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1 Introduction

In a case-control study a group of subjects affected with a disease (cases) is compared
to a group of unaffected subjects (controls) with respect to potential exposures of risk
factors. In genetic case-control association studies the exposures of primary interest are
genetic factors. In the candidate gene approach so called candidate genes expected to be
functionally related to disease causing pathways are chosen to be investigated. Each study
participant is genotyped at one or a few genetic marker loci which are specific positions
on the chromosomes lying directly on or very close to the candidate genes. As the geno-
typing result the genotype consisting of two alleles at the marker locus is determined for
each individual. Most often these marker loci are single nucleotide polymorphisms which
have two possible alleles and three possible genotypes in the population. The genotype
distribution at a marker locus is investigated with respect to differences between cases and
controls. In case of such a difference marker locus and disease are said to be associated.
The simplest test for association between the alleles at the marker locus and the disease
status is Pearson’s x2-test for a 2 x 2 table. However, there are different reasons for an
association. The first reason is that the marker locus is itself a locus directly related to the
disease, thus the association is causal. An association also can be observed if marker and
disease locus are in close proximity on the genome due to linkage disequilibrium caused
by the tendency of certain alleles appearing together on short chromosomal segments.

However, an association can also be observed due to unobserved population stratification.
Li| (1969) first noted the possible importance of unobserved population structure for ge-
netic association studies. Population structure may lead to spurious associations if the
allele distribution is different between the subpopulations and if the general disease risk
varies between the subpopulations. Under these conditions population stratification is said
to act as a confounder in the case-control association study if the general epidemiological
terminology is used. If population stratification is not accounted for the number of false
positive association tests increases. In the middle of the nineties with improvements in
genotyping technology the concerns about population stratification became more relevant
(e.g.|Lander and Schork;|1994). Furthermore, it turned out that association analysis would
become an important tool to find the genetic basis of complex diseases (e.g. Risch and
Merikangas, [1996). Most of the common diseases are complex diseases where there clearly
is a genetic basis but the genetic model is not clear. Many genes with small genetic effects
are expected to contribute to a complex disease but the knowledge about complex diseases
is still rather small. To overcome the problems of population stratification |[Spielman et al.
(1993)) introduced the TDT (transmission disequilibrium test) as one of the first family
based association tests and Ewens and Spielman| (1995) explicitly showed that this test
for association is robust against population structure. Case-parents trios consisting of

one affected subject and its parents have to be recruited and the transmission of alleles
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from the parents to the affected offspring is investigated. Subsequently, the number of
family-based association tests has been grown rapidly including sibs of the proband and
allowing for missing parental information (e.g. [Spielman and Ewens| 1998; Knapp), [1999).
Rabinowitz and Laird| (2000)) developed FBAT as a unified approach for the analysis of
family based association studies including pedigrees with arbitrary structure and arbitrary
missing marker information. However, there are also a lot of convincing arguments against
the use of family-based association tests (e.g Risch and Teng, [1998). The most important
argument is that case-control studies are more easy to be implemented than family-based
studies. For complex diseases large samples are required to identify genes with small ef-
fects. However, it is difficult and expensive to collect a large number of families. For
late-onset diseases it is even impossible to collect parents of the affected subjects.

As an alternative to family-based association tests Devlin and Roeder| (1999)) proposed to
continue with case-control studies but to correct them for population stratification. The
idea is to genotype additional genetic markers which are not associated with the disease
to make inference about the population structure in the sample. Subsequently, several
methods were proposed to account for population structure in case-control studies. These
methods broadly follow one of two concepts: Genomic Control (GC) or Structured As-
sociation (SA). Genomic Control tests empirically estimate the variance inflation of the
original test statistic (Devlin and Roeder} 1999 Reich and Goldstein, 2001). In the model
based Structured Association approach (Pritchard et al., [2000ab; |Satten et al., [2001; Zhu
et al., 2002; (Chen et al., [2003; Hoggart et al., [2003; |Purcell and Sham, |2004) population
structure is directly inferred and the test of association incorporates the estimated popu-
lation structure.

The main topic of the thesis is to introduce a new method of Structured Association.
Furthermore different case-control association tests correcting for population stratifica-
tion are investigated and the new method is compared to existing methods of Structured
Association as well as to Genomic Control.

The thesis starts with two introductory chapters, chapter [2| about population genetics and
chapter [3| about genetic case-control association studies to introduce the basic principles
which are necessary to understand the concepts of Genomic Control and Structured As-
sociation.

In chapter [4] the method of Genomic Control is introduced. We theoretically investigate
Genomic Control and present some new results about the performance of Genomic Con-
trol. Here we concentrate on the variability in the estimation of the variance inflation of
the test statistic and its impact on the type-I error rate of Genomic Control.

The main focus of the thesis is chapter [5] on Structured Association. There are several
Structured Association approaches proposed in the literature which can be mainly divided
into two categories as one- or two-step approaches. [Pritchard et al.| (2000ab)) proposed

the two-step approach where the first step consists of modelling population structure for



the entire study sample and the second step is the test of association based on the inferred
structure. In contrast, the idea of [Satten et al. (2001) was to simultaneously estimate
population structure and test for association. Although most of the Structured Associ-
ation methods have in common that they use a probability based approach to split the
entire sample into subpopulations they differ in other aspects: |Pritchard et al. (2000a)
use a Bayesian model for population structure where it is possible to include admixed
individuals with alleles from more than one subpopulation. The approach of [Satten et al.
(2001) is based on a mixture model to split the entire sample into discrete subpopulations.
The association test of |[Pritchard et al. (2000b) is a likelihood ratio test whereas [Satten
et al.| (2001)) apply a logistic regression model to test for association. More recently further
Structured Association approaches have been developed. Hoggart et al.| (2003 proposed
a one-step approach where population structure is modelled similar to [Pritchard et al.
(20002) in a Bayesian framework but for the test of association a logistic regression model
is fitted similar to [Satten et al.| (2001). [Purcell and Sham/ (2004) introduced a simpler
two-step approach like Pritchard et al. (2000a,b)) but used the EM algorithm to infer pop-
ulation structure in a mixture model like [Satten et al.| (2001).

Thus, there are a lot of Structured Association approaches proposed in the literature but
no systematic attempt has been made to theoretically investigate and empirically compare
some of these. Furthermore most of these approaches are rather complicated and it is not
clear how well these behave in practice. Thus, the main subject of this thesis is to propose
a new and rather simple method of Structured Association and systematically investigate
some variations of this method in order to analyze the respective influence of different
clustering approaches as well as that of different test statistics. Our approach combines
some aspects of Pritchard et al. (2000ayb), Satten et al.| (2001) and Purcell and Sham
(2004). Like the method of |Purcell and Sham (2004)) it is a two-step approach based on
a mixture model for discrete subpopulations. The most important difference to [Pritchard
et al.| (2000a) and Purcell and Sham| (2004]) is that our clustering method incorporates the
information about the disease status for identifying subpopulations. In this respect, our
approach is similar to the simultaneous approach of Satten et al.| (2001) who propose to
infer population structure not only conditionally on the phenotypic information but also
conditionally on the candidate gene. We show here that even in a two-step approach it is
necessary to include the information about the phenotype if the association test is based
on the likelihood for the genotype data at the candidate locus given the phenotype data.
Otherwise the estimated subpopulation proportions in the case and the control group are
biased leading to an inflated type-I error rate. The most popular Structured Association
approach as proposed by |Pritchard et al.| (2000a,b|) violates this principle and is thus ex-
pected to lead to an inflated type-I error rate.

For the association test we propose a new Wald test statistic which could be applied in
a two-step approach instead of the likelihood ratio test of Pritchard et al.| (2000b)). The
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Wald test averages the estimated allele frequency differences between cases and controls
over all subpopulations. In contrast to the likelihood ratio test, the Wald test only has 1
degree of freedom and is theoretically designed for situations where no interaction between
the population structure and the effects of the candidate gene is expected.

In addition to describing the new Structured Association method we give a systematic
overview over other methods of Structured Association also explaining a few new ideas
how to extend some of these. Moreover, a theoretical comparison of our method to the
other methods of Structured Association is included.

In chapter [6] the impact of population stratification on case-control association studies is
investigated in realistic situations of only small to moderate population stratification as
within Europe or even within Germany. There has been a lot of debate within the scien-
tific community about the impact of population stratification (e.g.|[Wacholder et al., 2002}
Thomas and Witte, [2002). Very recently, the opinion seems to prevail that even in popu-
lations that seem to be rather homogeneous there can be a measurable impact of hidden
population stratification on the association results (Marchini et al., 2004; Freedman et al.,
2004; |(Campbell et al., 2005)). To measure the degree of population stratification within
Germany a Genomic Control study was conducted within the framework of the German
National Genome Research Network (NGFN = Nationales Genomforschungsnetz). The
study was mainly analyzed by the Genetic Epidemiological Center in Bonn but we also
contributed to the analysis by proposing and calculating the prediction rate as a new mea-
sure for the prediction of population membership. Here the study is briefly described and
the main results are summarized with an emphasis on the prediction rate. It turns out
that there is a measurable difference between North and South Germany, but the differ-
ence is too small to be identified by a probability based clustering algorithm. Thus, within
Germany methods of Structured Association cannot successfully be applied for correcting
case-control association tests.

Our theoretical results about Structured Association and Genomic Control are verified in
a large simulation study comparing our new method of Structured Association to Struc-
tured Association methods similar to the method of |Pritchard et al. (2000alb) and to
Genomic Control (see chapter [7]). Data sets are simulated for realistic situations of large
case-control studies with only small to moderate amount of population stratification as
expected between European populations. We compare our results to previously published
simulations (Bacanu et al.| [2000; Pritchard and Donnelly} [2001; [Devlin et al., 2001a; Chen
et al., [2003; Marchini et al., 2004; |[Shmulewitz et al., 2004) regarding Genomic Control or
the Structured Association method proposed by Pritchard et al. (2000aybl). We can con-
clude from our results that the Structured Association method we propose is most often
superior to the other Structured Association methods investigated in the simulations. A
disadvantage of Genomic Control turns out to be the large variation in estimating the

variance inflation factor as well as the power loss if population structure increases. Alto-



gether, the simulations show that the model based approach of Structured Association if
applied correctly is in general superior to the Genomic Control approach. This holds at
least in situations of rather simple population structure as investigated in the simulations.
The results of the main chapters are discussed at the end of each of these chapters. In
section [5.4] a theoretical and more technical discussion about the different Structured As-
sociation methods can be found. Section [6.3] contains a small discussion about the impact
of population stratification on case-control studies in realistic situations of small to mod-
erate population stratification. The simulation results and the different performance of
Structured Association and Genomic Control are discussed in detail in section [7.3] Thus,
the last chapter [8 only contains a short summary and an outlook what has to be investi-
gated further.

Finally, the notation and the statistical theory applied for the derivation of the methods

are summarized in the appendix [A]



2 Population genetics

This chapter gives an overview about the basic principles of population genetics neces-
sary to understand the concepts of correcting case-control association studies with respect
to population stratification. The chapter starts with an introduction to genetics. Sub-
sequently, basic concepts of population genetics are described, first for random mating
populations and later on for subdivided populations. The chapter finishes with deriving

some methods for statistical inference in subdivided populations.

2.1 Introduction to Genetics

The basic concept of genetics that human characteristics are inherited from parents to
offspring in discrete units called genes is well known. However, to use statistics in human
genetics, the statistician has to be familiar with some principles of genetics as well as some
genetic terminology which is described here mainly based on [Sham| (1998|).

First of all the physical and chemical structure of a gene shall be described. The chromo-
somes are the physical location of the genes in the cell nucleus, the DNA (deoxyribonucleic
acid) is the chemical structure of the chromosomes carrying the genetic information. Each
chromosome contains two very long strands of DNA which are normally bound to each
other and twisted around each other as a double helix. One strand of the DNA consists
of a sequence of nucleotides which mainly differ in the nitrogenous base belonging to the
nucleotide. There are four different bases called adenine (A), guanine (G), cytosine (C)
and thymine (T). The other strand of the DNA is complementary in sequence where A
is always paired with T and G with C. The genetic information is contained in the se-
quence of the nucleotides of one strand. This information has to be translated into protein
molecules which perform all kinds of structural and biochemical functions. Each protein
molecule is a chain of amino acids. These amino acids exist in twenty different forms.
Each possible triplet of nucleotides of the DNA represents a special amino acid. Most of
the amino acids are coded by different triplets since there are 64 possible triplets. Based
on this knowledge, a more precise definition of a gene is possible: a gene is a segment of
DNA within a chromosome that specifies the amino acid sequence of a single subunit of a
protein.

The knowledge about the inheritance of chromosomes is also crucial. The total genetic
information of an individual is contained in 23 pairs of chromosomes including 22 pairs
of autosomes and 2 sex chromosomes. The two chromosomes of a chromosome pair are
called homologous. A set of these 23 chromosome pairs is contained in the nucleus of
each cell and hence duplicated during normal cell division called mitosis. All the cells of
an individual are ultimately derived from a single cell called the zygote which is formed
by the union of two gametes, one from each parent. Each gamete contributes a haploid

(single) set of 23 chromosomes so that the zygote receives a diploid (double) set of 23 pairs
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of chromosomes. Gametes are produced by a special form of cell division called meiosis.
Meiosis involves the reshuffling of genetic material by the exchange of chromosome seg-
ments between the two homologous chromosomes. Hence the chromosomes in the gamete
consist of alternating segments of paternally and maternally inherited DNA. Thus, each
chromosome pair of the offspring consists of a maternally and paternally inherited chro-
mosome which is composed of a set of ”chunks” which are inherited as unbroken unit from
the parent. The ”chunks” consist of alternating sequences of maternally and paternally
inherited DNA of the parent. Thus, in the last sentence maternally and paternally refers
to grandmother and grandfather if the perspective of the offspring is chosen. The tendency
of short chromosomal segments to be inherited intact from parent to offspring is known
as genetic linkage.

The human genome project, 1990-2003, (Human Genome Management Information Sys-
tem, [2003) provided some important knowledge about the human genome which is the
scientific term for the complete set of the human DNA. In 2001, the first analysis of the
working draft human genome sequence was published (McPherson et al., [2001)) and in 2003
a reference sequence of the human genome was completed marking the end of the human
genome project. Sequencing showed that the human genome contains approximately 3
billion nucleotide bases. However, genes only comprise about 2% of the human genome
and the remaining part is non-coding. The number of genes initially was overestimated,
recent estimates assume that the human genome consists of 20,000 -25,000 genes (Steinl,
2004).

The human genome sequence is almost (99.9%) identical in all people. Nevertheless
changes in the DNA occur from time to time and such mutations introduce diversity
in the population. Variations in non-coding DNA usually have no observable effect. Mu-
tations in coding regions sometimes also have no effect if the new triplet codes for the
same amino acid as the original. However, such mutations often cause a change in the
amino acid sequence. Sometimes the resulting protein has similar properties as the origi-
nal but one mutation can also be responsible for a major disorder if a harmful protein is
produced. The presence of different DNA sequences at the same position in a population
is known as a genetic polymorphism if all sequences are occurring more frequently than
can be accounted for by mutation alone. One of the most common types of sequence vari-
ation is a single nucleotide polymorphism (SNP) where individuals differ in their DNA
sequence only in one single base. The number of single nucleotide polymorphisms in the
human genome is estimated at least at ten million. About 3 million of these have already
been identified and are recorded in SNP databases, as for example dbSNP of the NCBI
(National Center for Biotechnology Information).

To derive statistical models for genetics some genetic terminology has to be introduced.
A locus is defined as a specific position in the genome. Alleles are the alternative DNA

sequences at a locus. The two alleles at the same locus of one individual are defined as his
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or her genotype. If the two alleles are identical the genotype is said to be homozygous,
otherwise it is called heterozygous. For example, single nucleotide polymorphisms usually
are diallelic loci with only two possible alleles and three possible genotypes.

If only a single locus is considered and rare exceptions are disregarded the law of segre-
gation holds: during reproduction the parents give with equal probability one of the two
alleles from a specific locus to their offspring, independently from the other parent. If
there is no parental information available it is unknown for the offspring which allele is

inherited from the mother and which one from the father.

2.2 Random mating populations

In this section basic principles of population genetics for random mating are introduced
as described in |Gillespie| (1998) and Sham| (1998). The most idealistic population model
is a random mating population of infinite size. Random mating describes the situation
where mating is done between randomly chosen individuals.

The notation introduced in this chapter is applied consistently throughout this thesis.
We consider a single diallelic autosomal marker locus ! with two alleles B and b. For
an individual ¢ € N in the population such a locus can be described by two Bernoulli
distributed random variables Xj;; for the two alleles at the two DNA-strands j = 1,2 at
the same locus. The random variables Xj;;; take the values 1 if allele B is present and 0
if allele b is present. The probability of choosing randomly allele B from the population
is defined as ¢; = P(B) = P(X;;; = 1). In genetics, it is common to denote ¢; as allele
frequency, although statistically speaking it is a probability. Since this term is common we
also want to use it here. The genotype of individual ¢ is then uniquely identified by the sum
of the two alleles X;; := X;;1 + Xj2. The number 0 denotes the homozygous genotype bb,
the number 1 the heterozygous genotype Bb and the number 2 the homozygous genotype
BB. For the heterozygous genotype Bb the order generally is not meaningful since it is

usually unknown which allele is inherited from the mother and which one from the father.

2.2.1 Hardy-Weinberg equilibrium

The first milestone in population genetics was the discovery of the simple Hardy-Weinberg
law which is valid in the equilibrium state of a random mating population of infinite
size. It describes the relationship between allele and genotype probabilities at a fixed
autosomal locus [. The Hardy-Weinberg law says that in the equilibrium state the genotype

frequencies can be obtained from allele frequencies by

Pixa=s) = (2)eit - o0

for s = 0,1,2. In other words in Hardy-Weinberg equilibrium (HWE) the genotypes are
B(2, ;) -distributed. This law simply uses that both alleles X;;; and X2 are randomly
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chosen under the assumption of random mating and independently drawn from the two
parents. Hence the equilibrium state is already reached after one generation of random
mating in an infinite population. Only if allele frequencies in the original population
are different for both sexes it takes one generation of random mating to reach equal
allele frequencies for both sexes and Hardy-Weinberg equilibrium is only reached after
two generations of random mating. However, in finite populations genetic drift can cause
random changes in allele frequencies from one generation to the other eventually leading
to a decay of heterozygosity and removing genetic variation. Since genetic drift is a very
weak evolutionary force in large populations significant deviations from Hardy-Weinberg
equilibrium due to genetic drift are only expected in very small populations. Moreover,
there are also other evolutionary forces such as mutation, migration and selection which

could destroy Hardy-Weinberg equilibrium (e.g. [Maynard Smith, [1989).

2.2.2 Linkage equilibrium

Linkage equilibrium is an often desired property between two different loci [ and I’ with
alleles B, b as well as B’, b'. The multilocus genotype of each individual consists of two
genotypes X;; = X1 + X0 and Xy = X1 + Xy each composed of two Bernoulli dis-
tributed alleles with allele frequency P(B) for locus [ and P(B’) for locus I’. The alleles
on the same DNA strand are called a haplotype, i.e. the two haplotypes are (X;;1, X;1)
and (Xj2, X;2). The haplotype concept can be extended to more than two loci and a
haplotype in general denotes all the alleles from the same gamete. The multilocus geno-
type of each individual consists of two haplotypes, one inherited from the father and the
other inherited from the mother. However, as mentioned before, usually only multilocus
genotype data are available because laboratory methods routinely only measure genotypes.
Haplotypes are normally unknown since it is very expensive to determine which alleles are
on the same DNA strand. The frequencies of the four possible haplotypes are denoted
as P(BB'), P(BYV), P(bB’) and P(bb'). The two loci are said to be in linkage equilib-
rium if the two alleles X;;; and Xj; of the same haplotype are independently Bernoulli
distributed, thus the haplotype frequencies are the product of the corresponding allele
frequencies, e.g. P(BB’) = P(B)P(B’). The deviation of the frequency P(BB’) from its
equilibrium value is called linkage disequilibrium (LD) Dy = P(BB') — P(B)P(B’). The
linkage disequilibrium can also be defined as the covariance between the two alleles of the

same strand Dy = Cov (X5, Xj;) because
Dll/ = Cov (Xilijil’j> = P(Xll] = leil’j = 1) — P(lej = 1)P<le/j = 1)

There are different ways to standardize measures for linkage disequilibrium. One idea is

to take the correlation coefficient

All’ = Corr (Xiljv X’Ll’j)
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to describe linkage disequilibrium. If two loci are in linkage disequilibrium there is said to

be an allelic association between these two loci.

2.2.3 Linkage disequilibrium due to tight linkage

Linkage disequilibrium often exists between loci lying close to each other on the genome.
In this case the LD is caused by genetic linkage (see section. As a result, haplotypes on
these segments may be preserved over a large number of generations. The recombination
fraction 0 between the two loci measures the extent of linkage. A gamete produced by
an individual is said to be non-recombinant with respect to two loci if it contains the
haplotype of one of the parental gametes. In contrast, recombinant gametes contain a
new combination of the two alleles at the two loci, one from the paternal and one from the
maternal gamete. The recombination fraction 6y between the two loci is defined as the
probability that a gamete is recombinant. Thus, two loci on different chromosomes have
a recombination fraction of 6 = 0.5. The recombination fraction becomes the smaller
the more tightly linked the loci are because the probability that the chromosomal segment
covering both loci is inherited intact from parent to offspring increases with close proximity
on the genome. The maintenance of LD over generations by tight linkage in an infinite
random mating population is dependent on the recombination fraction in the following
way
Dy) = (1= 6u)' DY

where Dl(lt,) denotes the LD after ¢ generations and hence Dl(l(f) the initial LD. The deriva-
tion of the formula is shown in [Sham| (1998), for example. The formula shows that for
0y > 0 the ultimate state for ¢ — oo is linkage equilibrium, but the decay of linkage
disequilibrium between closely linked markers is very slow. If there is initial LD, even
between unlinked loci (0 = 0.5) it lasts some generations until a state close to linkage
equilibrium is reached. Furthermore, in natural populations the decay of LD is opposed
by several evolutionary forces which could increase LD, e.g. random genetic drift and mu-
tations in finite populations. Thus, in most human populations linkage disequilibrium can
be observed between tightly linked markers with a recombination fraction close to zero,
up to 50 kb (50 kilo bases; 50,000 bases), occasionally also up to 500 kb (Abecasis et al.|

2001)). For loci located not so close to each other linkage equilibrium can be assumed.

2.2.4 Extension to multiple alleles

The concepts of population genetics can be extended to loci which have more than two
alleles. The most often used genetic markers with multiple alleles are microsatellites.
Microsatellite loci often cover some hundreds of nucleotides. The variation between indi-

viduals occurs in the form of a variable number of repeats of a particular sequence of base
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pairs. The repeated sequence usually is very short (2 to 4 base pairs). Alleles are uniquely
identified by counting the number of repeats. However, genotyping of microsatellites is
much more expensive and error-prone than genotyping of single nucleotide polymorphisms.
It is not expected that microsatellites play a major role in the future, thus we concentrate
our work on diallelic marker. However, we briefly would like to mention how to extent the
concepts to multiallelic markers.

Let [ be a multiallelic marker locus with the alleles BY,| ..., BB For an individual 4 such
a locus can be described by two random vectors X ;;; = (Xi(llj), e ,Xi(l?’))’ for both strands
7 =1,2. The entry X i(l? takes the value 1, if the allele on strand j is allele B") and value
0 otherwise. Thus, X i(lg) is Bernoulli(gpl(r))—distributed where cpl(r) is the frequency of allele
B Since the components of X5 sum up to 1, the vector X;; is multinomial(1, ¢;)-

distributed with ¢; = ((pgl), o ngl))’.

The basic definitions are extended considering
each component of the vector X;; separately. A locus is in Hardy-Weinberg equilibrium
if each component of the vector X;; for strand 1 and each component of the vector
X ;19 for strand 2 are independent. Thus, if Hardy-Weinberg equilibrium exists the vector
of genotypes X; = (Xi(ll), . ,Xi(lRl))’ where Xi(lr) = Xi(lq) + Xi(lg) is multinomial(2, ¢;)-
distributed. Furthermore, two loci [ and I’ are in linkage equilibrium if each component of
the vector X ;;; for locus [ is independent from each component of X/, for locus I and the
same strand j. To model linkage disequilibrium between the two loci R;R; covariances
D;Z:T,) = Cov (Xi(lrj), Xi(;;.)) have to be considered which can be summarized in different
ways to a single measure of linkage disequilibrium.

2.3 Models for structured populations

Most natural populations deviate in some way from random mating because they are
not homogeneous but structured in some form. The main focus of this section is on
the simplest form of population structure where a population consists of several discrete
subpopulations. The classical concepts of populations genetics for subdivided populations
can be found in |Excoffier| (2000)). Additionally, we also introduce some recently developed
concepts and show how these are related to the classical definitions. However, before such

a subdivided population is considered the general concept of inbreeding is introduced.

2.3.1 The general concept of inbreeding and allelic correlations

Inbreeding is one important reason for a departure from random mating. Inbreeding
occurs when individuals are more likely to mate with relatives than with randomly chosen
subjects. In this context the term relative is used in a broad sense, i.e. relatives can
also be individuals from the same village or the same region distantly related to each

other. In this case the two alleles X;;; and X2 at the same locus [ of individual 7 are
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not independent anymore. The inbreeding coefficient (Wright, 1922)) denoted by F; is
defined as the correlation between these two alleles, i.e. F; = Corr (Xj1, Xj2). Thus,
F; measures the correlation between uniting gametes. Under the assumption that the
inbreeding coefficient is the same for all individuals in the population, i.e. F; = F a
formula for the frequency of genotype BB in the population can be directly derived by

using the definition of the correlation

F = Corr (Xuy, Xupg) = 2 K Xan) B (KaXao) = ¢} _ P(BB) -}
illy A4 \/Var (Xill)Var (Xil2) @l(l - (,Dl) Qpl(l - (Pl)

The probabilities for all three genotypes follow immediately as given here

P(BB) = ¢i(1-F)+@F
P(Bb) = 2¢/(1—¢)(1-F)
Pb) = (1-@)*’1-F)+(1-¢)F

If inbreeding exists in the population the inbreeding coefficient F' is always positive (0 <
F < 1) leading to an excess of homozygotes compared to the Hardy-Weinberg equilibrium.
F may also be interpreted as the probability of the two alleles being identical by descent
(IBD) which means that the two alleles are descended from the same ancestral allele
somewhere in the past. This interpretation follows from the first equation because F' is
multiplied with the probability ¢; that one of the two alleles is B and the other allele
automatically is B due to identity by descent.

It should be pointed out that the definition of the inbreeding coefficient is independent
of the concrete locus. Thus, these definitions implicitly assume that the correlations are
constant over the whole genome. This is a common assumption because there are no
evident biological reasons why the correlations F' should vary over the genome.

Allelic correlations are not only restricted to the two alleles of one individual but extend
across related individuals. The kinship coefficient f;; is defined as the correlation between
an allele selected randomly from individual 7 and another allele selected randomly from 4’
from the same locus, i.e. f;z = Corr (X5, Xinj) for j,7" € {1,2}. The kinship coefficient
can also be interpreted as the probability of the alleles from the two individuals being ibd.
If the inbreeding coefficients F; and the kinship coefficients f;;» are given for all individuals
1,1 in the population, population structure can be modelled in a very general way allowing
for a special relationship between all pairs of individuals. Thus, any form of cryptic
relatedness is included in the population model. The model is based on a global allele
frequency ¢; for each locus with respect to the total population and similarities between
individuals are modelled over correlations between alleles from closely related individuals.

Thus, the model is referred to as correlation model for general population structure.
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2.3.2 Theoretical models for discrete subpopulations

A simple model of population structure is that the population is divided into discrete
subpopulations £k = 1,..., K. We would like to consider a model where random mating
within the subpopulations is assumed and discuss possible extensions of the model if in-
breeding within the subpopulations is allowed. Furthermore we want to investigate the
consequences for the total population if two loci are assumed to be in linkage equilibrium
within the subpopulations. To model discrete subpopulations based on genetic informa-
tion different statistical models are introduced. In the literature these models are often
not precisely formulated and separated from each other. Instead, usually the model is
applied which seems appropriate for deriving a special statistical method. So we make our
own attempt of precisely defining models for discrete subpopulations and comparing their

statistical properties.

The correlation model for discrete subpopulations The first model is the corre-
lation model, for example applied by Devlin and Roeder| (1999). Regarding a fixed locus
[ only a single allele frequency ¢; for the total population is given. Differences between
the subpopulations result from correlations between alleles from members of the same
subpopulation. Hence the discrete subpopulations are modelled as a special form of in-
breeding. As proposed by Wright| (1951)) two different kinds of correlations F' relative to
the total population are distinguished: Frp denotes the global inbreeding coefficient with
respect to the total population, i.e. the correlation of the two alleles within an individual
(I) relative to the total population (T). The fixation index Fsr describes the correlation
between alleles from the same locus of two individuals from the same subpopulation (S)
relative to the total population (T). In other words, Fgp is in principle the coefficient
of kinship including the additional assumption that the correlation is the same between
all alleles from individuals of the same subpopulation. Under the assumption of random
mating within the subpopulations the equality Fjr = Fgp holds because two alleles from
one individual as well as from the same subpopulation independently and randomly derive
from the previous generation within the subpopulation. Thus, in this case it is sufficient
to specify the fixation index Fgp. Where unambiguous, Fgr is abbreviated by F. Thus,
population stratification can be modelled by a positive fixation index Fgp and like in-
breeding population stratification leads to a deviation from Hardy-Weinberg equilibrium

for the total population with an excess of homozygotes.

The subpopulation model with fixed subpopulation allele frequencies In this
traditional approach fixed allele frequencies py; in the subpopulations k£ = 1,..., K are
introduced. Some further notation has to be introduced. The vector @ = (m1,...,7x)’

contains the proportion of each subpopulation with respect to the total population, i.e.
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the subpopulation proportions sum up to 1 for £k = 1,..., K. For an individual ¢ in the
population the variable Z; contains the subpopulation where the individual 7 is from.
Thus, it holds that Z; = k if individual ¢ is from subpopulation k.
As before we assume random mating in the subpopulations. Thus, within the subpopula-
tions the alleles at the same locus from two individuals are independent. This is equivalent
to the assumption of Hardy-Weinberg equilibrium in the subpopulations. To model local
inbreeding within the subpopulation according to Wright| (1951) a local inbreeding coeffi-
cient Frg relative to the subpopulation (S) could be introduced. We assume that Frg is
equal to zero which is equivalent to Frp = Fgr.
For each locus an overall allele frequency can be defined by averaging over the subpopula-
tion allele frequencies as ¢; := Zszl k- Thus, if X;;; is a randomly drawn allele from
the total population the expectation can be calculated as

K

E(Xgj) =P(Xg; =1) =Y mP(Xy; =1|Zi =k) =

k=1
However, if an individual is randomly drawn from a given subpopulation k the expectation
E (Xuj|Zi = k) = ¢ is the subpopulation allele frequency.
In such a model each locus has to be considered separately with its own Fgr as can be
seen from the following considerations. If we apply the definition of Fgr for locus [ from

the correlation model to this model we can derive the classical relationship
Var pp
Fop = — - PhL_
(1 — 1)

According to the definition of Fgr as correlation between arbitrarily chosen alleles (7, j" =
1,2) from two individuals 7 and i from the same subpopulation it follows under the

assumption of HWE in the subpopulations

Fsro(1 =) = Cov(Xuy, Xiy) = E (X Xinjr) — E X E Xy
K K 2
= ZWkP(Xilj = laX’i’lj’ = 1‘Zz = Zi’ = k) — (Z 7rk90kl>
k=1 k=1
K K 2
= ZﬂkSDkl - <Z 7%9%1)
k=1

The equation shows that Fgp can be interpreted as the ratio of the variance of the subpop-
ulation allele frequencies ¢g; in relation to the global variance of a Bernoulli distribution.
Fgr is different for each marker locus and the average Fgr is a measure for the distance
between the subpopulations.

An important characteristic of this model is that the linkage equilibrium is destroyed in
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the total population even if linkage equilibrium between two loci [ and I’ is assumed in the
subpopulations. Some small calculations similar to the above calculations show that the
linkage disequilibrium can be calculated as the covariance between the allele frequencies

in the same subpopulation at the two different marker loci, i.e.

K
Dy = Y mlpn — @) (e — or) = Cov (ori, prrr)
k=1
Usually, this covariance is not zero, and in the case K = 2 it is always unequal to 0 if
at both loci the subpopulation allele frequencies differ from each other. Thus, linkage

equilibrium is not maintained in the total population.

The subpopulation model with random subpopulation allele frequencies The
random subpopulation allele frequency model can be seen as an extension of the previous
model which is useful if multiple loci shall be considered in a unique approach. For a
fixed locus [, a fixed global allele frequency ¢; is given as in the correlation model. The
global allele frequency is interpreted as the allele frequency in a hypothetical ancestral
population. The allele frequencies ¢g; in the subpopulations are interpreted as iid random
variables with E pg; = ¢ and Var g = Froi(1 — ¢;). Thus, the model implicitly assumes
that the subpopulations all diverged from a common ancestral population at the same
time but allows that the subpopulations may have experienced different amount of drift
away from the ancestral subpopulation at rates parameterized by Fj. As before we assume
random mating and hence Hardy-Weinberg equilibrium in the subpopulations.

Under the assumption that F; = ... = Fx = F it can be shown that ' = Fg7 as defined in
the correlation model. Moreover, the correlation model and the subpopulation model with
random allele frequencies are equivalent with respect to expectations and variances. The
unconditional expectations and variances in the random subpopulation allele frequency
model are the same as in the correlation model. For the expectation of a randomly drawn

allele from subpopulation k this can easily be seen from

E X;; = E(E (Xujlen) = Eon = ¢

and for the variance this also can be verified over the conditional variance formula. The

covariance for individuals ¢ and 4’ from the same subpopulation k can be calculated as

Cov (X, Xiny) = ECov (X, Xije|ow, orr) + Cov (E (Xij|ow), E (X |or))
= 0+ Cov (k1 k1) = Var (or) = Froi(1 — @)
and under the assumption F| = ... = Fg = F it follows that F' = Corr (X;;;, Xy51) = Fsr

as defined in the correlation model.

Thus, transforming the variance formula, Fj can be written in the same form as Fgp for
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the fixed allele frequency model

_ Varpg
T al-a)
The equation shows that Fj, can be interpreted as the standardized variance of the random
variable ¢g; which is assumed to be the same for all loci. Thus, as explained before Fj is
a measure of the distance of the subpopulation k& to the ancestral population. Although
the formula has the same form as in the fixed allele frequency model, the interpretation of
Var oy is different here because this is the specific variance for subpopulation k£ and not
the variance over all subpopulations as in the fixed allele frequency model.
If linkage equilibrium between two loci | and I’ is assumed in the subpopulations this

theoretically also holds for the total population because

D = Cov (Xy;, Xirj) = ECov (X, Xivjler, err) + Cov (E (Xajler), E (X j|orr))
= 0+ Cov (pkt, prr) = 0

Linkage equilibrium is maintained in the total population because the allele frequencies at
the two loci in the same subpopulation are independent from each other in a model with

random subpopulation allele frequencies.

The beta-binomial model The beta-binomial model was first applied by |[Balding and
Nichols| (1995) for modelling subpopulation allele frequencies. It is a special form of the
random subpopulation allele frequency model where it is additionally assumed that the

subpopulation allele frequencies ; are beta-distributed with distribution function

1-F. 1-F,
~ Bet 1— .
Prl €ta ( Fk @r, Fk; ( Qol)>

The parameters of the beta distribution are chosen to have the required expectation and
variance in the random subpopulation allele frequency model.

If a sample of Nj individuals from subpopulation k is drawn, then the sum of all genotypes
> 7,—k il in this sample is Binomial(2Ng, g )-distributed given the subpopulation allele
frequency ¢g;. However, if oy itself is beta-distributed, the unconditional distribution of

the sum of all genotypes in this sample is a beta-binomial distribution with

E Y Xu|=2Nwp, Var | Y Xiy|=(2Ny+2N:(2N, — )F)ai(l— o).
2=k 2=k

2.3.3 Extension of the models to multiple alleles

The concept of inbreeding can easily be extended to a locus [ with R; alleles (Nei, |1977)
if R;(R; —1)/2 inbreeding coefficients F""") are defined by a complete specification of the



2.3 Models for structured populations 17

genotype frequencies dependent on allele frequencies as

P(B(T)B(r)) _ (SDZ(T))2(1 . F(rr)) + QPI(T)F(TT)
PBYBM)y = QQOZ(T)QOl(T/)(l —FU)) for r<i

To model discrete subpopulations the coefficients F’ g;/), F I(;T/) and F I(g,/) can be defined
analogously. In a model with fixed subpopulation allele frequencies there are different
methods to summarize these allele-specific inbreeding coefficients into a single measure
of inbreeding (Nagylaki, |1998) but it is beyond the scope of this research to explain this
here. In a model with random subpopulation allele frequencies it can be assumed that
b, = F,Ewl) is independent of the concrete alleles B’ and BU"). The beta-binomial model
can be extended to the Dirichlet-multinomial model where the vector of allele frequencies
@y is assumed to have a Dirichlet distribution of the form

- 1—Fr (1) 1—Fy (Rr)
(pklNDmchlet( 7 O 2 o).

The relationship to the classical definition of Nei (1977) given above can be proven.

2.3.4 Incorporating admixture

Discrete subpopulation models describe a very simple form of population structure. In real
populations, however, admixture between subpopulations is observed. There is a lot of
theory in population genetics which describes the evolution of populations, e.g. described
in |Gillespie (1998). However, here we only want to consider a model which is not based on
the evolutionary theory but on the current structure of the population. In the admixture
model each individual is assumed to have inherited some unknown proportion of its alleles
from each population. Each individual ¢ is characterized by its admixture proportions
which are summarized in a vector q;“ = (qﬁ, . ,qﬁ()’ where q;‘}c is the proportion of the
genome originated from the ancestral subpopulation & for individual 7. Thus, the sum of
the entries of qZA is equal to one. In such a model three sources of linkage disequilibrium
can be distinguished if fixed allele frequencies are assumed (Falush et al. 2003). The
first source is the mixture LD which is caused by variation in the ancestry in among the
sampled individuals. Such variation leads to LD among markers across the genome, even if
they are unlinked. This is a generalization of the case of discrete subpopulations where LD
can be observed in the total population even if linkage equilibrium in the subpopulations is
assumed (section . The second source is the admixture LD which additionally occurs
between linked markers because individuals are more likely to have alleles from the same
subpopulation at linked markers. The explanation is that each chromosome is composed
of a set of ”"chunks” that are derived as an unbroken unit from one of the ancestral
populations (see section [2.1)). Finally, there is a third source of LD, the background LD
which occurs between tightly linked markers within subpopulations (see section and
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decays on a much shorter scale (tens of kilobases). However, very complex models are
needed to account for each source of linkage disequilibrium and how to infer structure in
such models is only briefly discussed in section [5.1.7

2.4 Inference in subdivided populations

In this section two methods are discussed how the difference between discrete subpopula-
tions can be estimated from a given number of marker loci L in a sample of N individuals
if the subpopulation origin of the individuals is known. First a formula for estimation of
the fixation index Fgp as a classical distance measure is derived and secondly the predic-
tion rate as a further measure of population structure is introduced. Before starting with
the details, some vector notation is given.

Altogether, the sample consists of ¢ = 1,..., N individuals. The individuals are genotyped
at [ =1,..., L diallelic marker loci. All genotypes can be summarized in a random vector
X = (X),...,Xy)". Theentry X; = (X;1,...,X;) contains the genotypes of individual

7 for all marker loci.

The subpopulation allele frequencies are summarized in a vector ¢ = (¢, ..., @)’ where
@i = (pr1,---, kL) contains the allele frequencies within subpopulation & for all loci.
The vector Z = (Z1,...,Zn) contains for each individual 7 in the sample the subpopula-

tion where the individual ¢ is from.
Suppose that in each subpopulation k a total of NV, individuals are genotyped at L marker
locil=1,...L. The maximum likelihood estimator for the subpopulation allele frequency

g can then be determined as the observed allele frequency in the subpopulation

1
Opl = —— E Xi.
Pkl 2Nk 4 il
. Z;=k

2.4.1 Estimation of the fixation index Fgp

In the previous sections it has been shown that the fixation index Fsp is an important pa-
rameter to describe the distance between subpopulations. In the literature, many methods
are proposed to estimate Fgpr (Nei and Chesser, 1983; Weir and Cockerham)| 1984; Weir
and Hill, 2002) if genetic marker data are available from individuals of K subpopulations.
However, these methods are developed to estimate Fgr from data of only one genetic locus
and have to be extended in some way if multilocus data are available. Thus, we want to
derive here a simple formula to estimate the fixation index Fgp between two subpopula-
tions based on the random subpopulation allele frequency model (see section which
can be applied to multilocus marker data. This formula which we have not found to be
published elsewhere is applied later in our simulation study (see section .

In the following proposition an unbiased estimator ﬁ;T for Fgr is derived based on the
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unrealistic assumption that the ancestral allele frequency ¢; is known. Subsequently, an

estimator ﬁST which can be applied in praxis is given.

Proposition 2.1. If the ancestral allele frequency oy is known, an unbiased estimator for

Fsr from two subpopulations k and k' is given by

Lo
Fro — 1 1 3 (P — o) 1 1
ST — -1 1 |7 _ o ]

Proof: First the unconditional expectation and variance of the difference D; = @y —
Ok have to be calculated. Since the estimated allele frequencies @y; are unbiased, the

unconditional expectation is zero

E(D;) = E (E (Di|eki, ex1)) = E (0r — pr) =0

and the unconditional variance can be calculated as

Var (D;) = E(Var (Dilew, ex1)) + Var (E (Dilew, ox1))
= E(Var (Prlen) + E (Val“ (@r1lw) + Var (g — orn)

1
= —FEou(l—ovu)+ —Eer(l — i)+ Var (ox) + Var (¢r)

2N} 2N
1 1
= 1-— 1-F — (1 — 1-F 201(1 — F
2N<Pl( 2l )+2Nk,soz( @i)( )+ 201(1 — 1)
1 1
= 1-F 2F 1-— .
(3 + ) - )+ 2] il = )

Since Var D; = EDZ2 it follows

1 (Gu— @ 1 1
kl — k'l
— 1— F)+2F
( -1 QO 1—(‘01 ) <2Nk+2Nk’>( )+

and E F, = For. 0
Thus, as an estimator for Fsp we propose

L ~
F\ST—; lz(‘pkl_@k’l)Q_ 1 B 1
2— k- \L& @l-&) 2N 2Ny

where @; is the unweighted average of O and @p/;.

2.4.2 The prediction rate

To understand to what extent it is possible to identify the predefined populations from a
given number of marker loci we introduce the prediction rate as a new measure for predict-

ing subpopulation membership. We define the prediction rate as the expected posterior
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probability of a randomly drawn new individual from one of these samples being correctly
classified to its predefined population. If I is a new individual from the predefined (P)
population z¥ the prediction rate can be written as E(P(Z; = 2F|xr,¢)). Thus, the
prediction rate is an overall measure for the total population considering all subpopula-
tions simultaneously. If there is no difference between the populations a value of 1/K is
expected for K populations. If the populations differ from each other the prediction rate
should increase with increasing number of marker loci. However, if there is admixture
between the different populations the prediction rate does not converge to 100% with a
growing number of marker loci. Thus, the prediction rate gives information whether the
number of marker loci is sufficiently large to distinguish the subpopulations from each
other. In contrast, the classical distance measures like Figr determine the average dis-
tance between the subpopulations over the whole genome and the estimated Fgr -value
does not systematically depend on the number of marker loci. With an increasing number
of marker loci only the estimation of Fgr becomes more precise. Thus, the prediction
rate gives additional information which is not contained in the Fgp-value. In section
the prediction rate is calculated to analyze multilocus marker data from a German study
assessing the impact of population stratification within Germany.

The prediction rate can be estimated by leave-one-out crossvalidation. For each individ-
ual ¢ the population allele frequencies L,Ao(*i) have to be estimated by leaving individual 7
out. Subsequently, the posterior probability P(Z; = zF|z;, a(_i)) of an individual ¢ being
classified to its predefined population has to be calculated given its multilocus genotype
data and the estimated allele frequencies. To determine the posterior probability, Bayes’

formula is applied assuming that all subpopulations are a priori equally likely

[z = 2P0
K f(@ilZi = k)

For each subpopulation k the likelihood for the genotype data of each individual i can be

P(Z; = 2] |2, 377)

calculated as the product of the corresponding allele frequencies over all loci

L
~(—1 2 ~(—1 €T; ~(—1 —€
@i 2 = b, 3 >>=H( )w;l a1 — gDy

T
=1 il

The prediction rate E (P(Z; = 2F|xs,)) is then estimated by averaging the posterior

probabilities over all individuals, i.e.

N

1 (i

N > P(Zi =2 |2, @),
=1

Alternatively, the likelihood could be calculated based on subpopulation genotype fre-
quencies instead of allele frequencies.

Since crossvalidation is performed by subsequently leaving out individuals, a confidence
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interval for the prediction rate can be calculated via bootstrapping over all loci. Boot-
strap samples of the loci have to be drawn and for the corresponding multilocus data
set containing the loci of the bootstrap sample the prediction rate is estimated by the
crossvalidation procedure. With the bootstrap procedure the variance in estimating the
prediction rate can be calculated and confidence intervals can be derived under the as-
sumption of normality with respect to the bootstrap samples.

To our knowledge we are the first who propose the concept of the prediction rate to de-
scribe population differences in the form as introduced here. However, there are similar
concepts proposed elsewhere. Paetkau et al| (1997) define the genotype likelihood ratio
distance which is also based on the likelihood of the genotype data and estimated applying
a crossvalidation procedure. However, it is a distance measure as Fgp and not dependent
on the number of marker loci as the prediction rate. Thus, the genotype likelihood ratio
distance cannot be applied to figure out if the number of marker loci is sufficient. [Efron
and Tibshirani| (1993)) describe the general concept of estimating the prediction error via
crossvalidation to assess the fit of a statistical model. The prediction error measures the
probability of misclassification contrary to the prediction rate. The concept of [Efron and
Tibshirani| (1993)) is adopted here for the special context of predicting subpopulation mem-
bership from genetic marker data. Usually a disadvantage of crossvalidation is that the
variance cannot be easily estimated. In this case the advantage is that not only the indi-
viduals but also the loci are independent from each other. Our idea was to additionally

implement a bootstrap procedure over the loci.



3 Genetic case-control association studies

This chapter gives an overview about the analysis of genetic case-control association stud-
ies. After summarizing the basic principles of case-control studies basic measures for
association between a diallelic marker and the disease status as well as some tests for as-
sociation are described. Furthermore it is discussed how to adjust the analysis if the pop-
ulation is divided into discrete subpopulations and subpopulation membership is known.
Finally, it is shown how to apply a logistic regression model to case-control data as an
alternative way of analysis. The statistical methods described in this chapter are standard
methods for the analysis of contingency tables and are explained in detail for example in
Agresti| (1996)); Collett| (2003)); Lachin (2000). An overview how these methods can be

applied in genetic case-control association studies can be found in (Clayton| (2000)).

3.1 Concepts
3.1.1 General concepts of case-control studies

The basic concepts of case-control studies in epidemiology are summarized to show how
the special theory about genetic case-control studies fits into the general epidemiologi-
cal context. In a case-control study a group of affected subjects referred to as cases is
compared to a group of unaffected subjects referred to as controls with respect to poten-
tial exposures of risk factors. If exposure and disease do not occur independently from
each other, an association is said to exist between exposure and disease. If there is an
association between exposure and disease the distribution of the exposure among cases
is different from the distribution of the exposure among controls. From the statistical
perspective only associations between exposure and disease can be detected. However, it
is of biological interest whether the association between exposure and disease is causal,
i.e. the exposure has any direct influence on disease development.

A disadvantage of a case-control study is that it is a retrospective study where the expo-
sure is measured after the development of the disease although the true order is different
and the subject has to be exposed before developing the disease. However, case-control
studies are very important for rare diseases as cancer, for example. Cohort studies gen-
erally are too cost- and time consuming in this case. During the follow-up of a cohort of
initially healthy subjects only a few cases are expected to occur which is not sufficient for
an appropriate statistical analysis unless the cohort is very large.

A critical point is also that cases and controls are usually recruited separately from each
other and it may happen that both groups are not comparable with respect to other influ-
ence factors. First of all, a systematic bias can be introduced when recruiting the study
population if cases and controls somehow systematically differ from each other. Such a

bias should be avoided by an appropriate design and careful data collection because it
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is usually unknown and cannot be corrected for in the statistical analysis. The second
problem is that further risk factors may act as confounders. A confounder is defined as a
variable that leads to an over- or underestimation of the true relation between exposure
and disease. The estimate of the effect of the exposure is distorted because it is mixed
with the effect of the confounding factor. However, if data on these further risk factors
are collected, it is possible to adjust the analysis for potential confounders. There are two
necessary criteria for a factor to be a confounder: first of all, a confounder is also a risk
factor for the disease and secondly a confounder is associated with the exposure, but not
a consequence of the exposure.

Confounding effects have to be controlled for but confounders are not of primary interest
as potential risk factors. However, a further type of additional factor occurs if the effect
of the exposure on the disease is different for each level of the factor. Such a factor is
called effect modifier and there is said to be an interaction between the exposure and the
additional factor. The effect modifier may be a confounder if there is also an association

between exposure and effect modifier, but it is not necessarily a confounder.

3.1.2 Concepts of genetic case-control studies

In genetic case-control association studies the exposures are genetic risk factors. Thus, the
marker loci which are supposed to be investigated are genotyped for cases and controls. In
opposite to the genotype the case-/control-status is often denoted as phenotype. If there
is an association between the marker and the disease, the distribution of the genotypes
is different within cases and controls. There are two different reasons for an association
which are of primary interest. The first reason is that the marker locus is itself a disease
locus, thus the association is causal. The second reason is that the marker locus is in
linkage disequilibrium with the disease locus because both are in close proximity on the
genome.

A further question is how marker loci to test for association are chosen. There are basically
two approaches of genetic case-control studies with different amount of genotyping, the
candidate gene approach and the genome scan. Most of the test statistics we describe
here are developed for the candidate gene approach where one or several candidate genes
are investigated in the study. These candidate genes are often chosen out of biological
reasons because they code for some proteins which are expected to be functionally related
to the phenotype of interest. On each candidate gene one or several candidate loci are
investigated. Thus, we refer to each polymorphism which is genotyped as a separate
candidate locus. Most often these candidate loci are single nucleotide polymorphisms and
hence diallelic. If several marker loci on the same gene are genotyped they can either be
tested separately or jointly for association to the disease. In a joint analysis it has to be
accounted for that the marker loci on the same gene usually are in linkage disequilibrium

in the population. However, here we only describe tests for single marker analysis.
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Although we concentrate here on the candidate gene approach it should be mentioned that
in the last years there were rapid technical advances in the development of new genotyping
technology making larger investigations feasible. Today SNP arrays are available where for
one individual the genotypes of approximately 100,000 single nucleotide polymorphisms
can be determined simultaneously. Thus, whole genome association scans are possible.
However, it is difficult to interpret the association results from whole genome scans because
there is the problem of multiple testing and many false positive association signals are
expected to be among the positive association results.

Another source of false positive results either in candidate gene association studies or in
genome scans appears due to unobserved confounding. Here, we are especially interested
in one special type of confounding caused by population stratification. How to deal with
unobserved population stratification in case-control studies is the topic of the following
chapters. To motivate the development of methods for unobserved confounding, in this
chapter an extension of the basic methods is described to adjust for known confounders
in the analysis. Here, we specially concentrate on nominal confounders which can only
take few possible values without ordering. In this situation a stratified analysis has to be

applied. An example is a population which can be divided into known population strata.

3.2 Analysis of genetic association in a homogeneous population
3.2.1 The genotypic odds ratio and the genotypic relative risks

Given the data in a case-control study, the natural approach is to estimate the genotype
distribution given the disease status. For a single diallelic marker with the two alleles B and
b the genotype G is uniquely identified by counting the number of B alleles, i.e. G = 0,1
or 2 as described in section [2.2.1] The disease status is described by a random variable
Y which takes the value Y = a for the affected population where the cases are sampled
from and the value Y = wu for the unaffected population where the controls are sampled
from. The genotype distribution is described by two vectors f(®) = ( féa), fl(a)7 2(a))’ and
F = ( éu),fl(u), fg(u))’ where fg(y) = P(G = g|Y = y). However, in fact the parameters
of interest are the disease risks given the three genotypes which are called penetrances.
These are denoted by gbg = P(Y = a|G = g) for g = 0,1,2. The index G indicates that
genotypes are measured as exposure. If allele b is the more common form it would be
natural to take genotype bb as a reference category. Thus, two genotypic relative risks
have to be calculated, i.e.

G _ ﬁ 1/,6' — ﬁ

1 ¢0 ) 2 ¢8;

However, a problem in case-control studies is that the penetrances and hence the genotypic

(4

relative risks cannot be estimated, because the number of cases and controls is given in

advance and the ratio between the number of cases and the total number of individuals in
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the study does not correspond to the disease risk in the population. Thus, the measures
of association in a case-control study are the genotypic odds ratios comparing the odds of

disease between the two other genotypes and the reference genotype, i.e.

o /000 o 65/ )
95/ (1 - ¢f) o6/ (1= of)

If the disease is rare and all penetrances are small, there is very little difference between
the odds ratios and the relative risks and the odds ratio can be used as an approximation
for the relative risk.

However, it must be explained why the odds ratio can be estimated in a case-control study.
Comparing the odds of disease between a given genotype and the reference is the same as
comparing the odds of having that genotype between affecteds and unaffecteds. Thus, the

genotypic odds ratios can also be written as

G _ A8 G_ 152115
£ p5 759715

and can be estimated from genetic case-control data. This is a standard epidemiological
result applied in the genetic context. The derivation is based on the relationship between
penetrances and genotype distribution within cases and controls. Given the penetrances
and additionally the genotype distribution in the total (T) population fT = (f7, fL, f)’

the genotype distribution within the cases can be calculated via Bayes’ formula

o OSFT
1 = =5
where )
b= o5 fh
g'=0

describes the general disease risk in the population and is commonly denoted as prevalence.
An analogous formula could be derived for the controls. However, if the disease is rare the
genotype distribution in the control group differs little from the genotype distribution in
the total population and hence ng ~ fg(u) . This equation can also be inserted in the above

formula to calculate féa).

3.2.2 The multiplicative penetrance model and the allelic odds ratio

Under the assumption of Hardy-Weinberg equilibrium in the population (see section
the genotype distribution in the population is completely described by the allelic distri-
bution. Thus, it is sufficient to specify the total allele frequency p?’ = P(B). However,
even if Hardy-Weinberg equilibrium holds in the total population it is not automatically

given within affecteds or unaffecteds if there is an association between the disease and the
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genotype. Under the usual assumption of a low disease prevalence, controls should be ap-
proximately in HWE, but HWE usually cannot be assumed for cases. Thus, the question
arises under which conditions HWE can be assumed for cases and it is sufficient to specify
the allele frequencies p(® = P(B|Y = a) and p(*) = P(B|Y = u) rather than the genotype
distribution. Then the allelic odds ratio can be used as a measure of association instead

of calculating two genotypic odds ratios. The allelic odds ratio is defined as

P /(1= p)

p /(1 —p)’
analogous to the genotypic odds ratio when written based on genotype frequencies. As
proven subsequently, there has to be a multiplicative relationship between the homozygous
and heterozygous genotypic relative risks in order to reach HWE within cases. In the
so called multiplicative penetrance model the homozygous genotypic relative risk is the
square of the heterozygous relative risk. Thus, a parameter ¢ exists which fulfills the two
conditions

Wi =, vf =y
or equivalently
oF = 0o, oF = v7ef.

This parameter v is called allelic relative risk because with each additional B-allele the dis-
ease risk increases by ¥. The main properties of the multiplicative model are summarized

in the following two propositions.

Proposition 3.1. In the multiplicative penetrance model Hardy-Weinberg equilibrium
holds within cases if it can be assumed for the total population. The allele frequency
within cases can be calculated as

Y’
(1=p") +yp"

Proof: Genotype frequencies within cases are calculated under the assumption of HWE

P =

in the total population via Bayes’ formula as

o) _ ¢6 (1 —p")? ) _ Yoy 2p (1 - p") o) _ Vo6 (p")?
0 (b ) 1 ¢ 9 2 ¢

where
2
¢ =06 (1—p")* +0of2p" (1 - p") +¥°6F(0")* = of (1 -p") +up")"
Thus, the allele frequency p(® can be calculated as

vp’
(1 —p") +yp"
The formulas for HWE within cases can be verified by applying the formulas for genotype-

1 a a
p(a):§f1()+f2()=

and allele frequencies within cases. O
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G=0 G=1 G=2

cases r(()a) 'rga) réa) N(@)

controls r(()u) rgu) réu) N@

total 70 1 9 N

Table 3.1. Observed genotypes for cases and controls

Proposition 3.2. Assuming a multiplicative penetrance model and Hardy- Weinberg equi-
librium in the total population, the allelic relative risk 1 is very closely approrimated by

the allelic odds ratio & if the disease is rare.

Proof: The odds ratio can be calculated as

_p@/a=p)  p /A —pY)  gp"/( - p")
pW/(1—pw) = pT/1—=pT)  pT/(1-pT)

£ =,

3.2.3 Commonly applied tests for association

The genotype data of a single diallelic marker with the two alleles B and b can be tabulated
in a 2 x 3 table (table . Out of total number of N participants ry individuals have
the genotype g. Analogously, the total number of individuals with phenotype ¥ is denoted
by N® and out of those rf,y) individuals have genotype g. The null hypothesis of no
association in such a table can be formulated in different ways. Since in a case-control
study the genotype distribution is estimated conditional on the disease status it is natural
to formulate the null hypothesis as H : f(“) = ™ based on the genotype frequencies.
Equivalent formulations are based on the genotypic relative risks Hy : wf = 1/12G =1 and
genotypic odds ratios Hy : €& = ¢ = 1. More generally, the null hypothesis means that
genotype and disease are independent, i.e. Hy: P(G = g)P(Y =y) = P(G =g¢,Y =v).
This is the form of the general null hypothesis for a r x ¢ table that row and column
variable are independent. The null hypothesis can be tested by Pearson’s x?-test. The
test statistic is x2-distributed with (r—1) x (c—1) degrees of freedom (df). In this situation
Pearson’s x2-test can be applied with 2 df.

A disadvantage of the y2-test is that the power is quite low because of its 2 df. As an
alternative Armitage’s trend test is often applied. This test can be applied for any 2 x ¢
table. Here a score t. is associated with each column c to detect a special trend in the
sequence of odds ratios which are calculated for each column ¢ in comparison to column

1 as a reference. The advantage of the test statistic is that it is y>-distributed with only
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allele b allele B
cases oN(@) — gla) = 2r(()a) + rga) sl@) = rga) + 2r§a> 2N (@)
controls | 2N — g(u) — 2r(()u) + rgu) s = rgu) + 27“5“) 2N @)
total 2N —s=2rg+m7 s=1r1+ 2ry 2N

Table 3.2. Observed alleles for cases and controls

1 df. In the genetic context Armitage’s trend test is applied with the score t, = g, thus
the score simply counts the number of alleles B. This implicitly assumes a multiplicative
model of allelic relative risks where an independent effect is associated with each allele.

A third possibility is to apply the allelic x?-test. Here the allele distribution is compared
between cases and controls. This test statistic is based on the allelic 2 x 2 table (table
. Here the number of B-alleles is counted for the total sample, denoted by s, as
well as for cases and controls separately, denoted by s,y = a,u. The null hypothesis
Hy : p@ = p® ig tested. This null hypothesis is equivalently formulated as Hy : v = 1
or Hy : £ = 1. The test statistic of the allelic x?-test can also be derived from the
general formula for Pearson’s y2-test applied here for a 2 x 2 table with 1 df. From the
results of the last paragraphs it follows that the allelic x2-test should only be applied if a
multiplicative penetrance model and Hardy-Weinberg equilibrium in the total population
can be assumed. A comparison between Armitage’s trend test and the allelic x?-test
shows that both assume a multiplicative penetrance model but Armitage’s trend test
does not need Hardy-Weinberg equilibrium in the total population. This also becomes
clear from a comparison of the test statistics as shown in Sasieni (1997); Devlin and
Roeder| (1999). Both test statistics have the same numerator which is proportional to the
square of the weighted difference between the number of B-alleles in cases and controls
N(@)gw) _ N (@) g(a)  But the variances are differently calculated. The allelic y2-test assumes
that all the alleles are independently Bernoulli-distributed which is only true if there is
Hardy-Weinberg equilibrium in the population. In contrast, Armitage’s trend test accounts
for the extra-variance induced by the correlation between the two alleles of one individual.
For the derivation of the following methods we want to assume a multiplicative penetrance
model and Hardy-Weinberg equilibrium within populations, thus the basic test statistic

we apply is the allelic x?-test.

3.2.4 Derivation of test statistics for the allelic 2 x 2 table

As described in the previous section the basic test for the allelic 2 x 2 table is Pearson’s
x2-test. For a 2 x 2 table the test statistic can be written in many different ways. Here, we
present the formula for the test statistic in the form which is the basis to generalize the test

statistic later for stratified analysis. Let G = (G1,...,Gy)" be the vector of all genotypes
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at the candidate locus. The genotype G; of individual ¢ can be written as G; = G;1 + G2
where G is the Bernoulli-distributed random variable which identifies the allele on strand
j of individual 4 as O for allele b and 1 for allele B. The number of B-alleles in the table can
be written as s¥) = Zi:Yi:y G; and s = Zfil G where Y; is the phenotype of individual
i and all phenotypes are summarized in the vector Y = (Y7,...,Yy). The maximum
likelihood estimators for the allele frequencies are
50 — s e
2N ) 2N
separately and together for cases and controls. Note that p is the estimate for the overall

allele frequency p under the null hypothesis of no association. The next proposition gives
the asymptotic distribution of the test statistic for an allelic 2 x 2 table. Unless otherwise
mentioned, for the asymptotic distribution it is always assumed that N — oo and that
the ratio of the number of cases and controls is bounded by some constants
N(a)
L U
O0<e S W S c’ < o0.

Thus, if N — oo it can automatically be concluded that N(®) — 0o and N — oc.

Proposition 3.3. Pearson’s x2-test statistic for an allelic 2 x 2 table
7~ 5)?

A~

1 1\
<2N(a) + 2N(u))p(1_p)
is asymptotically x3-distributed under the null hypothesis of no association Hy : p@) = pw)

Proof: The derivation is based on the fact that s%) is Binomial(2N®), p)) -distributed
under the assumption of HWE. The variance of the estimator p*) can be directly calcu-
lated from the binomial distribution and can be estimated consistently. The standardized
allele frequency difference is then asymptotically standard normal distributed. Thus, the

square is asymptotically x2-distributed. O

The allelic x?-test can be shown to be a Wald test as described in proposition with
the variance being estimated under the null hypothesis (Lachin) 2000).

It may be argued that the odds ratio is the quantity of interest and hence the test statistic
should be based on the estimated odds ratio instead of the allele frequency difference.

However, the logarithm of the odds ratio can be written as

~ ]’3‘(@) ﬁ(u)
log(£) = log 5@ —log T @)

Applying the multivariate delta-method it can be shown that v N log(g ) is under the null
hypothesis asymptotically equally distributed as

1 a u
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and hence the test statistic based on the log odds ratio derived by |Woolf| (1955)) is asymp-
totically equivalent to the allelic y2-test.
As an alternative to the allelic y?-test a likelihood-ratio-test can be applied. The likelihood

of the data is calculated as

Q) (u D@ OIN@ 5@, ()5 W 2N () _g()
Li(p @, pW) = (pl@))*” (1 — p(@)2N (p™)*™ (1 — p)2N

under the alternative and as

under the null hypothesis.

Proposition 3.4. The likelihood ratio test statistic

Lo (p)
_2] oM
o8 (Ll(ﬁ(a%ﬁ“))

is asymptotically x3-distributed under the null hypothesis of no association Hy : pl@) = pw)

Proof: The proposition follows from the asymptotic theory of likelihood ratio tests as
described in the appendix O

3.3 Stratified analysis
3.3.1 The bias of the allelic y*-test

The simple analysis of allele or genotype tables as introduced before is based on one es-
sential assumption: cases and controls have to be recruited from the same population and
must be comparable with respect to other possible risk factors. As already discussed in

sections [3.1.1] and [3.1.2] further risk factors may act as confounders and lead to spurious

associations between genetic marker and disease if they are not accounted for in the analy-
sis. In this paragraph we want to theoretically show why this happens. We assume that
there is a known confounding variable which divides the population into K strata. Here
especially the situation is considered where these strata are subpopulations with different
genetic structure as described in section The distribution of the K subpopulations

within cases and controls is given by the following two vectors (@ = (w%a), . ,ﬂﬁ?))’ and

) = (Wgu), e ,wg))’ where W,(gy) is the proportion of subpopulation & within individuals
of phenotype v, i.e. W]gy) =N, Igy) /N ) if there are N, ,gy) individuals with phenotype y from
subpopulation & in the sample. As described in section [2.3.2|there are three different mod-
els for discrete subpopulations. In this paragraph we investigate the effect of population
stratification in the fixed subpopulation allele frequency model. In this model population

stratification results in a bias in the estimators p(® and p® from the allelic y2-test. The
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null hypothesis is that there is no association in each of the K subpopulations. If the al-
(a) (a))

lele frequency distribution within cases and controls is given by pld) = (V2 )
p) = (pgu), ... ,p(;;))’ and the overall allele frequency distribution by p = (p1,...,px)’,
the null hypothesis can be formulated as Hy : p,(fa) = p,(cu) for Kk = 1,...,K. The bias

is, for example, calculated in Devlin et al| (2001b) and the formula is given in the next

"and

proposition.

Proposition 3.5. In the fized subpopulation allele frequency model the expectation of

P — 5w s given by

K
E@® — W) =3 (nt” — 7 )ps
k=1

under the null hypothesis of no association.

Proof: The expectation of p{®) — p(*) is calculated as

. . 1 K 1 K
E(ﬁ()_ﬁ()) = 2N(a)z Z EGZ_WZ Z EG’L

k=14:Z;=k,Y;=a k=14:Z;=k,Y;=u
K (a) (w) K
Ny’ @ Ny (@) (a)  _(u) (u)
- ; <N(a)pk T N@PE :;(% Pe — Tk Pp’)

and under the null hypothesis the expectation can be simplified to the above formula. O

The bias shows that there are two necessary conditions for population structure to act
as a confounder as described in section B.I.Il The first is that the confounder has to be
associated with the disease. Applied to population stratification this condition says that
the disease prevalences are different in the subpopulations. This finally leads to a different
distribution of the subpopulations between cases and controls. Otherwise, if W,(:) = 77,(:)
for k = 1,... K the bias is zero. The second condition is that the confounder has to be
associated with the exposure. Here, population structure has to be genetically determined
at the candidate locus and the allele frequencies at the candidate locus have to be different
in the subpopulations.

The effect of the bias is that the allelic x?-test has an increased type-I error rate if popu-
lation stratification exists and is not accounted for. This leads to an increased number of
false positive test results if a large number of candidate loci is tested. The next paragraph
shows how test statistics could be adjusted for this simple form of population structure as

considered here.

3.3.2 Stratified tests for a series of 2 x 2 tables

If the total population consists of K discrete subpopulations and the subpopulation origin

is known for all individuals, the data can be summarized in K allelic 2 x 2 tables, one for
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allele b allele B
cases 2N, ,ga) - 3,(;1) sl(f) 2N, ,ga)
controls | 2N, ,iu) — séu) slgu) 2N, ,iu)
total 2Ny — s Sk 2N,

Table 3.3. Observed alleles for cases and controls in stratum k.

each subpopulation (table . The subpopulation allele frequencies can be estimated as

before as W)
) _ Sp P
f o anW

BN
\

separately and pooled for cases and controls. |(Cochran| (1954) generalized the basic form
of the x?-test statistic as given in proposition to the case of a stratified sample. The
idea is to use a weighted sum of the estimated subpopulation allele frequency differences

in the numerator of the test statistic. The vector (c1,...,cx)" contains the weights.

Proposition 3.6. The Cochran test statistic
2
K
(Zhr e - 5)

K 2 1 1 o ~
2 k=1 Ch <2N§") + 2N’5u>> Pi(1 = px)

is asymptotically x3-distributed for Ny — oo under the null hypothesis of no association

in the subpopulations.

Proof: The proof simply uses the fact that the sum of independent normal distributed
variables is again normal distributed. Since the allele distribution is independent over
the subpopulations, the weighted sum of the estimated subpopulation allele frequencies is
again asymptotically normal distributed. The square of the standardized weighted sum

is then asymptotically X%—distributed. O

In principle any weights could be taken, but the Cochran test statistic uses the weights

1
Ck = 1 1

2N + an ™
However, in practice, it is often not the Cochran statistic which is applied for a stratified
analysis of a series of 2 x 2 tables, more popular is the Mantel-Haenszel test statistic (Man-
tel and Haenszel, |1959)). The Mantel-Haenszel test statistic uses a different method for
variance estimation. The subpopulation-specific variances are calculated conditional on

the observed marginal allele distribution. In this case the number of B-alleles within case-
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and control group does not have a binomial distribution but a hypergeometric distribu-
tion under the null hypothesis of no association. However, although the Mantel-Haenszel
test statistic is more popular, the unconditional approach has the advantage that it can
be applied more generally. This is for example discussed in Miettienen (1985)). Any-
way, asymptotically both tests are equivalent and are often referred to interchangeably as
Cochran-Mantel-Haenszel test.

It can be shown that the Cochran-Mantel-Haenszel test is designed to test the null hy-

pothesis
Hy: 6 =...=¢k=1
against a restricted alternative hypothesis of a common odds ratio unequal to 1 in all
subpopulations
Hi:G=...=&=¢9, ¢0z#1
where & = (&1,...,&k)" is the vector of the allelic odds ratios in all subpopulations.

Thus, the test statistic may have low power for other alternatives. How such a restricted
alternative hypothesis is interpreted is discussed at the end of the section. Here, we want
to give an idea why the test statistic is constructed for the restricted alternative but do
not want to explain this formally. First of all the alternative hypothesis can be written in
the form

H, :g(péa)) —g(péu)) =4, 6#0, for k=1,....K

where g(p) = log(;%;) and 0 = log(€(9)) and the null hypothesis can be formulated

analogously with § = 0. The numerator of the test statistic

W = ck(/\(a) /\(u))
k=1
is an unbiased estimator for the common log odds ratio d multiplied by a constant. This
can be shown by applying the intermediate value theorem

K

K
(@ _ (u cr(g(py,
E W = C p —p e
()= 2ot = = 2 ) 2 760

(a) (u)

where ¢’ is the derivative of g and pj is a value lying between p,’ and p, . Furthermore
it can be shown that the weights ¢, of the Cochran-Mantel-Haenszel test statistic are
chosen to maximize the Pitman efficiency (Noether, 1955) of the test statistic for the
alternative considered here (Radhakrishnal |1965). Roughly formulated, the Cochran-
Mantel-Haenszel test statistic is asymptotically most powerful among all these weighted
test statistics considering a limiting process where the alternative hypothesis converges
against the null hypothesis.

To test the null hypothesis

Hy:p =p™  or equivalently Hy:&=1
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against the unrestricted alternative
Hy:p'@ #£p™  or equivalently Hi: €& #1

Pearson’s y2-test statistics for all 2 x 2 tables can be summed up over the subpopulations.
The main difference of this test statistic to the Cochran-Mantel-Haenszel test is that in
this case the allele frequency differences are squared and standardized before calculating

the sum.
Proposition 3.7. The test statistic
K (]/0(]:) _ ﬁfﬁu))g

is asymptotically x> -distributed for N, — oo under the null hypothesis of no association
K

in the subpopulations.

Proof: Since the alleles in the different subpopulations are independent from each
other, the test statistic is a sum of independent x?-distributed test statistics and hence

asymptotically X%(—distributed. O

As an extension of Pearson’s x2-test to a stratified sample the Cochran-Mantel-Haenszel
test as well as the corresponding test for the unrestricted alternative can analogously
shown to be Wald tests with the variance being estimated under the null hypothesis.

For a stratified sample also a likelihood ratio test can be applied. The likelihood of the

genotype data at the candidate locus is calculated as
K (a) (a) _ (a) (u) (u) _ (u)
Ll(p(a)’p(u)) _ H(p](:))sk (1— p](ca))2Nk —s) (p](:))sk (1— p](:))sz -5y
k=1
under the alternative and as
K
Lo(p) — Hpik(l _pk)QNkfsk
k=1

under the null hypothesis. There are two versions of a likelihood ratio test, one for the
restricted and the other for the unrestricted alternative. The conditions how to deter-
mine the maximum likelihood estimator under the alternative differ from each other in
both cases. The likelihood can be maximized either restrictedly or unrestrictedly. If the
maximum likelihood estimator is calculated under the restriction that the estimated odds
ratio is the same in all subpopulations the likelihood function is a function of the allele

frequencies within controls p() and the common odds ratio £(®. The maximum likelihood
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estimators than have to be determined iteratively. Restricted maximum likelihood esti-
mation is for example proposed by Miettienen! (1985)). As for the Wald tests unrestricted
and restricted maximum likelihood estimation lead to a different asymptotic distribution
of the test statistic.

Proposition 3.8. The unrestricted likelihood ratio test statistic

1o ( Lo(P) )
Ly (), p™)

s asymptotically X%—distm’buted under the null hypothesis Hy : p@ = p(

The restricted likelihood ratio test statistic

Ly(p)
—21 _
% <L1<ﬁ<u>,s<0>>>

is asymptotically x3-distributed under the null hypothesis Hy : p(@) = pw),

Proof: The distribution of the test statistics follows from the asymptotic theory of
likelihood ratio tests as described in the appendix [A:2.1] Most important is the difference
in the degrees of freedom in the test statistic. In the case of restricted maximum likelihood
estimation only one additional parameter has to be estimated under the alternative com-

pared to the null hypothesis whereas in the first case there are K additional parameters. O

The choice of the alternative depends on the assumptions of the type of population strat-
ification. The question is if population stratification only acts as a confounder or if popu-
lation structure also could be an effect modifier if a genetic effect exists. In the first case
the genetic effect is assumed to be the same in all subpopulations whereas in the latter
case the candidate genes show a different effect in each subpopulation and hence the pen-
etrances and the odds ratios differ in the subpopulations. In other words, in the first case
homogeneity of genetic effects in the subpopulations is assumed whereas in the second
case heterogeneity between the subpopulations is allowed. Hence, if only a confounding
effect is expected to occur the test statistics for the restricted alternative (Cochran-Mantel-
Haenszel test or the respective likelihood ratio test) should be employed because of their
higher power for the restricted alternatives. However, if effect modification is possible the
test statistics for the unrestricted alternative are the first choice. Of course, it also could
be possible that there is no confounding effect at all and only an effect modification is
observed. However, such a situation is not as problematic as a confounding effect because
in this situation no excess of false positives is expected to occur under the null hypothesis
if population structure is not accounted for. Thus, we concentrate here on the confound-
ing effect and a possible additional effect modification. In which cases such an effect

modification could exist is a biological question which is not fully answered up to date.
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However, for more subtle population structure as considered here the effect modification
may be small if at all present and thus we recommend testing the null hypothesis against
the restricted alternative. Out of the two test statistics for the restricted alternative we
would prefer the Cochran-Mantel-Haenszel test in comparison to the restricted likelihood
ratio test. The Cochran-Mantel-Haenszel test should be less sensitive if this assumption
is not valid because the subpopulation allele frequencies in case and control group are not

estimated under the restricted alternative.

3.4 Logistic regression
3.4.1 The logistic regression model for case-control data

An alternative way for the analysis of case-control data is to apply logistic regression.
In a logistic regression model applied for epidemiological data it is natural to model the
probability of developing disease given the exposure. However, as already explained in
section this probability cannot be estimated in a case-control study because the
number of cases and controls is fixed in advance. Thus, in a case-control study the logistic
regression model is based on the probability of an individual of being a case in the case-
control sample. An advantage of the logistic regression model is that many exposures can
be incorporated in the model. Hence, genetic and non-genetic factors can be analyzed
simultaneously. Let v; = (v;1,...,v;g)" be the vector of the @ exposures of individual 1.
Then the logit of probability ¢; = P(Y; = a|v;) of individual 7 being a case in the case-
control sample is modelled by a linear function of the exposures v;. The logistic regression
has the form

logit ¢; = o + v 3

where the logit function is defined as

logit ¢; = log <1 i)zd))

and the intercept o and the regression coefficients 8 = (31, . .., 8g)’ have to be estimated.

As already explained, the probability ¢; is modelled but the probability (biT of developing
the disease in the total population is the quantity of interest. It can be shown (e.g. Breslow
and Day|, [1980) that only the intercept « in the regression model changes if the model is
applied for ¢; instead of (zﬁiT and the regression coefficients 3 remain the same. Based on
that argument logistic regression can be applied for case-control data.

The likelihood for the logistic regression model is the likelihood for the phenotype data.
To formulate the likelihood an indicator variable Yil for the phenotype has to be defined,
Y;I = 0 for the controls and Y;I = 1 for the cases. The likelihood then has the form

N

N
Lio, B) = [[ fwilwi) = [T of* 1 = g)' ¥
=1

i=1
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where the probabilities ¢; can be obtained by the logistic function (inverse logit)

b = exp(a + v)3)
" 1t expla+viB)

To determine the maximum likelihood estimates for o and B an iterative procedure

such as the Newton-Raphson algorithm has to be applied because a system of non-linear
equations has to be solved. Wald tests, likelihood ratio tests and score tests can be
derived in the model, for the global null hypothesis Hy : 3 = 0 of no association with
any of the exposures as well as for the null hypothesis Hy : 3, = 0 of no association with
exposure ¢.

The exposures can be qualitative or quantitative. Binary exposures are coded with
the numbers 0 or 1, i.e. for a binary exposure ¢ the variable v;, is equal to 0 or 1.
Furthermore a standard epidemiological result is (Lachin, [2000) that the odds ratio of
developing the disease between exposed and non-exposed individuals is §; = exp(f,).
If the exposures are nominal, a dummy coding has to be introduced. For a nominal
exposure with T levels denoted as 1,...,T, for each individual a vector of T' — 1 binary
variables d; = (d;1,...d;7—1)" has to be introduced. One level has to be defined as a
reference, for example level 1. Then d;;—1 = 1, if individual 7 has the exposure t for
t = 2,...,7 and d;; = 0 otherwise. Thus, for the reference level all of the dummy
variables are zero and for all the other levels always one of the dummy variables is equal

to 1. Odds ratios between all other categories and the reference category can be calculated.

3.4.2 The logistic regression model applied to genetic data

If a diallelic genetic marker is considered as an exposure and no further exposures are
included in the model, there are two possibilities to include this marker into the model,
either with dummy coding or without dummy coding. If dummy coding is applied the
genotype g;, originally coded as 0, 1,2 is then contained in a dummy vector gZ-G = (ngl, gg)’
of two binary variables as described before, where 0 is the reference category. The model
takes the form
logit ¢; = a“ + (gf') B¢
where 8¢ = (BF, B5) and £ = exp(BY) and £§ = exp(BY) are the genotypic odds ratios
of the other two genotypes compared to the reference genotype. Under the assumption of
a multiplicative model of odds ratios the original coding can be directly applied and the
model can be written as
logit ¢; = a + ¢i 5.
The odds ratio £ = exp(f) is equal to the heterozygous odds ratio and the homozygous

odds ratio is the square of the heterozygous odds ratio, i.e.

f=¢ F=¢.
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If the disease is rare, a model of multiplicative odds ratios is very close to a multiplicative
penetrance model as described in section Since logistic regression is always based on
genotypes instead of alleles, Hardy-Weinberg equilibrium is not assumed. If the original
coding is applied, the score test for Hy : 8 = 0 is equivalent to Armitage’s trend test
described in section

If the population is not homogeneous and consists of several subpopulations, the subpopu-
lation an individual is from has to be included in the model as an additional nominal expo-
sure. If the parameters for the subpopulations are contained in the vector n = (11, ..., 1K)’
with the constraint that Zle M, = 0 the logistic regression model based on original geno-

types has the form
logit ¢; = a + gi8 + 1z,

To formulate the logistic regression in the general form as introduced above, for each

individual i a vector of K — 1 binary dummy variables zP = (25, ... sz_l)’ has to be

i
defined which codes the subpopulation z;. Then the parameters for the subpopulations
are contained in a K — 1-dimensional vector n” = (nP,.. ., 77[]?71)’ and the model can be
written as

logit ¢; = a + ¢; 8 + (zzp)'nD.

If the subpopulations are only included as an additional term in the model it is implicitly
assumed that population stratification only acts as a confounder and not as an effect mod-
ifier. Effect modifications could also be included in the logistic regression by considering
an additional term in the model based on the multiplication of exposures. Thus, an ad-
ditional K — 1-dimensional parameter vector has to be estimated modelling the difference
in the genetic effect in each subpopulation in comparison to the reference subpopulation.
However, such an interaction term is usually omitted because this is expected to lead to
a loss of power comparable to classical tests for the unrestricted alternative. Moreover,
the meaning of the additional interaction parameters has to be carefully interpreted in the

logistic model.
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The first approach proposed in the literature to test for association in a case-control study
adjusting for unobserved population stratification is the method of Genomic Control (GC).
The alternative concept of Structured Association (SA) is discussed in the next chapter.
Both concepts have in common that a set of additional marker loci has to be genotyped
to estimate the amount of population structure in the sample and to correct the tests for
association in an appropriate way. However, both concepts make different use of these
additionally genotyped null loci. The idea of Genomic Control is to apply the usual
test statistics for the test of association but to estimate the variance empirically from
the additional multilocus marker data to correct for unobserved population stratification.
Genomic Control was originally proposed by Devlin and Roeder (1999). Later on different
versions of Genomic Control were discussed (Reich and Goldstein, 2001 Devlin et al.,
2004) and its power and properties were investigated by several authors theoretically
and in simulations (Bacanu et al., |2000; Devlin et al., 2001ajb; Marchini et al., 2004;
Shmulewitz et al., 2004). The concept of Genomic Control is based on the correlation
model for general population structure as described in section Before introducing
the method, we would like to investigate the effect of population stratification on the allelic

x2-test in the correlation model.

4.1 The variance inflation of the allelic y2-test

As described in sectionin the correlation model a global allele frequency p(® for cases
and a global allele frequency p(* for controls is modelled for the candidate locus. Similari-
ties between individuals are modelled over correlations between alleles from closely related
individuals. Correlations within individuals are modelled over the inbreeding coefficients
F; and correlation between individuals over the kinship coefficients f;;;. Correlations are
allowed to be different for all individuals. If the difference p(® — 5(*) from the numerator
of the allelic y?-test is taken, the expectation under the null hypothesis of no association
remains zero but the variance is inflated. This has been proven by Devlin et al. (2001b)
for equal sample sizes of the case and control group. Here we extend their calculation to
different sample sizes of cases and controls. The inflation factor is given relative to the

variance which is estimated in the allelic x>-test.

Proposition 4.1. In the correlation model for general population structure the variance

of P19 — pW) is inflated by the variance inflation factor

1 7a) 1 7w
o+ o P 1 _ _ _
A=1— 2N (a) : 2N1< ) . - <f(a) + f(u) . 2f(w))
@ T oN (W) 2N (a) + 2N (v)

2N
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under the null hypothesis of no association where

7Y _ ﬁzﬂ’ ?( = e Z F; + Z Jiir for y=a,u

i'Y-*y Y=y i'#i Y=y

T(aU) = a)N Z Z it

:Y;=ai":Y;=u

Proof: First of all the variance within one individual can be calculated as

Var (G;) = Var(G;1) + Var (Gi2) + 2Cov (G;1, Gi2)
= 2p(1—p)+2Fp(l —p) =201+ Fy)p(1 —p)

and the covariance between two individuals is given by

Cov (Gu G,/) = Cov (Gih Gi’l) + Cov (Gil, Gi/Q) + Cov (GZ’Q, Gz"l) + Cov (GZQ, GiIQ)
= 4fup(l —p).

For the variance of the observed allele frequency difference then follows

a u 1
Var(ﬁ( ) —]/7\( )) = Var m Z i 2N(U Z G

:Y;=a Y, =u
~ i@y > 20+ F) N()z > A
Y, =a 1Y, =u
1
ey 2. 2 Mt w2 2 Afw
©:Y;=ai'#i:Yy=a Y =ui'#i: Y =u

N(u Z Z Afiir 17 )

©Yj=ai":Yy=u
[y 1
- [2N@

—(a) —(u) —(au)
F— 7F + f + fr7 -2 1-—
ON@ — 2N(a) 2N @) / ] p(1=p)

The variance inflation is calculated with respect to the variance in a homogeneous popu-

1 1
p(l _p) <2N(a) + 2N(u)> .

lation

The formula for the variance inflation can be simplified in the special case of discrete
subpopulations where the same correlation F;7 within all individuals as well as the same
correlation Fgp between all individuals in the same subpopulation is assumed. As de-
scribed in section we assume HWE in the subpopulations and hence Fgr = Fir.
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Proposition 4.2. In the correlation model for discrete subpopulations the variance of
P — pW s inflated by the variance inflation factor

A=1-— For + FSTZ ) g
QN(a> (u)

under the null hypothesis of no association.

Proof: In this special case the average correlations are

K

Y — Fgr, 7( = ETE Z V2Fsr = Z(w,(gy))ngT for y=a,u
k=1

—(aw) - ( )

and for the variance it follows

K
1 1
Hla) _ Hlu)y — _ e T _ (a) __(u)\2
Val"(pa pu)_p(l p) [(2]\7(“) +2N(“)>(1 FST)‘FFST;(ﬂ-k Trk )
The variance inflation is again calculated with respect to the variance in a homogeneous

population. O

It should be mentioned that the same variance inflation can be derived in the random
subpopulation allele frequency model since we proved in section that both models
are equivalent with respect to expectations and variances. Thus, in this model the effect
of population stratification is also a variance inflation instead of a bias.

The formula for the variance inflation also shows that the distribution of the subpopula-
tions has to be different between cases and controls to have a possible confounding effect.
Otherwise, if 7'[‘](;) — 71',({") =0 for £ = 1,... K the variance inflation in proposition is
even slightly smaller than 1. The second condition for confounding is that the population
structure has to be genetically determined, i.e. Fig7 has to be unequal to zero.

It is also important to point out the impact of the variance inflation for large case-control
studies. The variance of p® — p(¥) calculated in the proof of proposition does not

converge against zero for N — oo. Instead, there is always the fixed variance term

p(l—p FSTZ ) — ¥

left. This term depends on Fsp and on the sum of the squared differences of the sub-
population proportions within cases and controls. This sum lies between 0 and 2 and the
maximum is reached if cases and controls form two different subpopulations themselves,

then 77% 9 — 1, TF(a) 0 and Wgu) = O,Wéu) = 1. Dependent on the amount of population
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structure case-control studies could reach sample sizes where the fixed variance term is

large in comparison to the sample-size dependent term

p(1—p) <1 + 1> (1— Fsr).

2N(@) = 2N ()

For these large sample sizes the variance reduction of the test statistic is very small with
additional recruitment of individuals. Thus, an additional recruitment does not make sense
anymore if there are no other methods available to adjust for population stratification in
the analysis.

The formula for the variance inflation factor says that A — (1 — Fgr) is proportional to the
harmonic mean of N® and N and proportional to Fgr. Again, it becomes visible that
the problem of variance inflation is more relevant in larger case-control studies which are
necessary to detect small genetic effects. Furthermore the variance inflation is dependent
on the number of subpopulations and is smaller if a population consists of a large number
of subpopulations.

However, it must be mentioned that the distribution theory for a homogeneous population
cannot be generally transferred to a structured population. In a homogeneous population

the allelic y2-test is based on the asymptotic standard normal distribution of

5 —
\/(21@@+m1<u>)p<1—p>

but in a structured population

7 — 5
\/)‘ <2N1<a) + 2]\[1(u)) p(l _P)

is generally not asymptotically standard normal distributed because the allele frequencies

(@ and p™ are not the average of independent alleles anymore. However for the special
case of a discrete subpopulation model and a growing number of subpopulations K the
asymptotic normal distribution can be proven. Similar considerations can be found in

Devlin et al.| (2001b) but the underlying subpopulation model is different.

Proposition 4.3. In the correlation model for discrete subpopulations

5 — v
\/)‘ (2Nl<a) T 2Nl(u)> p(1=p)

is standard normal distributed under the null hypothesis of no association for K — oo,

N <c fork=1,...K and a constant ¢ < 0.
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Proof: The allele frequency difference multiplied by 2/N can be written as
K
2N - ) =Y i
k=1

where

N N
Te = N@ Z Xi — N Z Xs.
i:Y;=a,Z;=k ©:Yi=u,Z;=k

The variables T} are independent from each other and bounded since N < ¢. The variance

K
N N
pla) _ 5(u)yy — _ T _ 2 (a) _ _(u)y2
Var (2N (p ') =p(1—p) [2]\7 <N(“) + N(“)> (1-F)+4N F;(ﬂ'k )
as derived in proposition converges against infinity for K — oo and hence N — oo
because of the first term. Thus, the asymptotic normal distribution follows from a corol-
lary of the Lindeberg-Feller central limit theorem (Karr, [1993) because the Lindeberg

condition is satisfied for a uniformly bounded sequence of random variables. O

4.2 The method of Genomic Control
4.2.1 The general concept

As shown in the previous section the effect of population stratification is that the vari-
ances of the usual test statistics are inflated. We only considered the allelic x2-test there,
but the variance inflation could similarly be calculated relative to the variance which is
estimated in Armitage’s trend test. Thus, if population stratification exists, an overdis-
persion of the test statistics can be observed. The idea of Genomic Control is to use the
additionally genotyped marker loci to empirically estimate the variance inflation under
the null hypothesis of no association. In the original version of Genomic Control |Devlin
and Roeder| (1999)) proposed to use Armitage’s trend test statistic as test statistic since it
automatically accounts for the extra-variance which occurs if the total population is not
in Hardy-Weinberg equilibrium (section [3.2.3)). [Reich and Goldstein| (2001)) considered the
allelic y?-test statistic instead. In both cases the test statistic, denoted by T2, is asymp-
totically x3-distributed if no population stratification exists. To account for the variance
inflation |Devlin and Roeder| (1999) suggested to approximate the distribution of the test
statistic under the null hypothesis by a scaled x?-distribution. The scaling factor is the
variance inflation A which has to be estimated. Hence they assume that only the variance
is inflated but the shape of the distribution does not change. As discussed in the previous
section this is only an approximation because the asymptotic standard normal distribution
of the standardized allele frequency difference is theoretically not maintained if population

stratification exists. However, Devlin and Roeder| (1999) nevertheless propose to use the
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standard normal distribution as an approximation for the distribution of 7'/ VX or equiv-
alently the x?-distribution as an approximation for the distribution of T2/\. For some
forms of population structure the approximation may break down in the extreme tails of
the distribution but this has not been described so far as a major problem. [Reich and
Goldstein| (2001) empirically investigate the distribution of the allelic x2-test statistic in
the presence of stratification by simulating two subpopulations and varying the distance
between the subpopulations. Their result is that the scaled x?-distribution fits quite well
unless in the case of extreme stratification. Thus, we assume that the test statistic is
approximately scaled y3-distributed for the following derivations.

The remaining question is how to estimate the variance inflation factor A. The idea is to
calculate the same test statistics TZ,...,T7 as for the candidate locus also for the addi-
tionally genotyped null loci [ =1,..., L. Then the inflation is estimated in comparison to
the theoretical value in a homogeneous population. Devlin and Roeder| (1999) proposed to
take the median of TZ,..., T f divided by the median of the y3-distribution to estimate \.
Reich and Goldstein| (2001) suggested to take the mean-based estimator X = %Zle T?
instead. The mean does not have to be corrected by a factor because the y3-distribution
has the expectation 1. The estimator N is changed to 1 if a value below 1 is estimated
because values below 1 are very unlikely. However, there are situations where the inflation
factor A could be slightly smaller than 1 (see proposition , but values clearly smaller
than 1 are not reasonable. If the mean is taken to estimate the variance inflation factor
the advantage is that the distribution of the estimator can be easily determined. Since
the sum of L independent y?-distributed random variables is X%—distributed, it follows for
the mean-based estimator that \ is approximately % x2-distributed. This formula can be
applied to derive a confidence interval for A, as shown below. Furthermore, even without
explicitly defining the inflation factor the statistic ZZL: 1 le can be used as test statistic
for the null hypothesis that there is no confounding effect by population stratification
(Pritchard and Rosenberg, 1999)). Under the null hypothesis of no variance inflation it
follows that Zlel T7 is asymptotically x%-distributed.

To eventually test for association in the presence of population stratification the Genomic
Control test statistic is applied dividing the original test statistic by the estimated variance
inflation. The test statistic 72/ \ is assumed to be approximately y3-distributed. Devlin
and Roeder| (1999) used Armitage’s trend test as original test statistic and estimated A
by the median-based estimator. This test statistic is referred to as GC-MED in the fol-
lowing chapters. The analog test proposed by Reich and Goldstein| (2001) based on the
allelic y%-test and the mean-based estimator for \ is denoted by GC-MEAN. To calculate
a conservative p-value |[Reich and Goldstein (2001) proposed to use the upper limit of the
confidence interval for A as a conservative estimate in the test statistic. Alternatively to
their originally proposed method, Devlin et al| (2004) suggested to use the mean-based

estimator in the test statistic but proposed the F'(1, L)-distribution as an approximation
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to the distribution of the test statistic. The F-distribution is the correct distribution for
a quotient of y2-distributed variables and accounts for the variance when estimating X,
especially if the number of loci L is small. However, for L. — oo the limit distribution is
equal to the y?-distribution and for a large number of loci the difference between both

distributions is small.

4.2.2 The observed type-I error rate

In this section we would like to draw some conclusions from the distribution of the mean-
based estimator A. We investigate the influence of the distribution on the observed type-I
error rate of Genomic Control for the GC-MEAN statistic.

Proposition 4.4. An interval where the estimator \ lies with a probability of (1—19) given

the true variance inflation A is given by
A o A g
T XLs/20 T XL-6/2] -

The (1 — 0)-confidence interval for the true variance inflation \ given the estimator X can

be written as

! |5) |5)

2 )
XLi1-6/2 XLi5/2

Proof: The intervals can be directly calculated under the assumption that N is approx-

imately % X%—distributed. O

A further step is to calculate an interval for the observed type-I error rate of GC which is
observed if the estimator \ is applied instead of the true variance inflation A. We assume
for these calculations that always the original estimator for A is used, instead of changing
the estimator to 1 for values smaller than 1. Let F), I' and F5 denote the distribution
function for the Ax?-,x3- and Xxf—distribution respectively.

Proposition 4.5. If the true variance inflation is equal to \ the expected type-I error rate

of the allelic x>-test to the level « is given by

1
1-F ()\X%;l—oz> .

An interval which contains the observed type-1 error rate of GC to the level o with a

probability of 1 — § can be calculated as

1 1
|:1 - F <LX%;15/2X%;101> ’ 1-F <LX%;5/2X%;104>:| :
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Proof: The relationship between the scaled y2-distribution and the simple x2-

distribution is given by
F\(\x) = F(z),  Fy'(a)=AF a).

If the estimator \ is applied instead of the true variance inflation A the observed type-I

error rate for GC to the level o can be calculated as

P(T*2 P (1-a)) =1~ Ry(F ' (1-a)) =1- F G ) .

For A = 1 this formula gives the observed type-I error rate of the allelic y?-test. With the
interval for A given in proposition the GC interval can be calculated. O

This interval is only dependent on the number of loci used to estimate the variance inflation
factor and not on the variance inflation factor itself because X is cancelled out. Thus, the
variation of the observed type-I error rate is neither influenced by the sample size of the
study nor the amount of population structure. However, if GC is applied with a lower
bound of \ = 1, the upper border of the interval for the observed type-I error rate of GC
is bounded by the the expected type-I error rate for the x2-test which assumes no variance

inflation. In this case GC always has a lower type-I error rate than the y2-test.
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The second approach proposed in the literature to test for association in the presence of un-
known population stratification is the method of Structured Association (SA). The model
based Structured Association approach makes different use of the additionally genotyped
marker loci. Population structure is directly inferred and the test of association incorpo-
rates the estimated population structure.

The concept of Structured Association originally has been developed by [Pritchard et al.
(2000aljb) and later on several different Structured Association methods were proposed
(Satten et al., [2001}; [Zhu et al., |2002; |Chen et al., 2003; Hoggart et al.l 2003; Purcell and
Sham), 2004). In this chapter we would like to introduce our own method of Structured
Association (Kohler and Bickeboller, 2006) and describe the differences to existing meth-
ods. Here we give the new approach in detail with an emphasis on the comparison to
other Structured Association approaches.

The Structured Association approaches can be mainly divided into two categories as one-
and two-step approaches. |Pritchard et al.| (2000a,bl); Purcell and Sham| (2004)) consider a
two-step approach where the first step consists of modelling population structure for the
entire study sample and the second step is the test of association based on the inferred
structure. In contrast, [Satten et al. (2001); [Zhu et al.| (2002); |Chen et al.| (2003)); Hoggart
et al.[ (2003)) propose one-step approaches which simultaneously estimate population struc-
ture and test for association. Our procedure is also a two-step approach and belongs to
the first category. Thus, based on the classification in one- and two-step approaches this
chapter is structured as follows. In section methods for clustering the individuals into
subpopulations as the first step of Structured Association are discussed. Our clustering
method is introduced and compared to other methods. In section methods to test for
association based on the inferred structure as the second step of Structured Association are
described and our own test statistic is derived. In section the one-step approaches for
Structured Association are briefly described. Finally in section the different methods

of Structured Association are theoretically discussed.

5.1 Inference on population structure

Most of the Structured Association methods proposed so far have in common that they use
a probability based approach for clustering the individuals into subpopulations. There are
basically two concepts to apply a probability based approach. The more simple approach
assumes that the population consists of discrete subpopulations. Then a mixture model
can be applied and the subpopulations can be inferred via an EM algorithm. An EM
algorithm was first applied by Purcell and Sham| (2004) in a two-step approach. The
second possibility to cluster the individuals is a Bayesian approach proposed by [Pritchard

et al| (2000a). The advantage of this approach is that it is possible to include admixed
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individuals with alleles from more than one subpopulation. In this model a Markov Chain
Monte Carlo (MCMC) algorithm can be used to infer population structure.

However, the two-step approaches proposed so far all have the disadvantage that they
do not include phenotype information for clustering the individuals. They do not take
into account that cases and controls a priori are expected to have a different probability of
being from each of the subpopulations if confounding by population structure is suspected.
We show here that even in a two-step approach it is necessary to include the information
about the phenotype if the test statistic is based on the likelihood for the genotype data at
the candidate locus. Otherwise the estimated subpopulation proportions in the case and
the control group are biased leading to an inflated type-I error rate of the test statistic.
To determine the underlying genetic structure of a case-control sample we summarize the
multilocus genotype marker data for L loci and N individuals in a vector X as introduced
in section 2.4

5.1.1 The standard mixture model

In this section we want to introduce the standard mixture model which we propose for
clustering a population into discrete subpopulations if only multilocus genetic marker data
and no other phenotypic information are available. For case-control data this standard
mixture model has to be extended as described in section Independently of our
work, Purcell and Sham| (2004) also proposed this model for clustering multilocus genetic
marker data.

The standard mixture model is based on a discrete subpopulation model with fixed sub-
population allele frequencies (see section . Thus, we assume that the population
consists of £k = 1,..., K subpopulations. Within the subpopulations Hardy-Weinberg
equilibrium (HWE) is assumed for each marker locus and linkage equilibrium between all
marker loci. As described in section and the subpopulation allele frequencies
are summarized in a vector ¢, the subpopulation proportions in the vector w and the
unknown origin of each individual in a vector Z. In the model here, ¢, w and Z and are
unknown and have to be estimated.

Under the assumption of HWE, the genotype X;; of an individual from subpopulation &
has a binomial distribution B(2, ¢x;) with probability mass function

2\ . .
f(zalk) = (x) P (1 — ppa)> "

as described in section The assumption of linkage equilibrium between the marker
loci leads to a multivariate binomial distribution B(2, ¢,,) for the complete genotype vector

of an individual ¢ with
L

f(@ilk) = T f(zalk).

=1



5.1 Inference on population structure 49

Thus, the overall unconditional distribution of the genotype vector of an individual is a
mixture of K multivariate binomial distributions. The mixture can then be described by

the following equation
K
i) = mf(xilk).
k=1

Maximum likelihood estimators for the parameters of a mixture model ¢ and 7 can be
determined for a given number of subpopulations applying an EM algorithm. The general
form of the EM algorithm is described in the appendix The EM algorithm can be
applied considering the genotype data as incomplete data and assuming the existence of
the unobserved parameter vector Z. The EM algorithm is chosen because the incomplete-
data log-likelihood

log L(p,mw|x) = logP(x Zlogf (x;)

N
= > log Z . f (k)
=1 k=1

is difficult to maximize since it contains the logarithm of a sum. In contrast, the complete-
data log likelihood

log Lo(p, ml@,z) = log P(w,z) = Zlog (@il2:) P(Zi = 2))
N
= Zlog(ﬂ'z@f(wz‘zz))
i=1

is easy to be maximized. However, the vector Z is unknown and hence an EM algorithm
has to be applied. The following proposition gives the formulas for the EM algorithm in

the mixture model described here.

Proposition 5.1 (standard EM algorithm). The EM algorithm for a mizture of K multi-
variate binomial distributions consists of the following two steps which have to be iteratively
repeated fort =1,2...:

E-step: The first step is to calculate the distribution of the unobserved data using the

current parameter estimates cp(t), w® from iteration t, i.e.

() (t)
z‘k(tﬂ) = P(Z; = klz;, o), w®) = K - (t) lj (t)
Zk’zl 7Tk/ f(ml|k LPk’/ )
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M-step: In the second step the parameters are reestimated as

t+1 *(t—l—l)
A _ Nz

N

(t+1) 1 *(t+1)

P T N (41 D G T
2300 C.I:k( ) i=1

Proof: The distribution of the unobserved data is calculated applying Bayes’ formula.
In the second step of the EM algorithm the function Q(¢p, 7|p®), (1)) defined in appendix
has to be maximized. Independent of the concrete distribution of the data it can be

shown for mixture models in general (Bilmes, [1998) that the function @ simplifies to

Qp,m|e!, ZZq*(”l log +ZZq*(t“ log f(ilk, 4)-

k=1 i=1 k=1 i=1

The two terms of the sum can be maximized separately. The first term has to be maximized
with respect to 7 under the constraint that Zﬁil 7, = 1 and this leads to the given formula
for 7r,(:+1) (Bilmes), [1998]|). The second term depends on the concrete distribution and has
to be maximized with respect to . For the multivariate binomial distribution it takes

the form

K L N 9
Z Z Z qz}gtﬂ) [log <x ‘l> + xi log pr + (2 — ;) log(1 — @kl)} .

(t+1)

The formula for ¢;," " follows by solving the equation

0 N (t+1) | Ta 2 — 1y
a® _E *(e+l) | 2l AT el
T = . =0.
Dowt (ol ) — ik [@kl 1-8%}

5.1.2 The mixture model for case-control data

For case-control data the additional information about the phenotype is available. We
would like to show here that it is necessary to include this information in the clustering
step to estimate the subpopulation proportions within case- and control group without a
systematic bias. In a correct model it has to be assumed a priori that the distribution
of the subpopulations is different between case and control group, i.e. in the mixture
model the mixture proportions for cases and controls have to be modelled separately.
The standard mixture model is extended by modelling two different mixture proportions
xW) = (7r§y), cee 7'['%)), for y = a (cases) and y = u (controls) as in section The vector
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Y again contains the complete phenotype information of all individuals. The mixture can

then be described by the equation

K

mz’yz ZP —k‘}/;:yz) wz’k yz Z (yz)f xz‘k

k=1

since the distribution of the genotype data conditional on the subpopulation is independent
of the phenotype. The EM algorithm has to be modified considering the genotype data
conditional on the phenotype data as incomplete data and assuming again the existence
of the unobserved parameter vector Z. The incomplete-data log-likelihood can be written

as
log L(g,m@ n|z,y) = log P(zly) = Zlogzw(yz)f (4]k)
=1

and the complete-data log likelihood has the form

log Lo (o, 7, 7@, y,2) = log P(w, z|y) = Zlog (xil2:) P(Zi = zily:))

= Zlog ( :1:,]21)> .

The following proposition gives the formulas for the EM algorithm in the mixture model for
case-control data. This EM algorithm is referred to as phenotype-dependent EM (P-EM).

Proposition 5.2 (phenotype-dependent EM algorithm). The EM algorithm for a mizture
of K multivariate binomial distributions with different mizing proportions for cases and
controls consists of the following two steps which have to be iteratively repeated for t =
1,2...:

E-step: The first step is to calculate the distribution of the unobserved data using the

current parameter estimates Lp(t), ﬂ'(a)(t),ﬂ'(u)(t) from iteration t, i.e.

O ik, of)
Sh_y e f (il o)

M-step: In the second step the parameters are reestimated as

¢ = P(Z; = klzi, i, o, @0 7 (00) =

e+ _ 1 (t-+1) _
U = YO ; b for y=a,u
vYi=y
(t+1) 1 o~ )
t+ t+
Yo T (t+1) > i i

2Zzlzk =1

Proof: The distribution of the unobserved data is calculated applying Bayes’ formula

conditional on the phenotype in the same way as for calculating the mixture distribution.
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Adapting the proof of Bilmes (1998) we show that in the extended model the function @
(see appendix [A.2.2)) can be simplified similarly as before to

Q. 7@, 70 7@ 7w
= Z log Le (i, w, w|a,y, 2) P(z|z, y, ¥, 7O, 7 (00)

N
Z Zlog( (yl)f ml|zlv(pz )) qz(’t;z_/l)

(Zlv 7ZN) =1
N K
o1 t+1
= Z Z log ( yZ)f(:Bz|zla Sozz)> qz(zj_ : Z H q'gl;_' )
P (31,-02i=1,7i41,-.2N) V58 #i
K N
. t41 (t+1)
=> > log (W;(gy)f(wi’kvs% )qz(k+ : 11 Z %j/
k=1 i=1 i/ i 2 =1

—_——
=1

N
Zq(t+1 log (v:) Jrzzq(” log f(xi|k, 1)

i=1 k=1 1=1
N K
t+1) (t+1 (t+1)
= Z q(+ logTr(a)+Z Z qlJr )logﬂ +Zqu+ log f(xilk, ¢5,)-
k=1i:Y;=a k=1i:Y;,=u k=1 i=1

Thus, the sum consists of three terms which can be maximized separately. The first two

terms have to be maximized with respect to #® under the constraint that Zszl W](Cy) =1

(y)(t+1)

for y = a,u and this leads to the given formula for in the same way as before
(Bilmes, 1998). The third term which has to be maximized with respect to ¢ is the same
as before and hence dependent on the genotype data of all individuals. Thus, for ¢+

the same formula as before is obtained. O

5.1.3 The bias of the standard EM algorithm

The two-step approaches proposed so far for Structured Association (Pritchard et al.,
2000alb; [Purcell and Sham, |2004) do not take phenotype information into account for
clustering the individuals. We want to show that applying the standard EM algorithm
for a case-control sample leads to asymptotically biased estimators of the subpopulation
proportions within cases and controls. The final estimates of the standard EM algorithm
are denoted as ¢, = P(Z; = k|z;) in comparison to the estimates of the P-EM algorithm
qir = P(Z; = k|z;,y) for an individual with phenotype y. Applying Bayes’ formula the

relationship between those two parameters is given by

W

Qik = —7 .5
K (v)
Zk’:l Vir Q;'kk/
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where %(vy) = P(Y; = y|Z; = k) is the risk for phenotype y in subpopulation & within the
study sample which does not depend on the marker data ;. We now specially want to
consider the case K = 2 and characterize the bias introduced when estimating subpopula-

tion proportions within cases and controls from the result of the standard EM algorithm,

~y) L .
Tk - N® YZ di -
vYi=y

i.e. the bias in the estimator

Proposition 5.3. For K = 2 the absolute difference between the subpopulation proportions
in the case and control group s asymptotically systematically underestimated with the
standard EM algorithm for N — oo, but L < oo, i.e.

E ]%Z(a) - %Z(U)| < ]W,(:) — W](cu)| for N — oo, L < oo.

This holds as long as W,(f) #+ 7rl(€u).

Proof: The relationship between ¢;; and ¢; simplifies for K = 2 to

*

_ 91
g + 71— qfy)

qi1

where 7 = véy)/wgy). The three cases 0 < 7®) < 1, 7®) = 1, 7 > 1 have to be
distinguished. First, we want to concentrate on the case 7 > 1. The risk ,y](iy) can be
written as a function of the true subpopulation proportions for phenotype y in comparison

to the overall sample

and hence

Thus, 7® > 1 is equivalent to 7T§y) < m and hence Wéy) > my. For 7% > 1 the

denominator of the above formula for ¢;; is > 1 which means that ¢; < ¢} for all

individuals ¢ of phenotype y. Equality is only reached if ¢;; = 1 or ¢;; = 0. Hence, it

() ()

follows 71,* < 7] because there is some uncertainty in the estimates ¢}, for L < oo and

(v)
1

they are not all equal to 0 and 1. Since m,” is the maximum likelihood estimator from the

mixture model for case-control data the estimator is asymptotically unbiased for N — oc.

() %gy)

Thus, %T(y) is asymptotically biased because the difference %I does not converge

to 0 for N — 0o, L < oo. If 7 > 1 and hence W%y) < 1 the unconditional estimate

%\I(y) systematically overestimates the true proportion W%y), ie. ﬂiy) < Eﬁ(y) < .

*(y)
1

Analogously for 0 < 7®) < 1 the estimator 7 systematically underestimates the true

proportion Wgy), ie. Wgy) > E%’lk(y) > m; . The same holds for subpopulation 2 because

*(y) ~x(y)
1

subpopulation proportions sum up to 1. In conclusion, the estimators 7 and 7,
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are asymptotically biased towards the overall subpopulation proportions 71 and 7 and
do not differ so much from them as the true subpopulation proportions 7T§y) and ﬂéy) for
phenotype y. Thus, the difference of the subpopulation proportions in case and control

group is underestimated. Only for 7 =1, i.e. 7T§y) = m; and ﬂ'éy) = m9 no bias appears. O

The underestimation of the differences in the subpopulation proportions between case
and control group is expected to lead to an increased type-I error rate in the subsequent
association test. In general, the bias becomes larger with an increasing difference of disease
risks in the subpopulations as well as an increasing uncertainty in the classification into

the subpopulations.

5.1.4 Extensions of the EM algorithm

In this section two extensions of the EM algorithm are discussed, first how to incorporate
missing values and second how to handle multiple alleles. These extensions can be ap-
plied for both algorithms, the standard EM algorithm and the phenotype-dependent EM

algorithm.

Missing values: Both EM algorithms are described for the perfect situation that the
genotype data are fully available for all individuals and marker loci. However, in reality,
the genotyping success is never equal to 100%. The algorithm has to be slightly changed
to incorporate missing values. Let v; be an indicator variable which indicates if z;; is
available or missing,
1 : x; is available
v = { 0 : x; is missing

In the E-step the distribution of the genotype data vector for each individual 7 is used to
“+1) for the standard EM algorithm or q( U for the phenotype-dependent EM

algorithm. In the case of missing values the random vector of the genotype data X; only

compute g,

refers to all marker loci which are genotyped for individual ¢. The probability function for
X; (see section [5.1.1]) can then be written as

$1|k’ H f le|k

Ly =1

The second change is in the allele frequency estimate calculated in the M-step of the
(t+1)

EM algorithm. In the case of missing genotypes the estimate ¢;;” "’ only refers to all

individuals which are genotyped at locus [, i.e.

(t+1) 1 (t+1)
P = D Z Qi il -
2 ZZ V1= 1 zk,‘ i:Vilil
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Multiple alleles: The other extension which shall be briefly mentioned is for multi-
allelic marker data especially microsatellites as described in section [2.2.4] Here again
the distribution of the genotype data changes which affects the E-step of the EM algo-
rithm. Under the assumption of HWE in the subpopulations the genotype data vector
X =(X (1) . ¢ Z(le))/ is multinomial(2, ¢;,;)-distributed with subpopulation allele fre-

i
quencies ¢y, = (cpg), e ,go,(fl))’ . The probability function of X is given by

R,
2 (r)\ (™
f(@alk) = ——- H(Sokl )hit.
R
Hril .Z'g)' r=1
The multilocus genotype vector X; then has a multivariate multinomial distribution with

probability function
L

f@ilk) =[] f(@alk)

=1
under the assumption of linkage equilibrium between the marker loci as before.

In the M-step of the EM algorithm the allele frequencies have to be estimated as

(r)(t+1) 1 al (t+1) (r)
r)(t+1 t+1 r
Pri = Q. Ty
22?;1 qg,tfl) i=1

forr=1,..., R;.

5.1.5 Estimation of the number of subpopulations

A remaining problem is how to estimate the number of subpopulations. First of all, the
EM algorithm has to be applied for several numbers of possible subpopulations K and
the incomplete-data likelihood has to be calculated for the maximum-likelihood estimates,
either

LmaX(K) = L(@v 7?|"I"7 K)

for the standard EM algorithm or
Limax(K) = L(@, 7, 7|2, y, K)

for the phenotype-dependent EM algorithm. An obvious way would be to use the likelihood
ratio test for testing the null hypothesis that the population consists of K subpopulations
versus the alternative hypothesis that the number of subpopulations is equal to K + 1.
However, it is well known (Titterington et al., |1985) that the test statistic does not have
the usual y2-distribution under the null hypothesis since regularity conditions do not hold
for mixture models. The reason is that the null hypothesis lies on the boundary of the
alternative hypothesis because the null hypothesis can be written in the way that an

additional "dummy” population K + 1 exists with the parameter 7w equal to zero.
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Therefore a parametric bootstrap procedure is recommended to estimate the distribution
of the likelihood ratio test statistic (Bohning, 2000). The unknown parameters have to be
estimated from the original data under the null hypothesis. Then bootstrap samples are
drawn from a population with the estimated parameters. For these bootstrap samples the
unknown parameters are estimated under the null hypothesis and under the alternative
to determine the empirical distribution of the likelihood ratio test statistic.

However, in praxis there are also other criteria used to make computations feasible, e.g. the
Akaike information criterion (AIC) which is based on a penalized likelihood (McLachlan
and Peel, 2000). It must be noted, though, that the AIC is theoretically not justified
since it is derived under the same regularity conditions as the likelihood ratio test statistic
(Titterington et al., |1985). The AIC is defined as

AIC(K) = —2log Lmax (K) + 2n(K)

where n(K) is the number of free parameters in the mixture model. In the diallelic case
the allele frequency vector ¢ has L - K free parameters and the vectors of the mixture

w)

proportions 7, 7@ (") each have K — 1 free parameters. Thus, for the standard EM
algorithm the number of parameters is n(K) = L - K + K — 1 and for the phenotype-
dependent EM algorithm n(K) = L - K + 2(K — 1). The number of subpopulations with
minimal AIC(K) is chosen. In practice, however, some problems have to be handled.
Depending on the starting values the EM algorithm converges to different local maxima
leading to different values of the log-likelihood. Thus, we propose to run the EM algorithm
with different starting values for the same K. It must be ensured that finally a run of
the EM algorithm is taken which does not converge to some local maximum with a rather
small log-likelihood in comparison to the global maximum. How we exactly choose K in

our simulations is described later in the simulation chapter.

5.1.6 The EM algorithm with admixture of Purcell and Sham (2004)

In real populations admixture between subpopulations is observed (see section .
Purcell and Sham| (2004) introduced a discrete model of admixture where parameters
also can be inferred via EM algorithm. Their model only accounts for mixture LD but
not for admixture LD between linked loci (see section [2.3.4). [Purcell and Sham| (2004)
proposed the EM algorithm incorporating admixture as an extension of the standard EM
algorithm but their model also can be applied for the phenotype-dependent EM algorithm.
Thus, we would like to describe it in more detail. Admixture is modelled in terms of a
finite number D of derived classes that represent an admixture of one or more of the
K ancestral subpopulations. Thus, individuals of the same admixture proportions q{‘ are
summarized in a derived class d. A derived class is described by the admixture proportions

Cq = (Ca1y---,Cax) of its individuals where (g = q;‘,‘c is the proportion of the genome
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originated from the ancestral subpopulation k for an individual ¢ from the derived class
d. The sum of the entries (g1, k = 1,... K is equal to 1. Derived classes are considered in
a 1/S resolution where S is specified by the investigator. All possible derived classes are
considered where each admixture proportion is a multiple of 1/S. Thus, the derived classes
also include pure classes which are only derived from one subpopulation. The unobserved
data vector consists of two parts, one for the derived classes and the other for the ancestral
subpopulations. For each individual ZZ-D C denotes the derived class (DC) of individual 7.
Furthermore, for each locus [ and strand j the ancestral subpopulation Z{?j where allele
Xi; is from is unknown. The EM algorithm is based on the relationship between derived
classes and ancestral subpopulations. The E-step of the EM algorithm refers to calculating
the posterior derived class probabilities of each individual. In the M-step the derived class
proportions are either calculated for the whole sample (standard EM) or for cases and
controls separately (phenotype-dependent EM). However, the allele frequency estimates
are calculated for ancestral subpopulations. Thus, for each allele the posterior ancestral
subpopulation probabilities have to be calculated based on the posterior derived class

probabilities.

5.1.7 The Bayesian admixture model of Pritchard et al. (2000a)

The most popular method for inferring population structure is a Bayesian approach in-
troduced by Pritchard et al.,| (2000a) and further developed by [Falush et al. (2003). The
method is implemented in the program STRUCTURE which has been widely used dur-
ing the last years (see section . Pritchard et al.| (2000a) first proposed a Bayesian
approach for a similar discrete subpopulation model as described before. Thus, the same
parameters are estimated but the estimation method is different. The advantage of the
Bayesian approach is that it is possible to extend the model and to incorporate admixture
in a continuous form. It seems to be a rather realistic model of population structure if the
parameters can be correctly estimated. However, it is again not optimal for case-control
data since the phenotype is not taken into account. In the following paragraph this model
is described in more detail indicating how phenotype information could be incorporated
in the model.

In the admixture model each individual i is assumed to have inherited some unknown
proportion qﬁc of its ancestry from each population k. As in the model of [Purcell and
Sham| (2004) Zﬁj denotes the ancestral subpopulation where allele X ;;; is from. The vec-
tor notation X ;; is used because the model is formulated for the multiallelic case. In the
subpopulations again Hardy-Weinberg equilibrium and linkage equilibrium are assumed.
Hence, in the terminology of |[Falush et al. (2003) background LD between tightly linked
markers is not allowed (see section . Thus, conditional on the subpopulation it holds
that

PUXY) =1,XY) = 0for all ¥/ # r}|Z4 = k) = )
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independently for each strand j and individual <.

There are different possibilities to define the distribution for the unknown subpopulations
Z{?j. The originally proposed model of |[Pritchard et al. (2000a) only models mixture LD,
admixture LD is not included. Under the assumption of no admixture LD the ancestral

subpopulations Z

;1 are independent for each locus [ and strand j and have the a-priori

distribution

P(Z;;‘j =k) = ¢

The extended model proposed by Falush et al.[(2003) additionally includes admixture LD.
The ancestral subpopulations Z;?j are dependent along each chromosomal strand, forming
a Markov chain. It is assumed that chunks of chromosomes are derived as intact units
from one of the subpopulations. Breakpoints between successive chunks occur at random
and are modelled via a Poisson process. The subpopulation of origin of each chunk in
A

individual 7 is independently drawn according to the vector g;'.

Because the ancestral
subpopulations are unknown, the model is a hidden Markov model for the observed geno-
type data.

Estimation is performed in a Bayesian framework. The joint posterior distribution of the
unobserved parameters Z4, ¢, q* given the genotype data X must be inferred. Here the
introduced parameters are summarized in vectors referring to the total sample. An MCMC
algorithm is implemented to draw a sample from the joint posterior distribution. General
information on constructing MCMC algorithms can be found in Gilks et al.| (1996), for
example. Prior distributions have to be specified for the admixture proportions and allele
frequencies. In the updated version of [Falush et al.| (2003]) the admixture proportions q;‘1
are a priori independently Dirichlet()-distributed where e = (g, ..., ak)’. The Dirich-
let distribution is a generalization of the beta distribution to the multivariate case. It
is very convenient to use the Dirichlet distribution for modelling admixture because a
property of the Dirichlet distribution is that the entries of the vector qf‘ sum up to one.
The expectation of the Dirichlet distribution is qu’.‘}f = oy /o where ag = ), ag. If the
expectation is denoted by 7 = Eq{}c, the coefficient 7, gives the probability of an allele
being originated in subpopulation k£ and thus refers to alleles instead of individuals. Con-
sequently, the Dirichlet distribution could be reparameterized as a = («gmy, ..., 007K)’
where the parameter oy determines the amount of admixture in the sample. Small val-
ues of the admixture parameter ag indicate only a small amount of admixture with the
majority of individuals having most of their alleles from only one subpopulation. For a
case-control sample this prior distribution could be changed. Cases could have a different
prior distribution than controls, i.e. conditionally on the phenotype y the admixture pro-
portions qZA could assumed to be a priori independently Dirichlet(a(y))—distributed where
al) = (a((]y)ﬂgy), . ,a[()y)ﬂ%))’. The parameters of the distributions have to be estimated
including a Metropolis-Hastings step in the MCMC algorithm.

For the allele frequencies a prior distribution has to be specified as well. [Pritchard et al.
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(20004) proposed a Dirichlet(1, ..., 1) prior of dimension R; to model the allele frequencies
5 at each locus [ within each subpopulation k. The special form of the Dirichlet distrib-
ution with all parameters equal to one corresponds to a uniform distribution of the allele
frequencies. This is a model where the allele frequencies in the subpopulations are inde-
pendent which is suitable for large population structure. A correlated subpopulation allele
frequency model that accounts for correlations between the allele frequencies in closely re-
lated subpopulations should be applied as prior model for smaller population structure.
In this model the allele frequencies in a hypothetical ancestral population are assumed to
have uniform priors and the prior distribution of the subpopulation allele frequencies is a
conditional distribution based on the ancestral allele frequencies and the distance of the
subpopulations to the ancestral population. The correlated subpopulation allele frequency
model can be seen as an extension of the beta-binomial model (see section [2.3.2)) which we

will apply later for simulating diallelic multilocus marker data for discrete subpopulations.

5.2 Association tests based on the inferred structure

The second step of Structured Association is to test for association at the candidate locus
based on the inferred structure. We want to focus on two association tests, the likelihood
ratio test of Pritchard et al. (2000a) and the Wald test we propose. Both test statistics are
based on the same likelihood function for the genotype data conditional on the phenotype
data which is introduced first. Additionally, the concepts for an association test in a

logistic regression model are summarized.

5.2.1 The likelihood function

The likelihood function for the genotype data at the candidate locus is based on the vector
q = (q},...,q%) which here in general describes the inferred structure conditional on the
phenotype data. The vector q; = (gi1,--.,qix) either contains the inferred posterior
probabilities in the mixture model for case-control data (section or the admixture
proportions in the admixture model (section for case-control data. It is also possible
to use other algorithms than described before to infer population structure as long as their
result is a vector g of the form described here. As before, the test statistics we consider
are based on the likelihood for the genotype data at the candidate locus conditional on the
phenotype data. To adjust for population structure the likelihood has to be additionally
conditioned on the inferred structure. We want to emphasize again that the inferred
structure itself has to be calculated conditional on the phenotype data as well since the
likelihood is calculated conditional on the phenotype data.

For the diallelic candidate locus the notation introduced in chapter |3| is used, denoting
the genotype data with the vector G and the allele frequencies at the candidate locus
under the alternative with p* = (p(@’, p(*)")" and simply with p under the null hypothesis.
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Additionally, let Z¢ = (ZH, ey Zgg)’ be the vector of the unknown subpopulations at the
candidate locus where Zg denotes the subpopulation where the j-th allele of individual
¢ at the candidate locus is from. Dependent on the vector g; each individual ¢ has its
own allelic distribution. Under the alternative each allele G;; is Bernoulli distributed with

allele frequency

K K
k=1 _

It should be noted that for the second equality it is necessary that the admixture pro-
portions are calculated conditionally on the phenotype. Under the null hypothesis the
allele frequency in subpopulation k is independent of the disease status y;. However, the
distribution of allele G;; is still dependent on the disease status y; because the structure
is calculated conditionally on the phenotype, i.e. the above formula simplifies under the

null hypothesis to

K
Po(Gij = 1lyir ;) = > ik

The conditional distribution of G; is a binomial distribution B(2, Zszl q,-kplgy")). Here an
allele based test statistic is considered where the two alleles of one individual are allowed to
be from different subpopulations and the subpopulations of the two alleles are considered
as independent. This corresponds to the idea of the admixture model. We do not use the
constraint that the two alleles of one individual should be from the same subpopulation
if g;; denotes the posterior probability in the mixture model. The likelihood function is
then

Li(p,p™) = Pigly,q) = [] fleila.a) [ floilu.q)

i:Y;=a :Y;=u

9 K gi K
- L Eme) (Emt)
i:Yi=a k=1 k=1

9 K gi K 2—g;
LG (o) (o)
Y= k=1 k=1

U

2—9i

This simplifies under the null hypothesis to

Lo(p) = Polgly.a) = | < ) <Z qm;%) (1 - me)
k=1

2—gi

=1

The log-likelihood log L1(p') has to be maximized with respect to p@ and p( which
leads to two separate systems of K non-linear equations, the first based on the genotype
data for cases, the second based on the genotype data for controls. Maximizing the log-

likelihood log Lo(p) for p leads to one system of K non-linear equations, based on the
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complete genotype data. These systems again can be solved by an EM algorithm consid-
ering the genotype data G as incomplete and the vector Z¢ as missing data. The following
proposition gives the formula for the EM algorithm to maximize the log-likelihood under
the alternative with respect to p® and can be applied analogously for the log-likelihood
under the null hypothesis.

Proposition 5.4. The EM algorithm for mazimizing the log-likelihood under the alterna-
tive with respect to p¥) consists of the following steps which have to be iteratively repeated
fort=1,2...:

E-step: The first step is to calculate the distribution of the unobserved data using the cur-
rent parameter estimates p®® from iteration t. It is sufficient to consider the individuals
i at strand j where G;j =1 and Y; = y.

)

S g

M-step: In the second step the allele frequencies are reestimated as

W) (E+1) 1 C(t+1)
Py - C(t+1) Z Z Dijk Gij -
D iYimy Dj=1,2 Qjk @Y=y j=1,2

Proof: The EM algorithm can be derived in the same way as for the mixture model. O

The maximum likelihood estimates are denoted as ﬁ(“) and ﬁ(”). Two special cases require
additional remarks. If discrete subpopulations are considered and subpopulation member-
ship is known in advance, the admixture proportions are ¢;; = 1 and ¢;r = 0 for k' # k for
an individual ¢ from subpopulation k. The maximum-likelihood equations can be solved
for each k independently leading to the usual maximum likelihood estimates. The second
extreme case is the case where no subpopulation information is available for concrete in-
dividuals, only the subpopulation proportions are known within cases and controls. Then
Qi = TFIE:y) for all individuals. In this case the maximum-likelihood equations cannot be

uniquely solved.

5.2.2 The likelihood ratio test of Pritchard et al. (2000b)

Pritchard et al.| (2000b) proposed a likelihood ratio test denoted as STRAT (Structured
Association Test) which is based on the likelihoods calculated above. However, |Pritchard
et al. (2000b) proposed the test without conditioning the admixture proportions on the
phenotype. This is theoretically not correct as discussed in the previous section. The test
can be seen as an extension of the unrestricted likelihood ratio test described in proposition

3-8 for discrete subpopulations and known subpopulation membership. [Pritchard et al.
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(2000b)) recommended to calculate the p-value by simulations. However, since the likeli-
hood is calculated conditioning on the inferred structure the likelihood ratio test statistic

has the usual asymptotic y?-distribution.

Proposition 5.5. The unrestricted likelihood ratio test statistic based on the likelihoods

calculated in section [5.2.1]
9log ( Lo(p) )
L, p™)

s asymptotically X%(—distm'buted under the null hypothesis Hy : p@ = p(®)

Proof: The asymptotic theory of likelihood ratio tests is described in the appendix
[A271] Under the alternative K additional parameters have to be estimated. 0

The likelihood ratio test has the advantage that the test statistic is easily calculated
and that it can be generalized straight forward for the multiallelic case. However, as we
discussed in section [3.3.2] the unrestricted likelihood ratio test is not optimal if population
stratification only acts as a confounder and not as an effect modifier. Since a restricted
likelihood ratio test has the disadvantage that the parameters have to be estimated under
the restricted alternative we construct a Wald test for the situation that only confounding
effects of population structure are expected and the allelic odds ratios are assumed to be

the same in all subpopulations.

5.2.3 The Wald test

In this section a Wald test is derived which later is referred to as CHIPOP. To calculate
a Wald-type test statistic, the variance of the maximum likelihood estimates has to be

asymptotically calculated.

Proposition 5.6. The asymptotic distribution for the maximum likelihood estimates is
VN (3" - p') & N (0,NT"'(p")

The information matrixz splits into two parts
I(p") = ding (1(p), 1) (p))

where IW (pW) is a K x K matriz with the entries

dik9ik*
(Y (P e =2 :
2y Sl ) (1 ~ Yk qz'k/pz(ff))
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Proof: The log-likelihood function l; = log L1 can be written as

L@ ™)=Y [log (;) + gilog (Z Gy > + (2 gi) log (1 - Z Gy )>]

i:Y;=a k=1 k=1
K
+ llog < > + gilog <Z qin Dy ) +(2 - gi)log (1 -y qikfp,%))] :
Y, =u k'=1 k=1
For the first derivatives it follows that
0 qik
L, p") =Y g————= - (2—g) :
apyY ity Dh—1 %k’pér) 1- S8 qupl

The second derivatives with respect to the same phenotypes are calculated as

0° Qik ik~ Qikik>

— L, p") = Y -y —(2-g) :
®) 5, (@) ’ 2 5

opy Opje oy (S awnl?) (1- S awn?)

All second derivatives with respect to discordant phenotypes are zero, i.e. for y # y*

o2 (@)_pw

——<l(p*,p\") = 0.

8pl(c ) ap(y )
The entries of the part of the information matrix which corresponds to phenotype y can
be calculated as

32
[ (p(y))]k,k* - _E [ ( )l1(p(“),p(“))]

Op,(Cy)@p,fi
_ Z 9 Qikqik* +9 qik4ik*

K K
i:Yi=y Zkle Qz‘k/P;(f//) 1- Z;«:l Qik'p,(ff)

-9 Z = q(k:qzk

< .
Y=y Zk/ 1 qzk/pk/ 1- Zkle %’k/p;(ff))

The asymptotic normal distribution follows from the standard maximum likelihood
theory as described in the appendix in proposition ]

The Wald test we propose is based on the allele frequency differences between cases and
controls averaged over the subpopulations. Let the vector (c1, ..., cx)" contain the weights

which are assigned to each allele frequency difference and let the contrast vector be ¢ =

(c1y...,Cxy—C1y. .. —CE).

Proposition 5.7. Let EN be the variance estimator under the null hypothesis Hy : p@ =
p e
Sy = diag (1°(3) ", 1 (3) ")
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based on the definitions of proposition[5.60. The Wald-type test statistic

oK a3
S Yk e (HO®) e + T B) i)

(C’f)l)/[C/f}NC]flclf)l _

is asymptotically x3-distributed for N — oo, but W,(;) > s and ﬂliu) >sforallk=1,... K

and some constant s > 0, under the null hypothesis of no association in the subpopulations.

Proof: Under the null hypothesis of no association Hy : p(® = p(®) it follows that

dp —ch F—p) =0

for each vector ¢ as defined above. Thus, the Wald test statistic can be based on the
weighted average ¢p'. The asymptotic variance X = I(p')~! can be estimated under
the null hypothesis of no association replacing p'® and p™ by p. As described in
proposition the Wald-type statistic is then asymptotically y2-distributed with 1 df
because c is only a vector and hence of rank 1. For the asymptotic distribution it has to
be assumed for each subpopulation k that 7'['](:) > s and 71',(:) > s. Thus, the convergence
refers to the number of alleles from each subpopulation k£ within cases and controls, i.e.
N(a)ﬂ',(f) — o0 and N(“)ﬂ]gu) — 0. O

The Wald test we propose here can be viewed as an extension of the Cochran-Mantel-
Haenszel test described in proposition [3.6]which is the standard test adjusting for a discrete
and known confounding variable. In the case of discrete subpopulations the test statistic
simplifies to the Cochran-Mantel-Haenszel test.

In principle it would be possible to take any weights, for example the subpopulations could

be equally weighted. However, we propose to take
2
L/(N@F) + 1/ (N7

which is the harmonic mean of the estimated number of alleles from subpopulation &

C —

within cases and controls. Thus, the variance of the test statistic is reduced because the
weight of a subpopulation is low if the proportion of a subpopulation is small in cases or in
controls. The weights are adapted from the Mantel-Haenszel test to the case of unknown
subpopulations.

Based on the same arguments as in the case of discrete subpopulations it can be shown

that the numerator of the test statistic
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is an asymptotically unbiased estimator for a common log odds ratio in all subpopulations
k multiplied by a constant. Thus, the Wald test statistic should be applied in the case
where a common odds ratio in the subpopulations is assumed. However, the weights do
not fulfill any optimality criterion as in the discrete case where the weights are chosen
to maximize the Pitman efficiency of the test statistic for the alternative hypothesis of a
common odds ratio. Weights which are optimal in this sense could be constructed here as
well but have a very complicated form dependent on the allele frequency estimates, thus we
do not use them here. However, since the weights are adapted from the Mantel-Haenszel

test they should be quite close to the optimal weights.

5.2.4 Logistic regression as an alternative approach

Alternatively, logistic regression could be applied to test for association conditionally on
the inferred structure in the model without admixture. We decided to concentrate on
the classical approaches to test for association as described before and just would like to
outline the idea to build up a logistic regression model. The logistic regression is applied

conditional on the subpopulation
logit (P(Y; = algi, Zi = k) = o+ Bgi +

where # models the effect of the candidate gene and 7 the effect of subpopulation k as
described in section This is the same equation which Satten et al.| (2001)); Zhu et al.
(2002)) use in their one-step approach explained in section The idea is to derive an
expression for the likelihood P(yl|g, q) of the phenotype data conditional on the genotype
data at the candidate locus and the inferred structure. In this case, the vector of the
inferred structure g contains the posterior probabilities of each individual belonging to
each of the subpopulations estimated in a standard mixture model. These probabilities
do not have to be calculated conditionally on the phenotype because the logistic model is
based on the likelihood of the phenotype data. The likelihood for each individual ¢ can be

formulated as a mixture of K subpopulations
K
P(yilgia;)) = Y P(Zi =klgi, a;))P(Yi = uilgi, Zi = k)
k=1

K
= > qwP(Yi = yilgi, Zi = k)
k=1

under the assumption that the probability that an individual belongs to a certain sub-
population is not dependent on the genotype data at the candidate locus. The total
likelihood then is the product of the likelihoods for each individual. The probability
P(Y; = yi|gi, Z; = k) can be written as a function of the parameters «, 7 and [ using the

logistic regression model. Some technical work has to be carried out to derive an iterative
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algorithm to determine the maximum likelihood estimates for the regression parameters

and to construct the test statistics. Details could be worked out in the future.

5.3 One-step approaches

Satten et al. (2001)); |Zhu et al. (2002); Chen et al.| (2003); Hoggart et al. (2003]) proposed
one-step approaches for Structured Association. The idea is to simultaneously estimate
population structure and test for association at the candidate locus. For comparison with
our approach the two most popular one-step approaches are briefly summarized. Although
one-step approaches seem to be statistically superior they have disadvantages as discussed

in detail in section (.41

5.3.1 The one-step mixture model of Satten et al. (2001)

Satten et al.| (2001)) proposed a one-step approach assuming that the total population is a
mixture of K discrete subpopulations. Zhu et al. (2002) later suggested a similar method,
thus the two approaches can be described together. To model structure and association
simultaneously, the mixture is assumed to be also dependent on the genotype data at
the candidate locus. [Satten et al.| (2001)) consider a mixture of multivariate binomial
distributions as described before. However, Zhu et al.| (2002)) do not consider the original
marker data in the model but propose to start with a principal component analysis to
reduce the dimensionality and consider a mixture of multivariate normal distributions.
For the test of association a logistic regression model conditional on the subpopulation is
proposed as described in section

The idea of |Satten et al.|(2001)) is to combine the mixture model and the logistic regression
by deriving an expression for the combined likelihood P(z,g|y) of the marker data and
the genotype data at the candidate locus given the phenotype data. [Zhu et al.| (2002)
instead consider the combined likelihood P(x,y|g) of the marker data and the phenotype
data given the genotype data at the candidate locus which is more straight forward if a
logistic regression model is applied (see section . The likelihood for each individual 4

can be formulated as a mixture of K subpopulations
K
P(ziyilg:) = Y P(Zi = klgo) P(ai, yilgi, Zi = k)
k=1

K
- ZP(Zi =k)P(Y; = vilgi, Zi = k) f(xi| Z; = k),
k=1

again under the assumption that the probability that an individual belongs to a cer-
tain subpopulation is not dependent on the genotype data at the candidate locus. The

likelihood can be interpreted as a mixture likelihood where the mixture proportions
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P(Z; = k)P(Y; = vilgi, Zi = k) are dependent on the phenotype and genotype of the
individual. The probability P(Y; = v;|gi, Z; = k) can be written as a function of the para-
meters a, N and 3 using the logistic regression model. The maximum likelihood estimates
for this model can be determined applying an EM algorithm. However, one disadvantage
of the model is that hypothesis testing is not straight forward because the variance of the
maximum likelihood estimate B cannot be directly calculated due to the large number of
parameters in the model. A likelihood ratio test could be applied additionally maximizing
the likelihood under the null hypothesis Hy : 5 = 0. However, Satten et al. (2001 recom-
mend not to use this test statistic because different subpopulations could be inferred when
repeating the algorithm under the null hypothesis. [Satten et al. (2001) instead propose
to apply a parametric bootstrap approach as described in section to estimate the

variance of the maximum likelihood estimate (.

5.3.2 The one-step Bayesian model of Hoggart et al. (2003)

Hoggart et al.| (2003) developed a rather complicated but very general Bayesian approach
implemented in the program ADMIXMAP. The program can be applied to analyze data
sets which consist of a quantitative or binary trait and multilocus genotype data from a
sample of individuals drawn from an admixed population. One main application is a case-
control study where the disease status is the binary trait of interest. In contrast to the
models explained before, the model does not make a difference between marker and candi-
date loci. Here, each marker locus used to infer population structure can be additionally
tested for an association to the phenotype. Admixture is modelled in a Bayesian frame-
work similar to the approach of Pritchard et al. (2000a); Falush et al.| (2003) by specifying
prior distributions for the model parameters and calculating the posterior distributions by
an MCMC algorithm. The main difference to Pritchard et al.| (2000a); Falush et al.| (2003)
is that admixture is modelled dependent on the phenotype but in a different way as we
propose. A logistic regression model is fitted to model the dependence of the phenotype on
individual admixture and possible covariates. The posterior distribution of the regression
coefficients is part of the result of the MCMC algorithm. To test for association between
a marker locus and the disease, the logistic regression model under the alternative is con-
sidered where the phenotype is additionally dependent on the genotype at the marker
locus. A score test is derived to test if the regression parameter for the genotype at the
marker locus is equal to zero. The score test has two advantages. The score (gradient of
the log-likelihood) is calculated for each realization of the complete data and uncertainty
about the admixture proportions is accounted for by including the posterior variance of
the realized score in the score statistic. It is computationally efficient allowing all loci to
be tested for association in a single run of the MCMC algorithm because parameters only
have to be estimated under the null hypothesis of no association to calculate the score

statistic. Thus, the model of |[Hoggart et al.|(2003) has some advantages compared to other
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models but the disadvantage of all Bayesian approaches as discussed subsequently.

5.4 Discussion

The approach of Pritchard et al. (2000aib)) is the most popular Structured Association
approach. However, we showed that such an approach is theoretically not valid because
Structured Association has to be applied with a clustering algorithm conditioning on the
phenotype if subsequently a test statistic based on the likelihood function for the geno-
type data at the candidate locus is applied. Otherwise a systematic bias when estimating
the subpopulation proportions within cases and controls is introduced which leads to an
inflated type-I error rate of the test statistics. This point has not been identified as crucial
before, although it has also been noted by others in their simulations that the Structured
Association approach of |Pritchard et al.| (2000b) is too liberal if population structure can-
not be inferred correctly (Zhu et al., 2002, table II ). We claim that this can be explained
by not taking phenotype information into account. In contrast, the approach of [Satten
et al.| (2001); |Zhu et al.| (2002)) is a one-step approach which correctly conditions on the
phenotype. It has the disadvantage that for each candidate locus the sample has to be
clustered again. First of all this is time consuming because for each candidate locus it
has to be ensured that a proper run of the EM algorithm is finally chosen converging to
the true maximum of the likelihood. Secondly, in the situation where several candidate
loci and additionally some null loci have been genotyped an approach might be preferred
where first the structure of the population is described based on the null loci and then
several candidate genes are tested. As already mentioned the other disadvantage is that
hypothesis testing is not straight forward because the variance of the effect estimate can-
not be directly calculated due to the large number of parameters in the model. Thus,
we showed that it is sufficient to apply a two-step approach with the clustering algorithm
conditioning on the phenotype. Compared to [Satten et al.| (2001) we do not loose much
information in a two-step approach because we use the posterior probabilities of each in-
dividual belonging to each of the subpopulations when testing for association.

For simplicity, we concentrate on the EM algorithm for clustering the individuals into
discrete subpopulations. As already discussed, it is also possible to extend the idea of
incorporating phenotype information in the clustering process to the Bayesian model of
Pritchard et al.| (2000a); Falush et al.| (2003]) where admixture of populations is allowed.
Again, it should be noted that the matrix ¢ which describes the inferred structure has
to be interpreted carefully. Modelling discrete subpopulations the matrix q contains the
posterior probabilities for each individual of being in each of the subpopulations. Uncer-
tainty in the classification of the individuals due to a small number of null loci is therefore
automatically accounted for because in the association test these posterior probabilities
are used instead of assigning the individuals to the most likely subpopulation. However,

if admixture is modelled in a Bayesian framework the matrix q describes the estimated
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admixture proportions of each individual. Here, uncertainty in the classification is not in-
cluded when applying the likelihood ratio test or the Wald test proposed in section[5.2] In
contrast, the model of [Hoggart et al.| (2003)) has the advantage that the uncertainty about
the admixture proportions is accounted for when testing for association. However, the
question remains how well admixture models work in practice. In principle, it is desirable
to have a model where admixture of populations is allowed because in real populations
admixture is always present. However, admixture models have a lot of parameters to be
estimated and thus primarily Bayesian models are proposed to incorporate admixture.
These Bayesian models require a lot of finetuning when specifying the prior distributions
and the parameter estimates are very sensitive to the prior distributions. Moreover, it
has to be assumed that even more loci have to be genotyped to model admixture close
to reality. An additional disadvantage is that the MCMC algorithms are computationally
very intensive which makes larger simulations impossible. As already shown a different
possibility to model admixture could be to extend our phenotype-dependent EM algorithm
to incorporate admixture in the form of derived classes as proposed by |Purcell and Sham
(2004).

A second question is which test statistic to use for Structured Association after applying
the phenotype-dependent EM algorithm. Theoretically, the crucial point is if popula-
tion stratification only acts as a confounder or additionally as an effect modifier. How
large the differences between the two test statistics are in practice, is investigated later in

simulations (see chapter [7)).



6 Results from population based studies

In this chapter the impact of population stratification on case-control association studies
is assessed in realistic situations of only subtle population stratification as within Europe
or even within Germany. Results from recently published studies as well as results from
the German Genomic Control Study are presented. Finally it is discussed if it seems to be
feasible and reasonable to apply methods of Structured Association and Genomic Control

for case-control studies within Europe or Germany.

6.1 Results from previous studies
6.1.1 The amount of stratification in real populations

Cavalli-Sforza et al.| (1996)) investigated the genetic history of world populations. Here
we want to summarize some of their results to give an idea about the typical range of
Fgr-values, especially within Europe. Based on original articles about genetic studies
Cavalli-Sforza et al.| (1996) collected gene frequency data from 491 world populations for
around 120 loci. However, in the final analysis the number of populations had to be reduced
to 42, pooling some populations and eliminating several less well tested populations. The
largest genetic distance was detected between African and non-African populations with
an average Fgp-value estimated at 0.205. The structure of the European continent turned
out to be the most difficult to describe with a lot of genetic heterogeneity within European
countries and small differences between them. In Europe finally 26 populations with 26.4%
missing frequency data were compared at an average of 88 marker loci. The analysis shows
that there are some outlier populations which are genetically distinct from the rest of
Europe. The Lapps and Sardinians are the most extreme outliers, e.g. Fgp-values between
Lapps and other European populations ranges from 0.021 to 0.067. Greeks, Yugoslavs,
Basques, Icelanders and Finns are five less extreme outliers but the rest of Europe (central
Europe) is fairly homogeneous. Fsp-values within central Europe range from close to 0 to
0.015. Within the subgroup of the Germanic populations comprising the Dutch, Danish,
English, Austrians, Swiss, Germans, Belgians Fsp-values are estimated even smaller than
0.006. The Fgpr-distance between Germans and one of these six populations lies between
0.0010 for Germans and Swiss and 0.0022 for Germans and English. However, these Fgp-
values are only estimations based on a rather small number of genetic loci. Population
samples from different genetic studies are mixed together not being uniquely genotyped.
Thus, further studies are necessary to confirm these results.

In the last years the number of studies determining the genetic structure of human world
populations increased with the improvement of the genotyping technology. Based on 60 to
400 marker loci the program STRUCTURE of Pritchard et al.| (2000a)) (see section [5.1.7))

was successfully applied to determine the major ethnic groups in the world population and
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to assign individuals correctly to one of these groups (Rosenberg et all |2002; Bamshad
et al., 2003} Tang et al.,|2005). The assignment was most often corresponding to their self-
reported ethnicity. Rosenberg et al. (2002) also tried to determine the structure within
Europe based on 377 marker loci but only an average of 20 individuals per European
population. The predefined populations could not be identified, the runs of STRUCTURE
showed inconsistent results and, if at all, Basques and Sardinians could be distinguished
from the other European populations. However, as already mentioned the sample size
of European individuals was quite small. It still has to be empirically investigated how
successful clustering approaches can be applied for European populations if the number
of loci and the number of individuals is large enough. This aspect is later also addressed

in our simulation study.

6.1.2 The impact of population stratification on case-control studies

There is an ongoing debate in the literature if unobserved population stratification is a
serious problem for case-control association studies and if failures to replicate findings
from case-control association studies are really attributable to population stratification.
In this context we especially would like to mention the discussion between [[homas and
Witte (2002)) and Wacholder et al.| (2002). [Thomas and Witte (2002) raise serious concerns
about the impact of population stratification whereas Wacholder et al. (2002)) are of the
opinion that population stratification is not a major threat for the validity of case-control
studies. [Thomas and Witte| (2002) give some classical examples for population stratifica-
tion in case-control studies, e.g. the study of Knowler et al.| (1988) showed that a failure to
adjust for population stratification would produce a spurious association between variants
of the immunoglobulin gene Gm and type-2 diabetes in American Indians. However, this
association was not causal and instead reflected confounding by the degree of Caucasian
inheritance. Another example is that numerous studies which investigated the association
between the Al-allele at the Dy dopamine receptor locus and alcoholism gave contradic-
tory results which might be explained by population stratification. However, Wacholder
et al.| (2002) pointed out that none of their examples is a demonstration of population
stratification misleading the scientific community. Either population stratification could
be corrected for by adjusting for ethnicity as in the first example or alternative explana-
tions could be found for the failures to replicate positive findings as in the second example.
Thus, in cases where ethnicity can be easily determined, population stratification should
not be a major problem. A more serious concern is hidden population stratification. How-
ever, it is not at all clear that the large number of false positive findings in case-control
studies really is attributable to population stratification. There are often many other
possible reasons for false positive associations. One of the most important problems is
poor epidemiological design especially with respect to control selection violating the basic

design principles as for example explained in Rothman (1986). Further reasons are dif-
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ferences in phenotype and case definition between the numerous studies or the impact of
an unmeasured environmental confounder. Moreover, there are no associations between
most alleles and specific diseases and truly positive genetic effects are small. Thus, a
high proportion of false positives is inevitable when testing unlikely hypotheses especially
with low power. It also has to be taken into account that usually multiple comparisons
are carried out testing many genes and analyzing many subgroups. Often the analysis is
not properly adjusted for multiple comparisons or only statistically significant results are
reported leading to a publication bias.

To assess the impact of population stratification on the association results it has to be
considered whether the circumstances leading to an increased number of false positive
associations commonly exist. The first aspect is if the population heterogeneity in allele
frequencies is large enough. There are some genes which are highly polymorphic and show
large variations within and among populations. Genes controlling the immune response to
infections, as for example HLA genes, belong to this category because populations have
historically been subjected to different infections often killing people before they reach
reproductive age. However, the majority of genes does not show such large variation and
the genetic differences between populations are summarized in the Fgp-values which are
rather small within central Europe (section [6.1.1)).

The second aspect is which amount of heterogeneity in disease rates usually has to be ex-
pected. Cancer incidences, for example, are particularly well documented in [Parkin et al.
(2002)). Within Europe, remarkable variation of cancer incidence rates can be observed
for example for melanoma of skin in men. The annual age-standardized incidence rate per
100,000 ranges from 2.6 4+ 0.16 in Lithuania to 14.3 + 0.32 in Norway. Even the variation
within a country can be large. For example, within England, rates vary from 4.8 + 0.2 in
Yorkshire to 8.9 4+ 0.2 in the southern and western regions.

At first glance, the differences seem too small to cause major problems with population
stratification. Indeed, the bias as calculated in proposition [3.5|is expected to be quite small
but the variance inflation of the test statistic which is dependent on the sample size can
be considerably high in large case-control studies. In the simulation chapter the variance
inflation is theoretically calculated for different scenarios of confounding by population
stratification. Most of these are realistic for European case-control studies (table [7.5]).
Recently, new attempts were made to assess the impact of population stratification em-
pirically based on real marker data. In the largest application up to date Freedman et al.
(2004)) investigated 11 case-control and case-cohort association studies by analyzing data
from 24 to 48 unlinked single nucleotide polymorphisms in 90 to 500 cases and 69 to
500 controls. None of the studies showed significant evidence for stratification. However,
confidence intervals for inflation factors where sufficiently broad that substantial levels of
stratification could not be excluded. Increasing the number of markers to 114 single nu-

cleotide polymorphisms significant evidence for stratification could be found in an African
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American prostate cancer study. The inflation factor projected to a sample size of 1000
cases and 1000 controls was estimated at A = 1.5. The observation of population stratifi-
cation in this study is not entirely unexpected because African Americans of west African
descent are thought to have a higher genetic risk than those with European descent. Thus,
they could be overrepresented in the case sample.

A further investigation (Helgason et al., 2005) is based on the analysis of population
structure in the Icelandic population which is expected to be rather homogeneous given
its recent origin, small size and geographical isolation. The sample size is extremely large,
43,748 Icelanders divided into 3 birth cohorts and 11 geographical regions are genotyped
at 40 microsatellite marker loci. The fixation index Fgr is estimated at 0.00338 in the
1895 — 1935 cohort and falls to 0.00017 in the 1960 — 2000 cohort indicating gradual ad-
mixture in the last generations. The impact of population stratification is assessed by
simulating case-control status and randomly assigning individuals to cases and controls
according to different sampling schemes from the geographical regions. Maximum values
for X in a sample of 1000 cases and 1000 controls were estimated at 1.24 for the 1895—1935
cohort and 1.08 for the 1960 — 2000 cohort. Thus, even in a rather homogeneous popula-
tion as in Iceland there is notable regional subdivision possibly leading to a slight variance
inflation.

Very recently, (Campbell et al.| (2005) presented the first example where stratification
caused a spurious association in a sample of European Americans which was supposed to
be homogeneous. However, the spurious association did not appear in a real case-control
sample. Instead the sample was selected to demonstrate the impact of population strat-
ification choosing height as a phenotype which which varies widely across Europe. The
case-control sample comprised 1057 small and 1132 tall individuals. Estimation of the
variance inflation factor in a subsample did not show any evidence of stratification. How-
ever, a marker with wider spread in allele frequencies among European populations that
differ in hight might seem to be false positive associated. In fact, such a SNP in the gene
LCT showed a strong association with height. The association was largely or completely
due to stratification because it markedly decreased after stratifying the data according to
grandparental ancestry and it could not be detected in two further studies. Thus, this
example shows that markers which vary wider in frequency are more likely to produce
spurious associations and these cannot be prevented by Genomic Control based on null

loci with less frequency variation.

6.2 The German Genomic Control Study

Within the framework of the German National Genome Research Network (NGFN) a
Genomic Control study was conducted to assess the impact of population stratification on
case-control studies within Germany. The study is a joint effort of the Genetic Epidemi-

ological Centers of Excellence (GEM = Genetisch epidemiologisches Methodenzentrum)
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and the national genotyping platform. The study was mainly analyzed by the GEM in
Bonn but we also contributed to the analysis by proposing and calculating the prediction
rate as a new measure of predicting subpopulation membership (see section . As
a joint work within the NGFN an article (Steffens et al.)) already is submitted which
contains the results of the NGFN Genomic Control study including the prediction rate.
Here the description of the study and the main results are summarized briefly with an
emphasis on the prediction rate, a more detailed description of the other issues can be

found in [Steffens et al.l

6.2.1 The study sample

Population samples of unrelated individuals were recruited from three ongoing cross-
sectional epidemiological surveys of regional German populations: KORA (Co-operative
Health Research in the Region of Augsburg) from Southern Germany, POPGEN (Popula-
tion Genetic Cohort) from Schleswig-Holstein in the north of Germany, and SHIP (Survey
of Health in Pommerania) from Northeast Germany. Samples of more than 700 people
from each survey (KORA: 730, POPGEN: 720, SHIP: 709) were genotyped at 212 SNP
marker loci resulting in over 457,000 genotypes. The samples were matched for age (54 +
13 years) and gender (50% males/ 50% females). All individuals were genotyped at the
same 212 SNP marker loci, which were subdivided into three marker sets named according
to the location of the genotyping center (GCKiel: 68 loci, GCMunich: 68 loci, GCBerlin:
76 loci + 3 duplicate loci). The set GCKiel is a set of coding SNPs located in functional
genes and causing an amino acid exchange in the resulting protein. Thus, this marker
set is potentially subject to selective forces. Under selective pressure allele frequencies
are influenced by different probabilities of survival of individuals to reproductive age. In
contrast, GCMunich and GCBerlin are two sets of neutral SNPs which are located far
from known genes and are expected to be selectively neutral. Details of the marker se-
lection are also given in Steffens et al.. The joined marker sets (GCBerlin, GCMunich)
and (GCBerlin, GCKiel, GCMunich) will be referred to as ?GC2BM” and ”"GC3BKM”,

respectively.

6.2.2 Population structure in the study sample

Table shows the Fgp-values estimated from the different marker sets by the GEM in
Bonn. In the majority of cases, Fgpr-estimates were positive but quite low taking val-
ues from -0.0002 to 0.0008. The highest Fgpr-estimates ranging from 0.0003 to 0.0008
for the different marker sets were identified for the geographically most distant popula-
tions KORA from Southern Germany and SHIP from Northeast Germany. Fsp-estimates
between KORA and POPGEN, the second population from North Germany, were lower
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GCKiel

GCMunich

GCBerlin

KORA, POPGEN
KORA, SHIP
POPGEN, SHIP
TOTAL

0.0000 £ 0.0001
0.0003 + 0.0002
-0.0002 £ 0.0001
0.0001 + 0.0001

0.0001 £ 0.0001
0.0008 +£ 0.0003
0.0001 £ 0.0001
0.0004 + 0.0002

0.0004 £ 0.0002
0.0005 £ 0.0002
0.0001 +£ 0.0002
0.0003 £ 0.0001

GC2BM

GC3BKM

KORA, POPGEN
KORA, SHIP
POPGEN, SHIP
TOTAL

0.0003 + 0.0001
0.0007 £ 0.0002
0.0001 + 0.0001
0.0003 + 0.0001

0.0002 £ 0.0001
0.0005 =+ 0.0001
0.0000 £ 0.0001
0.0002 £ 0.0001

Table 6.1. Estimated Fsr + standard error in the Genomic Control Study, calculated by the
GEM Bonn. Fgr is estimated according to the formulas described in |Weir and Cockerham| (1984));
Weir and Hill (2002)).

varying from 0 to 0.0004. However, these estimates are at least partly significantly dif-
ferent from 0 if an underlying normal distribution is assumed for calculating confidence
intervals from estimators and standard errors. Between the two populations from North
Germany POPGEN and SHIP no significant difference could be observed, Fsr-estimates
vary around zero and one of the Fgp-estimates is even negative. The comparison be-
tween coding SNPs (GCKiel) and non-coding SNPs (GCBerlin, GCMunich) shows that
Fgr-estimates are higher for non-coding SNPs. The Fgp-value of 0.0007 estimated from
non-coding SNPs between the most distant populations KORA and SHIP is 1.5 — 3 times
lower than the Fgp-value between Germans and other Germanic populations (Dutch, Dan-
ish, English, Austrian, Swiss, Belgians) (see section .

The inbreeding coefficients Fjg were also calculated by the GEM Bonn. These values
were approximately one order higher than the Fgp-values. For the coding SNPs Frg was
estimated at 0.0038 averaged over all populations whereas for the non-coding SNPs an
estimate of 0.0074 was obtained. Thus, the Genomic Control study again confirms the
well-known fact that most variability in human populations is observed within populations
and only a minor fraction of genetic variation due to differences between populations. This
again shows that the assumption of Hardy-Weinberg equilibrium within the subpopula-
tions which is used in the clustering algorithm is quite idealistic.

To evaluate if the prediction of the population membership is possible based on the given
marker loci we calculated the prediction rate introduced in section In most cases the
prediction rate was only slightly larger than 50% comparing any two population samples
with slight advantages for the marker sets including null loci (GCBerlin, GCMunich) in
opposite to the marker set including coding SNPs (GCKiel) (see table [6.2). Comparing
"KORA versus SHIP” it is slightly growing with an increasing number of marker loci up to
54% in the whole data set GC3BKM whereas for "KORA versus POPGEN” this tendency

if at all existent is even minor. For "POPGEN versus SHIP” the prediction rate is always



76

6  Results from population based studies

GCKiel

GCMunich

GCBerlin

KORA, POPGEN
KORA, SHIP
POPGEN, SHIP
TOTAL

0.5005 [0.4926, 0.5084]
0.5101 [0.5007, 0.5196]
0.4952 [0.4898, 0.5007]
0.3351 [0.3300, 0.3401]

0.5027 [0.4961, 0.5094
0.5203 [0.5055, 0.5350
0.5019 [0.4958, 0.5081
0.3406 [0.3339, 0.3473

0.5119 [0.5028, 0.5211]
0.5174 [0.5076, 0.5273]
0.5076 [0.4979, 0.5173]
0.3459 [0.3386, 0.3532]

GC2BM

GC3BKM

KORA, POPGEN

0.5143 [0.5030, 0.5256]

0.5139 [0.5014, 0.5265

]
KORA, SHIP 0.5353 [0.5197, 0.5510] 0.5421 [0.5261, 0.5580]
POPGEN, SHIP 0.5090 [0.4981, 0.5199] 0.5046 [0.4930, 0.5162]
TOTAL 0.3518 [0.3426, 0.3609] 0.3526 [0.3430, 0.3621]

Table 6.2. Prediction rate in the Genomic Control Study, calculated as described in section
2.4.2

around 50% independently of the marker set and the confidence interval shows that there
is no significant difference between POPGEN and SHIP. Here, the estimate is even less
than 50% using the GCKiel marker set what is conform with the negative estimate for Fgp
in this case. Thus, the results for the prediction rate confirm the trend in the Fgp-values
that there is some small population difference between North and South Germans but no
difference within North Germany. However, even between the most different populations
KORA and SHIP the prediction rate is very low using the total marker set of more than
200 markers.

Given the low prediction rate it is not surprising that different clustering algorithms failed
to detect any population structure in the sample. We applied the standard EM algorithm
to the data but failed to detect any STRUCTURE in the sample. The highest AIC was
achieved for K = 1 and the runs for K = 2 lead to very inconsistent results depending
on the starting values. This indicates that there is no obvious population structure. The
group in Bonn also applied the MCMC algorithm implemented in the program STRUC-
TURE (see section to the data set. Different admixture models and prior distrib-
utions were used. However, the MCMC algorithm also failed to detect any structure in
the complete sample. The insensitivity of these algorithms to detect small structure is
also concordant with our simulation results for the EM algorithm (see section [7.2.1)). In
our simulations we show that based on 100 SNPs population stratification generally could
be detected for Fgr = 0.0050 but not for Fgpr = 0.0025 anymore using an EM algorithm
as clustering method. Since the Bayesian model implemented in STRUCTURE is also a

probability based clustering method a similar performance is expected.

6.2.3 Consequences for case-control studies within Germany

The main research question associated with the Genomic Control study is to assess the

impact of population stratification on case-control studies within Germany and the possi-
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GCKiel

GCMunich

GCBerlin

KORA, POPGEN
KORA, SHIP
POPGEN, SHIP

0.968 [0.710, 1.398]
1.379 [1.012, 1.991]
0.737 [0.540, 1.064]

1.057 [0.769, 1.545]
1.875 [1.370, 2.724]
1.016 [0.739, 1.486]

1.433 [1.060, 2.047]
1.816 [1.317, 2.663]
1.404 [1.018, 2.059]

GC2BM

GC3BKM

KORA, POPGEN
KORA, SHIP
POPGEN, SHIP

1.256 [1.004, 1.618]
1.846 [1.467, 2.395]
1.208 [0.959, 1.571]

1.160 [0.964, 1.423]
1.685 [1.396, 2.074]
1.044 [0.864, 1.287]

Table 6.3. Inflation factor in the Genomic Control Study in the worst case scenario. The mean-
based estimator for the inflation factor of the allelic x2-test is calculated as proposed by [Reich and
Goldstein| (2001) (see section [4.2.1]) and the confidence interval as given in proposition

bilities to correct for stratification. Since clustering algorithms do not detect any structure,
methods of Structured Association seem to be inappropriate to correct for any confound-
ing effects. However, it has to be investigated if the clustering process could be more
successful when increasing the number of null loci.

To assess whether there could be nevertheless considerable variance inflation for a case-
control study within Germany we estimate the variance inflation factor for the worst-
case-scenario that cases are recruited from one population and controls are recruited from
another of the three populations (see table . The inflation factors again show the same
northern-southern trend as before. Although Fgr-estimates are rather small the estimated
variance inflation is considerably large comparing KORA and SHIP ranging from 1.379
for the GCKiel set to 1.875 for the GCMunich set. However, if cases and controls are
recruited in a similar sampling scheme from different German regions, then only a very
minor inflation is expected to be observed if the formula for the variance inflation is con-
sidered (see proposition . In this case, population structure within Germany should

not be a major problem.

6.3 Discussion

Summarizing the recently published applications the opinion seems to prevail that even
in populations that seem to be rather homogeneous there can be a measurable impact of
hidden population stratification on the association results. This is also the result from
analyzing the Genomic Control study. Within Germany methods of Structured Associa-
tion cannot be successfully applied for correcting case-control association tests, but there
could be a measurable variance inflation when recruiting cases and controls from differ-
ent geographical areas. Within some parts of Europe the stratification is larger and this
amount of stratification is investigated later in the simulations.

The results also suggest to take care when designing a study. The examples show that

recruiting cases and controls from different geographical areas within a country should be
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avoided. Moreover, care should be taken in the analysis if study participants are collected
from different countries. Even if no additional markers are genotyped, the analysis could

be stratified by the country of origin to avoid huge levels of population stratification.



7 Simulations

In our simulations we intend to simulate the realistic situation of large association stud-
ies with moderate population stratification as in Europe. As in [Kohler and Bickeboller
(2006)) we want to investigate for different simulation scenarios which statistical method
is most appropriate to correct for population stratification when testing for association.
On the one hand the two approaches Genomic Control and Structured Association shall
be compared in general and on the other hand the differences between the Structured
Association approaches including our own development shall be investigated. For Struc-
tured Association only the two-step approach is simulated applying the standard or the
phenotype-dependent EM algorithm for clustering. The reason is that we want to simu-
late a sufficient number of multilocus data sets and the candidate locus with an adequate
number of replications for each of these multilocus data sets. This cannot be implemented
using a Bayesian clustering approach as Pritchard et al.| (2000al) or a one-step approach

as Satten et al. (2001) because of time constraints.

7.1 The set-up of the simulation study
7.1.1 The simulation model

We simulate multilocus marker data for K discrete subpopulations. For each locus we
draw an ancestral allele frequency ¢; from a uniform distribution in (0.1,0.9) to avoid very
rare alleles. Subpopulation allele frequencies are generated in the beta-binomial model (see
section . The two alleles of an individual from subpopulation & are independently
drawn from a Bernoulli distribution with subpopulation allele frequency ;. Thus, for
the simulations we also use a discrete subpopulation model just as we assumed for the
inference on population structure with the EM algorithm.

Ancestral allele frequencies at the candidate locus are again randomly chosen from a
uniform distribution in (0.1,0.9). The candidate locus is then simulated in a multiplicative
penetrance model (see section . For all subpopulations £ = 1,..., K the allelic
relative risks ¢ are specified. The allele frequencies pl(cu) are directly simulated in the beta-
binomial model since the control group approximately represents the original population
if the disease prevalence is low. Allele frequencies among cases are calculated as derived
in proposition applied for each subpopulation k separately under the assumption that
the allele frequencies in the original population are equal to the allele frequencies within
the control group. To generate the multilocus marker data the beta-binomial model is

employed with different parameter configurations as described below.
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7.1.2 Detalils of the simulations

In the simulations the AIC is applied for choosing the number of subpopulations K (see
section . A problem is that the EM algorithm converges to different local maxima
leading to different values of the log-likelihood dependent on the starting values. Thus,
we run the EM algorithm with different starting values for the same K. Since we need a
well defined criterion for our simulations to choose a specific run of the EM algorithm to
calculate AIC(K') we take the run with the median log-likelihood of all runs for the same
K. This prevents us from taking a global maximum which potentially lies close to the
boundary of the parameter space and is rarely reached. In all unambiguous cases where
the global maximum is reached in more than 50% of all runs, the median log-likelihood
equals the log-likelihood for the global maximum. A further problem is that it may happen
that the AIC reaches a local minimum for a small number of subpopulations first before
it reaches its global minimum for a larger number. Here, we concentrate on the first local
minimum rather than the global minimum, since an increase of the AIC after the first
local minimum is an indication against an additional subpopulation.

After applying the EM algorithm we have to investigate how accurate the EM algorithm
infers population structure for the different parameter configurations. Therefore, we es-
timate Fgpr from the inferred subpopulations and compare it to the true simulated Fgp.
Here the formula for estimating Fg7 derived in section is applied replacing the un-
known number of individuals Ny in subpopulation k with the estimated number Zf\i 1 ik~
However, this is only an approximation since the formula is derived assuming subpopu-
lation membership is known in advance. This leads to an underestimation of the true
variance of @y in the case of unknown population structure and an overestimation of Fgp
for small sample sizes N or few loci L. The true variances and covariances are difficult
to determine because only parameter estimates without their variances are obtained as a
result of the EM algorithm.

The main purpose of the simulations is to assess type-I error rate and power of the differ-
ent association tests. Three SA test statistics STRAT and P-STRAT and P-CHIPOP are
examined. STRAT and P-STRAT are based on the likelihood ratio test (see section
and P-CHIPOP on the Wald test (see section [5.2.3). For STRAT the standard EM has
been applied to infer population structure whereas the P indicates that the phenotype-
dependent EM algorithm has been used. For all three test statistics the p-value is based
on the asymptotic distribution. Thus, although a simpler clustering algorithm is applied
STRAT corresponds to the idea of Pritchard et al.| (2000al/b) who propose clustering with-
out considering phenotype information and then applying the likelihood ratio test as an
association test. The standard EM is always applied for the same number of subpopula-
tions which is inferred for the P-EM algorithm to make the STRAT and P-STRAT results
more comparable by using the same number of subpopulations for both algorithms. The
SA test statistics are compared to the simple x?-test CHISQ as well as to the two GC test
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label explanation section
CHISQ allelic y2-test 3.2.4
GC-MED GC applied for Armitage’s trend test, median-based estimator for A | [4.2.1
GC-MEAN | GC applied for the allelic x?-test, mean-based estimator for A 4.2.1
STRAT standard EM algorithm & likelihood ratio test 5.2.2
P-STRAT | phenotype-dependent EM algorithm & likelihood ratio test 5.2.2
P-CHIPOP | phenotype-dependent EM algorithm & Wald test 5.2.3

Table 7.1. Overview over the simulated tests for association in a stratified population

statistics GC-MEAN and GC-MED. Table gives an overview over the simulated tests
and the sections where these tests are described. Type-I-error rate, power in a homoge-
neous model of equal allelic relative risks and power in a heterogeneous model of different
allelic relative risks in the subpopulations are investigated. As described before in a ho-
mogeneous model population stratification only acts as a confounder and not as an effect
modifier in contrast to the heterogeneous model (see section . For each parameter
configuration 100 sets of multilocus marker data were simulated. To each of these multi-
locus marker data sets the candidate locus was simulated with 10000 replications under
the null hypothesis and the two alternatives. This approach has the advantage that not
only the median or mean type-I error rate or power over the 100 multilocus marker sets

can be determined but also the variation over different marker sets can be investigated.

7.1.3 The simulation parameters

For our simulations we first fix a basic parameter configuration which models a large
association study with moderate population stratification. We simulate a population of
N = 2000 individuals which consists of two discrete subpopulations. L = 100 loci are
used to infer population structure. The distance between the subpopulations is fixed at
Fgp = 0.01. This corresponds to a population structure which is expected between some
pairs of central European populations which are more distantly related (see section .
For example, the distance between Spanish and Swedish is estimated as Fgr = 0.0099 and
the distance between Scottish and Czech as Fgpr = 0.0104.

The simulated sample consists of an equal number of cases and controls. The prevalence
is two-fold higher in subpopulation 2 than in subpopulation 1 which can be expressed
as RR = 2 if subpopulation 2 is compared to subpopulation 1. Thus, the relative risk
RR refers to the ratio of the general disease risks in two different subpopulations and is
not related to any genetic effect. In the original population both subpopulations shall be
equally represented. Hence if the prevalence is low the control group is approximately
expected to have equal proportions of both subpopulations, i.e. Wgu) = 0.5 and Wgu) = 0.5.

(@) _ 1 (@) _ 2

For the cases the given disease prevalence ratio leads to m; 5 and my ' = 5. Thus,
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L | Fsr | N | K,RR
25 | 0.0025 | 500 1, -
50 | 0.005 | 1000 | 2,1
100 | 0.01 | 2000 | 2,2
200 | 0.02 | 4000 | 2,4
400 | 0.04 | 8000 | 4, 2:3:4

Table 7.2. Variation of the basic parameter configuration in the simulation study. The basic
parameter configuration is shown in bold. Each possible parameter configuration is obtained by
substituting only one entry of the basic parameter set by a different entry of the corresponding
column. Subpopulation 1 is always chosen as a reference for calculating the RR, hence for K =4

three relative risks have to be specified.

altogether subpopulation 2 is slightly overrepresented with 7; = 0.417 and 7w = 0.583.
For the simulations the number of cases and controls from each subpopulation are fixed to
their expected values and rounded if necessary. Table summarizes the characteristics
of the basic parameter set and shows how it is varied later to investigate the influence
of different parameters. The basic configuration is always varied in one parameter only
except for K and RR which are jointly changed. The number of loci L ranges from 25 to
400, the fixation index Fgp from 0.0025 to 0.04, the number of individuals N from 500
to 8000 and the number of subpopulations K from 1 to 4 with different relative risks for
K = 2. Altogether 17 = 1 + 4 x 4 parameter configurations are simulated.

For the power simulation in a homogeneous model a fixed alternative with an allelic
relative risk of 1, = 1.3 is chosen leading to a power of approximately 80% for the x2-test
and the basic parameter configuration. In the heterogeneous model the candidate gene is
associated with the disease only in subpopulation 2 for all parameter configurations with
K = 2. An allelic relative risk of ¥ = 1.0 and 12 = 1.5 is chosen. For K = 4 the allelic
relative risks of the two further subpopulations are selected in between, resulting in the
vector of allelic relative risks ¥ = (1.000, 1.167,1.333, 1.500).

7.2 Results
7.2.1 Inference on population structure

When applying the P-EM algorithm the correct number of subpopulations is inferred
for almost all data sets (97 out of 100) of the basic parameter configuration and the
median Fgr is quite accurately estimated at 0.0104 (table . The identification rate
which measures the average posterior probability of correct assignment of the individuals
to the subpopulations is estimated giving the median at 78.3%. Although the general

structure of the population is correctly detected it could not be reliably determined which
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inferred K inferred Fgp identification rate %
1 2 3 4 5 6 7 | median q10% 90% median  q10%  990%
basic* 0 97 3 0 0 0 0| 0.0104 0.0089 0.0122 78.3 75.2 80.9
L=25 7 83 9 1 0 0 0| 0.0136 0.0103 0.0196 61.4 56.6 65.3
L=50 0 84 7 4 5 0 0 0.0117 0.0090  0.0160 68.5 63.7 71.6
L=100* 0 97 3 0 0 0 0| 0.0104 0.0089 0.0122 78.3 75.2 80.9
L=200 0 100 0 0 0 0 0| 0.0100 0.0089 0.0115 88.7 86.7 90.7
L=400 0 100 0 0 0 0 0| 0.0100 0.0092 0.0109 96.7 96.0 97.5

F=0.0025 73 24 2 1 0 0 0 - - - - - -
F=0.005 0 89 7 4 0 0 0| 0.0064 0.0053 0.0079 67.0 61.8 70.9
F=0.01%* 0 97 3 0 0 0 0| 0.0104 0.0089 0.0122 78.3 75.2 80.9
F=0.02 0 100 0 0 0 0 0| 0.0197 0.0168 0.0238 88.9 86.5 91.8
F=0.04 0 98 1 1 0 0 0| 0.0388 0.0318 0.0463 96.9 95.0 98.1
N=500 3 97 0 0 0 0 0| 0.0122 0.0106 0.0136 77.3 71.4 80.5
N=1000 0 99 1 0 0 0 0| 0.0108 0.0090 0.0126 77.9 74.1 81.1
N=2000* 0 97 3 0 0 0 0| 0.0104 0.0089 0.0122 78.3 75.2 80.9
N=4000 0 98 2 0 0 0 0| 0.0102 0.0087 0.0122 78.4 75.8 81.2
N=8000 0 99 1 0 0 0 0| 0.0101 0.0083  0.0120 78.5 75.3 81.5

K=1 96 4 0 0 0 0 0 - - - - - -
K=2,RR=1 0 100 0 0 0 0 0| 0.0101 0.0086  0.0123 77.0 74.0 80.6
K=2,RR=2* | 0 97 3 0 0 0 0| 0.0104 0.0089 0.0122 78.3 75.2 80.9
K=2,RR=4 0 92 8 0 0 0 0 0.0101 0.0089  0.0124 80.3 77.6 82.5
K=4 0 0 12 57 20 10 1 0.0128  0.0105  0.0196 57.4 52.5 60.5

Table 7.3. Structure inferred by the P-EM algorithm for the 100 multilocus data sets simulated

for each parameter configuration. The basic parameter configuration is denoted by * and consec-

utively varied in L, Fgp, N and finally K and RR simultaneously. It is only simulated once but

shown in the first row and in the series for each parameter in turn. The number of data sets where

K is correctly inferred is shown in bold. Fgr is estimated for all data sets where the inferred K is

larger than 1. The identification rate measures the concordance of the inferred and the simulated

population structure. It is defined as mean posterior probability of an individual of being assigned

to the correct subpopulation, averaged over all individuals. The identification rate is only calcu-

lated if the correct number of subpopulations is inferred. The Fgp-values and identification rates

shown here are the median, 10%-quantile and 90%-quantile taken over the included multilocus

data sets.
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simulated proportion estimated proportion of S

of Ss median q10% q90%

complete sample phenotype-dependent EM 0.583 0.577 0.538 0.615
standard EM 0.583 0.575 0.536 0.617

cases phenotype-dependent EM 0.667 0.660 0.614 0.698
standard EM 0.667 0.622 0.568 0.660

controls phenotype-dependent EM 0.500 0.493 0.453 0.539
standard EM 0.500 0.530 0.487 0.576

difference phenotype-dependent EM 0.167 0.163 0.137 0.191
cases - controls standard EM 0.167 0.089 0.071 0.108

Table 7.4. Simulated and estimated proportion of subpopulation 2 (S3) within cases and controls
for the standard EM in comparison to the phenotype-dependent EM (P-EM) calculated for the
basic parameter configuration. The estimates shown here for the subpopulation proportions and
the difference are the median, 10%-quantile and 90%-quantile over the 97 multilocus data sets

where the correct number of subpopulations is inferred.

individual belongs to which subpopulation. Interestingly, even if the number of loci is
decreased down to 25, in most cases it is possible to identify the two subpopulations.
Varying the number of loci from 25 to 400 the whole range from a very poor identification
of the subpopulations (61.4%) to a nearly perfect identification (96.7%) is observed. The
variation over Fgr has a similar effect on the clustering results as varying the number of
loci. If Fgr is equal to 0.0025 the identification of the two subpopulations is not anymore
possible with 100 loci. Variation of the sample size N does not have a large effect on
the identification rate, the median identification rate is always between 77% and 79% in
the considered sample size range. Thus, an increased sample size does not help to infer
population structure. The estimate of Figr is substantially biased for smaller sample sizes
N, especially N = 500, due to the estimation method (see section . Our simulations
include different numbers of subpopulations starting from K = 1 where no structure is
present. The sample is correctly identified as homogeneous in most cases. For K = 2 the
clustering results are only weakly dependent on the RR and hence on the subpopulation
proportions. For K = 4 it is more difficult to infer the correct number of subpopulations
and the identification rate is much lower than for the basic parameter configuration
(57.4%).

For the basic parameter configuration we also evaluate the deviation of the estimated
subpopulation proportions from the simulated proportions within cases and controls when
applying the standard EM in comparison to the P-EM algorithm (table . With the
P-EM algorithm the subpopulation proportions are estimated quite accurately for the
whole sample, as well as separately for cases and controls. The standard EM algorithm
shows the expected deviation. Here, a quite accurate estimation of the subpopulation

proportions is possible for the whole sample, but within cases the true proportion of
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subpopulation 2 is underestimated and within controls overestimated. The median
difference of the proportion of subpopulation 2 between cases and controls is 0.089 instead
of 0.167 which corresponds to only 53.3% of the true difference and even the 90%-quantile

of 0.108 is clearly smaller than the simulated difference.

7.2.2 Theoretical variance inflation for the simulation scenarios

Considering the association tests, first some theoretical properties of Genomic Control are
calculated to theoretically assess the impact of population stratification for the different
parameter configurations (table . The basic data set corresponds to a theoretical
variance inflation A of 1.55 calculated from N(® = N®) = 1000, Fgr = 0.01 and the
factor %8 which depends on the subpopulation proportions according to proposition
Varying the various parameters inflation factors between 0.99 and 3.21 are obtained. Since
A — 1 is approximately proportional to IV for an equal number of cases and controls and
also to Fgp (proposition , A — 1 is approximately sixteen times higher for N = 8000
than for N = 500 and also for Fg; = 0.04 in comparison to Fgr = 0.0025. The length
of the interval where the mean-based estimator of A lies in with 80% probability is 0.56
for the basic configuration and depends on the number of loci as well as on the variance
inflation itself.

The expected type-I error rate of the y2-test for a nominal level of 0.01 is 0.0384 for
the basic parameter configuration. Thus, the hypothesis is almost 4 times more often
rejected than it is supposed to be. The expected type-I error rate only depends on the
variance inflation A and varies from 0.0096 to 0.1508. In contrast, the 80%-interval for the
observed type-I error rate of GC-MEAN is not dependent on the variance inflation \ as
long as always the unbounded estimator X is used. It only depends on the number of loci
L. For the basic parameter set and all other configurations with 100 loci the interval is
[0.0050, 0.0194]. Hence, the 90%-quantile for the observed type-I error rate is 1.94 times
larger than the nominal level. Thus, even applying GC there is a remaining probability of
10% to choose a set of null loci leading to a rejection of the null hypothesis at least 1.94
times more often than allowed when testing several non-associated candidate loci using

that set of null loci.

7.2.3 Type-I-error rate of the association tests

The main focus of our simulation study is on comparing type-I error rate and power of the
different association tests. Figure shows the simulated type-I error rates for a nominal
level of 0.01. The type-I error rates of the y2-statistic are close to their expected values
calculated in table This is also true for the highest rates which are not covered by the
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variance inflation type-1 error rate
true A h) (mean-based) X>-test GC-MEAN
d10% 490% d10% 490%
basic* 1.55 1.27 1.83 0.0384 0.0050 0.0194
L=25 1.55 1.02 2.13 0.0384 0.0025 0.0365
L=50 1.55 1.17 1.96 0.0384 0.0038 0.0253
L=100* 1.55 1.27 1.83 0.0384 0.0050 0.0194
L=200 1.55 1.35 1.75 0.0384 0.0062 0.0160
L=400 1.55 1.41 1.69 0.0384 0.0071 0.0140
F=0.0025 1.14 0.94 1.35 0.0157 0.0050 0.0194
F=0.005 1.27 1.05 1.51 0.0225 0.0050 0.0194
F=0.01* 1.55 1.27 1.83 0.0384 0.0050 0.0194
F=0.02 2.10 1.73 2.48 0.0752 0.0050 0.0194
F=0.04 3.19 2.63 3.78 0.1493 0.0050 0.0194
N=500 1.13 0.93 1.34 0.0154 0.0050 0.0194
N=1000 1.27 1.04 1.50 0.0220 0.0050 0.0194
N=2000* 1.55 1.27 1.83 0.0384 0.0050 0.0194
N=4000 2.10 1.73 2.49 0.0754 0.0050 0.0194
N=8000 3.21 2.65 3.81 0.1508 0.0050 0.0194
K=1 1.00 0.82 1.18 0.0100 0.0050 0.0194
K=2RR=1 0.99 0.82 1.17 0.0096 0.0050 0.0194
K=2RR=2* 1.55 1.27 1.83 0.0384 0.0050 0.0194
K=2,RR=4 2.79 2.30 3.31 0.1230 0.0050 0.0194
K=4 1.49 1.23 1.77 0.0348 0.0050 0.0194

Table 7.5. Theoretical variance inflation for the different parameter configurations and the the-

oretical influence of the estimation on the type-I error rate of the test statistic GC-MEAN. The

theoretical variance inflation A is calculated as derived in proposition [£.2] and the interval where

the mean-based estimator lies in with 80% probability according to proposition The expected

type-1 error rates are calculated for a nominal level of 0.01. Here the formulas given in proposition

are applied to determine the expected type-I error rate for the y?-test and the interval where
the type-I error rate of GC-MEAN lies in with 80% probability if always the unbounded estimator

for A is used.
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Figure 7.1. Simulated type-I error rates for a nominal level of 0.01. The four graphics show the
influence of a) L, b) Fgr, ¢) N and d) K and RR on the type-I error rate. The bars show the
median over the 100 multilocus data sets, the points indicate the mean and the intervals range

from the empirical 10%- to the 90%-quantile.
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range of the y-axis. GC-MEAN also shows the expected behaviour. The median type-I
error rate is always close to the nominal level of 0.01 and the empirical quantiles agree
in principle with their theoretical quantiles from table as much as possible with only
100 simulations of multilocus data. For small inflation factors it should be noted that the
90%-quantile is bounded by the type-I error rate of the y?-test since GC is applied with
a lower bound of A = 1. This yields GC to be conservative for small inflation factors.
GC-MED shows a similar pattern with even larger variation over the 100 multilocus data
sets. This can be explained by the larger variance of the median in comparison to the
mean. Interestingly, for large population structure GC-MED seems to be conservative for
the median of the 100 data sets but not for the mean. As|Marchini et al.| (2004) we also
observe that both GC statistics are somewhat inflated for a small number of loci when
considering the mean over the 100 data sets instead of the median.

The comparison of the three SA tests reveals that STRAT is highly inflated for some
parameter sets whereas the other two statistics P-STRAT and P-CHIPOP based on the
P-EM algorithm have the correct type-I error rate in most cases. The inflation of STRAT
especially increases with high RR or a large number of individuals. In the first situation
the bias introduced by the standard EM algorithm is expected to be larger because the
subpopulation proportions within cases and controls are more different from each other
and in the second situation the absolute amount of misclassification due to the wrong
model increases. P-STRAT and P-CHIPOP have the correct median type-I error rate in
all situations where at least the general population structure could be inferred correctly.
Moreover, the variation over the 100 multilocus marker sets is small. Even in situations
where the correct assignment of individuals to the subpopulations is rarely possible as
shown in table eg. L = 50 or F = 0.005, P-STRAT and P-CHIPOP are quite
accurate. Only if the number of loci L or Fgr decrease further and clustering is not
anymore possible, they are clearly inflated with P-STRAT being less affected than P-
CHIPOP. An inflation is also visible if the number of subpopulations increases to K = 4
because the inference on population structure then becomes more difficult.

Altogether the type-I error rate simulation shows that both the SA test statistics based on
the P-EM algorithm and GC maintain the correct type-I error rate with some exceptions,
but the variation over the 100 multilocus marker sets is much lower applying SA. Since
the variation of the type-I error rate of GC is not dependent on Fgp in contrast to SA,

for increasing Fsp SA becomes even more superior.

7.2.4 Power of the association tests

Power simulations in a homogeneous model of equal allelic relative risks in all subpopu-
lations are shown in figure In the homogeneous model P-CHIPOP generally has the
highest power of all test statistics, even a slightly higher power than the highly inflated
x2-test. The power of P-STRAT is lower and the power difference between P-STRAT
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Figure 7.2. Power simulations in a homogeneous model of equal allelic relative risks in all
subpopulations. The four graphics show the influence of a) L, b) Fsr, ¢) N and d) K and RR on
the power. A fixed alternative with an allelic relative risk of ¥y = 1.3 is chosen. The power is also
calculated for a nominal level of 0.01, i.e. the same theoretical cut-off-values as for the type-I error
rate simulation are used. The power of the allelic y2-test and STRAT is shown for comparison
although the type-I error rate is highly inflated. The bars show the median over the 100 multilocus

data sets and the intervals range from the empirical 10%- to the 90%-quantile.
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Figure 7.3. Power simulations in a heterogeneous model of different allelic relative risks in all
subpopulations. The four graphics show the influence of a) L, b) Fsr, ¢) N and d) K and RR on
the power. Details of the simulated alternative are described in section [7.1.3] Further details of

the power simulation are the same as for the homogeneous model (see figure [7.2]).
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and P-CHIPOP is approximately 8% for absolute power values around 70% to 80% for
N = 2000. An exception is the case K = 4. Here the power of P-STRAT is drastically
lower than the power of P-CHIPOP with a difference of 20.2% in the medians. The ad-
ditional loss of power due to the increasing number of subpopulations can be explained
by a comparison of the degrees of freedom of the two test statistics. P-CHIPOP always
has 1 df whereas for P-STRAT the degrees of freedom correspond to the number of sub-
populations K. In most situations the GC test statistics have an even lower power than
all SA test statistics and show again higher variation. The power is rapidly decreasing for
a high Fgr and large population structure as well as for a high RR and hence different
population structure within cases and controls. This is plausible because a model based
approach should be superior to simply estimating an inflation factor, especially in these
situations. In some cases, including small sample size (N = 500), equal subpopulation
structure within cases and controls (RR = 1) and more than two subpopulations (K = 4)
GC is slightly superior to P-STRAT but not to P-CHIPOP.

The power simulations in a heterogeneous model of different allelic relative risks in the
subpopulations give a somewhat different result (figure . For a variation of L, Fgp and
N the x?-test and both GC methods show a similar power as before. However, the power
of P-STRAT is now in most of the cases higher than the power of P-CHIPOP and increases
if correct assignment of the individuals to the subpopulations is possible. The power of
P-CHIPOP is in general comparable to the x?-test but slightly lower. Since the proportion
of subpopulation 2 is larger with increasing RR, the power of the y?-test increases with
higher RR. P-STRAT again is somewhat superior to P-CHIPOP for all different RR. For
K = 4 a completely different result is obtained: here, even in the heterogeneous model,
the median power of P-CHIPOP is 16.7% higher than the power of P-STRAT. Thus, also
in a heterogeneous model the high degrees of freedom of P-STRAT yield to a power loss
in comparison to P-CHIPOP and even to GC. Thus, although P-CHIPOP performs worse
than in the homogeneous model it is the only SA statistic with a power always at least

comparable but in most cases superior to GC.

7.3 Discussion
7.3.1 Summary

Many aspects are addressed in the simulations. First of all the simulations show that a
correction for population stratification can be necessary in the realistic situation of large
case-control studies with moderate population stratification because the variance inflation
factor can be considerably large and the usual y?-test substantially inflated. However, for
really small population structure as within Germany Fgp-values are even smaller than the
simulated ones and the variance inflation often could be negligible depending on sample

size and disease risks in the subpopulations.
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The P-EM algorithm infers population structure quite well for the simulated data sets
and the general population structure is already detected with 100 marker loci in most
situations if Fgr > 0.005. However, for more subtle population structure including a very
small Fgr and a larger number of subpopulations 100 marker loci definitely will not be
sufficient as the simulations indicate. The standard EM algorithm shows the expected de-
viation of the estimated subpopulation proportions to the true proportions. Consequently
the likelihood ratio test based on the standard EM algorithm is substantially inflated if the
subpopulations cannot be correctly estimated. It is likely that the simulation results would
not be very different applying a Bayesian clustering approach for discrete subpopulations
instead of an EM algorithm since only discrete subpopulations were simulated. Thus, it
can be concluded that the Structured Association approach as proposed by [Pritchard et al.
(2000a,b)) is likely to show the same inflated type-I error rate.

A second question is which test statistic to use for Structured Association. For the likeli-
hood ratio test as proposed by [Pritchard et al.| (2000b)) it does not seem to be problematic
to use the asymptotic x?-distribution since the test has the correct type-I error rate on
average. But as expected, the likelihood ratio test statistic has a lack of power in situ-
ations where homogeneous allelic relative risks in the subpopulations are modelled. The
power decreases with an increasing number of subpopulations. Surprisingly, also in the
heterogeneous model the likelihood ratio test has a reduced power for a larger number
of subpopulations. Since we are especially interested in moderate population structure a
small variation of allelic relative risks across subpopulations is realistic but not a complete
change. Thus, we recommend to apply the Wald test that we derived here instead of
the likelihood ratio test. The main advantage of the Wald test is that allele frequency
differences are averaged over subpopulations.

In comparison to Structured Association we also investigated Genomic Control theoreti-
cally and in simulations. We found that the median type-1 error rate is in general close
to the nominal level. However, Genomic Control shows a large variation dependent on
the concrete marker set. We also theoretically calculated the variation of the observed
type-I error rate for the mean-based test statistic and showed that this variation does not
depend on the variance inflation factor itself, but only on the number of null loci. This
is a weakness of Genomic Control in comparison to Structured Association where better
clustering results are obtained with increasing Fsp. A second disadvantage of Genomic
Control is the power loss in comparison to Structured Association if population structure
and the differences in the disease prevalences between the subpopulations increase. Sur-
prisingly, in our simulations Structured Association is also at least comparable to Genomic
Control in situations with small population structure or only little genotyping of null loci

regarding type-I error rate as well as power.
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7.3.2 Comparison to other simulation studies

There are several other simulations published assessing the impact of population stratifica-
tion and the possibilities to correct for it. Among these, there are a couple of simulations
investigating the properties of Genomic Control (Bacanu et al., 2000; |[Marchini et al., 2004;
Shmulewitz et al., 2004; Devlin et al., 2004). |Bacanu et al. (2000) showed that in medium-
sized case-control studies with less than 1000 individuals the variance inflation usually is
not very large and thus the power of Genomic Control is high, especially in comparison
to family-based association studies. Shmulewitz et al.| (2004) investigated if the type-I
error rate of Genomic Control is maintained including a small set of markers with large
frequency differences into the set of null loci. In this case, the mean-based estimator for
the variance inflation performs better than the median-based estimator. |Marchini et al.
(2004) investigated the type-I error rate of Genomic Control for large case control stud-
ies and moderate population stratification based on real marker data for a few number
of individuals and an extrapolation to larger sample sizes. The main conclusion is that
Genomic Control tests may be anticonservative for a small number of loci. |Devlin et al.
(2004) showed that this is only a consequence of applying the median-based estimator
for the inflation factor instead of the mean-based estimator and the F-test (see section
. In our simulations we confirm the main result from these recent simulations about
Genomic Control that the mean-based estimator for the variance inflation factor should
be preferred.

However, there are only few simulations investigating the differences between several test
statistics correcting for stratification (Pritchard and Donnelly, [2001; Devlin et al., 2001a;
Zhu et all [2002; (Chen et all [2003). Pritchard and Donnelly| (2001) compared Genomic
Control and their own Structured Association method STRAT also simulating data in the
beta-binomial model. These simulations are limited to a fixed parameter configuration
corresponding to an inflation factor of A = 1.24 and only the number of loci is varied. In
the simulated scenario the average type-I error rate is close to the nominal level for both
approaches and the power of Genomic Control and Structured Association is comparable.
However, we show in our simulations that the results of Pritchard and Donnelly| (2001)
only cover a small number of possible simulation scenarios and cannot be automatically
generalized. Furthermore we point out that the results are dependent on the concrete
version of Structured Association. Devlin et al.| (2001a) investigated the performance of
the Structured Association test STRAT for a concrete simulation scenario consisting of
many subpopulations. Although part of the population structure could not be detected,
the observed type-I error rate was close to the nominal level. Their analysis suggests
that a finite approximation to the structure present in realistic populations can protect
at least against substantial confounding. However, a more systematic analysis is miss-
ing. Zhu et al|(2002)) and Chen et al.| (2003)) simulated case-control data for discrete or

admixed populations from different continents based on allele frequency data extracted
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from a database. In their simulations STRAT also has an inflated type-I error rate in
some cases which is likely to be explained by not including phenotype information in the
clustering step. These simulations are quite unrealistic because cases and controls should
be sampled from a population which is as homogeneous as possible. If at all different
ethnicities are included these should be recorded and adjusted for in the analysis.

Thus, the main advantage of our simulation study is that it is on the one hand more
general and on the other hand more realistic than others. The Fgp-values, sample sizes
and the corresponding variance inflation factors are chosen to simulate realistic situations
of large case-control studies with moderate population stratification (see chapter @ Most
of the other simulations concentrate either on extreme population stratification which is
unlikely to appear in case-control studies (Zhu et al., [2002; Chen et al.l |2003; [Shmulewitz
et al.l 2004) or on small sample sizes which are not sufficient to detect weak associations
(Bacanu et al.l 2000; [Pritchard and Donnelly, 2001; Zhu et al., 2002; Chen et al., 2003]).
A further strength of the study is that many parameter sets are investigated: the number
of null loci, the fixation index Fgr, the sample size of the study, the disease prevalences
and the number of subpopulations are varied. Only in the simulations of [Marchini et al.
(2004); [Shmulewitz et al. (2004) investigating Genomic Control a comparable number of
different parameters is studied. The other simulations are based on one or a few fixed
parameter sets (Devlin et al., 2001a) and only the number of null loci is varied system-
atically (Bacanu et al., 2000; Pritchard and Donnelly, [2001; |Chen et al., 2003)). A third
advantage of our simulation study is the large number of simulations for each parameter
configuration which allows us to assess the variation of type-I error rate and power over
the different multilocus marker sets. This variation is investigated systematically in no
other simulation study up to date, the only aspect which is considered elsewhere is the
variation of the inflation factor itself (Bacanu et al., [2000; Reich and Goldstein, 2001]).

7.3.3 Limitations of the simulations

Our different simulation technique and increased complexity of our simulations lead to
a more critical view of Genomic Control and a more positive view of Structured Associ-
ation than obtained in other simulations (Bacanu et al., 2000; Shmulewitz et al. 2004;
Devlin et al., |2004; [Pritchard and Donnelly, 2001). There are also some weaknesses of
our simulation study which may hide the problems of Structured Association. One of the
disadvantages is that the multilocus marker data are simulated in the same model which is
applied for inference on population structure via EM algorithm. We assume that it plays
a minor role which simulation technique is used. The beta-binomial model should be ap-
propriate for simulating diallelic multilocus marker data from discrete subpopulations. It
is a commonly applied simulation technique, e.g. Pritchard and Donnelly| (2001) simulate
data in the same form as here. Marchini et al.| (2004) use this simulation technique based

on real data estimates for global allele frequencies and Fgp-values and show the good fit of
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the model as well. However, an important weakness of our simulations is that admixture
of populations is not simulated although it is the realistic situation for almost all popu-
lations worldwide. If an admixed population is clustered into discrete subpopulations a
residual error remains whatever number of loci is used for clustering the individuals. This
problem is not addressed in our simulations. Furthermore we did not consider a high num-
ber of subpopulations as well as really small population structure as for example existing
within Germany. These points need further investigations in the future. However, more
complicated population structure than simulated here is probably more problematic for
Structured Association whereas Genomic Control is independent of the sort of population
structure. Nevertheless we come to the conclusion that at least for simple population

structure Structured Association if applied correctly is superior to Genomic Control.



8 Summary and outlook

Theoretical considerations as well as simulations showed that the problem of population
stratification in case-control studies is a very complicated topic where many different as-
pects have to be considered. Thus, at the end of the thesis we want to give an outlook on
research questions still to be investigated especially regarding the two main approaches
Genomic Control and Structured Association.

We mainly focussed on proposing a new Structured Association approach and discussing
further Structured Association approaches (see chapter . Section contains a detailed
discussion of our main theoretical results. We showed that Structured Association has
to be applied with a clustering algorithm conditioning on the phenotype if subsequently
a test statistic based on the likelihood function for the genotype data at the candidate
locus is applied. Otherwise a systematic bias is introduced when estimating the subpop-
ulation proportions within cases and controls. As an appropriate clustering algorithm we
proposed the phenotype-dependent EM algorithm. Thus, in our theoretical development
we concentrated on the idealistic situation that the total population is assumed to consist
of discrete subpopulations. There are approaches which incorporate admixture (Pritchard
et al.l 2000a; Hoggart et al., [2003; Shmulewitz et al., 2004) but this is still a new field of
research which we expect to develop further in the future.

As a second step of Structured Association we developed a Wald test which is theoretically
designed for the situation that population stratification only acts as a confounder but not
as an effect modifier. It can be applied for testing a diallelic candidate marker based on
the inferred structure. This is a very common situation, but often further research ques-
tions shall be investigated. In many studies several SNPs being in LD with each other are
genotyped on the same gene and a haplotype-based test statistic would be appropriate
testing all SNPs simultaneously. Moreover, we focussed on statistical hypothesis testing
but do not consider effect estimation in the presence of hidden population stratification.
It is still an open task to derive estimators for subpopulation-specific odds ratios as well
as for a common allelic odds ratio in the subpopulations based on the posterior subpopu-
lation probabilities or admixture proportions. In addition, formulae for the corresponding
confidence intervals have to be developed.

Our association test follows the classical approach which is based on the likelihood for the
genotype data given the phenotype data. As already discussed in section a logistic
regression model could also be applied to test for association following a different likeli-
hood approach. A logistic regression model has the advantage that an effect estimate for
a common odds ratio automatically is obtained and that it is easy to incorporate further
covariates in the model. Details of this model could be worked out in the future.

Our association test is developed for a candidate gene approach where additional markers

are genotyped to control for population stratification. However, in the last years whole
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genome association scans became more and more popular. SNP chips have been devel-
oped where about 500,000 SNPs of one individual can be genotyped simultaneously. New
approaches have to be developed to handle such large amounts of data. In order to infer
population structure from such a large number of SNPs current models have to be ex-
tended to allow for linkage disequilibrium between adjacent markers. In whole genome
scans the question is to simultaneously infer population structure and find the SNPs which
show a significant association to the phenotype of interest. Only the approach of Hoggart
et al.| (2003) is designed to investigate this kind of research question but the performance
is not well tested yet.

Besides a theoretical comparison of the methods it also is important to analyze appropri-
ate data sets with the different association tests. However, as discussed in chapter [6] there
are only few at least medium-sized case-control studies where additional marker have been
genotyped. Of course, such data sets are not freely available. The analysis of the German
Genomic Control Study revealed that within Germany there is too little population struc-
ture to apply Structured Association successfully. However, the variance inflation can be
considerable if cases and controls are sampled from different German regions (see section
53).

We also investigated the performance of different Structured Association tests in simula-
tions and compared it to Genomic Control (see chapter [7)). The results of the simulations
are discussed in detail in section Regarding the comparison of the Structured Asso-
ciation test statistics it turned out that the Wald test statistic had a substantially higher
power than the likelihood ratio test statistic for a larger number of subpopulations. This
also held true for simulating an effect modification with different allelic relative risks in
the subpopulations but the same high risk allele. Thus, to adjust for confounding by
population stratification we propose the Wald test statistic. We covered several realistic
simulation scenarios with many replications to come to a general conclusion about the
performance of Structured Association and Genomic Control for large case-control studies
with small to moderate population stratification. At least for simple population structure
as simulated here Structured Association is superior to Genomic Control. A disadvan-
tage of Genomic Control turned out to be the large variation in estimating the variance
inflation factor as well as the power loss if population structure increased. However, as
already discussed in section[7.3.3] there are still several aspects which could be investigated
in further simulations. Among these the most important is to incorporate admixture in
the simulation model. More complicated population structure than simulated here could
turn out to be more problematic for Structured Association than for Genomic Control
which is independent of the type of population structure. Thus, other simulations have to

be carried out before coming to a final conclusion.



A Appendix

A.1 Notation

In this section the notation which is used throughout the thesis is summarized. In general

bold letters are used for vectors. Random variables are usually denoted with capital letters

and their realizations with small letters. The following general notation is used:

X

%
G

p
™

multilocus genotype marker data which determine population structure

allele frequencies for the multilocus genotype marker data

genotype data at the candidate locus

allele frequencies at the candidate locus

subpopulation proportions

The detailed list of symbols is following here in the same order as it is introduced in the

text. In the first column the scalars are given and in the following column the correspond-

ing vectors if defined at the same place or somewhere later in the text. The notation

introduced in one chapter is used throughout the whole thesis unless otherwise mentioned.

Chapter

Xii;
X;
®1
Dy
AVHY
O
R
(r)
X
x{
o
F;

fii’

(r)
Spkrl
A

d;;

X, X

X5

L2

Pr> P

Pkl
qi

allele from individual i, at DNA-strand j, at locus [, coded as 0=B,1=b
genotype from individual 4, at locus I, coded as 0,1,2

global allele frequency at locus [

linkage disequilibrium (LD) between the loci ! and I’

standardized measure for LD between the loci [ and I’

recombination fraction between the loci [ and I’

number of possible alleles at locus { for multiple alleles coded as By, ... Bg,
indicator variable if allele r is present in individual ¢, at strand j, at locus [
count of allele r in individual ¢ at locus [

global frequency for allele r at locus [

Wright’s coefficient of inbreeding for individual ¢

kinship coefficient between individuals ¢ and ¢’

number of subpopulations, referred to as Si,...Sk

global inbreeding coefficient

fixation index

local inbreeding coefficient

allele frequency in subpopulation k at locus [

proportion of subpopulation % in the total population

subpopulation of individual ¢

distance of subpopulation k£ to the ancestral population

number of individuals in sample from subpopulation k (Sk)

frequency for allele r in Sy at locus I

proportion of individual ¢’s genome originated in Si in the admixture model
number of individuals in a population sample

number of diallelic marker loci
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Chapter

G
a,u
Y
f!gy)
¢
vy
&
A
¢

pT

p(y)

5(0)

G
gig

f(y)

Uy

genotype of any individual coded as 0, 1 or 2

possible disease status, a for cases (affecteds), u for controls (unaffecteds)
phenotype of any individual coded as a or u

probability for genotype g given disease status y

penetrance for genotype g

genotypic relative risk for genotype g in comparison to genotype 0
genotypic odds ratio for genotype ¢ in comparison to genotype 0
probability for genotype ¢ in the total population

disease prevalence

allele frequency in the total population

allele frequency given disease status y

allelic odds ratio

allelic relative risk

total number of individuals, refers to the case-control sample here
number of individuals with disease status y

number of individuals with genotype g and disease status y
number of individuals with genotype g

number of B-alleles in individuals with disease status y

number of B-alleles in the total sample

genotype of individual 7 coded as 0,1, 2

allele of individual ¢ at DNA-strand j coded as 0, 1

phenotype of individual ¢

overall allele frequency under the null hypothesis of no association
proportion of the subpopulation k& within individuals of phenotype y
number of individuals with phenotype y from subpopulation k in the sample
allele frequency in subpopulation k& for phenotype y

allele frequency in subpopulation k£ under the null hypothesis
number of individuals in subpopulation k

number of B-alleles in subpopulation k for phenotype y

number of B-alleles in subpopulation k&

weight for subpopulation k in the Cochran-Mantel-Haenszel test
allelic odds ratios in subpopulations &

common odds ratio in all subpopulations

vector of exposures in the logistic regression model

probability of individual 7 being a case in the case control sample
intercept of the regression

regression coefficient for exposure ¢

odds ratio for a binary exposure ¢

dummy coding for the genotype of individual 4

regression coefficient for the genotype g (dummy coding)
regression coefficient for the genotype

regression coefficient for subpopulation & in the logistic regression
dummy coding for the subpopulation of individual 4

regression coefficient for subpopulation k& (dummy coding)
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Chapter
A variance inflation factor
L number of marker loci, refers to additionally genotyped marker loci here
T2 test statistic Genomic Control is based on
17 same test statistic for marker locus [
Chapter
a5 posterior probability of individual ¢ of being from Sj given x;
ik posterior probability of individual ¢ of being from Sy given x;, y;
'y,(cy) risk for phenotype y in S in the study sample
Vil variable which indicates if genotypes are available at locus [ for individual 4
D number of derived classes in the discrete admixture model
Cak ¢y proportion of the genome from the ancestral Sy for the derived class d
zbc derived class of an individual ¢
Z;?j ancestral subpopulation of allele Xj;;
T proportion of alleles from Sy in the sample in the admixture model
g admixture parameter for the amount of admixture in the sample
W](Cy) proportion of alleles from Sy given phenotype y in the admixture model
a((Jy) amount of admixture in individuals of phenotype y
ik g,,q posterior probability or admixture proportion given y; in the association test
pt allele frequencies at the candidate locus under the alternative
P allele frequencies at the candidate locus under Hy (see chapter )
Zg z°¢ ancestral subpopulation of allele G;; at the candidate locus
I(p') information matrix
c contrast vector for Wald-type statistic
ik g;,q posterior prob. of S given x; in the logistic regression
Chapter
(I allelic relative risk in Sy,
RR relative risk for disease in a further subpopulation compared to subpop. 1

A.2 Statistical Theory
A.2.1 Likelihood based tests of significance

This section gives a summary of the likelihood based test theory applied for standard tests
of association and also for the derivation of the new Wald test correcting for population
stratification. The description of the theory is mainly based on Serfling| (1980)) and |[Kendall
and Stuart| (1973). Let X1, ..., Xy be iid random variables with a density or probability
mass function fg(z) belonging to a family {fg,0 € ©®} where ® is an open subset in RY.
The likelihood function then gives the total likelihood of the sample z1,...,zy under the

assumed model

N
L(0) = H fo(xi).
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The maximum likelihood estimate of 6, denoted by §N, is the vector which maximizes
the likelihood. This vector is most easily determined using the log-likelihood function
() = log L(0). If the log-likelihood function is a twice differentiable function, a necessary
condition for a local turning point is that the estimate is a solution of the maximum
likelihood estimating equations, i.e.
ol(0)
00;

=0, 7=1,...,q.

In many cases the solution of these estimating equations requires an iterative algorithm
as for example the EM algorithm described in appendix A sufficient condition for

the local turning point to be a maximum is that the matrix
( 021(6) )
0000y, k=1, q

An important quantity with respect to variance estimation is Fisher’s Information matrix

which is defined as al(6) d1(0)
In(6) =E
N( ) < 89j 89k )j,kzl,...q

RIC)
N( ) (aﬁjaek)jykzl,...q

The information matrix quantifies the expected amount of information in the sample

is negative definite.

and can also be written as

concerning the true vector 0 since the second derivatives describe the curvature of the
log-likelihood in the neighbourhood of 6.
Under certain regularity conditions the asymptotic distribution of the maximum likelihood

estimate can be derived.

Proposition A.1. Under certain reqularity conditions as described in [Kendall and Stu-
art] (1973); |Lehmann| (1983) a maximum likelihood estimate On exists with a probability
tending to 1 for N — oo so that

1. 5]\/ 18 a consistent estimator for 6.
2. \/N(@N — 0) is asymptotically N(0, NIn(0)™1) distributed.

It follows from the second statement that the maximum likelihood estimator 6 N 1S asymp-
totically efficient, i.e. for any vector ¢ € R? the asymptotic variance of \/NC’(@N - 0)
is minimal. This result is derived from the Cramér-Rao lower bound for the variance of
an unbiased estimate Ei\b for the vector ¢ € R?. For a any linear combination ¢’ (75 the

Cramér-Rao lower bound for the variance is given by

Var (c’g/i\)) >cI(¢) e
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The maximum likelihood theory can be used to construct three different types of large
sample tests, the Wald test, the likelihood ratio test and the score test. The first two test
statistics are applied here and thus explained subsequently. A null hypothesis Hy to be
tested is specified as a subset ®g of @ where @ is determined by a set of r < ¢ restrictions
given by equations

Ri(6) =0, 1<i<r.

In the case of a composite hypothesis the set @y contains more than one element and then
necessarily 7 < g. A special case of a composite null hypothesis is a linear hypothesis of
the form Hy : C'0 = d where C’ is a r x ¢ contrast matrix of rank » and d is the r x 1
solution vector. To calculate the Wald test (Wald, [1943) for a linear hypothesis, the large

sample variance NIy (0)~! has to be estimated by a consistent estimator N SN

Proposition A.2 (Wald test). Under the same regularity conditions as before the Wald-
type test statistic for a linear hypothesis

(C'Oy — d)[C'ENC] HC'ON — d)
1s asymptotically X%—distributed.

A consistent estimator NXy is given by NI N(@)_1 which estimates the variance under
the alternative. However, tests which estimate the variance under the null hypothesis are
more efficient although all such tests are asymptotically equivalent. Thus, if possible the
variance should be estimated under the null hypothesis.

For the likelihood ratio test variance estimation is not necessary. The asymptotic distrib-
ution of the likelihood ratio test statistic was originally derived by |Wilks (1938)).

Proposition A.3 (Likelihood ratio test). Let the likelihood ratio test statistic for a general

composite hypothesis be given as

SUPgc®, L(a)

Ay = .
N7 supgeo L(9)

Under the same regularity conditions as before —2log(Ay) is asymptotically x2-distributed.

A.2.2 The EM algorithm

The EM algorithm (Dempster et all, [1977) is a general method of finding the maximum-
likelihood estimate of the parameters of an underlying distribution if the data are incom-
plete or have missing values. The EM algorithm can be applied if optimizing the likelihood
is analytically impossible but if the likelihood function can be simplified by assuming the
existence of additional but missing or hidden parameters.

Let X = (X/!,...,X)" be a vector of iid random vectors X; which have a density
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or probability mass function fg(x) with the unknown parameter vector 8. The original

likelihood function based on the observed incomplete data @

N
L(8lx) = ] fo(=:)
i=1

is referred to as incomplete data likelihood. We assume the existence of a missing data

vector z and a joint density or probability mass function

fo(x, z) = fo(z|x)fo(x).

The complete data likelihood can be defined as L(08|x,Z) = fo(x,Z) which is in fact a
random variable since the missing information Z is unknown.

The EM algorithm (expectation maximization algorithm) is defined based on the complete
data likelihood.

EM algorithm: The following two steps have to be repeated iteratively for t =1,2.. .
E-step: The expected value of the complete data log-likelihood log L(@|x, Z) with respect

to the missing data Z given the observed data @ and the current parameter estimates 710
Q0|0 =E [1og L(6|z, Z)|z, 00

has to be determined. To evaluate the expectation the density or probability mass function
of the missing data f(z|x,8®) has to be known.

M-step: The second step is to choose 0+D as the vector which maximizes the expectation
Q(0]61)) with respect 6.

Proposition A.4. Fach iteration of the EM algorithm monotonically increases the in-
complete data log-likelihood and the EM algorithm is guaranteed to converge to a local

mazimum of the likelihood function.

Proof: see Dempster et al. (1977). O
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