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Preface

The first impulse that led to this thesis came up at the Wednesday Workshop of
the Institute for Statistics and Econometrics at the University of Göttingen.

At one such workshop Dr. Mauvis Gore from the German Primate Center
(Deutsches Primatenzentrum GmbH) showed some ultrasound images of human
ovaries which she examined routinely in order to study the development of in-
dividual follicles. These are extremely difficult to identify on the images and it
requires considerable time and expertise to do so. Her question was whether this
task could be done automatically.

The prospect of working on a subject that on one hand sees an increasing num-
ber of applications in areas as widely spread as medicine (x-ray, ultrasound, and
magnetic resonance), biology (microscopy), geography (areal and satellite im-
ages), robotics, automatization, and many others, and on the other hand attempts
to understand vision, our most useful sense, appeared very interesting.

Initially I chose Markov random field models to segment the images into ovary
and follicles. This was inspired by my background in statistical physics and the
popularity of Markov random field models in statistics. Unfortunately I was soon
convinced that Markov random field models are not the first choice for the first
steps of vision for two reasons: i) They require prior knowledge about the number
of “colors” into which an image should be segmented. ii) They are not local, so
the results for a given point can depend on the image intensity at positions that are
far from the point.

After the scale-space conference in Utrecht in 1997 I decided to change the
subject. The concept of “scale” was exactly what I was missing in the Markov
random field models. Now the term occurs at 591 places in this thesis.

IV



Chapter 1

Introduction

This thesis addresses the problem of extractinguseful informationfrom imagesof
thephysical world. The emphasis is on “useful”, pertaining to sometaskthat one
aims to achieve.

Images of the physical world are used for a bewildering variety of tasks. “A
pigeon uses vision to help it navigate, fly, and seek out food. Many types of
jumping spider use vision to tell the difference between a potential meal and a
potential mate. ... The rabbit retina is full of special gadgets, including what
is apparently a hawk detector.” [Marr, 1982, p. 32] There are many technical
applications as well, controlling robot movements or aiding diagnosis and surgery
in medicine. All these tasks are most certainly solved in different ways. Any
particular solution may turn out to be useful or not in retrospect, when it is applied.
So how can one go aboutconstructingausefulsolution?

A very interesting possibility is to look at existing biological visual systems.
Understanding biological vision would be interesting in itself and one may hope
to learn some tricks for the construction of artificial visual systems. This approach
was pioneered in the 1950s and 60s by Barlow [Barlow, 1953], Hubel and Wiesel
[Hubel and Wiesel, 1962], [Hubel and Wiesel, 1968], and many others.

The alternative approach ofcomputer visionattempts to build a visual system
from scratch. This approach focuses on the task to be solved and in principle
admits any method to construct a solution as long as the task is solved. At the
same time it raises the question whether the task alone provides any guidelines to
its solution and if so, what these guidelines are.

A few requirements about the final solution should be dealt with atall levels
of the construction. These concern some minimal requirements on what type of
information mustnot be discarded, formulated as “invariance requirements”. If,
for example, a rabbit needs to be able to detect a hawk coming from any direction,
then all steps of the processing must be able to deal with all possible directions.
Discarding information about hawks coming from behind would evidently not be

1



1.1 A Feature Detection Recipe 2

a useful strategy.
Next the question arises whether to construct a solution to any specific task in

one piece or to divide it into several steps some of which may also be useful to
other tasks. The general consensus on this is thatsome basic steps of processing
are useful for very many different tasks. These basic steps of visual information
processing are calledearly visionor low level vision, the terminology empha-
sizing the claim to generality. The following section intends to give the reader a
rough idea of what is generally believed to be a set of useful first steps of visual
information processing.

1.1 A Feature Detection Recipe

A detailed description of the first steps of image analysis will be given in the
following two chapters. To give the reader a rough idea we sketch them as a
recipe in three steps:

1. Smooth the Image
An observed image is smoothed. In general several degrees of smoothing
should be performed. Figure (1.1) shows a magnetic resonance image of a
brain and some smoothed versions of the same image.

Sometimes the appropriate degree of smoothing is known beforehand due
to the setup, e.g. in an industrial application where distance of camera and
object are fixed and the observed objects are very similar each time.

Figure 1.1: Original and smoothed images.
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2. Choose a Feature Detector
Local structural properties of the smoothed images are computed. Examples
of such properties are the gradient or the principal curvature. They should
not depend on any parameters that might require “user-interaction” or an
“intelligent guess” of the programmer. Figure (1.2) shows the gradient of
the smoothed images. Figure (1.3) shows the principle curvature of the
smoothed images.

Figure 1.2: Original image and gradient of smoothed images. (For better
display the grey values have been adjusted independently in each image.)

Figure 1.3: Original image and principle curvature of smoothed images.
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3. Compute Local Extrema of a Feature Detectors Response
The local extrema of the structural properties are considered “particularly
informative” positions. Figure (1.4) shows “edges” of the brain image at
different degrees of smoothing. Edges are local maxima of the gradient
along the gradient direction. Figure (1.5) shows the “ridges” of the same
image. Ridges are a subset of the local minima of the principal curvature
along the direction of principal curvature (see Chapter5).

Figure 1.4: Original image and maxima of gradient of smoothed images
along gradient direction.

Figure 1.5: Original image and “second derivative ridges” of smoothed
images.
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Based on the fact that the computed “edges”, “ridges” and perhaps other fea-
tures capture some essential structural information about an image which is closer
to a content-based description than the original pixel-based representation one
hopes that these features should suffice to solve many tasks of vision.

1.2 Some Questions about Scale

The above recipe involves choosing several degrees of smoothing. Why that? Is
there not a single appropriate degree of smoothing? If one follows the “scale-
space concept” introduced by Koenderink [Koenderink, 1984] the answer to this
is “No, usually not”.

The idea of the “scale-space concept” is that the degree of smoothing can
reveal the size of “objects” within an image as follows: With increasing degree
of smoothing objects vanish from the image, small objects first and larger objects
later. The degree of smoothing at which an object vanishes basically measures the
size of the object. For this reason the smoothing parameter is also called “scale”.

According to the scale-space concept any object within an image has a position
and a scale. To find both positions and scales it is evident that an image must be
smoothed to all possible degrees (unless the content is known beforehand). As
Koenderink wrote in 1984,

The challenge is to understand the image really on all these levels
(scales)simultaneously, and not as an unrelated set of derived images
at different levels of blurring (smoothing).

Ironically the question of how to determine both positions and scales has
eluded scale-space theory for almost a decade. The first systematic integration
of “position detection” and “scale selection” was proposed in 1993 by Lindeberg
[Lindeberg, 1993b]. The proposal is in many respects similar to the above recipe.
The image is smoothed to different degrees, some operators are applied, and then
“particularly informative” positions and scales are computed as local extrema of
the operator response with respect to position and scale.

Lindeberg’s proposal for scale-selection contains a so-calledγ-normalization
parameter. Different choices of this parameter yield different “particularly infor-
mative” scales. It remains a question, what the “right” choice ofγ-normalization
should be. More generally it is not clear why scales should be selected accord-
ing to the prescription given by Lindeberg. Both questions are addressed by this
thesis.
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1.3 Contributions of the Thesis

The study of scale-selection and the approach adopted has affected the author’s
point of view of scale-space and feature detection in general. For this reason
the original contributions of this thesis are not presented as a separate part but
integrated into the overall presentation. In the following we give a summary of
the original contributions with references to their location in the thesis.

A central idea of the thesis isstochastic simplification. This proposes to ran-
domly shuffle the pixels of an image to new positions.

Stochastic simplification is introduced in chapter2. In section2.4 we prove
that a very natural condition on shuffling produces random images whose expected
value is exactly linear scale-space.

Section2.4 also introduces alocal entropydefined for any single point in
scale-space. We prove that the sum of local entropies over all points of an image
increases monotonically with scale. This captures in a mathematically rigorous
way the intuitive idea that smoothing (by Gaussian filter kernels) simplifies images
both globally and, more importantly, also locally.

In chapter6 the idea of shuffling is applied to feature detection and scale se-
lection. This chapter proposes to make use of thelocal distributionsthat shuffling
generates at each point in scale-space. These distributions allow us to take a point
of view from which feature detection and scale selection appear as special cases of
one and the same concept. As a consequence there is a canonical scale-selection
operator to any feature detection operator.

Chapters5 and7 apply the theoretical concepts to the problem of ridge detec-
tion. They contain some original contributions throughout. In particular section
7.4describes an interesting phenomenon of a second derivative ridge-detector. At
fixed scales this operator frequently responds to edges. At variable scales, how-
ever, the “correct” choice of scale-selection allows the operator to “escape” from
edges along the scale direction.

Section 3 of chapter8 describes a modification of the well-known marching
squares/cubes algorithm that are necessary to compute ridges.

Finally chapter9 discusses a self-similarity property of normal noise in scale-
space. The contribution here is that this property facilitates the computation or
estimation of distributions of some “measurements” made on normal noise in
scale-space. Such distributions could be useful e.g. to assess the significance
or saliency of features.
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1.4 Some Remarks Concerning the Formulation

There are several possibilities to formulate and compute the scale-space of an im-
age, either in terms ofintegral equationsor partial differential equations, in the
space domain or in thefrequency domain, in a continuous or a discrete formula-
tion. As far as the presentation is concerned we have chosen a continuous integral
formulation with filter kernels in the spatial domain. The software1 that the author
wrote to implement the theory makes use of a discrete “integral” formulation in
the frequency domain. The formulation in terms of partial differential equations
is extensively used in the literature onnon-linear scale-spaces[Weickert, 1998].
A genuinely discrete formulation can be found in [Lindeberg, 1990].

1Algorithms for smoothing and computation of derivatives via Fourier transformation in carte-
sian, gradient and curvature coordinates, as well as algorithms for the computation of zero-
crossings in 2 and 3 dimensions, and the computation of ridges without and with scale selection
were written based on the free Vista library [Pope and Lowe, 1994] from the University of British
Columbia.



Chapter 2

Scale-Space

This chapter introduces thescale-space representationof image data that replaces
an image by a family of smoothed versions of the same image.

The scale-space representationhas proved useful to the task ofvisionbecause
with increasing blur details of the original image are lost. This allows a visual
system to “concentrate” on the appropriate level of detail and to relate “things”
across different levels of detail.

The chapter is organized as follows. The definition of linear scale-space and
some examples are given first. Next the purpose of the representation, to serve
as a useful starting point forvision, is briefly discussed. A number of properties
of scale-space that appear particularly useful concerning vision are discussed in
section (2.3). Finally the intuitively evident fact that smoothed images are simpli-
fied versions of the original image is considered in detail from a stochastic point
of view. It is shown that random shuffling of pixels to new positions can create
scale-space, and that theaverage local entropyof this process increases mono-
tonically with scale. The latter is a mathematically rigorous formulation of the
simplification property of scale-space.

2.1 Linear Scale-Space

Linear scale-space is arepresentationof data that makes explicit some infor-
mation that is otherwise only implicitly present in the data, namelyscale. As
a representation for vision it was independently proposed by [Iijima, 1959] and
[Witkin, 1983].

The linear scale-spaceof f : RN → R is defined asL : RN×R+ → R with
L(·,0)≡ f and fort > 0

L(·, t)≡G(·; t)∗ f (2.1)

8



2.2 The Purpose of Scale-Space: Vision 9

where

G(x; t) =
e−

xT x
2t

(2πt)N/2

is the (rotation symmetric) Gaussian filter kernel of width
√

t and∗ denotes the
convolution operator1.

√
t is called thescale.

Figure (2.1) shows some examples of “slices” from the scale-space of some
two-dimensional images. They illustrate how with increasing scale small scale
information is lost.

2.2 The Purpose of Scale-Space: Vision

Any representation of data is useful, or not, only together with some information
processing task. The scale-space representation is designed forvisionwhich Marr
characterizes as follows [Marr, 1982, p. 31]:

Vision is a process that produces from images of the external world a
description that is useful to the viewer and not cluttered with irrele-
vant information.

The sheer amount of data makes the distinction between relevant and irrelevant a
primary concern to a visual system. Experimental evidence from the human visual
system provides an impressive example [Atick, 1992]: The retina collects data at
a rate of more than 106 bits/sec [Jacobson, 1951]. Most of these are discarded
before arriving at the visual pathway. Studies of the speed of visual perception
[Sziklai, 1956] or reading [Kornhuber, 1973] show that the visual pathway in hu-
mans transmits around 50 bits/sec.

Considering the task of compressing the information contained in an image
scale-space may seem a step in the wrong direction. It obviously requires much
morestorage than the observed data alone which are themselves only the first,
t = 0, slice of scale-space. It appears, however, that the scale-space representation
is better suited forsubsequent detection of relevant informationthan the original
image representation.

The basic idea is todescribe each “object” at the appropriate scale. For
example it would certainly be inappropriate to describe a tree top on a molecular
scale of 10−6 meters. Of course a scale of 1000 meters is not a better choice. An
efficient description may be achieved on scales around 1 meter. It is self-evident
that much information is discarded when replacing a micrometer description of

1The convolution ofG(·; t) and f is defined as(G(·; t)∗ f )(x0)≡
∫

dx G(x−x0) f (x). See e.g.
the chapter on fast Fourier transforms in [Press et al., 1988].
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Figure 2.1: Slices from scale-space. All images have 512 by 512 pixels. The
displayed scales are

√
t = 0,

√
t = 4,

√
t = 8,

√
t = 12, and

√
t = 16 (where a unit

length is the width/height of a pixel).
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the tree top by a description on a 1 meter scale. However,for the purpose of
describing the tree topthe gain outweighs the loss.

To find an appropriate description without prior information about the image
content it is necessary to study an image atall scales as sketched in figure (2.2),
the scale-space representation being the natural starting point. Subsequent steps to
analyze the image content and find appropriate scales may be sketched as follows:
A toolbox of operators, each of which focuses on some different aspect, is used to
“look at” the scale-space. The resulting data are then searched for (a small set of)
particularly informative featuresacross space and scale. These features provide a
condensed description of the original image where each feature is associated with
its appropriate position and scale.

How to achieve these later steps of the scale-space paradigm will be the subject
of subsequent chapters.
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Figure 2.2: The scale-space representation contains appropriate scales for all “ob-
jects”.

2.3 Useful Properties of Scale-Space

The remainder of this chapter is devoted to some interesting properties of the
scale-space representation. These properties give an idea of why the scale-space
representation could be useful to vision. They go hand in hand with the question
of what abilities a visual system should possess in order to perceive the physi-
cal world around it. Though we have attempted to present the ideas rather than
the technical details, the discussion does become technical at some points. The
reader who is more interested in how the first steps of vision might be achieved or
implemented should continue with the next chapter.
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2.3.1 Simplification

It is apparent from the above examples that with increasing scale detail is lost.
From the original data at scalet = 0 the slices of scale-space make a transition to
constant intensity at infinite scale. Clearly this transition corresponds to a grad-
ual simplification of the image content. Intuitively such a gradual simplification
appears a useful property of the scale-space representation because it allows the
level of detail to be chosen appropriate to the image content. This has inspired
several authors to define simplification in a strict mathematical rather than intu-
itive sense and regard it as anecessaryproperty of a representation of image data
for vision. Some of these definitions shall be discussed in the following.

Non-Creation of Local Extrema in One Dimension

Witkin [Witkin, 1983] was first to formulate asimplification property of one-
dimensional scale-space. He defined this to mean the non-creation of local ex-
trema, i.e. going from small to large scales no new local extrema along space may
appear. To exemplify this figure (2.3) shows the scale-space of a one-dimensional
image together with the locations of local extrema along space. One can see
clearly that local extrema are able to annihilate each other but no new local ex-
trema appear toward larger scales. Babaud et al.[Babaud et al., 1986] showed that
linear scale-space is the unique representation with this property.

Figure 2.3: One dimensional scale-space and zero-crossings of the first derivative
along space.

Non-Enhancement of Local Extrema

In two or more dimensions the simplification property of scale-space must be
characterized somewhat differently since here itis possible that new local extrema
appear with increasing scale.

A view of simplification that applies in any dimension is that all local max-
ima should decrease with increasing scale and conversely all local minima should
increase. This property may be observed in the example images. It is also easily
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proved to hold in scale-space since the derivative along scale may be expressed as
follows:

∂tL(x; t) =
1
2∑

i
∂i∂iL(x; t)

At a local maximum each of the second derivatives on the right hand side is nega-
tive so that the derivative along scale is negative as well, which goes to show that
a local maximum ofL(x; t) decreases with increasing scale.

Koenderink [Koenderink, 1984] formulated this simplification property, that
he calledcausality, as follows. Consider iso-surfacesL(x; t) = Constantin scale-
space (e.g. if the image is two-dimensionalL(x; t) = Constantdescribes a two-
dimensional surface in a three-dimensional scale-space). At positions on such a
surface whereL(x; t) is an extremum with respect tox the surface should point
its convex side toward increasing scales

√
t. This, he showed, is equivalent to

the above equation and thus to linear scale-space if additionally differentiability,
homogeneity and isotropy are demanded2.

Stochastic Simplification

Still another point of view of simplification is the following. Suppose we ran-
domly shuffle the pixels (intensities) in an observed imagef (x) to new positions.
This should on average destroy structural information so that the average of the
shuffled images is a simplification of the observed image. It remains to define how
exactly to shuffle intensities.

To shuffle the pixels around, allow them to jump from positionx at “time” t to
positiony at “time” t + τ with some transition probability p(y, t + τ|x, t) 3. The
positionx of each pixel thus becomes a random variable and one can study how the
distribution of pixels evolves with “time”t. To achieve agradualsimplification
the “time” dependence is important.For short times the typical length of a jump
should be proportional to the timeτ between t and t+ τ. In terms of transition
probabilities this is expressed as follows (indices running from 1 toN):∫

dyi(yi−xi)p(y, t + τ|x, t) = Aiτ +o(τ)∫
dyi(yi−xi)(y j −x j)p(y, t + τ|x, t) = Ci j τ +o(τ)∫

dyi(yi1−xi1)...(yin−xin)p(y, t + τ|x, t) = o(τ) for n> 2

(2.2)

2Koenderink does not explicitly mention differentiability but makes use of it. Differentiability
ensures continuity and that is certainly required to prohibit new local extrema from “popping up
out of nowhere”.

3The positions of pixels are shuffled according to aMarkov process.
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These equations for the transition probabilities define adiffusion process
[Honerkamp, 1990] [Gardiner, 1985]. For short “times”τ the average jump dis-
places a pixel atx to x + Aτ and the jumps typically deviate from this average
by Ci j τ. Thedrift Ai and thediffusion tensor Ci j can in principle be functions of
position, time, or even the simplified image.

If one defines a simplificationL(x; t) of an imagef (x) to be the expected value
of images shuffled in the described way then it can be shown thatL(x; t) satisfies
the partial differential equation

∂tL(x; t) = ∑
i

∂iAiL(x; t)+
1
2∑

i, j
∂i∂ jCi j L(x; t)

with initial conditionL(x;0) = f (x). The derivation of this equation will be given
in the last section of this chapter. The equation is the generating equation of
scale-spaces in general, including the nonlinear scale-spaces where both diffu-
sion coefficientCi j and drift Ai may depend on the local intensityL(x; t) (see
e.g. [Perona and Malik, 1990], [Alvarez et al., 1992] or [Weickert, 1998] for an
overview).

Imposing isotropy and homogeneity makesAi = 0 andCii (x, t) = 1, Ci j = 0
for i 6= j so that again linear scale-space can be seen to be the unique solution.

A very interesting consequence of shuffling is that it allows one to definelocal
entropies of the random intensity at positionx and timet. The intuitive idea that
shuffling simplifies images may then be associated with the fact that the average
local entropy increases monotonically with timet. A proof hereof is given at the
end of the chapter.

2.3.2 Translation and Rotation Invariance

Let us now consider two properties that are not only useful but practically indis-
pensable to a visual system, unless prior information about the image content is
available.

If an observer moves relative to a scene the physical content of the scene re-
mains unchanged, of course. For a visual system that aims to “see” the physi-
cal scene it is therefore important that the information content of its description
remains unchanged as well, apart from the fact that it “sees” the change of posi-
tion. This is formulated in terms oftranslationandrotation invarianceas follows:
translation (rotation) of an image before computation of scale-space is identical
to translation (rotation) after computation of scale-space. Schematically this is
shown in figure (2.4).
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Figure 2.4: Commutative diagram of translation and rotation invariance.

Some restrictions must be made. Invariance with respect to all possible move-
ments between observer and scene is generally not physically achievable due to a
limited field of view as well as a limited resolution of the visual system and not
least the projection of a three-dimensional scene to a two-dimensional image.

Consider, however, a special situation where these limiting factors do not ap-
ply. Let this page of paper be the scene and rotate it or move it left or right
changing its distance to your eyes as little as possible. In this situation, too, the
visual system should “see” the same information irrespective of the rotation or
translation of the scene.

More generally invariance with respect to translations and rotations of the pro-
jection of a scene onto the image plain can be achieved (as long as the content is
not moved out of the image domain). Technically this if formulated as follows:
Call T the coordinate transformationT(x) = Mx + a for some vectora∈ RN and
some orthonormalN×N matrix M and denote byf ◦T the concatenation ofT
and f , i.e ( f ◦T)(x) = f (T(x)). Then one easily verifies that scale-space satisfies
translation and rotation invariance in the following sense:

(G(·; t)∗ ( f ◦T))(x) = ((G(·; t)∗ f )◦T)(x)

Here we have neglected the image border for convenience.
Concerning the example with the page of paper one remark is in place. Clearly

our visual systemcannotread the text on the page equally well from any orien-
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tation. This is a consequence of the fact that we always read text oriented in the
same way, the “top” of the page facing up. Whenever such prior knowledge about
the environment is available it is possible to increase the efficiency of information
processing at the cost of the ability to deal with general situations. The approach
pursued by scale-space theory is to attempt to understand and work out the more
general methods, imposing translation and rotation invariance. The hope is that
many applications can profit from even a small improvement by this approach.

Let us now consider changes of distance between observer and scene. These
require special attention because they either enhance or destroy the details of the
scene that are visible to the observer.

2.3.3 Observational Blur and Scaling

Any physically observed image is blurred by the measurement device or eye. This
observational blurmakes small scales unobservable and leads to loss of detail as
the observer moves away from the scene.

Observational blur is a physically inevitable property of the measurement de-
vice or eye4. It is a result of the measurement itself, created for example by the
lens and the photoreceptors. What is important in the present context is thatthe
amount of blur is fixed on the scale of the measurement deviceas sketched in the
following figure. This has been termed theinner scaleof the measurement device
[Florack et al., 1992] [Florack et al., 1994].

♣ - -

�
�
�

�
�
�

♣

scene lens data

variable fixed

The effect of a variable distance between observer and scene is the following.
With increasing distance the projections of the scene onto the image plain become
smaller. Still all projections receive the same amount of blur on the scale of the
measurement device. Conversely this means thaton the scale of the scene distant
scenes are blurred more than close scenes. In effect this is a physical possibility

4A measurement device can be optimized tominimizeobservational blur but it cannot be
avoided altogether.
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to construct a scale-space, which, of course, need not be the linear scale-space.
Linear scale-space arises in this way only when the observational blur is Gaussian.

Suppose again the visual system aims to “see” the physical world. If the same
physical scene is observed at different distances it would be useful to have some
way of identifying the resulting images. One way to facilitate this is to artificially,
by computation, subject an observed scene to the scaling and, more importantly,
the extra observational blur thatwould result from a physically larger distance.
The scale-space representation does just that, as far as observational blur is con-
cerned. As shown in figure (2.5) a simple transformation allows one to match an
observation at a large distance and “the same” observation at a shorter distance.

Suppose an imaged of a distant scene differs from a closer imagef of the
same scene as follows:d = G(◦; to)∗ f s, wheref s(x) = f (sx) ands> 1. Then the
scale-space of the distant scene is related to that of the close scene by:

(G(; t)∗d)(x) = (G(·;s2(t + to))∗ f )(sx)

Evidently this equation would not hold if the observational blur was not Gaus-
sian. To set up a similar equation in that case would require a non-Gaussian scale-
space. The fact that the equation holds for Gaussian scale-space and Gaussian ob-
servational blur is due to therecursivity principleor semi-group propertywhich
states that a Gaussian filter kernel smoothed with a Gaussian filter kernel is again
a Gaussian filter kernel.

2.3.4 Differentiability

A technically useful property of the scale-space representation isdifferentiability.
L(x; t) = (G(·; t)∗ f )(x) can be differentiated up to any order by the relation

∂n1
1 ...∂

nN
N L(x; t) = ((∂n1

1 ...∂
nN
N G(◦; t))∗ f )(x)

This property is extensively used in the first steps of processing the scale-space
representation as will become apparent in the subsequent chapters.

Particularly notable is that the above relation allows one to differentiate the
scale-space ofdiscretely sampled datapoints. While obviously it makes no sense
to speak of differentiating discretely sampled data themselves, the equation

(G(◦; t)∗ (∂n1
1 ...∂

nN
N f ))(x) = ((∂n1

1 ...∂
nN
N G(◦; t))∗ f )(x)

makes the meaning well-defined5.
5 In terms of regularization theory[Tikhonov and Arsenin, 1977] differentiation of discretely

sampled data is anill-posed problem[Hadamard, 1902] and scale-space is aregularizationof this
problem. For an introduction to regularization theory see [Goutte, 1997].
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x→ sx

(move away)

scene

lens

data

scale-space
1

x→ sx
t→ s2(t + to)

Figure 2.5: Scaling, observational blur, and scale-space. If an image is scaled
in size by a factors, i.e. x→ sx the scale-space is transformed byx→ sx, t →
s2t. The grid masks that part of the scale-space from the close scene which is
unobservable in the distant scene.
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2.4 Stochastic Simplification and Scale-Space

This section considers in detail stochastic simplification and scale-space. The idea
of stochastic simplification is that random shuffling of pixels should on average6

destroy structural information of an image. It is thus not surprising that scale-
space may be “derived” from shuffling as will be demonstrated.

The second point of this section concerns the intuitive property that scale-
space simplifies images both globally and, on average, also locally. This is formu-
lated in terms of local entropies of shuffled images and it is shown that the sum of
local entropies increases monotonically with scale.

2.4.1 A Derivation of Scale-Space

An impressive number of approaches have appeared in the vision literature
that derive linear scale-space from a number of basic axioms. [Iijima, 1959],
[Iijima, 1962a], [Iijima, 1962b], [Iijima, 1963], [Otsu, 1981], [Koenderink, 1984],
[Yuille and Poggio, 1986], [Babaud et al., 1986], [Lindeberg, 1990],
[Florack et al., 1992], [Alvarez et al., 1993], [Lindeberg, 1994b],
[Pauwels et al., 1995], [Nielsen et al., 1997], [Lindeberg, 1997], [Florack, 1997].
The arguments may roughly be divided into two categories. One is based on
simplificationand the other on therecursivity principle. A detailed overview is
given in [Weickert et al., 1997].

Here it is demonstrated that stochastic simplification produces scale-space un-
der some very natural assumptions about shuffling.

To define shuffling we allow each pixel to jump from its positionx at “time”
t to positiony at “time” t + τ with some transition probability p(y, t + τ|x, t).
Each pixel carries around with it the intensity of the observed image at its starting
position and all pixels are allowed to jump independently of one another.

The actual condition we impose in order to achieve agradualsimplification is
that for short timesτ between t and t+ τ the typical length of a jump should be
proportional to the timeτ. In terms of transition probabilities this is expressed by
equations2.2which we repeat here:∫

dyi(yi−xi)p(y, t + τ|x, t) = Aiτ +o(τ)∫
dyi(yi−xi)(y j −x j)p(y, t + τ|x, t) = Ci j τ +o(τ)∫

dyi(yi1−xi1)...(yin−xin)p(y, t + τ|x, t) = o(τ) for n> 2

(2.3)

6Average with respect to repeated shuffling
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The drift Ai and thediffusion tensor Ci j can in principle be functions of posi-
tion, time, or even the simplified image. In any case, these conditions allow one
to derive a partial differential equation for the transition probabilities as follows
[Honerkamp, 1990]: Take some functionR(y) with vanishing first derivative at
the boundary of the image domain. Then∫

dyR(y)∂t p(y, t|x, t) =

= lim
τ→0

1
τ

∫
dyR(y) [p(y, t + τ|x, t)− p(y, t|x, t)]

= lim
τ→0

1
τ

[∫
dyR(y)

∫
dzp(y, t + τ|z, t)p(z, t|x, t)−

∫
dyR(y)p(y, t|x, t)

]
= lim

τ→0

1
τ

[∫
dy
∫

dz

{
R(z)+∑

i
(y−z)i∂iR(z)

+∑
i, j

(y−z)i(y−z) j∂i∂ jR(z)+ ...

}
p(y, t + τ|z, t)p(z, t|x, t)

−
∫

dyR(y)p(y, t|x, t)
]

Here we have used the Chapman-Kolmogorov equation and a Taylor expansion of
R aboutz. In the limit τ→ 0 the integrals iny that involve powers of(y−z) can
be evaluated using the assumptions2.3. This gives

∫
dyR(y)∂t p(y, t|x, t) =

∫
dzp(z, t|x, t)

[
∑
i

Ai∂iR(z)+
1
2∑

i, j
Ci j ∂i∂ jR(z)

]

Using the fact thatR(z) is an arbitrary function that may be chosen to have van-
ishing first derivatives at the image boarder one gets by partial integration a partial
differential equation for the transition probability:

∂t p(z, t|x, t) =−∑
i

∂iAi p(z, t|x, t)+
1
2∑

i, j
∂i∂ jCi j p(z, t|x, t) (2.4)

This is the Fokker-Planck equationfor the transition probabilitiesp(z, t|x, t) of a
diffusion process. According to [van Kampen, 1981] it was first used by Rayleigh,
Einstein, and Smoluchowsky in a form withAi linear inz andCi j constant. Sub-
sequently Planck and Kolmogorov derived a more general form.

To return to the shuffled images: A pixel at positionx at time 0 is allowed to
jump to new positions at timest > 0 according to the above transition probabilites.
All the time it carries around with it the intensityf (x) of the observed image at
its starting positionx. If we let pixels start from all positionsy, one from each,
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and the pixels jump independently of each other, then the average intensity of the
shuffled image at positionx and at timet is

L(x; t) =
∫

dy p(x, t|y,0) f (y)

This is taken to define the simplified imageL(x; t), as already indicated by the
notation.

The simplified image satisfies, via the transition probabilities, the partial dif-
ferential equation

∂tL(x, t) =−∑
i

∂iAi(x, t)L(x; t)+
1
2∑

i, j
∂i∂ jCi j (x, t)L(x; t) (2.5)

with initial condition

L(x;0) = f (x) .

Equation (2.5) is the generating equation of scale-spaces in general, including
the nonlinear scale-spaces where both diffusion coefficientCi j and drift Ai may
depend on the local intensityL(x; t). An overview of nonlinear scale-space theory
can be found in [Weickert, 1998]. Some of the axiomatic formulations of scale-
space also consider the nonlinear case: [Alvarez et al., 1993], [Lindeberg, 1997].

Finally, let us require that shuffling should be homogeneous and isotropic in
the sense that the transition probabilitiesp(y, t +τ|x, t) should only depend on the
distance|y−x| and the time differenceτ. This necessitates zero driftAi = 0 and
diagonal and constant diffusion tensorCii = 1, Ci j = 0 if i 6= j so that we get the
generating equation for linear scale-space:

∂tL(x, t) =
1
2∑

i
∂i∂iL(x; t) (2.6)

That completes a derivation of scale-space from the definition of simplification
via shuffling.

2.4.2 Stochastic Simplification and Local Entropy

The idea of images being simplified in scale-space suggests a relation toinfor-
mation theory. In some sense one would expect the information to decrease with
increasing scale and conversely theentropyto increase.

Sporring and Weickert [Sporring and Weickert, 1997], [Sporring, 1999],
[Sporring and Weickert, 1999] defined a global entropy

−
∫

dx L(x, t) log(Lx, t)
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of a smoothed imageL(x, t) and proved that this increases monotonically witht.
The examples in figure (2.1) suggest that images are not only simplified globally
but also locally. The shuffled images allow us to make this stronger statement in
the following sense.

The intensity at positionx and timet > 0 in a shuffled image is a random
variableI with density

p(I ;x, t) =
∫

dy p(x, t|y,0) p(I ;y,0)

where initially the intensityI at positiony is f (y) with certainty:

p(I ;y,0) = δ(I − f (y))

(δ denotes the Dirac delta function). At each positionx and scalet the entropy of
this random variable is

S(x, t)≡−
∫

dI p(I ;x, t) log(p(I ;x, t))

=−
∫

dI r (p(I ;x, t))

wherer(u) ≡ ulogu. The entropyS(x, t) is local in scale-space. At any single
positionx there may be timest when the entopy increases witht and other times
when it decreases witht. However,the sum of the local entropies increases mono-
tonically with t. To see this, consider thesum of local entropies

S̄(t) =
∫

dx S(x, t)

=−
∫

dx
∫

dI r (p(I ;x, t))

Its derivative with respect tot is:

∂tS̄(t) =−
∫

dx
∫

dI r ′ (p(I ;x, t)) ∂t p(I ;x, t)

=−
∫

dx
∫

dI r ′ (p(I ;x, t))
∫

dy ∂t p(x, t|y,0) p(I ;y,0)

=−1
2

∫
dx
∫

dI r ′ (p(I ;x, t))
∫

dy div∇p(x, t|y,0) p(I ;y,0)

=−1
2

∫
dx
∫

dI r ′ (p(I ;x, t)) div∇p(I ;x, t)

In the second to last equation we have inserted∂t p(x, t|y,0) =
1
2 ∑i ∂i∂i p(x, t|y,0) = div∇p(x, t|y,0) 7. The integral with respect tox may
now be evaluated by Gauss’ theorem.

∂tS̄(t) =
1
2

∫
dx
∫

dI r ′′ (p(I ;x, t)) (∇p(I ;x, t))2

7The proof also applies to the more general Fokker-Planck equation (2.5).
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Sincer ′′ (p(I ;x, t))≥ 0 it follows that

∂tS̄(t)≥ 0

Consequently the sum of local entropies increases (or remains constant) with time
or scale.



Chapter 3

Feature Detection

In this chapter we consider the problem of distinguishing “relevant” and “irrele-
vant” information within a single slice of scale-space. Specifically we studyfea-
ture detectionwhich refers to the following procedure: Process a smoothed image
with some local operator. Then classify thosepositionsas particularly informative
where the operator response is locally extremal.

A number of questions arise immediately: Why are local extrema relevant?
What type of local operators may or should be used?

The chapter is organized as follows. The very intuitive method ofpattern
matchingbriefly motivates the use of local extrema and gives a simple interpre-
tation of feature detectionin terms of a least squares fit. Then we turn to the
operators of feature detection. It is argued that the useful properties of scale-space
should be shared by the feature detection operators. This makes thederivative
of Gaussianfilter kernels the generic scale-space operators and opens the way
for differential geometryas a powerful toolbox for the construction of feature
detectors.

3.1 Pattern matching

Consider the situation where amodel g(x) of the feature of interest is given and
the position of this feature is sought in an imagef (x). For example we might be
seeking Hanna’s face in the picture on the right.

24
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The conceptually easiest way to find the position of a feature model ispattern
matching: the model is positioned somewhere over the image and its fit is mea-
sured. This is repeated for different positions and the position with optimal fit is
identified.

Suppose the fit of the model at positionx0 is measured in terms of the squared
difference

SQ(x0) =
∫

dx [g(x−x0)− f (x)]2

(where for simplicity the problem of image boarder is ignored and mathemati-
cal tractability is assumed, i.e.g and f square integrable). Then, evidently, the
positions of optimal fit may equally be computed from theoperator responseof
filtering f with g

F(x0) =
∫

dx g(x−x0) f (x)

The positionsx0 at whichF is maximal are exactly those whereSQ is minimal
since neither

∫
dx g(x−x0)2 nor

∫
dx f (x)2 depend onx0.

g

f

SQ

F

As a simple example consider the
one-dimensional “edge-model”g and
the imagef on the right. The squared
differenceSQhas a single minimum at
the position of the step edge inf and
the convolutionF displays a maximum
at the same position.

The interpretation of local extrema
of the operator response of a convo-
lution as positions of a least squares
fit gives a simple (though restricted1)
motivation for considering local ex-
trema of operator responses “particu-
larly informative”.

3.2 Feature Detection Operators

In 1992 Koenderink and van Doorn wrote [Koenderink and van Doorn, 1992]

The set of operators in general use comprises an odd lot, with hardly
any relations between the various types, nor any clear relations be-
tween different versions of the same type (such as edge detectors of

1For nonlinear operators the least squares interpretation is not in general possible.
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various orientations), nor especially simple behavior under the ac-
tion of specific transformation groups (such as translation, rotation,
or blurring).

They go on to proposederivative of Gaussianfilter kernels as the basic feature
detection operators because these operators satisfy ascaling invariance. We de-
scribe thescaling invarianceproperty at the end of this section. To begin with
the two main approaches to feature detector design are contrasted, followed by a
description of derivative of Gaussian feature detectors.

3.2.1 Design Criteria for Feature Detectors

Feature detectorsare local operators that are applied to an image in order to sub-
sequently label the local extrema of the response as particularly informative. The
design of feature detectors is a fundamental problem of image analysis. The pos-
sible gain from a good feature detector is to guide the visual system toa few
positions in an image which are not only labeled particularly informative during
feature detection but which also turn out tobeparticularly useful in the interpre-
tation of the image.

We distinguish two different approaches to the design of feature detectors.

Optimal Design

The historically older approach, most famously pioneered by Canny
[Canny, 1986], seeks to optimally balance two opposing qualities of the op-
erators: localization and response to noise.

g

f

g*f

To demonstrate this consider the
“edge detector” of the previous section
applied to a noisy step as shown on the
right. As can be seen, noise usually
produces many extrema in the operator
response so that many “false” features
are detected. To avoid these, the op-
erator may be constructed to produce
a smoother response. In case of our
“edge detector” the shape or size ofg
may be changed, a smoother shape or
larger size both leading to a smoother response. Obviously, however, a smooth
response is also less sharply peaked at the true positions of features, i.e. the local-
ization error increases.
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Invariance Design

The approach of scale-space theory is to construct operators with the same useful
properties as possessed by the Gaussian filter kernel. In particular, a translated,
rotated, or scaled image should yield the same features as the original image, only
translated, rotated, or scaled.

This approach is not as much a design approach to feature detectors as the
above. However, as Koenderink and van Doorn write, after fulfilling the invari-
ance requirements “there turns out to be almost no room for “optimization” of
operators for various tasks; in most cases that would lead to certain unwanted
biases toward certain scales or orientations” [Koenderink and van Doorn, 1992] .

Translation invariance is satisfied by any convolution kernel. Rotation invari-
ance is given either for rotation invariant kernels or when the preferred direction
is fixed relative to the image. Scaling invariance is satisfied by derivative of Gaus-
sian filter kernels as will be demonstrated in the following section.

3.2.2 Derivative of Gaussian Feature Detectors

In Gaussian scale-space the only scaling invariant filter kernels are linear combi-
nations of derivative of Gaussian filter kernels (see below). This makes themthe
basic feature detection operators within scale-space theory. All feature detectors
of the theory are linear or nonlinear combinations of responses to derivative of
Gaussian filters.

Figure (3.1) shows some graphs of one-dimensional derivatives of Gaussians.
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Figure 3.1: One-dimensional derivative of Gaussian filter kernels of orders
0,1,2,3, and 4.
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In higher dimensions derivatives may be computed along different directions.
The derivatives of Gaussians along Cartesian coordinates are

Gn(x; t) = ∂n1
1 ...∂

nN
N

e−
xT x
2t

(2πt)N/2

where∂ni
i is the ni-th order derivative along thei-th Cartesian coordinate. To

evaluate these functions as shown in figure (3.2) we computed derivatives after
Fourier transformation. This is particularly easy, requiring only multiplication of

Figure 3.2: Two-dimensional derivative of Gaussian filter kernels of orders 0,1,2,
and 3. From top to bottom and left to right:G0,0, G1,0, G0,1, G2,0, G1,1, G0,2 ,
G3,0, G2,1, G1,2, G0,3. This figure is reproduced after [Lindeberg, 1994b, p 142].
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the (Fourier transformed) Gaussian with a polynomial:

Gn(x; t) =
∫

dk e−2πikTx (2πik1)n1...(2πikN)nN e−2π2kTkt

The Fourier domain is also used to compute convolutions of images
with derivative of Gaussian kernels. This is particularly advantageous at
small scales where theanalytical Fourier transform of the filter kernels,
(2πik1)n1...(2πikN)nN e−2π2kTkt , may be sampled with higher precision than in
the spatial domain, owing to the fact that narrow Gaussians in the spatial domain
are wide Gaussians in the Fourier domain.

Derivatives along other coordinates are linear combinations of the Cartesian
derivatives. Examples of directional derivatives will be considered in the section
on differential geometry below.

Scaling Invariance

Let us now consider the scaling invariance of derivative of Gaussian filter kernels
in linear scale-space. The response of a filter kernelg : RN→ R to the scale-space
of an imagef at scale

√
t is given by

g∗G(·; t)∗ f

(whereG(·; t) = G0(·; t) is the rotation symmetric Gaussian). If the image is scaled
in size, f s(x) = f (sx), the result isg∗G(·; t) ∗ f s. Since f and f s depict the
same information apart from the size change it appears reasonable to require that
the output too should differ only by a simple transformation of size and scale.
Formally this scaling-invariance requires

(g∗G(·; t(t ′,s))∗ f )(sx) = (g∗G(·; t ′)∗ f s)(x) ∀x and ∀t ′ ≥ 0

for some invertible dependencet(t ′,s) that satisfiest(t ′,s) > t ′ if s> 1. This
equation should hold for any imagef so that it becomes a condition on the filter
kernels alone. Choosings> 1 andt ′ = 0 we see thatconvolution of g with a
Gaussian should be equivalent to rescaling g(see figure3.3):

(g∗G(·; t(s)))(sx) = g(x) (3.1)

Clearly any derivative of Gaussiang(x;τ) = ∂n1
1 · · ·∂

nN
N G(x;τ) satisfies the scaling-

invariance witht(s) = [s2−1]τ:

(∂n1
1 · · ·∂

nN
N G(·;τ)∗G(·; [s2−1]τ))(sx) = ∂n1

1 · · ·∂
nN
N G(x;τ)
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Since (3.1) is linear in g any linear combination of derivatives of Gaussians is
scaling-invariant as well.

It is possible to show that the converse also holds true: Any scaling-invariant
operator is a linear combination of derivatives of Gaussians. Koenderink and van
Doorn [Koenderink and van Doorn, 1992] prove this result by deriving a complete
set of solutions of the diffusion equation that generates linear scale-space.

3.2.3 Interpretations of Derivative of Gaussian Detectors

Several interpretations of the feature detection operators suggest themselves. Par-
ticularly interesting is the differential geometric point of view that will be taken
up in the next section.

Operators on scale-space

Within the scale-space paradigm it is natural to apply feature detection operators
to the slices from the scale-space of an image rather than to the original image.
The response to a feature detection operatorg is then

g∗ (G(; t)∗ f ) ∀t ≥ 0

In this interpretationoneoperator is applied to the data at different scales.

Operators on the image

Alternatively one may seeg∗G(; t) as afamily of feature detectorsto be applied
to the original imagef :

(g∗G(; t))∗ f ∀t ≥ 0

In this interpretation the invariance requirement (3.1) says that operators of the
family should differ only in scale not in shape. As the following figure (3.3)
shows, the derivative of Gaussian edge detectors are scaling-invariant while the
family of edge-detectors generated from the step model:g(x) =−1 for−1< x<
0, g(x) = 1 for 0< x< 1 andg(x) = 0 for |x|> 1 is not scaling-invariant.

Differential Operators on Scale-Space

Another point of view is that the convolution of a derivative of Gaussian filter
kernel with an image is simply aderivative of scale-space:

Gn(·;τ)∗G(·; t)∗ f = ∂n1
1 · · ·∂

nN
N (G(·; t + τ)∗ f )
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Figure 3.3: Families of one-dimensional edge detectors. Left: scaling invariant
first derivative of Gaussian. Right: step edge family. Clearly the step edge family
is not scaling invariant.

This suggests that feature detection can be interpreted as a way to search for posi-
tions where thedifferential geometryof scale-space is “particularly informative”.
This point of view has spurred a lot of research applying ideas of differential ge-
ometry to vision (see e.g. [ter Haar Romeny, 1994]). It should be noted however
that what is “particularly informative” to a visual system neednot necessarilybe
special in terms of differential geometry and vice versa. Chapter6 describes an
approach to characterize the “particularly informative” relative to some images
that are by definition considered uninformative. This allows a visual system to
define what is considered uninformative and informative.

3.3 Differential Geometry of Scale-Space

The response of a derivative of Gaussian feature detector is identical to the corre-
sponding derivative of a sliceL(·; t) of scale-space:(

∂n1
1 · · ·∂

nN
N G(·; t)

)
∗ f = ∂n1

1 · · ·∂
nN
N (G(·; t)∗ f ) = ∂n1

1 · · ·∂
nN
N L(·; t)

This interpretation has proved extremely useful to the design of “real” feature de-
tectors that respond to the localstructural information content of an image. The
construction of differential expressions that capture theintrinsic (or structural,or
geometric) properties of a “landscape”L(·; t) is the subject of differential geome-
try which has become an important tool due to the above equation.

This section describeshow to construct structural feature detectorsfrom
the basic derivative of Gaussian feature detectors. Consequently the only “dif-
ferential geometry” used here arelocal coordinates. (More detailed discus-
sions can be found in [Koenderink, 1990], [Florack, 1993], [Kanatani, 1990] or
[ter Haar Romeny, 1994] for an overview.)
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First observe that not all partial derivatives of scale-space represent struc-
turally meaningful information about an image. A derivative such as∂1L crucially
depends on the orientation of itsx1, ...,xN coordinate system in relation to the
scene. In other words, the information provided by∂1L about the scene changes
when thex1, ...,xN coordinate system of the observer rotates, as demonstrated in
figure (3.4).

Figure 3.4: Orientation dependence: A first derivative of Gaussian of the window
image computed from two different observer orientations. In the central image
the derivative was computed from left to right and in the right image from bottom
to top.

A structural feature detector must be rotation invariant in the sense that it com-
mutes with rotations: First rotating the image and then applying the feature de-
tector must yield the same as first applying the feature detector and then rotating
its response. Structural feature detectors should also be translation and scaling
invariant. These properties, however, are already satisfied by any derivative of
Gaussian feature detector, so they are automatically inherited by feature detectors
constructed from derivatives of Gaussians.

The simplest example of a linear rotation invariant feature detector is the
Laplacian:

∆L(◦; t) =
N

∑
i=1

∂i∂i L(◦; t) =

(
N

∑
i=1

∂i∂i G(◦; t)

)
∗ f

The image on the right shows the Laplacian
of the window image computed at the same
scale as above. Rotation invariance of the
Laplacian derivative of a slice from scale-space
arises from the rotation invariance of the Lapla-
cian of Gaussian filter kernel∑N

i=1 ∂i∂i G(◦; t).
In terms of the differential geometric point of
view the Laplacian is rotation invariant because
it is a fully contracted derivative tensor.
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A more powerful way to construct rotation invariant operators is to formulate
feature detectors in terms oflocal coordinates. This is now considered.

3.3.1 Local Coordinates

Rotation invariance of differential expressions is naturally achieved by introduc-
ing local coordinatesor gauge coordinates. At each point of an image these
coordinates are fixed by the local image geometry. Thus, when the image rotates
the coordinates rotate with it and correspondingly any derivatives computed along
local coordinates describe structural or intrinsic properties of the image.

Gradient Coordinates

One choice of local coordinates in two dimensions are thegradient coordinates.
At each point of a slice of scale-space the vectorv points along the gradient and
the vectoru orthogonal to it. Figure (3.5) shows the coordinates at two positions
of a synthetic slice.

Figure 3.5: Two local gradient coordinate systems.v points along the gradient
andu along the isophote tangent orthogonal tov.

The directional derivative∂vL along the gradient yields the absolute value
of the gradient and the directional derivative alongu vanishes by definition, i.e.
∂uL = 0.

Figure (3.6) displays∂vL and the orientation ofv for several scales of the
window image of figure (3.4) at two different scales. Evidently the coordinate
system also depends on the scale

√
t of the sliceL(◦; t) from scale-space.

Curvature Coordinates

Another choice of local coordinates is a system oriented along the directions of
principal curvature. In two dimensions these are denoted asp andq. They may
either be defined intrinsically by∂p∂qL(◦; t) = 0, ∂p∂pL(◦; t) ≤ ∂q∂qL(◦; t), and
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Figure 3.6: Gradient coordinates. The top row shows four slices from the scale-
space of the window image of figure (3.4). The image has 128 by 128 pixels and
the four scales are

√
t = 2,

√
t = 4,

√
t = 6, and

√
t = 8 (in units of one pixel

width/height). The second row shows∂vL(◦; t), the absolute value of the gradient
at the same scales. The bottom left image displays the mapping of orientations to
gray values that was used to encode the orientations of the gradient at the three
scales

√
t = 4,

√
t = 6, and

√
t = 8.

the condition thatp be orthogonal toq, or in terms of extrinsic Cartesian(x,y)-
coordinates as the eigenvectors of the HessianH

H p = Lppp
H q = Lqqq

H =
[

Lxx Lxy

Lyx Lyy

]
with eigenvaluesLpp≤ Lqq.

Computation of Directional Derivatives

To compute local directional derivatives they must be expressed in terms of extrin-
sic coordinates. For the gradient coordinates in two dimensions this is facilitated
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by the coordinate transformation from(v,u) to (x,y):

Tv,u =
1√

L2
x +L2

y

[
Lx Ly

Ly −Lx

]
that allows the first order derivative tensor to be written as(

∂v

∂u

)
= (Tv,u)−1

(
∂x

∂y

)
i.e. ∂v = (Lx∂x + Ly∂y)/

√
L2

x +L2
y and∂u = (Ly∂x− Lx∂y)/

√
L2

x +L2
y. Explicit

expressions for higher order derivatives inv,ucan be constructed by multiplication
of these lowest order expressions, e.g.∂v∂u = (Lx∂x + Ly∂y)(Ly∂x−Lx∂y)/(L2

x +
L2

y).

3.4 Zero-Crossings

Having discussed the construction of feature detection operators we return to the
question of “particularly informative” positions. Withinfeature detectionthe par-
ticularly informative positions aredefinedas local extrema of a feature detector’s
response.

Why local extrema should be particularly informativeto a visual systemis
not immediately apparent. Certainly local extrema satisfy a number of impor-
tant properties that make them good candidates. Among these properties are: i)
local extrema are structural properties of the image alone, i.e. they do not de-
pend on any parameters that might require user interaction. ii) local extrema
of rotation (translation, scaling ...) invariant feature detectors share these in-
variances. These points are often cited to motivate the use of local extrema
[ter Haar Romeny, 1994],[Lindeberg, 1994a].

It is the author’s opinion, however, that the argument by which particularly
informative positions are defined as local extremashould also be able to deal with
the second parameter of scale-space, scale,in the sense of providing a definition
for particularly informative scales.

A method to select particularly informative scales has been proposed
by Lindeberg [Lindeberg, 1993b]. It has been very successfully applied
among others by Lindeberg [Lindeberg, 1998a], Pizer et al. [Pizer et al., 1998],
[Morse et al., 1994], and Lorenz et al.[Lorenz et al., 1997a]. Chapter6 presents
an attempt to motivatescale-selectionand feature detection from the same prin-
ciples.

Let us now consider some examples of “particularly informative” positions of
different feature detectors.
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Figure (3.7) shows theedgesof the window image computed at several scales.
They are defined aslocal maxima of the gradient along the gradient direction. In
terms of zero-crossingsthe equivalent definition is:

Lvv = 0
Lvvv< 0

wherev is the local direction of the gradient at the considered scale.
A comparison of the edges of figure (3.7) with the response of the feature

detectorLv in figure (3.6) might evoke some criticism about the particularly in-
formative edges some of which appear rather uninformative. While this criticism
is justified it has to be kept in mind that the occurrence of “false” responses is a
problem common to all feature detection and thus one that requires attention in a
more general setting. Secondly it must be remembered that there is aqualitative
differencebetween the response of the feature detector and the edges computed
from this. The edges are a set ofpositionswhile the response of the feature de-
tector is “merely” a mapping that assigns any position a scalar value. Formulated
differently, at each position the presence of an edge or not is a binary decision
while the response of the feature detector is continuous.

Figure 3.7: Edges of the window image at different scales. The image has
128x128 pixels and the displayed edges were computed at scales

√
t = 2,

√
t = 4,

and
√

t = 6. The edges are defined in terms of zero-crossings byLvv(◦; t) = 0,
Lvvv< 0.

Figure (3.8) shows “ridges” of the “Fachwerkhaus” image (which the window
is part of) at several scales. The displayed ridges are defined in terms of curvature
coordinates as maxima of the image intensity along the directionp of minimum
second derivative which also satisfy|Lpp|> |Lqq. A detailed description of ridge
detection is presented in the following chapter which also demonstrates the limi-
tations of a fixed scale approach.

Before ending the chapter let us briefly refer to computational aspects. In both
examples local extrema were detected in one-dimensional frames within the two-
dimensional images. Thesegeneralized maximaor critical points pose some
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computational problems that may be approached in several ways. Generally the
options are direct maximization or root finding, i.e. the computation of zero-
crossings of derivatives [Press et al., 1988]. Further it must be decided whether to
sample functions at arbitrary positions or at the discrete positions of the grid on
which the original image data are given. Chapter8 presents algorithms for zero-
crossings of discretely sampled functions. A discussion of zero-crossing meth-
ods can also be found in [Eberly, 1996] and [Lindeberg, 1998a]. Alternatively
[Staal et al., 1999] propose a direct maximization approach.

Figure 3.8: Ridges of the “Fachwerkhaus” image at different scales. The image
has 512x512 pixels and the displayed ridges were computed at scales

√
t = 2,√

t = 4, and
√

t = 8.



Chapter 4

Scale Selection

This chapter and chapter6 deal with the problem of determining “particularly in-
formative” scales in the response of some local operator applied to an image. This
chapter describes a method for scale selection that is analogous to the method
for feature detection. In combination feature detection and scale selection are per-
formed as follows: Process an image with some local operator. Then classify those
(position,scale)-pairs as particularly informative where the operator response has
a local extremum with respect to position and scale.

4.1 The Need for Scale Selection

The scale-space concept aims to describe each “object” within an image at its
appropriate scale. The basic idea to achieve this links the degree of smoothing
within scale-space to the scale of objects as follows: With increasing degree of
smoothing objects vanish from the image, small objects first and larger objects
later. The degree of smoothing at which an object vanishes basically measures the
size of the object. To find the appropriate scales, evidently, one must analyze the
image at all scales and then select those that are “particularly informative”.

The importance of choosing appropriate scales is best demonstrated by some
examples. Figure (4.1) shows fixed scale ridges (particularly informative posi-
tions) of a grass image at five different scales. Clearly, at small scales the thick
leaves of the grass are not detected while at larger scales the thin leaves and the
stem escapes detection. Finally, at very large scales even the large leaves disap-
pear.

The need to select scales may also be motivated from a more technical point
of view. Any feature detection operator has some scale or size. For the derivative

38
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Figure 4.1: Ridges at fixed scales. The images have 512 by 512 pixels and the
chosen scale levels are

√
t = 2,

√
t = 4,

√
t = 8,

√
t = 16, and

√
t = 32 (in units

of 1 pixel width/height).

of Gaussian operators this is usually made explicit in the notation:

Gn(x; t) = ∂n1
1 ...∂

nN
N

e−
xT x
2t

(2πt)N/2

The operators are parameterized by both position and scale. It is then natural
to ask not only what the particularly informative positions are but also what the
particularly informative scales are.

4.2 Invariance Requirements and Scale Selection

Ironically scale-space theory, which aims to describe each object at its appropriate
scale, has not accomplished (in fact not even dealt with) the problem of scale
selection for almost a decade. Why not?

The answer can be seen in the fact that scale-space theory has, for a long time,
focused on invariance requirements. The theory has profited much from its de-
tailed treatment of invariance requirements. At the same time, however, it appears
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to have gone unnoticed1 that the problem of scale-selection just cannot be solved
by an invariance requirement. This has a rather simple reason: Invariance require-
ments “conserve” information under some specified transformations of the data.
Scale selection “destroys” information in the sense that the particularly informa-
tive scales, or positions and scales, of some operator response do not contain the
same information as the original data. Of course the purpose of scale-selection
is not in the first place to destroy information, but rather to distinguish between
relevant and irrelevant. This, however, amounts to destroying the irrelevant in-
formation and consequently scale-selection cannot be derived from an invariance
requirement.

4.3 Normalized Derivatives

The first approach to scale-selection that deals with positions and scales simulta-
neously was proposed by Lindeberg in 1993 [Lindeberg, 1993b] and, in a context
not concerned with derivatives, in [Lindeberg, 1993a].

One observes that the amplitude of the response

Ln(x; t) = (Gn(◦; t)∗ f )(x)

of a derivative of Gaussian operator to an imagef tends to decrease with increas-
ing scale because the response is increasingly smoothed. For this reason it makes
little sense to define particularly informative scales in terms of local maxima of
the operator response with respect to scale, as one might wish to do in analogy to
particularly informative positions that are defined as local extrema of the operator
response with respect to space.

The amplitude ofnormalized derivatives

tn/2Ln(x; t) = tn/2(Gn(◦; t)∗ f )(x)

wheren = n1 + ...+nN, is obviously greater than that of regular derivatives when
t > 1. This prompted Lindeberg to study local maxima of normalized derivatives
with respect to scale and to propose a heuristic principle:

In the absence of other evidence, a scale level at which some (possi-
bly non-linear) combination of normalized derivatives assumes a lo-
cal maximum can be treated as reflecting the characteristic length of
a corresponding structure in the data.

The idea proved to be very useful and, in its more general form to be
considered next, it has been applied to detect blood vessels [Koller, 1995],
[Koller et al., 1995], [Lorenz et al., 1997a], and other structures whose size is of
interest [Pizer et al., 1998], [Pizer et al., 1994], [Fritsch et al., 1994].

1As far as I can judge from the literature.
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4.4 γ-Normalized Derivatives

The approach to scale-selection using normalized derivatives can be generalized
by considering so-calledγ-normalized derivatives [Lindeberg, 1998a]:

tγn/2Ln(x; t) = tγn/2(Gn(◦; t)∗ f )(x)

for someγ > 0. The possibilities that arise from this generalization are briefly
discussed.

To analyze the influence ofγ on scale selection it is useful to consider the
logarithm of theγ-normalized derivatives.

γ
n
2

log(t)+ log(Ln(x; t)) (4.1)

The local maxima ofγ-normalized derivatives occur at the same scales (or posi-
tions, if one maximizes with respect tox) as the local maxima of their logarithm.
Clearly, with increasingγ the influence of the first term increases and the local
maxima with respect to scale are pushed toward larger scales.

This γ-dependence suggests that the value ofγ may be adjusted such that the
“correct” scales are selected in some model situations where a “correct” scale
of the image structure is known a priori. To give an example consider the one-

dimensional “blob” modele−
x2
2w/
√

2πw = G(x;w) of width w. Suppose one at-
tempts to detect such “blobs” in one dimensional images and one chooses to do
so with a second derivative of Gaussian operator. The scale-space of the blob
model isG(x; t + w) and theγ-normalized second derivative of Gaussian opera-
tor response istγG2(x; t + w) = tγ( x2

(t+w)2 − 1
t+w)G(x; t + w). The maximum over

scales at the centerx = 0 of the blob occurs att = γ
3/2−γw. To achieve a one to

one correspondence between the selected scale and the width of the modelγ must
be set toγ = 3/4.

A more important consequence of the choice ofγ-value is the following. For
any specific image structure there is a certain range ofγ-values within which the
structure is assigned a finite scale. For values ofγ greater than somecritical γ
the first term in equation (4.1) dominates so much that the maxima with respect
to scale are pushed to infinity. In the blob-example the criticalγ-value isγ = 3/2.
For larger values ofγ the γ-normalized second derivative has no maximum over
scales. In other words,the choice ofγ determines which structures can be detected
and which not.

Chapter7 demonstrates scale-selection for ridge detection usingγ-normalized
derivatives. It will be seen that a “correct” choice ofγ allows a second derivative
ridge detector to “distinguish” between ridges and edges.



Chapter 5

Ridge Detection at Fixed Scales

Elongated bright structures on a dark background or dark structures on a bright
background are the focus of this chapter. Typical examples picture branches of
trees, arteries in medical images, or roads in areal photographs. Inherent to all is
a curvedpath along which the structure extends with some characteristicwidth.
Here we concentrate on the pathassuming that the width is a priori known. A
later chapter will treat path and width jointly.

The chapter is organized as follows. To begin with, some possible definitions
of ridgesare briefly considered and contrasted. Then we restrict discussion to
those ridges that can be defined and detected locally in terms of zero-crossings
of derivatives. The computation of these zero-crossings presents some technical
difficulties which will be discussed in detail. Examples are given throughout.

5.1 Ridge Definitions

An image becomes an “intensity landscape” if one interprets brightness as height.
This allows one to speak of local maxima aspeaks, of local minima aspits and
of saddle-points (where the gradient vanishes but which are neither maximum nor
minimum) aspasses.

By the same analogy other geomorphological terms may be applied. Age-
omorphological ridgeis thus the path of steepest ascent leading from a pass to a
peak. A geomorphological daleis the path of steepest descent leading from a pass
to a pit. This ridge definition has been proposed as a useful feature for image anal-
ysis [Koenderink and van Doorn, 1993], [Koenderink and van Doorn, 1994] and
has been successfully applied to image segmentation [Griffin et al., 1992].

Notably the geomorphological ridge definition makes no mention of ridge
shape. Such ridges may be long and sharply peaked in the direction perpendicular
to the steepest ascent. They may also be short and show almost no peak. In fact,
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it is not possible to say whether a point lies on a geomorphological ridge or not
based only on thelocal shape of the landscape around it.

The global character of geomorphological ridges has created some prob-
lems and confusion concerning a precise mathematical definition. The articles
[Koenderink and van Doorn, 1993] and [Koenderink and van Doorn, 1994] clar-
ify the matter from a modern differential geometric point of view. In particular
they discuss some historical attempts to define geomorphological ridges from lo-
cal properties alone and conclude that this is “doomed to fail from the very start”.

Despite the lacking relation to geomorphological ridges one speaks of “ridges”
in image analysis also when these are defined in terms of local properties. An
early local ridge definition is due to Haralick [Haralick, 1983]. It is similar to the
second of two definitions that will be considered here, theheight ridgeand the
second derivative ridge. For 2-dimensional images/landscapes theheight ridge
discussed in detail by [Eberly, 1996] is defined as follows: At each point in the
landscape choose the direction (axis) along which the landscape has the strongest
downward bend. If the landscape falls off to both sides along this axis the point
lies on a height ridge(equation5.1).

Another definition looks only at second derivatives of the landscape: As above,
at each point the axis of a hypothetical ridge is defined to be orthogonal to the axis
of minimum second derivative. The point under consideration is defined to be on
a ridge if the second derivative in the direction traversing the ridge has a minimum
in that direction (equation5.3). We call this asecond derivative ridge.

A different approach is to characterize ridges in terms of edges to the left and
right of the ridge [Koller, 1995], [Koller et al., 1995], [Morse et al., 1994]. In the
following we consider only the height ridge and the second derivative ridge.

5.2 Height Ridges

The detection of height ridgesand second derivative ridgesproceeds in two
steps. First at each point of a two-dimensional image a set of orthogonal directions
is chosen, one pointing along the hypothetical ridge and the other perpendicular to
the ridge. Then, at each point, the image intensity is analyzed along the direction
across the hypothetical ridge to see if the point is on a ridge or not.

Directions are determined from second derivatives of the image intensityf at
some scale

√
t from linear scale-space, i.e. from second derivatives ofL(x) =

(G(◦, t) ∗ f )(x) whereG(x, t) = e−
xT x
2t /(2πt) is the rotation symmetric Gaussian

function, ∗ is the convolution operator (we have omittedt on the left hand side
because it is considered constant throughout the chapter).L(x) is a slice from
scale-space, i.e. a smoothed image, that may be interpreted as “landscape”.
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The direction along which a ridge extends is defined as the direction of max-
imum second derivative and is denoted asq. The orthogonal axis of minimum
second derivative traverses the ridge and is denoted byp (see appendixA for an
alternative definition ofp andq). Within these local coordinates theheight ridge
according to Eberly [Eberly, 1996] is defined as:

Lp = 0

Lpp< 0

Lpp≤ Lqq

(5.1)

We follow the slightly different definition of Lindeberg [Lindeberg, 1998a]:

Lp = 0

Lpp< 0

|Lpp| ≥ |Lqq|
(5.2)

The two definitions differ when the landscape bends upward along the ridge di-
rectionLqq> 0 more strongly than it bends down in the orthogonal direction, i.e.
whenLqq > −Lpp, Lpp < 0. Eberly includes points satisfyingLp = 0, Lpp < 0,
Lqq > −Lpp in the height ridge; Lindeberg excludes them. Figure (5.2) shows
both types of ridges for a synthetic landscape. Apart from differences at the im-
age border the definition of Eberly produces a longer ridge along the structure and
two ridges approaching from the steep side. Let us note again that the detectors
respond to local maxima alongp irrespective of how pronounced these are in the
sense that both of the following sequences of three numbers.97−10, .98−10, .96−10

and 9,100,20 have a maximum in the middle. This is a property of all feature de-
tectors that requires separate attention.

Figure 5.1: Height ridges resulting from definitions (5.1) and (5.2).

Examples of height ridges in real images are given in figure (5.2). Ridges are
computed at three different scales for each image showing how different structures
appear at different scales. This is particularly pronounced in the ridges of the
cotton fabric where at a small scale single threads are detected that merge into
orthogonal ridge structures at a larger scale.
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Figure 5.2: Height-ridge examples at different scales. The original images picture
from top to bottom a leaf, a piece of cotton fabric, a German “Fachwerkhaus”, a
tree, and bicycle stands with a bicycle. All images are 512 by 512 pixels. Ridges
are shown for scale levels

√
t = 2,

√
t = 4, and

√
t = 8 (where a unit length is the

width/height of a pixel).
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5.3 Second Derivative Ridges

Second derivative ridgesare characterized in a similar way as height ridges. At
each point of a 2-dimensional image an axis is chosen along which some criterion
must be fulfilled for the point to be on a ridge. The axis is the same as before,
pointing along the direction of minimum second derivative. The criterion applied
along the axis is different: a point is on a second derivative ridge if thesecond
derivativealong the chosen axis is minimal. The defining equations are:

Lppp = 0

Lpppp> 0

Lpp< 0

|Lpp| ≥ |Lqq|

(5.3)

Examples ofsecond derivative ridgesin real images are shown in figure (5.3).
The use of higher derivatives leads to a number of differences betweensecond

derivative ridgesand height ridges. Most apparent in the examples is the response
to edges seen in second derivative ridges, most notably in the leaf image. This
property of second derivatives was even exploited for edge detection by Marr and
Hildreth [Marr and Hildreth, 1980]. It should, however, be noted that a response
to edges does not occur at all scales, as seen in the “Fachwerkhaus” image. It will
be shown in chapter7 that it is possible to automatically select just those scales
where edges are not detected.

Another difference between height ridges and sec-
ond derivative ridges is that the latter may be interpreted
as a least squares fit of the “ridge-model”

gd(x) =−∂d∂dG(x, t)

whereG(x; t) = e−
xT x
2t

(2πt) is the rotation symmetric Gaus-

sian andd ∈ R2 a vector inR2 along which the sec-
ond derivative is taken. Two views of the model are
shown on the right. The directiond and the location of
the model along this direction are determined by least
squares1. For details see appendixB.

1To yield solutions of (5.3) those ridge-points found by the least square method where|Lpp|<
|Lqq|must be deleted.
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Figure 5.3: Second-derivative-ridge examples at different scales. The original im-
ages picture from top to bottom a leaf, a piece of cotton fabric, a German “Fach-
werkhaus”, a tree, and bicycle stands with a bicycle. All images are 512 by 512
pixels. Ridges are shown for scale levels

√
t = 2,

√
t = 4, and

√
t = 8 (where a

unit length is the width/height of a pixel).
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5.4 Computation of Ridges

The differential geometric definitions of ridges in terms of directional derivatives
may give some intuitive understanding of height ridges and second derivative
ridges. However, for the computation of ridges unfortunately they are not very
useful. The remainder of the chapter is devoted to the technical problems of ridge
computation and will demonstrate one reason why edges and not ridges are the
more widely used features in computer vision: edges are much easier to compute.

5.4.1 Direction Discontinuities

The technical problems in ridge detection arise primarily from the discontinuity
of the direction of minimum second derivative. The following figure gives an
example. At each point the directionp of strongest downward bend (minimal
second derivative) is displayed by the angle whichp makes with a fixed direction
(as shown on the right). Apparentlyp points radially in the region of the ring.
Outside and inside this region the direction ofp is orthogonal to radial. The
direction makes a 90 degree flip between these regions. In addition there are some
180 degree flips along the vertical and horizontal.

Figure 5.4: Direction discontinuities: The orientation of the vectorp pointing
along the axis of minimal second derivative at each pixel is shown in the center
image. The orientation is given relative to a fixed direction as displayed on the
right.

The discontinuities in the direction ofp make the derivatives computed along
p discontinuous as well.This interferes with the computation of zero-crossings of
e.g. Lp between neighboring pixels: A 180 degree flip ofp between two pixels
changes the sign ofLp, thereby either creating or deleting a zero-crossing. Flips
of 90 degrees sometimes interfere with zero-crossings and sometimes not. In any
case, zero-crossings computed from derivatives alongp do not reliably correspond
to structural properties of the image .
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5.4.2 Continuous Formulation

Alternative formulations of the ridge definitions (5.1), (5.2), and (5.3) based only
on continuous quantities may be given provided that the landscape is at least twice
continuously differentiable. [Eberly, 1996] discusses three equivalent definitions
of a height ridge. [Lindeberg, 1998a] gives another definition. We consider these
four ways to formulate the height ridge definition (5.2).

First note that the conditionLp = 0 for a point to be on a height ridge requires
that p is orthogonal to the gradient ofL (with the exception of critical points
where the gradient vanishes). Consequently a necessary condition for a point to
be on a height ridge is that the gradient coordinate systemu, v (wherev is the unit
vector along the gradient andu is orthogonal tov) and the coordinate systemp, q
overlap. Such points may be characterized by

Luv = 0 .

Figure (5.5) shows the zero-crossings ofLuv for a test image.

Figure 5.5: Zero-crossings ofLuv. At these pointsp and q lie along the local
gradient coordinatesv andu.

A point on a zero-crossing ofLuv is on a height ridge only if it is a maximum
alongu and the second derivative in this direction has a larger absolute value than
that alongv:

Luv = 0

Luu< 0

|Luu|> |Lvv|
(5.4)

This definition is used in [Lindeberg, 1998a].
A problem that occurs with height ridges computed from zero-crossings ofLuv

is that they tend to break up into separate pieces with small gaps. This happens at
points where several zero-crossing lines ofLuv come very close to one another or
even touch. At such points it is not generally clear how to continue a zero-crossing
line (see Chapter8).
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To cope with the problems at the intersections of zero-crossings in the above
formulation it is essential to get rid of those solutions toLuv = 0 wherep is parallel
to v since these points cannot be on a ridge anyway. The points of interest are
those wherep is orthogonal tov, i.e. pTv = 0. [Eberly, 1996] describes how to
reformulatepTv = 0 with a continuous left hand side making use of the fact that
p andq are eigenvectors of the Hessian matrix (see appendixA)

H p = Lppp
H q = Lqqq

H =
[

Lxx Lxy

Lyx Lyy

]
with eigenvaluesLpp ≤ Lqq. Orthogonality ofp and v may then be written as
eitherH u = Lppu or uTH u = Lpp. The corresponding two definitions of height
ridges are

H u = Lppu

Lpp< 0

|Lpp| ≥ |Lqq|
(5.5)

and

uT H u = Lpp

Lpp< 0

|Lpp| ≥ |Lqq|
(5.6)

It should be noted thatLpp and Lqq are continuous (ifL is twice continuously
differentiable) because they are the eigenvalues of the Hessian matrix and all ele-
ments of the Hessian matrix are continuous.

Figure (5.6) shows the zero-crossings ofH u = Lppu. Clearly the ridge at the
center of the image is seen to continue from the lower left to the upper right. This
should be compared with the situation at the center of figure (5.5).

Figure 5.6: Zero-crossings ofH u−Lppu. At these pointsp is orthogonal to the
gradientu.
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Definitions (5.5) and (5.6) require different computational techniques. The
first contains a system of two linearly dependent equations inu whose zero-
crossings must be computed. The second requires minimization techniques since
uT H u ≥ Lpp. In the following section we describe how to solve (5.5).

5.4.3 Stable Solution

The ridge definition (5.5) contains the system of two equations

H u−Lppu = 0

that are linearly dependent inu. (Recall that for 2-dimensional imagesH is a 2x2
matrix). One might thus be tempted to solve just one of the equations knowing
that the other is then automatically solved as well. Unfortunately this reasoning
is incorrect when the coefficients of the chosen equation all vanish so that anyu
is a solution to this equation however not necessarily to the other. To demonstrate
this, figure (5.7) shows the zero-crossings from both left hand sides of the two
equations computed for the test image. Clearly there are some positions where
the solution to the first equation is not a solution to the second equation and vice
versa. At these points all coefficients of one equation vanish.

Figure 5.7: Zero-crossings of the both rows ofH u−Lppu.

To find simultaneous zero-crossings ofboth rows of H u − Lppu between
two neighboring pixels we compute a stability measure for each row and then
look for a zero-crossing of the row with greater stability. This is repeated for
all pairs of neighboring pixels (see Chapter8). To get a measure of stability
we interpret the coefficients of each row ofH u − Lppu as a vector:k1(x) =
(Lxx(x)−Lpp(x),Lxy(x)) andk2(x) = (Lxy(x),Lyy(x)−Lpp(x)). The projection
of k1(x0) at a pointx0 ontok1(x1) at a neighboring pointx1 gives a measure of
stability of the first row between the two points.

The resulting zero-crossings need not be closed as can be seen in figure (5.6).
This requires modifications to the standard zero-crossing algorithms. Chapter8
describes both the standard algorithms and their modification to deal with open
zero-crossings.
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5.4.4 Computation of Second Derivative Ridges

Having described the details of the computation of height ridges we give only a
brief summary of the necessary modifications to compute second derivative ridges.

The zero-crossings ofLppp are those points wherep is orthogonal to the gra-
dient ofLpp. Denoting the gradient ofLpp by vpp and the orthogonal unit vector
by upp a continuous formulation of the second derivative ridge definition is

H upp = Lppupp

Lpppp> 0

Lpp< 0

|Lpp| ≥ |Lqq|

(5.7)

To find vpp andupp it is convenient to differentiate the analytical expression for
the smaller eigenvalueLpp of the Hessian matrix. The two eigenvalues are

Lpp =
(

Lxx+Lyy−
√

4L2
xy+(Lxx−Lyy)2

)
/2

Lqq =
(

Lxx+Lyy+
√

4L2
xy+(Lxx−Lyy)2

)
/2

and the gradient ofLpp is

vpp
x =

1
2

Lxxx+Lyyx−
4LxyLxxy+(Lxx−Lyy)(Lxxx−Lyyx)√

4L2
xy+(Lxx−Lyy)2


vpp

y =
1
2

Lxxy+Lyyy−
4LxyLxyy+(Lxx−Lyy)(Lxxy−Lyyy)√

4L2
xy+(Lxx−Lyy)2


The fourth order derivativeLpppp is computed from its Cartesian representation

Lpppp= p4
xLxxxx+4p3

xpyLxxxy+6p2
xp2

yLxxyy+4pxp3
yLxyyy+ p4

yLyyyy

wherep = (px, py) is a unit vector along the axis of minimum second derivative
in the Cartesian frame.



Chapter 6

A Statistical Approach to Feature
Detection and Scale Selection

A first step in the analysis of an image by a computer vision system or a biological
vision system is to compute the response of somelocal translation invariant op-
erators. These operators are usually constructed in such a way that local extrema
of their response are “particularly informative”.

As an example consider an “edge detector”. Figure (6.1) demonstrates the use
of a first derivative of Gaussian filter kernel as an “edge detector”. Evidently the
local extrema of the response correspond approximately to the edge locations.

Figure 6.1: Edge detection. From top to bottom: image, filter kernel, response.

Naturally and necessarily any such local translation invariant operators have a
scaleor size, e.g. the above edge detector has a width approximately 1/20 of the

53
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page width. So the question arises not only at which positions but also at which
scalesthe operator response is “particularly informative”.

For example the “particularly informative” positions and
scales of a “square detector” applied to the image on the right
should reveal asmall square in the upper right and alarge
square in the lower left. Generally, the aim offeature detection
and scale selectiontogether is to find “particularly informa-
tive” (position,scale)-pairs.

In this chapter we propose a method to generalize feature detection opera-
tors whose local extrema in space yield particularly informative scales to scale-
selection operators whose local extrema in space and scale yield particularly infor-
mative (position,scale)-pairs. From the point of view we take, the generalization
is canonical and there is no conceptual difference between feature detection and
scale selection.

The chapter is organized as follows. First we describe our idea of how to
define the “particularly informative”. Then a simple example is given to show
how a square is detected and its size selected. Next we state the approach in
more detail. Since this formulation is more general than the usual approach it is
shown that the particularly informative positions are in a special case extrema of
the operator response. Finally we consider scale selection and construct operators
whose extrema with respect to space and scale yield “particularly informative”
(position,scale)-pairs.

6.1 “Particularly Informative”

To arrive at a point of view from which particularly informative scales appear con-
ceptually similar to particularly informative positions we need to take a detailed
look at why or when it makes sense to define the local extrema of an operator
response as particularly informative.

Suppose we are given an image, a local translation invariant operator and the
statement that under otherwise identical conditions a large operator response is to
be considered more informative than a smaller response. Is this sufficient to call
positions where the operator response is locally maximal particularly informative?
No, we were not told that the conditions at different positions in the image are to
be considered identical. Of course it may be sensible toassumethis and therefore
to consider local extrema of the operator response particularly informative.1

1As an example of a context in which this assumption is usually not appropriate consider the
analysis of image sequences or time series. Here the operator response is generally interpreted
relative to responses to previous images.
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The point of this is not that we intend to question the usefulness of treating
different positions identically. Rather we intend to formulate this assumption con-
cerning positionsdifferently and in a way that allows one to formulate similar
assumptions aboutscales.

Consider the following alternativedefinition of particularly informative posi-
tions of an operatorby a three step procedure:

1. Destroy the structural information in an image byshufflingthe pixels to
new positions.

2. Measure how much information was destroyed at any position.

3. Label those positions where (locally) most information was destroyed as
particularly informative.

Evidently the first two steps require a precise definition. Let us defineshuffling
as follows: First create a bin of intensity values into which the intensity of each
pixel of the image is placed exactly once. Then, at any positionx of the shuffled
image randomly draw an intensity value from the bin of intensity values without
replacement.

Secondly, let us define at any single position a measure of how much informa-
tion was destroyed by shuffling: At a positionx we compute theoperator response
to the observed imageas well as thedistribution of operator responses to the shuf-
fled images. The response to a shuffled image will sometimes be larger and other
times smaller than the observed response. The relative frequency with which the
random responses are smaller than the observed response is taken as a measure of
how informative the observed response is.

This measure might be motivated as follows. The random images contain less
structural informationby construction, so a measure of the structural information
must in some way measure a deviation from the random images. The above rela-
tive frequency or probability is one possible such measure.

As far as particularly informative positions are concerned the definition via
shuffled images is equivalent to the definition in terms of local extrema of the
operator response. The shuffling approach has two advantages however: It applies
immediately to particularly informative (position,scale)-pairs if one replaces all
occurrences of “position” by “(position,scale)-pair”. Secondly the specifics may
be modified, shuffling intensities differently or measuring destroyed information
differently. A different shuffling method was recently considered in a different
context by Koenderink and van Doorn [Koenderink and van Doorn, 1999].

The following section applies this approach to a toy situation.
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6.2 A Working Example

Suppose we observed the image of figure (6.2) and intend to detect particularly
informative positions of a “square detector”. The square detector is defined as
follows: it computes at any positionx the number of white pixels2 in a l × l
square region centered aboutx. l is a parameter of the square detector that we fix
to be 15.

Figure 6.2: Observed image of 32×32 pixels with 225 white and 799 black.

The standard approach to find particularly informative positions is to apply
the 15×15 square detector to any position in the image and label those positions
particularly informative where the response is locally maximal. From the response
shown in figure (6.3) it is evident that there is only one particularly informative
position at the center of the image.

Figure 6.3: Operator response of 15×15 square detector.

The same result may be cast into our statistical interpretation: First all struc-
tural information is destroyed by shuffling the pixels to random positions. Two
shuffled images are shown in figure (6.4). Then the square detector is applied to
the random images and the probabilities of its different responses are observed.
This is in principle done at each position of the image. For the shuffling method
described above, however, the probabilities at all positions3 are identical.

2The images contain only binary black and white pixels.
3With the exception of the image border
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Figure 6.4: Shuffled images.

Figure (6.5) displays the probability of observing an operator response ofn
white pixels “under” the square detector at any position within a shuffled image.
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Figure 6.5: Probability of observing n white pixels in 225 pixels randomly drawn
with replacement from 799 black and 225 white pixels.

Next, for any observed operator response we compute the probability with
which larger responses occur in the shuffled images. Figure (6.6) shows this tail
probability for an observation of 70 white pixels in the 15×15 region. Computing
tail probabilities for the operator responses at all positions produces an image like
figure (6.3) only with a single minimum at the center rather than a maximum.
This means that the central position with the smallest tail probability is considered
particularly informative according to our statistical approach.

As far as the computation of particularly informative positions are concerned
the statistical approach yields the same positions as the maxima of the operator
response.
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Figure 6.6: Tail probability for an observation ofn= 70 white pixels in 225 pixels
randomly drawn with replacement from 799 black and 225 white pixels. The tail
probability is the area of the shaded region.

Let us now look at the determination of particularly informative scales.
Consider two square detectors of different size, 9×9 and 15×15 applied to

the image of figure (6.7). For simplicity we apply them only at the centers of the
square since we already know that these are the most informative positions.

Figure 6.7: 64×64 image with four 9×9 white squares.

The 9×9 square detector responds to a center of square position with a value
of 81 and the 15×15 detector responds with a value of 81 as well. Obviously the
responses alone do not permit to call one size more informative than another.

Applying the statistical approach again, we first shuffle the images and then
compute the operator response to the shuffled images at the square positions.
These are random variables that have the probabilities shown in figures (6.8).
This time howeverthe probabilities for the two different sizes are not the same.
Consequently the tail probabilities of the responses of 81 are different for the
9× 9 and the 15× 15 square detector. Unfortunately the numerical differences
are very small and not immediately apparent from figure (6.8). 4 If we remark

4The fact that the numerical differences of tail probabilities are sometimes very small need not
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that the probabilities are positive anywhere within the displayed range of operator
responsesn it becomes apparent that the 9×9 square detectors response ofn = 81
has a smaller tail probability than the 15×15 detectors 81. By definition we thus
call the smaller size more informative.
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Figure 6.8: Probability of observing n white pixels in 64 and 256 pixels randomly
drawn with replacement from 768 black and 256 white pixels.

Finally consider changing the response of the 15×15 square detector for ex-
ample as follows: instead of computing the number of white pixels below the
15×15 region let it compute the average intensity below this region, i.e. the num-
ber of white pixels divided by 152. This produces a response of 81/225 to the
center of a square in figure (6.7). It is easily seen however that the result of the
statistical approach is unaffected by this. Only theshapeof a feature detector is
relevant to the approach.

These example should demonstrate that our statistical definition of “particu-
larly informative” is at least capable of distinguishing between different positions
and different scales. Furthermore it is equivalent to the maximum operator re-
sponse as far as positions are concerned and it appears to produce useful results
concerning scales.

concern us because we do not actually propose to compute them as the following sections will
show.



6.3 A Statistical Approach 60

6.3 A Statistical Approach

Suppose we are given some feature detection operator. This operator produces
a scalar response at different positions of an image and one may ask at which
positions the response is particularly informative. Let us assume particularly in-
formative positions are defined as local maxima (with respect to position) of the
operator response. If the operator has further parameters such as a scale naturally
the question arises which (position,scale)-pairs are particularly informative or in
general which parameters are particularly informative.

We now propose a definition of particularly informative parameters that is i)
more general than the “maxima of operator response” definition ii) is equivalent
as far as particularly informative positions are concerned and iii) can be imple-
mented.

The key issue concerning implementation is that we derive from the given
operator new operators whose local extrema yield the particularly informative pa-
rameters, position, scale or other. To do so we replace the shuffling of pixel in-
tensities in the approach of section6.1by a stochastic model which will be called
a sampling model. The idea of shuffling was to create images with less struc-
tural information so that the structural information of the observed image may be
evaluated relative to the shuffled images. The prototypical sampling model that is
void of structural information is anormal white noisewhere the intensity at each
position is drawn from a normal distribution independently of intensities at other
positions.

The mean and standard deviation of the sampling model may be set to the
average intensity and standard deviation of the observed image. If however as
in scale-space theory one requires invariance of particularly informative parame-
ters with respect to linear intensity transformations, then the choice of mean and
(nonzero) standard deviation is irrelevant.

Let us now define particularly informative parameters in a way that is inde-
pendent of the kind of parameter, position, scale or other. Later we derive from
this definition operators whose local extrema yield the particularly informative
parameters.

6.3.1 Definition of “Particularly Informative” Parameters

Given someoperator Dθ that computes for any parameterθ a scalar response from
an imagef :

Dθ( f ) ∈ R

where the parameter may be position,θ = x, scale,θ =
√

t, position and scaleθ =
(x,
√

t) or others. Given also asampling modelfrom which random images may
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be sampled that are by definition considered less informative than the observed
image. Denote the probability density of the sampling model byp and the random
images byξ.

Applying Dθ to random imagesξ creates a distribution of operator responses
for eachθ. Call the densities of these distributionspDθ .

For any observed responseDθ( f ) to an observed imagef compute the proba-
bility by which random images from the sampling model produce larger responses
Dθ(ξ)> Dθ( f ) and call this probabilityP(θ, f )

Particularly Informative Parameters: On the basis of a sampling model p(ξ)
the “particularly informative parameters”θ of the operator responses Dθ( f ) to
an observed image f are the local minima of P(θ, f ) with respect toθ.

The motivation for this definition is the “information-less” character ascribed
to images drawn from the sampling model. The probabilityP(θ, f ) is one possi-
bility to measure the difference between the observed operator response and the
“information-less” responses.

To computeP(θ, f ) the following equations must be evaluated. The probabil-
ity densitypDθ of operator responses to images sampled fromp is

pDθ(v) =
∫

dξ p(ξ)δ(Dθ(ξ)−v)

whereδ stands for the Kronecker Delta function (δ(Dθ(ξ)− v) = 1 if Dθ(ξ) = v
and 0 otherwise). Then the probabilityP(θ, f ) is the tail-probability of pDθ:

P(θ, f ) =
∫ ∞

Dθ( f )
dv pDθ(v) (6.1)

shown in figure (6.9)
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Figure 6.9: Tail probabilities for two observations from different distributions.
The probabilities correspond to the shaded areas.
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6.3.2 Sampling Models

The purpose of the sampling model is to produce images that are considered less
informative than the observed image such that the observed image in return may
be evaluated relative to the sampling model. Normal white noise images are cer-
tainly a prominent candidate among possible sampling models. Other choices
may be useful as well, depending on the situation.

In the context of image sequencesit is natural to interpret a new image on
the basis of the present information about the scene. The sampling model may
then describe the prior information about the scene that is known from previous
images. The particularly informative parameters are then determined on the basis
of the (known and in that sense less informative) prior information. A sampling
model that captures the prior information from previous images of a sequence
may obviously be quite different from white noise. (For a review of techniques to
analyze image sequences see [Barron et al., 1994].)

The sampling model may also describe prior information about the images
that a visual system expects to see in its environment. The ensemble ofnatural
imagesfor example is not white noise as demonstrated by Field [Field, 1987]
and Ruderman and Bialek [Ruderman and Bialek, 1994]. Their model will be
considered below.

In the context of a single image without prior information normal white noise
appears a useful sampling model.Whitenoise guarantees lack of structural in-
formation. The choice of distribution could be varied to other distributions than
normal. Since however any feature detection operator locally integrates the image
intensity operator responses to non-normal sampling models tend toward normal
except at very small scales. Thus we prefer to use a normal distribution right away.

6.4 Feature Detection and Homogeneous Sampling
Models

In this section we show that the statistical approach produces the same particularly
informativepositionsas the maximum operator response of a feature detector if
the sampling modelis homogeneous.

Observe that the tail probability defined in equation (6.1) becomes a mono-
tonic transformation of the operator responseDθ( f ) if the integrand is indepen-
dent ofθ. In that case the minima ofP(θ, f ) with respect toθ are the maxima of
Dθ( f ).

To show that the probability densitypDθ of the operator response is indepen-
dent ofθ whenDθ is a feature detector and the sampling model is homogeneous
let us recall or state the definitions of the involved terms.
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A feature detector is a local translation invariant operatorDx parameterized
by the positionx where it is applied to the image. Translation invariance of the
feature detector refers toDx(Ta ◦ f ) = Dx−a( f ) whereTa denotes the translation
operator that moves an imagef by the vectora, i.e. Ta◦ f (x) = f (x+a).

A homogeneous sampling model is translation invariant in the sense that any
sampled imageξ and the translated imageTaξ have the same probability density
p(ξ) = p(Ta◦ξ), neglecting difficulties due to image border.

For homogeneous sampling models p(ξ) the particularly informative positions of
a translation invariant operator Dx are the local maxima of Dx( f ).

Proof: If both the operator and the distribution of images to which it is applied
are translation invariant, so is the distribution of responses:

pDx(v) =
∫

dξ p(ξ)δ(Dx(ξ)−v)

=
∫

dξ p(Ta◦ξ)δ(Dx(Ta◦ξ)−v)

=
∫

dξ p(ξ)δ(Dx+a(ξ)−v)

= pDx+a(v)

Furthermore, ifpDx does not depend onx, then the minima with respect tox
of

P(Dx( f )) =
∫ ∞

Dx( f )
dv pDx(v)

are the maxima ofDx( f )•

From our point of view this “justifies” the standard approach to feature detec-
tion that makes no mention of a sampling model. Whenever the sampling model
is homogeneous all other aspects of the model areirrelevant to feature detection.
Homogeneity in return appears natural whenever no prior information about pre-
ferred positions is available.

6.5 Scale Selection for Derivative of Gaussian Oper-
ators

In this section we consider families of operators that are parameterized byposition
x andscale

√
t: the derivative of Gaussian filter kernels

Gn(x; t) = ∂n1
1 · · ·∂

nN
N G0(x; t)
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of ordern = n1+ · · ·+nN whereG0(x; t) is the rotation symmetricN-dimensional
Gaussian. The operator response to an imagef is

Dn
x,t( f ) = (Gn(◦; t)∗ f )(x) =

∫
dy Gn(y−x; t) f (y)

The previous section showed that on the basis of a homogeneous sampling
model one may at any fixed scale compute particularly informative positions in
terms of local maxima of the operator response. We now address the problem of
alsoselecting particularly informative scaleswithin the statistical approach. Here
too it is possible to avoid the computation of probability densities and tail proba-
bilities: For each derivative of Gaussian operator there is a so calledγ-normalized
derivative of Gaussian operator with the useful property that the maxima of the
response of theγ-normalized operator occur at the positions and scales where the
tail probabilities of the derivative of Gaussian operator are minimal.

In contrast to feature detection however there is no universalγ-normalized
operator for a large class of sampling models. Several sampling models shall be
considered: a normal white noise model, a fractal Brownian motion model that
describes the statistics of natural images, and a model that has been used in image
restoration.

6.5.1 Scale Selection on the Basis of a Normal White Noise
Sampling Model

As a sampling model consider imagesξ where at each positionx the intensity
ξ(x) is sampled independently from normal random variables of zero mean and
standard deviationσ.
On the basis of a normal white noise sampling model the particularly informa-
tive scales ((position,scale)-pairs) of the derivative of Gaussian filter Gn(x; t) are
the local maxima with respect to scale (position and scale) of theγ normalized
derivative of Gaussian response

( tγGn(◦; t)∗ f )(x)

with

γ = n/2+N/4 (6.2)

Proof: The responseξn = Gn(·; t) ∗ ξ of filtering ξ(x) with the derivative
of Gaussian kernelGn(·; t) is a normal colored noise of zero mean and auto-
covariance

ρn(x−x′, t + t ′) = σ2(−1)n G2n(x−x′; t + t ′)
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that describes the covariance ofξn(x; t) andξn(x′; t ′).
The marginal densitypGn(x;t) at any single position and scale(x; t) is a uni-

variate normal with zero mean and standard deviation

t−n/2t−N/4σ

Evidently multiplication of the operator response bytn/2tN/4 makes the marginal
densityptn/2tN/4Gn(x;t) at (x; t) of the new response independent ofx and t. Then
the minima of the tail probabilityP(x, t, f ) of equation (6.1) are the maxima of
the operator response(tn/2tN/4Gn(◦; t)∗ f )(x)•

The γ-normalized derivative of Gaussian operators were introduced by Lin-
deberg to select particularly informative scales [Lindeberg, 1993b]. The spe-
cific choice ofγ varies between applications [Koller, 1995], [Lindeberg, 1998b],
[Lindeberg, 1998a], [Lorenz et al., 1997a], [Pizer et al., 1998].

6.5.2 Scale Selection with a “Natural” Sampling Model

Studies of natural images [Ruderman and Bialek, 1994] have revealed a
power spectrum that is, not surprisingly, different from that of normal white
noise. These studies were conducted on ensembles of images of natural
scenes. [Ruderman and Bialek, 1994] took images in a New Jersey state park.
[Field, 1987] used images of trees, rocks, bushes, and water.

The power spectrum̃ρ(ω), the Fourier transform of the auto-covariance, was
estimated to be of the form

|ρ̃(ω)|2 ∝ |ω|−α

corresponding to so-calledN-dimensional fractal Brownian motion
[Pentland, 1984]. The interesting property of this spectrum is that like white noise
it has a scaling invariant correlation [Ruderman and Bialek, 1994] [Field, 1987]
[Pentland, 1984].

The standard deviation of the response of a derivative of Gaussian operator to
normal noise imagesξ with a fractal Brownian motion spectrum can be computed
by Parseval’s theorem [Steenstrup et al., 1999] [Lindeberg, 1994b, section 13.7]∫

dx|Gn(x; t)ξ(x)|2 =
∫

dω |G̃n(ω; t)ξ̃(ω)|2

=
∫

dω |ω|2ne−t|ω|2|ω|α

=
∫

r∈[0,∞[;φ1,...,φN∈[0,2π]
drdφ1 · · ·dφNrN−1e−r2tr2n−α

∝ tα/2−n−N/2
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Again multiplication of the operator response witht−α/4+n/2+N/4 makes the
marginal density at(x; t) of the new response independent ofx and t. This allows
one to compute particularly informative positionsand scales aslocal maxima of
the operator response of

tγGn(x; t)

with γ =−α/4+n/2+N/4.
Lindeberg already noted that in some cases “the normalized derivative model

is neutral with respect to power spectra of the form|ω|−2” [ Lindeberg, 1994b,
section 13.7]. It is our proposal that this should not be viewed as a coincidence
but that one should choose a sampling model and then adjustγ in order tomake it
neutral with respect to the sampling model.

One “natural” choice of sampling model is the distribution of natural im-
ages. Estimated values ofα for different natural scenes lie in the range
between α = 1.81± .01[Ruderman and Bialek, 1994] or between 2 and 3
[Steenstrup et al., 1999]. Interestingly, Steenstrup Pedersen and Nielsen esti-
mateα via estimation ofγ.

6.5.3 An Image Restoration Model

The white noise model is certainly not a realistic model for “a priori” expected
data. One possible improvement was considered in the previous paragraph. An-
other is to take into account that the measurement device generally blurs the true
scene and introduces noise.

For any true sceneg consider the dataf to be generated by

f = k∗g+ η

wherek is a filter kernel that describesobservational blurand η is a normal
white noise of zero mean and standard deviationφ. Assuming now for the true
image a normal white noise densityp(g) (that is independent ofη) of zero mean
standard deviationψ allows one to compute the sampling densityp(ξ) of the a
priori expected dataξ. It is also a normal random field with zero mean and auto-
covariance

ρ(x) = ψ2k∗k(x)+ φ2δ(x)

whereδ(0) = 1 andδ(x) = 0∀ x 6= 0.
The response of a derivative of Gaussian operatorGn(·; t) to samples from this

sampling density is again normal of zero mean and auto-covariance

ρ(x) = ψ2(Gn(·; t)∗k)∗ (Gn(·; t)∗k)(x)+ φ2Gn(·; t)∗Gn(·; t)(x)
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The marginal density ofpGn(x;t) for a single pair(x; t) is a univariate normal
of zero mean and variance

σ(t)2 = ψ2(Gn(·; t)∗k)∗ (Gn(·; t)∗k)(0)+ φ2Gn(·; t)∗Gn(·; t)(0)

To compute locally most informative scales one introducesγ-normalized
derivatives

1
σ(t)

Gn(x; t)

so that the marginal density of the operator response at(x; t) is independent ofx
andt and the local maxima of the operator response correspond to locally most
informative positions and scales.

Within this model scale selection requires knowledge ofk and ψ/φ. k
and φ are properties of the measurement device and thus generally known to
the visual system. It is then still necessary to assume a definite value for
the varianceψ2 of the densityp(g). [Galatsanos and Katsaggelos, 1992] and
[Archer and Titterington, 1995] present some methods for estimatingψ/φ from
the data.

Only in the limiting case where the noise of the measurement device becomes
negligible,φ = 0, the convenient situation arises that informative scales are inde-
pendent of the varianceψ.

6.5.4 Line-like Structures and Sub-Dimensional Frames

Frequently the aim of feature detection is not to find isolated positions but rather
lines. In that case the aim of scale selection can only be to find the particularly
informative scaleacross the structureand not along the structure.

To determine line-like structures using local operators generally requires a two
step-procedure. First at each position a direction is chosen along which the struc-
ture should extend if it went through that position. Then along the perpendicular
direction across the hypothetical structure it is checked whether the point under
consideration is on the structure or not. Essentiallythe detection of particularly
informative positions and scales occurs only in the sub-dimensional frame across
the structure. For example to detect one-dimensional ridges in two-dimensional
images one detects positions and scales on a ridge in a one-dimensional frame
across the hypothetical ridge direction at each point of an image, as described in
chapters5 and7.

The use of sub-dimensional frames affects theγ-normalization parameter. The
dimensionN in γ = n/2+ N/4 should be the dimension of the sub-dimensional
frame across the structure, i.e.N = 1 for the detection of ridges in two-
dimensional images.
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6.6 Discussion

Feature detection is so standard that it is “obvious” to determine the particularly
informative positions in terms of local maxima of a feature detectors response.
However, when it comes to the determination of other particularly informative
parameters of an operator this “obvious” approach either does not work or is not
obvious.

We have presented a point of view that defines any particularly informative pa-
rameters of an operator in conceptually the same way. The idea is to evaluate an
operator responserelative tothe operator response to random images that contain
by construction/definition less structural information. Loosely speaking this lets
those operator responses stand out where there is particularly much structural in-
formation of the type that the operator responds to. One way to construct images
with less structural information than the observed image is toshufflethe pixel
intensities to random positions. Another way is to define asampling modelfrom
which the random images are drawn. The prototypical sampling model that lacks
any structural information is a normal white noise.

From our point of view the “obvious” computation of particularly informative
positionsin terms of local maxima of the operator response is appropriate when
the sampling model is homogeneous.

Concerningscale selectionof derivative of Gaussian operators different sam-
pling models lead to differentγ-normalized derivative operatorswhose local
maxima with respect to scale correspond to particularly informative scales. From
the described point of view this explains why scale selection is not “obvious”.

We believe that thenormal white noisesampling model should present a use-
ful basis for feature detection and scale selection. In the following chapter we
study ridge detection with scale selection for aγ-value corresponding to the white
noise sampling model.

6.7 Outlook: Nonlinear Scale-Space

The presented approach to feature detection and scale selection may in principle
also be applied to feature detection and scale-selection in nonlinear scale-spaces.
These scale-spaces are constructed as solutions to the diffusion equation

∂tL(x; t) =
N

∑
i, j=1

∂i∂ jc
i j L(x; t)

with initial condition L(x;0) = f (x) where f is the observed image
[Weickert, 1998]. For constant diffusion coefficientsci j the solution to this partial
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differential equation, also known as Fokker-Planck equation [Honerkamp, 1990],
is the linear scale-space. When the diffusion coefficient depends onL(x; t) the
solution is a nonlinear scale-space.

The derivatives of scale-spaces in general may be interpreted in terms of fil-
ter kernels applied to the original image. In linear scale-space these filter kernels
are derivatives of Gaussians. In nonlinear scale-spaces they can be of very com-
plicated shapes. In linear scale-space the filter kernels at different positions but
identical scale all have the same shape and size, differences in kernel size oc-
cur only between scales. In nonlinear scale-spaces the shape and size of kernels
may generally vary even between neighboring positions at the same scale. This
complicates feature detection and scale selection in nonlinear scale-spaces.

It may be useful to compare the observed response of a derivative operator in
nonlinear scale-space to the distribution of responses to random images with less
structural information as presented above for the linear scale-space.



Chapter 7

Ridge Detection with Scale Selection

This chapter extends the analysis of elongated bright structures on a dark back-
ground or dark structures on a bright background in such a way thatthe central
line and the width of a structure are jointly determined. We refer to this asridge
detection with scale selectionin contrast to ridge detection at fixed scales that was
treated in chapter5.

The need for scale selection is best demonstrated by some examples of ridges
computed at fixed scales. Figure (7.1) shows fixed scale ridges of a grass, a cotton
fabric, and a synthetic image at three different scales. Clearly, at small scales
the thick leaves of the grass are not detected while at large scales the thin leaves
(particularly on the left) and the stem escapes detection. The synthetic example
and the cotton fabric serve to illustrate the fact thatdifferent scale structures may
occur at the same position. At any point in these images small scale structures
run almost vertically and large scale structures run almost horizontally. To capture
structures of all scales evidently the data must be analyzed at all scales.

The definition of a scale-space ridgediscussed in this chapter is closely re-
lated to themulti-scale line filterproposed by Lorenz et al.[Lorenz et al., 1997b]
[Lorenz et al., 1997a], the concepts ofcoresand medialnessintroduced by Pizer
and coworkers [Fritsch et al., 1994] [Pizer et al., 1998] as well as the ridge con-
cept discussed by Lindeberg in [Lindeberg, 1998a] and [Lindeberg, 1996] where
the term scale-space ridgewas first introduced. All these approaches build on
the idea ofγ-normalization introduced by Lindeberg, however, they generally em-
ploy smaller values ofγ (than proposed here) in order to achieve a one to one
association between scale and width.

The chapter is organized as follows. The first section outlines the problems
encountered when analyzing data at all scales. The approach taken here is to find
particularly informative (position,scale)-pairs in terms of the statistical interpre-
tation described in the preceding chapter. This extends the fixed scaleheight
ridge and second derivative ridgedefinitions to variable scales. Some examples

70
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of scale-space ridges are shown for synthetic and real images and differences to
ridge detection at fixed scales are discussed. An interesting difference of the sec-
ond derivative scale-space ridge to its fixed scale cousin is that it produces no
“false” responses to edges. This phenomenon is analyzed in detail in section7.4.
Finally the ridge surfaceand scale-selection surfaceof a simple model image
are shown to give the reader a geometric impression of the quantities involved in
the computation of scale-space ridges.

Figure 7.1: Ridges at fixed scales. All three images are 512 by 512 pixels and
the chosen scale levels are

√
t = 2,

√
t = 6,

√
t = 12 for the grass image,

√
t = 2,√

t = 4,
√

t = 8 for the cotton fabric and
√

t = 8,
√

t = 16,
√

t = 24 for the
diamonds (in units of 1 pixel width/height).

7.1 The Scale Dimension

If one wishes to take account of the possibility that individual points in an image
may be endowed with more than one structure at different unknown scales then
obviously the data must be analyzed at all scales. As a direct consequence of this
the problem is moved to a higher dimensional space, namely scale-space. This
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creates two types of problems. First, the question arises, as to how one can go
about detecting particularly informative (position,scale)-pairs in scale-space. We
have presentedone possible approach to this problem in the previous chapter.
Based on a statistical interpretation it is possible to take the existing methods for
feature detection into the higher dimensional scale-space in a canonical way that
treats scale and spatial variables on equal footing.

The second problem concerns the interpretation of results. These too “live” in
a higher dimensional space. The ridges of two-dimensional images that will be
shown at the end of the chapter are lines in a three-dimensional space. Aside from
the technical issues of how to display three dimensional data the more profound
problem is that our perception is not trained to interpret these data in any way near
as well as it is trained to interpret two-dimensional images. One way to facilitate
visual interpretation that will be illustrated here is to project the detected ridges
onto the spatial plain. The results are superior to the fixed scale ridges displayed
above, at least in certain respects to be discussed.

7.2 Definitions of Scale-Space Ridges

This section describes how ridge detection at fixed scales may be extended to
variable scales. We first summarize the computation of ridges at fixed scales as
described in chapter5. This is given a statistical interpretation which canoni-
cally generalizes to variable scales, resulting in the definitions ofscale-space
ridges (7.1) and (7.2). These definitions are similar to those suggested and
used previously [Lindeberg, 1998a], [Lindeberg, 1998b], [Lorenz et al., 1997b],
[Staal et al., 1999].

7.2.1 Ridges at Fixed Scales

At any fixed scale
√

t of scale-spaceL(x, t) the height ridgeand second derivative
ridgeconsidered in detail in chapter5 are defined in two steps. First at each image
point the direction of a hypothetical ridge is defined to be perpendicular to the
directionp of minimal second derivativeLpp. Traversal of the image intensity
alongp should thus display theridge profile, if there is a ridge at the point under
consideration. The criterion that defines a point on aheight ridgeis that it should
be a local maximum alongp and the second derivativeLpp along p should be
greater than the second derivativeLqq along the orthogonal directionq 1.

A point lies on asecond derivative ridge at fixed scaleif the second derivative
alongp has a local minimum at that point and additionallyLpp< 0 and|Lpp| >

1 The equations that define aheight ridge at fixed scalein two dimensions may be written as:
Lp = 0, Lpp< 0, |Lpp| ≥ |Lqq|.
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|Lqq| are satisfied2.

7.2.2 Fixed Scale Ridges in a Statistical Interpretation

To give a statistical interpretation to ridge detection at fixed scales we viewL(x, t)
in case of theheight ridgeandLpp(x, t) in case of thesecond derivative ridgeas
operator responsesof the Gaussian filter kernelG(x, t) and its second derivative
∂p∂pG(x, t) alongp respectively. Next we do a thought experiment: the informa-
tion in the observed image is destroyed by randomly shuffling all pixels to new
positions. This creates adistribution of imageswhich was called asampling
modelin chapter6. The operatorsG(x, t) or ∂p∂pG(x, t) are applied to all shuffled
images, which produces adistribution of operator responses. Now the observed
operator responses are compared to the random operator responses to see, loosely
speaking, how much “information” was destroyed by shuffling. This we measure
by the tail probabilities defined in chapter6. Finally two observed responses
L(x0, t0) andL(x1, t1) are compared by means of their tail probabilities and the
one with the smaller tail probability is called “more informative”.

If for simplicity the shuffled images are replaced by images drawn from some
analytically tractable stochastic model, e.g. a normal white noise, the tail proba-
bilities may be analytically computed (see chapter6). Based on the normal white
noise sampling model (with zero mean and standard deviation 1) the tail probabil-
ity of L(x, t) is

P(L(x, t)) =
∫ ∞

L(x,t)
du

e−u2tN/2

√
2πt−N/2

whereN is the dimension of the image less one, i.e. the dimension orthogonal to
the ridge direction. The tail probability ofLpp(x, t) is

P(Lpp(x, t)) =
∫ ∞

Lpp(x,t)
du

e−u2t2+N/2

√
2πt−2−N/2

The statistical interpretation allows one to rewrite the definition of aheight
ridge at fixed scalesas follows: A pointx is on a height ridgeif P(L(x, t)) has a
local minimum alongp and|Lpp|> |Lqq|.

Similarly, a point is on asecond derivative height ridgeif P(Lpp(x, t)) has a
local minimum alongp andLpp< 0 as well as|Lpp|> |Lqq|.

2 The equations that define asecond derivative ridge at fixed scalein two dimensions are
Lppp = 0, Lpppp> 0, Lpp< 0, and|Lpp| ≥ |Lqq|.
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7.2.3 Scale-Space Ridges in a Statistical Interpretation

The key advantage of the statistical approach is that this definition canonically
generalizes to variable scales defining thescale-space height ridgeas follows: A
(position,scale)-pair(x, t) is on a scale-space height ridgeif the tail probability
P(L(x, t)) has a local minimum alongp, as well as a local minimum along the
scale dimensiont, and|Lpp|> |Lqq|.

A second derivative scale-space ridgeis defined similarly: A (position,scale)-
pair (x, t) is on a second derivative scale-space ridgeif P(Lpp(x, t)) has a local
minimum alongp, as well as a local minimum along the scale dimensiont, |Lpp|>
|Lqq|, andLpp< 0

7.2.4 Scale-Space Ridges

Finally, to work with and to compute scale-space ridges we rewrite the definitions
of scale-space ridges in a way that does not require the computation of tail prob-
abilities (see Chapter6 section6.5.1). A point is on a scale-space height ridge
(based on a white noise sampling model) if it is a local maximum oftγL alongp
as well as a local maximum oftγL alongt and|Lpp|> |Lqq| (where for the white
noise sampling modelγ = .25). The defining equations are:

Lp = 0

Lpp< 0

γtγ−1L + tγLt = 0

γ(γ−1)tγ−2L +2γtγ−1Lt + tγLtt < 0

|Lpp| ≥ |Lqq|

(7.1)

A point is on a second derivative scale-space ridge(based on a white noise
sampling model) if it is a local minimum oftγLpp along p as well as a local
minimum oftγLpp alongt, |Lpp| > |Lqq|, andLpp< 0 (where for the white noise
sampling modelγ = 1.25). In terms of zero-crossings of derivatives the defining
equations are:

Lppp = 0

Lpppp> 0

γtγ−1Lpp+ tγLt pp = 0

γ(γ−1)tγ−2Lpp+2γtγ−1Lt pp+ tγLtt pp> 0

|Lpp| ≥ |Lqq|
Lpp< 0

(7.2)
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If one follows our statistical approach these definitions of scale-space ridges are
straight forward generalizations of the fixed scale ridge definitions. Even the value
of γ is fixed by the statistical model from which the tail probabilities are computed.
Based on a normal white noise the scale-space height ridge hasγ = .25 and the
second derivative scale-space ridge hasγ = 1.25.

7.2.5 Lack of Invariance to Linear Intensity Transformations

Inspection of thescale-space height ridgedefinition (7.1), in particular the equa-
tion γtγ−1L + tγLt = 0, reveals that the solution to this equation changes if a con-
stant term is added to the image intensity, i.e.L(x; t)→ L(x; t)+const.

For this reason the scale-space height ridge is not useful to a visual system
that aims to “see” the physical world. Why? A constant increase of the image
intensity is usually the result of changed lighting conditions rather than a change
in the scene itself. If the aim is to “see” the physical scene, the lighting conditions
should not affect the features computed from an image.

In the following we consider only the second derivative scale-space ridge.

7.3 Second Derivative Scale-Space Ridges

This section gives some examples ofsecond derivative scale-space ridgescom-
puted according to definition (7.2).

Figures (7.2), (7.3), and (7.4) show the scale-space ridges of some example
images, a grass, a cotton fabric and a synthetic diamond image. The images are
scaled down versions of those used for the fixed scale examples above. Figure
(7.2) displaysall scale-space ridges in a projection along the scale-dimension
(onto the image plain). Figure (7.3) shows projections along other directions of
only the ridges consisting of more than 100 line elements for the grass image,
and 50 line elements for the fabric image while all ridges of the diamond image
are displayed. In figure (7.3) boundariesof ridges were drawn onto the original
image. The boundaries are constructed to envelope circles of radius .32 times the
selected scale around each position along a ridge.

First thing to observe is that the projection onto the image plain appears useful
and is not dissimilar to the fixed scale results. It is not self-evident that this should
turn out to be the case. Unlike the fixed scale results these figures displayall ridges
detected across a large range of scales including very small scales. Secondly the
fixed scale results shown above are zero-crossings of a first derivative (Lp = 0)
while the scale-space ridges are zero-crossings of a third derivative (Lppp = 0).
Generally the number of zero-crossings increases with the order of the derivative.
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However, scale selection manages to “escapes” many zero-crossings of the third
derivative, as will be discussed in the next section.

The examples demonstrate several differences between ridge detection with
scale selection and ridge detection at fixed scales. Those in favor of scale-selection
are:

• Scales can vary along a ridge.The boundaries of scale-space ridges com-
puted from the grass image are an example hereof.

• Ridges can cross each other.This refers to the fact that two lines which
are distinct and nonintersecting in three-dimensional scale-space may cross
in a two-dimensional projection such as that of figure (7.2). The synthetic
diamonds image was constructed to display this property as seen in figure
(7.3). Another view of the property is provided by theridge surfaceshown
in a later section.

Last but not least the variable scale approach does not require prior knowledge
about the choice of scale.

The examples also reveal some problems of ridge detection with scale selec-
tion. Most notably some “ridges” have very steep paths in scale-space, spanning
a large range of scales at almost the same position. The interpretation of these
structures as ridges appears questionable.
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Figure 7.2: Second derivative scale-space ridges projected onto image plain. The
original images are 256 by 256 pixels. Ridges were computed forγ = 1.25 and
scales in the following ranges (unit length=1 pixel width): 1.5 to 16 in steps of .5
for the grass image, 1.5 to 13 in steps of .5 for the fabric image, 1 to 28 in steps of
1.0 for the diamond image.
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Figure 7.3: Second derivative scale-space ridges projected along different axes.
Only ridges consisting of more than 100 line-elements are displayed for the grass
image and ridges of more than 50 line-elements for the fabric image. For the
diamond image all ridges are displayed.
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Figure 7.4: Second derivative scale-space ridges depicted by their boundaries (at
scale of ridge). Otherwise as in figure (7.3).
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7.4 Escape from Edges

The second derivative scale-space ridge(7.2) is the generalization of the fixed
scale second derivative ridge to variable scales. It might thus be expected to share
some properties of the second derivative ridge at fixed scales. Figure (7.5) shows
some fixed scale second derivative ridges analogous to the fixed scale height ridges
displayed in figure (7.1).

Figure 7.5: Second derivative ridges at fixed scales. The image has 512 by 512
pixels and the chosen scale levels are

√
t = 8,

√
t = 16,

√
t = 24 (in units of 1

pixel width/height). At small scales the diamonds edges are detected.

Concerning the detection of elongated bright structures on a dark back-
ground or dark structures on a bright background theresponse to edgesseen at
the smallest scale in figure (7.5) is most annoying. A number of approaches
have been proposed to avoid or suppress these false responses inscale-space
ridges. Koller [Koller, 1995] suggests a nonlinear operator that combines the re-
sponse of two edge-detectors on both sides of a hypothetical ridge. Lorenz et
al. [Lorenz et al., 1997b] use an edge-indicator to suppress the response to edges.
Lindeberg [Lindeberg, 1998a] uses a hybrid approach taking the useful properties
from both the scale-space height ridge (7.1) and the second derivative scale-space
ridge (7.2).

Interestingly thesecond derivative scale-space ridgesresulting from our sta-
tistical approach donot suffer from false responses to edges. This is a fortu-
nate consequence of the extra scale-dimension and the valueγ = 1.25 of theγ-
normalization parameter resulting from the statistical approach based on a white
noise sampling model. Intuitively the higher dimensional scale-space opens the
possibility to “escape from edges along the scale dimension”. A detailed discus-
sion of this phenomenon is given in the following.

7.4.1 One-Dimensional Analysis

The response of the fixed scale second derivative ridge to edges results from the
second derivative computed along the direction transversal to the ridge. This sug-
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gests to study the behavior only in a one-dimensional frame orthogonal to the
ridge direction (along which the second derivative is computed) with the principal
advantage that the 2-dimensional scale-space may be completely visualized.

The one-dimensional cut across a two-dimensional ridge displays its profile.
Figure (7.6) shows two model-profiles, a Gaussian-ridge profile and a step-ridge
profile.
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x

Figure 7.6: Model ridge profiles. Left: a Gaussian ridge profile. Right: a step
ridge profile.

In the context of fixed scales a point in the one-dimensional frame lies on a
ridge if the second derivative at that point is minimal. Figure (7.7) shows the
second derivative of the two model ridges at different scales. Evidently at small
scales the second derivative of the step ridge has minima on both sides of the ridge
profile. These, instead of the center of the profile, are detected as “ridges”.

Let us now examine the response to edges at variable scales. We recall that a
(position,scale)-pair lies on a scale-space ridge (profile) if theγ-normalized second
derivativetγLxx has a local minimum in both space and scale, andLxx< 0. In terms
of zero-crossings of derivatives the defining equations are:

Lxxx = 0

Lxxxx> 0

γtγ−1Lxx+ tγLtxx = 0

γ(γ−1)tγ−2Lxx+2γtγ−1Ltxx+ tγLttxx> 0

Lxx< 0

(7.3)

Figure (7.8) displays the negativeγ-normalized second derivative−tγLxx for the
step-ridge-model at different values ofγ. Note that the negative was chosen to im-
prove the display and consequently themaximaof the displayed functions corre-
spond to points on a scale-space ridge. Each graph also depicts the zero-crossings
of Lxxx andγtγ−1Lxx+ tγLtxx.

For values ofγ in the range 0≤ γ < 1.5 the graphs of−tγLxx all have one
local maximum somewhere along the axis of mirror symmetry corresponding to
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Figure 7.7: Fixed scale ridge detector responses to ridge models. The second
derivative of the Gaussian ridge model is displayed in the top row for scales

√
t =

1.,
√

t = 4., and
√

t = 8.. The bottom row displays the second derivative of the
step ridge model for the same scales.

the center of the step-ridge. This maximum appears also as an intersection of the
zero-crossings ofLxxx andγtγ−1Lxx + tγLtxx. We observe that the scale at which
the center of the step is detected depends very sensitively on the value ofγ. With
increasingγ the selected scale increases and diverges asγ→ 1.5.

Our primary concern here is the behavior ofLxx near the edges of the step. As
the figures show, maxima at the edges of the step appear only for values ofγ less
than 1. To see this more clearly, figure (7.9) shows the zero crossings ofLxxx and
γtγ−1Lxx + tγLtxx for a smaller range of scales. Hence one can conclude thatat
values ofγ > 1 the second derivative scale-space ridge detector does not detect
the edges of the step-ridge.

Taken together the range ofγ where only the center of the step ridge is detected
is 1< γ< 1.5.
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Figure 7.8: Response of second derivative ridge detector−tγLxx to step model.
Zero-crossings of the first derivative along space and scale are shown below each
surface. With increasingγ the central maximum is “pushed” to larger scales.
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Figure 7.9: Response of second derivative ridge detector−tγLxx to step model.
Zero-crossings of the first derivative along space and scale. The minima along
space at the edges become unstable in the scale direction atγ≥ 1.0.
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7.5 Ridge Surfaces and Scale-Selection Surfaces

In this section we show some intermediate results of the computation of scale-
space ridges. They are interesting in their own right, displaying the geometry of
zero-crossings in scale-space. Also they supplement the discussion of computa-
tional aspects that was given in chapter5 for fixed scales. The major technical
difference to variable scales is that instead of lines in two-dimensions it is neces-
sary to compute surfaces in three dimensions. (Chapter8 describes standard algo-
rithms to compute lines and surfaces and their modifications necessary to compute
ridges.)

The second derivative scale-space ridge (7.2) lies on the intersection of two
surfaces in scale-space, theridge surface3 and the scale-selection surface. We
define theridge surfaceas follows

Lppp = 0

Lpppp> 0

|Lpp| ≥ |Lqq|
Lpp< 0

(7.4)

and thescale-selection surfaceas follows

γtγ−1Lpp+ tγLt pp = 0

γ(γ−1)tγ−2Lpp+2γtγ−1Lt pp+ tγLtt pp> 0
(7.5)

Figure (7.10) shows the ridge surfaceof one of the “diamonds” of the syn-
thetic diamond image. One view looks down the scale axis onto the surface. The
other has the scale axis oriented pointing from top to bottom of the page and the
the long axis of the diamond from left to right.

In the second view the vertical surface that extends farthest left and right con-
tains the scale-space ridge corresponding to the long axis of the diamond. The or-
thogonal ridge along the short axis lies in the central of the three vertical surfaces
that reach highest in scale. The latter surface “bridges” across the former with
a small gap along the scale-dimension. In the projection to the image plain this
lets the two ridges cross. The crossing of ridges thus goes along with a “bridge”
geometry of the ridge surface in this particular case.

3Pizer et al. speak ofparameter surface.
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Figure 7.10: Ridge surface of the diamond image from two views.

It should be noted that the ridge surface is not closed and that this results
from the discontinuity of the directionp (as described in chapter5) and is not a
consequence of the inequalities in the definition above. To demonstrate this figure
(7.11) displays the zero-crossing surfaceLppp = 0 which is also not closed.

Figure 7.11: Zero-crossing surface ofLppp for the diamond image.

Finally the surfaceγtγ−1Lpp+ tγLt pp = 0 which contains thescale-selection
surfaceis shown in figure (7.12) for γ = 1.25.
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Figure 7.12: Zero-crossing surface ofγtγ−1Lpp+ tγLt pp for the diamond image.

The intersection of this surface (less those parts wheretγLpp is a maximum
rather than a minimum along scale) with the ridge surface yields thesecond
derivative scale-space ridgesof the diamond image as shown in the previous sec-
tions.



Chapter 8

Algorithms for Zero-Crossings

In this chapter we discuss algorithms to computezero-crossingsof functions
whose values are known only at discrete positions, usually the points of a reg-
ular square or cubic grid. Zero-crossings are lines or surfaces that separate the
points into regions of positive and negative. The chapter first describes standard
algorithms to compute zero-crossings of a single function and then shows how to
modify these in order to compute thesimultaneous zero-crossings of two func-
tions as it is necessary in ridge detection. In contrast to the standard algorithms
this allows to computeopen zero-crossings.

The computation of zero-crossings may be divided into two steps: detection
and extraction. From a 2 dimensional imagef (or a 2 D function sampled on a
regular square grid) onedetectszero-crossings separating the data intof > 0 and
f ≤ 0. Naturally the result of this is a set of line segments each confined to a
square of 2x2 neighboring pixels.

To create lines from the segments it is then necessary to establish neighbor-
hood relations between different line segments. We refer to this as theextraction
of a line.

Similarly, detection of zero-crossing surfaces from 3 dimensional images re-
sults in independent surface-patches each confined to a cube of 2x2x2 neighboring
pixels. In order to extract surfaces it is then necessary to establish neighborhood
relations between individual patches.

A great deal of work concerning the above problems has appeared in the com-
puter graphics literature where they are known (slightly more generally) asiso-
surfacedetection and extraction. Their principle application lies in thevisualiza-
tion of 3-dimensional data. For this purpose it suffices to detect iso-surfaces and
display their patches, so the literature mainly emphasizes iso-surface detection
and usually does not introduce the distinction between detection and extraction
made here.

The best known algorithm for iso-surface detection, themarching

88
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cubes algorithm was independently invented by Wyvill and McPheeters
in 1986 [Wyvill et al., 1986] and by Lorensen and Cline in 1987
[Lorensen and Cline, 1987] . The textbook of Alan and Mark Watt
[Watt and Watt, 1992] presents a highly efficient implementation that allows
subsequent surface extraction.

The computation of two zero-crossing surfaces and their intersection as it oc-
curs in the previous chapter is addressed by [Thirion and Gourdon, 1996]. They
begin by computing one of the two surfaces and then detect those lines within this
surface that correspond to the intersection of the two surfaces.

A problem that requires special attention in ridge detection is the computation
simultaneous of zero-crossings of two functions. In contrast to the zero-crossings
of a single function these can beopen. The necessary modifications to the standard
algorithms are described at the end of the chapter. To begin with let us consider
zero-crossings of a single function in 2 dimensions.

8.1 Zero-Crossings in two Dimensions

This section treats the computation of zero-crossings from two-dimensional data
sampled on a regular square grid as shown in figure (8.1). Discretization results in
two types of inaccuracy: i) the exactlocationof a zero-crossing betweenany two
neighboring points of the grid can only be estimated and ii) thetopologyof the
zero-crossings atsomeplaces is ambiguous. The following sketch demonstrates
both the limited accuracy and the possibility of a topological ambiguity that results
from discretization in 2D.

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

Figure 8.1: Zero-crossings of a 2D-function and grid points of known function
values. Within the 4 points of the square grid where the two zero-crossing lines
come closest discretization leads to a topological ambiguity.
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8.1.1 Detection

Primarily we want to constructclosed lines(except for possible ends at the image
border) that divide the sampled function values intof > 0 and f ≤ 0. This may
be achieved with merely 16 different basic elements that describe lines passing
through any 2x2 square of neighboring pixels as shown in figure (8.2). Any corner
of a square can have a function value either> 0 or≤ 0 allowing the four corners
of a square to have at most 24 = 16 different configurations concerning> 0 or
≤ 0. These can be divided by 16 different configurations of line elements passing
through the square.

@
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@@

@
@@ �

��

�
��

Figure 8.2: Basic line elements. The “+” at the corners denote positive function
values. Rotation yields the 16 basic configurations plus two extra configurations
resulting from the ambiguity depicted in the last two cases.

A topological ambiguity occurs when all four sides of a square are intersected
by a line as depicted in the last two cases of figure (8.2). This information is
irreversibly lost by the discretization. A guess at the true situation may be taken
by considering the average of the function values at the four corners and choosing
the last case when this is positive and the second to last otherwise.

Continuation of lines between squares is automatically achieved if the inter-
section of a side of a square is determined only from the function values at the
two corners of that side. Since these are shared by the two neighboring squares,
the same point of intersection is computed in both neighbors. Good results may
be achieved by estimating the point of intersection of a side from a linear inter-
polation of the two function values at the ends. Figure (8.3) gives an example
of zero-crossings with linear interpolation contrasted by the same image without
linear interpolation (lines intersecting the middle of square-sides).
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Figure 8.3: Zero-crossings with and without linear interpolation. The original
image is 64 pixels wide and high.

8.1.2 Extraction

To establish the neighborhood relations between line elements it is conceptually
simplest to “walk” along a line. Recording the encountered intersections with
sides of squares in a list captures all the neighborhood information necessary to
describe a line. It is even possible to achieve detection and extraction in a single
sweep through the data if the order in which squares are processed is determined
by the lines (requiring special attention only when a square contains two line
elements).

Unfortunately this simple strategy does not generalize to the extraction of iso-
surfaces from three-dimensional images. Let us therefore consider another pos-
sibility: Initially a detection phase is performed, finding the line elements within
any 2x2 square of image pixels. The essential requirement to allow subsequent ex-
traction of lines is that information about neighborhoods is not discarded during
the detection phase. This must be facilitated by the data structures.

Optimally, the intersection of any side of a square is computed only once and
the point of intersection is stored only once. A line data structure of this type is
shown in figure (8.4). The two line elements that share a point of intersection
record a reference to the storage position of that point rather than the point itself.
They may then be identified as neighbors through this reference. To give an exam-
ple consider extraction of the line in figure (8.4). The first line element contains
points 1 and 4. The only other line element that contains point 4 is the second
which is thus the continuing element. The far end of this element is point 5 which
is also a point of the third line element, and so on.

The strategy to store each point of a line only once and to identify neighbors by
their shared reference to this point may be extended to iso-surfaces of cubic grids
in 3D by storing each vertex of a surface just once and having several surface
patches refer to a single vertex.
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Figure 8.4: A line data structure that stores each point only once captures the
neighborhood information.

8.2 Zero-Crossing Surfaces in 3D

This section describes the detection and extraction of zero-crossing surfaces from
three-dimensional data sampled on a regular cubic grid. Attention is paid to the
treatment of topologically ambiguous situations. In three dimensions a wrong
treatment produces holes in the computed surfaces, an obvious topological error.
Two different ways to detect surfaces without holes are discussed. The standard
approach is to always assume a negative (positive) value for the center of an am-
biguous cube-face and to choose a surface that has not only the corners of but
also the center on the correct side. Alternatively the value at the center of an am-
biguous face may be interpolated from the corners. Finally the related issues of
implementation and extraction are treated.

8.2.1 Detection

In 3 dimensions there are 28 = 256 possibilities for the 8 corners of a cube to be
inside (f < 0) or outside (f ≥ 0) a surface. Up to simple symmetries these basic
cases are displayed in figure (8.5).

The idea of themarching cubesalgorithm is to determine the surface patches
resulting from the 256 different cases just once, leaving open only the exact lo-
cations where edges of the cube are intersected, i.e. the exact positions of the
surface-vertices. For any cube within an image it then suffices to determine which
of the 256 cases the cube belongs to and to fill in the exact vertex positions.
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Figure 8.5: Basic surface elements used in the originalmarching cubesalgorithm.
Eight corners of the cube have 28 possibilities to be inside (f < 0) or outside (f ≥
0) a surface. The figure displays these cases up to simple symmetries (rotation,
mirroring, change of inside and outside). Note that cases 4,7,8,11,13, and 14 are
ambiguous and the displayed surfaces are just one of several possibilities chosen
arbitrarily. The white lines within surfaces indicate possible triangulations.
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Unfortunately ambiguous situa-
tions occur when all four edges of one
cube face are intersected1, as in cases
4,7,8,11,13, and 14 of figure (8.5). As
the figure on the right shows, care must
be taken to make a consistent choice
across neighboring cubes. Each of the
two possibilities displayed for the top
and bottom cube must be combined
with the correct choice to create a sur-
face without holes.

A natural approach proposed in
[Thirion and Gourdon, 1996] is to interpolate the values at the center of each am-
biguous face of the cube and to choose the unique surface topology that also has
this central point on the “correct” side. Most algorithms, however, just assume
all values at the center of a face to be negative (positive). Either way should be
“hardwired” into the algorithm in terms of a case-table. We now describe how to
create this table.

8.2.2 Generating the Case-Table

To generate a table that maps all possible cubes into unique and consistent surface
patches we create all possible cubes once and detect their surface patches once.

The surface-patches within a cube may be systematically constructed in three
steps: i) Detect a possible intersection of each of the 12 edges of the cube. ii)
Within each face of the cube link the intersections into line elements. iii) Follow
the lines around the cube to create surface patches. The first and third step are
straight forward. The second step needs to deal with possible ambiguities.

A face with two diagonally opposite corners labeled “+” and the other two
labeled “-” may be intersected in either of the two way shown in figure (8.2). To
arrive at a unique choice in an ambiguous case one may just assume the center of
the face to be “-” and then choose the unique surface that has the central “-” on
the correct side.

Thirion et al. [Thirion and Gourdon, 1996] propose to estimate the value at
the central point of an ambiguous face by a linear interpolation. Again, of the
possible surfaces that one is chosen which has the central value on the correct side.
It should be noted that the central value of a face is utilized only when the corners
alone are insufficient to select a unique surface topology. The disadvantage of this

1The problem of determining surface topologies relative to the 8 corners of the cube from only
the information about inside and outside at these 8 corners is ill-posed in the sense of Hadamard.
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Figure 8.6: Differences between 8 bit or 14 bit case tables: On the left is shown
a slice from the test image, the right shows the two possible surfaces. Using an
8bit case table with builtin preference for large negative volumes always splits the
positive pixels into two volumes (top). The 14bit case table can also produce a
single volume (bottom), depending on interpolated values.

approach is obvious, the number of different cube configurations increases from
28 to 214 including the centers of a cubes six faces.2

To contrast the two methods consider a test image made up of several slices
as shown in figure (8.6) with positive values inside the rectangular regions and
negative outside. The algorithm working with 256 cases and the assumption that
centers of an ambiguous face are always negative always creates two disconnected
surfaces from these data. Using the larger case table and linear interpolation of the
centers is able to create one or two surfaces depending on the interpolated value.

8.2.3 Implementation and Extraction

Our implementation, based on the description of [Watt and Watt, 1992] and the
case tables above, computes each vertex only once during the detection phase.
This minimizes both time and memory and at the same time permits subsequent
extraction.

The cubes of the image are processed starting with all cubes of one row, next
all rows within a band and finally different bands. Each new cube (except for

2Strictly speaking, many of the 28 cases are not ambiguous and the larger case table is really
only needed for the ambiguous situations. In terms of efficiency, however, it generally pays to
choose the larger case table right away.
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those on the image border) encounters three edges that have not been dealt with
before as displayed in figure (8.7).
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Figure 8.7: Marching of cubes. Only
three edges need to be dealt with in
a single step, the others have been
treated previously.

The vertices of these three edges,
if any, are computed and stored. Ref-
erences to vertices of the other 9
edges are fetched from buffers that
are kept specifically for this purpose.
Figure (8.8) shows these buffers.
Two buffers xvert[row][col]

and yvert[row][col] store all
references to horizontal edges ly-
ing between consecutive bands. To
store references between consecutive
rows two bufferszvert[col] and
top[col] are introduced and finally
three edges need to be stored between
two consecutive cubes in a column.
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Figure 8.8: Buffersxvert andyvert used in the implementation.
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Figure 8.9: Bufferszvert andtop used in the implementation.
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The surface patches are broken down into triangles3 so that detection creates
the data structure shown on the right.

Surface

Vertices
v1
v2
v3
v4
.

Triangles
(1,2,7)
(2,7,52)
(1,2,23)
(4,6,90)
.

Each vertex consists of three coor-
dinates (floating point variables). The
order of vertices is the order in which
they are encountered by the marching
cube. A triangle contains only the in-
teger position of its three vertices.

To establish neighborhood rela-
tions between surface patches we pro-
ceed as follows. Initially each vertex
is assigned a list of references to all
triangles that contain this vertex. To find a neighbor to one side of any triangle it
then suffices to look for the unique other triangle that appears in both lists of the
two vertices belonging to the side of the first triangle.

Finally, surfaces may be walked using graph algorithms such as breadth first
search [Cormen et al., 1990]).

8.3 Open Zero-Crossings

The algorithms described above determine the topology within a square (or cube)
from the values of a function at the corners of the square. This ensures consistency
between squares, i.e. closed, continuous lines and surfaces. The algorithms may
easily be modified to allow more general computation of lines and surfaces that
need not be closed.

One such application occurs in ridge detection where the following problem is
encountered (as described in more detail in the chapters on ridge detection): Find
those points of an image where the gradient vectorv ∈ R2 is an eigenvector of the
2x2 Hessian matrixH to a given eigenvalueλ, i.e. where

(H−λI)v = 0

(I being the identity matrix).H, λ, andv vary over the image at some points
fulfilling the above equations and at others not. The two equations are linearly
dependent inv becauseλ is an eigenvalue ofH, i.e. detH−λI = 0. Unfortunately
linear dependence does not generally mean that ifv satisfies the first equation it
also satisfies the second equation, namely when the first row ofH− λI is zero:
H1,1− λ = 0 andH1,2 = 0. If, however, the coefficients of the first equation do

3Triangles are created in an arbitrary way. Methods that attempt to fit triangles to the zero-
crossings in an optimal manner unfortunately tend to be very time consuming.
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not vanish, then a solution of the first equation is also a solution of the second
equation. Computationally this requires to compute a zero-crossing between any
two pixels from the morestableof the two equations. Section5.4.3describes the
measure of stability that was used for ridge detection. As a consequence of the
fact that the zero-crossings are not computed from a single function they need not
form closed curves.

The standard zero-crossing algorithms may be modified as follows: Within
a square the intersections of all four edges are computed by whatever method is
appropriate, for example as zero-crossings of the more stable of two expressions as
described in the previous paragraph. Topologically this can result in 16 possible
configurations, determined by the intersected edges. Figure (8.10) shows these
configurations.

◦
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◦

◦
@
@@

@
@@

Figure 8.10: Basic line elements. Dotted lines mark intersected edges. Circles
symbolize line ends. Rotation yields the 16 basic configurations.

The case table that usually maps configurations of the corners into line topolo-
gies is now replaced by a table that maps configurations of edges into line topolo-
gies4. As far as detection of lines is concerned this is the only necessary mod-
ification. Extraction can proceed as before except for the fact that lines must be
allowed to terminate within the image.

Figure (8.11) shows zero-crossings computed in ridge detection. Between any
two neighboring pixels the more stable row ofH v−Lqqv (whereLqq is the larger
eigenvalue ofH) determines whether an edge is intersected or not. Clearly the
resulting zero-crossings can be open.

The generalization to three dimensions is straight forward. A cube has
12 edges that are either intersected or not. This yields 212 cases of edge-
configurations that must be mapped to surface-patches. The corresponding case
table is created as follows: Within each cube face line elements are created as
shown in figure (8.10). It is then attempted to track the line elements around the
cube to create closed contours of surface patches as shown in figure (8.5). If this
cannot be done the corresponding surface patch is left out.

4Ambiguities may be resolved in some way appropriate to the application.
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Figure 8.11: Zero-crossings ofH v−Lqqv. At these pointsp is orthogonal to the
gradientv.

8.4 Intersections of Zero-Crossings

To compute the intersection of two zero-crossings we follow the approach of
[Thirion and Gourdon, 1996]: extract only one of the zero-crossings from the
image data and compute the second zero-crossing within the irregular grid pro-
vided by the first. Alternatively one could first compute both zero-crossing sur-
faces and then find their intersections as is briefly described in the appendix of
[Lindeberg, 1998a].

In two dimensions the first zero-crossing yields a set of lines each made up of
a list of points. At any two neighboring points the second function is evaluated
(by linear interpolation of the four closest neighbors) to see if there is a zero-
crossing in between. If so, the location of the zero-crossing is estimated by linear
interpolation.

In three dimensions the first zero-crossing yields a set of surfaces each consist-
ing of triangles. Within any triangle we detect zero-crossing lines of the second
function, and if a line is detected it is followed to neighboring triangles.

Results computed with these algorithms are shown in figures (7.2), (7.3), and
(7.4) of chapter7 on ridge detection with scale selection.



Chapter 9

Self-Similarity of Noise in
Scale-Space

This chapter deals with the statistical properties of normal noise in scale-space.
One such property, the standard deviation, was already used in chapter6 to define
scale selection. Here the emphasis is on more general statistical properties such
as those of features, e.g. edges or ridges, computed from the images.

The central observation is a scaling invariance of normal noise in scale-space.
From this invariance it is easy to derive the scaling behavior of measurements
made on normal white noise random fields. Examples of measurements are the
number of local extrema per unit volume of scale-space, the length of edges, or the
average gradient along edges. The statistical properties of these quantities might
be used to assess the significance of different features in the sense that long edges
are more significant than short edges because they are less likely to occur. This
chapter was presented at a conference [Majer, 1999]. I changed only the layout
and corrected an error in equation (9.2).

9.1 Introduction

Properties of normal white noise in scale-space have been studied previously
for a number of reasons. Images may be corrupted by noise and scale-space
smoothing may improve the signal to noise ratio. Noise has served as a model
to study the behavior across scales of properties such as the number of local ex-
trema or the volume of grey-level blobs [Lindeberg, 1994b]. Deviations from
the scaling behavior of properties of white noise or ensembles of natural images
[Ruderman and Bialek, 1994] can provide useful information to a visual system.

Apart from the covariance of normal white noise in scale-space
[Blom et al., 1993] results have been achieved mostly by simulation. The purpose
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of this paper is to illustrate that some useful results are available analytically.

9.2 An Invariance of Noise in Scale-Space

It is well known [Koenderink and van Doorn, 1992] that the onlyfunctionsthat
are form invariant under linear scale-space filtering are the derivative of Gaussian
functions

Gn(x; t) = ∂n1
1 ...∂

nN
N

e−
xT x
2t

(2πt)N/2

Filtering these functions with a Gaussian kernelG0 is equivalent to a rescaling
as expressed by the invariancex→ sx, t → s2t, Gn → s−n−NGn or Gn(x; t) =
s−n−NGn(sx;s2t). N denotes the dimension of space,x ∈ RN, n = (n1, ...,nN)
specifies the derivative operator , andn = ∑i ni its order. The square-root of the
second argument 0< t ∈ R is the “scale” ofGn.

There is also a family ofrandom fieldsthat is invariant under scale-space fil-
tering with a kernelG0 in the sense thata filtering of the random field is equivalent
to a rescaling of the joint distribution function.

Membersξn(x; t) of this family are generated (and defined) by filtering a nor-
mal white noiseξ0(x;0) of zero mean and standard deviationσ with a derivative
of Gaussian filter kernelGn:

ξn(x; t) = (Gn(·; t)∗ξ0(·;0))(x)

These normal random fields are completely determined by their auto-covariance
function

γn(x−x′, t + t ′) = σ2(−1)n G2n(x−x′; t + t ′)

that describes the covariance ofξn(x; t) andξn(x′; t ′). It follows immediately that
the form invariance ofGn is inherited by the random fields:

γn(x−x′, t + t ′) = s−2ns−Nγn(s(x−x′),s2(t + t ′)) (9.1’)

The (joint distribution function of the) random fieldξn is invariant under the
rescaling

x→ sx

t→ s2t

σ→ s−ns−N/2σ

(9.1)
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Figure 9.1: Normal noise at scale
√

t = 8, filtered to scale 32, and a rescaled
displayof the noise at scale 8 showing only 0< x< 256.

Figure (9.1) displays a one-dimensional realization ofξ0(x,82), the same re-
alization filtered toξ0(x,322), and lastly a rescaleddisplayof the first graph.

Obviously the particularfunctionthat we have realized is not scaling invariant.
Filtering the function in the first graph results in the second which is apparently
different from the third graph that shows the appropriately rescaled version of
the first. However, the similarity of these graphs serves to illustrate the fact that
they are generated by identical random mechanisms, i.e. thatthe random field is
scaling invariant.

The invariance of normal noise under the scaling transformation (1) allows to
derive thescaling behaviorof any observations made on a random fieldξn(x; t).

Some examples follow.
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9.3 Density of Local Extrema

The number of local extrema of normal white noise in scale-space has been stud-
ied as a model for the scale dependence of the number of features in a signal
[Lindeberg, 1994b]. Computation of the expected value of the number of local
extremaat a fixed scaleis extremely difficult [Lindeberg, 1994b]. However, the
scale invariance property (1) of normal white noise directly gives a relationship
between the distributions of the numbers of local extrema at different scales.

From (1) we find that the distribution of the number Next of local extrema in
a volumeV of space att is identical to the distribution of the number of local
extrema in a volumesNV ats2t. More specifically:

• the probabilityPt(Next) of observing less than Next local extrema in a unit
volume (

∫
Ω dx = 1) of filtered white noiseξn(x; t) at scale

√
t is related to

Ps2t(N
ext) at scales

√
t by

Pt(Next) = Ps2t(N
exts−N) (9.2)

• the expected numberE(Next) of local extrema over space per unit volume
of space behaves as

E(Next) ∝ t−N/2 (9.3)

Note that (9.2) and (9.3) hold for any order of the derivativen in ξn(x; t). The
scaling behaviour (9.3) of the expected number of local extrema over space has
previously been suggested from simulation experiments and a dimensional analy-
sis argument in section 8.7.5 of [Lindeberg, 1994b].

Similar relations hold for the distribution and expectation of the number NScSp

of local extrema over scale andspace per unit volume of scale andspace:

E(NScSp) ∝ t−N/2−1 (9.4)

The scale-dependence (9.4) of the number of local extrema over scale and
space is verified by simulation experiments. Figure (9.2) shows a plot of logNScSp

against logt for one-dimensional and two-dimensional white noise.

9.4 Edge Lengths

The distribution of edge lengthsl in normal noiseξn(x; t) at scale
√

t is identi-
cal to the distribution of scaled edge lengthssl at scales

√
t. Again this scaling
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Figure 9.2: Log-Log plot of the number of local extrema against scale for a
one-dimensional (top curve) and a two-dimensional normal white noise. The the-
oretical curves are depicted as lines.

invariance results directly from the invariance of the distribution of normal white
noise under the scaling transformation (1) without the need to actually compute
the distribution of edge lengths. It should be noted that for this scaling behavior
to hold it is essential that edges are computed by an algorithm that commutes with
the scaling transformation, e.g. zero crossings of differential invariants.

Let us denote byPt(l) the relative frequency of edges of lengths less thanl
occurring in the set of all edges at scale

√
t in a normal noise imageξn(x; t). Pt(l)

is identical to the probabilityPs2t(sl) of edges of lengths less thansl occurring in
a filtered imageξn(x;s2t)

Pt(l) = Ps2t(sl)

so that the expected edge lengths grow linearly in scale
√

t

E(l) ∝
√

t (9.5)

as shown on the left of figure (9.3).

9.4.1 Edge Lengths with Boarder Effects

In contrast to dimensionless features the distribution of edge lengths is certainly
affected by the image boarder cutting some edges short. We therefore attempt to
describe the effect of this on the distribution of edge lengths.

Consider a two-step procedure to arrive at the measured edge lengths. First
edges are computed from a hypothetical boarderless image. Then this is cropped
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Figure 9.3: Mean length of edgesE(l) as a function of scale
√

t. left: without
boarder effects. right: with boarder effects. Theoretical relations are shown as
lines.

to the observed image size. Thereby some edges are cut into two. One piece of
each of these cut edges is kept. With probability one half it will be the long and
with equal probability the short piece, so that the expected length after cutting is
one half that before. If we denote bypc

t (l) the probability density of lengths of
edges cut by the image boarder, we have

pc
t (l) = 2pt(2l)

wherept(l) is the density of lengthsl , i.e. Pt(l) =
∫ l

0 du pt(u). Each edge has
a certain probabilitypb to be on the boarder of the image. This probabilitypb

depends on the lengthl of the edge. If we assume thatpb is linear inl — which
should be a good assumption as long as the edge length is smaller than the length
of the image — it will scale like

pb(l) = s−1pb(sl)

The density of observed lengths at scale
√

t

(1− pb(l))pt(l)+ pb(l)pc
t (l)

then scales to

(1−s−1pb(sl))sps2t(sl)+2pb(sl)ps2t(2sl)

Thus the mean length depends ont as

E(l) ∝
√

t−at

with a constanta that depends inversely on the length of the image boarder and
on the edge detection and linking algorithm used. Figure (9.3) shows a fit of the
scale dependence of edge lengths in 512 by 512 pixel white noise images in scale-
space. As edge-detection and linking algorithm we used Canny’s non-maximum
suppression and hysteresis thresholding [Canny, 1993] (for thresholding see be-
low).
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9.5 Blob Volumes

Volumes of so called grey-level blobs have been used to construct a systematic
approach for the extraction of important structures in images [Lindeberg, 1994b].
Their significance was assessed from a comparison to the expected blob volume
in normal noise.

For the analysis of their scale dependence in normal noise it suffices to know
that grey-level blob volumes are integrals of the (smoothed) intensity function
over regions of the image domain, and that the regions are defined by geometric
properties of the intensity [Lindeberg, 1994b]. Irrespective of whether each region
grows or shrinks with increasing scale, the number of regions decreases liket−N/2

and thus there average areaA increases like

E(A) = tN/2 .

More generally, the distribution of areas of the regions of integration shows the
invariancePt(A) = Ps2t(s

NA).
The values of the intensity function depend on scale ast−N/4 so that the inte-

grals over the above areas depend on scale liketN/2−N/4

E(blob volume) ∝ tN/4 (9.6)

as reported in simulation studies by Lindeberg [Lindeberg, 1994b].

9.6 Scale-Dependent Thresholds

The described scale dependencies hold only when the measurements commute
with the scaling transformation. The introduction, for example, of a threshold in
Canny’s edge detection and hysteresis algorithm would destroy the scale depen-
dence shown in figure (9.3).

Thresholds may however be modified to depend on scale such that their rela-
tive position within the distribution of values they are applied to is independent of
scale. Or, conversely, the distribution of values to be thresholded may be rescaled.
In the edge detection a threshold on the absolute value of the gradient should be
be proportional tot−1 (for a two-dimensional image). Alternatively, as in figure
(9.3) a fixed threshold was used and ’standardized’ gradients

t1/2tN/4 ∂i
e−

xT x
2t

(2πt)N/2

were computed. The use of standardized derivatives is superior to a scale-
dependent threshold in that it may be numerically checked by setting the power of
the filter kernel equal to 1.



9.7 Summary 107

9.7 Summary

Scale dependencies of distributions of properties of white noise in scale-space
were derived from a scaling invariance of normal random fields. The method is
usually much simpler than a direct computation of the distribution at fixed scales
and subsequent derivation of the scale dependence.



Chapter 10

Summary and Outlook

Over the last two decades the scale-space representation of images has become
an important element in computer vision. The representation replaces an orig-
inal image by a family of smoothed versions of the same image such that with
increasing smoothness the details of the original image are lost. In principle this
allows a visual system to “concentrate” on the appropriate level of detail as fol-
lows: With increasing degree of smoothing objects vanish from the image, small
objects first and larger objects later. The degree of smoothing at which an object
vanishes basically measures the size of an object and provides information about
the appropriate level of detail that allows the visual system to “concentrate” on
the object under consideration. In this way the degree of smoothing is linked to
the size of objects and one speaks of scale-space rather than smoothing-space.

Ironically the question of how to determine particularly informative scales
has eluded scale-space theory for almost a decade. The first approach to “scale
selection” was proposed in 1993 by Lindeberg [Lindeberg, 1993b]. The proposal
is to define particularly informative scales as the local maxima with respect to
scale of so-calledγ-normalized derivatives.

Different choices of theγ-parameter yield different particularly informative
scales. It remains a question, what the “right” choice ofγ-normalization should
be. More generally it is not clear why scales should be selected according to the
proposal of Lindeberg. Both questions are addressed by this thesis.

The central idea that is presented in this thesis in order to deal with scale se-
lection isstochastic simplification: the pixels (intensities) of an observed image
are randomly shuffled to new positions. On average, if shuffling is defined appro-
priately, this destroys information and creates simplified versions of the original
image.
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A Statistical Approach to Feature Detection and Scale Selection

In chapter6 stochastic simplificationwas used to define particularly informative
positions or scales of the response of some operator as follows:

1. Destroy thestructural information in the observed image byshufflingthe
pixels to new positions.

2. Measure how much information was destroyed at any single position and
scale of the operator response.

3. Label those positions where (locally) most information was destroyed as
particularly informative.

To define a measure of how much information was destroyed by shuffling at any
single (position,scale)-pair one compares the operator response from the observed
image at that (position,scale)-pair with thedistribution of operator responses from
the shuffled images. Specifically, in chapter6 we took the probability to get
smaller responses from random images than the observed response as the mea-
sure of how much information is lost by shuffling.

This definition of particularly informative positions or scales becomes compu-
tationally feasible if shuffling is replaced by sampling random images from some
analytically tractablesampling model. The prototypical sampling model that pro-
duces images without structural information is a normal white noise model.

It was shown that on the basis of any homogeneous sampling model the par-
ticularly informative positions occur exactly at those positions where the operator
response has a local maximum with respect to position. In other words the statis-
tical definition of particularly informative positions is equivalent to the standard
definition of feature detection provided that the sampling model is homogeneous.

The particularly informative scales of derivative of Gaussian operators were
seen to correspond to local maxima ofγ-normalized derivative of Gaussian oper-
ators when the sampling model is normal noise. Theγ-normalization parameter is
uniquely determined by the sampling model.

The statistical approach to define particularly informative parameters differs
from the standard approaches in several ways: i) It provides a single definition
for all particularly informative parameters of an operator, be they position, scale,
or other. ii) It has an intuitive motivation in terms of the above three-step proce-
dure. iii) It defines particularly informative parametersrelative toa distribution of
images that are by construction/definition less informative than the original.

Ridge Detection with Scale Selection

Chapter7 demonstrated ridge detection with scale selection based on theγ-
normalization corresponding to a normal white noise sampling model. It was
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observed that this choice ofγ allows a second derivative ridge detector to “es-
cape” edges. At fixed scales this detector frequently produces false responses to
edges. At variable scales, however, the maxima in response to step edges be-
come unstable at the criticalγ-value ofγ = 1. For a step ridge the criticalγ-value
is γ = 1.5. This means that atγ = 1.25, corresponding to a normal white noise
sampling model, step edges are not detected while ridges are detected.

Shuffling, Simplification and Scale-Space

In chapter2, section 4 stochastic simplification was defined as follows: allow
a pixel to jump from positionx at “time” t to positiony at “time” t + τ with
some transition probability p(y, t + τ|x, t). To achievegradual simplification
some simple conditions on the short time behavior were imposed. The expected
value of random images generated in this way was shown to be a scale-space.

Section2.4 introduced alocal entropydefined for any single point in scale-
space. It was proved that the sum of local entropies over all points of an image
increases monotonically with scale. This captures in a mathematically rigorous
way the intuitive idea that smoothing (by Gaussian filter kernels) simplifies images
both globally and, more importantly, also locally.

Self-Similarity of Noise in Scale-Space

Chapter9 dealt with the statistical properties of normal noise in scale-space. In
particular it observed a scaling invariance of normal noise that can be used to
assess the scaling behavior of quantities measured in normal noise images. A
simple quantity is the standard deviation of the noise. The scaling invariance,
however, applies equally to more complicated quantities such as the number of
local extrema per unit volume or the length of ridges computed from normal noise
images.

Future Work

Several directions for future work suggest themselves.
The local entropyintroduced in chapter2 deserves a detailed study. In par-

ticular it is clear that the the scale-dependence of the local entropy at any single
position is not generally monotonic. Consider a simple example: At the center of
a dark spot on a bright background the entropy initially increases until the scale
corresponds roughly to the size of the blob. If scale is increased further the density
shifts toward the bright pixels and the entropy decreases.

The local entropy is only one property of the local densities created by shuf-
fling. Other properties of local densities could be of interest as well. Recent work
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in this direction was presented by [van Ginneken and ter Haar Romeny, 1999].
The local entropy or the local Kullback-Leibler discrepancy should also be the

key to an information theoretic treatment of image analysis and feature detection
and scale selection in particular. In the authors opinion this is the most important
and perhaps the most demanding of the here mentioned directions of work.

Furthermore, scale-selection in non-linear scale-spaces could be approached
with the ideas of chapter6. The key issue that needs to be dealt with is the com-
putation of the power of a filter kernel generated by non-linear scale-space.

It would also be interesting to test whether natural images also satisfy the
scaling invariance that holds for normal noise in scale-space (chapter9). Several
studies of the second order statistics of natural images have confirmed the scaling
invariance [Ruderman and Bialek, 1994], [Steenstrup et al., 1999]. The question
is whether the invariance also holds for “higher order” quantities such as the num-
ber of local extrema per unit volume or the length of edges.



Appendix A

Direction of Minium Curvature

Throughout chapter5 the vectorp was said to lie along the axis of minimum
second derivative. We here show that this is equivalent top being an eigenvector
of the Hessian to the smallest eigenvalue.

The second derivative ofL(x) along a vectord (given in coordinatesx = (x,y))
is

dTHd = dT
[

Lxx Lxy

Lyx Lyy

]
d

The direction of minimum second derivative is then obtained by minimizing over
all d ∈ R2 restricted to a constant lengthdTd = 1:

min
d∈R

2
,dTd=1

dTHd

Introducing a Lagrange multiplierλ to enforce the constraint this becomes

min
d∈R

2
,λ∈R

dTHd−λ(dTd−1) .

Denoting the directiond along which the second derivative assumes a minimum
by p it follows thatp andλ must solve

Hp = λp ,

i.e. λ must be an eigenvalue of the Hessian andp an eigenvector. Finally, to have
a minimal second derivativep must have the smallest eigenvalue.
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Appendix B

Least Squares Fit of Second
Derivative Ridge

It was mentioned in chapter5 that second derivative ridgesmay be interpreted
as those positions where aridge modeloptimally fits to the image. The model to
allow this interpretation is

gd(x) =−∂d∂dG(x, t)

whereG(x; t) = e−
xT x
2t

(2πt) is the rotation symmetric Gaussian andd ∈ R2 a vector in

R2 along which the second derivative is taken.
At each positionx0 the directiond is sought along which the model optimally

fits to the imagef (x) in terms of the square difference

min
d∈R

2
,dTd=1

∫
dx (−∂d∂dG(x−x0, t)− f (x))2

This is equivalent to the minimum of the convolution of∂d∂dG(x− x0, t) with
f (x):

min
d∈R

2
,dTd=1

∫
dx ∂d∂dG(x−x0, t) f (x)

Pulling the derivative out of the integral and inserting the definition of scale-space
L(x, t) = (G(◦, t) ∗ f )(x) shows that the least squares directiond is the direction
of smallest second derivative.

min
d∈R

2
,dTd=1

Ldd(x0, t)

This direction was calledp in chapters5 and7.
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To determine the least squares position in the one-dimensional frame alongp
again one seeks to minimize∫

dx (−∂d∂dG(x−x0, t)− f (x))2

alongp. This is equivalent to the maximum of the convolution, and thus to

Lppp(x0, t) = 0
Lpppp(x0, t)> 0
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