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Göttingen 2012



Mitglied des Betreuungsausschusses: Prof. Dr. Theo Geisel (Referent)
MPI für Dynamik und Selbstorganisation, Göttingen &
Georg-August-Universität Göttingen

Mitglied des Betreuungsausschusses: Prof. Dr. Fred Wolf
MPI für Dynamik und Selbstorganisation, Göttingen

Mitglied des Betreuungsausschusses: Prof. Dr. Marc Timme
MPI für Dynamik und Selbstorganisation, Göttingen
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Chapter 1

Introduction

The field of population dynamics is concerned with the composition and size of popula-
tions and their temporal evolution. This applies to ecosystems where different species
compete with each other for limited resources as well as to epidemics, whose temporal
evolution is determined by the interaction of healthy and ill individuals. In fact, ecology
and epidemiology treat basically the same questions: How is the population influenced
by environmental and biological factors? How does the interaction of subpopulations or
species shape their respective temporal evolution? A common phenomenon is that the
interaction of subpopulations or species leads to oscillations of their population sizes:
This cyclic population dynamics is of central importance both for ecological systems
(Murray, 1993; Kaitala et al., 1996) and epidemiological systems (Anderson and May,
1991) – albeit with fundamentally different causes.
In epidemiology, cyclic population dynamics is almost self-evident for diseases like
measles or mumps, where infected individuals acquire life-long immunity upon recovery.
For these diseases susceptible individuals become infectious individuals by contracting
the disease and once they are infectious, they recover and become immune. The sus-
ceptible population is constantly replenished since all newborns are susceptible to the
disease (Anderson and May, 1991). On the population level this induces a cycle where
a population goes through a susceptible phase, enters an infectious phase, recovers to
an immune phase and eventually returns to the susceptible phase. Cyclic population
dynamics, hence, ensures the persistence – or recurrence – of the infectious population.
In ecology, one instance where cyclic population dynamics emerges is when different
species cyclically compete with each other. Cyclic competition was identified as a
mechanism that acts as to preserve the equilibrium of different populations (Gilpin,
1975; May and Leonard, 1975). Until then (Hardin, 1960) and even afterwards (den
Boer, 1986), it was believed that any ecological niche can only sustain a single species
because any albeit small fitness difference of two species will eventually lead to the
extinction of the inferior one. The idea that species do not necessarily dominate each
other in a hierarchical manner, provides a mechanism that explains the preservation of
greater biodiversity (Gilpin, 1975): If three species dominate each other cyclically, i.e.,
species A is superior to species B, which is superior to species C, but species C in turn
is superior to species A, all three species are cyclically predominant in the ecosystem
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Chapter 1. Introduction

and can persist in coexistence (May and Leonard, 1975).
A core issue in ecology and epidemiology consequently is the persistence of popula-
tions, i.e., the stability of equilibrium states. In this regard, Earn et al. (1998) have
emphasised how valuable research in one field has been for the respective other field –
although the objectives oppose one another: In ecology, the survival of populations is a
major goal and the loss of biodiversity is a danger (Schipper et al., 2008). The purpose
of understanding the population dynamics in ecosystems is thus to devise strategies
that prevent extinction events (see Sahasrabudhe and Motter, 2011, and references
therein). In epidemiology, on the contrary, the survival of potentially harmful infec-
tious populations is the danger and eradication the goal. The purpose of understanding
the population dynamics is thus to design control strategies that eradicate a disease
or stem its proliferation (May and Anderson, 1984; Lloyd and Jansen, 2004; Ferguson
et al., 2006).
A fine example of an aspect that was first introduced in ecological research and that
is valuable in the field of epidemiology is spatial heterogeneity. It was first recognised
for ecological populations that the spatial segregation of subpopulations plays an im-
portant role for the persistence of the overall population. The idea of a “population of
populations” (Hanski and Gilpin, 1991) was first conceptualised as a metapopulation
by Levins (1969). It accounts for the fact that animals interact with one another on a
local scale in their subpopulation (like swarms, herds, or flocks) while they occasion-
ally relocate to a different region or different subpopulation. This concept could be
readily applied to epidemiological models since human populations naturally segregate
into well-defined subpopulations like villages, cities, or any other social aggregations
(Grenfell, 1992; Bolker and Grenfell, 1995; Hagenaars et al., 2004). This conjunction
of cyclic population dynamics and spatial heterogeneity has substantially contributed
to the explanation of the high level of persistence of diseases, which could not be ex-
plained in non-spatial models (Bartlett, 1957; N̊asell, 1999).
In both epidemiology and ecology, spatial heterogeneity reduces the likelihood of extinc-
tion of the global population (of infectious individuals or a certain biological species)
because this requires that all subpopulations become extinct simultaneously. It comes
therefore as no surprise that epidemiologists consider synchronous dynamics of all sub-
populations as desirable (Grenfell et al., 1995; Lloyd and May, 1996) whereas ecologists
seek means to prevent synchronous dynamics (Heino et al., 1997; Keeling, 2000).

In ecology, the interplay of cyclic competition and a spatially extended environment
attracted a lot of attention when Czárán et al. (2002) and Kerr et al. (2002) found non-
hierarchical competition experimentally between three strains of E. coli bacteria. They
observed that the three strains can coexist when their dispersal is only local whereas
coexistence is quickly lost when they disperse on a much larger scale. Reichenbach et al.
(2007a) then found that the dispersal of individuals is critical to the emergence of spiral
patterns in a lattice-based model system of three cyclically competing species. These
patterns, in turn, induce a transition from unstable coexistence to stable coexistence,
whose characterisation becomes better the larger the population size. In their study,
however, the population size and the spatial size of the system is identical because the
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scale at which individuals interact and the scale at which individuals disperse is the
same. Yet this equality restricts the capability to characterise the transition, while it
is of central importance in ecology to understand under which conditions a biodiverse
ecosystem collapses to a monocultural system.
In Chapter 2, I therefore introduce a lattice-based population model for three cyclically
competing species that separates the local scale at which individuals interact from the
meta-scale at which they migrate, following the idea of a “population of populations”
(Hanski and Gilpin, 1991). This model allows to study stability properties of the coex-
istence separately in dependence on the population size and the spatial size. In contrast
to earlier works (Reichenbach et al., 2007a), I show that the emergence of spiral pat-
terns is related but not equivalent to the emergence of stable coexistence. Instead, I
demonstrate that the scale separation allows to sharply determine the conditions at
which the emergence of patterns merely begins to stabilise biodiversity.
In order to study the emergence of cyclic competition among three species, I also con-
sider in Chapter 2 a system of four species that spatially compete. For this purpose,
the lattice-based population model can be easily extended to more than three species.
Since the four species cannot coexist in equilibrium (as shown in Chapter 2), one species
quickly becomes extinct and leaves behind a system of three species. I thus determine
under which conditions the competition among the remaining three species is either
cyclic or hierarchical. I show that cyclic competition emerges when the four species
disperse on a local scale while a hierarchical competition emerges when individuals
disperse on a larger scale. Local dispersal is thus not only critical to the stability but
also to the emergence of cyclic competition among species.

In epidemiology, the conjunction of spatial heterogeneity and cyclic population dy-
namics is long known to, e.g., alter the demands on control measures like vaccination
strategies (May and Anderson, 1984; Hethcote and van Ark, 1987). Yet the recent
threat of different pandemics has triggered a lot of attention to epidemiological models
that consider large spatial scales (Hufnagel et al., 2004; Ferguson et al., 2006; Ep-
stein et al., 2007; Bajardi et al., 2011). In a modern world, which becomes ever more
connected, the impact of different regional climatic conditions or health regulations
on disease properties like the infection rate becomes ever more important. However,
only rarely have studies accounted for this variation (Grassly et al., 2005) and most
epidemiological models assume a spatially homogenous infection rate (May and Ander-
son, 1984; Hethcote and van Ark, 1987; Grenfell, 1992; Lloyd and May, 1996; Keeling,
2000; Xia et al., 2004; Hagenaars et al., 2004). Studying the impact of a spatially
varying infection rate, however, is not only essential for the understanding of disease
dynamics on a larger scale. It is also crucial for the design of containment measures
such as vaccination strategies or travel restrictions.
In contrast to existing studies, I consider – in Chapter 3 – a metapopulation model for
an epidemic in which the risk of infection explicitly depends on the location where the
disease is contracted. This framework takes thus a regionally varying infection rate into
account that arises when societal, cultural, or environmental differences are relevant for
local disease properties. I analyse how coupling influences the different subpopulations
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Chapter 1. Introduction

to demonstrate that the impact is fundamentally different from the situation in which
the infection rate is constant throughout the metapopulation. I show that the level
of infection can paradoxically increase upon coupling to a region with a lower level of
infection.
Furthermore, I study in Chapter 3 whether the influence of a group of populations
on a focal population – like a group of satellite villages surrounding a central city –
can effectively be modelled as the influence of a single ‘surrounding’ population. This
pertains to the question: Which degree of heterogeneity has to be taken into account
to capture the relevant dynamics of the system? I demonstrate that the heterogeneity
of the satellite populations can be absorbed into the parametrisation of a substitute
surrounding population if the levels of infection are either all smaller or all larger than
that in the focal population. Allowing for a regional variation of disease properties is,
hence, substantial for epidemiological models of a modern world.
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Chapter 2

The Rock-Paper-Scissors Game

2.1 Introduction

The question “Why are there so many species?” is posed in many ecosystems where
the explanation of the high number of species presents a long standing challenge (cf.
Hutchinson, 1959; Ranta and Vepsäläinen, 1981), which is still subject to investigations
(cf. Dykhuizen, 1998; Novotny et al., 2006). Biological studies have devised plenty and
some quite specific explanations, including but not limited to a high speciation rate, the
lack of competition due to spatial heterogeneity, or the almost manifest explanation
that there are simply unexpectedly many ecological niches. A principle that coined
the early debate during the second half of the last century is called the competitive
exclusion principle (Hardin, 1960; Armstrong and McGehee, 1980; den Boer, 1986). It
basically states that the number of sustainably coexisting species cannot exceed the
number of abiotic resources or more generally the number of ecological niches. The
rational behind this principle is the idea that any difference between species in the
ability to exploit a certain resource will inevitably lead to the eventual extinction of
the inferior one. In quite similar studies, Gilpin (1975) and May and Leonard (1975)
established that the competitive exclusion principle only applies to special cases and
that a single resource allows even more than two species to coexist. The crucial aspect
of their model was a non-hierarchical (or cyclic) competition between the species, which
– depending on the set of parameters – can lead to either stable, marginally stable or
unstable coexistence (see box Interlude I: Deterministic linear stability).
To illustrate this kind of non-hierarchical relationships, Gilpin uses the following ex-
ample: “In pure exploitation competition for a single resource, species 1 is the best,
2 is next best, and 3 the worst. Species 1 eliminates 2 in pairwise competition, and 2
eliminates 3 in pairwise competition, but 3 excretes a substance that is uniquely and
completely poisonous to 1. Species 3 can therefore eliminate 1. That is, 1 better than
2, 2 better than 3, but 3 better than 1” (Gilpin, 1975). This example of three species
that compete cyclically corresponds to the well known Rock-Paper-Scissors Game.
Although the theoretical basis was provided quite early and non-hierarchical relations
were suggested as explanations for the high level of diversity in coral reef invertebrates
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Chapter 2. The Rock-Paper-Scissors Game

Interlude I: Deterministic linear stability

Consider a dynamical system that is described by its state vector x ∈ Rd and its
temporal evolution

ẋ = f(x) (2.1)

where f : Rd 7→ Rd. A fixed point xs of the dynamical system is a state in which the
system remains unchanged unless a perturbation occurs, i.e. f(xs) = 0. The fixed
point can be further characterised by its response to infinitesimal perturbations.
If the system returns to the fixed point after a small perturbation, it is said to be
stable. If the perturbation grows and the system moves away from the fixed point,
it is said to be unstable. If the perturbation neither grows nor decays, the fixed
point is said to be marginally stable. To determine the stability of the fixed point,
the equations for the temporal evolution are linearised around the fixed point, i.e.
the quantity

Ls =
∂f(x)

∂x

∣∣∣
x=xs

(2.2)

is considered, which describes the temporal evolution in the vicinity of the fixed
point. Defining y := x − xs the temporal evolution in the vicinity of xs (i.e. for
small |y|) is thus governed by:

ẏ = Lsy (2.3)

Since this is a linear differential equation, the behavior of its solutions can be
classified by the eigenvalues of L (see Strogatz, 1994, for an inclusive description):
If the real part of all eigenvalues is negative, xs is a stable or attracting fixed point.
If the real part of any single eigenvalue is positive, xs is an unstable or repelling
fixed point. If the real parts of the eigenvalues are all negative except for at least
one that is zero, xs is a marginally stable fixed point.

(Jackson and Buss, 1975), the field only gained new momentum when empirical studies
observed non-hierarchical relations in nature. To this day, cyclic competition has been
observed in a wide range of ecosystems, including E. coli bacteria (Czárán et al., 2002;
Kerr et al., 2002), parasite-grass-forb communities (Cameron et al., 2009) and lizard
populations (Sinervo and Lively, 1996; Corl et al., 2010). Nonetheless, cyclic compe-
tition might seem to be a peculiarity of these systems. Allesina and Levine (2011),
however, have recently shown that cyclic competition is the rule rather than the ex-
ception if species compete for several resources instead of a single one.
Yet cyclic competition is not limited to biological systems of competing species. The
well-known Prisoner’s Dilemma is a game theoretical paradigm for cooperative sit-
uations between two agents in which the dominant strategy keeps the agents from
receiving the maximum pay-off (Nowak, 2007). Hauert et al. (2002) and Szabó and
Hauert (2002) proposed to ease the Prisoner’s Dilemma by the introduction of a third
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2.1. Introduction

strategy that does not partake in the game but rather resorts to a fixed payoff. This
third strategy basically turns the Prisoner’s Dilemma into a Rock-Paper-Scissors game.
It was not until the 1990s in the field of evolutionary game theory that spatial aspects
and stochasticity were recognised to play an important role concerning the persistence
of coexistence of strategies or species (Nowak and May, 1992, 1993; Nowak et al.,
1994a,b; Durrett and Levin, 1994). Spatial and stochastic models for three cyclically
competing species (Hassell et al., 1994; Durrett and Levin, 1997, 1998; Zhang et al.,
2006) and more (Szabó and Czárán, 2001b,a; Szabó and Sznaider, 2004; Szabó et al.,
2008) were subsequently studied, establishing that space can have a stabilising influ-
ence on the population dynamics.
The inclusion of stochasticity – arising from the finite number of individuals and the
stochastic interaction between them – introduced, however, the new problem to prop-
erly characterise the stability of coexistence in such systems. In any stochastic birth-
death process with a per capita birth and death rate the only absorbing state – i.e. a
state that cannot be left (even not by chance) – is the state where all individuals have
died out (see box Interlude II: Stochastic description of birth-death processes
on page 8). A stochastic system of cyclically competing species will thus at some point
always reach the state where only one species prevails.
Frey and Reichenbach (2011) have thus devised new definitions of what stability in
stochastic population systems mean. They categorise the stability of stochastic sys-
tems by the dependence of the average time τex it takes to reach the absorbing state
on the size of the system N . They argue that in an unstable system, which is system-
atically driven towards the absorbing state, τex grows logarithmically with the system
size, i.e. τex(N) ∝ ln(N). In a marginally stable system, in which the birth and death
processes balance each other on average, such that there is no drift in any direction,
any time scale in such a system is proportional to the system size, i.e., τex(N) ∝ N .
In a stable system, which is driven away from the absorbing state, τex will grow expo-
nentially with N , i.e. τex(N) ∝ exp(N). While this is certainly not a mathematically
strict definition of stability, it provides a classification that can serve to reasonably
distinguish different stability regimes in stochastic population dynamics.
The stabilising influence of space on the dynamics of the Rock-Paper-Scissors game
was known to be related to the formation of rotating spiral waves from the first spatial
models (Hassell et al., 1991; Nowak et al., 1994a). Yet it was only conjectured that
there must be a connection between the characteristic length of the spatial patterns
and the stability of the coexistence of the three species (Hassell et al., 1994). Re-
ichenbach et al. (2007a) found this connection when they were studying a spatial and
stochastic system of three cyclically competing species that also form spiral patterns.
In their model, individuals move diffusively in a square lattice while they compete with
other individuals and reproduce. The central quantity in their study is the mobility of
individuals. They find that the wavelength of the spirals (their characteristic length
scale) grows with the individual’s mobility as λ ∝

√
M . This implies that the extent of

the spirals outgrows the extent of any finite system with growing mobility. When the
wavelength becomes larger than the system size, the spirals collapse or cannot form
and thus not maintain coexistence. The mobility M is therefore a pivotal quantity
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Chapter 2. The Rock-Paper-Scissors Game

Interlude II: Stochastic description of birth-death processes

The temporal evolution of the state of a stochastic system is not predictable as
opposed to deterministic systems where the temporal evolution can be perfectly
predicted. It is rather of interest to ask for the probability of the stochastic system
P (s, t) to be in a certain state s ∈ Rd at time t. The temporal evolution of P (s, t)
is then given by the Master Equation (abbreviated with ME in the following)
(the description in this Interlude closely follows Gardiner, 2009):

∂tP (s, t) =
∑
∆s

[W (s|s + ∆s, t)P (s + ∆s, t)−W (s + ∆s|s, t)P (s, t)] (2.4)

Here, W (s + ∆s|s, t) is the transition probability, which is the scaled limit of the
jump probability p(s + ∆s, t+ ∆t | s, t):

W (s + ∆s|s, t) = lim
∆t→0

1

∆t
p(s + ∆s, t+ ∆t | s, t), |∆s| ≥ ε > 0 (2.5)

p(s2, t2 | s1, t1) denotes the conditional probability that the system changes its
state by ∆s during the time interval [t, t+∆t]. The ME describes jump processes,
which means that the state variable of any realization, i.e. actual observed process,
typically remains unchanged until it is abruptly changed by a finite value. Any
sample path s(t) will thus be non-continuous in time. If s describes a stochastic
birth-death process, only jumps of finite and integer order occur and s ∈ Nd

+. The
temporal evolution of the stochastic process is then governed by a discrete set of
reactions M and we can rewrite the ME in a more intuitive form:

∂tP (s, t) =
∑
m∈M

[
t+m(s− rm)P (s− rm, t)− t−m(s)P (s, t)

+ t−m(s + rm)P (s + rm, t)− t+m(s)P (s, t)
]

(2.6)

t+m and t−m denote the transition probability per unit time (similar to W (s2|s1, t)
in Eq. (2.4)) of the mth reaction and its inverse counterpart, respectively (see
Gardiner, 2009, for more details). rm is the difference by which the mth reaction
changes the state of the stochastic system. The only stable states of stochastic
systems are those that cannot be left. Mathematically speaking, an absorbing
state sA is defined by the property t±m(sA) = 0 ∀m ∈M.
The ME is, in general, not analytically solvable. An equation that is analytically
more tractable is the Fokker-Planck Equation (abbreviated with FPE in the
following). As opposed to the ME, it describes diffusion processes, which have
continuous but nowhere differentiable sample paths. Although the two equations
describe basically different stochastic processes, the FPE can be considered to be
an approximation of the ME for large systems.
In the following, the size of the stochastic system (or the thermodynamic volume)
is denoted by Ω. If the transition probabilities t±m are proportional to Ω, it is
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2.1. Introduction

possible to perform van Kampen’s system size expansion as well as the Kramers-
Moyal expansion, whose first two terms are asymptotically the same (see Gardiner,
2009, for details). Truncating these expansions to second order, yields the FPE:

∂tP (s, t) =−
d∑
i=1

∂

∂si
[Ai(s)P (s, t)] +

1

2

d∑
i,j=1

∂2

∂si∂sj
[Bij(s)P (s, t)] (2.7a)

with Ai(s) =
∑
m∈M

rm,i
[
t+m(s)− t−m(s)

]
(2.7b)

with Bij(s) =
∑
m∈M

rm,irm,j
[
t+m(s) + t−m(s)

]
(2.7c)

This FPE can equivalently be written for the densities x := s
Ω

.
The diffusion processes whose probability densities obey Eq. (2.7) can be described
by the stochastic differential equation

dx =
1

Ω
A(Ωx)dt+

1

Ω
B(x) dW (t) , (2.8)

where dW (t) is a d-dimensional Wiener process, which is a diffusion process with
Gaussian distributed increments. The matrix B(x) must fulfill B(x)B(x)T = B(s).
Since this relation is not unique, the relation between the FPE Eq. (2.7) and the
corresponding stochastic differential equation Eq. (2.8) is neither. It is important
to note, that all t±m were required to be ∝ Ω and thus A and B are also ∝ Ω. The
first term in Eq. (2.8) is therefore independent of the system size and the second

term is proportional to Ω−
1
2 , since B ∝

√
Ω. In the large Ω limit the deterministic

temporal evolution is thus recovered:

∂

∂t
x =

1

Ω
A(Ωx) (2.9)

for the stability of coexistence of cyclically competing species: Reichenbach et al.
(2007a) identify a critical mobility Mc above which coexistence is rapidly lost while “a
low mobility M < Mc guarantees coexistence of all three species” (see Fig. 2.1).
Their work stimulated a lot of further research, including studies of the effect of species
specific reaction rates (Berr et al., 2009, confirming earlier results by Frean and Abra-
ham (2001)), the generalisation to networks (Zhang et al., 2009), studies of the in-
fluence of the initial conditions (Shi et al., 2010), of intra- and interspecies spreading
of lethal diseases (Wang et al., 2010), of intraspecific competition (Yang et al., 2010),
of mutations among species (Mobilia, 2010), and of the interplay between intra- and
inter-patch migration (Wang et al., 2011).
When discriminating a parameter regime (such as M < Mc) for which a stochastic
birth-death system exhibits stable coexistence from a regime for which coexistence is
unstable (according to Frey and Reichenbach, 2011), the decisive part is to reliably
measure the dependence of τex on the system size N . However, when the parameters
approach the stable regime and the system size N becomes large, τex and thus the
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Chapter 2. The Rock-Paper-Scissors Game

Figure 2.1: Simulations
of a latticed based model
of the Rock-Paper-Scissors
gameby Reichenbach et al.
(2007a). a: Snapshots of
typical states of the sys-
tem after a long transient
time and for different val-
ues of the mobility (or dif-
fusion constant) M . b:
The probability Pext that
only one species has pre-
vailed after a fixed waiting
time t = L × L (where
L is the linear extent of
the lattice) for different lat-
tice sizes, L = 20 (green),
L = 30 (red), L = 40 (pur-
ple), L = 100 (blue) and
L = 200 (black). Reprinted
by permission from Macmil-
lan Publishers Ltd: Nature
(London) 448, 1046 (2007).

determines whether species can coexist on the lattice or not, as dis-
cussed below.

We performed extensive computer simulations of the stochastic
system (see Methods) and typical snapshots of the steady states are
reported in Fig. 2. When the mobility of the individuals is low, we
find that all species coexist and self-arrange by forming patterns of
moving spirals. With increasing mobilityM, these structures grow in
size, and disappear for large enoughM. In the absence of spirals, the
system adopts a uniform state where only one species is present, while
the others have died out. Which species remains is subject to a ran-
dom process, all species having equal chances to survive in our
model.

We obtain concise predictions on the stability of three-species
coexistence by adapting the concept of extensivity from statistical
physics (see Supplementary Notes). We consider the typical waiting
time T until extinction occurs, and its dependence on the system size
N. If T(N) / N, the stability of coexistence is marginal12. Conversely,
longer (shorter) waiting times scaling with higher (lower) powers of
N indicate stable (unstable) coexistence. These three scenarios can be
distinguished by computing the probability Pext that two species have
gone extinct after a waiting time t / N. In Fig. 2, we report the
dependence of Pext on the mobility M. For illustration, we have
considered equal reaction rates for selection and reproduction,
and, without loss of generality, set the time-unit by fixing s5
m5 1.With increasing system sizeN, a sharpened transition emerges
at a critical value Mc5 (4.56 0.5)3 1024 for the fraction of the
entire lattice area explored by an individual in one time-unit.
BelowMc, the extinction probability Pext tends to zero as the system
size increases, and coexistence is stable (implying super-persistent

a Selection (rate σ)

Selection (rate σ)

Reproduction (rate µ)

A B

C

b Reproduction (rate µ)

Exchange (rate ε)

Figure 1 | The rules of the stochastic model. Individuals of three competing
species A (red), B (blue), and C (yellow) occupy the sites of a lattice. a, They
interact with their nearest neighbours through selection or reproduction,
both of which reactions occur as Poisson processes at rates s and m,
respectively. Selection reflects cyclic dominance: A can kill B, yielding an
empty site (black). In the same way, B invades C, and C in turn outcompetes
A. Reproduction of individuals is only allowed on empty neighbouring sites,
to mimic a finite carrying capacity of the system. We also endow individuals
with mobility: at exchange rate e, they are able to swap position with a
neighbouring individual or hop onto an empty neighbouring site (exchange).
b, An example of the three processes, taking place on a 33 3 square lattice.
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Figure 2 | The critical mobility Mc. Mobility below the value Mc induces
biodiversity; while it is lost above that threshold. a, We show snapshots
obtained from lattice simulations of typical states of the system after long
temporal development (that is, at time t / N) and for different values ofM
(each colour represents one of the three species and black dots indicate
empty spots). With increasing M (from left to right), the spiral structures
grow, and outgrow the system size at the critical mobility Mc. Then
coexistence of all three species is lost and uniform populations remain

(right). b, Quantitatively, we have considered the extinction probability Pext
that, starting with randomly distributed individuals on a square lattice, the
system has reached an absorbing state after a waiting time t5N. We
compute Pext as a function of the mobility M (and s5 m5 1), and show
results for different system sizes: N5 203 20 (green), N5 303 30 (red),
N5 403 40 (purple),N5 1003 100 (blue), andN5 2003 200 (black). As
the system size increases, the transition from stable coexistence (Pext5 0) to
extinction (Pext5 1) sharpens at a critical mobilityMc5 (4.56 0.5)3 1024.
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computation time of the simulations become extremely large. This severely limits the
range of system sizes that can be feasibly analysed (Reichenbach et al., 2007a; He et al.,
2010) and as a result the determination of critical parameters such as Mc is impeded.
In the model by Reichenbach et al. (2007a), the population size (i.e. the overall num-
ber of individuals) and the spatial size (i.e. number of lattice sites) are approximately
identical since every lattice site is either accommodated by one individual or by none.
The relaxation of this restriction allows to enlarge the population size without altering
the spatial size. This is a promising approach to mitigate the increase of the computa-
tion time of the simulations when studying the dependence of τex on large population
sizes. It thus almost suggests itself to relax this restriction to overcome the limitation
when determining critical parameters.
Apart from overcoming limitations, relaxing the restriction of one individual at maxi-
mum per lattice site also appears to be biologically the more general framework. The
approximate identity between spatial size and population size also implies that the
scale at which migration takes place and the scale at which interaction takes place are
the same as both take place between adjacent lattice sites. Corl et al. (2010) studied
isolated populations of lizards in which different mating strategies dominate each other
cyclically (Sinervo and Lively, 1996). While their study focused on the prevalence of
the three species in different populations, it is illustrative for the more general set-
ting where the competition between individuals takes place on a local scale (inside the
population) while the populations are globally separated.
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2.2. A Lattice-based Population Model

In the next section of this dissertation, I therefore introduce a spatial and stochastic
model for cyclic competition among species that allows to tune the number of individu-
als that can be accommodated on a single lattice site by introducing a variable per site
carrying capacity. In this model, individuals migrate between adjacent sites but inter-
act only on a local scale with individuals at the same lattice site. This allows to study
the dependence of the typical time of coexistence separately on the (spatial) system
size and on the population size. In Sec. 2.3, I show that this extended model provides a
feasible way to sharply discriminate the spiralling regime and the non-spiralling regime
by considering the dependence of the typical time of extinction on the carrying capacity
and thus on the population size.
In Sec. 2.5, I adapt this model to competition among four species to study under which
conditions cyclic competition among three species arises by natural selection. It turns
out that the mobility of individuals is not only pivotal to the stability but also to the
emergence of cyclic competition.

2.2 A Lattice-based Population Model

Figure 2.2: RPS dominance scheme

The extended model that is introduced in this
section has in principle no restriction on the
number of individuals that can be accommo-
dated by a single lattice site. Most of the
results obtained from this lattice-based pop-
ulation model (abbreviated as LBPM in the
following) are published in Lamouroux et al.
(2012). In this model, three species S0, S1,
and S2 compete cyclically, meaning that S0

has a competitive advantage over S1, S1 has
a competitive advantage over S2 and S2 has
in turn a competitive advantage over S0 (see
Fig. 2.2). The strength of competition σ is
equally large for all relations. σ is the rate
with which an individual dies when encoun-
tering a member of the corresponding superior species. This gives the three reactions
of competition

Si
σ?i−→ ∅ σ?i = σsi+2 (2.10)

where si denotes the absolute number of individuals of species Si in a population. As
throughout this chapter, indices have to be taken modulo three. Competition thus only
reduces the number of individuals. Reproduction, on the other side, serves to increase
the number on individuals and occurs equally likely for all three species with rate µ?:

Si
µ?−→ 2Si µ? = µ

(
1− s

C

)
(2.11)

11
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s denotes the overall number of individuals in a population, i.e. s =
∑

i si. C is the
carrying capacity that serves to vary the overall population size independently from
the spatial size. It constitutes an upper limit to reproduction and thus denotes the
maximal number of individuals that can coexist in a population. If s = C the rate of
reproduction becomes zero. If s = 0 the reproduction rate becomes maximal. Since
fluctuations allow the local population to exceed C, the reproduction rate must be
defined for s > C in which case it is set to µ? = 0.
The populations are arranged on the sites of a square lattice of size N = L × L with
continuous boundary conditions. The reactions Eq. (2.10) and Eq. (2.11) only take
place inside the individual populations and do not affect the neighbouring sites. The
only spatial process is migration (see Fig. 2.3). With a rate ε any individual moves to
one of the four neighbouring sites. It is important to note that the movement of an
individual to an adjacent site does not require empty space on the target site. More
than that, ε is neither dependent on the density at the starting site nor at the target
site (this property will be important in Sec. 2.2.1).
The temporal evolution of the system is accomplished by successive updates of the
entire lattice. Prior to each update step σ?i (x, y) and µ?(x, y) are calculated, where
(x, y) denote the integer coordinates on the lattice. Consecutively, all individuals in all
populations simultaneously either reproduce, die or migrate to one of the neighbouring
sites with the respective probabilities

pµ,i(x, y) =
µ?(x, y)

ε+ µ?(x, y) + σ?i (x, y)
(2.12a)

pσ,i(x, y) =
σ?i (x, y)

ε+ µ?(x, y) + σ?i (x, y)
(2.12b)

pε =
ε

ε+ µ?(x, y) + σ?i (x, y)
. (2.12c)

Since exactly one reaction occurs per individual and per update and since the number
of reactions per unit time is roughly proportional to κ = ε + σ + µ, κ updates define
one unit of time. One update thus corresponds to δt = 1

ε+σ+µ
.

A measure for the mobility of the individuals that is independent from the lattice
spacing L−1 is the mobility (Reichenbach et al., 2007a) or diffusion constant (Gardiner,
2009) M := ε

2N
. The linear extent of the lattice is then defined to be unity.

2.2.1 Deterministic Dynamics

To learn more about the dynamics of the LBPM, it is instructive to derive the determin-
istic reaction diffusion equation that would govern the temporal evolution if stochastic
fluctuations due to the discrete nature of the population number were neglected. In
what follows, the reaction equation for an isolated population is derived and it is argued
that the reaction diffusion equation of the spatially extended system follows by adding
a Laplacian. To derive the deterministic reaction equation, the transition probabilities
per unit time t±m for all reaction channels, labeled by m ∈ M, need to be known (see
box Interlude II: Stochastic description of birth-death processes on page 8).
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2.2. A Lattice-based Population Model

Figure 2.3: Schematic de-
piction of the LBPM: Re-
production and competition
take place on the individual
lattice sites with the rate
µ and σ, respectively. Mi-
gration constitutes the only
spatial process and allows
individuals to move to ad-
jacent sites with rate ε.
The square lattice has N =
L × L sites and continuous
boundary conditions.

The form Eq. (2.6) of the ME is thus derived from the general form Eq. (2.4) to obtain
the set {t±m}.
First note that for large system sizes or large mobilities, σ and µ are much smaller
than the migration rate ε and thus the time that corresponds to one update becomes
approximately δt ≈ ε−1 and the reaction probabilities then become pµ,i = µ?δt and
pσ,i = σ?i δt. During the time interval δt each individual of species i can cause a change
in the population of +1, −1 or 0 with the respective probability pµ = µ?δt, pσ,i = σ?i δt,
and 1− pµ − pσ,i. In general, the population of each species i can therefore change by
any value ∆si ∈ {−si, si} during δt. The probability p(si + ∆si, t + δt| si, t) that the
population si changes by a value ∆si different from ±1 and 0 is, however, at least ∝ δt2.
Since the limit δt→ 0 is eventually performed (which corresponds to the limit L→∞,
since δt ≈ ε−1 = (2ML2)−1 for fixed mobility M), the jump probability becomes

p(si + ∆si, t+ δt | si, t) =si (1− pµ − pσ,i)si−1 (δ−1,∆sipσ,i + δ1,∆sipµ)

+ δ0,∆si (1− pµ − pσ,i)si (2.13)

where δk,` denotes the Kronecker-Delta. The changes of si of the different species are
statistically independent and thus the probability that the state s changes by ∆s is:

p(s + ∆s, t+ δt | s, t) =
2∏
i=0

p(si + ∆si, t+ δt | si, t) (2.14)

=
2∑
i=0

si(δ−ei,∆spσ,i + δei,∆spµ)
2∏

k=0

(1− pµ − pσ,k)sk

(1− pµ − pσ,i)
(2.15)

In the last step, terms at least ∝ δt2 have been disregarded. ei denotes the standard
basis vector. Since pµ

δt
= µ?,

pσ,i
δt

= σ?i and limδt→0(1 − pµ − pσ,i) = 1, the scaled limit

13
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of the jump probability is:

lim
δt→0

1

δt
p(s + ∆s, t+ δt | s, t) =

2∑
i=0

si(δ−ei,∆sσ
?
i + δei,∆sµ

?) (2.16)

With the scaled limit of the jump probability the ME Eq. (2.4) can be recast in the
form Eq. (2.6)

∂tP (s, t) =
2∑
i=0

{
t−i (s + ei)P (s + ei, t)− t+i (s)P (s, t)

+ t+i (s− ei)P (s− ei, t)− t−i (s)P (s, t)
}

(2.17)

with t−i (s) = si σ
?
i (s) and t+i (s) = si µ

?(s). P (s, t) is the probability that the popu-
lations of an isolated lattice site are of size s0, s1 and s2, respectively, at time t. It
seems tempting to consider the scaled population numbers z := s

C
and to perform

a system size expansion in C to obtain the corresponding FPE. However, this re-
quires the transition probabilities t±i to be proportional to C (Gardiner, 2009). While
t+i (z) = ziCµ (1− z0 − z1 − z2) indeed fulfils this requirement, t−i (z) = zizi+2C

2σ is
quadratic in C. Hence, there is no FPE that corresponds asymptotically to Eq. (2.17)
for the individual lattice sites.
However, this only means that there is no appropriate limit in which the relative fluctu-
ations vanish. This is because the number of competitive reactions grow quadratically
with C. It is, nonetheless, possible to use Eq. (2.17) to calculate the temporal evolution
of the mean 〈s〉 around which fluctuations occur:

∂t〈sj〉 = ∂t
∑
x∈N3

+

xjP (x, t) (2.18)

=
∑
x∈N3

+

3∑
i=0

xj
[
t+i (x− ei)P (x− ei)− t+i (x)P (x) (2.19)

+ t−i (x + ei)P (x + ei)− t−i (x)P (x)
]

=
∑
x∈N3

+

xj
[
t+j (x− ej)P (x− ej)− t+j (x)P (x) (2.20)

+ t−j (x + ej)P (x + ej)− t−j (x)P (x)
]

=
∑
x∈N3

+

[
(xj − 1)t−j (x)P (x)− xjt−j (x)P (x) (2.21)

+(xj + 1)t+j (x)P (x)− xjt+j (x)P (x)
]

(2.22)

∂t〈sj〉 = 〈t+j (x)〉 − 〈t−j (x)〉 (2.23)
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2.2. A Lattice-based Population Model

In the second step we have used that for i 6= j the consecutive summands in the
summation over xi on the right hand side cancel out and thus only the i = j terms
survive. Neglecting correlations, i.e., 〈sisi+2〉 = 〈si〉〈si+2〉, the deterministic temporal
evolution of the mean 〈s〉 is governed by

∂t〈sj〉 =µ〈si〉
(

1− 〈s〉
C

)
− σ〈si〉〈si+2〉 . (2.24)

The reaction rate equation Eq. (2.24) is valid only for the temporal evolution of an
isolated population – just like Eq. (2.17), which was the starting point of the derivation.
The dynamical system described by Eq. (2.24) has four fixed points apart from the
trivial solution 〈s〉 = 0. Three fixed points describe the monocultural states where two
species are extinct and one species prevails. The fourth reactive fixed point describes
coexistence of all three species, i.e., 〈si〉 6= 0 ∀ i. The four fixed points are

sm =

C0
0

 ,

0
C
0

 ,

0
0
C

 and sr =
µC

3µ+ σC

1
1
1

 (2.25)

To determine the stability of the fixed points, Eq. (2.24) is linearised around the
respective fixed point. Representative for the three monocultural fixed points, the

Figure 2.4: Phase Space of the non-spatial
dynamics: Trajectories spiral outwards from
the reactive fixed point and oscillate with ever
growing period from one edge to the other.

stability for the fixed point given by (C, 0, 0)T

is determined by:

∂ts̃ ' A s̃ with (2.26)

A(sm) =

−µ −µ −µ− σC
0 −σC 0
0 0 0

 (2.27)

for the translated variable s̃ := s− sm/r. The
stability of the fixed point is determined by
the eigenvalues of A (see box Interlude I:
Deterministic linear stability). For the
monocultural fixed points, the eigenvalues are
{−µ,−σC, 0}. Since the largest eigenvalue is
zero, the linear stability analysis does not al-
low for a proper characterisation of the fixed
point. However, the monocultural state can
easily be seen to be unstable because an in-
finitesimal small fraction of si+2 introduced
to the monocultural state si = C will grow
at the cost of the population si. However, in
a finite stochastic system, the monocultural

fixed point is an absorbing point that cannot be left without interaction from outside.
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The linearisation around the reactive fixed point is described by the matrix

A(sr) = − µ

3µ+ σC

 µ µ µ+ σC
µ+ σC µ µ

µ µ+ σC µ

 (2.28)

The eigenvalues of this matrix reveal that the dynamics around the reactive fixed point
has one stable and two unstable directions (i denotes the imaginary unit):

η0 = −µ (2.29a)

η1/2 =
1

2

µσC

3µ+ σC

(
1± i

√
3
)

(2.29b)

The reactive fixed point is thus also unstable. This results is a special case of the models
by May and Leonard (1975), who studied the nonspatial version of cyclic competition
in great detail. They showed that the solutions of Eq. (2.24) perform oscillations with
ever growing period. Starting from any point in the phase space, the trajectories spi-
ral away from the reactive fixed point, quickly approach the boundaries of the phase
space (being defined by si = 0 for at least one species) and converge to one of the
absorbing monocultural fixed points sm. However, they never reach these edges, but
start to approach the edge of the superior counter-part s = Cei+2 (see Fig. 2.4). These
transitions from one species dominating the system to another species dominating the
system take ever longer the older the system.
An important property of the LBPM is that individuals diffuse without hindrance over
the lattice as it is not required that there is empty space on the site to which the
individual migrates. Lugo and McKane (2008) have shown that in models where this
requirement is made the diffusion of the individuals is not described by a simple dif-
fusion description. Instead, a cross-diffusion term arises that accounts for the density
dependent motion of individuals. In the present model however, migration of individ-
uals can simply be accounted for by a diffusion description. The reaction diffusion
equation for the space dependent state 〈s(x, y)〉 is thus (omitting the brackets 〈.〉 for
readability)

∂tsi(x, y) = M∇2si(x, y) + µsi(x, y)

(
1− s(x, y)

C

)
− σsi(x, y)si+2(x, y) (2.30)

where ∇ acts on the spatial dimension (x, y) and s(x, y) again denotes the local overall
population.

2.2.2 Pattern Formation in 2-dimensional Systems

In the spatially extended system of cyclically competing species, the dynamics at every
point in the plane is governed by Eq. (2.24). Hence, the spatially homogenous state
s(x, y) = sr is a solution of Eq. (2.30). As this solution is unstable at every point,
infinitesimal fluctuations will determine towards which absorbing state sm the local
states evolve. Since mobility acts as to locally stir the populations, this evolution is
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2.2. A Lattice-based Population Model

not expected to lead to a completely uncorrelated distribution of the three populations.
The question at stake is thus what kind of pattern emerges from cyclic competition
among species in a spatially extended environment.
In general, the instability of spatially homogenous but unstable states can be classified
into three categories with two subcategories each (the description presented here follows
Cross and Greenside (2009)). This classification bases on the linear response of the
homogenous and unstable state to perturbations. A general perturbation, defined as
p(x, y) := s(x, y) − sr, can be seen as a superposition of Fourier modes. The linear
response of the system to

p(x) = p0eσqteiqx , (2.31)

hence, classifies the response to a general perturbation. Here, x denotes the position
in the plane, q is the wave vector of the perturbation and σq determines the temporal
evolution of the perturbation and is in general a complex number and depends on q.
For a spatially homogenous solution to be unstable, the real part of σq, denoted by
Re(σq), has to be positive so that the perturbation grows. The classification scheme
uses the qualitative dependence of Re(σq) on |q|. The instability of the homogenous
state is called a Type-I instability if the maximal growth rate occurs for some |q| 6= 0
and if the range for which the homogenous state is unstable against perturbations
(Re(σq) > 0) does not extend to |q| = 0. If the maximal growth rate occurs for some
|q| 6= 0 but the growth rate Re(σq) is always zero for |q| = 0, the instability is called a
Type-II instability. When the maximal growth rate is in contrast maximal at |q| = 0,
the instability is called Type-III instability (see Cross and Greenside, 2009, for more
details and examples). This classification can be further refined by the imaginary part
of σq, denoted by Im(σq). If the imaginary part is zero, the emerging pattern will
be stationary and thus a ‘s’ is added to the classification. If, on the other hand, the
imaginary part is unequal zero, the emerging pattern will oscillate and thus a ‘o’ is
added to the classification.
In the present case, the linearised equations for p(x) of Eq. (2.30) are

∂tp(x) = M∇2p(x) +A(sr)p(x) (2.32)

with A as defined in Eq. (2.28). The ansatz of the Fourier mode then transforms this
equation into

σqp0 =
(
−M |q|211 +A(sr)

)
p0 (2.33)

where 11 denotes the identity matrix. This equation shows that σq is the eigenvalue
of the matrix −M |q|211 + A(sr) and the homogenous state is unstable if at least one
the eigenvalues is larger than zero. Fortunately, the eigenvalues can be easily obtained
because the eigenvalues of A(sr) are already known:

σq,0 = −M |q|2 − µ (2.34a)

σq,1/2 = −M |q|2 +
1

2

µσC

3µ+ σC

(
1± i

√
3
)

(2.34b)
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As expected from the analysis of the nonspatial system, the homogenous state has
one stable direction, corresponding to the eigenvalue σq,0, and is unstable in the two
remaining directions. As µ, σ, C, and M are strictly positive parameters, Re(σq,1)
and Re(σq,1) are both maximal at |q| = 0 and thus the spatially homogenous state
constitutes a Type-III instability. Since Im(σq,1/2) 6= 0 the instability is of Type-III-o.
Eqs. (2.34) yield furthermore two interesting observations: First, the maximum of the
growth rate Re(σq) is always positive irrespective of the set of parameters (µ, σ,M,C).
Hence, there is no critical parameter set at which the system exhibits a transition
from a stable homogeneous state to a pattern forming state. The system is always
in a pattern forming state. Second, Eqs. (2.34) show that the wave vectors of the
perturbations against which the homogeneous state is unstable lies in the interval

|q| ∈

[
0,

√
1

2M

µσC

3µ+ σC

]
. (2.35)

The wavelength of a perturbation with wave vector |q| is defined by λ := 2π
|q| . The

minimal wavelength of a potential pattern can thus be determined from the interval of
wave vectors and yields

λmin = 2π

√
6µ+ 2σC

µσC

√
M . (2.36)

Implicit in the derivation of these results is the assumption of an infinitely large sys-
tem or periodic boundary conditions of a system whose extend is large compared to
the typical length scale of the expected patterns. In the LBPM, the linear extent of
the system is normalised to unity and periodic boundary conditions are imposed. The

0 0.70710678118655

−1

0

1
µσC

3µ+σC

Re(σq)

|q|max
|q|

0

Figure 2.5: Growth rate Re(σq) of a pertur-
bation with wave vector |q| for the spatially
extended system of three cyclically competing
species.

results thus only remain valid as long as λ < 1.
In particular, the finding that patterns will
emerge irrespective of the mobility and the
remaining parameters is only true for compa-
rably small patterns.
Until here, the analysis was restricted to a lin-
ear approximation and the requirement that
the growth rate Re(σq) is larger than zero.
However, this requirement alone implies that
perturbations grow indefinitely. If patterns
are supposed to be stable, nonlinearities must
act as to saturate this growth and stabilise
the process of pattern formation. In more de-
tail, the amplitude of the perturbation was
denoted by z := p0eσqt (see Eq. (2.31)), which is the solution to the linear approxi-
mation ∂tz = σqz. If higher order terms are included, the temporal evolution of the
amplitude of patterns arising from a Type-III-o instability is described by the complex
Ginzburg-Landau equation. To further analyse the patterns that the LBPM is ex-
pected to exhibit, it is thus necessary to approximate the full spatial model Eq. (2.30)
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by the complex Ginzburg-Landau equation. Reichenbach et al. (2007a) performed this
approximation for their model (see Fig. 2.1) with a unit carrying capacity. In the next
section, their approximation is applied to the LBPM.

2.2.3 The Spiraling State and the Complex Ginzburg-Landau
Equation

The spatially homogenous, time independent solution of the spatially extended system
Eq. (2.30) that is studied in the last section corresponds to the reactive fixed point of the
non-spatial system Eq. (2.25), s(x, y) = sr. Just like in the non-spatial case, however,
this configuration is not stable against perturbations. The Type-III-o instability leads
to pattern forming fronts, where the three species spatially segregate to form entangled
spiral arms that rotate around a common vertex. Reichenbach et al. (2007a, 2008) could
show that Eq. (2.30) can be transformed into a Complex Ginzburg-Landau Equation
(abbreviated by CGLE in the following). The CGLE describes the temporal evolution
of the amplitude of patterns arising from a Type-III-o instability and describes a range
of phenomena, including the formation of traveling spiral waves (van Saarloos, 2003;
Cross and Greenside, 2009).
The starting point of the transformation of Eq. (2.30) into the CGLE (as detailed in
Reichenbach et al., 2008) is the observation that the non-spatial dynamics foremostly
evolves on a two-dimensional sub-manifold in phase space (see Fig. 2.4). In the vicinity
of the fixed point Eq. (2.25) this manifold is perpendicular to the eigenvector vη0 of
the negative eigenvalue:

vη0 =
1√
3

1
1
1

 (2.37)

Here, the derivation by Reichenbach et al. (2008), which consists of two crucial steps, is
only sketched to focus on the subsequent derivation of the prediction of the wavelength
of the travelling spiral waves:
First, the variables s are linearly transformed to a new set of variable y(`), such that in
the new frame vη0 corresponds to the z-direction and the fixed point sfix becomes the

new origin. In order to describe the dynamics in the two-dimensional manifold, y
(`)
2 is

approximatively expressed in terms of the remaining two variables, y
(`)
0 and y

(`)
1 . This

results in a two-dimensional non-linear system.
Second, the new variables y

(`)
0 and y

(`)
1 are non-linearly transformed to obtain the

normal form of the two-dimensional system. Ignoring nonlinearities that arise from
the application of the non-linear transformation to the diffusion term in Eq. (2.30)
allows to keep the diffusion term also for the nonlinearly transformed variables. By
interpreting the two variables as the real and imaginary part of one complex variable
z, its temporal evolution is described by the CGLE (see Reichenbach et al., 2008):

∂tz =M∇2z + (α1 − iβ) z − α2 (1− iα3) |z|2z (2.38)

19



Chapter 2. The Rock-Paper-Scissors Game

Figure 2.6: Upper part:
Snapshots from the spi-
ralling state for different
mobilities M = 2.5 · 10−6,
10−5, 5 · 10−5 and 2.5 · 10−4

(from left to right). Red,
green and blue values of the
colour code in the upper
part correspond to the re-
spective fraction of species
at the lattice sites. Lower
part shows the population
fraction z =

∑
i si/C from

z = 0 (black) to z = C
(white). Lower part: De-
pendence of λ on M mea-
sured from simulations ( ×
) and analytical predictions
according to Reichenbach
et al. (2008) (−−) and ac-
cording to Eq. (2.48) (−−)
together with the predic-
tion for the minimal possi-
ble wavelength Eq. (2.36)
(−−). Parameters are L =
1000, C = 100, µ = σ = 1.
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Since the LBPM is described by a reaction diffusion equation Eq. (2.30) that slightly
differs from the one scrutinised by Reichenbach et al. (2007a, 2008) due to the intro-
duction of the carrying capacity C, the parameters α1, α2, α3, and β yield

α1 =
1

2

µσC

3µ+ σC
α2 =

σ(3µ+ σC)(48µ+ 11σC)

56µ(3µ+ 2σC)
C

α3 =

√
3(18µ+ 5σC)

48µ+ 11σC
β =

√
3

2

µσC

3µ+ σC

(2.39)

To obtain the properties of the rotating spiral waves, the velocity of the wave fronts has
to be determined first (van Saarloos, 2003). To this end, the linearised version of the
CGLE has to considered, which means that the cubic term in Eq. (2.38) is neglected.
Considering the spatio-temporal Fourier transformation

F [z](k,Ω) =

∫
R

dt

∫
R2

dr z(r, t) e−ikr−iΩt (2.40)

yields the dispersion relation between the spatial and the temporal frequency of solu-
tions of Eq. (2.38). In accordance with Reichenbach et al. (2008) this relation is:
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Figure 2.7: Snapshots
from the LBPM from the
spiraling state for different
capacities C = 3, C = 10,
C = 28 and C = 57 (from
left to right). Upper row:
Colours as before. Grey
shades as before, overpop-
ulated sites (z > C) are
indicated as red. Lower
row: Dependence of λ on
C measured from simula-
tions ( × ) and analytical
prediction according to Re-
ichenbach et al. (2008) (−−)
and according to Eq. (2.48)
(−−) together with the pre-
diction for the minimal pos-
sible wavelength Eq. (2.36)
(−−). Parameters are L =
1000, M = 5 · 10−5, µ = 1,
and σ = 1.

Ω = β + i(α1 −M |k|2) (2.41)

Note that |.| denotes the absolute value of the vector and is not to be confused with
the absolute value of a complex number, since |k| can, in general, have a real and an
imaginary part. Consistently, Ω = −iσq,1(|k|) (as is seen by inserting the definition
of α1 and β), confirming that the CGLE exhibits the same linear response to Fourier
modes as the original system Eq. (2.30).
Following van Saarloos (2003), the front velocity v? can be found to obey

v? =
dΩ

dk

∣∣∣
|k?|

(2.42)

with a yet to find wavevector k?. From the requirement that the fronts neither grow
nor decay in a co-moving frame, the condition

v? =
Im(Ω)

Im(|k?|)
(2.43)

can be derived, which implies that v? is real. Using the the first relation, Eq. (2.41)
returns v? = −i 2M |k?|, implying that |k?| is purely imaginary to ensure that v? is
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real. The second relation then yields:

2M Im(|k?|) =
α1 −M Im(|k?|)2

Im(|k?|)
⇔ Im(|k?|) =

√
α1

3M
(2.44)

In contrast to Reichenbach et al. (2008), here, this calculation returns

v? =

√
4

3
αM . (2.45)

Equipped with the velocity of the wave fronts, it is now possible to determine the
wavelength of the traveling spiral waves from the full nonlinear CGLE Eq. (2.38). Far
from their vertices, spiral solutions are similar to traveling planar waves. Following
Reichenbach et al. (2008), it is thus appropriate to choose the corresponding ansatz
z(r, t) = z0e−iΩt−iqr. This leads to the full dispersion relation

Ω = β + i(α1 −M |q|2)− α2(i+ α3)z2
0 . (2.46)

Since Ω is defined to be real, the imaginary part on the right hand side must yield zero,
α1 −M |q|2 = z2

0α2. With this, Eq. (2.46) becomes

Ω = β + α3(M |q|2 − α1) . (2.47)

The eigenvalues of the non-spatial system Eq. (2.29) show that β is the temporal
frequency of the oscillation that stems from the intrinsic dynamics. Ω is thus a super-
position of the non-spatial frequency and the frequency that originates from the wave
fronts, traveling with the velocity v?. Since oscillations that emerge from traveling
waves have a frequency of v?|q|, the superposition equals Ω = β − v?|q| (see van Saar-
loos, 2003). Together with the front velocity Eq. (2.45), this determines the absolute
value of the wave vector |q|. The wavelength of the spirals is then given by λ := 2π

|q|
and thus is:

λ =
2
√

3πα3

√
α1

(√
3α2

3 + 1− 1
)√M (2.48)

Apart from the modified parameters Eqs. (2.39), this result deviates from the result
by Reichenbach et al. (2007a, 2008) due to the different front velocity Eq. (2.45). The
crucial prediction, however, which is shared by both results, is that the wavelength of
the spirals grows with the mobility as

√
M .

Fig. 2.6 shows snapshots from the LBPM after sufficiently long transient times, for
different values of the mobility M . The measured wavelength λ(M) is also shown
together with the predicted wavelength according to Reichenbach et al. (2007a, 2008),
according to the prediction presented here, Eq. (2.48), and the prediction of the minimal
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possible wavelength, Eq. (2.36), derived in Sec. 2.2.2. The prediction by Reichenbach
is computed by employing the parameters Eqs. (2.39) to account for the carrying
capacity C. The wavelength was determined directly by measuring the thickness of
the spiral arms and finding the mode of the resulting statistical distribution. The
qualitative dependence on M is very well captured by the prediction of a square root
dependence. The quantitative prediction, however, seems to systematically deviate by a
constant factor. This deviation was already observed by Reichenbach et al. (2007a) and
was attributed to the imperfect mapping from the full three-dimensional system Eq.
(2.30) to the CGLE Eq. (2.38). The prediction that was derived in this section seems
to capture the quantitative observation better than the original analytical prediction
derived in Reichenbach et al. (2008), though. Together with the prediction for the
minimal wavelength Eq. (2.36), the analytical prediction of this section present an
upper and lower bound for the measured wavelength shown in Fig. 2.6.
Fig. 2.7 shows snapshots of the LBPM for different values of the carrying capacity C
together with the measured wavelength and the analytical predictions. For small C
it is common that the sites become overpopulated, i.e. that more than C individuals
are accommodated by one lattice site. This can occur since the carrying capacity C is
an upper limit to reproduction but does not restrict mobility. Again, the qualitative
dependence of λ(C) is well captured by both, the analytical prediction Eq. (2.48)
and the one by Reichenbach et al. (2007a) while the prediction derived in this section
appears to quantitatively agree better. As before, the prediction by Reichenbach is
adapted to account for the carrying capacity C by using the parameters Eqs. (2.39).
As for the dependence of the wavelength λ on the mobility M , the prediction of the
minimal wavelength in dependence on C constitutes a lower bound to the measured
wavelength.

2.2.4 The Well Stirred State and its Stochastic Mean Field
Dynamics

For very large mobilities M , migration becomes so frequent that every individual moves
a large distance in between any two competition or reproduction events. Any individual
thus interacts equally likely with any other individual on the lattice as correlations
decay faster than they emerge due to the fast diffusion. This limit is referred to as the
well stirred state.
In Sec. 2.2.1, it was argued that the ME that describes the stochastic dynamics of
a single population on the lattice cannot be expanded in the carrying capacity C to
obtain a FPE because the transition probabilities do not scale linearly with C. In
the well stirred state, however, the overall population behaves like one single large
population in which the transition probabilities scale linearly in N . In this case, the
stochastic dynamics of the overall population w :=

∑
x,y s(x, y) can be described by a

FPE in the large N limit.
The starting point of the derivation is again the calculation of the jump probability for
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the overall population,

p(w + ∆w, t+ ∆t|w, t) =
2∏
i=0

p(wi + ∆wi, t+ ∆t|w, t) , (2.49)

which factorizes since the increments in the different population are stochastically
independent. As in the derivation of Eq. (2.17), any change of the overall population
of the single species wi that is different from ±1 and 0 will at least have a probability
that is ∝ ∆t2. The limit ∆t → 0 corresponds, as before, to the limit N → ∞. By
keeping terms up to linear order in ∆t, the jump probability can be expressed in terms
of the reaction probabilities pµ and pσ,i (see Eq. (2.12)):

p(w + ∆w, t+ ∆t|w, t) =
2∏
i=0

[δ∆wi,0 (1− pµ − pσ,i)wi (2.50)

+ δ∆wi,1 wi pµ (1− pµ − pσ,i)wi−1

+ δ∆wi,−1 wi pσ,i (1− pµ − pσ,i)wi−1]
Here, it is implicitly assumed that s(x, y) = 〈s〉, i.e. that the well stirred state is
spatially homogeneous. Thus, pµ and pσ,i are identical for every individual on the
lattice, whereas originally they depend on the location (x, y).
Recalling that pµ

∆t
= µ?(w

N
),

pσ,i
∆t

= σ?i (
w
N

) and lim∆t→0(1 − pµ − pσ,i) = 1 (note that
w
N
≡ 〈s〉 by definition), the scaled limit of the jump probability W (w + ∆w|w, t) =

lim∆t→0
1

∆t
p(w + ∆w, t+ ∆t|w, t) becomes

W (w + ∆w|w, t) =
2∑
i=0

wi

(
δ∆w,eiµ

?
(w
N

)
+ δ∆w,−eiσ

?
(w
N

))
. (2.51)

Equipped with this equation, the ME of the overall population can be cast into the
form

∂tP (w, t) =
2∑
i=0

[
τ−i (w + ei)P (w + ei, t)− τ+

i (w)P (w, t) (2.52)

+τ+
i (w − ei)P (w − ei, t)− τ−i (w)P (w, t)

]
with τ−i (w) = wi σ

?(w
N

) and τ+
i (w) = wi µ

?(w
N

). These transition probabilities are

proportional to N , since τ−i (w) = σ〈si〉〈si+2〉N and τ+
i (w) = µ〈si〉N

(
1− 〈s〉

C

)
. It is

therefore possible to derive the FPE that is valid the large N limit. According to Eq.
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(2.7), the FPE for the overall population w reads:

∂tP (w, t) =−
2∑
i=0

∂

∂wi

[
τ+
i (w)− τ−i (w)

]
P (w, t) (2.53)

+
1

2

2∑
i=0

∂2

∂w2
i

[
τ+
i (w) + τ−i (w)

]
P (w, t)

=−
2∑
i=0

∂

∂wi
wi

[
µ
(

1− w

NC

)
− σ

N
wi+2

]
P (w, t) (2.54)

+
1

2

2∑
i=0

∂2

∂w2
i

wi

[
µ
(

1− w

NC

)
+
σ

N
wi+2

]
P (w, t)

By defining the quantity u := w
N

, which equals the average occupation number 〈s〉 and
becomes a continuous variable for N →∞, the FPE takes the analogous form

∂tP (u, t) =−
2∑
i=0

∂

∂ui
ui

[
µ
(

1− u

C

)
− σui+2

]
P (u, t) (2.55)

+
1

2N

2∑
i=0

∂2

∂u2
i

ui

[
µ
(

1− u

C

)
+ σui+2

]
P (u, t) .

This FPE describes the diffusion process of the scaled variable u of the overall pop-
ulation in the well stirred state. The temporal evolution of a single realisation of
this diffusion process is governed by the corresponding stochastic differential equation.
According to Eq. (2.8) it takes the form

∂tui =µui

(
1− u

C

)
− σuiui+2 + gi(u) Γi(t) (2.56)

where Γ(t) is three-dimensional Wiener process (see box Interlude II: Stochastic
description of birth-death processes) and the noise amplitude is

gi(u) =
1√
N

√
µui

(
1− u

C

)
+ σuiui+2 . (2.57)

The noise amplitude gives an estimate of the fluctuations around the deterministic
motion of the well stirred state.

2.3 Pathes to Extinction

Any finite population in which individuals die and reproduce randomly to a certain
degree can be described as a stochastic birth-death system. Once this has been real-
ized, the question “Why are there so many species?” translates to “What period of
time can species coexist?”. Coexistence can be lost through different mechanisms: (i)
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Figure 2.8: Pex(t) for dif-
ferent values of the mobility
M (black lines, from bot-
tom to top: M = 7·10−4, 2·
10−3, 2.8·10−3, 4·10−3, 5.2·
10−3, 9 · 10−3, 1.6 · 10−2).
The green and the red line
are the (guessed) limiting
cases for orientation and
correspond to an exponen-
tial and a log-normal cu-
mulative distribution func-
tion, respectively. Parame-
ters are µ = σ = 1, L = 70
and C = 25. 100 102 104 106 108

t

0

0.2

0.4

0.6

0.8

1

P
( 

)t
ex

1-f

M

The coexisting species drive each other towards extinction, (ii) the coexisting species
act as to support coexistence but by chance one of them eventually dies out, or (iii)
the coexisting species interfere only weakly but stochasticity again dictates eventual
extinction.
Reichenbach et al. (2007a) have shown that in a spatially extended system where species
cyclically compete for dominance, the stability of coexistence crucially depends on the
individual’s mobility M . They identified a stable regime for low mobilities and an
unstable regime for high mobilities. These two regimes are found to correspond to the
two states described above: The spiralling state is stable while the well-stirred state is
not. In order to find a critical mobility that separates these two regimes, Reichenbach
et al. (2007a) use the auxiliary quantity Pext(t = N), the probability that only one
species has prevailed after a time t that equals the system size N . With this quantity,
they are able to define a critical mobility Mc that separates the well-stirred and the
spiralling state (see Fig. 2.1).
However, much information is lost when evaluating Pext(t) only at t = N instead of
considering the entire function. Using a slightly different definition, I consider the
probability Pex(t) that at least one of the three species has gone extinct after a time
t. Pex(t) is the cumulative distribution function (c.d.f.) of the stochastic variable τex,
which is the time of the first species going extinct. Pex(t) contains all the information
about the extinction process. It can be obtained by evolving the LBPM until the first
species goes extinct and measuring the age of the system τex at that time. Repeating
this procedure n times (giving τex(j) for j = 1, . . . , n), Pex(t) can be estimated as

Pex(t) =
n∑
j=1

Θ(t− τex(j))

n
(2.58)

with the Heaviside stepfunction Θ(x), which is 1 for x > 0 and 0 for x < 0. Pex(t) is
thus the fraction of realizations that have gone extinct at time t.
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Apparently, this approach has been rarely used due its computationally excessive time
consumption. Exceptions in this field are Rulands et al. (2011) and He et al. (2010,
2011), who studied the probability density function of τex, which is the derivative of
Pex(t), and Schütt and Claussen (2010) who derive approximations for 〈τex〉 for a non-
spatial model. However, any auxiliary quantity like Pex(t = N) (Reichenbach et al.,
2007a) or the mean 〈τex〉 can be directly inferred from Pex(t) – or more precisely from
the set {τex(j)}.
Fig. 2.8 shows Pex(t) for the LBPM for different values of the mobility M . All simu-
lations in this chapter were initialised with random initial conditions, viz. each lattice
site is initially populated by 0 to 5 individuals of each species. Fig. 2.8 captures the
transition from the spiralling state (Sec. 2.2.3) to the well-stirred state (Sec. 2.2.4):
For low mobilities Pex(t) resembles an exponential c.d.f. with extremely long life times
(∼ 3.5 ·106 for M = 7 ·10−4). This is the regime where all realisations exhibit traveling
spiral waves and extinction occurs due to large and rare fluctuations. For high mobil-
ities, the system becomes well-stirred and no realisation exhibits spiral solutions. In
this regime, the extinction times τex(j) are narrowly distributed around a small value
and Pex(t) best resembles a log-normal c.d.f.. In all realisations the first species goes
extinct at approximately the same time as no spirals emerge to maintain coexistence.
In between these two clear regimes, there is an interesting intermediate regime, which
seems to be a combination of the two c.d.f.’s of the extreme cases. Indeed, depending
on the mobility, spirals form in the LBPM with a certain probability f or the system
remains in the well-stirred state with probability 1− f . A fraction 1− f of the reali-
sations thus dies out quite early while the remaining fraction f of realisations survives
until rare fluctuations drive one species to extinction. This explains the “plateau” in
Fig. 2.8 for intermediate values of M . The probability f to form entangled spiral waves
would be an excellent quantity to characterise the transition between the two states.
However, the timescales of the c.d.f.’s describing the two states come very close to each
other in the relevant mobility regime. The quantity f is thus impossible to determine
for the relevant parameter sets. It is necessary to devise a different quantity to char-
acterise the transition between the two regimes. Frey and Reichenbach (2011) have
devised general criteria to classify the coexistence properties of stochastic birth-death
systems (see Sec. 2.1). They characterise the stability by the dependence of τex on the
system size N . Whether this dependence is suitable to discriminate the spiralling and
the non-spiralling regime for the LBPM is studied in this section.
Most of the results presented here have also been published in Lamouroux et al. (2012).

2.3.1 Traveling Planar Waves vs. Traveling Spiral Waves

To gain intuition for the behaviour of 〈τex〉 it is helpful to consider its dependence on
the mobility M . Fig. 2.9 shows 〈τex〉 as a function of M for different system sizes N . For
large mobilities, where the system is in the well-stirred state, the mean extinction time
is largely independent of M at a small value of 〈τex〉. Intuitively, this is clear: When
the system is well-stirred, intensifying the stirring mechanism cannot stir the system
any further. Reducing the mobility M leads to a sharp increase in the mean extinction
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Figure 2.9: Mean extinc-
tion time 〈τex〉 as a func-
tion of M measured from
the LBPM for different sys-
tem sizes L = 25 ( � ), L =
35 ( � ), L = 50 ( O ), and
L = 70 ( ◦ ). Inset shows a
snapshot of a planar travel-
ing wave emerging at mobil-
ities around M = 7.3 ·10−3.
Remaining parameters are
C = 25, µ = 1, and σ = 1.

time, which rises by several orders of magnitude. This increase is as expected due
to the emergence of stabilising spiral waves. As opposed to the large mobility regime,
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Figure 2.10: Comparison between the de-
pendence of 〈τex〉 ( O ) and t? ( ◦ ) on M .
L = 70, C = 25, and µ = σ = 1.

the mean extinction time in the spiralling
state remains dependent on the mobility and
increases with decreasing mobility. This can
be explained by the dependence of the spi-
ral’s wavelength λ on the mobility M , c.f. Eq.
(2.48): With decreasing mobility the extent of
the spirals decreases as well and the number
of spirals that cover the lattice increases. The
fluctuations that are responsible for eventual
extinction must thus become ever larger to de-
stroy all spirals are therefore less frequent.
Right before the onset of the steep rise of 〈τex〉
due to the emergence of spirals, an unexpected
region with increased mean extinction time
arises. Looking at the individual realisations
of the system reveals that this non-monotonic
behaviour occurs because of the emergence of
planar travelling waves (see inset of Fig. 2.9).
For the considered range of parameters, pla-
nar waves occur with a small probability (at
maximum . 2% for L = 70 in the simulations presented in Fig. 2.9), but they can
increase the mean time to extinction by several orders of magnitude.
Their appearance at M ' 7.3 · 10−3 can be understood from the measured dependence
of the spiral’s wavelength λ on the mobility M . Since the planar travelling wave covers
the whole lattice, its wavelength is λpl = 1. Considering the dependence of λ(M) for
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travelling spiral waves in Fig. 2.6, the best algebraic fit to the measured wavelength of
the spirals reveals that the wavelength would reach λ = 1 for Mpl = 7.15 · 10−3. The
emergence of planar travelling waves can thus be understood from the analysis from
Sec. 2.2.3. However, the fact that their appearance coincides with the onset of the
emergence of travelling spiral waves poses a crucial problem:

The average time until extinction occurs 〈τex〉 should not be used to
study the emergence of spiral waves because its dependence on the
mobility M is significantly influenced by the emergence of planar

waves.

The low probability of the emergence of travelling planar waves hints to a solution of
this problem: The 95%-quantile of the c.d.f. Pex is unaffected by the planar travelling
waves since they occur with probability < 5%. Defining t? as the 95%-quantile gives
a robust measure to study the effect of the emergence of travelling spiral waves on
the extinction properties of system. Fig. 2.10 shows a comparison of 〈τex〉 and t? and
confirms this expectation.

The typical time until extinction occurs t? is unaffected by the effect of
planar waves and is thus used to study the effect of the emergence of

spiral waves.

In the remainder of this chapter, t? will therefore be used as a measure for the typical
time until extinction occurs.

2.3.2 Scaling with the System’s Size N

Frey and Reichenbach (2011) have adapted the concept of stability to stochastic systems
(see Sec. 2.1). In their classification the coexistence of species is called stable if the
typical time t? until extinction occurs grows with the system size N = L×L faster than
any power of N . This usually implies that t? grows exponentially with N , i.e. t? ∝ eN .
On the other side, a system is called unstable if it grows slower than any power of N ,
which usually implies that it grows logarithmically with N , i.e. t? ∝ ln(N). If t? grows
with some power of N , t? ∝ Nϑ, the coexistence is called marginally stable.
Measuring t? in dependence on N for the LBPM should therefore reveal whether the
classification of coexistence of spatially and cyclically competing species in the presence
of a non-unit carrying capacity C can serve to discriminate the spiralling and the
well-stirred state. The findings in Reichenbach et al. (2007a) give grounds for the
expectation to find a stable and an unstable regime that corresponds to the spiralling
and the well-stirred state, respectively.
Fig. 2.11 shows t?(N) for various mobilities, ranging from the extreme case of very
high mobilities over intermediate values of the mobility to the extreme case of very
low mobilities. In the well-stirred state, for high mobilities, the expectation that the
system is quickly driven towards extinction is very well confirmed. t?(N) shows nearly
no deviation from the logarithmic dependence for mobilities M ≥ 3.2 · 10−2. This
implies that coexistence is unstable in this mobility regime. In the other extreme, for
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Figure 2.11: Dependence
of the typical time to ex-
tinction t? in dependence on
the mobility M (coloured
solid lines). Left bar in-
dicates the range of mobil-
ity values shown. Upper
right: Mobilities from the
well-stirred state together
with a logarithmic function
for orientation, which im-
plies unstable coexistence.
Middle and lower right:
Mobilities from the spi-
ralling state together with
an algebraic (middle figure)
and an exponential func-
tion (lower figure) for ori-
entation, implying stable
and marginally stable co-
existence, respectively. In-
set show snapshots from
the respective simulations.
Remaining parameters are
C = 25, σ = 1, and µ = 1.

very low mobilities in the spiralling state, the expectation that coexistence is stable is
also very well confirmed. Except for very small system sizes (N . 150), t?(N) can be
described by an exponential function.

The typical time until extinction t? exhibits a logarithmic and
exponential dependence on the system size N for high and low
mobilities, respectively. Coexistence can, thus, be classified as

unstable and stable in the respective mobility regimes.

This seems to confirm the general expectation to find two regimes corresponding to the
spiralling and the well-stirred state. However, for intermediate values of the mobility, t?

can neither be described by a logarithmic dependence nor by an exponential dependence
on the system size N . Although t? does not show a clear algebraic dependence like
t? ∝ Nϑ, the behaviour of the typical time to extinction hints at marginal stability
of coexistence in this regime. Self-evidently, it cannot be precluded that t? exhibits a
logarithmic or exponential dependence on N for even larger system sizes. But these
system sizes are to date computationally inaccessible.
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For intermediate values of the mobility, coexistence can neither be
classified as stable nor as unstable. Although spirals form in this

mobility regime, the dependence of t? on N suggests that coexistence
is only marginally stable.

The range of mobilities for which coexistence cannot uniquely be classified as stable
or unstable is not negligible as it covers approximately a decade of values. Looking at
snapshots from the simulation shows that the aforesaid regime belongs to the spiralling
state. This surprising observation has an important consequence: The spiralling state
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Figure 2.12: Same as Fig. 2.11 for σ = 0.5
( � ), σ = 1.0 ( � ), and σ = 2.5 ( ◦ ) for
representative mobilities from the well-stirred
regime (top row) and the spiralling regime
(middle and lower row).

cannot be equated with stable coexistence.
Instead, the spiralling state is stable only for
very small mobilities and becomes marginally
stable when the individual’s mobility is in-
creased. The well stirred state, in contrast,
is indeed unstable for all considered mobili-
ties.
To check whether the described behaviour is
robust against changes in the parameters, Fig.
2.12 shows t? in dependence on N for var-
ious values of σ. µ is set to 1 to fix the
timescale. The ambiguous behaviour for in-
termediate values of the mobility apparently
persists also for σ 6= 1 just as the logarithmic
and exponential behaviour for large and small
mobilities, respectively.
In order to use the classification of coexistence
to characterise the transition between the spi-
ralling and the well-stirred state, it would be
necessary to determine the mobility where the
logarithmic dependence of t?(N) changes into
the ambiguous dependence for intermediate
mobilities. However, there are two caveats.
First, the ambiguous behaviour is... well...
ambiguous and thus not clearly defined. Sec-
ondly, even if there was a clear algebraic be-
haviour t? ∝ Nϑ where ϑ was a function of
M , it would in general still be a tedious en-
terprise to determine the transition between
a logarithmic behaviour and an algebraic de-
pendence with some exponent ϑ. The classifi-
cation according to the stability of coexistence

can thus only be used to a limited extent to characterise the transition between the
spiralling and the well-stirred state.
At this point it is important to note that increasing the system size N has two distinct
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Chapter 2. The Rock-Paper-Scissors Game

effects: On the one hand, increasing N increases the spatial resolution of the system
L−1. On the other hand, increasing N also increases the overall number of individuals
living on the lattice. The newly introduced carrying capacity C, in contrast, allows to
vary the overall number of individuals without influencing the spatial resolution of the
system.

2.3.3 Scaling with the Carrying Capacity C

The classification of coexistence by Frey and Reichenbach (2011) considers the “system
size”, which was equated with the spatial size N = L×L in the previous sections. With
the introduction of the carrying capacity C the notion system size becomes, however,

100 101 102

C

100

101

102

〈 〉s

Figure 2.13: Average population number
〈s(x, y)〉x,y in dependence on C for µ = 0.1
( ◦ ), µ = 1 ( � ), and µ = 10 ( � ) in the
spiralling regime (M = 5 · 10−5). Remaining
parameters are L = 100 and σ = 1.

ambiguous, since now there is the spatial ex-
tent N as well as the population size, which
can be controlled by varying C.
To check that the carrying capacity C is in-
deed suited to tune the overall number of
individuals without changing the spatial ex-
tent, the dependence of the spatial average
〈s(x, y)〉x,y of the local populations on C must
be measured. Fig. 2.13 shows 〈s(x, y)〉x,y as a
function of C in the spiralling regime. The av-
erage population is a monotonically increasing
function of the carrying capacity that grows
unboundedly for the considered range of pa-
rameters. This means (i) that any value of
〈s(x, y)〉x,y corresponds uniquely to a value of C and (ii) that any large value of
〈s(x, y)〉x,y can be obtained by varying C. This confirms that the overall population
can be regulated by setting C.
To learn about the impact of C on the extinction process, it is instructive to consider
Pex(t) for different values of C. Fig. 2.14 shows Pex(t) from the well-stirred regime
and from the intermediate, ambiguous regime. Recalling that Pex(t) can be roughly
described as a superposition of the c.d.f. of the spiralling state and the c.d.f. of the
well-stirred state with the probability f governing the division between the two, the
effect of C on Pex(t) can be studied separately for these three components. The right
part in Fig. 2.14 shows that the lifetime of the c.d.f. of the spiralling solutions grows
with increasing C. Fig. 2.14 shows furthermore that the probability f of exhibiting
spirals also increases with C. This supports the intuition that a larger population
is more stable because fluctuations that are large enough to make the population go
extinct are less frequent for an increasing population size. The left part of Fig. 2.14,
however, also shows that the c.d.f. of the well-stirred regime is shifted to the left for
larger C. This means that coexistence is lost earlier for larger population sizes. While
this observation might be surprising at first glance, the analysis in Sec. 2.2.4 provides
an explanation: For large mobilities the system can be described as being effectively
one large spatially homogeneous population. In this limit, the temporal evolution of
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Figure 2.14: Pex(t) from
the well-stirred (left) and
the intermediate regime
(right) for various values of
the carrying capacity rang-
ing from C = 2 to C = 800
(left) and C = 1600 (right),
respectively. Darker lines
indicate higher C. Inset
shows Pex(t′) from the
well-stirred regime for the
rescaled time t′ := t

〈τex〉 .

Symbols only visualise the
collapse. Parameters are
L = 50, µ = 1, and σ = 0.4.

the scaled overall population u = 1
N

∑
x,y s(x, y) can be described by the stochastic

differential equation (2.56) with the associated noise amplitude Eq. (2.57). Since no
species ever goes extinct in the noise free, i.e., deterministic version of the non-spatial
Rock-Paper-Scissors game, the noise term in Eq. (2.56) is the only mechanism that
drives the species to extinction. The noise amplitude, however, turns out to be a
monotonically increasing function in C. As described in Sec. 2.2.4 this originates from
the fact that the rate of competitive reactions scales as C2. If C increases, the noise
amplitude Eq. (2.57) thus increases as well, which in turn accelerates the extinction
process in the well-stirred regime.

Enlarging the population by increasing the carrying capacity C
reduces the typical time until extinction occurs and hence shortens the

duration of coexistence in the well-stirred regime.

Apparently, the carrying capacity only affects the mean extinction time 〈τex〉 and not
the shape of the c.d.f. in the well-stirred regime: Rescaling the time axis according to
t′ := t

〈τex〉 makes all curves collapse roughly to an universal function that is independent

of C (see inset in Fig. 2.14).
The comparison of the noise amplitude and the inverse mean time to extinction is
suitable to check the validity of the analytical description of the well-stirred state from
Sec. 2.2.4. This is because the stochastic part in Eq. (2.56) becomes 〈τex〉gi(u)Γi(t

′) by
rescaling time according to t′ = t

〈τex〉 . Since the extinction process in the rescaled time

frame is independent of C (see inset of Fig. 2.14), the stochastic part – the only driving
force towards extinction – must be constant with respect to C, i.e., gi(u) ∝ 〈τex〉−1.
By approximating the noise amplitude gi(u) by the noise amplitude in the vicinity of
the reactive fixed point of the non-spatial dynamics Eq. (2.25) it is possible to compare
gi(C) as a function of C to 〈τex〉−1. Fig. 2.15 shows that the noise amplitude and
the inverse mean time to extinction coincide remarkably well with a proportionality
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Figure 2.16: Dependence
of t? on the C. Left: t?

as a function of M for C =
25 ( ◦ ), C = 50 ( O ),
and C = 200 ( � ). Green

dashed line indicates M̃c =
0.009. Right: t? as a func-
tion of C for different mobil-
ities M ( × ) from the spi-
ralling regime (top), M =
0.0014, 0.0028, 0.004, and
0.0057 (from top to bot-
tom), and from the inter-
mediate and the well-stirred
regime (bottom), M =
0.007, 0.0076, 0.009 ( ◦ ),
0.011, 0.064 (from top to
bottom). Remaining pa-
rameters are L = 35, σ = 1,
and µ = 1.
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factor of ≈ 0.5 for the chosen set of parameters. This confirms that Eq. (2.56) is the
appropriate description of the temporal evolution of u in the well-stirred regime.
The observation that the carrying capacity destabilises coexistence in the well-stirred
regime of the spatial Rock-Paper-Scissors game reveals that the scaling behaviour of
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Figure 2.15: Comparison between the noise
amplitude in the vicinity of the reactive fixed
point (solid line) and the inverse mean time
to extinction (×) (multiplied with a scaling
factor of 0.5) in the well stirred-state. Param-
eters are L = 50, M = 0.1, σ = 0.4, and
µ = 1.

t? cannot fit into the categories of coexistence
classification (Frey and Reichenbach, 2011).
However, the fact that C has a stabilising ef-
fect in the spiralling state suggests that there
must be a mobility where the dependence of
the typical time to extinction on C changes
from negative to positive.
The right part of Fig. 2.16 shows the depen-
dence of t? on C for different values of M
ranging from the spiralling state to the well-
stirred state. For large mobilities, t? strongly
depends on C and raises steeply to saturate
at a finite value. This agrees with the obser-
vation made before that C acts to stabilise
coexistence in the spiralling regime. For low
mobilities, t? decreases with C, as expected.
In between, t? changes from a negative to a positive dependence on C in a remarkable
fashion: t? becomes approximately independent of C. Physically speaking, this means
that the destabilising effect from the well-stirred regime and the stabilising effect from
the spiralling regime just compensate each other on average. This makes it possible
to devise an alternative definition of the critical mobility. The spiralling state and
the well-stirred state of the spatial Rock-Paper-Scissors game with a nonunit carrying
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Figure 2.17: Compari-
son of sequential and paral-
lel update schemes. Left:
Average overall population
per site 〈s〉 in dependence
on the reproduction rate µ
for the sequential update
scheme ( × ) and the par-
allel update scheme ( � )
as described in the main
text. Parameters are L =
100, C = 10, σ = 1, and
M = 5 ·10−5. Right: Same
as Left for the wavelength
of the spirals in dependence
on the carrying capacity C.
Parameters are L = 1000,
µ = 5, σ = 1, and M =
10−5.

capacity can be discriminated by considering their influence on the typical time to
extinction. At the critical mobility M̃c both states influence t? equally strong while
above it the well-stirred state dominates the dependence of t? on C and below it the
spiralling state dominates the dependence of t? on C.

It is possible to discriminate the well-stirred state from the spiralling
state by exploiting the observation that increasing C destabilises

coexistence in the well-stirred state and stabilises coexistence in the
spiralling state. The critical mobility M̃c is thus the mobility at which
the typical time until extinction occurs neither grows nor decreases

with C.

The left part of Fig. 2.16 illustrates the transition between the well-stirred state and
the spiralling state. The critical mobility, separating the two, is found to be M̃c = 0.009
for the chosen set of parameters.
The crucial advantage of this alternative definition of the critical mobility is the prop-
erty that it can be applied to finite systems. The usual scaling analysis requires the
consideration of the asymptotic scaling behaviour of the typical time to extinction
with regard to N . As a consequence, it suffers from a broad ambiguous regime that
stems from the fundamental inaccessibility of infinite system sizes. The new method,
in contrast, is able to sharply determine the critical mobility irrespective of the system
size.

2.4 Sequential and Parallel Update Schemes

A peculiarity of the update scheme described in Sec. 2.2 is that the reactions of all
individuals in each single update step are chosen simultaneously. This so-called par-
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allel update scheme constitutes a significant computational advantage. The model by
Reichenbach et al. (2007a) employs a sequential update scheme where in each update
step one individual is chosen at random to perform one reaction. To equal one par-
allel update step, the sequential scheme thus requires ∝ C × L2 update steps. Since

Figure 2.18: Example of the checkerboard
pattern that appears because of the parallel
update scheme. When individuals can nei-
ther reproduce nor die due to competition, the
checkerboard is the stable pattern of motion.

the sequential update scheme needs approxi-
mately C × L2 times more calls to a random
number generator to choose the individuals
that are updated, the computational advan-
tage of the parallel update scheme becomes
crucial for large systems.
Nonetheless, both update schemes lead to
the same dynamical system Eq. (2.24) be-
cause the relation between microscopic reac-
tion schemes and the corresponding master
equation is not unique. Consider for exam-
ple the average concentration x of particle
type X undergoing the bidirectional reaction
X ↔ 2X. Its temporal evolution is then gov-
erned by ∂tx ∝ x(1−x). The temporal evolu-
tion of the concentration x is, however, the
same for a reaction scheme X + Y → 2X
where Y is a second kind of particle with
x + y = 1. Beyond the temporal evolution
of the average concentrations, parallel and se-
quential update schemes can lead to markedly
different results (Caron-Lormier et al., 2008).
If the results of simulations depend on the
update scheme while the resulting dynamical
systems are identical, the differences must be
considered to be spurious.
An apparently spurious pattern that emerges
when the parallel update scheme is em-
ployed is the so-called checkerboard invariant
(Chopard and Droz, 1998) shown in Fig. 2.18.
When individuals are located on a fully pop-
ulated lattice site and are surrounded only
by individuals of the same species, they are
forced to move by the update scheme. In principle, this should not be expected to
be a problem since individuals of the same kind are indistinguishable. However, the
checkerboard pattern is invariant under application of two update steps - which is not
true if the update steps are performed sequentially. To understand this phenomenon,
imagine a real but infinite checkerboard whose white fields are empty and whose black
fields are occupied by some large number of individuals. The update step then forces
all individuals to move which results in all black fields being empty. Since all white
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fields are now occupied by a fourth of the populations of each of its four neighbouring
black fields, all white fields are now occupied by the same large number of individuals
on average. In the next update step the same procedure is repeated which leads to the
initial configuration where all black sites are occupied and all white sites are empty.
To check whether the checkerboard pattern influences the system, it is imperative to
compare basic quantities obtained from simulations with the parallel update scheme
to those obtained from sequential update schemes. To this end a sequential update
scheme is employed that resembles the one used by Reichenbach et al. (2007a). In the
sequential scheme used here, each update step consists of randomly choosing a lattice
site and a single individual from that lattice site. This individual then undergoes one
of the three reactions, migration, competition, or reproduction according to the proa-
bilities Eq. (2.12). C ·L2 of these update steps correspond to one parallel update step.
Fig. 2.17 shows simulation results from the parallel and the sequential update scheme
for two basic quantities, the average population size per site 〈s〉 and the wavelength of
the spirals λ. The left part of Fig. 2.17 shows that, except for small reproduction rates
µ, the average overall population size 〈s〉 is systematically larger for the sequential
update scheme than for the parallel update scheme. However, this difference can be
considered to be of minor importance since it does not even amount to one individual
on average. More importantly, the right part of Fig. 2.17 shows that there is no sys-
tematic difference between the wavelength of the spirals obtained by using the parallel
update scheme and by using the sequential update scheme.

In conclusion, the parallel update scheme constitutes a significant
computational advantage while central observables of the system

exhibit no relevant difference to a sequential update scheme.

The computational advantage of the parallel update scheme is crucial for the numerical
analysis presented in this work. All results presented in the preceding sections are thus
obtained by employing the parallel update scheme, described at the beginning of this
section.

2.5 More than Three Species

The analysis of the changing stability properties of cyclically competing species con-
tributes to the understanding of a mechanism that preserves biodiversity. However, the
question how non-hierarchical competition is established remains open. Self-evidently,
a necessary ingredient is speciation, the creation of new species from existing ones.
But this raises the question whether a system of three cyclically competing species is
stable against speciation. This suggests to study under which conditions a system of
four species collapses to a non-transitive, i.e., cyclic, three species system.
To approach this question, it is necessary to generalise the Rock-Paper-Scissors game.
In fact, the Rock-Paper-Scissors game is a so-called tournament of three strategies.
Generally speaking, a tournament is a set of n nodes (in this case strategies or species)
whereof each pair of distinct nodes is connected by a directed link pointing from the
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Figure 2.19: All eight
possible tournaments with
three nodes (strategies).
The two grey shaded areas
enclose tournaments with
the same structure, viz.,
the cyclic structure (upper
left) and the hierarchical
structure (bottom and
right).

superior strategy to the inferior one (Harary, 1969). A tournament matrix T (or ad-
jacency matrix) defines a tournament such that if strategy i is beaten by strategy j,
Tij = 1 and zero else (the usual notation defines the tournament matrix as T T , cf.
ibid). For the Rock-Paper-Scissors game this matrix is

T =

0 0 1
1 0 0
0 1 0

 . (2.59)

In this notation, the temporal evolution of the species’ populations in the LBPM (see
Sec. 2.2) can be written for an arbitrary number of species n:

∂ts = M∇2s + sµ

(
1− |s|1

C

)
− σD(s)T s (2.60)

|s|1 is the 1-norm of s, as before, and [D(s)]ij = δijsi is the diagonal matrix with the
vector s on the diagonal.
The definition of the tournament matrix implies that Tii = 0 and Tij = 1 − Tji. A

priori, there are thus 2
n(n−1)

2 possible tournaments. However, two tournaments that are
equal except for a permutation of labels are not “essentially different” (Davis, 1954).
More specifically, two tournaments T1 and T2 (or graphs in general) are isomorphic
and, hence, not essentially different if and only if there is a permutation π and the
corresponding permutation Matrix Pπ such that T1 = P−1

π T2Pπ (Harary, 1969; Davis,
1954). The set of all isomorphic tournaments is then said to have the same structure.
Davis (1954) derived a formula to determine the number of structures, i.e., essentially
different tournaments, for an arbitrary number of strategies n.
For n = 3 this formula yields two essentially different structures: the intransitive
tournament described by Eq. (2.59) and the strictly hierarchical tournament where
one of the three strategies is superior to the remaining two (see Fig. 2.19). In the latter
tournament it is, however, trivial to determine the winner since one strategy is superior
to any other. In more general terms, if the strategies (or nodes) of a tournament can
be subdivided into two non-empty sets such that all strategies in one set are superior
to all strategies in the the other set, a tournament is termed reducible (Davis, 1954).
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Figure 2.20: Irre-
ducible tournament of
four species. Arrows
point from the superior
to the inferior species
in direct comparison.
Shaded regions illustrate
sub-tournaments of three
species corresponding to
the Rock-Paper-Scissors
game.

In the case of n = 4 strategies, the formula by Davis (1954) reveals that there are 4
structures whereof, however, only one is irreducible (Moon and Pullman, 1967). Since
reducible tournaments have at least a set of clear-cut winners, the answer to the initial
question whether and under which conditions a system of four species collapses to a
non-transitive, i.e., cyclic, three species system, is given by the structure itself. This is
not so clear for the irreducible tournament shown in Fig. 2.20 which is thus studied in
the following. The tournament matrix corresponding to the tournament shown in Fig.
2.20 is

T =


0 0 1 0
1 0 0 1
0 1 0 1
1 0 0 0

 . (2.61)

With this tournament matrix, Eq. (2.60) describes a spatially extended system of
four species who reproduce, migrate, and compete according to the dominance scheme
shown in Fig. 2.20 and becomes

∂ts0 = M∇2s0 + s0µ

(
1− |s|1

C

)
− σs0s2 (2.62a)

∂ts1 = M∇2s1 + s1µ

(
1− |s|1

C

)
− σs1(s0 + s3) (2.62b)

∂ts2 = M∇2s2 + s2µ

(
1− |s|1

C

)
− σs2(s1 + s3) (2.62c)

∂ts3 = M∇2s3 + s3µ

(
1− |s|1

C

)
− σs3s0 . (2.62d)

Before this spatial system is studied in more detail, it is insightful to consider its non-
spatial version, obtained by disregarding the M∇2 term.
The non-spatial system has no reactive fixed point, i.e., no fixed point for which
si 6= 0 ∀ i. This can be seen by, e.g., dividing the equations for ∂tsk = 0 by sk and
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Figure 2.21: Determin-
istic temporal evolution of
the nonspatial version of
Eq. (2.62). s0 (−−),
s1 (−−), s2 (−−), and s3

(−−) obtained from numer-
ical integration. Upper
left: Symmetric initial con-
ditions (all sk = 2.5). Up-
per right and lower row:
Asymmetric initial condi-
tions where all populations
are initialised equally (sk =
2.5) except for the popula-
tion of one species (sk =
0.1). Parameters are µ = 1,
σ = 1, and C = 50.
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subtracting the equation for k = 1 from the equation for k = 3 yielding σ(s0+s3) = σs0

which requires that s3 = 0. Hence, a fully stochastic non-spatial version of the four
species tournament quickly reduces to a three species tournament.
Yet it crucially depends on the initial condition s(t = 0) if species S0, S1, S2, or S3 dies
out first. Fig. 2.21 shows the deterministic temporal evolution of sk for the non-spatial
version of Eq. (2.62) for symmetric (all sk = 2.5) and asymmetric initial conditions
(all sk = 2.5 except for one starting with sk = 0.1). Although population sizes below
one, i.e., sk < 1, are limitedly meaningful, they are shown to better visualise the quick
decrease: For each initial configuration, the population of at least two species quickly
drop to values that correspond to extinction of that species in any population with
integer valued population size (the populations described by the continuous variables
sk, in contrast, would recover from any small value for long enough times as in the
non-spatial version of the Rock-Paper-Scissors game (May and Leonard, 1975)). For
asymmetric initial conditions, it is interesting to observe that S1 dies out first or si-
multaneously with a second species for three out of four initial configurations. On the
other hand, S0 never dies out first when the initial configuration is asymmetric. It is
thus surprising to observe that S0 is the first to die out when the initial configuration
is symmetric. These findings do not depend on the amplitude of the initial conditions,
i.e., the qualitatively same results are obtained by choosing sk = 10 or 20.
At this point, it is important to note that the 4-species tournament has two subsets of
three species that constitute a cyclic tournament, i.e., the Rock-Paper-Scissors game,
and two subsets that constitute a hierarchical tournament. In Fig. 2.20 the set of
species {S0, S1, S2} and {S0, S2, S3} dominate each other in a cyclic manner (shaded
areas in Fig. 2.20) while the set of species {S0, S1, S3} and {S1, S2, S3} dominate each
other in a hierarchical manner (upper and lower half, respectively, of the tournament
scheme Fig. 2.20). Hence, the survival of S0 and S2 are a necessary condition for the
emergence of a non-hierarchical three species tournament from the four species tour-
nament. When S1 or S3 die out, the tournament of the remaining species corresponds,
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Figure 2.22: Transition
from a cyclic to a hierar-
chical three species tourna-
ment arising from an un-
stable four species tourna-
ment. Probability ξ in de-
pendence on M for different
system sizes L×L, L = 50 (
/ ), L = 100 ( � ), L = 200 (
4 ), L = 400 ( ◦ ), L = 800 (
O ), L = 1600 ( � ), and L =
3200 ( . ) on a logarithmic
M -axis (upper row) and a
linear M -axis (lower row).
Parameters are µ = σ = 1
and C = 50.

accordingly, to the Rock-Paper-Scissors game. When, on the contrary, S0 or S2 die
out, the tournament of the remaining species is transitive. The initial question under
which conditions a tournament of four species collapses to a non-transitive three species
tournament therefore translates to the question: Under which conditions does either
species S1 or species S3 die out first?
In the non-spatial case, the choice of the initial conditions is decisive. Since S0 is
predicted to extinct first for symmetric initial conditions, a transitive three species
tournament emerges in this case. Asymmetric initial conditions, on the other hand,
favour S1 to go extinct first and thus predict the emergence of a cyclic three species
tournament.

For the non-spatial four species tournament (Fig. 2.20) symmetric
initial conditions (all sk(t = 0) identical ∀ k) favour the emergence of a
hierarchical three species tournament. Asymmetric initial conditions,

on the contrary, favour the emergence of a cyclic three species
tournament.

For the subsequent study of the spatial and stochastic version of the four species
tournament, it is instructive to define the probability ξ as

ξ := Prob ({S1 goes extinct first} ∨ {S3 goes extinct first}) , (2.63)

where ξ = 1 means that the system always collapses to a Rock-Paper-Scissors game
while ξ = 0 means that the system always collapses to a hierarchical three species
tournament. In fact, for each single realisation of the stochastic spatial four species
tournament, the bernoulli stochastic variable Ξ is defined to be 1 if either S1 or S3 goes
extinct first and 0 if either S0 or S2 goes extinct first. Hence, Ξ is 1 with probability
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Figure 2.23: Determina-
tion of the critical mobility
M4. Upper row: Vari-
ance of the order parame-
ter Ξ for different system
sizes L × L (symbols as in
Fig. 2.22). Dashed hori-
zontal line marks the max-
imal value of the variance
of 1/4. Lower row: Lo-
cation M4 of the maximum
value of the variance in de-
pendence on N = L × L.
Solid line is a power law fit
M4 ∝ N−

1
ν with ν ≈ 4/3
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ξ and 0 with probability 1− ξ. Since the sum over Ξ for different realisations is bino-
mially distributed with parameter ξ, ξ can be computed as the average 〈Ξ〉 over many
realisations.
In order to study the spatial stochastic version of the four species tournament, the lat-
tice based population model is adapted to four species such that each individual either
reproduces, dies, or migrates to an adjacent site with the respective probabilities Eq.
(2.12). The only difference is the definition of σ?i (x, y), which is adapted to the tour-
nament scheme as given in Eq. (2.62). As before, the lattice is initialised with random
initial condition, viz. all lattice sites are populated by a random number between 0
and 5 individuals of each species.
In the limit M →∞, every individual changes its position in the lattice so often before
it reacts for the first time that fluctuations in the initial distribution of species are bal-
anced. In that case the system resembles the nonspatial version with symmetric initial
conditions and the observation that S0 then dies out first suggests, that a transitive
three species tournament emerges quickly for large mobilities, i.e., ξ(M →∞) = 0. If,
on the other hand, the mobility is so small that fluctuations in the initial distribution
persist, the locally asymmetric initial conditions favour the extinction of S1. If S1 only
survives in a small region whereas the remaining space is filled with S0, S2, and S3,
which constitutes the Rock-Paper-Scissors game and which potentially form entangled
spiral waves, S1 cannot reinvade this region. On the contrary, a spiral wave consist-
ing of S0, S2, and S3 will take over regions formerly occupied by S1. This suggests
that the spatial four species tournament collapses to a non-hierarchical three species
tournament for low mobilities, i.e., ξ(M → 0) = 1. Accordingly, it should be expected
there is a transition from ξ = 1 for small mobilities to ξ = 0 for large mobilities.
To check this expectation, Fig. 2.22 shows ξ in dependence on M for various system
sizes N measured from simulations of the LBPM adapted to four species. ξ(M) clearly
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shows a transition from ξ = 1 to ξ = 0 for growing M . This confirms the expectation
that the four species tournament always collapses to a cyclic three species tournament
in a spatial setting for low mobilities, while it reduces to a hierarchical three species
tournament for large mobilities. The mobility M is thus decisive for the transient (i.e.
the path in phase space from the unstable configuration leading to a stable configura-
tion) on which the dynamics leaves the unstable four species state.
The upper row in Fig. 2.22 also shows that increasing the system size N shifts the
curves ξ(M) to smaller mobilities, implying that the probability ξ decreases for in-
creasing N for any M . Note that N is referred to as the system’s size because the
number of individuals in the system is proportional to N . Yet N rather relates to the
system’s resolution L−1 because the system’s linear extent is normalised to unity by
the definition of M (see Sec. 2.2). Increasing N thus means that the number of lattice
sites in any fixed subarea of the plane increases. The fluctuations in the initial dis-
tribution of species, i.e., the deviation from the symmetric case, accordingly decreases in
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Figure 2.24: Rescaled transition of the prob-
ability ξ for a non-hierarchical three species
tournament to arise from the four species
tournament shown in Fig. 2.20 in a spatial
environmnet. Labels as in Fig. 2.22.

the subarea because the standard deviation
from the mean number of individuals of any
species in the subarea is proportional to
1/
√
N . In the limit N → ∞ any subarea

is thus initialised with the same number of
individuals from each of the four species, sug-
gesting that S0 dies out first and a transitive
three species tournament emerges, i.e., ξ = 0
for any M . This explains why increasing N
decreases ξ(M) and thus leads to a shift of the
curves ξ(M) to smaller mobilities.
The upper row in Fig. 2.22 further suggests
that the curves ξ(M) for different N can be
described by a universal function after an ap-
propriate rescaling of the mobility M . To
characterise the transition and particularly its
dependence on the system size N it is thus
helpful to determine the location of the curves
ξ(M). A sensible choice to determine its lo-
cation is by finding the value M4 for which

ξ = 0.5. Conveniently, this corresponds to the maximum of the function ξ(1 − ξ),
which is also the variance of the stochastic variable Ξ (since 〈Ξ〉 = ξ, the variance
of Ξ is var(Ξ) = 〈Ξ2〉 − 〈Ξ〉2 = 〈Ξ〉 − 〈Ξ〉2 = ξ(1 − ξ) as Ξ2 = Ξ). Furthermore,
it is known from finite size scaling theory that the maximum of the fluctuation of Ξ
marks the critical parameter M4(N) of a phase transition for finite sizes if Ξ is an order
parameter associated with a second order phase transition (Cardy, 1997). Fig. 2.23
shows the variance ξ(1 − ξ) for the curves from Fig. 2.22 and the according scaling
of M4 with N . The critical mobility is well described by a power law dependency
M4(N) = bN−

1
ν with ν ≈ 4/3 and a scaling amplitude b, suggesting that the transition

is of second order. To check whether the curves in Fig. 2.22 can be described by a
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universal function after rescaling according to ξ(M,N) ∝ F [(M −M4(N)) N
1
ν ] with

some universal scaling function F [.], Fig. 2.24 shows the curves from Fig. 2.22 as a

function of the rescaled mobility (M−M4(N)) N
1
ν (see Cardy, 1997, for more details).

Although the collapse is not perfect, the similarity of the rescaled curves is remarkable
compared to the unscaled curves in the lower row of Fig. 2.22. The transition of ξ = 1
to ξ = 0 can hence indeed be characterised as a phase transition of second order and
the fit M4(N) = bN−

1
ν suggests that the critical mobility is M4 = 0.

There is a critical mobility M4(N) ∝ N−
1
ν with ν ≈ 4

3
, below which the

spatial four species tournament collapses to a three species
tournament of cyclically competing species. For mobilities larger than
the critical mobility, the spatial four species tournament reduces to a

hierarchical three species tournament.

The fact that the critical mobility M4(N → ∞) is zero is a direct consequence of the
fact that the fluctuations in the initial conditions decrease with N . Choosing initial
conditions that are independent of the spatial resolution L−1 should thus be expected
to yield a critical mobility different from 0.
In conclusion, the mobility of individuals plays a pivotal role concerning the emergence
of cyclically competing species. If the mobility increases beyond the critical mobility
M4(N) for a given system size, the four species tournament collapses to a hierarchical
three species tournament instead of the cyclic tournament. A low mobility, hence,
promotes the emergence of cyclic competition.

2.6 Discussion

The lattice based population model exhibits two dynamically distinct states, just like
the original model by Reichenbach et al. (2007a): A well-stirred state, in which individ-
uals diffuse so quickly that no spatial patterns emerge, and a spiralling state, in which
the three species form entangled travelling spiral waves. The two dynamic states were
supposed to correspond uniquely to two stability regimes (Reichenbach et al., 2007a);
one where coexistence is stable and one where it is unstable. The observation in Sec.
2.3.2 of a broad mobility regime that is ambiguous with respect to the stability of
coexistence, however, shows that the identification of the spiralling state with stable
coexistence is at least not in general correct for a system of cyclically and spatially
competing species that form entangled spirals. The consequence of this observation is
that the transition between the spiralling and the well-stirred state can in general not
be characterised by the changing stability properties.
This notwithstanding, the introduction of the carrying capacity provides an alternative
way of characterising the transition between the well-stirred state and the spiralling
state. Counterintuitively, increasing the carrying capacity (and thus enlarging the pop-
ulation) leads to an accelerated extinction process in the well-stirred regime. Since the
carrying capacity acts as to stabilise coexistence in the spiralling state, in contrast, the
typical time to extinction exhibits diametrically opposite dependencies on the carrying
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capacity in the two dynamical regimes. The critical mobility is therefore defined as the
one where the two dynamical regimes influence the typical time until extinction occurs
equally strong, rendering it independent of the carrying capacity. This is a feasible way
to characterise the transition without resorting to study the asymptotic dependency of
the typical time until extinction on the system size (Lamouroux et al., 2012).
The idea to relax the restriction of only one individual at maximum per lattice site has
not only been followed in the present work (and Lamouroux et al., 2012, accordingly).
He et al. (2010) studied a similar spatial model of the Rock-Paper-Scissors game where
the global density of individuals is conserved and allowed more than one individual per
lattice site. In their framework, the carrying capacity controls whether individuals can
migrate to a certain site; only if the population of the target site has not yet reached
the carrying capacity may individuals travel to that site. This corresponds to the sit-
uation analysed by Lugo and McKane (2008) where the density dependent migration
leads to a cross-diffusion term in the deterministic equations. In that case, migration
cannot simply be accounted for by the usual Laplacian. He et al. (2010) find that the
introduction of the carrying capacity has no relevant impact in their framework.
The same authors (He et al., 2011) also studied the original model by Reichenbach
et al. (2007a) with a fixed unit carrying capacity and measured the dependence of
the mean time to extinction 〈τex〉 on the spatial system size N , similar to the results
presented in Sec. 2.3.2. As they do not specifically consider the mobility regime of
the transition between the spiralling and the well-stirred state, they do not find the
ambiguous behaviour of the mean time to extinction. For the extreme cases, He et al.
(2011) find, in contrast to the results from the LBPM, a linear dependence of 〈τex〉 on

N in the well-stirred regime and the dependence 〈τex〉 ∝ eN

N
in the spiralling regime.

Since the two models are not identical, a direct comparison should be considered with
care. However, one explanation for the different scaling behaviours might be the dif-
ferent lattice sizes that have been used. He et al. (2011) studied system sizes ranging
from N = 5× 5 to N = 25× 25 while the results in Sec. 2.3.2 were obtained for system
sizes ranging from N = 18×18 to N = 800×800 in the well-stirred state and N = 8×8
to N = 35 × 35 for the spiralling state. The exponential and logarithmic dependence
in Fig. 2.11 are hardly visible if only system sizes up to N = 25× 25 are considered.
A model similar to the LBPM was studied by Rulands et al. (2011) in one spatial
dimension. They considered a carrying capacity, which regulates reproduction, with a
subtle but decisive difference to the LBPM. In the LBPM the rate of competition is
proportional to the absolute number of individuals of the superior species, i.e., σsi+2.
This is the reason why C cannot be interpreted as a thermodynamic volume (see Sec.
2.2.1). In the model by Rulands et al. (2011), the rate of competition is σR = σsi+2/C.
This, in contrast, allows to interpret the carrying capacity as a thermodynamic volume
similar to the system size N . They are thus able to study the thermodynamic limit by
two equivalent approaches; either by considering large system sizes or by considering
large carrying capacities. The original difficulty that only a limited range of system
sizes can be feasibly analysed is thus eased. However, the carrying capacity being a
thermodynamic limit also allows to derive a stochastic differential equation for the lo-
cal dynamics. The noise term of the local dynamics then decreases with the carrying
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capacity as 1/
√
C. As a result, the typical time to extinction t? grows with increasing

C – the system becomes more stable. In the LBPM, on the contrary, fluctuations grow
with C, which is the reason for the destabilising effect of enlarging C in the well-stirred
state. In the model by Rulands et al. (2011), the discrimination of the spiralling state
and the well-stirred state by the respective dependence of t? on C is thus not possible
because t? increases with C in both regimes.
To illustrate the difference between the two approaches of introducing a carrying capac-
ity, one can imagine an experiment with bacterial strains in a petri dish. The carrying
capacity in the model by Rulands et al. (2011) then corresponds to the size of the (well-
stirred) dish. The fluctuations of the density of bacteria, thus, vanish by enlarging the
petri dish. Contrary to this, the carrying capacity in the LBPM rather corresponds to
the intensity of the nutrient solution. Increasing the intensity of the nutrient solution
raises the number of bacteria in the dish without increasing the volume. As the spatial
density of bacteria thus increases, competitive interactions become more frequent and
therefore the corresponding fluctuations increase (cf. Lamouroux et al., 2012).

While the stability of cyclic competition among three species has attracted a con-
siderable amount of interest, the question of the emergence thereof has been rarely
addressed (Corl et al., 2010). In this respect, the study of a four species system in
Sec. 2.5 is an important step in this direction. Existing studies that consider non-
hierarchical competition among four species (Szabó and Sznaider, 2004) assume that
at least two species do not compete with each other to ensure the existence of an equi-
librium state in which all four species coexist. If there are no such neutral pairs, no
coexistence equilibrium exists, and one species quickly becomes extinct in any finite
system. The four species model studied in Sec. 2.5 is thus well suited to study under
which conditions cyclic competition among three species emerges from ecosystems with
more species. The analysis in Sec. 2.5 shows that there is a critical mobility for any
system size below which a cyclic tournament of three species emerges while above it a
hierarchical tournament emerges.
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Chapter 3

Immunity Eliciting Diseases

3.1 Introduction

Many diseases like measles, rubella, mumps, foot-and-mouth disease or influenza elicit
temporal or life-long immunity upon recovery. For these diseases, susceptible, infec-
tious, and recovered individuals exhibit similar cyclic dynamics as the three species
in the Rock-Paper-Scissors game, described in the previous chapter: The number of
recovered individuals increases due to the presence of infectious individuals (recovery);
the number of infectious individuals increases due to the presence of susceptible indi-
viduals (infection); and the number of susceptible individuals increases because (i) all
individuals are born susceptible, even those descending from infectious and recovered
individuals, and because (ii) recovered individuals return to be susceptible in case that
immunity is only temporal. This order causes the cyclic population dynamics and
give rise to so-called recurrent epidemics (see Keeling and Rohani, 2008; Anderson and
May, 1991).
As with any epidemic, a major goal of epidemiological modelling is to design contain-
ment strategies that aim at eradicating or at least stemming the disease. While this
clearly requires the knowledge of the biological traits of the disease, the understanding
of the mechanisms responsible for the proliferation of the disease on the population
level is sometimes even more important. Almost a hundred years after the seminal
study by Fisher (1937) and by Kolmogoroff et al. (1937), spatial aspects have been
recognised as one of the most important ingredient in epidemiological modelling.
For recurrent epidemics, spatial heterogeneity influences the disease dynamics in a
manifold manner. One of the earliest problems that required the inclusion of spatial
aspects, and which still attracts a lot of attention, is the persistence of recurrent epi-
demics (Bartlett, 1957). The finiteness of any individual population can cause the
disease to become extinct when the number of infectious individuals passes through a
trough of its oscillation. Non-spatial models, however, usually fail to explain the com-
parably small observed critical community size, needed for a disease to persist (Bartlett,
1957). The interplay between different communities, embedded in a so-called metapop-
ulation, however, can substantially increase the persistence of a disease due to mutual
reintroduction of the disease (Grenfell, 1992; Keeling, 2000; Hagenaars et al., 2004;
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Jesse et al., 2008; Liu et al., 2009).
In the strive for optimal vaccination strategies, the consideration of heterogeneously
distributed populations has shown quite early that ignoring heterogeneity can lead
to vaccination strategies that do not eradicate the disease (May and Anderson, 1984;
Hethcote and van Ark, 1987). The interplay of vaccination strategies and spatial het-
erogeneity can further act as to synchronise the populations (Rohani et al., 1999),
which is also seen for a sufficiently large coupling between the individual populations
(Lloyd and May, 1996; Lloyd and Jansen, 2004). In any case, synchrony increases the
probability of global extinction of the disease because all populations simultaneously
pass through the troughs of the recurrent epidemic.
An important characteristic property of a recurrent epidemic is its endemic state: For
long enough times, the case numbers settle to a stationary value, in which case the epi-
demic is called endemic. The endemic state is not only important to understand the
long term dynamics of infectious diseases, though. It is also important for the design
of containment measures like, e.g., vaccination strategies, which aim at shifting the
endemic state such that the case numbers drop to zero. The endemic state for general
systems of spatially segregated populations is, thus, well studied concerning its exis-
tence and stability (Post et al., 1983; May and Anderson, 1984; Hethcote and van Ark,
1987). However, most studies that go beyond these questions and quantitatively assess
properties of metapopulation models assume that the infection rate of the disease is
the same in every population (May and Anderson, 1984; Hethcote and van Ark, 1987;
Grenfell, 1992; Lloyd and May, 1996; Keeling, 2000; Xia et al., 2004; Hagenaars et al.,
2004). It was noted quite early, though, that “Subpopulations can be determined not
only on the basis of disease-related factors [...] but also on the basis of social, cultural,
economic, demographic, and geographic factors” (Hethcote and van Ark, 1987) and
Grenfell and Bolker (1998) found that empirical observations are consistent with the
assumption that infection rates are higher in urban centres than in rural areas. How-
ever, spatially varying infection rates have only very rarely been used (an example is
the study by Grassly et al., 2005). Yet there is no work to the best knowledge of the
author that explicitly considers the impact of spatial coupling on the endemic states of
the subpopulations if the infection rate varies between them. Such situations, however,
arise naturally in modern times, where the world becomes ever more interconnected. If
different countries obey different health regulations or face different climatic conditions,
the infectiousness of a disease may vary across the world. While there is an increasing
interest in human migrations patterns (Brockmann et al., 2006; González et al., 2008;
Simini et al., 2012) and in the spread of viruses on social or communication networks
(Kuperman and Abramson, 2001; Pastor-Satorras and Vespignani, 2001), the interplay
between asymmetries in disease properties and spatial coupling has surprisingly been
overlooked so far. Yet this question is not restricted to the global scale of migration.
Differences in the infectiousness may occur on many spatial scales, may it be different
counties, cities, municipal districts or even different public buildings.
On a similar note, this question does not only concern human communities but can
also apply to animal populations or coupling in communication networks. Different
farms or livestock herds may well experience different hygienic measures and thus be
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Figure 3.1: Schematic
depiction of a SIR model
with demography, i.e., a
non-spartial compartmen-
tal model for a disease that
elicits life-long immunity.

subject to varying infectiousness. Modelling all levels of heterogeneity may, however,
be cumbersome - and sometimes unnecessary.
From this, two questions arise that are addressed in this dissertation. First, what is the
effect of coupling on the endemic states of subpopulations if the coupled communities
are subject to different infection rates? And second, which degree of spatial complexity
has to be explicitly accounted for to describe the effect of coupling on a single popula-
tion?

In the next sections of this dissertation, I study a metapopulation model for re-
current epidemics that considers an infectiousness that varies from subpopulation to
subpopulation. I show how coupling alters the endemic states of the subpopulation in
an unexpected manner with potentially severe implications for the design of travel re-
striction measures. I furthermore study how the spatial complexity of a metapopulation
can be reduced to effectively model the impact of coupling on a single population.

3.2 A Metapopulation Model for Spatially Varying

Infectiousness

Recurrent epidemics can arise from diseases that elicit temporal or life-long immu-
nity upon recovery. From a modelling perspective, both kinds of diseases exhibit dy-
namically similar behaviours. For humans, diseases that elicit life-long immunity are,
however, predominant compared to diseases that elicit temporal immunity and thus
constitute the main part of the analysis in the next sections. In Sec. 3.3 the corre-
sponding results for a model with temporal immunity will be derived and discussed.

3.2.1 Nonspatial Compartmental Model

The classification of individuals into groups of susceptible, infectious, and recovered
individuals is clearly a simplification. In reality, the boundary between these classes
are not sharp but depend on the density of the pathogen in the infected host (Keeling
and Rohani, 2008). While the ability to spread the disease grows and decays continu-
ously within each host, it is sufficient to model infectiousness as a binary property for
epidemiological questions, which pertain to the spread of a disease on the population
level. This kind of model, in which every individual is classified into one group out of
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a discrete set of groups, is called compartmental model.
Before the full metapopulation model is introduced in the next section, it is instructive
to consider the dynamics of an isolated population without connections to other com-
munities. Inside such a population, the disease spreads from individual to individual
by direct contacts. The rate at which a susceptible individual contracts the disease
depends on two different factors; the probability for a contact with an infectious individ-
ual, I

N
, and the rate of infection, β. Here, the absolute number of infectious individuals

is denoted by I and the size of the population is denoted by N . The number of sus-
ceptible and recovered individuals are accordingly denoted by S and R, respectively.
Once infectious, individuals recover at a constant rate γ. It is assumed that no disease
related death occurs. For simplicity, the population size is kept constant by requiring
that the rate at which natural death occurs is balanced by the rate at which offspring
is produced. Both is denoted by µ. All offspring is born susceptible to the disease.
The temporal evolution of S, I, and R is thus governed by

∂tS = −βS I
N
− µS + µ (S + I +R) (3.1a)

∂tI = βS
I

N
− µI − γI (3.1b)

∂tR = − µR + γI . (3.1c)

For obvious reasons, this model is referred to as the SIR model with demography (see
Anderson and May, 1991; Keeling and Rohani, 2008). Since S, I, and R are integer
number, these equations are only illustrative. However, for N → ∞ the equivalent
equations for the fractions x := X

N
for X ∈ {S, I, R} describe the exact temporal

evolution:

∂ts = −βsi+ µ (1− s) (3.2a)

∂ti = βsi− (µ+ γ) i (3.2b)

Here, and in the following, the equation for r is omitted, since S + I + R = N or
equivalently s + i + r = 1. It is also possible to rigorously derive Eq. (3.2) from the
master equation for the microscopic reactions in the limit N →∞ (see box Interlude
II: Stochastic description of birth-death processes on page 8). For brevity, this
derivation is not shown here since it provides no further insight.
When a disease appears for the first time, e.g., by a mutation of an earlier pathogen,
the entire population is susceptible to the disease. Whether a disease can invade such
a population, depends on the basic reproductive ratio R0 := β

γ+µ
. Setting s ≈ 1 in

Eq. (3.2) shows that an infinitesimal fraction of infectious individuals grows with rate
β − γ − µ. Only if R0 > 1, can the infection thus spread in the population.
Without external perturbation, a disease that can be described by the SIR model settles
to the endemic state in the long run. The endemic state of a disease is nothing else
than the fixed point of Eq. (3.2). The fraction of susceptible and infectious individuals
in the endemic state are, hence, (Anderson and May, 1991; Keeling and Rohani, 2008)

sE =
1

R0

and iE =
µ

γ + µ

(
1− sE

)
. (3.3)
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N1, β1

N2, β2
N3, β3

N4, β4

ε1−3

ε1−2 ε2−3

ε1−4 ε2−4

ε3−4

Figure 3.2: Illustration
of the metapopulation
concept. The metapop-
ulation comprises four
different, spatially segre-
gated subpopulations of
sizes N1, . . . , N4, that are
nonetheless interconnected
to each other by the
symmetric travelling rate
εk−`. In the metapopu-
lation model considered
here, the subpopulations
additionally differ in their
respective infection rates
β1, . . . , β4 due to, e.g.,
climatic, socio-cultural or
economic reasons.

The disease free state i = 0, s = 1 is also a fixed point of Eq. (3.2). Linearising
Eq. (3.2) around the endemic state Eq. (3.3) and the disease free state reveals that
they are stable and unstable, respectively, if and only if R0 > 1 (Keeling and Rohani,
2008). For R0 < 1, however, the endemic state is disease free itself. The SIR model
physically resembles a damped oscillator. Starting from any point (s, i) in phase space
the system performs damped oscillations towards the endemic state with frequency
ν ≈ 2π√

µ(γ+µ)(R0−1)
(Keeling and Rohani, 2008).

Eq. (3.2) shows that the properties of the endemic state of an isolated population
are essentially determined by the basic reproduction ratio R0. In a set of isolated
populations with the same disease unrelated birth/death rate µ and the same infectious
duration γ−1, the endemic states, hence, vary according to the variation in the (local)
infection rate β.

3.2.2 Metapopulation Model

The metapopulation concept bases on the idea that species live in spatially separated
and locally confined habitats that together constitute the global population. Interac-
tion between individuals occurs correspondingly on two scales: The immediate interac-
tion like predation or competition for resources takes place inside the local populations,
which can be considered to be well-stirred. The indirect interaction like migration or
the colonisation of empty habitats takes places on the metapopulation level (see Hanski,
1998, and references therein). The original metapopulation model goes back to Levins
(1969), who modelled the individual populations as being either populated or empty
and omitted the local dynamics. In epidemiology, the metapopulation is usually mod-
elled by explicitly considering the local dynamics of the individual populations, who
are then coupled to the dynamics of the other populations (Post et al., 1983; May and
Anderson, 1984; Hethcote and van Ark, 1987; Grenfell, 1992; Lloyd and May, 1996;
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Keeling, 2000; Lloyd and Jansen, 2004; Hagenaars et al., 2004; Xia et al., 2004; Jesse
et al., 2008). Usually the coupling is realised as an effective coupling that does not
explicitly consider the migration of individuals from population to population. The
consequences of this effective coupling will be discussed in Sec. 3.2.5.
The metapopulation model that is introduced in this section consists of M individual
populations with size Nk (k ∈ {1, . . . ,M}). The dynamics of each population can be
described by the SIR model from Sec. 3.2.1 with group sizes Sk, Ik, and Rk. The
birth/death rate µ and the recovery rate γ are assumed to be independent of the lo-
cation of the respective individual. The infection rate βk, however, depends on the
common location of the susceptible and infectious individual. Accordingly, the basic
reproductive ratio R0,k also varies across the subpopulations. This implies that any
susceptible individual can only contract the disease from an infectious individual lo-
cated in the same population. In addition, individuals travel from population k to
population ` irrespective of their health state with rate ε`k. Including the coupling into
the temporal evolution, Eq. (3.1) becomes

∂tSk = −βkSk
Ik
Nk

+ µ(Nk − Sk) +
M∑
`=1

(S`εk` − Skε`k) (3.4a)

∂tIk = βkSk
Ik
Nk

− (γ + µ)Ik +
M∑
`=1

(I`εk` − Ikε`k) (3.4b)

Again, these equations are only illustrative as Sk and Ik cannot evolve continuously.
Meaningful equations arise in the limit Nk →∞ for the fractions sk := Sk

Nk
and ik := Ik

Nk
.

∂tsk = −βkskik + µ(1− sk) +
M∑
`=1

(
s`
N`

Nk

εk` − skε`k
)

(3.5a)

∂tik = βkskik − (γ + µ)ik +
M∑
`=1

(
i`
N`

Nk

εk` − ikε`k
)

(3.5b)

For any set of finite populations {N1, . . . , NM}, Eqs. (3.5) describe the temporal evo-
lution of the expectation value of sk and ik around which fluctuations due to the finite
populations arise.
To ensure that the size of the individual populations Nk is conserved also in the
metapopulation, the number of outgoing and incoming individuals per unit time has
to balance, i.e.,

∑
`Nkε`k =

∑
`N`εk`. This can be achieved by imposing a de-

tailed balance condition for each connection, i.e., Nkε`k = N`εk`. Given the popu-
lation sizes Nk, this relation uniquely determines ε`k from εk`, and vice versa. It is
thus possible to define the symmetric travelling rate between population ` and k as
ε`−k ≡ εk−` := 1

2
(ε`k + εk`). With εk`

N`
Nk

= ε`k and ε`k = 2N`
N`+Nk

ε`−k, Eq. (3.5) admits
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the form:

∂tsk = −βkskik + µ(1− sk) +
M∑
`=1

2N`

Nk +N`

ε`−k (s` − sk) (3.6a)

∂tik = βkskik − (γ + µ)ik +
M∑
`=1

2N`

Nk +N`

ε`−k (i` − ik) (3.6b)

Eq. (3.6) constitutes a 2M -dimensional system of nonlinear partial differential equa-
tions. The next section considers the special case of two coupled populations (M = 2)
and analyses the impact of coupling on the endemic states of the two individual pop-
ulations for βk 6= β`. In Sec. 3.2.4 a more general case is considered and a method to
effectively reduce the spatial complexity, embodied in the metapopulation, is devised.

3.2.3 Paradoxical Effects of Coupling

What is the effect of coupling if the coupled communities exhibit different infection
rates? The simplest case in which this question can be answered is a metapopulation
that consists of two populations, i.e. M = 2. For two communities, Community 1 and
Community 2, Eq. (3.6) reduces to an effectively four dimensional system:

∂ts1 = −β1s1i1 + µ(1− s1) +
2N2

N1 +N2

ε1−2 (s2 − s1) (3.7a)

∂ti1 = β1s1i1 − (γ + µ)i1 +
2N2

N1 +N2

ε1−2 (i2 − i1) (3.7b)

∂ts2 = −β2s2i2 + µ(1− s2) +
2N1

N1 +N2

ε1−2 (s1 − s2) (3.7c)

∂ti2 = β2s2i2 − (γ + µ)i2 +
2N1

N1 +N2

ε1−2 (i1 − i2) (3.7d)

For ε1−2 = 0, this system reduces to two isolated populations that each settle to their
respective known endemic state Eq. (3.3). The first thing to study is, hence, how the
endemic states change with a non-zero travelling rate ε1−2. To assess the quality of
the change, two quantities are employed that measure the epidemiological gravity of a
disease:

• The prevalence π, describing the dissemination of a disease. The prevalence
equals the fraction of infectious individuals, i.e., πk ≡ iEk .

• The incidence rate ϕ, describing the rate at which new contagions occur per unit

time and population size. The incidence rate is ϕk :=
βkS

E
k I

E
k

N2
k
≡ βks

E
k i

E
k .

In general, π and ϕ are time dependent quantities, but the incidence rate and the
prevalence of the endemic state considered here are constant properties of the system
described by Eq. (3.7). To learn how the prevalence and the incidence rate of a
community in the endemic state are influenced by coupling to another community, it
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is necessary to analyse the dependence of sEk and iEk on ε1−2.
Without loss of generality, it is assumed that the infection rate in Community 1 is higher
than the infection rate in Community 2, i.e. β1 > β2 or equivalently R0,1 > R0,2. In the
uncoupled case ε1−2 = 0, the prevalence and the incidence rate of the two communities
are implicitly given by Eq. (3.3):

πk(0) =
1

γ + µ

µ

R0,k

(R0,k − 1) (3.8a)

ϕk(0) =
µ

R0,k

(R0,k − 1) (3.8b)

Since
R0,k−1

R0,k
is a strictly monotonically increasing function in R0,k, Community 1 has

the higher prevalence and also the higher incidence rate. Intuitively, it should be ex-
pected that coupling acts as to reduce the differences between the communities and
that the prevalences and the incidence rates strictly converge. Illustratively speaking,
coupling Community 1 to Community 2, which has higher health standards and there-
fore a lower incidence rate and prevalence, should be beneficial for Community 1 and
deleterious to Community 2.
For a general coupling strength ε1−2, the endemic states of the two communities cannot
be found directly by scrutinising Eq. (3.7). However, for large ε1−2 as well as for small
ε1−2, approximations can be obtained analytically. To validate or invalidate the expec-
tation that the prevalence and incidence rate of the two communities monotonically
converge to an average value, the limit of very strong coupling and the limit of weak
coupling are, thus, considered separately.

Strong coupling limit

To find the endemic states for ε1−2 →∞ a power series ansatz in the inverse coupling
strength κ := 1/ε1−2 can be employed:

sEk (κ) = s
(0)
k,∞ +

∞∑
p=1

s
(p)
k,∞κ

p (3.9a)

iEk (κ) = i
(0)
k,∞ +

∞∑
p=1

i
(p)
k,∞κ

p (3.9b)

Here, s
(p)
k,∞ and i

(p)
k,∞ denote the coefficients of order p. It is implicitly assumed that there

is a κc such that for all κ < κc the series Eq. (3.9) converges. The idea behind such
an ansatz is that truncating the series at some order p constitutes an approximation of
the full series around κ = 0, whose precision increases with p. Truncating the series at
p = 0 gives an approximation that is only valid for ε1−2 → ∞ or equivalently κ → 0.

s
(0)
k,∞ and i

(0)
k,∞ thus denote the endemic states in the strong coupling limit.
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Inserting Eq. (3.9) in Eq. (3.7) and performing the limit κ→ 0, gives

0 = −β1s
(0)
1,∞i

(0)
1,∞ + µ(1− s(0)

1,∞) +
2N2

N1 +N2

(
s

(1)
2,∞ − s

(1)
1,∞ + lim

κ→0

s
(0)
2,∞ − s

(0)
1,∞

κ

)
(3.10a)

0 = β1s
(0)
1,∞i

(0)
1,∞ + (µ+ γ)i

(0)
1,∞ +

2N2

N1 +N2

(
i
(1)
2,∞ − i

(1)
1,∞ + lim

κ→0

i
(0)
2,∞ − i

(0)
1,∞

κ

)
. (3.10b)

The analogous equations for Community 2 can be obtained by exchanging the sub-
scripts 1 and 2. Since s

(0)
k,∞ and i

(0)
k,∞ are independent of κ by definition, the last terms

in Eqs. (3.10) require that s
(0)
2,∞ = s

(0)
1,∞ and i

(0)
2,∞ = i

(0)
1,∞ for Eq. (3.10) to well be defined.

Otherwise no solution can be obtained as the last terms diverge to infinity.

The two populations thus become identical in the fully coupled limit,
confirming the expectation that the two populations behave as one

large population for ε1−2 →∞.

To eliminate the terms of first order, s
(1)
k,∞ and i

(1)
k,∞, the equations for Community 1

and Community 2 have to be added weighted with the populations sizes N1 and N2,
respectively. Defining s∞ := s

(0)
2,∞ = s

(0)
1,∞ and i∞ := i

(0)
2,∞ = i

(0)
1,∞, this yields:

i∞s∞ (N1β1 +N2β2) =µ(1− s∞)(N1 +N2) (3.11a)

i∞s∞ (N1β1 +N2β2) =i∞(N1 +N2)(γ + µ) (3.11b)

Defining the weighted arithmetic mean of the infection rates

β̄a :=
N1β1 +N2β2

N1 +N2

, (3.12)

Eq. (3.11) can be cast into

0 = −β̄a i∞s∞ + µ(1− s∞) (3.13a)

0 = β̄a i∞s∞ − i∞(γ + µ) . (3.13b)

This, however, are the known equations for the endemic state of a single well-stirred
population. The solution, hence, is:

s∞ =
γ + µ

β̄a
and i∞ =

µ

γ + µ
(1− s∞) (3.14)

In the fully coupled limit, the endemic states of the two populations
can thus be described as a single population with a weighted average

infection rate.

Fig. 3.3 shows an example of the fully coupled and uncoupled endemic states of two
communities in the s − i-plane. With the knowledge of the endemic cases in the two
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extreme cases, the prevalence and incidence rate in these cases can be compared.
The prevalence of the two communities in the fully coupled limit is, according to Eq.
(3.14), π∞ = µ

R̄0(γ+µ)

(
R̄0 − 1

)
with R̄0 := β̄a

γ+µ
. As expected, it lies in between the two

uncoupled values: π2(0) < π∞ < π1(0) (cf. Fig. 3.3). This is because
R0,k−1

R0,k
is a strictly

0 0.25 0.5 0.75 1

s

0

0.25

0.5

0.75

1

i

Figure 3.3: Endemic states of two communi-
ties in the uncoupled state (•) and in the fully
coupled limit (◦). Dashed line (- - -) indicates
the relation i = µ

γ+µ (1− s) (see Eq. (3.3)).
µ = γ = 1, β1 = 8, β2 = 3, and N1 = N2.

monotonically increasing function in R0,k and
R0,2 < R̄0 < R0,1, which follows from R̄0 be-
ing simply the weighted average of the basic
reproduction ratios of the two communities.
From Eq. (3.14), the incidence rates in the
fully coupled limit can be calculated, yielding
ϕk,∞ =

µR0,k

R̄2
0

(
R̄0 − 1

)
. Contrary to the preva-

lence, the incidence rate in the fully coupled
limit are apparently different in Community 1
and Community 2 due to the different infec-
tion rates.
Apart from the individual populations, a nat-
ural question is whether the metapopulation
as whole is in a better state when fully cou-
pled or when uncoupled. The prevalence of
the metapopulation as a whole πM(ε1−2) :=
N1iE1 +N2iE2
N1+N2

and the incidence rate ϕM(ε1−2) :=
N1ϕ1+N2ϕ2

N1+N2
can be calculated from Eq. (3.3)

and Eq. (3.14) for the uncoupled and fully coupled case, respectively. The prevalence
in the fully coupled limit is implicitly given by Eq. (3.14) and it is straightforward to
show that the prevalence in the uncoupled case is

πM(∞) =
µ

γ + µ

(
1− γ + µ

β̄a

)
and πM(0) =

µ

γ + µ

(
1− γ + µ

β̄h

)
, (3.15)

respectively, where β̄a is the weighted arithmetic mean and β̄h is the weighted harmonic
mean β̄h := N1+N2

N1/β1+N2/β2
. Since in general, the harmonic mean is smaller than the

arithmetic mean, β̄h < β̄a, the prevalence in the uncoupled case (ε1−2 = 0) is smaller
than in the fully coupled limit (ε1−2 →∞), i.e., πM(0) < πM(∞). Similarly, calculating
the incidence rate from Eq. (3.3) and Eq. (3.14) in the uncoupled case and the fully
coupled limit, respectively, yields

ϕM(∞) = µ

(
1− γ + µ

β̄a

)
and ϕM(0) = µ

(
1− γ + µ

β̄h

)
. (3.16)

This implies that the incidence rate of the metapopulation as a whole is also smaller
in the uncoupled case than in the fully coupled limit, i.e. ϕM(0) < ϕM(ε1−2 →∞).
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Considering the metapopulation as a whole, the uncoupled state
(ε1−2 = 0) is preferable to the fully coupled state (ε1−2 →∞) as, both

the incidence rate and the prevalence are higher in the latter.

The comparison between the fully coupled limit and the uncoupled case seems to
support the intuition that coupling brings the two communities dynamically closer
together. However, the two extreme cases do not unravel the full complexity of the
system.

Weak coupling limit

To study the onset of coupling, i.e., how a small coupling strength ε1−2 alters the
uncoupled endemic states Eq. (3.3), again a power series – now in ε1−2 – is chosen as
ansatz:

sEk (ε1−2) = s
(0)
k +

∞∑
p=1

s
(p)
k εp1−2 (3.17a)

iEk (ε1−2) = i
(0)
k +

∞∑
p=1

i
(p)
k εp1−2 (3.17b)

Here, the terms of zeroth order are the known endemic states of the uncoupled case,
s

(0)
k = 1/R0,k and i

(0)
k = µ(1−1/R0,k)/(γ+µ). The terms of first order, s

(1)
k and i

(1)
k , are

equivalent to the derivation of sEk (ε1−2) and iEk (ε1−2), respectively, at ε1−2 = 0. They
thus describe the effect of the onset of coupling. For their determination, Eq. (3.17)
is inserted in Eq. (3.7) and terms of second and higher order in ε1−2 neglected. This

yields a four dimensional system of linear equations in
(
s

(1)
1 , i

(1)
1 , s

(1)
2 , i

(1)
2

)
:

0 =
β1µ

γ + µ
s

(1)
1 + (γ + µ) i

(1)
1 +

2N2

N1 +N2

(γ + µ) (β2 − β1)

β1β2

(3.18a)

0 =

(
β1

γ + µ
− 1

)
s

(1)
1 +

2N2

N1 +N2

β2 − β1

β1β2

(3.18b)

Again, the analogous equations for Community 2 can be obtained by exchanging the
subscript 1 and 2. Eq. (3.18) shows that to linear order in ε1−2, the equations for(
s

(1)
1 , i

(1)
1

)
are independent from the equations for

(
s

(1)
2 , i

(1)
2

)
. Hence, the four dimen-

sional system of linear equations actually decomposes into two two dimensional systems
of linear equations. The solution to Eq. (3.18), expressed in terms of R0,k, is

s
(1)
1 =

2N2

N1 +N2

R0,1 −R0,2

R0,1R0,2(R0,1 − 1)(γ + µ)
(3.19a)

i
(1)
1 =

2N2

N1 +N2

(R0,1 −R0,2)
(
R0,1γ

γ+µ
− 1
)

R0,1R0,2(R0,1 − 1)(γ + µ)
= s

(1)
1

(
R0,1γ

γ + µ
− 1

)
(3.19b)
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where the analogous equations can be obtained by exchanging the subscript 1 and
2. For the weak coupling limit, the fraction of susceptible and infectious individuals
are, hence, approximated by sEk (ε1−2) ≈ s

(0)
k + s

(1)
k ε1−2 and iE1 (ε1−2) ≈ i

(0)
k + i

(1)
k ε1−2,

respectively.
Eq. (3.19a) shows that s

(1)
1 is always positive, provided that R0,1 > R0,2, which was

assumed without loss of generality. The dependence of the fraction of susceptible
individuals on the coupling strength thus behaves as expected: When Community 1
couples to Community 2, which has a lower infection rate and thus a higher fraction of
susceptible individuals, the fraction of susceptible individuals increases in Community
1.
Eq. (3.19b) shows that the sign of i

(1)
1 depends on the term R0,1γ

γ+µ
− 1, provided that

R0,1 > R0,2. This stands in contrast to the expectation: When Community 1 couples to
Community 2, which has a lower infection rate and thus a lower fraction of infectious
individuals, the fraction of infectious individuals should always be expected to decrease
in Community 1. However, this expectation is not met if

R0,1 > 1 +
µ

γ
. (3.20)

In that case, the fraction of infectious individuals, i.e., the prevalence in Community 1
increases upon coupling to Community 2 although Community 2 has a lower fraction of
infectious individuals. Analogously, if R0,2 > 1+ µ

γ
the fraction of infectious individuals

in Community 2 decreases upon coupling although it couples to a community with a
higher fraction of infectious individuals.

For diseases whose basic reproductive ratio R0 exceeds the threshold
Eq. (3.20), the prevalence in a community – the level of infection –

paradoxically increases upon coupling to another community that has
a lower prevalence (i.e. a lower R0). In the same way, it decreases
upon coupling to a community that has a higher prevalence (i.e. a

higher R0).

Considering the incidence rates ϕk in the weak coupling limit, a similar paradoxi-
cal effect occurs. From Eq. (3.17) it is clear that the incidence rate of the indi-

vidual populations is determined to linear order in ε1−2 by ϕk(ε1−2) = βks
(0)
k i

(0)
k +

βk

(
s

(0)
k i

(1)
k + s

(1)
k i

(0)
k

)
ε1−2. Eq. (3.3) and Eq. (3.19) yield for the incidence rate in

Community 1

ϕ1(ε1−2) = µ

(
1− 1

R0,1

)
+

2N2

N1 +N2

(R0,1 −R0,2)
(
R0,1 − 1− µ

γ+µ

)
R0,1R0,2 (R0,1 − 1)

ε1−2, (3.21)

and the incidence rate for Community 2 is obtained by exchanging the subscripts.
Again, whether ϕ1 increases or decreases depends on a threshold, provided that R0,1 >
R0,2. The incidence rate in Community 1 increases if the threshold

R0,1 > 1 +
µ

γ + µ
(3.22)
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is exceeded. In this case, the incidence rate in Community 1 increases although it
couples to Community 2 with a lower incidence rate. Analogously, if R0,2 > 1 + µ

γ+µ
,

the incidence rate in Community 2 decreases upon coupling to Community 1 although
Community 1 has a higher incidence rate. This threshold Eq. (3.22) for the incidence
rate is virtually identical to the threshold for the prevalence Eq. (3.20), since usually the
rate at which individuals recover is much higher than the rate at which they reproduce
and thus µ

γ+µ
≈ µ

γ
.

For diseases whose basic reproductive ratio R0 exceeds the threshold
Eq. (3.22), the incidence rate in a community – the rate of new
contagions – paradoxically increases upon coupling to another

community that has a lower incidence rate (i.e. a lower R0). In the
same way, it decreases upon coupling to a community that has a

higher incidence rate (i.e. a higher R0).

A surprising observation is that the condition for the occurrence of the paradoxical
effect (Eq. (3.20) and Eq. (3.22)) in each of the two populations is independent from
the other population. Hence, depending on the values of R0,1 and R0,2, either both
populations exhibit the paradoxical effect, one of the two or none of the populations.
There are thus three cases:

• Fully paradoxical case: If both populations exhibit the paradoxical effect, i.e.
R0,1 > R0,2 > 1 + µ

γ
, Community 1 is put at a disadvantage from the onset of

coupling, although it couples to Community 2, which has a lower prevalence.
Community 2, on the contrary, profits from the onset of coupling although it
couples to Community 1, which has a higher prevalence.

• Detrimental case or semi-paradoxical case: If only Community 1 exhibits
the paradoxical effect, i.e. R0,1 > 1 + µ

γ
> R0,2, both communities are put at a

disadvantage from the onset of coupling. Community 1 is paradoxically put at
a disadvantage as it couples to a community with a lower prevalence and Com-
munity 2 is put at a disadvantage since it does not exhibit the paradoxical effect
and thus coupling to a community with a higher prevalence is disadvantageous.

• Intuitive case: If neither community exceeds the threshold for the paradoxical
effect, i.e. 1+ µ

γ
> R0,1 > R0,2, all expectations are fulfilled. Community 1 profits

from the onset of coupling as it couples to Community 2 with a lower prevalence
and Community 2 is put at a disadvantage as it couples to a community with a
higher prevalence.

The equivalent classification holds for the incidence rate and is obtained by replacing
the threshold 1 + µ

γ
by 1 + µ

γ+µ
.

General coupling strength

Fig. 3.4 illustrates the three cases with regard to both the prevalence and the inci-
dence rate. It shows the endemic states of two coupled populations and the respective
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prevalence levels πk and incidence rates ϕk in dependence on the symmetric travelling
rate ε1−2. The endemic states for ε1−2 = 0 and ε1−2 →∞ and the respective incidence
rates and prevalence levels are computed from Eq. (3.3), Eq. (3.14), Eq. (3.16), and Eq.
(3.15), respectively. The results for finite ε1−2 are obtained by numerically integrat-
ing Eq. (3.7) until the stationary state is reached, from which the prevalence and the
incidence rate is consecutively computed. Fig. 3.4 confirms the prediction of the para-
doxical effect. In the intuitive case (top row in Fig. 3.4), the two populations ‘attract’
each other in the s − i-plane and correspondingly the prevalence and the incidence
rate monotonically converge. On the other side, in the fully paradoxical case (lower
row in Fig. 3.4), the two populations apparently ‘repel’ each other for small coupling
strengths, as predicted by Eq. (3.19). Accordingly, the difference in the prevalence
and the incidence rate thus initially increases. In between, in the detrimental case
(middle row in Fig. 3.4), Community 2 behaves as intuition suggests and monoton-
ically approaches Community 1, but Community 1, being in the paradoxical regime,
is ‘repelled’ by Community 2. Hence, the incidence rate and the prevalence increase
initially in both populations.
Illustratively speaking, the paradoxical effect consists in the counter-intuitive behaviour
of the endemic states of two populations not to approach each other when they are
coupled.

Neutral coupling strength

While the dependence of the incidence rate and the prevalence on the symmetric travel-
ling rate ε1−2 (Fig. 3.4) is qualitatively the same, there is a marked difference concerning
their asymptotic convergence. Eq. (3.14) predicts that the incidence rates ϕ1(ε1−2) and
ϕ2(ε1−2) converge to different limits ϕk(∞) = βks∞i∞ because of the different infection
rates. Whether the respective limit lies above or below the uncoupled level depends
on the choice of parameters (see Fig. 3.4). On the contrary, Eq. (3.14) predicts that
the prevalences π1(ε1−2) and π2(ε1−2) converge to the common limit π∞, which lies
in between the levels of the two uncoupled populations, i.e., π2(0) < π∞ < π1(0),
independent of the choice of parameters. In the paradoxical regime, the prevalence
of Community 1, thus, increases upon coupling and then decreases to π∞. Analo-
gously, the prevalence of Community 2 decreases for small coupling strengths and then
increases to π∞ in the paradoxical regime. This implies that...

There is a neutral coupling strength for each population for which the
prevalence is the same as in the uncoupled case.

This neutral coupling strength εn,k for the kth population can be found by determining
the endemic state of Eq. (3.7) under the constraint that ik is set to the uncoupled value
from Eq. (3.3), ik(εn,k) = µ

γ+µ
+ µ

βk
. The calculation yields the trivial solution εn,k = 0

and

εn,k =
γ

2

(
R0,k − 1− µ

γ

)
. (3.23)
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Figure 3.5: Illustration
of the neutral coupling
strength, being indepen-
dent of properties of the
coupled population. Preva-
lence π2 of Community 2 in
dependence on ε1−2 for dif-
ferent values of the infection
rate in Community 1. The
neutral coupling strength is
εn,2 = 0.245 in any case.
Remaining parameters are
β2 = 1.02, γ = 0.5, and
µ = 0.01.
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The neutral coupling strength for the respective population is shown in Fig. 3.4 and is
confirmed by results from the numerical integration. Since εn,k is determined by finding
the root of a quadratic equation, Eq. (3.23) together with the trivial solution εn,k = 0
constitute all coupling strengths that satisfy ik(ε1−2) = ik(0). Hence, the neutral
coupling strength εn denotes the limit up to which the paradoxical effect – that the
prevalence of a population does not approach the prevalence of a population to which
it couples – persists. The neutral coupling strength separates two coupling regimes.
Recalling the assumption R0,1 > R0,2, the separation has an inverse meaning for the two
populations. For Community 1, εn,1 separates the the regime in which the community
is put at a disadvantage (ε1−2 < εn,1) from the regime in which the community profits
from coupling (ε1−2 > εn,1). For Community 2, this order is reversed and εn,2 separates
the regime in which the community profits from coupling (ε1−2 < εn,2) from the regime
in which the community is put at a disadvantage (ε1−2 > εn,2) (shaded red and green,
respectively, in Fig. 3.4).

The paradoxical effect of the prevalence persists for coupling strengths
smaller than the neutral coupling strength, i.e., ε1−2 < εn. For coupling
strengths larger than the neutral coupling strength, i.e., ε1−2 > εn, the

paradoxical effect disappears.

The neutral coupling strength of a population surprisingly is independent of the prop-
erties of the population to which it couples. In particular, the neutral coupling strength
is independent of the infection rate of the coupled population. Fig. 3.5 shows the preva-
lence π2 of Community 2 for different values of the infection rate β1 in Community 1.
The neutral coupling strength, which is εn,2 = 0.245 according to Eq. (3.23), is clearly
independent of β1, as predicted.

Explanation of the paradoxical effect

In order to understand the occurrence of the paradoxical effect, it is necessary to
consider the simplest case where an external interaction with a population gives rise to
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this effect. For small coupling strengths, the connection to another population can be
seen as a constant external input of susceptible and infectious individuals, disregarding
the feedback on the other population that is involved in the process of coupling. The
simplest case in which the paradoxical effect arises is when the input of the infectious
individuals is neglected and only the input of susceptible individuals is considered:

∂ts
!

= 0 = −βsEiE + µ
(
1− sE

)
+ Jin (3.24a)

∂ti
!

= 0 = βsEiE − (γ + µ) iE (3.24b)

Jin denotes the external input, which should be expected to be inhibitory since the
addition of susceptible individuals should ease the epidemic rather than exacerbate
it. Coupling to a population with a lower infection rate then corresponds to Jin > 0
while coupling to a population with a higher infection rate corresponds to Jin < 0. Eq.
(3.24b) shows that the fraction of susceptible individuals in the endemic state remains
unchanged by the external input: sE = γ+µ

β
. Solving for iE then gives:

iE =
µ

γ + µ

(
1− γ + µ

β

)
+
Jin

γ + µ
(3.25)

The fraction of infectious individuals thus increases with a positive external input of
susceptible individuals. Clearly, this simplifying model does not capture the complexity
of the full model Eq. (3.7), but it clarifies the mechanism that is responsible for the
paradoxical effect: It is not the input of infectious individuals that is responsible for the
paradoxical effect but the input of susceptible individuals. To understand this counter-
intuitive effect of the input of susceptible individuals, it is helpful to envisage that the
SIR model is basically a predator-prey system in which the susceptible individuals can
be equated with prey and the infectious individuals can be equated with predators.
Creating a steady influx of prey eventually leads to an increase in the number of
predators.

The origin of the paradoxical effect is the positive or negative net flux
of susceptible individuals into the population, which acts an accelerant

or extinguisher, respectively, for the epidemic.

A comparable paradoxical effect was found in the external modulation of inhibitory in-
terneurons (Tsodyks et al., 1997). Tsodyks et al. (1997) study a model of two coupled
populations of excitatory neurons and inhibitory neurons, respectively. While excita-
tory neurons increase the activity of connected neurons, inhibitory neurons decrease the
activity of connected neurons. This is similar to an epidemic in a population consisting
of infectious and susceptible individuals, where a larger number of infectious individ-
uals mean a more severe epidemic (excitatory population) while a higher number of
susceptible individuals supposedly mitigate the epidemic (inhibitory population). Sim-
ilarly to Eq. (3.24), Tsodyks et al. (1997) find that an external and positive input onto
the inhibitory neurons, like Jin, can cause the activity of these very inhibitory cells
to decrease. While in their model the paradoxical effect consists in the equilibrium
activity of the inhibitory population to decrease, the similar paradoxical effect in the
present work consists in the ‘excitatory’ population to increase.
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3.2.4 Reduction of Spatial Complexity

In their famous city and villages example, May and Anderson (1984) consider a central
population that is surrounded by several villages to design optimal vaccination strate-
gies in spatially distributed populations. The vaccination strategy they devise, like the
strategy devised in a similar example by Hethcote and van Ark (1987), presupposes
a spatially homogeneous infection rate. When the infection rates vary spatially, the
endemic states of the individual populations vary as well and alter the requirements
for a vaccination strategy. It would thus be desirable if the effect of coupling on an
individual population could be efficiently predicted when more than two populations
are involved. The question in the city and villages example is then whether the col-
lection of villages has to be modelled explicitly to account for the effect of coupling
on the central city or whether the villages can be modelled as a single ‘surrounding
population’.
As a starting point, the endemic state of a metapopulation as a whole, consisting of M
individual populations (like the villages), is studied. The fraction of susceptible and
infectious individuals in the global endemic state are:

s̄(E) =

∑
k S

E
k∑

kNk

=

∑
kNks

E
k (E)∑

kNk

and ī(E) =

∑
k I

E
k∑

kNk

=

∑
kNki

E
k (E)∑

kNk

(3.26)

Here, E is the set of all 1
2
M(M−1) coupling strengths {εk−`}. Although the dependence

of s̄ and ī on E is in general not known, a relation between s̄ and ī can be established.
To determine this relation, Eqs. (3.6) must be employed, which determine the endemic
states (sEk , i

E
k ) by setting its left-hand sides to 0. The sum of Eq. (3.6a) and Eq. (3.6b)

multiplied by Nk then yields

0 = µ(Nk − Sk)− (γ + µ)Ik +
M∑
`=1

2N`Nk

Nk +N`

ε`−k

(
S`
N`

− Sk
Nk

+
I`
N`

− Ik
Nk

)
(3.27)

The last term is asymmetric under permutation of ` and k and therefore vanishes
after summation over k. This summation and subsequent weighting by

∑
kNk yield

equations in s̄ and ī and lead to the already known relation

ī =
µ

γ + µ
(1− s̄) . (3.28)

The relation between the fraction of infectious individuals and susceptible individuals
of a metapopulation as a whole in the endemic state is thus the same as for a single
population, irrespective of the set E . This was not true for the individual populations,
being embedded in a metapopulation (see Fig. 3.4). The endemic state of the metapop-
ulation can be, thus, described by defining the global basic reproductive ratio R̂0 := 1/s̄
or equivalently the effective infection rate β̂ := (γ + µ)/s̄. The endemic fraction of in-
fectious and susceptible individuals is then given by s̄ = 1/R̂0 and ī = µ/γ+µ (1− 1/R̂0) –
just like the endemic state of a single population with the basic reproductive ratio R̂0.
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N0, β0 N0, β0N, β1

N, β2

N, β3
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Figure 3.6: Effective
model of a city and vil-
lages example. Left: Full
model, in which a central
population N0 couples with
strength ε to four equally
large populations among
which coupling is negligible.
Right: Effective model, in
which the surrounding pop-
ulations are considered as
one effective population Ns,
whose infection rate is given
by the effective infection
rate β̂. The substitute cou-
pling strength εs depends
on ε and N .

The endemic state of a metapopulation as a whole, that consists of
individual populations with parameters (µ, γ,R0,k) and k ∈ {1, . . . ,M},
can be described as the endemic state of one single population with

parameters (µ, γ, R̂0).

The global reproductive ratio R̂0 is in general a complex function of the set E that
cannot be determined analytically.
Turning to the example of a central city that is surrounded by several villages, the
above finding allows the conjecture that the surrounding villages can be modelled as
a single ‘surrounding population’ with an infection rate given by β̂. Apparently, the
major challenge is that the dependence of β̂ on the set E is largely unknown. β̂ is only
known for singular sets, viz. E0 := {0, . . . , 0} and E∞ := {∞, . . . ,∞}. Like in the
special case M = 2 (see Eq. (3.14) and Eq. (3.15)), it is straightforward to show that

β̂(E0) = β̄h ≡
∑M

k=1 Nk∑M
k=1

Nk
βk

and β̂(E∞) = β̄a ≡
∑M

k=1Nkβk∑M
k=1Nk

, (3.29)

where β̄a and β̄h denote the weighted arithmetic and weighted harmonic mean of the
βk’s, respectively.
Fig. 3.6 illustrates a more general example where a central population of size N0 with
an infection rate β0 is surrounded by four populations with infection rates β1, . . . , β4

and equal size N , for simplicity. The infection rates are ordered such that β1 < β2 <
β3 < β4. In this full model, the four populations are assumed to couple to the central
population with equal strength ε whereas the coupling between the four populations
is negligible. Nevertheless, the four surrounding populations are indirectly coupled by
their common connection to the central population. The above conjecture predicts that
the effect of coupling on the central population can be approximated by an effective
model that consists only of the central population and one substitute population with
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Figure 3.7: Determina-
tion of the effective infec-
tion rate β̂. Left: Illus-
tration of the metapopu-
lation where a weaker di-
rect coupling accounts for
the indirect coupling in the
full model (see Fig. 3.6).
Right: Effective infection
rate β̂ = γ+µ

s̄ in dependence
on ε for infection rates
in the paradoxical regime
(upper graph) (R0,k ∈
{14.6̄, 15.3̄, 16.6̄, 17.3̄} and
γ = 36.5) and the intu-
itive regime (lower graph)
(R0,k ∈ {1.2, 1.3, 1.5, 1.6}
and γ = 0.0075). µ = 0.03.
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an infection rate β̂. This substitute population is further described by the population
size Ns := 4N and a coupling strength εs. This coupling strength has to be chosen such
that the absolute number of individuals leaving and arriving at the central population
coincides in the full model and the effective model. According to the definition of the
symmetric coupling strength εk−` (see paragraph preceding Eq. (3.6)), the number
of individuals leaving and arriving at the central population is 8ε N0N

N0+N
in the full

model and 8εs
N0N
N0+4N

in the effective model. The coupling strength between the central
population and the substitute population has thus to be chosen as

εs =
N0 + 4N

N0 +N
ε (3.30)

Choosing the central population to be twice as large as the surrounding populations,
i.e., N0 = 2N , this leads to εs = 2ε. Compared to the full mode, which is a 2M -
dimensional model with fixed parameters, the effective model is 4-dimensional model

with a parameter function β̂ : R
1
2
M(M−1)

+ 7→ R.

Ideally, the dependence of β̂ on ε, or equivalently εs, would be known. However, two
principle problems arise here: First, β̂ is the effective infection rate describing the
metapopulation of the surrounding populations without the central population (see
Fig. 3.7). It only depends on ε because of the indirect coupling via the central pop-
ulation. The influence of this indirect coupling on β̂ is, however, not known. It has
to be approximated by considering the metapopulation of the surrounding populations
and mimicing the indirect coupling by a weak direct coupling. This coupling again is
chosen such that the number of individuals leaving and arriving at each population
coincides with the full model. Second, the dependence of β̂(ε) in the metapopulation
of the surrounding populations (see Fig. 3.7) is not known analytically and thus has to
be computed numerically.
Two cases are considered in the following: (i) All five populations are in the paradoxical
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regime with regard to both the prevalence and the incidence rate, i.e., R0,k > 1+ µ
γ
, ∀ k.

(ii) All five populations are in the intuitive regime with regard to both the prevalence
and the incidence rate, i.e., R0,k < 1 + µ

γ+µ
, ∀ k. The approximation of β̂(ε) is shown

in Fig. 3.7 for the paradoxical (upper graph) and the intuituve case (lower graph).
Since the impact of coupling on the central population is to be considered, three fur-
ther subcases have to be distinguished in both the paradoxical regime and the intuitive
regime. (a) The central population has the lowest infection rate, β0 < βk, ∀ k, (b) the
central population has an medium infection rate β1 < β2 < β0 < β3 < β4, and (c) the
central population has the largest infection rate βk < β0, ∀ k.
Fig. 3.8 shows the comparison between the full model and the effective model, given
the effective infection rate β̂ shown in Fig. 3.7. First of all, the dependency of the
fraction of infectious individuals on the coupling strength in a metapopulation of five
populations shows that the paradoxical effect (that the endemic state of the central
population does not approach the average endemic state of the remaining populations)
persists for M > 2.
When the central population has the smallest or the highest infection rate, the re-
sults from the full model and the effective model almost perfectly coincide and are
virtually indistinguishable, for both the intuitive and the paradoxical case. When the
central population has an intermediate infection rate, the effective model reproduces
the general dependency of the fraction of infectious and of susceptible individuals on
the coupling strength, but the location of the maxima and minima are shifted to higher
values. This is likely due to the imperfect accounting of the effect of indirect coupling
on β̂. When β0 ≶ βk, ∀k, the dependency of β̂ on ε is apparently well captured by the
‘direct coupling approximation’ shown in Fig. 3.7. When the central population has an
intermediate infection rate, the indirect coupling via the central population alters the
dependence of β̂ such that the approximation becomes worse and the effective model
is not capable to perfectly reproduce the dependence of the fraction of susceptible and
infectious individuals on the coupling strength ε. Nonetheless, the similarity between
the models is remarkable.
Hence, it is in principle possible to describe the effect of coupling on a focal population
by one effective population describing the surrounding populations. When some of
the surrounding populations have larger and some have smaller infection rates, the de-
scription is only approximative as long as no better way of accounting for the indirect
coupling is found.

The effect of coupling that a set of populations exerts on the endemic
state of a focal population can be well described by the effect of one
single effective population substituting the set of populations. The

effect of the substituting population is virtually indistinguishable from
the effect of the full set of populations if these populations have
compared to the focal population either (i) all a smaller basic

reproductive ratio R0,k or (ii) all a larger basic reproductive ratio R0,k.
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3.2.5 Effective Coupling, Migration, and Home Locations

A pertinent question is which underlying model assumptions that become manifest in
the model properties are responsible for the occurrence of the paradoxical effects. To
answer this question, different model structures are examined in this section to iden-
tify how they relate to the model studied in the present work or to identify if they are
capable to exhibit paradoxical effects.
In the present work, the spread of a disease is modelled by (i) infectious individuals
who migrate and infect susceptible individuals all over the metapopulation and (ii) sus-
ceptible individuals who migrate and contract the disease all over the metapopulation
(see Eq. (3.6)). This migration scheme implicitly assumes that individuals migrate
diffusively without memory, i.e., a movement is not correlated with any movement at
an earlier point in time. For animal migration, this approach is appropriate to capture
the movement patterns of individuals (Fulford and Roberts, 2002; Keeling and Rohani,
2008) but for human populations, this modelling approach omits the fact that human
individuals regularly return to their home locations (González et al., 2008; Belik et al.,
2011). Human migration patterns in general have attracted a lot of attention recently
(Brockmann et al., 2006; Simini et al., 2012). The only recent incorporation of home
locations into epidemiological modelling (see Keeling and Rohani, 2002, and references
therein) has shown for example that the propagation speed of waves of infections does
not unboundedly grow with the travelling rate, but that the spreading speed saturates
with an increasing travelling rate of individuals (Belik et al., 2011).
In epidemiological metapopulation models, coupling is usually accounted for by a phe-
nomenological coupling that omits the actual movement of individuals and instead
only considers the effective force of infection that is caused by the movement (May
and Anderson, 1984; Hethcote and van Ark, 1987; Lloyd and May, 1996; Grenfell and
Bolker, 1998; Keeling, 2000; Keeling and Rohani, 2002; Hagenaars et al., 2004; Grassly
et al., 2005). Broadly speaking, there are, hence, three categories of epidemiological
metapopulation models: First, home location models, which account for home locations
and model individual migration explicitly. Second, migration models, which model mi-
gration explicitly but disregard home locations (like the model employed in the present
work). And third, direct infection models, which do not model individual’s migration
at all.
In the following, it is shown that (i) direct infection models, which do not account for
migration, do not exhibit paradoxical effects and (ii) that the migration model studied
in the present work is a special case of a more complex home location model.

Direct infection model

When the actual movement of individuals is omitted and susceptible individuals instead
contract the disease directly from remote populations, the coupling is determined by
an effective coupling parameter κ between zero and one. For two communities that are
coupled in this effective way, the temporal evolution of the susceptible and infectious
populations (assuming equal population sizes for simplicity) is usually modelled by (see
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e.g. May and Anderson, 1984; Keeling and Rohani, 2002; Grassly et al., 2005)

∂ts1 = µ(1− s1)− λ1(κ)s1 (3.31a)

∂ti1 = −(γ + µ)i1 + λ1(κ)s1 (3.31b)

∂ts2 = µ(1− s2)− λ2(κ)s2 (3.31c)

∂ti2 = −(γ + µ)i2 + λ2(κ)s2 . (3.31d)

Here, λi(κ) is the force of infection, which is generally a function of the fraction or
number of infectious individuals in all populations (i1 and i2 in this case) and of the
coupling parameter κ. The force of infection constitutes the only interaction between
the populations and individuals cannot migrate between them.
It is directly clear by setting the left-hand side of Eqs. (3.31) to zero that for any
coupling strength κ and any function λi(κ), the fraction of susceptible and infectious
individuals in the endemic states of the two populations will always fulfil the relation
of the uncoupled case

iEk =
µ

γ + µ
(1− sEk ) . (3.32)

This also holds for a metapopulation of any size as the size is only manifest in the
force of infection. This relation implies that the endemic states of the populations lie
on the line in the s− i-plane connecting the endemic states of the uncoupled case (see
Fig. 3.3). It also means that the endemic states cannot exhibit the paradoxical effects
described in Sec. 3.2.3 and shown in Fig. 3.4 as this would require that iEk ≷

µ
γ+µ

(1−sEk )
where ≷ depends on whether βk is the larger or smaller infection rate in case of two
communities.
Naturally, this merely shows that this model does not exhibit the same paradoxical
effect as the migration model. To proof that no paradoxical effect occurs in this model,
it has to be shown that the endemic prevalence of a community does not increase above
its uncoupled level if it couples to a community with a lower infection rate, i.e.:

β1 > β2 ⇒ ∀κ ∈ (0, 1] : iE1 (κ) < iE1 (0) (3.33)

The proof of this implication is performed in two consecutive steps: First, it is shown
that the endemic prevalence is either always smaller or always larger than in the un-
coupled case, i.e. ∀κ ∈ (0, 1] : iE1 (κ) > iE1 (0) ∨ ∀κ ∈ (0, 1] : iE1 (κ) < iE1 (0). The
correctness of the implication then follows in the second step by showing that β1 > β2

implies that there is some κ ∈ (0, 1] for which iE1 (κ) < iE1 (0) as the first step shows
that this statement is equivalent to the right hand side of Eq. (3.33).
Making the legitimate assumption that iE1 (κ) is a continuous function of κ, the state-
ment that iE1 (κ) is either always smaller or always larger than iE1 (0) is true if and only
if iE1 (κ) 6= iE1 (0) ∀κ ∈ (0, 1]. The latter can be shown by proof by contradiction: As-
suming that iE1 (κ) = iE1 (0) = µ

γ+µ
− µ

β1
for some 1 ≥ κ > 0 reduces the system Eqs.

(3.31) together with the relation iEk = µ
γ+µ

(1− sEk ) to two equations in one variable iE2 :
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0 = µ

(
1− γ + µ

β1

)
− γ + µ

β1

λ1

(
iE1 (0), iE2 , κ

)
(3.34a)

0 = µ

(
1− γ + µ

β2

)
− γ + µ

β2

λ2

(
iE1 (0), iE2 , κ

)
(3.34b)

At this point, the force of infection has to be specified to proceed. A common choice
of the force of infection in a metapopulation model of this kind is:

λ1 (i1, i2, κ) = (1− κ)β1i1 + κβ2i2 (3.35a)

λ2 (i1, i2, κ) = (1− κ)β2i2 + κβ1i1 (3.35b)

Note, however, that the correctness of the proof does not depend on the exact form
of the force of infection. A different choice of the functional dependence of λk on the
fractions of infectious individuals leads to the qualitatively same results. Inserting Eqs.
(3.35) into Eqs. (3.34) leads to

0 =
(
−β1µ+ (γ + µ)

(
iE2 β2 + µ

))
κ (3.36a)

0 = −(γ + µ)iE2 +

(
γ + µ

µ
iE2 − 1

)(
iE2 β2(κ− 1)− κµ

(
β1

γ + µ
− 1

))
(3.36b)

For κ 6= 0 the first equation directly gives sE2 = µ
γ+µ

β1−γ−µ
β2

. Plugging this into the
second equation gives:

0 = − µ

γ + µ

β1 − γ − µ
β2

(β1 − β2) (3.37)

Since β1 > γ + µ, this equation implies β1 = β2 contradicting the initial assumption
that β1 > β2. Thus, iE1 (κ) 6= iE1 (0) ∀κ ∈ (0, 1] and hence the statement ∀κ ∈ (0, 1] :
iE1 (κ) > iE1 (0) ∨ ∀κ ∈ (0, 1] : iE1 (κ) < iE1 (0) is true since iE1 (κ) in continuous.
To proof the statement β1 > β2 ⇒ ∀κ ∈ (0, 1] : iE1 (κ) < iE1 (0) it remains to show that
iE1 (κ) < iE1 (0) for some κ ∈ (0, 1] if β1 > β2. For κ = 1/2 the force of infection becomes
independent of the community, i.e.,

λ := λ1

(
i1, i2,

1

2

)
= λ2

(
i1, i2,

1

2

)
=
β1i

E
1 + β2i

E
2

2
. (3.38)

The determination of the endemic states from Eqs. (3.31) in conjunction with the
relation iEk = µ

γ+µ
(1− sEk ) is then determined by

0 = µ(1− sE1 )− λsE1 (3.39a)

0 = µ(1− sE2 )− λsE2 , (3.39b)

which implies that sE1 = sE2 and thus iE1 = iE2 =: iE. With λ = β1+β2
2

iE the fraction of
infectious individuals is determined to be:

iE =
µ

γ + µ
− 2µ

β1 + β2

(3.40)
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This is smaller than the fraction of infectious individuals in Community 1 in the un-
coupled case if and only if β1 >

β1+β2
2

which is in turn equivalent to β1 > β2. Hence,
iE1 (κ) < iE1 (0) for some and thus all κ ∈ (0, 1] if β1 > β2, completing the proof.

A direct infection model, which does not allow for individuals to move,
is not capable of exhibiting any kind of paradoxical behaviour for a

reasonable choice of the force of infection.

Home locations model

Keeling and Rohani (2002) have studied the relation between a home location model
and a direct infection model and answered the question in which case the latter is a
good approximation for the more complex model that accounts for both home loca-
tions and migration. Their model shall be presented here to subsequently show that
the model studied in the present work is a special case of the model that accounts for
home locations.
The SIR model by Keeling and Rohani (2002) consists of two locations where each in-
dividual can be identified by its origin and its current location. In their nomenclature,
Sxy refers to the absolute number of susceptible individuals originating from population
x being currently in population y. Correspondingly, Ixy and Nxy denote the absolute
number of infectious individuals and the absolute number of individuals, respectively,
from population x currently located in population y. In their model, susceptible indi-
viduals can only contract the disease from infectious individuals located in the same
population, as in the model introduced in Sec. 3.2.2, but the infection rate β is the
same in both populations. Irrespective of their home location, individuals leave their
home location with rate ρ and return to their home location with rate τ . With the
assumption tacitly made by Keeling and Rohani (2002) that the birth and death rate
µ are equal and denoting the rate of recovery by γ as before, this model is described
on the mean-field level by

∂tSxx = µ (Nxx − Sxx)− βSxx
Ixx + Iyx
Nxx +Nyx

+ τSxy − ρSxx (3.41a)

∂tSxy = µ (Nxy − Sxy)− βSxy
Ixy + Iyy
Nxy +Nyy

+ ρSxx − τSxy (3.41b)

∂tIxx = − (γ + µ) Ixx + βSxx
Ixx + Iyx
Nxx +Nyx

+ τIxy − ρIxx (3.41c)

∂tIxy = − (γ + µ) Ixy + βSxy
Ixy + Iyy
Nxy +Nyy

+ ρIxx − τIxy . (3.41d)

These equations describe an 8-dimensional system since the pair (x, y) ∈ {(1, 2), (2, 1)}.
When the return rate τ is much larger than the recovery rate γ, Keeling and Rohani
(2002) show that this 8-dimensional system reduces to the 4-dimensional phenomeno-
logical direct infection model. Physically speaking, the phenomenological model is
appropriate whenever the time spent in locations different from the home location is
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much shorter than the duration of the infection. Keeling and Rohani (2002) have thus
revealed the relationship between the phenomenological model and the more complex
model that accounts for migration and home location but needs twice as many dimen-
sions to describe its dynamics.
The model employed in the present work (see Eqs. (3.6)) lies somewhat in between these
two models. It does not account for home locations but it models migration explicitly
as the coupling mechanism and requires as few dimensions as the phenomenological
model. The resulting question is: How does the complex model by Keeling and Rohani
(2002) that accounts for home locations relates to the model employed in this work?
To answer this question it is necessary to extend the model by Keeling and Rohani
(2002), Eqs. (3.41), in two ways: First, the infection rate has to be dependent on the
location, i.e., β → βx/y. Second, the rate at which individuals leave and return to their
home locations has to depend on the location, i.e., ρ→ ρx/y and τ → τx/y. With this,
Eqs. (3.41) become

∂tSxx = µ (Nxx − Sxx)− βxSxx
Ixx + Iyx
Nxx +Nyx

+ τySxy − ρxSxx (3.42a)

∂tSxy = µ (Nxy − Sxy)− βySxy
Ixy + Iyy
Nxy +Nyy

+ ρxSxx − τySxy (3.42b)

∂tIxx = − (γ + µ) Ixx + βxSxx
Ixx + Iyx
Nxx +Nyx

+ τyIxy − ρxIxx (3.42c)

∂tIxy = − (γ + µ) Ixy + βySxy
Ixy + Iyy
Nxy +Nyy

+ ρxIxx − τyIxy . (3.42d)

Again, the pair (x, y) ∈ {(1, 2), (2, 1)}. To establish the conditions for this 8-dimensional
system to be equivalent to the 4-dimensional system Eqs. (3.6), the temporal evolution
of the absolute number of susceptible and of infectious individuals at the two locations
has to be considered, i.e., Sx := Sxx + Syx and Ix := Ixx + Iyx, respectively. Note that
these numbers are not the numbers of susceptible and infectious individuals with x
as home location but the numbers of susceptible and infectious individuals currently
located at x. From Eqs. (3.42) the temporal evolution of Sx and Ix is

∂tSx = µ (Nx − Sx)− βxSx
Ix
Nx

+ τySxy − ρxSxx + ρySyy − τxSyx (3.43a)

∂tIx = − (γ + µ) Ix + βxSx
Ix
Nx

+ τyIxy − ρxIxx + ρyIyy − τxIyx (3.43b)

Here, the current population size at x is denoted by Nx := Nxx +Nyx. If the temporal
evolution of Sx and Ix is supposed to dependent only on quantities like Sx, Ix, and Nx

and not on quantities like Sxy, the rate at which individuals leave a certain location must
be independent from their home location, i.e., ρx = τx for x ∈ {1, 2}. This requirement
is evidently fulfilled when individuals do not possess a home location. But strictly
speaking, the requirement only means that the rate at which an individual leaves a
certain location only depends on his current location and not on his home location.
An example for this situation are different municipal districts, where individuals spent
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half their (awake) day at work in one district and the other half at home in a different
district. In that case the rate at which they leave work equals the rate at which other
individuals living in that district leave their homes for work. Irrespective of the reason,
Eqs. (3.43) become

∂tSx = µ (Nx − Sx)− βxSx
Ix
Nx

− ρxSx + ρySy (3.44a)

∂tIx = − (γ + µ) Ix + βxSx
Ix
Nx

− ρxIx + ρyIy (3.44b)

if ρx = τx. By equating ρx with εyx and considering the fractions sx := Sx
Nx

and ix := Ix
Nx

,
these equations yield

∂tsx = µ (1− sx)− βxsxix + 2εx−y
Ny

Nx +Ny

(sy − sx) (3.45a)

∂tix = − (γ + µ) ix + βxsxix + 2εx−y
Ny

Nx +Ny

(iy − ix) (3.45b)

where εx−y is used as defined in Sec. 3.2.2. This, however, is exactly the system
described by Eqs. (3.6) for M = 2. This analysis, hence, shows that the epidemiological
model by Keeling and Rohani (2002), which accounts for home locations of individuals,
reduces to the model introduced in the present work when the rate at which individuals
leave a certain location is independent of whether this location is their home location
or not. This includes but is not limited to the case where individuals have no home
location.
This finding completes the relation between the three models: The model by Keeling
and Rohani (2002) can be approximated by the direct infection model in the limit of
very short stays away from home (as shown in Keeling and Rohani, 2002) and reduces
to the migration model introduced here when the travelling rates of individuals only
depend on their current location.

The migration model introduced in Sec. 3.2.2 is a special case of the
home locations model by Keeling and Rohani (2002). The paradoxical
effects observed in the migration model can thus be expected to persist

in more complex models for at least a finite range of parameters.

The major advantage of the direct coupling model over the home locations model is that
it requires only half as many dimensions to study a spatially extended metapopulation.
The migration model, introduced in Sec. 3.2.2, however, shares this advantage without
disregarding the mobility of individuals.

3.3 Waning Immunity

The SIR model, as specified in Sec. 3.2.1, describes diseases that exhibit recurrent
epidemics. These diseases elicit life-long immunity upon recovery and the fact that
every newborn is born susceptible gives rise to the irregular oscillation of the fraction of
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Figure 3.9: Schematic de-
piction of a SIRS model
with demography, i.e., a
nonspatial compartmental
model for diseases that
elicit temporal immunity.

infectious individuals. Another class of diseases that exhibit recurrent epidemics elicit
only temporal or waning immunity (see Keeling and Rohani, 2008). In this case, the
dominant mechanism that causes the irregular oscillations is the transition of recovered
individuals to the class of susceptible individuals (see Fig. 3.9). This model is therefore
referred to as the SIRS model. For this class of diseases the same paradoxical effect as
in the SIR model can be observed. The corresponding results shall be presented in the
following.
The infection and the recovery process are identical to the SIR model (see Sec. 3.2.1)
and occur with rates β and γ, respectively. The rate at which individuals die equals the
rate at which they produce offspring and are identically to the SIR model denoted by
µ. In contrast, immunity, which is acquired during the infection, is lost with rate η. A
derivation, corresponding to the one performed in Sec. 3.2.1, shows that the nonspatial
compartmental SIRS model is thus described by

∂ts = −βsi+ µ (1− s) + η (1− s− i) (3.46a)

∂ti = βsi− (γ + µ)i (3.46b)

Recalling the basic reproductive ratio R0 = β/γ+µ, the endemic state of the nonspatial
SIRS model is (Anderson and May, 1991; Keeling and Rohani, 2008):

sE =
1

R0

iE =
µ+ η

γ + µ+ η

(
1− sE

)
(3.47)

The endemic state of the SIRS model with demography has thus the same form as the
endemic state of the SIR model with demography Eq. (3.3). Consistently, the SIRS
model reduces to the SIR model for η = 0.
Adding the terms for the migration between two populations, yields

∂ts1 = −β1s1i1 + µ (1− s1) + η(1− i1 − s1) +
2N2

N1 +N2

ε1−2 (s2 − s1) (3.48a)

∂ti1 = β1s1i1 − (γ + µ)i1 +
2N2

N1 +N2

ε1−2 (s2 − s1) (3.48b)

∂ts2 = −β2s2i2 + µ (1− s2) + η(1− i2 − s2) +
2N1

N1 +N2

ε1−2 (s1 − s2) (3.48c)

∂ti2 = β2s2i2 − (γ + µ)i2 +
2N1

N1 +N2

ε1−2 (s1 − s2) . (3.48d)
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Assuming that the first community has a higher infection rate than the second commu-
nity, i.e., β1 > β2, it should be expected that the prevalence π1 and the incidence rate
ϕ1 decreases as Community 1 couples to Community 2, which has a lower prevalence
π2 and incidence rate ϕ2. Accordingly, it should be expected that the prevalence and
the incidence rate in Community 2 increase upon coupling.
However, as in the SIR model, the prevalence in Community 1 increases when the
corresponding threshold

R0,1 > 1 +
(µ+ η)(γ + µ+ η)

γ(γ + µ)
(3.49)

is exceeded. Analogously, the prevalence in Community 2 decreases if R0,2 > 1 +
(µ+η)(γ+µ+η)/γ(γ+µ). This threshold becomes identical to the threshold Eq. (3.20) for
η = 0. However, for η 6= 0 this threshold is larger than the corresponding threshold in
the SIR model Eq. (3.20).
The threshold to observe a paradoxical increase of the incidence rate in Community 1
ϕ1 is obtained in the same way as described in Sec. 3.2.3:

R0,1 > 1 +
(µ+ η)(γ + µ+ η)

γ(γ + µ) + (µ+ η)(γ + µ+ η)
(3.50)

Again, this threshold becomes identical to the corresponding threshold in the SIR
model, Eq. (3.22), for η = 0. The neutral travelling rate εn, at which the coupling
leads to a prevalence level in Community 1 equal to the uncoupled case, is corresponding
to Eq. (3.23)

εn =
1

2

γ(γ + µ)

γ + µ+ η

(
R0,1 − 1− (µ+ η)(γ + µ+ η)

γ(γ + µ)

)
. (3.51)

Like in the SIR model, the condition for the neutral travelling rate to exist (εn > 0) is
identical to the threshold for the paradoxical effect to occur. The travelling rate, too,
becomes identical to its SIR counterpart Eq. (3.23) for η = 0, as expected.
The SIRS model is dynamically similar to the SIR model. The preceding results show
that the paradoxical effect that the endemic states of two communities that are cou-
pled do not approach each other is also a common feature of both models. Since the
thresholds are different in the two models, the question whether typical diseases are ex-
pected to exceed these threshold and exhibit the paradoxical effects must be answered
separately for the two models.

3.4 Discussion

The present work establishes a yet unknown paradigm. In stark contrast to the com-
mon believe, it is predicted that the health situation of a community (as quantified by
the prevalence and the incidence rate) can paradoxically improve due to connections
to communities with a worse health situation. On the contrary, the health situation
can deteriorate due to coupling to communities with a better health situation.
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Self-evidently, the pertinent question is: “Can real diseases be expected to exhibit the
paradoxical effects?” Typical human diseases that elicit life-long immunity and can
thus be modelled in the SIR framework include measles, rubella, and mumps. These
three diseases have basic reproductive ratios in the range 14-18, 6-16, and 14-18, re-
spectively (see Anderson and May, 1991, and references therein). The threshold for
both the prevalence and the incidence rate to exhibit the paradoxical effect for these
diseases lies at around R0 > 1.006 (assuming that the infectious period of the disease
γ−1 is around a week and that the average generation time is µ−1 ≈ 33 years). The
threshold is, hence, greatly exceeded, which is yet no peculiarity of theses diseases.
The reason for the low threshold is that the life expectancy of an individual is orders
of magnitudes larger than the duration of these illnesses.
Provided that a disease exhibits the paradoxical effects in principle, the next question is
which kind of connections can be expected to exhibit it. The neutral coupling strength
gives on upper bound to the occurrence of the paradoxical effect (with respect to the
prevalence) in terms of the symmetric travelling rate. For a disease with R0 = 16 and
the duration of the infectious period and the average generation time as above, the
paradoxical effect persists up to travelling rates of around 375a−1. This means that for
a disease like measles, rubella or mumps, the paradoxical effect will occur for any two
communities between which individuals travel less often than once per day on average.
This, however, applies to most human cities or villages.
The same holds true for diseases that elicit only temporal immunity. The predominant
example is mouth-and-foot disease in cloven-hoofed animals such as cows. Here, the
threshold differs between different animal species because immunity wanes at different
rates and the life expectancy of farm animals strongly depends on their use. In cows
for example, immunity persists approximately for a year (η = 1) and the average life
expectancy of a cow used for milk production is 5 years (µ = 0.2). Assuming that
infected cows remain infectious for about 5 days (γ ≈ 70), the threshold for both the
prevalence and the incidence rate to exhibit the paradoxical effect is around R0 > 1.02.
Although the reproductive ratio of mouth-and-foot disease varies considerably between
2-70 (Woolhouse et al., 1996), the thresholds are certainly exceeded. For these values,
the corresponding neutral travelling rate lies between 0.1d−1 and 6.5d−1. The paradoxi-
cal effects of coupling infectious populations is, hence, not expected to be the exception
but rather the rule.
The results in the present work, yet, depend on how coupling is introduced in the
model. The finding in Sec. 3.2.5 that the present model can be considered as a special
case of a model that allows for home locations of the individuals (Keeling and Rohani,
2002), raises the expectation that the results remain valid for at least a finite set of
parameters in more general models. The finding in Sec. 3.2.5 that no paradoxical
effects can occur in models that do not explicitly account for the migration of individ-
uals suggests that migration is the decisive model property that is responsible for the
occurrence of the paradoxical effects.
Spatial heterogeneities arise on many scales. It is therefore important to know in which
cases the spatial heterogeneity has to be explicitly modelled and which cases it can be
safely ignored. In this respect, the analysis in Sec. 3.2.4 shows that the impact of a
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set of populations on a focal population can efficiently be modelled without explicitly
accounting for the full spatial complexity of the non-focal populations when they have
all either a smaller or all a larger infection rate. This suggests that regions can be
grouped together when their disease parameters are well distinct from other regions.
However, spatially resolved data of the infection rates is nonetheless necessary to cor-
rectly model the substitute community in this case.

78



3.4. Discussion

79



Chapter 3. Immunity Eliciting Diseases

80



Chapter 4

Conclusions and Outlook

In this dissertation, I studied the cyclic dynamics of spatially heterogeneous popula-
tions of three species for an ecological problem and an epidemiological problem.

In Chapter 2, the lattice based population model was introduced, which describes
the interaction of three species that cyclically compete while they diffusively migrate
and reproduce. Since it has been recognised that the mobility of individuals plays a
pivotal role for the stability of coexistence, the question how to determine the critical
mobility in a feasible way has become of central interest and motivated the present
work.
The lattice based population model exhibits – as the original model by (Reichenbach
et al., 2007a) – a transition from a spatially homogeneous, i.e., well-stirred state to
a pattern forming state in which the three species form entangled and rotating spiral
waves. By analysing the typical time at which one of the species becomes extinct first,
I could show that this transition does not uniquely correspond to a transition from
unstable coexistence to stable coexistence – as it was conjectured. I found that the
typical time of extinction scales logarithmically with the system size for large mobil-
ities, t? ∝ ln(N), and exponentially for very low mobilities, t? ∝ eN , – confirming
that coexistence is unstable and stable, respectively, in these two cases. However, I
also found a broad regime in which the scaling of the typical time of extinction rather
resembles a power law dependency, t? ∝ Nϑ (see Sec. 2.3.2). This scaling implies that
coexistence is only marginally stable, although spirals form in this mobility regime.
Using the stability properties of coexistence is, hence, only of limited use to charac-
terise the transition between the well-stirred and the spiralling state.
In contrast to this, the newly introduced carrying capacity allows to sharply determine
the critical mobility that marks the onset of the formation of spirals. The analysis of
the typical time of extinction reveals that it increases with a growing carrying capacity
in the spiralling state but it decreases with a growing carrying capacity in the well-
stirred state. These opposite behaviours allow to determine the critical mobility as the
one for which both states influence the dependence of the typical time of extinction on
the carrying capacity equally strong – turning it independent thereof (see Sec. 2.3.3).
In contrast to earlier models, the introduction of the carrying capacity thus allows to
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sharply discriminate the two dynamical regimes.
Apart from the question of stability, I also addressed the question of the emergence
of cyclic competition among three species. The latticed based population model for
four species allows to study under which conditions a (necessarily) unstable system of
four species collapses to a system of three cyclically competing species (see Sec. 2.5).
Here, I found that the probability that cyclic competition emerges after the first of the
four species has become extinct exhibits a clear transition with regard to the mobility.
While cyclic competition emerges for a low mobility, a mobility above a critical point
ensures the emergence of a hierarchical competition. The mobility of individuals is
thus not only pivotal to the stability but also to the emergence of cyclic competition
among three species.

From the perspective of ecology, allowing more than one individual to coexist on a
lattice site makes it possible to study more realistic and complex situations. In eco-
logical systems, the assumption of a spatially homogenous environment for example is
clearly a simplification. In general, the availability of resources will depend on local
conditions like precipitation and soil fertility and will be subject to spatial stochastic
fluctuations. Since the carrying capacity in the LBPM is not a property of the inter-
acting species (like the reaction rates µ, σ, and ε) but a property of the environment, it
is possible to model such a spatially heterogenous environment by introducing a space
dependent carrying capacity C(x, y).
From the perspective of evolutionary game theory, two player games are the simplest
approach to social interactions. In general, the outcome of such interactions will de-
pend on the strategic choices of more than two agents. The renowned Public Goods
Game, being the n-person analogue of the Prisoner’s Dilemma, is only one of many
examples. In the LBPM the reaction rates generically depend on the make-up of the
entire local population. As long as the carrying capacity is chosen to be larger than
number of agents relevant to the outcome of the game, more complex games involving
more than two interacting agents can easily be accounted for.

In the last years, cyclic competition in conjunction with the ability of individuals
to migrate has attracted a lot of attention (Reichenbach et al., 2007a,b, 2008; Reichen-
bach and Frey, 2008; Peltomäki and Alava, 2008; Zhang et al., 2009; Shi et al., 2010;
Wang et al., 2010; Yang et al., 2010; Ni et al., 2010; He et al., 2010, 2011; Wang et al.,
2011; Rulands et al., 2011). The perhaps most relevant question that remains unsolved
in this field pertains to the conditions under which three cyclically competing species
form entangled travelling spiral waves. The model by Reichenbach et al. (2007a) and
its consecutive studies possess the property that the overall population density is not
conserved. Similar models where the overall population is conserved (e.g. Frean and
Abraham, 2001) do not exhibit traveling spiral waves (Peltomäki and Alava, 2008; Re-
ichenbach and Frey, 2008). Some authors, hence, believe that the question is settled
(He et al., 2010). However, Ni et al. (2010) have employed a continuous space model
of cyclic competition among species and observed the emergence of spirals even in the
absence of individual mobility and despite a conserved overall population. The ques-
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tion, which prerequisites are really necessary and which are sufficient for the formation
of spirals thus remains open.
While the stability of cyclic competition among three species has attracted a consider-
able amount of interest, the question of the emergence thereof has been rarely addressed
(Corl et al., 2010). In this respect, the study of a four species system is an important
step in this direction as the emergence of cyclic competition is a promising subject for
future studies.

In Chapter 3, a metapopulation model was introduced that describes spatially sep-
arated populations that are affected by a disease that elicits temporal or life-long
immunity upon recovery. Since the influence of regional variations of, e.g., climatic
conditions or cultural habits on the infection dynamics become ever more important in
a modern world, this metapopulation model takes into account that the infection rate
may vary from subpopulation to subpopulation.
In this framework, I could show that coupling two subpopulations does not necessar-
ily cause the fraction of infectious individuals in the two subpopulations to approach
each other. In contrast, coupling to a subpopulation with a higher fraction of infectious
individuals can either lead to an increase or a decrease of the fraction of infectious indi-
viduals. If the infection rate of a population exceeds the threshold derived in Sec. 3.2.3
(for diseases that elicit life-long immunity) or Sec. 3.3 (for diseases that elicit temporal
immunity), the fraction of infectious individuals paradoxically decreases upon coupling
to a subpopulation with a higher fraction of infectious individuals. Equivalently, it
increases upon coupling to a subpopulation with a lower fraction of infectious indi-
viduals. This paradoxical effect occurs as long as the travelling rate between the two
populations is smaller than the neutral travelling rate (see Sec. 3.2.3 and Sec. 3.3).
For larger travelling rates, the fraction of infectious individuals behaves as intuition
suggests and approaches the level of the populations to which it couples.
This model furthermore allowed to study in which cases the dynamics of a spatially
complex metapopulation can be effectively modelled as the dynamics of a single pop-
ulation. I could show that the influence that a set of populations exerts on a focal
population can be modelled as the influence of a single substitute population if the
infection rates in the populations of the set are either all smaller or all larger compared
to the focal population. This suggests that regions can be grouped together when their
disease parameters are well distinct from those in other regions.

The recent threat of an influenza pandemic (Hufnagel et al., 2004) has fuelled the
debate on the effectiveness of travel restrictions (Hollingsworth et al., 2006; Ferguson
et al., 2006; Epstein et al., 2007; Bajardi et al., 2011). It is broadly accepted that
travel restrictions alone are only capable to delay the spread of a disease up to some
weeks. However, these studies all presume tacitly that the infection rate does not vary
across the world. The paradoxical effects, which occur when spatial variation of the
infection rate is allowed for, have potentially profound consequences for the design
of such control measures. The present work shows that travel restrictions, trying to
reduce travels to communities with lower health standards and to promote travels to
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communities with higher health standards, can even have the opposite of the intended
effect and exacerbate the health situation in the community.
Challenges that should be addressed in future works accordingly concern the design of
control measures. Strategies that aim at eradicating or stemming diseases in spatially
distributed populations by imposing travel restrictions should be designed with par-
ticular care with regard to a spatially varying infection rate. Most importantly, future
studies should address the impact of spatially varying infection rates on the initial
spread of a disease.
This work establishes that heterogeneity of the infection rate can have a profound im-
pact on the effect of coupling on the endemic states of a disease. Since the present
model omits epidemiological details like a latent phase of a disease, a temporal varia-
tion of the infection rate, or age groups, the validity of the results for different diseases
remain to be established in future studies. Similarly, questions pertaining to the course
of a disease or more generally the dynamics of proliferation when the infection rate de-
pends on the location of infectious individuals, remain open and are important to be
answered in the future.
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so nicht möglich gewesen.
Genau so danke ich Jakob und Wolfgang, die mir immer wieder Tipps und kurze
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