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Abstract

We consider the scattering of time harmonic acoustic waves by a sound soft rough
surface in three dimensions. The analysis we develop holds in the case that the
incident wave is due to a point source situated above the scattering surface. It does
however not apply to the case of an incident plane wave.
The first part of the thesis settles the question of existence and uniqueness of the

scattering problem. The scattered field is sought as a modified Brakhage-Werner
ansatz. This approach yields an boundary integral equation of the second kind in
the space of complex valued square integrable functions on the scattering surface.
In contrast to the case of bounded obstacles, the integral operators occuring in this
equation are not compact so that the Riesz-Fredholm theory is not applicable.
The second part is concerned with the numerical solution of the integral equation.

To handle the infinite domain of integration the integral equation is truncated in a
first approximation step to an equation on a finite section of the real plane. For this,
we introduce a novel truncation scheme called multi-section method for which we
can proof convergence. In a second step standard discretisation schemes for integral
equations on bounded domains can now be applied.
The discretisation of the truncated equations yields large and dense linear systems

that must be solved by iterative methods. It is therefore important to derive fast
matrix-vector multiplication schemes. We introduce an alternative derivation of
the canonical grid method that uses high order approximations of the Dirac delta
distribution. This approach allows a rather simple implementation of the canonical
grid method. In addition our algorithm achieves an additional speed. For the
case of the single-layer potential operator we show the feasibility of this method by
numerical examples.
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Zusammenfassung

Wir behandeln die Streuung zeitharmonischer akustischer Wellen an einer schallwei-
chen rauhen Oberfläche in drei Dimensionen. Unsere Untersuchungen sind gültig für
den Fall, dass die einfallende Welle von einer Punktquelle oberhalb der Streuober-
fläche herrührt. Sie sind jedoch nicht auf den Fall einer einfallenden ebenen Welle
anwendbar.
Der erste Teil der Arbeit behandelt die Existenz und Eindeutigkeit des Streu-

problems. Das gestreute Feld wird in Form eines modifizierten Brakhage-Werner-
Ansatzes gesucht. Dieses führt zu einer Randintegralgleichung zweiter Art in dem
Raum der komplexwertigen quadratintegrierbaren Funktion auf der Streuoberfläche.
Im Gegensatz zu dem Fall eines beschränkten Streuobjektes sind die auftretenden
Integraloperatoren nicht kompakt, so dass die Riesz-Fredholm-Theorie nicht ange-
wandt werden kann.
Der zweite Teil der Arbeit beschäftigt sich mit der numerischen Lösung der In-

tegralgleichung. Um den unendlichen Integrationsbereich zu handhaben, wird die
Integralgleichungen in einem ersten Approximationsschritt auf einen endlichen Be-
reich der reellen Ebene reduziert. Wir führen hierzu ein neues Abschneideverfahren,
genannt multi-section method, ein, für welches wir Konvergenz zeigen können. In
einem zweiten Schritt können nun Standard-Diskretisierungsverfahren für Integral-
gleichungen auf endlichen Gebieten angewandt werden.
Die Diskretisierung der reduzierten Gleichung liefert große dicht besetzte lineare

Gleichungssysteme, welche mittels iterativer Methoden gelöst werden müssen. Es ist
daher erforderlich, schnelle Matrix-Vektor-Multiplikationsmethoden zu entwickeln.
Wir stellen einen alternativen Zugang zu der canonical grid method vor, welcher

auf Approximationen der Dirac’schen Delta-Distribution hoher Ordnung basiert.
Diese neue Interpretation erlaubt eine recht einfache Implementierung. Darüber hin-
aus erreicht unser Algorithmus einen Geschwindigkeitsvorteil. Für den Fall des Ein-
fachschichtpotentialoperators belegen wir die Anwendbarkeit dieser Methode durch
numerische Beispiele.
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Introduction

1 The rough surface scattering problem

This thesis is concerned with boundary integral equation methods for what has been
termed rough surface scattering problems in the engineering literature.
A rough surface is a non-local perturbation of an infinite flat plane, such that the

whole surface lies within a finite distance of the original plane. We treat the special
case, where the surface is given as graph of some bounded continuous function,
which we refer to as the surface height function, i.e. for a function f : R2 → R the
scattering surface denoted by Γ is given through

Γ =
{

(x, f(x)) ∈ R3 : x = (x1, x2) ∈ R2
}
. (1)

We assume that f is in BC1,α(R2), the space of bounded continuously differentiable
functions with bounded and uniformly Hölder continuous derivatives, which makes
the scattering surface Γ a Lyapunov surface. Thus f is bounded and without loss of
generality we can assume that there exist constants f+ > f− > 0 such that

f− ≤ f(x) ≤ f+ for all x ∈ R2. (2)

This thesis focuses on one typical problem from the application of outdoor sound
propagation, namely the scattering of an incident acoustic field by a sound-soft
surface. That is we are interested to compute the propagation of the reflected wave
in themedium of propagation occupying the perturbed half-space above the scatterer
that we denote by

D :=
{

(x, x3) ∈ R3 : x3 > f(x),x ∈ R2
}
. (3)

We note that for later studies on the dependence of the scattered field on the bound-
ary it is convenient to sometimes write Γf for Γ andDf forD to make the dependence
on the boundary more explicit. In the case of the constant function f : R2 → R,
x 7→ h, for h ∈ R, we write Γh and Dh.
Time-harmonic acoustic waves, that are waves with a time dependence of the form

e−iωt, are modelled by the Helmholtz equation

4u+ κ2u = 0. (4)
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Γ0

ui = −us

us

ui = Φ(·, z)
∆us + κ2us = 0

D

Γ

ν

f−

f+

Figure 1: Geometrical setting of the scattering problem.

Here κ = ω/c0 stands for the wavenumber, ω the frequency and c0 the speed of
sound. Though we are mainly interested in the case of positive real wavenumbers,
we consider the more general case of wavenumbers with a positive imaginary part.
Thus we have the natural decomposition

κ = κr + iκi ∈ C̃,

where κr > 0 denotes the realpart, κi ≥ 0 the imaginary part of the wavenumber
and

C̃ :=
{
z ∈ C : <(z) > 0,=(z) ≥ 0

}
. (5)

Physically speaking the case of complex wavenumbers models lossy media that ab-
sorb the sound energy.
A sound-soft surface is modelled through a Dirichlet boundary condition. This

means that we require the total field

u := ui + us,

which is the sum of the incident field ui and the scattered field us, to vanish on the
boundary, i.e.

u(x) = 0, x ∈ Γ. (6)

The analysis we develop is applicable whenever the incident wave is due to sources
of the acoustic field located in some compact set M ⊂ D. Since waves with sources
in a bounded set M ⊂ R3 can be represented as superpositions of point sources
located in the same set, we will concentrate on the case when the incident field is
that due to a point source located at some point z ∈ D, i.e.

ui = Φ(·, z),

xiv



2 BIE for rough surface scattering

where

Φ(x, y) :=
1

4π

eiκ|x−y|

|x− y|
, x, y ∈ R3, x 6= y,

denotes the fundamental solution to the Helmholtz equation in R3.
To ensure uniqueness we need to pose some kind of boundary condition at infinity.

This can be either done with a growth or radiation condition. In the present case
we need a combination of both types. First of all we require that the scattered field
is bounded in D, i.e.

|us(x)| ≤ c, x ∈ D, (7)

for some constant c > 0. This condition is enough to ensure uniqueness in the case of
a wavenumber with positive imaginary part. In the case of a purely real wavenumber
κ = κr we also require that us satisfies the following limiting absorption principle:
denoting us temporarily by us(κ) to indicate its dependence on κ, we suppose that
for all sufficiently small ε > 0 a solution us(κ+iε) exists and that

us(κ+iε)(x)→ us(κ)(x), ε→ 0. (8)

The limiting absorption principle plays the role of a radiation condition for real κ
to single out the physical solution.
Thus the following is the specific problem that is considered, for an illustration of

the geometrical setup see Figure 1:

Problem 1 (Point source rough surface scattering problem). Let ui = Φ(·, z) be
the incident field due to a point source at z ∈ D. Then we seek a scattered field
us ∈ C2(D) ∩ C(D̄) such that us is a solution to the Helmholtz equation (4) in
D, the total field satisfies the sound-soft boundary condition (6), and the bound (7)
holds. In the case κ > 0, we also require that the limiting absorption principle (8)
holds.

2 BIE for rough surface scattering

Boundary integral equation methods have been applied very successfully since the
beginning of the 20th century to various problems from mathematical physics, in-
cluding problems from potential theory or scattering theory for acoustic/electro-
magnetic waves. In the case of smooth bounded obstacles the theory is very well
developed and there are very effective ways to utilise the integral equation for the
numerical solution of the problems, see e.g. the books of Kress [35], Colton & Kress
[24],[23], McLean [39] or Atkinson [4].
In the case where the scattering object is an unbounded surface the situation is

very different. Although integral equations are widely used, especially in the com-
putation of rough surface scattering problems see e.g. the reviews and monographs

xv



Introduction

by Ogilvy [44], Voronovich [55], Saillard & Sentenac [52], Warnick & Chew [57], and
DeSanto & Martin [25],[26], the mathematical basis of the method is still poorly de-
veloped, especially in the 3D case. In fact, there are a number of severe difficulties
in extending the theory of BIE methods from bounded to unbounded scatterers.

2.1 Non-integrability of fundamental solution

In the case of a purely real wavenumber κ > 0, the standard fundamental solution
Φ(x, y) of the Helmholtz equation has a rather slow decay at infinity, like |x −
y|−(n−1)/2 in n dimensions. Thus the standard boundary integral operators are not
bounded on any of the standard function spaces when the surface is unbounded.
We illustrate this in some more detail and take a look at the ordinary single-layer

potential ∫
Γ

Φ(x, y)ϕ(y) ds(y), x ∈ Γ. (9)

The problem is that, due to the slow decay of the fundamental solution in R3 at
infinity, the integral (9) converges only if ϕ decreases sufficiently rapidly at infinity.
So one could try to work with ϕ ∈ S(Γ), the Schwartz space of rapidly decreasing
functions. But this does not seem to be desirable due to the fact that this is a very
small space with a rather unpleasant topological structure. One could think to work
with Lp spaces instead, but, as the following calculations show in the case where the
surface is a flat plane, this is not possible also. Denote

B(r1, r2;x) :=
{
y ∈ R2 : r1 < |x− y| < r2

}
for positive numbers r1 < r2. Then we ask whether there exists p ≥ 1 such that

lim
r1→0

lim
r2→∞

∫
B(r1,r2;x)

|Φ(x,y)|p dy

exists. Introducing polar coordinates with centre x we calculate∫
B(r1,r2;x)

|Φ(x,y)|p dy = C

∫
B(r1,r2;x)

1

|x− y|p
dy

= C

∫ r2

r1

r1−pdr =


(r2 − r1), p = 1,

r2−p
2 − r2−p

1 , 1 < p < 2,

ln r2 − ln r1, p = 2,

r2−p
2 − r2−p

1 , p > 2,

where C > 0 denotes some generic constant. From these elementary calculations we
see that we have two kinds of singularities that we carefully need to balance against

xvi



2 BIE for rough surface scattering

each other. The local singularity at zero is weakly singular and therefore integrable
for 1 ≤ p < 2. For p ≥ 2 it becomes strongly singular or even hyper singular.
The non-integrability of Φ(x, ·) over R2, due to it’s slow decay, can be interpreted
as a singularity at infinity that is strongly singular for p ≤ 2 and weakly singular
for p > 2. These calculations show that we better replace the function Φ by some
function that has a faster decay, rather than trying to find an appropriate space.

2.2 A faster decaying fundamental solution

In order to get a faster decaying kernel we replace Φ(x, y), following what has been
proposed for the analogous 2D rough surface scattering case [63], by an appropriate
half-space Green’s function for the Helmholtz equation. Specifically, we will work
with the function

G(x, y) := Φ(x, y)− Φ(x, y′), (10)

where
y′ := (y1, y2,−y3),

is the image of y in the flat plane Γ0 = {x ∈ R3 : x3 = 0}. The function G is the
Dirichlet Green’s function for the half-space D0 = {x ∈ R3 : x3 > 0}. In Section 1.4
we show the bound for y ∈ Γ,

|∇G(x, y)|, |G(x, y)| ∼ C
(1 + x3)(1 + y3)

|x− y|2
, |y| → ∞, (11)

cf. (1.22) and (1.28). This decay is fast enough for the single-layer potential operator,
given by

(Sϕ)(x) := 2

∫
Γ

G(x, y)ϕ(y) ds(y), x ∈ Γ, (12)

and the double-layer potential operator, given by

(Kϕ)(x) := 2

∫
Γ

∂G(x, y)

∂ν(y)
ϕ(y) ds(y), x ∈ Γ, (13)

where the unit normal vector ν(y) is directed into D, to be well-defined as improper
integrals, for every x ∈ D̄ and ϕ ∈ L2(Γ), in particular in the case κi = 0.
Because, for x ∈ Γ,∫

Γ∩BR(x)\B1(x)

1

|x− y|2
ds(y)→∞, R→∞,

the decay of G(x, y) as y →∞ is not fast enough when κ > 0 for S to be well defined
as an operator on the space of bounded continuous functions. Thus integral equation
methods for the 3D rough surface scattering problem are essentially different from
the 2D case studied in [16, 17, 18, 63, 3] and the analysis developed here can not be
applied to the interesting case of a plane wave incident.
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2.3 An equivalent BVP

To apply integral equation methods we convert the scattering problem into a bound-
ary value problem. For this we seek the scattered field as the sum of a mirrored
point source

Φ′(·, z) := −Φ(·, z′),
plus some unknown remainder v, i.e.

us = v + Φ′(·, z).

Using the boundary condition

us + Φ(·, z) = 0 on Γ = ∂D

we obtain the boundary condition on v that

v(x) = −G(x, z) =: g(x), x ∈ Γ. (14)

Clearly g ∈ BC∞(Γ), the space of bounded continuous functions vanishing at
infinity, and it follows from (11) that g ∈ L2(Γ), so that g ∈ L2(Γ) ∩ BC∞(Γ).
Further, by the dominated convergence theorem we see that ‖gε − g‖L2(Γ) → 0 as
ε→ 0+, where gε is −G(·, z) with κ replaced by κ+ iε. Thus us satisfies the above
scattering problem if and only if v satisfies the following Dirichlet problem, with g
given by (14) and gε defined as −G(·, z) with κ replaced by κ+ iε.

Problem 2 (BVP). Given g, gεL2(Γ) ∩BC∞(Γ), for ε > 0, with ‖gε − g‖L2(Γ) → 0
as ε → 0, find v ∈ C2(D) ∩ C(D̄) which satisfies the Helmholtz equation (4) in D,
the Dirichlet boundary condition v = g on Γ, the bound (7), and the following
limiting absorption principle: that, for all sufficiently small ε > 0, there exists
vε ∈ C2(D) ∩ C(D̄) satisfying vε = gε on Γ, (4) and (7), with κ replaced by κ + iε,
such that, for all x ∈ D, vε(x)→ v(x) as ε→ 0.

We look for a solution to this boundary value problem as the combined single-
and double-layer potential

v(x) := u2(x)− iη u1(x), x ∈ D, (15)

with some coupling parameter η ≥ 0, where for a given function ϕ ∈ L2(Γ)∩BC∞(Γ)
we define the single-layer potential

u1(x) :=

∫
Γ

G(x, y)ϕ(y) ds(y), x ∈ R3, (16)

and the double-layer potential

u2(x) :=

∫
Γ

∂G(x, y)

∂ν(y)
ϕ(y) ds(y), x ∈ R3. (17)
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3 General ideas and techniques

Seeking the solution of the boundary value problem in this form we will see that the
boundary condition (14) is satisfied if and only if the BIE

Aϕ = 2g (18)

holds on Γ, where
A := I +K − iηS (19)

and I is the identity operator. Thus, the existence of a solution to the BVP is
reduced to the study of the solvability of a boundary integral equation.

3 General ideas and techniques

Before we give an outline and emphasis the main results of the thesis we describe in
some more detail the main ideas and techniques that are used for the forthcoming
analysis. Among the many things the most important questions are:

• How to prove mapping properties of the operators?

• How to show the invertibility of the operator A = I +K − iηS?

• How to solve the integral equation numerically?

3.1 How to prove mapping properties of the operators?

In the case that the obstacle is smooth and bounded there is a well developed
theory stating criteria on the kernel function to prove mapping properties of the
corresponding integral operators between certain function spaces. The compactness
of the scattering object is used in an essential way. For integral operators on non-
compact manifolds some criteria can be found in the book of Jörgens [32], but they
do not seem suited for the forthcoming analysis.
One result that is shown in Section 2.1 via Fourier techniques is that S and K

are bounded operators e.g. on L2(Γ) and L2(Γ) ∩BC∞(Γ).
The main idea to prove this result is as follows: With the help of an appropriate

positive cut-off function χ we define a partition of unity {χ, 1 − χ} to split the
operators into a local and a global part. That is we write the integral operator
B with kernel function b, representing either the double- or single-layer potential
operator, as the sum of two integral operators Bglobal (the global part) and Blocal

(the local part), with kernel functions

bglobal(x, y) =
(
1− χ(|x− y|)

)
b(x, y)

and
blocal(x, y) = χ(|x− y|)b(x, y), x 6= y.
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Thus B = Bglobal + Blocal and we can study the mapping properties of Bglobal and
Blocal separately. This is very useful because we separated the local singularity from
the singularity at infinity (non-integrability).

The local part
The local part has a weakly singular kernel. To prove that the corresponding opera-
tor maps into the space of continuous functions (or the space of continuous functions
vanishing at infinity) one can adopt techniques used for bounded obstacles. Further-
more one can bound the kernel function by some convolution kernel so that mapping
properties of convolution operators can be used to prove the mapping properties for
Lebesgue spaces.

The global part
The global part has a continuous but non-integrable kernel. To treat this case we
show, via Taylor expansion with respect to x3 and y3, that, for some small integer
N ,

bglobal(x, y) =
N∑
i=1

mi(x)`i(x− y)ni(y) + l(x,y),

where mi, ni ∈ BC(R2), `i ∈ L2(R2) ∩ BC(R2). Furthermore the Fourier transform
of `i is bounded, which we show via explicit computations. The remaining part
of bglobal(x, y) after the finite sum is subtracted, namely l(x,y), is relatively well-
behaved, i.e. it is continuous and again bounded by an integrable convolution kernel.
Thus the global part is written as sums and products of certain multiplication and
convolution operators.

3.2 How to show the invertibility of the operator I +K − iηS?
It can be shown that the integral operators S and K are not compact, due to the
non-compactness of the unbounded scattering surface. This lack of compactness
deprives us of a very useful tool, the Riesz-Fredholm theory. In the classical case
of smooth bounded obstacles this theory is used to prove the invertibility of the
operator equation of the second kind, stating that for a compact perturbation of an
invertible operator injectivity is equivalent to surjectivity.
To show that A is indeed invertible we prove three essential steps:

Step 1
In the case of a flat surface the integral operators S andK are convolution operators,
showing once more that they can not be compact due to their continuous spectrum.
The invertibility of an convolution operator can be established via Fourier methods,
i.e. by a characterisation of the spectrum of the operator. The equation (18) can be
written as the convolution equation

ψ(x) + (Rh ∗ ψ)(x) = 2g(x), x ∈ R2,
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3 General ideas and techniques

which is uniquely solvable if and only if

1 + FRh(x) 6= 0, x ∈ R2,

where Rh denotes the kernel of the combined double- and single-layer operator and
F denotes the two-dimensional Fourier transform.

Step 2
We show that the integral operators depend continuously in the operator norm on
variations of the boundary Γ. Together with the result from Step 1 this yields the
invertibility in the case of a mildly rough surface.

Step 3
To prove the invertibility of the operator A in the general case of an arbitrary rough
surface we define a continuous deformation of a flat surface into the rough scattering
surface, such that all intermediate surfaces have a uniformly bounded maximum
surface slope. Starting with the invertibility result for the flat surface case, together
with the result on the continuous dependence of A on surface variations, we use
explicitly known lower bounds on the norm of the operator A that are uniform with
respect to the maximum surface slope, to extend the invertibility over the whole
range of the deformation.

3.3 How to solve the integral equation numerically?

The approximate numerical solution of the integral equation (18) is a challenging
problem in scientific computing with a lot of open questions, both from a theoretical
as well as a numerical point of view.

Theoretical considerations
From a theoretical point of view the main difficulty is the infinite integration domain.
This makes it necessary to introduce an additional approximation step. One can
interpret this approximation either as the truncation of the integral equation to
some finite interval after which standard discretisation techniques for the case of
finite intervals can be used or as the truncation of the infinite dimensional fully
discretised linear system to a finite dimensional one. The convergence of this kind of
truncation scheme can be analysed separately as it is independent of the convergence
of the discretisation scheme. By far the most popular truncation scheme that is used
in practical applications is the finite section method. For a large class of operators it
is well understood whether this method is applicable, i.e. loosely speaking whether
it converges for increasingly larger sections. We explain this method in some more
detail in Section 6.3 and give references for further reading.
We have to point out that, to the author’s understanding up to now, it is not

known whether the already available criteria show the applicability of the finite
section method to equation (18). In a recent paper [31] Lindner, Potthast and myself
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introduced a generalisation to the finite section, which has been termed multi-section
method. For this scheme we were able to prove the convergence of the truncated
solution to the solution of the equation (18). The main ideas of this method are
summarised in Chapter 7.

Numerical considerations
From a computational point of view the main difficulties are the need to discre-
tise very large surface patches, very often of the size of several hundred square
wavelength. Following a rule of thumb that suggests to use at least 10 discretisation
points per wavelength we have to solve linear systems for several hundred-thousands
of unknowns. The discretisation of boundary integral operators generally yields a
dense and unstructured linear system. To solve these systems the use of direct
solvers is prohibitive on standard desktop machines with up to 4 GB RAM. Instead
the method of choice will be to employ some iterative solver.
For such a problem the use of the banded matrix iterative algorithm (BMIA) has

been suggested. This algorithm is based on a regular matrix splitting, where in
each iteration step a sparse linear system has to be solved and one matrix-vector
multiplication with a dense matrix has to be computed. The Nyström method that
we are proposing in Chapter 6 yields a natural splitting that seems suitable for
the BMIA algorithm. We explain the main ideas of the Nyström method and its
interaction with the BMIA method in the following.
Originally, the Nyström method was introduced to solve integral equations of

the second kind with continuous kernel functions. Under certain conditions on the
kernel function it is possible to extend this method to the case of singular integral
operators.
The reformulation of two-dimensional boundary value problems for the Laplace

or Helmholtz equations with boundary integral equations yields integral operators,
where the kernel functions can be decomposed in the form

k(s, t) = k1(s, t) + ln |s− t|k2(s, t), s 6= t,

with periodic smooth kernel functions k1 and k2. For this kind of situation it is
possible to construct interpolatory quadrature formulas that incorporate the singu-
lar term directly into the quadrature weights, the original method dating back to
[36]. These special quadrature rules give rise to high order Nyström methods. For
more information on these kind of product quadratures that can be applied to solve
boundary value problems for the Laplace and Helmholtz equation in 2D by means
of boundary integral equations, we refer the reader to [35], [24], [23] and [4] and the
citations therein.
A similar decomposition for our problem at hand could look like

K(x,y) = K1(x,y) +
1

|x− y|
K2(x,y), x 6= y.
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3 General ideas and techniques

The change in the type of singularity is not an essential problem. The more severe
problem is that the function K2 is no longer a smooth function. Instead we end
up with a kernel function K2 that has a diagonal discontinuity but is otherwise a
bounded smooth function. Hence we see that it is not possible to construct a prod-
uct integration rule in analogy to the two-dimensional case. Instead we follow an
approach proposed in [12]. The main idea is to compute adjusted or locally corrected
weights so that the underlying quadrature rule is again high order in the vicinity of
the singularity. The corrected weights are given as the integral of the product of the
singular function with some basis functions that approximate the density in a neigh-
bourhood of the singularity. These integrals have to be computed to high precision
by numerical integration. The original method in [12] suggested to compute these
integrals by oversampling the region of integration until the result has converged to
the desired accuracy. To reduce the amount of work for the numerical integration
we apply a regularising change of variables. A change to polar coordinates removes
the singularity completely. This observation is widely used in a series of integration
schemes for the treatment of singular integrals. For example it is used in the floating
partition of unity method introduced in [9].
The fully discretised system can be written in the form

(I +L+G)ψ = g, (20)

where ψ and g denote vectors, containing the values of the unknown density and the
right hand side at the set of integration points, I denotes the identity matrix, and
L and G are matrices that represent the locally corrected weights and the far-field
part of the integral operators. More precisely, the matrix G is a sparse matrix with
band structure and L is a dense and unstructured matrix.
Following the idea of the BMIA method, we use the above decomposition to

compute an approximate solution of (20), i.e. we compute

ψ(0) := 0,

ψ(n+1) := (I +L)−1(g −Gψ(n)), n = 0, 1, 2, . . . .

Thus, in each step we have to solve a linear system with a sparse banded matrix
I+L and do one matrix-vector multiplication with a dense unstructured matrix G.
The matrix I+L is actually a block band matrix with band blocks so that again an
iterative scheme, such as GMRES, can be used. However, the most time consuming
step is the computation of the matrix-vector productGψ(n). It is therefore inevitable
to have a fast matrix-vector multiplication that reduces the overall cost from a
standard O(N2) algorithm, where N denotes the total number of unknowns.
A method called the canonical grid method has been proposed to deal with these

special kind of matrix-vector product that arise in rough surface scattering problems.
The method consists in finding a clever approximation to the kernel function of the
boundary integral operators that allow the use of fast Fourier methods. Thus the
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cost for on matrix-vector multiplication can be reduced to O(M · N logN), where
M denotes a usually small number that depends only on the height of the object
measured in terms of the wavenumber.

4 Thesis outline

For the rest of this thesis it is very useful to have a short hand notation for the
following Banach spaces:

X(Γ) := L2(Γ) ∩BC(Γ) and X∞(Γ) := L2(Γ) ∩BC∞(Γ).

The thesis consists of two parts. Part I concerns the development of a framework
that allows to prove the invertibility of the integral operator of the second kind that
arises from the treatment of rough surface scattering problems in three dimensions
by means of BIEs. Part II deals with ideas for the effective numerical solution of
the underlying BIE and ways to prove convergence results for the discretised BIE.

Part I

The results in the first three chapters that concern mapping properties and the
invertibility of the operator A, given through (19), in the algebra of all bounded
linear operators on L2(Γ) and X(Γ), denoted by BL(L2(Γ)) and BL(X(Γ)), have
been published in joint papers together with S.N. Chandler-Wilde and R. Potthast,
see [21], [22] and [20]. These results are summarised and form the basis to prove
mapping properties and invertibility results in the space

X∞(Γ) := L2(Γ) ∩BC∞(Γ).

This space is a closed subspace of X(Γ) consisting of functions that have at least a
qualitative decay behaviour.

Chapter 1
Necessary tools from functional analysis as well as results from Fourier analysis are
reviewed. Several important Lemmata on mapping properties of convolution and
multiplication operators are shown.

Chapter 2
Mapping properties of the single- and double-layer potential operators are analysed.
The standard jump relations for single- and double-layer boundary potentials over
bounded obstacles are extended to the case of a 2D rough surface. The continuous
dependence of the boundary operators with respect to variations of the boundary
and with respect to the wavenumber are shown.
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Chapter 3
The uniqueness of the BVP is proven as well as the equivalence of the BVP with
the integral equation. Furthermore it is shown that if A is invertible in the Ba-
nach algebra BL(L2(Γ)) then it is also invertible in the subalgebras BL(X(Γ)) and
BL(X∞(Γ)).
We next study the invertibility of the operator I + K − iηS, firstly for the case

when Γ is flat and the operator I +K − iηS is a convolution operator, and then for
the general case when Γ is rough. Starting from the above results we show that A
is invertible on L2(Γ), without restriction on the surface elevation or slope of Γ.

Part II

Chapter 4
In this chapter we introduce notation used throughout the second part of the thesis,
summarise results from Fourier analysis for multi-periodic functions and sequences.
We prove that the composite trapezoidal rule is a high order integration scheme on
Rd for a class of differentiable and sufficiently fast decaying functions thus extending
results shown in [40] and [42].

Chapter 5
We study operator approximations used in Nyström methods for the weakly singular
integral operators occurring in the rough surface scattering problem. The operators
are split into a global smooth part and a local weakly singular part. In the case
that the density is smooth and sufficiently fast decaying we prove that the operator
approximations exhibit pointwise convergence that is of super-algebraic convergence
order. The results we show for the global operator extend ideas from [40] and [42] to
the three-dimensional case. The treatment of the weakly singular operators follows
ideas from [12] and [9] that were originally used for bounded obstacles.

Chapter 6
We present ideas how to apply a Nyström method to the case of integral equations
of the second kind over unbounded domains. We try to motivate the need of an
additional truncation scheme and introduce the finite section method. Though the
solvability of the truncated fully discretised equation is not known, a lot of numerical
schemes have been developed for the efficient numerical solution of these large linear
systems. We give a short introduction to the BMIA, for which we suggest a new
matrix splitting that arises naturally from our operator approximation.

Chapter 7
As an alternative approach to the finite section method we give a short introduction
to the Multi-section method that was developed in [31]. For this scheme the conver-
gence can be shown and we summarise the main results. A numerical realisation of
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this truncation scheme leads to an approximative matrix equation that is solved in
a least squares sense. This can be done with the help of an iterative scheme, e.g. the
conjugate gradient method for linear least squares problems (CGLS). The operator
discretisation that we introduced in Chapter 5 can also be utilised for this scheme.

Chapter 8
Whether one uses the BMIA or the CGLS method to compute a solution of the trun-
cated equation, it is necessary to utilise fast matrix-vector multiplication schemes.
A scheme that was especially designed to handle the dense large matrices is the
canonical grid method (CGM) that we introduce in Chapter 9. As a preparation
for the CGM we explain the use of fast matrix-vector multiplication algorithms by
means of fast Fourier transformation (FFT) for integral operators with difference
kernels. The theory and algorithms are developed for arbitrary space dimensions
and we give an example, including a full MATLAB listing for a two-dimensional
problem.

Chapter 9
We present the classical CGM based on Taylor expansion, cf. [45] and [62], and
another variant based on interpolation, cf. [19], with Chebyshev polynomials. Both
methods emphasise the two-dimensional convolutional structure of the integral op-
erator. We introduce a novel approach that emphasises a three-dimensional con-
volutional structure of the potentials rather than the potential operators. To see
this three-dimensional convolution we write the potential in terms of a singular sur-
face measure which can be realised on a formal level by introducing a Dirac delta
distribution. For practical computations we replace the Dirac delta distribution by
a sequence of continuous functions that form a Dirac delta sequence. Following an
error analysis in [5] we derive criteria, the so called discrete moment conditions, that
ensure that the Dirac delta sequence mimics the sifting property of the Dirac delta
distribution on a discrete level for all polynomials up to a certain degree. These
approximations to the Dirac delta distribution define high order local interpolation
schemes. Starting from the discrete moment conditions we use ideas from [46] to
derive a linear system of algebraic equations that define the interpolation kernels
in terms of a piecewise polynomial. We prove error estimates for these high order
interpolation schemes, give some numerical example and reinterpret this method as
a classical CGM based on a special choice for the interpolation operator. We con-
clude the chapter with some ideas from the theory of radial basis functions (RBFs)
that can serve as an alternative kernel function for the local high order interpolation
scheme.

Chapter 10
In the last chapter we give a full listing of a possible MATLAB implementation of
the novel algorithm. This serves two aims: first of all we hope that the details of the
algorithm on the fully discrete level can be better understood if shown in a few lines
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of MATLAB code. Second, we want to emphasise the simplicity of the algorithm as
compared to alternatives like fast multipole methods, equivalent sources methods or
precorrected FFT methods, though at the same time it is highly efficient.
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Chapter 1

Tools
This chapter reviews results from functional and Fourier analysis and introduces the
notation for function spaces used throughout this thesis.

1.1 Results from functional analysis

The results summarised in the upcoming sections are classical results that can be
found in any functional analysis books, e.g. [58], [48] and [60]. They are included
mainly to make the thesis selfcontained as far as possible and to have the notation
and exact definitions at hand.

1.1.1 Some results on bounded linear mappings

For normed spaces (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) the product space X × Y is a normed
space equipped with the norm ‖(x, y)‖X×Y := ‖x‖X + ‖y‖Y . Convergence in X × Y
is equivalent to componentwise convergence, i.e. the norm ‖ · ‖X×Y is equivalent to
‖(x, y)‖X×Y,∞ := max(‖x‖X , ‖y‖Y ). If X and Y are Banach spaces so is X × Y .
In the case that X and Y have a non-empty intersection X∩Y is a normed spaces

equipped with the norm ‖z‖X∩Y := max(‖z‖X , ‖z‖Y ). IfX and Y are Banach spaces
so is X ∩ Y .
The space of all continuous linear operators from X to Y is denoted by BL(X;Y );

in the case X = Y we write shortly BL(X) := BL(X;X). It is well known that a
linear operator is continuous if and only if it is bounded. Furthermore BL(X;Y )
is a normed space equipped with the operator norm

‖A‖X→Y := sup
‖x‖X=1

‖Ax‖Y , A ∈ BL(X, Y ).

If the spaces are evident from the context we write shortly ‖A‖ instead of ‖A‖X→Y .
If Y is a Banach space then so is BL(X;Y ).
The set of all invertible operators in BL(X) is an open set and denoted by GL(X).

The following theorem is often used to extend the domain of definition of an linear
operator defined on a dense subspace to its closure.

3
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Theorem 1.1 (The linear extension theorem). Let X be a normed space, X0 some
dense subspace of X and Z a Banach space. Let A : X0 → Z be a bounded linear
operator. Then there exists a unique extension of A to a bounded linear operator
A : X → Z with ‖A‖ = ‖A‖.

Proof. The main idea of the proof is to define the extension is through

Aϕ := lim
n→∞

Aϕn, for ϕ ∈ X,

where (ϕn)n∈N is some approximating sequence of function in X0 with limit ϕ. For
a detailed proof see e.g. [58, Satz 2.19].

1.1.2 Some classical function spaces

This section briefly introduces the notation for the most frequently used spaces.

Spaces of continuous functions The space of bounded and continuous real- or
complex-valued functions on Rd is denoted by BC(Rd). The space of bounded,
continuous, real- or complex-valued functions vanishing at infinity is denoted by
BC∞(Rd), i.e.

BC∞(Rd) :=
{
ϕ ∈ BC(Rd) : lim

|x|→∞
ϕ(x) = 0

}
.

The spaces BC(Rd) and BC∞(Rd) equipped with the supremum norm

‖ϕ‖BC(Rd) := sup
x∈Rd
|ϕ(x)|

are Banach spaces. BC∞(Rd) is a closed subspace of BC(Rd) arginparA more unique
notation would be better We will use

Spaces of differentiable functions To define spaces of differentiable functions
the multi-index notation is applied.

Definition 1.2 (Multi-index notation). A multi-index α ∈ Nd
0 is a d-tuple of non-

negative integers together with the following set of rules: for α = (α1, . . . , αd), β =
(β1, . . . , βd) ∈ Nd

0 and x ∈ Rd we define

α ≤ β :⇔ α1 ≤ β1, . . . , αd ≤ βd,

α + β := (α1 + β1, . . . , αd + βd),

|α| := α1 + · · ·+ αd, the order of a multi-index,
α! := α1! . . . αd!,

xα := xα1
1 . . . xαdd .
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Thus, for a function ϕ : Rd → C and multi-index α ∈ Nd
0 we can write ∂αϕ for

the partial derivatives (
∂

∂x1

)α1

. . .

(
∂

∂xd

)αd
ϕ(x).

For any integer k ∈ N0 we set

Ck(Rd) :=
{
ϕ : ∂αϕ ∈ C(Rd) for |α| ≤ k

}
,

BCk(Rd) :=
{
ϕ : ∂αϕ ∈ BC(Rd) for |α| ≤ k

}
,

the space of real- or complex-valued functions on Rd with k continuous (continuous
and bounded) derivatives.

C∞(Rd) :=
∞⋂
k=1

Ck(Rd) and BC∞(Rd) :=
∞⋂
k=1

BCk(Rd),

the space of smooth (bounded and smooth), real- or complex-valued functions on
Rd.

Ck
comp(Rd) :=

{
ϕ ∈ Ck(Rd) | suppϕ ⊂ Rd is compact

}
,

the space of k-times continuously differentiable, real- or complex-valued functions
with compact support on Rd.

D(Rd) := C∞comp(Rd) :=
∞⋂
k=1

Ck
comp(Rd),

the space of test functions.

S(Rd) :=
{
ϕ ∈ C∞(Rd) | ∀m ∈ N0, β ∈ Nd

0 : sup
x∈Rd

(1 + |x|m)|∂βf(x)| <∞
}
,

the Schwartz space of rapidly decreasing functions. It is obvious that the following
inclusion holds

D(Rd) ⊂ S(Rd). (1.1)

Spaces of Hölder continuous functions A real- or complex-valued function ϕ
defined on Rd is called uniformly Hölder continuous with Hölder exponent 0 < α ≤ 1
if there exists a constant C > 0 such that

|ϕ(x)− ϕ(y)| ≤ C |x− y|α (1.2)

for all x, y ∈ Rd. By BC0,α(Rd) we denote the space of all functions that are bounded
and uniformly Hölder continuous with exponent α.
BC0,α(Rd) ⊂ BC(Rd) is called a Hölder space. It is a Banach space equipped

with the norm
‖ϕ‖BC0,α := ‖ϕ‖BC(Rd) + |ϕ|α,Rd
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where
|ϕ|α,Rd := sup

x,y∈Rd
x 6=y

|ϕ(x)− ϕ(y)|
|x− y|α

denotes the Hölder semi-norm. |ϕ|α,Rd is the smallest constant satisfying (1.2) and
named Hölder constant of ϕ.

Remark 1.3. In the case α = 1 the function is called Lipschitz continuous. A
uniformly Hölder or Lipschitz continuous function is uniformly continuous.

We also need spaces of bounded continuously differentiable functions that have
bounded and uniformly Hölder continuous first derivatives. This space is denoted
by BC1,α(Rd). Among the many equivalent norms on BC1,α(Rd) we choose

‖ϕ‖BC1,α := ‖ϕ‖BC(Rd) + sup
x∈Rd
|∇ϕ(x)|+ sup

x,y∈Rd
x 6=y

|∇ϕ(x)−∇ϕ(y)|
|x− y|α

.

The space BC1,α(Rd) ⊂ BC1(Rd) equipped with the norm ‖ · ‖BC1,α is a Banach
space.

Spaces of Lebesgue integrable functions For 1 ≤ p <∞ we denote by Lp(Rd)
the linear space of equivalence classes of real- or complex-valued Lebesgue measur-
able functions ϕ on Rd such that |ϕ|p is integrable over Rd. As it is the usual custom
two functions are identified if they agree except for a set of measure zero which is
written shortly as a.e. for almost everywhere, i.e. if for two measurable functions
defined a.e.

f : Rd \Nf → K, g : Rd \Ng → K,

the sets Nf , Ng and {x ∈ Rd\(Nf ∪Ng) : f(x) 6= g(x)} are of measure zero. One can
show that all functions in one equivalence class are integrable and have the same
integral. On the set of equivalence classes

‖ϕ‖Lp(Rd) :=

(∫
Rd
|ϕ(x)|p dx

)1/p

. (1.3)

defines a norm which is called the Lp-norm.

Theorem 1.4 (Riesz-Fischer theorem for 1 ≤ p < ∞). For 1 ≤ p < ∞ the spaces
Lp(Rd) equipped with ‖ · ‖Lp(Rd) are Banach spaces. For every convergent sequence
there exists a subsequence that converges pointwise almost everywhere.

The linear space of equivalence classes of measurable functions that are essentially
bounded is denoted by L∞(Rd), i.e. a measurable function ϕ : Rd → K belongs to
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L∞(Rd) if

‖ϕ‖L∞(Rd) := ess. sup
x∈Rd

|ϕ(x)| := inf
{
C ∈ R : |ϕ(x)| ≤ C a.e.

}
<∞. (1.4)

One can show that ‖ϕ‖L∞(Rd) defines a norm on L∞(Rd).

Theorem 1.5 (Riesz-Fischer theorem for p = ∞). The spaces L∞(Rd) equipped
with ‖ · ‖L∞(Rd) is a Banach spaces. For every convergent sequence there exists a
subsequence that converges pointwise almost everywhere.

Remark 1.6. Following the usual custom we talk of Lp-functions instead of equiva-
lence classes of functions. This is a reasonable approach as long as one does not try
to use pointwise properties of Lp-functions. One exception is the case that f ∈ Lp
equals to a continuous function a.e.. As one can show that there can only be one
continuous function in one equivalence class, one chooses this functions as repre-
sentative.

To prove mapping properties of convolution operators on Lp-spaces in Section 1.5
we need the Hölder inequality. It is used also to prove the Minkowski inequality,
i.e. to show that (1.3) actually is a norm.
In dealing with Lp-spaces it is useful to define conjugate pairs of exponents, i.e. for

p ∈ [1,∞] let p′ denote the conjugate exponent such that

1

p
+

1

p′
= 1

where one uses the convention 1
∞ = 0.

Theorem 1.7 (Hölder inequality). Let 1 ≤ p ≤ ∞. For f ∈ Lp(Rd), g ∈ Lp′(Rd) it
holds that fg ∈ L1(Rd) and

‖fg‖L1 ≤ ‖f‖Lp ‖g‖Lp′ (1.5)

or written as integral inequality∫
Rd
|f(x)g(x)| dx ≤

(∫
Rd
|f(x)|p dx

)1/p (∫
Rd
|g(x)|p′ dx

)1/p′

.

Proof. For a proof see [58, Satz 1.39].

An easy consequence is the

Corollary 1.8 (Generalised Hölder inequality). Let 1 ≤ p, q, r ≤ ∞ with 1
r

=
1
p

+ 1
q
. For f ∈ Lp(Rd), g ∈ Lq(Rd) it holds that fg ∈ Lr(Rd) and

‖fg‖Lr ≤ ‖f‖Lp ‖g‖Lq (1.6)
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or written as integral inequality(∫
Rd
|f(x)g(x)|r dx

)1/r

≤
(∫

Rd
|f(x)|p dx

)1/p (∫
Rd
|g(x)|q dx

)1/q

.

Proof. We note that

|fg|r = |f |r |g|r ∈ L1 ⇐⇒ |fg| = |f | |g| ∈ Lr

and
1

r
=

1

p
+

1

q
⇐⇒ 1 =

1
p
r

+
1
q
r

.

Thus we can apply the ordinary Hölder inequality (Theorem 1.7) and compute∫
|fg|r dx =

∫
|f |r|g|r dx ≤

(∫
|f |r·p/r dx

)r/p (∫
|g|r·q/r dx

)r/q
.

Taking the rth root on both sides finishes the proof.

In the case that the Lebesgue spaces are defined over some bounded domain
Ω ⊂ Rd it is a consequence of the Hölder inequality that for 1 < p < q ≤ ∞ it holds
that

‖f‖Lp(Ω) ≤ |Ω|
1
p
− 1
q ‖f‖Lq(Ω)

for all f ∈ Lq(Ω), i.e. Lq(Ω) ⊂ Lp(Ω). In the case that |Ω| = ∞ in general neither
of the inclusions Lq(Rd) ⊂ Lp(Rd) nor Lp(Rd) ⊂ Lq(Rd) are valid.
For any two numbers p, q with 1 ≤ p < s < q ≤ ∞ it holds that a function from

the intersection of Lp and Lq also belongs to any Ls-space for p < s < q. This is
a very elementary example of a so called interpolation theorem, sometimes called
Lyapunov inequality cf. [60, Lemma II.4.1].

Lemma 1.9. Let 1 ≤ p ≤ q ≤ ∞ and 0 ≤ θ ≤ 1. Define s through 1
s

= (1−θ)1
p

+θ 1
q
,

then Lp(Rd) ∩ Lq(Rd) ⊂ Ls(Rd) and

‖f‖Ls ≤ ‖f‖1−θ
Lp ‖f‖

θ
Lq for all f ∈ Lp(Rd) ∩ Lq(Rd). (1.7)

Proof. We note that 1 = (1−θ)s
p

+ (θ)s
q

and with the help of the Hölder inequality
compute

∫
|f |s dx =

∫
|f |(1−θ)s|f |θs dx ≤

(∫
|f |(1−θ)s·

p
(1−θ)s dx

) (1−θ)s
p
(∫
|f |θs·

q
(θs dx

) θs
q

.

Taking the s-th root on both sides finishes the proof.
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1.1 Results from functional analysis

The following example illustrates the preceding Lemma. We use it later on to
show the mapping properties of the boundary operators.

Example 1.10. Consider the function on R2 given through

`(y) :=

{
|y|α−2, |y| ≤ 1,

0, |y| > 1,

for some α ∈ (0, 1]. Changing to polar coordinates one computes that∫
R2

|`(y)|p dy =

∫
B1(0)

|`(y)|p dy = 2π

∫ 1

0

r(α−2)pr dr <∞

for all p ∈ [1, 2
2−α), i.e. ` ∈ L1(R2) ∩ Lp(R2) for 1 ≤ p < 2

2−α < 2.

For later use it is important to know dense subspaces of Lebesgue spaces. One
can show

Lemma 1.11. For 1 ≤ p <∞ the space D(Rd) is a dense subspace of Lp(Rd), i.e. for
each ϕ ∈ Lp(Rd) there exists a sequence of functions (ϕn)n∈N in D(Rd) such that
‖ϕ− ϕ‖Lp(Rd) → 0 for n→∞.

As an immediate consequence of the inclusion (1.1) we get:

Lemma 1.12. For 1 ≤ p <∞ the space S(Rd) is a dense subspace of Lp(Rd).

Among the Lebesgue space the case p = 2 deserves some extra attention as it is
the only Lp-space that is a Hilbert space. The scalar product is given in the usual
way by

(ϕ, ψ)L2(Rd) :=

∫
Rd
ϕ(x)ψ(x) dx,

for ϕ, ψ ∈ L2(Rd) and we see that the Cauchy-Schwarz inequality is just a special
case of the Hölder inequality, i.e.

|(ϕ, ψ)L2 | ≤ ‖ϕψ‖L1 ≤ ‖ϕ‖L2‖ψ‖L2 .

Radial functions For later use in connection with symmetry properties of Fourier
transformation it is useful to introduce the concept of radial functions in Lp-spaces.
A function f : Rd → K is said to be radial if it can be written in the form

f(x) = frad(|x|), x ∈ Rd,

where frad : R≥0 → C. It is clear that a function is radial if and only if

f(x) = f(Qx), for all x ∈ Rd and Q ∈ O(Rd),

9



Chapter 1 Tools

whereO(Rd) denotes the group of orthogonal transformations on Rd. If f ∈ Lp(R2) is
a radial function it follows from Fubini’s theorem together with a change of variables
x = r(cos θ, sin θ) that

‖f‖pLp =

∫
R2

|f(x)|p dx =

∞∫
0

2π∫
0

|frad(r)|p dθ rdr = 2π

∞∫
0

|frad(r)|p rdr <∞,

i.e. the radial part of f is an element of Lp(R≥0, rdr), the weighted Lp-space on the
positive half-line.

1.1.3 Function spaces on the boundary

The scattering surface Γ given by (1) has the natural parametrisation

Pf : R2 → R3, x 7→ (x, f(x)). (1.8)

We can use this parametrisation to define the counterparts of the previously intro-
duced functions spaces for functions living on the boundary.
In the case of continuous or continuously differentiable functions we define

ϕ ∈ BCk(Γ) :⇐⇒ ϕ ◦ Pf ∈ BCk(R2), for k ∈ N0.

The right hand side is meaningful if we assume that Pf ∈ BCk(R2,R3) for some
k ∈ N. Thus in general the functions defined on the scattering surface can not
be any smoother than the scattering surface itself. It is clear that this definition
extends in the obvious way to Hölder spaces, etc.. Furthermore we conclude that
the mapping

If : BCn,α(Γf )→ BCn,α(R2), (Ifϕ)(x) := (ϕ ◦ Pf )(x), x ∈ R2, (1.9)

defines an isomorphism for n ∈ N, α ∈ [0, 1].
For Lp-functions we note that the Lebesgue integral over the scattering surface Γ

is defined through ∫
Γ

|ϕ(y)|p ds(y) :=

∫
R2

|(ϕ ◦ Pf )(y)|pJ(y) dy,

where
J(y) :=

√
1 + |∇f(y)|2, y ∈ Rd, (1.10)

denotes the surface area-element. For f ∈ BC1(R2) we have the bounds

1 ≤ J(y) ≤
√

1 + L2
f =: L̃, (1.11)

10



1.1 Results from functional analysis

where
Lf := sup

x,y∈R2

x6=y

|f(x)− f(y)|
|x− y|

= sup
x∈R2

|∇f(x)|, (1.12)

denotes the Lipschitz constant of f , i.e. the maximum surface slope. It follows from
Hölder’s inequality and the bound (1.11) that

ϕ ∈ Lp(Γ, ds)
⇐⇒ ϕ ◦ Pf ∈ Lp(R2, J(y) dy)

⇐⇒ ϕ ◦ Pf ∈ Lp(R2).

Thus we see that the mapping given through (1.9) defines an isomorphism for all
of the before mentioned spaces, including the Lebesgue spaces, provided that the
surface is sufficiently smooth for the above definitions to be meaningful. In this way
all results from the previous sections, including the denseness statements, transfer to
the spaces on the boundary. Furthermore we can use this isomorphism to associate
to each operator Af ∈ BL(Z(Γf )) an operator

Ãf := IfAfI
−1
f ∈ BL(Z(R2)),

where Z ∈ {BCk,α
∞ ,S,D, Lp} stands for any of the previous spaces.

1.1.4 Integral operators over unbounded domains

The following two Lemmata are a slight generalisation of the well known theorems for
integral operators with continuous and weakly singular kernels on bounded domains.
The following proofs are adopted from [35, Theorem 2.21, and Theorem 2.22].

Lemma 1.13. Consider the integral operator

(Aψ)(x) :=

∫
Rd
K(x, y)ψ(y) dy, x ∈ Rd

where K : Rd × Rd → C denotes a bounded, continuous function with compact
support, i.e. there exist positive constants C and R such that

sup
(x,y)∈Rd×Rd

|K(x, y)| ≤ C

and
suppK(x, ·) := {y ∈ Rd : K(x, y) 6= 0} ⊂ BR(x)

for all x ∈ Rd. Then it holds:

(i) A is bounded, considered as operator from L∞(Rd) to BC(Rd).

11
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(ii) A is bounded, considered as operator from BC∞(Rd) to BC∞(Rd).

Proof. We first note, that the integral defining the operator A is well defined since∣∣∣∣∫
Rd
K(x, y)ψ(y) dy

∣∣∣∣ ≤ ∫
suppK(x,·)

|K(x, y)||ψ(y)| dy

≤ C

∫
BR(x)

1 dy ‖ψ‖L∞

≤ Cωd

∫ R

0

rd−1 dr ‖ψ‖L∞ = C
ωd
d
Rd ‖ψ‖L∞ ,

where we have introduced polar coordinates with origin at x and ωd denotes the
surface area of the unit sphere in Rd. As the value does not depend on the point
x ∈ Rd we see that Aψ ∈ L∞(Rd) and A is a bounded operator on L∞ with
‖A‖ ≤ C ωd

d
Rd.

K is continuous, thus for each ε > 0 there exists δ = δ(x, y) > 0 such that

|K(x, y)−K(x′, y)| < ε for all x′, y ∈ Rd with |x− x′| ≤ δ.

Furthermore using that

supp
(
K(x, ·)−K(x′, ·)

)
⊂
(

suppK(x, ·) ∪ suppK(x′, ·)
)
⊂
(
BR(x) ∪BR(x′)

)
we can estimate

|(Aψ)(x)− (Aψ)(x′)| ≤
∫

Rd
|K(x, y)−K(x′, y)||ψ(y)| dy

≤ ε‖ψ‖L∞2C

∫
BR(x)

1 dy

≤ ε‖ψ‖L∞2C
ωd
d
Rd

showing the continuity of Aψ and finishing the proof of (i).
(ii) In the case ψ ∈ BC∞(Rd) we can estimate a little more carefully to obtain

|(Aψ)(x)| ≤
∫

suppK(x,·)
|K(x, y)| |ψ(y)| dy

≤ sup
z∈BR(x)

|ψ(z)| C
∫
BR(x)

1 dy

≤ sup
z∈BR(x)

|ψ(z)| C ωd
d
Rd → 0, |x| → ∞.

In the case of a continuous function ψ the essential supremum norm reduces to the
usual supremum norm, thus ‖A‖BC∞→BC∞ ≤ ‖A‖L∞→L∞ .
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1.1 Results from functional analysis

Definition 1.14. A kernel function K : Rd×Rd → C is local weakly singular, if it
is defined and continuous for all x, y ∈ Rd, x 6= y, and there exist positive constants
M and α ∈ (0, d] such that

|K(x, y)| ≤M |x− y|α−d, x, y ∈ Rd, x 6= y.

Lemma 1.15. Consider the integral operator

(Aψ)(x) :=

∫
Rd
K(x, y)ψ(y) dy, x ∈ Rd

where K : Rd×Rd → C denotes a function that is local weakly singular with compact
support, i.e. there exists a positive constant R such that suppK(x, ·) ⊂ BR(x) for
all x ∈ Rd. Then it holds:

(i) A is bounded, considered as operator from L∞(Rd) to BC(Rd).

(ii) A is bounded, considered as operator from BC∞(Rd) to BC∞(Rd).

Proof. We first note that the integral defining the operator A exists as an improper
integral in any of the cases ψ ∈ BC∞ or ψ ∈ L∞, since the support condition and
the local weak singularity yield the following estimate

|K(x, y)ψ(y)| ≤

{
M ‖ψ‖L∞ |x− y|α−d, y ∈ suppK(x, ·),
0, y 6∈ suppK(x, ·),

and ∫
suppK(x,·)

|x− y|α−d dy ≤
∫

BR(x)

|x− y|α−d dy ≤ ωd

∫ R

0

rα−drd−1 dr =
ωd
α
Rα,

where we have introduced polar coordinates with origin at x and ωd denotes the
surface area of the unit sphere in Rd. As the value does not depend on the point
x ∈ Rd we see that Aψ ∈ L∞(Rd) and A is a bounded operator on L∞ with

‖A‖L∞→L∞ ≤M
ωd
α
Rα.

We continue to prove (i) and show that Aψ is eventually in BC(Rd) ⊂ L∞(Rd).
For this choose a piecewise linear continuous function h : [0,∞)→ R by setting

h(t) :=


0, 0 ≤ t ≤ 1/2,

2t− 1, 1/2 ≤ t ≤ 1,

1, 1 ≤ t ≤ ∞,
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and for n ∈ N we define the continuous kernel Kn : Rd × Rd → C by

Kn(x, y) :=

{
h(n|x− y|) K(x, y), x 6= y,

0, x = y.

It follows from Lemma 1.13 that the corresponding integral operators An with kernel
function Kn are bounded operators on BC(Rd). Furthermore we have the estimate

|(Aψ)(x)− (Anψ)(x)| =

∣∣∣∣∣
∫
B1/n(x)

{
1− h(n|x− y|)

}
K(x, y)ψ(y) dy

∣∣∣∣∣
≤M‖ψ‖L∞ωd

∫ 1/n

0

rα−drd−1 dr

= M‖ψ‖L∞
ωd
αnα

, x ∈ Rd.

From this we observe that Anψ → Aψ, n → ∞, uniformly, and therefore Aψ ∈
BC(Rd).
In the case ψ ∈ BC∞(Rd) we can estimate again a little more carefully to obtain

|(Aψ)(x)| ≤
∫

suppK(x,·)

|K(x, y)| |ψ(y)| dy

≤M

∫
BR(x)

|x− y|α−d |ψ(y)| dy

≤ sup
z∈BR(x)

|ψ(z)|M
∫
BR(x)

|x− y|α−d dy

≤ sup
z∈BR(x)

|ψ(z)|M ωd
α
Rα → 0, |x| → ∞.

Remark 1.16. It is clear from the proof that the operator

(|A|ψ)(x) :=

∫
Rd
|K(x, y)|ψ(y) dy, x ∈ Rd

exhibits the same mapping properties as A.

1.1.5 Adjoint operators

To prove the invertibility of the operator A, given through (19), we make use of
some well known facts of adjoint operators. We therefore give a short summary of
adjoint operators induced by bilinear forms, following [35, Chapter 4].
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Two normed spaces X and Y equipped with a nondegenerate bilinear form 〈·, ·〉 :
X × Y → C are called a dual system and denoted by 〈X, Y 〉.
We will use a dual system 〈L2(Γ), L2(Γ)〉 where the bilinear form is given through

〈ϕ, ψ〉 :=

∫
Γ

ϕ(y)ψ(y) ds(y), ϕ, ψ ∈ L2(Γ). (1.13)

It is obvious that the integral is well-defined and defines a bilinear form. It remains
to show that this form is indeed nondegenerate, i.e. for every ϕ ∈ L2(Γ) with ϕ 6= 0
there exists ψ ∈ L2(Γ) such that 〈ϕ, ψ〉 6= 0. To prove this statement we first note
the following connection between this bilinear form and the usual L2-scalar product.
For ϕ, ψ ∈ L2(Γ) it holds that

〈ϕ, ψ〉 = (ϕ, ψ). (1.14)

Thus choosing ψ ≡ ϕ the proof follows from (1.14) together with the definiteness of
the L2-scalar product. The bilinear form (1.13)) henceforth is called dual-pairing.
In a Hilbert space one allways has a canonical dual-system arising from the inner
product.
We can use both dual-systems to define adjoint operators, i.e. two operators A,A′ :

L2(Γ)→ L2(Γ) are called adjoint with respect to the dual-pairing if

〈Aϕ,ψ〉 = 〈ϕ,A′ψ〉 for all ϕ, ψ ∈ L2(Γ)

whereas two operators A,A∗ : L2(Γ) → L2(Γ) are called adjoint with respect to the
canonical dual-system if

(Aϕ,ψ) = (ϕ,A∗ψ) for all ϕ, ψ ∈ L2(Γ).

One can establish a connection between these two different adjoint operators through
the following calculations. It follows from

(ϕ,A′ψ) = 〈ϕ,A′ψ〉 = 〈Aϕ,ψ〉 = (Aϕ,ψ) = (ϕ,A∗ψ), ϕ, ψ ∈ L2(Γ)

that (ϕ,A∗ψ − A′ψ) = 0 for all ϕ, ψ ∈ L2(Γ) which is equivalent to

A′ψ = A∗ψ for all ψ ∈ L2(Γ). (1.15)

It is well known that for operators on a Hilbert space Y , that are adjoint with
respect to the canonical dual-system arising from the inner-product on Y , we have
that A and A∗ have the same norm, that A is invertible if and only if A∗ is invertible,
and that if they are both invertible then

‖A−1‖ = ‖A∗−1‖.

As the complex conjugation is a norm preserving isomorphism on L2(Γ) it follows
from (1.15) that all the before mentioned properties immediately transfer to the
adjoint operators with respect to the dual-pairing.
A proof for the above statements can be easily constructed from [35, Theorem

4.9, Theorem 15.8].
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1.2 Results from differential geometry

To prove the mapping properties of the double-layer potential operator we need the
following Lemma that can be used to prove that in the case of a Lyapunov surface
the singularity of the double-layer potential is weakly singular.

Lemma 1.17. In the case of a Lyapunov surface Γ, i.e. f ∈ BC1,α(R2) it holds that

|〈ν(y), x− y〉| ≤ ‖f‖BC1,α |x− y|1+α, x, y ∈ Γ. (1.16)

Proof. We first note that the inward unit normal at a point y = (y, f(y)) ∈ Γ is
given through

ν(y) =
(−∇f(y), 1)√
1 + |∇f(y)|2

= (−∇f(y), 1) J(y)−1. (1.17)

Together with the mean value theorem and the lower bound (1.11) on the surface
area element J we estimate

|〈ν(y), x− y〉| = 1√
1 + |∇f(y)|2

|〈∇f(y),x− y〉 − {f(x)− f(y)}|

≤ 1 · |〈∇f(y),x− y〉 − 〈∇f(ξ),x− y〉|
≤ |∇f(y)−∇f(ξ)| |x− y|
≤ ‖f‖BC1,α |x− y|1+α,

where ξ = x+ t(y − x), t ∈ (0, 1) denotes some point between x and y.

1.3 Results from scattering theory for bounded
obstacles

To prove the mapping properties of the boundary layer operators over an unbounded
domain in Section 2.1 we need the following classical results for operators defined
over bounded obstacles D with Lyapunov boundaries.

Definition 1.18 (Lyapunov boundaries). The boundary is said to satisfy a Lya-
punov condition if at each point x ∈ Γ the normal vector ν exists and there are
positive constants l and α such that for the angle ϑ(x, y) between the normal vectors
at x and y the estimate

ϑ(x, y) ≤ l|x− y|α, x, y ∈ Γ

holds.
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The following results we cite are taken from [23] and have been proven under
the slightly stronger assumption that the boundary is C2. Proofs for the case of
Lyapunov curves can be found in [29], [43] or [61]. The results however remain the
same.

Definition 1.19. Given an integrable function ϕ, the integrals

u(x) :=

∫
∂D

Φ(x, y)ϕ(y) ds(y), x ∈ Rd \ ∂D,

v(x) :=

∫
∂D

Φ(x, y)

∂ν(y)
ϕ(y) ds(y), x ∈ Rd \ ∂D,

are called, respectively, acoustic single-layer and acoustic double-layer potentials
with density ϕ.

The normal vector ν is directed into the exterior of D.

Theorem 1.20. Let ∂D be of class C2 and let ϕ be continuous. Then the single-
layer potential u with density ϕ is continuous throughout R3 and

‖u‖BC(R3) ≤ C‖ϕ‖BC(∂D)

for some constant C > 0 depending only on ∂D. On the boundary we have

u(x) =

∫
∂D

Φ(x, y)ϕ(y) ds(y), x ∈ ∂D,

∂u±
∂ν

(x) =

∫
∂D

Φ(x, y)

∂ν(y)
ϕ(y) ds(y)∓ 1

2
ϕ(x), x ∈ ∂D,

where
∂u±
∂ν

(x) := lim
h→0+

〈ν(x), gradu(x± hν(x))〉

is to be understood in the sense of uniform convergence on ∂D and where the integrals
exists as improper integrals. The double-layer potential v with density ϕ can be
continuously extended from D to D̄ and from R3 \ D̄ to R3 \D with limiting values

v±(x) =

∫
∂D

Φ(x, y)

∂ν(y)
ϕ(y) ds(y)± 1

2
ϕ(x), x ∈ ∂D,

where
v±(x) := lim

h→0+
v(x± hν(x))

and where the integral exists as an improper integral. Furthermore,

‖v‖BC(D̄) ≤ C‖ϕ‖BC(∂D), ‖v‖BC(R3\D) ≤ C‖ϕ‖BC(∂D)
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for some constant C > 0 depending only on ∂D and

lim
h→0+

{
∂v

∂ν

(
x+ hν(x)

)
− ∂v

∂ν

(
x− hν(x)

)}
,

uniformly on ∂D.

1.4 Properties of 3D fundamental solution

We start with an investigation of properties of the fundamental solution Φ(x, y) and
its derivatives.
The key results are the expansions (1.21) and (1.27) needed to prove mapping

properties of the boundary integral operators S and K in Section 2.1.

1.4.1 Expansion for G

Denote by Uc the strip D−c \Dc ⊂ R3 for some c > 0, i.e.

Uc =
{
x ∈ R3 : −c ≤ x3 ≤ c

}
.

Then we are interested in understanding the behaviour of G(x, y) and Φ(x, y) for
x, y ∈ Uc with |x− y| ≥ 1 in terms of |x− y|.
We use Taylor expansion for the fundamental solution Φ(x, y) with respect to

variations of x3 and y3. It follows from Taylor’s theorem for g ∈ C3(R2) that

g(h) =
∑
|j|≤2

∂j

j!
g(0)hj +R(h), (1.18)

where h = (h1, h2), j ∈ N2
0 denotes a multi-index and R is the remainder term of

the expansion. We apply (1.18) to the function

g(h) := Φ(x+ h1e3,y + h2e3),

where e3 = (0, 0, 1) is the unit vector in the x3-direction, y = (y1, y2, 0) ∈ Γ0 and
h1, h2 ∈ [−c, c] for some constant c > 0. We use that

∂x3Φ(x, y) = −∂y3Φ(x, y), x 6= y,

to express all partial derivatives of Φ as derivatives with respect to y3. Thus

∂x3∂x3Φ = −∂x3∂y3Φ = −∂y3∂x3Φ = ∂y3∂y3Φ
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and we obtain

Φ(x+ h1e3,y + h2e3) = Φ(x,y) − ∂Φ(x,y)

∂y3

(h1 − h2)

+
1

2

∂2Φ(x,y)

∂y2
3

(h1 − h2)2 +R(x,y,h).

(1.19)

For the first two derivatives of Φ(x, ·) with respect to y3 we calculate

∂Φ(x, y)

∂y3

= − iκ
4π

(x3 − y3)
eiκ|x−y|

|x− y|2
+

1

4π
(x3 − y3)

eiκ|x−y|

|x− y|3

and

∂2Φ(x, y)

∂y2
3

=
iκ

4π

eiκ|x−y|

|x− y|2
− κ2

4π

(x3 − y3)2

|x− y|3
eiκ|x−y| − 1

4π

eiκ|x−y|

|x− y|3

− 3iκ

4π

(x3 − y3)2

|x− y|4
eiκ|x−y| +

3

4π

(x3 − y3)2

|x− y|5
eiκ|x−y|

.

We rewrite the second derivative as

∂2Φ(x, y)

∂y2
3

− iκ

4π

eiκ|x−y|

|x− y|2
= L(x, y, κ)

with

L(x, y, κ) :=− κ2

4π

(x3 − y3)2

|x− y|3
eiκ|x−y| − 1

4π

eiκ|x−y|

|x− y|3
− 3iκ

4π

(x3 − y3)2

|x− y|4
eiκ|x−y|

+
3

4π

(x3 − y3)2

|x− y|5
eiκ|x−y|

For L we find the following estimate: for |x− y| ≥ 1 we use (x3− y3) ≤ 2c to obtain

|L(x, y, κ)| ≤ C1
4c2

|x− y|3
+ C2

1

|x− y|3
+ C3

4c2

|x− y|4
+ C4

4c2

|x− y|5

≤ C

|x− y|3

for some positive constant C depending only on c and S ⊂ C̃.
Thus we see that given c > 0 and a compact subset S ⊂ C̃ there exists a constant

C, depending only on c and S, such that∣∣∣∣∂2Φ(x, y)

∂y2
3

− iκ

4π

eiκ|x−y|

|x− y|2

∣∣∣∣ ≤ C

|x− y|3
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for all x, y ∈ Uc with |x − y| ≥ 1 and all wavenumbers κ ∈ S. We abbreviate this
by writing

∂2Φ(x, y)

∂y2
3

=
iκ

4π

eiκ|x−y|

|x− y|2
+O

(
1

|x− y|3

)
.

The similar equations below, in particular (1.21) and (1.27), are to be understood
in an analogous fashion.
Inserting all of the previously calculated derivatives into (1.19), noting that

∂Φ(x,y)

∂y3

= 0,

yields

Φ(x+ h1e3,y + h2e3) =
1

4π

eiκ|x−y|

|x− y|

+
1

4π

iκ eiκ|x−y|

|x− y|2
(h1 − h2)2

2
+O

(
1

|x− y|3

)
.

(1.20)

Altogether we obtain the following lemma.

Lemma 1.21. Given c > 0 and a compact subset S ⊂ C̃, there exists a constant
C > 0 such that∣∣∣∣G(x+ h1e3,y + h2e3) +

h1h2

2π

iκ eiκ|x−y|

|x− y|2

∣∣∣∣ ≤ C

|x− y|3
,

for all x,y ∈ R2 with |x− y| ≥ 1, all κ ∈ S, and all h1, h2 ∈ [−c, c] , which we can
state again in the more convenient way as

G(x+ h1e3,y + h2e3) = − 1

2π

iκ eiκ|x−y|

|x− y|2
h1h2 + O

(
1

|x− y|3

)
. (1.21)

Proof. Use (1.20) on

G(x+ h1e3,y + h2e3) = Φ(x+ h1e3,y + h2e3)− Φ(x+ h1e3,y − h2e3).

We also need another bound that is valid in all of the half space and not just
inside a strip around the surface. Following [16, Lemma 3.1] we transfer the proof
to the three dimensional case and show:

Lemma 1.22. Given a compact subset S ⊂ C̃ there exists a constant C > 0 depend-
ing only on S such that

|G(x, y)| ≤ C
(1 + x3)(1 + y3)

|x− y|2
, (1.22)

for all x, y ∈ D0 = {x ∈ R3 : x3 > 0} with |x− y| > 1, and all κ ∈ S.
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Proof. For x, y ∈ D0, x 6= y with |x− y| > 1 define r := |x− y|, r′ := |x− y′| and

φ(s) :=
eiκs

4πs
, s > 0.

From

φ′(s) = iκ
eiκs

4πs
− eiκs

4πs2

we estimate, in the case s > 1,

|φ′(s)| ≤
∣∣∣∣iκeiκrse−κis4πs

− eiκrse−κis

4πs2

∣∣∣∣ ≤ |κ|e−κis4πs
+
e−κis

4πs2

≤ |κ|e
−κis

4πs
+
e−κis

4πs
≤ max(|κ|, 1)

e−κis

4πs
≤ C ′

s

with a constant C ′ > 0 depending only on κ. We note that for x, y ∈ D0 it holds
that r′ > r and furthermore

|r′ − r| = (r′ − r)(r′ + r)

r′ + r
=
r′2 − r2

r′ + r
=

4x3y3

r′ + r
≤ 4x3y3

2r
≤ 2(1 + x3)(1 + y3)

r
.

Thus using the mean value theorem we have

|G(x, y)| = |φ(r′)− φ(r)| ≤ |r′ − r| max
r≤s≤r′

|φ′(s)|

≤ |r′ − r| max
r≤s≤r′

C ′

s
≤ 2C ′

(1 + x3)(1 + y3)

r2
.

This proves the Lemma with C := 2C ′.

Remark 1.23. Examining the proof we see that for all x, y ∈ D0 = {x ∈ R3 : x3 >
0} with |x− y| > 1, and all κ ∈ C̃ it holds that

|G(x, y)| ≤ max(|κ|, 1)

2π

(1 + x3)(1 + y3)

|x− y|2
e−κi|x−y|.

1.4.2 Expansion for ∂G/∂ν

We repeat the above analysis for the normal derivative of G. We introduce the
linear operator T : R3 → R3 given through Ty = y′ = (y1, y2,−y3). Note that this
operator commutes with any linear operation on R3. The following abbreviations
will be used throughout this work.

∇yΦ(x, y) :=
(
∇Φ(x, ·)

)
(y) and ∇xΦ(x, y) :=

(
∇Φ(·, y)

)
(x).
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Straightforward calculations yield

∂Φ(x, y)

∂ν(y)
= 〈ν(y),∇yΦ(x, y)〉 =

1

4π

〈ν(y), x− y〉
|x− y|2

{
1

|x− y|
− ik

}
eik|x−y|. (1.23)

Using the chain rule we compute

∇y{Φ(x, y′)} =
(
∇Φ(x, ·)

)
(y′) ◦ T

to see that

∂Φ(x, y′)

∂ν(y)
= 〈ν(y),∇y{Φ(x, y′)}〉

=
1

4π

〈Tν(y), x− y′〉
|x− y′|2

{
1

|x− y′|
− ik

}
eik|x−y

′|

=
1

4π

〈ν(y)′, x− y′〉
|x− y′|2

{
1

|x− y′|
− ik

}
eik|x−y

′|,

(1.24)

where ν(y)′ = (ν1(y), ν2(y),−ν3(y)). Separating (1.23) and (1.24) into components
and introducing the notation ν(y) := (ν1(y), ν2(y)), we derive

4π
∂G(x, y)

∂ν(y)
= −iκ ν(y) · (x− y)

{
eiκ|x−y|

|x− y|2
− eiκ|x−y

′|

|x− y′|2

}
− iκ ν3(y)(x3 − y3)

eiκ|x−y|

|x− y|2
− iκ ν3(y)(x3 + y3)

eiκ|x−y
′|

|x− y′|2

+ ν(y) · (x− y)

{
eiκ|x−y|

|x− y|3
− eiκ|x−y

′|

|x− y′|3

}
+ ν3(y)(x3 − y3)

eiκ|x−y|

|x− y|3
+ ν3(y)(x3 + y3)

eiκ|x−y
′|

|x− y′|3
.

(1.25)

We proceed as in (1.20) and calculate for

Ψ(x, y) :=
eiκ|x−y|

|x− y|2
, x 6= y

the expansion

Ψ(x+h1e3,y+h2e3) =
eiκ|x−y|

|x− y|2
+
iκeiκ|x−y|

|x− y|3
(h1 − h2)2

2
+ O

(
1

|x− y|4

)
. (1.26)

Inserting this into (1.25) yields
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1.5 Results from Fourier analysis

Lemma 1.24. Given a compact subset S ⊂ C̃ there exists a constant C > 0 depend-
ing only on S such that∣∣∣∣∂G(x+ h1e3,y + h2e3)

∂ν(y)
+

(
κ2h1h2

2π
〈ν(y),

(x− y)

|x− y|
〉+

iκh1

2π
ν3(y)

)
Ψ(x,y)

∣∣∣∣ ≤ C

|x− y|3

for all x,y ∈ R2 with |x− y| ≥ 1, all κ ∈ S, and all h1, h2 ∈ [−c, c] , which we can
state again in the more convenient way as

∂G(x+ h1e3,y + h2e3)

∂ν(y)
= −κ

2

2π
ν(y) · (x− y)

|x− y|
eiκ|x−y|

|x− y|2
h1h2 −

− iκ

2π
ν3(y)

eiκ|x−y|

|x− y|2
h1 + O

(
1

|x− y|3

)
.

(1.27)

In complete analogy to Lemma 1.22 one proves:

Lemma 1.25. Given a compact subset S ⊂ C̃ there exists a constant C > 0 depend-
ing only on S such that

|∇yG(x, y)| ≤ C
(1 + x3)(1 + y3)

|x− y|2
, (1.28)

for all x, y ∈ D0 = {x ∈ R3 : x3 > 0} with |x− y| > 1, and all κ ∈ S.

1.5 Results from Fourier analysis

To establish that S and K are bounded operators on L2(Γ), X(Γ) and on X∞(Γ)
we use Fourier methods together with certain mapping properties of convolution
operators. To make this thesis self contained a review of the relevant theorems on
Fourier transformation is included. All of the results can be found in more detail
e.g. [49], [60], [58] or [53].

1.5.1 Fourier transformation revisited

For reasonable functions ϕ : Rd → C the Fourier transform and the inverse Fourier
transform are given through the following two linear mappings

(Fϕ)(k) :=
1

(2π)d/2

∫
Rd
e−ik·xϕ(x) dx, k ∈ Rd (1.29)

and
(F−1ϕ)(k) :=

1

(2π)d/2

∫
Rd
eik·xϕ(x) dx, k ∈ Rd. (1.30)
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Classes of reasonable functions e.g. turn out to be S(Rd), the Schwartz space
of rapidly decreasing functions and the spaces of Lebesgue integrable or square-
integrable functions, L1(Rd) and L2(Rd). It is possible to extend the Fourier trans-
formation to the space of generalised functions or tempered distributions S ′(Rd),
but this extension is not used in this thesis, though a reader more familiar with
distribution theory might find easier arguments to compute the 2D-Fourier trans-
form of the trace of the Dirichlet Green’s function on some flat surface Γh, h > 0,
cf. (1.38).
The most rewarding setting for the Fourier transformation is probably S and L2,

as the Fourier transform is bijective on these two spaces. In the case of L2 it is also
a unitary isomorphism, which makes a very elegant theory. The short outline on
Fourier analysis we give mostly follows [49].
The following theorems justifies the name inverse Fourier transform as well as the

symbol F−1 for the operator given through equation (1.30).

Theorem 1.26 (Fourier inversion theorem). The Fourier transform is a linear bi-
jective mapping from S(Rd) onto S(Rd). For ϕ ∈ S(Rd) it holds that FF−1ϕ =
F−1Fϕ = ϕ where F and F−1 are given through (1.29) and (1.30).

Proof. For a proof see [58, Satz 11.5].

The next theorem, known by the name of Plancherel’s theorem, shows that Fourier
transformation preserves the L2-norm as well as the L2-inner product.

Theorem 1.27 (Plancherel’s Theorem). For ϕ, ψ ∈ S(Rd) it holds

(Fϕ,Fψ)L2 = (ϕ, ψ)L2

and
‖Fϕ‖L2 = ‖ϕ‖L2 .

Proof. For a proof see [58, Satz 11.9].

Combining the previous two theorems together with the linear extension theorem
(Theorem 1.1) we conclude that there exists a unique continuation to an unitary
operator for all of L2(Rd). This extension is often called Fourier-Plancherel trans-
form.

Theorem 1.28 (Fourier-Plancherel theorem). The Fourier transform F extends
uniquely to a unitary map F2 : L2(Rd) → L2(Rd). The inverse transform F−1

extends uniquely to an operator F−1
2 that is the Hilbert space adjoint of F2.

The Fourier transformation can be extended also to the space of Lebesgue inte-
grable functions; this is the statement of the following theorem.
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1.5 Results from Fourier analysis

Lemma 1.29 (Riemann-Lebesgue lemma). The operators F and F−1 can be ex-
tended in a unique way to bounded linear operators F1 and F−1

1 from L1(Rd) into
L∞(Rd) with

‖F1‖L1→L∞ = ‖F−1
1 ‖L1→L∞ ≤ (2π)−d/2.

Furthermore F1(L1(Rd)) and F−1
1 (L1(Rd)) are subsets of C∞(Rd), i.e. F1ϕ and

F−1
1 ϕ are continuous and lim|x|→∞(F1ϕ)(x) = 0 and lim|x|→∞(F−1

1 ϕ)(x) = 0 for
all ϕ ∈ L1(Rd).

Remark 1.30. Note the different meaning of the symbol F−1
1 in contrast to F−1

2 .
As the range of F1 is not contained in L1(Rd), the symbol F−1

1 does not denote the
operator inverse of F1. But as one can show that the Fourier transform on L1 is
injective, one gets a pointwise inversion formula F1F−1

1 ψ = F−1
1 F1ψ = ψ if one

assumes that for ψ ∈ L1 also F1ψ ∈ L1.

For practical computations it is useful to know that the abstract extensions that
are given through the above theorems have a representation as integral operators.
In the case of L1-functions the extensions are given through the integral repre-

sentations (1.29) and (1.30), as can be concluded from the Lebesgue dominated
convergence theorem. In the case of L2-functions the integrals (1.29) and (1.30)
have to be interpreted a little differently as the following example shows.

Example 1.31. Consider the piecewise defined function

ϕ(x) :=

{
1, |x| ≤ 1,
1
|x| , |x| > 1,

which is clearly in L2(R) ∩ C(R) but not in L1(R) ∩ C(R). Thus for k = 0 (1.29)
and (1.30) neither exists as proper nor improper integrals.

In general, if ϕ ∈ L2(Rd) the Fourier transform is given as L2-limit of a sequence
{ϕR}, where {ϕR} can be any sequence in L1(Rd) ∩ L2(Rd) converging to ϕ in the
L2-norm. A very convenient choice for an approximating sequence is to choose

ϕR(x) :=

{
ϕ(x), |x| ≤ R,

0, |x| > R.

ϕR ∈ L1(Rd)∩L2(Rd) for every R > 0 and ‖ϕR−ϕ‖L2 → 0, R→∞ so one can use
the integral representation for L1-functions to have a meaningful interpretation in
the case of L2-functions. This is summarised in the next theorem.

Theorem 1.32.
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(i) For ϕ ∈ L1(Rd) ∩ L2(Rd) it holds that

F1ϕ = F2ϕ, a.e. in Rd.

(ii) Let ϕ ∈ L2(Rd). Then the following identities hold in L2-sense

(F2ϕ)(k) = l. i.m.
R→∞

1

(2π)d/2

∫
|x|≤R

e−ik·xϕ(x) dx, a.e. in Rd,

(F−1
2 ϕ)(k) = l. i.m.

R→∞

1

(2π)d/2

∫
|x|≤R

eik·xϕ(x) dx, a.e. in Rd.

The integral exists in the sense of Cauchy principle value integral a.e. and l. i.m.
stands for limit in mean, i.e. convergence in the L2-norm.

Proof. For a proof see e.g. [58, Satz 11.10].

1.5.2 Symmetry properties of the Fourier transformation:
Hankel transforms

For later use we need to compute Fourier transforms of functions with certain sym-
metry properties. The computation can be simplified if one understands how Fourier
transformation respects these symmetries. The following results are summarised
from [53, Chapter IV, §1].
It is an interesting result of Fourier theory that one can find an orthogonal direct

sum decomposition

L2(R2) =
∞⊕

n=−∞

Hn,

where

Hn :=

{
g ∈ L2(R2) :

g(x) = grad(r)einθ a.e. for some measurable

function satisfying
∫∞

0
|grad(r)|2rdr <∞

}
, n ∈ Z,

are subspaces that are invariant with respect to Fourier transformation. This de-
composition is related to the fact that Fourier transformation commutes with the
action of rotations. Though this decomposition can be derived for arbitrary space
dimensions we restrict our presentation to the two-dimensional case that is needed
for the application we have in mind.

We now show that the 2D-Fourier transformation on these subspaces reduces to
a one dimensional integral that is associated with the so called Hankel transform.
Assume first that g ∈ L1(R2)∩Hn for some n ∈ Z. Then it follows from our remarks
in Section 1.1.2 on radial functions that grad ∈ L1(R≥0, rdr). Using polar coordinates
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1.5 Results from Fourier analysis

(R,ϕ) for x and (r, θ) for y together with the following integral representation of
the Bessel functions of the first kind of order n

Jn(r) =
1

2πin

∫ 2π

0

einθeir cos θ dθ, n ∈ Z, r ∈ R,

and the relations x · y = Rr cos(θ− ϕ) and Jn(−r) = (−1)nJn(r), for n ∈ Z, r ∈ R,
we compute that

(F1g)(x) =
1

2π

∫
R2

g(y)e−ix·y dy

=
1

2π

∫ ∞
0

∫ 2π

0

grad(r)einθe−iRr cos(θ−ϕ) dθ r dr

=
1

2π

∫ ∞
0

(∫ 2π

0

einθ̃e−iRr cos θ̃ dθ̃

)
grad(r)r dr einϕ

= in
(∫ ∞

0

grad(r)Jn(−Rr)r dr
)
einϕ

= (−i)n
(∫ ∞

0

grad(r)Jn(Rr)r dr

)
einϕ. (1.31)

It follows from the estimate∣∣∣∣∫ ∞
0

grad(r)Jn(Rr)r dr

∣∣∣∣ ≤ ∫ ∞
0

|grad(r)|r dr <∞

that the integral (1.31) defines an integral operator on L1(R≥0, rdr) through

(Hnψ)(k) :=

∫ ∞
0

ψ(r)Jn(kr)r dr, k ∈ [0,∞), n ∈ N0.

This transform is sometimes either called the n-th order Bochner-Hankel, Fourier-
Bessel or Hankel transform – we will use the term Hankel transform. Thus we have
the following relation

(F1g)(x) = (−i)n(Hngrad)(r)einθ (1.32)

for all g ∈ L1 ∩ Hn. In a completely analogue fashion one gets the relation

(F−1
1 g)(x) = in(Hngrad)(r)einθ,

which shows that Hn is self-inverse, i.e. H2
n = I.

It is possible to extend the domain of the Hankel transform to L2(R≥0, rdr) in
essentially the same way as this was done for the Fourier transformation. Again one
has to clarify in what sense the integral representation is to be understood. In the
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case that g ∈ Hn we know that G := F2g ∈ Hn, thus there exists a representation
G(x) = Grad(R)einϕ a.e. with Grad ∈ L2(R≥0, rdr) and so it follows from (1.31) that∫

R2

∣∣∣∣G(x)− 1

2π

∫
|y|≤R

g(y)eix·y dy

∣∣∣∣2 dx
=

∫ ∞
0

∫ 2π

0

∣∣∣∣Grad(R)einϕ − (−i)n
∫ R

0

grad(r)Jn(Rr) rdr einϕ
∣∣∣∣2 dϕ R dR

= 2π

∫ ∞
0

∣∣∣∣Grad(R)− (−i)n
∫ R

0

grad(r)Jn(Rr) rdr

∣∣∣∣2 R dR→ 0, R→∞,

i.e. (−i)n
∫ R

0
grad(r)Jn(Rr) rdr converges to the radial part Grad of the Fourier trans-

form of g in L2(R≥0, rdr). Thus the identity (1.32) extends to g ∈ Hn, n ∈ Z, if
one understands the integral in the sense of an L2-limit of an improper integral.
Note that (1.32) can be used to extend the domain of the Fourier transform to an
even larger class of functions, e.g. distributions, as the one dimensional integral may
exists even if grad is not an L1- or L2-function.
The preceding analysis allows us to handle the more general symmetries that arise

in the expansion of the Green’s function, see (1.27). So we use the representation
(1.31) to calculate the Fourier transforms of parts of the kernels of the operators S
and K that are given in the form

`(y) := F (r)einθ :=
eiκr

β + r2
einθ, (1.33)

for some β > 0 and n = −1, 0, 1. Clearly, ` ∈ L2(R2) for β > 0 and so F2` surely
exists. To prove that S and K are bounded operators on L2(Γ), cf. Lemma 2.3, we
need to know that F2` ∈ L∞(R2). Thus we show the following lemma.

Lemma 1.33. The Fourier transform of ` given through (1.33) is bounded.

Proof. To prove the lemma it suffices to show that the improper integral

I(k) :=

∫ ∞
0

F (r)Jn(kr) r dr

is bounded on [0,∞). With the help of the asymptotic expansion of the Bessel
function, cf. for example [1],

Jn(z) =

√
2

πz
cos(z − nπ

2
− π

4
)

{
1 +O

(
1

z

)}
, |z| → ∞, (1.34)

we see that eizJn(z) is bounded in 0 < arg z < θ, for every θ ∈ (0, π/2). Since
<(i(κ − k)z) = −(κr − k)=(z) − κi<(z) and F (z) is a holomorphic function in
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<(z) > 0, we see that for 0 ≤ k < κr we may transform the integral

I(k) =

∫ ∞
0

ei(κ−k)z

β + z2
eikzJn(kz) z dz (1.35)

into

I(k) =

∫
γ

ei(κ−k)z

β + z2
eikzJn(kz) z dz (1.36)

with γ = {(1 + i)t : t ≥ 0}. This integral is bounded for 0 < k ≤ κr/2.
For k ≥ κr/2 we can use (1.34) and that Jn(z) is continuous and thus, by (1.34),

bounded on [0,∞), to estimate that, for some constants C1 and C2,∣∣∣ ∫ ∞
0

F (r)Jn(kr) r dr
∣∣∣ ≤ C1 + C2

∫ ∞
1

1

r3/2
dr. (1.37)

We conclude that I is bounded on [0,∞), so that, by (1.32), F2` ∈ L∞(R2).

In order to establish a limiting absorption principle in later sections, we are in-
terested in the dependence of ` on κi.

Lemma 1.34. Denoting ` by `κi to indicate their dependence on the imaginary part
of the wavenumber κi, we have that ‖F2`κi −F2`0‖L∞(R2) → 0 as κi → 0

Proof. From (1.36), since eizJn(z) is bounded on γ = {(1 + i)t : t ≥ 0}, we see that,
for some constant C > 0,

|Iκi(k)− I0(k)| < C

∫ ∞
0

e−κrt/2(1− e−κit) dt

for 0 ≤ k ≤ κr/2, κi ≥ 0, so that Iκi(k) → I0(k) as κi → 0, uniformly on [0, κr/2].
Similarly, using (1.35) and (1.34), cf. (1.37), we can show that Iκi(k) → I0(k) as
κi → 0, uniformly on [κr/2,∞].

We close this section with yet another example of a Hankel transform. For h ≥ 0
define

Wh(r) :=
1

4π

eiκ
√
r2+(2h)2√

r2 + (2h)2
, r > 0. (1.38)

We note that this function is surely neither in L1(R≥0, rdr) nor L2(R≥0, rdr).
However it is possible to show the following lemma.

Lemma 1.35.

(H0Wh)(k) =

∫ ∞
0

Wh(r)J0(kr)r dr =
1

4π

e−2h
√
k2−κ2

√
k2 − κ2

, (1.39)
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for all k 6= κ, h ≥ 0, where the branch of the square root is taken so that its argument
lies in [−π/2, 0], i.e.

√
k2 − κ2 ∈ V :=

{
z ∈ C : <(z) ≥ 0,=(z) ≤ 0

}
(1.40)

for any wavenumber κ ∈ C̃ and all k ≥ 0. Thus explicitly in the case of a real
wavenumber this means that

√
k2 − κ2 =

{
−i
√
κ2 − k2, 0 ≤ k ≤ κ,√
k2 − κ2, k ≥ κ.

Proof. We write the integral (1.39) in the equivalent form

1

4π
√
k

∫ ∞
0

√
rWh(r)J0(kr)

√
rk dr

and note that

Wh(r) =


cos[κr

√
r2 + (2h)2]√

r2 + (2h)2
+ i

sin[κr
√
r2 + (2h)2]√

r2 + (2h)2
, κi = 0,

exp[(−κi + iκr)
√
r2 + (2h)2]√

r2 + (2h)2
, κi > 0,

, h > 0

and

W0(r) =


cos[κrr]

r
+ i

sin[κrr]

r
, κi = 0,

exp[(−κi + iκr)r]

r
, κi > 0.

We need to distinguish four cases:

1. h > 0 and κi > 0. This follows from [27, Section 8.2, formula (24)]

∞∫
0

√
r

exp[−α
√
r2 + β2]√

r2 + β2
J0(kr)

√
rk dr =

√
k

exp[−β
√
k2 + α2]√

k2 + α2
,

which is valid for <(α),<(β) > 0. The choice α = κi− iκr = −iκ and β = 2h clearly
satisfies this condition.

2. h > 0 and κi = 0. This follows from [27, Section 8.2, formulas (41) and (50)]

∞∫
0

√
r

sin[α
√
r2 + β2]√

r2 + β2
J0(kr)

√
rk dr =


√
k

cos[β
√
α2 − k2]√

α2 − k2
, 0 < k < α,

0, α < k <∞,
,
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and

∞∫
0

√
r

cos[α
√
r2 + β2]√

r2 + β2
J0(kr)

√
rk dr =


−
√
k

sin[β
√
α2 − k2]√

α2 − k2
, 0 < k < α,

√
k

exp[−β
√
k2 − α2]√

k2 − α2
, α < k <∞,

,

which are both valid for α,<(β) > 0. The choice α = κr and β = 2h clearly satisfy
this condition.

3. h = 0 and κi > 0. This follows from [27, Section 8.2, formula (18)]

∞∫
0

exp[−αr]√
r

J0(kr)
√
rk dr =

√
k

1√
k2 + α2

, <(α) > 0,

with α = κi − iκr = −iκ.

4. h = 0 and κi = 0. This follows from [27, Section 8.2, formulas (32) and (42)]

∞∫
0

sin[αr]√
r

J0(kr)
√
rk dr =


√
k

1√
α2 − k2

, 0 < k < α,

0, α < k∞,

and
∞∫

0

cos[αr]√
r

J0(kr)
√
rk dr =

0, 0 < k < α
√
k

1√
α2 − k2

, α < k∞,

which are valid for α > 0. The choice α = κr clearly satisfy this condition.

Remark 1.36. The integral (1.39) is related to the Sommerfeld integral

1

4π

eiκ
√
|x|2+x2

3√
|x|2 + x2

3

=
1

4π

∫ ∞
0

e−|x3|
√
r2−κ2

√
r2 − κ2

J0(r|x|) r dr, x = (x, x3) ∈ R3,

where again the branch of the square root with argument in [−π/2, 0] has to be used.
Using that Hn is self-inverse we get the above identity by formally applying the
Hankel transform on both sides of (1.39).

The function Wh is important in the sequel as in the case of a flat scattering
surface Γh = {y = (y, h) : y ∈ R2} for some h > 0, the kernels of the double- and
single-layer potential operators can be written in terms of this function. Indeed, for
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points x = (x, h), y = (y, h) ∈ Γh, we find that for the kernel of the single-layer
potential operator it holds that

2G(x, y) = Qh(x− y), x, y ∈ Γh, x 6= y,

where
Qh(y) := qh(|y|) (1.41)

and

qh(r) := 2

{
1

4π

eiκr

r
− 1

4π

eiκ
√
r2+(2h)2√

r2 + (2h)2

}
, r > 0

with the obvious equality qh(r) = 2
{
W0(r)−Wh(r)

}
. With the help of Lemma 1.35

we can deduce the following theorem.

Lemma 1.37. In the case of a flat scattering surface Γh, for some h > 0, the Fourier
transform of the kernel of the single-layer potential operator is bounded for any choice
of a wavenumber κ ∈ C̃ and is given through

(F2Qh)(k) =
1

2π

1− e−2h
√
|k|2−κ2√

|k|2 − κ2
, k ∈ R2.

Proof. The functions Qh ∈ L2(R2), as it follows from our analysis in Section 1.4.1.
So the Fourier transform exists and is given through

(F2Qh)(k) = (H0qh)(|k|)

= 2

∫ ∞
0

{
W0(r)−Wh(r)

}
J0(|k|r) rdr

=
1

2π

1√
|k|2 − κ2

− 1

2π

e−2h
√
|k|2−κ2√

|k|2 − κ2

=
1

2π

1− e−2h
√
|k|2−κ2√

|k|2 − κ2
,

where we used (1.39). We note that the function g : z 7→ (1 − e−2hz)/z is analytic,
since the singularity at 0 is removable, and it is bounded for all z = zr + izi ∈ V ,
with V given through (1.40). In fact |g(z)| ≤ C for some constant C > 0 for all
z ∈ V with |z| ≤ 1 as g is a continuous function on a compact set. In the case z ∈ V
with |z| > 1 we estimate ∣∣∣∣1− e−2hz

z

∣∣∣∣ ≤ 1 + e−2hzr

|z|
≤ 2,

thus proving that g is bounded on V .
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To handle the case of the double-layer potential we note that it follows from (1.25)
that

2
∂G(x, y)

∂ν(y)
= Ph(x− y), x, y ∈ Γh, x 6= y,

where
Ph(y) := ph(|y|), (1.42)

and

ph(r) := −iκh
π

eiκ
√
r2+(2h)2(√

r2 + (2h)2
)2 +

h

π

eiκ
√
r2+(2h)2(√

r2 + (2h)2
)3 , r > 0.

An easy calculation yields ph(r) = − ∂
∂h
{Wh(r)}. The analogue result to Lemma 1.37

is again a consequence of (1.39).

Lemma 1.38. In the case of a flat scattering surface Γh, for some h > 0, the Fourier
transform of the kernel of the double-layer potential operator is bounded for any
choice of a wavenumber κ ∈ C̃ and is given through

(F2Ph)(k) =
1

2π
e−2h
√
|k|2−κ2

, k ∈ R2.

Proof. The functions Ph ∈ L2(R2), as it follows from our analysis in Section 1.4.2.
So the Fourier transform exists and is given through

(F2Ph)(k) = (H0ph)(|k|)

= −
∫ ∞

0

∂

∂h

{
Wh(r)

}
J0(|k|r) rdr

= − ∂

∂h

∫ ∞
0

Wh(r)J0(|k|r) rdr

= − ∂

∂h

{ 1

4π

e−2h
√
|k|2−κ2√

|k|2 − κ2

}
=

1

2π
e−2h
√
|k|2−κ2

.

The interchange of integration and differentiation with respect to h is certainly
justified whenever k > 0 and k 6= κ. For then the integral (1.39) is well-defined and,
using the asymptotic estimate of the Bessel function (1.34), we see that for every
H > 0 there exists a constant C > 0 such that∣∣∣∣∂Wh(r)

∂h
J0(kr)r

∣∣∣∣ =

∣∣∣∣∣ ∂∂h
{

1

4π

eiκ
√
r2+(2h)2√

r2 + (2h)2

}
J0(kr)r

∣∣∣∣∣ ≤ C

r3/2
, (1.43)

for r ≥ 1 and 0 ≤ h ≤ H. The boundedness of the function g : z 7→ e−2hz on V is
obvious.
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1.6 Convolution

In the case that the scattering surface Γ is a flat plane the integral operators are
convolution operators, i.e. the kernel function depends only on the distance of the
evaluation and integration points. In this section we study some of their mapping
properties and explain their interaction with Fourier transformation.
The presentation mostly follows [39] and [58].

Definition 1.39. For measurable functions f, g : Rd → K the convolution is given
through

(f ∗ g)(x) :=

∫
Rd
f(x− y)g(y) dy, x ∈ Rd, (1.44)

whenever the integrand belongs to L1(Rd).

The substitution y = x− z shows that (f ∗ g) exists if and only if (g ∗ f) exists.
Thus convolution is commutative.
The next theorem gives simple criteria for the existence of the convolution.

Theorem 1.40. Let 1 ≤ p, q, s ≤ ∞ and suppose that 1
p

+ 1
q

= 1 + 1
s
with the usual

convention 1
∞ = 0.

(i) If f ∈ Lp(Rd), g ∈ Lq(Rd), then (f ∗ g)(x) exists a.e. and belongs to Ls(Rd) with

‖f ∗ g‖Ls ≤ ‖f‖Lp‖g‖Lq . (1.45)

(ii) If s =∞ it holds moreover that f ∗ g is uniformly continuous on Rd.

(iii) If s =∞ and 1 < p, q <∞ then lim|x|→∞(f ∗ g)(x) = 0, i.e. f ∗ g ∈ BC∞(Rd).

Proof. For a detailed proof see [39, Theorem 3.1, Theorem 3.2].

Remark 1.41. The inequality (1.45) is referred to as Young’s inequality. The state-
ment of (iii) can be slightly improved to the case p = 1 and q = ∞ if one uses the
closed subspace BC∞(Rd) ⊂ L∞(Rd), i.e. for f ∈ L1(Rd) and g ∈ BC∞(Rd) (or vice
versa) it holds that f ∗ g ∈ BC∞(Rd). For a proof of this statement for the case
of one dimension see [11, Proposition 0.2.1]. The multi-dimensional cases can be
handled in a similar way.

The following convolution theorem is the key to derive an analytical solution
of convolution integral equations. It basically states that the convolution product
transforms to a pointwise multiplication in Fourier space and therefore yields a rather
simple algebraic equation that can be solved and afterwards transformed back.
The easiest setting to formulate the theorem is provided by the class of Schwartz

functions.
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1.6 Convolution

Theorem 1.42 (Convolution theorem on S). For f, g ∈ S(Rd) the Convolution
theorem holds

F(f ∗ g) = (2π)d/2(Ff)(Fg). (1.46)

Proof. For a proof see [49, Theorem IX.3].

There also is an analogue formulation of the Convolution theorem for L2 functions.

Theorem 1.43 (Convolution theorem for L2).

(i) For f, g ∈ L2(Rd) the convolution formulae can be written as

f ∗ g = (2π)d/2F−1
1 (F2f · F2g). (1.47)

(ii) For f, g ∈ L2(Rd) the following statements are equivalent:

(a) F2f · F2g ∈ L2(Rd),
(b) F−1

2 f · F−1
2 g ∈ L2(Rd),

(c) f ∗ g ∈ L2(Rd).

In this case the convolution formulae can be written as

F2(f ∗ g) = (2π)d/2 F2f · F2g ⇔ f ∗ g = (2π)d/2 F−1
2 (F2f · F2g). (1.48)

Proof. For a proof see [58, Satz 11.11].

1.6.1 Convolution operators

We use the results from the previous sections to prove mapping properties of certain
convolution operators.
The prototype integral operator for this section is given through

(Lψ)(x) =

∫
Rd
l(x, y)ψ(y) dy, x ∈ Rd, (1.49)

where we suppose that l : Rd × Rd → C is such that l(x, ·) is measurable for all
x ∈ Rd and the integral exists a.e. for an appropriately chosen ψ.

Lemma 1.44. If the kernel function of the operator L, given through (1.49), can be
written as

l(x, y) = `(x− y),

where ` ∈ L2(Rd) such that F2` ∈ L∞(Rd), then Lψ = ` ∗ ψ is a bounded operator
on L2(Rd) with the bound

‖L‖L2→L2 ≤ (2π)d/2‖F2`‖L∞

and furthermore Lψ ∈ X∞(Rd) = L2(Rd) ∩BC∞(Rd).
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Proof. We first note that ` ∈ L2 and F2` ∈ L∞ imply that F2` ∈ L2 ∩L∞. Now we
can apply the Hölder inequality (1.5) in the case p = q = 2 to get F2` · F2ψ ∈ L1

and the generalised Hölder inequality (1.6) in the case p = ∞, q = 2, r = 2 which
yields F2` · F2ψ ∈ L2; showing that F2` · F2ψ ∈ L1 ∩ L2. If we consider F2` · F2ψ
as an element of L1, we can use (1.47) and write

` ∗ ψ = (2π)d/2F−1
1 (F2` · F2ψ),

so that the mapping properties of the L1-Fourier transform yield ` ∗ ψ ∈ BC∞, see
Lemma 1.29. If on the other hand we consider F2` · F2ψ as an element of L2, we
can use (1.48) to write

` ∗ ψ = (2π)d/2F−1
2 (F2` · F2ψ),

so that the mapping properties of the Fourier-Plancherel transform yield ` ∗ψ ∈ L2;
hence Lψ ∈ L2 ∩BC∞. Now we use (1.48) again to estimate

‖Lψ‖L2 = (2π)d/2 ‖F−1
2 (F2` · F2ψ)‖L2

= (2π)d/2 ‖F2` · F2ψ‖L2

≤ (2π)d/2 ‖F2`‖L∞‖F2ψ‖L2

= (2π)d/2 ‖F2`‖L∞‖ψ‖L2 .

Remark 1.45. It is clear that the additional assumption F` ∈ L∞ would have
followed immediately, if we had assumed that ` was in the intersection of L1 and L2.
However, for the application we have in mind, namely the proof of Lemma 2.3, this
assumption is not valid.

Similar estimates hold in the case of integral operators with kernels of more general
type as we show now.

Lemma 1.46. If the kernel function of the operator L, given through (1.49), can be
written as

l(x, y) = m1(x)`(x− y)m2(y), (1.50)

with m1,m2 ∈ BC(Rd), ` ∈ L2(Rd) and F2` ∈ L∞(Rd), then L is a bounded operator
on L2(Rd) with norm

‖L‖L2→L2 ≤ (2π)d/2‖m1‖BC ‖F2`‖L∞ ‖m2‖BC (1.51)

and Lψ ∈ X∞(Rd).

Proof. This is a direct consequence of Lemma 1.44.
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Lemma 1.47. Assume for some p ∈ [1,∞) there exists ` ∈ Lp(R2) such that

|l(x, y)| ≤ `(x− y),

where l denotes the kernel function of the operator L given through (1.49). Then
L is a bounded operator from Lq(Rd) to Ls(Rd) provided that 1/p + 1/q = 1 + 1/s.
Furthermore one has the norm estimate

‖L‖Lq→Ls ≤ ‖`‖Lp . (1.52)

Proof. One computes

|(Lψ)(x)| ≤
∫

Rd
|l(x, y)| |ψ(y)| dy ≤

∫
Rd
`(x− y)|ψ(y)| dy = (` ∗ |ψ|)(x) (1.53)

so the mapping properties are a result from Youngs inequality (1.45).

Remark 1.48. We will use the bound (1.52) particularly often in the case ` ∈
L1(R2), in which case it implies that L maps Lq to Lq with

‖L‖Lq→Lq ≤ ‖`‖L1 , (1.54)

for 1 ≤ q ≤ ∞.

Lemma 1.49. Assume for some p ∈ (1, 2) there exists ` ∈ L1(R2)∩Lp(R2) such that

|l(x, y)| ≤ `(x− y),

where l denotes the kernel function of the operator L given through (1.49).

(i) Then for some N ∈ N, the operator LN+1 is a bounded operator from L2(R2)
to L∞(R2), i.e. there exist N real numbers r1, . . . , rN such that 2 < r1 < · · · <
rN−1 <

p
p−1
≤ rN and L2 L→ Lr1

L→ . . .
L→ LrN

L→ L∞.

(ii) |LN+1ψ| is bounded a.e. by a positive continuous function vanishing at infinity.

Proof. (i) Note first that ` ∈ L1(R2)∩Lp(R2) implies by Lemma 1.9 that ` ∈ Ls(R2)
for 1 < s < p. Let ω := p/(p− 1) > 2 and define the finite or infinite sequence (rj)
iteratively by

r0 := 2, rj+1 :=

(
1

p
+

1

rj
− 1

)−1

=
rj

1− rj
ω

, j = 0, 1, 2, . . . , (1.55)

continuing the definition (1.55) for as long as rj < ω. Let J ⊂ N0 := N ∪ {0}
denote the set of indices j for which rj is defined. We will show that the set J
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is finite, so that J = {0, 1, . . . , N} with rN ≥ ω. Then it follows from Youngs
inequality (Theorem 1.40) that L is a bounded operator from Lrj−1(R2) to Lrj(R2)
for j = 1, . . . , N . Further, defining s := rN/(rN − 1), we observe that 1 < s < p and
1
s

+ 1
rN

= 1, so that again, by Youngs inequality (Theorem 1.40), L is a bounded
operator from LrN (R2) to L∞(R2), and so LN+1 is a bounded operator from L2(R2)
to L∞(R2).
We complete the proof by showing that J is finite. Suppose otherwise. Then

rj < ω for all j ∈ J = N0. It follows from (1.55), by induction, that the sequence
(rj) is monotonically increasing. Thus the sequence (rj) is convergent to some limit
r, with 2 ≤ r ≤ ω. Rearranging (1.55) and taking limits, we see that (1−r/ω)r = r,
so that r = 0, a contradiction.
(ii) It follows by induction that |LN+1ψ| ≤ ` ∗ |LNψ| for N ∈ N. From the

construction of the sequence (rj), see above, we have ` ∈ Ls, LNψ ∈ LrN with
1
s

+ 1
rN

= 1. Thus it follows from Theorem 1.40 (iii), that

|LN+1ψ| ≤ ` ∗ |LNψ| ∈ BC∞(R2),

i.e. |LN+1ψ| is bounded a.e. by a continuous function vanishing at infinity.
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Chapter 2

Properties of single- and
double-layer potentials

In this chapter we prove mapping properties of the double- and single-layer potential
operators, verify the validity of the standard jump-relations and prove continuity
properties of the boundary operators with respect to variations of the scattering
surface and the wavenumber.
To prove mapping properties we split the operators into a local and a global part

with the help of an appropriate cut-off function. To this end let χ : [0,∞)→ R be
a sufficiently smooth function that satisfies the global lower and upper bound

0 ≤ χ(t) ≤ 1, t ≥ 0 (2.1)

and the condition

χ(t) =

{
1, t < 1/2

0, t ≥ 1
. (2.2)

Following the explanation at the end of Section 1.1.3 we show the mapping prop-
erties for the associated operator

B̃ := IfBI
−1
f ∈ BL(L2(R2)),

where B denotes one of the operators S or K, respectively. Thus

(B̃ψ)(x) :=

∫
R2

b̃(x,y)ψ(y) dy, x ∈ R2,

where the kernel function is given, in the case of the single layer operator, by

b̃(x,y) = 2 G
(
x, y)J(y)

and, in the case of the double layer potential, through

b̃(x,y) = 2
∂G(x, y)

∂ν(y)
J(y),
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with x = (x, f(x)), y = (y, f(y)) ∈ Γ and J(y) =
√

1 + |∇f(y)|2.
We define the global part of the operator

(B̃globalψ)(x) :=

∫
R2

[
1− χ(|x− y|)

]
b̃(x,y)ψ(y) dy, x ∈ R2, (2.3)

and the local part

(B̃localψ)(x) :=

∫
R2

χ(|x− y|)b̃(x,y)ψ(y) dy, x ∈ R2. (2.4)

This yields the decomposition B̃ = B̃global + B̃local which allows us to study the
mapping properties of B̃global and B̃local as operators on L2(R2), X(R2) and X∞(R2)
separately.

2.1 Boundedness of S and K

We start this section with a series of Lemmata that are needed to prove that the
single- and double-layer potential operators are bounded on any of the function
spaces L2, X and X∞. To prove this result we prove the corresponding results for
the local and global part of the operators S andK separately by using the expansions
(1.21) and (1.27) and the results on convolution operators from Section 1.6.1.

Lemma 2.1 (Mapping properties for the local part). B̃local is a bounded operator
from

(i) L∞(R2) to BC(R2),

(ii) BC∞(R2) to BC∞(R2),

(iii) Lq(R2) to Lq(R2) for 1 < q <∞.

(iv) Further, for some n ∈ N, B̃n
local is a bounded operator from L2(R2) to X(R2)

and from X(R2) to X∞(R2).

Proof. We start this proof with a series of observations on the kernel function b̃local

of the operator B̃local:

• The kernel has compact support, more precisely it holds that

supp b̃local(x, ·) ⊂ B1(x), x ∈ R2.

• It is continuous for x 6= y and weakly singular. Precisely, it follows from
Lemma 1.17 that

|〈ν(y), x− y〉| ≤ |x− y|1+α‖f‖BC1,α(R2), x, y ∈ Γ,
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thus it holds in the double-layer case B = K that, for some constant C > 0,

|b̃local(x,y)| < `(x− y), x,y ∈ R2, x 6= y, (2.5)

where

`(y) :=

{
C |y|α−2, |y| ≤ 1,

0, |y| > 1.
(2.6)

The same bound holds, but is not sharp, in the single-layer case B = S. We
showed in Example 1.10 that ` ∈ L1(R2) ∩ Lp(R2) for 1 ≤ p < 2

2−α < 2.

Thus we note that the kernel function b̃local satisfies all the requirements to apply
Lemma 1.15, Lemma 1.47 and Lemma 1.49. Now we can prove the Lemma:
(i) and (ii) follow directly from Lemma 1.15.
(iii) As ` ∈ L1, it follows from Lemma 1.47, in the case p = 1, that B̃local is a

bounded operator from Lq(R2) to Lq(R2) for 1 < q <∞.
(iv) It follows from (iii) that B̃n

local maps L2 to L2 for n ∈ N. On the other hand
by Lemma 1.49, B̃m

local is a bounded operator from L2 to L∞, for some m ∈ N. From
Lemma 1.15 it follows that B̃local is a bounded operator from L∞ to BC, so that
altogether B̃m+1

local is a bounded operator from L2 to X.
It follows from Lemma 1.49 that B̃m

local is a bounded operator from L2 to L∞, for
some m ∈ N and furthermore that B̃m

localψ is bounded a.e. by a positive function
Ψ ∈ BC∞. By Lemma 1.15 B̃m

local maps BC to BC for any m ∈ N, hence B̃m
local

maps X to BC∞.

Combining the above mapping properties we derive the following corollary.

Corollary 2.2. B̃local is a bounded operator from

(i) BC(R2) to BC(R2),

(ii) X(R2) to X(R2),

(iii) X∞(R2) to X∞(R2).

Proof. (i) is a direct consequence of Lemma 2.1 (i). (ii) follows from combining (i)
and Lemma 2.1 (iii) for q = 2. (iii) follows from combining Lemma 2.1 (ii) and
Lemma 2.1 (iii) for q = 2.

We now consider the global part and prove a lemma on the mapping properties
of B̃global.

Lemma 2.3 (Mapping properties for the global part). B̃global is a bounded operator
from
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(i) L2(R2) to L2(R2),

(ii) L2(R2) to X(R2),

(iii) L2(R2) to X∞(R2).

Proof. We start the proof of this Lemma by proving the following claim.
Claim: The kernel b̃global of B̃global can be written, in both the cases B = S and

B = K, in the form

b̃global(x,y) = l∗(x,y) + l(x,y), x,y ∈ R2, (2.7)

where l∗ is a sum of terms each of the form (1.50), with m1,m2 ∈ BC(R2) and `
given by (1.33) with β = 1, and with n = −1, 0, 1. Further, l∗ can be chosen so that
l satisfies the bound

|l(x,y)| < C ˜̀(x− y), x,y ∈ R2, (2.8)

for some constant C > 0, where ˜̀(y) := (1 + |y|)−3, so that ˜̀∈ L1(R2).
Proof of Claim. The proof follows directly from the decompositions (1.21) and

(1.27). In detail, in the case B = S we see from (1.21) that an appropriate choice is
to take

l∗(x,y) = − iκ
2π

f(x)
eiκ|x−y|

1 + |x− y|2
f(y) J(y), (2.9)

where J is the surface area element given through (1.10), while, in the case B = K
we see from (1.27) that we can take

l∗(x,y) = −κ
2

2π
f(x)

eiκ|x−y|

1 + |x− y|2
ν(y) · x− y

|x− y|
f(y) J(y)

− iκ

2π
f(x)

eiκ|x−y|

1 + |x− y|2
ν3(y)J(y).

To see more clearly that this is an expression of the required form we recall that

ν(y) = (ν(y), ν3(y)) =
(−∇f(y), 1)

J(y)

so that we can write

ν(y) · x− y
|x− y|

=
|∇f(y)|
J(y)

cos θ,

42



2.1 Boundedness of S and K

where θ = ∠(∇f(y),x− y). Furthermore using the identity cos = (eiθ + e−iθ)/2 we
have

l∗(x,y) = −κ
2

4π
f(x)

eiκ|x−y|

1 + |x− y|2
eiθ |∇f(y)| f(y)

− κ2

4π
f(x)

eiκ|x−y|

1 + |x− y|2
e−iθ |∇f(y)| f(y)

− iκ

2π
f(x)

eiκ|x−y|

1 + |x− y|2
.

(2.10)

This proves the claim.
Now we prove the Lemma. (i) It follows from Lemma 1.46 and Lemma 1.33

applied to the integral operator with kernel l∗, and (1.54) applied to the integral
operator with kernel l, that B̃global is a bounded operator on L2(R2).
(ii) and (iii) We note from the above representation (2.7) that also

|b̃global(x, y)| ≤ `∗(x− y), x, y ∈ Γ,

for some `∗ ∈ L2(R2); this is true since ˜̀∈ L2(R2) and since each term of (2.9) and
(2.10) can be bounded in this way. It follows from Youngs inequality (Theorem 1.40)
that B̃global maps L2(R2) to L∞(R2); in fact, since also b̃global is continuous, it holds
that B̃global maps L2(R2) to BC(R2). Furthermore it follows from Theorem 1.40
(iii) that B̃global maps L2(R2) to BC∞(R2).

Combining the above mapping properties we have the following Corollary.

Corollary 2.4. B̃global is a bounded operator on X(R2) and on X∞(R2).

Remark 2.5. For C2 > C1 > 0 let

B(C1, C2) := {f ∈ BC1,α(R2) : C1 ≤ f(y), y ∈ R2, ‖f‖BC1,α(R2) ≤ C2}. (2.11)

We note that, given C2 > C1 > 0 and κr > 0, we can choose C > 0 such that the
estimates (2.5) and (2.8) hold for all f ∈ B and all κi ≥ 0. (For (2.8) this follows
from (1.21) and (1.27).) This observation will be helpful in establishing continuous
dependence of S and K on f and on κi. Furthermore we see that f ∈ B(C1, C2)
implies that

C1 ≤ f(y) ≤ C2, y ∈ R2. (2.12)

This follows from the fact that in the case of a constant function fh with h > 0 we
have that ‖fh‖BC1,α(R2) = h.

We can now combine all the previous Lemmata to give a prove of one of the main
results of this chapter.
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Chapter 2 Properties of single- and double-layer potentials

Theorem 2.6. The single- and double-layer potential operators S and K, defined
by (12) and (13), are bounded operators on L2(Γ), on X(Γ) and on X∞(Γ).

Proof. Lemma 2.1 and Corollary 2.2 yield that B̃local is a bounded operator on
L2(R2), X(R2) and X∞(R2); Lemma 2.3 and Corollary 2.4 yield that B̃global is
a bounded operator on L2(R2), X(R2) and X∞(R2), hence finishing the proof.

Yet another consequence is:

Corollary 2.7. For all sufficiently large n ∈ N it holds that Bn, where B denotes
either B = S or B = K, is a bounded map from L2(Γ) to X(Γ) and from X(Γ) to
X∞(Γ).

As part of the proof of Theorem 3.1 on the equivalence of the integral equation
and the boundary value problem we need to show that the modified single- and
double-layer potentials u1 and u2, over the unbounded surface Γ, behave in a similar
way to the corresponding standard layer potentials supported on a smooth bounded
surface. This is done in the following theorem in which

M := {x : 0 < x3 < f(x)}

denotes the region between Γ and Γ0.

Theorem 2.8. Let u1 and u2 denote the single- and double-layer potentials with
density ϕ ∈ X, defined by (16) and (17), respectively. It holds that:

(i) For n = 1, 2, un ∈ C2(D ∪M) and ∆un + k2un = 0 in D ∪M .

(ii) u1 and u2 can be continuously extended from D to D̄ and from M to M̄ , with
limiting values

u1,±(x) =

∫
Γ

G(x, y)ϕ(y) ds(y), x ∈ Γ, (2.13)

and
u2,±(x) =

∫
Γ

∂G(x, y)

∂ν(y)
ϕ(y) ds(y) ± 1

2
ϕ(x), x ∈ Γ, (2.14)

where un,±(x) := limε→0+ un(x ± εν(x)), for n = 1, 2 and x ∈ Γ, and ν(x) denotes
the unit normal at x ∈ Γ directed into D.

(iii) Given constants C2 > C1 > 0 and a compact subset S ⊂ C̃, there exists a
constant C > 0 such that

|un(x)| ≤ C‖ϕ‖X , x ∈ D ∪M,n = 1, 2, (2.15)

for all ϕ ∈ X, κ ∈ S, and f ∈ B = B(C1, C2).
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2.1 Boundedness of S and K

(iv) Given constants C2 > C1 > 0 and ε > 0 and a compact subset S ⊂ C̃, there
exits a constant C > 0 such that

|un(x)| ≤ C‖ϕ‖L2(Γ), n = 1, 2, (2.16)

for all x ∈ D ∪M with |x3 − f(x1, x2)| > ε, all ϕ ∈ X, all κ ∈ S, and all f ∈ B =
B(C1, C2).

Proof. We first of all show that u ∈ C(D ∪M) and establish (ii) and (iii). We use
the cut-off function χ given by (2.1) and (2.2).
Let u denote one of u1 and u2, and let b denote the kernel of u so that b(x, y) :=

G(x, y) and b(x, y) := ∂G(x, y)/∂ν(y) in the respective cases. We have, for x ∈
D ∪M , that

u(x) =

∫
Γ

[
1− χ(|x− y|)

]
b(x, y)ϕ(y) ds(y) +

∫
Γ

χ(|x− y|)b(x, y)ϕ(y) ds(y).

The first term has a continuous kernel that is bounded at infinity by the estimate
(1.21) or (1.25), and, since ϕ ∈ L2(Γ), is continuous in {x : x3 > 0}. The second
term is clearly continuous in D ∪M ; to see that it can be continuously extended
up to Γ from above and below and to compute its limiting values we observe that,
keeping x within some ball centred on some x0 ∈ Γ, it holds that the integrand is
supported in a finite patch of the surface. We can extend this surface patch to a
bounded obstacle with boundary of class C1,α and, since ϕ ∈ C(Γ), use the jump
relations for bounded obstacles Theorem 1.20 and thus finishing the proof of (ii).
(iii) To show that the first term satisfies the bound (2.15) we recall that G(x, y)

and ∇yG(x, y) satisfy the bound

|G(x, y)|, |∇yG(x, y)| ≤ C
(1 + x3)(1 + y3)

|x− y|2
,

with a possibly different constant C, for all x, y ∈ D0 = {x ∈ R3 : x3 > 0} with
|x− y| ≥ 1 and all κ ∈ S, cf. Lemma 1.22 and Lemma 1.25.
Thus, for some constant C ′ > 0, whether b is the kernel of the single- or double-

layer potential, it holds for all κ ∈ S that∣∣[1− χ(|x− y|)
]
b(x, y)

∣∣ ≤ C ′
(1 + x3)(1 + y3)

1 + |x− y|2
, x, y ∈ R3, x3, y3 ≥ 0. (2.17)

Bounding the global part: Applying the Cauchy-Schwarz inequality together
with the bound (2.17) we calculate for the first term that∣∣∣∣∣∣
∫
Γ

[
1− χ(|x− y|)

]
b(x, y)ϕ(y) ds(y)

∣∣∣∣∣∣ ≤ C ′

∫
Γ

(1 + x3)2(1 + y3)2

(1 + |x− y|2)2
ds(y)

1/2

‖ϕ‖L2Γ

≤ C ′(1 + f+)I(x)‖ϕ‖L2(Γ),
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for x ∈ {x ∈ R3 : x3 > 0}, where

[I(x)]2 =

∫
Γ

(1 + x3)2

(1 + |x− y|2)2
ds(y).

We further estimate

[I(x)]2 ≤
(

1 + ‖∇f‖2
BC(Γ)

)1/2
∫

R2

(1 + x3)2

(1 + |x− y|2 + (x3 − f(y))2)2
dy.

To finally prove the bound for the global part we show that the function

F (x3) :=

∫
R2

(1 + x3)2

(1 + |x− y|2 + (x3 − f(y))2)2
dy,

is bounded on [0,∞) for all f ∈ B. We note that F is continuous on [0,∞) and
recall from Remark 2.5 that C1 ≤ f(y) ≤ C2 for all f ∈ B(C1, C2) and y ∈ R2.
Thus we have the lower bound

[δ(x3)]2 ≤ (x3 − f(y))2, x3 ∈ [0,∞),

for all f ∈ B(C1, C2) and y ∈ R2, where

δ(t) :=


C1 − t, 0 ≤ t ≤ C1,

0, C1 ≤ t ≤ C2,

t− C2, t ≥ C2.

Thus

F (x3) ≤
∫

R2

(1 + x3)2

(1 + |x− y|2 + [δ(x3)]2
dy ≤ 2π

∫ ∞
0

(1 + x3)2r

(1 + r2 + [δ(x3)]2)2
dr.

From this we see that F (0) < ∞ and furthermore for any x3 > C2 we have the
estimate

F (x3) ≤ 2π(1 + x3)2

∫ ∞
0

r

(1 + r2 + (x3 − C2)2)2
dr

= 2π
(1 + x3)2

(x3 − C2)2

∫ ∞
0

s

((x3 − C2)−2 + 1 + s2)2
ds <∞.

Together with the continuity of F it follows that F is bounded on [0,∞) and hence
the first term satisfies the bound (2.15).

Bounding the local part: To treat the second term we argue analogously to
the corresponding 2D case [16]. We remark that χ(|x − y|) is zero for |x − y| ≥ 1.
We consider only the double-layer case u = u1 (the argument is similar but simpler
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2.1 Boundedness of S and K

in the single-layer case). Directly from the definitions (see (1.25)) we see that there
exists a constant C > 0 such that

|χ(|x− y|)b(x, y)| ≤ C
|ν(y) · (x− y)|
|x− y|3

, x ∈ D ∪M, y ∈ Γ, (2.18)

for all κ ∈ S and all f ∈ B. For x = (x, x3) ∈ D∪M define x∗ := (x, f(x)) ∈ Γ and
x0 := (x, f(y)). As a short hand notation we introduce δ := |x∗ − x| = |f(x)− x3|
and note that x0 − x ⊥ x − y . Thus we conclude from the Pythagorean theorem
that

|x0 − x|2 = |x− y|2 − |x0 − y|2 ≤ |x− y|2, x ∈ D ∪M, y ∈ Γ.

Using the triangle inequality, Pythagora’s theorem, the above inequality and the
mean-value theorem we conclude that(
|x− y|2 + δ2

)1/2
=
(
|x0 − y|2 + |x∗ − x|2

)1/2

≤
(
|x0 − y|2 +

(
|x∗ − x0|+ |x0 − x|

)2
)1/2

=
(
|x0 − y|2 + |x∗ − x0|2 + 2|x∗ − x0||x0 − x|+ |x0 − x|2

)1/2

=
(
|x0 − y|2 + |x∗ − x0|2 + 2|x∗ − x0||x0 − x|

+ |x− y|2 − |x0 − y|2
)1/2

≤
(
|x∗ − x0|2 + 2|x∗ − x0||x− y|+ |x− y|2

)1/2

= |x− y|+ |x∗ − x0| = |x− y|+ |f(x)− f(y)|
≤ |x− y|+ ‖∇f‖BC(Γ)|x− y| ≤

(
1 + ‖∇f‖BC(Γ)

)
|x− y|.

Using this inequality, and (1.16) to bound |ν(y) · (x∗ − y)|, we see that, for some
C ′ > 0,

|χ(|x− y|)b(x, y)| ≤ C ′
|x− y|1+α + δ

(|x− y|2 + δ2)3/2
, x ∈ D ∪M, y ∈ Γ,

for all κ ∈ S and f ∈ B. Thus, defining C ′′ = C ′ (1 + ‖∇f‖2
BC(Γ))

1/2, the second
term is bounded by

C ′′ ‖ϕ‖BC(Γ)

∫
|y|<1

|y|1+α + δ

(|y|2 + δ2)3/2
dy ≤ 2πC ′′ ‖ϕ‖BC(Γ)

∫ 1

0

r1+α + δ

(r2 + δ2)3/2
rdr,

for all κ ∈ S and f ∈ B. The integral remains finite also in the case δ → 0 so that
the second term satisfies the bound (2.15).
To establish (iv) we modify the argument used to show (iii). We have remarked

above that both G(x, y) and ∇yG(x, y) satisfy the bound (1.22). Thus (cf. (2.17)),
for every ε > 0 there exists Cε > 0 such that

|b(x, y)| ≤ Cε
(1 + x3)(1 + y3)

1 + |x− y|2
, (2.19)
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Chapter 2 Properties of single- and double-layer potentials

for all x, y ∈ R3 with x3, y3 ≥ 0 and |x − y| ≥ ε and all κ ∈ S. Applying Cauchy-
Schwarz, as in the proof of (2.15), we see that it holds, for some constant C ′ε > 0,
that

|un(x)| ≤ C ′ε(1 + f+)I(x)‖ϕ‖L2(Γ), n = 1, 2, (2.20)

for all x ∈ D ∪M with |x3− f(x1, x2)| ≥ ε and all κ ∈ S and f ∈ B. In view of the
bound on I(x) already shown above, we see that we have established (2.16).
We complete the proof by establishing (i). This is clear when ϕ is compactly

supported. The general case follows from the density in L2(Γ) of the set of those
elements of X that are compactly supported, from the bound (2.16), and from the
fact that limits of uniformly convergent sequences of solutions of the Helmholtz
equation satisfy the Helmholtz equation (e.g. [17, Remark 2.8]).

2.2 Continuity properties of the potential
operators

We finish this chapter with results on the continuous dependence of the potential
operators on variations of the boundary and the wavenumber.
We start by proving that the single- and double-layer potential operators depend

continuously on variations in the boundary Γf := {(y, f(y)) : y ∈ R2} of the domain
Df as defined in (3). In the statement of the following theorem, B = B(C1, C2) is
the set defined in Remark 2.5, for some constants C2 > C1 > 0.
To make the dependence of the operators on the scattering surface more explicit,

we write Bf for either S or K defined on a surface Γf given by some f ∈ B. As
before we prove the results for the associated operators B̃f = IfBfI

−1
f ∈ L2(R2).

Denoting the kernel of B̃f by b̃f , we see that, where x = (x, f(x)), y = (y, f(y)),
and b(x, y) := G(x, y) or b(x, y) := ∂G(x, y)/∂ν(y), in the respective cases Bf = S
and Bf = K, it holds that

b̃f (x,y) = b(x, y)Jf (y), Jf (y) :=
√

1 + |∇f(y)|2.

Theorem 2.9. The single- and double-layer potential operators depend continuously
on the boundary Γf of the unbounded domain Df in the sense that

sup
f,g∈B

‖f−g‖BC1,α(R2)≤ε

‖B̃f − B̃g‖L2(R2)→L2(R2) → 0, ε→ 0. (2.21)

Proof. Similarly to how we proceeded when proving Theorem 2.6, we decompose
the operator B̃f − B̃g into a global and a local part, i.e. B̃f − B̃g = B̃global + B̃local

with B̃global, B̃local defined similarly to (2.3) and (2.4). We now carry out the proof
for the case of the single-layer operator. The necessary changes for the double-layer
operator are straightforward.
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The global operator. The kernel of the global operator B̃global is given by

b̃global(x,y) :=
(
1− χ(|x− y|)

)
[b̃f (x,y)− b̃g(x,y)]. (2.22)

We use the expansion (2.7) and equation (2.9), denoting l by lf and lg to indicate
its dependence on f and g. We obtain

b̃global(x,y) = − iκ
2π
f(x)

eiκ|x−y|

1 + |x− y|2
f(y) Jf (y) + lf (x,y)

−
(
− iκ

2π
g(x)

eiκ|x−y|

1 + |x− y|2
g(y) Jg(y) + lg(x,y)

)
,

which we rewrite in the more convenient way

b̃global(x,y) = − iκ
2π
f(x)

eiκ|x−y|

1 + |x− y|2
(
f(y)− g(y)

)
Jf (y)

− iκ

2π

(
f(x)− g(x)

) eiκ|x−y|

1 + |x− y|2
g(y) Jf (y)

− iκ

2π
g(x)

eiκ|x−y|

1 + |x− y|2
g(y)

(
Jf (y)− Jg(y)

)
+ lf (x,y)− lg(x,y), x,y ∈ R2.

(2.23)

The integral operators whose kernel are the first three terms of (2.23) can be
bounded using Lemma 1.33 and Lemma 1.46 and the estimate (2.8), noting that
Remark 2.5 guarantees the uniformity of (2.8) for f ∈ B. To bound the integral
operator whose kernel is the last term of (2.23), we construct, for every η ∈ (0, 1),
a function `η ∈ L1(R2) such that

|lf (x,y)− lg(x,y)| ≤ `η(x− y), x,y ∈ R2, (2.24)

whenever f, g ∈ B and ‖f − g‖BC1,α(R2) is sufficiently small, and such that

‖`η‖L1(R2) → 0, η → 0,

and then we use the estimate (1.54). Together, the bounds on the four parts of
B̃global show (2.21) for the global part of the operator.
The construction of `η is as follows. We choose (possible by Remark 2.5) a

constant C > 0 so that (2.8) holds for all f ∈ B. Then, where ˜̀∈ L1(R2) is defined
as in Lemma 2.3, we set

`η(y) :=

{
η3, η < |y| < η−1,

2C ˜̀(y), otherwise.
(2.25)
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Clearly this satisfies that ‖`η‖L1(R2) → 0 as η → 0. Since, for every η ∈ (0, 1),

|lf (x,y)− lg(x,y)| → 0, ‖f − g‖BC1,α(R2) → 0,

uniformly in f and g for f, g ∈ B, and uniformly in x and y for η ≤ |x− y| ≤ η−1,
the bound (2.24) holds for all f, g ∈ B with ‖f − g‖BC1,α(R2) sufficiently small.

The local operator. For the local operator we argue in a similar way as for
the global operator, in particular in a similar way as for the integral operator cor-
responding to the last term in (2.23). In particular, where b̃local is the kernel of the
local operator, it holds for every η > 0 that |b̃local(x,y)| → 0 as ‖f−g‖BC1,α(R2) → 0,
uniformly in f and g for f, g ∈ B, and uniformly in x and y for |x − y| ≥ η, and
(2.5) takes the role of (2.8).

To show later that the limiting absorption condition (8) is satisfied in the case
κ > 0 we need the following theorem.

Theorem 2.10. Denote S and K temporarily by Sκi and Kκi to indicate their de-
pendence on κi. Then, where Bκi denotes either Sκi or Kκi, it holds that

‖Bκi −B0‖L2(Γ)→L2(Γ) → 0 (2.26)

as κi → 0.

Proof. As we did when proving Theorem 2.6 we split Bκi into global and local
parts, as Bκi = B1 +B2, with B1, B2 defined by (2.3) and (2.4). As in the proofs of
Lemma 2.1 and Lemma 2.3 we denote the kernel of Bj by bj.
To show (2.26) for the local part B2 we note that b2(x, y) depends continuously on

κi, uniformly in x and y for |x− y| ≥ η and every η > 0, and that, by Remark 2.5,
the bound (2.5) holds uniformly in κi for κi ∈ [0, 1]. We then argue as for the local
part in the proof of Theorem 2.9, showing that the kernel of the local part of
Bκi − B0 is bounded by an L1 convolution kernel `(x − y) with ‖`‖L1(R2) → 0 as
κi → 0. Finally we apply (1.54).
To show (2.26) for the global part B2 we use the representation (2.7) for b1(x, y),

which splits b1 into a weakly singular part l(x,y), bounded by (2.8), and a strongly
singular part l∗(x,y), given explicitly by (2.9) or (2.10). To show (2.26) for the
weakly singular part of B2 we argue exactly as we did in the proof of Theorem 2.9,
noting that, by Remark 2.5, (2.8) holds uniformly in κi for κi ∈ [0, 1], and that
l(x,y) depends continuously on κi, uniformly in x and y for η ≤ |x− y| ≤ η−1, for
every η ∈ (0, 1). That (2.26) holds for the strongly singular part of B2 follows from
Lemma 1.34 and (1.51).
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Chapter 3

Existence and Uniqueness

In this chapter we prove results on the equivalence of the boundary integral equation
and the boundary value problem. We show that the boundary value problem has at
most one solution and prove a result on the solvability of the integral equation, in a
first step in the case of a flat surface and then in a second step for the general case
of an arbitrary rough surface.

3.1 Uniqueness

Our first objective is to prove the following theorem on the equivalence of the integral
equation and boundary value problem, using various results already shown above.

Theorem 3.1 (Equivalence). Suppose that v is defined by (15)–(17) with ϕ ∈ X∞.
Then, in the case κi > 0, v satisfies the boundary value problem if and only if ϕ
satisfies the BIE (18). In the case κi = 0 (i.e., κ > 0), if v satisfies the boundary
value problem, then ϕ satisfies (18). Conversely, if κ > 0, ϕ(κ+iε) ∈ X∞ satisfies the
integral equation (18) with κ replaced by κ+ iε, for all sufficiently small ε > 0, and
‖ϕ− ϕ(κ+iε)‖L2(Γ) → 0 as ε→ 0, then v satisfies the boundary value problem.

Proof. Let v be the combined single- and double-layer potential v, defined in (15),
with density ϕ ∈ X∞. By Theorem 2.8, v ∈ C2(D) ∩ C(D̄) and satisfies the
Helmholtz equation in D. Further, due to the jump relations (2.13) and (2.14),
v = g ∈ X∞ on Γ if and only if the density ϕ satisfies the boundary integral
equation (18). Applying Theorem 2.8 again, we see that v satisfies the bound (7).
This yields the equivalence statement for κi > 0.
For real κ, in addition, we need to show the limiting absorption principle (8). Let

a(x, y) = ∂G(x, y)/∂ν(y)− iηG(x, y), so that

v(x) =

∫
Γ

a(x, y)ϕ(y) ds(y), x ∈ D. (3.1)

Suppose, as stated in the theorem, that ϕ(κ+iε) ∈ X∞ satisfies the integral equation
(18) with κ replaced by κ + iε, for all sufficiently small ε > 0, and that ‖ϕ −
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ϕ(κ+iε)‖L2(Γ) → 0 as ε → 0. Let a(κ+iε) denote a with κ replaced with κ + iε and
define v(κ+iε) by (3.1) with a, ϕ, replaced by a(κ+iε), ϕ(κ+iε), respectively. We have
shown in the previous chapter that v(κ+iε) satisfies Problem 2 (with κ replaced
by κ + iε). To show the limiting absorption principle (8) we need to show that
v(κ+iε)(x)→ v(x) as ε→ 0. We have

v(κ+iε)(x)− v(x) =

∫
Γ

(
a(κ+iε)(x, y)− a(x, y)

)
ϕ(κ+iε)(y) ds(y)

+

∫
Γ

a(x, y)
(
ϕ(κ+iε)(y)− ϕ(y)

)
ds(y).

We see that the second term tends to zero as ε → 0 by the bound (2.16). Clearly,
a(κ+iε)(x, y)−a(x, y)→ 0 as ε→ 0, for every y ∈ Γ. Thus, applying Cauchy-Schwarz
and then the dominated convergence theorem, noting that the bound (2.19) holds
uniformly in κ, we see that the first term tends to 0 as ε→ 0.

We now prove the following uniqueness result.

Theorem 3.2 (Uniqueness). The boundary value problem has at most one solution.

Proof. Due to [15, Theorem 1], see also [50, Theorem 3.1], a solution u ∈ C2(G) ∩
C(G) to the Helmholtz equation (4) with =(κ) > 0 on an open set G ⊂ Rn which
satisfies the growth condition |u(x)| ≤ Ceθ|x|, with some constant θ < =(κ), and
the boundary condition u(x) = 0 for x ∈ ∂G will vanish identically on G. This
result directly implies uniqueness for the scattering problem and the boundary value
problem for κi > 0. For κi = 0 uniqueness is a consequence of the limiting absorption
principle we require, i.e. of the convergence (8).

Before we turn to establishing existence of solutions, we show that to establish
unique solvability of the integral equation in the space X(Γ) or X∞(Γ), it is enough
to study the solvability in L2(Γ).

Theorem 3.3. If the integral operator A, given through (19), is invertible in BL(L2(Γ)),
the Banach algebra of bounded linear operators on L2(Γ), then it is also invertible
in the subalgebras BL(X(Γ)) and BL(X∞(Γ)).

Proof. We first note that the second statement can be proven in complete analogy
to the first.
Assume that A is invertible in BL(L2(Γ)), i.e. the integral equation (18) has

exactly one solution ψ ∈ L2(Γ) for every g ∈ X(Γ) ⊂ L2(Γ). Then, defining
B = K − iηS, it holds that ψ = Bψ + 2g and, by induction, that, for every n ∈ N,

ψ = Bnψ + 2(Bn−1 + · · ·+B0)g.
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Now, by Theorem 2.6, B is a bounded operator on X(Γ) and, by Corollary 2.7,
Bn is a bounded operator from L2(Γ) to X(Γ), for some n ∈ N. Thus ψ ∈ X(Γ).
We have shown that (18) has exactly one solution ψ ∈ X(Γ) for every g ∈ X(Γ), so
that (I +K − iηS)−1 exists as an operator on X(Γ). Since X(Γ) is a Banach space
it follows as a standard corollary of the open mapping theorem that (I+K− iηS)−1

is bounded and thus A is invertible in BL(X(Γ)).

As a corollary of Theorem 3.1, Theorem 3.2, Theorem 2.10 and Theorem 3.3
we have the following result:

Corollary 3.4. If (I + K − iηS)−1 exists as a bounded operator on L2(Γ), then
the boundary value problem and scattering problem have exactly one solution.

Proof. In the case κi > 0 this result is clear from Theorem 3.1 and Theorem 3.2
and Theorem 3.3.
In the case κi = 0 we note that, by Theorem 2.10 and standard operator per-

turbation arguments (e.g. [49]), if (I +K − iηS)−1 exists as a bounded operator on
L2(Γ) for κ = κ0 > 0, then (I+K−iηS)−1 exists and is a bounded operator on L2(Γ)
for κ = κ0 + iκi, 0 ≤ κi ≤ c, for some c > 0. Moreover, (I + K − iηS)−1 depends
continuously in the norm topology on κi, for κi ∈ [0, c]. Thus, provided g ∈ L2(Γ)
depends continuously in norm on κi, for κi ∈ [0, c], it holds that (I + K − iηS)−1g
depends continuously in norm on κi ∈ [0, c], in L2(Γ). If g is given by (14), then,
from the continuity of Φ(x, y) as a function of κi, uniformly in x, y ∈ R3, x 6= y, the
bound (1.22), and the dominated convergence theorem, it follows that g ∈ L2(Γ)
depends continuously in norm on κi, for κi ∈ [0, c]. Thus the result follows by
Theorem 3.1, Theorem 3.2 and Theorem 3.3.

Combining Theorem 3.3 and Corollary 3.4 yields the next theorem.

Theorem 3.5. If A is invertible as an operator on L2(Γ), then A is invertible as
an operator on X∞. Moreover, if A is invertible on X∞, then the boundary value
problem has exactly one solution v, defined by (15)-(17) with ϕ ∈ X∞ given by
ϕ = 2A−1g. Further, for some constant c > 0, independent of g,

|v(x)| ≤ c ‖g‖X∞ , x ∈ D̄.

3.2 Invertibility of I +K − iηS
Theorem 3.5 shows that it suffices to prove the invertibility of A to answer the
solvability and existence of solutions to the boundary value problem and the original
scattering problem. We address this remaining task in this section.
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We start with our investigation on the invertibility of the operator A in the simple
case of a flat scattering surface Γh, extending this result in a second step to the
general case of a rough surface.

3.2.1 The case of a flat surface

In the case that the scattering surface is given in form of a flat surface

Γh = {y = (y, h) : y ∈ R2}, h > 0,

we see that the kernels of K and S only depend on the difference x − y and thus,
identifying Γh with R2, the operators are convolution operators on L2(R2).
As we have already discussed at the end of Section 1.5.2 the kernel of the single-

and double-layer operators can be expressed with the help of the functionWh defined
by (1.38). Hence, the integral equation (18) can be written as

ψ(x) +

∫
R2

{
Ph(x− y) − iη Qh(x− y)

}
ψ(y) dy = 2g(x), x ∈ R2, (3.2)

where Qh and Ph are given through (1.41) and (1.42). Introducing the function

Rh := Ph − iηQh

we can write (3.2) shortly as

ψ +Rh ∗ ψ = 2g. (3.3)

We will show that this equation is uniquely solvable by means of Fourier transfor-
mation. To apply the convolution theorem for L2-functions (Theorem 1.43), we
need to show first that Rh ∗ ψ ∈ L2(R2) for all ψ ∈ L2(R2). This is of course a
consequence of the mapping properties we showed for the double- and single-layer
potential operator, cf. Theorem 2.6.

Remark 3.6. In the case of a flat scattering surface the mapping properties of
S and K are a direct consequence of Lemma 1.44. It follows from Lemma 1.37
and Lemma 1.38 that F2Rh ∈ L2(R2) ∩ L∞(R2), so we can apply Lemma 1.44 to
conclude that Rh ∗ ψ ∈ L2(R2) for all ψ ∈ L2(R2), i.e. the boundedness of F2Rh

ensures that Rh ∗ ψ ∈ L2(R2).

Combining the Fourier transforms of Ph andQh that we computed in Lemma 1.35,
we derive for the Fourier transform ofRh the formula (F2Rh)(k) = r̂h(|k|), for almost
all k ∈ R2, where

r̂h(k) :=
1

2π

{
e−2h

√
k2−κ2 − iη 1− e−2h

√
k2−κ2

√
k2 − κ2

}
, k ≥ 0. (3.4)
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From the convolution theorem for L2-functions (Theorem 1.43) we see that, for
ψ ∈ L2(R2),

(I +K − iηS)ψ = ψ +Rh ∗ ψ
= F−1

2

(
(1 + 2πF2Rh) · (F2ψ)

)
.

Since F2 is an isomorphism on L2(R2) it follows that the inverse of I + K − iηS
exists as a bounded operator from L2(Γh) into L2(Γh) if and only if

ess. inf
k∈R2

|1 + 2π (F2Rh)(k)| = inf
k≥0
|1 + 2π r̂h(k)| > 0. (3.5)

Thus we need to investigate

K(k) := 1 + 2π r̂h(k) = A(h
√
k2 − κ2), k ≥ 0,

where
A(z) := 1 + e−2z − ihη

z

(
1− e−2z

)
. (3.6)

We recall that the square root is to be taken with
√
k2 − κ2 ∈ V := {z ∈ C : <z ≥

0,=z ≤ 0}, cf. (1.39). Indeed, in the case that κi > 0, so that =(k2 − κ2) < 0, it
is clear that

√
k2 − κ2 lies in the interior of V . Now A is an entire function (the

singularity at 0 is removable) so that K is continuous on [0,∞). Further, K(k)→ 1
as k →∞. Thus, to show (3.5) it is enough to show that K(k) 6= 0 for k ≥ 0 which
holds if A(z) 6= 0 for z ∈ V ; indeed, in the case κi > 0, we need only show that
A(z) 6= 0 for all z in the interior of V .
So suppose η ≥ 0 and consider first the case when z = zr − izi, with zr > 0,

zi ≥ 0. It holds that

A(z) = −i
(
1 + e−2z

)(hη tanh z

z
+ i

)
and straightforward calculations yield

=
(

tanh z

z

)
=

zr sin(2zi) + zi sinh(2zr)

2[sinh2 zr + cos2 zi](z2
r + z2

i )
≥ 0,

since | sin t| ≤ t ≤ sinh t for t ≥ 0. Thus (3.5) holds if η ≥ 0 and κi > 0.
In the case κi = 0 we need to show, additionally, that A(z) 6= 0 when z = −izi

with zi ≥ 0, in order to establish that A(z) 6= 0 for all z ∈ V . Now A(0) = 2− 2iηh
and, for zi > 0, from (3.6),

A(−izi) = 2 cos zi −
2ihη

zi
sin zi.
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Thus, provided η > 0, A(−izi) 6= 0 for zi ≥ 0 so A(z) 6= 0 for z ∈ V . Thus (3.5)
holds if η > 0.
We have proven, in the case η > 0 and in the case η = 0, κi > 0, that (3.5) holds,

and thus we have shown the invertibility of I +K− iηS and the boundedness of the
inverse operator in L2(Γh). Thus we have established the solvability of (18) in the
space L2(Γ) for flat surfaces, which we summarise in the next lemma.

Lemma 3.7. In the case Γ = Γh, with h > 0 it holds that A is invertible as an
operator on L2(Γ).

In the case that Γf is mildly rough, i.e. Γf does not differ too much from a flat
surface Γh, we can use Theorem 2.9 to show that the integral equation remains
solvable. We state this intermediate result in the following lemma.

Lemma 3.8. Suppose that h > 0 and that either η > 0 or η = 0 and κi > 0. Then,
provided ‖f − h‖BC1,α(R2) is sufficiently small it holds that (I + K − iηS)−1 exists
and is bounded as an operator on L2(Γf ).

Proof. Let A = I + K − iηS, and then denote A by Af to denote its dependence
on f . With the help of the isomorphism If : L2(Γf ) → L2(R2) defined by (1.9) we
associate Af with the element Ãf = IfAfI

−1
f of the set of bounded linear operators

on L2(R2). Now, Ãh is invertible with bounded inverse, by our analysis above for
the flat plane case. Moreover, by the continuity of Ãf with respect to f as proven
in Theorem 2.9 it follows from standard arguments that Ãf is boundedly invertible
on L2(R2) for ‖f − h‖BC1,α(R2) sufficiently small and so Af is boundedly invertible
on L2(Γf ) .

3.2.2 The case of a general rough surface

In this last section we briefly summarise the essential steps that are needed to show
the invertibility of the operator A for the case of a general rough surface. The results
have appeared in [22] and we refer the reader to the article for the details of the
proofs. The key ingredients that are needed for the proofs are Theorem 2.6, The-
orem 3.5, Lemma 3.7 and Theorem 2.9, certain results from [14], and standard
properties of layer potentials.
Recall the definition of the dual-pairing

〈φ, ψ〉 =

∫
Γ

φ(y)ψ(y) ds(y), φ, ψ ∈ L2(Γ),

given in Section 1.1.5. With respect to this dual-pairing we introduce the operator
K ′ defined by

(K ′ϕ)(x) := 2

∫
Γ

∂G(x, y)

∂ν(x)
ϕ(y) ds(y), x ∈ Γ, (3.7)
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which is the adjoint of the double-layer operator K. In complete analogy to the case
of the single- and double-layer operator, cf. Theorem 2.6, one proves the following
lemma.

Lemma 3.9. K ′ is a bounded operator on L2(Γ).

The operators S and I are both self-adjoint with respect to the dual-pairing so
that the adjoint of A is

A′ = I +K ′ − iηS.
We recall the following standard properties of adjoint operators on Hilbert spaces,
cf. Section 1.1.5 and the citations therein. We have that A and A′ have the same
norm, that A is invertible if and only if A′ is invertible, and that if they are both
invertible then

‖A−1‖L2(Γ)→L2(Γ) = ‖A′−1‖L2(Γ)→L2(Γ). (3.8)

Thus, we can proceed in the first instance by bounding A′. The first step in this
direction is to prove the following lower bound in the case when Γ is smooth.

Lemma 3.10. Suppose that, in addition to our assumptions throughout on f , it holds
that f ∈ C∞(R2). Then, for all ϕ ∈ L2(Γ) there holds

‖A′ϕ|‖L2(Γ) ≥ B−1‖ϕ‖L2(Γ) (3.9)

where

B = B(Lf , κ/η) :=
1

2

1 +

(
3κ2L̃

η2
[5L̃+ 6L2

f ] + 6(L̃+ 3L2
f )

2

)1/2
 (3.10)

and L̃ := (1 + L2
f )

1/2 and Lf denotes the maximum surface slope of Γf .

Proof. For a proof see [22, Lemma 3.3].

The previous lemma is the main tool to prove the general result, namely the
following theorem.

Theorem 3.11. A and A′ are invertible on L2(Γf ) for any f ∈ BC1,α(R2), with

‖A−1‖L2(Γf )→L2(Γf ) = ‖A′−1‖L2(Γf )→L2(Γf ) ≤ B, (3.11)

where B = B(Lf , κ/η) is defined by (3.10).

Proof. For a proof see [22, Theorem 3.4].

Combining the result of the last theorem together with Theorem 3.5 yields the
final result.
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Chapter 3 Existence and Uniqueness

Theorem 3.12. A is invertible as an operator on L2(Γ) and as an operator on X∞.
Moreover, the BVP has exactly one solution v, defined by (15)-(17) with ϕ ∈ X∞
given by ϕ = 2A−1g. Further, for some constant c > 0, independent of g,

|v(x)| ≤ c ‖g‖X∞ , x ∈ D̄.
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Chapter 4

Tools

In this chapter we introduce notations, summarise results from multi-dimensional
Fourier analysis and prove error estimates for the composite trapezoidal rule on
weighted spaces of differentiable functions.

4.1 Notations

The components of a vector x ∈ Rd for some d ∈ N are denoted by (x1, . . . , xd). The
standard scalar product of two vectors x, y ∈ Rd is denoted by 〈x, y〉. The standard
basis vectors are denoted by ej for j = 1, . . . , d. For two vectors x, y ∈ Rd we define

x < y :⇐⇒ xj < yj for j = 1, . . . , d

and

x ≤ y :⇐⇒ xj ≤ yj for j = 1, . . . , d,

thus extending the definition for multi-indices to elements in Rd, cf. Definition 1.2.
Let x, y ∈ Rd with x < y, then we write

[x, y] := ×dj=1[xj, yj] := [x1, y1]× · · · × [xd, yd] ⊂ Rd.

for the generalised interval in Rd. For x ∈ Rd
>0, i.e. 0 < x, we write

](x) :=
d∏
j=1

xj

for the product of the components, hence the volume of the generalised interval [x, y]
is given through ](y − x).
A pointwise multiplication and division is defined through

x� y := (x1y1, . . . , xdyd) ∈ Rd
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and

x÷ y := (x1

y1
, . . . , xd

yd
) ∈ Rd,

if yj 6= 0 for j = 1, . . . , d.
Let N,M ∈ Zd with N < M . We call a function a : [N,M ] ⊂ Zd → C a

d-dimensional array. We write this as

a = (aj1,...,jd)j1=N1,...,M1;...;jd=Nd,...,Md
∈ C(M1−N1+1)×···×(Md−Nd+1).

As short form we abbreviate this by

a = (aj)j=N,...,M ∈ C×(M−N+1),

where we used the convention

j = N, . . . ,M :⇐⇒ ji = Ni, . . . ,Mi for i = 1, . . . , d,

which can also be written as N ≤ j ≤M . We write

∑∑∑∑∑∑∑∑∑
M≤j≤N

aj :=

M∑∑∑∑∑∑∑∑∑
j=N

aj :=

M1∑
j1=N1

· · ·
Md∑

jd=Nd

aj1,...,jd

for the multiple sum.
A mapping B : [N,M ]× [N,M ] ⊂ Zd × Zd → C is called a d-dimensional matrix

and we write this as

B = (bi,j)i,j=N,...,M ∈ C[×(M−N+1)]×[×(M−N+1)].

The matrix-vector product is defined in the usual way through

(B · a)i =

M∑∑∑∑∑∑∑∑∑
j=N

bi,jaj, i = N, . . . ,M.

The d-dimensional matrices and arrays are closely related to d-level block matrices
and ordinary column vectors. In fact, for any d-dimensional array a = (aj)j=N,...,M ∈
C×(M−N+1) we associate a uniquely determined vector ã ∈ C](M−N+1)×1 with

ã = (a(N1,...,Nd), a(N1,...,Nd+1), . . . , a(N1,...,Md), . . . , a(M1,...,Md))
t.

Example 4.1. In the case N = (1, 2, 3) andM = (2, 3, 4) the vector is given through

ã = (a(1,2,3), a(1,2,4), a(1,3,3), a(1,3,4), a(2,2,3), a(2,2,4), a(2,3,3), a(2,3,4))
t.
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If we use this numbering, we can associate for each d-dimensional matrix B =
(bi,j)i,j=N,...,M ∈ C[×(M−N+1)]×[×(M−N+1)] a matrix B̃ ∈ C](M−N+1)×](M−N+1) that is
given through the following set of rules:

The 0-level:

B̃ = B(0) :=

(
B

(1)
i1,j1

)
i1,j1=N1,...,M1

,

the 1-level:

B
(1)
i1,j1

:=

(
(i1),(j1)B

(2)
i1,j1

)
i2,j2=N2,...,M2

,

the n-level for n = 2, . . . , d− 1:

(i1,...,in−1)(j1,...,jn−1)B
(n)
in,jn

:=

(
(i1,...,in),(j1,...,jn)B

(n+1)
in+1,jn+1

)
in+1,jn+1=Nn+1,...,Mn+1

,

the d-level:

(i1,...,id−1)(j1,...,jd−1)B
(d)
in,jn

:= bi,j.

Example 4.2. We illustrate the above definitions for the case of a 3-level block
matrix given through N = (1, 2, 3) andM = (2, 3, 4). The matrix B̃ is given through
0BBBBBBBBBBBBBBBBBBBBB@

b(1,2,3),(1,2,3) b(1,2,3),(1,2,4) b(1,2,3),(1,3,3) b(1,2,3),(1,3,4) b(1,2,3),(2,2,3) b(1,2,3),(2,2,4) b(1,2,3),(2,3,3) b(1,2,3),(2,3,4)

b(1,2,4),(1,2,3) b(1,2,4),(1,2,4) b(1,2,4),(1,3,3) b(1,2,4),(1,3,4) b(1,2,4),(2,2,3) b(1,2,4),(2,2,4) b(1,2,4),(2,3,3) b(1,2,4),(2,3,4)

b(1,3,3),(1,2,3) b(1,3,3),(1,2,4) b(1,3,3),(1,3,3) b(1,3,3),(1,3,4) b(1,3,3),(2,2,3) b(1,3,3),(2,2,4) b(1,3,3),(2,3,3) b(1,3,3),(2,3,4)

b(1,3,4),(1,2,3) b(1,3,4),(1,2,4) b(1,3,4),(1,3,3) b(1,3,4),(1,3,4) b(1,3,4),(2,2,3) b(1,3,4),(2,2,4) b(1,3,4),(2,3,3) b(1,3,4),(2,3,4)

b(2,2,3),(1,2,3) b(2,2,3),(1,2,4) b(2,2,3),(1,3,3) b(2,2,3),(1,3,4) b(2,2,3),(2,2,3) b(2,2,3),(2,2,4) b(2,2,3),(2,3,3) b(2,2,3),(2,3,4)

b(2,2,4),(1,2,3) b(2,2,4),(1,2,4) b(2,2,4),(1,3,3) b(2,2,4),(1,3,4) b(2,2,4),(2,2,3) b(2,2,4),(2,2,4) b(2,2,4),(2,3,3) b(2,2,4),(2,3,4)

b(2,3,3),(1,2,3) b(2,3,3),(1,2,4) b(2,3,3),(1,3,3) b(2,3,3),(1,3,4) b(2,3,3),(2,2,3) b(2,3,3),(2,2,4) b(2,3,3),(2,3,3) b(2,3,3),(2,3,4)

b(2,3,4),(1,2,3) b(2,3,4),(1,2,4) b(2,3,4),(1,3,3) b(2,3,4),(1,3,4) b(2,3,4),(2,2,3) b(2,3,4),(2,2,4) b(2,3,4),(2,3,3) b(2,3,4),(2,3,4)

1CCCCCCCCCCCCCCCCCCCCCA

The structure of the different levels is given through

B(0) =

(
B

(1)
1,1 B

(1)
1,2

B
(1)
2,1 B

(1)
2,2

)
=


(1),(1)B

(2)
2,2 (1),(1)B

(2)
2,3

(1),(1)B
(2)
3,2 (1),(1)B

(2)
3,3

(1),(2)B
(2)
2,2 (1),(2)B

(2)
2,3

(1),(2)B
(2)
3,2 (1),(2)B

(2)
3,3

(2),(1)B
(2)
2,2 (2),(1)B

(2)
2,3

(2),(1)B
(2)
3,2 (2),(1)B

(2)
3,3

(2),(2)B
(2)
2,2 (2),(2)B

(2)
2,3

(2),(2)B
(2)
3,2 (2),(2)B

(2)
3,3

 .
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4.2 Multi-dimensional Fourier analysis

In this section we summarise some results from the theory of multi-dimensional
Fourier analysis.
A function f : Rd → C is said to be multi-periodic with period vector p, if there

exists a vector p ∈ Rd
>0 such that

f(x) = f(x+ pjej), j = 1, . . . , d

for all x ∈ Rd. Such a function is completely determined by its values on the cube
[0, p].
The linear space of all complex valued, Lebesgue measurable functions on Rd that

are multi-periodic with period vector p ∈ Rd
>0 and for which∫

[0,p]

|ϕ(x)|2 dx <∞

is denoted by L2
p(Rd). As a shorthand notation we use L2

p synonymously. A
scalarproduct is defined on L2

p through

(ϕ, ψ)L2
p

:=
1

](p)

∫
[0,p]

ϕ(x)ψ(x) dx.

The linear space L2
p is a Hilbert space equipped with the norm

‖ϕ‖L2
p

:=
√

(ϕ, ϕ)L2
p
, ϕ ∈ L2

p.

We denote by
Ep,n(x) := e2πi〈n,x÷p〉, n ∈ Zd, x ∈ Rd,

where i denotes the imaginary unit. One easily checks the orthonormality property

(Ep,n, Ep,m)L2
p

=

{
1, n = m,

0, otherwise.

A function a : Zd → C can be interpreted as a multivariate complex sequence
(an) := (an)n∈Zd where an := a(n) for n ∈ Zd. In a straightforward manner we
define the multivariate series of (an)n∈Zd as the limit of the m-th partial sum sm(a),
i.e. ∑

n∈Zd
an := lim

m→∞
sm(a) := lim

m→∞

∑
n∈Zd
‖n‖1≤m

an,

where ‖n‖1 =
∑d

j=1 |nj| for n = (n1, . . . , nd) ∈ Zd. The linear space of all square
summable multivariate complex valued sequences is denoted by

`2(Zd,C) := `2(Zd) := {a : Zd → C :
∑
n∈Zd
|an|2 <∞}.
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It is a Hilbert space under the scalar product

(a, b)`2 :=
∑
n∈Zd

anbn.

We note that {Ep,n : n ∈ Zd} defines a complete orthonormal system on L2
p, i.e.∥∥∥ ∑

n∈Zd
‖n‖1≤m

(f, Ep,n)L2
p
Ep,n − f

∥∥∥
L2
p

→ 0, m→∞,

for all f ∈ L2
p. The complex numbers

f̂(n) := (f, Ep,n)L2
p

=
1

](p)

∫
[0,p]

f(x)e−2πi〈n,x÷p〉 dx, n ∈ Zd, (4.1)

are called the Fourier coefficients of f and they define a mapping from Zd to C. We
will denote this mapping either by f̂ or Fdf and call it the d-dimensional Fourier
transform of f . For two functions ϕ, ψ ∈ L2

p we see that

(ϕ, ψ)L2
p

=
(∑
n∈Zd

ϕ̂(n)Ep,n,
∑
m∈Zd

ψ̂(m)Ep,m

)
L2
p

=
∑
n∈Zd

∑
m∈Zd

ϕ̂(n)ψ̂(m)
(
Ep,n, Ep,m

)
L2
p

=
∑
n∈Zd

ϕ̂(n)ψ̂(n), (4.2)

which is known as Parseval’s theorem. From (4.2) we conclude, for the case of ϕ = ψ,
that

‖ϕ‖2
L2
p

=
∑
n∈Zd
|(ϕ,Ep,n)L2

p
|2 = ‖ϕ̂‖2

`2 . (4.3)

This shows that the mapping

Fd : L2
p → `2(Zd), ϕ 7→ (ϕ̂n)n∈Zd

is an unitary operator. The inverse operator is given through

F−1
d : `2(Zd)→ L2

p, (an)n∈Zd 7→
∑
n∈Zd

anEp,n.

Thus we see the following spectral representation

ϕ = F−1
d Fdϕ =

∑
n∈Zd

ϕ̂nEp,n (4.4)
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for all ϕ ∈ L2
p. In analogy to the convolution product of functions on Rd, cf. (1.44),

we define a convolution product for multi-periodic functions through

(f ∗ g)(x) :=

∫
[0,p]

f(x− y)g(y) dy, f, g ∈ L2
p.

One easily verifies that this convolution product is also bilinear, associative and com-
mutative. Furthermore it has the same nice behaviour under Fourier transformation
as the convolution product for non-periodic functions, which is one key ingredient
for fast matrix-vector multiplications of circulant and Toeplitz matrices.
The analogon of the Convolution theorem for L2 (Theorem 1.43) is stated in the

following theorem.

Theorem 4.3 (Convolution theorem for periodic functions). For g, f ∈ L2
p it holds

that
Fd(f ∗ g) = ](p) Fd(f) · Fd(g). (4.5)

Proof. For two functions f, g ∈ L2
p one computes

(f ∗ g)(x) =

∫
[0,p]

f(x− y)g(y) dy

=

∫
[0,p]

(∑
n∈Zd

f̂(n)e2πi〈n,x−y÷p〉

)(∑
m∈Zd

ĝ(m)e2πi〈m,y÷p〉

)
dy

=
∑
n∈Zd

∑
m∈Zd

f̂(n)ĝ(m)

∫
[0,p]

e−2πi〈n,y÷p〉e2πi〈m,y÷p〉 dy e2πi〈m,x÷p〉

= ](p)
∑
n∈Zd

f̂(n)ĝ(n) e2πi〈n,x÷p〉

= ](p) F−1
d (Fd(f) · Fd(g))(x),

where the dot on the right hand side is the componentwise multiplication in `2. The
interchange of summation and integration is valid as a direct consequence of the
continuity of the L2 inner product and the convergence of the series representation
in L2-sense.

4.2.1 Discrete Fourier transform

For practical computations with multi-periodic functions, one normally uses trigono-
metric polynomials of some finite degree. As in most cases it is not possible to find
an analytic expression for the Fourier coefficients one cannot simply use a truncated
series expansion. Instead one will use trigonometric interpolation polynomials. The
results in this section can easily be derived from the case of one-dimensional trigono-
metric interpolation as it is presented e.g. in [34, Theorem 8.24/8.25].
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In the case of an equidistantly spaced grid of interpolation points, the coefficients
of the interpolation polynomial are given by approximating the integrals (4.1) by
the composite trapezoidal rule.

Remark 4.4. We restrict our presentation to the case of an even number of inter-
polation points for each space dimension.

We explain this in some more detail for a continuous multi-periodic function g
with period-vector p ∈ Rd

>0. For N ∈ Nd we define a regularly spaced grid on Rd

through
{xj := h� j : j ∈ Zd},

where h := p ÷ 2N denotes the step size. The set of interpolation points in [0, p]
that is used for the interpolation is given through

{xj : j = 0, . . . , 2N − 1}.

The uniquely determined trigonometric interpolation polynomial gN of degree |N |
that satisfies the interpolation property

gN(xj) = g(xj), j = 0, . . . , 2N − 1,

is given through

gN(x) :=

N1−1∑
m1=−N1

. . .

Nd−1∑
md=−Nd

g̃(m1, . . . ,md)e
2πim1x1/p1 · . . . · e2πimdxd/pd , x ∈ Rd,

where the discrete Fourier coefficients are given through

g̃(m) :=
1

(2N1) . . . (2Nd)

2N1−1∑
j1=0

. . .

2Nd−1∑
jd=0

g(xj1 , . . . , xjd)e
−2πimdjd/2Nd · . . . · e−2πim1j1/2N1

for ml = −Nl, . . . , Nl − 1 for l = 1, . . . , d. We can write these expressions in a
condensed form as

gN(x) =

N−1∑∑∑∑∑∑∑∑∑
m=−N

g̃(m)e2πi〈m,x÷p〉, (4.6)

and

g̃(m) :=
1

](2N)

2N−1∑∑∑∑∑∑∑∑∑
j=0

g(xj)e
−2πi〈m,j÷2N〉, m = −N, . . . , N − 1. (4.7)

As we mentioned before, the discrete Fourier coefficients are an approximation to
the Fourier coefficients given by (4.1). By replacing the integral by the composite
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trapezoidal rule we see that

ĝ(m) =
1

](p)

∫
[0,p]

g(x)e−2πi〈m,x÷p〉 dx

≈ 1

](p)
](h)

N−1∑∑∑∑∑∑∑∑∑
j=−N

g(xj)e
−2πi〈m,xj÷p〉

=
1

](p)
](p÷ 2N)

N−1∑∑∑∑∑∑∑∑∑
j=−N

g(xj)e
−2πi〈m,j�h÷p〉

=
1

](2N)

N−1∑∑∑∑∑∑∑∑∑
j=−N

g(xj)e
−2πi〈m,j÷2N〉

= g̃(m), m = 0, . . . , 2N − 1.

To handle these specific kinds of sums of exponentials, one introduces the following
two linear mappings on C×(N).

Definition 4.5 (Multi-dimensional DFT/IDFT). For N ∈ Nd we call the linear
mapping FN : C×(N) → C×(N) that maps the d-dimensional array of complex num-
bers a := (an)n=0,...,N−1 onto ã := (ãn)n=0,...,N−1, where

ãm =

N−1∑∑∑∑∑∑∑∑∑
j=0

aje
−2πi〈m,j÷N〉, m = 0, . . . , N − 1, (4.8)

the d-dimensional discrete Fourier transformation (DFTd) of length ](N). The lin-
ear mapping F−1

N : C×(N) → C×(N) that maps the d-dimensional array of complex
numbers b̃ := (b̃n)n=0,...,N−1 onto b := (bn)n=0,...,N−1, where

bm =
1

](N)

N−1∑∑∑∑∑∑∑∑∑
j=0

b̃je
2πi〈m,j÷N〉, m = 0, . . . , N − 1, (4.9)

is called the d-dimensional inverse discrete Fourier transformation (IDFTd) of length
](N).

We see that the discrete Fourier coefficients g̃ are given as a scaled DFTd of length
](2N). The importance of this observation is that there are very efficient algorithms
to compute the DFT in O(](N) log ](N)) operations. These methods are called fast
Fourier transform. The ideas date back to Johann Carl Friedrich Gauß.
At last we note that the multi-dimensional discrete Fourier transform is a nested

version of one-dimensional discrete Fourier transforms performed over the corre-
sponding dimension of the multi-dimensional data array.
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4.3 The composite trapezoidal rule

4.3 The composite trapezoidal rule

Throughout this thesis we approximate the integral

Qd[f ] :=

∫
Rd
f(x) dx, (4.10)

by the weighted sum
Qd
h[f ] := hd

∑
j∈Zd

f(hj), (4.11)

where h > 0 denotes the step size, i.e. we use the composite trapezoidal rule.
In this section we prove that the composite trapezoidal rule, which coincides with

the midpoint rule or rectangular rule on Rd, is convergent of high order for certain
classes of weighted continuously differentiable functions. Our presentation follows
in large parts [40], [42] and [30] extending their results to the case of arbitrary space
dimensions.
For the forthcoming analysis we introduce the following spaces of differentiable

functions, all of which are Banach spaces equipped with their respective norms.
For n, d ∈ N and p ∈ R we define

BCn
p (Rd) :=

{
ψ ∈ BCn(Rd) : ‖ψ‖BCnp (Rd) <∞

}
,

with
‖ψ‖BCnp (Rd) := max

|α|≤n
‖wp∂αψ‖BC(Rd),

where
wp(x) := (1 + |x|)p, x ∈ Rd.

In other words this means that for f ∈ BCn
p (Rd), there exists a constant c > 0 so

that
|∂αf(x)| ≤ c

(1 + |x|)p
, x ∈ Rd

and α ∈ Nd with |α| ≤ n.

Remark 4.6. We note the trivial identities

wpwq = wp+q, p, q ∈ R (4.12)

and
w−p =

1

wp
, p ∈ R. (4.13)

Lemma 4.7. Let f ∈ BCn
p (Rd) with p > d. Then ∂αf ∈ L1(Rd) for α ∈ Nd with

|α| ≤ n.
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Proof. ∫
Rd
|∂αf(x)| dx ≤ c

∫
Rd

1

(1 + |x|)p
dx

= cωd

∫ ∞
0

rd−1

(1 + r)p
dr

≤ cωd

∫ ∞
0

(1 + r)d−p−1 dr

= cωd
1

d− p
(1 + r)d−p

∣∣∞
0

=
cωd
p− d

<∞,

where ωd denotes the surface area of the unit sphere in Rd.

To handle kernel functions on Rd × Rd we define in an analogue way the space

BCn
p (Rd × Rd) :=

{
ψ ∈ BCn(Rd × Rd) : ‖ψ‖BCnp (Rd×Rd) <∞

}
,

with
‖ψ‖BCnp (Rd×Rd) := max

|α|≤n
‖w̃p∂αψ‖BC(Rd×Rd) <∞,

where
w̃p(x, y) := wp(x− y), x, y ∈ Rd.

i.e.
w̃p(x, y) = (1 + |x− y|)p, x, y ∈ Rd.

The following multi-dimensional variant of the Leibniz rule or generalised product
rule will be used in the sequel.

Lemma 4.8 (Leibniz rule). For f, g ∈ Cn(Rd) it holds that

∂α(fg) =
∑∑∑∑∑∑∑∑∑

0≤β≤α

(
α
β

)
(∂α−βf)(∂βg)

for all α ∈ Nd with |α| ≤ n, where the binomial coefficients for multi-indices α, β ∈
Nd are given through (

α
β

)
:=

d∏
j=1

(
αj
βj

)
.

Proof. See e.g. [28, p. 247, Theorem 1].

Lemma 4.9. For α, β ∈ Nd with β ≤ α we have the identity∑∑∑∑∑∑∑∑∑
0≤β≤α

(
α
β

)
= 2|α|, α ∈ Nd. (4.14)

70



4.3 The composite trapezoidal rule

Proof. We first note the one-dimensional version of this rule

2n = (1 + 1)n =
n∑
j=0

(
n

j

)
1n−j1j, (4.15)

which is a simple consequence of the binomial theorem. The general rule follows by
successive summation and the use of (4.15)

∑∑∑∑∑∑∑∑∑
0≤β≤α

(
α
β

)
=

α1∑
β1=0

. . .
 αd−1∑
βd−1=0

(
αd∑
βd=0

d∏
j=1

(
αj
βj

)) . . .


= 2αd

α1∑
β1=0

. . .
 αd−1∑
βd−1=0

d−1∏
j=1

(
αj
βj

) . . .

 = . . . =

= 2αd · . . . · 2α2

α1∑
β1=0

(
α1

β1

)
=

d∏
j=1

2αj = 2α1+...αd = 2|α|.

The first building block of the error estimate for the composite trapezoidal rule
is the next Lemma that examines relations of weighted and non weighted spaces of
differentiable functions.

Lemma 4.10. Let d ∈ N, n ∈ N ∪ {0}.
(i) Let f ∈ BCn

p (Rd) and g ∈ BCn
q (Rd) for p, q ∈ R. Then fg ∈ BCn

p+q(Rd) for
all x ∈ Rd and

‖fg‖BCnp+q(Rd) ≤ 2n‖f‖BCnp (Rd) ‖g‖BCnq (Rd). (4.16)

(ii) Let a ∈ BCn
p (Rd × Rd) and f ∈ BCn

q (Rd) for p, q ∈ R. Then a(x, ·)f ∈
BCn

p+q(Rd) for all x ∈ Rd and

‖a(x, ·)f‖BCnp+q(Rd) ≤ 2n‖a(x, ·)‖BCnp (Rd) ‖f‖BCnq (Rd). (4.17)

Proof. (i) Using the Leibniz rule and the identity (4.14) we calculate

|∂α(fg)(x)| =

∣∣∣∣∣ ∑∑∑∑∑∑∑∑∑
0≤β≤α

(
α
β

)
(∂α−βf)(x) (∂βg)(x)

∣∣∣∣∣
=

1

wp(x)wq(x)

∣∣∣∣∣ ∑∑∑∑∑∑∑∑∑
0≤β≤α

(
α
β

)[
wp(x)(∂α−βf)(x)

] [
wq(x)(∂βg)(x)

]∣∣∣∣∣
≤ 1

wp(x)wq(x)

∑∑∑∑∑∑∑∑∑
0≤β≤α

(
α
β

)
‖f‖BCnp (Rd) ‖g‖BCnq (Rd)

=
2|α|

wp(x)wq(x)
‖f‖BCnp (Rd) ‖g‖BCnq (Rd)
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for all α ∈ Nd with |α| ≤ n. We use that wpwq = wp+q for p, q ∈ R, cf. Remark 4.6,
multiply this inequality with wp+q(x) and take the supremum over x ∈ Rd. This
yields the estimate (4.16).

(ii) This is a direct consequence of (i), if we first note that for a ∈ BCn
p (Rd×Rd) it

holds that a(x, ·) ∈ BCn
p (Rd) for all x ∈ Rd.

The second building block it the following Lemma, which is a consequence of a
generalisation of the Euler-Maclaurin expansion for the multi-dimensional case. Let

Cn
0 ([0, 1]d) :=

{
ψ ∈ Cn([0, 1]d) : ∂αψ|∂([0,1]d) = 0 for |α| ≤ n

}
,

the space of n-times continuously differentiable functions on [0, 1]d that vanish with
all their derivatives up to order n on the boundary.

Lemma 4.11. Let m,n ∈ N, g ∈ Cm
0 ([0, 1]d) and define h := 1/n and N :=

(n, . . . , n) ∈ Nd. Then∣∣∣∣∣
∫

[0,1]d
g(x) dx− hd

N−1∑∑∑∑∑∑∑∑∑
j=1

g(hj)

∣∣∣∣∣ ≤ C‖g‖Cm([0,1]d)h
m,

where the constant C > 0 depends only on m.

Proof. For details of a proof see e.g. the comments in [51].

The following theorem is an extension of [42, Lemma 3.10] to the multi-dimensional
case and the proof presented given here closely follows the one in [42].

Lemma 4.12. If, for some p > d and m ∈ N, f ∈ BCm
p (Rd), then

|Qdf −Qd
hf | ≤ C‖f‖BCmp (Rd)h

m, h > 0, (4.18)

where the constant C > 0 depends only on m and p.

Proof. Let φ ∈ C∞(R) be such that φ(s) = −1
2
for s ≤ 0 and φ(s) = 1

2
for s ≥ 1. Let

ψ0(s) := φ(s)− φ(s− 1) and let ψj(s) := ψ0(s− j) for j ∈ Z. Then ψj ∈ C∞comp(R),
with suppψj = [j, 2 + j] and ∑

j∈Z

ψj(s) = 1, s ∈ R,

so that we have a partition of unity on R. The family of functions

Ψj(x) := ψj1(x1) · . . . · ψjd(xd), j ∈ Zd, x ∈ Rd.
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defines a smooth partition of unity on Rd and supp Ψj = [j, 2 + j] ⊂ Rd. Let, for
h > 0 and j ∈ Zd, ej(h) := Qd[Ψjf ]−Qd

h[Ψjf ]. Then

Qd[f ]−Qd
h[f ] =

∑
j∈Zd

ej(h)

and by Lemma 4.11 and Lemma 4.10,

|ej(h)| ≤ C‖Ψjf‖BCm(supp Ψj) h
m

≤ 2m C ‖Ψj‖BCm(supp Ψj)‖f‖BCm(supp Ψj) h
m

≤ 2m C ‖Ψj‖BCm(supp Ψj) max
t∈supp Ψj

1
wp(t)

‖wpf‖BCm(supp Ψj) h
m

≤ 2m C hm ‖Ψ0‖(supp Ψ0)‖f‖BCmp (Rd) max
t∈supp Ψj

(1 + |t|)−p

≤ Cm hm ‖f‖BCmp (Rd) max
t∈[j,2+j]

(1 + |t|)−p,

where Cm depends only on m and on ‖Ψ0‖Cm([0,2]). Thus,∣∣Qd[f ]−Qd
h[f ]
∣∣ ≤∑

j∈Zd
|ej(h)|

≤ Cmh
m‖f‖BCmp (Rd)

∑
j∈Zd

max
t∈[j,2+j]

(1 + |t|)−p

≤ C‖f‖BCmp (Rd)h
m,

where C > 0 depends only on m and p. The convergence of the multi-dimensional
series can be concluded from a generalisation of the integral test. We first note that
the function wp : Rd

>0 → R, t 7→ (1 + |t|)−p is an integrable and non-negative mono-
tone decreasing function, which means that the maximum of wp over the interval
[j, j + 2] is attained at the left end point, i.e.

max
t∈[j,2+j]

(1 + |t|)−p = (1 + |j|)−p.

Using symmetry properties we can write the series in the form∑
j∈Zd

max
t∈[j,2+j]

(1 + |t|)−p = 2d
∑
j∈Zd>0

(1 + |j|)−p = 2d
∑
j∈Zd>0

wp(j).

The convergence of the series now follows from the estimate

wp(j) ≤
∫

[j,j+1]

wp(t) dt, j ∈ Zd
>0,

which is a direct consequence of the monotonicity and which implies that∑
j∈Zd>0

wp(j) ≤
∑
j∈Zd>0

∫
[j,j+1]

wp(t) dt =

∫
Rd>0

wp(t) dt <∞.
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Operator approximations
In this chapter we analyse operator approximations that can be used either

• in the context of Nyström methods together with the finite section method as
a truncation scheme

or

• in the context of the recently proposed multi-section method, where, in con-
trast to the classical Nyström method, a linear least squares problem has to
be solved.

We are interested in approximating integral operators

(Aψ)(x) :=

∫
R2

K(x,y)J(y)ψ(y) dy, x ∈ R2, (5.1)

where J(y) =
√

1 + |∇f(y)|2 denotes as usual the surface area element, by operators
of the form

(Ahψ)(x) :=
∑
j∈Z2

Kh,j(x)J(hj)ψ(hj), x ∈ R2, h > 0, (5.2)

where Kh,j , j ∈ Z2, is a family of regular functions that have to be determined.
For a reasonable large class of kernel functions and densities one can get an ap-

proximation of the form (5.2) by replacing the integral by the composite trapezoidal
rule. Thus we get

(Ahψ)(x) = Q2
h[K(x, ·)Jψ] =

∑
j∈Z2

Kh,j(x)J(hj)ψ(hj), x ∈ R2

where
Kh,j(x) := h2K(x, hj), j ∈ Z2. (5.3)

These kind of operator approximations are used in Nyström methods and it is
known that the operator Ah cannot converge in norm to the original operator A for
h→ 0. The best one can hope for instead is pointwise convergence, i.e.

‖Aψ − Ahψ‖ → 0, h→ 0, (5.4)

for a reasonable class of functions ψ and an appropriate norm ‖ · ‖.
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5.1 Approximations for weighted differentiable
kernels

In the case that the kernel and density exhibits a certain rate of decay, we are able
to prove convergence and quantify a convergence rate.

Lemma 5.1. Let A be given through (5.1) with K ∈ BCm
p (Rd ×Rd), ψ ∈ BCm

q (Rd)
with p + q ≥ d and f ∈ BCm+1(Rd) for some m ∈ N. Then, the operator Ah for
h > 0 given through (5.2), with Kh,j given through (5.3), converges pointwise to A
and the error can be estimated through

‖Aψ − Ahψ‖BC(Rd) ≤ C‖K(x, ·)‖BCmp (Rd)‖J‖BCm(Rd)‖ψ‖BCmq (Rd)h
m, (5.5)

for some constant C > 0 dependent only on m and p.

Proof. For f ∈ BCm+1(Rd) we see that J ∈ BCm(Rd) so that Lemma 4.10 yields
K(x, ·)Jψ ∈ BCm

p+q(Rd). Lemma 4.7 ensures that K(x, ·)Jψ ∈ L1(Rd) for all
x ∈ Rd, as p+ q > d. Hence Lemma 4.12 yields

‖Aψ − Ahψ‖BC(Rd) = sup
x∈Rd

∣∣Qd
[
K(x, ·)Jψ

]
−Qd

h

[
K(x, ·)Jψ

]∣∣
≤ c‖K(x, ·)Jψ‖BCmp+q(Rd)h

m

so that the bound (5.5) follows from Lemma 4.10.

Remark 5.2. The reason for our interest in this particular case is that the global
part of the single-layer and double-layer operator satisfy these conditions for d = 2
and p = 2, as we have shown in the estimates (1.22) and (1.28). To retain the
convergence order, it suffices that the density satisfies the mild decay property ψ ∈
BCm

q (R2) for q > 0.

5.2 Approximations for weakly singular kernels

In this section we develop a quadrature scheme that is suitable for the weakly sin-
gular integral kernels of the single-layer and double-layer potential operators.
Thus we consider the case where the operator A, given through (5.1), has the

kernel K = kS or K = kK , with

kS(x,y) := 2G(x, y), (5.6)

kK(x,y) := 2
∂G(x, y)

∂ν(y)
, (5.7)

for x = (x, f(x)) and y = (y, f(y)) and G given through (10).
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We start our explanations, by first deriving suitable decompositions of the two
kernel functions in the form

K(x,y) := K1(x,y) +
1

|x− y|
K2(x,y), x 6= y, (5.8)

where we assume that, in the case that f is a real analytical function, the following
two conditions hold:

(W1) the kernel function K1 is smooth,

(W2) the function K̃2,x(r, θ) := K2(x,x + rp(θ)), for r ∈ R, θ ∈ [0, 2π) possesses
continuous partial derivatives in angular and radial direction of arbitrary order,
i.e. K̃2,x is a smooth function in the polar domain R× [0, 2π), where

p(θ) := (cos θ, sin θ). (5.9)

5.2.1 The case of the single-layer potential

To derive a decomposition of the form (5.8), we introduce the kernel functions

kS,1(x,y) :=
1

2π

exp
[
iκ (|x− y|2 + [f(x)− f(y)]2)

1/2
]

(|x− y|2 + [f(x)− f(y)]2)1/2
(5.10)

and

kS,2(x,y) :=
1

2π

exp
[
iκ (|x− y|2 + [f(x) + f(y)]2)

1/2
]

(|x− y|2 + [f(x) + f(y)]2)1/2
. (5.11)

To handle these kernel functions more easily we denote the distance |x− y| respec-
tively |x− y′| of two points x, y ∈ Γf by

d(x,y) :=
(
|x− y|2 + [f(x)− f(y)]2

)1/2
, (5.12)

and

d′(x,y) :=
(
|x− y|2 + [f(x) + f(y)]2

)1/2
. (5.13)

The function

c(x,y) :=

(
1 +

[
f(x)− f(y)

|x− y|

]2
)1/2

, x 6= y, (5.14)

can be written as
d(x,y) = |x− y| c(x,y), x 6= y. (5.15)
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This yields the decomposition

kS(y,y) = kS,1(x,y)− kS,2(x,y) = kS1 (x,y) +
1

|x− y|
kS2 (x,y)

with

kS1 (x,y) :=

(
−kS,2(x,y) + i

sin [κd(x,y)]

2πd(x,y)

)
(5.16)

and

kS2 (x,y) :=
cos
[
κd(x,y)

]
2πc(x,y)

. (5.17)

The regular part. In the case that f is an analytic function, we conclude that

• J =
√

1 + |∇f |2 ∈ BC∞(R2),

• c(x, ·), d(x, ·) ∈ BC∞(R2 \ {x}) for all x ∈ R2,

• d′(x, ·) is an analytic function for all x ∈ R2.

Furthermore we have the bounds

2f− ≤ d′(x,y) and 1 ≤ c(x,y) ≤
(
1 + L2

f

)1/2

for x,y ∈ R2.
The function z 7→ eiκz/z, z ∈ C is meromorph in C \ {0}. Thus we conclude,

together with the bound on d′, that kS,2 is analytic as composition of analytic
functions.
The function

y 7→ sin(|y|)/|y|, y ∈ R3

is a real analytic function, hence also the function

y 7→ sin[d(x,y)]/d(x,y), x ∈ R2.

Thus kS1 (x, ·) ∈ BC∞(R2) for all x ∈ R2.

The discontinuous part. It remains to show that the function

k̃S2,x(r, θ) := kS2 (x,x+ rp(θ)), r ∈ R, θ ∈ [0, 2π) (5.18)
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possesses continuous partial derivatives of arbitrary order. For this it suffices to
consider the function c, given through (5.14). Introducing polar coordinates with
centre x we can write c as a function in the polar domain, i.e.

c̃x(r, θ) :=

(
1 +

[
f(x)− f(x+ rp(θ))

r

]2
)1/2

, r > 0, θ ∈ [0, 2π).

With the help of the Taylor expansion

f(x+ rp(θ)) = f(x) + 〈∇f(x), p(θ)〉r +
∑∑∑∑∑∑∑∑∑
|α|≥2

1

α!
(∂αf)(x)p(θ)αrα (5.19)

we see that the function

(r, θ) 7→ f(x)− f(x+ rp(θ))

r
= −〈∇f(x), p(θ)〉 −

∑∑∑∑∑∑∑∑∑
|α|≥2

(∂αf)(x)p(θ)αrα−1

possesses continuous partial derivatives of arbitrary order. Furthermore we see that

lim
r→0

k̃S2,x(r, θ) = lim
r→0

1

2π

cos[κrc̃x(r, θ)]

c̃x(r, θ)
= lim

r→0

1

2π

1

c̃x(r, θ)

=
1

2π

(
1 +

[
〈∇f(x), p(θ)〉

]2)−1/2

.

5.2.2 The case of the double-layer potential

To derive the decomposition for the double-layer potential, we introduce the kernel
functions

kK,1(x,y) :=
1

2π

〈(−∇f(y), 1) , (x− y, f(x)− f(y))〉 [J(y)]−1

(|x− y|2 + [f(x)− f(y)]2)

·
(

1− iκ
(
|x− y|2 + [f(x)− f(y)]2

)1/2
)

·
exp

[
iκ (|x− y|2 + [f(x)− f(y)]2)

1/2
]

(|x− y|2 + [f(x)− f(y)]2)1/2

(5.20)

and

kK,2(x,y) :=
1

2π

〈(−∇f(y),−1) , (x− y, f(x) + f(y))〉 [J(y)]−1

(|x− y|2 + [f(x) + f(y)]2)

·
(

1− iκ
(
|x− y|2 + [f(x) + f(y)]2

)1/2
)

·
exp

[
iκ (|x− y|2 + [f(x) + f(y)]2)

1/2
]

(|x− y|2 + [f(x) + f(y)]2)1/2
.

(5.21)
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Note that

kK,1(x,y) =
1

2π

〈ν(y), x− y〉
|x− y|2

(
1− iκ|x− y|

)exp[iκ|x− y|]
|x− y|

= 2
∂Φ(x, y)

∂ν(y)

and

kK,2(x,y) =
1

2π

〈[ν(y)]′, x− y′〉
|x− y′|2

(
1− iκ|x− y′|

)exp[iκ|x− y′|]
|x− y′|

= 2
∂Φ(x, y′)

∂ν(y)

To write these functions more compactly we introduce the functions

a(x,y) :=
(f(x)− f(y)− 〈∇f(y),x− y〉) [J(y)]−1

d(x,y)2
, x 6= y, (5.22)

and

a′(x,y) :=
− (f(x) + f(y) + 〈∇f(y),x− y〉) [J(y)]−1

d′(x,y)2
. (5.23)

Thus

kK,1(x,y) =
a(x,y)

2π

(
1− iκd(x,y)

)exp[iκd(x,y)]

d(x,y)

and

kK,2(x,y) =
a′(x,y)

2π

(
1− iκd′(x,y)

)exp[iκd′(x,y)]

d′(x,y)
.

Now, using (5.15), we can write the kernel function of the double-layer potential as

kK(y,y) = kK,1(x,y)− kK,2(x,y) = kK1 (x,y) +
1

|x− y|
kK2 (x,y),

where

kK1 (x,y) := −kK,2(x,y) (5.24)

and

kK2 (x,y) :=
a(x,y)

2π

(
1− iκd(x,y)

)exp[iκd(x,y)]

c(x,y)
. (5.25)

An analysis, similar to the one we did before in the case of the single-layer operator,
yields kK1 ∈ BC∞(R2) for an analytic function f . In addition we see that it suffices
to study the function a given through (5.22). The Taylor expansion (5.19) yields

f(x)− f(y)− 〈∇f(y),x− y〉 =
∑∑∑∑∑∑∑∑∑
|α|≥2

1

α!
(∂αf)(x)(x− y)α,
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5.2 Approximations for weakly singular kernels

so that

a(x,y) =

∑∑∑∑∑∑∑∑∑
|α|≥2

1
α!

(∂αf)(x)(x− y)α

|x− y|2[c(x,y)]2
[J(y)]−1.

Thus we see that the function

ãx(r, θ) := a(x,x+ rp(θ))

can be written as

ãx(r, θ) =
∑∑∑∑∑∑∑∑∑
|α|≥2

1

α!
(∂αf)(x)p(θ)αrα−2[c̃x(r, θ)]−2 [J(x+ rp(θ))]−1,

which is clearly a differentiable function in the polar domain. This proves that

k̃K2,x(r, θ) := kK2 (x,x+ rp(θ))

is a smooth function in the polar domain with

lim
r→0

k̃K2,x(r, θ) =
1

2π

∑∑∑∑∑∑∑∑∑
|α|=2

1

α!
(∂αf)(x)p(θ)α[c̃x(0, θ)]−3[J(x+ rp(θ))]−1.

5.2.3 The locally corrected quadrature scheme

The decomposition (5.8) is our starting point for a second decomposition that trun-
cates the singular part to a function with compact support. To this end we introduce
a n-times continuously differentiable, symmetric cut-off function χa,b : R→ [0, 1] for
some constants 0 < a < b such that

0 ≤ χa,b(t) ≤ 1, t ∈ R,

and

χa,b(t) =

{
1, |t| < a,

0, |t| > b.

A typical example of such a cut-off function is shown in Figure 5.1. With the help
of such a cut-off function we define a second decomposition

K(x,y) = Klocal(x,y) +Kglobal(x,y), (5.26)

where

Klocal(x,y) := χa,b(|x− y|)
1

|x− y|
K2(x,y), (5.27)

Kglobal(x,y) := K1(x,y) +
[
1− χa,b(|x− y|)

] 1

|x− y|
K2(x,y). (5.28)
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Chapter 5 Operator approximations

Figure 5.1: An example for a cut-off function χa,b

Hence we can write (5.1) as the sum of Ag and Al, where

(Agψ)(x) :=

∫
R2

Kglobal(x,y)J(y)ψ(y) dy, x ∈ R2, (5.29)

(Alψ)(x) :=

∫
R2

χa,b(|x− y|)
1

|x− y|
K2(x,y)J(y)ψ(y) dy, x ∈ R2. (5.30)

The kernel function of the global operator is smooth by assumption, which means
that the smoothness is limited only by the smoothness of the cut off function χa,b.
Applying the quadrature scheme to the global operator we get the following operator

(Ag,hψ)(x) := Q2
h[Kglobal(x, ·)Jψ], x ∈ R2, (5.31)

which we can write as the infinite sum

(Ag,hψ)(x) = h2
∑
j∈Z2

Kglobal(x, hj)J(hj)ψ(hj), x ∈ R2. (5.32)

For the treatment of the local operator (5.30) we introduce some additional no-
tation. To simplify the understanding of the following rather technical definitions,
we illustrated the situation in Figure 5.2. Let jx

ll , j
x
ur ∈ Z2 denote the index of the

lower left and upper right corner points of the smallest rectangle Rx in the grid that
contains Bb(x), an open ball of radius b and centre x. More formal, we define the
two index sets

Jx
ll := {j ∈ Z2 : hj ≤ y for all y ∈ Bb(x)}

and
Jx

ur := {j ∈ Z2 : y ≤ hj for all y ∈ Bb(x)}.

Then jx
ll ∈ Jx

ll is the index such that j ≤ jx
ll for all j ∈ Jx

ll and in an analogous fashion
jx

ur ∈ Jx
ur is the index such that jx

ll ≤ j for all j ∈ Jx
ur. Hence Rx = [hjx

ll , hj
x
ur] ⊂ R2.

The function
Λx(y) :=

√
χa,b(|x− y|)J(y)ψ(y), y ∈ R2, (5.33)
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5.2 Approximations for weakly singular kernels

has support in Bb(x) ⊂ Rx, so it possesses a uniquely determined periodic extension
that coincides with Λx on Rx. We approximate this periodic extension by the
uniquely determined two dimensional trigonometric interpolation polynomial.

Bb(x)

hjx
ur

hjx
ll

b

Rx

Jx
ur

Jx
ll

x

Figure 5.2: The setting for the local interpolation scheme: For a point x (green
point), we depicted the circleBb(x) (gray) on which the function Λx is approximated.
The grid points (red points), for which the locally corrected weights are computed,
are the points inside the circle. The rectangle Rx is the blue square in the middle. It
is determined by the lower left corner point hjx

ll (enlarged blue point) and the upper
right corner point hjx

ur (small blue point). The set of all enlarged points inside Rx

are used for the interpolation.

For a function ψ : Rx → C we define the interpolation operator

(Pxψ)(y) :=
∑∑∑∑∑∑∑∑∑

jx
ll≤j<jx

ur

ψ(hj)`j−jx
ll
(y − hjx

ll), y ∈ R2, (5.34)

where `j(y) for 0 ≤ j < L denotes the Lagrange basis for the square [0, hL], where
we have set L := jx

ur − jx
ll .

Example 5.3. In the case that the number of points used for the trigonometric
interpolation is even, i.e. L = (L,L) ∈ 2Z2, then the Lagrange basis is given through

`j(y) := l̃j1(
π
Lh
y1) l̃j2(

π
Lh
y2), 0 ≤ j ≤ L− 1,

83



Chapter 5 Operator approximations

where
l̃k(t) :=

1

L
sin(

L

2
(t− π

L
k)) cot

t− π
L
k

2
, t 6= hk,

for k = 0, . . . , L − 1 denotes the one-dimensional Lagrange basis for the interval
[0, 2π], cf. [35, formula (11.13)].

We write the local operator in the form

(Alψ)(x) =

∫
Bb(x)

√
χa,b(|x− y|)

1

|x− y|
K2(x,y)Λx(y) dy,

where Λx is given through (5.33). Replacing Λx by its trigonometric interpolation
polynomial we define the operator

(Al,hψ)(x) :=

∫
Bb(x)

√
χa,b(|x− y|)

1

|x− y|
K2(x,y)(PxΛx)(y) dy, x ∈ R2,

which we can write in the form

(Al,hψ)(x) =
∑∑∑∑∑∑∑∑∑

jx
ll≤j<jx

ur

α̃j(x)J(hj)ψ(hj), x ∈ R2, (5.35)

where
α̃j(x) :=

√
χa,b(|x− hj|)αj(x), jx

ll ≤ j < jx
ur (5.36)

and
αj(x) :=

∫
Bb(x)

√
χa,b(|x− y|)

K2(x,y)

|x− y|
`j−jx

ll
(y − hjx

ll) dy (5.37)

denote the locally corrected weights, which have to be computed by numerical inte-
gration. We set α̃j(x) = 0, for j 6∈ {i ∈ Z2 : jx

ll ≤ i < jx
ur} to write (5.35) in the

form
(Al,hψ)(x) :=

∑
j∈Z2

α̃j(x)J(hj)ψ(hj), x ∈ R2,

Using the function p introduced above, cf. (5.9), we can write, after a change of
variables,

αj(x) =

b∫
0

2π∫
0

√
χa,b(r)K̃2,x(r, θ)`j−jx

ll
(x+ rp(θ)− hjx

ll) dθdr. (5.38)

We observe that the singularity is completely removed through the Jacobian of
this change of variables. The rather unmotivated use of the square root of the cut
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5.2 Approximations for weakly singular kernels

off function χa,b in the definition of Λx can now be justified. The assumption (W2)
ensures that the integrand is a smooth function in the polar domain, whereas the
cut off function allows us to interpret the integrand as a periodic function in the
polar domain with [−b, b]× [0, 2π] as its domain of periodicity. Thus the application
of the composite trapezoidal rule, both for the radial and angular direction, yields
an efficient high order integration scheme.
The operator A is approximated by

(Ahψ)(x) := (Ag,hψ)(x) + (Al,hψ)(x), x ∈ R2,

which again is an infinite sum of the form

(Ahψ)(x) =
∑
j∈Z2

Kh,j(x)J(hj)ψ(hj), x ∈ R2, (5.39)

where
Kh,j(x) := h2Kglobal(x, hj) + α̃j(x), j ∈ Z2. (5.40)

In analogy to the convergence results summarised in Lemma 5.1, we prove a
similar result for the weakly singular kernels that shows super-algebraic convergence.

Lemma 5.4. Let A be given through (5.1), where K : R2 × R2 → C denotes a
weakly singular kernel function that in addition satisfies the condition: there exists
a constant c > 0 such that

|∂αK(x,y)| ≤ c

(1 + |x− y|)2
for |x− y| ≥ 1, (5.41)

for all α ∈ N and the constant c may depend on α. Let ψ ∈ BC∞q (R2) with q > 0
and f ∈ BC∞(R2). Then, the operator Ah for h > 0 given through (5.2), with
Kh,j given through (5.40), converges pointwise to A and the error can be estimated
through

‖Aψ − Ahψ‖BC(Rd) ≤ ‖Agψ − Ag,hψ‖+ ‖Alψ − Al,hψ‖
where

‖Agψ − Ag,hψ‖ ≤ C1‖Kglobal(x, ·)‖BCm2 (R2)‖J‖BCm(R2)‖ψ‖BCmq (R2)h
m, (5.42)

and

‖Alψ − Al,hψ‖ ≤ C2

(
sup
x∈R2

∫
Bb(x)

∣∣K3(x,y)
∣∣ dy)‖Λx − PxΛx‖BC(R2) (5.43)

with
K3(x,y) :=

√
χa,b(|x− y|)

1

|x− y|
K2(x,y) (5.44)

and the constants C1, C2 depend only on m and q.
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Proof. The assumption (5.41) ensures that Kglobal ∈ BCm
2 (R2) for all m ≥ 0. Hence

we can apply the same proof as in Lemma 5.1 to get the estimate (5.42).
For the local operator we estimate

|Alψ(x)− Al,h(ψ)(x)| ≤
∫

Bb(x)

|K3(x,y)| |Λx(y)− (PxΛx)(y)| dy

≤ sup
x∈R

∫
Bb(x)

|K3(x,y)| dy ‖Λx − (PxΛx)‖BC(R2)

≤ C ‖Λx − (PxΛx)‖BC(R2),

for some constant C > 0 independent of x. Now it follows from standard error
estimates for smooth periodic functions that trigonometric interpolation will yield
a super-algebraicly convergent scheme with respect to the mesh-size h for a fixed
cut-off radius b and a smooth cut-off function χa,b. The assumption on the weakly
singular kernel, cf. Lemma 1.15 for the details, ensure that

sup
x∈R

∫
Bb(x)

|K3(x,y)| dy

is bounded on R2.

Remark 5.5. The computational costs for the computations of the local corrected
weights are the dominating costs in the overall scheme. We think it is therefore the
best, to limit the numbers of points for which the local corrected weights are computed
to a fixed number. A radius of 2h or 3h, which means that 9 or 21 weights are being
computed, seems to be a good choice.
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Nyström methods for rough
surface scattering

Using the parametrisation (1.8) of the scattering surface Γf we can write the bound-
ary integral equation (18) as an integral equation on R2. Setting

ψ(x) := ϕ(x, f(x)) and φz(x) := −2G((x, f(x)), z) (6.1)

for some source point z ∈ Df , we get an equation of the form

ψ(x) + (Wψ)(x) = φz(x), x ∈ R2, (6.2)

where W denotes the integral operator

(Wψ)(x) :=

∫
R2

k(x,y)J(y)ψ(y) dy, x ∈ R2 (6.3)

with kernel function

k(x,y) := 2

{
G(x, y)

∂ν(y)
− iη2G(x, y)

}
, x 6= y, (6.4)

for x = (x, f(x)), y = (y, f(y)) and surface area element J(y) =
√

1 + |∇f(y)|2.
Introducing the operators

(W ξψ)(x) :=

∫
R2

kξ(x,y)J(y)ψ(y) dy, x ∈ R2, (6.5)

for ξ ∈ {S,K} with kernel functions kS and kK given through (5.6) and (5.7), we
can write the operator (6.3) in the form

W = WK − iηW S.

We approximate both operators WK and W S as described in the previous chapter,
i.e. the integral operator W is approximated by

(Whψ)(x) :=
∑
j∈Z2

kh,j(x)J(hj)ψ(hj), x ∈ R2, (6.6)
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where

kh,j(x) :=
[
h2kKglobal(x, hj)− iηh2kSglobal(x, hj)

]
+
[
α̃Kj (x)− iηα̃Sj (x)

]
. (6.7)

Now one approximates the solution of equation (6.2) by the solution of the equation

ψh(x) + (Whψh)(x) = φz(x), x ∈ R2.

In complete analogy to the Nyström method for the case of finite intervals one proves
the following theorem.

Lemma 6.1. For some h > 0 let ψh be a solution of

ψh(x) +
∑
j∈Z2

kh,j(x)J(hj)ψh(hj) = φz(x), x ∈ R2. (6.8)

Then the sequence ψh = (ψhj )j∈Z2 with ψhj := ψh(hj), j ∈ Z2 solves the infinite set
of equations

ψhi +
∑
j∈Z2

kh,j(hi)J(hj)ψhj = φz(hi), i ∈ Z2. (6.9)

Conversely, if the sequence ψh = (ψhj )j∈Z2 is a solution of (6.9), we get a solution
of (6.8) through

ψh(x) := φz(x)−
∑
j∈Z2

kh,j(x)J(hj)ψhj , x ∈ R2 (6.10)

that agrees with the sequence (ψhj )j∈Z2 at the set of quadrature points. This interpo-
lation function is called Nyström interpolant.

Proof. The first part is trivial. For the second part one can argue as follows. For
a sequence (ψhj )j∈Z2 that solves (6.9) we see that the function ψh, given through
(6.10), takes the values

ψh(hi) = φz(hi)−
∑
j∈Z2

kh,j(hi)J(hj)ψhj = ψhi , i ∈ Z2.

Inserting this, together with (6.10), into (6.8) shows that ψh solves the equation
(6.8)

Remark 6.2. The system (6.9) can be written as a linear equation in `2(Z2), i.e.

ψh + Ŵhψ
h = φz,h, (6.11)

where φz,h = (φz,hj )j∈Z2 with φz,hj := φz(hj) for j ∈ Z2 and where we have introduced
the operator

Ŵh : `2(Z2)→ `2(Z2), ψ 7→
(∑

j∈Z2

kh,j(hi)J(hj)ψj

)
i∈Z2

.
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6.1 Method I: Discretisation-truncation

Though it is clear that we can never implement this infinite linear system on a
computer, the approach is interesting from a theoretical point of view. In the case
of scattering by one-dimensional rough surfaces, some results on the convergence of
the Nyström method were proven in [2], [40] and [41].

6.1 Method I: Discretisation-truncation

To get a finite dimensional linear system that we can actually implement on a
computer we restrict the quadrature points to the finite set{

hj : −N ≤ j ≤ N − 1
}

(6.12)

where we have set
N := (n, n) ∈ N2 (6.13)

for some n ∈ N. Thus instead of using the solution of (6.8) as an approximation to
the true solution, we approximate the solution of (6.2) by the solution of

ψh,%(x) + (Wh,%ψh,%)(x) = φz(x), x ∈ R2.

where we have set
% := h · n (6.14)

and

(Wh,%ψ)(x) :=

N−1∑∑∑∑∑∑∑∑∑
j=−N

kh,j(x)J(hj)ψ(hj), x ∈ R2. (6.15)

The meaning of the parameter % will become clear in the next section. In the same
manner as before one proves the following theorem.

Lemma 6.3. For some h > 0 and n ∈ N let ψh,% be a solution of

ψh,%(x) +

N−1∑∑∑∑∑∑∑∑∑
j=−N

kh,j(x)J(hj)ψh,%(hj) = φz(x), x ∈ R2, (6.16)

where N and % are given through (6.13) and (6.14). Then the two-dimensional array
ψ = (ψj)j=−N,...,N−1 ∈ C×(2N) with ψj := ψh,%(hj) for j = −N, . . . , N − 1 solves the
finite dimensional system

ψi +

N−1∑∑∑∑∑∑∑∑∑
j=−N

kh,j(hi)J(hj)ψj = φz(hi), i = −N, . . . , N − 1. (6.17)
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Conversely, if the array ψ = (ψj)j=−N,...,N−1 is a solution of (6.17), we get a solution
of (6.16) through

ψh,%(x) := φz(x)−
N−1∑∑∑∑∑∑∑∑∑

j=−N

kh,j(x)J(hj)ψj , x ∈ R2. (6.18)

Remark 6.4. We note that the linear system (6.17) is simply a truncated version
of the infinite linear system (6.9).

6.2 Method II: Truncation-discretisation

A different way to arrive at this system is the following. For a given step size h > 0
and n ∈ N we consider the truncated version of (6.2), namely

ψ%(x) + (W%ψ%)(x) = φz(x), x ∈ [−%, %]2, (6.19)

where % is given through (6.14) and

(W%ψ)(x) :=

∫
[−%,%]2

k(x,y)J(y)ψ(y) dy, x ∈ [−%, %]2, (6.20)

as a starting point for our calculations. Now we apply a Nyström method, where we
are using the same operator approximations as before. Using the integration points
given through (6.12) yields the equation

ψ%,h(x) + (W%,hψ%,h)(x) = φz(x), x ∈ [−%, %]2, (6.21)

where

(W%,hψ)(x) :=

N−1∑∑∑∑∑∑∑∑∑
j=−N

kh,j(x)J(hj)ψ(hj), x ∈ [−%, %]2 (6.22)

and N is given through (6.13). To get an approximate solution of (6.19), we see
that it suffices to solve the linear system (6.16).
Thus we see that, due to the unboundedness of the integration domain, the numer-

ical schemes to solve the integral equation (6.2) require an additional approximation
step. This truncation step is called finite section method and we give a slightly more
formal treatment in the next section. As we demonstrated above it can be realised
in two slightly different ways:

Integral equation on L2(R2)
truncation−−−−−→

scheme
Integral equation on L2([−%, %]2)

↓ discretisation ↓ ↓ discretisation ↓

Linear equation on `2(Z2,C)
truncation−−−−−→

scheme
Linear system on C(2N)2 .
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6.3 The Finite Section Method

These two view points explain e.g. why the trapezoidal rule is a good choice for a
quadrature rule. If one first truncates the integral equation one might object that a
higher order quadrature rule, like e.g. the composite Simpson rule, would be more
appropriate for the discretisation. But we are looking for a quadrature rule that
converges to high order to the untruncated version of the operator. Hence, one
should use a quadrature rule that gives equal weights to every quadrature point.

6.3 The Finite Section Method

The truncation scheme that we presented is known under the name finite section
method. Let us consider the following prototype equation

Aϕ = f (6.23)

where A ∈ GL(Y ) ⊂ BL(Y ) is an invertible operator on some Banach space Y . In
the context of the scattering problem A is given through I + W , the Banach space
Y stands for any of the spaces L2(R2), X(R2) or X∞(R2) and f stands for the right
hand side φz.
Then, the finite section method consists in replacing (6.23) by

P%AP%ϕ% = P%f, (6.24)

where % > 0 and the operator P% : Y → Y , is given by

(P%ψ)(x) :=

{
ψ(x), |x| < %

0, otherwise.
(6.25)

Here, | · | denotes any norm on R2. In the case that | · | = ‖ · ‖∞, we see that (6.24)
coincides with (6.19) in the case of the scattering problem. Provided equation (6.23)
is uniquely solvable for every right-hand side one hopes that also equation (6.24) is
uniquely solvable considered as an equation in L2(B%) ⊂ L2(R2), where

B% :=
{
x ∈ R2 : |x| < 1

}
, (6.26)

and that its solution ϕ% approximates the exact solution ϕ of (6.23) if only one
chooses % large enough. If this is the case, then this method is called applicable.
For recent results on the applicability of the finite section method for the fairly

large class of all so-called band-dominated operators in terms of their limit operators
see e.g. [38], [47] and the references therein. The operators originating from 2D rough
surface scattering are band-dominated, and we refer to [40], [41] and [13] and further
literature cited therein for the study and application of the finite section method to
these equations. As we pointed it out before, the applicability of the finite section
method to the equation (6.2) is to the author’s understanding still an open problem.
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We underline that the framework for the FSM not only covers the set of band-
dominated operators, it even applies to the much larger class, called L(Y,P) in [38]
and [47], that consists of all bounded linear operators A on Y for which

‖(I − P%)APτ‖ → 0 and ‖PτA(I − P%)‖ → 0 as %→∞ (6.27)

for every fixed τ > 0.
The multi-section method (MSM) that we present in some more detail in Chap-

ter 7, requires only the first condition in (6.27) to be true.

6.4 The Banded Matrix Iterative Algorithm for
rough surface scattering

We have seen in the previous sections that the numerical solution of (6.2) with the
help of a Nyström method in combination with the finite section method, yields a
finite dimensional linear system that can be written as

ψ +Lψ +Gψ = φz, (6.28)

where L,G ∈ C[×(2N)]×[×(2N)] denote two-dimensional matrices with

(L)i,j := α̃Kj (hi)J(hj)− iηα̃Sj (hi)J(hj), (6.29)

(G)i,j := h2kKglobal(hi, hj)J(hj)− iηh2kSglobal(hi, hj)J(hj), (6.30)

for −N ≤ i, j ≤ N − 1 and ψ,φz ∈ C×(2N) denote two-dimensional arrays with

ψj := ψ(hj),

φzj := φz(hj),

for −N ≤ j ≤ N − 1.
The matrix L is a sparse matrix with O(](2N)) nonzero entries with band struc-

ture containing the locally corrected weights and the matrix G is a dense matrix
containing the smooth global part of the integral operators.
To solve the large and dense linear system (6.28) it was suggested to employ

an iterative algorithm that, in the engineering literature, has been termed banded
matrix iterative algorithm (BMIA). The main idea is to use a decomposition of the
system matrix into a sparse banded matrix with finite band-width and a large dense
matrix. We claim that the natural decomposition given in (6.28) can be applied,
i.e. in this case the algorithm consists in computing the expressions

ψ(0) := 0,

ψ(n+1) := (I +L)−1 · (φz −G ·ψ(n)), n = 0, 1, 2, . . . .
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6.4 The Banded Matrix Iterative Algorithm for rough surface scattering

Thus in each step one has to solve a linear system with a sparse banded matrix
I + L and compute one matrix-vector multiplication with a dense unstructured
matrix G. The matrix I + L is actually a block band matrix with band blocks.
Therefore, to solve this linear system in each step it is again reasonable to use an
iterative scheme, e.g. the GMRES. The most time consuming step however is the
computation of the matrix-vector product G · ψ(n). It is possible to design fast
matrix-vector multiplications for this product by approximating the matrix G in a
suitable manner. These approximations are examined in Chapter 9.
We need to point out that we do not know whether this decomposition is feasible,

i.e. we do not know whether I + L is always invertible. First numerical tests show
that the system is indeed invertible and well conditioned.
For more results on the convergence of a slight variation of this method we refer

the reader to [6] for the case of 2D rough surface scattering problems.
Just like for any iterative algorithm there is the question when to stop the itera-

tions. As a replacement for the error ‖ψ −ψ(n)‖ one uses the residual

res := ‖φz − (I +L+G) ·ψ(n+1)‖

and stops the iteration, once the residual is smaller than a given tolerance Tol. It
follows from

φz − (I +L+G) ·ψ(n+1) = φz − (I +L+G) · [(I +L)−1 · (φz −G ·ψ(n))]

= φz − (I +L) · (I +L)−1 · (φz −G ·ψ(n))

−G · (I +L)−1 · (φz −G ·ψ(n))

= G ·ψ(n) −G ·ψ(n+1)

that

res = ‖G ·ψ(n+1) −G ·ψ(n)‖.

The algorithm with stopping rule is given in pseudo code in Algorithm 6.1.
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Algorithm 6.1 The banded matrix iterative algorithm in pseudo code

Input data:
φz ∈ C×(2N) % right hand side
L ∈ C[×(2N)]×[×(2N)] % sparse banded block band matrix
G ∈ C[×(2N)]×[×(2N)] % dense matrix
Tol % tolerance

Initialisation:
ψ = (I +L)−1 · φz
bnew = G ·ψ
bold = bnew

res =∞
WHILE res > Tol DO
ψ = (I +L)−1 · (φz − bold)
bnew = G ·ψ
res = ‖bnew − bold‖
bold = bnew

END
Output:
ψ % approx. to the solution of equation (6.28)
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The Multi-Section Method

A generalisation to the finite section method has been proposed in [31], which we
termed multi-section method. For this scheme we can prove the applicability to the
integral equation (6.2).
For a general framework we consider the following setting: Let Y be a Banach

space and let {P%}%>0 be a family of linear operators on Y with the following three
properties,

(P1) P%Pτ = Pτ = PτP% for all % ≥ τ > 0,

(P2) ‖P%‖ = 1 for all % > 0,

(P3) P% → I pointwise, that means P%ϕ→ ϕ for all ϕ ∈ Y , as %→∞.

From (P1), with % = τ , we conclude that every P% is a projection operator. We
will also have to deal with the complementary projectors

Q% := I − P%, % > 0. (7.1)

Now suppose A is a bounded linear operator on Y such that

(A1) A is invertible, and therefore boundedly invertible, on Y ,

(A2) ‖Q%APτ‖ → 0 as %→∞ for every fixed τ > 0.

To find an approximation to the solution of the equation

Aϕ = f (7.2)

we proposed the following method.

Definition 7.1 (Multi-section method (MSM)). For given precision δ > 0 and
sufficiently large cut-off parameters % and τ , calculate a solution ψ ∈ Y of the
system {

Pτψ = ψ,

‖P%APτψ − P%f‖Y ≤ δ.
(7.3)
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If applied to equation (6.2) it means that, in contrast to exactly solving the
truncated equation (6.19) for large %, we look for a function ψ ∈ Y that has support
in Bτ and approximately solves the truncated equation

P%(I +W )Pτψ ≈ P%φ
z (7.4)

for large %, τ and a given discrepancy allowance δ in the ’≈’ sign.
So the two main differences to the finite section method are:
(a) We allow two different cut-off parameters % and τ instead of just one.

(b) We work with approximate instead of exact solutions.

Remark 7.2. Point (a) is the reason this method was termed multi-section method.
From the matrix perspective it means that we cut rectangular rather than quadratic
finite matrices out of the original infinite matrix that represents the discretised form
of the operator I +W in the space `2(Z2,C), cf. (6.11).

7.1 Existence and convergence

The main results that we showed in [31] concern the existence of multi-section so-
lutions and the convergence of the multi-section method.
To cite the results from [31], we introduce the following useful definition.

Definition 7.3. We say that τ0 > 0 is an admissible τ -bound for a given precision
δ > 0 if (7.3) is solvable in Y for all % > 0 and τ > τ0.

Let A be a linear operator on a Banach space Y that satisfies the conditions (A1)
and (A2), then the following holds:

Theorem 7.4 (Existence of solutions to (7.3) (MSM)). For every δ > 0, there is
an admissible τ -bound τ0 = τ0(δ) > 0.

Proof. See [31, Theorem 3.8].

Theorem 7.5 (Convergence of the Multi-Section Method). For every ε > 0, there
are parameters δ, %, τ such that every solution ψ ∈ Y of the system (7.3) is an
approximation of the exact solution ϕ of (7.2), i.e.

‖ϕ− ψ‖Y < ε. (7.5)

Precisely, there are functions δ0, τ0 : R+ → R+ and %0 : R3
+ → R+ such that, if

δ < δ0(ε), τ > τ0(δ) and % > %0(ε, δ, τ), then every solution ψ ∈ Y of (7.3) is
subject to (7.5).

Proof. See [31, Theorem 3.10].
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7.2 Applicability to the rough surface scattering
problem

We illustrate the applicability of the MSM to the following general example of an
integral equation of the second kind that includes the operators arising from the
rough surface scattering problem.

Lemma 7.6. Let Y = Lp(Rn) with 1 ≤ p < ∞, n ∈ N and let A ∈ GL(Y ), the
set of all boundedly invertible operators on Y , such that A = I + W , where W is a
well-defined and bounded integral operator

(Wϕ)(x) =

∫
Rn
k(x, y)ϕ(y) dy, x ∈ Rn (7.6)

on Y with a kernel function that satisfy a decay condition

|k(x, y)| ≤ C

|x− y|γ
for |x− y| > 1 (7.7)

with constants γ > 0 and some C > 0. Furthermore let {P%}%>0 denote the family
of operators given through (6.25). Then the MSM is convergent in the sense of
Theorem 7.5 if γp > n.

Proof. To prove this result, we note that Y is a Banach space and the family {P%}%>0

is clearly subject to the assumptions (P1)–(P3). Thus we are left to show that (A2)
holds.

We prove that, for every τ > 0, we have

‖Q%APτ‖Lp(Rn) ≤
c

% γ−n/p
, % > 2τ (7.8)

with some constant c > 0 depending on τ . In particular we see that, if γp > n,
assumption (A2) holds.

Let B% = {x ∈ Rn : |x| < %} be the ball and ∂B% = {x ∈ Rn : |x| = %} the sphere
of radius % > 0 in Rn, and denote their n- and (n− 1)-dimensional measure by |B%|
and |∂B%|, respectively. Now take some % > 2τ > 0 and first suppose 1 < p < ∞.
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Using Hölder’s inequality with 1/p+ 1/q = 1 we get the following:

‖Q%APτϕ‖pLp(Rn) = ‖Q%IPτϕ+Q%WPτϕ‖pLp(Rn) = ‖Q%WPτϕ‖pLp(Rn)

=

∫
|x|≥%

∣∣∣(WPτϕ)(x)
∣∣∣p dx

=

∫
|x|≥%

∣∣∣ ∫
|y|<τ

k(x, y)ϕ(y) dy
∣∣∣p dx

≤
∫
|x|≥%

((∫
|y|<τ
|k(x, y)|q dy

)1/q

· ‖Pτϕ‖Lp(Rn)

)p

dx

≤
∫
|x|≥%

(∫
|y|<τ
|k(x, y)|q dy

)p/q
dx · ‖ϕ‖pLp(Rn)

Consequently, using the bound (7.7) and the inequality

|x| ≥ % > 2τ > 2|y|, which implies |x− y| ≥ |x| − |y| > |x|/2,

we get

‖Q%APτ‖p ≤
∫
|x|≥%

(∫
|y|<τ

Cq

|x− y|γq
dy

)p/q
dx

≤
∫
|x|≥%

(∫
|y|<τ

Cq

(|x|/2)γq
dy

)p/q
dx

=

(∫
|x|≥%

1

|x|γp
dx

)(∫
|y|<τ

1 dy

)p/q (
2γC

)p
=

(∫ ∞
r=%

1

rγp
|∂Br| dr

)
|Bτ |p/q

(
2γC

)p
=

(∫ ∞
r=%

rn−1

rγp
dr

)
|∂B1| |Bτ |p/q

(
2γC

)p
= %n−γp

1

γp− n
|∂B1| |Bτ |p/q

(
2γC

)p
. (7.9)

Finally, taking p-th roots proves (7.8). The proof for p = 1 is similar. But instead
of using Hölder’s inequality one immediately arrives at (7.9), with p/q replaced by
0.

Remark 7.7. Note that this example, with p = n = γ = 2, covers the integral
equation (6.2) arising from the boundary integral formulation of 3D rough surface
scattering problems as discussed before.

Thus we conclude the following theorem (cf. [31, Theorem 3.12]).
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Theorem 7.8. The multi section method, as defined in Definition 7.1, applied to
the integral equation (6.2) is convergent in the sense of Theorem 7.5.

7.3 Numerical realisation

The goal of this section is to provide a numerical algorithm for the solution of the
integral equation (6.2) using the MSM.
Our suggestion for a numerical approach to the solution of the system (7.3) for

the concrete operator equation (6.2) is to choose some large parameters % > τ and
to choose the discrepancy δ as small as it possibly can be, by looking for a function
ψ with suppψ ⊂ Bτ that minimises the MSM-residual ‖P%(I+W )Pτψ−P%φz‖. The
truncated approximate equation (7.4) that we have to solve can be written as

(Pτψ)(x) +

∫
[−τ,τ ]2

k(x,y)J(y)(Pτψ)(y) dy ≈ φz(x), x ∈ [−%, %]2. (7.10)

As before in the case of Nyström methods, we transform this approximative equation
by numerical quadrature and projection into an approximate matrix equation

Aψ ≈ φz. (7.11)

To find a solution to this equation we suggest to use an iterative solver and minimise
the functional

µ(ψ) := ‖Aψ − φz‖2. (7.12)

To be precise, we assume that the parameters % and τ satisfy the relations

% = h · n and τ = h ·m

for some step-size h > 0 and natural numbers n,m ∈ N. We write the integral
operator in equation (7.10) in the equivalent form as an integral over the square
[−%, %]2. Introducing N := (n, n) and M := (m,m), we replace (7.10) by

(Pτψ)(x) +

N−1∑∑∑∑∑∑∑∑∑
j=−N

kh,j(x)J(hj)(Pτψ)(hj) ≈ φz(x), x ∈ [−%, %]2, (7.13)

where the functions kh,j are given through (6.7). Restricting x to the points

{hi ∈ R2 : −N ≤ i ≤ N − 1}

yields

(Pτψ)(hi) +

N−1∑∑∑∑∑∑∑∑∑
j=−N

kh,j(hi)J(hj)(Pτψ)(hj) ≈ φz(hi), −N ≤ i ≤ N − 1. (7.14)
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We can write this in the form (7.11), where I,A,W ,P ∈ C[×(2N)]×[×(2N)] are two-
dimensional matrices with

(I)i,j := δi,j ,

(W )i,j := kh,j(hi),

(P τ )i,j :=

{
δi,j , −M ≤ i, j ≤M − 1,

0, otherwise,

for −N ≤ i, j ≤ N − 1 and

A := (I +W ) · P τ , (7.15)

and ψ,φz ∈ C×(2N) are two-dimensional arrays with

ψj := ψ(hj),

φzj := φz(hj),

for −N ≤ j ≤ N − 1.

7.3.1 Linear least squares problems

The problem to minimise the functional (7.12) is known as linear least squares prob-
lem. The main result for linear least squares problems is summarised in the following
theorem.

Theorem 7.9. Let A ∈ Cm×n and b ∈ Cm with m,n ∈ N and m > n. Then x ∈ Cn

is a solution of the linear least squares problem

min
x∈Rn
‖Ax− b‖2 (7.16)

if and only if x is a solution of the normal equation

A∗Ax = A∗b. (7.17)

Proof. See e.g. [7, Theorem 1.1.2].

The matrix A∗A is hermitian and positive semi-definite. Furthermore A∗A is
positive definite if and only if N(A) = {0}. In this case the normal equation
possesses a unique solution x̂ given through

x̂ = (A∗A)−1A∗b.

In the case that N(A) 6= {0}, which means that A does not have full rank, the
normal equation and hence the linear least square problem possesses more than one
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Algorithm 7.1 The conjugate gradient method for linear least squares problems

Input data:
A ∈ Cm×n % the system matrix
x(0) ∈ Cn % initial guess
b ∈ Cm % the right hand side

Initialisation:
r(0) = b− Ax(0)

s(0) = A∗r(0)

p(0) = s(0)

FOR k = 0, 1, . . . DO
q(k) = Ap(k)

αk = ‖s(k)‖2
2/‖q(k)‖2

2

x(k+1) = x(k) + αkp
(k)

r(k+1) = r(k) − αkq(k)

s(k+1) = A∗r(k+1)

βk = ‖s(k+1)‖2
2/‖s(k)‖2

2

p(k+1) = s(k+1) + βkp
(k)

END
Output:
x(k) % approximation to the linear least squares problem
s(k) % the residual of the normal equation

solution. But under all of these solutions, there is only one with minimal norm. This
solution is given through A†b, where A† denotes the pseudoinverse or Moore-Penrose
inverse of A.
The conjugate gradient method for least squares problem (CGLS method), as it is

described e.g. in [7, Chapter 7.4], is a well suited algorithm to compute this minimal
norm least squares solution. The general algorithm is shown in Algorithm 7.1.
We make the following definition.

Definition 7.10. For a given matrix B ∈ Cn×n and vector c ∈ Cn the Krylov
subspace Kk(B, c) is given through

Kk(B, c) := span{c, Bc, . . . , Bk−1c}. (7.18)

Now we can state the next theorem that contains the main property of the CGLS
method.

Theorem 7.11. The k-th iterate x(k) of the CGLS method is an element of the
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affine subspace
x(k) ∈ x(0) +Kk(A∗A, s(0)). (7.19)

Furthermore, x(k) minimises the functional (7.12) over all elements in the affine
subspace.

Proof. See e.g. [7, Chapter 7.4].

On can show that the CGLS method with initial guess x(0) converges to the unique
solution x̃ of the linear least squares problem that minimises ‖x̃−x(0)‖. Thus, for the
choice x(0) = 0 the CGLS method converges to the minimal norm solution x̂ = A†b.
The convergence does not require the matrix A∗A to be definit.
We note that the algorithm can be carried out without storing the matricesA and

A∗, if one supplies subroutines that carry out the matrix-vector product A∗ ·ψ and
A · ψ. Using the two-dimensional matrices G,L ∈ C[×(2N)]×[×(2N)] given through
(6.29) and (6.30), we can write the matrices A and A∗ as

A = (I +L+G) · P τ and A∗ = P τ · (I +L∗ +G∗).

The matrix L and L∗ are sparse banded block matrices with band blocks of equal
band-width. Thus the matrix-vector multiplication can be done in O(](2N)) op-
erations. As in the case of the BMIA, we need to speed up the matrix-vector
multiplication of the dense matrices G and G∗.

An optimised version of the CGLS method applied to the functional (7.12) is given
in pseudo code in Algorithm 7.2

For some preliminary numerical results for the case of the rough surface scattering
problem we refer the reader to [31].
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Algorithm 7.2 The CGLS method applied to the rough surface scattering problem

Input data:
φz ∈ C×(2N) % right hand side
ψ0 ∈ C×(2N) % initial guess
A ∈ C[×(2N)]×[×(2N)] % large dense rectangular matrix
Tol % tolerance

Initialisation:
r = φz −A ·ψ0

s = A∗ · r
p = s
γold = ‖s‖2

2

γnew = γold

WHILE γnew > Tol DO
s = A · p
α = γold/‖s‖2

2

ψ = ψ + αp
r = r − αs
s = A∗ · r
γnew = ‖s‖2

2

β = γnew/γold

p = s+ βp
γold = γnew

END
Output:
ψ.
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Chapter 8

Fast matrix-vector multiplications
for integral operators with
difference kernels

In this chapter we present the use of the fast Fourier transform (FFT) to speed
up the matrix-vector multiplication for the fully discrete version of certain integral
operators. More precisely, we are interested in the multi-dimensional analogon of
integral operators of the form

(Bψ)(x) :=

∫ b

a

k(x− y)ψ(y) dy, x ∈ [a, b],

for real numbers a < b in the cases, where

(i) k and ψ are piecewise, continuous periodic functions with period b− a,

(ii) k and ψ are continuous functions on [−(b− a), b− a] respectively [a, b].

A simple computation shows that

(Bψ)(x+ a) =

∫ b

a

k(x− (y − a))ψ(y) dy

=

∫ b−a

0

k(x− z)ψ(z + a) dz, x ∈ (0, b− a).

Thus we see that it suffices to consider the above two cases only for operators of the
form

(Aψ)(x) :=

∫ p

0

k(x− y)ψ(y) dy, x ∈ [0, p] (8.1)

for some p := b− a > 0.
In analogy to the discretisation (5.2) we introduce a semi-discrete approximation

in the form

(Ahψ)(x) :=
N−1∑
j=0

kh,j(x)ψ(hj), x ∈ [0, p], (8.2)
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Chapter 8 Fast matrix-vector mult. for difference kernels

where
kh,j(x) := hk(x− hj), j ∈ Z, x ∈ [0, p]

and h := p/N denotes the step-size for N ∈ N.
The fully discrete version

(Ahψ)(ih) =
N−1∑
j=0

kh,j(ih)ψ(hj), i = 0, . . . , N − 1 (8.3)

has a matrix representation A with

(A)i,j = hk
(
h(i− j)

)
, i, j = 0, . . . , N − 1.

Hence the i-th entry of the matrix-vector product of the matrix A with a vector
ψ = (ψi)i=0,...,N−1 ∈ CN×1 with

ψj := ψ(hj), j ∈ Z,

is given through

(Aψ)i = h
N−1∑
j=0

k(h(i− j))ψj, k = 0, . . . , N − 1.

If done in a naive way, this matrix-vector multiplication needs O(N2) evaluations of
multiplications and summations. Fortunately, the matrix has a very special structure
that can be exploited. Due to the equidistantly spaced grid we see that in the case
of a periodic kernel function, the matrix A is of the form

c0 c1 . . . cN−2 cN−1

cN−1 c0 c1 . . . cN−2

... . . . . . . . . . ...
c2 . . . cN−1 c0 c1

c1 c2 . . . cN−1 c0

 ,

where cj := h k(hj) for j ∈ Z. Such a matrix is called circulant matrix. A circulant
matrix is obviously fully determined by its first row or column.
In the case of a non-periodic kernel function, the matrix A is of the form

t0 t1 . . . tN−2 tN−1

t−1 t0 t1 . . . tN−2

... . . . . . . . . . ...
t−N+2 . . . t−1 t0 t1
t−N+1 t−N+2 . . . t−1 t0

 ,
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where tj := h k(hj) for j ∈ Z. Such a matrix is called Toeplitz matrix and it is fully
determined by its first row and column.
It is possible to design fast matrix-vector multiplications for these kind of matrices

that reduce the normal amount of work from O(N2) down to O(N logN). These
fast algorithms are based on the following two properties of circulant and Toeplitz
matrices:

• any circulant matrix is diagonalised by the Fourier matrix, i.e. the eigenvectors
of a circulant matrix are the columns of the Fourier matrix,

• any Toeplitz matrix of size N × N can be embedded into a circulant matrix
of size 2N × 2N , cf. Example 8.3.

We show in the next section that the discretisation of integral operators with
difference kernels in Rd lead to special matrices that are generalisation of circulant
and Toeplitz matrices. They are d-level block matrices, where each block and level
is circular or toeplitz. Though we only need two- and three-level block matrices we
give a general approach that works for arbitrary dimensions.

8.1 The multi-dimensional case for periodic kernel

Consider, for some p ∈ Rd with p > 0, the multi-dimensional analogon of (8.1), i.e.

(Aψ)(x) :=

∫
[0,p]

k(x− y)ψ(y) dy, x ∈ [0, p]

with multi-periodic kernel and density function with period vector p. For N ∈ Nd

we define the step size
h := p÷ 2N ∈ Rd

>0.

Note that the step-size is a vector so that the grid points are given through h � j
for j ∈ Zd.

Remark 8.1. We chose an even number of discretisation points, as this will enable
us later on to use the fast Fourier transform for the matrix-vector multiplication.
This will work best if N is some power of two.

The semi-discrete and fully discrete approximation are given through

(Ahψ)(x) :=

2N−1∑∑∑∑∑∑∑∑∑
j=0

kh,j(x)ψ(h� j), x ∈ [0, p]

with
kh,j(x) := ](h)k(x− h� j), j ∈ Zd, x ∈ [0, p]
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and

(Ahψ)(h� i) :=

2N−1∑∑∑∑∑∑∑∑∑
j=0

kh,j(h� i)ψ(h� j), i = 0, . . . , 2N − 1,

respectively. The matrix representation of the fully discrete version is a d-level block
circulant matrix A ∈ C[×(2N)]×[×(2N)] with

(A)i,j = ](h)k
(
h� (i− j)

)
, 0 ≤ i, j ≤ 2N − 1.

A different way to get the same discretisation is the following. Instead of replacing
the integral by a quadrature formula (we are using the composite trapezoidal rule),
we replace the kernel and density by their d-dimensional trigonometric interpolation
polynomial of degree at most |N |. Thus the semi-discrete approximation for the
Fourier method is given through

(ADFT
h ψ)(x) :=

∫
[0,p]

kN(x− y)ψN(y) dy, x ∈ [0, p], (8.4)

where kN and ψN are the d-dimensional trigonometric interpolation polynomials
given through (4.6) with coefficients given through (4.7). Inserting the corresponding
representations of kN and ψN , we can use the convolution theorem for periodic
functions (Theorem 4.3) to rewrite the integral to yield

(ADFT
h ψ)(x) =

∫
[0,p]

(
N−1∑∑∑∑∑∑∑∑∑
m=−N

k̃(m)e2πi〈m,(x−y)÷p〉

)(
N−1∑∑∑∑∑∑∑∑∑
n=−N

ψ̃(n)eπi〈n,y÷p〉

)
dy

= ](p)

N−1∑∑∑∑∑∑∑∑∑
m=−N

k̃(m)ψ̃(m)e2πi〈m,x÷p〉, x ∈ [0, p].

The fully discrete version is given through

(ADFT
h ψ)(h� l) = ](p)

N−1∑∑∑∑∑∑∑∑∑
m=−N

k̃(m)ψ̃(m)e2πi〈m,l÷2N〉, l = 0, . . . , 2N − 1. (8.5)

We note that this is a discrete version of the convolution theorem for periodic func-
tions (Theorem 4.3) that can be used for fast summation algorithm. To compute
this expression we see that it suffices to calculate three d-dimensional discrete Fourier
transform (DFT) of length N∗ := ](2N). If this is done with a d-dimensional FFT,
we only need O(3 · N∗ log(N∗)) operations as compared to O(N∗2) operations for
the standard algorithm.
The following Lemma shows that both algorithm give exactly the same result.

Lemma 8.2. (ADFT
h ψ)(h� l) = (Ahψ)(h� l), l = 0, . . . , 2N − 1.

108



8.2 The multi-dimensional case for non-periodic kernel

Proof. We calculate that

(ADFT
h ψ)(h� l) = ](p)

N−1∑∑∑∑∑∑∑∑∑
m=−N

k̃(m)ψ̃(m)e2πi〈m,l÷2N〉

= ](p)

N−1∑∑∑∑∑∑∑∑∑
m=−N

[
1

](2N)

2N−1∑∑∑∑∑∑∑∑∑
j′=0

k(h� j′)e−2πi〈m,j′÷2N〉

]
[

1

](2N)

2N−1∑∑∑∑∑∑∑∑∑
j=0

ψ(h� j)e−2πi〈m,j÷2N〉

]
e2πi〈m,l÷2N〉

=
](p)

[](2N)]2

2N−1∑∑∑∑∑∑∑∑∑
j′=0

2N−1∑∑∑∑∑∑∑∑∑
j=0

k(h� j′)ψ(h� j)
N−1∑∑∑∑∑∑∑∑∑
m=−N

e−2πi〈m,(j+j′−l)÷2N〉

=
](h)

](2N)

2N−1∑∑∑∑∑∑∑∑∑
j′=0

2N−1∑∑∑∑∑∑∑∑∑
j=0

k(h� j′)ψ(h� j)](2N)δj′,l−j

= ](h)

2N−1∑∑∑∑∑∑∑∑∑
j=0

k(h� (l − j))ψ(h� j)

= (Ahψ)(h� l), l = 0, . . . , 2N − 1.

8.2 The multi-dimensional case for non-periodic
kernel

Now we consider the case of a non-periodic kernel function and density. For an
integral operator of the form

(Aψ)(x) :=

∫
[0,p]

k(x− y)ψ(y) dy, x ∈ [0, p] (8.6)

the kernel function must be known on the cube [−p, p], whereas the density is only
defined in [0, p]. A straightforward discretisation of this problem would yield a d-
level Toeplitz matrix. To get a fast version for the matrix-vector multiplication we
reduce this problem to the case of a periodic kernel and density. Denote by kper the
multi-periodic extension of k with period vector 2p. For ψ ∈ C([0, p]) we define

ψ0(x) :=

{
ψ(x), x ∈ [0, p),

0, x ∈ [0, 2p] \ [0, p)
(8.7)
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and denote the multi-periodic extension of ψ0 with period vector 2p by ψ0,per. Then
we have the representation∫

[0,p]

k(x− y)ψ(y) dy =

∫
[0,2p]

kper(x− y)ψ0,per(y) dy, x ∈ [0, p].

i.e. on the first half of the interval [0, 2p] the righthand side coincides with the
original operator. Now we can use the same discretisation as in the case of piecewise
continuous periodic functions that we described in the previous section.

−p 2pp0

k0k−1k−2k−3k2k1k0k−1k−2k−3

Figure 8.1:

Example 8.3. We illustrate this for the case N = 3. The fully discrete version of
the integral operator is given through

(Ahψ)(hi) =
2∑
j=0

hk(h(i− j))ψ(hj), i = 0, . . . , 2.

Using the convention kl := hk(hl), l ∈ Z and ψj := ψ(hl) we can write the previous
formula as the matrix-vector product k0 k1 k2

k−1 k0 k1

k−2 k−1 k0

 ψ0

ψ1

ψ2

 .

The fully discrete version of the periodised integral operator is given through

5∑
j=0

hkper(h(i− j))ψ0,per(hj), i = 0, . . . , 5.

As before this can be written as matrix-vector product

k0 k1 k2 k−3 k−2 k−1

k−1 k0 k1 k2 k−3 k−2

k−2 k−1 k0 k1 k2 k−3

k−3 k−2 k−1 k0 k1 k2

k2 k−3 k−2 k−1 k0 k1

k1 k2 k−3 k−2 k−1 k0




ψ0

ψ1

ψ2

0
0
0

 ,
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where we used the periodicity condition of the kernel function and the zero extension
of the density. Note that the entry k−3 can be chosen arbitrarily. For reasons of
simplicity we use the value at the left endpoint of the interval [−p, p], cf. Figure 8.1.
This example explains the embedding of an N ×N Toeplitz matrix into a 2N × 2N
circulant matrix, as was mentioned at the beginning of this chapter.

If we choose a discretisation for N ∈ Nd with a total of N∗ := ](N) unknowns, we
can reduce the necessary floating point operations (addition, multiplication, etc.)
from N∗2 to 3 · 2dN∗ log2(2dN∗).
We illustrate the simplicity of this algorithm in the following two-dimensional

example.

Example 8.4. Assume we are given the kernel function k : (x1, x2) 7→ sin
(
(x1 +

1)(x1−x2)
)
and density ψ : (x1, x2) 7→ x3

1−x2 and want to calculate the fully discrete
version of (8.6) in the case p = (2, 3) for a grid with N = (18, 20). Then we can
realise this in the following few lines of MATLAB code, cf. Listing 8.1.

Listing 8.1 MATLAB code that computes Example 8.4.

1 k = inline(’sin((x1+1).*(x1-x2))’,’x1’,’x2’);
2 dens = inline(’x.^3-y’,’x’,’y’);
3 p1 = 2;
4 p2 = 3;
5 N1 = 18;
6 N2 = 12;
7 h1 = p1/N1;
8 h2 = p2/N2;
9 x1 = h1*[(0:1:N1-1) (-N1:-1)];

10 x2 = h2*[(0:1:N2-1) (-N2:-1)];
11 [X1,X2] = meshgrid(x1,x2);
12 K = k(X1,X2);
13 y1 = h1*(0:1:N1-1);
14 y2 = h2*(0:1:N2-1);
15 [Y1,Y2] = meshgrid(y1,y2);
16 psi = dens(Y1,Y2);
17 dummy = h1*h2*ifftn(fftn(K).*fftn(psi,[2*N2,2*N1]));
18 res = dummy(1:N2,1:N1);

The periodisation of the kernel function is done in the lines 9–11, by defining an
appropriate grid. Line 17 is a direct implementation of (8.5). The zero padding
of the density, cf. (8.7), is done implicitly by MATLAB’s fftn routine through the
command fftn(psi,[2*N2,2*N1])). The solution that was calculated on the grid
inside [0, 2p] is restricted to the grid points of interest inside [0, p] in line 18.
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Chapter 8 Fast matrix-vector mult. for difference kernels

(a) The 2-level block Toeplitz matrix that rep-
resents the integral operator of Example 8.4

(b) The matrix-vector product of the discrete
version of the operator A with the density ψ is
in the lower left quadrant

(c) The kernel function of Example 8.4 on
[−p, p]

(d) The periodised kernel function of Exam-
ple 8.4 on [0, 2p]

Figure 8.2: Illustration of Example 8.4
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Chapter 9

A new view on canonical grid
methods

This chapter introduces the canonical grid method that allows to accelerate the
matrix-vector multiplication of the fully discrete version for a certain class of inte-
gral operators. The integral operators that occur in the case of rough scattering
problems are prominent example of this class. The idea of this method is to replace
the integral kernel by some appropriate approximation that allows one to handle
the corresponding operator approximation with FFT methods. There are a lot of
different ways to derive such an approximation. The original idea is based on Taylor
expansion and we give a short review in Section 9.1. We continue our presentation
with another version that is based on interpolation rather than Taylor expansions.
Our introduction to the canonical grid method follows in large parts the presentation
given in [19]. Having reviewed these two variants we give a novel derivation that in
some sense generalises the interpolation method.
We like to point out that the error analysis in Section 9.2.1 is based on consider-

ations in [5].

9.1 Canonical grid method revisited

We consider the following prototype of an integral operator

(Wψ)(x) :=

∫
R

K(x,y)J(y)ψ(y) dy, x ∈ R, (9.1)

where R = [−%, %]2 ⊂ R2, J(y) =
√

1 + |∇f(y)|2 denotes the surface area element
and the kernel allows a representation in the form

K(x,y) = k
(
x− y, f(x)− f(y)

)
, (9.2)

where k : R2 × R→ C satisfies the following two conditions:

(C1) k(·, x3) is a n-times continuously differentiable function on R2 for some n ≥ 0.
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Chapter 9 A new view on canonical grid methods

(C2) k(x, ·) is an analytical function for each x ∈ R2.

The idea of the canonical grid method is to approximate the kernel functionK(·, ·)
by some function KM(·, ·), which takes the form

KM(x,y) =

CM∑
j=1

aj,M(x)Kj,M(x− y)bj,M(y), (9.3)

where aj,M , Kj,M and bj,M are functions to be determined. M is an integer parameter
controlling the accuracy of the approximation, such that KM(x,y) → K(x,y) as
M →∞. The integral operator

(WMψ)(x) :=

∫
R

KM(x,y)J(y)ψ(y) dy, x ∈ R, (9.4)

which we can write as the following sum and products

(WMψ)(x) =

CM∑
j=1

aj,M(x)

∫
R

Kj,M(x− y)bj,M(y)J(y)ψ(y) dy, x ∈ R,

is an approximation to W which is suitable for the fast methods from Section 8.2.
In fact, the fully discrete form of this operator has a matrix representation

A(M) =

CM∑
j=1

Aj,MT j,MBj,M ,

where Aj,M and Bj,M are diagonal matrices and T j,M are 2-level block Toeplitz
matrices.

9.1.1 Deriving a kernel decomposition

The original canonical grid method, as introduced in [45], uses an Taylor series
expansion of k

(
x− y, f(x)− f(y)

)
with respect to f(x)− f(y) around 0 to derive

the approximation (9.3), i.e.

k
(
x− y, f(x)− f(y)

)
≈

M−1∑
j=0

1

j!

∂j

∂uj
k
(
x− y, u

)∣∣∣
u=0

[
f(x)− f(y)

]j
=

M−1∑
j=0

j∑
i=0

(
j
i

)
1

j!

∂j

∂uj
k
(
x− y, u

)∣∣∣
u=0

f(x)j−if(y)i,

where
cij :=

(−1)i

j!

(
j

i

)
=

(−1)i

(j − i)!i!
(9.5)
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and where in the last step we have used the binomial theorem.
As it was pointed out in [19], the Taylor series is slowly convergent so that the

method is only effective for rough surfaces of small elevation relative to the wave-
length. An extension of this method is described in [62]. Their idea was to use
different expansion points for the Taylor series in the interval of interest. Thus
one can reduce the number of expansion terms while at the same time keeping the
accuracy over the full range of the surface elevation.
A very different approach was introduced in [19] and [6], where the Taylor expan-

sion was replaced by an interpolation scheme in the vertical direction. We explain
this now in some more detail.
Let f−R and f+

R denote the infimum and supremum of f on R, i.e.

f−R := inf
x∈R

f(x) and f+
R := sup

x∈R
f(x)

and let a3 and b3 be real constants such that

a3 ≤ f−R < f+
R ≤ b3. (9.6)

Then we choose M distinct points zj, j = 0, . . . ,M − 1 in the interval [a3, b3] and a
corresponding set of linearly independent basis function

LM := {Lj : j = 0, . . . ,M − 1}

for which we assume that they form a Lagrange basis, i.e.

Lj(zi) = δj,i i, j = 0, . . . ,M − 1.

With the help of this basis functions we define an interpolation operator PM through

(PMf)(z) :=
M−1∑
j=0

f(zj)Lj(z), z ∈ [a3, b3].

We approximate the function k(x− y, u− v) through

k(x− y, u− v) ≈
M−1∑
j=0

M−1∑
j′=0

Lj(u)k(x− y, zj − zj′)Lj′(v),

i.e. by first applying PM to k(x − y, · − v) or k(x − y, u − ·) separately and then
combining theses approximations in a second step. Thus we get the approximation

KM(x,y) :=
M−1∑
j=0

M−1∑
j′=0

Lj(f(x))k(x− y, zj − zj′)Lj′(f(y)). (9.7)

In [19] and [6] Chebyshev polynomials were used for the interpolation. In this case
the interval for the approximation [a3, b3] is given through the choice a3 = f−R and
b3 = f+

R .
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Remark 9.1. From these explanations we see that the convergence rate of the canon-
ical grid method, is only dependend on the smoothness of the function

[−(b3 − a3), (b3 − a3)] : x3 7→ k(x, x3), x ∈ R

and not on the smoothness of the scattering surface, i.e. the surface height function
f .

9.2 A novel approach

To explain our view on the canonical grid method, we rewrite the operator (9.1) in
the form

(Wψ)(x) =

∫
R

k
(
(x, f(x))− (y, f(y))

)
J(y)ψ(y) dy, x ∈ R.

QΓR

R T

Figure 9.1: The cube Q containing the surface patch ΓR.

For such an operator we define the associated cube potential

(Wψ)(x) :=

∫
R

k
(
x− (y, f(y))

)
J(y)ψ(y) dy, x = (x, x3) ∈ Q, (9.8)

where Q denotes the cube R × T and T denotes the interval [a3, b3] for some real
numbers a3, b3 that satisfy the condition (9.6), i.e.

Q = [−%, %]2 × [a3, b3] ⊂ R3.

By construction Q contains the surface patch ΓR ⊂ Γ above the supporting rectangle
R given by

ΓR = {(x, f(x)) : x ∈ R}.
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An illustration is shown in Figure 9.1.
Depending on the smoothness condition (C1) it defines a function in Q that is at

least n-times continuously differentiable and furthermore we have the relation

(Wψ)(x) = (Wψ)(x, f(x)), x ∈ R. (9.9)

By formally inserting a Dirac delta distribution we can write the cube potential in
the form

(Wψ)(x) =

∫
R

k(x− (y, f(y)))J(y)ψ(y) dy

=

∫
R

∫
T

k(x− (y, f(y)))J(y)ψ(y)δ(f(y)− y3) dy3 dy (9.10)

=

∫
Q

k(x− y)Ψ(y)dy, x ∈ Q, (9.11)

where
Ψ(y) := J(y)ψ(y)δ(f(y)− y3), y = (y, y3) ∈ Q. (9.12)

The relation (9.9) can be written as

(Wψ)(x) =

∫
T

δ(f(x)− x3)(Wψ)(x, x3) dx3, x ∈ R. (9.13)

After these preparations we can describe the main idea of our novel algorithm
that consists basically of two steps:

Step 1 We use the representation (9.11) together with the fast methods described in
Section 8.2 and calculate the cube potential on a regular grid in Q. This can
be done very efficiently with three 3D-FFT’s.

Step 2 We use the formula (9.13) to compute an approximation to the potential W .
The integral is approximated by the composite trapezoidal rule with points
that match the grid points inside Q. The number of operations that are
necessary for the second step scales linearly with the number of unknowns in
the grid in Q.

An implementation of this algorithm in MATLAB is presented in Listing 10.1.
To make this approach suitable for a numerical discretisation we approximate the
Dirac delta distribution by a Dirac delta sequence. In general a Dirac delta sequence
is a family of functions (often continuous) {δh}h>0 such that

lim
h→0

∫
R

g(t)δh(x− t) dt = g(x), x ∈ R, (9.14)
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for any g in a reasonable class of test functions. Sometimes one requests also that∫
R

δh(x− t) dt = 1, h > 0. (9.15)

This means that the constant functions are reproduced exactly for any choice of h.
The intuitive picture that one should have in mind is a family of functions that get
more and more concentrated or peaked at zero for h→ 0. A prominent example are
the scaled Gaussians

δh(x) =
1

h
√
π
e−x

2/h2

,

where the scale factor has been chosen to satisfy the condition (9.15).

9.2.1 On a good choice of Dirac delta sequences

We should ask the following questions:

• What is a good choice for a Dirac delta sequence?

• Can we find criteria that a good Dirac delta sequence should fulfil?

We want to use the Dirac delta sequence in a discrete setting, thus we are in-
terested to find a family of functions, now called dh to avoid confusions with the
sequence δh, that satisfy the discrete analogon of (9.14), i.e.

lim
h→0

h
∑
j∈Z

g(hj)dh(x− hj) = g(x), x ∈ R

for g in a certain class of functions. Thus we are interested in understanding ap-
proximations of the form

g(x) ≈ h
∑
j∈Z

g(hj)dh(x− hj), x ∈ R, (9.16)

which is a sum of translates of one fixed kernel function dh. If dh satisfies the
interpolation condition

g(hi) = h
∑
j∈Z

g(hj)dh(hi− hj), i ∈ Z,

we call the function dh an interpolation kernel otherwise quasi-interpolation kernel.
Sometimes it is possible to make this approximation exact for a certain class of

functions. In this case we can interpret (9.16) as a kind of sampling formula. The
Shannon sampling theorem, also known as Whittaker-Kotel’nikov-Shannon sampling
theorem, is a prominent example of an interpolatory type of the above formula.
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9.2 A novel approach

Theorem 9.2 (Whittaker-Kotel’nikov-Shannon sampling theorem). Let g ∈ L2(R)
be a band-limited function with band-width b and let

h ≤ π

b
.

Then g is completely determined by its values g(hj), j ∈ Z on a regular grid and

g(x) =
∑
j∈Z

g(hj) sinc
(
π(x

h
− j)

)
, x ∈ R. (9.17)

Remark 9.3. It follows from∑
j∈Z

g(hj) sinc(π(i− j)) =
∑
j∈Z

g(hj)δij = g(hi),

where δij denotes the Kronecker delta, that the right hand side of (9.17) defines an
interpolation operator. Furthermore one can show, see e.g. [33], that the constant
function g(x) = 1 for x ∈ R is reproduced, i.e.

1 =
∑
j∈Z

sinc
(
π(x

h
− j)

)
, x ∈ R.

Thus we see that the choice dh = dShan
h with

dShan
h (x) :=

1

h
sinc

(
π x
h

)
, x ∈ R, 0 < h <

π

b
, (9.18)

fits our general approach. One drawback of this choice however is that the support
of dShan

h is unbounded, which means that we have to sum up an infinite series. For
the application we have in mind we are interested to approximate the function g
only in a small interval. Hence we assume that the functions dh have a local support
of a few step sizes, say

dh(x) = 0, |x| > Lh, (9.19)

for some L ∈ N and that (9.16) is exact for constants, i.e.

h
∑
j∈Z

dh(x− hj) = 1, x ∈ R. (9.20)

In addition we request that there exists a constant c > 0 such that

h
∑
j∈Z

|dh(x− hj)| ≤ c, x ∈ R. (9.21)

This rather mild condition is surely fulfilled, if e.g. the function dh is continuous
or piecewise continuous on [−Lh, Lh]. For a given x ∈ R there exists a uniquely
determined index j∗ ∈ Z so that

hj∗ ≤ x < h(j∗ + 1).
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Chapter 9 A new view on canonical grid methods

The finite support condition (9.19) ensures that we can express the approximation
error

e(x;h) := g(x)− h
∑
j∈Z

g(hj)dh(x− hj), x ∈ R,

for x ∈ [hj∗, h(j∗ + 1)) as the finite sum

e(x;h) = g(x)− h
j∗+(L−1)∑
j=j∗−(L−1)

g(hj)dh(x− hj), x ∈ [hj∗, h(j∗ + 1)). (9.22)

Now, if g ∈ BCp(R) for some p > 1, we can express g(hj) with the help of Taylor’s
theorem in the form

g(hj) = g(x) +

p−1∑
m=1

g(m)(x)

m!
(x− hj)m +

g(p)(ζ)

p!
(x− hj)p,

for j∗ − (L− 1) ≤ j ≤ j∗ + (L− 1) with

ζ ∈

{
(x, x− hj), j ≤ j∗,

(x− hj, x), j ≥ j∗,

where g(m) represents the m-th derivative of g. Inserting this into (9.22), using the
short hand notation ∑

j

:=

j∗+(L−1)∑
j=j∗−(L−1)

,

yields

e(x;h) = g(x)− h
∑
j

g(hj)dh(x− hj)

= g(x)− g(x)h
∑
j

dh(x− hj)−
p−1∑
m=1

g(m)(x)

m!
h
∑
j

(x− hj)mdh(x− hj)

− g(p)(ζ)

p!

∑
j

(x− hj)pdh(x− hj), x ∈ [hj∗, h(j∗ + 1)).

The first two terms cancel due to (9.20) so that

e(x;h) = −
p−1∑
m=1

g(m)(x)

m!
h
∑
j

(x− hj)mdh(x− hj)

− g(p)(ζ)

p!

∑
j

(x− hj)pdh(x− hj), x ∈ [hj∗, h(j∗ + 1)).

(9.23)

120



9.2 A novel approach

Now assume in addition that the function dh satisfies the discrete moment conditions

h
∑
j∈Z

(x− hj)mdh(x− hj) = δm0, m = 0, . . . , p− 1, (9.24)

where δm0 denotes the Kronecker delta. Then it follows from (9.23) and (9.21) that

|e(x;h)| =

∣∣∣∣∣g(p)(ζ)

p!
h
∑
j

(x− hj)pdh(x− hj)

∣∣∣∣∣
≤ ‖g(p)‖BC(Ij∗ )(p!)

−1 h
∑
j

|x− hj|p|dh(x− hj)|

≤ ‖g(p)‖BC(Ij∗ )(p!)
−1 (Lh)ph

∑
j

|dh(x− hj)|

≤ c
Lp

p!
‖g(p)‖BC(Ij∗ ) h

p, x ∈ [hj∗, h(j∗ + 1)),

where
Ij∗ := [hj∗ − h(L− 1), hj∗ + h(L− 1)]. (9.25)

We summarise the results in the following lemma.

Lemma 9.4. Let p ∈ N and suppose that dh satisfies the discrete moment conditions
(9.24) for m = 0, . . . , p− 1, the finite support condition (9.19) for some L ∈ N, and
the boundedness condition (9.21) for some constant c > 0. If g ∈ BCq(Ij∗) for q ≥ p
and Ij∗ given through (9.25), then∣∣∣g(x)− h

∑
j∈Z

g(hj)dh(x− hj)
∣∣∣ ≤ c

Lp

p!
‖g(p)‖BC(Ij∗ ) h

p, x ∈ [hj∗, h(j∗ + 1)).

The discrete moment conditions (9.24) are one of a series of equivalent conditions
on the interpolation kernel, known as Strang-Fix conditions, which ensure that (9.16)
is an interpolation scheme of order p. We now prove a very simple version that
shows that a kernel function dh that satisfies the first p discrete moment conditions
reproduces all monomials of degree less or equal p − 1. Depending on the number
of discrete moment conditions we denote the kernel functions by dh,p.

Lemma 9.5. Let p ∈ N. Then the following conditions on the functions dh,p are
equivalent.

(i) The function dh,p satisfies the first p discrete moment conditions, i.e.

h
∑
j∈Z

(x− hj)mdh,p(x− hj) = δm,0, m = 0, . . . , p− 1. (9.26)
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(ii) The function dh,p reproduces all monomials of degree less or equal p− 1, i.e.

h
∑
j∈Z

(hj)mdh,p(x− hj) = xm, m = 0, . . . , p− 1. (9.27)

Proof. We give a proof for the cases p = 1, 2 and explain the general idea for
arbitrary p > 2.

p = 1: The case p = 1 is clear.

p = 2: In the case p = 2, we use the first discrete moment condition

h
∑
j∈Z

dh,2(x− hj) = 1

and insert it into the second discrete moment condition

h
∑
j∈Z

(x− hj)dh,2(x− hj) = 0

to yield

h
∑
j∈Z

(x− hj)dh,2(x− hj) = xh
∑
j∈Z

dh,2(x− hj)− h
∑
j∈Z

(hj)dh,2(x− hj)

= x− h
∑
j∈Z

(hj)dh,2(x− hj) = 0,

which can be written in the equivalent form

h
∑
j∈Z

(hj)mdh,2(x− hj) = xm, m = 0, 1,

i.e. dh,2 reproduces the monomials 1, x exactly.

p > 2: For arbitrary p one uses the first discrete moment condition to prove the
reproduction of constants by expanding the second discrete moment condition and
inserting the first. One continues now in a recursive manner using all of the previous
discrete moment conditions and reproduction results. We illustrate the general step.

Assume that m ≤ p and that we have shown that dh,p reproduces all monomials
xn for n < m. Using the binomial theorem to expand the m-th discrete moment
condition

h
∑
j∈Z

(x− hj)mdh(x− hj) = 0 (9.28)
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yields

h
∑
j∈Z

(x− hj)mdh(x− hj) = h
∑
j∈Z

m∑
l=0

(
m

l

)
xm−l(−hj)ldh(x− hj)

=
m∑
l=0

(−1)l
(
m

l

)
xm−l

(
h
∑
j∈Z

(hj)ldh(x− hj)

)

=
m−1∑
l=0

(−1)l
(
m

l

)
xm−lxl + (−1)m

(
h
∑
j∈Z

(hj)mdh(x− hj)

)

= xm
m−1∑
l=0

(−1)l
(
m

l

)
+ (−1)m

(
h
∑
j∈Z

(hj)mdh(x− hj)

)
.

With the help of the identity
k∑
l=0

(−1)l
(
n

l

)
= (−1)k

(
n− 1

k

)
for k = m− 1 and n = m and (9.28) we conclude that

h
∑
j∈Z

(x− hj)mdh(x− hj) = (−1)m−1xm + (−1)m

(
h
∑
j∈Z

(hj)mdh(x− hj)

)
= 0,

which means that dh,p reproduces the monomial xm.

We note that, due to the linearity of the interpolation scheme, a interpolation ker-
nel δh,p that satisfies the first p discrete moment conditions reproduces polynomials
of degree less or equal than p− 1.
We now give a constructive proof for the existence of a family of interpolatory

kernel functions dh,2L that reproduces polynomials of degree less or equal than 2L−1
and have a support of size 2Lh. To simplify the presentation we assume that h = 1
and construct a function d1,2L. The functions dh,2L are then given in terms of d1,2L

through

dh,2L(x) =
1

h
d1,2L(x/h). (9.29)

The construction of the interpolation kernels d1,2L follows an idea presented in [46].
But before we present the general result in Lemma 9.7, we illustrate the construction
process for the case L = 2.

Example 9.6. Let L = 2 and restrict x to [0, 1). Then we can write the discrete
moment conditions in the equivalent form (9.27), i.e.

2∑
j=−1

jmd1,4(x− j) = xm, m = 0, . . . , 3,
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Chapter 9 A new view on canonical grid methods

which is a system of four equations with the four unknowns a1(x) := d1,4(x + 1),
a2(x) := d1,4(x), a3(x) := d1,4(x − 1) and a4(x) := d1,4(x − 2). We write this in
matrix form as

1 1 1 1
−1 0 1 2

1 0 1 4
−1 0 1 8




a1(x)
a2(x)
a3(x)
a4(x)

 =


1
x

x2

x3

 , x ∈ [0, 1).

The matrix is a Vandermonde matrix generated by the vector (−1, 0, 1, 2) and there-
fore invertible. The solution of this system is given through

a1(x)
a2(x)
a3(x)
a4(x)

 =


0 −1

3
1
2
−1

6

1 −1
2
−1 1

2

0 1 1
2
−1

2

0 −1
6

0 1
6




1
x

x2

x3

 , x ∈ [0, 1),

which we write in the form

a1(x) = −1
3
x+ 1

2
x2 − 1

6
x3 = −1

6
(x− 2)(x− 1)x, x ∈ [1, 2]

a2(x) = 1− 1
2
x− x2 + 1

2
x3 = 1

2
(x− 2)(x− 1)(x+ 1), x ∈ [0, 1]

a3(x) = x+ 1
2
x2 − 1

2
x3 = −1

2
(x− 2)x(x+ 1), x ∈ [−1, 0]

a4(x) = −1
6
x+ 1

6
x3 = 1

6
(x− 1)x(x+ 1), x ∈ [−2,−1].

This is not yet the solution, as we have to keep in mind that the above formulas are
only valid for x ∈ [0, 1). To determine d1,4 on the appropriate intervals we have to
make a simple change of variables:

d1,4(x) =


a1(x− 1) = −1

6
(x− 3)(x− 2)(x− 1), 1 ≤ x ≤ 2

a2(x) = 1
2
(x− 2)(x− 1)(x+ 1), 0 ≤ x < 1,

a3(x+ 1) = −1
2
(x− 1)(x+ 1)(x+ 2), −1 ≤ x ≤ 0,

a4(x+ 2) = 1
6
(x+ 1)(x+ 2)(x+ 3), −2 ≤ x ≤ −1,

=


(1− x

3
)(1− x

2
)(1− x), 1 ≤ x ≤ 2

(1− x
2
)(1− x)(1 + x), 0 ≤ x < 1,

(1− x)(1 + x)(1 + x
2
), −1 ≤ x ≤ 0,

(1 + x)(1 + x
2
)(1 + x

3
), −2 ≤ x ≤ −1.

As clearly seen the function is symmetric with respect to 0 so that we can write it
in the more condensed form

d1,4(x) =


(1− x

2
)(1− x)(1 + x), 0 ≤ |x| < 1,

(1− x
3
)(1− x

2
)(1− x), 1 ≤ |x| < 2,

0, |x| ≥ 2.
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After these preparations the proof of the following lemma is evident.

Lemma 9.7. Let the functions aj, j = 1, . . . , 2L be given through a1(x)
...

a2L(x)

 = V −1

 1
...

x2L−1

 , (9.30)

where V denotes the Vandermonde matrix of size 2L generated by the vector

(−L+ 1,−L+ 2, . . . , L− 1, L).

Then the function

d1,2L(x) :=



a1(x− L+ 1), L− 1 ≤ x ≤ L,
a2(x− L+ 2), L− 2 ≤ x ≤ L− 1,
...
aL−1(x+ L− 1), −L+ 1 ≤ x ≤ −L+ 2,
aL(x+ L), −L ≤ x ≤ −L+ 1,

(9.31)

satisfies the first 2L discrete moment conditions.

The main problem with this lemma is not the question of existence. It is rather
the question whether we can understand from the construction process what the
functions aj must look like for arbitrary L.
We used the computer algebra system MAPLE to compute a representation, the

listing of the procedure we wrote is shown in Listing A.1. From these computations
we concluded that the function d1,2L should look like

∆1,2L(x) :=


L−1−i∏
m=−L−i
m6=0

(1 + x
m

), i ≤ |x| ≤ i+ 1, i = 0, . . . , L− 1,

0, |x| > L

(9.32)

Illustrations of these kernel functions for L = 2 and L = 3 are given in Figure 9.2.
From our numerical experiments we concluded the following:

Conjecture 9.8. For all L ∈ N it holds that ∆1,2L = d1,2L.

We verified the conjecture with MAPLE for 1 ≤ L ≤ 50, which includes the range
of all functions that we used for computations.

Remark 9.9. The functions ∆1,2L seem to have been studied before:
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Chapter 9 A new view on canonical grid methods

• A representation of the kernel functions in the monomial basis, together with
a MATLAB program to compute the coefficients, is given in [56]. The repre-
sentation in the monomial basis is, to our understanding, not well suited for
an efficient and stable evaluation for large L. The representation (9.32) does
not suffer from these limitations.

• In the survey article [37, formula (27)] the functions are given in the form
(9.32), but without a reference to a general approximation order.
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(a) The function d1,4.
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(b) Logarithmic plot of |d1,4|.
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(c) The function d1,6.
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(d) Logarithmic plot of |d1,6|.
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(e) The function d1,8.
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(f) Logarithmic plot of |d1,8|.

Figure 9.2: Approximation of the Dirac delta distribution and their logarithmic
plot.
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9.2.1.1 A high order local interpolation scheme

From our previous analysis we conclude that the interpolation operator

(P2Lg)(x) := h
∑
j∈Z

g(hj)dh,2L
(
x− hj

)
is exact for polynomials up to degree 2L−1, which we have proven for L = 1, . . . , 50.
In analogy to the Theorem 9.2 we can summarise the results in the next lemma.

Lemma 9.10. Let g ∈ Π2L−1(C), the space of complex polynomials with degree at
most 2L− 1, for L ∈ N. Then g is completely determined by its values g(hj), j ∈ Z
on a regular grid and

g(x) =
∑
j∈Z

g(hj)d1,2L

(
x
h
− j
)
, x ∈ R.

We can use this Lemma to define a high order local interpolation scheme for
smooth functions on R in the following way:

Lemma 9.11. Let M ∈ N and L ∈ N with L < (M + 1)/2. For real numbers a, b
with a < b define the step size

h :=
b− a

M + 1− 2L
, (9.33)

the real numbers
aL := a− (L− 1)h (9.34)

and
bL := b+ (L− 1)h, (9.35)

and the grid points
xj := aL + hj, j ∈ Z. (9.36)

Then for all g ∈ BCp(R) with p ≥ 2L the approximation error satisfies

‖g − gM,2L‖BC([a,b]) ≤ ch,2L
L2L

(2L)!
‖g(2L)‖BC([aL,bL]) h

2L, (9.37)

where
gM,2L(x) := h

∑
j∈Z

g(xj)dh,2L(x− xj) (9.38)

and
ch,2L := sup

x∈R
h
∑
j∈Z

|dh,2L(x− hj)|. (9.39)
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Proof. The proof follows by applying Lemma 9.4.

We illustrate this local interpolation scheme by the following example.

Example 9.12. Consider the function

g(x) := exp(2πi
√

1 + x2)/
√

1 + x2 (9.40)

on the interval I := [0.25, 1.5]. We note that g possesses a holomorphic extension
into the strip {z = x + iy : −∞ < x < ∞,−1 < y < 1}, which means that we can
expect super-algebraic convergence. The approximation and logarithmic error plots

Figure 9.3: log10 ‖g − gM,2L‖∞

are depicted in Figure 9.4 for the values L = 2, 5, 8 and M = 30. In accordance
to the error analysis we see that the error inside the interval I is much smaller
compared to the error in the extended interval. In Figure 9.3 we depicted log10 ‖g−
gM,2L‖∞, i.e. an logarithmic plot of the estimated maximum error inside the interval
I in dependence of the order of the interpolation scheme and the total number of
interpolation points M . Note that, for fixed M , the increase in the error for growing
L is not some kind of ill-posedeness. It is rather the instance that the step size, for
fixed M , is an increasing function considered as a function in L, as it can be seen
from (9.33). The red markers inside the picture denote the approximation order that
produced the smallest error for fixed M .
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(a) The real part of g30,4. (b) The error for L = 2.

(c) The real part of g30,10. (d) The error for L = 5.

(e) The real part of g30,16. (f) The error for L = 8.

Figure 9.4: The local interpolation scheme for Example 9.12. The red diamond
shaped markers indicate the points outside the interval of interest that are used for
the interpolation scheme. For a scheme of order 2L these are L− 1 points both on
the left and right side of the interval.
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9.3 Connections to the classical canonical grid
method

We can establish a connection between our novel method as introduced in Section 9.2
and the canonical grid method as introduced before with the help of interpolation
operators, cf. (9.7). For this, we combine (9.10) and (9.13) and replace the integrals
over T by the composite trapezoidal rule for an equidistant grid. In some more
detail: for M ∈ N chose L such that the inequality M > 2L − 1 is satisfied. Now
define the step size

h3 :=
f+
R − f

−
R

M + 1− 2L
(9.41)

and use the equidistantly spaced points

xj := a3 + h3j, j = 0, . . . ,M − 1, (9.42)

where
a3 := f−R − (L− 1)h. (9.43)

For this choice of parameters we get the maximal approximation order for the inter-
polation scheme of order 2L inside the interval of interest T . Due to the smoothness
assumption (C1) we can interchange the order of integration to yield

(Wψ)(x) =

∫
R

∫
T

∫
T

dh3,2L(f(x)− x3)k
(
(x, x3)− (y, y3)

)
dh3,2L(f(y)− y3) dy3 dx3

J(y)ψ(y) dy

≈
M−1∑
j=0

M−1∑
j′=0

h3dh3,2L(f(x)− zj)
∫
R

k
(
x− y, zj − zj′

)
h3dh3,2L(f(y)− zj′)

J(y)ψ(y) dy

=

∫
R

M−1∑
j=0

M−1∑
j′=0

Lj
(
f(x)

)
k
(
x− y, zj−j′

)
Lj′
(
f(y)

)
J(y)ψ(y) dy, (9.44)

where
Lj(x) := h3dh,2L(x− zj), j = 0, . . . ,M − 1. (9.45)

This again is a decomposition of the form (9.3) and the kernel approximation coin-
cides with (9.7). This shows that our novel approach can be implemented as a 2D
or 3D variant, cf. Listing 10.2 and Listing 10.1.
A rough estimate for the number of floating point operations and the minimal

required memory for the different versions of the matrix-vector multiplication al-
gorithm, for a grid with N∗ := N1 · N2 number of unknowns and M interpolation
levels, is summarised in Table 9.1.
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9.4 Applying the method to the rough surface scattering problem

Operation count Memory

Naive (N∗)2 N∗

2D-Alg. M2 · 3 · (4N∗) log(4N∗) 4N∗

3D-Alg. 3 · (8N∗M) log(8N∗M) 8N∗M

Table 9.1: Estimated number of floating point operations and memory usage

9.4 Applying the method to the rough surface
scattering problem

In order to use the novel method described in Section 9.2 for the rough surface
scattering problem, we must apply it to an integral operator of the form

(Wψ)(x) =

∫
R

K(x,y)J(y)ψ(y) dy, x ∈ R,

cf. (9.1), where the kernel function is given through

K(x,y) = K1(x,y)−K2(x,y)− iη
(
K3(x,y)−K4(x,y)

)
with

K1(x,y) :=
1

2π

[
1− χa,b(|x− y|)

]〈ν(y), x− y〉
|x− y|2

(
1− iκ|x− y|

)exp(iκ|x− y|)
|x− y|

,

K2(x,y) :=
1

2π

〈[ν(y)]′, x− y′〉
|x− y′|2

(
1− iκ|x− y′|

)exp(iκ|x− y′|)
|x− y′|

,

K3(x,y) :=
1

2π

([
1− χa,b(|x− y|)

]cos(κ|x− y|)
|x− y|

+ i
sin(κ|x− y|)
|x− y|

)
,

K4(x,y) :=
1

2π

exp(iκ|x− y′|)
|x− y′|

,

where

x− y = (x− y, f(x)− f(y)) and x− y′ = (x− y, f(x) + f(y)).

We note that the kernel K3 can be written as

K3(x,y) = k3(x− y, f(x)− f(y)),

where

k3(z) :=
1

2π

([
1− χa,b(|z|)

]cos(κ|z|)
|z|

+ i
sin(κ|z|)
|z|

)
, z = (z, z3) ∈ R3.
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The kernel K1 can be written in a similar way as

K1(x,y) =
3∑
l=1

k1,l(x− y, f(x)− f(y))cl(y),

where

k1,l(z) :=
1

2π

[
1− χa,b(|z|)

] zl
|z|2
(
1− iκ|z|

)exp(iκ|z|)
|z|

, z = (z, z3) ∈ R3

and

cl(z) := νl(z, f(z)) =

{
−∂lf(y)(1 + |∇f(z)|2)−1/2, l = 1, 2,

(1 + |∇f(z)|2)−1/2, l = 3.

Thus we can apply the method to each component individually.
The kernel K4 can be written in the form

K4(x,y) = k4

(
x− y, f(x) + f(y)

)
where

k4(z) :=
1

2π

exp(iκ|z|)
|z|

, z = (z, z3) ∈ R3.

The kernel K2 can be written in a similar way as

K2(x,y) =
3∑
l=1

k2,l(x− y, f(x) + f(y))dl(y),

where
k2,l(z) :=

1

2π

zl
|z|2
(
1− iκ|z|

)exp(iκ|z|)
|z|

, z = (z, z3) ∈ R3

and

dl(z) := [νl(z, f(z))]′ =

{
−∂lf(y)(1 + |∇f(z)|2)−1/2, l = 1, 2,

−(1 + |∇f(z)|2)−1/2, l = 3.

9.4.1 Extending the fast method to certain non-difference
kernels

From the above considerations we see that, in order to apply the fast method to the
operators arising from the rough surface scattering problem, we need to extend our
method to kernel functions of the form

K(x,y) = k
(
x− y, f(x) + f(y)

)
. (9.46)
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9.5 Alternative kernel functions

To handle these kind of kernel functions we introduce the shifted kernel

k̃(x, x3) := k
(
x, x3 + b3 + a3

)
. (9.47)

As before we start with the associated cube potential

(Wψ)(x) =

∫
R

k(x− (y,−f(y)))J(y)ψ(y) dy, x = (x, x3) ∈ Q.

Using the shifted kernel k̃ and shifted Dirac delta distribution we can write the cube
potential in the form

(Wψ)(x) =

∫
R

k(x− (y,−f(y)))J(y)ψ(y) dy

=

∫
R

k̃(x− (y, b3 + a3 − f(y)))J(y)ψ(y) dy

=

∫
R

∫
T

k̃(x− (y, b3 + a3 − f(y)))J(y)ψ(y)δ
(
[b3 + a3 − f(y)]− y3

)
dy3 dy

=

∫
Q

k̃(x− y)Ψ(y)dy, x ∈ Q,

where
Ψ(y) := J(y)ψ(y)δ

(
[ba + a3 − f(y)]− y3

)
, y = (y, y3) ∈ Q.

The second step can be handled as before, i.e.

(Wψ)(x) =

∫
T

δ(f(x)− x3)(Wψ)(x, x3) dx3, x ∈ R.

9.5 Alternative kernel functions

In the excellent reviews and survey articles [37], [54] and [8] a large family of in-
terpolation kernels are examined. The methods described in the articles include
the use of radial basis functions. For more information we refer the reader to the
monographs [10] and [59] and the citations therein.

9.5.1 Radial basis functions

We now explain some ideas for an high order interpolation scheme that is based
on the use of radial basis functions. The use of RBF for the interpolation scheme
was suggested by Prof. Schaback, whom I am indebted to for discussions and many
useful hints.

Let Φ be a radial function, i.e. there exists a function φ : R≥0 → C such that

Φ(x) = φ(|x|), x ∈ R.
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Then we try to approximate a function g on an interval [a, b] by the finite sum
M−1∑
j=0

g(xj)u
∗
j(x), x ∈ [a, b], (9.48)

where xj, for j = 0, . . . ,M − 1, are pairwise distinct points inside [a, b] and the
functions u∗j , for j = 0, . . . ,M − 1, are given as a weighted sum of the radial basis
function Φ, i.e.

u∗j(x) :=
M−1∑
k=0

αj,kΦ(x− xk). (9.49)

We require that the functions u∗j satisfy the interpolation property

u∗j(xi) = δi,j, i, j = 0, . . . ,M − 1. (9.50)

Thus the coefficients αj = (αj,0, . . . , αj,M−1)t of the functions u∗j are given as the
solution of the linear system

M−1∑
k=0

Φ(xi − xk)αj,k = δi,j, i = 0, . . . ,M. (9.51)

We can write this as a matrix equation

DA = I, (9.52)

where the two M ×M matrices D and A are given through

(D)i,k := Φ(xi − xk), i, k = 0, . . . ,M

(A)i,k := αi,k, i, k = 0, . . . ,M,

and I denotes the identity matrix in Rn. Using the radial symmetry of Φ we see
that

Φ(xi − xk) = φ(|xi − xk|) = φ(|xk − xi|) = Φ(xk − xi),
i.e. the kernel matrix D is, by construction, symmetric. For certain classes of func-
tions Φ, one can show that the matrix D is positive definite and hence invertible.

To find a criteria, whether a given function φ produces an invertible matrix D
one defines:

Definition 9.13. A continuous function Φ : R → C is called positive definite if,
for all M ∈ N and all sets of pairwise distinct points X = {x0, . . . , xM−1} ⊂ R the
kernel matrix D is positive definite, i.e. for all α ∈ CM , the quadratic form

M−1∑
j=0

M−1∑
k=0

αjαkΦ(xj − xk)

is positive.
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9.6 Numerical results

The functions
φγ(x) := e−γ|x|

2

, γ > 0, x ∈ R, (9.53)

are positive definite, cf. [59, Theorem 6.10]. Though the matrix equation (9.52) is
always invertible, the matrix D can be very ill-conditioned. In general, the condition
number is a function of the separation distance

S([a, b]) :=
1

2
min

0≤i<j≤M−1
|xi − xj|

that grows dramatically for S([a, b])→ 0. We use an equidistantly spaced grid with
step size h, thus h = 2S([a, b]).
To control the condition of the kernel matrix D we use the scaling parameter

γ. From a practical point of view it is o.k. to work with condition numbers up
to 107 − 1010 and still compute reliable results. In addition to the parameter γ
we introduced a very simple form of a regularisation scheme, i.e. instead of solving
(9.52) we solved the system

(D + εI)A = I, ε > 0 (9.54)

for some small values of ε.

9.6 Numerical results

All the results shown in this section have been carried out for the kernel function

K3(x,y) = k3(x− y, f(x)− f(y)),

where

k3(z) =
1

2π

([
1− χa,b(|z|)

]cos(κ|z|)
|z|

+ i
sin(κ|z|)
|z|

)
, z = (z, z3) ∈ R3.

This kernel is one part of the global kernel kSglobal of the single-layer potential. We
note that the function z3 7→ k3(z, z3) possesses a holomorphic extension into the
strip {

z = x+ iy : −∞ < x <∞,−a < y < a
}
,

i.e. the width of the strip is determined by the width of the support of the function
1− χa,b(| · |). Thus we can expect super-algebraic convergence. We like to mention
that the resemblance of Figure 9.7(f) with Figure 9.3 is due to the fact that both
plots show almost the same function, namely Figure 9.3 shows the error plot for
the function z3 7→ k3(z, z3) for a fixed z ∈ R2 with |z| = 1, whereas Figure 9.7(f)
shows the maximal error for z ∈ R.
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Chapter 9 A new view on canonical grid methods

The surface height function used in all of the following example is depicted in
Figure 9.5. It is a two-dimensional trigonometric polynomial of degree (20,20) that
can be seen as a realisation of a random rough surface. The supporting rectangle of
the surface patch is R = [−10, 10]× [−10, 10] and the maximal and minimal values
of the surface height function were estimated with f−R = 2.1 and f+

R = 3.9.

Figure 9.5: Realisation of a random rough surface

We used a wavenumber κ = 2π so that the wavelength λ = κ/2π is 1. Thus, in
terms of the wavelength, the surface elevation is 2λ and the supporting rectangle
has size 20λ× 20λ.
For a given density ψ we are interested in understanding the discrete relative

L2-error

e(L,M) :=
‖Aψ − A(M,L)ψ‖L2

‖Aψ‖L2

(9.55)

as a function of the number of expansion levelsM , used for the interpolation scheme,
and the connection to the interpolation order 2L. The matrix A represents the fully
discrete version of the integral operator and A(M,L) the approximated matrix. The
real part of the density ψ and Aψ are shown in Figure 9.6, for which we used a
two dimensional array of 128× 128 points.
The Figure 9.7(a) shows a logarithmic plot of the discrete relative L2-error for

1 ≤ M ≤ 50 and 1 ≤ L < M+1
2

. The red markers inside this figure denote the
function

emin,L : M 7→ min
L
e(L,M),

i.e. the minimal error that was achieved among all interpolation schemes for fixed
M . The excellent convergence results are clearly notable and shown again in Fig-
ure 9.7(b)

Figure 9.7(c)-(d) shows the error plots for the interpolation scheme based on
radial basis functions. The relative L2-error now depends on M and the scaling
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9.6 Numerical results

(a) <(ψ) (b) <(Aψ)

Figure 9.6: The real part of the density ψ and Aψ used to compute the relative
L2-error.

parameter γ. The plots show the error for the values 4 ≤ M ≤ 16 and different
values of γ ∈ [1, 4]. The red markers show again the minimal error for fixed M .
The ill-conditioning of the kernel matrix D, as mentioned before, can be seen in
Figure 9.7(f). We used the rather simple regularisation scheme (9.54) for the
choice ε = 10−12 for the computations. More sophisticated regularisation schemes
with a strategy for the choice of a regularisation parameter might be able to produce
even higher accuracy, though even this simple scheme produced results comparible
to the high order interpolation scheme, as can be seen in Figure 9.7(e).
We like to note that the two scheme complement each other for different ranges of

accuracies and amount of work. If we keep in mind that we want to accelerate the
matrix-vector multiplication in an iterative linear solver, it does not seem reasonable
to invest to much work and time into a highly accurate matrix-vector multiplication.
Thus an approximation of the matrix-vector product with a relative error of 10−4−
105 will surely be enough. From the error plots we see that 10 points for the RBF
method and 20 points for the method with interpolation kernel d1,2L are sufficient.
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Chapter 9 A new view on canonical grid methods

(a) Logarithmic plot of (L,M) 7→ e(L,M) (b) Logarithmic plot of emin,L

(c) Logarithmic plot of (γ,M) 7→ e(γ,M) (d) Logarithmic plot of emin,γ

(e) Comparing emin,L and emin,γ (f) Condition of the kernel matrix D

Figure 9.7: Error plots for the FMVM, using the interpolation kernel d1,2L and
φγ.
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Chapter 10

Fast method - Implementation
details
In this chapter we present the details of the fast algorithm on the full discrete level.
We think that the algorithm is conceptually rather simple and therefore easy to

implement though at the same time highly efficient for the underlying problem. In
fact, we give an example of a MATLAB implementation of the main algorithm in
less than a page of code.
The main algorithm of the novel fast matrix-vector multiplication is implemented

in the MATLAB function FMVM (fast matrix-vector multiplication) shown in List-
ing 10.1. The function my_kernel (cf. Listing 10.3) and chi (cf. Listing 10.4)
show an implementation of the kernel function k3 used for the numerical example
and the cut off function χa,b. The function FMVM_2D shown in Listing 10.2 is our
implementation of the novel interpolation scheme in a 2D version. Our implemen-
tation of the interpolation kernels dh,2L is shown in Listing 10.5 and named DDD
for discrete Dirac delta function.
A typical calling sequence could look like follows.

> p = [-10 10 -10 10 2.1 3.9];
> N = [128 128 16];
> KParam.kappa = 2*pi;
> KParam.a = 0.75;
> KParam.b = 1.5;
> shf = ’surface_height_function’;
> kernel = ’my_kernel’;
> L = 4;

> pot = FMVM(psi, p, N, L, shf, SParam, kernel, KParam);

The function expects 8 values:

psi A two-dimensional array that represents the vector in the matrix-vector mul-
tiplication.

p A column vector p = [a1 b1 a2 b2 fmin fmax] that describes the smallest
cube that contains the surface patch ΓR with supporting rectangle R, where
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Chapter 10 Fast method - Implementation details

R = [a1, b1]× [a2, b2] and fmin and fmax are the minimum and maximum of
the surface height function f on R.

N A column vector N = [N1 N2 M] that contains the number of points, which are
used for the discretisation of each space dimension, i.e. in the above example
we use 128 points each for the x1 and x2 direction and 16 points for the
discretisation in x3 direction.

L A positive integer number that defines the order (2L) of the local interpolation
scheme.

shf A string with the name of a user defined matlab file that contains an imple-
mentation of the surface height function. The function can use parameters,
contained in the structure SParam, that are used to describe the surface.

SParam A structure that contains parameters that are needed to describe the surface
height function.

kernel A string with the name of a user defined matlab file that contains the kernel
function. The function can use parameters, contained in the structure KParam.

KParam A structure that contains parameters for the kernel function, e.g. the wave
number κ or the cut-off parameters a and b for the function χa,b.

The matlab function my_kernel shown in Listing 10.3 is an implementation of
the kernel K3 from the numerical examples.
The implementation shown in Listing 10.1 is not efficient on the use of computer

memory, but even this version can be used to compute problems of the size 512 ×
512× 32 on machines with up to 4GB of RAM.
We now describe the implementation almost line by line and draw the connection

to the formulas in the previous sections:

1-5 Define some abbreviations.

7-10 Setup the surface grid and the surface area element J .

12-14 Setup the enlarged interval for the interpolation in x3-direction, cf. (9.33) and
(9.34).

15-18 Setup the 3D grid inside Q and evaluate the the Dirac delta distribution.

19 The function Ψ on the discrete grid inside Q, cf. (9.12).

21-24 Setup the large grid to evaluate the periodised version of the kernel function.

27 Use the discrete form of the convolution theorem, cf.(8.5), to compute the
action of the operator on the density.
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28 Restrict the solution to the grid points inside Q.

29 Use (9.13) to compute the discrete form of (Wψ)(x) on the surface grid.

Listing 10.1 MATLAB implementation of the fast matrix-vector multiplication
algorithm.

1 function pot = FMVM(psi,p,N,L,shf,SParam,kernel,KParam)
2 a1 = p(1); b1 = p(2);
3 a2 = p(3); b2 = p(4);
4 fmin = p(5); fmax = p(6);
5 n1 = N(1); n2 = N(2); n3 = N(3);
6

7 h1 = (b1-a1)/n1;
8 h2 = (b2-a2)/n2;
9 [X,Y] = meshgrid(a1+h1*(0:n1-1),a2+h2*(0:n2-1));

10 [f,J] = feval(shf, X, Y, SParam);
11 h3 = (fmax-fmin)/(n3-1-2*(L-1));
12 a3 = fmin - (L-1)*h3;
13 z = a3+h3*(0:n3-1);
14

15 Z = reshape(z(:),[1 1 n3]);
16 Z = Z(ones(n2,1),ones(n1,1),:);
17 F = repmat(f,[1 1 n3]);
18 DDD = Delta_approx(h3,L,F-Z); clear Z F;
19 Psi = repmat(psi.*J,[1 1 n3]) .* DDD;
20

21 x0 = [(0:1:n1-1) (-n1:1:-1)] * h1;
22 y0 = [(0:1:n2-1) (-n2:1:-1)] * h2;
23 z0 = [(0:1:n3-1) (-n3:1:-1)] * h3;
24 [X0,Y0,Z0] = meshgrid(x0,y0,z0);
25

26 K = feval(kernel,X0,Y0,Z0,KParam);
27 pot_big_cube = ifftn( fftn(K) .* fftn(Psi,size(K)) );
28 pot_cube = (h1*h2*h3) * pot_big_cube(1:n2,1:n1,1:n3);
29 pot = h3 * sum( DDD.*pot_cube, 3);
30

31 end
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Listing 10.2 MATLAB implementation of the fast matrix-vector multiplication
algorithm in a 2D-variant.

function pot = FMVM_2D(psi,p,N,L,shf,SParam,kernel,KParam)
a1 = p(1); b1 = p(2);
a2 = p(3); b2 = p(4);
fmin = p(5); fmax = p(6);
n1 = N(1); n2 = N(2); n3 = N(3);

h1 = (b1-a1)/n1;
h2 = (b2-a2)/n2;
h3 = (fmax-fmin)/(n3-1-2*(L-1));
a3 = fmin - (L-1)*h3;

[X,Y] = meshgrid(a1+h1*(0:n1-1),a2+h2*(0:n2-1));
[f,J] = feval(shf, X, Y, SParam); clear X Y;
psi = psi.*J; clear J;
x0 = [(0:1:n1-1) (-n1:1:-1)] * h1;
y0 = [(0:1:n2-1) (-n2:1:-1)] * h2;
[X0,Y0] = meshgrid(x0,y0);
z = a3+h3*(0:n3-1);

pot = zeros(n2,n1);
for ii = 1:n3
pot_cube = zeros(n2,n1);
for jj = 1:n3
K = feval(kernel,X0,Y0,z(ii)-z(jj),KParam);
DDDjj = Delta_approx(h3,L,f-z(jj));
pot_big_cube = ifftn( fftn(K) .* fftn(psi.*DDDjj,size(K)) );
pot_cube = pot_cube + (h1*h2*h3) * pot_big_cube(1:n2,1:n1);

end
pot = pot + h3 * Delta_approx(h3,L,f-z(ii)) .* pot_cube;

end

end
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Listing 10.3 Matlab implementation of the kernel function that describes the global
part of the single-layer potential operator.

function res = my_kernel(x,y,z,KParam)

kappa = KParam.kappa;
a = KParam.a;
b = KParam.b;

R2d = sqrt(x.^2 + y.^2);
R3d = sqrt(x.^2 + y.^2 + z.^2);
res = 1/(2*pi).*((1-chi(a,b,R2d)).*cosc(R3d,kappa) + i*sinc(R3d,kappa));

%---------------------------------------------------------------------
function res = sinc(t,kappa)
ind = (t==0);
t(ind) = NaN;
res = sin(kappa*t)./t;
res(ind) = kappa;

function res = cosc(t,kappa)
ind = (t==0);
t(ind) = NaN;
res = cos(kappa*t)./t;
res(ind) = 0;

Listing 10.4 Matlab implementation of the cut off function χa,b.

function res = chi(a,b,t)

t = abs(t);
res = zeros(size(t));
res(t<=b) = 1;
ind = (b<t) & (t<a);
res(ind) = 1./(1 + (exp( (a-b)./(a-t(ind)) - (b-a)./(b-t(ind)))));

143



Chapter 10 Fast method - Implementation details

Listing 10.5 Matlab implementation of the interpolation kernels dh,2L.

function res = Delta_approx(h,L,x)

[n1,n2,n3] = size(x);
x = x(:);
res = Delta_1(L,x./h)./h;
res = reshape(res,n1,n2,n3);

%-----------------------------------------------
function res = Delta_1(L,x)
res = zeros(size(x));
x = abs(x);
for ind = 1:length(x)
i = floor(x(ind));
if (x(ind) <= L)
res(ind) = LagrangePoly(-L-i,L-1-i,x(ind));

end
end

function res = LagrangePoly(n,m,r)
res = 1;
for k = n:m
if (k~=0)
res = (1+r/k)*res;

end
end
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Appendix A

Maple Procedures

This chapter contains the Maple procedures DDA, cf. Listing A.1, and DDA2, cf. List-
ing A.2, that were used to compute representations of the kernel function d1,2L for
arbitrary L and to verify the Conjecture 9.8.

Listing A.1 Maple procedure that computes the function d1,2L by solving the sys-
tem of discrete moments equations. The function d1,2L(t) is computed through the
command DDA(L)(t).

DDA := proc(L::integer)
local reorder,N,idx,meqn,sol1,sol2,f,d_arg,delta;
#
reorder := proc(s::set(equation),l::list)
local i,temp;
subs(s, [seq(temp[i]=l[i],i=1..nops(l))]$2);

end proc;
#
N := []:
for idx from -(L-1) to L by 1 do
N := [op(N), idx];

end:
#
meqn := {seq( sum(k^m*delta(r-k),k=-(L-1)..L) = r^m, m=0..2*L-1)};
sol1 := solve( meqn, {seq(delta(r-j),j=N)});
sol2 := reorder(sol1, [seq(delta(r-j),j=N)]);
f := map( unapply, map(rhs, sol2), r);
d_arg := seq( op([j-1<t and t<=j, factor(f[-j+L+1](t-(j-1))) ]), j=N);
delta := unapply( piecewise(d_arg),t );
#
return delta;

end proc:
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Listing A.2 Maple procedure that computes the function ∆1,2L given through ...

DDA2 := proc(L::integer)
local m, i, d_arg, delta;
#
d_arg := seq( op([i<t and t<=i+1,
(
product(1+t/m, m =-L-i..-1) * product(1+t/m, m =1..L-1-i)

) ]), i=-L..L-1);
delta := unapply( piecewise(d_arg),t );
return delta;
end proc:
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