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Abstract 

A population of the diamondback moth (DBM), Plutella xylostella L., known as an 

oligophagous pest on crucifers was recently found to infest sugar snap- and snowpeas 

(Pisum sativum L.) in the Rift Valley in Kenya, causing heavy damage. The impact of 

this host shift on the interaction with associated parasitoids was investigated. In 

laboratory experiments parasitation levels, development and survival, and the role of 

host plants for host location of two important parasitoids were studied: The indigenous 

Diadegma mollipla (Holmgren), regarded as a relative generalist, and the highly 

specific Diadegma semiclausum (Hellen), introduced to Kenya for biocontrol of DBM 

on cruciferous vegetables. 

Tested individually D. mollipla surprisingly proved to be more effective on the new 

host plant than on cabbage. Diadegma semiclausum parasitized more efficiently on 

DBM on cabbage. Bioassay tests, conducted with a Y-tube olfactometer, showed that 

the specialisation of D. semiclausum is mediated by host plant signals, associated with 

crucifers, which are not encountered in DBM feeding on peas. Whereas for D. mollipla 

crucifer volatiles seem not to be used as primary cues for host location. Differential 

performance and host location abilities of the two parasitoids suggested a difference in 

competitiveness on peas as compared to cabbage. On cabbage, D. semiclausum clearly 

out-competes its congenus. On peas, confined to small containers D. mollipla 

parasitized equally as good or even better than D. semiclausum. However, under more 

natural conditions in the greenhouse, D. semiclausum parasitized significantly more 

larvae than its competitor on both host plants. Chemical interference between the two 

species could be a possible explanation. 

Olfactory learning is known to enable parasitoids to modify their behavioural 

responsiveness to host and plant- derived odours. In view of increasing the potential of 

D. semiclausum for biocontrol of DBM in peas, the parasitoid was reared for three 

subsequent generations on the pea strain of DBM. Adaption to the new host plant 

through pre-emergence learning seemed to be possible. Response to DBM-infested pea 

and levels of parasitation increased in the pea generations. However, fitness trade-offs, 

especially an extreme shift in sex ratio to males reduced reproductive success of D. 

semiclausum on peas. 



 

In order to investigate the effect of the unusual host plant on the entire local parasitoid 

community associated with DBM, field studies were conducted close to the farm where 

DBM was first discovered on peas. Peas provided an enemy-free space for DBM. Local 

parasitoids occurred only sporadically and in very low numbers on DBM on peas. The 

release of D. semiclausum in the study site led to a reduction of DBM in kales. It did not 

establish in peas. The number of local parasitoids gradually decreased after the 

introduction. With a strong competition on kales especially D. mollipla was assumed to 

find a niche in peas. However, it did not occur in larger numbers in peas. The species 

might have moved to other host instead. 

We demonstrated, that the host plant had a strong influence on parasitation, fitness and 

host loaction. The inclusion of a new host plant into its feeding repertoire enables the 

herbivore host to avoid enemy attack. But due to the ability to adapt to a new host plant, 

parasitoids could follow their host with time. 

 



General Introduction 

CHAPTER 1 

1 General Introduction 

The diamondback moth, Plutella xylostella L. (Lepidoptera: Plutellidae) is not only the 

most damaging pest of crucifers worldwide but also the most difficult to control 

(Talekar and Shelton, 1993). It is considered as an oligophagous pest feeding only on 

the plant family of Brassicaceae. It was believed to have originated in the 

Mediterranean region (Harcourt, 1956), the origin of cultivated brassicas. Recently this 

has been questioned and southern Africa was suggested as the origin of the 

diamondback moth, due to the richness and high diversity of parasitoids and a large 

number of indigenous plants from the Brassicaceae found (Kfir, 1998).  

In Kenya a number of crucifereous vegetables are grown. Main vegetables are kales and 

cabbages which are produced for home consumption and domestic markets. In the past, 

farmers depended solely on insecticide use to control DBM. Increasing resistence 

against most pesticides led to increased spraying intervals. Production became 

uneconomic on the one hand and high pesticide residues threatened the health of 

farmers and consumers as well as the environment. Therefore ICIPE (The International 

Centre of Insect Physiology and Ecology based in Nairobi) started a project on 

“Development of a biocontrol-based IPM for the diamondback moth in eastern and 

southern Africa”. Coinciding with the beginning of the project, vegetable growers in 

Naivasha in the Rift Valley of Kenya complained about DBM attacking sugar snap-and 

snowpeas (Pisum sativum L.). At first this news was met with disbelief, because this 

plant was completely outside the normal host range, but larvae, pupae and moths were 

unmistakably those of Plutella xylostella L. and the identification was confirmed by a 

specialist, Koen Maes of the Tevuren Museum in Belgium (Löhr, 2001). The DBM 

population that was detected on peas on the commercial farm in Naivasha turned out to 

be a new DBM strain with biological differences. While larvae of the cabbage strain 

cannot normally survive on peas, the pea strain developed equally well on both host 

plants. Development was slightly slower though and pupae were smaller as compared to 

the cabbage strain (Löhr and Gathu, 2002).  
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Despite the common believe that DBM is restricted to cruciferous plants, the species 

has occasionally been found on other host plants. It has been reported on chickpea 

(Cicer arietinum L.) and a chenopodeaceous vegetable Salsola kali in Russia (Reichert, 

1919, in Talekar et al., 1985) and on okra in Ghana (Anonymous, 1971). On peas 

occasional occurences of DBM have been reported from Taiwan and the Philippines 

(Talekar, pers. comm.), but no published information exists.  

This phenomenon was the rare opportunity to investigate the influence of a host plant 

shift on herbivore-associated parasitoids. Historically, plant chemistry and physiology 

were seen as the determinant for host plant specifity in phytophagous insects (Ehrlich 

and Raven, 1964). The hypothesis of enemy-free space by Jeffries and Lawton (1984) 

drew the attention to the importance of natural enemies on host plant selection by 

herbivores. One way to escape natural enemies would be the utilization of novel host 

plants that provide an ecological refuge from enemies. Recently several studies have 

demonstrated the existence of enemy-free space through the acquisition of a new host 

plant (Brown et al., 1995, Feder, 1995, Gratton and Welter, 1999, Gross et al., 2004, 

Mulatu et al., 2004). Herbivores were able to overcome physiological trade-offs on the 

novel plant in order to avoid parasitoid attack.  

So how does a host shift affect parasitoids? Chemical and morphological plant attributes 

can influence the foraging success of parasitoids as well as the role of plants as host 

finding cues (Cortesero et al., 2000). The shift to a novel host plant can result in a loss 

of plant-related cues and to a reduced searching efficiency of especially specialist 

parasitoids (Brown et al., 1995). When feeding on different food plants physiology and 

size of the herbivore can change and this indirectly influences the development of the 

immature parasitoid (Godfray, 1994). Plants also affect the level of parasitation of the 

herbivore due to food plant quality (Price et al., 1980, Fox et al., 1996). And plants can 

provide shelter for the herbivore and thus reduce the efficiency of natural enemies 

(Sznajder and Harvey, 2003). 

In order to investigate the effect of the host shift of DBM to peas on parasitoids, two 

parasitoid species were selected: Diadegma mollipla (Holmgren, 1868) (Hymenoptera: 

Ichneumonidae) the most important solitary endoparasitoid of DBM in Kenya and 

Diadegma semiclausum (Hellen), an exotic parasitoid that has been introduced to Kenya 
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as part of a biocontrol programme for DBM. The local D. mollipla is considered a 

relative generalist. This species is also known as a parasitoid of the potato tuber moth, 

Phthorimaea operculella (Zeller) (Gelechiidae) and is reported to be indigenous to 

eastern and southern Africa. The original host is however unknown (Broodryk, 1971, 

Gupta, 1974, Azidah et al., 2000). Diadegma semiclausum has been widely used for 

biological control of DBM in various countries (Talekar and Shelton, 1993)and is 

known as a DBM specialist (Abbas, 1988). 

On snowpeas fitness, parasitation and host location behaviour of the two species were 

investigated individually in the laboratory. Additionally interspecific competition 

between both species was tested. The influence of DBM on peas on the entire parasitoid 

complex associated with DBM was investigated under natural conditions in the field. 
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CHAPTER 2 

2 Host shift to peas in the diamondback moth Plutella xylostella L. 

and response of its parasitoid Diadegma mollipla 

 

2.1 Abstract 

Host shifts in herbivorous insects are often thought to provide enemy-free space on the 

novel host plant. A population of the diamondback moth Plutella xylostella (L.) 

(Lepidoptera: Plutellidae) (DBM), known as an oligophagous pest on crucifers recently 

shifted to sugar snap- and snowpeas (Pisum sativum) in Kenya. As a result heavy 

damage was caused to these crops. The impact of this host shift on the interaction with 

Diadegma mollipla (Holmgren), one of the most frequent parasitoid species attacking 

DBM in this area was investigated. Parasitation rates and development of two strains of 

D. mollipla, reared on a DBM cabbage feeding strain and on the new DBM pea feeding 

strain, were dependent on the host-plant complex. Both parasitoid strains proved to be 

more effective on the novel host. Parasitation of the cabbage-D. mollipla strain on peas 

offered alone was four times higher than on cabbage also offered alone. However, when 

both crops were offered together, the level of parasitation dropped to the level of 

cabbage offered alone. D. mollipla developed equally well on both hosts, but cabbage-

D. mollipla had a longer development period. However, DBM cabbage pupae were 

significantly heavier than pea pupae and parasitation had no influence on these 

differences. Our research showed that D. mollipla prefers to parasitize the pea feeding 

DBM. The host shift of DBM to the novel host plant did not provide an enemy-free 

space as regards to the impact of the parasitoid species tested. The implications of these 

findings for the host-parasitoid relationship are discussed. 

key words: Plutella xylostella, DBM, crucifers, host shift, enemy-free space, 

Diadegma mollipla, Pisum sativum 
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2.2 Introduction 

Although most herbivorous insect species are specialized feeders on just one plant 

family (Bernays and Chapman 1994), a few abrupt host shifts to new plant families 

have been reported (Strong, 1979, Bush 1994). A specialisation on specific plant 

species has been discussed in relation to the problem of sequestration of the often 

deleterious chemistry of the host plants for the herbivores (Ehrlich and Raven 1964). 

Another paradigm however relates the restricted diet breadth of herbivores to the action 

of natural enemies (Jeffries and Lawton 1984). Plants strongly influence the 

evolutionary and behavioral ecology of host-parasitoid associations. Plant species and 

structure influence the risk and level of parasitation (Price et al., 1980, Godfray, 1994). 

Stimuli emanating from the plant or the plant-herbivore interaction are used for host 

location (Vinson, 1976, Vet and Dicke, 1992, DeMoraes et al., 1998). Feeding on a 

novel plant species could be advantageous for the herbivore insect when specialised 

natural enemies (e. g. parasitoids) do not exploit their hosts on these novel plants. 

The Diamondback Moth (DBM), Plutella xylostella (L.) (Lepidoptera: Plutellidae) is 

known as one of the most destructive pests on crucifers worldwide. It is considered 

stenophagous and limited to crucifers (Talekar and Shelton, 1993), although records of 

sporadic occurrences of DBM on other crops exist (Löhr, 2001). Recently a 

diamondback moth population in central Kenya, in the area of Lake Naivasha, shifted to 

pea, causing heavy damage to this plant (Löhr, 2001). We hypothesize that this novel 

host plant association will influence the interactions between the herbivore and its 

natural enemies. 

One of the most frequent parasitoids of DBM in Kenya is an internal larval parasitoid of 

the ichneumonid family. According to a recently published revision of the Diadegma 

species complex attacking DBM (Azidah et al., 2000), the species found in Kenya was 

identified as D. mollipla (Holmgren, 1868). This species is also known as a parasitoid 

of the potato tuber moth, Phthorimaea operculella (Zeller) (Gelechiidae) and is reported 

to be indigenous to eastern and southern Africa. The original host is however unknown 

(Broodryk, 1971, Gupta, 1974, Azidah et al., 2000). In the east African highland D. 
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mollipla is frequently found on DBM on brassica crops; however, parasitation rates are 

not particulary high. Overall field parasitation was reported to be less than 20% with D. 

mollipla being the most abundant species (Odour et al., 1996). Very little is known 

about the biology of this parasitoid species in association with the diamondback moth. 

In this study the effect of a host shift of the diamondback moth to peas on the 

parasitation and the development of Diadegma mollipla was investigated.  

 

2.3 Materials and Methods 

2.3.1 Insect cultures of P. xylostella and D. mollipla 

Cabbage strain of P. xylostella (c-DBM). Diamondback moth larvae were collected in 

cabbage fields in Limuru in the Kiambu District, Kenya and reared in the laboratory 

(Temp.=23±2°C) on potted cabbage plants (Brassica oleracea L. var. capitata 

(Copenhagen Market)). Pupae were removed from the plants and after emergence 

transferred to a perspex cage (43x23x22cm). As a stimulus for oviposition aluminium 

foil strips, coated with cabbage leaf extract, were fixed at the top of the cage. The foil 

was slightly crumpled in order to produce an irregular surface as tactile stimulus for the 

female moths for egg deposition. As food source cotton wool soaked with a 10% sugar 

solution was placed in a small plastic tube fixed to the cage wall. A water source was 

provided in the same way. 

Pea strain of P. xylostella (p-DBM). Larvae were collected in a sugar snap pea field 

(Pisum sativum, var. Oregon sugar pod) near Naivasha in the Nakuru District south of 

Lake Naivasha, Kenya. These were subsequently maintained on potted plants of the 

same variety in the laboratory (Temp.=23±2°C). Pea leaf extract on aluminium foil was 

proved not to be a sufficient stimulus for oviposition. Instead of laying most of their 

eggs on the foil the female moths distributed them on the cage walls. Therefore a 

transparent crumpled plastic bag, containing a cabbage leaf was suspended from the top 

of a perpex cage and used for oviposition. So deposited eggs did not come into contact 

with the leaf and hatching larvae could be transfered from the bag to pea plants. 
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Cabbage strain of D. mollipla (c-D. mollipla). Parasitized pupae from field collections 

carried out in cabbage fields in Kabsabet in the Nandi District, of western Kenya and in 

Limuru in the Kiambu District, central Kenya were collected to establish cultures for 

the experiments. Parasitoids were reared on second and third instar DBM larvae on 

cabbage in perpex cages. Parasitized DBM larvae were maintained separately. Pupae 

were collected into a vial and newly emerged parasitoid adults were then kept 

separately for at least one day to ensure mating. DBM larvae were renewed every 2 to 3 

days until the parasitoids died. Honey solution (20%) and water were supplied as 

described for the DBM culture. 

Pea strain of D. mollipla (p-D. mollipla). The culture was established starting with a 

single pair found in DBM larvae collected from pea fields at Naivasha and maintained 

on a pea DBM culture. The maintenance of this culture followed the same procedure as 

for c-D. mollipla.  

 

2.3.2 Effect of host larvae on parasitation 

In order to compare the acceptance and parasitation rate of the two parasitoid strains on 

the common c-DBM and on the new p-DBM larvae, the following set-up was used. All 

experiments were conducted under laboratory conditions (T=23±2°C). Single mated 2-3 

day old female D. mollipla were tested. Preliminary tests with D. mollipla showed peak 

searching activity after this period. A single cabbage leaf was infested with 25 second 

instar c-DBM larvae, four days old, and were kept in a small plastic container 

(5x8x17cm). After two hours a female parasitoid was released into the container and 

left there for parasitation for 24h. Respectively, a pea leaflet of the same size as the 

cabbage leaf was infested with p-DBM larvae and treated as described above. Fully 

expanded leaves from four to six week old plants of both plant species were used. This 

experiment was carried out with both, c-D. mollipla on c-DBM and on p-DBM, p-D. 

mollipla on c-DBM and p-DBM. Each combination was replicated 20 times, except for 

the pea strain of the parasitoid. Here the number of replicates was lower (7 and 5). 

Unfortunately the culture collapsed during experimentation and could not be renewed 

 

7 

 



Parasitation of D. mollipla  

because the species were not found again in the field. 

After removing the parasitoid the DBM larvae were fed on their respective food plants. 

until reaching adult stage. The number of parasitoid pupae in each container was 

recorded. DBM larvae that died were dissected in order to search for the parasitoid egg 

or larvae to obtain the total number of parasitized DBM larvae. The single egg layed by 

D. mollipla was very easy to detect. 

In this experimental setup naive and experienced parasitoids were tested. Naive females 

did not have contact with any DBM larvae before the experiment. To gain experience 

females were allowed to parasitize larvae of the DBM strain they emerged from 24h 

before the trial. 

 

2.3.3 Effect of host plants on parasitation 

After having found successful parasitation of D. mollipla on the new DBM strain in the 

small containers, a larger set-up was installed in order to determine the influence of the 

host plant on the parasitation rate. 

Tests described in this chapter were conducted with whole potted plants in a screened 

metal-framed cage measuring 60x45x45cm. Only the experienced c-D. mollipla strain 

was used, because naïve parasitoids tended to showing no searching behavior at all. The 

pea strain of the parasitoid was not available due to the above mentioned collapse of the 

culture. To reduce the influence of variability of performance for individual females 

three parasitoids were released in the cage. All treatments were replicated three times. 
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2.3.4 Single host plant and mixed host plant exposure.  

Four cabbage plants (4-6 weeks after transplanting; 6-8 leaves) were placed in the cage 

approximately 20cm apart. Each plant was infested a day before exposure with 10 

second instar c-DBM larvae. They were then exposed for 48h to three to four day old 

parasitoids. The larvae were subsequently kept in plastic containers on cabbage leaves. 

Larvae of the same plant were kept together. The number of parasitized pupae was 

recorded. A similar experiment was conducted with p-DBM larvae on four pea plants 

offered as single host and in a mixed host plant situation with two pea and two cabbage 

plants with their respective DBM larvae. 

 

2.3.5 Host/parasitoid development 

In order to detect the development success of the two D. mollipla strains on c-DBM and 

p-DBM the parameters pupal weight and duration of development of parasitoids and 

hosts, respectively, were compared. Host survival was determined but due to a 

microsporidia infection in the c-DBM colony mortality caused by the parasitoid could 

not be distinguished from mortality caused by the infection of the larvae. Therefore data 

had to be dismissed. In small containers (5x8x17cm) 20 to 30 DBM larvae were 

exposed for 24h to 3-4 females of D. mollipla. Age of larvae (4 days old), leaves of 

food plants and parasitoid/DBM combinations did not differ from the experimental 

setup previously described. The number of females was usually sufficient to parasitize 

most of the DBM larvae due to the small size of the container. After exposure, larvae 

were kept individually in vials on leaves or leaf discs of their respective food plants and 

checked daily for pupation. Spinning of the cocoon was considered as an indicator in 

order to distinguish between the larval and pupal period of the parasitoid. Pupae were 

weighed on a Mettler analytical balance to the nearest 0.01mg.  

 

 

9 

 



Parasitation of D. mollipla  

2.3.6 Statistical analysis 

Multiple comparisons of mean development times and pupal weights of parasitoids 

were performed using an ANOVA (Student Newman Keuls Test). For the mean 

comparison of development and weight of unparasitized larvae of the two DBM strains 

the T-Test was used. Mean comparisons of parasitation rates between parasitoid/host 

combinations were conducted with the Student Newman Keuls Test and for the effect of 

host plants on parasitation rates the Tukey Test was performed. The 0.05 level was set 

for all comparisons made. The Chi-square adaptation test was used in order to 

determine if the sex ratio deviates from an expected 1:1 ratio. For the comparison of 

differences in sex ratios between parasitoid/DBM combinations the Chi-square 2x2 was 

applied. 
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2.4 Results 

2.4.1 Effect of host larvae on parasitation  

Fig. 2.1 shows the parasitation rates of D. mollipla on the 2 DBM strains. The new pea-

DBM strain was accepted as host by both D. mollipla strains tested. The p-D. mollipla 

strain parasitized on c-DBM as well as on p-DBM. In general individual parasitation 

varied considerably within the two D. mollipla strains. Average parasitation per naive 

female (A) was lowest for c-D. mollipla on c-DBM with 16.9 %, on p-DBM it was 

higher with 22.9%. The highest mean number of parasitized larvae was found for p-D. 

mollipla on p-DBM with 32.2%. Despite the high variation among naïve females a 

tendency towards higher parasitation on p-DBM is found, although the differences 

between the mean number of parasitized larvae is not significant (Student Newman 

Keuls Test df=2,47; F=1.08; p=0.348 n.s.). In experienced parasitoids a difference can 

be clearly demonstrated (B). The mean parasitiation of on cabbage experienced c-D. 

mollipla was with 47.5% significantly higher on p-DBM than on c-DBM with 23.6%.  
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Fig. 2.1: Variability of parasitation of individual naive (A) and experienced (B) 
Diadegma mollipla: c/c (c-D. mollipla on c-DBM), c/p (c-D. mollipla on p-DBM), p/p 
(p-D. mollipla on p-DBM), p/c (p-D. mollipla on c-DBM). The on pea experienced pea 
strain showed with 23.4% a mean parasitation similar to the cabbage strain (Student 
Newman Keuls Test; df=2,42; F=7.27; p<0.05). Missing data and low number of 
females tested in p-D. mollipla was due to the already mentioned collapse of this 
culture. 
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2.4.2 Effect of host plants on parasitation 

The host plant complex had a strong influence on the parasitation rate (Fig. 2.2). The 

parasitation rate of c-D. mollipla on cabbage plants alone was with 6.1% significantly 

lower than on DBM exposed on pea alone with 26.5%. When both host plants were 

offered simultaneously parasitation was comparable to cabbage offered alone (3.5%) 

(Tukey’s Test; df=8,27; F=4.54; p<0.05). In the graph significant differences in 

parasitation are indicated by different capital letters. In the mixed exposure however, a 

higher proportion of larvae was parasitized on peas (2.6%) than on cabbage (0.9%), 

showing again clearly the preference for the pea-DBM complex. 
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Fig. 2.2: Influence of host plants on parasitation of c-Diadegma mollipla. Means from 3 

replicates. 

 

2.4.3 Development of P. xylostella and D. mollipla 

In Table 2.1 the development time of unparasitized DBM, both cabbage and pea strain, 

are given in the first 2 lines. In the following lines the development duration of the 

parasitoid/host combinations are shown. DBM larvae were exactly 4 days old when 
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exposed to the parasitoids. In order to compare the development time of parasitized with 

unparasitized DBM development duration was counted from day 4 (exposure day). 

Spinning of the cocoon was considered as an indicator in order to distinguish larval and 

pupal duration. Thus the development of four day old p-DBM larvae was with 12.2 days 

significantly slower as compared to c-DBM (10.7 days) (T-test; df=160,137; F=1.85; 

p<0.001), indicated with *** in Table 2.1. This was a result of the longer pupation 

period required by the p-DBM (6.5 days) as compared to 5.4 days for the c-DBM (T-

test; df=160,137; F=5.47; p<0.01). Larval duration was similar in both DBM strains 

(5.3 and 5.7 days) (T-test; df=160,137; F=1.25; p=0.175).  

Table 2.1: Comparison of development time of Diadegma mollipla reared on Plutella 
xylostella on cabbage or peas. To distinguish between larval and pupal duration the 
spinning of the cocoon by the DBM larvae was considered. Larval duration and 
development time of unparasitized DBM larvae were counted from day of exposure to 
parasitoid (4 days after hatching). 

parasitoid 
strain 

host strain development 
time (total) 

[days] 

larval duration 
[days] 

pupal duration 
[days] 

SNK 
group 

- cabbage 10.7 ± 0.9*** 5.3 ± 0.7 5.4 ± 0.6*** A 

- pea 12.2 ± 1.3*** 5.7 ± 0.8 6.5 ± 1.4*** A 

cabbage cabbage 15.8 ± 0.7 6.3 ± 0.6 9.5 ± 0.7 B 

pea cabbage 15.5 ± 0.5 6.0 ± 0.6 9.5 ± 0.5 B 

pea pea 15.7 ± 0.9 6.5 ± 1.0 9.2 ± 1.1 B 

cabbage pea 16.9 ± 1.5 8.6 ± 0.9 8.3 ± 1.2 C 

 

The parasitoid developed successfully on both host strains and showed similar 

development time except the cabbage strain of the parasitoid on pea-DBM (Table 2.1). 

Development was considerably longer compared to unparasitized DBM because the 

parasitoid had a longer pupal period. Significant differences in means are indicated with 

capital letters in Table 2.1. Pupal duration was with 8.3 days shorter for c-D. mollipla 

on p-DBM than in the other combinations with 9.2 and 9.5 days, respectively (Student 

Newman Keuls Test; df=3,215; F=18.4; p<0.001). Compared to unparasitized DBM 
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larvae larval duration of the parasitized larvae was extended in both host strains (Table 

2.1). For three parasitoid/DBM combinations the larval period was similar and ranged 

between 6.0 days for p-D. mollipla on c-DBM and 6.5 days for p-D. mollipla on p-

DBM and c-D. mollipla on c-DBM ranging in between the two former combinations 

(6.3 days). The slowest larval duration was determined for c-D. mollipla on p-DBM 

(8.6 days) (Student Newman Keuls Test; df=3,269; F=18.5; p<0.001).  

Pupal weight of unparasitized p-DBM (4.5 mg) was significantly lower than for c-DBM 

(5.4 mg) (Table 2.2). Correspondingly, pupal weights of parasitoids reared from p-DBM 

were lower (4.4mg and 4.2mg, cabbage and pea strain, respectively) than from c-DBM 

(5.3mg and 5.7mg cabbage and pea strain, respectively). There was no significant 

difference between the weight of parasitized and unparasitized pupae and similar 

weights were grouped according to their host plants in Table 2.2 (Student Newman 

Keuls Test; df=5,588; F=62.74; p<0.001). The sex ratio of emerging parasitoid adults 

was slightly male-biased for the c-parasitoid strain on both DBM strains and for p-D. 

mollipla raised on p-DBM. The ratio for p-D. mollipla reared on c-DBM was female-

biased. This ratio was significantly biased for c-D. mollipla on p-DBM; in the other 

parasitoid/host combinations the sex ratio did not significantly deviate from 

expectation. 
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Table 2.2: Comparison of pupal weight of Diadegma mollipla reared on Plutella 
xylostella on cabbage or on peas with unparasitized diamondback moth larvae. 
Exposure of 4 day old DBM larvae (L2). 

parasitoid 
strain 

host strain pupal weight [mg] SNK 
group 

sex ratio  

females 

- cabbage 5.4 ± 0.7 A - 

cabbage cabbage 5.3 ± 0.8 A 0.75 

pea cabbage 5.7 ± 0.8 B 1.60 

- pea 4.5 ± 0.7 C - 

cabbage pea 4.4 ± 0.5 C 0.73 * 

pea pea 4.2 ± 0.7 C 0.80 
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2.5 Discussion 

In our experiments overall parasitation was low in all combinations investigated and 

performance of individual females was very variable, independent of their hosts. 

Experienced females were more effective than naive ones and reached higher 

parasitation rates. Despite individual variability preference experiments revealed 

significantly higher parasitation on p-DBM as compared to c-DBM.  

Two hypotheses may be discussed with regard to these observations: 1. D. mollipla has 

only developed a loose association with DBM and its host plant. 2. There must be a 

factor that renders DBM on crucifers less attractive than on peas. The first hypothesis is 

supported by Broodryk (1971) who lists D. mollipla as an important parasitoid of the 

potato tuber moth (PTM) on potato and tobacco in southern Africa and on potato in 

Yemen (Kroschel, 1993). However, as PTM is an introduced species to Africa and D. 

mollipla seems to be indigenous, PTM cannot be the original host of this species. It is 

therefore reasonable to assume that D. mollipla is a parasitoid with a considerable host 

plasticity. We assume that it might be found to parasitize more free-living or leaf 

mining species of microlepidoptera. A lack of intrinsic cues to find the host plant of 

DBM may also explain the generally low parasitation rates of DBM observed in the 

laboratory (Akol, 2003) and thus its irrelevance for the control of DBM field 

populations (Oduor et al. 1996, Löhr, unpublished survey data). As for the second 

hypothesis, concerning factors for the higher attractivity of peas, a few published papers 

report an influence of host plants on parasitation levels on DBM. Beck and Cameron 

(1990) related different levels of parasitation by D. semiclausum and Diadromus 

collaris on three vegetable brassicas to the accessibility of the host larvae for the 

parasitoids. Broccoli, showing highest parasitation, does not form heads like cabbage, 

thus the leaves do provide less shelter for the larvae as compared to leaves tightly 

attached to the head. Idris and Grafius (1996) reported a higher percentage of 

parasitation of Diadegma insulare on DBM on cultivated brassicas than on wild 

Brassicaceae. Their findings may be explained by plant quality, D. insulare parasitizing 

more DBM larvae on N-fertilized than on unfertilized plants (Fox et al., 1990, 1996). 

However, differences in accessibility of DBM do not explain the significant preference 
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of D. mollipla females for DBM feeding on peas, because DBM larvae were freely 

exposed on leaves during the experiments. At this point we are not able to rule out the 

possibility of differences in DBM suitability as hosts mediated by plant quality. 

Although fertilizer treatments did not differ between the two host plant species, we do 

not have data on specific plant compounds rendering the plants more or less attractive to 

D. mollipla. 

However, the preference of D. mollipla for DBM feeding on peas may be explained by 

cues used for host location. It is now well documented that hymenopterous parasitoids 

use infochemicals to locate their hosts (e.g. reviewed in Vet and Dicke, 1992). These 

volatiles may originate from the host plant, the herbivore itself or the interaction 

between plant and herbivore (Drost et al., 1986, Turlings et al., 1991, Agelopoulos and 

Keller, 1994, Zaki et al., 1998). Evidence that a DBM parasitoid is attracted by 

kairomones was found in D. semiclausum (Davis, 1987). Residence and searching time 

increased when parasitoid females were offered leaves with hosts and silk as compared 

to silk or clean leaves.  

One-to-one transplantation of these results to the given plant-host-parasitoid system is 

however premature, because cues used can differ even within a genus. Shiojiri et al. 

(2000) demonstrated that Cotesia plutellae and C. glomerata, both parasitoids of Pieris 

rapae, showed different preferences in flight response experiments towards the plant-

herbivore complex. Oviposition attempts into feeding holes of both plants tested were 

observed, even when larvae were absent. However, although plant injury derived 

volatiles in combination with specific volatiles emitted by the host plant could be an 

important cue in the searching behaviour of D. mollipla this still does not explain the 

preference in c-DBM experienced females of the c-D. mollipla strain for p-DBM larvae. 

Parasitoids associated with crucifer specialist herbivores were shown to be attracted by 

volatile isothiocyanates (mustard oils) typically released by crucifers when injured 

(Pivnick, 1993, Murchie, et al., 1997). For D. mollipla crucifer volatiles are unlikely to 

be used for host location. In Chapter 3 it is demonstrated that D. mollipla females are 

attracted to odours emitted by peas infested with but not to odours emitted by cabbage 

plants infested with DBM larvae. This is because D. mollipla is either attracted to a 
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non-specific blend of volatiles from a variety of host-infested plants, or it uses other 

shared cues present in several hosts or host-plant complexes. Therefore we hypothesize 

that DBM-crucifer complex is not the preferred host-plant association of D. mollipla, 

although it is widely accepted because of its high abundance and therefore easy 

accessibility in Kenya.  

D. mollipla was able to develop in either DBM strains without visible problems. Only 

development time and pupal weight are affected, probably due to growth differences of 

DBM on the two host plants or of differing secondary compounds ingested by the 

larvae.  

Koinobiont parasitoids rely on their host’s nutrition and growth potential (Mackauer et 

al., 1997). When feeding on different food plants, physiology and size of the herbivore 

can change and this influences the development of the immature parasitoid indirectly 

(Godfray, 1994). For example Idris and Grafius (1996) found that developmental time 

of Diadegma insulare on DBM on wild crucifers was longer than on cultivated brassica 

crops. Larval duration of larvae parasitized by D. mollipla was longer on both plants as 

compared to unparasitized larvae. Nutritional demands of the parasitoid often reduce 

growth and behavior of their hosts (Strand et al., 1988, Harvey et al., 1999). In contrast 

Yang et al. (1994) found no difference in duration of larval instars between parasitized 

and healthy DBM larvae, but food consumption was reduced in larvae parasitized by 

Diadegma semiclausum. 

Growth of either parasitized and unparasitized DBM was dependent on the food plant. 

Pupae of DBM were heavier on cabbage than on pea. Either a lower nutritional value or 

lacking feeding stimulants of peas could be the reason for ths incident.  
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CHAPTER 3 

3 Generalism versus specialism: Responses of Diadegma mollipla 
(Holmgren) and Diadegma semiclausum (Hellen), to the host shift of 

the diamondback moth (Plutella xylostella L.) to peas 
3.1 Abstract  

A population of the diamondback moth Plutella xylostella (L.) (Lepidoptera: 

Plutellidae) (DBM), known to be an oligophagous pest on crucifers, was recently found 

to infest sugar snap- and snowpeas in the Rift Valley in Kenya, causing heavy damage. 

The influence of this host shift on host location preferences of two parasitoids was 

investigated: The indigenous Diadegma mollipla (Holmgren) regarded as a relative 

generalist, because of rather low parasitation (<15%) on crucifers and Diadegma 

semiclausum (Hellen), regarded as highly specific to DBM. In this study, the 

attractiveness of different odour sources was compared for the two parasitoid species. 

The bioassay tests were conducted in a Y-tube olfactometer, testing cabbage and pea 

related odours (larvae, faeces and DBM infested plants) either against clean air or 

against each other. Females were released individually for five minutes into the stem of 

the olfactometer and their first choice and the time spent in each arm were recorded. D. 

mollipla was not significantly attracted to any cabbage related odours but showed a 

significant preference for the DBM infested pea plant when tested against clean air. D. 

semiclausum was highly attracted to the undamaged cabbage plant and odours related to 

cabbage. On the other hand, peas infested with DBM, showed no attractiveness to this 

parasitoid. The results showed that specialisation of D. semiclausum is mediated by host 

plant signals, associated with crucifers, which are not encountered in DBM feeding on 

peas. Whereas for D. mollipla, although a frequent parasitoid on DBM in crucifers, 

volatiles emitted by these plants might not be used as primary cues for host location. 

This species may respond largely to chemicals yet unknown and associated with a 

variety of plant-herbivore interactions.  

Keywords: parasitoids, host location, infochemicals, P. xylostella, Pisum sativum,  
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3.2 Introduction 

Chemical cues play an important role for the foraging behaviour and decision-making 

of parasitoids (e.g. Vinson 1976, Dicke and van Loon, 2000). Specifically, plant 

volatiles often guide parasitoids to their host habitats, but volatiles used by natural 

enemies may also originate from herbivores, symbionts associated with herbivores, and 

interactions between plants and these other sources (Bottrell et al., 1998). For many 

parasitoids the plant is a key factor for host location (Dicke, 1994, Geervliet et al., 

1994, Ngi-Song et al. 1996, 2000). Specialists are expected to show more restricted 

preferences for plant-host complexes through responses to specific cues resulting from 

the interaction between a host and its food plant. On the other hand, generalist 

parasitoids are assumed not to rely on specific cues because of the great diversity of 

volatiles emanating from different hosts and plants (Vet and Dicke, 1992). Therefore, 

the shift of a herbivore to a new food plant should have different effects on different 

members of its parasitoid community. It should result in a loss of specific, plant-related 

cues and, therefore, to a reduced searching efficiency, especially for the specialist. This 

is of importance as parasitoids often serve as biological control agents and their 

effectiveness in regulating an insect pest largely depends on their host location 

behaviour. For the generalist, plant-related cues might play a lesser role and are, 

therefore, not as important for searching efficiency. But this would depend on the type 

of cues the generalist uses. To test this hypothesis, the system Plutella xylostella L. and 

its parasitoids, Diadegma mollipla and D. semiclausum, was studied. 

In the Rift Valley in Kenya, the diamondback moth (DBM) Plutella xylostella L. 

(Lepidoptera: Plutellidae) has broadened its diet by adding snowpeas (Pisum sativum 

L.) to their normal host range, usually restricted to crucifers (Löhr, 2001). The 

diamondback moth is a very destructive pest on crucifers and difficult to control, since 

it has acquired resistance to all major pesticides (Talekar and Shelton, 1993). 

Introduction of parasitoids constitutes an important biological control method for this 

species. In Kenya, Diadegma semiclausum (Hellen) (Hymenoptera: Ichneumonidae), 

has recently been introduced to reduce DBM populations in crucifers. As for many 

important parasitoids, there is a lack of information about its host finding behaviour and 
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mediating cues (Verkerk and Wright 1996). Despite its importance for the biological 

control of DBM, its host location behaviours has not been studied intensely. The most 

recent work that has been done so far is by Ohara et al. (2003) who demonstrated that 

the host plant plays a role in the host finding behaviour of D. semiclausum. In this 

study, we consider D. semiclausum as a specialist parasitoid as suggested by Wang and 

Keller (2002). According to the literature, DBM is the only known host and therefore 

crucifers the main host plant (Abbas, 1988). 

The second parasitoid we studied is Diadegma mollipla (Holmgren) (Hymenoptera: 

Ichneumonidae). The cues deployed for host finding by this species are unknown. It is 

reported to be indigenous to eastern and southern Africa (Azidah et al., 2000). It is 

frequently found on DBM in Kenya, but low parasitation rates suggest that it has a 

broader host range. Except for the potato tuber moth, Phthorimaea operculella (Zeller) 

(Lepidoptera: Gelechiidae), no other host is yet known (Broodryk, 1971, Gupta, 1974). 

In this study, we treat the species as a generalist. 

The attractiveness of plant-related cues for D. mollipla and D. semiclausum was tested 

in order to determine the effect of the host shift on both species. Parasitoids were given 

choices involving odours related to cabbage, the original host plant of DBM, and odours 

related to snowpeas, the new host plant.  

 

3.3 Material and Methods 

3.3.1 Parasitoids 

Diadegma mollipla was obtained from cabbage fields at Wundanyi in Taita Taveta 

District of eastern Kenya and Maragua in Muranga District in central Kenya. Cultures 

were started in 2001 and frequently newly collected individuals from the field were 

added to the colonies. A colony of D. semiclausum was started in 2001 from pupae from 

a laborartory culture imported from the Asian Vegetable Research and Development 

Center (AVRDC) in Taiwan. Experiments were started a year after colonies had been 

established in the laboratory. Both parasitoid species were reared on second and third 
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instar DBM larvae on cabbage in perpex cages. Parasitized larvae were fed on cabbage 

leaves in plastic boxes covered with a mesh to allow ventilation until pupation. 

Parasitoid pupae were collected from the cabbage leaves and kept in smaller clean 

plastic containers. Emerging adults were then released into an empty perpex cage 

(20x20x25cm). Honey was provided as a food source. To ensure mating adults 

remained for at least 2 days in the cage. They did not have contact with plants or host 

larvae before the tests. Tested females were between 2 and 6 days old. 

 

3.3.2 Host larvae 

The cabbage strain of the diamondback moth originated from cabbage fields at 

Wundanyi and was reared in the laboratory (T=23±2°C) on potted cabbage plants 

(Brassica oleracea L. var. capitata (Copenhagen Market)). Diamondback moth larvae 

reared on cabbage are referred to as c-DBM. 

Larvae of the DBM pea strain were collected from a sugar snap pea field (Pisum 

sativum, var. Oregon sugar pod) near Naivasha in Nakuru District, Kenya. Since 1999, 

the colony has been maintained on potted snowpeas (Pisum sativum, var. Oregon sugar 

pod). Diamondback moth larvae from peas are referred to as p-DBM. 

Potato tuber moth larvae (PTM) were obtained from potato fields in Limuru in Kiambu 

District, central Kenya. They were not kept in culture, but collected from the field when 

needed.  

 

3.3.3 Host plants 

For tests involving cabbage-related odours, B. oleracea L. var. capitata (Copenhagen 

Market) was used, and for the snowpea-related odours, P. sativum, var. Oregon sugar 

pod was used. Potatoes (undefined variety) used were obtained from the local market.  
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3.3.4 Behaviour assays 

The olfactory attractiveness of DBM larvae, faeces and host plant with feeding larvae to 

D. mollipla and D. semiclausum females was studied in a Y-tube olfactometer 

(armlength 15cm, diameter 3.5cm). Tests were conducted in a bioassay room at a 

constant temperature of 23 ± 2°C. Two neon tubes (18W) provided a steady 

illumination of the test area. Individual odour sources were placed, according to their 

size, in a glass tube or a glass jar with an airtight lid connected to an olfactometer arm 

by a Teflon tube (0.5 cm inner diameter). Air from an inlet pump (Air Cadet Vaccum 

Pressure Station from Cole & Parmer) was passed through an activated charcoal filter 

for purification, then through a flow meter into two separate odour source tubes/jars. A 

second flow meter was connected between the stem of the olfactometer and a second 

pump, which exhausted air out of the system. For odour sources (faeces and larvae) in 

the glass tube, airflow into the olfactometer was set at 100 ml/min and at the exit at 220 

ml/min, and for whole plants offered in glass jars they were set at 130ml/min and 

250ml/min respectively.  

Two to six day old mated female parasitoids without oviposition experience were 

introduced individually in the stem of the Y-olfactometer. They were allowed to stay for 

5min. Parasitoids that crossed the line, 0.5cm beyond the intersection, and remained in 

one arm for at least 20 sec were recorded as having made a first choice. Total time spent 

in either one or both arms was recorded during the observation period. Females that 

remained in the stem or spent less than 20sec in one of the arms were recorded as 

showing no response. If they switched between the two arms without initially spending 

more than 20sec in one of the arms they were recorded as not having made a definite 

choice but total time spent was still measured. To avoid bias the odour sources were 

switched between the left and the right arm of the Y-tube after every 10 parasitoids. At 

least 60 parasitoids were tested for each treatment. 
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The following odour source choices were tested for both parasitoid species:  
choice parasitoid method 

1. c-DBM larvae/clean air 
 
2. p-DBM larvae/clean air  

both 

D. semiclausum 

Twenty 2nd to 3rd instar DBM larvae that 
fed on cabbage or pea respectively 
before the experiment were placed in one 
of the glass tubes (2.5cm in diameter, 
length 10cm). The other tube of the same 
size remained empty. 

3. c-DBM faeces/clean air 
 
4. p-DBM faeces/clean air  

both 
 
D. mollipla 

Fresh faeces produced by 30 DBM 
larvae (L2-L3) during 24h was placed in 
the glass tube. Every 30min the faeces 
was changed to ensure a consistent 
odour. 

5. c-DBM infested cabbage 
plant/clean air 
 
 
6. p-DBM infested pea 
plant/clean air 

both 
 
 
both 

In a glass jar (2l capacity) an entire 
potted plant (4 weeks old) with 20 
feeding larvae was placed. The other 
glass jar of the same size remained 
empty. DBM larvae were allowed to feed 
for 20 hours before the experiment. 

7. PTM infested potato/clean 
air  

D. mollipla Two potatoes were infested with five 2nd 
to 3rd  instar PTM larvae each. Larvae 
fed for 2 days in the tuber. The tubers 
were placed into a glass jar (0.5l 
capacity) and tested against an empty jar. 

8. c-DBM infested cabbage 
plant/p-DBM infested pea 
plant 
 

9. uninfested cabbage plant/c-
DBM infested pea plant  

both 
 
 
D. semiclausum 

In glass jars (2l capacity) entire potted 
plants (4 weeks old) with 20 feeding 
larvae were placed. DBM larvae were 
allowed to feed for 20 hours before the 
experiment. 

10. PTM infested potato/c-
DBM 
infested 
cabbage  

11. PTM infested potato/p-
DBM 
infested pea  

D. mollipla 

 

D. mollipla 

Two potatoes infested with 5 PTM larvae 
each and placed in a glass jar. Potted 
cabbage and pea plants were infested 
with 20 DBM larvae (see above). 

 

 

24 

 



Host Location Cues  

3.3.5 Statistical analysis 

The results of the choice between odour sources were analysed with the Yates-corrected 

Chi-Square test. For differences in the time spent in the two indiviual arms the Tukey 

test was used after an arcsine transformation (GLM proc SAS Institute, 1990) . 

Parasitoids that made no choice were excluded from the analyses. Parasitoids that made 

no definite first choice but spent time in both olfactometer arms were also included in 

the GLM analyses. 

 

3.4 Results 

3.4.1 Choice tests with clean air 

D. mollipla did not show preference for either c-DBM larvae, their faeces or DBM-

infested cabbage plant when tested against clean air (Fig. 3.1A). The parasitoids were 

equally distributed and the females spent nearly the same amount of time in the two 

arms of the Y-tube (Fig. 3.1B). In contrast, D. semiclausum responded clearly to 

cabbage-related odour sources. The preference was strongest for larvae-infested 

cabbage plant (81.6% of the choices made and 74.1% of the time spent in the treated 

arm) (Fig. 3.2). Even c-DBM faeces as well as larvae alone were significantly preferred 

over clean air, although larvae alone elicited the weakest response, which was only 

significant with respect to the time spent (Fig. 3.2B). 

On the other hand, p-DBM faeces was not attractive to D. mollipla, but the parasitoid 

showed significant preference for the larvae-infested pea plant, although not very 

pronounced (60% of first choice made and time spent) (Fig. 3.3). D. semiclausum was 

indifferent to larvae-infested pea plant (Fig. 3.4). Both, arm selection and time spent in 

the two arms was around 50%. The p-DBM larvae alone were even less attractive than 

clean air with 37.7% and 42% for first choice and time spent respectively (Fig. 3.4).  

Potatoes infested with PTM, the second known host of D. mollipla, showed a similar 

attractiveness to DBM-infested pea plant. D. mollipla spent significantly more time in 
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the arm with the potato related odour (58.7%) and females made 59.6% of the choices 

in favor of the odour (Fig. 3.3). 
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Fig. 3.1: Responses of naive Diadegma mollipla females to cabbage-related odours 
tested against clean air (c-DBM larvae = c-larvae, c-DBM faeces = c-faeces, c-DBM-
infested cabbage plant = inf cabbage). A) percentage of the number of first choices 
made. B) percentage time spent in the arms with respective odours within observation 
period of 5 min. N= number of females. Number of parasitoids that did not respond are 
indicated in brackets. Asterisks indicate statistically significant preferences within tests 
(Yates corrected Chi2-Test for first choice and Tukey Test for time spent) (*p<0.05, 
**p<0.01, n.s.=not significant). 
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Fig. 3.2: Responses of naive Diadegma semiclausum females to cabbage-related odours 
tested against clean air (c-DBM larvae = c-larvae, c-DBM faeces = c-faeces, c-DBM-
infested cabbage plant = inf cabbage). A) percentage of the number of first choices 
made. B) percentage time spent in the arms with respective odours within observation 
period of 5 min. N= no. of females. No. of parasitoids that did not respond are indicated 
in brackets. Asterisks indicate statistically significant preferences within tests (Yates 
corr. Chi2-Test for first choice and Tukey Test for time spent) (*p<0.05, **p<0.01, 
n.s.=not significant). 
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Fig. 3.3: Responses of naive Diadegma mollipla females to pea-related odours tested 
against clean air (p-DBM faeces = p-faeces, p-DBM-infested pea plant = inf pea). A) 
percentage of the number of first choices made. B) percentage time spent in the arms 
with respective odours within observation period of 5 min. N= number of females. 
Number of parasitoids that did not respond are indicated in brackets. Asterisks indicate 
statistically significant preferences within tests (Yates corrected Chi2-Test for first 
choice and Tukey Test for time spent) (*p<0.05, **p<0.01, n.s.=not significant). 
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Fig. 3.4: Responses of naive Diadegma semiclausum females to pea-related odours 
tested against clean air (p-DBM larvae = p-larvae, p-DBM-infested pea plant = inf pea). 
A) percentage of the number of first choices made. B) percentage time spent in the arms 
with respective odours within observation period of 5 min. N= number of females. 
Number of parasitoids that did not respond are indicated in brackets. Asterisks indicate 
statistically significant preferences within tests (Yates corrected Chi2-Test for first 
choice and Tukey Test for time spent) (*p<0.05, **p<0.01, n.s.=not significant). 
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3.4.2 Choice tests with two odours 

Since the strongest responses of both parasitoids were elicited by larvae-infested plants 

(pea and potato for D. mollipla and cabbage for D. semiclausum), they were tested 

against each other.  

D. mollipla females chose the larvae-infested pea plant slightly more often (55.5%) than 

the infested cabbage plant, but did not spend more time in that arm (Fig. 3.5). However, 

these results are not significant and show that, given a choice between these two plants, 

there is no clear preference for one. When the DBM-infested cabbage was tested against 

PTM-infested potatos, D. mollipla was significantly more attracted to the infested 

potatos, with 61% of the females choosing the arm with the PTM-potato odour (Fig. 

3.5). However, time spent in the two arms was not significantly different. A similar 

result, although not significant, was obtained in a test involving a choice of PTM-

infested-potato and DBM-infested pea plant. More parasitoids (58.2%) chose the arm 

with the potato related odour, whereas they spent with 49.5% the same amount of time 

as in the arm with the pea related odour. 

D. semiclausum was clearly attracted to the cabbage plant. When an undamaged 

cabbage plant was tested against DBM-infested pea plant, 73.5% of the females took 

the cabbage as their first choice, and spent 75.7% of the time in this arm. The response 

to cabbage was even stronger when the cabbage plant was infested with DBM with 

83.6% of the first choices made on the cabbage arm and 79% of the time spent (Fig. 

3.6). 

 

 

 

 

 

 

28 

 



Host Location Cues  

 

 

% first choice D. mollipla

0 10 20 30 40 50 60 70 80 90 100

inf cabbage

inf potato

inf pea

inf potato

inf cabbage

inf pea

N (no res)

66 (12)

65 (6)

60 (5)

X2=0.68 n.s.

X2=4.41 <0.05*

X2=2.37 n.s.

44.5 55.5

61.0 39.0

58.2 41.8

A
 

% time spent D. mollipla

0 10 20 30 40 50 60 70 80 90 100

inf cabbage

inf peainf potato

inf pea

inf potato inf cabbage

df 1, 110, F=0.06, p=0.81 n.s.

df 1, 118, F=0.02, p=0.88 n.s.

df 1, 122, F=0.94, p=0.33 n.s.

N (no res)

60 (4)

65 (5)

66 (4)48.448.451.6

49.7 50.3

50.5 49.5

B
 

 

 

 

 

Fig. 3.5: Responses of naive Diadegma mollipla females to infested plants (c-DBM-
infested  cabbage plant = inf cabbage, p-DBM-infested pea plant = inf pea, PTM-
infested potatoes = inf potato). A) percentage of the number of first choices made. B) 
percentage time spent in the arms with respective odours within observation period of 5 
min. N= number of females. Number of parasitoids that did not respond are indicated in 
brackets. Asterisks indicate statistically significant preferences within tests (Yates 
corrected Chi2-Test for first choice and Tukey Test for time spent) (*p<0.05, **p<0.01, 
n.s.=not significant). 
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Fig. 3.6: Responses of naive D. semiclausum females to infested and uninfested plants 
(c-DBM-infested cabbage plant = inf cabbage, p-DBM-infested pea plant = inf pea, 
uninfested cabbage plant = uninf cabbage). A) percentage of the number of first choices 
made. B) percentage time spent in the arms with respective odours within observation 
period of 5 min. N= number of females. Number of parasitoids that did not respond are 
indicated in brackets. Asterisks indicate statistically significant preferences within tests 
(Yates corr. Chi2-Test for first choice and Tukey Test for time spent) (*p<0.05, 
**p<0.01, n.s.=not significant). 
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3.5 Discussion 

The host shift of DBM to snowpeas has different effects on the two parasitoids. 

Diadegma semiclausum relies on volatiles associated with cabbage, DBM’s original 

host, but not with snowpeas. The parasitoid responded to all cabbage-associated odour 

sources, c-DBM larvae, their faeces and the plant itself (in increasing order). The 

relative indifference towards DBM-infested snowpea and the avoidance of p-DBM 

larvae implies lack of attractive volatiles and their precursors from this plant.  

Ohara et al. (2003) had already demonstrated that the specialisation of D. semiclausum 

on DBM is facilitated by crucifer-typical volatiles (perhaps derivates of glucosinolate), 

which are used by the parasitoid as cues for locating its host. DBM has been known so 

far as crucifer-specific and the adults use these volatiles to find their host plant (Pivnick 

et al., 1994). Several other DBM specific parasitoids were also shown to respond to 

them. Cotesia plutellae Kurdjumov (Hymenoptera: Braconidae) and Trichogramma 

chilonsis Ishii (Trichogrammatoidea) were attracted to a blend of cabbage volatiles of 

either intact or/and damaged cabbage plants (Bogahawatte and van Emden, 1996, 

Potting et al., 1999, Reddy et al., 2002). Examples from other crucifer-herbivore 

specific parasitoids attracted by isothiocyanates (mustard oils) are Diaeretiella rapae, 

parasitoid of the aphid Brevicoryne brassicae (Bradburne and Mithen 2000) or 

Platygaster subuliformis, parasitoid of Dasineura brassicae (Murchie et al., 1997). 

The increased attractiveness of the DBM-cabbage complex as compared to the 

undamaged plant is probably due to the release of additional quantities of 

isothiocyanates and other volatile components induced through feeding. In many 

studies, the host-plant complex has been demonstrated to have a stronger effect on host 

location than the intact plant (e.g. Shiojiri et al., 2000, Takabayashi et al., 1998, Xu et 

al., 2001). Davis (1987) showed that D. semiclausum preferred an artificially damaged 

or DBM-infested cabbage leaf over an undamaged leaf. Faeces of c-DBM and c-DBM-

larvae were less preferred than infested cabbage. However, they still showed significant 

attraction relative to clean air. Frass from DBM feeding on cabbage has been shown to 

contain volatile isothiocyanates, among other components (di- and trisulfides) (Auger et 
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al., 1989), which are also present in the cabbage plant itself. Thus, the parasitoid was 

only attracted by the DBM larvae that were feeding or had fed on cabbage. Host larvae 

have been shown to attract parasitoids (reviewed in Steidle and van Loon, 2003), but 

little is mentioned about the influence of the substrate they feed on. In one of the few 

studies on the influence of larval diet on parasitoids, Havill and Raffa (2000) showed 

that Glyptapanteles flavicoxis (Marsh), a braconid parasitoid of the gypsy moth 

Lymantria dispar (L.), was attracted to the larvae when reared on foliage of the host 

plant, but they were not attracted by larvae reared on an artificial diet. Sex pheromones 

were also shown to serve as cues (e.g. Reddy et al., 2002), but they do not seem to have 

an effect on D. semiclausum.  

Our observations made during the olfactometer tests indicated that D. mollipla females 

walked randomly when they had a choice between cabbage-related odours and clean air. 

The DBM-infested cabbage plant was not particularly attractive, nor were the faeces of 

c-DBM or the larvae alone. On the other hand, DBM-infested snowpea, as well as 

PTM-infested potatoes were preferred over clean air, indicating that D. mollipla has a 

broader host range on a variety of plants. Indeed, between DBM-infested snowpea, 

PTM-infested potato and DBM-infested cabbage no definite choices for one of the 

odour sources were made. Our results are also consistent with a recent study by Akol et 

al. (2003) on the effect of different neem insecticide formulations on the attractiveness 

of D. mollipla. They found that the species did not show any significant preference for a 

water-sprayed cabbage plant infested with DBM over clean air. Interestingly, the water-

sprayed infested plant was preferred over uninfested plant. It appears that DBM is not 

the main host of D. mollipla and cabbage not a significant source of attractants for this 

parasitoid. That may explain why parasitation rates of D. mollipla on cabbage in the 

field are relatively low. Since PTM is a host of D. mollipla, the attractiveness of 

infested potatoes was not surprising. On the other hand, the reasons for the relative 

attractiveness of infested snowpeas is unexpected. The attractiveness of snowpeas was 

also confirmed by laboratory experiments where D. mollipla showed significantly 

higher parasitation rates on DBM on snowpeas as compared to DBM on cabbage (Löhr 

and Rossbach, 2004).  
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Unlike D. semiclausum, it is unlikely that D. mollipla uses crucifer-typical odours to 

locate its host, as suggested by Akol et al. (2003). It is assumed that generalist natural 

enemies use general chemical cues that are present in all hosts or their respective food 

plants (Vet and Dicke, 1992, Godfray, 1994). Accordingly, D. mollipla is either 

attracted to a non-specific blend of volatiles from a variety of host-infested plants, or it 

uses other shared cues present in several hosts or host-plant complexes. Steidle et al. 

(2003) for example found that the generalist parasitoid Lariophagus distinguendus 

Förster (Pteromalidae) was attracted to chemicals released by mites associated with the 

host insects, unrelated to the host plant the hosts were feeding on.  

In summary, since D. semiclausum depends on crucifer-specific volatiles to find its 

host, host shift to a different plant family leads to a loss of host location cues, and this 

seriously affects its searching efficiency. On the other hand, D. mollipla is less 

dependent on plant volatiles for its host location. Therefore host shift does not 

necessarily mean a loss of cues, although the nature of cues that mediate in its host 

location process remain unknown. 
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CHAPTER 4 

4 Does a specialist parasitoid adapt to its host on a new host plant? 

4.1 Abstract 

The specialist parasitoid Diadegma semiclausum is guided by crucifer-associated cues 

in order to locate its host, the diamondback moth, Plutella xylostella (L.) (DBM). It had 

been introduced to Kenya for biological control of DBM on cabbage. The shift of a 

DBM strain to snowpea (Pisum sativum L.) raised the question whether D. semiclausum 

could be conditioned to locate and parasitise its host on a new host plant. Diadegma 

semiclausum was reared on the snowpea-strain of DBM for 3 subsequent paraitoid 

generations and responsive behaviour, parasitation rates and fitness were investigated. 

Bioassay tests were conducted in a Y-tube olfactometer with DBM-infested snowpea 

tested either against clean air or DBM-infested cabbage. Response to infested snowpea 

increased in the pea-generations of D. semiclausum as compared to the parasitoid reared 

on the cabbage strain of DBM. Rearing of the parasitoid in host larvae on peas 

significantly increased the number of larvae parasitised on this host plant in the second 

generation but there was no further increase in generation 2 and 3. Larval mortality was 

similar for all parasitoid/DBM combinations on both host plants, but significantly 

higher mortality occurred in parasitoid pupae from peas. Development time of the 

parasitoid was slightly prolonged on the pea strain of DBM. The number of females 

produced by parasitoids reared on the pea strain of DBM was significantly reduced as 

compared to D. semiclausum reared on the cabbage strain on both host strains. Results 

show that D. semiclausum has the potential to locate its host on a new host plant. Within 

3 generations, responsive behaviour towards snowpea could be increased. However, 

fitness trade-offs, especially an extreme shift in sex ratio to males reduced reproductive 

success.  

Keywords: Diadegma semiclausum, Plutella xylostella, host shift, adaptation, Pisum 

sativum 
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4.2 Introduction 

Plants mediate the interaction of herbivores and natural enemies and therefore influence 

the effectiveness of parasitoids (Cortesero et al., 2000). Plant-derived volatiles are often 

used by parasitoids as cues to find a suitable host (Vet and Dicke, 1992). Searching 

efficiency as well as parasitation rates of parasitoids that are guided by plant 

semiochemicals vary with the attractiveness of volatile blends of the particular plant 

(Benrey et al., 1997, Billqvist and Ekbom, 2001, Bogahawatte and van Emden, 1996, 

Geervliet et al., 1996, Liu and Jiang, 2003). The use of semiochemicals as reliable host 

finding cues has developed in a long coevolutionary process and is to a large extent 

genetically fixed. However, the recognition of host finding cues underlies a certain 

plasticity in order to cope with a changing environment and ensure survival (Turlings et 

al, 1993, Monge and Cortesero, 1996). Olfactory learning is one way to enable 

parasitoids to modify their behavioural responsiveness to host and plant- derived odours 

(Vet and Groenewold, 1990, Turlings et al, 1993). Pre-adult learning of host-plant cues 

and preference for the host plant parasitoids were reared on has been demonstrated 

(Bjorksten and Hoffmann, 1995, Bogahawatte and van Emden, 1996, Barron, 2001, 

Gandolfi et al., 2003). However, a specialist parasitoid reacts to specific cues and this 

may be genetically fixed (Steidle et al., 2003). Learning of infochemical cues of the 

host plant the parasitoid was reared on might be of little adaptive value for a specialist 

and therefore, it would not be expected to adapt to a new host plant.  

In this study we investigated whether a specialist parasitoid can be conditioned to 

maintain its searching efficiency by learning new host plant cues. This is of practical 

importance for biocontrol because parasitoids can lose specific cues provided by the 

plant when their herbivore host shifts to a different food plant. The parasitoid D. 

semiclausum Hellen (Hymenoptera: Ichneumonidae) and its host, the diamondback 

moth, Plutella xylostella L. (Lepidoptera: Plutellidae) were used. The diamondback 

moth is a very destructive oligophagous pest on crucifers (Talekar and Shelton, 1993). 

In 2000, a diamondback moth population was detected on sugar snap- and snowpeas 

(Pisum sativum L.) in Naivasha, in the Rift Valley of Kenya (Löhr, 2001). Pea is a plant 

completely outside the normal host range of the diamondback moth, usually restricted 
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to the family of Brassicaceae. Diadegma semiclausum is a specialist parasitoid of DBM 

(Abbas, 1988) and has been succesfully used for controlling diamondback moth on 

crucifers in various countries and has been introduced to Kenya and other east African 

countries. It is highly attracted to cabbage, even in the absence of the host, which 

implies the use of crucifer-derived volatiles for host location (Ohara et al., 2003). Can 

the response of D. semiclausum to plant-derived semiochemicals and the parasitation 

efficiency be altered when it is reared on the diamondback moth on snowpea? And are 

there any trade-offs in fitness-related traits (survival, development time and adult size)? 

Host location, parasitation and fitness of D. semiclausum reared on the pea strain of 

diamondback moth was studied in order to evaluate its ability to cope with the host 

plant shift. 

 

4.3 Material and Methods 

4.3.1 Host larvae 

The cabbage strain of diamondback moth (DBM) originated from cabbage fields at 

Wundanyi, Taita Taveta District, Kenya [Altitude: 1650m, 03°26’11S, 038°20’37E], 

and was reared in the laboratory (T=23±2°C) on potted cabbage plants (Brassica 

oleracea L. var. capitata (Copenhagen Market)). Monthly collections of diamondback 

moth larvae and pupae from Wundanyi were constantly added to the culture in order to 

maintain its fitness. Larvae of the pea strain were collected from a sugar snap pea field 

(Pisum sativum, var. Oregon sugar pod) near Naivasha in Nakuru District, Kenya 

[Altitude: 1500m, 00°44’98S, 036°26’27E]. Since 2000, the colony has been 

maintained on potted snowpeas (Pisum sativum, var. Oregon sugar pod). For detailed 

methodology of rearing see Löhr and Gathu (2002). Diamondback moth larvae reared 

on cabbage are referred to as c-DBM and those reared on peas as p-DBM throughout 

this text.  
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4.3.2 Parasitoid 

A colony of D. semiclausum was started in October 2001 with pupae imported from the 

Asian Vegetable Research and Development Center (AVRDC) in Taiwan. Parasitoids 

were reared on second and third instar DBM larvae on cabbage leaves in perspex cages 

serving as parasitation chambers (20x20x25cm). Parasitized larvae were transfered to 

plastic boxes covered with nylon mesh for ventilation and fed with cabbage leaves until 

pupation. Pupae were then removed and kept in separate containers. Emerging 

parasitoids were released into parasitiation chambers. Honey was provided as a food 

source for adults. Age of females used for the experiments varied between 2 and 6 days. 

Throughout this paper D. semiclausum reared on c-DBM are referred to as c-Ds. For 

experiments parasitoids were reared for three continuous generations on p-DBM on pea 

leaves, following the same procedure as for rearing on cabbage. They are referred to as 

1p-Ds, 2p-Ds, 3p-Ds.  

 

4.3.3 Host plants 

For rearing of DBM and all experiments the same plant varieties of cabbage, Brassica 

oleracea L. var. capitata (Copenhagen Market) and snowpea, Pisum sativum, var. 

Oregon sugar pod were used. In a plastic-covered greenhouse plants of both species 

were reared in pots (2000ml) in a mixture of garden compost, red soil and sand (2:1:1) 

and were ready for use after 6 weeks. 

 

4.3.4 Parasitation 

Parasitation rates of D. semiclausum (c-Ds) reared on diamondback moth larvae on 

cabbage and three consecutive generations reared on pea (1p-Ds, 2p-Ds, 3p-Ds) were 

tested under laboratory conditions (T=23±2°C). Single, mated, two to three days old 

female D. semiclausum were used in the tests. A single cabbage leaf was infested with 

40 second instar c-DBM larvae (4 days old). Leaf and larvae were placed in a small 

plastic container (15x15x15cm) and larvae were allowed to settle for two hours. A 
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female parasitoid was then released into the container and allowed to parasitise for 24h. 

In the pea treatment, a pea leaf of approximately the same size as the cabbage leaf was 

infested with 40 p-DBM larvae and treated as described above. Fully expanded leaves 

from four to six week old plants of both plant species were used. After removing the 

parasitoid the larvae were fed on their respective food plants until reaching pupation. 

The number of parasitoid pupae in each container was recorded. DBM larvae that died 

were dissected in order to search for the parasitoid egg or larvae to obtain the total 

number of parasitized DBM larvae. For each treatment and parasitoid generation the 

experiment was replicated 20 times. 

 

4.3.5 Parasitoid fitness 

Parasitoid fitness in the three subsequent generations on pea was measured in terms of 

duration of development, mortality, sex ratio and adult size of parasitoids. A potted pea 

or cabbage plant was infested with 100 second instar diamondback moth larvae. A 

perpex cage (25x20x20cm) with a hole in the base was placed on top of the pot. The pot 

was covered with aluminium foil in order to prevent dropped larvae from disappearing. 

Three mated parasitoid females, aged 3-5 days, were released into the cage and left for 

24 hours. After exposure, the larvae were collected and introduced individually into 

vials where they were fed on a leaf disc/leaflet of their respective food plant until 

pupation and kept until emergence. The vials were checked daily and larval and pupal 

development duration were recorded. Spinning of the cocoon was considered as an 

indicator of pupation. Mortality was recorded for parasitized and unparasitized larvae. 

The cause of larval death of parasitized DBM was determined by dissecting the larvae 

and searching for the parasitoid egg/larvae. Failure of emergence was recorded as pupal 

death. For each parasitoid generation the experiment was replicated four times. The sex 

of each emerging parasitoid was recorded and females were kept in 70% ethanol for 

determination of adult size. Length of the left hind tibia and the left forewing of 20 

females in each pea generation were measured with a micrometer scale using a 

microscope (Leica MZ8).  
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4.3.6 Behaviour assays 

The olfactory attractiveness of diamondback moth-infested cabbage and snowpea to two 

different generations of p-D. semiclausum females (1p-Ds and 3p-Ds) was studied in a 

Y-tube olfactometer. Individual odour sources were placed in a glass jar with an airtight 

lid connected to an olfactometer arm by a Teflon tube (0.5 cm inner diameter). Air from 

an inlet pump was passed through an activated charcoal filter for purification, then 

through a flow meter into two separate odour source jars. A second flow meter was 

connected between the stem of the olfactometer and a second pump, which exhausted 

air out of the system. The airflow in the olfactometer was set at 130ml/min (inlet) and 

250ml/min (outlet) respectively. 

The following odour source choices were tested. 1) An entire potted snowpea plant (4 

weeks old) with 20 feeding larvae was placed in a glass jar of 2000ml capacity. The 

larvae were allowed to feed for 20 hours before the experiment. On the other branch of 

the olfactometer, a glass jar of the same size remained empty. 2) Entire potted plants (4 

weeks old) of cabbage and snowpea were infested with 20 larvae. They were allowed to 

feed for 20 hours before use. The plants were placed in the jars on either side of the 

olfactometer. The choice tests were conducted with “normal” c-D. semiclausum and the 

first and third generation of the parasitoid reared on p-DBM. 

Two to six day old, naive female parasitoids were introduced individually in the stem of 

the Y-olfactometer. They were allowed to stay for five minutes. Parasitoids that crossed 

a line 0.5cm beyond the intersection and remained in one arm for at least 20 seconds 

were recorded as having made a first choice. Total time spent in either one or both arms 

was recorded during the observation period. Females that remained in the stem or spent 

less than 20 seconds in one of the arms were recorded as showing no response. 

Parasitoids that switched between the arms without initially spending more than 20 

seconds in one of the arms were recorded as not having made a definite choice but total 

time spent was still measured. To avoid bias, the odour sources were switched between 

the left and the right arm of the Y-tube after every ten parasitoids tested. The time spent 
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was recorded with the Observer 3.0 for Windows from Noldus IT. 

 

4.3.7 Statistical analysis 

In order to assess the effect of host plant and parasitoid generation on development and 

mortality of parasitoids a two-way-ANOVA, with host strain and parasitoid generation 

as factors was used. Parasitation rates and adult size of the subsequent generations of 

the parasitoid on pea were compared with the Student Newman Keuls Test. The 0.05 

level was set for all comparisons made. The Chi-square adaptation test was used in 

order to determine deviations of the sex ratio from an expected 1:1 ratio. For 

comparison of differences in sex ratios between parasitoid/DBM combinations the Chi-

square 2x2 was applied. 

The results of the choice between odour sources were analysed with the Yates-corrected 

Chi-Square test. For differences in time spent in the two indiviual arms the Tukey test 

was used after an arcsine transformation of data (GLM proc SAS Institute, 1990). 

Parasitoids that made no choice were excluded from the analyses. Parasitoids that made 

no definite first choice but spent time in both olfactometer arms were also included in 

the GLM analyses. For differences between preferences of parasitoid generations a 

multiple Chi-Square Test was conducted (Freq proc SAS Institute, 1990). 
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4.4 Results 

4.4.1 Parasitation 

Single females reared on c-DBM parasitised significantly more larvae on cabbage than 

on pea (df 1, F=14.2, p<0.01) (Table 4.1). Rearing of the parasitoid in host larvae on 

peas significantly increased the number of larvae parasitised on this host plant in the 

first generation, but there was no further increase in generation 2 and 3 (df 3, F=15.3, 

p<0.01) (Table 4.1). When parasitoids reared on pea hosts were offered host larvae 

reared on cabbage, their parasitation was similar to those reared on cabbage and this did 

not change with the number of generations on the alternative host plant (pea) (df 3, 

F=1.33, p=0.27) (Table 4.1). 

 

Table 4.1: Percent parasitism according to wasp generation and host strain (c-Ds: D. 
semiclausum emerged from c-DBM, 1p-Ds, 2p-Ds, 3p-Ds: 1st, 2nd and 3rd generation 
emerged from p-DBM). Mean of 20 replicates. Data was analyzed by SNK-Test. 
Different letters indicate significant differences among means of one host strain 
(p<0.05). P-values show differences between host strains. 

parasitoid Mean c-DBM [%] 
parasitized 

Mean p-DBM [%] 
parasitized 

p 

c-Ds 62.8 ± 18.3 a 40.0 ± 21.0 a <0.001 ** 

1p-Ds 73.6 ± 15.8 a 74.5 ± 16.8 b =0.85  n.s. 

2p-Ds 65.3 ± 17.5 a 70.1 ± 15.8 b =0.34  n.s. 

3p-Ds 68.4 ± 21.5 a 68.8 ± 21.1 b =0.94  n.s. 
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4.4.2 Parasitoid mortality  

In Table 4.2 mortality of parasitized and unparasitized DBM larvae is shown. Two-way 

ANOVA showed a significant difference between pupal mortality on the two host plants 

(df 1, F=14.1, p<0.01). Pupal mortality was consistently higher on peas than on 

cabbage, irrespective of the parasitoid generation. Larval mortality of parasitized larvae 

was not significantly different between parasitoids or host strain (df 1, F=0.38, p=0.38). 

In exposed yet not parasitised larvae and pupae no significant differences were found 

for all plant host/parasitoid combinations (df 1, F=0.47, p=0.49 and df 1, F=0.29, 

p=0.59). Higher mortality was entirely due to higher pupal deaths in the larvae raised on 

peas. The non-exposed hosts in the control group (both plant species) were similar to 

the exposed group on cabbage. Similar parasitation rates for each parasitoid/host 

combination (61.9 to 77.1%) indicate that the larvae were equally disturbed by 

parasitoids and differences in mortality were not caused by differential stress-related 

deaths. 

Table 4.2: Mortality of parasitized and unparasitized DBM in relation to host strain (c-
DBM, p-DBM) and wasp generation (c-Ds: D. semiclausum emerged from c-DBM, 1p-
Ds, 2p-Ds: 1st, and 2nd generation emerged from p-DBM). Mean of at least four 
replicates. Data was analyzed by Two-Way ANOVA. Different letters indicate signi-
ficant differences among means (p<0.05). 

parasitoid DBM Mortality parasit. DBM  Mortality unparasit. DBM 

  larval pupal larval pupal 

c-Ds c 2.8 ± 3.1  a 9.0 ± 7.7   a 4.0 ± 2.1  a 1.8 ± 1.5  a 

1p-Ds c 14.0 ± 4.0  a 11.5 ± 3.7   a 9.3 ± 9.2  a 0.5 ± 0.6  a 

2p-Ds c 5.3 ± 3.7  a   9.0 ± 1.8   a 2.8 ± 0.5  a 2.0 ± 1.8  a 

c-Ds p 6.8 ± 2.5  a 18.7 ± 11.0 b 9.8 ± 4.7  a 3.0 ± 3.3  a 

1p-Ds p 11.3 ± 7.2  a 24.3 ± 5.6   b 3.3 ± 2.5  a 2.0 ± 1.1  a 

2p-Ds p 4.4 ± 3.8  a 23.8 ± 12.5 b 3.2 ± 4.5  a 4.2 ± 4.1  a 

- c -  2.0 ± 1.0  a 2.0 ± 1.0  a 

- p -  9.5 ± 0.7  a 5.0 ± 4.2  a 
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4.4.3 Parasitoid fitness 

In Table 4.3 development time of parasitoids and of healthy DBM is presented. DBM 

larvae were exactly 5 days old when exposed to the parasitoids. In order to compare 

larval development time of parasitized with unparasitized DBM development duration 

was counted from day 5 (exposure day). Spinning of the cocoon was considered as the 

beginning of the pupation period. Development time of parasitized larvae depended on 

the host strain. On p-DBM larval and pupal development were significantly longer than 

on c-DBM (df 1, F=9.84, p<0.01 and df 1, F=13.31, p<0.01). There was no significant 

difference between parasitoid generations on the same host. Unparasitized c-DBM 

completed their larval stage significantly faster than unparasitized p-DBM (df 1, 

F=17.42, p<0.01). Pupal development was similar for all parasitoid/host strain 

combinations df 1, F=1.4, p=0.26). Undisturbed DBM larvae (control) showed similar 

larval and pupal development times as to the parasitoids exposed, but unparasitized 

larvae. Compared to unparasitized DBM larval duration of the parasitized larvae was 

extended significantly in both host strains (df 1, F=57.62, p<0.01).  

The sex ratio of progeny was male-biased for all parasitoid/host combinations (Table 

4.3). However, parasitoids reared on cabbage hosts produced significantly more female 

offspring than parasitoids raised on pea irrespective of the host plant the offered larvae 

were reared on. Female ratio on pea was consistently at 10% or below irrespective of 

host plant of the offered larvae and the number of generations the parasitoid had passed 

through pea host larvae.  

Diamondback moth host strain significantly affected the size of emerging adult 

parasitoids (Table 4.4). On average, the left forewing of females reared on cabbage 

larvae was 0.5mm and the left hind leg was 0.15mm longer than that of those reared on 

the pea strain. 
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Table 4.3: Development duration and sex ratio of parasitized and unparasitized DBM in 
relation to host strain (c-DBM, p-DBM) and wasp generation (c-Ds: D. semiclausum 
emerged from c-DBM, 1p-Ds, 2p-Ds: 1st.  and 2nd gen. emerged from p-DBM). Mean of 
at least 4 replicates. Data for development was analyzed by Two-Way ANOVA. 
Different letters indicate significant differences among means (p<0.05). Differences in 
sex ratio between parasitoid strains was analyzed by Chi-Square Test and same symbols 
indicate similar ratios (†, °).  
parasitoid host Development time [days] 

parasit. DBM 

Development time [days]  

unparasit. DBM 

Sex 
ratio  

♀ 

  larval pupal larval pupal  

c-Ds c 4.6 ± 0.7  a 10.6 ± 0.4  a 4.0 ± 0.7  a 5.1 ± 0.2  a 0.32 † 

1p-Ds c 4.8 ± 0.4  a 10.8 ± 0.4  a 4.0 ± 0.3  a 4.6 ± 0.4  a 0.10 ° 

2p-Ds c 4.4 ± 0.2  a 10.1 ± 0.4  a 3.7 ± 0.1  a 4.8 ± 0.7  a 0.08 ° 

c-Ds p 5.4 ± 0.4  b 10.0 ± 0.2  b 4.5 ± 0.3  b 4.9 ± 0.4  a 0.46 † 

1p-Ds p 5.7 ± 0.3  b  9.9 ± 0.5  b 4.5 ± 0.1  b 5.3 ± 0.5  a 0.07 ° 

2p-Ds p 5.2 ± 0.3  b  9.5 ± 0.4  b 4.4 ± 0.3  b 4.8 ± 0.5  a 0.07 ° 

- c - - 4.3 ± 0.1  a 5.4 ± 0.1  a - 

- p - - 4.5 ± 0.2  b 5.2 ± 0.6  a - 

 

 

Table 4.4: Body size of parasitoid females in relation to wasp generation and host strain 
(c-Ds: D. semiclausum emerged from c-DBM, 1p-Ds, 2p-Ds, 3p-Ds: 1st, 2nd and 3rd 
generation emerged from p-DBM). Mean of 20 replicates. Data was analyzed by SNK-
Test. Different letters indicate significant differences among means (p<0.05). 

parasitoid Mean wing length [mm] Mean tibia length [mm] 

c-Ds 3.51 ± 0.17 a 1.14 ± 0.06 a 

1p-Ds 3.02 ± 0.15 b 0.99 ± 0.05 b 

2p-Ds 3.09 ± 0.16 b 1.03 ± 0.09 b 

3p-Ds 3.08 ± 0.19 b 1.03 ± 0.08 b 

 

43 

 



Adaptation to New Host Plant 

4.4.4 Host location 

”Normal”on cabbage reared D. semiclausum females did not differ significantly from 

those raised for one and three generations on p-DBM larvae (1p-Ds, 3p-Ds) in their first 

choice between pea and clean air (df 2, X2=2.67, p=0.26) (Fig. 4.1A). Females of 1p-Ds 

and 3p-Ds were equally distributed between the two olfactometer arms. In the third 

generation of the parasitoid on p-DBM a slight preference for infested pea was observed 

but it remained below significance level. Time spent in the different arms of the 

olfactometer was similar between normal parasitoids and after one generation on peas 

when infested pea was tested against clean air (Fig. 4.1B). Although females of the third 

generation, had spent a significantly longer time span on the side of the pea odour than 

with clean air, no significant difference was found for time spent between the three 

tested generations (df 2, X2=1.72, p=0.42) (Fig. 4.1B).  

When the parasitoids were given the alternative odours of infested cabbage and infested 

pea, first choice shifted significantly from infested cabbage in c-Ds to infested pea in 

3p-Ds (df 2, X2=44.9, p<0.01) (Fig. 4.2A). Parasitoids reared on c-DBM showed a 

strong and significant preference for the cabbage odour. After one generation on pea 

host larvae, females equally went to cabbage odour and pea odour. After 3 generations 

on pea more females chose infested pea over infested cabbage. Probably because of the 

lower number of test females , the choice preference remained below significance level 

in the third generation (Fig. 4.2A). Fewer animals were tested, because it was difficult 

to produce a sizable amount of females over three generations. All test females spent 

significantly more time on the cabbage side than pea, irrespective of their upbringing 

and number of generation on the alternative host larvae (Fig. 4.2B). However, the time 

spent in the arm with infested pea increased significantly from c-Ds to the generations 

on pea (df 2, X2=7.95, p<0.05). 
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Fig. 4.1: Responses of female parasitoid generations (c-Ds, 1p-Ds and 3p-Ds) to DBM 
infested snowpea tested against clean air. A) percentage of the number of first choices 
made. B) percentage time spent in the arms with respective odour within observation 
period of 5 min. N= number of females. Number of parasitoids that did not respond are 
indicated in brackets. Asterisks indicate statistically significant preferences within tests 
(below bars) and between test generations (above bars) (*p<0.05, **p<0.01, n.s.=not 
significant).  
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Fig. 4.2: Responses of female parasitoid generations (c-Ds, 1p-Ds and 3p-Ds) to p-
DBM infested snowpea tested against c-DBM infested cabbage. A) percentage of the 
number of first choices made. B) percentage time spent in the arms with respective 
odour within observation period of 5 min. N= number of females. Number of 
parasitoids that did not respond are indicated in brackets. Asterisks indicate statistically 
significant preferences within tests (below bars) and between test generations (above 
bars) (*p<0.05, **p<0.01, n.s.=not significant). 
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4.5 Discussion 

Diadegma semiclausum is a specialist parasitoid, which normally uses crucifer-typical 

volatiles as host finding cues (Ohara et al., 2003). We showed that the parasitoid can 

alter its response to plant volatiles when reared on an unusual host plant. The level of 

attraction to infested snowpea increased in the pea generations of the parasitoid as 

compared to the females reared on cabbage. First choice shifted from infested cabbage 

(for c-Ds) to infested snowpea (for 3p-Ds) when the two plant odours were tested 

against each other. However, regarding the time spent in these odours, preference for 

the normal host plant remained. Still, females reared on the pea host spent relatively 

more time in the arm with the snowpea odour than females reared on the cabbage strain. 

When tested against clean air, the relative increase in attraction to infested snowpea was 

not as clear, but third generation pea parasitoids still tended to be attracted more to the 

novel host plant than the females reared on the cabbage host strain. Recognition of 

chemical cues for host location can be genetically fixed (Vet and Dicke 1992), but 

parasitoids often learn host- or host plant derived stimuli to help them to find their host 

(Turlings et al., 1993). The degree of learning of infochemical cues is expected to 

depend on the dietary specialisation of the parasitoid and its host (Steidle et al., 2003). 

Some parasitoids prefer odours from the host plant they were reared on. This was 

demonstrated for Cotesia plutellae (Kurdjumov), which was more attracted to the 

brassica type on which they had developed (Bogahawatte and van Emden, 1996). 

Learning of olfactory cues takes place during particular stages of the development of a 

parasitoid. Some species require an initial stimulus during adult emergence that is 

provided by their host plant. For example, parasitoid adults of bruchids developing in 

Leguminosae seeds need to have contact with seeds in order to respond to volatiles of 

these seeds (Monge and Cortesero, 1996). Similarly, Hérard et al. (1988) found that 

contact upon emergence with cocoons containing frass of the plant was an important 

source of stimulation for Microplitis demolitor Wilkinson. The ability of parasitoids to 

learn olfactory cues during the preimaginal stage has only recently been conclusively 

proven by Gandolfi et al. (2003). They demonstrated that Hyssopus pallidus (Askew), 

an ectoparasitoid of the codling moth, a pest on apple fruits, was able to learn even cues 

of a host- and fruit-independent odour (menthol) during its larval development. 
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Parasitoids exposed to menthol odour at larval stages no longer showed negative 

responses as adults. Learning of chemical cues seemed to play a role for the behavioural 

response to plant odours of D. semiclausum. Exposing the parasitoid to novel plant 

attributes during its larval development or during emergence could have induced the 

shift in attraction towards chemical stimuli of snowpea. Even though pupae were 

removed from their host plants and kept in a plastic container until emergence, frass and 

tiny plant residues still remained on the the silky surface of the cocoons. Contact upon 

emergence with this plant material might have triggered the first “impulse” of D. 

semiclausum reared on snowpea to choose the odour of infested pea over infested 

cabbage. However, parasitoids reared on pea still stayed significantly longer on the side 

with the cabbage odour. This indicates that innate cues probably predominate in D. 

semiclausum and the response to plant volatiles can only be changed within a limited 

range. Innate cues might be too strong to be overcome by a few generations on an 

unusual host plant. Although the change in attractiveness of infested snowpea led to 

higher parasitation of the pea strain of DBM by parasitoids reared on pea, these 

“primed” parasitoids parasitized equally well on the cabbage strain of DBM. 

Rearing of D. semiclausum on the pea strain of DBM had consequences regarding 

parasitoid fitness. Development and growth potential of parasitoids are indirectly 

influenced by the host plant through physiology and size of the herbivore (Godfray, 

1994). In our experiments, development and growth of parasitized larvae were clearly 

determined by the growth potential of the DBM host strain. Wasp progeny emerging 

from larvae reared on peas were smaller and developed slightly slower than wasps 

emerging from the cabbage strain. We already demonstrated that development of the 

parasitoid D. mollipla was prolonged on snowpeas as compared to cabbage and larvae 

of the cabbage strain of DBM were slightly bigger and pupae heavier than those of the 

pea strain (see Chapter 2). The origin of the parent wasp (c-Ds or p-Ds) had no 

influence on development time and adult size. But interestingly, the origin of the parent 

female determined the sex ratio of progeny, regardless of the progeny’s host strain. 

Offspring of D. semiclausum reared on pea was extremely male-biased on both DBM 

strains, whereas the parasitoid reared on cabbage produced significantly more females 

again on both host strains. Biased sex ratio is usually attributed to factors like host 
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quality (Godfray, 1994), differential mortality of male and female offspring during 

immature development (Charnov et al., 1981) or plant quality, e.g. nutrient content, 

secondary compounds (Godfray, 1994, Fox et al., 1996, Campan and Benrey, 2004). 

Host quality as a factor for a direct choice by the female whether to oviposit a fertilized 

or an unfertilized egg would have resulted in host strain dependent sex ratio. Nor was 

differential mortality the cause for the bias in sex-ratio. Mortality of p-Ds on the pea 

strain of DBM was not higher than of c-Ds on the cabbage DBM strain. Unfavourable 

physiological properties of snowpea seemed to have reduced reproductive fitness of D. 

semiclausum reared on pea. Legumes are rich in allelochemicals, eg. proteinase 

inhibitors, saponins, non-protein amino acids. Allelochemicals might have affected 

sperms negatively. Howeer, we found no evidence for this possibility. Another reason 

could be incomplete or insufficient mating and therefore a low proportion of fertilized 

eggs.  

Differences in mortality of parasitized DBM larvae resulted from a significantly higher 

proportion of parasitoids that failed to emerge from cocoons of the pea strain, regardless 

of the host strain of the parent wasp. Larval survival was not affected by the host strain. 

Parasitoid pupal mortality on the pea strain could have been caused by host quality and 

size as well as a shorter pupal period that did not allow parasitoids to develop fully. 

Often secondary plant metabolites (allelochemicals) have detrimental effects on 

parasitoid development and survival (Barbosa et al., 1986, 1991, Campos et al., 1990, 

Roth et al., 1997) and could have affected D. semiclausum. Snowpea could also lack 

nutritional compounds required for a successful development of the parasitoid.  

Diadegma semiclausum has the potential to locate its host on a new host plant. Within 

three generations, responsive behaviour towards snowpea could be increased 

substantially. However, the effects were short lived and unlikely to alter the female’s 

behaviour in an adaptive way in just a few generations of rearing on a new host plant. 

Still, D. semiclausum could adapt over time to the new host-plant complex, maybe as a 

step in a speciation process (see Cronin and Abrahamson, 2001). However, fitness 

trade-offs would have to be overcome. Especially the reduction in reproductive success 

due to the extreme shift in sex ratio to males hampers an adaptation of D. semiclausum 
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to the new host plant of the diamondback moth. 
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CHAPTER 5 

5 Interspecific competition between Diadegma semiclausum Hellen 

and Diadegma mollipla (Holmgren) on Plutella xylostella (L.) 

feeding on an unusual host plant. 

5.1 Abstract 

Interspecific competition of an introduced and a local parasitoid of the diamondback 

moth (DBM), Plutella xylostella on an unusual host plant was investigated. The 

specialist Diadegma semiclausum was introduced to Kenya for biocontrol of the 

diamondback moth on cabbage. When the normally crucifer-typical diamondback moth 

included snowpeas in its diet in Kenya laboratory experiments with the most important 

local parasitoid Diadegma mollipla resulted in higher parasitation levels of its host on 

snowpeas as compared to cabbage. Diadegma semiclausum was more efficient on 

cabbage and clearly out-competed its congenus on the original host plant. We 

hypothesized a shift in competitiveness between the two parasitoids on the new host 

plant. In the laboratory simultaneous and delayed competition was tested on snowpeas 

and additonally the influence of host plants under different host and parasitoid densities 

was investigated in the greenhouse. Performance of the two parasitoid species in the 

laboratory differed largely from cage experiments in the greenhouse. Confined to small 

containers with a high density of hosts, D. mollipla was more competitive and 

parasitized equally as well or even better than D. semiclausum. When given more space 

D. mollipla parasitized very few larvae. Parasitation levels of D. semiclausum were 

significantly higher than those of D. mollipla, regardless of host plant, host and 

parasitoid densities, but progeny production of D. mollipla on snowpea was still slightly 

higher than on cabbage. The cages supposingly represented field conditions more 

closely and might give a better picture of the parasitoids’ behaviour in their natural 

environment. 

Keywords: competition, host shift, D. semiclausum, D. mollipla, P. xylostella, peas 
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5.2 Introduction 

Interspecific competition among insect parasitoids can influence the size and structure 

as well as the stability of insect communities. Introduced parasitoids are often stronger 

competitors and can even displace other parasitoids (reviewed in Reitz and Trumble, 

2002). Likely candidates for introduction as biocontrol agents have been the subject of 

investigation on interspecific competition. In many studies differential larval 

competition and the ability of host discrimination were found to effect direct 

competitivness between two parasitoid species (McBrien and Mackauer, 1990, Pijls et 

al., 1995, Bokonon-Ganta et al., 1996, Infante et al., 2001, Agboka et al., 2002, Wang 

and Messing, 2003). Individual searching efficiency can also change when two 

parasitoid species compete for the same host (Chua et al., 1990). Only few studies about 

the effect of host plants on interspecific competition between parasitoids exist (Iwao et 

al., 2001). Host plants indirectly influence the impact of natural enemies on their 

herbivore host (Cortesero et al., 2000). Levels of attack rates can differ on different host 

plants because plants often mediate host location efficiency and therefore influence the 

effectiveness of parasitoids (Benrey at al., 1997, Billquist and Ekbom, 2001, Liu and 

Jiang, 2003). Due to differential host location abilities competitiveness of two 

parasitoids on different host plants might be different. Therefore the influence of a new 

host plant of a herbivore host on an introduced and a local competing parasitoid was 

investigated.  

In 2002 the specialist parasitoid Diadegma semiclausum Hellen (Hymenoptera: 

Ichneumonidae) was introduced to Kenya in order to suppress diamondback moth, 

Plutella xylostella L. (Lepidoptera: Plutellidae) populations in cabbage production areas 

in the Kenyan highlands. The most important local parasitoid was Diadegma mollipla 

(Holmgren) (Hymenopera: Ichneumonidae), a generalist parasitoid that together with 

other local parasitoids never exceeded parasitation levels above 15% (Odour et al., 

1996). Both species parasitize the same larval stages, have similar temperature 

requirements, but differ in their host specifity. With the potato tuber moth, Phthorimaea 

operculella (Zeller) (Lepidoptera: Gelechiidae) one other host is known for the 

indigenous D. mollipla, but additional hosts are suspected. Diadegma semiclausum is 

 

51 

 



Interspecific Competition 

specific for the diamondback moth (DBM) (Abbas, 1988) and has been the most widely 

used and successful parasitoid for biocontrol of DBM in a number of countries (Talekar 

and Shelton, 1993). In the laboratory Sithole (2004) demonstrated a clear advantage in 

competition of D. semiclausum over D. mollipla on DBM on cabbage. Observations in 

the field confirmed that the exotic species out-competed and even displaced most of the 

generalist indigenous species on DBM on cabbage including D. mollipla (unpublished 

data). When the normally crucifer-specific DBM extended its host range to snowpeas in 

2000 in a horticulture production area in Naivasha in the Rift Valley of Kenya, 

efficiency in parasitation of D. mollipla on DBM on the new host plant was investigated 

and the species proved to parasitize better on DBM on snowpeas than on cabbage (Löhr 

and Rossbach, 2004). Host location studies revealed that D. mollipla could find its host 

equally as well on cabbage and on peas, whereas D. semiclausum relied on crucifer-

typical volatiles as host-finding cues and prefered cabbage over DBM infested snowpea 

(see Chapter 3). Therefore we hypothized that on the new host plant D. mollipla might 

have a competitive advantage over its introduced congenus and might be able to find a 

niche on peas after its displacement on cabbage. Progeny production under 

simultaneous and delayed interspecific competition was determined in the laboratory. In 

the greenhouse the influence of host plants on competition and the effect of different 

host and parasitoid densities was investigated. 

 

 

5.3 Material and methods 

5.3.1 Host plants and larvae 

The cabbage strain of diamondback moth (DBM) originated from cabbage fields at 

Wundanyi, Taita Taveta District, Kenya [Altitude: 1650m, 03°26’11S, 038°20’37E], 

and was reared in the insectory (T=23±2°C) on potted cabbage plants (Brassica 

oleracea L. var. capitata (Copenhagen Market)). The pea strain of diamondback moth 

was collected from a sugar snap pea field (Pisum sativum, var. Oregon sugar pod) near 
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Naivasha in Nakuru District, Kenya [Altitude: 1500m, 00°44’98S, 036°26’27E]. Since 

2000, the colony has been maintained on potted snowpeas (Pisum sativum, var. Oregon 

sugar pod) in the laboratory. For detailed description of rearing of both DBM strains see 

Löhr and Gathu (2002). 

 

5.3.2 Parasitoids 

A culture of D. mollipla was started from collected DBM larvae in Naro Moru, Nyeri 

District, Kenya. Parasitoids were multiplied for three generations in the laboratory 

before they were used for experiments. A colony of D. semiclausum was started in 

October 2001 with pupae imported from the Asian Vegetable Research and 

Development Center (AVRDC) in Taiwan. The culture had been maintained in the 

laboratory for three years when experiments were conducted. Both species were reared 

separately on second and third instar DBM larvae on cabbage leaves in perspex cages 

serving as parasitation chambers (20x20x25cm). Parasitized larvae were transfered to 

plastic boxes covered with nylon mesh for ventilation and fed with cabbage leaves until 

pupation. Pupae were then removed and kept in separate containers. Emerging 

parasitoids were released into parasitation chambers. Honey was provided as a food 

source for adults. Age of females used for the experiments varied between 2 and 5 days 

and both species had no oviposition experience before the experiments. 

 

5.3.3 Simultaneous intra- and interspecific competition 

Three plastic oviposition chambers (15x15x15cm) were prepared and to each were 

added 50 DBM larvae on a pea leaf. They were given 2 hours to settle on the leaf. To 

two of the chambers two mated females, both belonging to either D. mollipla or D. 

semiclausum, were released and to the third chamber one female from each of the two 

species was added. After 24 hours the parasitoids were removed and the larvae were 

reared to adults. The number of parasitoid pupae and progeny for each species emerging 

at the end of the experiment was recorded. Dead larvae were dissected in order to check 
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for parasitoid eggs/larvae. The experiment was conducted at 23 ± 2°C and replicated 

fifteen times. 

 

5.3.4 Delayed simultaneous interspecific competition  

In the same oviposition chambers used in the experiment above fifty 2nd instar larvae on 

a pea leaf were exposed to a single female of a D. semiclausum female. At two different 

times (after 4h and 8h) D. mollipla was introduced without removing the first female. 

Total oviposition time was 24h. The experiment was repeated in reverse order of 

parasitoids and was replicated ten times for each time sequence and species order.  

 

5.3.5 Delayed interspecific competition  

Fifty 2nd instar larvae on a pea leaf were exposed for 24 hours to oviposition by a single 

D. semiclausum female in an oviposition chamber. Larvae were transferred to a fresh 

pea leaf and then exposed to subsequent 24 hours parasitization by D. mollipla at 

different times. That was immediately, 24 hours and 48 hours after exposure to D. 

semiclausum. Each time sequence was replicated 10 times. The number of parasitoid 

pupae and progeny for each species emerging at the end of the experiment was 

recorded. Dead larvae were dissected in order to check for parasitoid eggs/larvae. In the 

second part of the experiment the larvae were first exposed to D. mollipla and then to D. 

semiclausum.  

 

5.3.6 Effect of host plants on interspecific competition 

This experiment was conducted in cages in a plastic sheet-covered greenhouse. The 

cages had plastic frames (110 x 90 x 75cm) covered with a fine mesh on all sides and 

the top. On the ground of the cages a wooden board (80 x 100cm) with four openings 

(Ø 15cm) was placed. The board was covered with a layer of soil (1cm) and was 
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elevated from the ground in order to insert potted plants into the openings. Distance 

between plants was 60cm and 40cm. Diagonal distance was 75cm. This set-up was 

chosen in order to simulate field conditions as closely as possible. 

DBM on one host plant and two host plants were offered in three different sets of 

experiments. First four potted cabbage plants were introduced into the cage. A day 

before parasitoid exposure each plant was infested with 20 second instar DBM larvae 

reared on cabbage. Then two females of each species were released into the cage for 8 

hours (exposure time 8.30am to 4.30pm). Larvae were collected immediately after the 

end of exposure time and reared until emergence. Number of parasitoid pupae and 

species and sex of emerged adults was recorded. The experiment was repeated with 

DBM reared on peas on four pea plants and finally two infested pea plants and two 

infested cabbage plants were offered at the same time. Every host plant exposure was 

replicated six times (3 cages at a time). 

 

5.3.7 Effect of larval density on competition 

This experiment was conducted with two host plants (two pea and two cabbage plants) 

in above described cages. In the first part the cabbage plants were infested with 20 

larvae and the pea plants with 10 larvae. Afterwards the density of larvae on the two 

host plant species was reversed. Otherwise the procedure was exactely as described 

above.  

 

5.3.8 Effect of parasitoid density on competition 

Two snowpea and two cabbage plants infested with 20 DBM larvae each were 

introduced into the cage (procedure as described above). The experiment was conducted 

with three different D. mollipla densities. The number of D. mollipla females was two, 

four and in the last set-up six. The number of D. semiclausum females was kept constant 

with two.  
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5.3.9 Statistical analyses 

All data was analyzed using the SAS loglinear modeling GENMOD procedure (SAS 

Institute 1999-2000). The model is particularly suitable for count data under the 

assumption of a Poisson distribution. In cases the criteria for Goodness of Fit deviated 

too far from 0 (value>1.5) the Poisson regression was replaced by a negative binomial 

regression with the same SAS procedure. For the presentation of parasitation levels at 

different host densities the data was arcsin transformed before analysis. 

 

 

5.4 Results 

5.4.1 Simultaneous competition 

Fig. 5.1A shows the of number parasitized larvae, total progeny and females from three 

different species combinations when larvae were exposed to two competing females at 

the same time. Intraspecific competition between two females of D. mollipla and 

interspecific competition between the two species had a similar number of parasitized 

larvae and produced a higher number of progeny than two competing D. semiclausum 

(df 2, X2= 7.14, p<0.05). The number of female progeny was very variable within all 

parasitoid combinations and were therefore not significantly different from each other 

(df 2, X2=4.13, p=0.12).  

Fig. 5.1B shows the contribution of each species to production of progeny in 

interspecific combination of D. mollipla and D. semiclausum. The mean number of 

emerged adults of D. mollipla was double the amount of progeny produced by D. 

semiclausum. However, the difference was not significant, because of the high standard 

deviation (df 1, X2=3.04, p=0.08). The number of females produced by D. mollipla was 

significantly higher than by D. semiclausum (df 1, X2=11.1, p<0.01). 
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Fig. 5.1: Simultaneous intra- and interspecific competition of Diadegma mollipla (Dm) 
and Diadegma semiclausum (Ds) on Plutella xylostella on snowpea. A) No. of 
parasitized larvae, total progeny production and emerged females B) Progeny 
production of both species in interspecific competition. 

 

 

5.4.2 Delayed simultaneous competition  

Parasitation and progeny production of D. mollipla and D. semiclausum within 24h with 

a head start of 4h and 8h for one or the other species are presented in Table 5.1. 

Combined number of parasitized larvae was similar for every exposure sequence. When 

D. semiclausum was given a head start, the total number of progeny was significantly 

lower as compared to D. mollipla starting to attack earlier (df 3, X2=6.74, p<0.01). 

Individual ovipositing females performed very variably. When D. mollipla attacked 

earlier the number of progeny of each species was similar after 24h of oviposition. 

When this species was introduced later, it produced significantly less progeny than D. 

semiclausum (df 1, X2=5.35, p<0.05 after 4h and df 1, X2=9.33, p<0.01 after 8h). The 

number of female progeny was very low for both species. 
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Table 5.1: Delayed simultaneous interspecific competition of Diadegma mollipla (Dm) 
and Diadegma semiclausum (Ds) on Plutella xylostella on snowpea. The 2nd  parasitoid 
was introduced after 4h and 8h respectively. Total parasitation duration was 24h. 
Different letters indicate significant difference between exposure sequence and 
introduction time of 2nd parasitoid and asterix between the species (p<0.05).  
Exposure 
sequence 

[h] 

No. parasit. 
DBM 

No. emerged 
parasitoids 

D. mollipla D. semiclausum 

   total females total females 

Dm – Ds 

[4] 

32.4 ± 8.2  a 24.8 ± 9.7  a 10.5 ± 10.1 a 4.2 ± 7.4  a 14.3 ± 12.1 a 1.6 ± 3.7  a 

Dm – Ds 
[8] 

26.6 ± 6.7  a 21.4 ± 5.1  a 7.5 ± 9.8    a 1.2 ± 3.1  a 13.9 ± 9.1  a 2.7 ± 2.1  a 

Ds – Dm 
[4] 

28.9 ± 4.7  a 10.8 ± 7.9  b 2.8 ± 2.7     b * 0.6 ± 0.8  a 8.0 ± 6.9     a * 1.0 ± 2.1  a 

Ds – Dm 
[8] 

29.0 ± 13.4 a 18.9 ± 14.9 ab 1.0 ± 1.9     ab * 0.1 ± 0.3  a * 17.9 ± 14.3 a * 5.5 ± 6.6  a 
* 

 

 

5.4.3 Delayed competition  

The number of parasitized larvae was similar for all exposure sequences (Table 5.2). 

The time interval of exposure affected total and individual progeny production. 

Significantly less adults emerged at time intervals of 48h and 72h, regardless which 

parasitoid species attacked larvae first (df 5, X2=41.5, p<0.01). The number of progeny 

of each species was very variable and the time interval had no significant effect on the 

total number of progeny of both species, except for D. mollipla at 72h (df 5, X2=36.64, 

p<0.01). However, at time intervals of 48h and 72h, the species which attacked first 

produced more progeny, but that was only significant at 72h (df 1, X2=4.39, p<0.05 for 

Dm-Ds and df 1, X2=36.28, p<0.01 for Ds-Dm). The number of females produced was 

very low and variable between individual ovipositing females and exposure sequence 

nor time interval had an influence on female progeny.  
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Table 5.2: Delayed interspecific competition of Diadegma mollipla (Dm) and 
Diadegma semiclausum (Ds) on Plutella xylostella on snowpea. Time intervals of 
exposure were 24h, 48h and 72h between parasitoids. Different letters indicate 
significant difference between exposure sequence and time interval of exposure and 
asterix indicate significant differences between the species (p<0.05).  

Expo- 
sequence 

[h] 

No. parasit. 
DBM 

No. emerged 
parasitoids 

D. mollipla D. semiclausum 

   total females total females 

Dm – Ds 

[24] 

37.3 ± 5.8  a 25.1 ± 3.7 a 12.1 ± 9.6 a 2.0 ± 4.0 a 13.0 ± 9.7   a 3.3 ± 5.8 a 

Dm – Ds 
[48] 

36.7 ± 6.1  a 19.4 ± 4.7 b 12.6 ± 7.4 a 3.3 ± 3.8 a 6.8 ± 5.8   a 0.9 ± 2.5 a 

Dm – Ds 
[72] 

33.8 ± 9.6  a 17.1 ± 7.3 b 11.4 ± 6.9 a * 1.1 ± 2.3 a 5.7 ± 3.6   a * 1.4 ± 2.0 a 

Ds – Dm 
[24] 

33.8 ± 7.4  a 26.4 ± 8.2 a 12.2 ± 8.2 a 6.5 ± 7.1 a * 14.2 ± 13.4 a 1.0 ± 1.7 a * 

Ds – Dm 
[48] 

28.4 ± 14.5 b 17.4 ± 9.5 b 5.9 ± 6.6 a 2.1 ± 3.0 a 11.5 ± 10.4 a 0.9 ± 2.2 a 

Ds – Dm 
[72] 

30.3 ± 5.6  a 16.6 ± 7.9 b 0.3 ± 0.5 b * 0.0 ± 0.0 a * 16.3 ± 7.9   a * 2.7 ± 3.5 a * 

 

 

5.4.4 Effect of host plants on interspecific competition 

In all cage experiments conducted in the greenhouse D. mollipla was far less 

competitive than in the laboratory tests. When DBM infested pea plants were offered 

alone or mixed with infested cabbage plants D. mollipla parasitized less than 1 larvae 

per plant as compared to an average offspring of 7 of D. semiclausum (Table 5.3). 

When cabbage was offered alone all progeny was produced by D. semiclausum. 

Contribution of parasitoid species to the total number of progeny in the exposure of 

both host plants together is not presented separately because it did not differ from the 

the figures shown in Table 5.3. The number of parasitized larvae was equally 

distributed between plants. On both plant species seven adults emerged from an average 

of 8 parasitized larvae. Progeny production of D. mollipla on cabbage was 0.3 and on 
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pea 0.6 per plant. Diadegma semiclausum produced significantly more individuals (6.6 

on pea and 6.9 on cabbage). 

 

Table 5.3: Effect of host plants on interspecific competition of Diadegma mollipla 
(Dm) and Diadegma semiclausum (Ds) on Plutella xylostella. Different letters indicate 
significant differences between host plant combination and asterix indicate significant 
differences between the species (p<0.05).  
Host plant No. parasit. 

DBM 
No. emerged 
parasitoids 

D. mollipla D. semiclausum 

   total females total females 

cabbage 9.6 ± 3.0  a 8.1 ± 2.6  a 0 a * 0 8.1 ± 2.6  a  * 0.9 ± 1.3  a 

pea 10.5 ± 3.4  a 8.0 ± 3.6  a 0.8 ± 1.3 b * 0 7.3 ± 3.4  a  * 0.5 ± 0.8  a 

cabbage/pea 8.3 ± 4.4  a 7.2 ± 3.9  a 0.5 ± 0.7 b * 0 6.8 ± 3.7  a  * 0.3 ± 0.6  a 

 

 

5.4.5 Effect of host density on interspecific competition 

Level of parasitation and progeny production were not influenced by a different number 

of larvae on host plants. On the same plant percentage parasitized larvae, emerged 

adults and progeny contribution of parasitoid species were similar for both host 

densities (10 and 20 larvae/plant). In Table 5.4 results are therefore summarized in 

relation to the host plant. The contribution of D. mollipla to the total progeny 

production was much lower on both plants, but it was significantly higher on pea than 

on cabbage. 
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Table 5.4: Effect of host density and host plants on interspecific competition of 
Diadegma mollipla (Dm) and Diadegma semiclausum (Ds) on Plutella xylostella. Host 
densities: 10 and 20 larvae on both plants (c-10 and c-20 on cabbage, p-10 and p-20 on 
pea). Different letters indicate significant differences between host densitites plant 
combination and asterix indicate significant differences between the species (arcsin 
transformed, p<0.05). 

host 

plant 

%. parasit. 
DBM 

% emerged 
parasitoids 

% D. mollipla % D. semiclausum 

   total females total females 

cabbage 61.7  a 48.1  a 0.5  a 0 99.5  a 39.5  a 

pea 47.4  a 38.4  a 10.8  b 0 89.2  b 35.1  a 

 

 

5.4.6 Effect of parasitoid density on interspecific competition 

An increase in the number of females of D. mollipla did not result in an increase of 

progeny of this species, but in a decrease of progeny of D. semiclausum on the pea 

plants (Fig. 5.2). The number of D. mollipla offspring was consistently low and 

remained below 1 larva/per plant on both host plants. On cabbage plants total number of 

parasitized larvae, production of progeny and contribution of parasitoid species to total 

progeny was similar for all parasitoid densities (Fig. 5.2A). The number of progeny 

produced by D. semiclausum was significantly higher and did not change with an 

increasing number of ovipositing D. mollipla females. On pea plants higher number of 

D. mollipla females resulted in a significant reduction of number of parasitized larvae 

and production of progeny, due to a reduction of D. semiclausum progeny from 6.6 

(equal number of ovipositing females) to 1.2 (six D. mollipla females) (Fig. 5.2B). 
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Fig. 5.2: Effect of Diadegma mollipla density on DBM offered on cabbage and pea as 
host plants on interspecific competition with D. semiclausum. Number of females: 2/2 
(two D. mollipla females, 2/4 (four D. mollipla) , 2/6 (six D. mollipla) and two D. 
semiclausum.  
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5.5 Discussion 

In simultaneous intra- and interspecific competition on snowpea D. mollipla was 

superior to D. semiclausum. It produced significantly more total progeny than D. 

semiclausum and slightly more females although that was only significant under 

interspecific parasitation. In an identical experimental set-up on cabbage as host plant 

D. semiclausum clearly out-competed D. mollipla, producing 73% of total progeny 

(Sithole 2004). Both species are able to discriminate between parasitized and 

unparasitized larvae (Lloyd, 1940, Ullyet, 1943, 1947, Venkatraman, 1964, Yang et al., 

1994). We assume that almost all progeny emerged from singely parasitized larvae and 

competition took place between adults depending on which species parasitized more 

hosts within the given time. Mortality of parasitized hosts was mainly attributed to 

failure of emergence. Only very few hosts died in their larval stage and they contained a 

single parasitoid embryo. Higher mortality of pupae from snowpeas as compared to 

cabbage had been found for both species (Rossbach et al., submitted, and unpublished 

data). Higher parasitation levels of Diadegma mollipla on DBM on snowpea as 

compared to DBM on cabbage has been demonstrated in an earlier study (Löhr and 

Rossbach, 2004), whereas for D. semiclausum the reverse was true (Rossbach et al., 

submitted). The specialist D. semiclausum uses crucifer-typical volatiles to locate its 

host (Ohara et al., 2003) and has therefore a higher host location ability on cabbage than 

on pea. Host location cues of D. mollipla are unknown, but the species seem to use a 

blend of volatiles existing in a variety of plants (see Chapter 3). But D. mollipla lost its 

advantage in performance it showed during simultaneous competition on snowpea when 

it started to attack a few hours later than its competitor. When this species attacked first 

it produced equally as many progeny after 24h as D. semiclausum but it failed to 

parasitize as many larvae when D. semiclausum started to attack first. Diadegma 

semiclausum produced similar numbers of progeny, independent of which species was 

given a head start. Freshly parasitized larvae by D. semiclausum seemed to have 

disturbed D. mollipla in parasitizing. Some parasitoids deposit an external signal after 

oviposition. The parasitoid Aphidius smithi for example marks its hosts externally with 

pheromones. Mackauer (1990) suggested that these marking pheromones on already 

parasitized hosts could be detected by antennation and facilitate discrimination. The 
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ectoparasitoid Eupelmus vuilleti (Crw) probably leaves a chemical on the surface of the 

seeds containing parasitized hosts (Gauthier et al., 1999). A different mechanism of 

chemical interference is used by Cephalonomia stephanoderis and Prorops nasuta 

(Hymenoptera: Bethylidae). Adults emit a characteristic smell, presumably to keep 

away other individals (Infante et al., 2001). Chemical interference might play a role in 

the interaction of D. mollipla and D. semiclausum, although we have no evidence of the 

existance of chemical markers. Results from delayed competition with increasing time 

interval between exposures of parasitoids support this theory. On cabbage, whichever of 

the two species had first access to the host, irrespective of exposure interval, 

predominated with 85 to 97% of the emerging progeny (Sithole, 2004). On snowpea the 

first attacker was only the clear winner when the time interval was greater than 48h. 

Hosts which had been parasitized by either species longer ago seemed to have 

negatively affected the ability of the other to locate unparasitized larvae for parasitation. 

Time interval of attacks also played a role in performance of parasitoids Aphidius ervi 

and A. smithi. Rejection of parasitized pea aphids by the other species increased with 

time interval of attacks (McBrian and Mackauer, 1990). A change in host physiology of 

older parasitoid embryos was suggested, but the nature of this change was not further 

discussed. In our study the number of parasitized DBM larvae was constant for all 

exposure sequences and time intervals (except for Ds-Dm [48h]), but total progeny was 

significantly reduced at time intervals of 48h and 72h, irrespective which species 

parasitized first. After these time intervals host larvae were already in their third to 

fourth instar. Most likely higher pupal parasitoid mortality was caused by a shorter 

development duration that remained for the second attacker rather than multiparasitism 

of hosts.  

The ability of a species to produce proportionally more females than its competitor is 

crucial for its performance (Reitz and Trumble, 2002). However, we did not place great 

emphasis on female progeny in order to measure performance, because of the 

differential time both species were kept in culture and the concomitant decline in 

females in laboratory cultures. Furthermore the number of females was extremely 

variable for both species in all experiments and did not allow an interpretation of 
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results.  

Results from the laboratory implied an advantage for D. mollipla over D. semiclausum 

on snowpea as compared to cabbage and we assumed that this species would find its 

niche on snowpea whereas D. semiclausum remained predominant on cabbage. But 

under more natural conditions in the cages D. mollipla performed much poorer than 

confined to small containers. As expected, all progeny on cabbage, when offered alone, 

came from D. semiclausum. But on pea alone progeny production of D. mollipla did not 

increase to higher numbers than one individual per plant, whereas D. semiclausum 

produced a constant number of offspring on both plants, whether offered alone or 

together.  

At different host densities on mixed host plants D. mollipla still produced significantly 

less progeny than its competitor, but it parasitized better on their hosts on snowpea, 

regardless of the number of larvae available. An increasing number of ovipositing D. 

mollipla females did not lead to a higher production of total offspring. But on snowpeas 

D. semiclausum parasitized significantly less larvae when its competitor was present in 

higher numbers. The presence of “too many” females let D. semiclausum shun away 

from the unusual host plant.  

On the whole D. mollipla performed slighly better on snowpea than on cabbage, but 

remained less competitive than D. semiclausum. However, it still might be able to 

parasitize on snowpeas even in the presence of the overall predominant D. semiclausum, 

especially when it occurs in higher numbers. It will have to be tested in the 

field,whether D. mollipla can establish on DBM in snowpeas after its displacement on 

cabbage or it will simply withdraw to its other hosts.   

 

 

 

65 

 



Parasitoid Diversity 

CHAPTER 6 

6 Parasitoid diversity of Plutella xylostella L. feeding on an unusual 

host plant 

 

6.1 Abstract 

A population of the diamondback moth Plutella xylostella (L.) (Lepidoptera: 

Plutellidae) (DBM), known to be an oligophagous pest on crucifers, was recently found 

to infest sugar snap- and snowpeas in the Rift Valley in Kenya, causing heavy damage. 

The effect local parasitoids on DBM in snowpeas was studied in the field, including the 

newly introduced parasitoid Diadegma semiclausum. Snowpeas provided an enemy-free 

space for DBM. Local parasitoids attacked DBM only sporadically and in very low 

numbers (0-3.5 individuals/20 plants) on DBM in the pea fields as compared to DBM 

on kales (up to 48 individuals/20 plants) . In both crops the most abundant parasitoid 

was Oomyzus sokolowskii.  

After the release of D. semiclausum the number of DBM in kales reduced drastically to 

less than 2 individuals/20 plants, but the parasitoid had little effect on DBM on 

snowpeas. Percentage parasitism on snowpeas went from 2.3 to 4%, whereas on kales it 

increased from 25.6 to 75.7%.  

 

Keywords: Plutella xylostella, parasitoids, host shift, Pisum sativum, enemy-free 

space 
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6.2 Introduction 

Utilization of novel host plants by herbivores can provide a refuge from natural enemies 

(Jeffries and Lawton, 1984) and therefore host plant shifts and increases in diet breadth 

have been suggested to be facilitated by the interaction with natural enemies (Bernays 

and Graham, 1988). Reduction of natural enemy attack through aquisition of a new host 

plant has been demonstrated by various authors (Feder et al., 1995, Gratton and Welter, 

1999, Gross et al., 2004, Mulatu et al., 2004). Enemy-free space on a new host plant can 

be the consequence of plant-associated physiological and behavioural adaptations of 

parasitoids. Chemical and morphological plant attributes can influence the foraging 

success of parasitoids as well as the role of plants as host finding cues (Cortesero et al., 

2000). The shift to a novel host plant can result in a loss of plant-related cues and to a 

reduced searching efficiency, especially of specialist parasitoids (Brown et al., 1995). 

On the other hand, generalist parasitoids which do not rely as strongly on plant-

mediated host location may still be able to find their host on a different plant (see 

Chapter 3).  

In 1999, in the Rift Valley in Kenya, a population of the diamondback moth (DBM) 

Plutella xylostella L. (Lepidoptera: Plutellidae) extended its host range, usually 

restricted to crucifers, to sugar snap- and snowpeas (Pisum sativum L.) (Löhr, 2001). 

Due to the degree of specialization and behavioural differences in host location of its 

major indigenenous parasitoids this host shift was expected to have different effects on 

members of the associated parasitoid guild. Laboratory studies on parasitation and 

searching behaviour of one of the most important local parasitoids, Diadegma mollipla 

(Holmgren) (Hymenoptera: Ichneumonidae), and studies on the newly introduced exotic 

parasitoid Diadegma semiclausum Hellen, showed widely different results on the 

original and the novel host plant (Chapter 2 and 3). While the generalist D. mollipla 

parasitized more DBM larvae on snowpeas as compared to cabbage, parasitation levels 

of the specialist D. semiclausum were significantly higher on cabbage. Differential use 

of host location cues of these parasitoids were assumed to be the main reason for the 

differences in parasitation (Chapter 3). But how would the situation be in the field? The 

number of parasitoids attacking P. xylostella in Kenya is small and most species are 
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considered relative generalists. We predicted, that generalist parasitoid species like D. 

mollipla would be able to find their host on snowpeas whereas crucifer-specific 

parasitoids would not. Over a period of 9 months between February 2003 and 

November 2003 weekly collections of DBM in cabbage and snowpeas were conducted 

in order to identify local parasitoid species and their abundance in both crops. 

Diadegma semiclausum was introduced to Kenya as part of a biocontrol programme of 

DBM in crucifers. It was released in snowpeas in November 2003 and its impact on 

DBM was recorded until July 2004. 

 

 

6.3 Material and Methods 

6.3.1 Experimental fields 

The experimental site was located in an area of 800m2 on a horticultural farm in 

Naivasha, Nakuru District in the Rift Valley in Kenya [Altitude: 1900m, 00°44’98S, 

036°26’27E]. Eight plots of 10m x 5m size were established and planted simultaneously 

with kale (Brassica oleracea acephala L. var. Thousandheaded) on one half of the plots 

and snowpea (Pisum sativum var. Oregon sugar pod) on the other. Towards north and 

south the study area was bordered by different horticultural crops. During the study 

period tomatoes, french beans and Tagetes flowers were grown successively on the 

neighboring fields. On the other two sides pepper trees (Schinus molle L.) marked the 

border of the farm. The study plots were only sprayed once with a herbicide 

(Gamoxone, 150ml/15l water) at the beginning of the study. In Naivasha the soil is 

heavily infested with nematodes. Therefore an organophosphate (Nemacure) was 

incorporated at a rate of 5g/plant into the holes for kale seedlings and snowpea seeds, 

respectively. Kale was transplanted after 3 weeks in the nursery (160 plants/plot). 

Snowpea was sown directly (10 rows/plot). DAP starter fertilizer was used (2g/plant) 

for both crops. In the second half of the study it was replaced by organic manure. 

Further use of pesticides was avoided. An infection of snowpeas with the fungus 
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Ascochyta end of May 2003 was treated once with an organic fungicide (Equation Pro 

10g/15l), but could not be controlled. The disease appeared in every new crop, but 

spraying was abandoned because of possible harmful effects on the DBM population 

and its natural enemies. Especially during the rainy seasons many pea plants were lost 

due to the disease. The plots were watered once a week using overhead irrigation, 

whenever necessary.  

The study took place between 25th of September 2002 and 6th of July 2004. Within this 

period both crops were constantly in the field (six subsequent crops for kale and eight 

for snowpea). New transplants and seeds were brought into the field before the old crop 

was harvested in order to ensure a quick infestation of the new crop with DBM. Plots 

were rotated within the area and half of the field was always left uncultivated for one 

growing period (approx. 3 months). New crops were transplanted or sown alternately on 

the plots, kales on former pea plots and vice versa.  

The study farm was 20km away from the farm where DBM was first observed on peas 

(see Löhr, 2001). During the first crop between 25.09.02 and 7.01.03 natural infestation 

of snowpeas with DBM was extremely low. Only 5 larvae were found in the entire 

period. In order to investigate the impact on natural enemies, a higher infestation level 

was required and eggs of the pea strain of DBM were brought from a laboratory culture 

into the field. On average, peas were infested with 500 eggs/plot every week, starting in 

Feb. 2003. Eggs had been laid on aluminium foils in the laboratory culture and strips of 

foil containing 50 to 100 eggs were randomly wrapped around pea plants. The artificial 

infestation was continued until the end of the study.  

 

6.3.2 Sampling 

20 randomly selected plants per plot were sampled weekly or biweekly. Larvae and 

pupae of DBM were recorded, collected and reared in the laboratory until adult stage. 

We did not look for egg parasitoids. Total number of emerging parasitoids was 

determined and species were identified. Unknown species were labeled and sent for 

identification to Georg Goergen at IITA (International Institute of Tropical Agriculture) 
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in Benin. Other lepidopteran larvae were also collected and reared in the laboratory in 

order to check whether some emerging parasitoid species were identical with DBM 

parasitoids.  

 

6.3.3 Introduction of Diadegma semiclausum 

After a sampling period of 9 months (Nov. 2003) five pairs of D. semiclausum were 

released in each snowpea plot. Sampling continued as described above. The species was 

introduced from AVRDC (Asian Vegetable Research and Development Center) in 

Taiwan in 2002 and subsequently maintained in the laboratory at ICIPE in Nairobi. 
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6.4 Results 

Seven parasitoids species were collected from DBM on snowpeas (Table 6.1). Four 

species are parasitoids commonly found on DBM in crucifers in Kenya. The two 

braconids Cotesia sp. Cameron 1891 and Distatrix sp. Mason, 1981 (Microgasterinae), 

collected from DBM on snowpeas were not recovered from DBM on kales. Oomyzus 

sokolowskii Kurdjumov (Hym., Eulophidae) was the species most frequently found on 

the new host plant. The Apanteles sp. Foerster, 1862 (Hym., Braconidae: 

Microgasterinae) comprised at least two different species, but could not be further 

identified. Mean parasitism rate on snowpeas before the release of D. semiclausum was 

2.3%. After the release it rose to 4.0%, due to a slight increase of numbers of  O. 

sokolowskii and Cotesia sp. (Table 6.2). The exotic parasitoid only occurred 

sporadically on snowpeas. Diamondback moth on kales yielded six parasitoid species. 

Itoplectis sp. Foerster, 1869 (Hym., Ichneumonidae) was the only parasitoid that only 

occurred on kales. After its release, D. semiclausum established quickly on DBM on 

kales (Table 6.2). Numbers of DBM decreased from a total of 7571 collected over 9 

months before the release to 1136 collected over 7months after the release and the 

parasitism rate increased from an average of 25.6 to 75.7%. Records of D. semiclausum 

on DBM during the pre-release period resulted from a release on a horticultural farm 

approx. 3km away from the study plots in June 2003 (Table 6.1). As part of the 

biocontrol programme of DBM in Kenya mass releasing of this species took place along 

the Rift Valley and interfered marginally with our study on local parasitoids. However, 

it did not establish in large numbers. 
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Table 6.1: Parasitoid guild of the diamondback moth, on kale and snowpea Feb. 2003-
Nov. 2003 in Naivasha, Rift Valley, Kenya (before release of D. semiclausum). For 
gregarious Oomyzus sokolowskii the number of parasitized DBM larvae is given and 
total number of emerged parasitoids is shown in brackets. Diadegma coccoons where 
the parasitoid failed to emerge are listed as Diadegma sp.. 

kale Total 
number 

% total 
para-
sitism 

snowpea Total 
numbe
r 

% total 
para-
sitism 

Oomyzus sokolowskii 1332 
(9128) 

68.6 Oomyzus sokolowskii 17 
(147) 

51.5 

Diadegma mollipla 400 20.6 Apanteles sp. 11 24.2 

Apanteles sp. 77 4.0 Cotesia sp. 3 9.1 

Diadegma sp. 60 3.1 Brachymeria sp. 2 6.1 

Diadegma semiclausum 52 2.7 Diadegma mollipla 1 3.0 

Itoplectis sp. 19 1.0 Diadegma semiclausum 1 3.0 

Brachymeria sp. 2 0.1 Distatrix sp. 1 3.0 

No. parasitized DBM 1942   33  

Total no. DBM 7571   1425  

Total % parasitism 25.6   2.3  
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Table 6.2: Parasitoid guild of Plutella xylostella in kale and snowpea Nov. 2003 – July 
2004 in Naivasha, Rift Valley, Kenya (after release of D. semiclausum). For gregarious 
Oomyzus sokolowskii the number of parasitized DBM larvae is given and total number 
of emerged parasitoids is shown in brackets. Not emerged parasitoids from Diadegma 
coccoons were listed under Diadegma sp.. 

kale Total 
numbe

r 

% total 
para-
sitism 

snowpea Total 
number 

% total 
para-
sitism 

Oomyzus sokolowskii 472 
(3117) 

54.9 Oomyzus sokolowskii 29 (179) 46.8 

Diadegma semiclausum 197 22.9 Cotesia sp. 13 21.0 

Diadegma sp. 135 15.7 Apanteles sp. 10 16.1 

Diadegma mollipla 31 3.6 Diadegma semiclausum 6 9.7 

Itoplectis sp. 27 3.1 Diadegma mollipla 4 6.5 

Apanteles sp. 6 0.7    

Brachymeria sp. 1 0.1    

No. parasitized DBM 860   62  

Total no. DBM 1136   1560  

Total % parasitism 75.7   4.0  

 

 

Seasonal abundance of DBM and the number of parasitized larvae on snowpea are 

presented in Fig. 6.1. Peak numbers of DBM on snowpeas occurred before the release 

of D. semiclausum at the beginning of June until mid of July 2003 (21 to 58 larvae/20 

plants)(Fig. 6.1A) and after release from early January 2004 until Februray 2004 (14 to 

50 larvae/20 plants) (Fig. 6.1B). The number of parasitized DBM was very low 

throughout the study period (0 to 3.5 larvae), irrespective of the number of DBM in the 

field. With a constant infestation of snowpeas with DBM eggs the DBM population on 

snowpeas was kept artificially higher than it would have been under natural conditions. 

This was necessary in order to obtain a sizable population for parasitoid attack. Main 
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causes of the fluctuations of the DBM population were heavy rains on the one hand, 

washing away foils with eggs or newly hatched larvae, and Ascochyta disease on the 

other. The disease started with brown spots on the lower leaves and spots and lesions 

spread rapidly to the stem and upper leaves. The infection caused the plant to dry up 

rapidly and prematurely. DBM larvae were not able to develop on dying plants. On 

kale, DBM population fluctuated mainly due to the age of the plants in the field. Very 

low numbers of 1 to 10 larvae/20 plants were only detected on freshly transplanted and 

young plants. The population peaked between end of June and end of August 2003, with 

up to 235 larvae/20 plants (Fig. 6.2A). The number of parasitized larvae fluctuated 

between 2 and 42/20 plants. After the release of D. semiclausum the DBM population 

on kale decreased continuously from 43 larvae/20 plants end of November 2003 to 

below 5 larvae/20 plants from mid Februray to the end of the study period in May 2004 

(Fig. 6.2B). The number of parasitized larvae decreased simultaneously.  
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Fig. 6.1: Seasonal distribution of total and parasitized DBM larvae on snowpea A) 
before release of D. semiclausum, B) after release of D. semiclausum.  
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Fig. 6.2: Seasonal distribution of total and parasitized DBM larvae on kale A) before 
release of D. semiclausum, B) after release of D. semiclausum. 

 

 

Occurrence of main parasitoids in snowpeas was sporadic (Fig. 6.3A). On average less 

than than 1 parasitized larvae/20 plants was collected and most frequently this larva was 

parasitized by O. sokolowskii. The braconids Apanteles sp. and Cotesia sp. were 

combined for the presentation in Fig. 6.3A. Their appearance was very scattered up to 

November 2003 and were found again in June 2004. In kale the main parasitoids 

occurred constantly throughout the duration of the study (Fig. 6.3B). Peaks of the most 

dominant O. sokolowskii and D. mollipla occurred simultaneously. Diadegma 

semiclausum remained in low numbers of less than 1 individual/20 plants after it had 

been released on a farm 3km away from the study area. After its release in snowpeas 

plots it moved directly to the neighboring kale plots and parasitism of O. sokolowskii 

and D. mollipla decreased within 2 months to less than 1 individual/20 plants. Low 

numbers of D. semiclausum towards the end of the study period resulted from the 

decrease in DBM population after the release of the exotic parasitoid (Table 6.2). 
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Fig 6.3: Seasonal distribution of main parasitoids. 
For gregarious Oomyzus sokolowskii the number of 
parasitized DBM larvae is presented. A) on snowpea, 
B) on kale. 
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6.5 Discussion 

The inclusion of snowpea into its host plant range provided enemy-free space for the 

diamondback moth. On the newly acquired host plant, parasitoid occurrence was very 

sporadic and parasitism levels were extremely low. Parasitation in snowpeas seemed to 

be more a result of random rather than targeted movement of parasitoids. However, 

parasitoids were probably not the driving force for pioneering the new host plant but a 

mere consequence. DBM had shifted to non-cruciferous hosts before, especially in 

outbreak situations when populations on the original host plant were extremely high 

(Anonymous, 1971, Löhr and Gathu, 2002). Bigger and Fox (1997) showed that high 

density populations of DBM have broader host plant diets than low density populations, 

due to a wider distribution of eggs onto alternative plants. This might have facilitated 

the incorporation of peas into the diet of DBM. However, the introduction of the exotic 

D. semiclausum raised enemy pressure on DBM in crucifers substantially. The 

aquisition of novel host plants could be of future advantage for DBM in order to avoid 

parasitoid attack. On the other hand, the high impact of D. semiclausum will lead to low 

densities of DBM and could therfore prevent such host range expansions.  

DBM parasitoids did not seem to recognize the novel host plant as a potential site for 

the occurrence of their host. Some DBM specific parasitoids have been shown to use 

crucifer-typical volatiles to locate their herbivore hosts (Shiojiri et al., 2000, Reddy et 

al., 2002, Ohara et al., 2003). The failure of D. semiclausum to establish on DBM on 

snowpeas was probably caused by its crucifer-related host searching behaviour (Ohara 

et al., 2003, Chapter 3). The most frequently found parasitoid in snowpeas, Oomyzus 

sokolowskii, is a cosmopolitan species which has been recorded as one of the major 

parasitoids of the diamondback moth worldwide (Waterhouse and Norris, 1987, Alam, 

1992, Kfir, 1997, Liu et al., 2000). Although it has been introduced to various countries 

for biocontrol of DBM, only little is known about its biology (Ooi, 1988). To our 

knowledge host finding behaviour of O. sokolowskii has not been investigated yet and 

therefore the role of plant cues for host location is not known. Its relative abundance in 

snowpeas might result from a higher random movement and its overall dominance in 

the growing system. The indigenous D. mollipla was expected to occurr more 
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frequently on DBM on snowpeas. Its host searching behaviour is not crucifer-related 

and parasitism on snowpeas was higher in laboratory experiments than on cabbage (see 

Chapter 3, Löhr and Rossbach, 2004). However, in the field it was hardly found on the 

novel host plant. Diadegma mollipla was gradually displaced from kales by D. 

semiclausum, but seemed to move to other hosts rather than to DBM on snowpeas. The 

species is considered a relative generalist and at least one other host is known, the 

potato tuber moth, Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae) 

(Broodryk, 1971). The species-richness within the genus Apanteles sp. did not allow a 

differentiation between the specimen collected in the study site. We assume that there 

are at least two different species. The most frequent Apanteles sp. is more abundant in 

the hot and semi-arid areas of Kenya (Gichini pers. comm.). It is an undescribed species 

(Delvare, pers. comm.) and its biology is unknown. The Cotesia sp. that parasitized 

DBM only on snowpeas was first assumed to be Cotesia plutellae. The species was not 

recorded for Kenya. Its absence in kales was suspicious and our original assumption 

was not confirmed.  

Other factors than host searching behaviour could have contributed to the low enemy 

impact on snowpeas. Lower population densities of DBM on snowpeas and the 

necessity to keep this population artificially in the field as well as the unhealthy state of 

plants might have led to low parasitation levels. After its outbreak in 1999 and 2000, 

serious damage levels of DBM on peas have not occurred up to date. But the 

adaptability of DBM to snowpeas was demonstrated by Löhr and Gathu (2002). Within 

four generations on snowpea survival of a cabbage strain of DBM was equally as good 

on both host plants. The relatively easy host plant adaption combined with an avoidance 

of enemy attack, especially by D. semiclausum, are factors that could facilitate host 

plant shifts of DBM in the future. 
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CHAPTER 7 

7 General Discussion 

The use of a new host plant of the diamondback moth affected performance, 

development and searching behaviour of the two investigated parasitoids. Diadegma 

mollipla, which is regarded as a relative generalist, parasitized significantly more 

DBM larvae on snowpeas than on cabbage. The DBM-crucifer complex did not seem 

to be the preferred host-plant association. Host location studies in the Y-tube 

olfactometer showed, that D. mollipla females walked randomly when they had a 

choice between cabbage-related odours and clean air, whereas DBM-infested 

snowpea, as well as PTM-infested potatoes were preferred over clean air, indicating 

that D. mollipla has a broader host range on a variety of plants. It is assumed that 

generalist natural enemies use general chemical cues that are present in all hosts or 

their respective food plants (Vet and Dicke, 1992, Godfray, 1994). Accordingly, D. 

mollipla is either attracted to a non-specific blend of volatiles from a variety of host-

infested plants, or it uses other shared cues present in several hosts or host-plant 

complexes. Since D. mollipla is less dependent on plant volatiles for its host 

location, DBM feeding on a different plant does not necessarily mean a loss of cues, 

although the nature of cues that mediate in its host location process remain unknown. 

On the other hand, D. semiclausum relies on volatiles associated with cabbage, 

DBM’s original host, but not with snowpeas. The relative indifference towards 

DBM-infested snowpea and the avoidance of the larvae of the pea strain implies lack 

of attractive volatiles and their precursors from this plant. Ohara et al. (2003) had 

already demonstrated that the specialisation of D. semiclausum on DBM is facilitated 

by crucifer-typical volatiles (perhaps derivates of glucosinolate), which are used by 

the parasitoid as cues for locating its host. Therefore a host shift to a different plant 

family leads to a loss of host location cues for D. semiclausum, and this seriously 

affects its searching efficiency.  

Consequently, on a new host plant, efficiency of D. semiclausum as a biocontrol 

agent is greatly reduced. Parasitation levels on snowpeas were significantly lower 

than on cabbage. We therefore attempted to condition this parasitoid to locate and 

parasitize its host on the new plant. The recognition of host finding cues underlies a 
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certain plasticity in order to cope with a changing environment and ensure survival 

(Turlings et al, 1993, Monge and Cortesero, 1996). And olfactory learning is one 

way to enable parasitoids to modify their behavioural responsiveness to host and 

plant- derived odours (Vet and Groenewold, 1990, Turlings et al, 1993). Parasitation 

and the level of attraction to snowpeas could be increased within three generations of 

rearing D. semiclausum on larvae on this host plant. However, the change in 

responsive behaviour came with some costs. Pupal mortality of pea-reared 

parasitoids increased, and an extreme shift in sex ratio to males reduced reproductive 

success. The biased sex ratio could be attributed to the plant quality, e.g. nutrient 

content, secondary compounds as demonstrated for other species by Godfray, 1994, 

Fox et al., 1996 and Campan and Benrey, 2004. 

Only few studies about the effect of host plants on interspecific competition between 

parasitoids exist (Iwao et al., 2001). Due to differential host location abilities 

competitiveness of the two parasitoids was assumed to change on the new host plant. 

On cabbage, D. semiclausum clearly out-competed D. mollipla, producing 73% of 

total progeny (Sithole, 2004). Results from the laboratory implied an advantage for 

D. mollipla over D. semiclausum on snowpea as compared to cabbage. We assumed 

that this species would find its niche on snowpea whereas D. semiclausum remained 

predominant on cabbage. But under more natural conditions in the greenhouse cages 

D. mollipla performed much poorer than confined to small containers. Irrespective of 

the number of parasitoids or available larvae, it produced significantly less progeny 

on snowpeas than its competitor. However, D. mollipla still performed slighly better 

on snowpea than on cabbage and might be able to parasitize on snowpeas even in the 

presence of the overall predominant D. semiclausum, especially when it occurs in 

higher numbers. Maybe the overall dominance of D. semiclausum could be explained 

with chemical interference, although we have no evidence for it. Chemical 

interference and host discrimination due to external markers, left on the surface of 

newly parasitized larvae (Gauthier et al., 1999), pheromones (Mackauer, 1990) or a 

characteristic smell of adults (Infante, 2001) could be demonstrated for other 

parasitoid species. 

As a conclusion from the studies on the two Diadegma species, their differential 

degree of specialization and behavioural differences in host location, the host plant 
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shift of DBM was expected to have different effects on members of its entire 

parasitoid guild. The number of parasitoids attacking DBM in Kenya is small and 

most species are considered relative generalists. However, most local parasitoids did 

not seem to recognize the novel host plant as a potential site for the occurrence of 

their host. They attacked DBM on snowpeas only sporadically and in very low 

numbers. The most frequent species was Oomyzus sokolowskii Kurdjumov, a 

cosmopolitan DBM parasitoid (Kfir, 1997, Liu et al., 2000). The inclusion of 

snowpea into its host plant range provided enemy-free space for the diamondback 

moth. Reduction of natural enemy attack through aquisition of a new host plant has 

been demonstrated by various authors (Feder et al., 1995, Gratton and Welter, 1999, 

Gross et al., 2004, Mulatu et al., 2004). Diadegma mollipla was expected to occur 

more frequently in snowpeas, but it was hardly found on the novel host plant. It was 

gradually displaced from kales by D. semiclausum, but seemed to move to other 

hosts rather than to DBM on snowpeas. The field studies were conducted within a 

very short time after DBM was first found on snowpeas. After the outbreak in 1999 

DBM has not occurred in such high numbers on snowpeas anymore. That might have 

given parasitoids little chance to adapt to a new host plant. 
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Zusammenfassung 

Zusammenfassung 

 

Die Kohlmotte Plutella xylostella L. gilt als kosmopolitisch verbreiteter, spezifischer 

Schädling der Familie Brassicaceae und ist weltweit einer der grössten Schädlinge an 

Gemüsesorten aus dieser Familie. Im Rift Valley in Kenia wurde vor einigen Jahren 

eine Population der Kohlmotte auf Zuckererbsen entdeckt. Sie verursachte dort sehr 

grosse Schäden. Die Wirkung dieses Wirtspflanzenwechsels auf die assoziierten 

Parasitoide wurde untersucht. In Laborexperimenten wurden Parasitierungsraten, 

Entwicklungdauer und Überlebensraten sowie die Rolle der Wirtspflanze für die 

Wirtsfindung an zwei wichtigen Parasitoidenarten untersucht: die einheimische 

Diadegma mollipla (Holmgren), die als relativer Generalist angesehen wird, und die 

hochspezifische Diadegma semiclausum (Hellen), die für die biologische Kontrolle 

der Kohlmotte auf Brassica-Gemüse nach Kenia eingeführt wurde.  

Diadegma mollipla war überraschenderweise effektiver auf der neuen Wirtspflanze 

als auf Kohl. Diadegma semiclausum parasitierte auf Kohl fressende Larven 

effizienter. Wirtsfindungsuntersuchungen mit Hilfe eines Y-Rohr Olfaktometer 

zeigten, dass die Spezialisierung von D. semiclausum durch Signale der cruciferen 

Wirtspflanze vermittelt wird, und nicht durch Signale von auf Erbsen fressenden 

Larven. Während flüchtige Substanzen von Brassicaceen keinen Hauptreiz für die 

Wirtsfindung von D. mollipla darstellt. Diese Unterschiede in Parasitierungs- und 

Wirtsfindungsverhalten ließen vermuten, dass sich das Konkurrenzverhalten der 

beiden Arten auf Erbsen im Vergleich zu Kohl ändert. Auf Kohl behauptet sich D. 

semiclausum eindeutig. Auf Erbsen, zumindest bei Experimenten in kleinen 

Behältern, parasitierte D. mollipla genauso gut oder sogar besser als D. semiclausum. 

Allerdings parasitierte D. semiclausum unter natürlicheren Bedingungen im 

Gewächshaus auf beiden Wirtspflanzen signifikant mehr Larven als ihr Konkurrent. 

Chemische Interferenz zwischen den beiden Arten ist vielleicht eine mögliche 

Erklärung dafür.  

Olfaktorisches Erlernen von Stimuli gilt als Möglichkeit für die Fähigkeit von 

Parasitoiden ihre Reaktion auf Wirts- und Wirtspflanzenreize zu verändern. Im 
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Hinblick auf eine Kontrolle der Kohlmotte auf Erbsen, wurde versucht, die 

Parasitierungsleistung von D. semiclausum auf Erbsen zu erhöhen. Eine Anpassung 

an eine neue Wirtspflanze durch das Erlernen von Schlüsselreizen könnte möglich 

sein. Die Schlupfwespe wurde für drei Generationen auf dem Erbsenstamm der 

Kohlmotte gezüchtet. Die Reaktion auf Reize von einer mit Larven infestierten 

Erbsenpflanze sowie die Parasitierungsrate konnte gesteigert werden. Allerdings 

zeigten die Generationen auf Erbsen eine reduzierte Fitness. Vor allem die extreme 

Verschiebung des Geschlechterverhältnisses auf die Seite der Männchen sorgte für 

eine starke Verschlechterung in der Reproduktion.  

Um die Wirkung der ungewöhnlichen Wirtspflanze auf den gesamten 

Parasitoidenkomplex der Kohlmotte zu untersuchen, wurden in der Nähe der Farm, 

wo die Kohlmotte zuerst auf Erbsen gefunden wurde, Feldstudien durchgeführt. 

Erbsen schafften für die Kohlmotte einen Feind-freien Raum. Die einheimischen 

Schlupfwespenarten kamen nur sporadisch und in sehr geringer Zahl auf Erbsen vor. 

Die Freilassung von D. semiclausum führte zu einer Verringerung der 

Kohlmottenlarven auf Kohl, aber die Art konnte sich in den Erbsen nicht etablieren. 

Gleichzeitig reduzierte sich die Zahl der lokalen Parasitoidenarten. Mit der starken 

Konkurrenz durch D. semiclausum, wurde erwartet, dass D. mollipla ihre Niche auf 

dem Erbsenstamm der Kohlmotte finden würde. Allerdings erhöhte sich deren Zahl 

auf Erbsen nicht. Die Art wurde möglicherweise auf ihre anderen Wirte verdrängt.  

Es konnte insgesamt gezeigt werden, dass die Wirtspflanze einen sehr starken 

Einfluss auf Parasitierung, Fitness und Wirtsfindungsverhalten hat, und somit ein 

Schädling mit der Aufnahme einer neue Wirtspflanze ins Frassrepertoire seinen 

Feinden zunächst erfolgreich ausweichen kann. Durch die Fähigkeit zur Anpassung 

von Parasitoiden an eine neue Wirtspflanze, können diese möglicherweise mit der 

Zeit ihrem Wirt nachfolgen.  
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