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1. Introduction

”Statistical inference is the process of drawing conclusions from data that are subject to

random variation” (Upton and Cook, 2008). Inferential statistics requires assumptions

which can be summarized in a statistical model. These models can be roughly split up

into two main approaches. Both of these approaches make use of specific assumptions for

statistical modeling to draw statistical inference.

On the one hand, the parametric world in which statistical models need assumptions about

the underlying distribution, e.g. the normal distribution with mean µ and variance σ2. The

parameter of this distribution can be estimated out of the present sample. By substituting

the estimates into the formula of the parametric distribution, the underlying function f

can be calculated. Based on the assumption of a parametric distribution, statisticians

can draw conclusions, calculate confidence intervals and test various hypotheses about the

data.

On the other hand, the idea of nonparametric modeling requires less rigid a priori sta-

tements about the underlying structure of the distribution. Hence, to make inferential

statements in nonparametric estimation, no assumption about a specific functional form

is needed, except of smoothness. This becomes obvious, e.g. in terms of efficiency, if

the distributional assumptions of a parametric model are not fulfilled (Büning and Trenk-

ler, 1994). Although, the term ‘nonparametric’ indicates that actually no parameters

exist, we need some particular parameters, e.g. the bandwidth parameter h to control

for smoothness of the estimates. However, these parameters are not components of an

underlying distribution and hence several authors use the term distribution-free instead

of nonparametric (see, e.g. Kotz and Johnson, 1982).

Nonparametric methods are used in a wide range of statistical problems. A simple case is

density estimation, in which we have a continuous random variable X with some unknown

continuous distribution and want to estimate the probability density function (pdf) f(x).

Another fundamental example is nonparametric regression, in which the conditional expec-

tation of a dependent variable Y given some explanatory covariates X = (X1, X2, ..., Xn)

is modeled by an unknown, but smooth, function of the covariates. We can estimate the

regression function without predefining a parametric structure, such as linear or cubic.
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1. Introduction

In the context of density estimation the most widely used nonparametric method is the

histogram. To overcome some shortcomings of histograms, the idea of kernel density esti-

mation was proposed by Rosenblatt (1956) and Parzen (1962). In nonparametric regression

several approaches have been developed. The most traditional approach of nonparametric

kernel regression is the Nadaraya-Watson estimator (Nadaraya, 1964 and Watson, 1964).

Nowadays, the field of literature concerning kernel density estimation or kernel regression is

very extensive. Several aspects are covered, ranging from theoretical considerations about

statistical properties or asymptotics to applications for manifold real-data problems. Due

to these developments, a lot of data structures, like categorical data, time-series data or

panel data can be tackled with nonparametric methods.

In several real data problems the researcher is faced with the problem of how to describe

the relationship between dependent and independent variables of the dataset at hand by

a statistical model. Purely linear parametric models may be easy applicable but they

are far from adequate in many situations. Fully nonparametric models are very flexible,

yet not always appropriate. If many continuous covariates need to be included in the

model, nonparametric methods run into the curse of dimensionality, i.e. the models re-

quire an exponential increase in observation points. Many real data applications impose

a natural classification of the explanatory variables. Hence, one wants to separate the

estimation problem into two or more groups of design variables. In order to capture these

problems several models were developed in recent years. Altogether they try to reduce

the high dimensionality of multivariate nonparametric models. Therefore, they divide the

covariates into distinct groups some modeled parametrically and some nonparametrically

using an additive or bivariate structure. Such models are usually called semiparametric

models. A general introduction about non- and semiparametric models can be found in

Härdle et. al. (2004).

This thesis is structured as a cumulative dissertation and combines three papers which

are concerned with a particular topic discussed in the first part of this introduction. All

papers are supposed to be published together with Prof. Dr. Stefan Sperlich and further

co-authors, in different statistical journals. The three main chapters of this thesis (chapter

2 to 4) are based on the original text of the papers, including an individual introduction,

conclusion as well as a reference list. Also the meaning of the notation is given by time

in the corresponding paper. The rest of this thesis can be seen as a frame for these three

projects. Thus, the thesis is organized as follows. After this short introduction, the second

chapter will give an idea of how to choose an optimal bandwidth parameter in nonpara-

metric density estimation problems. Chapter 3 presents a semiparametric approach for

discrete choice modeling with an application in the context of political science. In the

fourth chapter this semiparametric approach will be extended to a data problem with a
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slightly different covariate structure in the context of an urban transport problem. Fi-

nally, an overall conclusion will summarize the main results of the three projects and will

point out the contribution of this thesis to current research. In the appendix, the whole

programming code is given.

The second chapter of this dissertation compares various automatic bandwidth selection

methods in the context of kernel density estimation. Density estimation is a very basic

instrument in nonparametric statistics. A lot of bandwidth selection methods and pro-

gramming routines exists to calculate an optimal bandwidth. The essential idea is to find

an optimal bandwidth selection method which is always suitable and can be used auto-

matically for every dataset at hand. Although several authors are concerned with solving

the problem of finding the optimal bandwidth, currently no procedure is established which

is appropriate for all estimation problems. Most authors propose a more or less limited

method which fits in their particular case, resulting in a variety of bandwidth selection

methods. Contrary, researchers with less mathematical background trust the most esta-

blished and traditional selection methods, such as cross-validation or Silverman’s rule of

thumb.

The examination and evaluation of different bandwidth selection methods is a never-ending

story as several authors almost annually publish new ideas to tackle their problems. Due

to these reasons, the discussion of bandwidth selection methods is a very ambitious task.

On the one hand, we had to deal with several mathematical algorithms from different

theoretical backgrounds; on the other hand, we faced an extensive development of new

methods in a short time period, which makes it almost impossible to keep the discussion

up to date. Therefore, the first essay summarizes the state of the art in the context of

bandwidth selection and updates former review papers on bandwidth selection, like Jones,

Marron and Sheather (1996). However, we had to restrict the consideration to methods

which were available up to 2009.

Chapter 3, proposes a solution for modeling multicategorical data with the aid of non- and

semiparametric methods. One goal of this project is the consideration of the distribution

of the dependent variable which is assumed to be categorical. The classical linear approach

models the expectation of an at least approximately normal distributed target variable as

a function of covariates. This is often inappropriate, e.g. when observing a discrete target

variable. The basic statistical framework to model almost arbitrarily distributed response

variables was proposed by Nelder and Wedderburn (1972) in their work about generalized

linear models. Thereby, a function of the expectation is modeled by a predictor of the

covariates which are considered in the model. Afterwards, this concept found its way into

the field of non- and semiparametric modeling. An overview about several generalized non-

13



1. Introduction

and semiparametric regression models can be found in Härdle et.al. (2004). Müller (2001)

proposed a model for binary response variable in the context of a specific semiparametric

approach using a generalized partial linear model. As mentioned earlier, a researcher has to

transform the structure of a dataset at hand into a statistical model to draw inferences. In

several real-data problems individuals face a discrete set of alternatives. Such problems are

usually handled with multinomial or conditional logit models. The classical multinomial

logit model, which models the predictor in a linear manner, imposes rigid restrictions on

the covariates. The model in this essay overcomes these deficiencies by allowing a very

flexible semiparametric modeling of the predictor. Therefore, we can detect nonlinearities

as well as strong interactions between covariates. We investigate the influence of several

covariates on the political party affiliation in a multi-party system like Germany. The

data represent a typical situation for a multinomial logit model, in which the individual is

faced with the choice between unordered alternatives. The support of political parties is

modeled by several covariates which are divided into two distinct groups. On the one hand,

some covariates which are modeled parametrically and on the other hand, some of them

influence the predictor in a nonparametric way. Thereby, we use an approach based on

a generalized partial linear model and extend this approach to multicategorical response

variable. We consider additive as well as bivariate model structures in the nonparametric

part and by means of three-dimensional plots we can identify various voter profiles for the

political parties which can be very useful for decision makers at head of different political

parties.

The fourth chapter of this thesis considers an urban transport problem, in which the stu-

dents of the University in Bilbao are faced with a discrete set of choices for a transport

mode to travel to the university. The underlying data structure is similar to the second

project. The data were obtained by a written query from students of the University in

Bilbao. The aim of this paper is methodological. In this project, we compare different ap-

proaches: fully parametric, non- or semiparametric, binary as well as multinomial models,

including only individual- or also mode-specific covariates. We compare the results of the

different models and give recommendations as to which of the considered models provides

the best conclusions in the context of transport policy.
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2. Bandwidth Selection Methods for

Kernel Density Estimation –

A Review of Performance

Abstract

On the one hand, kernel density estimation is a common tool

for empirical studies in any research area. This goes hand in

hand with the fact that these estimators are provided by many

software packages. On the other hand, since about three de-

cades the discussion on bandwidth selection has been going on.

A good part of the discussion is concerned about nonparametric

regression, but this issue is by no means less problematic for

density estimation. This becomes obvious when reading empi-

rical studies in which practitioners made use of kernel densities.

Unfortunately, software packages offer only simple cross valida-

tion or Silverman’s rule of thumb. New contributions typically

provide simulations limited to show that the own invention out-

performs existing methods. We review existing methods and

compare them on a set of designs that exhibits features like few

bumps and exponentially falling tails concentrating thereby on

small and moderate sample sizes. Our main focus is on practi-

cal issues like fully automatic procedures, implementation and

performance where the latter one is measured in many ways.

This essay is based on a joint work with my colleague Anja

Schindler and Prof. Dr. Stefan Sperlich. The main contribu-

tion of the author of this thesis is made in the evalutaion of the

cross-validation methods and the presentation of all estimation

results.
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2. Bandwidth Selection Methods for Kernel Density Estimation –A Review of Performance

2.1. Introduction

Suppose we have observed i.i.d. data X1, X2, . . . , Xn from a common distribution with

density f(·), and we aim to estimate this density using the standard kernel (i.e. the Parzen-

Rosenblatt) estimator

f̂h(x) =
1

nh

n∑
i=1

K

(
x−Xi

h

)
, (2.1)

where K is a kernel and h the bandwidth parameter. The problem is to find a reliable

data driven estimator of the optimal bandwidth. First one has to decide on a method of

assessing the performance of f̂h. The generally accepted performance measures are the

integrated squared error

ISE(h) = ISE{f̂h(x)} =

∫
{f̂h(x)− f(x)}2 dx (2.2)

or alternatively, the mean integrated squared error, i.e.

MISE(h) = MISE
[
f̂h(x)

]
=

∫
MSE

[
f̂h(x)

]
dx. (2.3)

Let us denote the minimizers of these two criteria by ĥ0 and h0 respectively. The main

difference is that ISE(h) is a stochastic process indexed by h > 0, while MISE(h) is

a deterministic function of h, see Cao (1993). Therefore we distinguish two classes of

methods: the cross-validation methods trying to estimate ĥ0 and therefore looking at the

ISE, and the plug-in methods which try to minimize the MISE to find h0. It is evident

that asymptotically these criteria coincide.

The main part of the nonparametric statistical community has accepted that there may

not be a perfect procedure to select the optimal bandwidth. However, we should be able

to say which is a reasonable bandwidth selector, at least for a particular problem. SiZer

tries to show the practitioner what is a range of reasonable bandwidths, and is therefore

quite attractive for data snooping, see Chaudhuri and Marron (1999) for an introduction,

Godtliebsen, Marron and Chaudhuri (2002) for an extension to the bivariate case. Hanning

and Marron (2006) made an improvement using extreme value theory. However, SiZer does

not give back one specific data driven bandwidth as practitioners typically ask for.

Since until now the development of bandwidth selectors has been continuing, we believe it

is helpful to review and compare the existing selectors to get an idea of the objective and

performance of each selector. As we have listed more than 30 bandwidth selectors - several

of them being modifications for particular estimation problems - we decided to restrict this

study in mainly two directions. Firstly, we considered independent observations. Secondly,
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2.1. Introduction

we looked at smooth densities, namely we use four underlying distributions which are

mixtures of at most three different normal and/or gamma distributions. This type of

smoothness covers a broad range of problems in any research area; it is clearly rather

different from estimating sharp peaks or highly oscillating functions. However, the latter

problems should not be tackled with kernels anyway. Density problems with extreme tails

are not included. It is well known that those problems should be transformed, see e.g.

Wand, Marron and Ruppert (1991) or Yang and Marron (1999) for parametric, Ruppert

and Cline (1994) for nonparametric transformations. After an appropriate transformation

the remaining estimation problem falls into the here considered class, too. Note that

the limitation to global bandwidths is not very restrictive neither, and quite common in

density estimation. Actually, when X is transformed, and similar smoothness is assumed

over the whole transformed support, then global bandwidths are most reasonable. Finally,

we have restricted our study to already published methods.

There are already several papers dealing with a comparison of different automatic data

driven bandwidth selection methods though, most of them are older than ten years. In

the seventies and early eighties survey papers about density estimation were published by

Wegman (1972), Tartar and Kronmal (1976), Fryer (1977), Wertz and Schneider (1979)

as well as Bean and Tsokos (1980). A short introduction to various methods of smoothing

parameter selection without a simulation study was released by Marron (1988a) and Park

and Marron (1990). Then, extensive simulations studies have been published by Park and

Turlach (1992), Marron and Wand (1992), Cao, Cuevas and Gonzáles Manteiga (1994) and

Chiu (1996). A brief survey is also announced by Jones, Marron and Sheather (1996a) and

a more comprehensive one in the companion paper Jones, Marron and Sheather (1996b).

A very exhaustive simulation study has been published by Devroye (1997). Furthermore,

Loader (1999) has published a comparison paper. In recent years to our knowledge only

Chacón, Montanero and Nogales (2008) have published a comparison paper on this topic.

Therefore, our paper is also an update of the two main review papers of Jones, Marron

and Sheather (1996b) and Devroye (1997) although the overlap is moderate.

The idea of cross validation methods (LSCV) goes back to Rudemo (1982) and Bowman

(1984), but one could also mention the pseudo-likelihood CV-methods of Habbema, Her-

mans and van den Broek (1974) or of Duin (1976). Due to the lack of stability of this

method, see Wand and Jones (1995), different modifications have been proposed like the

stabilized bandwidth selector recommended by Chiu (1991), smoothed CV proposed by

Hall, Marron and Park (1992), the modified CV (MCV) by Stute (1992), or the version by

Feluch and Koronacki (1992), and most recently the one-sided CV by Mart́ınez-Miranda,

Nielsen and Sperlich (2009) and the indirect CV by Savchuk, Hart and Sheather (2010).

The biased CV (BCV) of Scott and Terrell (1987) is minimizing the asymptotic MISE like

17



2. Bandwidth Selection Methods for Kernel Density Estimation –A Review of Performance

plug-in methods do but uses a jack-knife procedure (therefore called CV) to avoid the use

of prior information. The recent kernel contrast method of Ahmad and Ran (2004) can

be used for MISE minimization as well, but it is not really data adaptive (or fully auto-

matic) and it performs particularly well rather for regression than for density estimation.

In the most exhaustive former comparison papers, Jones, Marron and Sheather (1996b)

considered only LSCV, BCV and Chiu in this class, whereas Devroye (1997) applied only

the LSCV in his simulations.

Compared to CV the so-called plug-in methods do not only minimize a different objective

function, MISE instead of ISE, they are less volatile but not entirely data adaptive as

they require pilot information. In contrast, CV allows to choose the bandwidth without

making assumptions about the smoothness (or the like) to which the unknown density

belongs. Certainly, if we have an appropriate pilot bandwidth the performance of plug-

in methods is pretty good. Although, they have a faster convergence rate compared to

CV, they can heavily depend on the choice of pilots. Among them, Silverman’s (1986)

rule of thumb is probably the most popular one. Various refinements were introduced

like for example by Park and Marron (1990), Sheather and Jones (1991), or by Hall,

Sheather, Jones and Marron (1991). Also the bootstrap methods of Taylor (1989) as well

as all its modifications, see e.g. Cao (1993) or Chacón, Montanero and Nogales (2008),

we count to plug-in methods as they aim to minimize the MISE. As representatives of

the plug-in class almost all former simulations studies concentrate on Silverman’s rule of

thumb and the plug-in versions of Park and Marron (1990) or alternatively Sheather and

Jones (1991). Jones, Marron and Sheather (1996b) additionally applied HSJM and some

further refinements, which proved to be unfavorable. Devroye (1997) includes various

plug-in versions and bandwidth selectors using a reference density, based on minimizing

the L1-norm. Only few comparison papers consider bootstrap methods in their simulation.

The most recently is Chacón, Montanero and Nogales (2008). However, they restricted

to Bootstrap methods and only compare LSCV and the plug-in version of Sheather and

Jones (1991).

The general criticism against the two classes of selection methods can be summarized as

follows: CV leads to undersmoothing and breaks down for large samples, whereas plug-in

depends on prior information and often works bad for small data sets and much curvature.

For the statements about asymptotic theory, we make the following assumptions on kernel

and density. For some methods we will modify them.

(A1) The kernel K is a compactly supported density function on R, symmetric around

zero with Hölder-continuous derivative, K ′.

(A2) µ2(K) <∞, where µl(K) =
∫
ulK(u)du.

18



2.2. Cross-Validation methods in density estimation

(A3) The density, f , is bounded and twice differentiable, f ′ and f ′′ are bounded and

integrable, and f ′′ is uniformly continuous.

In our simulation study we restrict on selection methods which consider no higher order

kernels. The main motivation for the usage of higher order kernels is their theoretical

advantage of faster asymptotic convergence rates. However, their substantial drawback is

a loss in the practical interpretability as they involve negative weights and can even give

back negative density estimates. A good illustration of the understanding of higher order

kernels can be found in Marron (1994).

In the context of asymptotic theory we are aware of the trade-off between the classical

plug-in method and standard cross-validation. The plug-in has always smaller asymptotic

variance compared to cross-validation (Hall and Marron, 1987a). To our knowledge, no

other bandwidth selection rule has outperformed the asymptotic properties of the plug-in

method. Although Hall and Johnstone (1992) stated that such methods must theoretically

exist, they couldn’t give any practical example.

2.2. Cross-Validation methods in density estimation

Recall the used performance measure, i.e. the integrated squared error (ISE):

ISE(h) =

∫
f̂ 2
h(x) dx− 2E{f̂h(X)}+

∫
f 2(x) dx. (2.4)

Evidently, the first term can be calculated from the data, the second can be expressed as

the expected value of f̂h(X), and the third term can be ignored since it does not depend

on the bandwidth. Note that estimating E{f̂h(X)} by 1
n

∑n
i=1 f̂h(Xi) is inadequate due to

the implicit dependency (f̂h depends on Xi). So the different modifications of CV basically

vary in the estimation of the problematic second part.

2.2.1. Ordinary least squares cross-validation

This is a straightforward approach by just dropping Xi when estimating f(Xi), called

jack-knife estimator and denoted by f̂h,−i(Xi). It yields the least-squares CV criterion

min
h

CV(h) =

∫
f̂ 2
h(x) dx− 2

1

n

n∑
i=1

f̂h,−i(Xi). (2.5)

Stone (1984) showed that under the assumptions (A1)-(A3), the minimizing argument,

ĥCV , fulfills ISE(ĥCV ) {minhISE(h)}−1 a.s.−−→ 1. However, Hall and Marron (1987a) stated
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that this happens at the slow rate of Op(n
−1/10). Many practitioners use this CV method

because of its intuitive definition and practical flavor. But as mentioned, it is not stable,

tends to undersmooth and often breaks down for large samples.

2.2.2. Modified cross-validation

Stute (1992) proposed a so-called modified CV (MCV). He approximated the problematic

term by the aid of a Hajek projection. In fact, he showed that under some regularity

assumptions given below, 2E[fh(x)] is the projection of

S +
1

h
E

[
K

(
X1 −X2

h

)]
= S +

1

h

∫ ∫
K

(
x− y
h

)
f(x) f(y) dx dy

= S +

∫
f 2(y)dy +

1

2
h2

∫
t2K(t)dt

∫
f(y)f ′′(y)dy +O(h3)

for S :=
1

n(n− 1)h

∑
i 6=j

K

(
Xi −Xj

h

)
.

This gives the criterion

min
h

MCV (h) =

∫
f̂ 2
h(x)dx− S − µ2(K)

2n(n− 1)h

∑
i 6=j

K ′′
(
Xi −Xj

h

)
. (2.6)

It can be shown then that under assumptions (A1),

(A2’) K is three times differentiable, with
∫
t4|K(t)| dt <∞ ,

∫
t4|K ′′(t)| dt <∞ ,∫

t4[K ′(t)]2 dt <∞ , and
∫
t2[K ′′′(t)]2 dt <∞ ,

(A3’) f four times continuously differentiable, the derivatives being bounded and inte-

grable,

you get the following consistency result:

ISE(ĥ0)

ISE(ĥMCV)

P−→ 1, and
ĥ0

ĥMCV

P−→ 1 as n→∞.

2.2.3. Stabilized bandwidth selection

Based on characteristic functions Chiu (1991) gave an expression for hCV which reveals

the source of variation. Note that the CV criterion is approximately equal to

1

π

∫ ∞
0

|φ̃(λ)|2
{
w2(hλ)− 2w(hλ)

}
dλ+ 2K(0)/(nh), (2.7)
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2.2. Cross-Validation methods in density estimation

with φ̃(λ) = 1
n

∑n
j=1 e

iλXj and w(λ) =
∫
eiλuK(u)du. The noise in the CV estimate is

mainly contributed by |φ̃(λ)|2 at high frequencies, which does not contain much informa-

tion about f . To mitigate this problem, he looks at the difference of the CV criterion and

the MISE. Chiu defines Λ as the first λ fulfilling |φ̃(λ)|2 ≤ 3/n and replaces |φ̃(λ)|2 by 1/n

for λ > Λ. This gives his criterion:

min
h

Sn(h) =

∫ Λ

0

|φ̃(λ)|2
{
w2(hλ)− 2w(hλ)

}
dλ

+
1

n

∫ ∞
Λ

{
w2(hλ)− 2w(hλ)

}
dλ+ 2πK(0)/(nh), (2.8)

=
π

nh
||K||22 +

∫ Λ

0

{
|φ̃(λ)|2 − 1

n

}
{w2(hλ)− 2w(hλ)}dλ, (2.9)

with ||g||22 =
∫
g2(u) du. For the minimizer, ĥST , of this criterion, it can be shown that

ĥST
a.s.−−→ ĥ0, and it converges to h0 at the optimal n−1/2-rate. In the calculation of Λ we

came across with the computation of square roots of negative terms in our simulations.

To avoid complex numbers we calculated the absolut value of the radicand. Note that in

the literature this procedure is often counted among the plug-in methods as it minimizes

the MISE.

2.2.4. One-sided cross-validation

Marron (1986) made the point that the harder the estimation problem the better CV

works. Based on this idea Hart and Yi (1998) introduced an estimation procedure called

one-sided cross-validation in the regression context. They concluded that one-sided cross

validation (OSCV) in regression clearly outperforms the ordinary CV. Mart́ınez-Miranda,

Nielsen and Sperlich (2009) extended OSCV to density estimation. They apply estimator

(2.1) but with a local linear version of a one sided kernel,

K̄(u) =
µ2(K)− u

(
2
∫ 0

−∞ tK(t) dt
)

µ2(K)−
(

2
∫ 0

−∞ tK(t) dt
)2 2K(u)1{u<0}. (2.10)

Respectively to ISE and MISE they define the one-sided versions OISE and MOISE, with

their minimizers b̂0 and b0. The one-sided CV criterion is

min
b

OSCV(b) =

∫
f̂ 2
left,b(x) dx− 2

n

n∑
i=1

f̂left,b(Xi), (2.11)

where f̂left,b is the one-sided (to the left) kernel density estimator. Then they define the

corresponding bandwidth for the ”real” estimation problem by

ĥOSCV := C · b̂OSCV with C = h0/b0. (2.12)
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Note that C is deterministic and depends only on kernel K since

h0 =

(
||K||22

(µ2(K))2||f ′′||22n

)1/5

, b0 =

(
||K̄||22

(µ2(K̄))2||f ′′||22n

)1/5

. (2.13)

This gives, for example C ≈ 0.537 for the Epanechnikov kernel. The theoretical justifica-

tion for the improved convergence rate of one-sided CV is based on the result of Hall and

Marron (1987a) that under the assumptions (A1) - (A3)

n3/10(ĥCV − ĥ0) −→ N(0, σ2c−2). (2.14)

with known terms σ and c depending only on f and K. From this we can calculate the

variance reduction of OSCV compared to CV by {Cσ̄c/(c̄σ)}2 where c̄, σ̄ are just as c, σ

but with K̄ instead of K. The reduction of the variance for the Epanechnikov kernel is at

least 35% and 50% for the Gaussian kernel. Note that K̄ can also be constructed as a one

sided kernel to the right.

2.2.5. Further cross-validation methods

Feluch and Koronacki (1992) proposed to cut out not only Xi when estimating f(Xi) but

rather dropping also the m < n nearest neighbors with m → ∞ such that m/n → 0.

They called this version modified CV. Unfortunately, it turned out that the quality of this

method crucially depends on m. Therefore it cannot be considered as automatic or data

driven, and will not be considered further. This idea is similar to the CV selection for

time series data, see Härdle and Vieu (1992).

Scott and Terrell (1987) introduced the Biased CV. They worried about unreliable small-

sample results, i.e. the high variability while using the cross-validation criterion. However,

they directly focused on minimizing the asymptotic MISE and estimated the unknown

term ||f ′′(x)||22 via jack-knife methods. Already in their own paper they admitted a poor

performance for small samples and mixtures of densities, see also Chiu (1996). In their si-

mulation study, Jones, Marron and Sheather (1996b) underlined the deficient performance

from ’quite good’ to ’very poor’.

The smoothed cross-validation (SCV) was evolved by Hall, Marron and Park (1992). The

general idea is a kind of presmoothing of the data before applying the CV-criterion. This

procedure of presmoothing results in smaller sample variability, but enlarges the bias.

Therefore the resulting bandwidth is often oversmoothing and cuts off some features of

the underlying density. With this method it is possible to achieve a relative order of

convergence of n−1/2 but only when using a kernel of order ≥ 6. In total, it seems to
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2.2. Cross-Validation methods in density estimation

be appropriate - if at all - only for huge samples. Without using a higher order kernel

Jones, Marron and Sheather (1996b) stated, that there exists an n−1/10 convergent version

of SCV that is identical to Taylor’s bootstrap, see Taylor (1989). Additionally, with a

special choice for g SCV results in an n−5/14 version similar to a diagonal-in version of

Park and Marron’s plug-in, see Park and Marron (1990). Note that finally the SCV is

closely related to the bootstrap method of Cao (1993). These three methods do not belong

to the cross-validation methods, and hence, they are discussed later. In conclusion, we

have not implemented these methods, because either it is very similar to other methods

or it is necessary to use a higher order kernel.

Similar to the idea of one-sided cross validation, Savchuk, Hart, and Sheather (2010)

introduce three classes of selection kernels, all being different from one-sided kernels:

(1 + α)φ(u) − α/σ φ(u/σ) with φ being the standard normal density, and for different

combinations of α and σ. Then, like in one-sided cv, LSCV is performed on an estimator

with a selection kernel, and afterwards the bandwidth can be derived that corresponds to

the kernel used in estimator (2.1). When looking at the MISE minimizing properties, this

method exhibits excellent theoretical properties. For our implementation with Epanech-

nikov kernels it nevertheless worked well only for large samples and proper choices of α

and σ. It seems to us that for obtaining a practical, fully automatic selection procedure,

some additional work is necessary.

The partitioned cross-validation (PCV) was suggested by Marron (1988b). He modified

the CV-criterion by splitting the sample of size n into m subsamples. Then, the PCV

is calculated by minimizing the average of the score functions of the CV-score for all

subsamples. In a final step the resulting bandwidth needs to be rescaled. The number of

subsamples affects the trade off between variance and bias. Hence the choice of m is the

smoothing problem in this case. As Park and Marron (1990) noticed: ”this method ... is

not quite fully objective”. Another drawback is the required separation of the subsamples.

The pseudo-likelihood (also called the Kullback-Leibler) cross-validation (invented by Hab-

bema, Hermans and van den Broek (1974) and by Duin (1976)) aims to find the bandwidth

maximizing a pseudo-likelihood criterion with leaving out the observation Xi. Due to the

fact that lot of authors criticize this method being inappropriate for density estimation,

we skipped also this method in our simulation study.

Wegkamp (1999) suggests a method being very much related to the cross-validation tech-

nique providing quasi-universal bandwidth selection for bounded densities. Nonetheless,

his paper stays on a rather technical level but is not suitable for practitioners.

Recently, Ahmad and Ran (2004) proposed a kernel contrast method for choosing band-

widths either minimizing ISE or alternatively the MISE. While it turned out to work quite
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well for regression, the results for density estimation were less promising. A major problem

is that one needs two series of contrast coefficients which have a serious impact on the

performance of the method. As we are not aware of an automatic data driven and well

performing method to choose them, we will not consider this method further.

2.3. Plug-in methods in density estimation

Under (A1)-(A3) the MISE can be written for n→∞, h→ 0 as

MISE
[
f̂h(x)

]
=

h4

4
µ2

2(K)||f ′′(x)||22 +
1

nh
||K||22 + o

(
1

nh

)
+ o(h4), (2.15)

such that the asymptotically optimal bandwidth is

h0 = ||K||2/52

(
||f ′′||22 [µ2(K)]2 n

)−1/5
, (2.16)

where only ||f ′′||22 is unknown and has to be estimated. The most popular method is the

”rule-of-thumb” of Silverman (1986). He uses the normal density as a prior for approxi-

mating ||f ′′||22. For the estimation of the standard deviation of X he proposes a robust

version. If the true underlying density is unimodal, fairly symmetric and does not have

fat tails, it works very well.

2.3.1. Park and Marron’s refined plug-in

Natural refinements consist of using nonparametric estimates for ||f ′′||22. Let us consider

f̂ ′′g (x) =
1

ng3

n∑
i=1

K ′′
(
x−Xi

g

)
,

where g is a prior bandwidth. Hall and Marron (1987b) proposed several estimators for

||f ′′||22, all containing double sums over the sample. They pointed out that the diagonal

elements give a non-stochastic term which does not depend on the sample and increases

the bias. They therefore proposed the bias corrected estimator

|̂|f ′′||22 = ||f̂ ′′g ||22 −
1

ng5
||K ′′||22. (2.17)

The question which arises is how to obtain a proper prior bandwidth g. In Park and

Marron (1990) g is the minimizer for the asymptotic mean squared error of |̂|f ′′||22. With

(2.16) one gets a prior bandwidth in terms of h (using the notation in the original paper):

g = C3(K)C4(f)h10/13,
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2.3. Plug-in methods in density estimation

where C3(K) contains the fourth derivative and convolutions of K, and C4(f) the second

and third derivatives of f . Substituting the normal with estimated variance for f gives

h =

(
||K||22

|̂|f ′′||22µ2
2(K)n

)1/5

. (2.18)

The optimal bandwidth is then obtained by numerical solution of (2.18). The relative

rate of convergence to h0 is of order n−4/13, which is suboptimal compared to the optimal

n−1/2-rate, cf. Hall and Marron (1991).

2.3.2. Refined plug-in

For small samples and small bandwidths, the above estimator |̂|f ′′||22 can easily fail in

practice. Also, to find a numerical solution may become involved in practice. To avoid

these problems and to offer a quick and easy solution, we propose to first take Silverman’s

rule-of-thumb bandwidth for Gaussian kernels, hS = 1.06 min{1.34−1IR, sn}n−1/5 with

IR =interquartile range of X, and sn the sample standard deviation, adjusted to Quartic

kernels. This is done via the idea of canonical kernels and equivalence bandwidths, see

Härdle, Müller, Sperlich and Werwartz (2004). The Quartic which comes close to the

Epanechnikov kernel but allows for second derivative estimation. Finally, we adjust for

the slower optimal rate for second derivative estimation and obtain as a prior

g = hS
2.0362

0.7764
n1/5−1/9 (2.19)

for (2.17). This bandwidth leads to very reasonable estimates of the second derivative of

f , and hence of |̂|f ′′||22. A further advantage is that this prior g is rather easily obtained.

As the idea actually goes back to Park and Marron (1990) we will call the final bandwidth

ĥPM .

2.3.3. Bootstrap methods

The idea of these methods is to select the bandwidth along bootstrap estimates of the ISE

or the MISE. For a general description of this idea in nonparametric problems, see Hall

(1990). Imagine, for a given pilot bandwidth g we have a Parzen-Rosenblatt estimate,

f̂g, from which we can draw bootstrap samples (X∗1 , X
∗
2 , . . . , X

∗
n). Then, defining the

bootstrap kernel density

f̂ ∗h(x) =
1

nh

n∑
i=1

K

(
x−X∗i
h

)
, (2.20)
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the (mean) integrated squared error to be minimized can be approximated by

ISE∗(h) :=

∫ (
f̂ ∗h(x)− f̂g(x)

)2

dx , (2.21)

MISE∗(h) := E∗

[∫ (
f̂ ∗h(x)− f̂g(x)

)2

dx

]
. (2.22)

It can be shown that the expectation E∗ and so the MISE∗ depends only on the original

sample but not on the bootstrap samples. Consequently, there is actually no need to do

resampling to obtain the MISE∗. More specific, using Fubini’s theorem and decomposing

the MISE∗ = V ∗ + SB∗ into integrated variance

V ∗(h) =
1

nh
· ||K||22 +

1

n
·
∫ (∫

K(u) · f̂g(x− hu) du

)2

dx (2.23)

and squared bias

SB∗(h) =

∫ (∫
K(u) · (f̂g(x− hu)− f̂g(x)) du

)2

dx (2.24)

gives (where ? denotes convolution)

V ∗(h) =
1

nh
||K||22 +

1

n3

n∑
i=1

n∑
j=1

[(Kh ? Kg) ? (Kh ? Kg)] (Xi −Xj) (2.25)

and

SB∗(h) =
1

n2

n∑
i=1

n∑
j=1

[(Kh ? Kg −Kg) ? (Kh ? Kg −Kg)] (Xi −Xj). (2.26)

In practice, it is hard to get explicit formulae for these integrals when kernels have bounded

support. However, using the Gaussian kernel in the formulae (2.25) and (2.26) we can

directly calculate the optimal bandwidth as the minimizer of

MISE*(h) =
1

2nh
√
π

+
1√
2π

[∑
i,j

(
exp

(
−1

2

(
Xi−Xj

g
√

2

)2
))

√
2g2 · n2

(2.27)

−
2 ·
∑
i,j

(
exp

(
−1

2

(
Xi−Xj√
h2+2g2

)2
))

√
h2 + 2g2 · n2

+

(n+ 1)
∑
i,j

(
exp

(
−1

2

(
Xi−Xj√
2(h2+g2)

)2
))

√
2(h2 + g2) · n3

]

The equivalent bandwidth for any other kernel can be obtained as described in Marron

and Nolan (1988).
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The bootstrap approach in kernel density estimation was first presented by Taylor (1989).

Many modified versions were published in the following, e.g. Faraway and Jhun (1990),

Hall (1990) or Cao (1993). The crucial difference between these versions is the choice of

the pilot bandwidth and the procedure to generate the resampling distribution.

Taylor (1989) suggested to take g = h and used a Gaussian kernel. Several authors pointed

out that this procedure has no finite minimum and hence chooses a local minimum or the

upper limit of the bandwidths grid as its optimum, see Marron (1992). Differing from

this approach, Faraway and Jhun (1990) proposed a least-square cross-validation estimate

to find g. Hall (1990) recommended to use the empirical distribution to draw bootstrap

samples of size m < n, proposed m ' n1/2, h = g(m/n)1/5, and minimized MISE∗ with

respect to g. Cao, Cuevas and Gonzáles-Manteiga (1994) demonstrated that the bootstrap

version of Hall is quite unstable and shows a bad behavior especially for mixtures of normal

distributions, which make up the biggest part of our simulation study. They found also

that the methods of Faraway and Jhun (1990) and Hall (1990) are outperformed by the

method of Cao (1993), see below.

In the smoothed bootstrap version of Cao (1993) the pilot bandwidth g is estimated by

asymptotic expressions of the minimizer of the dominant part of the mean squared error.

For further details see Cao (1993). He noticed that in (2.26), for i = j these terms will

inflate the bias artificially. He therefore proposed a modified bootstrap integrated squared

bias MB*

MB∗(h) =
1

n2

∑
i 6=j

[(Kh ? Kg −Kg) ? (Kh ? Kg −Kg)] (Xi −Xj). (2.28)

As to what concerns the convergence rates, he showed for his bandwidth h∗0

MISE(h∗0)−MISE(h0)

MISE(h0)
= OP (n−5/7) (2.29)

and

MISE(h∗0M
)−MISE(h0)

MISE(h0)
= OP (n−8/13) (2.30)

The convergence rate for the original bootstrap version is slightly faster than that for his

modified version.

Recently, Chacón, Montanero and Nogales (2008) published a bootstrap version quite si-

milar to Cao’s (1993). They showed that the asymptotic expressions of his bandwidth

estimates might be inadequate and defined an expression g(h) for every fixed h. Their

estimation procedure allows different kernels L and K for the bandwidths g and h. They
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calculated the optimal pilot bandwidth g(h) using first the common way of reverting to

a reference distribution, and afterwards via estimation. In their simulation study they

stated that the former version outperforms the empirical approach, and is a good compro-

mise between classical cross-validation and plug-in. However, it depends seriously on the

reference density. On the contrary, the empirical version suffered from sample variability

even more than classical CV. Exploring the asymptotics, they achieved root-n convergence

under the use of higher-order kernels.

A bias corrected bootstrap estimate was developed by Grund and Polzehl (1997). They

obtained an root-n convergent estimate which attained very good results for larger sample

sizes, but only in few cases for moderate and small sample sizes. Moreover, to derive

their asymptotic theory they used extraordinary strong assumptions, compared to other

methods discussed here. In their simulation study Grund and Polzehl showed that the per-

formance heavily depends on the choice of g. They stated that using their oversmoothing

bandwidth, which provides a root-n convergence, seems to be far from optimal for smal-

ler sample size. In contrast, using g = h would achieve better performance in practical

applications, but results in very slow convergence rate, namely of order n−1/10. Sum-

ming up, they remarked that higher rates of convergence do not result in better practical

performance, especially for small samples.

In sum, in our simulation study we concentrate on just one representative of the class of

bootstrap estimates, going back to Cao (1993). He proved that the pilot bandwidth g as

the minimizer of (2.22) coincides with the minimizer of the dominant part of the mean

squared error. Concretely, it is given by

g =

(
||K||22

|̂|f ′′′||22µ2
2(K)n

)1/7

. (2.31)

This formula is used for the pilot bandwidth g in the calculation of (2.27). In our simula-

tions, we additionally ran the bootstrap for the Epanechnikov kernel calculating formulae

(2.23) and (2.24) numerically. As this was much slower and gave uniformly worse results,

we will neglect it for the rest of the paper.

2.3.4. Further plug-in methods

Many other plug-in methods have been developed. Some of them show better asymp-

totic properties and others a better performance in particular small sample simulations.

However, most of them have not become (widely) accepted or even known.

An often cited method is the so-called Sheather and Jones (1991) bandwidth, see also
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Jones and Sheather (1991). They used the same idea like Park and Marron (1990) but

replaced the ”diagonal-out” estimator of ||f ′′||22 by their ”diagonal-in” version to avoid the

problem that the estimator |̂|f ′′||22 (see (2.17)) may give negative results. They stated that

the non-stochastic term in (2.17) is subducted because of its positive effect on the bias in

estimating ||f ′′||22. The idea is to choose the prior bandwidth g such that the negative bias

due to the smoothing compensates the impact of the diagonal-in term. As a result they

estimated ||f ′′||22 by ||f̂ ′′g ||22 which is always positive, and obtained

g = C(K,L)

(
||f ′′||22
||f ′′′||22

)1/7

h5/7,

where C(K,L) depends on L, a kernel introduced to estimate ||f ′′||22, and K, the kernel in

the original estimation. Then, ||f ′′||22 and ||f ′′′||22 were estimated using ||f̂ ′′a ||22 and ||f̂ ′′′b ||22,

where a and b were estimated via the rule-of-thumb. Sheather and Jones (1991) showed

that their optimal bandwidth has a relative order of convergence to h0 of Op(n
−5/14) which

is only slightly better than that of Park and Marron (1990). Jones, Marron and Sheather

(1996b) indicates the closeness of hPM to hSJ for practical purposes in their real data

application. Hence, without beating hPM in practical performance, having only a slightly

better convergence rate but being computationally much more expensive, we favor hPM
to hSJ .

Hall, Sheather, Jones and Marron (1991) introduced a plug-in method giving back a band-

width ĥHSJM which achieves the optimal rate of convergence, i.e. n−1/2. The problem with

ĥHSJM is that they use higher order kernels to ensure the n−1/2 convergence (actually a

kernel of order 6). Marron and Wand (1992) showed that albeit their theoretical ad-

vantages, higher order kernels have a surprisingly bad performance in practice, at least

for moderate samples. Furthermore, in the simulation study of Park and Turlach (1992)

ĥHSJM behaved very bad for bi- and trimodal densities, i.e. those we plan to study.

Jones, Marron and Park (1991) developed a plug-in method based on the smooth CV idea.

They used the prior bandwidth g = C(f)nphm, where the normal is used as reference

distribution to calculate the unknown C(f). The advantage of this estimator is the n−1/2

convergence rate if m = −2, p = 23
45

even if the kernels are of order 2. However, in

simulation studies Turlach (1994) and Chiu (1996) observed a small variance compared to

the LSCV, but an unacceptable large bias.

Kim, Park and Marron (1994) also showed the existence of a n−1/2 convergent method

without using higher order kernels. The main idea of obtaining asymptotically best band-

width selectors is based on an exact MISE expansion. But primarily the results of this

paper are provided for “theoretical completeness” because the practical performance in

simulation studies for moderate sample sizes is rather disappointing, which was already
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explicitly mentioned in their own paper and as well shown in the exhaustive simulation

study of Jones, Marron and Sheather (1996b).

Not very well known is the “Double Kernel method” based on the L2 loss function, see

Jones (1998). He explores a modification of the L1 based method proposed by Devroye

(1989), see also Berlinet and Devroye (1994). This method is claimed to be quite univer-

sal. Under special assumptions it reduces to Taylor’s bootstrap respectively biased CV.

However, as already mentioned, these two methods have several disadvantages and also

the Double Kernel method requires the use of higher order kernels. In Jones (1998) the

performance of the Double Kernel method is assessed by comparing asymptotic conver-

gence rates, but it does not provide the expected improvement in the estimation of h0

(MISE optimal bandwidth), e.g. compared to SCV.

Finally, for further MISE minimizing selection methods recall Ahmad and Ran (2004),

Savchuk, Hart, and Sheather (2010), and the so-called biased CV, all having been intro-

duced in the section about cross validation methods.

2.4. Mixtures of methods

Recall that all authors criticize that the cross-validation criterion tends to undersmooth

and suffers from high sample variability. At the same time, the plug-in estimates deliver a

much more stable estimate but often oversmooth the density. We therefore also consider

mixtures of classical cross-validation methods and plug-in estimates. Depending on the

weighting factor α ∈ (0, 1), the mixed methods are denoted by Mix(α), with α · ĥCV +

(1− α) · ĥPM . We mix in three different proportions: Mix(1/2), Mix(1/3) and Mix(2/3).

For the resulting mixed bandwidths we calculate the according ISE-value to assess the

performance of the respective mix proportion.

We are aware of different approaches which combine various density estimators by using

a mixture of their smoothing parameters. In the literature several papers address the

problem of linear and/or convex aggregation, e.g. Rigollet and Tsybakov (2007), Samarov

and Tsybakov (2007) as well as Yang (2000). However, as the main focus of this paper

is not on the aggregation of different bandwidth estimators, we will not investigate this

much in detail, but instead consider our mixtures as representatives.
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2.5. Finite sample performance

The small sample performance of the different cross-validation methods, plug-in and boots-

trap methods is compared, including Chiu (1991). For obvious reasons we limited the study

to data adaptive methods without boundary correction. Although we tried many different

designs we summarize here the results for four densities. We have compared the perfor-

mance by different measures based on the integrated squared error (ISE) of the resulting

density estimate (not the bandwidth estimate), and on the distance to the real optimal

bandwidth ĥ0 (of each simulation run, as it is sample-dependent). There are a lot of mea-

sures assessing the quality of the estimators. We will concentrate on the most meaningful

ones, that are:

m1: mean
[
ISE(ĥ)

]
, the average (or expected) ISE

m2: std
[
(ISE(ĥ)

]
, the volatility of the ISE

m3: mean(ĥ− ĥ0), bias of the bandwidth selectors

m4: mean

([
ISE(ĥ)− ISE(ĥ0)

]2
)

, squared L2 distance of the ISEs

m5: mean
[
| ISE(ĥ)− ISE(ĥ0) |

]
, L1-distance of the ISEs.

Further, we considered various densities for our simulation study, but for sake of presen-

tation we give only the results for the following ones:

1. Simple normal distribution, N (0.5, 0.22) with only one mode

2. Mixture of N (0.35, 0.12) and N (0.65, 0.12) with two modes

3. Mixture of N (0.25, 0.0752), N (0.5, 0.0752), N (0.75, 0.0752) with three modes

4. Mixture of three gamma, Gamma(aj, bj), aj = b2
j , b1 = 1.5, b2 = 3 and b3 = 6

applied on 8x giving two bumps and one plateau

As can be seen in Figure 2.1, all densities have the main mass in [0, 1] with exponentially

decreasing tails. This way we can neglect possible boundary effects. Moreover, it is

assumed that the empirical researcher has no knowledge on possible boundaries. We also

simulated estimators with boundary corrections getting results very close to what we found

in the present study.

We studied almost all selection methods, excluding the non-automatic ones and those

having proved to perform uniformly worse than their competitors. In the presentation

of the results we concentrate on the methods which delivered the best results at least

for one density. Hence, some methods were dropped, e.g. the MCV sometimes provides
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Figure 2.1.: The data generating densities: design 1 to 4 from upper left to lower right.

multiple minima with a global minima far outside the range of reasonable bandwidths. In

the range of bootstrap methods we concentrate on the presentation of the version (2.27)

of the Smoothed Bootstrap which obtained the best results among all bootstrap methods.

For our mixed version (CV with refined plug-in) we first concentrate on Mix(1/2) when

comparing it to the other methods, and later sketch the results of all mixed versions.

To conclude, we present the following methods: CV (cross validation), OSCV-l (one-sided

CV to the left), OSCV-r (oscv to the right), STAB (stabilized), RPI (refined plug-in), SBG

(smooth bootstrap with Gaussian kernel - the results refer to the equivalent bandwidth

for the Epanechnikov kernel), Mix (mixed method for α = (1/2)), and as a benchmark

the ISE (infeasible ISE minimizing ĥ0).

Simulation results

In order to summarize the different methods of choosing the optimal bandwidth, we first

consider the selected bandwidths and the corresponding biases for each method separately.
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Afterwards, we compare the methods by various measures. The shown results are based

on 250 simulation runs.

2.5.1. Comparison of the bias for the different bandwidths

In Figure 2.2 and 2.3 we illustrate the Bias (m3) of the different methods for the mixture

of three normal distributions varying sample size and distribution.

Let us consider the cross-validation method (CV). Many authors have mentioned the lack

of stability of the CV-criterion and the tendency to undersmooth. In Figures 2.2 and 2.3

we see that CV has the smallest bias for all sample sizes and densities due to the fact that

it chooses the smallest bandwidth. When the ISE optimal bandwidth is indeed very small,

CV certainly does very well therefore. However, CV clearly undersmooths in the case of

the simple normal distribution.

In contrast, the one-sided versions (OSCV) are more stable. Regarding the bias they are

neither the best nor the worst in all sample sizes and models. As already stated by the

authors, the OSCV tends to overestimate the bandwidth a little bit. While for n = 25
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Figure 2.2.: Comparison of the BIAS for different n for a mixture of three normals
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OSCV is outperformed by almost all other methods, this bias problem disappears rapidly

for increasing n. In Figure 2.2 we see that their biases are much smaller than for the other

methods except CV, and STAB in the simple normal case. Moreover, their behavior is

quite stable and they do not fail as dramatically as the other methods in one or more

cases. This feature is an intuitive benefit of this method when in practice the underlying

density is completely unknown. For the densities studied, the differences between the

left-(OSCV-l) and the right-sided (OSCV-r) versions are negligible except for the gamma

distributions because of the boundary effect that is present on the left side.

The stabilized procedure of Chiu (STAB) is excellent for the simple normal case but it falls

short when estimating rougher densities: ”when the true density is not smooth enough, the

stabilized procedure is more biased towards oversmoothing than CV” (Chiu ,1991). This

fact can be seen in both Figures (2.2 and 2.3) where STAB has increasing difficulties with

an increasing number of bumps. Even though this method demonstrates here a reasonable

performance, the results should be interpreted with care, since in the derivation of Λ one

has to deal with complex numbers, a problem we solved in favor of this method for this

simulation study such that all presented results are slightly biased in favor of STAB.
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Figure 2.3.: Comparison of the BIAS for different densities for a sample size of n=100.
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The refined plug-in (refPI) and the smoothed bootstrap SBG show a similar behavior as

the stabilized procedure for n = 100, though the bias is much worse for refPI in small

samples. Not surprisingly, in general, the bias for these MISE minimizing methods is

larger than for all others. This partly results from the fact that we assume for the prior

bandwidth that the second or third derivative comes from a simple normal distribution.

Note that the bias of the SBG bandwidth is not as big as for the refPI.

The mixture of CV and plug-in is a compromise with biases lying between the ISE and the

MISE minimizing methods. It will be interesting whether this leads also to a more stable

performance (see below). Note that there is only a slight difference between the three

versions of mixtures (not shown). Clearly, the larger the share of the respective method,

the bigger their impact on the resulting estimate.
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Figure 2.4.: Box-plots and means (�) of the ISE-values for the mixture of three normal

densities with different sample sizes.

2.5.2. Comparison of the ISE-values

Next we compare the ISE-values of the density estimates based on the selected bandwidths.

The results are given in form of boxplots plus the mean (linked filled squares) displaying

the distribution of the ISEs after 250 simulation runs such that we get an idea of measures

m1 and m2, m4, and m5 in one figure. In Figure 2.4 we consider the mixture of three

normal distributions (model 3) and compare different sample sizes, whereas in figure 2.5

the sample size is fixed to n = 100 while the distribution varies.

Certainly, for all methods the ISE values increase with the complexity of the estimation

problem. As expected, the classical CV-criterion shows a high variation for all cases (upper

36



2.5. Finite sample performance

extreme values not shown for the sake of presentation), doing somewhat better for more

complex densities. The one-sided and the mixed versions do considerably better, though

the least variation is achieved by the MISE minimizing methods (STAB, refPI and SBG).

The drawback of these three methods becomes obvious when looking at the size of its

ISE-values; they are clearly smaller for the CV-based methods for n ≥ 25. Moreover, for

increasing sample size their ISE values decrease very slowly whereas for the CV-methods

these values come close to the optimal achievable ISE-values. Note that in the sense of

minimizing the ISE, the one-sided and the Mix(1/2) versions show the best performance.

They do not vary as much as the classical CV-criterion and their mean value is almost

always smaller than for the other methods, see Figure 2.5.

The stabilized procedure of Chiu (STAB) delivers - as the name suggests - a very stable
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Figure 2.5.: Box-plots and means (�) of the ISE-values for different distributions with

sample size 100.
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estimate for the bandwidth. But in the end it is hardly more stable than the one-sided

CV methods but much worse in the mean and median. We else see confirmed what we

already discussed in the context of biases above. The mixture of CV and plug-in lowers

the negative impacts of both versions and does surprisingly well; they deliver a more stable

estimate, and gives good density estimates (looking at the ISE).

2.5.3. Comparison of the L1- and L2-distance of the ISE

To get an even better idea of the distance between the achieved ISE values of the selection

methods and the ISE optimal (i.e. achievable) values, we have a closer look at m5 and

m4, i.e. the L1 and L2 distances. In our opinion, these measures should be the most

interesting for practitioners. Figure 2.6 and 2.7 show the L1-distance, and Figure 2.8 and

2.9 the L2-distance, respectively, for different sample sizes and models.

The pictures show that for CV, the m5 are really big if the underlying density is not wiggly.

This obviously is due to the the high variability of the selected bandwidths. Here, it does

especially apply for small sample sizes (the value for n = 25 is even out of the range of

the pictures); but for large samples like n = 500 the classical CV does not work at all (not

shown). However, for the mixture of three normals the CV delivers almost the smallest

m5.

While both OSCV have problems with particularly small sample sizes, they easily compete

with all other selectors. One may say that again, for the normal densities the OSCV

methods are neither the best nor the worst methods, but always close to the best method.

This corroborates our statement from above that the OSCV-criteria could be used if we do

not know anything about the underlying density. Another conspicuous finding in Figure 2.7

is the difference between the two one-sided versions for the gamma distributions. Because

of missing boundary correction on the left, the OSCV-l behaves very badly especially for

a small sample size of n = 25 (out of the range) and n = 50. We get a similar result for

n = 25 when looking at the L2-distances (out of the displayed range in Figure 2.9).

The three MISE minimizing methods do very well for the simple normal distribution, but

else we observe a behavior for L1 and L2 which can be traced back to the fact of the

prior problem described above. Even for bigger sample sizes all three methods deliver a

relative big L1-distance for the mixture models. They further do not benefit as much from

increasing n as other methods do. Within this MISE minimizing group, the STAB shows

a better L1-distance for more complex densities. Actually, for the mixture of the three

Gamma distributions we can see that the L1-distances are always very small, except for

the refPI with n = 25 (out of the plotted range).
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Figure 2.6.: L1-distance for different sample sizes of simple normal distribution and mix-

ture of two normal distributions.

The mixture of CV and refined plug-in reflects the negative attributes of the CV, but for

larger samples it is often in the range of the best methods. A further advantage of the

mixed version is that it is much more stable than the CV or refPI when varying the sample

size.

We obtain not the same but similar results for the L2-distance given in the Figures 2.8 and

2.9. We skipped the values for n = 25 because they were too big for most of the methods.

CV obtains very large values for small sample sizes, so that they fall out of the range of
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Figure 2.7.: L1-distance for different sample sizes of mixture of three normal distributions

resp. three gamma distributions.

the pictures in many cases. The one-sided versions show an important improvement. The

three MISE minimizing methods are excellent for the simple normal (not surprisingly) and

the mixture of gammas. Among them, the STAB shows the smallest L2 distance. For

sample sizes n > 50 the one sided CV versions outperform the others - for simple normal

and gamma mixtures giving the same results as STAB but else having much smaller L2

distances. A huge difference between the left and the right one-sided occurs because of

the boundary problem.
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Figure 2.8.: L2-distance for different sample sizes of simple normal distribution and mix-

ture of two normal distributions.

A comparison of the L1- and the L2-distance for n = 100 varying the distributions is shown

in Figure 2.10. As can be seen in both pictures, the performance of all measures (without

CV) for the simple normal distribution and the mixture of the three gamma distributions

is pretty good. Also for the mixture of two normals most of the methods deliver good

results, only the values for CV, refPI and the SBG become larger.

For more complex densities like the mixtures of three normals, the pictures show that the

MISE minimizing measures deliver worse results, because of the large biases. The most
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Figure 2.9.: L2-distance for different sample sizes of mixture of three normal distributions

resp. three gamma distributions.

stable versions are the OSCV and the Mix(1/2). For smaller sample sizes (not shown)

the pictures are quite similar, but the tendencies are strengthened and only the Mix(1/2)

version delivers stable results for all distributions.

2.5.4. Comparison of the mixed methods

Finally we have a closer look to the quite promising results obtained by mixing CV with

refPI. We did this in different proportions as described above. In Table 2.1 and Table 2.2
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Figure 2.10.: L1- and L2-distances for different underlying densities whit n = 100

we have tabulated different measures looking at the ISE, the bias of the chosen bandwidth

as well as the L1- and L2-distances for the four densities. We also give the values for the

infeasible ISE-minimizing bandwidths.

For design 1 (simple normal density) in Table 2.1 the Mix(1/3) is the best. This is an

expected result because we know from above that the refPI works very well for this distri-

bution. The only measure in which this mix is not the best is the bias (m3). The reason

is that CV gives the smallest bias here. For design 2 (mixture of two normal densities)

in Table 2.1 the Mix(2/3) wins except for the standard deviation of the ISE values (m2)

where Mix(1/3) is superior. This is explained by the very large sample variation typical
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for CV.

For design 3 (trimodal distribution) in Table 2.2, Mix(2/3) does best except for the stan-

dard deviation of the ISE-values (m2). This is not surprising because above we have

always stated that for more complex distributions the CV works very well while the refPI

performs poorly. For the mixture of the three gammas (design 4) we observe that the

values of the different measures are nearly the same, especially for the L2-distance. The

main differences occur for small sample sizes. The best is Mix(2/3). As we can see from

the results, sometimes Mix(2/3) is the best and sometimes Mix(1/3). The Mix(1/2) lies

in between. Consequently, the main conclusion is that the mix yields very stable results

and is an attractive competitor to the other bandwidth selection methods.

Design 1 Design 2

n Crit. ISE MIX(2/3) MIX(1/3) MIX(1/2) ISE MIX(2/3) MIX(1/3) MIX(1/2)

m1 .0605 .0802 .0699 .0730 .0810 .1017 .1104 .1055

m2 .0571 .0646 .0604 .0610 .0426 .0447 .0342 .0390

25 m3 0 -.0112 .0048 -.0018 0 .0459 .0663 .0576

m4 0 .0014 4e-04 6e-04 0 .001 .0013 .0011

m5 0 .0197 .0094 .0124 0 .0207 .0294 .0246

m1 .0374 .0471 .0420 .0436 .0561 .0706 .0793 .0745

m2 .0298 .0365 .0320 .0333 .0325 .0338 .0265 .0303

50 m3 0 -.0050 .0083 .0029 0 .0385 .0613 .0519

m4 0 4e-04 1e-04 2e-04 0 5e-04 8e-04 6e-04

m5 0 .0097 .0046 .0062 0 .0146 .0233 .0185

m1 .0246 .0307 .0271 .0282 .0344 .0452 .0525 .0485

m2 .0184 .0226 .0193 .0203 .0197 .0217 .018 .0199

100 m3 0 -.0070 .0056 3e-04 0 .0359 .0578 .0484

m4 0 1e-04 2e-05 5e-05 0 2e-04 4e-04 3e-04

m5 0 .0061 .0025 .0037 0 .0108 .0181 .0141

m1 .0146 .0173 .0158 .0163 .0225 .0289 .0349 .0318

m2 .0106 .0127 .0113 .0117 .0135 .0148 .0135 .0143

200 m3 0 -.0028 .0055 .0021 0 .0283 .0491 .0404

m4 0 3e-05 5e-06 1e-05 0 1e-04 2e-04 1e-04

m5 0 .0027 .0012 .0017 0 .0064 .0124 .0093

Table 2.1.: Values of the criteria m1 to m5 for mixed methods.
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2.6. Conclusions

This review and comparison study tries to give an idea of the state of the art in bandwidth

selection for density estimation, about fifteen years after the last large reviews of Jones,

Marron and Sheather (1996b) and Devroye (1997).

Though our review necessarily (otherwise it would not be a review but just an update)

overlaps with them, we looked at different aspects, performance measures, included many

more and to the best of our knowledge all new selection methods which have been proposed

in the literature.

General findings about LSCV and classic plug-in methods are certainly the same as in

other studies. For a better understanding of the performances, however, we looked at

Design 3 Design 4

n Crit. ISE MIX(2/3) MIX(1/3) MIX(1/2) ISE MIX(2/3) MIX(1/3) MIX(1/2)

m1 .1013 .1355 .1543 .1486 .0777 .088 .1326 .1331

m2 .0407 .0302 .0490 .0506 .0397 .0417 .1116 .1118

25 m3 0 .0666 .1003 .0909 0 .0163 .1987 .1922

m4 0 .0021 .0063 .0056 0 3e-04 .0141 .0141

m5 0 .0342 .0530 .0472 0 .0103 .0549 .0554

m1 .0718 .1010 .1230 .1133 .0527 .0618 .0602 .0604

m2 .0342 .0309 .0165 .0224 .0245 .0266 .0233 .0243

50 m3 0 .0573 .0839 .0725 0 .0227 .0384 .0319

m4 0 .0014 .0032 .0022 0 2e-04 1e-04 1e-04

m5 0 .0292 .0512 .0415 0 .0091 .0075 .0077

m1 .0446 .0667 .0898 .0792 .0357 .0409 .0419 .0412

m2 .0217 .0226 .0132 .0177 .0152 .0159 .015 .0153

100 m3 0 .0472 .075 .0632 0 .0234 .0387 .0323

m4 0 7e-04 .0023 .0014 0 6e-05 6e-05 6e-05

m5 0 .0221 .0452 .0346 0 .0052 .0062 .0055

m1 .0278 .0432 .0642 .0542 .0245 .0280 .0291 .0284

m2 .0126 .0154 .0112 .0135 .0095 .0095 .0092 .0093

200 m3 0 .0387 .0654 .0539 0 .0204 .0365 .0297

m4 0 3e-04 .0014 8e-04 0 2e-05 3e-05 3e-05

m5 0 .0154 .0364 .0264 0 .0035 .0046 .0039

Table 2.2.: Values of the criteria m1 to m5 for mixed methods.
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both L1 and L2 measures of the ISE, but also at the bias of the bandwidth estimate.

As well known, the CV leads to a small bias but large variance. It works well for rather

wiggly densities and moderate sample size. However, it neither behaves well for rather

small nor for rather large samples. The quality is unfortunately dominated by its varia-

bility. A fully automatic alternative is the one sided version. In contrast to the classical

CV, the OSCV methods show a behavior which is very stable. Moreover, they are maybe

not uniformly the best but quite often, and never the worst. We believe therefore that

indirect CV with particular selection kernels, see also Savchuk, Hart, and Sheather (2010)

is the most promising approach. Presently, the choice of the optimal selection kernel is a

problem of prior knowledge which can heavily impact the final performance of the method.

This is similar for the mix-methods (combining CV and plug-in). While they show an ex-

cellent - maybe the best - behavior, one can certainly not identify a ”best mix” in advance;

this would require prior knowledge. A further evident computational disadvantage is that

we first have to apply two other methods (CV and refPI) to achieve good results. Never-

theless, it is maybe a little bit surprising that simple mixtures have not been considered

so far.

The refPI and the SBG show a, similar to OSCV, stable behavior due to the fact that they

are minimizing the MISE and depend on prior information. The need of prior knowledge

is the main disadvantage of these methods, and – as explained above – typically require a

smooth underlying density. The worst case for these methods is when trying to estimate

a trimodal normal density.

Also the STAB method is quite stable as suggested by its name. Although the full name

refers to cross validation, it actually minimizes the MISE like refPI and SBG do. Conse-

quently, it performs particularly well for the estimation of rather smooth densities but else

not. The STAB method shows again the worst behavior for trimodal densities, indeed.

Our conclusion is therefore that among all existing (automatic) methods for kernel density

estimation, to the best of our knowledge the OSCVs seem to outperform all competitors

when no (or almost no) prior knowledge is available – maybe except the one about possible

boundary problems. Depending on the boundary, one would apply left- or right-hand

OSCV. For moderate sample sizes however, the mixture of CV and refPI seems to be an

attractive alternative until n becomes large and CV fails completely.
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Bowman, A. (1984). An alternative method of cross-validation for the smoothing of

density estimates, Biometrika 71: 353-360.

Cao, R. (1993). Bootstrapping the Mean Integrated Squared Error, Journal of multi-

variate analysis 45: 137-160.
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3. Semiparametric voter profiling in a

multi-party system – new insights via

flexible modeling

Abstract

Due to the German reunification and the preceding political

process both the composition of the electorate and the list of

influential parties has changed substantially. Nowadays, classic

multinomial logit models seem to be no longer sufficient – if

they ever were – for analyzing voter profiles. In a more com-

plex world with frequent structural changes of societies, the

outcomes of these models simplify too much and partly contra-

dict general beliefs. We develop and provide a smoothed like-

lihood estimator that allows for flexible functional forms and

interactions between covariates. It reveals strong interactions

of age and income, as well as highly nonlinear and rather dif-

ferent shapes of the factor impacts for each party’s likelihood

to be voted.

This chapter is the result of a collaborative project with my

colleague Roland Langrock and Prof. Dr. Stefan Sperlich. The

main contribution of the author of this thesis is made in the

development of the semiparametric approach and the imple-

mentation of all considered models in R. The presentation as

well as interpretation of the results is also the task of the author

of this thesis.
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3.1. Introduction and Motivation

The multinomial logit model (MNL) allows to investigate the influence of a vector of co-

variates on more than two possibly unordered outcomes of categorical response variables.

We introduce a semiparametric extension via kernel smoothing providing a profile likeli-

hood algorithm. We understand this mainly as an explorative tool, maybe even to find

an appropriate parametric specification. By means of two- and three-dimensional plots

we achieve comprehensive insights into the data structure. We apply our model to study

political party affiliation in Germany and to identify various electorate profiles for the dif-

ferent political parties. Such informations are of great use for policy makers and analysts

- not only to design their campaigns for targeted voter groups.

The MNL has become popular in econometrics by the work on brand choice behaviour

by McFadden (1974) and on urban travel demand by Domencich and McFadden (1975),

respectively. Since then the model has been used in a wide field of applications, but still

especially in studies of consumer behaviour. Different trials were undertaken to include

nonlinear effects of the explanatory variables. Krishnamurthi and Raj (1988) used loga-

rithmic transformations. Ben-Akiva and Lerman (1985) as well as Kalyanaram and Little

(1994) proposed piecewise linear (utility) functions on predetermined (sub)intervals. More

recently, some authors developed nonparametric and semiparametric methods for these

kind of data. Yee and Wild (1996) considered a backfitting algorithm on a class of multi-

variate additive models using smoothing splines. Abe (1998, 1999) proposed a special class

of generalized additive models which accommodates to a multinomial qualitative response

to study consumer demand. His algorithm is based on a penalized likelihood function and

modified local scoring (Hastie and Tibshirani, 1986). Tutz and Scholz (2004) approximate

unspecified additive functions by a finite number of basis functions which are penalized

with respect to their localization. Kneib, Baumgartner and Steiner (2007) modified this

using penalized B-splines and a Bayesian approach for their estimation, again for studying

consumer choices.

In this work, we prefer to stick to a likelihood specification but localize it via kernels. More

specific, we do profile likelihood estimation in the spirit of Severini and Wong (1992). Sta-

tistical inference on the parameters can therefore be derived from the marginal Fisher infor-

mation. For doing inference on the nonparametric part one can apply a (semi-)parametric

bootstrap along Härdle et al. (2004a). We allow for an additive structure of the nonpara-

metric part but will first look at the multivariate impact function as we believe interaction

plays an important role in political affiliations. The model includes individual-specific

and mode-specific variables, whereas the former represent characteristics of the observed

individuals and the latter properties of the alternatives (political parties in our case). The
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impact of all mode- and individual-specific variables will be estimated nonparametrically

in a first step. Further decomposition can be done in consequent steps.

Our main interest is in profiling specific voter groups with respect to age, income and

gender. Nowadays, the German party system comprises five main political parties: the

Christian Democratic Union (CDU) respectively its Bavarian counterpart (the Christian

Social Union, CSU but for simplicity subsumed with the CDU in this paper), the Social

Democratic Party (SPD), the Free Democratic Party (FDP), the Left Party (LP) and the

Alliance ’90/The Greens (A90G). Some authors raise the question whether it is appropriate

to speak of only one party system (e.g. Roberts, 1997) as the electoral behaviour in Eastern

and Western Germany is quite different. While in the East three parties, namely CDU,

SPD and LP contend with each other for the leading position, in Western Germany only the

two big parties (CDU and SPD) have had enough authority to form ruling coalitions with

one of the three smaller parties. This dichotomy is founded in the historical development,

see Section 3.3. Nonetheless, after having controlled for the location, i.e. East or West,

of the voter, one might expect that on average left parties are supported by the lower

(working) class, the green movement by young people from the middle class, the Christian

democrats by elderly population, the liberals by the richest, etc. A linear MNL might

provide this information and therefore confirm what is known anyway. However, as it

only gives back the average linear effects, it does not provide any insight into the details

and does therefore not allow for further conclusions. In contrast, we will see that our

semiparametric models provide well interpretable estimates.

Section 3.2 describes the general though theoretical model specification, and an appro-

priate estimation procedure. In Section 3.3 we will introduce the data, give some discussion

of the parties’ historical background and provide the classic MNL estimates. Section 3.4

is dedicated to the detailed semiparametric analysis applying our procedure from Section

3.2. We conclude in Section 3.5.

3.2. Model and Estimation

Consider a semiparametric multinomial logit model with K different outcome categories

that have no natural order. The conditional probability of outcome Y = k, k = 1, . . . , K,

given the individual covariate vectors X = (X1, . . . , Xp)
t ∈ Rp and T = (T1, . . . , Tq)

t ∈ Rq

is assumed to be given by

P(Y = k |X,T) =
exp (Xtβk +mk(T))∑K
j=1 exp

(
Xtβj +mj(T)

) . (3.1)
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We set for identification βK = 0, and mK(·) ≡ 0, i.e. K is the reference mode. Each

mk(·), k = 1, . . . , K, is assumed to be a smooth function with domain R
q and each

βk = (βk1, . . . , βkp)
t, k = 1, . . . , K − 1, denotes an unknown parameter vector. Variables

that depend on both modes and individuals could be considered as well. Note that the

nonparametric functions mk also capture any mode-specific effect, see further discussion

below. So X must not contain mode-specific dummies.

If the functions mk(·) were known it would be easy to find estimators for the vectors βk,

and vice versa. Following the ideas of profiled likelihood by Severini and Wong (1992), the

functions mk(·) are regarded as nuisance when estimating the finite-dimensional parame-

ters βk. The functions mk(·) themselves can be estimated via kernel smoothing. Note that

the estimate of mk,β·(·) will depend on all βj, j = 1, . . . , K−1, indicated by the index ‘β·’.
This yields asymptotically normal,

√
n-consistent and efficient estimators for the vectors

βk owing to likelihood estimation. For the mk one obtains consistent estimators with

statistical properties typical for nonparametric kernel smoothing, see also Rodŕıguez-Póo

et al. (2003).

In order to estimate the so-called least favorable curve mk,β·(t) at point t := (t1, . . . , tq)

for given βk, k = 1, . . . , K − 1, take a q-dimensional kernel K : Rq → R, bandwidth

matrix H ∈ Rq×q
+ , and consider the local likelihood

Ls(mk,β·(t)) =
n∑
i=1

(det H)−1K
(
H−1(t− ti)

)
L(ηi(mk,β·(t)), yi), (3.2)

with ηi(mk,β·(t)) := (η1i, . . . , ηki(mk,β·(t)), . . . , ηKi),

where ηki(mk,β·(t)) := xtiβk +mk,β·(t)

and ηji := xtiβj +mj,β·(ti) for j 6= k,

with xti = (xi1, . . . , xip), tti = (ti1, . . . , tiq). Here, L(ηi(mk,β·(t)), yi) denotes the log-

likelihood of (3.1) of the ith observation with predictor ηi(mk,β·(t)) wherein β1, . . . ,βK−1

and mj,β·(ti) for j 6= k are treated as fixed such that ηi is only a function of mk,β· in (3.2).

With m̂k,β·(·) at hand, we can compute the profile likelihood

Lp(βk) =
n∑
i=1

L(ηi(βk), yi), (3.3)

where now ηi(βk) := (η1i, . . . , ηki(βk), . . . , ηKi),

with ηki(βk) := xtiβk +mk,β·(ti)

and ηji, j 6= k, as before. Notice that, in (3.3), ηi(·) is a function of βk.

In order to understand the estimation procedure we need the first two derivatives of
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li(η) := L(η, yi) with respect to ηk, ηk = xtiβk +mk(ti). First, note that

li(η) =
K∑
k=1

1{yi=k}ηki − log
K∑
j=1

exp (ηji) . (3.4)

Then, it follows immediately that

l′ik(η) = 1{yi=k} −
exp(ηki)∑K
j=1 exp(ηji)

l′′ik(η) = −
exp(ηki) ·

∑K
j=1 exp(ηji)− exp(ηki)

2∑K
j=1 exp(ηji)

.

To obtain the maximum of the smoothed likelihood Ls(mk,β·(t)), successively from mode

1 to mode K, we have to solve the first order condition

n∑
i=1

(det H)−1K
(
H−1(t− ti)

)
l′ik
(
ηi(mk,β·(t))

)
= 0 (3.5)

with respect to mk,β·(t). For βk the equation system to solve is

n∑
i=1

l′ik(ηi(βk))(xi +m′k,β·(ti)) = 0 , (3.6)

wherein m′k,β·(ti) denotes the gradient of mk,β·(ti) with respect to βk. By deriving equa-

tion (3.5) with respect to βk one obtains

m′k,β·(t) =

∑n
i=1(det H)−1K

(
H−1(t− ti)

)
l′′ik
(
ηi(mk,β·(t))

)
xi∑n

i=1(det H)−1K
(
H−1(t− ti)

)
l′′ik
(
ηi(mk,β·(t))

) . (3.7)

Equations (3.5) to (3.7) can be used to implement a Newton-Raphson-type algorithm:

1. Find appropriate starting values β
(0)
k , m

(0)
k (·), k = 1, . . . , K − 1 (e.g. by fitting an

appropriate parametric MNL) and set j = 0.

2. For k = 1, 2, . . . , K − 1, compute

β
(j+1)
k = β

(j)
k − B

−1

n∑
i=1

l′ik(ηi(β
(j)
k ))(xi +m

′(j)
k,β·(ti))

with B =
n∑
i=1

l′′ik(ηi(β
(j)
k ))(xi +m

′(j)
k,β·(ti))(xi +m

′(j)
k,β·(ti))

t

and m
′(j)
k,β·(ti) as in (3.7).
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3. For k = 1, 2, . . . , K − 1, compute

m
(j+1)
k,β· (t) = m

(j)
k,β·(t)−

∑n
i=1(det H)−1K

(
H−1(t− ti)

)
l′ik
(
ηi(m

(j)
k,β·(t))

)∑n
i=1(det H)−1K

(
H−1(t− ti)

)
l′′ik
(
ηi(m

(j)
k,β·(t))

)
for all points t at which the function mk,β·(·) is to be estimated.

4. Repeat steps 2.–3. for j = 1, 2, . . . until convergence.

It is convenient to estimate the functions mk,β·(·) in step 3 at the observation points ti,

i = 1, . . . , n, as this guarantees that independent of the bandwidth choice at least for one

observation K
(
H−1(t− ti)

)
is nonzero. As described for example in Härdle et al. (2004b)

these steps simplify slightly if a Speckman-type algorithm is applied. We implemented

both versions of the algorithm and obtained almost the same results.

Recall that the mk will automatically capture any mode-specific effect. If there is also

a vector of mode characteristics Zk = (Z1k, . . . , Zrk)
t ∈ R

r available, then one might

want to regress them on the mk. Note that a nonparametric modeling of their influence

would not make much sense as the support is discrete consisting of few values. Therefore,

the influence of the mode-specific covariate vector should be modeled by a simple linear

relation with unknown parameter γ = (γ0, γ1, . . . , γr)
t resulting in an optional fifth step:

5. After convergence of βk and mk,β·, perform an additional regression

K∑
k=1

1{yi=k} ·mk,β· = γ0 +
r∑
j=1

γj ·
K∑
k=1

1{yi=k} · Zjk .

3.3. Data and Prior Parametric Approach to the Political

Party Affiliation Data

The aim is to understand the determinants of voter’s choice, and thereby to identify typical

voter groups of the dominant political parties in the multi-party system of Germany. Let

us begin by briefly sketching the historical background of the German party system. After

the second world war, Western Germany was governed either by the CDU or the SPD,

with absolute majority or in a coalition with the FDP, respectively. In the seventies diverse

groups of alternative green activists contested at various local elections. In 1980 a green

organization was confounded at federal level. It was composed of distinct groups like the

anti-nuclear movement, the student-movement, feminist groups and the peace movement

(for details see Lösche, 1993). They won the first seats in the German Bundestag in 1983

and from 1998 to 2005 they joined the federal government in a coalition with the SPD. In
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the East German dictatorship the Socialist Unity Party (SED) had sole political power,

although small and well-controlled Christian and liberal parties co-existed to give the

system a semblance of legitimacy. After reunification the so-called PDS was confounded

as the heir of the SED. In 2005, the PDS entered an alliance with the just founded West-

German party “Labour and Social Justice - Electoral Alternative (WASG)”. Since 2007

the alliance is simply called “The Left” (LP in the following). It achieved 8.7% in the

2005 election to the German Bundestag (26% in East Germany).

The data for the upcoming analysis was taken from the German Socio-Economic Panel

(SOEP) of the year 2006. The variable of interest is political party affiliation, i.e. the

answer to the question “Toward which party do you lean?”. In accordance with the

standard literature, the socio-economic factors that are taken into account are age, log-

income (monthly net total household income), region, and gender of the voter (cf. Quinn

et al. 1999, Dow and Enderby, 2004). For a couple of reasons, we have not included the

elsewhere often considered covariates education and religion. In fact, the reported years

of education as well as vocational qualifications are hardly comparable between Eastern

and Western Germany. This is actually also true for reported religion; while in Western

Germany, the majority of the people officially still belongs to either the protestant or

Roman catholic church no matter if they are practitioners or not, in Eastern Germany

Christians form rather an avowed minority as in the socialist system the affiliation to a

church could easily entail serious negative consequences for the family. Concerning the

region we included a dummy ‘east’, indicating whether a person was resided in Eastern or

Western Germany before reunification. This way we especially account for several of the

aspects discussed above.

All together, 8787 people reported their party affiliation in the original data set. Out

of them, 376 favored a different party than the here considered ones, 227 lived abroad

before reunification or did not report their regional provenience, and 383 persons made

no, 32 an implausible declaration about their income. Note that contrary to parametric

methods, for local smoothers like our kernel approach, a trimming of the covariates that

enter nonparametrically has no impact on the final outcome, except if the bandwidth is

chosen data adaptively. So our semiparametric estimator will not suffer from a selection

bias after such a trimming. We restrict the data to a monthly income of max. 10 000 e,

and people being younger than 65, the official retirement age. For the interpretation this

means we concentrate on a more homogeneous, mostly professionally active group (about

75% of the people) but without top earners (109 out of 8787, i.e. 1.2%). This has the

additional advantage that our kernel smoother will not suffer from data sparse areas due

to extreme tails in the covariates’ distribution. The resulting data set consists of n = 5343

observations with the descriptive statistics summarized in Table 3.1 and 3.2. As expected,
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income is strongly skewed to the right whereas age is somewhat skewed to the left. Insiders

may wonder why in Table 3.2 the affiliation to CDU in 2006 seems to be smaller than for

the SPD. Note that this changes when one re-includes people being older than 65.

Variable Yes - 1 No - 0 Yes (in %) No (in %)

X1 Gender 1 if female 2 630 2 713 49.22 50.78
X2 Region 1 if East 1 165 4 178 21.80 78.20

Min Max Mean Median
T1 Income Euro/Month 400 10 000 3 223 3 000
T2 Age Years 21 64 45.63 47.00

Table 3.1.: Descriptive statistics for the considered covariates.

Political Party CDU SPD A90G LP FDP
Affiliation (in %) 37.66 38.84 11.87 6.42 5.22

Table 3.2.: Percentages of reported political affiliation.

Principally, there are two ways to analyze voter groups: (i) using purely descriptive sta-

tistics based on public-opinion polls, as routinely published by market research institutes

such as Infratest dimap or Forsa in Germany, and (ii) employing inferential statistics by

fitting adequate models. When it comes to voter profiling, one of the main drawbacks of

(i) is that the distribution of the voters choice can not be quantified based on statistical

laws and hence can not be used to support inferential statements about the population.

Furthermore, such analyses typically focus on only one or two covariates at a time. Models

such as the multinomial logit attempt to overcome this deficiency by modeling the voter’s

party affiliation as outcome of a distribution that depends on a number of covariates. Ho-

wever, the multinomial logit and similar parametric models have limitations as well: they

are based on assumptions concerning the specific functional form that links the covariates

to the outcome. Another limitation is the additive separability and the implied neglect

of possible interactions between different covariates. The proposed semiparametric model

for multicategorical data attempts to overcome those deficiencies. These aspects will be

studied in detail in the course of the subsequent section.

Before starting with the semiparametric analysis, we consider a fully parametric MNL.

The main purpose of doing so is to show its deficiencies compared to the semiparametric

model we propose. The estimated coefficients of the log-odds are given in Table 3.3. Note

that these parametric estimates suffer from a trimming bias as it is supposed that among
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the people older than 65 the CDU affiliation is above average, as is the FDP affiliation

among top earners.

Mode effect Female/Male East/West log(Income) Age/10
SPD 3.863(0.484)∗∗ 0.084(0.063) -0.458(0.083)∗∗ -0.426(0.060)∗∗ -0.088(0.028)∗∗

A90G 1.039(0.701) 0.365(0.092)∗∗ -0.584(0.129)∗∗ -0.129(0.087) -0.278(0.040)∗∗

LP 3.649(0.909)∗∗ -0.089(0.124) 2.127(0.136)∗∗ -0.851(0.113)∗∗ 0.064(0.051)
FDP -3.794(1.060)∗∗ -0.535(0.134)∗∗ 0.223(0.155) 0.410(0.131)∗∗ -0.291(0.055)∗∗

Table 3.3.: Parameter estimates for a fully parametric MNL with CDU as the reference

category (standard errors in brackets).

The reference mode is the largest party, i.e. the CDU. Relatively to the reference mode,

being from the East substantially raises the likelihood of preferring the LP. The CDU is

quite strong among older people, and thus it is not surprising that the impact of age is

significantly negative for all other parties except of the LP for which we find a positive

however insignificant coefficient. Female voters are more likely to support A90G and

SPD. Being a young and female Western German resident is the typical characterization

of an A90G-voter (cf. Walter, 2008). On average, presence of high income decreases the

likelihood of supporting the LP and the SPD, while it increases that of supporting the

FDP.

3.4. Semiparametric Analysis of Voter Profiles

Since the turn of the century the influence of the big parties is declining and the number of

floating voters is increasing. In general, the identification with the different political parties

has decreased (cf. Alemann, 2003). This development demands a more detailed view on

the different voter profiles than the purely parametric MNL can offer. We thus propose

to use an alternative model, namely the semiparametric MNL that has been introduced

in Section 3.2. The details of our implementation are as follows. While the two dummies

gender and region enter parametrically, age and log-income go to the nonparametric part:

P(Y = k) =
exp (β1,k · Sex + β2,k · East +mk(Inc,Age))∑5
j=1 exp (β1,j · Sex + β2,j · East +mj(Inc,Age))

(3.8)

The smoothing parameter for the nonparametric part was chosen on a grid of bandwidths

from 0.5 to 1 times the standard deviation of age and log-income, respectively. For the
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presentation of the results, we selected h = 0.6. We start by looking at the fitted parame-

tric part of the model. Then we check for possible mode-specific effects. Finally, we give

a detailed discussion of the fitted nonparametric part of the model.

The estimated impacts of gender and region are given in Table 3.4. As could be expected,

they are quite close to those in Table 3.3 for the parametric MNL.

Mode SPD A90G LP FDP
Sex 0.097(0.057) 0.384(0.086)∗∗ -0.084(0.119) -0.531(0.133)∗∗

East/West -0.463(0.074)∗∗ -0.532(0.121)∗∗ 2.138(0.130)∗∗ 0.229(0.152)

Table 3.4.: Estimated coefficients for the parametric variables of the GPLM with CDU as

the reference category

For the purpose of identifiability, intercepts are not explicitly given in the proposed model

– the functions mk already account for any intercept effects. Such intercept effects describe

the unexplained heterogeneity over modes. Thus, it sometimes may be of interest to find

an indicator that can substitute and in this way explain part of the mk. Typically one

speaks here of persistency or loyalty of the voters. In order to instrument this, we consider

the mode-specific variable ‘member’ (= number of party members in thousand), as given

in Table 3.5.

Political Party CDU SPD A90G LP FDP
Members (in Thsd.) 720.792 561.239 44.677 60.338 64.880

Table 3.5.: Size of political parties in Germany in 2006, measured in party members.

Source: Niedermayer (2007)

After the model given in (3.8) has been fitted, we performed the following additional linear

regression to determine the influence of the mode-specific variable ‘member’:

K∑
k=1

1{yi=k} ·mk(Inc,Age) = γ0 + γ1 ·
K∑
k=1

1{yi=k} ·Memk (3.9)

The estimated coefficient of ‘member’ is given by γ̂1 = 0.00266 (with standard error

0.000023, thus highly significant). The estimated intercept, γ̂0 = −1.681, is highly signifi-

cant, too. This reflects the non-explained ‘mode’ (intercept) effect.

62



3.4. Semiparametric Analysis of Voter Profiles

Concerning the nonparametric functions mk we consider two different model specifications:

At first, in Subsection 3.4.1, we show the results under the assumption of an additive

separability, i.e.

mk(Inc,Age) = m1,k(Inc) +m2,k(Age), k = 1, 2, 3, 4. (3.10)

Neglecting the statistical discussion of dimensionality issues, the main advantage here is

that the additive structure leads to an easier interpretation. However, in Subsection 3.4.2,

we will see that due to strong interactions the bivariate functions comprise much more

meaningful information about voter profiles. For a detailed discussion on nonparametric

additive modeling with and without interaction we refer to Sperlich et. al. (2002).

3.4.1. Additive decomposition of the nonparametric part

To obtain an additive decomposition of the bivariate estimates, we applied standard R-

routines for spline-based backfitting. For the reference group CDU these functions are

constant, Figure 3.1 thus displays the marginal impacts of log-income and age only for

the other parties. Recall that the additive functions are only identified up to an additive

constant, so they could arbitrarily be shifted up or down without changing the slope.

Obviously, the average linear impact should be and is the same as for the parametric

linear model. Most of the rest, however, is quite different.

Over all income groups, SPD, LP and A90G find their strongest support in the low income

group; even for the FDP the impact in this group is downwards sloped. For A90G and

FDP this changes at a monthly income of about 1 500 e (≈ exp(7.3)) where it starts to

increase for both. This effect is stronger for the FDP, for which it increases up to the top

earners, while for the A90G it changes again direction at monthly incomes higher than

8 000 e(≈ exp(8.9)). The main difference between SPD and LP here is that for the LP

the slope is twice as steep as for the SPD; this is in agreement with the results in the

parametric case.

Similarly, the influence of age over all modes is downwards sloped at first (recall that this

is in comparison with the reference party CDU). This effect is especially strong for SPD

and LP until the age of 30, where this effect flattens for the SPD and reverses for the

LP whose support increases than steadily until the age of about 55. For the FDP and

the A90G the support steadily decreases with age – over almost the same range but in

different ways. For the SPD and the A90G the support is relatively stable in the age class

from 30 to 45.

Summarizing, for the A90G the influence of age as well as of log-income turns out to be

clearly nonlinear. The nonlinearities are mainly caused by the upper middle class and the
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strong voter block related to the anti-nuclear movement – typically middle-aged people

who became politically interested in the 80’s. Furthermore, in Section 3.3 the effect of age

has turned out insignificant in case of the LP. The picture drawn here is more precise as a

considerable valley around the age of 32, mainly caused by voters from Eastern Germany,

can be recognized. This generation was especially involved in and affected by the end of

the GDR-regime during their youth and thus turns away from the heir of the Socialist

Unity Party. Considering the other covariate, we see that the support in the lowest social

class is high. Finally, recall that for the FDP the income effect was positive significant in

the parametric model. The picture drawn here apparently is more informative.
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Figure 3.1.: Additive decomposition of the impact functions mj,k, j = 1, 2, k = 1, . . . , 4

(SPD, A90G, LP and FDP top down).

Further interpretation and explanations will be given when considering bivariate impacts in
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Figure 3.2.: Probabilities of supporting a political party for women in Western Germany

when the mk are additive separable (CDU, SPD, A90G, and FDP top down).

the subsequent section. For a better understanding of the estimation outcome, we conclude

this section with plots of the affiliation probabilities determined by the model specifications

(3.8) and (3.10), see Figure 3.2. When considering probabilities on comparable scales for

West Germany, the LP surface looks almost flat and has therefore been skipped here.

Instead, in Figure 3.2 we have added the outcome for the reference mode CDU which
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has the highest chances to get voted by old people that are well-off. The plot reveals

stronger support at high ages for all income-levels; this is due to the fact that the group

of pensioners builds the strongest block of CDU-supporters (see Jesse, 2007). Certainly,

most of the pensioners are not included in this sample. Nevertheless, it is most plausible

that the upward trend continues beyond the age of 65. For the other three parties one can

see how the impacts of m1,k and m2,k get reflected in the probabilities of votes. However,

we will see in the next section that some of the simplifications implied by the assumed

additivity are quite misleading. We used the R-package RGL (Adler and Murdoch, 2009) to

illustrate the corresponding three-dimensional plots of the bivariate estimation. The tiny

black points at the bottom indicate the observations. As the viewpoint can be changed

arbitrarily, it is possible to turn the attention towards the axis referring to age, the axis

referring to log-income or something in between. In Figures 3.3 and 3.4, the surfaces have

been rotated such that the main features can most easily be recognized. Thus, the reader

should be aware that the directions of the axes are not always the same. Furthermore, the

R-package akima (based on Akima, 1978) has been used to generate a smooth surface via

bivariate interpolation for irregularly spaced input data.

3.4.2. Bivariate nonparametric part

In this section we study how the results change when profile interaction between income

and age is present. Figures 3.3 and 3.4 display the probabilities of supporting particular

parties as a function of age and log-income. Keep in mind that for other values of the

dummies for ‘Sex’ and ‘East’ the surfaces change (as the probability function is not linear)

but only in the sense that some slopes become somewhat flatter or steeper; the general

pattern remains the same.

As the figures change substantially compared to those from the last section, it is obvious

that interaction does play an important role for voter profiles. Moreover, it is very difficult

to find adequate parametric models that can appropriately reflect these interactions. This

finding is nontrivial as it basically implies that most of the standard techniques usually

applied are insufficient for a correct inference and interpretation.

In Figure 3.3, women in Western Germany are considered, these plots thus are the coun-

terparts to Figure 3.2. The upper left plot shows the probabilities of supporting the

CDU. Note that the general upward trend in age has disappeared for incomes larger than

1 500 e(≈ exp(7.3)), i.e. the major part of the sample population. With respect to the

other covariate the likelihood of supporting the CDU increases as the income increases, no

matter for what age. This is in sharp contrast to the SPD where the curve corroborates

66



3.4. Semiparametric Analysis of Voter Profiles

Figure 3.3.: Probability for women in Western Germany of being a supporter of the dif-

ferent parties in a bivariate setting (CDU, SPD, A90G and FDP from the

upper left to lower right)

the statement that the SPD is a party of the working class across all ages. Apart from

some changes for very low incomes and people aged over 40 (where we have only few data),

this is the only plot that hardly changes compared to the additive counterpart.

In the bottom left picture, the stylized facts for A90G get more accented but with several
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nuances. The typical voter of the green party is generally believed to be young and poor

(mostly students) or middle-aged and well-off. According to the additive decomposition,

young people as well as low income groups indeed constitute particularly strong voter

blocks. However, the expected prominent role of the upper middle class cannot be detected.

In the case of a bivariate modeling, we recognize a strong U-shape only within a particular

group; young people with low and with high income respectively build quite strong voter

blocks. In contrast, for people older than 40 the U-shape disappears; the upper-middle

income class is the strongest in this age group. This is due to a strong support in the

group of middle-aged people with academic background. Hence, in Figure 3 we see that

the composition of A90G-voters is much more complex than indicated by the additive

approach. By means of the bivariate model we are able to capture both major features

described above.

The FDP has the smallest data basis, the estimates in this case thus are more wiggly and

should not be over-interpreted. However, it can be recognized that the voters of FDP

are rather young and rather high-earning. Especially in the working class the support for

FDP is low.

Figure 3.4 gives the probabilities of being affiliated to the left party (LP), on the left

hand side for men in Eastern Germany, and on the right hand side for women in Western

Germany. The general structure of the surface is the same for both, the dummies for ‘Sex’

and ‘East’ merely cause a variation in magnitudes of the probabilities. The range for LP

in Western Germany is too small to allow for a meaningful evaluation.

Considering the left plot of Figure 3.4, we recognize for East Germans the facts that have

already been described in Section 3.4.1: strong support in the group of young and low-

income people. However, as in case of the green party A90G, the bivariate impact function

gives again more insight into the voter profile. First, according to the univariate graph

in Figure 3.1 high income on average leads to rather small affiliation with the LP (which

is to be expected for a left-wing party). However, from Figure 3.4 it can be seen that

in Eastern Germany there is a notable popularity of the LP in the lower-middle and the

upper-middle class for people older than 50. Exactly here you will typically find those that

benefit from the GDR-regime. However, the influence of this group is slightly decreasing

since the elections of 2005 (cf. Niedermayer, 2006.) Secondly, also among those who lost

their jobs and social status during the change towards a market economy, the support is

expected to be high, and it is – see low incomes for people older than 50. These specific

characterisations of voter groups could not be captured by the additive decomposition as

it averages over all ages to derive the influence of the log-income (and vice versa). In order

to capture these effects we need to allow for interaction between income and age.
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Figure 3.4.: Probability for men in Eastern Germany (left picture) and women in Western

Germany (right picture) of being a supporter of LP

3.5. Conclusions and Outlook

We have introduced a semiparametric multinomial logit model in order to estimate poli-

tical party affiliation in Germany, where we have a response variable with more than two

possible outcomes. Our approach extends the GPLM model for the binary case as descri-

bed by Müller (2001). The derivation of the model is done in compliance with the GPLM

framework and hence the mathematical properties of asymptotic normality, consistency

and efficiency of the estimators are fulfilled. The algorithm usually converges very fast.

We add flexibility to the standard MNL since we do not assume a specific functional form

for the influence of a subset of the explanatory variables, and since we allow for interactions

between covariates. We consider individual-specific as well as mode-specific variables. The

model can capture binary and continuous variables, whereas the latter are most suitable

to be modeled nonparametrically. It is possible to consider just a simple linear structure

or one-dimensional additive as well as bivariate or multivariate nonparametric functions.

Due to illustration purposes we recommend to restrict oneself to bivariate estimation.

The flexibility of the model enables to get much more comprehensive insights, e.g. in the

profiles of specific voter groups. Indeed, the presented results give a more detailed view on
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the support of political parties than any other existing method. In particular, the three-

dimensional plots and the possibility to change the viewpoint arbitrarily enable readers

with little statistical background to interpret the results and provide a basis for further

decisions.

Our model is directly applicable to further research concerned with similar problems, e.g.

brand choice in marketing studies or choice of transportation modes. Due to the coverage

of different types of covariates our model has a large scope of applications.

In the application of estimating political party affiliation we have seen that our model

overcomes many deficiencies of both parametric modeling and nonparametric modeling

assuming an additive separability. The strong nonlinearities and interactions between

covariates show how complex voter groups nowadays are structured, and underline the

need for more sophisticated modeling than the conventional MNL can offer. This becomes

particularly obvious in regard of the results for the parties A90G and LP, where our

analysis reveals the presence of strong interactions between age and income as well as

highly pronounced nonlinearity. Possible reasons to support A90G are manifold. For

young people the popularity is highest in the low income group and likewise for rich

people. Additionally, middle-aged voters which are well-off support A90G. The voters

of the LP are certainly quite heterogeneous due to its recent history: On the one hand,

the old guard of the Eastern dictatorship and economic losers of the change in Eastern

Germany belong to the group of PDS supporters. On the other hand, in West Germany

the WASG has successfully increased their popularity as an electoral alternative for more

social justice. Hence, there the support in the lowest social class is high. Especially in

Eastern Germany, both big parties (CDU and SPD) suffer from the popularity of the LP.

In sum, the kind of voters of the political parties are very distinct. A more or less stable

base can only be detected by the mode intercepts.
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Härdle, W., Huet, H., Mammen, E. and Sperlich, S. (2004a). Bootstrap Infe-

rence in Semiparametric Generalized Additive Models. Econometric Theory, 20/2:

265–300.
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Rodŕıguez-Póo, J. M., Sperlich, S. and Vieu, P. (2003). Semiparametric Estima-

tion of Weak and Strong Separable Models. Econometric Theory, 19/6: 1008–1039.

Severini, T.A. and Wong, W.H. (1992). Generalized profile likelihood and condi-

tionally parametric models. Annals of Statistics, 20/4: 1768–1802.

Sperlich, S., Tjøstheim, D., and Yang, L. (2002). Nonparametric Estimation and

Testing of Interaction in Additive Models. Econometric Theory, 18/2: 197–251.

Tutz, G. and Scholz, T. (2004). Semiparametric Modelling of Multicategorical Data.

Journal of Statistical Computation and Simulation, 74/3: 183–200.

Walter, F. (2008). Baustelle Deutschland. Suhrkamp Verlag, Frankfurt am Main.

Yee, T. W. and Wild, C. J. (1996). Vector generalized additive models, Journal of

the Royal Statistical Society B, 58/3: 481–493.

72



4. A Semiparametric Model of Urban

Transport Demand

Abstract

The aim of this work is to estimate a transport demand function

for university students in the Bilbao area. We want to compare

the estimation results based on different model approaches. To

do this, we use on the one hand a simple parametric and on

the other hand a semiparametric approach that allows to model

the utility that individuals (i) get from the mode of transport

they use (car, train, bus, underground).

We find significant differences between the two approaches in

the multinomial case indicating the inappropriateness of the

standard parametric methods compared to the estimation of

the semiparametric model. The greatest differences seems to

occur in the marginal effect of the continuous variable income

as well as price.

This chapter of the thesis is a collaboration with Prof. Ana

Fernández-Sainz and Prof. Javier Bilbao Ubillos from the Uni-

versity of Bilbao, Spain, as well as Prof. Dr. Stefan Sperlich.

The main contribution of the author of this thesis is made in

the development of the semiparametric approach as well as the

implementation of all considered models in R. The presentation

as well as interpretation of the results is also the task of the

author of this thesis.
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4.1. Introduction

The main objective of this paper is to explore different methodological approaches to

specify and estimate a transport demand function. The principle goal is to check, if the

distinction between the results deriving from different approaches are sufficient to change

the recommendations for public policy makers. This objective is in line with a wide-ranging

research program - developed by the Spanish authors of this paper - aimed at drawing up

a more effective way of substituting private car by collective transport in congested areas.

More concretely we try to estimate the effects of improving the available supply of public

transport or cutting public transport prices to attract new passengers from private car.

Researchers would like to focus not only on the potential efficiency of these instruments

but also on the best use. They want to state precisely what type of improvement in

the availability of modes of collective transport (underground, bus and train) or which

selected reduction of collective transport prices would have the greatest potential impact

on reducing the use of private vehicles. To do this one must first analyse the determinants

of the demand for public transport by students located in a densely populated urban

area endowed with alternative means of public transport. We will concentrate on the role

played by quality of service (in terms of trip length and frequency) in this demand.

The main aim of this study is to find model formulations which best describe the influence

of various covariates and hence deliver a good basis to consider the possibilities of reducing

congestion and pollution by acting on these student trips.

We propose a probabilistic function for demand of transport in which individuals are

faced with the choice between the specific modes of transport available (car, underground,

bus, train or a combination of modes). The probabilistic models we consider are based on

maximization of individual utility, which we consider to be dependent on the characteristics

of the means of transport (quality and price) and those of the individuals themselves. This

model makes it possible to quantify individuals’ responses to changes in features of the

alternatives.

To analyse this model we need a sufficient data base. We have built up a base with a

high statistical level, from 1 780 surveys filled in by students who travel daily to university

and reside in areas surrounding the city of Bilbao. These observations make it possible

to obtain conclusions about the actual influence that the different variables have on the

configuration of the students’ demand for transport.

These considerations could serve as a reference when defining public transport policy that

would meet the needs of this large group of potential users.
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The work is structured as follows. In Section 4.2 we introduce the model of the demand

for public transport and its econometric formulation. Section 4.3 provides the theoretical

basis of a semiparametric approach to handle the transport demand function. In section

4.4 we compare the different approaches and analyse the estimation results of the previous

models. Finally, we give some conclusions.

4.2. The Economic Formulation and the Econometric

Model

Discrete choice models have been used in different economic applications including choice

of transportation mode (McFadden, 1974), choice of residence (McFadden, 1978), choice

of vehicle type (Choo and Mokhtarian, 2004), etc. In these models, a set of individuals

(i = 1, ..., N) are faced with a range of mutually exclusive alternatives, that is they have

to make a choice (k) within the set of possible choices (k = 1, .., K). The traditional

theory of rational choice asserts that individuals can rank possible alternatives in order of

preference and make choices in a deterministic and coherent way. They will always choose

from available alternatives the option they prefer and therefore, in two identical situations

the optimal choice will be the same. The description of the econometric model is based

on the remarks in the forerunner paper (cf. Bilbao-Ubillos and Fernández-Sainz, 2004).

It seems, however, that in practice human behaviour is not as rational as traditional

economic theory assumes. For this reason choice has been analyzed as a probabilistic

process rather than a deterministic one: an individual i chooses an option k = 1, ..., K

with probability Pi(k).

Depending on the nature of the random mechanisms involved, different alternatives have

been taken into account to obtain the probabilities of choice. We use the approach of

McFadden (1979), which deals with the problem by assuming that decision rules are de-

terministic but utilities are stochastic. Probability choice and demands are obtained from

the maximization of random utility.

Pi(k) = Pr(Ũik = maxl Ũil) for l = 1, ..., K (4.1)

where Ũik is individual i’s utility level when he/she makes the choice k1.

1Observe that utility depends only on the mode of transport chosen by the individual and not on the
consumption of other goods. This assumption is due to the requirement of consistency between discrete
choice models and the maximization of random utility: the indirect utility function must be additively
separable in income (this determines the indirect utility from the good consumption) and the good
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Given that urban population consists of a large number of individuals N , the expected

population demand for alternative k, Dk, is given by:

Dk =
N∑
i=1

Pi(k) (4.2)

Domenich and McFadden (1975) assume that the utility associated with each mode of

transport is a function that depends on the mode characteristics (z) and on the individual’s

socioeconomic characteristics (w) plus an additive error term (e).

Then, if we assume a linear relationship, we have:

Ũik = αi + z′ikβ + w′iγk + eik (4.3)

where zik are the characteristics of mode of transport k as individual i perceives them and

wi are socio-economic characteristics of individual i. In this way, individual i prefers (in

expected terms) mode of transport k to mode of transport l if and only if Ũik > Ũil:

(z′ik − z′il)β + w′i(γk − γl) + (eik − eil) > 0 (4.4)

Socio-economic characteristics will be determinant for choice if and only if γk − γl 6= 0.

In this case individuals with different socio-economic characteristics have value modes of

transport differently. When γk − γl = 0 socio-economic characteristics do not influence

individuals’ choice.

Therefore, assuming that individuals are rational and that they maximize their perceived

utility subject to appropriate constraints, the econometric model that we use to quantify

transport demand needs some preliminary definitions.

Let be y∗ik the latent variable we use to denote the indirect utility level from mode of

transport k :

y∗ik = Vik(zik, wi) + εik (4.5)

When the student chooses a mode of transport, he has six different possibilities: to drive

his own car or to travel by car as a passenger, train, bus, underground and any combination

of the foregoing.

In these terms the observable variable is:

Yi = k ⇐⇒ y∗ik = Max(y∗il) for l = 1, ..., 6

consumption) and the characteristics of the mode of transport chosen by the individual (this determines
the indirect utility from the use of this mode). To compare the utility of two different alternatives it
is sufficient to take into account only the last term.
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In these terms, the probability, Prik, that individual i will choose mode of transport

k taking into account the latent variable and the distribution of εik assuming that εik
are independently and identically distributed with the type I extreme-value distribution

F (εik < ε) = exp(−e−ε), is given by:

Prik = Pr(Yi = k) =
exp(Vik)∑6
l=1 exp(Vil)

(4.6)

whereas we can only identify the differences in indirect utilities. Therefore, we have to

define a reference category K, where for this purpose the indirect utility ViK is set equal

to zero.

McFadden (1978) showed that this type of model can be derived from the theory of utility

maximization as the multinomial logit model.

4.3. Semiparametric Approach

During the past two decades, the number of theoretical and empirical studies on nonpa-

rametric and semiparametric methods for estimating and testing microeconomic or ma-

croeconomic models has grown rapidly. For a general introduction to nonparametric and

semiparametric econometrics, see e.g. Härdle et. al. (2004).

Examples for nonparametric or semiparametric issues related to discrete choice mode-

ling have been presented by Kneib, Baumgartner and Steiner (2007) or Tutz and Scholz

(2004). Whereas the former paper studied consumer choice behaviour based on a Bayesian

approach and the latter applied penalized basis functions on an example about hereditary

diseases.

Huang and Nychka (2000) proposed a nonparametric multiple-choice model based on the

penalized likelihood method within a Random Utility Maximization framework and ap-

plied it to the non market evaluation of recreational sites. Abe (1999) relaxed the tradi-

tional assumption in the standard multinomial logit (MNL) formulation by introducing

the modified generalized additive models and applied it to panel choice data.

Our estimation procedure is based on the profile likelihood algorithm proposed by Severini

and Wong (1992). If K = 2 the multinomial model reduces to the binary case. A detailed

derivation of the algorithm for the simple binary case can be found in Müller (2001).

In our approach, we consider a semiparametric multinomial logit model with K different

outcome categories that have no natural order. The conditional probability of outcome

Yi = k, k = 1, . . . , K, given the individual covariate vectors Xi = (X1i, . . . , Xpi)
t ∈ Rp

and Ti = (T1i, . . . , Tqi)
t ∈ Rq is assumed to be given by
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Prik = Pr(Yi = k |Xi,Ti) =
exp (ηk)∑K
l=1 exp (ηl)

=
exp

(
Xi

tβk +mk(Ti)
)∑K

l=1 exp
(
Xi

tβl +ml(Ti)
) . (4.7)

We set for identification βK = 0, and mK(·) ≡ 0, i.e. K is the reference mode. Each

mk(·), k = 1, . . . , K, is assumed to be a smooth function with domain R
q and each

βk = (βk1, . . . , βkp)
t, k = 1, . . . , K − 1, denotes an unknown parameter vector.

We have to rearrange the covariates which are presented in the economic formulation of the

model from the previous section. In the semiparametric approach we consider individual-

and mode-specific covariates and divide these covariates into two distinct groups, the first

group will be modeled parametrically and the second group will go into the nonparametric

part of our approach.

The first group comprehends the dummy variables of the socio-economic characteristics

(wi) and variables with only few parameter values which should not be modeled non-

parametrically. Additionally, it covers the characteristics (zik) of the mode of transport

k as individual i perceives them. These variables are covered in X. Secondly, we have

socio-economic characteristics (wi) which are quasi-continuous and hence are suitable to

be modeled nonparametrically, denoted by T.

Supplementary, we consider purely mode-specific covariates, which are independent of

the individual perception Z = (zk). Note that the nonparametric functions mk capture

any mode-specific effect, hence X must not contain mode-specific dummies, see further

discussion below.

It would be easy to find estimators for the vectors βk, if the functions mk(·) were known,

and vice versa. Hence, we follow the ideas of profiled likelihood by Severini and Wong

(1992). In the following, L(ηi(·), yi) denotes the log-likelihood of (4.7) of the ith observa-

tion with predictor ηi.

We use an iterative estimation procedure and regard the functions mk(·) as nuisance

when estimating the finite-dimensional parameters βk. Therefore, we compute the profile

likelihood which is in this case only a function of βk

Lp(βk) =
N∑
i=1

L(ηi(βk), yi), (4.8)

Alternately, in order to estimate the so-called least favorable curve mk,β·(t) at point t :=

(t1, . . . , tq) for given βk, k = 1, . . . , K − 1, take a q-dimensional kernel K : Rq → R,
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bandwidth matrix H ∈ Rq×q
+ , and consider the local likelihood

Ls(mk,β·(t)) =
N∑
i=1

(det H)−1K
(
H−1(t− ti)

)
L(ηi(mk,β·(t)), yi), (4.9)

note that the estimate of mk,β·(·) will depend on all βl, l = 1, . . . , K − 1, indicated by the

additional index ‘β·’.

To meet the requirements of a Newton-Raphson algorithm in the estimation procedure we

have to calculate the first two derivatives l′ik resp. l′′ik of

li(ηi(·)) := L(ηi(·), yi),

with respect to ηi = xtiβk +mk(ti).

To obtain the maximum likelihood, successively from mode 1 to mode K, we have to solve

the first order condition (setting the first derivatives equal to zero) and implement the

following Newton-Raphson-type algorithm:

1. Find appropriate starting values β
(0)
k , m

(0)
k (·), k = 1, . . . , K − 1 (e.g. by fitting an

appropriate parametric MNL) and set j = 0.

2. For k = 1, 2, . . . , K − 1, compute

β
(j+1)
k = β

(j)
k − B

−1

N∑
i=1

l′ik(ηi(β
(j)
k ))(xi +m

′(j)
k,β·(ti))

with B =
N∑
i=1

l′′ik(ηi(β
(j)
k ))(xi +m

′(j)
k,β·(ti))(xi +m

′(j)
k,β·(ti))

t

3. For k = 1, 2, . . . , K − 1, compute

m
(j+1)
k,β· (t) = m

(j)
k,β·(t)−

∑N
i=1(det H)−1K

(
H−1(t− ti)

)
l′ik
(
ηi(m

(j)
k,β·(t))

)∑N
i=1(det H)−1K

(
H−1(t− ti)

)
l′′ik
(
ηi(m

(j)
k,β·(t))

)
for all points t at which the function mk,β·(·) is to be estimated.

4. Repeat steps 2.–3. for j = 1, 2, . . . until convergence.

It is convenient to estimate the functions mk,β·(·) in step 3 at the observation points ti,

i = 1, . . . , N , as this guarantees that independent of the bandwidth choice at least for one

observation K
(
H−1(t− ti)

)
is nonzero.

This estimation procedure delivers asymptotically normal,
√
n-consistent and efficient esti-

mators for the vectors βk owing to likelihood estimation. For the mk one obtains consistent
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estimators with statistical properties typical for nonparametric kernel smoothing, see also

Rodŕıguez-Póo et. al. (2003).

Recall that the mk will automatically capture any mode-specific effect. If there is also

a vector of mode characteristics Zk = (Z1k, . . . , Zrk)
t ∈ R

r available, then one might

want to regress them on the mk. Note that a nonparametric modeling of their influence

would not make much sense as the support is discrete consisting of few values. Therefore,

the influence of the mode-specific covariate vector should be modeled by a simple linear

relation with unknown parameter γ = (γ0, γ1, . . . , γr)
t resulting in an optional fifth step:

5. After convergence of βk and mk,β·, perform an additional regression

K∑
k=1

1{yi=k} ·mk,β· = γ0 +
r∑
j=1

γj ·
K∑
k=1

1{yi=k} · Zjk .

4.4. Estimation Results

The data from which we draw up the estimation were obtained by means of a written query

between September and October (1996). The query was either incorporated in the student

registration envelope (University of The Basque Country) or answered at the begining of

a lecture (University of Deusto). The basic descriptive statistics are shown in Table 4.1.

Variable Description Mean (std)

Sex dummy, 1 if female 0.5578
(0.496)

Age dummy, 1 if age under 21 0.4511
(0.498)

University dummy, 1 if Public University 0.6280
(0.483)

Education parents‘ level of education 1.753
(0.806)

Income Value of family’s house 19473.8427
(7253.465)

Frequency minutes between two services 15.2882
(8.208)

Price price of ticket 136.5730
(80.607)

Trip Time duration of trip, in minutes 45.3624
(15.664)

Table 4.1.: Statistics of the explanatory variables: mean and std. deviat. in brackets.
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Some of the variables need additional explanations. The variables sex, age and uni are

individual-specific dummy variables. The variable education is given by the parents’ level

of education and used to describe the human capital that allows parents to obtain a better

job and higher wage. These four variables are covered in X.

We include one proxy-variable to approximate the income of the individual. This variable

is basically the value of the family‘s house, given district and specific location. The

continuous variable income is put in the nonparametric part T of our semiparametric

approach. Additionally, in the estimation of the nonparametric part, we divide the income

by its standard deviation.

The variables price and trip time are individual- as well as mode-specific variables. These

two variables depend on the individual characteristics and on the mode of transport which

is chosen by the individual. However, we only observe the price and the trip time of the

travel mode, which the individual has chosen. Hence, we have to interpret these values as

individual-specific covariates and therefore we additionally incorporate these two variables

in X.

The variable frequency is a fully mode-specific covariate. The time between two services

depends only on the mode of transport. The private car has a frequency equal to zero

as the driver can decide to start whenever he wants. The other transport modes have

a specific frequency depending on the corresponding traffic system. This mode-specific

variable is included in Z.

In this section we want to compare the results achieved through different estimation me-

thods for the transport demand function and try to explain the differences. We have

proved several model formulations, on the one hand parametric and on the other hand

semiparametric approaches.

4.4.1. Binary logit model

In a first step, we estimate a simple binary logit model for the decision between public

and private transport modes. Thus, in the private case, we subsume the options to take

the own car or to go by car as a passenger. The public segment combines bus, train,

underground and all other options. This model represents the first important decision

in the choice of transport mode between being self-determined or being dependent on

public supply. The descriptive statistics show that 85.3%(14.7%) of the individuals choose

a public (private) transport mode. We consider both cases, the fully parametric model

(4.10) and the semiparametric approach (4.11), in which the income variable is modeled

nonparametrically.
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4. A Semiparametric Model of Urban Transport Demand

P(Y = Publ) =
exp (Xtβk)

1 + exp (Xtβk)
, (4.10)

where Xt =(1,Age, Sex, Uni, Edu, Price, Time, Inc).

P(Y = Publ) =
exp

(
X̃tβk +mk(Inc)

)
1 + exp

(
X̃tβk +mk(Inc)

) , (4.11)

where X̃t =(Age, Sex, Uni, Edu, Price, Time). The intercept is included in the nonpara-

metric part mk(Inc).

The results of the estimation are given in Table 4.2 and Figure 4.1. As can be seen, the

coefficients and standard deviations of all parametric covariates are almost the same in

both cases.

Variable Parametric logit Semiparametric logit

Constant 0.164
(0.383)

...
(...)

Age −0.525
(0.154)

*** −0.531
(0.153)

***

Sex −0.785
(0.153)

*** −0.775
(0.153)

***

University −0.292
(0.161)

. −0.290
(0.161)

.

Education 0.181
(0.094)

. 0.177
(0.095)

.

Income-V.H 0.398
(0.103)

*** ...
(...)

Price 0.018
(0.094)

0.027
(0.095)

Time −0.058
(0.006)

*** −0.059
(0.006)

***

N 1780 1780
LogL -634.45 -603.59

Table 4.2.: Estimates of a binary model. Standard deviation in brackets.

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1

The signs of the effects are as expected. Price is an individual and mode-specific covariate,

but we have to interpret the price of a transport mode as the price as individual i perceives

it. From Table 4.2 we see that the price has only very little effect in this case. Time is

also individual- and mode-specific and we have to interpret it in the same way as price.

But, because of sparse data we have set all values of time > 60 to 60 without substantial

modifications in the interpretation. Hence, the trips we consider lasts at most 60 minutes.

We can see, that longer trip time has a significant negative effect on choosing public

transport modes.
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4.4. Estimation Results
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Figure 4.1.: Marginal effect of Income mInc for a semiparametric binary logit model

The effect of income is positive and highly significant in the parametric model. Additio-

nally, the nonparametric effect on income captures the intercept of the parametric model.

In principle, we can adhere to the parametric interpretation, if we look at Figure 4.1. The

plot of the marginal effect of income in the semiparametric case shows a clearly upward

trend for low income groups and only a slight negative effect for higher income which is

mainly due to sparse data in this region.

Therefore, the main conclusion of this subsection is that if we estimate a binary model,

parametric and semiparametric approaches produce the same results.

4.4.2. Multinomial logit model

In a second step, we consider a more comprehensive model. We estimate the choice between

the different transport modes with aid of a multinomial logit model. The multinomial logit

model is the easiest model for unordered discrete choices. In our example, we can think

of individuals which are faced with a discrete set of alternatives and we can assume that

the different transport modes do not have a natural ordering. Hence, our multinomial

logit model has six possible outcomes (own car, car passenger, bus, train, underground

and others). The percentages for the different transport modes are given in Table 4.3.
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4. A Semiparametric Model of Urban Transport Demand

Transport modes Car Pass Bus Train Under-
ground

Others

Percentage 10.8 3.9 29.3 14.0 15.7 26.3

Table 4.3.: Percentages for the different transport modes.

In order to guarantee identifiability of the model we have to define a reference category –

here: ‘Others’. All estimated coefficients have to be interpreted as higher or lower chances

of choosing the specific mode compared to the reference category. Again, we consider both

cases, the fully parametric model (4.12) and the semiparametric approach (4.13), in which

the income variable is modeled nonparametrically.

P(Y = k) =
exp (Xtβk)∑6
l=1 exp (Xtβl)

, (4.12)

where Xt =(1,Age, Sex, University, Education, Price, Time, Income).

P(Y = k) =
exp

(
X̃tβk +mk(Inc)

)
∑6

l=1 exp
(
X̃tβl +ml(Inc)

)
,

(4.13)

where X̃t =(Age, Sex, University, Education, Price, Time). The intercept is included in

the nonparametric part mk(Inc).

The results for the estimated coefficients of the multinomial logit models are presented in

Table 4.4 and 4.5. Due to the estimation procedure we get a coefficient for every mode

except the reference for every individual-specific variable. These coefficients has to be

interpreted as chances compared to the reference. In the parametric model it is possible

to include either an intercept for every mode or one or more mode-specific covariates. In

the nonparametric model we can use a two-step procedure. First estimate the whole mo-

del only with individual-specific covariates and afterwards decompose the nonparametric

estimates into mode-specific components and a remaining part which is not avowed by

other covariates. The informations which we can gather from the multinomial logit model

are much more detailed than in the binary case.

First, we will present the parametric coefficients with mode-specific intercepts in Table 4.4.

Again we have the effect of the individual-specific variables age, sex, university and educa-

tion. We see that the coefficients are quite different for the distinct modes. The variables

price and time must again be interpreted as the price (time) of a transport mode as in-

dividual i perceives it. We see that all considered modes have an negative coefficient of

price as well as time compared to the reference category.
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4.4. Estimation Results

Private Public
Variable Own Car Car Passenger Bus Train Underground

Constant 3.257
(0.522)

*** 0.618
(0.747)

4.958
(0.452)

*** 0.095
(0.507)

2.108
(0.432)

***

Age −0.453
(0.203)

* −0.198
(0.280)

0.286
(0.151)

. 0.145
(0.179)

0.189
(0.159)

Sex −0.838
(0.202

*** −0.566
(0.284)

* 0.111
(0.154)

0.286
(0.184)

−0.250
(0.162)

University −0.054
(0.217)

−0.487
(0.306)

0.135
(0.171)

0.663
(0.205)

** −0.598
(0.177)

***

Education 0.067
(0.125)

0.194
(0.177)

−0.254
(0.103)

* 0.160
(0.114)

−0.259
(0.110)

*

Income-V.H 0.513
(0.145)

*** 0.864
(0.190)

*** −0.059
(0.133)

1.003
(0.132)

*** −0.264
(0.135)

.

Price −0.551
(0.138)

*** −0.932
(0.245)

*** −2.606
(0.181)

*** −1.459
(0.173)

*** −0.099
(0.089)

Time −0.089
(0.008)

*** −0.061
(0.011)

*** −0.029
(0.006)

*** −0.037
(0.007)

*** −0.022
(0.006)

***

Table 4.4.: Coefficients of the parametric multinomial logit model.

Standard deviation in brackets. (n =1780, LogL = -2 432)

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1

The last model which we consider in this paper is the semiparametric multinomial logit

model. The coefficients for the parametric part of the semiparametric approach are pre-

sented in Table 4.5. In this case, we model the influence of the income variable through

the nonparametric functions mk for each mode k.

Private Public
Variable Own Car Car Passenger Bus Train Underground

Constant ...
(...)

...
(...)

...
(...)

...
(...)

...
(...)

Age −0.451
(0.176)

* −0.207
(0.262)

. 0.287
(0.121)

* 0.119
(0.150)

. 0.183
(0.140)

.

Sex −0.847
(0.175)

*** −0.527
(0.267)

* 0.111
(0.123)

. 0.288
(0.155)

* −0.265
(0.142)

*

University −0.060
(0.184)

−0.520
(0.285)

* 0.134
(0.135)

. 0.651
(0.171)

*** −0.608
(0.153)

***

Education 0.047
(0.107)

0.190
(0.171)

. −0.275
(0.082)

*** 0.117
(0.095)

. −0.274
(0.097)

**

Income-V.H ...
(...)

...
(...)

...
(...)

...
(...)

...
(...)

Price −0.513
(0.126)

*** −0.939
(0.243)

*** −2.583
(0.168)

*** −1.404
(0.159)

*** −0.093
(0.084)

.

Time −0.088
(0.007)

*** −0.065
(0.011)

*** −0.028
(0.005)

*** −0.036
(0.006)

*** −0.022
(0.005)

***

Table 4.5.: Coefficients for the semiparametric multinomial logit model.

Standard deviation in brackets. (n =1780, LogL = -2 158.49)

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1
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4. A Semiparametric Model of Urban Transport Demand

The smoothing parameter for the nonparametric part was chosen on a grid of bandwidths

between 0.2 and 1. For the presentations of the results, we selected h = 0.4 without

changing the interpretation of the results. We can recognize almost the same values for the

coefficients and standard deviations of the parametric covariates (age, sex, uni, education,

price and time) as in the fully parametric model with mode-specific intercepts.

4.4.3. Marginal effects

However, in order to interpret the results of a multinomial logit model, it is more plausible

to look at the marginal effects of the covariates. Especially, if one wants to sell the results to

people with less statistical background. As our main objective is to give recommendations

for public policy makers, we try to present results to confirm their decisions. The marginal

effects of the characteristics are derived by differentiating the probability with respect to

the corresponding covariate (Greene, 2006).

δik =
∂Prik
∂xi

= Prik

[
βk −

K∑
l=1

Prilβl

]
, (4.14)

The marginal effects can be calculated from the parameter estimates, whereby every sub-

vector of β enters every marginal effect. Table 4.6 shows these effects for the parametric

approach. To interpret the marginal effects we consider for example, own car and sex

and say: the parametric marginal effect is -0.072. Thus, if the variable sex changes from

0 (male) to 1 (female), the probability of choosing alternative ’own car’ decreases by 7.2%.

By means of the marginal effects we can give the following conclusions.

The effects of price for the alternatives bus and train are negative. We can conclude that

especially these alternatives suffer from rising prices. The effects of time are small and

very similar in absolute values, so that we should not overinterpret the differences. The

effect of income is very diverse. On the one hand we have positive effects for the private

options and the train, on the other hand we have negative effects for bus and underground.

The semiparametric approach will allow more insights in these effects.

The results for the marginal effects of the semiparametric approach are given in Table 4.7.

The nonparametric modeling allows us to give more meaningful interpretations of the

marginal effects of the covariate income. Due to the graphical presentation of the marginal

effects of income, we can on the one hand sustain the significance for the private transport

modes as well as the alternative train. On the other hand, we can get an indication why
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4.4. Estimation Results

Private Public
Variable Own Car Car Passenger Bus Train Underground Others

Constant 0.108
(0.134)

−0.059
(0.055)

0.648
(0.328)

−0.285
(0.197)

0.022
(0.153)

−0.434
(0.186)

Age −0.050
(0.039)

−0.009
(0.007)

0.049
(0.027)

0.011
(0.018)

0.018
(0.016)

−0.019
(0.018)

Sex −0.072
(0.056

−0.017
(0.014)

0.044
(0.031)

0.050
(0.041)

−0.025
(0.018)

0.019
(0.025)

University −0.008
(0.017)

−0.021
(0.023)

0.025
(0.028)

0.080
(0.049)

−0.086
(0.035)

0.011
(0.038)

Education 0.012
(0.010)

0.009
(0.006)

−0.043
(0.023)

0.029
(0.016)

−0.027
(0.016)

0.020
(0.017)

Income-V.H 0.025
(0.025)

0.021
(0.015)

−0.062
(0.048)

0.098
(0.053)

−0.057
(0.024)

−0.025
(0.033)

Price 0.057
(0.068)

0.007
(0.017)

−0.348
(0.177)

−0.033
(0.059)

0.121
(0.075)

0.196
(0.097)

Time −0.005
(0.004)

−0.001
( 0.001)

0.001
(0.002)

0.001
(0.002)

0.001
(0.002)

0.006
(0.002)

Table 4.6.: Marginal effect of the parametric multinomial logit model.

Standard deviation in brackets.

the effects of income on bus and underground were insignificant in the parametric model.

Both effects show an almost linear relationship for lower income groups but an conspicuous

bump in the middle-class and a substantial valley for well-off people. Thus, the group of

rich people do not favor the alternatives bus and underground.

Private Public
Variable Own Car Car Passenger Bus Train Underground Others

Constant ...
(...)

...
(...)

...
(...)

...
(...)

...
(...)

...
(...)

Age −0.047
(0.046)

−0.008
(0.008)

0.087
(0.060)

0.018
(0.014)

0.030
(0.018)

0.003
(0.002)

Sex −0.069
(0.067)

−0.012
(0.014)

0.093
(0.064)

0.068
(0.052)

−0.009
(0.005)

0.055
(0.041)

University 0.001
(0.001)

−0.018
(0.019)

0.059
(0.040)

0.099
(0.075)

−0.084
(0.050)

0.018
(0.013)

Education 0.009
(0.008)

0.009
(0.009)

−0.071
(0.049)

0.021
(0.016)

−0.037
(0.022)

0.009
(0.006)

Income-V.H ...
(...)

...
(...)

...
(...)

...
(...)

...
(...)

...
(...)

Price 0.044
(0.043)

−0.001
(0.001)

−0.486
(0.332)

−0.067
(0.051)

0.129
(0.077)

0.246
(0.181)

Time −0.005
(0.007)

−0.001
(0.001)

0.003
(0.002)

0.001
(0.001)

0.003
(0.002)

0.011
(0.008)

Table 4.7.: Marginal effects of the semiparametric multinomial logit model.

Standard deviation in brackets.
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4. A Semiparametric Model of Urban Transport Demand
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Figure 4.2.: Marginal effect of Income mk(Inc) with k = 1, ..., 5 for a semiparametric mul-

tinomial logit model.

For the purpose of identifiability, intercepts are not explicitly given in the proposed se-

miparametric model – the functions mk already account for any intercept effects. Such

intercept effects describe the unexplained heterogeneity over modes. Thus, it sometimes

may be of interest to find an indicator that can substitute and in this way explain part

of the mk. In order to instrument this, we consider the mode-specific variable frequency

(= minutes between services), given in Table 4.8.

After the model given in (4.13) has been fitted, we perform the following additional linear
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Transport modes Car Pass Bus Train Under-
ground

Others

minutes between two services 0 5 15 7 20 25

Table 4.8.: Values of frequency for the different transport modes.

regression to determine the influence of the mode-specific variable frequency:

K∑
k=1

1{yi=k} ·mk(Inc) = γ0 + γ1 ·
K∑
k=1

1{yi=k} · Freqk (4.15)

The estimated coefficient of frequency is given by γ̂1 = −0.096 (with standard error 0.004,

thus highly significant). The estimated intercept, γ̂0 = 3.121(0.066), is highly significant,

too. This reflects the non-explained ‘mode’ (intercept) effect. The interpretation of this

effect is the same as in the parametric model with the mode-specific effect frequency. The

time between two services has a negative effect on taking the corresponding transport

mode.

4.5. Conclusions

The main aim of this study is to analyze the influence of socio-economic as well as mode-

and individual-specific covariates on the transport demand function for university students

in the Bilbao area. The prior objective is methodological, with the view of comparing the

results achieved through different estimation methods (parametric and semiparametric).

All of this, in terms of checking if it changes the recommendations for public policy makers.

If we compare the results of the parametric and semiparametric approach, we can conclude

that:

• In the binary logit model, the estimates are very similar and the signs of the coeffi-

cients are as expected.

• For the multinomial logit model, the results between the parametric and semipara-

metric approach are distinct.

• For the income variable as well as price, the marginal effects are very different for

underground and bus depending on the estimation method.

• Contrary, for the socio-economic covariates the marginal effects in both approaches

are almost the same.
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Therefore, we point to the differences between both approaches for the multinomial model.

We model the level of utility that individuals (i) can achieve using a specific mode of

transport (car, train, bus, underground) in a multinomial model. Thereby, we can identify

the effects in the characteristics given by various covariates on the choice of mode of

transport. We outline the enhancement based on a semiparametric approach, which could

be further advanced by including more continuous covariates.

We analyze the formulated hypothesis, about the importance of the methodological ap-

proach, in order to obtain results to guide decisions of public policy makers. All of this,

with the aim of capturing public transport passengers and improve the transport sup-

ply. If the estimated marginal effects, associated with an explanatory variable are very

different, depending on the use of parametric or semiparametric approach, the transport

policy recommendations would change in each case. For example, in the semiparametric

approach, the sensitivity of transport demand to changes in price is much higher than

in the parametric approach, and this affects the potential efficacy of this theoretical tool

to replace private car uses with public transport modes. In our case, the semiparametric

approach suggests that reducing the price of public transport would be more efficient than

estimated by a parametric approach.

Further research projects could go along with this project. It is possible to extend the

model to a nested logit approach with nonparametric modeled covariates or gather in-

formations for a more comprehensive data base with different price, time and frequency

values for each individual for every mode. Then, an individual and mode-specific effect

could be identified and not only an individual perception of the different characteristics.
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5. Summary and Outlook

The main conclusions of the three projects are already given in the end of each chapter.

Thus, opinions expressed in this chapter reflect the view of the author and a critical

examination of the findings of this thesis.

The development of nonparametric methods was very fast and widespread in the recent

past. A lot of theoretical considerations, e.g. about optimal bandwidth choice, asymptotics

or convergence of nonparametric methods, as well as issues of applications in miscellaneous

research areas have been published.

This thesis can be divided into two main parts. First, a review about a rather theoretical

aspect of nonparametric modeling. Many authors pay a lot of attention on the choice

of an optimal bandwidth. They have proposed different approaches to calculate optimal

bandwidth considering various error measures. It is worth comparing all these bandwidth

selection methods and to give an update of all existing method in a research report. Such

an exhaustive report as presented in this thesis has not been written for a long time and

hence an update about the state of the art was necessary. This essay contributes to the

ongoing discussion and provides a basis for further discussion about optimal bandwidth

choice.

However, although a lot of measures exist, an overall optimal choice cannot be given. Due

to this fact, practitioners with some experience in nonparametric applications choose the

corresponding bandwidth using well implemented standard routines or just by eye. This

method is quite promising and in most cases adequate, especially in applied research.

In the second part of this thesis a semiparametric model for categorical data is proposed.

Modeling categorical data is quite common in a lot of applications in economic and political

science. However, most authors restrict their research to a parametric model or univariate

approaches in nonparametric modeling. The model proposed in this thesis is an extension

of a generalized partial linear model for the multinomial logit case. The model formulation

is based on a likelihood approach whereby it benefits from the well-known mathematical

properties. The model is very flexible and captures nonlinearities as well as interactions

between the covariates. Three-dimensional plots of the probabilities allow meaningful

interpretations, even for people with less statistical background.
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As the model allows considering individual- and mode-specific variables, it covers a wide

range of data problems. In this thesis, we consider two different applications. Firstly, the

problem of voter profiling in a multi-party system like Germany. Identifying voters is a

very heplful tool for political parties. In this context, the semiparametric model overcomes

many deficiencies of purely descriptive statistics or parametric multinomial logit models

which are very common in the realm of party affiliation. The results in the third chapter

underline the need for more sophisticated modeling than the conventional MNL can offer.

The second application is concerned with demand of transport, in which individuals are

faced with the choice between several modes of transport. As the aim of the first paper

was to give insights about the data structure of voter profiling, this project must be seen

in a more methodological context. The main goal was to show different approaches in

modeling urban transport demand and to compare the results. Although, the data in

this case are not entirely adequate, we see again that the semiparametric approach can

give more insights. A valuable task would be to collect new, more comprehensive data to

get results which are well interpretable and useful for drawing up sensible suggestions for

policy makers.

Both applications point out the results of diverse real data problems in which the semi-

parametric approach is very suitable. Categorical data problems can be found in various

research areas, like medicine, social science or economic science. Hence, a lot of further

applications can be found, not least applications about consumer choice behaviour in

marketing as well as decisions about residential or commercial locations for founding a

business.

This wide field of applications underlines the relevance of the multinomial logit model.

The deficiencies of previous approaches, in which parametric predictors as well as purely

additive structures were proposed, accentuate the need of semiparametric modeling. The

framework of generalized partial linear models offers well-known mathematical properties.

Therefore, further research projects could be initiated, for which this thesis can serve as a

suitable starting point.
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A. Appendix

This appendix gives the R code used to calculate the results presented in the three projects

of this thesis. A short introduction is given at the beginning of the code for each chapter.

The main parts of the code are marked with illustrative headings.

A.1. Programming code – Bandwidth Selection Methods

for Kernel Density Estimation

This section gives the R code for analyzing the optimal bandwidth selection methods based

on the calculation from the Fortran code. The Fortran code calculates the values for

various bandwidths and the corresponding ise-values (intergrated squared errors). The

implemented R code loads the results and calculates various measures which are presented

in detail in the paper.

R Code

## Load the data

#setwd("...Daten/n=100/") ##choose corresponding folder

#Load Fortran results

h.orig<-read.table("band10aP.dat")

xyd.orig<-read.table("band10P.dat")

ise.orig<-read.table("ise10P.dat")

names=c("Simple Normal Distribution","Two Normal Distributions",

"Three Normal Distributions","Three Gamma Distribution",

"Two Gamma Distributions","Simple Gamma Distributions")
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## Sort and rearrange the data

n<-250 ##Anzahl Wiederholungen

Nm<-6 ##Anzahl betrachteter Modelle

m<-1 ##Auswahl der Dichtefunktion (1,6)

p<-9 ##Speicherplatz Spalte mit ISE-Werten

h<-h.orig[m,]

rows<-seq((m-1)*n+1,m*n)

xydo<-xyd.orig[rows,]

ise<-ise.orig[rows,]

xyd<-round(xydo,4)

##calculate the measures m1-m4

l<-dim(xyd)[2]

my<-mean(xyd)

sd<-sd(xyd)

s1.orig<-rbind(my,sd)

a<-1:(l/2)

b<-(l/2+1):l

s1<-s1.orig[,a]

s2<-s1.orig[,b]

##calculate the measure m5-m7

Avih<-rep(NA,(p+3))

L2ih<-rep(NA,(p+3))

L1ih<-rep(NA,(p+3))

for(i in 1:(p+3)){

Avih[i]<-mean(xyd[,i]-xyd[,p])

L2ih[i]<-mean((xyd[,i]-xyd[,p])^2)

L1ih[i]<-mean(abs(xyd[,i]-xyd[,p]))}

##calculates the measures m8-m10

Avise<-rep(NA,(p+3))

L2ise<-rep(NA,(p+3))

L1ise<-rep(NA,(p+3))
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for(i in 1:(p+3)){

Avise[i]<-mean(xyd[,i+(p+3)]-xyd[,l/2+p])

L2ise[i]<-mean((xyd[,i+(p+3)]-xyd[,l/2+p])^2)

L1ise[i]<-mean(abs(xyd[,i+(p+3)]-xyd[,l/2+p]))}

##data output

aus1 <- rbind(s1, s2, Avih, L2ih, L1ih, Avise, L2ise, L1ise)

for (i in 1:10){

for (j in 1:12){

if(abs(aus1[i,j])>0.0001) aus1[i,j]<-round(aus1[i,j], digits = 4)

else aus1[i,j]<-round(aus1[i,j], digits = 10)}}

meas<-c("Criteria","CV","MCV","OSCV(L)","OSCV(R)",

"Stab","refPI","SBG","SBE","ISE","Mix 2/1","Mix 1/2", "Mix 1/1")

meth<-c("$m_1$","$m_2$","$m_3$","$m_4$",

"$m_5$","$m_6$","$m_7$","$m_8$","$m_9$","$m_{10}$")

aus1 <- cbind(meth,aus1)

aus1 <- rbind(meas,aus1)

##save the output in "out10.txt"

#write(t(aus1),ncolumns=13,append=TRUE, sep="&", file = ".../out10.txt")
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A.2. Programming code – Semiparametric voter profiling

in a multi-party system

This section gives the R code for analyzing voter profiles in a multi-party system like

Germany. The main part of the program is the implementation of the iterative estimation

procedure by means of the function multgplm(). The results at the end of each part of

the code are saved in an R.data file. Therefore, all subsections can be directly used in R

once the corresponding folder is chosen.

R Code – Data generation; SOEP-Data

This subsection shows the R code for reading in the data from the GSOEP survey 1 and

preparing the data for the usage in the function multgplm().

memory.limit(4095)

#####Import SOEP-Data

#setwd("...Daten/soep_Daten") ##choose corresponding folder

library(foreign) ##read foreign data types

read.dta("wp.dta")->wp

read.dta("tp.dta")->tp

read.dta("wh.dta")->wh

soep_data<-merge(wp,wh,by="hhnrakt")

soep_data<-merge(soep_data,tp,by="persnr")

##Res. before reunification

soep2<-soep_data[,c("tp121")]

#Party, HH-net-income, sex, year of birth

soep<-soep_data[,c("wp12001","wh5101","wp12401","wp12402")]

##soep[,4] year of birth -> age

soep[,4]<-2007-soep[,4]

#combine the different items ## n=18075

soep<-cbind(soep,rep(0,length(soep[,1])),

rep(0,length(soep[,1])),soep2)

which(soep[,1]!="Does not apply")->ind ; soep<-soep[ind,]

1SOEP Wave Report 1-2008, DIW Berlin, 2008
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##9.288 do not support any party -> out

which(soep[,1]=="CDU [Christian Democratic Union]")->ind

soep[ind,6]<-5

which(soep[,1]=="CSU [Christian Social Union]")->ind ; soep[ind,6]<-5

which(soep[,1]=="SPD [Social Democratic Party of Germany]")->ind

soep[ind,6]<-1

which(soep[,1]=="Alliance ’90/Greens")->ind ; soep[ind,6]<-2

which(soep[,1]=="Left Party.PDS")->ind ; soep[ind,6]<-3

which(soep[,1]=="FDP [Free Democratic Party]")->ind ; soep[ind,6]<-4

which(soep[,6]!=0)->ind ; soep<-soep[ind,]

#376 support other parties -> out <5%

which(soep[,7]!="Abroad")->ind ; soep<-soep[ind,]

##227 live in foreign countries before reunification -> out

which(soep[,2]>0)->ind ; soep<-soep[ind,]

##383 made no declaration about their income ->out

which(soep[,2]>400)->ind ; soep<-soep[ind,]

##32 person earn less than 400 Euro -> out

which(soep[,2]<15000)->ind ; soep<-soep[ind,]

##32 person earn more than 15000 Euro -> out

which(soep[,2]<10000)->ind ; soep<-soep[ind,]

##another 77 person earn more than 10000 Euro -> out

which(soep[,4]<90)->ind ; soep<-soep[ind,]

##41 person older than 90 -> out

which(soep[,4]<80)->ind ; soep<-soep[ind,]

##384 person older than 80 -> out

which(soep[,4]<70)->ind ; soep<-soep[ind,]

##1026 person older than 70 -> out

which(soep[,4]<65)->ind ; soep<-soep[ind,]

##866 person older than 65 -> out

which(soep[,3]=="Female")->ind ; soep[ind,5]<-1

soep<-cbind(soep,rep(0,length(soep[,1])))

which(soep[,7]=="GDR (including East Berlin)")->ind ; soep[ind,8]<-1

n<-soep.len<-dim(soep)[1] ##n=5343 Rest

sample(1:soep.len,size=n,replace=FALSE)->ind ; data<-soep[ind,]

names(data)<-c("Party","Income","Sex","Age",

"Sex_D","Mode","East","East_D")

#save.image("Soep_HH5343.Rdata")
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R Code – Estimation procedure

This subsection gives the R code of the estimation procedure of the semiparametric mul-

tinomial logit model. The code is divided into several functions. The description, usage,

arguments and the output of the corresponding functions is given.

R function: logl()

Description

Calculates the Log-Likelihood as well as the first and the second derivative w.r.t. the

predictor η for the corresponding mode k.

Usage

logl(theta,x,y,m,k)

Arguments

theta p× k matrix, coefficients of the parametric part of the semiparametric mul-

tinomial logit model or suitable starting values

x n× p matrix, covariates which are supposed to be model parametrically

y n× 1 matrix, dependent variable

m n× k matrix, values of the nonparametric functions of the semiparametric

multinomial logit model or suitable starting values

k integer, the corresponding mode

Output

ll n×3-matrix, values for the likelihood as well as the first and the second deri-

vative of the semiparametric multinomial logit model for the corresponding

mode k.

Details

logl<-function(theta,x,y,m,k)

{Ind<-ifelse(y==k,1,0)

eta<-x%*%theta+m ;etanum<-exp(eta[,k])

denom<-apply(exp(eta),1,sum)

li<-Ind*log(etanum/denom)

li.<-(Ind-etanum/denom)

li..<-(-(etanum*denom-etanum^2)/(denom^2))

ll<-cbind(li,li.,li..); return(ll)}
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R function: kern()

Description

Calculates the kernel function for the estimation of the nonparametric functions in the

semiparametric multinomial logit model.

Usage

kern(T,h,Kern="gaussian",n)

Arguments

T n× q matrix, covariates which are supposed to be model nonparametrically

h scalar or 1× q matrix, bandwidth

Kern name of the kernel function (currently only ”gaussian” and ”quartic” are

supported)

n integer, length of the data

Output

kern n× n-matrix, kernel function

Details

kern<-function(T,h,Kern="gaussian",n)

{

u<-matrix(rep(0,n*n),nrow=n)

for (i in 1:n){u[i,]<-(T[i]-T)/h}

if(missing(Kern)) Kern<-"gaussian"

if(Kern=="quartic"){

kern<-ifelse((abs(u)<=1),15/16*(1-u^2)^2,0)}

if(Kern=="gaussian"){

kern<-1/sqrt(2*pi)*exp(-1/2*u^2)}

return(kern)}
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R function: multgplm()

Description

Fits a semiparametric multinomial logit model to the data with aid of a smoothed and

profile likelihood. The estimation is based on an iterative Newton-Raphson algorithm.

Usage

multgplm(y=y,x=x,T=T,b0=b0,m0=m0,max.iter=20,modes=modes,

h=h,Kern="gaussian",...)

Arguments

y n× 1 matrix, dependent variable

x n× p matrix, covariates which are supposed to be model parametrically

T n× q matrix, covariates which are supposed to be model nonparametrically

b0 p × k matrix, suitable starting values for the coefficients of the parametric

part of the model

m n×k matrix, suitable starting values for the nonparametric functions of the

model

max.iter integer, maximum number of iterations

h scalar or 1× q matrix, bandwidth

Kern name of the kernel function (currently only ”gaussian” and ”quartic” are

supported)

Output

b p× k matrix, estimated coefficients of the parametric part of the semipara-

metric multinomial logit model

m n× k matrix, estimated values of the nonparametric functions of the semi-

parametric multinomial logit model

Time integer, duration of the estimation procedure

se b standard errors of the estimated coefficients b

t b t-values of the estimated coefficients b

LogL Log-Likelihood for the final estimates

y n× 1 matrix, dependent variable

x n× p matrix, covariates which are supposed to be model parametrically

T n× q matrix, covariates which are supposed to be model nonparametrically

sd1 integer, standard-deviation of the first nonparametrically modeled covariate

sd2 integer, standard-deviation of the second nonparametrically modeled cova-

riate

h scalar or 1× q matrix, bandwidth
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Details

multgplm<-function(y=y,x=x,T=T,

b0=b0,m0=m0,max.iter=20,modes=modes,h=h,Kern="gaussian",...){

#Preparing the data

y <- as.matrix(y)

n<-dim(y)[1]

x<-as.matrix(x)

betadim<-dim(x)[2]

T <- as.matrix(T)

Tdim<-dim(T)[2]

##Ordering of the data (for graphical purposes)

or1 <- order(T[, 1])

if (Tdim==2) or2 <- order(T[, 2])

##correction of the standard-errors (for estimation)

sd1<-sd(T[,1])

if (Tdim==2) sd2<-sd(T[,2])

T.1<-T[,1]/sd1

if (Tdim==2) T.2<-T[,2]/sd2

if (Tdim==2) T<-cbind(T.1,T.2)

##check for missing values and setting to defaults

if(missing(Kern)) Kern<-"gaussian"

if(missing(h)) h<-h.select(T,y)

if(length(h)==1) h<-rep(h,2)

if(missing(modes)) modes<-nlevels(factor(y))

if(modes!=nlevels(factor(y))){stop("number of modes incorrect")}

if(missing(max.iter)) max.iter<-20

##Setting of suitable starting values

b<-matrix(rep(0,modes*betadim),ncol=modes)

if(!missing(b0)) b[,1:(modes-1)]<-b0 ; print(b)

m<-matrix(rep(0,n*modes),ncol=modes)

if(!missing(m0)) {

for (k in 1:(modes-1)){m[,k]<-m0[1,k]*T[,1]+m0[2,k]*T[,2]}}

##Calculation of the kernel function (using kern())

Kh1<-kern(T[,1],h[1],Kern,n)

if (Tdim==2) Kh2<-kern(T[,2],h[2],Kern,n)

Kh<-Kh1*Kh2
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##Preparing of empty vectors and matrices

li.mat<-matrix(rep(0,n^2),nrow=n)

li..mat<-matrix(rep(0,n^2),nrow=n)

xtilde<-matrix(rep(0,n*dim(b)[1]),nrow=n)

Bsummand<-array(rep(0,n*betadim^2),c(betadim,betadim,n))

B_k<-rep(0,betadim*betadim*(modes-1))

dim(B_k)=c(betadim,betadim,(modes-1))

mnew<-rep(0,n)

biterations<-rep(0,(modes-1)*max.iter*betadim)

dim(biterations)=c(betadim,modes-1,max.iter)

LogL<-c(rep(0,(modes-1)))

##########################################

## Start iterative estimation procedure ##

##########################################

start<-Sys.time()

it<-0

while (it<max.iter)

{

it<-it+1

for (k in 1:(modes-1))

{

ll<-logl(b,x,y,m,k)

li.<-ll[,2] # li. for mode k

li..<-ll[,3] # li.. for mode k

# Programming of the profile Likelihood as ixj matrix

for (j in 1:n) # li.mat for mode k

{li.mat[,j]<-logl(b,x,y,matrix(c(rep(m[j,],n)),nrow=n,byrow=TRUE),k)[,2]}

for (j in 1:n) # li..mat for mode k

{li..mat[,j]<-logl(b,x,y,matrix(c(rep(m[j,],n)),nrow=n,byrow=TRUE),k)[,3]}

for (p in 1:n)

{za<-t(apply((li..mat[,p]*Kh[,p])*x,2,sum))

ne<-sum(li..mat[,p]*Kh[,p])

xtilde[p,]<-x[p,]-za/ne}
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B=matrix(rep(0,betadim^2),nrow=betadim) ##updating b (step 2)

for (p in 1:n) {

Bsummand[,,p]<-as.vector(li..)[p]*(xtilde[p,]%*%t(xtilde[p,]))

B<-B+Bsummand[,,p]}

B_k[,,k]<-B

bnew<-b[,k]-solve(B)%*%apply(as.vector(li.)*xtilde,2,sum)

for (p in 1:n) ##updating m (step 3)

{mza<-sum(li.mat[,p]*Kh[,p])

mne<-sum(li..mat[,p]*Kh[,p])

mnew[p]<-m[p,k]-mza/mne}

biterations[,k,it]<-b[,k]<-bnew

m[,k]<-mnew

}

print(it)

print(b)

#Abort criterion

diff<-matrix(rep(1,betadim*(modes-1)),nrow=betadim)

if(it>1) {for(i in 1:betadim){ for(j in 1:(modes-1)){

diff[i,j]<-abs(biterations[i,j,it]-biterations[i,j,(it-1)]) }}}

print(sum(diff))

if(sum(diff)<0.01) it<-max.iter}

##Output values

se_b<-matrix(rep(0,betadim*(modes-1)),nrow=betadim)

for(z in 1:(modes-1)){

se_b[,z]<-diag(sqrt(solve(-B_k[,,z])))}##St.fehler für b_k

t_b<-b[1:(modes-1)]/se_b ##t-values für b_k

LogL[k]<-sum(ll[,1])

end<-Sys.time()

Time<-end-start

return(list(b=b,m=m,Time=Time,se_b=se_b,t_b=t_b,

LogL=LogL,y=y,x=x,T=T,sd1=sd1,sd2=sd2,h=h))}
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##########################

## Running the function ##

##########################

#do not run:

#setwd(".../Daten/soep_Daten/") ##choose corresponding folder

#load("Soep_HH5343.Rdata") #read in the data

#mult_mod<-multgplm(data[,6],x=cbind(data[,5],data[,8]),

#T=cbind(log(data[,2]),data[,4]),h=0.6,max.iter=10)

#attach(mult_mod)

#save.image("Soep_estHH5343.Rdata") ##save estimation results
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R Code – Graphical presentation

This subsection gives the R code for producing the three-dimensional plots and the plots

of the additive decomposition presented in the paper.

Bivariate three-dimensional plots

The three-dimensional plots are generated by using the rgl-package proposed by Daniel

Adler and Duncan Murdoch (2009).

###3D-Graphics

rm(list=ls())

memory.limit(4092)

#setwd(".../Daten/soep_Daten/") ##choose corresponding folder

load("Soep_estHH5343.Rdata") ##load estimation results

attach(mult_mod)

library(rgl)

f<-female<-1;o<-ost<-0 #Sex and East? 1-woman,0-man resp. 1-east,0-west

##Calculate the probabilities

b_female<-round(b[1,],5)

b_ost<-round(b[2,],5)

len_m<-length(y)

eta<-matrix(rep(NA,len_m*5),nrow=len_m)

for (k in 1:len_m)

{eta[k,]<-(b_female*f+b_ost*o+(m[k,]))}

Prob<-matrix(rep(NA,len_m*5),nrow=len_m)

for (k in 1:len_m)

{Pro<-exp(eta[k,])/(sum(exp(eta[k,])))

Prob[k,]<-Pro}

##Package for bivariate Interpolation and Smooth Surface Fitting

##for Irregularly Distributed Data Points (Akima et.al., 2009)

library(akima)

min_inc<-log(400); max_inc<-log(10000) ##limits for income

min_age<-21; max_age<-65 ##limits for age

z1<-akima.z1 <- interp(T[,1], T[,2], Prob[,1],

xo=seq(min_inc/sd1,max_inc/sd1, length = 202),
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yo=seq(min_age/sd2, max_age/sd2, length = 202),

linear = FALSE, extrap = TRUE,duplicate="strip")

z2<-akima.z2 <- interp(T[,1], T[,2], Prob[,2],

xo=seq(min_inc/sd1,max_inc/sd1, length = 202),

yo=seq(min_age/sd2, max_age/sd2, length = 202),

linear = FALSE, extrap = TRUE,duplicate="strip")

z3<-akima.z3 <- interp(T[,1], T[,2], Prob[,3],

xo=seq(min_inc/sd1,max_inc/sd1, length = 202),

yo=seq(min_age/sd2, max_age/sd2, length = 202),

linear = FALSE, extrap = TRUE,duplicate="strip")

z4<-akima.z4 <- interp(T[,1], T[,2], Prob[,4],

xo=seq(min_inc/sd1,max_inc/sd1, length = 202),

yo=seq(min_age/sd2, max_age/sd2, length = 202),

linear = FALSE, extrap = TRUE,duplicate="strip")

z5<-akima.z5 <- interp(T[,1], T[,2], Prob[,5],

xo=seq(min_inc/sd1,max_inc/sd1, length = 202),

yo=seq(min_age/sd2, max_age/sd2, length = 202),

linear = FALSE, extrap = TRUE,duplicate="strip")

#setwd(".../images/") ##choose corresponding folder

open3d();bg3d("white")

surface3d( (akima.z1$x*sd1),akima.z1$y*sd2,akima.z1$z,color="red",

alpha=c(0.3),front="fill",lit=F)

surface3d( (akima.z1$x*sd1)[0:25*8+1],(akima.z1$y*sd2)[0:25*8+1],

akima.z1$z[0:25*8+1,0:25*8+1],

alpha=c(0.3),front="line",back="cull",lwd=1.5)

surface3d( (akima.z1$x*sd1)[0:25*8+1],(akima.z1$y*sd2)[0:25*8+1],

akima.z1$z[0:25*8+1,0:25*8+1],

alpha=c(0.7),front="line",back="line")

view3d(userMatrix = rotationMatrix(70*pi/190, -1.2,-0.4,-0.95))

aspect3d(1,1,1);axes3d()

ind<-which(T[,1]*sd1>=min_inc & T[,1]*sd1<=max_inc &

T[,2]*sd2>=min_age & T[,2]*sd2<=max_age)

points3d((T[,1]*sd1)[ind],(T[,2]*sd2)[ind],min(z1$z)-0.001,size=1)

#rgl.snapshot("SPD_Frau_West_Paper.ps")

open3d();bg3d("white")
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surface3d( (akima.z2$x*sd1),akima.z2$y*sd2,akima.z2$z,color="green",

alpha=c(0.3),front="fill",lit=F)

surface3d( (akima.z2$x*sd1)[0:25*8+1],(akima.z2$y*sd2)[0:25*8+1],

akima.z2$z[0:25*8+1,0:25*8+1],

alpha=c(0.3),front="line",back="cull",lwd=1.5)

surface3d( (akima.z2$x*sd1)[0:25*8+1],(akima.z2$y*sd2)[0:25*8+1],

akima.z2$z[0:25*8+1,0:25*8+1],

alpha=c(0.7),front="line",back="line")

view3d(userMatrix = rotationMatrix(70*pi/190, -1.2,-0.4,-0.95))

aspect3d(1,1,1);axes3d()

ind<-which(T[,1]*sd1>=min_inc & T[,1]*sd1<=max_inc &

T[,2]*sd2>=min_age & T[,2]*sd2<=max_age)

points3d((T[,1]*sd1)[ind],(T[,2]*sd2)[ind],min(z2$z)-0.001,size=1)

#rgl.snapshot("Grüne_Frau_West_Paper.ps")

open3d();bg3d("white")

surface3d( (akima.z3$x*sd1),akima.z3$y*sd2,akima.z3$z,color="violet",

alpha=c(0.3),front="fill",lit=F)

surface3d( (akima.z3$x*sd1)[0:25*8+1],(akima.z3$y*sd2)[0:25*8+1],

akima.z3$z[0:25*8+1,0:25*8+1],

alpha=c(0.3),front="line",back="cull",lwd=1.5)

surface3d( (akima.z3$x*sd1)[0:25*8+1],(akima.z3$y*sd2)[0:25*8+1],

akima.z3$z[0:25*8+1,0:25*8+1], alpha=c(0.7),front="line",back="line")

view3d(userMatrix = rotationMatrix(70*pi/190, -1.2,-0.4,-0.95))

aspect3d(1,1,1);axes3d()

ind<-which(T[,1]*sd1>=min_inc & T[,1]*sd1<=max_inc &

T[,2]*sd2>=min_age & T[,2]*sd2<=max_age)

points3d((T[,1]*sd1)[ind],(T[,2]*sd2)[ind],min(z3$z)-0.001,size=1)

#rgl.snapshot("Linke_Frau_West_Paper.ps")

open3d();bg3d("white")

surface3d( (akima.z4$x*sd1),akima.z4$y*sd2,akima.z4$z,color="yellow3",

alpha=c(0.3),front="fill",lit=F)

surface3d( (akima.z4$x*sd1)[0:25*8+1],(akima.z4$y*sd2)[0:25*8+1],

akima.z4$z[0:25*8+1,0:25*8+1],

alpha=c(0.3),front="line",back="cull",lwd=1.5)

surface3d( (akima.z4$x*sd1)[0:25*8+1],(akima.z4$y*sd2)[0:25*8+1],
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akima.z4$z[0:25*8+1,0:25*8+1], alpha=c(0.7),front="line",back="line")

view3d(userMatrix = rotationMatrix(70*pi/190, -1.2,-0.4,-0.95))

aspect3d(1,1,1);axes3d()

ind<-which(T[,1]*sd1>=min_inc & T[,1]*sd1<=max_inc &

T[,2]*sd2>=min_age & T[,2]*sd2<=max_age)

points3d((T[,1]*sd1)[ind],(T[,2]*sd2)[ind],min(z4$z)-0.001,size=1)

#rgl.snapshot("FDP_Frau_West_Paper.ps")

open3d();bg3d("white")

surface3d( (akima.z5$x*sd1),akima.z5$y*sd2,akima.z5$z,color="black",

alpha=c(0.3),front="fill",lit=F)

surface3d( (akima.z5$x*sd1)[0:25*8+1],(akima.z5$y*sd2)[0:25*8+1],

akima.z5$z[0:25*8+1,0:25*8+1],

alpha=c(0.3),front="line",back="cull",lwd=1.5)

surface3d( (akima.z5$x*sd1)[0:25*8+1],(akima.z5$y*sd2)[0:25*8+1],

akima.z5$z[0:25*8+1,0:25*8+1],

alpha=c(0.7),front="line",back="line")

view3d(userMatrix = rotationMatrix(70*pi/190, -1.2,-0.4,-0.95))

aspect3d(1,1,1);axes3d()

ind<-which(T[,1]*sd1>=min_inc & T[,1]*sd1<=max_inc &

T[,2]*sd2>=min_age & T[,2]*sd2<=max_age)

points3d((T[,1]*sd1)[ind],(T[,2]*sd2)[ind],min(z5$z)-0.001,size=1)

#rgl.snapshot("CDU_Frau_West_Paper.ps")
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Additive three-dimensional plots

The three-dimensional plots are generated by using the rgl-package proposed by Daniel

Adler and Duncan Murdoch (2009).

The additive decomposition is done with the mgcv::gam-package from Simon Wood (2006)

rm(list=ls())

#setwd(".../Daten/soep_Daten/") ##choose corresponding folder

load("Soep_estHH5343.Rdata")

attach(mult_mod)

library(mgcv) #load mgcv-package

log_income<-log(T[,1])

age<-T[,2]

or1<-order(log_income)

or2<-order(age)

n<-length(y)

##Die CDU/CSU

ym<-m[,5]

gam(ym~s(log_income)+s(age))->mod5

pred5<-predict(mod5,type="terms")

##Die SPD

ym<-m[,1]

gam(ym~s(log_income)+s(age))->mod1

pred1<-predict(mod1,type="terms")

##Die Grünen

ym<-m[,2]

gam(ym~s(log_income)+s(age))->mod2

pred2<-predict(mod2,type="terms")

##Die Linke

ym<-m[,3]

gam(ym~s(log_income)+s(age))->mod3

pred3<-predict(mod3,type="terms")

113



A. Appendix

##Die FDP

ym<-m[,4]

gam(ym~s(log_income)+s(age))->mod4

pred4<-predict(mod4,type="terms")

##Calculation of additive probabilities

f<-female<-1

o<-ost<-0

b_female<-round(b[1,],5)

b_ost<-round(b[2,],5)

eta<-matrix(rep(NA,n*5),nrow=n)

for (k in 1:n)

{eta[k,1]<-(b_female[1]*female+b_ost[1]*ost+

pred1[k,1]+pred1[k,2]+mod1$coef[1])}

for (k in 1:n)

{eta[k,2]<-(b_female[2]*female+b_ost[2]*ost+

pred2[k,1]+pred2[k,2]+mod2$coef[1])}

for (k in 1:n)

{eta[k,3]<-(b_female[3]*female+b_ost[3]*ost+

pred3[k,1]+pred3[k,2]+mod3$coef[1])}

for (k in 1:n)

{eta[k,4]<-(b_female[4]*female+b_ost[4]*ost+

pred4[k,1]+pred4[k,2]+mod4$coef[1])}

for (k in 1:n)

{eta[k,5]<-(b_female[5]*female+b_ost[5]*ost+

pred5[k,1]+pred5[k,2]+mod5$coef[1])}

Prob<-matrix(rep(NA,n*5),nrow=n)

for (k in 1:n)

{Pro<-exp(eta[k,])/(sum(exp(eta[k,])))

Prob[k,]<-Pro}

##Package for bivariate Interpolation and Smooth Surface Fitting

##for Irregularly Distributed Data Points (Akima et.al., 2009)

library(akima)

min_inc<-log(400); max_inc<-log(10000) ##limits for income

min_age<-21; max_age<-65 ##limits for age
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akima.z1 <- interp(T[,1], T[,2], Prob[,1],

xo=seq(5.991/sd1,9/sd1, length = 202),

yo=seq(min(T[,2]), max(T[,2]), length = 202),

linear = FALSE, extrap = TRUE,duplicate="strip")

akima.z2 <- interp(T[,1], T[,2], Prob[,2],

xo=seq(5.991/sd1,9/sd1, length = 202),

yo=seq(min(T[,2]), max(T[,2]), length = 202),

linear = FALSE, extrap = TRUE,duplicate="strip")

akima.z3 <- interp(T[,1], T[,2],Prob[,3],

xo=seq(5.991/sd1,9/sd1, length = 202),

yo=seq(min(T[,2]), max(T[,2]), length = 202),

linear = FALSE, extrap = TRUE,duplicate="strip")

akima.z4 <- interp(T[,1], T[,2], Prob[,4],

xo=seq(5.991/sd1,9/sd1, length = 202),

yo=seq(min(T[,2]), max(T[,2]), length = 202),

linear = FALSE, extrap = TRUE,duplicate="strip")

akima.z5 <- interp(T[,1], T[,2], Prob[,5],

xo=seq(5.991/sd1,9/sd1, length = 202),

yo=seq(min(T[,2]), max(T[,2]), length = 202),

linear = FALSE, extrap = TRUE,duplicate="strip")

ind<-which(is.na(akima.z1$z))

z1<-akima.z1$z[-ind]

ind<-which(is.na(akima.z2$z))

z2<-akima.z2$z[-ind]

ind<-which(is.na(akima.z3$z))

z3<-akima.z3$z[-ind]

ind<-which(is.na(akima.z4$z))

z4<-akima.z4$z[-ind]

ind<-which(is.na(akima.z5$z))

z5<-akima.z5$z[-ind]
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library(rgl) #load package

#setwd(".../images/") ##choose corresponding folder

open3d();bg3d("white")

par3d(windowRect=c(20,50,900,900))#

surface3d( (akima.z1$x*sd1),akima.z1$y*sd2,akima.z1$z,color="red",

alpha=c(0.3),front="fill",lit=F)

surface3d( (akima.z1$x*sd1)[0:25*8+1],(akima.z1$y*sd2)[0:25*8+1],

akima.z1$z[0:25*8+1,0:25*8+1],

alpha=c(0.3),front="line",back="cull",lwd=1.5)

surface3d( (akima.z1$x*sd1)[0:25*8+1],(akima.z1$y*sd2)[0:25*8+1],

akima.z1$z[0:25*8+1,0:25*8+1],

alpha=c(0.7),front="line",back="line")

view3d(userMatrix = rotationMatrix(70*pi/190, -1.2,-0.4,-0.95))

aspect3d(1,1,1)

ind<-which(T[,1]*sd1>=min_inc & T[,1]*sd1<=max_inc &

T[,2]*sd2>=min_age & T[,2]*sd2<=max_age)

points3d((T[,1]*sd1)[ind],(T[,2]*sd2)[ind],min(z1)-0.001,size=1)

axes3d(labels=FALSE,tick=FALSE,xlab="",ylab="",zlab="",nticks=0)

axis3d(c("x++"),cex=1.3)

axis3d(c("y-+"),cex=1.3)

axis3d(c("z++"),cex=1.3)

#rgl.snapshot("SPD_Frau_West_Add.ps")

open3d();bg3d("white")

surface3d( (akima.z2$x*sd1),akima.z2$y*sd2,akima.z2$z,color="green",

alpha=c(0.3),front="fill",lit=F)

surface3d( (akima.z2$x*sd1)[0:25*8+1],(akima.z2$y*sd2)[0:25*8+1],

akima.z2$z[0:25*8+1,0:25*8+1],

alpha=c(0.3),front="line",back="cull",lwd=1.5)

surface3d( (akima.z2$x*sd1)[0:25*8+1],(akima.z2$y*sd2)[0:25*8+1],

akima.z2$z[0:25*8+1,0:25*8+1],

alpha=c(0.7),front="line",back="line")

view3d(userMatrix = rotationMatrix(70*pi/190, -1.2,-0.4,-0.95))

aspect3d(1,1,1)

ind<-which(T[,1]*sd1>=min_inc & T[,1]*sd1<=max_inc &
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T[,2]*sd2>=min_age & T[,2]*sd2<=max_age)

points3d((T[,1]*sd1)[ind],(T[,2]*sd2)[ind],min(z2)-0.001,size=1)

axes3d(labels=FALSE,tick=FALSE,xlab="",ylab="",zlab="",nticks=0)

axis3d(c("x-+"),cex=1.3)

axis3d(c("y+-"),cex=1.3)

axis3d(c("z+-"),cex=1.3)

#rgl.snapshot("Grüne_Frau_West_Add.ps")

open3d();bg3d("white")

surface3d( (akima.z3$x*sd1),akima.z3$y*sd2,akima.z3$z,color="violet",

alpha=c(0.3),front="fill",lit=F)

surface3d( (akima.z3$x*sd1)[0:25*8+1],(akima.z3$y*sd2)[0:25*8+1],

akima.z3$z[0:25*8+1,0:25*8+1],

alpha=c(0.3),front="line",back="cull",lwd=1.5)

surface3d( (akima.z3$x*sd1)[0:25*8+1],(akima.z3$y*sd2)[0:25*8+1],

akima.z3$z[0:25*8+1,0:25*8+1], alpha=c(0.7),front="line",back="line")

view3d(userMatrix = rotationMatrix(70*pi/190, -1.2,-0.4,-0.95))

lines3d(x=max(T[,1]*sd1),y=max(T[,2]*sd2),z=seq(0,0.5,len=100))

aspect3d(1,1,1)

ind<-which(T[,1]*sd1>=min_inc & T[,1]*sd1<=max_inc &

T[,2]*sd2>=min_age & T[,2]*sd2<=max_age)

points3d((T[,1]*sd1)[ind],(T[,2]*sd2)[ind],min(z3)-0.01,size=1)

axes3d(labels=FALSE,tick=FALSE,xlab="",ylab="",zlab="",nticks=0)

axis3d(c("x++"),cex=1.3)

axis3d(c("y+-"),cex=1.3)

axis3d(c("z++"),cex=1.3)

#rgl.snapshot("Linke_Mann_Ost_Add.ps")

open3d();bg3d("white")

surface3d( (akima.z4$x*sd1),akima.z4$y*sd2,akima.z4$z,color="yellow3",

alpha=c(0.3),front="fill",lit=F)

surface3d( (akima.z4$x*sd1)[0:25*8+1],(akima.z4$y*sd2)[0:25*8+1],

akima.z4$z[0:25*8+1,0:25*8+1],

alpha=c(0.3),front="line",back="cull",lwd=1.5)

surface3d( (akima.z4$x*sd1)[0:25*8+1],(akima.z4$y*sd2)[0:25*8+1],

akima.z4$z[0:25*8+1,0:25*8+1], alpha=c(0.7),front="line",back="line")

view3d(userMatrix = rotationMatrix(70*pi/190, -1.2,-0.4,-0.95))
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aspect3d(1,1,1)

ind<-which(T[,1]*sd1>=min_inc & T[,1]*sd1<=max_inc &

T[,2]*sd2>=min_age & T[,2]*sd2<=max_age)

points3d((T[,1]*sd1)[ind],(T[,2]*sd2)[ind],min(z4)-0.001,size=1)

axes3d(labels=FALSE,tick=FALSE,xlab="",ylab="",zlab="",nticks=0)

axis3d(c("x-+"),cex=1.3)

axis3d(c("y--"),cex=1.3)

axis3d(c("z--"),cex=1.3)

#rgl.snapshot("FDP_Frau_West_Add.ps")

open3d();bg3d("white")

surface3d( (akima.z5$x*sd1),akima.z5$y*sd2,akima.z5$z,color="black",

alpha=c(0.3),front="fill",lit=F)

surface3d( (akima.z5$x*sd1)[0:25*8+1],(akima.z5$y*sd2)[0:25*8+1],

akima.z5$z[0:25*8+1,0:25*8+1],

alpha=c(0.3),front="line",back="cull",lwd=1.5)

surface3d( (akima.z5$x*sd1)[0:25*8+1],(akima.z5$y*sd2)[0:25*8+1],

akima.z5$z[0:25*8+1,0:25*8+1],

alpha=c(0.7),front="line",back="line")

view3d(userMatrix = rotationMatrix(70*pi/190, -1.2,-0.4,-0.95))

aspect3d(1,1,1)

ind<-which(T[,1]*sd1>=min_inc & T[,1]*sd1<=max_inc &

T[,2]*sd2>=min_age & T[,2]*sd2<=max_age)

points3d((T[,1]*sd1)[ind],(T[,2]*sd2)[ind],min(z5)-0.001,size=1)

axes3d(labels=FALSE,tick=FALSE,xlab="",ylab="",zlab="",nticks=0)

axis3d(c("x++"),cex=1.3)

axis3d(c("y--"),cex=1.3)

axis3d(c("z-+"),cex=1.3)

#rgl.snapshot("CDU_Frau_West_Add.ps")
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Additive decomposition

The additive decomposition is done with the mgcv::gam-package from Simon Wood (2006)

##graphics for additive decomposition using mgcv::gam()

library(mgcv) ##load package

rm(list=ls())

#setwd("...") ##choose corresponding folder

load("Soep_estHH5343.Rdata") #read the data

attach(mult_mod) #attach model values (multinomial logit)

##limits for graphical purposes

min_inc<-log(400); max_inc<-log(10000)

min_age<-20; max_age<-65

#one picture for all (special R-layout)

nf <- layout(matrix(c(1:14), 7, 2, byrow=TRUE)) #14 pictures (7*2)

#1*2 for picture titles

layout.show(nf)

par(mar=c(0, 5, 1, 2), mgp=c(3, 1, 0))

x<-seq(min_inc,max_inc,len=100);y<-0+0*x

plot(x,y,xaxt="n",col="white",col.axis="white",

col.lab="white",bty="n",yaxt="n")

text((min_inc+max_inc)/2,-0.2,"log(income)",cex=2,lwd=2)

x<-seq(min_age,max_age,len=100);y<-0+0*x

plot(x,y,xaxt="n",col="white",col.axis="white",

col.lab="white",bty="n",yaxt="n")

text((min_age+max_age)/2,-0.2,"age",cex=2,lwd=2)

par(mar=c(0, 5, 0, 2), mgp=c(3, 1, 0))

#now 5*2 picture for the corresponding parties

##Die CDU/CSU

y<-m[,5] #choose aditive decomposable variable

log_income<-T[,1]*sd1 #unscaled income

age<-T[,2]*sd2 #unscaled age

gam(y~s(log_income)+s(age))->mod5 #additive decomposition

plot(mod5,xlim=c(log(400),log(10000)),xpd=FALSE,pages=0,col=1,

shift= mod5$coef[1],xlab="",ylab="",xaxt="n",rug=FALSE,se=FALSE,lwd=3,
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scale=0,cex.axis=1.3,cex.lab=1.6,select=1,yaxt="n")

axis(2,cex.axis=1.2)

plot(mod5,xlim=c(20,60),xpd=FALSE,pages=0,col=1,

shift= mod5$coef[1],xlab="",ylab="",xaxt="n",rug=FALSE,se=FALSE,lwd=3,

scale=0,cex.axis=1.3,cex.lab=1.6,select=2,yaxt="n")

axis(2,cex.axis=1.2)

##Die SPD

y<-m[,1]

gam(y~s(log_income)+s(age))->mod1

plot(mod1,xlim=c(log(400),log(10000)),xpd=FALSE,pages=0,col="red",

shift= mod1$coef[1],xlab="",ylab="",rug=FALSE,se=FALSE,lwd=3,

scale=0,cex.axis=1.3,cex.lab=1.6,select=1,xaxt="n",yaxt="n")

axis(4,cex.axis=1.2)

plot(mod1,xlim=c(20,60),xpd=FALSE,pages=0,col="red",

shift= mod1$coef[1],xlab="",ylab="",rug=FALSE,se=FALSE,lwd=3,

scale=0,cex.axis=1.3,cex.lab=1.6,select=2,xaxt="n",yaxt="n")

axis(4,cex.axis=1.2)

##Die Grünen

y<-m[,2]

gam(y~s(log_income)+s(age))->mod2

plot(mod2,xlim=c(log(400),log(10000)),xpd=FALSE,pages=0,col="green",

shift= mod2$coef[1],xlab="",ylab=expression(m[k]),rug=FALSE,se=FALSE,

lwd=3,scale=0,cex.axis=1.3,cex.lab=1.5,select=1,xaxt="n",yaxt="n")

axis(2,cex.axis=1.2)

plot(mod2,xlim=c(20,60),xpd=FALSE,pages=0,col="green",

shift= mod2$coef[1],xlab="",ylab=expression(m[k]),rug=FALSE,se=FALSE,

lwd=3,scale=0,cex.axis=1.3,cex.lab=1.5,select=2,xaxt="n",yaxt="n")

axis(2,cex.axis=1.2)

##Die Linke

y<-m[,3]

gam(y~s(log_income)+s(age))->mod3

plot(mod3,xlim=c(log(400),log(10000)),xpd=FALSE,pages=0,col="violet",

shift= mod3$coef[1],xlab="",ylab="",rug=FALSE,se=FALSE,lwd=3,scale=0,

cex.axis=1.3,cex.lab=1.6,select=1,xaxt="n",yaxt="n")
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axis(4,cex.axis=1.2)

plot(mod3,xlim=c(20,60),xpd=FALSE,pages=0,col="violet",

shift= mod3$coef[1],xlab="",ylab="",rug=FALSE,se=FALSE,lwd=3,

scale=0,cex.axis=1.3,cex.lab=1.6,select=2,xaxt="n",yaxt="n")

axis(4,cex.axis=1.2)

##Die FDP

y<-m[,4]

gam(y~s(log_income)+s(age))->mod4

plot(mod4,xlim=c(log(400),log(10000)),xpd=FALSE,pages=0,col="yellow3",

shift= mod4$coef[1],xlab="",ylab="",rug=FALSE,se=FALSE,lwd=3,

scale=0,cex.axis=1.3,cex.lab=1.6,select=1,xaxt="n",yaxt="n")

axis(2,cex.axis=1.2) #,xlim=c(log(400),log(10000))

plot(mod4,xlim=c(20,60),xpd=FALSE,pages=0,col="yellow3",

shift= mod4$coef[1],xlab="",ylab="",rug=FALSE,se=FALSE,lwd=3,

scale=0,cex.axis=1.3,cex.lab=1.6,select=2,xaxt="n",yaxt="n")

axis(2,cex.axis=1.2)

#1*2 for picture subtitles

x<-seq(min_inc,max_inc,len=100); y<-0+0*x

plot(x,y,xaxt="n",col="white",col.axis="white",

col.lab="white",bty="n",yaxt="n")

axis(1,xlab="log_income",at=seq(round(min_inc),trunc(max_inc),by=1),

labels=seq(round(min_inc),trunc(max_inc),by=1),pos=1,outer=TRUE)

x<-seq(min_age,max_age,len=100); y<-0+0*x

plot(x,y,xaxt="n",col="white",col.axis="white",

col.lab="white",bty="n",yaxt="n")

axis(1,xlab="age",at=seq(min_age,max_age,by=5),

labels=seq(min_age,max_age,by=5),pos=1,xpd=TRUE)
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A.3. Programming code – A Semiparametric Model of

Urban Transport Demand

R Code – Data generation; Bilbao-Data

This subsection shows the R code for reading in the data from the query filled in by

students at the University in Bilbao. Also the preparation of the data for the usage in the

function multgplm() is done.

##Bilbao Data

rm(list=ls())

library(VGAM) ; library(KernSmooth) ; library(sm);

library(mlogit);library(nnet)

memory.limit(2047)

set.seed(1)

#setwd(".../Daten/") ##choose corresponding folder

library(foreign)

data<-read.csv("Bilbao.csv",sep=";",header=TRUE)

#EDAD DUM1 MVIAJ EDAD1 SEXO

names(data)<-c("Age","Priv_D","Mode","Age_D","Sex_D",

#UPV ESTP RENTA (Einkommen) FREC TIEMPO PRECIO AED (years of education)

"Uni_D","Income_Edu","Income_HV","Freq","Duration","Price","Edu_Parents")

attach(data)

head(data)

levels(as.factor(Price))

levels(as.factor(Duration))

levels(as.factor(Freq))

Income_Edu<-ifelse(Income_Edu==0,1,Income_Edu)

levels(as.factor(Income_Edu))

#save.image("Bilbao_Data.RData")
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R Code – Estimation procedure

This subsection gives the R code of the estimation procedure of the semiparametric mul-

tinomial logit model in the case of the urban transport problem in Bilbao. The code is

basically the same as in the second project. However, there are some slightly changes be-

cause of the slightly different data structure as well as sparse data. Hence, some additional

iterations are used in order to assure convergence of the estimates. The presented code is

directly applicable in R.

Details

##Fits a semiparametric multinomial logit model to the data with aid of a

##smoothed and profile likelihood. The estimation is based on an

##iterative Newton-Raphson algorithm. ##Bilbao-Data

library(mlogit); library(MASS); library(sm)

multgplm<-function(y=y,x=x,T=T,

b0=b0,m0=m0,max.iter=20,modes=modes,h=h,Kern="gaussian",...){

#Preparing the data

y <- as.matrix(y)

n<-dim(y)[1]

x<-as.matrix(x)

betadim<-dim(x)[2]

T <- as.matrix(T)

Tdim<-dim(T)[2]

##Ordering of the data (for graphical purposes)

or1 <- order(T[, 1])

if (Tdim==2) or2 <- order(T[, 2])

##correction of the standard-errors (for estimation)

sd1<-sd(T[,1])

if (Tdim==2) sd2<-sd(T[,2])

T.1<-T[,1]/sd1

if (Tdim==2) T.2<-T[,2]/sd2

if (Tdim==2) T<-cbind(T.1,T.2)

##check for missing values and setting to defaults

if(missing(Kern)) Kern<-"gaussian"
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if(missing(h)) h<-h.select(T,y)

if(length(h)==1) h<-rep(h,2)

if(missing(modes)) modes<-nlevels(factor(y))

if(modes!=nlevels(factor(y))){stop("number of modes incorrect")}

if(missing(max.iter)) max.iter<-20

##Setting of suitable starting values

b<-matrix(rep(0,modes*betadim),ncol=modes)

if(!missing(b0)) b[,1:(modes-1)]<-b0 ; print(b)

m<-matrix(rep(0,n*modes),ncol=modes)

if(!missing(m0)) {

for (k in 1:(modes-1)){m[,k]<-m0[1,k]*T[,1]+m0[2,k]*T[,2]}}

##Calculation of the kernel function (using kern())

Kh<-Kh1<-kern(T[,1],h[1],Kern,n)

if (Tdim==2) {Kh2<-kern(T[,2],h[2],Kern,n)

Kh<-Kh1*Kh2}

##Preparing of empty vectors and matrices

li.mat<-matrix(rep(0,n^2),nrow=n)

li..mat<-matrix(rep(0,n^2),nrow=n)

xtilde<-matrix(rep(0,n*dim(b)[1]),nrow=n)

Bsummand<-array(rep(0,n*betadim^2),c(betadim,betadim,n))

B_k<-rep(0,betadim*betadim*(modes-1))

dim(B_k)=c(betadim,betadim,(modes-1))

mnew<-rep(0,n)

biterations<-rep(0,(modes-1)*max.iter*betadim)

dim(biterations)=c(betadim,modes-1,max.iter)

LogL<-c(rep(0,(modes-1)))

B=matrix(rep(0,betadim^2),nrow=betadim)

##########################################

## Start des iterativen Schätzprozesses ##

##########################################

start<-Sys.time()
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##################################################################

# additional iteration to stabilize the estimation procedure #

# outer iteration over modes, inner iteration for the same mode #

##################################################################

for (k in 1:(modes-1))

{

for (it in 1:2)

{

ll<-logl(b,x,y,m,k)

li.<-ll[,2] # li. for mode k

li..<-ll[,3] # li.. for mode k

# Programming of the profile Likelihood as ixj matrix

for (j in 1:n) # li.mat for mode k

{li.mat[,j]<-logl(b,x,y,matrix(c(rep(m[j,],n)),nrow=n,byrow=TRUE),k)[,2]}

for (j in 1:n) # li..mat for mode k

{li..mat[,j]<-logl(b,x,y,matrix(c(rep(m[j,],n)),nrow=n,byrow=TRUE),k)[,3]}

for (p in 1:n)

{za<-t(apply((li..mat[,p]*Kh[,p])*x,2,sum))

ne<-sum(li..mat[,p]*Kh[,p])

xtilde[p,]<-x[p,]-za/ne}

for (p in 1:n) { ##updating b (step 2)

Bsummand[,,p]<-as.vector(li..)[p]*(xtilde[p,]%*%t(xtilde[p,]))

B<-B+Bsummand[,,p]}

B_k[,,k]<-B

##using ginv() instead of solve()

bnew<-b[,k]-ginv(B)%*%apply(as.vector(li.)*xtilde,2,sum)

for (p in 1:n) ##updating m (step 3)

{mza<-sum(li.mat[,p]*Kh[,p])

mne<-sum(li..mat[,p]*Kh[,p])

mnew[p]<-m[p,k]-mza/mne}

biterations[,k,it]<-b[,k]<-bnew
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m[,k]<-mnew

LogL[k]<-sum(ll[,1])

print(b)}}

##########################################

# usual iteration process over all modes #

##########################################

it<-0

while (it<max.iter)

{

it<-it+1

for (k in 1:(modes-1))

{

ll<-logl(b,x,y,m,k)

li.<-ll[,2] # li. for mode k

li..<-ll[,3] # li.. for mode k

# Programming of the profile Likelihood as ixj matrix

for (j in 1:n) # li.mat for mode k

{li.mat[,j]<-logl(b,x,y,matrix(c(rep(m[j,],n)),nrow=n,byrow=TRUE),k)[,2]}

for (j in 1:n) # li..mat for mode k

{li..mat[,j]<-logl(b,x,y,matrix(c(rep(m[j,],n)),nrow=n,byrow=TRUE),k)[,3]}

for (p in 1:n)

{za<-t(apply((li..mat[,p]*Kh[,p])*x,2,sum))

ne<-sum(li..mat[,p]*Kh[,p])

xtilde[p,]<-x[p,]-za/ne}

B=matrix(rep(0,betadim^2),nrow=betadim)

for (p in 1:n) { ##updating b (step 2)

Bsummand[,,p]<-as.vector(li..)[p]*(xtilde[p,]%*%t(xtilde[p,]))

B<-B+Bsummand[,,p]}

B_k[,,k]<-B

##using ginv() instead of solve()

bnew<-b[,k]-ginv(B)%*%apply(as.vector(li.)*xtilde,2,sum)

for (p in 1:n) ##updating m (step 3)

{mza<-sum(li.mat[,p]*Kh[,p])

mne<-sum(li..mat[,p]*Kh[,p])
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mnew[p]<-m[p,k]-mza/mne}

biterations[,k,it]<-b[,k]<-bnew

m[,k]<-mnew

LogL[k]<-sum(ll[,1])}

print(it);print(b)

#Abort criterion

diff<-matrix(rep(1,betadim*(modes-1)),nrow=betadim)

if(it>1) {for(i in 1:betadim){ for(j in 1:(modes-1)){

diff[i,j]<-abs(biterations[i,j,it]-biterations[i,j,(it-1)]) }}}

print(sum(diff))

if(sum(diff)<0.01) it<-max.iter}

##Output values

se_b<-matrix(rep(0,betadim*(modes-1)),nrow=betadim)

for(z in 1:(modes-1)){

se_b[,z]<-diag(sqrt(solve(-B_k[,,z])))}##St.fehler für b_k

t_b<-b[1:(modes-1)]/se_b ##t-values für b_k

LogL[k]<-sum(ll[,1])

end<-Sys.time()

Time<-end-start

return(list(b=b,m=m,Time=Time,se_b=se_b,t_b=t_b,

LogL=LogL,y=y,x=x,T=T,sd1=sd1,sd2=sd2,h=h))}

#Marginal effects

marg<-array(rep(0,1780*dim(x)[2]*nlevels(as.factor(y))),

dim=c(dim(x)[2],nlevels(as.factor(y)),1780))

for(j in 1:dim(x)[2]){

for(k in 1:nlevels(as.factor(y))){

eta<-x%*%b+m

etanum<-exp(eta[,k])

denom<-apply(exp(eta),1,sum)

marg[j,k,]<-etanum/denom*(b[j,k]-mean(b[j,]))

mean_marg<-apply(marg,c(1,2),mean)

sd_marg<-apply(marg,c(1,2),sd)}}

round(mean_marg,3)

round(sd_marg,3)
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library(VGAM)

mult_mod1<-vglm(formula = Mode~Age_D+Sex_D+Uni_D+

I(Income_HV/10000)+Income_Edu+I(Price/100)+Duration,

family = multinomial(refLevel=6))

marg_eff<-margeff(mult_mod1)

mean_marg_eff<-apply(margeff(mult_mod1),c(1,2),mean)

round(mean_marg_eff,3)

sd_marg_eff<-apply(margeff(mult_mod1),c(1,2),sd)

round(sd_marg_eff,3)

#setwd("...") ##choose corresponding folder

load("Bilbao_Data.Rdata") #load data

attach(data)

mult_mod<-multgplm(y=data$Mode+1,x=cbind(data$Age_D,data$

Sex_D,data$Uni_D,data$Income_Edu,data$Price/100,data$Duration)

,T=cbind(data$Income_HV),max.iter=100)

attach(mult_mod)

#save.image("Bilbao_Est_Paper.Rdata") ##save results
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R Code – Graphical presentation

This subsection gives the R code for producing the plots presented in the paper.

#graphical presentation of the nonparametric functions

#setwd(".../Daten/") ##choose corresponding folder

load("Bilbao_Data.Rdata") #Load data

n<-length(y)

Freq.1<-0;Freq.2<-5;Freq.3<-15

Freq.4<-7;Freq.5<-20;Freq.6<-25

Z<-matrix(rep(c(Freq.1,Freq.2,Freq.3,Freq.4,Freq.5,Freq.6),n),ncol=6,byrow=TRUE)

colnames(Z)<-c("Freq.1","Freq.2","Freq.3","Freq.4","Freq.5","Freq.6")

multdata<-as.data.frame(cbind(data,Z)) ;

multdata$Mode<-as.factor(multdata$Mode+1)

mult_data<-mlogit.data(multdata,shape="wide",choice="Mode",varying=13:18)

mult_data$Income_Edu<-ifelse(mult_data$Income_Edu==0,1,mult_data$Income_Edu)

mult_data$Income_HV<-mult_data$Income_HV/10000

mult_data$Price<-mult_data$Price/100

mult_mod_para<-mlogit(Mode~1|Age_D+Sex_D+Uni_D+Income_Edu

+Price+Duration+Income_HV ,data=mult_data,reflevel=6)

#mult_mod<-mlogit(Mode~Freq-1|Age_D+Sex_D+Uni_D+Income_Edu

+Price+Duration+Income_HV ,data=mult_data,reflevel=6)

#summary(mult_mod_para)

modes<-nlevels(as.factor(y))

betadim<-dim(x)[2]

coef(mult_mod_para)[1:((modes-1)*(betadim+2))]

b0<-coef(mult_mod_para)[(modes):((modes-1)*(betadim+1))]

b0<-matrix(b0,nrow=6,byrow=TRUE)

m0<-coef(mult_mod_para)[((modes-1)*(betadim+1)+1):((modes-1)*(betadim+1)+(modes-1))]

mo<-matrix(m0,nrow=1,byrow=TRUE)

a0<-coef(mult_mod_para)[1:(modes-1)]

#setwd(".../Daten/") ##choose corresponding folder

load("Bilbao_Est_Paper.Rdata")

attach(mult_mod)

par(mfrow=c(3,2))

or1<-order(T)

plot(T[or1]/10000*sd1,mult_mod$m[or1,1],type="p",lwd=3,
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main=("Own Car"),xlab="Income_HV/10000",ylab=expression(m[1](Inc)),

cex.main=2,cex.axis=1.8,cex.lab=1.7)

abline(a0[1],m0[1],lty=2,lwd=3,col=2)

rug(T[or1]/10000*sd1)

plot(T[or1]/10000*sd1,mult_mod$m[or1,2],type="p",lwd=3,

main=("Car Passenger"),xlab="Income_HV/10000",ylab=expression(m[2](Inc)),

cex.main=2,cex.axis=1.8,cex.lab=1.7)

abline(a0[2],m0[2],lty=2,lwd=3,col=2)

rug(T[or1]/10000*sd1)

plot(T[or1]/10000*sd1,mult_mod$m[or1,3],type="p",lwd=3,

main=("Bus"),xlab="Income_HV/10000",ylab=expression(m[3](Inc)),

cex.main=2,cex.axis=1.8,cex.lab=1.7)

abline(a0[3],m0[3],lty=2,lwd=3,col=2)

rug(T[or1]/10000*sd1)

plot(T[or1]/10000*sd1,mult_mod$m[or1,4],type="p",lwd=3,

main=("Train"),xlab="Income_HV/10000",ylab=expression(m[4](Inc)),

cex.main=2,cex.axis=1.8,cex.lab=1.7)

abline(a0[4],m0[4],lty=2,lwd=3,col=2)

rug(T[or1]/10000*sd1)

plot(T[or1]/10000*sd1,mult_mod$m[or1,5],type="p",lwd=3,

main=("Underground"),xlab="Income_HV/10000",ylab=expression(m[5](Inc)),

cex.main=2,cex.axis=1.8,cex.lab=1.7)

abline(a0[5],m0[5],lty=2,lwd=3,col=2)

rug(T[or1]/10000*sd1)

plot(0,0,ylab="",xlab="",col="white",axes=FALSE,

main=("Marginal effects of Income"),cex.main=2)

legend("center",c("parametric","nonparametric"),

col=c(2,1),lty=c(2,3),inset=0.01,lwd=3,cex=1.7)
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