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Abstract 

Xeroderma pigmentosum (XP), Trichothiodystrophy (TTD), and Cockayne Syndrome (CS) are 

rare (incidence ~1 to 1 million) recessively inherited genetic diseases arising from genetic 

defects in the nucleotide excision repair (NER) which is responsible for the removal of UV-

induced DNA lesions. Increased UV sensitivity is a common symptom, whereas only XP patients 

exhibit freckling within sun-exposed skin and a more than 1000-fold increased skin cancer 

susceptibility. Beyond that, a high phenotypic heterogeneity results in at least seven 

overlapping phenotypes: XP, XP plus neurological abnormalities, TTD, CS, XP/TTD complex, 

XP/CS complex, and COFSS (Cerebro-Oculo-Facio-Skeletal Syndrome). Additionally, different 

mutations affecting the same gene may result in different phenotypes depending on their 

localization.  

In this by far largest analysis of 23 NER defective patients in Germany 12 XP-C, eight XP-D, and 

three XP-G patients were assessed by molecular-genetic characterization of their 

corresponding fibroblast cells and correlation with their clinical course of disease.  

Neurological symptoms were absent in all but one of the XP-C patients. Of the XP-D patients, 

generally phenotypically more variable, five patients exhibited the XP phenotype, two patients 

the TTD, and one patient the XP/CS complex phenotype. Two of the three XP-G patients 

exhibited a XP/CS complex phenotype. All patients’ fibroblasts showed an increased UV 

sensitivity and a decreased NER capacity compared to wild type fibroblasts. Co-transfection of 

plasmids expressing XPC, XPD, or XPG cDNA increased relative NER capacity in XP-C, -D, and –G 

cells, respectively, thereby confirming patients’ complementation groups. The mRNA 

expression of the mutated genes was determined compared to the mean expression level of 

nine wild type fibroblast cell cultures set to 100 %. XPC mRNA expression levels were 

significantly decreased (range 9.5 % – 25.7 %; p< 0.001, Student’s T-test) in all but one XP-C 

patients’ fibroblasts (274.1 %), whereas XPD and XPG mRNA expression in the corresponding 

patients’ cells ranged nearly within the SEM of wild type cells. Mutational analysis revealed all 

XP-C patients being homozygous and identified four novel XPC mutations: p.A116YfsX4 (1/12), 

p.R475EfsX18 (1/12), p.G723SfsX44 (1/12), and p.I812del (1/12) which is a unique novel 

mutation resulting in an unusually elevated XPC mRNA expression. The novel XPD mutation, 

p.D681H (2/8), was identified in patients carrying the TTD-causing mutation p.R112H on the 

other allele. One patient exhibited TTD- and the other one CS-like symptoms indicating that 

dominance of the alleles is probably differently influenced by other factors such as epigenetic 

effects or SNPs. Five novel XPG mutations were identified. Four mutations, p.Q150X with 

p.L778P and p.E727X with p.W814S, were found in a compound heterozygous and one, 
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p.G805R, in a homozygous state. Correlation of missense mutations with a XP/CS phenotype 

was rather unexpected. Usually missense mutations impairing NER result in XP, whereas 

truncating mutations impairing NER and transcription result in XP/CS. Allele-specific 

complementation analysis of these five novel mutations identified only p.L778P and p.W814S 

retaining some residual repair activity. In line with the XP/CS phenotypes, even the missense 

mutations failed to interact with the transcription factor IIH subunits XPD and cdk7 in co-

immunoprecipitation assays probably resulting in destabilized TFIIH. Immunofluorescence 

techniques revealed a mutation-specific effect on early XP protein recruitment to localized 

photodamage and a delayed redistribution in vivo.  

In summary, in very rare diseases, novel XPC, XPD, and XPG mutations were identified. 

Comprehensive analysis of five novel XPG mutations identified the first single amino acids 

crucial for interaction with TFIIH.  
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1.  Introduction 

1.1. The need for DNA repair 

The Deoxyribonucleic acid (DNA) is carrier of the genetic information of all organisms and 

DNA-viruses. The genetic information is organized in chromosomes and the whole 

chromosome set is contained in every single cell. The diploid human genome consists of nearly 

3 billion base pairs per chromosome set and encodes between 20,000 and 25,000 protein-

coding genes (Venter et al., 2001). Maintenance of the genomic sequence is essential for 

proper function and survival of every single cell and for the organism as a whole. Unrepaired 

DNA modifications severely affect the fidelity of DNA polymerases and, thus, can turn into 

permanent mutations during DNA replication. These permanent mutations present the basis 

for malignant transformation of the cells: accumulation of mutations can result in the 

activation of proto-oncogenes and the inactivation of tumor-suppressor genes over time 

(Bartek et al., 2007). To face this problem, eukaryotic cells have developed a network of DNA 

damage signaling pathways and associated DNA repair systems collectively called the DNA 

damage response (DDR) (Giglia-Mari et al., 2011).  

 

1.2. Mutagens attacking DNA 

Faulty alterations in the DNA can result from endogenous and exogenous sources. Endogenous 

sources are mistakes in DNA replication and (by)-products of the cellular metabolism like 

reactive oxygen and nitrogen species, lipid peroxidation products, estrogen and cholesterol 

metabolites, reactive carbonyl species, and endogenous alkylating agents (De  Bont and van 

Larebeke, 2004). In addition, the DNA molecule itself is unstable and hydrolysis of nucleotide 

residues creates abasic sites  and deamination of adenine, cytosine, and guanine (Lindahl, 

1993; Sander et al., 2005). Exogenous sources for DNA damage are ultraviolet radiation (UV), 

ionizing radiation (IR), and numerous genotoxic chemicals that cause alterations within the 

DNA (Hoeijmakers, 2001). 

Among the various exogenous sources of DNA damage induction the UV radiation on Earth’s 

surface represents one of the most effective carcinogenic agents altering the genome integrity 

from prokaryotes to mammals (Rastogi et al., 2010). In 1928 a lethal effect due to UV light 

absorption (100-400 nm wavelength) of nucleic acids with an absorption maximum about 260 

nm was described for the first time (Gates, 1928).  Later on, in 1962, formation of thymine 

dimers after UV treatment was described in living cells (Wacker et al., 1962). Today the 

genotoxic effect of solar irradiation is well established.  Cyclubutane pyrimidine dimer (CPD) 

and pyrimidine (6-4) pyrimidone photoproducts (6,4PP) represent the two major cytotoxic, 
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mutagenic and carcinogenic UV-induced DNA damages in living cells. CPDs arise from the 

formation of two bonds between carbons four and five of each adjacent pyrimidine.  6,4PPs 

result from the formation of one bond between carbons six and four of adjacent pyrimidines 

(Pfeifer, 1997). 

 

1.3. DNA repair mechanisms and associated syndromes  

The importance of a proper DNA damage response is mirrored by different human syndromes 

which arise from defects in genes functioning in certain DNA repair pathways.  

The homologous recombination repair (HRR) and the non-homologous end-joining (NHEJ) are 

responsible for the repair of DNA double strand breaks (DSB). This DNA lesion results from 

ionizing radiation, X-rays, or from chemical modifications causing replication fork stalling and 

collapse in actively cycling cells. Additionally, DSB occur during the repair of DNA interstrand 

crosslinks (ICLs) as well as in recombination processes of homologous chromosomes during 

meiosis (Kee and D'Andrea, 2010). HHR is active in the late S- and G2-phase of the cell cycle as 

the cut strand interacts with the homologous strand of the sister chromatid. The intact sister 

chromatid strand serves as a template and subsequently allows for error-free re-ligation of the 

DNA ends (Chodaparambil et al., 2006; Liang et al., 1998; Thompson and Schild, 2001).   NHEJ, 

the more mutation prone pathway, is restricted to the G0, G1 and early S-phase of the cell 

cycle. During NHEJ the two DNA ends are ligated without any verification which often results in 

the insertion or deletion of a few base pairs (Lieber, 2008; Roth et al., 1985; Thacker et al., 

1992). Consequences of non-repaired double strand breaks are chromosomal aberrations 

leading to cell death or mutations that, in turn, may result in cancer phenotypes (Aguilera and 

Gomez-Gonzalez, 2008). Thus, mutations in genes mediating initiation and repair of double 

strand breaks result in several genetic diseases (Thompson and Schild, 2002). Defects in genes 

mediating the initiation and procedure of the double strand break repair lead to ataxia 

telangiectasia (Rotman and Shiloh, 1998), ataxia telangiectasia-like disorder and to the 

Nijemegen breakage syndrome (NBS) (Petrini, 2000). All three syndromes commonly result in 

an increased cancer susceptibility as well as immunodeficiency, hypersensitivity to X-rays, and 

chromosomal instability (Hoeijmakers, 2001). The cancer-prone disorders Werner, Bloom and 

Rothmund Thomson syndrome result from defects in RecQ-like helicases RecQL12, RECQL3, 

RECQL4, respectively, which are described to interact with the DSB repair enzymes (Chun et 

al., 2011; Larizza et al., 2010; Monnat, Jr., 2010; Tikoo and Sengupta, 2010). Additionally, the 

Fanconi anemia is induced by mutations in 15 gene products involved in the removal of ICLs. 
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This genetic disorder is also characterized by increased tumor predisposition in combination 

with pancytopenia (Kee and D'Andrea, 2010). 

The miss match repair (MMR) pathway is responsible for the correction of mispaired base pairs 

occurring spontaneously during replication. Moreover, MMR removes insertion and deletion 

loops in the DNA which lead to microsatellite instability if left unrepaired (Hoeijmakers, 2001; 

Thoms et al., 2007). These loops result from DNA polymerase slippage at nucleotide repeats 

during replication (Canceill et al., 1999; Canceill and Ehrlich, 1996). The MMR pathway 

recognizes the DNA aberration, identifies the modified DNA strand, which is subsequently 

degraded, and re-synthesizes the excised DNA tract. Microsallite instability due to defective 

MMR results in the hereditary non-polyposis colorectal cancer (HNPCC) as well as the Muir 

Torre syndrome and the Turcot syndrome. However, the Muir Torre and the Turcot syndrome 

result in an increased skin and brain tumor susceptibility and are therefore considered as 

subtypes of the HNPCC (Hoeijmakers, 2001; Manceau et al., 2011; Ponti and Ponz de, 2005; 

Thoms et al., 2007).  

The nucleotide excision repair pathway is generally responsible for the removal of a variety of 

DNA lesions inducing a distortion of the DNA double helix (Buschta-Hedayat et al., 1999; 

Wood, 1999). This includes bulky chemical DNA adducts like interstrand crosslinks induced by 

chemotherapeutic agents such as cisplatin, or polycyclic aromatic hydrocarbons induced by 

components of tobacco smoke (Friedberg, 2006; Wogan et al., 2004). Importantly, this 

pathway is responsible for the removal of UV-induced CPDs and 6,4PPs. NER consists of several 

steps: recognition of the DNA damage, opening of the DNA around the lesion, incision of the 

damaged strand 3' and 5' to the lesion und removal of the damage-containing single strand (ss) 

oligonucleotide, filling of the resulting gap and strand ligation  (De Boer and Hoeijmakers, 

2000). Genetic defects in genes contributing to the NER result in the three diseases Xeroderma 

pigmentosum, Cockayne Syndrome and Trichothiodystrophy (Bootsma, 2002). However, there 

is a very high clinical heterogeneity between these three main clinical entities. Patients from all 

three disorders exhibit increased sun sensitivity, whereas increased skin cancer susceptibility, a 

common feature of all DNA-repair-defect associated syndromes, is only found in XP-patients 

(Kraemer et al., 2007).   
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1.4. The Nucleotide excision repair pathway 

The NER pathway is subdivided into the transcription coupled repair (TCR) and the global 

genome repair (GGR). TCR removes lesions from actively transcribed genes (Mellon et al., 

1987), whereas GGR removes DNA lesions throughout the whole genome (Bohr et al., 1985).  A 

simplified scheme of the NER pathway is depicted in figure 1.  

 

1.4.1. Initiation of the NER 

The stalled RNA polymerase II together with the Cockayne Syndrome proteins CSA, and CSB 

initiate the repair process in TCR (Mu and Sancar, 1997). In contrast, the initial damage 

recognition in GGR is performed by XPC functioning in complex with HR23B and Centrin2. 

Rad23B (yeast homolog of HR23B) and Centrin2 are supposed to stimulate the DNA binding 

activity of XPC (Ng et al., 2003; Nishi et al., 2005; Xie et al., 2004). XPC itself is a DNA binding 

protein that binds in particular to damaged DNA structures with considerable distortion (Araki 

et al., 2001; Sugasawa et al., 1998). Mailliard et al. reported that XPC has no direct contact 

with the bulky DNA lesion itself but rather interacts with ss DNA configurations on the 

complementary DNA strand (Maillard et al., 2007). Binding affinity of the protein to 6,4PPs 

(Hey et al., 2002; Sugasawa et al., 1998), N-(2’-deoxyguanosin-8-yl)-N-acetyl2-aminofluorene 

adducts (Sugasawa et al., 2001), intrastrand cisplatin crosslinks (Hey et al., 2002; Trego and 

Turchi, 2006), and artificial cholesterol-like structures (Roche et al., 2008) has been described 

previously. However, the UV-induced CPDs are poorly recognized by XPC (Hey et al., 2002; 

Kusumoto et al., 2001; Sugasawa et al., 2001) although the removal of the CPD photolesions 

still depends on functional XPC protein (Hwang et al., 1999; Venema et al., 1991). Here the UV 

damaged DNA binding protein (UV-DDB or XPE) complex comes into play. UV-DDB is a 

heterodimer consisting of the proteins DDB1 and DDB2 (Keeney et al., 1993; Takao et al., 

1993). The protein complex is involved in GGR, whereas it is dispensable for TCR. Fibroblasts 

with a defective XPE gene show an impaired removal of CPDs in GGR while 6,4PP removal is 

carried out in normal levels (Hwang et al., 1999). This indicates a specific function of XPE in the 

initiation of CPD removal.  In addition, binding of UV-DDB to UV damaged DNA results in a 

distortion of the DNA (Fujiwara et al., 1999). Thus, recognition of CPDs by XPC is probably 

facilitated by prior binding of UV-DDB to the lesion (Tang and Chu, 2002).  Beside its function in 

damage recognition, the UV-DDB complex is part of the multi-subunit E3 ubiquitin ligase 

complex (Groisman et al., 2003) which ubiquitinylates DDB2 and the XPC protein with different 

consequences. While the ubiquitination of XPC is reversible and results in an increase of its 

DNA binding affinity, DDB2 ubiquitination leads to a rapid degradation of the protein within a 
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few hours. This probably results from a handover mechanism changing the initial damage 

recognition from UV-DDB complex to XPC/HR23B/Centrin2 complex (Sugasawa et al., 2005; 

Sugasawa, 2006).   

 

1.4.2. Unwinding of the DNA  

The second step of the NER pathway comprises the XPC dependent recruitment of the 

transcription factor IIH (TFIIH) (Araujo et al., 2001; Riedl et al., 2003) and, subsequently, the 

unwinding of the DNA around the lesion.  TFIIH consists of ten proteins and can be divided into 

two complexes. The core complex is composed of the six proteins XPB, p62, p52, p44, p32, and 

p8 (TTDA). The CAK (cdk-activating kinase) complex contains cdk7, cyclin H, and MAT1. Both 

complexes are bridged by XPD which interacts with MAT1 (CAK) and p44 (core) (Drapkin et al., 

1996; Reardon et al., 1996). XPB and XPD represent the two helicase subunits of TFIIH which 

open the DNA around the lesion. However, it is the 5'→3' helicase function of XPD which is 

needed for DNA unwinding, whereas XPB mainly functions as a DNA-dependent ATPase (Coin 

et al., 2007; Tirode et al., 1999; Winkler et al., 2000). Beside its function in DNA unwinding, the 

ATPase activity of XPB was also described to be necessary for the accumulation of TFIIH to sites 

of local DNA and the anchoring of the complex to the damaged DNA (Fan et al., 2006; 

Oksenych et al., 2009).  

The XPA protein is also recruited at this early time point and Riedl et al. reported that the 

absence of XPA abolished the recruitment of any following NER factor (Riedl et al., 2003). XPA 

represents another DNA binding protein with slight preference for damaged DNA (Lao et al., 

2000; Matsuda et al., 1995; Robins et al., 1991). Therefore, the protein was originally thought 

to be involved in initial damage recognition together with XPC   (Asahina et al., 1994; Wakasugi 

and Sancar, 1999). The protein interacts with different NER proteins (Li et al., 1995a; Li et al., 

1995b; Nocentini et al., 1997; Park et al., 1995; Park and Sancar, 1994; Saijo et al., 1996) and 

was described to stimulate the DNA helicase function of TFIIH (Sugasawa et al., 2009). In 

addition, there is indication that XPA is needed to dislodge the XPC protein (Hey et al., 2002). 

Although the XPA protein is required for proper function of GGR and TCR (Kobayashi et al., 

1998), the specific role of the XPA protein still remains to be elucidated.   

 

1.4.3. DNA incision step 

The two structure specific endonucleases XPF-ERCC1 and XPG cut the DNA strand 5’ and 3’ to 

the lesion, respectively (Mu et al., 1996; O’Donovan et al., 1994). The heterodimer formation 

of XPF-ERCC1 is performed with helix-hairpin-helix (HhH) domains located at the C-termini of 



 1.  Introduction 

  

6 

 

both subunits (de Laat et al., 1998; Tsodikov et al., 2005). The endonuclease activity of the 

heterodimer is located adjacent to the HhH domain of the XPF subunit (Enzlin and Scharer, 

2002), whereas the ERCC1 subunit only exhibits a stabilizing effect on XPF (Houtsmuller et al., 

1999).  XPG belongs to the FEN-1 family of structure specific nucleases whose members are 

characterized by two highly conserved nuclease domains called N-region (N-terminal region) 

and I- region (internal region). These regions contain a number of highly conserved acidic 

residues which are required for nuclease function of the proteins (Constantinou et al., 1999; 

Hosfield et al., 1998; Lieber, 1997; Shen et al., 1996). In addition, regions involved in DNA 

binding are also conserved within their amino acid sequence (Park et al., 1997; Stucki et al., 

2001). The domain between N- and I-region spans about 70 amino acids in FEN-1 and most of 

the other family members (Ceska et al., 1996; Hosfield et al., 1998; Hwang et al., 1998). In the 

XPG protein this so called “spacer region” or “R-Region” spans about 600 amino acids (Scherly 

et al., 1993). Differences in the amino acid sequence between N- and I-region define substrate 

specificity of the FEN-1 endonucleases. Bubble substrates are cleaved by XPG but not by FEN-1, 

which removes 5' flaps on single stranded DNA (Evans et al., 1997; Tomlinson et al., 2010). 

Accordingly, bubble substrate cleavage of XPG is decreased when the spacer region is replaced 

by a sequence (α4 and α5) from an archaeal FEN endonuclease, whereas 5' flaps can still be 

processed properly (Sarker et al., 2005; Tsutakawa et al., 2011). 

In NER the mere presence of XPG, independent from its catalytic activity, is required for the 5' 

incision by XPF implicating a structural role of XPG beside its endonuclease function. In 

contrast, for efficient 3' incision by XPG catalytically active XPF is necessary (Constantinou et 

al., 1999; Staresincic et al., 2009; Tapias et al., 2004; Wakasugi et al., 1997). Moreover, 

initiation of partial DNA repair synthesis after 5' incision of XPF as well as recruitment of the 

following repair synthesis factors PCNA (proliferating cell nuclear antigen) and CAF-1 

(chromatin assembly factor 1) in the presence of catalytically inactive XPG has been shown in 

vitro. These findings suggest that 5' incision occurs first and is sufficient for the initiation of the 

DNA repair synthesis, while the 3' incision is needed for completion of DNA synthesis 

(Staresincic et al., 2009).  

 

1.4.4. Refilling of the gap and ligation 

The excised fragment comprises a length of 25-30 nucleotides depending on the lesion 

(Matsunaga et al., 1995; Moggs et al., 1996; Svoboda et al., 1993). The resulting gap is 

subsequently filled by the DNA polymerase δ and ε in the presence of PCNA, RFC (proliferating 

cell nuclear antigen loader complex Ctf18-replication factor C), and RPA (replication protein A) 
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(Shivji et al., 1995). The last NER step comprises the ligation of the newly synthesized DNA 

fragment with the adjacent 3' and 5' ends. This step was originally thought to be carried out 

mainly by DNA ligase I (Aboussekhra et al., 1995; Shivji et al., 1995) as mutations in the 

corresponding gene result in a UV sensitive phenotype (Barnes et al., 1992). However, 

meanwhile ligase III together with XRCC1 was described to be the dominant ligase complex in 

NER (Moser et al., 2007).  

 

     
 

Figure 1: Simplified scheme of the NER pathway. A: Many lesions are recognized by XPC in 
complex with HR23B and Centrin2. B: Lesions resulting in little distortion are first recognized 
by UV-DDB (XPE/DDB1). C: The UV-DDB containing E3 ubiquitin ligase complex ubiquitinylates 
XPC and UV-DDB, resulting in an increased DNA binding affinity of XPC and the degradation of 
XPE. D: The TFIIH complex unwinds the DNA around the lesion. E: XPA and RPA join in, while 
the XPC complex leaves. F: Endonucleases XPG and XPF incise the damaged DNA strand 3' and 
5' to the lesion, respectively. G: DNA polymerases δ and ε refill the resulting gap. H: Mainly 
ligase III in complex with XRCC1 and to a little extent ligase I seal the newly synthesized strand 
with the old one. I and J: TCR is initiated by the stalling of RNA polymerase III in front of a 
lesion on the transcribed strand. Proteins CSA, CSB, and XAB2 are required for initiation of the 
NER, although their exact functions are unclear.  Figure taken from Nouspikel et al.2009. 

 



 1.  Introduction 

  

8 

 

 

1.5. Multiple functions of TFIIH and its “assistant” XPG  

TFIIH has a dual role: transcription (core complex and CAK) and repair (core complex only). In 

transcription, TFIIH is part of the pre-initiation complex composed of the general transcription 

factors TFIIA, TFIIB, TFIIE, and TFIIF as well as RNA Polymerase II. In this context TFIIH is 

engaged in transcription initiation and promoter escape (Dvir et al., 2001) as well as in 

transcription re-initiation (Yudkovsky et al., 2000). In transcription initiation the helicase 

subunit XPB is required for promotor opening around the start side, whereas the XPD subunit 

stimulates transcription and anchors the CAK complex to core TFIIH (Tirode et al., 1999). The 

CAK protein cdk7 phosphorylates the C-terminal domain of the RNA polymerase II required for 

promotor escape (Lu et al., 1992; Svejstrup et al., 1996; Tirode et al., 1999). Furthermore, cdk7 

phosphorylates different nuclear receptors including retinoic acid receptors, the thyroid 

hormone receptor, and the peroxysome proliferator-activated receptors (Le et al., 2010; 

Rochette-Egly et al., 1997) which, once activated, transactivate the transcription of certain 

genes in turn (Bastien et al., 2000; Chen et al., 2000; Compe et al., 2005; Drane et al., 2004; Ito 

et al., 2007; Rochette-Egly et al., 1997). In NER the helicase function of XPD and the ATPase 

activity of XPB are required for DNA opening (Coin et al., 2007; Tirode et al., 1999; Winkler et 

al., 2000), whereas the activity of CAK is dispensable (Arab et al., 2010). 

Interactions of the TFIIH proteins XPD, XPB, p62, p44, and cdk7 with XPG have been shown in 

vivo and in vitro (Dunand-Sauthier et al., 2005; Ito et al., 2007; Iyer et al., 1996; Thorel et al., 

2004). The architecture of TFIIH was found to depend strongly on interaction with XPG. 

Impaired interaction due to truncating mutations, found in XP/CS patients, result in the 

dissociation of CAK and core TFIIH (figure 2) (Arab et al., 2010; Ito et al., 2007). Again, this 

implicates a structural role of the endonuclease beside its catalytical function in DNA incision 

during NER. A general participation of XPG in transcription remains to be elucidated. However, 

importance of the XPG-TFIIH interaction in transcriptional context is reflected by the 

observation of impaired TFIIH mediated nuclear receptor transactivation due to mutations in 

XPG impairing interaction (Ito et al., 2007).  
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Figure 2: Simplified model of the transcription factor TFIIH and the role of XPG in 
maintenance of its architecture. The architecture of TFIIH is maintained in wild type and XP-G 
cells while truncating XPG mutations in XP-G/CS patients result in the dissociation of TFIIH. 
Figure taken from Ito et al. 2007. 
 
 

1.6. Defects in the NER pathway result in multiple clinical entities 

Mutations in genes functioning in the NER pathway result in the autosomal recessive disorders 

Xeroderma pigmentosum (XP, OMIM 278700-278780), Cockayne Syndrome (CS, OMIM 216400 

(CSA), 133540 (CSB)) and Trichothiodystrophy (TTD, OMIM 601675). All three syndromes cause 

increased sun sensitivity. However, only XP patients additionally suffer from an increased risk 

to develop sun induced skin cancer. Moreover, freckling within sun-exposed skin is a typical 

marker for XP (Bootsma, 2002; Kraemer et al., 2007). NER defect syndromes are very rare 

disorders: incidences in Western Europe were established at 2.3 per million for XP, 2.7 per 

million for CS and 1.2 per million for TDD (Kleijer et al., 2008).  

To date seven XP genes, XPA to XPG, involved in the nucleotide excision repair pathway have 

been identified by cell fusion experiments (De Weerd-Kastelein et al., 1972). Accordingly, 

patients can be assigned to seven complementation groups, XP-A to XP-G, depending on the 

mutated gene. In addition, a XP variant form (XPV, OMIM 278750) is caused by mutations in 

the gene coding for translesion DNA polymerase eta (XPV) (Masutani et al., 1999). Defects in 

genes CSA and CSB result in the Cockayne Syndrome (Henning et al., 1995; Tanaka et al., 1981; 

Troelstra et al., 1990) and a defective TTDA gene was found to induce TTD (Giglia-Mari et al., 

2004). Beyond that, there is a pronounced variability between the different phenotypes. 

Mutations in one gene can result in different phenotypes, depending on their localization, and 

thus, their impact on the protein function.  Therefore genetic defects in NER associated genes 

may result in seven different clinical phenotypes: XP, XP plus neurological abnormalities, TTD, 
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CS, XP/TTD complex, XP/CS complex, and COFSS (Cerebro-Oculo-Facio-Skeletal Syndrome) 

(Kraemer et al., 2007). 

 

1.6.1. Xeroderma pigmentosum (XP) 

XP arises from defects in genes XPA to XPG and XPV. It was the first NER associated disorder to 

be described in 1874 by M. Kaposi (Hebra and Kaposi, 1874). Later on, in 1968, J. Cleaver 

identified the underlying DNA repair defect (Cleaver, 1968). Typical symptoms of XP include 

increased sun sensitivity since birth as well as freckling, hyper- and hypopigmentations, skin 

atrophy, and premature skin aging (i.e. poikiloderma) within sun-exposed skin starting as early 

as two to three years of age. Interestingly, about one third of the XP patients may not exhibit 

any sun sensitivity at all. Eventually, development of non-melanoma (~10,000-fold increased 

risk) as well as melanoma skin cancer (~2,000-fold increased risk) occurs in XP patients starting 

at a median age of about nine and 22 years, respectively. Tumors are preferentially located to 

sun-exposed areas of the body (Bootsma, 2002; Bradford et al., 2011; Kraemer et al., 1987).  

 

1.6.2. XP plus neurological symptoms (De Sanctis-Cacchione syndrome) 

XP plus neurological symptoms is mainly found in complementation groups XP-A, -B, -D, and –

G, whereas XP-C, XP-E and XP-V patients rarely exhibit neurological symptoms (Cleaver et al., 

2009). A study from Bradfort et al. evaluated the long term outcome of 106 XP patients: 24 % 

(25 patients) exhibited neurologic abnormalities. In addition, patients suffering from 

neurologic symptoms mainly exhibited mutations in the XPD (16 patients) or the XPA gene (six 

patients) (Bradford et al., 2011). The course of neurological degeneration is generally variable 

among the patients. Intellectual capacity may initially develop during childhood, but later on 

deterioration follows. It begins in the fifth to tenth year of life. Earliest clinical signs are 

diminished or absent deep tendon reflexes, followed by progressive high-frequency hearing 

loss. This may necessitate the use of a hearing aid. Mental deterioration with disabilities in 

speaking, walking, and balance may follow (spasticity, ataxia). An abnormal gait and difficulty 

to walk eventually can be included and may result in the need of using a wheelchair. At late 

stages of the disease swallowing difficulties may become problematic, leading to the aspiration 

of food, and necessitate the implantation of a gastric feeding tube. Neuro-imaging 

abnormalities show atrophy of the cerebrum and cerebellum with sparing of white matter due 

to neuronal degradation (Kraemer et al., 2007).  
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1.6.3. Trichothiodystrophy (TTD) 

TTD results from mutations in genes TTDA, XPB and prevailing from mutations in XPD. All 

affected genes are components of TFIIH (Botta et al., 2009; Friedberg, 2006; Kleijer et al., 

2008; Kraemer and Ruenger, 2008). Additionally, a non-photosensitive form of TTD results 

from mutations in TTDN1, a gene of unknown function (Nakabayashi et al., 2005). 

Photosensitivity of the skin, reflecting the NER defect, occurs in half of the TTD patients 

although patients do not exhibit the XP typical freckling (Itin et al., 2001; Kraemer et al., 2007). 

Characteristic for all TTD patients is the sulphur deficient, short, and brittle hair. An early 

diagnostic tool is the observation of alternating dark and light banding appearance (tiger tail) 

of the hair utilizing a polarizing microscope (Liang et al., 2005; Price et al., 1980). Clinical 

features among the patients may range from exhibiting only tiger tail hair to severe 

neurological and somatic developmental abnormalities such as mental retardation, 

microcephaly, unusual facies, ichthyotic skin, and reduced stature (Itin and Pittelkow, 1990). 

Thus, several acronyms are used to describe the clinical features of TTD patients. PIBIDS 

(Crovato et al., 1983), IBIDS (Jorizzo et al., 1980; Jorizzo et al., 1982) and BIDS (Baden et al., 

1976) describe six clinical symptoms of TTD: photosensitivity, ichthyosis, brittle hair, 

intellectual impairment, decreased fertility, and short stature. A review from Faghri et al., 

summarizing 112 TTD cases, described developmental delay or intellectual impairment to be 

found in 86 % of the patients (Faghri et al., 2008). However, while TTD patients may suffer 

from intellectual impairment, they are usually characterized by an outgoing and friendly 

personality (Kraemer et al., 2007). Neuro-imaging analysis of TTD patients exhibiting 

neurological abnormalities shows dysmelination, cerebellar atrophy, and dilated ventricles 

(Faghri et al., 2008). 

 

1.6.4. Cockayne Syndrome (CS) 

Cockayne Syndrome may result from mutations in the CS genes CSA and CSB as well as from 

mutations in the XP genes XPB, XPD, and XPG (Cleaver et al., 2009). Similar to TTD, patients 

suffering from CS exhibit photosensitivity, whereas freckling within sun-exposed skin is not 

observed. An unusual bird-like facies with deep set eyes, prominent ears, flat cheek bones, and 

prominent pointy nose is characteristic for CS patients. Additional typical features are growth 

retardation, disturbed neurological and psychomotor development including mental 

retardation, loss of ability to walk, microcephaly, deafness, and progressive visual loss due to 

pigmentary retinal degeneration (Dollfus et al., 2003; Nance and Berry, 1992). Patients often 

suffer from profound cachexia necessitating food intake with a gastric tube. Like TTD patients, 
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CS patients exhibit a social and outgoing personality. Neuro-imaging analysis shows 

dysmelination comparable to TTD patients. Cerebral atrophy may also be present. Additionally, 

calcification of the cerebral ganglia and other areas of the brain are seen in CS patients 

(Kraemer et al., 2007; Wang et al., 2011).  

 

1.6.5. Xeroderma pigmentosum/Trichothiodystrophy complex (XP/TTD) 

XP/TTD complex is a very rare clinical entity. Taylor et al. investigated mutations of XP and TTD 

patients and described mutations shared by both phenotypes to result in null mutations. Thus, 

the other mutation would be predisposing for development of either XP or TTD phenotype 

(Taylor et al., 1997). Therefore, individuals with XP/TTD are expected to be compound 

heterozygous for mutations predisposing to TTD and XP. Two patients with compound 

heterozygous XPD mutations exhibiting XP/TTD complex symptoms have been described. One 

patient, XP189MA, carried two novel mutations and the other patient, XP38BR, carried one 

mutation known to result in TTD (p.R112H) and a second missense mutation generally leading 

to a non-functional protein (p.L485P). TTD typical tiger tail hair was not observed in both 

patients, although chemical analysis of the hair revealed reduced sulfur content compared to 

healthy individuals. Both were photosensitive and exhibited dry skin as well as the XP typical 

freckling of the sun-exposed skin. XP38BR additionally developed a squamous cell and a basal 

cell carcinoma in the face at the age of 23 years. Both suffered from TTD like symptoms like 

short statures, microcephaly, and unusual facies. XP189MA was described to suffer from 

mental retardation, whereas XP38BR showed mild to moderate learning difficulties. Diagnosis 

of XP/CS was excluded by the lack of retinal abnormalities, deafness, ataxia, and brain 

calcification (Broughton et al., 2001). 

 

1.6.6. Xeroderma pigmentosum/Cockayne Syndrome complex (XP/CS) 

XP/CS complex patients belong to XP complementation groups XP-G and XP-D. These patients 

show combined symptoms of XP and CS. They exhibit photosensitivity as well increased risk of 

cutaneous malignancies combined with CS symptoms such as delayed mental and physical 

development, short stature, bird-like facies, retinal degeneration, and progressive neurological 

degeneration, deafness and brain calcification (Emmert et al., 2006a; Kraemer et al., 2007). 

 

1.6.7. Cerebro-Oculo-Facio-Skeletal Syndrome (COFSS) 

The COFS Syndrome may arise from mutations in genes coding for CSB (Meira et al., 2000), 

XPD (Graham, Jr. et al., 2001), and ERCC1 (Jaspers et al., 2007). Patients may exhibit 
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photosensitivity within sun-exposed skin. Symptoms of COFSS are very similar to those of CS, 

although eye defects are more severe in patients having COFSS (Graham, Jr. et al., 2001).  
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Aim of the study 

Seven different clinical entities may arise from mutations in the genes with functions in the 

NER pathway. The different clinical entities are not restricted to mutations in different genes. 

Mutations affecting the same gene may result in different clinical outcome depending on the 

localization of the mutation and its impact on gene function.  

The aim of this study was to assess the correlation of underlying molecular defects and the 

resulting phenotypic characteristics in the NER defective patients. Phenotype-genotype 

correlations build the fundament to understand the phenotypic heterogeneity among NER 

defective patients and might help to develop therapeutic strategies in the future as different 

gene functions become visible which can be further explored by molecular means. 

Furthermore, the expanded knowledge about the mutation-predisposed course of disease is a 

benefit for newly diagnosed patients.  

For this purpose, a collection of 75 NER deficient primary fibroblast cell cultures, isolated from 

skin punch biopsies of the patients, was provided from the University Clinics of Mannheim and 

Göttingen. In particular the fibroblast cells from Mannheim represent Germany’s largest 

collection of NER defective fibroblasts, which has been assembled over the last 30 years. 

Fibroblasts were analyzed for their specific pheno- and genotypic characteristics and the 

molecular results of 23 completely analyzed fibroblasts were correlated with clinical findings of 

the corresponding patients.  

As XP-G is very rare, XPG has multiple functions, and only 20 XPG mutations have been 

reported world-wide. Thus, the five novel XPG gene mutations were comprehensively analyzed 

for their impact on the protein function in NER and TFIIH interaction. 
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2.  Materials and Methods 

2.1. Biological material 

2.1.1. Primary cell cultures 

Primary human fibroblasts cell cultures have originally been isolated from skin bunch biopsies 

from NER deficient patients as well as healthy controls either at the Department of 

Dermatology in Mannheim (MA) or in Göttingen (GO). Fibroblasts are summarized in appendix 

table A-18.    

 

2.1.2. Cell line 

HEK293A is a cell line originated from human embryonic kidney cells. HEK293A cells were 

purchased from Invitrogen, Karlsruhe GER.  

 

2.1.3. Bacteria 

Escherichia coli (E. coli) BIOblue 109, Genotype recA1 endA1 gyrA96 thi-1 hsdR17 (rk
-mk

+) 

supE44 relA1 lac [F’ proAB lacIqZ Δ M15 Tn10(Tetr)], from BIO LINE, Luckenwalde GER were 

used for the transformation and amplification of plasmid DNA. 

 

2.2. Equipment 

Table 2-1 Equipment 

Equipment                                                                    Manufacturer 
 

CO2-Incubator     Sanyo, München GER 

Du 640® Spectrophotometer   Beckmann, München GER 

Elektrophorese chamber    Biometra, Göttingen GER 

Gel documentation system   Biometra, Göttingen GER 

Controller/UV-table Fluo-Link  

Hera freeze -80°C freezer    Heraus Instruments, Hanau GER 

Incubator model 200    Memmert, Büchenbach GER 

LAS 4000      Fujifilm, Düsseldorf GER 

Lightcycler      Roche, Mannheim GER 

Luminometer     Promega, Mannheim GER 

Mega fuge 1,0, model G25    Thermo Fisher Scientific, Schwerte GER 

Mikroscope Axiovert 100    Carl Zeiss, Oberkochen GER 

Microscope Axio Imager.M1   Carl Zeiss, Oberkochen GER 
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Microwave      Panasonic, Hamburg GER 

Mini Rocking Platform    Biometra, Göttingen GER 

NANO-DROP ND-1000    Biometra, Göttingen GER 

pH meter      Schütt, Göttingen GER 

Pipetboy acu     Integra Biosciences, Fernwald GER 

Spectral photometer Dynatech MR 5000   Dynatech, Denkendorf GER 

Spectrophotometer Du® 640   Beckmann Coulter, Brea USA 

3100-Avant Genetic Analyzer    Applied Biosystems, Foster City USA  

Sorvall RC6+     Thermo Fisher Scientific, Schwerte GER 

Power Supply Ease 500    Invitrogen, Karlsruhe GER 

Laminat flow Hera Safe    Thermo Fisher Scientific, Schwerte GER 

Thermo mixer 5436    Eppendorf, Hamburg GER 

Thermotron incubation shaker   Infors, Bottmingen CH 

T-Gradient Thermo block    Biometra, Göttingen GER 

Benchtop centrifuge 5415 C   Eppendorf, Hamburg GER 

UNO Thermo block    Biometra, Göttingen GER 

UVC 500 Ultraviolet Crosslinker   Amersham Bioscience, Piscataway USA 

Vortexer Vibrofix VF1 Electronic   IKA Labortechnik, Staufen GER 

Video Monitor WV-BM 900   Panasonic, Hamburg GER 

Video Graphic Printer UP-890CE   Sony, Berlin GER 

Analytic balance BP2100; MC1   Sartorius, Göttingen GER 

XCell II Blot Module     Invitrogen, Karlsruhe, GER 

 

2.3. Consumable supplies 

Table 2-2 Consumables 

Consumables                                                                Manufacturer 
 

96 well Glomax ™ 96 Microplate    Promega, Mannheim GER 

ABI PRISM® 384-Well Clear Optical    Applied Biosystems, Foster City USA 

ABI PRISM® Optical Adhesive Covers   Applied Biosystems, Foster City USA 

Cell culture flasks (25 cm3, 75 cm3, 175 cm3) Greiner bio-one, Frickenhausen 

Cell scraper 25 cm     BD Biosciences, Pharmingen, Oxford UK 

Cryo box      Nunc, Wiesbaden GER 
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Cryo tubes (2 ml)     Greiner bio-one, Frickenhausen 

Erlenmeyer flask     Schott, Mainz GER 

Glass cover slips, round, 20 mm   Roth, Karlsruhe GER 

Glass bottles     Schott, Mainz GER 

Microscope slight, 26 x 27 mm   Roth, Karlsruhe GER  

Multiply µStrip Pro 8 tubes per chain    Sarstedt, Numbrecht-Rommelsdorf GER 

Neubauer cell counting chamber   Brand, Wertheim GER 

Nitrocellulose, 0.45 µM Protran BA85    Whatman, Madstone UK 

Parafilm      Brand, Wertheim GER 

Pasteur-pipettes 230 mm   Brand, Wertheim GER 

Pipettes 10 ml     Brand, Wertheim GER 

Pipettes sterile (2.5 ml, 10 ml)   Eppendorf, Hamburg GER 

Pipette tips (10 µl, 100 µl, 1000 µl)   Sarstedt, Numbrecht-Rommelsdorf GER 

Polystyrene tubes    BD Biosciences, Pharmingen, Oxford UK 

Reaction tubes 1.5 ml and 2 ml   Eppendorf, Hamburg GER 

Tissue culture 6-well-plate   Greiner bio-one, Frickenhausen GER 

Tissue culture 96-well-plate    Greiner bio-one, Frickenhausen GER 

Tissue culture dish 10 cm    Greiner bio-one, Frickenhausen GER 

Whatman filter paper    Whatman, Maidstone UK 

 

2.4. Chemicals 

Table 2-3 Chemicals 

Chemicals                                                                     Manufacturer 
 

5x Loading Dye     Qiagen, Hilden GER 

Agar Fluka      Chemie, Neu-Ulm GER 

Agarose-Seakem®     Fluka Chemie, Neu-Ulm GER 

Ammonium persulfate     Sigma-Aldrich, Taufkirchen GER 

Ampicillin     Sigma-Aldrich, Taufkirchen GER 

Boric acid     Merck, Darmstadt GER  

Bradford Mix Roti®     Quant Roth, Karlsruhe GER 

Bromphenolblue       Sigma-Aldrich, Taufkirchen GER 

Calcium chloride     Merck, Darmstadt GER 

Complete ULTRA Tablets Mini EDTA   Roche, Mannheim GER 
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free EASYpack 

Diethylpyrocarbonate (DEPC)   Invitrogen, Karlsruhe GER 

Dimethyl sulfoxide (DMSO)    Merck, Darmstadt GER 

dNTP mix (dATP, dTTP, dGTP, dCTP)   Fermentas, St. Leon-Rot GER 

Double distilled water     Sartorius, Göttingen GER 

Dithiothreitol (DTT)     Sigma-Aldrich, Taufkirchen GER 

Ethylenediaminetetraacetic acid (EDTA)  Sigma-Aldrich, Taufkirchen GER 

Ethanol 98 % (p.a.)     Merck, Darmstadt GER 

Ethidium bromide (1 %)     Roth, Karlsruhe GER 

GelRed      Biotium Inc., Hayward CA 

Glycine      Sigma-Aldrich, Taufkirchen GER 

Hydrochlorid acid (HCl) (37 %)    Merck, Darmstadt GER 

Hi-Di Formamide     Applied Biosystems, Foster City USA 

Isopropanol     Merck, Darmstadt GER 

Isopropanol     Merck, Darmstadt GER 

KH2PO4       Merck, Darmstadt GER 

Potassium chloride (KCl)    Merck, Darmstadt GER 

Lipofectamin 2000    Invitrogen, Karlsruhe GER 

Magnesium chloride    Merck, Darmstadt GER 

Methanol     Mallinckrodt Baker, Griesheim GER 

Na2HPO4 x 2H2O     Merck, Darmstadt GER 

Natrium chloride (NaCl)    Merck, Darmstadt GER 

Sodium hydroxide (NaOH)   Merck, Darmstadt GER 

Non-fat dry milk      Roth, Karlsruhe GER 

Nonidet P40     Sigma-Aldrich, Taufkirchen GER 

Paraformaldeyde     Merck, Darmstadt, GER 

Phenylmethanesulfonylfluoride (PMSF)  Sigma-Aldrich, Taufkirchen GER 

Ponceau S     Sigma-Aldrich, Taufkirchen GER 

Sodium dodecyl sulfate (SDS)   Roth, Karlsruhe GER 

Trifluoroacetic acid (TFA)    Sigma-Aldrich, Taufkirchen GER 

3,3’,5,5’-Tetramethylbenzidine (TMB)  Invitrogen, Karlsruhe GER 

Tris-Base      Merck, Darmstadt GER 

Trypton      Difco, Augsburg GER 

Tween 20     Merck, Darmstadt GER 
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Vectashield Mounting Medium for   Vector Laboratories, Inc., Burlingame CA 

Fluorecsence with DAPI 

β-mercaptoethanol     Merck, Darmstad GER 

Zeocin      Invitrogen, Karlsruhe GER 

 

2.5. Buffers, solutions, and media 

Commonly used Buffers, solutions, and media are listed below 

Table 2-4 Buffers, solutions, and media 

Cell culture                                                                   Manufacturer 
 

DMEM      PAA, Cölbe GER  

Freezing medium     40 % DMEM  

40 % (v/v) FBS  

20 % (v/v) DMSO 

Fetal Bovine Serum (FBS)    Biochrom AG, Berlin GER    

Opti-MEM     Gibco, Invitrogen, Karlsruhe GER 

Penicillin-Streptomycin (100x)   PAA, Cölbe GER 

Trypanblue     Sigma-Aldrich, Taufkirchen GER 

Trypsin/EDTA     Biochrom AG, Berlin G 

 

Bacterial culture                                                          Manufacturer 
 

LB Broth Base     Invitrogen, Karlsruhe GER 

LB Agar       Invitrogen, Karlsruhe GER 

Ampicillin stock solution    100 mg/ml Ampicillin in aqua bidest 

      Working concentration 100 µg/ml 

Zeocin stock solution    25 mg/ml Zeocin in aqua bidest   

Working concentration 25 µg/ml 
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Protein biochemistry  

Buffer /Solution                                                       Recipe 
 

Blotto-PBS     1x PBS 

0.05 % (v/v) Tween-20 

      5 % (w/v) Non-Fat Dry Milk 

9 % Laemmli buffer, pH 7.4    30 mM Tris 

      9 % SDS (w/v) 

      15 % Glycine (w/v) 

      0.04 % Bromphenol blue 

      10 % β-Mercaptoethanol 

Immunoblot transfer buffer, pH 8.3  0.192 M Glycin  

0.025 M Tris-Base  

  20 % MeOH (v/v) 

IP lysis buffer     20 mM Tris-HCl, pH 7.3 at 4°C 

      150 mM NaCl 

      1 mM EDTA 

      1 mM PMSF 

1 Complete ULTRA Tablets Mini EDTA free 

(protease inhibitor) per 10ml 

Ponceau S-solution    0.2 % (v/v) Ponceau S 

      3 % (v/v) TFA 

3.7 % Paraformaldehyde (PFA)   1.85 g PFA 

      2.5 ml aqua bidest 

      5 drops 1 M NaOH 

incubate stirring at 80°C until PFA is dissolved 

      add 50 ml with  1x PBS  

SDS PAGE running buffer, pH 8.3    0.192 M Glycin  

0.025 M Tris-Base  

0.1 % SDS  

 

 

 

 



 2.  Materials and Methods 

  

21 

 

 

Additional commonly used buffers and solutions  

Buffer/ Solution                                                        Recipe 
 

10x PBS, pH 7.2     1.5 M NaCl 

      30 mM KCl 

      80 mM Na2HPO4 x 2H2O   

       10 mM KH2PO4 

DNA loading buffer    0.5 M EDTA 

      50 % (v/v) Glycerol 

      0.01 % (w/v) Bromphenol blue 

10x TBE, pH 8.3     0.9 M Tris 

      0.89 M boric acid 

      25 mM EDTA 

10x TBS, pH 7.4     0.25 M Tris 

      1.37 M NaCl 

      50 mM KaCl 

      6 mM Na2HPO4 

TE buffer      10 mM Tris-HCl, pH 7.5 

      1 mM EDTA 

 

2.6. Ready to use reaction systems 

The following ready to use reaction systems were utilized in this thesis. 

Table 2-5 Reaction systems 

Reaction systems                                                     Manufacturer 
 

Attractene Tranfection Reagent   Qiagen, Hilden GER 

BigDye Terminator v3.1 Cycle Sequencing Kit Appplied Biosystems, Foster City USA 

Lipofectamine® 2000 Transfection Reagent  Invitrogen, Karlsruhe GER 

NucleoBond® Xtra MiDi/Maxi   Machery-Nagel, Düren GER 

NucleoSpin® Extract II    Machery-Nagel, Düren GER 

NucleoSpin® Plasmid    Machery-Nagel, Düren GER 

QIAamp® DNA Blood Kit    Qiagen, Hilden GER 

QuantiTect® SYBR green PCR Kit   Applied Biosystems, Foster City USA  

RevertAid H Minus First strand cDNA   MBI Fermentas, St. Leon-Rot GER 
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synthesis Kit  

RNase free DNase Set    Qiagen, Hilden, GER 

RNeasy Mini Kit     Quiagen, Hilden GER 

Roti®-Quant Protein quantification assay  Roth, Karlsruhe GER 

According to Bradford 

USB® Exo-SAP IT® PCR Prdukt Cleanup  USB Products, Cleveland USA 

WesternBreeze Chemoluminescent   Applied Biosystems, Foster City USA 

Immunodetection Systems 

(anti mouse and anti rabbit) 

 

2.7. Antibodies and immunoreagents 

Antibodies and immunoreagents utilized in this thesis are listed below. Name, application and 

dilution as well as manufacturer are depicted in the table.  

Table 2-6 Antibodies and immunoreagents 

Name Application/ dilution     Manufacturer 

 

αXPA (FL-273) Immunofluorescence/1:50 in  Santa Cruz Biotechnology,  

1x PBS containing 20 % FBS (v/v)  Santa Cruz USA  

 

αXPB (S-19) Immunofluorescence/1:50 in  Santa Cruz Biotechnology,  

1x PBS containing 20 % FBS (v/v)  Santa Cruz USA  

 

αXPC (H-300) Immunofluorescence/1:50 in  Santa Cruz Biotechnology,  

1x PBS containing 20 % FBS (v/v)  Santa Cruz USA 

 

αXPD (XXX) Immunofluorescence/1:50 in  Santa Cruz Biotechnology, 

 1x PBS containing 20 % FBS (v/v)  Santa Cruz USA 

 

αERCC1 (FL-297) Immunofluorescence/1:50 in  Santa Cruz Biotechnology, 

1x PBS containing 20 % FBS (v/v)  Santa Cruz USA 

 

αXPG (8H7) Immunofluorescence/1:50 in  Santa Cruz Biotechnology, 

 1x PBS containing 20 % FBS (v/v)  Santa Cruz USA 
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αcdk7 (MO1)  Western Blot/ 1:1000 in  Cell Signaling, Danvers USA 

Blotto PBS 

 

αmyc (9B11)  Western Blot/ 1:1000 in  Cell Signaling, Danvers USA 

  Blotto PBS 

 Immunoprecipitation/ 

  1:1000 in IP lysis buffer 

 

αCPD  Immunofluorescence 1:1000 in   a gift from Toshio Mori JP 

 1x PBS containing 20% FBS (v/v) 

 

α6,4PP   Immunofluorescence 1:500 in   a gift from Toshio Mori JP 

 1x PBS containing 20 % FBS (v/v) 

        

αmouseDylight594 Immunofluorescence 1:500 in   Dianova, Hamburg GER 

1x PBS containing 20 % FBS (v/v) 

 

αrabbitDylight488 Immunofluorescence 1:500 in   Dianova, Hamburg GER 

    1x PBS containing 20 % FBS (v/v) 

 

αmouse IgG  Immunoprecipitation control  DAKO, Glostrup, DEN 

   1:500 in IP lysis buffer 

 

Protein A Agarose Immunoprecipitation   Santa Cruz Biotechnology,  

                                                                                                                       Santa Cruz USA 

 

Protein G+ Agarose Immunoprecipitation   Santa Cruz Biotechnology, 

                                                                                                                     Santa Cruz  USA 
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2.8. Enzymes  

The following enzymes were utilized in this thesis. 

Table 2-7 Enzymes  

Enzyme Manufacturer 

 

NotI 10 u/µl     New England Biolabs, Frankfurt, GER 

KpnI 10 u/µl      New England Biolabs, Frankfurt, GER 

DpnI 10 u/µl     Fermentas, St. Leon-Roth, GER 

T4 DNA Ligase 1u/µl    Fermentas, St. Leon-Roth, GER 

Rnase T1 1000 u/µl    Fermentas, St. Leon-Roth, GER 

Taq DNA Polymerase 5 u/µl   Fermentas, St. Leon-Roth, GER 

Pfu DNA Polymerase 2.5 u/µl   Fermentas, St. Leon-Roth, GER 

 

2.9. Marker 

The following DNA- and protein stadards were used for the fragment length control of DNA- 

and protein molecules, respectively. 

Table 2-8 DNA- and protein standards 

Standard Manufacturer 
 

Gene Ruler™ 100 bp DNA Ladder Plus  Fermentas, St. Leon-Roth, GER 

Gene Ruler TM1 kb DNA Ladder   Fermentas, St. Leon-Roth, GER 

Spectra ™ Multicolor High Range Protein  Fermentas, St. Leon-Roth, GER 

Ladder SM#1851 

Page Ruler™ Prestained Protein Ladder  Thermo Fisher Scientific, Scherte GER 

#26616 
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2.10. Oligonucleotides 

Oligonucleotides separated for their application are listed in table 2-9. 

Table 2-9 Oligonucleotides 

Oligonucleotides for cloning 

 Name                                                               Sequence 5’  3’                                             Restriction site     

 

XPGmycHis_for     AATGCGGCCGCTTAGAGTAGAAGTTGTCG NotI  

XPGmycHis_rev    ATTGGTACCGGTTTTCCTTTTTCTTCC  KpnI  

XPGQ150mycHis_rev   ATTGGTACCTTGTAAAGGAGGCAAAAC  KpnI  

XPGE727mycHis_rev   ATTGGTACCTTCATGGAGCGAATCTTCCGC KpnI  

 

 Oligonucleotides for site directed mutagenesis 

  Name                                                            Sequence 5’  3’                      

 

Q150Xfor     GCCTCCTTTATAAGAGGAAGAAAAACAC   

Q150Xrev      CTTCCTCTTATAAAGGAGGCAAAACATAG  

E727Xfor     CGCTCCATTAATGGCAAGATATTAATTTG   

 E727Xrev     TATCTTGCCATTAATGGAGCGAATCTTCC   

G805Rfor    CAGACTTCCAGAACCATCACTGATGACAG   

G805Rrev     GTGATGGTTCTGGAAGTCTGATCAGTCAG 

L778Pfor     ACTCCTGCGCCCGTTCGGCATTCCCTAC  

L778Prev     GAATGCCGAACGGGCGCAGGAGTTCCTGG  

W814Sfor               ACAGTGATATCTCGCTGTTTGGAGCGCG   

W114Srev               CCAAACAGCGAGATATCACTGTCATCAG  

  

      Oligonucleotides for amplification/sequencing of genomic DNA  

       Name                                                               Sequence 5’  3’     

 

XPC ex1f     GGAGGATACAATACACCGGAAATAGAGAGAAAC 

XPC ex1r     ACAACGGGAGCGGGAAAAAAG 

XPC ex2f     GGAGACAGGTCGTAGAGCCG 

XPC ex2r      GGACCCCAGTGACAAGTAAG 

IXPCex3f     TGGAGGAAGTGAGGCTCAGA 
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IXPCex3r     TGCAATTAGTGATCTGACTCCAA 

XPC ex4f     TTCCTCCTTCCCAGCAGAAC 

XPC ex4r     CGACCACTTTGATACTCAGTCC 

XPCex5.1f    TGTAGGGAAACAGGGAGAG 

XPC ex5.1r    CAGCAAAGCCAGAAATAAAG 

XPC ex5.2f    CTTTGGCAGCAAAAATTCC 

XPC ex5.2r    CCAGCCTCTGAGAGAAACAC 

XPC ex6f     TCTCACGATTCACTCCCTC 

XPC ex6r     GGCTTCAGCAGCTATCAAC 

I XPC ex7f    CTGGAGTTTCCGTCGCCTAC 

I XPC ex7r    CAATTTCCTGTCAATTGCTCCTC 

IXPC ex8af    ACTGTCTGAGCTGGGGACAT 

IXPC ex8ar    TTCCTCCTGCTCACAGAACA 

Seq.8a rev    GTTGCCTTCTCCTGCTTCTC 

XPC ex8bf    CTCCAAAGCAGAGGAAAG 

XPC ex8br    CCCATTAAAAACACCCAAC 

XPC exI9f     CAGATGCGATGTTACAAAACCA 

XPC exI9r     GAATGCTGTCCAGTCAGATGAG 

XPC ex10f    TTGCCTAGCACAGCTTCTC 

XPC ex10r    TCCAACCTGTAGAACCTTTG 

XPC ex11f    TGGATGCCTTTGTTGTAAAC 

XPC ex11r    GAGCAAGTCAGCATTTGG 

XPC ex12f    TAAGGGCAGCATCAGAAGGG 

XPC ex12r    CAGCTTTCCATCCCCATCTC 

XPC ex13f    GCCCACTGTTTTCCACAAACTG 

XPC ex13r    AGTGTTGCTTCCCGCTTCTG 

XPC ex14f    TGGAAGTGAGACTTGGTG 

XPC ex14r    ATCCCTGACTTGAGGATG 

XPC ex15f    TGGGAACTTGCTGCCTCTTC 

XPC ex15r    ACTGGTGGGTGCCCCTCTA 

XPD ex1for     GAGCCCTCGAGGATGTCCA 

XPD ex2rev    CGTCCTGCAATCTGTCTTAGGC 

XPD ex3for    GTTTGTGTGCCCAAGGTTCT 

XPD ex5rev    ATCCAGGACTTGTGGTTGGA 
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XPD Seq 3-5for    GTTCCCTAGGCCCTATTGGT 

XPD Seq 3-5rev    GGAGCTTGTGCTCATTGGAG 

XPD ex6for    GAAGAGTGGTTGGGTTTTCCA 

XPD ex7rev    ACCAACAGGGAGATGCAGAC 

XPD ex8for    GTGCCCGTATCTGTTGGTCT 

XPD ex9rev    CTGGGGACAAGTCAGACAGG 

XPD ex10for    CTGGAGACCCTGCAGAAGAC 

XPD ex11rev    GAGGACACGGCTCTGCATAA 

XPD I ex12for    GACTCTGGAGTGTCTGATTATTGCTC 

XPD I ex12rev    ATCTGAGCACAAGGCTTACTCAAG 

XPD ex13for    GGGTAATCTCACCCCTCCTT 

XPD ex15rev    TAAAGCTCTCCTGCCTGAGC 

XPD ex16for    GCTTAGAACAGCACCAGCAG 

XPD ex16rev    TGATACACCTCCCCTCTTGG 

XPD ex17for    AGAGAAGGGAGGAGGACCTG 

XPD ex17rev    ATGCTGCACACACTCTCCTG 

XPD ex18for    CCCAGAGACATGGTGATGTG 

XPD ex19rev    GAGCTCTGGGAAGACACCTG 

XPD ex20for    CCAACTCAGACACAGCATCC 

XPD ex21rev    CAGGGACAGAAGGTCATTCG 

XPD ex22for    AGGCTGTTTCCCGTTCATTT 

XPD ex22rev    AGGGGACTTTCTGGAGGAGA 

XPD ex23for    CTTCATAAGACCTTCTAGCACCA 

XPD ex23rev    CGCTCTGGATTATACGGACA     

XPG 5´UTR fwd    GCCATTCTCTGGACCTGTCTT 

XPG Intron 1 rev    CCGAGGGACGACTGTACTTAGA 

XPG Intron 1 fwd    GGAAATTGAAGTTGTGAGGATG 

XPG Intron 2 rev    TCATTGTACCCATGATGAACTCTC 

XPG Intron 2 fwd    TGGCAATTAGGAGGAAATGC 

XPG Intron 3 rev    AGGGAAAGAGAATCGCAGGA 

I,XPG Intron 3 fwd   CGTGTTGCGTCATGTACACTTT 

I,XPG Intron 4 rev   AGCCCTGGCAGAAGTTCTTTAG 

XPG Intron 4 fwd    AACGAGCAGAGCCTTGCATA 

XPG Intron 5 rev    CAACCAAAAAGCCATCTGTC 
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XPG Intron 5 fwd    GCCTACTCACTTTGTTGCCTGT 

XPG Intron 6 rev    CCTAGTCTCGGGTCAAAAGTCA 

XPG Intron 6 fwd    GGGAAAGGGTGGAAATATGG 

XPG Intron 7 rev    TCATTTAATCGGCAACTAGGAG 

XPG Intron 7 fwd    GAACCAGTGTTCTCTTATCCATCTT 

XPG Intron 8 rev    AGCTGTGACTCCCTGGGAAA 

XPG Intron 8 fwd    GCATTTTTCAGGTTCCTCCAG 

XPG Intron 9 rev    GCCATCAGCAACCACAAGAT 

XPG Intron 9 fwd    CAGAGTCTTGGTTAGACATCCAGTG 

XPG Intron 11 rev   CCTGCAATTTCCATCAATGC 

I,XPG Intron 11 fwd   GTGGTTCAGAGAGACTCAGGCTA 

I,XPG Intron 12 rev   CCAGCACCACTAAGAACTGACTC 

XPG Intron 12 fwd   AGTGCCAAGCACAGAGGAAG 

XPG Intron 13 rev   GTGAAAAGGAGAGCGGGATA 

I,XPG Intron 13 fwd   GAACATAGTGCCAGATGATTATGC 

I,XPG Intron 14 rev   ACTCCAAAGTTCAGCCCTAAGAG 

XPG Intron 14 fwd   GGGAGAGAACTGGGTTTTGG 

XPG 3´UTR rev    TGACCGTGCCACCAGTTAAT 

 

Oligonucleotides for amplification/sequencing of cDNA 

Name                                                               Sequence 3'5' 
 

XPG g285rev    CCCCATCAAACACAAAAATAGG 

XPG g870rev    AATAATGTTCTTGTCCCCTTGG 

XPG t10 for    ACCTCTATGTTTTGCCTCCTT 

XPG 594r4 for    TGCTGCTGTAGACGAAGGC 

XPG 593R86 rev    GCTCACCATCCACGTCGTCCC 

XPG 2472-2492for   CGGATCGCTGCTACTGTCACC 

XPG xp5 100 for    TAAGACCTAATCCTCATGACA 

XPD d11     CTCAGGTCTGCAATCTTGG 

XPD d12     ACCAGGTCTGCAATCTTGG 

seq.XPD ex1for    GAGCCCTCGAGGATGTCCA 

seq. XPD d12r    CTTGGGGTCCAGGAGGTAGT 

XPD d21     GCCAATGTGGTGGTTTATAGCT 

XPD d22     TGATGACAGACTGGAAACGC 



 2.  Materials and Methods 

  

29 

 

XPD d31     ATCGAGCCCTTTGACG 

XPD d32     TCTCACGAATCTGGAACTGG 

seq. XPD d32r    GAACTGGTCCCGCAGGTAT 

XPD d41     AAAGTGTCCGAGGGAATCG 

XPD d42     AAGACCTTCTAGCACCACCG 

seq. XPD d41f    GCGTCCCCTACGTCTACACA 

seq. XPD d42r                         GGCAAGACTCAGGAGTCACC  

Oligonucleotides for quantitative Real Time PCR purchased from Qiagen, Hilden GER 

Gene                                                                Order number 

 

XPA      QT00029519 

XPB     QT00080276 

XPC     QT00080381 

XPD     QT00086758 

DDB2 (XPE)    QT00062986 

XPF     QT00063091 

XPG     QT00029246 

GAPDH     QT00079247 

β-actin     QT00095431 

 

2.11. Plasmids 

Commercially available plasmids, plasmids containing a certain cDNA generated during this 

thesis, and plasmids provided from other researcher are listed and described concerning their 

source and purposes below. Plasmids containing cDNA sequences generated during the thesis 

were always controlled by DNA sequencing for proper nucleotide sequences (see 2.14.2.7.).  

 

pcDNA3.1/myc-His(-)A was purchased from Invitrogen, Karlsruhe GER. The 5.5 kB vector has a 

human cytomegalovirus immediate-early (CMV) promoter and is used for high level expression 

of recombinant proteins in eukaryotic cells (Boshart et al., 1985; Nelson et al., 1990). The 

vector has a Neomycin resistance gene allowing for selection of stable transfections in 

mammalian cells (Heffron et al., 1975; Southern and Berg, 1982) and an ampicillin resistance 

gene (β-lactamase) for selection of transformation-positive bacterial cells when the vector is 

cloned E.coli. The coding sequence of a myc- and a His-tag (eleven amino acids myc epitope, 

six amino acids His epitope (6 x His) bridged by five amino acids) is located downstream of the 
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multiple cloning site (mcs). Thus, cDNA cloning in the mcs, within the reading frame, results in 

the expression of recombinant proteins with a C-terminal mycHis-tag after transfection into 

eukaryotic cells. The myc-tag enables immunoprecipitation and/or detection of the 

recombinant protein via Western Blot using αmyc antibody. The His-tag enables purification of 

the recombinant protein on metal-chelating resin, but also immunoprecipitation and/or 

detection of the recombinant protein via Western Blot using αHis antibody. 

 

pXPGmycHis: XPG wild type protein was cloned into the pcDNA3.1/myc-His(-)A expression 

vector utilizing oligonucleotides XPGmycHis_for and XPGmycHis_rev for amplification of XPG 

cDNA from pXPG. Enzymes NotI (5') and KpnI (3') were used for restriction of insert and vector. 

 

pXPGQ150mycHis: XPG amino acids 1-150 were cloned from pXPG into the pcDNA3.1/myc-His(-

)A expression vector utilizing oligonucleotides XPGmycHis_for and XPGQ150mycHis_rev for 

amplification.  Enzymes NotI (5') and KpnI (3') were used for restriction of insert and vector. 

      

pXPGE727mycHis: XPG amino acids 1-727 were cloned from pXPG into the pcDNA3.1/myc-His(-

)A expression vector utilizing oligonucleotides XPGmycHis_for and XPGE727mycHis_rev for 

amplification. Enzymes NotI (5') and KpnI (3') were used for restriction of insert and vector. 

 

pXPGL778PmycHis: XPG with amino acid change p.L778P was generated subjecting pXPGmycHis 

to site directed mutagenesis using primer L228Pfor and L778Prev.  

 

pmycHis_XPGG805R: XPG with amino acid change p.G805R was generated subjecting 

pXPGmycHis to site directed mutagenesis using primer G805Rfor and G805Rrev. 

 

pXPGW814SmycHis: XPG with amino acid change p.W814S was generated subjecting 

pXPGmycHis to site directed mutagenesis using primer W814Sfor and W814Srev. 

 

pXPGQ150X: XPG protein, containing amino acids 1-150, was generated subjecting pXPG to site 

directed mutagenesis using primer Q150Xfor and Q150Xrev. 

 

pXPGE727X:  XPG protein, containing amino acids 1-727, was generated subjecting pXPG to site 

directed mutagenesis using primer E727Xfor and E727Xrev. 
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pXPGG805R: XPG protein containing amino acid exchange p.G805R was generated subjecting 

pXPG to site directed mutagenesis using primer G805Rfor and G805Rrev. 

 

pXPGL778P: XPG protein containing amino acid exchange L778P pXPG was generated subjecting 

pXPG to site directed mutagenesis using primer L778Pfor and L778Prev. 

 

pXPGW814S: XPG protein containing amino acid exchange W814S was generated subjecting 

pXPG to site directed mutagenesis using primer W814Sfor and W814Srev. 

 

pXPA, pXPB, pXPC, pXPD,pXPE, pXPF, pXPG  were all provided from Dr. K.H. Kreamer MD, NCI, 

NIH Bethesda,USA. The vectors were used for the expression XPA, XPB, XPC, XPD, XPF, and XPG 

cDNA in eukaryotic cells, respectively. All vectors, except pXPE, have an ampicillin resistance 

gene. XPE contains a zeocin resistance gene.  Resistance genes are used for selectivity 

purposes when the vectors are cloned in E.coli.  

 

pcmvLUC was provided from M. Hedayati und L. Grossman, Johns Hopkins University, 

Baltimore, MD, USA. The vector was used for the expression of firefly luciferase in eukaryotic 

cells. The non-replicative vector has an ampicillin resistance gene used for selectivity purposes 

when it is cloned in E.coli. 

 

pRL-CMV (catalog no. E2261) was purchased from Promega, Mannhein, GER. The 4079bp 

vector encodes the renilla luciferase and exhibits a cytomegalovirus immediate-early (CMV) 

promoter. It was used for constitutive expression of renilla luciferase in eukaryotic cells.  The 

non-replicative vector has an ampicillin resistance gene for selectivity purposes when the 

vector is cloned in E.coli.  

 

2.12. Cell culture techniques  

2.12.1. Culture of primary human fibroblasts and HEK293A cells 

All cells were cultivated in 175 cm2 culture flasks with 30 ml DMEM culture media 

supplemented with 10 % FCS (v/v) and 1 % P/S (v/v) in a humified atmosphere at 37 °C and 5 % 

CO2.  The adherent cells were passaged when they were grown to confluency.  HEK293A were 

passaged 1:10 and primary fibroblasts 1:2. 

For passaging, cells were rinsed with 10 ml PBS and dissociated from the culture flask by 

incubation with 5 ml trypsin. HEK293A cells were trypsinized at room temperature, whereas 
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fibroblasts were incubated for 5 min at 37 °C.  Trypsinization was stopped by adding 8 ml 

culture medium to the cells. The cell suspension was centrifuged at 188 x g for 10 min. Cells 

were resuspended in an appropriate volume of culture media.  One-tenth of the HEK293A cell 

suspension and one-third to one-half of the fibroblast cell suspension was transferred back 

into the culture flask.   

If cells had to be seeded in a specific density for further experimental procedures, 10 µl cell 

suspension was mixed with 90 µl tryphan blue and cells were counted in a Neubauer chamber.  

To cultivate cells from a frozen aliquot, cells were thawed and washed with 10 ml culture 

medium (centrifugation 188 x g, 5 min at room temperature). The resulting cell pellet was 

resuspended in 10 ml medium, transferred into a culture flask and incubated at 37 °C, 5 % CO2.  

To freeze cells, approximately 5x106 HEK293A cells or 1x106 primary human fibroblasts were 

sedimented as described above resuspended in 500 µl culture media and transferred into pre-

cooled cryo tubes containing 500 μl freezing medium. Cells were frozen at -80 °C in cryo boxes 

containing isopropanol to obtain a constant cooling of approximately 1 °C/min before they 

were stored in liquid nitrogen at -196 °C. 

 

2.12.2. Transient transfection of primary human fibroblasts 

Primary human fibroblast cells were transfected with Lipofectamine 2000 transfection reagent. 

The reagent contains cationic lipids that accumulate with the negatively charged DNA and the 

resulting precipitates are absorbed by the cells via endocytosis.  

Cells were seeded in 6-well-plates with a density of 1.3x105 cells per well. Next day, the culture 

medium was changed to 2 ml Opti-MEM and cells were further incubated, while the 

transfection mix was prepared. Preparation of the DNA-Lipofectamine-mix was performed in 

polystyrene tubes. For the exact amounts of plasmid DNA, please refer to values in table 2-10. 

For transfection of one well, the appropriate amount of plasmid was diluted in 97.5 µl Opti-

MEM (plasmid-mix). In a second tube, 2.5 µl Lipofectamine 2000 and 97.5 µl Opti-MEM 

(Lipofectamine-mix) were pre-incubated for 5 min at room temperature before the 

Lipofectamine-mix was added to the plasmid-mix. The plasmid-Lipofectamine-mix was 

incubated for 45 min at room temperature. Afterwards, 800 µl Opti-MEM were added and the 

tube was inverted for five times. The 2 ml Opti-MEM were changed by the transfection 

mixture and the cells were further incubated for 4 h until the transfection mixture was 

changed to normal culture medium.  
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Table 2-10 Amount of plasmid DNA used for transfection with Lipofectamine 2000 

      Firefly luciferase plasmid       Renilla Luciferase plasmid          pXPA to pXPG 

   150 ng (50 ng/µl)               250 ng (50 ng/µl)        250 ng (50 ng/µl) 

 

2.12.3. Transient transfection of HEK293A cells 

HEK293A cells were transfected with Attractene Transfection Reagent, a non-liposomal 

transfection reagent, which forms a complex with the DNA resulting in micelles that are 

absorbed by the cells via endocytosis.  

Cells were seeded in 10 cm dishes in a density of 1.2x106 cells per dish. Next day, cells were 

transfected according to manufacturer’s instructions: 300 µl medium without supplements 

were mixed with 5 µg plasmid DNA (1 µg/µl) and 15 µL Attractene Transfection Reagent. The 

plasmid-Attractene-mix was incubated at room temperature for 15 min. During this time the 

medium of the cells was changed to 10 ml fresh culture medium. The plasmid-Attractene-mix 

was added to the cells and the cells were further incubated for 6 h until the transfection 

mixture was changed to normal culture medium.  

 

2.12.4. Functional Assays 

2.12.4.1. Determination of post-UV cell survival 

To test the cells for their sensitivity against UV irradiation, the cell proliferation after UV 

treatment was determined using the CellTiter96® Non-Radioactive Cell Proliferation Assay. The 

test is based on the determination of the activity of a mitochondrial dehydrogenase which can 

metabolize 3-(4,5- Dimethylthiazol-2-yl)-2,5-diphenyl-tetrazoliumbromid (MTT) to its blue 

coloured formazan salt. Primary fibroblasts were seeded in two different densities (7500 and 

5000 cells per well in 100 µl culture media) in 96-well-plates. Next day cells were washed twice 

with 1x PBS, the 1x PBS was removed and the cells were irradiated with an ultraviolet 

crosslinker with 254 nm UV light bulbs in increasing doses from 6 J/m2 to 30 J/m2. Afterwards, 

fresh culture medium was added to the cells and they were further incubated at 37 °C and 5% 

CO2. After at least two days or until the cells in the unirradiated control well were 90 % 

confluent, 15 µl Dye-Solution was given to each well and the plate was further incubated for 4 

h at 37 °C. The reduction of MTT to its blue coloured salt was stopped by adding 100 µl Stop-

Solution to each well. Afterwards, the plate was incubated over night at room temperature 

and protected from light to achieve complete cell lysis.  The amount of formazan correlating 

with cells’ viability was measured with a Dynatech MR 500 photometer at 550 nm. The 

software BioLynx 2.0. was used for quantitative analysis. The mean absorption value (n=4) of 
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the unirradiated cells was set to 100 % survival to calculate the relative post-UV survival of the 

irradiated cells.  

 

2.12.4.2. Determination of NER capability with Host Cell Reactivation Assay (HCR) 

The relative NER capability and the complementation group (XP-A to XP-G) of primary 

fibroblast cells was determined by host cell reactivation assay (HCR). The HCR assay has the 

following principle: a non-replicating reporter gene plasmid is irradiated with 250 J/m2 UVC 

irradiation generating DNA photoproducts pyrimidine-6,4-pyrimidones (6,4PPs) and 

cyclubutane-pyrimidine-dimer (CPDs). Transfection of an irradiated plasmid into a host cell will 

only result in enzyme expression if the cell reactivates the plasmid by removing all 

photoproducts from the transcribed strand of the reporter gene. Therefore, activity of the 

enzyme expressed from the irradiated plasmid correlates with NER capability and is simplified 

termed as relative NER capability. 

Fibroblast cells were transfected with either non-irradiated or irradiated pcmvLUC reporter 

gene plasmid coding for firefly luciferase together with unirradiated pRL-CMV reporter gene 

plasmid coding for renilla luciferase for normalization. The enzyme expression was determined 

after 72 h with a Promega’s Dual-Luciferase Reporter Assay System. Therefore, cells were 

washed with 1x PBS and lysed with 200 µl lysis buffer for 45 min at room temperature. Cell 

lysates were transferred into eppendorf tubes and centrifuged for 10 min at 1300 x g. 20 µl of 

the supernatant containing the proteolytic fraction was transferred into a 96 well Glomax ™ 96 

Microplate. The enzyme activities were measured as relative light units (RLUs) with a GlomaxTM 

96 Microplate Luminometer by adding the specific substrate solutions beetle luciferine (for 

firefly luciferase) and coelenterazine (for renilla luciferase) to the supernatant. Firefly 

luciferase RLUs were divided through corresponding renilla luciferase RLUs. Relative luciferase 

activity (or relative NER capability) is expressed as percentage activity obtained from UVC 

treated plasmids divided through corresponding untreated control plasmids.  

For determination of the complementation group, the fibroblasts were simultaneously co-

transfected with pcmvLUC, pRL-CMV, and 250 ng of a wild type XP cDNA containing plasmid 

(pXPA, pXPB, pXPC, pXPD, pXPE, pXPF, pXPG). At least triplicate experiments were performed.   
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2.13. Microbiology 

2.13.1. Preparation of chemical competent E.coli XL1blue  

Competent cells have the ability to take up extracellular foreign DNA. This process occurs 

naturally in many bacteria (natural competence) and can also be induced artificial. Chemical 

competent cells are treated with calcium ions which facilitate the attachment of the DNA to 

the competent cell membrane.  

10 ml LB medium without antibiotics was inoculated with E.coli BIOblue and incubated shaking 

at 37 °C for 16 h. 190 ml LB medium without antibiotics was inoculated with 10 ml from the 

overnight culture and were further incubated shaking at 37 °C until OD600 was 0.5. Cells were 

centrifuged (188 x g, 10 min, 4 °C) and the pellet was resuspended in 25 ml ice-cold 100 mM 

MgCl2 solution. Cells were incubated on ice for 5 min before they were centrifuged (188 x g, 10 

min, 4 °C) again. Next, cells were resuspended in 5 ml ice-cold 100 mM CaCl2 solution and 

incubated on ice for 20 min before they were centrifuged again (188 x g, 10 min, 4 °C). The 

pellet was resuspended in 1 ml 100 Mm CaCl2 solution containing 15 % Glycerol (v/v), 

aliquoted in 50 µl portions, and frozen in liquid nitrogen. Afterwards, the competent bacteria 

were stored at -80 °C until further use.  

 

2.13.2. Transformation of E.coli 

Competent E.coli BIOblue were thawed on ice before 100 ng plasmid DNA was mixed with 50 

μl competent cells. The suspension was incubated on ice for 30 min until cells underwent a 

heat shock for 1 min at 42 °C. Afterwards, the bacteria were incubated on ice for 2 min before 

200 µl LB medium without antibiotics was added to the cells. Cells were incubated shaking for 

1 h. To select for positively transformed cells, 100 μl bacteria suspension was plated on LB agar 

plates containing 100 μg/ml of specific antibiotic (corresponding to the selection marker of the 

plasmid) and plates were incubated at 37 °C for 16 h.  
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2.14. Molecular biology 

2.14.1. Preparation of nucleic acids 

2.14.1.1. Isolation of genomic DNA 

Genomic DNA was isolated from fibroblast cell pellets with QIAamp DNA Blood Kit according to 

manufactures instructions. The DNA concentration was measured photometrically at 260 nm 

(see 2.14.1.7.). 

 

2.14.1.2. Ultra fast alkaline lysis plasmid extraction and analysis 

This DNA extraction method (Cormack and Somssich, 1997) was used for simultaneous analysis 

of several bacterial colonies. Single E.coli colonies were screened for containing a plasmid with 

previously inserted cDNA after transformation.  

Two ml LB medium containing 100 μg/ml of specific antibiotic (corresponding to the selection 

marker of the plasmid) were inoculated with bacteria from a single colony and the bacterial 

culture was incubated shaking at 37 °C for 16 h. Next day, 300 µl of the bacterial suspension 

were mixed with 300 µl lysis buffer (0.2 N NaOH, 1 % SDS) and incubated for 5 min at room 

temperature. 300µl neutralization buffer (3 M potassium-acetate, pH 5.5) were added and the 

suspension was further incubated for 5 min at room temperature before the sample was 

centrifuged (16000 x g, 10 min, room temperature) to remove cell debris and chromosomal 

DNA. 800 µl of the resulting supernatant were mixed with 600 µl isopropanol to achieve 

precipitation of the DNA. Precipitated DNA was pelleted by centrifugation (16000 x g, 15 min, 

room temperature), the pellet was washed with 250 µl 70 % EtOH and centrifuged (16000 x g, 

15 min, room temperature) again. DNA was dried at room temperature and re-dissolved in TE 

buffer with a final volume of 15 µl containing two appropriate restriction enzymes à 0.3 µl (10 

u/µl), one tenth (v/v) of the corresponding 10x buffer, one tenth (v/v) 10x BSA (depending on 

the requirements of the enzyme) and 0.3 µl RNAse T1 (1000 u/µl). The sample was incubated 

for 1 h at 37 °C.  The selected enzymes allow for a restriction digest that gives information 

about the insertion of the cDNA into the plasmid when the resulting DNA fragments are 

separated by agarose gel electrophoresis (see 2.14.1.4.).  

 

2.14.1.3. Isolation of plasmid DNA 

For preparation of small amounts of plasmid DNA (~40 µg) 5 ml LB medium containing 100 

μg/ml of specific antibiotic (corresponding to the selection marker of the plasmid) were 

inoculated with bacteria from a single colony.  The bacterial culture was incubated shaking at 

37 °C for 16 h. Isolation of plasmid DNA was performed with the NucleoSpin® Plasmid from 
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Machery and Nagel according to manufacturer’s instructions. The DNA concentration was 

measured photometrically at 260 nm (see 2.14.1.7.). 

The NucleoBond® Xtra MiDi/Maxi from Machery and Nagel was applied for isolation of greater 

amounts of plasmid DNA (~250 µg). Therefore, 100 ml LB medium containing 100 μg/ml of 

specific antibiotic (corresponding to the selection marker of the plasmid) were inoculated with 

bacteria from a single colony and the bacterial culture was incubated shaking at 37 °C for 16 h. 

Isolation of plasmid DNA was performed according to manufacturer’s instructions. The DNA 

concentration was measured photometrically at 260 nm (see 2.14.1.7.). 

 

2.14.1.4. Agarose gel electrophoresis (AGE)  

DNA fragments, generated by PCR or by restriction digestion of plasmids, were subjected to 

agarose gel electrophoresis for analysis or preparative purpose. The negatively charged DNA 

fragments move towards the anode in an electric field. DNA fragments exhibit different 

mobility due to the DNA fragment size and the pore size of the agarose gel: smaller fragments 

move faster than bigger ones. Therefore, DNA fragments are separated by size and can be 

visualized using fluorescence dyes (GelRed, ethidium bromide) which intercalate into DNA and 

fluoresce under UV light. 

Depending on the fragment size, agarose gels were generated by diluting a suitable amount of 

agarose powder, 0.8 % to 1.5 % (w/v), in 1x TBE buffer and dissolving it by boiling. 1x TBE 

buffer was also used as running buffer during electrophoresis with a current of 100 V.  Samples 

were mixed with 5x LDS before they were loaded on the gel together with an appropriate 

molecular weight size standard (see table 2-8). Visualization of the DNA fragments was 

performed using the gel documentation system from Biometra and either GelRed (added 

directly when the gel is generated) or ethidium bromide (incubation of the gel in an ethidium 

bromide containing aqua bidest bath). 

 

2.14.1.5. Isolation of DNA from an agarose gel 

Isolation of specific DNA fragments from agarose gels was performed with the NucleoSpin® 

Extract II Kit from Machery and Nagel. Therefore, DNA fragments were separated by agarose 

gel electrophoresis (see 2.14.1.4.). The DNA fragment of interest was excised and purified with 

the NucleoSpin® Extract II from Machery-Nagel according to manufacturer’s instructions.  
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2.14.1.6. Isolation of total RNA 

Total RNA was isolated from fibroblast cell pellets using the Rneasy Mini Kit and the DNAse-

free-set from Qiagen, according to manufacturer’s instructions. The RNA concentration was 

measured photometrically at 260 nm (see 2.14.1.7.). 

 

2.14.1.7. Quantification of DNA and RNA 

The DNA concentrations were determined photometrically at 260 nm. Either 1 µl of the 

undiluted sample or 100 µl of diluted sample (1:100 with aqua bidest) were used for 

determination using a NANO-DROP ND-1000 or the Beckmann Du® 640 spectrophotometer, 

respectively. RNA concentration was measured similarly in a 1:50 dilution with aqua bidest 

with the Beckmann Du® 640 spectrophotometer.  

To calculate the concentration of the sample from the abortion value following formula was 

applied: 

Concentration (µg/µl) = (A260 x V x U µg)/ 1000 µl 

A260 = absorption 

V = sample volume 

U = conversion factor (50 for double stranded DNA, 40 for single stranded/double stranded 

RNA) 

Absorbance of a DNA sample is determined at wavelength of 260 nm and 280 nm. DNA 

absorbs mainly UV light of 260 nm and aromatic proteins absorb UV light at 280 nm. A 

relatively pure DNA or RNA sample has a 260/280 quotient of 1.8 or 2.0, respectively. A lower 

quotient indicates protein contamination.  

 

2.14.2. Enzymatic manipulation of DNA 

2.14.2.1. Polymerase chain reaction (PCR) 

PCR is a technique to amplify a specific DNA region of a target DNA strand (template) similar to 

endogenous DNA replication (Mullis et al., 1986). Two specific oligonucleotides (primer), 

complementary to the target region of the DNA template, are used to create free 3' hydroxyl 

ends for the DNA polymerase. The PCR consists of a series of three repeating steps:  

1. Denaturation of the template DNA results in single stranded DNA molecules 

2. Annealing of the oligonucleotide primer to the single stranded DNA templates 

3. Elongation/extension of the oligonucleotide primer complementary to the DNA template 

strand 



 2.  Materials and Methods 

  

39 

 

Repetitions of these steps for 30 to 40 times lead to a million fold amplification of a single DNA 

molecule. Fusing restriction side sequences to the 5' ends of each oligonucleotide primer 

results in PCR products which can be inserted into a vector after incubation with the 

corresponding restriction enzymes (DNA molecules and vector).  

For mutational analysis genomic DNA was amplified using Taq DNA polymerase, whereas Pfu 

DNA polymerase with proofreading activity was used to amplify template DNA for cloning 

purpose. Each PCR reaction mix is listed in table 2-11. 

Table 2-11: PCR reaction mix for Taq and Pfu DNA polymerase 

 Taq polymerase      Pfu polymerase 
dNTP-Mix (3.75 mM) 1µl 1µl 
10x Buffer 5µl* 5µl** 
MgCl2, 25 mM 4µl - 
forward-primer (10 pmol/µl) 2µl 2µl 
reverse-primer (10 pmol/µl) 2µl 2µl 
DMSO 2µl 2µl 
DNA polymerase 0,5µl (5u/µl) 0.5µl (2.5u/µl) 
template DNA 100ng 100ng 
ad aqua bidest.  ad 50µl ad 50µl 

*10x Taq DNA Polymerase Buffer – MgCl2 

**10x Pfu DNA Polymerase Buffer + MgSO4 

 

 

The PCR reaction was performed in a thermo cycler with following basic program: 

 

Step 0:  95°C 2min 

Step :  95°C 30sec 

Step 2:  n°C 30sec 

Step 3:  72°C n* min  

 

Repetition of Step 1 to Step 3 for 30 to 40 cycles 

 

Step 4:  72°C  n* + 5 min   

Step 5:  10°C ∞ 

 

The annealing temperature of step 2 depends on the melting temperature of the 

oligonucleotide primer.  The elongation time of step 3 depends on the length of the expected 

PCR product and on the applied DNA polymerase (Taq polymerase: 1 kb/min, Pfu Polymerase: 

1 kb/2 min). 
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5 µl of the PCR product were analyzed by agarose gel electrophoresis (see 2.14.1.4.) for control 

purpose. For subsequent sequence analysis, unincorporated oligonucleotide primer and dNTPs 

were removed either with the USB® Exo-SAP IT® PCR Product Cleanup kit or with the 

NucleoSpin® Extract II from Machery-Nagel according to manufacturer’s instructions.  

 

2.14.2.2. Site directed mutagenesis 

Site directed mutagenesis is a technique to introduce mutations, such as base changes, 

deletions or insertions, into DNA via PCR. Each oligonucleotide primer used for amplification 

has to contain the desired mutation. Recombinant proteins with desired mutations can be 

expressed in host cells using the corresponding expression plasmid as PCR template.  

The oligonucleotide primers were complementary to the DNA template around the site where 

the mutation was to be introduced and contained the desired mutation (see table 2-9). Using 

Pfu DNA polymerase, with proof reading activity, the plasmid was amplified in a common PCR 

(see 2.14.2.1.) with about 18 cycles. The mutation was subsequently included in every PCR 

product. Template DNA was digested by incubation with 1 µl DpnI (10 u/µl), which was directly 

added to the 50 µl PCR sample, for 3 h at 37 °C. Dam+ E.coli methylates DNA with the 

sequence GATC at the N6 position of the adenine (GmeATC) and DpnI cleaves DNA at this 

sequence (Palmer and Marinus, 1994). The template plasmid was previously cloned in Dam+ 

E.coli BIOblue. Thus, the methylated template plasmid was digested by DpnI. The PCR product, 

containing the mutation, remained and was transformed into E.coli BIOblue (see 2.13.2.).  

 

2.14.2.3. Reverse transcription PCR: Generation of cDNA 

The reverse transcriptase is a polymerase which uses RNA templates to synthesize 

complementary DNA (cDNA) (Baltimore, 1970; Temin and Mizutani, 1970). An oligo dT primer 

which binds to the poly-A tail of each mRNA molecule is used for reverse transcription of the 

whole mRNA of a sample. Reverse transcription of a certain mRNA into cDNA can also be 

performed using a template specific primer.  

The cDNA was generated with the RevertAid H Minus First strand cDNA synthesis Kit using 1 µg 

total RNA and 500 ng oligo dT. The reaction was performed as follows: 

1. 1 µg total RNA  

    1 µl Oligo (dT)18 (0.5 µg/µl) 

    Add 12 µl Rnase free water 
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The first sample was incubated for 5 min at 70 °C for in the thermo cycler and cooled down on 

ice for at least one minute.  

2.  4 µl 5x reaction buffer 

1 µl RiboLock™RNase Inhibitor 

2 µl 10 mM dNTP mix 

First and second sample were mixed and incubated at 37 °C for 5 min in the thermo cycler. 

Afterwards, 1µl RevertAid™ H Minus Reverse Transcriptase was added and the sample was 

further incubated for 60 min at 42 °C followed by incubation for 10 min at 70 °C.  

 

2.14.2.4. Quantitative real time PCR (qRT-PCR) 

The qRT-PCR technique is based on PCR but enables detection and quantification of the PCR 

product after every single PCR cycle. Thus, mRNA expression level of certain genes can be 

investigated by this technique using gene specific (exon priming) oligonucleotide primer pairs 

and cDNA as PCR template. qRT-PCR was performed with QuantiTect® SYBR green PCR Kit 

according to manufacturer’s instructions. SYBR green is an asymmetrical cyanine dye which 

intercalates in double stranded DNA thereby enabling quantification of the PCR products by 

determination of the fluorescence intensity at 530 nm after each PCR cycle (Zipper et al., 

2004). The cycle threshold (Ct) value defines the PCR reaction level at which a significant 

exponential increase in fluorescence is detected. The Ct value directly correlates with the 

number of copies of cDNA template present in the reaction. Thus, different Ct values of 

individual samples result from different amounts of template cDNA indicating different 

expression levels of the corresponding gene.  

Determination of the mRNA expression levels of two housekeeping genes, GAPDH 

(glyceraldehyde-3-phosphate dehydrogenase) and β-actin, was used for normalization 

purposes. Additionally, standard curves were generated using specific PCR products 

(spectrophotometrical quantificated) in a dilution series from 500 atm/µl to 5x10-4 atm/µl. All 

primers were purchased from Qiagen (see table 2-9) and uniform cycle conditions according to 

manufacturer’s instructions were applied. The mRNA Expression level of a certain gene was 

determined in duplicates for each sample. For calculation of relative mRNA expression levels, 

the mean mRNA expression of nine wild type fibroblast cell cultures (wt1 to wt9) was set to 

100 %. One qRT-PCR probe was prepared as follows: 
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qRT-PCR reaction mix:  5 µl SYBR green 
1 µl Primer 
1 µl cDNA 
4 µl aqua bidest 
11µl  
 
 

2.14.2.5. Restriction of DNA 

Restriction of double stranded DNA is performed with restriction enzymes cleaving the 

phosphate-desoxyribose-backbone at specific recognition nucleotide sequences. Enzymes used 

in this thesis generated DNA with short single stranded overhangs, so called sticky ends. 

Enzyme restriction digestion of plasmid DNA or PCR products was performed according to 

restriction enzymes’ manufacturer’s instructions. Restriction digestion products were 

subjected to AGE for control (see 2.14.1.4.) and preparative purposes (see 2.14.1.5.).  

 

2.14.2.6. Ligation 

DNA ligases are enzymes which catalyze the formation of covalent phophidiester bonds 

between free 3' hydroxyl and 5' phosphate ends of DNA molecules thereby fusing two DNA 

fragments together. Ligation utilizing the T4 DNA ligase can be used for the insertion of cDNA 

fragments (insert) into a plasmid.  

Prior to ligation, plasmid and insert DNA were digested with the same enzymes generating two 

DNA molecules with complementary sticky ends which were fused together by subsequent 

ligation with T4 DNA ligase. A threefold molecular overspill of insert DNA was calculated with 

the following formula: 

 

x µg insert = insert size/ vector size * 3 * y ng vector 

 

Ligation was performed in a 15 µl reaction mix containing 1 µl T4 DNA ligase (1 u/µl) with its 

corresponding buffer (1x concentrated) for 16 h at 4°C.  

             

2.14.2.7. DNA sequencing and sequence analysis 

Sequencing was performed with the chain-termination method after Sanger (Sanger et al, 

1977). This technique basically requires a DNA template, a DNA polymerase, and an 

oligonucleotide primer. The PCR reaction mix contains dideoxynucleotides (ddATP, ddGTP, 

ddCTP, ddTTP), labeled with four different fluorescent dyes (emitting light of different 

wavelengths), beside the deoxynucleotides (dATP, dGTP, dCTP, dTTP). The ddNTPs terminate 

the elongation by the DNA polymerase due to their lacking 3' hydroxyl group, which is required 
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for formation of the phophidiester bond with the next dNTP. Thus, randomly incorporated 

ddNTPs lead to DNA molecules of different length, which are separated by size using capillary 

gel electrophoresis.  Detection is performed when the molecules cross a laser and a 

fluorescence detector. The fluorescence of the terminal ddNTP of each molecule, induced by 

the laser, is getting detected. Therefore, a red, a yellow, and a blue fluorescence signal (one 

after another), for example, correspond to DNA sequence TCG when ddTTP, ddCTP, and ddGTP 

are labeled with fluorescent dyes emitting red, yellow, and blue light, respectively.  

For sequencing of DNA samples, the BIGDYE TERMINATOR v3.1 CYCLE SEQUENCING KIT was 

applied with a specific primer complementary to the template DNA according to 

manufacturer’s instructions. The resulting cycle sequencing product was cleared by 

ethanol/sodium acetate precipitation. The sample was transferred into a 1.5 ml reaction tube, 

mixed with 10 µl Na-acetate pH 4.7, 120 µl H2O and 220 µl 100 % EtOH and centrifuged (20 

min, 16000 x g, room temperature). The supernatant was discarded and 400 µl 70 % EtOH 

were added to the DNA pellet before the sample was centrifuged again (10 min, 16000 x g, 

room temperature). The DNA was dried at 40 °C for 5 min and resuspended in 10 µl Hi-Di 

Formamide for analysis with a 3100-Avant Genetic Analyzer. The resulting DNA sequence was 

analysed with Chromas Lite version 2.01 (Technelysium Pty Ltd, Brisbane, Australia). 

 

2.15. Protein biochemistry 

2.15.1. Preparation of whole cell protein lysates 

Cells were harvested by trypsinization (see 2.12.1.), resulting cell pellets were washed twice 

with 50 ml 1x PBS, and cells were diluted in an appropriate volume of 1x PBS. Cells were 

disrupted by rotational freezing in liquid nitrogen followed by thawing on ice for three times. 

The cell lysates were centrifuged to sediment the residual cell debris (10 min, 16000 x g, 4 °C). 

Resulting supernatant was transferred into a new reaction tube. Photometric quantification of 

protein concentrations was performed by the Bradford method (Bradford, 1976) using the 

Roti®-Quant Kit according to manufacturer’s instructions.  

 

2.15.2. Immunoprecipitation (IP) 

HEK293A cells were transiently transfected with Attractene transfection reagent (see 2.12.3.) 

and harvested 24 h after transfection by trypsinization (see 2.12.1.). The resulting cell pellets 

were diluted in 1 ml IP lysis buffer, containing freshly added 1 mM PMSF and protease 

inhibitor (Complete ULTRA Tablets Mini EDTA free EASYpack), and were incubated on ice for 1 

h. Cell suspension was centrifuged (10 min, 16000 x g, 4 °C) before the protein concentration 



 2.  Materials and Methods 

  

44 

 

in the supernatant was determined by the Bradford method using the Roti®-Quant Kit. For later 

control purpose an aliquot containing 65 µg protein was taken from the supernatant (input), 

mixed with 9 % Laemmli buffer and stored at -20 °C.  The remaining supernatant was divided 

into half (myc IP and control IP). To increase the amount of protein for the co-

immunoprecipitation, total protein from one 175 cm2 culture flask with confluently grown, 

untransfected HEK293A cells was added to a final volume of 4 ml IP lysis buffer. Precipitation 

of XPG(mut)mycHis protein was performed over night on a rotating wheel at 4 °C by adding an 

αmyc antibody in a dilution of 1:1000 to the myc IP sample. Control IP was performed under 

similar conditions using an αmouse IgG control antibody. Next day, 50 µl of a 1:1 mixture of 

AgaroseA beads (50 % slurry)  and AgaroseG+ beads (50 % slurry), equilibrated with IP lysis 

buffer, were added to each sample and samples were further incubated for 2 h. The antibodies 

bind to the agarose beads and, subsequently, the antibody-protein complexes are immobilized 

on the beads. Beads with bound protein complexes were washed five times with IP lysis buffer. 

Beads were resuspended in 30 µl 9 % Laemmli buffer and boiled for 5 min at 96 °C.  The 9 % 

Laemmli buffer contains 10 % (v/v) β-mercaptoethanol reducing disulfide bridges of proteins 

needed for protein unfolding. Boiling the samples results in the dissolution of protein-

antibody-agarose-complexes. Subsequently, the proteins can be separated by size with SDS-

PAGE (see 2.15.3). 

 

2.15.3. Horizontal SDS-PAGE and Western Blotting 

Dilution and boiling (5 min at 96 °C) of protein samples in Laemmli buffer containing SDS 

(sodium dodecyl sulphate) results in denaturated and negatively charged proteins.  Therefore, 

samples can be separated by size in an electric field using polyacrylamide gel electrophoresis 

(PAGE) (Laemmli, 1970).  

Protein samples were analyzed by horizontal SDS-PAGE followed by immunoblotting. For SDS-

PAGE the Amersham™ ECL™ electrophoresis system with a precast 4 % to 12 % polyacrylamide 

gradient gel was used according to manufacturer’s instructions.  Protein transfer from the 

polyacrylamide gel to a nitrocellulose membrane was performed applying the wet-blot method 

using an XCellII Blot Module at a voltage of 25 V and a current of maximal 300 mA for 2.5 h at 

4°C. Afterwards, free protein binding sites were saturated by incubation of the membrane for 

30 min at room temperature in blocking buffer (blocking buffer was used for each antibody 

according to manufacturer’s instructions).  Incubation with the specific antibodies was 

performed rocking over night at 4 °C. All following steps were performed at room temperature 

using solutions from the WesternBreeze Chemiluminescent Immunodetection Systems (anti 
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mouse or anti rabbit). The membrane was washed four times for 5 min with washing buffer 

before incubation with the secondary antibody was performed for 30 min. Afterwards, the 

membrane was washed four times for 5 min with washing buffer again and  rinsed with aqua 

bidest before chemiluminescent substrates were added. The resulting chemiluminescent signal 

was detected with a luminescent image analyzer LAS-4000. 

 

2.15.4. Immunofluorescence (XP protein recruitment kinetics) 

Fibroblast cells were seeded at a density of 2x104 cells per well on glass cover slips in 24-well-

plates. Next day, medium was taken from the cells, kept for later use, and cells were washed 

twice with 1x PBS. 1x PBS was removed and cells were covered with 8 µm isopore 

polycarbonate membrane before they were irradiated with 100 J/m2 UVC using an ultraviolet 

crosslinker with 254 nm UV light bulbs. The medium was given back to the cells and cells were 

further incubated for time intervals of the kinetic (6 min, 15 min, 30 min, 3 h, 6 h, 24 h). Cells 

were washed three times with 1x PBS to remove the media before they were fixed with 300 µl 

3.7 % PFA for 15 min at room temperature. Cells were washed again three times with 1x PBS to 

remove remaining PFA before they were permeabilized with 0.1 % Triton-X-100 in 1x PBS for 

15 min at room temperature. Additional threefold washing with 1x PBS was performed and 

cells were blocked with 20 % FCS in 1x PBS for 20 min at room temperature. Again, cells were 

washed threefold with 1x PBS before incubation with an antibody directed against one of the 

XP-proteins (XPA, XPB, XPC, ERCC1, or XPG) in a 1:50 dilution for 1 h at 37 °C was carried out. 

Afterwards, cells were washed three times with 1x PBS containing 0.05 % Tween-20 (1x PBS-

Tween) and incubated with the secondary αrabbit antibody conjugated with DyLight488 in a 

1:400 dilution for 1 h at 37 °C.For single staining against a XP protein, the glass cover slip was 

mounted with mounting medium for fluorescence containing DAPI and stored at 4 °C and 

protected from light until further use.  

For a double staining of a XP protein and a photoproduct or single staining of a photoproduct 

the DNA had to be denaturated to become accessible for the antibody directed against the 

DNA photoproduct. Denaturation was performed by incubation with 2 M HCL for 20 min 

(double staining) or 30 min (single staining) at room temperature. After that, cells were 

washed three times with 1x PBS-Tween and then incubated with either CPD antibody in a 

1:1000 or with 6,4PP antibody in a 1:500 dilution for 30 min at 37 °C. Cells were washed 

threefold with 1x PBS-Tween and incubated with secondary αmouse antibody conjugated with 

Dylight594 in a 1:500 dilution for 1 h at 37 °C. Cells were washed three times with 1x PBS and 

glass cover slips were subsequently mounted with mounting medium containing DAPI. Digital 
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images were taken with an Axio Imager.M1. For quantification at least 100 nuclei were 

counted for positive staining (percent positive stained nuclei).  
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3.  Results 

3.1. Results of the molecular-genetic and functional-genetic analysis  

3.1.1. Clinical symptoms 

3.1.1.1. Clinical symptoms of the 12 XPC patients 

The age of the XP-C patients from whom fibroblasts for functional and molecular-genetic 

analysis were obtained ranged from four to 45 years at last observation with a mean age of 

8.75 and a median age of nine years. There were seven male and four female XP-C patients. 

For one patient (XP23GO) no information about the sex was known. XP20MA and XP117MA 

were of German ancestry. XP47MA, XP98MA and XP99MA came from Iran and XP23GO came 

from Afghanistan. XP102MA was of Libyan, XP155MA and XP156MA of Balkan ancestry. 

XP150MA was of Turkish, XP114MA and XP115MA of Arab ancestry. XP98MA and XP99MA, 

XP114MA and XP115MA as well as XP155MA and XP156MA were siblings. Four of the 12 

patients were described to exhibit increased sun sensitivity (XP20MA, XP47MA, XP98MA, and 

XP150MA), whereas all patients developed poikiloderma, i.e hyper- and hypopigmentations on 

atrophic dry premature-aged skin. Seven patients developed skin cancers already in childhood 

(XP20MA, XP47MA, XP98MA, XP102MA, XP114MA, XP155, and XP156MA). Sun sensitivity and 

poikiloderma in sun-exposed skin enabled clinical XP diagnosis at a median age of nine years 

(range from two to 16 years). First skin cancers evolved at a median age of eight years (range 

from three to 14 years). Eight of the XP-C patients developed more than one skin malignancy 

and different types of skin cancer including squamous and basal cell carcinomas as well as 

cutaneous melanomas (XP20MA, XP47MA, XP98MA; XP102MA, XP114MA, XP117MA, 

XP150MA, and XP155MA). Interestingly, XP47MA, the only patient who was later found to 

carry no protein-truncating mutation, did not exhibit milder symptoms compared with the 

other patients. Of note, none of the XP-C patients exhibited typical neurological symptoms 

classically found in the XP plus neurological symptoms entity like absence of deep tendon 

reflexes, progressive high-tone deafness. An overall reduced intellectual capacity was 

described for XP20MA. 

 

3.1.1.2. Clinical symptoms of the eight XP-D patients 

The age of the XP-D patients at last observation ranged from two to 64 years with a mean age 

of 29 years and a median age of 27 years. There were five male and three female patients. 

Four of the patients, XP19MA, XP71MA, XP89MA, and XP90MA were of German ancestry. 

XP40MA was of Swedish, XP46MA of Portuguese, XP87MA of French and XP188MA of Turkish 

ancestry. Five of the XP-D patients suffered from XP phenotype (XP19MA, XP40MA, XP46MA, 
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XP71MA, and XP90MA). All these patients, except XP71MA, exhibited freckling within sun-

exposed skin. An increased sun sensitivity was described for three of them (XP40MA, XP71MA, 

XP90MA), whereas XP19MA was described to be not sun sensitive. Four of the five patients 

exhibiting the XP phenotype developed NMSC skin cancers: patients XP40MA and XP46MA 

developed first skin cancers at the age of 15 and 17 years, respectively, whereas XP71MA was 

52 years old. No exact age at first skin cancer development was described for XP19MA. 

Additionally, XP19MA, XP40MA, and XP71MA developed more than one skin cancer. Patient 

XP89MA suffered from a mild XP/CS complex phenotype with sun sensitivity and freckling 

within sun-exposed skin as well as short stature, underweight, reduced muscle proprioceptive 

reflexes, impaired vision, and a slight mental retardation. The patient did not develop a tumor 

until the age of 15 years. Two patients, XP87MA and XP188MA, exhibited the TTD phenotype. 

Unfortunately, the further clinical outcome was not described for these two TTD patients.  

 

3.1.1.3. Clinical symptoms of the three XPG patients 

Patients XP72MA and XP165MA were from German ancestry.  Both were sun sensitive since 

birth and developed freckling within the sun-exposed skin as toddlers. They suffered from the 

XP/CS complex; however, XP72MA exhibited a somewhat milder phenotype compared to 

XP165MA with respect to CS symptoms. XP72MA developed no skin cancer up to the age of 

seven years but exhibited microcephaly, ataxia, and neurological impairment. XP165MA 

exhibited a severe XP/CS phenotype with dwarfism, microcephaly, muscular hypotension, 

ataxia, reduced muscle proprioceptive reflexes and neurological impairment. This patient died 

at the age of two years from meningitis. Unfortunately, no clinical data were available for the 

third XP-G patient, XP40GO. 

 

3.1.2. Characterization of XP fibroblast cells 

3.1.2.1. Determination of post-UV survival  

The post-UV cell survival of the patients’ fibroblasts was assessed with MTT Assay (see 

2.12.4.1.). This assay reveals the viability of cells by determination of the activity of a 

mitochondrial dehydrogenase which metabolizes 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl-

tetrazoliumbromid (MTT) to its blue coloured formazan salt. The amount of formazan 

correlates with cells viability and can be measured at 550 nm.   A reduced post-UV cell survival 

is typical for XP cells compared to wild type cells, while survival of XP variant cells only 

decreases in the presence of caffeine (Arlett et al., 1975; Despras et al., 2010). Thus, all cells 

were tested with media containing 1 mM caffeine and without caffeine at a density of 5000 
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(n=4) and 7500 (n=4) cells per well in 96-well-plates. Some cells, which were tested in the 

beginning of the thesis, were tested without caffeine (n=8). A repetition of the test in the 

presence of 1 mM caffeine (n=8) was only performed if cells revealed to be un-sensitive 

against UVC irradiation. Later on during the thesis, the test was performed simultaneously with 

and without caffeine (each n=4).   

Post-UV survival of wild type cells was assessed by the mean survival of three wild type 

fibroblasts (wt1, wt5, wt6). The wild type cells exhibited a mean post-UV survival of 81 % (5000 

cells per well) and 87 % (7500 cells per well) at the highest UVC dose of 30 J/m2 compared with 

their unirradiated counterparts. All patients’ cells showed a reduced post-UV cell survival 

compared to wild type fibroblasts but the UV sensitivity differed between the patients’ cells. 

Complete mean values of the post-UV survival with and without caffeine at both cell densities 

in % are summarized in appendix tables A-1 to A-13.    

All 12 XP-C cells were irradiated with UVC doses from 6 J/m2 to 30 J/m2. The post-UV cell 

survival of XP-C fibroblast cells at the highest dose of UVC irradiation is depicted in figure 3. 

UVC irradiation of XP-C fibroblasts at 30 J/m2 resulted in a mean post-UV survival of 50 % and 

49 % at 5000 (range from 26 % to 77 %) and 7500 cells (range from 27 % to 78 %), respectively. 

The ability to cope with UV-induced cell damage was disabled the most in XP23GO fibroblasts 

(26 % at 5000 and 31 % at 7500 cells, both at 30 J/m2 UVC) whereas XP150MA cells exhibited 

the mildest sensitivity to UV irradiation (77 % at 5000 cells and 78 % at 7500 cells, both at 

30J/m2 UVC). 

 

                     
Figure 3: Post-UV survival of XP-C fibroblast cells after 30 J/m2 UVC irradiation determined 
via MTT Assay. Cells were seeded in quadruplicates at a density of 5000 cells per well in 96-
well-plates and irradiated with increasing doses of UVC from 6 J/m2 to 30 J/m2. Survival of the 
unirradiated cells was set to 100 %. Post-UV survival of wild type cells is the mean survival of 
three different wild type cells. 
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Four of the eight XP-D cells were irradiated with doses from 6 J/m2 to 30 J/m2 UVC. Within 

these fibroblasts (XP46MA, XP71MA, XP87MA, XP90MA) the mean level of relative post-UV 

survival at 30 J/m2 UVC was 56 % at a density of 5000 (range from 42 % to 74 %) and 52 % at a 

density of 7500 cells (range from 46 % to 61 %).  XP90MA and XP71MA exhibited a post-UV 

survival of 42 % and 44 % (5000 cells) as well as 48 % and 46 % (7500 cells) after irradiation 

with 30 J/m2 UVC, respectively. In contrast, XP87MA and XP46MA fibroblasts revealed a 

slightly milder UV sensitivity with 74 % and 67 % (5000 cells) as well as 61 % and 52 % (7500 

cells) cell survival after irradiation with 30 J/m2 UVC, respectively. Post-UV cell survival of these 

four patients’ fibroblast cell cultures at a density of 5000 cells per well after irradiation at the 

highest dose of 30 J/m2 UVC is depicted in figure 4A. 

UV sensitivity of XP-D cells XP19MA, XP40MA, XP89MA, and XP188MA has been determined at 

an early time point of the thesis. At this time, the later standard UVC irradiation from 6 J/m2 to 

30 J/m2 was not obligatory used for irradiation.  Thus, these cells were irradiated with UVC 

doses of a minimum of 3 J/m2 and a maximum of 25 J/m2. 

XP19MA exhibited a post-UV survival of 22 % (5000 cells) and 19 % (7500 cells) at the highest 

dose of 16 J/m2 UVC. XP40MA showed a survival of 22 % (5000 cells) and 23 % (7500 cells) 

after irradiation with a maximum of 20 J/m2. XP89MA fibroblasts revealed a cell survival of 34 

% (5000 cells) and 25 % (7500 cells) at 15 J/m2 UVC. XP188MA cells were irradiated at a density 

of 10,000 cells per well and exhibited a post-UV survival of 48 % at the highest dose of 25 J/m2. 

Due to the different maxima of UVC irradiation, complete survival curves of these cells at a 

density of 5000 cells (10,000 cells for XP188MA) per well are depicted in figure 4B.  
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Figure 4A (legend see next page) 
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Figure 4: Post-UV survival of XP-D fibroblasts determined via MTT Assay. Cells were seeded in 
quadruplicates at a density of 5000 cells per well in 96-well-plates and irradiated with 
increasing doses of UVC irradiation (3 J/m2 minimum to 30 J/m2 maximum). Survival of the 
unirradiated cells was set to 100 %. Post UV-survival of the wild type cells is the mean survival 
of three different wild type cells. A: Cell survival of XP-D fibroblasts after irradiation with the 
highest dose of 30 J/m2 UVC. B: Post-UV survival curves of XP-D fibroblasts after irradiation 
with increasing doses of UVC irradiation.  
 

UV sensitivity of XP-G fibroblasts from patients XP165MA and XP72MA was more pronounced 

compared to all XP-C and XP-D fibroblasts (Emmert et al., 2002). Therefore, these cells were 

irradiated with UVC doses from 0-20 J/m2 (XP165MA) and 0-15 J/m2 (XP72MA). Post-UV cell 

survival curves of the three XP-G fibroblasts at a density of 5000 cells per well are depicted in 

figure 5. Of the three XP-G patients’ cells, fibroblasts from XP165MA were most sensitive with 

a post-UV survival of 54 % (5000 cells) and 62 % (7500 cells) at 4 J/m2. All cells died at 12 J/m2 

(both cell densities). XP72MA fibroblasts were also very UV sensitive and nearly all cells were 

killed with 15 J/m2 UVC irradiation (2 % and 4 % survival at densities of 5000 and 7500 cells per 

well, respectively). In contrast, fibroblast cells from XP40GO exhibited the mildest sensitivity to 

UV with a survival of 46 % (5000 cells) and 52 % (7500 cells) at 30 J/m2 UVC.  Thus, survival of 

XP40GO is comparable to the post-UV survival of the XP-C and XP-D cells although it is still 

lower than the average XP-C cell survival of 50 %.   
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Figure 5: Post-UV cell survival of XP-G fibroblast determined via MTT Assay. 5000 cells were 
seeded in quadruplicates in 96-well-plates and irradiated with increasing doses of UVC (3 J/m2 
minimum to 30 J/m2 maximum). Cell survival was determined via MTT assay and survival of 
unirradiated cells was set to 100 %.  Post-UV survival curve of wild type cells is the mean 
survival of three wild type fibroblasts. 

 

3.1.2.2. Determination of NER capability and XP complementation groups 

NER capability and complementation group assignment was examined using Host Cell 

Reactivation Assay (see 2.12.4.2.).  Cells were transfected in triplicates with either irradiated 

(250 J/m2 UVC) or non-irradiated pcmvLUC plasmid together with non irradiated pRL-CMV 

plasmid (see 2.12.2.). Relative NER capability of the cells correlates with the activity of the 

firefly luciferase expressed from the UV irradiated plasmid vs. the activity of the firefly 

luciferase expressed from non-irradiated plasmid. This relative enzyme activity in % is 

simplified termed as “% of relative NER capability”.  

The NER defect of the XP fibroblast cells is complemented by co-transfection of expression 

plasmids encoding cDNA of the XP gene which is mutated in the cell. Thus, an increased 

relative NER capability after co-transfection of a certain expression plasmid (pXPA, pXPB, pXPC, 

pXPD, pXPE, pXPF, pXPE) reveals the XP gene responsible for patients’ phenotype and 

accordingly patients’ complementation group (XP-A to XP-G). 

All XP patient fibroblasts showed a reduced relative nucleotide excision repair capability 

compared to the mean value of five wild type fibroblasts cell cultures (Figure 6: A, B, C). The 
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complete values (n=3) and the resulting mean values in % are summarized in appendix tables 

A-14 to A-17. 

The mean relative NER capability ranged from 0.7 % (XP114MA) to 11.3 % (XP20MA) and from 

0.4 % (XP19MA, XP89MA) to 4.7 % (XP46MA) in the uncomplemented XP-C and XP-D 

fibroblasts, respectively. The three XP-G fibroblasts exhibited relative NER capabilities of 1.6 % 

(XP40GO), 0.6 % (XP72MA), and 2.6 % (XP165MA). In contrast, a mean relative NER capability 

of 30.7 % (range from 20.2 % to 47.3 %) was determined for the five wild type fibroblast cell 

cultures (wt1 to wt5). XP-C, XP-D and XP-G complementation groups were assessed by co-

transfection with plasmids expressing wild-type XPC, XPD, and XPG cDNA (pXPC, pXPD, pXPG), 

respectively. Co-transfection resulted in increased relative NER capabilities depicted in figure 

6A (XP-C cells), 6B (XP-D cells), and 6C (XP-G cells). The increase in relative NER capability 

ranged from twofold (XP20MA) to 13-fold (XP117MA) in the XP-C cells and from threefold 

(XP71MA, XP188MA) to 47-fold (XP87MA) in the XP-D fibroblasts. In the XP-G cells relative NER 

capability increased 13-fold, twofold, and 38-fold in the XP40GO, XP72MA and XP165MA 

fibroblasts, respectively. Accordingly, cells could be clearly assigned to the XP 

complementation groups C, D, and G.  

Four of the XP-C fibroblasts (XP23GO, XP98MA, XP99MA, and XP115MA) could not be assigned 

to the XP-C complementation group by HCR and co-transfection of the pXPC plasmid: it was 

difficult to obtain enough cells due to their poor cell growth. Therefore, the defect XPC gene 

was determined by measurement of the XPC mRNA expression level.  
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Figure 6: Determination of relative NER capability and assignment of patients’ fibroblast cells 
to their complementation groups with HCR. Cells were transfected in triplicates with either 
irradiated (250 J/m2 UVC) or non-irradiated firefly luciferase plasmid together with untreated 
renilla luciferase plasmid (normalization). Expression of the firefly luciferase correlates with 
cells’ ability to repair UV-induced DNA lesions (relative NER capability). Simultaneous co-
transfection of plasmids encoding cDNA of the XP gene mutated within the cells increased 
relative NER capability, thereby assessing patients’ complementation groups.  Relative NER 
capability of wild type fibroblasts is the mean of five HCRs (n=15). A: Relative NER capability of 
XP-C fibroblasts before and after co-transfection of pXPC. B: Relative NER capability of XP-D 
fibroblasts before and after co-transfection of pXPD. C: Relative NER capability in XP-G 
fibroblasts before and after co-transfection of pXPG. 
 

3.1.2.3. Determination of mRNA expression levels of the mutated XP genes 

The mRNA expression levels of the XP genes (XPA to XPG) and the gene coding for polymerase 

eta (XPV) were assessed for a total of 75 XP fibroblast cell cultures. Whole cell RNA was 

isolated from patient and wild type fibroblast cells (see 2.14.1.6.) and was subjected to reverse 

transcription PCR to generate cDNA (see 2.14.2.3.). QRT-PCR was performed with QuantiTect® 

SYBR green PCR Kit and QuantiTect® Primer Assays (see 2.14.2.4.). The measured Ct values, 

correlating with the mRNA expression level in a certain sample, were normalized to the two 
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housekeeping genes β-actin and GAPDH. As normal control, mRNA expression of nine wild type 

fibroblast cell cultures was measured simultaneously. The mean expression level of the wild 

type cells was set to 100 % to calculate the relative mRNA expression levels of the patients’ 

cells.  All mRNA expression levels of the measured genes in % (normalized to both 

housekeeping genes and relative to the mean wild type expression) are summarized in 

appendix table A-18.  

It is already known that XP-C patients generally exhibit reduced XPC mRNA levels and, 

therefore, an abolished protein expression (Cartault et al., 2011; Emmert et al., 2006b; Khan et 

al., 2006) which might result from nonsense-mediated message decay due to truncating 

mutations (Lejeune and Maquat, 2005; Maquat, 2005) found in most XP-C patients. Thus, 

patients XP23GO, XP98MA, XP99MA, and XP115MA, which could not be assigned to 

complementation group XP-C by HCR (see 2.12.4.2.), were identified as XP-C patients by their 

reduced XPC mRNA levels.  The XPC mRNA level was decreased in 11 of the 12 XP-C patients. 

The mean XPC mRNA level within these patients was 14.9 % (range from 9.5 % to 25.7 %; p< 

0.001, Student’s T-test) compared to the mean expression level of the nine normal controls set 

to 100 %. The low range of XPC mRNA expression was quite independent of the XPC mutation 

identified although all mutations would lead to truncated XPC proteins. Only XP47MA cells, 

which were later found to harbour an unusual novel XPC gene mutation with deletion of 

exactly one amino acid, exhibited an over expression of mutated XPC mRNA of 274.1 % 

compared to wild type cells (figure 7A).  

The XPD mRNA expression level in the XP-D cells was normal compared to wild type expression 

levels of this gene. Two XP-D cells exhibited a slight up regulation in the XPD mRNA expression 

level of 133.6 % (XP89MA) and 151.3 % (XP90MA). However, XPD mRNA expression levels of 

the other five XP-D patients ranged from 74.1 % (XP188MA) to 103.4 % (XP71MA) which is 

within the normal variation of the wild type XPD mRNA expression (Figure 7B).   

Similar to the XP-D fibroblasts, the XP-G cells revealed normal XPG mRNA expression   levels. 

XP72MA exhibited mRNA expression of 93.1 %, XP40GO of 79.4 %, and XP165MA of 88.4 % 

compared to normal (figure 7C). Thus, the XPG mRNA expression in the three XP-G patients’ 

fibroblast cell cultures was within the normal variation of wild type XPG mRNA expression.  
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Figure 7: Determination of mRNA expression levels of the mutated genes via qRT-PCR. Total 
RNA was isolated from fibroblast cells, reverse transcribed and subjected to qRT-PCR. 
Expression levels were normalized to expression levels of housekeeping genes β-actin and 
GAPDH.  The mean expression level of nine wild type fibroblast cell cultures was set to 100 % 
for calculation of the expression levels of the patients’ cells. A: XPC mRNA expression level in 
XP-C fibroblasts. B: XPD mRNA expression level in XP-D fibroblasts. C: XPG mRNA expression 
level in XP-G fibroblasts. 
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3.1.2.4. Mutational analysis  

The exact genetic defect which is underlying a certain phenotype was determined by genomic 

DNA sequencing. Genomic DNA was isolated from patients’ fibroblast cells (see 2.14.1.1.) and 

amplified via PCR for sequencing including intron/exon boundaries to allow for detection of 

splice site mutations which can result in exon skipping. Afterwards, samples were cleaned up 

(see 2.14.2.1.) and subjected to sequence analysis (see 2.14.2.7.). For sequence alignment XPC, 

XPD, and XPG reference sequences following the nomenclature of GenBank accession numbers 

NM_004628, NM_000400, and NM_000123.2, respectively, were used. All mutations 

identified are summarized in table 3-1. 

All 12 XP-C patients carried mutations in a homozygous state indicating possible consanguinity 

of the parents. Seven different XPC mutations were identified.  Four of these mutations have 

not been reported so far. Frameshift mutations, due to deletions or insertions, were most 

frequent (four of seven mutations) followed by C to T nonsense mutations (two of seven 

mutations). The most common mutation was a C to T transition at nucleotide position 567 that 

changed amino acid arginine 155 in exon 4 to a premature stop codon (p.R155X). This 

mutation was identified in four of the twelve XP-C patients (XP98MA, XP99MA, XP155MA, 

XP156MA) (Khan et al., 2006). The second most common mutation, found in three of the 

twelve XP-C patients (XP102MA, XP114MA, XP115MA), was a TG deletion of nucleotides 1747 

and 1748 resulting in a frameshift in exon 9 and a truncated XPC protein of 572 amino acids 

with the last 24 amino acids being unrelated to XPC (p.Val548AlafsX25) (Chavanne et al., 2000; 

Khan et al., 2006; Li et al., 1993; Ridley et al., 2005).  XP23GO carried a nonsense mutation in 

the same exon  created by a C to T  transition at nucleotide position 1839 creating a premature 

termination codon from amino acid 579 (p.Arg579X) (Chavanne et al., 2000; Gozukara et al., 

2001; Khan et al., 2006). Novel frame shift mutations were found in patients XP20MA, 

XP117MA, and XP150MA. XP20MA carried an AG deletion at nucleotide position 446 and 447 

in exon 3 leading to a truncated XPC protein of 119 amino acids with the last three being 

unrelated to XPC (p.Ala116TyrfsX4). The A insertion at nucleotide position 1525 in exon 9 in 

patient XP117MA creates a truncated XPC protein of 492 amino acids including the last 17 

amino acids being unrelated to XPC (p.R475EfsX18). The C deletion at nucleotide position 2271 

in XP150MA results in a frame shift starting with amino acid 723 in exon 12 and creating a stop 

codon after 43 amino acids being unrelated to XPC (p.Gln723SerfsX44). Patient XP47MA 

carried the only mutation not resulting in a truncated XPC protein. The deletion of three base 

pairs, ATC, at nucleotide position 2538 to 2540 in exon 14 creates an inframe single amino acid 

deletion of amino acid isoleucine 812. 
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Seven different missense mutations were found in the XP-D patients. Six of them have been 

described previously. Half of the XP-D patients (XP19MA, XP40MA, XP46MA, XP188MA) carried 

homozygous mutations while the other half (XP71MA, XP87MA, XP90MA, XP89MA) was 

compound heterozygous. Most frequent mutation was a G to A transition at nucleotide 

position 2079 in exon 22 resulting in an amino acid exchange from arginine 683 to glutamine 

which was found in homozygous state in XP19MA, XP40MA, XP46MA, and in heterozygous 

state in XP71MA (Kobayashi et al., 2002). The second mutation of XP71MA was a G to C 

transversion of nucleotide 1878 leading to the amino acid exchange of arginine 616 to proline 

(Lehmann, 2001). Patient XP188MA carried a homozygous C to T transition at nucleotide 2195 

in exon 22 resulting in an amino acid exchange of arginine 722 to tryptophan (Usuda et al., 

2011; Taylor et al, 1997). Patients XP87MA and XP89MA carried similar mutations.  Both were 

compound heterozygous for a G to A transition in exon 5 at nucleotide position 366 resulting in 

amino acid exchange arginine 112 to histidin (Broughton et al., 2001). The second mutation 

was a G to C transversion of nucleotide 2072 in exon 21 changing aspartatic acid 681 to 

histidin, which has not been described before.  However, amino acid exchange of this 

evolutionary conserved amino acid to asparagine has been described to result in the COFS 

syndrome (Graham, Jr. et al., 2001). XP90MA carried a G to A transition at nucleotide position 

1878 in exon 20 and a G to T transversion at nucleotide position 2078 in exon 22. These miss 

sense mutations resulted in the exchange of arginine 616 to glutamine (Falik-Zaccai T.C., 2010)  

and arginine 683 to tryptophan, respectively (Emmert et al., 2009; Kobayashi et al., 2002). 

The three XP-G patients carried five novel XPG mutations which have not been reported so far. 

Patients XP40GO and XP72MA were both compound heterozygous. In XP40GO a C to T 

transition at nucleotide position 891 changed amino acid 150 into a premature stop codon in 

exon 4 (p.Q150X). On the other allele a T to C transition at nucleotide position 2776 resulted in 

an amino acid change from lysine to proline at position 778 in exon 11 (p.L78P). In XP72MA a G 

to T transversion at nucleotide position 2622 changed amino acid 727 into a stop codon in 

exon 9 (p.E727X). On the other allele the amino acid tryptophan was changed to serine at 

position 814 in exon 11 due to a G to C transition at nucleotide position 2884 (p.W814S). 

Patient XP165MA was homozygous for a missense mutation in exon 11. A G to A transversion 

at nucleotide position 2856 changed amino acid glycine 805 to arginine in exon 11 (p.G805R).  
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Table 3-1 Summary of mutations identified in XP-C, XP-D and XP-G patients 

Gene Protein Nucleotide Exon Patient ID 

XPC p.A116YfsX4 c.446_447delAG 3 XP20MA 

XPC p.R155X c.567C>T 4 XP155MA 

XP156MA 

XP99MA  

XP98MA 

XPC p.R475EfsX18 c.1525insA 9 XP117MA 

XPC p.V548AfsX25 c.1747_1748delTG 9 XP102MA 

XP114MA 

XP115MA 

XPC     p.R579X c.1839C>T 9 XP23GO 

XPC p.Q723SfsX44 c.2271delC 12 XP150MA 

XPC p.I812del c.2538_2540delATC 14 XP47MA 

XPD p.R112H c.366G>A 5 XP87MA 
XP89MA 

XPD p.R616P c.1878G>C 20 XP71MA 

XPD p.R616Q c.1878G>A 20 XP90MA 

XPD p.D681H c.2072G>C 21 XP87MA 

XP89MA 

XPD p.R683Q c.2079G>A 22 XP19MA 

XP40MA 

XP46MA 

XP71MA 

XPD p.R683W c.2078G>T 2 XP90MA 

XPD p.R722W 2.2195C>T 2 XP188MA 

XPG p.Q150X c. 891C>T 4 XP40GO 

XPG p.E727X c. 2622G>T 9 XP72MA 

XPG p.L778P c. 2776T>C 11 XP40GO 

XPG p.G805R c. 2856G>A 11 XP165MA 

XPG p.W814S c. 2884G>C 11 XP72MA 
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3.1.2.5. Conservation status of amino acids in XPG changed by missense mutations in XPC       

deleted by deletion mutation 

The novel XPC deletion mutation p.I812del and the three novel XPG missense mutations are 

located in regions which are conserved within these proteins. XPC mutation p.I812del is located 

within the conserved BHD3 domain (amino acids 767 to 831 in human XPC) of the XPC protein. 

The region is required for binding of single stranded DNA (Camenisch et al., 2009). The three 

XPG miss sense mutations p.L778P, p.G805R, and p.W814S are also located within a conserved 

region of the XPG protein: the I-region (amino acids 753 to 881 in human XPG) forms together 

with the N-region (amino acids 1 to 95 in human XPG) the active site of the of the endonuclease  

(Constantinou et al., 1999). Sequence alignments of a stretch of XPCs’ BHD3 domain (figure 8A) 

and XPGs’ I-region (figure 8B) from human, mouse, and Drosophila melanogaster were 

performed and revealed the affected amino acid residues I812 (XPC), L778 (XPG), G805 (XPG), 

and W814 (XPG) to be conserved throughout these species. 

 

     
                            

             
 

Figure 8: Alignment of a stretch of amino acid sequences of the BHD3 domain from the XPC 
protein (A) and the I-region from the XPG protein (B). Amino acids which are affected in the 
patients are framed.  

 
 

 

 

 

 

 

A 
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3.2. Characterization of the five novel XPG mutations 

3.2.1. Functional relevance of the five novel XPG mutations 

Complementation ability of the XPG alleles carrying mutations p.Q150X, p.E727X, p.G805R, 

p.L778P, and p.W814S (XPGmut) was tested applying HCR (see 2.12.4.2.). Therefore, mutations 

were introduced into pXPG by site directed mutagenesis (see 2.14.2.2.) generating pXPGmut 

plasmids (pXPGQ150X, pXPGE727X, PXPGG805R, pXPGL778P, and pXPGW814S) to test the allele specific 

relevance of the mutations for NER. XP-G fibroblasts were simultaneously co-transfected with 

UVC irradiated or non-irradiated pcmvLUC, pRL-CMV for normalization, and pXPGmut. 

None of the mutated alleles could complement the NER capability compared to wild type 

pXPG. A slight residual repair activity was retained with XPGL778P and XPGW814S, whereas repair 

activity was completely abolished with XPGG805R and the two truncated proteins XPGQ150X and 

XPGE727X (figure 9). 

 

              
 

Figure 9: Determination of the allele specific complementation ability of the novel XPG 
mutations by HCR. Allele specific pXPGmut expression vectors were generated from pXPG by 
site directed mutagenesis for all five mutations. Host cell reactivation was utilized and pXPG as 
well as pXPGmut expression vectors were co-transfected along with the luciferase reporter gene 
plasmids pcmvLUC and pRL-CMV. Repair capability is depicted as percent luciferase expression 
(irradiated vs. unirradiated pcmvLUC). At least n=6 transfections were performed. NER 
capability of wild type (wt1) cells is the mean value of n=9 transfections.  

 

 

3.2.2. Interaction of XPGmut with TFIIH 

Previous studies revealed that XPG-TFIIH interaction is impaired in XP-G/CS patients 

harbouring truncated XPG proteins but not in XP-G patients harbouring at least one missense 

mutation (Arab et al., 2010; Ito et al., 2007). To test the XPG mutations for TFIIH interaction, C-

terminal mycHis-tagged XPG expression vectors were constructed for the expression of wild 

type XPGmycHis and XPGmutmycHis fusion proteins (figure 10).  XPG cDNA was inserted into the 
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pcDNA3.1/myc-His(-)A (pcDNA) expression vector utilizing NotI (5') and KpnI (3'). Wild-type 

XPG cDNA was amplified from pXPG plasmid with forward primer XPGmycHis_for and reverse 

primer XPGmycHis_rev each carrying a NotI (5')  or a KpnI (3') restriction site, respectively, and 

subcloned into pcDNA. For generation of the two truncated proteins XPG1-150mycHis and XPG1-

727mycHis forward primer XPGmycHis_for was used again together with reverse 

XPGQ150mycHis_rev or XPGE727mycHis_rev, respectively. For the XPGmutmycHis constructs 

carrying one of the three missense mutations wild type pXPGmycHis was used as template for 

site directed mutagenesis using primer G805Rfor/G805Rrev, L778Pfor/L778Prev, and 

W814for/W814rev (primer sequences are summarized in table 2-9).      

 

 
 

Figure 10: Schematic representation of pXPG(mut)mycHis constructs. The endonuclease 
motifs, N-and I-region, and interaction sites of XPG with TFIIH subunits XPB and XPD are 
indicated. A: The three missense mutations, which were introduced as single mutations in 
three pXPGmutmycHis plasmids, are marked in the full length protein scheme. B: Scheme of the 
truncated XPGmycHis protein comprising amino acids 1-727. C: Scheme of the truncated 
XPGmycHis protein comprising amino acids 1-150. 

 
For control purpose, the functionality of wild type XPGmycHis in NER context was analyzed by 

HCR and complementation of XP40GO fibroblasts (see 2.12.4.2.). As expected, the short 

mycHis-tag had no influence on the functionality of XPG in NER. The relative NER capacity of 

XP40GO cells increased from 1.4 % to 20.6 % by co-transfection of pXPGmycHis (figure 11). 

Therefore, it can be assumed that the mycHis-tag does not influence the function of the XPG 

protein within the cells.  



 3.  Results 

  

63 

 

                     
Figure 11: Determination of the complementation ability of XPGmycHis with HCR.  
Functionality of the C-terminal mycHis tagged XPG protein was determined by HCR. Expression 
vector pXPGmycHis was co-transfected along with UVC irradiated and non-irradiated luciferase 
reporter gene plasmid pcmvLUC in XP40GO cells. Repair capability is depicted as percent 
luciferase expression (irradiated vs. unirradiated pcmvLUC). At least n=3 transfections were 
performed. NER capability of wild type (wt 1) cells is the mean value of n=9 transfections. 

 

Investigation of the interaction of XPG(mut)mycHis constructs with TFIIH subunits was 

performed by over expression of the fusion proteins in HEK293A cells followed by 

immunoprecipitation using αmyc antibody (see 2.15.2.). Analysis of the putative co-

immunoprecipitation (co-IP) of TFIIH subunits XPD and cdk7 was done by Western Blot 

(2.15.3.).  

Both proteins XPD and cdk7 were co-immunoprecipitated with XPGwtmycHis under 

physiological conditions of 150mM NaCl using αmyc antibody. Under the same conditions, co-

immunoprecipitation of XPD (figure 12A left side) and cdk7 protein (figure 12C) was not 

observed or greatly diminished with all five XPGmutmycHis constructs including the three 

missense mutations. Neither XPG(mut)mycHis nor XPD or cdk7 were detected by immunoblot 

analysis of the control IP samples (10B left side and 10D).This indicates that IP and co-IP did 

not occur due to unspecific binding of the proteins to the IP agarose or the αmyc antibody. 

Moreover, XPD (right sites  of figure 12A and 12B) as well as cdk7 (figure 12E) were detected in 

the input controls (a 65µg) of each cell lysate. The immunoblot analysis revealed slightly 

decreased amount of the XPGmutmycHis proteins (except XPGE727mycHis) compared to wild 

type XPGmycHis. However, figure 12F shows the result of an immunoprecipitation with 

different amounts of wild type XPGmycHis: XPD protein is co-immunoprecipitated in both 

samples, independent from the amount of XPGmycHis. 

0%

5%

10%

15%

20%

25%

30%

35%

40%

wt XP40GO XP40GO +
pXPG

XP40GO+
pXPGmycHis

re
la

tiv
e 

NE
R 

ca
pa

bi
lit

y



 3.  Results 

  

64 

 

      

                       

 
 

Figure 12: Co-immunoprecipitation of XPD and cdk7 with XPGmycHis. HEK293A cells were 
transfected with pXPGmycHis and pXPGmutmycHis plasmids. Whole cell extracts were used for 
immunoprecipitation with αmyc antibody as well as αIgG antibody for control puropse. 
Purified complexes were separated by SDS PAGE in precast 4 % to 12 % gradient gels und 
immunoblotted with the antibodies indicated. A: Analysis of the XPD co-IPs with αmyc 
antibody for XPGwtmycHis and the five XPGmutmycHis proteins (left side). Input controls of 
transfected cells lysates used for XPD co- IPs (right side). B: Analysis of the (XPD co-IP) control 
IPs with IgG antibody (left side). Input controls of transfected cells used for the XPD co-IPs 
(right side). C: Analysis of the cdk7 co-IPs with αmyc antibody for XPGwtmycHis and the five 
XPGmutmycHis proteins. D: Analysis of the (cdk7 co-IP) control IPs with IgG antibody. E: Analysis 
of the input controls of transfected cell lysates used for cdk7 co-IPs. F: Analysis of XPD co-IP 
with different amounts of wild type XPGmycHis protein.  
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3.2.3. Influence of the XPG mutations on XP protein recruitment to sites of local DNA     

damage and on subsequent XP protein redistribution 

The influence of the novel XPG mutations on recruitment of XP proteins to sites of local DNA 

photodamage and on subsequent XP protein redistribution was investigated in vivo by 

immunofluorescence. Time-course experiments for XP protein recruitment to DNA 

photodamage as well as release from photodamage 6 min, 15 min, 30 min, 3 h, and 24 h after 

UV irradiation in fibroblasts cell cultures from the three XP-G patients were compared to wild 

type fibroblast cell cultures. Patients and wild type fibroblasts were seeded on glass cover slips 

and irradiated through 8 µm isopore polycarbonate membrane with 100 J/m2 UVC to generate 

sites of local DNA damage. Antibodies against the XP proteins XPA, XPB, XPC, ERCC1 

(complexed with XPF) and XPG were used to examine the recruitment of the corresponding 

protein to the UV-induced DNA photolesions as well as its redistribution. Removal of DNA 

photoproducts was studied using antibodies directed against the main UV-induced 

photolesions CPDs and 6,4PPs. Additionally, double staining against each of the XP proteins 

together with CPD photolesions was performed for control purpose. For relative quantification 

at least 100 nuclei were evaluated for the calculation of protein or photodamage spot positive 

nuclei staining in percent. Results of the quantification of XP protein spot positive nuclei in % in 

wild type and patients’ cells are depicted for each XP protein and two photolesions in figure 

13. Pictures of the double staining of each XP protein together with CPD photolesions in the 

patients’ cells are shown in figure 14. Double staining of XPG and CPD is shown in wild type 

cells. Pictures of the recruitment and redistribution of the XP proteins in XP40GO (exemplary) 

and wild type cells at different time points are depicted in figure 15.   

 

No recruitment of XPG in the patients’ cells  

XPG fluorescence staining in wild type cells revealed rapid recruitment of XPG protein to 

photodamage (21 % and 17 % XPG positive cell nuclei 6 min and 15 min after UV irradiation, 

respectively). There was also rapid redistribution of wild type XPG protein from the DNA 

photolesions at 30 min after UV irradiation (only 2 % remaining XPG positive cell nuclei). By 6 h 

and 24 h after cell irradiation XPG was no longer detectable at sites of DNA photolesions. In 

contrast, no positive XPG staining in cell nuclei was observed in all three patients’ fibroblasts at 

any time point after UV irradiation indicating no recruitment of mutated XPG to 

photodamages. The applied XPG antibody 8H7 maps to the C-terminal region of XPG. Thus, 

truncated proteins XPGQ150X in XP40GO and XPGE727X in XP72MA would not be recognized if 
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they were expressed, but the XPG proteins containing missense mutation should be 

recognized (figure 13E).  

Early recruitment of other XP proteins is selectively delayed in XP-G patient cells 

As expected, all fibroblasts (wild type and XP-G) were stained positive for CPDs (figure 13F, 

figure 15C) and 6,4PPs (figure 13G, figure 15c) immediately (6 min) after UV irradiation (range 

from 45 % to 57 % positive cell nuclei). At this time point, wild type and XP-G cells already 

showed considerable amounts of XP protein localization to the photolesions in the nuclei. The 

XPA protein was equally rapid recruited in wild type cells as well as in cells from the XP-G 

patients XP40GO, XP165MA, and XP72MA (50 %, 46 %, 36 %, respectively) (figure 13A). The 

rapid recruitment of XPB was comparable in wild type, XP40GO, and XP165MA cells (26 %, 15 

%, and 22 %, respectively). There was a markedly reduced and delayed XPB recruitment in 

XP72MA (1 %) (figure 13B). XPC protein was normally recruited in XP165MA cells compared to 

wild type cells (26 % in XP165MA vs. 21 % in wild type). In XP40GO and XP72MA fibroblasts 

early XPC recruitment was clearly delayed (7 % and 4 %) (figure 13C). ERCC1 (complexed with 

XPF) protein recruitment was delayed in all three XP-G patient cells compared to wild type (15 

% in XP165MA and 6 % in XP40GO and 1 % in XP72MA vs. 30 % in wild type) (figure 13D). 

 

No redistribution of other XP proteins in all XP-G cells  

Thirty minutes after UV irradiation the XP-G cells reached their maximum of XP protein 

recruitment to photodamage (range from 39 % to 60 %). All XP proteins tested (XPC, XPB, XPA, 

and ERCC1) were recruited to sites of local photodamage. At this time point, wild type cells 

already released nearly all XP proteins from DNA lesions (range from 2% to 9 %) (figure 13 A to 

13E, figure 15).  By 3 h after UV treatment, all XP proteins still persisted at sites  of DNA 

damage in all XP-G cells. In contrast, in wild type fibroblasts the XP proteins were already 

completely redistributed (figure 13A to 13E, figure 15). After 24 h, redistribution of XP proteins 

also started in XP-G cells, however, a considerable amount of XP proteins persisted in all 

patients’ cells at sites  of local photo- damage (range from 13 % to 49 %). Interestingly, in 

XP165MA cells, the most severely affected XP-G/CS patient, the XP proteins were found to 

persist the most (figure 13A to 13E).  

Decreased photoproduct removal in XP-G cells 

A faster removal of 6,4PPs compared to CPDs has been shown previously (Oh et al., 2007). 

Thus, the defect in DNA photoproduct removal in XP-G cells was most visible by the removal of 

6,4PPs. Immediately (6 min) after UV irradiation, 45 % of the wild type, 56 % of the XP40GO, 40 



 3.  Results 

  

67 

 

% of the XP72MA, and 45 % of the XP165MA cells were stained positive for 6,4PPs. Only 1 h 

later, positive 6,4PP stained wild type cells already decreased to 10 %. In contrast, 48 %, 50 %, 

and 53 % of the XP40GO, XP72MA, and XP165MA cells, respectively, were still positive for 

6,4PP staining. No 6,4PP staining was detectable in the wild type cells 3 h after UV treatment 

(figure 13G, figure 15C). Indeed, the 6,4PP positive spots decreased also in the XP-G cells, but 

even after 24 h a complete removal was not observed (15 % in XP40GO, 12 % in XP72MA, 14 % 

in XP165MA) (figure 13G, figure 15C). This also indicated that all XP-G fibroblasts could 

nevertheless remove two thirds of their 6,4PPs within 24 h (figure 13G). Accordingly, removal 

of CPDs was also delayed in fibroblasts from all three XP-G patients’ cells compared to wild 

type fibroblasts. Directly after UVC irradiation, 55 % of the wild type, 57 % of the XP40GO, 57 

% of the XP72MA, and 58 % of the XP165MA fibroblasts were stained positive for CDP spots. 

By 24 h after UV treatment, CPDs were decreased from 55 % to 36 % in wild type cells. In 

contrast, nearly no removal of CPD was observed in XP40GO, XP72MA, and XP165MA cells (45 

%, 45 %, and 48 %, respectively) (figure 13F). 
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Figure 13: Quantification of XP protein and 
photodamage spot positive cell nuclei after local 
UVC irradiation. The time course of XP protein 
recruitment and redistribution after local UV 
irradiation was assessed using immuno- 
fluorescence. Patients’ and wild type fibroblasts 
were irradiated with 100 J/m2 UVC and incubated 
for the different intervals (0.1 h, (0.25 h) 0.5 h, 3 h, 
6 h, 24 h). Cells were fixed, permeabilized, and 
stained with antibodies against either one of the 
XP proteins XPA (A), XPB (B), XPC (C), ERCC1 (D), 
XPG (E) or one of the UV-induced DNA lesions CPD 
(F) and 6,4PP (G). At least 100 nuclei were assessed 
at each time point to calculate the percentage of 
positively stained nuclei.  
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Figure 14: Immunofluorescence double staining of XP proteins and CPD photoproducts. Cells 
were irradiated with 100 J/m2 UVC through an 8 µm pore filter membrane inducing sites of 
local DNA photodamage. Afterwards, cells were incubated for 10 min before they were fixed, 
permeabilized and double stained against the XP proteins indicated and CPD photolesions. Co-
localisation of XPA, XPB, XPC and ERCC1 with CPD is shown in XP-G patients’ fibroblasts and co-
localisation of XPG with CPD is shown wild type cells (bright fluorescent spots within the 
nuclei). 
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Figure 15A: Immunofluorescence staining of XP proteins in wild type and XP40GO 
fibroblasts. Cells were irradiated with 100 J/m2 UVC through an 8 µm pore filter membrane 
inducing sites of local DNA photodamage. Afterwards, cells were further incubated for the 
time intervals indicated, before they were fixed, permeabilized, and stained with antibodies 
directed against XP proteins XPA and XPB. Bright fluorescent spots in the nuclei indicate XP 
proteins localized to UV-induced DNA photolesions. 
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Figure 15B: Immunofluorescence staining of XP proteins in wild type and XP40GO 
fibroblasts. Cells were irradiated with 100 J/m2 UVC through an 8 µm pore filter membrane 
inducing sites of local DNA photodamage. Afterwards, cells were further incubated for the 
time intervals indicated, before they were fixed, permeabilized, and stained with antibodies 
directed against XP proteins XPC and ERCC1. Bright fluorescent spots in the nuclei indicate XP 
proteins localized to UV-induced DNA photolesions. 

 

 

 

 



  

  

72 

 

      
Figure 15C: Immunofluorescence staining of XP proteins in wild type and XP40GO fibroblasts. 
Cells were irradiated with 100 J/m2 UVC through an 8 µm pore filter membrane inducing sites 
of local DNA photodamage. Afterwards, cells were further incubated for the time intervals 
indicated, before they were fixed, permeabilized, and stained with antibodies directed against 
photolesions 6,4PP and CPD. Bright fluorescent spots in the nuclei indicate XP proteins 
localized to UV-induced DNA photolesions. 

 

 

 

 

       
 

 

3.  Results 



 Discussion 

  

73 

 

4. Discussion 

The three NER defective syndromes Xeroderma pigmentosum, Cockayne Syndrome, and 

Trichothiodystrophy arise from defects in one of ten genes functioning in the nucleotide 

excision repair pathways (GGR or TCR) or from defects in the gene encoding the translesional 

DNA polymerase eta (XPV). There is considerable phenotypic heterogeneity between the 

disorders and different mutations within the same gene may result in different clinical 

phenotypes (Bootsma, 2002; Kraemer et al., 2007).   

Characterization of fibroblasts from NER defect syndrome patients and correlation of the 

molecular results with patients’ course of disease is the first step towards the understanding of 

the molecular context underlying a certain phenotype. Moreover, these studies improve the 

prediction of the course of disease for newly diagnosed patients. Therefore, one part of the 

thesis was the characterization of fibroblast cells from patients suffering from a defect in the 

nucleotide excision repair.  

Seventy-five NER defective primary fibroblast cell cultures, isolated from skin punch biopsies of 

the patients, were provided from the University Clinics Göttingen and Mannheim. Based on 

the low frequency of NER associated diseases, this collective represents the largest collection 

of NER deficient fibroblasts in Germany and is therefore a source of novel information 

regarding phenotype-genotype correlations. 

Cells were intensively analyzed for their phenotypic characteristics regarding their post-UV 

survival (see 3.1.2.1) and their relative NER capability (see 3.1.2.2.). The assignment of the 

complementation group was performed (see 3.1.2.2.) and the mRNA expression level of the 

mutated gene was assessed (see 3.1.2.3.). The genetic defect of 23 primary fibroblast cell 

cultures was pinpointed during the thesis (see 3.1.2.4.).  

Mutational analysis of 12 XP-C, eight XP-D, and three XP-G patients identified ten novel 

disease-causing mutations: four in the XPC, one in the XPD, and five in the XPG gene. 

Phenotype-genotype correlation of the XPG mutations revealed that missense mutations 

found in patients XP72MA and XP165MA resulted in the XP/CS complex. This clinical entity 

normally occurs in XP-G patients harbouring mutations that result in the expression of 

truncated XPG proteins from both alleles (Emmert et al., 2002; Nouspikel et al., 1997). A 

destabilized architecture of the transcription factor TFIIH due to impaired XPG-TFIIH 

interaction has been reported to be responsible for the CS symptoms in these patients (Arab et 

al., 2010; Ito et al., 2007).   
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Based on the unusual phenotype-genotype correlation of the XP-G patients the five novel XPG 

gene mutations were comprehensively analyzed on the molecular level in the second part of 

the theses.   

 

4.1. Clinical symptoms of the patients 

4.1.1. Clinical symptoms of XP-C patients  

The mean age at XP diagnosis of the 12 XP-C patients analyzed was 8.75 years and the mean 

age for the development of the first skin cancer was 7.3 years in these patients. All patients 

who developed skin cancer exhibited at least one non-melanoma skin cancer (NMSC; basal 

and/or squamous cell carcinoma) in sun-exposed skin areas. The clinical findings are quite 

comparable to findings of a few studies reporting on larger XP-C patient cohorts. Chavanne et 

al. reported a mean age of 11.7 years for first skin cancer development in seven XP-C patients 

from Southern Europe (Chavanne et al., 2000). Khan et al. described development of skin 

cancers at an early age (Khan et al., 2006), and Soufir et al. found similar clinical symptoms in 

their group of 56 investigated XP-C patients from Maghreb including photosensitivity and 

numerous skin cancers (Soufir et al., 2010). It has been found that NMSC and melanoma have 

a different distribution on XP patients’ skin. Similar to the normal population melanomas are 

more evenly distributed throughout the body, whereas NMSC is mainly located on the head 

and forearms of the patients (Kraemer et al., 1994). Different mechanisms in the 

carcinogenesis of NMSC and melanoma may be the reason for this observation. Development 

of NMSC is predominantly a result of UV-induced DNA damage. The identification of the UV-

characteristic C to T and CC to TT signature of mutations in the p53 suppressor gene in NMSC 

from XP patients supports this assumption on the molecular level (Giglia et al., 1998). The 

finding that all patients who developed skin malignancies exhibited NMSC clearly 

demonstrates the importance of DNA repair to especially protect against NMSC.   

The XP-C patients showed a rather homogeneous clinical phenotype with pronounced sun 

sensitivity and skin symptoms prevailing. None of the four newly identified mutations resulted 

in “XP plus neurological abnormalities”. Only one patient (XP20MA) carrying the novel 

mutation p.A116YfsX4 was described to exhibit an overall reduced intellectual capacity. 

However, this does not correspond to the common neurological degeneration of “XP plus 

neurological abnormalities” where neurological symptoms become obvious around the fifth to 

tenth year of life (Rapin et al., 2000). In line with this study, Khan et al. reported 16 (Khan et 

al., 2006) and Chavanne et al. 12 XP-C patients with no XP type neurological symptoms 

(Chavanne et al., 2000). Soufir et al. described 56 XP-C patients of whom 49 carried the same 
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p.V548AfsX25 mutation that was also found in three patients in this study (Soufir et al., 2010). 

Only two of those 49 patients showed mental retardation. However, the patients carried the 

mutation in a homozygous state and there was high consanguinity in the study population. 

Recently, two XP-C patients from different consanguine XP-C families with the same mutation 

were described: one with and the other without neurological abnormalities (Khan et al., 2009). 

The authors concluded that the neurological symptoms probably resulted from another 

mutated gene due to consanguinity, or from mutation-dependent altered interaction of 

modifier proteins with XPC. In close mating the proportion of genes shared is 25 % (identical by 

descent), leading to the chance of homozygosity by descent of 1/8 (Harper, 1988). Thus, close 

consanguinity confers an increased probability of simultaneous occurrence of other recessive 

disorders. Nonsyndromic hearing loss has been reported to occur at increased frequency in 

association with parental consanguinity (Bittles et al., 2004; Sajjad et al., 2008). Patient 

XP20MA also carried homozygous mutations suggesting the possibility of consanguinity.  

 

4.1.2. Clinical symptoms of the XP-D patients  

XP-D was the second most frequent complementation group among the 23 patients analyzed 

in this study. This is in line with results from Bradfort et al. assessing a long term follow up of 

106 XP patients where 30 XP-D patients also represented the second most common 

complementation group beside 46 XP-C patients (Bradford et al., 2011).  In the present study, 

the mean age of diagnosis was 9.4 years among the XP-D patients. Four of the five XP-D 

patients exhibiting the XP phenotype developed skin cancer, but the onset of tumor 

development was relatively late compared to the 12 XP-C patients (range from 15 years to 52 

years in XP-D patients vs. range from 3 years to 14 years in XP-C patients). In addition, XP90MA 

did not develop skin cancer until the age of 15 years. Taylor et al. summarized clinical details of 

the skin of 17 XP-D patients exhibiting the XP phenotype. Eleven patients also developed no 

skin cancer until a mean age of 21 years (ranging from 4 to 48 years) (Taylor et al., 1997). This 

may indicates a later onset of skin cancer in XP-D patients compared to XP-C patients. 

However, all patients, described by Taylor et al., were repoted to be sun sensitive (Taylor et al., 

1997). In the present study, XP phenotype patient XP19MA exhibited no increased sun 

sensitivity. XP plus neurological symptoms often occurs in complementation group XP-D 

(Bradford et al., 2011), but none of the five XP-D patients exhibiting the XP phenotype showed 

additional neurological abnormalities.  

The XP/CS phenotype in XP89MA was relatively mild compared to other XP/CS patients of 

complementation group XP-D. Broughton et al. described a XP-D patient with severe XP/CS 
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symptoms who died at the age of 16 months (Broughton et al. 1995). Two other XP-D patients 

suffering from XP/CS symptoms, described by Theron et al., also died at the age of 15 and 24 

months. The latter one additionally developed a sqamous cell carcinoma (Theron et al., 2005). 

In contrast to that, XP89MA did not exhibit any skin cancer until the age of 15 years. In 

addition, beside a slight intellectual impairment, the patient was reported to go to school.  

Unfortunately, no additional clinical data were available for the two patients suffering from 

the TTD phenotype, XP87MA and XP188MA. 

 

4.1.3. Clinical symptoms of the XP-G patients 

Two of the three XP-G patients, XP72MA and XP165MA, exhibited XP/CS symptoms. The XP/CS 

phenotype was reflected by sun sensitivity since birth and freckling within the sun-exposed 

skin areas as well as dwarfism, microcephaly, muscular hypotension, ataxia, and neurological 

impairment. Patient XP165MA was most severely affected and died at the age of two years 

from meningitis. Patient XP72MA was more mildly affected and at the age of seven years 

enrolment in a special school was discussed. Moreover, the patient did not develop any skin 

cancer until this age. This is in good agreement with previous clinical reports about seven 

XP/CS complex XP-G patients with early onset of CS symptoms exhibiting similar symptoms of 

sun sensitivity, short statures, microcephaly, and neurological impairment. These six patients, 

like XP165MA, had a short lifespan and died at the age of 11 months to 6.5 years. (Arlett et al., 

1980; Emmert et al., 2002; Moriwaki et al., 1996; Nouspikel et al., 1997; Zafeiriou et al., 2001). 

Development of skin cancer was only reported for one of these patients, who was severely 

affected and died at the age of 11 months (Zafeiriou et al., 2001). Compared to the XP-C 

patients developing their first skin cancer at a mean age of 7.3 years, the absence of skin 

cancer development in most of the XP/CS patients might be explained by their short lifespan.   

 

4.2. Functional deficits in the NER deficient cells 

4.2.1. Increased UV sensitivity in the NER deficient cells 

UV sensitivity of fibroblasts from XP patients was first shown by Gartler et al.  in 1963 (Gartler, 

1963). Later on, a defect in the NER pathway was found to be the molecular reason for this 

observation (Cleaver, 1968; Reed et al., 1969). Additionally, bacterial mutants, defective in 

excision repair, were also found to exhibit invariably UV sensitivity (Kondo et al., 1970). 

Therefore, determination of post-UV cell survival became obligatory in the identification of 

NER deficient fibroblast cells (Broughton et al., 2001; Chavanne et al., 2000; Khan et al., 2006; 

Khan et al., 2010). Accordingly, fibroblast cells analyzed during this thesis were also examined 
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for their post-UV survival using the MTT assay. As expected, all cells showed a reduced survival 

after UV irradiation at both cell densities (5000 cells and 7500 cells).  

Mean post-UV survival of the XP-C cells after 30 J/m2 UVC was 50 % and 49 % at a density of 

5000 and 7500 cells, respectively. XP-D cells tested under the same conditions exhibited a 

survival of 56 % and 52 %, whereas wild type fibroblasts exhibited a mean post-UV survival of 

81 % and 87 %. Other studies reported a more pronounced UV sensitivity for XP-C and XP-D 

fibroblast cells with survival rates of 10 % and less with similar UVC irradiation doses. 

Differences in the measured UV sensitivity may result from the experimental procedures used 

for determination. Chavanne et al. measured unscheduled DNA synthesis of XP-C cells after UV 

treatment (Chavanne et al., 2000). Khan et al. used the MTS assay for the analysis of XP-C cells’ 

post-UV survival (Khan et al., 2010). This assay is indeed similar to the MTT assay, but the 

procedure (Imoto et al., 2002) was differing from the protocol performed in this thesis. 

Broughton et al. assessed survival of XP-D fibroblasts by determination of the apoptosis level 

of the sub-G1 cell fraction of previously irradiated fibroblasts using flow cytometry (Broughton 

et al., 2001). Remaining post-UV survival may also result from additional processes of the cells 

to cope with the DNA damages for example translesional synthesis (Nakajima et al., 2004). 

Furthermore the XPC protein is dispensable for transcription coupled repair. Thus, XP-C cells 

are still proficient of TCR and remove photoproducts from actively transcribed DNA strands 

which is particularly important in non-dividing cells (Kantor et al., 1990). 

A clear correlation between clinical sun sensitivity of the XP-C patients and post-UV cell 

survival is hindered by the absence of appropriate data for eight of the twelve patients. 

Moreover, it has been reported previously that many XP-C patients do not burn on minimal 

sun exposure and tan normally despite developing freckles and skin cancers later on in life 

(Khan et al., 2009). In addition, XPC-/- mice do also not exhibit photosensitivity (Berg et al., 

1998).  

Among the XP-D patients sun sensitivity was described for XP40MA, XP71MA, XP89MA, and 

XP90MA whereas XP19MA was described to exhibit no sun sensitivity. In contrast to the 

clinical results, fibroblasts from XP19MA were more UV sensitive than those of the other four 

patients. This indicates no correlation between patients’ UV sensitivity and post-UV cell 

survival of their corresponding fibroblasts.  

Fibroblasts from two of the three XP-G patients (XP165MA and XP72MA) exhibited a markedly 

reduced post-UV survival compared to the XP-C and XP-D patients’ cells (figure 5 compared to 

figures 3 and 4). All cells from patient XP165MA died at 12 J/m2 UVC and only 2 % (5000 cells) 
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and 4 % (7500 cells) of fibroblasts from patient XP72MA survived after irradiation with 15 J/m2 

UVC. In contrast, none of the XP-D or XP-C cells exhibited a survival less than 19 % (XP19MA 

fibroblasts after 16 J/m2 UVC) at any irradiation dose. Such an increased UV sensitivity has 

been reported previously for XP-G/CS cells from other patients (Emmert et al., 2002; Moriwaki 

et al., 1996). Additionally, a correlation between cells’ post-UV survival and patient’s 

photosensitivity has been described for the XP/CS complex (Emmert et al., 2002; Nouspikel et 

al., 1997; Zafeiriou et al., 2001). In line with these findings, a comparison of the clinical data of 

XP165MA and XP72MA also paralleled the marked sun sensitivity with the clinical notion of 

photosensitivity. Furthermore, the most severely affected patient, XP165MA, also revealed the 

most reduced post-UV cell survival.  

 

4.2.2. Decreased relative NER capability in the NER deficient cells 

Relative NER capability of the patients’ fibroblasts was determined by HCR. Expression of the 

firefly reporter gene from the UVC irradiated plasmid vs. expression from the non-irradiated 

plasmid was markedly reduced in all patients’ cells compared to wild type fibroblasts. Low 

enzyme expression levels reflect the inability of NER deficient fibroblasts to remove UVC 

induced 6,4PPs and CPDs from the transcribed DNA strand in a proper way. False positive 

expression levels due to cell division are excluded by the non-replicative character of the 

reporter gene plasmids. Mean relative NER capacity of five wild type fibroblasts was 30.7 %. 

This is in line with previous results from Emmert et al. (Emmert et al., 2002). All patients’ cells 

exhibited a decreased relative NER capacity as it has been shown previously for XP-C (Khan et 

al., 2006), XP-D (Emmert et al., 2009; Ueda et al., 2009), and XP-G cells (Emmert et al., 2002; 

Moriwaki et al., 2012; Yoneda et al., 2007). Mean relative NER capacity of the XP-C cells was 

somewhat increased (4 %) compared to fibroblasts from XP-D (1.5 %) and XP-G (2 %) patients. 

Again the intact transcription coupled repair pathway of XP-C cells (Kantor et al., 1990) might 

be a reason for this slight difference. According to previous studies, the cellular repair 

deficiency of XP-C, XP-D, and XP-G fibroblasts could be complemented by co-transfection of 

plasmids expressing wild-type XPC, XPD, and XPG cDNA, respectively (figure 6) (Emmert et al., 

2002; Emmert et al., 2009; Khan et al., 2006; Moriwaki et al., 2012; Ueda et al., 2009; Yoneda 

et al., 2007). 

 

4.3. mRNA levels of the mutated gene are only effected in XP-C patients 

The expression of the mRNA level of all XP genes, XPA to XPG, and the gene coding for DNA 

polymerase eta, XPV, was determined for a total of 75 NER deficient primary fibroblast 
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cultures and nine wild type primary fibroblast cultures (appendix table A-18). The expression 

levels were normalized to the expression levels of two housekeeping genes β-actin and GAPDH 

and the mean expression level of the wild type fibroblasts was set to 100 %. 

A decreased mRNA expression level in XP-C cells has been reported previously: Khan et al. 

measured a mean XPC mRNA level of 24 % in a total of 16 XP-C patient cells using quantitative 

real-time PCR. The mean XPC mRNA expression in cells from 26 XP-C heterozygotes was 59 % 

compared to normal cells (Khan et al., 2006). This was also corroborated by and Cartault et al. 

who reported 10 % XPC mRNA expression in XP-C homozygotes and 75 % expression in XP-C 

heterozygotes compared to wild-type cells (Cartault et al., 2011). In addition, Emmert et al.  

reported on two XP-C patients with equal insertion/deletion mutations exhibiting XPC mRNA 

expression levels of 36 % and 32 % compared to 100 % expression in wild type cells (Emmert et 

al., 2006b). The underlying mechanism for this gradually reduced XPC mRNA level depending 

on the number of mutated alleles (59 % and 75 % in heterozygotes vs. 24 % and 10 % in 

homozygotes) may involve the nonsense-mediated message decay pathway (Lejeune and 

Maquat, 2005; Maquat, 2005) as all mutations resulted in premature stop codons. However, 

Northern blot analysis may not be sensitive enough to detect these changes as Chavanne et al. 

reported no significant differences in XP-C heterozygote parents and only slightly reduced XPC 

mRNA expression in their XP-C homozygote children (60% to 80% of normal) (Chavanne et al., 

2000). 

In agreement with these previous findings, all XP-C cells which were later found to harbour 

mutations resulting in truncated XPC proteins exhibited significant decreased XPC mRNA 

expression levels ranging from 9.5 % to 25.7 %  (p<0.001) compared to the mean level of nine 

wild type fibroblast cell cultures set to 100 % (figure 7A). Moreover, fibroblasts from XP23GO, 

XP98MA, XP99MA, and XP115MA were identified as XP-C cells due to their decreased XPC 

mRNA expression levels (figure 7A). In contrast, the only patient who was later found to 

harbour a mutation not resulting in a truncated XPC protein but in the deletion of the 

conserved amino acid isoleucin 812 (figure 8A) revealed an up-regulated XPC mRNA level. This 

is in line with the assumption that the nonsense-mediated message decay pathway is probably 

involved in the modulation of XPC mRNA levels. Nonsense-mediated message decay may not 

be effective in this case as it depends on the presence of a nonsense codon > 50-55 

nucleotides upstream of an exon-exon junction (Lejeune and Maquat, 2005; Maquat, 2005).  

Expression levels of mutated XPD and XPG genes in XP-D and XP-G patients have to be 

evaluated carefully. In contrast to the XPC mRNA expression in XP-C patients, expression levels 

of XPD and XPG genes from fibroblasts of corresponding complementation groups have not 
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extensively been studied previously. Moreover, the mRNA expression levels were determined 

measuring mRNA of one sample (in duplicates) obtained from non-synchronized patient’s 

fibroblasts. The mRNA level might change with ongoing senescence or during cell cycle (Cho et 

al., 2001; Zhang et al., 2003). In addition, only two reports on determination of mRNA 

expression levels were found in the literature: Emmert at al. reported a 50 % reduced XPD 

mRNA in a compound heterozygous XP-D patient harbouring a missense mutation (p.R683W) 

and a deletion mutation resulting in a truncated protein (p.G670AfsX39) (Emmert et al., 2009). 

XP-D patients analyzed in this thesis were all found to harbour missense mutations, thus, a 

possible influence on the mRNA level by nonsense mediated message decay should be 

excluded. Accordingly, XPD mRNA expression levels were found to be close to normal with a 

mean expression level of 102.9 % (ranging from 74.1 % to 151.3 %) (figure 7B). Decreased XPG 

mRNA levels have been reported in two XP-G/CS patients carrying mutations leading to 

truncated proteins, whereas a patient harbouring at least one missense mutation exhibited a 

XPG mRNA expression of 90 % compared to normal (Emmert et al., 2002). Determination of 

the XPG mRNA expression levels in the three XP-G patients analyzed in this thesis revealed also 

normal expression of the mutated XPG alleles compared to the mean level of nine wild type 

fibroblast cell cultures (Figure 7C).  

Nevertheless, these data have to be verified by additional measurements using mRNA isolated 

from synchronized cells at best. Attempts to synchronize fibroblast cell cultures by contact 

inhibition as well as by thimidine treatment (Davis et al., 2001) were not successful until the 

end of the thesis (data not shown). 

 

4.4. Mutational analysis pinpointed the genetic defect und revealed new disease-

causing mutations 

4.4.1. Mutational analysis of XP-C fibroblasts 

Mutational analysis were performed by genomic DNA sequencing using primer pairs flanking 

the intron exon boundaries to ensure that disease-causing mutations are detected within the 

exon and the intron regions. In the XPC gene 46 different disease-causing mutations, 

distributed over the whole gene (16 exons), have been identified so far (McDaniel et al., 2007). 

XP-C mutations usually result in the XP-phenotype. Two patients exhibiting neurological 

symptoms have been described previously (Hananian and Cleaver, 1980; Khan et al., 2009). All 

the seven different XPC mutations, found during this thesis, were located within the exon 

regions and mutational distribution comprises nearly the whole gene from exon 3 to exon 14 

(table 3-1). All mutations were present in homozygous state althogh consanguinity is only 
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documented for three patients (XP47MA, XP98MA, XP99MA). Interestingly, four of the seven 

mutations have not been described before. Mutations A116YfsX4 and p.R475EfsX18 were 

found in two patients with German ancestry (XP20MA and XP117MA, respectively). Mutation 

p.Q723SfsX44 was found in a patient with Turkish (XP150MA), and the mutation p.I812del in a 

patient with Iranian (XP47MA) ancestry.  

With exception of p.I812del, all mutations would result in truncated proteins either by a 

missense mutation creating a premature stop codon directly (p.R579X, p.R155X) or by 

deletions that result in a frame shift leading to an altered amino acid sequence and a 

premature stop codon (p.A116YfsX4, p.R475EfsX18 p.V548AfsX25, p.Q723SfsX44). This may 

explain the quite homogeneous clinical phenotype in the XP-C patients as all mutations would 

result in truncated XPC proteins that are expected to be non-functional. In addition, markedly 

decreased XPC mRNA expression levels indicate that the truncated XPC proteins are probably 

not expressed (figure 7A) (Cartault et al., 2011; Emmert et al., 2006b; Khan et al., 2006). This 

differs from other XP genes like XPD which is an essential gene. Causative XPD mutations 

comprise missense mutations that still preserve some functional activity (Lehmann, 2001). XPC 

mutation p.A548AfsX25, found in three patients (XP102MA, XP114MA, XP115MA), was 

recently described as a founder mutation in the Mediterranean region as it was present in 87 

% of 86 XP-C patients analyzed by Soufir et al. (Soufir et al., 2010). Interestingly, it was shown 

that the mutation occurred approximately 1,250 years ago applying microsatellite haplotyping 

(Soufir et al., 2010). This was the time when Muslims from Arabia conquered Southern Europe. 

In line with these findings, the three patients carrying mutation p.A548VfsX25 are also 

originated from Arabia.  

The newly detected in frame deletion of three nucleotides in XP47MA deserves special notion. 

It leads to a single amino acid deletion p.I812del. This isoleucine is located within the DNA-

binding region of XPC composed of three β-hairpin domains BHD1 (amino acids 633 to 683), 

BHD2 (amino acids 684 to 741), and BHD3 (amino acids 742 to 831) (figure 16) and is 

conserved through different species (figure 7A). In co-crystals, the Rad4 protein, which is the 

yeast orthologe of XPC, has been found to associate with DNA through a large 

transglutaminase-homology domain (TGD) flanked by domains BHD1, -2 and -3 (Min and 

Pavletich, 2007). Moreover, Camenisch et al. described a two step recognition process of XPC 

to detect damaged DNA.  First the DNA is scanned for non-hydrogen-bonded residues which 

are prone to flip out resulting in ss DNA. Domains BHD1, and BHD2 are involved in this initial 

scanning process before the BHD3 domain binds to the resulting ss DNA in the second step 

(Camenisch et al., 2009). Thus, the BHD3 domain is dispensable for the recruitment of XPC to a 
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DNA lesion, but it is sufficient for the formation of a stable nucleoprotein complex by its single-

stranded DNA binding activity (Camenisch et al., 2009). Deletion of amino acid 812 may impair 

the stable binding of XPC to damaged DNA thereby impairing NER. 

 
 

Figure 16: Scheme of the primary structure of XPC with transglutaminase-homology domain 
(TGD) domain and the three β-hairpin domains. A disordered ~180-residue insertion divides 
the TGD domain of human XPC into two parts (Bunick et al, 2006). Numbers of the first and 
last amino acid comprising each domain are indicated.  

 

4.4.2. Mutational analysis of XP-D fibroblasts 

So far 30 different XPD mutations have been listed in the mutational database 

www.xpmutations.org. Mutations in XPD may result in XP, XP/CS, TTD, XP/TDD (Broughton et 

al., 2001; Lehmann, 2001). It is generally assumed that defects in the XPD gene that affect the 

DNA repair function of the protein result in XP, whereas those impairing the protein function 

in transcriptional context (TFIIH) result in TTD or CS (Bootsma and Hoeijmakers, 1993; Taylor et 

al., 1997; Ueda et al., 2009). Missense mutations changing amino acid arginine 683 to 

glutamine or tryptophan have been reported to be most frequent in XP-D patients (Emmert et 

al., 2009; Kobayashi et al., 2002; Lehmann, 2001). In agreement with that, five of the eight 

patients harboured missense mutations at this mutational hot spot: three patients (XP19MA, 

XP40MA, XP46MA) were homozygous for mutation p.R683Q and two patients were compound 

heterozygous for mutations p.R683W/p.R616Q (XP90MA) and p.R683Q/p.R616P (XP71MA). 

Amino acid arginine 683 is located in the helicase domain 2 (HD2) which is one of two Rad51/ 

RecA like domains (HD1 and HD2) in the XPD protein (figure 17). Mutations which affect the 

HD1 ATP-binding edge and the HD2 DNA-binding channel thereby leading to impaired helicase 

activity, which is important for NER, have been reported to result in XP symptoms (Fan et al., 

2008). This gives rise to the XP phenotype of the homozygous affected patients XP19MA, 

XP40MA, and XP46MA. Additionally, a study from Taylor et al. investigated the functionality of 

missense mutations in the XPD gene: mutations were introduced into the rad15 gene from 

Schizosaccharomyces pombe (Sch.pombe) a homologue to the Saccharomyces cerevisiae RAD3 

and the human XPD gene (Murray et al., 1992). Mutation p.R616P, which is also located within 

HD2, was unable to rescue the lethal phenotype of Sch.pombe lacking rad15, whereas 

p.R683W restored viability. They concluded that missense mutations affecting amino acid 

arginine 616 result in null mutations not contributing to the patients’ phenotype (Taylor et al., 
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1997). Therefore, the XP phenotype of patients XP90MA and XP71MA probably results from 

their missense mutation affecting amino acid arginine 683.   

Mutations p.R722W and p.R112H were found in homozygous (XP188MA) and heterozygous 

states (XP87MA and XP89MA), respectively. Amino acid arginine 722 is located within the C-

terminal extension (CTE) (figure 17) of the protein (Fan et al., 2008). The CTE is important for 

interaction with p44 subunit of TFIIH which stimulates the XPD helicase activity (Coin et al., 

1998) and supports maintenance of the architecture of the transcription factor (Dubaele et al., 

2003). Biochemical characterization of the XPD homolog from Sulfolobus acidocaldarius  

(SaXPD) by Fan et al. revealed amino acid arginine 112 located within a domain forming a 4Fe-

4S cluster (figure 17) (Fan et al., 2008). The Fe-S cluster is supposed to be needed for efficient 

damage sensing as proteins containing a 4Fe-4S cluster have been shown to held at sites of 

damaged DNA where the cluster became oxidized (Yavin et al., 2006). Mutation p.R112H was 

supposed to reduce framework stability due to the removal of a charged side chain hydrogen 

bond to Fe ion ligand cysteine 102 (Fan et al., 2008). Both mutations, p.R722W and p.R112H, 

are described to result in the TTD phenotype (Fan et al., 2008; Lehmann, 2001; Taylor et al., 

1997). Modified XPD proteins with these TTD associated mutation types were compared to XP 

associated mutation p.R683W by functional analysis. In vitro helicase and NER assays revealed 

both, TTD and XP associated mutations, influencing the functionality of modified XPD proteins 

compared to wild type XPD. Moreover, transactivation activity of certain nuclear receptors was 

impaired by both types of mutations (Dubaele et al., 2003). These molecular similarities may 

explain the overlapping symptoms of XP and TTD patients. However, the main difference 

between TTD and XP associated mutations was the inhibition of basal transcription activity 

only by TTD associated mutations p.R112H and p.R722W (Dubaele et al., 2003). This supports a 

transcriptional defect as the main reason for differences in TTD and XP disease-causing 

mutations (Dubaele et al., 2003; Lehmann, 2001; Taylor et al., 1997). According to this, patient 

XP188MA exhibited the TDD phenotype. Somehow more difficult is the genotype-phenotype 

correlation of XP87MA and XP89MA. The second mutation found in these compound 

heterozygous patients was p.D681H which has not been described previously. However, in the 

crystal structure of SaXPD from Fan et al., mutation p.D681N, located within HD2, was 

supposed to disrupt a charged site chain interaction with arginine 531 which is needed to 

position the arginine at the proposed DNA binding site. Thus, this mutation was proposed to 

influence helicase activity due to impaired DNA binding (Fan et al., 2008). In a review from 

Lehmann, mutation p.P681N is described to result in XP symptoms in a compound 

heterozygous state but the second mutation which may also contributes to the phenotype was 
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not pointed out (Lehmann, 2001). In addition, Graham et al. reported on a compound 

heterozygous patient harbouring mutation p.D681N together with the null mutation p.R616W. 

This patient was reported having the COFS Syndrome. This syndrome shares high similarity 

with CS although eye defects (i.e. microcornea with optic atrophy) are more severe in COFSS 

patients compared to CS patients (Graham, Jr. et al., 2001). In the present study, patient 

XP87MA exhibited the TTD and patient XP89MA the XP/CS phenotype. The possibility of a 

different clinical outcome despite similar mutations in two individuals has been observed 

previously by the two XP-C patients one with and one without having neurological 

abnormalities mentioned above. Additional mutations, in this case due to close consanguinity, 

were suggested to be responsible for the occurrence of neurological symptoms in only one 

patient (Khan et al., 2009). Moreover, expression levels of the two affected alleles may differ 

between patients thereby resulting in different phenotypes: single nucleotide polymorphisms 

have previously been shown to result in altered XPD mRNA expression levels (Wolfe et al., 

2007). Differences in the methylation status due to epigenetic variability may also influence 

gene expression levels (Jaenisch and Bird, 2003) and, in turn, the clinical outcome. Thus, 

additional factors may also contribute to the development of the different phenotypes in 

XP87MA and XP89MA. 

 

 
Figure 17: Scheme of the XPD protein with the helicase domains HD1 and HD2, the 4Fe-S 
domain and the CTE. Numbers of the first and last amino acid comprising each domain are 
indicated.  

 
 

4.4.3. Mutational analysis of XP-G fibroblasts 

XP-G is a very rare XP complementation group and to date only 20 XP-G causing mutations 

have been described in 16 XP-G patients. Six of these patients developed classical XP 

symptoms (Emmert et al., 2002; Ichihashi et al., 1985; Moriwaki et al., 2012; Norris et al., 

1987; Nouspikel and Clarkson, 1994; Yoneda et al., 2007); the other ten patients exhibited the 

XP/CS complex phenotype (Emmert et al., 2002; Lalle et al., 2002; Moriwaki et al., 1996; 

Nouspikel et al., 1997; Zafeiriou et al., 2001). Three patients among the XP/CS group were 

reported to have a late onset of their CS symptoms (Lalle et al., 2002; Thorel et al., 2004).  

A total of five novel disease-causing XPG mutations in three patients were identified during 

this thesis. Two of these patients exhibited XP/CS complex symptoms (XP165MA and 

XP72MA), whereas no clinical data were available for the third patient (XP40GO). The most 
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severely affected XP/CS patient, XP165MA, carried the homozygous missense mutation 

p.G805R, patient XP72MA carried mutations p.E727X and p.W814S mutations, and patient 

XP40GO carried mutations p.Q150X and p.L778P (table 3-1). All three missense mutations are 

located within the I-region of XPG. Highly conserved amino acid residues in the I-region (amino 

acid 1-95) and the N-region (amino acid 753-881) (figure 10) are necessary for XPG’s 

endonuclease proficiency (Constantinou et al., 1999; Hosfield et al., 1998; Lieber, 1997; Shen 

et al., 1996). An alignment of stretch of the I-region (figure 8B) revealed that the mutated 

amino acid residues leucine 778, glycine 805, and tryptophan 814 are highly conserved in 

human, mouse, and Drosophila melanogaster.  Leucine 778 is also highly conserved through 

different members of the FEN1 nuclease family (Constantinou et al., 1999). Tryptophan 814 is 

located near to the highly conserved amino acid residue aspartate 812 which is crucial for XPG 

cleavage activity (Constantinou et al., 1999). This can readily explain the diminished repair 

capability of the patients’ fibroblasts.  

However, previous correlations of mutations in the XPG gene and patients’ phenotypes have 

revealed that mutations resulting in truncated XPG proteins generally cause the XP/CS 

phenotype, whereas at least one missense mutation maintaining a full length protein results in 

the XP phenotype (Emmert et al., 2002; Nouspikel et al., 1997). This is true for the previously 

reported p.L65P, p.A792V, and p.A874T missense mutations (Emmert et al., 2002; Moriwaki et 

al., 2012; Nouspikel and Clarkson, 1994). Also the p.L858P mutation conferred a milder late-

onset phenotype due to its retained ability for limited transcription-coupled repair (Lalle et al., 

2002). The only missense mutation associated with a severe early-onset XP/CS complex 

phenotype is p.P72H which is located in the N-region (Zafeiriou et al., 2001). This particular 

missense mutation was predicted to greatly destabilize the XPG protein (Thorel et al., 2004).  

With regard to these previous phenotype-genotype correlations the identification of missense 

mutations in two patients with XP/CS prompted to further analyze all five novel XPG mutations 

on a molecular level.   

 

4.5. Influence of the novel XPG mutations 

4.5.1. All five XPG mutations influence the functionality of XPG in NER 

The influence of the five XPG mutations on NER was assessed allele-specifically by HCR assay. 

All three missense mutations as well as the two truncating mutations resulted in a repair 

deficit. XPGG805R (XP165MA) retained no, whereas XPGW814S (XP72MA) and XPGL778P (XP40GO) 

retained limited residual repair activity as assessed allele-specifically by HCR (Figure 9). This fits 
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well as patient XP165MA, suffering from the most severe phenotype, encodes the non-

functional XPGG805R on both alleles. Other missense mutations, p.A792V and p.A874T, which 

are also located in the I-region, near to mutations p.L778P and p.W814S, were also described 

to retain some repair capability  (Constantinou et al., 1999; Emmert et al., 2002). However, 

residual activity of proteins XPGW814S and XPGL778P may result from a gene doses effect due to 

the over expression of the proteins. As expected, the two nonsense mutations, missing at least 

parts of the I-region, also retained no repair activity. This is consistent with previous findings 

from Lalle et al. who investigated the complementation proficiency of a truncated XPG protein, 

p.K917NfsX65, which even retained the N- and I-regions. This less truncated XPG protein was 

also found to be unable to decrease the UV sensitivity in XP-G transfectants (Lalle et al., 2002). 

Wrong protein folding because of the aberrant primary structure or defective nuclear 

transport due to the missing C-terminal NLS signal might be reasons for these findings. 

 

4.5.2. Mutations impair interaction with TFIIH 

The influence of the five XPG mutations on the interaction with subunits of the transcription 

factor IIH was investigated by co-immunoprecipitation. One main problem of the co-

immunoprecipitation experiments was the amount of XPGmutmycHis protein (except 

XPGE727mycHis) compared to wild type XPGmycHis protein. Often even transfection of twice as 

many cells with pXPGmutmycHis did not result in similar protein amounts compared to wild 

type XPGmycHis. This may indicate a destabilizing effect of the XPG mutations on the protein 

level as described for mutation p.P72H (Thorel et al., 2004). Nevertheless, figure 12F shows 

that wild type XPGmutmycHis was able to co-immunoprecipitate XPD independent from its 

amount.  

XPD was not co-immunoprecipitated with the five XPGmutmycHis proteins (figure 12A). Only 

traces of cdk7 were co-immunoprecipitated with XPGL778PmycHis and XPGW814SmycHis. 

XPGG805RmycHis and the two truncated XPG proteins did not co-immunoprecipitate cdk7 at all 

(figure 12C). If there is a direct interaction between XPG and cdk7 in addition to the indirect 

interactions via XPD and/or MAT1 (Drapkin et al., 1996; Reardon and Sancar, 2002) remains to 

be investigated. That the truncated XPG proteins XPG1-150mycHis (XP40GO) and XPG1-727mycHis 

(XP72MA) showed no interaction with XPD or with cdk7 is in line with previous studies (Arab et 

al., 2010; Ito et al., 2007). However, single amino acid residues crucial for XPG-TFIIH 

interaction have not been described for far. The three novel missense mutations are all located 

within one XPG region (747-928) which interacts with XPD. Iyer et al. (Iyer et al., 1996) 

identified two XPG-XPD binding regions in-vitro: XPG1-377 and XPG747-928. In addition, single 
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amino acid residue arginine 992 in XPG has been shown to be crucial for interaction with PCNA 

(Gary et al., 1997). This supports the findings that missense mutations impair XPG-protein 

interactions in general and that the single amino acid residues leucine 778, glycine 805, and 

tryptophan 814 in XPG might be crucial for XPG-TFIIH interaction in particular.  

Therefore, the XP/CS complex phenotype of patients XP165MA and XP72MA could be 

explained by impaired XPG-TFIIH interactions due to the novel truncating as well as the novel 

missense mutations. Ito et al. suggested that XPG and XPD cooperatively mediate the 

anchoring of CAK to core TFIIH (Ito et al., 2010). The impaired XPG-TFIIH interactions 

destabilize TFIIH thereby resulting in the dissociation of the cdk7 containing CAK complex from 

core TFIIH (figure 2) (Arab et al., 2010; Ito et al., 2007). The core TFIIH is involved in nucleotide 

excision repair whereas CAK is dispensable for NER (Arab et al., 2010). However, CAK activity, 

as part of holo TFIIH, is involved in general transcription (transcription initiation, promoter 

escape, and phosphorylation of nuclear receptors) (Arab et al., 2010; Ito et al., 2007; Le et al., 

2010; Scharer, 2008). That abnormalities in the transcriptional process, in addition to defective 

GGR or TCR, cause CS features in XP-G patients was recently reported (Arab et al., 2010; Ito et 

al., 2007). This is also supported by the notion that XP-A patients, despite their deficiency in 

GGR and TCR, do not exhibit CS features. Secondly, XPA deficient mice in contrast to XPG 

deficient mice do not develop CS symptoms (Shiomi et al., 2005). Similarly, certain mutations 

in the XPD gene which lead to a dissociation of CAK from core TFIIH (Ito et al., 2007) and impair 

the phosphorylation of certain nuclear receptors can give rise to XP/CS complex phenotype 

(Bastien et al., 2000; Chen et al., 2000; Compe et al., 2005; Drane et al., 2004; Ito et al., 2007; 

Rochette-Egly et al., 1997). Based on these findings and the proposed functional consequences 

it can also be fairly assumed that also XP40GO suffered from a severe XP/CS complex 

phenotype. Although fibroblasts from this patient did not exhibit the XP/CS typical increased 

UV sensitivity compared to XP-C and XP-D fibroblasts from XP patients. 

 

4.5.3. Mutation-specific effects on repair factor assembly 

Effects of the XPG mutations on the recruitment of other XP proteins to local DNA 

photodamage was assessed in vivo applying immunofluorescence. In vitro and in vivo 

investigations suggest a sequential assembly of the NER factors (Riedl et al., 2003; Volker et al., 

2001). As expected, the XPG protein was not recruited to local photodamage in the XP-G 

fibroblasts (figure 13E). This indicates that all five mutated XPG proteins do not properly 

interact with other NER proteins. Oh et al. also described an impaired recruitment of XPG in 

XP-G cells (Oh et al., 2007). Overall, a recruitment of XPC, XPB, XPA, and ERCC1 (complexed 
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with XPF) proteins to local photodamage in all XP-G cells at 30 minutes after UV irradiation was 

observed. This is in line with previous reports investigating recruitment of XP proteins in XP-G 

cells with other mutations (Arab et al., 2010; Oh et al., 2007; Thorel et al., 2004). At a very 

early time point (6 min) XPA was also normally fast recruited indicating that XPG is dispensable 

for XPA recruitment (Oh et al., 2007). A delayed early recruitment (6 min) of XPC was observed 

in XP72MA and XP40GO (figure 13C) and early XPB recruitment was delayed in XP72MA (figure 

13B). This might reflect that the strong functional interaction between XPC and TFIIH (Araujo 

et al., 2001) is also affected by the destabilization of TFIIH due to impaired interactions with 

XPG (Arab et al., 2010; Ito et al., 2007). In any case, ERCC1-XPF recruitment depends on XPG 

(Riedl et al., 2003). In line with that, early recruitment of ERCC1 was delayed in all three XP-G 

cell lines (figure 13D).  

In wild type cells the XP proteins began already to redistribute from local photodamage 30 min 

after UV irradiation. By 3 h after UV treatment XP proteins were no longer detectable at sites  

of DNA damage. Redistribution of XP proteins results from the proceeding repair of DNA 

photoproducts (Dunand-Sauthier et al., 2005; Oh et al., 2007). In addition, this correlates with 

the removal of 6,4PPs, which was found to be finished 3 h after irradiation (figure 13G, figure 

15C). However, CPD removal was much slower and 36 % of CPDs were still detectable even 

after 24 h (figure 13F, 15C). A faster removal of 6,4PPs compared to CPDs has been 

demonstrated previously (Oh et al., 2011). Assuming that NER proficient wild type cells, 

nevertheless, remove most of the CPDs over time, this may indicate an excessive XP protein 

recruitment to sites of local DNA damage immediately after UV treatment. This 

superabundance of XP proteins is sufficient for detection by immunofluorescence. However, 

after a partial redistribution of the superfluous proteins, the residual proteins, sufficient for 

proper NER, may not be sufficient for detection by immunofluorescence. 

In contrast, defective NER was reflected in XP-G cells by persistence of XPA, XPB, XPC, and 

ERCC1 proteins at local photodamage even after 24 h (figure 13, figure 15). This is in 

agreement with observations from Arab et al. and Oh et al. for cells from other XP-G/CS 

patients (Arab et al., 2010; Oh et al., 2007) and has also been demonstrated for cells from XP-

A, XP-B, and XP-C patients (Oh et al., 2007; Riedl et al., 2003) as well as from XP-D patients 

with and without neurological symptoms (Boyle et al., 2008). Thus, the impaired redistribution 

of XP proteins reflects impaired repair being related to the XP symptoms as this is the lowest 

common denominator of all of these variable phenotypes.  
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5. Summary and conclusion 

A total of 75 NER defective fibroblast cell cultures were provided from the University Clinics of 

Göttingen and Mannheim for characterization purpose. This represents Germany’s largest 

library of NER defective cells with regard to the low incidences of NER defective syndromes. 

The assessment of 23 NER defective fibroblast cell cultures (12 XP-C patients, eight XP-D 

patients, three XP-G patients) was finished during this thesis. Fibroblasts were characterized 

for their UV sensitivity and their relative NER capability. Defective genes were determined by 

complementation assays, and mutational analysis revealed new disease-causing mutations. 

Five novel XPG mutations were further analyzed for their impact on protein function in NER.  

Analysis of 12 XP-C fibroblasts identified four new mutations in the XPC gene. Correlation of 

the clinical data revealed the novel XPC mutations to result in the XP phenotype. None of the 

corresponding patients exhibited “XP plus neurological” symptoms. Furthermore, there was no 

correlation between XP-C fibroblasts’ UV sensitivity and the clinical phenotype, as the clinical 

outcome was quite homogeneous among the XP-C patients.  

One new missense mutation in the XPD gene (p.D681H) was found in two of the eight XP-D 

fibroblast cell cultures. Missense mutation p.D681N has been associated previously with the 

COFS Syndrome in a compound heterozygous patient carrying a null mutation on the other 

allele.  The two patients, analyzed in this thesis, were also compound heterozygous carrying 

the same TTD-associated mutation on the other allele. Interestingly, one of the patients 

exhibits the TTD and the other one the XP/CS phenotype. Variable phenotypes may depend on 

different dominance of the mutated alleles due to SNPs or epigenetic variability. A correlation 

between fibroblasts’ UV sensitivity und the clinical outcome was not obvious within the XP-D 

patients. Fibroblasts of all eight patients showed increased UV sensitivity. In addition, one 

patient whose fibroblasts were markedly UV sensitive was described to exhibit no increased 

UV sensitivity.  

Five novel disease-causing XPG mutations were identified in three XP-G patients. Assessment 

of fibroblasts’ UV sensitivity with clinical files indicated UV sensitivity of fibroblasts and 

patients (XP165MA, XP72MA) being paralleled.  Missense mutations p.G805R (XP165MA, hom) 

and p.W814S (XP72MA, het) were correlated with the XP/CS complex. Particularly the CS 

symptoms associated with at least one missense mutation were surprising at first and lead to a 

further examination of the five XPG mutations on a molecular level:  

First, the modified XPG proteins impaired repair of UV-induced photolesions. Second, the 

interaction of XPG with TFIIH subunits XPD and cdk7 was impaired due to the mutations. Until 
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now, only broader regions were known to be involved in the XPG-XPD interaction. Thus, for 

the first time, single amino acids being crucial for XPG-XPD interaction were identified. 

Furthermore, the impaired interaction explains the XP/CS phenotype of the patients and gives 

rise to the assumption that the third patient (XP40GO) may also exhibit XP/CS symptoms. 

Third, a mutation specific effect on the repair factor assembly was observed by analysis of the 

recruitment of NER proteins to sites of local DNA damage in vivo.  
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Appendix 

Data of the post-UV survival of the primary fibroblast cell cultures. Cells were irradiated with 

increasing doses UVC irradiation and the post-UV survival was determined with MTT assay (see 

2.12.4.1.). Results of all twenty-three NER deficient and three wt primary fibroblast cell 

cultures are listed in table A-1 to A-13.   

 

Table A-1 Post-UV survival of wt fibroblasts at a density of 5000 cells in percent.  

 
5000 cells    0 J/m² 6 J/m² 12 J/m² 18 J/m² 24 J/m² 30 J/m² 

          
wt1 mean (n=4) 100 109 87 92 91 76 

 SEM 5,0 4,5 2,3 5,7 3,3       06 
        

wt5 mean (n=4) 100 98 86       86 94       83 
 SEM 6,5 4,9 7,7 3,4 1,4 3,5 
        

wt6 mean (n=4) 100        90       94       97 88       83 
 SEM 6,1 4,2      4,9 2,9 1,8 1,2 

 

Table A-2 Post-UV survival of wt fibroblasts at a density of 5000 cells in the presence of                

1 mM caffeine in percent. 

 
5000 cells,    0 J/m² 6 J/m² 12 J/m² 18 J/m² 24 J/m² 30 J/m² 
1 mM caffeine        
 wt1 mean (n=4) 100 125 101 101 105 90 

  SEM 9,3 5,8 4,1 2,3 2,8 2,5 
          

wt5 mean (n=4) 100 141 105 117 114 117 
  SEM 9,7 6,1 15,2 4,2 6,3 2,7 
          

wt6 mean (n=4) 100 95 91 95 80 76 
  SEM 1,2 2,3 2,7 31 1,5 5,7 
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Table A-3 Post-UV survival of wt fibroblasts at a density of 7500 cells in percent. 

 
7500 cells   0 J/m² 6 J/m² 12 J/m² 18 J/m² 24 J/m² 30 J/m² 

          
wt1 mean (n=4) 100 99 88 85 85 81 

  SEM 6,3 3,2 3,6 0,9 2,1 2,2 
          

wt5 mean (n=4) 100 97 95 90 99 95 
  SEM 5,1 6,7 5,5 7,4 4,4 3,4 
          

wt6 mean (n=4) 100 96 90 86 75 85 
  SEM 1,9 1,8 1,6 3,0 0,9 1,2 

 

Table A-4 Post-UV survival of wt fibroblasts at a density of 7500 cells in the presence of                 

1 mM caffeine in percent. 

 
7500 cells,    0 J/m² 6 J/m² 12 J/m² 18 J/m² 24 J/m² 30 J/m² 
1mMcaffeine         

          
wt1 mean (n=4) 100 110 100 101 87 85 

  SEM 7,8 3,5 3,7 3,1 3,0 3,4 
          

wt5 mean (n=4) 100 146 129 121 126 133 
  SEM 10,4 4,1 2,5 7,9 3,8 3,3 
          

wt6 mean (n=4) 100 96 90 86 75 85 
  SEM 1,9 1,8 1,6 3,0 0,9 1,2 

 

Table A-5 Post-UV survival of XP-C fibroblasts at a density of 5000 cells in percent. 

5000 cells    0 J/m² 6 J/m² 12 J/m² 18 J/m² 
24 

J/m² 30 J/m² 
  

      
  

XP20MA mean (n=4) 100 110 89 81 60 52 
  SEM 10,3 2,8 3,9 4,6 5,2 4,0 
  

      
  

XP23GO mean (n=4) 100 37 40 33 29 26 
  SEM 10,0 7,1 10,3 2,6 6,2 1,8 
  

      
  

XP47MA mean (n=4) 100 68 51 48 38 37 
  SEM 4,9 2,6 4,6 4,3 3,5 5,9 
  

      
  

XP98MA mean (n=4) 100 95 81 73 50 40 
  SEM 5,1 6,8 1,8 2,0 2,0 9,8 
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XP99MA mean (n=4) 100 65 61 47 31 36 
  SEM 4,5 4,2 3,7 9,5 2,5 2,3 
  

      
  

XP102MA mean (n=4) 100 78 75 77 66 50 
  SEM 2,6 4,9 1,2 3,2 9,6 10,9 
  

      
  

XP114MA mean (n=4) 100 78 67 64 56 62 
  SEM 5,5 4,3 2,1 5,8 7,1 10,4 
  

      
  

XP115MA mean (n=4) 100 93 78 76 69 59 
  SEM 3,6 6,5 3,4 3,6 6,4 2,8 
  

      
  

XP117MA mean (n=4) 100 74 59 52 38 35 
  SEM 6,1 4,1 2,4 5,7 3,7 3,8 
  

      
  

XP150MA mean (n=4) 100 86 79 84 70 77 
  SEM 8,2 7,7 12,0 9,8 9,1 2,9 
  

      
  

XP155MA mean (n=4) 100 91 77 72 70 65 
  SEM 2,5 0,9 7,6 4,5 2,0 2,2 
  

      
  

XP156MA mean (n=4) 100 84 77 64 57 62 
  SEM 5,9 2,0 0,2 1,9 1,7 3,9 

 

Table A-6 Post-UV survival of XP-C fibroblasts at a density of 5000 cells in the presence of               

1 mM caffeine in percent. 

5000 cells,   0 J/m² 6 J/m² 12 J/m² 18 J/m² 
24 

J/m² 30 J/m² 
 1mM caffeine 

     
  

  
      

  
XP20MA mean (n=4) 100 87 57 27 28 20 
  SEM 2,6 19,2 10,3 9,7 37,2 35,1 
  

      
  

XP47MA mean (n=4) 100 40 31 25 19 21 
  SEM 15,3 4,3 4,0 10,7 26,3 24,8 
  

      
  

XP98MA mean (n=4) 84 100 86 73 54 45 
  SEM 4,2 7,4 1,3 4,0 5,5 4,5 
  

      
  

XP99MA mean (n=4) 100 35 25 22 20 17 
  SEM 2,2 6,4 2,0 9,9 7,7 5,0 
  

      
  

XP102MA mean (n=4) 100 87 81 78 73 53 
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  SEM 4,6 2,4 8,7 4,2 3,3 11,6 
  

      
  

XP114MA mean (n=4) 100 59 35 28 24 21 
  SEM 3,6 5,7 1,8 11,7 4,5 2,4 
  

      
  

XP115MA mean (n=4) 100 70 55 52 48 48 
  SEM 2,1 1,6 4,3 2,3 2,2 6,7 
  

      
  

XP117MA mean (n=4) 100 67 55 39 34 36 
  SEM 12,7 5,2 5,8 4,5 6,5 3,3 
  

      
  

XP150MA mean (n=4) 100 102 102 102 99 94 
  SEM 7,4 5,5 6,3 10,3 1,6 3,2 
  

      
  

XP155MA mean (n=4) 100 100 99 89 99 96 
  SEM 5,0 8,7 7,5 0,2 2,5 6,4 
  

      
  

XP156MA mean (n=4) 100 92 77 66 54 55 
  SEM 5,2 1,1 2,9 2,6 0,4 3,4 
 

Table A-7 Post-UV survival of XP-C fibroblasts at a density of 7500 cells in percent. 

7500 cells   0 J/m² 6 J/m² 12 J/m² 18 J/m² 
 

24 J/m² 30 J/m² 
  

      
  

XP20MA mean (n=4) 100 68 55 54 38 27 
  SEM 6,6 4,7 9,5 3,7 6,6 5,3 
  

      
  

XP23GO mean (n=4) 100 47 37 40 30 31 
  SEM 5,6 6,3 8,8 7,2 6,4 6,3 
  

      
  

XP47MA mean (n=4) 100 72 58 54 46 43 
  SEM 3,4 1,5 5,3 4,9 2,6 2,9 
  

      
  

XP98MA mean (n=4) 100 83 70 64 46 41 
  SEM 6,5 8,1 4,5 3,6 3,3 11,2 
  

      
  

XP99MA mean (n=4) 100 81 72 61 50 36 
  SEM 4,9 2,4 1,9 3,7 3,7 4,3 
  

      
  

XP102MA mean (n=4) 100 89 86 77 78 44 
  SEM 4,3 2,5 2,0 6,1 2,0 8,2 
  

      
  

XP114MA mean (n=4) 100 76 53 57 54 51 
  SEM 2,8 4,8 7,8 4,4 5,5 1,3 
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XP115MA mean (n=4) 100 88 76 74 68 62 
  SEM 6,7 5,9 2,0 1,9 4,3 3,1 
  

      
  

XP117MA mean (n=4) 100 77 64 46 44 40 
  SEM 3,4 8,9 3,3 4,6 5,5 2,2 
  

      
  

XP150MA mean (n=4) 100 91 88 82 78 78 
  SEM 5,6 7,8 6,1 8,3 7,5 5,9 
  

      
  

XP155MA mean (n=4) 100 83 75 73 67 72 
  SEM 8,7 7,0 1,8 4,1 2,1 4,5 
  

      
  

XP156MA mean (n=4) 100 86 76 70 69 62 
  SEM 3,2 0,7 2,5 2,2 1,5 6,3 

 

Table A-8 Post-UV survival of XP-C fibroblasts at a density of 7500 cells in the presence of              

1 mM caffeine in percent. 

7500 cells,    0 J/m² 6 J/m² 12 J/m² 18 J/m² 24 J/m² 30 J/m² 
1mM caffeine 

     
  

  
      

  
XP20MA mean (n=4) 100 48 26 25 18 24 
  SEM 14,1 18,5 23,4 18,0 35,8 22,1 
  

      
  

XP47MA mean (n=4) 100 57 44 37 33 29 
  SEM 2,8 2,2 5,6 3,2 0,5 6,1 
  

      
  

XP98MA mean (n=4) 100 85 67 61 42 48 
  SEM 9,1 1,3 1,9 5,6 3,5 7,1 
  

      
  

XP99MA mean (n=4) 100 45 37 29 23 22 
  SEM 2,3 1,7 2,9 6,8 3,6 8,5 
  

      
  

XP102MA mean (n=4) 100 88 88 87 70 49 
  SEM 2,8 4,5 2,7 3,6 2,7 8,0 
  

      
  

XP114MA mean (n=4) 100 63 35 31 28 25 
  SEM 0,4 4,6 5,0 9,4 3,8 2,6 
  

      
  

XP115MA mean (n=4) 100 74 64 58 57 53 
  SEM 0,6 3,2 3,7 2,5 1,9 3,3 
  

      
  

XP117MA mean (n=4) 100 64 51 40 35 34 
  SEM 3,7 4,1 2,7 2,3 0,7 0,0 
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XP150MA mean (n=4) 100 89 87 80 90 85 
  SEM 8,5 6,5 8,6 9,7 1,2 2,6 
  

      
  

XP155MA mean (n=4) 100 103 102 110 120 115 
  SEM 3,9 11,3 9,7 8,5 3,7 3,4 
  

      
  

XP156MA mean (n=4) 100 77 74 64 62 54 
  SEM 3,4 2,2 2,9 3,4 4,0 7,3 

 

Table A-9 Post-UV survival of XP-D fibroblasts at a density of 5000 cells as well as 10000 cells 

in the case of XP188MA in percent. 

 
5000 cells   0 J/m² 6 J/m² 12 J/m² 18 J/m² 24 J/m² 30 J/m² 
  

 
            

XP46MA mean (n=4) 100 112 98 94 61 67 
  SEM 7,4 1,9 3,7 3,4 0,5 1,0 
  

      
  

XP71MA mean (n=4) 100 81 69 48 46 44 
  SEM 10,6 4,2 6,0 5,7 1,2 8,7 
  

      
  

XP87MA mean (n=4) 100 94 75 79 69 74 
  SEM 7,5 6,5 4,6 2,4 5,3 3,1 
  

      
  

XP90MA mean (n=4) 100 87 71 56 50 42 
  SEM 2,2 2,5 5,5 4,9 2,6 2,1 
  

      
  

  
 

            
  

 
0 J/m² 3 J/m² 6 J/m² 9 J/m² 12 J/m² 15 J/m² 

XP89MA mean (n=4) 100 82 42 37 32 34 
  SEM 0,7 1,3 3,7 3,2 5,0 4,1 
  

      
  

  
 

0 J/m²  4J/m² 8  J/m² 12 J/m² 16 J/m² 20 J/m² 
XP19MA mean (n=8) 100 74 74 36 22 n.d. 
  SEM 7,0 7,6 3,3 6,6 15,4 n.d. 
  

      
  

XP40MA mean (n=8) 100 78 58 63 29 22 
  SEM 2,8 2,7 3,5 3,2 4,8 9,4 
  

      
  

10000 cells 
 

0 5 J/m² 10 J/m² 15 J/m² 20 J/m² 25 J/m² 
XP188MA mean (n=4) 100 100 93 83 53 48 
  SEM 3,3 2,3 2,0 5,0 3,2 6,5 
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Table A-10 Post-UV survival of XP-D fibroblasts at a density of 5000 cells in the presence of           

1 mM caffeine in percent. 

5000 cells,   0 J/m² 6 J/m² 12 J/m² 18 J/m² 24 J/m² 30 J/m² 
 1mM caffeine 

      
  

  
      

  
XP46MA mean (n=4) 100 103 97 84 74 77 
  SEM 6,1 7,4 9,3 11,4 25,7 26,3 
  

      
  

XP71MA mean (n=4) 100 88 63 40 38 46 
  SEM 16,5 13,3 12,5 12,3 25,9 25,3 
  

      
  

XP87MA mean (n=4) 100 91 67 61 74 83 
  SEM 9,2 7,8 9,9 11,5 11,6 6,0 
  

      
  

XP90MA mean (n=4) 100 91 67 58 47 47 
  SEM 1,7 3,6 7,0 8,1 6,4 1,9 
  

      
  

  
 

0 J/m² 3 J/m² 6 J/m² 9 J/m² 12 J/m² 15 J/m² 
XP89MA mean (n=4) 100 79 45 44 42 47 
  SEM 7,2 1,4 1,8 2,9 3,3 0,8 
 

Table A-11 Post-UV survival of XP-D fibroblasts at a density of 7500 cells in percent. 

7500 cells   0 J/m² 6 J/m² 12 J/m² 18 J/m² 24 J/m² 30 J/m² 
  

      
  

XP46MA mean (n=4) 100 95 79 64 53 52 
  SEM 5,6 3,2 1,0 2,5 2,3 3,8 
  

      
  

XP71MA mean (n=4) 100 75 61 47 49 46 
  SEM 5,1 4,3 3,1 6,5 1,3 13,1 
  

      
  

XP87MA mean (n=4) 100 80 70 70 68 61 
  SEM 4,1 3,1 4,3 1,4 2,2 3,5 
  

      
  

XP90MA mean (n=4) 100 83 68 54 48 48 
  SEM 2,8 1,5 1,7 2,0 1,9 4,6 
  

      
52 

  
 

0 J/m² 3 J/m² 6 J/m² 9 J/m² 12 J/m² 15 J/m² 
XP89MA mean (n=4) 100 88 36 28 20 25 
  SEM 0,5 2,4 5,1 2,7 7,5 4,4 
  

      
  

  
 

0 J/m²  4J/m² 8  J/m² 12 J/m² 16 J/m² 20 J/m² 
XP19MA mean (n=8) 100 71 53 30 19 n.d. 
  SEM 6,3 6,9 9,9 9,9 20,2 n.d. 
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XP40MA mean (n=8) 100 80 72 73 42 23 
  SEM 1,6 2,1 3,3 2,7 7,0 6,2 
 

Table A-12 Post-UV survival of XP-D fibroblasts at a density of 7500 cells in the presence of           

1 mM caffeine in percent. 

7500 cells,    0 J/m² 6 J/m² 12 J/m² 18 J/m² 24 J/m² 30 J/m² 
1mM caffeine 

      
  

  
      

  
XP46MA mean (n=4) 100 83 75 58 54 55 
  SEM 7,6 10,1 6,3 6,2 25,2 24,3 
  

      
  

XP71MA mean (n=4) 100 74 50 38 45 53 
  SEM 16,8 13,7 16,1 9,8 25,4 24,3 
  

      
  

XP87MA mean (n=4) 100 82 71 62 89 75 
  SEM 6,2 3,7 4,9 4,3 4,2 6,3 
  

      
  

XP90MA mean (n=4) 100 84 69 59 49 47 
  SEM 3,3 3,3 3,5 7,2 2,0 1,3 
  

      
  

  
 

0 J/m² 3 J/m² 6 J/m² 9 J/m² 12 J/m² 15 J/m² 
XP89MA mean (n=4) 100 78 32 32 34 38 
  SEM 6,9 1,8 7,8 5,1 1,4 5,0 
 

Table A-13 Post-UV survival of XP-G fibroblasts in percent.  

5000 cells   0J/m² 6J/m² 12J/m² 18J/m² 24J/m² 30J/m² 
  

      
  

XP40GO mean (n=4) 100 74 63 50 46 46 
  SEM 4,8 3,0 1,9 2,0 1,8 0,8 
  

      
  

5000 cells,  
      

  
1mM caffeine 

     
  

  
      

  
XP40GO mean (n=4) 100 99 93 87 87 82 
  SEM 5,9 11,3 8,5 10,6 8,3 7,6 
  

      
  

7500 cells 
      

  
XP40GO mean (n=4) 100 82 68 54 54 52 
  SEM 3,4 5,1 5,5 3,7 1,6 5,0 
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7500 cells, 
      

  
1mM caffeine 

     
  

  
      

  
XP40GO mean (n=4) 100 75 75 68 71 64 
  SEM 8,9 8,5 9,1 9,5 4,4 8,3 
  

      
  

  
      

  
5000 cells 

 
0J/m² 3J/m² 6J/m² 9J/m² 12J/m² 15J/m² 

  
      

  
XP72MA mean (n=4) 100 86 47 23 8 2 
  SEM 16,9 8,4 4,0 9,7 14,0 12,5 
  

      
  

5000 cells,  
      

  
1mM caffeine 

     
  

  
      

  
XP72MA mean (n=4) 100 90 37 15 1 0 
  SEM 8,8 2,8 3,7 10,9 15,5 0,0 
  

      
  

7500 cells 
      

  
XP72MA mean (n=4) 100 86 48 26 8 4 
  SEM 8,7 5,9 4,4 6,3 14,2 9,3 
  

      
  

7500 cells,  
      

  
1mM caffeine 

     
  

  
      

  
XP72MA mean (n=4) 100 76 29 13 2 1 
  SEM 5,6 4,5 11,1 4,0 16,1 38,0 
  

      
  

5000 cells 
 

0J/m² 4J/m² 8J/m² 12J/m² 16J/m² 20J/m² 
  

      
  

XP165MA mean (n=4) 100 54 3 0 0 0 
  SEM 6,6 13,2 23,1 0,0 0,0 0,0 
  

      
  

7500 cells 
      

  
  

      
  

XP165MA mean (n=4) 100 62 4 0 0 0 
  SEM 3,6 6,9 18,2 0,0 0,0 0,0 
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Data of relative NER capability of the primary human fibroblast cell cultures. Relative NER 
capability was determined with HCR (see 2.12.4.2.). HCR results of all twenty-three NER 
deficient and five wt primary fibroblast cell cultures analyzed during the thesis are listed in 
tables A-14 to A-17.  
 

Table A-14 Relative NER capability of wt fibroblasts 

wt  mean (n=3) SEM 
fibroblasts  repair norm. 
  

 
  

wt1 22,9% 2,3% 
  

 
  

wt2 22,4% 1,5% 
  

 
  

wt3 20,2% 5,1% 
  

 
  

wt4 41% 10,4% 
  

 
  

wt5 47,3% 15,1% 

 

Table A-15 Relative NER capability of XP-C fibroblasts 

XP-C mean (n=3) SEM 
fibroblasts repair norm.   
  

 
  

XP20MA 11,3% 1,2% 
  

 
  

XP20MA + XPC 23,6% 0,5% 
  

 
  

XP23GO 3,2% 0,6% 
  

 
  

XP47MA 4,6% 0,8% 
  

 
  

XP47 + pXPC 31,8% 12,3% 
  

 
  

XP98MA 4,6% 1,0% 
  

 
  

XP99MA  4,5% 0,9% 
  

 
  

XP102MA 0,9% 0,3% 
  

 
  

XP102MA + pXPC 2,1% 0,4% 
  

 
  

XP114MA  0,7% 0,1% 
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XP114MA + pXPC 4,2% 0,6% 
  

 
  

XP115MA 1,9% 0,4% 
  

 
  

X117MA  0,9% 0,5% 
  

 
  

XP117MA + pXPC 12,0% 5,5% 
  

 
  

XP150MA 1,7% 0,3% 
  

 
  

XP150 + pXPC 12,5 4,6% 
  

 
  

XP155MA 4,5% 0,2% 
  

 
  

XP155 + pXPC 11,9% 1,3% 
  

 
  

XP156MA 5,4% 0,5% 
  

 
  

XP156 + pXPC 21,3% 6,0% 
 

Table A-16 Relative NER capability of XP-D fibroblasts 

XP-D  mean (n=3) SEM 
fibroblasts repair norm. 
  

 
  

XP19MA 0,4% 0,1% 
  

 
  

XP19MA + pXPD 1,6 0,1% 
  

 
  

XP40MA 2,0% 0,5% 
  

 
  

XP40MA + pXPD 11,7% 1,6% 
  

 
  

XP46MA 4,7% 0,9% 
  

 
  

XP46MA + pXPD 45,7% 16,3% 
  

 
  

XP71MA 1,5% 0,4% 
  

 
  

XP71MA + pXPD 4,6% 1,0% 
  

 
  

XP87MA  0,6% 0,1% 
  

 
  

XP87MA + pXPD 28,4% 12,4% 
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XP89MA 0,4% 0,0% 
  

 
  

XP89MA +  pXPD 13,5% 0,9% 
  

 
  

XP90MA 0,7% 0,0% 
  

 
  

XP90MA + pXPD 14,2% 2,7% 
  

 
  

XP188MA 1,8% 0,2% 
  

 
  

XP188MA + XPD 5,1% 0,7% 
 

Table A-17 Relative NER capability of XP-G fibroblasts 

XP-G  mean (n=3)       SEM 
fibroblasts repair norm. 
  

 
  

XP40GO 1,6% 0,2% 
  

 
  

XP40GO + pXPG 21,4% 1,5% 
  

 
  

XP72MA 2,6% 0,2% 
  

 
  

XP72MA + pXPG 5,8% 3,2% 
  

 
  

XP165MA 0,6% 0,1% 
  

 
  

XP165MA + XPG 22,9% 3,0% 
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XP gene mRNA expression analysis of 75 NER deficient and nine wt primary human fibroblasts 
and list of the NER deficient primary human fibroblast cell cultures provided from University 
clinics Mannheim (MA) and Göttingen (GO). Expression of all seven XP genes (XPA to XPG) and 
the gene coding for DNA polymerase eta (XPV) was determined for all 75 NER deficient primary 
human fibroblasts with qRT-PCR (see 2.14.2.4.). Expression levels, listed in table A-18, were 
calculated relative to the mean mRNA expression level of nine wt fibroblast cell cultures set to 
100 %.  

Table A-18 List of NER deficient fibroblast cell cultures and mRNA expression of the XP genes 

of NER deficient fibroblast cell cultures as well as wild type fibroblast cell cultures in %  

Fibroblasts XPA XPB XPC XPD  XPE XPF XPG XPV 
          (DDB2)       
  

       
  

XP1MA 86,0 62,4 64,5 145,9 31,8 58,4 64,5 422,4 
XP4MA 125,0 109,2 12,0 101,6 171,3 95,7 128,0 262,4 
XP5MA 75,4 61,8 97,6 87,6 96,1 65,3 51,3 1,2 
XP6ma 166,2 82,4 219,2 52,4 109,7 74,8 85,2 73,0 
XP8MA 79,6 75,4 88,5 92,9 116,9 36,3 54,0 2,7 

XP11MA 91,1 82,1 84,5 106,4 68,5 38,6 44,3 29,7 
XP12MA 93,2 107,8 74,3 86,0 160,5 74,3 116,5 211,8 
XP15MA 40,5 84,1 8,3 113,8 169,2 60,9 111,0 108,6 
XP19MA 99,1 83,2 145,3 75,0 140,9 90,1 143,7 133,4 
XP20GO 93,1 80,7 114,9 111,7 77,6 57,1 66,0 1,8 
XP20MA 114,0 83,8 9,5 129,6 193,5 72,0 122,4 141,2 
XP23GO 117,7 50,1 20,0 101,4 83,8 80,0 93,9 83,5 
XP27GO 106,8 70,2 23,8 116,5 73,8 112,6 69,9 127,0 
XP27MA 107,6 85,1 127,7 85,1 149,8 77,7 98,4 0,0 
XP28GO 101,4 56,7 79,7 43,2 133,3 68,6 70,5 55,9 
XP28MA 104,5 119,7 85,6 94,8 180,1 128,5 121,1 134,2 
XP29MA 352,1 264,4 391,4 149,1 986,4 171,7 209,2 324,0 
XP29GO 173,6 121,8 31,7 52,3 240,2 205,4 160,8 187,9 
XP40GO 91,1 145,1 150,2 122,6 370,8 95,5 79,4 176,2 
XP31MA 62,8 78,9 113,4 78,0 81,6 57,7 61,3 31,3 
XP31GO 48,4 91,9 138,3 97,8 142,8 99,0 84,2 146,0 
XP32MA 142,8 142,3 283,6 109,0 222,0 84,2 138,4 98,1 
XP32GO 154,6 101,7 258,3 70,1 93,1 151,6 138,8 96,1 
XP35MA 105,0 120,7 172,2 95,5 164,7 134,7 124,5 178,6 
XP36MA 103,9 90,7 11,1 81,2 113,3 67,8 84,1 77,7 
XP40MA 106,7 81,1 188,3 79,3 96,2 62,4 85,1 125,3 
XP46MA 116,7 124,2 184,6 90,8 124,2 105,1 112,7 192,4 
XP47MA 148,7 161,3 274,1 120,0 176,0 130,7 133,3 177,7 
XP52MA 88,3 72,1 94,9 75,1 144,9 65,0 89,0 55,1 
XP58MA 100,7 85,6 13,3 111,2 154,1 74,5 92,5 193,1 
XP65MA 99,4 80,2 12,1 100,5 122,5 70,0 86,3 79,8 
XP67MA 0,0 0,0 90,0 0,0 62,3 0,0 35,2 0,0 
XP70MA 104,8 98,1 24,4 157,5 163,6 84,3 104,4 62,0 
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XP71MA 79,6 93,9 104,9 103,4 85,1 52,1 86,2 62,4 
XP72MA 155,7 116,1 265,6 119,5 198,7 108,9 93,1 185,2 
XP74MA 101,5 80,4 160,6 70,0 108,8 98,9 99,9 118,9 
XP76MA 71,1 72,6 63,6 110,1 135,4 65,9 69,5 1,2 
XP77MA 114,7 79,4 211,6 45,8 105,9 90,2 99,1 111,8 
XP87MA 117,5 74,3 58,7 90,3 83,5 56,9 60,8 83,6 
XP89MA 107,4 113,3 160,1 133,6 144,0 114,9 115,2 159,8 
XP90MA 85,1 113,8 165,5 151,3 253,2 85,0 101,0 38,9 
XP93MA 78,7 78,8 72,2 73,5 75,3 64,8 69,1 49,5 
XP98MA 95,1 80,3 10,9 68,9 102,4 61,0 77,3 78,9 
XP99MA 152,3 82,5 14,6 104,3 132,2 231,8 120,2 112,3 

XP102MA 75,6 102,5 12,7 114,6 120,2 146,6 105,9 43,4 
XP107MA 64,8 79,3 9,4 104,4 145,1 53,1 53,8 108,0 
XP114MA 88,3 79,3 13,3 91,6 65,5 105,6 96,0 68,9 
XP115MA 102,5 76,4 9,6 79,1 131,0 129,0 98,5 184,3 
XP117MA 140,9 88,2 20,1 79,6 180,7 116,6 113,7 169,5 
XP118MA 31,5 140,0 354,6 79,2 279,6 143,9 194,6 225,4 
XP131MA 252,2 103,0 178,8 1178,9 272,8 121,5 397,9 188,0 
XP134MA 164,4 136,0 14,4 126,9 106,3 124,8 117,4 158,3 
XP141MA 205,9 128,1 230,1 86,7 167,6 71,8 105,3 155,1 
XP148MA 71,9 102,1 93,0 69,5 117,3 58,3 70,7 135,0 
XP150MA 126,7 109,1 17,1 116,9 115,3 117,0 104,5 46,7 
XP151MA 138,7 108,6 48,3 44,0 88,5 112,7 98,4 95,2 
XP153MA 110,3 107,0 126,1 89,8 151,0 65,3 89,9 130,8 
XP155MA 148,2 77,5 10,0 53,0 99,8 125,4 101,6 56,9 
XP156MA 202,1 101,4 25,7 111,0 193,4 132,8 154,5 222,5 
XP163MA 92,9 102,1 85,5 58,3 104,3 85,4 73,1 121,8 
XP165MA  166,5 67,7 12,3 68,7 139,6 100,4 88,4 78,8 
XP168MA 89,2 49,9 8,4 75,4 105,3 45,4 63,3 80,3 
XP169MA 84,6 87,4 86,0 101,2 80,6 76,3 74,4 28,8 
XP170MA 76,6 93,8 83,0 89,7 62,1 114,9 68,2 54,8 
XP172MA 157,2 153,8 267,1 116,0 171,4 135,8 1,1 291,0 
XP174MA 86,4 83,8 0,0 88,3 105,8 87,8 72,7 106,9 
XP176MA 115,5 93,7 110,7 110,2 95,3 70,8 77,1 46,6 
XP183MA 103,4 67,2 144,6 107,6 133,5 89,2 101,5 23,5 
XP188MA 77,0 80,6 117,0 74,1 39,9 45,9 76,0 35,1 
XP189MA 95,4 110,4 122,7 40,4 142,2 98,3 87,6 155,8 
XP197MA 98,0 127,7 113,7 83,0 112,2 75,8 100,2 114,3 
XP199MA 65,1 89,4 65,7 78,2 62,0 44,3 57,2 15,7 
XP566MA 123,8 191,4 200,8 99,7 219,4 214,2 154,7 122,0 
XP606MA 130,6 83,0 105,3 126,0 171,4 111,0 111,6 171,5 
XP686MA  106,2 131,7 180,6 108,4 125,2 161,4 92,2 156,0 

wt1 96,9 143,8 119,3 200,8 133,7 121,8 122,5 244,2 
wt2 118,0 105,6 51,7 81,4 85,2 83,2 95,7 79,3 
wt3 74,1 109,9 90,4 94,5 89,1 91,4 101,9 23,6 
wt4 79,2 60,9 90,1 45,1 76,7 64,2 71,2 40,5 
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wt5 91,0 90,5 101,9 43,8 80,9 72,3 75,2 90,3 
wt6 97,9 97,3 138,8 139,2 93,9 71,9 82,2 147,2 
wt7 89,1 78,4 81,8 81,9 112,8 103,3 89,4 81,1 
wt8 127,3 102,9 35,4 112,0 95,8 137,8 116,2 65,2 
wt9 126,4 110,7 190,6 101,4 131,8 154,1 145,7 128,6 

 

 

Data of relative complementation ability of pXPGmut plasmids determined with HCR. Plasmids 
expressing modified XPG proteins according to the five novel XPG mutations identified during 
this thesis were generated by site directed mutagenesis and the complementation ability was 
tested applying HCR assay (see 2.12.4.2.).  

Table A-19 Relative NER capability of pXPGmut plasmids determined with HCR 

XP-G repair norm. SEM 
Fibroblasts mean (n=9)   
  

 
  

XP40GO 1,1% 0,1% 
  

 
  

 XP40GO + pXPG 32,2% 4,7% 
  

 
  

 XPXP40GO + 
pXPGL778P 12,8% 2,8% 
  

 
  

 XP40GO + pXPGQ150X 2,1% 0,2% 
  

 
  

 XP165MA 0,6% 0,1% 
  

 
  

 XP165MA + pXPG 11,1% 2,2% 
  

 
  

 XP165MA + pXPGG805R 1,4% 0,7% 
  

 
  

 XP72MA 0,7% 0,1% 
  

 
  

XP72Ma + pXPG 22,3% 11,1% 
  

 
  

 XP72MA +pXPGE727X 2,4% 1,4% 
  

 
  

XP72MA + pXPGW814S 7,3% 5,1% 
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