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Introduction

For a finite CW-complex X with fundamental group π , the L2-homology of

the universal covering X̃ is given as the kernel of the combinatorial Lapla-

cians ∆∗ on C
(2)
∗ (X̃) = C

(cell)
∗ (X̃) ⊗Zπ `

(2)(π) . After a choice of a cellular

base, this complex, is isomorphic to a complex of finite direct sums of `2(π) ,

on which the Laplacian ∆p = (cp⊗id)∗(cp⊗id)+(cp−1⊗id)(cp−1⊗id)∗ acts by

left multiplication with a matrix over Zπ ⊂ N (π) . Here, N (π) ⊂ B(`2(π))

is the group von Neumann algebra of π: it is the von Neumann algebra gen-

erated by the left regular representation of π. L2-Betti-numbers measure

the dimension of the L2-homology and can be defined as

β2
p(X) := dimC

N (G)(ker(∆p))

.

W. Lück shows in [17] that the L2-Betti-numbers β
(2)
n (X̃) of the universal

covering X̃ of a CW-complex X , with residually finite fundamental group

π , can be approximated by their finite dimensional analogons β
(2)
n (X̃/πi) .

Using these ideas in a different context, J. Dodziuk and V. Mathai prove in

[4] a similar approximation result for amenable groups. In [25] , T. Schick

combines both ideas and extends the result to a more general class G of

groups containing in particular amenable and residually finite groups.

Later in [5] G. Elek and E. Sabó proved the approximation result also for

sofic groups.

These proofs rely on showing that the kernel of a matrix A ∈ Md(ZG) can

be approximated via the kernels of the matrices pi(A) ∈ Md(ZG), where

the pi are coming from some limit or extension process of G . Finally in [3]

J. Dodziuk, P. Linnell, T. Schick and S. Yates extend the coefficient ring

ZG to QG , especially to prove the Atiyah conjecture over QG and G from

a subclass of G .
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In this thesis, the approximation theorem will be generalized to an approx-

imation theorem for the center-valued Betti-numbers

βup (X) := dimu
N (G)(ker(∆p)) .

More precisely, we show that their Fourier coefficients (which are multiples

of the so called delocalized Betti-numbers introduced by Lott in [16]) can

be approximated.

In the second part of this thesis, we state the center-valued-Atiyah-conjecture.

It can be obtained for amenable groups from Linnell’s corresponding proof

of the (classical) Atiyah-conjecture. We will then use the approximation

theorem, to extend the center-valued Atiyah-conjecture to limits of groups

which are finite extensions of a torsion free group. The center valued Atiyah-

conjecture gives a formula, for the decomposition of the center-valued trace

of a projection, relative to minimal central projections, corresponds with

the finite subgroups of G. This part is a joint work with Peter Linnell and

Thomas Schick.



Chapter 1

Basic Theory of L2-Invariants

The chapters two and three contain the results of the thesis and are both

more or less self contained. The purpose of the first chapter is to give basic

definitions, some background information and motivations for the problems

treated in the later chapters.

1.1 Basics

In this section we shortly introduce the basic definitions and terminology.

For further details and proofs we refer to [7] chapter 5 .

Definition 1.1.1. (*-algebra)

A *-algebra A is an algebra possessing an involution ∗ : A→ A , i.e. for all

a, b ∈ A , λ ∈ C we have

• (a∗)∗ = a

• (ab)∗ = b∗a∗

• (λa)∗ = λa∗

We can define many important topologies on the ∗-algebra B(H) of bounded

operators on a Hilbert-space H . For our purpose we need at the moment

the weak-operator topology, defined as follows.
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Definition 1.1.2. (Weak topology)

The weak-operator topology Tweak on B(H) is given by the basis of neigh-

borhoods containing the following elements

V (a0 : ωη1,ξ1 , . . . , ωηn,ξn , ε)

:= {a ∈ B(H) |ωηj ,ξj(a− a0) ≤ ε für j = 1 . . . n}

Here denote ηj, ξj ∈ H and ωηj ,ξj(a) := |〈aηj, ξ〉| .

So the weak-operator topology is the locally-convex topology defined by the

separating family of semi-norms ωηj ,ξj .

Using the weak-operator topology, we can define a crucial object. The von

Neumann-algebra, named after John von Neumann.

Definition 1.1.3. (von Neumann-algebra)

Let H be a Hilbert space, if A ⊂ B(H) is a weakly closed ∗-subalgebra of

B(H) , then A is called von Neumann-algebra.

We are specially interested in a special type of von Neumann-algebras, which

are generated by a group.

Definition 1.1.4. (Group von-Neumann-algebra)

Let G be a discrete group, and CG the corresponding group ring acting on

the Hilbert space `2(G) := {
∑

g∈G λgug | λg ∈ C∧
∑

g∈G |λg|2 <∞} , where

ug denote the unitaries induced by g ∈ G , then the group von Neumann-

algebra is defined as the weak closure of C(G) ⊂ B(`2(G)) .

A von Neumann-algebra with trivial center is called factor. For a group

von Neumann-algebra, this is equivalent to the fact that the group G has

no elements with finite conjugacy class.

Definition 1.1.5. (Factor)

A von Neumann-algebra A with trivial center (i.e. Z(A) = C · Id) is called

factor.

Definition 1.1.6. (Commutant)

Given a Hilbert-spaceH and M ⊂ B(H) , the commutant M ′ of M is defined

as M ′ := {a ∈ B(H) | ∀ m ∈M ; am = ma} .
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An important characterization of von Neumann-algebras is that they are

stable under taking the double-commutant.

Theorem 1.1.7. (Double-commutant theorem)

If M ⊂ B(H) is a self-adjoint algebra of operators, containing the iden-

tity, then the weak-operator closure of M (and the strong-operator closure)

coincides with the double commutant M ′′ of M .

Proof.

See [7] , page 326, theorem 5.3.1 .

Certain ∗-algebras (e.g. C∗-algebras) already carry a special Hilbert-space

representation within there structure.

Theorem 1.1.8. (GNS-construction)

Assume A is a ∗-algebra with a positive state φ satisfying

∀ a ∈ A ∃ Ca ∈ R+ ∀ b ∈ A : φ((ab)∗ab) ≤ Caφ(b∗b) , (1.1.9)

then A already carries a representation within its structure. It is obtained

as follows. The set Lφ := {a ∈ A|φ(a∗a) = 0} is a left ideal in A that is

closed with respect to the semi-norm ‖a‖φ := φ(a∗a) . Taking the closure

HA of A/Lφ with respect to 〈a, b〉φ := φ(b∗a) gives rise to a Hilbert-space

HA with Ay HA such that A ⊂ B(HA) .

(If A is a C∗-algebra, then the property (1.1.9) is redundant.)

Proof.

See [7] , page 277, proposition 4.5.1 and page 278, theorem 4.5.2 .

1.2 Projections and Types of von Neumann-

Algebras

An important tool to study von Neumann-algebras is ”comparison” of the

projections in a von Neumann-algebra. We introduce an equivalence rela-

tion on the projections and a partial ordering on these equivalence classes.

According to the structure of the lattice, von Neumann-algebras can be dis-

tinguished in ”finite” and ”infinite” types, more precisely in the finite types
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In , II1 and infinite types I∞ , II∞ , III . It is possible to show that every

von Neumann-algebra can be decomposed in a direct sum of von Neumann-

algebras of these types.

This section is mainly based on [8] chapter 6 . We give a short overview on

results in this topic. Details and proofs can be found in [8] chapter 6 or

alternatively in [28] chapter 5.1 .

Proposition 1.2.1.

If A is a von Neumann-algebra and PA is the set of all projections in A,

then PA is a complete lattice, where the patrial ordering ≤ is given by the

image subspaces of H .

Given a family {ei}i∈I , we denote by
∧
i∈I ei its greatest lower bound and

by
∨
i∈I ei its least upper bound.

Proof.

See [28] page 290, proposition 5.1.1 .

Definition 1.2.2. (Equivalence and partial ordering of projections)

Two projections e, f ∈ A are said to be equivalent if there exists an element

u ∈ A such that uu∗ = e and u∗u = f . We write e ∼ f .

If e is equivalent to f1 and f1 ≤ f we write e - f . Obviously ∼ gives

an equivalence relation on PA , further - gives a partial ordering on these

equivalence classes.

Theorem 1.2.3. (Comparison theorem)

For any pair of projections e, f in a von Neumann-algebra A there is central

projection c such that

ce - cf and (1− c)f - (1− c)e

As a direct consequence it follows, that in case of A is a factor, - gives a

total ordering on PA .

Proof.

See [8] page 409, theorem 6.27 .

Definition 1.2.4. ((In-)finite projection)

A projection e in A is said to be infinite (relative to A) , if there is a

projection e1 ∈ A such that e ∼ e1 < e . Otherwise e is said to be finite
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(relative to A) . A projection e is called purely infinite if there is no finite

projection f ≤ e in A other than zero, and e is called properly infinite, if

for any central projection c ∈ A , with ce 6= 0 , the projection ce is infinite.

We use this to define finite and infinite von Neumann-algebras.

Definition 1.2.5. ((In-)finite von Neumann-algebra)

A von Neumann-algebra A is called finite, infinite, purely infinite, resp.

properly infinite, according to the property of the identity in A .

We will be interested in finite von Neumann-algebras, since they admit a

trace and hence a suitable dimension theory.

Definition 1.2.6. (Central-carrier)

A central-carrier ca of an operator a ∈ A is the projection Id−p , where p

is the union of all central projections pa ∈ A such that paa = 0 .

Definition 1.2.7. (Abelian projection)

A projection e ∈ A is called abelian if eAe is an abelian von Neumann-

algebra.

We are now able to define the different types of von Neumann-algebras.

Definition 1.2.8. (Type classification)

A von Neumann-algebra A is of type

• I , if A has an abelian projection with central carrier Id ,

• In , if Id is the sum of n equivalent abelian projections,

• II , ifA has no non-zero abelian projections, but has a finite projection

with central-carrier Id ,

• II1 , if A is of type II and finite,

• II∞ , if A is of type II and properly infinite ,

• III , if A is purely infinite.

Theorem 1.2.9. (Type decomposition)

Every von Neumann-algebra A is uniquely decomposable into a direct sum

of those of type I , type II1 , type II∞ and type III . In case of A is a factor

it is either one of those types.
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Proof.

See [8] page 422, theorem 6.5.2 , and page 424, corollary 6.5.3 .

1.3 The Trace on Finite von Neumann-Algebras

A characteristic property of a finite von Neumann-algebra is, that it pos-

sesses the so called center-valued trace. In this section we will examine

the basic properties of this trace and the corresponding dimension function.

The proof of the existence of a center valued trace, in a finite von Neumann-

algebra, is a very technical task, for details we refer to [8] chapter 8 or [28]

chapter 5.2. .

Definition 1.3.1. (Trace)

In this section we denote by A a von Neumann-algebra with center Z , then

the center-valued trace of A is defined as a linear map

truA : A → Z

such that for a, b ∈ A c ∈ Z we have:

• truA(ab) = truA(ba) ;

• truA(c) = c ;

• truA(a) ∈ Z+ if a ∈ A+ .

If such a mapping truA exists, it is unique and the von Neumann-algebra A
is finite. Further the trace possesses some additional properties.

Proposition 1.3.2.

If truA : A → Z is the center-valued trace, we have for a ∈ A c ∈ Z , that

• truA(ca) = c truA(a) ;

• ‖ truA(a)‖ ≤ ‖a‖ ;

• truA is ultra-weakly continuous;
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• every trace τ : A → C factors via the center i.e. given τ , there

exists a linear functional φ : A → C such that the following diagram

commutes
A Z

C

//
truA

��
??????????

τ

��
� �
� �
� �
�

φ

Proof.

See [8] page 517, theorem 8.2.8 .

Theorem 1.3.3.

A von Neumann-algebra is finite if and only if it admits a center-valued

trace.

Proof.

The ”only if” part is trivial and follows directly from the trace property.

The proof of the converse is technical, see [8] page 517 , theorem 8.2.8 .

Definition 1.3.4. (Standard trace)

Given a discrete group G , the von Neumann-algebra N (G) possesses also

the so-called standard trace, given by

trCN (G) : N (G) −→ C
a 7→ 〈a · e, e〉

(it is derived from truN (G) by applying the functional 〈− · e, e〉) .

Remark 1.3.5.

These traces can be extended to Md(A) by taking truA := truA⊗ trMd(C) resp.

trCA := trCA⊗ trMd(C) (by abuse of notation), with trMd(C) the non-normalized

trace on Md(C) .

A good tool to calculate the center valued is the Dixmier approximation

theorem.

Theorem 1.3.6. (Dixmier approximation theorem)

Denote by U the group of all unitary elements u ∈ A . Define for a ∈ A ,

coA(a) the convex hull {uau∗ | u ∈ U} of a . Denote with coA(a)= its norm

closure. Then

coA(a)= ∩ Z = truA(a) .
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Proof.

See [8] page 532, theorem 8.3.5 and 8.3.6 .

We can now easily compute the center-valued trace for group von Neumann-

algebras.

Example 1.3.7.

Assume G is a discrete group. Define ∆(G) := {g ∈ G | | < g > | < ∞} ,

where < g > denotes the conjugacy class of the element g ∈ G . The group

von Neumann-lgebra N (G) is given as the left regular representation of

G y `2(G) . The center of N (G) is given by the elements constant on the

finite conjugacy classes
(
Z = {a :=

∑
λgug ∈ N (G) | ∀ g ∈ ∆(G) ,∀ i, j ∈<

g > , λi = λj ∧ ∀ g ∈ G−∆(G) , λg = 0}
)

.

The center-valued trace on N (G) is given by:

truN (G) : N (G) −→ Z(G)∑
g∈G

λgug 7→
∑

h∈∆(G)

1

| < h > |
( ∑
g∈<h>

λg
)
uh .

Proposition 1.3.8. (Dimension Function)

Suppose A is a finite von Neumann-algebra with center Z and let P be the

set of all projections in Md(A) . Restricting truA to P we obtain a center-

valued dimension function dimu
A with the following properties:

• dimu
A(p) > 0 if p 6= 0 ,

• dimu
A(p+ q) = dimu

A(p) + dimu
A(q) if pq = 0 ,

• dimu
A(p) = dimu

A(q) if and only if p ∼ q .

Proof.

The claim follows directly from the corresponding properties of the trace.

Remark 1.3.9.

The third property is very important because it ensures that all projective

modules with equivalent center-valued dimensions are isomorphic. This

ensures later that universal Betti-numbers fully classify the L2-homology

modules.
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1.4 The Fuglede-Kadison-determinant

In this section we introduce functional calculus, define spectral-density func-

tions and derive from those the Fuglede-Kadison determinant. Details about

basic spectral theory can be found for example in [24] chapter 12, in [7] chap-

ter 5.2 , or in [32] chapter 7 , details about Spectral density functions can

be found in [19] chapter 2.1 , Fuglede-Kadison Determinants are treated in

detail in [19] chapter 3.2 .

Given a selfadjoint operator A one can define continuous-functional-calculus

by taking limits of polynomials in A . A more general concept is given by

the measurable-functional-calculus. A proof for of its existence can be found

for example in [32] theorem 7.1.6.

Theorem 1.4.1. (Measurable-functional-calculus)

Let A ∈ B(H) be a selfadjoint operator acting on a Hilbert-space H . Denote

by σ(A) ⊂ R the spectrum of A (i.e. λ ∈ σ(A) ⇔ (λ IdH −A) is not

invertible) . There exists a unique homomorphism

Ψ : B(σ(A))→ B(H)

from the Borel-functions on the spectrum of A into the bounded operators

on H , satisfying the following properties

• Ψ(t) = A , Ψ(1|σ(A)) = Id ,

• Ψ(f) = Ψ(f)∗ ,

• Ψ is continuous ,

• fn ∈ B(σ(A)) , supn ‖fn‖∞ < ∞ and limn→∞ fn(x) = f(x) for all

x ∈ σ(A) implies 〈Ψ(fn)x, y〉 → 〈Ψ(f)x, y〉 for all x, y ∈ H .

We abbreviate f(A) for Ψ(f) .

Definition 1.4.2. (Spectral measure)

Let Σ be a σ-algebra on R . A spectral measure is a map

E : Σ −→ B(H)

M 7→ EM

such that
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• all EM are projections,

• E∅ = 0 ,ER = Id ,

• for pairwise disjoint sets M1 ,M2 , · · · ∈ Σ we have

∞∑
i=1

EMi
(x) = E∪Mi

(x) ∀ x ∈ H ,

• EMEN = ENEM = EM∩N .

Theorem 1.4.3. (Spectral measure)

Given a selfadjoint operator A ∈ B(H) we obtain a spectral measure

E : Bo(R) −→ B(H)

M 7→ χM∩σ(A) .

where Bo(R) denotes the Borel-sets on R .

Definition 1.4.4. (Spectral-density function)

Assume A is a finite von Neumann-algebra, let A ∈Md(A) a positive oper-

ator. Define

• the spectral-density function

FA : [0,∞) −→ [0,∞) : ε 7→ trCA
(
χ[0,ε](A)

)
,

• and the center valued spectral-density function as

F u
A : [0,∞) −→ Z(A) : ε 7→ truA

(
χ[0,ε](A)

)
,

where χ[0,ε] denotes the characteristic function of the interval [0, ε] .

Using this notation we have FA(0) = dimC
A(ker(A)) and F u

A(0) = dimu
A(ker(A)) .

Definition 1.4.5. (Fuglede-Kadison determinant)

Given A ∈ Mn(A)+ , the spectral-density function FA, is a monotone in-

creasing function. It induces a Riemann-Stieltjes-measure. Using this we

define the Fuglede-Kadison determinant as follows:

lndet(A) :=

∫ ∞
0+

ln(λ)dFA(λ) ∈ R ∪ {−∞} .
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Remark 1.4.6.

If we look at the formula we see that the integral can only diverge at 0

since the measure coming form A vanishes above ‖A‖ . If the operator

is invertible the spectrum has a gap around zero, hence in this case the

determinant will always be bounded. In general, if the Fuglede-Kadison

determinant is bounded, this means that there is not too much spectrum

near by zero. This means that the operator somehow behaves well, this

observation is a crucial ingredient for approximation of Betti-numbers.

1.5 L2-Betti-numbers

In this section we introduce L2-Betti numbers . From the technical view-

point we deal, in the next section, with kernels of certain operators. This

section shows where these operators occur, and hence is meant to give some

motivation and topological background.

The topic is quite complex, but well treated in the literature, we only give

a brief definition of L2-Betti-numbers and mention some main properties.

For further details and proofs we refer to [19] chapter 1 .

Definition 1.5.1. (G-CW-complex)

A G-CW-complex X is a G-space together with a G-invariant filtration

∅ = X0 ⊂ X1 ⊂ · · · ⊂ Xn ⊂ · · · ⊂
⋃
n≥0Xn = X such that X carries the

colimit topology with respect to this filtration (i.e. a set C ⊂ X is closed if

and only if C ∩Xn is closed in Xn for all n ≥ 0) and Xn+1 is obtained from

Xn for each n ≥ 0 by attaching equivariant n-dimensional cells, i.e. there

exists a G-pushout∐
i∈In

G/Hi × Sn−1
Xn−1

∐
i∈In

G/Hi ×Dn
Xn

��
� �
� �
� �

//

∐
i∈In qi

��
� �
� �
� �
� �
� �

//

∐
i∈In Qi
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Remark 1.5.2.

Provided a discrete group G , a G-CW -complex X is the same as a CW -

complex X with a G-action such that for any open cell e ⊂ X and g ∈ G
with ge ∩ e 6= ∅ , left multiplication with g induces the identity on e .

The canonical examples of G-CW -complexes are given by regular coverings

of a CW -complex of finite type (i.e. all skeleta are finite).

Now suppose that G is discrete. The cellular ZG-chain complex C∗(X) of a

G-CW -complex has as n-th chain group the singular homologyHn(Xn;Xn−1)

and its n-th differential is the boundary homomorphism associated to the

triple (Xn;Xn−1;Xn−2). If one has chosen a G-pushout as in Definition

1.5.1 , then there is a preferred ZG-isomorphism⊕
i∈In

Z[G/Hi] ∼= Cn(X) .

If we choose a different G-pushout, we obtain another isomorphism, but the

two differ only by the composition of an automorphism which permutes the

summands appearing in the direct sum and an automorphism of the shape⊕
i∈In

Z[G/Hi]
⊕
i∈In

Z[G/Hi] ,//
⊕i∈Inε·rgi

where gi ∈ G, εi ∈ ±1 and εi · rgi sends gHi to εi · ggiHi. In particular

we obtain for a free G-CW -complex X a cellular ZG-basis Bn for Cn(X) ,

which is unique up to permutation and multiplication with trivial units in

ZG, i.e. elements of the shape ±g ∈ ZG for g ∈ G.

Definition 1.5.3. (L2-chain complex)

Let X be a free G-CW -complex of finite type. Denote its cellular L2-chain

complex by

C(2)
∗ (X) := `2(G)⊗ZG C∗(X) ,

where C∗(X) is the cellular ZG-chain complex.

Remark 1.5.4.

Fixing a cellular basis for Cn(X) we obtain an explicit isomorphism

C
(2)
i (X) ∼=

ki⊕
i=1

`2(G)
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for some k ∈ N0. The differentials δ
(2)
i := id⊗δi are then given as elements

in Mki×ki−1
(ZG) ⊂ B(`2(G)ki−1 , `2(G)ki) .

Definition 1.5.5. (L2-homology and L2-Betti numbers)

Let X be a free G-CW -complex of finite type. Denote its (reduced) n-th

L2-homology and n-th L2-Betti number by the corresponding notions of the

cellular L2-chain complexes

H(2)
n (X;N (G)) := H(2)

n (C(2)
∗ (X)) ,

β(2)
n (X;N (G)) := β(2)

n (C(2)
∗ (X)) .

Remark 1.5.6.

The i-th L2-homology module H
(2)
i (X,N (G)) is given as the kernel of the

Laplacian ∆
(2)
i :

H
(2)
i (X,N (G)) = ker(∆

(2)
i ) := ker(δ

(2)
i+1δ

(2)∗
i+1 + δ

(2)∗
i δ

(2)
i )

Hence examining L2-Betti is equivalent to studying the kernels of certain

positive operators.

Theorem 1.5.7. (Some properties of L2-Betti numbers)

• Homotopy invariance: Let f : X → Y be a G-map of free G-CW -

complexes of finite type. If the map induced on homology with complex

coefficients Hn(f ;C) : Hn(X;C) → Hn(Y ;C) is bijective for n ≤ d ,

then

β(2)
n (X) = β(2)

n (Y ) for n < d .

In particular, if f is a weak homotopy equivalence (i.e. induces a

bijection on πn for all base points and n ≥ 0) , we get for all p ≥ 0

β(2)
n (X) = β(2)

n (Y ) .

• Euler-Poincaré formula: Let X be a free finite G-CW -complex. Let

χ(G\X) be the Euler characteristic of the finite CW -complex G\X ,

i.e.

χ(G\X) :=
∑
n≥0

(−1)nβn(G\X) ,

where βn(G\X) is the number of n-cells of G\X. Then

χ(G\X) =
∑
n≥0

(−1)nβ(2)
n (X) .
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• Poincaré duality: Let M be a cocompact (i.e. M/G is compact) free

proper G-manifold of dimension d which is orientable. Then

β(2)
n (M) = β

(2)
d−n(M,∂M) .

• Restriction: Let X be a free G-CW -complex of finite type and let

H < G be a subgroup of finite index [G : H] . Let resHG (X)be the H-

space obtained from X restricting the G-action to an H-action. This

is a free H-CW -complex of finite type. Then we get for n ≥ 0

[G : H] · β(2)
n (X;N (G)) = β(2)

n (resGH(X);N (H)) .

• Induction: Let H be a subgroup of G and let X be a free H-CW -

complex of finite type. Then G ×H X is a G-CW -complex of finite

type and

β(2)
n (G×H X;N (G)) = β(2)

n (X;N (H)) .

Proof.

See [19] page 37, theorem 1.35 .

1.6 Approximation of L2-Betti numbers

In this section we give a brief overview on W. Lücks approach on approx-

imating L2-Betti numbers in the case G is a residually finite Group. His

result was generalized in many steps to sofic groups and algebraic coeffi-

cients, but the key ideas were always reused. In the next chapter we will

look at approximation of center-valued Betti numbers, we will then adapt

the ideas shown here to our new situation. This section is taken from [17]

and [25] .

Situation 1.6.1.

Assume the following situation:

• Let X be a finite connected CW -complex with fundamental group G .

Let p : X̃ → X be the universal covering. We let G operate from the

left on the universal covering and on its cellular chain complex.



1.6 Approximation of L2-Betti numbers 21

• Let G be a countable residually finite group, with

· · · ⊂ Gm+1 ⊂ Gm ⊂ . . . G1 ⊂ G

a nested sequence of normal subgroups with finite index and
⋂∞
m=0Gi =

{1} .

• Let Xi be the finite subcover corresponding to quotient G/Gi (i.e with

decktransformation group G/Gi) .

Theorem 1.6.2.

In the situation just described we have

lim
i→∞

β
(2)
k (Xi) = β

(2)
k (X) .

Remark 1.6.3.

We recall some facts we use in the following:

• The k-th L2-homology module of X is given (independent from the

choice of base) as the kernel of ∆
(2)
k : ⊕ikn=1`

2(G)→ ⊕ikj=1`
2(G) , which

is a ZG-linear map.

• The projections pi : G→ G/Gi extend canonically to pi : Mk(ZG)→
Mk(Z(G/Gi)) . By applying pi to the Laplacian ∆

(2)
k we obtain the

Laplacian ∆
(2)
k,i of the finite subcover Xi .

• We have

β
(2)
k (X) = F

∆
(2)
k

(0) ,

where F
∆

(2)
k

(λ) denotes the spectral density function of ∆
(2)
k .

• Given ∆(2) and ∆
(2)
i , there is a common upper bound K < ∞ of

‖∆(2)‖ and all ‖∆(2)
i ‖ (this is given as a multiple of ‖∆(2)‖1 , see [17]

Lemma 2.5) .

• In our situation we have for all i , that the Fuglede-Kadison determi-

nant lndetGi
(∆

(2)
i ) is positive (see [25] Theorem 6.9) .

• In the above situation, given any polynomial p , we have

lim
i→∞

trCN (Gi)
(p(∆)i) = trCN (G)(∆) .

(This simply follows from the fact that there are only finitely many

coefficients in ∆ nonzero.)
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Notation 1.6.4.

Define for ∆(2) and ∆
(2)
i

• F∆(2)(λ) := lim supi F∆
(2)
i

(λ) (pointwise) ,

• F∆(2)(λ) := lim infi F∆
(2)
i

(λ) ,

• for monotone increasing F we define

F+(λ) := lim
ε→0+

F (λ+ ε)

the right-continuous approximation of F . In particular we defined F
+

and F+ .

We now give the core elements of Lück’s proof.

Lemma 1.6.5.

Let A be a finite von Neumann algebra with positive normal and normalized

trace trCA . Choose ∆ ∈ Md(A) positive and self-adjoint. Given K ∈ R+

and functions pn : R→ R , if for all 0 ≤ x ≤ K , we have

χ[0,λ](x) ≤ pn(x) ≤ 1

n
χ[0,K](x) + χ[0,λ+ 1

n
](x) (1.6.6)

and if ‖∆‖ ≤ K , then

F∆(λ) ≤ trCA(pn(∆)) ≤ d

n
+ F∆(λ+

1

n
) . (1.6.7)

Proof.

This is a direct consequence of the positivity of the trace and the definition

of the spectral-density-function .

Proposition 1.6.8.

For all λ ∈ R we have

F∆(λ) ≤ F∆(λ) ≤ F∆(λ)+

and

F∆(λ) = F∆(λ)+ = F∆(λ)+ .
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Proof.

Take λ ∈ R and∞ > K ≥ sup{‖∆‖, ‖∆i‖} , choose a polynomial pn ∈ R[X]

such, that (1.6.6) is satisfied for K .

F∆i
(λ) ≤ trCN (Gi)

(pn(∆i)) ≤
d

n
+ F∆i

(λ+
1

n
) .

Applying lim sup resp. lim inf provides

F∆(λ) ≤ trCN (G)(pn(∆)) ≤ d

n
+ F∆(λ+

1

n
) .

Further pn(∆) converges strongly to χ[0,λ](∆) and hence it converges also

weakly. Taking n → ∞ we obtain trCN (G)(pn(∆)) → trCN (G)(χ[0,λ](∆)) =

F∆(λ), and hence

F∆(λ) ≤ F∆(λ) ≤ F∆
+(λ).

For ε > 0 , it follows from the monotony of F∆ and F∆, that

F∆(λ) ≤ F∆(λ+ ε) ≤ F∆(λ+ ε) ≤ F∆(λ+ ε).

Taking limit ε→ 0+ provides

F∆(λ) = F∆(λ)+ = F∆(λ)+.

The following construction finishes the proof of Lück’s approximation The-

orem

Proof of Theorem 1.6.2.

Take K ≥ 0 so, that K > ‖∆i‖ for all i . Since lndetGi
(∆i) ≥ 0 we have

0 ≤ lndetGi
(∆i) = ln(K)(F∆i

(K)− F∆i
(0))−

∫ K

0+

F∆i
(λ)− F∆i

(0)

λ
dλ

since F∆i
(K) = d∫ K

0+

F∆i
(λ)− F∆i

(0)

λ
dλ ≤ ln(K)(d− F∆i

(0) ≤ ln(K)d.
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Take ε > 0∫ K

ε

F∆(λ)− F∆(0)

λ
dλ =

∫ K

ε

F∆
+(λ)− F∆(0)

λ
dλ =

∫ K

ε

F∆(λ)− F∆(0)

λ
dλ .

(Since the integrand is bounded, the integral over the left continuous ap-

proximation is equal to the integral over the original function.)

≤
∫ K

ε

F∆(λ)− F∆(0)

λ
dλ

=

∫ K

ε

lim infi F∆i
(λ)− lim supi F∆i

(0)

λ
dλ

≤
∫ K

ε

lim infi(F∆i
(λ)− F∆i

(0))

λ
dλ

≤ lim inf
i

∫ K

ε

F∆i
(λ)− F∆i

(0)

λ
dλ

≤d ln(K).

Since this holds for all ε > 0 we have∫ K

0+

F∆(λ)− F∆(0)

λ
dλ

≤
∫ K

0+

F∆(λ)− F∆(0)

λ
dλ

≤ sup
ε>0

lim inf
i

∫ K

ε

F∆i
(λ)− F∆i

(0)

λ
dλ ≤ d ln(K) .

If limδ→0 F∆(δ) 6= F∆(0), the second integral would be infinite. Hence from

prop. 1.6.8 follows lim supi F∆i
(0) = F∆(0). Since the above inequalities

hold, also if we pass to a subnet, we have lim infi F∆i
(0) = F∆(0).



Chapter 2

Approximation of

center-valued Betti-numbers

In this chapter we state and prove our first main result. It is an exten-

sion of Lück’s approximation theorem for L2-Betti-numbers to the finer

center-valued-Betti-numbers. The main advantage of center-valued-Betti-

numbers, is that they classify the homology up to isomorphisms. The new

technique which allows us to extend previous results, is to see delocalized

traces as perturbations of the regular trace. The results from this chapter

are published in [9] .

2.1 Notation

We first introduce some notations. Let G be a discrete group, we write

∆(G) for the set of elements g ∈ G with finite conjugacy class 〈g〉. The

center of a von Neumann-algebra A is denoted by Z(A) := A ∩ A′ . The

matrix ring Md(N (G)) is defined as Md(N (G)) := N (G)⊗CMd(C) and we

let these operators act on `2(G)d := `2(G)⊗ Cd .

Definition 2.1.1.

Let J be an index set. For A := (ai,j)i,j∈J with ai,j ∈ C , define

S(A) := sup
i∈J
|supp(zi)| ,

where zi is the vector zi := (ai,j)j∈J and supp(zi) := |{j ∈ J | ai,j 6= 0}| .
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Now let |A|∞ := supi,j |ai,j| and A∗ := (aj,i)i,j∈J . Define

κ(A) :=

{ √
S(A)S(A∗) · |A|∞ if S(A) + S(A∗) + |A|∞ <∞
∞ else

Elements of Md(CG) are identified with degenerated matrices, indexed by

J × J where J := {1, . . . , d} ×G . For more details we refer to [3] .

Definition 2.1.2.

Let G be a discrete group and take A ∈ Md(o(Q)G) positive (where o(Q)

denotes the algebraic integers), choose a finite Galois extension L ⊂ C of Q ,

such that A ∈Md(LG) . Let σ1, . . . , σr : L→ C be the different embeddings

of L in C with σ1 the natural inclusion L ⊂ C . If

lndet(A) ≥ −d
r∑

k=2

ln
(
κ(σk(A))

)
, (2.1.3)

we say A has the bounded determinant property. A discrete group G is

said to have the bounded determinant property, if all A ∈ Md(QG) satisfy

property (2.1.3).

Lemma 2.1.4.

Given A ∈ Md(CG) and let A[i] be as described in 2.2.1 , then there exists

an i0 ∈ I such that for all i ≥ i0 we have

‖A‖ ≤ κ(A) <∞ and (2.1.5)

‖A[i]‖ ≤ κ(A) . (2.1.6)

Proof.

This is proven in [3] lemmas 3.31 , 3.22 , 3.28 .

Definition 2.1.7.

Let U < G be a normal subgroup of G . We call G/U an amenable homoge-

nous space, and G an extension of U with amenable quotient, if we have a

G-invariant metric d : G/U × G/U → N such that sets of finite diameter

are finite and such that for all K > 0 and ε > 0 there exists some finite

subset ∅ 6= X ⊂ G/U with

|NK(X)| := |{x ∈ G/U ; d(x,X) ≤ K and d(x,G/U −X) ≤ K}| ≤ ε|K| .
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Remark 2.1.8.

In [25] this definition is made without the assumption that U is normal, but

the approximation result in [25] is only proved for this case. Since we adapt

the proof form [25] we also need the assumption that U is normal.

Lemma 2.1.9.

A nested sequence of finite subsets X1 ⊂ X2 ⊂ · · · ⊂ G/U is called Følner

exhaustion of G/U if
⋃
Xi = G/U and for all K > 0 and ε > 0 there exists

an i0 ∈ N such that for all i ≥ i0 we have

NK(Xi) ≤ ε|Xi| .

Every amenable homogenous space admits such an exhaustion.

Proof.

Compare for example Lemma 4.2 in [25] .

2.2 Main Result

Situation 2.2.1.

Let G be a discrete group that can be constructed out of groups satisfying

the bounded determinant property, in one of the following ways:

• U < G with ∆(G) ⊂ ∆(U) and G/U admits a G-invariant metric

making it an amenable homogenous space.

• If G is the direct or inverse limit of a directed system of groups Gi .

In [3] the bounded determinant property is proven for a large class G of

groups which is based on the above constructions. Most common examples

with this property are amenable groups and residually finite groups.

A bigger class of groups satisfying the determinant bound property are

sofic groups. A brief description about sofic groups and a proof for the

determinant bound property is done in the next section. For more details,

about sofic groups we refer to [5] where the slightly different semi-integral-

determinant property is proven for sofic groups.
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We now introduce a uniform notation for the three constructions. Let

A ∈Md(QG) , where Q denotes the field of algebraic numbers. The approx-

imating matrices denoted by A[i] will have different meanings depending on

how G is constructed. We have three cases.

1. The group G is the inverse limit of a directed system of groups Gi .

Define A[i] ∈ Md(QG) to be the image pi(A) of A under the nat-

ural map pi : G → Gi . In this case trCi , trui and tr
〈g〉
i will denote

trCN (Gi)
, truN (Gi)

and tr
〈g〉
N (Gi)

.

2. The group G is the direct limit of a directed system of groups Gi .

Denote by pi : Gi → G the corresponding maps.

In order to define the approximating matrices A[i] we need to make

some choices. Write A = (ak,l) with ak,l =
∑

g∈G λ
g
k,lg . Then, only

finitely many of the λgk,l are non-zero. Let V be the corresponding

finite collection of g ∈ G . Since G is a direct limit of Gi we can find

j0 ∈ I such that V ⊂ pj0(Gj0) . Choose an inverse image for each g

in Gj0 . This gives a matrix A[j0] ∈ Md(QGj0) which is mapped to

A[i] := pj0i(A[j0]) ∈ Md(QGi) for i > j0 . In this case, trCi , trui and

tr
〈g〉
i will denote trCN (Gi)

, truN (Gi)
and tr

〈g〉
N (Gi)

. Keep in mind that the

values of the traces can depend on the choices made to define A[i] .

3. The group G is an amenable extension of U with Følner exhaustion

X1 ⊂ X2 ⊂ · · · ⊂ G/U . Let Pi = pi⊗ idd with pi : `2(G)→ `2(G) the

projection on the closed subspace generated by the inverse image of

Xi in G . The image of Pi is isomorphic to `2(U)|Xi|d as N (U)-module.

We define A[i] := PiAPi considered as an operator on the image of

Pi .

With this definition, A[i] is no longer an element of Md(N (G)) but

can be seen as an element in Md|Xi|(N (U)) . In this case, trCi , trui and

tr
〈g〉
i denote the following

tr
(·)
i (A[i]) :=

1

|Xi|
tr

(·)
Md|Xi|(N (U))(A[i]) .

Throughout the rest of the paper, Gi will denote the obvious groups in the

limit cases (1) and (2). In the amenable case we take Gi = U constantly.

We use trCi , trui to define FA[i] and F u
A[i] .
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Betti-numbers are given as the dimension of the kernel of the Laplacian

∆p. Since the value of the spectral density functions at zero is exactly the

dimension of the kernel, we can state our approximation theorem as follows.

Theorem 2.2.2.

Let A ∈ Md(QG) and g ∈ ∆(G) . Then, for any ε > 0 and any choice of

matrices A[i] , there exists an i0 ∈ I such that for all i ≥ i0 ,

|〈F u
A(0) · δe, δg〉 − 〈F u

A[i](0) · δ[ei], δ[gi]〉| < ε .

where we denote by δ[gi] the unit vector corresponding to

• the group element pi(g) ∈ Gi , in the inverse limit case (1) of (2.2.1) ,

• a chosen preimage of g ∈ Gi , according to the choices made to define

A[i] in the direct limit case (2) of (2.2.1) ,

• g ∈ ∆(G) in the amenable case (3) of (2.2.1). Without the assumption

that ∆(G) ⊂ ∆(U) approximation is still possible but then only for

g ∈ ∆(U) .

Remark 2.2.3.

The original approximation theorem (Theorem 3.12 in [3]) is contained in

the above result if we set g = e .

Examples 2.2.4.

As a direct consequence, one can use the center-valued approximation the-

orem to show the vanishing of βu for a closed manifold X with fundamental

group π1 in certain cases. One has

1. βu0 (X̃) = β2
0(X̃)e , for residually finite π1 and

2. βup (X̃) = β2
p(X̃)e, for all p ∈ N , if π1 is free abelian .

This follows directly using [16] (example 8 and proposition 2) .
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2.3 Bounded Determinant for Sofic Groups

In this section we describe the method of G. Elek and E. Szabó in [5] to show

that sofic groups have the semi-integral-determinant property and show how

we can use this to prove that they also have the determinant bound property.

We use a general method that can be used to show that the semi-integral

determinant property implies that determinant bound property if we have

approximations with matrices over finite groups.

Definition 2.3.1. (Semi-integral-determinant property)

A group G has the semi-integral-determinant property if for any matrix

A ∈Md(ZG)+ we have

lndet(A) ≥ 0 .

Definition 2.3.2. (Sofic group)

Let G be a finitely generated group and S ⊂ G be a finite set of gen-

erators. Then the group G is called sofic, if there is a sequence of finite

directed graphs {Vn, En}n≥1 edge-labeled by S and subsets V0 ⊂ Vn with

the following property:

For any δ > 0 and r ∈ N , there is an integer nr,δ such that if m ≥ nr,δ > 0

and B(G,S)(r) denotes the r-ball in the Cayley-graph , then

• For each v ∈ V 0
m , there is a map ψ : B(G,S)(r) → Vm , which is an

isomorphism (of labeled graphs) between B(G,S)(r) and the r-ball in

Vm around v ,

• |V 0
m| ≥ (1− δ)|Vm| .

Remark 2.3.3.

This definition for sofic groups is equivalent to the more common description

using maps ψn : G→ Sn and looking at the fixed-point-sets.

Further sofic groups are characterized by the following. A group is sofic if

and only if every finitely generated subgroup is sofic.

Theorem 2.3.4.

Sofic groups have the determinant bound property (Def. 2.1.2) .
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Let G be sofic and A = (ai,j)1≤i,j≤d ∈ Md(o(Q)G) be a positive operator.

Consider the operator kernel of A , that is the function KA : G × G →
Md(o(Q)) such that for f : G→ `2(G)d we have

Af(x) =
∑
y∈G

KA(x, y)f(y) .

This just means KA(x, y) = Ag if x = gy and A =
∑

g∈GAgg , Ag ∈
(agi,j)1≤i,j≤d ∈ Mdo(Q) . There is a constant ωA , the width of A such that

KA(x, y) = 0 if d(x, y) > ωA in the word metric of G with respect to the

generating system S .

The approximating kernel is constructed as follows. For m > n(ωA,
1
2

) , define

Km
A : Vm × Vm → Md(o(Q)) , let Km

A (x, y) = 0 if y /∈ V 0
m and Km

A (x, y) =

Km
A (g, e) if y ∈ V 0

m , x = ψy(g) .

Lemma 2.3.5.

Let G be a sofic group, A ∈Md(o(Q)G) a positive operator. Denote by Am
the bounded linear transformations on `2(Vm)d defined by the kernel func-

tions Km
A and denote with det∗(Km

A ) the product of the non-zero eigenvalues

of Km
A .

lim
m→∞

ln(det∗(A))

|Vm|
= lndet(A)

Proof.

This is proven in [5] Lemma (6.1) .

G. Elek and E. Szabó prove the semi-integral-determinant property (The-

orem 6 in [5]) by using that the product of the positive eigenvalues of the

Am are integers and hence by applying the lemma the claim follows. Given

A ∈ Md(o(Q)G) , choose a finite Galois extension Q ⊂ L ⊂ C such that

A ∈ Md(LG) . Let σi=1,... ,n : L ↪→ C be the different embeddings of L in C
and denote with σ1 the natural inclusion. We set Ã :=

⊕d
i=1 σi(A) . For Ã

Lemma 2.3.5 obviously still holds. The product of the non-zero eigenvalues

of Ãm is the lowest non-zero coefficient c of the characteristic polynomial.

Since o(Q) is a ring, c ∈ o(Q) and c is stable under all σi , hence c is in Q
and also is an algebraic integer. This implies c ∈ Z .

Lemma 2.3.6.

If A and B are positive injective operators in Md(CG) and A ≤ B we have

lndet(A) ≤ lndet(B)
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Proof.

This is proven in [19] , Lemma 3.15 .

Lemma 2.3.7.

Let A be a positive operator in Md(CG) and let A⊥ : ker(A)⊥ → Im(A) be

the weak isomorphism obtained by restricting A to ker(A)⊥ . Then

lndet(
√

(A⊥)∗A⊥) = lndet(A) .

Proof.

This is also proven in [19] , Lemma 3.15 .

We have
√

(A⊥)∗A⊥ ≤ ‖A‖ id ≤ κ(A) id. By applying Lemma 2.3.6 ,

Lemma 2.3.7 and Lemma 2.3.5 we get

0 ≤ lndet(Ã) = d
n∑
i=1

lndetσi(A)

=⇒− d
n∑
i=2

lnκ(σi(A)) ≤ −
n∑
i=2

lndetσi(A) ≤ lndet(A) .

This proves Theorem 2.3.4 .

2.4 Some Key Lemmas

The Fourier coefficients of F u
A(0) are given by

〈F u
A(0) · δe, δg〉 =

{
1
|〈g〉| tr

〈g〉
N (G)(pr| ker(A)) if g ∈ ∆(G)

0 otherwise.

This can be easily seen using Dixmier’s approximation theorem (see e.g.

[8]). In the rest of the paper g is always taken in ∆(G) .

The proof of the C-valued approximation theorem in [3] is based on the

following three major facts.

1. ‖A‖ and ‖A[i]‖ have an upper bound,

2. trCN (G) is positive,
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3. the Fuglede-Kadison determinant lndet(A) has a lower bound.

For the center-valued approximation theorem that we prove in this paper,

fact (1) is obviously still valid. The facts (2) and (3) of course do not

apply to our situation, since they involve the C-valued trace trCN (G) , but the

main ideas of Lück’s method work in general for any positive functional if in

addition the Fuglede-Kadison determinant derived from it has a lower bound

for A and all approximating A[i] . In Definition 2.4.2, we define traces which

are derived from delocalized traces and are positive. Using these traces we

also define deviated Fuglede-Kadison determinants and prove the existence

of a lower bound. Using our method, it would also be possible to directly

approximate the Fourier coefficients of the projections on the homology.

These coefficients depend on the choice of the basis, hence we do not see

any application for this general approximation and restrict to functionals

derived from delocalized traces.

A key ingredient of our method is the following simple lemma.

Lemma 2.4.1.

If a ∈ N (G) is a positive element, then for all g ∈ G we have

〈a · δe, δe〉 ≥ |〈a · δg, δe〉|

Proof.

a = b∗b then, using Cauchy-Schwarz inequality we get

〈a · δe, δe〉 = ‖b · δe‖ · ‖b · δe‖ = ‖b · δe‖ · ‖b · δg‖ ≥ |〈b · δe, b · δg〉| = |〈a · δg, δe〉|

Definition 2.4.2. (Perturbated traces)

Take A ∈Md(N (G)) and g ∈ ∆(G)− {e} , define

Tr
〈g〉,Re
N (G) (A) := trCN (G)(A) +

1

2|〈g〉|

(
tr
〈g〉
N (G)(A) + tr

〈g−1〉
N (G)(A)

)
, (2.4.3)

Tr
〈g〉,Im
N (G) (A) := trCN (G)(A) +

1

2i|〈g〉|

(
tr
〈g〉
N (G)(A)− tr

〈g−1〉
N (G)(A)

)
. (2.4.4)

It follows from Lemma 2.4.1 that both traces are positive. The next lemma

shows that for a selfadjoint A ∈Md(N (G)) we have

〈F u
A(0) · δe, δg〉 =

1

|〈g〉|
tr
〈g〉
N (G)(A)

= Tr
〈g〉,Re
N (G) (A) + iTr

〈g〉,Im
N (G) (A)− trCN (G)(A)− i trCN (G)(A) .
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This is one of the main tricks in our paper. We prove the approximation

theorem for Tr
〈g〉,Re
N (G) and Tr

〈g〉,Im
N (G) . Then we finally prove Theorem 2.2.2

by applying this approximation and the classical approximation theorem

(Theorem 3.12 in [3]) to the above equation.

Lemma 2.4.5.

For all g ∈ ∆(G) and selfadjoint A ∈Md(N (G)) , the traces Tr
〈g〉,Re
N (G) (A) and

Tr
〈g〉,Im
N (G) (A) are given by the following real numbers

Tr
〈g〉,Re
N (G) (A) = trCN (G)(A) + Re

( 1

|〈g〉|
tr
〈g〉
N (G)(A)

)
,

Tr
〈g〉,Im
N (G) (A) = trCN (G)(A) + Im

( 1

|〈g〉|
tr
〈g〉
N (G)(A)

)
.

Proof.

Since the trace on Md(N (G)) is just a summation of traces on N (G) it is

sufficient to treat the case d = 1 . Write A =
∑

h∈G λhh ∈ N (G) . We have

〈g〉−1 = 〈g−1〉 and selfadjointness of A yields λh = λh−1 . Hence

tr
〈g〉
N (G)(A) = tr

〈g−1〉
N (G)(A) .

2.5 Lower Bound for Determinants

Definition 2.5.1.

Take a positive operator A ∈ Md(N (G)) and denote by {EA
λ := χ[0,λ](A) |

λ ∈ R+
0 } the spectral family of A . Then define the following spectral density

functions:

FA(λ) := trCN (G)(E
A
λ ) ,

F
〈g〉,Re
A (λ) := Tr

〈g〉,Re
N (G) (EA

λ ) ,

F
〈g〉,Im
A (λ) := Tr

〈g〉,Im
N (G) (EA

λ ) .

For positive A ∈Md(N (G)) , the spectral density functions FA , F
〈g〉,Re
A and

F
〈g〉,Im
A are monotonically increasing and induce Riemann-Stieltjes measures

dFA(λ) , dF
〈g〉,Re
A (λ) and dF

〈g〉,Im
A (λ) , allowing us to define the following

(deviations of the) Fuglede-Kadison determinant.
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Definition 2.5.2.

Take A ∈Md(N (G)) positive and define

lndet(A) :=

∫ ∞
0+

ln(λ)dFA(λ) ,

lndet〈g〉,Re(A) :=

∫ ∞
0+

ln(λ)dF
〈g〉,Re
A (λ) ,

lndet〈g〉,Im(A) :=

∫ ∞
0+

ln(λ)dF
〈g〉,Im
A (λ) .

In order to prove Theorem 2.2.2 we need lower bounds for the deviated

Fuglede-Kadison determinants lndet〈g〉,Re(A) and lndet〈g〉,Re(A) . We obtain

it using the fact that the perturbation caused by the delocalized trace is

controlled by the standard trace.

Lemma 2.5.3.

Let G be a group that satisfies the determinant bound property and is con-

structed as described in 2.2.1 . Take A ∈ Md

(
o(Q)G

)
positive (where o(Q)

denotes the algebraic integers), choose a finite Galois extension L ⊂ C of Q ,

such that A ∈Md(LG) . Let σ1, . . . , σr : L→ C be the different embeddings

of L in C with σ1 the natural inclusion σ1 : L ⊂ C . Then

lndet〈g〉,Re(A) ≥ −2d
∣∣ r∑
k=2

ln
(
κ(σk(A))

)∣∣− 2d ln
(

max
(
1, κ(A)

))
,

lndet〈g〉,Im(A) ≥ −2d
∣∣ r∑
k=2

ln
(
κ(σk(A))

)∣∣− 2d ln
(

max
(
1, κ(A)

))
.

Proof.

We prove the lemma only for lndet〈g〉,Re , the case lndet〈g〉,Im being identical.

Using Lemmas 2.4.1 and 2.4.5 we get for any B ∈ N (G)

trCN (G)(B) ≥ 1

|〈g〉|
|Re

(
tr
〈g〉
N (G)(B)

)
| . (2.5.4)

Define the function f
〈g〉,Re
A (λ) := 1

|〈g〉| Re
(
tr
〈g〉
N (G)(E

A
λ )
)

. For a ≤ b ∈ R+
0 ,

inequality (2.5.4) yields

FA(b)− FA(a)︸ ︷︷ ︸
=trCN (G)

(χ(a,b](A))

≥ | f 〈g〉,Re
A (b)− f 〈g〉,Re

A (a)︸ ︷︷ ︸
=Re
(

1
|〈g〉| tr

〈g〉
N (G)

(χ(a,b](A))
) | .
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The Riemann-Stieltjes measure induced by FA(λ) dominates in absolute

values the (possibly signed) measure induced by fA(λ) . Hence, we have

lndet〈g〉,Re(A) =

∫ ∞
0+

ln(λ)dF
〈g〉,Re
A (λ)

=

∫ 1

0+
ln(λ)dF

〈g〉,Re
A (λ) +

∫ ∞
1

ln(λ)dF
〈g〉,Re
A (λ)

=

∫ 1

0+
ln(λ)dFA(λ) +

∫ 1

0+
ln(λ)df

〈g〉,Re
A (λ)

+

∫ ∞
1

ln(λ)dFA(λ) +

∫ ∞
1

ln(λ)df
〈g〉,Re
A (λ)

≥−
∣∣ ∫ 1

0+
ln(λ)dFA(λ)

∣∣− ∣∣ ∫ 1

0+
ln(λ)df

〈g〉,Re
A (λ)

∣∣
−
∣∣ ∫ ∞

1

ln(λ)dFA(λ)
∣∣− ∣∣ ∫ ∞

1

ln(λ)df
〈g〉,Re
A (λ)

∣∣
≥− 2

∣∣ ∫ 1

0+
ln(λ)dFA(λ)

∣∣− 2
∣∣ ∫ ∞

1

ln(λ)dFA(λ)
∣∣

≥− 2d
∣∣ r∑
k=2

ln
(
κ(σk(A))

)∣∣− 2d ln
(

max
(
1, κ(A)

))
.

2.6 Convergence of the Trace

In this section we basically use the ideas from [3] and [25] to prove the

following equalities, for all G constructed as described in Situation 2.2.1 ,

g ∈ ∆(G) , A ∈Md(CG) and every polynomial p ∈ C[x] :

lim
i→∞

Tr
〈g〉,Re
i (p(A[i])) = Tr

〈g〉,Re
N (G) (p(A)) , (2.6.1)

lim
i→∞

Tr
〈g〉,Im
i (p(A[i])) = Tr

〈g〉,Im
N (G) (p(A)) . (2.6.2)

The traces Tri depend on the construction of G . We deal with the limit

cases (1) and (2) of 2.2.1 first.



2.6 Convergence of the Trace 37

Lemma 2.6.3.

Take A ∈ Md(CG) , p ∈ C[x] and g ∈ ∆(G) . If G is the direct or inverse

limit of groups (Gi)i∈I then there is an i0 ∈ I such that for all i ≥ i0 :

Tr
〈g〉,Re
i (p(A[i])) = Tr

〈g〉,Re
N (G) (p(A)) ,

Tr
〈g〉,Im
i (p(A[i])) = Tr

〈g〉,Im
N (G) (p(A)) .

Proof.

The proof follows directly from the fact that the support

supp(p(A)) :=
{
λk,lg 6= 0 | 1 ≤ k, l ≤ d , (p(A))k,l =

∑
g∈G

λk,lg g
}

of p(A) ∈ Md(CG) is finite. Since G is an inverse or direct limit, choosing

i0 big enough, we have, for all i ≥ i0:

supp(p(A[i])) = supp(p(A)) .

As a consequence, the traces coincide.

To prove (2.6.1) and (2.6.2) in the amenable case (3) of 2.2.1, we adapt

ideas from [25] (Lemma 4.6) to our situation.

Lemma 2.6.4.

Let G be an amenable extension of U with Følner exhaustion X1 ⊂ X2 ⊂
· · · ⊂ G/U . Then, for all g ∈ ∆(U) , A ∈ Md(CG) and every polynomial

p ∈ C[x] we have

lim
i→∞

Tr
〈g〉,Re
i (p(A[i])) = Tr

〈g〉,Re
N (G) (p(A)) ,

lim
i→∞

Tr
〈g〉,Im
i (p(A[i])) = Tr

〈g〉,Im
N (G) (p(A)) .

Proof.

Again we only treat the case Tr
〈g〉,Re
N (G) and assume d = 1 , since the general

case follows by summing up the traces. Let A ∈ N (G) and denote A[i] :=

PiAP
∗
i , as described in 2.2.1 . By linearity of the trace, it also suffices to

treat the case where p is a monomial. Pull back the metric on G/U in order

to get a semi-metric on G . Denote the inverse image of Xi by X ′i . For

g ∈ X ′i and h ∈ U we have Pi(h · δg) = h · δg . Selfadjointness of Pi implies
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for g ∈ X ′i and h ∈ U , that 〈(PiAPi)nδg, h · δg〉 = 〈APiAPi . . . PiAδg, h · δg〉
and we have the following telescope sum:

APiA · · ·PiA = An − A(1− Pi)An−1 · · · − APi · · ·A(1− Pi)A . (2.6.5)

We now compute for s ∈ ∆(U) ,∣∣∣Tr
〈s〉,Re
N (G) (An)− Tr

〈s〉,Re
i (A[i]n)

∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
〈Anδe, δe〉+

1

2|〈s〉|
∑

h∈〈s〉∪〈s−1〉

〈Anδe, h · δe〉

− 1

|Xi|
∑

[g]∈Xi

(
〈Anδg, δg〉 −

1

2|〈s〉|
∑

h∈〈s〉∪〈s−1〉

〈A[i]nδg, h · δg〉
)
∣∣∣∣∣∣∣∣∣∣

≤ 1

|Xi|
∑

[g]∈Xi

∣∣∣∣∣∣∣∣∣∣
〈Anδg, δg〉+

1

2|〈s〉|
∑

h∈〈s〉∪〈s−1〉

〈Anδg, h · δg〉

− 〈Anδg, δg〉 −
1

2|〈s〉|
∑

h∈〈s〉∪〈s−1〉

〈A[i]nδg, h · δg〉

∣∣∣∣∣∣∣∣∣∣
=

1

|Xi|
∑

[g]∈Xi

∣∣∣∣∣∣∣∣
(
〈Anδg, δg〉 − 〈Anδg, δg〉

)
+

1

2|〈s〉|
∑

h∈〈s〉∪〈s−1〉

(
〈Anδg, h · δg〉 − 〈A[i]nδg, h · δg〉

)
∣∣∣∣∣∣∣∣ .

Using (2.6.5) and applying Cauchy-Schwartz inequality, we get∣∣∣Tr
〈g〉,Re
N (G) (An)− Tr

〈g〉,Re
i (A[i]n)

∣∣∣
≤ 1

|Xi|

n−1∑
j=1

∑
[g]∈Xi

∣∣∣∣∣∣∣
〈(1− Pi)Ajδg, (A∗Pi)n−jδg〉

+
1

2|〈s〉|
∑

h∈〈s〉∪〈s−1〉

〈(1− Pi)Ajδg, (A∗Pi)n−jh · δg〉

∣∣∣∣∣∣∣
≤ 1

|Xi|

n−1∑
j=1

∑
[g]∈Xi/U

 ‖(1− Pi)A
jδg‖ · ‖A∗‖n−j

+
1

2|〈s〉|
∑

h∈〈s〉∪〈s−1〉

‖(1− Pi)Ajδg‖ · ‖A∗‖n−j


≤ 2

|Xi|

n−1∑
j=1

∑
[g]∈Xi

‖(1− Pi)Ajδg)‖ · ‖A∗‖n−j .

Define for i ∈ N

Ti :=
{
g ∈ G | λk,l[i],g 6= 0 where (A[i])k,l :=

∑
g∈G

λk,l[i],gg and 1 ≤ k, l ≤ d
}
.
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Then the set T :=
∞⋃
i=1

Ti is a finite subset of G . Hence if we take R ∈ N big

enough and let BR(g) be the ball with radius R around g , we have

(1− PBR(g))A
jδg = 0 .

The integer R is independent of g , since the semi-metric is G-invariant.

Now if BR(g) ⊂ X ′i , which means [g] ∈ Xi−NR(Xi) (see Definition 2.1.7) ,

we have Im(PBR
) ⊂ Im(Pi) and hence

(1− Pi)Ajδg = 0 .

Now we have∣∣∣Tr
〈s〉,Re
N (G) (An)− Tr

〈s〉,Re
i (A[i]n)

∣∣∣ ≤ 2

|Xi|

n−1∑
j=1

∑
[g]∈Xi

‖(1− Pi)Ajδg‖ · ‖A∗‖n−j

=
2

|Xi|

n−1∑
j=1

∑
[g]∈NR(Xi)

‖(1− Pi)Ajδg‖ · ‖A∗‖n−j

≤ 2 · |NR(Xi)|
|Xi|

n−1∑
j=1

‖(1− Pi)Aj‖ · ‖A∗‖n−j

≤ |NR(Xi)|
|Xi|

2n max
j=1,...,n

{‖A‖j · ‖A∗‖n−j}︸ ︷︷ ︸
cn

.

The quantity cn is independent of i and Lemma 2.1.9 shows that

lim
i→∞

|NR(Xi)|
|Xi|

= 0 ;

hence the claim follows.

2.7 Finalization of the Proof

Now we are finally ready to prove our theorem. The main idea in this

section is to use the lower bound of the Fuglede-Kadison determinant and

is due to W. Lück in [17] .
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Define for the spectral density functions F
〈g〉,Re
A and F

〈g〉,Im
A :

F
(·)
A (λ) := lim sup

i→∞
(F

(·)
A[i])(λ) ,

F
(·)
A (λ) := lim inf

i→∞
(F

(·)
A[i])(λ) ,

and denote their right-continuous approximations by

F
(·),+
A (λ) := lim

ε→0+
(F

(·)
A )(λ+ ε) ,

F
(·),+
A (λ) := lim

ε→0+
(F

(·)
A )(λ+ ε) .

Theorem 2.7.1.

Let g ∈ ∆(G) and A ∈Md(QG) . Then

F
〈g〉,Re
A (0) = lim

i→∞
F
〈g〉,Re
A[i] (0) ,

F
〈g〉,Im
A (0) = lim

i→∞
F
〈g〉,Im
A[i] (0) .

Proof.

We only prove F
〈g〉,Re
A (0) = limi→∞ F

〈g〉,Re
A[i] (0) . The other case can be done

identically.

Fix λ ≥ 0 and take a sequence Pn of polynomials converging pointwise to

χ[0,λ] , such that for 0 ≤ x ≤ κ(A)

χ[0,λ](x) ≤Pn(x) ≤ χ[0,λ+ 1
n

](x) +
1

n
χ[0,κ(A)](x) .

Applying functional calculus preserves the inequality and since for all i ∈ I
we have ‖A[i]‖ ≤ κ(A) we get

E
A[i]
λ ≤Pn(A[i]) ≤ E

A[i]

λ+ 1
n

+
1

n
id .

Then we apply the positive and hence order preserving trace Tr
〈g〉,Re
N (Gi)

and

use the fact that Tr
〈g〉,Re
N (Gi)

(id) ≤ 2 trCN (G)(id) = 2d . We get for all i ∈ I

F
〈g〉,Re
A[i] (λ) ≤Tr

〈g〉,Re
N (Gi)

(Pn(A[i])) ≤ F
〈g〉,Re
A[i] (λ+

1

n
) +

2d

n
.
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Taking lim sup on the left side and lim inf on the right side leads to:

F
〈g〉,Re

A (λ) ≤Tr
〈g〉,Re
N (G) (Pn(A)) ≤ F

〈g〉,Re
A (λ+

1

n
) +

2d

n
.

The sequence Pn(A) converges strongly in a norm bounded set, hence it

converges already in the ultra-strong topology. Taking n → ∞ and using

normality of Tr
〈g〉,Re
N (Gi)

yields:

F
〈g〉,Re

A (λ) ≤F 〈g〉,Re
A (λ) ≤ F

〈g〉,Re,+
A (λ) . (2.7.2)

Setting λ = 0 gives us the first half of the proof:

lim sup
i∈I

F
〈g〉,Re
A[i] (0) ≤F 〈g〉,Re

A (0) .

We now prove that F
〈g〉,Re
A (0) ≤ lim infi∈I F

〈g〉,Re
A[i] (0) , which finishes the

proof. We first pass from I to a subnet J ⊂ I , such that

lim sup
i∈J

F
〈g〉,Re
A (0) = lim inf

i∈I
F
〈g〉,Re
A (0)

. Equation (2.7.2) still holds and we keep our notation F
(·)
, F (·) but using

J instead of I . Moreover we need the Fatou lemma and the fact that the

(deviated) Fuglede-Kadison determinant is bounded. For this we restrict

to the case A ∈ Md(QG) to the case Md(o(Q)G) , since Lemma 2.5.3 only

holds for A ∈ Md(o(Q)G) . But every algebraic number z can be written

as a quotient y/k with y ∈ o(Q) and k ∈ N . We then work with sA ∈
Md(o(Q)G) instead of A ∈ Md(QG), where s is an appropriate integer. Of

course this does not change the kernel and we do not lose any generality.

Recall that κ(A) ≥ ‖A‖, ‖A[i]‖ . Using partial integration, we get

lndet〈g〉,Re(A) = ln(κ(A))(F
〈g〉,Re
A (λ)− F 〈g〉,Re

A (0))

−
∫ κ(A)

0+

F
〈g〉,Re
A (λ)− F 〈g〉,Re

A (0)

λ
dλ

Lemma 2.5.3 yields a C ∈ R , independent of i ∈ I , such that lndet〈g〉,Re(A[i]) ≥
C and since F

〈g〉,Re
A[i] (λ) ≤ Tr

〈g〉,Re
N (Gi)

(id) ≤ 2d , it follows that∫ κ(A)

0+

F
〈g〉,Re
A[i] (λ)− F 〈g〉,Re

A[i] (0)

λ
dλ ≤ ln(κ(A))(F

〈g〉,Re
A[i] (λ)− F 〈g〉,Re

A[i] (0))

≤ 2d · ln(κ(A))− C .
(2.7.3)
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Moreover for ε ≥ 0 we get∣∣∣∣∣
∫ κ(A)

ε

F
〈g〉,Re,+
A (λ)− F 〈g〉,Re

A (0)

λ
dλ−

∫ κ(A)

ε

F
〈g〉,Re
A (λ)− F 〈g〉,Re

A (0)

λ
dλ

∣∣∣∣∣
= lim

n→∞

∣∣∣∣∣
∫ κ(A)

ε

F
〈g〉,Re
A (λ+ 1

n
)− F 〈g〉,Re

A (0)

λ
dλ−

∫ κ(A)

ε

F
〈g〉,Re
A (λ)− F 〈g〉,Re

A (0)

λ
dλ

∣∣∣∣∣
= lim

n→∞

∣∣∣∣∣
∫ κ(A)+ 1

n

ε+ 1
n

F
〈g〉,Re
A (λ)− F 〈g〉,Re

A (0)

λ
dλ−

∫ κ(A)

ε

F
〈g〉,Re
A (λ)− F 〈g〉,Re

A (0)

λ
dλ

∣∣∣∣∣
= lim

n→∞

∣∣∣∣∣
∫ κ(A)+ 1

n

κ(A)

F
〈g〉,Re
A (λ)− F 〈g〉,Re

A (0)

λ
dλ−

∫ ε+ 1
n

ε

F
〈g〉,Re
A (λ)− F 〈g〉,Re

A (0)

λ
dλ

∣∣∣∣∣
≤ lim

n→∞

(
F
〈g〉,Re
A (κ(A))− F 〈g〉,Re

A (0)

nε
− F

〈g〉,Re
A (κ(A))− F 〈g〉,Re

A (0)

nκ(A)

)
= 0 .

Since this holds for every ε > 0 we can now use equation (2.7.3) to finish

the proof∫ κ(A)

0+

F
〈g〉,Re
A (λ)− F 〈g〉,Re

A (0)

λ
dλ ≤

∫ κ(A)

0+

F
〈g〉,Re,+
A (λ)− F 〈g〉,Re

A (0)

λ
dλ

=

∫ κ(A)

0+

F
〈g〉,Re
A (λ)− F 〈g〉,Re

A (0)

λ
dλ

≤
(∗)

∫ κ(A)

0+

F
〈g〉,Re
A (λ)− F 〈g〉,Re

A (0)

λ
dλ

≤
∫ κ(A)

0+

lim infi∈J

(
F
〈g〉,Re
A[i] (λ)− F 〈g〉,Re

A[i] (0)
)

λ
dλ

≤ lim inf
i∈J

∫ κ(A)

0+

F
〈g〉,Re
A[i] (λ)− F 〈g〉,Re

A[i] (0)

λ
dλ

≤2d ln(κ(A))− C .

From this follows that F
〈g〉,Re,+
A (0) = F

〈g〉,Re

A (0) , otherwise the third integral

(∗) would not be finite. So we have, using equation (2.7.2)

lim inf
i∈I

F
〈g〉,Re
A[i] (0) = lim sup

i∈J
F
〈g〉,Re
A[i] (0) = F

〈g〉,Re
A (0) ,

hence the second part is proven.



Chapter 3

The center-valued Atiyah

Conjecture

3.1 Representation Theory of Finite Groups

In this section we will recapitulate some results on representation theory

of finite groups, some of this will be used in the following sections. Rep-

resentation theory of finite groups is a well developed theory, for proofs or

further detail see for example [26] . In the following, let K be an algebraic

closed subfield of C and G a finite group.

Definition 3.1.1. (Representation of a finite group)

Let W ⊂ V be K vector spaces. A linear representation of G is a homo-

morphism

ρ : G→ GL(V ) .

Assume ρ(G)W = W , then we can obtain a representation

ρW : G→ GL(W )

from ρ . This is said to be a sub-representation of V .

Definition 3.1.2. (Irreducible representations)

Assume ρ : G → GL(V ) is a representation of G , and V has no nontrivial

subspaces invariant under G , then ρ is called an irreducible representation.

Theorem 3.1.3.

Every representation is the direct sum of irreducible representations.



44

Proof.

This is easily proved, using induction on the dimension of V . See for example

[26], theorem 2.

Definition 3.1.4. (Character)

Let ρ : G → GL(V ) be a representation of G and tr the standard trace on

GL(V ) , then

χρ := tr ◦ρ : G→ K

is called a character of G .

Proposition 3.1.5.

If χ is a character of a representation of degree n (i.e. dim(V ) = n) , then

1. χ(1) = n ,

2. χ(g−1) = χ(g) for g ∈ G ,

3. χ(tgt−1) = χ(g) for g, t ∈ G .

Proof.

Follows directly from the definition.

Remark 3.1.6.

Let G be a finite group, ρ a representation of degree n and χρ a character.

The possible values the characters can take are algebraic integers.

Proof.

Since g has finite order k , we have ρ(g)k = id. Hence the eigenvalues are

roots of unity of a degree dividing k .

Proposition 3.1.7.

Let ρ1 : G → GL(V1) and ρ2 : G → GL(V2) be two representations of G ,

and χ1 and χ2 their characters, then we have:

• the character of V1 ⊕ V2 is χ1 + χ2 ,

• the character of V1 ⊗ V2 is χ1 · χ2 .

Proposition 3.1.8. (Schur’s lemma)

Let ρ1 : G → GL(V1) and ρ2 : G → GL(V2) be two irreducible rep-

resentations of G , and let f be a linear map from V1 to V2 , such that

ρ2(s) ◦ f = f ◦ ρ1(s) for all s .
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1. If ρ1 and ρ2 are not isomorphic (i.e. it exists no isomorphism with

the above property) then f = 0 and

2. if ρ1
∼= ρ2, then f is a scalar multiple of idV .

Proof.

See for example [26] prop. 4 .

Definition 3.1.9. (Scalar product)

Let ψ and φ be complex valued functions on G . With

(ψ | φ) :=
1

|G|
∑
g∈G

ψ(g)φ(g)

we define a scalar product on Map(G;C) .

Theorem 3.1.10. (Orthogonality of characters)

1. If χ is the character of an irreducible representation we have (χ | χ) =

1 .

2. If χ and χ′ are characters of two non-isomorphic representations, then

(χ | χ′) = 0 .

Proof.

This follows from the matrix representation of the ρi . See for example [26]

theorem 3 .

Theorem 3.1.11.

Let H be the set of class functions on G (i.e. f(gh) = f(hg) for all g, h ∈
G). There are h non-isomorphic irreducible representations of G where

h is the number of conjugacy classes in G . The characters χ1, . . . χh of

irreducible representations form an orthogonal basis of H .

Proof.

See for example [26] theorem 6 and theorem 7 .

Proposition 3.1.12.

For K ⊂ C an algebraically closed subfield, K[G] is a product of matrix

algebras over K .
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Proof.

This is a direct consequence of the fact that K[G] is semi-simple, and the

structure theorem for semi-simple algebras. See for example [11] .

Proposition 3.1.13.

Let ρi : G→ GL(Wi) for 1 ≤ i ≤ h be the distinct irreducible representation

of degree ni . The ρi extend by linearity to a homomorphism

ρ̃i : K[G]→ End(Wi) .

The family (ρi) defines an isomorphism

ρ̃ : K[G]→
h∏
i=1

End(Wi) ∼=
h∏
i=1

Mni
(K) .

Proof.

First ρ̃ is surjective, since otherwise there would be a nonzero linear form

on
∏
Mni

(K) vanishing on the image of ρ̃ . But this contradicts the orthog-

onality properties of theorem 3.1.10 . Now K[G] and
∏
Mni

(K) both have

dimension |G| =
∑
n2
i , hence the claim follows.

Proposition 3.1.14. (Decomposition of the center)

If we restrict ρ̃i to the center Z(K[G]) of K[G] , we obtain an algebra homo-

morphism from Z(K[G]) to the algebra of scalar multiplies of the identity

on Wi . It defines a homomorphism

ωi : Z(K[G]) −→ K∑
s∈G

λss 7→
1

ni

∑
s∈G

λsχi(s) .

The family (ωi)1≤i≤h defines an isomorphism

ω : Z(K[G]) −→
h⊕
i=1

K .

Proof.

Assume c :=
∑

s∈G λss ∈ Z(K[G]) , we define

f : G −→ K
s 7→ λs .
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The function f is a class function on G . We have

ρ̃i(c) =
∑
s∈G

f(s)ρi(s) ∈ End(V ) .

We compute ρi(t
−1)ρ̃i(c)ρi(t) :

ρi(t
−1)ρ̃i(c)ρi(t) =

∑
s∈G

f(s)ρi(t
−1)ρi(s)ρi(t)

=
∑
s∈G

f(s)ρi(t
−1st)

=
∑
s∈G

f(tst−1)ρi(s)

=
∑
s∈G

f(s)ρi(s)

= ρ̃i(c) .

Now from Schur’s Lemma (lemma 3.1.8) follows that ρ̃i(c) is a multiple of

idWi
.

Corollary 3.1.15.

Define

pi :=
ni
|G|

∑
s∈G

χi(s
−1)s .

The pi with 1 ≤ i ≤ h , and h the number of conjugacy classes in G , form

a basis of Z(K[G]) , we further have p2
i = pi and pipj = 0 for i 6= j .

Proof.

The pi are the preimages of the standard unit vectors of
⊕h

i=1 K under ω .

Hence they form a basis. The orthogonality follows from the fact that ω is

ring-isomorphism.

Definition 3.1.16. (Induced representation)

Let H be a subgroup of G . Let θ : H → GL(W ) be a representation of H

and ρ : G → GL(V ) be a representation of G , with W ⊂ V . We say ρ is

induced by the representation θ , if θ = ρ|H and

V =
⊕

[σ]∈G/H

ρ(σ)W .

(This is well defined, since ρ(s)W = ρ(t)W for [s] = [t] ∈ G/H) .
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Theorem 3.1.17. (Existence of an induced representation)

Assume θ : H → GL(W ) is a representation of H ≤ G . Then there exists

a unique representation (up to isomorphism) ρ : G→ GL(V ) of G induced

by θ .

Proof.

See for example [26] theorem 12.

Proposition 3.1.18.

In order that V is induced by W , it is necessary and sufficient, that

V ∼= K[G]⊗K[H] W .

Proof.

This is a consequence of the fact, that a set of representatives of G/H forms

a basis of K[G] as K[H] module.

Theorem 3.1.19. (Character of an induced representation)

Let θ : H → GL(W ) be a representation of H ≤ G , and let ρ : G→ GL(V )

be the induced representation. Then for u ∈ G we have

χ(u) =
∑

[σ]∈G/H , σ−1uσ∈H

χθ(σ
−1uσ) =

1

|H|
∑

s∈G , s−1us∈H

χθ(s
−1us) .

Proof.

This is proven by direct calculation.

Theorem 3.1.20. (Frobenius reciprocity)

Let ψ be a class function on H and φ a class function on G . Denote by

ResGH(φ) the restriction of φ to H . Then

(ψ , ResGH(φ))H = (IndGH(ψ) , φ)G .

Proof.

See for example [26] theorem 13.

Remark 3.1.21.

If V is induced by W and if E is a K[G]-module, we have

1. HomH(W,E) ∼= HomG(V,E) ,
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2. dim(HomH(W,ResGH(E))) = dim(HomG(IndGH(W ), E)) ,

3. IndGH(ψResGH(φ)) = IndGH(ψ)φ .

4. Further induction is transitive: Assume H ≤ G ≤ S , then

IndSG(IndGH(W )) ∼= IndSH(W ) .

Proposition 3.1.22.

Let H,K be subgroups of G . Denote by Hs := sHs−1 ∩K and set

ρs(x) := ρ(s−1xs) , for x ∈ Hs .

We obtain a representation of Hs , denoted Ws . We have

ResGK(IndGH(W )) ∼=
⊕

[s]∈K\G/H

IndKHs
(Ws) .

Proposition 3.1.23. (Mackey’s irreducibility criterion)

We apply the preceding result to the case K = H . For s ∈ G we still denote

by Hs the subgroup sHs−1 ∩H of H . Denote by ρ : H → GL(W ) a repre-

sentation of H . In order that the induced representations V = IndGH(W ) be

irreducible, it is necessary and sufficient that the following two conditions

be satisfied:

• W is irreducible.

• For each s ∈ G − H the two representations ρs and ResHHs
(ρ) are

disjoint (i.e. they don’t have a common subrepresentation).

Proof.

See [26] Prop. 23.

Corollary 3.1.24.

Suppose H is normal in G . In order that IndGH(ρ) is irreducible, it is nec-

essary and sufficient that ρ is irreducible and not isomorphic to any of its

conjugates ρs for s /∈ H .
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3.2 Linnell’s Proof of the Atiyah Conjecture

for Elementary Amenable Groups

In this section we give a sketch of Linnell’s proof of the Atiyah conjecture

over C for elementary amenable groups. The Atiyah conjecture is also

known for free groups (also over C) and certain constructions with the

previous classes, but then only over Q instead of C . For more detail, see

[3] .

We will use one part of this proof in the next section to formulate and

prove the center-valued Atiyah conjecture. A crucial ingredient is Moody’s

induction theorem (see. [22]) . This section mainly is based on [12] and

[14] .

Definition 3.2.1. (Atiyah conjecture)

Let G be a group, such that the orders of the finite subgroups have a

bounded least common multiple lcm(G) . We say thatG satisfies the Atiyah-

conjecture over Λ ⊂ C , if for any operator a : `2(G)n → `2(G)m with

a ∈M(ΛG|n×m) we have

lcm(G) · dimN (G)(ker(a)) ∈ Z .

Lemma 3.2.2.

Let R be a ring, let m,n ∈ N+ , and let P,Q be finitely generated projective

right R-modules such that P ∼= Q . If P and Q correspond to the idempotents

e ∈ Mn(R) and f ∈ Mm(R) respectively, then there exists u ∈ GLm+n(R)

such that u diag(e, 0m)u−1 = diag(f, 0n) .

Theorem 3.2.3. (Atiyah conjecture for elementary amenable groups)

Let G be an elementary amenable group, such that the orders of the finite

subgroups have a bounded least common multiple lcm(G) . Then G satisfies

the Atiyah conjecture.

Proof.

We only give a sketch of the proof here. For more detail we refer to [12] the-

orem 6, lemma 11 and lemma 17. Write N = ∆+(G) the torsion subgroup

of the finite conjugate subgroup of G . Write CN = R1⊕· · ·⊕Rm where the

Ri are matrix rings over C . Then G/N permutes the Ri by conjugation,

and, by renumbering if necessary, we may assume that {R1, ..., Rt} is a set
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of orbit representatives for this action. Let Gi/N be the stabilizer of Ri ,

and write ni = [G : Gi] . By Clifford’s theorem we have

CG = CN ∗G/N =
t⊕
i=1

Mni
(Ri ∗Gi/N) .

Let Qi be the simple Artinian quotient ring of Mni
(Ri ∗Gi/N) = Mni

(Ri) ∗
Gi/N (1 < i < t) , which exists by lemma 4.1(i) of [10]. Then D(CG) =

⊕ti=1Qi . Using lemma 4.1 (ii) of [10], we see that the natural induction map⊕
F∈F(Gi)

G0(Mni
(Ri) ∗ FN/N)→ G0(Qi)

is onto (1 ≤ i ≤ t) , where F(G) is the set of finite subgroups in G . We can

now infer that the natural induction map⊕
F∈F(G)

G0(CF )→ G0(D(CG))

is also onto. Furthermore, all D(CG)-modules are projective. This means

that if P is the projective D(CG)-module corresponding to e , then there

exist r, s ∈ N+ , finite subgroups F1 , . . . , Fs of G and finitely generated

CFi-modules Pi with (1 < i < s) such that

P ⊕D(CG)r ∼=
s⊕
i=1

Pi ⊗CFi
D(CG) (use [21] prop 12.1.4) .

Since a finitely generated CFi-module is isomorphic to a direct sum of

right ideals of CFi , we may assume that Pi ∼= fiCFi for some projection

fi(1 < i < s) . Then diag(e, 1r)(D(CG)n+r) ∼= diag(f1 , . . . , fs)(D(CG)s) ,

as D(CG)-modules. Hence by lemma 3.2.2

diag(e, 1r, 0s) = u diag(f1 , . . . , fs, 0n+r)u
−1 ,

for some u ∈ GLn+r+s(D(CG)) hence

trCN (G)(e) + r = trCN (G)(f1) + · · ·+ trCN (G)(fs) ,

with trCN (G)(fi) = 1
|Fi| for all i .
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3.3 D(K[G]) is Semisimple Artinian

In this section we give an overview of the proof, that the division closure

D(K[G]) of K[G] is semisimple Artinian for algebraic closed K ⊂ C and a

discrete group G with ∆+(G) trivial . In the next section we will prove this,

without the assumption ∆+ is trivial, for elementary amenable groups. The

proof that D(K[G]) is semisimple Artinian for trivial ∆+(G) can be found

in full detail in [15] .

Remark 3.3.1.

Let U(G) denote the algebra of unbounded operators on `2(G) affiliated to

N (G) Then the involution on N (G) extends to an involution on U(G), and

U(G) is a finite ∗-regular algebra. Also if M is a right N (G)-module, then

dim∗N (G) M = dim∗N (G) M ⊗N (G) U(G)

in particular dim∗N (G) eU(G) = tr∗N (G)(e) .

More detail on the algebra U(G) can be found in [19] chapter 8 .

Definition 3.3.2.

The extended division closure E(K[G]) of K[G] in U(G) is defined as the

smallest subring of U(G) satisfying

• x ∈ E(K[G]) and x−1 ∈ U(G) =⇒ x−1 ∈ E(K[G]) ,

• x ∈ E(K[G]) and xU(G) = eU(G) with e a central idempotent in

U(G) implies e ∈ E(K[G]) .

Lemma 3.3.3.

Let G be a group and K an algebraically closed subfield of C , then

〈dimN (G) xU(G)n | a ∈Mn(K[G])〉 = 〈dimN (G) xU(G)n | a ∈Mn(E(K[G]))〉

Proof.

See [15] lemma 2.4.

Remark 3.3.4.

Lemma 3.3.3 can be extended to the center-valued dimension. The proof in

[15] works without modification.



3.3 D(K[G]) is Semisimple Artinian 53

Proposition 3.3.5.

Let G be a group with ∆(G) finite and let K be an algebraically closed

subfield of C . Then E(K[G]) = D(K[G]) .

Proof.

With ∆(G) finite , the center of N (G) is finite dimensional and hence it is

already contained in K[G] .

Theorem 3.3.6.

Let G be a group and let K be a subfield of C which is closed under complex

conjugation. Suppose there is an L ∈ N such that L dimN (G) aU(G)n ∈ Z
for all a ∈ Mn(KG) and for all n ∈ N . Then E(K[G]) is a semisimple

Artinian ring.

Proof.

First observe that the above lemma tells us that L dimN (G) aU(G) ∈ Z for

all a ∈ E(K[G]) . This tells us that E(K[G]) has at most L primitive central

idempotents. Indeed, if e1, . . . , eL+1 are (nonzero distinct) primitive central

idempotents, then eiej = 0 for i 6= j and we see that the sum ⊕L+1
i=1 eiU(G)

is direct. But

dimN (G)

L+1⊕
i=1

eiU(G) =
L+1∑
i=1

dimN (G)(eiU(G)) ≥ (L+ 1)/L ≥ 1 ,

which is a contradiction. Thus E(K[G]) has n primitive central idempo-

tents e1 , . . . , en with n ≤ L . For each 1 ≤ i ≤ n chose 0 6= ai ∈
eiE(K[G]) such that dimN (G) aiU(G) is minimal. Fix m ∈ {1, 2, . . . , n}.
Since L dimN (G) aU(G) ∈ Z for all a ∈ E(K[G]) , we may choose g1, ..., gr ∈
G with dimN (G)(

∑r
i=1 giama

∗
mg
−1
i )U(G) maximal. Note that if gr+1 ∈ G ,

then (using [15] lemma 2.5), we get

(
r+1∑
i=1

giama
∗
mg
−1
i )U(G) ⊃ (

r∑
i=1

giam)U(G) ⊃ (
r∑
i=1

giama
∗
mg
−1
i )U(G) ,

and hence

dimN (G)(
r+1∑
i=1

giama
∗
mg
−1
i )U(G) ≥ dimN (G)(

r∑
i=1

giama
∗
mg
−1
i )U(G) .
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By the maximality of dimN (G)

(∑r
i=1(giama

∗
mg
−1
i ))U(G) we have

dimN (G)(
r+1∑
i=1

giama
∗
mg
−1
i )U(G) = dimN (G)(

r∑
i=1

giama
∗
mg
−1
i )U(G) .

It follows that

(
r+1∑
i=1

giama
∗
mg
−1
i )U(G) = (

r∑
i=1

giama
∗
mg
−1
i )U(G) .

Using again [15] lemma 2.5 , we obtain that gamU(G) ⊂
∑r

i=1(giama
∗
mg
−1
i )U(G) ,

for all g ∈ G . Let f ∈ U(G) be the unique projection such that

fU(G) =
( r∑
i=1

giama
∗
mg
−1
i

)
U(G) .

Then gfU(G) =
(∑r

i=1 ggiama
∗
mg
−1
i

)
U(G) ⊂

∑
ggiamU(G) ⊂ fU(G) for all

g ∈ G , thus gfU(G) = fU(G) and we deduce that gfg−1U(G) = fU(G) .

Also gfg−1 is a projection thus we gfg−1 = f . We conclude that f is a

central projection in E(K[G]) . Since f 6= 0 , fU(G) ⊂ emU(G) and em
is primitive, we conclude that f = em and consequently

∑r
i=1 giamU(G) =

emU(G) .

By omitting some of the terms in this sum, if necessary, we may assume

that ∑
1≤i≤r , i6=s

giamU(G) 6= emU(G) (3.3.7)

for all 1 ≤ s ≤ r . We make the following observation:

if 0 6= x ∈ gsamE(K[G]) , then xU(G) = gsamU(G) , (3.3.8)

where 1 ≤ s ≤ r . This is obtained because 0 6= xU(G) ⊂ gsamU(G) and

consequently xU(G) = gsamU(G) .

We claim that emE(K[G]) =
∑r

i=1 giamE(K[G]) . Set σ :=
∑r

i=1 giama
∗
mg
−1
i .

Since σU(G) = emU(G) , we see that

(σ+(1−em))U(G) ⊃ σU(G)+(1−em)U(G) = emU(G)+(1−em)U(G) = U(G) .
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Therefore σ+(1−em) is invertible in U(G) and hence σ+(1−e) is invertible

in E(K[G]) . Thus

emσE(K[G]) = em(σ + 1− em)E(K[G]) = emE(K[G]) .

Moreover, σE(K[G]) ⊂ emE(K[G]) and therefore emσE(K[G]) = σE(K[G]) ,

hence

emE(K[G]) = σE(K[G]) =
r∑
i=1

giamE(K[G]) .

If this sum is not direct, then for some s with 1 ≤ s ≤ r we have

gsamE(K[G]) ∩
∑
i 6=s

giamE(K[G]) 6= 0 ,

and without loss of generality we may assume that s = 1 . So let

0 6= x ∈ g1amE(K[G]) ∩
r∑
i=2

giamE(K[G]) .

Then 0 6= xU(G) ⊂ g1amU(G) and (3.3.7) shows that xU(G) = g1amU(G) .

It follows that g1amU(G) ⊂
∑r

i=2 giamU(G) consequently

r∑
i=2

giamU(G) = emU(G)

which contradicts (3.3.6) and our claim is established. Now we show that

g1amE(K[G]) is an irreducible E(K[G])-module. Suppose 0 6= x ∈ g1amE(K[G]) .

Then xU(G) = g1amU(G) by (3.3.7) and using lemma 3.3.3, we see as before

that xx∗+
∑r

i=2 giaia
∗
i + 1− em is a unit in U(G) and hence is also a unit in

E(K[G]) . This proves that xE(K[G]) = g1amE(K[G]) and we deduce that

E(K[G]) is a finite direct sum of irreducible E(K[G])-modules. It follows

that E(K[G]) is a semisimple Artinian ring.

3.4 Center-valued Atiyah conjecture

The following result is the fruit of a joint work with Peter Linnell and

Thomas Schick. Let G be a group with lcm(G) <∞, satisfying the Atiyah-

conjecture over K , with K ⊂ C algebraically closed. Denote by ∆+ the

normal subgroup of all elements having finite conjugacy classes and finite

order. Assume without loss of generality that any finite subgroup E ≤ G is

containing ∆+ (otherwise take E ·∆+) .
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Proposition 3.4.1. (∆+ is a finite group)

The finite conjugacy class group ∆+ of a group with lcm(G) < ∞ (i.e. it

has an upper bound on the orders of its finite subgroups) is a finite normal

subgroup.

Proof.

Let H be a finitely generated subgroup of ∆(G). We obtain from [23] lemma

2.1 and 2.2 that the commutator group H ′ := [G : H] is finite. Denote by

N the finite normal subgroup obtained by the product of all finite normal

subgroups in G (there are only finitely many since lcm(G) ≤ ∞). Notice

that N ⊂ ∆+. Now take g ∈ ∆+ − N and denote by H the subgroup

generated by the finite conjugacy class 〈g〉 . Now H is a normal subgroup in

G and H is finitely generated. We have H ′ is finite, and H/H ′ is a finitely

generated abelian group, generated by elements of finite order. Hence H/H ′

is finite and so is H. This is a contradiction to g ∈ ∆+−N and hence ∆+ =

N .(The key argument for this proof is taken from [23] lemma 19.3).

Lemma 3.4.2.

A basis of orthogonal irreducible projections {P 1 . . .PCG} ∈ Z(N (G)), of

Z(N (G)) ∩ Z(K∆+) ⊂ Z(K∆+) is given by

P i :=
∑


k s.t. gpig

−1 = pk

for a g ∈ G


pk

with

pi :=
ni
|∆+|

∑
s∈G

χi(s
−1)s .

with ni the dimensions of the irreducible representations of ∆+ , χi the cor-

responding characters.

Proof.

We have to check that they form a basis. The dimension of Z(N (G)) ∩
Z(K∆+) is equal to the number CG of finite conjugacy classes in G . Two

projections pi and pk are conjugate in G , iff they can be identified by conju-

gation. This means that pi and pk are identified, iff the coefficients coincide
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after certain permutations within each conjugacy class in G . Hence we get

for every finite conjugacy class in G a set of projections pji . After possi-

ble renumbering, we can assume that P 1 , . . . , PCG are distinct and hence,

because of dimension reasons, they form a basis.

Lemma 3.4.3.

Let pr : N (G) → Z(K∆+) be the projection onto the subspace Z(K∆+) .

Denote by tru∆+ := pr ◦ truN (G) , and let E be a finite subgroup of G containing

∆+ . For an irreducible projection Q ∈ K[E] we obtain

tru∆+(Q) =

CG∑
j=1

〈Q,P j〉
〈P j, P j〉

P j (3.4.4)

=
dimC(Im(Q))|∆+|
dimC(Im(P i))|E|

P i (3.4.5)

=
dimN (G)(Im(Q))

dimN (G)(Im(P i))
P i (3.4.6)

where P i is the central carrier of Q .

Proof.

We have QP j + Q(1 − P j) = Q and QP jQ(1 − P j) = 0 . Since Q is

irreducible, we get either QP j = Q ( hence P j is the central carrier of Q) ,

or QP j = 0 . In the case QP j = Q we have

〈Q,P j〉 = 〈QP j, 1〉
= 〈Q, 1〉

=
dimC(Im(Q))

|E|

〈P j, P j〉 =
dimC(Im(P j))

|∆+|
.

Theorem 3.4.7.

Let G be a discrete group, with lcm(G) <∞ and let K ⊂ C be a algebraically

closed subfield. The following statements are equivalent.

1. D(K[G]) is a semisimple Artinian ring. The primitive central idempo-

tents are central idempotents P 1, . . . , PCG in K∆+ . Each P iD(K[G])P i
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is an Li × Li matrix ring over a division ring, and Li is defined as

follows:

L :=
dimC(P j) lcm(G)

|∆+|
gcd
(

dimC(Q1) , . . . , dimC(Qn) ,
lcm(G)

|∆+|

)
· gcd

( gcd
(
dimC(Q1) , . . . , dimC(Qn)

)
gcd
(
dimC(Q1) , . . . , dimC(Qn) , lcm(G)

|∆+|

) , dimC(P j)
)
,


∈ Z ,

where the Qi are irreducible sub-projections of P j in K[Ei] where Ei
is running through all isomorphism classes of finite subgroups in G .

(This will be obtained as follows. We first combine the occurring pro-

jections Qi to a projection having their gcd as dimension (in the de-

nominator). Then we reduce the fraction and use the same proce-

dure to obtain a projection with the same denominator but one in the

counter.)

2. ColimE≤G : |E|<∞K0(KE) → K0(D(K[G])) is surjective and DG is

semisimple Artinian.

3. ColimE≤G ; |E|<∞G0(KE)→ G0(DG) is surjective.

4. For each finitely presented KG-module M , the center-valued dimen-

sion is quantized. It is linear combination of the dimensions, induced

up from projections over KE , where E runs through the finite sub-

groups of G, and dimensions are taking values according to (3.4.4) .

We prove the equivalence of these statements later in this paragraph.

Conjecture 3.4.8. (Center-valued Atiyah-conjecture)

We say G satisfies the center-valued Atiyah conjecture, if one (and hence

all) statements are true over G .

Theorem 3.4.9.

The center-valued Atiyah conjecture is true for elementary amenable groups.

Proof.

Linnell proves statement (3) in [12] theorem 6. Since the statements are

equivalent (as we will see) the claim follows.
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Corollary 3.4.10.

Assume G is a subgroup of a inverse limit of a inverse system of groups

(Gi)i∈I . Such that all groups satisfy lcm(G) < ∞ . Assume that the Gi

are elementary amenable and that the finite subgroups in Gi are images of

the finite subgroups in G . Then G also satisfies the center-valued Atiyah-

conjecture over K = Q .

Proof of corollary 3.4.10.

For large enough i we can assume that ∆+(G) = ∆+(Gi) , this follows

since we only have finitely many finite normal subgroups in G and in all

Gi (see prop. 3.4.1) . Denote by Qi the projection on the kernel ker(A[i])

of A[i] := pi(A) , with pi : Mn(Q[G]) → Mn(Q[Gi]) obtained from the

corresponding maps G→ Gi as described in 2.2.1.

Since ∆+ is finite and amenable groups satisfy the determinant bound prop-

erty. Using the approximation theorem we obtain

lim
i→∞

tru∆+(Qi) = tru∆+(Q) .

On the other hand we obtain from the center-valued-Atiyah conjecture for

elementary amenable groups that the coefficients of truN (Gi)
(Qi) are trivial

outside of ∆+ . Hence applying the approximation theorem provides this

also for truN (Gi)
(Q) and we get

lim
i→∞

truN (G)(Qi) = truN (G)(Q) .

From the quantization of the center (lemma 3.4.3) it follows that G satisfies

(4) in the Atiyah-conjecture.

Proof of the equivalence in 3.4.7.

(1) =⇒ (2) : We look at the following map

σ : K0(D(K[G])) −→ Z(NG)

[p] 7→ truN (G)(p)

This map is welldefined and injective. From this we get the following com-
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muting diagram.

ColimE≤G:|E|<∞K0(KE) K0(D(K[G]))

⊕
E≤G:|E|<∞

Z(KE) Z(N (G))

//
φ

��
� �
� �
� �
� �

σ1

��
� �
� �
� �
� �
� �

σ2

//
ψ

From (1) it follows that ψ◦σ1 : ColimE≤G:|E|<∞K0(KE)→ Z(N (G)) maps

surjective onto the projections in Z(N (G))∩D(K[G]) . Which is the image

of σ2. So the diagram actually commutes and we obtain from the injectivity

of σ2 the requested surjectivity of φ.

(2) =⇒ (3) : For a semisimple Artinian ring every finitely generated module

is projective, therefore G0 = K0 . (G0 are the equivalence classes of finitely

generated modules).

(3) =⇒ (4) is evident .

(4) =⇒ (1) : We look at the following sum of the sub-projections Qi of

P j , with integral coefficients ai , where the Qi are irreducible projections

supported on K[Ei] and Ei runs through the isomorphism classes of finite

groups in G .

dimC(P j) lcm(G)

|∆+|
truN (G)(ai

n∑
i=1

QiP
j) =

=
dimC(P j) lcm(G)

|∆+|

n∑
i=1

ai dimC(Qi)|∆+|
|Ei| dimC(P j)

P j

=
n∑
i=1

ai dimC(Qi)
lcm(G)

|Ei|
P j .

Since gcd( lcm(G)
E1

, . . . , lcm(G)
En

) = 1 , (this is already true for the Sylow-

subgroups) we obtain from elementary number theory, that we can find

coefficients ai ∈ Z such that

n∑
i=1

aidimC(Qi)
lcm(G)

|Ei|
= gcd

(
dimC(Q1) , . . . , dimC(Qn)

)
. (3.4.11)
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We use this to construct a projection ẽ as follows. We first add all pro-

jections with positive coefficients by taking direct sums and obtain a pro-

jection ẽ+, then we add all projections with negative coefficients the same

way (ignoring the sign), obtaining ẽ′ . From (3.4.11) follows that dimu(ẽ′) ≤
dimu(ẽ+) .Now it follows from [8] theorem 8.4.3 that ẽ′ � ẽ+ . Hence we can

find ẽ′ ∼ ẽ− < ẽ+.

We know that ẽ′ , ẽ+ ∈ D(K[G]) and we want to deduce that this also

holds for ẽ− . By [27], exercise 13.15A, there exists a similarity (that is

self-adjoint unitary) u ∈ U(G) such that ẽ− = uẽ′u (regard that ẽ′ ⊥ ẽ−

which is necessary for [27], 13.15A ) . There is a countable subgroup F of G ,

with ∆(G) = ∆(F ) , such that u ∈ N(F ) . We take the smallest subgroup

containing F with the desired ∆. This group is still countable. By the

Kaplansky density theorem [33] p. 8, there exists a sequence uk ∈ KF such

that uk → u as k →∞ in the strong operator topology in N (F ) . We have

dimu
N (F )(ukẽ

′uk)→ dimu
N (F )(uẽ

′u)

strongly. From the quantization of the dimension we assume in (4) , it

follows that already for a finite n we have

dimu
N (F )(unẽ

′un) = dimu
N (F )(uẽ

′u)

We have constructed F so that Z(N (G)) = Z(N (F )) and so we get that

dimu
N (G)(unẽ

′un) = dimu
N (G)(uẽ

′u)

with unẽ
′un ∈ DKG . We now define the projection ẽ as

ẽ := ẽ+ − ẽ− ∈ D(K[G]) .

From this we get

truN (G)(ẽ) =
|∆+| gcd

(
dimC(Q1) , . . . , dimC(Qn)

)
lcm(G) dimC(P j)

P j

=
gcd
(
dimC(Q1) , . . . , dimC(Qn)

)
lcm(G)
|∆+| dimC(P j)

P j

We want to reduce this fraction regarding the general formula

a

b · c
=

a
gcd(a,b) gcd( a

gcd(a,b)
,c)

b·c
gcd(a,b) gcd( a

gcd(a,b)
,c)

.
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We obtain the reduced fraction

trCN (G)(ẽ) =
R

L

L :=
dimC(P j) lcm(G)

|∆+|
gcd
(

dimC(Q1) , . . . , dimC(Qn) ,
lcm(G)

|∆+|

)
· gcd

( gcd
(
dimC(Q1) , . . . , dimC(Qn)

)
gcd
(
dimC(Q1) , . . . , dimC(Qn) , lcm(G)

|∆+|

) , dimC(P j)
)
,


on the other hand we have

trCN (G)(1− ẽ) =
L−R
L

with gcd(L,L − R) = 1 . Using again the above argument, we obtain the

required projection P with

trCN (G)(e
′′) =

1

L

= 1/
dimC(P j) lcm(G)

|∆+|
gcd
(

dimC(Q1) , . . . , dimC(Qn) ,
lcm(G)

|∆+|

)
· gcd

( gcd
(
dimC(Q1) , . . . , dimC(Qn)

)
gcd
(
dimC(Q1) , . . . , dimC(Qn) , lcm(G)

|∆+|

) , dimC(P j)
)
,


︸ ︷︷ ︸

∈Z

We used direct sums of projections hence he projection we just constructed

is not an element in P jN (G) but in Mn(P jN (G)) for suitable n . Take

now the projection (a := (ai,j)i,j=1...n ∈ Mn(P jN (G)) with a1,1 = id and

ai,j = 0 elsewhere. We have dimu(a) ≥ dimu(e′′) . Using again the above

argument, we can find a sub-projection with dimension 1
L

. This is our

desired projection e ∈ P jN (G) with dimension 1
L

.

We have

truN (G)((1− e)P iU(G)) =
L− 1

L
P i .

Therefore

(1− e)P iU(G) ∼= e(P iU(G))L−1
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and we deduce that there exist orthogonal projections e = e1, e2, ..., eL ∈
U(G) (with eiej = 0 for i 6= j) , such that

∑L
j=1 ei = P i and ejP

iU(G) ∼=
eP jU(G) for all j . By [27], exercise 13.15A, there exist similarities (that is

self-adjoint unitaries) ui ∈ U(G) with u1 = 1 such that ej = ujeuj . There is

a countable subgroup F of G , with ∆(G) = ∆(F ) , such that ui ∈ N(F ) for

all i . We take the smallest subgroup containing F with the desired ∆. This

group is still countable. By the Kaplansky density theorem [33] p. 8, for

each j (1 ≤ j ≤ L) there exists a sequence uj,k ∈ KF such that uj,k → uj
as j → ∞ in the strong operator topology in N (F ) with u1,k = 1 for all

k . Set vk =
∑L

j=1 uj,keuj,k . Then vk →
∑L

j=1 ej = P i strongly, We have

constructed F so that Z(N (G)) = Z(N (F )) so we get that

dimu
N (F )(vkP

iU(F ))→ dimu
N (F )(

L∑
j=1

ejU(F )) = P i

strongly. We have constructed F so that Z(N (G)) = Z(N (F )) so we get

that IndGF dimu
N (F )(xU(F )) = dimu

N (G)(xU(G)) for all x ∈ U(F ) , conse-

quently

dimu
N (G)(vkP

iU(G))→ dimu
N (G)(

L∑
j=1

ejU(G)) = P i

strongly. Since G satisfies (4) , we have already for some n ∈ N+ that for

all k ≥ n

dimu
N (G)(vkP

iU(G)) = dimu
N (G)(

L∑
j=1

ejU(G)) .

From this follows for k ≥ n that we have vk = vn , uk,j = uj and that

vk and uk,j are units in P iU(G) and hence in P iD(K[G]) . We see that

⊕Lj=1uj,neP
iU(G) = P iU(G) and deduce that

P iD(K[G]) =
L⊕
j=1

uj,neP
iD(K[G])

is a direct sum. Now let c be an central idempotent in P jE(K[G]) . We

want to show that c = 0 or 1 . From the above observations, we obtain

cui,neU(G) ∼= ceU(G) for all i . It follows from 3.3.3 and 3.3.4 that

truN (G)(cP
jU(G)) = L truN (G)(ceP

jU(G)) ∈ ZP j .
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But truN (G)(cP
jU(G)) ≤ P j and hence is either 0 or 1 . Using theorem 3.3.6

it follows that P jD(K[G]) is a semisimple Artinian ring, that contains no

nontrivial idempotents.

Further from (3.4.4) it follows that no projections exist in P iD(K[G]) with

smaller trace than 1
Li

. Hence we can not partition smaller, otherwise we

can construct a projection in U(G), with trace bigger than one, which is a

contradiction. Hence it is a Li × Li matrix ring over a skew field.
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