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Summary

This work is devoted to study a model, where we observe a stochastic process under
additional measurement noise. The main objective is to estimate a “fluctuation mea-
sure“, called the volatility/intermittency of the latent (unobservable) process, given the
perturbed data.

To state it more formally, suppose that we observe Y = (Y1,n, . . . , Yn,n)t,

Yi,n := Xi/n + εi,n, i = 1, . . . , n.

Here, Xt :=
∫ t

0
σs,t dWs, where W denotes a standard Brownian motion. The random

vector ε = (ε1,n, . . . , εn,n)t models the measurement noise. Given the data, the goal is to
estimate the spot volatility, i.e. s 7→ σ2

s,s by methods of nonparametric statistics.

In this work we will deal with two major subproblems: The cases where σs,t is deter-
ministic (X is a Gaussian process) and the case where σs,t = σs (X is a (continuous)
semimartingale). We refer to them as the Gaussian Volterra and semimartingale prob-
lem, respectively. These models are motivated by applications from turbulence modeling
and finance.

The Gaussian Volterra model is entirely new and we show that reconstruction of the
spot volatility can be accomplished through spectral decomposition of the covariance
combined with Fourier series estimation. For the semimartingale model, we prove that
wavelet thresholding, based on pre-averaging as a first step, leads to an adaptive esti-
mator of the spot volatility. In both models the estimators converge with the optimal
rate of convergence (up to some logarithmic factors) under fairly general assumptions
regarding the noise process. Our finding is that microstructure noise leads to a general
reduction of the rates of convergence by a factor 1/2. Finally, we illustrate the estimators
by numerical simulations and application to log-returns of high-frequency stock data.
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Chapter 1

Introduction

Microstructure noise models have attracted a lot of attention, recently. These models
can be employed in order to model turbulence and moreover, they play a prominent
role for modeling high-frequency returns in financial statistics. The quantity of interest
within these models is the local variance as a function of time, called the spot volatility.

In this thesis, we develop a statistical theory of nonparametric spot volatility estimation
in microstructure noise models. The introduction outlines the major results of this
thesis. To this end, we begin with a more detailed explanation of the models to be
investigated.

1.1. Models

Before we can formally state the models, some definitions need to be introduced. Through-
out this work we assume that a filtered probability space (Ω,F , (Ft)t≥0,P) is given and
the process (Wt)t≥0 denotes a standard ((Ft)t≥0,P)-Brownian motion.

Definition 1 (Gaussian Volterra process). A process (Xt)t≥0 which has an integral rep-

resentation of the form Xt =
∫ t

0
σs,tdWs is called a Gaussian Volterra process provided

(s, t) 7→ σs,t is a deterministic function and
∫ t

0
σ2
s,tds <∞.

For more on these processes see the discussion below as well as the examples given in
Section 4.1.

Definition 2 (continuous Itô semimartingale). A continuous Itô semimartingale is a
process (Xt)t≥0 of the form

Xt =

∫ t

0

bsds+

∫ t

0

σsdWs, (1.1.1)

where σ and b are (Ft)-adapted and càdlàg (right continuous with left limits) processes.

9



1. Introduction

Gaussian Volterra model: Suppose we observe

Yi,n = Xi/n + εi,n, i = 1, . . . , n, (1.1.2)

where X is a Gaussian Volterra process and ε is some noise process.

Semimartingale model: Suppose we observe

Yi,n = Xi/n + εi,n, i = 1, . . . , n, (1.1.3)

where X is a continuous Itô semimartingale and ε is some noise process.

The statistical challenge in these models is to estimate the spot volatility, i.e. the func-
tions s 7→ σ2

s,s and the path s  σ2
s (here  indicates that this is a random function)

in models (1.1.2) and (1.1.3), respectively.

Moreover, the following structure on the noise ε = (ε1,n, . . . , εn,n)t is imposed for both
models.

Assumption 1 (General assumption on the noise). We assume that εi,n is a product of
the form

εi,n = τ(i/n,Xi/n)ηi,n, (1.1.4)

Here, (ηi,n)i=1,...,n is an i.i.d. sequence, independent of X such that for every 1 ≤ i ≤ n,

E
[
ηi,n
]

= 0, E
[
η2
i,n

]
= 1, and E

[
η4
i,n

]
<∞.

The function τ(., .) is called the noise level and is assumed to be continuous.

For the procedures derived later on, some further refinements on this assumption are
required. In the following two sections we introduce the main applications.

1.2. The Gaussian Volterra model

Gaussian Volterra processes have been studied in different settings, mainly for theoretical
questions regarding Gaussian processes (see for instance Baudoin and Nualart [11] and
the references therein), but also recently in applications for turbulence modeling (cf.
Barndorff-Nielsen and Schmiegel [8], Section 3). Here, (Xt)t≥0 would be the velocity of
a turbulent flow over time at a fixed point in space. Therefore, we can interpret the
observation vector in the Gaussian Volterra model as measurements from the velocity
process at time points i/n under additional measurement noise. In these models the
volatility is usually called intermittency and measures the degree of turbulence. For a
realistic modeling on small scales one should allow for stochastic volatility/intermittency.
So far, this is not covered by our theoretical framework, but as we show by numerical
simulations (cf. Chapter 7) the proposed estimators work well even in the case of random
volatility/intermittency. We further want to mention that there is a case of particular
interest, namely if σs,t = g(t−s)σ̃s, for a function g ∈ L2 and a càdlàg process σ̃, for which
estimation of the averaged volatility/intermittency (without additional measurement
noise) has been studied recently by Barndorff-Nielsen et al. [6].

10



1.3. The semimartingale model and log-returns

Figure 1.1.: Tick data of FGBL on July 25th, 2007 between 9 a.m. and 6 p.m. The
second plot shows the reconstruction of the spot volatility based on wavelet
thresholding.

1.3. The semimartingale model and log-returns

The semimartingale model originates from finance. Since the seminal work by Delbaen
and Schachermayer [21, 22] it is well known that semimartingales provide a natural class
for price processes. However, these results do not incorporate so-called market frictions
due to bid-ask spread and rounding errors, among others. For low-frequencies (i.e. the
price is sampled in the range of minutes or even larger time scales), microstructure noise
is negligible; these effects occur only if we use data sampled on high frequencies, less
than a few seconds, say. The latter has the advantage that we do not need to throw
away a large part of the data, but estimation is much more involved. Recently, many
estimators have been proposed in order to estimate the so-called integrated volatility,
i.e. the average volatility over a given time span, in the high-frequency setting under
microstructure noise.

However, in many cases the interest lies in the shape of the volatility itself instead of the
averaged value, as for studying the fluctuations of the volatility around the income of
public news (cf. Andersen and Bollerslev [4]) or the daily volatility pattern (see Figure
1.1). In these cases the spot volatility (or instantaneous volatility), i.e. the path of the
volatility as a function of time, must be estimated from the data.
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1. Introduction

1.4. Main results

Estimation in models (1.1.2) and (1.1.3) is surprisingly difficult, for two reasons. First
of all, contrary to the usual nonparametric regression model, the data are heavily de-
pendent. The covariance structure of Y = (Y1,n, . . . , Yn,n)t is particularly difficult to
deal with in the Gaussian Volterra setting. If there is no additive noise, i.e. τ = 0, this
dependence can easily be removed, by considering increments. Then, estimation of the
spot volatility amounts essentially to a classical nonparametric regression problem (cf.
Hoffmann [41]). It is the inclusion of microstructure noise which makes the problem
much more difficult. In fact, simple quadratic variation methods fail if noise is present
(cf. Zhang et al. [77]). Secondly, in the semimartingale model we are forced to estimate
a random quantity, i.e. the path s σ2

s , nonparametrically.

In this thesis, we develop a theory for estimation in the Gaussian Volterra and the semi-
martingale model. In particular, we construct optimal estimators for the spot volatility
that overcome the problems described above.

In the Gaussian Volterra model, we construct an orthogonal series estimator of the
spot volatility, relying on spectral properties of the covariance structure. We do not
necessarily need to expand the series with respect to a particular basis and only some
general regularity is required. As examples, we explicitly outline the cases of the cosine
and trigonometric basis.

Considering integrated mean square error risk, it can be shown in general that these
estimators converge with rate n−α/(4α+2), provided that the mappings s 7→ σs,t, ∀ t ∈
[0, 1] and t 7→ σs,t, ∀ s ≤ t are Hölder continuous with index 1/4 and 7/8, respectively
(cf. Theorems 3 and 4). Here, α denotes the Sobolev index of the spot volatility, that
is assumed to be larger than 1. For expansion with respect to cosine basis, we even may
relax this to α > 3/4.

Despite its simplicity, a general well known disadvantage of Fourier series estimators
is their difficulty to localize in time domain, resulting in the Gibb’s phenomenon for
instance. To overcome this problem, it is near at hand to use techniques that allow for
simultaneous localization in time and frequency domain, such as wavelets instead.

This will be done in the second part of the thesis, for the semimartingale model (1.1.3).
In particular, we make use of the pre-averaging technique developed in Podolskij and
Vetter [68] and Jacod et al. [44] as a first step. Whereas for the Fourier estimator
the noise is filtered in the spectral domain, the pre-average method relies on another
idea: It allows us to separate the semimartingale from the noise because of the different
smoothness properties.

Denote by Bs
p,q a Besov space with parameters (p, q, s) and let Bsp,q(C) := {f ∈ Bs

p,q :
‖f‖Bsp,q ≤ C} be the corresponding Besov ball. In Besov spaces the smoothness of a
function is measured by the index s, in first order.

For π ∈ (0,∞) and s > 1/π we introduce the effective smoothness function corresponding

12



1.4. Main results

to the Besov space Bs
π,∞ by

t 7→ s(t) := s−
(
t− 1

π

)
−
, (1.4.1)

where (x)− := −min(x, 0) is the negative part, which is always non-negative. Moreover,
denote by π? the (necessarily) unique solution of

s(1/π?) =
1

2

( p
π?
− 1
)
.

Suppose that α0 + 1/π ≤ s ≤ α0/(1 − 2α0), where 0 < α0 ≤ 1/2 is some prespecified
number. Then, with respect to Lp-norm the proposed wavelet thresholding estimator,
σ̂2 achieves the rate of convergence

vn :=

(
log3/2(n)

n

)s(1/π?)/(4s(1/π?)+2)

,

in the sense that

lim
n→∞

v−1
n E

[ ∥∥σ̂2 − σ2
∥∥
p
I{σ2∈Bsπ,∞(C)}

]
<∞.

In fact, this is half of the usual rate obtained in the classical nonparametric regression
setting (cf. Kerkyacharian and Picard [52]). In particular, if p/(2s + 1) ≤ π, we obtain
the rate of convergence n−s/(4s+2), up to a logarithmic factor.
Furthermore, the estimator does not depend on the smoothness of the spot volatility,
since it adapts automatically to it. In order to prove this, we make use of recently derived
large deviation inequalities for martingales (cf. Bercu and Touati [12]). Particularly with
regard to the application described in Section 1.3, adaptivity is a crucial property since
there is no consensus on the path regularity of spot volatility in financial statistics.

Moreover, we consider different techniques in order to derive lower bounds in microstruc-
ture noise models. The methods rely on a new bound of the Kullback-Leibler divergence
as well as a result on asymptotic equivalence, recently derived in Reiß [71]. This allows
us to prove that the obtained rates are optimal in minimax sense.

Finally, we discuss numerical simulations and real data applications. In order to obtain
a clear picture of the performance of the Fourier series estimator, various simulation
studies are carried out. We show that if the sample size is larger than 103, reasonable
reconstructions can be obtained even in the case of random volatility.
In a second part of our study, we apply the semimartingale model to tick data. We
demonstrate that combining the wavelet estimator with blockwise thresholding leads to
stable results (for an example of a reconstruction see Figure 1.1).
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Chapter 2

Preliminaries from nonparametric statistics

In order to understand the presented work, various techniques are required, in particular
from stochastic analysis and nonparametric statistics. It is beyond the scope of this thesis
to introduce them both in full length. The focus of today’s research in volatility models
is mainly related to the estimation of integrated volatility and its variations, studying
these problems by means of stochastic analysis. Therefore, we place special emphasis
on terms and definitions in nonparametric statistics. In this chapter, we present a short
overview of the main ideas. Besides the introductory style, a number of advanced results
needed in subsequent chapters are proven. We take for granted that the reader is familiar
with standard facts from stochastic analysis and only a few results are recalled in Section
B.1.

Although there are different understandings of the field, nonparametric statistics is usu-
ally defined as the study of statistical models with infinite dimensional parameter spaces.
Typically these parameter spaces are function spaces.

In this chapter we focus on asymptotic nonparametrics, i.e. we study properties of es-
timators if the sample size n tends to infinity. Nowadays, research on nonparametrics
is also concerned with finite sample behavior. For our models the asymptotic approach
provides powerful tools to study volatility estimation problems while, at the same time,
proofs are still tractable.

The main approach employed for the purpose of handling estimation problems in non-
parametrics is to approximate an infinite dimensional parameter space G by a finite
dimensional subspace H. Then, estimation can be performed within a parametric set-
ting where an additional bias is introduced by the finite dimensional approximation of
G. In order to find good estimators, the dimension of H must be chosen of the right
order, usually dependent on properties of G. A standard example is the minimum num-
ber of derivatives of a function in G, provided that G is a function class. Moreover, the
dimension of H depends in general on the sample size.

In this chapter we will first introduce two general estimation methods, namely Fourier
series and wavelet estimators. Section 2.4 is devoted to the discussion of some function
spaces. Finally, in the last two sections, we study asymptotic properties.
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2. Preliminaries from nonparametric statistics

2.1. Nonparametric estimators

The most popular way to estimate functions nonparametrically is by means of kernel
estimators. Yet other methods have also been employed. Since they will prove useful in
the sequel, we will concentrate in this section on nonparametric estimation by orthogonal
(Fourier) series and wavelets.

Fourier series estimator

Given observations Yi,n(f), i = 1, . . . , n where f ∈ L2 is some unknown function. Sup-

pose that there is an estimator 〈̂φ, f〉, of the scalar product 〈φ, f〉 for some function
φ ∈ G ⊂ L2. Let (φi)i ⊂ G be an L2-basis. Then, we may estimate f via

f̂ =
∞∑
i=0

wi,n〈̂φi, f〉φi, (2.1.1)

where (wi,n)i is a triangular scheme of tapering weights.

A popular choice of a basis system on [0, 1] is

ψ1(·) := 1, ψ2i(·) :=
√

2 cos(2πi·), and ψ2i+1(·) :=
√

2 sin(2iπ·), (2.1.2)

the so-called trigonometric basis.

For instance, in the classical nonparametric regression model, i.e.

Yi,n = f( i
n
) + εi,n, E[εi,n] = 0, i = 1, . . . , n (2.1.3)

an estimator of the scalar product 〈φ, f〉 is given by its empirical version

〈̂φ, f〉 =
1

n

n∑
i=1

φ( i
n
)Yi,n. (2.1.4)

An example for the sequence of weights is to reconstruct the first N coefficients, i.e.

wi,n :=

{
1, for i ≤ N,

0, otherwise,

where N = Nn should be chosen in dependence on the unknown smoothness and n.
Another approach is to shrink the estimates T (φi) by choosing wi < 1. It is well known
that this might improve the estimate considerably (cf. Tsybakov [74], Chapter 3). Since
the spot volatility is always non-negative it is important to note that positivity of a
function can be incorporated as well. Knowing that f ≥ 0, a possible choice is

w
(F )
i,n = (1− i

n
)+, (2.1.5)
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2.1. Nonparametric estimators

where (x)+ = x if x > 0 and (x)+ = 0, otherwise. Note that
∑∞

i=0w
(F )
i,n 〈φi, f〉φi is the

(n− 1)-th Fejér kernel convolved with f. By the positivity of the Fejér kernel it is easy

to see that for all n, the approximations
∑∞

i=0w
(F )
i,n 〈φi, f〉φi are non-negative, provided

f ≥ 0. However, this does of course not imply that also the estimator f̂ is non-negative.

Compared to other methods, Fourier estimates are superior in recovering periodic sig-
nals. Moreover, the estimators can be computed very efficiently, provided a fast Fourier
transform can be employed.
One of the drawbacks is that besides positivity and smoothness other properties such
as monotonicity or convexity do not have an easy translations into Fourier coefficients.
Moreover, if a function has a jump, the reconstruction by Fourier series shows strong
oscillating behavior around this point. This is the well known Gibb’s phenomenon.
Therefore, Fourier series are not preferable for estimation of jump functions.

Wavelet estimators

Wavelets can be seen as a refinement of Fourier series estimators resolving a number of
drawbacks from orthogonal series estimation. For a comprehensive summary of wavelet
theory, we refer to Cohen [18] and Daubechies [20].
The advantages of wavelets are that localization in the Fourier domain and time domain
can be performed simultaneously, reducing Gibb’s effects for instance. More generally,
regions of different smoothness can be handled. This is a crucial property since it is
believed that the smoothness of the spot volatility may change over time. In fact, time
spans could occur where the volatility is of Brownian smoothness alternating with regions
of arbitrary high smoothness.

We introduce wavelets by the abstract multiresolution analysis approach due to Mallat
[57] and Meyer [61] (see also Chapter 5 in Daubechies [20]).

Definition 3 (Multiresolution analysis). Let (Vj)j∈Z be a sequence of nested and closed
L2(R)-subspaces, i.e. Vj ⊂ Vj+1 for all j ∈ Z. Further denote by Pj the projection
operator on Vj. If

(i)
⋃
j∈Z Vj = L2(R),

(ii)
⋂
j∈Z Vj = {0},

(iii) limj→∞ Pjf = f for all f ∈ L2(R).

(iv) f ∈ V0 ⇒ f(· − k) ∈ V0 for every integer k,

(v) f ∈ Vj ⇔ f(2−j·) ∈ V0,

(vi) there exists φ ∈ V0 such that {φ(· − k)}k∈N is an orthonormal basis of V0,

17



2. Preliminaries from nonparametric statistics

then ((Vj)j, φ) is called a multiresolution analysis. Moreover, if φ can be chosen such
that for any non-negative α, α ≤ r and for each m ∈ N,

|∂αφ(x)| . 1

(1 + |x|)m
,

then the multiresolution analysis is called r-regular. Here, . means larger up to a con-
stant, uniformly over x.

The essential conditions underlying the scaling properties of multiresolution analysis are
the last three mentioned above. To state it differently, for f ∈ V0, all translations by
an integer are in V0, again requiring a particular discrete shift invariance. Additionally,
whenever, f ∈ Vj then f(2·) ∈ Vj+1, meaning that there is an increase of frequency by
a factor of 2. This further implies that {φ(2j · −k)}k∈Z is an orthogonal basis of Vj.

Since V0 ⊂ V1 and {φ(2 · −k)}k∈N is a basis of V0, we may represent

φ =
∑
k∈Z

hkφ(2 · −k), (2.1.6)

where (hk)k ∈ l2(Z). This is the so-called refinement equation that turns out to be of
fundamental importance for wavelets.

In fact, the last condition can be relaxed by only assuming {φ(· − k)}k∈N to be a Riesz
basis. However, in this case the subsequent results need some modifications (cf. Chapter
2.2 in [18]).

For a function g we introduce the notation gj,k := 2j/2g(2j · −k).

Lemma 1. Let ((Vj)j, φ) be a multiresolution analysis. Then, there exists ψ ∈ L2(R)
such that {ψj,k}j,k∈Z is an L2(R) basis and

f =
∑
k

〈φj0,k, f〉φj0,k +
∞∑
j=j0

∑
k∈Z

〈ψj,k, f〉ψj,k in L2(R), (2.1.7)

for all j0 ∈ Z and f ∈ L2(R). The function ψ is called wavelet.

Besides the existence stated in the last lemma, we may easily construct a wavelet for
given multiresolution analysis ((Vj)j, φ) by means of Fourier analysis or through the
direct use of the refinement equation (2.1.6) via

ψ =
∑
k∈Z

(−1)k h1−k φ(2 · −k), where convergence is in L2.

Example 1 (Haar basis). Let V0 be the space of L2(R) functions that are constant on
blocks [i − 1, i), i ∈ Z. Further let φ = I[0,1)(·). Then, ((Vj)j, φ) is a multiresolution
analysis with regularity r = 0. For the coefficients of the refinement equation (2.1.6)
we obtain h0 = h1 = 1, hk = 0 for k /∈ {0, 1}. Hence, the corresponding wavelet is
ψ = I[0,1/2)(·)− I[1/2,1)(·).

18



2.2. Thresholding

Wavelet estimators are extensions of Fourier series estimators in the sense that (2.1.1)
is replaced by

f̂ =
∑
k

̂〈φj0,k, f〉φj0,k +

j1∑
j=j0

∑
k∈Z

̂〈ψj,k, f〉ψj,k. (2.1.8)

The positive integers j0, j1 can be chosen by the statistician. Whereas in many ap-
plications j0 = 0 is a reasonable choice, this is not true for spot volatility estimation.

In fact, for small j0 and low-smoothness of the volatility, the estimator ̂〈φj0,k, f〉 has a
large bias. Therefore, choosing j0 in dependence of the sample size improves the rate of
convergence.
In (2.1.8), we truncate the expansion at level j1. As for the Fourier series estimators,
we can introduce some weights in order to downweight the reconstruction at higher
resolution levels. In the following, we introduce the more general concept of wavelet
thresholding instead, since this allows us to obtain estimators enjoying some additional
optimality properties. Note that thresholding is not restricted to wavelets only, but can
also be applied to Fourier series estimation.

2.2. Thresholding

The concept of wavelet thresholding has been introduced by Donoho and Johnstone [25]
as well as Donoho et al. [26]. Generally speaking, the idea is to keep large coefficients in
the expansion, while removing or downweighting small coefficients for which we cannot
be sure whether they contain significant information about the unknown signal. Let us
introduce the most important examples of thresholding procedures.

Hard-thresholding: Define the hard-thresholding function Ht : R→ R via

Ht(x) := x I{|x|≥t}(x). (2.2.1)

Then, the hard-thresholded version of (2.1.8) is

f̂t =
∑
k

̂〈φj0,k, f〉φj0,k +

j1∑
j=j0

∑
k∈Z

Ht( ̂〈ψj,k, f〉)ψj,k. (2.2.2)

Soft-thresholding: Let St : R→ R,

St(x) := sign(x) (|x| − t)+.

The soft-thresholded wavelet estimator is given by

f̂ =
∑
k

̂〈φj0,k, f〉φj0,k +

j1∑
j=j0

∑
k∈Z

St( ̂〈ψj,k, f〉)ψj,k.
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2. Preliminaries from nonparametric statistics

The cut-off-point t is referred to as the threshold parameter. It is well known that hard-
thresholding leads to optimal estimators provided the thresholding constant is chosen
properly. In fact, if we can show that

P
(∣∣ ̂〈ψj,k, f〉 − 〈ψj,k, f〉

∣∣ > t
)

= “small”, (2.2.3)

we might reject 〈ψj,k, f〉 = 0 whenever | ̂〈ψj,k, f〉| > t. The main difficulty is to show
(2.2.3) uniformly over j, k, which can be accomplished through exponential inequalities.
Another advantage is that wavelet thresholding can still be used even in the case of corre-
lated data (cf. Johnstone and Silverman [47] and Johnstone [46]). However, in practical
implementations, hard-thresholded estimators experience some oversmoothing effects,
since the theoretical values obtained for t are usually too large (cf. Donoho and John-
stone [25] or Abramovich and Silverman [1]). In order to circumvent these drawbacks,
more elaborate thresholding procedures have been proposed. The main improvement is
to threshold not term-by-term but blockwise, in order to include information on neigh-
boring coefficients (for more details see Cai and Zhou [17] and the references therein).

For proving results of type (2.2.3) many methods are known, provided ̂〈ψj,k, f〉 can be
written as a sum of independent random variables. However, if we are dealing with more
complex models, these findings are not sufficient, in general. Recently, large deviation

inequalities have been derived, assuming more generally that ̂〈ψj,k, f〉 can be written as
a martingale. This will be discussed in the next section.

2.3. Large deviations for martingales

In this section we give some exponential inequalities for martingales. This will be the
basic tool used to show large deviations results of type (2.2.3) for wavelet based volatility
estimation. In particular, we state and prove two non-trivial reformulations of these ex-
ponential inequalities that are directly applicable to the estimation problem and show an
optimality property, by comparison to known results on sums of i.i.d. Gaussian random
variables.

Throughout this section let (Mk)k be a discrete, locally square integrable, real (Fk)k mar-
tingale withM0 := 0. In order to stay consistent with the overall notation, the martingale
increments are defined as the forward differences, i.e. ∆iM := Mi+1−Mi. We denote by
[M ]k =

∑k−1
i=0 (∆iMi)

2 its quadratic variation and by 〈M〉k =
∑k−1

i=0 E
[
(∆iM)2 | Fi

]
its

predictable compensator. The martingale (Mk)k is said to be conditionally symmetric,
if ∆iM given Fi follows a symmetric distribution. In the following, we list a number of
results.

Lemma 2. (i) If ak ≤ ∆kM ≤ bk a.s. for deterministic constants ak, bk, ak < bk
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2.3. Large deviations for martingales

then, for x ≥ 0,

P(|Mk| ≥ x) ≤ 2 exp

(
−2x2∑k−1

r=0(br − ar)2

)
.

(ii) If E[|∆kM |q|Fk] ≤ cqqq, for q = 2, 3, . . . and for some constant c, then,

P(|Mk| ≥ x) ≤ 2 exp

(
−x2

2ce(2ck + x)

)
,

where e is Euler’s number.

(iii) If Mn is conditionally symmetric then for x, y > 0

P(|Mk| ≥ x, [M ]k ≤ y) ≤ 2 exp

(
−x

2

2y

)
.

(iv) For x, y > 0

P(|Mk| ≥ x, [M ]k + 〈M〉k ≤ y) ≤ 2 exp

(
−x

2

2y

)
.

Remark 1. (i) is the extension of Hoeffding’s inequality by Azuma [5], (ii) is due to
Hoffmann [41], (iii) was proven in de la Peña [67] and (iv) can be found in Bercu and
Touati [12]. Variations and extensions of these results can be found in van de Geer [75]
and [12].

From Lemma 2 (iii)-(iv), we infer the following large deviation inequalities that will be
used in order to prove (2.2.3). This is essentially Lemma 4.11 in Hoffmann et al. [43].

Lemma 3. Assume that for p,m ≥ 1 there exists a deterministic sequence (Cj)j (j
depends on m, i.e. j = jm), fixed δ, ε > 0 and 0 < q0 ≤ 1 such that

(i) P(〈M〉j > Cj(1 + δ)) . m−p,

(ii) Cj & j1/2+ε,

(iii) mq0 ≤ j ≤ m,

(iv) for every κ ≥ 2,

max
i=0,...,j−1

E
[
|∆iM |κ

]
. 1.
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2. Preliminaries from nonparametric statistics

Then,

P
[∣∣Mj

∣∣ > 2(1 + δ)
√
Cj p logm

]
. m−p.

Moreover, if M is conditionally symmetric, then we obtain, under the same conditions,
the sharper result

P
[∣∣Mj

∣∣ > (1 + δ)
√

2Cj p logm
]
. m−p,

A proof can be found in Appendix A. The inequalities above state that |Mj| > t(j, p,m) :=√
2Cjp logm with probability smaller than a constant times m−p. It is of uttermost im-

portance to derive very sharp bounds, i.e. to find the smallest possible t(j, p,m) since
this will later determine the size of the threshold. Otherwise, if t(j, p,m) is large, this
will in practice result in a severe oversmoothing of the wavelet thresholding estimator.

In order to show that Lemma 3 provides us with almost sharp constants, let us consider
the following example. Suppose that Mj =

∑j
i=1 ξj, where (ξj)j is a sequence of i.i.d.

standard normal random variables. In this case we know, by using Mills-ratio, that for
large m,

m−p√
p logm

. P (|Mj| >
√

2pj logm) .
m−p√
p logm

.

Clearly, in this example, Cj, as defined in Lemma 3, is j and by the second part of
Lemma 3,

P(|Mj| > (1 + δ)
√

2pj logm) . m−p.

Hence, for this situation Lemma 3 gives us the optimal t(j, p,m) up to an arbitrary small
number, whereas if we do not assume that the martingale is conditionally symmetric (i.e.
the first part of the Lemma applies), we lose by a factor of

√
2.

2.4. Function spaces

In general, it is not clear to which function space the spot volatility may belong, es-
pecially if we are dealing with random volatility. Hence, the results are proven under
the assumption of different spaces. In this section they are defined and we discuss some
properties, in particular embeddings, used later on.

Throughout the work, let ‖.‖Lp[a,b] denotes the Lp-norm on the interval [a, b]. In the
baseline case [a, b] = [0, 1], we abbreviate the Lp-norm by ‖.‖p. Moreover, ‖.‖p,m is the
empirical Lp-norm on [0, 1], i.e. ‖f‖p,m := ( 1

m

∑m
i=1 |f( i

m
)|p)1/p. Since there is no need in

this thesis to define function spaces in their most general form we restrict ourselves to
functions of one variable on the domain [0, 1].
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2.4. Function spaces

Hölder and Sobolev spaces

First we introduce modifications of the classical function spaces measuring smoothness
by means of derivatives and the decay of Fourier series coefficients. Recall that for a
real number x, bxc denotes the largest integer not greater than x.

Definition 4 (Hölder space). Given α > 0. Then, the space of Hölder continuous func-
tions with index α is

Cα :=
{
f ∈ L∞ : f (p) exists for p = bαc,
∃ L <∞,

∣∣f (p)(x)− f (p)(y)
∣∣ ≤ L |x− y|α−p , ∀x, y ∈ [0, 1]

}
.

Definition 5 (Hölder ball). Given α,L > 0. Then, we define the Hölder ball with index
α by

Cα (L) :=

{
f ∈ Cα : ‖f‖∞ +

∣∣f (p)(x)− f (p)(y)
∣∣

|x− y|α−p
≤ L, p = bαc, ∀x, y ∈ [0, 1]

}
.

Assume that (φk)k is a basis of L2[0, 1]. (Fractional) Sobolev spaces with respect to this
basis are defined by a condition on the decay of the basis coefficients.

Definition 6 (Sobolev space). Given an L2[0, 1] basis (φk)k, α > 0 and a sequence of
non-negative weights (ai)i. The Sobolev space with (smoothness) index α is defined via

Θ(α, (φk)k) :=

{
f ∈ L2[0, 1] :

∞∑
i=0

a2α
i 〈φi, f〉2 <∞

}
.

Definition 7 (Sobolev ellipsoid). The corresponding Sobolev ellipsoid/ball is given by

Θ(α, (φk)k, C) :=

{
f ∈ L2[0, 1] :

∞∑
i=0

a2α
i 〈φi, f〉2 ≤ C

}
.

In the following, we introduce the main examples.

Sobolev space with respect to trigonometric basis: Recall the definition of the standard
trigonometric basis on L2 [0, 1] given in (2.1.2) and set ai := i, for i even and ai := i− 1,
for i odd. The corresponding Sobolev space and ellipsoid will be denoted by Θtrig(α)
and Θtrig(α,C). This is consistent with the classical definition of Sobolev ellipsoids (cf.
Tsybakov [74]). In particular, if α is a positive integer, Θtrig(α,C) has a simpler repre-
sentation in terms of derivatives and L2 balls, that will turn out to be important later.
Let

W (α,L) :=
{
f ∈ L2[0, 1] : f (α−1) absolutely continuous, ‖f (α)‖2

2 ≤ L
}
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2. Preliminaries from nonparametric statistics

and

Wtrig(α,L) :=
{
f ∈ W (α,L) : f (k)(0) = f (k)(1), k = 0, . . . , α− 1

}
. (2.4.1)

Then, for α ∈ N \ {0},

Θtrig(α,C) = Wtrig(α, π2αC). (2.4.2)

A proof of this well known fact can be found in Tsybakov [74], p.196.

Sobolev space with respect to cosine basis: Let

{φi, i = 0, . . .} :=
{

1,
√

2 cos (iπt) , i = 1, . . .
}

(2.4.3)

be the cosine basis and ai := i. In this case the notation Θcos(α), Θcos(α,C) is used for
the Sobolev space/ellipsoid. For integer α we may similarly to (2.4.1), introduce

Wcos(α,L) :=
{
f ∈ W (α,L) : f (k)(0) = f (k)(1) = 0, for k odd, k < α

}
.

Then, for α ∈ N \ {0},

Θcos(α,C) = Wcos(α, π
2αC). (2.4.4)

Since the proof of the “⊇“-inclusion is a non-trivial extension of the one for (2.4.2), it
will be given in Appendix A for the sake of completeness.

For spot volatility estimation, Θcos will appear to be a natural smoothness space (cf.
Section 4.2). However, since in nonparametric statistics series estimators are commonly
considered with respect to the trigonometric basis, this case will be treated as well. The
next paragraph gives some insights into the interplay between these function spaces.

Comparison of Θtrig and Θcos : First note that functions having smoothness α in one
space, say f ∈ Θtrig(α) may have a different index with respect to Θcos. For example
sin(2π·) ∈ Θtrig(α) for all α < ∞. In contrast, sin(2π·) ∈ Θcos(α) for α < 3/2, only.
To give an example where the smoothness of a function is smaller in Θtrig than in
Θcos, consider cos(π·). By explicit calculations, cos(π·) ∈ Θtrig(α) for α < 1/2 and
cos(π·) ∈ Θtrig(α) for α < ∞. Next we describe a subclass of functions in which Θtrig

and Θcos coincide.
Let S be the class of all functions f ∈ L2[0, 1] such that f(x) = f(1 − x), ∀x ∈ [0, 1].
Then,

f ∈ Θtrig(α,C) ∩ S ⇔ f ∈ Θcos(α,C) ∩ S. (2.4.5)

Proof of (2.4.5). If f ∈ S then
∫ 1

0
f(x) sin(2kπx)dx =

∫ 1

0
f(x) cos((2l − 1)πx)dx = 0

for k, l ∈ N. Therefore, the only nonzero series coefficients in both the trigonometric and
the cosine basis must be of the form

∫ 1

0
f(x) cos(2kπx)dx, k = 0, . . .

To end this comparison, note that for α = 1 we have by (2.4.2) and (2.4.4) that

Θtrig(1, C) ⊂ Θcos(1, C). (2.4.6)
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Besov spaces

A Besov space depends on three parameters, allowing for a more refined analysis of
smoothness properties than Hölder and Sobolev spaces. In the way Besov spaces are
defined here, we can see directly that they are linked to the decay of wavelet coefficients.
For more general definitions and an overview on Besov spaces, we refer to Cohen [18].

Let us define the Besov norm by

‖f‖Bsp,q :=
∥∥∥∑

k

〈φ0,k, f〉φ0,k

∥∥∥
p

+
∥∥∥(2js‖∑

k

〈ψj,k, f〉ψj,k‖p
)
j≥0

∥∥∥
lq
,

where ‖.‖lq denotes the sequence space norm on the index set I, i.e. ‖(ai)i∈I‖lq :=
(
∑

i∈I |ai|q)1/q with obvious modification for q =∞.
Definition 8 (Besov space). Assume that ((Vj)j, φ) is an r-regular multiresolution anal-
ysis and denote by ψ the corresponding wavelet. Moreover, suppose 0 < s < r, p, q ≥ 1.
Then, a function f belongs to the Besov space Bs

p,q if and only if the Besov norm ‖.‖Bsp,q
is finite.

Definition 9 (Besov ball). For given r-regular multiresolution analysis ((Vj)j, φ) we
define the Besov ball Bsp,q(C) := {f ∈ Bs

p,q : ‖f‖Bsp,q ≤ C}.

It is worth mentioning, that there is an equivalent Besov norm, defined via

|f |Bsp,q :=
∥∥∥∑

k

〈φ0,k, f〉φ0,k

∥∥∥
p

+
∥∥∥(2js‖(|〈ψj,k, f〉|)k∈Z‖lp)j≥0

∥∥∥
lq

and for p ≥ 1, the equivalence follows directly from Meyer [62], Lemma 8.

Obviously, we have

‖.‖Bsp1,q ≤ ‖.‖Bsp2,q , for p1 ≤ p2,

‖.‖Bsp,q1 ≤ ‖.‖Bsp,q2 , for q1 ≤ q2, (2.4.7)

and hence the embeddings Bs
p2,q
⊂ Bs

p1,q
and Bs

p,q2
⊂ Bs

p,q1
are continuous and hold

without increasing the norm.
Moreover, we have the Sobolev-type embedding

Bs1
p1,q
⊂ Bs2

p2,q
, for s1 − 1/p1 = s2 − 1/p2, p1 ≤ p2, q ∈ [1,∞], (2.4.8)

which is also continuous. In particular, Besov spaces are generalizations of Hölder (or
more precisely Zygmund) spaces, consequently using Definition 4,

Bs
∞,∞ = Cs, if s is not an integer. (2.4.9)

In order to work with these spaces, it is important to understand the qualitative proper-
ties of functions in Bs

p,q for a given triple (p, q, s). First, smoothness such as differentiabil-
ity is measured by s (this is reflected by the embedding (2.4.9)). The parameter q allows
for a finer discrimination of smoothness than s and eventually, p restricts functions in
Bs
p,q to functions that are also in Lp.
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2.5. Asymptotic optimality

In this section we introduce the notion of optimal rates of convergence and adaptivity.

To be precise, some definitions are in order. In the following, Θ will denote the (possibly
infinite dimensional) parameter space and l : Θ×Θ→ [0,∞) the loss function.

Examples for Θ are function spaces, for instance Hölder, Sobolev and Besov spaces as
introduced in Section 2.4. For the loss function we will only use global measures, such
as l(θ1, θ2) = ‖θ1−θ2‖p although local distances could be considered as well, for instance
l(θ1, θ2) = |θ1(x0)− θ2(x0)|, x0 ∈ [0, 1] fixed, Θ some function space on [0, 1].

The risk of an estimator is defined by Eθ
[
l(θ̂n, θ)

]
. In particular, if l(θ1, θ2) = ‖θ1− θ2‖p

we call Eθ
[
l(θ̂n, θ)

]
the Lp-risk. Furthermore, we say that an estimator has rate of

convergence vn if

lim
n→∞

v−1
n Eθ

[
l(θ̂n, θ)

]
<∞. (2.5.1)

Given an estimator θ̂n the maximum risk is defined by Rn(θ̂n,Θ) := supθ∈Θ Eθ[l(θ̂n, θ)],
where Eθ is the expectation with respect to the probability distribution Pθ . Accordingly,
we define the minimax risk, given by

Rn(Θ) := inf
θ̂n

Rn(θ̂n,Θ)

and the infimum is taken over all estimators. Note that Rn(θ̂n,Θ) and Rn(Θ) are indexed
by n in order to indicate the dependence on the sample size.

Definition 10 (Optimal rate of convergence/asymptotic efficiency). An estimator is
said to achieve the optimal rate of convergence in minimax sense on (Θ, l) if

lim
n→∞

Rn(θ̂n,Θ)/Rn(Θ) <∞.

If furthermore
lim
n→∞

Rn(θ̂n,Θ)/Rn(Θ) = 1

then θ̂n is said to be asymptotically efficient.

A popular risk measure on L2 is the so-called integrated mean square error (IMSE),
defined as

IMSE(f̂) :=

∫ 1

0

MSE(f̂(t))dt,

where

MSE(f̂(t)) := E[(f̂(t)− f(t))2] (2.5.2)

is the mean square error. The IMSE risk is particularly suitable for Fourier series
estimation as introduced in Section 2.1. Indeed, the following result holds.
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Theorem 1 (IMSE of series estimator). Suppose that f̂ is given by (2.1.1) and assume
that there is a sequence of positive integers, (qn)n, tending to infinity and a function
space Θ such that

sup
f∈Θ

max
i≤qn

MSE
(
〈̂φi, f〉

)
. q−2

n . (2.5.3)

Further suppose that ωi,n = 0 for i > qn. Then,

sup
f∈Θ

IMSE(f̂) . q−2
n

qn∑
i=0

ω2
i,n +

∞∑
i=0

(1− ωi,n)2〈φi, f〉2.

Proof. First note that

IMSE(f̂) =

∫ 1

0

MSE(f̂(t))dt =

∫ 1

0

Bias2(f̂(t))dt+

∫ 1

0

Var(f̂(t))dt.

By taking advantage of the orthogonality, we obtain∫ 1

0

Var(f̂(t))dt =

qn∑
i=0

w2
i,n Var(〈̂φi, f〉).

and ∫ 1

0

Bias2(f̂(t))dt =

qn∑
i=0

(wi,nE
[
〈̂φi, f〉

]
− 〈φi, f〉)2 +

∞∑
i=qn+1

〈φi, f〉2

≤ 2

qn∑
i=0

w2
i,n(E

[
〈̂φi, f〉

]
− 〈φi, f〉)2 + 2

∞∑
i=0

(1− ωi,n)2〈φi, f〉2.

Random parameters

Before we can address the semimartingale problem as introduced in Chapter 1, we need
to extend the concept of rates of convergence to estimation of random functions, since
in this model the sample paths s  σ2

s,s are stochastic. Without loss of generality,
we restrict ourselves here to random functions defined on [0, 1]. Hence, the parameters
are allowed to be random, whereas the “parameter space“ Θ is fixed. An estimator is
understood as a random function, measurable with respect to the observations.

Definition 11. Given a filtered probability space (Ω,F , (F)t≥0,P) and let Θ be a function

class. Suppose that θ̂n is an estimator of θ = (θt)t∈[0,1], and θ is

(i) adapted to the filtration (Ft)t≥0,
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(ii) {θ ∈ Θ} is measurable with respect to F , and

(iii) θ is independent of n.

Then, we say that the estimator θ̂n achieves the rate of convergence vn over Θ with
respect to the loss function l if

lim
n→∞

v−1
n E

[
l(θ̂n, θ)I{

θ∈Θ
}] <∞, (2.5.4)

where l(θ̂n, θ)I{
θ∈Θ
} := 0 whenever θ /∈ Θ.

Suppose that θ is deterministic. In this case we require θ ∈ Θ and recover (2.5.1). For
the other extreme, i.e. P(θ ∈ Θ) = 0, any sequence (vn) is a rate of convergence; hence,
this is non-informative. Yet: if 0 < P(θ ∈ Θ) < 1 then we have a non-trivial extension of
(2.5.1). This is the typical situation we face in spot volatility estimation. For an example,
consider the case that θ is a Brownian motion and let α < 1/2. As it is well known
P(θ ∈ Cα) = 1. But for any constant C, 0 < C <∞ we have 0 < P(θ ∈ Cα(C)) < 1.

Adaptivity

Often, in function estimation, the smoothness of the true function is unknown. For
instance, we face this situation in spot volatility estimation later, where no consensus
has been reached on the path regularity. Hence, the parameter space Θ must be taken
as the union of a scale of smoothness spaces (Θα)α∈I , i.e. Θ =

⋃
α∈I Θα, where I is

some index set. In this setting we wish to find estimators with the following property:
Whenever the true function lies in a subspace, say Θα then the estimator should perform
as well as a rate-optimal estimator in the same experiment with parameter space Θα.
An estimator fulfilling this condition is said to be adaptive over the scale (Θα)α∈I .
Let us summarize: adaptive estimators a rate-optimal over many parameter spaces,
simultaneously. In particular, they do not require knowledge of the index α.

Definition 12 (Adaptivity). Let (Θα)α∈I be a family of parameter spaces indexed by α.

Then, we say that an estimator θ̂n is (rate-)adaptive on ((Θα)α∈I , l) if

lim
n→∞

Rn(θ̂n,Θα)

Rn(Θα)
<∞, for all α ∈ I.

If the optimal rates up to logarithmic factors are achieved then we say that this es-
timator is adaptive up to log-terms. For the nonparametric regression setting, it is a
classical result that adaptivity is in general possible with respect to IMSE-risk, whereas
for pointwise risk adaptivity up to log-terms holds, only.
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A technique used to obtain adaptive estimators is wavelet thresholding as introduced in
Section 2.2. In the following, we outline this method in more detail.

Recall the definition of effective smoothness functions, given in (1.4.1) and note that
by definition, s(·) is a positive function. The following result is a slight extension of
Kerkyacharian and Picard [52] and Gloter and Hoffmann [32] for adaptive estimation of
random functions. In order to be self-contained, a proof can be found in Appendix A.
We always assume that f is measurable.

Theorem 2. Given an r-regular multiresolution analysis ((Vj)j, φ) and suppose that φ
as well as the corresponding wavelet ψ have compact support. For given 0 < α0 ≤ 1/2
pick (j0, j1) such that

2j0 ∼ q2α0−1
n , 2j1 ∼ q−1/(2α0+1)

n .

Assume that α0 < s− 1/π, π ∈ [1,∞), s < r. Let (qn)n be a sequence converging to zero
such that for any p ≥ 1 and j0 ≤ ` ≤ j1,

(i)

E1/p
[
| ̂〈φj0,k, f〉 − 〈φj0,k, f〉|p I{f∈Bsπ,∞(C)}

]
. q1/2

n ,

(ii)

E1/p
[
| ̂〈ψ`,k, f〉 − 〈φ`,k, f〉|p I{f∈Bsπ,∞(C)}

]
. q1/2

n ,

(iii)

P
(
| ̂〈ψ`,k, f〉 − 〈ψ`,k, f〉| ≥

κ(p)

2

√
qn log(1/qn) and f ∈ Bsπ,∞(C)

)
. qmax(2,p)

n .

Then, the estimator f̂t defined in (2.2.2) satisfies for t = κ(p)
√
qn log(1/qn) and any

p ≥ 1

E
[
‖f̂t − f‖p I{f∈Bsπ,∞(C)}

]
.
(
qn log3/2(1/qn)

)s(1/π?)/(2s(1/π?)+1)
+ qα0

n , (2.5.5)

where π? is the unique solution to

s(1/π?) :=
1

2

( p
π?
− 1
)
. (2.5.6)

It is easy to see that t 7→ s + (t − 1/π)− − (tp − 1)/2 has a unique and finite positive
root. Thus, the solution π? exists and is unique. Note further that s(1/π?) = s iff
π ≥ p/(2s+1). In the sparse region, i.e. π < p/(2s+1), we loose in terms of convergence
rates.

Moreover, note that f̂ does not depend on π, s and C, whereas the rate of convergence
does. Hence, this provides us with a natural candidate for an adaptive estimator. Indeed,
in Chapter 5, we demonstrate how we can construct a wavelet estimator for the spot
volatility satisfying the assumptions above. Because of the factor log3/2(1/qn) in (2.5.5),
adaptivity holds only up to log-terms.
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2. Preliminaries from nonparametric statistics

2.6. Asymptotic equivalence

In this section we recall a number of facts on asymptotic equivalence and give a bound
on the Hellinger distance needed in Chapter 4. Moreover in Chapter 6, an asymptotic
equivalence result, derived recently in Reiß [71], will be utilized in order to obtain lower
bounds. For a concise treatment of the topic, we refer to Le Cam and Young [53].

Let E1,n and E2,n be two experiments with the same parameter space Θ. Further denote
by δ1, δ2 decision procedures in E1,n and E2,n, respectively. Let A denote an arbitrary
action space. For a loss function L : Θ × A → [0,∞). We introduce the norm ‖L‖ :=
supθ∈Θ, a∈A L(θ, a). The corresponding risks with respect to in E1,n and E2,n are denoted
by R1(θ, δ1, L, n), R2(θ, δ2, L, n).

Definition 13 (Asymptotic equivalence). The Le Cam deficiency between two statistical
experiments is given by

∆ (E1,n, E2,n) = max

[
inf
δ1

sup
δ2

sup
θ∈Θ

sup
L:‖L‖=1

|R1 (δ1, L, θ, n)−R2 (δ2, L, θ, n)| ,

inf
δ2

sup
δ1

sup
θ∈Θ

sup
L:‖L‖=1

|R1 (δ1, L, θ, n)−R2 (δ2, L, θ, n)|

]
,

where δ1, δ2 are two decision procedures. If limn→∞∆ (E1,n, E2,n) = 0 then the two exper-
iments are said to be asymptotically equivalent.

Let us define the Hellinger distance of two probability measures P and Q by dH(P,Q) :=
(
∫

(
√
dP −

√
dQ)2)1/2. Further, denote by Pn,θ and Qn,θ the probability measures of the

observations in the experiments E1,n and E2,n, respectively. Then, it can be shown that

∆2(E1,n, E2,n) ≤ 4 sup
θ∈Θ

d2
H(Pn,θ, Qn,θ) (2.6.1)

(cf. Nussbaum, [66], Equation 12), provided both experiments are defined on the same
probability space. The Hellinger distance can in general be bounded more easily than the
le Cam deficiency and provides a closed form representation for a number of distributions.

The following bound on the Hellinger distance will be of importance later. For two
n-variate centered Gaussian measures P1,P2 with invertible n × n covariance matrices
Σ1,Σ2 it holds that

d2
H(P1,P2) ≤ 2

∥∥∥Σ
−1/2
1 (Σ2 − Σ1)Σ

−1/2
1

∥∥∥2

2

= 2
∥∥(TΣ1T

t)−1/2(TΣ2T
t − TΣ1T

t)(TΣ1T
t)−1/2

∥∥2

2
, (2.6.2)

where ‖.‖2 denotes the Frobenius (or Hilbert-Schmidt) norm (for a definition see Lemma
A.7) and T is an invertible n× n matrix (cf. Reiß [71], Section 9).
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Chapter 3

Spot volatility estimation - state of the art

Reconstruction of the spot volatility has been considered within the last few years, but
most of the work was done in the simpler, noise-free case. Since 2009, estimation under
microstructure noise has been addressed as well. This chapter gives an overview of
related work.

3.1. Spot volatility estimation without microstructure noise

In this section, we present three approaches to spot volatility estimation for low-frequency
data that have been studied over the past years. The first method is based on Fourier
series, while the second relies on local averaging. Finally, the third method uses numer-
ical differentiation of the integrated volatility. In the main part of this thesis, some of
these ideas are extended to high-frequency data. Since this is technically demanding
and the different approaches can be presented easily in the low-frequency setting, it is
worthwhile to study them separately.

Fourier estimator

In this part we summarize the results by Malliavin and Mancino [58]. Suppose that we
observe a continuous semimartingale X.

Although the model assumes that the entire realization of the process is known to the
statistician, the aim is to give a reconstruction method that is stable if this assumption
fails and the process is observed only along a fine, but discrete grid. For this reason
a reconstruction formula based on Fourier series is developed. Suppose that σ2 is a
continuous function, then

σ2
N(t) =

∞∑
k=−∞

(
1− |k|

N

)
+
F (σ2)(k)e2πikt N→∞→ σ2(t), for almost all t ∈ [0, 1],

(3.1.1)
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3. Spot volatility estimation - state of the art

where F (σ2)(k) :=
∫ 1

0
σ2
t exp(−2πikt)dt is the Fourier transform and the weights

(
1− |k|

N

)
are chosen in order to preserve the non-negativity constraint on σ2 (see also (2.1.5) and
the discussion thereafter). Furthermore, we extend this notation to stochastic differen-

tials via F (dX)(k) :=
∫ 1

0
exp(−2πikt)dXt. The key point in the analysis is to define a

convolution-type operator of two Z-valued functions by

(ψ ~ ψ)(k) := lim
m→∞

1

2m+ 1

m∑
l=−m

ψ(l)ψ(k − l). (3.1.2)

It can be shown that F (σ2) = F (dX) ~ F (dX), where convergence is in probability
(cf. Malliavin and Mancino [58], Theorem 2.1). Given the path (Xt)t, F (dX) can be
computed and so can F (σ2). This allows us to reconstruct σ2

N .

In particular, F (σ2)(0) =
∫ 1

0
σ2
sds. By truncation of N,m in (3.1.1) and (3.1.2), re-

spectively, the estimator of F (σ2)(0) can be robustified in order to deal with market
microstructure noise and discrete data. Hence, this gives a consistent estimator of the
integrated volatility (cf. Malliavin and Mancino [58] as well as Mancino and Sanfelici
[59]).

Reformulation as a regression problem

The following paragraph is based on another idea from Hoffmann [41, 42]. Given a
diffusion process X, observed at time points i/n, i = 0, . . . , n. Assume the drift to be
zero. In general it will become clear that the drift is only a nuisance parameter that
has no significant effect upon either the procedure nor its theoretical properties. Then,
using partial integration yields

Yi,n = n
(
X(i+1)/n −Xi/n

)2
= n

∫ i+1
n

i
n

σ2(Xs)ds+ εi,n, (3.1.3)

where

εi,n = 2n

∫ i+1
n

i
n

(
Xs −Xi/n

)
σ(Xs)dWs.

Clearly, εi,n = Op(1) is uncorrelated, centered noise. Note that for a sequence of ran-
dom variables (Un)n, we write Un = Op(cn), whenever c−1

n Un is bounded in probability.
Equation (3.1.3) shows: We may transform our observed values of the diffusion process
and obtain new observations Yi,n, i = 1, . . . , n that are ’close’ to a regression problem,
meaning we observe σ2(Xi/n) under some additive, heteroscedastic noise. Based on these
new observations, standard procedures from nonparametrics can be applied where at-
tention must be paid to dependencies and filtrations of the process, of course. Basically
all results, such as rates of convergence, carry over to this more general situation. Thus,
conditional on the event that at some time point s, Xs reaches t, we may estimate σ(t).
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3.2. Including microstructure noise

Numerical differentiation

In order to include jumps, power variation techniques for estimation of the spot volatility
may be used as well. This has been done in Alvarez et al. [3]. Allowing for classes of
volatilities with even infinite jump activities (for instance σ could be the absolute value
of a Lévy process), it can be shown that suitably scaled discrete differences of the power
variation of order p converge stably in law to σps , for fixed s.

If σ is of Brownian smoothness plus jumps, then the convergence rate is n−1/4 (cf. Alvarez
et al. [3], Remark 5). From the perspective of nonparametric regression, this is clear
since functions with smoothness 1/2 can be reconstructed with this rate of convergence.
In contrast, if the volatility is a pure jump process without a drift component, even better
rates of convergence are possible. However, it is not obvious how this technique can be
modified to handle the case where σ is known to be of higher smoothness, for instance
two-times differentiable and it is expected that in these cases numerical differentiation
of the integrated volatility leads to suboptimal rates.

3.2. Including microstructure noise

Central limit theorems

In the semimartingale model, spot volatility estimators have been constructed by Ngo
and Ogawa [65]. Assume that (ln)n and (mn)n are non-decreasing sequences of integers
and consider

∆jY (s) :=
1

mn

mn−1∑
i=0

Ybsnc−2jmn−i − Ybsnc−(2j+1)mn−i, for s >
2lnmn

n
, j = 0, . . . , ln − 1.

Suppose that the Hölder condition

E
[
(σs − σt)2

]
. |s− t|2α

holds. Then for s > (2lnmn)/n,

σ̂(s) =
1

ln

√
3πmnn

2(3m2
n + 1)

ln−1∑
j=0

|∆jY (s)|

is an estimator of |σ(s−)| (i.e. the left limit at s). Under some further assumptions, and
for any fixed s ∈ (0, 1] √

ln

(
σ̂(s)− |σ(s−)|

)
D−→ Z,

where Z is a bounded random variable and (ln)n, (mn)n satisfy

lim
n→∞

l1+2α
n

(mn

n

)2α

= lim
n→∞

lnn

m2
n

= lim
n→∞

1

ln
= 0.
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3. Spot volatility estimation - state of the art

This implies that ln � nα/(1+3α); Therefore, the rate of convergence is strictly smaller
than n−α/(2+6α). It is quite remarkable, that the obtained estimator converges to the
absolute value of σ(s).

Volatility estimation in state space models

Another type of microstructure noise model has been introduced in Dahlhaus and Ned-
dermeyer [19]. Here, it is assumed that the true efficient log-price X is a random walk
with normally distributed increments, i.e.

Xtj = Xtj−1
+ Ztj , Ztj ∼ N (0, σ2

tj
)

where tj are trading times and (σt)t is allowed to vary over time. These prices cannot be
observed directly due to microstructure effects, instead we observe Ytj = gtj(exp(Xtj)),
where the unknown function g models rounding effects. Under the assumption that the
support of the distribution of exp(Xtj) is known and compact, an EM-type algorithm is
developed in order to estimate the spot volatility online. However, so far no theoretical
results are known for this procedure. Visual inspection of numerical simulations indicate
that the estimation method needs further improvements in order to adapt to the correct
smoothness of the volatility (see also [19], Figure 4).
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Chapter 4

Spot volatility estimation under microstructure

noise in the Gaussian Volterra model: Fourier series

estimation

The content of the next two chapters comprise the main parts of this thesis. As men-
tioned in Section 2.1, in order to construct a series estimator, we must first find estima-
tors for the scalar products 〈φ, σ2〉 =

∫
φ(s)σ2

s,sds.

Estimation of the spot volatility/intermittency in the Gaussian Volterra model has never
been studied before. In order to prove rates of convergence, we extend methods from
[64]. Unlike the Fourier series estimator derived in [64], we do not rely on an expansion
with respect to cosine basis.

4.1. A short overview on Gaussian Volterra processes

Recall Definition 1 of a Gaussian Volterra process. Because these processes have up to
this point been studied mainly in a different context, we will present a number of facts
and give some examples here. For references on this topic, see Hida and Si Si [40] as
well as Hida and Hitsuda [39]. To begin with, we provide the following examples.

Example 2.

(i) If σs,t = (1− t)/(1− s) then X is a Brownian bridge.

(ii) If σs,t = σeθ(s−t) then X is an Ornstein-Uhlenbeck process.

Both integrated Brownian motion and fractional Brownian motion are Gaussian Volterra
processes; however, in these cases the spot volatility degenerates. For instance, for
fractional Brownian motion the Molchan-Golosov representation provides such a form
and σs,t ∼ (s− t)H−1/2, for |s− t| → 0 and Hurst parameter H.

A number of non-trivial examples can be constructed from the following class of pro-
cesses.
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4. Fourier series estimation in the Gaussian Volterra model

Definition 14 (Lévy Brownian motion). A process X defined on {u : u ∈ Rd} is a Lévy
Brownian motion if

(i) X0 = 0,

(ii) E[Xu] = 0, u ∈ Rd

(iii) E[(Xu −Xv)
2] = |u− v|,

where |.| denotes the Euclidean distance.

For instance, one obtains standard Brownian motion by restricting the index set to a
half-line starting at the origin. Moreover, a Lévy Brownian motion on the unit circle in
R2 can be written as a Gaussian Volterra process with kernel (cf. Si Si [73])

σs,t = sin(t/2)

[
1

sin (s/2)
− cot(s/4)

2
h(s)

]
+ cot2 (t/4)h (s) , h (s) :=

(
1 +

s

4
tan
(s

4

))−1

.

After constructing a number of examples, we finally state some general properties of
Gaussian Volterra processes. In fact, Gaussian Volterra processes allow for a good
translation between properties of the process and properties of the map (s, t) 7→ σs,t.

In fact, there is a deeper connection between Gaussian Volterra processes and semi-
martingales. Suppose that (s, t) 7→ σs,t is deterministic and the derivatives of both

s 7→ σs,s and s 7→ σs,t exist and are denoted by dσs,s
ds

and ∂sσ, respectively. Then∫ t

0

σs,tdWs
D
=

∫ t

0

σs,sdWs +

∫ t

0

(dσs,s
ds
− ∂sσs,t

)
Wsds, (4.1.1)

where equality is in distribution. This can be verified by partial integration combined
with comparison of the covariance. By the equation above, we see that a Gaussian
Volterra process can be written as a continuous Itô semimartingale plus some generalized
drift.
Note that it follows from (4.1.1) that a Gaussian Volterra process is a semimartingale if
σs,t = s1(s) + s2(t) for continuously differentiable functions s1, s2 (for more on this see
Basse [10]). Moreover, one can show that under some additional properties, a Gaussian
Volterra process is Markovian, if σs,t = s1(s)s2(t) (cf. Hida and Hitsuda [39], Chapter
5). Furthermore, a Volterra process is self-similar with Hurst index 1/2 if and only if
σs,t = F (s/t) for F ∈ L2 (cf. Jost [49], Lemma 2.4).

Gaussian Volterra processes are in particular suitable for modeling time-varying pro-
cesses, since the state at time point t is determined only by the past s ≤ t.
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4.2. Estimation of 〈φ, σ2〉

4.2. Estimation of 〈φ, σ2〉

In this section, we construct an estimator of 〈φ, σ2〉. This will be done in three steps.
We work under the following more restrictive assumption on the noise.

Assumption 2 (Refinement of the noise assumption for model (1.1.2)). Let εi,n satisfy
Assumption 1. Additionally, suppose that τ does not depend on X, i.e. εi,n = τ(i/n)ηi,n.

A first step: The simplest non-trivial case is φ = 1. Indeed in this case we aim to
find estimators of

∫ 1

0
σ2
s,sds, i.e. the so-called integrated volatility. Estimation of the

integrated volatility is a problem that has been well studied and various solutions exist.
It can be seen that in this case the optimal rate of convergence is n−1/4 (cf. Gloter and
Jacod [33, 34] and Cai et al. [16]). Here, we need to extend this case to estimators of
〈φ, σ2〉, where it is sufficient to consider the case φ ≥ 0. Under this restriction, a natural
approach would be to treat

Yi,n(φ) :=
i∑

j=1

√
φ( j−1

n
) (Yj,n − Yj−1,n), Y0,n := 0, i = 1, . . . , n, (4.2.1)

as new observations and calculate the integrated volatility within this setting, since one
might expect them to be approximately

Ỹi,n(φ) :=

∫ i/n

0

√
φ(s) σs,i/n dWs +

√
φ( i

n
) εi,n, i = 1, . . . , n. (4.2.2)

Note that we have equality in the special case φ = 1, i.e. Yi,n
D
= Yi,n(1)

D
= Ỹi,n(1). The

problem is to quantify the quality of the approximation, in general. In the next Lemma
we state a result in this direction. The corresponding probability measures of observing
Y (φ) := (Y1,n(φ), . . . , Yn,n(φ)) and Ỹ (φ) := (Ỹ1,n(φ), . . . , Ỹn,n(φ)) are denoted by Pφ,n
and P̃φ,n, respectively.

Lemma 4. Suppose that Assumption 2 holds. Moreover assume that the volatility only
depends on s and that ηi,n ∼ N (0, 1), i.i.d. If φ = φn satisfies

inf
n,s

φn(s) > 0,

lim
n

sup
s,t: |s−t|≤1/n

n5/8 |φn(s)− φn(t)| = 0,

lim
n

n5/4
(

max
i=0,...,n−1

|∆i,nφn||∆i,nτ |+ max
i=0,...,n−2

|∆2
i,nφn|+ |φn(1/n)− φn(0)|

)
= 0,

(4.2.3)

then, for 0 < c < C <∞,

lim
n→∞

sup
c≤σ,τ≤C

dH(P̃φ,n,Pφ,n) = 0,

where dH(., .) denotes the Hellinger distance.
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4. Fourier series estimation in the Gaussian Volterra model

One example that will be used in order to construct an estimator with respect to cosine
basis is φn(.) = c + cos(knπ.), where kn ∈ N, kn � n3/8 and c is some constant larger
than 1.

The last lemma shows that, asymptotically, we cannot distinguish between observations
from (4.2.1) and (4.2.2). Let us introduce the following submodel, where we observe

Yi,n =

∫ i/n

0

σsdWs + εi,n, i = 1, . . . , n, (4.2.4)

with εi,n = τ( i
n
)ηi,n and ηi,n ∼ N (0, 1), i.i.d. In particular, an estimator for the in-

tegrated volatility in model (4.2.4) provides us with an estimator of 〈φn, σ2〉 in model
(4.2.1), having the same asymptotic risk. Due to (2.6.1), the experiments generated by
observing (4.2.4), (4.2.1) and (4.2.2) are pairwise asymptotically equivalent under the
assumptions of Lemma 4 and provided σ, τ are bounded from below and above.

However the result above is limited to the particular models assumed in Lemma 4. In
order to obtain an estimator in either the Gaussian Volterra or a stochastic volatility
model, we still have to verify by hand that the integrated volatility of the new data
vector Y (φ) := (Y1,n(φ), . . . , Yn,n(φ)) yields a good estimator for

∫
φσ2

sds.

In the preceding paragraphs, we have demonstrated that estimation of the scalar product
〈φ, σ2〉 can be reduced to estimation of the integrated volatility plus (in general) some
additional technicalities.

Second step: In this step, we derive an estimator for the integrated volatility. Some
notation is needed. First, let Mp,q, Mp and Dp denote the spaces of p × q matrices,
p× p matrices and p× p diagonal matrices over R, respectively. Second, define ∆Y :=
(∆Y1,n, . . . ,∆Yn−1,n)t, where ∆Yi,n := Yi+1,n − Yi,n is the forward difference operator.

The matrix D := Dn−1 ∈ Mn−1 is defined entrywise by (Dn−1)i,j :=
√

2/n sin (ijπ/n) .

Note that D = Dt is a discrete sine transform. Let us choose M = bcn1/2c for c > 0

and a density k on [0, 1], i.e. k : [0, 1] → [0,∞),
∫ 1

0
k(x)dx = 1. Finally, we define

Jn := Jn(k) ∈ Dn−1 by

(Jn)i,j =

{
n
M
k( i

M
)δi,j, for 1 ≤ i, j ≤M,

0 otherwise.
(4.2.5)

Then, our estimator of the integrated volatility is given by

〈̂1, σ2〉 = (∆Y )tDJnD (∆Y )− π2c2

∫ 1

0

k(x)x2dx
〈
1, τ 2

〉
, (4.2.6)

where 〈1, τ 2〉 is the integrated noise level. If τ is unknown this must be replaced by an
estimator (see the third step). However, as it will become clear, 〈1, τ 2〉 can be estimated
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4.2. Estimation of 〈φ, σ2〉

with rate of convergence n−1/2, whereas the optimal rate of convergence for 〈1, σ2〉 is
n−1/4. Since n1/4 � n1/2 we may, from an asymptotic point of view, assume that τ is
known.

Before we proceed with step three, some discussion is necessary.

Explanation of (4.2.6): Let us think of the simplest situation, namely σ, τ > 0 are
constants and the εi,n are i.i.d. standard normal. In this case ∆Y is a centered Gaussian
vector with covariance matrix

Cov(∆Y ) = σ2

n
In−1 + τ 2A, (4.2.7)

where In−1 is the (n− 1)× (n− 1) identity matrix and the tridiagonal matrix A ∈Mn−1

is given by

A :=


2 −1 0 . . . 0

−1 2 −1
. . .

...

0 −1 2
. . . 0

...
. . . . . . . . . −1

0 . . . 0 −1 2

 . (4.2.8)

In order to find the eigenvalues of Cov(∆Y ), it suffices to study the diagonalization of
A. In fact, we find

A = DΛn−1D,

where Λn−1 is diagonal with entries

(Λn−1)i,i := λi := 4 sin2 (iπ/ (2n)) ∼ i2

n2
. (4.2.9)

This can be seen by different methods. On the one hand, we may observe that A is a
discrete Laplace operator. Reformulating this leads to a second order difference equation
that is explicitly solvable. On the other hand, it is well known that taking differences
of a stationary process implies multiplication by 4 sin2(·π/2) for the spectral densities,
i.e. f∆η(λ) = fη(λ)4 sin2(λπ/2), where fη and f∆η denote the spectral densities of η and
∆η, respectively. Because of fη = 1 we might guess λi = 4 sin2(iπ/(2n)).

Now,

Cov(D∆Y ) = DCov(∆Y )D =
σ2

n
In−1 + τ 2Λn−1

and since D∆Y is a Gaussian vector, the components are independent with mean zero
and variance σ2

n
+ τ 2λi. Since λ2

i ∼ i2

n2 , we may obtain an estimator of σ2 by averaging
over the first squared observations. Clearly, if i .

√
n, then, i2/n2 . 1/n and hence
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4. Fourier series estimation in the Gaussian Volterra model

the observations are informative with respect to estimation of σ2. Therefore, we can use
of the order of n1/2 observations for estimation of σ2. Moreover, some bias correction is
needed and it will become clear that π2c2

∫ 1

0
k(x)x2dx τ 2 is exactly the quantity we need

to subtract (this is essentially Lemma A.2). Putting this together, we obtain (4.2.6),
in a special form, of course. This reveals that if σ is constant, the estimator is well
motivated. Later, we show that when σ is not constant, this yields also a rate-optimal
estimator for the integrated volatility.

Third step: Now, we combine the first and second step. By the heuristics derived so
far, we will obtain an estimator of 〈φ, σ2〉 , φ ≥ 0 by mapping

(Y, σ, τ)→ (Y (φ),
√
φσ,
√
φτ).

Let ∆Y (φ) := (∆1,nY (φ), . . . ,∆n−1,nY (φ))t, where

∆i,nY (φ) := Yi+1,n(φ)− Yi,n(φ) =
√
φ( i

n
)(Yi+1,n − Yi,n), i = 1, . . . , n− 1.

This allows us to extend (4.2.6) to

〈̂φ, σ2〉 = (∆Y (φ))tDJnD
t (∆Y (φ))− π2c2

∫ 1

0

k(x)x2dx
〈
φ, τ 2

〉
. (4.2.10)

Now, let us give an estimator for 〈φ, τ 2〉. Note that

E[(∆i,nY )2] = τ 2
(i+1)/n + τ 2

i/n +O(1/n). (4.2.11)

Therefore,

〈̂φ, τ 2〉 =
1

2(n− 1)

n−1∑
i=1

φ( i
n
)(∆i,nY )2 (4.2.12)

provides us with a natural estimator for 〈φ, τ 2〉. Next we introduce the assumption for
the density k.

Assumption 3. The function k : [0, 1] → [0,∞) has integral one, i.e.
∫ 1

0
k(x)dx = 1

and k is piecewise Lipschitz continuous (with a finite number of pieces). Furthermore∑∞
i=0 |kp| <∞, with kp :=

∫ 1

0
k(x) cos(pπx)dx.

In order to bound the moments of the estimators uniformly over a class of basis functions,
growing for increasing n, we assume that φ = φn is in the following function space.

Definition 15. Given a constant C < ∞. Let Φn(κ,C) be the set of functions φn,
φn : [0, 1]→ [0,∞) satisfying

(i) supn ‖φn‖∞ ≤ C,
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4.2. Estimation of 〈φ, σ2〉

(ii) supn sups,t: |s−t|≤1/n n
5/8|φ1/2

n (s)− φ1/2
n (t)| ≤ C,

(iii) supn(n−κ
∑∞

p=0 |(φn)p|+ n1/4
∑∞

p=n |(φn)p|) ≤ C,

where (φn)p :=
∫ 1

0
φn(x) cos(pπx)dx.

Before we can give the main lemma of this section, we must first introduce the function
spaces for σ and τ.

Definition 16. Given a finite constant Q1. Let S(κ,Q1) be the set of functions σ :
[0, 1]2 → [0,∞) satisfying

(i) ‖σ‖∞ . Q1,

(ii) |σ(s, t)− σ(s′, t)| ≤ Q1|s− s′|1/4, ∀ t ∈ [0, 1],

(iii) |σ(s, t)− σ(s, t′)| ≤ Q1|t− t′|7/8, ∀ s ≤ t ∧ t′,

(iv) (s 7→ σ2(s, s)) ∈ Θcos(3/4 + κ,Q1),

Definition 17. Given a finite constant Q2. Let T (κ,Q2) be the set of functions τ :
[0, 1]→ [0,∞) satisfying

(i) ‖τ‖∞ ≤ Q2,

(ii) |τ(s)− τ(t)| ≤ Q2|s− t|3/4,

(iii) τ 2 ∈ Θcos(3/4 + κ,Q2).

In the following proposition, we show rates of convergence for the estimator of 〈φ, τ 2〉 =∫
φτ 2. In the following the notation σ ∈ S(κ,Q1) means that (s, t) 7→ σs,t, viewed as a

function, lies in S(κ,Q1).

Proposition 1. Given model (1.1.2) and let ̂〈φn, τ 2〉 be defined as in (4.2.12). Suppose
that Assumptions 2 and 3 hold. Then, for 0 ≤ κ ≤ 1/4,

sup
φn∈Φn(κ,C), σ∈S(κ,Q1), τ∈T (κ,Q2)

∣∣∣E[ ̂〈φn, τ 2〉
]
−
〈
φn, τ

2
〉∣∣∣ . n−3/4, (4.2.13)

sup
φn∈Φn(κ,C), σ∈S(κ,Q1), τ∈T (κ,Q2)

Var
(

̂〈φn, τ 2〉
)
. n−1. (4.2.14)

Proof. Let us prove, as a first step, the estimate for the bias. We have

E
[ ̂〈φn, τ 2〉

]
=

1

2(n− 1)

n−1∑
i=1

φn( i
n
)E
[
(∆i,nY )2

]
=

1

2(n− 1)

n−1∑
i=1

φn( i
n
)E
[
(∆i,nX)2

]
+

1

2(n− 1)

n−1∑
i=1

φn( i
n
)
(
τ 2( i

n
) + τ 2( i+1

n
)
)
,
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4. Fourier series estimation in the Gaussian Volterra model

where ∆i,nX := X(i+1)/n −Xi/n. Using

X(i+1)/n −Xi/n =

∫ (i+1)/n

i/n

σs,(i+1)/ndWs +

∫ i/n

0

(σs,(i+1)/n − σs,i/n)dWs, (4.2.15)

we derive

E
[
(∆i,nX)2

]
=

∫ (i+1)/n

i/n

σ2
s,(i+1)/nds+

∫ i/n

0

(σs,(i+1)/n − σs,i/n)2ds . n−1,

uniformly over S(κ,Q1). Since |τ 2( i+1
n

)− τ 2( i
n
)| ≤ 2Q2

2n
−3/4 and by the boundedness of

φn the first equality (4.2.13) follows.

In order to bound the variance, let us write ∆i,n(τη) := τ( i+1
n

)ηi+1,n − τ( i
n
)ηi,n. Then

uniformly over Φn(κ,C),

Var
(

̂〈φn, τ 2〉
)
. n−2

n−1∑
i,j=1

∣∣Cov((∆i,nY )2, (∆j,nY )2)
∣∣.

Obviously,

Cov((∆i,nY )2, (∆j,nY )2) = Cov((∆i,nX)2, (∆j,nX)2)

+ 4 Cov((∆i,nX)(∆i,n(τη)), (∆j,nX)(∆j,n(τη)))

+ Cov((∆i,n(τη))2, (∆j,n(τη))2).

Moreover, for two Gaussian random variables U, V we have Cov(U2, V 2) = 2(Cov(U, V ))2.
Hence, by using (4.2.15) again it follows∣∣Cov((∆i,nX)2, (∆j,nX)2)

∣∣ = 2
(

Cov((∆i,nX), (∆j,nX))
)2
. n−2,

uniformly over S(κ,Q1). Similarly, we obtain

sup
σ∈S(κ,Q1), τ∈T (κ,Q2)

∣∣Cov((∆i,nX)(∆i,n(τη)), (∆j,nX)(∆j,n(τη)))
∣∣ . n−1

and finally, |Cov((∆i,n(τη))2, (∆j,n(τη))2)| is zero if |i − k| ≥ 2 and can otherwise be
bounded uniformly by a finite constant. Combining the results above yields the bound
on the variance.

Proposition 2. Given model (1.1.2) and let ̂〈φn, σ2〉 be defined as in (4.2.10). Suppose
that Assumptions 2 and 3 hold. Then, for 0 ≤ κ ≤ 1/4,

sup
φn∈Φn(κ,C), σ∈S(κ,Q1), τ∈T (κ,Q2)

∣∣∣E[ ̂〈φn, σ2〉
]
−
〈
φn, σ

2
〉∣∣∣ . n−1/4, (4.2.16)

sup
φn∈Φn(κ,C), σ∈S(κ,Q1), τ∈T (κ,Q2)

Var
(

̂〈φn, σ2〉
)
. n−1/2. (4.2.17)
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4.2. Estimation of 〈φ, σ2〉

This lemma can be proven also in the case σs,t = σs and τi/n = τ(∆i−1,nX, i/n) with
obvious modifications of the proof. Note that under these assumptions (τi/n)i=1,...,n is
still a sequence of independent random variables, while the noise, itself, depends on the
price process.
Moreover, under additional technicalities, we can include the case that X is a Brownian
Bridge, i.e. σs,t = (1− t)/(1− s) (cf. Example 2).

Proof. We must first introduce the notation and technical preliminaries which appear
later. In particular, if it is more convenient, we write σ(s) for σs,s.

We define the decomposition

∆Y (φn) := X1(φn) +X2(φn) + Z1(φn) + Z2(φn) + Z3(φn),

where X1(φn), X2(φn), Z1(φn), Z2(φn) and Z3(φn) are n− 1 dimensional random vectors
with components

(X1(φn))i := (φ1/2
n σ)( i

n
) ∆i,nW,

(X2(φn))i := (φ1/2
n τ)( i

n
) ∆i,nη,

(Z1(φn))i := φ1/2
n ( i

n
)

∫ (i+1)/n

i/n

(σs,i/n − σi/n,i/n)dWs,

(Z2(φn))i := φ1/2
n ( i

n
)

∫ (i+1)/n

0

(σs,(i+1)/n − σs,i/n)dWs,

(Z3(φn))i := φ1/2
n ( i

n
) (∆i,nτ) ηi+1,n, i = 1, . . . , n− 1.

For a function f ∈ L2 and p ∈ Z let

fp :=

∫ 1

0

f(x) cos(pπx)dx (4.2.18)

be the (scaled) p-th Fourier coefficients with respect to cosine basis. Furthermore, we
define the sums A(f, r) by

A (f, r) =
∑

q∈Z, q≡r mod 2n

fq. (4.2.19)

Some properties of these variables are given in Lemma A.3. Let In(f) ∈ Dn−1 be defined
as

In(f) :=

 f(1/n)
. . .

f(1− 1/n)

 . (4.2.20)

Whenever it is obvious, we will drop the index n.
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4. Fourier series estimation in the Gaussian Volterra model

For two centered random vectors P and Q

〈P,Q〉σ := E
[
P tDJnDQ

]
defines a semi-inner product, i.e. a scalar product, where 〈P,Q〉σ = 0 does not necessarily
imply that P = 0. For column vectors X, Y, of length mX and mY , the covariance of X
and Y is defined as the matrix Cov(X, Y ) ∈MmX ,mY with (Cov(X, Y ))i,j := Cov(Xi, Yj).
Now, Lemma A.8 shows that Cov(P,Q) = 0⇒ 〈P,Q〉σ = 0.

Moreover, Cov(X1(φn), Z3(φn)) = Cov(X2(φn), Z1(φn)) = Cov(X2(φn), Z3(φn)) = 0.
Hence, uniformly over φn ∈ Φn(κ,C), σ ∈ S(κ,Q1), τ ∈ T (κ,Q2),

E
[ ̂〈φn, σ2〉

]
= 〈X1(φn), X1(φn)〉σ + 〈X2(φn), X2(φn)〉σ + 〈Z1(φn), Z1(φn)〉σ

+ 〈Z2(φn), Z2(φn)〉σ + 〈Z3(φn), Z3(φn)〉σ + 2 〈X1(φn), Z1(φn)〉σ
+ 2 〈X1(φn), Z2(φn)〉σ + 2 〈X2(φn), Z3(φn)〉σ

+ 2 〈Z1(φn), Z2(φn)〉σ − π
2c2

∫ 1

0

k(x)x2dx 〈φn, τ 2〉+O(n−3/4). (4.2.21)

The remaining part of the proof is concerned with approximating/bounding the terms
of the r.h.s. of (4.2.21).

〈X1(φn),X1(φn)〉σ: We easily see that E[(X1(φn))i] = 0 and

E[(X1(φn))i (X1(φn))j] =
1

n
(φnσ

2)( i
n
)δi,j,

where δi,j denotes the Kronecker delta. Hence, we obtain

〈X1(φn), X1(φn)〉σ = 1
n

tr(DJnDIn(φnσ
2)),

where In(φnσ
2) is as defined in (4.2.20). By Lemma A.3 (ii) and with rn := 1

M

∑M
i=1 k( i

M
)−

1,

〈X1(φn), X1(φn)〉σ =
1

n
tr(JnDIn(φnσ

2)D)

=
1

M

M∑
i=1

k( i
M

)
(
A
(
φnσ

2, 0
)
− A

(
φnσ

2, 2i
))

= (1 + rn)A
(
φnσ

2, 0
)
− 1

M

M∑
i=1

k( i
M

)A
(
φnσ

2, 2i
)
.

Since by Assumption 3, rn . n−1/2

∣∣〈X1(φn), X1(φn)〉σ − (φnσ
2)0

∣∣ . ∞∑
m=n

∣∣(φnσ2)m
∣∣+

1√
n

∞∑
i=0

∣∣(φnσ2)i
∣∣ ,
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4.3. Fourier series estimator of the spot volatility

where (φnσ
2)p :=

∫ 1

0
φn(x)σ2(x) cos(pπx)dx in accordance with (4.2.18). Further, we

define sp := (1 · σ2)p and (φn)p := (φn · 1)p. By using Lemmas A.4 and A.5, we obtain

∞∑
m=n

|(φnσ2)m| ≤
∞∑
m=n

∞∑
l=−∞

|sl||(φn)l−m|

≤
bn/2c∑
l=−∞

|sl|
∞∑
m=n

|(φn)l−m|+
∞∑

l=bn/2c

|sl|
∞∑

m=−∞

|(φn)l−m|,

. n−1/4 + n1/2−3/4−κnκ . n−1/4, (4.2.22)
∞∑
i=0

∣∣(φnσ2)i
∣∣ ≤ ∞∑

l=−∞

|sl|
∞∑

m=−∞

|(φn)l−m| . nκ . n1/4, (4.2.23)

uniformly over φn ∈ Φn(κ,C) and σ ∈ S(κ,Q1) due to κ ≤ 1/4. This yields

sup
φn∈Φn(κ,C), σ∈S(κ,Q1)

∣∣∣∣〈X1(φn), X1(φn)〉σ −
∫ 1

0

φn(x)σ2(x)dx

∣∣∣∣ . n−1/4.

The remaining estimates for the bias as well as the uniform bound on the variance
(4.2.17) are proven in Appendix A.

4.3. Fourier series estimator of the spot volatility

In this section we define the spot volatility estimator and provide proofs for the rates of
convergence.

Based on the previous result regarding the estimation of scalar products, the final step
in order to derive a series estimator is to expand the function σ2 as in (2.1.1). Given an
L2-basis (φi)i and weights (ωi,n)i our estimator for the spot volatility is defined via

σ̂2(t) =
∞∑
i=0

ωi,n ̂〈φi, σ2〉φi. (4.3.1)

The upper bound with respect to the integrated mean square error (IMSE) follows from
Theorem 1. Let us derive rates of convergence explicitly by considering examples of
orthogonal basis systems.

Example: Cosine basis. In this example we apply Theorem 1 to the cosine basis (φi)i
as defined in (2.4.3). Note that 1 + cos(y) = 2 cos2(y/2). Therefore, and according to
Definition 15, the functions

ψin(·) := cos2(1
2
inπ·) (4.3.2)
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4. Fourier series estimation in the Gaussian Volterra model

belong to Φn(0, C) whenever in ≤ n3/8 for sufficiently large C. Obviously,

̂〈φ0, σ2〉 := ̂〈ψ0, σ2〉, ̂〈φi, σ2〉 :=
√

2
(
2 ̂〈ψi, σ2〉 − ̂〈ψ0, σ2〉

)
, i > 0

are estimators of the basis coefficients 〈φi, σ2〉 , i ≥ 0, satisfying (2.5.3) with qn ∼ n1/4.

Assume that (s 7→ σ2
s,s) ∈ Θcos(α,Q1) and σ ∈ S(0, Q1) for α ≥ 3/4 and that one of the

weight sequences (ω
(1)
i,n )i, (ω

(2)
i,n )i,

ω
(1)
i,n := I{i≤cωn1/(4α+2)}, ω

(2)
i,n :=

(
1− c−αω n−α/(4α+2)iα

)
+
, 0 < cω <∞. (4.3.3)

is used. Then we obtain for κ = 0, as a consequence of Theorem 1.

Theorem 3. Assume model (1.1.2) and let σ̂2 be defined as in (4.3.1). Under the
assumption of Proposition 2

sup
(s 7→σ2

s,s)∈Θcos(α,Q1), σ∈S(0,Q1), τ∈T (0,Q2)

IMSE(σ̂2) . n−α/(2α+1). (4.3.4)

Proof. We apply Theorem 1 for qn := bn1/4c. First note that ω
(2)
i,n ≤ ω

(1)
i,n for i = 0, 1, . . .

and hence
∑bn1/4c

i=0 (ω
(p)
i,n )2 . n1/(2α+1), p = 1, 2. For the second term, we obtain

∞∑
i=0

(1− ω(2)
i,n )2〈φi, σ2〉2 =

bcωn1/(4α+2)c∑
i=0

c−2α
ω n−α/(2α+1)i2α〈φi, σ2〉2 +

∞∑
bcωn1/(4α+2)c+1

〈φi, σ2〉2

. n−α/(2α+1) + (cωn
1/(4α+2))−2α

∞∑
i=bcωn1/(4α+2)c+1

i2α〈φi, σ2〉2

. n−α/(2α+1),

uniformly over (s 7→ σ2
s,s) ∈ Θcos(α,Q1). In the same spirit

∑∞
i=0(1 − ω(1)

i,n )2〈φi, σ2〉2 .
n−α/(2α+1) can be shown as well. This completes the proof.

The function space {σ : (s 7→ σ2
s,s) ∈ Θcos(α,Q1) and σ ∈ S(0, Q1)} can be written in a

different form. Clearly, a function belongs to this space if and only if

(s 7→ σ2
s,s) ∈ Θcos(α,Q1), |σs,u − σs′,u| ≤ Q1|s− s′|1/4, |σs,u − σs,u′ | ≤ Q1|u− u′|7/8.

Example: Trigonometric Basis. For this example let (φi)i be the trigonometric basis

defined in (2.1.2) and let ψin be as in (4.3.2). Moreover, introduce ψ̃in(.) = 1+sin(2inπ·).
By integral calculus we obtain

(ψ̃in)p =

∫ 1

0

(1 + sin(2inπx)) cos(pπx)dx =

{
0 for l even,

(4in)/(π[(2in)2 − l2]) for l odd.
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4.3. Fourier series estimator of the spot volatility

and using Riemann sums for the second term

∞∑
p=0

|(ψ̃in)p| . in,

∞∑
p=n

|(ψ̃in)p| . n−3/4in,

provided in ≤ n/2. Moreover,

|(1 + sin(2inπx))1/2| = | sin(inπx) + cos(inπx)| =
√

2| sin(inπx+ π/4)|.

Hence, for in ≤ n1/4, ψ̃in belongs to Φn(1/4, C). Recall from the previous example that
for in ≤ n1/4, ψi,n is in Φn(0, C) ⊂ Φn(1/4, C). Now, we define

̂〈φ0, σ2〉 := ̂〈ψ0, σ2〉,
̂〈φ2i, σ2〉 :=

√
2
(
2 ̂〈ψ2i, σ2〉 − ̂〈ψ0, σ2〉

)
, i > 0,

̂〈φ2i+1, σ2〉 :=
√

2
( ̂〈ψ̃i, σ2〉 − ̂〈ψ0, σ2〉

)
, i > 0

as the estimators of the corresponding basis coefficients 〈φi, σ2〉. They clearly satisfy
(2.5.3) with qn ∼ n1/4. Now, let the weights be given as in (4.3.3), then we can derive
rates of convergence by following the lines of the proof of Theorem 3.

Theorem 4. Assume model (1.1.2) and let σ̂2 be defined as in (4.3.1), α ≥ 1 and
κ = 1/4. Under the assumption of Proposition 2

sup
(s 7→σ2

s,s)∈Θtrig(α,Q1), σ∈S(1/4,Q1), τ∈T (1/4,Q2)

IMSE(σ̂2) . n−α/(2α+1). (4.3.5)

By using (2.4.6) we obtain for α ≥ 1, (s 7→ σ2
s,s) ∈ Θtrig(α,Q1) and σ ∈ S(1/4, Q1) if

and only if

(s 7→ σ2
s,s) ∈ Θtrig(α,Q1), |σs,u − σs′,u| ≤ Q1|s− s′|1/4, |σs,u − σs,u′ | ≤ Q1|u− u′|7/8.

This demonstrates that the spot volatility estimator with respect to the trigonomet-
ric basis has the (optimal) n−α/(4α+2) rate of convergence over the Sobolev ellipsoid
Θtrig(α,Q1), as long as the coordinate mappings satisfy some minimal Lipschitz condi-
tions.

By transferring the explicitly outlined example of the trigonometric basis to other basis
systems which are ’close’ to the cosine basis (for instance the sine basis), it is clear that
similar results do apply.
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4. Fourier series estimation in the Gaussian Volterra model

4.4. Optimizing tuning parameters

For the purpose of implementation, it is important to know how the function k, defined
in (4.2.5) and M = bcn1/2c can be chosen in a (theoretically) optimal way. There is no
general answer for this problem, so far. Here, we will treat the simplified version, namely
to ask for the optimal k and c for estimation of 〈1, σ2〉, provided σ, τ are deterministic
constants and η ∼ N (0, In). As mentioned earlier, we may assume, without loss of
generality, that τ is known. Recall the definition of mean square error, given in (2.5.2).
In this setting, it is well known that the optimal achievable mean square error behaves
asymptotically as 8τσ3n−1/2(1+o(1)) (cf. Gloter and Jacod [33, 34] and Cai et al. [16]).

Lemma 5. Suppose that the assumptions above hold true. Let 〈̂1, σ2〉 be as defined in
(4.2.6). Then

MSE(〈̂1, σ2〉) =
2

M

∫ 1

0

k2(x)(σ2 + c2π2τ 2x2)2dx (1 + o(1)).

In particular for fixed c, the MSE-minimizing k, denoted by k?, is given by

k?(x) = C(σ, τ, c)−1 1

(σ2 + c2π2τ 2x2)2
,

where

C(σ, τ, c) :=
1

2σ2(σ2 + c2π2τ 2)
+

arctan(πcτ
σ

)

2σ3τcπ
.

For this choice we obtain

MSE(〈̂1, σ2〉) =
2

M
C(σ, τ, c)−1 (1 + o(1)). (4.4.1)

Proof. By Lemma A.8 and (4.2.7) we obtain for the variance

E
[
〈̂1, σ2〉

]
= E

[
(∆Y )tDJnD(∆Y )

]
− π2c2

∫ 1

0

k(x)x2dx τ 2

= tr(DJnDCov(∆Y ))− π2c2

∫ 1

0

k(x)x2dx τ 2

=
σ2

n
tr(Jn) + τ 2 tr(JnΛ)− π2c2

∫ 1

0

k(x)x2dx τ 2.

Hence by using Lemma A.2 (i), it follows E
[
〈̂1, σ2〉

]
. n−1/2. For the variance, we may

use Lemma A.9 (ii) since ∆Y is Gaussian; thus, by using (4.2.7) again

Var
(
〈̂1, σ2〉

)
= Var

(
(∆Y )tDJnD(∆Y )

)
= 2‖Cov(∆Y )1/2DJnDCov(∆Y )1/2‖2

2

= 2‖J1/2
n DCov(∆Y )DJ1/2

n ‖2
2 = 2‖J1/2

n (σ
2

n
In−1 + τ 2Λ)J1/2

n ‖2
2

= 2
M∑
i=1

(
σ2

n
+ τ 2λi

)2 n2

M2k
2( i
M

).
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4.5. Comparison of estimators for integrated volatility

Now by applying Lemma A.2 (ii)-(iv) the first part follows.

In order to derive the representation of k, note that the antiderivative of x 7→ 1/(a +
bx2)2, a, b ∈ (0,∞) is given by

x 7→ x

2a(a+ bx2)
+

arctan(
√
ba−1x)

2a3/2b1/2
+ C,

where C is a constant. Now, by using Lagrange calculus, we see that
∫ 1

0
k2(x)(σ2 +

c2π2τ 2x2)2dx is minimized under the constraint
∫ 1

0
k(x)dx = 1, if k solves 2k(x)(σ2 +

c2π2τ 2x2)2 − λ = 0, or

k(x) =
λ

2(σ2 + c2π2τ 2x2)2
, x ∈ [0, 1].

By the integration formula above and some computations, the result follows.

Let us make the following two remarks: First, k?, of course, depends on the unknown
quantities themselves and is therefore not computable. However, as shown in Cai et al.
[16] it is possible to estimate the function k? by a splitting technique, but this is limited
to the case when σ, τ are deterministic constants. An extension to functions σs,t = σs has
been derived in Reiß [71]. In this setting the optimal asymptotic variance with respect

to MSE-risk, in the sense of Definition 10, is of the form 8τ
∫ 1

0
σ3(s)ds n−1/2(1 + o(1)).

In the general Gaussian Volterra model, the optimal constant is still unknown.

Secondly, if we let c→∞ then we obtain for the risk of the “choice” k = k?, MSE(〈̂1, σ2〉)
= 8τσ3n−1/2 (1 + o(1)), which is asymptotically efficient, as mentioned above.

Although for our theoretical results, k and c need to be chosen as fixed and non-random,
the considerations above provide insight for the choice of constants, in practice. This is
particularly true if we have some prior knowledge on the size of σ and τ.

4.5. Comparison of estimators for integrated volatility

As noted in the introduction, other methods have been developed in order to estimate the
integrated volatility. The most important are the multiscale realized volatility approach
by Zhang [76], realised kernels (cf. Barndorff-Nielsen et al. [7]) as well as pre-averaging
(cf. Podolskij and Vetter [68] and Jacod et al. [44]). In fact all of these methods are
equivalent up to the point of handling boundary terms.

Therefore, we would like to compare the estimators for the scalar products, derived in
this chapter, with one of the procedures mentioned above. Without loss of generality, let
us choose the realised kernel estimator, defined in Barndorff-Nielsen et al. [7], Section
1.
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4. Fourier series estimation in the Gaussian Volterra model

Consider again the Gaussian Volterra model where σ, τ are deterministic constants
and ηi,n ∼ N (0, 1), i.i.d., assuming that the number of observation ranges over i =
−M,−M + 1, . . . , 0, 1, . . . , n. For l ≤M, denote the l-th realised autocorrelation by

γl(Y ) :=
n∑
j=1

(∆j−1,nY )(∆j−l−1,nY ).

Then the realised kernel estimator is defined via

〈̂1, σ2〉RK := γ0(Y ) +
M∑
l=1

f
(
l−1
M

)(
γl(Y ) + γ−l(Y )

)
, (4.5.1)

where f is a sufficiently smooth function with f(0) = 1, f(1) = f ′(0) = f ′(1) = 0.

Both estimators, 〈̂1, σ2〉 (as defined in (4.2.6)) and 〈̂1, σ2〉RK can be viewed as quadratic
forms. By comparing them, we see that up to boundary and approximation terms
(and of course different methods in order to subtract the bias, but this is of smaller
order anyway), the estimator defined in (4.2.6) can be understood as the realised kernel
estimator and the translation is given by

f(u) =

∫ 1

0

k(t) cos(uπtc2)dt,

with k defined as in (4.2.5). In particular, the condition
∫ 1

0
k(t)dt = 1 is equivalent to

f(0) = 1. Let us extend k to the real line by

ǩ(x) :=


k(x), for x ∈ [0, 1],

0, for x > 1,

k(−x), for x ≤ 0.

Further denote by F the Fourier transform. Rewriting

f(u) =

∫ 1

0

k(t) cos(uπtc2)dt =
1

2
F(ǩ)

(
uc2

2

)
and by Parseval’s identity, we derive further ‖f‖2 = c−1‖k‖2, ‖f ′‖2

2 = c2π2
∫ 1

0
k2(t)t2dt

and ‖f ′′‖2
2 = c6π4

∫ 1

0
k2(t)t4dt. Therefore, we see that the asymptotic variances derived

in Lemma 5 and in Barndorff-Nielsen et al. [7], Theorem 4 coincide.

However, note that for a finite sample size, the estimators for the integrated volatility

might be quite different. In particular, the fact that 〈̂1, σ2〉RK also includes observations
outside the time interval [0, 1] makes the realised kernel estimator difficult to implement
in practice.
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4.5. Comparison of estimators for integrated volatility

In [64], the estimator (4.2.6) has been introduced in the special case k = 2I[1/2,1](·). Let
us show by an easy example that this can be improved in the special setting of Lemma
5. Note that for k = 2I[1/2,1](·), we obtain the asymptotic variance(

2σ4 +
7

3
π2τ 2σ2 +

31

40
π4τ 4

)
n−1/2(1 + o(1)).

Now consider the uniform density over [0, 1], i.e. k = I[0,1](·). Then, under the same
assumption, the asymptotic variance of the integrated volatility is(

2σ4 +
4

3
π2τ 2σ2 +

2

5
π4τ 4

)
n−1/2(1 + o(1)).

Therefore, we improve quite substantially over earlier versions, in particular, if τ is large.
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4. Fourier series estimation in the Gaussian Volterra model
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Chapter 5

Spot volatility estimation under microstructure

noise in the semimartingale model: Wavelet

adaptation

This chapter is devoted to the construction of an adaptive wavelet estimator. In the
first part of the chapter we introduce and discuss the so-called pre-averaging technique.
Based on this, an estimator for the single wavelet coefficients is given in Section 5.2.
Out of this, we construct in Section 5.3 an estimator for the spot volatility and calculate
upper bounds. The content of this chapter relies on [43].

5.1. Pre-averaging

Suppose that we observe a process X with continuous sample paths under additional
measurement noise, i.e. Yti = Xti + εti at deterministic time points ti, i = 1, . . . , n and
assuming ti ∈ [0, 1], for simplicity. Now, let

[0, 1] =
M⋃
i=1

Ii,

define a finite partition of [0, 1] in M disjoint intervals, where M is allowed to depend
on n. Consider the mean over interval Ii

av(Y )i :=
1

#Ii

∑
tj∈Ii

Ytj =
1

#Ii

∑
tj∈Ii

Xtj +
1

#Ii

∑
tj∈Ii

εtj , i = 1, . . . ,M, (5.1.1)

with #Ii := #{tj : tj ∈ Ii}. This binning has different effects on X and ε. Assume that
the sample paths of X are Hölder continuous with index α. Then,

1

#Ii

∑
tj∈Ii

Xtj = Xl(Ii) +Op(|Ii|α), (5.1.2)
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5. Spot volatility estimation in the semimartingale model

where l(Ii) and |Ii| denote the left endpoint and length of the interval Ii, respectively.
Hence, for X a LLN-type result applies. On the other hand, by imposing suitable
conditions on the noise ε, we obtain by CLT,

1

#Ii

∑
tj∈Ii

εtj = Op(#I
−1/2
i ). (5.1.3)

If the equations above hold true, then av(Y ) := (av(Y )1, . . . , av(Y )M)t can be treated as
a new observation vector, where we observe X at time points l(Ii) under additive noise.
This noise is due to two sources, the approximation error in (5.1.2) and the averaged
sum (5.1.3).

If X has independent increments, then for different intervals Ii, the approximation errors
are independent. The second error source, due to averaging of measurement noise, will,
by CLT, converge to a Gaussian random variable, with variance ∼ (#Ii)

−1, provided
the number of observations falling into Ii tends to infinity. Therefore, we have a good
understanding of the noise part of av(Y ), in general.

More precisely, if the sample time points tj are sufficiently uniformly distributed over
the interval [0, 1] then #Ii ∼ |Ii|n. In this situation

av(Y )i = Xl(Ii) +Op(|Ii|α + (n|Ii|)−1/2), i = 1, . . . ,M.

Here, we are in a classical trade-off situation: by choosing |Ii| large, the (stochastic) bias
term dominates, whereas for |Ii| small the effect of the averaged noise does. The optimal
balance is obtained by choosing |Ii| ∼ n−1/(2α+1), or alternatively, M ∼ n1/(2α+1). In this
case, we obtain

av(Y )i = Xl(Ii) +Op(n
−α/(2α+1)), i = 1, . . . ,M ∼ n1/(2α+1).

Therefore, we may think of av(Y ) as a vector of new observations, where the influence
of the noise is reduced at the expense of a reduction in sample size.

To give an example, let α = 1/2 (this is Brownian smoothness, essentially). Then
av(Y )i = Xl(Ii) + Op(n

−1/4), i = 1, . . . , n1/2. So, the sample size is reduced from n to
n1/2, while the noise is now of order Op(n

−1/4).

For applications, the interesting quantities are not av(Y )i, but the differences av(Y )i −
av(Y )i−1 = Xl(Ii) − Xl(Ii−1) + Op(n

−α/(2α+1)). The size of the “informative” increments
Xl(i) −Xl(i−1) are of the same order as the noise, which is the typical situation faced in
nonparametric regression for instance. The benefit in comparison to taking differences
without averaging first, i.e. Yti − Yti−1

= Xti − Xti−1
+ Op(1), is substantially. If the

sample points are sufficiently uniformly distributed then Xti −Xti−1
∼ Op(n

−α/2) which
is much smaller than the noise.

In contrast to nonparametric regression, the noise is not centered. For this reason, it
will be necessary to do some bias correction.
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5.2. Estimation of the wavelet coefficients

The heuristics derived above provide us with a good motivation for the construction of
the estimator, although it needs to be handled with special care. Let us illustrate this
point with a concrete example from Gloter [29]. Suppose that ε = 0 and Xt = σWt. As

it is well known (see Theorem B.1),
∑n

i=2(Xi/n − X(i−1)/n)2 P→ σ2. Assume a constant
partition Ii = ( i−1

M
, i
M

]. Therefore, we would expect, by the arguments derived above,
that

M∑
i=2

(av(Y )i − av(Y )i−1)2 ≈
M∑
i=2

(Xi/M −X(i−1)/M)2 P→ σ2.

However, as one can easily show by straightforward calculations,

M∑
i=2

(av(Y )i − av(Y )i−1)2 P→ 2
3
σ2,

whenever M →∞ and M/n→ 0.

The most interesting fact that makes passing from Y to av(Y ) to a powerful statistical
tool is that, typically, this does not result in an essential loss of information for estimation
of a parameter related to X (for volatility estimation see Reiß [71], Remark 3.4), while
at the same time estimation is much easier. Because of this a preprocessing step of the
data by blockwise binning as described above and termed pre-averaging in [44], can be
used also for spot volatility estimation. This will be described below.

5.2. Estimation of the wavelet coefficients

The content of this section is subdivided into two steps. First we modify pre-averaging,
in order to make it suitable for our purposes. Later, we define and discuss the estimators
of the wavelet coefficients.

First step: Let us begin with a definition.

Definition 18 (Pre-average function). A function λ : [0, 2] → R that is piecewise
Lipschitz continuous and satisfies λ(t) = −λ(2− t) is called pre-average function. Given
a pre-average function λ, let

λ :=
(

2

∫ 1

0

( ∫ s

0

λ(u)du
)2
ds
)1/2

and define the (normalized) pre-average function λ̃ := λ/λ.

Note that the graph of λ is point symmetric with respect to (1, 0).

Example 3. Let us give a few examples of normalized pre-average functions.
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5. Spot volatility estimation in the semimartingale model

(i) λ̃(s) = (k + 1/2)π cos(s(k + 1/2)π), k = 0, 1, . . .

(ii) λ̃(s) =
√

3/2(I[0,1) (s)− I(1,2] (s)). This leads us to the generalized quadratic varia-
tion that has already been discussed in Section 5.1.

(iii) λ̃(s) = 3−1/2kπ sin (kπs) , k = 1, 2 . . . .

(iv) λ̃(s) = 2−1
√

(2k + 3)(4k + 5) (1− s)(2k+1) , k = 0, 1 . . . .

As in Chapter 4 we set

M = bcn1/2c. (5.2.1)

For the observation vector Y, we introduce the modified pre-averaged observations by

Y i,M(λ) : =
M

n

∑
j
n
∈
(
i−2
M

,
i
M

] λ̃(M j
n
− (i− 2)

)
Yj,n

=
M

n

∑
j
n
∈
(
i−2
M

,
i−1
M

] λ̃(M j
n
− (i− 2)

)
Yj,n −

M

n

∑
j
n
∈
(
i−1
M

,
i
M

] λ̃(i−M j
n

)
Yj,n,

(5.2.2)

for i = 2, . . . ,M. There are two changes compared to the original pre-averaging procedure
defined in (5.1.1). First, a weighted binning is defined and second we directly consider
differences over successive, averaged blocks, without defining first local means. Hence,
following the observations of Section 5.1 it is plausible that

Y i,M(λ) = −(X(i−1)/M −X(i−2)/M) +Op(M
−1/2 + (M/n)1/2) (5.2.3)

and the increments of X are of the same order as the noise.

On the other hand, Y i,M(λ) may also be represented (up to a small error) by weighted
increments of Y, due to

Y i,M(λ) ≈ −M
n

∑
j
n
∈
(

0,
1
M

] λ̃(M j
n

)
(Ybni/Mc−j,n − Ybn(i−2)/Mc+j,n), i = 2, . . . ,M.

Second step: Let φ be an L2-function. The estimator for the scalar product 〈φ, σ2〉 is
given by

〈̂φ, σ2〉 =
M∑
i=2

φ( i−1
M

)
(
Y

2

i,M − b(λ, Y )i,M

)
, (5.2.4)
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5.2. Estimation of the wavelet coefficients

where

b(λ, Y )i,M :=
M2

2n2

∑
j
n
∈
(
i−2
M

,
i
M

] λ̃2
(
M j

n
− (i− 2)

)(
Yj,n − Yj−1,n

)2
(5.2.5)

and Y0,n := 0.

In particular, given a multiresolution analysis ((Vj)j, φ) as well as the corresponding
wavelet ψ, the estimators of the basis coefficients 〈φj0,k, σ2〉 and 〈ψj,k, σ2〉 are given by
̂〈φj0,k, σ2〉 and ̂〈ψj,k, σ2〉, respectively.

Explanation of (5.2.4): Going back to (5.2.3) and the discussions in Section 5.1, it is

clear that Y
2

i,M = (X(i−1)/M −X(i−2)/M)2 +Op(M
−1 + (M/n)) = 1

M
σ2( i−1

M
) +Op(M

−1 +
(M/n)). Now, the noise is of the same order as the signal. However, by the definition
of a pre-average function and imposing smoothness on σ, the influence of the bias due
to the approximation can be reduced to smaller order, such that we only need to adjust
for the bias induced by the pre-averaged noise. Careful calculations reveal that this can
be accomplished by subtracting b(λ, Y ). Let us mention, that if τ and φ are sufficiently
smooth, we might approximate

b(λ, Y )i,M ≈ c2 1

n

∑
j
n
∈
(
i−2
M

,
i
M

] λ̃2(M j
n
− (i− 2))τ 2

j/n

≈ c2τ 2( i−1
M

)

∫ i/M

(i−2)/M

λ̃2(Ms− (i− 2))ds = c2 1

M
τ 2( i−1

M
)

∫ 2

0

λ̃2(u)du

and hence (5.2.4) can be written as

〈̂φ, σ2〉 =
( M∑
i=2

φ( i−1
M

)Y
2

i,M

)
− c2‖λ̃‖2

2 〈φ, τ 2〉

up to some small approximation error. This can be compared directly to (4.2.10).

Furthermore, since Y
2

i,M − b(λ, Y )i,M has mean σ2( i−1
M

)/M and variance of order n−1

(as shown later) we may think of M(Y
2

i,M − b(λ, Y )i,M) as observations coming from a
nonparametric regression model (2.1.3), with regression function σ2 and almost centered
(but dependent) errors. As mentioned in (2.1.4),

1
M

M∑
i=2

φ( i−1
M

)M(Y
2

i,M − b(λ, Y )i,M) =
M∑
i=2

φ( i−1
M

)(Y
2

i,M − b(λ, Y )i,M)

is then the natural estimator for the scalar product 〈φ, σ2〉.
Since we will deal with wavelet and approximation coefficients simultaneously, let us
introduce h`k(·) = 2`/2h(2` · −k) for a given function h (for which we set h = φ and
h = ψ later on).
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5. Spot volatility estimation in the semimartingale model

Assumption 4 (Assumption on h). Suppose that the function h : R→ R is compactly
supported, bounded, and has piecewise Lipschitz derivative.

Furthermore, for a function class D, we define ED[·] := E[· I{σ2∈D}], provided {σ2 ∈ D}
is measurable. In particular, D1 ⊂ D2 implies

ED1 [U ] ≤ ED2 [U ], for non-negative random variables U. (5.2.6)

First, we evaluate the (thresholded) moments of ̂〈h`k, σ2〉. This result will allow us to
obtain rates of convergence in the sense of Definition 11 for estimation of the spot
volatility. Before we can do so, the precise conditions on the noise process are given.

Assumption 5 (Refinement on the noise assumption for model (1.1.3)). Let εi,n satisfy
Assumption 1. Additionally, assume that E[|ηi,n|p

]
< ∞ for any p > 0 and that the

function (x1, x2) 7→ τ(x1, x2) is continuous and bounded.

The following assumption will allow us to remove the drift in the proofs by a change of
measure. It is of interest to note that this assumption is not essential for our proof. In
fact, it is imposed in order to reduce the number of terms we need to estimate when
we prove moment bounds later. Recall that by Definition 2, the processes σ and b are
càdlàg and Ft-adapted.

Assumption 6. Suppose that a weak solution of (1.1.1) is unique and well defined.

Moreover, a weak solution to X̃t =
∫ t

0
σsdWs is also unique and well defined, the laws of

X and X̃ are equivalent on F1 and we have, for some ρ > 1

E
[

exp
(
ρ

∫ 1

0

bs
σs
dWs

)]
<∞.

In order to state the following result, we must first introduce the empirical Lp[0, 1]-norms
with respect to the uniform measure on {i/M : i = 1, . . . ,M}, defined by

‖f‖p,M :=
( 1

M

M∑
i=1

|f( i
M

)|p
)1/p

. (5.2.7)

Proposition 3 (Moment bounds). Suppose that Assumptions 5 and 6 hold and let
̂〈h`k, σ2〉 as in (5.2.4). Assume further that h satisfies Assumption 4 and 2` ≤ M =
bcn1/2c. Let s > 1/π, then, for any p ≥ 1, C > 0,

EBsπ,∞(C)

[∣∣ ̂〈h`k, σ2〉 − 〈h`k, σ2〉
∣∣p] . M−p/2 +M−min{s−1/π,1/2}p‖h`k‖p1,M ,

uniformly over `, k.
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5.2. Estimation of the wavelet coefficients

Proof. Let us first introduce some notation. In the following, λ̃ always denotes the
normalized version of a pre-average function (in the sense of Definition 18). We define
the functions Λ,Λ : R→ R,

Λ(s) :=

∫ 2

s

λ̃(u)du I[0,2] (s) = −
∫ s

0

λ̃(u)du I[0,2] (s) (5.2.8)

and

Λ(s) :=
(( ∫ s

0

λ̃(u)du
)2

+
( ∫ 1−s

0

λ̃(u)du
)2
)1/2

I[0,1] (s) . (5.2.9)

For i = 2, . . . ,M

‖Λ
(
M · −(i− 1)

)
‖2 = M−1/2 (5.2.10)

and by using Lemma B.4 also

‖Λ
(
M · −(i− 2)

)
‖2 = M−1/2.

Moreover, for C > 0, we define the L∞-ball

L∞(C) := {f : [0, 1]→ R, ‖f‖∞ ≤ C}. (5.2.11)

Some properties deduced from Assumption 4 that will be used extensively can be found
in Lemma B.1.

We may decompose

̂〈h`k, σ2〉 − 〈h`k, σ2〉 = I + II + III, (5.2.12)

where

I :=
M∑
i=2

h`k
(
i−1
M

)
X

2

i,M − 〈hl,k, σ2〉,

II :=
M∑
i=2

h`k
(
i−1
M

)[
ε2i,M − b(λ, Y )i,M

]
,

III := 2
M∑
i=2

h`k
(
i−1
M

)
X i,Mεi,M ,

and in the spirit of (5.2.2)

X i,M := X i,M(λ) :=
M

n

∑
j
n
∈
(
i−2
M

,
i
M

] λ̃(M j
n
− (i− 2)

)
Xj/n,

εi,M := εi,M(λ) :=
M

n

∑
j
n
∈
(
i−2
M

,
i
M

] λ̃(M j
n
− (i− 2)

)
εj,n (5.2.13)
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5. Spot volatility estimation in the semimartingale model

are the natural extensions of applying pre-averaging to X and ε.

Bounding I : In a first step we will show that

EBsπ,∞(C)

[
|I|p
]

= EBsπ,∞(C)

[∣∣∣ M∑
i=2

h`k
(
i−1
M

)
X

2

i,M − 〈hl,k, σ2〉
∣∣∣p]

. M−p/2 + ‖h`k‖p1,MM
−min{s−1/π,1/2}p, (5.2.14)

uniformly over l and k provided 2` ≤M.

By the definition of Λ (see (5.2.8)) and substitution, we obtain for s ∈ [ i−2
M
, i
M

],

Λ(Ms− (i− 2)) =

∫ 2

Ms−(i−2)

λ̃(v)dv = M

∫ i/M

s

λ̃(Mu− (i− 2))du. (5.2.15)

Note that by the continuous embedding (2.4.8) and the identity (2.4.9) it follows

Bsπ,∞(C) ⊂ Cmin(s−1/π,1/2)(C ′) ⊂ L∞(C ′) (5.2.16)

for some C ′ = C ′(s, π, C) due to s > 1/π. Let Rn as defined in (B.0.1). Using (5.2.6)

and (5.2.15) it follows by Lemma B.3 for g′ = h′ = M λ̃(M · −(i − 2)) that uniformly
over i

EBsπ,∞(C)

[∣∣∣X2

i,M −
(∫ 1

0

Λ
(
Ms− (i− 2)

)
dXs

)2∣∣∣p]
.
∥∥Λ
(
M · −(i− 2)

)∥∥p
2
Rn

[
Λ
(
M · −(i− 2)

)]p
+ Rn

[
Λ
(
M · −(i− 2)

)]2p
.M−p/2n−p, (5.2.17)

where the last inequality follows from Lemma B.4. Let | supp(h`k)| denote the support
length of h`k. Therefore, by Hölder inequality and Lemma B.1

EBsπ,∞(C)

[∣∣∣ M∑
i=2

h`k
(
i−1
M

)
X

2

i,M −
M∑
i=2

h`k
(
i−1
M

)( ∫ 1

0

Λ
(
Ms− (i− 2)

)
dXs

)2∣∣∣p]
. | supp(h`k)|p−1Mp−1

× EBsπ,∞(C)

[ M∑
i=2

∣∣∣h`k( i−1
M

)∣∣∣p∣∣∣X2

i,M −
(∫ 1

0

Λ
(
Ms− (i− 2)

)
dXs

)2∣∣∣p] .M−3p/2.

(5.2.18)

By Lemma B.5,

EBsπ,∞(C)

[∣∣∣ M∑
i=2

h`k
(
i−1
M

)( ∫ 1

0

Λ
(
Ms− (i− 2)

)
dXs

)2

−
∫ 1

0

M∑
i=2

h`k
(
i−1
M

)
Λ2
(
Ms− (i− 2)

)
σ2
sds
∣∣∣p] .M−p/2,
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5.2. Estimation of the wavelet coefficients

and further by triangle inequality

EBsπ,∞(C)

[∣∣∣ M∑
i=2

h`k
(
i−1
M

)
X

2

i,M −
∫ 1

0

M∑
i=2

h`k
(
i−1
M

)
Λ2
(
Ms− (i− 2)

)
σ2
sds
∣∣∣p] . M−p/2.

(5.2.19)

Clearly, Λ(M ·−(i−2)) has support on [ i−2
M
, i
M

], hence Λ(M ·−(i−2)) and Λ(M ·−(i−1))

overlap on [ i−1
M
, i
M

]. Next, we show how the sum can be rewritten in terms of Λ. To this
end, note that

M∑
i=2

h`k
(
i−1
M

)
Λ2
(
Ms− (i− 2)

)
=

M∑
i=1

h`k
(
i
M

)(
Λ2
(
Ms− (i− 2)

)
+ Λ2

(
Ms− (i− 1)

))
I( i−1

M
,
i
M

](s)
+

M∑
i=1

(
h`k
(
i−1
M

)
− h`k

(
i
M

))
Λ2
(
Ms− (i− 2)

)
I( i−1

M
,
i
M

](s)
− h`k(0)Λ2

(
Ms+ 1

)
I(

0,
1
M

](s)− h`k(1)Λ2
(
Ms− (M − 1)

)
I(

1− 1
M
,1
](s). (5.2.20)

Now, (5.2.15) and
∫ 2

0
λ̃(u)du = 0 imply that

Λ2
(
Ms− (i− 2)

)
=
( ∫ 1−(Ms−(i−1))

0

λ̃(u)du
)2
, for s ∈

(
i−1
M
, i
M

]
and

Λ2
(
Ms− (i− 1)

)
=
( ∫ Ms−(i−1)

0

λ̃(u)du
)2
, for s ∈

(
i−1
M
, i
M

]
.

Let Λ as in (5.2.9) then for i = 1, . . . ,M,

Λ
2(
Ms− (i− 1)

)
I( i−1

M
,
i
M

](s)
=
(

Λ2
(
Ms− (i− 2)

)
+ Λ2

(
Ms− (i− 1)

))
I( i−1

M
,
i
M

](s). (5.2.21)

Therefore, on the event σ2 ∈ Bsπ,∞(C), Equation (5.2.20) implies by Lemma B.1 (iii)

∣∣∣ ∫ 1

0

M∑
i=2

h`k
(
i−1
M

)
Λ2
(
Ms− (i− 2)

)
σ2
sds

−
∫ 1

0

M∑
i=1

h`k
(
i
M

)
Λ

2(
Ms− (i− 1)

)
σ2
sds
∣∣∣ .M−1/2. (5.2.22)
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5. Spot volatility estimation in the semimartingale model

Recall that by continuous Sobolev embedding (2.4.8), Bsπ,∞ ⊂ B
s−1/π
∞,∞ . Since Bs−1/π

∞,∞ ⊂
Cmin(s−1/π,1/2) we derive on the event {σ2 ∈ Bsπ,∞(C)} using ‖Λ‖L2 = 1

∣∣∣ ∫ 1

0

M∑
i=2

h`k
(
i−1
M

)(
Λ

2(
Ms− (i− 1)

)
− I( i−1

M
,
i
M

](s))σ2
sds
∣∣∣

≤
∣∣∣ ∫ 1

0

M∑
i=2

h`k
(
i−1
M

)
Λ

2(
Ms− (i− 1)

)(
σ2
s − σ2

(i−1)/M

)
ds
∣∣∣

+
∣∣∣ ∫ 1

0

M∑
i=2

h`k
(
i−1
M

)
I( i−1

M
,
i
M

](s)(σ2
s − σ2

(i−1)/M

)
ds
∣∣∣

.M−min{s−1/π,1/2}‖h`k‖1,M . (5.2.23)

Finally, for σ2 ∈ Bsπ,∞(C)

∣∣∣ ∫ 1

0

M∑
i=2

h`k
(
i
M

)
I( i−1

M
,
i
M

](s)σ2
sds−

∫ 1

0

h`k(s)σ
2
sds
∣∣∣ .M−1/2, (5.2.24)

The moment bound on I, i.e. (5.2.14) follows now by applying successively (5.2.19),
(5.2.22), (5.2.23) and (5.2.24).

Bounding II : Combining Lemmas B.6, B.8, B.9 and B.10, we obtain

EBsπ,∞
[
|II|p

]
. ‖h`k‖p1,MM

pn−p + ‖h`k‖p2,MM
−3p/2n−p + ‖h`k‖pp,MM

p+1n−p .M−p/2,

where Lemma B.1 is applied for the last inequality.

Bounding III : Lemma B.7 gives

EBsπ,∞(C)

[∣∣∣III∣∣∣p]
. ‖h`k‖pp,M

(
n−p/2M +M3p/2+1n−3p/2

)
+ ‖h`k‖p2,M

(
Mp/2n−p/2 +Mp/2n−3p/2

)
.M−p/2.

By combining the estimates on parts I−III, the proof of Proposition 3 is complete.

In order to apply Theorem 2, we need further a result of the type (2.2.3). This is given
in the next Proposition.

Proposition 4 (Deviation bounds). Suppose that Assumptions 5 and 6 hold. Let us
further suppose that h satisfies Assumption 4, s > 1/π, and M = bcn1/2c. Further
assume that

(i) M2−` ≥M q, for some q > 0 and

(ii) M−(s−1/π)‖h`k‖1,M .M−1/2.
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5.3. Wavelet estimator

Then for C > 0 and p ≥ 1, we have

P
[∣∣ ̂〈h`k, σ2〉 − 〈σ2, h`k〉L2

∣∣ ≥ κ
(
p logM
M

)1/2
and σ2 ∈ Bsπ,∞(C)

]
.M−max(2,p)

for a sufficiently large constant κ and

C := sup
σ2∈Bsπ,∞(C)

‖σ2‖L∞ .

If X is a driftless continuous Itô semimartingale, i.e. b = 0, then κ can be chosen as

κ > 4C + 4
√

2 C ‖τ‖∞c‖λ‖2λ
−1

+ 4‖τ‖2
∞c

2‖λ‖2
2 λ

−2
. (5.2.25)

Remark 2. Indeed C <∞, as it follows from the continuous embedding (5.2.16). More-
over, in the case of high smoothness, i.e. s− 1/π > 1/2, Assumption (ii) in Proposition
4 becomes trivial.

5.3. Wavelet estimator

The wavelet estimator of the spot volatility, based on hard-thresholding, is now given
by

σ̂2
W :=

∑
k

̂〈φj0,k, σ2〉φj0,k +

j1∑
j=j0

∑
k∈Z

Ht( ̂〈ψj,k, σ2〉)ψj,k, (5.3.1)

where H denotes the hard-thresholding function as introduced in (2.2.1). The estimator
strongly depends on the choice of j0 and j1. Our theoretical results on σ̂2

W , stated below,
will show how these two variables can be selected.

Next, by using Propositions 3 and 4, we aim to apply Theorem 2.

Given an r-regular multiresolution analysis ((Vj)j, φ) with corresponding wavelet ψ, then
the following holds.

Theorem 5. Suppose that Assumptions 5 and 6 hold. Let σ̂2
W be defined as in (5.3.1)

and suppose that φ and ψ satisfy Assumption 4. For M = bcn1/2c and α0, 0 < α0 ≤ 1/2
choose j0, j1, such that

2j0 ∼M1−2α0 , and 2j1 ∼M1/(1+2α0).

If the hard-thresholding parameter t is set to t := 2κ
√

p logM
M

, where κ is a sufficiently

large constant, then for any π ≥ 1, s− 1/π ≥ α0, s < r it follows

lim
n→∞

v−1
n E

[
‖σ̂2

W − σ2‖p I{σ2∈Bsπ,∞}

]
<∞,
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5. Spot volatility estimation in the semimartingale model

Figure 5.1.: The gray areas in the vertical direction display the intervals [α0, α0/(1−2α0)]
for a given α0 ∈ [0, 1/2) according to (5.3.2).

with

vn =

(
log3/2 n

n

)s(1/π?)/(4s(1/π?)+2)

+ n−α0/2

and s(1/π?) is defined as in (1.4.1) and (2.5.6). Or, to state it differently, the estimator
σ̂2
W achieves the rate of convergence vn with respect to Lp-loss, in the sense of Definition

11.
If X is driftless, i.e. b = 0, then κ can be chosen as in (5.2.25).

Proof. Using Propositions 3 and 4 this is a direct application of Theorem 2 with qn =
M−1.

Assuming that the regularity of the multiresolution analysis is sufficiently large and
α0 < 1/2, Theorem 5 shows that the estimator has the rate of convergence

ṽn =

(
log3/2 n

n

)s(1/π?)/(4s(1/π?)+2)

,

provided

s ∈
[
α0 +

1

π
,

α0

(1− 2α0)

]
. (5.3.2)

These intervals in dependence on α0 and for π = ∞ are displayed in Figure 5.1. Note
that ṽn is the rate of convergence obtained in classical nonparametric regression, up to a
factor 1/2 in the exponent (cf. Kerkyacharian and Picard [52] and Gloter and Hoffmann
[32]).
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5.4. Optimizing tuning parameters

Once we have established lower bounds in Chapter 6, we will be able to prove that the
wavelet estimator adapts to the optimal rate of convergence, up to logarithmic terms,
provided a minimal smoothness assumption is satisfied.

Let us remark that we can improve on the thresholding parameter t by further assum-
ing that the noise process is a conditionally symmetric martingale. From a practical
perspective this could be reasonable (cf. Diebold and Strasser [24], Assumption 1).

We might also generalize the notion of pre-average functions (Definition 18) by relaxing

the condition λ(t) = −λ(2 − t) to
∫ 2

0
λ(s)ds = 0. However, the proof becomes more

involved. Moreover, we believe that the class {λ : λ(t) = −λ(2 − t)} contains all
important cases for both optimality and practical purposes.

5.4. Optimizing tuning parameters

In this section we tackle a similar problem as discussed in Section 4.4. Recall (5.2.1).
The goal is to find the optimal pre-average function λ and the optimal c in MSE-sense
provided that σ, τ are deterministic constants and ηi,n ∼ N (0, 1), i.i.d. Further assume
that the drift of X is zero. For a given pre-average function λ, the MSE-minimizing c
will be denoted by c?.

Lemma 6. Assume that λ is a pre-average function in the sense of Definition 18 and
suppose the assumptions made above hold. Then the mean square error is given by

MSE(〈̂1, σ2〉) = 4
( σ2

√
c

∫ 1

0

Λ(u)Λ(1− u)du− τ 2c3/2

∫ 1

0

λ̃(u)λ̃(1− u)du
)2

n−1/2

+ 2
( σ2

√
c

+ 2τ 2c3/2‖λ̃‖2
L2[0,1]

)2

n−1/2 + o(n−1/2).

Proof. First, let us show that the bias is of a smaller order. In fact, note that using the

notation introduced in (5.2.13), E
[
Y

2

i,M

]
= E

[
X

2

i,M

]
+ E

[
ε2i,M

]
. Clearly,∣∣∣E[ε2i,M]− E

[
b(λ, Y )i,M

]∣∣∣ . 1/n

and by (5.2.17) as well as Lemma B.4 also∣∣E[ X2

i,M

]
− σ2/M

∣∣ =
∣∣∣E[( ∫ 1

0

Λ(Ms− (i− 2))σdWs)
2
]
− σ2/M

∣∣∣+O(n−5/4) = O(n−5/4),

where both approximations are uniformly in i. This shows that the bias is of order
O(n−1/2).

First of all, it is not difficult to see that Var(
∑M

i=2 b(λ, Y )i,M) = o(n−1/2). Hence,

Var(〈̂1, σ2〉) = Var(
M∑
i=2

Y
2

i,M) + o
(
n−1/4

(
Var(

M∑
i=2

Y
2

i,M)
)1/2

+ n−1/2
)
,
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5. Spot volatility estimation in the semimartingale model

by Cauchy-Schwarz. Recall that for Gaussian random variables U, V, Cov(U2, V 2) =
2(Cov(U, V ))2. Therefore, we have to compute Cov(Y i,M , Y k,M) = E[Y i,MY k,M ] only.
Furthermore, by Lemma B.3 and Lemma B.4 we bound for g′ = M ·Λ(Ms−(i−2)), h′ =
M · Λ(Ms− (i− 2)),

E
[∣∣∣X i,MXk,M −

∫ 1

0

Λ(Ms− (i− 2))dXs

∫ 1

0

Λ(Ms− (k − 2))dXs

∣∣∣] . n−5/4.

Therefore,

E
[
X i,MXk,M

]
= σ2

∫ 1

0

Λ(Ms− (i− 2))Λ(Ms− (k − 2))ds+O(n−5/4),

where the last two arguments hold uniformly in i, k.

In order to calculate E[Y i,MY k,M ], we must treat three different cases, |i−k| ≥ 2, |i−k| =
1 and i = k, denoted by I, II and III.

I: In this case ( i−2
M
, i
M

] and (k−2
M
, k
M

] do not overlap. By the equalities above, it follows

Cov(Y i,M , Y k,M) = O(n−5/4).

II: Without loss of generality, we set k = i+ 1. Then, we obtain

Cov(Y i,M , Y i+1,M) = E
[
X i,MX i+1,M

]
+ E

[
εi,Mεi+1,M

]
= σ2

∫ 1

0

Λ(Ms− (i− 2))Λ(Ms− (i− 1))ds+O(n−5/4)

+ τ 2M
2

n2

∑
j
n
∈
(
i−2
M

,
i
M

] λ̃(M j
n
− (i− 2))λ̃(M j

n
− (i− 1))

=
σ2

M

∫ 1

0

Λ(u)Λ(1 + u)du+ τ 2M

n

∫ 1

0

λ̃(u)λ̃(1 + u)du+O(n−1),

where the last inequality can be verified by Riemann summation. Noting that λ̃ is a
pre-average function we obtain λ(1 + u) = −λ(1− u) and

Cov(Y i,M , Y i+1,M) =
σ2

M

∫ 1

0

Λ(u)Λ(1− u)du− τ 2M

n

∫ 1

0

λ̃(u)λ̃(1− u)du+O(n−1).

III: It can be shown by redoing the arguments in II that

Var(Y i,M) = Var(X i,M) + Var(εi,M) =
σ2

M

∫ 2

0

Λ2(u)du+ τ 2M

n

∫ 2

0

λ̃2(u)du+O(n−1).
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5.4. Optimizing tuning parameters

Note that ‖Λ‖L2[0,2] = 1. Since the above results hold uniformly in i, k, it follows directly
that

Var(
M∑
i=2

Y
2

i,M)

=
M∑

i,k=2, |i−k|≥2

2
(

Cov(Y i,M , Y k,M)
)2

+ 2
M−1∑
i=2

2
(

Cov(Y i,M , Y i+1,M)
)2

+
M∑
i=2

2
(

Var(Y i,M)
)2

= O(n−1) + 4
( σ2

√
c

∫ 1

0

Λ(u)Λ(1− u)du− τ 2c3/2

∫ 1

0

λ̃(u)λ̃(1− u)du
)2

n−1/2

+ 2
( σ2

√
c

+ 2τ 2c3/2‖λ̃‖2
L2[0,1]

)2

n−1/2.

It is an open problem to minimize the functional with respect to λ̃. However, we will
show in this paragraph that there is no solution such that the MSE achieves the optimal
asymptotic behavior 8τσ3n−1/4(1 + o(1)). In order to see this, note that

MSE(〈̂1, σ2〉) ≥ 2
( σ2

√
c

+ 2τ 2c3/2‖λ̃‖2
2

)2

n−1/2 + o(n−1/2)

and the r.h.s. is minimized for λ̃ = π
2

cos(·π
2
). For this choice, we obtain ‖λ̃‖2

2 = π2/8.
Minimizing σ2/

√
c+ τ 2c3/2π2/4 we obtain

c? =
2

π
√

3

σ

τ
.

Therefore, up to smaller order terms

MSE(〈̂1, σ2〉) ≥ 2
( σ2

√
c?

+ τ 2(c?)3/2π
2

4

)2

n−1/2

= σ3τ π
16

9

√
3n−1/2 ≈ 9.67σ3τn−1/2 > 8σ3τn−1/2. (5.4.1)

Recall the concrete examples for pre-average functions given in Example 3. In Table
5.1 we list, the optimal asymptotic constant that can be obtained with respect to the
setting of Lemma 6 for different pre-average functions.
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5. Spot volatility estimation in the semimartingale model

λ̃(s) = c?τ/σ ≈ limn MSE ·n1/2/(τσ3) ≈

π cos(sπ/2)/2 0.49 10.21

3π cos(s3π/2)/2 0.17 31.36√
3/2(I[0,1) (s)− I(1,2] (s)) 0.35 10.74

3−1/2π sin (πs) 0.30 12.52

3−1/22π sin (2πs) 0.19 24.35

2−13
√

5(1− s)3 0.47 20.41

2−1
√

91(1− s)5 0.38 20.36

Table 5.1.: Different choices for pre-average functions, the optimal tuning parameter c?

as well as the asymptotic constant of the MSE for estimation of the integrated
volatility.

Let us briefly comment on Table 5.1. Clearly, choosing a cosine function with mini-
mal modes for pre-averaging, or the generalized quadratic variation,

√
3/2(I[0,1) (s) −

I(1,2] (s)), seems to give the best results, at least theoretically. For practical implementa-
tions, other pre-average functions might perform better. It should be further mentioned,
that the choice of c? depends again on the unknown quantities; hence, the given “opti-
mal“ estimators are oracles, only.
On the one hand, we have no closed form solution of the minimization problem so far.
However, note that there is only a small gap left. In fact, choosing λ̃(s) = π

2
cos(sπ/2) we

obtain approximately 10.21 for the constant limn MSE ·n1/2/(τσ3). On the other hand
by (5.4.1), we know that the best pre-average function can only attain values larger 9.67.

Moreover, the table gives us qualitative information how the choice of λ̃ influences the
performance of our estimator. For instance, if the oscillation of the pre-average function
increases, the MSE deteriorates.

We could further improve by considering

Y i,n :=
M

n

∑
j
n
∈
(
l
n
,
l
n

+
2
M

] λ̃(M j
n
− l

n
)Yj,n, l = 1, . . . , bn(1− 2

M
)c. (5.4.2)
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5.4. Optimizing tuning parameters

Jacod et al. [44] show that the incorporation of all pre-average values of the form
(5.4.2) yields an estimator that is directly comparable to the realised kernel approach
(cf. [44], Remark 1). Hence, by the discussion in Section 4.5, it follows that the proposed
estimator of scalar products (4.2.10) in model (1.1.2), essentially agrees with the pre-
average estimator defined in [44].
However, there are no theoretical results yet available, which show that the replacement
of (5.2.4) by an estimator that includes all pre-averaged values of the form (5.4.2) still
yields rate-optimal reconstructions for the spot volatility. Moreover, analysis is much
more challenging.
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Chapter 6

Lower bounds and adaptivity

Recall the definitions of lower bounds, given in Chapter 2. In this section we state a
number of results proving that the methods presented in Chapters 4 and 5 are rate-
optimal up to a logarithmic factor, in general. In order to simplify the presentation,
we will restrict ourselves to the spot volatility estimator with respect to cosine basis, as
introduced in Section 4.3.
Let us summarize the rates obtained for the upper bounds: For the Gaussian Volterra
model it has been shown in Theorem 3 that the estimator converges with the rate
n−α/(4α+2), uniformly over (s 7→ σs,s) ∈ Θcos(α,Q), σ ∈ S(0, Q1), τ ∈ T (0, Q2). In the
semimartingale model under the assumptions on Theorem 5 the estimator converges in
the sense of Definition 11 with the rate(

(log n)3/2

n

)s(1/π?)/(4s(1/π?)+2)

,

where s(1/π?) is given by (1.4.1) and (2.5.6), provided that s− 1/π ≤ α0/(1− 2α0).

In the same sense as we needed to introduce a generalized notion of upper bounds in
order to cope with random parameters, we also have to modify the definition of a lower
bound. Here, our definition covers only the case of volatility estimation. In particular,
we allow for a change of measure. It is not clear how a general concept might be defined,
in order to account for estimation of random functions in general.

Definition 19. Suppose that there exists another filtered probability space (Ω̃, F̃ , (F̃t)t≥0, P̃)

and a process X̃ on (Ω̃, F̃) with the same distribution as X under Assumption 6. More-

over, assume that there is a process (ε̃i,n) on (Ω̃, F̃) satisfying Assumption 5 with X

replaced by X̃. If

P̃
[
σ2 ∈ Bsπ,∞(C)

]
> 0

and

lim
n→∞

v−1
n inf

σ̂2
n

Ẽ
[
‖σ̂2

n − σ2‖Lp([0,1])I{
σ2∈Bsπ,∞(C)

}] > 0,

then the rate vn is said to be a lower rate of convergence.
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6. Lower bounds and adaptivity

In the following, we present an asymptotic equivalence statement due to Reiß [71] that
turns out to be the key ingredient for proving lower bounds. Recall the definition
of asymptotic equivalence given in Section 2.6 and consider model (4.2.4), where σ is
a deterministic function and εi,n ∼ N (0, τ 2), i.i.d. Clearly, this is a submodel of the
Gaussian Volterra as well as the semimartingale model in the sense that model (4.2.4)
can be viewed as a restriction on the original parameter space. Let E1,n denote the
statistical experiment of observing Y = (Y1,n, . . . , Yn,n)t in model (4.2.4). Moreover, let

us define a new model where we observe the path (Ỹt)t∈[0,1]

dỸt =
√

2σ(t)dt+ τ 1/2n−1/4dWt. (6.0.1)

and let E2,n denote the corresponding experiment. Assume that the parameter space in
E1,n and E2,n is Θ := {σ2 ∈ Cγ : infs σ

2(s) ≥ σ0} for σ0 > 0 and

γ > (1 +
√

5)/4. (6.0.2)

Then the two experiments are asymptotically equivalent (cf. Reiß [71]). In the Gaussian
shift model (6.0.1) optimal rates of convergence for estimation of σ2 are well known
and since the proof of the equivalence is constructive, optimal rates carry over to model
(4.2.4), even in the case of unbounded loss functions. Now, by Sobolev embedding
Θcos(α) ⊂ Cα−1/2 and Bs

π,∞ ⊂ Cs−1/π, provided α− 1/2 and s− 1/π are positive but not
integers (cf. Equations (2.4.8) and (2.4.9) as well as [64], Lemma D.8). Therefore, the
lower bounds hold in model (1.1.2) for

α > (3 +
√

5)/4 (6.0.3)

and in model (1.1.3) for s−1/π > (1 +
√

5)/4. These arguments readily prove that opti-
mal rates in our models are half of those obtained in nonparametric regression/density
estimation due to the factor n−1/4 that appears in (6.0.1). Thus, the estimators con-
structed in Chapters 4 and 5 are rate-optimal (up to log-terms, for the wavelet estimator),
provided the minimal smoothness conditions are satisfied.

The lower bounds up to this point are obtained by restricting the volatilities to a smaller
parameter space, which contains deterministic volatilities that are dependent only on
the time parameter, s. In a second step, we demonstrated that in the reduced model
the lower bounds already match the rates we have derived for the estimators in the
general framework. This, of course, answers the question regarding the optimal rate of
convergence in both the Gaussian Volterra and the semimartingale model.
However, this does not tell us anything regarding optimal rates, if we restrict ourselves to
other parameter subspaces, for instance by considering Θ = {σs,t : σs,t = σt, s, t ∈ [0, 1]},
i.e.

Yi,n = σ( i
n
)Wi/n + τηi,n, ηi,n ∼ N (0, 1), i = 1, . . . , n.
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Here, the volatility depends only on the space variable t. For this setting the answer has
been given in [63, 64]. In fact, the same optimal rates as in the general setting are valid
here.
The proof relies on a multiple testing argument (cf. Tsybakov [74], Chapter 2), combined
with the following bound on the Kullback-Leibler divergence of multivariate Gaussian
probability measures.

Lemma 7. Let P1 and P2 be the probability measure of n-variate normal random vari-
ables with the same mean and covariance matrices Σ1 and Σ2, respectively. Suppose that
0 < CΣ1 ≤ Σ2 for some constant 0 < C ≤ 1. Denote by dK(., .) the Kullback-Leibler
divergence. Then,

dK(P2,P1) ≤ 1

4C2
‖Σ−1/2

0 (Σ1 − Σ0) Σ
−1/2
0 ‖2

2 ≤
1

4C2
‖Σ−1

0 Σ1 − In‖2
2,

where In is the n× n dimensional identity matrix and ‖.‖2 denotes the Frobenius norm.

Note that this result should be (up to a constant) compared directly to (2.6.2), since
d2
H(., .) ≤ dK(., .). By using the technique based on Lemma 7, lower bounds can be

obtained even in the case, where σs,t = (t− s)σ̃s (cf. [63], Theorem 2.2). Furthermore,
for lower bounds in the Gaussian Volterra model with respect to Sobolev ellipsoids, the
minimal smoothness assumption (6.0.3) can be relaxed to α > 1/2 (cf. [63], Theorem
2.1).

Moreover, the lower bounds are derived under the assumption of i.i.d. standard normal
microstructure noise. By imposing additional structure, better rates can be obtained.
For instance, suppose that P(ηi,n = 1) = P(ηi,n = −1) = 1/2. Then the same rates can
be obtained as in the noise-free case. For these types of microstructure noise models
there might even be a theoretical justification for modeling bid-ask spreads, see Section
8.1.2.

From the discussion above we know the asymptotic behavior of the minimax risk. Let
the wavelet estimator be defined as in (5.3.1) with j0 = 0 and 2j1 ∼M1/2 (i.e. α0 = 1/2).
Recall Definition 12. Then, it follows directly from Theorem 5 that the wavelet estimator
is rate-adaptive, provided 1+

√
5

4
≤ s − 1

π
≤ r, where r denotes the regularity of the

multiresolution analysis.
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Chapter 7

Simulations in the Gaussian Volterra model

This chapter is devoted to illustrate the performance of the Fourier series estimator
constructed in Chapter 4. First, we examine the estimator under various noise levels
and different sample sizes. Afterwards, the behavior under random volatility is studied.

For our simulations, we consider the following three underlying functions

σ
(1)
s,t := (2− s) exp(θ(s− t)), θ > 0

σ
(2)
s,t := (2 + cos(2sπ))1/4(2 + cos(2tπ))1/4,

σ
(3)
s,t := 1 + (2st− 1) I{st≥1/2}(s, t).

The corresponding spot volatilities, s 7→ σ2
s,s, are displayed in Figure 7.1. Note that

under σ(1), the Gaussian Volterra process follows the dynamics

dXt = −θXtdt+ (2− t)dWt, X0 = 0.

Therefore, X can be viewed as Ornstein-Uhlenbeck process with time-varying volatility
(see also Example 2 (ii)). For σ(2) the corresponding spot volatility s 7→ (2 + cos(2sπ))

Figure 7.1.: Spot volatilities corresponding to σ(1) (solid), σ(2) (dashed) and σ(3) (−◦−).
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7. Simulations in the Gaussian Volterra model

is arbitrarily smooth with respect to the Sobolev spaces Θtrig and Θcos, introduced in
Section 2.4. In order to study the case of low-smoothness, σ(3) is chosen as a kink
function.

For our simulations, we set in (4.2.5),

k(x) :=
8

2 + π

1

(1 + x2)2
, x ∈ [0, 1]

and M = b2n1/2c, i.e. c = 2. We do not want to assume that the smoothness index
of the spot volatility is known. Instead, we investigate the estimator for α = 2, fixed.
Moreover, the weights

wi,n :=
(
1− c−αω n−α/(4α+2)iα

)
+
,

are chosen according to (4.3.3) with cω = 2. We improve the spot volatility estimator by
projecting to zero, whenever σ̂2 < 0. The method is implemented for both cosine and
trigonometric basis using Matlab.

We evaluate our method under the empirical IMSE, i.e.

ÎMSE =
1

n

n∑
i=1

(
σ̂2( i

n
)− σ2( i

n
)
)2
.

The following tables show the averaged empirical IMSE as well as an estimate of Std(ÎMSE),
based on 100 replications under different scenarios.

In Table 7.1, we investigate the finite sample behavior of the spot volatility estimator for
different sample size n and constant noise level τ = 0.1. In particular, the results indicate
that for σ(1) and σ(3), the series estimator based on the cosine basis outperforms that
one with respect to the trigonometric basis. For σ(2) both estimators are comparable,
as expected. In the case of low-smoothness (i.e. for σ(3)), the decrease of the IMSE for
increasing n is much slower than for σ(1) and σ(2). This can be explained, of course,
by the reduction in terms of rates of convergence for low smoothness signals (see for
instance Theorem 3).

In Table 7.2, we show the dependence of the numerical performance on different choices
of the noise level. The results imply, that the IMSE is barely affected by small τ, i.e.
τ ∈ {0.01, 0.1}, whereas if we increase the noise level to τ = 1, the risk explodes. In
Figure 7.2, the spot volatility estimators for different noise levels are displayed. In order
to obtain results that can be compared directly to each other, the estimators are based
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n = σ(1), θ = 0.2 σ(2) σ(3)

1000 0.50 (0.43) 0.72 (0.40) 0.53 (0.30) 0.51 (0.31) 0.39 (0.19) 0.52 (0.15)

3000 0.39 (0.28) 0.54 (0.23) 0.38 (0.21) 0.35 (0.21) 0.27 (0.13) 0.42 (0.11)

9000 0.21 (0.16) 0.40 (0.14) 0.24 (0.12) 0.23 (0.13) 0.22 (0.10) 0.36 (0.08)

Table 7.1.: Estimated mean and standard deviation of the empirical IMSE for different
sample sizes based on 100 simulations. For every σ(i), i = 1, 2, 3, there are
two columns. The first column displays the values of mean and (standard
deviation) of the empirical IMSE based on spot volatility estimation with re-
spect to the cosine basis, whereas the second column shows the corresponding
values for the estimator under the trigonometric basis. The noise level is set
to τ = 0.1.

τ = σ(1), θ = 0.2 σ(2) σ(3)

0.01 0.26 (0.20) 0.47 (0.17) 0.27 (0.16) 0.24 (0.14) 0.22 (0.12) 0.37 (0.08)

0.1 0.28 (0.23) 0.49 (0.21) 0.27 (0.16) 0.24 (0.16) 0.24 (0.12) 0.40 (0.10)

0.5 1.27 (0.96) 1.53 (1.04) 1.34 (1.01) 1.25 (0.92) 0.92 (0.87) 1.04 (0.85)

Table 7.2.: Estimated mean and standard deviation of the empirical IMSE based on 100
simulations. The order of the entries is the same as in Table 7.1 and the
sample size is n = 5000.
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7. Simulations in the Gaussian Volterra model

Figure 7.2.: Reconstruction of the spot volatility (solid) for different noise levels τ = 0.01
(− ◦ −), τ = 0.1 (−�−), and τ = 0.5 (dashed). The observations are
generated from the same realizations of the Gaussian Volterra process with
volatility σ(1) (θ = 1) and noise process η = (η1,n, . . . , ηn,n). The sample size
is n = 5000.

on the same realizations of the Gaussian Volterra and noise process. The plot supports
our findings from Table 7.2. The reconstructions for small τ are more or less of the same
quality, yet there is a dramatic decrease of performance for τ = 0.5.

Let us summarize the first part of this simulation study. Despite the fact that conver-
gence rates are always below 1/4, we have shown that we are still able to obtain good
reconstructions, provided the sample size is at least 1000 and the noise level is not too
large. Here, our results rely on simply choosing α = 2, irrespectively of the true smooth-
ness of the spot volatility. Therefore, we believe that the reconstruction can even be
improved by suitable selection rules on the parameters, for instance by cross-validation.
In particular, the method relies strongly on a proper choice of M = bcn1/2c and weights
wi,n.

Random volatility

Recall that Xt =
∫ t

0
σs,tdWs. In order to study numerical performance of the spot volatil-

ity estimator under random volatility, we consider for ρ ∈ [0, 1],

σs,t = exp(2(s− t))
∣∣∣ρ Ws +

√
1− ρ2 W̃s

∣∣∣ . (7.0.1)

Here, W̃ denotes a ((Ft)t≥0,P)-Brownian motion defined on the same probability space

as the driving process W. Moreover, W and W̃ are assumed to be independent.
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Figure 7.3.: The upper plot shows the map s 7→ σs of a realization of (7.0.1). The lower
plot is a gray scale image of the corresponding map (s, t) σs,t. Note that
σs,t = 0 for s > t.

Figure 7.4.: In the upper plot a sample of 5000 data generated from (7.0.1) for ρ = 0.5
and τ = 0.1 are displayed. The lower plot shows the reconstruction based
on Fourier series estimation.
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7. Simulations in the Gaussian Volterra model

ρ = 0.1 0.5 0.9

IMSE = 0.08 (0.13) 0.09 (0.16) 0.13 (0.25) 0.15 (0.28) 0.12 (0.27) 0.14 (0.32)

Table 7.3.: Estimated mean and standard deviation of the IMSE based on 1000 simula-
tions. The volatility is given by (7.0.1) where ρ is one of the values 0.1, 0.5,
and 0.9. There are two columns below every given value for ρ. The first
column displays mean and (standard deviation) based on spot volatility esti-
mation with respect to the cosine basis, whereas the second column gives the
corresponding values for the estimator under the trigonometric basis. Noise
level and sample size are set to τ = 0.1 and n = 5000, respectively.

The integral
∫ t

0
σs,tdWs can be defined as an Itô-integral for every fixed t (cf. Barndorff-

Nielsen and Schmiegel [9]). Note that in distribution, ρ Ws +
√

1− ρ2 W̃s is again a
standard Brownian motion, and the correlation with dW is governed by the size of ρ
(for a realization see Figure 7.3). For this simulation, we set α = 1/2 and cω = 4. The
other parameters are chosen as before. A typical reconstruction is displayed in Figure
7.4. Though we are unable to recover fine details of the true spot volatility its main
features are detected. Table 7.3 indicates that the IMSE increases as ρ grows.
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Chapter 8

Application of the semimartingale model to

log-returns on high frequencies

In this chapter we study modeling, simulations and real data applications of high-
frequency log-returns. This is the main application of the semimartingale model in-
troduced in Chapter 1; hence it deserves special emphasis here.

In the first part of this chapter, we will revisit the current discussion regarding volatility
and microstructure noise modeling. In particular, we focus on some empirical findings
underlying high-frequency data, known as stylized facts. In the second part, we inves-
tigate real data performance of the wavelet estimator introduced in Chapter 5 using a
modification based on blockwise thresholding. Recall that log-returns are defined as the
increments of the log-price process.

8.1. Modeling of high-frequency data

8.1.1. Modeling log-returns

Shortly after it had been discovered that movements of stocks can be interpreted as
random walks, it became clear that a constant volatility is not justified because this
model is unable to incorporate certain phenomena visible in real data, known as stylized
facts (see for instance also LeBaron [54] or Jondeau et al. [48], Chapter 2):

- Thick tails: The distribution of price changes has a positive kurtosis, i.e. is lep-
tokurtic (cf. Mandelbrot [60]). In Fama [27], [28] power law distributions for
modeling of returns are discussed.

- Volatility clustering: As observed in Mandelbrot [60], the first autocorrelation for
large price changes is positive, i.e. a large jump in price is likely to be followed by
another of the same sign.

- Leverage effects: Returns are negatively correlated with changes in volatility (cf.
Black [14]).
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8. Application of the semimartingale model

- Intraday effects/Weekend effects: Over a trading day, the volatility patterns have
a characteristic shape (cf. Figure 1.1). Even stronger are the similarities found
when comparing the shapes of the volatility over the same weekday. Many empir-
ical findings are completing this picture. For instance, markets that remain open
around the clock experience much less volatility on weekends and overnight (cf.
Andersen and Bollerslev [4]).

- Announcements: Around the income of public news, volatility increases (cf. An-
dersen and Bollerslev [4]).

- Correlation among assets: There is a positive correlation among different returns
and markets (cf. Ramchand and Susmel [70]).

This has lead to the development of ARCH/GARCH models and various extensions of
it. These models are stochastic volatility models, where the volatility usually incorpo-
rates some of the stylized facts listed above. In the last twenty years, the number of
publications regarding this topic increased tremendously. There are many models and
different philosophies competing to describe log-returns as accurately as possible (for
more on this see for instance the glossary to ARCH (GARCH) by Bollerslev in [15],
Chapter 8).

However, it is not clear which of the ARCH/GARCH variants to choose. Even worse,
they often depend on additional parameters that must be selected by the practitioners.
Therefore, it is valuable to model volatility nonparametrically. In addition, this also
has a theoretical justification, since Delbaen and Schachermayer proved that under a
relaxation of no arbitrage, semimartingales form a natural class for price processes (for
more on this see [21, 22]).

8.1.2. Modeling microstructure noise

In the following we will illustrate that on high-frequencies, market frictions are no longer
irrelevant.

To this end let us assume that there are no microstructure effects present, in other words,
the observed log-price process X is a semimartingale. Recall the definition of realized
volatility from Theorem B.1, i.e.

[̃X, Y ](Tmk ) := X0Y0 +
km−1∑
i=0

(XTmi+1 −XTmi )(Y Tmi+1 − Y Tmi ),

where (Tmk )k,m is an array of increasing stopping times. Now, we compute [̃X,X](Tmk )

for different subsampling frequencies m from the data. If the array (Tmk )k,m satisfies the

assumptions of Theorem B.1, then we know that [̃X,X](Tmk ) converges to the quadratic
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8.1. Modeling of high-frequency data

Figure 8.1.: Realized volatilities for decreasing subsampling frequencies and different
trading days of FGBL log-prices for one week in July 2007. The y-axis
is displayed on a logarithmic scale. The approximations of the quadratic
variation are displayed for decreasing frequencies. Since the estimates show
singular behavior on the highest frequencies (i.e. around 0, where all data
are included), this proves the existence of market frictions.

variation [X,X] for increasing frequencies m. Assume that we observe the process X at
time points ti, i = 1, . . . , n. In Figure 8.1 the realized volatilities

[n/r]−1∑
i=1

(Xtr(i+1)
−Xtri)

2

for r = 1, . . . , 100 are displayed. Here, the observations come from log-prices of Euro-
Bund Future FGBL between July 9th and July 13th, 2007 (for more on this dataset see
Section 8.2). Since the estimates increase as we take higher frequencies, this shows that
there is no convergence. Consequently, for high-frequencies, the price process cannot be
modeled as a semimartingale.

We may state this differently. Assume that the price process is of the special form∫ 1

0
σsdWs, where σs is a bounded and adapted process. Then the increments are un-

correlated. However, for real data we face a negative first autocorrelation (cf. Figure
8.2).
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8. Application of the semimartingale model

Figure 8.2.: First ten autocorrelations for the price increments of successive ticks using
FGBL tick data from July 9th to July 13th, 2007. The first autocorrelation
is estimated to be −0.42.

Figure 8.3.: First autocorrelations for decreasing frequencies and different trading days
for the same data set as in Figure 8.2

Studying the first autocorrelation over different time lags, we see that it decreases for
larger scales (cf. Figure 8.3) meaning that the microstructure noise effects vanishes.

Although there is no doubt of the existence of market microstructure noise, there is an
ongoing discussion of the correct modeling. It is clear that any microstructure noise
model should be able to reproduce the effects described above.

It is worthwhile to discuss some aspects of market microstructure modeling within this
work. Detailed surveys can be found in Madhavan [56] and Hasbrouck [37]. The particu-
lar market structure in which trading takes place is responsible for microstructure effects.
Indeed, the trading process determines the two main factors for market microstructure,
trading frictions and information.

Trading frictions: Different trading protocols such as screen-based electronic system or
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8.1. Modeling of high-frequency data

floor trading may cause diverse sources of microstructure noise. The most important
are listed below.

- Bid-ask spread: For a given time point, there is nothing like an observable true
price, but only an ask and a bid-price. The difference between them is the so-
called bid-ask spread. A simple model dating back to Roll [72] is to assume that
we observe the true price process plus some random variable ε that may take values
−s/2, 0, s/2, where s denotes the spread. This allows one to model seller and buyer-
initiated trades (i.e. ε = −s/2 and ε = s/2, respectively) as well as trading at the
midquote (ε = 0). However, spreads are time dependent. For instance, they are
highest around the open/close of a market. This has been incorporated by Demsetz
[23], where the spread is allowed to depend on the number of transactions, the price
and other time-varying factors.

- Rounding errors: Prices may only change by a multiple of the tick value, where the
tick value is prespecified by trading protocols (tick size). The price discreteness
implies that we may only observe the price up to some rounding.

- Market maker: In many markets, such as foreign exchange markets, dealers, so-
called market makers, take the opposite of a transaction at any time for some
specified sell and ask prices. This induces additional transaction costs. Market
makers are not only intermediaries between investors, but they also play an active
role in price formation by setting bid and ask prices. Their aversion to strong price
changes leads to mean reversion effects in the price process (cf. Madhavan [56],
Chapter 3).

- Market fragmentation: Additionally microstructure effects may arise from the fact
that shares are traded on many markets simultaneously.

Information: A second key issue is the amount of information that is publicly avail-
able. The transparency of a market may differ depending, for example, whether or not
limit order books are displayed to the public. Asymmetric information among market
participants can be a source of additional noise.

To summarize this, we stress that the sources of market microstructure are manifold and
depend on the special structure of the market. In particular, the level of microstructure
evolves over time. Furthermore, besides bid ask-spreads and rounding errors it is difficult
to model these effects appropriately and the magnitude of a given single effects cannot
be quantified. By supsampling we may reduce the microstructure due to rounding.
However, in general, it is unclear if certain sources of microstructure are negligible or
dominant. Thus, modeling microstructure noise should be done in a fairly general way.

Besides the semimartingale model introduced in Chapter 1, we discuss two other mi-
crostructure models and show that all three are able to capture the distinctive features
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8. Application of the semimartingale model

Figure 8.4.: We investigate three models of market microstructure, to see whether they
are able to reproduce the effects observed for real data in Figures 8.1 - 8.3.
The first row shows quadratic variation and autocorrelation for RMN, the
second row for the semimartingale model and finally the last row for RSMM.

observed in Figures 8.1 - 8.3. For τ, a > 0 assume we observe

Y
(1)
i,n = baXi/nc/a, i = 1, . . . , n,

Y
(2)
i,n = ba(Xi/n + τεi,n)c/a, i = 1, . . . , n,

where X is the true price process and ηi,n is a sequence of random variables. In the
future we will refer to the first model as rounded microstructure noise model (RMN)
and to the second as rounded semimartingale model (RSMM).

Let Xt = 0.002Wt, τ = 3 · 10−5, a = 104 and εi,n ∼ N (0, 1) i.i.d. For a realization of
n = 10000 simulated observations we calculated the quadratic variation/autocorrelation
for different time scales in the same way as in Figures 8.1-8.3. The results are displayed
in Figure 8.4. Clearly, all of these models are capable of capturing the effects induced
by microstructure noise that are observed in real data.
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8.2. Real data performance

8.2. Real data performance

In order to investigate the behavior of wavelet thresholding, as introduced in Chapter 5
for real data, we consider FGBL returns from the Eurex database. This dataset consists
of tick data of the German Bund Future with expiration month September 2007. The
trades are recorded with a precision of 10 milliseconds. Overall, between 10.000 and
20.000 trades occur during one day. We removed observations that are not due to
trading. Moreover, only those observations within the time interval from 9 a.m. to 6
p.m. (Central European Time) are considered. The reconstructions are done in tick
time, i.e. the time between successive trades is defined as one time unit. It has been
stressed by Dahlhaus and Neddermeyer [19] that this is preferable, since estimation in
real time leads to a reconstruction of the trading intensity in the first order.

By inspection of the data, it becomes clear that wavelet term-by-term thresholding, as
in (5.3.1), does not lead to stable results. Figures 8.5 and 8.6 display simulated as well
as real data along with the corresponding pre-averaged values

Zi,M := M
(
Y

2

i,M(λ)− b(λ, Y )i,M

)
, i = 1, . . . ,M. (8.2.1)

As outlined in Section 5.2, the random variables Zi,M can be viewed as an observation
from a heteroscedastic nonparametric regression problem with the spot volatility as
the regression function. However, the second plot in Figure 8.5 as well as the second
plot in Figure 8.6 show that, for both real and simulated data, we face a number of
outliers. Moreover, due to the fact that Zi,M is the square of Y i,M(λ) minus some
(almost deterministic) bias correction, the noise behaves more like a scaled and centered
χ2

1 distributed random variable. As mentioned in Section 2.2, including information on
neighboring coefficients may increase the robustness of the wavelet estimator. This has
lead us to implement the block thresholding estimator proposed in Cai and Zhou [17]. In
the following we refer to this estimator as block thresholding spot volatility estimator.

For our simulations, we always choose λ(t) = 3−1/2π sin(πs) as pre-average function.
Moreover, the reconstructions are performed using Haar wavelets.
We compare our procedure with the natural approach for the noise-free case, namely
to treat the squared and suitably scaled increments defined in (3.1.3) as a regression
problem (cf. Chapter 3). Then, we apply the same block-thresholding rule, as for the
pre-averaged data. The resulting estimator will be called naive spot volatility estimator.

In Figure 8.5 we investigated the semimartingale model for simulated data. The sample
size is n = 16000 and the noise level τ = 0.01. The noise process η = (η1,n, . . . , ηn,n) is
assumed to be n-variate standard normal. We set M = b4n1/2c, i.e. c = 4.
Clearly, we see that the naive estimate is much larger than the true spot volatility. This
strong positive bias is due to the microstructure effect (see also Figure 8.1). In contrast to
that, the block thresholding spot volatility estimator yields a reasonable reconstruction
(Figure 8.5, Plot 4).
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8. Application of the semimartingale model

Note that under the assumption of additive microstructure noise and in view of (4.2.11)
the naive spot volatility estimator multiplied with 1/(2n) provides us with a reconstruc-
tion of the squared noise level t 7→ τ 2(Xt, t). Since τ = 0.01, this explains the almost
constant reconstruction in the third plot of Figure 8.5.
It is worthwhile to mention that estimation of the noise level is also of practical impor-
tance. For modeling high-frequency log-returns, this provides us with a measure of the
quality/liquidity of a market (cf. Hasbrouck [36] and Ait-Sahalia and Yu [2]).

For the remaining part of this section, we will set c = 1.

Figure 8.6 compares the naive and the block thresholding spot volatility estimator. Note
that again, the estimated spot volatility based on the noise-free assumption is larger (by
a factor of 10) than the reconstruction which includes pre-averaging.

Figure 8.7 shows tick data as well as the reconstruction of the spot volatility on a
“special” day. In fact, since the 4th of July is an official holiday in the United States,
the market is much less volatile than on regular trading days.

In Figure 8.8, the reconstructed spot volatilities over successive trading days are dis-
played. While the first hours show not many changes in the volatility, there are a few
peaks after 1 p.m. On average the spot volatility is estimated to be around 10−5.
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8.2. Real data performance

Figure 8.5.: Reconstruction of the spot volatility for simulated data. The first plot shows
the data sample. The pre-averaged data Zi,M as defined in (8.2.1) and the
naive reconstruction are displayed in the second and third plot, respectively.
Finally, the block thresholding spot volatility estimator (solid) and the true
spot volatility, s 7→ σ2

s,s (dashed), are given in the lower plot.
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8. Application of the semimartingale model

Figure 8.6.: Reconstruction of the spot volatility for FGBL tick data on July 3rd, 2007.
The first plot shows the recorded prices. The pre-averaged data Zi,M as
defined in (8.2.1) and the naive reconstruction are displayed in the second
and third plot, respectively. Finally, the block thresholding spot volatility
estimator is given in the lower plot.
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Figure 8.7.: Reconstruction of the spot volatility for FGBL tick data on July 4th, 2007.
The structure of the plots is the same as in Figure 8.6.

91
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Figure 8.8.: Reconstruction of the spot volatility based on FGBL tick data over one week
in July 2007.
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Chapter 9

Discussion and outlook

We have developed a nonparametric theory for estimation in the Gaussian Volterra
and the semimartingale model. Concerning rates of convergence, it has been shown
that these models may be compared to nonparametric regression/density estimation,
with

√
n observations, instead of n. We found that this reduces the classical rates of

convergence by a factor 1/2 (cf. Reiß [71]). Hence, if we make a formal analogy to
inverse problems, we may define 1/2 as the additional degree of ill-posedness induced by
the microstructure noise.

The Gaussian Volterra model: As shown in our numerical examples, the Fourier
series estimator is applicable even in the more general setting, where we have a random
volatility. Since this is not covered by our theoretical results so far, it would be of great
interest to prove that even in this case, the spot volatility estimator is optimal with
respect to rates of convergence.

In general, the surface (s, t) 7→ σs,t is not estimable due to non-identifiability. In fact,

the representation Xt =
∫ t

0
σs,tdWs is not unique. Consider for instance

Xt =

∫ t

0

(
α+1
α
− 2α+1

α
sα

tα

)
dWs, α > −1/2.

Then, X is again a standard Brownian motion (cf. Lévy [55], Section 2). Therefore, we
cannot distinguish between σs,t = 1, and σs,t = α+1

α
− 2α+1

α
sα

tα
.Moreover, by representation

(4.1.1), estimation of the surface (s, t) 7→ σs,t implies that we need to estimate a drift-type
term. For regular drift functions, this is known to be impossible using high-frequency
data. Therefore, estimation of the equivalence class of (s, t) 7→ σs,t is a challenging
problem.
Of special interest are function classes of the type

{(s, t) 7→ σs,t : σs,t = |t− s|α σ̃s, α > 0.}

Note that estimation of σ̃ is not covered within the framework presented in Chapter 4,
since σs,s = 0. However, it is well known, that consistent estimation can be accomplished
in this setting, see for instance Gloter and Hoffmann [31, 30].

93



9. Discussion and outlook

The semimartingale model: At the end of the discussion, we would like to com-
ment briefly on the semimartingale model. As we have seen in Chapter 8, this model
provides us with a good tool for understanding high-frequency log prices under market
microstructure noise. However, it is not capable of incorporating all of the effects that
are visible in real data. In the following, we summarize a number of important topics
that are not treated within this work.

In order to generalize spot volatility estimation to higher dimensions, i.e. considering log-
returns of more than one asset simultaneously, a further difficulty arises, since on tick
data level, the processes are not synchronized and simple interpolation techniques fail.
Note that in this case we aim to estimate a covariance depending on a time parameter.
Nowadays, methods have been developed in order to estimate the integrated volatility in
higher dimensions (cf. Hayashi and Yoshida [38], Malliavin and Mancino [58], Bibinger
[13] and the references therein). However, for spot volatility under microstructure noise
this has not yet been addressed.

Aside from the estimation of the path s  σ2
s,s, other quantities are also of interest.

For instance, the wavelet thresholding method allows us to construct estimators of the
derivatives of the spot volatility in a straightforward way. Finally, we want to stress
that an important issue within these models is the construction of asymptotic confidence
bands.
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Appendix A

Proofs and technical results for Chapters 2 and 4

Proof of Theorem 2

Before we can give the proof of Theorem 2, some preliminaries need to be introduced
before. Recall the wavelet expansion f = f1 + f2, where

f1 :=
∑
k

〈φj0,k, f〉φj0,k and f2 :=
∑

(j,k)∈Λ

〈ψj,k, f〉ψj,k,

and Λ denotes the set {(j, k) : j ≥ j0, k ∈ Z}. Similarly, we write for the estimator

(2.2.2), f̂t = f̂1 + f̂2,t with

f̂1 :=
∑
k

̂〈φj0,k, f〉φj0,k and f̂2,t :=
∑

(j,k)∈Λ

Ht( ̂〈ψj,k, f〉)ψj,k.

Now,

µp({(j, k)}) := ‖ψj,k‖pp

defines a measure on the index set Λ. Let `q,∞(p) denote the class of functions such that
the corresponding seminorm

‖f‖q`q,∞(p) := sup
t>0

tqµp
(
{(j, k) ∈ Λ : |〈ψj,k, f〉| ≥ t}

)
is finite. Clearly, `q,∞(p) depends on the choice of the basis system. In the following,
we assume that the basis is fixed. Embeddings of Besov spaces into `q,∞(p) are well
understood (cf. [52], Theorem 6.2 and [32], Proposition 5). Let us recall some results in
this direction, that are needed later on. All embeddings are continuous.

Lemma A.1. Define πs := p
2s+1

. Let 0 < p <∞, 0 ≤ s <∞.

(i) If π > πs, then Bs
π,∞ ⊂ `πs,∞(p).
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A. Proofs and technical results for Chapters 2 and 4

(ii) If 2
2s+1

< π < πs then Bs
π,∞ ⊂ `rs,∞(p), where rs = (p

2
− 1)/(s+ 1

2
− 1

π
).

(iii) If π = πs then

µp({λ : |fλ| > t}) . t−π
∣∣ log(1

t
)
∣∣,

provided there exists δ > 0, such that f ∈ Bs
π,∞∩Bδ

p,∞. In particular, if s−1/π > 0
then it is sufficient to assume f ∈ Bs

π,∞.

Now, we are able to give the proof of Theorem 2.

Proof. Throughout the proof we set f̌ := f ·I{f∈Bsπ,∞(C)}. Note that by assumption φ and
ψ are compactly supported. Using [52], Theorems 4.1 and 4.2 we infer that the following
properties hold, i.e.

(a) for any index set I ⊂ Λ,∫ 1

0

( ∑
(j,k)∈I

|ψj,k(x)|2
)p/2

dx ∼
∑

(j,k)∈I

‖ψj,k‖pp,

(b) ∫ 1

0

(∑
k

|φj0,k(x)|2
)p/2

dx ∼
∑
k

‖φj0,k‖pp,

(c) for p > 1, any real sequence (aj,k)j,k and any index set I ⊂ Λ,∥∥∥( ∑
(j,k)∈I

|aj,kψj,k|2
)1/2∥∥∥

p
∼
∥∥∥ ∑

(j,k)∈I

aj,kψj,k

∥∥∥
p
,

(d) for p > 1, any real sequence (ak)k,∥∥∥(∑
k

|akφj0,k|2
)1/2∥∥∥

p
∼
∥∥∥∑

k

akφj0,k

∥∥∥
p
,

where ∼ denotes norm equivalence.

We obtain

E
[
‖f̂ − f‖pp I{f∈Bsπ,∞(C)}

]
. E

[
‖f̂1 − f1‖pp I{f∈Bsπ,∞(C)}

]
+ E

[
‖f̂2 − f2‖pp I{f∈Bsπ,∞(C)}

]
.
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Applying (d) and Minkowski’s generalized inequality, we obtain for p ≥ 2

E
[
‖f̂1 − f1‖pp I{f∈Bsπ,∞(C)}

]
. E

[∥∥∥(∑
k

( ̂〈φj0,k, f〉 − 〈φj0,k, f〉
)2
φ2
j0,k

)1/2
∥∥∥p
p
I{f∈Bsπ,∞(C)}

]
=

∫
E
[(∑

k

( ̂〈φj0,k, f〉 − 〈φj0,k, f〉)2φ2
j0,k

(x)I{f∈Bsπ,∞(C)}
)p/2]

dx

.
∫ (∑

k

(
E2/p

[
| ̂〈φj0,k, f〉 − 〈φj0,k, f〉|pI{f∈Bsπ,∞(C)}

]
φ2
j0,k

(x)
))p/2

dx

. qp/2n

∫ (∑
k

φ2
j0,k

(x)
)p/2

dx . qp/2n

∑
k

‖φj0,k‖pp,

where we used (b) in the last step. This can be further bounded by q
p/2
n 2pj0/2 . qα0

n .
The same holds true for 1 ≤ p < 2. The proof for this case is rather easy and will not
be given here. Applying for instance the arguments from [32], p. 172, yields the desired
bound. Therefore, we obtain

E
[
‖f̂1 − f1‖pp I{f∈Bsπ,∞(C)}

]
. qα0

n .

Therefore, it suffices to show that supf∈Bsπ,∞(C) E
[
‖f̂2,t− f2‖pp I{f∈Bsπ,∞(C)}

]
is of the right

order. By [32], Proposition 5.2 it follows for 0 < u < p

E
[
‖f̂2,t − f2‖pp I{f∈Bsπ,∞(C)}

]
.
((
qn log(1/qn)

)(p−u)/2E
[
‖f̌‖u`u,∞(π)

]
+ E

[∥∥∥∑
j>j1

∑
k

〈ψj,k, f̌〉ψj,k
∥∥∥p
p

])
. (A.0.1)

Now we prove the result by bounding the approximation term in step (I) followed by
estimates on E[‖f̌‖u`u,∞(π)] for the cases π > πs (II) and π < πs (III). Finally, in a last

step (IV), we treat the case π = πs.

I: Let us first prove that Bs
π,∞ ⊂ B

s(1/p)
p,∞ is a continuous embedding. Assume p < π.

Then, we have by (2.4.7) that Bs
π,∞ ⊂ Bs

p,∞ = B
s(1/p)
p,∞ . On the other hand, if p ≥ π, the

Sobolev embedding (2.4.8) applies and we obtain Bs
π,∞ ⊂ B

s+1/p−1/π
p,∞ = B

s(1/p)
p,∞ .

Therefore, we derive∥∥∥∑
j>j1

∑
k

〈ψj,k, f̌〉ψj,k
∥∥∥
p
≤ sup

j
2js(1/p)

∥∥∥∑
k

〈ψj,k, f̌〉ψj,k
∥∥∥
p

∑
j>j1

2−js(1/p)

. 2−j1s(1/p)‖f̌‖
B
s(1/p)
p,∞

. qs(1/p)/(2α0+1)
n .
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A. Proofs and technical results for Chapters 2 and 4

Note that if p < π then s(1/p) = s and therefore

s(1/p)

2α0 + 1
≥ s

2s+ 1
≥ s(1/π?)

2s(1/π?) + 1
. (A.0.2)

On the other hand, if πs < π ≤ p then s(1/p) = s+ 1/p−1/π and s(1/π?) = s. By some
calculations using that s− 1/π ≥ α0 we obtain (A.0.2) for this case as well. Finally, for
π ≤ πs, we have s(1/p) = s+ 1/p− 1/π,

π? =
p− 2

2s− 2
π

+ 1
, s(1/π?) =

s+ 1
p
− 1

π

1− 2
p

, and
s(1/π?)

2s(1/π?) + 1
=

s+ 1
p
− 1

π

2s+ 1− 2
π

. (A.0.3)

It follows directly that (A.0.2) holds, again. This yields

E
[∥∥∥∑

j>j1

∑
k

〈ψj,k, f̌〉ψj,k
∥∥∥p
p

]
. q

p
s(1/π?)

2s(1/π?)+1
n

uniformly over f ∈ Bsπ,∞(C).

II: Note that in this situation s(1/π∗) = s. Moreover, by Lemma A.1 (i),

Bs
π,∞ ⊂ `p/(2s+1),∞(p).

Now we can choose u = p/(2s + 1) and obtain ‖f̌‖`u,∞(p)
. ‖f̌‖Bsπ,∞ ≤ C. Thus, in this

case Theorem 2 follows by applying step I and (A.0.1).

III: Note that it suffices to treat the case 3
2s+1

< π < πs only, since by assumption
s − 1/π > 0 and π ≥ 1 and therefore 2(s − 1/π) + (1 − 1/π) > 0 or equivalently,
π > 3

2s+1
. This implies p > 3. Using Lemma A.1 (ii), we might now argue similar as in

II and obtain

Bs
π,∞ ⊂ `rs,∞(p).

Hence, the r.h.s. of (A.0.1) can be bounded further by

(
qn log(1/qn)

)p s+1/p−1/π
2s+1−2/π + q

p
s(1/π?)

2s(1/π?)+1
n .

Now, (A.0.3) yields

E
[
‖f̂2,t − f2‖pp I{f∈Bsπ,∞(C)}

]
.
(
qn log(1/qn)

)p s(1/π?)
2s(1/π?)+1 .

IV: Bounding this term can be done in the same way as in [32], p. 175. Note that in
this case we obtain another logarithmic term, i.e.

E
[
‖f̂2,t − f2‖pp I{f∈Bsπ,∞(C)}

]
.
(
qn log(1/qn)

)p s(1/π?)
2s(1/π?)+1 log(1/qn)

.
(
qn log3/2(1/qn)

)p s(1/π?)
2s(1/π?)+1 .
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Proof of Lemma 3. Let us start proving the first statement. Set y := 2Cj(1 + 2δ). By
Lemma 2 (iv), we derive

P
(∣∣Mj

∣∣ ≥ 2(1 + δ)
√
Cjp logm

)
P
(∣∣Mj

∣∣ ≥ 2(1 + δ)
√
Cjp logm, [M ]j + 〈M〉j ≤ y

)
+ P

(
[M ]j + 〈M〉j > y

)
≤ 2m−p + P

(
[M ]j + 〈M〉j > y, 〈M〉j ≤ Cj(1 + δ)

)
+ P

(
〈M〉j > Cj(1 + δ)

)
. (A.0.4)

Moreover,

P
(
[M ]j + 〈M〉j > y, 〈M〉j ≤ Cj(1 + δ)

)
≤ P

(
[M ]j − 〈M〉j > 2Cjδ

)
.

Clearly, [M ]j − 〈M〉j is Fj measurable and E[[M ]j − 〈M〉j|Fj−1] = 0. Since M is square
integrable, ([M ]j − 〈M〉j)j is an Fj-martingale. It follows by Chebycheff’s and Rosen-
thal’s inequality for martingales (cf. Lemma B.18) and κ ≥ 2

P
(
[M ]j − 〈M〉j > 2Cjδ

)
. C−κj E

[∣∣[M ]j − 〈M〉j
∣∣κ]

. C−κj

j−1∑
i=0

E
[∣∣∆iM

∣∣2κ]+ C−κj E
[∣∣∣ j−1∑

i=0

E
[
(∆iM)4|Fi

]∣∣∣κ/2]
. C−κj (j + jκ/2) . j−εκ,

where we used in the last step Hölder’s inequality

E
[∣∣∣ j−1∑

i=0

E
(
(∆iM)4|Fi

)∣∣∣κ/2] . jκ/2−1

j−1∑
i=0

E
[
E
[
|∆iM |2κ|Fi

]]
. jκ/2.

Now, choosing κ := q−1
0 pε−1 > 2, yields

P
(
[M ]j + 〈M〉j > y, 〈M〉j ≤ Cj(1 + δ)

)
. j−p/q0 ≤ m−p.

Combining this with (A.0.4) and Condition (i) completes the proof of the first statement.

For the second statement, note that by using Lemma 2 (iii), we may in analogy to (A.0.4)
bound

P
(∣∣Mj

∣∣ ≥ 2(1 + δ)
√
Cjp logm

)
≤ 2m−p + P

(
[M ]j > Cj(1 + 2δ), 〈M〉j ≤ Cj(1 + δ)

)
+ P

(
〈M〉j > Cj(1 + δ)

)
Therefore, using Condition (i)

P
(∣∣Mj

∣∣ ≥ 2(1 + δ)
√
Cjp logm

)
. m−p + P

(
[M ]j − 〈M〉j > δ

)
and the proof is finished by arguing as for the first part.
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Proofs for Chapter 4

Before we give the proof of Lemma 4, recall that Mp,q, Mp and Dp as the spaces of p× q
matrices, p× p matrices and p× p diagonal matrices over R, respectively.

Proof of Lemma 4. Recall (2.6.2) and let us suppress the index n in φn, i.e. φ = φn.
Now, let

T :=


1

−1
. . .
. . . . . .

−1 1

 .

Then, we may represent TY (φ) by TY (φ) = T Ỹ (φ) + R1 + R2, where R1 and R2 are
random vectors with components

(R1)i :=

∫ i/n

(i−1)/n

(√
φ( i−1

n
)−

√
φ(s)

)
σsdWs,

(R2)i :=
(√

φ( i−1
n

)−
√
φ( i

n
)
)
τ( i

n
)ηi,n.

Recall the definition of Cov(U, V ) for column vectors U, V. Then, we can write

T Cov(Y (φ))T t = Cov(TY (φ))

= T Cov(Ỹ (φ))T t + Cov(R1) + Cov(R2) + Cov(T Ỹ (φ), R1)

+ Cov(R1, T Ỹ (φ)) + Cov(T Ỹ (φ), R2) + Cov(R2, T Ỹ (φ)).

By (2.6.2), the proof is complete, whenever we can show that uniformly on c ≤ σ, τ ≤ C

(I)
∥∥∥Cov(T Ỹ (φ))−1/2

(
Cov(R1) + Cov(R2)

)
Cov(T Ỹ (φ))−1/2

∥∥∥2

2
→ 0,

(II)
∥∥∥Cov(T Ỹ (φ))−1/2

(
Cov(T Ỹ (φ), R1) + Cov(R1, T Ỹ (φ))

)
Cov(T Ỹ (φ))−1/2

∥∥∥2

2
→ 0,

(III)
∥∥∥Cov(T Ỹ (φ))−1/2

(
Cov(T Ỹ (φ), R2) + Cov(R2, T Ỹ (φ))

)
Cov(T Ỹ (φ))−1/2

∥∥∥2

2
→ 0,

for n→∞.
(I): First note that using |

√
x − √y| = |x − y|/(

√
x +
√
y) for x, y > 0 we obtain

supc≤σ,τ≤C Cov(R1) + Cov(R2) � n−5/4In. Let Kn denote the covariance matrix of

(X1/n, X2/n, . . . , X1)t. Then, Cov(Ỹ (φ)) ≥ K+c2(infn,s φn(s))In and hence Cov(T Ỹ (φ)) &
n−1In + TT t. The i-th eigenvalues of TT t is

λi(TT
t) = 4 sin2

(
(2i− 1)π

4n+ 2

)
≥ i2

4n2
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(cf. [63], Lemma A.1). Therefore,

∥∥(n−1In + TT t)−1
∥∥2

2
≤

n∑
i=1

(
n−1 + λi(TT

t)
)−2 ≤ n5/2 +

n∑
i=bn1/2c+1

λ−2
i (TT t) . n5/2.

(A.0.5)

This completes (I).

(II): Clearly, Cov(T Ỹ (φ), R1) + Cov(R1, T Ỹ (φ)) is diagonal. Note the identity

(
φ1/2( i−1

n
)− φ1/2(s)

)
φ1/2(s) =

1

2

(
φ( i−1

n
)− φ(s)−

(φ( i−1
n

)− φ(s))2(
φ1/2( i−1

n
) + φ1/2(s)

)2

)
. (A.0.6)

Using Lemma A.7 (iv) and arguing as for (I) above, convergence to zero can be shown
in a straightforward way.

(III): Let Φ1,Φ2 ∈ Dn with diagonal entries (Φ1)i,i = φ1/2( i
n
)τ(i/n) and (Φ2)i,i =

(φ1/2( i−1
n

)− φ1/2( i
n
))τ(i/n). Then,

Cov(T Ỹ (φ), R2) = Cov(TΦ1ε,Φ2ε) = TΦ1Φ2.

Further, we may write TΦ1Φ2 + Φ1Φ2T
t = TΦ1Φ2T

t + Φ3, where Φ3 ∈ Dn, (Φ3)i,i :=
(Φ1)i,i · (Φ2)i,i− (Φ1)i−1,i−1 · (Φ2)i−1,i−1, and (Φ1)0,0 := (Φ2)0,0 := 0. Hence, the left hand
side of (III) may be bounded by a constant times∥∥∥Cov(Ỹ (φ))−1/2Φ1Φ2 Cov(Ỹ (φ))−1/2

∥∥∥2

2
+
∥∥∥Cov(T Ỹ (φ))−1/2Φ3 Cov(T Ỹ (φ))−1/2

∥∥∥2

2
.

Using (A.0.5) and (A.0.6), the first term tends to zero for n→∞. Furthermore, we can
write for i > 1,

2(Φ3)i,i =
(
∆2
i−2,nφ

)
τ 2( i−1

n
) +

(
∆i−1,nφ

)
(∆i−1,nτ

2)

+
(
∆i−2,n

√
φ
)2
τ 2( i−1

n
)−

(
∆i−1,n

√
φ
)2
τ 2( i

n
)

and together with (4.2.3) we obtain Φ3 � n−5/4In, completing the proof.

Completion of the proof of Proposition 2. 〈X2(φn), X2(φn)〉σ: We define T (φn) ∈
Mn−1

(T (φn))i,j =


(

∆i(φ
1/2
n τ)

)2

for i = j − 1,(
∆j(φ

1/2
n τ)

)2

for i = j + 1,

0 otherwise.

(A.0.7)
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Note the relation

Cov (X2(φn)) = I(φ1/2
n τ)AI(φ1/2

n τ) =
1

2
I(φnτ

2)A+
1

2
AI(φnτ

2) +
1

2
T (φn), (A.0.8)

where A is as defined in (4.2.8). We derive

〈X2(φn), X2(φn)〉σ = E
[
X2(φn)tDJnDX2(φn)

]
=

1

2
tr
(
JnDI(φnτ

2)AD
)

+
1

2
tr
(
JnDAI(φnτ

2)D
)

+
1

2
tr (JnDT (φn)D)

= tr
(
ΛJnDI(φnτ

2)D
)

+
1

2
tr (JnDT (φn)D) ,

where Λ is defined in (4.2.9). Furthermore,

tr
(
ΛJnDI(φnτ

2)D
)

= n
M

M∑
i=1

k( i
M

)λi
(
A
(
φnτ

2, 0
)
− A

(
φnτ

2, 2i
))

= A
(
φnτ

2, 0
)

n
M

M∑
i=1

k( i
M

)λi − n
M

M∑
i=1

k( i
M

)λi A
(
φnτ

2, 2i
)
. (A.0.9)

Because of maxi=1,...,M λi = λM . n−1, it holds∣∣∣ nM M∑
i=1

k( i
M

)λi A
(
φnτ

2, 2i
) ∣∣∣ ≤ n

M

M∑
i=1

k( i
M

)λi
∑

q∈Z, q≡2i mod 2n

∣∣(φnτ 2)q
∣∣

. n−1/2

∞∑
l=0

∣∣(φnτ 2)l
∣∣ . n−1/4, (A.0.10)

by arguing as in (4.2.23) for the last step. Therefore, (A.0.9) can be written as∣∣∣ tr (ΛJnDI(φnτ
2)D

)
− n

M

M∑
i=1

k( i
M

)λi (φnτ
2)0

∣∣∣
.

∞∑
m=n

∣∣(φnτ 2)m
∣∣+ n−1/4 . n−1/4, (A.0.11)

applying the idea of (4.2.22) to τ instead of σ. In particular, note that the the inequalities
in (A.0.10) and (A.0.11) are uniformly over φn ∈ Φn(κ,C), τ ∈ T (κ,Q2). This gives by
Lemma A.2

sup
φn∈Φn(κ,C), τ∈T (κ,Q2)

∣∣ tr (ΛJnDI(φnτ
2)D

)
− π2c2

∫ 1

0

k(x)x2dx (φnτ
2)0

∣∣ . n−1/4.
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Moreover,

|tr (JnDT (φn)D)| ≤ tr (Jn) max
i,j

∣∣∣(DT (φn)D)i,j

∣∣∣ ≤ 4 tr (Jn) max
i

(∆i,n(φ1/2
n τ))2

≤ 8 tr(Jn)
[
‖τ‖2

∞max
i

(∆i,nφ
1/2
n )2 + ‖φn‖∞max

i
(∆i,nτ)2

]
.

Recall that tr (Jn) = O (n). By assumptions on φn and τ ,

sup
φn∈Φn(κ,C), τ∈T (κ,Q2)

∣∣ tr (JnDT (φn)D)
∣∣ = O

(
n−1/4

)
and therefore

sup
φn∈Φn(κ,C), τ∈T (κ,Q2)

∣∣∣∣〈X2(φn), X2(φn)〉σ − π
2c2

∫ 1

0

k(x)x2dx 〈φn, τ 2〉
∣∣∣∣ = O(n−1/4).

〈Z1(φn),Z1(φn)〉σ : Note that by Lemma A.6 (i)

〈Z1(φn), Z1(φn)〉σ = tr (DJnDCov (Z1(φn))) ≤ λ1 (Cov (Z1(φn))) tr (Jn) .

Obviously, Cov (Z1(φn)) ∈ Dn−1 and

(Cov(Z1(φn)))i,i = φn( i
n
)

∫ (i+1)/n

i/n

(σs,i/n − σi/n,i/n)2ds.

This entails

sup
φn∈Φn(κ,C), σ∈S(κ,Q1)

〈Z1(φn), Z1(φn)〉σ . n−1/2.

〈Z2(φn),Z2(φn)〉σ: The covariance matrix of Z2(φn) can be bounded as follows∣∣∣(Cov(Z2(φn))
)
i,j

∣∣∣
=
∣∣∣φ1/2
n ( i

n
)φ1/2

n ( j
n
)

∫ ((i∧j)+1)/n

0

(σs,(i+1)/n − σs,i/n)(σs,(j+1)/n − σs,j/n)ds
∣∣∣ . n−7/4,

(A.0.12)

uniformly in i, j = 1, . . . , n− 1 and φn ∈ Φn(κ,C), σ ∈ S(κ,Q1). We obtain

〈Z2(φn), Z2(φn)〉σ = tr (DJnDCov(Z2(φn))) ≤ λ1(Jn) tr (Cov(Z2(φn))) . n−1/4

and hence

sup
φn∈Φn(κ,C), σ∈S(κ,Q1)

〈Z2(φn), Z2(φn)〉σ = O
(
n−1/4

)
. (A.0.13)
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〈Z3(φn),Z3(φn)〉σ: The components of Z3(φn) are uncorrelated, i.e. Cov(Z3(φn)) ∈ Dn−1

and (Cov(Z3(φn)))i,i = φn( i
n
)(∆i,nτ)2. This implies

sup
φn∈Φn(κ,C), τ∈T (κ,Q2)

〈Z3(φn), Z3(φn)〉σ ≤ sup
φn∈Φn(κ,C), τ∈T (κ,Q2)

λ1(Cov(Z3(φn))) tr(Jn) . n−1/2.

〈X1(φn),Z1(φn)〉σ: By Cauchy-Schwarz inequality,

| 〈X1(φn), Z1(φn)〉σ | ≤ 〈X1(φn), X1(φn)〉1/2σ 〈Z1(φn), Z1(φn)〉1/2σ . n−1/4,

uniformly over φn ∈ Φn(κ,C), σ ∈ S(κ,Q1).

〈X1(φn),Z2(φn)〉σ: Note that

Cov (X1(φn), Z2(φn))i,j =

{
0 j < i,

φ
1/2
n ( i

n
)φ

1/2
n ( j

n
)
∫ (i+1)/n

i/n
σi/n,i/n(σs,(j+1)/n − σs,j/n)ds j ≥ i,

implying

sup
φn∈Φn(κ,C), σ∈S(κ,Q1)

max
i,j=1,...,n−1

|Cov (X1(φn), Z2(φn))i,j | . n−1n−7/8.

Since by assumption
∑
|kj| <∞, we may apply Proposition A.1 and obtain

sup
φn∈Φn(κ,C), σ∈S(κ,Q1)

|〈X1(φn), Z2(φn)〉σ| � n−1/4.

〈X2(φn),Z3(φn)〉σ , 〈Z2(φn),Z3(φn)〉σ : These terms can be bounded in the same way
as 〈X1(φn), Z1(φn)〉σ .
Combining the results above yields (4.2.16). Before we give an upper bound for the
variance the following preliminaries have to be mentioned.

First, let Ξ(φn) := Cov(X1(φn) + Z1(φn) + Z2(φn)). Since X1(φn) + Z1(φn) + Z2(φn) is

Gaussian, we may write X1(φn) + Z1(φn) + Z2(φn)
D
= Ξ1/2(φn)ξ, where ξ ∼ N (0, In−1).

Furthermore, let ∆ ∈Mn−1,n be given by

∆ :=


−1 1

. . . . . .

−1 1


and recall ε := (τ(1/n)η1,n, . . . , τ(1)ηn,n)t. Then, X2(φn) + Z3(φn) = I(φ

1/2
n )∆ ε. Hence,

we may write

∆Y (φn)
D
= Ξ1/2(φn)ξ + I(φ1/2

n )∆ ε.
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Since Var(U + V ) ≤ 2 Var(U) + 2 Var(V ) we have by Proposition 1

Var
(

̂〈φn, σ2〉
)
≤ 2 Var

(
(∆Y (φn))tDJnD(∆Y (φn))

)
+ 2 Var

(
̂〈φn, τ 2〉

)
. Var

(
(∆Y (φn))tDJnD(∆Y (φn))

)
+ n−1/2 (A.0.14)

uniformly over φn ∈ Φn(κ,C), σ ∈ S(κ,Q1), τ ∈ T (κ,Q2). Moreover,

(∆Y (φn))tDJnD(∆Y (φn)) = ξtΞ1/2(φn)DJnDΞ1/2(φn)ξ

+ 2εt∆tI(φ1/2
n )DJnDΞ1/2(φn)ξ

+ εt∆tI(φ1/2
n )DJnDI(φ1/2

n )∆ ε.

Hence,

Var
(
(∆Y (φn))tDJnD(∆Y (φn))

)
≤ 3 Var

(
ξtΞ1/2(φn)DJnDΞ1/2(φn)ξ

)
+ 12 Var

(
εt∆tI(φ1/2

n )DJnDΞ1/2(φn)ξ
)

+ 3 Var
(
εt∆tI(φ1/2

n )DJnDI(φ1/2
n )∆ ε

)
.

Finally, we bound Var
(
ξtΞ1/2(φn)DJnDΞ1/2(φn)ξ

)
, Var

(
εt∆tI(φ

1/2
n )DJnDI(φ

1/2
n )∆ ε

)
and Var

(
ξtΞ1/2(φn)DJnDI(φ

1/2
n )∆ ε

)
in three steps, denoted by I, II and III, respec-

tively.

I: By Lemma A.9 (ii), we have

Var
(
ξtΞ1/2(φn)DJnDΞ1/2(φn)ξ

)
= 2

∥∥Ξ1/2(φn)DJnDΞ1/2(φn)
∥∥2

2

= 2
∥∥J1/2

n DCov(X1(φn) + Z1(φn) + Z2(φn))DJ1/2
n

∥∥2

2

Now, by Lemma A.10 it follows

Cov(X1(φn) + Z1(φn) + Z2(φn)) ≤ 3 Cov(X1(φn)) + 3 Cov(Z1(φn)) + 3 Cov(Z2(φn)).

Using Lemma A.7 (iii) we may bound further∥∥J1/2
n DCov(X1(φn) + Z1(φn) + Z2(φn))DJ1/2

n

∥∥2

2
≤ 27

∥∥J1/2
n DCov(X1(φn))DJ1/2

n

∥∥2

2

+ 27
∥∥J1/2

n DCov(Z1(φn))DJ1/2
n

∥∥2

2

+ 27
∥∥J1/2

n DCov(Z2(φn))DJ1/2
n

∥∥2

2
.

Obviously, tr(J2
n) . n3/2. Term for term, we obtain by Lemma A.6 (i) and (A.0.12)∥∥J1/2

n DCov (X1(φn))DJ1/2
n

∥∥2

2
≤ λ2

1 (Cov (X1(φn))) tr
(
J2
n

)
. n−1/2,∥∥J1/2

n DCov (Z1(φn))DJ1/2
n

∥∥2

2
≤ λ2

1 (Cov (Z1(φn))) tr
(
J2
n

)
� n−1/2,∥∥J1/2

n DCov (Z2(φn))DJ1/2
n

∥∥2

2
≤ λ2

1 (DJnD) tr
(
Cov (Z2(φn))2)

. n ‖Cov (Z2(φn))‖2
2 . n−1/2,
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uniformly over φn ∈ Φn(κ,C), σ ∈ S(κ,Q1). Therefore,

sup
φn∈Φn(κ,C), σ∈S(κ,Q1)

Var
(
ξtΞ1/2(φn)DJnD Ξ1/2(φn)ξ

)
. n−1/2.

II: We may apply Lemma A.9 (i). Since maxi=1,...,n Cum4(εi) ≤ ‖τ‖4
∞E[ε4] we have

uniformly over τ ∈ T (κ,Q2)

Var
(
εt∆tI(φ1/2

n )DJnDI(φ1/2
n )∆ ε

)
.
∥∥Cov(ε)1/2∆tI(φ1/2

n )DJnDI(φ1/2
n )∆ Cov(ε)1/2

∥∥2

2
+
∥∥∆tI(φ1/2

n )DJnDI(φ1/2
n )∆

∥∥2

2

.
∥∥∆tI(φ1/2

n )DJnDI(φ1/2
n )∆

∥∥2

2
=
∥∥J1/2

n DI(φ1/2
n )AI(φ1/2

n )DJ1/2
n

∥∥2

2
,

where A is as defined in (4.2.8). In analogy to (A.0.7) and (A.0.8) we define T̃ (φn) ∈
Mn−1 via

(
T̃ (φn)

)
i,j

=


(

∆iφ
1/2
n

)2

for i = j − 1,(
∆jφ

1/2
n

)2

for i = j + 1,

0 otherwise

and obtain I(φ
1/2
n )AI(φ

1/2
n ) = 1

2
I(φn)A + 1

2
AI(φn) + 1

2
T̃ (φn). This allows us to bound

further∥∥J1/2
n DI(φ1/2

n )AI(φ1/2
n )DJ1/2

n

∥∥2

2
≤ 2

∥∥J1/2
n DI(φn)ADJ1/2

n

∥∥2

2
+

1

2

∥∥∥J1/2
n DT̃ (φn)DJ1/2

n

∥∥∥2

2
.

Due to ΛJnΛ ≤ n
M
‖k‖∞ λ2

MIn, we have∥∥J1/2
n DI(φn)ADJ1/2

n

∥∥2

2
= tr

(
J1/2
n DI(φn)DΛJnΛDI(φn)DJ1/2

n

)
≤ n

M
‖k‖∞ λ

2
M tr

(
J1/2
n DI(φ2

n)DJ1/2
n

)
. n

M
λ2
M tr(Jn) . n−1/2.

Also

sup
φn∈Φn(κ,C)

‖J1/2
n DT̃ (φn)DJ1/2

n ‖2
2 ≤ λ2

1 (Jn) ‖T̃ (φn)‖2
2 . n−1/2

and therefore

sup
φn∈Φn(κ,C), τ∈T (κ,Q2)

Var
(
εt∆tI(φ1/2

n )DJnDI(φ1/2
n )∆ ε

)
. n−1/2.

III: Let

P1,n := ∆tI(φ1/2
n )DJ1/2

n , P2,n := J1/2
n DΞ1/2(φn).
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We see that ξ and ε satisfy the conditions of Lemma A.9 (iii). So we may bound using
Lemma A.6 (ii)

Var
(
εt∆tI(φ1/2

n )DJnDΞ1/2(φn)ξ
)

. tr(P t
2,nP

t
1,nP1,nP2,n) ≤ ‖P t

1,nP1,n‖2‖P t
2,nP2,n‖2 ≤

1

2
‖P t

1,nP1,n‖2
2 +

1

2
‖P t

2,nP2,n‖2

≤ 1

2
‖J1/2

n DI(φ1/2
n )AI(φ1/2

n )DJ1/2
n ‖2

2 +
1

2
‖J1/2

n DΞ(φn)DJ1/2
n ‖2

2.

But since the r.h.s. has been bounded in I and II, we conclude that

sup
φn∈Φn(κ,C), σ∈S(κ,Q1), τ∈T (κ,Q2)

Var
(
εt∆tI(φ1/2

n )DJnDΞ1/2(φn)ξ
)
. n−1/2.

Combining I, II and III gives

sup
φn∈Φn(κ,C), σ∈S(κ,Q1), τ∈T (κ,Q2)

Var
(
(∆Y (φn))tDJnD(∆Y (φn))

)
. n−1/2,

and together with (A.0.14) this proves (4.2.17).

Lemma A.2. Let λi be as defined in (4.2.9), M = bcn1/2c and suppose that k : [0, 1]→
R is piecewise Lipschitz continuous. Then,

(i) n
M

∑M
i=1 k( i

M
)λi = π2c2

∫ 1

0
k(x)x2dx+O(n−1/2),

(ii) 1
M

∑M
i=1 k

2( i
M

) =
∫ 1

0
k2(x)dx+O(n−1/2),

(iii) n
M

∑M
i=1 λik

2( i
M

) = π2c2
∫ 1

0
k2(x)x2dx+O(n−1/2),

(iv) n2

M

∑M
i=1 λ

2
i k

2( i
M

) = π4c4
∫ 1

0
k2(x)x4dx+O(n−1/2).

Proof. (i): Let xi := iπ/(2n). By series expansion sin2(xi) = x2
i−ξ4

i /3, where ξi ∈ (0, xi).
Furthermore, maxi=1,...,M xi . n−1/2, implying

n

M

M∑
i=1

k( i
M

)ξ4
i . n−1.

The mapping k is piecewise Lipschitz continuous and so is x 7→ k(x)x2 as a function on
[0, 1]. This shows

∣∣∣ 1

M

M∑
i=1

k( i
M

)
(
i
M

)2 −
∫ 1

0

k(x)x2dx
∣∣∣ . n−1/2.
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Moreover, ‖k‖∞ . 1. Therefore,

n

M

M∑
i=1

k( i
M

)λi =
4n

M

M∑
i=1

k( i
M

)
(
iπ
2n

)2
+O(n−1) =

M2

n
π2 1

M

M∑
i=1

k( i
M

)
(
i
M

)2
+O(n−1)

= π2c2

∫ 1

0

k(x)x2dx+O(n−1/2). (A.0.15)

(iii): If k : [0, 1] → R is piecewise Lipschitz continuous and bounded then this is true
for k2 as well and hence (iii) follows from (i).

(iv): We argue as in (i). Clearly, sin4(xi) = x4
i−2ξ6

i /3, ξi ∈ (0, xi), and n2

M

∑M
i=1 k

2( i
M

)ξ6
i .

n−1. Since x 7→ k2(x)x4 is piecewise Lipschitz again, we may conclude the proof by Rie-
mann summation as in (A.0.15).

Lemma A.3. Let f ∈ L2[0, 1],
∑
|fp| < ∞, where fp =

∫ 1

0
f(x) cos(pπx)dx. Suppose

that In(f) ∈ Dn−1 is defined as in (4.2.20).

(i) Then,

1

n

n−1∑
r=1

f
( r
n

)
cos
(prπ
n

)
= A (f, p)− 1

2n
((−1)p f(1) + f(0)) ,

where A is as introduced in (4.2.19) and

(ii) (DIn(f)D)i,j = A (f, i− j)− A (f, i+ j) .

Proof. (i) Note that we can write

f
( r
n

)
= f0 + 2

∞∑
q=1

fq cos
(qπr
n

)
and hence it holds

1

n

n−1∑
r=1

f
( r
n

)
cos
(prπ
n

)
=

1

n
f0

n−1∑
r=1

cos
(prπ
n

)
+

2

n

∞∑
q=1

fq

n−1∑
r=1

cos
(qπr
n

)
cos
(prπ
n

)
.

By Lemma A.11 (ii) and

2
n−1∑
r=1

cos
(qπr
n

)
cos
(prπ
n

)
= Dirn−1

( (q−p)π
n

)
+ Dirn−1

( (q+p)π
n

)
− 1.

it follows

1

n

n−1∑
r=1

f
( r
n

)
cos
(prπ
n

)
=

1

n

[
−1

2
(1 + (−1)p) f0 −

∞∑
q=1

fq
(
1 + (−1)q−p

)]
+ A (f, p) ,
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which yields the result.

(ii) This follows by applying (i) to

(DI(f)D)i,j =
2

n

n−1∑
r=1

f
( r
n

)
sin

(
irπ

n

)
sin

(
rjπ

n

)

=
1

n

n−1∑
r=1

f
( r
n

)
cos

(
(i− j) rπ

n

)
− 1

n

n−1∑
r=1

f
( r
n

)
cos

(
(i+ j) rπ

n

)
.

Lemma A.4 (Products). Let f, g ∈ L2[0, 1],
∑

l |fl|+ |gl| <∞. Then,

|(fg)i| ≤
∣∣ ∞∑
l=−∞

flgl−i
∣∣,

where fp, gp, (fg)p are as in (4.2.18).

Proof. Decompose f(x) = f0 + 2
∑∞

k=1 fk cos(kπx), x ∈ [0, 1]. Then,

(fg)i =

∫ 1

0

(fg)(x) cos(iπx)dx

= f0gi +
∞∑
k=1

fk

∫ 1

0

g(x)
[

cos((k + i)πx) + cos((k − i)πx)
]
dx ≤

∞∑
l=−∞

flgl−i.

The next Lemma gives a bound on the sum of the absolute values of Fourier coefficients
in Sobolev ellipsoids Θcos(α,Q) as defined in Section 2.4. In particular, the result shows
that the Fourier series is absolutely summable.

Lemma A.5. Let fp be as defined in (4.2.18). Assume α > 1/2, c > 0 and γ ≥ 0.
Then, it holds for n large enough

sup
f∈Θcos(α,Q)

∞∑
m=bcnγc

|fm| ≤ Cα,Q,cn
γ(1/2−α),

where Cα,Q,c is independent of n.

Proof. We see that
∞∑

m=bcnγc

|fm| =
∞∑
m=1

|fm| I{m≥bcnγc}

≤ 1√
2

(
∞∑
i=1

i2α2f 2
i

)1/2
 ∞∑
i=[cnγ ]

i−2α

1/2

≤ Cα,Q,c n
γ(1/2−α),

where we used the definition of Θcos(α,Q) in the last step.
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Proposition A.1. Let A ∈Mn−1 and assume that k satisfies Assumption 3. Then, for
sufficiently large n, ∣∣ tr (JnDAD)

∣∣ . max
i,j

∣∣ (A)i,j
∣∣ n3/2 log n.

Proof. Write A = (ai,j)i,j=1,...,n−1 . Note that

(DAD)i,j =
2

n

n−1∑
p,q=1

sin
(
ipπ
n

)
sin
(
qjπ
n

)
ap,q.

In particular, for i = j we have

(DAD)i,i =
1

n

n−1∑
p,q=1

ap,q cos
(
(p− q) iπ

n

)
− 1

n

n−1∑
p,q=1

ap,q cos
(
(p+ q) iπ

n

)
. (A.0.16)

Furthermore, we need the following bounds using Lemma A.12 (i)

∣∣ M∑
i=1

k( i
M

) cos(r iπ
n

)
∣∣ ≤ 2

∞∑
j=0

|kj|
∣∣ M∑
i=1

cos(jπ i
M

) cos(r iπ
n

)
∣∣

≤ 2
∞∑
j=0

|kj|
[(

1 + κ( r
n
− j

M
) + κ( r

n
+ j

M
)
)
∧M

]
.

This allows us to find by using Lemma A.12 (ii) and Lemma A.5

∣∣ M∑
i=1

k( i
M

)
1

n

n−1∑
p,q=1

ap,q cos((p− q) iπ
n

)
∣∣

≤ 2

n

n−1∑
p,q=1

|ap,q|
∞∑
j=0

|kj|
[(

1 + κ( |p−q|
n
− j

M
) + κ( |p−q|

n
+ j

M
)
)
∧M

]
≤ 2 max

p,q=1,...,n−1
|ap,q|

∞∑
j=0

|kj|
n∑
r=0

[(
1 + κ( r

n
− j

M
) + κ( r

n
+ j

M
)
)
∧M

]
. max

p,q=1,...,n−1
|ap,q| n log n

∞∑
j=0

|kj| . max
p,q=1,...,n−1

|ap,q| n log n.

By repeating the arguments above, we derive also

∣∣ M∑
i=1

k( i
M

)
1

n

n−1∑
p,q=1

ap,q cos((p+ q) iπ
n

)
∣∣ . max

p,q=1,...,n−1
|ap,q| n log n.
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Combining the previous inequalities yields

tr (JnDAD) =
n

M

M∑
i=1

k( i
M

) (DAD)i,i . max
p,q=1,...,n−1

|ap,q| n3/2 log n.

Proof of “⊇“ in (2.4.4). We show that f ∈ Wcos(α, π
2αC) ⇒ f ∈ Θcos(α,C). Let f̃

denote the extension of f on [−1, 1] defined by

f̃(x) :=

{
f(x) for x ∈ [0, 1],

f(−x) for x ∈ [−1, 0].

Note that f̃ is an α-times differentiable function with f (α) ∈ L2 and f̃ (l) is an even/odd
function whenever l is even/odd. Let

θk(j) =


∫ 1

−1
f̃ (j)(x)dx for k = 0,∫ 1

−1
f̃ (j)(x) cos(kπx)dx for k ≥ 1, j even,∫ 1

−1
f̃ (j)(x) sin(kπx)dx for k ≥ 1, j odd.

It holds for j ≥ 1

θ0(j) =

∫ 1

−1

f̃ (j)(x)dx = f̃ (j−1)(1)− f̃ (j−1)(−1) = 0,

where we used the facts that f̃ (j−1) is even for j odd and f̃ (j−1)(1) = f̃ (j−1)(−1) = 0
for j even, due to f̃ ∈ Wcos(α, π

2αC). Now, (f (α))2 is even for all integer α. Hence, by
Parseval’s equality

∥∥f (α)
∥∥2

L2[0,1]
=

1

2

∥∥f (α)
∥∥2

L2[−1,1]
=

1

2

∞∑
k=1

θ2
k(α). (A.0.17)

Furthermore, for k ≥ 1, j even, it follows by partial integration

θk(j) =

∫ 1

−1

f̃ (j)(x) cos(kπx)dx

= f̃ (j−1)(x) cos(kπx)
∣∣∣1
−1

+ kπ

∫ 1

−1

f̃ (j−1)(x) sin(kπx)dx = kπ θk(j − 1)
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and for k ≥ 1 and j odd

θk(j) =

∫ 1

−1

f̃ (j)(x) sin(kπx)dx

= f̃ (j−1)(x) sin(kπx)
∣∣∣1
−1
− kπ

∫ 1

−1

f̃ (j−1)(x) cos(kπx)dx = −kπ θk(j − 1).

For k ≥ 1 we obtain θ2
k(α) = k2απ2αθ2

k(0) = 2k2απ2αf 2
k , where fk =

∫ 1

0
f(x) cos(kπx)dx.

Combining this result with (A.0.17) yields

∥∥f (α)
∥∥2

L2[0,1]
= π2α

∞∑
k=1

k2αf 2
k

and hence proves the claim.

A.1. Some facts about multivariate statistics and linear algebra

Lemma A.6.

(i) Let A,B ∈Mn are symmetric and positive semidefinite matrices. Denote by λ1(A)
the largest eigenvalue of A. Then, tr(AB) ≤ λ1(A) tr(B).

(ii) Let A and B matrices of the same size. Then,∣∣tr (ABt
)∣∣ ≤ tr1/2

(
AAt

)
tr1/2

(
BBt

)
.

In the following Lemma, we summarize some facts on Frobenius norms.

Lemma A.7. Let A = (ai,j)i,j=1,...,n ∈Mn. Then,

(i)

‖A‖2
2 := tr

(
AAt

)
=

n∑
i=1

λi
(
AAt

)
=

n∑
i,j=1

a2
i,j

and whenever A = At also ‖A‖2
2 =

∑n
i=1 λ

2
i (A).

(ii) It holds

4 tr
(
A2
)
≤
∥∥A+ At

∥∥2

2
≤ 4 ‖A‖2

2 .

(iii) Let A,B ∈ Mn are symmetric and positive semidefinite matrices such that 0 ≤
A ≤ B. Furthermore, suppose that X ∈Mn,m. Then,∥∥X tAX

∥∥
2
≤
∥∥X tBX

∥∥
2
.
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(iv) Let Λ ∈ Dn and X ∈Mn,m. Then,∥∥X tΛX
∥∥

2
≤ 2 max

i=1,...,n
|(Λ)i,i|

∥∥X tX
∥∥

2
.

Proof. (i) and (ii) are well known and omitted. (iii) By assumptions it holds 0 ≤
X tAX ≤ X tBX. Hence, λ2

i (X tAX) ≤ λ2
i (X tBX) and the result follows. (iv) Let

Λ+ := Λ ∨ 0 and Λ− := Λ ∧ 0. Then, ‖X tΛX‖2 ≤ ‖X tΛ+X‖2 + ‖X tΛ−X‖2 ≤
2 maxi=1,...,n |(Λ)i,i| ‖X tX‖2 .

Lemma A.8 (Expectation of quadratic forms). Let V = (V1, . . . , Vn)t and W = (W1, . . . ,Wm)t

be two centered random vectors and B ∈Mn,m. Then, E (V tBW ) = tr
(
B Cov (V,W )t

)
.

Important special cases of Lemma A.8 are Cov(V,W ) = 0, i.e. the random vectors
are uncorrelated and hence E (V tBW ) = 0 as well as V = W implying E (V tBV ) =
tr (B Cov (V )) .

Proof. V tBW =
∑n

k=1

∑m
l=1 VkBk,lWl. By taking expectations the result follows.

If X, Y are independent random vectors, we write X ⊥ Y .

Lemma A.9 (Variance of quadratic forms). Assume that we are in the same setting as
in Lemma A.8. Moreover, let A = (ai,j)i,j=1,...,n ∈Mn.

(i) If Vi ⊥ Vj whenever i, j = 1, . . . , n, i 6= j, then

Var
(
V tAV

)
=

n∑
i=1

Cum4(Vi)a
2
ii + tr(Cov(V )ACov(V )A+ Cov(V )ACov(V )At)

≤ 2‖Cov(V )1/2ACov(V )1/2‖2
2 + max

i=1,...,n
Cum4(Vi)‖A‖2

2,

where Cum4(Vi) denotes the fourth cumulant of Vi.

(ii) If V is multivariate Gaussian then

Var
(
V tAV

)
= tr(Cov(V )ACov(V )A+ Cov(V )ACov(V )At)

≤ 2‖Cov(V )1/2ACov(V )1/2‖2
2,

where equality holds if A is symmetric.

(iii) Assume Vi = Uiεi for i = 1, . . . , n. Let εi ⊥ εj for i, j = 1, . . . , n, i 6= j as well
as Wk ⊥ Wl for k, l = 1, . . . ,m, k 6= l. If ε = (ε1, . . . , εn) is independent of
U = (U1, . . . , Un) and W then

Var
(
V tBW

)
≤ C2 tr(Bt Cov(ε)B Cov(W )) = C2

∥∥Cov(ε)1/2B Cov(W )1/2
∥∥2

2

provided maxi |Ui| ≤ C and Eε = 0.
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Proof. Note that

Var
(
V tBW

)
=

n∑
i,k=1

m∑
j,l=1

bijbkl Cov (ViWj, VkWl) . (A.1.1)

(i): First, observe that

Cov(ViVj, VkVl) =


EV 4

i − E2V 2
i , for i = j = k = l,

EV 2
i EV 2

j , for i = k 6= j = l or i = l 6= j = k,

0, otherwise.

Using (A.1.1), we see that (m = n, V = W )

Var
(
V tAV

)
=

n∑
i=1

(EV 4
i − E2V 2

i )a2
ii +

n∑
i,j=1, i6=j

EV 2
i aijEV 2

j aji +
n∑

i,j=1, i6=j

EV 2
i a

2
ijEV 2

j .

Finally with Cum4(Vi) = EV 4
i − 3E2V 2

i and Lemma A.7 (ii) the result follows.

(ii): By assumption V ∼ N (0,Cov(V )). Then, we may write V
D
= Cov(V )1/2ξ, where

ξ ∼ N (0, In). Hence, by (i)

Var
(
V tAV

)
= Var(ξtÃξ) = tr(Ã2 + ÃÃt).

for Ã = Cov(V )1/2ACov(V )1/2 and due to Cum4(ξi) = 0.

(iii): Write B = (bi,j)i=1,...,n, j=1,...,m ∈Mn,m. We derive

E[ViWj] = E[UiWj]E[εi] = 0,

E[ViWjVkWl] = E[UiUkWjWl]E[εiεk] = E[U2
iWjWl]E[ε2i ]δi,k

for i, k = 1, . . . , n and j, l = 1, . . . ,m. Therefore,

Var(V tBW ) =
n∑
i=1

m∑
j,l=1

bi,jbi,lE[U2
iWjWl]E[ε2i ]

=
n∑
i=1

E[ε2i ]E
[
U2
i (

m∑
j=1

bi,jWj)
2
]
≤ C2

n∑
i=1

E[ε2i ]
m∑

j,l=1

bi,jbi,lE[WjWl]

= C2

n∑
i=1

E[ε2i ]
m∑
j=1

b2
i,jE[W 2

j ] = C2 tr(Bt Cov(ε)B Cov(W ))
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Lemma A.10. Let X, Y, Z be random vectors of the same size. Then,

Cov(X, Y ) + Cov(Y,X) ≤ Cov(X) + Cov(Y )

in the sense of Loewner ordering. In particular, Cov(X + Y ) ≤ 2 Cov(X) + 2 Cov(Y )
and Cov(X + Y + Z) ≤ 3 Cov(X) + 3 Cov(Y ) + 3 Cov(Z).

Proof. Cov(X − Y ) = Cov(X) + Cov(Y )−Cov(X, Y )−Cov(Y,X). Since Cov(X, Y ) +
Cov(Y,X) is a symmetric matrix and Cov(X − Y ) ≥ 0, the result follows.

Definition 20 (Dirichlet kernel). The function DirN : R→ R,

DirN(x) =
1

2
+

N∑
i=1

cos(ix) =
1

2

N∑
i=−N

cos(ix)

is called the Dirichlet kernel.

Lemma A.11 (Properties of the Dirichlet kernel).

(i) Whenever x /∈ 2πZ,

DirN(x) =
sin((N + 1

2
)x)

2 sin(x
2
)

.

(ii) Let I{A}(·) denote the indicator function on the set A and suppose that p is an
integer. Then,

Dirn−1(pπ
n

) = nI{p≡0 mod 2n}(p) +
1

2
(−1)p+1 .

For any s ∈ R there is a unique t such that −1 < t ≤ 3, s = t+ 4k and k ∈ Z. For given
s this will be denoted by {s}4.

Lemma A.12. Define κ : R→ R,

κ(s) :=

{
1

|{s}4| , −1 ≤ {s}4 ≤ 1,
1

|2−{s}4| , 1 ≤ {s}4 ≤ 3.
(A.1.2)

(i) Then,

2
∣∣∣ M∑
i=1

cos(iπ j
M

) cos(iπ r
n
)
∣∣∣ ≤ (1 + κ

(
r
n
− j

M

)
+ κ
(
r
n

+ j
M

))
∧M.

115



A. Proofs and technical results for Chapters 2 and 4

(ii) For any s ∈ R,

n∑
r=0

κ( r
n

+ s) ∧M ≤ 2M + 2
n∑
l=1

n

l
≤ 2M + 2n(1 + log n).

Proof. (i): First note that for s ∈ [−1, 3], |
∑M

i=1 cos(iπs)| ≤ 1
2
+| sin−1(πs/2)| ≤ 1

2
+κ(s).

Now the result follows by extending s to the real line and observing

M∑
i=1

cos(iπ j
M

) cos(iπ r
n
) =

1

2

M∑
i=1

cos(iπ( r
n
− j

M
)) +

1

2

M∑
i=1

cos(iπ( r
n

+ j
M

)).

116



Appendix B

Proofs and technical results for Chapter 5

Before we can give the proofs, let us define some quantities needed in the sequel.

For a continuously differentiable function g : [0, 1]→ R we set

Rn(g) :=
( n∑
j=1

∫ j/n

(j−1)/n

(
1
n

n∑
l=j

g′( l
n
)−

∫ 1

s

g′(u)du
)2
ds
)1/2

. (B.0.1)

Recall (5.2.7) and let | supp()| denote the support length.

Lemma B.1. Suppose that h satisfies Assumption 4. Then, the following estimates hold
uniformly in `, k.

(i) | supp(h`k)| . 2−`.

(ii) ‖h`k‖p + ‖h`k‖p,M . 2`(1/2−1/p).

(iii)
∑M

i=1 sups,t∈[(i−1)/M,i/M ] |h`k(s)− h`k(t)| . 23`/2| supp(h`k)| . 2`/2.

Proof. (i): Since h has bounded support, so does h(2`·−k) and | supp(h`k)| = | supp(h)|2−`.
(ii): ‖h`k‖pp = 2`p/2

∫ 1

0
|h(2`x− k)|pdx ≤ 2`(p/2−1)‖h‖pp. Similarly,

‖h`k‖pp,M = M−12`p/2
∑
j

|h(2` j
m
− k)| ≤ 2`p/2| supp(h`k)| = 2`(p/2−1).

Lemma B.2 (Summation by parts). For two sequences (ak)k and (bk)k we have

n−1∑
k=1

ak(bk+1 − bk) = an−1bn − a1b1 −
n−1∑
k=2

(ak − ak−1)bk.
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Preliminary results for the semimartingale X

The first lemma gives a moment bound on the approximation error of discretized stochas-
tic integrals.

Lemma B.3 (Discretization effect). Suppose Assumption 6 holds. For deterministic
functions g, h : [0, 1]→ R, with piecewise continuous derivative and g(1) = 0, h(1) = 0,
we obtain for any p ≥ 1 and C > 0,

EL∞(C)

[∣∣∣( 1
n

n∑
i=1

g′( i
n
)Xi/n

)(
1
n

n∑
i=1

h′( i
n
)Xi/n

)
−
( ∫ 1

0

g(s)dXs

)( ∫ 1

0

h(s)dXs

)∣∣∣p]
. ‖g‖p2 Rp

n(h) + ‖h‖p2 Rp
n(g) + Rp

n(g)Rp
n(h). (B.0.2)

Proof. Let us point out as a first step that by Assumption 6 and a suitable change of
measure, we may assume that X is a local martingale. Recall that we work in a filtered
probability space (Ω, (Ft)t≥0,F ,P). Now, we can write P = Pσ,b⊗P̃ where Pσ,b denotes
the law of the process X. By assumption, Pσ,b and Pσ,0 are equivalent on F1 and the
Radon-Nikodym derivative is given by

dPσ,b
dPσ,0

= exp

(∫ 1

0

bs
σ2
s

dXs −
1

2

∫ 1

0

b2
s

σ2
s

ds

)
≤ exp

(∫ 1

0

bs
σ2
s

dXs

)
.

Define P0 = Pσ,0⊗P̃ and denote the expectation under P and P0 by Eb and E0, re-
spectively. Then, for a sequence of random variables (Zn)n, we may bound by Hölder
inequality and for ρ > 1 as in Assumption 6,

E1/γ
b

[
|Zn|γ

]
= E1/γ

0

[
dPσ,b
dPσ,0 |Zn|

γ
]
. E1/γρ

0

[
exp

(
ρ

∫ 1

0

bs
σ2
s

dXs

)]
E(ρ−1)/(γρ)

0

[
|Zn|γρ/(ρ−1)

]
. E1/γρ

0

[
|Zn|γρ

]
,

where γρ := γρ/(ρ − 1). This shows that by a change of measure we may assume that
the drift is zero.

In order to prove the remaining part, note that for random variables U1, U2, V1 and V2,

|U1U2 − V1V2| ≤ |U1||U2 − V2|+ |V2||U1 − V1|
≤ |U1||U2 − V2|+ |U2||U1 − V1|+ |U2 − V2||U1 − V1|

and therefore by Cauchy-Schwarz

EL∞(C)

[
|U1U2 − V1V2|p

]
. E1/2

L∞(C)

[
|U1|2p

]
E1/2
L∞(C)

[
|U2 − V2|2p

]
+ E1/2

L∞(C)

[
|U2|2p

]
E1/2
L∞(C)

[
|U1 − V1|2p

]
+ E1/2

L∞(C)

[
|U1 − V1|2p

]
E1/2
L∞(C)

[
|U2 − V2|2p

]
.
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Integration by part yields for f ∈ {g, h},∫ TC

0

f ′(s)Xsds = −
∫ TC

0

f(s)dXs (B.0.3)

due to f(1) = X0 = 0. Hence, we may bound the l.h.s. of (B.0.2) by a multiple of
Ig × IIh + Ih × IIg + IIg × IIh with

If := E1/2
L∞(C)

[∣∣∣ ∫ 1

0

f ′(s)Xsds
∣∣∣2p],

IIf := E1/2
L∞(C)

[∣∣∣ 1
n

n∑
j=1

f ′
(
j
n

)
Xj/n −

∫ 1

0

f ′(s)Xsds
∣∣∣2p], for f ∈ {g, h}.

If : Let us introduce the stopping time

TC := inf{s ≥ 0, σ2
s > C} ∧ 1. (B.0.4)

On the event {σ2 ∈ L∞(C)}, we have TC = 1. Therefore,

EL∞(C)

[∣∣∣ ∫ 1

0

f ′(s)Xsds
∣∣∣2p] = E

[∣∣∣ ∫ TC

0

f ′(s)Xsds
∣∣∣2pIσ2∈L∞(C)

]
≤ E

[∣∣∣ ∫ TC

0

f ′(s)Xsds
∣∣∣2p].

Now, using Burkholder-Davis-Gundy inequality (later abbreviated by BDG, the state-
ment is recalled in Lemma B.17), we obtain

If ≤ E
[∣∣∣ ∫ TC

0

f(s)dXs

∣∣2p]1/2

. E
[∣∣∣ ∫ TC

0

f 2(s)σ2
sds
∣∣∣p]1/2

. ‖f‖p2,

since for s ≤ TC we have the upper bound σ2
s ≤ C.

IIf : Let us first introduce f̃ : [0, 1]→ R, where

f̃(s) :=
n∑
j=1

(
1
n

n∑
l=j

f ′
(
l
n

))
I[(j−1)/n,j/n)(s).

Note that by summation by parts (Lemma B.2), we have the identity∫ t∧Tc

0

f̃(s)dXs = 1
n

n∑
j=1

f ′
(
j
n

)
Xj/n. (B.0.5)
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Moreover, the process St =
∫ t∧Tc

0

(
f̃(s) + f(s)

)
dXs, t ∈ [0, 1] is a martingale and

〈S〉1 =
n∑
j=1

∫ j/n

(j−1)/n

(
1
n

n∑
l=j

f ′
(
l
n

)
−
∫ 1

s

f ′(u)du
)2

I{s≤Tc}(s)d〈X〉s.

From (B.0.3) and (B.0.5) it follows that

IIf = EL∞(C)

[
|S1|2p

]1/2
. E

[
〈S〉pTC

]1/2
. Rp

n(f),

where Rn as defined in (B.0.1). This finishes the proof.

Lemma B.4. Let Rn and Λ as defined in (B.0.1) and (5.2.8), respectively. Then,

Rn

[
Λ
(
M · −(i− 2)

)]
. n−1

and for i = 2, . . . ,M
‖Λ
(
M · −(i− 2)

)
‖2 = M−1/2.

Proof. Let ji be the smallest j such that j/n ≥ i/M. Obviously,

max
j
n
∈
(
i−2
M

,
i
M

] sup
s∈
[
j−1
n

,
j
n

] ∣∣∣ 1
n

ji∑
l=j

λ̃
(
M l

n
− (i− 2)

)
−
∫ 1

s

λ̃
(
Mu− (i− 2)

)
du
∣∣∣

≤ max
j
n
∈
(
i−2
M

,
i
M

] sup
s∈
[
j−1
n

,
j
n

] ∣∣∣ ∫ (j−1)/n

s

λ̃
(
Mu− (i− 2)

)
du
∣∣∣

+ max
j
n
∈
(
i−2
M

,
i
M

] ji∑
l=j

∣∣∣ 1
n
λ̃
(
M

l

n
− (i− 2)

)
−
∫ l/n

(l−1)/n

λ̃
(
Mu− (i− 2)

)
du
∣∣∣ . n−1,

proving the first part of the lemma. In order to derive the second part, it suffices to
show

‖Λ‖L2[0,2] = 1.

Then, (5.2.10) yields the result. By definition
∫ 2

0
λ̃(u)du = 0. Therefore, the second

statement follows from

‖Λ‖2
L2[0,2] =

∫ 1

0

( ∫ 2

s

λ̃ (u) du
)2
ds+

∫ 2

1

( ∫ 2

s

λ̃ (u) du
)2
ds

=

∫ 1

0

( ∫ s

0

λ̃ (u) du
)2
ds+

∫ 1

0

( ∫ 2

1+s

λ̃ (u) du
)2
ds

=

∫ 1

0

( ∫ s

0

λ̃ (u) du
)2
ds+

∫ 1

0

( ∫ 2

1−s
λ̃ (u) du

)2
ds = ‖Λ‖2

L2[0,1] = 1.
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Lemma B.5. Suppose Assumption 6 holds. Let Λ be defined as in (5.2.8). Then, for
any p ≥ 1 and C > 0, we have

EL∞(C)

[∣∣∣ M∑
i=2

h`k
(
i−1
M

)( ∫ 1

0

Λ
(
Ms− (i− 2)

)
dXs

)2

−
∫ 1

0

M∑
i=2

h`k
(
i−1
M

)
Λ2(Ms− (i− 2))d〈X〉s

∣∣∣p] . ‖h`k‖p∞|supp(h`k)|p/2M−p/2,

uniformly in `, k. Recall that |supp(.)| denotes the support length.

Proof. As done in Lemma B.3, we can force by a change of measure that X is a local
martingale. Let us define stochastic processes Ht,i for i = 2, . . . ,M and t ∈ [0, 1] via

Ht,i := h`k
(
i−1
M

)
Λ
(
Mt− (i− 2)

) ∫ t

(i−2)/M

Λ
(
Ms− (i− 2)

)
dXs I( i−2

M
,
i
M

](t). (B.0.6)

Applying the integration by parts formula for semimartingales (Lemma B.14), we can
write

M∑
i=2

h`k
(
i−1
M

)[( ∫ 1

0

Λ
(
Ms− (i− 2)

)
dXs

)2

−
∫ 1

0

Λ2
(
Ms− (i− 2)

)
d〈X〉s

]
= 2

M∑
i=2

∫ i/M

(i−2)/M

Ht,i dXt. (B.0.7)

The sum over the processes, i.e.
∑M

i=2Ht,i, is continuous on [0, 1] (because of Λ(0) =

Λ(2) = 0) and adapted, therefore the integral
∫ t

0

∑M
i=2Hs,i dXs is a continuous local

martingale. Note that t  Ht,i is supported on [ i−2
M
, i
M

]. Hence, for any t ∈ [0, 1] there
are at most two different i, such that Ht,i is not vanishing. Now, by BDG and the same
stopping time argument as in the proof of Lemma B.3, we derive

EL∞(C)

[∣∣ ∫ TC

0

M∑
i=2

Ht,i dXs

∣∣p]
. E

[∣∣ ∫ TC

0

( M∑
i=2

Ht,i dt
)2∣∣p/2] . E

[∣∣ ∫ TC

0

M∑
i=2

H2
t,i dt

∣∣p/2]
. E

[∣∣M−1

M∑
i=2

(H?
i )2
∣∣p/2] . |supp(h`k)|p/2−1M−1

M∑
i=2

E
[
(H?

i )p
]
,

where we used H?
i := supt≤TC |Ht,i| and Hölder inequality for the last estimate. Applying
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BDG again, we obtain

E
[
(H?

i )p
]
.
∣∣h`k( i−1

M

)∣∣p E[ sup
t≤2/M

∣∣∣ ∫ ((i−2)/M+t)∧TC

(i−2)/M∧TC
Λ
(
Ms− (i− 2)

)
dXs

∣∣∣p]
.
∣∣h`k( i−1

M

)∣∣p E[( ∫ TC

(i−2)/M∧TC
Λ2
(
Ms− (i− 2)

)
σ2
sds
)p/2]

.
∣∣h`k( i−1

M

)∣∣pM−p/2. (B.0.8)

This completes the proof.

Preliminary results for the microstructure noise ε

Recall from (5.2.2) that

εi,M := εi,M(λ) :=
M

n

∑
j
n
∈
(
i−2
M

,
i
M

] λ̃(M j
n
− (i− 2)

)
εj,n, i = 2, . . . ,M.

Since τ is a process, we write τt := τ(Xt, t) for t ∈ [0, 1].

Lemma B.6. Suppose Assumptions 5 and 6 hold. Denote by G the σ-field generated by
(Xs, s ∈ [0, 1]), i.e. G = σ(Xs : s ≤ 1). Then, for any p ≥ 1,

E
[∣∣∣ M∑

i=1

h`k
(
i−1
M

)(
ε2i,M(λ)− E

[
ε2i,M(λ)

∣∣G])∣∣∣p] . ‖h`k‖p2,MM−3p/2n−p + ‖h`k‖pp,MM
p+1n−p

uniformly in `, k.

Proof. First, we need to introduce the filtrations

F even

r := σ
(
ηj,n, j/n ≤ 2r/M

)
⊗ σ

(
Xs : s ≤ 2r/M

)
,

F odd

r := σ
(
ηj,n, j/n ≤ (2r + 1)/M

)
⊗ σ

(
Xs : s ≤ (2r + 1)/M

)
.

Furthermore, let

Ui := h`k
(
i−1
M

)(
ε2i,M − M2

n2

∑
j
n
∈
(
i−2
M

,
i
M

] λ̃2
(
M j

n
− (i− 2)

)
τ 2
j/n

)
.

First, U2i and U2i+1 are F even
i and F odd

i measurable. Second, E
[
U2i+1|F even

i−1

]
= 0 and

E
[
U2i|F odd

i−1

]
= 0. Thus, the partial sums Seven

r :=
∑r

i=1 U2i and Sodd
r :=

∑r
i=1 U2i+1 form

martingale schemes (i = 1, . . . , r ≤ bM/2c) with respect to the filtrations F even
r and F odd

r .
By triangle inequality it follows, for any p ≥ 1

E
[∣∣∣ε2i,M − M2

n2

∑
j
n
∈
(
i−2
M

,
i
M

] λ̃2
(
M j

n
−(i− 2)

)
τ 2
j/n

∣∣∣p]
. E

[
|εi,M |2p

]
+ ‖λ̃‖2p

∞ ‖τ‖2p
∞ Mpn−p .Mpn−p.
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Consequently,

E
[
|Ui|p

]
. |h`k( i−1

M
)|pMpn−p. (B.0.9)

Analogous computations show that

E
[
U2

2i | F even

i−1

]
≤ h2

`k

(
2i−1
M

)
E
[
ε42i,M | F even

i−1

]
. h2

`k

(
2i−1
M

)
M2n−2.

Finally, applying Rosenthal’s inequality for martingales (see Lemma B.18) yields

E
[
|Seven

bM/2c|p
]
. ‖h`k‖p2,MM

3p/2n−p + ‖h`k‖pp,MM
p+1n−p.

By similar arguments, we can obtain for E
[
|Sodd

b(M−1)/2c|p
]

the same bound as for E
[
|Seven

bM/2c|p
]
.

This finishes the proof.

Recall the definition of the stopping time TC given in (B.0.4). Let us introduce the
“stopped” pre-averaging

X i,M,TC (λ) :=
M

n

∑
j
n
∈
(
i−2
M

,
i
M

] λ̃(M j
n
− (i− 2)

)
Xj/n∧TC . (B.0.10)

Lemma B.7. Suppose Assumptions 5 and 6 hold. Then, we have, for any p ≥ 1 and
C > 0

EL∞(C)

[∣∣∣ M∑
i=2

h`k
(
i−1
M

)
X i,M(λ) εi,M(λ)

∣∣∣p]
. ‖h`k‖pp,M

(
n−p/2M +M3p/2+1n−3p/2

)
+ ‖h`k‖p2,M

(
Mp/2n−p/2 +M2pn−3p/2

)
,

uniformly in `, k.

Proof. Again we may assume that X is a local martingale. Note that

EL∞(C)

[∣∣∣ M∑
i=2

h`k
(
i−1
M

)
X i,M(λ) εi,M(λ)

∣∣∣p] ≤ E
[∣∣∣ M∑

i=2

h`k
(
i−1
M

)
X i,M,TC (λ) εi,M(λ)

∣∣∣p].
Arguing as in the proof of Lemma B.6, we see that

Seven

r :=
r∑
i=1

h`k
(

2i−1
M

)
X2i,M,TC (λ)ε2i,M(λ)

and

Sodd

r :=
r∑
i=1

h`k
(

2i
M

)
X2i+1,M,TC (λ)ε2i+1,M(λ)
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are martingales with respect to the filtrations F even and F odd. By Rosenthal’s inequality
for martingales, we can bound

E
[∣∣Seven

bM/2c
∣∣p] . Mp/2n−p/2E

[∣∣∣ bM/2c∑
i=1

h2
`k

(
2i−1
M

)
E
[
X

2

2i,M,TC
(λ) | F even

i−1

]∣∣∣p/2]
+

bM/2c∑
i=1

∣∣h`k(2i−1
M

)∣∣p(E[|X2i,M,TC (λ)|2p
]
)1/2
(
E
[
|ε2i,M(λ)|2p

])1/2
,

using ‖τ‖∞ . 1 and Cauchy-Schwarz inequality for the second term.

By Riemann summation,∣∣∣ ∑
j
n
∈
(
i−2
M

,
i
M

] λ̃(M j
n
− (i− 2)

)∣∣∣
=
∣∣∣ ∑
j
n
∈
(
i−2
M

,
i
M

] λ̃(M j
n
− (i− 2)

)
− n

∫ i/M

(i−2)/M

λ̃(Mu− (i− 2))du
∣∣∣ . 1. (B.0.11)

Therefore, we derive

E
[∣∣X i,M,TC (λ)

∣∣2p] . E
[∣∣∣Mn ∑

j
n
∈
(
i−2
M

,
i
M

] λ̃(M j
n
− (i− 2)

)
(Xj/n∧TC −X(i−2)/M∧TC )

∣∣∣2p]
+M2pn−2pE

[
|X(i−2)/M∧TC |2p

]
.

Consequently,

E
[∣∣X i,M,TC (λ)

∣∣2p] ≤ ‖λ̃‖2p
∞ E

[
sup
s≤2/M

|X(i−2)/M+s∧TC −X(i−2)/M∧TC |2p
]

+M2pn−2pE
[
|X(i−2)/M∧TC |2p

]
which can be further bounded by a constant times ‖λ̃‖2p

∞M
−p +M2pn−2p thanks to the

localization argument for σ. In a similar way, we have

E
[
X

2

2i,M,TC
(λ)
∣∣F even

i−1

]
.M−1 +M2n−2X2

(2i−2)/M∧TC ≤M−1 +M2n−2 sup
s
X2
s .

Recall that E
[
|εi,M |2p

]
. Mpn−p. Putting these estimates together, we infer that

E
[∣∣Seven

bM/2c

∣∣p] satisfies the desired bound. By similar arguments we can obtain the same
bound for Sodd

b(M−1)/2c. The conclusion follows.
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Preliminary results for bias correction

Recall that the bias correction was defined in (5.2.5) by

b(λ, Y )i,M :=
M2

2n2

∑
j
n
∈
(
i−2
M

,
i
M

] λ̃2
(
M j

n
− (i− 2)

)(
Yj,n − Yj−1,n

)2
, Y0,n := 0.

We will use the decomposition

b(λ, Y )i,M = b(λ,X)i,M + b(λ, ε)i,M + 2c(λ,X, ε)i,M

extensively, where

c(λ,X, ε)i,M :=
M2

2n2

∑
j
n
∈
(
i−2
M

,
i
M

] λ̃2
(
M j

n
− (i− 2)

)(
Xj/n −X(j−1)/n

)(
εj,n − εj−1,n

)
.

Lemma B.8. Suppose Assumptions 5 and 6 hold. For any p ≥ 1 and C > 0, we have

E
[∣∣∣ M∑

i=2

h`k
(
i−1
M

)(
b(λ, ε)i,M − M2

n2

∑
j
n
∈
(
i−2
M

,
i
M

] λ̃2
(
M j

n
− (i− 2)

)
τ 2
j/n

)∣∣∣p]
. ‖h`k‖p1,MM

3pn−2p + ‖h`k‖p2,MM
2pn−3p/2 + ‖h`k‖pp,MM

2pn−2p+1,

uniformly over `, k.

Proof. By triangle inequality, we bound the error by a multiple (only dependent on p)
of

M2pn−2p(I + II + III + IV ),

with

I :=E
[∣∣∣ M∑

i=2

h`k
(
i−1
M

)∑
j

λ̃2
(
M j

n
− (i− 2)

)
τ 2
j/n

(
η2
j,n − 1

)∣∣∣p],
II :=E

[∣∣∣ M∑
i=2

h`k
(
i−1
M

)∑
j

λ̃2
(
M j

n
− (i− 2)

)
τ 2

(j−1)/n

(
η2
j−1,n − 1

)∣∣∣p],
III :=E

[∣∣∣ M∑
i=2

h`k
(
i−1
M

)∑
j

λ̃2
(
M j

n
− (i− 2)

)(
τ 2
j/n − τ 2

(j−1)/n

)∣∣∣p],
IV :=E

[∣∣∣ M∑
i=2

h`k
(
i−1
M

)∑
j

λ̃2
(
M j

n
− (i− 2)

)
εj−1,nεj,n

∣∣∣p],
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and, as before, the sum in j is taken over the sets
{
j/n ∈

(
(i− 2)/M, i/M

]}
.

I and II : It suffices to bound I. Likewise we will obtain the same bound for II. Define
the filtration Fr = σ(ηk,n : k ≤ r)⊗ σ(Xs : s ≤ 1). Now,

Sr :=
r∑
j=1

( M∑
i=2

∣∣h`k( i−1
M

)∣∣pI{ j
n
∈
(
i−2
M

,
i
M

]})λ̃2
(
M j

n
− (i− 2)

)
τ 2
j/n

(
η2
j,n − 1

)
forms an Fr martingale scheme. Thus, from Rosenthal’s inequality for martingales, we
derive

I .
n∑
j=1

( M∑
i=2

∣∣h`k( i−1
M

)∣∣pI{ j
n
∈
(
i−2
M

,
i
M

]})E[∣∣(η2
j,n − 1

)∣∣p]
+
∣∣∣ n∑
j=1

M∑
i=2

h2
`k

(
i−1
M

)
I{ j

n
∈
(
i−2
M

,
i
M

]}E[(η2
j,n − 1

)2 ∣∣Fj−1

]∣∣∣p/2,
. ‖h`k‖pp,Mn+ ‖h`k‖p2,Mn

p/2.

using that the functions τ and λ̃ are bounded.

III : By summation by parts (Lemma B.2), we obtain∑
j
n
∈
(
i−2
M

,
i
M

] λ̃2
(
M j

n
− (i− 2)

)(
τ 2
j/n − τ 2

(j−1)/n

)
= −

∑
j
n
∈
(
i−2
M

,
i
M

] τ 2
(j−1)/n

(
λ̃2
(
M j

n
− (i− 2)

)
− λ̃2

(
M j−1

n
− (i− 2)

))
+ τ 2

(i−2)/M λ̃
2(0)− τ 2

i/M λ̃
2(2).

By assumption τ is bounded and λ̃ is of finite variation. Therefore, we have∣∣∣ M∑
i=2

h`k
(
i−1
M

) ∑
j
n
∈
(
i−2
M

,
i
M

] λ̃2
(
M j

n
− (i− 2)

)(
τ 2
j/n − τ 2

(j−1)/n

)∣∣∣p . ‖h`k‖p1,MMp.

IV : The sum can be splitted into two parts by summing over even and odd j, respec-
tively. Proceeding as for I and II, we derive

IV . ‖h`k‖p2,Mn
p/2 + ‖h`k‖pp,Mn.
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Lemma B.9. Suppose Assumptions 5 and 6 hold. For any p ≥ 1 and C > 0, we have

EL∞(C)

[∣∣∣ M∑
i=2

h`k
(
i−1
M

)
b(λ,X)i,M

∣∣∣p] . ‖h`k‖p1,MMpn−p,

uniformly in `, k.

Proof. Recall the definition of the stopped pre-averaging of X given in (B.0.10). Then,

EL∞(C)

[∣∣∣ M∑
i=2

h`k
(
i−1
M

)
b(λ,X)i,M

∣∣∣p] ≤ E
[∣∣∣ M∑

i=2

h`k
(
i−1
M

)
b(λ,X·∧TC )i,M

∣∣∣p]
. M2pn−2pE

[∣∣∣ M∑
i=2

∣∣h`k( i−1
M

)∣∣ ∑
j
n
∈
(
i−2
M

,
i
M

](Xj/n∧TC −X(i−2)/M∧TC )2
∣∣∣p]

. ‖h`k‖p1,MM
pn−p.

Lemma B.10. Suppose Assumptions 5 and 6 hold. For any p ≥ 1 and C > 0, we have

EL∞(C)

[∣∣∣ M∑
i=2

h`k
(
i−1
M

)
c(λ,X, ε)i,M

∣∣∣p]
.
[
‖h`k‖p2,M + ‖h`k‖pp,M(n−p/2+1 +M−p/2+1)

]
M2pn−2p

uniformly over `, k.

Proof. Similar as in Lemmas B.7 and B.9, we can bound

EL∞(C)

[∣∣∣ M∑
i=2

h`k
(
i−1
M

)
c(λ,X, ε)i,M

∣∣∣p]
≤ E

[∣∣∣ M∑
i=1

h`k
(
i−1
M

) ∑
j
n
∈
(
i−2
M

,
i
M

] λ̃2
(
M j

n
− (i− 2)

)
(Xj/n∧TC −X(j−1)/n∧TC )εj,n

∣∣∣p].
Define j?n(r) := max{j : j/n ≤ r/M}. Let us introduce the filtrations

Geven

r := σ
(
ηj,n, j/n ≤ 2r/M

)
⊗ σ

(
Xs : s ≤ j?n(2r)/n

)
,

Godd

r := σ
(
ηj,n, j/n ≤ (2r + 1)/M

)
⊗ σ

(
Xs : s ≤ j?n(2r + 1)/n

)
.

The discrete process

Seven

r :=
r∑
i=1

h`k
(

2i−1
M

) ∑
j
n
∈
(

2i−2
M

,
2i
M

] λ̃2
(
M j

n
− (2i− 2)

)
(Xj/n∧TC −X(j−1)/n∧TC )εj,n
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forms a martingale scheme with respect to the filtration Geven. In the same way we can
by summation over odd indexes obtain the martingale scheme Sodd

r defined w.r.t. the
filtration Godd

r . Note that

E
[∣∣∣h`k( i−1

M

) ∑
j
n
∈
(
i−2
M

,
i
M

] λ̃2
(
M j

n
− (i− 2)

)
(Xj/n∧TC −X(j−1)/n∧TC )εj,n

∣∣∣p]
.
∣∣h`k( i−1

M

)∣∣p(M−p/2 +
∑

j
n
∈
(
i−2
M

,
i
M

]E[∣∣(Xj/n∧TC −X(j−1)/n∧TC )εj,n
∣∣p])

.
∣∣h`k( i−1

M

)∣∣pM−1(M−p/2+1 + n−p/2+1),

and also by conditional Itô-isometry (Lemma B.15)

E
[(
h`k
(

2i−1
M

) ∑
j
n
∈
(

2i−2
M

,
2i
M

] λ̃2
(
M j

n
− (2i− 2)

)
(Xj/n∧TC −X(j−1)/n∧TC )εj,n

)2∣∣∣ Geven

i−1

]
. h2

`k

(
2i−1
M

) ∑
j
n
∈
(

2i−2
M

,
2i
M

]E[(Xj/n∧TC −X(j−1)/n∧TC )2
∣∣Geven

i−1

]
.M−1h2

`k

(
2i−1
M

)
.

Thus, by Rosenthal’s inequality for martingales, we derive from the estimates above

E
[∣∣Seven

bM/2c
∣∣p] . ‖h`k‖pp,M(n−p/2+1 +M−p/2+1) + ‖h`k‖p2,M .

In the same way Sodd

b(M−1)/2c can be bounded and the result follows by incorporating the

multiplicative term M2pn−2p from (5.2.5).

B.0.1. Proof of Proposition 4

In this section we adopt the notation introduced in Proposition 4. In particular, let C :=

C (s, π, C) := supf∈Bsπ,∞(C) ‖f‖∞. The proof relies on decomposing ̂〈h`k, σ2〉 − 〈h`k, σ2〉
as in (5.2.12).

Lemma B.11. Suppose the assumptions of Proposition 4 hold. Then, for δ > 0

P

(∣∣∣∣∣
M∑
i=2

h`k
(
i−1
M

)
X

2

i,M (λ)−
〈
σ2, h`k

〉
L2

∣∣∣∣∣
> 4C (1 + δ)

√
p logM
M

and σ2 ∈ Bsπ,∞ (C)

)
.M−p. (B.0.12)

Proof. By definition Λ (s) =
∫ 2

s
λ̃ (u) du. Moreover, let Ht,i be defined as in (B.0.6) and

recall the integration by parts formula (B.0.7). Clearly,

4 (1 + δ) = δ + 4

(
1 +

δ

2

)
+ δ.
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Using this decomposition, we bound the l.h.s. of (B.0.12) by the sum of three terms
I + II + III,

I :=P
(∣∣∣ M∑

i=2

h`k
(
i−1
M

)(
X

2

i,M(λ)−
( ∫ 1

0

Λ(Ms− (i− 2))dXs

)2)∣∣∣
> Cδ

√
p logM
M

and σ2 ∈ Bsπ,∞ (C)
)

II :=P
(∣∣∣ M∑

i=2

∫ 1

0

Ht,idXt

∣∣∣ > 2C
(
1 + δ

2

)√
p logM
M

and σ2 ∈ L∞
(
C
) )

III :=P
(∣∣∣( M∑

i=2

h`k(
i−1
M

)

∫ 1

0

Λ2 (Ms− (i− 2))σ2
sds
)
−
〈
σ2, hlk

〉
L2

∣∣∣
> Cδ

√
p logM
M

and σ2 ∈ Bsπ,∞ (C)
)
.

We have the following generalized Chebycheff inequality:

P (X > t and B) = E
[
I{X>t}∩B

]
≤ t−pE

[
Xp IB

]
, (B.0.13)

for p ≥ 1 and a measurable set B. Using this and (5.2.18), it follows that the term I can
be bounded by any polynomial order of 1/M and therefore I is of the right order.
For the second term, II, we aim to apply Lemma 3. In order to obtain disjoint support
of the processes Ht,i, we further decompose II ≤ IIeven + IIodd, where

IIeven/odd :=P
(∣∣∣ M∑

i=2, i even/odd

∫ TC

0

Ht,idXt

∣∣∣ > C
(
1 + δ

2

)√
p logM
M

)
.

Since by Assumption 4, h has compact support, we can find an interval [−B,B], B > 0
such that h = 0 on R\ [−B,B]. Hence, 1

2
(2−lM(k−B)+1) ≤ i ≤ 1

2
(2−lM(k+B)+1). It

suffices to treat the term IIeven only, similar arguments apply for IIodd. Now, the process

Nr := 2−l/2M
r∑
i=1

∫ TC

0

Ht,2idXt

defines a discrete time martingale with respect to the filtration Fr = σ (Xs : s ≤ 2r/M)
starting at

Nb(2−lM(k−B)+1)/2c = 0.

Let us remark two things. First, Ht,2i has support inside [2(i−1)/M, 2i/M ] and second,
the random variable I{TC≤(2i−2)/M} is Fi−1 measurable. Moreover, by Lemma B.1 (iii)

and 2l .M1−q, for a q > 0, we obtain

2

M

bM/2c∑
i=1

h2
`k

(
2i−1
M

)
=

∫ 1

0

h2
`k(u)du+O

(
2l

M

)
≤ 1 +O(M−q).
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Thus, by using Lemma B.4 as well as conditional Itô-isometry (cf. Lemma B.15), we
derive

〈N〉
b1

2
(2−lM(k+B)+1)c

≤ 2−lM2C

bM/2c∑
i=1

∫ 1

0

E
[
H2
s∧TC ,2i

|Fi−1

]
ds

≤ 2−lM2C
2
bM/2c∑
i=1

h2
`k(

i−1
M

)

∫ 1

0

Λ2(Ms− (i− 2))

∫ s

(i−2)/M

Λ2(Mu− (i− 2))du ds

= 2−l−1M2C
2
bM/2c∑
i=1

h2
`k

(
2i−1
M

) ( ∫ 1

0

Λ2(Mu− (i− 2))du
)2

≤ 2−l−1C
2
bM/2c∑
i=1

h2
`k

(
2i−1
M

)
≤ 2−lM 1

4
C

2
(

1 +
δ

2

)
,

where for the third step, we use the equality∫ 1

0

f ′(u)f(u)du =
1

2

[
f 2(1)− f 2(0)

]
and the last step follows for sufficiently large M. Furthermore, applying BDG, we obtain
uniformly over i, `, k,

E
[
|∆iN |κ

]
. 2−lκ/2MκE

[∣∣ ∫ 1

0

Ht,2iI[0,TC](t)dXt

∣∣κ] . 2−lκ/2MκE
[∣∣ ∫ 1

0

H2
t∧TC ,2i

dt
∣∣κ/2]

. 2−lκ/2Mκ/2E
[

sup
t≤2/M

∣∣H(t+(i−2)/M)∧TC ,2i
∣∣κ] . 2−lκ/2

∣∣h`k( i−1
M

)∣∣κ . 1.

Now, for j ∼M2−l, Lemma 3 yields that IIeven .M−p.
By repeating the arguments, we bound IIodd and therefore II .M−p.
For bounding the third term, III, we have by assumption M−(s−1/π)‖h`k‖1,M .M−1/2.
Combining this with the approximations (5.2.22), (5.2.23), and (5.2.24) yields for suffi-
ciently large M on σ2 ∈ Bsπ,∞ (C) ,∣∣∣ M∑

i=2

h`k
(
i−1
M

)(∫ 1

0

Λ2 (Ms− (i− 2))σ2
sds

)
−
〈
σ2, hlk

〉
L2

∣∣∣ ≤ Cδ
√

p logM
M

.

Therefore, the lemma follows.

Lemma B.12. Suppose the assumptions of Proposition 4 hold. Then, for δ > 0

P
(∣∣∣ M∑

i=2

h`k
(
i−1
M

)
X i,M (λ) εi,M(λ)

∣∣∣
>
√

8C ‖τ‖∞ ‖λ̃‖2 (1 + δ)
√

p logM
M

and σ2 ∈ Bsπ,∞ (C)
)
.M−p.
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Proof. Let X i,M,TC
be defined as in (B.0.10). Then, by considering even and odd terms,

separately we only need to prove

P
(∣∣∣ M∑

i=2, i even

h`k
(
i−1
M

)
X i,M,TC

(λ) εi,M

∣∣∣
>
√

2C ‖τ‖∞ ‖λ̃‖2 (1 + δ)
√

p logM
M

)
.M−p.

The same arguments apply for the sum over odd i. The proof is similar to the one
developed for bounding II in Lemma B.11. We define

Nr = n1/22−l/2
2r∑
i=1

h`k
(

2i−1
M

)
X2i,M,TC

ε2i,M .

Obviously, this is a martingale with respect to the filtration F even
r , starting at

Nb(2−lM(k−B)+1)/2c = 0.

Next, we compute the predictable quadratic variation,

〈N〉
b1

2
(2−lM(k+B)+1)c

≤ n2−l
bM/2c∑
i=1

h2
`k(

2i−1
M

)E
[
X

2

2i,M,TC
ε22i,M |F even

i−1

]
≤ n2−l ‖τ‖2

∞

bM/2c∑
i=1

h2
`k(

2i−1
M

)E
[
X

2

2i,M,TC
|F even

i−1

]
M2

n2

∑
j
n
∈
(

2i−2
M

,
2i
M

] λ̃2(M j
n
− (2i− 2)).

By the assumption on pre-average functions, λ is piecewise Lipschitz continuous. There-
fore,

M
n

∑
j
n
∈
(

2i−2
M

,
2i
M

] λ̃2(M j
n
− (2i− 2)) = ‖λ̃‖2

2 +O
(
M
n

)
, (B.0.14)

uniformly in i. In the next step, we bound the conditional variance E[X
2

2i,M,TC
|F even

i−1 ]. In

particular, we have the decomposition X2i,M,TC
= U1 + U2. Here,

U1 := M
n

∑
j
n
∈
(

2i−2
M

,
2i
M

]
( n∑

l=j

λ̃(M l
n
− (2i− 2))

)(
X j
n
∧TC
−X j−1

n
∧TC∧

2i−2
M

)
,

U2 := X2i−2
M
∧TC

M
n

∑
j
n
∈
(

2i−2
M

,
2i
M

] λ̃(M j
n
− (2i− 2)).
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Moreover, E
[
X

2

2i,M,TC
|F even

i−1 ] = E[U2
1 |F even

i−1

]
+ U2

2 . Now using conditional Itô-isometry
again, we derive

E
[(
X j
n
∧TC
−X j−1

n
∧TC∧

2i−2
M

)(
X j′

n
∧TC
−X j′−1

n
∧TC∧

2i−2
M

)
|F even

i−1

]
≤ δj,j′C

1
n

= C E
[(
W j

n

−W j−1
n

)(
W j′

n

−W j′−1
n

)]
, for j

n
, j
′

n
∈ (2i−2

M
, 2i
M

]
,

where W denotes a standard Brownian motion and δj,j′ is the Kronecker delta. Set
X = W in (5.2.17). Then,

E
[
U2

1 |Fi−1

]
≤ C E

[(
M
n

∑
j
n
∈
(

2i−2
M

,
i
M

] λ̃(M j
n
− (2i− 2))Wj/n

)2]

= C E
[ ∫ 1

0

Λ2
(
Ms− (2i− 2)

)
ds
]

+O
(
M−1/2n−1

)
= CM−1 +O

(
M−1/2n−1

)
uniformly over i, where we used Lemma B.4 for the last equality. With the Riemann
approximation (B.0.11) we derive U2

2 .
M2

n2 X
2
2i−2
M
∧TC

. For δ1, δ2 > 0 the predictable

quadratic variation can be bounded by

〈N〉
b1

2
(2−lM(k+B)+1)c

≤ 2−l−1M ‖τ‖2
∞C‖λ̃‖

2
2(1 + δ1)

+ 2−l M
3

n2 ‖τ‖2
∞ ‖λ̃‖

2
2(1 + δ2)

bM/2c∑
i=1

h2
`k(

2i−1
M

)X2
2i−2
M
∧TC

,

provided M is sufficiently large. Fix δ3 > 0. Then, by Lemma B.1 (ii) and Chebycheff
inequality, we have that the probability of the event,

M2

n2

bM/2c∑
i=1

h2
`k(

2i−1
M

)X2
2i−2
M
∧TC
. M3

n2 sup
s≤TC

X2
s ≤ δ3,

is larger than 1−KM−p, for a constant K. Now, for δ > 0 there are δ1, δ2, δ3 > 0 such
that by combining the inequalities above, we derive

P
(
〈N〉

b1
2

(2−lM(k+B)+1)c
> 2−l−1M ‖τ‖2

∞C‖λ̃‖
2
2(1 + δ)

)
.M−p.

Before we can apply Lemma 3, we still need a suitable moment bound on the increments
of (Ni)i. As demonstrated in the proof of Lemma B.7, it holds E[|X i,M,TC (λ)|2κ] .M−κ

as well as E[|εi,M |2κ] . Mκn−κ. In the same way, we derive E[|X i,M,TC
(λ)|2κ] . M−κ.

This shows that

max
i

E[|∆iN |κ] . max
i

2−lκ/2nκ/2
∣∣h`k( i−1

M
)
∣∣κE1/2[|X i,M,TC

(λ)|2κ]E1/2[|εi,M |2κ] . 1.

This allows us to apply Lemma 3. Then, the conclusion follows in a straightforward
way.
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Finally, in order to show Proposition 4, we need to bound the pure noise term.

Lemma B.13. Suppose the assumptions of Proposition 4 hold. Then, for δ > 0

P
(∣∣∣ M∑

i=2

h`k
(
i−1
M

) (
ε2i,M(λ)− E[ε2i,M(λ)|G]

)∣∣∣
> 4 ‖τ‖2

∞ ‖λ̃‖
2
2 (1 + δ)

√
p logM
M

)
.M−p.

Proof. As in the previous lemmas, we decompose into even and odd terms and show
that

P
(∣∣∣ M∑

i=2, i even

h`k
(
i−1
M

) (
ε2i,M(λ)− E[ε2i,M(λ)|G]

)∣∣∣ > 2 ‖τ‖2
∞ ‖λ̃‖

2
2 (1 + δ)

√
p logM
M

)
.M−p.

By the same arguments we may bound the sum over odd i. We define F even
r , Ui as well as

the martingale Seven
r as in the proof of Lemma B.6. Let us mention again that since h has

compact support, we can find an interval [−B,B] such that h = 0 on R\ [−B,B]. Thus,
for h`k(

2i−1
M

) 6= 0 it is necessary that 1
2
(2−lM(k − B) + 1) ≤ i ≤ 1

2
(2−lM(k + B) + 1).

Define the process Nr := n
M

2−l/2Seven
r . This is a martingale with respect to F even

r , starting
at Nb(2−lM(k−B)+1)/2c = 0. Bounding the predictable quadratic variation gives

〈N〉
b1

2
(2−lM(k+B)+1)c

≤ n2

M2 2−l
bM/2c∑
i=1

h2
`k(

2i−1
M

)E
[(
ε22i,M − E[ε22i,M |G]

)2|F even

i−1

]
.

Furthermore, straightforward calculations and the Riemann approximation argument
given in (B.0.14) show that uniformly in i, we can bound

E
[(
ε2i,M − E[ε2i,M |G]

)2|F even

i−1

]
= λ̃2(M j

n
− (i− 2))

)2
+O

(
M3

n3

)
= 2M

2

n2 ‖τ‖4
∞ ‖λ̃‖

4
2 +O

(
M3

n3

)
by a deterministic constant. Hence, for sufficiently large M,

〈N〉
b1

2
(2−lM(k+B)+1)c

≤M2−l ‖τ‖4
∞ ‖λ̃‖

4
2(1 + δ).

Now, we may apply Lemma 3, since by (B.0.9) we have E[|∆iN |κ] . 1. This yields the
claim.

Completion of proof of Proposition 4

Let I, II, and III be defined as in (5.2.12).
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Bounding I. Lemma B.11, shows that under the assumptions of Proposition 4,

P
(
|I| > 4C(1 + δ)

√
p logM
M

and σ2 ∈ Bsπ,∞(C)
)
.M−p.

Bounding II. Applying Lemmas B.8, B.9, B.10, and B.13 we derive by the generalized
version of Chebycheff’s inequality (B.0.13) and because of ‖h`k‖pp,M .Mp/2−1, for p ≥ 2

P
(
|II| > 4 ‖τ‖2

∞ ‖λ̃‖
2
2(1 + δ)

√
p logM
M

and σ2 ∈ Bsπ,∞(C)
)
.M−p.

Bounding III. By Lemma B.12,

P
(
|III| > 4

√
2 C ‖τ‖∞‖λ̃‖2(1 + δ)

√
p logM
M

and σ2 ∈ Bsπ,∞(C)
)
.M−p.

Combining the bounds of I − III completes the proof of Proposition 4.

B.1. Tools from stochastic analysis

For a thorough treatment of stochastic analysis, we refer to Protter [69] as well as Jacod
and Shiryaev [45]. Throughout this section suppose that a filtered probability space
(Ω,F , (Ft)t≥0,P) is given.

Definition 21 (Quadratic variation). For semimartingales X, Y the quadratic covaria-
tion is the process XtYt−

∫
Xs−dYs−

∫
Ys−dXs. It is denoted by ([X, Y ]t)t≥0. For X = Y

the process ([X,X]t)t≥0 is called quadratic variation.

Since this will become a crucial property, we recall the approximation theorem for
quadratic variation of semimartingales in a very general form (cf. [69], Theorem 23). In
order to do so, a notion of regularity/denseness of sequences of stopping times is needed.

Theorem B.1. Let X, Y be semimartingales. Let (T nk )k,n be an array of increasing
stopping times in k,

0 =: T n0 ≤ T n1 ≤ . . . ≤ T nkn <∞
satisfying

(i) limn supk T
n
k =∞, a.s.

(ii) limn supk(T
n
k+1 − T nk ) = 0, a.s.

Let

[̃X, Y ](Tnk ) := X0Y0 +
kn−1∑
i=0

(XTni+1 −XTni )(Y Tni+1 − Y Tni ),

then

[̃X, Y ](Tnk )

n→∞→ [X, Y ],

where mode of convergence is u.c.p. (i.e. uniform on compact intervals).

134



B.1. Tools from stochastic analysis

Lemma B.14 (Integration by parts). Assume that X is a continuous semimartingale.
Then,

[X,X]t = X2
t − 2

∫ t

0

XsdXs.

Lemma B.15 (Conditional Itô-isometry (cf. Karatzas and Shreve [51], Proposition
2.10)). Let M be a continuous, square integrable F-martingale and assume that H is a
progressively measurable process. Then for 0 ≤ s < t ≤ 1,

E
[( ∫ t

s

HudMu

)2

|Fs
]

= E
[ ∫ t

s

H2
ud〈M〉u|Fs

]
,

provided

E
[ ∫ 1

0

H2
u〈M〉u

]
<∞.

Lemma B.16 (cf. Protter [69], Theorem 12). Let X denote a semimartingale and H a
process with càglàd paths. Let τ be a stopping time. Then,∫ t∧τ

0

HsdXs =

∫ t

0

HsI[0,τ ](s)dXs.

Martingale moment inequalities

For a process X we write

X?
t := sup

u∈[0,t]

|Xu|.

Lemma B.17 (Burkholder-Davis-Gundy inequality (BDG), (cf. Kallenberg [50], The-
orem 26.12)). For any local martingale M with M0 = 0 and any p ≥ 1, there exists a
positive constant c only depending on p, such that for all t > 0,

c−1 E
[
[M,M ]

p/2
t

]
≤ E

[
|M?

t |p
]
≤ c E

[
[M,M ]

p/2
t

]
.

The next inequality provides a useful tool in order to bound the maximum of a discrete
martingale by means of controlling the increments.

Lemma B.18 (Rosenthal’s inequality, (cf. Hall and Heyde [35], p. 23)). Let (Mk)k be
a martingale with respect to the filtration {Fk}k. For p ≥ 0 there is a constant C, only
dependent on p such that

E
[

max
k=1,...,n

|Mk|p
]
≤ C

(
E
[( n−1∑

k=0

E
[
(∆kM)2|Fk

])p/2]
+ E

[
max
k≤n
|∆kM |p

])
.
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List of Symbols

Cov(X, Y ) For column vectors X, Y of length mX and mY , the covariance
of X and Y is defined as the matrix Cov(X, Y ) ∈ MmX ,mY with
(Cov(X, Y ))i,j := Cov(Xi, Yj) , page 44

∆iM ∆i,na := a( i+1
n

)−a( i
n
), ∆i,nY := Yi+1,n−Yi,n, ∆i,nX := X(i+1)/n−

Xi/n is the forward difference operator, ∆k
i,n := ∆k−1

i,n ◦∆i,n, ∆1
i,n :=

∆i,n is defined recursively, page 20

. larger up to a constant. In particular, a . b uniformly in a pa-
rameter α means that the constant is independent of α, page 18

bxc denotes the floor function, i.e. it is the largest integer not greater
than x, page 23

‖.‖Lp[a,b] denotes the Lp-norm on the interval [a, b]. In the baseline case
[a, b] = [0, 1], we abbreviate the Lp-norm by ‖.‖p, page 22

‖.‖lq denotes the sequence space norm on the index set I, i.e. ‖(ai)i∈I‖lq :=
(
∑

i∈I |ai|q)1/q with obvious modification for q =∞, page 25

‖.‖p,m is the empirical Lp-norm on [0, 1], i.e. ‖f‖p,m := ( 1
m

∑m
i=1 |f( i

m
)|p)1/p,

page 22

‖.‖2 If A is a matrix, then ‖A‖2 denotes the Frobenius (or Hilbert-
Schmidt) norm, page 30

Mp,q, Mp and Dp are the spaces of p× q matrices, p× p matrices and p× p diagonal
matrices over R, respectively, page 38

D
= equality in distribution, page 36

D ∈Mn−1 (Dn−1)i,j=1,...,n−1 = (
√

2/n sin (ijπ/n))i,j=1,...,n−1, page 38

Op() For a sequence of random variables (Un)n, we write Un = Op(cn),
whenever c−1

n Un is bounded in probability, page 32
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