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1 Introduction

In all living cells, proteins are performing a vast amount of functions.
These functions are often controlled by a special mechanism: allosteric
regulation. This thesis is focusing on the dynamics of proteins that are
underlying the allosteric regulation.

In this chapter, I will give a short introduction on proteins in general and
how collective motions are related to them, and on allosteric interactions
in proteins1. It is a common hypothesis that these collective motions are
underlying the allosteric regulation.

1.1 Proteins, Conformations & Collective Dynamics

From Amino Acids to Protein Structures In all cells, proteins perform
a large variety of tasks, but are composed of a small set of building blocks
only: 21

2 amino acids. In a protein, amino acids are connected by peptide
bonds forming a chain, usually containing more than 100 amino acids.
The main line is called the backbone or main chain. Every amino acid has
a side chain that is characteristic for it. Side chains vary in shape, charge,
and atom composition. For example, while arginine has a long side chain
with a positive charge at the end, aspartate’s negatively charged side
chain is only half as long. And while proline’s side chain is restrained
by a ring structure, making it an element that locally reduces main chain
mobility, glycine has no side chain at all, allowing more flexibility for
the neighbouring side chains. An example of amino acids in a protein
structure is illustrated on the left in Fig. 1.1.

Under physiological conditions, most proteins fold into certain configu-
rations, which are energetically favoured by interactions between main
and side chain atoms. When folded, proteins are found in specific states
(see e.g. Fig. 1.1, middle), where most of them perform their function.

The structure of a protein can be described on different levels, from the
primary to the quaternary structure, each level containing the information
of the lower levels. The primary structure of each protein is the sequence
of amino acids. Hydrogen bonds between backbone atoms give the protein
fundamental structural features like α-helices and β-sheets: the secondary
structure. Side chain interactions fold this into the three-dimensional
tertiary structure. If two or more protein chains arrange in a protein
complex, the form what is called the quaternary structure.

1A detailed description of these topics can be found in protein textbooks, like Proteins:
Structures and Molecular Properties [2].

2in eukaryotes
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1 Introduction

Figure 1.1: Proteins: From Amino Acids to Structure Ensembles.
Schematic representation of different levels of protein hierarchy on
the example of T4 lysozyme (PDB id: 2LZM [3]). Left: Close up on an α-
helical LNAAK motif with main chain shown in orange and side chains
in blue. Middle: Location of the motif within the whole protein, which
is shown in cartoon representation, α-helices in blue, β-sheets in orange
and loops in grey. Right: An ensemble of structures representing the
flexibility of the system (ensemble generated with CONCOORD [4]).

From Protein Structures to Structure Ensembles From a more physi-
cal point of view, proteins are many-particle systems with a large number
of restraints. Covalent bonds, sterical interactions, hydrogen bonds, etc.
are limiting the configurational space accessible to a protein. Nevertheless,
proteins are still flexible and can adopt different conformations while
fulfilling the restraints.

When performing their function, proteins adopt different conforma-
tions. For example in case of ligand binding (see next section), different
conformations of binding pockets can have different accessibilities for lig-
ands to bind and, once bound, they offer different chemical environments
for the ligands. Hence, specific conformations are crucial for specific tasks,
and the understanding of conformational changes in proteins is necessary
to understand biochemical processes on an atomic level.

Figure 1.1 summarizes a simplified view of how a protein ensemble
inherits its dynamic properties from the amino acid sequence.

Imagining each state as a rigid structure is a crude simplification. In
reality, each state consists of a continuous ensemble of structures with
different probabilities. Important changes in function may be happening
when these weights shift within the ensemble.

Mathematically, the pathway connecting two conformations can be very
complicated when looking at it in Cartesian coordinates. With the right
coordinate transformation, these conformational changes can be described
in an easier way by suitable collective coordinates. In Chap. 2 methods
will be explained that focus on collective dynamics.

8



1.2 Allostery

1.2 Allostery

Proteins can bind various substances ranging from small molecules –
so-called ligands – to other proteins. Binding is essential for a vast
number of molecular processes in our body. Once the substances are
bound, proteins can fulfil various tasks: The serine protease trypsin, for
example, binds proteins and cleaves the peptide bonds next to lysine and
arginine residues [5]. Myoglobin, on the other hand, transports and stores
oxygen inside muscle cells [6]. These special functions require specialized
interactions of the proteins.

Since “Power is nothing without control” is true also for ligand binding,
multiple ways of altering binding behaviour have evolved. Molecules
that affect the binding in one way or another are called effectors. While
activators increase the binding affinity or catalysis rate, inhibitors do the
opposite.

If an effector binds in the same site as the ligand it is affecting, the
regulation is called orthosteric3. The effector can directly act on the ligand,
or it can directly manipulate the binding site. If now an effector binds
at a site distant from the site whose binding affinity it is changing, the
regulation is called allosteric4. The effector is called an allosteric effector
and the whole phenomenon is referred to as allostery.

To better understand the characteristics of allostery some explanations
on non-allosteric systems will follow.

1.2.1 Non-Allosteric Systems

For a protein P and a ligand L in solution there exists and equilibrium
between the complex P · L and the not complexed species P. The number
of proteins in complex with the ligand depends on the binding affinity of
L to P and the concentrations of both. It is described by the association
constant Ka:

P + L
Ka

 P · L (1.1)

and calculated by measuring the respective protein, ligand and complex
concentrations:

Ka =
[P · L]
[P][L]

, (1.2)

For a fixed protein concentration one would assume a higher fraction
of complexes for a higher concentration of ligands and saturation at
sufficiently high [L]. Both is true, as can be seen from the fraction of
complexed proteins:

[P · L]
[P · L] + [P]

=
Ka[L]

1 + Ka[L]
= 1− 1

1 + Ka[L]
. (1.3)

3from Greek “at the right place”
4from Greek “at another place”
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1 Introduction

Figure 1.2: Model Association Curves according to equation 1.3 for dif-
ferent constants Ka.

This is one branch of a hyperbola with the asymptote of 1. Ka can easily
be extracted from the curve since the fraction of ligated proteins is one
half for [L] = 1/Ka (see Fig. 1.2). A higher binding affinity means that a
lower ligand concentration suffices to bind the same amount of ligands to
a certain protein.

In terms of energetics, the free energy difference of the uncomplexed
and the complexed state is calculated by the difference in phase space
volume of both states (or the probability to find the system in one of the
states respectively):

∆G = −RT ln
[P · L]
[P][L]

+ RT ln
[P]

[P][L]
= −RT ln

[P · L]
[P]

= −RT ln(Ka[L])

(1.4)

1.2.2 Allosteric Systems

Allosteric regulation or allostery describes an interaction at a binding
site interfering with a distant binding site. An example is the case of
an enzyme, in which the binding affinity for a substrate in the substrate
binding site is affected by the binding of an effector molecule in the
allosteric site. If the effector binding site would coincide with the substrate
binding site the regulation would be in situ. An allosteric effector could

10



1.2 Allostery

Figure 1.3: Comparison Between Positive Non-Allosteric And Allo-
steric Association Curves: Non-allosteric (solid lines) and allosteric
(dashed lines) model binding association curves are shown. For the
allosteric case, the functional property curves is given in [2].

increase the substrate binding affinity (allosteric activator) or decrease it
(allosteric inhibitor).

Between the binding sites information must be transferred. The intrigu-
ing part about allosteric interactions is that there is no general answer to
how this information flow is manifested in different systems. In Figure
1.4 a typical allosteric regulation is sketched.

Example An example of how complex and manifold allosteric interac-
tions can be, is the γ-aminobutyric acid receptor A (GABAA). It is a
membrane channel in neurons that, upon opening, conducts chloride ions
leading to a hyperpolarization of the neuron. The central conducting pore
is opened by binding of the main agonist γ-aminobutyric acid (GABA).
In addition to the orthosteric GABA binding site, GABAA has a number
of allosteric binding sites. The positive allosteric effectors include the
widely investigated binding sites for benzodiazepines and ethanol [7].
Further, the channel can be regulated with additional positive or negative
allosteric effectors [8].

Compared to a simple open/closed mechanism, the allosteric regula-
tion allows for a powerful level of control that cannot be realized with
orthosteric binding alone.

11



1 Introduction

Figure 1.4: Schematic Representation of a Typical Allosteric Interac-
tion: An enzyme (grey) with binding sites on left and right binds
an effector molecule (blue) which changes the binding affinity at the
distant binding site, facilitating the binding of a substrate (orange).

1.2.3 Cooperativity

If a ligand can bind to multiple sites of a protein and these sites affect each
other allosterically, the binding process is called cooperative. In positive
cooperativity each binding site occupied by the ligand increases the
binding affinity in the remaining binding sites. In negative cooperativity
the first ligand bound has the highest binding affinity, which decreases
with every ligand bound.

In comparison with the un-cooperative binding discussed at the begin-
ning of this chapter, cooperativity changes the shape of the association
curve from a hyperbola to a sigmoidal curve (see examples in Fig. 1.3).

At low concentrations the curve looks like un-cooperative binding
with a lower binding constant. For higher ligand concentrations the
already bound ligands increase the binding affinity for the remaining
sites, resulting in a curve resembling a higher binding affinity curve for
high concentrations.

In the case of negative cooperativity, bound ligands hinder further
binding events. This results in a steep affinity curve at low concentrations
and the transition to a low binding affinity at high concentrations.

This smooth switch between low and high affinity allows for a level
of regulations not possible in un-cooperative binding. E.g. positive
cooperativity allows the effective transport of ligands as the carrying

12



1.3 Outline of This Thesis

protein is either empty or fully loaded, with a low population of partially
loaded states.

1.3 Outline of This Thesis

The present thesis aims at a fundamental understanding of allostery and
the underlying collective dynamics.

In the first project, we investigated the allosteric regulation leading to
the cooperative binding of molecular oxygen to hemoglobin’s four protein
chains. Hemoglobin’s structures from X-ray crystallography revealed two
dominant states: the low binding affinity T-state (e.g. [9]) and the high
binding affinity R-state (e.g. [10]). From experiments it is known that with-
out the conformational dynamics between the states, hemoglobin lacks
the cooperativity [11, 12]. This led to the notion that this collective motion
is responsible for the allosteric communication of the four subunits.

In chapter 3, we are addressing the question how collective motions
within the chains couple to the global collective T-to-R transition and
thereby communicate with each other. Therefore, we analyse Molecular
Dynamics (see Chap. 2) simulation trajectories that show a transition
between T and R. Decomposing the motions into local and global parts
allows us to identify collective motions responsible for the coupling and
their underlying molecular interactions.

In the second project, we focused on allosteric interactions within the
protein ABCE1. ABCE1 is a member of the large ABC proteins family
that is associated with multi drug resistance in cancer cells, hindering
chemotherapy [13, 14]. In contrast to most ABC proteins, ABCE1 lacks a
transmembrane domain and therefore is not a transporter protein. ABCE1

contains two nucleotide binding domains (NBD) that are common to all
ABC proteins. Both NBDs can catalyse ATP to ADP and this hydrolysis
is associated with a conformational change from an “open” to a “closed”
state. Despite their structural similarity, the NBDs are asymmetric in
function [15]: While a characteristic mutation in one NBD decreases the
overall affinity, the symmetric mutation in the other site increases the
affinity.

In chapter 4, we take first steps in solving this riddle: While a structure
from the open state is available [15], a closed structure is still missing.
We aim at characterizing the collective motion from common structural
features of ABC proteins, allowing us to drive the open structure towards
a closed state. From this were able to suggest suitable mutations that
are predicted to stabilize the closed conformation. Structural information
of the closed state is crucial for future understanding of the allosteric
interaction between the two ATP binding sites.
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2 Theory and Methods

In this chapter I will give a short introduction into Molecular Dynamics
(MD) simulations, the central method that was applied in this thesis to
obtain atomistic trajectories for Hemoglobin (see Chap. 3) and ABCE1 (see
Chap. 4). More information regarding MD can be found in many books
and reviews [16–18]. Further, I will explain the methods with which the
multidimensional simulation data were analysed.

2.1 Molecular Dynamics Simulations

Molecular Dynamics (MD) simulation is a method in the field of compu-
tational biophysics that provides insight into many biochemical processes
on an atomistic level. A typical atomistic model of a protein can be ob-
tained by X-ray crystallography. Although this static picture provides very
valuable information, in many cases a dynamic picture is required, be it
for configurational entropy estimates or for insight into conformational
changes of the protein. In the case of proteins, MD can be successfully
applied for example to

• calculate thermostability of different amino acid mutations [19],

• understand conduction and selectivity of potassium channels [20,21],

• study pathogenic peptide aggregation [22]

• understand the molecular basis for atomic force microscopy experi-
ments [23],

• shed light on the protein folding process [24],

• estimate rates for tRNA translocation in the ribosome [25].

• identify the collective mode responsible for molecular recognition
in ubiquitin [26, 27]

In MD simulations each atom of a system (e.g. a protein solvated by
water) is represented by its position and momentum. The interactions
between the atoms are defined in a force field consisting of terms for the
bonded and non-bonded interactions. By solving Newton’s equations
of motion, the atoms move in the potentials given by the force field.
Thus, the system evolves over time. With evolving computer power
nowadays systems with more than a million atoms can be simulated.
When simulating small systems, time scales of up to 1 ms can be reached
with specialized hardware [28].

15



2 Theory and Methods

2.1.1 Basic Approximations of MD

MD is a classic description of systems in regimes of time- and length
scales where quantum-mechanical effects play a role. The following
approximations are the basis of MD:

1. Born-Oppenheimer approximation: Nuclei and electrons can be
treated separately.

2. Classic nuclei motions: The motions of nuclei are described by
Newton’s equations of motion.

3. Application of force fields: The interactions can be defined by classi-
cal force fields.

Born-Oppenheimer Approximation The time evolution of a quantum
mechanical system is given by the time-dependent Schrödinger equation:

Hψ = ih̄
∂

∂t
ψ, (2.1)

where H denotes the Hamiltonian of the system and ψ the wave-function.
The latter depends on the position of nuclei and electrons. In the Born-
Oppenheimer approximation this dependence can be decoupled for both
[29]. The assumption behind this is that the heavy nuclei move much
slower than the light electrons. Hence, at every moment the electrons feel
a static potential from the nuclei. In Eq. 2.1 ψ is described by the product
of the decoupled wave functions for the nuclei and electrons

ψ(Rnuc, rel) = ψnuc(Rnuc) · ψel(Rnuc; rel).

Hereby Rnuc and rel denote the vectors of nuclei and electron positions
respectively.

Classic Nuclei Motions Based on the Born-Oppenheimer approximation
the nuclei motions in MD are treated classically by Newtonian dynam-
ics. This assumption follows Ehrenfest’s theorem that states that (under
certain conditions) the time evolution of expectation values of operators
can be described classically. This is true especially for the position op-
erator. Together with the assumption 〈F(x)〉 ≈ F(〈x〉) this leads to the
Newtonian equation of motion:

m
d2

dt2 〈x〉 = F(〈x〉).

In other terms, the nuclei are moving in a potential V according to

mi
d2

dt2 Ri
nuc = −∇Ri

nuc
V(Rnuc). (2.2)

16



2.1 Molecular Dynamics Simulations

Application of Force Fields In classical MD interactions between atoms
are defined by classical functions. For example, the interaction of two
atoms due to a covalent bond is described by a harmonic potential V =

k/2(l − l(0))2. The force constant k and the equilibrium bond length l(0)

depend on the atom types and the type of bond between them. Potential
terms for other bonded interactions like angles, dihedrals and improper
dihedrals are defined in a similar way. Non-bonded interactions including
Van der Waals and Coulomb interactions are calculated for all atom pairs
close enough to each other. That said, no chemistry can occur in normal
MD, since the bonded interaction partners are constant, and bonds cannot
form or break.

A typical MD potential for Eq. 2.2 as used in the GROMACS software
package [30, 31] looks like this:

V = ∑
bonds i

ki

2

(
li − l(0)i

)2
(bonds, bonded)

+ ∑
angles i

fi

2

(
ρi − ρ

(0)
i

)2
(angles, bonded)

+ ∑
dihed. i

di

2

(
1 + cos

(
nφi − φ

(0)
i

))
(diheadrals, bonded)

+ ∑
imp. dih. i

mi

2

(
ξi − ξ

(0)
i

)2
(improper diheadrals, bonded)

+ ∑
atoms i,j

4εij

(σij

rij

)12

−
(

σij

rij

)6
 (Van der Waals, non-bonded)

+ ∑
atoms i,j

1
4πε0εr

qiqj

rij
(Coulomb, non-bonded)

The parameters used to calculate the potential are defined in so-called
force fields. For MD simulations of proteins several force fields are estab-
lished. They differ in the derivation of the parameters but mostly derive
force constants from quantum-mechanical calculations and from experi-
mental measurements like vibrational bond-spectra or melting points of
solvents. Some of the most commonly used force field for bio-molecular
MD are AMBER [32], GROMOS [33, 34], OPLS [35, 36], CHARMM [37, 38],
of which the GROMOS 43a2 and AMBER 99sb-ildn were used for projects
in this thesis.

2.1.2 Time Integration

With a given set of coordinates for all atoms and assigned velocities,
Newton’s equations are integrated stepwise. The integrator used is known
as the leap-frog algorithm, named after the shifted calculation of positions

17



2 Theory and Methods

and velocities:

v(t + ∆t/2) = v(t− ∆t/2) + F(t)∆t/m
r(t) = r(t− ∆t) + v(t + ∆t/2)∆t

For numerical stability the time step ∆t has to be chosen so that it is
sufficiently shorter than the fastest motion of the system, as vibrations
of bonds between carbon and hydrogen atoms. Thus, commonly a time
step of ∆t = 2 f s1 is chosen for those force fields. By freezing the fastest
degrees of freedom a larger time step can be chosen. This is the underlying
idea of the so-called virtual sites [41], where amongst others the angles
between hydrogen atoms in CH3-groups are kept.

2.1.3 Temperature, Pressure and Periodic Images

To reproduce the conditions in cells, MD simulations of biological sys-
tems are usually simulated as a canonical ensemble, i.e. with constant
temperature and pressure. Numerical errors of the time integration and
force calculation may lead to slow drifts in the temperature. To reduce
this effect, algorithms have been developed, called thermostats [42, 43].
Likewise, barostats are used to keep pressure constant [44, 45].

When simulating small systems, the boundaries of the simulation box
can be critical and finite size effects have to be taken into account. To
this end, the system can be simulated including the interaction with
its periodic images. This de facto renders an infinite system, for which
boundaries do not play a role. This allows for an effective calculation of the
long-range electrostatic interaction: the particle-mesh Ewald summation
[46,47]. The basic idea is to split up the interactions into a short range part,
which can be calculated normally, and a long range part, for which the
periodicity facilitates the calculation in the Fourier transformed reciprocal
space.

2.1.4 Data Structure

In order to explore atomic coordinates of an MD simulation or properties
related to the coordinates, a suitable frame for describing the coordinates
must be chosen. A given atomic structure of a system containing N atoms
can be thought of as N points in a 3-dimensional space. Alternatively,
each structure can be described as one point in a 3N-dimensional space,

1This already implies that water molecules are constrained with the Settle algorithm [39],
and other bond lengths are constrained with LINCS [40].

18



2.2 Analysis Methods for Multidimensional Data

known as the configuration space. A structure then can be rewritten as

x =


x1 y1 z1
x2 y2 z2
...

...
...

xN yN zN

→ x =



x1
y1
z1
x2
...

yN
zN


Whereas the first alternative is more intuitive as it describes the atomic
structure in space atom by atom, the second one is favoured in mathe-
matical handling of trajectories and descriptions of collective motions;
it will be used below. In this framework trajectories are paths in the
configuration space. A trajectory of M snapshots can be written in the
following 3N ×M matrix form

X =
(
x (t1) x (t2) . . . x (tm)

)
.

2.2 Analysis Methods for Multidimensional Data

Dealing with multidimensional data such as trajectories from Molecular
Dynamics simulations often requires the application of special techniques
for either finding a lower dimensional representation of the data set or
extracting collective coordinates corresponding to certain observables. In
this section several of these techniques are described where Principal Com-
ponent Analysis belongs to the first category and Partial Least Squares to
the second. The methods will be discussed in reference to the analysis
of MD data, but can be applied more generally to tasks in multivariate
analysis and data mining [48].

2.2.1 Principal Component Analysis

A common technique to find a lower dimensional representation of a
data set is Principal Component Analysis (PCA). The basic idea is to
find a coordinate transformation that describes the majority of structural
fluctuations with just a small number of new, collective coordinates.

This is achieved with PCA by expressing the fluctuations in terms of co-
variance and the coordinate transformation with a matrix diagonalization.

The diagonalization of the covariance matrix yields a new set of or-
thonormal vectors given by the eigenvectors. The corresponding eigen-
values describe how much the motion along each eigenvector fluctuates.
If the set of eigenvectors is ordered by decreasing eigenvalues, the first
eigenvectors (the principal components) describe the majority of covariance
and thereby structural fluctuations of the system.
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2 Theory and Methods

Originally, PCA was developed by Pearson to least-square fit planes
to multi-dimensional point clouds [49]. In 1933 Hotelling introduced
PCA for analysing correlations within multi-dimensional data [50]. As
an example application one case of Hotelling’s original work will be
discussed shortly.

For a number of school children a test measured the ability and
speed in reading and the ability and speed in calculus. With
this each of the k individuals was scored in 4 items. Hence, the
raw data consisted of k variables in n = 4 dimensions and can
be written in as matrix elements xq

p with p ∈ {1, 2, 3, 4} and
q ∈ {1, .., k}.
The question at hand was if there were correlations within
the data that permit to describe most of the measured data in
a lower dimensional (n < 4) representation, and what these
relations looked like. To answer the question, the covariance
matrix was calculated which describes how strongly the dif-
ferent dimensions vary simultaneously. If the variables are
centered, the covariance of two coordinates i and j reads

Cij =

〈
xk

i ·
(

xk
j

)T
〉

k

Diagonalizing C yields four eigenvectors (of collective features)
and the corresponding eigenvalues indicating the contribution
of that eigenvector to the total covariance.

Since C is symmetric, it can be written:

C = YΛYT with Y = (y1 y2 y3 y4) , Λ = diag (λ1, λ2, λ3, λ4)

With the yi written in the Cartesian space of the raw data,
each component marks the contribution of that specific feature
to the total direction yi. In Hotelling’s example the eigen-
vector with the highest eigenvalue was mainly composed of
the general ability to read and calculate, showing a positive
correlation between the two item scores. Along the second
eigenvector reading and calculus showed a negative correla-
tion. The PCA revealed that the test results could be described
in two dimensions instead of four: The first one measuring
the combined ability in calculus and reading, and the second
separating between the children’s better subject.

Mathematics of PCA Mathematically speaking, PCA is a linear trans-
formation of the Cartesian coordinate system to a coordinate system with
variances maximized along the coordinate axes (see Fig. 2.1).
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2.2 Analysis Methods for Multidimensional Data

Figure 2.1: Schematic Representation of PCA: The two-dimensional data
in the original coordinates (x− y, grey) show a linear dependence. The
PCA shifts the center of the coordinate system to the average (blue)
and rotates the axes to maximize variances along the first one (x′ − y′,
orange).

For a given trajectory x(t)2 the covariance matrix C is given by

C =
〈
(x(t)− 〈x(t)〉t) · (x(t)− 〈x(t)〉t)

T
〉

t
.

Diagonalization yields
Λ = YTCY,

with the diagonal matrix of eigenvalues Λ = diag(λ1, . . . , λi, . . . , λ3N)
and the matrix of corresponding eigenvectors Y = (y1 . . . yi . . . y3N).
Usually the matrices are ordered with decreasing λi. Since the covariance
matrix is positive semi-definite3, all λi ≥ 0. Each λi describes the variance
along the corresponding eigenvector.

A reduction in dimensionality can be obtained by projecting each struc-
ture x(t) onto a smaller subspace x(t) 7→ z(t):

zi(t) = yi · (x(t)− 〈x(t)〉t) , with i ∈ {1, . . . , M} , M < 3N (2.3)
2In MD simulations, the parameter t will typically be the time, but any ensemble index

is possible.
3Positive semi-definite means that vTCv ≥ 0 holds for all non-zero v. This is true

because

vTCv = vT〈(x− 〈x〉) (x− 〈x〉)T〉v

= 〈
(

vT (x− 〈x〉)
) (

vT (x− 〈x〉)
)T
〉, with time-independent v

= 〈s2〉 ≥ 0, with s = vT (x− 〈x〉) .
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2 Theory and Methods

Figure 2.2: Typical PCA Eigenvalue Distribution: In this example of a
T4 lysozyme MD simulation a fast decrease of the eigenvalues can be
seen. The logarithmic plot shows that the eigenvalues decrease faster
than exponential.

Application in MD A PCA on a given MD trajectory can yield insight
into the collective dynamics of the system, revealing the dominant global
motions like e.g. a conformational change upon ligand binding or the
motion of two domains connected by a hinge region.

In MD simulations the system, e.g. a protein, can diffuse through
the solvent. This motion often contributes the most to the coordinate
changes, but is not of an interest if focusing on internal dynamics. To
not detect these degrees of freedom each structure of the simulation
can be structurally aligned to a reference structure prior to calculating
the covariance matrix. That way, the six global degrees of freedom are
removed from the system. Nevertheless, this fitting procedure can be
ambiguous in flexible systems and thus produce artifacts [51, 52].

The large number of constraints including bonds, angles and sterical
restrictions greatly reduces the degrees of freedom actually available for
a protein. Usually, in MD simulations the PCA eigenvalues ordered by
decreasing variances decay fast. In Fig. 2.2 the PCA eigenvalues for a
T4 lysozyme MD simulation are shown. Like in this example, in protein
dynamics the first few eigenvectors of a PCA describe anharmonic large-
scale motions and together form the so called essential subspace [53].

The new coordinates given by the PCA eigenvectors are often called
collective in the sense that in general all atoms contribute to each individual
eigenvector. When encountering PCA on MD data for the first time, it
may at seem unusual that, even though the motion along any eigenvector
usually involves all atoms, it is still a one-dimensional motion. Thereby,
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2.2 Analysis Methods for Multidimensional Data

Figure 2.3: Comparison of Cartesian and Collective Coordinates: (A) a
motion along a Cartesian coordinate: x-coordinate of a specific nitrogen
atom; (B) a motion along a collective coordinate: rotation along the
CA-CB bond involving all atoms.

affecting this motion only affects one degree of freedom of the system.
One could argue that the PCA coordinates are a linear approach to a more
natural coordinate system: In Fig. 2.3 a schematic comparison between
a coordinate in the Cartesian space (A) and a coordinate in a collective
space (B) is shown. The system will not move far along the Cartesian
coordinate since this would involve breaking of bonds, but the collective
coordinate can be realized by a rotation along the CA-CB bond.

Strengths and Weaknesses PCA gives a new set of vectors which are
complete in the same way as the Cartesian coordinates are. A lower
dimensionality of the system is gained by only focussing on the first PCA
eigenvectors. This reduction of dimensionality always means a loss of
information for the sake of simplification; and, a priori, it is not granted
that the desired features of the system are not lost when focusing on
the first PCA eigenvectors only. For example, in the case of a ligand
binding to a protein, the fluctuation of a side chain in the binding pocket
may be uncorrelated with the large global motions of the whole protein.
Nevertheless, PCA has proven extremely useful to identify large motions
that are often related with the protein’s function.

In PCA, a linear coordinate transformation is performed. If the relation
between the individual components is not linear – think of a curved point
cloud –, PCA will not be able to fully detect the underlying relation
and will result in a higher dimensionality than required in case of non-
linearity. Several techniques have been adopted to non-linear cases, e.g.
Kernel-PCA [54].
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2 Theory and Methods

2.2.2 Linear Regression

Principal Component Analysis focusses on the motions showing large
internal fluctuations. If an additional external observable is given, the de-
pendence of this observable on the atomic coordinates can be investigated.
For given atomic coordinates x(t) and the observable f (t), a linear model
(linear regression) can be constructed for the relation x(t) 7→ f (t):

( f (t1) . . . f (tm)) = (α . . . α)︸ ︷︷ ︸
m

+(β1 . . . β3N) · X + (ε1 . . . εm)

where α accounts for the offset from the origin of f and βββ is the actual
model. The εi are the residuals of the fit to be minimized. In detail, βββ
contains the factors, with which each atomic coordinate is weighted to
yield the new model coordinate. Fluctuations along this model coordinate
maximize fluctuations in f (t).

The number of coordinates (here: 3N) should be small relative to the
number data points (here: m). Otherwise, the model can suffer due to
overfitting. In section 7.1, it will be explained by a simple example what
overfitting is and how cross-validation can be used to test if a model is
free of overfitting. For typical protein simulations, the number of atomic
coordinates is rather high and it is difficult to construct a model by linear
regression that does not suffer due to overfitting.

2.2.3 Functional Mode Analysis Based On Partial Least Squares

Functional Mode Analysis (FMA) [55] is a method to assign a collective
coordinate within the atomic coordinates that correlates best with an
arbitrary functional property f . It addresses the overfitting problem that
arises when using a simple linear regression by reducing the original data
sets dimensionality with a PCA: The data are projected onto the first few
components of the coordinate system given by the PCA and the regression
is calculated in this new, smaller space.

The numbers of PCA eigenvectors used to form the reduced subspace
depends on the functional property but may need to be rather high to
capture the details of the motion. Still, for example, even a reduction to
100 dimensions for a system of N = 5000 atoms (and 3N coordinates)
lowers the parameters down to 1%, which can have a significant effect in
avoiding overfitting. Nevertheless, the PCA coordinates in general may
have nothing to do with the functional property, and therefore a problem
remains: A very large number of PCA components may have to be chosen
to cover motions correlated with f and that – in the worst case – could
lead to overfitting.

To resolve this, a second approach was developed – the one used in the
hemoglobin project of this thesis – based on the main idea of FMA, but
replacing the PCA dimensionality reduction with a partial least squares
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2.3 Essential Dynamics

(PLS) regression [56]. The PLS regression takes account of the functional
property while reducing the dimensionality and thereby ensures that the
important motions are part of the new reduced subspace.

Mathematics of PLS-Based FMA For a given functional property f
and a trajectory X4 in PLS [56] the regression is not used on the full
coordinates as in a simple linear regression but on new coordinates V

f = bT ·V + εεε.

The coordinates Vi are defined iteratively so that each is a linear combi-
nation of the original coordinates X with maximal covariance to f and
no correlation to the previous coordinates. Since each new coordinate
is correlated with f to some extent, the number of components can be
drastically reduced in comparison with the PCA-based FMA. The number
n of the so-called latent vectors Vi is a parameter that has to be controlled
by cross-validation. For example n can be increased until predictive power
of the model in the independent cross-validation set decreases. Details
about the different implementations of PLS can be found in the works
of Denham and Helland [57, 58]. The work of Krivobokova and Briones
focuses on application with relation to FMA [56].

2.3 Essential Dynamics

Essential Dynamics (ED) is a technique that applies the knowledge of
principal components to enhance, or more generally, to alter sampling
along these collective modes. The first implementation was based on
sampling the principal components only, not considering the other degrees
of freedom [53]. This approach suffered from interference of the degrees of
freedom with small eigenvalues. Thus, the next implementations included
all degrees of freedom with increased sampling in the essential subspace.

The present implementation in the tool make_edi from the GROMACS
software package [30, 31] allows for different algorithms to control the
dynamics during MD. This renders it possible to move the system step-
wise in a specific direction in the essential space, to forbid the system
to evolve in a given direction, or just keep it in a given position. In
this thesis in the ABCE1 project (see Chap. 4) an option was used to
move the protein towards a target structure given in ED space by only
allowing MD steps that move the system closer to the target along a
predefined eigenvector. Keep in mind that with the target defined in a
small-dimensional subspace, the system is free in the vast majority of
degrees of freedom. Another application is to increase the probability of
leaving a deep energetic minimum by growing a repulsive potential at
that point – the conformational flooding [59, 60].

4both centered for simplicity
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The number of possibilities of ED increased further, since not only PCA
components can be given as the ED space, but any suitable collective
coordinates. More information about possible applications can be found
in the works of de Groot, Grubmüller and Lange [59–62].

Mathematics of Essential Dynamics The coordinate system of the ED
space is usually at rest in the center of the protein. With the protein dif-
fusing during simulations, before applying ED modifications, the internal
and external coordinate system have to be aligned. This is achieved by
least squares fitting the simulation structure to the reference structure and
can be written as subtraction of the center of mass (xCOM) and subsequent
rotation (R):

x′ = R(x− xCOM). (2.4)

At this point changes to the structure are applied in the form of x′ 7→
x̃′. For example, if it is desired to move the system by 0.1 nm in di-
rection of the second ED dimension, this change would be x̃′ = x′ +
(0 0.1 nm 0 . . . 0)T. After that, the transformation is reversed:

x̃ = R−1x̃′ + xCOM.

If the specific ED algorithm involves force calculation as in confor-
mational flooding, the potential is given in the collective coordinates
of the ED space (here m-dimensional): V = V(y1, . . . , ym). Instead of
transforming the forces to the ED space, the transformation from the
Cartesian to the collective coordinates can be included with the chain rule
of differentiation:

F =
∂V
∂x

=
∂V
∂y

∂y
∂x

.

The first factor is quick to compute, and the second is given by the
following: Each simulation structure is transformed to the reference frame
by eq. 2.4 and within the reference frame the collective coordinates are
defined as in eq. 2.3.

Strengths and Weaknesses Where other methods like pulling in MD
add forces on single atoms, ED directly addresses sampling in a collective
subspace. This can be, as mentioned earlier, a more natural way to
influence the dynamics of the system. As seen, a large variety of sampling
related problems can be tackled that way.

If the ED dimensions are derived from a PCA, the coordinates are
orthogonal but not necessary uncoupled. By moving a system along
a PCA eigenvector with a high velocity, the other degrees of freedom
will most likely not be in equilibrium. This should be considered when
extracting structural information from ED simulations.
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3 Collective Dynamics Underlying Allosteric
Transitions in Hemoglobin

Abstract Hemoglobin (Hb) is the prototype of an allosteric protein. Still,
its molecular allosteric mechanism is not fully understood. To elucidate
the mechanism of cooperativity on an atomistic level, we developed a
novel computational technique to analyse the coupling of tertiary and
quaternary motions.

From Molecular Dynamics (MD) simulations showing spontaneous
quaternary transitions, we separated the transition trajectories into two
orthogonal sets of motions: one consisting of intra-chain motions only
(referred to as tertiary-only) and one consisting of global inter-chain mo-
tions only (referred to as quaternary-only). The two underlying subspaces
are orthogonal by construction and their direct sum is the space of full
motions.

Using Functional Mode Analysis (FMA), we were able to identify a
collective coordinate within the tertiary-only subspace that is correlated
to the most dominant motion within the quaternary-only motions, hence
providing direct insight into the allosteric coupling mechanism between
tertiary and quaternary conformation changes. This coupling-motion is
substantially different from tertiary structure changes between the crys-
tallographic structures of the T- and R-state. We found that hemoglobin’s
allosteric mechanism of communication between subunits is equally based
on hydrogen bonds and steric interactions. In addition, we were able to af-
fect the T-to-R transition rates by choosing different histidine protonation
states, thereby providing a possible atomistic explanation for the Bohr
effect.

3.1 Introduction

3.1.1 Hemoglobin in the Human Body

Human red blood cells bind dioxygen molecules in the lungs and transport
them through the blood vessels. In the capillaries of peripheral body
tissues, they release the oxygen. The body cells use the oxygen as an
oxidizing agent, e.g. to phosphorylate ADP to ATP1. Within the red blood
cells, the protein hemoglobin (Hb) is responsible for binding and releasing
the oxygen. Hemoglobin constitutes the largest part of each red blood cell
– around 97% of the mass of its dry part [64].

1ATP, with its “energy-rich phosphate bond” [63], is an essential source of energy in
our body, and therefore often called the "molecular energy currency".
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3 Hemoglobin

In his book “Der Chemismus in der thierischen Organisation”, pub-
lished in 1840, Hünefeld describes his experimental findings about Hb
binding oxygen [1]. Later, in 1866, Hoppe-Seyler reported about the re-
versibility of that process [65]. Still more than a century ago, in 1904, Bohr
measured O2 dissociation curves2 that showed an unexpected sigmoidal
shape and by that indicated a cooperative binding of O2 to Hb (see Sec.
1.2).

Regulation of Hemoglobin The oxygen binding affinity of Hb is affected
by several effectors. In 1967, Benesch & Benesch discovered that the small
molecule 2,3-bisphosphoglycerate (BPG) plays an important role in oxygen
transport [66, 67]. By stabilizing the T-state (definition below), BPG binds
to Hb and thereby helps oxygen to unbind.

A second regulatory effect is the so-called Bohr effect. The oxygen bind-
ing affinity has a peculiar dependence on the carbon dioxide concentration
in the blood. The dissociation curves measured by Bohr in 1904 are shifted
to the right for increasing CO2 concentration [68]. This is the so-called
Bohr effect. CO2 in the blood will partially be hydrated to H2CO3, which
in turn partially reacts to HCO−3 and H+. Thereby, a high CO2 concentra-
tion also decreases the pH. For that reason, the Bohr effect is nowadays
extended to the effect of the pH value on the oxygen dissociation curves.
A decreased pH shifts the equilibrium of histidine side chain protonations
towards the doubly protonated side chains. Thereby the induced positive
charge is thought to affect the structural ensemble [69, 70].

3.1.2 The Structure of Hemoglobin

In 1959, just one year after Kendrew resolved the first three-dimensional
protein structure model with myoglobin [71], Perutz followed with the
structure of horse hemoglobin [72]. Hemoglobin is a heterotetramer
consisting of four α-helix rich protein chains: two α- and two β-chains.
The arrangement of the chains is shown in Fig. 3.1. The alpha and beta
chains are structurally rather similar (see Figure 3.2).

Within each chain a porphyrine with a central iron atom is located: the
heme group. Each heme group is sandwiched by two histidine residues.
One is directly bound to the iron, the other – on the opposite site of the
heme plane – points towards the iron, leaving enough space for dioxygen
to bind in between (see Fig. 3.3).

The crystal structures revealed several different conformations. The
dominant two are the deoxy T state (tense) with a low binding affinity (e.g.
PDB id 2hhb) and the oxy R state (relaxed) with a high binding affinity
(e.g. PDB id 1IRD). Today, many structures are available, including oxy
states, deoxy states, carbon monoxide bound structures and structures

2dependence of the O2 affinity on its partial pressure
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3.1 Introduction

Figure 3.1: Cartoon Representation of Hemoglobin in the T-State: The
two α chains are shown in light and dark blue and the two β chains are
shown in light and dark grey. The heme groups are shown in a stick
representation in orange. (PDB id 2HHB)

of a large number of point mutations [73]. Dioxygen dissociation curves
are recorded for many of the mutants, making it possible to see the effect
of individual residues on the cooperativity. Dynamical information is
obtained from e.g. spectroscopic studies, observing transition states in
the oxy to deoxy transition, and analysing specific bonds during CO
dissociation [74].

3.1.3 The Cooperativity of Hemoglobin

Hemoglobin’s binding affinity is dependent on the oxygen partial pressure.
This dependence shows a characteristic behaviour, deviating from a typical
hyperbolic shape as it would be observed for other binding processes
[68]. This sigmoidal dissociation curve indicates cooperative binding
behaviour (see Sec. 1.2). Hence, in comparison with a non-cooperative
binding behaviour, Hb favours oxygen at high oxygen partial pressure
and disfavours it at low oxygen partial pressure. This results in a more
effective O2 uptake in the lungs and an efficient release in the body tissues.

From hemoglobin’s dissociation curve it can be deduced that it is an
oligomer. This can be seen when comparing to the dissociation curve
of Hb to myoglobin, which resembles just one chain of Hb. Myoglobin

29



3 Hemoglobin

Figure 3.2: Cartoon Representation of the Superpositioning of Hemo-
globin’s α- and β-Chain. The α chain is shown in blue, the β chain in
grey, the heme groups are shown in orange sticks.

does not show sigmoidal characteristics but rather a non-cooperative
hyperbola [75]. Indeed, the structure of Hb confirmed its multimeric
conformation.

If dioxygen binding in one of Hb’s chains changes the binding affinity
of the other chains, there must be an information flow between the distant
(allosteric) binding sites. When dioxygen binds in one of Hb’s chains, the
chemical environment in that binding site is changed. This change may
lead to a local rearrangement of the amino acids and the heme group.
Since the binding site completely within one chain, this conformational
change is tertiary. To connect structural changes (induced by binding) in
two chains, a rearrangement may occur of the chains with respect to each
other, i.e. a quaternary change.

The necessity of this quaternary change for this allosteric coupling
was elegantly shown by slowing down Hb’s conformation transitions by
trapping it in silica gels, resulting in non-cooperative binding characteris-
tics [11, 12].

Models for Cooperativity Theoretical models have been developed to
explain the allosteric coupling of the four Hb chains including the pio-
neering works of Monod, Wyman and Changeux (MWC model [76]) and
Koshland, Nemethy and Filmer (KNF model [77]). The ground-breaking
MWC model describes the whole Hb by two crystallographic states: a
low binding affinity tense state (T) and a high binding affinity relaxed
state (R). Both states occur in equilibrium with certain probabilities. Each
dioxygen binding to Hb shifts this equilibrium towards the R state. The
KNF model extends the MWC model to T- and R-states for the individual
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Figure 3.3: The Heme Group in Hemoglobin: The Hb chain β in the T
state (grey) is shown together with the heme group including the iron
atom (orange), the proximal (blue, bottom) and the distal histidine
(blue, top). Dioxygen binds in the gap between the distal histidine and
the iron atom.

protein chains (overview over different models in [78, 79]). Here, the
binding event in each chain increases the binding affinity in the other
chains. As both models have their strengths and weaknesses, new models
were developed to incorporate more details of Hb’s cooperativity, e.g.
the Tertiary Two State (TTS) model of Henry et al. [80]. According to
this model, the chains each have two conformations and Hb as a whole
has two. A possible sequence of events, leading from one chain binding
oxygen to oxygen binding in all chains, is depicted in Fig. 3.4.

The previous models have described the allosteric mechanism by states
containing only one structure each. Because of the ensemble nature of
proteins, this description bares limitations. Cooper & Dryden showed
in their theoretical work, that allostery could – in principle – also be
manifested without a change in the average states, but only a change in the
width of the conformational distribution [81]. This entropic contribution
(e.g. changing the stiffness of a binding site without changing the average
conformation) is included in recent studies like the ensemble allosteric
model by Hilser et al. [82].

3.1.4 Molecular Dynamics Simulations of Hemoglobin

In addition to experiments, Molecular Dynamics (MD, see Sec. 2.1) simu-
lations have provided insight for shorter timescales from µs down to ps
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Figure 3.4: Schematic Representation of a Possible Pathway from the T-
to the R-State.

while maintaining the full atomistic picture of Hb. The works of Shadrina
et al. and of Lepeshkevich et al. focused on O2 diffusion in Hb studied
with MD [83,84]. Ramadas and Rifkind simulated conformational changes
due to perturbations of the heme pocket for methemoglobin dimers [85].
In the work by Mouawad et al., the Hb T-to-R transition was enforced by
restraining the Hb coordinates with decreasing structural distance to the
R-state structure [86]. The study from Yusuff et al. focused on 100 ns sim-
ulations from different crystallographic structure models [87]. Recently, J.
Hub and co-workers observed for the first time spontaneous reproducible
transitions from the T- to the R-state during MD simulations [88], match-
ing best to the TTS model of Henry et al. [80]. They described a tendency
for the β-chains to couple more strongly to the quaternary motion than
the α-chains.

3.1.5 Scope of This Study

In the present study we investigated how the local intra-chain motions
couple to the global inter-chain motions on a molecular level. To this
end, we enhanced the statistical basis for the transition trajectories with
respect to the original set [88], and developed a method which allows to
characterize the coupling between global and local motions. For this pur-
pose, we first separated global from local motions and then identified the
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coupling mechanism between them. We analysed the resulting coupling
collective coordinate on the level of molecular contacts, shedding light on
the molecular allosteric mechanism of hemoglobin. In addition, by using
a different set of histidine protonations with a higher fraction of doubly
protonated side chains, we were able to show a reduction in the number
of transition trajectories. This constitutes a possible explanation for the
Bohr effect in Hb.

3.2 Results

3.2.1 Molecular Dynamics Simulations

From the Hb simulations carried out by Hub and co-workers [88] the
ones starting from the T-state with doubly protonated and thus positively
charged His(β)146 (all other histidines neutral) showed transitions to the
R-state in all three runs. In our study, we extended these simulations
to improve the statistical basis of the T-to-R transitions. From a total of
50 simulations (200 ns long each; 10 µs total simulation time) 22 showed
a spontaneous transition (see paragraph 3.5.1). The specific simulation
setup is described in Table 3.5.1. For the further steps, only transition
trajectories were taken into account.

3.2.2 Coupling of Quaternary and Tertiary Motions

Starting from our T-to-R transition trajectories, to analyse the interplay of
local and global motions, we separated local from global motions as the
first step. Here, the MD transition trajectories were decomposed into two
trajectories: quaternary-only (Q) and tertiary-only (T). The first consists
of inter-chain motions with the Hb chains translating and rotating as
rigid bodies and the second contains intra-chain motions, omitting the
global movements. The combination of the Q and T trajectories yields
the full MD trajectories. For a visual explanation of the basic idea of the
decomposition see Figure 3.5, for a detailed description see section 3.5.2.

The two corresponding subspaces for Q and T are orthogonal by con-
struction, but the actual motions along them may still be correlated, thus
reflecting the underlying allosteric mechanism in hemoglobin. We there-
fore investigated if there was a coupling between local (T) and global (Q)
motions. In other words: can we construct a linear combination of the T
coordinates that is correlated to the Q motion?

We simplified the Q trajectory by only considering the first eigenvector
of a Principal Component Analysis (PCA) as the most dominant motion
(referred to as cQ , details in 3.5.2). For obtaining a collective coordinate
within T that maximally correlates to cQ, we applied Functional Mode
Analysis ((FMA), [55]) based on Partial Least Squares [56]. We assessed the
risk of overfitting, arising from the high dimensionality (d=13644) of the
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Figure 3.5: Illustration of the Separation of the MD Trajectories into T
and Q Trajectories: On top is shown how a single MD snapshot is
decomposed (B) with respect to the reference structure (A). This proce-
dure is applied to all snapshots yielding the two desired trajectories of
intra- and inter-chain motions (C). The schematic system was chosen to
resemble Hb with its four chains.
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T space, by cross-validation. A detailed description of the application of
FMA can be found in 3.5.2. The resulting tertiary FMA model correlated
to the cQ motion with a Pearson correlation coefficient of R = 0.98
(see Fig. 3.6) This means that despite the orthogonal nature of the two
underlying subspaces, T and Q, we found a coordinate within T that is
strongly coupled to Q. This allows us to predict the quaternary state from
the internal subunit coordinates alone, thereby providing insight into
the allosteric mechanism of subunit communication through quaternary
conformation changes.

Within the FMA framework it can be desirable to reweigh the individual
latent vectors with their contribution to the overall variance (see [55]):
While the FMA mode cT is the maximally correlated motion, which may
actually be restricted within the protein and not happening in simulations,
the ensemble-weighted mode cTew is the most probable motion that
correlates with the functional property. For further analysis, we used this
ensemble-weighted motion (cTew).

3.2.3 Molecular Coupling Mechanism

Now that we found a collective motion (cTew) within the local intra-chain
motions (T) that correlates strongly to the global inter-chain motions (Q),
we can investigate the underlying molecular mechanism for this allosteric
coupling. For a closer look, we reassembled the coupled tertiary and
quaternary motions in the following way: Starting from the T-state we
moved stepwise along cQ and independently along cTew. The step size
was chosen to be 1/20 of the distance between the extreme projections
of the simulations. This provided a grid of 20 x 20 structures in the
plane spanned by cQ and cTew. This is the smallest subspace showing
the coupling of local and global motions as derived from our simulations.
For the subsequent contact analysis, we picked a specific pathway in this
plane. Starting from the T-state, the first part of the path is along cQ,
and the second along cTew. In Fig. 3.7 Hb structures along both parts
of the path are shown. The path is also marked in white in Figure 3.8
and will be referred to as cQ-cTew. This pathway artificially separates
motions that are occurring simultaneously in the simulations. This allows
us to classify the contacts according to their decomposition into global
and local motions.
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Figure 3.6: Functional Mode Analysis Input Data and Fit Results: Pro-
jections of the concatenated MD trajectories onto cQ (blue) and onto the
constructed model cT (orange). The first half of the data has been used
for constructing the model and the second half for cross-validation.
Pearson correlation coefficients comparing MD data and FMA model
for both parts are shown on top. The x-axis is the consecutive time in
ps and the y-axis the projection onto the principal quaternary eigenvec-
tor in nm. The projections for the T- and R-state X-ray structures are
marked (dotted grey).

36



3.2 Results

Figure 3.7: Collective Coordinates cQ & cTew: An overlay of the struc-
tures along the cQ-cTew path is shown. The first half along cQ (top) and
the second half along cTew (bottom).
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In order for the information of a local conformation to flow from one
protein chain to another, it has to cross the corresponding interface. It is
therefore of interest to investigate interactions at the subunit interfaces.
Different interaction mechanisms for the coupling of local and global
motions were considered. Inter-chain attractive interactions could pull at
the protein chains, re-arranging them locally while being moved globally.
Alternatively, repulsive interactions between protein chains could push
subunits towards a different global conformation. For that reason, we
focused on inter-chain van der Waals overlaps and general distance based
contacts to investigate the interactions underlying the allosteric coupling
mechanism.

Van der Waals Overlaps To estimate the influence of interatomic re-
pulsion due to van der Waals (vdW) overlaps as a driving force for the
allosteric coupling, we calculated the overlap of atomic vdW spheres
(more details in 3.5.3). We did this for the 20×20 structures in the plane
spanned by cQ and cTew, and took into account only overlaps between
atoms from different protein chains. The higher the overlap in a specific
structure, the more energetically unfavourable it is. As can be seen in
Figure 3.8, the overlaps are minimal along the main diagonal while in-
creasing when moving orthogonally. Projecting the structures from the
MD simulations (white dots) onto this plane shows that they coincide
with the low vdW overlap region.

Hydrogen Bonds Hydrogen bonds are crucial for secondary and tertiary
protein structure formation. Since hydrogen bonds between Hb’s subunits
are also important for its quaternary structure, we analysed inter-subunit
hydrogen bonds along the quaternary T-to-R transition. Therefore the
structures of the transition trajectories were ordered according to the
projection onto cQ , and hydrogen bond energies were estimated using
the Espinosa formula [89] for each of the structures. With our focus on
the subunit interface, only inter-chain hydrogen bonds were considered,
resulting in 36 hydrogen bonds.

In the top plot in Fig. 3.9 the energies for the specific observed hydrogen
bonds are shown. The hydrogen bond energies fluctuate strongly, showing
mostly on/off patterns. To focus on the larger trend in energies of
the individual hydrogen bonds, the energies have been averaged over
neighbouring structures with the result shown in the lower plot in Fig.
3.9. For most hydrogen bonds no clear trend is apparent. An exception
is the interaction between the side chains of Arg(α2)31 and Gln(β2)127

(marked as “30” in Fig. 3.9), which weakened along the transition.

Contact Analysis For a broader view including hydrogen bonds as well
as vdW interactions, we monitored inter-chain atom pairs showing a
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Figure 3.8: Graphical Representation of the VdW-Overlap Analysis:
Van der Waals overlaps were calculated for structures in the plane
spanned by cQ (x-axis) and cTew (y-axis). For the extreme structures
in the four corners a zoomed-in part of Hb is shown to illustrate the
motions. Projections of the original simulation data onto this plane are
shown as white dots.

distance smaller than 3Å. This analysis was carried out along cQ-cTew
which allows us to classify the contacts according to when the contact is
or is not formed along this specific path. For specific interaction types
following contact patterns are expected. The two residues3 in contact are:

pulling at each other, breaking the contact when in the off-diagonal interme-
diate artificial states (see Figure 3.8) and maintaining it close to the
T- and R-state,

pushing each other getting close only in the off-diagonal intermediate artifi-
cial states when not moving along cQ and cTew together,

switching one of the interacting residues for another while moving along
cQ-cTew.

Pulling Contacts In Table 3.1 observed contacts are listed that fall in the
first category. These contacts only stay intact if the system moves along
cQ and cTew together, but break if moving in one or the other direction

3Atom contacts were translated into residue contacts if at least one atom of both
residues was closer than 3 Å.
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Figure 3.9: Hydrogen Bond Analysis: For 5000 MD structures ordered
along the T-to-R transition, hydrogen bond energies were estimated
using the Espinosa formula (top). The figure below shows the same
data while averaging the energies of 50 neighbouring structures.
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Figure 3.10: Inter-Chain Contact Analysis: (A) The matrix of observed
contacts is depicted with the colour indicating the contact class. (B) An
exemplary close-up on the contact region including the ’switch’ and
’hinge’ contacts (structure shown in (D)) as defined by Balakrishnan et
al. [74]. The arrows illustrate the switching behaviour of the Asp(α2)94

and the Asp(β1)99 residues. (C) Schematic representation of the contact
classifications along cQ-cTew.

independently. This is the expected behaviour for contacts which must
remain intact for the allosteric mechanism to function. Exemplarily, this
was observed for Phe(α1/2)117 and Arg(β1/2)30. The hydrogen bond
between the carboxylic oxygen of Phe and the side chain of Arg breaks
while moving from the T-state towards the off-diagonal intermediate
artificial states (see Figure 3.8), and forms again when approaching the
R-state.

Table 3.1: List of observed pulling contacts (type 1)

residue 1 residue 2

Lys(α1)40 His(β2)146

Tyr(α1)42 Asp(β2)99

Arg(α1)92 Gln(β2)39/Glu(β2)43

Pro(α1)95 Trp(β2)37

Phe(α1/2)117 Arg(β1/2)30

Tyr(α1)140 Pro(β2)36

Tyr(α1/2)140 Trp(β2/1)37

Arg(β1/2)40 Arg(α2/1)92/Leu(α2/1)91

Ala(α2)110 His(β2)116
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Pushing Contacts Contacts of the second category, which appear only
while moving along cQ and cTew individually, are listed in Tab. 3.2. One
scenario how these contacts could be leading to the allosteric mechanism
is the residues getting too close when not moving along cQ and cTew
together. This could be the case for repulsive vdW or coulomb interactions.
A clear example for this was the interaction of Lys(β1)82 and Lys(β2)82

we observed: Close to the T-state both side chains are pointing into the
solvent. While moving along cQ, the two β chains approach each other
and bring both positively charged side chains unfavourably close. The
motion along cTew relaxes this repulsive interaction by bending the N-
terminal ends of the F helices (the helix notation goes back to Watson,
Kendrew and Perutz [90]).

Experimental studies introduced cross-links between the two lysines [91,
92]. The derived structure was described to be an intermediate between T-
and R-state with characteristics of both states but no cooperativity. This is
in accord with our analysis, from which we saw that a linker between the
lysines would make the F helix bending impossible.

Table 3.2: List of observed pushing contacts (type 2)

residue 1 residue 2

Pro(α1/2)37 His(β2/1)146

Thr(α1)38 Pro(β2)100/Tyr(β2)145

Thr(α1/2)41 Val(β2/1)98

Trp(β1)37 Arg(α2)92

Lys(β1)82 Lys(β2)82

His(β1)143 Lys(β2)82

Leu(α2)34 Ala(β2)128

Phe(α2)36 Gln(β2)131

Asp(α2)126 Tyr(β2)35

Switching Contacts If during the transition one residue switches an
interaction partner, we expect to see the first contact disappearing and a
contact with the new residue appearing. This was observed e.g. for the
C-terminal Arg(α1)141. Its side chain interacts with the carboxyl group
of Val(β2)34, and switches along cQ-cTew so that a salt-bridge is formed
between the Arg terminus and the side chain of Lys(α2)127. This event
also has been seen in the symmetry-related counterpart independently.
Further contacts of this type are listed in Table 3.3.

3.2.4 Rotational Correlation of Amino Acids

To further investigate structural fluctuations within and between the pro-
tein chains, we looked at how the rotations of each amino acid backbones
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Table 3.3: List of observed contacts switching during transition (type
3). (*) In Hb Kempsey the mutation Asp(β)99→Asp(β)99 increases
the O2 affinity [93, 94]). The hydrogen bond Asp(β1)99-Tyr(α2)42 was
analysed by Balakrishnan et al. and named “switch contact” [74]. (**)
Asp(α2)94-Trp(β1)37 is the “hinge contact” analysed by Balakrishnan
et al. Both hydrogen bonds are reported to form during transition from
R to T.

residue contact in T contact in R

Arg(α1/2)141 Val(β2/1)34 Lys(α2/1)127

Asp(β1)99(*) Tyr(α2)42 Asp(α2)94/Val(α2)96

Asp(α2)94(**) Trp(β1)37 Asp(β1)99/Glu(β1)101

His(β1)146 Lys(α1)40 His(β2)2

are correlated. During my diploma thesis, I developed the method applied
here [95]. In short, it calculates for each amino acid how the relatively
rigid fragment of Cα-Cβ-N-C rotates between two structures. That way
we assign a rotation vector to each amino acid. The norm of the difference
of two rotation vectors then defines a distance metric between two amino
acids. For a trajectory, the distances are summed up to yield an averaged
rotational distance between two amino acids. This allows to separate rigid
domains from flexible protein regions.

Applied to the Hb simulations the correlations of the amino acid pairs
can be collected in a matrix (see Fig. 3.11). As it contains four rigid bodies,
the Q trajectory shows the expected block behaviour, indicating that the
amino acids within a protein chain are correlated more strongly than
between the chains.

From the matrix for the full MD trajectory in contrast, it is not possible
to detect the four protein chains. This suggests that the tertiary motions,
which constitute the difference between both matrices, are dominating
the dynamics from the perspective of this analysis.

The maximum rotational-similarity distance is higher in the case of the
full MD trajectory than the Q motions only, which is consistent with the
lower number of degrees of freedom.

3.2.5 Influence of Histidine Protonation

We aimed to analyse the effect of the histidine protonation states on
the transition probabilities in addition to the protonation states used by
J. Hub et al. [88]. For this purpose, a second set of protonation state
was simulated. We chose to use the protonation states as reported by
Kovalevsky et al., who used neutron protein crystallography to measure
the protonation of histidine residues in the T-state [96].

Both histidine protonation states are listed in Table 3.4. In the case
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Figure 3.11: Rotational Correlation of Amino Acids: Pairwise rotational
correlation for each amino acid is shown for the full MD trajectory
(right) and the Q trajectory (left).

of the protonations used by Hub et al., 13 out of 20 simulations (only
comparing simulations with cut-off of 1.4 nm for the vdW interactions)
showed a transition, while in the case of the protonation state described
by Kovalevsky et al., only 4 out of 20 simulations did (see Table 3.5). This
suggests a clear dependence of the transitions on the histidine protonation
state (further details on the calculation of the statistical significance in Sec.
3.5.4).

3.3 Discussion

3.3.1 Coupling of Quaternary and Tertiary Motions

The correlation of R = 0.98 for the model fitting (and RC = 0.83 for the
cross-validation) between the quaternary mode and the detected tertiary
mode is high, and allows us to predict Hb’s quaternary conformation
for a given tertiary conformation. We were able to detect this coupling
despite the fact that we did not take the full Q motions into account, but
rather reduced the motions to the first PCA eigenvector cQ. In a future
study, a more complete interaction picture may be derived by coupling
the tertiary motions to the full 18 dimensional quaternary subspace.

The model that we used to describe the coupling of quaternary and
tertiary motions is of linear nature. On the one hand, since there is
no necessity for a linear coupling, non-linear models could be more
suitable. On the other hand, the fact that we found a linear model
with an acceptable correlation in the cross-validation makes us confident
that already a major part of the coupling can be described linearly. We
investigated only instantaneous cQ to T coupling, although in reality there
might be a lag-time due to the time required for the signal to pass. Our
results, however, show that the coupling can already be identified from
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Table 3.4: Comparison of the histidine protonation states used in this
study: “0” indicates the neutral side chain, “+1” the doubly protonated
and thereby positively charged side chain. Histidines bound to heme
groups are shown by “H”. Residues for which the protonation was not
derived are shown in brackets. In that case we used the protonation by
Hub et al. The measured protonations by Kovalevsky et al. are different
for the both α resp. β subunits whereas Hub et al. used symmetric
protonation states.

Hub Kovalevsky Hub Kovalevsky

His(α) α1/2 α1 α2 His(β) β1/2 β1 β2

20 0 +1 0 2 0 (0) (0)
45 0 0 0 63 0 +1 0

50 0 0 +1 77 0 0 0

58 0 +1 0 92..Fe H H H
72 0 +1 +1 97 0 +1 +1

87..Fe H H H 116 0 +1 +1

89 0 0 +1 117 0 (0) 0

103 0 +1 +1 143 0 0 +1

112 0 +1 +1 146 +1 +1 0

122 0 0 0

an analysis of instantaneous correlations. Future work may include non-
linear models as well as delayed responses for the coupling, especially for
systems in which the order of events is known.

The rotational correlation of amino acids was not able to distinguish
the four protein chains when applied to the MD trajectories. In contrast,
when applied to the Q motions, the protein chains separated clearly as
expected. This suggests that the tertiary motions are dominating the
rotational dynamics of Hb. Hemoglobin seems not to behave like four
rigid bodies with local structure changes, but more like one clump of four
soft chains. This hypothesis still needs to be tested, and it may be true
for other proteins as well. Also, this direct analysis of motions does not
yield any coupling between local and global motions and thus hints at the
necessity of our specialized procedure to identify the coupling coordinate
from the T coordinates.

3.3.2 Molecular Coupling Mechanism

VdW Repulsions & Hydrogen Bonds The interaction picture we de-
rived from our analysis suggests that van der Waals interactions are a
global driving force for the allosteric coupling. The fact that MD trajecto-
ries projected onto the plane cQ -cTew coincide with the region around
the diagonal in Fig. 3.8 that corresponds to low van der Waals overlap
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strongly points at the underlying coupling mechanism: With cTew being
derived to optimize the coupling between local and global motions, it also
shows a strong coupling of sterical repulsions between local and global
motions.

Nevertheless, further efforts to break down the global interactions to
individual repulsive contact pairs did not yield a conclusive picture. This
suggests that the vdW repulsions at Hb’s inter-chain interfaces do not act
on a residue level, but on a broader, collective scale.

In contrast to the vdW analysis, our hydrogen bond analysis did not
produce strong global trends. In additional correlation measurements
of individual hydrogen bonds strengths with quaternary transitions, we
were not able to identify key hydrogen bonds, indicating that these play
only a secondary role in the allosteric coupling mechanism.

Contact Analysis The contact analysis along cQ-cTew allowed us to
classify contacts according to their behaviour along this path. By picking
this path in the plane spanned by cQ and cTew, we ensure that the observed
contacts are important for the coupling. If any contact pair did not play a
role in the allosteric coupling, it would not have been part of the coupling
of global and local motions. For a number of contacts we observed also the
symmetry-related residue-pairs (if not a contact of the same type, at least
the contact itself), which assured us of the significance of these contact
pairs. The similar number of pulling and pushing interface interactions
suggests that both types contribute to the allosteric coupling in equal
measure. The fact that sterical repulsions and hydrogen bonds could not
be unambiguously traced down to a residue level individually, but could
in the generalized contact analysis, points at an interplay of repulsive and
attractive interactions.

Notable Addition In our analysis the two residues Asp(α1/2)126 and
Arg(α2/1)141 stay in contact along the full cQ-cTew path, that is close to R
and T as well as in the off-diagonal intermediate artificial states. Hence,
since the contact is not changing in the coupling space spanned by cQ and
cTew, this salt-bridge does not seem to play a role in the coupling of local
and global motions. Nevertheless, it was shown in Hb Montefiore that
the mutation of Asp(α1/2)126 to a Tyr breaks down the cooperativity [97].
Further studies are needed to investigate why we did not detect this
contact pair. The applied dimensionality reduction from Q to cQ may
have been causing this.

Mutations In this study, we assigned different roles in the coupling
mechanism (like forming hydrogen bonds or repulsion due to van der
Waals interaction) to individual amino acids. Mutagenic studies of these
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amino acids provide a direct means to validate the predicted role of
individual amino acids in the allosteric mechanism.

The observed contacts which are caused by van der Waals repulsions
may be reduced by mutating to residues with smaller side chain sizes.
In the case of charged side chains introducing an additional charge of
the same sign may increase the repulsion. Contacts including hydrogen
bonds can be suppressed by using unfavourable mutations.

We suggest mutations affecting the “hinge” and “switch” contacts [74] in
Table 3.3. Our observations extended this region by interaction partners in
the R-state allowing to choose mutations affecting either the T- or R-state.
By introducing a hydrogen bond donor the mutation Val(α2)96→Thr
may stabilize the R-state. The central role of the Asp(β)99 in this area
makes it an interesting mutation site since it might separate the two
timescales associated with the “hinge” and “switch” contacts as described
by Balakrishnan et al.

The repulsive interaction of the two Lys(β)82 can be explored by either
a mutation to Arg or even by switching both charges by a mutation to
Glu, keeping the repulsive Coulomb interaction.

Further, we suggest a mutation of the Arg(α)141→Lys to analyse the de-
tails of this salt-bridge by this conservative mutation, leaving the charges
untouched and only changing the side chain length.

3.3.3 Influence of Protonation

The measured histidine protonations in the T-state by Kovalevsky et
al. [96] showed a high number of doubly protonated and thus positively
charged side chains. This is in agreement with the Bohr effect, stating the
T-state to be more stable at low pH. By applying these protonations to our
MD simulations we were able to observe significantly lowered transition
probabilities from the T- to R-state.

Even though our simulations are not long enough to be considered at
equilibrium conditions, our observations can be taken as a proof of con-
cept of the electrostatic interactions stabilizing the T-state and thereby un-
derlying the pH-driven Bohr effect. During the T-to-R transition residues
at the α1/α2 and the β1/β2 interfaces get closer. Positively charged histi-
dine residues at these interfaces add a repulsive Coulomb force, rendering
the transition energetically more unfavourable. Interestingly, most of the
histidines that are changed from neutral to positive when applying the
T-state protonations, are located on the outside of Hb and not at chain
interfaces. A careful introduction of additional histidines by mutation – as
pH sensitive switches – may increase the Bohr effect. Also, calculation of
free energy differences between the T- and R-state upon protonating histi-
dine residues may yield direct, quantative insight into the contribution of
individual histidines to the total Bohr effect.
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3.4 Conclusions

We developed a novel method to extract the underlying allosteric coupling
mechanism from spontaneous Hb transition trajectories.

One fundamental component of this method is the separation of lo-
cal/tertiary and global/quaternary degrees of freedom (DOF). In this
study, we presented a method that strictly decomposes both. This method
guarantees that any observed coupling between both subspaces is not due
to linear dependence of the respective basis vectors, but a real feature of
the allosteric mechanism.

The suggested separation algorithm is not limited to hemoglobin and
can be applied to other systems with multiple chains. Also, the algorithm
can be used for any definition of domains in the broader sense to separate
the motions within the domains and between the domains.

The second component of our method, the PLS-based functional mode
analysis, allowed us to find a linear coupling coordinate between both
subspaces and thereby identify the allosteric coupling. Applied to hemo-
globin, the FMA revealed a remarkable correlation between collective
coordinates from quaternary-only and tertiary-only motions. The tertiary-
only coupling mode is markedly different from the tertiary structure
differences between the known crystallographic R- and T-states. Thus,
this mode could not have been derived solely based on the X-ray struc-
tures, but yields novel information directly based on transition trajectories
between the T- and R-state.

The third part of this work is the interpretation of the identified coupling
coordinates. We focused on the protein chain interfaces and detected key
interaction residues. We suggest that the allosteric coupling between
local and global motions in Hb consists of an interplay of repulsive and
attractive interactions at the subunit interfaces in equal measure.

In addition, we were able to lower the T-to-R transition probability
by increasing the amount of positively charged histidine residues as a
possible molecular explanation of the Bohr effect. Future mutational stud-
ies may verify our predicted interactions and consolidate the molecular
interaction picture of hemoglobin’s allosteric coupling.

3.5 Materials and Methods

3.5.1 MD Simulations & Transition Trajectories

MD Simulations The starting structure for all simulations was the Hb
T-state X-ray structure (Fermi et al. [9], PDB id: 2HHB). Each simulation
was run with independent starting velocities and had a length of 200 ns.
All simulations were carried out using the Gromacs software [30, 31] with
the GROMOS 43a2 force field [33]. All simulation parameters used were
the same as described before [88] with the exception of the Lennard-Jones
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cut-off (rvdw). The key MD parameters are listed in Tab. 3.6. Figure
3.12 pictures a typical Hb simulation system with water molecules and
physiological ion concentration. For the simulations a dodecahedral
box was used for each periodic image, reducing the number of solvent
molecules needed when compared to a rectangular box. Ten simulations
used the same rvdw = 1.0 nm as Hub et al. Twenty additional simulations
were run using a larger vdW-cutoff of 1.4 nm as consistent with the
GROMOS force field parameterization. We could not observe differences
in transition probabilities due to rvdw. Finally, 20 simulations using a
second set of histidine protonations were performed (see Table 3.5). In
total 10 µs of Hb simulations were carried out.

Table 3.5: Simulation Setup: Differences in parameters for the individual
MD simulations carried out in this study: Lennard-Jones cut-off (rvdw),
histidine protonation states (His prot.). Number of total simulations
and transition simulations are shown for the different cases. (*) In this
case 13 transitions were observed but only 12 trajectories were included
in the analysis (see 3.5.1).

rvdw [nm] His prot. nr. of sims nr. of transitions

1.0 Hub et al. 10 5

1.4 Hub et al. 20 13/12(*)
1.4 Kovalevsky et al. 20 4

Table 3.6: Additional Simulation Parameters: Parameters used for simu-
lations in this study.

parameter value parameter value

timestep 2 fs steps 1·108

solvent SPC salt 150 mM NaCl
force field GROMOS43a2 electrostatics particle-mesh Ewald
temperature 300 K thermostat v-rescale (τ=2.5 ps)
pressure 1 bar barostat Parrinello-Rahman (τ=5 ps)

# atoms 45946 # waters 13374

# Hb atoms 5730 # Na+/Cl− 49/45

T-R transition trajectories To judge whether a T-R transition occurred
in the individual simulations, the following criterion was applied: Each
simulation was projected onto the difference vector between the T-state
and the R-state X-ray structure (Park et al. [10], PDB id: 1IRD; with
applied symmetry for the full tetrameric state). If a projection at any time
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Figure 3.12: Hemoglobin With Water and Ions in a Dodecahedral Box:
Hb (see Fig. 3.1) in a dodecahedral box filled with water molecules
(red-white sticks) with ions in physiological concentration: Na+ (blue)
and Cl− (orange).

covers 80% of the T-to-R distance, the whole simulation was considered a
transition simulation. This gives us the information which simulations are
making a transition to the R-state4, but this does not automatically imply
that these simulations reach a structure similar (e.g. in terms of root of
mean square deviations) to the R-state. All transition trajectories covered
a similar range on the T-R vector whereas one simulation exceeded that
strongly. We excluded this outlier, because it would have dominated the
global motions in terms of covariance despite its low statistical weight.
This left us with 21 transition trajectories and 4.2 µs simulation time in
total.

3.5.2 Separation and Coupling of Quaternary and Tertiary Motions

The following method was applied to hemoglobin, but it can be used
to analyse other systems with multiple domains as well. Since we were
interested in the coupling of local and global motions, we had to define a
border that enclosed what we considered local and separated it from the
global. Here, we chose the protein chains to each be a local domain. Note
that also other choices would have been possible, e.g. grouping Hb into

4their motions have one component parallel to the T-R vector
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two dimers instead of four monomers. When analysing the motions of a
two domain protein consisting of only one chain, it may be of interest to
consider each domain as one local entity. The border that we chose also
defined the interface that we were analysing, in our case the chain-chain
interfaces. This choice defined the local coordinates as tertiary coordinates
(as they describe motions within single protein chains) and the global
coordinates as the additional coordinates as they form the hemoglobin
heterotetramer.

Tertiary-Only Motions: T To get the local/tertiary-only (T) coordinates,
we superimposed the coordinates of each chain individually onto the
respective chain in the T-state X-ray structure. This yielded an artificial
structure, with all chains having the same center-of-mass and orientation
as in the T-state and displaying only subunit-internal fluctuations. A
trajectory processed in this way therefore consists of protein chains which
do not move with respect to each other, but only show internal motions.
The full MD trajectory has 3N degrees of freedom (DOF) with N=4556

being the number of atoms. Since all four subunits are superimposed
individually, the DOF for T are reduced by 24 leaving 13644 DOF for T.

Quaternary-Only Motions: Q & cQ The complementary global/qua-
ternary-only (Q) coordinates we obtained by doing the opposite and
superimposing each chain with the respective chain from the T-state
structure. Thus each chain was represented by a rigid body and lost
all information on internal coordinate changes, only keeping fluctuating
positions and orientations of the individual chains. Since the four chains
have six translational and rotational DOF each, and the six overall posi-
tional and orientational DOF of the system are removed, the Q motions
sample 18 DOF. For the coupling analysis, we simplified the Q motions
further with a Principal Component Analysis (PCA; see 2.2.1). The result-
ing eigenvalue spectrum shows a steep decrease among the 18 non-zero
eigenvalues with the first eigenvector (referred to as cQ) describing 22%
of the total covariance of the Q motions. This principal mode was used
for FMA.

The Q and T coordinates together carry the full information of the
original trajectory (3N-6 DOF).

Application of FMA: cT & cTew Functional Mode Analysis (FMA)
identifies collective motions maximally correlated to a specific functional
property. The original implementation of FMA [55] accomplished a reduc-
tion of dimensionality of the underlying space based on PCA. Recently,
a new version of FMA based on Partial Least Squares (PLS) has been
published [56]. Therein a linear model is constructed based on a given
number of latent vectors that are subsequently optimized.
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We used FMA based on PLS to maximize the correlation of a given
number of latent vectors within T to cQ. We constructed the FMA model
on one half of the data first. To estimate the number of suitable latent
vectors, we then used the second half for cross-validation to test the
predictive power of the model. This resulted in 20 components as the
optimal number, with decreasing predictive power for a higher number
of components (indicative of overfitting). Applying this knowledge, we
constructed the final model with 20 latent vectors on the full data set. The
constructed model and the cross-validation are shown in Figure 3.6. The
calculated Pearson correlation coefficients were 0.98 for fitting part and
0.83 for the cross-validation part indicating a strong coupling between
motions along cQ and cT.

Comparison of Collective Coordinates To estimate how similar the cQ,
cT and cTew motions were, we calculated scalar products between the
corresponding normalized vectors. In addition, we also compared them
to the difference vector of the T- and R-state X-ray structures. To this
end, the difference vector was decomposed into a quaternary-only and a
tertiary-only part as were the simulations. All mutual scalar products are
shown in Table 3.7.

The derived tertiary model cT shares no information (within statistical
significance5 ) with the T-R difference vector (orange), which means that
our model could not have been derived solely from the T and R X-ray
structures. The same holds after application of our separation method to
the crystallographic difference vector (T-R tertiary) yielding an overlap
of 0.03 (grey). In contrast, it can be seen that on the level of quaternary
motions the cQ vector is quite similar to the T-R X-ray difference vector
(blue).

3.5.3 Molecular Coupling Mechanism

Van der Waals Overlaps To compute the inter-chain vdW overlap for
a single structure we used a modified version of the dist program from
the CONCOORD software [4]. For each atom we calculated how much
its vdW sphere penetrates vdW spheres of atoms from other chains. The
sum of vdW overlap values for all atoms gives a length in nanometer,
representing a measure for the vdW overlap for each structure.

5Scalar products between high-dimensional random vectors are usually small. To
determine at what value scalar products are significantly different from random
vector scalar products, we computed scalar products between randomly oriented
normal vectors in 13668 dimensions. 98% of the scalar products were below or
equal to 0.02. In other terms, the probability for two random vectors having a scalar
product of more than 0.02 is 2%.
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3.5 Materials and Methods

Table 3.7: Mutual Scalar Products of Specific Collective Coordinates:
Scalar products between the normalized vectors along collective co-
ordinates including cQ, cT, cTew. For a comparison with the X-ray
structures we also decomposed the difference vector between the T- and
R-state (T-R full) in the same way it was done with the MD trajectories
yielding T-R tertiary and T-R quaternary (values referred to in the text
are coloured).

cQ cT cT
ew

T-
R

fu
ll

T-
R

te
rt
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ry

T-
R

qu
at
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cQ 1.00

cT 0.01 1.00

cTew 0.02 0.42 1.00

T-R full 0.63 0.01 0.03 1.00

T-R tertiary 0.03 0.03 0.02 0.52 1.00

T-R quaternary 0.75 0.00 0.01 0.84 0.02 1.00

Hydrogen Bond Analysis Hydrogen bonding energies were estimated
applying the Espinosa formula [89]. Here, only inter-chain hydrogen
bonds were considered for each structure individually, and for compu-
tational efficiency reasons only 5000 equidistant structures were chosen
from the ordered trajectory. The Espinosa formula has no repulsive term
for small distances of the hydrogen atom to the acceptor, so we scaled
down energies stronger than -30 kJ/mol to -30 kJ/mol to avoid counting
spuriously low hydrogen bond energies due to artificially small distances.
In case of distances too high to form a hydrogen bond, we cut off energies
weaker than -5 kJ/mol, and reduced them to 0 kJ/mol. For the figure
below in Fig. 3.9 a uniform running average with a window size of 50

was performed.

Contact Analysis In the contact analysis, atoms closer to each other
than 3 Å were monitored and defined as contacts. For the 17 frames
along cQ-cTew the contacts were defined individually, resulting in a binary
on/off trajectory for every contact. We did not consider residues that
were always6, never, or in an irregular manner in contact along this

6These residues are in contact close to T and R, which qualifies for a pulling contact.
But since they are also in contact in the artificial states in between, they allow for a
motion along cQ and cTew independently, and hence do not explain the coupling of
the motions.
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3 Hemoglobin

pathway. A visualization of the contact analysis is shown in Fig. 3.10. In
the description of the results, we named specific structures as “close to T”
and “close to R”; “close to T”/“close to R” here means before/after the
transition as defined in paragraph 3.5.1.

3.5.4 Influence of the Histidine Protonation on the T-to-R
Transition Rates: Statistical Relevance

We observed T-to-R transitions in 13 out of 20 trajectories with the original
histidine protonations [88] and in 4 out of 20 with the protonations
measured by Kovalevsky et al. [96]. Since each of the simulations either
did or did not show a transition, and all simulations are of equal length,
they can each be considered as one event.

Assuming a probability p for a transition, the probability of observing k
out of n simulations with a transition is given by the binomial probability
distribution

F (n; k, p) =
(

n
k

)
pk (1− p)n−k .

While p remains unknown, we can still estimate the probability for values
of p, given that 13 positive events out of 20 were measured.

W(p) = 21 · F (20; 13, p) = 21 ·
(

20
13

)
p13 (1− p)7 .

W has to be normalized for p taking values between 0 and 1. The normal-
ization factor 21 can be obtained using the beta function and its identity
for integers: x and y

B(x, y) =
∫ 1

0
tx−1 (1− t)y−1 dt =

(x− 1)! (y− 1)!
(x + y− 1)!

.

Each (unknown) underlying probability p from 0 to 1, is weighted with
W accounting for 13 positive events observed out of 20. This results in
the probability of measuring 4 or fewer events out of 20 with the same
probabilities being

P (k ≤ 4) =
4

∑
k=0

∫ 1

p=0
W (p) F (20; k, p) dp ≈ 0.0031.

Thus, the difference in the protonation states of the histidines has a
significant effect on the transition probabilities with a p-value of 0.0031.

54



4 Allostery of the ATP-binding in ABCE1

This project is done in collaboration with Dr. Hadas Leonov from the Com-
putational and Biomolecular Dynamics Group at the Max Planck Institute
for Biophysical Chemistry, Göttingen. For this thesis, she contributed the
Sequence and structure alignment in the ABC family including Fig. 4.3.

For the experimental part, we are collaborating with Prof. Robert
Tampé’s Cellular Biochemistry group at the Goethe University, Frankfurt.

4.1 Abstract

ABCE1 is a non-transporting member of the ATP binding cassettes (ABC)
proteins family. It consists only of two nucleotide binding domains
(NBDs), lacking a transmembrane domain found in ABC transporters,
and was found to play a role in ribosome recycling. As in other ABC
proteins, the NBDs can each hydrolyse ATP. This hydrolysis evokes a
conformational change of the NBD from a more compact conformation
(“closed”) to a more open conformation (“open”). This motion is as-
sumed to be responsible for releasing ABCE1 from aRF1 at the translation
termination phase.

The two ATP binding sites appear structurally symmetric, but bear a
peculiar asymmetry: Upon mutating one catalytic Glu to Gln in the first
NBD, the overall activity decreased to less than half, while mutating the
symmetric Glu at the second NBD caused a tenfold increase in activity.

In the following study, first steps towards understanding this unusual
observation have been taken. While the structure of the open conformation
was recently resolved by X-ray crystallography, a model of the closed
conformation is still missing. By applying computational methods such
as Molecular Dynamics and Essential Dynamics simulations, we derived
a model of the closed structure and suggested mutagenic experiments to
our experimental collaborators. These mutations are designed to stabilize
the closed conformation, putatively allowing to derive a second high
quality structure model with X-ray crystallography, which would be an
important step towards characterizing the allosteric mechanism of the
functional asymmetry.
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4 ABCE1

Figure 4.1: Cartoon Representation of Sav1866: This member of the
ABC family has the typical ABC transporter characteristics: the trans-
membrane domain (TMD, blue) with the membrane position indicated
by grey bars and the nucleotide binding (NBD) or ATP twin-cassette
(ABC) domain (orange). The bound nucleotides are shown in spheres.
(PDB id 2ONJ [100])

4.2 Introduction

4.2.1 The ABC Family

ATP binding cassettes (ABC) proteins form a large superfamily of proteins
mostly containing transporter proteins. ABC transporters are found
in all kingdoms of life where they transport molecules through lipid
membranes [98]. In difference to membrane channels, which allow a
passive (but specific and mostly regulated) molecule exchange along a
concentration gradient, ABC transporters can actively transport cargo
against the concentration gradient at the cost of ATP hydrolysis [99].
These transporters consist of an α-helical trans-membrane domain (TMD)
and nucleotide binding domains (NBD) for the ATP hydrolysis (see Fig.
4.1 for an example). Following the hydrolysis, the conformation of the
NBDs change, and this change is leading to a rearrangement of the TMD,
which allow molecules to translocate across the membrane. Hence, ATP
hydrolysis in the NBD allosterically regulates the transport process.

ABC transporters are known to cause multi drug resistance in cancer
cells, hindering chemotherapy. This is due to overexpression of ABC
transporters, which extrude active ingredients used in chemotherapy
[13, 14]. A profound understanding of ABC transporters may allow to
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4.2 Introduction

Figure 4.2: Cartoon Representation of ABCE1: This shows the ABCE1

X-ray structure from Barthelme et al. (PDB id 3OZX). The bound
nucleotides are shown in magenta.

inhibit the transport to overcome this limitation in cancer treatment.

4.2.2 ABCE1

The protein ABCE1 is one of the few members of the ABC family that
does not contain a TMD but only two NBDs. In addition, it contains
an N-terminal iron-sulfur-cluster (FeS) domain. Originally, ABCE1 was
discovered to act as a ribonuclease L inhibitor (RLI) [101], but later a
much broader functional spectrum emerged: It was found to be critical
for HIV-1 capsid assembly1 [102], and during protein synthesis to inter-
act with elongation, initiation [103] and release factors [104]. In 2011,
Barthelme et al. published an X-ray crystal structure of ABCE1 of sul-
folubus solfataricus (PDB id 3OZX; see Fig 4.2) [15]. The structure was
crystalized without the FeS domain. It showed two similar ATP binding
sites with a remarkable difference in function: stopping ATP hydrolysis
by mutation of the catalytic Glu238 to Gln in the first NBD decreased the
overall activity to 30-50%, while mutation of the symmetric Glu485 to
Gln increased the activity by a factor of ten. As expected, simultaneous
mutation in both sites renders the protein inactive [15].

1under the name HP68
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4 ABCE1

4.2.3 Scope of This Study

In the present work, we want to investigate the reasons for the functional
difference between the two ATP binding site despite their structural sym-
metry. The hydrolysis is predicted to be associated with a clamp-like
conformational change. Our goal is to understand how both domains in-
teract during the transition. At the beginning of the study, only a structure
of the ADP-bound (“open”) conformation was available. It is assumed,
that an ATP-bound structure would adopt a “closed” conformation [15],
but a structure model of it is still missing. To thoroughly analyse the
conformational dynamics between both, high quality structure models of
both states are necessary.

To this end, we applied computational methods to investigate muta-
tions that could stabilize a closed conformation. In addition, we extended
the 3OZX structure by adding the FeS domain according to the Pyrococ-
cus abyssi X-ray structure by Karcher et al. ( [105], PDB id: 3BK7), to
investigate the role of the FeS cluster domain.

4.3 Results

It is hypothesised that ABCE1 undergoes a conformational change from
“open” to “closed“ upon ATP binding. The ADP-bound structure by
Barthelme et al. represents the open conformation. The structure of
the NBD domain consists of two homologous subunits expressed on the
same protein chain. Following the residue numeration of 3OZX, the first
subunit is from 76 to 329 (NBD one) and the second subunit from 340 to
599 (NBD two)2. This definition was used later to define contacts between
the two domains.

In this work, we were applying computational methods to aid the iden-
tification of a closed ABCE1 conformation. First, we identified required
structural features common to ”closed“ conformations of NBDs of other
ABC proteins. Secondly, applying Essential Dynamics (ED) and Molecular
Dynamics simulations, we drove the open ABCE1 structure to fulfil the
structural features. As the last step, a contact analysis that focuses on
differences in both conformations was applied to identify key residues.
Suitable mutations of these residues may be used to stabilize the protein
in a closed state.

4.3.1 Sequence And Structure Alignment in the ABC Family

The first step towards a closed structure model of ABCE1 was to get as
much knowledge as we can have from existing structures of open and
closed NBDs of ABC proteins. We combined ABC structures similar in

2The ten residues in between are in loop regions, not contained in the PDB. We included
the residues according to experimental insight from our collaborators.
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4.3 Results

structure (using the DALI protein server [106]) in a core coordinate set of
the NBD. From ABC proteins structures were selected to obtain maximal
similarity between them, while keeping the number of common residues
for each high. The resulting consensus set (called CS in the following)
contained structures of 26 ABC proteins with a subset of 324 common
amino acids each.

4.3.2 PCA of Similar ABC Structures

To identify different conformations within the CS, we applied a principal
component analysis (PCA, see section 2.2.1). The first two eigenvectors
represent a lateral and a cone shaped opening/closing motion. The
projections on these motions show clustering of all ATP-bound structures
and with one exception clustering of ADP-bound structures (see Fig. 4.3).

Since all ATP-bound structures occupy a single region in the first two
PCA dimensions, we assume that the ATP-bound ABCE1 adopts a similar
conformation and can also be found in that region (marked red in Fig. 4.3).
This region is characterized by being maximally closed in the lateral and
the cone shaped motion, explaining the denotation ”closed“. To obtain a
structural model of the ATP-bound ABCE1, the next step was to drive the
Barthelme et al. structure 3OZX in direction of the ATP-bound structures.
Thereby we aimed at an ABCE1 structure with the characteristics of the
closed conformation. This was done in the space given by the first PCA
coordinates, while not restraining the vast majority of degrees of freedom.

4.3.3 Essential Dynamics Simulations

In order to drive the consensus set coordinates of the protein towards the
closed target structure, we used essential dynamics simulations (ED; see
Sec. 2.3). In the space spanned by the first five eigenvectors3 of the PCA on
the consensus set structures, we drove the simulations towards the target
using the radial contraction (radcon) option of the ED implementation
in GROMACS. To get a first idea how this works, see Fig. 4.4. Further
details on the simulations are given in section 4.5.

In the PCA subspace, the ED simulations quickly reached the ATP-
bound conformations (see Fig. 4.4) in ∼200 ps. From unrestrained MD
simulations starting from the open conformation, we would estimate
the actual timescale for this transition to be larger than 200 ns. For that
reason, additional simulations are required after reaching the ATP-bound
structures, to further equilibrate the degrees of freedom orthogonal to the
PCA space.

3For the sake of clarity in illustrations only the first two eigenvectors are used.
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4 ABCE1

Figure 4.3: PCA on the Consensus Set of ABC Proteins: The projection
of the consensus set structures on the first two PCA eigenvectors is
shown. The structures are coloured corresponding to the bound lig-
and: ATP-bound (red), ADP-bound (blue) and empty (green). In the
corners, structures in Cartesian coordinates represent the motions. The
Barthelme et al. structure 3OZX is marked.

4.3.4 Unrestrained MD Starting from The Closed Model

From the ED simulations, we excluded the first 20 ns for equilibration and
from the remainder, we chose the structure closest to the target as a model
for the closed conformation. This was done separately for the ADP-, ATP-
bound and empty protein in order to estimate the effect of the ligand in
MD. Starting from the calculated models MD simulations without the ED
restraints were run to further validate the model by allowing relaxation
of all degrees of freedom. Figure 4.5 A shows the simulation projected
onto the first two PCA eigenvectors of the CS. The simulations starting
from the open conformation explore similar regions in the PCA space,
with a tendency to evolve in direction of the closed conformation. Also,
the simulations starting from the closed conformation evolve towards the
open conformation, but do not behave as similarly as in the open case.
The largest difference between the individual simulations was observed in
the case of empty binding sites and starting from the closed conformation
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4.3 Results

Figure 4.4: ED Radial Contraction Simulations: This illustrates how ra-
dial contraction works. The simulations are evolving towards the center
of the circles, where the target is defined. The four simulations differ in
the number of dimensions included into the ED subspace, but in this
two-dimensional projection they behave similarly.

(see Fig. 4.5 B). Detailed information about the MD simulations can be
found in Sec. 4.5.

4.3.5 Contact Analysis

In order to stabilize the protein in the closed conformation by mutations,
we need to know the characteristical differences in residue interactions
between the open and the closed state. Therefore, a contact analysis was
performed to identify residues in contact across the NBD-NBD interface.

As structure ensembles for the open and closed state we used the
ADP-bound simulations starting from the open conformation and the
ATP-bound simulations starting from the closed conformation respectively.
Two residues were registered as a contact, if at least 10% of the time two
atoms of these residues are closer than 3 Å. In figure 4.6 an illustration of
the results is shown.

Since it was our goal to stabilize the closed state with suitable mutations,
we only focused on contacts that are present in the closed state but not in
the open state. Being specific for the closed state, these contacts may give
hints for promising mutation sites.
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4 ABCE1

Figure 4.5: Projection of Unrestrained MD Simulations on the Consen-
sus Set: (A) Projections of MD simulations starting from open structure
(3OZX) and closed model are shown. The colours indicate the type of
ligand bound in both binding sites. (B) Close up view of the five individ-
ual simulations (different colour) starting from the closed conformation
with no ligand bound are shown.

4.3.6 Mutation Suggestions

To identify mutations that may stabilize the closed conformation, we ap-
plied following criteria on the full list of contacts: First, the two residues
were much more frequently in contact in the closed conformation com-
pared to the open state4. This was important, since we aimed at stabilizing
the closed state over the open state. Second, (as mentioned before) the
residues need to interact frequently. Third, none of the residues should
be in direct proximity to the ATP binding site. This is necessary to reduce
the probability that the mutation directly affects the ATP hydrolysis.

A possible mechanism to create a strong bonded interaction between
two residues is to mutate both to cysteines so that a disulfide bond
can form. In addition, other crosslinkers with different length can be
introduced, or the sulfur atoms can be linked by mercury with HgCl2.

We looked closer into the contact pairs and suggested the following
that emerged as promising mutation candidates:

1. Asn204 – Glu538: Cys-Cys crosslink suggested; alternatively, the

4or not existing in the open state
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4.4 Discussion & Conclusion

Figure 4.6: Contacting Residues For Open And Closed State: Only con-
tacts present at least 10% of the time are included in the analysis.

mutation Asn204→Asp may form a salt-bridge to Glu538

2. Ser461 – Asn108: Cys-Cys crosslink suggested

3. Gln167, Tyr168, Gly462, Tyr489: hydrophobic cluster suggested, e.g.
Gln167→ Phe or Tyr

4. Lys84 – Asp459: Cys-Cys crosslink with a longer linker suggested

5. Glu454 – Lys43: Lys43 is part of the FeS-cluster domain, a longer
crosslink is required

At the moment, first mutation experiments had been carried out for the
Ser461 – Asn108 contact. Between the residues different crosslinks were
established, but further optimization on the experimental conditions is
needed. Complete results on first mutations are expected within few
months.

4.4 Discussion & Conclusion

In this project, collective coordinates were defined to drive the transition
between the open and a putative closed conformation of ABCE1. The close
proximity of all ATP-bound structures in the PCA projection, rendered
us confident to also find the ATP-bound closed ABCE1 there. With
the radcon algorithm, the transition towards the closed conformation
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4 ABCE1

happened at least three orders of magnitude faster than in normal MD.
Such structures have to be evaluated carefully, since they may be far
away from equilibrium. For that reason, even after quickly reaching the
closed conformation within the PCA space, we continued the simulations
first with the ED restraints and after that unrestrained. In Fig. 4.7, the
deviation from the target structure shows how the system ”relaxes“ after
the fast conformational change.

The validation of the closed state model with unrestrained simulations
showed, that the ABCE1 adopted to the new conformation. As seen in Fig.
4.5, the PCA projection of the simulations starting from the closed model
occupy a similar area compared to the open state simulations, yielding
a similar flexibility in the first two eigenvectors and thus pointing at the
stability of the model.

The ensembles starting from both states move more towards each other
than orthogonally. This might point towards an energetically favourable
path connecting the two. In future computational studies, Umbrella
Sampling [107,108] may be applied to connect both ensembles dynamically
and to calculate free energy differences along this path.

Even though we were not yet able to work on the actual allosteric
interactions between the two ABCE1 domains, obtaining a high resolution
X-ray structure would be a big step in that direction. The mutations we
have suggested should aid to advance towards this goal.

It was shown, that the FeS-cluster domain is essential for the interac-
tion with the ribosome [15]. In our simulations, the FeS-cluster domain
showed relatively high mobility, which may aid to establish a first con-
tact of ABCE1 with the ribosomal 30S subunit. We observed a contact
between the FeS-cluster domain and the second NBD (fifth mutation sug-
gestion), which may affect the internal dynamics of ABCE1 and thereby
the allosteric coupling between the two NBDs. Additional simulations are
needed to further investigate the effect of the FeS-cluster on the dynamics
of ABCE1. The large size of the ribosome, would still render it difficult to
obtain MD simulations of ABCE1 in contact with the ribosome. But with
growing computer power it may be possible to explore this important
interaction soon and to gain deeper insight in the function of ABCE1.

4.5 Materials & Methods

4.5.1 PCA

For the PCA (see Sec. 2.2.1) a subset of residues from 3OZX was consid-
ered. The residues are given in section 7.3. The first two eigenvectors of
the PCA on the CS structures already covered 81% of the total variance.
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4.5 Materials & Methods

Table 4.1: ABCE1 Simulations

ED non-ED

ligand open closed

ADP 5 ×100 ns 5 ×200 ns 5 ×200 ns
ATP 5 ×100 ns 5 ×200 ns 5 ×200 ns
empty 5 ×100 ns 5 ×200 ns 5 ×200 ns

Table 4.2: MD Simulation Parameters: Parameters used for simulations
in this study. The atom numbers are taken from the ATP-bound simula-
tions of the closed model; the exact numbers may vary slightly for the
other setups.

parameter value parameter value

timestep 4 fs steps 5·107

solvent SPC salt 150 mM NaCl
force field AMBER99sb-ildn electrostatics particle-mesh Ewald
temperature 310 K thermostat v-rescale (τ=0.1 ps)
pressure 1 bar barostat Berendsen (τ=1 ps)

# atoms 88674 # waters 25982

# ABCE1 atoms 10474 # Na+/Cl− 85/81

4.5.2 MD Simulations

For the essential dynamics simulations as well as the subsequent MD
simulations without the ED restraints, the main parameters are summa-
rized in table 4.2. Virtual sites (see Sec. 2.1) have been applied to double
the timestep to 4 fs. For the three binding site states (ADP, ATP, empty)
ED simulations were carried out. Starting from the open structure and
the closed ED model, unrestrained MD simulations were executed for
∼200 ns.

To obtain independent sampling and thereby increasing statistical signif-
icance, every simulation (including ED and non-ED) was carried out five
times. Table 4.1 lists the simulations. In total, 7.5 µs of ABCE1 simulations
were obtained.

Essential Dynamics Simulations The ED simulations (see Sec. 2.3) ap-
plied in this analysis used the radial contraction (radcon) option of the
ED implementation in GROMACS. For a given collective subspace and
the coordinates of a target in that subspace, this algorithm forces the
simulation steps to reduce the distance to the target in the ED subspace.
In two dimensions this would look like shown in Fig. 4.4: The simulations
may move to a smaller circle around the target, but if the simulation
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4 ABCE1

Figure 4.7: RMSD From Target Structure: For ED simulations with a
different number of included PCA components, the distance from the
target structure was measured.

proceeds to a larger radius, it will be altered such that it stays on the same
hypersphere surface.

To estimate the effect of the number of included PCA components, we
compared short simulations that use the 5, 10, 15 or 20 first eigenvectors.
The convergence is on the same timescale as can be seen in Fig. 4.8. That is
why we decided to run the extended simulations with the lowest number
of additional restraints, namely five components. While the latter is
measured within the ED subspace only, the root of mean square deviation
(RMSD) includes all degrees of freedom. The RMSD from the target
structure (see Fig. 4.7), shows a rapid decrease in RMSD due to a fast
approaching to the target. The DOF not included in the ED subspace
are relaxing to adopt the new conformation, as can be seen in the slight
increase in RMSD after reaching a first minimum. This is the reason why
we excluded the first 20 ns from the analysis for not being at equilibrium.
The final ED simulations were run for ∼100 ns each.

4.5.3 Parameterization of the FeS-Cluster

The ABCE1 protein contains a so-called FeS-cluster domain itself incorpo-
rating two (FeS)4-clusters. Figure 4.9 shows the two FeS-clusters within
the domain, and a closer look onto one, with the cysteine residues coordi-
nating it. The FeS-cluster domain was shown to be critical for the function
of ABCE1 [15]. To include in in MD simulations, force field parameters
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4.5 Materials & Methods

Figure 4.8: Radius of Contraction: For ED simulations with a different
number of included PCA components, the distance from the target
structure was measured. In contrast to an RMSD (see Fig. 4.7), this
distance is measured in the ED subspace.

needed to be derived.
Banci et al. derived parameters for the FeS cluster and the coordinating

cysteine residues for the AMBER force field from 1984 [109] with quantum
mechanical calculations [110].

We adjusted the parameters such that they match the new AMBER99sb
force field that was used in this project. Therefore, we changed the charges
to yield the correct total charge of the backbone, and moved charges from
the electron lone pairs (present in the older AMBER) to the cysteine sulfur
atoms. The parameters for the bond lengths and angles for the FeS cluster
and the coordinating cysteines were taken from the X-ray structure from
Karcher [105]. Throughout all simulations, the FeS-cluster domain showed
little internal mobility and mostly tumbled on top of the first NBD. The
FeS-clusters themselves remained stable at all times. The final parameters
used in this study are listed in Sec. 7.4.
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Figure 4.9: Structural Details for the FeS-Cluster domain. On the left,
a cartoon representation and the localization of the two FeS clusters
is shown. On the right, a close-up of a single FeS cluster (4Fe-4S) is
depicted. Shown as spheres are the iron atoms (orange) and the sulfur
atoms (yellow). The cluster is coordinated by four cysteine residues
(shown as sticks).
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5 Summary and Conclusions

Allostery is a universal principle in proteins that allows for powerful
regulation that cannot be realized with orthosteric regulation. The number
of identified allosteric interactions is increasing, but until today, there
is no general answer to how allostery is manifested on an atomic level.
In order to allosterically affect the binding affinity of one binding site
through binding in a distant site, information has to pass between the
sites. A possible means to connect local changes in two allosterically
coupled binding sites is a conformational change.

In this thesis, we studied allosteric interactions in two proteins: hemo-
globin and ABCE1. In both cases, we applied Molecular Dynamics sim-
ulations as the core method to obtain dynamical information. Rather
than focusing on the fluctuations of the individual atoms, we looked
at collective motions of the proteins. By relating collective dynamics to
specific functions or other motions, we were able to identify the molecular
constituents of the underlying mechanism.

Hemoglobin In the case of hemoglobin, it is known that a conforma-
tional change is required for the distant binding sites to interact. During
such a conformational change, all atoms need to move collectively. We
investigated the collective dynamics of hemoglobin during the confor-
mational transitions that were observed with Molecular Dynamics sim-
ulations. We showed how different levels of collective dynamics – local
and global motions – together form hemoglobin’s allosteric mechanism.
From that we were able to provide molecular insight into this mechanism
that is crucial to the effectiveness of our respiratory system: The qua-
ternary conformational change induces unfavourable1 contacts that are
accommodated by tertiary rearrangements.

ABCE1 The protein ABCE1 is part of one of the largest protein families,
and understanding its function and malfunction is key in understanding
many diseases on a molecular level. While most members of the ABC
family are transporters with a transmembrane domain, ABCE1 only
contains two nucleotide binding domains (NBDs) characteristic for ABC
proteins. ABCE1 shows an allosteric interaction between the two NBDs:
Stopping ATP hydrolysis in one NBD reduces the overall hydrolysis
rate, while stopping hydrolysis in the other NBD increases the overall
hydrolysis rate. How regulation is realized on a molecular level is still not
understood.

1unfavourable through steric repulsions or missing hydrogen bonds
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5 Summary and Conclusions

The two NBDs undergo a conformational change upon ATP hydrolysis,
but only the “open” structure of this motion is resolved and the “closed”
structure is still missing. Applying knowledge of collective protein mo-
tions in ABC proteins, we were able to characterize key interactions of
a putative closed state. Experimental studies based on suggested muta-
tions derived from the modeled closed state may soon result in a closed
crystal structure, thereby providing an important next step to resolve the
mechanism of allosteric coupling between the NBDs in ABCE1.

Outlook Collective motions are important for protein functions and
describing conformational changes in suitable collective coordinates is key
for describing large scale protein dynamics. The method we developed to
separate local and global motions can readily be applied to other systems
as well. Any multi-domain protein can be a suitable target. But the
method may also yield interesting insight in protein aggregation, where
local and global motions get in contact and the interface is directly given.

Allosteric regulation is important in pharmaceutical research. Under-
standing allostery on a molecular level may hence not only yield a deeper
understanding of this phenomenon itself, but directly introduce new
means to effect proteins with drugs. Profound knowledge of a number of
allosteric interactions will show if there are common interaction motifs in
proteins, or if each protein has its own characteristic collective dynamics
underlying the allosteric coupling.
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7 Appendix

7.1 Overfitting and Cross-Validation

In the following paragraphs the notion of overfitting will be explained on
a simple example and how cross-validation can be used to avoid it.

The relations between stochastic observables1 can be explored by con-
structing models for these relations. The stochasticity makes the obser-
vations fuzzy and their relation noisy. Insufficient information about
the probability distribution of the observables can make the search for a
model challenging. A good model distinguishes which part of the data is
due to the actual relation between the observables and which is due to
the noise of the data.

For an examined model relation, free model parameters are aligned so
that the model fits the data, the so called fitting process. Overfitting is the
phenomenon that occurs if a model with too many parameters is fitted to
the observations; the model is not only aligning to the coarse features of
the data, but it starts fitting the noise.

Imagine a set of two-dimensional data points scattered with some noise
around a straight line. Now, for the sake of the argument, forget about
the underlying line and ask the question what is a suitable model for the
x-y dependence of the data2.

Let us construct two models with the aim of describing the data de-
pendence: (1) a linear model, and (2) a high-order polynomial model. In
Fig. 7.1 to the grey data points a linear (blue) and a polynomial model
(orange) are fitted. The straight line does not capture every single detail,
but it follows the global trend of the data set, whereas the polynomial
visits the individual points3. From this perspective, the polynomial fit
appears to represent the better description of the data.

Since a good model is not only able to describe already measured data
but also predicts future measurements, the quality of a model should also
contain its predictive power. For this a principle called cross-validation
has been established. It can be achieved by removing a small random
part (e.g. 5-10%) of the original data – the cross-validation set – and
using the remaining 90-95% – the model fitting set – for the fitting of
the model. In Fig. 7.1 the black dot represents the cross-validation set

1observables whose values are subject to randomness
2As the a straight line was used to construct the data, so it is an obvious candidate for

a good model.
3For N data points a polynomial of the order N − 1 can be constructed such that it

crosses every single point perfectly. This would create a model that is as complex as
the data itself.
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Figure 7.1: Example of Overfitting: To the data points (grey dots) two
models are fitted: a linear model (blue) and a polynomial model (or-
ange). One point (black dot) was excluded from the fitting and used
for cross-validation (see text).

and the remaining grey dots the model fitting set. For both sets the
deviation of the model from the original data is calculated (e.g. with
the Pearson correlation coefficient): The deviation from the model fitting
set measures the goodness of the individual fit; the deviation from the
cross-validation set measures how well a model describes actual data not
included into the fit, i.e. predicting them. The polynomial model performs
better on the model fitting set, whereas the linear model performs better
on the cross-validation set. This indicates that in contrast to the linear
model the polynomial model is overfitted since it fails at predicting the
cross-validation set.

This example was constructed to show the drastic effect of overfitting
on model construction and validation. In real-life applications overfitting
may not so easily be revealed. For example, in X-ray crystallography a
structural (atomistic) model is fitted to the measured X-ray reflections from
the crystal. The goodness of this fit is (amongst other measures) described
by the R-factor that compares the actual reflections with the reflections
calculated from the model. For protein crystals of intermediate resolution
the number of measured data and the number of atom coordinates is often
in the same order of magnitude, which makes overfitting an imminent
risk.

To this end, Brünger suggested to expand the usage of R-factor to
the so-called free R-factor R f ree. It is calculated in the same way as the
R-factor but on a randomly chosen set of reflections that was not used in

74



7.2 Used Software

the construction of the structure model. Thereby R f ree cross-validates the
structure and identifies overfitting.

7.2 Used Software

For all MD simulations on the in-house computer cluster the GROMACS
software package version 4.53 was used [30,31]. This includes the ED sim-
ulations and most of the analysis tools. For further calculations MATLAB
R2011a (Mathworks, Inc.) and bash, awk and sed were used.

Pictures of protein structures were rendered in PyMol [111]. Schemes
were drawn with inkscape and gimp. This thesis was typesetted with
LATEX 2ε.

7.3 List Of Consensus Residues

The residues from 3OZX forming the consensus set are:
subunit A:
Ile80-Arg82, Phe88-Asn98, Thr100-Phe127, Lys153-Glu154,
Lys161-Lys165, Gln167-Tyr168, Gly178-Ile187, Lys192-Ala210,
Ile212-Gln238, Ser240-Tyr276, Thr278-Gly286, Gly292-Ser295,
Ser297-Ala299, Arg301-Gly303

subunit B:
Met344-Trp346, Lys348-Lys352, Leu358-Val359, Asp361,
Gly363-Glu367, Glu369-Ala394, Glu396-Thr400, Ile405-Pro410,
Ile413-Pro415, Tyr417-Ala428, Lys430, Asn448-Val457,
Asp459-Gly462, Glu464-Gln485, Ser487-Arg507, Ala511-Asp524,
Ala527-Gly535, Leu542-Thr544, Val547-Thr551, Met553-Asn554,
Phe556, Arg558

7.4 FeS-Cluster Parameters

Following, the parameters are given that can be used to include (FeS)4-
clusters in MD simulations with GROMACS.

NB: To adopt the angle potential from Banci et. al to the GROMACS
software the harmonic force constants had to be multiplied by two, since
in AMBER’s potential function a factor 0.5 is missing when compared
with GROMACS. The simulations were run with the LINCS algorithm to
maintain the bond-lengths, the denoted bond energies are arbitrary and
will not be used.
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aminoacids.rtp I am invisible!
[ SF4 ]
[ atoms ]
FE1 FS 1.465 1

FE2 FS 1.465 2

FE3 FS 1.465 3

FE4 FS 1.465 4

S1 S -0.915 5

S2 S -0.915 6

S3 S -0.915 7

S4 S -0.915 8

[ bonds ]
FE1 S2 0.2298 100000

FE1 S3 0.2316 100000

FE1 S4 0.2285 100000

FE2 S1 0.2323 100000

FE2 S3 0.2247 100000

FE2 S4 0.2183 100000

FE3 S1 0.2306 100000

FE3 S2 0.2228 100000

FE3 S4 0.2230 100000

FE4 S1 0.2138 100000

FE4 S2 0.2143 100000

FE4 S3 0.2103 100000

[ angles ]
S2 FE1 S3 92.970 460.2
S2 FE1 S4 103.009 460.2
S2 FE3 S1 100.043 460.2
S2 FE3 S4 107.137 460.2
S2 FE4 S3 104.018 460.2
S2 FE4 S1 108.531 460.2
S3 FE1 S4 102.404 460.2
S3 FE2 S1 95.786 460.2
S3 FE2 S4 108.102 460.2
S3 FE4 S1 106.155 460.2
S4 FE2 S1 101.824 460.2
S4 FE3 S1 100.939 460.2
FE2 S1 FE3 73.974 460.2
FE2 S1 FE4 75.172 460.2
FE2 S3 FE1 73.534 460.2
FE2 S3 FE4 77.488 460.2
FE2 S4 FE3 78.249 460.2
FE2 S4 FE1 75.356 460.2
FE3 S1 FE4 73.083 460.2
FE3 S2 FE1 74.155 460.2
FE3 S2 FE4 74.565 460.2
FE3 S4 FE1 74.399 460.2
FE4 S2 FE1 78.152 460.2
FE4 S3 FE1 78.532 460.2
[ CYF]
[ atoms ]
N N -0.41570 1

H H 0.27190 2

CA CT 0.02130 3

HA H1 0.11240 4

CB CT -0.33740 5

HB1 H1 0.00405 6

HB2 H1 0.00405 7

SG SH -0.49000 8

C C 0.59730 9

O O -0.56790 10

[ bonds ]
N H
N CA
CA HA
CA CB
CA C
CB HB1

CB HB2

CB SG
C O
-C N
[ impropers ]
-C CA N H
CA +N C O

aminoacids.hdb I am invisible!
CYF 3

1 1 H N -C CA
1 5 HA CA N CB C
2 6 HB CB CA SG
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7.4 FeS-Cluster Parameters

ffbonded.itp I am invisible!
[ bondtypes ]
FS SH 1 0.226 120000.0
[ angletypes ]
SH FS S 1 180.000 0.000

CT SH FS 1 180.000 0.000

[ dihedraltypes ]
CT SH FS S 9 180.0 0.00000 1

FS S FS X 9 180.0 0.00000 1

atomtypes.atp I am invisible!
FS 55.00000
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