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1 Introduction

The volatility of financial assets is an important parameter in risk management, portfolio
trading and option pricing. The variability in price changes displays the uncertainty of the
market and thus volatility is mainly determined by trading itself. There is much literature
on volatility models mainly on stochastic models but during the last years more and more
work is done on implied volatilities resulting from the well known Black-Scholes (BS) for-
mula for option pricing, when the option price is known.
The Black-Scholes model, introduced by Black and Scholes [4] and Merton [35] in 1973,
gives us a clear and easy model to price options on financial assets like stocks and stock
indexes under only few, well-interpretable assumptions, such as log normality of asset price
returns, constant trading and a constant volatility parameter. Last one is the crucial point
in the model, as the volatility of underlying asset prices cannot be directly observed at
the market. The model assumes a constant volatility across time, strike prices and op-
tion maturity. This assumption turned out to be wrong in practice. When determining
the implied volatility from observed option prices according to the BS formula, we get a
volatilitiy function that is curved in strike and maturity dimension, i.e. the volatility smile
and term structure, respectively. Implied volatility time series vary in trend and variance.
Consequently the log normal assumption for asset returns cannot be correct and in fact the
distribution of asset prices turns out to have fatter tails than the log normal distribution
in practice.

In the past two decades much work has been done on the improvement of the Black-Scholes
option pricing model. Degrees of freedom in the model are increased by introducing stochas-
tic volatility, additional stochastic diffusion coefficients or jump intensities and amplitudes,
see for example Cox et al. [10], Hull and White [26], Stein and Stein [48], Heston [24],
Rubinstein [43], Bates [2], Derman [11], Barndorff-Nielsen [1] and Dumas et al. [12].
Although it is defective, the Black-Scholes model has become very popular and is largely
applied in the financial world. Therefore, we do not want to follow the approaches to
improve the model but to regard the resulting implied volatility as a state variable that
reflects current market situations and thus is interesting by itself.
Implied volatilities are analysed as functions of the strike price K and option maturity τ .
Traders are interested in how the shape of a volatility smile changes among options with
different maturities or how the term structure changes when options move in-the-money or
out-of-the-money. Further, variation of implied volatilities in time is of particular interest,
see Xu and Taylor [53], Tompkins [49], Hafner and Wallmeier [20], Mixon [36] and Lee [33].

Steaming from options on the same underlying asset that are linked by various arbitrage re-
lations, implied volatilities form a highly correlated multivariate system and cannot evolve
independently for different strike and maturity values. Therefore the implied volatility sur-
face (IVS) should be analysed as a whole by simultaneous examination of several slices of
the surface. Literature deals with the number and shape of shocks that move the surface
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across space and time, see for example Skiadopoulos et al. [45], Fengler et al. in [16], [17],
[18], and Cont and da Fonseca [7].
It is common to display IV as a function of option maturity and moneyness κ, which is
the strike divided by the future asset price, κ = K/(St exp(rτ)). Let IVt(κ, τ) the implied
volatility of an option with maturity τ and moneyness κ observed at time t. The main idea
is that the IVS is analysed in terms of principal components (PCs) that reflect the shocks
influencing IV movements in time. In practice, for options at each point in time only a
limited number of option maturities exist whereas in the strike dimension a large number
of options is available. Hence, options naturally fall into groups of different maturities τi,
i = 1, . . . , n, and we sample the IVS as a set of IV smile curves IVt(κ, τi) at day t.
In general, when modeling functional data like IV curves, methods of interest are nonpara-
metric smoothing, like kernel or spline estimation, and principal component analysis. A
common model is a heteroscedastic variance model. Data is assumed to be composed of a
mean function m and an additional variance term,

Y (x) = m(x) + σ(x)ε, (1.1)

where E[Y (x)] = m(x) and V ar[Y (x)] = σ2(x) and ε is a random noise with zero mean and
unit variance. Both, the mean and the variance are assumed to be functions of the predictor
x. m(x) is estimated by nonparametric smoothing methods, the residuals variance σ2(x) is
analysed in terms of principal components.

According to the early work of Fengler et al. [17], single smile or smirk curves for dif-
ferent option maturities are driven by the same modes of variation in time, thus identic
PCs are assumed or, if not fully identic, at least some identic PCs and some specific ones.
The covariances of groups of smiles are assumed to have a common structure among the
maturity groups. I.e. the space spanned by eigenvectors of the covariance matrix is as-
sumed identical across groups while eigenvalues may vary.
It is common to use log IVs as the data is less skewed and potential outliers are scaled
down. Being interested in daily changes of IVs, let

σt(κ, τ) = log IVt(κ, τ)− log IVt−1(κ, τ)

the implied volatility log returns for t = 1, . . . , T . Let Yij = [σt(κj , τi)]t=1,...,T the observed
implied volatilities, nonparametrically smoothed onto a grid of option maturities τi, i ∈
1, . . . , n, and moneyness κj , j = 1, . . . ,m. Let

Gi = [Cov(Yij , Yij′)]j,j′=1,...,m

the m×m covariance matrices corresponding to option maturity groups τi . One assumes
that Gi can be decomposed into Gi = ΦT

i PiΦi, where Φi is the matrix of eigenvectors and
Pi is the diagonal matrix of ordered eigenvalues of Gi. When there is a common structure
among option maturity groups one may assume a common principal components model
(CPC)

HCPC : Gi = ΦT PiΦ,
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where Φ = Φi, i = 1, . . . , n, is the matrix of common eigenvectors and Pi the diagonal
matrix of specific eigenvalues. Assumptions can be relaxed by presuming only p ≤ m − 2
common eigenvectors and m−p specific ones, i.e. the partial common principal components
model (PCPC)

HPCPC(p) : Gi = ΦT
(i)PiΦ(i).

Here Φ(i) = (ΦC ,ΦS
i ), where ΦC is the m × p matrix of common eigenvectors and ΦS

i the
m×(m−p) matrix of specific eigenvectors of a maturity group i. Thus a series of hierarchical
models PCPC(p) < PCPC(p−1) is created, meaning that a model with p−1 common PCs
may contain a model with p common PCs. Note in PCPC(p) the number of common PCs
is less than m−2 as by orthogonality of principal components PCPC(m−1) = PCPC(m)
and thus falls into model HCPC .
In in different model selection tests Fengler et al. found that models with common principal
components are preferred to standard models where the covariance structure is arbitrary
as well as to models that assume linearly dependent covariances Gi = aiG1 ∀i. The main
modes of daily variation of IV smiles were found to be all over up-and-down shifts of the
IV curve and changes of the slope or curvature.

Cont and da Fonseca [7] generalized the method of analysing the IVS dynamics by common
principal components by performing a functional PCA. Implied volatility surfaces IVt(κ, τ)
are assumed to be realisations of a stationary random process. To get smooth surfaces ob-
served market data is nonparametrically smoothed. Functional IV log returns are denoted
Yt(κ, τ) = σt(κ, τ). The corresponding covariance function G(x, x′) = Cov(Y (x), Y (x′)),
x = (κ, τ), is the kernel of the integral operator Gy(x) =

∫
G(x, x′)y(x′)dx′. The eigen-

problem Gφk(x) = ρkφk(x) is numerically solved by expanding eigenfunctions φk by a finite
number of orthogonal basis functions. Finally implied volatilities are modeled according to

IVt(x) = IV0(x) exp

{∑
k

ζk(t)φk(x)

}

for PC scores ζk(t) =
∫

Yt(x)φk(x)dx. The PCs φk(x) are now two dimensional surfaces,
that describe the modes of daily log variation of the whole IVS in time. Cont and da Fonseca
found that two or three PCs are sufficient to describe variation. The first PC corresponds
to an overall shift in the level of the IVS, the second PC reflects a changing slope of the
IVS in moneyness direction and the third PC reflects changes in the convexity of the surface.

Fengler et al. [18] note that due to a degenerated data design, i.e. observed implied
volatilities usually appear in smile strings that move through the observation space, mod-
eling biases may occur when initially smoothing the IVS and then performing a PCA using
a functional norm. Instead they propose a semiparametric factor model that performs di-
rectly on the observed data. Log implied volatilities Yij = log IV (ti, xij), xij = (κij , τij),
are intra-day data where ti is the day and j = 1, . . . , Ji is an intra-day numbering. Data is
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modeled according to

Yij = m0(xij) +
L∑

l=1

βilml(xij)

=
L∑

l=0

βilml(xij),

β0 = 1. Functions ml : R2 → R are arbitrary except that they are chosen orthogonal
and ordered according to maximal variance in βl. βl and ml are estimated by local kernel
smoothing methods under orthogonality constraints, using a functional norm that depends
on day ti. Thus ml are not eigenfunctions of an operator as in standard functional PCA,
and different models according to their number L of included smoothing functions are not
necessarily nested for increasing L.
In practice, Fengler et al. result in a model with L = 3 basis functions ml. Main shocks
determining the IVS in time are proven to be shift effects and slope effects in moneyness
direction as well as in maturity direction.

In this work we follow another approach to analyse variation of IVs. We are interested
in how daily changes of IV smiles vary within the surface, i.e. for different option maturi-
ties. We apply a new method that combines smoothing techniques and principal component
analysis to find a functional variance process (FVP) that determines variation among IV
log return curves Yi(κ) = σt(κ, τi), i = 1, . . . , n for a fixed day t. The curves are regarded as
random trajectories of a common stochastic variance process and thus as random phenom-
ena themselves. The analysis of functional variance processes was introduced in 2006 by
Müller et al. [34]. The concept of a variance function according to model 1.1 is extended to
a random variance process model that includes random components for variation, when the
observed data scatter randomly around a fixed regression function, and there is the need
to model locally changing variances of data structures of increasing complexity.

Our findings are based on a data sets of daily implied volatility surfaces on stock, in-
dex and swap options. Data was kindly offered by the Commerzbank AG in Frankfurt
a.M., and originally steam from the externals Reuters and Bloomberg. IVs with re-
spect to swap options are an exception among usual implied volatilities, as they depend
on option maturity and on swap maturity instead of moneyness. Thus a swap IVS can be
seen as consisting of several IV curves with respect to swap maturity, different IV curves
correspond to option maturity groups.
The data show classic features. Stock and index IV have the typical smile or smirk shape
in moneyness direction and in time IVs resemble stochastic processes. A discrete PCA
confirms previous results in literature. The strength of variation of IV curves differs among
option maturity groups and increases for decreasing maturities and moneyness values. The
main modes of variation in time are similar among groups. Most influential modes are
regular up-and-down shifts of the curves and slope and curvature changes.
In the analysis we detected structural differences between options with short and long time
to maturity. Thus we decided to separate stock, index and swap data sets into two groups
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in each case and determine functional variance processes separately for the groups. We
use functional variance processes to describe variation within the surface of daily IV log
returns. According to our empirical results FVPs are decreasing, after a short increase at
the left boundary in some cases. Hence variation in the surface is stronger in parts where
moneyness is small or swap maturity is short, respectively. Trajectories of the process are
mainly driven by up-and-down shifts. Comparing FVPs for short and long option maturi-
ties the processes differ in means of slope and curvature. But in general modes of variation
within the IV log return surface are similar for short and long option maturities.
Moreover, we determine FVPs of stock index and swap options at different points in time
to get an impression of time dependent development of these processes and thus of time
dependent changes of daily variation of the IVS. The shape of a FVP remains in time,
meaning that modes of variation remain and our findings at fixed days are valid in general.

The work is set out as follows. In section 2, we present the basic principles of functional
data analysis, namely local polynomial kernel estimation and principal component analy-
sis. These two techniques are of main importance to estimate single components of the
functional variance processes model, that is introduced in section 3. Consistency results
for each of these components are given in section 3.3. In section 4, we summarize main
principals of financial options and introduce the Black-Scholes formula for stock, index and
swap option pricing. Finally in section 5, we analyse implied volatiltiy surface dynamics
for our data sets by performing a discrete PCA, following Fengler et al. [17], and further
by applying the concept of functional variance processes. In section 6, we summarize and
open questions are given for future research.
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2 Selected Topics of Functional Data Analysis

One main task in statistics is the analysis of functional data, i.e. when the data are ran-
dom curves, as for example growth curves or price curves of financial assets. Observed
curves have similar shapes and we aim in finding mean trends and information on variation
among the data. To extract relevant information from sampled curves popular methods
are smoothing methods like kernel smoothing, splines or wavelets, and principal component
analysis for data reduction and extraction of modes of variation. A good introduction into
functional data analysis and applications is given in [39] and [40].
In this section we will first resume local polynomial kernel estimation for a random re-
gressor Y with predictor X, that can either take fixed values or is random itself. Then we
expand theory for functional data, where Y is a stochastic process with trajectories Yi being
functions on X. Afterwards we introduce principal components analysis, to determine the
covariance structure of functional data and to find simple functional forms that describe
the data structure.

2.1 Local Polynomial Kernel Estimation

The idea of kernel smoothing was first developed in the 1950th in terms of density estima-
tion. Most popular literature in this context is from Rosenblatt [42] and Parzen [38], who
introduced the kernel density estimator

f̂(x, h) =
1
n

n∑
i=1

Kh(x−Xi),

the Rosenblatt-Parzen estimator. It estimates the density function f of the random variable
X from observations Xi, i = 1, . . . , n, weighted by a kernel function Kh(x) = 1

hK(x/h) with
smoothing parameter h > 0, where usually K is a symmetric probability density function.
When determining the functional relationship of two variables Y and X, where Y is the
random response and X is the predictor variable, we assume the model

Y = m(X) + σ(X)ε,

which is said to be fixed design if we observe Y1, . . . , Yn at fixed and ordered predictor
values X1, . . . , Xn in a compact interval I ⊂ R. The model is called random, if X is
random by itself with continuous, univariate density function f and with realisations in I.
In the random case, observations are pairs, i.e. (Yi, Xi), i = 1, . . . , n, are realisations of
the random pair (Y, X). m and σ are smooth functions on X and ε is a random variable
with zero expectation and unit variance. Thus the expectation of Y at X is m(X) and its
variance is σ2(X).
There are many situations when it is not preferable to impose a parametric model

m(x) ∈ {β0 + β1x + . . . + βpx
p | β1, . . . , βp ∈ R} (2.1)

for some number p ≥ 0. For example when there is no clear structure visible in the
observations (Yi, Xi) or when the data analysis is part of a procedure or algorithm that



10 2 SELECTED TOPICS OF FUNCTIONAL DATA ANALYSIS

works on different data structures, it might be disadvantageous to restrict on the parametric
family in (2.1). Therefore we tie up to the kernel estimation idea and, assumed X is random,
estimate m at x from the conditional expectation of Y given X = x, which is

E[Y |X = x] =
∫

yf(y, x)dy

f(x)
, (2.2)

where f(x, y) is the common density of (Y, X). According to the Rosenblatt-Parzen kernel
density estimator expression (2.2) is then estimated by

m̂(x) =
1
n

∑n
i=1 Kh(x−Xi)Yi

1
n

∑n
i=1 Kh(x−Xi)

. (2.3)

This estimator was first introduced in 1964 independently by Nadaraya [37] and by Watson
[52], and fits into the family of local polynomial kernel estimators, that are presented now.

In local polynomial kernel estimation we locally fit polynomials to the data using weighted
least squares. The estimator is motivated by the Taylor expansion of the mean function m

at point x, which is

m(x) = m(Xi) + m′(Xi)(x−Xi) +
1
2
m′′(Xi)(x−Xi)2 + . . .

+
1
p!

m(p)(Xi)(x−Xi)p + o(||x−Xi||p)

=: β0 + β1(Xi − x) + β2(Xi − x)2 + . . . + βp(Xi − x)p + o(||Xi − x||p),

assuming that m has continuous derivatives m(k), k = 1, . . . , p, p ≥ 0. Thus estimate m(x)
by its Taylor expansion up to p-th degree by minimizing the sum of weighted least squares

RSS(x, p, h) =
n∑

i=1

Kh(Xi − x)

{
Yi −

p∑
k=0

βk(Xi − x)k

}2

, (2.4)

with respect to β = (β0, . . . , βp)T ∈ Rp+1. Let β̂ the solution of the least squares problem
then we estimate the mean function m at x by m̂(x, p, h) = β̂0.

To give an explicit expression of β̂0 we rewrite (2.4) in matrix notation

RSS(x, p, h) = (Y −Xxβ)T Wx(Y −Xxβ)

where Y = (Y1, . . . , Yn)T is the vector of observations, Wx = diag{Kh(Xi−x)|i = 1, . . . , n}
is the diagonal weighting matrix and Xx is the design matrix

Xx =

 1 (X1 − x) . . . (X1 − x)p

...
...

...
1 (Xn − x) . . . (Xn − x)p

 .

Under the assumption that (XT
x WxXx) is invertible the solution is

m̂(x, p, h) = β̂0 = e1(XT
x WxXx)−1XT

x WxY, (2.5)
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the local polynomial kernel estimator of m(x), where e1 = (1, 0, . . . , 0) ∈ R1×(p+1).

S(h) = e1(XT
x WxXx)−1XT

x Wx (2.6)

is denoted the hat matrix as it maps Y onto the estimate Ŷ = m̂(x, p, h). In local polynomial
kernel estimation S(h) is just a “hat vector” in R1×n. When p = 0 the explicit expression
of (2.5) is

m̂(x, 0, h) =
1
n

n∑
i=1

Kh(x−Xi)
1
n

∑n
j=1 Kh(x−Xj)

Yi,

the local constant estimator that coincides the Nadaraya-Watson estimator (2.3). For p = 1
we get the local linear estimator

m̂(x, 1, h) =
1
n

n∑
i=1

{s2(x, h)− s1(x, h)(Xi − x)}Kh(Xi − x)
s2(x, h)s0(x, h)− s1(x, h)2

Yi,

with moments

sr(x, h) =
1
n

n∑
i=1

(Xi − x)rKh(Xi − x), r = 0, 1, 2. (2.7)

The local linear kernel estimator has several nice properties. It is easy to understand lo-
cally being a linear (parametric) model estimator. Further it has a well interpretable MSE,
shown below, and nice boundary properties, i.e. the estimation bias remains the same for
interior points and boundary points. Only the estimation variance increases at boundaries
as a consequence of sparse data. A comparison of different kernel estimators is given by
Wand and Jones [51], who result in proposing local polynomial kernel estimators with poly-
nomial degree p = 1 or p = 3.

The mean squared error (MSE) is a local measure of goodness-of-fit controlling the es-
timation bias and variance.

MSE(m̂(x, p, h)) = E[m̂(x, p, h)−m(x)]2

= [Bias(m̂(x, p, h))]2 + V ar(m̂(x, p, h)),

where the bias is defined as Bias(m̂(x, p, h)) = E[m̂(x, p, h)−m(x)]. We now give asymp-
totic bias and variance approximations for the fixed design model and local linear estima-
tion. Asymptotics can be easily extended to higher degree polynomial estimation and to
the random design model, see [51], by lightly strengthen the conditions.
Here, without loss of generality let Xj ∈ [0, 1] for all j. Further assume

• m′′, σ are continuous on [0, 1],

• K is bounded, symmetric about 0 and supported on [−1, 1],

• h = hn → 0 and nh →∞ as n →∞,

• the estimation point x is an interior point, i.e. h < x < 1− h.
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Then the estimation bias is

Bias(m̂(x, 1, h)) =
1
2
h2m′′(x)µ2(K) + o(h2) + O

(
1
n

)
(2.8)

and the estimation variance is

V ar(m̂(x, 1, h)) =
1

nh
||K||2σ2(x) + o

(
1

nh

)
, (2.9)

where σ2(x) is the variance of Y in x, µ2(K) =
∫∞
−∞ u2K(u)du and ||K||2 =

∫∞
−∞ K2(u)du.

Proofs can be found in [51].

These terms are easy to interpret. What we would expect when linearly fitting a curve
is that the estimation bias is small when the true curve m is close to linearity. In fact the
bias depends on m′′ which is the curvature of m. Hence when m is close to linearity m′′

is small and the bias decreases. Further the bias depends on the kernel bandwidth h that
reflects the amount of smoothing. For increasing h the bias increases. Thus the larger is h

the worser is the fit, obviously, as we would “cut off the hills and rise the valleys” of m by
a large amount of smoothing.
Now regard the variance that depends on the term ||K||2

nh . In general for kernel functions we
assume ||K||2 < ∞, thus the term is approximately the reciprocal of the local sample size.
Hence the estimation variance increases when the data is locally sparse. When n is fixed,
a large bandwidth will decrease the variance. Further the estimation variance is penalized
by large variance σ2.
Summarizing, a small bandwidth h will decrease the estimation bias, but it will increase
the variance. Thus to get a small mean squared error, and thus a good estimate, we have
to find a bandwidth that is small enough to ensure a small bias and that is big enough to
ensure a small variance.

Once the polynomial degree and the kernel function are fixed, the local estimate is said
to be optimal for that h > 0 that minimizes the MSE. In general, one aims in globally
choosing an optimal bandwidth, i.e. fitting Y over the whole range of X using the same
bandwidth. While MSE is only a local measure, the mean integrated squared error (MISE)
provides a global one and thus is better suited for choosing h,

MISE(m̂(x, p, h)) = E[
∫

(m̂(x, p, h)−m(x))2dx]

=
∫

MSE(m̂(x, p, h))dx

by changing the order of integration according to Fubini’s Theorem, see [3]. Unfortunately
MSE and MISE and their asymptotic approximations depend on the unknown mean func-
tion m and variance function σ2. In case of a random design additionally the predictor’s
density f is unknown. Therefore we cannot directly apply the above measures to choose
optimal bandwidths. In practice it is often convenient to choose the bandwidth by visiual
inspection of the data and different estimators. But there are circumstances where we need
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automatical bandwidth selection, for example when we do not have a feeling for the true
mean function m or in situations when it is just to time consuming to choose h by eye. We
then use approximations of the MSE or MISE to automatize bandwidth selection, as for
example in cross validation. The cross validation term is

CV (h) =
n∑

i=1

(Yi − m̂(−i)(Xi, p, h))2

where m̂(−i)(Xi, p, h) is the local polynomial kernel estimator obtained from observations
Yj , j 6= i. CV (h) is thus the sum of squared residuals resulting from estimating m(Xi)
when the i-th observation Yi is unknown. The optimal smoothing parameter hopt is chosen
to minimize CV (h). Justification of cross validation bandwidth selection in case of func-
tional data is given in section 2.2.

Some notes on kernel functions. In general to ensure asymptotic properties a kernel
K : R → R is assumed to satisfy

1. K(x) ≥ 0 and K(x) = K(−x) ∀x ∈ R (nonnegative and symmetric)

2. supx∈R K(x) < ∞ (bounded)

3.
∫

K(x)dx = 1 (normed)

4. |x|K(x) → 0 for |x| → ∞,
∫

x2K(x)dx < ∞

where
∫

means
∫∞
−∞. When choosing K to be a symmetric probability density function

items 1, 2 and 3 are guaranteed. Item 1 supports the estimation idea, i.e. observations
with the same distance to the value to estimate are equally weighted, and it ensures positive
estimates when the data is positive. By symmetry of K and items 2 and 3 it follows∫

xK(x)dx = 0 and
∫

K2(x)dx < ∞,

which lead to attractive MSE properties as shortly presented above.
Frequently used kernel functions are

K(x) = 1
2I(−1,1)(x) Uniform Kernel

K(x) = (1− |x|)+ Triangular Kernel
K(x) = 3

4(1− x2)+ Epanechnikov Kernel

K(x) = 1√
2π

e−
x2

2 Gaussian Kernel

where I(−1,1)(x) = 1 iff x ∈ (−1, 1) and I(−1,1)(x) = 0 elsewhere. (·)+ denotes the positive
part.

Note that all these kernels except Gaussian have bounded support [−1, 1]. It is well-known,
that the choice of kernel functions has only little impact onto the estimate, although theo-
retical results show that the Epanechnikov kernel has best asymptotic properties, see [51].
In practice, when data is locally sparse bounded support kernels may lead to gaps in the
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estimated mean function m̂(x, p, h). When there is no observation in a h-neighborhood of
estimation point x we cannot estimate m(x) from (2.4) as weights are zero everywhere. We
then locally need larger bandwidths, or we avoid the problem at the outset by choosing
a kernel with support R, like Gaussian kernel, that gives (at least little) weight to each
observation. But note also, that bounded support kernels bind computational effort. Es-
pecially when sample size m is large, one may prefer a bounded support kernel which gives
no weight to observations outside the range determined by h.

2.2 Local Polynomial Kernel Estimation of Functional Data

In general, when observed data are curves we sample the curves over a discrete grid in the
prediction range. Let Y a stochastic process with trajectories Yi, i = 1, . . . , n, observed
at discrete prediction points Xi = (Xi1, . . . , Xi,m). Denote Yi(Xij) = Yij . We assume for
each trajectory Yi the number of observations m is equal and prediction points remain for
different i, i.e. (Xi1, . . . , Xi,m) = (X1, . . . , Xm) for all i. If in practice curves are observed at
different prediction points we obtain observations onto a fixed grid by linear interpolation.
Note, that for good estimation results concerning asymptotic properties the discrete grid
has to be sufficiently dense and equidistant. We assume the model

Yij = m(Xj) + σ(Xj)εi, (2.10)

i = 1, . . . , n, j = 1, . . . ,m, where εi are iid random variables with zero mean and unit
variance. The expectation and variance of Yij given Xj are

E[Yij |Xj ] = m(Xj) and V ar(Yij |Xj) = σ2(Xj)

and the covariance is
Cov(Yij , Ykl|Xj , Xl) = δikγ(Xj , Xl)

with δik = 0 if i 6= k and δii = 1, resulting from independence of Yi and Yk. The mean
function m(x) and variance function σ(x) are assumed to be smooth.

To estimate the mean function m we use local polynomial kernel estimation, that is anal-
ogous to estimation of random variables Y that depend on a prediction variable X. We
estimate m(x) by minimizing the weighted sum

RSS(x, p, h) =
n∑

i=1

m∑
j=1

Kh(Xj − x) {Yij − Pβ(Xj − x)}2 (2.11)

with respect to β, where Pβ(x) =
∑p

k=0 βrx
k is a polynomial of degree p ≥ 0, K is a

symmetric kernel function and h > 0 is the smoothing parameter. Let β̂ = (β̂0, . . . , β̂p)
the solution then m̂(x, p, h) = β̂0. The bandwidth is chosen by one-curve-leave-out cross
validation as introduced by Rice and Silverman [41], where instead of leaving out single
observation points Yij we leave out whole curves Yi in the cross validation term

CV (h) =
n∑

i=1

m∑
j=1

(Yij − m̂(−i)(Xi, p, h))2. (2.12)
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The estimate m̂(−i)(Xi, p, h) results from minimizing

RSS(−i)(Xi, p, h) =
∑
k 6=i

∑
j

Kh(Xkj −Xj)(Ykj − Pβ(Xkj −Xj))2

with respect to h > 0. Examples for usual and one-curve-leave-out cross validation when
fitting functional data are given in figure 1. We fitted residuals of implied volatility log
returns of DAX30X options by local linear estimation. (Data will be presented in detail
in section 5.) Four different residual curves were discretly observed. In the upper four
panels these curves are estimated using bandwidths that were independently chosen for
each curve by usual CV. In the lower four panels we draw the estimated mean curve that is
determined by local linear kernel estimation according to (2.11) using a bandwidth chosen
by one-curve-leave-out CV.

As already mentioned in section 2.1, CV (h) is an approximation of the MISE,

MISE(m̂(x, p, h))) =
∫

E
[
(m̂(x, p, h)−m(x))2

]
dx,

and thus is suited to choose an appropriate bandwidth h. Note therefore that for the
functional model (2.10) the expected one-curve-leave-out CV term is

E

[
1
n

CV (h)
]

= E

 1
n

n∑
i=1

m∑
j=1

(Yij − m̂−(i)(Xj , p, h))2


=

m∑
j=1

E

[(
Ynj − m̂−(n)(Xj , p, h)

)2
]

(2.13)

=
m∑

j=1

E
[
(Ynj −m(Xj))

2
]

+
m∑

j=1

E

[(
m̂(−n)(Xj , p, h)−m(Xj)

)2
]

−2
m∑

j=1

E
[
(Ynj −m(Xj))

(
m̂(−n) −m(Xj)

)]
(2.14)

= tr(G) + Mn−1(h).

(2.13) holds as Yi, i = 1, . . . , n, (and in random case Xj , j = 1, . . . ,m) are identically
distributed. The expectation in (2.14) is zero as Ynj is independent of m̂(−n)(Xj , p, h)
and E[Ynj − m(Xj)] = 0. Here G = [G(Xj1 , Xj2)]j1,j2=1,...,m is the covariance matrix of
Yi = (Yi1, . . . , Yim)T thus the trace tr(G) is the sum of variances σ2(Xj) and thus finite.
Hence, minimizing the expected CV term with respect to h is equivalent to minimizing
Mn−1(h) =

∑m
j=1 E

[(
m̂(−n)(Xj , p, h)−m(Xj)

)2]
. Let hopt = arg minh>0 Mn−1(h). If the

sample size n is large enough, hopt will approximately achieve the minimum of Mn(h) =∑m
j=1 E

[
(m̂(Xj , p, h)−m(Xj))

2
]
, which is the Rieman approximation of MISE(m̂(x, p, h))

up to some constant factor. Thus hopt approximately minimizes the MISE.

The cross validation procedure is computationally very expensive. Let A the algorithm
to determine a local polynomial estimator m̂(x, p, h). In (2.12) we have to run A nm
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Figure 1: Local linear kernel estimation of residual curves of DAX30X IV log returns at
1 September 2006 according to option maturities τi ∈ {2W, 1M, 2M, 3M}. Observed data
and smooth estimates of single curves are shown in top panels. Bandwidths were chosen
by cross validation. Observed data and estimated mean curve is shown in bottom panels.

The bandwidth is chosen by one-curve-leave-out cross validation.

times. It is possible to improve computational efficiency to m runs of A. Let therefore
Ȳj = 1

n

∑n
i=1 Yij and Ȳ = (Ȳ1, . . . , Ȳm). Since

RSS(x, p, h) =
n∑

i=1

m∑
j=1

Kh(Xj − x) {Yij − Pβ(Xj − x)}2

= n
m∑

j=1

Kh(Xj − x)(Ȳj − Pβ(Xj − x))2

−n

m∑
j=1

Kh(Xj − x)Ȳ 2
j +

m∑
j=1

n∑
i=1

Kh(Xj − x)Y 2
ij (2.15)

minimizing RSS(x, p, h) with respect to β is equivalent to minimizing

RSS∗(x, p, h) =
m∑

j=1

Kh(Xj − x)(Ȳj − Pβ(Xj − x))2,

as terms in (2.15) do not depend on β. Let now S∗(h, j) = (S∗(h, j)1, . . . , S∗(h, j)m) the
hat vector resulting from minimizing RSS∗(Xj , p, h), that maps Ȳ onto

m̂(Xj , p, h) = S∗(h, j)Ȳ =
∑

l

S∗(h, j)lȲl,
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analogous to (2.6). The hat vector S∗(h, j) remains when we exclude trajectory Yi from
the estimation procedure, thus m̂(−i)(Xj , p, h) = S∗(h, j)Ȳ −(i) and Ȳ

(−i)
j = 1

n−1

∑
k 6=i Ykj .

We further have

m̂(−i)(Xj , p, h) =
∑

l

S∗(h, j)lȲ
(−i)
l

=
∑

l

S∗(h, j)l

{
1

n− 1
(nȲl − Yil)

}
=

∑
l

S∗(h, j)l

{
Ȳl +

1
n− 1

(Ȳl − Yil)
}

= m̂(Xj , p, h) +
1

n− 1

{∑
l

S∗(h, j)lYil︸ ︷︷ ︸
Ŷ (i)

−m̂(Xj , p, h)
}

, (2.16)

where Ŷ (i) is obtained by smoothing just the i-th curve using the hat vector Ŝ∗(h, j). We use
algorithm A to compute the hat vector S∗(h, j). Thus, we can determine m̂(−i)(Xj , p, h) for
all i ∈ {1, . . . , n} running A only once. Therefore, substituting equation (2.16) in formula
(2.12), we can compute CV (h) running A only m times.

2.3 Principal Component Analysis

After extraction of the mean function in the functional model (2.10) our main purpose is
the analysis of the covariance structure of the data. Therefore we determine principal com-
ponents (PCs) of the data that provide a physical interpretation and simple description of
main features of variability of the data. Besides feature extraction, PCs are used for data
reduction and prediction and PC scores serve for data clustering and classification. For
further reading one is referred to [29].

Let G : R2 → R,
G(x, x′) = Cov(Y (x), Y (x′)),

the covariance function of Y . We assume that there exists an orthogonal decomposition of
G according to

G(x, x′) =
∑

k

ρkφk(x)φk(x′),

k = 1, 2, . . ., where ρ1 ≥ ρ2 ≥ . . . ≥ 0 and ρk
k→∞−→ 0, and φk : R → R are smooth, orthogonal

functions in terms of

〈φk1 , φk2〉 =
∫

φk1(x)φk2(x)dx = 0, k1 6= k2

and 〈φk, φk〉 = ||φk||2 6= 0. From the observed residuals Y ∗
ij = Yij−m̂(Xj , p, h), i = 1, . . . , n,

j = 1, . . . ,m, we estimate G for example discretly by the sample covariance matrix G =
[G(j1, j2)]j1,j2=1,...,m,

G(j1, j2) =
1
n

n∑
i=1

Y ∗
ij1Y

∗
ij2 .



18 2 SELECTED TOPICS OF FUNCTIONAL DATA ANALYSIS

For the discrete PCA we display functions f : R → R as data vectors f = (f1, . . . , fm)T =
(f(x1, . . . , f(xm))T ∈ Rm and define 〈f, g〉 =

∑m
j=1 fjgj and ||f ||2 = 〈f, f〉. The first

principle component is the weight vector φ1 = (φ11, . . . , φ1m)T for which

ζi1 = 〈φ1, Y
∗
i 〉 =

m∑
j=1

φ1jY
∗
ij , i = 1, . . . , n,

have largest possible mean square 1
n

∑n
i=1 ζ2

i1 subject to ||φ1||2 = 1 (normality). ζi1 are
called PC scores. The normality assumption controlls the scores variance, that without the
assumption could take arbitrary values. We may change the sign of φ1 without changing
the result. Further PCs φk are defined to maximize 1

n

∑n
i=1 ζ2

ik,

ζik = 〈φk, Y
∗
i 〉 =

m∑
j=1

φkjY
∗
ij , i = 1, . . . , n,

subject to normality constraint ||φk||2 = 1 and orthogonality constraint

〈φk, φk′〉 = 0, for all k′ < k.

Note that 1
n

∑n
i=1 ζ2

ik decrease for increasing k.

We determine principal components from the eigendecomposition of the covariance ma-
trix G. Note therefore that

1
n

n∑
i=1

ζ2
ik =

1
n

n∑
i=1

m∑
j1,j2=1

φkjY
∗
ij1Y

∗
ij2φkj

=
1
n

φT
k (Y ∗)T Y ∗φk

= φT
k Gφk (2.17)

where Y ∗ = [Y ∗
ij ] ∈ Rn×m is the residual matrix with rows (Y ∗

i )T . Maximizing the scores
variance is thus equivalent to maximizing φT

k Gφk with respect to orthonormality of φk.
This last maximization problem is known to be solved by finding ordered eigenvalues ρk

and according eigenvectors φk of G, i.e. solve

Gφk = ρkφk

simultaneously for all k, or equivalently solve

G = ΦT PΦ, (2.18)

where Φ the (m×K)-matrix with orthonormal columns φk, and P = diag{ρk, k = 1, . . . ,K}
the diagonal matrix of ordered eigenvalues.

The number of nonzero eigenvalues and thus the number of PCs is bounded by the rank of
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the covariance matrix G. Y ∗
i are centered vectors, thus the rank of Y ∗ ∈ Rn×m is at most

n− 1 and further the rank of G = 1
n(Y ∗)T Y ∗ ∈ Rm×m is at most min(m,n− 1), i.e.

rk(G) ≤ min(m,n− 1).

Therefore the number of nonzero eigenvalues and according eigenvectors ρk and φk and
thus the number of PCs is bounded by rk(G).

By orthonormality of φk, k = 1, 2, . . ., the equation

φT
k

∑
l

ζilφl = φT
k

∑
l

〈Y ∗
i , φl〉φl

= 〈Y ∗
i , φk〉

= φT
k Y ∗

i ,

holds for all k, thus Y ∗
i =

∑
l ζilφl = Φζi. Therefore, to reduce data we may approximate

Y ∗
i by a linear combination of the first K ≤ rk(G) principle components weighted by PC

scores ζik, k = 1, . . . ,K, i.e.

Y ∗
i (K) =

K∑
k=1

ζikφk.

The number K of PCs used for approximation is chosen such that the variance explained
by PC 1 to PC K is at least α · 100% of the total variance, i.e.∑n

i=1 ||Y ∗
i (K)||2∑n

i=1 ||Y ∗
i ||2

≥ α, α ∈ (0, 1].

Depending on purposes in practical application α may be for example 0.95 or 0.99.

In terms of geometry the PC score vector ζk = Y ∗φk is the projection of the centered
data onto the space defined by φk, thus E[ζik] = 0. From (2.17) we have

1
n

∑n
i=1 ζ2

ik = φT
k Gφk

= φT
k ρkφk = ρk,

hence V ar[ζik] = ρk. The first K principal components define the directions of main
variation of observations Yij . We can define a contour of constant probability by the m-
dimensional ellipsoid g(y) = yT G−1y = C1, y ∈ Rm, where C1 is a constant number. Note
that

g(Yi) = ζT
i ΦT G−1Φζi

= ζT
i ΦT ΦP−1ΦT Φζi

= ζT
i P−1ζi

=
n∑

k=1

ζ2
ik

ρk
,

where the second line holds by (2.18) and Φ−1 = ΦT . Thus the ellipsoid is defined by

g(Yi) =
n∑

k=1

ζ2
ik

ρk
= C1,
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which is the construction of an ellipsoid referred to its principal axes.

For PCA in a continuous setting, we define the integral transformation

Gφ(x′) =
∫
G(x′, x)φ(x)dx = 〈G(x′, ·), φ〉

with kernel G(x′, x) = Cov(Y (x′), Y (x)), where Y is a stochastic process with observed
trajectories Yi. Smooth eigenfunctions φk : R → R of the covariance operator G : φk →∫
G(·, x)φk(x)dx solve

Gφk = ρkφk,

with respect to 〈φk1 , φk2〉 = δk1k2 , where the series of ordered positive eigenvalues ρk con-
verge to zero. Here we have no bound due to the number m of observations per subject as
in the discrete setting, such that

rk(G) ≤ n− 1

and equality holds if observed curves Yi are linearly independent.

In figures 2 and 3 examples for a PCA are given. We plotted the estimated covariance
matrix of the residuals of implied volatility log returns of DAX30X options, corresponding
PCs and the effects of PCs on the mean data curve. The first three PCs explain about
99% of the total variation and thus determine the main modes of variation. PC 1 is overall
positive, i.e. almost 80% of the variation among data curves Yi(x) is due to overall up-and-
down shifts. Corresponding effects are shown in the upper right panel of figure 3, where the
mean curve m(x) = E[Yi(x)] is plotted and m(x)±C2φ1(x). To better visualise the effects
we introduced the constant factor C2 > 0. The shifts are lightly stronger pronounced at
the left and right border. PC 2 is negative over I = [0.7, 1.2) and approximately zero at
the right border. Thus second most variation is explained by further up-and-down shifts
which are restricted to the interval I, see corresponding plot of the effects of PC 2. The
third PC forms two contrasts, one over [0.7, 1.1) and one over [1.1, 1.4], meaning that data
curves vary by positive shifts at the left side and negative shifts at the right side and vice
versa. Thus a littel part of variation is due to curvature changings of the left halfs and the
right halfs of the curves in opposite directions.
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Figure 2: Covariance of residual curves of DAX30X IV log returns at 1 September 2006
according to option maturities τi ∈ {2W, 1M, 2M, 3M}. Left panel shows the surface plot,

right panel the corresponding contour plot.

Figure 3: First three PCs of DAX30X IV data (upper left panel) and modes of variation
explained by first three principal components. For each PC plots show the mean function

(solid line), positive effects (dashed line) and negative effects (dotted line).
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3 Functional Variance Processes

Originally introduced by Müller et al. [34] in 2006, we now present a new concept to analyse
variation in functional data.
When analysing complex functional data it is a common tool to include a variance function
into the non- or semiparametric model that quantifies heteroscedasticity, i.e. locally chang-
ing variances. When observed data scatter randomly around a fixed regression function,
there is the need to add a variance of errors to the smooth mean regression function. This
has traditionally been done in models of the form Yi = m(Xj) + σ(Xj)εij where m is the
smooth mean function, σ is a smooth variance function and εij are iid error terms with zero
mean and variance 1. By V ar(Yi) = σ2(Xj) heteroscedasticity of the model is defined.
Now the concept of a variance function should be extended to a random variance process.
When the data steam from a stochastic process, i.e. each observed trajectory is a ran-
dom phenomenon itself, we should include random components for variation. We present a
method combined of concepts of nonparametric smoothing and principal component anal-
ysis, to find a functional variance process, after an initial pre-smoothing step. This process
generates smooth trajectories that jointly with pure white noise components determine the
additive errors in the discretely observed data.

3.1 The Model

Our data is assumed to be realisations of smooth trajectories of a stochastic process observed
under additive noise. The functional data is sampled on a discrete grid of m support points
that may differ from trajectory to trajectory. The data comprises n curves Zi which derive
from a square integrable stochastic process S and some random noise R. The noise is
generated by a smooth variance process V and an independent white noise component W .
The model is

Zij = Si(Xj) + Rij (3.1)

Yij = log(R2
ij) = mV (Xj) + Wij (3.2)

i = 1, . . . , n, j = 1, . . . ,m. Si are identically distributed trajectories of the process S.
Zij = Zi(Xj) are pointwise observed curves on the regular dense grid {Xj |Xj ∈ T =
[a1, a2], j = 1, . . . ,m}. The squared residuals R2

ij are assumed to be the product of the
exponated mean function mV of the variance process V at points Xj and an exponentiated
white noise Wij , i.e.

R2
ij = emV (Xj)eWij .

By this way of modeling we ensure nonnegativity of the estimated squared residuals. The
white noise Wij has constant variance and zero expectation, thus we can write

Wij = σW εij

for iid random variables εij , E[εij ] = 0, V ar[εij ] = 1.
Hence, after filtering trajectories Si we model the log-transformed residuals Yij = log(R2

ij)
according to the homoscedastic model (3.2), i.e. Yij are assumed to be additively decom-
posed of a variance process and a white noise. We assume the following properties
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• Si, mV are smooth functions on T , i.e. twice continuously differentiable

• the domain T = [a1, a2] is a a compact interval

• ERij = 0, V ar(Rij) < ∞ and Ri1j⊥Ri2k for i1 6= i2

• EWij = 0, V ar(Wij) = σ2
W < ∞ and Wij⊥Wik for j 6= k

• W⊥S, W⊥V

where ⊥ means independence. Let mV (x) = EV (x) and GV (x, x′) = Cov(V (x), V (x′))
the smooth mean function and covariance structure of the functional variance process V ,
respectively. The model implies

EYij = EV (Xj) = mV (Xj) (3.3)

V ar(Yij) = V ar(V (Xj)) + σ2
W (3.4)

Cov(Yij1 , Yij2) = Cov(V (Xj1), V (Xj2)) = GV (Xj1 , Xj2), j1 6= j2. (3.5)

Note that the diagonal values of the covariance matrix GV are influenced by the white
noise variance. We focus on characterizing the variance function by the eigenfunctions and
eigenvalues of the covariance operator which is

GV (f)(x′) =
∫

T
GV (x′, x)f(x)dx. (3.6)

GV : L2(T ) → L2(T ), f 7→ GV (f). φk are smooth eigenfunctions with corresponding
ordered eigenvalues ρk ≥ 0, converging to zero. We approximate V (x) by

V (K)(x) = mV (x) +
K∑

k=1

ζkφk(x) (3.7)

for some K > 0 and PC scores are ζk =
∫
T (V (x)−mV (x))φk(x)dx.

3.2 Estimation of model components

We specify the different model components according to a PART algorithm (Principal
Analysis of Random Trajectories), proposed by Müller et al. [34].
Each trajectory Si is independently estimated by local linear kernel estimation. For all
i = 1, . . . , n and x ∈ T minimize

RSS(Si(x)) =
m∑

j=1

K
[1]
bSi

(Xj − x) (Zij − β0 − β1(x−Xj))
2

with respect to β = (β0, β1). Then Si(x) is estimated by Ŝi(x) = β̂0, where β̂ is the solution
of the minimizing problem. The kernel K

[1]
b (x) = K [1](x/b)/b is some symmetric, positive

kernel that is supported on T. By K [1] a one-dimensional kernel function is denoted.
Optimal bandwidths bSi are chosen via cross validation, thus minimize

CV (b) =
m∑

j=1

(
Ŝ

(−j)
i (Xj)− Zij

)2
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with respect to b. Now determine transformed residuals Yij = log(R2
ij) = log((Zij −

Ŝi(Xj))2), and estimate the mean function mV by local linear kernel estimation taking the
whole data set into account, i.e. minimize

RSS(mV (x)) =
n∑

i=1

m∑
j=1

K
[1]
bV

(Xj − x) (Yij − β0 − β1(x−Xj))
2 (3.8)

with respect to β and estimate m̂V (x) = β̂0. The bandwidth bV is chosen by one-curve-
leave-out cross validation, i.e. by minimizing

CV (b) =
n∑

i=1

m∑
j=1

(
m̂

(−i)
V (Xj)− Yij

)2
(3.9)

with respect to b. The next aim is to determine the covariance surface GV (x′, x). We have
to guarantee that the estimate is

• symmetric

• positive definite

• appropriate at the diagonal, i.e. dispose of the white noise variance when estimating
V ar(V (t)).

Let Gi = [Gi(Xj1 , Xj2)]j1,j2=1,...,m the empirical covariance matrix of trajectory Yi, i.e.

Gi(Xj1 , Xj2) = (Yij1 − m̂V (Xj1))(Yij2 − m̂V (Xj2)).

The covariance surface GV (x′, x) is then estimated by 2-dimensional local linear kernel
estimation according to

RSS(GV (x′, x)) =
n∑

i=1

∑
1≤j1 6=j2≤m

K
[2]
hV

(Xj1 − x′, Xj2 − x)× (3.10)

(
Gi(Xj1 , Xj2)− β0 − β1(x′ −Xj1)− β2(x−Xj2)

)2
which is to be minimized with respect to β = (β0, β1, β2). If β̂ is the solution, set ĜV (x′, x) =
β̂0. We obtain a symmetric covariance surface by using a symmetric two dimensional kernel
K [2], for example just choose the product kernel of two one-dimensional Gaussian kernels
with same bandwidths. The bandwidth hV is again chosen by one-curve-leave-out cross
validation. Do not forget to leave out the diagonal values of the empirical covariance
in sum (3.11). They are influenced by the white noise variance σ2

W and would bias the
estimate.
We further improve diagonal estimates ĜV (x, x) by fitting a local quadratic component
orthogonal to the diagonal of the empirical covariance, and a local linear component in the
direction of the diagonal as proposed in [55], see remark at the end of this section.
Let now ĜV (x, x′) the estimated covariance function corrected at x = x′. The last point
we have to guarantee is the positive definiteness of the covariance function. Therefore
determine eigenvalues ρk and eigenfunctions φk of the covariance operator with kernel ĜV .
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Then simply recalculate ĜV ignoring negative estimates of eigenvalues and corresponding
eigenfunctions in the expansion of the covariance surface as proposed in [54], i.e.

ĜV (x, x′) =
∑

{k,ρk>0}

ρkφk(x)φk(x′).

Now determine the white noise variance σ2
W . To estimate V ar(Yij) = V ar(V (Xj)) + σ2

W

we just take the diagonal values of the empirical covariances, that is Gi(Xj , Xj), i =
1, . . . , n, j = 1, . . . ,m, and determine a local linear kernel estimator Q̂V (x) of the diagonal
by minimizing

RSS(QV (x)) =
∑

i

∑
j

K
[1]
bQV

(Xj − x) (Gi(Xj , Xj)− β0 − β1(x−Xj))
2 ,

with respect to β = (β0, β1). Approximate σ2
W from the difference between Q̂V (x) and

ĜV (x, x). To avoid boundary effects we restrain the support interval T = [a1, a2] to T1 =
[a1 + |T |/4, a2 − |T |/4] and obtain

σ̂2
W =

1
|T1|

∫
T1

(
Q̂V (x)− ĜV (x, x)

)
+

dt (3.11)

where |T | is the length of the interval and (·)+ denotes the positive part of the term in
brackets.

Finally calculate approximate trajectories Vi of the variance process V

Vi(K)(x) = m̂V (x) +
K∑

k=1

ζ̂ikφk(x) (3.12)

where the principal component scores ζik are discretely approximated by

ζ̂ik =
m∑

j=2

(Yij − m̂V (Xj))φk(Xj)(Xj −Xj−1), k = 1, . . . ,K.

The number of included components K has to be chosen adequately. We determine it such
that the total variance of chosen eigenvalues with corresponding eigenfunctions is more than
95%, i.e. (

∑K
k=1 ρk)/(

∑∞
k=1 ρk) ≥ 0.95. Other methods are possible, for example choose

the number of model components by a one-curve-leave-out cross validation minimizing
CV (K) =

∑n
i=1

∑m
j=1(Yij − V

(−i)
i (K)(Xj))2 with respect to K where

V
(−i)
i (K)(x) = m̂

(−i)
V (x) +

K∑
k=1

ζ̂
(−i)
ik φ

(−i)
k (x),

see [34].

Remark: Yao et al. [55] found that the standard fitting of local planes around the diago-
nal of the covariance matrix GV leads to overestimation of σ2

W . To adjust estimates of the
variance of V (x) the covariance surface is fitted by local quadratic kernel estimation in the
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direction orthogonal to the diagonal.
In practice to obtain adjusted estimates rotate both axes by 45 degrees clockwise, i.e.

(X∗
j1 , X

∗
j2) =

√
2

2
(Xj1 , Xj2)

(
1 1

−1 1

)

and get a surface estimate G∗
V (x′, x) by minimizing

RSS(G∗
V ) =

n∑
i=1

∑
1≤j1 6=j2≤m

K
[2]
hV

(X∗
j1 − x′, X∗

j2 − x)×

(
Gi(X∗

j1 , X
∗
j2)− β0 − β1(x′ −X∗

j2)− β2(x−X∗
j2)
)2

with respect to β = (β0, β1, β2). Then estimate the covariance diagonal according to
ĜV (x, x) = G∗

V (0,
√

2x), taking the rotation into account.

3.3 Asymptotics

In this section we want to present asymptotic results for the model introduced above. For
each of the estimated components needed to approximate the functional variance process
consistency is proven and consistency rates are given. Here consistency of an estimated
random function f̂(x) means that ||f − f̂ ||∞ = supx∈T |f(x) − f̂(x)| P→ 0, or in case of

estimated random numbers û ∈ R consistency means |u− û| P→ 0. Assumptions and conver-
gence are with respect to n → ∞ and m → ∞, where n is the number of observed curves
(indexed by i) and m is the number of observations per subject i.

To insure the consistency results in theorems beneath, several conditions must be fulfilled.
The stochastic process S and the variance process V are assumed to be smooth, that is to
be twice continuously differentiable. V , S and its first and second derivative are assumed
to be bounded, i.e.
(A1) ∃C > 0 : supx |V (x)| < C and supx |S(ν)(x)| < C for derivatives ν ∈ {0, 1, 2}.

For the derivation of model components we used several bandwidths, which are bSi , i =
1, . . . , n, in the initial smoothing step to estimate Si from observations Zij , further bV

to estimate mV from the log transformed squared residuals Yij and the bandwidth hV

used twice in the two dimensional kernel when smoothing ĜV from empirical covariances
Gi, i = 1, . . . , n and to re-estimate the diagonal values. At last bQV

is used to estimate the
white noise variance from the diagonal covariance values. Note, that all bandwidths were
obtained by cross validation procedures and thus depend on the number of observations n

and m.
We assume that bandwidths bSi to smooth trajectories Si are connected by a common se-
quence of bandwidths bS = bS(n),

(A2.1) ∃ bS ∃ c1, c2 ∈ (0,∞) : c1 < infi
bSi
bS

≤ supi
bSi
bS

< c2.
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We impose further conditions that are essential for kernel smoothing asymptotics. For
n →∞

(A2.2) m →∞, bS → 0, mb2
S →∞,

(A2.3) for b ∈ {bV , bQV
} : b → 0, nb4 →∞, lim supn nb6 < ∞,

(A2.4) hV → 0, nh6
V →∞, lim supn nh8

V < ∞,

(A2.5) for b ∈ {bV , bQV
, hV } : lim supn

√
nb

m < ∞.

We assumed in our model that the curves are observed on the same prediction points
X1, . . . , Xm ∈ T . For the consistency results given below this assumption can be relaxed to
varying prediction points. I.e. let Xij ∈ T, j = 1, . . . ,m, the prediction points of the i-th
curve, where we allow Xi1j 6= Xi2j for i1 6= i2. Asymptotically we assume regularly spaced
prediction points Xij , i.e. let ∆n = maxj=2,...,m(Xij −Xi,j−1), then

(A3) ∆n = O
(

1
m

)
as n, m →∞.

Further the fourth moments of observations Zij and transformed residuals Yij have to
be uniformly bounded, i.e.

(A4) supj E[Z4
ij ] < ∞ and supj E[Y 4

ij ] < ∞.

We need specific assumptions to get consistency results for eigenfunctions and eigenval-
ues. Therefore we first introduce some more notation.
Let F denote a separable Hilbert space with norm || · ||F = 〈·, ·〉1/2

F , where 〈T1, T2〉F =
tr(T1T

∗
2 ) for Hilbert-Schmidt operators T1, T2, and T ∗

2 is the adjoint of T2. The covariance
operator GV defined in (3.6) is a Hilbert-Schmidt operator and we call RV (y) = (GV−yI)−1

the resolvent of GV , where I is the identity operator. ρl and φl are the eigenvalues and
corresponding eigenfunctions of GV , l = 1, 2, . . .. Let now

AδV
j

= sup
y∈Λ

δV
j

||RV (y)||F ,

where
δV
j =

1
2

min{|ρl − ρj |, ρl 6= ρj} and ΛδV
j

= {y ∈ C : |y − ρj | = δV
j }

and C is the space of complex numbers.
Let K = K(n) the number of chosen PCs to model the variance process V according to
(3.12), then we assume that K depends on n and m in such a way that

(A5) τn =
∑K

j=1

δV
j A

δV
j
||φj ||∞„

√
nh2

V −A
δV
j

« → 0, as K →∞,

(A6)
∑K

j=1 ||φj ||∞ = o(min{
√

nbV ,
√

m}) and
∑K

j=1 ||φj ||∞||φ(1)
j ||∞ = o(m),
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when n →∞. φ(1) is the first derivative of φ and ||f ||∞ = supx |f(x)|.

Further let V (K)(x) = mV (x) +
∑K

k=1 ζkφk(x). For n →∞ we assume

(A7) E
[
{supx∈T |V (x)− V (K)(x)|}2

]
= o(n),

(A8)
{

b2
S + 1√

mbS

}∑K
j=1 ||φj ||2∞ = oP (1) and γn =

∑K
j=1

δV
j A

δV
j
||φj ||∞„n

b2S+ 1√
mbS

o−1
−A

δV
j

« → 0.

At last, we need regularity conditions on the density and kernel functions. Let g and
g2 densities of observations Zij and pairs (Zij1 , Zij2) and let f and f2 densities of residuals
Yij and pairs (Yij1 , Yij2), i.e.

Zij ∼ g(z, x) and (Zij1 , Zij2) ∼ g2(z1, z2, x1, x2),
Yij ∼ f(y, x) and (Yij1 , Yij2) ∼ f2(y1, y2, x1, x2).

We assume these densities can be extended to smooth families of densities g(·, x), g2(·, x1, x2),
f(·, x) and f2(·, x1x2) that have second derivatives which are uniformly continuous on their
domains R× T and R2 × T 2, respectively:

(B1.1) d2

dx2 g(z, x) < ∞ and d2

dx2 f(z, x) < ∞

(B1.2) d2

dx
l1
1 dx

l2
2

g2(z1, z2, x1, x2) < ∞ and d2

dx
l1
1 dx

l2
2

f2(z1, z2, x1, x2) < ∞,

where l1, l2 ∈ {0, 1, 2}, l1 + l2 = 2. Moreover, we have conditions on the kernel func-
tions K [1] : R → R and K [2] : R2 → R. The kernels are compactly supported symmetric
density functions with zero mean and finite variance (for K [2] in both arguments) and ab-
solute integrable Fourier transforms, that is

(B2.1) ||K [1]||2 =
∫

(K [1])2(u)du < ∞ and
∫
|χ1(x)|dx < ∞,

(B2.2) ||K [2]||2 =
∫ ∫

(K [2])2(u, v)dudv < ∞ and
∫ ∫

|χ2(x, x′)|dxdx′ < ∞,

where χ1(x) =
∫

e−iuxK [1](u)du and χ2(x, x′) =
∫ ∫

e−(iux+ivx′)K [2](u, v)dudv are the
Fourier transforms.

There are several relaxing assumptions possible. For example we can think of random
design points, that come from the same probability density function f or even from several
fi, that are bounded in the same interval but specific for each subject i. Further the number
of observations mi per subject may vary as long as there exists a common sequence m such
that mi/m, i = 1, . . . , n is bounded. Asymptotic results in this context can be found in
Yao et al. [55].
The following assertions are based on assumptions (A1)-(B2.2). They claim convergency
of the estimates of each component included in the model presented in section 3.1 and give
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convergency rates for most of them.

Theorem 1. Under conditions (A1), (A2), (B1.1) and (B2.1), it holds for smoothed tra-
jectories Ŝi(x) that

E

[
sup
x∈T

|Ŝi(x)− Si(x)|
]

= O

(
b2
S +

1√
mbS

)
.

The first theorem states that if trajectories Si that drive the observations are smooth
and individual bandwidths bSi are tied to bS then local linear estimators of these trajectories
are consistent. Hence, further decomposition of the transformed residuals Yij of the model
is justified. A second theorem claims consistency of further model components, namely
the mean function mV , the covariance function GV (x, x′) of the process V , the white noise
variance and also eigenfunctions and eigenvalues.

Theorem 2. Under conditions (A1)-(A8), (B1.1)-(B2.2), it holds for the estimated com-
ponents of the functional variance process that

supx∈T |m̂V (x)−mV (x)| = OP

(
b2
S + 1√

mbS
+ 1√

nbV

)
,

supx,x′∈T |ĜV (x, x′)− GV (x, x′)| = OP

(
b2
S + 1√

mbS
+ 1√

nh2
V

)
,

|σ̂2
W − σ2

W | = OP

(
b2
S + 1√

mbs
+ 1√

nh2
V

+ 1√
nbQV

)
.

Considering eigenvalues ρk of multiplicity one, φk can be chosen such that

sup
x∈T

|φ̂k(x)− φk(x)| P→ 0 and ρ̂k
P→ ρk.

Finally, consistency results for principle component scores ξik justify consistency of the
functional variance process.

Theorem 3. Under conditions (A1)-(A8), (B1.1)-(B2.2), it holds for the estimated PC
scores of the functional variance processes V that

sup
k=1,...,K

|ζ̂ik − ζik|
P→ 0,

where for the number of components in the model expansion K = K(n) → ∞ as n → ∞.
Furthermore, for estimated trajectories V̂i(K)(x) of the functional variance process V it
holds that for i = 1, . . . , n

sup
x∈T

|V̂i(K)(x)− Vi(x)| P→ 0.

Proofs of all three theorems can be found in [34]. They are mainly based on convergency
results given in [44], [54] and [55].
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4 Financial Options and Implied Volatilities

The aim of our work is to apply traditional and new developed statistical methods pre-
sented in section 3 in a financial context. To give a better understanding of applications
presented in section 5 we now give an overview of financial options and terminology. For
further information see [25].
Lets first introduce the notions stock index and swap, and then explain what options on
financial assets are and what kind of options exist.

A stock index is an index monitoring the value of a portfolio of stocks. The percentage
increase in the stock index over a small interval of time is set equal to the percentage in-
crease in the value of the hypothetical portfolio. The weight of a stock in the portfolio
equals the proportion of the portfolio invested in the stock. When the price of one particu-
lar stock in the portfolio rises more sharply than others, more weight is automatically given
to that stock. The weights assigned to the stocks are proportional to their market prices
or proportional to market capitalization, i.e. stock price × number of outstanding shares.
Examples are the German Stock Index (DAX30) or Standard & Poor’s 500 (S&P500) index.
A swap is an agreement between two companies to exchange cash flows in the future. The
agreement defines the dates when the cash flows are to be paid and the way in which they
are to be calculated. Popular types of swaps are interest rate swaps and currency swaps. In
interest rate swaps a company agrees to pay cash flows equal to interest at a predetermined
fixed rate on a notional principal for a number of years. In return, it receives interest at
a floating rate on the same notional principal for the same period of time. A currency
swap involves exchanging principal and interest payments in one currency for principal and
interest payments in another currency.
An option is the right to buy or sell an asset at a certain date for a certain price. We
distinguish between call options, which give the right to buy, and put options which give
the right to sell. The price in the contract is called strike price, the date in the contract
is called the expiration date or maturity. European options can only be exercised on the
expiration date, American options can be exercised at any time up to the expiration date.
An option on a stock gives the owner the right to buy or sell a stock. A stock index option
is an option contract on an index, where one contract is to buy or sell 100 times the index at
the specified strike price. A swap option or swaption is the option to enter into an interest
rate swap where a specified fixed rate is exchanged for floating.

4.1 Basic Properties of Stock Options

Now concentrate on European call options on stocks. We can characterise options in terms
of the terminal value, i.e. the payoff to the investor at maturity. If K is the strike price
and ST is the price of the underlying asset at expiration day T the payoff for the owner
(long position) of an European call option is

max(ST −K, 0).
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The owner will exercise his option when the predetermined strike is less than the actual
price of the asset, K < ST . He won’t exercise it when K ≥ ST not to make loss, thus the
payoff is zero in this case. On the other side the payoff for the seller (short position) of the
option is

max(ST −K, 0) = min(K − ST , 0).

To value a call option at time t < T we discount the payoff at a continuously rate r for a
time period τ = T − t which is the remaining time to maturity at t

e−rτ max(ST −K, 0),

when assuming a risk-free rate r on a non dividend paying stock. We call an option to be in-
the-money if K < St and out-of-the-money if K > St. An option is at-the-money if K = St.

Influencing factors of stock options are the current stock price S0, the strike price K,
time to expiration T , the volatility of the stock price denoted by σ, the risk-free interest
rate r and the dividends expected during the lifetime of the option. The option price is
mainly influenced by the current stock price. For fixed strike K the option will become
more valuable when the stock price increases. On the opposite side, for fixed strike price
the option price will decrease for increasing strike price. The volatility of a stock price is
a measure of how uncertain we are about stock price movements. When volatility is high
the chance is high that the stock price will strongly increase or decrease. The owner of a
call option will have great benefit from increasing stock price, but only a limited risk from
decreasing stock price. He will maximal loose the price of the option. Thus increasing
volatility has a positive influence on the call option price, i.e. it will increase the value of
the option. The risk-free interest rate affects call options in a positive way thus call option
prices increase for increasing rate. When dividends occur the stock price will decrease the
day after the dividend is payed. As a consequence call options will loose value for increas-
ing dividend values. How about the influence of time to maturity? Options become more
valuable when the expiry date is far in future. Thus increasing maturity should increase the
option price in general. But there exist situations, when the behavior is opposite. When
a large dividend on a stock is expected, an option with expiry date before the dividend
paying will be worth more than an option on the same stock with expiry date after the
dividend paying. In this case the option price will decrease for increasing time to maturity.
Therefore we cannot clearly determine the influence of maturity onto option prices.
Similar considerations can be made in case of European put options and in case of American
options.

4.2 Black-Scholes Option Pricing

Theory to value options is made under the risk neutral assumption. In a risk-neutral world
investors are assumed to require no extra return on average for bearing risks and the ex-
pected return on all securities is the risk-free interest rate. The risk-free rate is the rate at
which money is borrowed or lent when there is no credit risk, so that the money is certain
to be repaid. When moving from a risk-neutral world to a risk-averse world two things
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happen. On the one hand the expected growth rate in the stock prices change, and on the
other hand the discount rate that must be used for any payoffs from the derivatives change.
It turns out that these two changes always offset each other exactly. Therefore the option
price we obtain in risk-neutral valuation is correct not just in a risk-neutral world but in
the real world as well.

Stock prices are random variables changing their value in time, where any point in time
and any value in the specified range is feasible. We assume stock prices to be driven by an
Ito processes according to

δS = µSδt + σSδz,

where z is a Wiener process. µ is the expected rate of return, we expect an increase of S

to µSδt in time δt. The variability of the percentage return of the stock price is the same
regardless of the stock price, therefore the standard deviation of the change in δt should be
proportional to the stock price as well. We may write equivalently

δS

S
= µδt + σδz

and δS
S ∼ N (µδt, σ2δt).

By Ito’s Lemma

lnST − lnS0 ∼ N
((

µ− σ2

2

)
T, σ2T

)
and further

lnST ∼ N
(

lnS0 +
(

µ− σ2

2

)
T, σ2T

)
.

Stock prices are log-normal distributed with expectation E(ST ) = S0e
µT and variance

V ar(ST ) = S2
0e2µT (eσ2T − 1). When η is the continuously compounded rate of return, i.e.

ST = S0e
ηT then η = 1

T (lnST − lnS0) thus

η ∼ N
(

µ− σ2

2
,
σ2

T

)
.

For further details see [25] or [27].

The expected value of a call on a European stock option at maturity T in a risk-neutral
world is E(max(ST − K, 0)) where ST is the price of the stock and K is the strike price.
Thus at time t the option is valued by

Ct = e−rτE(max(ST −K, 0)) (4.1)

which is the discounted payoff at a continuously rate r when τ = T − t is the remaining
time to maturity. We obtain the well known Black-Scholes formula for option pricing by
the following theorem.
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Theorem 4. Let V log-normal distributed with expectation E[V ] and variance V ar[lnV ] =
s2. Then

E(max(V −K, 0)) = E[V ]N (d1)−KN (d2)

where

d1 =
ln(E[V ]/K) + s2/2

s
, d2 = d1 − s.

A proof can be found in [25].

Now, ST is log-normal with expectation E[ST ] = S0e
−rT and V ar[lnST ] = σ2T . Using

theorem 4 we get E(max(ST −K, 0)) = S0e
rTN (d1)−KN (d2) where

d1 =
ln
(

S0erT

K

)
+ σ2

2 T

σ
√

T
and d2 = d1 − σ

√
T .

By (4.1) we result in Black-Scholes formula for pricing European call options an stocks,
first introduced by F. Black, M. Scholes and R. Merton in the early 1970s, i.e.

C0 = S0N (d1)−Ke−rTN (d2). (4.2)

When using Black-Scholes formula in practice the interest rate r is set equal to the zero
coupon risk-free interest rate for a maturity T . (A zero coupon is a bond that provides no
interest payments.) The volatility σ2 is not known and has to be estimated from historical
data or as implied volatility. We will explain these concepts later on in this section. The
option price at time t according to Black-Scholes is

Ct = StN (d1)−Ke−rτN (d2),

where d1 = ln(St/K)+(r+σ2/2)τ
σ
√

τ
, d2 = d1 − σ

√
τ .

There are several extensions of Black-Scholes formula to price options on further finan-
cial assets, like dividend paying stocks, indexes or swaps. We now present corresponding
concepts.

For dividend paying stocks to value an European option lasting for time T , we reduce
the current stock price from S0 to S0e

−qT where q is the annual rate of the dividend yield.
Indeed a stock that starts at S0 and pays a dividend has the same probability distribution
as a stock starting at S0e

−qT and paying no dividends. Therefore use Black-Scholes to
value European options on dividend paying stocks substituting S0 by S0e

−qT . Then by
ln
(

S0e−qT erT

K

)
= ln(S0/K) + (r − q)T we get

C0 = S0e
−qTN (d1)−Ke−rTN (d2), (4.3)

where d1 = ln(S0/K)+(r−q+σ2/2)T

σ
√

T
and d2 = d1 − σ

√
T .

Options on stock indexes can be treated as options on dividend paying stocks. Recall
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that a stock index is a benchmark of a hypothetical portfolio of stocks. Thus to value an
index option we average dividend yields of the portfolio’s stocks. Let now q the average
annualized dividend yield on the index during the lifetime of the option, where only those
dividends are included whose ex-dividend data occur in the lifetime. Then an European
call option on a stock index is valued according to the extended Black-Scholes formula (4.3).

Valuation of options on interest rate swaps is somewhat more complicated. Let the agree-
ment be to swap N payments of fixed and continuous rate m times a year. The duration
of the swap will be N/m years. The exercise price K of an option on the swap is here the
fixed rate sK committed at the beginning of the option, at time t = 0. Let sT the fixed
rate of a newly issued swap offered at time t = T with the same duration and number of
cash flows. We assume that sT is log-normal distributed. Let L the notional principal on
which interest rates are paid. Then single payoffs of the swap are

L

m
max(sT − sK , 0)

paid m times a year. According to Black-Scholes we can value an European call option on
the swap by

C0 =
N∑

i=1

L

m
p(0, T + i/m)(s0N (d1)− sKN (d2)) (4.4)

where d1 = ln(s0/sK)+Tσ2/2

σ
√

T
and d2 = d1 − σ

√
T . p(0, T ) is the price at time t = 0 for a

zero-coupon bond paying 1 at time T , and s0 is the forward swap rate thus the expectation
of rate sT .

4.3 Implied Volatility

The Black-Scholes formula for option pricing is a function of various parameters that deter-
mine the price of an option. In case of stock options we have CBS(r, S0, T, K, σ) where the
only one parameter that cannot directly be observed is the volatility σ2 of the stock price.
When estimating this parameter there are two main approaches. First is to approximate σ

from historical data. Under the log-normal assumption the volatility σ2 is the variance of
observations xt = ln(St/St−1). Then the next idea on hand is to estimate the variance at
day t empirically by

σ̂2 =
1

n− 1

t∑
i=t−n

(xi − x̄)2,

where x̄ is the observation’s mean and n defines the time horizon taking into account.
An interesting question is then how to choose the time horizon. If n is chosen too large,
we include data that is to ‘old’ to have influence on the current values and thus leads to
estimation bias. But the smaller we choose n the worser will be the empirical variance as
a fit of σ2. Another approach to estimate σ is to use implied volatilities.
The implied volatility of a call option is the volatility resulting from Black-Scholes formula
when the option price is observed on the market. In case of stock options we thus set

Cobs = CBS(r, S0, T, K, σ), (4.5)
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were CBS denotes the option price under Black-Scholes formula and Cobs is the observed
price. The option price regarded as a function of volatility σ is a monotonic mapping from
R+ to (0, S0 − Ke−rT ], therefore the solution to equation (4.5) exists and is unique. We
call the solution the implied volatility of the stock option at strike price K and maturity
T . Implied volatilities of put options can be obtained by the put-call parity which is

Ct + Ke−rτ = Pt + St,

and allows us to determine call prices according to observed put prices. Implied volatilities
are used to monitor the market’s option about the volatility of a particular stock. Prices
of deep-in-the-money options (K << S) and deep-out-of-the-money options (K >> S) are
relatively insensitive to volatility. IVs calculated from these options tend to be unreliable.
Traders like to calculate IV from actively traded options on a certain asset and interpolate
between them to calculate the appropriate volatility for pricing a less actively traded option
on the same stock.

Implied volatilities are frequently analysed as functions of the strike price and time to
maturity, for example for options on stocks or stock indexes. It is well known that implied
volatilities are not equal for options on the same stock when maturity or strike price vary
and thus contradict the Black-Scholes assumption of constant volatility σ. In fact IVs tend
to be larger when the strike price is very low or very high. We are then talking of the IV
smile, i.e. the shape of the IV curve with respect to strike resembles a smile. In direction
of maturity we call the IV curve the term structure. The shape of term structure curves
is not clearcut. When historical volatility has been high, volatility tends to be decreasing
for decreasing option maturity. When historical volatility has been low, volatility tends
to increase. This is a consequence of the traders expectation of market behavior, as the
volatility seems to be largely caused by trading itself.
In case of swaptions implied volatilities are analysed as functions of swap maturity and
option maturity. Resulting curves are not flat, as well and tend to have maxima for short
(swap and option) maturities.

The influence of σ onto the option price is clearcut: According to (4.2) if σ → 0 (i.e.
the stock is virtually riskless) and S0 > Ke−rt both, N (d1) and N (d2) tend to 1 and the
option price becomes S0−Ke−rt and the call option is exercised. If σ → 0 and Ke−rt > S0

both, N (d1) and N (d2) tend to 0 and the option price becomes 0 and the call option is not
exercised. If σ → ∞, N (d1) tends to 1 and N (d2) to 0 thus C0 → S0, i.e. for increasing
asset price volatility the option becomes as worth as the asset itself.
In general, the dependence of the option price and the volatility is analysed in terms of the
option vega which is the proportion of price changes and volatility changes. We determine
the vega by the derivative

vega =
∂C

∂σ

which is S0
√

τN ′(d1) = S0
√

τ
exp(−d2

1/2)√
2π

in case of European call options on non-dividend
paying stocks. vega is maximal for at-the-money options as the normal density N ′(d1) is
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largest for K = S. When vega is large in absolute terms little changes of σ lead to large
changes in the option price. When vega is small in absolute terms changes of σ have to be
larger to lead to the same amount of changes in the option price. Thus the option vega
determines the sensivity of option prices to volatility changes.
In this context it is clearcut that estimation of (implied) volatilities and their variation
plays an important role in terms of risk controlling when trading options.
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5 Analysis of Implied Volatilities

5.1 Introduction of the Data Set

We have got three big data sets of implied volatilities, first one resulting from options on
stocks (Stock IV), second one resulting from options on indexes (Index IV) and third one
on swaps (Swap IV). The data sets were kindly offered by the Commerzbank AG in
Frankfurt a.M., Germany, section Risk Controlling. The external data source for the prices
of options and underlyings to determine Stock and Index IV is Reuters. Bloomberg is
the data source for associated dividends. Swap IV are originally from Reuters.

The implied volatilities of stock and index options are given for different strike prices and
times to maturity of the option. We have index IVs of options on the indexes
DAX30X Xetra DAX 30, Frankfurt,
DJ Dow Jones Industrial, New York,
FTSE100 Financial Times Stock Exchange, London,
Nikkei225 Nikkei 225, Tokyo,
SANDP500 Standard & Poor’s 500 (S&P500), New York,
SMI Swiss Market Index, Zuerich.

Daily data is given from 03.01.2005 to 31.10.2006 (477 trading days).
Stock IV data is given for Peugeot and Volkswagen stocks from 03.01.2005 to 31.10.2006
(477 trading days) for Air France stocks it is given from 03.02.2005 to 31.10.2006 (450
trading days).
Implied volatilities are determined over a grid of moneyness values

κ ∈ {0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.4}

and time to maturity

τ ∈
{

1
24

,
1
12

,
1
6
,
1
4
,
1
2
,
3
4
, 1, 2, 3, 5, 10

}
years,

where κ = K/{S ∗ exp(r ∗ τ)} is the strike price divided by the future asset price. This
makes a total of 36.729 data points per index and per stock, except Air France with 34.650
data points.

In contrast to previous IVs, swaption implied volatilities do not depend on strike price
and option maturity, but depend on the maturity of the swap and on option maturity.
Therefore Swap IV data is given on a grid of 14 different swap maturities τS and 14 differ-
ent option maturities τO,

τS ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30} years,

τO ∈
{

1
12

,
1
4
,
1
2
, 1, 2, 3, 4, 5, 7, 10, 15, 20, 25, 30

}
years.

Data is observed at 477 trading days, namely from 03.01.2005 to 31.10.2006, such that a
single SWAP IV data set consists of 93.492 data points. Such sets are given for IV of op-
tions on EUR (European Euro), GBP (Great Britain Pound), JPY (Japanese Yen) and
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USD (United States Dollar) swaps.

Index and Stock IVs were calculated in-house by the Commerzbank AG from the market
data given by external sources. In general such data appears as ‘floating point’ data. To
get IVs on a fixed grid of moneyness and maturity values a 3-dimensional interpolation
algorithm was applied. Furthermore, for remaining option maturity of more than two years
IV data was extrapolated and should be handled suspiciously in the analysis.
Methods used to interpolate and extrapolate the data are documented in [50] and [30].

5.2 Functional Data Analysis of the IVS

As already mentioned we are interested in the variation of implied volatilities. There are
three approaches of how to analyse the volatiltiy of IVs. First of all we may regard changes
of IVs within the implied volatility surface for a fixed day, i.e. fitting the IV smile and
term structure. A second point is to describe the IV time series for fixed moneyness and
maturity. How do IVs vary in time? How do time series of IV log returns look like? Third,
the changes of IV log returns are of interest when moneyness or maturity values vary, i.e.
variation within the ‘IV log return surface’.
In what follows, we will have a short look at the first and second point, we will follow the
analysis in Fengler et al. [17], but our main focus is on the analysis of variation of IV log
return curves in the daily surface.

5.2.1 First steps of data analysis

To get a first look at the properties of the data we distinguish between index and stock IVs
on the one hand and swap IVs on the other hand. We limit the index and stock data to
a maximum of 2 years to option maturity, as we do not rely on the extrapolated data af-
terwards, i.e. we have prediction points τ ∈ {τ1, . . . , τ8} = { 1

24 , 1
12 , 1

6 , 1
4 , 1

2 , 3
4 , 1, 2} years and

κ ∈ {κ1, . . . , κ7} = {0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.4}. In case of swap data, to guarantee a regu-
lar grid of prediction points we limit option maturity to maximal 5 years and swap maturity
to maximal 10 years, i.e. prediction points τO ∈ {τO

1 , . . . , τO
10} = { 1

12 , 1
4 , 1

2 , 1, 2, 3, 4, 5, 7, 10}
years and τS ∈ {τS

1 , . . . , τS
10} = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} years.

First we generate daily plots of the IVS of options on indexes and stocks. We plot the
IVs as two dimensional surfaces dependent on maturity of the option and on moneyness.
Having data only over a grid of discrete values, we simply interpolate linearly between the
grid points. Plots of the IVS at 1 September 2006 for two indexes and two stocks are shown
in the upper four panels in figure 4.
For both, index and stock data in-the-money IVs are predominantly higher than out-of-the-
money IVs. Curves in moneyness direction appear as the well-known IV smiles or smirks,
i.e. IV is high for moneyness κ = 0.7, decreases until κ = 1 and increases again or re-
mains nearly constant afterwards for increasing moneyness κ > 1. This behavior is well
pronounced for short time to option maturity and weakens when option maturity increases.
The reason for IV smile appearance is that the volatility of a traded option is higher, when
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the strike price of an option is lower or higher than the asset price, i.e. moneyness κ < 1 or
κ > 1. In those cases exercising the option makes sense for buyers or sellers of the option,
respectively.
In direction of option maturity IV curves (i.e. term structure curves) have extreme values
for short maturities and flatten for long maturities. In general the curves are decreasing.
This makes sense as short maturity options are traded more frequently. But there exist
cases when the behavior is reverse and the term structure is increasing. Term structure
curves are best pronounced when options are in-the-money, but nearly flat for at-the-money.

IV time series for fixed κ and τ resemble trajectories of stochastic processes jumping up
and down, with different drifts and variances. Examples are given in figures 5 and 6, where
we plotted DAX30X and Volkswagen IV time series for fixed moneyness values over time.
For both, index and stock data, when maturity is small (here 1 month) we notice that
time series are extremely volatile for low moneyness. Time series become much less volatile
when moneyness increases. The volatility of IV time series for at-the-money and out-of-
the-money options seems to be the same. For increasing time to maturity the volatility of
IVs decrease, compare therefore the time series plotted from upper to lower panels.
Note that in general IV time series for in-the-money options lie above time series for mon-
eyness κ ≥ 1, reflecting the typical smile or smirk behavior of IVs in moneyness direction.

Moreover, regard the IV log returns shown in figure 8, upper four panels, where we plot
surfaces of log return data at 1 September 2006. As expected from previous data inspection,
data are most volatile and reach extreme values in regions where moneyness is small and
option maturity is short.

Now we will make similar considerations for the swaption data. The swap implied volatility
surface depends on option maturity and the maturity of the traded swap. Thus features of
these data differ from index and stock IVs. In general swap IVS are flatter than index or
stock IVS, note therefore the different scales of the IV axes in figure 4.
In direction of option maturity, for EUR, GBP and USD options the IV curves are increas-
ing up to 1 or 2 years option maturity, where the curves reach their maximum and then
decrease for increasing option maturity. Curves for JPY options are decreasing. In swap
maturity direction, in general IV curves are decreasing and the slope of the curves is almost
constant. Only for option maturities less than one year and short swap maturities extreme
IV values appear.

Time series of JPY implied volatilities for different fixed maturities are shown in fig-
ure 7 as an example of swap option IVs. In each panel time series for swap maturities
τS ∈ {1, 2, 4, 6, 8, 10} years are plotted together. The different panels contain plots for
different option maturities τO ∈ {1/12, 1, 5} years. Variation of the data is similar for swap
maturities more than four years, for swap maturities underneath variation increases. IV
time series according to short swap maturities lie above those for high maturities, i.e. IVs
decrease for increasing τS . For increasing option maturity and increasing swap maturity
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variation of the IV time series decreases to a very low level.
We have to add that data is more volatile for EUR, GBP and USD swaps, but the charac-
teristics described so far are the same for all swaps.

IV log return surfaces are displayed in figure 8, lower two panels. Data is almost con-
stant over the whole range of swap and option maturities and the variation of the data is
much less than it is for index and stock log returns. Additionally, variation seems not to
differ a lot between short and long (option and swap) maturities.
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Figure 4: Implied volatility surfaces at September 1, 2006 for two index options
(DAX30X, FTSE100), two stock options (Volkswagen, Peugeot) and two swap options

(EUR, JPY). Typical smile curves occur for DAX and Peugeot options with short
maturities. Smirk curves are well pronounced for FTSE and Volkswagen options with

short maturities.
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Figure 5: Dax IV time series for fixed maturities 1 month (top panel), 6 months (middle
panel), 1 year (bottom panel). Different curves correspond to moneyness in {0.7, 1.0, 1.4}.
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Figure 6: Volkswagen IV time series for fixed maturities 1 month (top panel), 6 months
(middle panel), 1 year (bottom panel). Different curves correspond to moneyness in

{0.7, 1.0, 1.4}.
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Figure 7: JPY IV time series for fixed option maturities 1 month (top panel), 6 months
(middle panel), 1 year (bottom panel). Different curves correspond to swap maturities

from 1 to 10 years.
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Figure 8: Log returns of implied volatility surfaces at September 1, 2006 for two index
options (DAX30X, FTSE100), two stock options (Volkswagen, Peugeot) and two swap

options (EUR, JPY). Index and stock data is more volatile when option maturity is short
and moneyness is small.
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5.2.2 Principal component analysis

Next we analyse principal components of the data to specify main directions of variation
of the IVS in time. We proceed according to methods of Fengler et al. [17] and analyse the
shocks, that drive IV smiles in time.

For further examination of the variation we analyse the log returns of implied volatilities
sampled over time t ∈ {1, . . . , T}, which is

σ(t, κ, τ) = log
{

IV (t, κ, τ)
IV (t− 1, κ, τ)

}
= log IV (t, κ, τ)− log IV (t− 1, κ, τ),

in case of index and stock data. For each single τ ∈ {τ1, . . . , τ8} we perform a PCA of the
sampled data Yj(τ) = (σ(1, κj , τ), . . . , σ(T, κj , τ))T , j = 1, . . . , 7. Thus for each τ we get a
set of seven eigenvalues and eigenvectors. In case of swap IV, replace κ by τS and τ by τO.
Then for each τO we get a set of ten eigenvalues and eigenvectors.

First, to detect dependencies among data for different option maturities, we scatterplot
the log return data for moneyness κ1 = 1 vs. κ2 = 0.7, 0.8, 0.9, 1.1, 1.2, 1.4 respectively,
when time to maturity is fixed. An example is given in figure 9 for DAX30X indexes.
Further we scatterplot each pair of adjoined moneyness values, i.e. 0.7 vs. 0.8, 0.8 vs.
0.9, etc., see figure 10. Additionally we draw the two main directions of variation into the
plots and an approximate 0.95 confidence region, which is an ellipse of constant standard
distance. Here, testing for multivariate normal distributed data, we set the square root of
the Mahalanobis distance equal to 2, i.e.

{(y − ȳ)T S−1(y − ȳ)}1/2 = 2,

where y = (yj1 , yj2)
T , mean vector ȳ = (ȳj1 , ȳj2)

T , ȳj = 1
T

∑T
t=1 yj,t, i = 1, 2. S is the sample

covariance matrix of observations Yj1(τ) and Yj2(τ). The size of the ellipses reflects the
variability of the data. The main directions are given by the eigenvectors of the covariance
matrix of observation vectors Yj1(τ) and Yj2(τ), compare section 2.3.
The plots show again that the volatility of the data is highest when moneyness and maturity
values are small. Deviation is biggest in the first row and the first column plots, where
we have 1 month option maturity and moneyness 0.7. The main directions are similar
in rowwise plots, where moneyness values are identic but maturity varies. Thus it seam
reasonable to analyse the data on the basis of common principal components for groups of
different option maturities, but to allow the variation, i.e. the eigenvalues to vary among
groups. When the ellipsoid is very flat, i.e. one principal axis is short relative to the other
and axes are not parallel to the x-axis or y-axis in the plot, we assume a linear dependence
among data for different moneyness values. As expected this feature intensifies when κ1 is
close to κ2, which are middle row plots in figure 9 and all plots in figure 10. Thus for our
data we can assume dependencies between neighboring moneyness groups.
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Figure 9: Scatterplot of Dax IV log returns, main directions of variation and 95%
confidence region. Panels in different rows show plots of moneyness m1 = 1 vs. differnt

m2 ∈ {0.7, 0.8, 0.9, 1.1, 1.2, 1.4}. Panels in different columns show plots for differnt
maturity groups, τ ∈ {1M, 6M, 1Y, 5Y }.
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Figure 10: Scatterplot of Dax IV log returns, main directions of variation and 95%
confidence region. Panels in different rows show scatterplots of for differnt neighboured

moneyness values, i.e. 0.7 vs. 0.8, 0.8 vs. 0.9, etc. Panels in different columns show plots
for differnt maturity groups, τ ∈ {1M, 6M, 1Y, 5Y }.
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Similar considerations are made for swap data. We made scatterplots for different fixed
option maturities and plot observations for pairs of swap maturities against each other.
This time the volatility of the data is much less than for index and swap data, but we
can detect the same features concerning main directions and dependencies among groups.
Eigenvectors are similar for identic swap maturities and different option maturities. And
even for different swap maturities eigenvectors are almost identic. Linear dependencies are
strongest among neighboring groups of swap maturities, they seem to intensify for long
swap maturities. Obviously a (partial) common PCA as introduced in [17] could be appro-
priate to analyse the modes of variation of the data.

Now we take a closer look at the PCs to describe these different modes of variation that
mainly influence the data, i.e. the shocks, that drive an IV smile for fixed option maturity
in time. The number of chosen PCs to describe the data is determined by the explained
variance, i.e.

V arj =
ρj∑n

k=1 ρk
, j ∈ {1, . . . , n}

for single PCs φj and

V ar1:K =
∑K

k=1 ρk∑n
k=1 ρk

, 1 ≤ K ≤ n

for the first K PCs φ1, . . . , φK , where ρk is the k-th eigenvalue and
∑n

k=1 ρk is the total
variation. We choose the first K PCs to describe the data, if V ar1:K ≥ 0.95.

In figures 13 to 15 eigenvalues of the data and the according explained variances are plotted.
The first PC of DAX30X data already explains more than 60% of the total variation. For
maturities shorter than one year the first four PCs explain about 95% of the variation, for
maturities more than one year the first five PCs are sufficient to explain the variation. In
case of Volkswagen data, for all maturity groups the first four PCs explain about 95% of
the total variation. In case of swap data, here JPY swaps, the first PC already describes
about 80% of the total variation, 95% are reached by PCs 1 to 3.



50 5 ANALYSIS OF IMPLIED VOLATILITIES

Figure 11: Scatterplot of JPY IV log returns, main directions of variation and 95%
confidence region. Panels in different rows show scatterplots for τS

1 = 1 year vs. different
τS
2 ∈ {2, 3, 5, 10, 20, 30} years. Panels in different columns show plots for different option

maturity groups, τO ∈ {1M, 6M, 1Y, 5Y }.
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Figure 12: Scatterplot of JPY IV log returns, main directions of variation and 95%
confidence region. Panels in different rows show scatterplots of for different neighbored
swap maturities values, i.e. 1Y vs. 2Y, 2Y vs. 3Y, etc. Panels in different columns show

plots for different option maturity groups, τO ∈ {1M, 6M, 1Y, 5Y }.
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Figure 13: Eigenvalues of Dax IV log returns for different option maturities (left),
explained variance explained by the first few eigenvalues (middle), i.e. V ar1:i, i = 1, . . . , 7,

and variance explained by single eigenvalues (right), i.e. Vi, i = 1, . . . , 7.

Figure 14: Eigenvalues of Volkswagen IV log returns for different option maturities
(left), explained variance explained by the first few eigenvalues (middle), i.e. V ar1:i,
i = 1, . . . , 7, and variance explained by single eigenvalues (right), i.e. Vi, i = 1, . . . , 7.

Figure 15: Eigenvalues of JPY IV log returns for different option maturities (left),
explained variance explained by the first few eigenvalues (middle), i.e. V ar1:i,

i = 1, . . . , 10, and variance explained by single eigenvalues (right), i.e. Vi, i = 1, . . . , 10.
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Figure 16: First four eigenvectors of Dax IV log returns for different option maturities
τ ∈ {1M, 6M, 1Y, 2Y }, smoothed by local linear kernel estimation.

We obtain smooth eigenfunctions from the calculated eigenvectors by local linear kernel
estimation, and plot the smoothed functions according to different maturity groups together
in one plot. Eigenfunctions of index and stock data are shown in figures 16 and 17, swap
eigenfunctions are shown in figure 18. We only show the first four eigenfunctions as they
explain most of the variation of the IV smile. Note, that eigenvectors can be mirrored at
the x-axis by just changing their sign without changing the result.

First of all regard the DAX plots in figure 16. In general, the eigenfunctions for different
option maturities show the same behavior, although eigenfunctions according to maturity
τ = 1M always slightly differ from the other eigenfunctions. The first eigenfunction is
highest for low moneyness values then decreases and reaches 0 at about κ = 1. The in-
terpretation is that the curvature of the smile varies for in-the-money values and remains
constant out-of-the-money. The second eigenfunction explains again a changing curvature
in the first part of the smile and slightly up-and-down shifts in the second part, where
κ ≥ 0.9. The third eigenfunction again corresponds to up-and-down shifts of IV smiles at
κ ≥ 0.9 and thus strengthens the effect of the second eigenfunction. The fourth eigenfunc-
tion forms contrasts in the left and the right part. It therefore describes variation of the
left and right part of the smile in opposite directions.
We resume that DAX30X IV smiles are mainly driven by shocks in the curvature which
are strongest in the left part, i.e. in-the-money, and further by little up-and-down shifts of
middle and right parts of the curve.
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Figure 17: First four eigenvectors of Volkswagen IV log returns for different option
maturities τ ∈ {1M, 6M, 1Y, 2Y }, smoothed by local linear kernel estimation.

Figure 18: First four eigenvectors of JPY IV log returns for different option maturities
in τO ∈ {1M, 6M, 1Y, 5Y }, smoothed by local linear kernel estimation.
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An example for stock IVs is given in figure 17 where we plot eigenfunctions of Volkswagen
stock data. Again eigenfunctions are similar for different option maturities except τ = 1M .
The shocks explained by single eigenfunctions match those which we detected for DAX30X
index data. The first eigenfunction corresponds to a changing curvature of the in-the-money
part of the smile curve. The second and third eigenfunctions describe uniform shifts of the
smiles for κ ≥ 0.9, and changing curvature underneath. In case of short option maturities,
here τ = 1M , the up-and-down shifts are much less pronounced, but still existent.

Now regard JPY swap eigenfunctions in figure 18. We already mentioned that less PCs
are necessary to explain a sufficient amount of variation. In general, the eigenfunctions are
flatter than those of index and stock data. For different option maturities all eigenfunc-
tions nearly coincide. Eigenfunctions are given over swap maturity values. Over the whole
range the first eigenfunction is of the same sign. It corresponds to up-and-down shifts of
the whole IV curve with respect to swap maturity. The second eigenfunction changes sign
at τS shortly after 4Y . The effect on the IV curve is a changing slope. The third and
fourth eigenfunctions are largely the same, and close to the zero line, except for very large
swap maturity. These eigenfunctions can only explain very little changes in curvature of
IV curves in time.
Resuming, the main shocks for swap IV curves with respect to swap maturity are up-and-
down shifts and a changing slope of the whole curve.

In the analysis so far we detected large similarities among the different option maturity
groups. The question arises how to pool the groups in PCA, with respect to same modes of
variation. To clarify the situation we regard the PC scores that, if clusters appear, give us a
hint of how to group the data. Figures 19 to 21 show scatterplots of first and second scores
according to first and second PC. Scores that come from short option maturity data are
plotted by small letters a, b, c, d, corresponding to τ ∈ {2W, 1M, 2M, 3M} for indexes and
stocks and τO ∈ {1M, 3M, 6M, 1Y } for swaps. Scores according to long option maturities
are plotted by big letters A, B, C, D, i.e. τ ∈ {6M, 9M, 1Y, 2Y } for indexes and stocks
and τO ∈ {2Y, 3Y, 4Y, 5Y } for swaps. We plotted the scores at different days, namely at
the first trading days of each month from January 2006 to October 2006. Even if clusters
do not appear regularly, there are some days, when short and long option maturity groups
appear separately in the plots. We detected the same feature in scatterplots of PC 3 scores
vs. PC 4 scores. It thus lies on hand that grouping makes sense for data with respect to
short and long option maturities.



56 5 ANALYSIS OF IMPLIED VOLATILITIES

Figure 19: Scatterplot of PC scores of DAX30X IV from 2 January 2006 (20060102) to 2
October 2006 (20061002) at first trading days of each month, respectively.
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Figure 20: Scatterplot of PC scores of VOLKSWAGEN IV from 2 January 2006
(20060102) to 2 October 2006 (20061002) at first trading days of each month, respectively.
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Figure 21: Scatterplot of PC scores of JPY IV from 2 January 2006 (20060102) to 2
October 2006 (20061002) at first trading days of each month, respectively.
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5.3 Application of Functional Variance Processes

Until now we analysed the variation of single IV curves in time. We detected, that the
curves for different option maturities are driven by similar modes of variation while the
strength of variation varies. Now we want to analyse how changes of IV curves for different
option maturities interact, to be more precise we do not analyse variation in time, but how
IV log return curves vary form one option maturity to another within a single surface at
day t.
To this end we will to analyse the additional noise in the data, i.e. we will first of all smooth
single curves to obtain residuals, which we then analyse according to a common variance
process that determines variation of curves within the surface. We proceed according to
methods of Müller et al. [34], presented in section 3. As before we restrict the data to
maximal two years to option maturity and maximal ten years to swap maturity.

Let Zij = σ(κj , τi) the log return IV for an option with moneyness κj and option ma-
turity τi. We suppress the time index t, as we analyse the data at one single, fixed day.
Further let Si(κj) = S(κj , τi) smooth trajectories corresponding to option maturity groups
τi, i = 1, . . . , n. According to (3.1) and (3.2) we model the data

Zij = Si(κj) + Rij

Yij = log(R2
ij) = V (κj) + Wij .

In case of swap IVs replace moneyness κj by swap maturity τS
j and denote option maturity

by τO
i . The additional noise Rij is assumed to be the product of the exponated random

function V and an exponated white noise W . V is common among all curves that build
the IV log return surface. The regressors κj , j = 1, . . . ,m, are equal for each path i. Note
that asymptotics of functional variance processes hold for regressors that differ from path
to path, see section 3.3. Therefore application would be possible for the non-smoothed,
directly observed IV data, as well. One only would have to group the data into naturally
given option maturity groups.

For the various local polynomial kernel estimators needed to approximate model com-
ponents we use the Gaussian kernel function although in theory the Epanechnikov ker-
nel performs better, compare section 2.1. The reason for this choice is that we want to
avoid estimation problems in sparse regions of our data. Bandwidths are chosen by cross
validation as described in section 3. For stock and index IV we have prediction points
κj ∈ {0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.4}, thus we choose optimal bandwidths in the interval
[0.05, 1]. For the swap IV data we have prediction points τS

j ∈ {1, 2, . . . , 10 years} and
choose optimal bandwidths in [.5, 10].

We perform the analysis using the statistical software R. For efficiency reasons extensive
subroutines for local polynomial estimation are programmed in C and embedded into our
R routines. Eigenfunctions and eigenvalues are discretely calculated using the R function
eigen() and functional forms are produced by local linear kernel estimation.
In practice when handling discrete data we have to omit zero residuals in (3.1) because we
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want to log transform them. Thus after taking the log we filter Yij = −∞ and replace by
Y ∗

ij = min{Yik|Yik 6= −∞, k = 1, . . . ,m}.
The white noise variance is originally estimated by the integral

σ̂2
W =

1
|T1|

∫
T1

(
Q̂V (κ)− ĜV (κ, κ)

)
+

dκ,

where T1 the shortened domain of regressors κj . We approximate the integral by a Riemann
sum and estimate

σ̃2
W =

1
|T1|

m′∑
k=1

(
Q̂V (κjk

)− ĜV (κjk
, κjk

)
)

+
wk, (5.1)

where jk, k = 1, . . . ,m′, the indices of ordered regressors κj that fall into T1, m′ ≤ m.
Weights are given according to w1 = (κj2 − κj1)/2, wm′ = (κjm′ − κjm′−1

)/2 and wk =
(κjk+1

− κjk−1
)/2, k = 2, . . . ,m′ − 1.

Additionally, we want to analyse the change of the functional variance process over time.
Therefore, in a second calculation of FVPs, we decide to take fixed bandwidths to estimate
mV and GV to get comparable estimates of V . By visual inspection of the data we decide
to take bV = 0.1 and hV = 0.5 for index and swap data, for swap data we choose bV = 2
and hV = 0.5.

How to interpret the results? What does changes of V mean to the IV data? To make the
influence of V onto log return data directly visible we plot a function according to model
(3.1) over the range [−40, 0] wherein realisations Vi in our data example fall, see figure 22.
We approximate the additive noise Rij ≈

√
expVi(κj) ≈ (Vi(κj))−2 over the given range,

thus, for V < 0 increasing values correspond to increasing noise in the observed IV log
returns Zij = σ(κj , τi).

5.3.1 Index IV example: DAX30X

As an example for index IV data we take the DAX30X data set introduced in section 5.1.
In figure 23 we plotted observed log returns of implied volatility smiles at 1 September
2006 and the corresponding smoothed trajectories Si for option maturity from two weeks
to two years. The data is situated around zero with strong outliers in case of two weeks and
one month option maturity. Data adaptively chosen bandwidths differ from 0.05 to 1. In
general small bandwidths are chosen for short option maturities and estimated trajectories
have stronger curvature. For long maturities bandwidth bSi = 1, i = 5, . . . , 8, is chosen,
this means that for estimation all observations were similarly weighted and estimated tra-
jectories resemble a straight line.
As already mentioned in previous analysis it seems reasonable to divide the data into
a short maturity group, i.e. τ ∈ {2W, 1M, 2M, 3M}, and a long maturity group, i.e.
τ ∈ {6M, 9M, 1Y, 2Y }. We thus continue the functional analysis separately for the two
groups.
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Figure 22: How does the changes in the functional variance process V determine the IV
data. The functional relationship of the noise R of IV log returns and V at [−40, 0) is

approximately
√

eV ≈ V −2.

In figure 24 estimates of the mean variance function mV and variance trajectories Vi are
drawn. Results for short and long option maturities in top and bottom panels , respec-
tively, are calculated independently. Trajectories Vi lightly move up and down, while their
the shape stays almost similar. We note that resulting variance processes for short and long
maturity groups differ. The short maturity variance function has a light curvature and is
decreasing, the data adaptively chosen bandwidth to estimate mV is a small one, namely
bV = 0.15. For long maturities the variance function is almost a straight line and lightly
increasing for increasing moneyness. Data-adaptively chosen bandwidth is of middle size,
bV = 0.4. The bandwidth to estimate the covariance structure GV is hV = 0.05 in both
cases.
Plots of ĜV and the corresponding correlation surface are shown in figure 25 and 26. For
short option maturities there is a large positive correlation throughout all values. Thus if
a trajectory of the variance process is larger than the average in one point we can expect
it to be larger than average everywhere. Correlation falls off only slightly for separating
values κi. The variance process shows a slight departure from stationarity. In contrast the
variance process for long option maturities seems to be stationary. Further the correlation
falls off rapidly for separating moneyness values and reaches zero at opposite boundaries,
i.e. κ1 = 0.7 and κ2 = 1.4.
Eigenfunctions are presented in figure 27. Only those eigenfunctions are plotted that are
chosen to approximate V according to (3.12). In case of short maturities the first principal
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component explains about 80% of the total variance and first three PCs together are suffi-
cient to describe the variation in the data. The first eigenfunction is flat and positive. Thus
main shocks that drive the variance process are up-and-down shifts. The second eigenfunc-
tion is close to the zero line, slightly negative for κ ≤ 1.2. It thus strengthens the shifts of
the variance curve at the left side. The third eigenfunction forms two contrasts, first one
for κ ≤ 1.1, second one for κ ≥ 1.1. When trajectories Vi shift up in the left part, then they
shift down in the right part and vice versa. The effects of the PCs are shown in figure 28,
where we plot the mean curve mV and curves according to mV (κ)±Cφk(κ) for a constant
number C > 0, corresponding to the modes of variation explained by single PCs φk.
For long option maturities the first PC also determines up-and-down shifts, that explain
55% of the variation of the data. Further variation is explained by the second eigenfunction
which is decreasing, crossing zero between κ = 0.9 and 1., i.e. it corresponds to a changing
slope of original curves, see figures 27 bottom panels and figure 29.
Another quantity of interest is the constant white noise variance that is estimated from
the covariance diagonal, see (5.1). Unfortunately we have very few data to estimate the
variance and thus we have to handle the estimates with some mistrust. Here estimates are
σ̂2

W = 3.104 in case of short maturities and σ̂2
W = 1.919 for long maturities.

Resuming we note that the variance process that determines variation among IV log re-
turn curves slightly differs from short to long option maturities. It shows approximately
stationarity, which is more clearly for long maturities. Thus the mean curve mV has rather
little slope in both cases, for short option maturities mV is slightly larger in short maturity
regions. Variation between trajectories Vi are mainly driven by up-and-down shifts of the
whole range. In case of long option maturities a changing slope is a second intense mode
of variation. For the original IV data we have the following the variation from one IV log
return curve to another is larger in-the-money than out-of-the-money. Thus time dependent
variation of the IV smiles in the implied volatility surface differs stronger from one smile to
another in regions where option maturity and moneyness is small.
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Figure 23: Smoothed log returns of smiles for DAX30X IV data at 1 September 2006 for
option maturity from two weeks (2W) to two years (2Y). Data are discretely plotted
(dots) and smoothed trajectories are continuously estimated by local linear kernel

estimation (solid line). Bandwidths for each trajectory are chosen by cross validation.

Figure 24: DAX30X residuals at 1 September 2006 for different small option maturities
(top panels) and different long option maturities (bottom panels). Estimated mean

variance function mV (solid line) and variance trajectories Vi (dashed line) are drawn into
the plots. Estimates for small maturities and long maturities were made independently.

All bandwidths are chosen by cross validation.
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Figure 25: Estimated covariance of functional variance process for short maturities (top
panels) and long maturities (bottom panels). The bandwidth hV to estimate the surface is

chosen by cross validation.
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Figure 26: Estimated correlation of functional variance process for short maturities (top
panels) and long maturities (bottom panels).
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Figure 27: Functional variance process (left) and eigenfunctions (right) for small option
maturities (top panels) and for large option maturities (bottom panels). Functional

variance process V is approximated by local linear kernel estimation from single
trajectories Vi. Bandwidth h is chosen by cross validation. First eigenfunction (solid line)

and second eigenfunction (dashed line) determine the dominant modes of variation.
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Figure 28: Positive and negative effects of principal components onto the mean variance
process for short option maturities.

Figure 29: Positive and negative effects of principal components onto the mean variance
process for long option maturities.
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5.3.2 Stock IV example: VOLKSWAGEN

The next example is for stock options. We choose the Volkswagen IV data at 1 September
2006. Similar to the index data we decided to separate the data into implied volatilities
for short time to option maturity τ ∈ {2W, 1M, 2M, 3M} and for long time to maturity
τ ∈ {6M, 9M, 1Y, 2Y } according to structural differences between the IV curves.

Log return data is more volatile when time to maturity is short. Data adaptively cho-
sen bandwidths to estimate smooth paths Si vary from 0.05 to 1. In following smoothing
steps, due to a large deviation of the residuals Zij , all automatically chosen optimal band-
widths are very small. That is bV = 0.1 and bV = 0.05 in case of short or long maturities,
respectively, and hV = 0.05 for both maturity groups. Plots of the estimated functions are
shown in figures 30 and 31. The mean variance function is clearly decreasing for κ > 0.8.
For long maturities mV is much stronger decreasing, which is a result of large negative
residuals for κ = 1.4 and τ ≥ 1 year.
Covariance and correlation matrices are shown in figure 32 and 33. We detect only a slight
tendency for stationarity when option maturity is short and options are in and at-the-
money. Correlation is positive over the whole range but much smaller in parts for long
maturities. There seems to be a strong positive correlation between in-the-the-money and
out-of-the-money data, especially for long maturities. But in case of long maturities at-the-
money data has near zero correlation with data for nearly each κ outside a neighborhood
of 1.
As a consequence of large data variability we need four PCs (short maturities) and three
PCs (large maturities) to explain the variation. The first PC according to short maturities
explains about 58% of the total variation, the second PC explains 26% and the third one
still 10%. Main shocks are thus up-and-down shifts, that are more pronounced at the bor-
ders, but also heavily shocks over the whole range at different parts of the curves, resulting
from various contrasts formed by second and third PCs, compare figures 34 and 35. In case
of long option maturities the first and most important PC (89%) is negative over the whole
range except at about κ = 1.1 when it reaches zero. Thus it explains up-and-down shifts
at the left and right side of 1.1. The second PC forms a large contrast around κ = 1.1 and
corresponds to heavy variation around this point, see figure 36.
Approximated variances of white noise processes are σ̂2

W = 5.6 in case of short option ma-
turities and σW = 1.031 in case of long ones. Similar to index data σ̂2

W is larger for short
maturities than for long maturities.

Summarizing, for short and long option maturities the variance process V for Volkswagen
IV log returns is after a short increase until κ = 0.8 decreasing for increasing moneyness.
Stationarity cannot be assumed. Shocks that mainly explain the variation are up-and-
down shocks, which are more pronounced for long option maturities at left and right sides
of κ ≈ 1.1. The decreasing variance process indicates decreasing variability among the time
variation of different IV smiles in the surface at regions where moneyness is large.
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Figure 30: Smoothed log returns of smiles for Volkswagen IV data at 1 September 2006
for option maturity from two weeks (2W) to two years (2Y). Data are discretely plotted

(dots) and smoothed trajectories are continuously estimated by local linear kernel
estimation (solid line). Bandwidths for each trajectory are chosen by cross validation.

Figure 31: Volkswagen residuals at 1 September 2006 for different small option
maturities (top panels) and different long option maturities (bottom panels). Estimated

mean variance function mV (solid line) and variance trajectories Vi (dashed line) are
drawn into the plots. Estimates for small maturities and long maturities were made

independently. All bandwidths are chosen by cross validation.
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Figure 32: Estimated covariance of functional variance process for short maturities (top
panels) and long maturities (bottom panels). The bandwidth hV to estimate the surface is

chosen by cross validation.
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Figure 33: Estimated correlation of functional variance process for short maturities (top
panels) and long maturities (bottom panels).
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Figure 34: Volkswagen residuals at 1 September 2006 for different small option
maturities (top panels) and for large option maturities (bottom panels). Estimated mean

variance function mV (dashed), variance trajectories Vi (dash-dotted) and estimated
variance process V (solid) are drawn into the plots. All bandwidths are chosen by cross

validation.
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Figure 35: Positive and negative effects of principal components onto the mean variance
process for short option maturities.

Figure 36: Positive and negative effects of principal components onto the mean variance
process for long option maturities.
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5.3.3 Swap IV example: JPY

At last the analysis is done for IV log returns of JPY swaptions at 1 September 2006. Note
that implied volatilities now depend on option maturity τO and on swap maturity τS . The
data is splitted into option maturities in {1M, 3M, 6M, 1Y } and in {2Y, 3Y, 4Y, 5Y }.

The mean slopes of IV log return curves seem to be larger for long option maturities
than for short ones due to some small data values when swap maturity is short, see figure
37. In general data seems to be less volatile than index and stock data. Bandwidths bSi

were automatically chosen and range from 0.5 to 2.5. In figure 38 estimated mean variance
processes and trajectories Vi are plotted. The trajectories clearly lie below or above the
mean process and deviation from the mean is larger than it has been for index and swap
data. The variance process decreases for decreasing τS > 3 years. For long option matu-
rities there is an exception at about τS = 7 years where we find a little bump. Optimal
bandwidth were chosen to be bV = 2.2, hV = 0.5 and bV = 0.5, hV = 2.1 for short and long
option maturities, respectively.
The covariance and correlation plots are given in figures 39 and 40. The estimated covari-
ance functions are very smooth, meaning that corresponding correlation functions are close
to one almost everywhere. In case of short option maturities correlation differs from 1 max-
imal by 0.03, in case of long maturities the maximal difference is even less. Consequently,
we assume strong dependencies among trajectories of the functional variance process for
both option maturity groups.
The variance of V is driven by three PCs for short option maturities and by only one PCs
for long option maturities. Even in the first case PC 1 explains already 87% of the total
variation. The first PC corresponds to up-and-down shifts of the whole curves in both
cases. For short option maturities second and third PCs explain little further variations of
single parts of the curves. Corresponding plots are drawn in figures 41, 42 and 43.
The approximate white noise variance is larger for short option maturities than for long
ones. We estimated σ̂2

W = 4.928 and σ̂2
W = 1.082, respectively.

For the original data we get the following. As the variance process is decreasing for swap
maturities more than two years, the variation of IV log returns at 1 September 2006 among
option maturity decreases for increasing swap maturity. Time variation of the IV Smiles
thus varies strongest from one option maturity to another when swap maturity is about
two or three years. For long option maturities there is a little increase of variation among
curves within the surface at swap maturity τS = 7 years. A huge amount of the variation
of the data is explained by regular up-and-down shifts of the whole curves.
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Figure 37: Smoothed log returns of IV curves for JPY IV data at 1 September 2006 for
option maturity from one month (1M) to two years (2Y). Data are discretely plotted
(dots) and smoothed trajectories are continuously estimated by local linear kernel

estimation (solid line). Bandwidths for each trajectory are chosen by cross validation.

Figure 38: JPY residuals at 1 September 2006 for different small option maturities (top
panels) and different long option maturities (bottom panels). Estimated mean variance
function mV (solid line) and variance trajectories Vi (dashed line) are drawn into the

plots. Estimates for small maturities and long maturities were made independently. All
bandwidths are chosen by cross validation.
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Figure 39: Estimated covariance of functional variance process for short maturities (top
panels) and long maturities (bottom panels). The bandwidth hV to estimate the surface is

chosen by cross validation.
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Figure 40: Estimated correlation of functional variance process for short maturities (top
panels) and long maturities (bottom panels).
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Figure 41: Functional variance process (left) and eigenfunctions (right) for small option
maturities (top panels) and for large option maturities (bottom panels). Functional

variance process V is approximated by local linear kernel estimation from single
trajectories Vi. Bandwidth h is chosen by cross validation. First eigenfunction (solid),

second (long-dash), third (short-dash) and fourth eigenfunction (dash-dot) determine the
dominant modes of variation.
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Figure 42: Positive and negative effects of principal components onto the mean variance
process for short option maturities.

Figure 43: Positive and negative effects of principal components onto the mean variance
process for long option maturities.
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5.4 Time series of functional variance processes

Until now we analysed variation among IV log return curves at specific points in time in
terms of the functional variance process V . An interesting question is how this process
changes in time. We aim at finding a general feature of the variability within implied
volatility surfaces that remains over time. Therefore we estimate functional variance pro-
cesses for all daily data sets of log returns of stock, index and swap options, respectively.
To get comparable results we decided to choose fixed bandwidths bV and hV to estimate
the mean function mV and the covariance structure GV of the variance process. Former
analysis arises that for index and stock data, data-adaptive choice of bandwidths frequently
leads to small bandwidths. Therefore we choose bV = 0.1 and hV = 0.05. For the swap
data cross validation leads to small to middle size bandwidths bV and to small bandwidths
hV . Therefore we decided to fix bV = 2 and hV = 0.5 to approximate the mean variance
function mV and the covariance GV , respectively.
As examples for index, stock and swap IVs we took again the data sets of section 5.3, i.e.
DAX30X, Volkswagen and JPY. To give an overview, we only plotted the variance processes
of each fifth trading day from 23 August to 25 October 2006. Data at selected days are the
log differences of the IVS at Tuesdays and Wednesdays of each week, respectively.

In figure 44 plots are shown for DAX30X IVs when option maturity is in {2W, 1M, 2M, 3M}.
In figure 45 data is plotted for long maturities in {6M, 9M, 1Y, 2Y }. From left to right and
from top to bottom panels we draw the variance processes and corresponding PCs from end
of August to end of October. The mean variance processes remain similar over the weeks
and also the eigendecomposition is quite similar in most cases. mV is concave, lightly in-
creasing for κ < 0.9 and stronger decreasing for κ > 1.1. The shapes of mV corresponding
to short and long option maturities resemble, but in general variance processes are flatter
in the long maturity group. Note that there are some exceptions, when the variance process
becomes almost constant or even lightly increasing over the whole range, see for example
the plot at 6 September (20060906) in figure 45. Comparing the first PCs, we detect that
PC 1 often seems to align mV , meaning that both functions resemble in their shape. PC 1
is of the same sign throughout at most days. Therefore we conclude that the up-and-down
shifts among IV log return curves are a mode of variation that remains in time. These shifts
are most pronounced outside the range 0.8 < κ < 1.1. Of course we also detected outliers,
here for example in figure 44 at 20 September (20060920) and in figure 45 at 6 September
(20060906), when the first PC does not correspond thus clear to overall up-and-down shifts
or even corresponds to completely different shocks. For the second PC our results vary
from one day to another and similarities are only hard to find by visual inspection.
Functional variance processes are flatter for IV data according to long option maturities
than to data according short option maturities. In general variance processes reach maxi-
mal values for κ ∈ [0.8, 1.1] and decrease when running off this range. Therefore we resume
that for options on DAX30X indexes daily changes of implied volatilities vary the most
between options with different maturities when options are around κ = 1 or slightly below,
i.e. at-the-money options and lightly in-the-money options. Variation decreases for deep
in-the-money options and decreases even stronger for out-of-the-money options.
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Results for options on Volkswagen stocks are similar to the previous, so we will not plot
the results here. We noticed that the shape of mV varies little more, meaning that that
variance processes are sometimes flatter and sometimes more curved. Nevertheless mV is
convex, with maximal values for κ ∈ [0.8, 1.1], and the first PC essentially corresponds to
overall up-and-down shifts.

At last we check the time dependent development of functional variance processes for swap
implied volatilities. Resulting functional estimates are shown in figures 46 and 47 for short
maturities τO ∈ {1M, 3M, 6M, 1Y } and long maturities τO ∈ {2Y, 3Y, 4Y, 5Y }, respectively.
Here, mV is given over swap maturities τS . Differences between the two maturity groups
are not thus clear. In general, mV is less curved than it is for the index and swap data
and that shape of mV does not vary as much. The process is decreasing, on some days
there is a first little increase for τS < 3 years. Thus variation among IV log return curves
corresponding to different option maturities is strongest in parts where 3Y < τS < 5Y , and
this result holds during the months.
The first PC nearly always corresponds to regular shifts of the functional variance. Even
the second PC is similar at various days, it explains up-and-down-shifts in the middle part,
i.e. τS ∈ [2, 8] years, see for example 23 August (20060823) in figure 47. These features are
more clearly pronounced for data according to long option maturities.
In general, we found a common functional variance process that explains the variation
among IV daily changes according to different option maturities. The mean process is
maximal around 4 years swap maturity and lightly decreases afterwards. Thus variation
among daily IV log return curves is largest in parts where τS ≈ 4 years. Trajectories of
the functional variance process mainly differ by overall up-and-down shifts from the mean
process.
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Figure 44: FVPs and according PCs for DAX30X options of the short maturity group.
From left to right and top to bottom panels functions are given from 23 August

(20060823) to 25 October 2006 (20061025) at each fifth trading day.
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Figure 45: FVPs and according PCs for DAX30X options of the long maturity group.
From left to right and top to bottom panels functions are given from 23 August

(20060823) to 25 October 2006 (20061025) at each fifth trading day.



84 5 ANALYSIS OF IMPLIED VOLATILITIES

Figure 46: FVPs and according PCs for JPY options of the short maturity group. From
left to right and top to bottom panels functions are given from 23 August (20060823) to

25 October 2006 (20061025) at each fifth trading day.
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Figure 47: FVPs and according PCs for JPY options of the short maturity group. From
left to right and top to bottom panels functions are given from 23 August (20060823) to

25 October 2006 (20061025) at each fifth trading day.
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6 Summary and Open Questions

Implied volatilities of options on financial assets appear as two dimensional surfaces on
the remaining time to option maturity and on a second variable. For options on indexes
or stocks this second variable is the moneyness (or the strike price), for swap options the
second variable is the swap maturity. In the analysis we describe implied volatility surfaces
as a set of IV curves on the second variable, i.e. into curves on moneyness (IV smiles) or
IV curves on swap maturity, indexed by discrete values of option maturity.

In literature there are different approaches to analyse time dependent variation of IV smiles.
We followed some of these methods, not only to analyse daily variation of IV smiles but
also IV curves on swap maturity. Our results align with former results. The main modes of
variation that drive IV curves in time are shift, slope and curvature changes. These modes
are similar for different curves in the IVS. Only strength of variation varies. Therefore it
lies on hand to analyse IV curves for several option maturities simultaneously.
Moreover, in the data we analysed we detected structural differences between IV log returns
according to options with short time to maturity and to options with long time to maturity.
Although these differences do not appear regularly, we decided to separate data into two
groups according to option maturities in continuative analysis of variation within the data.

We further applied a new method in our data analysis to determine how daily variation
of the IV curves varies among option maturities that belong to one group, i.e. how daily
variation varies within the IVS. We described this kind of variation at day t in terms of
a functional variance process that is determined from the log transformed and squared,
functional residuals of the original IV log return curves. We detected that this variance
process remains in time and that trajectories of the process mainly vary by all over up-and-
down shifts. The result holds for different maturity groups and for IV data sets coming
from options on different financial assets, i.e. indexes, stocks and swaps. Processes are
maximal for moneyness at about κ = 1 and lightly below, meaning that daily changes of
the IV curves vary the most among option maturities when options are at-the-money or
lightly in-the-money. For swaptions functional variance processes are maximal around swap
maturity in [3Y, 5Y ]. This this is the range, where daily variation of IVs differs the most
among option maturities.

This work arises some questions for future research, concerning the analysis of functional
variance processes and the data used in the analysis.

• We analysed variation of implied volatility curves according to their daily changes.
In practice it is also of interest to analyse variation for larger lags, i.e. determine IV
log differences of days t and t − l for l > 1 and find modes of variation in time and
within the surface.

• As we already mentioned, in practice implied volatility surfaces appear as a set of
strings in moneyness direction with respect to some few option maturities. As asymp-
totics for the estimation of FVPs hold even when prediction points vary from one
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trajectory to another, it is reasonable to apply the analysis directly onto observed
implied volatility data without previously smoothing data onto a fixed grid of option
maturity and moneyness.

• Until now, the time dependent development of functional variance processes is only
analysed by visual inspection. It remains to perform a functional data analysis of
the processes to determine trends and variation of these processes in time. Therefore
one may regard the estimated mean processes µV at different days as functional data
sampled in time. The analysis of these data may lead to deeper understanding of IV
variation.

• We found that daily changes of stock and index implied volatilities are determined by
similar modes of variation concerning both, time dependent variation and variation
within the surface. Even for IVs of swap options there are similarities to stock and
index data. Now, it would be interesting to determine the main differences with
respect to variation among IVs corresponding to different financial assets. How do
the corresponding functional variance processes differ?
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