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CHAPTER 1 

Introduction 

During the last decades, agriculture has transformed into highly productive economical 

systems in order to answer globally increased demands for agricultural products (Robinson 

& Sutherland 2002; Tilman et al. 2002). Conversion of uncultivated (semi-natural and 

natural) habitats and intensified land use practices, however, resulted in a dramatic 

decrease of biodiversity in agricultural landscapes during the last decades (Benton et al. 

2003; Weibull et al. 2003). Modern agricultural landscapes are often characterized by low 

structural complexity and habitat connectivity, thereby negatively affecting species 

movements within the agricultural matrix. Such processes have been shown to increase 

local species extinction (Harrison 1991; Fahrig 2003), affect genetic exchange (Templeton 

et al. 1990; Schmitt & Seitz 2002), thereby threatening farmland species  and maintenance 

of related ecosystem services such as biological control and pollination (Cunningham 

2000; Tscharntke et al. 2005). 

 Semi-natural habitats in agricultural landscapes are important for the maintenance 

of farmland biodiversity, providing hibernating and reproduction sites, food resources and 

shelter from disturbances. On the other hand, annual crops only form temporal habitats and 

resources due to annual harvesting and crop rotation (Geiger et al. 2009). Classical habitat-

management schemes in order to mitigate the negative effects of agricultural 

intensification (Altieri & Farrell 1995; Wratten & van Emden 1995; Östman et al. 2001) 

often focus on local scales only (Landis et al. 2000). For example, the introduction of 

semi-natural grassy field margins and flower strips, and also low intensity farming 

practices such as organic farming, have been shown to enhance ground-dwelling and flying 

predators as well as parasitoids, thereby positively influencing biological control of 

agricultural pests (Salveter & Nentwig 1993; Frank 1999). However, there is an increasing 

body of literature showing that also landscape context is an important factor determining 

species distributions and occurrences (Haynes et al. 2007; Farwig et al. 2009; Batáry et al. 

2011). For example, in structurally simple landscapes, organic farming practices have been 

shown to be most effective, while in structurally complex landscapes positive effects of 

organic farming on biodiversity can be superimposed, because of a generally higher 

biodiversity (Tscharntke et al. 2005). Thereby the landscape matrix filters for specific 

species traits such as dispersal abilities, degree of specialization, and/or trophic position 

(Purtauf et al. 2005; Schmidt et al. 2008). Also the spatial scale at which environmental 

changes occur can have profound effects on the distribution and abundance of particular 

species in agricultural matrices (Holland et al. 2004). For example, solitary wild bee 
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species respond to high heterogeneity of habitats at relatively small spatial scales (~1km) 

(Steffan-Dewenter et al. 2002), whereas bumblebees (with bigger foraging ranges) respond 

to habitat heterogeneity at larger spatial scales (up to 3 km) (Westphal et al. 2006). 

Therefore, environmental schemes and measurements should be advised to consider habitat 

management at local and landscape scales simultaneously (Tscharntke et al. 2007).  

Study area and organisms 

The studies conducted for this thesis were carried out in arable landscapes of Germany and 

Sweden, using study areas dominated by arable crops such as winter wheat, summer barley 

and oilseed rape, interspersed with semi-natural habitats such as forests, hedgerows, 

grassland and fallows. The amount of arable fields in relation to semi-natural areas greatly 

differed among study sites (Fig. 1; Study in Chapter 2 and study 2 in Chapter 3).  

 

 

 

Fig. 1: Schematic drawing of the study design (Chapter 2): we selected 7 landscape sectors of a 1000 m-

radius along a gradient of varying landscape complexity, which is associated with the percentage of arable 

land, showing the two extremes of complex and simple landscapes. 
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The proportion of arable land has been shown to be a simple predictor of landscape 

complexity because of its close correlation to other landscape parameters such as habitat 

type diversity and habitat isolation (Thies & Tscharntke 1999). In study 3 (Chapter 4) we 

additionally investigated the influence of varying oilseed rape proportions in landscapes 

sectors of 1 km radii around study sites. 

 In all studies, we focused on syrphid flies (Diptera: Syrphidae), which include 

species that are important predators and pollinators in agricultural landscapes. Syrphid flies 

are one of the biggest groups of Diptera with over 90 genera and more than 800 species 

occurring in Europe (Oosterbroek 2006). Adult syrphid flies are pollen and nectar feeders, 

while syrphid larvae show a wide spectrum of feeding types such as mycophagous, 

phytophagous, zoophagous or saprophagous. In agricultural landscapes, aphidophagous 

syrphid species such as Episyrphus balteatus, Sphaerophoria scripta, Melanostoma 

scalare can play an important role for biological control of cereal aphid pests (Chambers 

1986; Chambers & Adams 1986). Moreover, syrphid flies are known to be effective 

pollinators of crop plants (e.g. Brassica napus L.) (Jauker & Wolters 2008). Many other 

arthropods contribute to the functioning of ecosystem services. For example, lacewings 

(Chrysopidae), lady beetles (Coccinilidae), spiders (Araneae) or parasitoid wasps 

(Hymenoptera) are predators of cereal aphids, which can add to the overall pest control 

potential (Sundby 1966; Schmidt et al. 2003; Mills 2005). However, the relative 

importance of certain natural enemy groups for biological control is not studied well. 

Recent studies with selective exclusion experiments of natural enemies support the idea 

that flying predators (and parasitoids) might be most effective biocontrol agents (Holland 

et al. 2008; Thies et al. 2011).  

Chapter outline and hypotheses 

In the studies presented in this thesis, the importance of local habitat measurements on 

syrphid fly species richness and abundance was investigated by comparing four types of 

ecotone habitats (narrow and broad sown flower strips, naturally developed grassy strips 

and the boundary of adjoining wheat fields as control) along a gradient of landscape 

complexity, ranging from 30-100 % of arable land in the surroundings of the study sites 

(Chapter 2). The influence of farming practices (low vs. high levels of agricultural 

intensification in cereal fields) was investigated across two European regions (Germany 

versus Sweden) to enlighten region-specific differences in population development and 

diversity (Chapter 3). In the third study (Chapter 4), syrphid fly abundances in three types 
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of semi-natural landscape elements (forest margins, forest-connected and isolated 

hedgerows) were analysed with respect to the influence of varying proportions of mass-

flowering oilseed rape at the landscape scale (oilseed rape and wheat fields) and the local 

cropping systems (winter wheat and oilseed rape). 

 

The following hypotheses were tested: 

 

(i) Species richness and abundance of syrphid flies are increased in sown flower strips 

 compared with naturally developed field margins and wheat fields (Chapter 2). 

(ii) The effect of sown flower strips on syrphid species richness and abundance is more 

 pronounced in structurally simple landscapes compared with complex landscapes 

 (Chapter 2). 

(iii) Species richness and abundance of syrphid flies are higher and peak earlier in the 

 season in the southern region (Germany) compared to the northern region (Sweden) 

 owing to favourable climatic conditions (Chapter 3). 

(iv) Aphidophagous syrphid flies are more abundant in landscapes with high levels of 

 agricultural intensification due to higher larval food availability (Chapter 3).  

(v) Non-aphidophagous syrphid flies benefit from landscapes with low levels of 

 agricultural intensification owing to food resources outside crop fields (Chapter 3). 

(vi) Abundances of syrphid flies differ among semi-natural habitats differing in the 

degree of exposure to adjacent crops (forest edges, forest-connected hedges and 

isolated hedges) and these differences among semi-natural habitats affect syrphid 

fly spillover between the semi-natural habitats and the adjacent crop fields (Chapter 

4). 

(vii) Abundances of syrphid flies in semi-natural habitats are higher adjacent to oilseed 

rape than adjacent to wheat, because of higher local spillover from mass-flowering 

oilseed rape (Chapter 4). 

(viii)  Spillover is more pronounced in landscapes with low than high percentages of 

oilseed rape, because of landscape-scale dilution of syrphid flies in landscapes with 

high percentages of oilseed rape (see Fig. 1 in Chapter 4). 

 

 

 

 

 5



CHAPTER 1 

References 

Altieri, M.A., Farrell, J.G. (1995) Agroecology: the science of sustainable agriculture. 

Westview Press Boulder, CO. 

Batáry, P., Báldi, A., Kleijn, D., Tscharntke, T. (2011) Landscape-moderated biodiversity 

effects of agri-environmental management: a meta-analysis. Proceedings of the 

Royal Society B: Biological Sciences, 278 (1713), 1894–1902. 

Benton, T.G., Vickery, J.A., Wilson, J.D. (2003) Farmland biodiversity: is habitat 

heterogeneity the key? Trends in Ecology & Evolution, 18 (4), 182–188. 

Chambers, R. J. (1986) Preliminary experiments on the potential of hoverflies [Dipt.: 

Syrphidae] for the control of aphids under glass. BioControl, 31 (2), 197–204. 

Chambers, R. J., Adams, T. H.L. (1986) Quantification of the impact of hoverflies 

(Diptera: Syrphidae) on cereal aphids in winter wheat: an analysis of field 

populations. Journal of applied Ecology, 23, 895–904. 

Cunningham, S.A. (2000) Depressed pollination in habitat fragments causes low fruit set. 

Proceedings of the Royal Society of London. Series B: Biological Sciences, 267 

(1448), 1149-1152. 

Fahrig, L. (2003) Effects of habitat fragmentation on biodiversity. Annual review of 

ecology, evolution, and systematics, 34, 487–515. 

Farwig, N., Bailey, D., Bochud, E., Herrmann, J.D., Kindler, E., Reusser, N. et al. (2009) 

Isolation from forest reduces pollination, seed predation and insect scavenging in 

Swiss farmland. Landscape ecology, 24 (7), 919–927. 

Frank, T. (1999) Density of adult hoverflies (Dipt., Syrphidae) in sown weed strips and 

adjacent fields. Journal of Applied Entomology, 123 (6), 351–355. 

Geiger, F., Wäckers, F.L., Bianchi, F.J.J.A. (2009) Hibernation of predatory arthropods in 

semi-natural habitats. BioControl, 54 (4), 529–535. 

Harrison, S. (1991) Local extinction in a metapopulation context: an empirical evaluation. 

Biological journal of the Linnean Society, 42 (1-2), 73–88. 

Haynes, K.J., Dillemuth, F.P., Anderson, B.J., Hakes, A.S., Jackson, H.B., Elizabeth 

Jackson, S., Cronin, J.T. (2007) Landscape context outweighs local habitat quality 

in its effects on herbivore dispersal and distribution. Oecologia, 151 (3), 431–441. 

Holland, J. M., Oaten, H., Southway, S., Moreby, S. (2008) The effectiveness of field 

margin enhancement for cereal aphid control by different natural enemy guilds. 

Biological Control, 47 (1), 71–76. 

 6



CHAPTER 1 

Holland, J.D., Bert, D.G., Fahrig, L. (2004) Determining the spatial scale of species' 

response to habitat. BioScience, 54 (3), 227–233. 

Jauker, F., Wolters, V. (2008) Hover flies are efficient pollinators of oilseed rape. 

Oecologia, 156 (4), 819–823. 

Landis, D.A., Wratten, S.D., Gurr, G.M. (2000) Habitat management to conserve natural 

enemies of arthropod pests in agriculture. Annual Review of Entomology, 45 (1), 

175–201. 

Mills, N. (2005) Selecting effective parasitoids for biological control introductions: 

Codling moth as a case study. Biological Control, 34 (3), 274–282. 

Oosterbroek P., Vereniging K., Bajos P. (2006) The European families of the Diptera: 

identification, diagnosis, biology. KNNV Publishing, Utrecht. 

Östman, Ö., Ekbom, B., Bengtsson, J., Weibull, A.C. (2001) Landscape complexity and 

farming practice influence the condition of polyphagous carabid beetles. Ecological 

Applications, 11 (2), 480–488. 

Purtauf, T., Roschewitz, I., Dauber, J., Thies, C., Tscharntke, T., Wolters, V. (2005) 

Landscape context of organic and conventional farms: influences on carabid beetle 

diversity. Agriculture, ecosystems & environment, 108 (2), 165–174. 

Robinson, R.A, Sutherland, W.J (2002) Post-war changes in arable farming and 

biodiversity in Great Britain. Journal of Applied Ecology, 39 (1), 157–176. 

Salveter, R., Nentwig, W. (1993) Schwebfliegen (Diptera, Syrphidae) in der 

Agrarlandschaft: Phänologie, Abundanz und Markierungsversuche. Mitteilungen 

der Naturforschenden Gesellschaft in Bern NF, 50, 147–191. 

Schmidt, M.H, Lauer, A., Purtauf, T., Thies, C., Schaefer, M., Tscharntke, T. (2003) 

Relative importance of predators and parasitoids for cereal aphid control. 

Proceedings of the Royal Society of London. Series B: Biological Sciences, 270 

(1527), 1905-1909. 

Schmidt, M.H, Thies, C., Nentwig, W., Tscharntke, T. (2008) Contrasting responses of 

arable spiders to the landscape matrix at different spatial scales. Journal of 

Biogeography, 35 (1), 157–166. 

Schmitt, T., Seitz, A. (2002) Influence of habitat fragmentation on the genetic structure of 

Polyommatus coridon (Lepidoptera: Lycaenidae): implications for conservation. 

Biological Conservation, 107 (3), 291–297. 

 7



CHAPTER 1 

 8

Steffan-Dewenter, I., Münzenberg, U., Bürger, C., Thies, C., Tscharntke, T. (2002) Scale-

dependent effects of landscape context on three pollinator guilds. Ecology, 83 (5), 

1421–1432. 

Sundby, R.A. (1966) A comparative study of the efficiency of three predatory insects 

Coccinella septempunctata L.[Coleoptera, coccinellidae], Chrysopa carnea 

St.[Neuroptera, Chrysopidae] and Syrphus ribesii L.[Diptera, Syrphidae] at two 

different temperatures. BioControl, 11 (4), 395–404. 

Templeton, A.R., Shaw, K., Routman, E., Davis, S.K. (1990) The genetic consequences of 

habitat fragmentation. Annals of the Missouri Botanical Garden, 77 (1990), 13–27. 

Thies, C., Tscharntke, T. (1999) Landscape structure and biological control in 

agroecosystems. Science, 285 (5429), 893-895. 

Thies, C., Haenke, S., Scherber, C., Bengtsson, J., Bommarco, R., Clement, L.W. et al. 

(2011) The relationship between agricultural intensification and biological control: 

experimental tests across Europe. Ecological Applications, 21 (6), 2187–2196. 

Tilman, D., Cassman, K.G., Matson, P.A., Naylor, R., Polasky, S. (2002) Agricultural 

sustainability and intensive production practices. Nature, 418 (6898), 671–677. 

Tscharntke, T., Bommarco, R., Clough, Y., Crist, T.O., Kleijn, D., Rand, T.A. et al. (2007) 

Conservation biological control and enemy diversity on a landscape scale. 

Biological Control, 43 (3), 294–309. 

Tscharntke, T., Klein, A.M., Kruess, A., Steffan-Dewenter, I., Thies, C. (2005) Landscape 

perspectives on agricultural intensification and biodiversity–ecosystem service 

management. Ecology letters, 8 (8), 857–874. 

Weibull, A.C., Östman, Ö., Granqvist, Å. (2003) Species richness in agroecosystems: the 

effect of landscape, habitat and farm management. Biodiversity and conservation, 

12 (7), 1335–1355. 

Westphal, C., Steffan-Dewenter, I., Tscharntke, T. (2006) Bumblebees experience 

landscapes at different spatial scales: possible implications for coexistence. 

Oecologia, 149 (2), 289–300. 

Wratten, S. D., van Emden, H. F. (1995) Habitat management for enhanced activity of 

natural enemies of insect pests. Ecology and integrated farming systems, 47, 117–

14. 

 



CHAPTER 2 

CHAPTER 2 

Increasing syrphid fly diversity and density in 

sown flower strips within simple vs. complex 

landscapes 
Sebastian Haenke, Barbara Scheid, Matthias Schaefer, Teja Tscharntke and Carsten Thies 

(published in Journal of Applied Ecology 2009, 46, 1106-1114) 

Abstract 

1. The structural complexity of agricultural landscapes influences the local biodiversity and 

associated ecosystem services. Hence, developing effective biodiversity management 

requires a better understanding of the relative importance of local and landscape changes, 

especially for functionally important organisms such as hoverflies benefiting from 

flowering plants. 

2. We examined hoverfly (Diptera: Syrphidae) communities in broad and narrow sown 

flower strips, in naturally developed grassy strips and in wheat fields (as a control). We 

also investigated the effects of these four habitat types on syrphid occurrence in the 

adjacent wheat fields. 

3. The relative influence of local vs. landscape effects was tested by selecting study sites 

along a gradient of structural complexity from simple landscapes (~100 % arable land) to 

complex landscapes (up to 70% semi-natural habitats such as fallows, field margins, 

hedges and grassland). Landscape complexity was assessed within landscape sectors of 

0·5–4·0 km radius around strips. 

4. Syrphid density and in particular, the density of aphidophagous species, was higher in 

narrow and broad sown flower strips compared to grassy strips and wheat–wheat boundary 

controls at the milk-ripening stage of the wheat. In addition, species richness of 

aphidophagous syrphids within wheat fields adjacent to broad sown flower strips was 

higher at the wheat peak-ripening stage. This indicates a spillover between habitats and a 

positive effect of these sown flower strips on potential biocontrol of cereal aphids. Flower 

densities and syrphid diversity and density, respectively, were closely related. 

5. Species richness and abundance in the sown flower strips increased as the proportion of 

arable land in the surrounding landscape increased, suggesting that within structurally 
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simple landscapes (at 0·5–1 km radius around the sites) syrphid flies concentrated on the 

most rewarding resources within the sown flower strips. Sown flower strips were more 

effective at increasing syrphid species richness and abundance in simple landscapes, 

presumably because the creation of flower resources made the greatest difference in such 

homogeneous, intensively managed arable landscapes. 

6. Synthesis and applications. Agri-environment schemes should take the surrounding 

landscape characteristics into account when considering using sown flower strips to 

enhance syrphid density and diversity, and their biocontrol function, in arable landscapes. 

Creating locally such flower strips is more effective in simple landscapes containing a high 

proportion of arable land, while in complex landscapes, keeping the overall diversity is 

important. 

Key-words: agricultural intensification, biocontrol, concentration effects, flower strips, 

landscape complexity, semi-natural habitats, syrphids 
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CHAPTER 2 

Introduction 

The loss and fragmentation of semi-natural habitats in modern agricultural landscapes 

leads to a reduction in species richness and abundance. This decrease in biodiversity may 

affect important ecosystem services such as biological control (Saunders, Hobbs & 

Margules 1991; Tews et al. 2004). Habitat management that changes agricultural practices 

within crop fields, or the management of agricultural landscapes, such as natural habitat 

conservation, have been shown to mitigate the effects of agricultural intensification (Altieri 

1995; Burel & Baudry 1995; van Driesche & Bellows 1996; Matson et al. 1997; Menalled 

et al. 1999; Thies & Tscharntke 1999; Tscharntke & Kruess 1999; Tscharntke 2000; Halaj 

& Wise 2001; Östman, Ekbom & Bengtsson 2001; van Nouhuys & Hanski 2002; 

Tscharntke et al. 2002; Wratten & van Emden 1995). 

Field margins of various forms are found adjacent to arable fields (Marshall 1988). 

In landscapes dominated by agriculture such ecotones may represent most semi-natural 

habitats (Bazin & Schmutz 1994; Burel & Baudry 1999). At the local scale, the 

introduction of sown flower strips and weed strips increases habitat diversity and numbers 

of both ground-dwelling and flying predators and parasitoids, thereby improving biological 

pest control (Lys & Nentwig 1992; Salveter & Nentwig 1993; Frank 1999; Thies & 

Tscharntke 1999). Improving habitat diversity at the landscape scale also enhances local 

biodiversity and such ‘matrix effects’ may be important for many groups of beneficial 

arthropods (Burel et al. 1998; Weibull, Bengtsson & Nohlgren 2000; Atauri & de Lucio 

2001; Jeanneret, Schüpbach & Luka 2003; Clough et al. 2005; Schmidt et al. 2005; 

Schweiger et al. 2005; Thies, Roschewitz & Tscharntke 2005; Tscharntke et al. 2005). 

However, different species ⁄groups respond to landscape complexity at different spatial 

scales. For example, arable spider species show contrasting responses to landscape-scale 

modification with respect both to the direction and the spatial scale of the relationship 

(Schmidt et al. 2008). The species richness of carabid beetles was shown to increase with 

percentage cover of grassland in the surrounding landscape, and activity density followed 

the same trend (Purtauf et al. 2005). Undisturbed perennial habitats appeared to enhance 

both cereal aphid pests and aphid parasitoids (Thies et al. 2005). 

Hence, the landscape matrix appears to be related to local patterns of diversity, 

selecting for species traits such as dispersal ability (Tscharntke & Brandl 2004). The 

relative importance of natural enemy groups in the biological control of cereal aphids is 

little understood, but flying predators and parasitoids have been shown to be most effective 

in selective exclusion experiments (Schmidt et al. 2003; Holland et al. 2008). However, 
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the relative abundance of naturally occurring enemy species differs greatly among years 

and regions (Krause & Poehling 1996; Östman et al. 2001; Schmidt et al. 2003; Thies et 

al. 2005). Syrphid flies (Diptera Syrphidae) are a species-rich group involving over 500 

phytophagous, saprophagous and zoophagous species in Europe (van Veen 2004). The 

natural habitats of these functional groups are related to the availability of larval food 

resources. Aphidophagous species, which represent the dominant group, use a wide range 

of habitat types including arable fields harbouring aphid pests, whereas phytophagous and 

saprophagous species predominantly are restricted to non-crop habitats because of their 

specific food resource requirements (Raskin, Glück & Pflug 1992; Frank 1999). The adults 

of all functional syrphid groups feed on pollen and nectar of flowering plants. Therefore, 

they are expected to benefit from flowering plants, e.g. flower rich field margins 

(Chambers & Aikman 1988; Cowgill, Sotherton & Wratten 1992; Hickman & Wratten 

1996). The role of aphidophagous syrphid species in suppressing cereal aphid outbreaks 

and methods of increasing the population size through local and landscape diversification 

has been reported in previous studies (Chambers & Adams 1986; Chambers et al. 1986; 

Tenhumberg & Poehling 1995; Schmidt et al. 2003; Brewer & Elliott 2004). However, the 

influence of, and the interaction between, local and landscape scale diversity on syrphid 

populations is little known, because most studies have been conducted at one scale only. 

In this study, we analysed the relative importance of local and landscape structural 

diversity on syrphid fly species richness and abundance by comparing four types of 

ecotone habitats adjacent to winter wheat fields occurring across a gradient of landscape 

complexity (~ 30–100% arable land): broad sown flower strips (BFS), narrow sown flower 

strips (NFS), naturally developed grassy strips (GS) and the boundary of adjoining wheat 

fields lacking such strips (as a control). Syrphids are an interesting group for the study of 

effects of agricultural intensification as they are very mobile compared with many other 

insect groups; and therefore, may contribute to the preservation of ecosystem services such 

as biocontrol and pollination in intensified agricultural landscapes (Jauker et al. 2009). We 

expected that (i) species richness and abundance of syrphids would be increased in flower 

strips compared with naturally developed field margins and wheat fields and that (ii) this 

effect would be more pronounced in structurally simple landscapes compared with 

complex landscapes (hypothesized by Tscharntke et al. 2005). 
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Materials and methods 

Study area and study design 

The study was conducted in the vicinity of the city of Göttingen (51°54′ N, 9°93′ E), 

Lower Saxony (North Germany). The area is under intensive agricultural use (c. 75%) 

dominated by arable fields and interspersed with fragments of semi-natural habitats such as 

forests, hedges and grasslands (Steffan-Dewenter et al. 2002). The average temperature 

and total rainfall during the study period in June and July 2006 was 17·9 °C and 0 mm (20–

23 June); 20·9 °C and 44·6 mm (11–14 July) and 22·3 °C and 11·1 mm (27–28 July); data 

from the Meteorological Station, Göttingen. 

We analysed syrphid species richness and abundance in five types of habitats: GS 

(c. 3m wide, n = 7); NFS (c. 3-6 m wide, n = 7); BFS (c. 12-25 m wide, n = 7); the 

boundary of adjoining wheat fields lacking such strips (as a control and which we refer to 

as wheat–wheat boundary, n = 7); and within the wheat fields adjacent to each of the 

preceding habitats (n = 4·7 = 28). Agri-environmental schemes in Lower Saxony include 

incentives for the creation of NFS and BFS in the agricultural landscapes. For this study, 

we selected strips adjacent to wheat fields that were located along a gradient of 

surrounding landscape complexity, ranging from ca. 30% to 100 % arable land, with a 

mean distance of 18·3 km between study fields. We measured the proportion of arable land 

in circular sectors at four spatial scales (radii of 0·5, 1, 2 and 4 km) around each study site 

using official digital thematic maps (ATKIS-Digitales Landschaftsmodell 25 ⁄ 1; 

Landschaftsvermessung und Geobasisinformation, Hannover, Germany 1991–1996) and 

the Geographical Information System ArcView 3.1 (ESRI Geoinformatik GmbH, 

Hannover, Germany). The proportion of arable land has been shown to be a simple 

predictor of landscape complexity in our study area because of its close correlation with 

other landscape metrics such as habitat type diversity and habitat isolation (Thies & 

Tscharntke 1999; Steffan-Dewenter et al. 2002). 

Sampling of syrphid flies 

Syrphids were captured along 100 m transects by sweep netting (c. one sweep per footstep) 

(i) within the strip habitats and (ii) within the adjacent winter wheat field along a transect 

parallel to the strips (6 m distance to strips) and at a distance of 6 m from the edge of the 

strip habitat. The wheat–wheat controls were sampled in a similar way along transects 

running directly along the boundary between the two fields (within 3 m of the boundary at 

both sides). Sampling was carried out at three consecutive periods: (i) at wheat flowering 
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stage (20–23 June); (ii) at wheat milk ripening stage (11–14 July); and (iii) at winter wheat 

peak-ripening stage (27–28 July). All invertebrates collected were placed in 3-L plastic 

bags, cooled, and then taken to the laboratory. The syrphid species were separated from all 

other arthropod genera and identified, where possible, to species level using identification 

keys (van Veen 2004). Species were sorted into two trophic groups according to their 

larval feeding type: aphidophagous feeding type and saprophagous, detrivourous and 

bacteria eating feeding type (a list of species is available in Appendix S1, Supporting 

Information). 

Flower densities in ecotones 

Flower density in each of the 28 habitats was measured, at the same time as syrphids were 

sampled using a standardized estimation procedure for each strip. Flowers within the 

conventional managed wheat fields were almost absent, so flower density was around zero. 

A ring with an area of c. 0·75 m2 was placed on the ground 10 times per strip at 10-m 

intervals per habitat at the same locations used for the syrphid samplings. The number of 

flowers of all flowering plants was counted and the flower density was calculated for an 

area of 1 m2. Plants were identified up to species level using Rothmaler (1994) (a list of 

plant species is available in Appendix S2, Supporting Information). 

Statistical analyses 

We analysed syrphid species richness and abundance (per 100m transect) using general 

linear models (GLM) to test the influence of (i) habitat type (NFS, BFS, GS and control 

fields) nested in site; (ii) site (wheat field vs. adjacent habitat); and (iii) landscape 

complexity (the proportion of arable land at four spatial scales, 0·5–4 km radius of 

landscape sector). Model assumptions were tested by examining the Gaussian distribution 

of the residuals. All non-significant main effects and interactions were removed from the 

models by using a backwards selection procedure using Statistica Version 6 for Windows 

(StatSoft, Inc. 2003). Rarefaction methods using r (v. 2.8.0 for Windows) were used to 

consider any effects on syrphid sampling success of sampling in different habitat types 

featuring different vegetation structures. However, the species richness from field samples 

and the species richness resulting from rarefaction curves, rescaled by the number of 

individuals, was highly correlated (P < 0·001). Therefore, the analyses were conducted 

using the original field data. Data on syrphid densities and quantities of flowers were log-

transformed to compensate for the skewness and ⁄ or kurtosis of the data. These models 
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were performed separately for each of the three sampling dates and each of four spatial 

scales (0·5–4 km radius) of landscape complexity. To test for differences between habitat 

types post hoc Tukey highest significant differences tests (with P < 0·05 as level of 

significance) were performed. In addition, we compared regression lines relating total 

species richness and the abundance of the most abundant syrphid species, Episyrphus 

balteatus, to the proportion of arable land, distinguishing between wheat-fields and 

adjacent strip habitats. Moreover, species richness and abundance of syrphids were related 

to the number of flowers per square metre using simple regression models. In the text, 

arithmetic means ± standard errors are given. 

Results 

A total of 20 syrphid species and 829 individuals were collected during the three sampling 

periods. They averaged 1·7 ± 2·0 species and 5·2 ± 11·0 individuals per 100 m transect. 

The community was dominated by aphidophagous species (1·3 ± 1·5) and individuals (4·2 

± 9·8), followed by syrphids with other larval feeding types such as saprophagous, 

detrivorous and bacteria-eating, phytophagous and fungivorous species (0·4 ± 0·9) and 

(0·9 ± 3·6) individuals. The abundance of these trophic groups during the three sampling 

periods is given in Appendix S3, Supporting Information. 

Effects of sown flower strips 

Total species richness and abundance differed between sampling dates, and was highest at 

the wheat milk-ripening stage. Total richness and abundance increased from wheat–wheat 

boundaries (control; without any strip) through GS to NFS and BFS (Fig. 1). Total species 

richness and abundance was generally higher within field margin strips compared with 

adjacent wheat fields (black and white bars in Fig. 1) giving a highly significant site effect 

(Table 1). Strip type did not affect total species richness and abundance within adjacent 

wheat fields. Aphidophagous species richness and abundance showed a similar pattern 

(Fig. 1, Appendix S1, Supporting Information), but at wheat peak-ripening aphidophagous 

species richness was significantly higher in wheat fields adjacent to BFS (Fig. 1). 

 The four most abundant syrphid species, the aphidophagous Episyrphus balteatus, 

Melanostoma spp. and Sphaerophoria spp. and the saprophagous Syritta pipiens were 

analysed separately. The abundance of E. balteatus was highest at wheat milk-ripening and 

was significantly higher in BFS and NFS compared with wheat–wheat boundaries and GS 

(Fig. 2). The abundance of Melanostoma spp. increased from wheat flowering to wheat 
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milk-ripening, and did not respond to strip types on any sampling date (Fig. 2). The 

abundance of Sphaerophoria spp. strongly increased from wheat flowering to wheat milk-

ripening and was higher in BFS at wheat flowering; within NFS and BFS at wheat milk-

ripening; and within BFS and NFS and GS at wheat peak-ripening (Fig. 2). The abundance 

of Syritta pipiens also increased from wheat flowering to wheat milk-ripening, with no 

effects of the availability of strip habitats adjacent to wheat fields (Fig. 2). 
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Fig. 1: Total species number and total individual number of syrphids as well as total aphidophagous species 

number and individual number of aphidophagous syrphids for three consecutive sampling dates at wheat 

flowering, wheat milk-ripening and wheat peak-ripening (mean numbers and standard deviation is given). 

Dissimilar capital letters above black bars show significant differences between habitats adjacent to wheat 

fields, which are grassy strips (GS), narrow flower strips (NFS), broad flower strips (BFS) and wheat–wheat 

boundary (WC). Dissimilar lower case letters above white bars show significant differences between wheat 

fields adjacent to the four strip types. 
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Fig. 2: Total number of individuals of Episyrphus balteatus, Melanostoma spp., Sphaerophoria spp. and 

Syritta pipiens for three consecutive sampling dates at wheat flowering, wheat milk-ripening and wheat peak-

ripening (mean number and standard deviation is given). Dissimilar capital letters above black bars show 

significant differences among habitats adjacent to wheat fields, which are grassy strips (GS), narrow flower 

strips (NFS), and broad flower strips (BFS) and wheat–wheat boundary (WC). Dissimilar lower case letters 

above white bars show significant differences between wheat fields adjacent to the four strip types. 
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Table 1: F-values and levels of significance from general linear models relating syrphid densities to three 

predictive factors: (i) percentage of arable land per landscape sector; (ii) site, which indicates the dichotomy 

between strip habitats and adjacent wheat fields; and (iii) habitat type nested in site at wheat flowering, wheat 

milk-ripening and at wheat peak-ripening at 0·5–4 km scale (radius of landscape sector). Note that the 

percentage of arable land was positively correlated with total species richness, total number of individuals, 

total number of aphidophagous species, total number of individuals and Episyrphus balteatus, whereas it was 

negatively correlated with numbers of Syritta pipiens. 

 

***P < 0·001; **P < 0·01; *P < 0·05 
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Effects of landscape complexity 

At wheat milk-ripening stage, total species richness and abundance, and aphidophagous 

species richness and abundance, correlated positively with the proportion of arable land in 

adjacent strip habitats occurring within a radius of 0·5–1 km centred on the location of the 

sites, but not with the proportion of arable land occurring within larger spatial scales 

(Table 1, Fig. 3). At wheat milk-ripening the abundance of E. balteatus correlated 

positively with the proportion of arable land in adjacent strip habitats occurring within a 

radius of 0·5–4 km centred on the location of the sites (Table 1, Fig. 3). The abundance of 

Melanostoma spp. and Sphaerophoria spp. did not respond to the proportion of arable land 

at any spatial scale (Table 1). The abundance of Syritta pipiens correlated negatively with 

the proportion of arable land at spatial scales of 2–4 km at wheat flowering stage (Table 1). 

 

 
 

Fig. 3: Total number of syrphid species (no. syrphid species) and number of Episyrphus balteatus (no. 

Episyrphus balteatus) in relation to the proportion of arable land (%) at 1 km radius at wheat milk-ripening. 

Regressions are separated for each type of adjacent strip habitat [WC, wheat–wheat control (blank squares); 

GS, grassy strip (black squares); NFS, narrow flower strip (blank triangles); BFS, broad flower strip (black 

triangles)]. All F-ratios and P levels describe differences between intercepts of the regression lines. (a) No. of 

syrphid species within wheat fields (F-ratio = 2·17, P = 0·119; n = 28). (b) No. Episyrphus balteatus within 

wheat fields (F-ratio: 0·97, P = 0·422; n = 28); (c) No. syrphid species within adjacent strip habitats (F-ratio = 

4·06, P = 0·019; n = 28). (d) No. of Episyrphus balteatus within adjacent strip habitats (F-ratio = 3·81, P = 

0·024; n = 28). 
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Importance of flower resources 

Total species richness and abundance as well as aphidophagous species richness and 

abundance and species richness and abundance of all other larval feeding types together, 

were positively correlated with flower densities for each of the three sampling periods, this 

being strongest at wheat peak-ripening (Fig. 4; statistics in Appendix S4, Supporting 

Information). 

 

 

 

Fig. 4: Flower density in relation to syrphid numbers: (a) log total number of syrphid species (no. syrphid 

species; F = 33, P = 0·000, n = 28), and (b) log total number of syrphid individuals (no. syrphid individuals; F 

= 24·6, P = 0·000, n = 18) in relation to flower densities per square metre at wheat peak-ripening (see 

Appendix S4, Supporting Information for additional results on the relation of number of species and 

individuals of total syrphids, aphidophagous syrphids and all non-aphidophagous syrphids and flower 

densities at three consecutive dates). Different symbols indicate the affiliation of the results to a certain strip 

habitat [WC, wheat–wheat control (open squares), GS, grassy strip (black squares), NFS, narrow flower strip 

(open triangles), BFS, broad flower strip [(black triangles)]. 

Discussion 

Both narrow and broad flower strips enhanced syrphid densities and particularly the 

density of aphidophagous species in comparison to grassy strips and wheat–wheat 

boundaries at the wheat milk-ripening stage. In addition, species richness of 

aphidophagous syrphids was higher in wheat fields adjacent to broad at wheat peak-

ripening stage (when flower density was highest in the strips), indicating a potential 

spillover across habitats and a positive effect of the broad strips on the potential biocontrol 

of cereal aphids. Moreover, the number of species and individuals was higher in strips 

occurring in structurally simple as opposed to complex landscapes. This appeared to be as 
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a result of concentration of syphids in flower strips occurring within structurally simple, 

intensively managed arable landscapes. This concentration effect was strongest at smaller 

spatial scales, i.e. within a radius of 0·5–1 km of the study sites. 

Aphidophagous syrphids represented the dominant group in all habitat types 

(similar to the results found by Raskin et al. 1992 and Frank 1999), whereas the non-

aphidophagous larval feeding types were only found in non-crop habitats, which may be 

related to better food resource availability in such habitats. Aphidophagous syrphids 

densities increased from wheat flowering to wheat milk-ripening and then decreased to 

wheat peak-ripening stage. These temporal changes of aphidophagous syrphids appeared to 

be associated with the development of aphid colonies within wheat fields, which usually 

reach their maximum at wheat milk ripening stage and then collapse suddenly (Rabbinge, 

Ankersmit & Pak 1979).  

Syrphids appeared to have profited from the high availability of nectar and pollen 

resources in sown flower habitats supporting previous findings that flowering weeds attract 

hoverflies (Schneider 1948; Gilbert 1981; Weiss & Stettmer 1991; Salveter & Nentwig 

1993; Bianchi, Booij & Tscharntke 2006). The patch size of flower resources (narrow vs. 

broad sown strips) did not influence syrphid abundance. This is in contrast to expectations 

from area-density effects (Steffan-Dewenter & Tscharntke 2000), and suggests that narrow 

sown flower strips may provide sufficient amounts of pollen and nectar for adult syrphids 

(Sutherland, Sullivan & Poppy 2001). 

Syrphids were hypothesized to profit from a high proportion of semi-natural 

habitats in structurally complex landscapes, following the patterns exhibited by other 

pollen and nectar feeding insects in the agricultural landscape (Jonsen & Fahrig 1997; 

Steffan Dewenter & Tscharntke 1999; Steffan-Dewenter et al. 2002; Weibull, Östman & 

Granqvist 2003). However, we found higher densities of syrphids with an increasing 

proportion of arable land. This result probably reflects crowding effects on flower 

resources that are rare in structurally simple landscapes. Such crowding of natural enemies 

in response to local concentrations of flower resources is little known, but can be expected 

to exert a high influence on local biodiversity and food web interactions (Thies, Steffan-

Dewenter & Tscharntke 2008). Therefore, the opportunistic resource use of syrphids in 

combination with their high dispersal ability may (temporally) connect isolated habitats in 

intensified agricultural landscapes. For example, the dominant species, E. balteatus, is 

known to exhibit high mobility with high dispersal rates (Krause & Poehling1996; 

Lundberg & Moberg 2003; Rand, Tylianakis & Tscharntke 2006; Hondelmann & Poehling 
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2007). This pattern resembles the situation where social honey bees concentrate in flower 

patches in simple landscapes based on an opportunistic exploitation of resources at large 

spatial scales (Steffan-Dewenter et al. 2002).  

These findings have consequences for the implementation of agri-environment 

measures for syrphid flies. In complex landscapes, the effects of sown flower strips are 

hardly visible, whereas in simple landscapes, they are most effective. These results support 

the general idea that promoting landscape heterogeneity might be economically more 

efficient in simple landscapes (Roschewitz et al. 2005; Tscharntke et al. 2005; Holzschuh 

et al. 2007). The species richness and abundance of both total and aphidophagous syrphid 

species responded to the landscape context at the smallest spatial scales of 0·5–1 km 

(radius of landscape sector). This result is surprising given the fact that syrphids are highly 

vagile organisms with excellent vision abilities (Bernard & Stavenga 1979; Lunau & 

Wacht 1994) easily detecting remote resource patches in monotonous, non-nutritious 

environments. However, the findings of Harwood et al. (1994) suggest that hoverflies are 

less likely to cross areas with breaks in vegetation ground cover. Furthermore, only small 

landscape sectors may be expected to become ecologically effective for the concentration 

effect on patchy resources such as the flower strips. At larger spatial scales these small 

patches may become increasingly less attractive. An alternative explanation may be that 

landscapes become more similar when larger sectors are considered, thereby reducing 

potential explanatory power. However, previous results in the same landscapes showed 

that bumblebees experienced their surrounding landscape at different spatial scales 

dependent on their body sizes (from 100 to 3000 m radius, Westphal, Steffan-Dewenter & 

Tscharntke 2006). Similarly, honey bees responded to landscape resources at spatial scales 

of 3000 m radius, while solitary bees respond to at scales of just 500 m radius (Steffan-

Dewenter et al. 2002). These studies provide evidence that these spatial scales (radii from 

500 to 4000 m) are biologically meaningful. 

Conclusion 

Agriculture is a major land-use type in Europe, and the maintenance of biodiversity in 

agroecosystems is of great importance for ecosystem functioning (Foley et al. 2005; 

Tscharntke et al. 2005). Our results show that sown flower strips in agricultural landscapes 

can enhance the diversity and abundance of syrphid flies, with the potential to improve the 

biological control of aphid pests. Sown flower strips are therefore an element of current, 

mainly locally orientated, agri-environmental schemes. However, our results showed that 
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the local importance of sown flower strips is mediated by landscape context. The 

concentration of syrphid species and individuals in structurally simple landscapes supports 

the idea that agri-environmental measures are most effective in structurally simple 

landscapes, with spillover of aphidophagous species from sown flower strips to adjacent 

wheat fields. Understanding how landscape composition affects the efficiency of 

environmental measures is important for the optimization of agri-environment schemes, 

including the value of sown flower strip habitats as sources of beneficial arthropods. 
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Appendices 

Appendix S1: Syrphid species: mean and standard deviation for three consecutive dates: (i) wheat flowering 

(wf), (ii) wheat milk-ripening (wmr) and (iii) wheat peak-ripening (wpr). 
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Appendix S2: Plant species recorded during transect walks at wheat flowering (wf), wheat milk-ripening 

(wmr) and wheat peak-ripening (wpr). 
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Appendix S2: Plant species recorded during transect walks at wheat flowering (wf), wheat milk-ripening 

(wmr) and wheat peak-ripening (wpr) (continued). 
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Appendix S3: Mean numbers, minima and maxima of species and individuals for (i) total syrphids, (ii) 

aphidophagous syrphids and (iii) syrphids with other feeding types at three consecutive dates. Mean numbers 

and standard deviation is given. 
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Appendix S4: Blossom densities per square metre in relation to species richness and abundance of (i) total 

syrphids, (ii) aphidophagous syrphids and (iii) syrphids with other larval feeding type. 
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CHAPTER 3 

Regionally and temporally contrasting responses of 

aphidophagous and non-aphidophagous syrphid 

flies to agricultural intensification in north and 

central Europe 
Sebastian Haenke, Camilla Winqvist, Vesna Gagic, Carsten Thies, Riccardo Bommarco, 

Jan Bengtsson, Teja Tscharntke 

Abstract 

1. Species richness and abundance of aphidophagous and non-aphidophagous syrphid flies 

can vary largely across geographical regions and landscapes owing to variation in land use, 

landscape structure, and climate, thereby affecting ecosystem services such as biological 

pest control.  

2. Syrphid flies are among the largest groups of dipterans, with aphidophagous and non-

aphidophagous larval feeding types (including agro-ecologically important functional 

groups) and pollinating adults. We analysed syrphid fly communities of Sweden and 

Germany in cereal fields under low levels of agricultural intensification (located in 

structurally complex landscapes) vs. high levels of agricultural intensification (located in 

structurally simple landscapes).  

3. Syrphid fly abundance varied largely between regions, and across seasons. 

Aphidophagous, but not non-aphidophagous syrphid abundance was higher in Germany 

than Sweden. In Germany, but not Sweden, aphidophagous syrphid species were more 

abundant at high levels of agricultural intensification, providing large cereal aphid 

resources, whereas non-aphidophagous species were more abundant at low levels of 

agricultural intensification in both regions, obviously benefiting from resources outside 

cropland. Interestingly, aphidophagous syrphid populations appeared to be synchronized 

with aphid occurrence only in Germany, not Sweden. Such region-specific changes in 

temporal synchronisation are little recognized, but may be of great functional importance. 

Future agri-environmental management should therefore consider the regionally and 
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temporally contrasting responses of functional syrphid groups, and the region-specific 

variation in their potential to suppress aphids. 

Key-words: Syrphidae, agricultural intensification, landscape context, farming practices, 

biodiversity, biological control of cereal aphids 

Introduction 

Modern European agriculture is predominantly associated with intensified land use 

practices including the application of mineral fertilizers and pesticides (Papendick et al. 

1986; Biswas 1994; Tilman et al. 2002), and this is often accompanied by the loss and 

fragmentation of semi-natural habitats, leading to homogenous agricultural landscapes 

(Robinson & Sutherland 2002). Landscape simplification has been shown to result in a 

decrease of biodiversity and related ecosystem services such as biological pest control 

(Tews et al. 2004; Chaplin-Kramer et al. 2011). Organic farming practices at local scales 

and a high habitat diversity at landscape scales have been shown to enhance local 

biodiversity (Bengtsson et al. 2005). Such landscape matrix effects can mitigate negative 

effects of local agricultural intensification on biodiversity, including natural enemies 

contributing to biological control (Jeanneret et al. 2003; Schmidt et al. 2005; Tscharntke et 

al. 2005; Bianchi et al. 2006; Chaplin-Kramer et al. 2011).  

 Cereal aphids (Hemiptera: Aphididae) are economically important pest insects that 

are attacked by several species of natural enemies. Recent enemy exclusion experiments 

suggest additive or even synergistic effects of natural enemies (Schmidt et al. 2003; 

Holland et al. 2008; Thies et al. 2011), with aphid-eating syrphid larvae contributing to the 

suppression of cereal aphid outbreaks (Chambers & Adams 1986; Tenhumberg & Poehling 

1995; Brewer & Elliott 2004). However, functional enemy groups can respond 

differentially to environmental changes, with temporally variable responses (Teodoro et al. 

2009). The large-scale context of functional biodiversity has been little studied so far, but 

is important to goal setting in landscape management (Östman et al. 2001; Lang 2003; 

Tscharntke & Brandl 2004; Roschewitz et al. 2005; Thies et al. 2011).  

 Syrphid flies (Diptera: Syrphidae) represent one of the largest groups of dipterans, 

with over 800 phytophagous, saprophagous and zoophagous species occurring in Europe 

(Oosterbroek et al. 2006). Habitat requirements of syrphid flies are related to the 

availability of larval food resources. Aphidophagous species occur in a wide range of 

habitat types including crop fields harbouring aphid pests, while species with other larval 

feeding types appear to be more restricted to non-crop habitats (Frank 1999). Adult syrphid 
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flies are known to benefit from floral resources provided by diversified landscapes with 

high proportions of semi-natural habitats or introduced flower habitats (Hickman & 

Wratten 1996; Haenke et al. 2009). Region-specific features of landscape structures, 

farming practices, weather and climate can therefore filter species-specific traits of syrphid 

species in biogeographical regions (Östman et al. 2001; Roschewitz et al. 2005; Thies et 

al. 2005). 

 In this study we analysed species richness and abundance of adult syrphid flies 

grouped by their larval feeding type (aphidophagous vs. non-aphidophagous) communities 

in contrasting regions (Sweden and Germany) and landscapes (with low versus high levels 

of agricultural intensification). Syrphid flies are highly mobile organisms, and therefore, 

can contribute to the sustainability and preservation of ecosystem services such as 

biocontrol and pollination in intensified agricultural landscapes. We hypothesized that (i) 

species richness and abundance of syrphid flies are higher and peak earlier in the season in 

the southern region (Germany) owing to more favourable climatic conditions and that (ii) 

abundance of aphidophagous syrphids are higher in intensively managed landscapes with 

high proportions of crop fields due to higher larval food availability, while (iii) non-

aphidophagous syrphids benefit from landscapes with low levels of agricultural 

intensification owing to food resources outside cropland. 

Materials and methods 

Study area & experimental design  

We analysed adult syrphid fly diversity and abundance in cereal fields of two European 

regions (summer barley in Sweden, n = 8 and winter wheat in Germany, n = 8). Samplings 

were temporally synchronized according to phenological growth stages of cereals. In each 

region we selected four fields located in structurally complex landscapes at low level of 

agricultural intensification (low level of AI), and high proportions of semi-natural habitats 

(over 30% in 1 km radii) and four fields located in structurally simple landscapes at high 

level of AI with high proportions of arable land (over 90 %). In Germany, fields with low 

level of AI were organically managed (no application of mineral fertilizers and pesticides) 

and fields with high level of AI were conventionally managed (with standard application 

regimes of mineral fertilizers and chemical pesticides), thus agricultural intensification at 

the local field and the landscape scale was varied simultaneously (for further information 

on the study sites see Geiger et al 2010). Percent arable land per landscape sector has been 
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shown to be closely and negatively related to habitat-type diversity, indicating high 

landscape complexity (Batáry et al. 2011). 

 

Sampling of syrphids flies 

We captured syrphids using coloured pan-traps along a 60 m transect located at a distance 

of 10-12 m to the edge of each field. In total six pan-traps of three colours (yellow, n = 2; 

white, n =2 and blue, n = 2, to meet colour preferences of syrphids species) per cereal field 

were randomly installed at a distances of 10 meters from each other. The traps were 

attached to wooden slats and vertically adjusted to the height of the cereal plants during the 

season. Each trap was filled with 500 ml of water and glycol (1:4) plus a drop of a 

detergent to diminish surface tension. Installations were exposed for one week. Sampling 

was carried out during four dates (from early to late cereal flowering in May-2008 to early 

and late cereal milk-ripening in June/July-2008). Samples were separated from water and 

glycol, transferred to 70 % alcohol solutions in the field, and taken to the laboratory. 

Syrphid species were separated from all other arthropod genera and identified to the 

species level using identification keys (van Veen 2004). Syrphid species from pantraps 

were pooled per site. Species were sorted into two trophic groups according to their larval 

feeding type: aphidophagous feeding type and a combined group of all non-aphidophagous 

larval feeding types (phytophagous and saprophagous). 

Statistical analyses 

Total syrphid fly diversity and abundance as well as diversity and abundance of trophic 

groups (aphidophagous group vs. non-aphidophagous), and those of single syrphid species 

were analysed by Linear Mixed Effect Models, using log(x + 1)-transformed count data 

and variance functions to model heteroscedasticity in the lme package of R 2.12.0 (R 

Development Core Team 2010). We analysed the factors region (Sweden vs. Germany), 

level of agricultural intensification, (low vs. high levels of AI) and date (during early and 

late cereal flowering and during early and late cereal milk-ripening), and up to third order 

interactions of these factors. In each model, field-ID (1-8) grouped by date was added as an 

error level. We thereby took into account the temporal nestedness of the samplings within 

a field.  Model assumptions were tested by examining the Gaussian distribution of the 

residuals. Moreover, we tested for temporal autocorrelation among sampling dates by 

analysing model residuals with the R package “nlme” (Pinheiro et al. 2010). Minimal 

adequate models were found by using backward selection procedure based on Maximum 
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Likelihood (Crawley 2007). Differences between regions as well as low versus high levels 

of agricultural intensification were analysed by comparing confidence intervals of 

estimators for factor levels. Abundance and species richness of functional groups were 

positively correlated (Total species richness: r= 0.8, p= <0.001; Aphidophagous species 

richness: r= 0.9, p= <0.001; Non-aphidophagous richness: r= 0.8, p= <0.001), and therefore 

included in the models as covariate in the analyses of species richness patterns. In the text 

means and standard errors are given. 

Results 

In total, 39 syrphid species with 3198 individuals were collected during the four sampling 

periods. They averaged 4.4 ± 0.3 species and 50.0 ± 9.8 individuals per 60 m transect. 

Syrphid communities were dominated by aphidophagous species (3.3 ± 0.2) and 

individuals (47.8 ± 9.8), followed by non-aphidophagous species (1.0 ± 0.2) and 

individuals (2.2 ± 0.5). The most abundant aphidophagous syrphid species were 

Episyrphus balteatus (1856 individuals), Eupeodes corollae (671 individuals) and 

Sphaerophoria scripta (381 individuals), with highest relative abundance of E. balteatus in 

German study sites and highest relative abundance of S. scripta in Swedish study sites (for 

total syrphid numbers across the four sampling periods, see Appendix S1). 

Total species richness and abundance 

Total syrphid species richness (Tab.A, Fig.1: A-D) differed between regions, peaking in 

Sweden at late milk-ripening stage (5.3 ± 0.8), and in Germany at early milk-ripening stage 

(6.6 ± 0.7) (interaction: region  date). Total syrphid species richness was higher at low 

levels of agricultural intensification (4.8 ± 0.4 vs. 4.0 ± 0.4), with stronger effects in 

Sweden (interaction: level of AI  region). Total syrphid abundance (Tab.A, Fig.1: E-H) 

was more than 7-times higher in Germany (87.5 ± 17.0) compared to Sweden (12.4 ± 2.7), 

and was higher at high levels of agricultural intensification (62.0 ± 17.8 vs. 38.0 ± 7.9), 

with stronger effects in Germany (interaction: level of AI  region). 

Species richness and abundance of aphidophagous syrphids 

Aphidophagous syrphid species richness (Tab.A, Fig.1: I-L) differed between regions 

peaking at late milk-ripening stage (3.9 ± 0.5) in Sweden, and at early milk-ripening stage 

(5.4 ± 0.5) in Germany (interaction: region  date). Aphidophagous syrphid species 

richness was not affected by AI. Aphidophagous syrphid abundance (Tab.A, Fig.1: M-P) 
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was more than 8 times higher in Germany (85.6 ± 17.1) compared to Sweden (10.1 ± 2.4), 

with higher abundances at high levels of agricultural intensification (61.4 ± 17.8 vs. 34.3 ± 

7.8), and positive effects of AI particularly in Germany (interaction: level of AI  region). 

 

Species richness and abundance of non-aphidophagous syrphids 

Non-aphidophagous syrphid species richness (Tab.A, Fig.1: Q-T) did not differ between 

regions and was not affected by the levels of AI, but across sampling dates, peaking at 

early cereal flowering (1.0 ± 0.2). Non-aphidophagous syrphid abundance (Tab.A, Fig.1: 

U-X) differed between regions, peaking in Sweden at late milk-ripening stage (4.9 ± 3.1) 

and in Germany at early milk-ripening stage (2.9 ± 1.3) (interaction: region  date).  Non-

aphidophagous syrphid abundance was more than 5 times higher at low levels of AI (3.7 ± 

0.9 vs. 0.6 ± 0.2).  
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Table A: Linear mixed models relating species richness and abundance of total, aphidophagous and non-

aphidophagous syrphids flies as well as the abundance of the three most frequent species. Note: The 

predictive factors are region (Sweden, Germany), level of AI (low or high levels of agricultural 

intensification, AI) and date (1-4; date).  Denominator degrees of freedom (DDF), F-values and P-values are 

given. 

 

   DDF F p 
Total  species  total individuals 45 132.4 <0.001 
  region 12 0.1 NS 
  level of AI 12 5.4 <0.05 
  date 45 2.2 NS 
  region × date   45 9.3 <0.01 
  level of AI × region  12 7.7 <0.05 
Total individuals  region 12 197.8 <0.001 
  level of AI 12 7.7 <0.05 
  date 45 26.1 <0.001 
      
  level of AI × region 12 7.8 <0.05 
      
Aphidophagous species  aphidophagous individuals 45 200.5 <0.001 
  region 14 1.2 NS 
  date 45 7.8 <0.01 
  region × date   45 10.4 <0.01 
Aphidophagous individuals  region 12 200.7 <0.001 
  level of AI 12 16.2 <0.01 
  date 47 24.9 <0.001 
  level of AI × region 12 6.6 < 0.05 
Non-aphidophagious species  non-aphidophagous individuals 46 217.7 <0.001 
  date 46 5.8 <0.05 
Non- aphidophagious individuals  region 13 0.1 NS 
  level of AI 13 11.2 <0.01 
  date 46 0.0 NS 
  region × date   46 7.1 <0.05 
Episyrphus balteatus  region 12 521.2 <0.001 
  level of AI 12 8.6 <0.05 
  date 45 192.1 <0.001 
  region × date   45 158.3 <0.001 
  level of AI × region 12 3.8 NS 
  level of AI × date 45 1.8 NS 
Eupeodes corollae  region 12 30.7 <0.001 
  level of AI 12 11.5 <0.01 
  date 46 4.9 <0.05 
  region × date   46 4.5 <0.05 
  level of AI × region 12 11.2 <0.01 
Sphaerophoria scripta  region 12 9.8 <0.01 
  level of AI 12 49.5 <0.001 
  date 46 2.2 NS 
  region × date   46 7.4 <0.01 
  level of AI × region 12 16.3 <0.01 
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Fig.1: Species richness and abundances in Sweden and Germany of total, aphidophagous and non-

aphidophagous syrphid flies (with other larval feeding types) at high levels of AI (black bars) and low levels 

of AI (white bars) at four consecutive sampling dates during early cereal flowering (1st column), late cereal 

flowering (2nd column), early cereal milk-ripening (3rd column) and late cereal milk-ripening (4th column). 

Means and standard errors are given. 
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Fig. 2: Abundance of Episyrphus balteatus, Eupeodes corollae and Sphaerophoria scripta in Sweden and 

Germany at high levels of AI (black bars) and low levels of AI (white bars) at four consecutive sampling 

dates during early cereal flowering (1st column), late cereal flowering (2nd column), early cereal milk-

ripening (3rd column) and late cereal milk-ripening (4th column). Means and standard errors are given. 
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The three most abundant species 

Abundance of the aphidophagous Episyrphus balteatus (Tab.A, Fig.2: A-D) was more than 

26 times higher in Germany compared to Sweden (Germany: 55.9 ± 13.2 vs. Sweden: 2.1 

± 0.9), peaking at late milk-ripening (7.3 ± 2.9) in Sweden and at early milk-ripening 

(131.5 ± 41.4) in Germany (interaction: region  date), with higher values at high levels of 

agricultural intensification (35.6 ± 13.3 vs. 22.4 ± 6.3). 

Abundance of the aphidophagous Eupeodes corollae (Tab.A, Fig.2: E-H) was more 

than 8 times higher in Germany compared to Sweden (18.7 ± 4.3 vs. 2.3 ± 0.7) and more 

than 2 times higher at high levels of agricultural intensification (14.9 ± 3.8 vs. 6.1 ± 2.6), 

peaking at late milk-ripening (6.5 ± 2.0) in Sweden and early milk-ripening (29.6 ± 12.3) 

in Germany (interaction: region  date). The positive effect of AI on E. corollae differed 

between regions. 

The abundance of the aphidophagous Sphaerophoria scripta (Tab.A, Fig.2: I-L) 

was higher in Germany compared to Sweden (6.6 ± 1.3 vs. 5.3 ± 1.3), peaking at late milk 

ripening (11.5 ± 3.2) in Sweden and early milk-ripening (10.4 ± 3.6) in Germany, with 

highest values at high levels of agricultural intensification (8.5 ± 1.3 vs. 3.4 ± 1.0), 

particularly in Germany (11.6 ± 1.8 vs. 1.7 ± 0.4) (interaction: level of AI region). 

Discussion 

The analyses of the two functional syrphid fly groups showed that species richness and 

abundance of syrphid flies is higher in southern (Germany) compared to northern (Sweden) 

regions of Europe. Total abundance was higher at high levels of AI, while total species 

richness was higher at low levels of AI. Aphidophagous syrphid abundance (but not 

aphidophagous species richness) was higher at high levels of agricultural intensification, 

while non-aphidophagous syrphid abundances were higher at low levels of agricultural 

intensification.  Interestingly, abundant aphidophagous syrphid populations only coincide 

with aphid pests in Germany, but not in Sweden. Region-specific changes in temporal 

synchronisation of aphidophagous syrphid species and their aphid prey are little studied, 

but appear to be important for the success of biological control of cereal aphids. 

Adult syrphid communities caught in both study regions were dominated by 

aphidophagous species, which have been shown to be spatially and temporally closely 

linked to their larval food resources (Tenhumberg & Poehling 1995). Cereal aphid pests 

usually reach their maximum at cereal milk-ripening stage of the crop (Rabbinge et al. 

1979), which co-occurs with the highest species richness and abundance of aphidophagous 
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syrphids. Timing and size of early spring migrations of cereal aphids are vastly determined 

by temperature conditions during winter time, which can result in earlier and stronger 

aphid infestations at more southern latitudes (Turl 1980; Walters & Dewar 1986). Higher 

winter temperatures in Germany may be a reason for the earlier occurrence of aphid prey, 

and comparatively high abundances of aphidophagous syrphid flies overlapping with 

aphids’ peak. This temporal synchronization may be of importance for biological aphid 

control (Thies et al. 2011). Aphidophagous syrphids do apparently not suffer from 

dispersal limitation in structurally simple landscapes (Jauker et al. 2009). Their densities 

appear rather to be determined by huge aphid populations provided by intensively managed 

cereal fields.  

Moreover, relative abundances of aphidophagous syrphid species changed 

regionally, with Episyrphus balteatus being most abundant in Germany and Sphaerophoria 

scripta being the most abundant species in Sweden (Lundberg & Moberg 2003; 

Hondelmann & Poehling 2007). Apparently, such region-specific differences in species 

identity can have consequences for biological aphid control. In our study, the dominating 

aphidophagous syrphid species in Germany, E. balteatus, overwinters as adult. This is why 

this species is expected to be negatively affected by low temperatures (Hart & Bale 1997) 

and more dominant in Germany compared to northern regions such as Sweden. 

Overwintering of adults of E. balteatus with relatively early appearance in the season may 

thereby lead to a better synchronization with their larval prey, contributing to enhanced 

biological aphid control in Germany (Tenhumberg & Poehling 1995, Keil et al. 2008). 

Contrastingly, the dominating aphidophagous species in Sweden, Sphaerophoria scripta, 

overwinters as larva, pupates in spring and its seasonal appearance is later. 

In contrast, non-aphidophagous syrphids (saprophagous, detrivorous and bacteria-

eating species) were more abundant at low levels of agricultural intensification (i.e. in 

cereal fields with no or little applications of mineral fertilizers and pesticides located in 

structurally complex landscapes). This group appeared to have benefited from a higher 

availability of larval food resources such as decaying plant material, cow dung, ant nests or 

fungi, respectively, provided by more heterogeneous habitats/landscapes. In our study, 

however, we are not able to differentiate the effects of agricultural intensification at local 

and landscape scales as these two factors were simultaneously linked. 
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Conclusion 

In conclusion, the adults of aphidophagous and non-aphidophagous syrphids varied largely 

between regions and responded differentially to agricultural intensification. 

Aphidophagous species were more abundant at high levels of AI, while non-

aphidophagous species were more abundant at low levels of AI. Moreover, species identity 

of aphidophagous syrphids regionally changed, thereby resulting in contrasting outcomes 

in the coincidence with their aphid prey. Future agri-environmental management should, 

therefore, consider the role of species identity across regions, and contrasting responses of 

region-specific subsets of syrphid species contributing to biodiversity and biological 

control. 
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Appendix 

Appendix S1: Total syrphid numbers for four consecutive sampling dates in Sweden and Germany: early 

cereal flowering (ef), late cereal flowering (lf), early cereal milk-ripening (emr) and late cereal milk-ripening 

(lmr).  

 

 Sweden Germany 
Species ef lf emr lmr ef lf emr lmr

Anasimyia contractab (Claussen & Torp) 1980 1 1    
Anasimyia lineatab (Fabricius) 1787 1 1    
Anasimyia transfugab (Linnaeus) 1758 1 1    
Cheilosia spec.b   9 
Chrysotoxum bicinctuma (Linnaeus) 1758 1    
Chrysotoxum latilimbatuma Collin 1940 1   
Chrysotoxum verrallia (Collin) 1940  1 1 
Dasysyrphus albostriatusa (Fallén) 1817   2 1
Epistrophe eligansa (Harris) 1780 1   
Episyrphus balteatusa (De Geer) 1776 1 1 7 58 76 293 1052 368
Eristalis arbustorumb (Linnaeus) 1758 3  1 
Eristalis interruptab (Poda) 1761 1 1  
Eristalis jugorumb Egger 1858 3   
Eristalis lineatab (Harris) 1776 1   
Eristalis tenaxb (Linnaeus) 1758 5  2 
Eristalis pertinaxb (Scopoli) 1763 1    
Eumerus cf. sogdianusb (Stackelberg) 1952 2    
Eupeodes corollaea  (Fabricius) 1794 5 6 11 52 124 193 237 43
Eupeodes lundbeckia (Soot Ryen) 1946 1 1   
Ferdinandea cupreab (Scopoli) 1763  1  
Helophilus trivittatusb (Fabricius) 1805 1 1  1  
Helophilus pendulusb (Linnaeus) 1758 1 1 1 1 
Melanostoma mellinuma (Linnaeus) 1758 1 1  1 2 2
Melanostoma scalarea (Fabricius) 1794 1 2 1 2 15 10
Pipizella cf. viduataa (Linnaeus) 1758 1    
Platycheirus albimanusa (Fabricius) 1781 1    
Platycheirus amplusa (Curran) 1927 1   
Platycheirus scambusa  (Staeger) 1843 1    
Rhingia campestrisb (Meigen) 1822  2  
Scaeva pyrastria (Linnaeus) 1758 1 4 9 10 15 2
Sericomyia nigrab (Portchinsky) 1873 1    
Sphaerophoria sciptaa (Linnaeus) 1758 10 13 54 92 59 41 83 29
Syrphus admirandusa (Goeldlin) 1996 6 1  
Syrphus ribesiia (Linnaeus) 1758 1 3  11 28 9
Syrphus torvusa (Osten-Sacken) 1875 3 6  
Volucella bombylansb (Linnaeus) 1758 2 2  
Xylota meigenianab (Stackelberg) 1964 2    
Xylota segnisb (Linnaeus) 1758 2 9 15 27 4 7 8 1
Xylota sylvarumb (Linnaeus) 1758 1 2 1 

      a aphidophagous, bnon-aphidophagous 
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CHAPTER 4 

Landscape context drives crop–non-crop spillover 

of syrphid flies between hedges, forest edges and 

adjacent crops 
Sebastian Haenke, Anikó Kovács-Hostyánszki, Jochen Fründ, Péter Batáry, Birgit Jauker, 

Teja Tscharntke and Andrea Holzschuh 

Abstract 

1. Human-dominated landscapes are characterized by a mosaic of natural and managed 

ecosystems, affecting communities on different spatial scales. Effective landscape 

management for functionally important organisms suffers from little understanding of 

organism spillover between semi-natural habitats and adjacent crops, and of how it is 

affected by the surrounding landscape.  

2. We examined syrphid fly abundance (Diptera: Syrphidae) in three types of linear semi-

natural habitats differing in the degree of exposure to adjacent crops (n= 35; forest edges, 

forest-connected and isolated hedges), as well as in the adjacent oilseed rape or winter 

wheat fields (i.e. altogether n= 70 sites in 35 landscapes). The landscape circles with 1 km 

radius around the study sites differed in the percentage of oilseed rape (ranging from 0 to 

35% oilseed rape) enabling us to test landscape-scale effects of oilseed rape. 

3. Aphidophagous syrphids were more abundant in forest-connected hedgerows than in 

forest edges (with isolated hedges being intermediate), and more abundant in crop fields 

adjacent to hedgerows than adjacent to forest edges, indicating a preference for hedges 

over forest edges. Syrphid fly abundance was higher in oilseed rape than in wheat fields. 

Oilseed rape also enhanced aphidophagous syrphids in adjacent semi-natural habitats, but 

this effect was modified by the total amount of oilseed rape in the landscape. The 

abundance of aphidophagous syrphids was only higher adjacent to oilseed rape than 

adjacent to wheat if the percentage of oilseed rape in the landscape was low (indicating 

local concentration).  

4. Synthesis and applications. Our results show that configuration and composition of 

natural and managed systems can affect syrphid fly communities, including spillover 

between crop-non-crop habitats. Local spillover from oilseed rape to adjacent semi-natural 
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habitats was only important in landscapes with little oilseed rape, and therefore, little 

landscape-wide dilution of flower visitors. These complex patterns indicate that 

conservation measures should take into account the fact that interactions between crops 

and natural habitat depend on the structure of the surrounding landscape, affecting 

functionally important groups such as biocontrol agents and pollinators. 

Key-words: oilseed rape, cereals, landscape composition, configuration, concentration, 

dilution  
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Introduction 

Human-dominated landscapes are mosaics of cultivated areas interspersed by semi-natural 

habitats with changing degrees of connectedness, affecting trophic interactions and the 

spillover across the crop-non-crop interface (Kremen et al. 2002; Marshall & Moonen 

2002; Tscharntke et al. 2005; Rand et al. 2006). Hence, conservation of biodiversity and 

associated ecosystem services such as pollination and biological pest control in agricultural 

landscapes needs to take configuration and composition of landscapes into account (Tews 

et al. 2004; Holzschuh et al. 2007; Fahrig et al. 2011; Holzschuh et al. 2011). 

Landscape-wide conservation of natural habitat has been shown to mitigate the 

negative effects of agricultural intensification (Altieri 1995; Burel & Baudry 1995), locally 

maintaining functionally important species pools (Loreau et al. 2003). Improving 

landscape heterogeneity and connectivity can facilitate recolonization of disturbed habitats, 

counterbalancing locally degraded ecosystem functioning (Fahrig 1997; Elmqvist et al. 

2003). Linear landscape elements such as forest edges and hedgerows are often the only 

remaining woody refuges for wildlife in agricultural landscapes (Forman & Baudry 1984). 

Non-crop habitats can provide resources for natural enemies and pollinating insects such as 

alternative prey or nectar and pollen resources, shelter from adverse weather conditions or 

hibernating sites. Spillover of beneficial insect groups from semi-natural habitats to 

adjacent crops have been reported for many insect groups such ground beetles, lacewings 

or syrphid flies (Booij et al. 1995; Long et al. 1998; Bianchi et al. 2006; Haenke et al. 

2009).  However, only little is known about the importance of species movements from 

crops to semi-natural habitats, which can result if both crop and non-crop habitats provide 

attractive resources (Rand et al. 2006, Blitzer et al. 2012).  

One of the most recent challenges for biodiversity conservation in European 

agricultural landscapes is the increased area of oilseed rape (Brassica napus L.) planted 

mainly for bio-fuel production. Oilseed rape, as a highly rewarding food resource attracts 

insect groups providing both services and disservices including bees, syrphid flies, pollen 

beetles, stem weevils and cabbage aphids (Ferguson et al. 2003; Pontoppidan et al. 2003; 

Westphal et al. 2009; Jauker et al. 2011).  Although high amounts of oilseed rape at the 

landscape scale can enhance pollinators such as bumblebees (Westphal et al. 2003), also 

negative effects such as increased competition for pollinators in nature conservation areas 

have been recently found (Holzschuh et al. 2011).  

Syrphid flies are of particular importance in intensively used agricultural 

landscapes by maintaining and facilitating important ecosystem services such as biocontrol 
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and pollination. Species differentially utilize crop and non-crop habitats, depending on 

traits such as dispersal abilities or larval and adult food requirements. In this study, we 

analysed the importance of three linear semi-natural habitat types (forest edges, forest-

connected hedges and isolated hedges) and two crop types (oilseed rape and wheat) 

adjacent to these habitats for aphidophagous and non-aphidophagos syrphid flies along a 

gradient of oilseed rape proportion in the surrounding landscapes. To the best of our 

knowledge, it has never been analysed so far how landscape context affects local spillover 

between crop and non-crop habitats. 

We tested the following hypotheses: (i) abundances of syrphid flies differ among 

semi-natural habitats differing in the degree of exposure to adjacent crops (forest edges, 

forest-connected hedges and isolated hedges) and these differences among semi-natural 

habitats also affect syrphid fly spillover between the semi-natural habitats and the adjacent 

crop fields (ii) abundances of syrphid flies in semi-natural habitats are higher adjacent to 

oilseed rape than adjacent to wheat, because of higher local spillover from mass-flowering 

oilseed rape (iii) spillover is more pronounced in landscapes with low than high 

percentages of oilseed rape, because of landscape-scale dilution of syrphid flies in 

landscapes with high percentages of oilseed rape (see Fig. 1).  
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Figure 1: Hypothesized syrphid fly densities (continuous arrows) and local spillover between crop-non-crop 

habitats (dashed arrows) in situations of high (a) vs. low (b) proportions of oilseed rape at the landscape 

scale. 

(a) In oilseed rape (1), low local syrphid density because of dilution effects across large areas of mass-

flowering crops. In winter wheat (2), high local syrphid fly density in landscapes with high proportions 

of OSR (concentration due to high aphid abundances in wheat), accompanied by high local spillover 

between the crop-non-crop interface. 

 (b) In cereal (3), high local syrphid fly density in landscapes with low proportions of OSR 

(concentration to highly rewarding pollen and nectar availability of OSR), accompanied by high local 

spillover between the crop–non-crop interface. In winter wheat (4), low local syrphid fly density in 

landscapes with low proportions of OSR (dilution among wheat fields) accompanied by low local 

spillover between the crop–non-crop interface. 

Materials and methods 

Study area and study design 

The study was conducted in the vicinity of the city of Göttingen (Appendix S2 Supporting 

Information; 51·5°N, 9·9°E) in Lower Saxony, Germany, in 2009. The area is dominated 

by intensive agriculture (c. 75%) with cereal and oilseed rape fields (2-5 ha average field 

size), interspersed by fragments of semi-natural habitats such as forests, hedgerows and 

grasslands (Steffan-Dewenter et al. 2002). Forest edges and hedges are usually managed 

by pruning. Forest edges are linear structures like hedges, but adjacent to a forest 

dominated by deciduous tree species such as the common beech (Fagus sylvatica L.). 

Hedges are isolated linear landscape elements or connected to forest edges. The dominant 

shrub species in hedges are blackthorn, hawthorn and hip.  
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We analysed syrphid fly abundance in three types of linear semi-natural habitats, 

which differed in the degree of exposure to adjacent crops: forest edges (n=12) with little 

exposure; forest-connected hedgerows (n=12) with intermediate exposure; and isolated 

hedgerows (n=12) with high exposure. Additionally syrphid fly abundance was analysed in 

crop fields adjacent to the above-mentioned habitat types (oilseed rape and winter wheat). 

Half of the replicates of each habitat type (n=6) was located adjacent to oilseed rape fields, 

whereas the other half was located adjacent to wheat fields (n=6).  One study site of forest-

connected hedgerow next to wheat had to be excluded, because the farmer refused 

permission of sampling on his field. Study sites had a minimum distance of 500 metres to 

each other in order to minimize spatial autocorrelation (Steffan-Dewenter & Tscharntke 

1999). Furthermore, the percentage area of oilseed rape (oilseed rape %) around fields 

within 1 km radius was measured using digital thematic maps (ATKIS DTK 50), 

complemented by ground checking of crops in the study season (ArcGIS Desktop 10.0).  

Sampling of syrphid flies  

Syrphid flies were sampled along 200 m long transects by sweep netting located (i) in 

forest edges and hedgerows (3 stepped method, one sweep per footstep; 1st sweep near the 

ground, followed by 2nd sweep in medium height and 3rd sweep in maximum reachable 

height of forest edges and hedgerows) and (ii) in the adjacent crop (oilseed rape or wheat) 

along 200m long transects located parallel to the forest edges and hedgerows at distances 

of 6 m from the field boundary. Sampling was carried out two times during oilseed rape 

flowering in the first half of May (1 per week) and secondly two times during wheat milk-

ripening in the first half of June (1 per week). Data were pooled for May and for June. All 

invertebrates were placed in 3-L plastic bags, killed with diethyl ether, cooled, and then 

taken to the laboratory. Syrphid flies were separated from all other arthropod taxa and 

identified, where possible, to species level using identification keys (van Veen 2004). 

Syrphid species were separated into two trophic groups according to their larval feeding 

type: aphidophagous feeding type and non-aphidophagous feeding type including 

saprophagous, detrivourous, bacteriophagous, phytophagous and fungivourous species (a 

list of syrphids fly species is available in Appendix S1 Supporting Information).  

Statistical analyses  

Species richness of aphidophagous and non-aphidophagous syrphid flies was highly 

correlated with their corresponding abundance in semi-natural habitats (aphidophagous 
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species richness: rho= 0·9, p= <0·001; non-aphidophagous species richness: rho= 1·0, p= 

<0·001) and crops (aphidophagous species richness: rho= 0·9, p= <0·001; non-

aphidophagous species richness: rho= 1·0, p= <0·001). Since species richness and 

abundance analyses showed largely the same pattern we present only the results from the 

abundance analysis. Abundances of syrphid flies (aphidophagous and non-aphidophagous) 

were analysed using general linear mixed models (GLMM) with site as random factor to 

control for the lack of temporal independence between the data from the two sampling 

dates per site. We performed two separate analyses (i) for semi-natural habitats (data 

collected from forest edges, forest-connected and isolated hedgerows) and (ii) for crop 

fields (data collected from oilseed rape and wheat fields). The data from semi-natural 

habitats tested the influence of (i) oilseed rape % in the surrounding landscape at 1 km 

radius, (ii) habitat type (forest edges, forest-connected and isolated hedgerows), (iii) 

adjacent crop type (oilseed rape vs. wheat) and (iv) sampling date (during oilseed rape 

flowering vs. wheat milk-ripening). With data from crops fields we tested the influence of 

(i) oilseed rape % in the surrounding landscape at 1 km radius, (ii) adjacent habitat type 

(forest edges, forest-connected and isolated hedgerows), (iii) crop type (oilseed rape vs. 

wheat) and (iv) sampling date (during oilseed rape flowering vs. wheat milk-ripening). 

Model assumptions were tested by examining the Gaussian distribution of the residuals 

using normal quantile-quantile plots. Data on abundance of syrphid flies was log-

transformed to compensate for the skewness and/or kurtosis of the data in order to achieve 

normally distributed residuals. Models were tested up to three-fold interactions. All non-

significant main effects and interactions were excluded from the models using a backward 

selection procedure. In a second step, we tested model simplifications with maximum 

likelihood tests in order to gain minimum adequate models. All calculations were done 

using lme4 package of R version 2.12.1 (R Development Core Team, 2010). Differences 

between the three semi-natural habitat types were further analysed on the minimal 

adequate model using Tukey HSD post-hoc tests implemented in the multcomp package 

(Hothorn et al. 2008).  
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Results 

Overview 

A total of 47 syrphid species with 526 individuals was collected during the two sampling 

periods. Syrphid flies predominantly occurred in semi-natural habitats (321) compared to 

crop fields (205 individuals). The syrphid community was dominated by aphidophagous 

species (29) and individuals (445). The abundances per syrphid species are given in 

Appendix S1, Supporting information.  

Aphidophagous syrphids 

Abundances of aphidophagous syrphid flies in linear semi-natural habitats (SNH) were 

higher in forest-connected hedgerows than in forest edges with isolated hedges being 

intermediate (Table 1; dark grey bars in Fig. 2A). Adjacent oilseed rape fields enhanced 

aphidophagous syrphid fly abundance in the SNH compared to SNH adjacent to wheat, but 

this effect was modified by the total amount of oilseed rape in the landscape (interaction 

adjacent crop type  oilseed rape %; Table 1). The positive effect of oilseed rape (i.e. the 

difference between SNH adjacent to oilseed rape and SNHs adjacent to wheat) decreased 

with increasing total amount of oilseed rape in the landscape (Fig. 1, Fig. 2B). The 

abundance of aphidophagous syrphid flies during wheat milk-ripening (date 2) was more 

than twice as high as during oilseed rape flowering (date 1) (means ± SE: 5·5 ± 1·0 vs. 2·1 

± 0·4).  

Abundances of aphidophagous syrphid flies in crop fields were affected by the 

adjacent type of SNH, with higher numbers in crop fields next to forest-connected and 

isolated hedgerows than to forest edges (Table 1; dark grey bars in Fig. 2C). Crop type had 

a marginally significant effect on aphidophagous abundance, which tended to be higher in 

oilseed rape than in wheat fields (Table 1; grey bars in Fig. 2D). 

Non-aphidophagous syrphids  

There was only a weak effect of SHN type on non-aphidophagous syrphid abundance, 

which tended to be lowest in isolated hedges (Table 1, Fig. 2A). Other factors did not 

affect this functional group in semi-natural habitats (Table 1). 

 Non-aphidophagous abundance was higher in oilseed rape than in wheat fields 

(Table 1; light grey bars in Fig. 2D), and higher during oilseed rape flowering (date 1) than 

during wheat milk-ripening (date 2) when located next to forest edges (interaction: 

adjacent habitat type  date; Table 1). 
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Table 1: General linear mixed models relating aphidophagous, non-aphidophagous syrphid fly and wild bee 

abundance as well as the abundance of Melanostoma scalare to four predictive factors. Table shows results 

for syrphid flies within semi-natural habitats and within crop fields. In semi-natural habitats we tested for (i) 

oilseed rape %, (ii) habitat, (iii) adjacent crop type and (iv) date. In crop fields we tested for (i) oilseed rape 

%, (ii) adjacent habitat type, (iii) crop type and (iv) date. F-values and levels of significance resulting from 

minimum adequate models are given.  

 

  Semi-natural habitat F/p Crop F/p 
SYRPHID ABUNDANCE     

 Aphidophagous rape % 0·0NS adjacent habitat type  8·0** 
  habitat type 6·8** crop type 3·9(*) 

  adjacent crop type 8·3**   
  date 11·4**   

  rape % × adjacent crop type 4·7*   

 Non-aphidophagous habitat type 3·1NS adjacent habitat type 0·4NS 

    crop type 4·4* 

    date 1·0 NS 
    adjacent habitat type × date 4·0* 

***P < 0·001; **P < 0·01; *P < 0·05; (*) P < 0·06 
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Fig. 2 A: Aphidophagous (dark grey bars) and non-aphidophagous (light grey bars) syrphid fly abundance in 

semi-natural habitats (SNH); [forest edges (= Forest), forest-connected hedges (= Conn. hedges), isolated 

hedes (= Isol. hedges)].  Dissimilar capital letters show significant differences. Means and standard errors are 

given.  

 

 

Fig. 2 B: Aphidophagous syrphid fly abundance in semi-natural habitats (SNH) next to (i) oilseed rape fields 

(solid line) and (ii) wheat fields (dashed line) in relation to percentage of oilseed rape in the surrounding 

landscape (1 km radius). Lines show GLM model predictions. 
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Fig. 2 C: Aphidophagous (dark grey bars) and non-aphidophagous (light grey bars) syrphid fly abundance in 

crop fields (Crop: winter wheat and oilseed rape fields) next to semi-natural habitats [forest edges (= Forest), 

forest-connected hedges (= Conn. hedges), isolated hedes (= Isol. hedges)].  Dissimilar capital letters show 

significant differences. Means and standard errors are given.  

 

 

 

Fig. 2 D: Aphidophagous (dark grey bars) and non-aphidophagous (light grey bars) syrphid fly abundance in 

winter wheat and oilseed rape fields. Dissimilar capital letters show significant differences. Means and 

standard errors are given. 
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Discussion 

In this study we examined the effects of three linear semi-natural habitat types (SNH; 

forest edges vs. forest-connected hedgerows vs. isolated hedgerows) and two cropping 

systems (wheat vs. oilseed rape fields = OSR) on two groups of functionally important 

syrphid flies (aphidophagous and non-aphidophagous). Furthermore, we assessed the 

effects of SNH on adjacent crop habitats and vice versa, and the effects of varying 

proportions of mass-flowering OSR at the landscape scale (OSR %).  

 Aphidophagous syrphid abundance was higher in forest-connected hedgerows than 

in forest edges with isolated hedges showing intermediate abundances. This pattern was 

mirrored by the adjacent crop fields where abundances were highest adjacent to forest-

connected hedgerows and lowest adjacent to forest edges. These parallel patterns in crop 

fields and adjacent SNH, suggest local spill-over from SNH towards crop fields, taking 

into account the uniformly lowered abundances in crop fields compared to the abundance 

in SNH. Furthermore, our results show for the first time that local spill-over across crop 

non-crop habitat is modified by the amount of OSR at the landscape scale, with possibly 

strong effects on the success of important ecosystem services such as biological pest 

control and pollination.  

 Abundance of both aphidophagous and non-aphidophagous syrphid flies was higher 

in oilseed rape than in wheat fields, confirming the general idea that functionally important 

insect guilds can profit from mass-flowering crops that provide huge amounts of pollen 

and nectar resources (Jauker et al. 2011). While the role of wild bees and managed 

honeybees for crop pollination is comprehensively documented (Corbet et al. 1991; 

Delaplane & Mayer 2000), recently also syrphid flies have been shown to be potentially 

efficient pollinators of oilseed rape (Jauker & Wolters 2008). Syrphid fly communities 

were dominated by the aphidophagous larval feeding type, a pattern that is typical in 

highly intensified land-use systems (Frank 1999; Sadeghi & Gilbert 2000; Haenke et al. 

2009).  

Aphidophagous syrhid flies 

Aphidophagous syrphid flies were strongly affected by the type of SNH, showing a distinct 

preference for forest-connected hedgerows compared to forest edges.  Hedgerows in the 

agricultural matrix are surrounded by arable fields, while forest edges adjoin arable fields 

at one side only and are often part of a coherent forest patch. Although syrphid flies often 

use forest edges as overwintering habitats (Hondelmann & Poehling 2007), they find their 
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laval prey mainly in arable fields (Meyer et al. 2009). Jauker et al. (2008) showed even 

increasing aphidophagous syrphid fly abundances with increasing distance from SNH. The 

larger open-land area around hedgerows compared to around forest edges provides a larger 

habitat area for larval and adult syrphid fly feeding (aphids in wheat and nectar and pollen 

resources in OSR fields) in the vicinity of hedgerows than of forest edges. In turn, this 

could have increased the attractiveness of hedgerows – compared to forest edges – as 

resting sites or places for alternative food resources.  

 The results of this study clearly show the prominent importance of SNH type for 

generalist aphidophagous syrphid flies, both within the SNH and also in the adjacent crop 

systems. SNH thereby can play an important role in temporarily maintaining functionally 

important aphidophagous syrphid flies within the agricultural matrix, being even more 

relevant than rewarding crop plants such as mass-flowering oilseed rape and winter wheat 

used as resources for adult and larval feeding. Resembling the situation for generalist 

butterflies, aphidophagous syrphid flies seem to similarly benefit from convenient 

microclimate conditions, lowered anthropogenic disturbance and possibly, additional biotic 

resources and shelter from predators, allowing for facilitated access to highly rewarding 

arable fields (OSR and wheat) (Scalercio et al. 2007).  

 This study shows that mass-flowering OSR can have positive effects on the 

abundance of aphidophagous syrphid flies in nearby SNH, with increased abundances in 

SNH next to OSR fields. This finding resembles the situation for bumblebees, which 

exhibit strongly increased visitation rates of flowering wild plants in SNH adjacent to 

mass-flowering field bean fields (Hanley et al. 2011). The most significant new finding of 

the present study is that the landscape-scale amount of mass-flowering crops such as OSR 

apparently modify spill-over processes between non-crop and crop habitats. This landscape 

effect of OSR was found to be independent from the date of sampling (non significant 

three-way interaction: OSR %  SNH type  date of sampling) indicating that varying 

oilseed rape proportions, even after the main flowering period, may still play an important 

role for aphidophagous syrphid flies, possibly due to additional wild flowering plants or 

alterative aphid resources. Hence, aphidophagous syrphid abundances were increased in 

SNH adjacent to OSR fields, but only in landscapes with low proportions of OSR at the 

landscape scale. Contrastingly, this difference between aphidophagous syrphid abundances 

in SNH adjacent to OSR and adjacent to wheat fields declined at high proportions of OSR 

at the landscape scale.   
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 This interesting pattern is obviously a result of differing OSR availabilities at the 

landscape scale, resulting in specific patterns of abundance depending on local crop 

systems. Thus aphidophagous syrphid flies with their excellent flight and vision abilities 

(Lunau & Wacht 1994; Sutherland et al. 2001) can easily detect SNH neighbouring remote 

OSR fields in landscapes with low OSR proportions, leading to a concentration of syrphid 

flies in nearby SNH, whereas in situations with high OSR proportions, only low 

abundances are observable. This finding suggests that at high OSR proportions, local 

abundances in SNH and OSR fields are low due to landscape wide dilution of syrphid flies 

among sweepingly available oilseed rape fields. Landscape-scale effects such as dilution of 

functionally important insect guilds are poorly understood, but should often be responsible 

for negative effects on maintaining important ecosystem services such as pollination and 

biological control in crops used, but also in conservation sites (Tscharntke et al. 2012). 

Holzschuh et al. (2011) showed that increasing amounts of oilseed rape at the landscape 

scale can lead to an increased competition for pollinators between endangered wild-

flowering plants and crops. Such negative effects on wild plant reproduction may also 

occur in the SNH investigated in this study, thereby possibly also affecting higher taxa 

such as overwintering farmland birds and small mammals, which depend on fruit bearing 

shrubs in forest edges and hedgerows (Siriwardena et al. 2008).  

 Contrasting to the situation in SNH, a landscape effect of OSR on local 

aphidophagous syrphid abundances within crop fields was not found. This may indicate 

that crop fields compared to SNH are only temporarily used habitats for adult feeding and 

oviposition, resulting in a high variability and low abundances, thereby explaining only 

marginally increased aphidophagous abundances in OSR compared to wheat fields.   

Non-aphidophagous syrphid flies  

In contrast to the results for aphidophagous syrphid flies, non-aphidophagous larval 

feeding types were affected by SNH type and crop type only in SNH adjacent crops, but 

not in the SNH themselves. They increased in OSR fields with higher abundances next to 

forest edges during the OSR flowering period.   

 Compared to aphidophagous syrphid flies, this minor importance of semi-natural 

habitats is possibly a result of the different reproduction strategy of non-aphidophagous 

syrphid flies. While aphidophagous flies can find suitable aphid species for larval feeding 

in crop fields as well as in hedgerows and forest edges, most of the non-aphidophagous 

syrphid species found in this study belong to the genus Eristalis depending on aquatic 
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habitats (van Veen 2004), which are widely absent in the investigated woody structures. 

However, non-aphidophagous abundances were increased in oilseed rape fields providing 

huge amounts of pollen and nectar resources, thereby indicating large-scale foraging 

behaviour of this highly mobile syrphid fly group. Forest edges positively influenced non-

aphidophagous syrphid abundance in adjacent crop fields during oilseed-rape flowering. 

This temporal pattern appears ambiguous, but may be explained by an increased 

overwintering success of non-aphidophagous syrphid flies in forest edges, compared to 

openland habitats such as hedgerows, whereas later in the year, large-scale migration to 

foraging and ovipositioning sites becomes increasingly important. Thus non-

aphidophagous syrphid flies, although apparently benefiting from mass-flowering crops 

such as oilseed rape, appear to be less adapted to intensively used agricultural landscape 

than the group of generalist aphidophagous syrphid flies.   

Conclusion 

Biodiversity in highly intensified land-use systems is of crucial importance for both 

maintaining important ecosystem services and improving resilience against spatial and 

temporal changes in landscape composition (Bengtsson et al. 2003). We show how linear 

landscape elements such as hedgerows attract beneficial aphidophagous syrphid flies, 

thereby possibly contributing to the augmentation of biological control potential in highly 

intensified land-use systems. Furthermore, our results indicate that aphidophagous syrphid 

fly are influenced by the amount of oilseed rape at the landscape scale, mediating local 

spill-over processes between crop-non-crop habitats (dilution and concentration effects). 

Effective habitat schemes for beneficial arthropods should not only focus on the local 

configuration of crop and non-crop habitat, but also take into account the influence of 

changing amounts of crop type, in particular mass-flowering crops, at the landscape scale. 
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Appendices 

Appendix S 1: Syrphid numbers in semi-natural habitats (forest edges=F; forest-connected hedges=C; 

isolated hedges=I) and in adjacent crop. Means ± standard errors per site and sampling date are given. a 

shows aphidophagous and b non-aphidophagous syrphid species. 

 
 Wheat Oilseed rape 

Syrphid species F C I F C I 

Baccha elongata a (Fabricius, 1775) 0·00 ± 0·00 0·05 ± 0·05 0·00 ± 0·00 0·00 ± 0·00 0·04 ± 0·04 0·04 ± 0·04
Chamaesyrphus lusitanicus a Mik, 1898 0·00 ± 0·00 0·00 ± 0·00 0·00 ± 0·00 0·08 ± 0·08 0·00 ± 0·00 0·00 ± 0·00 
Cheilosia spec. b 0·00 ± 0·00 0·00 ± 0·00 0·04 ± 0·04 0·04 ± 0·04 0·04 ± 0·04 0·00 ± 0·00 
Cheilosia mutabilis b (Fallén, 1817) 0.00 ± 0·00 0·00 ± 0·00 0·00 ± 0·00 0·04 ± 0·04 0·00 ± 0·00 0·00 ± 0·00 
Cheilosia vicina b (Zetterstedt, 1849) 0·00 ± 0·00 0·00 ± 0·00 0·00 ± 0·00 0·04 ± 0·04 0·00 ± 0·00 0·00 ± 0·00 
Chrysogaster virescens b Loew, 1854 0·04 ± 0·04 0·00 ± 0·00 0·00 ± 0·00 0·00 ± 0·00 0·00 ± 0·00 0·00 ± 0·00 
Chrysotoxum bicinctum a (Linnaeus, 1758) 0·04 ± 0·04 0·00 ± 0·00 0·00 ± 0·00 0·00 ± 0·00 0·00 ± 0·00 0·00 ± 0·00 
Chrysotoxum cautum a (Harris, 1776) 0·00 ± 0·00 0·00 ± 0·00 0·00 ± 0·00 0·04 ± 0·04 0·00 ± 0·00 0·00 ± 0·00 
Dasysyrphus hilaris a (Zetterstedt, 1843) 0·00 ± 0·00 0·05 ± 0·05 0·00 ± 0·00 0·00 ± 0·00 0·00 ± 0·00 0·00 ± 0·00 
Dasysyrphus venustus a (Meigen, 1822) 0·00 ± 0·00 0·05 ± 0·05 0·00 ± 0·00 0·00 ± 0·00 0·00 ± 0·00 0·00 ± 0·00 
Epistrophe eligans a (Harris, 1780) 0·00 ± 0·00 0·05 ± 0·05 0·17 ± 0·10 0·00 ± 0·00 0·04 ± 0·04 0·00 ± 0·00 
Epistrophe melanostoma a (Zetterstedt, 1843) 0·00 ± 0·00 0·00 ± 0·00 0·00 ± 0·00 0·00 ± 0·00 0·04 ± 0·04 0·00 ± 0·00 
Epistrophe nitidicollis a (Meigen, 1822) 0·04 ± 0·04 0·05 ± 0·05 0·00 ± 0·00 0·00 ± 0·00 0·00 ± 0·00 0·04 ± 0·04 
Episyrphus balteatus a (De Geer, 1776) 0·17 ± 0·08 0·60 ± 0·21 1·00 ± 0·27 0·04 ± 0·04 0·50 ± 0·22 0·50 ± 0·20 
Eristalis spec. b 0·00 ± 0·00 0·00 ± 0·00 0·00 ± 0·00 0·00 ± 0·00 0·21 ± 0·13 0·00 ± 0·00 
Eristalis interrupta b (Poda, 1761) 0·00 ± 0·00 0·00 ± 0·00 0·00 ± 0·00 0·00 ± 0·00 0·04 ± 0·04 0·00 ± 0·00 
Eristalis jugorum b Egger, 1858 0·04 ± 0·04 0·00 ± 0·00 0·00 ± 0·00 0·00 ± 0·00 0·00 ± 0·00 0·00 ± 0·00 
Eristalis pertinax b (Scopoli, 1763) 0·00 ± 0·00 0·00 ± 0·00 0·00 ± 0·00 0·04 ± 0·04 0·00 ± 0·00 0·13 ± 0·09 
Eristalis tenax b (Linnaeus, 1758) 0·00 ± 0·00 0·00 ± 0·00 0·00 ± 0·00 0·00 ± 0·00 0·08 ± 0·08 0·00 ± 0·00 
Eumerus ornatus b Meigen, 1822 0·00 ± 0·00 0·00 ± 0·00 0·00 ± 0·00 0·08 ± 0·08 0·00 ± 0·00 0·00 ± 0·00 
Eupeodes corollae a (Fabricius, 1794) 0·08 ± 0·06 0·10 ± 0·07 0·13 ± 0·07 0·08 ± 0·08 0·46 ± 0·26 0·04 ± 0·04 
Eupeodes latifasciatus a (Macquart, 1829) 0·00 ± 0·00 0·05 ± 0·05 0·00 ± 0·00 0·00 ± 0·00 0·00 ± 0·00 0·00 ± 0·00 
Heringia heringi a (Zetterstedt, 1843) 0·00 ± 0·00 0·05 ± 0·05 0·00 ± 0·00 0·00 ± 0·00 0·00 ± 0·00 0·00 ± 0·00 
Melanostoma spec. a 0·00 ± 0·00 0·10 ± 0·10 0·00 ± 0·00 0·04 ± 0·04 0·00 ± 0·00 0·00 ± 0·00 
Melanostoma mellinum a (Linnaeus, 1758) 0·08 ± 0·06 0·35 ± 0·15 0·13 ± 0·07 0·00 ± 0·00 1·13 ± 0·61 1·25 ± 0·63 
Melanostoma scalare a (Fabricius, 1794) 0·33 ± 0·13 1·30 ± 0·89 0·46 ± 0·15 1·42 ± 0·40 2·92 ± 0·67 1·54 ± 0·42 
Melangyla triangulifera a (Zetterstedt, 1843) 0·00 ± 0·00 0·00 ± 0·00 0·00 ± 0·00 0·00 ± 0·00 0·04 ± 0·04 0·04 ± 0·04 
Microdon mutabilis / myrmicae b 0·04 ± 0·04 0·00 ± 0·00 0·00 ± 0·00 0·00 ± 0·00 0·00 ± 0·00 0·00 ± 0·00 
Neoascia podagrica b (Fabricius, 1775) 0·00 ± 0·00 0·00 ± 0·00 0·00 ± 0·00 0·00 ± 0·00 0·04 ± 0·04 0·00 ± 0·00 
Paragus haemorrhous b Meigen, 1822 0·08 ± 0·06 0·00 ± 0·00 0·04 ± 0·04 0·00 ± 0·00 0·00 ± 0·00 0·04 ± 0·04 
Parasyrphus spec. a 0·00 ± 0·00 0·05 ± 0·05 0·00 ± 0·00 0·04 ± 0·04 0·04 ± 0·04 0·00 ± 0·00 
Pipiza fenestrata Meigen, 1822 0·00 ± 0·00 0·00 ± 0·00 0·00 ± 0·00 0·00 ± 0·00 0·00 ± 0·00 0·00 ± 0·00 
Platycheirus albimanus a (Fabricius, 1781) 0·00 ± 0·00 0·20 ± 0·20 0·04 ± 0·04 0·13 ± 0·07 0·13 ± 0·09 0·04 ± 0·04 
Platycheirus spec. a 0·00 ± 0·00 0·10 ± 0·07 0·00 ± 0·00 0·08 ± 0·06 0·13 ± 0·07 0·38 ± 0·18 
Platycheirus ambiguus a (Fallén, 1817) 0·00 ± 0·00 0·00 ± 0·00 0·00 ± 0·00 0·00 ± 0·00 0·00 ± 0·00 0·04 ± 0·04 
Platycheirus clypeatus a (Meigen, 1822) 0·00 ± 0·00 0·30 ± 0·18 0·00 ± 0·00 0·00 ± 0·00 0·00 ± 0·00 0·04 ± 0·04 
Platycheirus europaeus a (Maibach & Speight, 1990) 0·00 ± 0·00 0·20 ± 0·16 0·08 ± 0·06 0·00 ± 0·00 0·04 ± 0·04 0·00 ± 0·00 
Platycheirus immaculatus a Ohara, 1980 0·00 ± 0·00 0·05 ± 0·05 0·00 ± 0·00 0·00 ± 0·00 0·04 ± 0·04 0·00 ± 0·00 
Platycheirus parmatus a Rondani, 1857 0·00 ± 0·00 0·00 ± 0·00 0·00 ± 0·00 0·00 ± 0·00 0·04 ± 0·04 0·04 ± 0·04 
Platycheirus peltatus a (Meigen, 1822) 0·00 ± 0·00 0·05 ± 0·05 0·00 ± 0·00 0·00 ± 0·00 0·00 ± 0·00 0·08 ± 0·08 
Platycheirus podagratus a (Zetterstedt, 1836) 0·00 ± 0·00 0·05 ± 0·05 0·00 ± 0·00 0·00 ± 0·00 0·00 ± 0·00 0·00 ± 0·00 
Platycheirus scutatus a (Meigen, 1822) 0·00 ± 0·00 0·05 ± 0·05 0·00 ± 0·00 0·00 ± 0·00 0·00 ± 0·00 0·04 ± 0·04 
Rhingia campestris Meigen, 1822 0·00 ± 0·00 0·00 ± 0·00 0·00 ± 0·00 0·25 ± 0·11 0·04 ± 0·04 0·04 ± 0·04 
Sphaerophoria scripta a (Linnaeus, 1758) 0·04 ± 0·04 0·00 ± 0·00 0·00 ± 0·00 0·04 ± 0·04 0·50 ± 0·22 0·21 ± 0·08 
Sphaerophoria taeniata a (Meigen, 1822) 0·00 ± 0·00 0·00 ± 0·00 0·00 ± 0·00 0·00 ± 0·00 0·04 ± 0·04 0·04 ± 0·04 
Sphegina clavata b (Scopoli, 1763) 0·00 ± 0·00 0·00 ± 0·00 0·00 ± 0·00 0·04 ± 0·04 0·00 ± 0·00 0·00 ± 0·00 
Syritta pipiens b (Linnaeus, 1758) 0·25 ± 0·11 0·05 ± 0·05 0·13 ± 0·13 0·21 ± 0·10 0·71 ± 0·29 0·00 ± 0·00 
Volucella bombylans b (Linnaeus, 1758) 0·00 ± 0·00 0·00 ± 0·00 0·00 ± 0·00 0·00 ± 0·00 0·04 ± 0·04 0·00 ± 0·00 
Xanthogramma laetum a (Fabricius, 1794) 0·04 ± 0·04 0·00 ± 0·00 0·00 ± 0·00 0·00 ± 0·00 0·00 ± 0·00 0·00 ± 0·00 
Xanthogramma pedissequum a (Harris, 1776) 0·00 ± 0·00 0·05 ± 0·05 0·00 ± 0·00 0·04 ± 0·04 0·00 ± 0·00 0·00 ± 0·00 
Xylota abiens b Meigen, 1822 0·00 ± 0·00 0·00 ± 0·00 0·00 ± 0·00 0·04 ± 0·04 0·00 ± 0·00 0·00 ± 0·00 
Xylota segnis b (Linnaeus, 1758) 0·00 ± 0·00 0·00 ± 0·00 0·00 ± 0·00 0·04 ± 0·04 0·04 ± 0·04 0·00 ± 0·00 
Syrphinae unidentified 0·04 ± 0·04 0·10 ± 0·07 0·08 ± 0·06 0·04 ± 0·04 0·08 ± 0·06 0·04 ± 0·04 

      a aphidophagous; b non-aphidophagous 
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Appendix S 2: Location of the study sites around the city Göttingen, using ESRI World Imigary. Each dot 

represents a study site (green: forest edge, blue: connected hedge, red: isolated hedge). 
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SUMMARY 

Summary 

During the last decades, agriculture has transformed into highly effective and economically 

optimized production systems with extended cultivation areas and increased usage of 

fertilizers and pesticides. This development is accompanied by the loss and fragmentation 

of remaining semi-natural habitats, thereby negatively affecting farmland biodiversity, 

resulting in species loss and declining ecosystem services such as biological pest control, 

and pollination. Agri-environmental schemes such as organic farming practices and habitat 

management can help to mitigate these negative effects, while it is increasingly recognised 

that attention should be paid to both local and landscape scales. Improving habitat diversity 

on the landscape scale can enhance biodiversity at the local scale, compensating for 

intensified local land use. 

In this thesis, we analysed the effects of local habitat management (sown flower 

strips, forest edges and hedges) and farming practices (extensive vs. intensive 

management) on syrphid fly guilds. In addition, we focused on the influence of landscape 

scale parameters such as the proportion of arable land as well as the proportion of mass-

flowering oilseed rape in the surrounding of study sites.  

Syrphid flies represent one of the biggest groups of the order Diptera and occur in a 

wide range of habitats in agricultural landscapes. While adult syrphids flies are pollen and 

nectar feeders, their larvae show different feeding strategies ranging from predators of 

aphids, bacteria feeders and phytophagous to fungivorous species. Aphidophagous species 

such as Episyrphus balteatus or Sphaerophoria scripta represent the most frequently 

occurring syrphid fly species in agricultural landscapes, preying on a wide range of aphids 

species (e.g. Sitobion avenae, Rhopalosiphum padi, Metopolophium dirhodum), and can 

play an important role in the suppression of cereal aphid outbreaks. 

Here, we studied the effect of naturally occurring grassy strips and sown flower 

strips on syrphid flies in winter wheat fields, which were located along a gradient of 

landscape complexity (ranging from 30 to 100 % arable land and at multiple spatial scales 

ranging from 0.5 to 4 km radii). Analyses on the impact of extensive vs. intensive farming 

practices on syrphid flies were carried out in two European countries (South-Sweden and 

North-Germany), in each region by comparing four fields at low and four fields at high 

levels of agricultural intensification. In addition, syrphid flies were analysed by comparing 

forest edges, forest-connected hedges and isolated hedges adjacent to crop fields (winter 
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wheat and oilseed rape) with respect to the influence of varying proportions of oilseed rape 

at the landscape scale. 

The results showed that sown flower strips increased syrphid fly abundance. 

Syrphid species richness was increased in wheat fields adjacent to sown flower strips. 

Furthermore, species richness and abundance of syrphid flies in sown flower strips 

increased as the proportion of arable land in the surrounding landscape increased, 

indicating a local concentration effect to highly rewarding pollen and nectar resources. 

Total and aphidophagous syrphid abundances were generally higher in the German 

than the Swedish study region. Aphidophagous syrphid abundance was higher in high 

intensity managed fields being located in landscapes with high proportions of arable land, 

while non-aphidophagous syrphid flies showed higher abundances in low intensity 

managed fields being located in landscapes with low proportions of arable land. 

Furthermore, syrphids in the German region appeared earlier in the season, therewith 

possibly allowing for a better predator-prey synchronization. 

Syrphid flies appeared to profit from high amounts of pollen and nectar resources in 

oilseed rape fields. Aphidophagous syrphid abundance in hedges and forest edges showed 

contrasting responses to the neighbouring crop, with low abundance when neighboured by 

oilseed rape fields (dilution) and higher abundance when neighboured by winter wheat 

fields (concentration) at high proportions of oilseed rape fields at the landscape scale. 

Aphidophagous syrphid fly abundance was increased in forest-connected hedges as well as 

in crop fields which lay adjacent to forest-connected hedges, indicating noncrop-crop 

spillover with potentially positive effects on local bicontrol potential.  

 In conclusion, results showed that local habitat management can enhance diversity 

and abundance of syrphid flies, thereby potentially improving local biological control of 

cereal aphids. On the landscape scale, results support the idea that environmental schemes 

are more effective in structurally simple compared to complex landscapes owing to the 

concentration of highly dispersive organisms such as syrphid flies in resource-rich habitats. 

The relative abundance of aphidophagous syrphids varied largely between German and 

Swedish study regions indicating a changing role of species identity along latitudes. 

Syrphid fly guilds (aphidophagous vs. non-aphidophagous) were contrastingly affected by 

management type (extensive vs. intensive farming). Aphidophagous syrphid fly abundance 

in semi-natural habitats is mediated by the percentage of oilseed rape at the landscape 

scale, depending on local crop identity. The positive influence of forest-connected hedges 

on syrphids calls for group-specific habitat management practices in order to enhance 
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biodiversity and related important ecosystem services such as biological pest control and 

pollination in the agricultural landscape. 



ZUSAMMENFASSUNG 

Zusammenfassung 

Während der letzten Jahrzehnte hat sich die Landwirtschaft grundlegend verändert und 

wird heute zunehmend von hocheffektiven, wirtschaftlich optimierten 

Produktionssystemen mit ausgedehnten Anbauflächen und dem damit verbundenen 

gesteigertem Einsatz von Kunstdüngern und Pestiziden geprägt. Diese Entwicklung 

bedingt jedoch auch den Verlust und die Fragmentierung von naturnahen Habitaten mit 

negativen Auswirkungen auf die Artenvielfalt in intensiv genutzten landwirtschaftlichen 

Gebieten. Der Rückgang der Artenvielfalt führt zur Schwächung von 

Ökosystemfunktionen wie der biologischen Schädlingskontrolle oder der Bestäubung von 

Ackerkulturen. Agrarumweltprogramme, ökologische Anbaumethoden und 

Habitatmanagement können helfen, diese negativen Auswirkungen abzumildern. Hierbei 

wird zunehmend deutlich, dass neben der lokalen Ebene auch der Einfluß der strukturellen 

Diversität auf der Landschaftsebene berücksichtigt werden muß: Eine Steigerung der 

Habitatdiversität auf der Landschaftsebene kann die Biodiversität auf der lokalen Ebene 

erhöhen, und so die negativen Folgen einer intensivierten Landnutzung kompensieren. 

In dieser Arbeit wurden die Effekte von lokalem Habitatmanagement (künstlich 

angelegte Blühstreifen, Waldränder und Hecken) und die Effekte verschiedener 

Anbaumethoden (extensive im Gegensatz zu intensiver Nutzung) auf Schwebfliegen-

Gilden untersucht. Des Weiteren wurde der Einfluß bestimmter Landschaftsparameter, wie 

das Verhältnis von landwirtschaftlich genutzter Fläche zu naturnahem Habitat (als Maß der 

strukturellen Komplexität der Landschaften), oder der prozentuale Anteil von Rapskulturen 

im Umfeld der Versuchsflächen untersucht. Schwebfliegen stellen eine der größten 

Gruppen der Insektenordnung Diptera dar und kommen in vielen verschiedenen Habitaten 

in landwirtschaftlich genutzten Gebieten vor. Während adulte Schwebfliegen 

hauptsächlich Pollen- und Nektarkonsumenten sind, zeigen ihre Larven eine große Vielfalt 

von Ernährungsstrategien, die von zoophagen über bakteriophage und phytophage bis hin 

zu fungivoren Spezies reichen. Aphidophage Spezies wie Episyrphus balteatus oder 

Sphaerophoria scripta stellen die im Untersuchungsgebiet die am häufigsten vertretenen 

Schwebfliegenarten dar und können eine wichtige Rolle bei der biologischen 

Schädlingskontrolle verschiedener Blattlausarten einnehmen (z.B. Sitobion avenae, 

Rhopalosiphum padi, Metopolophium dirhodum).  

In dieser Arbeit haben wir den Einfluß künstlich angelegter Blühstreifen und 

natürlich entwickelter Grasstreifen auf Schwebfliegenpopulationen in Winterweizenfeldern 
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untersucht, die entlang eines Gradienten der Landschaftskomplexität (zwischen 30% und 

100% Ackerland auf mutiplen räumlichen Skalen von 0.5 bis 4 km Radien der 

Landschaftssektoren) lagen. Die Analyse des Einflusses extensiver im Vergleich zu 

intensiver Landwirtschaft wurde in zwei europäischen Ländern durchgeführt 

(Südschweden und Norddeutschland), indem jeweils vier Felder mit hoher 

landwirtschaftlicher Intensivierung (lokalisiert in strukturarmen Landschaften) mit vier 

Feldern mit niedriger landwirtschaftlicher Intensivierung (lokalisiert in strukturreichen 

Landschaften) verglichen wurden. Weiterhin wurde der Einfluß von Waldrändern, mit 

Waldrädern verbundenen Hecken und isolierten Hecken, die an landwirtschaftliche 

Flächen (Winterweizen- und Rapsfelder) angrenzten, im Zusammenhang mit 

veränderlichen Anteilen von Rapsfeldern in der umliegenden Landschaft im Hinblick auf 

die Häufigkeit von Schwebfliegen untersucht. 

Die Ergebnisse haben gezeigt, dass Blühstreifen die Häufigkeit von Schwebfliegen 

steigern können: Die Schwebfliegen-Artenvielfalt in Weizenfeldern, die sich in der Nähe 

von Blühstreifen befanden, war ebenfalls erhöht. Weiterhin nahmen der Artenreichtum und 

die Häufigkeit von Schwebfliegen in den Blühstreifen zu, wenn der Anteil von Ackerland 

im umgebenden Landschaftsausschnitt anstieg, was zu einer Konzentration von 

Schwebfliegengemeinschaften auf den vereinzelten, aber als Nahrungsressource 

lohnenden, Blühstreifen führte.  

Die Gesamthäufigkeit von Schwebfliegen, ebenso wie die Häufigkeit von 

aphidophagen Schwebfliegen, war auf den deutschen Versuchsflächen höher als auf den 

schwedischen Versuchsflächen. Die Häufigkeit von aphidophagen Schwebfliegen war in 

Feldern mit hoher Intensivierung erhöht, während nicht-aphidophage Schwebfliegen in 

Feldern mit niedriger Intensivierung häufiger waren. Außerdem tauchten Schwebfliegen in 

der deutschen Versuchsregion früher in der Saison auf, was möglicherweise eine engere 

Räuber-Beute-Synchronisation ermöglicht. 

Die Abundanz der Schwebfliegen war in Rapsfeldern im Vergleich zu 

Weizenfeldern erhöht. Die Häufigkeit von aphidophagen Schwebfliegen in Hecken und 

Waldrändern unterschied sich entsprechend benachbarter Feldfrüchte (Weizen und Raps) 

und dem Anteil von Rapsfeldern in der umgebenden Landschaft. Hierbei zeigte sich eine 

verringerte Abundanz aphidophager Schwebfliegen in der Nachbarschaft von Rapsfeldern 

(Verdünnungseffekt) und eine erhöhte Abundanz in der Nachbarschaft von 

Winterweizenfeldern (Konzentrationseffekt) bei gleichzeitig hohen Anteilen von 

Rapsfeldern in der umgebenden Landschaft. Die Abundanz von aphidophagen 
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Schwebfliegen war am höchsten in Hecken, welche mit einem Waldrand verbunden waren. 

Gleichzeitig zeigte sich auch eine erhöhte Abundanz in den an solche Standorte 

angrenzenden Agrarflächen, was auf ein gesteigertes Übertreten (spillover) zwischen den 

Hecken-Habitaten und den angrenzenden landwirtschaftlichen Flächen hindeutet, und auf 

diesem Wege möglicherweise auch die biologische Schädlingskontrolle und die 

Bestäuberleistung verbessern kann. 

Im Allgemeinen haben die Resultate gezeigt, dass lokales Habitatmanagement die 

Diversität und die Häufigkeit von Schwebfliegen erhöhen kann und dabei möglicherweise 

auch die biologische Kontrolle von Getreideblattläusen gesteigert werden kann. Auf der 

Landschaftsebene unterstreichen die Resultate die Annahme, dass Umweltmanagement in 

strukturarmen Landschaften aufgrund der Konzentration hochmobiler Schwebfliegen in 

ressourcenreichen Habitaten effektiver ist als in Landschaften mit generell erhöhter 

Habitattypendiversität. Die relative Häufigkeit von aphidophagen Schwebfliegen variierte 

stark zwischen der deutschen und der schwedischen Versuchsregion, was auf eine 

veränderliche Rolle bestimmter Arten in unterschiedlichen Breiten hinweist. 

Schwebfliegen-Gilden (aphidophage im Gegensatz zu nicht-aphidophagen) wurden 

unterschiedlich von der landwirtschaftlichen Intensivierung beeinflußt. Die Häufigkeit von 

aphidophagen Schwebfliegen in naturnahen Hecken wird durch den Prozentsatz der 

Rapsfelder in der umgebenden Landschaft sowie die Art der benachbarten Feldfrüchte 

beeinflußt. Die positive Wirkung seminatürlicher Habitate wie künstlicher Blühstreifen 

und Hecken auf angrenzende Anbauflächen (mit veränderlicher Stärke entsprechend 

verschiedener Landschaftsparameter wie Ackeranteil und Rapsanteil) zeigt den dringenden 

Bedarf an gruppenspezifischen Habitatmanagementmethoden, um die Biodiversität und 

damit verbundene Ökosystemleistungen wie die biologische Schädlingskontrolle und 

Bestäubung in Agrarlandschaften zu verbessern. 
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