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ABSTRACT

The properties of polymer films and droplets at substrates of different topography are
studied employing particle-based simulation techniques (Molecular Dynamics). The
liquid is modeled by short coarse-grained polymer chains of 10 monomers, while the
temperature of the system is controlled by the Dissipative Particle Dynamics (DPD)
thermostat that conserves momentum locally and provides correct hydrodynamics.
Throughout this dissertation we show that macroscopic concepts cannot be straight-

forwardly extrapolated down to microscopic systems.

At first the flat topography of the substrate is studied. A parameter-passing technique
is explored that bridges particle-based MD simulations with continuum descriptions
(CD) of the liquid. In particular, the liquid-vapor, solid-liquid and solid-vapor inter-
facial tensions, and the interface potential are determined by MD simulations. This
information is then introduced into continuum models accounting for (i) the full cur-
vature and (ii) a long-wavelength approximation of the curvature (thin film model). A
comparison of the dependence of the contact angle on droplet size indicates that the

theories agree well if the contact angles are defined in a compatible manner.

Then, we proceed with substrates that are structured symmetrically. Their surface rep-
resents a regular array of grooves. The crucial feature of this system is that the typical
dimensions of corrugations are of the order of ten diameters of fluid particles. We
investigate the influence of corrugation, wettability and pressure on slippage and fric-
tion at the solid-liquid interface. For symmetrically structured substrates we observe
a gradual crossover between the Wenzel state, where the liquid fills the grooves, and
the Cassie state, where the corrugation supports the liquid and the grooves are filled
with vapor. Using two independent flow set-ups, we characterize the near-surface flow
by the slip length, J, and the position, z},, at which viscous and frictional stresses are
balanced according to Navier’s partial slip boundary condition. This hydrodynamic
boundary position depends on the pressure inside the channel and may be located
above the corrugated surface. In the Cassie state, we observe that the edges of the

corrugation contribute to the friction.
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Finally, we consider asymmetrically structured substrates. This type of topography im-
plies an asymmetric response of the droplet’s shape onto periodic vibrations. Hence,
directed motion of droplets can be achieved. By an analytical phenomenological model
we explain the direction of motion and verify it by several computations. Then, the
mechanism of the driving is investigated: along with the commonly described mo-
tion due to contact lines, we find that the contact area itself may additionally drive the
droplet. We show that modifying the roughness of the substrate, one controls the dissi-
pations of the input power due to substrate vibrations and different regimes of droplet

motion may be established.
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CHAPTER 1

INTRODUCTION

God made the bulk; surfaces were
invented by the devil.

Wolfgang Pauli

Liquid motion has enchanted many generations of philosophers, scientists and engi-
neers. Probably, one of the first individual attempts to understand liquid motion was
made by Archimedes (3rd century BC) and led to the comprehension of the stabil-
ity of floating bodies and buoyancy. The next great impact to the field, initiating the
continuous development of the fluid mechanics and hydrodynamics, was provided by
Leonardo da Vinci in 15th century AD [1]. His ingenious sketches, installations and
experiments contributed to the continuum principle and visualization of the flows in

the presence of obstacles as depicted in Fig. 1.1a.

The other major contribution in understanding properties of a liquid was connected
with wetting as shown in Fig. 1.1b. Thomas Young, who obtained the doctoral degree
in Gottingen in 1796, described a balance of the forces acting on the contact line of the
droplet, lying on a plane solid surface, in equilibrium with its vapor. This macroscopic
equation relates the equilibrium contact angle 6g of the drop and interfacial tensions
between the vapor (V), liquid (L) and solid (S) phases [2]:

YsL + v cos g — ysy =0, (1.1)
where for simplicity we dropped the indexes of the liquid-vapor surface tension.

These days, the main trend in liquid mechanics is connected with progressing minia-
turization of devices. One can point out the following advantages of scaling down the
everyday macroscopic to micro- or even nanoscopic setups [3, 4]: reduced amount of
required sample; possibility to create compact and portable integrated devices; low

production costs and fast production cycles.

Driven mainly by technological applications [3], microfluidics pursues its objective in
development of entire bio- or chemical laboratories on the surface of silica [5] or poly-

mer, usually poly(dimethylsiloxane) or PDMS, chips [6]. In microelectronics, this is

1
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Vapor
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(a) (b)
Figure 1.1: (a) Shown is a part from the Codex Leicester by Leonardo da Vinci with a
sketch ”Studies of water passing obstacles and falling” (ca. 1508). (b) An illustration of the
Young equation, connecting interfacial tensions between phases and the contact angle of
the droplet, resting at equilibrium on a flat substrate.

already the case [7], and plenty of devices for biological purposes are developed, e.g. a
chemostat used to study the growth of microbial populations [8] or inexpensive diag-

nostic devices used to carry out sandwich immunoassays [9] as shown in Fig. 1.2.

As the miniaturization continues, nanofluidics separates into an independent scien-
tific field [10]. Without a doubt, the interest to micro- and nanofluidics will persist
in the future. To create sophisticated small devices on the basis of fluids, one needs
to understand how the macroscopic laws are modified when applied to the micro-
and nanoscopic amount of liquid, when the surface to volume ratio is dramatically
large [11]. Therefore, the surface forces (for example, friction and surface tension)
are dominating over volume forces (e.g. gravity and inertia) and the importance of
the boundaries (e.g. Navier slip condition) increases. The purpose of this work is to
provide a detailed (if possible) explanation of the properties and behavior of a small
amount of liquid on different kinds of substrates and of the nanoscopic flows in con-

fined geometries.

Since the aim is to study microscopic systems, preserving internal degrees of freedom
of the liquid, particle-based Molecular Dynamics (MD) methods are employed. How-
ever, as we want to draw an analogy to processes, taking place in micro- and nanoflu-
idic devices, the corresponding length and time scales should be reached. While atom-
istic MD demands too many computational resources to accomplish this task, we em-
ploy a coarse-graining technique, fusing several atoms into a single effective interaction

cite.

The following simplification of our physical model is a neglection of evaporating ef-
fects, as they are often undesired in many lab-on-a-chip devices. To this end, the liquid
constitutes of short polymer chains, providing the density of the vapor phase to be 10°

times smaller, than the one of the liquid.
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(@ (b)
Figure 1.2: Shown are (a) a microfluidic chemostat to study microbial populations from

Ref. [8] and (b) a device performing sandwich immunoassays from Ref. [9]. The microchan-

nels are marked by a color liquid.

The red line through the dissertation is the topography of the substrate. Starting with
the simplest one, flat substrate in Chapter 3, we move on with symmetrically struc-
tured one in Chapter 4 and finish with the most complex, asymmetrically structured

substrate in Chapter 5.

Since the properties and underlying physical processes are very different for various to-
pographies of the substrate, we decided to discuss them in the introductions to specific
chapters. On the other hand, the computational model, common for all simulations, is
described in Chapter 2. Every chapter ends with a short summary, allowing the reader

to address and overview the phenomena he is interested in.

The chapter on flat substrates starts with an introduction of wetting parameters of poly-
mer films. Next, we aim to relate the microscopic interactions of the particle-based
model with phenomenological material constants of the continuum description (CD)
that can directly address engineering time and length scales. Thus, effort has to be de-
voted to parameter-passing techniques that transfer information from particle-based
models to the CD.

To this end, two questions have to be addressed:

(i) which is the relevant information of the particle-based model that needs to be

passed into a CD and

(ii) how to extract this information from the particle-based description?

Then, both MD and CD approaches are used to determine the equilibrium contact angle
of a droplet as a function of the size of the droplet. Finally, we compare the profiles of

drops of varying size obtained by means of CD and MD simulations.

3
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We finish Chapter 3 with an overview of the dynamic properties of Poiseuille and Cou-

ette flows between flat semi-infinite substrates.

Investigation of properties of liquids at symmetrically structured substrates is dis-
cussed in Chapter 4. At first, we present macroscopical theoretical Cassie and Wenzel
models of the droplets on structured substrates and show their difference in terms of
energetic barriers. Then, we study dynamics of the droplets pushed over structured su-
perhydrophobic substrates by external body forces and present velocity profiles of such
droplets. At the end of the chapter, we discuss flows in nanoscopic channels, when the
spatial scale of the roughness is of the order of substrate atoms, and the roughness is,
therefore, an intrinsic property of the substrate, as interactions and geometry can not

be distinguished anymore.

Atlast, we look at the behavior of nanodroplets at asymmetrically structured substrates
in Chapter 5. By agitation of the substrate in a harmonic manner we study a directed
motion of droplets. The response of the shape of the drop onto varying vibration fre-
quencies is asymmetric, providing the movement of the center of mass of the droplet.

We discuss in detail the mechanisms that may be responsible for the motion.

The simulations of the droplets on asymmetrically structured substrates are performed
on GPU facilities using HOOMD Software [12-14], while the liquids at other topogra-
phies are investigated by means of self-written programs and analyzing tools. Snap-
shots of the systems are made in VMD [15] and rendered by Tachyon ray tracing li-
brary [16].



CHAPTER 2

COMPUTATIONAL MODELS

That’s been one of my mantras -
focus and simplicity. Simple can be
harder than complex: You have to
work hard to get your thinking clean
to make it simple. But it's worth it in
the end because once you get there,

you can move mountains.

Steve Jobs

In this section we discuss the relation between atomistic and coarse-grained simula-
tions and present key components of our study - a model for a complex liquid and a
substrate. Furthermore, we introduce the interactions between the constituents of the

system and a technique to maintain the temperature during the simulations.

2.1 Coarse-grained polymer chain and substrate models

Computer simulations always provide a compromise between the speed of calculation,
accuracy and degree of realism of the computation model. Atomistic MD simulations
use chemically realistic models that preserve an information about positions and ve-
locities of atoms and constraints (e.g. bond length, angles, torsions of the carbonic
backbone) and utilize specific force fields like CHARMM [17, 18], OPLS [19] or AM-
BER [20] to mimic interactions between components of the system. The timestep is
relatively small (of the order of 5 ps = 5-10~'°s) and allows one to take into account
thermal fluctuations of individual atoms. The length of the trajectory usually does not

exceed 100 ns.

To facilitate the study of larger time and length scales, one lumps together a small
number of atoms into an effective interaction center (called 'bead’) in a coarse-grained
model reducing the number of degrees of freedom of the system [21-24, 24, 25]. The

advantage of particle-based simulations consists in the ability to refine the model to-
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(@ (b)
Figure 2.1: Shown are an original unit cell used in flat substrate simulations XyZ (a) and

the rotated one XYz (b) used in simulations with structured substrates. The number den-

sity of the substrate atoms is constant ps = 2.67¢ 3 in all performed simulations.

wards a chemically realistic description and to include effects of thermal fluctuations
and of discreteness of matter, that are expected to become important on small length

scales.

In the present work, we employ a widely used coarse-grained model of a polymer chain
of N, = 10 monomers [21, 26, 27]. The polymeric liquid is placed onto a supporting
substrate that is not smooth and homogeneous [26, 28], but is composed of particles
(called "atoms’) arranged in a face-centered-orthorhombic (fco) lattice. The unit cell of
the lattice consists of four atoms (8 atoms in the corners are shared by 8 cells and 6
atoms on the faces by two cells, i.e. 8/8 +6/2 = 4 atoms) and occupies a volume
of ag - V3as - \/3as = 3al, where a5 = v0.5 0. The number density is therefore ps =
2.67073.

Despite being similar in linear sizes of unit cells, the substrates in use differ in topog-
raphy. In Chapter 3, a flat substrate is composed of two atomic layers of fco lattice.
Later, in Chapters 4 and 5, the orientation of the unit cell is changed and this new cell is
used to construct structured substrates. The original XyZ cell is rotated by 90° around
x-axis and is referred to as a XYz unit cell. The transformation is shown in Fig. 2.1. The

notations of the cells represent the relations between the lattice vectors ¥,/ and Z.

It is shown in Sec. 4.2.4 that the change of the orientation of the unit cell of a flat
substrate dramatically influences friction at the liquid-substrate interface. This effect
originates from the fact, that in xy-plane the atomic layer composed of XyZ cells is
more densely packed and, therefore, the isopotential surface is more uniform than the
layer of XYz cells (cf. top faces of the cells in Fig. 2.1).
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Figure 2.2: Snapshot from MD simulation of a cylindrical drop on a flat substrate with il-

lustration of Young’s equation (left). The enlargement close to the substrate (right) sketches
the pairwise bead potentials. Coarse-grained beads of polymer chains (blue) interact
with each other and with the substrate modeled by two atomic layers of face-centered--
orthorhombic lattice (lilac)

2.2 Interactions between components of the system

The interaction potentials of the model are sketched in Fig. 2.2. All bonded and non-

bonded beads interact via truncated and shifted Lennard-Jones (L]) potentials
U(rij) = Uyy(ri) — Ur(re) 2.1)

with

Uyy(ry) = 46[(‘7)12 - (”)6] (22)

rij rij
if the distance r;; = |7 — 7;| between i and j particles is smaller than the cutoff distance
re = 2 x 2Vog, Urj(re) is the L] potential evaluated at the cutoff distance. All LJ
parameters are set to unity, ¢ = 1 and ¢ = 1, i.e. we express all energies and lengths
in units of € and o, respectively. Furthermore, all beads have unit mass m = 1. The

reduced time unit 7 is set by a combination of the L] parameters as T = ¢/™.

The individual beads are connected into chains employing a finite extensible nonlinear
elastic (FENE) potential given by [29, 30]

N 2
_%kR% In |:1 — (%) :| for Tij < Ry

UreNE = (2.3)

(e0) for I’i]' > Ro

where Ry = 1.5¢ and k = 30e /0>

We also employ a truncated and shifted L] interaction between the beads of the liquid
and the individual constituents of the substrate

Us(rij) = Ugy(rij) — Ugy(re) (2.4)

7
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with

gy = e ()" - (2)]] @5)

1’1’]‘ 7’1']'
where the length scale s = 0.75¢. By changing e from 0.2¢ to €, one tunes the wet-
tability of the system from non-wetting (polymer droplet with contact angle close to

0 = 180°) to complete wetting (polymer film with 6 = 0°).

2.3 DPD thermostat

The temperature of the system is controlled by a dissipative particle dynamics (DPD)
thermostat [31, 32]. In DPD, the total force on a single particle 7 is given by

D | ER
Ftot = Z(Fij + Fij + Fi]'), (2-6)
J#
where the conservative force F;; is derived from the potentials between particles, F? is
a dissipative force, and FE is a random force. The dissipative and random forces act on

pairs of particles and are of the form
F2 = —ypep wp(rij) (& - 07)é, (2.7)
F}} = { wr(rj)8iéij, (2.8)
where the unit vector ¢;; = 77;/r;j points from the j—th to the i—th particle. In order to
obey the fluctuation-dissipation theorem, the damping coefficient, yppp, is connected

to the amplitude of the noise, ¢, via the fluctuation-dissipation theorem {? = 2k T-yppp,

and the weight functions are defined as

_ ﬁ)2

wi(rij) = wp(ry) = { t-

0 for rij 2 e

for Tij < T (2 9)

We fix yppp = 0.5 throughout the simulations. The term 6;; in Eq. (2.8) is a random

noise term such that 6;; = 6;; and its first and second moments are
(8;) =0, (2.10)

(05(1)0k (1)) = (6ixdj1 + 0udjp)8(t — t'). (2.11)

We use uniformly distributed random numbers [33] with the first and second moments

dictated by the relations above.

Since the dissipative and random forces and, of course, also the conservative forces
satisfy Newton’s third law, they locally conserve momentum, i.e. they preserve the
hydrodynamics of the flow (in contrast to the dissipative macroscopic behavior of
Langevin dynamics). Using this DPD thermostat, we maintain the constant temper-

ature, kgT = 1.2¢, where kg is the Boltzmann constant.
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Figure 2.3: Temperature profile (circles) of a polymer film confined between two flat walls
with attraction strength e¢; = 0.4€ at coexistence density (dashed horizontal line). The
temperature is defined via the kinetic energy. The density profile is plotted by the solid
line. Packing of the liquid, characteristic for the models of the liquid and solid, is seen at

the interface.

However, although the DPD thermostat does locally conserve momentum, we do not
have a momentum conservation of liquid-substrate interactions. The substrate atoms
are frozen at their lattice nodes and act on the polymer liquid by uncompensated forces,
as opposed to soft substrates [34]. The temperature of such substrate is T = 0, but it
does not lead to any noticeable temperature gradient induced in the liquid in close
vicinity of the solid, as proved by the temperature profile presented in Fig. 2.3. There,
the liquid in the vicinity of the solid has the same temperature as the bulk. Also, a weak
local violation of the momentum conservation does not influence the properties of the
droplets, as we verified by comparison of drops sitting on two different substrates: the
one with frozen atoms and the one with atoms, oscillating around their equilibrium

positions (the Einstein crystal).

2.4 Time intergation algorithm

The equations of motion (2.6) are discretized by time steps At. For MD simulations
a balance between efficiency and accuracy should be found. The former is usually
limited by force evaluation, which is the heaviest component of computations, and
rules out any Runge-Kutta method [35]. The latter excludes the simplest Euler inte-
gration, as it is only a first-order method. A good compromise between efficiency and
accuracy is provided by the simple, but robust and reversible Verlet or leap-frog algo-
rithms [36, 37].

The basic form of the Verlet algorithm follows immediately from the Taylor expansions
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of the particle coordinates 7(t + At) and 7(t — At), namely
7(t+ At) = 27(t) — 7(t — At) +@(t) A2 + O(At?), (2.12)

where d(t) is the acceleration of the particle at time . The error here is of the order of
At*. The problem with this version of the algorithm is that velocities are not explicitly
involved into solution (2.12). Instead, one can calculate them via

7(t+ At) —7(t — At)

Y, + O(At?). (2.13)

(t + At) =

Nevertheless, this method increases the error to the order of Af2.

To include velocities explicitly into integration, the leap-frog algorithm may be used.
The coordinates and velocities are calculated at integer and integer plus a half time steps,

correspondingly (as the name suggests).

However, the most commonly used version of the integration scheme is the one, where
the coordinates and velocities are obtained at the same time steps, the Velocity Verlet
algorithm [36, 38]:

a(t) A+ O(AH), (2.14)

SN

F(t+ Af) = (1) + 5(1) At +

a(t) +a(t+ At)
2
The error of the Velocity Verlet algorithm is exactly the same as for basic Verlet scheme.

Bt + At) = 3(t) + At + O(AF?). (2.15)

Providing good computation speed and reliability of the Velocity Verlet algorithm, we

employ it to integrate equations of motion using a time step At = 0.0057.

10



CHAPTER 3

FLAT SUBSTRATES

Do not worry about your difficulties
in mathematics. I can assure you that

mine are still greater.

Albert Einstein

This Chapter deals with static and dynamic properties of polymer films and droplets
on a flat solid substrate. A flat substrate studied here is composed of two atomic layers

of XyZ unit cell presented in Sec. 2.1. A side view of the substrate is shown in Fig. 2.2.

At first, we consider general wetting properties of thick liquid films (i.e. films that have
a bulk region) on supporting solid substrates. Special attention is devoted to the rigor-
ous definition of the wetting transition and the stability of thin films is investigated by

calculation of the interface potential.

Then, in the second part of the Chapter, we bridge particle-based MD simulations with
a continuum description (CD) of the liquid, suggesting a parameter-passing scheme.
The reliability of the method is tested for droplets of various sizes with different contact

angles.

Finally, the last part is devoted to the fundamental insight into dynamic properties
of liquids confined between flat walls and application of the hydrodynamic boundary

condition to describe the solid-liquid interface independently from the type of the flow.

3.1 Static properties of thick polymer liquids

In this section we discuss equilibrium properties of polymeric liquid films on a sup-
porting substrate. At first, the individual components of Young’s equation that bal-
ances surface and interfacial tensions are considered. The technique, allowing for in-
dependent calculations of surface (solid-liquid) and interfacial (liquid-vapor) tensions
of a thick film, is presented. Then, the wetting transition is localized for our solid-liquid

model. After it, we discuss the solid-vapor surface tension. Finally, regions of stable

11



CHAPTER 3: FLAT SUBSTRATES

Figure 3.1: Sketch of the slab geometry used to calculate the liquid-vapor interfacial tension
7. The pressure tensor components pn(z) and p¢(z) are calculated in every slab k and then
their difference is integrated across the interface.

film thickness are determined by means of the interface potential.

3.1.1 Virial pressure for a liquid film on a solid substrate

We study a supported thick polymer film as illustrated in Fig. 3.1 in the canonical en-
semble. By virtue of the low vapor pressure of the polymer liquid, one can neglect
evaporation effects. The flat liquid-vapor interface allows us to divide the system into
thin parallel slabs (separated by the horizontal grey lines in Fig. 3.1), whose normal
vector 7i is perpendicular to the substrate. All relevant quantities can then be averaged

over each slab, resulting in fields that depend on the z-coordinate only.

In order to obtain the tension of the liquid-vapor and solid-liquid interfaces, v and g,
we consider a virtual change of the geometry of the simulation box such that the total
volume V remains unaltered. Using the scaling parameter A, we relate the new linear
dimensions, L/, L’y, L. of the simulation box to the original ones via L}, = VAL, L’y =
\/KLy, L, = %L,. Only the liquid is subjected to this virtual change of the geometry
but not the solid support.

The value A < 1 corresponds to a lateral squeezing of the liquid film on top of a solid
substrate and a concomitant increase of the film thickness k' = %h, where we have
assumed that the liquid is incompressible. In the continuum model such a transfor-
mation gives rise to the the following infinitesimal change of the canonical free energy
[39]

dFo(A) dLi L},

A | = [ys. +7] aAn A:1, (3.1)

where, contrary to the related works in grandcanonical ensemble [40, 41], we use the
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o ® |

Figure 3.2: Unscaled simulation box (left). Red circles represent two layers of substrate

atoms. The origin with x and z axes is in the middle of the box. Scaled simulation box
(right). The origin has moved by ACM against z axis, but its lateral coordinates, x and y,
remain unaltered. y axis is not shown for simplicity.

property of a canonical one and keep the number of particles in the liquid constant, i.e.
constant volume hLL, = I’ L;L’y of the film

dLiL! 4’
y

— =0. 3.2
Lo, W (3.2)

The scaling affects the beads of the polymeric liquid only, i.e., the lateral coordinates
x and y are scaled by the factor v/A and the normal component z is scaled by 1/A.
Since the origin of the coordinate system is at the center of the simulation cell, the z
coordinates of the first layer of the substrate is also scaled by the factor 1/A and the
second row is shifted such that the distance Az between the two layers of the substrate
remains unchanged. The lateral coordinates of the substrate particles are not changed
as depicted in Fig. 3.2.

In order to compute the change of free energy, we consider the canonical partition

function

1 N
Z:W/H a7, eXP[_ﬁzu(fi—fj)—ﬁZUs(ﬁ—fs)] (33)
T i=1

i<j s,i

where N is the number of particles in the system, f = kBiT and Ar is the thermal de-
Broglie wavelength. U denotes the bonded and non-bonded interactions between the
polymer beads i and j, and U® are the interactions between the polymer beads i and the

substrate particles s.

This separation of potentials allows us to express the partition function, Z(A), of the

13
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scaled system through the scaling transformation of the original positions
S 1
Z(A) = 71\1!}\?9’ JTIN, &% exp [ -BY_ U (\/A(xi —xj), VA — ), K(zi — z]-)>
i<j

1
—IBZUS (\/7361 xsl, \/7y1 ]/51/ ~Zi — A251>

S1Z

1 1
—:BZUS <\/Kxi — x5y, VAYi — s, AT (Kzs1 — Az)) },

Sz,i
where we explicitly separated the interaction of the polymer beads with the first and
second layer of the substrate, z, = %z, and z/, = z/, — Az. Differentiation with respect
to A yields

dz

an|,, = e TR 7 LR (5

i<j
(; aBLlI:l (—?yLiI:lyi) aau ZZSl) exp [_:BZUS}

Z ‘
So,1
Z 1 BUS BUS ou
(

where x;; = x; — x;. Substituting z;s, = z;s, — Az, we write the change of the free energy

51,1

in the form
dF B 1d2
diA At — kBTEdiA At (36)
B <Z(1(auw ou, >>
i<j 2 axi]- gl 0 ] g 821]

1 0U°® ous aus ous
+ <2 (E(axis Xi Yis yi) - 0z;s Zi5)> + <Z 0zjs, > Az (37)

- <2 ( foiizij — % (Fuiixij + fyiiij) ) >

i<j
S 1 S S S
+ Z fz,iszis 5 (fx,isxi + fy,isyi) - Zfz,iszAZ (3.8)
s,1 2 So,i
where f, ;; denotes the x-component of the force acting between polymer beads, i and

] < -+ ) denote averages in the canonical ensemble.

The first term of Eq. (3.8) is the anisotropy of the pressure inside the liquid [42, 43].
Using the approach of Irving and Kirkwood [44] we define profiles of the normal and

tangential pressure in a slab k according to

pn(k) = kBT<P V <2 fz ijZij Nk 7’z])> (3.9)
i<j
and
1 (k) S
pi(k) = ksT{(p(k)) + 2V1<Z (fuijxij + fy,iiVii) Wk(rij)>, (3.10)
sl Vg

ou
2 (i ayUW azljz,‘j) exp[-pL U] 65)

2 ¥ T o Z’Sl) exp |~ B}
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Figure 3.3: A typical diagram of normal and tangential pressure differences along the z axis

in a thick film is plotted. Two atomic layers of the flat substrate are represented as circles.
The presence of the bulk phase in the middle of the film allows one to separate pressure
differences associated with surface (solid-liquid) or interfacial (liquid-vapor) tensions.

where p(k) is the number density in a slab k and V5 denotes the volume of the slab. The
sum 21(2 runs over particles i and j if the line connecting them crosses the boundary of
slab k (then 77(7;;) is the fraction of that line that is located in slab k) or if both particles
are in slab k (then 7 (7;;) = 1).

Using this definition of the local pressure and Eq. (3.1), we finally rewrite Eq. (3.8) as
YsL+Y = /dz [Pn(z) — pi(2)] (3.11)

1 1
+LxLy <Z [fzs,z'szis — §(f;,isxi +fys,is]/i)] — Zfzs,iszAZ> ,
s,i

So,1

and the sum of the surface and interfacial tensions of the supported polymer film is
given by the anisotropy of the pressure in the liquid and contributions due to the direct
interaction between the liquid and the solid substrate. In the limit that the substrate is
laterally homogeneous the terms involving the lateral forces between solid and liquid
vanish. Since solid-liquid and liquid-vapor interfaces in a thick film are well separated
by a bulk phase as shown in Fig. 3.3, the individual contributions for ys;, and 7y can be

set apart. It is done in the following section.
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3.1.2 Solid-liquid and liquid-vapor interfacial tensions

In the absence of a solid substrate, the liquid is separated by a liquid-vapor interface
from its coexisting vapor phase. In this special case, Eq. (3.11) simplifies and allows us
to measure the liquid-vapor interfacial tension through the anisotropy of the pressure

tensor components across the interface as [45-47]:

Zpot

Y= dz [pn(z) — pr(2)] (3.12)

Ztop

We find v = 0.512 £ 0.006€ / 0> which agrees well with previous calculations for similar
systems [27]. Mechanical stability requires that the normal component of the pressure
is constant throughout the system and equals the coexistence pressure [46]. Since the
vapor pressure of a polymer melt is vanishingly small, p,(z) =~ 0. We also note, that the
anisotropy of the pressure is localized around the interface and, therefore, the integra-
tion can be restricted to an interval [zyt, Ztop) around the interface as shown in Fig. 3.3.
At the temperature of kT /e = 1.2 the coexistence density of the liquid inside a thick
polymer film is pcoexa3 = 0.786 (cf. Appendix A). The linear dimensions of all thick
films in our simulations are L, ~ L, ~ 50¢, whereas L, is chosen in a way to allow for

the formation of the bulk region in the middle of the film.

If we consider a liquid in contact with the solid substrate, we can measure the solid-
liquid surface tension <ygy, according to Eq. (3.11) as
ZSL
top
Yo = /L dz [pn(z) — pe(2)] (3.13)

S
Zhot

1 1
‘oL <2 [Frazi =y Fracxi Faw)] - Zfzz-szAZ> '

s,i Sp,i

SL SL
where zp, and z,,

Like in the case of the liquid-vapor interface, the anisotropy of the pressure, as well as

stand for bottom and top limits of solid-liquid interface (cf. Fig. 3.3).

the additional contribution due to the interaction between the liquid and the solid,
are localized in a narrow region near the interface between the polymer liquid and
the solid. The solid-liquid surface tension depends on the strength €, of the attractive
interaction between solid and polymer liquid. The simulation results are presented in
Fig. 3.4.

If the droplet on a substrate depicted in Fig. 2.2 is at equilibrium, one may describe the
equilibrium of forces acting on its contact line by the macroscopic Young equation that

relates the interface energies and the equilibrium contact angle 6g [2, 48],

YsL + ycosOg — ysy = 0. (3.14)

Here, ysy is the solid-vapor interfacial tension. Since the vapor pressure is vanishingly

small for our polymer melt, we can neglect the interfacial tension between the solid
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Figure 3.4: The dependence of the solid-liquid surface tension gy, on the strength of the
solid-liquid interaction €. The horizontal dashed lines represent the value of the liquid-
vapor interfacial tension 7y and value —. The vertical dashed line indicates the location of
the wetting transition

substrate and the vapor phase, ysy ~ 0 to a first approximation. Using this approx-
imation, we find that the wetting and drying transitions occur at sy (€5) ~ —v and
YsL(€s) = 7, respectively. From the data in Fig. 3.4 we locate the wetting transition at
€s ~ 0.83¢ and the contact angle reaches 180° for small values of €, < 0.2¢. A more
rigorous approach to a determination of the wetting transition, although still based on

approximation gy ~ 0, is presented in the following section.

3.1.3 Adhesion energy and wetting transition

Separating the liquid from the substrate supporting it, two new interfaces, solid-vapor
and liquid-vapor, are created. Thus, taking into account Young’s relation (Eq. 3.14), the
difference in free energy per unit area in the vicinity of the solid with respect to the

initial situation can be written as [49]

W= (ysv+7v7) —7vsL =7+ ycosbg = y(1+ cosbg). (3.15)

The free energy W is usually called adhesion energy. To describe the location of the
wetting transition correctly, one can measure the adhesion energy while varying the
strength € of the solid-liquid interaction. The wetting transition occurs at 0 = 0 that
corresponds to Wy = 2.

An alternative method, based on the L] solid-liquid interaction, can be employed to

17



CHAPTER 3: FLAT SUBSTRATES

calculate the adhesion energy [27]. One invokes that it is simply the ratio of the free
energy F* to the area of solid-liquid interface Ay, = LyLy. Taking into account that

the partition function of a liquid in contact with a solid substrate is

N1A3N/H d°7; ¢ PRI PR, (3.16)

and separating the L] interaction amplitude €; from the rest of the potential as Uy (€5) =

€5 Vs, one can write the free energy as
1 T V. U
Ps::—kBTh1ZS::—kBTh1(NUﬁNU/II¢1ae—ﬁ2%s—ﬁE u). (3.17)
! il

Differentiation with respect to €5 gives

oF® 1 073

S
e A - _ 1
3. BTZS 3. kBT (-BY Vi) Z (3.18)
<Y Ui (eg) >
:<Z%>:2;ﬁ9,
S

where angle brackets stand for ensemble averages. Now, differentiating Eq. (3.15) with
respect to €; under approximation of ygy = 0, one obtains

W oy 10F
des  des A des’

(3.19)

where we have also taken into account that F* = A<ygr.. The adhesion energy then takes

the form

W= 1(£w%<2@#”>+q, (3.20)

Afilm €s
where C is an unknown constant of integration.

The results of both methods are plotted in Fig. 3.5. The thick solid horizontal line marks
the adhesion energy at the wetting transition, Wy = 2. The circles represent the values
obtained from surface and interfacial tensions, while the dashed line stands for the
integration method. We find a good agreement between both methods and the wetting
transition can be localized at €¥®' =~ 0.83¢. This result is obtained under assumption
Ysv ~ 0. This approximation is very good at small values of the solid-liquid interaction
strengths €, but close to the wetting transition it is no longer the case. The next section
is devoted to the estimation of the solid-vapor interfacial tension in the regime when

assumption ysy = 0 is not reliable anymore.

3.1.4 Solid-vapor interfacial tension

While the approximation sy ~ 0 is appropriate for small values of the strength of

attractive solid-liquid interactions, €5, the quality of this approximation deteriorates in
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Figure 3.5: Adhesion energy per unit area defined by two methods: direct calculation from
surface and interfacial tensions (circles) and integration method (dashed line). The thick
solid horizontal line marks the adhesion energy Wy = 2v. The wetting transition occurs at
evet ~ 0.83e.

the vicinity of the wetting transition. If the wetting transition were of second-order,
the amount of liquid adsorbed onto the substrate, would continuously diverge as we
approach the wetting transition. Even for a first-order wetting transition we expect that
the adsorbed amount will increase when €5 increases towards its transition value. In
this case the approximation ysy ~ 0 becomes unreliable, and we employ a meniscus
geometry as shown in Fig. 3.6 to extract the value of the solid-vapor tension. The film
thickness is chosen sufficiently large, such that the deviation of the pressure from its
coexistence value, Ap ~ —’y(R% + R%)' with Ry and R, = oo denoting the principle
radii of curvature of the meniscus, has only a small influence on the adsorbed amount
of polymer and sy 1. Since Ap < 0, the adsorbed amount in the simulations will be
smaller than at coexistence, ysy will be too large (i.e., negative ysy will have an absolute
value that is too small), and we will slightly underestimate the contact angle, 0. This

correction to the deviation of the approximation ysy ~ 0, however, is insignificant for

1 One can estimate the error due to the finite radius of the curvature Ry of the meniscus as follows:

9sv
4 ry‘l‘ 7
the substrate and (ii) the vapor is so dilute, that it can be described by an ideal gas of chains. Its equation

(i) from Gibbs adsorption isotherm where I'gy is the number of vapor molecules per unit area of

3
of state is p = %kBT and the chemical potential is = kgT In NV—/},T, where f is the degeneracy of states.

_ 2% M| _ kT
Then, i = kBTlnﬁ and Wl = BT
Then, the error in solid-vapor interfacial tension is Aygy = — [dulsy = — [dp g—’;)TFSV =

—f dpkBTTFSV = —kgT [d(Inp)Tsy(p). Taking into account that I'sy(p) = cp, we can rewrite the er-

ror by Aygy = —kpTcAp = —kpT[I'sy (Peoex) — I'sv (Peoex — Rlx)}
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Figure 3.6: A part of a system used to determine solid-vapor interfacial tension ysy. The
droplet serves as a reservoir to the chains adsorbed on the substrate. The yellow dotted
line indicates the curvature of the liquid-vapor interface. The radius of curvature Ry is

indicated by the orange arrow.

€s = 0.75¢ | e = 0.80¢e | ¢ = 0.81¢ €s = 0.82¢
Ysv, [€/0?] 0 -0.00281 -0.00475 | -0.00523 (-0.01642)
Ys, €/ 07 -0.32576 -0.44737 -0.47419 -0.49761
g, (at ysy = 0), [degree] 50.50 29.14 22.20 13.69
O, [degree] 50.50 29.77 23.57 15.98 (20.03)

Table 3.1: Interfacial tensions of solid-vapor and solid-liquid interfaces and contact angles
with (0g) and without (0g,) taking the solid-vapor interfacial tension into account. For
€s = 0.82¢ the value ‘ygy is affected by the finite value of Ap and we provide in parentheses
an alternative estimate of the contact angle.

the used system size for all values of €5 but the close vicinity of the wetting transition

(at €5 =~ 0.83€), where we have used an alternative methods as described in Sec. 3.1.5.

For the calculation of sy we used the same procedure as earlier for the solid-liquid sur-
face tensions of a film, but the procedure is only applied to the part of the simulation
box that is far away from the meniscus-forming liquid bridge. The dimensions of the
simulation domain were chosen in a way to provide a reasonably big principle radius
Ry, namely Ly = 1500, L, = 300 and L, = 500 In the vicinity of the wetting transition,
Ry =~ L;/2. The values of sy and 7g. (for comparison) are presented in Table (3.1).
One notices the increase in ysy when the wetting transition is approached. However,
compared to the influence on the solid-liquid surface tension the effect is small. Never-
theless, it becomes the more important the closer one comes to the wetting transition,
and the correction of the contact angles is significant when one compares profiles of
drops of different sizes with the prediction of Eq. (3.14).
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Figure 3.7: Density profiles of a polymer film at s = 0.80e. The solid black line represents
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a thick film with a bulk region separating solid-liquid and liquid-vapor interfaces. In the
case of a thin film (dashed red line) it is no longer possible to distinguish the two interfaces.

The dotted horizontal line indicates the coexistence number density.

Now, as we identified the wetting transition and estimated the values of the solid-vapor
interfacial tension ysy as a function of the solid-liquid interaction strength, s, a stabil-
ity analysis of liquid films in the vicinity of the wetting transition can be performed.
The following section introduces the concept of interface potential and provides results

on the stability of the films of different thicknesses.

3.1.5 Interface potential and Derjaguin pressure

If we consider a thin polymer film on top of the solid substrate, Eq. (3.1) should be gen-
eralized accounting not only for the solid-liquid and liquid-vapor interfacial tensions,
vsL and v, but also for the interface potential, g(%), that quantifies the free-energy cost
of locating the liquid-vapor interface a distance 1 away from the solid substrate [39]:

dg(h) di’

dh dA

A dL;L’y
N [ysL + 7 + g( )]ﬁ

de(h
= |:'YSL +7+ g<h> - (o;(h)h] LxLyz

L.L, (321)
A=1

For a thick film (cf. Fig. 3.7), the transitions in the polymer density at the two interfaces
are well separated, and the density at the center of the film approaches the bulk coex-
istence value, as was shown above in Sec. 3.1.2. In this case, also the contributions to

Eq. (3.11) that stem from the two interfaces can be well separated. The anisotropy of
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the pressure tensor at the solid substrate gives sy, and the one at the liquid-vapor in-
terface yields 7. Thus, the interface potential vanishes, g(h — o0) — 0, indicating that
the liquid-vapor interface will not interact with the substrate if the film is sufficiently
thick. The free energy of the film is then F(h — o0) — Fy (cf. Eq. 3.1).

However, upon decreasing the film thickness, the two interfaces start to interact and
the contributions of the solid-liquid and liquid-vapor interfaces can not be separated
anymore. The interaction between the interfaces is quantified by the interface potential,
g(h), or equivalently, by the Derjaguin pressure I1(h) = —dﬁ—(hh). From Fig. 3.7 we ob-
serve that for small film thickness both interface density profiles are distorted, and the
density does not reach its coexistence value at the center of the film. The distortion of
the density profile far away from the interfaces is characterized by the bulk correlation

length, &, which therefore sets the length scale of the interface potential [50].

Several strategies have been proposed to measure the interface potential in computer
simulation of particle-based models: (i) The interaction between the interface and the
substrate can be obtained in the grandcanonical ensemble, where the chemical poten-
tial p controls the fluctuating thickness of the wetting layer of the liquid on the sub-
strate. The probability, P(h), of observing a wetting layer of thickness  is related to
the interface potential via g(h) = —kgT In P(h)+ const [51-54], where the choice of the
constant ensures the boundary condition g(h — o0) = 0. While being elegant, this com-
putational technique is limited to simple models because the grandcanonical ensemble
requires the insertion and deletion of polymers and concomitant Monte-Carlo moves
are only efficient for short polymers, low densities or in the vicinity of the liquid-vapor
critical point. (ii) A negative curvature of the interface potential at a thickness / signals
the spontaneous instability of a wetting layer. From the characteristic length scale of
this spinodal dewetting pattern one can deduce information about d?¢(h)/dh? [55, 56].
(iii) Here we use the pressure tensor. This is a general technique that is not limited
to short polymers or low densities. It does not require the implementation of particle
insertion/deletion Monte-Carlo moves and can be straightforwardly implemented in

standard Molecular Dynamics program packages.
Using the definitions of the local pressures Egs. (3.9) and (3.10) and Eq. (3.21), we
rewrite Eq. (3.8) for thin films as [39]

Ym(h) = ysL+y+g(h) — dg(hh)h = /dz [pn(z) — pe(2)] (3.22)

1 1
+LxLy <Z [fzs,z‘szis - 5( nisXi +f;,i5]/i>} - Zfzs,z-SZAz>
S,1

Sp,1

We particularly stress that in the canonical ensemble the difference of the film tension
Ytim (1) and interfacial tensions g, and 7 is not the interface potential g(h) [40, 41, 57],

dg(h
but of the form of Legendre transform g(h) — h%.
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Since we have determined <yg;, and -y independently, we are able to extract the interface
potential, g(h), from the simulation data for thin films. To this end, we have to define
the location of the liquid-vapor interface, i.e., the film thickness, h. There are several
options: Either (i) one determines the position where the density equals a predefined
value, typically (piiq + 0vap)/2 (crossing criterion) or (ii) one defines the film thickness

via the adsorbed excess (Gibbs dividing surface),

ATaqs = LxLy / dz [P(z) - Pvap] = [Pliq - pvap] LxLyh (3.23)

In this work we adopt the integral criterion (3.23) to define the film thickness. Neglect-

ing the vanishingly small vapor density at coexistence, we obtain

N mon

—mon (3.24
PliqAfilm )

hegt =

where Npon is the number of monomers of the liquid inside the simulation box and
Agiim = LyLy is the area of the substrate underneath the film.

We note that both definitions become problematic for film thicknesses where the cur-
vature of the interface potential is negative, % < 0. In this regime of film thicknesses
a laterally extended, homogeneous film becomes unstable with respect to spinodal
dewetting [55, 58, 59]). However, even in this film thickness region, the films can be
linearly or even absolutely stable if the lateral extension of the simulation box is suf-
ficiently small. The related critical values depend on film thickness (see, e.g., Fig.8
of [60]). In the simulation, we can still obtain meaningful data for the interface poten-
tial if we restrict the lateral system size to be smaller than the characteristic wavelength
of the spontaneous rupture process. For simulations of thin films we reduce lateral

sizes of the system to L, ~ L, ~ 150.

Additionally, we mention that the liquid-vapor interface in our Molecular Dynam-
ics simulations exhibits local fluctuation of its height (i.e., capillary waves), and the
Gibbs dividing surface measures the laterally averaged film thickness. The interac-

tion of the liquid-vapor interface with the substrate imparts a lateral correlation length,

g = 2my\/v/ %, onto these interface fluctuations. These fluctuations give rise to a
weak dependence of the interface potential on the lateral system size for Ly, L, < ¢,
i.e., the interface potential is renormalized by interface fluctuations. Qualitatively, the
effect of fluctuations is to extend the range of the potential, i.e., ¢ = &o(1 + w/2) with

_ kT
w = 47%%7 [61].

The interface potential exhibits a minimum at small film thickness, /imin. This film

thickness characterizes the amount of liquid adsorbed on the substrate in contact with
the vapor. As illustrated in Sec. 3.1.4, hnin = 0 except for the close vicinity of the

wetting transition. The free energy of such a vanishingly thin polymer film is given by
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Yeitm (Bmin) = YsL + ¥ + §(hmin) = Ysv. Thus, the measurement of the different tensions

for a planar polymer film provides the value of g(fmin).

Alternatively, we can use the measured value g(/min), in turn, to estimate the solid-
vapor tension, ysy. We have employed this strategy for €; = 0.82¢, where the finite
curvature of the meniscus resulted in a relevant deviation of the pressure from its co-
existence value. Extrapolating the simulation data to the thickness himin ~ 0 we obtain
Ysv = —0.01642. We will use this more accurate value, which is not affected by the
curvature of the meniscus and that is compatible with the interface potential, in the

comparison with the CD in Sec. 3.2.

Since Eq. (3.22) only provides the Legendre transformation of the interface potential
and we require an analytical expression for bridging later the particle-based MD sim-
ulations to a CD in Secs. 3.2.2 and 3.2.3, we make an Ansatz for the functional form of
g(h). Generally, one can distinguish between short-range and long-range contributions
to the interface potential [50, 62]. The long-range contribution results from dispersion
forces between the liquid and the substrate. In our particle-based model, however, we
do only consider the short-range part as our L] interaction (2.2) is cut off at r.. Thus,
there is no long-range contribution in our model in contrast to previous works, when
an effective long-range contribution was taken into account to calculate Hamaker con-
stant despite finite interaction cut off [40, 41]. The short-range contribution to g(h)
stems from the distortion of the interface profile due to the nearby presence of the solid
substrate as illustrated in Fig. 3.7, and it is typically expanded in a series of exponen-
tials [50, 62]

gsr(h) = ae G — peTh/C 4 oIN/C _ gom/G (3.25)

In order to obtain g(/) in practice, we fit its Legendre transform g(h) — h% by a sum of
four exponential terms like in Eq. (3.25), and enforce that the interface potential exhibits
a minimum at hmin ~ 0 (i.e. there is no precursor film in our MD model) with a value
Q(hmin), as obtained by the measurement of the interfacial tensions. The resulting fits
for g(h) at e = 0.75¢,0.80¢,0.81€e and 0.82¢ are given as solid lines in Figs. 3.8a-3.8d.
The parameters of the fits are presented in Table (3.2).

Using the macroscopic Young-Dupré relation, one observes that value of the minimum

of g(h) dictates the contact angle [39]
Q(hmin) = y(cosOg — 1) (3.26)

Much more information can be extracted from the interface potential: (i) the stability
regions of films of various thicknesses may be defined as shown in Fig. 3.9. Films with
thicknesses such that g”(h) < 0 are linearly unstable and tend to dewet spinodally. In

other cases, the films either stable or metastable [10]. (ii) the minimum of the interface
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Figure 3.8: Panels (a), (b), (c) and (d) give the interface potential ¢(h) at e = 0.75¢,
€s = 0.80¢, e = 0.81€ and €5 = 0.82¢, respectively. They are obtained by fitting the
MD results for the tension g (h) — v — ysp, of films of various small thicknesses (black
symbols with error bars) by the expression g(h) 4+ hI1(h) (dashed black line) obtained em-
ploying the first four terms of the short-range part of the interface potential g5 (12). The
resulting interface potential g(h) is given as solid red line. Note, that the minimal value
of gmin is always reached at vanishingly small thicknesses /1 ~ Oc, as there is no precursor
film in our particle-based model.

potential defines the macroscopic contact angle according to Eq. 3.26. (iii) The observa-
tion that g (/1) increases above zero at intermediate values of / indicates that the wetting

transition is of the first order.

The interface potential can give additional information if we do no longer consider only
film geometries, but turn to droplets. Independently of the apex height of the drop, the
interface potential (or Derjaguin pressure) plays an important role in the vicinity of the
three-phase contact line, as a steady change of the position of liquid-vapor interface is
taking place. The interface potential provide the following information that is relevant
in case of droplets: (i) The shape of the interface potential controls deviations of the
drop shape from a spherical cap in the vicinity of the wetting transition. (ii) Within the
square-gradient approximation the integral of /g(h) is related to the line tension at

the three-phase contact line [63]. For all values of €5 investigated in the particle-based
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Parameter | € = 0.75¢ | ¢, = 0.80¢ | €, = 0.81e¢ | €, = 0.82¢
a,e/o?] 0.13191 0.06485 0.05057 0.06132
b, [e/c?] 1.40871 0.58700 0.41256 0.36875
¢, le/c?] 1.67606 0.70902 0.50249 0.42963
d,le/o?] 0.58566 0.25447 0.18323 0.15318
g o] 1.51770 1.26964 1.14735 1.00512

Table 3.2: Parameters of the fitting curves of g(h) for the case where the first four terms
of the short-range contributions [Eq. (3.25)] are taken into account. Note, that only three
parameters are independent since there are two additional constraints: The local minimum
criterion at h ~ Oc implies d = (a — 2b + ¢) /4 and the Young-Dupré relation 3.26 dictates
the value gmin by setting b = a+ ¢ —d — gmin = 1.54 + 0.5¢ — 2gmin.

model, the line tension is expected to be negative.

In the next section, we focus on droplets in the vicinity of the wetting transition. A
technique passing relevant parameters from particle-based simulations to a CD is sug-

gested and tested by comparison of droplet profiles obtained by both methods.

3.2 Static properties of polymer liquids at partial wetting

In the previous decade increasing attention has focused on the behavior of small quan-
tities of liquid on hard [10, 59, 64-68] or soft [69, 70] substrates in equilibrium or under
the influence of driving forces parallel to the substrate [27, 71, 72]. The current section
mainly considers two levels of description: particle-based models [28, 34, 52, 67, 73—
76] and continuum theory [10, 65, 68, 71, 72, 77-79]. The former describes the liquid
in terms of the position and momenta of particles. The properties of particle- based
models are studied by discrete stochastic simulations, i.e., Monte-Carlo simulation or
Molecular Dynamics. The advantage of retaining the particle degrees of freedom con-
sists of the ability to refine the model towards a chemically realistic description and to
include effects of thermal fluctuations and of discreteness of matter that are expected to
become important on small length scales. However, these stochastic simulation tech-

niques are limited to droplets of a linear size that does not exceed a few nanometers.

Continuum models, in turn, describe the liquid in terms of collective variables that do
not refer to individual particles. Typical examples of continuum theories are the hydro-
dynamic description in terms of the density and momentum fields or interface models
that describe the liquid only through a characterization of the motion of its liquid-vapor
boundary. Continuum descriptions can address engineering time and length scales but
depend on phenomenological material constants that are often not related in a straight-
forward way to the microscopic interactions of the particle-based description. Thus ef-

fort has to be devoted to parameter-passing techniques that transfer information from
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Figure 3.9: The Legendre transform (black dots fitted by an analytical representation) and
interface potential of the films of various thicknesses at €; = 0.82¢. The region of unstable
film thicknesses, where g” (h) < 0, is marked by vertical dashed lines. The position of the
minimum, gmin, dictates the macroscopic contact angle.

particle-based models to the continuum description. To this end, two questions have to
be addressed: (i) Which is the relevant information of the particle-based model needed
in the continuum description and (ii) how can one extract this information from the

particle-based description in the appropriate continuum form?

In the present section, in addition to the coarse-grained particle model of a polymer
drop on a solid substrate, we use a thin film description that characterizes the droplet
shape by the location, , of the liquid-vapor interface above the substrate. We explore
the behavior of small nanodrops where both descriptions are computationally feasible.
We extract the interfacial tensions and the Derjaguin or disjoining pressure [80, 81] from
Molecular Dynamics simulation of the particle-based model and pass them to contin-
uum model. Then both approaches are used to determine the equilibrium contact angle
of a droplet as a function of the size of the droplet and of interaction strength between
the liquid and the substrate.

To our knowledge, such a parameter passing scheme has not yet been developed for
the case of liquid droplets on solid substrates. However, the disjoining pressure itself
can be extracted in grandcanonical ensemble [51-54, 82]. Additionally, related works
exist for other geometries in canonical ensemble, such as free standing films or films

adsorbed in pores [57].

Bhatt et al. [40] extract a disjoining pressure as a function of chemical potential from

MD simulations for a free standing film of a volatile Lenard-Jones liquid and compare
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the results with the ones of density functional theory. Their approach consists in the
definition of the disjoining pressure as the difference of normal pressure in the film
and the pressure in the homogeneous liquid at the same chemical potential as the film.
However, as discussed in section 3.1.5, the measurement of the chemical potential in a
canonical ensemble is difficult and requires additional simulations. Moreover, despite
of truncated potentials, they relate the disjoining pressure with solely long-range van
der Waals dispersion forces and provide therefore comparison to Hamaker theory. The

short-range forces stay outside the scope of their research.

A planar liquid film bounded by a solid and vapor is studied by Han [41] using grand-
canonical MD simulations with a truncated and shifted Lennard-Jones interaction. The
disjoining pressure is extracted in a similar way as in Ref. [40] and again is associated

with only long-range dispersion forces.

Note that parameter passing from MD simulations to continuum hydrodynamics is
also frequently done in the context of liquid flow close to solid substrates [66, 83-87].
However, since these works do either not involve free interfaces [85, 87] or do not

extract the disjoining pressure [66, 84, 86], we do not discuss them here further.

This section is structured as follows. First, in section 3.2.1 we formulate a continuum
approach to describe droplets on solid surfaces and determine parameters that have to
be passed into CD from the particle-based simulations. Then, section 3.1.5 details how
we calculate the passing parameters in particle-based MD simulations. The subsequent
section 3.2.2 presents the dependence of the equilibrium contact angle on droplet size
for various interaction energies between the liquid and the substrate. In passing, we
describe several ways to define the equilibrium contact angle and discuss their relation
to the macroscopic Young-Laplace law. Finally, section 3.2.3 provides a comparison of

droplet profiles as obtained by particle-based and continuum models.

Current work is a joint project with Desislava Todorova and Uwe Thiele (Loughbor-
ough University, UK), who performed the numerical simulations of the continuum

model. The results are summarized in the article submitted to J. Chem. Phys.

3.2.1 Drops as described by continuum description (CD)

We employ a highly coarse-grained description to characterize the free-energy of a
droplet on a planar substrate in terms of the position of the solid-liquid and liquid-
vapor interfaces. Generally, the free energy takes the translationally and rotationally

invariant form

F= 'ySL/ dS+7/ dS+/ ds [ ds' g(le—r) (3.27)
LV
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where the integrals extend over the solid-liquid (SL) and liquid-vapor (LV) interfaces 2.
In Eq. (3.27), sy is the free energy per unit contact area of the liquid and the solid
substrate, and <y denotes the liquid-vapor interfacial tension. The last term of Eq. (3.27)
describes the effective interaction between the interfaces, and r and r’ are points on
the liquid-vapor and solid-liquid interface, respectively. In the following, we restrict
our attention to 2d droplets on a planar substrate (cf. Fig. 2.2), choose the x-coordinate
along the planar solid substrate and denote by z = h(x) the local distance between a
pointr = (x,y,z = h(x)) of the liquid-vapor interface and the planar substrate (Monge
representation). Due to cylindrical geometry, one may (i) study drops of bigger radii
than in the case of spherical droplets (at the same number of monomers) [27] and (ii)
neglect line tension effects, as three-phase contact lines are on average straight [88] and

their length is independent of the droplet size and shape.
The interaction of a point on the (planar) liquid-vapor interface (parallel to the sub-
strate) with the solid is obtained by integrating over the substrate area

gth) = [ ds' g(ie =), (3.29)

which for a homogeneous substrate only depends on the distance, /1, due to symmetry.
g(h) is the effective integrated interaction between a point of the liquid-vapor interface
with the homogeneous, planar substrate, and it is termed interface potential. In this

special case, the free energy functional (3.27) takes the form (up to a constant)

Flh] = L, / dry/1+ (@<h)? [7+g ()] (3.29)

where L, denotes the system dimension parallel to the cylinder axis. In the limit that
the equilibrium contact angle is small, one can adopt a long-wavelength approximation

(or small-gradient expansion)

F[i] ~ Ly/dx 1+ % (0:h)* +--- | v +g()] (3.30)

We obtain the equilibrium shape of the droplet by minimizing this free energy func-

tional subject to the constraint of fixed droplet volume

Vrop = Ly/dx h(x) = const (3.31)
yielding the condition
t(x) = _ L oF A (3.32)
~ Lyoh(x) '

21f there exist additional long-ranged interactions, V};, between the liquid and the solid, then one has
the additional contribution K, = [; d°r [¢d®r Vi, (|r — r'|). Writing Vi,(|r|) = V - 1®},(]r]), we obtain
for the long-range contribution K, = [g; 1y dS - [¢d®r (r — )@y ([r —r'|) = [ ;v dS - exgr(h) with
gu(h) = [ ey (r— 1)@y (|r —1'|) = Ly [ dx g, (h) + const.
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where A is a Lagrange multiplier constraining the droplet volume. Using Eq. (3.29) we

obtain

n(x) = — 1+(axh)2[ahg}+ax (am[wg(h)})

1+ (0:h)?
Cuhlyrs] g .
@] Ve |
In the limit of small contact angles, |d,/| < 1, this equation adopts the form
(x) = dych |y + ()| — ug: (334)

The pressure (3.33) consists of two contributions: the curvature pressure, where ¢, =

W is the curvature and 7 + g(h) is the effective tension of the interface a dis-
+(9x
tance 1 away from the solid substrate, respectively. The Derjaguin (or disjoining) pres-

sure I1(h) = —d,g(h) models wettability [80, 81]. The dimensionless ratio g(h)/vy
dictates the shape of a drop in the continuum model and it is this parameter that we

have extracted from the particle-based model in Sec. 3.1.5.

A spatially non-uniform pressure, 77(x), gives rise to a flow of liquid inside the film.
Using the Navier-Stokes equation and employing the long-wavelength approximation
[59, 89, 90], one obtains

dh = —3xT = —3,{Q()axm(x)}. (3.35)

Here Q(h) = h®/3n is the mobility, 7 is the dynamic viscosity of the liquid. Note, that
I'is a flux that is written as the product of a mobility and a pressure gradient. Eq. (3.35)

with (3.34) is sometimes called a thin-film or lubrication model.

The equation describing stationary solutions may either be obtained by directly min-
imizing the functional F[h] according to Eq. (3.32) or, alternatively, one sets d;1 = 0
in Eq. (3.35) and integrates twice taking into account that I' = 0 in the steady state.
Here we use numerical continuation techniques [91] to solve the resulting ordinary dif-
ferential equation as a boundary value problem on a domain of size L with boundary
conditions such that the center of the resulting drop solution is positioned on the right
boundary (x = L) and on the left boundary (x = 0) the profile approaches a precur-
sor film. The volume is controlled by the integral condition, Eq. 3.31. Figure 3.10(a)
presents typical drop profiles for various volumes whereas Fig. 3.10(b) gives the maxi-
mal drop height as a function of drop volume. Note, that there exists a minimal droplet
volume Vi, given by the saddle-node bifurcation in Fig. 3.10(b). If one decrease the
volume below Vg, the droplet collapses, i.e., it changes discontinuously into a flat film.

The transition is hysteretic (first order) as the primary bifurcation at V. is subcritical.
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Figure 3.10: (a) Shown are selected half-profiles of droplets at volumes as given in the
legend and (b) the bifurcation diagram presenting the drop height in dependence of the
drop volume. Calculations are performed with (i) the full curvature, i.e., Eq. (3.32) with
(3.33), and (ii) the long-wavelength curvature, i.e., Eq. (3.32) with (3.34). Case I and II refer
to usage of only 7y or the full v + g(h) as prefactor of curvature, respectively. The profiles
in panel (a) are obtained with case I for full curvature. The volume is controlled through
appropriately adapting the Lagrange multiplier A at fixed domain size L = 4000. The
employed disjoining pressure and interfacial tensions are extracted from MD simulations
at ¢, = 0.81€ (equivalent to an equilibrium contact angle of g = 23.57°, for details see
below section 3.2.2).

From Egs. (3.33), (3.34) and (3.35) we conclude that the information needed in the con-
tinuum model is the interfacial tension -y and interface potential g(h) (or, equivalently,
the disjoining pressure I'l(1)). The parameter-passing scheme is illustrated in Fig. 3.11.
The reliability of the scheme is tested by comparison of droplet profiles in Sec. 3.2.3.

3.2.2 Contact angles of droplets in MD and CD. Equilibrium contact angle

In the following we will compare the shape of droplets obtained from the particle-
based model and the continuum description. This comparison focuses on droplets
with small contact angles < 50° obtained in the particle-based model for the strengths
of solid-liquid interaction close to the wetting transition (€5 = 0.75¢ to 0.82¢). Different
numbers of polymer chains are used to create cylindrical 2d droplets (3d ridges) of
varying volumes and hence heights. The spanned dimension of the simulation domain
is smaller that the other lateral one, namely L, ~ 260 < L, whereas L, is dictated
by the size of the drop and its contact angle. A repulsive wall is placed far above the

droplet.

Data are sampled with a frequency of 4000 MD steps (i.e., the time interval between two
snapshots is 4000 - At = 4000 - 0.0057 = 207). This time interval between two samples
corresponds to the Rouse relaxation time for a similar polymer liquid g = 25.6 £ 57
[27]. For small droplets (up to 600 chains) the sampling lasted 2 x 10° steps, whereas for

bigger ones (up to 9600 chains) this interval was increased up to 107 steps, because large
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Figure 3.11: Shown is the parameter-passing scheme to bridge two representations:
particle-based description and continuum model (thin-film equation). The parameters
needed to be passed are calculated in MD simulations of the particle-based description and
passed to the continuum model. Then, droplet profiles as obtained by the two approaches

are compared, see Sec. 3.2.3.

fluctuations of the droplet shape occur. As a result, every density profile is obtained
by averaging over 500 (small drops) or 2500 (large drops) snapshots. To extract the
droplet shape and measure the contact angle, we use a set of density profiles obtained

in 10 independent runs. In total, all large droplets are simulated over 10 steps.

The resulting cylindrical droplet snapshots are cut into slices along the invariant y-
direction. An average over these slices with respect to its center-of-mass position re-
sults in the average number density profile in the (x,z) plane. A two-dimensional
drop profile is extracted by localizing the solid-liquid and liquid-vapor interfaces by
the crossing criterion for the density as pint = (phq + pPvap) /2. Examples of profiles are
presented in Fig. 3.12. The resulting profiles are then compared to the ones extracted

from the parameterized continuum models, which are also presented in Fig. 3.12.

One popular characteristics of the drop shape is the contact angle, because it is re-
lated to the balance of interfacial tensions at the three-phase contact line of a macro-
scopic drop. For finite-sized drops, however, the contact angle is not uniquely defined:
(i) One may define a mesoscopic contact angle Omes as the slope at the inflection point
of the droplet profile. This is often done in thin film models [60, 92], however, the
steepest slope obtained in this way may not coincide with the (larger) macroscopic
contact angle even in the limit of large drop size [93]. This corresponds to the dis-
tinction of macroscopic and microscopic contact angle in Ref. [94]. Moreover, in the
particle-based model, the inflection point may be located very close to the three-phase

contact line where liquid-like layering effects of the particle fluid may occur and af-
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Figure 3.12: Profiles of two-dimensional droplets obtained by cutting cylindrical droplets
obtained in MD simulations [solid noisy line (black)] for the case €5 = 0.82¢ for two values
of Nyay (4.0460 and 12.1810). The corresponding spherical cap fit is given as solid smooth
line (red). The MD drops are compared with results of the continuum model Eq. (3.32)
with the full curvature [Eq. (3.33)] and in long-wavelength approximation [Eq. (3.34)] that
are given as dashed (green) and dotted (blue) lines, respectively. The inset shows a zoom
into the three-phase contact line region of the smaller droplet.

fect the drop profile.(ii) Alternatively, one may define a spherical cap contact angle by
approximating the drop profile by a spherical cap profile with a minimal radius of
curvature R = —1/x, i.e., using the curvature at iimax. The resulting contact angle is
Osph = arccos (1 — hmax/R). In the profiles extracted from the particle-based model, we
extract 05, by only considering the central part of the drop to define the curvature. In
this way, the calculation is not perturbed by liquid-like layering effects or by the short-
range interface potential that distorts the liquid-vapor interface close to the three-phase
contact line. The height of the drop is determined as the difference of the highest point
of the spherical cap and the position of the solid-liquid interface *. 65, converges to the
proper macroscopic contact angle in the limit of large drop size, but may misrepresent

the shape and volume of small droplets.

For the continuum model, the two angles Gsph and Omes are illustrated in Fig. 3.13 that
shows two droplet profiles /1(x) as obtained from Egs. (3.32) with (3.33), their approx-
imated spherical cap profiles and the tangents of 1i(x) at the point of steepest slope
(vielding Omes) and of the spherical cap profile at the point where it crosses the pre-
cursor height (giving 6s,). One clearly notes that the two measures differ, and that
the difference decreases with increasing droplet size. We will see below that the two
measures do not converge even for very large drops. In the following we focus on the

spherical cap contact angle 6pp,.

The resulting contact angles for drops of various sizes are presented for different €

3 There are different strategies of measuring the contact angle with the spherical cap approximation:
direct geometric measurements [28, 95], estimation from the center of mass position [27] or from the vol-
ume of the droplet. In our MD simulations, we define a contact angle by the geometrical method. Other

methods give a similar result as all of them assume the spherical shape of the droplet.

33



CHAPTER 3: FLAT SUBSTRATES

25 T T T T T
| == CD profile I (Volume 960) |
= CD profile II (Volume 2958)
200 — = spherical cap (I) —
’G spherical cap (II)
e [ 7
15|
IS
= L 4
o —
b=
5 10}
@)
(I) L 4
N
0 I

-100 -80 -60 -40 -20 0

x-coordinate, [O]
Figure 3.13: Droplet profiles as obtained from continuum description (CD) with full cur-
vature (heavy solid lines) for e = 0.81€ and drop height (a) H = 4 and (b) H = 20. Also
shown are the spherical caps as obtained from the curvature at the drop maxima (heavy
dotted lines), and the tangent lines at the point of the steepest slope of the profile (thin
solid line), and the tangent line of the spherical cap profile at precursor height (thin dotted
line). Drop height H is defined as difference of height at maximum and precursor height.

as open square symbols in Fig. 3.14. Overall, they agree well with the prediction of
Eq. (3.14) that is given as horizontal dashed black line (with the standard deviation
indicated as a grey shaded region). Corresponding results for the contact angle ob-
tained from the continuum model, employing the long-wavelength approximation for
the curvature, Eq. (3.34), and with the full curvature, Eq. (3.33), are given as well. The
results for both are shown as solid (case I: only 7 as prefactor of curvature) and dashed
(case II: the full y 4 g(h) as prefactor of curvature ) lines of different colors depending
on the angle shown (Omes or O5p). Note that both curvature models result in identical

results for Oy, because dh = 0 at the apex of the drop. This is not the case for Omes.

The angle 6, obtained in the continuum approach agrees well with the result of the
MD simulations. This is particularly true for case I (only 7y as prefactor of curvature)
where 0,1, converges for large drops to the value obtained with the Young’s equation.
The deviations of case II from case I are small over the entire thickness range for e =
0.82¢, e; = 0.81€ and €5 = 0.80¢, but rather large for e; = 0.75¢. Note, that 05 does
not agree well with the macroscopic angle obtained in the MD simulations. Within
long-wavelength approximation it is always at least some percent smaller than 64y,
(more so for small droplets). The angle s Obtained with the full curvature differs
less from 6pp, the difference becomes less than one percent for large drops. For both

curvature models, Omes always decreases monotonically with decreasing drop size. All
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Figure 3.14: Contact angles 6 of droplets of different sizes as a function of droplet height.
Panels (a), (b), (c) and (d) give results at solid-liquid interaction strengths of e; = 0.75¢,
€s = 0.80¢, e = 0.81€ and €5 = 0.82¢, respectively. Square symbols correspond to the
contact angle measured in MD simulations, using a spherical cap approximation of the
droplet profile. Dotted and dashed thin horizontal lines correspond to the values 6g, and
g obtained from the Young equation with and without accounting for the measured solid-
vapor interfacial tension gy, respectively. Shaded zones show the standard deviation of
fg. Panel (d) additionally shows as a dot-dashed horizontal line the value of 6 as ex-
tracted from the meniscus geometry. The thick solid (case I) and dashed (case II) curves
(orange, red and blue) in panels (a) to (d) represent the spherical cap contact angle 6;,, and
the mesoscopic steepest slope contact angle fes obtained from the continuum description
(CD) with full and long-wavelength curvature [Eq. (3.32) with Egs. (3.33) or (3.34)], as in-
dicated in the legend. Case I and II refer to using of only v or the full v + g(h) as prefactor
of curvature, respectively [cf. Egs. (3.34) and (3.33)].

these statements apply for the respective relation between the various curves in case I

equally as in case II. The various angles calculated in case I are always slightly below

the ones obtained in case II.

Inspecting Fig. 3.14, one notes a number of further details that warrant to be high-
lighted: (i) A common feature of the particle-based model for e > 0.80¢, shown in
Figs. 3.14b - 3.14d, is the overshooting of the values of contact angles at thicknesses

h ~ 3 —7c0. This effect can also be observed in the spherical cap contact angle ob-
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tained from the continuum models. It indicates that the product of drop height /max
and curvature at the drop apex kmax is not a constant any more, instead |/maxXmax| first
increases with increasing volume (before decreasing again). (ii) Another detail one no-
tices is the importance of the solid-vapor interfacial tension, sy, measured in Sec 3.1.4.
At e; = 0.75€¢ it equals zero and at €; = 0.80e the macroscopic contact angles are al-
most the same if one neglects ysy or properly accounts for it (cf. the dotted and dashed
horizontal lines in Fig. 3.14b, respectively). However, the difference between the two
approaches becomes increasingly important with increasing €, i.e. decreasing contact
angle (Figs. 3.14c and 3.14d). Taking a non-zero ysy into account becomes crucial close
to the wetting transition. There, for rather small values of the contact angle (about
15 — 20°) the difference is of the order of 20 — 40% and accounts for 2 — 6°. The differ-
ence can lead to an incorrect prediction of the contact angle if one assumes sy = 0 in

the particle-based model.

Finally, we note that the error bars of the contact angles § measured in MD simulations
using a spherical cap approximation of the droplet profile (open squares in Figs. 3.14a
to 3.14d) are quite large. They increase with decreasing contact angle even in absolute
terms. Several possible explanations exist for this behavior: (i) In the vicinity of the
wetting transition, there are strong capillary waves on the surface of the droplet (par-
ticularly close to the three phase contact line) [96]. (ii) The crossing criterion we apply
to define the profile of the drops (po + pv)/2 is not a unique choice. There are other
possibilities to define the local interface position based, e.g., on 10-90% or 20-80% rules
that may work somewhat better close to the wetting transition (cf. [42, 95, 97, 98]).

3.2.3 Comparison of profiles of droplets obtained by CD and particle-based
model

Next, we compare the drop profiles as obtained from the particle-based model and
the continuum description. For the case of a rather small contact angle, e; = 0.82¢,
Fig. 3.12 gives results for a very small droplet of hmax = 4.0460 and a larger one with
hmax = 12.181c¢. The layering effects of the particle-based model are rather indepen-
dent of droplet size. Obviously, the layering of the particle-based model is not captured
by the continuum model, however, its predictions go smoothly through the steps of the
profile and always lay between the lateral end points of the steps. At the center of the
drop, the spherical-cap fit to the particle-based model and the continuum results, ob-
tained with Eq. (3.32) with the full curvature (Eq. (3.33)) as well as in long-wavelength
approximation (Eq. (3.34)), nicely agree with each other. As cases I and II can not be

distinguished by eye alone we have only included case L.

Differences between long-wavelength and full curvature and the results of the particle-

based model are only visible in the contact line region. There, the spherical cap is not
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Figure 3.15: Droplet profiles obtained in MD simulations and with continuum models are
compared for the case €; = 0.80¢, apex heights (a) imax = 6.5940 and (b) hmax = 10.4690
and (c) s = 0.75¢ and apex height hmax = 25.4940. The solid curves (light blue) give
the liquid-vapor interface as obtained in the MD simulation, while the gray solid curves
(red) give the corresponding spherical cap fit. Results of the continuum description (CD)
Eq. (3.32) with the full curvature (Eq. (3.33) - green curves) and in long-wave approxima-
tion (Eq. (3.34) - dark blue curves) are shown for cases I and II as solid and dashed curves,
respectively. For details see main text.

a good fit to the particle-based model. The two continuum models nearly coincide,
implying that the long-wavelength approximation for static droplets is still very good
for contact angles around 20°. In the contact line region, they seem to represent a
better approximation to the particle-based model than the spherical cap. One should
actually expect this, as the continuum models incorporate the Derjaguin pressure as
measured in the particle-based model. One may conclude that within its limitations
the continuum model describes the profiles rather well if it incorporates the interfacial

tensions and Derjaguin pressure from particle-based model.

The situation differs for larger contact angles as obtained for s = 0.80e and shown
in Fig. 3.15(a) and (b): (i) The deviation from the spherical-cap approximation is more
significant than for the smaller contact angle and (ii) the continuum model fails to de-
scribe the simulation data for the smaller droplet size. The difference between the pre-

dictions of the different versions of the continuum description is small compared to the
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deviation between the continuum models and the particle-based model. Therefore, the
reason of the discrepancy is not rooted in the different approximations of the curvature.
We note that interface fluctuations in a small droplet are strongly suppressed. There-
fore, one should rather use the bare interface potential than the one extracted from a
laterally extended film. Since the bare interface potential has a smaller range than the
renormalized one [61], we expect the profile of a small droplet to be better approxi-
mated by a spherical-cap shape than that of a large one, which is indeed consistent
with the simulation data. Out of the same reason, the predictions of the continuum
model are more accurate for the larger drop than for the smaller one because it uses the
renormalized interface potential as input. This rational explains why the predictions
of the continuum model systematically deviate from the results of the particle-based
model for small droplet size. For the large droplet, in contrast, the continuum model
succeeds in describing the deviations from the spherical cap shape, which is larger than
for small contact angles. The profile of the particle-based model lays right in the middle
of the predictions of the continuum models. The one that fits best is the case I with full
curvature. Therefore, we conclude that even for contact angles of about 30° all models
agree fairly well with the particle-based simulations provided the appropriate interface

potential is used.

Finally, we compare the profiles with a rather large contact angle as obtained for €5 =
0.75€ and shown in Fig. 3.15(c). For the comparison we use a large droplet with fipax =
25.4940. The difference between the various versions of the continuum models is
clearly seen not only at the contact line but over the entire droplet profile. The best
agreement with the particle-based model is achieved for case I with full curvature; all
other versions differ more significantly. Therefore, we conclude that for contact angles
of about 50° only the model with full curvature agrees well with the particle-based
model, while the long-wavelength approximation is not valid anymore. It is not advis-

able to apply at 0 = 50° where it predicts a contact angle s that is 20% lower.

3.3 Hydrodynamic properties of non-equilibrium polymer lig-

uids

This section deals with fundamental problems of solid-liquid interface description.
Employing non-equilibrium molecular dynamics simulations (NEMD) with DPD ther-
mostat to preserve correct hydrodynamics, we study liquid flows. While in a macro-
scopic world the no-slip condition is usually observed, where the layer of the liquid in
direct contact with flat solid assumes the velocity of the solid itself [99, 100], the mi-
croscopic picture is richer (cf. Fig. 3.16). Partial and even full slippage (plug flow) are

often observed at this level [10, 101]. Since our particle-based simulations are micro-
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Figure 3.16: Shown is a comparison of a macroscopic situation with no-slip boundary con-
dition, 6 = 0, and a microscopic surface-induced deviations from it (partial slippage). The
slip length here is defined as the distance from the solid-liquid interface to the no-slip po-

sition.

scopic, they are a suitable tool for investigating the boundary problem induced by the

solid-liquid interface.

In the following, we apply the macroscopic concept of boundary conditions to the mi-
croscopic velocity profiles of liquid passing the solid. The definition of slip length as
the distance from the solid-liquid interface to the position, where interpolated profile
of the liquid reaches the velocity of the wall (no-slip position) [102], is not free of am-
biguity. The reason is that such slippage depends on the type of the flow. Hence, it can
not serve as the boundary condition in macroscopic sense. Instead, an approach based
on macroscopic Navier’s boundary condition [103] is presented that is independent of
the type of the flow. In this method, the solid-liquid boundary is presented in terms
of slip length, J, and hydrodynamic boundary position, zj, at which the condition is
applied.

3.3.1 Navier’s boundary condition

In order to study flow past solid surfaces, we move the two apposing substrates into
opposite directions with a small absolute velocity vgau = 0.0750 /T (Couette flow) as
shown in Fig. 3.17a. The average shear rate is defined as a ratio of the velocity of the
wall vsvau to the width of the channel L, and, in our simulations, it is of the order of
4 ~5-10"3 771, The product of the shear rate and the Rouse relaxation time, 1, of the
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Figure 3.17: (a) Couette flow created in the system with flat substrates. Two walls are
moved into opposite directions with absolute velocities chvall‘ The origin of the z-axis is
taken in the middle of the channel (black). The linear velocity profile is sketched by the
arrows of different size. The interpolated profile reaches the velocity of the wall at the
coordinate Zc. (b) The flow created by application of a body force f (white) onto the
particles of the liquid. The parabolic velocity profile (arrows) is interpolated to the velocity
of the wall (vf ; = 00/7) and reaches it at Zp.

polymers defines the Weissenberg number, Wi = . Since Wi ~ 0.13 < 1, we do not

expect the weak flow to significantly perturb the molecular conformations.

As every boundary problem, the flow of liquid in the vicinity of the solid can be ex-
pressed in terms of effective parameters that are independent from the way the flow
is set up. In the static case we have seen that Young’s equation (3.14), manifesting the
balance of surface and interfacial tensions (free energies) at the contact line, described
the droplet at equilibrium. An analogy in dynamic case can be found in the balance
of stresses. This condition was formulated by Navier [103] and it balances the viscous
and frictional stresses at the solid-liquid boundary

00y
T dz

= \vs, (3.36)

z=2zp

where 7 is the viscosity of the liquid, v, is the x component of the velocity of the liquid
parallel to the substrate. A is the friction at the solid-liquid boundary, and the slip ve-
locity, vs = vx(zp), represents the velocity of the liquid at the hydrodynamic boundary
zp. The slippage is then defined as the ratio

_n
o=1. (3.37)

In order to serve as a boundary condition of a continuum description (i.e., the Navier-
Stokes equation), changes of the liquid structure at the surface are ignored, and 7 is
interpreted as the shear viscosity of the liquid in the bulk, 7 = 5.3 4 0.102/\/me [27].
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By the same token, v, (z) is interpreted as the macroscopic velocity profile that obeys
the continuum description and that we can extract from simulations by extrapolating

the linear profile of Couette flow towards the substrate, z = zy,.

Thus, Navier’s hydrodynamic boundary condition, Eq. (3.36), parameterizes the flow
past the surface by two effective material constants of the surface [27, 104-107]: the
hydrodynamic position, zy, at which the boundary condition to the macroscopic con-
tinuum description is applied and the slip length, 6 = #/A. The flow of simple lig-
uids over flat substrates is often described by the no-slip boundary condition, § = 0
[108], and the hydrodynamic position, zy,, often coincides with the location of the sharp
solid-liquid interface, as intuitively expected. Finite slip has been observed in complex
liquids [27, 34, 70, 101, 106] or at specific substrates: superhydrophobic [109-114] and
chemically patterned ones [115, 116].

Therefore we expect a finite slip length, J, and the effective location, zy, at which the
hydrodynamic boundary conditions is to be applied, is not obvious. Since Navier’s
boundary condition features two independent parameters, we use two flow profiles:
Couette flow, generated by moving the surfaces, and Poiseuille flow, generated by ap-
plying an external body force on the liquid. The linear and parabolic velocity profiles
expected from the macroscopic continuum model for Couette and Poiseuille flow, re-
spectively, are illustrated in Fig. 3.17.

We chose the origin of the coordinate system at the center of the film. The macroscopic
velocity profile is linear v$(z) = az + b for Couette flow, and the constants a and b

are determined from the boundary conditions v$(0) = 0 and v$(Zc) = —v< _,,, where

x wall”
Zc < 0is the position where extrapolation of the linear, macroscopic velocity profile
C

equals to the velocity of the bottom wall —v

a1 s shown in Fig. 3.17a. The resulting

velocity profile is therefore
C

v$(z) = ~ Fwall (3.38)
Zc
According to the macroscopic Navier-Stokes equation, the velocity profile of the flow
generated by an external body force has a parabolic shape, v¥(z) = — %22 +Az+B,
where peoex = 0.7860 3 is the number density of the liquid and 7 denotes its viscosity.
A = 0 by symmetry. When we express the constant B by the boundary condition
oL (£Zp) = 0, we obtain:

P(z) = pc;j;f(zl% _ ). (3.39)

Zp is the coordinate, where the extrapolated parabolic velocity profile of the liquid
reaches the velocity of the wall as illustrated in Fig. 3.17b. Velocity profiles are fitted
by Egs. 3.38 and 3.39 at the center of the film excluding the near-substrate region. Ap-
plying the hydrodynamic boundary condition, Eq. (3.36), to the macroscopic profiles,
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Figure 3.18: Velocity profiles of Couette flow (circles) and Poiseuille-like flow with body
force f = 0.008c/ T2 (squares) at e = 0.6€ are shown. Smooth thick solid lines are the
fits to the velocity profiles, measured away from the substrate. The positions Z¢ and Zp,
where extrapolated macroscopic profiles reach the velocity of the wall, vvcvan = —0.075c /7
and 0% (—Zp) = 0 for Couette and Poiseuille flows, respectively, are indicated. These no-
slip positions depend on the type of the flow and therefore cannot be used as a boundary

condition.

Egs. (3.38) and (3.39), we relate the extrapolated positions Zc and Zp, which we ex-
tract from the simulations, to the slip length, § = , /Zé — ZIZ,, and boundary position,
zn = Zc + 6 [106, 117].

To generate Poiseuille flow, we impose body forces f of strength 0.001 — 0.0100 /T2 (cf.
Fig. 3.17b). An external force injects energy into the system, which is removed by the
thermostat, keeping the temperature constant. In order to preserve a linear response
of the liquid, only the smallest force was applied at small values of €5, whereas for

€s = 0.6¢ all four forces were used.

The positions of an effective no-slip plane, where the extrapolation of the hydrody-
namic velocity field vanishes — Z¢ for Couette flow and Zp for Poiseuille flow — are
marked in velocity profiles of the liquid confined between two apposing substrates
with strength of solid-liquid interaction €5 = 0.6¢ in Fig. 3.18. These positions depend
on the type of the flow and, hence, cannot be used to parameterize a boundary condi-
tion. Instead, the distortion of the microscopic velocity profile can be described by the
hydrodynamic boundary position z;,, where Navier’s condition 3.36 is applied (vertical
dashed line) and slip length 4.

3.3.2 Hydrodynamic boundary position and slip length

Using the simulation data obtained from Couette and Poiseuille flows, we can indepen-
dently determine the slip length, 6, and the position of the hydrodynamic boundary, zy,.

In Fig. 3.19 we present the distance between the boundary position zy, and the position,
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Figure 3.19: Distance of the position, zy, at which Navier’s boundary condition 3.36 is to
be applied, to the innermost atomic layer of the substrate z'°P for channels with flat walls.
Positive values, z;, — z!°P > 0, indicate that the effective boundary position is closer to the

center of the channel than any particle of the wall.

z'°P, of the innermost atomic layer of the substrate (this position is therefore the origin
indicated by thick horizontal line in Fig. 3.19). It is interesting to notice, that even in
the case of flat walls, at small € the hydrodynamic boundary is found somewhat inside
the liquid, but not directly at the solid-liquid interface. However, the more attractive

becomes the solid, the closer is z;, to the interface.

The second parameter of the hydrodynamic boundary condition is the slip length, J, or,
equivalently, the friction coefficient A = #/é. If the macroscopic continuum description
of the velocity profile were accurate up to the position of the hydrodynamic boundary,
zp, and the liquid properties did not change in the vicinity of the substrate, then we
could interpret the friction coefficient as the proportionality coefficient between the

microscopic friction stress and the local velocity of the fluid flowing past the substrate.

In this case, one can compute the friction coefficient via a Green-Kubo relation for the
autocorrelation function of the tangential force, Fy, between the liquid and the substrate
[105],

n_ o, _ 1 ot
T=r=tm /0 dt (Fe(£)F:(0)) (3.40)

where A = LyLy is the area of the substrate. The analysis of Barrat and Bocquet [105]
suggests that A be proportional to the square of the attraction between liquid and sub-
strate, A ~ €2. Previous simulations for a Lennard-Jones polymer liquid on a Lennard-
Jones solid corroborated this relation [34], and we also observe this dependence on €

for our flat substrate as demonstrated by the dashed line in Fig. 3.20.

Utilizing both surface parameters, the position of the hydrodynamic boundary z; and
the slip length §, we conclude that in the vicinity and above wetting transition (es >
0.8e our method is consistent with a no-slip boundary, as in macroscopic case. Indeed,
the hydrodynamic boundary in this case is situated at the solid-liquid interface (cf.
Fig. 3.19) and the slip length 6 — 0 (cf. Fig. 3.20). However, a finite slippage is present
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Figure 3.20: The slip length ¢ for a liquid confined between flat substrates. The dashed line

is the analytical prediction of Barrat and Bocquet [105] based on Green-Kubo relation for

friction coefficient.

at less attractive substrates and in the case of a very weak attraction, e; = 0.2¢, a very
thin vapor layer is formed at the solid that act as a perfect lubricant. The slippage
becomes enormous and exceeds the linear dimensions of the simulation domain, and
the hydrodynamic boundary position zj, is found inside the liquid phase at the distance
of 3 molecular diameters from the solid-liquid boundary (cf. Fig. 3.19).

3.4 Discussion

The equilibrium properties of polymer droplets have been studied by Molecular Dy-
namics simulation of a coarse-grained particle-based model and a continuum descrip-
tion in terms of an effective interface Hamiltonian. We have devised a simple method
to compute the interface potential for laterally corrugated substrates, which is based
on the anisotropy of the pressure inside the film. This general computational strategy
can be applied to dense liquids of large macromolecules and can be implemented in
standard Molecular Dynamics programs. Using the so-determined interfacial tensions
and the interface potential in the continuum model, we find quantitative agreement
between both descriptions if (i) the full curvature is used in the continuum model for
large contact angles and (ii) the size of the drop is larger than the lateral correlation
length, ¢, of interface fluctuations. We also find that for contact angles up to about 30
degree the long-wavelength approximation that is normally used in thin film models

describes the droplet shapes even quantitatively quite well.

These results demonstrate that the tensions and the interface potential capture the rel-
evant information that needs to be passed on to a continuum model to describe the
equilibrium shape of droplets, including the deviations from the spherical cap shape in

the vicinity of the three-phase contact line. This is an excellent starting point for com-
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paring the dynamics of droplets driven by external forces, which we will pursue in the

future.

Additionally, we considered dynamical properties of liquid flows confined between
flat substrates. It was shown, that applying macroscopic Navier’s condition to a mi-
croscopic model, two different setups of the flow should be considered: Couette and
Poiseuille flows. Then, the solid-liquid interface is described by two material param-
eters: slip length, 6, and hydrodynamic boundary position, z,. The latter does not
necessarily corresponds to the position of the solid-liquid interface, but even in the

case of flat walls it is located somewhat inside the liquid.
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SYMMETRICALLY STRUCTURED SUBSTRATES

Some thoughts have glue on them.
Smilla

Peter Hoeg

This chapter considers droplets on and flows past symmetrically structured substrates.
In contrast to flat substrates, the surface corrugated by regular rectangular grooves
allows for a rich liquid behavior. Macroscopically, a liquid on this structured sub-
strate may either fill the cavities between corrugations (Wenzel state [118]) or build
a straight liquid-vapor interface on the top of the corrugations (Cassie state [119] or
fakir state). Microscopically, we show that a broad crossover regime exists between
these two states.

At first, we present the substrate of XYz unit cells that was initially introduced in
Sec. 2.1. The difference between flat substrates composed of XyZ and XYz unit cells
is considered in the beginning of Sec. 4.1. Later in this section, we quantify the dif-
ference in mobility of droplets in Cassie and Wenzel states. To this end, a technique
of free-energy barrier estimation for a drop moving across the corrugated substrate is
proposed. Employing this method, we show that, as expected, the height of the ener-
getic barrier for a drop in the Cassie state is significantly reduced in comparison to the

one in the Wenzel state.

We proceed with the study of the dynamics of droplets pushed over superhydrophobic
and hydrophobic surfaces. It was previously shown that at small and moderate equi-
librium contact angles, the velocity profiles taken from the solid-liquid interface to the
apex of the drop, are of the parabolic form [27]. On the other hand, mesoscopic lattice
Boltzmann simulations showed that for droplets with high contact angles (ca. 145°) the
velocity profiles start as parabolic at the substrate, but very fast reach a linear form,
indicating rolling [72]. We investigate if the contact angle is the only parameter, con-
trolling this behavior. Additionally, the influence of the pinning of three-phase contact

lines is inspected.
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Figure 4.1: Adhesion energy per unit area of substrates composed of XyZ (circles) and XYz
(diamonds) unit cells according to Eq. 3.15. For the XyZ unit cell, the integration method is
shown by the dashed line (cf. Eq. 3.20). The thick solid horizontal line marks the adhesion
energy Wy = 2. The wetting transition for both substrates happens at the same strength

of solid-liquid interaction e!"®' ~ 0.83¢.

In the last section we study the influence of corrugation, wettability and pressure on
slippage and friction at the solid-liquid interface. For one-dimensional, rectangular
grooves, we observe a gradual crossover between the Wenzel and the Cassie states. In
accord with previous Chapter, employing two independent flow set-ups, we character-
ize the near-surface flow by the slip length, J, and the position, z;, at which viscous and
frictional stresses are balanced according to Navier’s partial slip boundary condition.
This hydrodynamic boundary position depends on the pressure inside the channel and
may be located above the corrugated surface. In the Cassie state, we observe that the

edges of the corrugation contribute to the friction.

4.1 Static and dynamic properties of polymer droplets

The substrate model in this and the following Chapters is somewhat different from the
one being in use before. As mentioned in Sec. 2.1, we change the orientation of the
unit cell from XyZ to XYz. The character of transformation is shown in Fig. 2.1. This
kind of change allows one to create posts with squared cross-section, as the lengths of

lattice vectors Xand i are equal. However, in the end this opportunity has not been

47



CHAPTER 4: SYMMETRICALLY STRUCTURED SUBSTRATES

p—
0]
e}

h—

{ydrophobic substrate\‘\
{ydrophilic substrate ‘\\;\

@@ flat substrate with XyZ unit cell
@—¢ flat substrate with XYz unit cell

0.2 0.3 0.4 0.5 0.6 0.7 0.8
strength of solid-liquid interaction €, [€]

Figure 4.2: Equilibrium contact angles of the droplets, 6, as a function of the solid-liquid
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interaction strength €5 for the substrates composed of XyZ (circles) and XYz (diamonds)
unit cells according to Young-Laplace law (Eq. 3.14). For XYz unit cell, the solid-vapor sur-
face tension was considered to be ygy = 0. Solid lines are guides for the eyes. Horizontal
dashed line separates hydrophobic (fg > 90°) from hydrophilic (6 < 90°) regions.

exploited !, because the behavior of the liquid on quasi-one-dimensional grooves ap-
peared to be complicated enough. Nevertheless, the study of liquids on substrates with
posts gives additional insights into wetting phenomena [120-122] and we are planning

to elaborate on this in future.

Since the model of the substrate was changed, several quantities have been recalcu-
lated. All the properties of the liquid itself (e.g. its bulk density pcoex, cOexistence
pressure pcoex, Viscosity 7 and liquid-vapor interfacial tension y) remain unchanged.
Substrate composition affects only quantities related to solid-liquid interaction. Em-
ploying the methods presented in Sec. 3.1, we determine adhesion energy and equi-
librium contact angles of liquid at new flat substrate. The comparison of adhesion
energies (Eq. 3.15) of flat substrates composed of XyZ and XYz unit cells is shown in
Fig. 4.1. The wetting transition is located at approximately the same strength of solid-
liquid interaction, e¥®* &~ 0.83¢, what we consider rather like a coincidence than being

originated by some physical reason.

The better understanding of the difference between two flat substrates gives a direct
comparison of equilibrium contact angles of droplets, presented in Fig. 4.2. At fixed
strength of solid-liquid interaction €5 the XYz substrate (diamonds) provides higher
contact angles than XyZ one (circles). It is due to the fact that the length of lattice vector
i/ is increased and the attraction to the XYz solid is somewhat smaller than to the XyZ
one. The solid may be either hydrophobic (6 > 90°) or hydrophilic (g < 90°). The

1Later, in Sec. 4.1.3, one of the substrate we study is made of posts arranged in chessboard order.

However, their cross-section is rectangular.
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Figure 4.3: The geometries of the structured substrates. Patterning is present only in x-

direction.

horizontal dashed line separates these two regions. Since we will focus on hydrophobic
substrates, the non-zero values of solid-vapor surface tension sy in the vicinity of the

wetting transition were not taken into account.

The next section introduces the macroscopic states of the droplet placed on the top of a

structured substrate.

4.1.1 Cassie and Wenzel states

We consider a regularly corrugated surface topography as sketched in Fig. 4.3. The
structured substrates are composed of XYz unit cells. The macroscopic contact angle
that a liquid drop makes with the solid substrate is dictated by the balance of sur-
face tensions according to Young’s equation 3.14. Surface roughness tends to amplify
the wetting behavior, i.e., structuring a hydrophobic substrate (contact angle of a drop
greater than 90°) by grooves, one increases the contact angle and may render the sub-
strate superhydrophobic [118, 119, 123, 124].

cosOc = @pcostg + ¢ — 1, 4.1)

where 0¢ is the contact angle in the Cassie state, and 6g is the contact angle on a flat

substrate.

When the liquid does not fill the cavities (Cassie state as shown in Fig. 4.4a), the con-
tact angle changes according to Cassie’s formula [119] In the Wenzel state shown in
Fig. 4.4b, the liquid wets the substrate completely and the contact angle is described by
Wengzel’s formula [118]

cos By = rcos O, (4.2)

where 6y is the contact angle in the Wenzel state, and r stands for roughness of the
substrate. The parameter r is the ratio of the actual substrate area wetted by the liquid

to the projected area of the substrate. r > 1 and r = 1 for a flat unstructured substrate.

d+w+2h

R where w is the

Our model of the substrate corresponds to the roughness r =
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(@) (b)
Figure 4.4: (a) A droplet in Cassie state does not fill the grooves of the substrate. (b) A

droplet in Wenzel state fills the substrate cavities, creating solid-liquid interfaces at the
bottom and walls of the groove. The strengths of solid-liquid interaction are 0.3¢ and 0.5¢
for (a) and (b), respectively.

width of the groove. For the finely and coarsely corrugated substrates the roughness
is given by r; = 1.865 and r, = 1.289, respectively. The values of the contact angles
for a flat surface were calculated in Sec. 4.1 and the predictions of Cassie and Wenzel

formulae (with roughnesses 1 and ;) are compiled in Table 4.1.

We emphasize that Cassie and Wenzel predictions, given by Egs. (4.1) and (4.2), refer
to macroscopic amounts of liquid and do not account for thermal fluctuations of the
liquid-vapor interface spanning the grooves or the influence of the three-phase contact
line at the edges of the grooves. Since the pinning of a liquid on a patterned substrate
occurs in MD simulations, there is a hysteresis of the values of the contact angles. Thus,
if one simulates a droplet, the estimates of the contact angle will not necessarily corre-

spond to the Cassie or Wenzel values.

In the following section we quantify the difference in mobility of droplets at various

solid-liquid interaction strength €5 on the finely corrugated substrate ;.

€s GE/ [o] GC/ [O] 9W|7’=T1/ [O] 9W|r:r2/ [o]
0.2e | 1735 | 1749 - -
0.3¢ | 154.2 | 159.7 - -

0.4e | 138.1 | 147.2 - 163.5
0.5¢ | 120.8 | 134.0 162.8 131.3
0.6e | 102.1 | 120.4 113.0 105.7

Table 4.1: Contact angles, 6, 6, and Oy, on flat and structured substrates when the liquid
is in the Cassie or the Wenzel states, respectively. Data are obtained from the measured
values of the surface and interfacial tensions of the planar solid-liquid and liquid-vapor
tension using Eqs. (4.1) and (4.2) for the two different corrugations r; and r;.

50



CHAPTER 4: SYMMETRICALLY STRUCTURED SUBSTRATES

Figure 4.5: Integration path to calculate the energetic barrier. {R;, Rj1, ..., Renq} denote
reaction coordinates at which the CM of the droplet is constrained in x-direction. The path
starts in the middle of one groove and ends in the middle of the next one.

4.1.2 Energetic barrier and constraint force

The attraction strength €5 determines the mobility of the droplet. While at small in-
teraction strengths the droplet is free to diffuse on the top of the corrugations, at high
attraction it is immobile and remains on the same grooves for a long time. To quantify
this difference we investigate the height of the energetic barrier for the drop, when its

center of mass (CM) is moving across the finely corrugated substrate 1.

The difference in free energy, AFjj 1 between two CM positions along x-axis, R; and

Ry, can be formulated by

Rn JF
m __
AR = [ SRdR. (4.3)

]

Now, suppose we fix the CM at the position R = % Y i ri, where N is the number of
molecules and r; is the coordinates of i-th bead. The free energy is then defined as
F = —kgTIn(Q(R)K(P)), where Q(R) and K(P) are the configurational and kinetic

part of the constraint partition function, respectively. Then,

9F  13alm(QR)K(P)) 1 1 3Q(R)

R~ B R ~ BQ(R) oR (44)
Let us define the configurational part explicitly as
1
_ /dNriexp(—ﬁU[ri])é(R— <), (4.5)

where §(...) is the delta function, and introduce relative coordinates 7; = r; — R. Show-
ing that the Jacobian |0(7;)/d(r;)| = 1 for a fixed value of R, we can rewrite Eq. 4.5

as

Q(R) = /dNTiexp(—,BU[Ti—I—R])N(S(Zri). (4.6)

i

If one now differentiates Q(R) with respect to R,

aQ

/dNTZexp( BUlT + RN (Y. 7) - Z—ﬁ%, 4.7)

i
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Figure 4.6: Energetic barriers for droplets of ca. N = 20000 beads, when moving its CM
from one cavity to the neighboring one. Different symbols stand for various attraction
strength €5 of the finely corrugated substrate r;. Arrows indicate values of reaction coor-
dinate, R;, at which snapshots are taken for the droplet at 0.5¢. Positions of the CM of

droplets are indicated by circles on the snapshots.

one obtains from Eq. 4.4

311; — _;Q(lR)/dNTiexp(—,Bll[Tz’+R])N5(;Ti) ';_ﬁgg (4.8)

— (L5 = (L5 = ~(Few),

where angular brackets stand for ensemble averages and Fcy is the force onto the cen-
ter of mass of the droplet to keep it at the fixed position R. To calculate the energetic
barrier for a droplet when moving across the corrugations, we constrain its CM at posi-
tions {R;, Rj{1, ..., Rend} and measure the average constrain force onto the CM, (Fcy),
at these positions. Then, according to Eq. 4.3, we integrate these forces along the reac-
tion coordinate R and obtain the differences in free energy between two neighboring

CM positions upto some constant. The integration path is shown in Fig. 4.5.

The droplets of ca. N = 20000 monomers are considered and the strength of solid-
liquid interaction € is varied in hydrophobic range from 0.2¢ to 0.6e. The energetic

barriers for these systems are presented in Fig. 4.6.

The first notable feature of the plot is that the values of free energy at the beginning
of the paths and at the end of them are equal. This proves the reversibility of the free
energy calculation. Moreover, the energetic barriers are symmetric, as the topography

of the substrate implies. Indeed, one can start at the coordinate Re,gq and take the
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integration path into opposite direction. Second, we note that the heights of the barriers
are increasing with strength of solid-liquid interaction €s, as it was initially expected.
At last, to demonstrate the most undesirable position of the droplet’s CM, we show
snapshots from simulations at attraction strength 0.5¢, when the barrier is the highest
and the lowest (the correspondence to the reaction coordinate R is shown by arrows).

The positions of the CM are indicated by the circle on the snapshots.

By implementing constraints in the simulations, we calculated the free energy barrier
when moving the CM of the drop by one period of the substrate. While at small inter-
action strengths €, the droplet may easily overcome the energetic barrier, at high values
of € it is highly unprobable to happen, as the barrier is significantly higher. This indi-
cates that in order to make such droplets move one has to apply an external force. The
dynamics of droplets pushed over hydrophobic substrates will be studied in th next

section.

4.1.3 Velocity profiles of droplets moving under a body force

In the limit of small Reynolds numbers, the Navier-Stokes equation takes the so-called
Stokesian form [101]
0= —Vp+yAi+f, (4.9)

where i is three-dimensional velocity field in the droplet, f is the body force acting on

all its particles and Vp is the pressure gradient.

In the lubrication approximation (small equilibrium contact angles) one expects that
the velocity profile in x-direction, vy, is a parabolic function of the distance to the sur-

face, z [89]. Indeed, in this case Stokes equation can be of a particularly simple form

azvx _ _pcoexf

— : (4.10)

and it was shown that the parabolic velocity profile is preserved even for contact an-
gles upto 130° on flat substrates [27]. However, by scaling arguments, for droplets of
very large contact angles the profile is linear [125] and a rolling motion is observed.
The crossover between these two regimes was found in mesoscopic lattice Boltzmann
simulations [72]. There, on both, hydrophobic and superhydrophobic substrates cov-
ered by posts, the velocity profile is quadratic in z in the vicinity of the substrate, but

reaches the linear form further away from it.

In our simulations, we investigate the influence of the corrugation onto velocity profiles
of droplets. The drops of equilibrium contact angles 120.8° < g < 154.2° are consid-
ered, providing macroscopic contact angles on corrugated substrates in the range of
131.3° < O < 159.7° (cf. Table 4.1). At high contact angles, 6c ~ 145°, we expect

a combination of parabolic and linear profiles as was observed by lattice Boltzmann
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simulations. However, at very high contact angles, the profile may be of the linear
form, indicating pure rolling motion. At smaller contact angles, 6c < 145°, it is not
obvious how the velocity depends on the distance to the substrate, z. If the corrugation
influences the dynamics, deviations from a purely quadratic profile, measured for our

liquid model in Ref. [27], may be observed.

In this section we model droplets of N = 200000 monomers, as they are big enough
to justify the behavior of the velocity profile inside. The strength of the solid-liquid
interaction varies from 0.3¢ to 0.5¢. The length of the spanned dimension is L, ~ 300,
and the droplets are cylindrical. We use the finely corrugated substrate rq, presented in
Sec. 4.1.1. Keeping the ratio of the solid covered by ridges to the projected area constant,
¢ = 0.625, we also use the substrate composed of the posts arranged in chessboard
order. It was suggested, that such topography reduces the pinning at the three-phase
contact lines, allowing the higher droplet’s mobility [126]. This substrate is referred
to as the one with r{“"d corrugation to indicate that it has a tight relation to r;, but is

modified.

At the smallest attraction to the substrate, e = 0.3¢, the body force is taken to be
f =0.000010/72. Ttis big enough to provide the motion of the droplet [127], but is still
small to prevent it from detaching. At 0.4e and 0.5¢ a somewhat higher force is used
due to the same reasons, f = 0.000025¢ / T2,

The velocity profiles inside the drops are taken not only in a vertical slab, where the
CM is located, but also at the lateral distance 10¢ in front and behind it (relating to the
direction of the body force). However, for a better comprehension, only velocities vy (z)
in the slab with the CM are plotted in Fig. 4.7.

At first, we discuss the character of the dependence of the velocity v, on coordinate z.
At small attraction strength, e, = 0.3¢, the linear approximations in the region 400 <
z < 900 provide a good agreement with the simulation data even in the vicinity of
the substrate. Hence, we conclude that at this regime the droplet’s velocity profile is
of the linear form across its entire height, z, and the drop rolls over the substrate. At
higher attraction strengths, the velocity profiles at the substrate deviate from the linear
behavior. It indicates, that the character of the dependence changes to the parabolic
one. Unfortunately, the statistics for highest solid-liquid interaction strength e; = 0.5¢
is not good enough to see this distinctly, but at €, = 0.4€ this effect is more pronounced
(cf. circles and correspondent linear fits in inset of Fig. 4.7).

Now, we turn our attention to the comparison of two substrates: with 1 and r°? cor-

rugations (open vs. shaded symbols in Fig. 4.7). It is interesting to notice, that although
at solid-liquid interaction strengths 0.3¢ and 0.5¢ the droplet has a somewhat higher
velocity on chessboard substrate than on the one with grooves, this effect vanishes at

intermediate strength of interaction, 0.4¢. Since the sizes of the droplets are equal, the
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Figure 4.7: Velocity profiles of droplets as a function of the distance to the substrate, v, (z).
The open symbols stand for corrugation r;, shaded ones — for corrugation r{“"d. Squares,
circles and triangles correspond to the solid-liquid interaction strengths 0.3¢, 0.4€ and 0.5¢,
respectively. Lines are linear approximations to the data in the region away from the sub-
strate, (40 — 90)c. The inset zooms into the region z < 40c that does not affect linear
fits.

only possible explanation of this behavior lies in non-trivial changes of an effective
friction coefficient that is not simply governed by the ratio of the substrate covered by
corrugation ¢, which is taken to be the same for r; and rlln(’d substrates. Instead, the
edges of the corrugations influence the friction. This effect will be corroborated later in

Sec. 4.2 for substrates with grooves.

In the end, we compare velocity profiles obtained for drops on corrugated substrates
to the ones in Ref. [27] for droplets with contact angle 6 ~ 130° pushed by a body
force over a flat substrate. There, the velocity profiles are of the parabolic form along
the whole distance z to the substrate. In our case, we choose for comparison the data
at solid-liquid interaction strength €5 = 0.5¢, as it provides the contact angle between
131.3° < 0 < 134.0° on the corrugated substrates r; and r‘ln"d (triangles in Fig. 4.7). The
behavior that we observe, at least away from the substrate, is definitely well approxi-
mated by linear fits. Hence, we suggest that not only the contact angle determines the
regime of the velocity profile v, (z) as proposed by Mognetti et al. [72], but the corruga-

tion of the substrate also dictates the character of droplet’s motion.

In this connection, it is interesting to notice that the friction at the surface is the domi-
nant mechanism influencing the velocity of the droplet with the large contact angle (cf.

Eq. 42 and discussion after it in [27]). Hence, the solid-liquid interface phenomena are
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crucial in understanding the difference in liquid motion at substrates of different topog-
raphy. In the next section, we study the hydrodynamic properties of the solid-liquid

interface as a function of the substrate corrugation and wetting parameters.

4.2 Correlation between hydrodynamic properties of polymer

liquid and surface topography

Understanding the flow of liquids past solid surfaces has attracted abiding attention
in micro- and nanofluidics. While on macroscopic scales, the non-slip or stick bound-
ary, which assumes the velocity of the fluid at the surface coincides with that of the
surface, is popular, this approximation may become invalid on smaller length scales
pertinent to the operation of micro- and nanofluidic devices [100, 128, 129]. Control-
ling the friction at the interface between the solid substrate and the liquid is crucial
in these applications, and different strategies have been pursued: Like in the case of
wetting, one can control friction by (i) the direct, microscopic interactions between the
solid and the liquid or (ii) the surface topography of the solid [110]. While the for-
mer is largely dictated by the chemistry of the solid and liquid, the latter alternative is

expected to be a universal physical mechanism.

We consider a regularly corrugated surface topography as sketched in Fig. 4.3. A liquid
on this structured substrate may either fill the cavities between corrugations (Wenzel
state [118]) or build a straight liquid-vapor interface on the top of the corrugations
(Cassie state [119] or fakir state), as discussed in Sec. 4.1.1. The macroscopic contact
angle that a liquid drop makes with the solid substrate is dictated by the balance of
surface tensions according to Young’s equation [2]. The slippage of a liquid past a solid
surface, in turn, is determined by a balance of viscous and frictional stresses at solid-
liquid boundary [103]. Modifying the topography of the surface, one simultaneously
alters this balance and the surface tensions, therefore affecting both, slippage and wet-

tability, respectively.

A dramatical decrease of slippage takes place for a liquid in Wenzel state with respect
to the corresponding flat substrate [110-112]. The effective position of equivalent no-
slip wall was found between the top and bottom of the grooves [130]. In the case
of the liquid in the Cassie (or fakir) state, in turn, the slip length increases and an
enlargement by a factor of 2.5 in comparison to flat substrates has been observed [110].
Semi-analytical models, assuming a no-slip condition at the solid-liquid interface and
infinite slip at liquid-vapor interface, have been developed to calculate an effective
slip [102, 112].

Both, in the description of wetting and slippage, the phenomenological approaches

exploited the scale separation between the geometry of the substrate (i.e., the shape
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of the corrugation) and the length scale that determines the surface tension or friction
of the corresponding planar substrate. This assumption is justified for macroscopic
corrugations but when the spatial scale of the corrugation decreases, geometry and
interactions do no longer decouple; in this limit the surface roughness is an intrinsic
property of the substrate. In this section, we use a particle-based simulations, which
duly account for the discreteness of the fluid and its thermal fluctuations, to investigate

the onset of deviations from the macroscopic phenomenological behavior.

Keeping the fraction ¢ of the surface covered by grooves constant but varying their spa-
tial dimensions, we investigate the influence of the roughness onto dynamical proper-
ties of the liquid in the Cassie and Wenzel states. Between these two states of the liquid,
we only observe a gradual crossover but no phase transition [110]. We show that (i) the
slippage at superhydrophobic substrates is significantly influenced by the additional
friction at the edges of corrugations and (ii) that the hydrodynamic boundary position
does not necessary coincide with a localization of the solid-liquid interface between the
top and the bottom of the grooves.

There are two microscopic length scales of the polymer liquid to which the dimensions
of the substrate topography can be compared: (i) the end-to-end distance Ree = 3.430°
of the spatially extended chain molecules and (ii) the effective bead size ¢. The former
distance is related to the single-chain conformations in a cavity (cf. Fig. 4.8), while the
latter sets the intrinsic scale of packing and layering effects in the fluid. For the short

chain length considered in the present work, these two scales are not well separated.

Additionally, we compare the flat substrate composed of XYz unit cells and the flat
substrate of XyZ unit cells used earlier in Chapter 3. During this comparison we refer
to these substrates according to the notation of their unit cells. However, the terminus
"flat substrate”, used in this Chapter to compare flat and corrugated substrates, refers
solely to XYz substrate, as the corrugations are constructed of the same building block
— XYz unit cell.

The dimensions of the simulation box are L, = L, = 330, whereas L, is varied from
29.250 to 36.05¢ depending of the topography of the substrates and strength of solid-
liquid interaction €. If not mentioned otherwise, Ny = 1920 chains are confined in the
simulation domain. The number of chains is varied in Sec.4.2.5, where we study flows

at different pressures.

The results are summarized in the article submitted to Soft Matter.

4.2.1 Transition from Cassie to Wenzel states

To predict the stability region of the Wenzel state, we use a simple phenomenologi-

cal continuum model [110], accounting for free energies of the interfaces presented in
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Figure 4.8: (a) Liquid in Cassie state does not fill the cavity, but creates straight liquid-
vapor interface of area L,w;. (b) Liquid in Wenzel state fills the cavity creating solid-liquid

interfaces at the bottom and walls of the cavity.

Fig. 4.8. The liquid will fill the cavity if free energy of the liquid in the Wenzel state
(Fig. 4.8b) is smaller than free energy of the liquid in the Cassie state (Fig. 4.8a):

Fw — Fc < 0. (4.11)

From the geometries of interfaces the free energies can be written as

PC = ’YLywi/

(4.12)
Fw = st Lyw; 4+ ystLy2h = s Ly (w; + 2h),

where w; is the width of the cavity and <ygy. is the solid-liquid surface tension that, in
turn, is related to the contact angle of the liquid on a flat substrate 6 through Young’s
equation s, = — cosfg. Here we recall that the density of the vapor is negligible.
Therefore we assume a substrate-vapor surface tension of ysy ~ 0. Then, the condition
of filling the cavity by the liquid can be formulated in terms of the contact angle 6g as

1

GE < arCCOS(—m).
1

(4.13)

Substituting w; with parameters of the substrates of our simulation model, we find
that for a finely corrugated substrate the condition for filling the cavity corresponds
to Og, < 108°, and for a roughly corrugated one it holds 6, < 124°. Comparing these
phenomenological predictions with values of contact angles from Table. 4.1, we observe
that the filling of cavities of finely and roughly corrugated substrates occurs at €5 ~ 0.6¢

and €5 ~ 0.5¢, respectively.

This phenomenological, macroscopic consideration predicts a first-order surface phase
transition between the Cassie and the Wenzel state. In Fig. 4.9 we present the num-
ber density of liquid in a single cavity of the substrate for the two topographies. If
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Figure 4.9: Histogram of a number density in a single cavity for finely (a) and roughly (b)
corrugated substrates at varying strengths of solid-liquid interaction €5 with body force
0.001c/72. Additionally plotted a histogram in the crossover regime at €5 = 0.4¢ without
body force (dashed lines). The presence of a body force exerts only negligible influence on

the density distribution. The coexistence density pcoex is plotted by dashed vertical line.

there were a phase transition of first order between the Cassie and Wenzel states, one
would expect a bimodal histogram, where the two peaks corresponded to empty cav-
ities without liquid (Cassie state) and cavities completely filled by the liquid (Wenzel
state), respectively. In marked contrast, however, we observe only a single peak in the
density distribution. As we vary the solid-liquid interactions, €5, the average num-
ber density of liquid beads inside the cavity changes gradually. Around half-filling
(Pcoex/2 =~ 0.4(7*3) the distributions are very broad. The coexistence density of the lig-
uid is indicated in the graph by the dashed vertical lines. The value inside the filled
cavity is comparable but it remains smaller due to packing (layering) of the particle
fluid inside the cavity. Snapshots reveal that the liquid-vapor interface strongly fluctu-
ates in this crossover region and adopts states between straightly spanning the top of
the grooves, as expected for the Cassie state, and touching the bottom of the groove,
as being characteristic for the Wenzel state. In passing, we note that the application of
the body force to the liquid does not change the behavior (cf. solid and dashed lines in

Fig. 4.9 in presence and absence of a body force at €5 = 0.4¢, respectively).

There are two effects that contribute to the absence of a true surface phase transition
in our simulations: (i) If the coupling between neighboring cavities were negligible
because the cavities were widely separated, the number of particles in each groove
would be an independent quantity. Then, since each groove would be a quasi-one-
dimensional system, there cannot be a true thermodynamic phase transition. Instead,
we would expect to observe large but finite-sized domains of filled and unfilled por-
tions along the groove. This rational is important for widely spaced and extremely

long grooves, and this mechanism will eliminate all thermodynamic singularities at
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finite temperatures. While a systematic study of the filling/emptying behavior as a
function of the spatial extension along the groove is beyond the scope of the present
study, it is unlikely that this effect causes the absence of a sharp thermodynamic transi-
tion for the rather short grooves in our simulations because we do not observe multiple

domains along a groove.

(ii) The absence of bimodal probability distributions in Fig. 4.9 rather indicates that
even in the limit of infinitely long grooves, the transition between the Wenzel and the
Cassie state is not of first-order but continuous. Thermal fluctuations give rise to fluc-
tuations of the particle number in a cavity due to the finite compressibility of the liquid
and, more importantly, due to fluctuations of local position of the liquid-vapor inter-
face inside the groove. The latter are the analog of capillary waves in this confined
geometry. For the geometry used in our simulation study, the height of the grooves is
on the same order of magnitude as the intrinsic width of the liquid-vapor interface, and
already small excursions of the interface position result in a significant change of the
filling fraction. Even if h/c is not very small but the grooves are widely separated to
be considered independent, we anticipate large fluctuations because the macroscopic
consideration, Eq. (4.13), asserts that the Wenzel and Cassie state have equal free en-
ergies for fg — 90°. In this case, the liquid-vapor interface can move homogeneously
like a rigid plane up and down in the groove. In fact, these simple macroscopic consid-

erations are in agreement with a non-mean-field analysis [131, 132].

If the liquid is confined into a channel, the pressure might deviate from the vapor pres-
sure, at which the liquid and vapor of vanishingly small density coexist. The associated

effects will be discussed in the following section.

4.2.2 Normal pressure in the bulk phase

We study a polymer liquid that is confined between two apposing substrates. A flat
unstructured substrate, a finely corrugated substrate with roughness r; and a substrate
with a rough corrugation, r,, are considered. All of them are composed of XYz unit
cells, introduced in Sec. 2.1. Additionally, we vary the strength of solid-liquid interac-
tion, 5. To adjust the normal pressure to its coexistence value, peoex ~ 0, we change
the distance L, between the two apposing substrates and calculate the corresponding
pressure inside the liquid composed of Ny = 1920 chains. The resulting width, L°®,
is therefore a function of solid-liquid interaction strength €, the corrugation r;, and the

number of chains Ny, i.e., LS = LS (g, 1, Np).

We calculate the normal pressure tensor component p, [42, 43] dividing the systems
into slabs perpendicular to the direction of the substrates and using the approach by
Irving and Kirkwood [44], as discussed in Sec. 3.1.1. The pressure is divided into a

configurational term, which is proportional to the number density p(k) in a slab k, and
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Figure 4.10: Pressure of the polymer liquid at the center of the film. Panel (a) shows the
results for a flat surface, while panel (b) presents the results for the two corrugated sub-
strates. Filled symbols represent the corrugation r; and empty symbols correspond to 7.
Dashed horizontal lines indicate the coexistence density and pressure, respectively.

a virial term:

2

palk) = ksT(o(k)) + (T 7By - cos (Fy 1) ), @.14)

sl Mgy T

where V; denotes the volume of the slab, x;;, y;;, z;; are the distances between interact-
ing particles i and j in x, y, z directions, respectively, and r?j = xz-Z]- + yfj + i\T he angle
between the force F;; and the distance vector 1;; is given by expression Fj;, r;;, and its
cosine can take the values +1. Angular brackets (- - - ) denote averages in the canonical
ensemble. The sum Zl@j runs over particles i and j if a portion of line connecting them
is located inside the slab k. The interactions between the solid substrate and the liquid
particles also contribute to the virial.Since the solid-liquid interaction is of finite range,
however, they do not contribute to the pressure in the center of the confined film. Me-
chanical stability asserts that the pressure normal to the surfaces does not depend on

position and thus equals the pressure at the center of the film.

The dependence of the normal pressure on the distance, L,, between the walls is pre-
sented in Fig. 4.10. At small L., the density and pressure at the center of the film
monotonously decrease with increasing L,. At constant number of particles, we ob-
serve that the higher the attractive strength of solid-liquid interaction, €;, is the smaller
is L%, because of the excess of the compressible liquid at the attractive substrate. L,
is defined as the maximal distance between the corrugated substrates, i.e., measured
from the bottoms of the corrugation. L$°®* is larger for a finely corrugated substrate
with roughness r; than for the coarse grooves (filled vs. open symbols in Fig. 4.10),
because the polymers explore the wider grooves better, and thereby they increase the

liquid excess at the substrate and reduce the pressure at the center.

Atlarge wall separation, L, > 32.5¢, we find deviations from the expected monotonous
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Figure 4.11: (a) Couette flow created in the system with roughly corrugated substrates.

Two walls are moved into opposite directions with absolute velocities vvcv a1+ The origin
of the z-axis is taken in the middle of the channel (black). The linear velocity profile is
sketched by the arrows of different size. The interpolated profile reaches the velocity of
the wall at the coordinate Z¢. (b) The flow created by application of a body force f (white)
onto the particles of the liquid. The parabolic velocity profile (arrows) is interpolated to
the velocity of the wall (Z)a a1 = 00/7) and reaches it at Zp.

dependence on L, due to the formation of vapor bubbles under tensile stress, p <
0. These cavitation events nucleate more readily at strongly attractive surfaces €5 >
0.5€ and for corrugated substrates. In those cases, the simulations did not necessarily

achieve equilibrium.

4.2.3 Comparison of hydrodynamic boundary positions

Here we study the flow of a polymer liquid past corrugated substrates. Therefore we
expect a finite slip length, J, and the effective location, z}, at which the hydrodynamic
boundary conditions is to be applied, is not obvious. Since Navier’s boundary condi-
tion features two independent parameters, as was shown in Sec. 3.3, we use two flow
set-ups: Couette flow, generated by moving the surfaces, and Poiseuille-like flow, gen-
erated by applying an external body force on the liquid. The linear and parabolic veloc-
ity profiles expected from the macroscopic continuum model for Couette and Poiseuille

flow, respectively, are illustrated in Fig. 4.11.

The set up of the Couette flow is the same, as previously in Sec. 3.3. We move the
two apposing substrates into opposite directions with a small absolute velocity v$_, =
0.075¢0 /T (Couette flow) as shown in Fig. 4.11a. The average shear rate is defined as a
ratio of the velocity of the wall vf}vall to the width of the channel L, and, in our simula-
tions, it is of the order of ¥ ~ 5-1073 7~ 1.

To generate Poiseuille-like flow, we impose body forces f of strength 0.001¢ /72, 0.003¢/ T2,
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Figure 4.12: Distance of the position, zj,, at which Navier’s boundary condition 3.36 is to be
applied, to the innermost substrate atom ZtGOp for channels with fine and rough corrugations
(lines with filled circles and squares, respectively) and for channels with flat walls (line
with open circles). Positive values, zj, — zgp > 0, indicate that the effective boundary
position is closer to the center of the channel than any particle of the wall.

0.0050 /7% and 0.008¢/ T2. An external force injects energy into the system, which is re-
moved by the thermostat, keeping the temperature constant. In order to preserve a
linear response of the liquid, only the smallest force was applied at small values of €,

whereas for € > 0.4¢ all four forces were used.

Using the simulation data obtained from Couette and Poiseuille-like flows at peoex = 0,
we can independently determine the slip length, J, and the position of the hydrody-
namic boundary, z. In Fig. 4.12 we present the distance between the boundary po-
sition zy and the position, zgp, of the innermost substrate segment, which is located
on the tops of ridges between the grooves. In case of a flat substrate (black line with
open circles), the position ztGOp refers to the innermost atomic layer of the substrate. It is
interesting to notice, that even in the case of flat walls and small €, the hydrodynamic
boundary is found somewhat inside the liquid, but not directly at the solid-liquid in-
terface. For most parameters at structured substrates, the hydrodynamic boundary is
located 2 — 4 segment diameters inside the liquid above the top of the ridges between
the grooves. This observation for our molecular fluid even holds in the Wenzel state,

where the liquid enters the grooves.

The position of an effective no-slip plane, where the extrapolation of the hydrodynamic
velocity field, vanishes — Z¢ for Couette flow and Zp for Poiseuille flow — will be located

at an intermediate coordinate between the peaks and valleys of the substrate topogra-
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Figure 4.13: Velocity profiles of Couette flow (circles) and Poiseuille-like flow with body
force f = 0.0050 /T (squares) at €5 = 0.4e and rough corrugation r, are shown. The case
corresponds to the crossover regime, when liquid enters the cavity. Smooth thick solid
lines are the fits to the velocity profiles, measured away from the substrate. The posi-
tions Z¢ and Zp, where extrapolated macroscopic profiles reach the velocity of the wall,
Ugall =
are indicated. These no-slip positions depend on the type of the flow and therefore cannot

—0.075¢/7 and v¥(—Zp) = 0 for Couette and Poiseuille-like flows, respectively,

be used as a boundary condition.

phy in the Wenzel state if the slip length, J, is larger than 2 — 4 segment diameters.
This result is compatible with lattice Boltzmann simulations of a continuum fluid past
statistically rough surfaces [130]. We emphasize, however, that the no-slip position de-
pends on the flow and, hence, cannot be used to parameterize a boundary condition,
as shown in Fig. 4.13. Moreover, upon reaching the limit 0 — 90° the slippage can be
less than 2 segment diameters (cf. section 4.2.4), and the corresponded no-slip position
shifts into the liquid.

In Fig. 4.14 we present the mass-weighted, two-dimensional velocity profiles for cor-
rugated substrates at ¢, = 0.4e. Additionally, we demonstrate the velocity profiles
vy (squares) and their macroscopic fits (smooth solid lines) measured away from the
substrate to neglect distortion by the friction at the boundary. The position of the hy-
drodynamic boundary condition is also indicated in the graph (horizontal dashed line).
In both cases, it is above the corrugation. Qualitatively, z;, describes the crossover be-
tween two behaviors: For larger distances from the substrate, the velocity is strictly
parallel to the x-axis as predicted by the Navier-Stokes equation for Poiseuille and
Couette flow past a macroscopic substrate, while closer to the substrate, the velocity
field acquires a spatially periodic, perpendicular z-component. In agreement with de-
tailed hydrodynamic calculations of flow past a corrugated substrate, the amplitude of
the perpendicular velocity component will decay faster away from the substrate if the
lateral period is smaller [102]. Additionally, we note that the deviations of the veloc-
ity profiles from the macroscopic fits begin at the vicinity of hydrodynamic boundary

position.

Finally, we mention that, at €, = 0.4€ (crossover regime, when the liquid enters the

cavity but not yet in the macroscopic Wenzel state), the average velocity of the liquid in
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Figure 4.14: Mass flux, p7 (arrows), in the xz plane at €; = 0.4€ and w; = 2.060 in panel (a)
and at €5 = 0.4¢ and w; = 6.18¢ in panel (b) under body force f = 0.005¢ /7> (Poiseuille-
like flows). Both cases, (a) and (b), correspond to the crossover regime, when liquid en-
ters the cavity. In the accompanying plots velocity profiles (squares) and the extrapolated
hydrodynamic profile (thick solid line) are shown.Smooth solid lines are the fits to the
velocity profiles, measured away from the substrate. The position of the hydrodynamic
boundary, zy, is indicated by horizontal dashed lines.

a cavity of the finely corrugated substrate nearly vanishes, whereas in case of a rough
corrugation the liquid actually flows in the cavity. This effect may influence the local

shear stress and the effective boundary properties.

4.2.4 Comparison of slip length and surface friction

In this section we apply the same procedure to compare the slip lengths and friction
coefficients of flat and corrugated substrates, as was used in Sec. 3.3. The second pa-
rameter of the hydrodynamic boundary condition is the slip length, J, or, equivalently,
the friction coefficient A = 1/4. Employing the dependence of the slip length on solid-
liquid interaction strength § ~ 1/€2 [105], we firstly compare the XYz flat substrate
used in this Chapter with XyZ substrate, used in Chapter 3. The comparison is made
at peoex ~ 0 in the bulk of the liquid.

Since the orientation of the unit cell of the flat crystalline substrates differs, we observe
that the slip length for XYz substrate is smaller than for the previously used XyZ sub-
strate (circles vs. squares in Fig. 4.15, respectively). Such an orientation dependence of
slippage has also been observed in other studies [133]. The reason is that for the XyZ
substrate the atoms are packed more tightly in one atomic layer, than in the case of XYz
substrate. Indeed, the lengths of the lattice vectors i differ by a factor of V/3. Hence,

the XyZ substrate is more uniform (more “flat”) than the XYz one.

To compare the hydrodynamic boundary conditions of flat and structured substrates
composed of the same unit cells of XYz type, we aim to adjust the pressure to its co-

existence value, peoex = 0, such that the liquid-vapor interface in the Cassie state hor-
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Figure 4.15: The slip length ¢ for a liquid confined between flat substrates of XyZ (squares)
and XYz (circles) types. The dashed lines are the analytical predictions of Barrat and Boc-
quet [105] based on Green-Kubo relation for the friction coefficient.

izontally spans the grooves. Then, one expects that the friction in the Cassie state is
reduced, A = @Agq,, compared to its value on a flat substrate, where ¢ is the fraction of

the substrate area in contact with the liquid [110].

In the Wenzel state, the macroscopic expectation is that the friction, like the surface free
energy, is proportional to the microscopic contact area, r, between liquid and substrate.
Thus a finely corrugated substrate, r; = 1.865 is expected to give rise to more friction

(with respect to the projected substrate area) than a coarsely corrugated one, r, = 1.289.

Fig. 4.16a presents the slip length, J, as a function of the solid-liquid attraction. The
qualitative behavior is similar for flat and corrugated substrates. For strong attrac-
tion, the slip lengths is microscopic but upon approaching e; — 0 (purely repulsive
substrate), the contact angle approaches 180°(drying transition) and a lubricating thin

vapor layer intervenes between the substrate and liquid giving rise to large slippage.

When plotting A ~ 1/6 vs. €2, one expects to find that the simulation data are compat-
ible with two linear relations with different slopes. One linear relation corresponds to
the Wenzel state for large €5, and another linear relation with a larger slope character-
izes the Cassie regime, where the substrate has less contact with the liquid. In our simu-
lation, however, the crossover gradually occurs in the wide range of €5 /€ € (0.275; 0.6)
ores/e € (0.25;0.5) for the finely and coarsely corrugated substrate. Only at e, = 0.6¢
or s > 0.5¢, respectively, we observe the system consistently in the Wenzel state.

Therefore, we cannot identify the linear behavior that marks the Wenzel state.

In the crossover region, the friction coefficients of both substrates do not significantly
differ as shown in Fig. 4.16b. According to macroscopic considerations, we expected
the finely corrugated substrate to generate more friction because of the larger contact

area with the fluid. In our simulations, however, the liquid is rather trapped inside the
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Figure 4.16: (a) The slip length ¢ for a liquid at flat (open circles) and patterned substrates of
r1 and r; corrugations (filled circles and squares, correspondingly) at coexistence pressure.
The inset shows the slip length § as a function of inverse squared interaction strength €. (b)
Friction coefficient A for different topographies of the substrate. The line with diamonds in
the inset corresponds to the friction at the flat substrate multiplied by the area fraction ¢ =
0.625 covered by grooves. It is smaller than measured friction coefficients for corrugated
substrates due to the friction at the edges of the grooves. The crossover regions, separating
Cassie and Wenzel states, are shown by shaded areas for the different corrugations.

finely corrugated grooves, and the friction is not predominately generated at the solid-
liquid interface but by viscous dissipation due to the velocity gradient at the interface

between the trapped liquid inside of the groove and the flowing liquid at the center.

In the Cassie state, the friction of the corrugated substrate is comparable to that of the
flat substrate. The macroscopic prediction that the friction is reduced by a factor of
¢ = 0.625 is not observed in our model. Moreover, the friction on the finely corrugated
substrate is slightly higher than on the coarsely corrugated one. This effect can be
partially rationalized by the effect of edges.

In Fig. 4.17 we present two-dimensional density plots in the vicinity of the corrugated
substrate. We observe that density oscillations, which indicate layering effects of the
particle fluid, emerge from the edges of the grooves and propagate a few particle di-
ameters, o, into the channel. We also note that even for the rather small body force,
f = 0.0050/ 72, that drives the fluid through the channel, the flow breaks the left-right
symmetry, and the packing effects at the left and right edges of a groove differ slightly.
The edge facing the flow (on the right side of the cavity) exhibits stronger layering
effects than the edge on the left side.

To a first approximation, we try to quantify these deviations from the macroscopic
prediction due to localized perturbations of the flow by augmenting the Cassie model

of friction by a term that accounts for additional friction at the edges of the grooves.

A = @Aga + K(€s,d, W) Zegge, (4.15)
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Figure 4.17: Two-dimensional map of the number density of the particle liquid in the vicin-

0

ity of the finely (left column) and coarsely (right column) corrugated substrate for e; = 0.3¢
(top row) and €; = 0.4€ (bottom row). A body force f = 0.0050/ 72 generates a Poiseuille-

like flow whose direction is indicated by the arrow.

where Yedge = dJ%w is the line density of edges and K(e;, d, w) quantifies the additional
friction coefficient per edge length. K slightly depends on the geometry but in the limit
of isolated edges, d,w — oo, we expect K to adopt a finite value. The line density
of edges is three-fold higher for the finely corrugated substrate than for the coarsely
corrugated one. From the data of Fig. 4.16b we extract the effective edge friction K.
The values are in the range of 0.03 < K < 0.16 for the finely corrugated substrate and
somewhat larger, 0.09 < K < 0.22, for the wider grooves. The order of magnitude
of the edge friction, K ~ 2.5Ag,0, is plausible, i.e., each edge generates an additional
friction that corresponds to roughly two additional rows of the substrate. The increase
of K with increasing the distance between the edges is in accord with Fig. 4.17, where
we observe that liquid layering effects are more pronounced for wider grooves than for

more narrow ones.

4.2.5 Pressure-driven flow in patterned channels

For an incompressible liquid confined into a channel with flat boundaries, the flow
that is generated by a body force and pressure-driven Poiseuille flow are equivalent.

For corrugated substrates, however, both methods of generating flow are no longer
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Figure 4.18: Slip length, J, as a function of the pressure measured from EOS of the channel
confined by finely (a) or coarsely (b) corrugated substrates, respectively. The insets present
the friction coefficient, A, and the vertical line marks peoex- The widths of the channels
L. at fixed €5 and corrugation r; correspond to the widths LS (e, r;, Np), calculated in
Sec. 4.2.2.

equivalent: If we use a body force to set the fluid in motion, the system will remain
translationally invariant along the flow direction, and the pressure at the center of the
channel will be independent from the position along the channel. If we generate the
flow by a pressure gradient, instead, the pressure will decrease along the channel. Even
if the liquid were incompressible and hence its shear viscosity would not depend on
pressure, we expect that the parameters of the hydrodynamic boundary condition of
a corrugated substrate — slip length, J, and position, z;, — will depend on the pressure
and therefore will vary along the channel. The ability of the fluid to explore the cavities
of the substrate makes the total system effectively compressible. Upstream, where the
pressure is high, the fluid is more likely to enter the cavities of the substrate (Wenzel
state), and the friction will be high. Farther downstream, in turn, the pressure is low
and the liquid is more likely to adopt the Cassie state, which results in a lower friction.
At negative pressures, p < Pcoex, ONe might expect either again an increase of friction
because the liquid-vapor interface in the Cassie state is curved (bubble mattress) [134]
or a decrease of friction because the vapor layer at the solid is formed and acts as a
perfect lubricant [110, 135].

In order to study how the slip length depends on pressure, we generate Poiseuille-
like flow via a body force and vary the number of polymers inside the slit-pore. We
measure the density at the center of the channel and use the bulk equation of state (EOS,
cf. Appendix A) to determine the pressure.This pressure corresponds to the normal
pressure inside the channel. The simulation results in Fig. 4.18 demonstrate that the
slip length sensitively depends on pressure.

If the pressure is high, the slip length, J, is microscopically small and the friction coeffi-
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Figure 4.19: Distance of the position, zj,, at which Navier’s boundary condition 3.36 is to be
applied, to the innermost substrate atom ztc?p for channels with fine (a) and rough (b) corru-
gations, respectively. Positive values, z}, — ng > 0, indicate that the effective boundary po-
sition is closer to the center of the channel than any particle of the wall. Different line types
correspond to different number of polymers in a channel at fixed L, = L (es, 1, Np),

giving rise to different pressures.

cient A is very high. In this case we observe a parabolic profile with an effective no-slip
boundary condition. Upon reducing the pressure, the slip length increases. When
approaching the coexistence pressure, the slip length increases for weakly attractive
substrates because the grooves are gradually emptied. At pcoex the liquid adopts the
Cassie state. For stronger attractions, €5 the liquid remains in the Wenzel state even
when we approach peoex- The continuous transition between Cassie and Wenzel states
at peoex as a function of €5 has been studied in Sec. 4.2.1. For p < pcoex Very large slip
lengths can be achieved because a thin vapor layer is formed at the substrate that acts
as lubricant. In this case, we observe plug flow because the slip lengths exceeds our
system size, L, by far, and the friction is very small. Such a lubrication layer forms

more readily for small €.

The dependence of the hydrodynamic boundary position, z;,, on pressure is shown in
Fig. 4.19. As in the case of flows at coexistence pressure, discussed in Sec. 4.2.3, for
most parameters the hydrodynamic boundary is found inside the liquid above the top
of the ridges between the grooves. The significant change of hydrodynamic position,
zp, at low pressures and at finely corrugated substrate, which goes along with a large
statistical uncertainty, may be explained by the formation of a lubricant layer of vapor

at the solid boundary and the concomitant, large increase of slippage (plug flow).

Thus slippage and friction greatly depend on the pressure inside the channel, and the
pressure dependence may significantly affect the flow profile across the channel and
the pressure drop along the channel. Using Navier’s hydrodynamic boundary condi-
tion, we compute how the flow rate, Q, depends on the slip length, J, and half of the
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effective channel width, z;,

N R _2Lyzdpr.d(p)
Q= 2/0 dy/o v, (z)dz = “T3y dx [3? +1], (4.16)

where % is the local drop of pressure along the channel. Mass conservation requires

that Q be constant along the channel and the pressure profile along the channel is dic-

tated by
dp 1
dx 3okt 4

Zh

(4.17)

If the slip length is constant along the channel, the pressure decreases linearly with the
coordinate, x, along the channel. For the corrugated substrate, however, § increases
with p and, consequentially, the pressure decreases rapidly upstream and more slowly
downstream. In the case of negative pressures at the end of the channel (suction) and

small €5, we expect plug flow with vanishingly small pressure drop.

4.3 Discussion

In this chapter we studied droplets on symmetrically structured substrates and flows
of a polymer liquid in channels with patterned walls by particle-based Molecular Dy-

namics simulations.

A technique to estimate the height of the energetic barriers for drops in Cassie and
Wenzel states is suggested. By this method, we showed that the height of the ener-
getic barrier increases with the strength of solid-liquid interaction €;, as was initially
expected. To overcome an energetic barrier for the drop on a corrugated substrate, one
has to apply an external force. We confirmed predictions of lattice Boltzmann simula-
tions [72], where the droplet with the contact angle ¢ ~ 145° on a corrugated substrate
exhibited parabolic velocity profile at the substrate, v,(z) ~ z2, that was followed by
the linear one further away from it, v,(z) ~ z. However, we also found that for larger
contact angle 6c ~ 160°, the velocity profile is well approximated by the linear depen-
dence across the entire height of the droplet, as predicted by scaling arguments [125].

Additionally, we incorporated a chessboard corrugation of the solid with the same ratio
¢ of the area covered by posts to the projected area, as in the case of symmetric grooves.
At most of the strengths of solid-liquid interaction €s, the velocity profiles of droplets
pushed by a body force over the chessboard substrate are somewhat higher than the
ones of droplets on symmetric grooves, as was shown by Moradi et al. [126]. However,
at ¢, = 0.4e, the topography of the substrate did not influence the velocity profile.
Therefore, the reduction of the friction is not always possible to reach by modification

of substrate topography, as additional friction arises from the edges of the corrugations.
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Then, the flow of a polymer liquid in channels with patterned and flat walls was stud-
ied. First, we measured the normal component of the pressure in the bulk at different
widths of the channels of different topography and compared the slippage and the
friction at the coexistence pressure. Significant differences between flat and corrugated
substrates were found for liquids in Cassie state. Owing to the friction at the edges of
the grooves, however, the friction coefficient A does not scale like the ratio of area cov-
ered by the grooves, ¢, to the projected area. For microscopically corrugated substrates,
a correction associated with the fiction at the edges of the corrugations is suggested,
cf. Eq. 4.15.

We showed that there is no sharp phase transition between Cassie and Wenzel states
but only a rather gradual crossover. These observations indicate that the macroscopic
concepts cannot be straightforwardly extrapolated down to substrate topographies
with dimensions that correspond to tens of fluid particle diameters. Using Couette and
Poiseuille flow, we extracted the hydrodynamic boundary position, zj, and slip length,
J, that characterize the Navier slip condition. In applications to superhydrophobic
substrates of complex topography the position of the hydrodynamic boundary is not
intuitive. While the equivalent no-slip plane, which depends on the type of flow, might
be located between the top and bottom of the grooves [130], we find that the position
of the hydrodynamic boundary, z;,, was almost always located above the top of the

roughness.
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I'like pushing boundaries.

Lady Gaga

A possibility to drive a liquid droplet in a controlled way is crucial for micro- and
nanofluidics. Directed motion could be used to transport substances suspended in the

drop to distinct parts of the lab-on-a-chip or any other microfluidic device.

In order to actuate a droplet, sitting on the substrate, one has to employ surface-energy
gradients. These surface-energy gradients may be divided into two general groups [136]:
static and dynamic. Good examples of the former ones are methods based on asym-
metric dewetting: solids patterned by posts of variable density [136, 137] or chemi-
cal gradients [138]. Dynamic gradients, on the other hand, are made by changing the
wettability in time, for example, by electrowetting [139] or continuous reactive wet-
ting [5, 140]. There are actuating approaches using a combination of both, static and
dynamic, gradients. The drop on a static substrate can be driven by dynamical temper-
ature gradient [141], driving force [142] or vibrations of the solid [143]. The vibrations

in the latter case can be asymmetric or symmetric on asymmetric substrates [144-146].

In this section we study conditions for realization of a directed transport of droplets,
sitting on asymmetrically structured and vibrating substrates (ASVS). The response of
drops is studied as a function of its size and period of vibrations. To this end, our main

concern consists in resolving two questions:

® what is the driving mechanism? A typical mechanism is the one, when a drop is
driven by its contact lines (CLs), as the responses of the advancing and receding
contact lines on a vibrating asymmetric substrate are not identically rapid [137,
147]. We, on the other side, find a range of vibration periods, leading to the
droplets driven additionally by the contact area (CA) of the substrate between

the contact lines. In this regime both mechanisms are simultaneously active.

* what is the character of directed motion? In general, there are three possibilities of

droplet motion [27, 72]: sliding, rotating and a combination of both. All of them
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@ (b)
Figure 5.1: (a) A cylindrical liquid drop on an asymmetrically structured substrate. Side

view. (b) The geometries of asymmetrically structured substrates. Two substrates with
grooves of different size are studied: roughly corrugated, R (top) and finely corrugated, F
(bottom). The dimensions of the former one are d; = 4.81c and h; = 2.78¢. The later one
is 2 times greater, d = 9.620 and hy = 5.560. The angle of corrugation is 30° in both cases.

dissipate the input power by different means. We investigate the character of
directed motion as a function of period of substrate vibrations Tper, strength of
solid-liquid interaction €5 and corrugation of the substrate (F- or R-type). We
find that most of the droplets are sliding, but the corrugation may give a rise to

additional rotation.

This chapter is organized as follows: at first, in section 5.1.1, we present the topogra-
phy of the substrate and dimensions of the system. Then, in section 5.1.2, we explain
the response of a droplet onto agitation and the direction of motion. The results on
mechanisms of directed motion are reported in section 5.1.3. The section 5.1.4 deals
with character of directed motion, manners of dissipations and efficiency of directed

motion. We conclude with a short discussion and give an outlook in section 5.2.

5.1 Directed transport of drops on agitated superhydrophobic

substrates

5.1.1 Agitated systems

Here, we present details about the simulation set-up and the topography of ASVSs.

Additionally, we discuss the agitation process and its parameters.

At first, we note, that a polymer droplet is modeled in three dimensional simulation
domain of volume V = LyL,L.. Periodic boundary conditions are used in x- and y-
directions, whereas an ideal repulsive wall is placed far above the droplet, sitting on
a supporting substrate, in z-direction. The lengths of the simulation box are chosen in
a way to provide the formation of cylindrical droplets, namely L, = 30.25¢c < Ly .
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Figure 5.2: The profiles of drops of varying size on F-type substrate at €, = 0.4€ and period
of substrate vibration Tper = 417.

The side view of a system is shown in Fig 5.1a, the axis of a drop is parallel to y-axis
of the box. We remind that due to cylindrical geometry, one may (i) study drops of
bigger radii than in the case of spherical droplets and (ii) neglect line tension effects as

explained in Section 3.2.

Then, we limit us to two substrates of fine (F-type) and rough (R-type) corrugations.
The grooves of both substrates have triangular shape in side view as shown in Fig. 5.1b,
but differ in size by a factor of 2. The largest cathetus d; forms a 30° angle with the
hypotenuse.

Finally, we set the drop in motion by starting in-phase oscillations of the substrate

atoms. Their velocity is given by the harmonic law
o5(t) = v3(t)ii = At wsin(wlt — to)), (5.1)

where A, w and ¢t are the amplitude, frequency and the time when agitation starts,
correspondingly. 7 is the unit vector normal to the bottom layer of the substrate. The
initial velocity v5(to) is zero and therefore there is no sudden energy and momentum
infusion into the system. This facilitates the equilibration phase, because the drops do

not detach from the substrate at the moment when the vibrations start.

We investigate the response of the droplet on agitation at interaction strengths €5 =
0.4 and 0.5¢ and at the periods of vibrations 157 < Tper = 271/w < 2517. The contact
angles of the drops on a flat substrate for these values of €5 are 138.1° and 120.8° upon
increasing €s, respectively. Also, droplets of different size are modeled to address the
question of its influence onto the mechanism and efficiency of directed motion. The
drops consist of 20 000, 50 000 or 200 000 beads and Fig. 5.2 displays the drops of vary-
ing size at Tper = 417 on F-type substrate at s = 0.4e. Note, that not only the radii
of the droplets differ, but also the contact areas. The contact angles, however, remain

equal.
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(a) (b) (o)
Figure 5.3: Explanation of the direction of motion: (a) The solid-liquid interface (blue con-

tour) of the droplet resting on a asymmetrically structured substrate (lila contour). The
distance from the interface to the solid is dy. (b) Raising of the ASVS is marked by the
lila arrow. The liquid is pushed by the solid (blue arrow), and the repulsion drives the
droplet to the right (blue pointed arrow). Due to steep repulsive part of the L] potential,
the distance from the solid to the interface changes insignificantly. (c) Lowering of the
ASVS. The distance from the solid changes by amount of ¢, shifting the effective interac-
tion into attractional range of the potential (green arrow). It has a component directed to
the left (green pointed arrow) that on average is greater than repulsive one and provides
the directed motion to the left.

5.1.2 Response of a drop on agitation

In this section we explain the direction of motion by simple analytical considerations.
Then the hypothesis is supported by computer simulations. Later, the shape of the

droplets and the parameters that affect it are discussed.

A droplet placed on a resting asymmetrically structured substrate can not move in any
specific direction (Fig. 5.3a), as it would act like a Maxwell’s demon[148] taking advan-
tage of thermal fluctuations and violating the second law of thermodynamics. How-
ever, if one constantly inputs energy into the system, e.g. by vibration of the substrate,
the droplet can be moved in a definite direction in a controlled way. The direction itself

can be justified by the following considerations.

A naive thought would be that during the raise of the substrate from its minimal po-
sition to the maximal one the liquid is pushed into direction normal to the one of the
grooves, as shown in Fig. 5.3b. The force the substrate exerts on a drop F5(t) (blue solid
arrow) depends on time t and has a component Fy,is(t) 7 (blue pointed arrow), pointing

to the right side, where i is a unit vector in x direction.

We expect that the drop would indeed go in this direction if the solid-liquid interac-
tion is purely repulsive. However, we use the L] potential that has an attractive part
(Eq. 2.5). Therefore, the other stage of substrate movement should also be considered,
namely the one with the solid moving downwards as in Fig. 5.3c. At this stage the

solid-liquid distance increases by amount of ¢, and atoms of the substrate attract the
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Figure 5.4: (a) and (b) show profiles of drops of N = 200000 beads averaged at the same
phase w[t — ty] of oscillations on F-type substrate at €5 = 0.4€ with Tper = 157 and 637
vibrating periods, correspondingly. Insets zoom into the region close to the substrate and
show the distance from the solid-liquid interface to the bottommost layer of the substrate
Ziin®

liquid (green solid arrow). This attraction pulls the liquid to the left with the force
Frower(£) 7 (green pointed arrow) that act against the force Frais(t) i. Now, taking into
account steep repulsive part of the L] potential and relatively gentle slope of attrac-
tive part, we conclude that the average position of the solid-liquid interface is shifted
towards larger distances with respect to the minimum of the potential. This explains,

that effectively the droplet is driven by substrate vibrations to the left.

We justify our considerations in three steps:

¢ considering the biggest droplet profiles averaged at specific phases of substrate
vibrations with periods Tper = 157 and 637 in Fig. 5.4a and 5.4b, respectively. In
particular, we look how the distance from solid-liquid interface to the bottom-
most substrate atom plane, z? ., depends on the phase (the insets). Indeed, as
was suggested, the solid-liquid interface is located farther away from the solid
when the substrate is moving down (phases 377/2 and 27, orange and red lines)

then when raising up (phases 71/2 and 7, black and green lines);

* considering the velocity fields of the biggest droplets averaged at specific phases
of substrate vibrations with the same periods as in previous step. The velocity
tields are shown in Fig. 5.5 and 5.6 for Tper = 15T and Tper = 637, respectively.
In particular, we look how the particles of the liquid are moving in the vicinity of
the solid. When raising the substrate, the boundary layer of the liquid is pushed
upwards and mostly to the right, as expected. However, the strength of the phe-
nomena depends on the period and phase. For example, the phase 7r, when the
substrate reaches its maximum position has very symmetric velocity field for all

the periods. This is explained by the fact that the compression of the liquid at
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Figure 5.5: Velocity fields of droplets of N = 200000 beads averaged at the same phase
w[t — to] of the F-type substrate vibrations with period Tpe; = 157 and at solid-liquid in-
teraction strength e; = 0.4¢. (a) and (b) correspond to the raising of the substrate at phases
7t/2 and 7, respectively. (c) and (d) correspond to the lowering of the substrate at phases
37/2 and 27, respectively. The corrugations of the substrate are not spatially resolved on

B w0 20 o 20
x—coordinate, [o]

(d)

the profiles at these strength of the solid-liquid interaction and period of vibrations.

this stage of substrate vibrations is the highest and the liquid’s response is nearly

isotropic.

When the substrate is going down and starts to attract liquid the picture is differ-
ent. We observe mostly the breaking of the symmetry of the velocity field with
horizontal net component of the velocity, pointing to the left. It is also interesting
to notice that the propagation of the flux created by the substrate vibrations is
different for two periods. If we consider the positions of the substrate at its max-
imum and minimum (7t and 277, correspondingly), the substrate sets in motion
the whole bottom half of the droplet at higher period (cf. 5.6b and 5.6d), whereas

for a smaller one, considerably smaller part of the droplet is involved (cf. 5.5b
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Figure 5.6: Velocity fields of droplets of N = 200000 beads averaged at the same phase
w(t — to] of the F-type substrate vibrations with period Tper = 637 and at solid-liquid
interaction strengths e; = 0.4e. (a) and (b) correspond to the raising of the substrate at
phases 71/2 and 71, respectively. (c) and (d) correspond to the lowering of the substrate at
phases 377/2 and 27, respectively.

and 5.5d). It may also be explained by a simple suggestion that at higher period,

the influence of the substrate has more time to propagate into the liquid;

* calculating the average forces Frais and Fioyer, acting on the biggest droplet when
raising (phase of vibrations from 0 to 77) and lowering (phase from 7t to 277) the
E-type substrate, respectively. These forces are quantified by

- 1 1 [ .
Fais = ( — Fritdtzi/ Fs(t) -idt), 5.2
o <Tper~/0 aS( ) > <Tper 0 ( ) : > ( )

and

Frow — <i 7 Erower(t) ar) = ( ! / TR Tar), (5.3)

Tper T m T
where FS is the force the substrate exerts on a drop. The angle brackets (...)

stand for ensemble averages. The results are brought together in Table 5.1. The
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Tper ﬁz [U/Tz] ‘ Fiower, [U/TZ]
157 12.8 £3 —-16.04+£2.9
63T 1.14+45 —-11.9+4.2

Table 5.1: The average forces Fais and Flower, acting on a droplet during raising and lower-
ing F-type substrate at period Tper, respectively. The average net force has a negative sign
and therefore point to the left, driving droplet in this direction.
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(a) (b)
Figure 5.7: (a) The position of the center of mass of the drop of N = 200000 monomers at
€s = 0.4€ during the simulation at different periods of substrate vibrations Tper. (b) The
profiles of drops of N = 200 000 beads on F-type substrate at interaction strength €5 = 0.4e.
Different colors represent profiles at various periods of substrate oscillation.

average net force has a negative sign and therefore point to the left, driving the

droplet in this direction.

However, although the net force at moderate period of vibrations Tper = 637 is greater
then the one at Tper = 157, this does not necessarily indicate that the velocity of the
center of mass of the drop (CM), Vcy, will be higher in the first case. The reason is that
not all the energy provided by the substrate is converted into translational motion of
the droplet, but part of it is dissipated by viscous and frictional forces. The detailed

study of the efficiency of driving is given in Sec. 5.1.3.

After a short time after the start of substrate vibrations, the drop establishes a steady-
state motion regime. In Fig. 5.7a we report on the coordinate of the CM of the droplet
during the simulation. Different colors represent different periods of substrate vibra-

tions Tper and nearly constant slope of the curves indicates established steady states.

The last detail connected to the response of the droplet is the change of the contact angle
as a function of period of vibrations, Tyer, as shown in Fig. 5.7b. It may be explained by
the fact, that the balance of surface tensions at the CL is influenced by the oscillating
substrate. The smaller the period, the greater the change of the contact angle (and the
shape) of the drop with respect to the one on a substrate at rest, that can be regarded in
the limit of high periods (e.g. at Tper = 2517).
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Figure 5.8: Shown are side views of (a) a droplet on the ASVS of F-type and (b) a flow of
the liquid between a flat wall and the ASVS of F-type. The dashed regions are equivalent,
if the width of the channel is big enough to avoid an influence of the flat wall onto liquid’s
structure in the dashed box. The lack of advancing and receding CLs allows to study the
flows induced by the CA of the liquid and the substrate. If a flow in such system exists, the
CA with ASVS will drive the drop together with the CLs. If the flow is missing, the CLs

will drive the droplet alone.

5.1.3 Mechanisms of droplet motion

In order to sort out the driving mechanisms of droplets on ASVS, we study a liquid
volume close to its CA with the solid, corresponding to the dashed box as shown in
Fig. 5.8 (left). In z direction, the liquid is confined by a flat wall as displayed in Fig. 5.8
(right), whereas in x and y the periodic boundary conditions are applied. The dashed
regions are equivalent, if the packing of the liquid in the vicinity of a flat wall does not
influence the dashed box, and the distance between the substrates provides the coex-
istence pressure in the bulk of the liquid. The density of the vapor phase in pockets of
the ASVS is negligible and the coexistence pressure peex ~ 0. The virtue of a system
with a liquid confined between the flat and the ASVS consists in the absence of advanc-
ing and receding three-phase CLs. The vibrations of the asymmetric substrate in the
channel are set up in the same way as for droplets, as discussed above. We measure the
velocity profiles of the liquid along the line connecting two substrates (normal to the

flat substrate) at different periods of oscillations Tpe;.

The profiles presented in Fig. 5.9 show that liquid can be set in motion without receding
and advancing CLs. Therefore, the droplets on ASVS at short periods of oscillations
Tper can be driven by the CA. However, it does not necessarily imply that the CLs are
not participating in motion at all, but only that the area of contact with the substrate is
an active mechanism of driving in this regime. Therefore, we refer to the situation as the
directed motion driven by both, CA and CLs. On the other side, at higher periods there
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Figure 5.9: Velocity profiles of the liquid confined between a flat and F-type ASVS at e; =
0.4€ (a) and €5 = 0.5¢ (b). The liquid is set in motion for Tper < 417 and Tper < 257, for (a)
and (b), respectively. The same for a flat and R-type ASVS at s = 0.4¢€ (c) and €5 = 0.5¢
(d). The liquid is set in motion for periods of oscillations upto Tper < 637 and Tper < 417,
for (c) and (d), respectively.

is no driving by the CA. Drops are set in motion due to the advancing and receding
CLs only. This regime starts for the F-type ASVS at shorter periods than for the R-type
ASVS, namely Tper > 417 and Tper > 257 for the F-type ASVS, and Tper > 637 and
Tper > 417 for the R-type ASVS at €5 = 0.4€ and €5 = 0.5¢, respectively.

Returning back to the case of droplets on ASVSs, we report in Fig. 5.10 on the velocity
of the droplet’'s CM, Vcy, as a function of period of vibrations Tper and solid-liquid
interaction strength €5 = 0.4¢ at F-type substrate. The inset stands for same parameters,

but at €; = 0.5€. The behavior of Vi correlates with the mechanisms of driving.

When the CA and CLs are active simultaneously (shaded region), the change of droplet’s
size significantly affects the CM velocity. Here we note that the length of the CLs, 2L,
is independent of the size, and that the CA, Aqyop, is proportional to the radius of the
drop, R, and the sinus of contact angle, sina. Therefore, in this regime for drops of
varying size one sees scaling of the Vou with a factor of the CA, Agrop. The other

regime is the one when only CLs are active. Since the length of the CLs is independent
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Figure 5.10: Velocity of the CM, V\, for drops of different sizes as a function of period
of F-type substrate vibrations at e; = 0.4e. The inset displays the same dependence at
€s = 0.5€.

of droplet’s size, there is no more any considerable difference of the Vcy for different

droplets.

To conclude, we emphasize that there are two possible mechanisms of driving: (i) at
short periods of substrate vibrations the drop is driven by both, the area of contact with
the substrate and three-phase contact lines; (ii) upon increasing the period the driving
due to the CA looses its power and at higher periods the drop is driven solely by CLs.

The investigation of the efficiency of the driving follows in the next section.

5.1.4 Character of motion. On the way to sort out the dissipations

This section is devoted to the investigation of the character of directed motion (whether
sliding, rotational one or combination of both) and estimate the dissipations during
the motion. At first, we quantify the power input provided by the substrate. Later,
the different manners this power is dissipated are reviewed. In the end, we explain
how the droplet is moving and compare character of motion as a function of period of
substrate vibrations Tper, strength of solid-liquid interaction €5 and corrugation of the

substrate.

The droplet placed onto the ASVS is reacting onto vibrations: it adjusts its shape and

starts to move in a certain direction. This motion is always supported by the substrate
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Figure 5.11: The input power P’ during one period Tper of vibration of F-type substrate
at e, = 0.4e and as a function of the size of the drop. The common trend is the decrease
of the power with the period of oscillations. However, one can notice peculiar behavior in
the region of 20 — 257. See main text for details. The inset presents the input power per
period at e = 0.5¢ for drops of different size.

vibrations, but not all the power introduced by the ASVS is spent onto translational
motion. Substantial part of it is dissipated by different means. The starting point on
the way to estimate the efficiency of directed motion of the droplet on the ASVS is
the knowledge of the power input, Pilzler, provided during a single period of substrate

oscillations.

The power input to the droplet on the ASVS provided during a single period of sub-

strate oscillations can be written as

in

Tper N
prer— 1 / s () BS(t) - A dt. (5.4)
Tper 0

The velocity of the substrate, v (t), decreases with period of oscillations, and therefore
we expect that the input power is also decreasing function of Tper. Indeed, one finds
this type of behavior in Fig. 5.11. The power input of a single vibration, Pilier, is shown
there for drops of varying size at €, = 0.4€ as a function of the period of vibrations,
Tper- The inset shows the same data at €, = 0.5¢. In general, the dependences are
monotonic for drops of a fixed size. It is natural to suggest that the amount of input

power is proportional to the CA of the droplet, Agrop ~ Rsina, i.e. Pi};er ~ Rsina.

The common feature for drops of all sizes are the peculiarities in the region of 20 — 251
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(shaded area in Fig. 5.11). To investigate the reason behind it, one should look at the

balance of dissipations in the system.

Following the notation introduced by de Gennes [80], the total dissipation during droplet
motion, TZ, is the sum of the viscous dissipations, TX,, frictional dissipations at the
CA, Tx 4, dissipations at the three-phase CLs, TX;, and dissipations in the precursor
film, T [27, 125]:

TS = TSy + TZa + T + TXy. (5.5)

The last term in our system is zero, as we do not have any precursor film, but the other
types of dissipations reduce the amount of the power input transformed into directed

motion:

Ve~ PP — T, — TZ 4 — TX,. (5.6)

Now, let us consider the origin of individual terms of Eq. 5.6. The viscous dissipation

in the droplet with velocity field i is defined as

TSy =1 vdiss(w)zdvdi“' (5.7)
where Vjyiqs is the volume over which the viscous dissipations occur. The third term
on rh.s. of Eq. 5.6 stems from the fact that the liquid slips over the solid that results
in friction. The last type of dissipations, that can take place in the studied system,
is the one related to dissipations at the CLs. The origin of this dissipation lies in: (i)
elastic deformations of the CL itself [149] and (ii) displacements of liquid beads at the
CLs [150]. The displacements here are related to the change of the positions in time and

are disconnected to the solid displacements.

To sort out the character of droplet motion and associated dissipation mechanisms we
plot velocity field diagrams of droplets at the ASVS of F-type in Table 5.2. The ve-
locity fields are measured with respect to the CM of the droplet, but its velocity is
not subtracted. Shown are the largest droplets of N = 200000 beads, however, the
behavior of the smaller ones is similar. Top row corresponds to solid-liquid strength
€s = 0.4¢, bottom one to the €, = 0.5¢. Only two periods of vibrations are plotted,
namely Tper = 157 and 637 (left and right columns, correspondingly). The choice of the
periods is dictated by the driving mechanisms: for smaller one it is CA plus CLs, for
larger one it is only CLs that drive the drop. The other periods corresponding to the
one or the other mechanism of driving are similar to the ones that are shown. The only

difference consists in the strength of the effect.

For all the periods of vibrations at € = 0.4€ (top row in Table 5.2) the drop slides to
the left without any significant steady-state rotation. However, in the vicinity of the re-
ceding CL (right side) there is always a flux in clockwise direction. This effect is more

pronounced if one increases the strength of solid-liquid interaction to e; = 0.5 (bottom
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Table 5.2: Velocity fields of moving droplets of N = 200000 beads at the F-type substrate
with solid-liquid interaction strengths e; = 0.4€ (top row) and €5 = 0.5¢ (bottom row). The
left column stands for Tper = 157, the right one for Tper = 637.

row in Table 5.2). As one could expect the attraction to the substrate significantly influ-
ences the motion: for smaller attraction the droplet is highly mobile, as the friction is

substantially reduced.

Upon increasing the period of vibrations, the CA also increases giving rise to the fric-
tion and the frictional dissipations, TX. 4. The rate of viscous dissipations is not strongly
affected by the period of vibrations, as the droplet take the same volume T%,,. Addi-
tionally, the elasticity of the contact line with its vicinity in y direction, and displace-
ment of liquid particles visible by flux arrows at the CLs give rise to dissipations at
CLs, TZ;. These dissipations increase with period Tper (cf. the liquid’s motion in the
vicinity of the receding CL in Table 5.2). As a consequence, the part of the power input
left for translational motion of the CM is smaller at long periods Tper = 257 than at

shorter ones (cf. Fig. 5.10).

Additionally, we show the velocity field diagrams of droplets at the ASVS of R-type in
Table 5.3. The appearance of the table is organized in a similar way, as earlier for the
ASVSs of F-type. Having the common features with motion at the R-type substrates
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Table 5.3: Velocity fields of moving droplets of N = 200000 beads at the R-type substrate
with solid-liquid interaction strengths €5 = 0.4¢ (top row) and €; = 0.5¢ (bottom row). The

left column stands for Tper = 157, the right one for Tper = 637.

connected to the strength of solid-liquid interaction €5 and mobility of the droplet, the
motion at the R-type substrate changes significantly. The rotation in clockwise direction
is clearly seen at €, = 0.4€ and short periods at e, = 0.5¢. However, the droplet itself
is moving to the left. That may be explained accounting for slippage at the solid-liquid
boundary. An analogy may be found in the coiled reel on ice pulled by a thread. If
the thread is coiled clockwise (i.e. the one pulls the thread touching the reel at the
bottom) the reel will rotate clockwise, but because of the slippage will move to the

pulling person as a whole.

The shapes of the droplets at Tper = 157 and at €5 = 0.4¢ are very close to the perfect
cylinder. However, as was discussed, the character of directed motion is different.
While in both cases the drops are sliding over the substrate to the left, the surface of the
R-type sets up additional rotation to the droplet. Therefore, we conclude that varying
topography of the solid one can switch off the rotation or, the other way round, switch it
on. The possibility to control the character of droplet’s motion may find an application

in real microfluidic devices.
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5.2 Discussion

In this Chapter, we reported on a realization of the directed transport of droplets at
asymmetrically structured and vibrating substrates (ASVSs). At first, we presented
an analytical model of the solid-liquid interface movements to explain the direction
of motion at ASVSs. The model was verified by the calculation of distances from the
substrate to the interface in droplet profiles at different phases of substrate vibrations,
by velocity fields diagrams at different phases of vibrations and by the measurement of
horizontal components of forces acting on the drop during rising and lowering of the

substrate.

Then we investigated the response of the droplets of varying sizes on period of vi-
brations, and were able to sort out two main mechanisms of driving: along with the
driving by the contact lines (CLs), reported in the literature [137, 147], we found that
the solid-liquid contact area (CA) itself can drive the droplet additionally to CLs.

The other fundamental problem studied in this Chapter was connected to the character
of directed motion and dissipations of input power. It was shown that the roughness
of the substrate affects the motion. At a finely corrugated ASVSs the droplet was pre-
dominately sliding, whereas at a roughly corrugated ASVSs, an additional steady-state
rolling was established. By calculating velocity fields in the droplets we verified the

amplification of the frictional dissipations and dissipations at the CLs.

We emphasize, however, that for a better estimation of efficiency of directed motion, the
statistics should be significantly improved. The detailed balance between dissipations,

however, is a subject to the other profound and detailed investigation.
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DISCUSSION AND OUTLOOK

An ambitious target — to build up an entire laboratory set-up on the surface of a lab-
on-a-chip — drives research in micro- and nanofluidics. At present time, such devices
experience severe problems due to the limited functionality. However, the future of
microelectronics and improvement of standards of life (new textile materials, energy
saving and, particularly, water saving) is associated with micro- and, especially, nano-
devices. Therefore, more attempts should be devoted to the implementation of ideas

on the engineering level.

The aim of this dissertation was to provide a theoretical explanation of the proper-
ties and behavior of a small amount of liquid on different kinds of substrates and of
the nanoscopic flows in confined geometries. The validity of macroscopic concepts
was tested by means of particle-based simulations. This study should by no means
be considered as ready-to-real-life-implementation research. However, it gives an in-
sight into wetting phenomena, statics, dynamics and hydrodynamics of micro- and
nanoliquids at substrates of different topography. Our observations indicate that the
macroscopic concepts cannot be straightforwardly extrapolated down to substrate to-

pographies with dimensions that correspond to tens of fluid particles.

The red line through the dissertation was the topography of the substrate. We started
with the simplest one — a flat substrate in Chapter 3 — moved on with symmetrically
structured one in Chapter 4 and finished with the most complex, asymmetrically struc-

tured substrate in Chapter 5.

In the chapter on flat substrates, a parameter-passing technique was implemented that
transfers information from particle-based models based on the phenomenological ma-
terial constants to the continuum description (CD). The latter has an advantage in direct
addressing of engineering time and length scales. A . The liquid-vapor interfacial ten-
sion, v, and the interface potential g(%) in its dependence on the height of the film were
determined by particle-based simulations in the canonical ensemble. We have devised
a simple method, which is based on the anisotropy of the pressure inside the film.

This general computational strategy can be applied to dense liquids of large macro-
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molecules and can be implemented in standard Molecular Dynamics programs. We

particularly stress, that no calculations of chemical potential were needed.

Then, the profiles of drops of varying size obtained by both descriptions (MD and CD)
were compared. We found quantitative agreement if (i) the full curvature is used in the
continuum model for large contact angles and (ii) the size of the drop is larger than the
lateral correlation length, ¢ I of interface fluctuations. We also found that for contact
angles up to about 30° the long-wavelength approximation that is normally used in
thin film models describes the droplet shapes even quantitatively quite well. This is
an excellent starting point for comparing the dynamics of droplets driven by external

forces, which we will pursue in the future.

Additionally, we considered in Chapter 3 hydrodynamic properties of liquid flows con-
fined between flat substrates. It was shown, that applying macroscopic Navier’s con-
dition to a microscopic model, two different setups of the flow should be considered:
Couette and Poiseuille flows. Then, the solid-liquid interface is described by two ma-
terial parameters: slip length, §, and hydrodynamic boundary position, z,. The latter
does not necessarily corresponds to the position of the solid-liquid interface, but even

in the case of flat walls is located somewhat inside the liquid.

The investigation of properties of liquids at symmetrically structured substrates is dis-
cussed in Chapter 4. A technique to estimate the height of the energetic barriers for
drops in Cassie and Wenzel states was suggested. It consists in simulations with con-
straints and quantifies the dependence of the free energy difference on the force ap-
plied to the droplet’s center of mass to fix it at two close positions. By this method we
showed that the height of the energetic barrier increases with strength of solid-liquid

interaction €5, as was initially expected.

To overcome an energetic barrier and set the drop in motion on a corrugated substrate,
one has to apply an external force. After some equilibration time, the droplet reaches
its steady state and its velocity profile measured across the height of the drop v,(z) al-
lows one to make conclusions about the character of motion. We confirmed predictions
of lattice Boltzmann simulations, where the droplet with a contact angle ¢ ~ 145° on a
corrugated substrate exhibited a parabolic velocity profile at the substrate that was fol-
lowed by the linear one further away from it. However, we found that upon increasing
the contact angle to 6c ~ 160°, the velocity profile is well approximated by the linear

dependence on the distance to the substrate, z, across the entire height of the droplet.

Additionally, we incorporated a chessboard corrugation of the solid with the same ra-
tio ¢ of the substrate area covered by posts to the projected area, as in the case of sym-
metric grooves. It was shown by Moradi et al. [126], that this type of topography can
reduce the pinning of the contact line and leads to the higher mobility of the droplet.

Indeed, for most of the strengths of solid-liquid interaction €, the velocity profiles of
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droplets pushed by a body force over chessboard substrate are somewhat higher than
for droplets on symmetric grooves. However, at €, = 0.4¢, the topography of the sub-
strate did not influence the velocity profile. We suggested that it is explained by an
additional friction at the edges of the posts. Therefore, it is not always possible to re-

duce friction by modification of the substrate’s topography.

Then, the flows of a polymer liquid at the coexistence pressure in channels with pat-
terned and flat walls were studied. In applications to superhydrophobic substrates of
complex topography the position of the hydrodynamic boundary is not intuitive. Us-
ing Couette and Poiseuille flow, we extracted the hydrodynamic boundary position,
zp, and slip length, J, that characterize the Navier slip condition. While the equivalent
no-slip plane, which depends on the type of flow, might be located between the top and
bottom of the grooves [130], we find that the position of the hydrodynamic boundary,

zn, was almost always located above the top of the roughness.

Significant differences between flat and corrugated substrates were found for liquids
in the Cassie state. Owing to the friction at the edges of the grooves, however, the
friction coefficient A does not scale like the ratio of area covered by the grooves, ¢, to
the projected area. For microscopically corrugated substrates, a correction associated

with the fiction at the edges of the corrugations is suggested, cf. Eq. 4.15.

Contrary to the expectation, the hydrodynamic properties of the liquid in Wenzel state
are not significantly influenced by the substrate corrugation, r. For the parameters of
our simulation, the difference with respect to a flat substrate is rather controlled by the
area fraction ¢, but not the size of the grooves. We showed that there is no sharp phase
transition between Cassie and Wenzel states (as expected from macroscopic theory) but

only a rather gradual crossover.

Finally, we modeled the propagation of the liquid through a long microfluidic channel
with patterned walls accounting for the pressure dependence of the liquid morphology
and the concomitant friction. We observed that by using a non-wetting liquid (contact
angle on a flat substrate 6 > 150°) the rate of the frictional dissipation is significantly
reduced on the whole length of a long channel in comparison to more wettable sub-
strates. Additionally, we found that only for a liquid at low pressure (p < pcoex) the
microscopic corrugation affects the hydrodynamic properties, whereas for higher pres-

sures it does not exert a pronounced influence onto the slippage and friction.

At last, we looked at the behavior of nanodroplets at asymmetrically structured vibrat-
ing substrates (ASVSs) in Chapter 5. By agitation of the substrate in a harmonic manner

we were able to provide the directed transport of droplets.

An analytical model of the solid-liquid interface movements in response to substrate
vibration was devised and confirmed by a series of computer experiments. Then, we

investigated the nature of the driving mechanisms as a function of the period of vibra-

91



CHAPTER 6: DISCUSSION AND OUTLOOK

tions. Along with the mechanism, reported in the literature [137, 147] (the driving by
the contact lines (CLs)), we found another one: additionally to the CLs, the solid-liquid
contact area (CA) itself can drive the droplet.

Finally, we showed that the size of corrugation affects the character of directed motion
and dissipations of the input power. At a finely corrugated ASVS the droplet was
predominately sliding, whereas at a roughly corrugated ASVS, an additional steady-
state rolling was established.

We emphasize, however, that the study of droplets on symmetrically and asymmetri-
cally structured substrates is far from completion. At this point, we illuminate several
questions crucial for nanodroplets: (i) derivation of a rigorous analytical theory of vis-
cous and frictional dissipations for droplets with high contact angles; (ii) possibilities
for reduction of dissipations at the contact lines. Here, one has to account for elastic
deformations of the CLs and the displacement of atoms in its vicinity; (iii) proposing
of a substrate topography to reach a maximum efficiency of driving. The range of so-
lutions varies from chemically treated substrates to the ones representing randomized
corrugations to take advantage of the high contact angles and, simultaneously, of the
reduction of an energetic barrier associated with the pinning at the three-phase contact

lines.
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APPENDIX A

PROPERTIES OF THE LIQUID

In this short Appendix we list the properties of the polymeric chain and of the liquid
that are used in previous Chapters. At first we provide configurational properties of
the polymer chain. Then, the dynamical properties of the bulk phase are compiled and
in the end we define the values of coexistence density and pressure from equation of
state (EOS) of the liquid.

Configurational properties of the polymer chain model

Statistical properties of the chain. We start with the smallest length scale of the poly-

meric chain - its bond length.
The mean bond length of our chain model is of by = 0.969¢.
The short polymer chains consist of Np = 10 beads.

The end-to-end radius of the chain is Ree = 3.430.

Dynamical properties of the polymer liquid

Dynamic properties of the polymeric liquid were calculated in Ref. [27].
The bulk viscosity is 7 = 5.3 + 0.102/ \/me.

The self-diffusion coefficient D of the polymer liquid at coexistence pressure is D =
0.0157 +0.0030 02 /7.

Thus, the Rouse relaxation time of a polymer is TR = R2,/(372D) is TR = 25.3 £ 5.

Equation of state of the polymer liquid

To calculate the EOS we perform simulations of the polymer liquid confined between
two flat walls and measure the density and pressure inside the bulk, while changing
the distance between the walls. Taking into account, that vapor pressure is negligible,

we find coexistence density pcoex providing coexistence pressure peoex ~ 0. By means
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Figure A.1: Equation of state for studied polymeric liquid. The inset zooms into the region
of interest. The red square indicates the region, where pcoex = 0 and pcoex = 0.7860 3 are
defined.

of Fig. A.1 the coexistence density is found to be pcoex = 0.7860 3.
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