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Introduction (please read first)

This work is about properties of characteristic cohomology classes which
occur when a special structure on vector bundles is given. I have focused on
two different types of these structures, treated in two independent parts. The
first part uses orientation and spin structure, and follows the literature in this
area, mainly [Baum] and in the Riemannian section [Lawson & Michelsohn],
with some remarks. Two open questions are left in it, on pages 23 and
27. The second part uses complex structure and follows an idea on which
I haven’t found literature so far. The section 2.5 about almost complex
spin manifolds on page 26 gives the link between the two parts. For the
construction of the characteristic classes , I recommend the classic [Milnor &
Stasheff], as well as [Hatcher] and [Madsen & Tornehave].

I’d like to thank my supervisor for lots of useful hints.



Part I

Orientation and spin structure
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Chapter 1

Reductions of the structure
group

Definition . Let λ : H → G be a homomorphism of topological groups, and
let P → X be a principal G-bundle.

(Q, f) shall be called a λ-reduction of P , if Q×H • //

f×λ

��

Q

��@
@@

@@
@@

@

f

��
P ×G

• // P // X,

where • means the group operation, commutes, f is continuous and

Q → X is a continuous principal H-bundle.

1.1 H-Reductions

If the homomorphism λ is the embedding of a subgroup H, one talks briefly
about an H-reduction. There’s a condition for the existence of such an H-
reduction:

It’s the existence of a global section s in the quotient bundle P/H → X,
which is obtained by dividing out the action of the subgroup H in each fibre

of P
p // X . Let the rest class map to this action be denoted by π. Given

a continuous global section s, one gets a sub-bundle Q(s) of P composed by
the points whose image by s of their projection into the base space X is their
rest class under the action of H:

Q(s) := {z ε P | s(p(z)) = π(z)}.

7
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This means that the following diagram commutes:

H� _

��

• //_______ Q(s)
� _

f

���
�
�

!!D
D

D
D

G

can
��

• // P

π
��

p // X

s||zz
zz

zz
zz

G/H fibre // P/H

The bundle Q(s) admits as fibre an orbit of H, and that’s why, according
to the continuity of s, it’s a principal H-bundle.

On the other hand, given an H-reduction (Q, f) of P , the composition
map π ◦ f is constant on the fibres of Qb, b ε X. That’s the case because the
subgroup operation of H on P has the image f(Qb) as one orbit, as the upper
left aisle of the diagram commutes. And thus the division by this operation
puts f(Qb) into a single point. Therefore, it’s possible to assign continuously
to each point b of the base space the constant image of the fibre Qb, such as
to obtain a global section s(Q,f) : X → P/H.

These reflections prove what I call the

Subgroup reduction theorem

Each global section in the quotient bundle corresponds in the described man-
ner to an H-reduction of P .

Note 1 . Every vector bundle admits the zero section as a global section.
Presuming the base space to be a CW-complex, or especially a manifold, the
existence of a global section is certainly preserved when forgetting the vector
space structure, because the fibre remains contractible.

Note 2 . Without proof. Let K be a maximal compact Lie subgroup of G.
Then G/K is homeomorphic to a Euclidean space.

Example. GLn(R)/On ≈ R
n(n+1)

2 .

These two notes allow to deduce another theorem from the reduction
theorem:
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Theorem 1. Let K be a maximal compact Lie subgroup of G. Then any
principal G-bundle P → X over a CW-complex X admits a reduction to K.

Proof. Given a principal G-bundle P → X, the quotient bundle P/K →
X admits as fibre a Euclidean space due to Note 2 ; and then after Note 1,

P/K → X admits a global section. Now the subgroup reduction theorem
assures the existence of a K-reduction. �

1.2 Application on Riemannian manifolds

Consider a real vector bundle E → M over a smooth connected Riemannian
manifold M . As its fibre is Rn, its structure group is GLn(R), and it can
be obtained as associated bundle E = PGL(E) ×GLn(R) Rn of the principal
GLn(R)-bundle PGL(E) → M .

In the local trivializations of E, each fibre PGL(E)b is constructed as the
Stiefel manifold Vn consisting of the vector space bases of the corresponding
fibre Eb. Then the trivialization changing maps of PGL(E) take the same
values in GLn(R) as the corresponding maps of E, when identifying the
elements A ε GLn(R) with the multiplication maps (A·) : Vn → Vn,

(e1, ..., en) 7→ (Ae1, ..., Aen).

As M can be provided with a CW-complex structure, and as On is a
maximal compact Lie subgroup of GLn(R), theorem 1 assures the existence
of an On-reduction PO(E) of PGL(E). Using the Riemannian metric on M ,
PO(E) can be chosen to be the orthonormalization of PGL(E), each base
(e1, ..., en) in a fibre of PGL(E) being projected to an orthonormal base by
the Gram-Schmidt process.

M could also be equipped with a Riemannian metric by choosing any
smooth On-reduction PO(E) of PGL(E); calling orthonormal bases

all bases (e1, ..., en) ε PO(E)b ⊂ PGL(E)b, for every b ε M , and then
inducing a norm by the vector space structure of Eb.

The question if PO(E) in turn admits a reduction to SOn is the question
if E is orientable. This can be seen by dividing the subgroup action of SOn

out of PO(E):

PO(E)/SOn is called the orientation bundle of E, and is a principal
Z2-bundle. An SOn-reduction PSO(E) ⊂ PO(E) factors to a single sheet
PSO(E)/SOn of PO(E)/SOn if it exists. Then the global section
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Mn
∼= // PSO(E)/SOn

into PO(E)/SOn states the triviality of the orientation bundle. The rest
class map to dividing out SOn being continuous, now gives that PO(E) like
PO(E)/SOn has two connected components (M was supposed connected).
So, choosing an orientation of E means choosing a connected component of
PO(E) as an SOn-reduction.

And this is possible if and only if the first Stiefel-Whitney class w1(E)
vanishes.

Why E is orientable if and only if w1(E) = 0.

I will take the sequence II.1.(1.2) from [Lawson & Michelsohn, page 79]:

”Suppose M connected. Then from the fibration On
• // PO(E) // M ,

there is an exact sequence.

0 // H0(M, Z2) // H0(PO(E), Z2)
•∗ // H0(On, Z2)

wE // H1(M, Z2) .

(1.2)”

Contradiction. Take E → M to be the canonical n-plane bundle γn →
Gn over the infinite Grassmann manifold Gn = Gn(R∞). Theorem 7.1. of
[Milnor & Stasheff] yields H0(Gn, Z2) = Z2, so Gn meets the requirement to
be connected. This theorem also gives H1(Gn, Z2) ≈ {0, w1(γ

n)} ≈ Z2. As
w1(γ

n) 6= 0, γn is not orientable, and therefore PO(γn) is connected. This
means H0(PO(γn), Z2) = Z2, so in the beginning of the exact sequence (1.2),

0 // H0(Gn, Z2)
π∗ // H0(PO(γn), Z2) ,

π∗ is an isomorphism. Thus, •∗ must be zero, and therefore wE injec-
tive. As wE maps from H0(On, Z2) = Z2 ⊕ Z2 to H1(Gn, Z2) = Z2, this is
impossible.

Remedy . So, for the sequence (1.2) being exact, reduced cohomology

theory1 has to be supposed. As M is connected, so H̃0(M, Z2) = 0 and as
H̃0(On, Z2) ∼= Z2, the sequence then becomes

0 // H̃0(PO(E), Z2)
•∗ // Z2

wE// H̃1(M, Z2) .

1I got this hint from V. Pidstrygach.
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If E is orientable, PO(E)/SOn is the trivial covering, so PO(E) has two
connected components. Then H̃0(PO(E), Z2) ∼= Z2, so for exactness wE = 0.

Else, if E is not orientable, PO(E)/SOn is connected, as well as PO(E).
Then H̃0(PO(E), Z2) ∼= 0, thus for exactness wE is injective, and wE(1) 6= 0.

So E is orientable if and only if wE(1) = 0. It can be shown, an argu-
ment is given by [Lawson & Michelsohn], that wE(1) equals the first Stiefel-
Whitney class w1(E).

Recall there’s a two-fold covering homomorphism λ : Spinn → SOn.
The existence of a Spin-structure on E now means a further reduction,

such that the following diagram commutes:

Z2

•

uukkkkkkkkkkkkkkkkk
•

))
Spinn

λ

��

• // PSpin(E)

��

��

w2(E) = 0

SOn� _

��

• //__________________ PSO(E)� _

���
�
�
�
�
�
�

''PPPPPPP

w1(E) = 0 M

On
• //

� _

��

PO(E)

77nnnnnnnnnnnnnn

� _

��
GLn(R) • // PGL(E)

CC�������������������������

The same sequence reasoning as for the orientability applies for show-
ing that the vanishing of the second Stiefel-Whitney class w2(E) means the
existence of a Spinn-reduction of PSO(E). Now note that SOn is 0-connected
and for n ≥ 3, Spinn is 1-connected. But the Serre spectral sequence can’t
be exploited any more to see if there’s a relation between the vanishing of
w3(E) and a reduction to a 2-connected structure group.
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Chapter 2

Pseudo-Riemannian structure

2.1 Pseudo-Riemannian metrics

Let M be a differentiable manifold of dimension n. A pseudo-Riemannian
metric of index k, 1 ≤ k ≤ n− 1, on M is a smooth section

g : M → T∗M⊗T∗M , where T∗M is the dual of the tangent bundle TM ,
such that for all x ε M : g(x) is non-degenerated, symmetric and of index k.

Call a1, ..., an : U → TM a local pseudo-orthonormal frame,

if g(ai, aj) = χ(i)δij, where χ(i) = { −1, 1 ≤ i ≤ k
1, k < i ≤ n

, δij = { 1, i = j
0, i 6= j

,

and U any open subset of M .

Let e1, ..., en =


1
0
...
0

 , . . . ,


0
...
0
1

 denote the standard base of Rn.

Now define a symmetric bilinear form on Rn by < ei, ej >k := χ(i)δij.
Fix the subgroup O(n,k) ⊂ GLn(R) of maps under which the bilinear form
<,>k is unchanged. O(n,k) is called the pseudo-orthogonal group of index k.

Theorem 2. There exists a pseudo-Riemannian metric of index k on
a smooth manifold M of dimension n, if and only if the n-frame bundle
PGL(TM) admits a reduction to the pseudo-orthogonal group O(n,k).

Proof. Suppose that P → M is an O(n,k)-reduction of PGL(TM)→ M . It

13
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follows from [Wolf, page 335, Lemma 11.1.5] that Ok × On−k is a maximal
compact subgroup in O(n,k). Lie group structure is transferred like in the
footnote [on the same page]. Theorem 1 now provides anOk×On−k-reduction
of P ; call it P ′. The commutativity of the diagram

Ok ×On−k� _

��

• // P ′
� _

�� ((QQQQQQQQQQQQQQQQQ

O(n,k)
• //

� _

��

P //
� _

��

M

GLn(R) • // PGL(TM)

66nnnnnnnnnnnnnn

shows that P ′ is an Ok ×On−k-reduction of PGL(TM)→ M .

Denote by ωOk
the universal bundle over the classifying space BOk for

principal Ok-bundles. According to [Husemoller, page 58, exercise 4.13.10],
BOk × BOn−k is homotopy equivalent to B(Ok × On−k). Therefore, the
classifying map of P ′ can be prolonged to hP ′ : M −→ BOk ×BOn−k.

(With this map, pull back ωOk
×ωOn−k

, which is the universal bundle for
principal (Ok × On−k)-bundles [still stated by the last reference]). Writing
pri the projection on the i-th factor of the product BOk×BOn−k, the bundle
P ′ splits as the Whitney sum P ′ = P1 ⊕ P2,

where P1 = (pr1 ◦ hP ′)∗ωOk
, and P2 = (pr2 ◦ hP ′)∗ωOn−k

.

As described in the application above, TM is the associated bundle
PGL(TM)×GLn(R) Rn. In terms of the reductions, this is

TM ∼= P ×O(n,k)
Rn ∼= P ′×(Ok×On−k) Rn ∼= (P1×Ok

Rk) ⊕(P2×On−k
Rn−k)

Now choose Riemannian metrics g1 on P1×Ok
Rk and g2 on P2×On−k

Rn−k.
Then (0, g2)− (g1, 0) is a pseudo-Riemannian metric of index k on M .

Remark. The proof for the way back in [Baum, page 44, Satz 0.47] seems
incomplete to me. I’ll try to fill it up with some arguments; and declare the
reduction P ′ slightly different.

Suppose that M is equipped with a pseudo-Riemannian metric g of index
k. By the smoothness of g, its Eigen space ξx to the Eigenvalue −1 in a fibre
TMx can only change smoothly from fibre to fibre. Thus, the bundle ξ → M
of Eigen spaces to the Eigenvalue −1 is a differentiable sub-bundle of TM .
In the same way, obtain the sub-bundle η ⊂ TM to the Eigenvalue 1.
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Now, every local pseudo-orthonormal n-frame a1, ..., an : M ⊃ U → TM
provides a local k-frame a1, ..., ak of ξ. As g was assumed of index k, this
is also the fibre dimension of ξ. Hence a1, ..., ak is a local trivialization of ξ,
and ak+1, ..., an one of η. This gives

TM = ξ ⊕ η.

Note that ξ has the property g(ξ, ξ) < 0, which makes its vectors called
timelike, whilst η with g(η, η) > 0 is called spacelike. This split into time-
and space-sub-bundles enables to find an Ok ×On−k-reduction

P ′ := {(s1, ..., sn) ε PGL(TM) | s1, ..., sk ε ξ, sk+1, ..., sn ε η}.

of PGL(TM). It can be broadened to an O(n,k)-reduction. �

2.2 Orientability of pseudo-Riemannian manifolds

It is described in [Wolf, page 341, first phrase], that the pseudo-orthogonal
group O(n,k) has four connected components, each containing one component
of the maximal compact subgroup Ok ×On−k. Write

O++
(n,k) for the identity component, it contains SOk × SOn−k;

and label the others such that

O+−
(n,k) contains SOk × {g εOn−k| detg = −1},

O−+
(n,k) contains {g εOk| detg = −1} × SOn−k, and

O−−
(n,k) contains {g εOk| detg = −1} × {g εOn−k| detg = −1}.

Call a smooth manifold M with a pseudo-Riemannian metric of index
k a pseudo-Riemannian manifold. Let M be of dimension n and arcwise
connected. Choose GM the group among the following subgroups of O(n,k),
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O(n,k)

O++
(n,k) ∪ O

+−
(n,k)

' �

44jjjjjjjjjjjjjjjjjj
O++

(n,k) ∪ O
−−
(n,k)

?�

OO

O++
(n,k) ∪ O

−+
(n,k)

7 W

jjTTTTTTTTTTTTTTTTTT

O++
(n,k)

?�

OO

W7

iiTTTTTTTTTTTTTTTTTT ' �

55jjjjjjjjjjjjjjjjjj

up to which the n-frame bundle PGL(TM) is reducible. For default, if
PO(n,k)

(TM) admits no further reduction, choose O(n,k) itself. This is the
case when PO(n,k)

(TM) has just one connected component; M is then without
orientability. If PO(n,k)

(TM) has two components, the following three cases
have to be distinguished:

GM = O++
(n,k) ∪ O

+−
(n,k), M time-orientable,

GM = O++
(n,k) ∪ O

−+
(n,k), M space-orientable,

GM = O++
(n,k) ∪ O

−−
(n,k), M topologically orientable.

The last case is that PO(n,k)
(TM) has four components; then there’s a

reduction PO++
(n,k)

(TM), and M is said to be with all types of orientability.

2.3 Pseudo-Riemannian Spin structures

Recall that the pseudo-orthogonal group O(n,k) admits a two-fold covering
Pin(n,k) that arises in the Clifford algebra

Cl(Rn, <, >k) =
∞∑

r=0

⊗r Rn/〈x ⊗ x+ < x, x >k 1〉x ε Rn to the bilinear

form <,>k. The covering map Pin(n,k)
λ // O(n,k) here has the extra prop-

erty to be a group homomorphism. Remember the notation on the page
above and define G̃M := λ−1(GM). As GM is a subgroup of O(n,k) and λ a

group homomorphism, G̃M is a subgroup of Pin(n,k). Therefore, observe the
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commutativity

Z2

•

{{ww
ww

ww
ww

w
•

!!CC
CC

CC
CC

Pin(n,k)

λ
��

G̃M
? _oo

λ

��
O(n,k) GM .? _oo

A spin structure on M is now defined as a λ-reduction (Q, f) of PGM
(TM),

such that the following diagram commutes:

G̃M
• //

λ

��

Q

$$JJJJJJJJJJJ

f

��
GM

• // PGM
(TM) // M.

A pseudo-Riemannian manifold M is called spin if it admits a spin struc-
ture. Recall from the proof of theorem 2, that the pseudo-Riemannian metric
on M induces a split TM = ξ⊕η, into a timelike sub-bundle ξ and a spacelike
sub-bundle η.

Theorem (H. Baum)

Let M be a smooth pseudo-Riemannian manifold. Then M is spin if and
only if the following condition on the Stiefel-Whitney classes holds:

w2(TM) = w1(ξ) ∪ w1(η).

I won’t give a full proof of Helga Baum’s theorem, it is long and can be
found in her book. Instead, I will note some consequences, and then show
how the theorems exposed so far make their contributions to this proof.
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Pseudo-Riemannian product spin manifolds

Let M1 and M2 be smooth manifolds equipped with Riemannian metrics
r1 and r2. The product manifold M1 × M2 with the pseudo-Riemannian
metric (−r1, r2) is spin if and only if its two factors admit spin structures as
pseudo-Riemannian manifolds of index 0.

This can be seen as follows: The metric (−r1, r2) has time- and space-
bundles pr∗1TM1 = ξ and pr∗2TM2 = η. To

w2(T(M1 ×M2)) = w2(pr
∗
1TM1 ⊕ pr∗2TM2),

apply the Whitney sum axiom and get

= w2(pr
∗
1TM1) + w1(pr

∗
1TM1) ∪ w1(pr

∗
2TM2) + w2(pr

∗
2TM2)

= pr∗1w2(TM1) + pr∗2w2(TM2) + w1(ξ) ∪ w1(η).

So, the criterion of H. Baum’s theorem for the existence of a spin structure
on M1 ×M2 is fulfilled, if and only if

pr∗1w2(TM1) + pr∗2w2(TM2) = 0.

As these pullbacks come from different base spaces, w2(TM1) and w2(TM2)
must vanish independently.

If M1 and M2 are orientable, this is the case if and only if they both admit
Riemannian spin structures.

Without knowing about the orientability of the two manifolds, a Rieman-
nian spin structure can be considered as the oriented special case of a spin
structure on a pseudo-Riemannian manifold of index 0. The space bundle
here is the full tangent bundle TMi. The time bundle then is the the triv-
ial zero-dimensional bundle and has all Stiefel-Whitney classes zero, so the
criterion in H. Baum’s theorem for Mi admitting a spin structure turns into
w2(TMi) = 0. And that’s the condition obtained above. �
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The metric’s influence on the existence of spin structures

As reported in section 1.2 on page 11, every Riemannian manifold admits a
spin structure if and only if the second Stiefel-Whitney class of its tangential
bundle vanishes. This is a purely topological criterion independent of the
choice of metric. In contrast to this, we will now see that for a pseudo-
Riemannian manifold of dimension n and index 1 ≤ k ≤ n− 1, the choice of
metric does indeed matter for the existence of a spin structure.

Example. Consider M = K2×K2, the product of two Klein bottles K2.
K2 is non-orientable and admits a global nonzero vector field. Therefore,
w1(TK2) 6= 0 and there’s a trivial line-bundle ε1 generated by the global
section into TK2. Call κ the orthogonal complement of ε1 in TK2 with
respect to a Riemannian metric on K2. Then

w2(TK2) = w2(ε
1 ⊕ κ) = w2(ε

1) + w1(ε
1) ∪ w1(κ) + w2(κ) = 0.

Put a pseudo-Riemannian metric g1 on M determined by the time-bundle
ξ1 = pr∗1κ and the space-bundle η1 = pr∗1ε

1 ⊕ pr∗2TK2.

Use the Whitney sum axiom and naturality to compute

w2(TM) = w2(pr
∗
1TK2 ⊕ pr∗2TK2)

= pr∗1w2(TK2) + w1(pr
∗
1TK2) ∪ w1(pr

∗
2TK2) + pr∗2w2(TK2)

As stated above, w2(TK2) = 0. So, the stability of Stiefel-Whitney

classes under adding a trivial bundle makes the last term to

= w1(pr
∗
1κ) ∪ w1(pr

∗
1ε

1 ⊕ pr∗2TK2) = w1(ξ1) ∪ w1(η1).

H. Baum’s theorem now says that M is spin.

The last term being a product of two non-zero elements over different
base spaces, it is non-zero too. Equip M with another metric g2 by choosing
as time- and space-bundles ξ2 = pr∗1ε

1 and η2 = pr∗1κ⊕ pr∗2TK2. Then

w1(ξ2) ∪ w1(η2) = 0 6= w1(ξ1) ∪ w1(η1) = w2(TM),

and in this case, H. Baum’s theorem says that M is not spin.
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Elements of the proof of H. Baum’s theorem

Let K := Ok ×On−k and K̃ := λ−1(K) be its pre-image under the covering
homomorphism λ:

Z2

•

wwooooooooooooo
•

))SSSSSSSSSSSSSSSS

Pin(n,k)

λ
��

K̃ := λ−1(K)? _oo

λ

��
O(n,k) Ok ×On−k =: K.? _

maximal compactoo

It follows from [Wolf, page 335, Lemma 11.1.5], that K is a maximal
compact subgroup in O(n,k). Let M be a pseudo-Riemannian manifold of
dimension n and index k. As described on page 15, pick the group GM that
matches with the orientability of M . Intersect the bottom line of the diagram
with GM . The intersection K ∩GM is maximal compact in GM . Further, in
the finite covering by λ,

Z2

•

xxqqqqqqqqqqqqq
•

((PPPPPPPPPPPPPP

G̃M

λ

��

K̃ ∩ G̃M
? _oo

λ
��

GM K ∩GM ,? _
maximal compactoo

the pre-image λ−1(K ∩ GM) = K̃ ∩ G̃M is in turn a maximal compact
subgroup in G̃M .

The following lemma inserts the split TM = ξ ⊕ η into time- and space-
bundle into the proof of H. Baum’s theorem.

Applying theorem 1, there’s a K ∩GM -reduction P ′ of PGM
(TM).

Lemma. A spin structure on M exists if and only if P ′ admits a λ-
reduction.

Proof. Let (Q′, f ′) be a λ-reduction of P ′. Then
Q := Q′ ×K̃∩G̃M

G̃M , f := f ′ × λ is a λ-reduction of P = P ′ ×K∩GM
GM ,

hence a spin structure of M .



2.3. PSEUDO-RIEMANNIAN SPIN STRUCTURES 21

On the other hand, let (Q, f) be a spin structure of M . Then the following
diagram commutes:

Z2

•

wwnnnnnnnnnnnnnnn
•

((QQQQQQQQQQQQQQQQQ

G̃M

λ

��

• // Q

f

��
q

��:
::

::
::

::
::

::
::

::
::

::
::

::
:

GM
• // PGM

(TM)
p

((QQQQQQQQQQQQQQ

K ∩GM

?�

OO

• // P ′?�

OO

// M.

To the reduction P ′ of PGM
(TM), the subgroup reduction theorem (to

be found on page 8) provides a global section

σ : M → PGM
(TM)/(K ∩GM). As the map f induces a bijection

fπ from Q/(K̃ ∩ G̃M) to PGM
(TM)/(K ∩GM),

σ is lifted to a global section σ̃ : M → Q/(K̃ ∩ G̃M) with fπ ◦ σ̃ = σ.

To σ̃, the subgroup reduction theorem donates a K̃ ∩ G̃M -reduction Q′ of
Q. Let f ′ := f |Q′ . This looks like

G̃M
• // Q

q

��.
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

.

Z2

•

wwnnnnnnnnnnnnn

•
ggPPPPPPPPPPPPPPP

•

((QQQQQQQQQQQQQQQQQ

•

66mmmmmmmmmmmmmmmmm

K̃ ∩ G̃M

?�

OO

λ

��

• // Q′?�

OO

f ′

��

��:
::

::
::

::
::

::
::

::
::

::
::

::
:

K ∩GM� _

��

• // P ′
� _

�� ((QQQQQQQQQQQQQQQQQ

GM
• // PGM

(TM) p
// M.
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Let π be the canonical rest class map from P to P/(K ∩ GM), and π̃
the one from Q to Q/(K̃ ∩ G̃M). Because of Q′ = {y ε Q|π̃(y) = σ̃(q(y))},
P ′ = {x ε PGM

(TM)|π(x) = σ(p(x))}, (Q′, f ′) is a λ-reduction of P ′.

I’ll begin now a diagram chase to verify that f ′(Q′) is indeed P ′. The
reader, if bored, may skip this without inconvenience.

The situation is

K̃ ∩ G̃M� _

��

• // Q′
_�

��
f ′

�� ��>
>>

>>
>>

>>
>>

>>
>>

>>
>>

>>
>>

>>
>>

>>
>>

Z2

•

wwnnnnnnnnnnnnnnn

•
ggPPPPPPPPPPPPP

•

**TTTTTTTTTTTTTTTTTTTTTTT

•

44jjjjjjjjjjjjjjjjjjjjjj

G̃M

λ

��

• // Q

π̃

%%

f

��

q

))TTTTTTTTTTTTTTTTTTTTTTT

GM
• // PGM

(TM)

π

��

p // M
σ

uujjjjjjjjjjjjjjjjjjj

σ̃

~~}}
}}

}}
}}

}}
}}

}}
}}

}}
}}

}}
}}

}}
}}

}

PGM
(TM)/(K ∩GM)

Q/(K̃ ∩ G̃M).
?�

fπ

OOOO

Let y ε Q′. Then π̃(y) = σ̃(q(y))

⇒ fπ(π̃(y)) = fπ ◦ σ̃(q(y)) = σ ◦ q(y) ⇒ π ◦ f(y) = σ ◦ p ◦ f(y)

⇒ f(y) ε P ′.

Let x ε P ′. As f : Q → P is a double covering, there are y1, y2 ε Q such
that f(yi) = x. Thus π ◦ f(yi) = σ ◦ p ◦ f(yi) (*)

⇒ π̃(yi) = f−1
π ◦ π ◦ f(yi) =∗ f−1

π ◦ σ ◦ p ◦ f(yi) = σ̃ ◦ q(yi) ⇒ yi ε Q′. �



The next element of the proof is based on obstructions against a global
section in the bundle

L︷ ︸︸ ︷
B(K̃ ∩ G̃M)

ρ(λ) // B(K ∩GM),

where the classifying space BG for principal G-bundles of any group G is built
with the Milnor Construction1. For any continuous group homomorphism
λ : H → G, the map ρ(λ) : BH → BG is then defined by [h, t] 7→ [λ(h), t].

Theorem 0.33.2 of [Baum, page 34] states that for the two-fold covering

λ : K̃ ∩ G̃M → K ∩GM ,

L is a fibre bundle with fibre BZ2.

Contradiction. However, the fibre of ρ(λ) over the point
〈1, 1, 0, 0, 0, 0, ...〉 ε BG consists of the single point 〈1, 1, 0, 0, 0, 0, ...〉 ε BH
for any group homomorphism λ : H → G.

BZ2 being not contractible, this contradiction remains under homotopy
equivalence.

Remark. Some notion of functoriality seems to have motivated to map

the fibre Z2 to of the principal bundle Z2
• // K̃ ∩ G̃M

λ // K ∩GM to

the fibre BZ2. As seen, such a functoriality can’t be achieved by the Milnor
Construction.

Open question 1: Which classifying spaces for principal bundles can
be used to save the statement?

I guess some affirmative solution to this question has already been pub-
lished. Anyway, I couldn’t find it so far.

1 Recall that the total space EG in the Milnor Construction is obtained as the set
{(g1, t1, g2, t2, g3, t3...)| gi ε G, ti ε [0, 1],

∑
j ε N

tj = 1, tj = 0 for almost all j ε N}, modulo

the equivalence relation (g1, t1, g2, t2, ...) ∼ (g′
1, t

′
1, g

′
2, t

′
2, ...) ⇔ ∀j ε N : tj = t′j , gj = g′

j

if tj = t′j > 0. The equivalence class 〈g1, t1, g2, t2, ...〉 is abbreviated by [g, t]. EG is
equipped with the smallest topology which makes the projections on the entries tj , gj of
[g, t] continuous. The map EG × G → EG, ([g, t], a) 7→ [g · a, t] := 〈g1 · a, t1, g2 · a, t2, ...〉
defines a continuous right action of G on EG, divided by which BG is obtained.
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2.4 Review of a theorem by Frederik Witt

I’ll translate theorem 2.2.9 of [Witt, page 16] and its proof into English and
make some remarks.

Notations. Call a pseudo-Riemannian metric of index 1 a Lorentz metric.
A nowhere vanishing global section into the one-dimensional time-bundle ξ
of a Lorentz metric determines an orientation of ξ and is therefore called a
time orientation.

Theorem. Let Mn be a smooth manifold of dimension n. Then, the
following conditions are equivalent:

(i) There exists a nowhere zero vector field on M .

(ii) M is not compact, or M is compact and its Euler number χ(M) is
zero.

(iii) There exists a Lorentz metric on M .

(iv) There exists a time orientable Lorentz metric on M .

Proof.

(i) ⇔ (ii) In the compact case, this is a classical result (theorem of Hopf):
Look up [Bredon, corollary VII.14.5].

Remark 1. This corollary requires that M is orientable. However, the
general case is proved in [Alexandroff & Hopf, pages 548-552, XIV 4, Satz
III].

So let M be a non compact manifold of dimension n. If M is non-
orientable, then M can be replaced by a compact, orientable Lorentz manifold
because the differential of the covering map is an isomorphism,

Remark 2. It is an isomorphism only locally.

so we can always switch to the case that M is orientable.

Remark 3. This would ignore the problem of non-Orientability.

Then, due to obstruction-theoretic reflections, there exists a nowhere zero
vector field on M if and only if the Euler class e(M) ε Hn(M, Z) vanishes.
(For example, see corollary VII 14.4 in [Bredon] or [Milnor & Stasheff, Chap-
ter 12, especially theorem 12.5])
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Remark 4. The Euler class is only defined on oriented vector bundles.
That’s why these two references cannot be applied here in general.

But this vanishing follows directly from the well known result that

Hn(M, Z) = 0 for non-compact manifolds

(look up [Stöcker & Zieschang, example 13.6.6]).

Remark 5. For a manifold consisting only of non-compact connected com-
ponents, it is known that a nowhere zero vector field exists. I’ll only sketch
the proof on one connected component:

There’s always a vector field with finitely many singularities (points where
it vanishes). In a connected non-compact differentiable manifold, there are
arcs which connect the singularities with the ”open rim”. These arcs can be
provided with tubular open neighborhoods, such that a new vector field can
take the values of the old one, except in these tubular neighborhoods, where it
takes just the values given on the borders of these tubes. Then the new vector
field has no more singularities, they’re ”pushed out” through the ”open rim”.

(i) ⇒ (iv) Choose a Riemannian metric g on M . Let T b a nowhere
vanishing vector field; T can be considered normalized with respect to g. Set
h := g−T ∗⊗T ∗, where T ∗ is the dual vector field to T , i.e., T ∗(Z) = g(T, Z)
for all vector fields Z on M .

Remark 6. h must be set h := g − 2 T ∗ ⊗ T ∗.

There exist local vector fields E2, ..., En such that (T, E2, ..., En) are an
orthonormal system with respect to g. Then

h(Ei, Ej) = g(Ei, Ej) − 2g(T, Ei)g(T, Ej) = δi
j, h(T, Ej) = g(T, Ej) = 0,

and h(T, T ) = −1; this means h is a Lorentz metric with time orientation T .

(iv) ⇒ (i) Choose the time orientation as a vector field.

(iv) ⇒ (iii) obvious.

(iii) ⇒ (ii) If M is not compact, we’re done. So let M be compact, then
we must show χ(M) = 0. If h is time orientable, conclude (iv) ⇒ (i)⇒ (ii).
Otherwise consider the time orientation covering M̃ of M . As M is compact,
so is M̃ , and we can use (iv) ⇒ (i)⇒ (ii) to get χ(M̃) = 0. This means
χ(M) = 1

2
χ(M̃) = 0.

q.e.d.



2.5 Almost complex spin manifolds

Definition. A smooth manifold M of real dimension 2m is called an

almost complex manifold, if its tangent bundle can be given a complex
multiplication, such that it becomes a complex bundle ζ → M of complex
dimension m. Forgetting the complex structure, that’s TM ∼= ζR.

Let M be an almost complex manifold with a pseudo-Riemannian metric.
Suppose further that M is time- or space-orientable and 0 = H2(M, Z), which
contains the first Chern class c1(ζ). Then M is spin, because H. Baum’s
theorem can be applied to

w2(TM) = w2(ζR) ≡ c1(ζ) mod 2 = 0 = w1(ξ) ∪ w1(η),

where the last equation is due to the orientability of ξ or η.

This conclusion shall not be made without the almost complex structure
on M .

Almost-example. Take the real projective space RP 4l+1. Frederik
Witt’s theorem can be applied to provide a time-orientable pseudo-Riemannian
metric g of index 1, because RP 4l+1 is compact and its Euler characteristic
χ(RP 4l+1) vanishes.

Lemma 4.3 in [Milnor & Stasheff, page 42] gives H2(RP 4l+1, Z2) = {0, a2},

where a is the non-trivial element in H1(RP 4l+1, Z2) ∼= Z2 and generates

H∗(RP 4l+1, Z2) ∼= Z2[a]/〈a4l+2 = 0〉.

Theorem 4.5 of [Milnor & Stasheff, page 45] yields

w2(TRP 4l+1) =

(
4l + 2

2

)
a2 ≡ a2 mod 2. This differs from

0 = w1(ξ) ∪ w1(η), which comes from the time-orientability of g.

So, RP 4l+1 with the time-orientable metric g is not spin, in spite of

H2(RP 4l+1, Z) = 0, compare [Baum, page 81, last two lines].
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Counter-statement:

For l > 0, the last equation is contradicted by [Hatcher (AlgTop), page
214]: He calculates

H∗(RP 4l+1, Z) ≈ Z[α, β]/(2α, α2l+1, β2, αβ),

with |α| = 2, |β| = 4l + 1.

Thus I get H2(RP 4l+1, Z) ≈ {α, 0} ≈ Z2 6= 0.

For l = 0, H2(RP 1, Z) = 0 is true, but also H2(RP 1, Z2) = 0

⇒ w2(TRP 1) = 0.

Open question 2. Is there any smooth manifold X with the desired
properties of the almost-example, namely H2(X, Z) = 0, there exists a time-
or space-orientable pseudo-Riemannian metric on X, and w2(TX) 6= 0?

Take X with H2(X, Z) = 0. I’ll show why w2(TX) might however be
non-zero.

Suppose H1(X, Z) = Z2, then choose the free resolution

0 // Z ·2 // Z // Z2
// 0.

Then [May, page 132, above the universal coefficient theorem] yields that

0 // HomZ(Z2, Z2) // HomZ(Z, Z2) // HomZ(Z, Z2) // Ext1
Z(Z2, Z2) // 0

is exact. ⇒ 0 // Z2
id // Z2

0 // Z2

∼= // Ext1
Z(Z2, Z2) // 0.

⇒ Ext1
Z(H1(X, Z), Z2) = Z2. And using the universal coefficient theorem

H2(X, Z2) = HomZ(H2(X, Z), Z2)⊕ Ext1
Z(H1(X, Z), Z2),

I get H2(X, Z2) = Z2. So, possibly w2(TX) 6= 0.
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But it seems rather that a space X with all these properties doesn’t exist.
That would mean that this attempt to use complex structure in order

to obtain extra information about the underlying real bundle is failed. The
following part II will in turn be an attempt to obtain supplementary infor-
mation about complex bundles by some included real structure.



Part II

Complex structure

29





Chapter 3

Characteristic classes of ”real
bones”

Definition. Consider a real vector bundle F → B and a complex vector
bundle E → B over the same base space B.

If the fibre-wise constructed complexification F ⊗R C =: F C is isomorphic
to E, I’ll call F a ”real bone” bundle of E.

Motivation.

Not every complex vector bundle admits a ”real bone” bundle. So, sup-
plementary cohomological information might be gathered when restricting
attention to the subcategory of complex vector bundles that admit one.

Example. Consider the canonical line bundle γ1(C2) over the one-
dimensional complex projective space CP 1.

CP 1 is homeomorphic to the real two-dimensional sphere S2. Therefore,
the real vector bundle γ1(C2)R, obtained by forgetting the complex multipli-
cation structure of γ1(C2), may be equipped with the base space S2:

γ1(C2) γ1(C2)R
↓ ↓

CP 1 ∼= S2

.

As S2 is simply connected, every real line bundle over it must be orientable
and hence trivial. This is especially the case for a susceptible ”real bone”
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bundle E of γ1(C2). But if EC ∼= γ1(C2) ⇒ E⊕E = γ1(C2)R, then the Euler
class

e(γ1(C2)R) = e(E ⊕ E) = e(E) ∪ e(E) would vanish due to the triviality
of E.

This is not the case, because e(γ1(C2)R) = c1(γ1(C2)), the top Chern class
of γ1(C2), which is known to be nonzero.

Thus, there can’t exist any ”real bone” bundle of γ1(C2).

Another example. Consider the tangent bundle TCP 1. This is not
isomorphic1 to γ1(C2).

Making use of a popular result, it can be instantly seen that TCP 1 doesn’t
admit any ”real bone” bundle, without having to deal with characteristic
classes. Such a ”real bone” bundle would be a smooth real line bundle
splitting off from (TCP 1)R ∼= TS2. Any orientation of this line bundle over
the simply connected S2 could be identified with a smooth, nowhere vanishing
vector field. This is the impossible situation that ”the hairy ball is combed”.
For the proof of this impossibility, see [Brouwer, page 112, Satz 2].

General obstruction to ”real bones”

Consider a real vector bundle F → B.
F C has the complex multiplication i(~x, ~y) := (~y,−~x), whilst its conjugate

bundle F C is equipped with j(~x, ~y) := (−~y, ~x) in every fibre. The reflection
on the real axes - locally given by the orthonormal bases of the fibres of F -,

r : (F C)R → (F C)R, ((~x, ~y), b) 7→ ((~x,−~y), b) in the local trivializations

R2n × U , U ⊂ B, of (F C)R = (F C)R, is an isomorphism of real bundles.

Involving the complex structure, r : F C → F C, is complex linear:
∀(z + ia) ε C, ((~x, ~y), b) ε F C :

r((z + ia)(~x, ~y), b) = r((z~x, z~y) + (a~y,−a~x), b) = r((z~x + a~y, z~y − a~x), b)

= ((z~x+a~y,−z~y+a~x), b) = (z(~x,−~y)+a(~y, ~x), b) = (z(~x,−~y)+aj(~x,−~y), b)

= ((z + ja)(~x,−~y), b) = (z + ja)r((~x, ~y), b).

1 As CP 1 is diffeomorphic to S2, (TCP 1)R ∼= TS2.
⇒ w2(TS2) ≡ c1(TCP 1) mod 2.
As the normal bundle νS2 to TS2 is trivial, TS2 is stably trivial, hence
w2(TS2) = w2(TS2 ⊕ νS2) = w2(ε3) = 0.
⇒ c1(TCP 1) ≡ 0 mod 2.
⇒ c1(TCP 1) doesn’t generate H∗(CP 1, Z) whilst c1(γ1(C2)) generates H∗(CP 1, Z) as a

truncated polynomial ring [Milnor&Stasheff, page 160, theorem 14.4]. ⇒ TCP 1 � γ1(C2).
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Hence r is an isomorphism of complex vector bundles. So, any complex
bundle E → B that admits F as a ”real bone” bundle must be isomorphic
to its own conjugate bundle:

E ∼= F C ∼=r F C ∼= Ē.

This means for the odd Chern classes c2k+1, k ε N ∪ {0}, who have the
property c2k+1(E) = −c2k+1(Ē) (see [Milnor & Stasheff, page 168, Lemma
14.9]), that

c2k+1(E) = −c2k+1(Ē) = −c2k+1(E) ε H4k+2(B, Z)

⇒ c2k+1(E) = 0. Consequently, no complex vector bundle with some
nonzero odd Chern class can admit a ”real bone” bundle.

A problem that occurs immediately:

A complex vector bundle E may admit different ”real bone” bundles that
are not bundle-isomorphic.

Example. Have a look at the cylinder and the Möbius band, considered
as real line bundles over the circle. They’re both ”real bone” bundles of the
trivial complex line bundle, but the first one is trivial and the second one is
the non-trivial Möbius bundle.

Strategy. I want to attribute topological characteristic classes c(F ) of
the ”real bones” to the complexified bundles F C. For such an attribution
being well-defined, I need that two ”real bones” F , G of the same complex
bundle provide the same class c(F ) = c(G). For short, I get the

Basic requirement.

F C ∼= GC ⇒ c(F ) = c(G).
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3.1 Using Z2-coefficients

I’ll restrain myself to Z2-coefficients in the following.

Claim 1. A class c fulfilling this basic requirement satisfies the

”Transferred stable invariance” property2:

F C ∼= B × Cn ⇒ c(F ⊕G) = c(G).

Proof. Let c fulfill the basic requirement, and let F C ∼= B × Cn. Let
G → B be a real bundle.

Then c(F ⊕G) = c((B × Rn)⊕G) because (B × Rn)C = B × Cn ∼= F C,
so the basic requirement can be applied.

As all real n-vector bundles can be pulled back from the universal bundle
γn(R∞) over BOn, the fact [Hatcher, page 84, theorem 3.9] that H∗(BOn, Z2) =
Z2[w1(γn(R∞)), ..., wn(γn(R∞))] means that c must be a polynomial

∑⋃
wi

in the Stiefel-Whitney classes. Thus, c(F ⊕G) =
∑⋃

wi((B×Rn)⊕G) and
with the stability [Hatcher, page 81] due to the Whitney-sum axiom of the
Stiefel-Whitney classes, this term equals

∑⋃
wi(G) = c(G).

q.e.d.

Now let the base space B be compact Hausdorffian.

Claim 2. In this case, in return ”transferred stable invariance” of c
provides the basic requirement.

Proof. Let F → B,

G → B be real bundles with F C ∼= GC. Forgetting the complex structure,
that’s F ⊕ F ∼= G ⊕ G. As B is compact Hausdorffian, there is an inverse
bundle F−1 → B, such that F ⊕ F−1 ∼= B × RN .

As seen in the last proof, c(F ) = c(F ⊕ (B × RN)). And that’s, in turn,
c(F ⊕ F ⊕ F−1) = c(G⊕G⊕ F−1).

Now, (G⊕F−1)C = GC⊕(F−1)C ∼= F C⊕(F−1)C = (F⊕(F−1))C ∼= B×Cn.
That’s why I can apply the ”transferred stable invariance” and obtain

c(F ) = c(G⊕ (G⊕ F−1)) = c(G).

q.e.d.

2I have chosen this name because of the invariance of Chern classes under stabilizing
with trivial complex bundles. This invariance transfers to their mod 2 -reductions, giving
them the described property.
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Classes fulfilling the basic requirement

Assertion 1. All elements of the polynomial sub-ring Z2[w
2
i ]i ε N∪{0} satisfy

the basic requirement.

Proof. Let F → B,
G → B be real bundles with F C ∼= GC. Forgetting the complex structure,

that’s F ⊕ F ∼= G ⊕ G. A consequence of working in Z2-coefficients is that
all terms that appear twice in a sum vanish, just like

2i∑
k=1

wkw2i−k = w2
i .

Knowing these two facts, and the naturality of Stiefel-Whitney classes
under bundle isomorphisms, I just need to apply the Whitney sum axiom to
check that w2

i fulfills the basic requirement:

w2
i (F ) =

2i∑
k=1

wk(F )w2i−k(F ) = w2i(F ⊕ F )

= w2i(G⊕G) =
2i∑

k=1

wk(G)w2i−k(G) = w2
i (G).

This equation being valid for all i ε N ∪ {0}, it just remains to check
polynomials

∑⋃
w2

i . And this has become now only a question of commuting
brackets (they commute because 2 = 0 in Z2-coefficients):

(
∑⋃

w2
i )(F ) =

∑⋃
(w2

i (F )) =
∑⋃

(w2
i (G)) = (

∑⋃
w2

i )(G). �

Let c be a polynomial in the Stiefel-Whitney classes wi with the ”trans-
ferred stable invariance” property.

Assertion 2. c is in the polynomial sub-ring Z2[w
2
i ]i ε N∪{0}.

Proof.
Put BO := EU/O, via the inclusion O ⊂ U induced by the canonical

inclusion R ⊂ C.
According to [Cartan, page 17-22, mark (76)], there then is the Hopf

spaces fibration

U/O f // BO
p // // BU,

where the projection p is the rest class map to dividing the whole group
U out of EU ; and f : U/O → BO embeds a fibre.

It is known since [Cartan, page 17-13, mark (46)], and summarized in
[Bunke & Schick, page 48, theorem B.2], that

H∗(BO, Z2) = Z2[ω1, ω2, ...] is the polynomial algebra with generators
the Stiefel-Whitney classes



36 CHAPTER 3. CHARACTERISTIC CLASSES OF ”REAL BONES”

ωi := wi(γ(R∞)) of the universal real bundle over BO.
Henri Cartan [page 17-22, mark (76)] has shown that f ∗ maps these

generators ωi to the generators vi := wi(f
∗γ(R∞)) of the exterior algebra

H∗(U/O, Z2) =
∧

(Z2[v1, v2, ...]), which is obtained by dividing the ideal
〈v2

i 〉i ε N\{0} out of the polynomial algebra Z2[v1, v2, ...]. Hence, exactly the
ideal 〈ω2

i 〉i ε N\{0} is mapped to zero. So to write 〈ω2
i 〉i ε N\{0} = ker f ∗ (♣).

Composing f with the projection p : BO → BU , I obtain a constant map
(the whole fibre is mapped to its basepoint) and therefore a trivial bundle
(p ◦ f)∗γ(C∞). This pullback of the complex universal bundle happens to be
the complexification of f ∗γ(R∞):

(p ◦ f)∗γ(C∞) = f ∗p∗EU ×U C∞ = f ∗EO ×U C∞ = f ∗(EO ×O R∞)C

= f ∗γ(R∞)C = (f ∗γ(R∞))C.

So, f ∗γ(R∞) admits a trivial complexification, and all of the transferred
stable invariant classes c must treat it like the trivial bundle ε:

c(f ∗γ(R∞)) = c(ε). A pullback of the trivial bundle is trivial too, so

0 = c(f ∗γ(R∞))− c(f ∗ε) = f ∗(c(γ(R∞))− c(ε)) by naturality.

⇒ c(γ(R∞))− c(ε) ε ker f ∗ =♣ 〈ω2
i 〉i ε N\{0}.

Goal. I want to get a decomposition c(γ(R∞))− c(ε)

=
m∑

j1=1

ω2
ij1
∪

mj1∑
j2=1

ω2
i(j1,j2)

∪
∑

... ∪
m(j1,...,jk−1)∑

jk=1

ω2
i(j1,...,jk)

∪ r(j1,...,jk)(γ(R∞))

+
m∑

j1=1

ω2
ij1
∪rj1(ε)+...+

m∑
j1=1

ω2
ij1
∪

∑
...∪

m(j1,...,jk−2)∑
jk−1=1

ω2
i(j1,...,jk−1)

∪r(j1,...,jk−1)(ε)

for some m, mj1 , ...,m(j1,...,jk−1) ε N ∪ {0}, some ij1 , ..., i(j1,...,jk) ε N \ {0},

some r(j1,...,jk)(γ(R∞)) ε H∗(BO, Z2),

and some coefficients rj1(ε), ..., r(j1,...,jk−1)(ε) ε {0, 1},

in a way that ∀~j := (j1, ..., jk) : 2
∑

p ε I(~j)

p > degc,

where I(~j) := {ij1 , ..., i(j1,...,jk)}.

Being arrived at this goal and knowing that the degree must be the same
on both sides of the equation, the sum over all terms containing a factor⋃
p ε I(~j)

ω2
p of too high degree 2

∑
p ε I(~j)

p, for any ~j, must vanish.
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So, a polynomial c(γ(R∞)) in some squares ω2
p , p ε N∪{0} will remain3:

c(γ(R∞)) = c(ε) +
m∑

j1=1

ω2
ij1
∪ rj1(ε) + ... + ...

+
m∑

j1=1

ω2
ij1
∪

∑
... ∪

m(j1,...,jk−2)∑
jk−1=1

ω2
i(j1,...,jk−1)

∪ r(j1,...,jk−1)(ε).

Before beginning, I should introduce two notions just to make the proof
more readable:

Definition. An index vector ~j ”appears” in a given decomposition of

c(γ(R∞))− c(ε), if there is a summand r~j(γ(R∞)) ∪
⋃

p ε I(~j)

ω2
p

visible in this decomposition, and if 2
∑

p ε I(~j)

p ≤ degc.

Remark. The terms r~j(γ(R∞)) ∪
⋃

p ε I(~j)

ω2
p with 2

∑
p ε I(~j)

p > degc must

vanish in any decomposition of c(γ(R∞)) − c(ε). That’s why I don’t let
them contribute in the last definition.

Definition. Set l := min
~j appears

max I(~j). Consider an index vector ~j appear-

ing in a given decomposition of c(γ(R∞)) − c(ε). If max I(~j) = l, then call
r~j(γ(R∞))− r~j(ε) a ”low situated rest term”.

As seen so far, c(γ(R∞))− c(ε) ε ker f ∗ = 〈ω2
i 〉iεN\{0}, so there is a decom-

position

c(γ(R∞))− c(ε) =
m∑

j1=1

ω2
ij1
∪ rj1(γ(R∞)),

for some m ε N∪{0}, some ij1 ε N \ {0}, some rj1(γ(R∞)) ε H∗(BO, Z2).
I will show that there’s a low situated rest term rj1(γ(R∞)) − rj1(ε) in this
decomposition that lies in ker f ∗. Then, that low situated rest term admits
a decomposition as a linear combination of squares ω2

i(j1,j2)
with coefficients

r(j1,j2)(γ(R∞)) ε H∗(BO, Z2), leading to a new decomposition of

c(γ(R∞))− c(ε). So, inductively, I will replace a low situated rest term in
any given decomposition of c(γ(R∞)) − c(ε) by a linear combination whose

3The classes c(ε), r~j(ε) of the trivial bundle ε are just coefficients in
H0(BO, Z2) = {0, 1}.
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coefficients are rest terms with longer index vectors. That’s why after a finite
number of these steps, the index vectors ~j won’t ”appear” no more, because
the sums 2

∑
p ε I(~j)

p will exceed the degree of c. That’s the moment when all

low situated rest terms are eliminated and the decomposition described in
my goal is achieved.

To do all this, I first need to introduce a procedure that shall be called:

”Cutting the equation c(F ⊕G) = c(G) at the dimension l”. Define
the bundles

F := pr∗1f
∗γ(R∞) −→ U/O ×BO and

G := pr∗2γ(R∞) −→ U/O ×BO,

where pri shall be the projection on the i-th factor of the base space
U/O ×BO. Let l ε N.

Consider the map (id, embl) : (U/O ×BOl) ↪→ (U/O ×BO),

where embl : BOl ↪→ BO shall be the natural embedding, recalling that
BO is the limes space over all BOl, l ε N. Then the bundle Gl := (id, embl)

∗G
admits Stiefel-Whitney classes that are in bijective correspondence with those
of the l-dimensional universal bundle γl(R∞) → BOl.

(To be precise, Gl
∼= prBOl

∗γl(R∞), the situation being

γl(R∞)

��

Gl
∼= prBOl

∗γl(R∞)

��

G := pr∗2γ(R∞)

��

γ(R∞)

��
BOl (U/O ×BOl)

prBOloo � � (id,embl) // (U/O ×BO)
pr2 // BO

).
Especially, wp(Gl) vanishes for p > l.

The bundle F inherits from f ∗γ(R∞) the property to admit a trivial
complexification.

Therefore, the ”transferred stable invariance” of c applies:

c(F ⊕G) = c(G).

Thus, applying the induced cohomology map (id, embl)
∗ gives

(id, embl)
∗c(F ⊕G) = (id, embl)

∗c(G)
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⇔ c(id∗F ⊕ emb∗l G) = c(emb∗l G)

⇔ c(F ⊕Gl) = c(Gl).

By the universality of γ(R∞), and the naturality of all characteristic classes
towards the classifying maps of Gl and F ⊕Gl, any given decomposition

c(γ(R∞))−c(ε) =
∑
~j

r~j(γ(R∞))
⋃

p ε I(~j)

ω2
p gives analogous decompositions

c(Gl)− c(ε) =
∑
~j

r~j(Gl)
⋃

p ε I(~j)

w2
p(Gl) and

c(F ⊕Gl)− c(ε) =
∑
~j

r~j(F ⊕Gl)
⋃

p ε I(~j)

w2
p(F ⊕Gl).

Assertion 1 gives the ”transferred stable invariance” of w2
p, making it

invariant under adding the bundle F , whose complexification is trivial :

w2
p(F ⊕Gl) = w2

p(Gl).

Thus, the equation c(F ⊕Gl) = c(Gl) can be rewritten as:

∑
~j

r~j(F ⊕Gl)
⋃

p ε I(~j)

w2
p(Gl) =

∑
~j

r~j(Gl)
⋃

p ε I(~j)

w2
p(Gl)

where all summands containing a factor wp(Gl) with p > l vanish:

⇔
max I(~j) ≤ l∑

~j

r~j(F ⊕Gl)
⋃

p ε I(~j)

w2
p(Gl) =

max I(~j) ≤ l∑
~j

r~j(Gl)
⋃

p ε I(~j)

w2
p(Gl)

For not to exceed the degree of c, also all terms with

2
∑

p ε I(~j)

p > degc must vanish:

⇒
max I(~j) ≤ l∑
~j appears

r~j(F ⊕Gl)
⋃

p ε I(~j)

w2
p(Gl) =

max I(~j) ≤ l∑
~j appears

r~j(Gl)
⋃

p ε I(~j)

w2
p(Gl)

So, it’s this last expression that I’ll call ”the equation c(F ⊕ G) = c(G)
cut at the dimension l”.
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Induction over the index vector pointing at a low situated rest term

Induction’s beginning. Recall c(γ(R∞))−c(ε) =
m∑

j1=1

ω2
ij1
∪rj1(γ(R∞)).

Rename i1, ..., im such that i1 < i2 < ... < im.
Cut the equation c(F ⊕G) = c(G) at i1, and get

ij1 ≤ i1∑
j1 appears

rj1(F ⊕Gi1) ∪ w2
ij1

(Gi1) =
ij1 ≤ i1∑

j1 appears

rj1(Gi1) ∪ w2
ij1

(Gi1).

As i1 < i2 < ... < im, this is just r1(F⊕Gi1)∪w2
i1
(Gi1) = r1(Gi1)∪w2

i1
(Gi1).

Injectivity of the multiplication map ∪w2
i1
(Gi1) in H∗(U/O × BOi1 , Z2)

then holds r1(F ⊕Gi1) = r1(Gi1).

Then pull this back with (id × const) : U/O → (U/O × BOi1), (where
the map const takes just one, arbitrary, value), to get

r1(f
∗γ(R∞)⊕ ε) = r1(ε).

Due to the stability of the Stiefel-Whitney classes [Hatcher, page 81],
that’s

r1(f
∗γ(R∞)) = r1(ε).

Using naturality of characteristic classes towards pullbacks, this gives
f ∗(r1(γ(R∞))− r1(ε)) = 0. Or, r1(γ(R∞))− r1(ε) lies in ker f ∗.
So, I can replace it with a linear combination of quadratic terms, providing

a new decomposition, c(γ(R∞))− c(ε)

= ω2
i1
∪

m1∑
j2=1

ω2
i(1,j2)

∪ r(1,j1)(γ(R∞)) + ω2
i1
∪ r1(ε) +

m∑
j1=2

ω2
ij1
∪ rj1(γ(R∞)).

Induction’s prerequisite.

Consider a given decomposition

c(γ(R∞))− c(ε) =
∑
~j

r~j(γ(R∞))
⋃

p ε I(~j)

ω2
p

+
m∑

j1=1

ω2
ij1
∪rj1(ε)+...+

m∑
j1=1

ω2
ij1
∪

∑
...∪

m(j1,...,jk−2)∑
jk−1=1

ω2
i(j1,...,jk−1)

∪r(j1,...,jk−1)(ε).

Induction’s claim. There’s a low situated rest term in this given de-
composition that lies in ker f ∗.
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Induction’s step. Cut the equation c(F ⊕G) = c(G) at the dimension

l := min
~j appears

max I(~j).

Then the remaining terms of c(Gl) − c(ε) do all have the common fac-
tor w2

l (Gl). This is no zero divisor in H∗(U/O × BOl, Z2) and further its
multiplication map ∪w2

l (Gl) is injective. Now, in c(F ⊕Gl) = c(Gl)

⇒
max I(~j) ≤ l∑
~j appears

r~j(F ⊕Gl)
⋃

p ε I(~j)

w2
p(Gl) =

max I(~j) ≤ l∑
~j appears

r~j(Gl)
⋃

p ε I(~j)

w2
p(Gl),

this injectivity delivers

⇒
max I(~j) ≤ l∑
~j appears

r~j(F⊕Gl)
⋃

p ε I(~j)\{l}
w2

p(Gl) =
max I(~j) ≤ l∑
~j appears

r~j(Gl)
⋃

p ε I(~j)\{l}
w2

p(Gl).

♦ If there is just one low situated rest term r~j(γ(R∞))− r~j(ε), then use

the injectivity of the multiplication map ∪
⋃

p ε I(~j)\{l}
w2

p(Gl)

in H∗(U/O × BOl, Z2) to obtain r~j(F ⊕ Gl) = r~j(Gl). Then pull this
back with

(id×const) : U/O → (U/O×BOl) to get r~j(f
∗γ(R∞)⊕ε) = r~j(ε)

⇒ r~j(f
∗γ(R∞)) = r~j(ε). Using naturality, this means

f ∗(r~j(γ(R∞))− r~j(ε)) = 0.

⇒ The low situated rest term r~j(γ(R∞))− r~j(ε) lies in ker f ∗.
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♦ Else cut the remaining equation again at the dimension

l′ :=
max I(~j)=l

min
~j appears

max(I(~j) \ {l}), such as to obtain

max(I(~j)\{l}) ≤ l′∑
~j appears

r~j(F⊕Gl′)
⋃

p ε (I(~j)\{l})

w2
p(Gl′) =

max(I(~j)\{l}) ≤ l′∑
~j appears

r~j(Gl′)
⋃

p ε (I(~j)\{l})

w2
p(Gl′).

Now proceed analogously with the choice marked with the ”♦” signs, and
after finitely many steps, find a low situated rest term in ker f ∗.

This low situated rest term can be replaced by a linear combination of
squares, holding a new decomposition of c(γ(R∞))− c(ε).

This completes the induction.

By the universality of γ(R∞),

c = c(ε) +
m∑

j1=1

w2
ij1
∪ rj1(ε) + ... + ....

+
m∑

j1=1

w2
ij1
∪

∑
... ∪

m(j1,...,jk−2)∑
jk−1=1

w2
i(j1,...,jk−1)

∪ r(j1,...,jk−1)(ε).

As c(ε), rj1(ε), ..., r(j1,...,jk−1)(ε) ε {0, 1 = w0 = w2
0},

c is in the sub-ring Z2[w
2
i ]i ε N∪{0} of the polynomial ring of Stiefel-Whitney

classes.

So, Assertion 2 is proved. �
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3.2 Using integral coefficients

I will lean on the obtained results for Z2-coefficients and use the

mod 2 -reduction homomorphism ρ : H∗(BO, Z) → H∗(BO, Z2)

to pass over to answering the same questions in Z-coefficients.

The cohomology ring of BO with Z -coefficients is known with all relations
between its generators since [Brown] and can be obtained as follows:

Define the set of generators of H∗(BOn, Z) as in [Feshbach, page 511,
Definition 1]:

It consists of the Pontrjagin classes pi of the universal bundle over BOn,
and classes VI with I ranging over all finite nonempty subsets of

{1

2
} ∪ {k ε Z | 0 < k <

n + 1

2
}

with the proviso that I does not contain both 1
2

and n
2
, for n > 1.

According to [Feshbach, page 512, Theorem 2], H∗(BOn, Z) is for all
n ≤ ∞ isomorphic to the polynomial ring over Z generated by the above
specified elements modulo the ideal generated by the following six types of
relations.

In all relations except the first, the cardinality of I is less than or equal
to that of J and greater than one. (Most of the restrictions on I and J are
to avoid repeating relations). By convention, p 1

2
where it occurs means V{ 1

2
}.

Also, if {n
2
, 1

2
} ⊂ I ∪ J , then VI∪J shall mean V{n

2
}V(I∪J)\{n

2
, 1
2
}.

1) 2VI = 0.

2) VIVJ + VI∪JVI∩J + VI\JVJ\I
∏

i ε I∩J

pi = 0 (for I ∩ J 6= ∅, I * J).

3) VIVJ +
∑
i ε I

V{i}V(J\I)∪{i}
∏

j ε I\{i}
pj = 0 (for I ⊂ J).

4) VIVJ +
∑
i ε I

V{i}V(I∪J)\{i} = 0 (for I ∩J = ∅; if I and J have the same

cardinality, then the smallest element of I is less than that of J).

5)
∑
i ε I

V{i}VI\{i} = 0.

6) V{ 1
2
}pn

2
+ V 2

{n
2
} = 0, if n is even.
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Then ρ(VI) = Sq1(
⋃

i ε I

w2i),

with the Steenrod squaring operation Sq1.

Assertion 3. The basic requirement holds for V 2
I , with I arbitrary.

Lemma .

ρ(V 2
I (ξ)) =

∑
i ε I∩{ 1

2
}
w2

1(ξ ⊕ ξ) ∪
⋃

j ε I\{i}
w4j(ξ ⊕ ξ)

+
∑

i ε I\{ 1
2
}
(w4i+2(ξ ⊕ ξ) + w2(ξ ⊕ ξ) ∪ w4i(ξ ⊕ ξ)) ∪

⋃
j ε I\{i}

w4j(ξ ⊕ ξ),

for any real bundle ξ.

Proof. Apply the reduction homomorphism:

ρ[V 2
I (ξ)] = (ρ[VI(ξ)])

2 = (Sq1[
⋃

i ε I

w2i(ξ)])
2 = (

∑
i ε I

Sq1[w2i(ξ)]∪
⋃

j ε I\{i}
w2j(ξ))

2

= [
∑

i ε I∩{ 1
2
}
w2

1(ξ) ∪
⋃

j ε I\{i}
w2j(ξ)

+
∑

i ε I\{ 1
2
}
(w2i+1(ξ) + w1(ξ) ∪ w2i(ξ)) ∪

⋃
j ε I\{i}

w2j(ξ)]
2.

As 2 = 0 in H∗(BO, Z2), this equals

=
∑

i ε I∩{ 1
2
}
w4

1(ξ) ∪
⋃

j ε I\{i}
w2

2j(ξ)

+
∑

i ε I\{ 1
2
}
(w2

2i+1(ξ) + w2
1(ξ) ∪ w2

2i(ξ)) ∪
⋃

j ε I\{i}
w2

2j(ξ).

Using the Whitney sum axiom and symmetry,

w4i(ξ ⊕ ξ) =
4i∑

k=1

wk(ξ)w4i−k(ξ) = w2
2i(ξ). Hence, the above term equals

∑
i ε I∩{ 1

2
}
w2

1(ξ ⊕ ξ) ∪
⋃

j ε I\{i}
w4j(ξ ⊕ ξ)

+
∑

i ε I\{ 1
2
}
(w4i+2(ξ⊕ξ)+w2(ξ⊕ξ)∪w4i(ξ⊕ξ))∪

⋃
j ε I\{i}

w4j(ξ⊕ξ) �
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Proof of assertion 3.
Let F → B, G → B be real bundles with F C ∼= GC. Forgetting the

complex structure, that’s F ⊕ F ∼= G ⊕ G. By naturality of the Stiefel-
Whitney classes,∑

i ε I∩{ 1
2
}
w2

1(F ⊕ F ) ∪
⋃

j ε I\{i}
w4j(F ⊕ F )

+
∑

i ε I\{ 1
2
}
(w4i+2(F ⊕ F ) + w2(F ⊕ F ) ∪ w4i(F ⊕ F )) ∪

⋃
j ε I\{i}

w4j(F ⊕ F )

=
∑

i ε I∩{ 1
2
}
w2

1(G⊕G) ∪
⋃

j ε I\{i}
w4j(G⊕G)

+
∑

i ε I\{ 1
2
}
(w4i+2(G⊕G) + w2(G⊕G) ∪ w4i(G⊕G)) ∪

⋃
j ε I\{i}

w4j(G⊕G)

for any finite nonempty index set I ⊂ ({1
2
} ∪ N \ {0}). Applying the

lemma, this means ρ(V 2
I (F )) = ρ(V 2

I (G)).
As V 2

I is in the torsion of H∗(BO, Z), restricted on which ρ is injective
[Feshbach, page 513, four lines above ”Case 1”], this proves the assertion:
V 2

I (F ) = V 2
I (G). �

In the same way, it has to be dealt with V{ 1
2
} to see that it meets the

basic requirement, as ρ(V{ 1
2
}) = Sq1(w1) = w2

1.

Also the Pontrjagin classes pi fulfill the basic requirement:

pi(F ) = (−1)ic2i(F
C) = (−1)ic2i(G

C) = pi(G).

Corollary from assertion 2
Let C ε H∗(BO, Z) fulfill the basic requirement. Then ρ(C) ε Z2[w

2
i ]i ε N∪{0}.

Proof.
Let F → B, G → B be real bundles with F C ∼= GC. The reduction
ρ(C) ε H∗(BO, Z2) also satisfies the basic requirement:

ρ(C)(F ) = ρ(C(F )) = ρ(C(G)) = ρ(C)(G).

Thus claim 1 on page 34 says it’s transferred stable invariant.
Assertion 2 now gives the result. �
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Estimation

The sub-ring R of H∗(BO, Z) generated by pi with i ε N, V 2
J where

∅ 6= J ⊂ ({1
2
}∪N\{0}), and V{ 1

2
} should contain all well-defined integral

cohomology classes of ”real bone” bundles.

This estimation is not needed for the following conclusion. So I ought to
give only some hand-waving arguments for it.

Take a class C ε H∗(BO, Z) \ R which fulfills the basic requirement.

Then, ρ(C) ε Z2[w
2
i ]i ε N∪{0} according to the corollary from assertion 2.

Therefore ρ(C) is a polynomial of squares
∑⋃

w2
j .

On the other hand4, H∗(BO, Z) = Z[pi]i ε N ⊕ 2-Torsion with Z[pi]i ε N,

{V 2
J }∅6=J ⊂ ({ 1

2
}∪N\{0}), {V{ 1

2
}} subsets of R; thus there must be a torsion

generator VI , I 6= {1
2
}, as a factor in a summand C(s) of C, appearing in an

odd potence V 2k+1
I .

Thus the reduction ρ(C(s)) admits the non-quadratic term

ρ(VI)=
∑

i ε I∩{ 1
2
}
w2

1 ∪
⋃

j ε I\{i}
w2j +

∑
i ε I\{ 1

2
}
(w2i+1 + w1 ∪ w2i) ∪

⋃
j ε I\{i}

w2j

as a factor. And as 2 = 0 in H∗(BO, Z2),
∑⋃

w2
j equals (

∑⋃
wj)

2.
Hence for ρ(VI) to be a factor in a polynomial of squares, it needs to be
multiplied exactly with itself, and not only with the remainder ρ(V 2k

I ) =

((ρVI)
2)k = (

∑
i ε I∩{ 1

2
}
w4

1∪
⋃

j ε I\{i}
w2

2j +
∑

i ε I\{ 1
2
}
(w2

2i+1+w2
1∪w2

2i)∪
⋃

j ε I\{i}
w2

2j)
k

or other factors of ρ(C(s)).

Other summands of ρ(C) won’t cancel out ρ(C(s)), ρ being injective on
the torsion elements5.

That’s why I think that C can’t fulfill the basic requirement.

3.3 Conclusion

In Z2-coefficients, assertion 2 yields that every well-defined characteristic
class of the ”real bone” bundles ξ of a complex vector bundle ξC is a poly-
nomial in the squares of Stiefel-Whitney classes∑⋃

w2
i (ξ) =

∑⋃
w2i(ξ ⊕ ξ) ≡

∑⋃
ci(ξ

C) mod 2, and thus determined
by the Chern classes ci(ξ

C).

4[Feshbach, page 513, eight lines above ”Case 1”]
5[Feshbach, page 513, four lines above ”Case 1”]
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The following assertion states the same in Z-coefficients.

Assertion 4

Let C ε H∗(BO, Z) be a well-defined characteristic class of ”real bone
bundles”.

Then for any bundle ξ, C(ξ) is completely determined by some Chern
classes ck(ξ

C), k ε N.

Proof.

[Feshbach, page 513, eight lines above ”Case 1”] tells that

H∗(BO, Z) = Z[pi]i ε N⊕ 2-Torsion.

⇒ C =
∑⋃

pi + T with some torsion element T ε H∗(BO, Z) (♠).

So for every real bundle ξ,

ρ(C)(ξ) =
∑

ρ(
⋃

pi(ξ)) + ρ(T )(ξ).

⇒6 ρ(C)(ξ) =
∑⋃

ρ((−1)ic2i(ξ
C)) + ρ(T )(ξ).

⇒7 ρ(C)(ξ) =
∑⋃

w4i(ξ ⊕ ξ) + ρ(T )(ξ).

⇒8 ρ(C)(ξ) =
∑⋃

w2
2i(ξ) + ρ(T )(ξ).

Inserting the polynomial of the corollary from assertion 2, another poly-
nomial in squares is produced:

⇒
∑⋃

w2
j (ξ) = ρ(T )(ξ).

As according to [Feshbach, page 513, four lines above ”Case 1”], ρ is
injective on the torsion elements, there is a local inverse ρ|2−Torsion

−1 lifting
ρ(T ) back to T .

⇒ ρ|2−Torsion
−1(

∑⋃
w2

j (ξ)) = T (ξ).

⇒8 ρ|2−Torsion
−1(

∑⋃
w2j(ξ ⊕ ξ)) = T (ξ).

⇒7 ρ|2−Torsion
−1(

∑⋃
ρ(cj(ξ

C))) = T (ξ).

⇒♠, 6 C(ξ) =
∑⋃

(−1)ic2i(ξ
C) + ρ|2−Torsion

−1(
∑⋃

ρ(cj(ξ
C))). �

6By definition of the Pontrjagin classes.
7See [Hatcher, page 83, proposition 3.8] and use (ξC)R = ξ ⊕ ξ.
8By the Whitney sum axiom and symmetry.
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To summarize, unfortunately no extra information about complex vector
bundles can be gained introducing topological characteristic classes on ”real
bone bundles”.
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