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Abstract

We consider the scattering of time harmonic acoustic waves by a sound soft rough
surface in three dimensions. The analysis we develop holds in the case that the
incident wave is due to a point source situated above the scattering surface. It does
however not apply to the case of an incident plane wave.

The first part of the thesis settles the question of existence and uniqueness of the
scattering problem. The scattered field is sought as a modified Brakhage-Werner
ansatz. This approach yields an boundary integral equation of the second kind in
the space of complex valued square integrable functions on the scattering surface.
In contrast to the case of bounded obstacles, the integral operators occuring in this
equation are not compact so that the Riesz-Fredholm theory is not applicable.

The second part is concerned with the numerical solution of the integral equation.
To handle the infinite domain of integration the integral equation is truncated in a
first approximation step to an equation on a finite section of the real plane. For this,
we introduce a novel truncation scheme called multi-section method for which we
can proof convergence. In a second step standard discretisation schemes for integral
equations on bounded domains can now be applied.

The discretisation of the truncated equations yields large and dense linear systems
that must be solved by iterative methods. It is therefore important to derive fast
matrix-vector multiplication schemes. We introduce an alternative derivation of
the canonical grid method that uses high order approximations of the Dirac delta
distribution. This approach allows a rather simple implementation of the canonical
grid method. In addition our algorithm achieves an additional speed. For the
case of the single-layer potential operator we show the feasibility of this method by
numerical examples.
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Zusammenfassung

Wir behandeln die Streuung zeitharmonischer akustischer Wellen an einer schallwei-
chen rauhen Oberfliache in drei Dimensionen. Unsere Untersuchungen sind giiltig fiir
den Fall, dass die einfallende Welle von einer Punktquelle oberhalb der Streuober-
flache herriihrt. Sie sind jedoch nicht auf den Fall einer einfallenden ebenen Welle
anwendbar.

Der erste Teil der Arbeit behandelt die Existenz und Eindeutigkeit des Streu-
problems. Das gestreute Feld wird in Form eines modifizierten Brakhage-Werner-
Ansatzes gesucht. Dieses fiihrt zu einer Randintegralgleichung zweiter Art in dem
Raum der komplexwertigen quadratintegrierbaren Funktion auf der Streuoberflache.
Im Gegensatz zu dem Fall eines beschrankten Streuobjektes sind die auftretenden
Integraloperatoren nicht kompakt, so dass die Riesz-Fredholm-Theorie nicht ange-
wandt werden kann.

Der zweite Teil der Arbeit beschéftigt sich mit der numerischen Losung der In-
tegralgleichung. Um den unendlichen Integrationsbereich zu handhaben, wird die
Integralgleichungen in einem ersten Approximationsschritt auf einen endlichen Be-
reich der reellen Ebene reduziert. Wir fiihren hierzu ein neues Abschneideverfahren,
genannt multi-section method, ein, fiir welches wir Konvergenz zeigen konnen. In
einem zweiten Schritt kénnen nun Standard-Diskretisierungsverfahren fiir Integral-
gleichungen auf endlichen Gebieten angewandt werden.

Die Diskretisierung der reduzierten Gleichung liefert grofse dicht besetzte lineare
Gleichungssysteme, welche mittels iterativer Methoden geldst werden miissen. Es ist
daher erforderlich, schnelle Matrix-Vektor-Multiplikationsmethoden zu entwickeln.

Wir stellen einen alternativen Zugang zu der canonical grid method vor, welcher
auf Approximationen der Dirac’schen Delta-Distribution hoher Ordnung basiert.
Diese neue Interpretation erlaubt eine recht einfache Implementierung. Dariiber hin-
aus erreicht unser Algorithmus einen Geschwindigkeitsvorteil. Fiir den Fall des Ein-
fachschichtpotentialoperators belegen wir die Anwendbarkeit dieser Methode durch
numerische Beispiele.
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Introduction

1 The rough surface scattering problem

This thesis is concerned with boundary integral equation methods for what has been
termed rough surface scattering problems in the engineering literature.

A rough surface is a non-local perturbation of an infinite flat plane, such that the
whole surface lies within a finite distance of the original plane. We treat the special
case, where the surface is given as graph of some bounded continuous function,
which we refer to as the surface height function, i.e. for a function f : R? — R the
scattering surface denoted by I' is given through

I'={(z, f(z) e R’ : @ = (21,22) € R*}. (1)

We assume that f is in BCH*(R?), the space of bounded continuously differentiable
functions with bounded and uniformly Holder continuous derivatives, which makes
the scattering surface I' a Lyapunov surface. Thus f is bounded and without loss of
generality we can assume that there exist constants f™ > f~ > 0 such that

[ < fl@w) < f* forall xeR (2)

This thesis focuses on one typical problem from the application of outdoor sound
propagation, namely the scattering of an incident acoustic field by a sound-soft
surface. That is we are interested to compute the propagation of the reflected wave
in the medium of propagation occupying the perturbed half-space above the scatterer
that we denote by

D= {(z,23) € R’ : 25 > f(x),x € R*}. (3)

We note that for later studies on the dependence of the scattered field on the bound-
ary it is convenient to sometimes write I'y for I" and Dy for D to make the dependence
on the boundary more explicit. In the case of the constant function f : R? — R,
x — h, for h € R, we write I'" and D".

Time-harmonic acoustic waves, that are waves with a time dependence of the form
e~ ™! are modelled by the Helmholtz equation

Au+ k*u = 0. (4)
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FIGURE 1: Geometrical setting of the scattering problem.

Here k = w/cy stands for the wavenumber, w the frequency and ¢, the speed of
sound. Though we are mainly interested in the case of positive real wavenumbers,
we consider the more general case of wavenumbers with a positive imaginary part.
Thus we have the natural decomposition

/i:/sT+mi€@,

where K, > 0 denotes the realpart, x; > 0 the imaginary part of the wavenumber
and
C:= {zeC:R(z) >0,3(z) >0} (5)
Physically speaking the case of complex wavenumbers models lossy media that ab-
sorb the sound energy.
A sound-soft surface is modelled through a Dirichlet boundary condition. This
means that we require the total field

ui=u'+u’,

which is the sum of the incident field u* and the scattered field u*, to vanish on the
boundary;, i.e.
u(x) =0, zel. (6)
The analysis we develop is applicable whenever the incident wave is due to sources
of the acoustic field located in some compact set M C D. Since waves with sources
in a bounded set M C R? can be represented as superpositions of point sources
located in the same set, we will concentrate on the case when the incident field is
that due to a point source located at some point z € D, i.e.

ut = O(-, 2),

Xiv



2 BIFE for rough surface scattering

where A
1 etsle—yl

(I)(l',y) =T x,yGR?’, l’#y,
AT |z —y|
denotes the fundamental solution to the Helmholtz equation in R3.

To ensure uniqueness we need to pose some kind of boundary condition at infinity.
This can be either done with a growth or radiation condition. In the present case
we need a combination of both types. First of all we require that the scattered field
is bounded in D, i.e.

lu®(z)| <e¢, z€D, (7)

for some constant ¢ > 0. This condition is enough to ensure uniqueness in the case of
a wavenumber with positive imaginary part. In the case of a purely real wavenumber
Kk = Kk, we also require that u® satisfies the following limiting absorption principle:
denoting u® temporarily by ufﬁ) to indicate its dependence on k, we suppose that
for all sufficiently small € > 0 a solution Ul ) €XISts and that

u?n-&-ie) (ZL’) - ufn) (JZ), e — 0. (8)

The limiting absorption principle plays the role of a radiation condition for real x
to single out the physical solution.

Thus the following is the specific problem that is considered, for an illustration of
the geometrical setup see FIGURE 1:

PROBLEM 1 (Point source rough surface scattering problem). Let u' = ®(-,2) be
the incident field due to a point source at z € D. Then we seek a scattered field
u® € C?(D) N C(D) such that u® is a solution to the Helmholtz equation (4) in
D, the total field satisfies the sound-soft boundary condition (6), and the bound (7)
holds. In the case k > 0, we also require that the limiting absorption principle (8)
holds.

2 BIE for rough surface scattering

Boundary integral equation methods have been applied very successfully since the
beginning of the 20th century to various problems from mathematical physics, in-
cluding problems from potential theory or scattering theory for acoustic/electro-
magnetic waves. In the case of smooth bounded obstacles the theory is very well
developed and there are very effective ways to utilise the integral equation for the
numerical solution of the problems, see e.g. the books of Kress [35], Colton & Kress
[24],[23], McLean [39] or Atkinson [4].

In the case where the scattering object is an unbounded surface the situation is
very different. Although integral equations are widely used, especially in the com-
putation of rough surface scattering problems see e.g. the reviews and monographs
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Introduction

by Ogilvy [44], Voronovich [55], Saillard & Sentenac [52|, Warnick & Chew [57], and
DeSanto & Martin [25],[26], the mathematical basis of the method is still poorly de-
veloped, especially in the 3D case. In fact, there are a number of severe difficulties
in extending the theory of BIE methods from bounded to unbounded scatterers.

2.1 Non-integrability of fundamental solution

In the case of a purely real wavenumber x > 0, the standard fundamental solution
<I>(x y) of the Helmholtz equation has a rather slow decay at infinity, like |z —
y|~=1/2 in n dimensions. Thus the standard boundary integral operators are not
bounded on any of the standard function spaces when the surface is unbounded.

We illustrate this in some more detail and take a look at the ordinary single-layer
potential

A¢uymwwwm,xer. (9)

The problem is that, due to the slow decay of the fundamental solution in R? at
infinity, the integral (9) converges only if ¢ decreases sufficiently rapidly at infinity.
So one could try to work with ¢ € S(I'), the Schwartz space of rapidly decreasing
functions. But this does not seem to be desirable due to the fact that this is a very
small space with a rather unpleasant topological structure. One could think to work
with L? spaces instead, but, as the following calculations show in the case where the
surface is a flat plane, this is not possible also. Denote

B(rl,TQ;:I:) = {y cR?: ry < |:B — y| < TQ}

for positive numbers r; < r. Then we ask whether there exists p > 1 such that

lim lim / |®(x,y)|P dy

r1—0rg—oo
B(ri,r2;x)

exists. Introducing polar coordinates with centre & we calculate

| wewra-c [ i

B(ri,ra2;x) B(r1,r2;x)
(ro — 1), p=1

:C/m?"lpd’f’: Tgp_r%pv 1<p<27
Inry —Inry, p=2,

2—p 2—p
T2 _Tl ) p>27

where C' > 0 denotes some generic constant. From these elementary calculations we
see that we have two kinds of singularities that we carefully need to balance against
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2 BIFE for rough surface scattering

each other. The local singularity at zero is weakly singular and therefore integrable
for 1 < p < 2. For p > 2 it becomes strongly singular or even hyper singular.
The non-integrability of ®(x,-) over R?, due to it’s slow decay, can be interpreted
as a singularity at infinity that is strongly singular for p < 2 and weakly singular
for p > 2. These calculations show that we better replace the function ® by some
function that has a faster decay, rather than trying to find an appropriate space.

2.2 A faster decaying fundamental solution

In order to get a faster decaying kernel we replace ®(z,y), following what has been
proposed for the analogous 2D rough surface scattering case [63|, by an appropriate
half-space Green’s function for the Helmholtz equation. Specifically, we will work
with the function

G(z,y) == ®(x,y) — O(x,y), (10)
where
Y = (y1, Y2, —¥3),

is the image of y in the flat plane T° = {z € R3 : 23 = 0}. The function G is the
Dirichlet Green’s function for the half-space D° = {x € R3 : 23 > 0}. In Section 1.4
we show the bound for y € T,

(14 23)(1 + y3)
[z — y[?

IVG(z,y)], |G, y)| ~ C , |yl = oo, (11)

cf. (1.22) and (1.28). This decay is fast enough for the single-layer potential operator,
given by

(Se)(x) = Q/G(l’yy)@(y) ds(y), xeT, (12)
r
and the double-layer potential operator, given by
0G(z,y)
Ky)(x) =2 | ————= ds(y), zel, 13
(Kp)(x) vl w(y) ds(y) (13)

where the unit normal vector v(y) is directed into D, to be well-defined as improper
integrals, for every x € D and ¢ € L?(T'), in particular in the case x; = 0.
Because, for z € T,

1
/ = ds(y) — 00, R — oo,
I'NBg(z)\Bi1 () lz — |

the decay of G(z,y) as y — oo is not fast enough when x > 0 for S to be well defined
as an operator on the space of bounded continuous functions. Thus integral equation
methods for the 3D rough surface scattering problem are essentially different from
the 2D case studied in [16, 17, 18, 63, 3] and the analysis developed here can not be
applied to the interesting case of a plane wave incident.
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Introduction

2.3 An equivalent BVP

To apply integral equation methods we convert the scattering problem into a bound-
ary value problem. For this we seek the scattered field as the sum of a mirrored
point source
Q'(-,2) = —D(+, 2,
plus some unknown remainder v, i.e.
u =v+ (-, 2).
Using the boundary condition
u'+®(,2)=0 on I'=0D
we obtain the boundary condition on v that

v(z) = -Gz, z) = g(x), zel. (14)

Clearly g € BC,(I'), the space of bounded continuous functions vanishing at
infinity, and it follows from (11) that g € L*(T), so that g € L?(T') N BC(T).
Further, by the dominated convergence theorem we see that ||g. — g||r2) — 0 as
e — 07, where g. is —G(-, z) with s replaced by x + ie. Thus u® satisfies the above
scattering problem if and only if v satisfies the following Dirichlet problem, with ¢
given by (14) and g, defined as —G(+, z) with x replaced by k + ie.

PROBLEM 2 (BVP). Given g, g.L*(I') N BCx(T'), for € > 0, with ||ge — g||r2qy — 0
as € — 0, find v € C?(D) N C(D) which satisfies the Helmholtz equation (4) in D,
the Dirichlet boundary condition v = g on I', the bound (7), and the following
limiting absorption principle: that, for all sufficiently small € > 0, there exists
v € C?(D) N C(D) satisfying ve = g on T, (4) and (7), with k replaced by x + ie,
such that, for all x € D, v.(z) — v(z) as € — 0.

We look for a solution to this boundary value problem as the combined single-
and double-layer potential

v(x) i=ug(x) —inuy(z), =€ D, (15)

with some coupling parameter n > 0, where for a given function ¢ € L*(T)NBC,(T)
we define the single-layer potential

wle) = [ Glrp)ely) ds(y). @€ B (16)
r
and the double-layer potential
GG(m,y) 3
us(x) = | ——= ds(y), x€R°. 17
2() o) e(y) ds(y) (17)
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3 General ideas and techniques

Seeking the solution of the boundary value problem in this form we will see that the
boundary condition (14) is satisfied if and only if the BIE

Ap =2¢g (18)

holds on I', where
A=IT+K—inS (19)

and [ is the identity operator. Thus, the existence of a solution to the BVP is
reduced to the study of the solvability of a boundary integral equation.

3 General ideas and techniques

Before we give an outline and emphasis the main results of the thesis we describe in
some more detail the main ideas and techniques that are used for the forthcoming
analysis. Among the many things the most important questions are:

e How to prove mapping properties of the operators?
e How to show the invertibility of the operator A = I + K — inS?

e How to solve the integral equation numerically?

3.1 How to prove mapping properties of the operators?

In the case that the obstacle is smooth and bounded there is a well developed
theory stating criteria on the kernel function to prove mapping properties of the
corresponding integral operators between certain function spaces. The compactness
of the scattering object is used in an essential way. For integral operators on non-
compact manifolds some criteria can be found in the book of Jorgens [32], but they
do not seem suited for the forthcoming analysis.

One result that is shown in Section 2.1 via Fourier techniques is that S and K
are bounded operators e.g. on L?(T") and L*(T") N BC(T).

The main idea to prove this result is as follows: With the help of an appropriate
positive cut-off function y we define a partition of unity {x,1 — x} to split the
operators into a local and a global part. That is we write the integral operator
B with kernel function b, representing either the double- or single-layer potential
operator, as the sum of two integral operators Bgiobai (the global part) and Bigeal
(the local part), with kernel functions

bglobal(xay> = (1 - X(|.’E - y|))b(.§€,y)

and
blocal($7 y) = X(|CU - y’)b<x7y)7 x % Y.
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Thus B = Bigigbal + Biocal and we can study the mapping properties of Bgiopar and
Biocal separately. This is very useful because we separated the local singularity from
the singularity at infinity (non-integrability).

The local part

The local part has a weakly singular kernel. To prove that the corresponding opera-
tor maps into the space of continuous functions (or the space of continuous functions
vanishing at infinity) one can adopt techniques used for bounded obstacles. Further-
more one can bound the kernel function by some convolution kernel so that mapping
properties of convolution operators can be used to prove the mapping properties for
Lebesgue spaces.

The global part

The global part has a continuous but non-integrable kernel. To treat this case we
show, via Taylor expansion with respect to x3 and ys, that, for some small integer
N,

bglobal(xa y) = Z mz(af)&(w - y)nz(y) + l(a:, y),

where m;,n; € BC(R?),(; € L*(R?*) N BC(R?). Furthermore the Fourier transform
of /; is bounded, which we show via explicit computations. The remaining part
of bgiobai(x,y) after the finite sum is subtracted, namely I(z,y), is relatively well-
behaved, i.e. it is continuous and again bounded by an integrable convolution kernel.
Thus the global part is written as sums and products of certain multiplication and
convolution operators.

3.2 How to show the invertibility of the operator [ + K —inS?

It can be shown that the integral operators S and K are not compact, due to the
non-compactness of the unbounded scattering surface. This lack of compactness
deprives us of a very useful tool, the Riesz-Fredholm theory. In the classical case
of smooth bounded obstacles this theory is used to prove the invertibility of the
operator equation of the second kind, stating that for a compact perturbation of an
invertible operator injectivity is equivalent to surjectivity.

To show that A is indeed invertible we prove three essential steps:

Step 1

In the case of a flat surface the integral operators .S and K are convolution operators,
showing once more that they can not be compact due to their continuous spectrum.
The invertibility of an convolution operator can be established via Fourier methods,
i.e. by a characterisation of the spectrum of the operator. The equation (18) can be
written as the convolution equation

U(@) + (B +¥)(®) = 2g(x), x €R,

XX



3 General ideas and techniques

which is uniquely solvable if and only if
1+ FRy(x) #0, x€R?

where R}, denotes the kernel of the combined double- and single-layer operator and
F denotes the two-dimensional Fourier transform.

Step 2

We show that the integral operators depend continuously in the operator norm on
variations of the boundary I'. Together with the result from Step 1 this yields the
invertibility in the case of a mildly rough surface.

Step 3

To prove the invertibility of the operator A in the general case of an arbitrary rough
surface we define a continuous deformation of a flat surface into the rough scattering
surface, such that all intermediate surfaces have a uniformly bounded maximum
surface slope. Starting with the invertibility result for the flat surface case, together
with the result on the continuous dependence of A on surface variations, we use
explicitly known lower bounds on the norm of the operator A that are uniform with
respect to the maximum surface slope, to extend the invertibility over the whole
range of the deformation.

3.3 How to solve the integral equation numerically?

The approximate numerical solution of the integral equation (18) is a challenging
problem in scientific computing with a lot of open questions, both from a theoretical
as well as a numerical point of view.

Theoretical considerations
From a theoretical point of view the main difficulty is the infinite integration domain.
This makes it necessary to introduce an additional approximation step. One can
interpret this approximation either as the truncation of the integral equation to
some finite interval after which standard discretisation techniques for the case of
finite intervals can be used or as the truncation of the infinite dimensional fully
discretised linear system to a finite dimensional one. The convergence of this kind of
truncation scheme can be analysed separately as it is independent of the convergence
of the discretisation scheme. By far the most popular truncation scheme that is used
in practical applications is the finite section method. For a large class of operators it
is well understood whether this method is applicable, i.e. loosely speaking whether
it converges for increasingly larger sections. We explain this method in some more
detail in Section 6.3 and give references for further reading.

We have to point out that, to the author’s understanding up to now, it is not
known whether the already available criteria show the applicability of the finite
section method to equation (18). In a recent paper [31] Lindner, Potthast and myself
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Introduction

introduced a generalisation to the finite section, which has been termed multi-section
method. For this scheme we were able to prove the convergence of the truncated
solution to the solution of the equation (18). The main ideas of this method are
summarised in Chapter 7.

Numerical considerations

From a computational point of view the main difficulties are the need to discre-
tise very large surface patches, very often of the size of several hundred square
wavelength. Following a rule of thumb that suggests to use at least 10 discretisation
points per wavelength we have to solve linear systems for several hundred-thousands
of unknowns. The discretisation of boundary integral operators generally yields a
dense and unstructured linear system. To solve these systems the use of direct
solvers is prohibitive on standard desktop machines with up to 4 GB RAM. Instead
the method of choice will be to employ some iterative solver.

For such a problem the use of the banded matriz iterative algorithm (BMIA) has
been suggested. This algorithm is based on a regular matrix splitting, where in
each iteration step a sparse linear system has to be solved and one matrix-vector
multiplication with a dense matrix has to be computed. The Nystrém method that
we are proposing in Chapter 6 yields a natural splitting that seems suitable for
the BMIA algorithm. We explain the main ideas of the Nystrém method and its
interaction with the BMIA method in the following.

Originally, the Nystrom method was introduced to solve integral equations of
the second kind with continuous kernel functions. Under certain conditions on the
kernel function it is possible to extend this method to the case of singular integral
operators.

The reformulation of two-dimensional boundary value problems for the Laplace
or Helmholtz equations with boundary integral equations yields integral operators,
where the kernel functions can be decomposed in the form

k(s,t) = ki(s,t) +1n|s — t|ka(s,t), sF#t,

with periodic smooth kernel functions k; and k.. For this kind of situation it is
possible to construct interpolatory quadrature formulas that incorporate the singu-
lar term directly into the quadrature weights, the original method dating back to
[36]. These special quadrature rules give rise to high order Nystrom methods. For
more information on these kind of product quadratures that can be applied to solve
boundary value problems for the Laplace and Helmholtz equation in 2D by means
of boundary integral equations, we refer the reader to [35], [24], [23] and [4] and the
citations therein.
A similar decomposition for our problem at hand could look like

K(CB,y>ZK1(iB,y)+ KQ(m7y)7 m#y'

1
|z — 1y
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3 General ideas and techniques

The change in the type of singularity is not an essential problem. The more severe
problem is that the function K5 is no longer a smooth function. Instead we end
up with a kernel function K5 that has a diagonal discontinuity but is otherwise a
bounded smooth function. Hence we see that it is not possible to construct a prod-
uct integration rule in analogy to the two-dimensional case. Instead we follow an
approach proposed in [12|. The main idea is to compute adjusted or locally corrected
weights so that the underlying quadrature rule is again high order in the vicinity of
the singularity. The corrected weights are given as the integral of the product of the
singular function with some basis functions that approximate the density in a neigh-
bourhood of the singularity. These integrals have to be computed to high precision
by numerical integration. The original method in [12] suggested to compute these
integrals by oversampling the region of integration until the result has converged to
the desired accuracy. To reduce the amount of work for the numerical integration
we apply a regularising change of variables. A change to polar coordinates removes
the singularity completely. This observation is widely used in a series of integration
schemes for the treatment of singular integrals. For example it is used in the floating
partition of unity method introduced in [9].
The fully discretised system can be written in the form

I+ L+G)yp =g, (20)

where 1 and g denote vectors, containing the values of the unknown density and the
right hand side at the set of integration points, I denotes the identity matrix, and
L and G are matrices that represent the locally corrected weights and the far-field
part of the integral operators. More precisely, the matrix G is a sparse matrix with
band structure and L is a dense and unstructured matrix.

Following the idea of the BMIA method, we use the above decomposition to
compute an approximate solution of (20), i.e. we compute

¢(0) =0,
T’b(n-i-l) — <I+L)_1(g_G¢(n))7 n:O’]_727,,,,

Thus, in each step we have to solve a linear system with a sparse banded matrix
I + L and do one matrix-vector multiplication with a dense unstructured matrix G.
The matrix I + L is actually a block band matrix with band blocks so that again an
iterative scheme, such as GMRES, can be used. However, the most time consuming
step is the computation of the matrix-vector product G¢(">. It is therefore inevitable
to have a fast matrix-vector multiplication that reduces the overall cost from a
standard O(N?) algorithm, where N denotes the total number of unknowns.

A method called the canonical grid method has been proposed to deal with these
special kind of matrix-vector product that arise in rough surface scattering problems.
The method consists in finding a clever approximation to the kernel function of the
boundary integral operators that allow the use of fast Fourier methods. Thus the
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cost for on matrix-vector multiplication can be reduced to O(M - Nlog N), where
M denotes a usually small number that depends only on the height of the object
measured in terms of the wavenumber.

4 Thesis outline

For the rest of this thesis it is very useful to have a short hand notation for the
following Banach spaces:

X(I):= LX) NBC() and X () := L*() N BCx(I).

The thesis consists of two parts. Part I concerns the development of a framework
that allows to prove the invertibility of the integral operator of the second kind that
arises from the treatment of rough surface scattering problems in three dimensions
by means of BIEs. Part II deals with ideas for the effective numerical solution of
the underlying BIE and ways to prove convergence results for the discretised BIE.

Part |

The results in the first three chapters that concern mapping properties and the
invertibility of the operator A, given through (19), in the algebra of all bounded
linear operators on L*(T') and X (T'), denoted by BL(L*(T')) and BL(X(T)), have
been published in joint papers together with S.N. Chandler-Wilde and R. Potthast,
see [21], [22] and [20]. These results are summarised and form the basis to prove
mapping properties and invertibility results in the space

X.o(T) := LA(T) N BO(I).

This space is a closed subspace of X (I") consisting of functions that have at least a
qualitative decay behaviour.

Chapter 1

Necessary tools from functional analysis as well as results from Fourier analysis are
reviewed. Several important Lemmata on mapping properties of convolution and
multiplication operators are shown.

Chapter 2

Mapping properties of the single- and double-layer potential operators are analysed.
The standard jump relations for single- and double-layer boundary potentials over
bounded obstacles are extended to the case of a 2D rough surface. The continuous
dependence of the boundary operators with respect to variations of the boundary
and with respect to the wavenumber are shown.
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Chapter 3

The uniqueness of the BVP is proven as well as the equivalence of the BVP with
the integral equation. Furthermore it is shown that if A is invertible in the Ba-
nach algebra BL(L?*(T")) then it is also invertible in the subalgebras BL(X (T)) and
BL(X(I)).

We next study the invertibility of the operator I + K — S, firstly for the case
when I' is flat and the operator I + K — S is a convolution operator, and then for
the general case when I' is rough. Starting from the above results we show that A
is invertible on L?(T'), without restriction on the surface elevation or slope of T.

Part Ii

Chapter 4

In this chapter we introduce notation used throughout the second part of the thesis,
summarise results from Fourier analysis for multi-periodic functions and sequences.
We prove that the composite trapezoidal rule is a high order integration scheme on
R? for a class of differentiable and sufficiently fast decaying functions thus extending
results shown in [40] and [42].

Chapter 5

We study operator approximations used in Nystrém methods for the weakly singular
integral operators occurring in the rough surface scattering problem. The operators
are split into a global smooth part and a local weakly singular part. In the case
that the density is smooth and sufficiently fast decaying we prove that the operator
approximations exhibit pointwise convergence that is of super-algebraic convergence
order. The results we show for the global operator extend ideas from [40] and [42] to
the three-dimensional case. The treatment of the weakly singular operators follows
ideas from [12] and [9] that were originally used for bounded obstacles.

Chapter 6

We present ideas how to apply a Nystrom method to the case of integral equations
of the second kind over unbounded domains. We try to motivate the need of an
additional truncation scheme and introduce the finite section method. Though the
solvability of the truncated fully discretised equation is not known, a lot of numerical
schemes have been developed for the efficient numerical solution of these large linear
systems. We give a short introduction to the BMIA, for which we suggest a new
matrix splitting that arises naturally from our operator approximation.

Chapter 7

As an alternative approach to the finite section method we give a short introduction
to the Multi-section method that was developed in [31]. For this scheme the conver-
gence can be shown and we summarise the main results. A numerical realisation of
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this truncation scheme leads to an approximative matrix equation that is solved in
a least squares sense. This can be done with the help of an iterative scheme, e.g. the
conjugate gradient method for linear least squares problems (CGLS). The operator
discretisation that we introduced in Chapter 5 can also be utilised for this scheme.

Chapter 8

Whether one uses the BMIA or the CGLS method to compute a solution of the trun-
cated equation, it is necessary to utilise fast matrix-vector multiplication schemes.
A scheme that was especially designed to handle the dense large matrices is the
canonical grid method (CGM) that we introduce in Chapter 9. As a preparation
for the CGM we explain the use of fast matrix-vector multiplication algorithms by
means of fast Fourier transformation (FFT) for integral operators with difference
kernels. The theory and algorithms are developed for arbitrary space dimensions
and we give an example, including a full MATLAB listing for a two-dimensional
problem.

Chapter 9

We present the classical CGM based on Taylor expansion, cf. [45] and [62], and
another variant based on interpolation, cf. [19], with Chebyshev polynomials. Both
methods emphasise the two-dimensional convolutional structure of the integral op-
erator. We introduce a novel approach that emphasises a three-dimensional con-
volutional structure of the potentials rather than the potential operators. To see
this three-dimensional convolution we write the potential in terms of a singular sur-
face measure which can be realised on a formal level by introducing a Dirac delta
distribution. For practical computations we replace the Dirac delta distribution by
a sequence of continuous functions that form a Dirac delta sequence. Following an
error analysis in [5] we derive criteria, the so called discrete moment conditions, that
ensure that the Dirac delta sequence mimics the sifting property of the Dirac delta
distribution on a discrete level for all polynomials up to a certain degree. These
approximations to the Dirac delta distribution define high order local interpolation
schemes. Starting from the discrete moment conditions we use ideas from [46] to
derive a linear system of algebraic equations that define the interpolation kernels
in terms of a piecewise polynomial. We prove error estimates for these high order
interpolation schemes, give some numerical example and reinterpret this method as
a classical CGM based on a special choice for the interpolation operator. We con-
clude the chapter with some ideas from the theory of radial basis functions (RBFs)
that can serve as an alternative kernel function for the local high order interpolation
scheme.

Chapter 10

In the last chapter we give a full listing of a possible MATLAB implementation of
the novel algorithm. This serves two aims: first of all we hope that the details of the
algorithm on the fully discrete level can be better understood if shown in a few lines
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of MATLAB code. Second, we want to emphasise the simplicity of the algorithm as
compared to alternatives like fast multipole methods, equivalent sources methods or
precorrected FFT methods, though at the same time it is highly efficient.
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Chapter 1

Tools

This chapter reviews results from functional and Fourier analysis and introduces the
notation for function spaces used throughout this thesis.

1.1 Results from functional analysis

The results summarised in the upcoming sections are classical results that can be
found in any functional analysis books, e.g. [58], [48] and [60]. They are included
mainly to make the thesis selfcontained as far as possible and to have the notation
and exact definitions at hand.

1.1.1 Some results on bounded linear mappings

For normed spaces (X, || - ||x) and (Y, || - |y) the product space X x Y is a normed
space equipped with the norm ||(z,y)||xxy = ||z||x + ||y||y. Convergence in X xY
is equivalent to componentwise convergence, i.e. the norm || - || x«y is equivalent to
(2, y) || xxveo = max(||z] x,||ylly). If X and Y are Banach spaces so is X X Y.

In the case that X and Y have a non-empty intersection X NY is a normed spaces
equipped with the norm ||z|| xny = max(]|z|/x, ||z|ly). If X and Y are Banach spaces
sois X NY.

The space of all continuous linear operators from X to Y is denoted by BL(X;Y);
in the case X =Y we write shortly BL(X) := BL(X; X). It is well known that a
linear operator is continuous if and only if it is bounded. Furthermore BL(X;Y)
is a normed space equipped with the operator norm

Al x—y = ” sHup 1 |Az|ly, A€ BL(X,Y).
|| x=
If the spaces are evident from the context we write shortly || Al instead of || A||x_y-
If Y is a Banach space then so is BL(X;Y).
The set of all invertible operators in BL(X) is an open set and denoted by GL(X).

The following theorem is often used to extend the domain of definition of an linear
operator defined on a dense subspace to its closure.
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THEOREM 1.1 (The linear extension theorem). Let X be a normed space, Xy some
dense subspace of X and Z a Banach space. Let A 1 Xo — Z be a bounded linear

operator. Then there exists a unique extension of A to a bounded linear operator
A: X — Z with ||A]| = ||A].

Proof. The main idea of the proof is to define the extension is through
Ap = lim Ap,, for ¢ € X,

where (¢, )nen 1S some approximating sequence of function in X with limit ¢. For
a detailed proof see e.g. [58, Satz 2.19]. O

1.1.2 Some classical function spaces

This section briefly introduces the notation for the most frequently used spaces.

Spaces of continuous functions The space of bounded and continuous real- or
complex-valued functions on R? is denoted by BC(R?). The space of bounded,
continuous, real- or complex-valued functions vanishing at infinity is denoted by
BCL(RY), i.e.

BC(R?) := {p € BC(R?) : lim ¢(z) =0}.

|x|—o00
The spaces BC(R?) and BC,(R?) equipped with the supremum norm

||S0||BC(Rd) 1= sup [p(z)]
z€RY

are Banach spaces. BC,,(R%) is a closed subspace of BC'(R?) arginparA more unique
notation would be better We will use

Spaces of differentiable functions To define spaces of differentiable functions
the multi-index notation is applied.

DEFINITION 1.2 (Multi-index notation). A multi-index o € N¢ 4s a d-tuple of non-

negative integers together with the following set of rules: for a = (aq,...,aq), 8 =
(B1,...,04) € N& and z € RY we define

O[Sﬁ = algﬁla"'7adgﬁd7
Oé—'_ﬂ = (a1+6l7"'7ad+/6d)7

la| == a1+ -+ aq4, the order of a multi-index,
al = ol ay!,

o aq Qq
z® = atagt
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Thus, for a function ¢ : R? — C and multi-index o € N¢ we can write 9%p for

the partial derivatives
o \™" o \™

For any integer k € Ny we set

CFRY) = {p: 0% € C(RY) for |a| < k},
BC*(R?) := {¢: 9*¢ € BC(RY) for |a| < k},

the space of real- or complex-valued functions on R¢ with & continuous (continuous
and bounded) derivatives.

C®(R?) : ﬂ C*(RY) and BC>®(R?): ﬂ BCF(RY),

k=1

the space of smooth (bounded and smooth), real- or complex-valued functions on
R¢.
CE (R == {p € C*(R?) | suppy C R? is compact },

comp

the space of k-times continuously differentiable, real- or complex-valued functions
with compact support on R,

D(RY) =

comp ﬂ comp

the space of test functions.

SR := {p € C®(R?) | Ym € Ny, B € N : sup (1 + [z|™)[0°f(z)| < oo},
z€RL
the Schwartz space of rapidly decreasing functions. It is obvious that the following
inclusion holds

D(R?) C S(RY). (1.1)

Spaces of Hdélder continuous functions A real- or complex-valued function ¢
defined on R is called uniformly Hélder continuous with Hélder exponent 0 < o < 1
if there exists a constant C' > 0 such that

jo(x) —ey)l < C z —y[* (1.2)

for all z,y € R?. By BC%*(R?) we denote the space of all functions that are bounded
and uniformly Holder continuous with exponent a.

BC%(RY) ¢ BC(RY) is called a Hdlder space. It is a Banach space equipped
with the norm

lellBooa = ¢l Bo@mey + |©]ara
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where
|90| Rd 1= SUp ’@(x) _Sp(y)‘
“ w,yERd |'T - y|0¢
7Y

denotes the Holder semi-norm. |¢|,ga is the smallest constant satisfying (1.2) and
named Holder constant of .

REMARK 1.3. In the case a = 1 the function is called Lipschitz continuous. A
uniformly Hélder or Lipschitz continuous function is uniformly continuous.

We also need spaces of bounded continuously differentiable functions that have
bounded and uniformly Holder continuous first derivatives. This space is denoted
by BCh*(R%). Among the many equivalent norms on BC1*(R?) we choose

Vp(xr) — Vo(y
lllacne = lellsos + sup [Vo(@)| + sup L EE = Vel
Q:ERd z,y;]Rd |x - y|
zFy

The space BCY*(RY) ¢ BC'(RY) equipped with the norm || - || o1, is a Banach
space.

Spaces of Lebesgue integrable functions For 1 < p < oo we denote by LP(R?)
the linear space of equivalence classes of real- or complex-valued Lebesgue measur-
able functions ¢ on R? such that |¢|? is integrable over R%. As it is the usual custom
two functions are identified if they agree except for a set of measure zero which is

written shortly as a.e. for almost everywhere, i.e. if for two measurable functions
defined a.e.
fiRI\N, - K, g:R'\ N, =K,

the sets Ny, N, and {z € R4\ (N;UN,) : f(z) # g(z)} are of measure zero. One can
show that all functions in one equivalence class are integrable and have the same
integral. On the set of equivalence classes

ol = [ et ) w3

defines a norm which is called the LP-norm.

THEOREM 1.4 (Riesz-Fischer theorem for 1 < p < o0). For 1 < p < oo the spaces
LP(RY) equipped with || - | zr(ray are Banach spaces. For every convergent sequence
there exists a subsequence that converges pointwise almost everywhere.

The linear space of equivalence classes of measurable functions that are essentially
bounded is denoted by L®(R?), i.e. a measurable function ¢ : R¢ — K belongs to
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L>(RY) if
[0l oo ray := ess. sup [p(z)| :=inf {C €R : |p(z)| < Cae. } <oo. (1.4)

z€Rd

One can show that ||| pe(re) defines a norm on L*(R?).

THEOREM 1.5 (Riesz-Fischer theorem for p = o0). The spaces L=(R?) equipped
with || - || e (ray is a Banach spaces. For every convergent sequence there exists a
subsequence that converges pointwise almost everywhere.

REMARK 1.6. Following the usual custom we talk of LP-functions instead of equiva-
lence classes of functions. This is a reasonable approach as long as one does not try
to use pointwise properties of LP-functions. One exception is the case that f € LP
equals to a continuous function a.e.. As one can show that there can only be one
continuous function in one equivalence class, one chooses this functions as repre-
sentative.

To prove mapping properties of convolution operators on LP-spaces in Section 1.5
we need the Holder inequality. It is used also to prove the Minkowski inequality,
i.e. to show that (1.3) actually is a norm.

In dealing with LP-spaces it is useful to define conjugate pairs of exponents, i.e. for
p € [1,00] let p’ denote the conjugate exponent such that

1 1

_+_,:1
p D
=0.

where one uses the convention é

THEOREM 1.7 (Holder inequality). Let 1 < p < co. For f € LP(R?), g € L (R?) it
holds that fg € L*(R?) and

[fgllr < 1 fllze gl L (1.5)

or written as integral inequality

[ swias < ([ 11w i) " ([ v’ ) "

Proof. For a proof see [58, Satz 1.39]. O

An easy consequence is the

COROLLARY 1.8 (Generalised Holder inequality). Let 1 < p,q,r < oo with % =
5+ For fe LP(RY), g € LYRY) it holds that fg € L"(R?) and

I fgller < 1A llze lgll e (1.6)
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or written as integral inequality

([ s a)” < ([ isera)” ([ awea)”

Proof. We note that

[fal"=1fI"lgI" € L' <= |fgl=Ifllgl €L

and
1 1 1
—=4 - = 1=
r b q

+

33| =
s | =

—~

Thus we can apply the ordinary Hélder inequality (THEOREM 1.7) and compute

[1sar da= [isrir e (i a)™ (frarera) .

Taking the rth root on both sides finishes the proof. m

In the case that the Lebesgue spaces are defined over some bounded domain
Q) C R? it is a consequence of the Holder inequality that for 1 < p < ¢ < oo it holds
that

1 1
[fllzriy < 1977 [|fll o
for all f € L9(Q), i.e. L9(Q) C LP(Q). In the case that |[2] = co in general neither
of the inclusions L4(R?) C LP(R?) nor LP(RY) C LY(R?) are valid.

For any two numbers p, ¢ with 1 < p < s < ¢ < oo it holds that a function from
the intersection of LP and L? also belongs to any L*-space for p < s < ¢q. This is
a very elementary example of a so called interpolation theorem, sometimes called
Lyapunov inequality cf. [60, Lemma 11.4.1].

LEMMA 1.9. Let 1 <p<qg<ooand0 <6 <1. Define s through % = (1—9)%+9§,
then LP(R?) N LY(R?) C L*(R?) and

I llzs < WA NflLe for all f € LP(RT) N LI(RY). (1.7)

Proof. We note that 1 = (1%)8 + % and with the help of the Holder inequality
compute

(1-0)s Os
q

/|f|sda::/|f\(1e)slf’9s dz < </‘f’(19)s-(17’9)8 dx) 5 (/|f|93'<3s dx).

Taking the s-th root on both sides finishes the proof. m
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The following example illustrates the preceding Lemma. We use it later on to
show the mapping properties of the boundary operators.

EXAMPLE 1.10. Consider the function on R? given through

a—2
yl* e, |yl <1,
R
0, ly| > 1,

for some a € (0,1]. Changing to polar coordinates one computes that

1
[wray= [ g ay=2r [ o< oo
R B1(0) 0
for all p € [1,5%5), ice. € € L'(RY) N LP(R) for 1 < p < 325 <2

For later use it is important to know dense subspaces of Lebesgue spaces. One
can show

LEMMA 1.11. For1 < p < oo the space D(RY) is a dense subspace of LP(RY), i.e. for
each ¢ € LP(R?) there exists a sequence of functions (pn)nen in D(R?) such that
o — @l Lrway — 0 for n — oo.

As an immediate consequence of the inclusion (1.1) we get:
LEMMA 1.12. For 1 < p < oo the space S(R?) is a dense subspace of LP(R?).

Among the Lebesgue space the case p = 2 deserves some extra attention as it is
the only LP-space that is a Hilbert space. The scalar product is given in the usual
way by

(020) 2y 1= / ()0 da,

for ¢, € L*(R?) and we see that the Cauchy-Schwarz inequality is just a special
case of the Holder inequality, i.e.

(0 ) 2] < lotpllor < [zl o

Radial functions For later use in connection with symmetry properties of Fourier
transformation it is useful to introduce the concept of radial functions in LP-spaces.
A function f: R? — K is said to be radial if it can be written in the form

f('r):frad(‘x’)? xGRd,

where fiaq : R>g — C. It is clear that a function is radial if and only if

f(z) = f(Qx), forall z € R and Q € O(RY),
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where O(IR?) denotes the group of orthogonal transformations on R?. If f € LP(R?) is
a radial function it follows from Fubini’s theorem together with a change of variables
x = r(cosf,sinf) that

co 21 0o

1A% = | [f(2)]" de = | fraa(T)|P d0 rdr = 27 [ | fraa(r)|P rdr < oo,
Juera]] /

i.e. the radial part of f is an element of LP(Rx¢,rdr), the weighted LP-space on the
positive half-line.

1.1.3 Function spaces on the boundary
The scattering surface I' given by (1) has the natural parametrisation
PR =Rz (z, f(x)). (1.8)

We can use this parametrisation to define the counterparts of the previously intro-
duced functions spaces for functions living on the boundary.
In the case of continuous or continuously differentiable functions we define

¢ € BCKT) 4= ¢oP;c BC*R?), forkec N

The right hand side is meaningful if we assume that P; € BC*(R? R?) for some
k € N. Thus in general the functions defined on the scattering surface can not
be any smoother than the scattering surface itself. It is clear that this definition
extends in the obvious way to Holder spaces, etc.. Furthermore we conclude that
the mapping

I; : BC™*(Ty) — BC™(R?), (I;¢)(x) = (po Ps)(z), = ¢cR? (1.9)

defines an isomorphism for n € N, € [0, 1].
For LP-functions we note that the Lebesgue integral over the scattering surface I'
is defined through

[ el asw) = [ lteo PP dy.

where
J(y) =V1+|Vfy)P, yeR’ (1.10)

denotes the surface area-element. For f € BC'(R?) we have the bounds

1< J(y) <1+ L3 =1L, (1.11)

10
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where
L= sup PO IO _ 94y, (1.12)
a:,y;SR2 |.’.U - yl zER2
TFY

denotes the Lipschitz constant of f, i.e. the maximum surface slope. It follows from
Holder’s inequality and the bound (1.11) that

p € LP(T,ds)
= polye PR J(y) dy)
< poP;ec L'(R?).
Thus we see that the mapping given through (1.9) defines an isomorphism for all
of the before mentioned spaces, including the Lebesgue spaces, provided that the
surface is sufficiently smooth for the above definitions to be meaningful. In this way
all results from the previous sections, including the denseness statements, transfer to

the spaces on the boundary. Furthermore we can use this isomorphism to associate
to each operator Ay € BL(Z(I'y)) an operator

A= I;AgI;' € BL(Z(RY)),

where Z € {BC%® S, D, LP} stands for any of the previous spaces.

1.1.4 Integral operators over unbounded domains

The following two Lemmata are a slight generalisation of the well known theorems for
integral operators with continuous and weakly singular kernels on bounded domains.
The following proofs are adopted from [35, Theorem 2.21, and Theorem 2.22|.

LEMMA 1.13. Consider the integral operator

(A)(@) = | Koy dy, =R

R4

where K : RY x R? — C denotes a bounded, continuous function with compact
support, i.e. there exist positive constants C' and R such that

sup  |K(z,y)| <C
(z,y)ERI xR

and

supp K (z,-) :={y € R¢: K(z,y) # 0} C Bg(x)
or all v € RY. Then it holds:
f

(i) A is bounded, considered as operator from L®(R?) to BC(R?).

11
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(ii) A is bounded, considered as operator from BCy(R?) to BCy(RY).

Proof. We first note, that the integral defining the operator A is well defined since

K(x,y)lb(y)dy‘é / K (z, y)|[¢¥(y)] dy

Rd

supp K (z,)
<c / 1 dy ]~
Br(x)
f d—1 Wi ra
< Cun [ 1 dr e = O RY o,
0

where we have introduced polar coordinates with origin at x and w,; denotes the
surface area of the unit sphere in R?. As the value does not depend on the point
r € R? we see that Ay € L*®(R?) and A is a bounded operator on L* with
JAll < c% R

K is continuous, thus for each £ > 0 there exists § = d(z,y) > 0 such that

|K(z,y) — K(z/,y)| <e forall 2/,y € R? with |z — 2'| < 0.
Furthermore using that
supp (K (z,) = K(«/,)) © (supp K (z,) Usupp K (2, )) < (Brlz) U Br(+'))

we can estimate
(A0)a) = (A0))] < [ | 1KGe.9) = K)ot dy

< e[¢llz~2C 1dy

Bpr(=)

w
< 6H¢||Loo203de

showing the continuity of At and finishing the proof of (i).
(ii) In the case 1 € BC,(R?) we can estimate a little more carefully to obtain

(@< [ K] ) d
supp K (z,-)
< sup [P(2)] C 1 dy
2€BR(x) Br(z)
< sup |¢Y(2)| C Ydpd 0, |z|— oo.
2€BR(x) d

In the case of a continuous function ¢ the essential supremum norm reduces to the
usual supremum norm, thus ||A|| e, —pc., < ||AllLe—rL- O

12



1.1 Results from functional analysis

DEFINITION 1.14. A kernel function K : R? x R® — C is local weakly singular, if it
is defined and continuous for all x,y € RY, x # vy, and there exist positive constants

M and a € (0,d] such that
[K(zy)| < Mz —y|*™, z,yeR, a#y.

LEMMA 1.15. Consider the integral operator

(A)(z) == | K(z,y)v(y) dy, =R

Rd

where K : RYxR? — C denotes a function that is local weakly singular with compact
support, i.e. there exists a positive constant R such that supp K (z,-) C Bg(z) for
all x € R, Then it holds:

(i) A is bounded, considered as operator from L*>®(R?) to BC(R?).
(ii) A is bounded, considered as operator from BCy(R?) to BCy(R?).

Proof. We first note that the integral defining the operator A exists as an improper
integral in any of the cases ¢ € BC, or ¥» € L™, since the support condition and
the local weak singularity yield the following estimate

M ||| |z —y|*™¢, y € supp K (z, -),

|K (2, y)¥(y)| < {

0, y & supp K (z,-),
and
R Wy
/ |z —y|* " dy < / |z —y|* " dy < wd/ ro~ Il dr = =R,
0 0]
supp K(z,") Bpr(z)

where we have introduced polar coordinates with origin at  and w,; denotes the
surface area of the unit sphere in R%. As the value does not depend on the point
r € R? we see that Ay € L°(R?) and A is a bounded operator on L* with

|A|| oo < M %R“.

We continue to prove (i) and show that At is eventually in BO(R?) C L>(R%).
For this choose a piecewise linear continuous function h : [0,00) — R by setting

0, 0<t<1/2,
h(t):=q2t—1, 1/2<t<1,
1, 1 <t < o0,

13



Chapter 1 Tools

and for n € N we define the continuous kernel K, : R? x R? — C by

0, T =1y.

Ky(x,y) = {

It follows from LEMMA 1.13 that the corresponding integral operators A,, with kernel
function K,, are bounded operators on BC(R?). Furthermore we have the estimate

|(AY)(2) = (Anp)(2)| =

/ @ {1=h(nlz =y }K (2, y)v(y) dy
By (x

1/n
< MHwHwad/ rodpd=1 dr
0
w
= M|[Y[lp~—=, z€R%
an
From this we observe that A, — Ay,n — oo, uniformly, and therefore Ay €

BC(RY).
In the case ¥ € BC,(R?) we can estimate again a little more carefully to obtain

(Ap)()] < / K (2, 9)] [(w)] dy

supp K (z,)
<M |z —y|*™ [ (y)] dy
Br(z)
< sup ()| M |z —y|* " dy
z€BR(x) Bpr(z)
< sup [0(2)| M 2R 0, 2] — .
z€EBR(x) a

REMARK 1.16. [t is clear from the proof that the operator

(A)@) = [ K@) dy. o€

exhibits the same mapping properties as A.

1.1.5 Adjoint operators

To prove the invertibility of the operator A, given through (19), we make use of
some well known facts of adjoint operators. We therefore give a short summary of
adjoint operators induced by bilinear forms, following [35, Chapter 4].

14



1.1 Results from functional analysis

Two normed spaces X and Y equipped with a nondegenerate bilinear form (-, -) :
X xY — C are called a dual system and denoted by (X,Y).
We will use a dual system (L*(T"), L*(T")) where the bilinear form is given through

(o, 1) == / o)) ds(y), .t € LA(T). (1.13)

It is obvious that the integral is well-defined and defines a bilinear form. It remains
to show that this form is indeed nondegenerate, i.e. for every ¢ € L*(T') with ¢ # 0
there exists 1 € L*(T") such that (p, 1) # 0. To prove this statement we first note
the following connection between this bilinear form and the usual L?-scalar product.
For ¢, € L*(T) it holds that

(0, 1) = (0, 9). (1.14)

Thus choosing ¥ = @ the proof follows from (1.14) together with the definiteness of
the L?-scalar product. The bilinear form (1.13)) henceforth is called dual-pairing.
In a Hilbert space one allways has a canonical dual-system arising from the inner
product.

We can use both dual-systems to define adjoint operators, i.e. two operators A, A" :
L*(T') — L*(T) are called adjoint with respect to the dual-pairing if

(Ap,v) = (p, A'p) forall ¢, € L*(T)

whereas two operators A, A* : L*(T') — L*(T") are called adjoint with respect to the
canonical dual-system if

(Ap,v) = (p, A™) forall ¢, € L*(T).

One can establish a connection between these two different adjoint operators through
the following calculations. It follows from

(¢, AP) = {p, AP) = (Ap,¥)) = (Ap,¥) = (¢, &™), @, € LX)
that (p, A — A’9) = 0 for all ,+ € L*(T") which is equivalent to

Alp = A*p for all ¢ € L*(I). (1.15)

It is well known that for operators on a Hilbert space Y, that are adjoint with
respect to the canonical dual-system arising from the inner-product on Y, we have
that A and A* have the same norm, that A is invertible if and only if A* is invertible,
and that if they are both invertible then

AT = 1A

As the complex conjugation is a norm preserving isomorphism on L*(T') it follows
from (1.15) that all the before mentioned properties immediately transfer to the
adjoint operators with respect to the dual-pairing.

A proof for the above statements can be easily constructed from [35, Theorem
4.9, Theorem 15.8].

15
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1.2 Results from differential geometry

To prove the mapping properties of the double-layer potential operator we need the
following Lemma that can be used to prove that in the case of a Lyapunov surface
the singularity of the double-layer potential is weakly singular.

LEMMA 1.17. In the case of a Lyapunov surface T, i.e. f € BCY*(R?) it holds that

(V). z =)l < Ifllsere [z -yl zyel. (1.16)

Proof. We first note that the inward unit normal at a point y = (y, f(y)) € ' is
given through

V(y) — (—Vf(y), 1)
V1+IVi(y))?

Together with the mean value theorem and the lower bound (1.11) on the surface
area element J we estimate

= (=Vf(y),1) J(y)" (1.17)

1
(v(y),z —y)| = T (Vi(y),z—y)—{f(x) - f(y)}|
<1-[(Vf(y),z—y) — (V&) z—y)

<|Vf(y) =Vl |z—yl

< | fllpore & —y[*,

where £ = x +t(y —x),t € (0,1) denotes some point between & and y. O

1.3 Results from scattering theory for bounded
obstacles

To prove the mapping properties of the boundary layer operators over an unbounded
domain in Section 2.1 we need the following classical results for operators defined
over bounded obstacles D with Lyapunov boundaries.

DEFINITION 1.18 (Lyapunov boundaries). The boundary is said to satisfy a Lya-
punov condition if at each point x € I' the normal vector v exists and there are
positive constants | and « such that for the angle ¥(x,y) between the normal vectors
at x and y the estimate

holds.
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1.3 Results from scattering theory for bounded obstacles

The following results we cite are taken from [23] and have been proven under
the slightly stronger assumption that the boundary is C2. Proofs for the case of
Lyapunov curves can be found in [29], [43] or [61]. The results however remain the
same.

DEFINITION 1.19. Given an integrable function ¢, the integrals

ulz) = / Blap)ely) ds(y). € RN\ OD,

. CI)(:U?y) s T d
)= [ Golet)asty). = R\ oD,

are called, respectively, acoustic single-layer and acoustic double-layer potentials
with density .

The normal vector v is directed into the exterior of D.

THEOREM 1.20. Let 0D be of class C? and let ¢ be continuous. Then the single-
layer potential u with density ¢ is continuous throughout R3 and

[ullBers) < Cllellseen)

for some constant C' > 0 depending only on 0D. On the boundary we have

u(z) = /a Ba)e() dsty). € 0D,

aﬁ(%) =/ q;gf(’yy))w(y) ds(y) F %s@(x), x € 0D,

where

8ui T
L () o= Tim (v, racu(o = ho(2)))

is to be understood in the sense of uniform convergence on 0D and where the integrals
exists as improper integrals. The double-layer potential v with density ¢ can be
continuously extended from D to D and from R3\ D to R®\ D with limiting values

®(z,y)
oD 31/(y)

va(z) = o(y) ds(y) £ ~p(x), €D,

2

where
=1 +h
v () i v(x + hv(x))
and where the integral exists as an improper integral. Furthermore,

[vllsed) < Cllellseen),  vlBon) < Clielown)

17
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for some constant C' > 0 depending only on 0D and

i { G (o4 hoe)) = 5 (o = hoe)) },

h—0+

uniformly on 0D.

1.4 Properties of 3D fundamental solution

We start with an investigation of properties of the fundamental solution ®(x,y) and
its derivatives.

The key results are the expansions (1.21) and (1.27) needed to prove mapping
properties of the boundary integral operators S and K in Section 2.1.

1.4.1 Expansion for GG
Denote by U, the strip D—¢\ D¢ C R3 for some ¢ > 0, i.e.
Uc:{xER?’:—chggc}.

Then we are interested in understanding the behaviour of G(z,y) and ®(z,y) for
x,y € U. with |z —y| > 1 in terms of |x — y].

We use Taylor expansion for the fundamental solution ®(z,y) with respect to
variations of w3 and y3. It follows from Taylor’s theorem for g € C*(R?) that

gh)=>_ ifgm)hf + R(h), (1.18)

l1<2 J:

where h = (hy, hy),j € N3 denotes a multi-index and R is the remainder term of
the expansion. We apply (1.18) to the function

g(h) = ®(x + hies, y + hoes),

where e3 = (0,0,1) is the unit vector in the xs-direction, y = (y1,¥2,0) € I'° and
hi, hy € [—c, ] for some constant ¢ > 0. We use that

axdq)(xay) = —8y3(b(l',y), x 7£ Y,

to express all partial derivatives of ® as derivatives with respect to y3. Thus

aﬂcsaﬂcs@ = _azsayP)(I) = _ay3a'r3q) = 8y3ay3q)

18



1.4 Properties of 3D fundamental solution

and we obtain

00(z,y)

O(x + hiez, y + hoez) = O(z,y) — (h1 — ha)
, a2®?y3 ) (1.19)
r,Yy 2
S CPBY) b~ hy)? + R(z,y, h).
SRy (h1 = h2)” + R(z, y, h)
For the first two derivatives of ®(x,-) with respect to ys3 we calculate
0P(z,y) iK etrilz=yl 1 eirle—yl
oy~ T WE T Y @ W
and
P0(z,y) ik eyl R (@3 =) ey L etle—yl
oF  dmlr—yF  dn Jo— P e =P
B el ) R P R el ) R
dr |z —ylt dr |z —yl®
We rewrite the second derivative as
0*®(x,y) ik enlryl
) A — L
0 anle—gp 0
with
2 2 iK|T— : 2
Llw ) e — =T8T ooy L€ Bk (s = Ys)? ey
dr |z —yl? dmle —yP Ar e —yl!
3 (@ = 1)" injoy
Am |z —yP

For L we find the following estimate: for |x —y| > 1 we use (z3 —y3) < 2c¢ to obtain

4c? 1 4c? 4¢?
3 |z —y|* |z —yl

L(z,y, k)| < C4
ey, ml < E + s

. ¢
e —yP

for some positive constant C' depending only on ¢ and § C~C
Thus we see that given ¢ > 0 and a compact subset S C C there exists a constant
C, depending only on ¢ and S, such that

*®(x,y) ik el C
0y3 Am o —yP| 7 e —yP
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for all x,y € U, with |x — y| > 1 and all wavenumbers x € S. We abbreviate this

by writing
PO(x,y)  ir el 0 1
Oys A |v—y]? o —yP )

The similar equations below, in particular (1.21) and (1.27), are to be understood
in an analogous fashion.
Inserting all of the previously calculated derivatives into (1.19), noting that

ys ’
yields

1 ei’i‘m_yl

(I)(a: + h1€3, Yy + h263> = E ‘w _ y’

1 ik ein|m—y| (hl — h2>2 0 1
dm |z -y 2 lz—yl?)

(1.20)

Altogether we obtain the following lemma.

LEMMA 1.21. Given ¢ > 0 and a compact subset S C C, there exists a constant
C > 0 such that

ir|e—y|

C

e —yl¥

hiho 1
G(x + hies, y + hoes) + 1T e

2r |z —y|?

for all x,y € R? with |x —y| > 1, all k € S, and all hy, hy € [—c,c| , which we can
state again in the more convenient way as

1 ik el®yl 1
G(m + h1€3, y + ]’L263) = _%W ]’Lth + O m . (121)

Proof. Use (1.20) on
G(x + hies, y + haes) = @(x + hies, y + hoes) — @(x + hies, y — hoes). O

We also need another bound that is valid in all of the half space and not just
inside a strip around the surface. Following [16, Lemma 3.1] we transfer the proof
to the three dimensional case and show:

LEMMA 1.22. Given a compact subset S C C there exists a constant C > 0 depend-
ing only on S such that

(1 +23)(1 + ys)

G(x, <C
Gl y) r—t

, (1.22)

forallz,y € D ={x € R®: 23 > 0} with |z —y| > 1, and all k € S.
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1.4 Properties of 3D fundamental solution

Proof. For z,y € D° & # y with |z — y| > 1 define 7 := |z — y|,r := |z — ¢/| and

IKS

e
= > 0.
From A '
6258 el:‘is
'(s) =ik —
¢(s) Adrs  4Aws?
we estimate, in the case s > 1,
einrse—nis em,«se—ms e—nis e—nis
/ < |17 — <
[#'(s)] < |im d1s 4752 < x| 41s 47s?
e*lﬂs e*lﬂs e*lﬂs Cl
< < 1 < —
< s 4A7s + 4A7s < max(|r], )47rs s

with a constant ¢’ > 0 depending only on x. We note that for =,y € D it holds
that ' > r and furthermore
(r'=r)(r' +7r) P —r?  dasys < 4r3ys3 < 2(1 4 23)(1 + y3)

! _ _
|T_T|— / - / - ! - i
r+r r+r r+r 2r T

Thus using the mean value theorem we have

G, y)l = 16(") = 6(r)] < |r" —r| max |¢'(s)]

C’ 1 1
<|r'—r] max — < ZC’< + x3)§ + y3).
r<s<r’ 8 r
This proves the Lemma with C' := 2C". O

REMARK 1.23. Ezamining the proof we see that for all x,y € D* = {x € R® : 23 >
0} with |x —y| > 1, and all k € C it holds that

max(|x[, 1) (1+ x3)(1+ y3)
2 |z —yl?

e*m‘|9«“*y\'

G(z,y)| <

1.4.2 Expansion for 0G/dv

We repeat the above analysis for the normal derivative of G. We introduce the
linear operator T : R® — R3 given through Ty = v’ = (y1, 2, —y3). Note that this
operator commutes with any linear operation on R*. The following abbreviations
will be used throughout this work.

V,®(z,y) = (VO(z,-))(y) and V,®(z,y) = (VO(-,y))().

21



Chapter 1 Tools

Straightforward calculations yield

02(.y) _ L ha—g) f U ey
Pt — ). Vo) = - U L e

Using the chain rule we compute

Vi{®(z,y)} = (V(z,))(y) o T

to see that
00(z,y') ]
ZEI ) )
ay(y) <V(y)avy{ (ff,y)}>
— 1 <TV<y), T — y/> 1 . iklz—y'|
= P P— ik pe (1.24)
1 (v(y) .z —y) { 1 . } kla—y/
= — — ik p el
A |z —y)? |z — 9|

where v(y) = (1(y), v2(y), —v3(y)). Separating (1.23) and (1.24) into components
and introducing the notation v(y) := (v1(y), 2(y)), we derive

IG(x,y) . einle—yl erlz=y'l
ov(y) [z —yl* ey

| eme—yl ‘ emlx—y/|

— ik y3(y)($3 _ y3) m — 1K 1/3(?/)(333 + y3) m

| o (1.25)
6m|x,y‘ em|xfy |
+ u(y)~($—y){|x_y|3 B |x—y'|3}
em\x—yl em|:c—y,|

+  ws(y)(z3 —ys3) m + v3(y) (w3 + y3) —|x — P

We proceed as in (1.20) and calculate for

piklz—y]

\I/([E,y) = ma x 7é Yy

the expansion

ik|z—y| i 1 piklE—Y| (hy —h )2 1
e 1K€ 1 2
. h b Ol ———1). (126
(T +hies, y+haes) = lz — y? |z —y|? 2 (|w—y[4) ( )

Inserting this into (1.25) yields
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1.5 Results from Fourier analysis

LEMMA 1.24. Given a compact subset S C C there exists a constant C' > 0 depend-
ing only on S such that

Z'/‘ih,l
2m

0G(x + hies, y + hoes) (/‘ithhz (w(y) (x —vy)
ov(y) 2m "z -yl

for all x,y € R? with |x —y| > 1, all k € S, and all hy, hy € [—c, ] , which we can
state again in the more convenient way as

)+ Ty )W) <

T e -yl

aG(CU + h1€3, Y+ h263) o _/1_21/( ) (aj — y) emlmfy\
ov(y) BT

7:/{ e’“ﬂm*yl

1
‘5?“”W—ywm'%OQw—mJ'

In complete analogy to LEMMA 1.22 one proves:

z—y| [z —y2 "

LEMMA 1.25. Given a compact subset S C C there exists a constant C > 0 depend-
ing only on S such that

(1+23)(1+ y3)

<
|VyG($ay)| <C |z — y|?

, (1.28)

forallz,y € D° ={z € R® : 23 > 0} with |t —y| > 1, and all k € S.

1.5 Results from Fourier analysis

To establish that S and K are bounded operators on L*(T"), X (T') and on X (T")
we use Fourier methods together with certain mapping properties of convolution
operators. To make this thesis self contained a review of the relevant theorems on
Fourier transformation is included. All of the results can be found in more detail

e.g. [49], [60], [58] or [53].

1.5.1 Fourier transformation revisited

For reasonable functions ¢ : R? — C the Fourier transform and the inverse Fourier
transform are given through the following two linear mappings

(Fo)(k) = W /R ) e p(z) de, keR? (1.29)
and .
(F o) (k) := o /Rd e*To(x) de, ke R (1.30)
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Classes of reasonable functions e.g. turn out to be S(R?), the Schwartz space
of rapidly decreasing functions and the spaces of Lebesgue integrable or square-
integrable functions, L'(R%) and L?(R¢). It is possible to extend the Fourier trans-
formation to the space of generalised functions or tempered distributions &’(R?),
but this extension is not used in this thesis, though a reader more familiar with
distribution theory might find easier arguments to compute the 2D-Fourier trans-
form of the trace of the Dirichlet Green’s function on some flat surface I'y,, h > 0,
cf. (1.38).

The most rewarding setting for the Fourier transformation is probably S and L?,
as the Fourier transform is bijective on these two spaces. In the case of L? it is also
a unitary isomorphism, which makes a very elegant theory. The short outline on
Fourier analysis we give mostly follows [49].

The following theorems justifies the name inverse Fourier transform as well as the
symbol F~! for the operator given through equation (1.30).

THEOREM 1.26 (Fourier inversion theorem). The Fourier transform is a linear bi-
jective mapping from S(RY) onto S(RY). For ¢ € S(R?) it holds that FF o =
F1Fo = where F and F~' are given through (1.29) and (1.30).

Proof. For a proof see [58, Satz 11.5]. O

The next theorem, known by the name of Plancherel’s theorem, shows that Fourier
transformation preserves the L?-norm as well as the L?-inner product.

THEOREM 1.27 (Plancherel’s Theorem). For ¢, € S(RY) it holds

(‘F907fw)L2 = (@7¢)L2

and
[ Fellze = [loll 2

Proof. For a proof see [58, Satz 11.9]. ]

Combining the previous two theorems together with the linear extension theorem
(THEOREM 1.1) we conclude that there exists a unique continuation to an unitary
operator for all of L2(R?). This extension is often called Fourier-Plancherel trans-
form.

THEOREM 1.28 (Fourier-Plancherel theorem). The Fourier transform F extends
uniquely to a unitary map Fp : L*(RY) — L2(RY). The inverse transform F!
extends uniquely to an operator Fy ' that is the Hilbert space adjoint of Fy.

The Fourier transformation can be extended also to the space of Lebesgue inte-
grable functions; this is the statement of the following theorem.
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1.5 Results from Fourier analysis

LEMMA 1.29 (Riemann-Lebesgue lemma). The operators F and F~' can be ex-
tended in a unique way to bounded linear operators F and F;* from L'(RY) into
L>®(RY) with

1Pz o = 17 H 1 pee < (270) 72,

Furthermore Fy(LY(R%)) and F;'(LY(R?)) are subsets of Coo(RY), ie. Fip and
Fi 't are continuous and limp, o (Fi)(z) = 0 and limy oo (F; ') (z) = 0 for
all o € L*(RY).

REMARK 1.30. Note the different meaning of the symbol F;' in contrast to F, .
As the range of Fy is not contained in L'(R?), the symbol F; ' does not denote the
operator inverse of Fy. But as one can show that the Fourier transform on L' is
injective, one gets a pointwise inversion formula FiF; ' = Fy ' Fip = o if one
assumes that for ¢ € L' also F2p € L.

For practical computations it is useful to know that the abstract extensions that
are given through the above theorems have a representation as integral operators.

In the case of L!-functions the extensions are given through the integral repre-
sentations (1.29) and (1.30), as can be concluded from the Lebesgue dominated
convergence theorem. In the case of L2-functions the integrals (1.29) and (1.30)
have to be interpreted a little differently as the following example shows.

ExXAMPLE 1.31. Consider the piecewise defined function

1, |z <1,
plx) =1 4

m, |I| > 1,

which is clearly in L*(R) N C(R) but not in L'(R) N C(R). Thus for k =0 (1.29)

and (1.30) neither exists as proper nor improper integrals.
In general, if ¢ € L*(R?) the Fourier transform is given as L2-limit of a sequence

{or}, where {pr} can be any sequence in L'(R?) N L*(RY) converging to ¢ in the
L?norm. A very convenient choice for an approximating sequence is to choose

_Je(x), |z| <R,
Pr(@) = {0, 2| > R.

op € LY(RY) N L3(RY) for every R > 0 and ||¢r — ¢||z2 — 0, R — 00 so one can use
the integral representation for L!-functions to have a meaningful interpretation in

the case of L2-functions. This is summarised in the next theorem.

THEOREM 1.32.
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(i) For ¢ € LY(R¥) N L*(R?) it holds that

Frp=Fop, a.e inRL

(ii) Let ¢ € L*(R?). Then the following identities hold in L*-sense

—_

(Fop)(k) =Lim. —d/z/ e Tp(x) dx, a.e. inRY,
lz|<R

—_

—d/z/ e**p(x) dx, a.e. in R
je|<R

The integral exists in the sense of Cauchy principle value integral a.e. and 1.i.m.
stands for limit in mean, i.e. convergence in the L*-norm.

Proof. For a proof see e.g. |58, Satz 11.10]. O

1.5.2 Symmetry properties of the Fourier transformation:
Hankel transforms

For later use we need to compute Fourier transforms of functions with certain sym-
metry properties. The computation can be simplified if one understands how Fourier
transformation respects these symmetries. The following results are summarised
from [53, Chapter IV, §1].
It is an interesting result of Fourier theory that one can find an orthogonal direct
sum decomposition
L2 (RQ) _ @ ﬁn7

where

)= radreine
ﬁn::{geLQ(W): 9(x) = Graa(r)

a.e. for some measurable
n € 7,

function satisfying [;~ [graa(r)|*rdr < co

are subspaces that are invariant with respect to Fourier transformation. This de-
composition is related to the fact that Fourier transformation commutes with the
action of rotations. Though this decomposition can be derived for arbitrary space
dimensions we restrict our presentation to the two-dimensional case that is needed
for the application we have in mind.

We now show that the 2D-Fourier transformation on these subspaces reduces to
a one dimensional integral that is associated with the so called Hankel transform.
Assume first that g € L'(R?)N$H" for some n € Z. Then it follows from our remarks
in Section 1.1.2 on radial functions that g..q € Ll(RZO, rdr). Using polar coordinates
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1.5 Results from Fourier analysis

(R, ) for & and (r,0) for y together with the following integral representation of
the Bessel functions of the first kind of order n

1

2"

Jn(r) =

27
/ emleirest g neZ,r eR,
0

and the relations « - y = Rrcos(6 — ¢) and J,,(—r) = (=1)"J,(r), for n € Z,r € R,
we compute that

(Fug)(@) = — / g(y)e =Y dy

2w
/ / grad zn@ —iRr cos(6—p) do r dr
zn9 72ch059
db ) gra d
- 1) ) dr e
=" </ Graa(1) I (—Rr)r dr) e
0

= ([ gty mnrar) e (131)

It follows from the estimate

/000 Graa (1) I (Rr)r dr

< / |Graa (1) |r dr < oo
0

that the integral (1.31) defines an integral operator on L'(R>g, rdr) through
/ W(r)Jn(kr)r dr, k€ ]0,00),n € Ny.

This transform is sometimes either called the n-th order Bochner-Hankel, Fourier-
Bessel or Hankel transform — we will use the term Hankel transform. Thus we have
the following relation

(F19)(x) = (=0)" (Hngraa) (r)e™ (1.32)

for all g € L' N $H™. In a completely analogue fashion one gets the relation

(Frg)(@) = " (Hugraa) (r)e™,

which shows that H,, is self-inverse, i.e. H2 = I.

It is possible to extend the domain of the Hankel transform to L?*(Rsg,rdr) in
essentially the same way as this was done for the Fourier transformation. Again one
has to clarify in what sense the integral representation is to be understood. In the
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case that g € 9™ we know that G := Fog € H", thus there exists a representation
G(x) = Graa(R)e™? a.e. with Graq € L*(Rx, rdr) and so it follows from (1.31) that

2

1
dx

G(fv) - = 9(y)e™Y dy

27 Jiy<r
2w R
/ / Graa(R)e™ — (—i)" / Grad (1) (Rr) vdr "¢
0
R
= 27r/ Graa(R) — (—1)" / Graa(T) Jn(Rr) rdr
0 0

ie. fo Grad(1)J (Rr) rdr converges to the radial part G,.q of the Fourier trans-
form of g in L*(R>q,7dr). Thus the identity (1.32) extends to g € $™,n € Z, if
one understands the integral in the sense of an L?-limit of an improper integral.
Note that (1.32) can be used to extend the domain of the Fourier transform to an
even larger class of functions, e.g. distributions, as the one dimensional integral may

exists even if graq is not an L'- or L2-function.
The preceding analysis allows us to handle the more general symmetries that arise
in the expansion of the Green’s function, see (1.27). So we use the representation

(1.31) to calculate the Fourier transforms of parts of the kernels of the operators S
and K that are given in the form

2

do R dR

2

RdR — 0,R — o0,

iKT

e
ﬁ+7"2

for some 8 > 0 and n = —1,0,1. Clearly, £ € L*(R?) for 8 > 0 and so Fy{ surely
exists. To prove that S and K are bounded operators on L?(T'), cf. LEMMA 2.3, we
need to know that Fol € L°(R?). Thus we show the following lemma.

e (1.33)

LEMMA 1.33. The Fourier transform of € given through (1.33) is bounded.

Proof. To prove the lemma it suffices to show that the improper integral

I(k) = /0 T PO (kr) 1 dr

is bounded on [0,00). With the help of the asymptotic expansion of the Bessel
function, cf. for example [1],

Jn(z):\/gcos(z—%—z){l—i—()( )} 2] — oo, (1.34)

we see that e'.J,(z) is bounded in 0 < argz < 6, for every 6 € (0,7/2). Since
R(i(k — k)z) = —(kr — k)S(2) — kR(2) and F(z ) is a holomorphic function in
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1.5 Results from Fourier analysis

R(z) > 0, we see that for 0 < k < k, we may transform the integral

0o ei(n—k)z

I(k) = i e** J,(kz) z dz (1.35)

into

-k)z
= / G e* J(k2) z dz (1.36)
gl

with v = {(1 +4)t : ¢ > 0}. This integral is bounded for 0 < k < k,./2.
For k > k,/2 we can use (1.34) and that J,(z) is continuous and thus, by (1.34),
bounded on [0, 00), to estimate that, for some constants C; and Cy,

‘/ w(kr) rdr

We conclude that I is bounded on [0, 00), so that, by (1.32), Fa2f € L>=(R?). O

<1

In order to establish a limiting absorption principle in later sections, we are in-
terested in the dependence of ¢ on k;.

LEMMA 1.34. Denoting ¢ by {,, to indicate their dependence on the imaginary part
of the wavenumber r;, we have that | Faoly, — Folo||Loomz) — 0 as k; — 0

Proof. From (1.36), since ¢”*.J,(z) is bounded on v = {(1+1i)t : t > 0}, we see that,
for some constant C' > 0,

1, (k) — o(K)| < C/ e rt2(1 — et dt
0

for 0 < k < k,/2, k; > 0, so that I, (k) — Iy(k) as k; — 0, uniformly on [0, x,./2].
Similarly, using (1.35) and (1.34), cf. (1.37), we can show that I, (k) — Iy(k) as
k; — 0, uniformly on [k, /2, o0]. O

We close this section with yet another example of a Hankel transform. For A > 0
define
1 ei/i\/r2+(2h)2
dr /2 + (2h)27

We note that this function is surely neither in L'(Rsq,7dr) nor L?(Rsq,rdr).
However it is possible to show the following lemma.

Wi(r) = r > 0. (1.38)

LEMMA 1.35.
e~ 2hVk2—r2

w e

(HoWh) (k) = /OOO Wi (r)Jo(kr)r dr =
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for allk # k,h > 0, where the branch of the square root is taken so that its argument
lies in [—7/2,0], i.e

V2 —r2eV :={z€C:R(z) > z) <0} (1.40)

for any wavenumber k € C and all k > 0. Thus explicitly in the case of a real
wavenumber this means that

T —ivVK2—k?2, 0<k<k,
B VE2 — K2, k> k.

Proof. We write the integral (1.39) in the equivalent form

4%\/_/ VWi (r) Jo(kr)Vrk dr

and note that

cos[kr+/1? + (2h)?] N sinfk,/1% 4+ (2h)?]

2 2h)2 t 2 2h)2 , ki =0,
Wi(r) = +(.) 2 2h2r+( ) » h>0
expl(—k;i + ik,)/T% + (2h) ]’ >0,
2+ (2h)?
and _
cos |k, 1] N Z,sm[/ﬁrr], =0,
WU(T) = A . r
exp|( Ii;—l— mr)r]’ e > 0.

We need to distinguish four cases:

1. h >0 and k; > 0. This follows from |27, Section 8.2, formula (24)]

exp[—a 7"2 —l—ﬁ ] exp[—BvVE? + o?]
/\/_ Jo(kr)\Wrk dr = Vk T

which is valid for ®(«), R(3) > 0. The choice a = k; —ik, = —ir and (5 = 2h clearly
satisfies this condition.

2. h > 0 and x; = 0. This follows from |27, Section 8.2, formulas (41) and (50)]

o cos[Bva? — k2]
/\/;Sln[a‘/r2+ﬁ2]J(kr)Mdr— VEk = 0<k<a,

0 = a? — )
) 2
s 0, a< k< oo,
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1.5 Results from Fourier analysis

and

\/Esin[ﬁ\/ a? — k2|

r cos|a \/m a Vaz—k? dk<o
NG Ny Lok dr = L= ,
0 ritp \/Eexp a , a<k<oo,

k2?2 — 2

which are both valid for o, () > 0. The choice a = k, and = 2h clearly satisfy
this condition.

3. h=0and k; > 0. This follows from |27, Section 8.2, formula (18)]

o0

exp|—ar] B 1 N
— = Jo(kr)Wrk dr = \/_—k2+042’ R(a) > 0,

with o = k; — 1k, = —ik.

4. h =0 and x; = 0. This follows from [27, Section 8.2, formulas (32) and (42)]

00 1
/sm[ozr (Vo dr — \/Eﬂ, 0<k<a,
0 vr 0

a < koo,
and
OOCOS[ . 0, 0<k<a
= 1
/ NG Jo(kr)Vrk dr = Vit ke,
0 a? — k?

which are valid for a« > 0. The choice o« = k,. clearly satisfy this condition.

REMARK 1.36. The integral (1.39) is related to the Sommerfeld integral

1 eim/\mP—&-zg 1 00 e*lﬂfz\vﬂ*'{2
—_—— — — —JO(T|33|) Td?”, T = (33,.T3) € Rs?

T /|le)2+22 Am )y Vr? —k?
where again the branch of the square root with argument in [—m/2,0] has to be used.

Using that H, is self-inverse we get the above identity by formally applying the
Hankel transform on both sides of (1.39).

The function W) is important in the sequel as in the case of a flat scattering

surface ', = {y = (y,h) : y € R?} for some h > 0, the kernels of the double- and
single-layer potential operators can be written in terms of this function. Indeed, for
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points x = (x,h),y = (y,h) € ', we find that for the kernel of the single-layer
potential operator it holds that

QG(.QZ,y):Qh(J}—y), xayerhwx#ya

where
Qn(y) == an(lyl) (1.41)

1 eitr 1 ein\/r2+(2h)2 }

and

>0

=92 — .
qn(r) {477 r dm \JrZ 1 (2h)2
with the obvious equality g, (r) = 2{Wy(r) — Wy (r) }. With the help of LEMMA 1.35

we can deduce the following theorem.

LEMMA 1.37. In the case of a flat scattering surface 'y, for some h > 0, the Fourier
transform of the kernel of the single-layer potential operator is bounded for any choice
of a wavenumber k € C and is given through

1 1— e*?h\/|k‘271€2
2 /IR -

(F2Qn) (k) = , keR%

Proof. The functions @, € L*(R?), as it follows from our analysis in Section 1.4.1.
So the Fourier transform exists and is given through

(FoQn) (k) = (Hoqn)(|K])
_ 2/0 {Wo(r) — Wh(r)}J0(|k:\r) rdr
1 1 1 o2/ IkE

21 k|2 — k2 27 \/]k|? — K2
1 1= e—Qh\/“ﬁz‘Q—fiQ

o JRE—R2

where we used (1.39). We note that the function g : z +— (1 — e™?"?)/z is analytic,
since the singularity at 0 is removable, and it is bounded for all z = 2z, +12; € V),
with V' given through (1.40). In fact |g(z)| < C for some constant C' > 0 for all
z € V with |z| <1 as g is a continuous function on a compact set. In the case z € V'
with |z] > 1 we estimate

_ ,—2hz —2hzy
1—e < 1+e <9
N
thus proving that g is bounded on V. O]
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1.5 Results from Fourier analysis

To handle the case of the double-layer potential we note that it follows from (1.25)

that oG (z.1)
z,y
296 Y) b r
@l/(y) h(m y)? rv,yely 2 7& Y,

where

Piu(y) == pi(lyl), (1.42)

and

ikh eRVIEEERE g ik /rTEER)?
irh b |
T (VrE+ ER2) T (/2 + (2h))°

An easy calculation yields p,(r) = —&{W,(r)}. The analogue result to LEMMA 1.37
is again a consequence of (1.39).

pa(r) = —

LEMMA 1.38. In the case of a flat scattering surface I'y,, for some h > 0, the Fourier
transform of the kernel of the double-layer potential operator is bounded for any
choice of a wavenumber k € C and is given through

1 p
(FaPu) (k) = - e VKPR € R,

(e

Proof. The functions P, € L?(R?), as it follows from our analysis in Section 1.4.2.
So the Fourier transform exists and is given through

(FaPa)(k) = (Hopr (1K)
- L W) }o((Klr) v

a oo
-2 / Wi (r)Jo([klr) rdr

_ _g{i 6—2h\/|k2_n2} B i 6_2h ‘k|2_}{2
Oh Udm | /|k|]?> — K2 2T '

The interchange of integration and differentiation with respect to h is certainly
justified whenever k& > 0 and k # x. For then the integral (1.39) is well-defined and,
using the asymptotic estimate of the Bessel function (1.34), we see that for every
H > 0 there exists a constant C' > 0 such that

aWh(T)J(k) B i i ein\/r2+(2h)2 ( ) < C (1 43)
on " AN Oh | 4w \/r? + (2h)? 0 "= e '

for r > 1 and 0 < h < H. The boundedness of the function g : z — e~2"* on V is
obvious. O
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1.6 Convolution

In the case that the scattering surface I' is a flat plane the integral operators are
convolution operators, i.e. the kernel function depends only on the distance of the
evaluation and integration points. In this section we study some of their mapping
properties and explain their interaction with Fourier transformation.

The presentation mostly follows [39] and [58].

DEFINITION 1.39. For measurable functions f,q: R* — K the convolution is given
through

(f*g)(z):= 5 flx—y)gly)dy, zeR’ (1.44)

whenever the integrand belongs to L*(R?).

The substitution y = = — z shows that (f x g) exists if and only if (g * f) exists.
Thus convolution is commutative.
The next theorem gives simple criteria for the existence of the convolution.

THEOREM 1.40. Let 1 < p,q,s < oo and suppose that % + % =1+ % with the usual
convention é =0.

(i) If f € LP(R?), g € LY(RY), then (f * g)(z) ewists a.e. and belongs to L*(R?) with

1 gllee < [fllzellgl za- (1.45)

(ii) If s = oo it holds moreover that f * g is uniformly continuous on R
(iii) If s = o0 and 1 < p,q < 0o then limpy—oo(f * g)(x) =0, i.e. fxg € BCx(R?).
Proof. For a detailed proof see [39, Theorem 3.1, Theorem 3.2]. n

REMARK 1.41. The inequality (1.45) is referred to as Young’s inequality. The state-
ment of (iii) can be slightly improved to the case p = 1 and ¢ = oo if one uses the
closed subspace BCyo(RY) C L*®(R?), i.e. for f € L*(R%) and g € BCoo(R?) (or vice
versa) it holds that f * g € BOy(R®). For a proof of this statement for the case
of one dimension see [11, Proposition 0.2.1]. The multi-dimensional cases can be
handled in a similar way.

The following convolution theorem is the key to derive an analytical solution
of convolution integral equations. It basically states that the convolution product
transforms to a pointwise multiplication in Fourier space and therefore yields a rather
simple algebraic equation that can be solved and afterwards transformed back.

The easiest setting to formulate the theorem is provided by the class of Schwartz
functions.
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1.6 Convolution

THEOREM 1.42 (Convolution theorem on S). For f g € S(R?) the Convolution
theorem holds

F(fxg) = 2m)"*(F)(Fg). (1.46)
Proof. For a proof see [49, Theorem IX.3]. m

There also is an analogue formulation of the Convolution theorem for L? functions.

THEOREM 1.43 (Convolution theorem for L?).
(i) For f,g € L*(R%) the convolution formulae can be written as
fxg= (27)d/2]:f1(-7:2f - Fag). (1.47)
(ii) For f,g € L*(R%) the following statements are equivalent:
(a) Fof - Fag € L*(RY),

(b) o' f-Fylg € L*(RY),
(c) fxg€ L*RY).

In this case the convolution formulae can be written as
Fo(fxg) = @02 Fof - Fog & frg=0n)"? FNFf Fag).  (148)

Proof. For a proof see |58, Satz 11.11]. O

1.6.1 Convolution operators

We use the results from the previous sections to prove mapping properties of certain
convolution operators.
The prototype integral operator for this section is given through

(L)) = [ Heyit) dn, a € (1.49)

where we suppose that [ : R? x R¢ — C is such that I(z,-) is measurable for all
x € R? and the integral exists a.e. for an appropriately chosen 1.

LEMMA 1.44. If the kernel function of the operator L, given through (1.49), can be
written as

l(z,y) =tz —y),
where £ € L*(RY) such that Fol € L®(R?), then Lip = € x 1) is a bounded operator
on L*(RY) with the bound

1Ll o pe < (2m) 2| ol | oe
and furthermore L € X (R?) = L*(R?) N BCo(RY).
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Proof. We first note that £ € L? and Fof € L™ imply that Fpl € L? N L>®. Now we
can apply the Holder inequality (1.5) in the case p = ¢ = 2 to get Fol - Forp € L
and the generalised Holder inequality (1.6) in the case p = 00,q = 2,7 = 2 which
yields Fol - Forp € L?; showing that Fol - Forp € L' N L2, If we consider Fol - For)
as an element of L', we can use (1.47) and write

Cxap = (2m)Y2FTY(Fol - For),

so that the mapping properties of the L!'-Fourier transform yield ¢ x ¢ € BCy, see
LEMMA 1.29. If on the other hand we consider F»f - F1) as an element of L%, we
can use (1.48) to write

Cs1p = (2n) 2 FY(Fol - Foih),

so that the mapping properties of the Fourier-Plancherel transform yield ¢ x 1 € L?;
hence Ly € L? N BC,,. Now we use (1.48) again to estimate

@2m) 2 (| F5 (Fal - Fatp)|| 12
(2m)Y? || Fal - F|| 2
(2m) Y2 || Fol || oo || Fo) | .2
= (2m)" || Fol| o 10 2. O

14| 2

IN

REMARK 1.45. It is clear that the additional assumption F{ € L*° would have
followed immediately, if we had assumed that ¢ was in the intersection of L' and L>.
Howewver, for the application we have in mind, namely the proof of LEMMA 2.3, this
assumption is not valid.

Similar estimates hold in the case of integral operators with kernels of more general
type as we show now.

LEMMA 1.46. If the kernel function of the operator L, given through (1.49), can be
written as

[z, y) = ma(2)l(x = y)ma(y), (1.50)

with my, my € BC(RY), £ € L*(R%) and Fol € L>®°(RY), then L is a bounded operator
on L*(RY) with norm

1Ll 2222 < 2m)72(lmu|pe (1Pl e [Ime] pe (1.51)
and L € X (RY).

Proof. This is a direct consequence of LEMMA 1.44. O]
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LEMMA 1.47. Assume for some p € [1,00) there exists £ € LP(R?) such that

Uz, y)| < l(z—y),

where | denotes the kernel function of the operator L given through (1.49). Then
L is a bounded operator from L4(RY) to L*(R?) provided that 1/p+1/q =1+ 1/s.
Furthermore one has the norm estimate

[l 2oz < (€] o (1.52)

Proof. One computes

(L) ()| S/Rd [z, y)| Iw(y)!dyé/ (x —y)lY)l dy = (Cx|p))(x)  (1.53)

R4

so the mapping properties are a result from Youngs inequality (1.45). O

REMARK 1.48. We will use the bound (1.52) particularly often in the case { €
LY (R?), in which case it implies that L maps L? to LI with

1Ll Lara < [1€]| L1, (1.54)
for1 < g < oo.
LEMMA 1.49. Assume for some p € (1,2) there exists { € L'(R?)N LP(R?) such that
iz, )| < Uz —y),
where | denotes the kernel function of the operator L given through (1.49).
(i) Then for some N € N, the operator LN *1 is a bounded operator from L?*(R?)

to L>*(R?), i.e. there exist N real numbersry,...,rn such that2 <ry <--- <

L L L L
TN_1<p%1§rN and L?> = L™ = ... S L'~ 25 [,

(i) |LNTYY| is bounded a.e. by a positive continuous function vanishing at infinity.

Proof. (i) Note first that ¢ € L'(R?*)NLP(R?) implies by LEMMA 1.9 that ¢ € L*(R?)
for 1 <s <p. Let w:=p/(p—1) > 2 and define the finite or infinite sequence (r;)
iteratively by

11 - :
7’0::2’ T’j+1:: (;—i—r——l) :1i‘77‘j7 j:071,2,..., (155)
J

continuing the definition (1.55) for as long as r; < w. Let J C Ny := NU {0}
denote the set of indices j for which r; is defined. We will show that the set J
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is finite, so that J = {0,1,..., N} with ry > w. Then it follows from Youngs
inequality (THEOREM 1.40) that L is a bounded operator from L"-1(R?) to L"i (R?)
for j =1,..., N. Further, defining s := ry/(ry — 1), we observe that 1 < s < p and
% + % = 1, so that again, by Youngs inequality (THEOREM 1.40), L is a bounded
operator from L'~ (R?) to L>=(R?), and so LV *! is a bounded operator from L?(R?)
to L>=(R?).

We complete the proof by showing that J is finite. Suppose otherwise. Then
r; <w for all j € J = Ny. It follows from (1.55), by induction, that the sequence
(r;) is monotonically increasing. Thus the sequence (r;) is convergent to some limit
r, with 2 < r < w. Rearranging (1.55) and taking limits, we see that (1 —r/w)r =1,
so that r = 0, a contradiction.

(i) Tt follows by induction that |L¥*1y| < £ % |LN4| for N € N. From the
construction of the sequence (r;), see above, we have ¢ € L*, LNy € L™ with
L+ ;L =1 Thus it follows from THEOREM 1.40 (iii), that

L] < 0+ | LYY € BO(R?),

i.e. |[LN*1y| is bounded a.e. by a continuous function vanishing at infinity. O
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Chapter 2

Properties of single- and
double-layer potentials

In this chapter we prove mapping properties of the double- and single-layer potential
operators, verify the validity of the standard jump-relations and prove continuity
properties of the boundary operators with respect to variations of the scattering
surface and the wavenumber.

To prove mapping properties we split the operators into a local and a global part
with the help of an appropriate cut-off function. To this end let x : [0,00) — R be
a sufficiently smooth function that satisfies the global lower and upper bound

0<y(t)<1, t>0 (2.1)

and the condition
1, t<1/2

x(t) = {0 psq (2.2)

Following the explanation at the end of Section 1.1.3 we show the mapping prop-
erties for the associated operator

B:=I;BI;' € BL(L*(R?)),

where B denotes one of the operators S or K, respectively. Thus

(Bo)@)i= [ He.yoly) dy, @ e R
R
where the kernel function is given, in the case of the single layer operator, by
b(x,y) =2 G(z,9)J (y)

and, in the case of the double layer potential, through

b(z,y) =2 %&y) J(y),
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with z = (z, f(z)),y = (v, f(y)) € I and J(y) = /1 + |V f(y)]*.
We define the global part of the operator

Baowat)@) 1= [ [1=x(e~y)lile.u)itw) dy. R @3

and the local part
(Bioca?)) () := /]132 X(le — y\)g(w, Yv(y) dy, xR (2.4)

This yields the decomp081t10n B = Bglobal + Blocal which allows us to study the
mapping properties of Byjopa and Bieea as operators on L?(R?), X (R?) and X, (R?)
separately.

2.1 Boundedness of S and K

We start this section with a series of Lemmata that are needed to prove that the
single- and double-layer potential operators are bounded on any of the function
spaces L?, X and X,. To prove this result we prove the corresponding results for
the local and global part of the operators S and K separately by using the expansions
(1.21) and (1.27) and the results on convolution operators from Section 1.6.1.

LEMMA 2.1 (Mapping properties for the local part). Biocal is a bounded operator
from

(i) L=(R?) to BC(R?),

(i) BCw(R?) to BC(R?),

(iii) L9(R?) to LY(R?) for 1 < q < oo.
)

(iv) Purther, for some n € N, Bl is a bounded operator from L*(R?) to X (R?)
and from X (R?) to X (]R2)

Proof. We start ghis proof with a series of observations on the kernel function Blocal
of the operator Biycar:

e The kernel has compact support, more precisely it holds that

SUpp biocar (2, <) C By(x), x € R

e [t is continuous for  # y and weakly singular. Precisely, it follows from
LEMMA 1.17 that

(@), z =yl < le -yl fllcro@, =yeT,
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thus it holds in the double-layer case B = K that, for some constant C' > 0,

|610ca1(w7 y)| < E(w - y)7 T,y € R27 €T 7& Yy, (25)
where
Clyl*? |yl <1,
oy)={C W (26)

The same bound holds, but is not sharp, in the single-layer case B = S. We
showed in EXAMPLE 1.10 that ¢ € L'(R?) N LP(R?) for 1 < p < 52 < 2.

Thus we note that the kernel function i)local satisfies all the requirements to apply
LEMMA 1.15, LEMMA 1.47 and LEMMA 1.49. Now we can prove the Lemma:

(i) and (ii) follow directly from LEMMA 1.15.

(iii) As ¢ € L', it follows from LEMMA 1.47, in the case p = 1, that Blocal 1S a
bounded operator from L?(R?) to LI(R?) for 1 < q < oo.

(iv) It follows from (iii) that B, maps L? to L? for n € N. On the other hand
by LEMMA 1.49, Bl is a bounded operator from L? to L, for some m € N. From
LEMMA 1.15 it follows that Bbcal is a bounded operator from L*> to BC', so that
altogether ij}:gﬂl is a bounded operator from L? to X.

It follows from LEMMA 1.49 that B{Z}CM is a bounded operator from L? to L*°, for
some m € N and furthermore that B{gcalw is bounded a.e. by a positive function
U € BC,. By LEMMA 1.15 B, maps BC to BC for any m € N, hence B"

local

maps X to BC. O]
Combining the above mapping properties we derive the following corollary.
COROLLARY 2.2. Blocal 1 a bounded operator from
(i) BC(R?) to BC(R?),
(i) X(R?) to X(R?),
(iii) Xoo(R?) to Xoo(R?).

Proof. (i) is a direct consequence of LEMMA 2.1 (i). (ii) follows from combining (i)
and LEMMA 2.1 (iii) for ¢ = 2. (iii) follows from combining LEMMA 2.1 (ii) and
LEMMA 2.1 (iii) for g = 2. O

We now consider the global part and prove a lemma on the mapping properties
of Bglobal'

LEMMA 2.3 (Mapping properties for the global part). Bgiopal is a bounded operator
from
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Chapter 2 Properties of single- and double-layer potentials

(i) L*(R?) to L*(R?),
(i) L2(R?) to X(R?),
(iii) L3(R?) to Xoo(R2).

Proof. We start the proof of this Lemma by proving the following claim.
Claim: The kernel bgiopar 0f Bgional can be written, in both the cases B = S and
B = K, in the form

bglobal(wa y) = l*(wa y) + l(wa y)? T,y € Rz? (27)

where [* is a sum of terms each of the form (1.50), with m;,my € BC(R?) and ¢
given by (1.33) with § =1, and with n = —1,0, 1. Further, [* can be chosen so that
[ satisfies the bound

l(z,y)| < Cl(x —y), = yeck (2.8)

for some constant C' > 0, where ((y) := (1 + |y|)~3, so that ¢ € L'(R?).

Proof of Claim. The proof follows directly from the decompositions (1.21) and
(1.27). In detail, in the case B = S we see from (1.21) that an appropriate choice is
to take

ik eirlz—yl

oG T+z—yP f(y) J(y), (2.9)

l*(mvy) = -

where J is the surface area element given through (1.10), while, in the case B = K
we see from (1.27) that we can take

K2 em\az—y| x—y

Uz, y) = o f(z) m vy - Iz — y| f(y) J(y)
ik eirle—yl
~ 5 f(z) [ENE—T v3(y)J(y).

To see more clearly that this is an expression of the required form we recall that

v(y) = (w(y), vs(y)) = ——=-=——

so that we can write

a-y  |Viw)
YW Ty T i)

cos 0,
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2.1 Boundedness of S and K

where § = Z/(V f(y),x — y). Furthermore using the identity cos = (e +e~%)/2 we
have

- K2 ein\w—y| 0 v
(z,y) = - f(z) Trlw—yP ¢ V)l f(y)
K2 em|m—y\ i - 910
—Ef(l‘)me Vi)l f(y) (2.10)
ik eirlz—yl
This proves the claim. O

Now we prove the Lemma. (i) It follows from LEMMA 1.46 and LEMMA 1.33
applied to the integral operator with kernel [*, and (1.54) applied to the integral
operator with kernel [, that ngbal is a bounded operator on L? (RQ).

(i) and (iii) We note from the above representation (2.7) that also

’Bglobal('xay)’ S f*<a) - y)7 x,y € Fa

for some ¢* € L2(R?); this is true since ¢ € L*(R?) and since each term of (2.9) and
(2.10) can be bounded in this way. It follows from Youngs inequality (THEOREM 1.40)
that Byepa maps L2(R?) to L=(R?); in fact, since also Bglobal is continuous, it holds
that Bgoba maps L(R?) to BC(R?). Furthermore it follows from THEOREM 1.40
(iii) that Byjepa maps L*(R?) to BCy(R?). O

Combining the above mapping properties we have the following Corollary.
COROLLARY 2.4. Byopar is a bounded operator on X(R?) and on X (R?).
REMARK 2.5. For Cy > Cy > 0 let

B(Cy,Cy) :={f € BC'"(R*) : C1 < f(y), y €R*, |[[fllpcrewe) < Ca}. (2.11)

We note that, given Cy > Cy > 0 and k, > 0, we can choose C' > 0 such that the
estimates (2.5) and (2.8) hold for all f € B and all k; > 0. (For (2.8) this follows
from (1.21) and (1.27).) This observation will be helpful in establishing continuous
dependence of S and K on f and on k;. Furthermore we see that f € B(Cy,C5)
implies that

C, < fly) <Oy yeR (2.12)

This follows from the fact that in the case of a constant function f, with h > 0 we
have that HthBCI,a(RQ) = h.

We can now combine all the previous Lemmata to give a prove of one of the main
results of this chapter.
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Chapter 2 Properties of single- and double-layer potentials

THEOREM 2.6. The single- and double-layer potential operators S and K, defined
by (12) and (13), are bounded operators on L*(T"), on X (T') and on X (T).

Proof. LEMMA 2.1 and COROLLARY 2.2 yield that Blocal is a bounded operator on
L*(R?), X(R?) and X (R?); LEMMA 2.3 and COROLLARY 2.4 yield that Bgobal 18
a bounded operator on L?(R?), X (R?) and X, (R?), hence finishing the proof. [

Yet another consequence is:

COROLLARY 2.7. For all sufficiently large n € N it holds that B™, where B denotes
either B =S or B = K, is a bounded map from L*(T) to X(T') and from X(T) to
Xoo(D).

As part of the proof of THEOREM 3.1 on the equivalence of the integral equation
and the boundary value problem we need to show that the modified single- and
double-layer potentials u; and usy, over the unbounded surface I', behave in a similar
way to the corresponding standard layer potentials supported on a smooth bounded
surface. This is done in the following theorem in which

M ={z:0<z3< f(x)}
denotes the region between I' and TI'°.

THEOREM 2.8. Let u; and us denote the single- and double-layer potentials with
density ¢ € X, defined by (16) and (17), respectively. It holds that:

(i) Forn=1,2, u, € C*(DUM) and Au,, + k*u, =0 in DU M.

(ii) uy and uy can be continuously extended from D to D and from M to M, with
limiting values

mﬂwzlamwww@@,xen (2.13)
and
mH@ZL%%%%MNMwi%ﬂ@7$GR (2.14)

where w4 () = lim. oy u,(z £ ev(z)), forn =1,2 and x € I', and v(x) denotes
the unit normal at v € I' directed into D.

(iti) Given constants Cy > Cy > 0 and a compact subset S C C, there exists a
constant C > 0 such that

fun(@)| < Cligllx, =€ DUMn=1,2, (2.15)

forallpe X, k€S, and f € B= B(Cy,(C)).
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2.1 Boundedness of S and K

(iv) Given constants Co > Cy > 0 and € > 0 and a compact subset S C C, there
exits a constant C > 0 such that

un(2)] < Cllollr2ry, n=1,2, (2.16)

for all x € DU M with |v3 — f(x1,22)| > €, allp € X, allk € S, and all f € B =
B(Cy, Cy).

Proof. We first of all show that u € C'(D U M) and establish (ii) and (iii). We use
the cut-off function x given by (2.1) and (2.2).

Let u denote one of u; and ug, and let b denote the kernel of u so that b(z,y) :=
G(z,y) and b(z,y) := 0G(x,y)/0v(y) in the respective cases. We have, for = €
D U M, that

u(z) = /F 11— x|z — yl)]blz, y)e(y) ds(y) + / x|z —y))b(z,y)p(y) ds(y).

r

The first term has a continuous kernel that is bounded at infinity by the estimate
(1.21) or (1.25), and, since ¢ € L*(T), is continuous in {x : 3 > 0}. The second
term is clearly continuous in D U M; to see that it can be continuously extended
up to I' from above and below and to compute its limiting values we observe that,
keeping = within some ball centred on some xy € I', it holds that the integrand is
supported in a finite patch of the surface. We can extend this surface patch to a
bounded obstacle with boundary of class C** and, since p € C(T'), use the jump
relations for bounded obstacles THEOREM 1.20 and thus finishing the proof of (ii).

(iii) To show that the first term satisfies the bound (2.15) we recall that G(zx,y)
and V,G(z,y) satisfy the bound

(1 +23)(L + ys)

<
Gz, y)], [VyG(z,y)| < C |z — y[?

Y

with a possibly different constant C, for all z,y € D° = {z € R® : 23 > 0} with
|z —y| >1and all k € S, cf. LEMMA 1.22 and LEMMA 1.25.

Thus, for some constant C’ > 0, whether b is the kernel of the single- or double-
layer potential, it holds for all x € S that

(14 23)(1 + y3)
L+ [z —yl?

[ = x(Jz = y))]b(z,y)| < ' . 2,y €R® aays > 0. (2.17)

Bounding the global part: Applying the Cauchy-Schwarz inequality together
with the bound (2.17) we calculate for the first term that
1/2
(14 23)*(1 + y3)*
(1+ |z —y[?)?

/[1 — x(lz = yD]blz, y)e(y) ds(y)| < C’ / ds() | llellzer

" r
< C'(+ fO)I@)|lellzem),

45



Chapter 2 Properties of single- and double-layer potentials

for z € {x € R?: 23 > 0}, where

o= [ ( Sk Y

r (14 [z —y?)?

We further estimate

(1 —|—$3)2
L+ f& -y + (23 — f(y))?)?

To finally prove the bound for the global part we show that the function

F(x3) == /R2 ( (1 +2;)

TH oyl + (e f@)PE Y

dy.

[I(z)]? < (1 + HVfHQBC(F)>1/2 /11@2 (

is bounded on [0,00) for all f € B. We note that F' is continuous on [0, 00) and
recall from REMARK 2.5 that C; < f(y) < C, for all f € B(C},Cs) and y € R%
Thus we have the lower bound

[6(23)]* < (23 = f())*, @3 € [0, 00),
for all f € B(Cy,Cy) and y € R?, where

Cl_t7 O§t§017
6(t) :== 10, C) <t <0y,
t—Cy, t>Cs.

Thus

(142, < (tag)r
P < [ Ty R Y S, T o

From this we see that F'(0) < oo and furthermore for any z3 > Cy we have the
estimate

< 2 [ "
F(x3) < 27m(1 + x3) /O A7 7 (23— Gy dr

(1+I3)2 /oo S
-9 )
”m—@yo(m—@w+ymww<“

Together with the continuity of F' it follows that F' is bounded on [0, 00) and hence
the first term satisfies the bound (2.15).

Bounding the local part: To treat the second term we argue analogously to
the corresponding 2D case [16]. We remark that x(|x — y|) is zero for |[x — y| > 1.
We consider only the double-layer case u = u; (the argument is similar but simpler
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2.1 Boundedness of S and K

in the single-layer case). Directly from the definitions (see (1.25)) we see that there
exists a constant C' > 0 such that

o =) < I e pu yer 2y
forall k € Sand all f € B. For x = (z,z3) € DUM define z* := (z, f(x)) € I' and
xo := (@, f(y)). As a short hand notation we introduce 6 := |z* — z| = |f(x) — x3]

and note that xg — 2 L x —y . Thus we conclude from the Pythagorean theorem
that

o — 2" = o —yl* —lmo—yl* < |z —y[", 2€DUM, yel.
Using the triangle inequality, Pythagora’s theorem, the above inequality and the
mean-value theorem we conclude that

)1/2 1/2

(Jx —y|* + 6

I
—

2o — yl* + 2" — z?)

_ 9 . _ 2 1/2
|zo — y|” + (|5U To| + |zo :17])

(VAN
—

1/2

2o — y|* + 2% — mo|? + 2|2 — wol|wo — 2| + |20 — 2|?)

P

lzo — y|? + |7* — 20|* + 2|2* — 20|70 — 2|
1/2

+ |z = yl* = [zo — yI?)
< (ja" —zol* + 20" — wollw —y| + [r — y )"
= |o =yl + 2" — x| = [z —y[ + [f(z) — [(y)]
<l =yl + IVfisemlz —yl < (L+ 1V Fllsom) lr = yl.
Using this inequality, and (1.16) to bound |v(y) - (z* — y)|, we see that, for some
C" >0,
, e —yl+0
(Jz —y|*+62)**
for all x € S and f € B. Thus, defining C" = C' (1 + ||V f|[5¢(r)"/? the second
term is bounded by

14+«

+

el [ Uy
VSt (lyl + 62)7"

for all Kk € S and f € B. The integral remains finite also in the case 6 — 0 so that
the second term satisfies the bound (2.15).

To establish (iv) we modify the argument used to show (iii). We have remarked
above that both G(z,y) and V,G(z,y) satisfy the bound (1.22). Thus (cf. (2.17)),
for every € > 0 there exists C. > 0 such that

(14 23)(1 + ys3)
L+ |z —yl?

IX(lz = y[)b(z,y)| < C reDUM, yel,

1 1+«
r 4+
< 2nC" ¢l Be / ( dr,
0

12 + 62)3/2 r

b(z, y)| < Ce (2.19)
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Chapter 2 Properties of single- and double-layer potentials

for all z,y € R® with 23,943 > 0 and |z — y| > € and all kK € S. Applying Cauchy-
Schwarz, as in the proof of (2.15), we see that it holds, for some constant C! > 0,
that

un(2)] < CLL+ f)I(@) Il 2y, n=1,2, (2.20)

for all x € DU M with |23 — f(z1,22)] > eand all k € S and f € B. In view of the
bound on I(x) already shown above, we see that we have established (2.16).

We complete the proof by establishing (i). This is clear when ¢ is compactly
supported. The general case follows from the density in L?*(T") of the set of those
elements of X that are compactly supported, from the bound (2.16), and from the
fact that limits of uniformly convergent sequences of solutions of the Helmholtz
equation satisfy the Helmholtz equation (e.g. [17, Remark 2.8]). O

2.2 Continuity properties of the potential
operators

We finish this chapter with results on the continuous dependence of the potential
operators on variations of the boundary and the wavenumber.

We start by proving that the single- and double-layer potential operators depend
continuously on variations in the boundary I'y := {(y, f(y)) : y € R?} of the domain
Dy as defined in (3). In the statement of the following theorem, B = B(Cy, C5) is
the set defined in REMARK 2.5, for some constants Cy > C; > 0.

To make the dependence of the operators on the scattering surface more explicit,
we write B for either S or K defined on a surface I'; given by some f € B. As
before we prove the results for the associated operators B ¢y =1;B f[f_l € L*(R?).

Denoting the kernel of By by by, we see that, where = = (x, f(z)), v = (y, f(y)),
and b(z,y) = G(x,y) or b(x,y) := 0G(z,y)/0v(y), in the respective cases By = S
and By = K, it holds that

bp(a,y) = b(z,y)Jr(y),  Jp(y) =1+ |V[(y)]>

THEOREM 2.9. The single- and double-layer potential operators depend continuously
on the boundary I'y of the unbounded domain Dy in the sense that

sup By — Byl r2@2)—r2mey — 0, € — 0. (2.21)
f,.9eB
Hf*QHBCLa(RQ)SE

Proof. Similarly to how we proceeded when proving THEOREM 2.6, we decompose
the operator Bf — Bg into a global and a local part, i.e. Bf — Bg = Bglobal + Blocal
with l-:j’global, Biocal defined similarly to (2.3) and (2.4). We now carry out the proof
for the case of the single-layer operator. The necessary changes for the double-layer
operator are straightforward.

48



2.2 Continuity properties of the potential operators

The global operator. The kernel of the global operator Bglobal is given by

bytona (2, y) = (1 = x(|z — yl)) [br(@, y) — by(z, y)]. (2.22)

We use the expansion (2.7) and equation (2.9), denoting [ by I; and [, to indicate
its dependence on f and g. We obtain

7 K etrlz—yl|
belobal (T, Y) = —gf(w) m fy) Ji(y) + l(z, y)
; ik|z—y|
) (_%g(m) T e —gp /W) D) + lg(w,y)) ,

which we rewrite in the more convenient way
- ik eiklz—yl

b (:9) =~ f (@) 1= (S) —9(v) Jp(w)

i/{ ei’ilmfy|

- %(f(w) - 9(33)> Txm—gP 9(y) Jr(y) (2.23)

7:/{ e“ﬂm*y‘

_ w—
4l Lt [z —yP?

= W) (1)~ ulw))
+li(z,y) — ly(z,y), =,yecR%.

The integral operators whose kernel are the first three terms of (2.23) can be
bounded using LEMMA 1.33 and LEMMA 1.46 and the estimate (2.8), noting that
REMARK 2.5 guarantees the uniformity of (2.8) for f € B. To bound the integral
operator whose kernel is the last term of (2.23), we construct, for every n € (0, 1),
a function ¢, € L'(IR?) such that

lr(z,y) —ly(z.y)| < by(z —y), z,y R, (2.24)
whenever f, g € B and || f — g||gc1.0(r2) is sufficiently small, and such that
1€yllzr 2y — 0, 7 —0,

and then we use the estimate (1.54). Together, the bounds on the four parts of
Bglobal show (2.21) for the global part of the operator.

The construction of ¢, is as follows. We choose (possible by REMARK 2.5) a
constant C' > 0 so that (2.8) holds for all f € B. Then, where £ € L*(R?) is defined

as in LEMMA 2.3, we set

n?, n<lyl <n,

bly) = {QCg(y), otherwise. (2.25)
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Chapter 2 Properties of single- and double-layer potentials

Clearly this satisfies that €, z1®2) — 0 as n — 0. Since, for every n € (0,1),

lp(z,y) — lg(x,y)] — 0, |[f— gHBCLa(IR@) — 0,

uniformly in f and g for f,g € B, and uniformly in & and y for n < |z —y| <n~!,
the bound (2.24) holds for all f,g € B with || f — g||pc1.e®2) sufficiently small.
The local operator. For the local operator we argue in a similar way as for
the global operator, in particular in a similar way as for the integral operator cor-
responding to the last term in (2.23). In particular, where biocal is the kernel of the
local operator, it holds for every 5 > 0 that |bica (2, y)| — 0 as | f—9llpcreme — 0,
uniformly in f and g for f,¢g € B, and uniformly in  and y for | — y| > 7, and
(2.5) takes the role of (2.8). O

To show later that the limiting absorption condition (8) is satisfied in the case
k > 0 we need the following theorem.

THEOREM 2.10. Denote S and K temporarily by S., and K, to indicate their de-
pendence on K;. Then, where B, denotes either S, or K,,, it holds that

| Be, — B0||L2(F)—>L2(F) — 0 (2.26)
as k; — 0.

Proof. As we did when proving THEOREM 2.6 we split B, into global and local
parts, as By, = By + Bs, with By, By defined by (2.3) and (2.4). As in the proofs of
LEMMA 2.1 and LEMMA 2.3 we denote the kernel of B; by b;.

To show (2.26) for the local part By we note that by(x,y) depends continuously on
ki, uniformly in x and y for |x —y| > n and every n > 0, and that, by REMARK 2.5,
the bound (2.5) holds uniformly in &; for x; € [0,1]. We then argue as for the local
part in the proof of THEOREM 2.9, showing that the kernel of the local part of
B, — By is bounded by an L' convolution kernel ¢(x — y) with ||¢[ ;g2 — 0 as
ki — 0. Finally we apply (1.54).

To show (2.26) for the global part B, we use the representation (2.7) for by(z,y),
which splits by into a weakly singular part {(x, y), bounded by (2.8), and a strongly
singular part I*(x,y), given explicitly by (2.9) or (2.10). To show (2.26) for the
weakly singular part of By we argue exactly as we did in the proof of THEOREM 2.9,
noting that, by REMARK 2.5, (2.8) holds uniformly in &; for x; € [0, 1], and that
I(x,y) depends continuously on &;, uniformly in & and y for n < | —y| < n~!, for
every n € (0,1). That (2.26) holds for the strongly singular part of By follows from
LEMMA 1.34 and (1.51). O
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Chapter 3

Existence and Uniqueness

In this chapter we prove results on the equivalence of the boundary integral equation
and the boundary value problem. We show that the boundary value problem has at
most one solution and prove a result on the solvability of the integral equation, in a
first step in the case of a flat surface and then in a second step for the general case
of an arbitrary rough surface.

3.1 Uniqueness

Our first objective is to prove the following theorem on the equivalence of the integral
equation and boundary value problem, using various results already shown above.

THEOREM 3.1 (Equivalence). Suppose that v is defined by (15)-(17) with ¢ € Xw.
Then, in the case k; > 0, v satisfies the boundary value problem if and only if v
satisfies the BIE (18). In the case k; = 0 (i.e., Kk > 0), if v satisfies the boundary
value problem, then ¢ satisfies (18). Conversely, if k > 0, "9 € X satisfies the
integral equation (18) with k replaced by K + i€, for all sufficiently small € > 0, and
o — "+ L,y — 0 as € — 0, then v satisfies the boundary value problem.

Proof. Let v be the combined single- and double-layer potential v, defined in (15),
with density ¢ € X,. By THEOREM 2.8, v € C%(D) N C(D) and satisfies the
Helmholtz equation in D. Further, due to the jump relations (2.13) and (2.14),
v =g € Xy on I' if and only if the density ¢ satisfies the boundary integral
equation (18). Applying THEOREM 2.8 again, we see that v satisfies the bound (7).
This yields the equivalence statement for x; > 0.

For real k, in addition, we need to show the limiting absorption principle (8). Let

a(z,y) = 0G(z,y)/0v(y) — inG(x,y), so that

o(z) = / a(z.y)p(y) ds(y), =€ D. (3.1)

Suppose, as stated in the theorem, that ¢+ € X satisfies the integral equation
(18) with x replaced by k + ie, for all sufficiently small ¢ > 0, and that ||¢ —

51



Chapter 3 Existence and Uniqueness

@9 ) — 0 as € — 0. Let a"*) denote a with  replaced with x + ie and
define v by (3.1) with a, ¢, replaced by a"+ 5+ respectively. We have
shown in the previous chapter that v**¢ satisfies PROBLEM 2 (with s replaced
by k + i€). To show the limiting absorption principle (8) we need to show that
v+ (1) — v(x) as € — 0. We have

(R Fie) (l’) . U(:l:) _ /F (a(nﬂ'ﬁ)(aj‘,y) — CL(CE, Z/)) QO(nﬂ‘e) (3/) dS(y)
n / a(z,y) (9“9 (y) — o(y)) ds(y).

We see that the second term tends to zero as € — 0 by the bound (2.16). Clearly,
a9 (z, y)—a(x,y) — 0 as e — 0, for every y € I'. Thus, applying Cauchy-Schwarz
and then the dominated convergence theorem, noting that the bound (2.19) holds
uniformly in k, we see that the first term tends to 0 as € — 0. [

We now prove the following uniqueness result.
THEOREM 3.2 (Uniqueness). The boundary value problem has at most one solution.

Proof. Due to [15, Theorem 1], see also [50, Theorem 3.1], a solution u € C*(G) N
C(G) to the Helmholtz equation (4) with (k) > 0 on an open set G C R™ which
satisfies the growth condition |u(z)| < Ce’*l with some constant § < J(k), and
the boundary condition u(z) = 0 for x € 0G will vanish identically on G. This
result directly implies uniqueness for the scattering problem and the boundary value
problem for x; > 0. For k; = 0 uniqueness is a consequence of the limiting absorption

principle we require, i.e. of the convergence (8). O

Before we turn to establishing existence of solutions, we show that to establish
unique solvability of the integral equation in the space X (I") or X (I'), it is enough
to study the solvability in L*(T).

THEOREM 3.3. If the integral operator A, given through (19), is invertible in BL(L?*(T")),
the Banach algebra of bounded linear operators on L?(T'), then it is also invertible

in the subalgebras BL(X(T")) and BL(X«(T)).

Proof. We first note that the second statement can be proven in complete analogy
to the first.

Assume that A is invertible in BL(L?*(T")), i.e. the integral equation (18) has
exactly one solution ¢ € L*T) for every ¢ € X(I') C L*(T'). Then, defining
B = K —1n§, it holds that ¥ = By + 2¢g and, by induction, that, for every n € N,

Y =B")+2(B" '+ ...+ B%qg.
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3.2 Invertibility of I + K — inS

Now, by THEOREM 2.6, B is a bounded operator on X (I") and, by COROLLARY 2.7,
B™ is a bounded operator from L*(T') to X(T), for some n € N. Thus ¢ € X(T).
We have shown that (18) has exactly one solution ¢ € X (I") for every g € X (I'), so
that (I + K —inS)~! exists as an operator on X (T'). Since X(T') is a Banach space
it follows as a standard corollary of the open mapping theorem that (I + K —inS)~!
is bounded and thus A is invertible in BL(X (I")). O

As a corollary of THEOREM 3.1, THEOREM 3.2, THEOREM 2.10 and THEOREM 3.3
we have the following result:

COROLLARY 3.4. If (I + K —inS)™! exists as a bounded operator on L*(T), then
the boundary value problem and scattering problem have exactly one solution.

Proof. In the case x; > 0 this result is clear from THEOREM 3.1 and THEOREM 3.2
and THEOREM 3.3.

In the case k; = 0 we note that, by THEOREM 2.10 and standard operator per-
turbation arguments (e.g. [49]), if (I + K —inS)~! exists as a bounded operator on
LA(T) for k = ko > 0, then (I+K —inS)~! exists and is a bounded operator on L*(T")
for K = ko + ik, 0 < Kk; < ¢, for some ¢ > 0. Moreover, (I + K —inS)~! depends
continuously in the norm topology on k;, for ; € [0,¢|. Thus, provided g € L*(T)
depends continuously in norm on ;, for x; € [0, ], it holds that (I + K —inS)'g
depends continuously in norm on «; € [0,c|, in L*(T'). If g is given by (14), then,
from the continuity of ®(z,y) as a function of ;, uniformly in z,y € R3, x # vy, the
bound (1.22), and the dominated convergence theorem, it follows that g € L?(T)
depends continuously in norm on k;, for x; € [0,¢]. Thus the result follows by
THEOREM 3.1, THEOREM 3.2 and THEOREM 3.3. O

Combining THEOREM 3.3 and COROLLARY 3.4 yields the next theorem.

THEOREM 3.5. If A is invertible as an operator on L*(T'), then A is invertible as
an operator on Xo. Moreover, if A is invertible on X, then the boundary value
problem has exactly one solution v, defined by (15)-(17) with ¢ € X given by
© = 2A7tg. Further, for some constant ¢ > 0, independent of g,

(@) <cllglx., z€D.

3.2 Invertibility of I + K —inS
THEOREM 3.5 shows that it suffices to prove the invertibility of A to answer the

solvability and existence of solutions to the boundary value problem and the original
scattering problem. We address this remaining task in this section.
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Chapter 3 Existence and Uniqueness

We start with our investigation on the invertibility of the operator A in the simple
case of a flat scattering surface I'", extending this result in a second step to the
general case of a rough surface.

3.2.1 The case of a flat surface

In the case that the scattering surface is given in form of a flat surface
M={y=(y.h):yeR’}, h>0

we see that the kernels of K and S only depend on the difference & — y and thus,
identifying I'* with R2, the operators are convolution operators on L?(R?).

As we have already discussed at the end of Section 1.5.2 the kernel of the single-
and double-layer operators can be expressed with the help of the function W), defined
by (1.38). Hence, the integral equation (18) can be written as

v@) + [ {Ple—u) — mQue—9)}i@) dy = 2(). seR (2)
where @y, and P, are given through (1.41) and (1.42). Introducing the function
Ry, == Py — inQp
we can write (3.2) shortly as
P+ Ry x 1 = 2g. (3.3)

We will show that this equation is uniquely solvable by means of Fourier transfor-
mation. To apply the convolution theorem for L?-functions (THEOREM 1.43), we
need to show first that Ry, x ¢ € L?(R?) for all ¢» € L?(R?). This is of course a
consequence of the mapping properties we showed for the double- and single-layer
potential operator, cf. THEOREM 2.6.

REMARK 3.6. In the case of a flat scattering surface the mapping properties of
S and K are a direct consequence of LEMMA 1.44. It follows from LEMMA 1.37
and LEMMA 1.38 that FoR;, € L*(R?) N L>®(R?), so we can apply LEMMA 1.4 to
conclude that Ry, x ¢ € L*(R?) for all v € L*(R?), i.e. the boundedness of FoRy,
ensures that Ry, * 1 € L*(R?).

Combining the Fourier transforms of P, and (), that we computed in LEMMA 1.35,
we derive for the Fourier transform of Ry, the formula (FoRy,) (k) = 74(|k|), for almost
all k € R?, where

1
fh(k') . {6—2h\/k2—52 .

1 — e—2h\/k‘2—f€2
= 5 2 }7
2T

k2 — K2

k> 0. (3.4)
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3.2 Invertibility of I + K — inS

From the convolution theorem for L?-functions (THEOREM 1.43) we see that, for
v € L*(R?),

I+ K = inS)yy =+ Ry«
_ }“2*1((1 + 21 FRy,) - (f2¢))'

Since F; is an isomorphism on L*(R?) it follows that the inverse of I + K — inS
exists as a bounded operator from L?(I'*) into L*(T'*) if and only if

ess. inf |1+ 27 (FoRi) (k)] = inf |1+ 27 74 (k)| > 0. (3.5)

Thus we need to investigate
K(k) :=142n rp(k) = A(hWk? — k%), k>0,

where

Az) =14 e % — zh777 (1—e?). (3.6)

We recall that the square root is to be taken with Vk? — k2 € V:i={2€ C: Rz >
0,3z < 0}, cf. (1.39). Indeed, in the case that x; > 0, so that (k* — k%) < 0, it
is clear that /k? — k2 lies in the interior of V. Now A is an entire function (the
singularity at 0 is removable) so that K is continuous on [0, 00). Further, K (k) — 1
as k — oo. Thus, to show (3.5) it is enough to show that K (k) # 0 for £ > 0 which
holds if A(z) # 0 for z € V; indeed, in the case k; > 0, we need only show that
A(z) # 0 for all z in the interior of V.

So suppose n > 0 and consider first the case when z = z, — iz, with z. > 0,
z; > 0. It holds that

z

Alz) = =i (1+e%) <M + z)

and straightforward calculations yield

3

(tanh z) _ 2sin(2z;) + 2z;sinh(22,) -0
=3 > 0,

z sinh? 2, + cos? 2] (22 + 2?)
since |sint| <t < sinht for ¢ > 0. Thus (3.5) holds if » > 0 and x; > 0.
In the case k; = 0 we need to show, additionally, that A(z) # 0 when z = —iz;

with z; > 0, in order to establish that A(z) # 0 for all z € V. Now A(0) = 2 — 2inh
and, for z; > 0, from (3.6),

2ihn

Zi

A(—iz;) = 2cos z; — sin z;.
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Chapter 3 Existence and Uniqueness

Thus, provided n > 0, A(—iz;) # 0 for z; > 0 so A(z) # 0 for z € V. Thus (3.5)
holds if n > 0.

We have proven, in the case 7 > 0 and in the case n = 0, x; > 0, that (3.5) holds,
and thus we have shown the invertibility of I + K —inS and the boundedness of the
inverse operator in L?(T'"). Thus we have established the solvability of (18) in the
space L*(T") for flat surfaces, which we summarise in the next lemma.

LEMMA 3.7. In the case I' = T'", with h > 0 it holds that A is invertible as an
operator on L*(T).

In the case that I'y is mildly rough, i.e. I'y does not differ too much from a flat
surface I'*, we can use THEOREM 2.9 to show that the integral equation remains
solvable. We state this intermediate result in the following lemma.

LEMMA 3.8. Suppose that h > 0 and that either n > 0 orn =0 and k; > 0. Then,
provided || f — h|| pcrome) is sufficiently small it holds that (I + K —inS)™! exists
and is bounded as an operator on L*(Ty).

Proof. Let A = I+ K —inS, and then denote A by A; to denote its dependence
on f. With the help of the isomorphism I : L*(T';) — L*(R?) defined by (1.9) we
associate Ay with the element A F=1;A fff’l of the set of bounded linear operators
on L?(R?). Now, Ay, is invertible with bounded inverse, by our analysis above for
the flat plane case. Moreover, by the continuity of flf with respect to f as proven
in Theorem 2.9 it follows from standard arguments that A ¢ is boundedly invertible
on L*(R?) for || f — h||pcree) sufficiently small and so Ay is boundedly invertible
on L*(T'y) . O

3.2.2 The case of a general rough surface

In this last section we briefly summarise the essential steps that are needed to show
the invertibility of the operator A for the case of a general rough surface. The results
have appeared in [22] and we refer the reader to the article for the details of the
proofs. The key ingredients that are needed for the proofs are THEOREM 2.6, THE-
OREM 3.5, LEMMA 3.7 and THEOREM 2.9, certain results from [14], and standard
properties of layer potentials.

Recall the definition of the dual-pairing

(6,0 = / o)) ds(y), éu € LA(D),

given in Section 1.1.5. With respect to this dual-pairing we introduce the operator

K’ defined by

o)) =2 [ ) dst), e, (3.7)
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3.2 Invertibility of I + K — inS

which is the adjoint of the double-layer operator K. In complete analogy to the case
of the single- and double-layer operator, cf. THEOREM 2.6, one proves the following
lemma.

LEMMA 3.9. K’ is a bounded operator on L*(T).

The operators S and I are both self-adjoint with respect to the dual-pairing so
that the adjoint of A is
A =T+ K' —inS.

We recall the following standard properties of adjoint operators on Hilbert spaces,
cf. Section 1.1.5 and the citations therein. We have that A and A’ have the same
norm, that A is invertible if and only if A’ is invertible, and that if they are both
invertible then

||A71||L2(F)~>L2(F) = HA/71||L2(F)~>L2(F)‘ (38)

Thus, we can proceed in the first instance by bounding A’. The first step in this
direction is to prove the following lower bound in the case when I' is smooth.

LEMMA 3.10. Suppose that, in addition to our assumptions throughout on f, it holds
that f € C°(R?). Then, for all p € L*(T') there holds

[A /20y = B |l 2ry (3.9)
where

~ 1/2
1 3k2L - -
B=B(Lgn/n) =7 |1+ (’;—2[5L+6L§] +6(L+3L§)2) (3.10)

and L = (1 + Lfc)l/2 and Ly denotes the mazimum surface slope of I's.

Proof. For a proof see [22, Lemma 3.3]. O

The previous lemma is the main tool to prove the general result, namely the
following theorem.

THEOREM 3.11. A and A" are invertible on L*(Ty) for any f € BCY*(R?), with

1A 2y r2g) = 1A 22y < B, (3.11)
where B = B(Ly, k/n) is defined by (3.10).

Proof. For a proof see [22, Theorem 3.4]. O

Combining the result of the last theorem together with THEOREM 3.5 yields the
final result.
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Chapter 3 Existence and Uniqueness

THEOREM 3.12. A is invertible as an operator on L*(T') and as an operator on X, .
Moreover, the BVP has exactly one solution v, defined by (15)-(17) with ¢ € Xo
given by ¢ = 2A71g. Further, for some constant ¢ > 0, independent of g,

(@) <cllglx., z€D.
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Chapter 4

Tools

In this chapter we introduce notations, summarise results from multi-dimensional
Fourier analysis and prove error estimates for the composite trapezoidal rule on
weighted spaces of differentiable functions.

4.1 Notations

The components of a vector z € R? for some d € N are denoted by (z1,...,z4). The
standard scalar product of two vectors z,y € R? is denoted by (z,y). The standard
basis vectors are denoted by e; for j =1,...,d. For two vectors z,y € R? we define

<y = z;<y; for j=1,...,d
and
r<y = z;<y; for j=1,...,d,

thus extending the definition for multi-indices to elements in R?, cf. DEFINITION 1.2.
Let z,y € R? with = < y, then we write

[z,y] = X?:1[33jayj] = [z, 1] X -+ X [z4,94] C R?.
for the generalised interval in RY. For z € R%, i.e. 0 < x, we write
d
i) =[] =
j=1

for the product of the components, hence the volume of the generalised interval [z, y]
is given through #(y — ).
A pointwise multiplication and division is defined through

ny = (‘rlylw"’xdyd) € Rd
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Chapter 4 Tools

and

r Y= (%,...,%)GR”’,

ity #0for j=1,...,d.
Let N,M € Z% with N < M. We call a function a : [N,M] C Z¢ — C a
d-dimensional array. We write this as

= CM1=N1+1)x-x (Mg—Ng+1)
g .

a = (ajlv---vjd)jlle ----- Mi;..;5a=Ng,...,
As short form we abbreviate this by
a = (a;)j=n,. m € CXMNED,
where we used the convention
j:N,...7M S jZ:N’L7M’L for izl,...,d,
which can also be written as N < j < M. We write
M M, My
PIRUED DT DR DRI
M<j<N j=N Jj1=N1 Ja=Ng
for the multiple sum.
A mapping B : [N, M] x [N, M] C Z% x Z¢ — C is called a d-dimensional matrix
and we write this as

B = (bi})ij=n.. .M € CXM =N+ [x(M=N+1)]

The matrix-vector product is defined in the usual way through

M
(B'CZ)Z’:Z[DZ‘JGJ', Z:N,,M
j=N

The d-dimensional matrices and arrays are closely related to d-level block matrices
and ordinary column vectors. In fact, for any d-dimensional array a = (a;);=n
C*(M=N+1) we associate a uniquely determined vector a € CHM=N+Dx1 with

-----

4= (AN, Ng)s ANy Ngt1)s - - 3 O(N o Ma)s - - - s QMo M) )
EXAMPLE 4.1. In the case N = (1,2,3) and M = (2, 3,4) the vector is given through

. t
a = (a(1.23), (1,2.4), A(1,33), A(1,3,4)5 A(2,2,3)s U(2,2,4), U(23.3), A(2,3.4)) -
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4.1 Notations

If we use this numbering, we can associate for each d-dimensional matrix B =
(bi,j)i,j:N,...,M c C[X(M7N+1)]><[><(M7N+1)] a matrix B c (Cﬁ(MfN+1)><1j(M7N+1) that is

given through the following set of rules:

The 0-level:

the 1-level:

BU .

i1,1 "

the n-level forn =2,...,d — 1:

(#1500sin—1) (J15esdn—1)

the d-level:

(i1 ,enriq

1)(J1yesda—1)

(n) ._

’L'n»jn '

’in»jn

(1)

11,J1

)

i1,j1=N1,...,M1

(2)

(41),(31) P15

(i17-~~:i’ﬂ)9(j17"'7jn) in-!—l;jn-ﬁ—l

B(d) = bz]

1

I

i2,j2=Na2,...,M2

(n+1)

in+1,Jn+1=Nn+1,-,Mn41

Y

EXAMPLE 4.2. We illustrate the above definitions for the case of a 3-level block
matriz given through N = (1,2,3) and M = (2,3,4). The matriz B is given through

b(1,2,3),(1,2,3)
b(1,2,4),(1,2,3)

b(1,2,3),(1,2,4)
b(1,2,4),(1,2,4)

b(1,2,3),(1,3,3)
b(1,2,4),(1,3,3)

b(1,2,3),(1,3,4)
b(1,2,4),(1,3,4)

b(1,2,3),(2,2,3)
b(1,2,4),(2,2,3)

b(1,2,3),(2,2,4)
b(1,2,4),(2,2,4)

b(1,2,3),(2,3.3)
b(1,2,4),(2,3,3)

b(1,2,3),(2,3,4)
b(1,2,4),(2,3,4)

b(1,3,3),(1,2,3)
b(1,3,4),(1,2,3)

b(1,3,3),(1,2,4)
b(1,3,4),(1,2,4)

b(1,3,3),(1,3,3)
b(1,3,4),(1,3,3)

b(1,3,3),(1,3,4)
b(1,3,4),(1,3,4)

b(1,3,3),(2,2,3)
b(1,3,4),(2,2,3)

b(1,3,3),(2,2,4)
b(1,3,4),(2,2,4)

b(1,3,3),(2,3,3)
b(1,3,4),(2,3,3)

b(1,3,3),(2,3,4)
b(1,3,4),(2,3,4)

b(2,2,3),(1,2,3)
b(2,2,4),(1,2,3)

b(2,2,3),(1,2,4)
b(2,2,4),(1,2,4)

b(2,2,3),(1,3,3)
b(2,2,4),(1,3,3)

b(2,2,3),(1,3,4)
b(2,2,4),(1,3,4)

b(2,2,3),(2,2,3)
b(2,2,4),(2,2,3)

b(2,2,3),(2,2,4)
b(2,2,4),(2,2,49)

b(2,2,3),(2,3,3)
b(2,2,4),(2,3,3)

b(2,2,3),(2,3,4)
b(2,2,4),(2,3,4)

b(2,3,3),(1,2,3)

b(2,3,4),(1,2,3)

b(2,3,3),(1,2,4)
b(2,3,4),(1,2,4)

b(2,3,3),(1,3,3)
b(2,3,4),(1,3,3)

b(2,3,3),(1,3,4)
b(2,3,4),(1,3,4)

b(2,3,3),(2,2,3)

b(2,3,4),(2,2,3)

The structure of the different levels is given through

1 1
B By
1

By} By

b(2,3,3),(2,2,4)
b(2,3,4),(2,2,4)

b(2,3,3),(2,3,3)
b(2,3,4),(2,3,3)

b(2,3,3),(2,3,4)
b(2,3,4),(2,3,4)

2 2 2 2
OB 0085 | 0.@BS 1.5
2 2 2 2
(1),<1)B§,z) (1>,(1>B§,§ (1>,(2)B§,2) 1,2>B§,§
2 2 2 2
(2),<1)B§,2) (2>,(1>B§7§ (2>,(2)B§,2) 2,2>B§,§
2 2 2 2
(2),<1)B§,2) <2>,<1>B§,§ (2)7<2)B§,2) (2>,<2>B§,§
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Chapter 4 Tools

4.2 Multi-dimensional Fourier analysis

In this section we summarise some results from the theory of multi-dimensional
Fourier analysis.

A function f : R? — C is said to be multi-periodic with period vector p, if there
exists a vector p € R%, such that

for all z € R%. Such a function is completely determined by its values on the cube

[0, p).
The linear space of all complex valued, Lebesgue measurable functions on R that
are multi-periodic with period vector p € Rio and for which

/ \go(x)P dr < 00
[0,p]

is denoted by Lg(Rd). As a shorthand notation we use Lf) synonymously. A
scalarproduct is defined on LIQ) through

S V0@ de
()3 = 7o /[ P

The linear space Lf, is a Hilbert space equipped with the norm

lelicz = /(e 0)2, @€ L.

We denote by

Ep(x) := ¥l n e 720 2 € RY,

where @ denotes the imaginary unit. One easily checks the orthonormality property

1, n=m,

(Ep,m Ep,m)Lf, = {

0, otherwise.

A function a : Z¢ — C can be interpreted as a multivariate complexr sequence
(an) = (an)neza where a, := a(n) for n € Z% In a straightforward manner we
define the multivariate series of (a,),eze as the limit of the m-th partial sum s,,(a),

Le.
E a, = lim s,,(a) = lim E y,,
m—0o0 m—0o0
nezd nezd
[nlli<m
where ||n|; = Z;l:l In;| for n = (ny,...,n4) € Z%. The linear space of all square

summable multivariate complex valued sequences is denoted by

*(Z2%,C) = 1*(2) :={a: 2% — C: Z lan|? < oo}

nezd
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4.2 Multi-dimensional Fourier analysis

It is a Hilbert space under the scalar product
(a,b)p = Z b
nezd
We note that {E,,, : n € Z?} defines a complete orthonormal system on Lf,, ie.

H Z (f7 EPJI)L%Ep,n -

nezd
[In]l1<m

m — 00,

for all f € L2. The complex numbers

« 1 . .
f(n) = (f, Epn)rz = i) /[(]’p] f(x)e 2 nase) gy n e 79, (4.1)

are called the Fourier coefficients of [ and they define a mapping from Z% to C. We
will denote this mapping either by f or F;f and call it the d-dimensional Fourier
transform of f. For two functions p, ¢ € Lg we see that

(SOa@ZJ)LZ%:(Z pnvzq/J > L2

nezd mezd

_ZZ m) (Epn: Ep, )p

n€Zd mezd

=Y @n)id(n), (4.2)

nezd

which is known as Parseval’s theorem. From (4.2) we conclude, for the case of ¢ = 1,

that
lellZ; = > e Epn)r2l* = 121 (4.3)

nezd

This shows that the mapping
Fa: L]2) - 62(Zd)7 ¥ = (@n)neZ‘i
is an unitary operator. The inverse operator is given through

Fiho (2 — L2, (an)neze — > anEpp.

nczd

Thus we see the following spectral representation

v = Fd_l}_d@ = Z Pnbipn (4.4)

nezd
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for all ¢ € L2. In analogy to the convolution product of functions on RY, cf. (1.44),
we define a convolution product for multi-periodic functions through

(f *9)(x) = , }f(:v ~-y)g(y) dy, f.g€ Ly
P

One easily verifies that this convolution product is also bilinear, associative and com-
mutative. Furthermore it has the same nice behaviour under Fourier transformation
as the convolution product for non-periodic functions, which is one key ingredient
for fast matrix-vector multiplications of circulant and Toeplitz matrices.

The analogon of the Convolution theorem for L? (THEOREM 1.43) is stated in the
following theorem.

THEOREM 4.3 (Convolution theorem for periodic functions). For g, f € Lg 1t holds
that

Fa(f *g) = t(p) Fa(f) - Falg)- (4.5)

Proof. For two functions f,g € L2 one computes

(fxg)(x) = flx—y)g(y) dy

[0,p]
:/ (Z f(n)e%ri(n,xy:p)) (Z g(m>€2ﬂi<m,y2p)> dy
021 \peza mezZd
— Z Z f(n)g(m>/ 6727ri(n,y%p>627ri<m,y+p> dy e27ri(m,:r+p>
nezZd mezd [0.7]
=t(p) Y f(m)g(n) emines?
nezd

= 4(p) F; (Falf) - Fal9))(=),

where the dot on the right hand side is the componentwise multiplication in ¢2. The
interchange of summation and integration is valid as a direct consequence of the
continuity of the L? inner product and the convergence of the series representation
in L2-sense. [

4.2.1 Discrete Fourier transform

For practical computations with multi-periodic functions, one normally uses trigono-
metric polynomials of some finite degree. As in most cases it is not possible to find
an analytic expression for the Fourier coefficients one cannot simply use a truncated
series expansion. Instead one will use trigonometric interpolation polynomials. The
results in this section can easily be derived from the case of one-dimensional trigono-
metric interpolation as it is presented e.g. in [34, Theorem 8.24/8.25].
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4.2 Multi-dimensional Fourier analysis

In the case of an equidistantly spaced grid of interpolation points, the coefficients
of the interpolation polynomial are given by approximating the integrals (4.1) by
the composite trapezoidal rule.

REMARK 4.4. We restrict our presentation to the case of an even number of inter-
polation points for each space dimension.

We explain this in some more detail for a continuous multi-periodic function g
with period-vector p € R¢. For N € N? we define a regularly spaced grid on R?
through

{rj:=h®j:jez,

where h := p + 2N denotes the step size. The set of interpolation points in [0, p]
that is used for the interpolation is given through

{z;:j=0,...,2N —1}.

The uniquely determined trigonometric interpolation polynomial gy of degree |N|
that satisfies the interpolation property

gn(zj) = g(xj), 7=0,...,2N —1,

is given through

Ni—1 Ng—1

2mwimyx 2mimqgx d
E g Glmy, ... mg)e¥rima/p . L g2mimara/pa g e RY

mi1=—N1 mg=—N,
where the discrete Fourier coefficients are given through

2N1—1 2Ngz—1

~ . . —27rimdjd/2Nd —27ri7n1j1/2N1
m) = g(Tj, ..., x5,)€ S €
g( ) (2N1 2Nd Z Z J1 ]d)
J1 =0 ja=0
for m; = —N;,...,Ny—1for |l = 1,...,d. We can write these expressions in a

condensed form as

N—
S gmpeninen) (46)

m=—N
and
1 2N-1 o
g(m) == TR 3 glay)e i = N N -1 (4.7)
j=0

As we mentioned before, the discrete Fourier coefficients are an approximation to
the Fourier coefficients given by (4.1). By replacing the integral by the composite
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trapezoidal rule we see that

_ . 'y 6—27ri(m,j®h+p)
ﬁ(p)ﬁ(p : 2N)j2_Ng( i)

N-1

:— 9(x
j=—N

(
=g(m), m=0,...,2N — 1.

—27i(m,j+2N)

To handle these specific kinds of sums of exponentials, one introduces the following
two linear mappings on C*V).

DEFINITION 4.5 (Multi- dimensional DFT/IDFT). For N € N? we call the linear
mapping Fr : C*N) — C*WN) that maps the d-dimensional array of complex num-

bers a := (an)n=o,. N—1 ONt0 @ = (Gp)n=o.. N-1, Where
N-1
~ —27mi(m,j+N _
A = aje 2mmITN) g =0, N — 1, (4.8)
Jj=0

the d-dimensional discrete Fourier transformation (DFT,) of length §(N). The lin-
ear mapping I?j\,l : C*WN) — C*WN) that maps the d-dimensional array of complex
numbers b := (b, )n=o N_1, where

777777777

m=0,...,N—1, (4.9)

is called the d-dimensional inverse discrete Fourier transformation (IDFTy) of length

BN).

We see that the discrete Fourier coefficients g are given as a scaled DFT of length
#(2NV). The importance of this observation is that there are very efficient algorithms
to compute the DFT in O(§(N)log #(N)) operations. These methods are called fast
Fourier transform. The ideas date back to Johann Carl Friedrich Gaufs.

At last we note that the multi-dimensional discrete Fourier transform is a nested
version of one-dimensional discrete Fourier transforms performed over the corre-
sponding dimension of the multi-dimensional data array.
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4.3 The composite trapezoidal rule

Throughout this thesis we approximate the integral

Q'lf] = . f(x) dz, (4.10)
by the weighted sum
Qalf] == h" > f(hi), (4.11)
jezd

where h > 0 denotes the step size, i.e. we use the composite trapezoidal rule.

In this section we prove that the composite trapezoidal rule, which coincides with
the midpoint rule or rectangular rule on R¢, is convergent of high order for certain
classes of weighted continuously differentiable functions. Our presentation follows
in large parts [40], [42] and [30] extending their results to the case of arbitrary space
dimensions.

For the forthcoming analysis we introduce the following spaces of differentiable
functions, all of which are Banach spaces equipped with their respective norms.

For n,d € N and p € R we define

BCZ(RCZ) = {¢ € BC”(Rd) : ||77DHBC;}(]R‘1) < 00}7
with
1Yl Benray = max w0 e (ray,

where
wy(e) = (L+ |o])", @ € RY

In other words this means that for f € BCJ(R?), there exists a constant ¢ > 0 so

that
c

fla)| < ————, =z € R¢
9 FN < 5ty
and a € N with |a| < n.
REMARK 4.6. We note the trivial identities
WpWy = Wpiq, P,q ER (4.12)
and )
w_,=—, pelR (4.13)

Wp

LEMMA 4.7. Let f € BC}(R?) with p > d. Then 0°f € L'(R?) for o € N with
la] < n.
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Proof.
[ors@ldr<e [ Gt
)| dr <c ———dx
Rd = Jra (L4 [P
o] Tdfl
= cwd/ dr
o (I+r)p
< cwd/ (14 r)4 Pt dr
0
_ o0 CCUd
= 1 d=p|* — <
cwdd_p( +7) ‘0 o d 00,
where w, denotes the surface area of the unit sphere in R¢. [

To handle kernel functions on R? x R? we define in an analogue way the space

BCy (R x RY) := {4 € BC"(R? x RY) : [|¢)]| peyp(raxma) < 00},

with
1Yl Bop (Raxray = max |0, 0%V pomixray < 00,
where
Wy(7,y) = wy(r —y), z,y€cRE
i.e.

Wz, y) = L+ ]z —yl)?, @,y eR

The following multi-dimensional variant of the Leibniz rule or generalised product
rule will be used in the sequel.

LEMMA 4.8 (Leibniz rule). For f,g € C"(R?) it holds that

- ¥ (5) @ @)

0<f<a

for all « € N with || < n, where the binomial coefficients for multi-indices «, 3 €

N? are given through
d
) -105)
()~ 1L

Proof. See e.g. [28, p. 247, Theorem 1]. O

LEMMA 4.9. For o, 8 € N® with 3 < o we have the identity

3y (g) =2l o eN (4.14)

0<f<a
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4.3 The composite trapezoidal rule

Proof. We first note the one-dimensional version of this rule

2" = (1+1)" = XZ: (;L) Kt (4.15)

which is a simple consequence of the binomial theorem. The general rule follows by
successive summation and the use of (4.15)

> (5) -2 (= (Zu()

0<B<a Ba—1=0 \Bq=0j=1
[e3] og—1 d—1 a.
= 2%d J ==
> (- X (%)
B1=0 Ba—1=0j=1
[e%1 d
— 9, .9 ar) _ a; _ ait..ag _ olal
=2% . .2 Z(ﬁl _Hzﬂ_z = 9lol, O
51=0 j=1

The first building block of the error estimate for the composite trapezoidal rule
is the next Lemma that examines relations of weighted and non weighted spaces of
differentiable functions.

LEMMA 4.10. Let d € N;n € NU{0}.
(i) Let f € BCMRY) and g € BCI(RY) for p,q € R. Then fg € BC}, (RY) for
all z € RY and

1fgllpen (Re) < 2n||f||BCg(Rd) ||9||BC;(R¢)- (4.16)

p+q

(ii) Let a € BC]’}(R" x RY) and f € BC’;L(Rd) for p,q € R. Then a(z,-)f €
BC™, (R?) for all z € R? and

p+q
la(, ')f‘|BCg+q(Rd) < 2"[|a(z, ')HBCg(Rd) HfHBc;;(Rd)- (4.17)
Proof. (i) Using the Leibniz rule and the identity (4.14) we calculate

> (g) (077 f) () (9°9) ()

0<p<a
1

wp()w(2)

0°(f9) ()| =

> (5) e nw] [wosw]

0<f<a

1 o}
< s 3 () M llcpen lolacyes

wp(x)wq (.T) 0<B<a
olal

wp<x>wq(x) HfHBC{;(Rd) Hg”BC&L(Rd)
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for all @ € N? with |a| < n. We use that w,w, = w4, for p,q € R, ¢f. REMARK 4.6,
multiply this inequality with w, ,(z) and take the supremum over x € R? This
yields the estimate (4.16).

(ii) This is a direct consequence of (i), if we first note that for a € BCJ(R? x R?) it
holds that a(z,-) € BC(RY) for all z € RY.
[l

The second building block it the following Lemma, which is a consequence of a
generalisation of the Euler-Maclaurin expansion for the multi-dimensional case. Let

Cy ([0, l]d) = {1/1 e C"(][o, 1]d) 0P| (o,114) = 0 for |af < n},

the space of n-times continuously differentiable functions on [0, 1]¢ that vanish with
all their derivatives up to order n on the boundary.

LEMMA 4.11. Let myn € N, g € Cy([0,1]%) and define h := 1/n and N :=
(n,...,n) € N4 Then

N-1

/[ @) de =3 )| < Cllg
0,1]¢

j=1

CnL([O’l]d)hm’

where the constant C' > 0 depends only on m.

Proof. For details of a proof see e.g. the comments in [51]. O

The following theorem is an extension of [42, Lemma 3.10] to the multi-dimensional
case and the proof presented given here closely follows the one in [42].

LEMMA 4.12. If, for some p > d and m € N, f € BCI"(R?), then

|Qdf - QZfl < C||f||BC§”(Rd)hma h > 07 (418)

where the constant C' > 0 depends only on m and p.

Proof. Let ¢ € C*°(R) be such that ¢(s) = —3 for s < 0 and ¢(s) = 5 for s > 1. Let

Po(s) == ¢(s) — ¢(s — 1) and let ¥;(s) := ¢p(s — j) for j € Z. Tht;liwj € Cosmp(R),
with supp¢; = [j,2 + j] and

ij(s) =1, seR,

jez
so that we have a partition of unity on R. The family of functions

() i= vy (21) ... -y, (2a), jEZ, xR
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defines a smooth partition of unity on R% and supp ¥; = [j,2 + j] C R Let, for
h>0and j € Z% e;(h) = Q¥,f] — QL[V;f]. Then

QU] = Qilfl = 3_ es(h)
JjEZ4
and by LEMMA 4.11 and LEMMA 4.10,
’ej(h)‘ < CH\IlijBCm(supp\Ilj) h™
< 2" C ¥l Bem(supp w) L f | Bem suppwy) ™

< 2" C ||\IJj||BC'm(supp‘Ilj) tegll[?i)x\lﬂ ﬁ ”wpf”BCm(supp\Ilj) ™
j

<27 C W™ W0l opp 1 ey mis, (1 + 1)

< Co 1™ || fll B (re) teI[n%i(j](l + [t)7?

where C,,, depends only on m and on || ¥gl[cm (o2 Thus,
QU1 = QLA < D les()
jezd

< Col™ | fllpopn Y max (1+]t])7
J

€zd b2+l

< Cliflsey@nh™,

where C' > 0 depends only on m and p. The convergence of the multi-dimensional
series can be concluded from a generalisation of the integral test. We first note that
the function w, : RZ; — R, ¢ — (14 |¢|)7? is an integrable and non-negative mono-
tone decreasing function, which means that the maximum of w, over the interval
[7,7 + 2] is attained at the left end point, i.e.

max (1+[t))™" = (1+ )7
te(5,2+7]

Using symmetry properties we can write the series in the form

+ |t)) 7P = 2¢ (1+[f])® =2¢
Zte“?%’f]( t]) > (1+14) > wy(h).

jezZ4 j€Z>O j€Z>O

The convergence of the series now follows from the estimate

wp(j) < / wp<t> dt, je€ Z>07
[4,5+1]

which is a direct consequence of the monotonicity and which implies that

Z wy (7 Z / / w,y(t) dt < . O
J+1 R4

jGZiO ]EZd
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Chapter 5

Operator approximations

In this chapter we analyse operator approximations that can be used either

e in the context of Nystrom methods together with the finite section method as
a truncation scheme

or

e in the context of the recently proposed multi-section method, where, in con-
trast to the classical Nystrom method, a linear least squares problem has to
be solved.

We are interested in approximating integral operators

:/ K(z,y)J(y)Y(y) dy, = cR? (5.1)

where J(y) = /1 + |V f(y)|? denotes as usual the surface area element, by operators
of the form

(Ape) (@) == Ky j(@)J(hj)v(hj), = €R>h>0, (5.2)

jEeZ2

where K, j,j € Z?, is a family of regular functions that have to be determined.

For a reasonable large class of kernel functions and densities one can get an ap-
proximation of the form (5.2) by replacing the integral by the composite trapezoidal
rule. Thus we get

(Ant) () = Qi [K( =3 Knj(®)J(hj)o(hj), x€R3
Jez?
where
Ky j(z) == W*K(x, hj), j €z’ (5.3)

These kind of operator approximations are used in Nystrom methods and it is
known that the operator A, cannot converge in norm to the original operator A for
h — 0. The best one can hope for instead is pointwise convergence, i.e.

Ay — Apb|| — 0, h— 0, (5.4)

for a reasonable class of functions ¢ and an appropriate norm || - ||.
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5.1 Approximations for weighted differentiable
kernels

In the case that the kernel and density exhibits a certain rate of decay, we are able
to prove convergence and quantify a convergence rate.

LEMMA 5.1. Let A be given through (5.1) with K € BC'(R? x R?), ¢ € BC*(RY)
with p +q > d and f € BC™ Y (RY) for some m € N. Then, the operator A, for
h > 0 given through (5.2), with K, ; given through (5.3), converges pointwise to A
and the error can be estimated through

AV — Al pomay < CllK (2, )| sogp @ ||| om @ 1€ Bop @ayh™ (5.5)

for some constant C' > 0 dependent only on m and p.

Proof. For f € BC™(R?) we see that J € BC™(R?) so that LEMMA 4.10 yields
K(x,-)Jy € BC (R?). LEMMA 4.7 ensures that K(x,-)Jy € L'(R?) for all
x € RY as p+ q > d. Hence LEMMA 4.12 yields

||A¢ - Ahl/JHBC(Rd) = Sup }Qd [K(az, ')Jl/)] - Qg [K(m, ')Jl/)”

xR

< d|K(z, ) Y| per, wayh™
so that the bound (5.5) follows from LEMMA 4.10. O

REMARK 5.2. The reason for our interest in this particular case is that the global
part of the single-layer and double-layer operator satisfy these conditions for d = 2
and p = 2, as we have shown in the estimates (1.22) and (1.28). To retain the
convergence order, it suffices that the density satisfies the mild decay property i €
BCT(R?) for g > 0.

5.2 Approximations for weakly singular kernels

In this section we develop a quadrature scheme that is suitable for the weakly sin-
gular integral kernels of the single-layer and double-layer potential operators.

Thus we consider the case where the operator A, given through (5.1), has the
kernel K = k% or K = k¥, with

k;s(:n,y) = 2G(x,y), (5.6)
EX(x,y) = 2%, (5.7)

for x = (@, f(x)) and y = (y, f(y)) and G given through (10).
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We start our explanations, by first deriving suitable decompositions of the two
kernel functions in the form

K(ﬂl,y) = Kl(may) + KQ(mvy)v z 7& Y, (58)

1
|z -y
where we assume that, in the case that f is a real analytical function, the following
two conditions hold:

(W1) the kernel function K; is smooth,

(W2) the function Ko 4(r,0) = Ky(x,z + rp(h)), for r € R,0 € [0,27) possesses
continuous partial derivatives in angular and radial direction of arbitrary order,
i.e. Ky, is a smooth function in the polar domain R X [0, 27), where

p(0) :== (cosb,sinh). (5.9)

5.2.1 The case of the single-layer potential

To derive a decomposition of the form (5.8), we introduce the kernel functions

- )_ulwppam_yP+U@»—ﬂwPW1 510
T (e -t @) - TP '

and

2 )_uiwp@dm—yP+V@%+ﬂwFWﬂ -
T @y @)+ SR |

To handle these kernel functions more easily we denote the distance |x — y| respec-
tively |z — /| of two points =,y € I'y by

1/2

d(z,y) = (lz —y[> + [f(=) = F(¥)]*)"", (5.12)
and

1/2

d(x,y) = (lz -yl + [f(®)+ f(y)])

o\ 1/2
clx,y) = <1+ {M] ) , TH#Y, (5.14)

(5.13)

The function

can be written as
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This yields the decomposition

1
oy, y) =k (z,y) — k9% (x,y) = ki (=, y) + ———Fk3 (z,y)

|z -y
with
K () 1= <—ks’2(:c,y) +¢—Sig7£2‘(ig£”) (5.16)
and
1§ (e,y) = oL@ V)] (5.17

2me(x, y)

The regular part. In the case that f is an analytic function, we conclude that
o J=\/1+|V[P e BC*(R?),
e c(x,-),d(x,-) € BC®(R*\ {x}) for all z € R?,
e d'(x,-) is an analytic function for all x € R2.

Furthermore we have the bounds

1/2

2f7 <d(x,y) and 1<c(x,y) < (1 + Lfc)

for z,y € R

The function z — €"?/z,z € C is meromorph in C\ {0}. Thus we conclude,
together with the bound on d, that k®? is analytic as composition of analytic
functions.

The function

y = sin(ly))/lyl, y€R®

is a real analytic function, hence also the function
y  sinfd(z, y)]/d(z,y), x € R

Thus k7 (x,-) € BC®(R?) for all © € R2

The discontinuous part. It remains to show that the function

l%g’m(r, 0) = kf(a:, x+rp(d), reR0e]l0,2n) (5.18)
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possesses continuous partial derivatives of arbitrary order. For this it suffices to
consider the function ¢, given through (5.14). Introducing polar coordinates with
centre & we can write ¢ as a function in the polar domain, i.e.

o\ 1/2
Eu(r, ) == (1+ {f(w)_f(w”p(e))} ) . r>0,0e(0,2m).

r

With the help of the Taylor expansion
fla+rp(6)) = f(@) + (Vf(x),p(0))r + Z p(O) T (5.19)
|a|>2 !

we see that the function

[(@) — fla+rp(6)

r

(r,0) — —(Vf(@),p(0)) — Y (0°f)(@)p(0)*r*"

la|>2
possesses continuous partial derivatives of arbitrary order. Furthermore we see that

L coslkrég(r,d)] . 1 1
Tl_f{(l) 2a(r0) = 7«1_>0 o Cp(r,0) "0 2 Ca(r,0)

- (1 (o)

5.2.2 The case of the double-layer potential

To derive the decomposition for the double-layer potential, we introduce the kernel
functions

iy o L (VI @~y f(@) = F@) )™
R y) = o CErE [<w> F)P)
(1= in (P + )~ F@))?) (5.20)

exp [in (|2~ + [f(@) ~ )]
(lz =y + [ (@) = F)])"?

and

(=Vi(y), -1, (= -y, f(=)+
(le —yl? + [f(z) + f(y)]?

1=k (le =y + [f(@) + D)) (5.21)
| exp [zﬁ (lz —y|* + [f(z) + f(y)]z)l/Q]
(le —y> + [f(=) + f(y)]

1
sz(a: y) = o

A
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Note that
K. L (v(y),z—y) : explic|lr —y|]  0®(z,y)
, E— Il _ _ =92
K ) = 5o e (L il —vl) = oY)
and
K2 L ([v)],z—9) : N\ expliklz —y'|]  0P(x,y)
: _ 1 _ _ =9
ey =g |z —y'|? <1 ihlz =~y |> |z — | v (y)

To write these functions more compactly we introduce the functions

(f(x) = fly) = (Vf(y),z—y)) [J(y)'

a(z,y) = ERNE , T#Y, (5.22)
and
o) = ~UE L) 3 o
Thus
e ay) = (1 (e, ) —engfi(;”’; v)
and

K2 () — a’(;;y) (1 —ind (z, y>> expglfzi(yw), )l

Now, using (5.15), we can write the kernel function of the double-layer potential as

Fy) = K @)~ %) = ) + o ),
where
ki (2, y) = =k (2, y) (5.24)
and
X (x,y) = %(1 —ikd(zx, y)) W. (5.25)

An analysis, similar to the one we did before in the case of the single-layer operator,
yields kI € BC>(R?) for an analytic function f. In addition we see that it suffices
to study the function a given through (5.22). The Taylor expansion (5.19) yields

f@) = )~ (Vo —y) = 32 (0" )@~ )",

o >2
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so that

PRI
R e

Thus we see that the function
az(r,0) = a(x,x + rp(0))
can be written as
alr,0) = 3 (0 1) @)pl0) 1 ealr, O L&+ (@),
ja|>2
which is clearly a differentiable function in the polar domain. This proves that

iy (r,0) == k5 (z, @ + 7p(0))

is a smooth function in the polar domain with

i F,,0) = 5= 3 (0" ) @)pl0)* 200,001 LI+ rp(0))]

5.2.3 The locally corrected quadrature scheme

The decomposition (5.8) is our starting point for a second decomposition that trun-
cates the singular part to a function with compact support. To this end we introduce
a n-times continuously differentiable, symmetric cut-off function x,; : R — [0, 1] for
some constants 0 < a < b such that

OSXa,b(t) < 17 tERa

(t) _ 17 |t| <a,
Xt =00, 1t > b

A typical example of such a cut-off function is shown in FIGURE 5.1. With the help
of such a cut-off function we define a second decomposition

and

K(CD, y) = Klocal<w7 y) + Kglobal(wa y), (526>

where
Klocal(m7y) = Xa,b(|m - y|) |m — y|K2(wa y)a (527)
Ko@) = 5 (2,9) + [1 = xaalle )| o= Ko@) (529
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FIGURE 5.1: An example for a cut-off function x,

Hence we can write (5.1) as the sum of A, and A, where

/ Kaova(z,9)J (¥)Y(y) dy, x € R (5.29)

()@= | asllz =)

1
- y‘KQ(w, y)J(y)v(y) dy, xR (5.30)
The kernel function of the global operator is smooth by assumption, which means
that the smoothness is limited only by the smoothness of the cut off function xq.
Applying the quadrature scheme to the global operator we get the following operator

(Agpth) (@) := Qi [Kgobar (2, ) Y], @ € R?, (5.31)
which we can write as the infinite sum
(Agnt))(@) = B Y~ Kgona(@, hj)J (hi)b(hg), x € R®. (5.32)
jez?

For the treatment of the local operator (5.30) we introduce some additional no-
tation. To simplify the understanding of the following rather technical definitions,
we illustrated the situation in FIGURE 5.2. Let ji,j% € Z? denote the index of the
lower left and upper right corner points of the smallest rectangle R, in the grid that
contains By(x), an open ball of radius b and centre . More formal, we define the
two index sets

JP={j€Z*:hj <y forall yc By(x)}
and
JE:={jeZ*:y<hj foral y¢€ Byx)}.

Then 3i € J is the index such that j < 5} for all 7 € Ji and in an analogous fashion
j% € JZ is the index such that i < j for all j € J%. Hence R, = [hj], hj®] C R2
The function

Ae(y) = \/Xan(|z — Y J (W)Y (y), yeR? (5.33)
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has support in By(x) C Ry, so it possesses a uniquely determined periodic extension
that coincides with A, on R,. We approximate this periodic extension by the
uniquely determined two dimensional trigonometric interpolation polynomial.

) )
° °

° °

° .

° .

° .

x

11

° ° ° . . ) ) )
) ° . . ) ) ) )

FIGURE 5.2: The setting for the local interpolation scheme: For a point & (green
point), we depicted the circle B,(x) (gray) on which the function A, is approximated.
The grid points (red points), for which the locally corrected weights are computed,
are the points inside the circle. The rectangle R, is the blue square in the middle. It
is determined by the lower left corner point hjjj (enlarged blue point) and the upper
right corner point hj%,. (small blue point). The set of all enlarged points inside Ry
are used for the interpolation.

For a function 1 : R, — C we define the interpolation operator

(Pet)(y) == Y, ©(hi)ljjz(y — hgF), yeR? (5.34)

J<i<in.

where /;(y) for 0 < j < L denotes the Lagrange basis for the square [0, hL], where
we have set L := 37, — Jy.-

EXAMPLE 5.3. In the case that the number of points used for the trigonometric
interpolation is even, i.e. L = (L, L) € 277, then the Lagrange basis is given through

0i(y) =Ly (Ew) Ly (Se), 0<j<L-1,
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where . I 1
T4y — S (T L
li(t) == 7 sm(2 (t Lk:))cot 5 t # hk,
for k =0,...,L — 1 denotes the one-dimensional Lagrange basis for the interval

[0,27], cf. [35, formula (11.13)].
We write the local operator in the form
1
W@ = [ \raslle — ) o ol u)Aa(w) du.
Bb(iIZ

where A, is given through (5.33). Replacing A, by its trigonometric interpolation
polynomial we define the operator

W@ = [ \aulle—) = Ko@) (PeA)() dy. @ € B

Y

By(x)
which we can write in the form

(Ap) () = Y, a;(@)J(hi)b(hg), = €R?, (5.35)

J<i<in.

where

aj(@) == \/Xap(|Z — hjl)aj(x), JT<J<iu (5.36)
and Kol y)

T, Y .
/ Xl ~y) 2 i) dy (57

By(x

denote the locally corrected weights, which have to be computed by numerical inte-
gration. We set &;(z) =0, for j & {i € Z? : 37 < i < 3%} to write (5.35) in the
form

(Ap)(x) = aj(@) T (hi)e(hj), = € R,

jEZ2

Using the function p introduced above, cf. (5.9), we can write, after a change of
variables,

b 2w

_ / / Xap(r) Ko a(r, 0) sz (z + rp(6) — hj®) dbdr. (5.38)

We observe that the singularity is completely removed through the Jacobian of
this change of variables. The rather unmotivated use of the square root of the cut
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5.2 Approximations for weakly singular kernels

off function y,; in the definition of A, can now be justified. The assumption (W2)
ensures that the integrand is a smooth function in the polar domain, whereas the
cut off function allows us to interpret the integrand as a periodic function in the
polar domain with [—b,b] X [0, 27] as its domain of periodicity. Thus the application
of the composite trapezoidal rule, both for the radial and angular direction, yields
an efficient high order integration scheme.

The operator A is approximated by

(Ant)(z) = (Agn) (@) + (Apt)(®), = € R,

which again is an infinite sum of the form

(Ap)(x) = > Knj(m)J(hi)(hg), =R (5.39)
jez?
where
Khyj(a:) = hQKglobal(.’B, h]) + dj(.’l)), ] - Zz. (540)

In analogy to the convergence results summarised in LEMMA 5.1, we prove a
similar result for the weakly singular kernels that shows super-algebraic convergence.

LEMMA 5.4. Let A be given through (5.1), where K : R? x R? — C denotes a
weakly singular kernel function that in addition satisfies the condition: there exists
a constant ¢ > 0 such that

o K (w,y) < | c

for all « € N and the constant ¢ may depend on «. Let 1) € BC;O(RZ) with ¢ > 0
and f € BC*®(R?). Then, the operator Ay for h > 0 given through (5.2), with
Ky, j given through (5.40), converges pointwise to A and the error can be estimated
through

[AY = Aptbl oy < [|Ag) — Agntdll + A — Appdd|

where
[Agh — Agptb|l < Cil| Kgiobal(, ) | ey @2) ||| Bom @2y 1€ Bom @2y ™, (5.42)

and

|Ap) — Al < CQ( sup / }KS(:L" y)‘ dy) 1Az — Pelz||Bor2) (5.43)

xrcR2
By(x)

with

Ki(w.) =\ xuslle — ) = Kol w) (5.4

and the constants Cy,Cy depend only on m and q.
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Chapter 5 Operator approximations

Proof. The assumption (5.41) ensures that Kgopa € BC'(R?) for all m > 0. Hence
we can apply the same proof as in LEMMA 5.1 to get the estimate (5.42).
For the local operator we estimate

[Aip(x) — Ava(v)(®)] < L/1!B%(w,y)!IAm(y)-(f%AaJ(y)!dy

By (x)

< sup / K, )| dy | Ae — (Pola) | soge)
xe
By(x)

< O [|Az = (Peha)llBo@e),

for some constant C' > 0 independent of . Now it follows from standard error
estimates for smooth periodic functions that trigonometric interpolation will yield
a super-algebraicly convergent scheme with respect to the mesh-size h for a fixed
cut-off radius b and a smooth cut-off function x,;. The assumption on the weakly
singular kernel, cf. LEMMA 1.15 for the details, ensure that

sup / Ks(,y)| dy
By(x)

TER

is bounded on R2. n

REMARK 5.5. The computational costs for the computations of the local corrected
weights are the dominating costs in the overall scheme. We think it is therefore the
best, to limit the numbers of points for which the local corrected weights are computed
to a fized number. A radius of 2h or 3h, which means that 9 or 21 weights are being
computed, seems to be a good choice.
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Chapter 6

Nystrom methods for rough
surface scattering

Using the parametrisation (1.8) of the scattering surface I'y we can write the bound-
ary integral equation (18) as an integral equation on R?. Setting

(@) == oz, f(x)) and ¢ (z) = —2G((z, f(x)), 2) (6.1)
for some source point z € Dy, we get an equation of the form
U(z) + (W) (z) = ¢*(x), =€R (6.2)
where IV denotes the integral operator
Wol(w) = [ ko) @) dy. <R (63
with kernel function
k(z,y) =2 {G(:c,y) —n2G(x y)} r#y (6.4)
) ay(y) Y Y 9
for x = (z, f(x)),y = (y, f(y)) and surface area element J(y) = /1 + |V f(y)|>

Introducing the operators

W)= [ K@u)I i) dy. @R, (6.5)

for £ € {S, K} with kernel functions k% and k¥ given through (5.6) and (5.7), we
can write the operator (6.3) in the form
W =W —inws.

We approximate both operators W and W* as described in the previous chapter,
i.e. the integral operator W is approximated by

(W) (@) = > knj( J(hj), x€R? (6.6)

jez?
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Chapter 6 Nystrém methods for rough surface scattering

where
g (@) = 12Kl (2, 15) = DK (@, 1) + |65 (@) — nas(@) | (6.7)
Now one approximates the solution of equation (6.2) by the solution of the equation

Un(x) + (W) (z) = ¢°(z), x € R

In complete analogy to the Nystrom method for the case of finite intervals one proves
the following theorem.

LEMMA 6.1. For some h > 0 let ¥y, be a solution of
)+ D Fng(@) I (hg)en(hg) = ¢ (x), = € R (6.:8)
jE€Z2

Then the sequence " = (@D;?)jep with qu = n(hg), 7 € Z* solves the infinite set
of equations
UF Y kng(hd) J(hg)wh = ¢*(hi), i€z (6.9)

Jez?

Conversely, if the sequence Y" = (1/]?)_7622 is a solution of (6.9), we get a solution

of (6.8) through
Un() — > kgl i, weR’ (6.10)
jEZ2

that agrees with the sequence (@b;?)jezz at the set of quadrature points. This interpo-
lation function is called Nystrom interpolant.

Proof. The first part is trivial. For the second part one can argue as follows. For
a sequence (w;?)jezz that solves (6.9) we see that the function v, given through
(6.10), takes the values

Un(hi) = ¢7(hi) — > knj(hi)J ()W) = ¢}, i€ 2,
jez?
Inserting this, together with (6.10), into (6.8) shows that v, solves the equation
(6.8) O]
REMARK 6.2. The system (6.9) can be written as a linear equation in (*(Z?), i.e
Y+ Wiy = ¢ (6.11)
where > = (¢;’h)jezz with qﬁj’h = ¢*(hj) for j € Z* and where we have introduced

the operator

Wh: C22) = 42, b (3 kng(hi) T (hi)e;)

JEZ2

cz?
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6.1 Method I: Discretisation-truncation

Though it is clear that we can never implement this infinite linear system on a
computer, the approach is interesting from a theoretical point of view. In the case
of scattering by one-dimensional rough surfaces, some results on the convergence of
the Nystrom method were proven in [2], [40] and [41].

6.1 Method I: Discretisation-truncation

To get a finite dimensional linear system that we can actually implement on a
computer we restrict the quadrature points to the finite set

{hj:—-N<j<N-1} (6.12)
where we have set
N := (n,n) € N? (6.13)

for some n € N. Thus instead of using the solution of (6.8) as an approximation to
the true solution, we approximate the solution of (6.2) by the solution of

Uno(®) + (Whothne) (@) = ¢*(x), = €R”
where we have set
o:=h-n (6.14)
and
(Whot)) (2 2 k()T (hg)w(hj), @€ R (6.15)
j=—N
The meaning of the parameter p will become clear in the next section. In the same

manner as before one proves the following theorem.

LEMMA 6.3. For some h > 0 and n € N let 1y, , be a solution of

Uno(x) + Z k(@) (hg)Uno(h) = ¢* (), @€ R (6.16)

where N and o are given through (6.13) and (6.14). Then the two-dimensional array
Y= (V) j=n..~n-1 € CXCN) with by := 1y ,(hj) for j = —N,..., N —1 solves the

.....

finite dimensional system

N-1

Vit Y kng(hi)J(hi)b; = ¢*(hi), i=-N,...,N—1. (6.17)
=
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Chapter 6 Nystrém methods for rough surface scattering

Conversely, if the array ¥ = (V) j=—n,.. N—1 15 a solution of (6.17), we get a solution
of (6.16) through

N—
Uno(x) = ¢ (z Z J(hj)b;, =€ R (6.18)

REMARK 6.4. We note that the linear system (6.17) is simply a truncated version
of the infinite linear system (6.9).

6.2 Method Il: Truncation-discretisation

A different way to arrive at this system is the following. For a given step size h > 0
and n € N we consider the truncated version of (6.2), namely

V(@) + (Weth) () = ¢*(®), x € [0, 0", (6.19)
where g is given through (6.14) and

W)= [ Haw @) dy, welod  (62)

as a starting point for our calculations. Now we apply a Nystrom method, where we
are using the same operator approximations as before. Using the integration points
given through (6.12) yields the equation

Yon() + (Wonthon)(x) = ¢°(x), @ € [~0, 0, (6.21)

where

(Wont)( 2 kng(2)J(hg)(hg), x € [~o, 0] (6.22)

and N is given through (6.13). To get an approximate solution of (6.19), we see
that it suffices to solve the linear system (6.16).

Thus we see that, due to the unboundedness of the integration domain, the numer-
ical schemes to solve the integral equation (6.2) require an additional approximation
step. This truncation step is called finite section method and we give a slightly more
formal treatment in the next section. As we demonstrated above it can be realised
in two slightly different ways:

truncation
_—

Integral equation on L?(R?) Integral equation on L*([—og, 0]?)

scheme
| discretisation | | discretisation |

truncation
_—

Linear equation on ¢?(Z?, C) Linear system on C?M)”.

scheme
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6.3 The Finite Section Method

These two view points explain e.g. why the trapezoidal rule is a good choice for a
quadrature rule. If one first truncates the integral equation one might object that a
higher order quadrature rule, like e.g. the composite Simpson rule, would be more
appropriate for the discretisation. But we are looking for a quadrature rule that
converges to high order to the untruncated version of the operator. Hence, one
should use a quadrature rule that gives equal weights to every quadrature point.

6.3 The Finite Section Method

The truncation scheme that we presented is known under the name finite section
method. Let us consider the following prototype equation

Ap = f (6.23)

where A € GL(Y) C BL(Y) is an invertible operator on some Banach space Y. In
the context of the scattering problem A is given through I + W, the Banach space
Y stands for any of the spaces L*(R?), X (R?) or X, (R?) and f stands for the right
hand side ¢*.

Then, the finite section method consists in replacing (6.23) by

PyAPyp, = P, f, (6.24)

where p > 0 and the operator P, : Y — Y, is given by

(), |zf <o
(P)(@) = {0 | (6.2)
, otherwise.
Here, | - | denotes any norm on R?. In the case that |- | = || - ||oo, We see that (6.24)

coincides with (6.19) in the case of the scattering problem. Provided equation (6.23)
is uniquely solvable for every right-hand side one hopes that also equation (6.24) is
uniquely solvable considered as an equation in L?(B,) C L*(R?), where

B, :={x eR*: |z| <1}, (6.26)

and that its solution ¢, approximates the exact solution ¢ of (6.23) if only one
chooses o large enough. If this is the case, then this method is called applicable.
For recent results on the applicability of the finite section method for the fairly
large class of all so-called band-dominated operators in terms of their limit operators
see e.g. [38], [47] and the references therein. The operators originating from 2D rough
surface scattering are band-dominated, and we refer to [40], [41] and [13]| and further
literature cited therein for the study and application of the finite section method to
these equations. As we pointed it out before, the applicability of the finite section
method to the equation (6.2) is to the author’s understanding still an open problem.
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Chapter 6 Nystrém methods for rough surface scattering

We underline that the framework for the FSM not only covers the set of band-
dominated operators, it even applies to the much larger class, called L(Y,P) in [38]
and [47], that consists of all bounded linear operators A on Y for which

|(I = P)AP;|| =0 and |[P,A(I—-P,)]|—0 as p— o0 (6.27)

for every fixed 7 > 0.
The multi-section method (MSM) that we present in some more detail in Chap-
ter 7, requires only the first condition in (6.27) to be true.

6.4 The Banded Matrix lterative Algorithm for
rough surface scattering

We have seen in the previous sections that the numerical solution of (6.2) with the
help of a Nystrém method in combination with the finite section method, yields a
finite dimensional linear system that can be written as

Y+ Ly + Gy = @°, (6.28)

where L, G € CXCNIXIXEN] denote two-dimensional matrices with

(L)ig = a; (hi)J (hj) — ina; (ha)J (hj), (6.29)
(G)%J = thgobal(h’iv hJ)‘](hJ) - ZArlhzkigglobal(hi? h])‘](hj)a (630)

for =N < 4,5 < N —1 and 1, ¢* € C*?N) denote two-dimensional arrays with

¢ = o*(hg),

for —-N <3< N -1

The matrix L is a sparse matrix with O(£(2/N)) nonzero entries with band struc-
ture containing the locally corrected weights and the matrix G is a dense matrix
containing the smooth global part of the integral operators.

To solve the large and dense linear system (6.28) it was suggested to employ
an iterative algorithm that, in the engineering literature, has been termed banded
matriz iterative algorithm (BMIA). The main idea is to use a decomposition of the
system matrix into a sparse banded matrix with finite band-width and a large dense
matrix. We claim that the natural decomposition given in (6.28) can be applied,
i.e. in this case the algorithm consists in computing the expressions

,lp(O) .
,(p(n—‘rl) .

0,
(I+L) " (¢°—G-p™), n=0,1,2,....
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6.4 The Banded Matrix Iterative Algorithm for rough surface scattering

Thus in each step one has to solve a linear system with a sparse banded matrix
I + L and compute one matrix-vector multiplication with a dense unstructured
matrix G. The matrix I + L is actually a block band matrix with band blocks.
Therefore, to solve this linear system in each step it is again reasonable to use an
iterative scheme, e.g. the GMRES. The most time consuming step however is the
computation of the matrix-vector product G - 1,11(”). It is possible to design fast
matrix-vector multiplications for this product by approximating the matrix G in a
suitable manner. These approximations are examined in Chapter 9.

We need to point out that we do not know whether this decomposition is feasible,
i.e. we do not know whether I 4+ L is always invertible. First numerical tests show
that the system is indeed invertible and well conditioned.

For more results on the convergence of a slight variation of this method we refer
the reader to [6] for the case of 2D rough surface scattering problems.

Just like for any iterative algorithm there is the question when to stop the itera-
tions. As a replacement for the error ||1p — ™| one uses the residual

res = ||¢° — (I + L+ G) - ™|

and stops the iteration, once the residual is smaller than a given tolerance Tol. It
follows from

¢~ I+ L+G) " =¢ — (I+L+G) [T+ L) (¢ = G- ")

¢ ~I+L)-I+L)" (¢~ G- y™")
—G-(I+L)‘1-(¢Z—G~qp("))

=G -yp™ -G Y

that
res = ||G - ") — G ™.

The algorithm with stopping rule is given in pseudo code in ALGORITHM 6.1.
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Chapter 6 Nystrém methods for rough surface scattering

ALGORITHM 6.1 The banded matriz iterative algorithm in pseudo code

Input data:
¢z c CX(QN)
L € CXEN)Ix[x(2N)]
G € CIxXEN)Ix[x(2N)]

Tol

Initialisation:
$ =+ L)
boew = G -
bola = bnew
res = oo

WHILE res > Tol DO

% right hand side

% sparse banded block band matrix
% dense matrix

% tolerance

Y =T +L)"(¢* = boa)

brew = G - '¢
res = ||bnew - bold”
bold - bnew
END
Output:

(

% approx. to the solution of equation (6.28)
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Chapter 7
The Multi-Section Method

A generalisation to the finite section method has been proposed in [31], which we
termed multi-section method. For this scheme we can prove the applicability to the
integral equation (6.2).

For a general framework we consider the following setting: Let Y be a Banach
space and let {P,},~0 be a family of linear operators on Y with the following three
properties,

(P1) P,P. =P, =P.P,forall p>71>0,
(P2) ||P,|| =1 for all p >0,
(P3) P, — I pointwise, that means P,p — ¢ for all p € Y, as p — oc.

From (P1), with ¢ = 7, we conclude that every P, is a projection operator. We
will also have to deal with the complementary projectors

Qo =1—-P, 0>0. (7.1)
Now suppose A is a bounded linear operator on Y such that
(A1) A is invertible, and therefore boundedly invertible, on Y,
(A2) ||Q,AP;|| — 0 as o — oo for every fixed 7 > 0.
To find an approximation to the solution of the equation
Ap = f (7.2)
we proposed the following method.

DEFINITION 7.1 (Multi-section method (MSM)). For given precision § > 0 and
sufficiently large cut-off parameters o and 7, calculate a solution ¥ € Y of the
system

v,

|P, AP — Poflly < 4. '

95



Chapter 7 The Multi-Section Method

If applied to equation (6.2) it means that, in contrast to exactly solving the
truncated equation (6.19) for large p, we look for a function ¢ € Y that has support
in B, and approximately solves the truncated equation

P,(I + W)Pp =~ P,p* (7.4)
for large p, 7 and a given discrepancy allowance ¢ in the '’ sign.

So the two main differences to the finite section method are:

(a) We allow two different cut-off parameters ¢ and 7 instead of just one.

(b) We work with approximate instead of exact solutions.

REMARK 7.2. Point (a) is the reason this method was termed multi-section method.
From the matriz perspective it means that we cut rectangular rather than quadratic

finite matrices out of the original infinite matriz that represents the discretised form
of the operator I + W in the space (*(Z*,C), cf. (6.11).

7.1 Existence and convergence

The main results that we showed in [31] concern the existence of multi-section so-
lutions and the convergence of the multi-section method.
To cite the results from [31], we introduce the following useful definition.

DEFINITION 7.3. We say that 79 > 0 is an admissible 7-bound for a given precision
d >0 if (7.3) is solvable in'Y" for all o >0 and T > 19.

Let A be a linear operator on a Banach space Y that satisfies the conditions (A1)
and (A2), then the following holds:

THEOREM 7.4 (Existence of solutions to (7.3) (MSM)). For every 0 > 0, there is
an admissible T-bound 1o = 19(6) > 0.

Proof. See |31, Theorem 3.8]. ]

THEOREM 7.5 (Convergence of the Multi-Section Method). For every e > 0, there
are parameters 6,0, T such that every solution ¥ € Y of the system (7.3) is an
approzimation of the exact solution ¢ of (7.2), i.e.

o =Yy <e. (7.5)

Precisely, there are functions 8,79 : Ry — Ry and go : RY — Ry such that, if
d < do(e), 7 > 10(0) and 0 > po(e,0,7), then every solution v € Y of (7.3) is
subject to (7.5).

Proof. See |31, Theorem 3.10]. O
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7.2 Applicability to the rough surface scattering problem

7.2 Applicability to the rough surface scattering
problem

We illustrate the applicability of the MSM to the following general example of an
integral equation of the second kind that includes the operators arising from the
rough surface scattering problem.

LEMMA 7.6. Let Y = LP(R™) with 1 < p < oco,n € N and let A € GL(Y), the

set of all boundedly invertible operators on 'Y, such that A =1+ W, where W is a
well-defined and bounded integral operator

(We)(z) = / k(e y)oly) dy, ©e R (7.6)

n

on'Y with a kernel function that satisfy a decay condition

k2, )] < for |z —y[>1 (7.7)

lz —y|

with constants v > 0 and some C > 0. Furthermore let {P,},~o denote the family
of operators given through (6.25). Then the MSM is convergent in the sense of
THEOREM 7.5 if vp > n.

Proof. To prove this result, we note that Y is a Banach space and the family { P, } =0
is clearly subject to the assumptions (P1)—(P3). Thus we are left to show that (A2)
holds.

We prove that, for every 7 > 0, we have

C
QAP | r@n) < ——, 0>27 (7.8)

0 y—n/p’

with some constant ¢ > 0 depending on 7. In particular we see that, if vp > n,
assumption (A2) holds.

Let B, = {z € R" : |z]| < ¢} be the ball and 0B, = {x € R" : |x| = g} the sphere
of radius o > 0 in R", and denote their n- and (n — 1)-dimensional measure by |B,|
and |0B,|, respectively. Now take some p > 27 > 0 and first suppose 1 < p < 0.
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Chapter 7 The Multi-Section Method

Using Holder’s inequality with 1/p + 1/q = 1 we get the following:
QAP | o ny = 1Qol Prp + QoW Pr |y = QoW Proll s gny

= L|Zg (WPTgo)(:c)‘p dx

=/ / k(x,y)e(y)
>0 ' Jlyl<r

1/q p
S/ ((/ \k(w,y)!"dy) 'HPTSDHLP(R")> dx
o[>0 lyl<r

p/q
<[ ([ ) el
lz[ze \Jly|<r

Consequently, using the bound (7.7) and the inequality

p
dx

|z| > 0> 27 > 2|y|, which implies |z —y| > |z| —|y| > |z|/2,

1 p/q
Qarrs [ ([ Eow)
220 \JJyl<r [T — Y[
1 p/q
4 dz
/m (/| (Jzl/2) y)
1 p/q
/ dx) (/ 1 dy) (270)10
|z|>0 |$|’yp ly|<T

/ i 0B, | dr) B, |P/7(27C)"

=0T
oo ,.n—1

_ / 4 dr) 0By| | B/ (27C)"
r=o rvp

1

W -

we get

IN

— NP
=0

~ 0B | B, [P/1 (27C)". (7.9)

Finally, taking p-th roots proves (7.8). The proof for p = 1 is similar. But instead
of using Holder’s inequality one immediately arrives at (7.9), with p/q replaced by
0. O

REMARK 7.7. Note that this example, with p = n = v = 2, covers the integral
equation (6.2) arising from the boundary integral formulation of 3D rough surface
scattering problems as discussed before.

Thus we conclude the following theorem (cf. [31, Theorem 3.12]).
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7.3 Numerical realisation

THEOREM 7.8. The multi section method, as defined in DEFINITION 7.1, applied to
the integral equation (6.2) is convergent in the sense of THEOREM 7.5.

7.3 Numerical realisation

The goal of this section is to provide a numerical algorithm for the solution of the
integral equation (6.2) using the MSM.

Our suggestion for a numerical approach to the solution of the system (7.3) for
the concrete operator equation (6.2) is to choose some large parameters p > 7 and
to choose the discrepancy ¢ as small as it possibly can be, by looking for a function
Y with supp ¢ C B, that minimises the MSM-residual || P,(I +W )P, — P,¢?||. The
truncated approximate equation (7.4) that we have to solve can be written as

(P)@)+ [ Hay )P dyxo@), sclod  T10)

As before in the case of Nystrom methods, we transform this approximative equation
by numerical quadrature and projection into an approximate matrix equation

A =~ @7 (7.11)

To find a solution to this equation we suggest to use an iterative solver and minimise
the functional

() = [|Ap — &7|2. (7.12)

To be precise, we assume that the parameters o and 7 satisfy the relations
o=h-n and 7=h-m

for some step-size h > 0 and natural numbers n,m € N. We write the integral
operator in equation (7.10) in the equivalent form as an integral over the square
[—0, 0]*. Introducing N := (n,n) and M := (m, m), we replace (7.10) by

N-1

(Pr)(z) + Z kng ()] (hg) (Pr))(hg) = ¢*(x), @ € [0, o], (7.13)

where the functions kj, ; are given through (6.7). Restricting « to the points
{hicR*: -N<i<N-1}

yields

(Pr)(ht) + z_: kp j(ht)J(hg)(Pr)(hg) = ¢*(hi), —N <i1< N —-1. (7.14)
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We can write this in the form (7.11), where I, A, W, P € CX@NIXIXCN)] are two-
dimensional matrices with

5@-, -M<e,3<M-—1,
(PT)”-::{ ’

0, otherwise,
for =N <1,7 <N —1 and
A=(I+W) P, (7.15)
and 1, ¢* € C*?N) are two-dimensional arrays with
¢j = 1(hj),
@5 = ¢°(hj),
for —-N <3< N-1

7.3.1 Linear least squares problems

The problem to minimise the functional (7.12) is known as linear least squares prob-
lem. The main result for linear least squares problems is summarised in the following
theorem.

THEOREM 7.9. Let A € C"™*" and b € C™ with m,n € N and m >n. Then x € C"
s a solution of the linear least squares problem

min || Az — bl|2 (7.16)

reR”™

iof and only if x 1s a solution of the normal equation
A*Ax = A™b. (7.17)

Proof. See e.g. |7, Theorem 1.1.2]. O

The matrix A*A is hermitian and positive semi-definite. Furthermore A*A is
positive definite if and only if N(A) = {0}. In this case the normal equation
possesses a unique solution & given through

&= (A"A)"1A™D.

In the case that N(A) # {0}, which means that A does not have full rank, the
normal equation and hence the linear least square problem possesses more than one
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7.3 Numerical realisation

ALGORITHM 7.1 The conjugate gradient method for linear least squares problems

Input data:
A eCmn % the system matrix
@ eCn % initial guess
b eC™ % the right hand side
Initialisation:

r@ —p_— Az
50 = A*p(0)

p@ =50

FOR k=0,1,... DO
q® = Ap®
o = s/l
gD = k) 4y pk)
pFD = k) _ g
kD) g p(ktD)
B = IO
pt) = 1) g (k)

END

Output:
(k) % approximation to the linear least squares problem

(k) % the residual of the normal equation

solution. But under all of these solutions, there is only one with minimal norm. This
solution is given through Afb, where At denotes the pseudoinverse or Moore-Penrose
inverse of A.

The conjugate gradient method for least squares problem (CGLS method), as it is
described e.g. in [7, Chapter 7.4], is a well suited algorithm to compute this minimal
norm least squares solution. The general algorithm is shown in ALGORITHM 7.1.
We make the following definition.

DEFINITION 7.10. For a given matric B € C"*™ and vector ¢ € C" the Krylov
subspace K (B, c) is given through

Ki(B,c) := span{c, Be, ..., B*¥*c}. (7.18)

Now we can state the next theorem that contains the main property of the CGLS
method.

THEOREM 7.11. The k-th iterate ) of the CGLS method is an element of the
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Chapter 7 The Multi-Section Method

affine subspace
¥ e 2O 4 K (A% A, ). (7.19)

Furthermore, *) minimises the functional (7.12) over all elements in the affine
subspace.

Proof. See e.g. |7, Chapter 7.4]. ]

On can show that the CGLS method with initial guess (%) converges to the unique
solution 7 of the linear least squares problem that minimises || —(®||. Thus, for the
choice 2(®) = 0 the CGLS method converges to the minimal norm solution & = Afb.
The convergence does not require the matrix A*A to be definit.

We note that the algorithm can be carried out without storing the matrices A and
A*, if one supplies subroutines that carry out the matrix-vector product A* - and
A - 1. Using the two-dimensional matrices G, L € CXCNIxXCN) given through
(6.29) and (6.30), we can write the matrices A and A™ as

A=I+L+G)-P, and A*=P, - (I+L"+G.

The matrix L and L* are sparse banded block matrices with band blocks of equal
band-width. Thus the matrix-vector multiplication can be done in O(f(2N)) op-
erations. As in the case of the BMIA, we need to speed up the matrix-vector
multiplication of the dense matrices G and G™.

An optimised version of the CGLS method applied to the functional (7.12) is given
in pseudo code in ALGORITHM 7.2

For some preliminary numerical results for the case of the rough surface scattering
problem we refer the reader to [31].
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7.3 Numerical realisation

ALGORITHM 7.2 The CGLS method applied to the rough surface scattering problem

Input data:
¢° € Cx(2N) % right hand side
P, € C*2N) % initial guess
A € CxENIxx@N) % large dense rectangular matrix
Tol % tolerance
Initialisation:
roo— - A
s =A"-r
p =3
Youu = |Isll3
Tnew = 7Yold
WHILE 7pew > Tol DO
s =A-p
« = 701d/‘|3’|%
Y = +tap
r =r—as
s =A"-r
,‘)/neW = HS”%
ﬁ = Vnew/’yold
p =s+0p
Yold = Tnew
END
Output:
.
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Chapter 8

Fast matrix-vector multiplications
for integral operators with
difference kernels

In this chapter we present the use of the fast Fourier transform (FFT) to speed
up the matrix-vector multiplication for the fully discrete version of certain integral
operators. More precisely, we are interested in the multi-dimensional analogon of
integral operators of the form

(BY)(x) = / k(e — g)oly) dy, @€ [0,b)],

for real numbers a < b in the cases, where
(i) k and 1 are piecewise, continuous periodic functions with period b — a,
(ii) k and % are continuous functions on [—(b — a), b — a| respectively |a, b].

A simple computation shows that
b
(Bo)a +a) = [ b~ (5= )ily) dy

:/O_Gk;(x—z)@b(z—l—a) dz, z€(0,b—a).

Thus we see that it suffices to consider the above two cases only for operators of the
form

(A) () = / k@ — o) dy, € 0,p (8.1)

for some p:=b—a > 0.
In analogy to the discretisation (5.2) we introduce a semi-discrete approximation

in the form
N-1

Ahw kh] S [Oap]a (82)

Jj=0
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Chapter 8 Fast matrix-vector mult. for difference kernels

where
knj(z) == hk(z — hj), j€Z,xzel0,p

and h := p/N denotes the step-size for N € N.
The fully discrete version

(Aptb)(ih) = Z_j ko (ih)0(hg), i=0,...,N—1 (8.3)

has a matrix representation A with
(A);; = hk(h(i—7j)), 4,j=0,...,N—1.

Hence the i-th entry of the matrix-vector product of the matrix A with a vector
Y = (¥,)i=0, n—1 € CN*! with

’(pj = w(hj)a ] € Za

is given through

i

(Ap); =h > k(h(i—j);, k=0,...,N—1.

J

Il
o

If done in a naive way, this matrix-vector multiplication needs O(N?) evaluations of
multiplications and summations. Fortunately, the matrix has a very special structure
that can be exploited. Due to the equidistantly spaced grid we see that in the case
of a periodic kernel function, the matrix A is of the form

Co C1 c. CN—2 CN-1
CN-1 Co C1 e CN—_2
Y
C2 CN-1  Co €1
C1 Co c. CN—-1 Co

where ¢; := h k(hj) for j € Z. Such a matrix is called circulant matriz. A circulant
matrix is obviously fully determined by its first row or column.
In the case of a non-periodic kernel function, the matrix A is of the form

to t .. tyo tn_1
toNi2 ...t ty ot
t—N—i—l t_N+2 Ce t_l t()
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8.1 The multi-dimensional case for periodic kernel

where t; := h k(hj) for j € Z. Such a matrix is called Toeplitz matriz and it is fully
determined by its first row and column.

It is possible to design fast matrix-vector multiplications for these kind of matrices
that reduce the normal amount of work from O(N?) down to O(N log N). These
fast algorithms are based on the following two properties of circulant and Toeplitz
matrices:

e any circulant matrix is diagonalised by the Fourier matrix, i.e. the eigenvectors
of a circulant matrix are the columns of the Fourier matrix,

e any Toeplitz matrix of size N x N can be embedded into a circulant matrix
of size 2N x 2N, cf. EXAMPLE 8.3.

We show in the next section that the discretisation of integral operators with
difference kernels in R lead to special matrices that are generalisation of circulant
and Toeplitz matrices. They are d-level block matrices, where each block and level
is circular or toeplitz. Though we only need two- and three-level block matrices we
give a general approach that works for arbitrary dimensions.

8.1 The multi-dimensional case for periodic kernel

Consider, for some p € R? with p > 0, the multi-dimensional analogon of (8.1), i.e.
A= [ bt i, vl
0,p

with multi-periodic kernel and density function with period vector p. For N € N¢
we define the step size

h:=p=+2N R,
Note thag the step-size is a vector so that the grid points are given through h ® j
for j € Z°.

REMARK 8.1. We chose an even number of discretisation points, as this will enable
us later on to use the fast Fourier transform for the matriz-vector multiplication.
This will work best if N 1s some power of two.

The semi-discrete and fully discrete approximation are given through

2N—-1

(And)(w) = 37 kng(@)p(h @ j), x € [0,7]

with
knj(x) :=4(h)k(x —h©j), jeZ' xel0,p
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Chapter 8 Fast matrix-vector mult. for difference kernels

and
IN—1

(Apb)(h ® ) E:h”hQZ (h®j), i=0,...,2N —1,

respectively. The matrix representatlon of the fully discrete version is a d-level block
circulant matrix A € CX@NIXXCN] with

(A)ij =t(Wk(h© (i —j)), 0<id,j<2N -1,

A different way to get the same discretisation is the following. Instead of replacing
the integral by a quadrature formula (we are using the composite trapezoidal rule),
we replace the kernel and density by their d-dimensional trigonometric interpolation
polynomial of degree at most |N|. Thus the semi-discrete approximation for the
Fourier method is given through

(APPT ) () = /[ e —y)on() dy, € (07 (8.4)

where ky and ¢y are the d-dimensional trigonometric interpolation polynomials
given through (4.6) with coefficients given through (4.7). Inserting the corresponding
representations of ky and 1y, we can use the convolution theorem for periodic
functions (THEOREM 4.3) to rewrite the integral to yield

(APFT ) () :/[0 | < Z l;:(m)e%“m z— y—p) (Z ?/J mny_p) dy

= (p) k(m)i(m)e*™ 30 g € [0, p).

m=—N

The fully discrete version is given through

=

(AP 9)(h @ 1) = #(p) F(m)ip(m)e?™ N =0, 2N — 1. (8.5)

m=—N

We note that this is a discrete version of the convolution theorem for periodic func-
tions (THEOREM 4.3) that can be used for fast summation algorithm. To compute
this expression we see that it suffices to calculate three d-dimensional discrete Fourier
transform (DFT) of length N* := #(2/N). If this is done with a d-dimensional FF'T,
we only need O(3 - N*log(N*)) operations as compared to O(N*?) operations for
the standard algorithm.

The following Lemma shows that both algorithm give exactly the same result.

LEMMA 8.2. (APTTy)(h @) = (Ap)(h© 1), 1=0,...,2N — 1.

108



8.2 The multi-dimensional case for non-periodic kernel

Proof. We calculate that

N-1
(AP 1) = 1p) 3 Fm)m)e2ritnts2V
e [,
— ﬂ<p) ( N) h@] ) —2mi{m,j’ = 2N>]
m=—N '=0
1 2N—-1
@/J(h@ ) —27ri(m,j+2N)] 2mi(m,l+2N)
Ij(p) 2N—-12N—-1 N-1
_ k(h ®j )w(h @j) 6727ri(m,(j+j’fl)+2N)
[BCN)? 4= = m:ZN
]j(h) 2N—-12N—
= 1oV Z (h© § ) (h © 5E2N)3r i
j'=0 j5=0
2N—-1
k(h© (L= 5)(h©j)
7=0
— (A)(hO1), 1=0,...,2N—1 O

8.2 The multi-dimensional case for non-periodic
kernel

Now we consider the case of a non-periodic kernel function and density. For an
integral operator of the form

(Ag) () = /[ k=) dy €01 (8.6)

the kernel function must be known on the cube [—p, p|, whereas the density is only
defined in [0,p]. A straightforward discretisation of this problem would yield a d-
level Toeplitz matrix. To get a fast version for the matrix-vector multiplication we
reduce this problem to the case of a periodic kernel and density. Denote by kpe, the
multi-periodic extension of k with period vector 2p. For ¢ € C([0, p]) we define

L [v@. b
vole) {o, v e [0.20]\ 0.p) &7
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Chapter 8 Fast matrix-vector mult. for difference kernels

and denote the multi-periodic extension of 1, with period vector 2p by g per. Then
we have the representation

k(x — dy =
/[0 ) dy /[ .

i.e. on the first half of the interval [0,2p] the righthand side coincides with the
original operator. Now we can use the same discretisation as in the case of piecewise
continuous periodic functions that we described in the previous section.

k‘per(l' - y)djo,per(y) dya YIS [O,p]

k_sk_ok_1 ko ki ko k_sk_2k_1 ko

—O—O——————O—O—4

—p 0 p 2p

FIGURE 8.1:

EXAMPLE 8.3. We illustrate this for the case N = 3. The fully discrete version of
the integral operator is given through

2

(Ap)(hi) = hk(h(i — §))b(hg), i=0,....2

J=0

Using the convention k; := hk(hl),l € Z and ; := 1(hl) we can write the previous
formula as the matriz-vector product

ko ki ko o
ki ko ks Y
ko k-1 ko (2

The fully discrete version of the periodised integral operator is given through

M-

hkper(h(i - j))¢0,per(hj>7 1= 07 ey 5.

Jj=0

As before this can be written as matrix-vector product
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8.2 The multi-dimensional case for non-periodic kernel

where we used the periodicity condition of the kernel function and the zero extension
of the density. Note that the entry k_s can be chosen arbitrarily. For reasons of
simplicity we use the value at the left endpoint of the interval [—p, p, cf. FIGURE 8.1.
This example explains the embedding of an N x N Toeplitz matriz into a 2N X 2N
circulant matriz, as was mentioned at the beginning of this chapter.

If we choose a discretisation for N € N? with a total of N* := #(N) unknowns, we
can reduce the necessary floating point operations (addition, multiplication, etc.)
from N*? to 3 - 22N*log,(2¢N*).

We illustrate the simplicity of this algorithm in the following two-dimensional
example.

EXAMPLE 8.4. Assume we are given the kernel function k : (x1,x2) +— sin ((xl +
1)(z1—22)) and density 1 : (21, x2) — 23 —25 and want to calculate the fully discrete
version of (8.6) in the case p = (2,3) for a grid with N = (18,20). Then we can
realise this in the following few lines of MATLAB code, cf. LISTING 8.1.

LisTING 8.1 MATLAB code that computes EXAMPLE 8.4.

k = inline(’sin((x1+1) .*(x1-x2))’,’x1’,°x2%);
dens = inline(’x.73-y’,’x’,’y’);

pl = 2;

p2 = 3;

N1 = 18;

N2 = 12;

hi = pl1/N1;

h2 = p2/N2;

x1 = hi1*[(0:1:N1-1) (-N1:-1)];

x2 = h2*%[(0:1:N2-1) (-N2:-1)]1;

[X1,X2] = meshgrid(x1,x2);

K = k(X1,X2);

y1 = h1*(0:1:N1-1);

y2 = h2%(0:1:N2-1);

[Y1,Y2] = meshgrid(yl,y2);

psi = dens(Y1,Y2);

dummy = hil*h2*ifftn(fftn(K).*xfftn(psi, [2*N2,2%N1]));
res = dummy (1:N2,1:N1);

The periodisation of the kernel function is done in the lines 9-11, by defining an
appropriate grid. Line 17 is a direct implementation of (8.5). The zero padding
of the density, cf. (8.7), is done implicitly by MATLAB’s £ftn routine through the
command fftn(psi, [2%N2,2+N1])). The solution that was calculated on the grid
inside [0, 2p] is restricted to the grid points of interest inside [0, p] in line 18.
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Chapter 8 Fast matrix-vector mult. for difference kernels

0 pi 2p1

(a) The 2-level block Toeplitz matrix that rep- (b) The matrix-vector product of the discrete
resents the integral operator of EXAMPLE 8.4  version of the operator A with the density 1 is
in the lower left quadrant

p2 2p2

-p2 0
-pl 0 pl 0 pl 2p1

(¢) The kernel function of EXAMPLE 8.4 on (d) The periodised kernel function of EXAM-
[—p, p] PLE 8.4 on [0, 2p]

FIGURE 8.2: Illustration of EXAMPLE 8.4
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Chapter 9

A new view on canonical grid
methods

This chapter introduces the canonical grid method that allows to accelerate the
matrix-vector multiplication of the fully discrete version for a certain class of inte-
gral operators. The integral operators that occur in the case of rough scattering
problems are prominent example of this class. The idea of this method is to replace
the integral kernel by some appropriate approximation that allows one to handle
the corresponding operator approximation with FF'T methods. There are a lot of
different ways to derive such an approximation. The original idea is based on Taylor
expansion and we give a short review in Section 9.1. We continue our presentation
with another version that is based on interpolation rather than Taylor expansions.
Our introduction to the canonical grid method follows in large parts the presentation
given in [19]. Having reviewed these two variants we give a novel derivation that in
some sense generalises the interpolation method.

We like to point out that the error analysis in Section 9.2.1 is based on consider-
ations in [5].

9.1 Canonical grid method revisited

We consider the following prototype of an integral operator

(W) (x) = /R K(z,y)]()d(y) dy, =R, (9.1)

where R = [—p, 0]> C R?, J(y) = \/1+ |V f(y)|? denotes the surface area element
and the kernel allows a representation in the form

where k : R? x R — C satisfies the following two conditions:

(C1) k(-,x3) is a n-times continuously differentiable function on R? for some n > 0.
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Chapter 9 A new view on canonical grid methods

(C2) k(zx,-) is an analytical function for each = € R?.

The idea of the canonical grid method is to approximate the kernel function K-, -)
by some function Kj,(-,-), which takes the form

Cumr
x,y) = Z ajn () Kjp(e — y)bja(y), (9.3)

where a; rs, K and bj ys are functions to be determined. M is an integer parameter
controlling the accuracy of the approximation, such that Ky (z,y) — K(x,y) as
M — oo. The integral operator

Wav)(a) = [ Kula.9)I@)ol) dy. o< R (9.4
which we can write as the following sum and products
Cum
(W) = 3 sl ) [ Kistle = wbin(o) I @)otw) dy. @ e R

is an approximation to W which is suitable for the fast methods from Section 8.2.
In fact, the fully discrete form of this operator has a matrix representation

Cum
AM) Z Aj’MTj’MBj’M,
j=1
where A?M and B*M are diagonal matrices and T%™ are 2-level block Toeplitz
matrices.

9.1.1 Deriving a kernel decomposition

The original canonical grid method, as introduced in [45], uses an Taylor series
expansion of k(m -y, f(x) — f(y)) with respect to f(x) — f(y) around 0 to derive
the approximation (9.3), i.e

e . f(e) ~ 1) ~ Y jlaa—k@: —y)| [f@) - fw)

M—-1 j ) .
_ AR o
e (z) ﬁ%k(w _97“)‘u:0f(90)’ ),

Cij = ﬂ (J> = i (9.5)

(7 — i)l

where
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and where in the last step we have used the binomial theorem.

As it was pointed out in [19], the Taylor series is slowly convergent so that the
method is only effective for rough surfaces of small elevation relative to the wave-
length. An extension of this method is described in [62]. Their idea was to use
different expansion points for the Taylor series in the interval of interest. Thus
one can reduce the number of expansion terms while at the same time keeping the
accuracy over the full range of the surface elevation.

A very different approach was introduced in [19] and [6], where the Taylor expan-
sion was replaced by an interpolation scheme in the vertical direction. We explain
this now in some more detail.

Let fr and f7 denote the infimum and supremum of f on R, i.e.

Ir = irelgf(a:) and f :=sup f(x)

zER

and let a3 and bs be real constants such that
as S f}% < f}—g S b3. (96)

Then we choose M distinct points z;,j =0,..., M — 1 in the interval [as, b3] and a
corresponding set of linearly independent basis function

for which we assume that they form a Lagrange basis, i.e.
Lj(ZZ):(SjJ‘ z,j:(],,M—l

With the help of this basis functions we define an interpolation operator Py, through
(Py f)(z Z f(z)L z € [as, bs).

We approximate the function k(x — y,u — v) through

M—-1M-1

k(e —y,u—v) = E:}:L ( —y,2 — z)Lj(v),

J=0 j'=
i.e. by first applying Py to k(x — y,- — v) or k(x — y,u — -) separately and then
combining theses approximations in a second step. Thus we get the approximation

M—-1M-1

=YY Lilf(@)k(x —y, 2 — ) Ly (f(y). (9.7)

j=0 j'=0

In [19] and [6] Chebyshev polynomials were used for the interpolation. In this case
the interval for the approximation [as, bs] is given through the choice a3 = f; and

= fr.
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REMARK 9.1. From these explanations we see that the convergence rate of the canon-
tcal grid method, is only dependend on the smoothness of the function

[—(bs — a3), (bs — a3)] : 3 — k(z,23), T ER

and not on the smoothness of the scattering surface, i.e. the surface height function

f.

9.2 A novel approach

To explain our view on the canonical grid method, we rewrite the operator (9.1) in
the form

Wo)(e) = [ K. 0(@) ~ .0 w) Tw)oly) dy. we R

R

Lr

FIGURE 9.1: The cube @) containing the surface patch I'g.

For such an operator we define the associated cube potential
R

where ) denotes the cube R x T and T denotes the interval [as, bs] for some real
numbers as, by that satisfy the condition (9.6), i.e.

Q = [—0, 0% x [as, bs] C R®.

By construction () contains the surface patch I'r C I' above the supporting rectangle
R given by
[ ={(, f()): @ € R).
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An illustration is shown in FIGURE 9.1.
Depending on the smoothness condition (C1) it defines a function in ) that is at
least n-times continuously differentiable and furthermore we have the relation

(W) (x) = Wi)(z, f(z)), = e R. (9.9)

By formally inserting a Dirac delta distribution we can write the cube potential in
the form

W) (z) = / Kz — (y. (1)) (w)ily) dy
/ / v (g F) TS (y) — ) dys dy  (9.10)
—/Q x—y)V(y)dy, z=€Q, (9.11)

where
U(y) == J(y)(y)o(f(y) —y3), v=(y,y3) € Q. (9.12)

The relation (9.9) can be written as
/(5 —z3)( W) (x, z3) des, x € R. (9.13)

After these preparations we can describe the main idea of our novel algorithm
that consists basically of two steps:

Step 1 We use the representation (9.11) together with the fast methods described in
Section 8.2 and calculate the cube potential on a regular grid in ). This can
be done very efficiently with three 3D-FFT’s.

Step 2 We use the formula (9.13) to compute an approximation to the potential WW.
The integral is approximated by the composite trapezoidal rule with points
that match the grid points inside (). The number of operations that are
necessary for the second step scales linearly with the number of unknowns in

the grid in Q.

An implementation of this algorithm in MATLAB is presented in LISTING 10.1.
To make this approach suitable for a numerical discretisation we approximate the
Dirac delta distribution by a Dirac delta sequence. In general a Dirac delta sequence
is a family of functions (often continuous) {dy,}no such that

}llin%) g(t)op(x —t) dt = g(z), =z €R, (9.14)
R
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for any ¢ in a reasonable class of test functions. Sometimes one requests also that

/5h(m —t)ydt=1, h>0. (9.15)
R
This means that the constant functions are reproduced exactly for any choice of h.
The intuitive picture that one should have in mind is a family of functions that get

more and more concentrated or peaked at zero for h — 0. A prominent example are
the scaled Gaussians

1
on(x) = —e_"BQ/hQ,

hy/m

where the scale factor has been chosen to satisfy the condition (9.15).

9.2.1 On a good choice of Dirac delta sequences
We should ask the following questions:
e What is a good choice for a Dirac delta sequence?
e Can we find criteria that a good Dirac delta sequence should fulfil?

We want to use the Dirac delta sequence in a discrete setting, thus we are in-
terested to find a family of functions, now called d; to avoid confusions with the
sequence Jy, that satisfy the discrete analogon of (9.14), i.e.

lim by " g(hj)dn(e — hj) = g(z), z €R

JEL

for ¢ in a certain class of functions. Thus we are interested in understanding ap-
proximations of the form

g(x) = b glhj)du(x — hj), x€R, (9.16)

JEZ

which is a sum of translates of one fixed kernel function d;. If d;, satisfies the
interpolation condition

g(hi) = 1> g(hj)dn(hi — hj), i€Z,

jez

we call the function dj, an interpolation kernel otherwise quasi-interpolation kernel.
Sometimes it is possible to make this approximation exact for a certain class of
functions. In this case we can interpret (9.16) as a kind of sampling formula. The
Shannon sampling theorem, also known as Whittaker-Kotel'nikov-Shannon sampling
theorem, is a prominent example of an interpolatory type of the above formula.
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THEOREM 9.2 (Whittaker-Kotel'nikov-Shannon sampling theorem). Let g € L*(R)
be a band-limited function with band-width b and let

T
h<-—.
b
Then g is completely determined by its values g(hj),j € Z on a reqular grid and
= g(hj)sinc (r(£ - j)), zeR. (9.17)

JEZ
REMARK 9.3. It follows from

Zgh] sine(7 (i — j)) Zgh] dij = g(hi),

JEL JEZ
where 6;; denotes the Kronecker delta, that the right hand side of (9.17) defines an
interpolation operator. Furthermore one can show, see e.g. |33], that the constant
function g(x) =1 for x € R is reproduced, i.e.

1= Zsinc (m(£—-4), zeR

jEL
Thus we see that the choice dj, = d3P with

o (z) = %sine (7%), z€R, 0<h< %,
fits our general approach. One drawback of this choice however is that the support
of d?"® is unbounded, which means that we have to sum up an infinite series. For
the application we have in mind we are interested to approximate the function g
only in a small interval. Hence we assume that the functions d; have a local support
of a few step sizes, say

(9.18)

dp(z) =0, |z|> Lh, (9.19)
for some L € N and that (9.16) is exact for constants, i.e.
hY dy(x—hj) =1, z€eR. (9.20)
jez

In addition we request that there exists a constant ¢ > 0 such that
R ldy(z—hj)| <ec, x€R (9.21)
JEL
This rather mild condition is surely fulfilled, if e.g. the function dj, is continuous

or piecewise continuous on [—Lh, Lh]. For a given x € R there exists a uniquely
determined index j* € Z so that

hj* <z < h(5j*+1).
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Chapter 9 A new view on canonical grid methods

The finite support condition (9.19) ensures that we can express the approximation
error

e(z;h) = g(x) — th(hj)dm —hj), z€R,

for x € [hj*, h(j* + 1)) as the finite sum

i HL-1)
e(wsh)=g(x)—h D g(hj)du(x —hj), w€[hf* h("+1)).  (9.22)

J=5*—(L-1)

Now, if g € BCP(R) for some p > 1, we can express g(hj) with the help of Taylor’s
theorem in the form

Pl (m) (g (p)
ofhd) = o) + Y- E D gy + gy,

for j* = (L —1) <j < j*+ (L —1) with

CE (l’,l’—hj), ]S]*,
(Jf—hj,l’>, ]2j7

where g™ represents the m-th derivative of g. Inserting this into (9.22), using the

short hand notation
J*+(L-1)

ZZ>

Jj=j*—(L-1)

yields

e(z;h) = g(x) —h Y g(hj)dy(x — hj)

J

P21 gm) (g
x)thh(x —nj) -7 ( >hZ(a: — hj)"dn(x — hj)

m!
m=1 i

97 (¢)
p!

> (= hjydy(z —hj), @ € [hj* (G +1)).

J
The first two terms cancel due to (9.20) so that

p—1

— hj)"dy(x — hj)
m=l (9.23)

()
9 p!@) ;@ — h)dn(z — hj), @€ [, h(" + 1),
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9.2 A novel approach

Now assume in addition that the function dj, satisfies the discrete moment conditions

hY (x = hj)"dy(x = hj) = dpmo, m=0,...,p— 1, (9.24)

JEZ.

where 6,,9 denotes the Kronecker delta. Then it follows from (9.23) and (9.21) that

9" (<)
p!

le(z; h)| =

h Z(:c — hj)Pdy(z — hyj)

< N9l e @)™ Y o — hjlP|dn(z — hy)]
J
< 9P s, )™ (LR)PR Y |dn(x — hj)l
J

P - -
< e Pl lsca, 10, o e it 1),

where

L = [hj* — h(L — 1), hj* + h(L — 1)]. (9.25)

We summarise the results in the following lemma.

LEMMA 9.4. Let p € N and suppose that d;, satisfies the discrete moment conditions
(9.24) form =0,...,p—1, the finite support condition (9.19) for some L € N, and
the boundedness condition (9.21) for some constant ¢ > 0. If g € BC(1+) forq > p
and 1« given through (9.25), then

. . Lr I
‘g(w) — > g(hj)du(x — hj)| < c Ellg(p)lchuj*) W,z € [hj* h(j* +1)).

JEZL

The discrete moment conditions (9.24) are one of a series of equivalent conditions
on the interpolation kernel, known as Strang-Fiz conditions, which ensure that (9.16)
is an interpolation scheme of order p. We now prove a very simple version that
shows that a kernel function dj, that satisfies the first p discrete moment conditions
reproduces all monomials of degree less or equal p — 1. Depending on the number
of discrete moment conditions we denote the kernel functions by dj, .

LEMMA 9.5. Let p € N. Then the following conditions on the functions d, are
equivalent.

(i) The function dy, satisfies the first p discrete moment conditions, i.e.

R (@ = hj)"dnp(x = hj) = 6o, m=0,...,p—1. (9.26)

jEz
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Chapter 9 A new view on canonical grid methods

(ii) The function dy, reproduces all monomials of degree less or equal p — 1, i.e.

RY (hj)"dy(z — hj) =™, m=0,...,p— L (9.27)
JET
Proof. We give a proof for the cases p = 1,2 and explain the general idea for

arbitrary p > 2.
p = 1: The case p =1 is clear.

p = 2: In the case p = 2, we use the first discrete moment condition

R dna(x = hj) =1

jez
and insert it into the second discrete moment condition

hY (& = hj)dna(x — hj) =0

JEZ
to yield
hY (w = hj)dna(z = hj) = xh Y dya(x = hj) — b (hj)dna(z — hj)
JEZ JEZ JEZ
=2 —hY (hj)dna(a — hj) =0,
JEZ

which can be written in the equivalent form

Ry (hj)"dpa(x — hj) = 2™, m=0,1,

JET
i.e. dj 2 reproduces the monomials 1,z exactly.

p > 2: For arbitrary p one uses the first discrete moment condition to prove the
reproduction of constants by expanding the second discrete moment condition and
inserting the first. One continues now in a recursive manner using all of the previous
discrete moment conditions and reproduction results. We illustrate the general step.

Assume that m < p and that we have shown that dj, reproduces all monomials
x™ for n < m. Using the binomial theorem to expand the m-th discrete moment
condition

hY (@ = hj)"du(x — hj) =0 (9.28)

JEZL
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9.2 A novel approach

yields

hY (@ =hj) dn(w —hj) =hD_ > (?) 2" (—hyj) dn(x — hj)

=5 "(-1) <77> am! (h Z(hj)ldh(x - hj))
— i(_m’ (”;) "l 4 (=) (h Z(hj)mdh(fc - hj))

— ™ i(—l)l (77) + (=)™ (h S (hj) du(a — hj)) .

JEZ.

With the help of the identity

() -1o(7)

=0

for k =m — 1 and n = m and (9.28) we conclude that

R (@ = hj)"du(x — hj) = (=1)" 2™ 4 (=)™ (h > (hj)"dn(x — hj)> =0,

JET jEz
which means that dj, reproduces the monomial z™. O

We note that, due to the linearity of the interpolation scheme, a interpolation ker-
nel 0, that satisfies the first p discrete moment conditions reproduces polynomials
of degree less or equal than p — 1.

We now give a constructive proof for the existence of a family of interpolatory
kernel functions dj, o1, that reproduces polynomials of degree less or equal than 2L —1
and have a support of size 2Lh. To simplify the presentation we assume that h = 1
and construct a function d; 5. The functions dj o;, are then given in terms of d; o1,
through .

dnor(z) = 7
The construction of the interpolation kernels d; o1, follows an idea presented in [46].
But before we present the general result in LEMMA 9.7, we illustrate the construction
process for the case L = 2.

dian(x/h). (9.29)

EXAMPLE 9.6. Let L = 2 and restrict x to [0,1). Then we can write the discrete
moment conditions in the equivalent form (9.27), i.e.

2
ijdl,z;(a:—j):xm, m=20,...,3,

j=-1
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Chapter 9 A new view on canonical grid methods

which is a system of four equations with the four unknowns ai(z) = dys(xz + 1),
az(z) = dia(x), az(x) = dia(x — 1) and ay(z) = dya(z — 2). We write this in
matrix form as

1111 ai(x) 1
-1 01 2 ax(z) | | 7
101 4 || agw) | T a2 ]| “€0V
-1 01 8 ay(x) 23

The matriz is a Vandermonde matriz generated by the vector (—1,0,1,2) and there-
fore invertible. The solution of this system is given through

0

1 1 1
ai(x) 3 2 "% 1
as(z) 1 -5 -1 3 z
= ) E 071 )
as(x) 0 -1 o 1 x’

which we write in the form

ar(z) = —gr+ 327 — 32° = L@ - 2)(x — D)z, z€[l,2]

ax(z)=1-iz—a2*+ i =Lz -2)(z - 1)(z+1), z€][0,1]
az(z) = v+ 32> — 12 = —L(z - 2)z(x + 1), z€[-1,0]

ay(z) = -tz + 1% = Yo — Da(z+1), ze[-2,-1].

This is not yet the solution, as we have to keep in mind that the above formulas are
only valid for x € [0,1). To determine dy 4 on the appropriate intervals we have to
make a simple change of variables:

am(r—1)=—3@@=3)(z-2)(z—1), 1<z<2
by 4(2) = az(z) = 3(z — 2)(z — 1)(z + 1), 0< 1,
’ az(z+1)=—3(z-1)(z+1)(z+2), -1<z<0,
\a4($+2):%(x+1)(x+2)(x+3), —2<z< -1,
(1-29)1-2)1-2), 1<z<2
A =5)1 = 2)(1 + ), 0<z<1,
O -n)(+)(1+2), —1<z<0,
|(I+2)1+35)(1+35), —2<z<-L

As clearly seen the function is symmetric with respect to 0 so that we can write it
in the more condensed form

1-5)1—-2)(1+x), 0|z <1,
dale) ={ (1 21— 51 —2), 1<]]<2
0, |z| > 2.

124



9.2 A novel approach

After these preparations the proof of the following lemma is evident.
LEMMA 9.7. Let the functions aj,j =1,...,2L be given through

ai(x) 1
: =y : , (9.30)

a2L($) $2L71

where V' denotes the Vandermonde matrix of size 2L generated by the vector
(-L+1,-L+2,...,L—1,L).

Then the function

aj(x — L+ 1), L-1<xz<L,
as(x — L +2), L-2<z<L-1,
dior(z) == q (9.31)
ap_1(x+L—-1), - L+1<x<—-L+2
[ ar(x+ L), —L<ax<-L+1,

satisfies the first 2L discrete moment conditions.

The main problem with this lemma is not the question of existence. It is rather
the question whether we can understand from the construction process what the
functions a; must look like for arbitrary L.

We used the computer algebra system MAPLE to compute a representation, the
listing of the procedure we wrote is shown in LISTING A.1. From these computations
we concluded that the function d; 5y, should look like

L—1—1
II (1_%;%)7 { S;kt|§§i%—1, { ::07"'7[’__17
Ayor(z) = mfn;LO*i (9.32)
0, |z| > L

[ustrations of these kernel functions for . = 2 and L. = 3 are given in FIGURE 9.2.
From our numerical experiments we concluded the following:

CONJECTURE 9.8. For all L € N it holds that Ay o1, = dy o1,

We verified the conjecture with MAPLE for 1 < L < 50, which includes the range
of all functions that we used for computations.

REMARK 9.9. The functions Ay 21, seem to have been studied before:
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Chapter 9 A new view on canonical grid methods

o A representation of the kernel functions in the monomial basis, together with
a MATLAB program to compute the coefficients, is given in [56]. The repre-

our understanding, not well suited for
an efficient and stable evaluation for large L. The representation (9.32) does

sentation in the monomial basis is, to

not suffer from these limitations.

e [n the survey article 37, formula (27)| the functions are given in the form

(9.32), but without a reference to a general approzimation order.

2
(a) The function d; 4.

Y

Y

aoa NA 0 g T
(e) The function d; g.

FIGURE 9.2: Approximation of the Dirac delta distribution and their logarithmic

plot.
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9.2 A novel approach

9.2.1.1 A high order local interpolation scheme

From our previous analysis we conclude that the interpolation operator

(Porg)(x) := hzg(hj)dh,QL (96 - hj)

JEZ

is exact for polynomials up to degree 2L — 1, which we have proven for L = 1,...,50.
In analogy to the THEOREM 9.2 we can summarise the results in the next lemma.

LEMMA 9.10. Let g € Iy, 1(C), the space of complex polynomials with degree at
most 2L — 1, for L € N. Then g is completely determined by its values g(hj), j € Z

on a reqular grid and

g(z) = Zg(hj)dl,u(% —j), zeR

JEZ

We can use this Lemma to define a high order local interpolation scheme for

smooth functions on R in the following way:

LEMMA 9.11. Let M € N and L € N with L < (M + 1)/2. For real numbers a,b

with a < b define the step size
o b—a
M+ 1-2L

the real numbers
ap:=a—(L—1)h

and
bp :=b+ (L —1)h,

and the grid points
xj:=ar+hj, jeEZL.

Then for all g € BCP(R) with p > 2L the approzimation error satisfies

L2L
19 — gmarllBoqap) < cnat oL 19N Boan B

where

garan(x) =0 g(a;)dnar(z — ;)
JEZ

and

zeR

Chor = suphz |dhar(x — hj)l.
€z

(9.33)

(9.34)
(9.35)

(9.36)

(9.37)

(9.38)

(9.39)
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Chapter 9 A new view on canonical grid methods

Proof. The proof follows by applying LEMMA 9.4. [

We illustrate this local interpolation scheme by the following example.

EXAMPLE 9.12. Consider the function

g(x) = exp(2mivV1 + 22) /V1 + 22 (9.40)
on the interval I := [0.25,1.5]. We note that g possesses a holomorphic extension

into the strip {z = x + iy : —o0 < x < 00, —1 < y < 1}, which means that we can
expect super-algebraic convergence. The approximation and logarithmic error plots

60 0

50 2
40

6

s 30 .

IN

5 10 15 20 25 30
L

FIGURE 9.3: logy |lg — 9n2r ]|

are depicted in FIGURE 9.4 for the values L = 2,5,8 and M = 30. In accordance
to the error analysis we see that the error inside the interval I is much smaller
compared to the error in the extended interval. In FIGURE 9.3 we depicted logy, ||g —
v 2L cos B-€. an logarithmic plot of the estimated maximum error inside the interval
I in dependence of the order of the interpolation scheme and the total number of
interpolation points M. Note that, for fived M, the increase in the error for growing
L s not some kind of ill-posedeness. It is rather the instance that the step size, for
fixed M, is an increasing function considered as a function in L, as it can be seen
from (9.33). The red markers inside the picture denote the approximation order that
produced the smallest error for fixed M.
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1 or
A )
05f
-5
4
0,
-10
-0.57
-15
R . . . . . . . .
02 04 06 08 1 12 14 0.5 1 1.5
(a) The real part of gso.4. (b) The error for L = 2.
1 Or

-0.5¢
-15
q . . . ) . . .
0 05 1 1.5 2 05 1 1.5
(c) The real part of gs0,10- (d) The error for L = 5.
1 Or
0.5+
5
0,
-10
-0.5¢
-15
R ! ! ! . . ) ! ! . . L
-0.5 0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2
(e) The real part of gso,16- (f) The error for L = 8.

FIGURE 9.4: The local interpolation scheme for EXAMPLE 9.12. The red diamond
shaped markers indicate the points outside the interval of interest that are used for
the interpolation scheme. For a scheme of order 2L these are L — 1 points both on
the left and right side of the interval.
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9.3 Connections to the classical canonical grid
method

We can establish a connection between our novel method as introduced in Section 9.2
and the canonical grid method as introduced before with the help of interpolation
operators, cf. (9.7). For this, we combine (9.10) and (9.13) and replace the integrals
over T' by the composite trapezoidal rule for an equidistant grid. In some more
detail: for M € N chose L such that the inequality M > 2L — 1 is satisfied. Now
define the step size

fie—Ir
=T A1
ST M+1-2L (9.41)
and use the equidistantly spaced points
Z; ::a3+h3j, jZO,...,M—l, (942)
where
as = fr — (L —1)h. (9.43)

For this choice of parameters we get the maximal approximation order for the inter-
polation scheme of order 2L inside the interval of interest 7. Due to the smoothness
assumption (C1) we can interchange the order of integration to yield

/ / / dng 2 (f (@) = 23)k (20, 03) = (Y, y3)) g 20, (£ (y) — ) dys dvy

RTT
J(y)v(y) dy
M—1M-1
~ h3dh3,2L —Zj /k — Y,z — Zj’)h3dh372L(f(y) - Zj')
§=0 j'=0 =
J(y)v(y) dy
M—1M-1
:/ Li(f(@) k(@ — v, z—5) Ly (f(0)) J(¥)d(y) dy,  (9.44)
R 7=0 5'=0
where
L](.’L’) = hgdhygL(IB—Zj), j :O,,M— 1. (945)

This again is a decomposition of the form (9.3) and the kernel approximation coin-
cides with (9.7). This shows that our novel approach can be implemented as a 2D
or 3D variant, cf. LISTING 10.2 and LISTING 10.1.

A rough estimate for the number of floating point operations and the minimal
required memory for the different versions of the matrix-vector multiplication al-
gorithm, for a grid with N* := N; - Ny number of unknowns and M interpolation
levels, is summarised in TABLE 9.1.
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9.4 Applying the method to the rough surface scattering problem

Operation count Memory
Naive (N*)? N*
2D-Alg. M?-3-(4N*)log(4N*) 4N*
3D-Alg. 3 (8N*M)log(8N*M) 8N*M

TABLE 9.1: Estimated number of floating point operations and memory usage

9.4 Applying the method to the rough surface
scattering problem

In order to use the novel method described in Section 9.2 for the rough surface
scattering problem, we must apply it to an integral operator of the form

(W) () = /R K(z,9)]()d(y) dy, =R,

cf. (9.1), where the kernel function is given through

K(Qﬁ,y) = Kl(wvy) - KQ(wvy) - ZT](Kg(CB,y) - K4(Q§,y>)

with
1 (v(y),z —y) . exp(ir|z — yl)
K = — [1— 1y, — — = (1 - — ;
1z, y) or [ Xab(|T yl)} iz — yJ? ( iKlz y|) 1z — 9
1 (@), z—y , exp(ik|x — 1/
Fyla,y) = — )] — >(1—m|$—?/|) i , )
2r |z — /| |z —y/|
1 cos(klx —y|)  .sin(k|z —yl)
K. = — (1= xap(|x — ,
ey = g (1 sl -y < S
1 exp(ic|lr —y'])
K4(w7y) = % ’l’ _ y,‘ )
where

r—y=(x-y flx)-fly) and 22—y =(x-y, flx)+f(y)
We note that the kernel K3 can be written as

Ks(x,y) = ks(x —y, f(x) - f(y)),

cos(k|z|)  .sin(k|z|)
|| 2]

ta(e) = 5 (1= xaall2)] ). s=Gwer.
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The kernel K, can be written in a similar way as

Ki(z,y) = Y k(e —y, f(@) - f(y)aly),

where

1 Z . exp(ik|z
kii(2) == Py 11— Xa’b(|z|)]#(l — m|z|)%, z=(z,23) €R®

and
O f(y) 1+ |Vf(z))2 1=1,2

a(z) =uvl(z, f(z)) = {(1 + \Vf(Z)P)_W’ [ = 3.

Thus we can apply the method to each component individually.
The kernel K4 can be written in the form

Ki(z,y) = ki(z —y, f(z) + f(y))

where . .
ky(2) i= — —exp(m|z|)7 z=(2z,23) € R’

27 ||

The kernel K5 can be written in a similar way as

Ks(x,y) =) kaa(® —y, f(2) + [(y))di(y),

where
1 =z )
kau(2) == o =5 (1 —inl2])

Nk

—exp(|17|z|)7 z=(2z,23) €R?
and
_ ;) =of) A+ V)P 1=1,2,
dl(z) = [Vl(z7 f(z>)] - {_(1 + |Vf(Z)|2>_1/2, ] = 3.
9.4.1 Extending the fast method to certain non-difference
kernels

From the above considerations we see that, in order to apply the fast method to the
operators arising from the rough surface scattering problem, we need to extend our
method to kernel functions of the form

K(z,y) =k(z -y, f(x) + f(y)). (9.46)
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9.5 Alternative kernel functions

To handle these kind of kernel functions we introduce the shifted kernel
k(w Ig) = I{Z(CU T3 + b3 + (13) (947)

As before we start with the associated cube potential

W) (z) = / Ko — (y— )T @)b(y) dy, o= (@,23) € Q.

Using the shifted kernel & and shifted Dirac delta distribution we can write the cube
potential in the form

W) () = / Ko — (g, —F@) T ()0 (y) dy

—(y,bs +az — f(y)))J(y)Y(y) dy

[ ke
/ F(e— (y.bs + as — F@))T@)@)5([bs + as — F(y)] — ys) dys dy
o

I
S—— 55—

—y)¥(y)dy, =€,

where
U(y) == J()(y)d([ba +as— ()] —u3), v=(y.y3) €Q.

The second step can be handled as before, i.e.

(W) (x) = / 5(f(x) — 23)We) (@, 23) dzs, @ € R,

9.5 Alternative kernel functions

In the excellent reviews and survey articles [37], [54] and [8] a large family of in-
terpolation kernels are examined. The methods described in the articles include
the use of radial basis functions. For more information we refer the reader to the
monographs [10] and [59] and the citations therein.

9.5.1 Radial basis functions

We now explain some ideas for an high order interpolation scheme that is based
on the use of radial basis functions. The use of RBF for the interpolation scheme
was suggested by Prof. Schaback, whom I am indebted to for discussions and many
useful hints.

Let ® be a radial function, i.e. there exists a function ¢ : Ry — C such that

O(z) = ¢(|z]), zeR.
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Then we try to approximate a function g on an interval [a, b] by the finite sum

M—1
> glzpui(z), @ € [a,b], (9.48)
j=0
where z;, for j = 0,..., M — 1, are pairwise distinct points inside [a,b] and the
functions uj, for j = 0,..., M — 1, are given as a weighted sum of the radial basis
function P, i.e.
M-1
uj(r) = Z a;®(z — xp). (9.49)
k=0
We require that the functions u} satisfy the interpolation property
Thus the coefficients a; = (o, ..., aja—1)" of the functions u; are given as the
solution of the linear system
M-1
Z (I)(.’EZ — .Clﬁk)OéLk = 62'7]', Z = O, Ce ,M. (951)
k=0

We can write this as a matrix equation
DA =1, (9.52)
where the two M x M matrices D and A are given through
(D)iy = P(x; —xy), 4,k=0,...,M
(A =g, i,k=0,...,M,

and I denotes the identity matrix in R™. Using the radial symmetry of & we see
that

O(z; — ) = @l|xi — zx|) = @l — xi]) = Paw — 13),
i.e. the kernel matrixz D is, by construction, symmetric. For certain classes of func-
tions ®, one can show that the matrix D is positive definite and hence invertible.

To find a criteria, whether a given function ¢ produces an invertible matrix D
one defines:

DEFINITION 9.13. A continuous function ® : R — C is called positive definite if,
for all M € N and all sets of pairwise distinct points X = {xg,...,xp1} C R the
kernel matriz D is positive definite, i.e. for all « € CM, the quadratic form

M-1M-1

Z Z a;ap®(z; — xy)

j=0 k=0

18 positive.
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9.6 Numerical results

The functions
oy () == el >0, zeR, (9.53)

are positive definite, cf. [59, Theorem 6.10]. Though the matrix equation (9.52) is
always invertible, the matrix D can be very ill-conditioned. In general, the condition
number is a function of the separation distance

S([a,b]) :=

1
—  min |z; — ]
2 0<i<j<M-1

that grows dramatically for S([a,b]) — 0. We use an equidistantly spaced grid with
step size h, thus h = 25([a, b]).

To control the condition of the kernel matrix D we use the scaling parameter
~v. From a practical point of view it is o.k. to work with condition numbers up
to 107 — 101° and still compute reliable results. In addition to the parameter v
we introduced a very simple form of a regularisation scheme, i.e. instead of solving
(9.52) we solved the system

(D+eA=1, >0 (9.54)

for some small values of €.

9.6 Numerical results

All the results shown in this section have been carried out for the kernel function

Ks(x,y) = ks(x —y, f(x) — f(y)),

cos(klz|)  .sin(k|z|)

ta(e) = 5 ([1= xaslaD)] ). smer

|| E

This kernel is one part of the global kernel kS, of the single-layer potential. We
note that the function 23 — k3(z, z3) possesses a holomorphic extension into the
strip

{z:x+iy:—oo<x<oo,—a<y<a},

i.e. the width of the strip is determined by the width of the support of the function
1 — Xap(| - |). Thus we can expect super-algebraic convergence. We like to mention
that the resemblance of FIGURE 9.7(f) with FIGURE 9.3 is due to the fact that both
plots show almost the same function, namely FIGURE 9.3 shows the error plot for
the function z3 — k3(z, 23) for a fixed z € R? with |z| = 1, whereas FIGURE 9.7(f)
shows the maximal error for z € R.
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Chapter 9 A new view on canonical grid methods

The surface height function used in all of the following example is depicted in
FIGURE 9.5. Tt is a two-dimensional trigonometric polynomial of degree (20,20) that
can be seen as a realisation of a random rough surface. The supporting rectangle of
the surface patch is R = [—10, 10] x [—10, 10] and the maximal and minimal values
of the surface height function were estimated with f; = 2.1 and f# = 3.9.
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FIGURE 9.5: Realisation of a random rough surface

We used a wavenumber x = 27 so that the wavelength A = £/27 is 1. Thus, in
terms of the wavelength, the surface elevation is 2\ and the supporting rectangle
has size 20\ x 20A.

For a given density ¢ we are interested in understanding the discrete relative
L2-error

Ay — ACLE
e(L, M) : TAv] s (9.55)
as a function of the number of expansion levels M, used for the interpolation scheme,
and the connection to the interpolation order 2L. The matrix A represents the fully
discrete version of the integral operator and AL the approximated matrix. The
real part of the density ¥ and At are shown in FIGURE 9.6, for which we used a
two dimensional array of 128 x 128 points.
The FIGURE 9.7(a) shows a logarithmic plot of the discrete relative L?-error for
1< M<5BH0and 1 < L < # The red markers inside this figure denote the
function

min,, : M +— mLine(L, M),

i.e. the minimal error that was achieved among all interpolation schemes for fixed
M. The excellent convergence results are clearly notable and shown again in FI1G-
URE 9.7(b)

FIGURE 9.7(c)-(d) shows the error plots for the interpolation scheme based on
radial basis functions. The relative L?-error now depends on M and the scaling
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FIGURE 9.6: The real part of the density 1) and Ay used to compute the relative
L?-error.

parameter . The plots show the error for the values 4 < M < 16 and different
values of v € [1,4]. The red markers show again the minimal error for fixed M.
The ill-conditioning of the kernel matrix D, as mentioned before, can be seen in
FIGURE 9.7(f). We used the rather simple regularisation scheme (9.54) for the
choice ¢ = 107'2 for the computations. More sophisticated regularisation schemes
with a strategy for the choice of a regularisation parameter might be able to produce
even higher accuracy, though even this simple scheme produced results comparible
to the high order interpolation scheme, as can be seen in FIGURE 9.7(e).

We like to note that the two scheme complement each other for different ranges of
accuracies and amount of work. If we keep in mind that we want to accelerate the
matrix-vector multiplication in an iterative linear solver, it does not seem reasonable
to invest to much work and time into a highly accurate matrix-vector multiplication.
Thus an approximation of the matrix-vector product with a relative error of 1074 —
10% will surely be enough. From the error plots we see that 10 points for the RBF
method and 20 points for the method with interpolation kernel d; o1, are sufficient.
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FIGURE 9.7: Error plots for the FMVM, using the interpolation kernel d; o7, and
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Chapter 10

Fast method - Implementation
details

In this chapter we present the details of the fast algorithm on the full discrete level.

We think that the algorithm is conceptually rather simple and therefore easy to
implement though at the same time highly efficient for the underlying problem. In
fact, we give an example of a MATLAB implementation of the main algorithm in
less than a page of code.

The main algorithm of the novel fast matrix-vector multiplication is implemented
in the MATLAB function FMVM (fast matriz-vector multiplication) shown in LIST-
ING 10.1. The function my_kernel (cf. LISTING 10.3) and chi (cf. LISTING 10.4)
show an implementation of the kernel function k3 used for the numerical example
and the cut off function x,3. The function FMVM_2D shown in LISTING 10.2 is our
implementation of the novel interpolation scheme in a 2D version. Our implemen-
tation of the interpolation kernels dj, o7, is shown in LISTING 10.5 and named DDD
for discrete Dirac delta function.

A typical calling sequence could look like follows.

> Pp = [-10 10 -10 10 2.1 3.9];
>N = [128 128 16];

> KParam.kappa = 2%pi;

> KParam.a = 0.75;

> KParam.b = 1.5;

> shf = ’surface_height_function’;
> kernel = ’my_kernel’;

> L =4,

> pot = FMVM(psi, p, N, L, shf, SParam, kernel, KParam);
The function expects 8 values:
psi A two-dimensional array that represents the vector in the matrix-vector mul-

tiplication.

p A column vector p = [al bl a2 b2 fmin fmax] that describes the smallest
cube that contains the surface patch I'g with supporting rectangle R, where

139



Chapter 10 Fast method - Implementation details

shf

SParam

kernel

KParam

R = [a1,b1] X [a2,b2] and fmin and fmax are the minimum and maximum of
the surface height function f on R.

A column vector N = [N1 N2 M] that contains the number of points, which are
used for the discretisation of each space dimension, i.e. in the above example
we use 128 points each for the x; and x, direction and 16 points for the
discretisation in x5 direction.

A positive integer number that defines the order (2L) of the local interpolation
scheme.

A string with the name of a user defined matlab file that contains an imple-
mentation of the surface height function. The function can use parameters,
contained in the structure SParam, that are used to describe the surface.

A structure that contains parameters that are needed to describe the surface
height function.

A string with the name of a user defined matlab file that contains the kernel
function. The function can use parameters, contained in the structure KParam.

A structure that contains parameters for the kernel function, e.g. the wave
number s or the cut-off parameters a and b for the function x,p.

The matlab function my_kernel shown in LISTING 10.3 is an implementation of
the kernel K3 from the numerical examples.

The implementation shown in LISTING 10.1 is not efficient on the use of computer
memory, but even this version can be used to compute problems of the size 512 x
512 x 32 on machines with up to 4GB of RAM.

We now describe the implementation almost line by line and draw the connection
to the formulas in the previous sections:

1-5
7-10
12-14

15-18
19
21-24
27

140

Define some abbreviations.
Setup the surface grid and the surface area element J.

Setup the enlarged interval for the interpolation in z3-direction, cf. (9.33) and
(9.34).

Setup the 3D grid inside () and evaluate the the Dirac delta distribution.
The function ¥ on the discrete grid inside @, cf. (9.12).
Setup the large grid to evaluate the periodised version of the kernel function.

Use the discrete form of the convolution theorem, cf.(8.5), to compute the
action of the operator on the density.



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

26

27

28

29

30

31

28 Restrict the solution to the grid points inside Q).

29 Use (9.13) to compute the discrete form of (IW)(x) on the surface grid.

LisTING 10.1 MATLAB implementation of the fast matrix-vector multiplication

algorithm.
function pot = FMVM(psi,p,N,L,shf,SParam,kernel,KParam)
al =p(1); bl = p(2);
a2 = p(3); b2 = p(4);
fmin = p(B); fmax = p(6);
nl = N(1); n2 = N(2); n3 = N(3);
hi = (bl-al)/ni;
h2 = (b2-a2)/n2;
[X,Y] = meshgrid(al+h1*(0:n1-1),a2+h2x(0:n2-1));
[£f,J] = feval(shf, X, Y, SParam);
h3 = (fmax-fmin)/(n3-1-2*(L-1));
a3 = fmin - (L-1)%*h3;
z = a3+h3*(0:n3-1);
Z = reshape(z(:),[1 1 n3]);
Z = Z(ones(n2,1),ones(nl1,1),:);
F = repmat(f,[1 1 n3]);
DDD = Delta_approx(h3,L,F-Z); clear Z F;
Psi = repmat(psi.*J,[1 1 n3]) .* DDD;
x0 = [(0:1:n1-1) (-n1:1:-1)] * hi;
yO = [(0:1:n2-1) (-n2:1:-1)] * h2;
z0 = [(0:1:n3-1) (-n3:1:-1)] * h3;
[X0,Y0,Z0] = meshgrid(x0,y0,z0) ;
K = feval(kernel,X0,Y0,Z0,KParam) ;
pot_big_cube = ifftn( fftn(K) .x fftn(Psi,size(X)) );
pot_cube = (h1*h2%h3) * pot_big_cube(1:n2,1:n1,1:n3);
pot = h3 * sum( DDD.*pot_cube, 3);
end
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Chapter 10 Fast method - Implementation details

LI1STING 10.2 MATLAB implementation of the fast matrix-vector multiplication
algorithm in a 2D-variant.

function pot = FMVM_2D(psi,p,N,L,shf,SParam,kernel,KParam)

al =p(1); bl = p(2);

a2 = p(3); b2 = p(4);

fmin = p(5); fmax = p(6);

nl = N(1); n2 = N(2); n3 = N(3);

hi = (bl-al)/ni;

h2 = (b2-a2)/n2;

h3 = (fmax-fmin)/(n3-1-2%(L-1));

a3 = fmin - (L-1)*h3;

[X,Y] = meshgrid(al+h1*(0:n1-1),a2+h2%(0:n2-1));
[£f,J] = feval(shf, X, Y, SParam); clear X Y;
psi = psi.*J; clear J;
x0 = [(0:1:n1-1) (-n1:1:-1)] * hi;

yO = [(0:1:n2-1) (-n2:1:-1)] * h2;

[X0,Y0] = meshgrid(x0,y0);

z = a3+h3*(0:n3-1);

pot = zeros(n2,nl);

for ii = 1:n3
pot_cube = zeros(n2,nl);
for jj = 1:n3

K = feval(kernel,X0,Y0,z(ii)-z(jj) ,KParam);

DDDj j = Delta_approx(h3,L,f-z(jj));

pot_big_cube = ifftn( fftn(K) .* fftn(psi.*DDDjj,size(K)) );

pot_cube = pot_cube + (h1*h2*h3) * pot_big_cube(l:n2,1:n1);
end

pot = pot + h3 * Delta_approx(h3,L,f-z(ii)) .* pot_cube;
end

end
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L1STING 10.3 Matlab implementation of the kernel function that describes the global
part of the single-layer potential operator.

function res = my_kernel(x,y,z,KParam)

kappa = KParam.kappa;
a = KParam.a;
b KParam.b;

R2d = sqrt(x.”2 + y."2);
R3d = sqrt(x.”2 + y.”2 + z.72);
res = 1/(2*pi).*((1-chi(a,b,R2d)).*cosc(R3d,kappa) + i*sinc(R3d,kappa));

function res = sinc(t,kappa)

ind = (t==0);
t(ind) = NaN;
res = sin(kappax*t)./t;

res(ind) = kappa;

function res = cosc(t,kappa)

ind = (t==0);

t(ind) = NaN;

res = cos(kappaxt)./t;
res(ind) = 0;

LISTING 10.4 Matlab implementation of the cut off function x,.

function res = chi(a,b,t)

t = abs(t);

res = zeros(size(t));

res(t<=b) = 1;

ind = (b<t) & (t<a);

res(ind) = 1./(1 + (exp( (a-b)./(a-t(ind)) - (b-a)./(b-t(ind)))));
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Chapter 10 Fast method - Implementation details

LISTING 10.5 Matlab implementation of the interpolation kernels dj, or..

function res = Delta_approx(h,L,x)

[n1,n2,n3] = size(x);

X =x(:);

res = Delta_1(L,x./h)./h;
res = reshape(res,nl,n2,n3);

function res = Delta_1(L,x)
res = zeros(size(x));
X = abs(x);
for ind = 1:length(x)
i = floor(x(ind));
if (x(ind) <= L)
res(ind) = LagrangePoly(-L-i,L-1-i,x(ind));
end
end

function res = LagrangePoly(n,m,r)

res = 1;
for k = n:m
if (k™=0)
res = (1+r/k)*res;
end
end
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Appendix A

Maple Procedures

This chapter contains the Maple procedures DDA, cf. LISTING A.1, and DDA2, cf. L1ST-
ING A.2, that were used to compute representations of the kernel function d; o7, for
arbitrary L and to verify the CONJECTURE 9.8.

LISTING A.1 Maple procedure that computes the function d; o7, by solving the sys-
tem of discrete moments equations. The function d; o7,(t) is computed through the
command DDA(L) (t).

DDA := proc(L::integer)
local reorder,N,idx,meqn,soll,so0l2,f,d_arg,delta;
#
reorder := proc(s::set(equation),l::1list)
local i,temp;
subs(s, [seq(temp[il=1[i],i=1..nops(1))1$2);

end proc;
#
N o= []:

for idx from -(L-1) to L by 1 do
N := [op(N), idx];

end:

#

meqn := {seq( sum(k~m*delta(r-k),k=-(L-1)..L) = r"m, m=0..2*L-1)};
soll := solve( meqn, {seq(delta(r-j),j=N)});

sol2 := reorder(soll, [seq(delta(r-j),j=N)1);

f := map( unapply, map(rhs, sol2), r);

d_arg := seq( op([j-1<t and t<=j, factor(f[-j+L+1]1(t-(j-1))) 1), j=N);
delta := unapply( piecewise(d_arg),t );
#
return delta;
end proc:
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Appendix A Maple Procedures

LISTING A.2 Maple procedure that computes the function A, 57, given through ...

DDA2 := proc(L::integer)
local m, i, d_arg, delta;
#
d_arg := seq( op([i<t and t<=i+1,
(
product (1+t/m, m =-L-i..-1) * product(l+t/m, m =1..L-1-1i)
) 1), i=-L..L-1);
delta := unapply( piecewise(d_arg),t );
return delta;
end proc:
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