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Zusammenfassung 
 
Der globale Stickstoffkreislauf wurde in den letzten Jahrzehnten maßgeblich von anthropogenen 

Einflüssen – besonders der Produktion von reaktivem Stickstoff (N) – geprägt. In europäischen 

Grasländern ging der vermehrte Einsatz von Stickstoffdüngern mit einer Erhöhung der 

Mahdfrequenzen einher. Diese landwirtschaftliche Intensivierung hat Grasländer zu wichtigen 

Quellen für  Stickstoffverluste gemacht und zu einer Verminderung der Artenvielfalt geführt. Die 

Minimierung von Stickstoffverlusten bei gleichzeitiger Erhaltung von Bodenfruchtbarkeit und 

hohen Erträgen sind eine wichtige Herausforderung für die Graslandbewirtschaftung. Dies kann 

durch 1) eine effiziente Retention von bodenverfügbarem N im System Pflanze-Boden und 2) eine 

hohe N-Nutzungseffizienz (d.h. eine hohe pflanzliche Biomasseproduktion pro Einheit 

pflanzenverfügbaren Stickstoffs) erreicht werden. Die anthropogene Steigerung der Produktion von 

reaktivem N ist in der Fachliteratur umfassend dokumentiert. Das Verhältnis zwischen 

anthropogenen N-Einträgen und biologischer N-Fixierung ist jedoch unklar, da existierende Daten 

zur (asymbiotischen) N-Fixierung lückenhaft sind und nicht flächendeckend vorliegen.  

Das Ziel der vorliegenden Arbeit ist es, den Einfluss von Bewirtschaftungsformen und funktionaler 

Pflanzendiversität  auf N-Nutzungseffizienz, N-Verluste, N-Retentionseffizienz und asymbiotische 

biologische N-Fixierung in einem temperaten Grasland zu ermitteln. Ein dreifaktorielles 

Versuchsdesign mit drei Grasnarbenzusammensetzungen (mit unterschiedlichen Anteilen von 

Dicotyledonen und Monokotyledonen), zwei Mahdfrequenzen und zwei Düngeintensitäten wurde 

etabliert. Die N-Nutzungseffizienz wurde als Menge der geernteten Biomasse pro Einheit 

planzenverfügbaren Stickstoffs berechnet. Darüber hinaus wurde ein Index, der die N-

Retentionseffizienz als Ökosystemeigenschaft beschreibt und der N-Verluste in Relation zur Brutto-

N-Mineralisation (als einen Indikator für Bodenfruchtbarkeit) setzt, entwickelt. Die asymbiotische 

biologische N-Fixierung wurde an ungestörten Bodenkernen mit der Acetylenreduktionsmethode 

bestimmt. Dabei wurden Feld- und Laborinkubationen sowie eine Kalibration der 

Acetylenreduktionsmethode mit direkten, auf  15N2 Markierung basierenden Messungen, 

durchgeführt. 

Die Ergebnisse zeigen, dass Düngung der einflussreichste der Faktoren ist und sowohl  die 

N-Nutzungseffizienz als auch die mikrobielle N-Immobilisation verringert. Folglich resultiert 

Düngung in höheren N-Verlusten und einer niedrigeren N-Retentionseffizienz. Intensives Mähen 

kann dabei teilweise den durch Düngung verursachten höheren N-Verlusten entgegenwirken. Die 

unbehandelte Kontrollvegetation, die sich im Laufe jahrzehntelanger extensiver Bewirtschaftung 

entwickelt hat, weist neben der höchsten N-Nutzungseffizienz auch die höchste N-

Retentionseffizienz auf. Dies kann teilweise durch eine komplementäre Resourcennutzung erklärt 

werden, ist aber auch eine Folge von Unterschieden in der mikrobiellen Immobilisation von 
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Ammonium, die den Ergebnissen zufolge der wichtigste Mechanismus für eine effiziente N-

Retention im System Pflanze-Boden ist. Die N-Retentionseffizienz berücksichtigt diesen 

Mechanismus und ist daher ein wichtiger Faktor für die Bewertung der Nachhaltigkeit von 

Graslandbewirtschaftungspraktiken. Die integrierende Betrachtung von N-Nutzungseffizienz und 

N-Retentionseffizienz  berücksichtigt Biomasseerträge, Brutto-N-Mineralisation als einen Indikator 

für Bodenfruchtbarkeit und umweltschädliche N-Verluste. Demzufolge sind N-Nutzungseffizienz 

und N-Retentionseffizienz geeignete Parameter für die Bewertung der Nachhaltigkeit von 

Grünlandbewirtschaftungspraktiken, welche von Landwirten zur Profitmaximierung praktiziert 

werden.   

Die Ergebnisse zeigen weiterhin, dass asymbiotische biologische N-Fixierung mit Mengen 

zwischen 1.5 und 4.9 kg ha-1 yr-1 in den oberen 5 cm des Bodenprofils eine signifikante N-Zufuhr 

darstellen kann. Düngung mit N und Phosphor (P) verringert dabei die asymbiotische biologische 

N-Fixierung. Potentiell positive Auswirkungen einer höheren P-Verfügbarkeit werden anscheinend 

von negativen Auswirkungen höherer Konzentrationen an mineralischem N unterdrückt. Häufiges  

Mähen  fördert die asymbiotische biologische N-Fixierung, was wahrscheinlich auf eine erhöhte 

Rhizodeposition zurückzuführen ist. Die 15N2 Kalibration zeigt darüber hinaus, dass 

Umrechnungsfaktoren zwischen Acetylenreduktion und N2-Fixierung erheblich niedriger als der 

stöchiometrische Wert von drei sein können. Laborinkubationen mit erhöhter Bodenfeuchtigkeit 

und Temperatur führten zu einem starken Anstieg der asymbiotischen biologischen N-Fixierung. 

Bisherige Schätzungen der asymbiotischen biologischen N-Fixierung sind daher möglicherweise 

fehlerhaft. Die Ergebnisse zeigen, dass die asymbiotische biologische N-Fixierung für intensiv 

bewirtschaftete landwirtschaftliche Ökosysteme von untergeordneter Bedeutung ist. Global ist sie 

jedoch vermutlich ein wichtiger Pfad der biologischen N-Fixierung und trägt damit signifikant zur 

nicht-anthtropogenen Stickstofffixierung bei. 
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Summary 
 
Human activity had a huge impact on the global nitrogen (N) cycle in the last decades, mainly 

through an increase in the production of reactive N. In European grasslands, the increased use of N 

fertilizers was accompanied by increased mowing frequencies. This agricultural intensification 

made grasslands important sources of N losses and caused a decrease in biodiversity. Minimizing N 

losses and maintaining both soil quality and high yields at the same time is an important challenge 

in grassland management. This can be achieved through 1) an efficient retention of soil available N 

in the plant-soil system and 2) a high N response efficiency (NRE; i.e. a high plant biomass 

production per unit of plant-available N). The anthropogenic increase in the production of reactive 

N has been reviewed extensively. However, the comparison between anthropogenic N sources and 

biological N fixation (BNF) is difficult because existing data on (asymbiotic) BNF are incomplete 

and spatially unresolved.  

In the present study, our goal was to assess how management practices and sward functional 

diversity affect NRE, N losses, N retention efficiency and asymbiotic BNF in a temperate grassland. 

A three-factorial design was employed: three sward compositions (differing in species richness and 

the proportion of dicots and monocots), two mowing frequencies, and two fertilization treatments. 

NRE was calculated as the amount of harvested biomass per unit of plant-available N. Additionally, 

we developed an index that describes N retention efficiency as an ecosystem property and that 

relates N losses to gross N mineralization as an index for soil fertility. Asymbiotic BNF was 

measured on intact soil cores incubated separately in the field and in the lab using the acetylene 

reduction assay calibrated against direct measurements with 15N2 label. 

Fertilization was the dominant factor decreasing NRE and microbial N immobilization. 

Consequently, fertilization resulted in higher N losses and lower N retention efficiency. Intensive 

mowing partly reduced the high N losses following fertilization. Untreated control swards that have 

developed under decades of extensive management practices had the highest NRE and N retention 

efficiency. This pattern could be partly explained by complementary plant resource use. At the same 

time, it was also the result of the differences in microbial immobilization of ammonium which was 

the most important mechanism for an efficient N retention in the plant-soil system. N retention 

efficiency considers this pathway and thus, is a critical factor to consider when evaluating the 

sustainability of grassland management practices. The combined consideration of NRE and N 

retention efficiency provides a tool that accounts for biomass yield, gross N mineralization as a 

measure for soil fertility, and N losses to the environment. Thus, NRE and N retention efficiency 

are appropriate tools to evaluate the sustainability of grassland management practices which farmers 

employ to maximize profit. 

12 
 



 

Our results showed that asymbiotic BNF can provide significant N inputs between 1.5 and 4.9 kg 

ha-1 yr-1 in the top 0.05 m of the soil profile. Fertilization with N and P decreased asymbiotic BNF. 

Potentially positive effects of a higher P availability were probably counteracted by negative effects 

of higher mineral N concentrations. Intensive mowing stimulated asymbiotic BNF most likely 

through an increase in rhizodeposition. Moreover, the 15N2 calibration showed that the conversion 

factor between acetylene reduction and N2 fixation can be considerably lower than the 

stoichiometric value of three. Lab-incubations under increased moisture and temperature conditions 

led to a strong increase in asymbiotic BNF. Previous estimates of asymbiotic BNF may thus, be 

substantially biased. Our study showed that asymbiotic BNF is of minor importance for intensively 

managed agricultural ecosystems. However, it may be an important pathway for BNF on a global 

scale that may substantially contribute to the amount of N fixed in the absence of human activities. 

 

 

 

 

 

 

 

 

 

 

13 
 



 

 

1 GENERAL INTRODUCTION 
 

 

         © Laura Rose 

 

 

 

 

 

 

 

 

14 
 



 

1.1 Anthropogenic alterations of the nitrogen cycle 
 
Nitrogen (N) is one of the most important plant nutrients that limits net primary productivity in 

most ecosystems (Vitousek and Horwarth 1991). Molecular dinitrogen (N2) is the most abundant 

gas in the atmosphere with a proportion of 78%. This unreactive N, however, is not available for 

most organisms (Vitousek et al. 1997). In the absence of human influences, N2 can be transformed 

into reactive forms and consequently introduced to the plant-soil system through biological N 

fixation (BNF) and N fixation by lightnings (Cleveland et al. 1999). Human activity, however, had a 

huge impact on the global N cycle in the last decades. The anthropogenic production of reactive N 

has more than doubled N fixation and is considered to be the most important anthropogenic change 

to the N cycle (Vitousek et al. 1997). The growing global population has led to agricultural 

intensification and an increase in the production of synthetic N fertilizers (Haber Bosch process) - a 

trend expected to continue in the future (Galloway et al. 2008). 

N fertilizers have remarkably contributed to an increasing food production in the last decades 

(Smil 2001). However, an intensive use of synthetic N fertilizers goes along with negative 

environmental impacts that cannot be disregarded. For instance, in croplands only 50% of all 

anthropogenic N inputs worldwide are taken up by harvested plants and their residues (Smil 1999). 

Consequently, large proportions can be lost from the plant-soil system through nitrate (NO3
-) 

leaching or gaseous emissions (e.g. nitrous oxide (N2O)). NO3
- can be a threat for groundwater 

quality and cause Methemoglobinemia when it is taken up with drinking water (Di and Cameron 

2002, Schlesinger 2009). Impacts on human health other than that - including reproductive risks and 

cancer - are being discussed as well (Ward et al. 2005). Moreover, NO3
- can contribute to the 

eutrophication of surface water bodies (Di and Cameron 2002). The European Union (EU), through 

directive 91/676/EEC, set the threshold of nitrate concentration in groundwater at 50 mg NO3
- L-1 

(European Economic Community 1991). The European Commission reported that 15% of the EU 

groundwater monitoring stations found concentrations above this threshold between 2004 and 2007 

(European Union 2010). On the other hand, N2O is an important greenhouse gas. Its global 

warming potential is 298 times higher than that of carbon dioxide (CO2) (IPCC 2007), and it 

contributes to the depletion of stratospheric ozone (Di and Cameron 2002, Schlesinger 2009). 

Atmospheric concentrations of N2O increased from 270 parts per billion (ppb) in pre-industrial 

times to 319 ppb in 2005 (IPCC 2007). Minimizing these N losses to the environment while 

maintaining soil quality and high yields is one of the most important challenges in agriculture. This 

can be achieved through 1) an efficient retention of soil available N in the plant soil system and 2) a 

high N response efficiency (NRE; i.e. a high plant biomass production per unit of plant-available N). 

NRE is the key link between agricultural management and biogeochemical N cycling. It is a 

measure for ecosystem functioning that integrates productivity and N retention (Hiremath and Ewel 
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2001). It accounts for the efficiency of plant-N-uptake from the soil and biomass production per 

unit of N once it is taken up by plants (Bridgham et al. 1995). Since a high NRE reflects an efficient 

N uptake and thus a high retention of N in plants, it is negatively correlated with N losses. In 

contrast to the sole consideration of N losses as absolute values, N retention efficiency relates N 

losses to the amount of N that is actively cycling in the soil and integrates both soil fertility and N 

losses. Previously used indices that describe this ecosystem property (Aber et al. 1998), however, 

only account for “external” N inputs (i.e. fertilization and N deposition) and do not consider N that 

is made available by mineralization of organic matter - the primary source of plant biomass N 

(Mulvaney et al. 2009) crucial to biomass production. 

The anthropogenic increase in the creation of reactive N has been reviewed extensively (e.g. 

Galloway et al. 2008). The comparison between anthropogenic N sources and BNF (the most 

important process creating reactive N in the absence of humans) is, however, problematic. Existing 

data on BNF are incomplete and spatially unresolved. It is also unclear how BNF has changed from 

pre-industrial times to today (where it may be influenced by changes in agricultural management or 

N deposition). This makes it difficult to estimate the degree of human influences and restricts the 

ability to predict future changes to the N cycle (Cleveland et al. 1999, Reed et al. 2011). 

Consequently further research on BNF rates in managed and natural ecosystems is necessary 

(Cleveland et al. 1999, Reed et al. 2011). Especially for ecosystems other than crop-production 

systems, knowledge about the magnitude as well as the ecological controls of BNF are sparse 

(Vitousek et al. 1997). While symbiotic BNF is the major pathway for BNF in most ecosystems, 

asymbiotic BNF may be an important N source in ecosystems where legumes are not abundant. 

Existing data suggests that asymbiotic BNF may be important in temperate grasslands. However, 

estimates on asymbiotic BNF in temperate grasslands are variable (Cleveland et al. 1999, Reed et al. 

2011) and most of the few available studies these estimates are based on have methodical 

shortcomings. 

1.2 Temperate grasslands–management and consequences for the N cycle 
 
Grasslands cover between 20 and 40% of the earth’s land area (FAO 2008). European grasslands 

have been subject to agricultural intensification (i.e. increased use of N fertilizers and increased 

mowing frequency) in the last decades (Isselstein et al. 2005). In particular, the increase in the use 

of N fertilizers made grasslands important sources for NO3
- leaching and N2O emissions (Rees and 

Ball 2010). In contrast, decreasing N2O emissions following mowing have been reported (Niklaus 

et al. 2001) and can be attributed to higher plant N uptake and productivity (Kammann et al. 1998, 

Ferraro and Oesterheld 2002). Besides these direct effects, grassland management practices may 

also indirectly affect N losses through changes in sward compositions and biodiversity. Agricultural 

16 
 



 

intensification has led to a dramatic decrease in grassland biodiversity (e.g. Isselstein et al. 2005, 

Tscharntke et al. 2005). These biodiversity losses may have profound consequences for ecosystem 

functioning. For example, decreasing productivity with decreasing biodiversity as a consequence of 

complementary and more efficient resource use in diverse plant communities has been reported in 

several grassland studies (e.g. Tilman et al. 1996, Hector et al. 1999, Weigelt et al. 2009). 

Interspecific differences in rooting depths, preferred forms of N taken up, and phenology in diverse 

plant communities may be the underlying mechanisms (e.g. Hooper and Vitousek 1998).  

Accordingly, increases in soil mineral N concentrations caused by decreasing plant diversity have 

been demonstrated (e.g. Ewel et al. 1991, Tilman et al. 1996, Niklaus et al. 2001). Interpretation of 

soil mineral N concentrations in terms of N losses are, however, restricted (Scherer-Lorenzen et al. 

2003) and there are only few studies that directly quantified N losses as a function of plant-diversity 

(Hooper and Vitousek 1998, Scherer-Lorenzen et al. 2003). In addition, most of the studies 

investigating the effect of grassland biodiversity on productivity and N losses have been carried out 

in artificial and intensively weeded grassland communities making it difficult to compare with 

permanent managed grasslands (Caliman et al. 2010, Wrage et al. 2011). No studies have been 

conducted on the effects of agricultural management and biodiversity on N response efficiency and 

N retention efficiency in temperate permanent managed grasslands. 

Asymbiotic BNF may also be affected by grassland management practices. Negative effects 

of N fertilization have been reported by several studies (e.g. Vlassak et al. 1973) and are related to 

an inhibition of nitrogenase, the enzyme complex that catalyzes BNF – by ammonium (NH4
+) and 

nitrate (NO3
-) (Yoch and Whiting 1986, Bottomley and Myrold 2007). Besides that, positive effects 

of phosphorus (P) fertilization have been reported and attributed to high ATP requirements of the 

BNF process (e.g. Reed et al. 2007). However, the roles of the elements N and P as factors 

controlling asymbiotic BNF are still under discussion (Reed et al. 2011). Due to their contradicting 

effect, N:P ratios maybe better predictors for asymbiotic BNF than absolute abundances of N or P 

(Eisele et al. 1989). So far, no study testing the effect of combined fertilization with N and P under 

field-conditions is available. The effect of mowing on asymbiotic BNF in temperate grasslands has 

also not yet been tested. Plant-defoliation, which occurs during mowing, can increase 

rhizodeposition (Holland et al. 1996) and the amount of available carbon (C) for soil 

microorganisms. Since asymbiotic heterotrophic BNF is an energy-intensive process, it may be 

stimulated by such C inputs (Bürgmann et al. 2005).  

 

 

 

17 
 



 

1.3 The GRASSMAN project 
 
The interdisciplinary grassland management project „GRASSMAN“ was established in 2008 on a 

permanent grassland site in the Solling uplands, Lower Saxony, Germany (51°44'53''N, 9°32'42''E) 

in an elevation of 490 m above sea level (Fig. 1). Presently this site belongs to the experimental 

farm Relliehausen. Mean annual temperature and precipitation are 6.9°C and 1028 mm, respectively 

(Deutscher Wetterdienst 1961 – 1990). Prior to the experiment, the vegetation was clasified as a 

montane, semi-moist Lolio-Cynosuretum (Petersen et al. 2011). The dominating soil type – a haplic 

Cambisol (IUSS Working Group WRB 2006) with a loamy silt texture – has developed on a loess 

layer overlaying the middle Buntsandstein formation. The site has been used for hay-making and 

cattle grazing since at least 100 years (Geological Map of Prussia (based on the topographic 

inventory 1896), topographic maps of Sievershausen and Neuhaus/Solling 1924, 1956 and 1974)). 

In the last 50 years, the site received moderate fertilizer applications (80 kg N ha-1 yr-1), occasional 

lime applications and overseeding with high value forage species (farm records of Relliehausen 

since 1966). Fertilization stopped two years before the experiment. In 2008, the experiment started 

as a three-factorial design with the factors fertilization, mowing frequency and sward composition. 

Since then, half of the plots were fertilized with 180 kg N ha-1 yr-1, 30 kg P ha-1 yr-1 and 100 kg K 

ha-1 yr-1. Mineral N fertilization (calcium ammonium nitrate N 27, ICL fertilizers Deutschland 

GmbH, Ludwigshafen, Germany) was applied in two equal applications per year (April and 

May/June). P and K fertilizer was applied once per year in June (2009: Thomaskali® (K+S KALI 

GmbH, Kassel, Germany); 2010-2012: PK+ Dünger (ICL Fertilizers Deutschland GmbH, 

Ludwigshafen, Germany)). Two mowing frequencies (once and three times per year) were 

established. Mowing was conducted in July for plots cut once and in May, July and September for 

plots cut three times per year with a  Haldrup © forage combine harvester (cutting height: 7 cm). 

Three sward compositions were established by applying herbicides. A herbicide mixture against 

dicotyledons (Starane® (active ingredients: Flouoxypyr and Triclopyr)) and Duplosan KV (active 

ingredient: Mecoprop-P®)) resulted in a sward with enhanced proportions of monocotyledons and a 

significantly lower number of species (12-13 species; 91-93% grasses, 7-9% herbs; hereafter 

referred to as monocot-enhanced) and a herbicide mixture against monocotyledons (Select 240 

EC® by Stähler (active ingredient: Clethodim)) resulted in a sward with enhanced proportions of 

dicotyledons (17 species; 40-47% grasses, 49-53% herbs, 4-9% legumes, hereafter referred to as 

dicot-enhanced ) relative to the control sward (16-18 species; 68-76% grasses, 21-31% herbs, 1-4% 

legumes) (Petersen et al. 2011). The experiment was set up as a full-factorial design. The 

combination of the three treatment factors (fertilization, mowing, sward composition) resulted in 

twelve different treatment combinations. Each treatment combination was replicated six times. The 

resulting 72 plots (15 m x 15 m each) were arranged in a Latin Rectangle (Fig. 2).   
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Figure 1: Location of the GRASSMAN experimental site in the Solling uplands, Lower Saxony, Germany. Maps: 
Amtliche topographische Karte 1:50.000 (© Landesvermessungsamt NRW, Bundesamt für Kartographie und Geodäsie 
2000);  Orohydrographische Karte 1:2.500.000 (© Bundesamt für Kartographie und Geodäsie). 
 

 
Figure 2: Experimental design of the GRASSMAN experiment. 
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1.4 Objectives and hypotheses 
 
The aim of this study was to test the influence of grassland management practices (fertilization and 

mowing frequency) and plant functional group composition on NRE, N losses, N retention 

efficiency and asymbiotic BNF in a temperate managed grassland site. We aimed to develop a new 

index that describes N retention efficiency as an ecosystem property and relates N losses to the 

amount of all N actively cycling in the soil.  

 

The following hypotheses were tested in three different studies: 

 

Study I: Nitrogen response efficiency of a managed and phytodiverse temperate grassland 

 

Hypotheses: 

• N fertilization decreases NRE 

• frequent mowing increases NRE 

• NRE is highest in swards with even proportions of dicotyledons and monocotyledons and 

high species richness 

 

Study II: Nitrogen retention efficiency and nitrogen losses of a managed and phytodiverse 

temperate grassland 

 

Hypotheses: 

• N fertilization decreases N retention efficiency (and consequently increases N losses) 

• frequent mowing decreases N losses 

• N retention efficiency is highest in swards with even proportions of dicotyledons and 

monocotyledons and high species richness 

   

Study III: Asymbiotic biological nitrogen fixation in a temperate grassland under different 

fertilization and mowing treatments 

 

Hypotheses:  

• combined fertilization with N and P decreases asymbiotic BNF 

• frequent mowing increases asymbiotic BNF 
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Abstract 
Aims 

Our goal was to assess how management and sward functional diversity affect nitrogen response 

efficiency (NRE), the ratio of plant biomass production to supply of available nitrogen (N) in 

temperate grassland.  

Methods 

A three-factorial design was employed: three sward compositions, two mowing frequencies, and 

two fertilization treatments.  

Results 

NRE was largely influenced by fertilization followed by mowing frequency and sward composition. 

NRE was larger in unfertilized than fertilized plots, in plots cut thrice than plots cut once per year, 

and in control swards than in monocot- or dicot-enhanced swards. Fertilization decreased NRE 

through decreases in both N uptake efficiency (plant N uptake per supply of available N) and N use 

efficiency (NUE, biomass produced per plant N uptake) whereas mowing frequency and sward 

composition affected NRE through N uptake efficiency rather than NUE. The largest NRE in the 

control sward with 70% monocots and 30% dicots attests that these proportions of functional 

groups were best adapted in this grassland ecosystem. 

Conclusions 

Optimum NRE may not be a target of most farmers, but it is an appropriate tool to evaluate the 

consequences of grassland management practices, which farmers may employ to maximize profit, 

on environmental quality. 
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2.1 Introduction 
 
Nutrient response efficiency, the amount of biomass produced per unit of plant-available nutrients 

(Pastor and Bridgham 1999), is a measure of ecosystem functioning that integrates productivity and 

the retention of nutrients (Hiremath and Ewel 2001). In terrestrial ecosystems where nitrogen (N) is 

limiting net primary productivity (Vitousek and Howarth 1991), the efficient use of available N 

may give communities a competitive advantage over communities that are less efficient in using N 

(Bridgham et al. 1995). There is no common agreement about the definitions of nitrogen response 

efficiency (NRE) and nitrogen use efficiency (NUE) in literature (Xu et al. 2012; Aerts 1990; 

Vitousek 1982). In our study, NRE is calculated as the product of N uptake efficiency (defined as 

plant N concentration x plant biomass ÷ soil available N) and NUE ( defined as plant biomass ÷ 

plant N concentration x plant biomass), two indices that are commonly used to evaluate the role of 

N in ecosystem productivity (Pastor and Bridgham 1999). However, both indices give an 

incomplete picture of how N availability affects biomass production. A large NUE does not 

necessarily reflect a large productivity because NUE can increase or decrease if the plant N 

concentration changes even if plant biomass stays the same. NUE is also often not well correlated 

with soil N availability (Iversen et al. 2010). Similarly, N uptake efficiency does not directly 

indicate productivity as it is influenced by changes in plant N concentration. In contrast, NRE is an 

index that reflects the ability of plants to acquire N from the soil and to use it for biomass 

production once it is taken up (Bridgham et al. 1995), and thus it is a better index if biomass 

production is the main goal (as is the case in most temperate grasslands). Since a large NRE 

indicates a large biomass production per unit of soil available N and thus a large N retention in 

plants, it is inversely correlated with N lost, e.g. through nitrate (NO3
-) leaching and gaseous N 

emissions. A large NRE may thus contribute to the reduction of reactive N in the soil, which affects 

water and air pollution as well as the emission of greenhouse gases (Dobermann 2005). 

Pastor and Bridgham (1999) developed a general model of NRE showing maximum 

efficiency at intermediate levels of N availability. In their model, productivity (PN supply) at a given 

level of available N (i.e. N supply in the environment) is defined as: 

PN supply = N supply * (P ÷ N supply) + 0               (Eq. 1) 

In this model, NRE is the slope of a line from the origin to a given point of the function that 

describes the relationship between productivity and N supply (Pastor and Bridgham 1999). This 

implies that NRE changes with N supply and depends on the shape of the function in Eq. 1. If the 

relationship between productivity and N supply is linear, NRE is constant across a gradient of N 

supply. However, a linear relationship over a wide range of N supply is unlikely given the 

observation that no further increase in productivity occurs at high levels of N availability (Pastor 

and Bridgham 1999). Studies that investigated the relationships between NRE and soil N 
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availability found increases in NRE as soil N availability declined in an experimental plantation of 

tropical trees (Hiremath and Ewel 2001; Yuan et al. 2006). Bridgham et al. (1995) gave a 

mathematical proof that nutrient response efficiency has to be unimodal across broad ranges of 

nutrient supply. However, the unimodal efficiency has not been observed for N so far and is 

debatable (Yuan et al. 2006). A monotonic increase of NRE with decreasing soil N availability was 

observed by Yuan et al. (2006) for Mongolian grassland. 

NRE can be influenced by management practices and plant diversity through their effects on 

N availability, uptake efficiency and NUE. Management practices commonly employed in 

grasslands are fertilization and mowing. Fertilization directly influences N availability. 

Furthermore, mowing removes available N from the ecosystem through the mown biomass. In 

systems with large nutrient availability, mowing may mitigate the negative effects of nutrient 

enrichment on plant diversity by removing excess nutrients (Ellenberg and Leuschner 2010; Pykälä 

2000). Mowing can also lead to a denser root system in the top soil by increasing the root-to-shoot-

ratio and thus causing a more effective plant N uptake (Kammann et al. 1998; Mooney and Winner 

1991). In contrast, an increase in allocation of resources to the shoots (Guitian and Bardgett 2000) 

as well as a decrease in root biomass following defoliation have been reported by other studies 

(Dawson et al. 2000; Holland and Detling 1990). Mikola et al. (2009) also reported that even for 

grazed grasslands defoliation is the most important mechanism explaining grazing effects on plant 

attributes while excreta return play only a minor role. To date, there are no published studies on 

how N fertilization, mowing frequency and their interactions affect NRE of temperate grasslands, 

and thus the present study is the first to report such pattern. 

Apart from direct effects, management practices may also affect NRE through a change in 

species composition of the sward. In the past six decades, European grasslands have undergone 

many changes in management (e.g. increased fertilizer input and mowing frequency, or 

abandonment from agricultural use) that had profound consequences for biodiversity (Isselstein et 

al. 2005). The impact of plant diversity on nutrient uptake, productivity and NRE has been subject 

of several studies. Hiremath and Ewel (2001) reported an increase in N uptake efficiency with 

increase in life-form diversity for a tropical tree plantation. Several studies showed that more 

diverse grasslands were more productive (e.g. Hector et al. 1999; Tilman et al. 1996; Weigelt et al. 

2009) with an increased nutrient retention from more diverse grassland ecosystems (Tilman et al. 

1996). Furthermore, van Ruijven and Berendse (2005) observed an increase in productivity and 

NUE with increasing species richness. These studies, however, were conducted in experimentally-

established plots that were weeded intensively, or in microcosms, making them difficult to compare 

with results from permanent grasslands where no clear effect of biodiversity on productivity has yet 

been demonstrated (Wrage et al. 2011). This may be due to the larger species richness in permanent 
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grassland compared to many studies where diversity effects were largest at species richness levels 

smaller than five species (Wrage et al. 2011). Although Flombaum and Sala (2008) reported a 

larger effect of plant biodiversity on productivity in a natural grassland ecosystem compared to 

artificial ecosystems, their study only included a biodiversity gradient of one to six species, which is 

still considerably lower than managed, temperate grasslands with 10 to 60 plant species (Wrage et 

al. 2011). So far no studies on the impact of management practices, sward composition and their 

interactions on NRE in agriculturally-managed, permanent grassland have been published. As the 

efficiency with which grasslands use available N for biomass production is the key link between 

management and biogeochemical N cycling, our goal was to evaluate how NRE changes as a 

function of different management practices and sward compositions in an agriculturally-managed, 

permanent grassland site. We measured NRE of a grassland site that was managed according to 

local practices in the Solling Mountains (Lower Saxony, Germany). Here, we only considered the 

harvestable, aboveground biomass because our study focuses on agricultural management practices. 

Plant functional group diversity was manipulated by herbicide treatments, resulting in dicot-

enhanced swards with nearly equal proportions of dicots and monocots, control swards with ~70% 

monocots and ~30% dicots, and monocot-enhanced swards with ~90% monocots and ~10% dicots. 

Species richness was significantly smaller in the monocot-enhanced swards compared to the control 

swards (Petersen et al. 2011). N supply (used as the measure of N availability in the environment) 

was defined as the sum of soil net N mineralization rates during the growing season, N deposition 

from bulk precipitation, and fertilizer addition rates. We tested the following hypotheses: 1) 

unfertilized plots have larger NRE than fertilized plots, 2) plots with high mowing frequency have 

larger NRE than plots with low mowing frequency, and 3) NRE increases with increasing number 

of species (i.e. monocot-enhanced swards (12-13 species) < dicot-enhanced (17 species) and control 

swards (16-18 species)). 

2.2 Material and methods 

2.2.1 Study site 
 
This interdisciplinary research project, grassland management experiment or GRASSMAN, was 

conducted at the experimental farm of the University of Göttingen on a moderately species-rich 

grassland in the Solling Mountains in Lower Saxony, Germany (51°44'53''N, 9°32'42''E, 490 m 

above sea level). This permanent grassland site has traditionally been used as a pasture for hay 

making or for grazing (Geological Map of Prussia 1910 (based on the topographic inventory of 

1896); topographic maps of Sievershausen and Neuhaus/Solling 1924, 1956 and 1974; 

Braunschweigische Landesaufnahme 18th century). In the last five decades, the study site was 

managed with moderate fertilization (80 kg N ha-1 yr-1), liming, overseeding with high value forage 
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species and cattle grazing (farm records of Relliehausen since 1966). Fertilization stopped two years 

before our experiment started. Vegetation consists of a montane, semi-moist Lolio-Cynosuretum. 

Mean annual precipitation is 1028 mm and mean annual temperature is 6.9°C (Deutscher 

Wetterdienst, 1961 – 1990, station Holzminden-Silberborn, 440 m above sea level). During the 

study period, mean annual temperature and annual precipitation were 8.4°C and 1001 mm in 2009 

and 8.0°C and 1110 mm in 2010. The dominating soil type is a Haplic Cambisol, developed on 

sediments of loess on the Middle Buntsandstein formation with a loamy silt texture. 

2.2.2 Experimental set up 
 
The study had a three-factorial design: three sward compositions, two mowing frequencies and two 

fertilization treatments. In June 2008, we established three sward compositions by applying a 

herbicide mixture against dicotyledons (Starane® (active ingredients: Fluoroxypyr and Triclopyr) 

and Duplosan KV (active ingredients: Mecoprop-P®)) resulting in a sward with reduced 

proportions of herbs and legumes, a herbicide mixture against monocotyledons (Select 240 EC® by 

Stähler (active ingredients: Clethodim)) resulting in a sward with reduced proportions of grasses, 

and an untreated control sward. Hereafter, we refer to these sward compositions as monocot-

enhanced (12-13 species; 91-93% grasses, 7-9% herbs and 0% legumes) and dicot-enhanced (17 

species; 40-47% grasses, 49-53% herbs and 4-9% legumes) relative to the control sward (16-18 

species; 68-76% grasses, 21-31% herbs and 1-4% legumes) (Petersen et al. 2011). In 2008, all 

experimental plots were mown, and fertilized plots received 50 kg N ha-1. The experiment started in 

spring 2009 with two mowing frequencies (once per year in July and thrice per year in May, July 

and September) as well as two fertilization treatments (180 – 30 – 100 kg NPK ha-1 yr-1 and no 

fertilization). The N fertilizer (calcium ammonium nitrate N27) was split into two equal 

applications per year (April and May 2009 and April and June 2010) while the combined P and K 

fertilizer was applied once a year (June 2009 and 2010). The experimental treatments were set up 

with 6 replicates in a full factorial design (72 plots; 15 m x 15 m each) arranged in a Latin 

rectangle. 

2.2.3 Soil characteristics 
 
Soil characteristics (Table 1) were determined in spring 2008 (chemical and texture analyses) and 

summer 2009 (bulk density). At nine sampling points per plot, mineral soils (0.01-0.1 m depth) 

were sampled, pooled, oven-dried (40°C) for a week and sieved (2 mm). Particle size distribution 

was determined by wet sieving (>20 <630 µm) and pipette methods (≤20 µm) after pre-treatment 

with 30% H2O2 and 4% Na-dithionite-citrate solution to remove organic matter and iron oxides 

(Schlichting et al. 1995). Soil bulk density was determined by soil core method (Blake and Hartke 
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1986). Cation exchange capacity (CEC) was determined using the method of 0.1 M BaCl2 

percolation (König and Fortmann 1996) and measuring cations in percolates using Inductively 

Coupled Plasma - Optical Emission Spectrometry (Optima 3000 XL, Perkin Elmer, Rodgau, 

Germany). Base saturation was determined as the percentage exchangeable base cations of the 

CEC. Soil pH was measured from soil:water suspension (ratio of 1:2). Total C and N concentrations 

were determined from ground soils using a CN elemental analyzer (Elementar Vario EL III, Hanau, 

Germany). 
 

Table 1: Soil characteristics in the Ah horizon (0.01-0.1 m) of a Haplic Cambisol of a grassland site in the Solling 
Mountains, Germany. 
Physical and chemical* properties Mean SE n 

Sand (%) 21.62 1.2 18 

Silt (%) 66.53 1.3 18 

Clay (%) 11.85 0.8 18 

Bulk density (g cm-3) 0.79 0.01 72 

Cation exchange capacity (mmolc kg-1)  169.00 5.2 72 

Base saturation (%)  37.18 1.4 72 

pH (1:2 H2O)  5.34 0.03 72 

Carbon : Nitrogen ratio  12.60 0.04 72 
* Soil chemical data were provided by the Department of Plant Ecology, University of Göttingen
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2.2.4 Biomass yield and plant N uptake 
 
Data of aboveground biomass was reported by From et al. (2011) (see Appendix 1). The 

grassland was mown in mid-July for plots with one cut yr-1 and in mid-May, mid-July and end 

of September of each year for plots with three cuts yr-1. A Haldrup © forage combine 

harvester was used with a cutting height of 7 cm. Dry mass of the biomass was determined by 

oven-drying at 60 °C to constant mass. Oven-dried plant samples from the second cut (mid-

July) were ground and analyzed for total N concentration using a CNS elemental analyser 

(Elementar Vario El, Hanau, Germany). Plant N uptake (kg N ha-1 yr-1) was calculated as: N 

concentration (kg N kg-1 ) * biomass yield (kg ha-1 yr-1) (Hiremath and Ewel 2001). 

2.2.5 Soil net N mineralization rates, N supply, and N response efficiency 
 
Net N mineralization rates were measured five times (April, May, June, August and October) 

in 2009 and six times (April, May, June, July, August and September) in 2010 using the 

buried bag method. In each plot, two intact soil cores were taken from the Ah mineral soil 

(0.01-0.10 m). The soil from one core was transferred into a plastic bag, crumbled, mixed 

well, and extracted directly in the field by taking a subsample and adding this to a prepared 

bottle containing 150 ml 0.5 M L-1 K2SO4 (average dry soil mass to solution ratio was 1:3) 

(T0 cores). The other soil core was put in a plastic bag that was loosely tied to permit aeration 

but prevent rain from entering, inserted back into the hole to incubate in-situ for ten days, and 

extracted in a similar manner (T1 cores). The soil-K2SO4 bottles were brought to the 

laboratory within 6 hours, where extraction continued by shaking the bottles for one hour and 

filtering through K2SO4-prewashed filter papers (4 µm nominal pore size). Extracts were 

immediately frozen until analysis. Ammonium (NH4
+) and NO3

- were measured using 

continuous flow injection colorimetry (Skalar, Cenco Instruments, Breda, The Netherlands), 

in which NH4
+ was determined using the Berthelot reaction method (Skalar Method 155-000) 

and NO3
- was measured using the copper-cadmium reduction method (Skalar Method 461-

000). Gravimetric moisture content was determined for each soil sample by oven-drying at 

105°C for 24 hours. Net N mineralization was calculated as the difference between T1- and 

T0-mineral N (NH4
+ + NO3

-). This assay of net production of mineral N in soil under in-situ 

conditions in the absence of plants provides an index of plant-available N (Hart et al. 1994). 

N supply of each plot is defined as the sum of cumulative net N mineralization rates of 

the soil, N fertilization and N deposition rates. Cumulative net N mineralization rates during a 

growing season (i.e. April - September) were calculated by applying the trapezoid rule on 

time intervals between measured rates. For N deposition, we used a value of  12.6 kg N ha-1 
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yr-1 from bulk precipitation measured within the scope of the EU-level II monitoring program 

(Keuffel-Türk et al. in press). NRE was calculated for each plot as: 

 

NRE (kg biomass kg N-1) = (plant N uptake ÷ N supply) * (biomass yield ÷ plant N uptake)  

(Eq. 2) 

 

The ratio of plant N uptake to N supply is referred to as N uptake efficiency whereas the ratio 

of biomass yield to plant N uptake is the NUE (Hiremath and Ewel 2001; Pastor and 

Bridgham 1999). 

2.2.6 Statistical analyses 
 
Effects of treatments on time series data (net N mineralization rates) were conducted using 

linear mixed effects models (LME) with treatments and their interactions as fixed effects and 

spatial replication and time as random effects. The LME model includes either 1) a variance 

function that allows different variances of the response variable for the fixed effects, 2) a first-

order temporal autoregressive process that assumes the correlation between measurements 

decreases with increasing time difference, or 3) both if this improves the relative goodness of 

model fit based on the Akaike Information Criterion (Crawley 2007). Treatment effects on 

biomass yield, plant N uptake, N supply, NRE, NUE and uptake efficiency were assessed 

using three-way analysis of variance (ANOVA) with Tukey’s HSD test. In all tests, if residual 

plots revealed non-normal distribution or non-homogeneity of variance, we used either 

logarithmic or square root transformation (after adding a constant value if the dataset included 

negative values) and analyses were repeated. Effects were accepted as statistically significant 

if P ≤ 0.05. All statistical analyses were conducted using the R version 2.11.1 (R 

Development Core Team 2009). 

2.3 Results 

2.3.1 Biomass yield and plant N uptake  
 
In 2009, biomass yield ranged from 4048 to 14647 kg ha-1 yr-1 with an overall mean of 7758 

(± 309 SE) kg ha-1 yr-1. Fertilization as well as increasing mowing frequency increased 

biomass yield, and plots cut thrice per year responded stronger to fertilization than plots cut 

once per year (Appendix 1). In 2010, biomass yield decreased to values between 1960 and 

12983 kg ha-1 yr-1 with a mean of 5612 kg ha-1 yr-1. Compared to 2009, the interaction 

between mowing frequency and fertilization was even more pronounced (i.e. larger explained 

variance). Fertilization only resulted in larger yields in plots with three cuts per year whereas 
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no fertilization effect could be detected in plots with one cut per year (Appendix 1). Apart 

from fertilization and mowing frequency, sward composition also influenced biomass yield in 

2010 but it explained only a small fraction of the variation. Control swards had larger yields 

compared to monocot-enhanced swards and both did not differ from dicot-enhanced swards.  

Plant N uptake in 2009 ranged from 51.37 to 340.84 kg N ha-1 yr-1 with a mean of 

147.38 (± 17.37 SE) kg ha-1 yr-1. Fertilization significantly enhanced plant N uptake and 

explained by far the largest part of its variance. This was followed by mowing frequency with 

larger plant N uptake in plots cut thrice than once a year (Table 2). However, an interaction 

between fertilization and mowing frequency showed that mowing frequency only affected 

plant N uptake on the fertilized plots. In 2010, plant N uptake ranged from 27.82 to 273.39 kg 

N kg-1 yr-1 with a mean of 98.87 (± 11.65 SE) kg ha-1 yr-1. As before, fertilization, mowing 

frequency and their interaction showed significant effects with larger plant N uptake in 

fertilized than unfertilized plots, and in plots cut thrice than once per year. The effect of 

fertilization was less pronounced and that of mowing frequency was larger compared to 2009. 

Mowing frequency significantly affected plant N uptake on both fertilized and unfertilized 

plots, but fertilized plots were more strongly influenced than unfertilized plots (Table 2).  
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Table 2: Plant N uptake of a grassland under different management practices in the Solling Mountains, Germany. 
 

Main factors 
 

Treatments 
 

n   2009       2010     

Plant N uptake SE P 

Variance 

explained  Plant N uptake SE P 

Variance 

explained  

    (kg N ha-1 yr-1)   (%) (kg N ha-1 yr-1)   (%) 

Sward composition       0.540 0.21     0.072 1.10 

 control 24 147.37  a 16.24   106.64  a 13.03   

 monocot-enhanced 24 143.20  a 15.69   94.23  a 12.26   

  dicot-enhanced 24 151.56  a 14.99     95.73  a 10.49    

Mowing frequency       < 0.001 13.17     < 0.001 20.78 

 once per year 36 120.11  b 8.35   71.27  b 4.06   

  thrice per year 36 174.65  a 14.50     126.46  a 11.41    

Fertilization         < 0.001 66.88     < 0.001 56.66 

 no 36 85.93  b 4.15   59.73  b 2.66   

  NPK  36 208.83  a 9.47     138.00  a 9.78     

Fertilization x mowing frequency        < 0.001 5.40     < 0.001 7.93 

no  once per year 18 76.12  c 3.33   54.39  d 3.26   

NPK  once per year 18 164.11  b 6.91   88.15  b 4.87   

no  thrice per year 18 95.75  c 6.90   65.06  c 3.88   

NPK  thrice per year 18 253.55  a 9.28     187.85  a 8.81     

Mean values with different letter indicate significant differences among treatments within main factors or within an interaction of main factors  
(three-way ANOVA with Tukey HSD at P ≦ 0.05). Treatment interactions that were not significant are not reported. 
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2.3.2  Soil net N mineralization rates and N supply  
 

Net N mineralization rates showed a clear seasonal pattern with large rates in summer and 

small rates in spring and fall. In 2009, net N mineralization rates varied between -13 and 135 

kg N ha-1 mo-1 with a mean of 29 (± 3 SE) kg N ha-1 mo-1. NH4
+ was the dominant form of 

soil mineral N before incubation. On average, NO3
- constituted 33% of the soil mineral N but 

in 70% of all cases no NO3
- was detectable. Net N mineralization rates were neither affected 

by sward composition nor by mowing frequency (Table 3). Only fertilizer application 

influenced net N mineralization rates. In 2010, net N mineralization rates ranged from -29 to 

105 kg N ha-1 mo-1 with a mean of 19 (± 3 SE) kg N ha-1 mo-1. Unlike in 2009, not only 

fertilization but also mowing frequency influenced net N mineralization rates: plots cut once 

per year showed larger net N mineralization rates than plots cut three times per year.  

N supply in 2009 ranged from 15 to 1003 kg N ha-1 yr-1 with a mean of 278 (± 25 SE) 

kg N ha-1 yr-1. In 2010, N supply ranged from 22 to 823 kg N ha-1 yr-1 with a mean of 217 (± 

18 SE) kg N ha-1 yr-1. In both years, fertilization (P = 0.000) was the only factor influencing N 

supply. 
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Table 3: Soil net N mineralization rates of a grassland under different management practices in the Solling Mountains, Germany. 
 

Main factors 
 

Treatments 

 

n   2009     2010   

Net N 

mineralization 

SE P Net N 

mineralization 

SE P 

(kg N ha-1 mo-1) (kg N ha-1 mo-1) 

Sward composition       0.560     0.160 

 control 24 30.69  a 11.70  16.75  a 7.87  

 dicot-enhanced 24 25.56  a 8.42  24.20  a 9.47  

 

  monocot-enhanced 24 21.19  a 7.58   18.05  a 5.88   

Mowing frequency       0.400     0.018 

 once per year 36 24.77  a 7.69  22.54  a 3.76  

  thrice per year 36 26.83  a 7.69   16.76  b 2.79   

Fertilization         < 0.001     0.009 

 no 36 13.50  b 3.47  15.48  b 2.58  

  NPK  36 38.12  a 9.89   23.84  a 3.97   

Mean values with different letter indicate significant differences among treatments within main factors or within an interaction of main factors  
(Linear mixed effects Model at P ≦ 0.05). Treatment interactions that were not significant are not reported
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2.3.3 N response efficiency, N uptake efficiency and N use efficiency 
 
NRE in 2009 varied in a wide range from 10 to 488 kg biomass kg N supply-1 with a mean of 

48 (± 7 SE) kg biomass kg N supply-1. Fertilization was the main factor influencing NRE, 

with larger efficiency in unfertilized plots compared to fertilized plots (Table 4). Mowing 

frequency was the second important factor that explained the variance, with larger NRE in 

plots cut thrice than once per year. In 2010, NRE did not differ from 2009 with values ranging 

from 5 to 162 kg biomass kg N supply-1 and a mean of 42 (± 4 SE) kg biomass kg N supply-1. 

All three factors significantly affected NRE in 2010, with fertilization explaining the largest 

part of the variance followed by mowing frequency and sward composition. NRE was larger 

in unfertilized than in fertilized plots. The interaction between sward composition and 

mowing frequency indicated that regardless of mowing frequency, control plots showed an 

NRE comparable to the monocot- and dicot-enhanced plots that were cut thrice a year and that 

these NRE were larger than those in monocot- and dicot-enhanced plots cut once a year 

(Table 4). Within the covered range of N supply, NRE increased monotonically with 

decreasing N supply (Fig. 3a). 

N uptake efficiency in 2009 was largely affected by fertilization with larger 

efficiencies in unfertilized plots compared to fertilized plots (Table 5). Mowing frequency 

explained a small part of the variance with larger efficiencies in plots cut thrice per year than 

plots cut only once per year. In 2010, mowing frequency explained a larger part of the 

variance than fertilization. In addition, sward composition marginally influenced N uptake 

efficiency with a larger efficiency in control swards than monocot- and dicot-enhanced swards 

(Table 5). The pattern between NRE and N uptake efficiency showed increasing NRE with 

increasing N uptake efficiency (Fig. 3b). 

NUE was affected by all three factors in 2009 (Table 6). Fertilization was the most 

important factor influencing NUE. Unfertilized plots showed larger NUE than fertilized plots. 

Mowing was the second most important factor. Plots cut once per year showed larger NUE 

than plots cut thrice per year. This trend, however, was only significant for the unfertilized 

plots, based on fertilization and mowing interaction effect. Sward composition had the 

smallest influence with the largest NUE in monocot-enhanced swards, intermediate NUE in 

control swards and smallest NUE in dicot-enhanced swards. In 2010, fertilization was the 

only factor influencing NUE (Table 6). The trend between NRE and NUE was more scattered 

(Fig. 3c) than the pattern between NRE and N uptake efficiency (Fig. 3b). 
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Table 4: N response efficiency (NRE) of a grassland under different management practices in the Solling Mountains, Germany. 
 

Main factors 
 

Treatments 

 

n   2009       2010     

NRE SE P 

Variance 

explained  NRE SE P 

Variance 

explained  

   

(kg biomass  

  (%) 

(kg biomass  

  (%) kg N supply-1) kg N supply-1) 

Sward composition       0.349 1.72     0.034 5.68 

 control 24 40.19  a 6.01   50.28  a 7.02   

 monocot-enhanced 24 59.99  a 18.82   42.62  ab 7.46   

  dicot-enhanced 24 45.30  a 6.10     32.94  b 4.52     

Mowing frequency       0.047 3.29     < 0.001 12.40 

 once per year 36 38.67  b 4.81   35.53  b 5.68   

  thrice per year 36 58.31  a 13.30     48.37  a 5.03     

Fertilization         < 0.001 41.26     < 0.001 24.72 

 no 36 70.97  a 12.83   55.49  a 5.29   

  NPK  36 26.02  b 2.18     28.41  b 4.63     

Sward composition x mowing frequency       n.s. n.s.     0.036 5.54 

 control once per year 12       54.02  a 12.82   

 control thrice per year 12       46.54  a 6.77   

 monocot-enhanced once per year 12       29.84  b 8.62   

 monocot-enhanced thrice per year 12       55.40  a 11.73   

 dicot-enhanced once per year 12       22.73  b 4.48   

 dicot-enhanced thrice per year 12         43.16  a 7.04     

Mean values with different letter indicate significant differences among treatments within main factors or within an interaction of main factors  
(three-way ANOVA with Tukey HSD at P ≦ 0.05). Treatment interactions that were not significant are not reported (n.s. = not significant). 
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Table 5: N uptake efficiency of a grassland under different management practices in the Solling Mountains, Germany. 
Year       2009       2010     

Main factors Treatments n 

N uptake 

efficiency SE P 

Variance  

explained  

N uptake 

efficiency SE P 

Variance 

explained  

    

  

  (%) 

  

  (%) 

 (kg plant N 

uptake  

kg N supply-1) 

(kg plant N 

uptake  

kg N supply-1) 

Sward composition       0.372 2.13     0.056 6.04 

 control 24 0.65 a 0.08   0.80 a 0.11   

 

monocot-

enhanced 24 0.97 a 0.29   0.65 a 0.10   

  dicot-enhanced 24 0.80 a 0.10    0.52 a 0.06    

Mowing frequency       0.003 9.91     < 0.001 14.97 

 once per year 36 0.60 b 0.05   0.56 b 0.09   

  thrice per year 36 1.01 a  0.20    0.75 a 0.06    

Fertilization         < 0.001 16.79     0.006 7.90 

 no 36 1.05 a 0.20   0.76 a 0.07   

  NPK  36 0.56 b 0.05     0.56 b 0.08     

Mean values with different letter indicate significant differences among treatments within main factors or within an interaction of main factors  
(three-way ANOVA at P ≦ 0.05). Treatment interactions that were not significant are not reported. 
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Table 6: N use efficiency (NUE) of a grassland under different management practices in the Solling Mountains, Germany. 
Year       2009       2010     

Main factors Treatments n NUE SE P 

Variance 

explained  NUE SE P 

Variance 

explained  

    

  

  (%) 

  

  (%) 

(kg biomass yield  

kg plant N uptake-1) 

(kg biomass yield 

kg N supply-1) 

Sward composition       0.005 3.70     0.179 0.71 

 control 24 59.10 ab 2.71   63.07 a 2.70   

 

monocot-

enhanced 24 61.55 a 3.39   61.01 a 2.91   

  dicot-enhanced 24 54.90 b 2.59    60.60 a 2.33    

Mowing frequency       < 0.001 8.38     0.455 0.11 

 once per year 36 62.65 a 2.67   61.12 a 2.15   

  thrice per year 36 54.39 b 1.88    62.00 a 2.18    

Fertilization         < 0.001 63.42     < 0.001 83.06 

 no 36 69.88 a 1.91   73.23 a 1.04   

  NPK  36 47.16 b 0.78     49.88 b 0.71     

Fertilization x Mowing frequency       0.003 3.07     n.s.   

no  once per year 18 76.51 a 2.41        

NPK  once per year 18 48.78 c 0.99        

no  thrice per year 18 63.25 b 2.01        

NPK  thrice per year 18 45.53 c 1.10             

Mean values with different letter indicate significant differences among treatments within main factors or within an interaction of main factors  
(three-way ANOVA with Tukey HSD at P ≦ 0.05). Treatment interactions that were not significant are not reported (n.s. = not significant). 
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Figure 3: Trends between N response efficiency (NRE) and (a) N supply, (b) N uptake efficiency and (c) N use 
efficiency (NUE) of a grassland in the Solling Mountains, Germany across different sward compositions, 
mowing frequency, and fertilization treatments. Each data point is the mean of six replicates per treatment (● 
for 2009, ○ for 2010). No statistical test was conducted because the X variables are components of the Y 
variable. 
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2.4 Discussion 

2.4.1 Soil net N mineralization, plant N uptake and biomass yield 
 
The substantial increase of net N mineralization following first fertilization in 2009 was 

probably caused by a priming effect. Priming effects are changes in mineralization processes 

caused by moderate addition of nutrients to the soil, e.g. the input of a limiting factor for 

microbial biomass (Kuzyakov et al. 2000). Our experimental site had been used for hay 

production and cattle grazing since the early 20th century. Only during the last five decades, a 

minimal fertilizer addition of 80 kg N ha-1 yr-1 was practiced. It is thus likely that the activity 

of microbial biomass was stimulated by the addition of 180 kg N ha-1 yr-1 at the beginning of 

our study. The reduction in net N mineralization rates in fertilized plots in the second year 

compared to the first year is also indicative of a priming effect, which has been suggested to 

be short term (Kuzyakov et al. 2000). While the addition of N fertilizer initially stimulates 

mineralization after a long period of N limitation, regular N additions may not increase N 

cycling continuously (Hassink 1994). The decreased net N mineralization rates with increased 

mowing frequency in the second year could be due to reduced input of organic matter into the 

soil as a consequence of the removal of biomass (Holt 1997; Mikola et al. 2001; Northup et al. 

1999; Sankaran and Augustine 2004). Alternatively, it is possible that the reduced net N 

mineralization rates on the plots cut thrice per year could also be caused by large N 

immobilization by the microbial community, which may result from increased rhizodeposition 

following defoliation (Holland et al. 1996). Such an explanation is corroborated by the 

findings of Guitian and Bardgett (2000) who observed increased soil microbial biomass 

caused by defoliation of grass. 

Within the range of N supply covered in our study, the linear increase of plant N 

uptake was reflected by similar trends of increases in aboveground biomass yield and plant N 

concentrations (data not shown). The enhanced plant N uptake by more frequent mowing 

could be possibly due to 1) increased root-to-shoot ratio by intensive mowing (Kammann et 

al. 1998; Mooney and Winner 1991), which may then result in large nutrient uptake by plants, 

and 2) defoliation-induced increase in resource allocation to shoots, as reported by Guitian 

and Bardgett (2000) for grazing-tolerant grasses. However, for our study site, fine-root 

biomass and root length density measured in the control swards in September 2009 were not 

affected by mowing frequency (Rose et al. 2011).  

Thus, it is likely that our observed increased plant N uptake by more frequent mowing is due 

to increased resource allocation to shoots and overcompensatory response to defoliation 

(Ferraro and Oesterheld 2002; Guitian and Bardgett 2000).  
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Our finding that the dicot-enhanced swards (with equal proportions of dicots and monocots)  

did not result in a larger biomass yield compared to control and monocot-enhanced swards 

contrasts to the findings of Hector et al. (1999) and Weigelt et al. (2009) who reported a 

reduction of aboveground biomass with loss of functional groups in European grasslands. 

Furthermore, the number of plant species was not responsible for differences in biomass yield. 

Dicot-enhanced and monocot-enhanced swards showed no significant differences in biomass 

yield although the numbers of species were different, which is not consistent to the 

biodiversity-productivity theory (e.g. Hector et al. 1999; Tilman et al. 1996; Weigelt et al. 

2009). However, as we only considered harvestable, aboveground biomass, inclusion of 

belowground biomass may lead to different results. 

2.4.2 N response efficiency 
 
To our knowledge, published information about NRE in grassland ecosystems is extremely 

limited and definitions of NRE are not consistent in literature (Xu et al. 2012; Aerts 1990; 

Vitousek 1982). Unlike other NRE and NUE studies that used litterfall N concentrations as an 

index of N availability (Vitousek 1982) or measured mineral N concentrations in soil 

(Bridgham et al. 1995), we used in-situ measured net N mineralization rates as an index of 

soil plant-available N (Hart et al. 1994). Our measured NRE values were smaller than those 

reported by Yuan et al. (2006) for a semi-arid grassland in China. Apart from site-specific 

differences between our and their study sites, the differences in NRE could also be due to the 

different measures used for N supply and biomass production. On the one hand, our estimate 

of N supply included fertilization, N deposition and cumulative net N mineralization rates 

during the growing season, resulting in large values of N supply and thus small NRE. On the 

other hand, Yuan et al. (2006) included not only aboveground but also belowground biomass 

production, which would lead to large NRE. 

Our finding that NRE was largely influenced by fertilization was similar with those of 

Hiremath and Ewel (2001) who reported that NRE (which they termed ecosystem-level NUE) 

was negatively correlated with mean annual net nitrification rate, used as an index of soil N 

supply. The smaller NRE of the fertilized than unfertilized plots was caused by decreases in 

both N uptake efficiency and NUE. The monotonic increase in NRE with decreasing N supply 

was also consistent with the findings of Yuan et al. (2006), and was unlike the unimodal curve 

between NRE and soil net N mineralization rates (ranging from 25-85 kg N ha-1 yr-1) 

modelled by Bridgham et al. (1995) for temperate forests. This also supports the suggestion 

that the unimodal NRE curve may only be applicable for ecosystems with small N availability 

(Yuan et al. 2006). The second most important factor influencing NRE was mowing 
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frequency. The increased NRE in plots cut thrice per year was largely due to increasing N 

uptake efficiency since NUE was either showing the opposite trend or not affected by mowing 

at all. The increased N uptake efficiency in plots cut thrice per year was caused by increased 

biomass yield and N concentration in biomass. 

Finally, sward composition influenced NRE although to a lesser extent than 

fertilization and mowing frequency. Compared to the influence of sward compositions on 

biomass yield, where dicot-enhanced swards did not differ from control swards, the influence 

of sward composition on NRE was more pronounced and explained a larger part of the 

variance.  The trends of NRE and N uptake efficiency among sward compositions were 

similar whereas NUE exhibited either opposite patterns or was not affected by sward 

composition. This emphasizes that NRE of the different sward compositions was influenced 

more by N uptake efficiency rather than by NUE and is contrary to the findings of van 

Ruijven and Berendse (2005) who observed an increasing NUE with increasing species 

richness in a grassland system without legumes. In our study site, legumes were only present 

in the control- (1-4% abundance) and dicot-enhanced (4-9%) swards. The presence of 

legumes however cannot support the pattern of differences in NRE among sward 

compositions but instead the interaction between sward composition and mowing frequency. 

For example, since we did not account the N input from N-fixing legumes in our NRE 

calculation, this could have led to an underestimation of N supply and thus an overestimation 

of NRE in the control and dicot-enhanced swards. Instead we found that the monocot-

enhanced swards (no legumes) had comparable NRE with the control and dicot-enhanced 

swards all cut thrice a year and the lowest NRE was found in both monocot- and dicot-

enhanced swards cut once per year (Table 4). The patterns of NRE cannot also be explained 

by the difference in plant species number. NRE of monocot-enhanced swards which had the 

smallest number (12-13) of species did not significantly differ from NRE of dicot-enhanced 

swards (17 species). According to Roy (2001) 90% of the biodiversity effect on productivity 

is reached at five species, implying that the difference in plant species in our experiment is 

larger than the threshold number and effects might not be detectable (Wrage et al. 2011). In 

contrast to the number of species, the proportions of plant functional groups did have a 

significant impact on NRE. The proportions of ~30% dicots and ~70% monocots found in the 

control swards showed the largest NRE. We think that over the past decades N-limited 

conditions and prevailing management practices have led to an equilibrium in this grassland 

ecosystem in which optimal proportions of monocots and dicots developed to maximize NRE. 

As a result, an artificial increase in the proportion of dicots as well as in the proportion of 

monocots would lead to a smaller NRE. Thus, our results suggest that in addition to the effect 
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of life-form diversity (Hiremath and Ewel 2001) also the proportions of different plant 

functional groups affect NRE of an ecosystem.  

2.5 Conclusions 
 
Our results show that management largely influenced NRE whereas plant functional group 

diversity only played a minor role. Fertilization decreased NRE due to decreases in both N 

uptake efficiency and NUE whereas mowing frequency and sward composition affected NRE 

through N uptake efficiency rather than NUE. The proportions of monocots and dicots in the 

control plots that were the result of long-term management practices had the largest NRE. 

Deviations from these proportions - even to more balanced proportions of monocots and 

dicots - decreased NRE. Our results show that NRE gives important insights in how different 

management can be evaluated to come up with a more sustainable grassland management. 

However, our study can only be a first step towards definite recommendations and NRE 

should be combined with an economic analysis before advices to farmers can be made. 
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Appendix  
 
Appendix 1: Biomass yield of a grassland under different management practices in the Solling Mountains, Germany. 

 

Main factors 
 

Treatments 
 

n   2009       2010     

Biomass yield * SE P 

Variance 

explained  Biomass yield  * SE P 

Variance 

explained  

      (kg ha-1 yr-1)     (%) (kg ha-1 yr-1)     (%) 

Sward composition       0.648 0.28     0.007 2.34 

 control 24 7922.82  a 597.58    6132.01  a 536.79   

 monocot-enhanced 24 7763.22  a 508.89    5237.22  b 498.97   

  dicot-enhanced 24 7586.48  a 482.80     5467.27  ab 467.66     

Mowing frequency       < 0.001 12.01     < 0.001 34.92 

 once per year 36 6855.40  b 270.55    4146.09  b 172.92   

  thrice per year 36 8659.62  a 517.05     7078.25  a 446.14     

Fertilization         < 0.001 56.74     < 0.001 24.71 

 no 36 5797.13  b 167.30    4378.75  b 210.25   

  NPK  36 9717.88  a 373.43     6845.59  a 469.71     

Mowing frequency x fertilization       < 0.001 9.89     < 0.001 16.97 

 once per year no 18 5713.66  c  160.04   3934.60  b 248.95   

 once per year NPK 18 7997.14  b 349.87   4357.58  b 236.35   

 thrice per year no 18 5880.61  c 297.99   4822.89  b 311.13   

 thrice per year NPK 18 11438.62  a 321.60     9333.61  a 352.58     

* Biomass yield data was reported by From et al. (2011). Mean values with different letter indicate significant differences among treatments within main factors or within an 
interaction of main factors (three-way ANOVA with Tukey HSD at P ≦ 0.05). Treatment interactions that were not significant are not reported. 
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Abstract  
 
Maintaining nitrogen (N) retention efficiency is crucial in increasing management 

intensification and decreasing N losses in temperate grassland. Our aim was to evaluate how 

grassland management practises and sward composition affect N retention efficiency, the 

efficiency with which available N (indexed by gross N mineralization) is retained in an 

ecosystem. A three-factorial grassland management experiment was conducted, including two 

fertilization treatments, two mowing frequencies and three sward compositions: monocot-

enhanced, dicot-enhanced and control swards. 

Differences in N retention efficiency were rather caused by N losses (NO3
-, N2O, 

DON) than by gross N mineralization. Fertilization was the dominant factor influencing N 

retention efficiency and N losses which was mainly caused by decreases in microbial NH4
+ 

immobilization. Intensive mowing partly reduced the high N losses following fertilization. In 

contrast to N losses, N retention efficiency responded to variations in sward compositions, 

indicating that it is a more sensitive index. Control swards that have developed under decades 

of extensive management practices had the highest N retention efficiency, followed by dicot-

enhanced and monocot-enhanced swards. This pattern could partly be explained by a 

complementary plant resource use but was also the result of differences in microbial NH4
+ 

immobilization.  

Our study underlines the importance of microbial immobilization for an efficient 

retention of N in the plant-soil-system. In contrast to more common indices (e.g. N response 

efficiency or N uptake efficiency), N retention efficiency considers this pathway and is, thus, 

a critical factor to consider when evaluating the sustainability of grassland management 

practices.  
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3.1 Introduction 
 
Nitrogen (N) is an essential plant nutrient that limits primary production in many ecosystems, 

making the use of N fertilizers widespread in agricultural ecosystems (Vitousek and Howarth 

1991). As a result of the growing global population, a more intensive agricultural production 

and hence an increase in the use of N fertilizers can be expected in the near future (Galloway 

et al. 2008). Agricultural intensification is, however, accompanied by negative environmental 

impacts: considerable amounts of applied fertilizer N can be lost through nitrate (NO3
-) 

leaching or gaseous emissions, e.g. in the form of nitrous oxide (N2O). Leaching of NO3
- can 

be a threat to ground- and surface water quality (Di and Cameron 2002) while N2O is an 

important greenhouse gas that also contributes to the depletion of stratospheric ozone 

(Schlesinger 2009). In agriculture, maintaining soil quality and high yields while minimizing 

N losses can only be achieved through efficient retention of N in the plant-soil system, i.e. 

available mineral N should be taken up by plants or immobilized by the microbial community 

before it is potentially lost through the microbial processes of nitrification and denitrification. 

N retention efficiency, the efficiency with which available N is retained in an ecosystem, is 

thus an important parameter to evaluate the sustainability of a land use system.  

In temperate grasslands N retention efficiency may be influenced by management 

practices and plant diversity (Christian and Riche 1998; Flechard et al. 2005; Jones et al. 

2005). Application of N fertilizer typically increases N losses, while mowing can lead to a 

more effective plant N uptake caused by overcompensatory regrowth of plants (Ferraro and 

Oesterheld 2002) or by a denser root system (Kammann et al. 1998). A more diverse 

grassland community may have a higher N retention through complementary resource use, 

e.g. due to different rooting depths, different forms of N taken up or N uptake at different 

times of the year (e.g. Hooper and Vitousek 1998). It has been reported that increasing plant 

species diversity reduces the amount of extractable soil mineral N (e.g. Ewel et al. 1991; 

Niklaus et al. 2001; Tilman et al. 1996), however, most studies have been carried out in 

artificial and intensively weeded grassland plots, making it difficult to compare with 

permanent managed grassland. Furthermore, soil NO3
- concentrations are not directly related 

to NO3
- leaching complicating their interpretation (Scherer-Lorenzen et al. 2003). To our 

knowledge, there are only two studies that directly quantified NO3
- leaching losses as a 

function of plant diversity (Hooper and Vitousek 1997; Scherer-Lorenzen et al. 2003) and 

only one study investigated biodiversity effects on leaching dissolved organic N (DON) 

(Dijkstra et al. 2007). No studies have been conducted on the effects of mowing on N 

leaching.  
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In the present study, our goal was to evaluate how N retention efficiency is influenced by 

different management treatments (fertilization, mowing frequency) and sward composition 

(differing in plant functional group compositions and plant species richness) at a temperate 

grassland. We were especially interested in the question whether management or manipulation 

of plant functional groups can compensate the high N losses that are frequently observed 

following fertilizer application. We tested the following hypotheses: 1) fertilized plots have 

lower N retention efficiency (and thus higher N losses) than unfertilized plots; 2) N retention 

efficiency increases (and N losses decrease) with increasing mowing frequency; 3) N 

retention efficiency is highest (and thus N losses are lowest) in swards with high plant species 

richness and with equal proportions of different plant functional groups due to complementary 

resource use. 

3.2 Material and Methods 

3.2.1 Approach 
 
We first developed an index that can be used for the evaluation of the ecosystem property N 

retention efficiency. Aber and colleagues (1998) use the following index for N retention 

efficiency: 1 - (N outputs ÷ N inputs)  

While this index may work well for forest ecosystems where long datasets of input and output 

have been collected, it does not account for changes in N cycling caused by management in 

agricultural systems. For example, when N fertilizer is applied, large proportions of applied 

mineral N are immediately immobilized by the soil microbial community (Bristow et al. 

1987) a process which typically exceeds plant N uptake (Jackson et al. 1989). This N will 

become available later through mineralization. In the present study we account for such 

processes by using an index that is based on the availability of N, not on N inputs only and we 

thus used the following index for N retention efficiency:  

 

N retention efficiency = 

1 - ((N losses (mg N m-2 d-1) ÷ gross N mineralization rates (mg N m-2 d-1)) (Eq. 1) 

 

Where the N losses were the sum of average daily NO3
- and DON leaching rates (mg N m-2 d-

1) and mean daily N2O emissions rates (mg N m-2 d-1). For N available we used gross N 

mineralization because it includes all N that is actively cycling in the soil and is available to 

plants and microbial biomass.  
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3.2.2 Study site 
 
The study (which is part of the GRASSMAN experiment) was conducted on a moderately 

species rich grassland in the Solling uplands in Lower Saxony, Germany (51°44'53''N, 

9°32'42''E, 490 m above sea level). This site presently belongs to the experimental farm 

Relliehausen and has been used for grazing or hay making for at least 100 years (Geological 

Map of Prussia 1910 (based on the topographic inventory of 1896), topographic maps of 

Sievershausen and Neuhaus/Solling 1924, 1956 and 1974, Braunschweigische 

Landesaufnahme, 18th century). Before the experiment started, the grassland was managed 

extensively by moderate application of fertilizer (80 kg N ha-1 yr-1), occasional lime 

application, overseeding with high value forage species and cattle grazing (farm records 

Relliehausen since 1966). Before the experiment started, vegetation was classified as a 

montane, semi-moist Lolio-Cynosuretum. Mean annual precipitation is 1031 mm and mean 

annual temperature is 6.9°C (Deutscher Wetterdienst 1961 - 1990). The soil is a Haplic 

Cambisol (IUSS Working Group WRB 2006) which developed on loess sediments with a 

loamy silt texture overlaying rocks of the Middle Buntsandstein formation. 

3.2.3 Experimental set up 
 
The GRASSMAN-experiment was set up in 2008 as a three-factorial design, including three 

sward compositions, two mowing frequencies and two NPK-fertilization treatments. Three 

sward compositions were established by applying a herbicide mixture against dicotyledons 

(Starane® (active ingredients: Fluoroxypyr and Triclopyr) and Duplosan KV (active 

ingredients: Mecoprop-P®)), resulting in a reduced herb and legume sward; a herbicide 

mixture against monocotyledons (Select 240 EC® by Stähler (active ingredients: Clethodim)) 

resulting in a reduced grass sward; and an untreated control sward. We refer to these sward 

compositions as monocot-enhanced (12-13 species; 91-93% grasses, 7-9% herbs and 0% 

legumes) and dicot-enhanced (17 species; 40-47% grasses, 49-53% herbs and 4-9% legumes) 

relative to the control sward (16-18 species; 68-76% grasses, 21-31% herbs and 1-4% 

legumes) (Petersen et al. 2012). All experimental plots were mown and fertilized plots 

received 50 kg N ha-1 in 2008. In 2009 the experiment started. Half of the plots were mown 

once per year and the other half of the plots were cut three times per year. Mowing was 

conducted in July for plots with one-cut per year and in May, July and September for plots 

with three-cuts per year. A Haldrup © forage combine harvester with a cutting height of 7 cm 

was used. Half of the plots were fertilized with 180 kg N per year, 30 kg phosphorus (P) per 

year and 100 kg potassium (K) per year. Mineral N fertilizer (calcium ammonium nitrate N27) 
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was split into two equal applications per year (April and May 2009 and April and June 2010) 

while the combined P and K fertilizer was applied once a year (June 2009 and 2010). The full-

factorial combination of the treatment factors (two fertilization treatments, two mowing 

frequencies, three sward compositions) led to twelve treatments, each replicated six times. 

The resulting 72 plots (15 m x 15 m) were arranged in a Latin rectangle. 

3.2.4 Soil characteristics 
 
A summary of soil characteristics is presented in Table 7. In spring 2008, soil samples were 

taken at nine sampling points per plot (0.01-0.1 m depth), pooled, oven-dried (40°C) for a 

week and sieved (2 mm). Soil bulk density was measured in summer 2009 from undisturbed 

soil cores (0.00-0.05 m) using the soil core method (Blake and Hartge 1986). Particle size 

distribution was determined by wet sieving (>20<630 µm) and pipette methods (≤20 µm) after 

pre-treatment with 30% H2O2 and 4% Na-dithionite-citrate solution. Cation exchange 

capacity (CEC) was determined using percolation with 0.1M BaCl2 (König and Fortmann 

1996). Cations in percolates were measured with Inductively Coupled Plasma - Optical 

Emission Spectrometry (ICP-OES; Optima 3000 XL, Perkin Elmer, Rodgau, Germany). Base 

saturation was determined as the percentage exchangeable base cations of the CEC. Soil pH 

was measured in distilled water at a soil:water ratio of 1:2. Total concentrations of carbon (C) 

and N were determined from ground samples using CN elemental analyzer (Vario EL III, 

Elementar, Hanau, Germany).  
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Table 7: Soil characteristics in the Ah horizon (0.01-0.1 m) of a Haplic Cambisol of a grassland site in the 
Solling uplands, Germany. 
Physical and chemical* properties Mean SE n 

Sand (%) 21.6 1.2 18 

Silt (%) 66.5 1.3 18 

Clay (%) 11.9 0.8 18 

Bulk density (g cm-3) 0.8 0.0 72 

Cation exchange capacity (mmolc kg-1)  169 5.2 72 

Base saturation (%)  37.2 1.4 72 

pH (1:2 H2O)  5.34 0.0 72 

C:N ratio  12.6 0.0 72 
* Soil chemical data were provided by the Department of Plant Ecology, University of Göttingen. 

 

3.2.5 Gross N transformation rates and microbial biomass  
 
In September 2010, gross mineralization and nitrification rates were measured using the 15N 

pool dilution technique (Davidson et al. 1991) on a selection of treatments. We sampled five 

replicates per treatment combination, including the three sward treatments and the two 

fertilization treatments that were cut once per year (in total: 5 x 3 x 2 = 30 plots). At each 

sampling plot, two intact soil cores were injected with (15NH4)2SO4 solution (for gross 

mineralization and NH4
+ consumption) and another two intact soil cores were injected with 

K15NO3 solution (for gross nitrification). Each soil core received 5 ml injections in five points 

inside the soil core containing 29.48 µg N ml-1 ((15NH4)2SO4) and 28.02 µg N ml-1 (K15NO3) 

with 99% 15N enrichment which is equivalent to an application rate of 0.78 and  0.73 µg 15N 

g-1, respectively. Ten minutes after 15N injection one soil core of each labelled pair was 

broken up, mixed and added to 150 ml 0.5 mol L-1 K2SO4 (1:3 fresh soil to K2SO4 solution) 

(T0 cores). The reactions that occur immediately after addition of 15NH4
+ and 15NO3

- were 

corrected for using the T0 cores. The other soil core of the labelled pair was put in a plastic 

bag, inserted back into the soil to incubate for one day, and extracted with 0.5 mol L-1 K2SO4 

as described above (T1 cores). All soil extracts were shaken for one hour, filtered (4 µm 

nominal pore size) and stored at -18°C. NH4
+ and NO3

- were measured using continuous flow 

injection colorimetry, in which NH4
+ was determined using Berthelot reaction method (Skalar 

Method 155-000). NO3
- was determined using copper-cadmium reduction method (Skalar 
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Method 461-000). Gravimetric moisture content was determined after drying at 105°C for 24 

hours. The diffusion procedures and blank correction for 15N analysis of the extracts are 

described by Corre et al. (2007). 15N analysis was done using isotope ratio mass spectrometry 

(Finigan MAT, Bremen, Germany). Gross N mineralization, gross nitrification and NH4
+ 

consumption rates were estimated using the modified calculation procedure of Davidson et al. 

(1991) from the Kirkham and Bartholomew (1954) model. We were unable to conduct 

immediate CHCl3 fumigation and calculated NH4
+ immobilization rates according to 

Davidson et al. (1991): 

NH4
+ immobilization = NH4

+ consumption - gross nitrification    (Eq. 2) 

For microbial biomass C and N in T1 fumigated and non-fumigated samples we used 

fumigation-extraction method (Brookes et al. 1985). Organic C in K2SO4 extracts was 

analyzed by UV-enhanced persulfate oxidation using a Dohrman DC-80 Carbon analyzer with 

an infrared detector (Rosemount Analytical Division, Santa Clara, California, USA). Organic 

N in K2SO4 extracts was traced by persulfate digestion (Corre et al. 2007), followed by 

colorimetric analysis of NO3
- as described before. Microbial biomass C and N were calculated 

as the difference in extractable organic C and persulfate-N between fumigated and 

unfumigated soils divided by the fraction of biomass C and N mineralized, kC = 0.45 

(Joergensen 1996) and kN = 0.68 for five-day fumigated samples (Shen et al. 1984; Brookes et 

al. 1985). 

3.2.6 Water balance and N losses 
 
NO3

- and DON leaching losses were sampled monthly. Weather conditions prevented the 

sampling from January till February 2009 and 2010 (mean temperature below 0°C and snow 

cover) and in August 2009 and 2010 (not enough precipitation). We installed one ceramic 

suction cup (P80 ceramic, maximum pore size 1 µm; CeramTec AG, Marktredwitz, Germany) 

per plot in a depth of 0.5-0.6 m (below root depth) three months prior to the first sampling. A 

suction of -600 hPa was applied by a vacuum pump. NO3
- and DON leachate was collected 

belowground in 1000 ml glass bottles and stored at -18°C. NH4
+ and NO3

- were measured 

using continuous flow injection colorimetry, as described before. Dissolved total N was 

determined using UV-persulfate oxidation followed by hydrazine sulphate reduction (Skalar 

Method 473-000). DON was calculated as the difference between dissolved total N and 

dissolve inorganic N (DIN). Total NO3
- and DON losses from the profile with leachate were 

calculated by multiplying the respective concentration with the accumulated daily drainage 

flux for the corresponding time interval. 
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Daily drainage flux was calculated using the 1D-SVAT-model BROOK90 (Federer et al. 

2003). As we expected that differences between treatments were negligible, we calculated one 

drainage flux for all treatments. The model estimates daily evapotranspiration (ET) divided 

into interception (I) and transpiration (T) from a single-layered canopy as well as soil 

evaporation (E), using an approach after Shuttleworth and Wallace (1985). The vertical soil 

water movement for saturated and unsaturated flow followed Darcy’s Law and is described by 

a solution of the Richards equation for the relationships among matrix potential, soil water 

content and hydraulic conductivity. The drainage flux (S) is taken as the gravitational outflow 

of water from the deepest soil layer. Driving climatic data (precipitation sum, 

minimum/maximum air temperature, global radiation sum, average vapour pressure and 

average wind speed, all on a daily basis) for the model were derived from a weather station of 

the study site. The model was parameterized according to site conditions and vegetation 

properties as far as data were available. A soil profile of 13 layers and 1 m depth was defined 

with constant soil hydraulic properties derived from soil texture after Clapp and Hornberger 

(1978) and increasing stone content (8% in the uppermost 25% in the deepest layer). The root 

distribution decreased exponentially to the maximum rooting depth of 0.3 m, with about 70% 

of the roots being in the first 0.1 m of the soil profile. An estimation of the seasonal course of 

the leaf area index, was derived from average biomass productions according to Rose et al. 

(2011). To validate the model, we compared the simulated matrix potential-model with 

measured matrix potential. Matrix potential was measured monthly using tensiometers (P80 

ceramic, maximum pore size 1 µm; CeramTec AG, Marktredwitz, Germany). We installed 

two tensiometers per depth in 0.2 m, 0.5 m and 0.9 m. 

N2O emissions were measured seven times in 2009 and five times in 2010 using 

closed chamber method. One polyvinyl chloride (PVC) chamber base (0.07 m2 area, 0.35-0.4 

m height of chamber base and cover) was inserted in each plot. For each measurement, the 

chamber base was covered with a PVC chamber hood fitted with a vent and an air sample 

port. Following chamber closure, gas samples were taken in four pre-evacuated 100 ml gas 

containers with teflon-coated stopcocks at 15 minutes intervals. N2O was analyzed using a 

gas chromatograph (GC 6000, Carlo Erba Instruments/Thermo Fisher Scientific, Milan, Italy) 

equipped with an electron capture detector and an autosampler system (Loftfield et al. 1997). 

Gas concentrations were calculated by comparing the sample peak integrals with the peak 

integrals of three standard gases (2009: 353, 1005 and 1592 ppb N2O and 2010: 353, 1018 

and 1604 ppb N2O; Deuste Steiniger GmbH, Mühlhausen, Germany). N2O emissions were 
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calculated by the linear increase of N2O concentration versus time for each chamber, 

corrected with air temperature, chamber volume and air pressure. 

3.2.7 Statistical analysis 
 
To test the effects of fertilization, mowing frequency and sward composition in time series 

data (NO3
-, DON leaching and N2O emissions) we used linear mixed effects models (LME) 

with treatments factors and row / column of the Latin rectangle design as fixed effects. 

Sampling date and spatial replication were included as random effects. The LME model 

included 1) a variance function that allows different variances of the response variable for the 

fixed effects (Zuur et al. 2009), 2) a first-order temporal autoregressive process that assumes 

the correlation between measurements decreases with increasing time difference, or both if 

these improve the relative goodness of model fit based on the Akaike Information Criterion 

(AIC) (Crawley 2007). Pairwise comparisons (T-Test with Holmes-Correction) were used as 

post-hoc tests. To test treatment effects on gross N mineralization, NH4
+ immobilization, total 

average N losses, and N retention efficiency we used analysis of variance (ANOVA) followed 

by Tukey’s HSD post-hoc test. In all tests, if residual plots revealed non-normal distribution 

or non-homogeneity of variance we used either logarithmic or square root transformation 

(after adding a constant value if the dataset included negative values) and analyses were 

repeated. Non-significant interactions as well as row and column were removed stepwise from 

the statistical models if this improved AIC (Crawley 2007). 

Correlations between N retention efficiency, soil microbial C and N and biomass yield 

were tested with Spearman’s rank correlation. A significance level of α = 0.05 was used 

throughout unless stated otherwise. All statistical analyses were performed using the R 

version 2.11.1 (R Development Core Team 2009). 

3.3 Results 

3.3.1 Gross N transformation rates and microbial biomass  
 
Rates of gross N mineralization ranged from 71 to 1440 mg N m-2 d-1 with an overall mean of 

606 (± 65 SE) mg N m-2 d-1. Neither fertilization nor sward composition affected gross N 

mineralization (Table 8). In contrast, gross nitrification rates were higher on the fertilized 

plots, while sward composition did not affect gross nitrification. NH4
+ immobilization (Table 

8) varied between 143 and 2356 mg N m-2 d-1 with an overall mean of 753 (± 100 SE) mg N 

m-2 d-1 and was lower on the fertilized plots (marginally significant). While net NH4
+ 

immobilization (i.e. NH4
+ immobilization rates > gross N mineralization) occurred on the 
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unfertilized plots, on the fertilized plots NH4
+ immobilization was 90% of gross N 

mineralization with the exception of dicot-enhanced swards which displayed net NH4
+ 

immobilization on both fertilized and unfertilized plots. Microbial C was not affected by any 

of the treatments, but fertilization resulted in marginally lower microbial N contents. A 

marginally significant interaction between fertilization and sward composition suggested that 

the decrease in microbial N caused by fertilization was most pronounced at the monocot-

enhanced swards. A marginally significant interaction between fertilization and sward 

composition could also be shown for microbial C:N ratios which were highest at the fertilized 

monocot-enhanced swards.  
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Table 8: Gross N mineralization rates, gross nitrification rates, NH4
+ immobilization rates, microbial C, microbial N and microbial C:N ratios of a grassland under different 

management practices in the Solling uplands, Germany (mean values  + SE). 
Main factors                        

Treatments 

n Gross N 

mineralization rate 

(mg N m-2 d-1)  

Gross 

nitrification rate 

(mg N m-2 d-1)  

NH4
+ immobilizatio

n rate (mg N m-2 d-1)  

Microbial C                       

(mg C m-2 )  

Microbial       

(mg N m-2 )  

Microbial C:N                     

Sward composition   P = 0.478 P = 0.367 P = 0.383 P = 0.970 P = 0.736 P = 0.348                     

 control 10 730 (± 115) a 92 (± 26) a 978 (± 252) a 50295 (± 5707) a 6870 (± 999) a 7.53 (± 0.29) a                     

 dicot-enhanced 10 530 (± 114) a 112 (± 47) a 665 (± 133) a 46428 (± 4908) a 5921 (± 730) a 8.03 (± 0.21) a                     

  monocot-enh. 10 570 (± 113) a 123 (± 80) a 640 (± 119) a 48190 (± 3454) a 6263 (± 548) a 7.84 (± 0.33) a                     

Fertilization     P = 0.513 P = 0.009 P = 0.070 P = 0.203 P = 0.088 P = 0.386                     

 no 15 654 (± 93) a 48 (± 9) b 891 (± 133) a 51819 (± 2875) a 6797 (± 375) a 7.65 (± 0.18) a                     

  NPK  15 554 (± 94) a 204 (± 66) a 494 (± 95) b 44789 (± 4441) a 5906 (± 798) b 7.94 (± 0.27) a                     

Sward composition x Fertilization   P = 0.774 P = 0.504 P = 0.735 P = 0.103 P = 0.097 P = 0.093                     

 control no 5 824 (± 170)  77 (± 25)  1178 (± 311)  47798 (± 3717)  6104 (± 226)  7.82 (± 0.48)                      

 control NPK 5 612 (± 151)  112 (± 55)  478 (± 125)  52791 (± 11354)  7637 (± 2030)  7.24 (± 0.34)                      

 dicot-enhanced no 5 584 (± 168)  49 (± 8)  788 (± 180)  52465 (± 6236)  6732 (± 861)  7.85 (± 0.20)                      

 dicot-enhanced NPK 5 477 (± 167)  190 (± 88)  512 (± 197)  40391 (± 7128)  5109 (± 1148)  8.20 (± 0.38)                      

 monocot-enhanced no 5 554 (± 146)  24 (± 7)  707 (± 160)  55194 (± 5166)  7555 (± 643)  7.29 (± 0.07)                      

 monocot-enhanced NPK 5 586 (± 189)  368 (± 224 )  473 (± 50)  41185 (± 1508)  4972 (± 314)  8.40 (± 0.56)                      

Mean values with different letter indicate significant (P ≦ 0.05) or marginally significant (P ≦ 0.1) differences within main factors (two-way ANOVA).  
Average measured bulk density of 0.79 g cm-3 and a depth from 0.00-0.05 m was used to convert determined dry mass based rates to area based rates. 
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3.3.2 Water balance and N losses  
 
During the experiment, total annual precipitation was 1001 mm in 2009 and 1083 mm in 

2010. Modelled annual evapotranspiration was 507 mm in 2009 and 484 mm in 2010. 

Modelled drainage flux was 441 mm in 2009 and 609 mm in 2010. At all three depths 

measured matrix potential was correlated with modelled matrix potential (0.2 m: Spearman’s 

correlation coefficient = 0.66, P = 0.001, n = 20; 0.5 m: Spearman’s correlation coefficient = 

0.58, P = 0.007, n = 20; 0.9 m: Spearman’s correlation coefficient = 0.745, P = 0.018, n = 10). 

In both years, modelled drainage flux was negligible in the summer months and strongly 

increased to values of more than 3 mm d-1 in autumn. In 2010, the increase in drainage flux 

occurred about one month earlier compared to 2009 (data not shown). Parallel to drainage 

flux, NO3
- leaching losses were also negligible in the summer months (Fig. 4a, b, c). In 

fertilized plots, NO3
- leaching strongly increased during autumn. Compared to 2009, when the 

main peak in NO3
- leaching appeared only in early 2010, the increase in NO3

- leaching 

following fertilization in 2010 was more pronounced and much earlier. In 2009, fertilization 

was the only factor that influenced NO3
- leaching (P = 0.026). In 2010, NO3

- leaching losses 

strongly increased to a range of 0 to 281 mg NO3
--N m-2 d-1 with an overall mean of 5.3 (± 

0.88 SE) mg NO3
--N m-2 d-1. Fertilization (P = 0.000) and mowing frequency (P = 0.033) 

significantly influenced NO3
- leaching. An interaction (P = 0.011) between these factors 

showed that the increase of NO3
- leaching losses caused by fertilization was only significant 

for plots cut once per year while plots cut three times per year were not affected. Sward 

composition did not affect NO3
- leaching. 

Leaching of DON ranged between 0 to 1.9 mg N m-2 d-1 with an overall mean of 0.26 

(± 0.01 SE) mg N m-2 d-1 in 2009. None of the treatment factors influenced DON leaching 

(Fig. 4d, e, f). In 2010, DON leaching increased to an overall mean of 0.6 (± 0.1 SE) mg N m-

2 d-1 ranging from 0 to 13.06 mg N m-2 d-1. We detected an interaction between the factors 

fertilization and mowing frequency (P = 0.006): on the plots cut once per year, fertilization 

significantly increased DON leaching while plots cut three times per year were not affected. 

No effect of sward composition on DON leaching could be detected. 
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Figure 4: NO3
- and DON leaching rates (± SE, n=6) at 0.5-0.6 m mineral soil of a grassland under different management practices in the Solling uplands, Germany: one mowing 

per year without fertilization (○), one mowing per year with fertilization (●), three mowings per year without fertilization (□), three mowings per year with fertilization (■). 
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In 2009, N2O emission rates varied between -3.87 to 8.07 mg N2O-N m-2 d-1 with an overall 

mean of 0.32 (± 0.04 SE) mg N2O-N m-2 d-1. Both fertilization (P = 0.000) and mowing 

frequency (P = 0.031) influenced N2O emissions in 2009 (Fig. 5a, b, c). Furthermore there 

was an interaction between these factors (P = 0.009). Fertilized plots showed an increase in 

N2O fluxes, especially following the second fertilizer application in May. However this 

increase was only significant for the plots cut once per year. Unfertilized plots only showed a 

marginal increase in N2O fluxes during the summer months. In 2010, the significant effect of 

fertilization (P = 0.000) could also be observed (Fig. 5d, e, f) with an overall mean of 0.45 

(± 0.06 SE) mg N2O-N m-2 d-1 (range between -1.84 to 13.58 mg N2O-N m-2 d-1). Again, the 

increase of N2O emissions occurred after the second fertilization in the beginning of July and 

the impact of fertilization tended to be stronger on the plots cut once per year, however, unlike 

2009, this interaction was not significant (P = 0.108). In both years, N2O uptake 

predominantly occurred on unfertilized plots. There was no impact of sward composition on 

N2O emissions. 
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Figure 5: N2O emissions (± SE, n=6) of a grassland under different management practices in the Solling 
uplands, Germany: one mowing per year without fertilization (○), one mowing per year with fertilization (●), 
three mowings per year without fertilization (□), three mowings per year with fertilization (■). 
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3.3.3 N retention efficiency 
 
We calculated N retention efficiency only for 2010 which ranged from 0.842 to 0.999 with an 

overall mean of 0.976 (± 0.017 SE). Fertilization decreased N retention efficiency (P = 0.003) 

and was the most important factor, explaining 22% of the variance (Table 9). Sward 

composition explained 17% of the variance (P = 0.048) with the highest N retention 

efficiency in the control sward followed by the dicot-enhanced sward and the monocot-

enhanced sward. Only the difference between control and monocot-enhanced sward was 

significant. Across all treatments, N retention efficiency was correlated with NH4
+ 

immobilization and microbial N (Table 10). Furthermore, there were marginally significant 

correlations with microbial C and plant N uptake but not with harvested biomass.  
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Table  9: N retention efficiency of a grassland under different management practices in the Solling uplands, Germany. 
Main factors   Treatments               n N retention efficiency                                                                                   

[1 - (mg N losses m-2 d-1 /  

mg gross N mineralization m-2 d-1)] 

SE P Variance 

explained 

(%)  

Sward composition       0.046 16.69 

 control 12 0.991  a 0.005     

 monocot-enhanced 12 0.963  b 0.016     

  dicot-enhanced 12 0.981  ab 0.005     

Fertilization         0.007 22.06 

 no 18 0.995  a 0.002     

  NPK  18 0.960  b 0.011     

Mean values with different letter indicate significant differences among treatments within main factors (two-way ANOVA with Tukey HSD at P ≦ 0.05) 

 
Table 10: Correlations between N retention efficiency and different plant- and soil-microbial parameters of a grassland site across different treatments under different 
management practices in the Solling uplands, Germany (Spearman’s rank correlation). 
Parameter Spearman’s rho P 

Plant N uptake * 0.338 0.074 

Harvested biomass * - 0.031 0.871 

NH4
+ immobilization 0.560 0.006 

Microbial C 0.364 0.053 

Microbial N 0.417 0.025 

* Plant N uptake was reported by Keuter et al. (2012) and harvested biomass was reported by From et al. (2011) 
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3.4   Discussion 

3.4.1 Gross N mineralization rates, immobilization rates and microbial 
biomass 

 
Gross N mineralization rates in this study were considerably higher than the range reported 

for temperate grasslands (300 to 410 mg N m-2 d-1) in Northeastern USA (Corre et al. 2002) 

and in the UK (Jamieson et al. 1999; Ledgard et al. 1998). Also our NH4
+ immobilization 

rates exceeded the rates of total gross N immobilization measured by Ledgard et al. (1998) 

who reported values between 0.21 and 1.63 µg N g-1 d-1. Net immobilization of mineral N as 

we observed on the unfertilized plots has also been reported in other studies conducted on 

temperate permanent grassland (e.g. Accoe et al. 2004) and may be explained by a stimulation 

of NH4
+ consumption due to the addition of the substrate (NH4

+) since this process is 

measured by 15N tracing and not by 15N isotope dilution (Accoe et al. 2004).  

The lower NH4
+ immobilization rates at the fertilized plots demonstrate that 

fertilization did not only affect N losses directly, but also indirectly through a decrease in 

microbial immobilization of NH4
+. A negative effect of mineral fertilization on microbial N 

immobilization was also reported by Ledgard et al. (1998). Furthermore, in an experiment 

where N deposition was reduced in a spruce stand close to our site, an increase in NH4
+ 

immobilization and a higher microbial N pool were reported (Corre and Lamersdorf 2004). 

Addition of N to the soil can cause changes in chemical bond structures of soil organic matter 

(Berg and Matzer 1997) which may in turn, reduce the effectiveness of extracellular catabolic 

enzymes. Furthermore, N addition may also lead to a decrease in the production of humus-

degrading enzymes (e.g. Tien and Myer 1990). Since we detected no differences in microbial 

C and gross N mineralization between fertilization treatments the lower NH4
+ immobilization 

rates may also be caused by lower C:N ratios of the decomposed substrate on the fertilized 

plots (Keuter et al. 2012). Finally, the lower NH4
+ immobilization may be related to lower 

amounts of N required for maintenance of the microbial biomass (as can e.g. be caused by a 

change in microbial community from bacteria towards fungi). The observed interaction 

between sward composition and fertilization in microbial biomass N and the microbial C:N 

ratios would also point in this direction.  
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3.4.2 N losses 
 
In 2009, the average rate of NO3

- leaching was very low compared to other studies on 

temperate fertilized grassland. The strong increase in NO3
- leaching in 2010 was mainly due 

to the higher NO3
- concentration in the leachate, which was caused by the delayed NO3

- 

leaching peak in early 2010, following fertilization in 2009. While in 2009, the grassland may 

have been somewhat more effective in retaining the fertilized N than in 2010 (shown e.g. by 

the higher biomass production and plant N uptake in 2009, compared to 2010; Keuter et al. 

2012), the different amounts and distribution of precipitation was probably the main cause of 

the different timing of the NO3
- leaching peaks in both years. Accumulation of fertilizer N 

was also observed by Baker and Johnson (1981) who reported high NO3
- concentrations in 

tile drainage three years after fertilization. Similar NO3
- concentrations in leachate of > 60 mg 

NO3-N L-1 have been reported under Miscanthus grass fertilized with 120 kg N yr-1 (Christian 

and Riche 1998). In our study, DON leaching rates were an order of magnitude lower than 

NO3
- leaching rates and were low compared to values reported from several agricultural 

studies which range from 0.3 to 127 kg DON ha-1 yr-1 and account for 26% of the total soluble 

N (van Kessel et al. 2009). These low DON leaching rates may be related to the relatively low 

abundance of legumes, the exclusive use of mineral fertilizer, the exclusion of grazing and the 

fine-textured soil at our site (van Kessel et al. 2009). Also our measured N2O fluxes were low 

compared to other studies conducted in grasslands. Flechard et al. (2005) reported emission 

rates between -6 and 24 N2O-N mg m-2 d-1 for unfertilized grasslands and between -6 and 132 

N2O-N mg m-2 d-1 for grasslands fertilized with 200 kg N ha-1 yr-1 in Switzerland. Also Jones 

et al. (2005) determined N2O peaks of up to 34 N2O-N mg m-2 d-1 on a grassland site in 

southern Scottland fertilized with 300 kg N ha-1 yr-1.  

The observed higher N losses following fertilizer application, independent of the 

pathway (NO3
- leaching, DON leaching and N2O emissions) is in line with our first 

hypothesis. Similar findings have been reported in studies on NO3
- leaching (e.g. Christian 

and Riche 1998) in studies on DON leaching (Dijkstra et al. 2007; Fang et al. 2009) and in 

studies reporting N2O fluxes (e.g. Jones et al. 2005). Our finding that increasing mowing 

frequency can decrease leaching of NO3
- and DON and reduce N2O emissions on the 

fertilized plots is at least partly in line with our second hypothesis that mowing reduces N 

losses. A decrease of N2O emissions with increasing mowing frequency was also reported for 

a German grassland site, which was interpreted as a result of a higher plant N uptake and thus 

lower denitrification and nitrification rates (Kammann et al. 1998). A study by our group, 

conducted on the same location also showed an increase of N response efficiency, N uptake 
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efficiency and plant N uptake with increasing mowing frequency (Keuter et al. 2012). This 

may be caused by a higher resource allocation to shoots following defoliation resulting in an 

overcompensatory regrowth (Guitian and Bardgett 2000). However, microbial immobilization 

may also contribute to the influence of mowing since defoliation of plants can increase 

rhizodeposition (Holland et al. 1996). More frequent mowing may thus stimulate C input from 

plants which in turn may cause higher microbial N immobilization. A higher soil microbial 

biomass as a result of defoliation of grasses was also observed by Guitian and Bardgett 

(2000).  

We observed no effect of sward composition on NO3
- and DON leaching and on N2O 

emissions which appears to be in contrast with some other studies. Differences in soil 

extractable N caused by plant diversity or plant functional groups have been reported, 

however, diversity effects on NO3
- and DON leaching are more ambiguous. Hooper and 

Vitousek (1998) did not observe plant diversity effects on NO3
- leaching whereas a study in a 

semi-natural mid-European grassland ecosystem observed a decrease of the total annual loss 

of NO3
- with increasing plant functional group richness (Scherer-Lorenzen et al. 2003). 

However, this effect was only significant for communities containing legumes and may thus 

have been an effect of reduction in legume abundance rather than an effect of species richness 

per se (Scherer-Lorenzen et al. 2003). In contrast, significant decreases in mineral and DON 

leaching rates with increasing biodiversity were reported for planted grassland plots in 

Minnesota, USA (Dijkstra et al. 2007). This was explained by a higher productivity and 

consequently higher organic N pools, higher microbial activity and higher DON production at 

higher levels of species richness. The study of Dijkstra et al. (2007) had strongly contrasting 

levels of species richness (1 versus 16 species) while the number of species in our treatments 

were at relatively high levels with relatively small differences. Reviews have shown that 

diversity effects are most pronounced in the range of one to five species (Wrage et al. 2011). 

This makes it unlikely that in our study we were able to detect any diversity effects. Also in 

an earlier study of our group conducted in another farm in the Solling area, we did not observe 

an effect of plant diversity on N2O and NO emissions (Hoeft et al. 2012). 

3.4.3 N retention efficiency 
 
As hypothesized, N retention efficiency was lower on the fertilized compared to unfertilized 

plots. This fertilization effect was caused by higher N losses rather than changes in gross N 

mineralization rates which did not change significantly. In our previous study, we were able to 

demonstrate that fertilized plots had higher N uptake but lower N uptake efficiency (i.e. the 
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proportion of plant available N that is taken up by plants) (Keuter et al. 2012). In the present 

study we only determined N retention efficiency for plots cut once per year where fertilization 

did not affect N uptake efficiency (data not shown). This suggests that differences in N losses 

between fertilized and unfertilized plots were caused by differences in microbial 

immobilization rather than differences in plant N uptake efficiency.  

Apart from fertilization, sward composition also affected N retention efficiency. The 

untreated control sward had the highest N retention efficiency which was in contrast to our 

hypothesis. In our earlier study, we also found higher N response efficiency and marginally 

higher N uptake efficiency for the control sward compared to the other treatments (Keuter et 

al. 2012). The control sward is the result of decades of extensive management practices and N 

limited conditions and the sward probably developed towards a composition that is most 

efficient in N retention efficiency. The dicot-enhanced swards did not differ in N retention 

efficiency from the control or the monocot-enhanced swards, while the plant N uptake 

efficiency was slightly higher at the monocot-enhanced swards than the dicot-enhanced 

swards (Keuter et al. 2012). We suggest that this can be explained by differences in microbial 

NH4
+ immobilization  which mirrored the differences in N retention efficiency (control sward 

≥ dicot-enhanced sward ≥ monocot enhanced sward) The correlations between microbial 

biomass N and NH4
+ immobilization and the lack of correlations with plant N uptake and 

harvested biomass also suggest that the microbial community rather than sward composition 

was responsible for the observed differences in N retention efficiency (Table 10). This 

supports the studies of Hooper and Vitousek (1997, 1998) who showed that microbial N 

uptake may be a more important pathway for N retention than plant N uptake and that indirect 

plant effects through microbial immobilization may equal or even exceed direct plant uptake 

effects on nutrient retention. 

3.5 Conclusions 
 
Fertilizer application was the dominant factor influencing N losses and N retention efficiency 

which was strongly influenced by microbial NH4
+ immobilization. Our results also show that 

intensive mowing can partly reduce the high N losses following N fertilization. We 

furthermore found indications that control swards that have developed under decades of 

extensive grassland management have the highest efficiency in N retention. This high N 

retention efficiency was partly caused by a complementary use of resources but was also the 

result of differences in microbial NH4
+ immobilization. N retention efficiency responded to 

variations in sward composition which was not the case with N losses, showing that N 
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retention efficiency was a more sensitive index. Furthermore, our study underlines the 

importance of microbial immobilization for the retention of N in the plant-soil system. In 

contrast to other more commonly used indices like N response efficiency and N uptake 

efficiency, N retention efficiency considers microbial immobilization as a pathway for N 

retention in the plant-soil system which is a critical factor to consider when evaluating the 

sustainability of grasslands.   
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Abstract 
 
Existing estimates of asymbiotic biological N fixation (BNF) are incomplete and spatially 

unresolved. Furthermore, it is unclear how BNF has changed from pre-industrial rates to 

present day rates where it is potentially influenced by agricultural management practices and 

atmospheric N deposition. We examined the effect of fertilization with nitrogen (N) and 

phosphorus (P) and mowing frequency on asymbiotic BNF rates in a temperate managed 

grassland site. We measured asymbiotic BNF on intact soil cores incubated in the field and in 

the lab using the acetylene reduction assay, calibrated against direct measurements with 15N2 

label. Our study suggests that asymbiotic BNF can provide significant N inputs between 1.5 

and 4.9 kg ha-1 yr-1 in the top 0.05 m of the soil profile. Asymbiotic BNF rates decreased with 

N & P fertilization indicating that potentially positive effects of a higher P availability were 

counteracted by a higher mineral N availability.  Intensive mowing stimulated asymbiotic 

BNF which was most likely caused by an increase in rhizodeposition. Furthermore, our 

calibration of the acetylene reduction assay with direct measurements of 15N2 fixation shows 

that in temperate grasslands the conversion factor can strongly deviate from the theoretical 

value of 3 and that this, together with laboratory incubations may lead to strong biases on 

estimates of asymbiotic BNF. We suggest that future studies should take these considerations 

into account. 

76 
 



 

4.1 Introduction 
 
Nitrogen (N) is an essential plant nutrient that limits primary productivity in most terrestrial 

ecosystems (Vitousek and Horwarth 1991). Although the atmosphere consists for about 80% 

of N2, this N cannot be used directly by plants. Before plants can use N it has to be ‘fixed’ in 

a reactive form (e.g. NO3
- or NH4

+) also called reactive nitrogen (Nr). There are three major 

pathways through which N can enter the plant soil system: as Nr through atmospheric N 

deposition, through fertilization and through biological N fixation (BNF). During BNF, 

atmospheric nitrogen is reduced to ammonia by microorganisms using the enzyme 

nitrogenase. In unfertilized terrestrial ecosystems, BNF is typically the most important 

pathway of N input (Reed et al. 2011).  

In the past few decades, human activity has more than doubled N fixation especially 

through the chemical production of N fertilizers, the cultivation of legumes, and the 

production of N-oxides in internal combustion engines (Vitousek et al. 1997). While the 

anthropogenic increase of N fixation, fertilization, and N deposition has been reviewed 

extensively (e.g. Galloway et al. 2008) existing estimates of BNF are incomplete and spatially 

unresolved (Reed et al. 2011). Furthermore, it is unclear how BNF has changed from pre-

industrial rates to present day rates where BNF is potentially influenced by N deposition, 

fertilization, and other management practices. 

In many ecosystems, symbiotic N fixation is the dominant pathway for BNF. 

However, asymbiotic BNF by free-living microorganisms may be an important pathway of N 

input in ecosystems where no or only few leguminous species are present. Existing data 

suggest that asymbiotic BNF may be dominant in temperate grassland ecosystems but the 

published rates are variable (Reed et al. 2011). A recent review reported an average 

asymbiotic BNF rate of 4.7 kg N ha-1 yr-1 for 13 temperate grasslands studies (Reed et al. 

2011) while another review estimated a rate of 2.2 kg N ha-1 yr-1 for grasslands worldwide 

(Cleveland et al.  1999). 

Most studies that measure BNF use the acetylene (C2H2) reduction assay. This method 

is based on the discovery that nitrogenase, the enzyme responsible for BNF, also reduces 

C2H2 to C2H4 (ethylene) (Hardy et al. 1968). Although BNF can nowadays be measured 

directly using 15N2 gas, the C2H2 reduction assay is still widely used because it is a low cost 

and sensitive method. If conducted well, the C2H2 reduction assay is calibrated against 

the 15N2 method. However, in many published BNF estimates a theoretical conversion factor 

has been used in the calculation of N fixation rates from C2H2 reduction rates, even though 

cross calibrations with the 15N2 fixation method have shown that conversion factors can 
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deviate substantially from the stoichiometric value of 3 mole ethylene (C2H4) / mole 

dinitrogen (N2), (see e.g. Nohrstedt 1983 a). Furthermore, BNF estimates are often based on 

laboratory-incubations under altered temperature and/or moisture conditions, which can 

strongly affect rates of asymbiotic BNF. Finally, many studies used disturbed soil samples 

which will probably alter oxygen concentrations in the soil sample and influence the activity 

of the oxygen-sensitive nitrogenase enzyme. The only study that we found that estimated non-

symbiotic BNF in temperate grassland on undisturbed samples in the field and calibrated the 

conversion factor against the 15N2 method was conducted in the subalpine zone (Skujins et al. 

1987), which makes it difficult to compare with lowland temperate grasslands.    

Apart from uncertainties on the magnitude of asymbiotic BNF, information on 

ecological controls as well as the effect of agricultural management practices is also scarce 

(Cleveland et al. 1999, Vitousek et al. 2002). This lack of knowledge restricts our ability to 

predict future changes in BNF and with that in N cycling (Cleveland et al. 1999). European 

grasslands have been subject to agricultural intensification in the last decades (i.e. increased 

mowing frequency and fertilizer input), however no studies have been conducted on the 

influence of mowing combined with N&P fertilization on asymbiotic BNF under field-

conditions.   

Both N and phosphorus (P) have been reported to affect asymbiotic BNF (Reed et al. 

2011). Several studies reported negative effects of N fertilization on asymbiotic BNF (e.g. 

Vlassak et al. 1973) which can be attributed to higher mineral N concentrations in the soil 

inhibiting the enzyme nitrogenase (Yoch and Whiting 1986, Alexander 1977 cited by Patra et 

al. 2007). P is frequently discussed as the most important nutrient for asymbiotic BNF since it 

has high adenosine triphosphate (ATP) requirements. A study in an infertile grassland 

ecosystem reported e.g. a strong impact of the absolute P abundance on asymbiotic BNF 

(Reed et al. 2007). Given the contrasting effects of N and P, it has also been suggested that 

N:P ratios may be a better predictor for asymbiotic BNF than N or P concentrations alone 

(Eisele et al. 1989). In contrast, no effect of absolute P abundance on asymbiotic BNF nor of 

N:P ratios have been reported by Hartley and Schlesinger (2002). They suggested that mineral 

N and available C rather than P or N:P ratios exert control over asymbiotic BNF.  

Apart from fertilization, mowing may also affect asymbiotic BNF in grasslands since 

plant defoliation increases rhizodeposition, thus providing easily available carbon for soil 

microorganisms (e.g. Holland et al. 1996). This C-input is important because asymbiotic BNF 

is a heterotrophic energy-intensive process which depends on available C as its energy source. 

In laboratory experiments, increases in asymbiotic BNF have been observed following the 
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addition of artificial root exudates to soil samples (Bürgmann et al. 2005). If mowing 

stimulates asymbiotic BNF through increasing rhizodeposition, we would expect that this is 

reflected by an increase in soil microbial biomass which respires high amounts of C released 

into the rhizosphere (Guitian and Bardgett 2000). 

Here, we test the influence of combined N & P fertilization and mowing frequency on 

asymbiotic BNF. We tested the following hypotheses: 1) fertilization with N and P in a 

commonly applied mass ratio (180 kg N and 30 kg P ha-1 yr-1) will decrease asymbiotic BNF; 

2) intensive mowing will increase asymbiotic BNF due to increasing root exudation which 

will be reflected in a larger soil microbial biomass. We conducted year-round field and 

laboratory incubations of asymbiotic BNF using the C2H2 reduction assay in a temperate 

managed grassland site under different fertilization- and mowing-treatments. Additionally, 

soil microbial biomass, soil mineral N and resin exchangeable P were determined. Our results 

show that asymbiotic BNF can provide a significant input of N into unfertilized temperate 

grassland ecosystems. Furthermore, our results indicate that estimates of BNF rates using 

theoretical conversion factors and/or lab-incubated samples maybe substantially biased. 

4.2 Material and Methods 

4.2.1 Site Description 
 
Our study (which is part of the grassland management project “GRASSMAN”) was 

conducted at a moderately species rich permanent grassland site in the Solling uplands, Lower 

Saxony, Germany (51°44'53''N, 9°32'42''E, 490 m above sea level). This site (which presently 

belongs to the experimental farm Relliehausen) has been used for grazing and hay production 

for at least 100 years (Geological Map of Prussia 1910, based on the topographic inventory of 

1896; topographic maps of Sievershausen and Neuhaus/Solling 1924, 1956 and 1974). During 

the last 50 years, the site was used for cattle grazing, received moderate fertilizer applications 

(80 kg N ha-1 yr-1) and occasional liming and was over-seeded with high value forage species 

(farm records of Relliehausen since 1966). No fertilizer was applied during the last two years 

before the experiment was conducted. Prior to the experiment the plant community was 

classified as a montane, semi-moist Lolio-cynosuretum. The dominating soil type – a haplic 

Cambisol (IUSS Working Group WRB 2006) with a loamy silt texture – has developed on 

loess sediments overlaying sandstones of the Middle Buntsandstein formation. Mean annual 

temperature and precipitation are 6.9°C and 1028 mm (Deutscher Wetterdienst, 1961 – 1990, 

station Holzminden-Silberborn, 440 m above sea level). Detailed information on soil physical 

and chemical parameters are reported in Keuter et al. (2012).  
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4.2.2 Experimental set-up 
 
Our study is conducted using a two-factorial design including two fertilization treatments and 

two mowing frequencies. Prior to the experiment, the complete study site was mown and 

fertilized plots received 50 kg N ha-1. In spring 2009, two mowing frequencies (one and three 

times per year) and two fertilization treatments were established (180 – 30 – 100 kg NPK ha-1 

yr-1 and no fertilization). In 2009, Thomaskali® (K+S KALI GmbH, Kassel, Germany) 

containing 6-9 mg kg-1 Molybdenum (Mo) was used for P and K fertilization. After that, 

"PK+ Dünger" (ICL Fertilizers Deutschland GmbH, Ludwigshafen, Germany) containing 12 

mg kg-1 Mo was applied. Calcium ammonium nitrate N27 fertilizer (ICL Fertilizers 

Deutschland GmbH, Ludwigshafen, Germany) was used for N fertilization throughout the 

whole experimental period. Fertilization was split into two equal applications per year and 

was conducted in April and May/June (2009 - 2012). Mowing was conducted in May, July 

and September (2009 - 2012) for the plots cut three times per year and in July (2009 - 2012) 

for the plots cut once per year. The combination of the two factors resulted in four different 

treatments. Each treatment was replicated 18 times. The 72 treatment plots (15 m x 15 m) 

were arranged in a Latin rectangle design. For the present study 48 of these plots (14 

replicates per treatment) were sampled. 

 In June 2008, three different sward compositions differing in the proportions of 

monocotyledons and dicotyledons and in species richness were established by applying 

selective herbicides (see Keuter et al. 2012 for detailed information). This resulted in 

significant changes in sward composition in 2009 and 2010 (Keuter et al. 2012). However, in 

2011 the vegetation survey (From et al., unpublished data) did not reveal significant 

differences among treatments in species richness and only a marginal difference in monocot 

abundance between control and dicot-enhanced treatments (control sward consisted of 72% 

monocots, 27% dicots and 1% legumes; monocot-enhanced sward consisted of 75% 

monocots, 25% dicots and 0% legumes; dicot-enhanced sward consisted of 68% monocots, 

30% dicots and 2% legumes). In the present study, we included sward composition as a fixed 

effect in all statistical models testing treatment differences to account for the variance 

potentially still caused by this factor. However, sward composition did not affect any of the 

presented parameters. 

4.2.3 Biological nitrogen fixation  
 
BNF was determined using the C2H2 reduction assay (Hardy et al. 1968). At each sampling 

date, one intact soil core (100 cm³) per plot was taken at 0.00-0.05 m depth (four replicates 
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per treatment combination). Sampling points were chosen at random. If leguminous species 

were found within an area of 0.5 m around the sampling point, another sampling point was 

chosen. Intact, field moist soil cores were incubated in vacuum-proof glass jars (1100 ml 

volume). Parafilm (Parafilm M® Laboratory Film) was wrapped around the top before jars 

were closed with metal lids equipped with rubber septa. 10% of the headspace air was 

exchanged against C2H2 (cylinder C2H2 with 99% purity, Westfalen AG, Münster Westf., 

Germany) using a gas-proof syringe. C2H2 was purified by passing it through 98% sulfuric 

acid and 5M sodium hydroxide solution as described by Hyman and Arp (1986). Field 

incubation for 24 h was done under ambient temperature and soil moisture conditions. 

Incubation jars were kept on the ground and protected against direct sunlight. Gas samples 

were taken one, three and 24 hours after C2H2 injection using a gas-proof syringe and 

transferred into pre-evacuated vials (Labco Exetainer®). Gas samples were analyzed for C2H4 

concentrations using a gas chromatograph (Shimadzu GC 14-B) equipped with a flame ion 

detector (FID) and Heyesep T columns. Column oven and FID temperatures were 80°C and 

290°C, respectively. Nitrogen was used as a carrier gas. Calibration was conducted using four 

different C2H4 concentrations which were made by mixing C2H4 (99.5 % purity, Westfalen 

AG, Münster Westf., Germany) with ambient air.  Field moist soil cores were weighed and 

mixed after incubation. Additionally, samples that showed C2H4 production were checked for 

the presence of root nodules, which were never observed. Sample dry weights were calculated 

from field moist weights and the gravimetric moisture (determined by oven-drying at 105°C 

for 24 h). C2H4 production rates were calculated from the slope of the regression line of the 

C2H4 concentrations over time. Dry mass based rates were converted to area based rates using 

the average measured bulk density of 0.79 g cm-3. Average rates in mg N m-2 d-1 per treatment 

were extrapolated to kg N ha-1 yr-1 using the trapezoid rule on time intervals. We assumed that 

no asymbiotic BNF occurred in the winter months between Nov 10th 2011 and Apr 11th 2012 

when no measurements were conducted and low temperatures were likely to inhibit 

asymbiotic BNF. 

A cross calibration with direct 15N2 fixation measurements was conducted in August 

2011 to determine the conversion factor between C2H4 production and N2 fixation. The cross 

calibration was performed at six plots where considerable C2H4 production had been 

observed. Six parallel soil cores per plot covered with the same plant species were taken close 

to one another. Two of these cores were used for the C2H2 reduction method as described 

above. One core was incubated in a 15N enriched atmosphere for 10 d. About 100 ml of the 

headspace were exchanged against 15N2 isotope gas (15N enrichment of 98%, Cambridge, 
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Isotope Laboratories, Inc.) to achieve a concentration of approx. 10 atom % 15N. Another core 

was incubated as reference sample in ambient air for 10 d. The same jars as described above 

were used for field incubation. Incubation jars were stored in approx. 20 cm deep holes in the 

ground covered with white, translucent plastic plates. Oxygen concentrations in the headspace 

were measured at the end of each incubation period using a Digital Oxymeter equipped with a 

syringe needle (Greisinger GMH 3691). Gas samples were taken at the beginning and at the 

end of each incubation period and analyzed for 15N concentration with an isotope ratio mass 

spectrometer (IRMS). Soil samples were air-dried at 40°C, sieved to 2 mm, ground in a ball-

mill and analyzed for 15N concentrations using IRMS. N fixation was calculated for each 

sample according to: 

 
Nfix = (15NNe– 15NNs) * (Nc) * (15NN2 - 

15NNs)-1
 * ( t) 

-1 * (mmole)-1                                                                          (2) 

 

where Nfix = N2 fixation rate (mole N2 kg dry mass-1 d-1)  
15NInc = 15N content (atom %) of the incubated sample 
15NNs = 15N content (atom %) of the reference sample 

Nc = total N content of the soil sample (mg N kg dry mass-1)  
15NN2 = average 15N content of the N2 fixed before and after incubation (atom %) 

t = the  incubation time (d) 

mmole = molar mass of N2 (mg mol-1)  

 

The conversion factor between C2H4 production and N2 fixation was calculated for each of 

the six plots according to: 

 
F = (Eth) / (Nfix)                                                                                                                                                   (3)     
                                                                                                                         

where F is the conversion factor, Nfix = N2 fixation rate (mole N2 kg dry mass-1 d-1), Eth = 

average of C2H4 production rate of the two parallel C2H2-incubated samples (mole C2H4 kg 

dry mass-1 d-1). The average of the six calculated conversion factors was used for the 

calculation of N fixation rates from C2H4 production rates. 

4.2.4 Test for endogenous C2H4 production and C2H4 consumption 
 
To test for endogenous production of C2H4, one intact soil core per treatment was  incubated 

in an atmosphere of approx. 0.05% C2H2 for 24 h. Incubating substrates in low concentrations 

of C2H2 inhibits the oxidation of produced C2H4 without inducing reduction of C2H2 

(Nohrstedt 1983 b). Endogenous production of C2H4   at our site was so low that it did not 
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exceed the detection limit of the GC when measured against background levels of C2H4 in 

samples containing 10% C2H2. In consequence, we did not account for endogenous C2H4 

production when determining BNF. 

To determine microbial degradation of C2H4, one soil core per treatment was 

incubated in an atmosphere of approx. 0.001% C2H4 for 24 h and C2H4 concentrations were 

monitored. No significant decrease in the concentrations of C2H4 was detected.  

4.2.5 Potential asymbiotic BNF  
 
For the determination of potential N fixation, intact soil cores were irrigated to field capacity. 

Soil sampling rings were closed with a filter paper (595, Schleicher & Schuell, Germany, ø 90 

mm) at the bottom and placed on a water-saturated sand layer to allow for capillary rise 

(Synthetic sand 08.01.09. Eijkelkamp, the Netherlands, particle size ~73 µm) for 12 h at 

approx. 20°C. Subsequently, the C2H2 reduction assay was conducted in a climate chamber at 

a temperature of 20° C (12 h lightened and 12 h in the dark).  

4.2.6 Microbial biomass C and N and soil mineral N 
 
Soil microbial C and N contents were determined with the fumigation-extraction method 

(Brookes et al. 1985) in June 2012. Five samples per plot were taken with an auger from the 

Ah horizon (0.00-0.05 m depth), pooled together and mixed well. One subsample per plot 

(~15 g) was immediately extracted in the field with 75 ml 0.5 M K2SO4. Another subsample 

was placed in a desiccator containing a beaker with chloroform (CHCl3). In order to distribute 

the CHCl3 vapor, the desiccator was evacuated until the CHCl3 started to boil. The samples 

were fumigated for 5 d. Subsequently the desiccator was flushed with air and evacuated 

several times to remove CHCl3 from the soil samples. After that, samples were extracted with 

0.5 M K2SO4. All soil extracts were shaken for 1 h, filtered through Whatman 595 ½ folded 

filters, and kept frozen until analysis. Total extractable N (TN), Ammonium (NH4
+) and 

Nitrate (NO3
-) concentrations were determined using continuous flow injection colorimetry 

(Skalar, Cenco Instruments, Breda, The Netherlands). UV-persulfate oxidation and hydrazine 

sulfate reduction (Skalar Method 473-000) was used for the determination of TN, Berthelot 

reaction method (Skalar Method 155-000) for the determination of NH4
+ and copper-

cadmium reduction method (Method 461-000) for the determination of NO3
-. Extractable 

organic C was analyzed with a Dohrmann DC-80 Carbon Analyzer equipped with an infrared 

detector (Rosemount Analytical Division, CA, USA) using ultraviolet (UV)-enhanced 

persulfate oxidation. Microbial biomass C and N were calculated as the difference in 
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extractable N and C between fumigated and unfumigated samples divided by a conversion 

factor of 0.68 for N and 0.45 for C (Brookes et al. 1985, Joergensen 1996). 

4.2.7 Resin-exchangeable P 
 
Resin-exchangeable P (Presin) was determined in June 2010 with exchange resins according to 

the method described by Tiessen et al. (1983). Composite soil samples were taken as 

described above. Samples were air-dried at 40° C for seven days and sieved to 2 mm. Soil 

samples (0.5 g) were shaken in 30 ml distilled water for 12 h together with 1 g of pellet-

shaped anion exchange resin (DOWEX 41081 analytical grade, Serva Electrophoresis GmbH, 

Heidelberg, Germany) kept in a tea-bag. Subsequently, tea-bags containing the exchange resin 

were cleaned with distilled water and shaken in 20 ml 0.5 m HCl for 12 h. After 

centrifugation of the samples, the supernatant was frozen until analysis for P using ICP-AES.   

4.2.8 Statistical Analysis 
 
The impact of the treatment factors on BNF and potential BNF was tested with linear mixed 

effects models. Sampling date and plot were included as random factors to account for 

pseudoreplication. Soil moisture was included as a covariable and row and column of the 

Latin rectangle design were included as fixed effects. Data were tested for autocorrelation. In 

case of heteroscedastic residuals, data were log-transformed and/or a variance function was 

included if this improved Akaikes likelihood criterion (AIC). Row, column, and non-

significant interaction terms were deleted stepwise from the statistical model if this did not 

significantly increase the error variance. The correlations between treatment means of BNF 

and soil moisture contents per sampling date were tested with Spearman’s rank correlation. 

The impact of treatment effects on microbial C and N as well as concentrations of mineral N 

and available P were tested with analysis of variance. Row and column of the Latin rectangle 

were included as fixed effects. Residuals were checked for normality and homoscedasticity 

and data were log-transformed in case of non-normally distributed and/or heteroscedastic 

residuals. Statistical models were simplified stepwise as described above. All effects were 

regarded as significant at P ≤ 0.05 unless stated otherwise. 
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4.3 Results 

4.3.1 Microbial C and N contents and C:N ratios 
 
Soil microbial biomass C ranged from 360 to 1260 mg C kg dry mass-1 and increased 

marginally with increasing mowing frequency (Fig. 6a, P = 0.075) but was not affected by 

fertilization (Fig. 6b).  Soil microbial biomass N ranged from 85 to 130 mg N kg dry mass-1 

and increased with increasing mowing frequency (P = 0.020). Fertilization again had no 

effect. Microbial biomass C:N ratios varied from 4 to 12 and were not influenced by any of 

the treatment factors.  

4.3.2 Soil mineral N and resin-exchangeable P 
 
Concentrations of total mineral N (NH4

+ + NO3
-) varied between 0.29 and 4.64 mmole N kg 

dry mass-1. NO3
- concentrations were generally lower than those of NH4

+ and did not exceed 

0.04 mmole N kg dry mass-1 on the unfertilized plots. Total mineral N concentrations were 

were higher on fertilized plots (P < 0.001, Fig. 7 b) while mowing frequency (Fig. 7 a) had no 

effect.  

Concentrations of Presin ranged from 2.13 to 8.36 mmole P kg dry mass-1 but on the 

unfertilized plots they did not exceed 5 mmole P kg dry mass-1. Fertilization was the only 

treatment affecting Presin (P = 0.016) with higher concentrations on the fertilized plots (Fig. 7 

b). Total mineral N : Presin ratios were enhanced by fertilization (P < 0.001, Fig. 7 b) and 

increased with increasing mowing frequency (P = 0.011, Fig. 7 a). 

4.3.3 Conversion factor between N fixation and C2H2 reduction 
 
The average conversion factor between C2H4 produced and N2 fixed (mole C2H4 kg-1 d-1 / 

mole N2 kg-1 d-1) was 0.61 (± 0.29 SE). One 15N incubated sample showed an oxygen 

concentration < 10 % in the headspace after incubation and was excluded from further 

calculations. Oxygen concentrations in the headspace were not significantly correlated 

with 15N based N fixation rates (Spearman’s correlation coefficient = 0.6; P = 0.242, data not 

shown).  
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Figure 6: Soil microbial biomass carbon and nitrogen and microbial carbon : nitrogen ratios (± standard errors) 
of a grassland (0.00-0.05 m depth) under a) different fertilization treatments (no = unfertilized, NPK = fertilized)  
and b) different mowing frequencies (1yr-1 = one mowing per year, 3yr-1 = three mowings per year) in the Solling 
uplands, Germany. Columns with different letter indicate significant differences among treatments (ANOVA at 
P ≦ 0.05, * = marginally significant, P ≦ 0.1). 
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Figure 7: Total soil mineral N (NH4
+-N + NO3

--N) and resin exchangeable P (Presin) concentrations (± standard 
errors) of a grassland (0.00-0.05 m depth) under a) different fertilization treatments (no = unfertilized, NPK = 
fertilized) and b) different mowing frequencies (1yr-1 = one mowing per year, 3yr-1 = three mowings per year in 
the Solling uplands, Germany. Columns with different letter indicate significant differences among treatments 
(ANOVA at P ≦ 0.05). 
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4.3.4 Asymbiotic BNF and potential asymbiotic BNF 
 
Rates of asymbiotic BNF were characterized by a high spatial variability (Fig. 8). Within 

treatment combinations and at the same sampling date, rates varied from no detectable N 

fixing activity up to 10 mg N m-2 d-1 (in extreme cases up to 30 – 42 mg N m-2 d-1). Across all 

treatments, average rates were relatively high between June and September 2011 while only 

low activities could be detected in November 2011 and in April and May 2012. Extrapolated 

to one hectare, annual inputs of N provided by asymbiotic BNF ranged between 1.5 and 4.9 

kg N in the upper 5 cm of the soil profile, depending on the treatment combination (Appendix 

2). Both fertilization (P = 0.017) and mowing frequency (P = 0.046) affected asymbiotic BNF 

with higher rates on the unfertilized plots and the plots cut three times per year.  

With a few exceptions, fertilization decreased asymbiotic BNF throughout the whole 

measurement period. We did not detect a short-term effect of fertilization on asymbiotic BNF 

following fertilization applications. Asymbiotic BNF increased with soil moisture (P < 0.001). 

In contrast, treatment means per sampling date of BNF and soil moisture contents were not 

significantly correlated (Spearman’s correlation coefficient: 0.067, P = 0.880).  

Asymbiotic BNF showed a strong rapid reaction to mowing: In May 2011, when 

mowing was conducted on the plots cut three times per year, we measured relatively high 

rates of BNF. Furthermore, both plots cut once and three times per year showed an increase in 

asymbiotic BNF after the second mowing in July 2011. Also in September 2011, when 

mowing was only conducted at plots cut three times per year, the overall increase in 

asymbiotic BNF was pronounced on these plots.  

Rates of potential asymbiotic BNF (Fig. 9) measured in October 2011 were 

considerably higher than rates measured under field-conditions. Compared to the overall mean 

of BNF rates measured in the field, lab-incubations resulted in an increase by a factor of 

seven. In contrast to field-incubations potential asymbiotic BNF was not affected by mowing 

frequency (Fig. 9a) and fertilization (Fig. 9b) (P = 0.510 and P = 0.169, respectively).  
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Figure 8: Rates of asymbiotic biological nitrogen fixation (± standard errors) of a grassland under and different fertilization treatments and mowing frequencies (a) unfertilized, 
b) NPK-fertilized, c) one cut per year, d) three cuts per year) in the Solling uplands, Germany. Average measured soil bulk density of 0.79 g cm-3 and 0.00-0.05 m depth was used 
to  convert  rates  from  dry  mass  basis  to  area  basis.  Vertical,  dotted  lines  symbolize  fertilization  and  mowing  events,  respectively.  Both  fertilization  (P =  0.017)  and  
mowing frequency (P = 0.046) significantly affected rates of asymbiotic BNF (linear mixed effects model (LME) at P ≦ 0.05).
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Figure 9: Potential asymbiotic biological nitrogen fixation (± standard errors) of a grassland under different 
mowing frequencies (1yr-1 = one mowing per year, 3yr-1 = three mowings per year) and fertilization treatments 
(no = unfertilized, NPK = fertilized) in the Solling uplands, Germany. Average measured soil bulk density of 
0.79 g cm-3 and 0.00-0.05 m depth was used to convert rates from dry mass basis rates to area basis. Columns 
with different letter indicate significant differences among treatments (ANOVA at P ≦ 0.05). 
 

4.4 Discussion 

4.4.1 Conversion factors and asymbiotic BNF rates 
 
The conversion factor determined in our study (0.61) was clearly below the theoretical 

conversion factor of 3 which is conventionally used in calculating N2 fixed from C2H4 

produced. Conversion factors lower than three have been reported for temperate grasslands by 

other authors (Zechmeister-Boltenstern and Kinzel 1990: conversion factor of 2.1; Vlassak et 

al. 1973: conversion factor of 2.6) and can result from a disturbed enzyme production caused 

by C2H2, toxic effects of C2H2 on N fixing organisms, or absorbance of C2H2 to soil colloids 

(Nohrstedt 1983 a). Our conversion factors are clearly below these values, however for other 

ecosystems much lower conversion factors have been reported. For instance, Belnap (2001) 

reported a factor of 0.31 for soil crusts while Liengen et al. (1999) determined factors of 

between 0.11 and 0.48 for sheets of Nostoc commune and between 0.022 and 0.073 for 

cyanobacterial crusts in arctic habitats. Given these low published values, we think that our 

conversion factors are plausible, even though they are to lowest published for temperate 

grasslands. Methodical biases leading to low conversion factors could arise from the relatively 

long incubation time (10 d) under 15N compared to one-day incubation under C2H2. A longer 
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incubation time might lead to low oxygen concentrations in the incubation jars due to 

microbial consumption during organic matter decomposition. This may increase the activity 

of anaerobic N fixers and result into low conversion factors. Since we excluded samples with 

very low oxygen concentrations in the headspace, such bias is unlikely in our study. 

Furthermore, correlations between 15N based N fixation rates and oxygen concentrations in 

the headspace of the 15N incubated samples after incubation were not significant and even 

positive (i.e. they had a tendency to lower rates at lower oxygen concentrations). 

High temporal and spatial variability in rates of asymbiotic BNF as shown in our study 

is commonly reported (e.g. Paul et al. 1971, Vlassak et al. 1973). The relatively low average 

rates in November 2011 and April 2012 may be explained by low soil temperatures in these 

months (data not shown); while the low BNF activity in May 2012 may be related to very low 

soil moisture contents (data not shown).  Positive effects of soil moisture on asymbiotic BNF 

have been shown by several authors under both lab-incubations (e.g. Garten et al. 2007) and 

field-incubations (e.g. Paul et al. 1971). This is probably related to lower concentrations of 

oxygen, which may inhibit nitrogenase. The lack of correlation between monthly treatment-

means of asymbiotic BNF and soil moisture contents in our study suggests that soil moisture 

may be responsible for the variation in BNF within one treatment and sampling date rather 

than for seasonal variation. Our data suggest that seasonal variation in BNF was mainly 

controlled by soil temperature which reduced BNF in cold periods (e.g. Nov, Apr, May) even 

though soil moisture conditions were favorable.  

Our estimates of annual BNF  between 1.5 and 4.9 kg N ha-1 yr-1 in the top 0.05 m soil 

(Appendix 2) are comparable to the values from the reviews of Reed et al. (2011) and 

Cleveland et al. (1999) whose estimates of asymbiotic BNF rates were 4.7 kg N ha-1 yr-1 for 

temperate grasslands and 2.2 kg N ha-1 yr-1 for grasslands worldwide. Rates as high as 21 kg 

N ha-1 yr-1 have been reported by Eisele et al. (1989) for a tallgrass prairie receiving ash while 

rates below 5 kg N ha-1 yr-1 are usually reported when soil depths between 0.00-0.125 and 

0.00-0.60 m are considered (e.g. Paul et al. 1971, Vlassak et al. 1973). However, many of the 

studies in these reviews have 1) conducted lab-incubations under altered moisture and/or 

temperature conditions, 2) incubated disturbed soil samples, and/or 3) used theoretical 

conversion factors for the calculation of BNF rates from C2H2 reduction. Our results show 

that conversion factors can deviate substantially from the theoretical value which illustrates 

that estimates based on a theoretical conversion factor may be biased. Furthermore, our 

measurements of potential asymbiotic BNF rates revealed that incubation under increased 

temperature and moisture contents can dramatically increase BNF rates. To our knowledge, 

the only other study measuring asymbiotic BNF in temperate grasslands that has none of these 
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methodological problems estimated asymbiotic BNF at 0.33 kg ha-1 yr-1 in the upper 0.25 m 

of a subalpine meadow in Utah, USA (Skujins et al. 1987). Asymbiotic BNF rates from our 

study clearly exceeded this estimate even though they were likely to be conservative since we 

conducted our measurements at the top 0.05 m of the soil profile only.   

How do our estimated of asymbiotic BNF compare to N deposition and symbiotic 

BNF of unfertilized ecosystems? In the Solling uplands, N deposition was 12.6 kg N ha-1 yr-1 

(Keuffel-Türk et al., in press). In our study site the abundance of legumes (Trifolium repens) 

was negligible in the swards cut once per year (< 1% of the harvested dry mass). In the swards 

cut three times per year, however, legume abundances were 1.1% in the fertilized plots and 

3.2% in the unfertilized plots (T. From, unpublished data). According to a model developed 

by Carlsson and Huss-Danell (2003), the annual N input (kg N ha-1 yr-1) in grass-clover 

mixtures is 3.1% of the harvested dry mass of Trifolium repens (kg ha-1 yr-1). Based on the 

biomass yields of 2010 (Keuter et al. 2012) we thus estimate the annual N input through 

legumes as ~3 kg N ha-1 for the fertilized and ~5 kg N ha-1 for the unfertilized plots. Our 

results suggest that under favorable management practices, asymbiotic BNF provides a 

significant input of N into temperate grassland which is in the same order of magnitude as N 

input from atmospheric N deposition and symbiotic BNF. 

4.4.2 Fertilization and mowing effects on asymbiotic BNF 
 
Our results that the combined fertilization with N and P in a commonly applied mass ratio had 

a negative effect on asymbiotic BNF supports our first hypothesis. Since BNF is an energy-

intensive process, bacteria usually only fix N2 when mineral N is not available (Reed et al. 

2011). Underlying mechanisms that can down-regulate N fixation in response to increasing 

levels of mineral N are the inhibition of nitrogenase synthesis by NO3
- and the reversible 

inhibition of nitrogenase activity by NH4
+ (also called NH4

+ switch-off mechanism; Yoch and 

Whiting 1996, Alexander 1977 cited by Patra et al. 2007). Soil mineral N concentrations on 

the unfertilized plots were probably below the threshold level where nitrogenase inhibition 

begins. Knowles and Denike (1974) reported that this threshold is dependent on microbial 

available C and observed nitrogenase inhibition above NH4
+-N concentrations > 0.29 mmole 

kg-1 after addition of 0.05 % glucose and > 2.5 mmole kg-1 after addition of 1 % glucose. In 

our study site the addition of mineral N through fertilization led to concentrations above this 

threshold, value, thus inhibiting nitrogenase activity. 

Contrary to the results of Reed et al. (2007), the higher P availability on the fertilized 

plots did not affect asymbiotic BNF. Potential positive effects of increased P availability have 

probably been counteracted by the negative effects of increased soil mineral N concentrations, 
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which supports the theory that mineral N rather than P or N:P ratios exerts control over 

asymbiotic BNF (Hartley and Schlesinger, 2002). However, fertilization did not only increase 

mineral N and Presin concentrations but also mineral N:Presin ratios which may be related to the 

N:P ratio of the applied fertilizer (180 kg N ha-1 yr-1 and 30 kg P ha-1 yr-1) and the lower 

mobility of P compared to N. Finally, the overall P availability in our study site may have 

been too high to be a limiting factor for asymbiotic BNF. Mo was also applied with the 

fertilizer, but did not have a positive effect either. Thus, our study supports the conclusion of 

Hartley and Schlesinger (2002) that mineral N availability was a more important predictor for 

asymbiotic BNF than Mo availability.  

The positive effect of mowing on asymbiotic BNF is probably related to an increase in 

root exudation following plant-defoliation (Holland et al. 1996). BNF is energy-intensive and 

since root exudates provide an easily available carbon source for microorganisms (Guitian and 

Bardgett 2000), an increase in heterotrophic asymbiotic BNF caused by plant-defoliation is 

likely. Until now this effect was only shown in laboratory incubations and not in the field 

(Bürgmann et al. 2005). In addition to direct effects as energy sources for N fixers, root 

exudates may also promote asymbiotic BNF through an increase in microbial respiration 

resulting in lower oxygen concentrations (Reed et al. 2011). Both explanations are supported 

by the higher soil microbial biomass C and N contents on the frequently cut plots, which have 

also been reported by Guitian and Bardgett (2000).  

4.5 Conclusions 
 
In our study we showed that asymbiotic BNF is an important pathway for the input of N into 

unfertilized temperate grasslands and should be considered in the calculation of N budgets. 

Fertilization with N and P in a commonly applied mass ratio reduced asymbiotic BNF to 

negligible rates which was probably caused by inhibition of nitrogenase as a result of high 

mineral N concentrations. We also demonstrated that intensive mowing stimulated asymbiotic 

BNF which was probably related to an increase in rhizodeposition, indicating that C 

availability is the dominant driver for asymbiotic BNF. Our results furthermore show that 

conversion factors between N2 fixed and C2H2 reduced of <1 can also occur in temperate 

grassland soils and that this, together with laboratory incubations may lead to strong biases on 

estimates of asymbiotic BNF. We suggest that future studies measuring N inputs from 

asymbiotic BNF should take these methodological considerations into account.  

93 
 



 

Acknowledgements 
 
This work is part of the Cluster of Excellence ‘Functional Biodiversity Research’ and has been funded by the 

State of Lower Saxony, the Ministry of Science and Culture and the Niedersächsisches Vorab. The authors thank 

Steffen Wolff and Stefanie Herzog for support with field measurements and laboratory work, Dr. Norman 

Loftfield for his support with the set-up of the gas-chromatograph, and Dirk Boettger for technical assistance. We 

thank the technical assistants of the Büsgen-Institute and the Department of Plant Ecology for soil analyses.  

94 
 



 

References  
 
Alexander M (1977): Introduction to Soil Microbiology, second edition, Wiley, New York. 

Belnap J (2001): Factors influencing nitrogen fixation and nitrogen release in biological soil crusts. In: Belnap J  

and Lange OL (eds) Biological soil crusts: structure, function and management. Springer, Berlin, pp 

241-261. 

Brookes PC, Landman A, Pruden G, and Jenkinson DS (1985): Chloroform fumigation and the release of soil  

nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology 

and Biochemistry 17: 837–842. 

Bürgmann H, Meier S, Bunge M, Widmer F, and Zeyer J (2005): Effects of model root exudates on structure and  

 activity of a soil diazotroph community. Environmental Microbiology 7: 1711-1724. 

Carlsson G and Huss-Danell K (2003): Nitrogen fixation in perennial forage legumes in the field. Plant and Soil  

 253: 353-372. 

Cleveland CC, Townsend AR, Schimel DS, et al. (1999): Global patterns of terrestrial biological nitrogen (N2)  

 fixation in natural ecosystems. Global Biogeochemical Cycles 13: 623-645. 

Eisele KA, Schimel DS, Kapustka LA, and Parton WJ (1989): Effects of available P and N:P ratios on non- 

 symbiotic dinitrogen fixation in tallgrass prairie soils. Oecologia 79: 471-474. 

Galloway JN, Townsend AR, Erisman JW, et al. (2008): Transformation of the nitrogen cycle: Recent trends,  

 questions, and potential solutions. Science 320: 889-892. 

Garten CT Jr, Claasen AT, Norby RJ, Brice DJ, Weltzin JF, and Souza L (2007): Role of N2-fixation in  

constructed old-field communities under different regimes of [CO2], temperature, and water availability. 

Ecosystems 11: 125-137. 

Guitian R and Bardgett RD (2000): Plant and soil microbial responses to defoliation in temperate semi-natural  

 grassland. Plant and Soil 220: 271–277. 

Hardy RWF, Holsten RD, Jackson EK, and Burns RC (1968): The acetylene – ethylene assay for N2 fixation:  

 laboratory and field evaluation. Plant Physiology 43: 1185-1207. 

Hartley AE and Schlesinger WH (2002): Potential environmental controls on nitrogenase activity in biological  

 crusts of the northern Chihuahuan desert. Journal of arid environments 52: 293-304. 

Holland JN, Cheng WX, Crossley DA (1996): Herbivore-induced changes in plant carbon allocation:  

 Assessment of below-ground C fluxes using carbon-14. Oecologia 107: 87-94. 

Hyman MR and Arp DJ (1986): Quantification and removal of some contaminating gases from acetylene to  

study gas-utilizing enzymes and microorganisms. Applied and Environmental Microbiology 53: 298-

303.  

IUSS working group WRB (2006): World reference base for soil resources 2006. World soil resources reports 

 No. 130. FAO, Rome. 

Joergensen RG (1996): The fumigation-extraction method to estimate soil microbial biomass: Calibration of the  

 KEC value. Soil Biology and Biochemistry 28: 25-31. 

Keuffel-Türk A, Jankowski A, Scheler B, Rademacher P, and Meesenburg H (in press): Stoffeinträge durch  

Deposition. In: Höper H, Landesamt für Bergbau MH (eds) Tagungsband 20 Jahre Boden-

Dauerbeobachtung in Niedersachsen. Energie und Geologie, Hannover. 

 

95 
 



 

Keuter A, Hoeft I, Corre MD, and Veldkamp E (2012): Nitrogen response efficiency of a managed and  

 phytodiverse temperate grassland. Plant and Soil, DOI 10.1007/s11104-0 12-1344-y. 

Knowles R and Denike D (1974): Effect of ammonium, nitrite and nitrate nitrogen on anaerobic nitrogenase  

 activity in soil. Soil Biology and Biochemistry  6: 353-358. 

Liengen T (1999): Conversion factor between acetylene reduction and nitrogen fixation in free-living  

 cyanobacteria from high arctic habitats. Canadian Journal of Microbiology 45: 223-229. 

Nohrstedt HÖ (1983 a): Conversion factor between acetylene reduction and nitrogen fixation in soil: effect of  

 water content and nitrogenase activity. Soil Biology and Biochemistry 15: 275-279. 

Nohrstedt HÖ (1983 b): Natural formation of ethylene in forest soils and methods to correct results given by the  

 acetylene-reduction assay. Soil Biology and Biochemistry 15: 281-286. 

Patra AK, Le Roux L, Abbadie L, et al. (2007): Effect of microbial activity and nitrogen mineralization on free- 

living nitrogen fixation in permanent grassland soils. Journal of Agronomy and Crop Sciences 193: 153-

156. 

Paul EA, Myers RJK, and Rice WA (1971): Nitrogen fixation in grassland and associated cultivated ecosystems.  

 Plant and Soil, Special Volume: 495-507. 

Reed SC, Seastedt TR, Mann CM, Suding KN, Townsend AR, and Cherwin KL (2007): Phosphorus fertilization  

stimulates nitrogen fixation and increases inorganic nitrogen concentrations in a restored prairie. 

Applied Soil Ecology 36: 238-242. 

Reed SC, Cleveland CC, and Townsend AR (2011): Functional ecology of free-living nitrogen fixation: a  

 contemporary perspective. Annual Review of Ecology, Evolution, and Systematics 42: 489-512. 

Skujins J, Tann CC, and Börjesson I (1987): Dinitrogen fixation in a montane forest sere determined by 15N2  

 assimilation and in situ acetylene-reduction methods. Soil Biology and Biochemistry 19: 465-471.  

Tiessen H, Stewart JWB, and Moir JO (1983): Changes in organic and inorganic phosphorus composition of two  

grassland soils and their particle size fractions during 60-90 years of cultivation. Journal of Soil Science 

34: 815-823. 

Vitousek PM and Horwarth RW (1991): Nitrogen limitation on land and in the sea – how can it occur?  

 Biogeochemistry 13: 87-115. 

Vitousek PM, Aber JD, Howarth RW, et al. (1997): Human alteration of the global nitrogen cycle: sources and  

 consequences. Ecological Applications 7: 737–750. 

Vitousek PM, Cassman K, Cleveland C, et al. (2002): Towards an ecological understanding of biological  

 nitrogen fixation. Biogeochemistry 57/58: 1–45. 

Vlassak K, Paul EA, and Harris RE (1973): Assessment of biological nitrogen fixation in grassland and  

 associated sites. Plant and Soil 38: 637-649. 

Yoch DC and Whiting GJ (1986): Evidence for NH4
+ switch-off regulation of nitrogenase activity by bacteria in  

salt marsh sediments and roots of the grass Spartina alterniflora. Applied and Environmental 

Microbiology: 143-149. 

Zechmeister-Boltenstern S and Kinzel H (1990): Non-symbiotic nitrogen fixation associated with temperate soils  

 in relation to soil properties and vegetation. Soil Biology and Biochemistry 22: 1075-1084. 

96 
 



 

Appendix  
 
Appendix 2: Asymbiotic biological nitrogen fixation of a grassland under different management practices and sward compositions in the Solling uplands, Germany. Average 
measured bulk density of 0.79 g cm-3 and a depth from 0.00-0.05 m was used to convert determined dry mass based rates to area based rates. 
Main factors Treatments n sampling 

dates 

N fixation rate 

(mg N m-2 d-1) 

SE                     

(mg N m-2 d-1) 

P N fixation rate  

(kg N ha-1 yr-1) 

Sward composition       0.998  

 control 16 9 1.0 a 0.03  2.3 

 monocot-enhanced 16 9 1.2 a 0.05  2.5 

  dicot-enhanced 16 9 1.5 a 0.09  3.7 

Fertilization       0.017  

 no 24 9 1.6 a 0.07  3.7 

  NPK 24 9 0.8 b 0.02  1.9 

Mowing frequency       0.046  

 once per year 24 9 0.9 b 0.03  2.0 

  thrice per year  24 9 1.5 a 0.06  3.7 

Fertilization : Mowing frequency     0.938  

 no / once per year  12 9 1.2 0.33  2.4 

 NPK / once per year  12 9 0.6 0.10  1.5 

 no / thrice per year  12 9 2.0 0.56  4.9 

  NPK / thrice per year  12 9 1.0 0.16   2.3 

* Rates in kg-1 ha-1 yr-1 were calculated using the trapezoid rule and assuming no activity between Nov 10th 2011 and Apr 11th 2012 
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5 SYNTHESIS 
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5.1 Management effects 
 
Our studies have shown that fertilization was the most influential factor affecting N cycling 

and consequently N losses at our site (Fig. 10). Fertilization was the dominant input of  N to 

the plant-soil system. However, this input was still relatively low compared to the amount of 

N recycled internally (i.e. gross N mineralization) which was about one order of magnitude 

higher than the amount of mineral N applied as fertilizer. This magnitude underlines the 

importance of N mineralization for plant growth and becomes plausible when it is related to 

the amount of microbial N and total N in the soil (Fig. 11). This implies the advantage of the 

N retention efficiency index as it is calculated in our study (which accounts for gross N 

mineralization) over indices considering only external “new” N inputs (i.e. fertilization or 

atmospheric N deposition; e.g. Aber et al. 1998).  

Fertilization decreased NRE through a decrease in both N use efficiency and N uptake 

efficiency. The latter effect as well as lower microbial N immobilization rates on the fertilized 

plots were reflected in higher N losses (Fig. 10). Since gross N mineralization was not 

affected by fertilization this resulted in a decrease in N retention efficiency as hypothesized. 

NO3
- leaching was the dominant loss pathway in our site under both unfertilized and fertilized 

conditions (Fig. 10).  

Altogether, our studies demonstrate that fertilization is the most important treatment 

factor for both environmental impacts and biomass yield. The decrease in NRE caused by 

fertilization, however, points out that the increases in biomass yield are low when related to 

the amount of fertilizer applied. Long-term experiments have shown that mineral N fertilizer 

can cause a depletion of soil total N and soil organic matter (Khan et al. 2007, Mulvaney et al. 

2009).  Declines in biomass yield after decades of mineral N fertilization have been reported 

for grassland ecosystems (Woude et al. 1994) and cropping systems (Yang et al. 2011). Our 

results have shown a strong positive effect of fertilization on net N mineralization in 2009 

which we attributed to a priming effect (i.e. higher gross N mineralization rates). In 2010, 

however, gross N mineralization rates were even slightly (not significantly) lower on the 

fertilized plots. Slight increases in gross N mineralization after reduction of N deposition have 

been observed by Corre and Lamersdorf (2004) for a spruce stand in the Solling Uplands. 

Sustained fertilization may thus, decrease gross N mineralization in our site. Gross N 

mineralization, being the primary source of mineral N, is crucial for biomass production. 

Hence, decreases in yield and consequently NRE may also be expected on the fertilized plots 

over the long-term. Our calculation of N retention efficiency relates N losses to gross N 

mineralization. N mineralization is an indicator for soil health and closely correlated to the 
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quality and quantity of organic N and soil microbial biomass (Sparling 1997). N retention 

efficiency may, thus, be a more suitable index in evaluating the sustainability of agricultural 

management practices as opposed to the sole consideration of N losses and current biomass 

yields. Fertilization led to decreases in NH4
+ immobilization in our site. Much more 

pronounced effects of N addition on microbial N immobilization have been observed in long-

term grassland experiments after 13 years of mineral N addition (Ledgard et al. 1998). Since 

microbial N immobilization was the dominant pathway for an efficient N retention at our site 

further increases in N losses and decrease in N retention efficiency might thus, be expected 

for the fertilized plots over the long term.  

Only one fertilization rate (180 kg N ha-1 yr-1) was tested in our study. We found a 

linear decrease in NRE over our range of N supply but it remains unclear how NRE and N 

retention efficiency will react to varying amounts of fertilization. Assuming a non-linear 

relationship between fertilization rates and NRE (or N retention efficiency), the decrease in 

NRE (or N retention efficiency) probably steepens after a certain level of fertilization is 

exceeded. Such level could serve as a “maximum rate” beyond which yield increases may not 

anymore justify further fertilization and N losses. Further studies testing NRE (and N 

retention efficiency) as a function of fertilization rates should thus, be conducted.  

Long-term experiments have shown that organic fertilizers (i.e. manure), as opposed to 

mineral N fertilizers, can more efficiently increase soil organic C and N contents but do not 

always influence N2O emissions (Meng et al. 2005). Since soil N and C are closely correlated 

with gross N mineralization (Sparling 1997), it can be assumed that organic fertilizer (i.e. 

manure) may have a less negative effect on N retention efficiency than mineral fertilizer. 

Consequently, further studies should investigate the response of N retention efficiency to 

mineral and organic N fertilizer. Our first study has shown that fertilization dramatically 

increased net N mineralization in 2009 which we attributed to a priming effect. In 2010, the 

difference in net mineralization between fertilized and unfertilized plots was still present but 

less pronounced. In our second study, however, gross N mineralization did not differ between 

the fertilization treatments. A priming effect caused by the addition of mineral N fertilizer is 

reflected in an acceleration of soil organic matter turnover due to a lower C:N ratio 

(Kuzyakov et al. 2000). Thus, the increase in net N mineralization following fertilization in 

2009 maybe suitably explained by this priming effect. On the other hand, the higher net N 

mineralization rates in 2010 may be due to lower microbial immobilization rather than an 

increase in gross N mineralization. This is also reflected in the lower NH4
+ immobilization 

rates at the fertilized plots measured in our second study. 
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Figure 10: Nitrogen cycling of a grassland in the Solling uplands, Germany under different fertilization 
treatments (a = unfertilized, b = NPK-fertilized) in 2010 (across different sward compositions and mowing 
frequencies). Gross N mineralization, NH4

+ immobilization and asymbiotic N fixation were measured in a depth 
of 0.00 – 0.05 m. Values are means (± Standard error) given in mg N m-2 d-1 (n.d. = not determined).  Symbiotic 
biological N fixation was calculated as 3.1% of the harvested biomass of Trifolium repens (T. From, unpublished 
data) according to Carlsson and Huss-Danell (2003). N deposition was estimated by Keuffel-Türck et al. (in 
press). Green arrows symbolize external N inputs, red arrows N losses and grey arrows internal N cycling in the 
plant-soil system. Gross N mineralization and NH4

+ immobilization were measured at plots cut once per year 
only. 
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Figure 11: Total N, microbial biomass N and gross N mineralization of a grassland in the Solling uplands, 
Germany in a depth between 0.00 and 0.05 m (values are means across different management practices and 
sward compositions ± standard error).  Soil total N data were provided by I. Hoeft and E. Veldkamp. 
 
 
As hypothesized, our results demonstrate that frequent mowing increases NRE which was 

mainly due to a higher N uptake efficiency. This can be most likely explained by an 

overcompensatory regrowth (i.e. higher biomass production) following plant-defoliation 

(Gutian and Bardgett 2000, Ferraro and Oesterheld 2002). The increase in N uptake efficiency 

caused by frequent mowing was also reflected in lower N losses. Besides plant N uptake,  

microbial N immobilization also appeared to be responsible for the lower N losses at the plots 

cut three times per year. Plant-defoliation has been shown to increase rhizodeposition 

(Holland et al. 1996). Since root exudates are a source of easily available carbon with a high 

C:N ratio (Bürgmann 2005), an increase in rhizodeposition may stimulate  microbial N 

immobilization. This was supported by the larger microbial biomass measured at the plots cut 

three times per year in our third study. In addition, the lower net N mineralization rates at the 

plots cut three times per year in our first study indicated higher microbial N immobilization. 

Overall, our results showed that frequent mowing can at least partly compensate for the 

negative environmental impacts of fertilization.  

Interestingly, our third study has also shown that asymbiotic BNF is affected by 

grassland management practices. As hypothesized, intensive mowing stimulated asymbiotic 

BNF probably through an increase in rhizodeposition which provides easily available C for 

heterotrophic, asymbiotic N fixers.  

Combined fertilization with N and P decreased asymbiotic BNF which is also in line with our 

hypothesis. Potentially positive effects of an increased P availability have probably been 
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counteracted by negative effects of an increased mineral N availability. In previous studies 

(e.g. Reed et al. 2007), absolute P abundance has been shown to positively affect asymbiotic 

BNF.  P is also often described as the ultimate limiting nutrient due to its ability to limit N 

fixation and thus regulate N limitation (e.g. Redfield 1958). In contrast, our results indicated 

that both available C and N itself itself regulate asymbiotic BNF rather than the absolute P 

abundance .  

Asymbiotic BNF provided N inputs of up to ~ 5 kg ha-1 yr-1 under favorable 

management practices (i.e. unfertilized and cut three times per year) at our study site. Our 

estimates are likely to be conservative since only the upper 0.05 m of the soil profile was 

considered. Assuming a homogenous activity in the whole A horizon (0.1 m thickness), rates 

of up to 10 kg ha-1 yr-1 may be expected for unfertilized plots. Thus, our results showed that 

asymbiotic BNF ranges in the same order of magnitude as the other sources of N input into 

the plant-soil system, symbiotic N fixation and N deposition.  

Reviewed data by Belnap (2001) suggest that asymbiotic N fixing microorganisms 

tolerate soil pH values down to 4. However, pH values between 6 and 9 are considered 

favorable. Soil pH values at our site (5.3 ± 0.03 SE) are thus, not in the optimum range for 

asymbiotic BNF and still higher rates may be expected at sites with favorable soil pH. Our 

gross N mineralization rates were relatively higher compared to other grassland studies 

indicating higher soil fertility and N availability. Since mineral N is known to inhibit 

nitrogenase activity (e.g. Yoch and Whiting 1986), higher asymbiotic BNF rates may occur in 

less fertile grasslands. Moreover, the mean annual temperature at our site of 6.9°C is 

relatively low due to the elevation of 500 m above sea level. Higher N inputs by asymbiotic 

BNF may thus, be possible in lower altitudes.  

The N input by asymbiotic BNF in our site is negligible relative to the amount of N 

recycled in the soil by microbial mineralization of organic matter (Fig. 10) or the amount of N 

provided by fertilization. Our results thus, point out that asymbiotic BNF plays only a minor 

role for agriculture and biomass production in a “mature” and intensively managed ecosystem 

such as ours. Consequently, the consideration of asymbiotic BNF for the calculation of N 

supply would only marginally affect our NRE results. However, asymbiotic BNF may be 

more important in infertile sites that are not fertilized (e.g. organic farming). Globally, 

asymbiotic BNF may account for a large proportion of the biologically fixed N2. Symbiotic 

N2 fixers are not abundant in many ecosystems and the presence of potentially symbiotic N2 

fixing plant species does not necessarily result in high N fixation rates (Reed et al. 2011). For 

instance, there is evidence that N2 fixation rates may substantially differ between nodulated 

species (Galiana et al. 2002, Sprent 2005) and plants which can nodulate do not always fix N2 
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(Barron et al. 2011). Existing estimates may thus, frequently provide maximum potential rates 

and consequently, overestimate symbiotic BNF. This challenges the common view that 

asymbiotic BNF is a less important pathway for biological N fixation in most ecosystems 

(Reed et al. 2011). Since grasslands cover an important part of earth’s land area (FAO 2008) 

where leguminous species are not abundant (Reed et al. 2011), our results indicate that 

asymbiotic BNF in grasslands may significantly contribute to global biological N2 fixation. 

As such, it is and important pathway to consider in the estimation of N fixation in the absence 

of human influences. To estimate the degree of anthropogenic influences and predict future 

changes in the N cycle, a better estimate of this “baseline rate” is critically needed (Cleveland 

et al. 1999, Reed et al. 2011). While anthropogenic increases in N availability (e.g. increased 

N deposition) can substantially alter within-system processes in N limited ecosystems, they 

may have a great effect on N losses in systems where N is not a limiting factor. Consequently, 

mechanisms controlling N limitation determine the consequences of anthropogenic increases 

in N availability (Vitousek 2002). Estimates of asymbiotic BNF are incomplete and spatially 

unresolved (Cleveland et al. 1999, Reed et al. 2011) and knowledge about its ecological 

controls is sparse (Vitousek 2002). Our third study demonstrated that besides these 

deficiencies in the quantity of data, existing studies also have methodical discrepancies and 

thus, may be substantially biased. Consequently, recent estimates of asymbiotic BNF may be 

even less valid than pointed out by Cleveland et al. (1999), Reed et al. (2011), and Vitousek et 

al. (2002) based on reviewed data and more studies quantifying asymbiotic BNF without the 

shortcomings mentioned above (i.e. lab incubations, disturbed soil samples, theoretical 

conversion factors) are necessary. 

5.2 Sward composition effects 
 
Besides management practices, sward composition also influenced NRE and N retention 

efficiency. Sward composition affected NRE mainly through differences in N uptake 

efficiency. Control swards showed significantly higher NRE than dicot-enhanced or monocot-

enhanced swards (when cut once per year). This pattern could not be explained by differences 

in species richness since NRE of monocot-enhanced swards (that had the lowest number of 

species) did not differ from NRE of dicot-enhanced swards. We attributed this missing species 

richness effect to the range of species richness which clearly is above the range of one to five 

species, where 90% of the biodiversity effects on productivity are observed (Roy 2001). In 

contrast to the number of species, proportions of functional groups had a significant effect on 

NRE. However, it was not the dicot-enhanced sward with almost equal proportions of dicots 

and monocots but the untreated control sward that showed the highest NRE. Most likely, 
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decades of maintaining extensive management practices and N limited conditions resulted in a 

development of the sward to maximize NRE.  

The efficient use of available N may be a strategy of plant communities to compete 

under N limited conditions (Bridgham et al. 1995). Since competitive advantages of species 

compositions with a high NRE become more important with decreasing N availability, it can 

be expected that sward differences in NRE may increase with decreasing soil fertility. Thus, 

sward composition effects may be even more pronounced in less fertile grassland ecosystems 

than ours. 

The higher NRE at the control swards mainly attributed to a more efficient N uptake 

was reflected in the higher retention efficiency. The sward differences in N retention 

efficiency could, however, only partly be explained by plant N uptake efficiency: The 

difference in NRE between dicot-enhanced and control swards was not reflected in N 

retention efficiency. This can be due to differences in microbial NH4
+ immobilization which 

mirrored the differences in N retention efficiency between the swards (control > dicot-

enhanced > monocot-enhanced). Across all treatments, N retention efficiency was correlated 

with microbial N and NH4
+ immobilization rather than with plant N uptake or harvested 

biomass. This underlines the importance of the microbial community for an efficient N 

retention, which was also reported by Hooper and Vitousek (1997, 1998). In contrast to NRE 

and N uptake efficiency that only consider plant uptake as a pathway for N retention, N 

retention efficiency additionally accounts for microbial N immobilization. Thus, N retention 

efficiency is an important index to consider in the evaluation of the sustainability of grassland 

management.  

5.3 General Conclusions and Recommendations 
 
Our studies have shown that fertilization was the most important factor influencing NRE, N 

losses, and N retention efficiency. Accordingly, a reduction of fertilizer N application to 

moderate amounts is crucial to achieving an optimal balance between high soil fertility and 

productivity on the one hand and low N losses to the environment on the other hand. Several 

studies give rise to concerns that negative effects of fertilization on NRE and N retention 

efficiency may increase with time (Woude et al. 1994, Ledgard et al. 1998, Khan et al. 2007, 

Mulvaney et al. 2009, Yang et al. 2011) which highlights the need for studies testing long-

term effects of mineral N fertilization on NRE, N losses and N retention efficiency in 

grasslands. Moreover, further studies should look into the response of NRE to different rates 

of fertilization.  

Frequent mowing increased NRE and could partly compensate for the negative 
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environmental effects of fertilization. Mowing frequency influenced net N mineralization, N 

losses, and asymbiotic BNF in our studies most likely due to an increase in rhizodeposition. 

Further research should focus on this above-ground below-ground interaction and directly 

quantify the effect of mowing frequency on rhizodeposition. 

Besides management, sward composition also influenced NRE and N retention 

efficiency, though to a lesser extent. Control swards that have developed under decades of 

extensive management seem to have developed towards a species composition with a 

maximum NRE. Alterations of the sward - even if they resulted to more balanced proportions 

of plant functional groups - lowered NRE. Such results draw attention to the negative effects 

of herbicide use in grasslands. Particularly for regions where mineral fertilizer is difficult to 

procure and where a high NRE is consequently of prime importance (e.g. in developing 

countries), this should be taken into consideration. Since the efficient use of available N may 

be a strategy of plants to compete in infertile environments (Bridgham et al. 1995), sward 

effects on NRE may be even more pronounced in less fertile grasslands. Further studies 

testing sward composition effects on NRE should thus, be conducted in N-poor grassland 

ecosystems. The sward effect was caused by plant functional group composition rather than 

the number of species present. As pointed out by Wrage et al. (2011), the number of species in 

permanently managed grassland may be too high to detect species richness effects on 

productivity. Our studies showed that this may also hold true for NRE and N retention 

efficiency. Against this background, the suitability for practical applications of previous 

biodiversity studies in artificial grasslands is questionable. Further studies aiming at practical 

applications should thus, test effects of functional group compositions on NRE or N retention 

efficiency rather than effects of plant species numbers in permanent grasslands.  

We could show that gross N mineralization was the most important pathway providing 

mineral N, highlighting the importance of accounting for this process when losses are related 

to N availability or soil fertility. In addition, our results indicated that microbial N 

immobilization was the dominant mechanism behind the effects of management and sward 

composition on N retention. N retention efficiency, as calculated in our study, accounts for 

this pathway. In contrast to the sole consideration of (absolute) N losses, N retention 

efficiency relates N losses to gross N mineralization (as an index for soil fertility) which made 

it a more sensitive parameter. Hence, it is a suitable index to evaluate the sustainability of 

agricultural management practices. Due to potentially different effects on gross N 

mineralization and N losses, further studies should focus on the response of N retention 

efficiency to organic and inorganic fertilizers. The combined consideration of NRE and N 

retention efficiency provides a tool that accounts for biomass yield, gross N mineralization as 
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a measure of soil fertility and an indicator of soil health, and N losses to the environment.  

Our third study showed that asymbiotic BNF can provide an important input of “new” 

N to unfertilized grasslands and that previous estimates on asymbiotic BNF may be 

substantially biased due to methodical discrepancies. Our results indicated that asymbiotic 

BNF is of subordinate importance for plant-growth in intensively used agricultural 

ecosystems since the amounts of N provided by either N mineralization or fertilization are 

considerably higher. On a global scale, however, it may be an important pathway for BNF that 

may substantially contribute to the amount of N fixed in the absence of human activities. Thus, 

it is an important parameter for the estimation of the degree of human changes to the N cycle. 

Further research to quantify asymbiotic BNF is thus, critically needed. Frequent mowing 

increased asymbiotic BNF while combined fertilization with N and P decreased it. Since the 

overall P availability in our study site is relatively high, a different result maybe expected with 

N and P fertilization under low P availability. Additional studies testing the effect of combined 

fertilization with N and P should, thus, be conducted under P-limited conditions. 

Our first and second study demonstrated that sward functional group composition can 

influence N uptake efficiency and N retention efficiency due to higher plant N uptake and 

microbial N immobilization. Decreasing mineral N concentrations with increasing plant 

diversity have also been reported by other authors (e.g. Tilman et al. 1996). Since N 

availability is an important factor controlling asymbiotic BNF, this leads to the assumption 

that sward composition may also affect asymbiotic BNF. Thus, future research should be 

conducted on the effect of species diversity on asymbiotic BNF. 
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