheless influence reproduction and fitness. 

Third, parasitism rate is well known to increase with increasing host density (e. g. 

Tscharntke 1992, Teder & Tammaru 2003) and parasitoids have been shown to 

reduce host density in the field (Bischoff 2003). Therefore the occurrence and in 

particular the density of parasitoids should be considered as an essential factor 

influencing life history traits. As parasitoids vary in space and time, they might be a 

crucial factor for host densities in different seasons and habitats (Zhou et al. 2001, 

Liu et al. 2007). 

As a fourth mechanism influencing species density, species mortality due to 

unknown reasons, such as fungal or nematode infections, can be considered (Furlong 

& Pell 2001, Morton & Del Pino 2007). 

We investigated factors that may influence seasonality and spatial distribution of 

Rhynchium haemorrhoidale (F.) (Eumenidae, Hymenoptera) along a land-use 

gradient of agroforestry systems in Sulawesi, Indonesia. In the investigated 

agroforestry systems cacao plants are grown under different levels of shade tree 

diversity and densities as determinants of land-use intensity. Agroforestry systems 

become increasingly interesting for the conservation of global species richness 

(Dietsch et al. 2007, Steffan-Dewenter et al. 2007) and ecosystem services (MEA 

2005). We are therefore interested in the question, whether agricultural habitats of 

different management intensities can maintain high densities of a functional group, 

exemplary the predatory wasp species R. haemorrhoidale. We also examined, 

whether climatic conditions and food resource availability are more relevant for 

spatiotemporal patterns in wasp densities, body size and sex ratios. Furthermore, we 

evaluate the influence of parasitism rate and unknown mortality agents on 

seasonality and habitat preferences of R. haemorrhoidale. 

 

Method 
EXPERIMENTAL SITE AND DESIGN 

Sampling was conducted on the western margin of the Lore Lindu National Park in 

Central Sulawesi, Indonesia, in the agroforestry systems surrounding the village of 

Toro (E 120o2’, S 1o30’, 800-1100 m above sea level). Agricultural landscapes at the 

margin of the tropical rainforests are dominated by cacao agroforestry and paddy 

fields. 
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We selected plots ranging from natural forests to a gradient in land-use intensity of 

agroforestry systems. Each plot had a minimum core area of 30 x 50 m, where we 

placed the trap nests. The cacao agroforestry systems formed a gradient according to 

the composition of shade tree species and thereby shadow intensity, with low 

management intensity agroforestry having natural forest trees as shade trees (dense 

shade), medium intensity systems having a diverse shade tree community planted by 

farmers (medium shade) and high intensity plots with only a few planted shade tree 

species such as Gliricidia sepium (Jacq.) and Erythrina subumbrans (Hassk.) (light 

shade). The different habitat types were situated close together and alternated in the 

study area, without following a geographic gradient. 

Canopy cover was measured with a spherical densiometer (Model-C, Robert E. 

Lemmon, Forest Densiometers, 5733 SE Cornell Dr., Bartlesville, OK 74006) by two 

people independently at twelve random positions within each plot above cacao tree 

canopy. Canopy cover varied between plots, with primary forest plots having the 

densest canopy (95.6 % ± 0.8 %), followed by low intensity plots (72.5 % ± 4.5 %), 

medium intensity plots (61.4 % ± 6.3 %) and high intensity plots (58.1 % ± 8.4 %). 

We therefore refer to the different agroforestry plots as dense, medium and light 

shaded plots. Four replicates were chosen for each habitat type.  

We used trap nests to assess relative densities of above ground-nesting wasps. Trap 

nests consisted of PVC tubes (length 28 cm and a diameter 14 cm) with internodes of 

the grass Saccharum spontaneum (L.) (Poaceae) of varying diameter (3 – 25 mm) 

and a length of 20 cm inserted (Tscharntke et al. 1998). Sixteen trap nests per site 

were installed from October 2004 till September 2005 in different heights from 

understorey to canopy. The trap nests were checked every month and sticky glue was 

applied to the edge of the PVC tube to deter ants from colonizing the trap nests. We 

collected all internodes, which were occupied by Hymenopterans readily identifiable 

at the clayey walls closing the internode opening and incubated all larvae and pupae 

in glass tubes until they hatched, for later species determination. Due to 

simplification of terminology, we equated the term density with number of brood 

cells, as done in former studies (Gathmann et al. 1994, Steffan-Dewenter 2003). 

Voucher specimens are kept at the Bogor Agricultural University (IPB) in Indonesia. 

Pupal body size is a widely used fitness-related trait for insects and can be used as a 

surrogate for food supply (e.g. Harvey et al. 2000, Östman 2005). We could not 

estimate prey density in the field, because the prey larvae fed in higher forest strata 
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(e.g.: Erythrina). Instead we measured body size of wasp pupae with a vernier 

calliper in November 04 and June 05 for a seasonal comparison. Wasp larvae 

completely ate prey larvae in the brood cells and as we excluded the influence of 

internode diameter on wasp pupae size, we equated pupae size with food resource 

availability. Assessment of sex ratio and sex determination was also done in 

November 04 and June 05. We used the term month for comparisons between all 

months throughout the year and season if we compared November (wet season) with 

June (dry season). We recorded wasp individuals that were not parasitized, but died 

as egg, larva or pupa for unknown reasons, such as infections by entomopathogenic 

organisms (viral, bacterial, nematode or fungal infection), for every month. In order 

to exclude mortality due to breeding in the glass tubes, we maintained constant 

optimal conditions. The climatic conditions air temperature, humidity, solar radiation 

and precipitation were measured at a climate station in the centre of the research area 

to assess seasonal fluctuations. 

 

STUDY ORGANISM 

We used the tropical cavity nesting eumenid wasp species R. haemorrhoidale (F.) 

(Eumenidae, Hymenoptera) for this study (Figure 1). R. haemorrhoidale is a solitary, 

predatory wasp, building soil nests with several brood cells. It was the most abundant 

species out of 23 predacious wasps comprising a prey spectrum of only one 

morphospecies and showed high seasonality. R. haemorrhoidale must be considered 

as an effective pest predator, as we found that their prey species were the cacao and 

Erythrina spp. leaf-feeding larvae of Agathodes caliginosalis (Snellen) (Pyralidae, 

Lepidoptera) and each brood cell was provided with approximately seven larvae 

(Figure 2). The generation time from egg to adult never exceeded one month, which 

was the sampling frequency for the trap nests and therefore we can exclude that 

wasps developed, hatched and flew out unrecognized from trap nests. Parasitoids of 

R. haemorrhoidale comprise a spectrum from cleptoparasites (Chrysididae and 

Ripiphoridae), ectoparasites (Leucospidae) and endoparasites (Ichneumonidae) to 

hyperparasites (Trigonalyidae). 
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STATISTICAL ANALYSIS 

We used main effects ANOVA to test on differences in density and sex ratio per plot 

between months (density) and seasons (sex ratio), respectively, and habitat. Density 

was defined as number of brood cells occupied. Density and sex ratio were used as 

dependent variables and habitat type and month/season as categorical predictors. Sex 

ratio was calculated as number of male individuals per plot divided by number of 

female individuals. We show density values in primary forest plots only in Figure 4 

and did not include the individuals from this habitat for further statistics, because R. 

haemorrhoidale proved to be a species depending on less dense forested habitats, 

such as agroforestry systems. Only 24 individuals of R. haemorrhoidale occurred in 

all four primary forest plots throughout the year. 

We used Spearmans rank correlation to test whether wasp density per plot and month 

and canopy cover per plot were correlated.  

We used a correlation matrix to test whether the climatic factors temperature, 

humidity, solar radiation and precipitation were correlated and used a principal 

component analysis (PCA) for correlated factors to reduce the number of variables. 

In another correlation matrix we tested, whether monthly density values of R. 

haemorrhoidale were correlated with climatic factors. As species density responses 

to climatic changes might be delayed we correlated density with climatic values not 

just from the same month, but also from the previous months. 

To rule out the effect of internode diameter on pupal size, we tested whether the 

diameter influenced pupal size just in densely populated trap nests, where nest 

building adults might have to elude to nests with smaller diameters, as they would 

Figure 1 Nest-building female of Rhynchium 
haemorrhoidale within a trap nest. 

Figure 2 Larva of Rhynchium 
haemorrhoidale feeding on larvae of 
Agathodes caliginosalis within a trap nest 
internode.
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usually chose. We used a simple regression model with pupal length as dependent 

variable and diameter of the reed internodes as predictor variable. In a first model we 

included all individuals we measured, and in a second model we included only those 

individuals from trap nests with less than ten occupied reed internodes, as this 

assures for sufficient nesting possibilities and a free choice in nest diameter for the 

nest building adult. We measured nest diameter only for November, as the effect of 

nest size on pupal size due to restrictions in nesting possibilities can only be expected 

in a month with high densities. To test whether habitat or season influenced food 

resource availability, we used main effects ANOVA with body size of the pupae as 

dependent variable and habitat and season as categorical predictors. We did the 

analysis for both sexes separately, as females were significant larger than males. 

We conducted a general linear model (GLM) to identify the factors that influence 

parasitism of R. haemorrhoidale and unknown mortality rate. The two models 

included parasitism and unknown mortality rate respectively as response variables, 

habitat and month as categorical predictors and host density as continuous variables. 

Parasitism rate was calculated as number of infested host individuals divided by 

number of parasitized individuals per plot. Unknown mortality rate was calculated as 

total number of individuals per plot divided by number of individuals that died for 

unknown reasons. 

To test the effect of habitat and month on species richness of parasitoids of R. 

haemorrhoidale we conducted a main effects ANOVA with number of species as 

response variable and month and habitat as categorical predictors. 

Statistical analyses were carried out in Statistica (StatSoft, Inc. 2004.), version 7. 

www.statsoft.com.). Square root transformation was done to assure for homogeneity 

of variance if necessary. The test for climatic variables and wasp density used a 

Bonferroni corrected α of 0.0125. We used type-I (sequential) sum of squares for 

each model. We give arithmetic mean ± standard error in the text. 

 

Results 
In total we reared 11,090 individuals from 50 species in the trap nests. 23 of these 

species were specialized predatory wasps with R. haemorrhoidale (7,403 

individuals), a larvae hunting eumenid wasp, being the most abundant species, 

comprising 67 % of all individuals. 
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SEASON AND HABITAT QUALITY 

Density of R. haemorrhoidale was strongly influenced by season with rising number 

of brood cells from October until February (r2 = 0.48, F11,107 = 11.8, p < 0.001) 

(Figure 3) and increased number of brood cells with increased land-use intensity (r2 

= 0.07, F2,107 = 8.8, p < 0.001). Dense agroforestry plots had significantly less 

individuals per month and plot (36.7 ± 5.67, n = 48) compared to medium (53.3 ± 

6.78) and light shaded agroforestry plots (64.8 ± 8.5) (Figure 4). There was no 

interaction between season and land-use intensity (r2 = 0.05, F22,107 = 0.63, p = 0.9). 

Canopy cover and wasp density per plot and month were significantly negative 

correlated (N = 16, R = -0.54, p = 0.033). Neither habitat (r2 = 0.09, F2,19 = 1, p = 

0.384) nor season (r2 = 0.06, F1,19 = 1.31, p = 0.267) influenced sex ratio of the wasp. 

 

 

 

Figure 3 Mean ± standard error of numbers of individuals of R. haemorrrhoidale per month and plot 
from October 2004 until September 2005. Significant differences (p < 0.05) are indicated by different 
letters. Grey fitting line is according to distance weighted least squares. 
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Figure 4 Mean ± standard error of numbers of individuals of R. haemorrrhoidale per month and 
replicate for one year and four habitat types with different shade regime. Different letters indicate 
significant differences between habitat types. 

 
CLIMATIC VARIABLES 

Climatic variables were not intercorrelated and no climatic variable was correlated 

with density of R. haemorrhoidale from the same month or the previous month. In a 

correlation matrix with climatic factors from the previous month, density was also 

not correlated with climate. Although solar radiation had a significance level below p 

= 0.5 (N = 12, R = 0.6, p = 0.039), it was above the Bonferroni corrected α of 0.0125. 

 

FOOD RESOURCES 

Trap internode diameter and wasp pupal size were positively correlated only when 

all individuals were included, even though internode diameter explained only minor 

variance of pupal size (R2 = 0.02; F1,454 = 10.06; p = 0.002). In a model with 

individuals only from sparsely populated trap nests the significance did not persist 

(R2 = 0.01; F1,234 = 3.48; p = 0.06). We therefore used individuals from trap nests 

with less than ten occupied internodes for further analyses to examine the effect of 

season and habitat on body size. Seasonal differences in pupal size were similar for 

both sexes. Females and males were larger in the dry season (June) compared to wet 

season (November) (females June: 1.88 ± 0.016 cm; November: 1.71 ± 0.019 cm; r2 

= 0.17, F1,226= 47.49, p < 0.0001; males June: 1.53 ± 0.015 cm; November: 1.36 ± 

0.017 cm; r2 = 0.19; F1,229 = 54.35; p < 0.001) (Figure 5). Habitat did not influence 

pupal size in both sexes (females: r2 = 0.01; F2,279 = 1.84; p = 0.16; males: r2 < 0.01; 

F2,293 = 0.06; p = 0.94).  

 

Shade density gradient 
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Figure 5 Mean ± standard error of wasp pupae lengths of R. haemorrrhoidale for two months, with 
solid line representing female individuals and dashed line representing male individuals. 

 
PARASITISM AND MORTALITY 

We found 579 individuals of antagonists from R. haemorrhoidale belonging to seven 

species (see Method: Study organism). These were 3 ± 0.38 parasitoids and 39 ± 3.5 

host wasp individuals in average from each plot per month, resulting in a total 

parasitism rate of 7.7 %. For statistical analyses we pooled all parasite species, as all 

species caused mortality of R. haemorrhoidale. Parasitism rate of R. haemorrhoidale 

differed between months (r2 = 0.24, F11,109 = 3.146, p = 0.001), with November 

having a higher parasitism rate compared to October, August and September (Figure 

6), but did not show a difference between habitats (r2 = 0.01, F2,109 = 0.8, p = 0.449) 

or host density throughout the year (r2 < 0,01, F1,109 = 0.57, p = 0.45). Antagonists of 

R. haemorrhoidale showed higher species richness in the rainy season (r2 = 0.62, 

F11,22 = 3.3, p = 0.008) with significantly more species in February (3.66 ± 0.33) 

compared to October (1 ± 0), whereas habitat had no influence on species richness (r2 

< 0.01, F2,22 = 0.04, p = 0.96). The rate of unknown mortality was not influenced by 

any predictor variable (habitat: r2 = 0.05, F2,109 = 3.06, p = 0.051; month: r2 = 0.13, 

F11,109 = 1.56, p = 0.122; density: r2 = 0.05, F1,109 = 0.06, p = 0.8). 
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Figure 6 Mean ± standard error of parasitism rate of R. haemorrrhoidale by seven species of 
parasitoids per month and plot from October 2004 until September 2005. Significant differences (p < 
0.05) are indicated by different letters. 

 
Discussion 
R. haemorrrhoidale was strongly influenced by month and land-use intensity, 

whereas a direct climatic influence appeared to exist only for habitat preference but 

not for seasonal climatic variation in densities. Although, we found a strong 

seasonality of R. haemorrrhoidale with higher monthly densities in the wet season 

wasp density was not correlated with climatic conditions in the same month. We 

could not find a significant direct synchronization between wasp density and climate, 

even though increased flight and foraging activity, which increases nest building and 

provision, have been shown to depend on temperature or solar irradiation (Strohm & 

Linsenmair 1998, Ribeiro et al. 2006). As climatic conditions influence prey density 

and generation time (Lysyk 2001) by accelerating physiological development (Smits 

et al. 2000) wasp density as a response on climate would be temporally protracted. 

However, density of R. haemorrrhoidale showed only a slight and nonsignificant 

correlation with solar radiation from the previous month. The observed cycles in 

nesting activity may result from species inherent physiological adaptations, as found 

for gekkonid lizards (Ota 1994). 

Wasp density was influenced by land-use intensity, with dense shaded agroforest 

plots having fewer individuals compared to medium and light shaded agroforests and 

almost none in highly shaded primary forests. In less shaded plots solar radiation 

penetrates through the canopy and reaches the ground, thus increasing temperature 

and reducing humidity (Grimmond et al. 2000). Vespidae are known to profit from 

solar radiation and temperature (Ishay & Lior 1990, Elisei et al. 2005), in particular 
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in terms of nest building and foraging activity. A relation between habitat type and 

wasp density was apparently due to the influence of canopy cover on climatic 

conditions in the plots, as wasp density and canopy cover were negatively correlated. 

Nesting site choice was therefore related to microclimatic conditions. 

Body size of females and males of R. haemorrrhoidale was higher in June, indicating 

better larval food supply in the beginning of the dry season, rather than at the end of 

the dry season. Reduced food supply in November could be due to low prey densities 

according to unfavourable climatic conditions for the prey species or due to 

competition for food resources, as wasp density increased in November. In seasons 

with high wasp density, intraspecific competition could reduce individual food 

supply and result in smaller individuals, as abundant wasp species with a narrow 

prey spectrum, such as R. haemorrrhoidale, can effectively reduce prey densities in 

the field (Harris 1996, Schenk & Bacher 2002). Temporal variation in body size was 

synchronized among sites, showing the superposing effect of seasonal change on 

food supply independent of habitat type (Östman 2005). Klein et al. (2004) could 

show that R. haemorrrhoidale adjusted foraging trip duration to habitat quality and 

wasp density was not correlated with foraging time, indicating that food resource 

availability within the habitat is not necessarily decisive for body size and habitat 

choice of R. haemorrrhoidale. 

Sex ratio was similar between seasons with high and low resource availability. Sex 

ratio has been discussed to depend on environmental factors, whereby unfavourable 

conditions produce a sex ratio towards males (Frank & Swingland 1988), as found 

for the European beewolf (Philanthus triangulum F., Sphecidae) (Strohm & 

Linsenmair 1997). Male individuals represent the ‘cheaper sex’ with higher relative 

fitness under poor conditions. For R. haemorrrhoidale relative fitness especially of 

the larger female individuals did not seem to be negatively influenced by food 

supply. This was also shown by the independence of unknown mortality in terms of 

season or habitat. Food supply did not seem to have an influence on fitness, as 

unknown mortality was not higher in the season with smaller individuals. Some 

authors discuss the relation between fitness and body size of insects (Harvey et al. 

2000, Sokolovska et al. 2000, Östman 2005). However, we could not find a relation 

between different seasons with varying body size of the insects and unknown 

mortality as a fitness related trait. 
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Parasitism rate in November was considerably higher compared to August, 

September and October. This peak appeared to be a response to increasing host 

densities at the beginning of the wet season. Although parasitism rate throughout the 

year is not correlated with host density, increased host density in November appeared 

to act as a stimulus for increased activity of the parasitoids. Increased parasitoid 

density did not result in severe host reduction, because host density still increased 

until January. However, a slight and not significant host reduction in December 

might reveal a short term effect of parasitism rate on host density. Accordingly 

species richness of antagonists of R. haemorrrhoidale is higher in the middle of the 

rainy season compared to the end of the dry season. Indeed, the Chrysis sp. 

smaragdula group occurred only in the rainy season. 

In conclusion, food resource availability and climate may contribute to seasonal 

changes in life history traits in temperate zones as well as in the tropics (Kemp 2001, 

Nicolas et al. 2005, Polidori et al. 2007). However, the complexity of factors (Ota 

1994) makes it difficult to determine the ultimate reasons for seasonality of tropical 

species. We showed that habitat choice for nesting appeared to depend on climatic 

conditions due to varying canopy cover between the habitat types, whereas 

phenotypic constraints may explain seasonality in wasp density.  

We show that agroforestry systems in agricultural landscapes, can maintain high 

densities of a functionally important pest predator. The larvae-hunting R. 

haemorrrhoidale was almost absent in the primary forest and density increased with 

land-use intensity, potentially increasing biological pest control. However, we could 

not directly measure the effectiveness of this ecosystem service and other potential 

predators of pest insects might got lost during agroforestry intensification. 
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Summary 
The rate of deforestation of primary tropical forests due to agricultural expansion is 

higher in Southeast Asia compared to all other world’s tropical regions. 

Deforestation in tropical forests is a major threat for global biodiversity, because 

estimated 50-90 % of the world’s species are living in tropical forests. Therefore, 

human dominated landscapes and forested land-use systems such as agroforestry 

become increasingly important as a storage reservoir of global biodiversity. 

Biodiversity is related to ecosystem functioning, with complementarity in resource 

use as a major mechanism. Pollination is essential for plant-derived ecosystem 

services such as food production, and pollinators are one of the major functional 

groups for human well-being. Agroforestry systems often include coffee (Coffea sp. 

L.) and cacao (Theobroma cacao L.) as important cash crops, traditionally crown 

under a canopy of shade trees and with fruit set depending on pollination. Because of 

the variety of planted shade and fruit trees, agroforestry systems resemble primary 

forests more than any other agricultural habitat type and have great but little explored 

potential to offer substitute habitats for many tropical forest species. 

My aim was to evaluate the importance of agricultural systems for conservation of 

trap-nesting Hymenoptera and the pollinator community. I analyzed a land-use 

gradient in a tropical forested landscape, from primary forests, agroforestry systems 

differing in diversity of the shade trees and openland such as grassland and fallow 

land. I assessed the relative importance of different strata for species richness with 

trap nests, which offer standardized nesting resources for different guilds of above-

ground nesting Hymenoptera and their antagonists. Furthermore, I linked pollinator 

richness to habitat modification and final crop yield and analyzed species-specific 

differences in resource use. I also assessed the contribution of agroforestry system 

for the maintenance of high densities of a pest predating wasp species over the 

course of one year. This study took place in Central Sulawesi (Indonesia) in the 

surrounding of the village Toro at the margin of a primary tropical forest (Lore Lindu 

National Park). 

The results show that total bee species richness in the herb layer increased with 

increasing land-use intensity and was highest in openland. However, species richness 

estimation and additive partitioning of biodiversity revealed higher overall bee 

species richness, presumably due to high management diversity, in agroforestry 

systems compared to primary forests and openland. Agroforestry systems offer 
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higher floral diversity in the understorey, due to the richer herb layer and cash crops, 

than primary forests and provide more nesting sites for cavity-nesting bee species 

than openland. 

The canopy in primary forests was far more important for trap-nesting bee and wasp 

richness than the understorey. This pattern reversed with intensification in 

agroforestry systems where highest richness was found in the understorey. Food 

resource availability and microclimatic conditions appeared to make the canopy in 

primary forests a more suitable habitat for most species and might cause 

underestimation of species richness when only lower strata are sampled. In addition, 

agroforestry habitats showed high beta diversity due to high land-use diversity and 

between-plot community dissimilarity, showing that agricultural management can be 

crucial for conservation plannings on a landscape scale. 

I used standardized pumpkin plantations in different habitat types to test the effect of 

pollinator diversity on crop yield. Bee pollinators showed species specific differences 

in flower visiting traits, such as height, time and body size-related flower visiting 

behaviour. I provide the first empirical evidence of the relation between 

spatiotemporal and behavioural complementarity in resource use of a pollinator 

community causing increased crop yield. Furthermore, I show that the native bee 

community can sustain pollination services in absence of managed honey bees. 

Using the highly abundant wasp species Rhynchium haemorrhoidale (F.) 

(Eumenidae, Hymenoptera), I show that agroforestry systems can maintain high 

insect densities of a pest predator, even under intense land-use management. Tropical 

regions experience lower climatic fluctuations between the seasons compared to 

temperate zones. However, R. haemorrhoidale undergoes seasonal changes in 

density and body size, due to a complex combination of potential reasons (e.g. 

climate, food supply, parasitism) independent of habitat type. 

In conclusion, agroforestry systems can play a crucial role in the conservation of the 

understorey pollinator communities and densities of pest predators, whereas the 

importance of the canopy for species richness is increasing with decreasing land-use 

intensity and is highest in primary forests. Furthermore, I show that the ecosystem 

service of pollination and crop yield strongly depends on the bees’ functional 

diversity. Low-intensity land-use and a complex shade-tree canopy appear to 

increase local and regional Hymenoptera richness and to sustain important ecosystem 
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services, showing the necessity to include such agricultural systems in landscape-

wide conservation programs. 
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