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Summary 

 

Mastitis is a major disease affecting dairy cattle worldwide. Especially the 

subclinical form of the disease causes high economic losses. The evaluation of 

udder health is based on somatic cell count (SCC) and bacteriological 

examinations. A SCC threshold of 100,000 cells/mL in quarter foremilk samples 

is used to differentiate between healthy and diseased mammary glands. 

However, the overall goal of this thesis was the analysis of the immunological 

status of clinically healthy and subclinically infected bovine mammary glands to 

contribute to a more detailed understanding of subclinical mastitis. 

Initially, the results of 615,187 quarter foremilk samples taken between 

2000 and 2008 in Hesse, Germany, were analyzed. The data indicated SCC 

>100,000 cells/mL in 38% and ≤100,000 cells/mL in 62% of all samples; 31% 

revealed SCC ≤25,000 cells/mL. Mastitis pathogens were detected in 83% of 

samples with SCC >100,000 cells/mL and in 8.5% of samples in the SCC range 

from 1,000 to 100,000 cells/mL. Based on these results, inflammatory 

processes were already suspected in udder quarters with SCC 

≤100,000 cells/mL. We argued that such inflammation can be detected by 

examination of the relationship of immune cells in milk. Hence, in a second and 

a third study 20 cows, respectively, were selected and differential cell count 

(DCC) patterns of apparently healthy (SCC ≤100,000 cells/mL) and diseased 

quarters (>100,000 cells/mL) were compared. While in the second study 

100 milk cells of each quarter were differentiated into lymphocytes, 

macrophages and polymorphonuclear neutrophilic leukocytes (PMNL) using 

light microscopy, a flow cytometric method was applied for differentiation of 

5,000 cells in the third study. In both studies almost all DCC patterns of quarter 

foremilk samples taken from apparently healthy mammary glands were 

dominated by lymphocytes. Interestingly, microscopic DCC patterns of three 

milk samples with 43,000 to 45,000 cells/mL and flow cytometric DCC patterns 

of six samples with SCC values from 9,000 to 46,000 cells/mL indicated already 

inflammatory reactions based on the predominance of PMNL. Both studies 

revealed PMNL as dominant cell population with proportions of ≥49% in milk 

samples drawn from diseased quarters. In both studies, almost all samples 

tested revealed macrophages as second predominant cell population in 
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relationship to lymphocytes and PMNL. Further analysis of the flow cytometric 

data demonstrated significant differences of the cellular components between 

quarters infected by major or minor pathogens and culture-negative quarters. In 

the second and third study, inflammatory reactions in milk of udder quarters 

classified as healthy according to SCC ≤100,000 cells/mL were detected based 

on DCC. 

The aim of a fourth study was to identify cytological parameters for 

differentiation between healthy and diseased udder quarters. Quarter foremilk 

samples were collected from 48 cows and bacteriological status, SCC, and 

microscopic DCC were determined. Mean lymphocyte percentage was 

significantly higher in group N (normal secretion, n = 96 samples) than in the 

three groups of diseased quarters (LM, latent mastitis, n = 15 samples; UM, 

unspecific mastitis, n = 47 samples; M, mastitis, n = 30 samples). Mean PMNL 

percentage was significantly lower in group N than in groups UM and M, but not 

LM. Macrophages did not vary significantly between by the four groups. The 

mean value of phagocytes (macrophages and PMNL) was significantly lower in 

group N than in the other groups. Both logarithmic (log) PMNL:Lym and log 

phagocyte:lymphocyte ratios were significantly lower in group N than in groups 

LM, UM, and M. However, calculating Fisher values for all variables, the log 

PMNL:lymphocyte ratio revealed the highest value. A subsequent study 

concentrated on establishment and verification of cutoff values differentiating 

between healthy and diseased quarters applying the log PMNL:lymphocyte 

ratio. Initially, quarter milk and blood samples were taken from eight cows for 

five consecutive days to investigate short-term repeatability of DCC in milk of 

healthy mammary glands. While SCC and bacteriological status were 

determined only for milk samples, DCC was analyzed in all blood and milk 

samples using flow cytometry. Neither milk nor blood DCC patterns were 

significantly influenced by sampling day, parity, lactation stage, or quarter 

position suggesting that DCC can be reliably applied to evaluate udder health. 

A cutoff value of 0.495 for log PMNL:lymphocyte was established. For the 

second part of the study 16 animals were randomly selected in a different herd 

and quarter milk samples were taken on three consecutive days. When the 

cutoff value was applied to the data along with SCC, high sensitivity and good 

specificity of 97.3% and 92.3%, respectively, were found under field conditions. 
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Since all DCC studies revealed lymphocytes as predominant cell 

population in milk of healthy udder quarters, in a sixth study quantitative 

relationships of CD2+ T and CD21+ B lymphocytes were investigated using flow 

cytometry. Percentages of CD2+ T cells were significantly higher in apparently 

healthy quarters (SCC ≤100,000 cells/mL, n = 65) than in diseased quarters 

(n = 15), whereas the behaviour of CD21+ B cells was the contrary. As a result 

of this antidromic effect, a new variable – the CD2/CD21 index – was defined. 

While diseased quarters indicated values <10, the CD2/CD21 index was >10 in 

apparently healthy quarters. To test whether CD2/CD21 indices <10 are 

primarily related to major pathogens, in a second part of this study quarters with 

SCC ≤100,000 cells/mL (n = 31) and >100,000 cells/mL (n = 32) – either 

culture-negative or containing minor or major pathogens – were selectively 

examined. Interestingly, CD2/CD21 indices <10 were found in quarters showing 

SCC ≤100,000 cells/mL and minor or major pathogens at the time of the current 

or previous sampling. The results of our examinations indicated a clear 

connection between the CD2/CD21 index and the bacteriological status. A 

CD2/CD21 index of 10 may be suitable to aid differentiation between 

unsuspicious and suspicious or diseased udder quarters. 

The aim of a seventh study was to explore DCC patterns of host-

microbial interactions for improvement of disease diagnosis. Data collected 

from six bovine, two human, and one avian study with viral, parasite, or 

bacterial agents were analyzed. In all studies, no classic data structure (e.g., 

percentage of an individual cell population) discriminated disease-positive (D+) 

from disease-negative (D–) samples without overlapping. In contrast, advanced 

data analysis, like the 3D approach, distinguished three (steady, positive, and 

negative) feedback phases, in which D– data characterized the steady phase, 

and D+ data were found in the positive and negative phases. Due to the 

advanced data analysis methods, in the seventh study host-microbial 

interactions could be assessed, which might be helpful for earlier diagnosis, 

differentiation of D+ classes, and lower rates of false-negatives. 

In conclusion, this thesis indicated immunological processes and inflam-

matory reactions appearing already in the SCC range of apparently healthy 

mammary glands. In addition, new concepts for data analysis and potential new 

tools for the diagnosis of subclinical mastitis were described. 
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Definition of mastitis 

 
Mastitis is an inflammation of the bovine mammary gland, resulting from 

injury or more commonly from bacterial infection. The term mastitis is from the 

Greek word ‘mastos’, for breast, and ‘itis’, from inflammation. Mastitis is a 

multifactorial disease with subclinical or clinical manifestations. Subclinical 

mastitis is characterized by decreased milk production, altered composition of 

the secretion, and presence of bacteria, but, in contrast to clinical mastitis 

without any visible changes (e.g., flecks or swelling) in milk and udder (Harmon, 

1994). 

Costs of mastitis 

 

Mastitis is the most costly disease in milk production worldwide, and 

approximately 70 to 80% of the financial losses are caused by subclinical 

mastitis (Reneau and Packard, 1991; Seegers et al., 2003). Financial losses 

are due to milk production losses, drugs, discarded milk, veterinarian services, 

labor, milk quality, culling, and occurrence of other diseases. Considering all 

these financial penalties, average total economic losses for one clinical mastitis 

case of €210 (Huijps et al., 2008) and €623 (Heikkilä et al., 2012) were 

calculated. Depending on the month of lactation, the costs can vary between 

€112 and €946 (Huijps et al., 2008; Heikkilä et al., 2012). The economic losses 

caused by subclinical mastitis per cow ranged between €53 and €120 

depending on the bulk tank somatic cell count (SCC) (Huijps et al., 2008). The 

total production loss per cow due to subclinical mastitis was amounted to $110 

and $295 in herds with bulk tank SCC of ≥200,000 to <400,000 cells/mL and 

≥400,000 cells/mL, respectively (Ott, 1999). Moreover, mastitis is one of the 

major problems that adversely affect dairy cow welfare (Menzies et al., 1995). 

Causes of mastitis 

 

Mastitis is considered to be a multifactorial disease, closely related to the 

production system and environment that the cows are kept in. Almost always, 

mastitis is caused by pathogenic microorganisms. While predominantly bacteria 
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induce mastitis, yeasts and fungi, mycobacteria, as well as mycoplasmas can 

also be infectious agents (Watts, 1988). Bacteria can be categorized into two 

groups: contagious and environmental. Contagious bacteria live and multiply on 

and in the infected mammary gland of a cow and are spread from animal to 

animal as well as from quarter to quarter mainly during unhygienic milking 

procedures (Dego et al., 2002). The most important contagious agents are 

Staphylococcus aureus and Streptococcus agalactiae. Environmental agents 

exist in the environment of the cows and their transmission to the udder occurs 

through contamination of the teat end. Escherichia coli and Streptococcus 

uberis are the most common environmental pathogens. 

Diagnosis of mastitis 

 
Traditional and well-established methods of mastitis diagnosis include 

estimation of SCC and identification of the causative microorganisms, which 

involves culturing on agar plates (Viguier et al., 2009). Several SCC cutoffs 

distinguishing between healthy and diseased mammary glands have been 

evaluated and discussed in the literature (Schepers et al., 1997; Schukken et 

al., 2003). In Germany, udder quarters with SCC ≤100,000 cells/mL in foremilk 

samples are considered to be in the physiological range (DVG, 2002). However, 

SCC vary with status of lactation, age, stress of the animals, time and 

frequency of milking, and season, but primarily in response to udder infection 

(Dohoo and Meek, 1982, Harmon, 1994). Culturing of mastitis pathogens needs 

a long incubation time of 48 h and requires experienced personnel. In addition, 

despite bacteria reside in the mammary gland culturing could give false 

negative results. Negative bacteriological results could depend on intermittent 

pathogen shedding (Sears et al., 1990), presence of antimicrobials, or other 

inhibitors in milk (Reiter, 1978). At the time of examination pathogens could also 

be ingested by phagocytes or survive intracellularly in the host (Newbould and 

Neave, 1965; Hill et al., 1978). Shedding of too low amounts of pathogens or 

ceased growth may be further reasons for negative bacteriological results 

(Sears et al., 1990). Recently, polymerase chain reaction has been proposed as 

an alternative to bacteriology as a rapid test (Koskinen et al., 2009) but it is 

expensive and sensitivity was found to be lower than at standard bacterial 
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culture (Paradis et al., 2012). Hence, there is a major need for new biomarkers 

that are specific for mastitis and easy to detect at an early stage of the disease 

(Viguier et al., 2009). 

Differential cell counts 

 

Somatic cell count is a robust quantitative measurement, but does not 

divide the cells present in milk into different cell types (Kehrli and Shuster, 

1994; Rivas et al., 2001). The SCC measures all types of cells in milk, including 

epithelial cells, lymphocytes, macrophages, and polymorphonuclear neutrophilic 

leukocytes (PMNL) (Kehrli and Shuster, 1994). 

In the mammary gland, number and distribution of leukocytes are 

important for the success of udder defenses against invading pathogens 

(Leitner et al., 2003). Lymphocytes, macrophages, and PMNL play an important 

role in inflammatory responses within the mammary gland (Paape et al., 1979; 

Sordillo and Nickerson, 1988). Lymphocytes are able to recognize antigens 

through membrane receptors that are specific for invading pathogens (Sordillo 

et al., 1997). They regulate the induction and suppression of immune responses 

(Nickerson, 1989). T and B lymphocytes are the two distinct subsets of 

lymphocytes, which differ in function. T lymphocytes can be further subdivided 

into  T lymphocytes including CD4+ (T-helper) and CD8+ (T-cytotoxic or T-

suppressor) lymphocytes, and  T cells (Sordillo and Streicher, 2002). T-helper 

cells produce cytokines in response to recognition of antigen-major 

histocompatibility complex (MHC) class II complexes on antigen-presenting 

cells, such as B lymphocytes or macrophages. Since they have the ability to 

secrete certain cytokines, they play an important role in the activation of B 

lymphocytes, T lymphocytes, and macrophages (Sordillo et al., 1997; Sordillo 

and Streicher, 2002). Cytotoxic T lymphocytes recognize and eliminate host 

cells expressing foreign antigens in association with MHC class I molecules. 

Suppressor T lymphocytes control or modulate the immune response during 

bacterial infection. Activated during bacterial infections they can suppress 

important host immune responses (Sordillo et al., 1997; Oviedo-Boyso et al., 

2007).  T cells can be cytotoxic and may provide a unique line of defense 

against bacterial infections (Sordillo and Streicher, 2002). Further, this 
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lymphocyte subpopulation is tightly associated with the epithelial surface and 

destroys damaged epithelial cells (Oviedo-Boyso et al., 2007). B lymphocytes 

can serve as antigen-presenting cells, secrete cytokines, and differentiate into 

plasma cells (Sordillo and Streicher, 2002). Their main function is to produce 

antibodies against invading pathogens (Oviedo-Boyso et al., 2007). 

Macrophages are active phagocytic cells in the mammary gland and capable of 

ingesting bacteria, cellular debris, and accumulated milk components (Sordillo 

and Nickerson, 1988). Milk or tissue macrophages recognize invading 

pathogens and initiate an immune response by the release of chemoattractants, 

inducing the rapid recruitment of PMNL into the mammary gland (Paape et al., 

2002; Oviedo-Boyso et al., 2007). The main task of PMNL is to defend against 

invading bacteria at the beginning of an acute inflammatory process (Paape et 

al., 1979; Oviedo-Boyso et al., 2007). Not only does the number of PMNL 

increase enormously but their defensive responses (e.g., phagocytic activity) 

also increase (Targowski, 1983; Paape et al., 2003).  

Due to the specific functions of the individual cell populations, the 

distribution of leukocytes differs between normal milk without any symptoms of 

mastitis and mastitis milk. Specifically, in normal milk lymphocyte proportions 

between 14 and 80%, macrophage proportions between 12 and 46%, and 

those of PMNL between 6 and 50% were described recently (Rivas et al., 2001; 

Merle et al., 2007; Koess and Hamann, 2008). In milk from cows with mastitis, 

the proportions of PMNL can reach 95% (Paape et al., 1979; Kehrli and 

Shuster, 1994). During various phases of inflammation SCC differs in total 

numbers, whereas differential cell count (DCC) varies in composition of the cell 

populations involved (Nickerson, 1989). Hence, in addition to SCC, 

determination of immune cells in milk is beneficial for describing the udder 

health status (Pillai et al., 2001; Rivas et al., 2001). So far, however, little 

knowledge exists on DCC and the qualitative role of milk leukocytes in udder 

quarters classified as healthy because DCC in low-SCC milk are difficult to 

perform (Dosogne et al., 2003). 

 

 

 



General Introduction 

 

 9 

Scope of this thesis 

 

The major scope of this thesis was to investigate the immunological 

status of clinically healthy and subclinically infected bovine mammary glands by 

cell differentiation methods. Initially, the udder health situation in a 

representative part of the dairy cow population in Hesse, Germany, was 

evaluated in chapter 2, analyzing the distribution of SCC, prevalence of mastitis 

pathogens, and prevalence of mastitis pathogens in dependence of SCC. 

Subsequently, in chapter 3 immune cells in milk of udder quarters classified as 

healthy based on SCC values of ≤100,000 cells/mL were differentiated into 

lymphocytes, macrophages, and PMNL using microscopy. Chapter 4 addresses 

the differentiation of immune cells in milk of udder quarters classified as healthy 

based on SCC values of ≤100,000 cells/mL using a flow cytometric method. In 

chapter 5 combinations of cell populations were evaluated to increase the 

power of differentiation between healthy and diseased udder quarters based on 

DCC data. Subsequently, the consistency of DCC results on subsequent days 

was analyzed and effective cutoff values for the diagnosis of mastitis were 

established in chapter 6. In a further study (chapter 7) the quantitative 

relationship of CD2+ T and CD21+ B lymphocytes in quarter foremilk samples 

was investigated to check early changes of the immunological status of the 

mammary gland. Finally, in chapter 8 DCC data patterns of host microbial-

interactions were explored for improvement of disease diagnosis. 
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Abstract 

 
Somatic cell counts (SCC) are generally used as an indicator of udder 

health. Currently in Germany, 100,000 cells/mL is the threshold differentiating 

infected and non-infected mammary glands. The aim of our study was the 

detailed analysis of udder health in a representative part of the dairy cow 

population in Hesse, Germany. Between 2000 and 2008, 615,187 quarter 

foremilk samples were analyzed. In addition to evaluation of distribution of SCC 

and prevalence of mastitis pathogens, pathogen prevalence was also 

calculated depending on SCC. The data indicated that 38% of all samples had 

SCC >100,000 cells/mL and 62% showed SCC ≤100,000 cells/mL; 31% of all 

samples revealed SCC ≤25,000 cells/mL. Coagulase-negative staphylococci 

were the dominant pathogens in the Hessian quarter foremilk samples (17.17% 

of all samples) followed by Corynebacterium species (13.56%), Streptococcus 

uberis (8.7%), and Staphylococcus aureus (5.01%). Mastitis pathogens were 

detected in 83% of all samples with SCC >100,000 cells/mL. However, the 

prevalence of mastitis pathogens in the SCC range from 1,000 to 

≤100,000 cells/mL was 8.5% (5.51% minor pathogens, 2.01% major pathogens, 

and 0.98% other pathogens). For farms producing high quality milk an 

exceptional hygienic management is compulsory. One of the farms randomly 

selected showed clearly different results from the Hessian survey. Fifteen 

percent more samples lay in the SCC range ≤100,000 cells/mL with a lower 

prevalence of mastitis pathogens of 1.91% (1.03% minor pathogens, 0.83% 

major pathogens, and 0.05% other pathogens). Based on these results, 

inflammatory processes can obviously be detected in mammary glands of udder 

quarters healthy according to the current definitions. However, we argue that 

such inflammation can be detected by examination of the relationship of 

immune cells in milk. 
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Introduction 

 
Mastitis is the most costly disease in milk production worldwide, and 

approximately 70 to 80% of financial losses are caused by subclinical mastitis 

(Reneau and Packard, 1991; Seegers et al., 2003). Subclinical mastitis is 

characterized by decreased milk production, altered composition of the 

secretion, and presence of bacteria, but without any visible changes in milk and 

udder (Harmon, 1994). 

For mastitis diagnosis, traditional and well-established tests including 

SCC and microbial culture-based methods are standard (Viguier et al., 2009). 

Several SCC cutoffs distinguishing between infected and noninfected mammary 

glands and indicating IMI have been evaluated and discussed in the literature 

(Schepers et al., 1997; Schukken et al., 2003). According to current definitions 

of udder health in Germany, quarter foremilk samples with SCC ≤100,000 

cells/mL are in the physiological range (DVG, 2002). It is well-known that the 

crossover of normal cellular defense in the mammary gland into an 

inflammatory reaction starts from a level of >100,000 cells/mL (Harmon, 1994; 

DVG, 2002). However, SCC vary with the status of lactation, age, stress of the 

animals, time and frequency of milking, season, and, mainly, udder infection 

status (Dohoo and Meek, 1982; Harmon, 1994). 

The implementation of classical mastitis prevention programs (Neave et 

al., 1969) in combination with the introduction of penalty limits for bulk milk SCC 

have led to substantial progress in controlling subclinical mastitis worldwide. 

The geometric bulk milk SCC in Hesse, Germany, was 255,000 cells/mL in 

1993 and decreased to 200,000 cells/mL in 2008 (HVL, 1994, 2009). A 

decrease in the geometric bulk milk SCC from 600,000 cells/mL in 1971 to 

200,000 cells/mL in 2002 was observed in the Netherlands (Sampimon et al., 

2005). In Finland, the geometric bulk milk SCC decreased from 

325,000 cells/mL to 132,000 cells/mL between 1988 and 2002 (Myllys et al., 

1998; Pitkälä et al., 2004). A moderate decrease of the geometric bulk milk 

SCC from 356,000 cells/mL in 1998 to 316,000 cells/mL in 2005 was described 

evaluating the data of one large US milk cooperative localized in New York 

state (Nightingale et al., 2008). In addition to mastitis control programs, the 

selection for animals showing low SCC in animal breeding programs might have 
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had a strong influence on the development of mastitis pathogens. In particular, 

the prevalence of Staphylococcus aureus decreased. Data for Staphylococcus 

aureus are also available for the German federal state of Hesse, Finland, the 

Netherlands, and the state of Wisconsin (United States). In Hesse, Staph. 

aureus showed a prevalence of 13.0% in 1995 and 2.9% in 2008 (LHL, 2009). 

In Finland, the prevalence of the bacteria was reduced from 5.1% in 1988 

(Myllys et al., 1998) to 3.4% in 2001 (Pitkälä et al., 2004). The prevalence of 

Staph. aureus in the Netherlands decreased from 6.2% in 1973 to 1.8% in 2003 

(Sampimon et al., 2009). In Wisconsin, the proportion of Staph. aureus in all 

culture-positive samples decreased from 17.7% in 1994 to a value of 9.7% in 

2001 (Makovec and Ruegg, 2003). In contrast, CNS are currently the most 

isolated pathogens from milk samples in many countries (Pitkälä et al., 2004; 

Piepers et al., 2007; Sampimon et al., 2009). 
The objective of our research was a detailed evaluation of the udder 

health situation in a representative part of the dairy cow population in Hesse, 

Germany, analyzing the distribution of SCC, prevalence of mastitis pathogens, 

and prevalence of mastitis pathogens in dependence of SCC. Additionally, for a 

more detailed evaluation of udder health in cows with low SCC and comparison 

with the total Hessian average, a single farm practicing exceptional hygienic 

management was analyzed. However, because mastitis prevention programs 

have been implemented in Hesse, Germany, for many years, a high level of 

udder health could be expected. 

Materials and Methods 

 

Animals and Farms 

From 2000 to 2008, 615,187 quarter foremilk samples were taken from 

dairy cows in the German federal state of Hesse and analyzed by the Animal 

Health Services (Hesse, Germany). This random test represented 

approximately 12.5% of all Hessian dairy cows. Samples were collected from 

farms producing high quality milk (n = 98,430; 16% of all samples), from 

conventional producing farms (n = 412,175; 67% of all samples), and from 

farms with severe udder health problems (n = 104,852; 17% of all samples). 

Almost all lactating cows of the farms were tested. 
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In addition, one farm (A) with exceptionally hygiene management for the 

production of high quality milk was randomly selected to evaluate its 

cytobacteriological status; 12,660 quarter foremilk samples were taken on that 

farm from 1995 to 2003. According to the legislative requirements in Germany, 

farms producing high quality milk have to perform monthly SCC and 

bacteriological examinations of quarter foremilk samples from all lactating cows. 

On farm A, 60 Holstein-Friesian cows were housed in a pen barn and 

were milked twice a day in a milking parlor. The average herd milk yield 

averaged 9,000 kg/yr. 

 

Milk Sampling 

Quarter foremilk samples were obtained according to DVG (2000) 

standards. Before milking, teat ends were scrubbed with 70% ethanol and the 

first 2 squirts of milk were discarded. A volume of 10 mL of milk per udder 

quarter was collected in a sterile 14-mL plastic sample tube (Greiner bio-one, 

Frickenhausen, Germany). 

 

Laboratory Analysis 

Somatic cells were determined using a Fossomatic 5000 (Foss Electric, 

Hillerød, Denmark) and used as guideline for the selection of udder quarters for 

bacteriological analysis. Quarter foremilk samples showing SCC 

>100,000 cells/mL were cultured categorically. All samples of a herd with SCC 

≤100,000 cells/mL were only examined bacteriologically when highly contagious 

mastitis pathogens such as Staph. aureus, Streptococcus agalactiae, or group 

G streptococci were present. Furthermore, all samples from farms producing 

high quality milk were analyzed bacteriologically independent from SCC. 

Culture and isolate identification were performed according to IDF (1981) 

standards. Promptly after collecting the quarter foremilk samples and cooled 

transportation to the laboratory, about 10 µL of milk was streaked onto a 

quadrant of a 7% bovine blood agar plate containing 0.05% esculin (Merck, 

Darmstadt, Germany) and incubated for 48 h at 37°C; the plates were 

examined after 24 and 48 h of incubation. Isolates were classified into (1) major 

pathogens: Staph. aureus, Streptococcus (Strep.) agalactiae, Strep. 

dysgalactiae, Strep. uberis, Escherichia coli, coliforms (e.g., Klebsiella spp., 
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Serratia spp., Enterobacter spp., other Enterobacteriaceae); (2) minor 

pathogens: CNS, Corynebacterium spp.; (3) other pathogens: Arcanobacterium 

pyogenes, Proteus, Prototheca zopfii, Pseudomonas spp., group G streptococci 

(predominantly Strep. canis), yeasts, and fungi. Contaminated samples were 

defined as a mixture of at least 2 environmental type organisms without 

isolation of a major mastitis pathogen. 

 

Statistical Analysis 

The data sets of the results of the SCC examinations in the federal state 

Hesse and on farm A were divided into 15 different SCC ranges from ≤1,560 to 

>12,800,000 cells/mL. Their limits were calculated using a logarithmic partition 

to the base 2 of the SCC scale according to the SCS standard (SCS = log2 

(SCC/100,000) + 3) (Ali and Shook, 1980). All records with a missing SCC 

value or a value <1,000 cells/mL were excluded from the data sets (Hessian 

survey: n = 27,281; farm A: n = 122). These records were not included in the 

total numbers (Hessian survey: n = 615,187; farm A: n = 12,660). For a more 

practical interpretation, a wider scale range was determined according to the 

SCS standard defining 4 SCC groups: group I: ≤6,250 cells/mL, group II: 

>6,250 to ≤25,000 cells/mL, group III: >25,000 to ≤100,000 cells/mL, and 

group IV: >100,000 cells/mL. 

Distributions of SCC in Hesse and on farm A were tested for Gaussian 

distribution using the Shapiro and Wilk test as well as the Chi-squared test 

(BMDP Statistical Solutions Ltd., Cork, Ireland). Because of technical reasons, 

random tests of 2,000 records of each data set were used for the calculation of 

the Shapiro and Wilk test, whereas the whole data sets of both Hesse and dairy 

farm A were used for the Chi-squared test. 

Additionally, a subset comprising data of Hesse from 2003 (n = 79,204) 

was analyzed to identify the effect of fixed and random effects on SCC by 

applying a linear mixed model. Selection of data for verification of results, as 

presented in Figure 1, was done because of computational limitations. The SCC 

were log-transformed according to Ali and Shook (1980) to obtain better 

statistical properties. The data subset was analyzed using the MIXED 

procedure of SAS 9.1 (SAS Institute, Cary, USA) and the following statistical 

model: 
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Yijk = µ + Hi + Qj + eijk, 

 

where Yijk = observed value for SCS in herd i and udder quarter j of cow k; 

µ = overall mean; Hi = random effect of herd i (i = 1 to 1,338); Qj = fixed effect of 

quarter j (j = 1 to 4); and eijk = random error term. 

In addition to the SCC data (n = 235,556), the results of the 

bacteriological examinations of 145,965 quarter foremilk samples analyzed in 

Hesse were available for the period 2000 to 2003. On farm A, the 

bacteriological data could be evaluated for the period 1995 to 2003 (n = 

12,660). For statistical calculation, the classification of the bacteriological 

results into major, minor and other pathogens was carried out according to 

Reneau (1986). The classification and calculation of the frequency of each 

pathogen was performed independently from SCC and depending on the 

15 different SCC ranges defined above using SAS 9.1 (SAS Institute, Cary, 

USA). 

The data subset comprising results from 2003 (n = 79,204) was also 

analyzed to identify the impact of fixed and random effects on specific 

pathogens by applying a generalized linear mixed model. Because pathogens 

were classified as binary traits, the residuals cannot be normally distributed. 

The best function to describe the relationship between the dependent and 

independent variables is not linear but S-shaped. This is the primary reason 

why a linear logistic model with mixed effects was used. As described by König 

et al. (2005) the probability of observing the event of interest (e.g., prevalence 

of the pathogen) was 

 i = Prob (Yi = 1| ) 

 

 where  is a parameter vector 

including fixed and random effects. The logit of the observation Yi was  

 log i

1 i

= i 

 

Since is the probability of Y = 1, it follows that 1 - is the probability of 

Y = 0 and so 
1

 is the ratio of the two probabilities, which, when stated in the 

form of odds, gives the odds of having Y = 1. Analysis of variance of the 
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measurements was carried out using logistic models implemented in the SAS 

glimmix macro (Wolfinger and O’Connell, 1993) that included the fixed effects of 

the udder quarter and the defined SCC group and the random effect of the 

herd. The F-ratios used in the analysis of variance are identical to the 

Wald/rank(K) F-statistics as defined by Littell et al. (1999). Wald-type tests were 

also used to identify significant fixed effects on different pathogens (type III 

tests of fixed effects). 

The final generalized linear model used to determine the impact of fixed 

and random effects on prevalence of pathogens was:  

 

 logit ( rstu) = log
rst

rst

1
= rst =  + r + s + εt 

 

where rstu = probability of occurrence of a pathogen in udder quarter s and 

SCC group r for cow u in herd t;  = overall mean effect; r = fixed effect of 

SCC-group; s = fixed effect of udder quarter; and εt = random effect of the herd. 

Results 

 
Evaluation of Udder Health in Hessian Dairy Farms 

For the evaluation of the udder health situation in Hesse, Germany, a 

data set with the results of 615,187 quarter foremilk samples was used. The 

samples were derived from farms with different levels of udder health. In 

general, farms producing high quality milk showed a bulk tank SCC of 

180,000 cells/mL. The bulk tank SCC of conventional milk producers averaged 

200,000 cells/mL, whereas the bulk tank SCC in farms with massive udder 

health problems was higher (400,000 cells/mL). 

Distribution of Somatic Cell Counts. Somatic cell counts of the quarter 

foremilk samples analyzed ranged from 1,000 to 30,000,000 cells/mL. The 

distribution of all quarter foremilk samples in the 15 SCC ranges is illustrated in 

Figure 1. In total, 38% of all quarter foremilk samples indicated an inflammatory 

reaction (SCC >100,000 cells/mL) according to the current DVG definitions 

(2002). A high frequency (62%) of the samples had SCC in a physiological 

range (≤100,000 cells/mL). Thirty-one percent of all samples had SCC between 

25,000 and 100,000 cells/mL, and 31% had SCC ≤25,000 cells/mL. 
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For a more practical interpretation, 4 SCC groups (I to IV) were defined. 

Six percent of the quarter foremilk samples analyzed in Hesse belonged to 

group I (≤6,250 cells/mL), 25% belonged to group II (>6,250 to ≤25,000 

cells/mL), 31% belonged to group III (>25,000 to ≤100,000 cells/mL), and 38% 

belonged to group IV (>100,000 cells/mL). 

 

 

Figure 1. Statistical distribution of SCC of all quarter foremilk samples analyzed 

in the German federal state of Hesse taken from 2000 to 2008 (n = 
615,187) by classification into 15 SCC ranges using a logarithmic 
partition to the basis 2 of the SCC scale according to the SCS 
standard. The bar charts show the distribution of SCC observed in 
Hesse, the line shows the distribution of SCC expected by the exact 
Gaussian distribution. 

 

The distribution of the logarithm of SCC in Hesse was similar to a 

Gaussian distribution (Figure 1). However, the goodness-of-fit test for normality 

according to the Shapiro and Wilk test as well as the Chi-squared test showed a 

significant deviation (P < 0.001) from the exact Gaussian distribution. In 

particular, in both tails of the distribution deviations from normality could be 

observed (Figure 1). More samples than expected were observed on the left 

side of the middle area of the Gaussian distribution. In contrast, fewer samples 

than expected were observed on the right side of the distribution. 
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To evaluate the effect of quarter position on SCC, a data set including 

79,204 quarter foremilk samples tested in 2003 was analyzed exemplarily using 

a statistical model. The data from 2003 were representative for the whole data 

set from 2000 to 2008. For statistical reasons, SCC were transformed to SCS. 

The analysis indicated a highly significant (P < 0.001) effect of quarter position 

on SCS. The mean SCS value of the front left quarter was significantly 

(P < 0.05) lower than that of the other 3 quarters (Table 1). In contrast, the 

highest mean SCS value could be calculated for the rear right quarter. In total, 

the mean SCS of both front quarters of 2.38 (SEM 0.01) was significantly 

(P < 0.001) lower than in both rear quarters (2.49, SEM 0.01). 

 

Table 1. Least-square means and standard error of mean for SCS in different 

udder quarter positions from 79,204 quarter foremilk samples 
analyzed in Hesse, Germany, in 2003. 

 SCS 

 LSM SEM 

FR 2.45a 0.02 

RR 2.52b 0.02 

FL 2.31c 0.02 

RL 2.45a 0.02 
1Udder quarter position: FR = front right, RR = rear right, FL = front left, RL = 
rear left. 
a,b,cLeast square means within the same row with different letters differ 
significantly at P < 0.05. 

 

Distribution of Bacteriological Results. A high frequency of the 

quarter foremilk samples (62%) taken between 2000 and 2008 lay in a 

physiological range with SCC ≤100,000 cells/mL and offered a proper standard 

of udder health. Bacteriological results were available for 145,065 of the 

235,556 quarter foremilk samples taken from 2000 to 2003. The prevalence of 

mastitis pathogens in the samples examined was 51.96% (Table 2). The most 

frequently isolated pathogens were CNS (33.05%), followed by 

Corynebacterium spp. (26.1%), Strep. uberis (16.75%), Staph. aureus (9.63%), 

coliforms (2.21%), Strep. dysgalactiae (1.61%), E. coli (1.17%), and Strep. 

agalactiae (0.55%). Other pathogens were detected in 4.31% of all culture-

positive samples. A proportion of 4.62% of all culture-positive samples was 

contaminated. 
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Approximately 40% (n = 60,327) of all quarter foremilk samples with SCC 

≤100,000 cells/mL were analyzed bacteriologically (Table 3). One fraction (n = 

30,759) of these samples was cultured because of the presence of highly 

contagious mastitis pathogens such as Staph. aureus, Strep. agalactiae or 

group G streptococci in a herd. The remaining fraction (n = 29,568) originated 

from high quality milk producers whose samples were generally analyzed 

bacteriologically. Pathogens were found in 8.5% of these quarter foremilk 

samples. Minor pathogens (Corynebacterium spp., CNS) as well as major 

pathogens (Staph. aureus, Strep. uberis) were detected beginning at an SCC 

level of ≤1,560 cells/mL (Table 3). Within the SCC groups I to III, the 

frequencies of minor pathogens (5.51%), major pathogens (2.01%), and other 

pathogens (0.98%) were higher than expected. Concerning the total number of 

quarter foremilk samples with SCC values ≤100,000 cells/mL analyzed from 

2000 to 2003 (n = 150,818), no mastitis pathogens were detected in 94 to 98% 

of the cases within the individual SCC ranges (Table 3). 

Table 2. Prevalence and distribution of mastitis pathogens in quarter foremilk 

samples analyzed bacteriologically in the German federal state of 
Hesse between 2000 and 2003 (n = 145,065) 

Item n 
All quarters 

(%)1 
Culture-

positive (%)2 

Quarters analyzed bacteriologically 145,065   

Culture-negative quarters 69,691 48.04  

Culture-positive quarters 75,374 51.96  

Staphylococcus aureus 7,262 5.01 9.63 

Streptococcus agalactiae 414 0.29 0.55 

Streptococcus dysgalactiae 1,211 0.83 1.61 

Streptococcus uberis 12,623 8.70 16.75 

Escherichia coli 882 0.61 1.17 

Coliforms3 1,664 1.15 2.21 

Coagulase-negative staphylococci 24,913 17.17 33.05 

Corynebacterium species 19,673 13.56 26.10 

Other pathogens4 3,246 2.24 4.31 

Contamination 3,486 2.40 4.62 
1Percentage of all quarters analyzed bacteriologically. 
2Percentage of all culture-positive quarters. 
3Coliforms = Klebsiella spp., Serratia spp., Enterobacter spp., other 
Enterobacteriaceae. 
4Other pathogens: Arcanobacterium pyogenes, Proteus, Prototheca zopfii, 
Pseudomonas spp., group G streptococci, yeasts, and fungi. 



Somatic Cell Count and Bacteriological Status 

 

 23 

 



Somatic Cell Count and Bacteriological Status 

 

 24 

Mastitis pathogens were detected in 82.91% of the 84,738 quarter 

foremilk samples with SCC values >100,000 cells/mL (group IV) analyzed from 

2000 to 2003 (Table 3); CNS were the most frequently isolated pathogens. 

Their prevalence decreased from a maximum of 30.77% (SCC 100,000 to 

200,000 cells/mL) to 12.03% (SCC of >12,800,000 cells/mL). Staphylococcus 

aureus were predominantly identified in samples with SCC >400,000 cells/mL 

(10.49 to 14.29%). Corynebacterium spp. were isolated with higher frequencies 

in samples with SCC between 100,000 and 800,000 cells/mL. Streptococcus 

uberis showed the highest prevalences (20.34 to 24.54%) in samples with SCC 

>1,600,000 cells/mL. The prevalence of Strep. agalactiae was generally very 

low (<1%). However, Strep. agalactiae was more frequently detected (0.53 to 

0.80%) in the SCC range from 400,000 to 12,800,000 cells/mL. The major 

pathogen Strep. dysgalactiae was predominantly identified (3.01 to 6.55%) in 

samples with SCC >800,000 cells/mL. The prevalence of E. coli increased from 

0.47% at SCC of >100,000 to 200,000 cells/mL to a maximum of 8.29% at SCC 

of >12,800,000 cells/mL. Coliforms were predominantly isolated in samples 
 

Table 4. Results of ANOVA for the prevalence of the individual pathogens in 

79,204 quarter foremilk samples analyzed in Hesse, Germany, in 
20031 

 Effect 

Pathogen Udder Quarter1 SCC group1 

Staphylococcus aureus *** *** 

Streptococcus agalactiae * NC 

Streptococcus dysgalactiae ** NC 

Streptococcus uberis *** *** 

Escherichia coli NS *** 

Coliforms2 *** *** 

Coagulase-negative staphylococci *** *** 

Corynebacterium species NS *** 

Contamination *** *** 

Other pathogens3 NS *** 

No pathogens *** *** 
1Analyzed factors were quarter positions (front right, rear right, front left, and 
rear left) and SCC group (I ≤6,250 cells/mL, II >6,250 to ≤25,000 cells/mL, III 
>25,000 to ≤100,000 cells/mL, IV >100,000 cells/mL); NC = not calculated. 

2Coliforms = Klebsiella spp., Serratia spp., Enterobacter spp., other 
Enterobacteriaceae. 
3Other pathogens: Arcanobacterium pyogenes, Proteus, Prototheca zopfii, 
Pseudomonas spp., group G streptococci, yeasts, and fungi. 

*** P < 0.001; ** P < 0.01; * P < 0.05; NS = P > 0.05. 
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showing SCC from 800,000 to >12,800,000 cells/mL. The prevalence of other 

pathogens in group IV ranged between 2 and 8%. The proportion of 

contaminated samples decreased at increasing SCC. 

 

Table 5. Least square means for the prevalence of pathogens in different udder 
quarter positions from 79,204 quarter foremilk samples analyzed in 
Hesse, Germany, in 2003 

 Udder Quarter1 

Pathogen FR RR FL RL 

Staphylococcus aureus 1.08a 0.77b 0.86b 0.86b 

Streptococcus agalactiae 0.30a,b 0.22a 0.39b 0.29a,b 

Streptococcus dysgalactiae 0.51a 0.64a,b 0.55a 0.82b 

Streptococcus uberis 1.01a 0.82b 0.85b,c 0.98a,c 

Escherichia coli 0.38a 0.36a,b 0.25b 0.28a,b 

Coliforms2 0.42a 0.60b 0.37a 0.40a 

Coagulase-negative staphylococci 4.17a 4.46b 4.09a 4.81c 

Corynebacterium species 3.75a,b 3.73a,b 3.87a 3.62b 

Contamination 0.68a 0.89b 0.76a 0.93b 

Other pathogens3 0.07a 0.06a 0.06a 0.08a 

No pathogens 83.65a 83.82a 84.79b 82.22c 
a-cLeast square means within the same row with different letters differ 
significantly at P < 0.05. 

1Udder quarter position: FR = front right, RR = rear right, FL = front left, RL = 
rear left. 
2Coliforms = Klebsiella spp., Serratia spp., Enterobacter spp., other 
Enterobacteriaceae. 
3Other pathogens: Arcanobacterium pyogenes, Proteus, Prototheca zopfii, 
Pseudomonas spp., group G streptococci, yeasts, and fungi. 

 

As an exemplar, a data set including all quarter foremilk samples (n = 

79,204) tested cytobacteriologically in 2003 was evaluated applying a 

generalized linear mixed model for the identification of fixed and random effects 

on the prevalence of the individual pathogens. The analysis indicated that the 

position of the udder quarter influenced the prevalence of most pathogens 

significantly (Table 4). The major pathogen Staph. aureus was significantly 

(P < 0.001) more frequently isolated from the front right quarter than from the 

other 3 quarters (Table 5). The highest prevalences for Strep. agalactiae and 

Corynebacterium spp. were found in front quarters, whereas Strep. 

dysgalactiae and CNS were predominantly isolated from rear quarters. 

Streptococcus uberis and other pathogens showed the highest prevalences in 
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the front right and rear left quarters. Coliforms and E. coli were predominantly 

found in right quarters. Most contaminated samples originated from rear 

quarters. The proportion of samples without any isolation of pathogens was 

significantly (P < 0.001) higher in the front left quarter and lower in the rear left 

quarter than in right quarters. 

A significant (P < 0.001) influence on the prevalence of all pathogens 

with the exception of Strep. agalactiae and Strep. dysgalactiae could be 

calculated for the 4 SCC groups defined (Table 4). The prevalence of most 

pathogens in groups I and II was significantly lower than in those of groups III 

and IV (Table 6). The proportion of samples without any isolation of pathogens 

decreased significantly (P < 0.001) with increasing SCC groups. The distribution 

of Strep. agalactiae, Strep. dysgalactiae, and E. coli depending on the 4 SCC 

groups could not be evaluated because of their extremely low prevalences in 

groups I to III. 

 

Table 6. Least square means for the prevalence of pathogens in the 4 SCC 
groups defined from 79,204 quarter foremilk samples analyzed in 
Hesse, Germany, in 2003 

 SCC group1 

Pathogen I II III IV 

Staphylococcus aureus 0.37a,b 0.35a 0.57b 7.71c 

Streptococcus agalactiae – – – – 

Streptococcus dysgalactiae – – – – 

Streptococcus uberis 0.03a 0.03a 0.07a 1.04b 

Escherichia coli – – – – 

Coliforms2 0.25a 0.21a 0.31a 2.19b 

Coagulase-negative staphylococci 1.58a 1.88a 3.55b 27.81c 

Corynebacterium species 0.83a 2.30b 3.78c 22.78d 

Contamination 0.42a 0.49a 0.50a 4.11b 

Other pathogens3 0.003a 0.08a 0.07a 1.27b 

No pathogens 95.78a 94.00b 90.05c 17.52d 
a-dLeast square means within the same row with different letters differ 
significantly at P < 0.05. 
1SCC groups: I = ≤6,250 cells/mL; II = >6,250 to ≤25,000 cells/mL; III = >25,000 
to ≤100,000 cells/mL; IV = >100,000 cells/mL. 
2Coliforms = Klebsiella spp., Serratia spp., Enterobacter spp., other 
Enterobacteriaceae. 
3Other pathogens: Arcanobacterium pyogenes, Proteus, Prototheca zopfii, 
Pseudomonas spp., group G streptococci, yeasts, and fungi. 
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Evaluation of Udder Health in a Dairy Farm Producing High Quality Milk     

(Farm A) 

Farm A was chosen randomly to show the distribution of SCC and 

bacteriological results in a single farm practicing exceptional hygiene. The 

evaluation of udder health in this farm was based on the results of 

12,660 quarter foremilk samples analyzed. 

Distribution of Somatic Cell Counts. Somatic cell counts of all quarter 

foremilk samples taken on farm A lay in a range between 1,000 and 

24,000,000 cells/mL; the distribution of SCC on farm A is presented in Figure 2. 

A total of 23% of all quarter foremilk samples on farm A indicated an 

inflammatory reaction (SCC >100,000 cells/mL) according to the current DVG 

definitions (2002) of udder health, representing 15% fewer samples than in the 

Hessian survey. The high frequency (77%) of samples with SCC 

≤100,000 cells/mL became evident on this farm, too, and was 15% above the 

Hessian average. Forty percent of all samples revealed SCC between 

25,000 and 100,000 cells/mL and 37% revealed SCC ≤25,000 cells/mL, ranging 

9% and 6%, respectively, above the Hessian average. 
 

 

Figure 2. Statistical distribution of SCC of all quarter foremilk samples analyzed 

on farm A taken from 1995 to 2003 (n = 12,660) by classification into 
15 SCC ranges using a logarithmic partition to the basis 2 of the SCC 
scale according to the SCS standard. The bar charts show the 
distribution of SCC observed on farm A, the line shows the 
distribution of SCC expected by the exact Gaussian distribution. 
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Dividing SCC frequencies of farm A into the same SCC groups (I to IV) 

used for the Hessian surveillance, 9% of the quarter foremilk samples belonged 

to group I, 28% to group II, 40% to group III, and 23% to group IV. 

Again, the goodness-of-fit test for normality according to the Shapiro and 

Wilk test as well as the Chi-squared test applied to the distribution of SCC on 

farm A (Figure 2) showed a significant deviation (P < 0.001) from the exact 

Gaussian distribution, as already seen for the Hessian samples and for the 

same reasons. However, the distribution observed was close to the normal 

distribution (Figure 2). 

 

Distribution of Bacteriological Results. Bacteriological results were 

available for all of the 12,660 quarter foremilk samples taken from 1995 to 

2003. The prevalence of mastitis pathogens was 21.65% (Table 7). Pathogens 

isolated most frequently were CNS (35.32%), followed by Corynebacterium spp. 

(29.92%), Strep. uberis (21.71%), Staph. aureus (5.29%), coliforms (1.86%), 

Strep. dysgalactiae (0.62%), and E. coli (0.51%). Other pathogens were 
 

Table 7. Prevalence and distribution of mastitis pathogens isolated from quarter 
foremilk samples taken on farm A between 1995 and 2003 
(n = 12,660) 

Item n 
All quarters 

(%)1 
Culture-

positive (%)2 

Quarters analyzed bacteriologically 12,660   

Culture-negative quarters 9,919 78.35  

Culture-positive quarters 2,741 21.65  

Staphylococcus aureus 145 1.15 5.29 

Streptococcus agalactiae 0 0 0 

Streptococcus dysgalactiae 17 0.13 0.62 

Streptococcus uberis 595 4.70 21.71 

Escherichia coli 14 0.11 0.51 

Coliforms3 51 0.40 1.86 

Coagulase-negative staphylococci 968 7.65 35.32 

Corynebacterium species 820 6.48 29.92 

Other pathogens4 22 0.17 0.79 

Contamination 109 0.86 3.98 
1Percentage of all quarters analyzed bacteriologically. 
2Percentage of all culture-positive quarters. 
3Coliforms = Klebsiella spp., Serratia spp., Enterobacter spp., other 
Enterobacteriaceae. 
4Other pathogens: Arcanobacterium pyogenes, Proteus, Prototheca zopfii, 
Pseudomonas spp., group G streptococci, yeasts, and fungi. 
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detected in 0.80% of all culture-positive samples. A proportion of 3.98% of all 

culture-positive samples was contaminated. The major pathogen Strep. 

agalactiae could not be isolated from any sample taken on farm A. 

Mastitis pathogens were found in 1.91% of 9,715 quarter foremilk samples 

showing SCC ≤100,000 cells/mL (Table 8). Minor pathogens (CNS) were 

detected at a minimum of ≤1,560 cells/mL, whereas major pathogens (Staph. 

aureus) could be isolated beginning at a level of >3,130 to 6,250 cells/mL. The 

frequencies of minor pathogens (1.03%), major pathogens (0.83%), and other 

pathogens (0.05%) were clearly lower within the SCC groups I to III compared 

with the Hessian average. No mastitis pathogens were detected in 96 to 99% of 

the cases within the individual SCC ranges (Table 8). 

Mastitis pathogens were detected in 87.95% of the 2,905 quarter foremilk 

samples with SCC values >100,000 cells/mL (group IV) analyzed within this 

period (Table 8); CNS were the most frequently isolated pathogens. Their 

prevalence decreased from a maximum of 33.62% (SCC 100,000 to 

200,000 cells/mL) to 17.64% (SCC of 6,400,000 to >12,800,000 cells/mL) and 

increased again to a level of 33.33% at SCC >12,800,000 cells/mL. 

Staphylococcus aureus was predominantly isolated in samples with SCC from 

>200,000 to 6,400,000 cells/mL (3.85 to 10.16%). 

The prevalence of Corynebacterium spp. decreased constantly from 

31.83% at SCC of >100,000 to 200,000 cells/mL to 8.35% at SCC of 

>12,800,000 cells/mL. Streptococcus uberis showed prevalences varying 

between 14.83% and 35.29% in the SCC range >100,000 cells/mL. The 

prevalence of Strep. dysgalactiae increased from 0.06% at SCC of >100,000 to 

200,000 cells/mL to 8.33% at SCC of >12,800,000 cells/mL. Streptococcus 

agalactiae was not detected. The prevalence of E. coli in group IV ranged 

between 0 and 8.33%. The prevalence of coliforms increased from 1.05% at 

SCC of >100,000 to 200,000 cells/mL to 8.33% at SCC of 

>12,800,000 cells/mL, except that no coliform bacteria were isolated in samples 

showing SCC between 6,400,000 and 12,800,000 cells/mL. The prevalence of 

other pathogens in group IV lay between 0 and 12%. The proportion of 

contaminated samples ranged between 0 and 5%. 
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Discussion 

 
Udder health status in the German federal state Hesse was evaluated on 

the basis of quarter foremilk samples taken from 2000 to 2008. Quarter foremilk 

samples are accepted for the evaluation of udder health because a high 

correlation between SCC in foremilk samples and in total representative 

samples was reported (Dohoo and Meek, 1982). In general, foremilk refers to 

the first secretions removed from the teat at milking time and represents a 

portion of cisternal milk (Stockler et al., 2009). It is known that the milk fraction 

has a substantial affect on SCC because milk secreted during the milking 

process has lower SCC than milk from pre- or postmilking (Olde Riekering et 

al., 2007). However, the volume of foremilk varies from 5 to 60 mL (Fernando 

and Spahr, 1983; Vangroenweghe et al., 2002; Sarikaya and Bruckmaier, 

2006). Sarikaya and Bruckmaier (2006) found a significant decrease of SCC 

comparing the first 10 mL of milk with the following 140 mL in udder quarters 

secreting >100,000 cells/mL, whereas this decrease was only moderate for 

udder quarters with a SCC <100,000 cells/mL. Comparing SCC in the first 5 mL 

of milk with the following 20 mL in infected and uninfected mammary glands, 

Fernando and Spahr (1983) reported slightly higher values for the first 5 mL of 

milk. In our study, foremilk was defined as the first 10 mL of milk collected from 

the teat after the first 2 squirts were discarded. Therefore, we presume that our 

SCC values are representative for the analysis of the udder health status. 

Foremilk samples were taken from farms producing high quality milk, from 

conventional farms, and from farms with massive udder health problems. This 

random test of 615,187 quarter foremilk samples represented 12.5% of all 

Hessian cows. The large data set generated indicated that approximately two-

thirds of all quarter foremilk samples lay in the physiological range of SCC 

≤100,000 cells/mL. This high frequency confirmed a proper level of udder health 

in the Hessian dairy cow population. The geometric mean of SCC in bulk milk 

samples in Hesse showed a value of 200,000 cells/mL in 2008 (HVL, 2009). 

Comparable data are available from the Netherlands, Belgium, and Finland. In 

the Netherlands, a geometric mean of SCC in bulk milk samples of 

200,000 cells/mL was observed in 2002 (Sampimon et al., 2005). The 

geometric mean of SCC of bulk milk samples in Belgium was 221,000 cells/mL 
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in 2006 (Piepers et al., 2007). In Finland, the geometric mean of bulk milk SCC 

was 132,000 cells/mL in 2002 (Pitkälä et al., 2004). 

The statistical distribution of the logarithm of SCC of all quarter foremilk 

samples tested in the years 2000 to 2008 in Hesse did not exactly show a 

Gaussian distribution. The reasons for the deviation of the empirical distribution 

curve may be due to the very large sample size and the origin of the samples. 

The data were collected from dairy farms offering different levels of udder 

health. Using a logarithmic partition for the SCC scale, the empirical distribution 

of SCC was still skewed to the right. Fewer samples at the level of 

≤3,130 cells/mL and a level of >50,000 cells/mL to 1,600,000 cells/mL were 

observed than expected by exactly normally distributed values. In contrast, 

more samples lay in the range from >3,130 cells/mL to 50,000 cells/mL and at 

SCC >1,600,000 cells/mL than expected by normal distribution. 

The distribution of SCC on dairy farm A showed 15% more samples in 

the SCC range ≤100,000 cells/mL than in the Hessian average. This 

represented a very high standard of udder health in this high quality milk 

producing farm and is due to exceptional hygiene management. The distribution 

of SCC on farm A differed from a Gaussian distribution for the same reasons as 

determined for the total Hessian random test, but deviation was reduced. 

The results of our study indicated that SCC in front quarters were 

significantly lower than in rear quarters, which is in agreement with the results 

of Schepers et al. (1997). Because high SCC is usually an indicator of an 

immune response to IMI with bacterial pathogens (Dohoo et al., 1984), a higher 

prevalence of pathogens should be expected in rear quarters. However, in our 

data set the prevalence of bacteria differed between the individual quarters but 

these differences did not explain the higher SCC in rear quarters. Rear quarters 

might be more susceptible to infections than front quarters, as published 

previously (Pearson and Mackie, 1979), because of larger capacity and mass, 

greater vulnerability to direct trauma (e.g., horning), and greater exposure to 

environmental effects. In addition, teats of the rear quarters are frequently 

nearer the floor, especially in older cows, and would thus be contaminated or 

subjected to injury more readily. 

In the Hessian survey in the period 2000 to 2003, the SCC value was 

used as a guideline for the selection of quarter foremilk samples for 
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bacteriological analysis. The data showed 51.96% of samples to be culture-

positive. Our results are comparable to those obtained from the Netherlands 

(Sampimon et al., 2009), Belgium (Piepers et al., 2007), and Finland (Pitkälä et 

al., 2004). Similar to results from Hesse (17.17%), CNS were the most 

frequently isolated pathogens in the Netherlands, Belgium, and Finland (9.7 to 

16.61%). However, it is not clear whether IMI with CNS will always result in 

inflammation (Sampimon et al., 2009). High frequencies of isolation of 

Corynebacterium spp. have been noted in Hesse (13.56%) and Finland 

(11.52%), in contrast to the Netherlands and Belgium, where only 2.5% and 

0.1% of the samples showed Corynebacterium spp., respectively. These 

differences were probably related to changes in herd management and 

bacteriological ecology in the herd environment (Pitkälä et al., 2004). The 

prevalence of Staph. aureus in the Netherlands, Belgium, and Finland (1.8 to 

3.4%) was lower than in Hesse (5.01%). Implementation of standard mastitis 

prevention programs (Neave et al., 1969) led to a clear decrease of mastitis 

caused by Staph. aureus in many countries. In contrast to the low prevalence of 

Strep. uberis in the Netherlands and in Finland (1.1% and 0.65%, respectively), 

the prevalence of this species was higher in Belgium (2.7%) and Hesse (8.7%). 

These differences may originate from different hygiene and management 

systems in these countries, because Strep. uberis is an environmental 

pathogen. Streptococcus agalactiae showed a low prevalence in Hesse 

(0.29%), Belgium (0.1%), and Finland (0.02%), but was not detected in any of 

the samples taken in the Netherlands in 2003. The implementation of mastitis 

prevention programs led to a clear reduction of the prevalence of Strep. 

agalactiae, too. The prevalence of Strep. dysgalactiae in Hesse (0.83%) was 

similar to that in the Netherlands (1.2%), but differed from Belgium (0.4%) and 

Finland (0.05%). The epidemiology of this pathogen is intermediate between 

contagious and environmental. When it is known which factors increase the 

incidence of IMI caused with these pathogens, the control program for Strep. 

dysgalactiae may need to be adjusted (Sampimon et al., 2009). The low 

prevalences of coliforms and E. coli observed in Hesse (1.15% and 0.61%, 

respectively), Belgium (0.1% coliforms), and Finland (0.14% coliforms) were 

expected because these species are generally involved in acute clinical mastitis 
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of short duration (Todhunter et al., 1991). In the Dutch study, E. coli was 

considered in the group of other bacteria because of only 2 isolations. 

In our investigation, major pathogens (Staph. aureus, Strep. uberis) as 

well as minor pathogens (Corynebacterium spp., CNS) were detectable starting 

from an SCC level of 1,000 cells/mL. Similar data were found in a Dutch study 

(ten Napel et al., 2009). However, Staph. aureus is a natural species of 

mammalian skin and mucous epithelia (Sutra and Poutrel, 1994). Streptococcus 

uberis is considered an environmental pathogen (Radostits et al., 2007). Both 

major pathogens cause mastitis, which could take subclinical or clinical 

courses. Corynebacterium spp. readily colonize the teat canal of dairy cows 

(Brooks and Barnum, 1984). Coagulase-negative staphylococci are part of the 

normal teat skin flora and can colonize the teat canal (Devriese and De Keyser, 

1980); some CNS species are detectable in the environment (White et al., 

1989). In case of both minor pathogens, it is possible that they can contaminate 

the milk samples but not cause IMI (Linde et al., 1980). However, it is not clear 

whether the pathogens that we isolated from quarter foremilk samples with SCC 

values from 1,000 to 100,000 cells/mL originated from contamination or whether 

they caused an IMI. In any case, no signs of an IMI were visible based on SCC. 

Further research is needed for a detailed evaluation of immunological 

processes in such udder quarters. 

The results of the bacteriological examinations on farm A were similar to 

the Hessian survey, and the low prevalence of mastitis pathogens in the SCC 

range ≤100,000 cells/mL could be expected because of the exceptional level of 

hygiene management. 

Somatic cell counts >100,000 cells/mL are normally related to 

inflammatory processes inside the mammary gland. In the Hessian study, 

bacterial diagnosis was possible in approximately 83% of these cases. Negative 

bacteriological results in these cases could depend on spontaneous elimination 

of infection (Eberhart et al., 1979; Smith et al., 1985), intermittent shedding of 

the pathogens (Sears et al., 1990), or presence of antimicrobials or other 

inhibitors in milk (Reiter, 1978). At the time of examination, pathogens could 

also be ingested by phagocytes or survive intracellularly in the host (Newbould 

and Neave, 1965; Hill et al., 1978). Exudations of too-low masses of the 

pathogens or ceased growth of the pathogens are further reasons for negative 
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results (Sears et al., 1990). Negative results following antibiotic therapies 

should be excluded in our study because of withdrawal period regulations. 

An SCC range of ≤100,000 cells/mL is within the physiological range, but 

can be related to subclinical mastitis in the presence of pathogens. However, 

SCC values ≤100,000 cells/mL are normally not taken into account to evaluate 

inflammatory processes. Bacteria detected could also be derived from 

contamination of the skin, teat canal, or environment. We presume that not all 

of these bacteria contaminated the milk samples. Therefore, it is obvious that 

they originated from inside the mammary gland and might cause an IMI even in 

the SCC range <100,000 cells/mL. 

Our data showed that in 62% of all udder quarters SCC 

≤100,000 cells/mL were detected, suggesting a high standard of udder health in 

the Hessian dairy cow population analyzed. In view of the mastitis pathogens, 

prevalences were clearly lower in samples with ≤100,000 cells/mL than in 

samples with >100,000 cells/mL. This finding confirmed the 100,000 cells/mL 

threshold differentiating between infected and noninfected mammary glands. 

However, our data also indicated that minor and major pathogens were 

detected even at a minimum of 1,000 cells/mL. This result led us to suspect 

inflammatory processes in the SCC range ≤100,000 cells/mL. We assert that 

these inflammatory processes could be elucidated by examination of the 

relationship of immune cells in milk. Differential cell counts might be a better 

indicator than SCC for a profound evaluation of inflammation, especially at SCC 

levels ≤100,000 cells/mL. 
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Abstract 

 
Somatic cell count (SCC) is generally regarded as an indicator of udder health. 

A cutoff value of 100  103 cells/ml is currently used in Germany to differentiate 

between normal and abnormal secretion of quarters. In addition to SCC, 

differential cell counts (DCC) can be applied for a more detailed analysis of the 

udder health status. The aim of this study was to differentiate somatic cells in 

foremilk samples of udder quarters classified as normal secreting by SCC 

<100  103 cells/ml. Twenty cows were selected and 72 normal secreting udder 

quarters were compared with a control group of six diseased quarters (SCC 

>100  103 cells/ml). In two severely diseased quarters of the control group 

(SCC of 967  103 cells/ml and 1,824  103 cells/ml) Escherichia coli and 

Staphylococcus aureus were detected. DCC patterns of milk samples (n=25) 

with very low SCC values of ≤6.25  103 cells/ml revealed high lymphocyte 

proportions of up to 92%. Milk cell populations in samples (n=41) with SCC 

values of (>6.25 to ≤25)  103 cells/ml were also dominated by lymphocytes 

(mean value 47%), whereas DCC patterns of milk from udder quarters (n=6) 

with SCC values (>25 to ≤100)  103 cells/ml changed. While in samples (n=3) 

with SCC values of (27-33)  103 cells/ml macrophages were predominant (35-

40%), three milk samples with (43-45)  103 cells/ml indicated already 

inflammatory reactions based on the predominance of polymorphonuclear 

leucocytes (PMN) (54-63%). In milk samples of diseased quarters PMN were 

categorically found as dominant cell population with proportions of ≥65%. 

Macrophages were the second predominant cell population in almost all 

samples tested in relationship to lymphocytes and PMN. To our knowledge, this 

is the first study evaluating cell populations in low SCC milk in detail. Udder 

quarters classified as normal secreting by SCC <100  103 cells/ml revealed 

already inflammatory processes based on DCC. 
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Introduction 

 
For mastitis diagnosis, traditional and well-established tests including somatic 

cell count (SCC) and microbial culture-based methods are standard (Viguier et 

al. 2009). According to current definitions of udder health in Germany, SCC 

≤100  103 cells/ml in quarter foremilk samples are in the physiological range 

(DVG, 2002). It is well known that the crossover of normal cellular defence in 

the mammary gland into an inflammatory reaction starts at a level of >100  

103 cells/ml (Harmon, 1994; DVG, 2002). However, SCC vary with the status of 

lactation, age, stress of the animals, time and frequency of milking, season, and 

status of udder infection (Dohoo & Meek, 1982; Harmon, 1994). SCC is a 

robust quantitative estimate, but it does not divide the cells present in milk into 

different cell types (Kehrli & Shuster, 1994; Rivas et al. 2001). 

In the mammary gland, number and distribution of leucocytes are 

important for the success of udder defences against invading pathogens 

(Leitner et al. 2003). Lymphocytes, macrophages, and polymorphonuclear 

leucocytes (PMN) play an important role in immune reactions within the 

mammary gland (Paape et al. 1979; Sordillo & Nickerson, 1988). Induction and 

suppression of immune responses are regulated by lymphocytes (Nickerson, 

1989). They recognize antigens through membrane receptors specific for 

invading pathogens (Sordillo et al. 1997). Macrophages are active phagocytic 

cells in the mammary gland and capable of ingesting bacteria, cellular debris 

and accumulated milk components (Sordillo & Nickerson, 1988). Milk or tissue 

macrophages recognize the invading pathogens and initiate an immune 

response by the release of chemo-attractants inducing the rapid recruitment of 

PMN into the mammary gland (Paape et al. 2002; Oviedo-Boyso et al. 2007). 

The main task of PMN is the defence of invading bacteria at the beginning of an 

acute inflammatory process (Paape et al. 1979; Oviedo-Boyso et al. 2007). Not 

only does the number of PMN increase enormously, but also their level of 

defence activity (Targowski, 1983; Paape et al. 2003). 

The distribution of leucocyte types varies in normal milk without any 

symptoms of mastitis. Some previous studies found lymphocyte proportions 

between 14 and 80%, macrophage proportions between 12 and 46%, and 
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those of PMN between 6 and 50% (Rivas et al. 2001; Merle et al. 2007; Koess 

& Hamann, 2008). In mastitis milk, PMN proportions of up to 95% have been 

reported (Paape et al. 1979; Kehrli & Shuster, 1994). During various phases of 

inflammation SCC differs in total numbers, whereas differential cell count (DCC) 

varies in composition of the cell populations involved (Nickerson, 1989). 

Therefore, in addition to SCC, determination of different types of immune cells 

present in milk is beneficial for describing udder health status (Pillai et al. 2001; 

Rivas et al. 2001). So far, however, there is little knowledge on DCC and the 

qualitative role of milk leucocytes in healthy udders because DCC in low-SCC 

milk are difficult to perform (Dosogne et al. 2003). 

Data from a previous study (Schwarz et al. 2010) indicated a high 

standard of udder health in a representative part of the dairy cow population in 

the German federal state Hesse and confirmed the threshold of 100  

103 cells/ml differentiating between normal and abnormal secretion of quarters. 

However, unexpectedly high numbers of mastitis pathogens in the SCC range 

≤100  103 cells/ml were found. They could already be detected at a threshold 

of 1  103 cells/ml. Based on these data we suspected inflammatory processes 

even in the SCC range of mammary glands classified as healthy according to 

current definitions. Therefore, the objective of this study was the detailed 

evaluation of health status in udder quarters with SCC clearly <100  

103 cells/ml based on a statistical analysis of DCC. Leucocytes were isolated 

from quarter foremilk samples and differentiated into lymphocytes, 

macrophages, and PMN using microscopy. 

Materials and Methods 

 
Animals and farms 

Twenty dairy cows in good condition and without previous history of mastitis 

were selected from four German dairy farms (A-D) for a detailed analysis of 

their udder health status based on DCC in quarter foremilk samples. The 

animals, Holstein-Frisian cows (n=18) and German Simmental cows (n=2), 

were in different lactations (1-6) and stages of the lactation. Six cows were in 

their first, seven in their second, three in their third, one in her fourth, two in 

their fifth, and one in her sixth lactation. Seven animals were in an early stage 
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of lactation (28-86 d), eight were in mid lactation (107-177 d) and five in a late 

stage of lactation (212-289 d). Foremilk samples from 72 udder quarters of the 

20 cows classified as normal secreting (SCC ≤100  103 cells/ml and no 

pathogen) were selected for DCC analysis. A further 6 quarter foremilk samples 

with SCC of (100-1,824)  103 cells/ml were chosen from 6 cows as control 

group. Clinical mastitis symptoms such as flecks in milk, swelling or redness of 

the udder quarters could only be observed in quarters with SCC >100  

103 cells/ml. 

In Farms A-D, 52-109 dairy cows were housed in pen barns and milked 

twice a day in milking parlours. Milking operations were similar in all farms. After 

forestripping into a foremilk cup, the milkers used damp cotton tissues for udder 

cleaning. Teats were dipped after milking with iodine solution. Feeding 

comprised a total mixed ration consisting of grass and maize silage, rape grist 

and cereals. Water was available ad libitum. Farm A produced high quality milk, 

while farms B-D were conventional milk producers. The average herd annual 

milk yields of the four farms ranged between 6500 and 9900 kg. 

 

Milk sampling 

Quarter foremilk samples were obtained according to DVG (2000) standards. 

Before milking, teat ends were scrubbed with 70% ethanol and the first two 

squirts of milk were discarded. Ten millilitres of milk per udder quarter was 

collected aseptically in a sterile 14-ml plastic sample tube (Greiner Bio-one, 

Frickenhausen, Germany). Four millilitres was used for SCC and bacteriological 

examinations, the remaining 6 ml was subjected to DCC analysis. 

Quarter foremilk samples were taken in farms B-D during morning 

milking. Further processing occurred within 4 h. Samples on farm A were 

collected during evening milking and analysed within 15 h. 

 

Somatic cell counts and bacteriological examinations 

SCC was determined using a Fossomatic 5000 (Foss Electric, Hillerød, 

Denmark). Cytobacteriological analysis of all quarter foremilk samples was 

performed according to IDF (1981) standards. Promptly after collecting the 

quarter foremilk samples and cooled-transportation to the laboratory, 10 µl of 

milk was streaked onto a quadrant of a 7% bovine blood agar plate containing 
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0.05% aesculin (Merck, Darmstadt, Germany), incubated for 48 h at 37 °C, and 

examined for bacterial growth. 

 

Differential cell counts 

Six millilitres of each quarter foremilk sample was transferred into a sterile 14-ml 

plastic tube. Milk samples were then centrifuged at 200 g at 4 °C for 15 min. 

Cream layers and supernatants were discarded and cells were washed once in 

PBS by centrifugation at 200 g at 4 °C for 15 min. Cell pellets were finally 

resuspended in 20 µl PBS. To obtain as many cells as possible for DCC 

analysis on the microscope slide, the whole sediment of the tube was spread 

over an area of 2 cm². Cell staining was performed according to the method of 

Pappenheim (1912). 

Evaluation of the slides followed using light microscopy and oil 

immersion (100-fold magnification). One-hundred cells of each slide were 

counted meander-shaped and differentiated into lymphocytes, macrophages 

and PMN. Cell identification occurred according to standard methods (Coles, 

1974; Lee et al. 1980). Lymphocytes were identified based on their circular form 

(5-10 µm) and the typical shape of the nucleus that almost fills the cell leaving a 

very thin rim of cytoplasm. Cells of 8-30 µm in size containing a little nucleus 

and pale staining were considered as macrophages. The group of PMN was 

characterized as cells of 10-14 µm in size and segmented nuclei. They were 

intensely coloured and contained granula in the cytoplasm. 

 

Statistical analyses 

Associations between values for individual cell populations and values for SCC 

were analysed by applying linear mixed models as implemented in the SAS 

program (version 9.1, SAS Institute, Cary, NC, USA). The statistical model 

included fixed and random effects as well as a regression on SCC up to the 

third polynomial degree, in order to fit regression curves. The non-significant 

regression coefficients of different polynomial structures were removed from the 

model by using F-statistics sum of square type I tests at P<0.05 instead of 

likelihood ratio tests. Based on type I sums of squares at P<0.05, a sequential 

analysis approach is appropriate for polynomial formulated models (Littell et al. 

1998). The applied statistical model [1] was defined as follows: 
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yijkl = μ + herdi + parityj + DIMk + cowl + α1SCCijkl + α2SCC2
ijkl + α3SCC3

ijkl + eijkl 

 

where yijkl = observation for the individual cell population (lymphocytes, 

macrophages, PMN) of the individual udder quarter of cow l; μ = overall mean 

effect; herdi = fixed effect of the i-th herd of cow l; parityj = fixed effect of the j-th 

lactation number of cow l [1, 2, ≥3]; DIMk = fixed effect of the k-th stage of 

lactation of cow l [early, 28-86 d; mid, 107-177 d; late, 212-289 d]; cowl = 

random effect of cow l; SCCijkl = value for SCC of the individual udder quarter of 

cow l; α1,α2, α3 = linear, quadratic, and cubic regression on SCC; and eijkl = 

random residual effect. 

 

For verification of results of model [1], and to test DCC data especially for 

differences in the SCC range ≤100  103 cells/ml, analysis of variance was 

additionally done by including a fixed effect of the SCC group and removing the 

SCC covariates from the statistical model. Therefore, all 78 udder quarters were 

classified into SCC groups I-IV as defined in a previous study (Schwarz et al. 

2010). Group IV represented the control quarters. Twenty-five (31%) of the 

78 samples analysed belonged to group I according to their SCC values of 

≤6.25  103 cells/ml. Forty-one samples (53%) showed SCC values of (>6.25 to 

≤25)  103 cells/ml (group II). Six samples (8%) with SCC of (>25 to ≤100)  

103 cells/ml were categorized into group III. A further 6 samples (8%) with SCC 

>100  103 cells/ml were assorted into group IV. The applied statistical model 

[2] was defined as follows: 

 

yijklm = μ + herdi + parityj + DIMk + cowl + groupm + eijklm 

 

where yijklm = observation for the individual cell population (lymphocytes, 

macrophages, PMN) of the individual udder quarter of cow l; μ = overall mean 

effect; herdi = fixed effect of the i-th herd of cow l; parityj = fixed effect of the j-th 

lactation number of cow l [1, 2, ≥3]; DIMk = fixed effect of the k-th stage of 

lactation of cow l [early, 28-86 d; mid, 107-177 d; late, 212-289 d]; cowl = 

random effect of cow l; groupm = fixed effect of the m-th SCC-group [I, ≤6.25  

103 cells/ml; II, (>6.25 to ≤25)  103 cells/ml; III, (>25 to ≤100)  103 cells/ml; 

IV, >100  103 cells/ml]; and eijklm = random residual effect. 
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Results 

 

Somatic cell counts and bacteriological status of quarter foremilk samples 

The 78 udder quarters selected showed a geometric mean value for SCC of 

11.78  103 cells/ml and a median of 10  103 cells/ml. The quarter with the 

lowest SCC contained 1  103 cells/ml, the quarter with the highest SCC 

contained 1824  103 cells/ml. Udder pathogenic microorganisms were 

identified in only two of the 78 quarter foremilk samples. In two of the six control 

quarters (SCC of 967  103 cells/ml and 1824  103 cells/ml) Escherichia coli 

and Staphylococcus aureus were detected. 

 

Differential cell counts of quarter foremilk samples depending on somatic cell 

counts 

For a more detailed evaluation of the udder health status 100 cells per quarter 

foremilk sample were differentiated into lymphocytes, macrophages, and PMN. 

In view of DCC (n=78) the proportions of lymphocytes lay between 2 and 92% 

with a mean of 44.56% and a SD of 21.63% (Table 1). Proportions of 

macrophages ranged between 8 and 68% with a mean of 34.85% and a SD of 

15.20%. PMN proportions varied between 0 and 88% with a mean of 19.94% 

and a SD of 21.40%. 

 

Table 1. General overview about differential cell counts (DCC) of 78 quarter 
foremilk samples analysed by microscopy 

 DCC in % 

 Lymphocytes Macrophages PMN 

Mean 44.56 34.85 19.94 

SD 21.63 15.20 21.40 

Minimum 2 8 0 

Maximum 92 68 88 

Abbreviation: PMN, polymorphonuclear leucocytes 

 

Because of the wide variations found within the cell populations, 

particularly in case of lymphocytes and PMN, DCC data were tested for 

correlation with SCC using the statistical model [1]. 
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Lymphocytes decreased continuously from 92% at SCC of 1  

103 cells/ml to only 5% at an SCC of 1824  103 cells/ml (Fig. 1A). The 

statistical analysis (model [1]) indicated a significant (P<0.001) negative 

correlation between percentages of lymphocytes and SCC (Table 2). 

 

Table 2. Results of variance analysis (model [1]) for the percentage of the individual 
cell populations in 78 quarter foremilk samples analysed by microscopy† 

 Effect 

Cell population SCC 
Quarter 
position 

Lactation 
number 

Days in 
milk Farm 

Lymphocytes 0.0001 0.41 0.21 0.14 0.05 

Macrophages 0.01 0.68 0.33 0.07 0.05 

PMN 0.0001 0.13 0.29 0.77 0.13 
†Factors analysed were SCC, quarter positions (front right, rear right, front left, and 
rear left), lactation number (1, 2, ≥3), days in milk (28-86 d, 107-177 d, 212-289 d), 
and farm (A-D) 

Abbreviations: SCC, somatic cell counts; PMN, polymorphonuclear leucocytes 
 

Percentages of PMN (Fig. 1B) and lymphocytes (Fig. 1A) emerged in 

contrary directions at rising SCC. PMN increased constantly from 0% at SCC of 

1  103 cells/ml to a maximum of 88% at 139  103 cells/ml. At SCC of 1824  

103 cells/ml the proportion of PMN was 86%. Interestingly, PMN was already 

the predominant cell population at a SCC level of 43  103 cells/ml with a 

proportion of 62%. This event was observed in three udder quarters (SCC (43-

45)  103 cells/ml) of three different cows housed in two different farms. The 

statistical analysis (model [1]) indicated a significant (P<0.001) positive 

correlation between percentages of PMN and SCC (Table 2). 

Within the SCC range of (3-100)  103 cells/ml macrophage proportions 

lay between 8 and 68% (Fig. 1C). At SCC <3  103 cells/ml and in samples with 

>100  103 cells/ml proportions of macrophages were <30%. The statistical 

analysis (model [1]) revealed a significant (P<0.01) negative correlation 

between macrophage percentage and SCC (Table 2). In addition, the position 

of the udder quarter, the lactation number and the stage of lactation had no 

significant impact on the individual cell populations (Table 2). However, 

percentages of lymphocytes and macrophages were significantly influenced by 

the farm (Table 2). 



Microscopic Cell Differentiation in Milk 

 

 48 

Fig. 1. Differential cell counts (DCC) depending on somatic cell counts (SCC): A, Proportions of 
lymphocytes ( LYM) pictured in combination with a calculated potential trendline; B, 
Proportions of polymorphonuclear leucocytes ( PMN) pictured in combination with a 
calculated logarithmic trendline. C, Proportions of macrophages ( MAC); each symbol 

represents the result of one udder quarter analysed, but overlapping is possible. 
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 Statistical analysis (model [1]) revealed a significant negative correlation 

between the percentages of lymphocytes and SCC, a significant negative 

correlation between macrophages and SCC, as well as a significant positive 

correlation between PMN and SCC. To test DCC data especially for differences 

in the SCC range ≤100  103 cells/ml, a second statistical analysis (model [2]) 

was performed (Fig. 2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Comparison of differential cell counts (DCC) within the somatic cell count 

(SCC) range of healthy mammary glands (≤100  103 cells/ml) using 
statistical model [2]. All 78 udder quarters analysed were classified into 

SCC groups I-IV (group I, empty bars, SCC ≤6.25  103 cells/ml, n=25; 

group II, light gray bars, SCC (>6.25-≤25)  103 cells/ml, n=41; group III, 

dark gray bars, SCC (>25-≤100)  103 cells/ml, n=6; group IV, black 

bars, SCC >100  103 cells/ml, n=6). Group IV represents the control 

quarters. Data are expressed as mean  SEM for percentages of the 
individual cell populations in the four SCC groups defined. 
Significance level: ***P<0.001; **P<0.01; *P<0.05; NS, not significant 
Abbrevation: PMN, polymorphonuclear leucocytes 

 

Lymphocytes indicated significantly (P<0.01) higher mean percentages in 

groups I-III (31.31-55.49%) than in group IV (11.56%). Interestingly, mean 

percentages in groups I and II were significantly (P<0.001) higher than those in 

group III. 
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Mean percentages of macrophages indicated significant (P<0.01) 

differences between groups I-III (26.02-37.88%) and IV (10.14%). In addition, 

mean percentages were significantly (P<0.01) lower in group III than those in 

group II.  

Mean percentages of PMN differed significantly (P<0.001) between 

groups I-III (9.69-43.87%) and IV (78.37%). In addition, mean percentages of 

PMN were significantly (P<0.001) lower in groups I and II than those in 

group III. 

Discussion 

 
Together with SCC, determination of DCC in milk is an important tool 

characterizing udder health (Pillai et al. 2001). There are clear SCC cutoffs to 

differentiate between normal and abnormal secretion of quarters. But even in 

healthy udders, inflammations can be suspected under special circumstances 

(Schwarz et al. 2010). The immunological status of mammary glands classified 

by DCC is poorly investigated. Reviewing the literature Medzhitov (2007) 

reported that there might be a lack of knowledge on host defence in 

asymptomatic infections because almost all studies performed so far 

concentrated on symptomatic infections. In the present study, we differentiated 

leucocytes purified from quarter foremilk samples to improve knowledge of the 

immunological status of clinically healthy and subclinically infected bovine 

mammary glands. While SCC of >100  103 cells/ml is normally related to 

inflammatory processes inside the mammary gland, a SCC range of ≤100  

103 cells/ml is in a physiological band (Harmon, 1994; DVG, 2002), but can also 

be related to latent mastitis in the presence of pathogens (Schwarz et al. 2010). 

Here, we predominantly analysed milk samples with SCC <50  103 cells/ml to 

have a high informative value about DCC in low-SCC milk. Our control group 

(SCC >100  103 cells/ml) included only six quarters. However, the SCC range 

>100  103 cells/ml has been studied extensively before and PMN has been 

reported generally to be the dominant cell population in mastitic milk (e.g., 

Leitner et al. 2000; Merle et al. 2005; Koess & Hamann, 2008). 

It is known that the milk fraction collected has an impact on both SCC 

and DCC (Sarikaya et al. 2005; Sarikaya & Bruckmaier, 2006; Olde Riekerink et 
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al. 2007). SCC values in foremilk samples of quarters with a total quarter milk 

SCC >100  103 cells/ml were significantly higher than in cisternal milk 

(Sarikaya & Bruckmaier, 2006). In samples with SCC <100  103 cells/ml 

differences of SCC between foremilk and cisternal milk were only minor. While 

no changes of DCC during milking could be observed in milk with SCC <200  

103 cells/ml, proportions of PMN were higher and proportions of macrophages 

were lower in milk (SCC >200  103 cells/ml) collected post milking compared to 

milk collected premilking or during the milking process (Olde Riekerink et al. 

2007). Sarikaya et al. (2005) also reported that the proportion of macrophages 

decreased while that of PMN increased during milking. Since we concentrated 

predominantly on the analysis of low-SCC milk, we presume that the foremilk 

samples taken in our study are representative for the analysis of the udder 

health status. 

Our results indicate that lymphocytes were the predominant cell 

population in healthy mammary glands. Milk samples with an extremly low SCC 

value of ≤6.25  103 cells/ml revealed high lymphocyte proportions of up to 92% 

(mean value: 55%). In a SCC range of (>6.25 to ≤25)  103 cells/ml a high 

mean proportion of lymphocytes (49%) was determined too. Information on 

DCC in milk samples with such low SCC from other field studies is rare. Only 

Koess & Hamann (2008) reported a mean value of 25% for the proportion of 

lymphocytes in the SCC range of (0-50)  103 cells/ml. Merle et al. (2007) 

measured a mean proportion of 25% of lymphocytes in milk samples with SCC 

<100  103 cells/ml. In an experimental study (Rivas et al. 2001) lymphocyte 

proportions between 54 and 80% were measured pre-inoculation in udder 

quarters with SCC <200  103 cells/ml. Data from our study showed higher 

proportions of lymphocytes in milk with SCC <100  103 cells/ml than reported 

before. This difference resulted from the analysis of milk with very low SCC, 

because lymphocytes were the dominant cell population in these samples. The 

proportions of 2-16% of lymphocytes in milk secreted by diseased udder 

quarters (SCC >100  103 cells/ml) were clearly lower than those in healthy 

quarters. Similar observations were described before (Rivas et al. 2001; Merle 

et al. 2007; Koess & Hamann, 2008). 
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In udder quarters classified as normal secreting (SCC ≤100  

103 cells/ml) PMN proportions ranged from 0 to 63%. Our data showed that 

PMN, particularly in milk samples with SCC values ≤6.25  103 cells/ml, were 

rare (mean PMN proportion: 10%). At a SCC level of (>6.25 to ≤25)  

103 cells/ml the mean proportion of PMN of 14% was also low. Comparable 

data for such low SCC values are not available from the literature. Only a mean 

PMN proportion of 30% in udder quarters with SCC of (0-50)  103 cells/ml was 

reported previously (Koess & Hamann, 2008). However, because of an 

increased transfer of PMN from blood into the mammary gland at the beginning 

of an inflammation (Kehrli & Shuster, 1994; Paape et al. 2002; Paape et al. 

2003), a high percentage of PMN in milk is an important indicator of 

inflammatory reactions (Pillai et al. 2001; Paape et al. 2002). PMN have been 

reported previously as predominant cell population in secretions of diseased 

mammary glands (Paape et al. 1979; Kehrli & Shuster, 1994). We made the 

unexpected observation that in milk of udder quarters classified as normal 

secreting PMN dominated already at SCC ≥43  103 cells/ml. This finding 

suggested that inflammatory processes appear already in a SCC range that is 

clearly below the cutoff value of 100  103 cells/ml. Factors that might have 

triggered the elevated proportion of PMN might be manifold. A dairy cow is 

under constant pressure from udder pathogenic microorganisms in the 

environment. The elevated PMN proportion could be evidence for the initial 

phase of an inflammation. In this regard it is also possible that PMN are able to 

defend against pathogens successfully and prevent mastitis. However, although 

we could not isolate any pathogens in such quarters they might be not healthy 

anyhow. Negative bacteriological results could depend on intermittent pathogen 

shedding (Sears et al. 1990), presence of antimicrobials or other inhibitors in 

milk (Reiter, 1978). At the time of examination pathogens could also be 

ingested by phagocytes or survive intracellularly in the host (Newbould & 

Neave, 1965; Hill et al. 1978). Shedding of too low amounts of pathogens or 

ceased growth may be further reasons for negative bacteriological results 

(Sears et al. 1990). 

The interdependence of infections, inflammatory processes, and immune 

responses in individual udder quarters is discussed controversially in the 
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literature. Some authors suggested that individual udder quarters within a cow 

can be influenced by infections of neighbouring quarters (Merle et al. 2007), 

whereas others did not find any evidence for an interdependence of udder 

quarters (Wever & Emanuelson, 1989) because they did not find DCC to be 

affected by the bacteriological status of adjacent quarters. Our data indicated 

no immunological interdependence between the four udder quarters at low and 

high SCC levels. In the three udder quarters of three different cows with SCC of 

(43-45)  103 cells/ml in foremilk samples, elevated PMN proportions between 

54 and 63% were determined. In the remaining nine quarters of these cows 

clearly lower SCC values of (4-19)  103 cells/ml, lower PMN proportions of 6-

18%, and no bacterial infection were detected. Furthermore, no interactions 

between the quarters were observed in the six cows of the control group with 

high SCC values >100  103 cells/ml and PMN proportions of 65-92% in one 

udder quarter. In these animals SCC <100  103 cells/ml and PMN proportions 

of 4-39%, respectively, were detected in the other three quarters. 

Another factor that might have triggered the elevated percentage of PMN 

is stress (Davis et al. 2008). Although we did not measure parameters 

considering stress, such as corticosterone in plasma, the influence of stress in 

our study might be minimal because the animals analysed were kept under 

optimal conditions and according to national guidelines. No obvious symptoms 

of stress (i.e. kicking during pre-milking preparation of the udder or during 

taking the quarter foremilk samples) were observed. 

The antidromic trend of lymphocyte and PMN percentages at increasing 

SCC is caused by the composition of milk leucocytes. Since they primarily 

consist of lymphocytes, macrophages, and PMN (Sordillo & Nickerson, 1988), 

the increase of the percentage of one cell population implies the decrease of at 

least one of the other cell populations. However, our statistical analysis 

indicated a significant impact of the farms on percentages of both macrophages 

and lymphocytes. This impact might be due to a non-randomized selection of 

cows within the farms and different numbers of cows selected per farm. While 

cows with healthy mammary glands were predominantly selected from farms A, 

B and D, samples from cows with diseased quarters were predominantly 

collected from farm C. 
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Beside PMN, macrophages also possess phagocytic functions. Milk 

samples with extremly low SCC values of ≤6.25  103 cells/ml showed a mean 

proportion of 32% of macrophages. In the SCC range of (>6.25 to ≤25)  

103 cells/ml the mean macrophage proportion was 38%. In the literature a mean 

value of 43% of macrophages was reported for the SCC range of (0-50)  

103 cells/ml (Koess & Hamann, 2008). In the case of diseased udder quarters 

(SCC >100  103 cells/ml) we measured macrophage proportions of 9-28%. 

These results lay also within a wide range of 4-48% as mentioned in other 

studies (Rivas et al. 2001; Merle et al. 2007; Koess & Hamann, 2008). While we 

found that macrophages were the second dominant cell population in almost all 

samples tested in relationship to lymphocytes and PMN, they had been 

reported to be the predominant cell population in milk of healthy mammary 

glands (Lee et al. 1980). This difference might be explainable by different 

definitions of healthy mammary glands. In our study we focused on the analysis 

of immune cells in milk with very low SCC values. However, Lee et al. (1980) 

defined mammary glands as healthy based on negative bacteriological 

examinations and did not present any SCC values. 

Beside leucocytes, epithelial cells can also be found in milk. In the 

literature (Lee et al. 1980; Koess & Hamann, 2008) low proportions of epithelial 

cells of 1-3%, which were similar to our examinations (data not shown), were 

described. Other researchers reported epithelial cell proportions of 10-19% 

(Miller et al. 1991) or even 44% (Leitner et al. 2000). However, proportions of 

≥10% should be discussed critically. Miller et al. (1991) analysed milk of 

primiparous cows during the first 75 days of lactation, whereas Leitner et al. 

(2000) measured epithelial cells by flow cytometry based on a non-specific 

identification procedure. 

Variations in the distribution of leucocytes in milk from non-infected 

mammary glands as shown in other studies, were probably dependent on 

differences in methods, sampling, investigators (Schröder & Hamann, 2005), 

breed (Leitner et al. 2003), stage of lactation (Vangroenweghe et al. 2001; 

Dosogne et al. 2003) and variable SCC. Contrary to other authors (Schröder & 

Hamann, 2005), we did not observe influences of the composition of the sample 
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tubes (glass or plastic) on differences of phagocytic cell percentages (data not 

shown). 

In our study bacteriological examinations revealed udder pathogenic 

microorganisms in only 2 of the 78 udder quarters analysed (2 of the 6 control 

quarters). Esch. coli, however, was found in a quarter with high SCC of 967  

103 cells/ml (DCC: lymphocytes 6%, PMN 85%, macrophages 9%), whereas 

Staph. aureus was detected in a quarter with SCC of 1824  103 cells/ml (DCC: 

lymphocytes 5%, PMN 86%, macrophages 9%). These few bacteriological 

findings did not allow any assessment. However, other studies (Piccinini et al. 

1999) also found PMN to be the dominant cell population in milk of udder 

quarters infected with major pathogens. 

Conclusion 

 

SCC is an undisputed and well-established criterion for the evaluation of udder 

health and milk quality. However, in addition to SCC, DCC can be used for a 

more detailed analysis of the udder health status. Analyzing DCC of mammary 

glands classified as normal secreting by SCC <100  103 cells/ml, inflammatory 

reactions were already detectable at a SCC level of ≥43  103 cells/ml due to 

predominating PMN proportions in foremilk samples of the corresponding udder 

quarters. This is the first study indicating inflammatory reactions in udder 

quarters with SCC that were clearly below the current threshold of 100  

103 cells/ml. 
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Abstract 

 
Somatic cell counts (SCC) are generally used as indicator of udder 

health. In Germany, a cutoff value of 100,000 cells/mL is currently used to 

differentiate between healthy and diseased mammary glands. In addition to 

SCC, differential cell counts (DCC) can be applied for a more detailed 

evaluation of the udder health status. The aim of this study was to differentiate 

immune cells in milk of udder quarters classified as healthy based on SCC 

values of <100,000 cells/mL. Twenty cows were selected and 65 healthy udder 

quarters were compared with a control group of 15 diseased udder quarters 

(SCC >100,000 cells/mL). Cells were isolated from milk of all quarters to 

measure simultaneously percentages of lymphocytes, macrophages, and 

polymorphonuclear neutrophilic leukocytes (PMNL) by flow cytometric analysis. 

The bacteriological status of all 80 quarters was also determined. Differential 

cell count patterns of milk samples (n = 15) with extreme low SCC values of 

≤6,250 cells/mL revealed high lymphocyte proportions of up to 88%. Milk cell 

populations in samples (n = 42) with SCC values from >6,250 to 

≤25,000 cells/mL were also dominated by lymphocytes, whereas DCC patterns 

of 6 out of 41 milk samples with SCC values from ≥9,000 to ≤46,000 cells/mL 

indicated already inflammatory reactions based on the predominance of PMNL 

(56-75%). In 13 of 15 milk samples of the diseased udder quarters (SCC 

>100,000 cells/mL), PMNL were categorically found as dominant cell population 

with proportions of ≥49%. Macrophages were the second predominant cell 

population in almost all samples tested in relation to lymphocytes and PMNL. 

Further analysis of the data demonstrated significant differences of the cellular 

components between udder quarters infected by major pathogens (e.g., 

Staphylococcus aureus; n = 5) and culture-negative udder quarters (n = 56). 

Even the percentages of immune cells in milk from quarters infected by minor 

pathogens (e.g., coagulase-negative staphylococci; n = 19) differed significantly 

from those in milk of culture-negative quarters. Our flow cytometric analysis of 

immune cells in milk of udder quarters classified as healthy by SCC 

<100,000 cells/mL revealed inflammatory reactions based on DCC. 
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Introduction 

 
For mastitis diagnosis, traditional and well-established tests including 

SCC and microbial culture-based methods are standard (Viguier et al., 2009). 

According to current definitions of udder health in Germany, SCC 

≤100,000 cells/mL in quarter foremilk samples are in the physiological range 

(DVG, 2002). It is accepted that the crossover of normal cellular defense in the 

mammary gland into an inflammatory reaction starts at a level of 

>100,000 cells/mL (Harmon, 1994; DVG, 2002). However, SCC vary with the 

status of lactation, age, stress of the animals, time and frequency of milking, 

season, but primarily in response to udder infection (Dohoo and Meek, 1982; 

Harmon, 1994). Somatic cell count is a robust quantitative measurement, but 

does not divide the cells present in milk into different cell types (Kehrli and 

Shuster, 1994; Rivas et al., 2001a). 

In the mammary gland, number and distribution of leukocytes are 

important for the success of udder defenses against invading pathogens 

(Leitner et al., 2003). Lymphocytes, macrophages, and polymorphonuclear 

neutrophilic leukocytes (PMNL) play an important role in inflammatory 

responses within the mammary gland (Paape et al., 1979; Sordillo and 

Nickerson, 1988). Induction and suppression of immune responses are 

regulated by lymphocytes (Nickerson, 1989). They recognize antigens through 

membrane receptors specific for invading pathogens (Sordillo et al., 1997). 

Macrophages are active phagocytic cells in the mammary gland and capable of 

ingesting bacteria, cellular debris, and accumulated milk components (Sordillo 

and Nickerson, 1988). Milk or tissue macrophages recognize the invading 

pathogens and initiate an immune response by the release of chemoattractants 

inducing the rapid recruitment of PMNL into the mammary gland (Paape et al., 

2002; Oviedo-Boyso et al., 2007). The main task of PMNL is to defend against 

invading bacteria at the beginning of an acute inflammatory process (Paape et 

al., 1979; Oviedo-Boyso et al., 2007). Not only does the number of PMNL 

increase enormously but their defensive responses also increase (Targowski, 

1983; Paape et al., 2003). 
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The distribution of leukocyte types varies in normal milk without any 

symptoms of mastitis. Some recent studies found lymphocyte proportions 

between 14 and 80%, macrophage proportions between 12 and 46%, and 

those of PMNL between 6 and 50% (Rivas et al., 2001a; Merle et al., 2007; 

Koess and Hamann, 2008). In milk from cows with mastitis, the proportions of 

PMNL can reach 95% (Paape et al., 1979; Kehrli and Shuster, 1994). During 

various phases of inflammation both overall SCC and differential cell count 

(DCC) change (Nickerson, 1989). Therefore, in addition to SCC, determination 

of different types of immune cells present in milk is beneficial for describing the 

udder health status (Pillai et al., 2001; Rivas et al., 2001a). So far, however, 

there is little knowledge on DCC and the qualitative role of milk leukocytes in 

udders classified as healthy because DCC in low-SCC milk are difficult to 

perform (Dosogne et al., 2003). 

Data of a previous study (Schwarz et al., 2010) indicated a high standard 

of udder health in a representative part of the dairy cow population in the 

German federal state Hesse and confirmed the threshold of 100,000 cells/mL 

differentiating between healthy and diseased mammary glands. However, 

unexpectedly high numbers of mastitis pathogens were found in the SCC range 

≤100,000 cells/mL. In some cases, pathogens were detected in milk samples 

from some cows with an SCC of 1,000 cells/mL. Based on these data, we 

suspected inflammatory processes even in the SCC range of mammary glands 

classified as healthy according to the current definitions. Therefore, the 

objective of this study was a detailed evaluation of the health status in udder 

quarters with SCC clearly below 100,000 cells/mL based on a statistical 

analysis of DCC. Leukocytes were isolated from quarter foremilk samples and 

differentiated simultaneously into lymphocytes, macrophages, and PMNL using 

flow cytometry. 

Materials and Methods 

 
Animals and Farms 

Twenty Holstein-Frisian cows in good health status were selected from 

3 German dairy farms (A-C) for detailed analysis of their udder health status 

based on DCC in quarter foremilk samples. The animals were in different 
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lactations (1 to 6) and stages of the lactation. In total, 80 foremilk samples were 

selected for DCC analysis. Sixty-five samples were obtained from udder 

quarters of 18 cows classified as healthy (SCC ≤100,000 cells/mL). Fifteen 

foremilk samples were chosen as the control group. Seven of those samples 

with SCC from 100,000 to 624,000 cells/mL were derived from 7 individual 

cows. A further 8 quarter foremilk samples with SCC ranging from 100,000 to 

1,394,000 cells/mL were collected from 2 cows that were clinically diagnosed 

with mastitis. Symptoms included flecks in the milk, swelling, or redness of the 

involved quarters. 

In Farms A to C, 50 to 160 dairy cows were housed in pen barns and 

milked twice per day in milking parlors. The milking operations were similar in all 

farms. After forestripping into a foremilk cup, the milkers used damp cotton 

tissues for udder cleaning. Teats were dipped after milking with iodine solution. 

In all of the dairy farms, animals were fed with a TMR consisting of grass and 

maize silage, rape grist, and cereals. Water was available ad libitum. All farms 

were conventional milk producers and the average herd milk yields ranged 

between 8,000 and 10,000 kg/yr (305-d milk yield: 7,393 to 9,385 kg/yr). 

 

Milk Sampling 

Quarter foremilk samples were obtained according to German Veterinary 

Society (DVG, 2000) standards. Before milking, teat ends were scrubbed with 

70% ethanol and the first 2 squirts of milk were discarded. Aliquots of 110 mL of 

milk per udder quarter were collected aseptically in sterile 14-mL plastic sample 

tubes and 2 sterile 50-mL plastic tubes (SARSTEDT, Nümbrecht, Germany). 

Ten milliliters were saved for SCC and bacterial measurements and 100 mL for 

DCC analysis. Quarter foremilk samples were taken in all farms during morning 

milking. Further processing occurred within 7 h. 

 

SCC and Bacteriological Examinations 

Somatic cell counts were determined using a Fossomatic 5000 (Foss 

Electric, Hillerød, Denmark). The cytobacteriological analysis of all quarter 

foremilk samples was performed according to the IDF (1981) standards. 

Promptly after collection, quarter foremilk samples were cooled in a cold box 

and transported to the laboratory. Ten microliters milk were streaked onto a 
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quadrant of a 7% bovine blood agar plate containing 0.05% esculin (Merck, 

Darmstadt, Germany), incubated for 48 h at 37°C, and examined. 

 

Differential Cell Counts 

Isolation of Milk Cells. Milk samples were centrifuged for 15 min at 

200 × g and 4°C before cream layers and supernatants were discarded. To 

wash the cells, cell pellets were resuspended in PBS and then centrifuged 

again for 15 min at 200 × g and 4°C. Washed pellets were resuspended at a 

final dilution of 1 × 106 cells/100 µL based on predetermined SCC values for 

each milk sample. 

Antibody Staining of Milk Cells. For DCC analysis, 100 µL of the cell 

suspension was transferred into a 5-mL BD Falcon™ tube (Becton, Dickinson 

and Co., Heidelberg, Germany). For identification of PMNL and macrophages, 

nonconjugated monoclonal antibodies against CD11b- and CD14-molecules 

were used (Table 1). Volumes of 5 µL of anti-CD11b (IgG2b) and 10 µL of anti-

CD14 (IgG1), both diluted 1:10 in PBS, were added and the tubes incubated on 

ice for 30 min. After adding 2 mL of FACS Lysing Solution (Becton, Dickinson 

and Co.) a further incubation step of 15 min followed. Cells were centrifuged 

(5 min at 250 × g) then resuspended in 3 mL of PBS and allowed to stand for 

5 min. After a second wash step, cells were resuspended in 50 µL of PBS and 

then incubated with secondary antibodies. Specifically, 10 µL of rat-anti-mouse-

IgG2b diluted 1:10 in PBS and 5 µL nondiluted rat-anti-mouse-IgG1 were 

applied (Table 1). After incubation for 30 min, cells were washed twice again 

and finally resuspended in 500 µL of PBS. Cells were kept on ice during all 

procedures, centrifuged at 4°C, and incubated in the dark. 

Flow Cytometry Analysis. Stained samples were analyzed with a 

FACSCalibur™ flow cytometer (Becton, Dickinson and Co.) with standard 

optical equipment using an argon ion laser and a red diode laser with excitation 

wavelengths of 488 and 635 nm, respectively. The software CellQuest Pro 

(Becton, Dickinson and Co.) was used for data collection and analysis. Five 

thousand cells from each sample were differentiated into lymphocytes, 

macrophages, and PMNL. Lymphocytes were identified by size (forward light 

scatter, FSC-H) and granularity (side light scatter, SSC-H). The PMNL were 

measured as CD11b+ cells, whereas macrophages were defined as both 
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CD11b+ and CD14+ cells. Gates enclosing the antibody-positive cells were 

placed outside the upper limit of background fluorescence. Cells with no 

antibody labeling served as a negative control and were regarded as a measure 

for background fluorescence. In addition, isotype control antibodies (rat-IgG1, 

қ isotype control, 554686 and rat-IgG2a, қ isotype control, 554688, Becton, 

Dickinson and Co.) were used to allow measurement of background staining. 

 
Table 1. Monoclonal antibodies used for differentiation and labeling of bovine milk cells 

applying flow cytometry analysis 

Type Description Name Isotype Specificity Host Company 

α-CD11b PMNL, macrophages, 
and monocytes 

MM10A IgG2b Bovine Mouse VMRD1 

α-CD14 Macrophages and 
monocytes 

MM61A IgG1 Bovine Mouse VMRD 

α-IgG1 APC2 marker 550874 IgG1, қ Murine Rat BD3 

α-IgG2b FITC4 marker 553395 IgG2a, қ Murine Rat BD 
1VMRD Inc., Pullman, WA. 
2Allophycocyanin 
3Becton, Dickinson and Co., Heidelberg, Germany. 
4Fluorescein isothiocyanate. 

 

Statistical Analysis 

Associations between the individual cell populations and SCC, as well as 

between the individual cell populations and the bacteriological status of the 

udder quarters were analyzed by applying linear mixed models with the SAS 

program (version 9.1, SAS Institute, Cary, NC). The statistical model included 

the fixed effects of herd, lactation number, position of the udder quarter, as well 

as a regression on SCC up to the third polynomial degree, to fit regression 

curves. The nonsignificant regression coefficients of different polynomial 

structures were removed from the model by using F-statistics sum of square 

type I tests at P < 0.05 instead of likelihood ratio tests. Based on type I sums of 

squares at P < 0.05, a sequential analysis approach is appropriate for 

polynomial formulated models (Littell et al., 1998). Variance analysis of SCC 

groups was done by modeling a fixed SCC group effect and removing SCC 

covariates from the statistical model. 
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Results 

 

SCC and Bacteriological Status of Quarter Foremilk Samples 

Quarter foremilk samples were taken from 20 cows housed in 3 German 

dairy farms (A to C) to determine the bacteriological status and SCC. The 

80 udder quarters selected showed an SCC mean value of 85,780 cells/mL with 

a standard deviation of 233,040 cells/mL (Table 2). Bacteria were identified in 

24 of the 80 quarter foremilk samples. Thirteen of the 15 control quarters (SCC 

>100,000 cells/mL) were culture-positive. In one quarter with an SCC value of 

454,000 cells/mL Staphylococcus aureus was isolated. In 3 quarters (SCC 

181,000 to 1,394,000 cells/mL) Streptococcus (Strep.) uberis was detected. A 

double infection with Strep. uberis and Strep. dysgalactiae was diagnosed in an 

udder quarter with SCC of 139,000 cells/mL. In 5 further quarters (SCC 

104,000 to 624,000 cells/mL), CNS were identified. Corynebacterium spp. could 

be isolated from 3 quarters with SCC from 116,000 to 587,000 cells/mL. In 11 of 

the 65 udder quarters with SCC <100,000 cells/mL, bacteria were found, which 

indicated a latent mastitis in these quarters according to DVG (2002) definitions. 

Interestingly, all of those bacteria were CNS and detected in the SCC range 

from 7,000 to 59,000 cells/mL. 

 

Table 2. General overview about SCC and differential cell counts (DCC) of the 
80 quarter foremilk samples analyzed using flow cytometry 

  DCC (%) 

Item 

SCC 

(  1,000 cells/mL) Lymphocytes Macrophages PMNL 

Mean 85.78 48.50 21.74 29.76 

SD 233.04 23.39 12.07 22.44 

Minimum 2 2.37 2.37 4.48 

Maximum 1,394 87.75 55.71 85.27 
 

DCC of Quarter Foremilk Samples Depending on SCC 

For a more detailed evaluation of the udder health status, 5,000 cells per 

quarter foremilk sample were differentiated into lymphocytes, macrophages, 

and PMNL by flow cytometry. Over all samples (n = 80), the proportions of 

lymphocytes ranged between 2.37 and 87.75%, with a mean of 48.50% and a 

standard deviation of 23.39% (Table 2). Macrophages ranged between 2.37 
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and 55.71%, with a mean of 21.74% and a standard deviation of 12.07%. 

Polymorphonuclear neutrophilic leukocytes proportions varied between 4.48 

and 85.27%, with a mean of 29.76% and a standard deviation of 22.44%. 

 

 

Figure 1. Differential cell counts depending on SCC: proportions of 
lymphocytes ( LYM), pictured in combination with a calculated 
potential trendline; each symbol represents the result of 1 udder 
quarter analyzed, but overlapping is possible. 

 

Because of the wide variations found within the cell populations, 

particularly in the case of lymphocytes and PMNL, DCC data were tested 

statistically for correlation with SCC. The proportion of lymphocytes decreased 

from >60% at SCC values <10,000 cells/mL to 18.67% at an amount of 

1,394,000 cells/mL (Figure 1). However, lymphocytes were the predominant cell 

population in 75% of the 65 healthy mammary glands (SCC ≤100,000 cells/mL), 

as clearly demonstrated for a single udder quarter (Figure 2A and B). The milk 

leukocytes secreted from this healthy quarter (SCC of 10,000 cells/mL) 

consisted of 58.20% lymphocytes, 23.06% macrophages, and 18.74% PMNL 

(Figure 2A and B). The statistical analysis indicated a significant (P < 0.001) 

negative correlation between percentages of lymphocytes and SCC (Table 3). 

As indicated by the calculated trend lines, percentages of PMNL (Figure 

3) and lymphocytes (Figure 1) emerged in contrary directions as SCC 

increased. 
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Figure 2. Dot plots of the flow cytometric analysis of milk leukocytes: forward 
scatter (FSC-H) versus side scatter (SSC-H) plots (a and c) show the 
size (FSC-H) and granularity (SSC-H) of the leukocytes. The 
CD11b FITC versus CD14 APC plots (b and d) show the results of 
the fluorescence analysis of the leukocytes. Lymphocytes (R1) were 
recognized based on physical parameters. Macrophages (R2) were 
identified as CD11b+ and CD14+ cells, whereas PMNL (R3) were 
defined as CD11b+ cells. Data show representative FACS profiles of 
a healthy mammary gland with SCC of 10,000 cells/mL (a and b) and 
a diseased mammary gland with SCC of 116,000 cells/mL and 
detection of Corynebacterium spp. (c and d). 

 

Polymorphonuclear neutrophilic leukocytes increased from <30% within the 

SCC range of <10,000 cells/mL to 63.65% at SCC of 1,394,000 cells/mL. 

Apparent inflammatory reactions (e.g., increased PMNL proportion of 74.43%) 

could be detected in samples with SCC values ≥9,000 cells/mL. This 

relationship was observed in 6 udder quarters (SCC from 9,000 to 

46,000 cells/mL) of 2 different cows housed in farm C. However, PMNL were  
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Table 3. Results of variance analysis for the percentage of the individual cell 

populations in 80 quarter foremilk samples analyzed using flow 
cytometry1 

 Effect 

Cell population SCC 
Quarter 
position 

Lactation 
number Farm 

Lymphocytes *** NS * * 

Macrophages NS NS * NS 

PMNL *** NS NS * 
1Analyzed factors were SCC, quarter positions (front right, rear right, front left, 
and rear left), lactation number (1, 2, and ≥ 3) and farm (A to C). 

*** P < 0.001; * P < 0.05; NS = P > 0.05. 
 

the predominant cell population in 86% of the 15 diseased mammary glands 

(SCC >100,000 cells/mL), as demonstrated for a single udder quarter (Figure 

2C and D). Although 85.27% of milk leukocytes of this quarter were PMNL, 

percentages of macrophages and lymphocytes of 12.35% and 2.38%, 

respectively, were low (Figure 2C and D). This quarter showed an SCC value of 

116,000 cells/mL and the bacteriological examination revealed 

Corynebacterium spp. The statistical analysis indicated a significant (P < 0.001) 

positive correlation between percentages of PMNL and SCC (Table 3). 

 

 

Figure 3. Differential cell counts depending on SCC: proportions of PMNL (), 
pictured in combination with a calculated logarithmic trendline; each 
symbol represents the result of 1 udder quarter analyzed, but 
overlapping is possible. 
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Within an SCC range of 8,000 to 100,000 cells/mL, the proportions of 

macrophages ranged between 7.51 and 55.71% (Figure 4). At SCC 

<8,000 cells/mL and in samples with >100,000 cells/mL, the proportions of 

macrophages were <40%. The statistical analysis revealed no significant 

correlation between percentages of macrophages and SCC (Table 3). In 

addition, the percentages of the individual cell populations were significantly 

influenced by lactation number and the farm but not by the position of the udder 

quarter (Table 3). 
 

 

Figure 4. Differential cell counts depending on SCC: proportions of 
macrophages ( MAC); each symbol represents the result of 
1 udder quarter analyzed, but overlapping is possible. 

 

Statistical analysis revealed a significant negative correlation between 

lymphocyte percentages and SCC as well as a significant positive correlation 

between PMNL percentages and SCC. However, to test whether the 

immunological status differed statistically within the SCC range 

≤100,000 cells/mL, all udder quarters analyzed were classified into SCC groups 

I to IV, as defined in a previous study (Schwarz et al., 2010). Group IV 

represented the control quarters. Fifteen (18.75%) of the 80 samples analyzed 

belonged to group I according to their SCC values ≤6,250 cells/mL. Forty-two 

samples (52.5%) showed SCC values between >6,250 and ≤25,000 cells/mL 

(group II). Eight samples (10%) with SCC from >25,000 cells/mL to 
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≤100,000 cells/mL were categorized into group III. Fifteen other samples 

(18.75%) with SCC >100,000 cells/mL were assorted into group IV. 

The mean percentages of lymphocytes were significantly (P < 0.001) 

higher in groups I to III (50.61-62.99%) than in group IV (19.17%; Figure 5). In 

addition, mean percentages in group I were significantly (P < 0.05) higher than 

those in group III (Figure 5). Significant differences were not detected between 

the mean percentages of macrophages within the 4 SCC groups (21.15-

27.13%; Figure 5). Mean percentages of PMNL differed significantly (P < 0.001) 

between groups I to III (15.35-22.26%) and IV (59.68%; Figure 5). However, 

significant differences could not be calculated between the mean percentages 

of PMNL within groups I to III. 
 

 

Figure 5. Comparison of differential cell counts within the SCC range of healthy 
mammary glands (≤100,000 cells/mL). All 80 udder quarters analyzed 
were classified into SCC groups I to IV (group I, empty bars, SCC 
≤6,250 cells/mL, n = 15; group II, light gray bars, SCC >6,250 to 
≤25,000 cells/mL, n = 42; group III, dark gray bars, SCC >25,000 to 
≤100,000 cells/mL, n = 8; group IV, black bars, SCC 
>100,000 cells/mL, n = 15). Group IV represents the control quarters. 

Data are expressed as mean  standard error of the means for 
percentages of the individual cell populations in the 4 SCC groups 
defined. *** P < 0.001; * P < 0.05; NS = P > 0.05. 
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DCC of Quarter Foremilk Samples Depending on the Bacteriological 

Status 

Significant correlations were identified between the individual cell 

populations, in particular with respect to lymphocytes or PMNL, and SCC. To 

analyze and compare DCC data depending on the mastitis pathogens detected, 

all 80 mammary glands analyzed were classified into three groups (no, minor, 

and major pathogens) according to Reneau (1986). In 56 (70%) of the 

80 quarters, no pathogens could be detected. Minor pathogens were detectable 

in 19 samples (23.75%), whereas major pathogens were isolated in 5 samples 

(6.25%). 
 

 

Figure 6. Differential cell counts depending on the bacteriological status of the 
mammary glands. The 80 udder quarters analyzed were classified 
into no pathogens (dark grey bars, n = 56), minor pathogens (e.g., 
CNS, black bars, n = 19), or major pathogens (e.g., Staphylococcus 

aureus, empty bars, n = 5). Data are expressed as mean  standard 
error of the means for percentages of the individual cell populations 
in the 3 groups defined. *** P < 0.001; ** P < 0.01; NS = P > 0.05. 

 

The mean lymphocyte percentage in milk of culture-negative udder 

quarters (58.48%) was significantly (P < 0.01) higher than in milk of culture-

positive quarters (24.91-37.63%; Figure 6). In case of macrophages the mean 

percentages (19.87-24.18%) indicated no significant differences depending on 

the bacteriological status (Figure 6). Polymorphonuclear neutrophilic leukocytes 
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showed significantly (P < 0.01) higher mean percentages in culture-positive 

udder quarters (38.90-55.96%) than in culture-negative quarters (17.23%; 

Figure 6). 

Discussion 

 
Together with SCC, determination of DCC in milk is an important tool 

characterizing udder health (Pillai et al., 2001). Clear SCC cutoffs exist defining 

an udder as healthy or not. But even in healthy udders, inflammations can be 

suspected under special circumstances (Schwarz et al., 2010). The 

immunological status of mammary glands classified as healthy based on DCC 

is poorly investigated. Reviewing the literature, Medzhitov (2007) reported that 

a lack of knowledge on host defense in asymptomatic infections might exist 

because almost all studies performed so far concentrated on symptomatic 

infections. In this study, we differentiated leukocytes purified from quarter 

foremilk samples to improve knowledge of the immunological status of clinically 

healthy and subclinically infected bovine mammary glands. Although SCC of 

>100,000 cells/mL are normally related to inflammatory processes inside the 

mammary gland, a SCC of ≤100,000 cells/mL is generally accepted as normal 

or physiological (Harmon, 1994; DVG, 2002), but can also be related to latent 

mastitis in the presence of pathogens (Schwarz et al., 2010). 

Our results indicated that lymphocytes were the predominant cell 

population in healthy mammary glands. Milk samples with an extreme low SCC 

value of ≤6,250 cells/mL revealed high lymphocyte proportions of up to 88% 

(mean value: 63%). In an SCC range from >6,250 to ≤25,000 cells/mL, a high 

mean proportion of lymphocytes (58%) was determined, too. To our knowledge, 

information about DCC in milk samples with that low SCC is not available in the 

literature. Flow cytometry studies measuring lymphocytes based on a 

combination of physical parameters and nucleic acid staining revealed mean 

proportions of 5% for udder quarters with SCC from 25,000 to 100,000 cells/mL 

(Östensson et al., 1988) and 57% for udder quarters with SCC 

<200,000 cells/mL (Dosogne et al., 2003). The clearly higher proportions of 

lymphocytes measured in our study are explainable by the analysis of samples 

with clearly lower SCC and the predominance of lymphocytes in those samples. 
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The proportions of 2 to 42% of lymphocytes in milk of diseased udder quarters 

were clearly lower compared to those in healthy udder quarters. Similar 

observations were described before (Östensson, 1993; Rivas et al., 2001a). In 

view of the flow cytometric method, considering and identifying preferably all 

lymphocytes, we measured them based on physical characteristics according to 

previous studies (Riollet et al., 2001; Rivas et al., 2001b). Because lymphocytes 

isolated from blood were almost indistinguishable from those isolated from milk 

(Redelman et al., 1988), the definition of our lymphocyte gate resulted from the 

analysis of blood and milk cells. However, other recent studies (Rivas et al., 

2001a; Koess and Hamann, 2008) used an antibody against CD3-molecules for 

the identification of lymphocytes and detected CD3+ lymphocytes with wide 

variations from 11 to 88% in non-mastitic milk. 

In mammary glands classified as healthy (SCC ≤100,000 cells/mL), the 

proportion of PMNL ranged from 4 to 74%. Our data showed that PMNL in milk 

samples with SCC values ≤6,250 cells/mL were rare (mean proportion: 15%). At 

an SCC level of >6,250 to ≤25,000 cells/mL, the mean proportion of PMNL of 

17% was also low. Comparable data for such low SCC values are not available 

from the literature. However, some authors (Koess and Hamann, 2008) 

measured PMNL with a mean proportion of 42% in milk of healthy udder 

quarters with SCC <100,000 cells/mL applying an antibody against CD11b-

molecules. In an experimental study, CD11b+ PMNL were measured 

preinoculation with proportions between 11 and 36% in milk of quarters with 

SCC <200,000 cells/mL (Rivas et al., 2001a). However, inflammation is 

generally defined as an increase of leukocytes, especially PMNL, in tissues or 

body fluids infected by pathogens. An increased transfer of PMNL from blood 

into the mammary gland at the beginning of an inflammation could be detected 

(Burvenich et al., 1994; Kehrli and Shuster, 1994; Paape et al., 2002, 2003). 

Therefore, a high PMNL percentage in milk is accepted as an important 

indicator of inflammatory reactions (Pillai et al., 2001; Paape et al., 2002). 

Polymorphonuclear neutrophilic leukocytes have previously been reported as 

predominant cell population in secretions of diseased mammary glands (Paape 

et al., 1979; Kehrli and Shuster, 1994). We made the unexpected observation, 

that in milk of mammary glands classified as healthy, PMNL dominated at SCC 

≥9,000 cells/mL. This finding suggests that inflammatory processes can appear 
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within an SCC range that is clearly below the cutoff value of 100,000 cells/mL. 

Factors that might have triggered the elevated proportion of PMNL might be 

manifold. A dairy cow is under constant pressure from udder pathogenic 

microorganisms of the environment. The elevated proportion of PMNL could be 

evidence for the initial phase of an inflammation. In this regard, it is also 

possible that PMNL are able to defend pathogens successfully and prevent 

mastitis. However, although we could not isolate any pathogens in such 

quarters, they might be infected nonetheless. Negative bacteriological results 

could depend on intermittent pathogen shedding (Sears et al., 1990), presence 

of antimicrobials, or other inhibitors in milk (Reiter, 1978). At the time of 

examination pathogens could also be ingested by phagocytes or survive 

intracellularly in the host (Newbould and Neave, 1965; Hill et al., 1978). 

Shedding of too low amounts of pathogens or ceased growth may be further 

reasons for negative bacteriological results (Sears et al., 1990). 

The interdependence of infections, inflammatory processes, and immune 

responses in individual udder quarters is discussed controversially in the 

literature. Some authors suggested that individual udder quarters within a cow 

can be influenced by infections of neighboring quarters (Merle et al., 2007), 

whereas others did not find any evidence for an interdependence of udder 

quarters (Wever and Emanuelson, 1989) because they did not find DCC to be 

affected by the bacteriological status of adjacent quarters. Our data indicated 

immunological interdependence as well as independence between the 4 udder 

quarters at low and high SCC levels. In the 6 udder quarters of 2 different cows 

with SCC from 9,000 to 46,000 cells/mL in foremilk samples, elevated PMNL 

proportions between 56.21 and 74.43% were determined. In the remaining 

2 quarters of these cows (control group), clearly higher SCC values of 

104,000 and 587,000 cells/mL, PMNL proportions of 74.56 and 77.56%, and 

bacterial infections with CNS or Corynebacterium spp. were detected. However, 

no interactions between the individual quarters were observed in 5 of the 

7 cows of the control group with 3 healthy and 1 diseased udder quarter. Each 

of these cows showed SCC values >100,000 cells/mL, PMNL proportions of 

72.08 to 85.27%, and an infection with CNS or Corynebacterium spp. in 1 udder 

quarter. In the remaining 3 quarters, SCC values <100,000 cells/mL and PMNL 

proportions between 5.12 and 27.79%, respectively, were detected. 
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Another factor that might have triggered the elevated proportion of PMNL 

is stress (Davis et al., 2008). Although we did not measure parameters 

considering stress, such as corticosterone in plasma, the influence of stress in 

our study might be minimal because the animals analyzed were kept under 

optimal conditions and according to national guidelines. No obvious symptoms 

of stress (i.e., kicking during pre-milking preparation of the udder or during 

taking the quarter foremilk samples) could be observed. 

The antidromic trend of lymphocyte and granulocyte percentages at 

increasing SCC is caused by the composition of milk leukocytes. Because they 

primarily consist of lymphocytes, macrophages, and PMNL (Sordillo and 

Nickerson, 1988), the increase of the percentage of one cell population implies 

the decrease of at least one of the other cell populations. However, our 

statistical analysis indicated significant effects of the farms on percentages of 

both PMNL and lymphocytes. These effects might be due to a non-randomized 

selection of the cows within the farms and the different numbers of cows 

selected per farm. Whereas cows with healthy mammary glands were 

predominantly selected from farms A and C, samples from cows with diseased 

quarters were predominantly collected in farm B. In addition, a significant effect 

of the lactation number on percentages of lymphocytes and macrophages was 

found. This phenomenon might be explainable due to the exposure of the 

mammary glands during the lactation. The milking process by milking machines 

and the constant contact to the environment could be responsible for both 

increasing SCC values (Harmon, 1994) and increasing percentages of PMNL 

(Vangroenweghe et al., 2001) detected in the course of the lactation period and 

in milk of cows with higher lactation numbers. Vice versa, the mammary glands 

of cows in their first lactation period, in particular at the beginning of the 

lactation, were only influenced slightly by milking machines and the 

environment. 

Beside PMNL, macrophages posses phagocytic functions, too. We 

detected proportions of macrophages in healthy mammary glands (SCC 

≤100,000 cells/mL) between 2 and 56%. Milk samples with extreme low SCC 

values of ≤6,250 cells/mL showed a mean proportion of macrophages of 22%. 

Within the SCC range from >6,250 to ≤25,000 cells/mL, the mean macrophage 

proportion was 24%. Due to the expression of CD14 (Berthon and Hopkins, 
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1996; Sopp et al., 1996) and CD11b (Splitter and Morrison, 1991; Howard and 

Naessens, 1993) on monocytes and macrophages, we defined macrophages 

as both CD11b+ and CD14+ cells. To our knowledge, this is the first study 

measuring DCC in milk with such a definition of macrophages. A mean value of 

34% of macrophages identified with an antibody against CD14-molecules was 

reported for the SCC range <100,000 cells/mL (Koess and Hamann, 2008). 

Rivas et al. (2001a) measured macrophages with an antibody against CD11b-

molecules and detected proportions between 1 and 20% in quarters with SCC 

of <200,000 cells/mL. In case of diseased udder quarters (SCC 

>100,000 cells/mL), we measured macrophages with proportions of 9 to 42% 

(mean proportion: 21%). These results were similar to the mean proportion of 

16% (Koess and Hamann, 2008) and proportions of macrophages between 21 

and 48% (Rivas et al., 2001a). Although we found macrophage percentages 

with wide variations in both healthy and diseased mammary glands, they had 

been reported to be the predominant cell population in milk of healthy mammary 

glands (Lee et al., 1980; Östensson et al., 1988). This difference might be 

explainable by different definitions of healthy mammary glands. In our study, we 

focused on the analysis of immune cells in milk with very low SCC values. 

However, Lee et al. (1980) defined mammary glands as healthy based on 

negative bacteriological examinations, but did not present any SCC values. 

Östensson et al. (1988) analyzed foremilk samples of bacteriologically negative 

quarters with an SCC mean value of 89,000 cells/mL. 

Beside leukocytes, epithelial cells can also be found in milk. Although 

some researchers (Lee et al., 1980; Koess and Hamann, 2008) described low 

proportions of 1 to 3%, others reported proportions of epithelial cells of 10 to 

19% (Miller et al., 1991) or even 44% (Leitner et al., 2000). However, 

proportions of ≥10% should be discussed critically. Miller et al. (1991) analyzed 

milk of primiparous cows during the first 75 d of lactation, whereas Leitner et al. 

(2000) measured epithelial cells based on a nonspecific identification using flow 

cytometry. Because cows selected in our study were in different lactations and 

at least 70 d in lactation, we presume that percentages of epithelial cells in their 

milk were low. Therefore, and because their immunological properties are not 

well understood, we did not consider epithelial cells. They were completely 
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disregarded in other flow cytometric DCC studies (Rivas et al., 2001a; Koess 

and Hamann, 2008), too. 

Variations in the distribution of leukocytes in milk from non-infected 

mammary glands, as shown in other studies, were probably dependent on 

differences in methods, sampling, investigators (Schröder and Hamann, 2005), 

breeds (Leitner et al., 2003), stages of lactation (Vangroenweghe et al., 2001; 

Dosogne et al., 2003), and variable SCC. In contrast to other authors (Schröder 

and Hamann, 2005), we did not observe influences of the composition of the 

sample tubes (glass or plastic) used on differences of phagocytic cell 

percentages (data not shown). However, due to the rapid characterization of a 

large number of cells as well as the definite identification of individual cell 

populations, using specific antibody flow cytometric analysis gives more 

accurate results compared with microscopic analysis (Loken and Stall, 1982; 

Rivas et al., 2001a; Dosogne et al., 2003; Koess and Hamann, 2008). 

In our study, bacteriological examinations revealed udder pathogenic 

microorganisms in 24 of the 80 udder quarters analyzed (11 of the 65 healthy 

quarters with SCC <100,000 cells/mL and 13 of the 15 control quarters with 

SCC >100,000 cells/mL). Statistical analysis of DCC data revealed significant 

differences of cellular components in milk between culture-positive and culture-

negative udder quarters. Interestingly, these results also indicated that, even in 

case of the presence of minor pathogens, the percentages of lymphocytes and 

PMNL differed significantly from those in culture-negative quarters. However, 

DCC patterns of udder quarters with SCC ≤10,000 cells/mL and culture positive 

for minor pathogens did not indicate inflammatory reactions. Therefore, it can 

be speculated that the pathogens detected in these samples originated from 

contaminations of the skin, teat canal, or environment. Nevertheless, in milk 

samples with >10,000 to 25,000 cells/mL containing minor pathogens, the 

proportions of PMNL were already twice as high compared to bacteriological 

negative quarters and reached 25%. This observation suggested that the 

pathogens originated from mammary gland tissue and that, even at such low 

cell numbers, PMNL were recruited from blood into milk to phagocyte bacteria. 

Differential cell count results of quarters infected with major pathogens 

indicated an IMI and were in agreement with previous observations (Piccinini et 

al., 1999). 
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Conclusions 

 
Somatic cell count is an undisputed and well-established criterion for the 

evaluation of udder health and milk quality. However, in addition to SCC, DCC 

can be used for a more detailed analysis of the udder health status. Analyzing 

DCC of udder quarters classified as healthy by having SCC <100,000 cells/mL, 

inflammatory reactions were detectable at an SCC level of ≥9,000 cells/mL due 

to predominating PMNL proportions in foremilk samples of the corresponding 

quarters. Our study indicated inflammatory reactions in udder quarters with 

SCC that were clearly below the current threshold of 100,000 cells/mL. Further 

research in this field should concentrate on longitudinal examinations of 

immune cells in milk of udder quarters classified as healthy that reveal high 

percentages of PMNL. 
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Abstract 

 

The diagnosis of intramammary infections is mostly based on somatic 

cell count (SCC) and bacteriological analysis. As an alternative, differential cell 

counting (DCC) could be a useful method, because it identifies changes in the 

relative cell populations before the rising of total cell number. The aim of the 

study was to identify cytological parameters that could be used in the field to 

classify mammary quarters as healthy or diseased, comparing cyto-

bacteriological results with DCC. Overall, 48 cows were randomly selected from 

3 herds in Lombardy region of Italy. Herd A was characterized by the absence 

of contagious microorganisms; in herd B and C, the prevalence of 

Staphylococcus aureus was 20% and 50%, respectively. Foremilk samples 

were aseptically collected from 188 quarters and submitted to bacteriological 

analysis, SCC, and DCC. For the statistical analysis, the samples were 

clustered into 4 health groups, and DCC results were compared in each group. 

Ninety-six samples were classified as normal secretions (N), 30 as mastitis (M), 

15 as latent mastitis (LM), and 47 as unspecific mastitis (UM) based on SCC 

and bacteriological results. Single percentages of lymphocytes, 

polymorphonuclear neutrophilic leukocytes (PMNL), or macrophages were 

firstly evaluated to established variables capable of identifying healthy and 

inflamed quarters. Then, combinations of cell populations were tested to 

increase the discrimination power of DCC: phagocytes, logarithmic (log) 

PMNL:lymphocyte ratio, and log phagocyte:lymphocyte ratio. The mean 

percentage of lymphocytes was significantly higher in group N than in groups 

LM, UM, and M. The mean percentage of PMNL was significantly lower in 

group N than in groups UM and M, but not LM. Mean percentages of 

macrophages were not significantly influenced by the 4 groups. The mean value 

of phagocytes was significantly lower in group N than in the other groups. Both 

the log PMNL:Lym and the log phagocyte:lymphocyte ratios were significantly 

lower in group N than in groups LM, UM, and M. Fisher (F-) values were 

calculated, and the highest F-value was that of log PMNL:lymphocyte ratio 

(48.23). The explanation for this could be that log PMNL:Lym is the only 

variable that involved both cell populations statistically influenced by health 
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groups but excluded macrophages. Microscopic DCC has potential as a tool to 

identify cows affected by any inflammatory process of the mammary gland, with 

the best results being achieved using log PMNL:Lym as variable. 

Introduction 

 

Bovine mastitis is a major health problem in dairy cattle. Economic 

losses are mostly associated with decreased production and milk quality due to 

subclinical infections. Such infections are not evident and can persist in the 

mammary tissue throughout lactation. In the mammary gland, the number and 

distribution of leukocytes are important for the successful defense against 

invading pathogens (Leitner et al., 2003). Lymphocytes, macrophages, and 

PMNL play an important role in the inflammatory response within the mammary 

gland (Paape et al., 1979; Sordillo and Nickerson, 1988). Lymphocytes regulate 

the induction and suppression of immune responses (Nickerson, 1989), 

recognizing antigens through membrane receptors specific for invading 

pathogens (Sordillo et al., 1997). Macrophages are active phagocytic cells, 

capable of ingesting bacteria, cellular debris, and milk components (Sordillo and 

Nickerson, 1988). Milk or tissue macrophages recognize the invading pathogen 

and initiate an immune response by releasing chemoattractants that induce 

rapid recruitment of PMNL (Paape et al., 2002; Oviedo-Boyso et al., 2007). The 

main task of PMNL is to defend against invading bacteria at the beginning of 

acute inflammatory process (Paape et al., 1979; Oviedo-Boyso et al., 2007), 

when both number and cellular activity of PMNL increase enormously 

(Targowski, 1983; Paape et al., 2003). 

The presence of subclinical mastitis can be indicated by SCC and 

diagnosed by bacteriological analysis or PCR. Somatic cells consist of many 

cell types, including leukocytes and epithelial cells. Therefore, SCC is routinely 

used as a measure of inflammation based on the total number of cells in the 

milk sample. Bacteriological analysis gives the precise etiology of infection, but 

is time-consuming and requires experienced personnel. Polymerase chain 

reaction has been proposed as an alternative to bacteriology as a rapid test 

(Koskinen et al., 2009) but it is expensive. At present, the diagnosis of bovine 

mastitis is mostly based on cyto-bacteriological analysis of milk samples 
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(Vangroenweghe et al., 2002). The International Dairy Federation recommends 

the use of both SCC and bacteriological analysis as criteria for the 

determination of udder health (Hogan et al., 1999). The German Veterinary 

Society (DVG, 2002) suggests a threshold of ≤100,000 cells/mL to define a 

quarter as normal. 

Staphylococcus aureus is a contagious pathogen and one of the most 

widely distributed causative agents of subclinical mastitis (International Dairy 

Federation, 2006). Environmental pathogens, mainly Streptococcus uberis and 

coliform bacteria, may enter the mammary gland, typically causing clinical 

mastitis. In the case of contagious pathogens, the prompt identification of 

infected animals is crucial to implement measures to avoid spread of the 

infection. Nevertheless, the detection of Staph. aureus can be difficult due to 

the intermittent shedding of the pathogen in milk (Sears et al., 1990) at levels 

frequently below the detection limit of the bacteriological method (Zecconi et al., 

1997), and to the presence of persistent infections without an increase in SCC. 

Consequently, cyto-bacteriological analysis has only a partial reliability, 

particularly when performed on a single sample (Schröder and Hamann, 2005). 

Identification of chronic mastitis caused by environmental pathogens also plays 

an important role in herd management, but it is often difficult due to the low 

numbers of bacteria shed in the milk (Hogan and Smith, 2003). 

In healthy milk, the percentage of each cell type is widely variable; 

according to some authors, macrophages are the predominant cell type (Riollet 

et al., 2001; Lindmark-Mansson et al., 2006), whereas others have shown that 

lymphocytes are a major population (Park et al., 1992; Leitner et al., 2000a, 

Schwarz et al., 2011a, b). Moreover, cell percentages can vary dependening on 

the milk fraction sampled, because cisternal milk shows lower percentage of 

PMNL compared with alveolar milk (Sarikaya et al., 2005). Different cell 

patterns have been documented in the presence of different pathogens and in 

the course of infection (Leitner et al., 2000b). In addition to the etiological agent, 

the effect of lactation stage and parity number should be taken into account 

(Dosogne et al., 2003). In the presence of acute mastitis, PMNL are the 

predominant cell type, accounting for up to 90% of the total mammary leukocyte 

population (Sordillo and Streicher, 2002). In contrast, in chronic mastitis caused 

by Staph. aureus or CNS, PMNL percentage can be as low as that in uninfected 
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quarters, whereas the percentage of macrophages is higher (Leitner et al., 

2000b). 

The changes in relative cell proportions can be considered a valid tool for 

the identification of inflammatory processes despite low SCC, thus 

differentiating healthy milk from that with early or late inflammation (Rivas et al., 

2001). Recent studies (Schwarz et al., 2011a, b) have shown that differential 

cell counting (DCC) can reveal inflammatory processes even in milk with 

9,000 cells/mL. Therefore, the goals of the present study were (1) to compare, 

in the field, cyto-bacteriological results with DCC results, and (2) to identify 

cytological parameters that could be used to classify mammary quarters as 

healthy or diseased. 

Materials and Methods 

 

Animals and Milk Sampling  

Three herds in Lombardy region of Italy were enrolled in the study 

because they were participating in a voluntary control program for contagious or 

environmental pathogens. Herd A was characterized by the absence of 

contagious microorganisms; infections caused by Staph. aureus were present 

in the other 2 herds with lower prevalence in herd B (20%) and higher in herd C 

(approximately 50%). All the 3 herds housed Holstein-Frisian cows (120 in 

herd A, 180 in herds B and C) in freestalls, and cows were milked twice daily in 

a milking parlor. 

Overall, 48 cows were randomly selected, of which 23 cows were 

primiparous, 11 were in the second or third lactation, and 14 had calved 4 or 

more times. Eleven animals were in early lactation (8 to 86 d), 20 were in mid 

lactation (96 to 210 d), and 17 in late lactation (247 to 531 d). All cows were 

free of clinical signs of mastitis at sampling. 

After cleaning and disinfection of the teat, the first 2 squirts of milk were 

discarded, and 10 mL foremilk was aseptically collected from 188 quarters in 

sterile plastic tubes (Bioster, Italy). Samples were kept under refrigeration until 

arrival at laboratory facilities.  
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SCC and Bacteriological Analysis  

All samples were submitted to bacteriological analysis, which was 

performed as previously described (Oliver et al., 2004). Briefly, a 10-µL aliquot 

of each sample was spread onto blood agar plates (5% bovine blood, Oxoid, 

Basingstoke, UK) and incubated at 37°C. Plates were evaluated after 24 and 

48 h, and colonies of growth were isolated. The large and hemolytic colonies 

that were catalase- and coagulase-positive were identified as Staph. aureus 

and thereafter confirmed by API ID32 Staph (bioMèrieux, Marcy l’Etoile, 

France). All the other colonies were identified by biochemical tests following 

Hogan et al. (1999). Somatic cells were counted on a Bentley Somacount 150 

(Bentley Instruments, Chaska MN). 

 

DCC 

Slides for DCC were prepared following Dulin et al. (1982), with modified 

centrifugation conditions. Briefly, for each sample, an aliquot of 4 mL was 

diluted with 10 mL of PBS with 0.5% EDTA (PBS-EDTA). Samples were then 

centrifuged at 125  g for 15 minutes, and cell pellets were resuspended in 

PBS-EDTA. Cell suspensions were centrifuged on a cytocentrifuge (Shandon 

Cytospin, Thermo Scientific, Waltham, MA) at 20  g for 5 min. Slides were air-

dried and stained with May Grünwald-Giemsa stain. Each slide was evaluated 

by light microscopy, and 100 to 200 cells were differentiated into lymphocytes, 

macrophages, and PMNL, according to standard methods (Coles, 1974; Lee et 

al., 1980). Epithelial cells could not always be distinguished from macrophages 

and therefore were counted as macrophages. 

 

Statistical Analysis 

For the statistical analysis, the 188 milk samples were clustered into 

4 health groups according to Bansal et al. (2005). The first group included 

quarters considered as normal secreting (N), with SCC ≤100,000 cells/mL and 

no pathogens. The second group included quarters with latent mastitis (LM), 

characterized by SCC ≤100,000 cells/mL and a positive bacteriological culture. 

The third group was classified as unspecific mastitis (UM), including quarters 

with SCC >100,000 cells/mL and culture-negative results. The fourth group was 
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considered as affected by mastitis (M), including culture-positive quarters with 

SCC >100,000 cells/mL. 

The impact of the 4 health groups on individual cell populations was 

analyzed by applying linear mixed models and using the SAS program (version 

9.1, SAS Institute Inc., Cary, NC). The statistical model (model [1]) was defined 

as follows:  
 

yijklmn = μ + herdi + parityj + DIMk + cowl + groupm + quartern + eijklmn      [1] 

 

where yijklmn = observation for the individual cell population of cow l; μ = overall 

mean effect; herdi = fixed effect of the ith herd of cow l; parityj = fixed effect of 

the jth parity of cow l; DIMk = fixed effect of the kth class of days in milk; cowl = 

random effect of cow l; groupm = fixed effect of the health group; quartern = fixed 

effect of the position of the udder quarter; and eijklmn = random residual effect. 

For a second analysis, udder quarters were classified into 2 categories: 

healthy and diseased. Healthy udder quarters were assigned a score of 0 and 

consisted the group N, whereas diseased udder quarters (group D) were 

assigned a score of 1 and included groups LM, UM, and M. Because the 

defined disease was treated as a binary trait, a logistic model was applied to 

assess the effect of individual cell populations on the occurrence of the disease. 

Analysis of variance was carried out using logistic models as implemented in 

the SAS Glimmix macro (Wolfinger and O’Connell, 1993). Significance of 

regression coefficients was determined by using results from sum of square 

type I tests (Wald-type tests) and F-statistics. The final generalized linear model 

(model [2]) used to determine the impact fixed effects and covariates on the 

incidence of the disease was: 

logit ( rstu)  = log
rstu

rstu

1
= rst  

   =  + r + s + τt + υu + φv + b1Yrstu 

 

where rst = probability of occurrence of the disease;  = overall mean effect; r 

= fixed effect of parity; s = fixed herd effect; τt = fixed effect of the position of 

the udder quarter; υu = fixed effect for classes of days in milk; φv = random effect 

of the cow; Yrstu = value for the individual cell population; and b1 = linear 

regression of the disease on the value of the individual cell population. 

[2] 
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Results 

 

SCC and Bacteriological Analysis  

Foremilk samples were taken from 188 quarters of 48 cows in 3 Italian 

dairy farms. Overall, 92 samples (48.4%) were classified as diseased. In 

herd A, out of 70 samples tested, 59 (84.3%) were bacteriologically negative, 

and only 1 showed a major pathogen, Escherichia coli. In addition, CNS were 

detected in 5 samples, Enterococcus faecalis in 4, and Streptococcus 

dysgalactiae in 1 sample. In herd B, 57 out of 78 quarters tested (73.1%) were 

bacteriologically negative, whereas 13 (16.6%) were positive for Staph. aureus. 

Four samples showed the presence of CNS, and a further 4 samples were 

considered contaminated. Finally, in herd C, 25 out of 40 quarters tested 

(62.5%) were bacteriologically negative, whereas 10 (25%) were positive for 

Staph. aureus; CNS were detected in 3 samples, and Ent. faecalis in 1 sample. 

The clustering of milk samples into the 4 health groups mentioned above, 

is summarized in Table 1. Following group definitions (Bansal et al., 2005), 

96 quarters belonged to group N (normal secretion), and 30 samples were 

categorized into group M (mastitis). Out of them, 18 samples showed 

Staph. aureus and 6 samples CNS; Strep. dysgalactiae was detected in 

1 sample, and Ent. faecalis in 5 samples. A further 15 samples were classified 

in group LM (latent mastitis): CNS were detected in 7 samples, Staph. aureus in 

5 samples, E. coli in 1 sample and, contamination in 2 samples. Group UM 

(unspecific mastitis) included 47 samples. 

 

DCC 

The DCC of all quarter foremilk samples analyzed was determined by 

microscopic differentiation of 100 to 200 cells into lymphocytes, macrophages, 

and PMNL. In addition to the percentages of individual cell populations, the 

following variables were considered: phagocytes (Phag, combining the 

percentages of macrophages and PMNL); logarithmic PMNL:lymphocyte ratio 

(log PMNL:Lym), and logarithmic phagocyte:lymphocyte ratio (log Phag:Lym), 

which involved all 3 cell populations. 
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Overall (n = 188 samples), the proportion of lymphocytes ranged between 1 and 

97%, with a mean of 25% (SD 23.2%), that of macrophages between 0 and 

80% with a mean of 19.2% (SD 16.9%), and proportions of PMNL ranged 

between 0 and 96% with a mean of 55.8% (SD 25.8%).  

 

Table 2. Mean values and standard deviation for the percentage of individual 
cell populations and combinations of cell populations in farms A, B, 
and C 

 A  B  C 

Cell population or 
variable1 Mean SD  Mean SD  Mean SD 

PMNL, % 58.68 23.10  67.03 21.11  31.79 21.05 

Lymphocytes, % 28.97 23.56  20.05 22.09  25.56 22.34 

Macrophages, % 12.35 9.06  12.92 8.38  42.65 18.06 

Phag, % 71.03 23.56  79.95 22.09  74.44 22.34 

Log PMNL:Lym 0.40 0.63  0.73 0.65  0.22 0.65 

Log Phag:Lym 0.50 0.61  0.81 0.62  0.59 0.52 
1Phag = phagocytes (macrophages and PMNL); log PMNL:Lym = logarithmic 
PMNL:lymphocyte ratio; log Phag:Lym = logarithmic phagocyte:lymphocyte 
ratio. 

 

Mean values and standard deviation for each variable considered in each 

farm are summarized in Table 2. Mean percentages of PMNL were 58.7, 67.0, 

and 31.8% in herds A, B, and C, respectively. Mean percentages of 

lymphocytes showed similar values in the 3 herds (29% in A, 20% in B, and 

25.6% in C). Mean percentages of macrophages were almost identical in herds 

A and B (12.3 and 12.9%, respectively), whereas herd C showed a much higher 

mean value (42.6%). Mean percentages of phagocytes were similar in all herds 

(71% in A, 79.9% in B, and 74.4% in C), whereas the mean values of both 

log PMNL:Lym and log Phag:Lym were higher in herd B compared with those in 

herds A and C (0.40 and 0.50 in herd A, 0.73 and 0.81 in herd B, 0.22 and 0.59 

in herd C, respectively). 

The variance analysis indicated that percentages of all individual cell 

populations were significantly (P < 0.01) influenced by farm, and macrophages 

were further significantly (P < 0.01) influenced by DIM. None of the individual 

cell populations was influenced by quarter position or lactation number 

(Table 3). The variables Phag, log Phag:Lym, and log PMNL:Lym were 



Milk Cell Differentiation for Identification of Inflammations 

 

 93 

significantly (P < 0.01) influenced by the farm but but not by quarter position, 

lactation number, or DIM (Table 2). Overall, a significant (P < 0.0001) effect of 

the 4 health groups was demonstrated on percentages of lymphocytes and 

PMNL, but not on macrophages (Table 3). 

 

 
Figure 1. Comparison of mean percentages of lymphocytes, macrophages, and 

PMNL in milk of udder quarters with different health status. All 
188 udder quarters analyzed were classified into groups N, LM, UM, 
and M (group N = empty bars, SCC ≤100,000 cells/mL and culture-
negative, n = 96; group LM = light gray bars, SCC ≤100,000 cells/mL 
and culture-positive, n = 15; group UM = dark gray bars, SCC 
>100,000 cells/mL and culture-negative, n = 47; group M = black 
bars, SCC >100,000 cells/mL and culture-positive, n = 30). N = 
normal secretion; LM = latent mastitis; UM = unspecific mastitis; M = 

mastitis. Data are expressed as mean  SEM for percentages of the 
individual cell populations in the 4 SCC groups defined; *** P < 0.001; 
** P < 0.01; * P < 0.05; NS = P > 0.05. 

 

The mean percentage of lymphocytes in group N (34.5%) was 

significantly (P < 0.05) higher than in groups LM, UM, and M (23.3%, 15.9%, 

and 11.3%, respectively; Figure 1), and the value in group LM was significantly 

(P < 0.05) higher than that in group M. Mean percentage of PMNL was 

significantly (P < 0.01) lower in group N (42.2%) than in groups UM and M 

(62.3% and 67.9%, respectively; Figure 1); in addition, group LM (54.9%) value 
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was significantly (P < 0.05) lower than that in group M. Finally, mean 

percentages of macrophages were not significantly related to the 4 groups (N: 

23.3%; LM: 21.5%; UM: 21.7%; M: 20.6%; Figure 1). 

All variables combining different cell populations were significantly 

(P < 0.001) influenced by health group (Table 3). The mean value of Phag was 

significantly lower (P < 0.05) in group N (65.5) than in groups LM, UM, and M 

(76.7, 84.1, and 88.6, respectively; Figure 2). In addition, the value in group LM 

was significantly (P < 0.05) lower than that in group M. 

 

 
 

Figure 2. Comparison of mean values of phagocytes (macrophages and 

PMNL) in milk of udder quarters with different health status. All 
188 udder quarters analyzed were classified into groups N, LM, UM, 
and M (group N = empty bars, SCC ≤100,000 cells/mL and culture-
negative, n = 96; group LM = light gray bars, SCC 
≤100,000 cells/mL and culture-positive, n = 15; group UM = dark 
gray bars, SCC >100,000 cells/mL and culture-negative, n = 47; 
group M = black bars, SCC >100,000 cells/mL and culture-positive, 
n = 30). N = normal secretion; LM = latent mastitis; UM = unspecific 

mastitis; M = mastitis. Data are expressed as mean  SEM; 
*** P < 0.001; * P < 0.05; NS = P > 0.05. 
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Table 3. Results of variance analysis for the percentage of individual cell 

populations as well as combinations of cell populations in 188 quarter 
foremilk samples analyzed by light microscopy1 

Cell population 
or variable2 Group 

Quarter 
position 

Lactation 
number DIM Farm 

PMNL 0.0001 0.07 0.16 0.27 0.0001 

Lymphocytes 0.0001 0.22 0.09 0.07 0.005 

Macrophages 0.66 0.52 0.75 0.009 0.0001 

Phag 0.0001 0.22 0.09 0.07 0.005 

Log PMNL:Lym 0.0001 0.08 0.13 0.52 0.0001 

Log Phag:Lym 0.0001 0.09 0.11 0.36 0.0007 
1Analyzed factors were group (normal secretion, latent mastitis, unspecific 
mastitis, mastitis), quarter positions (front right, rear right, front left, and rear 
left), lactation number (1, 2&3, ≥4), days in milk (8-86 d, 96-210 d, 247-531 d), 
and farm (A to C). 
2Phag = phagocytes (macrophages and PMNL); log PMNL:Lym = logarithmic 
PMNL:lymphocyte ratio; log Phag:Lym = logarithmic phagocyte:lymphocyte 
ratio. 
 

The log PMNL:Lym mean value in group N (0.11) was significantly 

(P < 0.001) lower than in groups LM, UM, and M (0.57, 0.73, and 0.94, 

respectively; Figure 3), and the value in group LM was significantly (P < 0.05) 

lower than that in group M (Figure 3). 

Finally, log Phag:Lym showed a significantly (P < 0.01) lower value in 

group N (0.35) than in groups LM, UM, and M (0.73, 0.91, and 1.06, 

respectively; Figure 4). Group M also demonstrated a significantly (P < 0.05) 

higher mean value than group LM (Figure 4). 

The possibility of differentiating between healthy and diseased udder 

quarters was further evaluated using individual cell populations as well as the 

variables that combined different cell populations. For this purpose, quarters 

were split into 2 groups, and F-values were calculated. The first group (N) 

included all healthy quarters (n = 96), whereas the second groups (D, n = 92) 

included diseased mammary glands (groups LM, UM, and M). Out of the 

3 individual cell populations, lymphocytes were the best one to differentiate 

between groups N and D (Table 4). Although macrophages showed an F-value 

of 1.65 and did not differ significantly between group N and D, the F-value of 

PMNL (15.54) was higher and significantly (P < 0.001) different (Table 4). 

Nevertheless, lymphocytes showed the highest F-value (32.64) and their 

percentage differed significantly between group N and D (P < 0.0001). 
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Figure 3. Comparison of mean values of the variable log PMNL/Lym 

(logarithmic PMNL:lymphocyte ratio) in milk of udder quarters with 
different health status. All 188 udder quarters analyzed were 
classified into groups N, LM, UM, and M (group N = empty bars, 
SCC ≤100,000 cells/mL and culture-negative, n = 96; group LM = 
light gray bars, SCC ≤100,000 cells/mL and culture-positive, n = 15; 
group UM = dark gray bars, SCC >100,000 cells/mL and culture-
negative, n = 47; group M = black bars, SCC >100,000 cells/mL 
and culture-positive, n = 30). N = normal secretion; LM = latent 
mastitis; UM = unspecific mastitis; M = mastitis. Data are expressed 

as mean  SEM; *** P < 0.001; ** P < 0.01; NS = P > 0.05. 
 

Table 4. Fisher (F)-values and associated probabilities of different markers to 
discriminate between healthy (group N; n = 96) and diseased 
(group D, including groups LM, UM, M; n = 92) udder quarters1 

Marker2 F-value P-value 

PMNL, % 15.54 0.0001 

Lymphocytes, % 32.64 <0.0001 

Macrophages, % 1.65 0.2007 

Phag, % 32.64 <0.0001 

Log PMNL:Lym 48.23 <0.0001 

Log Phag:Lym 45.90 <0.0001 
1N = normal secretion; LM = latent mastitis; UM = unspecific mastitis; M = 
mastitis. 
2Phag = phagocytes (macrophages and PMNL); log PMNL:Lym = logarithmic 
PMNL:lymphocyte ratio; log Phag:Lym = logarithmic phagocyte:lymphocyte 
ratio. 



Milk Cell Differentiation for Identification of Inflammations 

 

 97 

 

Figure 4. Comparison of mean values of the variable log Phag/Lym (logarithmic 

phagocyte:lymphocyte ratio) in milk of udder quarters with different 
health status. All 188 udder quarters analyzed were classified into 
groups N, LM, UM, and M (group N = empty bars, SCC 
≤100,000 cells/mL and culture-negative, n = 96; group LM = light gray 
bars, SCC ≤100,000 cells/mL and culture-positive, n = 15; group UM 
= dark gray bars, SCC >100,000 cells/mL and culture-negative, n = 
47; group M = black bars, SCC >100,000 cells/mL and culture-
positive, n = 30). N = normal secretion; LM = latent mastitis; UM = 

unspecific mastitis; M = mastitis. Data are expressed as mean  
SEM; *** P < 0.001; ** P < 0.01; * P < 0.05; NS = P > 0.05. 

 
All the cell combinations allowed us to differentiate significantly 

(P < 0.001) between groups N and D. Nevertheless, the highest F-value was 

shown by log PMNL:Lym (48.23), whereas Phag and log Phag:Lym showed F-

values of 32.64 and 45.90, respectively (Table 4). 

Discussion 

 

The diagnosis of IMI is mostly based on SCC and bacteriological 

analysis. Milk samples with SCC < 100,000 cells/mL are currently considered 

healthy or within normal physiological limits, but inflammatory reactions can be 

detected in such samples (Schwarz et al, 2011a, b). Indeed, SCC is low in the 

initial stage of inflammatory reaction, until the invading pathogen is recognized 
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by immune and epithelial cells that release chemoattractants, thus stimulating 

migration of PMNL (Paape et al., 2002; Oviedo-Boyso et al., 2007, Koess and 

Hamann, 2008). Differential cell count could be a useful method, because it 

identifies changes in the relative cell populations before the increase in total cell 

number occurs in the course of the inflammatory process. Therefore, DCC 

could be regarded as the standard technique to determine the presence or 

absence of inflammation in mammary quarters (Rivas et al., 2001).  

The aim of the present study was to detect one or more parameters that 

could easily identify diseased mammary quarters independently of the prevalent 

pathogen in the herd using light microscopy DCC. Differential cell count can be 

performed with either flow cytometry or light microscopy. Cytometric analysis is 

a very accurate method, but expensive and time-consuming, because it is 

based on the use of several marker antibodies. Leitner et al. (2000b) reported a 

high correlation between flow cytometry and light microscopy for PMNL and 

lymphocytes, but a lower correlation for macrophages and epithelial cells. This 

lower correlation could be due to the difficult differentiation between 

macrophages and epithelial cells by light microscopy. Epithelial cells are not 

always present in the milk (Lee et al., 1980) or they make up only 1 to 3% of 

cells (Sarikaya et al., 2004, Schwarz et al., 2011a). Different results were 

reported by Miller et al. (1991) and Leitner et al. (2000b), who recorded higher 

values (10 to 19% or 44%, respectively). Miller et al. (1991) sampled only 

primiparous cows in early lactation, whereas Leitner et al. (2000b) evaluated 

epithelial cell percentages using a nonspecific identification procedure. 

However, according to Schwarz et al. (2011a), percentages >10% should be 

critically discussed. Therefore, the potential misclassification of epithelial cells 

likely represents a minor error that probably does not affect the result. For these 

reasons, light microscopy DCC is a suitable method applicable to routine 

analysis. It is cost effective and could be automatized by using a slide scanner 

and computer imaging software. 

Three dairy herds were selected with different prevalences of IMI, which 

were caused by different etiological agents. The influence of breed was not 

explored because all 3 herds housed Holstein-Friesian cows. The causative 

agents of mastitis were environmental pathogens in herd A but contagious 

bacteria in the other 2 herds. Moreover, Staph. aureus isolates from herds B 
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and C demonstrated low and high diffusiveness, respectively. The results of 

DCC showed statistically significant differences among the 3 dairy herds 

considered, as expected and in accordance with previous reports (Schwarz et 

al., 2011b). The DCC results in herds A and B showed relative higher values of 

PMNL followed by lymphocytes and macrophages, whereas macrophages were 

the main population in herd C, followed by PMNL and lymphocytes. These data 

suggest that most infections in herds A and B were acute infections, with high 

increases of PMNL, whereas herd C probably had a considerable prevalence of 

chronic infections, which led to an increase of macrophage percentage, as also 

shown by Sladek and Rysanek (2009). 

No correlation was found between cell populations and either quarter 

position or lactation number, in accordance with findings described by Schwarz 

et al. (2011a, b). Dosogne et al. (2003) reported the effect of DIM on DCC in the 

milk, showing that lymphocytes decreased while PMNL and macrophages 

increased in the course of lactation. In contrast, our data indicated that only 

macrophages were influenced by DIM. This discrepancy could be related to the 

different methods used, because the analyses of Dosogne et al. (2003) were 

performed by flow cytometer. Despite this, the results of the present study could 

not bias quarter classification by DCC, because macrophages were the only 

population not significantly influenced by health group. Even though 2 recent 

publications (Schwarz et al., 2011a, b) indicated that inflammatory profiles can 

be found in quarters with SCC <100,000 cells/mL, we decided to follow current 

recommendations of DVG (2002) to enable comparison between cyto-

bacteriological and DCC results. In fact, Harmon (1994) showed that losses in 

production occur starting from 100,000 cells/mL, and Pyörälä (2003) stated that 

milk components differ significantly from the physiological norm above this 

level. Interestingly, 15 milk samples in group N showed marked inflammatory 

profiles, with PMNL percentages >80%; in particular, one quarter showed an 

SCC value of 1,000 cells/mL and 91.3% PMNL. Many factors could explain the 

high percentage of PMNL in these quarters, including chemical and mechanical 

factors or physical injury. Furthermore, any of these quarters could show false 

negative results on bacteriological analysis, for different reasons. Negative 

bacteriological results could depend on intermittent shedding of pathogens or 

shedding in amounts lower than the detection limit of the method applied or on 
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the presence of antimicrobials in milk (Sears et al., 1990; Zecconi et al., 1997). 

It is also possible that the inflammatory response was so effective in those 

quarters that most bacteria were phagocytosed and killed, or survived only 

intracellularly by active invasion of cells or survival inside phagosomes 

(Newbould and Neave, 1965; Hill et al., 1978). Furthermore, in the UM quarters, 

inflammatory processes were present, even in the absence of bacteria, as 

indicated by increased SCC and high PMNL percentages. Because cellular 

profiles were similar in groups UM and M, it could be hypothesized that some 

UM samples were false negatives. 

Of the 3 cell populations, PMNL are known to strongly increase during 

the course of infection and have been consistently reported as the dominant cell 

population in mastitic milk (Kehrli and Shuster, 1994; Sordillo et al., 1997; Pillai 

et al., 2001). Therefore, PMNL would be an obvious choice to differentiate 

between healthy and infected quarters with low SCC. Accordingly, PMNL were 

statistically lower in group N than in groups UM and M, but no difference was 

demonstrated between groups N and LM. The macrophage percentage was 

very similar in the 4 groups, because macrophages are associated with the late 

phase of infection (Leitner et al., 2000b; Sladek and Rysanek, 2009) and are 

expected to increase in chronic infections, which were presumably at low levels 

in the cows of this study. Lymphocytes were the only individual cell population 

showing statistically different percentages between the healthy group and all 

diseased groups. Mammary lymphocytes play an important role in the initiation 

of immune response of the gland. They are mainly T cells, whose function is to 

remove old and damaged secretory cells, thus decreasing the susceptibility of 

the mammary gland to infections (Sordillo et al., 1997). 

Combinations of cell populations were evaluated to increase the 

discrimination power of DCC. Indeed, combining populations increased the F-

values, indicating that a larger percentage of quarters would be correctly 

classified when that parameter was considered. Combining PMNL and 

macrophages into phagocytes (Phag) increased F-values from 1.65 and 15.54, 

respectively, to 32.64. Combining PMNL and lymphocytes into the 

log PMNL:Lym ratio increased F-values from 15.54 and 32.64 to 48.23, and the 

combination of Phag and Lym into the log Phag:Lym ratio, which includes all 

3 cell populations, led to an F-value of 45.90. All combinations of individual cell 
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populations showed statistically significant differences between groups N and 

D, but the best F-value was related to ratio log PMNL:Lym, presumably 

because log PMNL:Lym was the only variable that involved both cell 

populations statistically influenced by health groups but excluded macrophages. 

Conclusions 

 

Differential cell counting can detect changes in the relative cell 

populations in milk without an increase in total cell numbers, thus identifying 

inflammatory processes in quarters otherwise considered healthy. This 

information could be particularly useful when control programs for contagious 

milk pathogens are being applied. In the present study, we considered 

mammary quarters with or without natural occurring infections to established 

single or combined variables capable to identify healthy and inflamed quarters. 

Microscopic DCC was shown to be a potentially useful tool to identify cows 

affected by any inflammatory process of the mammary gland, with the best 

results being achieved using log PMNL:Lym as variable. Further studies are 

needed to determine and validate the cutoff values to be applied in the dairy 

herd. 
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Abstract 

 

Changes in relative cell proportions occurring in diseased mammary 

glands of dairy cows can be determined using diffrential cell count (DCC). The 

present study was carried out in 2 consecutive trials, with 2 goals: (a) to test the 

consistency of DCC results on subsequent days, and (b) to establish an 

effective cutoff value for the diagnosis of mastitis. In the first trial, quarter milk 

and blood samples were taken from 8 healthy cows for 5 consecutive days. Milk 

samples were tested by somatic cell count (SCC) and bacteriological analysis, 

and DCC was performed on blood and milk samples by flow cytometer. In the 

second trial, 16 animals were randomly selected from a different herd and 

quarter milk samples taken on 3 consecutive milkings. All samples were cyto-

bacteriologically analyzed and DCC was performed on the second sampling. In 

the first trial, mean SCC was 77,770 cells/mL and 4 samples were 

bacteriologically positive. No fixed or random effect had a significant influence 

on percentages of individual cell populations or ratios in blood or in milk. A 

cutoff value of 0.495 for logarithmic polymorphonuclear neutrophilic leukocytes 

(PMNL):lymphocyte was established. Mean SCC of milk samples collected in 

the second trial was 543,230 cells/mL and infection was detected in 53.1% of 

quarters, mostly caused by Staphylococcus aureus. When the cutoff value was 

applied to the data along with SCC, sensitivity and specificity of the diagnostic 

method were 97.3% and 92.3%, respectively. 

Introduction 

 

Subclinical mastitis is a major health problem in dairy cattle. Economic 

losses are mostly associated with decreased production and milk quality. Such 

infections are not evident and can persist in the mammary tissue throughout 

lactation. Staphylococcus aureus is a contagious pathogen and a major agent 

of subclinical mastitis (IDF, 2006), but the infection can also be caused by a 

wide range of environmental and opportunistic pathogens (Bradley, 2002). 

Subclinical mastitis can be diagnosed by SCC, bacteriological analysis, or 

PCR. The International Dairy Federation recommends the use of both SCC and 

bacteriological analysis as criteria for the determination of udder health (Hogan 
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et al., 1999). Accordingly, the diagnosis of bovine mastitis is mostly based on 

cyto-bacteriological analysis of milk samples (Vangroenweghe et al., 2002). 

Despite that, identification of infected quarters presents difficulties related to the 

possibility of false negative bacteriological results and infections without a 

concomitant increase of SCC (Schwarz et al., 2010). 

Differential cell count (DCC) shows changes in relative cell proportions, 

which can be used to differentiate healthy glands from inflamed or infected 

glands, and DCC has been proposed as a valid tool for the identification of 

inflammatory processes in cases with low SCC (Rivas et al., 2001). Recent 

studies (Schwarz et al., 2011a, b; Pilla et al., 2012) have shown that DCC can 

reveal inflammatory processes, even in milk with SCC of 1,000 cells/mL, well 

below the current threshold of 100,000 cells/mL (DVG, 2002). 

Differential cell count can be performed using different methods. 

Microscopic DCC is a simple and cost-effective method, but most researchers 

prefer cytometric analysis because of its higher accuracy. Leitner et al. (2000b) 

found a high correlation between the 2 methods for PMNL and lymphocytes, but 

a lower correlation for macrophages and epithelial cells, probably because of 

the difficulty in differentiating between these cell populations with light 

microscopy. Different cell patterns have been documented during the course of 

infection in the presence of different pathogens (Leitner et al., 2000b). In acute 

mastitis, PMNL are the predominant cell type, often accounting for more than 

90% of the total mammary leukocyte population (Sordillo and Streicher, 2002). 

In contrast, in chronic mastitis caused by Staph. aureus and CNS, PMNL 

percentages can vary from the high values seen in acute mastitis to 

percentages as low as those recorded in uninfected quarters (Leitner et al., 

2000b; Riollet et al., 2001; Leitner et al., 2003). Also, the effect of lactation 

stage and parity number should be taken into account. In early lactation, 

lymphocytes and monocytes were reported to be higher than in mid and late 

lactation, while macrophages and PMNL percentages were considerable lower 

(Dosogne et al., 2003). 

Lymphocytes, macrophages, and PMNL play an important role in the 

immunity of the mammary gland (Paape et al., 1979; Sordillo and Nickerson, 

1988). A successful defense against invading pathogens depends on number 

and distribution of leukocytes (Leitner et al., 2003). In healthy milk, the 
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percentage of each cell type is widely variable; according to some authors, 

macrophages are the predominant cell type (Riollet et al., 2001; Lindmark-

Mansson et al., 2006), whereas others have shown that lymphocytes are the 

major population (Park et al., 1992; Leitner et al., 2000a; Schwarz et al., 2011a, 

b). Leitner et al. (2000a) demonstrated a high repeatability for samples taken 

from the same cow in different stages of lactation and suggested that the 

leukocyte pattern in uninfected mammary glands is genetically controlled. To 

the best of our knowledge, however, no information on short-term repeatability 

is available. Because the immune system is dynamic and the mammary gland 

is subjected to persistent stress during lactation, a basic knowledge of the 

cellular profile in healthy glands is fundamental. Therefore, the goals of the 

present study were (a) to investigate DCC in milk from healthy mammary 

quarters and to test whether the results are consistent on subsequent days; and 

(b) to establish an effective cutoff value for the diagnosis of mastitis that is 

applicable under field conditions. The study was carried out in 2 consecutive 

trials, the first to determine DCC stability and cutoff and the second to test this 

cutoff value under field conditions. 

Materials and Methods 

 
Animals and Milk Sampling  

 Trial 1. To investigate DCC in healthy quarters and its test-retest 

reliability, the herd enrolled in the first trial was located in Lombardy region of 

Italy and was certified free of paratuberculosis, bovine viral diarrhoea, and 

infectious bovine rhinotracheitis; it also had no history of contagious mastitis 

pathogens in the last 10 yr. The herd consisted of 50 lactating Holstein-Friesian 

dairy cows housed in freestalls and milked twice daily in a milking parlor. 

Eight cows were selected based on low SCC and 2 negative results of 

bacteriological analysis in the week before samplings. Of these, 3 cows were 

primiparous, 4 were in the second or third lactation, and 1 had calved 4 times. 

Two animals were in early lactation (83 to 111 DIM), 3 were in midlactation (144 

to 172 DIM), and 3 in late lactation (233 to 357 DIM).  

 Blood and quarter milk were sampled for 5 consecutive days at morning 

milking. All cows were free of clinical signs of mastitis at sampling. After 
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cleaning and disinfection of the teat, the first squirts of milk were discarded, and 

250 mL of milk was aseptically collected from each quarter into sterile plastic 

tubes (Falcon, BD Biosciences, Franklin Lakes, NJ) for both bacteriological and 

DCC analysis. Blood samples (10 mL) were collected by tail venipuncture into 

commercial EDTA-containing evacuated tubes (Vacutainer, BD Biosciences, 

San Jose, CA). Samples were refrigerated until arrival at laboratory facilities. 

 Trial 2. The calculated cutoff value was tested under field conditions in 

another herd located in Lombardy that was participating in a voluntary control 

program for contagious mastitis. The herd consisted of 180 lactating Holstein-

Friesian dairy cows that were housed in freestalls and milked twice daily in a 

milking parlor. The herd had a history of high prevalence of Staph. aureus 

(approximately 50% prevalence at the beginning of the control program), and 

mammary infections caused by Prothoteca zopfii had recently been detected. 

In total, 16 cows were randomly selected from the last milking group, 

which included animals previously diagnosed as infected by Staph. aureus or 

P. zopfii and other animals before culling. Of these, 9 cows were primiparous 

and 7 multiparous. 

Quarter milk samples for bacteriological analysis were collected at 3 

consecutive milkings. After cleaning and disinfection of the teat, the first 

2 squirts of milk were discarded, and 10 mL of foremilk was aseptically 

collected in sterile plastic tubes (Bioster, Seriate, Italy). At the second milking, 

an additional 200 mL of quarter milk was sampled for DCC analysis. Samples 

were refrigerated until arrival at laboratory facilities. 

 

SCC and Bacteriological Analysis 

All samples were submitted to bacteriological analysis, which was 

performed as previously described (Oliver et al., 2004). Briefly, an aliquot of 

10 µL of each sample was spread onto blood-agar plates (5% bovine blood, 

Oxoid, Basingstoke, UK) and plates were incubated at 37°C. Plates were 

evaluated after 24 and 48 h, and colonies of growth were isolated. All colonies 

were identified by biochemical tests following Hogan et al. (1999). Somatic cells 

were counted on a Bentley Somacount 150 (Bentley Instruments, Chaska, MN). 
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DCC 

 Differential cell counts were performed on blood samples and on quarter 

milk samples by cytometry. Milk cells were isolated according to the protocol 

described by Koess and Hamann (2008), with modified centrifugation 

conditions. Briefly, 200 mL of milk was centrifuged for 30 min at 250  g and 

4°C. The cream layer and supernatant were discarded and the cell pellet was 

washed twice in 30 mL of PBS. Blood erythrocytes were lysed with Cell Lysis 

Solution (#A7933, Promega, Madison, WI) and leukocytes were collected by 

centrifugation at 500  g for 10 min at room temperature. 

Cell pellets were resuspended in 500 µL of RPMI 1640 with 10% fetal calf 

serum, and cells were counted in a haemocytometer; finally, the cell 

concentration was adjusted to 2  106 cells/mL. Aliquots of 100 µL of each 

sample were incubated with antibodies conjugated to fluorescein isothiocyanate 

(FITC) or R-phycoerythrin (RPE; Table 1) for 30 min at 4°C. Cells were then 

washed in PBS once and resuspended in PBS with 2% formalin. Fixed cells 

were kept at 4°C for 3 to 18 h and analyzed using a FACSCalibur flow 

cytometer and CellQuest Pro software (Becton Dickinson, San Jose, CA). Eight 

thousand events were acquired per sample, and data were further analyzed 

using Cyflogic v. 1.2.1 free software (CyFlo Ltd., Turku, Finland). 

 
Table 1. Antibodies used for cytometric analysis (all purchased from Ab 

Serotec, Oxford, UK) 

CD molecule1 Antibody type Specificity Antibody clone 

CD11b-FITC Mouse IgG2b Granulocytes CC126 

CD14-PE Mouse IgG2a Monocytes TÜK4 

CD21-PE Mouse IgG1 B lymphocytes CC21 

CD5-FITC Mouse IgG1 T lymphocytes CC17 
1FITC = fluorescein isothiocyanate; PE = R-phycoerythrin. 

 

Percentages of PMNL, lymphocytes, and macrophages were calculated. 

In addition, to increase discrimination power of DCC, the ratios logarithmic 

PMNL:lymphocytes ratio (log PMNL:Lym) and logarithmic phagocyte:lympho-

cyte ratio (log Phag:Lym) were calculated as previously described (Pilla et al., 

2012). 
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Statistical Analysis 

Trial 1. Linear mixed models were applied on the data from the first trial to 

analyze the impact of fixed effects, random effects, and covariates on DCC in 

milk and blood. The statistical model was defined as follows: 

 

yijklm = μ + parityi + DIMj + quarterk + cowl + α1day + DIM  α1dayijkl + eijklm 
 

where yijklm = DCC of cow l; μ = overall mean effect; parity = fixed effect of parity 

i (first parity or higher lactation no.); DIM = fixed effect for classes of days in 

milk j (early, mid, or late); quarter = fixed effect of udder quarter k; cow = 

random effect of cow l; day = consecutive no. of measurement within cow from 

d 1 to 5 (sampling number); α1 = linear regression of sampling no. on DCC; DIM 

 α1dayijkl = interaction between DIM and sampling number, and eijklm = random 

residual effect belonging to observation yijklm. 

For blood samples, the effect of udder quarter was excluded from the 

statistical model. Least square means for the covariate “day” stratified by DIM 

were generated by using the “at – statement” for sequenced data as 

implemented in the Proc Mixed of SAS (SAS Institute Inc., Cary, NC). 

The cutoff value between healthy and diseased cows for log PMNL:Lym in 

milk was determined considering quarters samples with SCC <105 cells/mL and 

negative bacteriological results as healthy, and attributing them a score of 0. All 

other samples were considered diseased, and attributed a score of 1. The log 

PMNL:Lym values and attributed scores were then tested with receiver 

operating characteristic analysis using SPSS version 17.0 statistical software 

(SPSS Inc., Chicago, IL), and a cutoff value was chosen to maximize sensitivity 

and specificity. 

Trial 2. Quarter milk samples were classified as diseased or healthy as 

described in the previous section. Bacteriological analysis and SCC were 

considered the gold standard test. The cutoff was then applied to calculated log 

PMNL:Lym. All quarters with values below the cutoff were considered healthy, 

and those with values above the cutoff were considered diseased. A score of 0 

was attributed to healthy samples and a score of 1 to the others. Sensitivity and 

specificity of the method were then calculated under field conditions. 
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Results 

 

SCC and Bacteriological Analysis 

Trial 1. Mean SCC of the 159 quarter milk samples considered was 

77,770 cells/mL (SD 185,510). Thirty-four samples had SCC >100,000 cells/mL, 

with a maximum value of 1,512,000 cells/mL. Only 4 samples were 

bacteriologically positive: CNS were detected in 3 samples, and Streptococcus 

ssp. in 1 sample. Data from positive quarters were excluded from the statistical 

analysis but included for the cutoff determination. 

Trial 2. Mean SCC of 192 milk samples considered was 543,230 cells/mL 

(SD 816,730). One hundred and two samples (53.1%) were bacteriologically 

positive: Staph. aureus was isolated from 71 samples, Prototheca ssp. was 

detected in 12 samples, CNS in 11 samples, Enterococcus faecalis in 7, and 

Serratia sp. in 1 sample. Twenty-seven quarters were considered healthy. 

Thirty-five quarters were considered diseased based on isolation of Staph. 

aureus or at least 103 cfu/mL of Prototheca in one or more samples, or on the 

detection of other pathogens in all 3 samples. Two quarters were considered 

diseased because mean SCC was >100,000 cells/mL. 

 

Table 2. Mean values and standard deviations for individual cell populations as 
well as combinations of cell populations in milk. 

Cell population or ratio1 Mean Standard deviation 

PMNL (%) 43.1 23.5 

Lymphocytes (%) 30.1 19.4 

Macrophages (%) 26.9 15.7 

log PMNL:Lym 0.22 0.62 

log Phag:Lym 0.48 0.53 
1log PMNL:Lym = logarithmic PMNL:lymphocyte ratio; log Phag:Lym = 
logarithmic Phagocyte:lymphocyte ratio. 
 

DCC 

Trial 1. Overall (n = 155 samples), mean proportion of PMNL was 43.1% 

(SD 23.5%), that of lymphocytes was 30.1% (SD 19.4%), and that of 

macrophages was 26.9% (SD 15.7%). The ratios log PMNL:Lym and log 

Phag:Lym had mean values of 0.22 (SD 0.62) and 0.48 (SD 0.53), respectively 

(Table 2). Results of variance analysis of milk data are summarized in Table 3. 

Sampling day showed no significant effect on percentages of individual cell 
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populations (P-values from 0.68 to 0.99). Associating individual cell populations 

into ratios produced similar results, with P-values of 0.89 and 0.81 for 

log PMNL:Lym or log Phag:Lym, respectively. Even though some differences 

related to lactation stage were found for all variables, P-values ranged from 

0.73 to 0.89. Finally, neither parity nor quarter position had a significant 

influence on percentages of cell populations or ratios. Variance analysis of 

blood data showed similar results (Table 4): sampling day, parity, and lactation 

stage had no significant effect on the percentages of individual cell populations 

or ratios. 

 

Table 3. Probability values for testing significance of fixed effects of quarter 
position, parity, lactation stage, and the linear regression of sampling day 
on the percentage of individual cell populations and combinations of cell 
populations in milk1 

Cell population or 
variable2 Quarter position Parity Lactation stage Sampling day 

PMNL 0.5349 0.8963 0.7550 0.7847 

Lymphocytes 0.2268 0.2322 0.7863 0.9797 

Macrophages 0.6276 0.2365 0.8891 0.6805 

log PMNL:Lym 0.5645 0.5665 0.7319 0.8894 

log Phag:Lym 0.6463 0.2980 0.7940 0.8127 
1Analyzed factors were quarter position (front right, rear right, front left, and rear 
left), parity (1 or 2, and 3 or 4), lactation stage (early, mid, or late lactation), and 
sampling day (d 1 to 5). 
2log PMNL:Lym = logarithmic PMNL:lymphocyte ratio; log Phag:Lym = logarithmic 
Phagocyte:lymphocyte ratio. 
 

Table 4. Probability values for testing significance of fixed effects of parity, 

lactation stage, and the linear regression of sampling day on the 
percentage of individual cell populations as well as combinations of 
cell populations in blood1 

Cell population or 
variable2 Parity Lactation stage Sampling day 

PMNL 0.2232 0.8664 0.1931 

Lymphocytes 0.1313 0.6460 0.1302 

Macrophages 0.1088 0.0712 0.3317 

log PMNL:Lym 0.1898 0.6354 0.0870 

log Phag:Lym 0.1577 0.5415 0.0849 
1Analyzed factors were parity (1 or 2, and 3 or 4), lactation stage (early, mid, or 
late lactation), and sampling day (d 1 to 5). 
2log PMNL:Lym = logarithmic PMNL:Lymphocyte ratio; log Phag:Lym = 
logarithmic Phagocyte:Lymphocyte ratio. 



Differential Cell Count to Diagnose Bovine Mastitis 

 

 114 

 
Figure 1. Least squares means of percentages (A) PMNL, (B) lymphocyte 

(Lym), and (C) macrophage (Mac) in milk, for each sampling day, 
separated by lactation stage (early, mid, or late). 

 
Figures 1 and 2 show Least Square Mean values in milk for individual cell 

populations or ratios on each sampling day, corrected for quarter position and 

parity, and separated by lactation stage. Even though no significance could be 

attributed to lactation stage, a trend to increasing lymphocyte percentages and 

decreasing macrophage values was seen over the course of lactation 

(Figure 3). Analogously, older cows were more likely to have higher log 

PMNL:Lym compared with first- or second-parity cows, but the differences were 
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not significant (Figure 4). The results of blood analysis were similar to those of 

milk (Figure 5). 

 

Figure 2. Least squares means of (A) logarithmic PMNL:lymphocyte (log 
PMNL:Lym) ratio and (B) logarithmic phagocyte:lymphocyte ratio 
(log Phag:Lym) in milk, for each sampling day, separated by 
lactation stage (early, mid, or late). 

 

 

 

 

 

 

 

 
 

Figure 3. Least squares means and standard error of (A) PMNL, lymphocyte 

(Lym), and macrophage (Mac) percentages; and (B) logarithmic 
PMNL:lymphocyte (log PMNL:Lym) and logarithmic phagocyte: 
lymphocyte (log Phag:Lym) ratios (B) in milk, separated by lactation 
stage (early, mid, or late). 

 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 4. Least squares means and standard error of (A) PMNL, lymphocyte 
(Lym) and macrophage (Mac) percentages; and (B) logarithmic 
PMNL:lymphocyte (log PMNL:Lym) and logarithmic phagocyte: 
lymphocyte (log Phag:Lym) ratios in milk, separated by parity 
number. Dark grey bars represent animals that calved once or twice, 
light grey bars represent animals that calved 3 or 4 times. 
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Figure 5. Least squares means of (A) PMNL, (B) lymphocyte (Lym), and (C) 

macrophage in blood for each sampling day, separated by lactation 
stage (early, mid, or late). 

 
The area under the receiver operating characteristic curve used for the 

cutoff determination was 0.775. Choosing a cutoff value of 0.495 for log 

PMNL:Lym, sensitivity was 73.3% and specificity 73.6%. 

Trial 2. When the cutoff value determined in trial 1 was applied to the data 

of the second trial, out of 64 quarters tested, 28 were correctly classified as 

positive, and 24 as negative, while two quarters were false positives, and 
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9 quarters were false negatives. Calculated sensitivity and specificity under field 

conditions were 75.7% and 92.3%, respectively. 

Discussion 

 

Differential cell count has been proposed as a valid tool for the 

identification of inflammatory processes in animals with low SCC (Rivas et al., 

2001). Recent studies confirmed that DCC can be used to detect inflammatory 

processes in milk samples with extremely low SCC (Schwarz et al., 2011a, b; 

Pilla et al., 2012). Given the constant pressure in the lactating mammary gland 

and the dynamism of the immune system, information on the short-term 

repeatability of DCC is important to evaluate the applicability of the method as a 

tool in mastitis control programs. 

The aims of the present study were to evaluate whether the results of 

DCC are consistent on subsequent days, using both individual cell population 

and the 2 ratios to increase the discrimination power of DCC as previously 

reported (Pilla et al., 2012). A further aim of the study was to establish a cutoff 

value for log PMNL:Lym, the ratio that best identified healthy and diseased 

quarters (Pilla et al., 2012), and to verify its applicability under field conditions. 

Differential cell counts can be obtained by flow cytometer or light 

microscopy. Leitner et al. (2000b) reported a high correlation between the 

2 methods for PMNL and lymphocytes and a lower correlation for macrophages 

and epithelial cells. While light microscopy is a cost-effective method, cytometry 

is more precise, allowing the evaluation of a higher number of cells per sample 

(Koess and Hamann, 2008). Therefore, cytometric analysis was chosen for 

DCC testing. 

Animals considered in the first trial were selected from a herd free of 

contagious mastitis pathogens, with high health and hygiene standards. The 

choice of a commercial herd characterized by excellent management allowed 

us to reduce the influence of diseases or systemic pathologies unrelated to the 

mammary gland. To that end, blood samples were taken to verify that eventual 

fluctuations in milk data could be related to systemic conditions. 

Fluctuations in SCC were observed in all but 3 quarters during the follow-

up period, but no significant variation in DCC could be recorded. Even though 
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4 samples were bacteriologically positive, no bacteria could be detected in the 

following samples, thus infections were considered transient. Therefore, each 

positive milk samples was excluded from the analysis, but the animals were still 

considered healthy and were not excluded from the experiment. Even though 

no significant difference could be found among sampling days, variations in 

DCC could be seen in some quarters but were not correlated with SCC 

variation (data not shown).  

Fluctuations of individual cell populations in milk were observed in different 

stages of lactation, but the differences were not significant, in agreement with 

Pilla et al. (2012) but in contrast to Dosogne et al. (2003), who reported higher 

lymphocytes and lower macrophages at the beginning of lactation. 

These results suggest that DCC can be reliably applied in samples 

collected in different stages of lactation to evaluate the health status of the 

mammary gland, even though single variations observed in a few samples 

could indicate the possibility of misclassification. 

The results obtained in the second trial using the cutoff value calculated in 

the first trial showed very high specificity and good sensitivity. Out of the 

9 false-negative quarters, 2 were considered diseased based on SCC only, 

4 were positive for Staph. aureus, 2 for Prototheca ssp., and 1 for CNS. If both 

SCC and DCC were considered, only 1 quarter would be missclassified, 

increasing sensitivity of the method to 97.3%, without any changes in 

specificity. That quarter had very low SCC (1,000 cells/mL in all samplings), and 

Staph. aureus was detected in low counts only in the first and second 

samplings (102 cfu/mL). Because the animal had 2 Staph. aureus-infected 

quarters shedding high numbers of bacteria, we speculated that bacteriological 

positivity of the other quarter could reflect a transient contamination of the teat 

canal that was adequately prevented from reaching the gland cistern by local 

defense mechanisms. Such teat canal contaminations have been previously 

reported and do not always correlate with intramammary infections (Zecconi et 

al., 1994). 

Conclusions 

 

Differential cell counting can identify inflammatory processes in quarters 

with low-SCC that are otherwise considered healthy. Information on the 
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consistency of this method is important to evaluate the applicability of DCC in 

mastitis control programs. In the present study, we considered healthy 

mammary quarters to establish test-retest reliability of a previously described 

combined variable used to identify healthy or diseased quarters and to establish 

a cutoff value to be used in the field. No influence of sampling day, parity, 

lactation stage, or quarter position could be found on either milk or blood DCC 

results; therefore, a cutoff value could be established to identify healthy or 

diseased quarters. Such value of 0.495, tested under field conditions, confirmed 

the previous results. Finally, data obtained in the field showed that combining 

SCC with the cutoff value of 0.495 for DCC, sensitivity and specificity increased 

to 97.3% and 92.3%, respectively. In conclusion, the use of both cytometric 

DCC and SCC could represent an excellent diagnostic method to identify 

inflammatory processes in the mammary gland while avoiding bacteriological 

analysis. 
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Abstract 

 

Lymphocytes play a significant role in immunological processes of the 

bovine mammary gland and were found to be the dominant cell population in 

the milk of healthy udder quarters. The objective of this study was to investigate 

the quantitative relationship of CD2+ T and CD21+ B lymphocytes using flow 

cytometry. In a first study, quarter foremilk samples from apparently healthy 

udder quarters (somatic cell counts, SCC ≤100,000 cells/mL) were analyzed 

and compared with diseased quarters (SCC >100,000 cells/mL). Percentages 

of CD2+ T cells were significantly higher in milk samples with SCC 

≤100,000 cells/mL than in those with SCC >100,000 cells/mL, whereas the 

behavior of CD21+ B cells was the contrary. As a result of this antidromic effect, 

a new variable, the CD2/CD21 index – representing the percentages of CD2+ 

cells per CD21+ cells – was defined. While diseased quarters generally 

revealed CD2/CD21 indices <10, values >10 were observed in apparently 

healthy quarters. Hence, a CD2/CD21 index of 10 may be suitable to aid 

differentiation between unsuspicious and suspicious or diseased udder 

quarters. To test whether CD2/CD21 indices <10 are primarily related to major 

pathogens, quarters with SCC ≤100,000 cells/mL, and >100,000 cells/mL with 

different kinds of the bacteriological status (culture-negative, minor or major 

pathogens), were selectively examined. Interestingly, CD2/CD21 indices <10 

were found in quarters showing SCC ≤100,000 cells/mL and minor or major 

pathogens at the time of the current or previous bacteriological analysis. The 

results of our examinations indicated a clear connection between the 

CD2/CD21 index and the bacteriological status of the mammary gland. It offers 

a new possibility to distinguish unsuspicious from suspicious or diseased udder 

quarters. 
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Introduction 

 

Mastitis is an inflammation of the mammary gland and a major cause of 

economic losses to the dairy industry in developed countries [1,2]. The most 

common cause of mastitis is infection with udder pathogenic microorganisms. 

To induce mastitis, the pathogens must enter the mammary gland by passing 

through the teat canal and overcoming the defense mechanisms of the 

udder [3]. For mastitis diagnosis, traditional and well-established tests including 

somatic cell counts (SCC) and microbial culture-based methods are 

standard [4]. According to current definitions of udder health in Germany, SCC 

≤100,000 cells/mL in quarter foremilk samples are in the physiological range [5]. 

Lymphocytes were detected in high numbers in the mammary gland 

tissue of ruminants, in milk, and dry secretions [6–9]. The predominance of 

these cells in healthy mammary glands suggests that lymphocytes play a 

significant role in the maintaining the integrity of the mammary gland [10] and in 

host defense against infectious diseases of the mammary gland [11]. Data from 

literature indicates that mammary gland lymphocytes are capable of a broad 

range of effector functions including cytotoxic, suppressor, and antibacterial 

functions [11,12]. 

Studies involving monoclonal antibodies revealed that the majority of 

lymphocytes in mammary gland tissues and secretions were T lymphocytes, 

with the remaining population consisting of B lymphocytes and natural killer 

cells [7,13]. T lymphocytes, including /  [14] and /  cells [15–17], express 

CD2 molecules on their surface. /  lymphocytes are made up of CD4+ (T-

helper) and CD8+ (T-cytotoxic or T-suppressor) cells [18]. CD4+ cells are 

activated in response to the recognition of antigen-MHC class II complexes on 

antigen-presenting cells, such as T lymphocytes and macrophages [19]. CD8+ 

cells act by eliminating host cells expressing foreign antigens in association with 

MHC class I molecules, or they control the immune response by suppressing 

the activation of these cells during bacterial infection [19,20]. /  lymphocytes 

are not as well characterized, but it has been suggested that they can be 

cytotoxic and may provide a unique line of defense against bacterial 

infections [19]. /  lymphocytes migrate preferentially to epithelial surfaces and 
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do not circulate extensively [21]. At epithelial surfaces they destroy damaged 

epithelial cells [19]. B lymphocytes express the CD21 molecule and can serve 

as antigen-presenting cells, as well as secrete cytokines and differentiate into 

plasma cells that produce and secrete immunoglobulins [19,20,22,23]. Earlier 

studies [24,25] indicated a decrease in percentages of CD2+ milk T 

lymphocytes one day after mammary glands of healthy dairy cows were 

experimentally challenged with Staphylococcus (S.) aureus. 

In a recent study [26], lymphocytes were the only individual cell 

population showing statistically varying percentages between healthy and three 

kinds of diseased udder quarters; indicating that their percentages are 

susceptible to change. However, there is limited knowledge of the qualitative 

role of milk leukocytes in udders classified as healthy (SCC 

≤100,000 cells/mL) [27]. The analysis of the relationship of immune cells 

(lymphocytes, macrophages, and granulocytes) in milk revealed inflammatory 

processes based on the predominance of granulocytes in apparently healthy 

mammary glands (SCC ≤100,000 cells/mL) [8,9]. Lymphocytes were discovered 

to be a dominant cell population in the milk of healthy udder quarters. The 

objective of this study was to analyze the quantitative relationship of 

CD2+ T and CD21+ B lymphocytes in quarter foremilk samples using flow 

cytometry to check early changes of the immunological status of the mammary 

gland. Therefore, udder quarters with SCC ≤100,000 cells/mL, as well as 

>100,000 cells/mL with different kinds of bacteriological status (culture-

negative, minor or major pathogens) were selected. 

Materials and Methods 

 

Ethic statement 

In Germany, it is not necessary to have specific ethical approval for 

collection of milk samples from dairy cows; all collection procedures were 

performed by veterinarians of Institute of Veterinary Medicine, Division of 

Microbiology and Animal Hygiene, Göttingen, Germany, or 

Regierungspräsidium Gießen, Milk Control, Wetzlar, Germany, following the 

German Veterinary Society standards [28] for aseptic collection of milk 

samples. 
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Farms and animals  

 Four German dairy farms (A, B, C, and D) were selected randomly. In the 

farms, 50 to 160 dairy cows were housed in pen barns and milked twice per day 

in milking parlors. Milking operations were similar in all farms. After forestripping 

into a foremilk cup, the milkers used damp cotton tissues for udder cleaning. 

Teats were dipped in iodine solution after milking. In all of the dairy farms, 

animals were fed with a TMR consisting of grass and maize silage, rape grist, 

and cereals. Water was available ad libitum. All farms were conventional milk 

producers and the average herd milk yields ranged from 8,000 to 10,000 kg/yr. 

The animals analyzed were kept under optimal conditions, according to national 

guidelines. 

 

Study design 

Two field studies were conducted. Initially, in study 1 the general udder 

health status of all lactating cows from farms A, B, and C was determined by 

analyzing the SCC and bacteriological status of quarter foremilk samples 

(sampling 1.1). Based on this data, 20 Holstein-Frisian cows in good condition 

were chosen ten days later for further detailed analysis of their health status by 

determining the SCC, bacteriological status, differential cell counts (DCC), and 

percentages of T and B lymphocytes (sampling 1.2). Since the aim of this study 

was to analyze apparently healthy mammary glands with low SCC values, 

64 culture-negative quarters, as well as eight quarters containing minor 

pathogens with SCC ≤100,000 cells/mL, were selected. A control group of 

diseased quarters with SCC >100,000 cells/mL containing minor pathogens 

(n = 5) or major pathogens (n = 3) was also selected. 

To confirm and refine the results of study 1, a second study was 

performed. For this reason, the udder health status of all lactating cows from 

dairy farm D was determined initially by analyzing the SCC and the 

bacteriological status of quarter foremilk samples (sampling 2.1). Based on this 

data, 16 Holstein-Frisian cows in good condition were chosen 18 days later to 

determine the SCC, bacteriological status, DCC, and percentages of T and 

B lymphocytes (sampling 2.2), as in study 1. One of the 16 cows selected was a 

three-quarter cow, meaning that in total 63 udder quarters were subject to 

analysis. Seventeen culture-negative quarters, 18 quarters containing minor 
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pathogens, and, in particular, six quarters with the detection of major pathogens 

were chosen in the SCC range ≤100,000 cells/mL. The selected control group 

(SCC >100,000 cells/mL) consisted of six culture-negative quarters, seven 

quarters containing minor pathogens, and nine quarters containing major 

pathogens. To evaluate the dynamics and repeatability of the results obtained 

from samplings 2.1 and 2.2, especially in quarters with SCC ≤100,000 cells/mL 

containing major pathogens, the SCC, bacteriological status, DCC, and 

percentages of T and B lymphocytes of all selected cows were determined 

again a further 13 days later (sampling 2.3). At sampling 2.3, samples of two 

cows could not be taken due to dry periods (n = 55 udder quarters). 

In both studies, clinical mastitis symptoms such as flecks in the milk, 

swelling or redness of the udder quarters were only observed in quarters with 

SCC >100,000 cells/mL. 

 

Milk sampling and processing 

Quarter foremilk samples were obtained according to German Veterinary 

Society [28] standards. Before milking, teat ends were scrubbed with 70% 

ethanol and the first two squirts of milk were discarded. Aliquots of 110 mL of 

milk per udder quarter were collected aseptically in sterile 14-mL plastic tubes 

and two sterile 50-mL plastic tubes (Sarstedt AG & Co., Nümbrecht, Germany). 

Ten milliliters were determined for SCC and bacteriological examinations 

according to IDF [29] standards. Aliquots of 100 mL were necessary for the 

analysis of DCC and T and B lymphocytes. Cells were isolated from the milk 

using two centrifugation steps for 15 min at 200 × g and 4°C, respectively. 

Pellets were washed and resuspended in PBS to a final dilution of 1 × 

106 cells/100 µL based on the predetermined SCC values for each milk sample. 

 

Flow cytometry analysis 

The determination of DCC was described in detail elsewhere [9]. 

Percentages of T and B lymphocytes were also established according to that 

method [9]. Briefly, 100 µL aliquots of the cell suspension were transferred into 

a 5-mL BD Falcon™ tube (BD, Heidelberg, Germany). 5 µL volumes of the 

unconjugated primary monoclonal antibodies, anti-CD2 (isotype: IgG2a) and 

anti-CD21 (isotype: IgM) (16-1E10 and BAQ15A, VMRD, Pullman, USA), both 
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diluted 1:10 in PBS, were added before the tubes were incubated on ice for 

30 min. Cells were centrifuged (5 min at 250 × g and 4°C), resuspended in 3 mL 

of PBS, and allowed to stand for 5 min. After a second washing step, cells were 

resuspended in 50 µL of PBS and incubated with secondary monoclonal 

antibodies. Specifically, 2.5 µL of phycoerythrin-conjugated rat-anti-mouse IgM 

(553409, BD, Heidelberg, Germany) and 10 µL of a mix preincubated for 30 min 

were applied. This mix contained 5 µL of biotin-conjugated rat-anti-mouse 

IgG2a (553388, BD, Heidelberg, Germany) and 5 µL of PerCP-Cy™ 5.5 

streptavidin (551419, BD, Heidelberg, Germany) – both diluted 1:10 in PBS. 

PerCP-Cy™ 5.5 streptavidin was used to visualize the biotin-labeled antibody. 

Following incubation for 30 min, cells were washed twice again and finally 

resuspended in 500 µL of PBS. Cells were kept on ice during all procedures, 

centrifuged at 4°C, and incubated in the dark.  

Stained samples were analyzed using a FACSCalibur™ flow cytometer 

(BD, Heidelberg, Germany). CellQuest Pro software (BD, Heidelberg, Germany) 

was used for data collection and analysis. Five thousand events were evaluated 

from each sample [9]. Lymphocytes were identified by size and granularity 

characteristics in an analysis gate according to previous studies [9,30,31]. 

CD2+ T lymphocytes and CD21+ B lymphocytes were measured simultaneously 

as percentages of all lymphocytes. Gates enclosing the antibody-positive cells 

were placed outside the upper limit of background fluorescence. Cells without 

antibody labeling served as a negative control and were regarded to be a 

measure for background fluorescence. In addition, isotype control antibodies 

(rat-IgG1, κ isotype control, 553923 and rat-IgG2a, κ isotype control, 553930, 

BD, Heidelberg, Germany) were used to facilitate measurement of background 

staining. 

 

Statistical analysis 

Associations between lymphocytes, CD2+ T and CD21+ B lymphocytes, 

as well as between the CD2/CD21 index and SCC were analyzed by applying 

linear mixed models using the SAS program (version 9.1; SAS Institute Inc., 

Cary, NC) according to Schwarz et al. [8, 9]. The statistical model included the 

random effect of cow and the fixed effects of the farm, lactation number, 

position of the udder quarter, days in milk, as well as the four SCC groups 
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(group I: ≤6,250 cells/mL; group II: >6,250 to ≤25,000 cells/mL; group III: 

>25,000 to ≤100,000 cells/mL; group IV: >100,000 cells/mL) defined in a 

previous study [32]. In a further analysis, the bacteriological status was included 

and each of the four SCC groups were subdivided into culture-negative (-0), 

minor pathogens (-1), and major pathogens (-2) according to Reneau [33]. 

Results 

 

Study 1: Somatic cell counts and bacteriological status of quarter foremilk 

samples 

Based on the results of the initial determination of the cytobacteriological 

status (sampling 1.1) in three German dairy herds (A, B, and C), 80 quarter 

foremilk samples from 20 cows were taken for a thorough analysis of T and 

B lymphocytes at sampling 1.2. Variations of SCC and the bacteriological status 

between samplings 1.1 and 1.2 caused moderate deviations from initial 

selection criteria. In seven quarters, SCC increased from ≤100,000 cells/mL at 

sampling 1.1 to values >100,000 cells/mL at sampling 1.2. In total, the 

80 quarters selected showed an SCC mean value of 85,780 cells/mL with an 

SD of 233,040 cells/mL at sampling 1.2 (Table 1). 

In 11 of the 65 quarters with SCC ≤100,000 cells/mL, coagulase-negative 

staphylococci (CNS) were found, but no major pathogens. Thirteen of the 

15 quarters with SCC >100,000 cells/mL were culture-positive, whereas two 

were culture-negative. While in five samples (SCC 104,000 to 

624,000 cells/mL) CNS was detected, three samples (SCC 116,000 to 

587,000 cells/mL) were tested positive for Corynebacterium spp. Major 

pathogens were found solely in five quarters. S. aureus was isolated in one of 

them with an SCC value of 454,000 cells/mL. In three quarters (SCC 181,000 to 

1,394,000 cells/mL), Streptococcus (Strep.) uberis was detected. A double 

infection with Strep. uberis and Strep. dysgalactiae was diagnosed in an udder 

quarter with an SCC of 139,000 cells/mL. 

 

Study 1: Lymphocytes and lymphocyte subpopulations of quarter foremilk 

samples 

For a detailed analysis of T and B lymphocytes in the 80 quarter foremilk 

samples 5,000 events per sample were evaluated by flow cytometry at 
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sampling 1.2. The total number of lymphocytes was determined based on 

physical parameters. CD2+ T and CD21+ B cells were measured as 

percentages of all lymphocytes. Lymphocytes were detected in a wide range 

from 118 to 4,393 events (mean: 2,247 events; SD: 1,088 events). Proportions 

of CD2+ T lymphocytes lay in a wide range between 4.26 and 92.75% (Table 1). 

The variation of CD21+ B lymphocytes was narrower, ranging from 0.05 to 

7.31% (Table 1). 

 

Table 1. General overview of SCC, percentages of lymphocyte subpopulations and 
the CD2/CD21 index of the quarter foremilk samples analyzed using flow 
cytometry 

  Lymphocyte subpopulations in %  

Item 
SCC (  1,000 

cells/mL) CD2 CD21 
CD2/CD21 

index 

Study 1 (n = 80, sampling 1.2)    

Mean 85.78 52.09 1.60 62.84 

SD 233.04 22.31 1.39 63.50 

Median 38 52.00 1.25 42.51 

Minimum 2 4.26 0.05 0.74 

Maximum 1,394 92.75 7.31 366.00 

     
Study 2 (n = 63, sampling 2.2)    

Mean 589.21 62.47 15.17 15.95 

SD 1,925.10 23.75 18.07 12.35 

Median 105 74.57 7.97 8.28 

Minimum 1 5.42 0.55 0.07 

Maximum 10,927 95.78 44.54 48.79 

     Study 2 (n = 55, sampling 2.3)    

Mean 329.42 71.90 10.11 14.90 

SD 759.61 17.63 9.47 15.17 

Median 36 74.57 6.33 11.88 

Minimum 3 17.70 1.08 1.36 

Maximum 4,300 97.92 39.53 88.84 

 

Due to the wide variations found within the total number of lymphocytes, 

as well as within the proportions of T lymphocytes, lymphocyte data was tested 

statistically for correlation with the SCC. Total numbers of lymphocytes were 

higher in milk with SCC ≤100,000 cells/mL than in milk with SCC 

>100,000 cells/mL (Figure 1a). The percentages of CD2+ cells in milk samples 

with SCC ≤100,000 cells/mL were considerably higher than in samples with 
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SCC >100,000 cells/mL (Figure 1b). The profile of CD21+ cells was the reverse: 

there were notably lower percentages in milk samples with SCC 

≤100,000 cells/mL than in samples with SCC >100,000 cells/mL (Figure 1c). 

 

 

Figure 1. Lymphocyte subpopulations of 80 mammary glands (study 1) 
depending on SCC. The total number of cells/mL of milk (SCC) was 
determined for each sample. Cells were then isolated from the 
quarter foremilk samples and analyzed by flow cytometry. (a) Total 
number of lymphocytes (filled circle) pictured in combination with a 
calculated potential trendline; (b) Proportions of CD2+ lymphocytes 
(filled square) pictured in combination with a calculated potential 
trendline; (c) Proportions of CD21+ lymphocytes (filled triangle) 
pictured in combination with a calculated logarithmic trendline. 
(d) Values of the proportion of CD2+ lymphocytes per CD21+ 
lymphocytes (CD2/CD21 index) (filled rhomb) pictured in 
combination with a calculated potential trendline. Each symbol 
represents the result of one udder quarter analyzed, but overlapping 
is possible. 

 
The statistical analysis indicated a significantly (p < 0.001) negative 

correlation between the total number of lymphocytes and SCC, as well as 

between the percentages of CD2+ lymphocytes and SCC (Table 2). In contrast, 

the correlation between the percentages of CD21+ cells and SCC was evidently 

(p < 0.001) positive. The statistical model considered fixed effects of the farm, 

lactation number and position of the udder quarter on lymphocytes and 
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lymphocyte subpopulations. The farm had a significant (p < 0.05) impact on the 

total number of lymphocytes, as well as on the percentages of 

CD2+ lymphocytes (Table 2). The total number of lymphocytes was further 

influenced significantly (p < 0.05) by the lactation number, but not by the days in 

milk or the position of the udder quarter. Percentages of CD2+ and CD21+ 

lymphocytes were affected by none of these parameters. 

 

Table 2. Results of variance analysis1 for the total number of lymphocytes, 
percentages of CD2+ and CD21+ lymphocytes, and CD2/CD21 index 
in the foremilk samples analyzed 

 Effect (p-value) 

Item SCC 
Quarter 
position 

Lactation 
number DIM Farm 

Study 1 (n = 80, sampling 1.2)     

Lymphocytes 0.0001 0.62 0.04 0.44 0.05 

CD2+ lymphocytes 0.0001 0.62 0.70 0.79 0.0002 

CD21+ lymphocytes 0.0001 0.82 0.10 0.36 0.22 

CD2/CD21 index 0.0001 0.52 0.07 0.53 0.19 

      
Study 2 (n = 63, sampling 2.2)     

Lymphocytes 0.0001 0.44 0.72 0.07 – 

CD2+ lymphocytes 0.29 0.37 0.96 0.72 – 

CD21+ lymphocytes 0.02 0.91 0.26 0.12 – 

CD2/CD21 index 0.0005 0.56 0.37 0.22 – 

      Study 2 (n = 55, sampling 2.3)     

Lymphocytes 0.0001 0.69 0.59 0.56 – 

CD2+ lymphocytes 0.30 0.22 0.97 0.50 – 

CD21+ lymphocytes 0.0001 0.73 0.58 0.72 – 

CD2/CD21 index 0.02 0.16 0.90 0.64 – 
1Analyzed factors were SCC, quarter positions (front right, rear right, front left, 
and rear left), lactation number (1, 2, ≥ 3), days in milk (DIM) (61-99 days, 102-
175 days, 246-360 days), and farm (A, B, and C). 
 

As indicated by the calculated trendlines, percentages of CD2+ and 

CD21+ cells (Figures 1 b and c, respectively) emerged in contrary directions as 

SCC increased. Due to this antidromic trend of CD2+ and CD21+ cells, a new 

variable – the CD2/CD21 index – representing the ratio between the 

percentages of CD2+ cells per CD21+ cells, was defined. In the 80 quarter 

foremilk samples analyzed, this indicator showed values in a wide range from 

0.74 to 366 (Table 1). The values of the CD2/CD21 index were considerably 
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higher in milk samples with SCC ≤100,000 cells/mL than in samples with SCC 

>100,000 cells/mL (Figure 1d). The statistical analysis indicated that the farm, 

position of the udder quarter, number of lactation, or days in milk did not notably 

influence the CD2/CD21 index (Table 2). However, the correlation between the 

CD2/CD21 index and SCC was significantly (p < 0.001) negative (Table 2), 

meaning that high SCC levels, which are generally considered to be associated 

with mastitis, were associated with low CD2/CD21 indices. 

 

Study 1: Evaluation of the CD2/CD21 index depending on the udder health 

status 

In a further statistical analysis, effects of both the SCC and 

bacteriological status on the CD2/CD21 index were investigated. In addition, 

differences of the CD2/CD21 index within the SCC range ≤100,000 cells/mL 

were analyzed. Based on the cytobacteriological status at sampling 1.2 the 

80 udder quarters were classified into four SCC groups (group I: 

≤6,250 cells/mL; group II: >6,250 to ≤25,000 cells/mL; group III: >25,000 to 

≤100,000 cells/mL; group IV: >100,000 cells/mL), as defined in a previous study 

[31]. The bacteriological status was regarded by subdividing each SCC group 

into culture-negative (-0), minor pathogens (-1), or major pathogens (-2) 

(Figure 2). To consider the impact of variations in SCC and bacteriology 

between samplings 1.1 and 1.2 on the CD2/CD21 index, the cytobacteriological 

status at sampling 1.1 is also indicated in Figure 2. 

At sampling 1.2, CD2/CD21 indices of quarters in groups I-0 (n = 11), II-0 

(n = 33), and III-0 (n = 7) varied greatly between 11.06 and 366, without visible 

effects of the cytobacteriological status at sampling 1.1 (Figure 2). Samples 

from groups I-1 (n = 4), II-1 (n = 6), and III-1 (n = 1) showed CD2/CD21 indices 

ranging from 20.58 to 104.83; also without visible effects of the 

cytobacteriological status at sampling 1.1. 

The CD2/CD21 indices revealed markedly lower values in groups IV-0 

(n = 2), IV-1 (n = 8), and IV-2 (n = 5) than in the SCC range ≤100,000 cells/mL 

(Figure 2). While 11 of 15 quarters with SCC >100,000 cells/mL indicated 

values <10, values >10 were found in four quarters. One quarter of group IV-0, 

as well as one quarter of group IV-1 which were both culture-negative at 

sampling 1.1, showed CD2/CD21 indices of 27.09 and 19.93, respectively, at 
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sampling 1.2. One further quarter of group IV-1 that was positive for minor 

pathogens at sampling 1.1 indicated a CD2/CD21 index of 16.90. Major 

pathogens were detected at sampling 1.1 in the fourth quarter, showing a 

CD2/CD21 index of 13.00 (group IV-1). The CD2/CD21 index of samples in 

group IV-2 was generally <10. 

 

 

Figure 2. Associations between the CD2/CD21 index and the cyto-
bacteriological status of the mammary glands in study 1 at 
sampling 1.2. Values of the CD2/CD21 index in four SCC groups 

(group I: ≤6,250 cells/mL; group II: >6,250 to ≤25,000 cells/mL; 
group III: >25,000 to ≤100,000 cells/mL; group IV: 
>100,000 cells/mL), with each group subdivided into culture-
negative (-0), minor pathogens (-1), and major pathogens (-2). The 
80 udder quarters analyzed were classified based on SCC values 
and the bacteriological status at sampling 1.2. To show the 
dynamics of the udder health status, the result of the previous 
bacteriological analysis (sampling 1.1) is indicated for each quarter 
the following by symbols:  = negative,  = minor pathogens,  = 
major pathogens. Moreover, the SCC variations are indicated by 
the color of the symbols: white = same SCC group at sampling 1.1 
and 1.2, green = SCC was at least one SCC group higher at 
sampling 1.1, red = SCC was at least one SCC group lower at 
sampling 1.1. Each symbol represents the result of one udder 
quarter analyzed, but overlapping is possible. Path. = pathogens. 
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The statistical analysis indicated notably (p < 0.05) lower mean values of 

the CD2/CD21 index in groups I-0 (76.12) and II-0 (89.97) in comparison with 

group III-0 (146.26). Furthermore, the mean values in groups I-0, II-0, III-0, and 

I-1 (149.41) were considerably (p < 0.05) higher than in groups IV-0 (0.54), IV-1 

(24.22), and IV-2 (8.88). However, the mean CD2/CD21 indices in groups II-1 

(78.23) and III-1 (86.92) did not differ significantly from any of the other groups. 

 

Study 2: Lymphocytes and lymphocyte subpopulations of quarter foremilk 

samples 

The major finding of study 1 demonstrated that CD2/CD21 indices were 

generally >10 in quarters with SCC ≤100,000 cells/mL, independent of detection 

of minor pathogens, whereas almost all samples with SCC >100,000 cells/mL 

containing minor or major pathogens indicated values <10. Hence, to 

investigate whether a CD2/CD21 index of <10 is primarily related to major 

pathogens, a second study was conducted. Based on the results of the initial 

investigation of the udder health status in farm D (sampling 2.1), quarters with 

SCC ≤100,000 cells/mL and >100,000 cells/mL – either culture-negative or 

containing minor or major pathogens – were selected for a detailed analysis of 

T and B lymphocytes at sampling 2.2 using flow cytometry. In contrast to 

study 1, six quarters with SCC ≤100,000 cells/mL containing major pathogens 

were also selectively chosen. 

At sampling 2.2, quarter foremilk samples were taken from 63 quarters of 

16 cows housed in dairy farm D. In ten quarters, SCC increased from 

≤100,000 cells/mL at sampling 2.1 to values >100,000 cells/mL at sampling 2.2. 

The SCC mean value of 589,210 cells/mL (Table 1), based on the samples at 

sampling 2.2, was clearly higher than in study 1 (sampling 1.2); especially due 

to the examination of five severely diseased quarters with an SCC between 

1,054,000 and 10,927,000 cells/mL. As in study 1, lymphocytes were detected 

in a wide range from 99 to 4,556 events (mean value: 1,397; SD: 996). 

Sampling 2.2 confirmed the results of sampling 1.2 regarding the wide range of 

proportions of CD2+ T lymphocytes between 5.42 and 95.78% (Table 1). 

However, at sampling 2.2, proportions of CD21+ B lymphocytes varied between 

0.55 and 44.54% (Table 1) and were clearly higher than those found at 

sampling 1.2. While the minimum value of the CD2/CD21 index of 0.07 at 
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sampling 2.2 was similar to the minimum value at sampling 1.2, the maximum 

value of 48.79 measured at sampling 2.2 was clearly lower (Table 1). Results of 

variance analysis of data from sampling 2.2 were similar to those observed at 

sampling 1.2, with the exception that lymphocytes were not significantly 

influenced by lactation number and percentages of CD2+ cells did not correlate 

significantly with SCC (Table 2). 

To evaluate the dynamics and repeatability of the results, 14 of the 

16 animals could be sampled again (sampling 2.3) 13 days after sampling 2.2. 

Compared to sampling 2.2, the SCC mean value at sampling 2.3 dropped to 

329,420 cells/mL (Table 1) because the SCC of the severely diseased quarters 

decreased to values between 848,000 and 4,300,000 cells/mL. Applying flow 

cytometry, lymphocytes were detected in a wide range from 119 to 

4,151 events (mean value: 1,628, SD: 1,066), confirming the results of 

sampling 2.2. Proportions of both CD2+ and CD21+ cells at sampling 2.3 were 

similar to those observed at sampling 2.2 (Table 1). Compared to sampling 2.2, 

the CD2/CD21 index indicated slightly higher values ranging from 1.36 to 88.84 

at sampling 2.3 (Table 1). Results of variance analysis of sampling 2.3 data 

were similar to those found at sampling 2.2 (Table 2). 

 

Study 2: Evaluation of the CD2/CD21 index depending on the udder health 

status 

As at sampling 1.2, data of sampling 2.2 revealed a significant correlation 

between the CD2/CD21 index and SCC. To test the effect of SCC and 

bacteriological status on the CD2/CD21 index, the same statistical analysis was 

performed as in study 1. For this analysis, the 63 udder quarters analyzed were 

grouped according to the cytobacteriological status at sampling 2.2 (Figure 3). 

Effects of variations in SCC and bacteriology between samplings 2.1 and 2.2 on 

the CD2/CD21 index were also considered. However, since SCC of the 

previous sampling showed no visible effects on the CD2/CD21 index in study 1, 

only the bacteriological status of sampling 2.1 is indicated in Figure 2. 

At sampling 2.2, CD2/CD21 indices in quarters of groups I-0 (n = 7), II-0 

(n = 7), and III-0 (n = 1) ranged between 5.64 and 27.96 (Figure 3). In groups I-

1 (n = 10), II-1 (n = 3), and III-1 (n = 2) a wider range of values between 2.22 

and 38.63 was observed. Interestingly, nine quarters of groups I-0, I-1, II-0, II-1, 
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III-1, and III-2 indicated CD2/CD21 indices of <10. In four of these quarters 

(groups I-0, I-1, II-0, and III-2), with CD2/CD21 indices ranging between 2.22 

and 9.64, S. aureus was detected at sampling 2.1 (Figure 3). In one quarter of 

group II-0, with a CD2/CD21 index of 8.86 and two quarters of group II-1 with 

CD2/CD21 indices of 8.28 and 6.58, respectively, minor pathogens were 

detected at sampling 2.1. One further quarter of group II-0, with a CD2/CD21 

index of 8.69, as well as one quarter of group III-1 with a CD2/CD21 index of 

6.44, were culture-negative at sampling 2.1. 
 

 

Figure 3. Associations between the CD2/CD21 index and the cyto-
bacteriological status of the mammary glands in study 2 at 
sampling 2.2. Values of the CD2/CD21 index in four SCC groups 

(group I: ≤6,250 cells/mL; group II: >6,250 to ≤25,000 cells/mL; 
group III: >25,000 to ≤100,000 cells/mL; group IV: 
>100,000 cells/mL) with each group subdivided into culture-
negative (-0), minor pathogens (-1), and major pathogens (-2). The 
63 udder quarters were classified based on SCC values and the 
bacteriological status at sampling 2.2. For each quarter, the result 
of the previous bacteriological analysis (sampling 2.1) is indicated 
by the following symbols:  = negative,  = minor pathogens,  = 
major pathogens. Quarters no. 1-18 were marked for additional 
analysis of differential cell counts as their CD2/CD21 index differed 
from our working hypothesis (>10 in unsuspicious quarters and <10 
in suspicious or diseased quarters) either at sampling 2.2 or 2.3. 
Each symbol represents the result of one udder quarter analyzed, 
but overlapping is possible. Path. = pathogens. 
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As in study 1 at sampling 1.2, 28 of 32 samples of groups IV-0 (n = 4), 

IV-1 (n = 17), and IV-2 (n = 11) clustered in a CD2/CD21 index range <10 

(Figure 3). However, two quarters of group IV-0 indicated CD2/CD21 indices of 

23.59 and 48.79 and they were culture-negative at sampling 2.1. In contrast, 

S. aureus was detected at sampling 2.1 in another quarter of group IV-0 with a 

CD2/CD21 index of 28.17. In the fourth quarter (group IV-1), with a CD2/CD21 

index of 13.34, Corynebacterium spp. was already present at sampling 2.1. As 

at sampling 1.2, the CD2/CD21 index was generally <10 in all quarters of group 

IV-2 where major pathogens such as S. aureus, Strep. uberis, and 

Strep. dysgalactiae were isolated. 

Statistical analysis revealed significant (p < 0.05) higher mean values of 

the CD2/CD21 index in groups I-0 (13.74), II-0 (16.30), III-0 (21.56), and I-1 

(18.81) in comparison with group IV-1 (3.80). Furthermore, the mean values in 

groups II-0 and IV-0 (19.60) were notably (p < 0.05) higher than in group IV-2 

(6.40). However, the mean CD2/CD21 indices in groups II-1 (12.50), III-1 

(14.31), and III-2 (14.36) did not differ significantly from any of the other groups. 

Data from sampling 2.2 indicated that CD2/CD21 indices in almost all 

quarters of groups IV-0, IV-1, and IV-2 were clearly lower than in quarters with 

SCC ≤100,000 cells/mL, as in study 1. Interestingly, in groups I-0, I-1, II-0, II-1, 

III-1 and III-2, values <10 of the CD2/CD21 index were also found at 

sampling 2.2. To investigate the further development of the CD2/CD21 index, 

sampling 2.3 was conducted 13 days later and the results were also tested in a 

statistical analysis (Figure 4). 

At sampling 2.3, CD2/CD21 indices in groups I-0 (n = 8), II-0 (n = 7), and 

III-0 (n = 6) lay in a wider range between 1.46 and 57.00, than at sampling 2.2 

(Figure 4). Samples in groups I-1 (n = 10), II-1 (n = 3), and III-1 (n = 2) showed 

CD2/CD21 indices between 1.44 and 37.65, as observed at sampling 2.2. 

Interestingly, as at sampling 2.2, six quarters in groups I-0, II-0, III-0, III-1, and 

III-2 revealed CD2/CD21 indices of <10. In three of these quarters (groups III-0, 

III-1, and III-2) with CD2/CD21 indices ranging between 1.44 and 6.43, 

S. aureus could be detected at sampling 2.1, whereas the quarter in group III-2 

also indicated S. aureus at sampling 2.2. In the remaining three samples 

(groups I-0, II-0, and III-1), with CD2/CD21 indices ranging between 6.63 and 



CD2/CD21 index for evaluation of udder health 

 

 138 

8.77, CNS were isolated at samplings 2.1 and 2.2 with the exception of the 

quarter in group I-0 that was culture-negative at sampling 2.2. 

As observed at sampling 2.2, the CD2/CD21 index of 18 of 22 samples in 

groups IV-0 (n = 5), IV-1 (n = 11), and IV-2 (n = 6) clustered in the range <10 

(Figure 4). One quarter in group IV-0, indicating a CD2/CD21 index of 88.84 at  

 

 

Figure 4. Associations between the CD2/CD21 index and the cyto-
bacteriological status of the mammary glands in study 2 at 
sampling 2.3. Values of the CD2/CD21 index in four SCC groups 

(group I: ≤6,250 cells/mL; group II: >6,250 to ≤25,000 cells/mL; 
group III: >25,000 to ≤100,000 cells/mL; group IV: 
>100,000 cells/mL) with each group subdivided into culture-
negative (-0), minor pathogens (-1), and major pathogens (-2). The 
55 udder quarters were classified based on SCC values and the 
bacteriological status at sampling 2.3. For each quarter, the results 
of the two previous bacteriological analyses (samplings 2.1 and 
2.2) is indicated by the following symbols:  = negative,  = minor 
pathogens at sampling 2.1,  = major pathogens at sampling 2.1, 
 = minor pathogens at sampling 2.2,  = major pathogens at 
sampling 2.2,  = minor pathogens at samplings 2.1 and 2.2,  = 
major pathogens at sampling 2.1 and 2.2. Quarters no. 1-18 were 
marked for additional analysis of differential cell counts as their 
CD2/CD21 index differed from our working hypothesis (>10 in 
unsuspicious quarters and <10 in suspicious or diseased quarters) 
either at sampling 2.2 or 2.3. Each symbol represents the result of 
one udder quarter analyzed, but overlapping is possible. Path. = 
pathogens. 
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sampling 2.3, was also culture-negative at both previous samplings (2.1 and 

2.2). Three further quarters in group IV-1 revealed CD2/CD21 indices between 

10.87 and 12.63. While in two of these quarters CNS were isolated previously 

at samplings 2.1 and 2.2, the remaining quarter was culture-positive for 

Strep. uberis at sampling 2.2. As at samplings 1.2 and 2.2, the CD2/CD21 index 

was <10 in all quarters of group IV-2 (n = 6) where the major pathogens 

S. aureus, Strep. uberis, and Strep. dysgalactiae were isolated. 

Statistical analysis revealed a considerably (p < 0.05) higher mean value 

of the CD2/CD21 index in group II-0 (26.15) than in groups IV-1 (14.54) and IV-

2 (6.58). However, the mean values in groups I-0 (19.35), III-0 (5.48), I-1 

(19.45), II-1 (21.33), III-1 (9.61), III-2 (17.12), and IV-0 (21.31) did not differ 

significantly from any of the other groups. 

 

Study 2: Associations between the CD2/CD21 index and differential cell 

counts 

The data obtained so far suggests a connection between low CD2/CD21 

indices and diseased udder quarters, as values <10 were measured in almost 

all quarters with a high SCC of >100,000 cells/mL (groups IV-0, IV-1, and IV-2) 

at samplings 1.2, 2.2 and 2.3. In contrast, apparently healthy udder quarters 

with SCC ≤100,000 cells/mL indicated values >10. However, at samplings 2.2 

and 2.3, deviations from our working hypothesis were observed (Figures 3 

and 4), and therefore the DCC of 18 quarters were further analyzed for a better 

interpretation of their CD2/CD21 indices. 

In quarters no. 1-6, S. aureus was diagnosed at sampling 2.1 and SCC 

ranged from 5,000 to 34,000 cells/mL (Table 3). However, it was only in quarter 

no. 3 that S. aureus was detected at samplings 2.1, 2.2 and 2.3. With the 

exception of quarter no. 2 at sampling 2.3, CD2/CD21 indices were <10 in 

quarters no. 1-4 (Figure 5). The DCC analysis of quarters no. 1-4 indicated 

inflammatory reactions based on the predominance of granulocytes (≥48%) 

either at sampling 2.2 or 2.3 (Figure 5), which explains the low CD2/CD21 

indices. However, in quarters no. 5 and 6, CD2/CD21 indices >10 were 

measured and inflammatory reactions were not detectable. 
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  In quarters no. 7-18, minor pathogens were isolated at least at one 

sampling and SCC ranged from 2,000 to 4,300,000 cells/mL (Table 3). While 

the CD2/CD21 indices were <10 in quarters no. 9, 11, 14, 15 and 16 at 

samplings 2.2 and 2.3, quarter no. 12 showed a CD2/CD21 index of 8.86 at 

sampling 2.2 and of 16.58 at sampling 2.3 (Table 3). Quarters no. 17 and 18 at 

sampling 2.2 revealed CD2/CD21 indices of 13.34 and 15.01, respectively, and 

values decreased to 4.84 and 8.36 at sampling 2.3. DCC analysis confirmed 

inflammatory reactions based on the predominance of granulocytes (≥43%) in 

quarters no. 9, 11, 12, 14, 15, 16, 17 and 18 at samplings 2.2 and 2.3 

(Figure 5). However, quarters no. 7, 8, 10, and 13 did not indicate inflammatory 

reactions based on DCC analysis, although CD2/CD21 indices <10 were 

measured at least at one sampling (2.2 or 2.3, Figure 5). 

Discussion 

 
Lymphocytes play a significant role in immunological processes of the 

bovine mammary gland [10,11]. The induction and suppression of immune 

responses is regulated by lymphocytes [34]. Lymphocytes were found to be the 

predominant cell population in the milk of healthy udder quarters and consist 

predominantly of T cells, whereas B cells and NK cells are observed in low 

percentages [7,13]. Research on the interaction of lymphocyte subpopulations 

revealed that B cells require the help of T cells to produce specific 

antibodies [35]. However, the interaction of T and B lymphocytes in apparently 

healthy mammary glands with SCC ≤100,000 cells/mL remains poorly 

investigated, but mastitis pathogens [32] and inflammatory reactions based on 

DCC analysis [8,9,26] were already found in this SCC range. In this study, we 

analyzed the proportions of CD2+ T and CD21+ B lymphocytes purified from 

quarter foremilk samples to both improve our knowledge of quantitative 

relationships between these lymphocyte populations in clinically healthy and 

subclinically infected bovine mammary glands, and to observe early changes in 

the immunological status of the mammary glands. 

The CD2/CD21 index, a new variable, was found empirically in study 1 

due to the significantly varying percentages of CD2+ T and 

CD21+ B lymphocytes in the milk of apparently healthy quarters with SCC 
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≤100,000 cells/mL and diseased quarters (SCC >100,000 cells/mL). Moreover, 

recent studies [26,36,37] indicated that combinations of cell populations (e.g., 

ratios) are more suitable to differentiate between healthy and diseased udder 

quarters than percentages of individual cell populations alone. In our 

examinations, percentages of CD2+ lymphocytes were noticeably high in milk 

samples showing SCC ≤100,000 cells/mL and two culture-negative results. 

Information on the percentages of CD2+ lymphocytes in milk samples with SCC 

≤100,000 cells/mL is not available in literature. Only a mean proportion of 

CD2+ lymphocytes of 88% for healthy udder quarters defined by SCC 

<450,000 cells/mL has been reported previously [38]. Further studies [15,18] 

have described the mean proportions of CD2+ cells to range from 83 to 85% in 

the milk of bacteriological negative udder quarters, but SCC values were not 

presented in this case. In contrast to the high percentages of CD2+ cells found 

in the milk of healthy quarters, the percentages of these lymphocytes were low 

in the milk of diseased quarters. 

CD21+ lymphocytes were detected in low percentages in samples 

showing SCC ≤100,000 cells/mL and two culture-negative results. Information 

on the percentages of CD21+ cells in milk with SCC ≤100,000 cells/mL is not yet 

available in literature. In a field study [30], the mean proportions of CD21+ cells 

of 0.93% were found in the milk of 11 healthy cows with an SCC between 

50,000 and 265,000 cells/mL. An experimental study [23] also revealed low 

mean proportions of CD21+ lymphocytes of 1% when analyzing milk of six cows 

with a mean SCC value of 53,000 cells/mL before inoculation with Escherichia 

coli. Contrary to the low proportions of B lymphocytes in the milk of healthy 

udder quarters, our data indicated an increase of up to 45% in diseased 

quarters, confirming results of previous studies [23,30]. This increase of 

B lymphocytes suggests that a humoral immune response developed [30]. 

The results of study 1 gave indications that a CD2/CD21 index of 10 may 

be suitable to differentiate between unsuspicious and suspicious or diseased 

udder quarters. Severely diseased quarters (group IV-2) generally revealed 

CD2/CD21 indices <10. In apparently healthy udder quarters (groups I-0, II-0, 

III-0, I-1, II-1, III-1), the CD2/CD21 index was generally >10. The results of 

study 1 tend to highlight a correlation between the CD2/CD21 index and the 

bacteriological status of the udder quarters, particularly when major pathogens 
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are detected. However, in order to investigate whether a CD2/CD21 index <10 

is primarily related to major pathogens, a second study was conducted. 

Quarters with SCC ≤100,000 cells/mL and >100,000 cells/mL, with different 

kinds of bacteriological status (culture-negative, minor or major pathogens), 

were chosen. In this context, six quarters showing SCC <100,000 cells/mL and 

S. aureus were especially selected. The results of study 2 confirmed a 

CD2/CD21 index <10 in severely diseased quarters (group IV-2). However, we 

also observed CD2/CD21 indices <10 in nine and six quarters with SCC 

≤100,000 cells/mL (groups I-0, I-1, II-0, II-1, III-1, and III-2) at samplings 2.2 and 

2.3, respectively. The low CD2/CD21 indices in four of these quarters (no. 1-4) 

at sampling 2.2 and in three quarters (no. 1, 3, and 4) at sampling 2.3 may be 

attributed to the detection of S. aureus at sampling 2.1. The DCC data 

supported this hypothesis as these quarters indicated an inflammatory reaction 

based on the predominance of granulocytes either at sampling 2.2 or 2.3. 

However, the fifth quarter (no. 5) that was tested positive for S. aureus and 

showed SCC ≤100,000 cells/mL at sampling 2.1, revealed CD2/CD21 indices 

>10 at the following two samplings and did not show any inflammatory signs 

based on DCC analysis (granulocyte proportions 17-19%). Therefore, quarter 

no. 5 may be cured during our study. In four other quarters (no. 8-10, 12) at 

sampling 2.2 and in three quarters (no. 9, 13, 18) at sampling 2.3, the 

CD2/CD21 index <10 may be due to the detection of minor pathogens. If minor 

pathogens are detected, it is not clear whether the pathogens originate from 

teat canal colonization or whether they caused an intramammary 

infection [39,40]. In three of these quarters (no. 9, 12, 18) at samplings 2.2 and 

2.3, inflammatory reactions could be detected based on DCC analysis, whereas 

the remaining three quarters (no. 8, 10, 13) did not show any signs of 

inflammation. Only one culture-negative quarter (no. 7) with SCC ≤100,000 

cells/mL and without prior detection of udder pathogenic microorganisms, 

showed a CD2/CD21 index of 8.69 at sampling 2.2. While DCC data indicated 

no inflammation in this quarter (granulocyte proportions 19-29%), minor 

pathogens were detected and the CD2/CD21 index increased to 37.65 at 

sampling 2.3. This quarter was classified as false suspicious at sampling 2.2. 

Interestingly, in both studies, CD2/CD21 indices >10 were found in 

quarters of groups IV-0 and IV-1, although values <10 would have been 
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expected. In studies 1 and 2, four quarters of group IV-0, that were culture-

negative at two samplings indicated, CD2/CD21 indices >10 and seemed to be 

unsuspicious, which was supported by DCC analysis indicating no inflammatory 

reactions (granulocyte proportions: 10-15%). However, quarter no. 11, which 

showed CD2/CD21 indices of 5.21 and 7.87 at samplings 2.2 and 2.3, 

respectively, was an exception. In this quarter, culturing at sampling 2.2 could 

have been false negative because SCC values >1,000,000 cells/mL and 

inflammatory reactions (granulocyte proportions: 51-53%) were measured at 

samplings 2.2 and 2.3. Additionally, CNS were detected at sampling 2.3. One 

quarter of group IV-0 at sampling 1.2 and four quarters of group IV-0 at 

sampling 2.3 (quarters no. 14-17), in which minor pathogens were detected at 

least at one previous sampling, indicated CD2/CD21 indices <10. However, at 

sampling 2.3 culturing of samples from these quarters could have been false 

negative, as CD2/CD21 indices were <10 and DCC data revealed inflammatory 

reactions based on the predominance of granulocytes (54-81%). Interestingly, a 

further quarter (no. 6) of group IV-0 showing CD2/CD21 indices of 28.17 and 

19.67 at sampling 2.2 and 2.3, respectively, cured during our study. In this 

quarter, bacteriological examinations were only positive at sampling 2.1 

(S. aureus) and DCC data indicated no signs of inflammation (granulocyte 

proportions 7-31%). 

Quarters in group IV-1 generally revealed CD2/CD21 indices <10. 

Indeed, in three of eight samples of group IV-1 at sampling 1.2, one of 

17 samples of group IV-1 at sampling 2.2, and three of 11 samples of group IV-

1 at sampling 2.3, CD2/CD21 indices >10 were found. It is not clear whether the 

minor pathogens detected in these quarters originated from teat canal 

colonization or whether they caused an intramammary infection [39,40]. The 

DCC data of four quarters supported an intramammary infection, since 

proportions of granulocytes were 77-89% (e.g., quarter no. 17). The remaining 

three quarters did not indicate any inflammatory reactions (granulocyte 

proportions 24-39%). However, the CD2/CD21 indices of these seven quarters 

ranged from 10.87 to 19.93 and should be seen as suspicious, at least in 

samples of group IV-1. 

At sampling 2.1, S. aureus was found in six quarters with SCC 

≤100,000 cells/mL. Triggered by either infection dynamics or the detection 
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method, only in one of these quarters, S. aureus could be confirmed at 

samplings 2.2 and 2.3. However, it is unlikely that results of culture were false 

positive at sampling 2.1, since S. aureus can occur at low SCC levels [32,41]. 

Therefore, it could be hypothesized that negative bacteriological results at 

samplings 2.2, and 2.3 depend on the intermittent shedding of S. aureus [42], 

presence of antimicrobials or other inhibitors in milk [43]. At the time of 

examination, pathogens could also be ingested by phagocytes or survive 

intracellularly in the host [44,45]. Shedding of amounts of pathogens, which are 

too low, or ceased growth may be further reasons for negative bacteriological 

results [42]. A recent study [46] described about 6-10% of quarters infected with 

S. aureus where the microorganism was not shed in the milk. In another 

survey [42], a percentage of false-negative results, obtained from milk 

bacteriological analysis in the case of quarters infected with S. aureus, of even 

40% was determined. In any case, based on CD2/CD21 indices <10 at 

samplings 2.2 or 2.3 four of six quarters that indicated SCC ≤100,000 cells/mL 

and S. aureus at sampling 2.1 could be classified as suspicious. In total, 

suspicious CD2/CD21 indices <10 in 14 of 15 quarters with SCC 

≤100,000 cells/mL were explainable by the detection of minor or major 

pathogens. Hence, it can be speculated that the CD2/CD21 index is connected 

with the current or former presence of pathogens in the mammary gland. Since 

we performed field studies and therefore do not know the stage of the infection 

in the quarters analyzed or the exact infection dynamics, specific infection 

studies with major pathogens (e.g., S. aureus) and minor pathogens (e.g., CNS) 

are necessary to obtain further understanding of the CD2/CD21 index. 

Our statistical analysis indicated that the farms (study 1) had a significant 

impact on the percentages of CD2+ lymphocytes. This effect may be due to a 

non-randomized selection of the cows within the farms and different numbers of 

cows selected per farm. While cows with healthy mammary glands were 

predominantly selected from farms A and C, samples from cows with diseased 

quarters were predominantly collected from farm B. In our examinations, the 

CD2/CD21 index was neither influenced statistically by the farm, quarter 

position, lactation number nor by days in milk. 

The CD2/CD21 index provides a trend for the characterization of udder 

health. Our examinations showed that values of 10 may be suitable to aid 
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differentiation between unsuspicious and suspicious or diseased udder 

quarters. Compared to the well-established SCC indicator, the CD2/CD21 index 

confirmed our working hypothesis of values >10 in samples with SCC 

≤100,000 cells/mL and values <10 in samples with SCC >100,000 cells/mL in 

171 of 198 quarters analyzed. CD2/CD21 indices of 26 of the remaining 

27 quarters were explainable by the detection of pathogens or DCC analysis. 

Our examinations led us to suspect a connection between the CD2/CD21 index 

and the current or former presence of mastitis pathogens. Further research in 

this field should concentrate on longitudinal examinations of CD2+ and 

CD21+ cells in the milk of mammary glands specifically infected with 

mastitis pathogens. 
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Abstract 

 
Background: Improved characterization of infectious disease dynamics is 

required. To that end, three-dimensional (3D) data analysis of feedback-like 

processes may be considered.  

Methods: To detect infectious disease data patterns, a systems biology (SB) 

and evolutionary biology (EB) approach was evaluated, which utilizes leukocyte 

data structures designed to diminish data variability and enhance 

discrimination. Using data collected from one avian and two mammalian 

(human and bovine) species infected with viral, parasite, or bacterial agents 

(both sensitive and resistant to antimicrobials), four data structures were 

explored: (i) counts or percentages of a single leukocyte type, such as 

lymphocytes, neutrophils, or macrophages (the classic approach), and three 

levels of the SB/EB approach, which assessed (ii) 2D, (iii) 3D, and (iv) multi-

dimensional (rotating 3D) host-microbial interactions.  

Results: In all studies, no classic data structure discriminated disease-positive 

(D+, or observations in which a microbe was isolated) from disease-negative 

(D–, or microbial-negative) groups: D+ and D– data distributions overlapped. In 

contrast, multi-dimensional analysis of indicators designed to possess desirable 

features, such as a single line of observations, displayed a continuous, circular 

data structure, whose abrupt inflections facilitated partitioning into subsets 

statistically significantly different from one another. In all studies, the 3D, SB/EB 

approach distinguished three (steady, positive, and negative) feedback phases, 

in which D– data characterized the steady phase, and D+ data were found in 

the positive and negative phases. In humans, spatial patterns revealed false-

negative observations and three malaria-positive data classes. In both humans 

and bovines, methicillin-resistant Staphylococcus aureus (MRSA) infections 

were discriminated from non-MRSA infections.  

Conclusions: More information can be extracted, from the same data, provided 

that data are structured, their 3D relationships are considered, and well-

conserved from recently developed host-microbial interactions. Applications 

include early diagnosis, error detection, and modeling. 
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Introduction 

 

The rate of undetected infections remains markedly elevated and may be 

increasing [1-3]. 

Pathogens that develop resistance to antimicrobials pose new 

challenges, such as methicillin- or multidrug-resistant Staphyloccocus aureus 

(MRSA) infections, which, in the USA, cause more deaths than tuberculosis, 

AIDS, and viral hepatitis combined [4]. Macro-parasite-mediated diseases are 

also associated with high levels of drug resistance [5]. To enhance the 

detection of infectious disease-related data patterns, new approaches are 

required. 

To that end, systems biology (SB) and evolutionary biology (EB) may be 

considered. To diminish data variability, EB focuses on biological features well 

conserved in evolution [6-12]. However, in infectious diseases, EB has not yet 

provided usable methods [6]. Unlike reductionistic approaches, which only 

consider a few or static variables, SB focuses on systems and their dynamics –

a feature that may extract more information from the same data [13-18]. 

However, before SB/EB concepts are explored within the context of 

infectious diseases, we need to remind ourselves that we live in a three-

dimensional (3D) environment [19]. And yet, the data we are exposed to are 

mainly ‘flat’, such as anything reported on a page or screen. Such formats are 

bi-dimensional: they lack the third dimension (depth). Bi-dimensional(2D) are 

poor (if not also, biased) descriptions of three- (four- and/or multi-) dimensional 

data structures. Only 3D plots (volumes) can express all the combinations 

(points, lines, or surfaces) biological data can generate [20]. Furthermore, 

rotating 3D plots could inform whether perspective (the angle under which the 

data are assessed) influences pattern detection [21]. 

In spite of such possibilities, 3D data analysis seems to be under-utilized 

in the area of infectious diseases. In October of 2012, a search conducted in 

the Web of Science© yielded >18,000 hits when ‘three-dimensional’ and ‘data 

analysis’ were queried, but less than 100 hits were retrieved when ‘infection’ 

was added. 

While feedback is a function of interest in both SB and EB and it has 

been known for at least half a century in medicine and two millennia in physics 
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[22-25], feedback has only marginally been explored in infections. In October of 

2012, more than 200,000 bibliographic hits could be retrieved under ‘feedback’ 

and ~1700 hits were yielded when ‘feedback’ and ‘definition’ were searched for, 

but less than 50 hits were found when ‘infection’ was added. Even though the 

precursor of feedback (‘homeostasis’) was first proposed in 1932 [26], and, in 

1956, the phrase ‘negative feedback’ was first published in biology [27], only 

after the concept was introduced in engineering, feedback was fully adopted in 

biology. After the emergence of system dynamics, non-linear approaches have 

been applied to study feedback phases [28].  

In its simplest version, feedback can be defined as the ability of a system 

to adjust its output in response to monitoring itself [29]. An expanded definition, 

which defines as dynamic any situation in which some quantity increases or 

decreases over time [30, 31], regards feedback as a process that involves an 

interaction between two or more elements (e.g., a microbe and a host) which is 

designated positive when the activation or accumulation of one component 

leads to the activation or accumulation of the other component, and negative 

when the activation or accumulation of one component leads to the deactivation 

or depletion of the other component [29]. Positive feedback occurs when a 

signal induces more of itself, or of another molecule that amplifies the initial 

signal, and this serves to stabilize, amplify or prolong signaling. Negative 

feedback occurs when a signal induces its own inhibition [29].  

Feedback exhibits loops or closed chains in which change in one 

component is fed back to its origin [31, 32]. Other feedback structures are: (i) 

nodes, (ii) cyclic data patterns, (iii) directionality, and (iv) connectivity [24, 31, 

33]. ‘Nodes’ refer to data groups where processes begin and end, and/or where 

data inflections may occur. Thus, feedback is a deterministic process, 

characterized by abrupt transitions from low to high (or high to low) activity [24, 

31]. When high-level structures are assembled, feedback also reveals emergent 

properties [7-9]. 

Feedback emergent properties (the result of combinatorial theory and 

organizational complexity) can be explained with a mundane example that 

involves language. When we consider any list of letters, no meaning is 

obtained. However, when a few letters are combined, words emerge – and, with 

them, meaning emerges. When we combine words, sentences emerge, which 
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elicit more information. Information does not depend on any one letter: it 

depends on combinations of letters (words). While low-level data (letters) lack 

information, information is created (and increases) when higher levels (words, 

sentences, paragraphs, and so forth) are used. Typically, rich (interpretable and 

usable) information emerges from the highest of such levels.  

Similarly, the ability of a biological system to perform many functions with 

a few resources depends on its combinatorial potential, which is expressed as 

multiple structural levels [34]. Therefore, to design a method that discriminates 

infectious disease-related data patterns, at least three aspects or features 

should be considered: 1) multi-dimensionality, 2) combinatorial theory, and 

3) various levels or scales. 

However, ‘level’ is an elusive concept. On the one hand, it may be 

synonymous with ‘organizational complexity’, which may be a dimensionless 

concept. On the other hand, ‘level’ may be measurable and synonymous with 

‘scale’, as in the continuum that includes molecular, cellular, multi-cellular, 

organ, individual, population (group of individuals), species, groups of species 

(e.g., vertebrates), and ecological scales. Because both connotations may 

apply, new methods should adopt indicators inherently combinable, which are 

applicable across biological scales and can assess relationships, such as those 

created by multi-cellularity [35,36]. 

Such relationships, to be detected, require ‘functional data integrity.’ By 

that we refer to the fact that the anti-microbial immune system is indivisible and, 

consequently, no leukocyte type ever works alone. ‘Functional data integrity’ 

alludes to the ability of measuring interactions (multi-factor relationships), not 

just one element [14]. Unlike ‘elementary variables’, ‘structured indicators’ can 

estimate functions, e.g., early anti-microbial responses.  

The difference between ‘elementary variables’ and ‘structured indicators’ 

has been described before. While an ‘indicator’ possesses links – which 

establish a temporal connectivity and, therefore, reveal directionality and 

causality –, a simple variable, such as the percentage of neutrophils, lacks such 

information [31]. Hence, ‘functional data integrity’ summarizes all previous 

concepts with an observable set of properties: (i) it is the opposite of 

‘fragmentation’ – it includes data from all cells of the immune system, i.e., it 

possesses ‘integrity’, (ii) it is inherently combinatorial, that is, it may generate a 
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large number of ‘words’, and probably ‘sentences’, even though its primary 

components (cell types) are as few as or fewer than the letters of any language; 

and (iii) such combinations may ultimately gauge critical biological functions, 

such as feedback functions – which may emerge from interactions that involve 

several biological scales and, to be optimally detected, should be measured in 

3D space. That translates as measuring not the percentage of a single cell type 

but, for instance, the ratio between lymphocytes and macrophages – a multi-

cellular interaction essential in antigen recognition [37]. 

To measure interactions, compositional data may be considered. 

Compositional data can provide relative information (information on one factor 

in relation to another). Such information is based on the use of ratios [38, 39]. 

Leukocyte data are compositional: their relationships can be expressed as 

relative ratios [40]. Compositional data possess scale invariance: information 

(interpretable and usable) data patterns can be expressed, regardless of the 

(molecular/ cellular/ multi-cellular/ organ/ population/ species/ ecological) scale 

of the data [41-43]. 

To complete the list of desirable criteria an informative method should 

possess, data variability (‘noise’) should be reduced and pattern recognition 

should be enhanced. Noise is reducec, if not eliminated, when a single linge of 

observations is generated. Data patterns, if present, are likely to be detected 

when a single line of data points are observed. 

Informative patterns, such as data inflections, as well as a single line of 

data points, can be generated when these conditions are met: (i) functional data 

integrity is applied (data from all cell types are considered), (ii) a 2D plot is 

created in which, on one axis, the percentage of one cell type is expressed, and 

a ratio is recorded on the second axis, and (iii) the denominator of such ratio is 

the same percentage expressed on the first axis. We call such indicators 

‘anchors’, e.g., the 2D set that includes the lymphocyte (L) % (axis 1) and the 

phagocyte (macrophage [M] and neutrophil [N])/L ratio (axis 2). Because, in this 

structure, all data points are ‘anchored’ along a single line, noise is substantially 

reduced. Because, to build ‘anchors’, only two axes are required, a third axis 

remains available, in a 3D plot, to assess any additional variable.  

Discrimination is also improved when bio-numerical properties are 

considered in the design of the indicators, as when two ratios are plotted 
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together, and the numerator of one ratio is the denominator of the other ratio 

(e.g., the neutrophil per lymphocyte ratio [N/L ratio] vs. the mononuclear cell 

[MC, or L and M]/N [MC/N ratio]). In such a structure, when one ratio increases, 

the other ratio decreases. This structure acts as an ‘amplifier’: even when 

changes are quantitatively small, distinct (usually orthogonal) patterns can be 

revealed. 

When ‘amplifiers’ are used and biological knowledge is included in the 

design, temporal changes can be assessed. That can be achieved when one 

ratio estimates early host-microbial responses and the other ratio expresses 

late responses. For example, a 2D plot that includes N/L and MC/N ratios 

expresses early responses when the N/L ratio is high (e.g., much greater 

than 1), or late responses when the MC/N ratio is >1 [44-46]. Such structure 

can distinguish the temporal sequence of biological responses regardless of 

chronological scales (minutes/hours/days) and is robust to the absence (or 

presence) of slow (or fast) immune responders [47]. 

While the cyclic nature of feedback features is useful to describe 

dynamics [48-50], to detect infectious disease dynamics, logical aspects should 

also be addressed. Fallacies may occur at the earliest stage of an investigation, 

when a hypothesis is postulated. For instance, when the hypothesis assumes 

that only two alternatives are possible (e.g., one disease-positive [D+] and one 

disease-negative [D–] data class [51]), but three or more alternatives exist, 

errors will follow.  

Hence, using assumption-free, structured indicators (designed to 

possess functional data integrity and reduce noise), the multi-dimensional 

patterns of host-microbial interactions were explored. Two questions were 

asked: 1) can SB/EB indicators reveal feedback phases?, and 2) can such 

indicators be used to enhance the detection of infectious disease-related data 

patterns? 

Materials and Methods 

 

Materials 

Leukocyte data and microbial test results were collected in: 1) bacterial 

infections induced by methicillin- or multidrug-resistant Staphylococcus aureus 
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(MRSA) and non-MRSA bacterial infections of bovines and humans, 2) parasite 

(Plasmodium falciparum) infections that affected humans; and 3) viral (West 

Nile virus) infections experimentally induced in chickens. Six evaluations – three 

longitudinal and three cross-sectional studies – were conducted. 

 

Method 

Leukocyte data (heterophils, granulocytes, or neutrophils [N]; 

macrophages or monocytes [M]; and lymphocytes [L]) were structured as 

described earlier. Leukocyte and microbial procedures are described in Text S1 

of Supporting Information, which includes a glossary [52-64]. Briefly, tables and 

generic, and goal-related analyses were created or processed as follows: 

 

A. Data organization and table building.  

i. A table was created in which columns included primary variables (L%, N%, 

M%, their counts, as well as microbial test results). 

ii. Additional columns included secondary variables, e.g., the percentages of 

(a) phagocytes (P, or N+M), (b) mononuclear cells (MC, or L+M), and (c) 

the remaining alternative, here named ‘small leukocyte %’ (SL, or L+N). 

iii. Later, tertiary variables were added to new columns, which denoted 

interactions, such as the N/L, M/L, M/N, P/L, MC/N, and SL/M ratios; e.g, 

the N/L ratio was calculated by dividing the N% over the L%. Hence, 

12 leukocyte-related variables were created out of the 3 original percen-

tages (through combinations, the number of variables was expanced four 

times). However, more combinations were created when the analysis was 

conducted. 

  

B. Generic analysis. 

i. When the goal was to produce a single line of data points, ‘anchors’ were 

selected.  

ii. When enhanced discrimination was pursued, ‘amplifiers’ were chosen; for 

instance, if a 2D plots was used, the N/L ratio was plotted on one axis and 

the M/N ratio on the other. 

iii. When both effects were pursued, a 3D plot was utilized and one variable 

performed two roles, e.g., the set that includes the N%, the MC/N and N/L 
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ratios is both an ‘anchor’ (MC/N vs. N%) and an ‘amplifier’ (the N/L vs. the 

MC/N).  

iv. Because a ratio has two expressions (such as the L/M and the M/L ratio), 

both versions of each ratio were analyzed (a strategy that doubled the 

number of possible analyses). 

 

C. Applications or goal-depending analysis. 

i. To enhance discrimination, 3D plots were rotated until a data inflection 

was displayed and one corner of the plot displayed the zero value of all the 

three axes, as shown in Figure 1. 

ii. To determine directionality, temporal data were assessed.  

iii. To detect emergent properties, microbial data were considered.  

iv. To determine the role of perspective, 3D plots were rotated.  

v. To explore robustness, different species/pathogens were explored under 

the same angle.  

vi. To detect different subsets of the same data class, the 3D plot was rotated 

until the highest values of two indicators were observed on opposite 

corners (as shown in Figure 1). In addition, the size of symbols 

representing non-relevant features was decreased, so only the features of 

interest were emphasized, e.g., if the goal was to detect false negatives, 

D+ symbols were reduced; if the goal was to detect ≥2 D+ stages, D– 

symbols were reduced.  

Results 

 
Feedback-related patterns 

 The use of SB/EB indicators in an experimental study of virally-infected 

chickens revealed 10 properties or features: 1) functional data integrity, 2) a 

single line of data points, 3) data inflections, 4) a circular data structure, 

5) directionality of the temporal responses, 6) patterns that suggested three 

feedback phases, 7) two distinct D+ subsets, 8) overshooting (a D+ subset with 

higher MC/N values than D– observations), 9) information of prognostic value, 

and 10) low data variability (Figure 1 A). 
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 Functional data integrity was achieved because each observation 

expressed values contributed by all cell types. Each data point estimated three 

interactions: 1) the relationship between neutrophils and lymphocytes, 2) that 

between mononuclear cells and neutrophils, and 3) the overall or ‘high-level’ 

interaction, generated by the two interactions mentioned above. 

 The observed single line of observations revealed circularity, which was 

characterized by three major data inflections: the first inflection was observed 

within one day post-inoculation (1 dpi) with West Nile virus (WNV, green arrow, 

Figure 1 A); around 5 day post-inoculation (5 dpi), a second data inflection was 

observed (red arrow, Figure 1 A); which was followed, almost immediately, by 

the last inflection (blue arrow, Figure 1 A). Because temporal observations 

displayed directionality, three data ranges were distinguished in Figure 1 A: 

1) that of the steady feedback phase (0 dpi or D– data [green symbols, of which 

80% were within the range indicated by the green box]); 2) away from the 

steady state phase (between 1 and 5 dpi), in which D+ data predominated 

(positive feedback phase [red symbols]); and 3) the negative feedback phase 

(after 5 dpi), in which, over time, D+ data (blue symbols) approached the data 

range of the steady phase. The end of the feedback function was signaled 

when the latest (14-dpi) observations reached values similar to those they 

started with (sky blue symbols). 

 Hence, two D+ subsets (early D+ and late D+ observations) were 

distinguished. The late D+ subset was characterized by high MC/N values –

observed around 5 dpi –, which displayed overshooting, that is, greater MC/N 

values than those of D– data points. Because the latest (14 dpi) D+ data points 

did not differ from D– values, it was concluded that high MC/N, D+ individuals 

had a favorable prognosis: such pattern indicated the beginning of the return to 

the steady status. Because most early and late observations were located on 

opposite sides of the plot analyzed, both low variability and enhanced 

discrimination were documented (Figure 1 A). To facilitate visualization, each 

feedback phases is emphasized in Figures 1 B-D. 
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Fig. 1. Feedback patterns of avian longitudinal-experimental immune 
responses against West Nile Virus. A: Leukocyte and microbial test 
results of 10 chickens (shown to be West Nile virus [WNV] negative at 
day 0) were inoculated with WNV and followed over two weeks (total: 
82 longitudinal observations). The 3D relationship that included the 
heterophil (N) %, the ratio of N per lymphocyte (N/L), and the 
mononuclear cell/N (macrophage plus lymphocyte/N or MC/N) ratio 
showed three major data inflections: 1) a double 90-degree inflection 
was observed between pre-inoculation (0 dpi) and one day post-
inoculation (1 dpi) data points (green arrow), indicating that the N/L 
ratio increased within a 24-hour period, and that high N/L observations 
were D+ (red symbols); 2) at, approximately, 5 dpi, a second data 
inflection was observed (red arrow), which was associated with high 
MC/N and low N/L values; and 3) soon after 5 dpi, the third data 
inflection took place, indicating the beginning of the return to the 
steady phase (blue arrow). The third phase was characterized by the 
gradual decrease of MC/N values (deep blue symbols). The last phase 
ended when 14-dpi observations (sky blue symbols) displayed 
leukocyte values similar to those of 0 dpi (D–) data (green symbols, of 
which 80% were within the data range indicated by the green box). 
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Together, a quasi-circular, closed, temporal progression was detected, 
in which three feedback phases were differentiated: 1) the steady 
phase (green symbols), 2) the positive phase (red symbols), and 3) the 
negative phase (blue symbols). Because observations that differed 
less than 24 hours (0- vs. 1-dpi data) were clearly separated, these 
patterns could detect early inflammatory responses, even in the 
absence of microbial data. These patterns distinguished two D+ 
classes (red and blue symbols). Because D+ observations that 
revealed ‘overshooting’ (higher MC/N values than those of D– data) 
later approached the D– stage, D+ individuals showing high MC/N 
values may have a favorable prognosis. B-D: To facilitate visual 

detection of patterns specific of each feedback phase, the same data 
displayed in A are shown emphasizing: only the feedback steady 
phase (B), only the early (positive feedback) phase (C), and only the 
late (negative feedback) phase (D). Utilizing a different quantitative 

method, these data have been partially reported elsewhere [52]. 
 

Reproducibility of feedback-like patterns 

 The reproducibility of feedback patterns was investigated across species 

and diseases (Figures 2 A-H). Longitudinal bovine leukocyte profiles, assessed 

together with bacteriological test results (Figures 2 A, B), showed patterns 

similar to those observed in birds, such as a single line of data points, circularity 

and directionality (arrows, Figure 2 A). While the, predominantly, cross-sectional 

nature of the human data prevented the full determination of temporal features 

(Figures 2 C, D), a subset of 5 D+ children, who were tested twice, also 

revealed, partially, the directionality shown by birds and cows: a group of high 

MC/N, D+ children, when tested two weeks later, was D– (blue arrow, Figure 2 

C). The fact that 5 children (D+ at their first test) were D– two weeks later, 

suggested, again, that leukocyte-microbial profiles (high MC/N, D+ data) can 

have prognostic applications. Even though the spontaneous nature of bovine 

MRSA infections could not show a D– profile (no ‘day 0’ data were available, 

Figures E, F), the bovine MRSA data revealed the same (early vs. late) 

temporal patterns observed in other studies (arrows, Figures 2 E). Although 

longitudinal data were not available in study in which humans were infected with 

bacteria, a distinct pattern was observed: MRSA observations did not express 

overshooting (no MRSA infection displayed high MC/N values), while non-

MRSA data did (Figure 2 G). False negative results were suggested by human 

and bovine data: some high N/L values were associated with microbial-negative 

results (black boxes, Figures 2 C-F). The false negative hypothesis was 
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confirmed in humans: 8 microbial-test negative, high N/L children were febrile (8 

black circular symbols, one within a black box, Figures 2 C, D, H). 

 

 

Fig. 2. Reproducibility of feedback patterns across species and pathogen 
types. Bovines and humans exposed to either bacteria (both sensitive 
and resistant to anti-microbials) or parasites showed patterns similar to 
those displayed by birds (A-F). A, B: Leukocyte profiles and microbial 
test results of 6 dairy cows inoculated at day 0 with non-methicillin 
resistant (non-MRSA) Staphylococcus aureus, followed over two weeks, 
are reported (total: 24 longitudinal observations, data previously 
reported, using a different analytical method [44]). C, D: Leukocyte 
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profiles of 439 humans non-infected or infected by malaria, tested once, 
of whom five displayed high MC/N values and malaria-positive test 
results, and were tested twice (two weeks apart), becoming malaria-
negative in the later test (total: 444 observations, data previously 
reported, using a different analytical method [61]). E, F: Longitudinal 

profiles of bovine mammary gland leukocytes collected from a cow 
spontaneously infected with methicillin-resistant S. aureus (MRSA, total: 
28 longitudinal observations or 7 daily tests per mammary gland, a study 
previously reported, in which a different analytical method, a different 
technology, and different samples were utilized [54]). G: Cross-sectional 
leukocyte profiles of humans infected by either MRSA (n=7) or non-
MRSA (n=15) bacterial isolates (data not previously reported). DPI: 
day(s) post-inoculation with non-MRSA. DAYS: consecutive days since 
MRSA was isolated (day 1= day of first isolation). Left columns show 
temporal data, in longitudinal studies (A, E); or disease-positive (D+) 
and disease-negative (D–) malaria-related data subsets (C). Right 
columns display microbial test results (B, D, F, G). Microbial-negative 

results that revealed high N/L values were suspected to be false 
negative (boxes, C-F). In the malaria study, 8 false negatives were 

detected (8 black circular symbols, of which one is shown within a box, 
C), which were associated with fever. Arrows indicate the directionality 
of temporal responses (A, C, E). H: To facilitate visual detection of 
patterns, the same data displayed in plot C are shown again, with 
emphasis on D– data (the symbols of D+ data are reduced in size). A 
data infection is observed, which distinguishes two D– subsets. The high 
N/L subset (black polygon), as indicated in the main text, was suspected 
(and later confirmed) to include false negatives. 

 

From no discrimination to discrimination of host-microbial interactions 

Discrimination of health status was lost when individuals, not 

populations, were analyzed (Figures 3 A-J). Some birds were fast responders – 

they showed patterns typical of late D+ responses as early as one day after 

challenge (boxes, Figures 3 A, G), while one bird did not display high MC/N 

values at any time (oval, Figure 3 C). Such differences in responsiveness were 

observed even though the birds included in this study were randomly selected. 

 Discrimination was also lost when ‘functional data integrity’ was not 

considered (when each leukocyte type was assessed alone). When only the 

percentage of neutrophils (lymphocytes, or macrophages) was assessed, 

bovine MRSA and non-MRSA data overlapped (Figure 4 A). 
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Fig. 3. Responsiveness of individuals – avian examples. The same avian 

data previously analyzed at the population scale (Figures 1 A-D) were 
assessed at the individual scale (A-J). Even though chickens were 

selected through randomization, high variability was found. For 
instance, two birds (#8 and 14) were fast responders: as early as 1 day-
post inoculation (dpi) with West Nile Virus, they showed leukocyte 
profiles typical of the late or negative feedback phase (square boxes, A, 
G), In contrast, at least one bird did not display overshooting (no D+ 
observation of that bird #10 displayed MC/N values greater than the D– 
[0-dpi] data point, oval, C). 
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Table 1. Comparisons between MRSA and non-MRSA profiles, and among MRSA 
subsets 

 

Table 2. Cross-sectional bovine non-MRSA infections 

1Raw data partially or totally reported elsewhere [55]. 
2Raw data partially or totally reported elsewhere [56]. 
3Raw data partially or totally reported elsewhere [57]. 
4Raw data partially or totally reported elsewhere [58]. 
5Raw data partially or totally reported elsewhere [59]. 
 
 In contrast, SB/EB indicators distinguished non-MRSA from MRSA data: 

while non-MRSA data displayed ‘left overshooting’ – higher MC/N values than 

than those of MRSA data points –, all four mammary glands of the MRSA cow 

showed ‘right overshooting’ (higher N/L values than those of non-MRSA 

infections, Figure 4 B). The MRSA profile was detected even when compared 

against a large, cross-sectional, non-MRSA dataset (Figure 4 C, Table 1; see 

Table 2 for further details on the non-MRSA, cross-sectional data). Even though 

no MRSA was isolated in three bovine mammary glands, all four mammary 

glands of the MRSA cow showed similar leukocyte profiles, which revealed 

Data classes or subsets Variables P value (Mann-Whitney test) 

Non-MRSA (all observations) vs. MRSA  N / L <0.01 

Non-MRSA (all observations) vs. MRSA  MC / N <0.01 

Non-MRSA post-challenge vs. MRSA N / L <0.01 

Non-MRSA post-challenge vs. MRSA P / L <0.01 

MRSA class A vs. MRSA class B SL / M <0.01 

MRSA class A vs. MRSA class B M / N <0.01 

MRSA class A vs. MRSA class B P / L <0.01 

MRSA class A vs. MRSA class C N / L <0.01 

MRSA class A vs. MRSA class C P / L <0.01 

MRSA class B vs. MRSA class C N / L <0.01 

MRSA class B vs. MRSA class C MC / N <0.01 

Population 

Prevalence (%)  Examples of bacterial species isolated 

Major 
pathogens 

Minor 
pathogens 

 
Major pathogens Minor pathogens 

CS I (n=120) 27.5 % 13.3 % 
 

- Staphylococcus aureus  

- Escherichia coli 
- Streptococcus 
  dysgalactiae 

- Streptococcus uberis 

- Klebsiella pneumoniae 

 

- Staphylococcus 
  chromogenes 
- Staphylococcus 
  hyicus 
- Corynebacterium  
  ssp. 

CS II (n=500)1 9.8 % 5.2 % 
 

CS III (n=429)2 9.9 % 5.3 % 
 

CS IV (n=80)3 2.5 % 2.5 % 
 

CS V (n=80)4 6.5 % 23.8 % 
 

CS VI (n=188)5 13.3 % 11.2 % 
 



Feedback Properties of Host-Microbial Interactions 

 

 167 

 

Fig. 4. Discrimination between bovine MRSA and non-MRSA patterns. 

While no leukocyte percentage discriminated between methicillin- or 
multidrug-resistant S. aureus–infected (MRSA) and non-MRSA bovines 
(A), a three-dimensional (3D) plot that utilized SB/EB indicators 
distinguished MRSA from non-MRSA patterns, e.g., MRSA 
observations displayed higher N/L values than non-MRSA data points, 
while higher MC/N values were revealed by non-MRSA observations 
(B). The MRSA profile was differentiated even when compared against 
a large, cross-sectional bovine dataset (C). Regardless of microbial test 
results, 3 MRSA data classes were detected (D). When, based on 3D 
patterns, the MRSA data were partitioned, each MRSA data class (A, 
B, C) was distinguished by one or more indicators, and non-
overlapping distributions were observed, which differed from one 
another at statistically significant levels (P<0.01, Mann-Whitney test, 
Table 1, E). Horizontal lines indicate full discrimination (non-
overlapping data distributions) between two or more MRSA classes (E). 
Although utilizing a different quantitative method, bovine cross-
sectional data of populations II-VI (C) have been partially or totally 
reported before [55-59]. 
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3 data classes (A, B, and C). Figure 4 D shows that the distributions of classes 

A-C did not overlap. All three MRSA data subsets were statistically 

distinguished by, at least, one indicator (P<0.01, Mann-Whitney test, Table 1; 

and Figure 4 E). 

To determine whether perspective influences pattern detection, both 

human and bovine S. aureus-positive data were analyzed under different 

angles. The set that included leukocyte counts (human blood white cells or 

WBC, and bovine somatic cells or SCC [milk cells mainly composed of 

leukocytes]), the percentage of mononuclear cells (MC %) and the N/L ratio 

revealed a subset of data points that was only or mainly composed by MRSA 

observations (red polygons or circles, Figures 5 A-F). This subset did not 

overlap with the remaining (MRSA and non-MRSA) data points. When the data 

were analyzed under two different angles, between three and five data points 

were found within the human MRSA-only cluster (Figures 5 E, F). Hence, 

perspective may indeed alter the number of observations detected with a 

particular feature. 

Because the human and bovine MRSA-only clusters revealed similar 

values (Figures 5 C-F) and the bovine cluster included the earliest observations 

(days 1-4, Figures 5 C, D), the MRSA-only cluster was suspected to express 

early infections. The early (MRSA-only) cluster differed statistically from the 

remaining data points (P<0.01, Mann-Whitney test, Figure 5 G). 

Other indicators (that possessed functional data integrity but did not 

meet ‘anchoring’ criteria) confirmed patterns shown by the indicators described 

above. For instance, in the malaria study, the indicator set that measured the 

M/N (not the MC/N) ratio identified the same 8 data points regarded to be false 

negatives (arrows, Figure 6 A; data also shown in Figure 2 H). 

When a different ‘anchor’ (composed of the SL/M ratio and the M%) was used 

to analyze the malaria data, two D+ subsets were distinguished (Figure 6 B). 

Because the D+ subset with the highest M% and lowest SL/M values indicated 

a recovery profile, children in that subset were examined 14 days later. At that 

time point, all previously D+ children were D– and showed a distinct, non-

overlapping leukocyte profile (Figure 6 C). The changing pattern observed over 

two weeks, which supported a favorable prognosis, displayed a 3D data 

inflection (Figure 6 D). 
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Fig. 5. The role of perspective: discrimination between early MRSA and 
other (MRSA and non-MRSA) patterns, in bovines and humans. 

MRSA and non-MRSA induced leukocyte profiles were investigated in 
bovines and humans. In both species, non-MRSA individuals were 
infected by methicillin-susceptible S aureus. Two 3D perspectives of the 
same data were analyzed in MRSA and non-MRSA bovine infections 
(A, B). When the total leukocyte count (thousands of milk cells or 
‘somatic cell counts’ [SCC]) was assessed together with the 
mononuclear cell (MC) percent and the N/L ratio, two data subsets were 
differentiated: one was characterized by MRSA-only observations, while 
the other data subset included both MRSA and non-MRSA observations 
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(A, B). The MRSA-only subset was predominantly composed of early 
observations (days 1-4, red polygon, C, D). When human blood 
leukocyte counts (hundreds of white blood cell [WBC] counts), collected 
from MRSA and non-MRSA infected humans were investigated, a 
MRSA-only subset was observed, which was defined by the same 
parameters utilized with the bovine data: low MC% and high N/L values 
(E, F). Because the number of observations found within the subset that 
only included MRSA observations ranged between three (E) and five 
data points (F), it was demonstrated that the angle under which the data 

are analyzed is relevant: if perspective is considered, greater 
discrimination may be achieved. Three leukocyte indicators 
distinguished the two human (MRSA-only vs. MRSA and non-MRSA) 
subsets (P<0.01, Mann-Whitney test, G).  

 

A third D+ subset was found in the malaria data with a ‘hybrid’ set that 

included both ‘anchor’ (the P/L ratio vs. the L%) and ‘amplifier’ features (the P/L 

and L/M ratios, Figure 6 E). Such structure facilitated data partitioning into 

subsets. Statistically significant differences were found: 1) between FN and all 

D– observations, 2) between every D+ subset and every D– subset, and 3) 

among the 3 D+ subsets (P≤0.03, Mann-Whitney test, Table 3). 

Because statistical significance may be found even in the absence of 

discrimination (D+ and D– data overlapping may occur, even when median D+ 

and D– values differ statistically), the SB/EB approach was also assessed 

spatially. No data overlapping was found among: 1) the three D+ subsets 

(Figure 6 F); and 2) all three D– and two D+ (and FN) stages (Figure 6 G). The 

overlapping rate (percentage of observations assigned to one disease stage 

which showed values typical of another disease class) ranged between 0 

(Figure 6 G) and 0.0002 (1/336, one medium L/M D+ data point, arrow, Figure 6 

F). While spatial patterns did not distinguish some D+ (low or medium L/M) data 

points from D– data, such classes were differentiated on the basis of parasite 

test results (Figures 6 F, G). 

 

Assessment of percentages, ratios, counts, and hypothesis-related assumptions 

When SB/EB concepts were not applied, neither the L%, the N%, nor the 

M%, alone, discriminated, in any study conducted, D+ from D– data (Figures 7 

A-D). When SB/EB concepts were not applied, neither log-transformations nor 

ratios distinguished data classes (Figures 7 E-H). In two species, cell counts did 
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not distinguish MRSA from non-MRSA subjects (Figures 7 I, J). Hence, without 

the SB/EB approach, no primary variable, per se, could discriminate. 

 

 

Fig. 6. Detection of false negatives, prognosis, and three D+ data subsets 
in human malaria. The process by which false negative results were 

assessed is illustrated with data collected from humans infected or not 
infected by malaria. Arrows indicate 8 parasite-negative results, which 



Feedback Properties of Host-Microbial Interactions 

 

 172 

were associated with high N/L values (A, also shown in Figures 2 C, D, 

H). Clinical data corresponding to the 8 children revealed that all of them 
were febrile. Spatial data patterns facilitated the detection of the 8 false 
negative (FN) results: an orthogonal data inflection (sky blue line) 
separated the data range in which the 8 FN points were found from the 
area in which D+ data predominated (A). Other spatial data patterns 
identified a subset associated with a favorable prognosis: two D+ 
subsets (arrows, B) were separated from one another by a segment in 
which both D+ and D– data points were observed, suggesting that the 
two D+ subsets observed at both ends of the plot could differ 
functionally (boxes, B). The subset with the higher M% was suspected 

to be under recovery. When the 5 individuals within the high M% subset 
were tested again, two weeks later, all of them were D– (C). The change 

in health status, which took place within two weeks, revealed an 
orthogonal 3D data inflection (D). An additional set of indicators (the L%, 

P/L and L/M ratios) detected a third D+ subset, which showed high L/M 
values and differed from all other subsets (purple triangles vs. other 
symbols, E). Based on spatial patterns (shown in Figures 1-3 and here), 
the data were partitioned into subsets, which differed from one another 
at statistical significant levels (all comparisons with P<0.03, Mann-
Whitney test). The degree of non-overlapping data distributions between 
two or more subsets (discrimination) was 1/336 (arrow indicates the 
overlapping point, F) when the 3 D+ stages (characterized by high MC/N 

or under recovery [n=5], medium L/M [n=314], or high L/M [n=17]) were 
assessed. Total discrimination (no overlapping or 0/130) was seen when 
3 D+ data classes (under recovery [n=5], high L/M [n=17], and FN [n=8]) 
were assessed vs. the 3 D– classes [n=100]) and the set that included 
the N/L, MC/N, and M/N ratios was utilized (G). 

 

Table 3. Differentiation of malaria classes. The statistical results of human data 
reported in Figures 6 E-G (n=444) are shown, where pairs of data classes are 
compared. The P values of analysis of medians (Mann-Whitney test) were 
determined by the MC/N ratio, the SL/M ratio (*), or the P/L ratio (#). NS: not 
significant at P=0.05. The D– NIFNI group (neither infected, febrile, nor 
inflamed) is not a separate class, it is a reference for the overall D– class. See 
legend of Figures 6 E-G for further details. 

Data classes D– 
(n=83) 

D– 
NIFNI 
(n=12) 

D– 
recovered 

(n=5) 

False D–
(febrile, 

n=8) 

D+ high 
MCN/N 
(n=5) 

D+ low 
SL/M 

(n=314) 

D– NIFNI (n=12) NS      

D– recovered (n=5) NS NS     

False D– (febrile, n=8) <0.01 <0.01 <0.01    

D+ high MC/N (n=5) <0.01 <0.01 <0.01* <0.01   

D+ medium L/M (n=314) <0.01 <0.01 <0.03# <0.01 <0.01  

D+ high L/M) (n=17) <0.01 <0.01 <0.01 <0.01* <0.01 <0.01 
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Fig. 7. Assessment of ratios, counts, percentages, and hypothesis-related 
assumptions. When the SB/EB approach was not applied the 

percentage of lymphocytes, neutrophils, or macrophages did not 
distinguish, in any study, D– from D+ data (A-D). Indicators that, 

together, detected patterns (the N%, the N/L and MC/N ratios), did not 
discriminate D– from D+ data when assessed individually (E-H). Total 

leukocyte counts also failed to distinguish health status: neither the 
human white blood cell count (WBC) nor the bovine milk total cell count 
(‘somatic cell count’ or SCC) differentiated D– from D+ data (I, J). 

Hence, findings supported several Systems Biology principles: 1) data 
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integrity is necessary (because the immune system is indivisible, 
discrimination is lost when any leukocyte type is measured alone, A-C), 
2) the format utilized is relevant: to detect ‘high-level’ interactions (those 
involving at least two interactions), 2D or 3D plots are required (as 
Figures 1-6 show); and 3) emergence was demonstrated: while, 
individually, no indicator distinguished D– from D+ data (A-H), when 3D 
structures were assembled, D– and D+ data were distinguished (as 
shown, for instance, in Figure 2 H). Findings also demonstrated that 
statistical significance is not synonymous with discrimination: the 
median WBC count of human MRSA infections differed from the median 
WBC count of non-MRSA individuals (P<0.03, Mann-Whitney test), even 
though D– and D+ data overlapping was observed (I). However, when 
the data were structured as SB/EB indicators, both statistical 
significance and discrimination were achieved (as shown, for instance, 
in Figures 4, 5, 6). SCC: somatic cell counts (thousands)/ml. WBC: 
white blood cells (hundreds)/μl. 

 

The validity of the ‘gold standard’ (the assumption that there is an ideal 

microbial test) was not supported in the human study on malaria: 8 children 

regarded as D– by microbial tests were febrile (false negatives or FN, Figure 2 

C). In the bovine MRSA study, only two out of 7 tests (performed with milk 

collected from the same mammary gland) yielded MRSA, that is, the ‘gold 

standard’ hypothesis failed 5 out og 7 times (a 71.3% false negative rate, see 

Figures 2 E, F). In contrast, in humans, SB/EB spatial patterns identified data 

points suspected to be FN: they were spatially distant from D– observations 

(Figures 2 C, H; and 6 E) 

Discussion 

 

Major findings 

The SB/EB approach revealed similarities across vertebrate species 

(e.g., data circularity, Figures 1 and 2). Such approach also demonstrated 

differences within the same species and disease. For instance, high L/M values 

distinguished one malaria-positive subset [65] from other D+ subsets (Figure 6 

E). Findings rejected: 1) the ‘gold standard’ hypothesis; 2) the binary hypothesis 

(only two, one D+ and one D–, data classes); and 3) the hypothesis that 

postulates randomization reduces variability. To interpret the findings, 

biological, statistical and methodological aspects are considered and their 

influence on theory is outlined. 
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Biological and statistical considerations 

In agreement with the theory that postulates the immune system is 

indivisible [66], no cell type, alone, discriminated D+ from D– subsets (Figure 7). 

It was also confirmed that dichotomizing approaches (which attempt to convert 

data inherently continuous into discontinuous data classes) are associated with 

D+ and D– data overlapping [67]. 

In contrast, discrimination was enhanced when interactions among all 

leukocytes were explored in 3D space. Such approach measured or revealed 

hierarchy, feedback, and emergence [66]. ‘Hierarchy’ was assessed by focusing 

on the trans-vertebrate species set that also included several pathogen types. 

Such system revealed feedback loops. ‘Emergence’ was not revealed by any 

one primary component. Emergent properties, such as false negative patterns, 

were only detected when several levels of the biological system were 

assembled. 

While SB/EB properties have been regarded to reveal low variability [12], 

avian data seemed to contradict such expectation. In spite of 

randomization [68], high data variability was shown by the fact that both low and 

fast responders were observed (Figure 3). High variability co-existed with low 

variability, as Figure 1 reveals.  

To explain such an apparent contradiction, we could pose the following 

question: ‘how old are you: 44 million years old, or four years old?’ The answer 

is not ‘neither’ but, probably, ‘both.’ All vertebrates are ‘44 million years old’ 

because many of their critical structures are that old, if not older, such as 

mitochondria and the complement system [69-71]. Yet, a particular species 

(and an individual of a particular species) is much ‘younger’, e.g., the first 

chickens (Gallus domesticus) and hominids emerged in the last 3.6 million 

years [72, 73]. That means that individuals express biological functions that 

precede their own species and their own birth. 

On the other hand, because the responsiveness of an individual can be 

shaped by unique experiences and pathogens can undergo mutations (such as 

MRSA), ‘new’ situations may arise. Because methicillin was introduced in 

1960 [4], MRSA infections are recent evolutionary phenomena. Because 

vertebrates have not yet had enough time to adapt to MRSA, it is not surprising 

that the immune response against MRSA differs from that against well-
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conserved (non-MRSA) pathogens (as observed, here, in two species). 

Because vertebrates participate in both ‘old’ and ‘new’ interactions, there is no 

contradiction between the variability shown by individual birds and the similarity 

displayed by well-conserved functions, such as feedback.  

Because MRSA pathogens, in addition to be resistant to anti-microbials, 

also induce immune failure, such pathogens may result in abnormally high –

although ineffective– N/L ratios [74-79], as found in bovines and humans. The 

highest values of such dysfunctional relationships were observed at the earliest 

observations (Figures 5 A-F). Because a immune response can only be 

sustained for a limited time, such pattern could be used to distinguish early 

MRSA from late (MRSA and non-MRSA) responses. 

 

Methodological considerations 

Methodological issues were also evaluated [80]. Because false negatives 

were documented, the hypothesis that there is an ideal test (‘gold standard’) 

was rejected [81, 82]. Because two or more D+ stages were distinguished, both 

the binary hypothesis (‘only two data classes’) and the assumption that all D+ 

data points have similar meaning were negated (Figures 1 and 6 B-E). One 

possible reason why those hypotheses were not empirically supported is that 

they do not account for dynamics and/or data circularity [83, 84]. 

Findings also addressed a circular problem, described as follows: in 

order to identify an infecting microbe, a specific test is needed; however, in 

order to choose such test, before, the identity of the pathogen should be known 

in advance. While the ‘gold standard’ could not solve this conundrum, the 

SB/EB approach provided an alternative for its solution [85]. 

 

Consequences on theory 

Findings may be used to rectify a concept previously espoused. 

Feedback loops do not differ in directionality, as suggested before [24]. The 

apparent change in directionality is an artifact due to earlier analyses, which did 

not consider 3D space. In 3D space, feedback loops reveal a single (circular) 

directionality. 
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 Because feedback loops expressed temporal changes, causality was 

supported [24]. Thus, the 3D feedback-oriented analysis provided both 

descriptive and explanatory information. 

 Unlike approaches that dichotomize continuous data and generate D+ 

and D– data overlapping [62], the 3D analysis of feedback loops displayed data 

inflections, which resulted in minimal D+ and D– data overlapping. Such feature 

could be used to facilitate data partitioning.  

Data structured to express feedback dynamics overcame the limitations 

of static approaches, as when Principal Component Analysis is used to assess 

compositional data [86]. Unlike prevalence – a static index [87] –, the proportion 

of subjects within early vs. late responses (informative on dynamics) could 

distinguish populations with similar prevalence levels. Findings also showed 

that SB models can be applied across scales [88]. 

 

Replications and applications 

Across species, the SB/EB approach helped to recognize infectious 

disease data patterns. Because this study did not focus on the pathogenesis of 

any disease, the reproducibility of the findings should be investigated in future 

studies. Potential applications include: 1) early diagnosis, 2) error detection, 

3) differentiation of D+ classes, 4) prognosis, 5) evaluation of interventions, and 

6) modeling.  

For instance, two or more D+ classes may be distinguished [89, 90]. 

High MC/N values (‘left overshooting’) could be used to predict recovery. When 

‘right overshooting’ is observed (high N/L or P/L values) but no microbe is 

isolated, an infection cannot be ruled out (a false negative result may be 

suspected). To prevent delayed detection of MRSA cases [91], the SB/EB 

approach, which seemed to reveal early MRSA data patterns, could be 

considered. 

The SB/EB approach may also be used to evaluate interventions and 

support modeling. For instance, the evaluation of interventions may distinguish 

the influence of feedback from the responsiveness of individuals: when an 

intervention seems to be a ‘success’, it could be asked whether such outcome 

is due to fast responders (a ‘false positive’ result), or, when a ‘failure’ appears to 

occur, whether it was due to slow responders (a ‘false negative’ result). In 
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mathematical modeling, analyses that focus on MRSA-like infections could be 

optimized if the cyclic nature and directionality of feedback processes were 

addressed [92-94]. 

Conclusions 

 

More information related to infectious diseases can be extracted, using 

the same data, when some conditions are met. Findings document the 

influence of data structure on the amount and explanatory content of infectious 

disease-related information. Feedback-related patterns of 3D leukocyte 

structures may have broad applications, including earlier diagnosis and lower 

rates of false results. 
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Supporting Materials 

 

Institutional approvals 

Prior to data collection, all studies, whether published or not, were 

approved by the appropriate ethics committees of the institutions here 

identified. 

 

Avian studies 

Specific pathogen free (SPF) white leghorn chicken embryos were 

obtained from Charles River Laboratories (Chicago, IL), hatched and raised 

until 6-weeks old at the University of Wisconsin-Madison, then transferred to 

BSL-3 facilities at the U.S. Geological Survey National Wildlife Health Center 

and acclimated for three weeks prior to infection experiments. Ten nine-week 

old chickens were randomized for subcutaneous injection with 100-µl bovine 
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albumin-1 (BA-1) containing 105 plaque-forming units of American crow isolate 

16399-3 WNV and subsequently bled on days 1-5, 7, 10, and 14 DPI [52]. 

While not analyzed with the quantitative method here evaluated, the raw data 

here reported have been previously published [52]. The chickens utilized for this 

study were treated humanely with due consideration to the alleviation of their 

distress and discomfort, and according to University of Wisconsin-Madison 

Institutional Animal Care and Use Committee (IACUC) protocol #A01059 and 

US Geological Survey National Wildlife Health Center IACUC protocol 

#EP040811. 

 

Laboratory techniques. Vero cells were used to detect the presence of 

virus in serum by plaque formation according to standard procedures [53]. 

Viremia (plaque forming units (PFU)/ml serum) was calculated from the serum 

dilution that produced between 5 and 30 plaques per well. Blood smears were 

created on the blood sampling days indicated above, treated with Wright-

Giemsa stain, and cell ratios were calculated once 100 WBCs were counted per 

slide via light microscopy at 1000X. West Nile virus-infected chickens produced 

WNV- specific IgG and. especially IgM titers, were positively correlated with 

viremia. Uninfected chickens remained antibody and virus-negative (i.e., D–) 

throughout the duration of the study [52]. 

 

Bovine studies  

Three studies were conducted with cows, from which microbial tests 

were conducted with milk samples: one longitudinal and experimental study 

(LE), one longitudinal study of an animal spontaneously infected with 

methicillin-resistant S. aureus (MRSA), and a cross-sectional study (CS) that 

included 6 populations located in 4 countries (CS I to VI, Table 2). In the 

LE study (conducted in the US), 6 lactating cows were inoculated intra-

mammarily with S. aureus, and milk samples were investigated before and up 

to 14 days after challenge with S. aureus [44]. While not analyzed with the 

quantitative method here evaluated, the raw data here reported have been 

previously published [44]. 

In the MRSA study, conducted in Italy, all mammary glands of one 

infected cow were investigated at days 1-5, 8, and 9 (7 tests), where day 1 was 
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the first day MRSA was isolated in milk cultures. While neither analyzed with the 

quantitative method here evaluated nor based on the samples here measured, 

the variables here assessed have been previously published [54].  

All CS studies except CS II were conducted with non-periparturient cows. 

Table 3 describes the size, examples of bacterial species isolated, and the 

bacterial prevalence found in each CS study. CS I data are original. CS II-VI 

data, while not analyzed with the quantitative method here evaluated, have 

been partially or totally reported before [55-59], as described in the legend of 

Figure 4. 

All bovines were treated according to protocols approved by the US 

Institutional and Animal Care and Use Committee or similar German, Israeli, 

and Italian agencies. 

 

Laboratory techniques. The total milk leukocyte count/ml was quantified 

with a Fossomatic 5000 (Hillerød, Denmark), DeLaval DCC (Tumba, Sweden), 

or a Bentley Somacount 150 (Bentley Instruments, Chaska, USA). Microbial 

cultures were performed in compliance with guidelines described elsewhere 

[60]. Ten μL(CS III and CS VI), 50 μL (MRSA, CS IV, and V), or 100 μL (CS I 

and II studies) of milk were cultured. Bovine leukocytes were identified and 

counted by cytology (all studies except CS III), flow cytometry (CS III), or both 

methods (LE study), as described elsewhere [44, 55-59]. Susceptibility patterns 

of bacterial isolates were determined using the disk diffusion method indicated 

below (see human studies). 

 

Human studies 

A – Malaria 

Participants. Children aged 3-36 months (n=439) were recruited at Siaya 

District Hospital, Kenya, a holoendemic P. falciparum transmission area where 

residents may receive up to 300 infective mosquito bites per annum [61]. After 

the parent or guardian of the child provided written informed consent to 

participate in the study, a questionnaire was conducted to collect demographic 

and clinical information, including the signs and symptoms of the present 

illness. In order to minimize the effect of previous malarial infections and/or 

recent anti-malarial use, no child with either prior hospitalizations (for any 
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reason) or treatment for malaria within the previous two weeks was 

investigated. None of the recruited children had cerebral malaria, non-

falciparum malarial infections, bacteremia, HIV-1, or hookworm infections [62].  

After enrollment, children were divided into three (two malaria-negative 

[M–] and one malaria-positive [M+]) groups. Both M– groups were defined by 

absence of P. falciparum parasitemia. One M– subset was defined as neither 

infected, febrile, nor inflammed (NIFNI). The NIFNI subset acted as an internal 

control for the overall M– class. The M+ group was defined by presence of 

P. falciparum parasitemia (any density) on thin and thick peripheral blood 

smears. Children were then re-examined two weeks later for the presence of 

malaria parasitemia and hemoglobin concentrations. After the data were 

collected and based on data patterns, both the M– and the M+ data were 

divided into additional subsets, e.g., M– results not suspected or suspected to 

be false negative, and M+ results suspected or not suspected to be under 

recovery. Five children, suspected to be under recovery, were tested twice over 

two weeks, and their data included in some analyses, so the total number of 

observations, in such cases, was 444. Children were treated according to 

guidelines of the Ministry of Health, Kenya. The study was approved by the 

University of New Mexico and the Kenya Medical Research Institute.  

 

B – Bacterial infections 

Participants. Because bacteremia is highly prevalent among Kenyan 

children with malaria, 22 bacterial infections were evaluated in malaria-positive 

children. Based on the holoendemicity of malaria in this region, children with 

bacterial infections in the absence of malaria were not obtained. To control for 

the confounding effects of malaria, children with bacterial infections were 

matched according to age, gender, parasitemia, and hemoglobin 

concentrations. The subset of children co-infected with bacteremia and malaria 

included 7 multi-drug resistant S. aureus (MRSA) and 15 non-MRSA isolates 

sensitive to, at least, oxacillin. 

 

Laboratory techniques. No child received any intervention before 

samples were collected. Asexual malaria trophozoites were determined as 

described before [62]. Thick and thin peripheral blood smears were prepared 
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from venous blood samples and stained with Giemsa reagent for malaria 

parasite identification, and quantified by microscopy. Asexual malaria 

trophozoites were counted against 300 leukocytes based on absolute counts of 

white blood cells (WBC)/mL in whole blood. Parasite density was estimated as 

follows: parasites/mL = WBC count/mL x trophozoites/300. Complete blood 

counts were performed with a Beckman Coulter© Ac-T diff2™ (Beckman 

Coulter, Inc.).  

Bacterial cultures were performed as previously described [63]. Briefly, 

blood cultures were performed for all children upon enrollment into the study, 

and in suspected cases of bacteremia at acute febrile visits. Approximately, 

1.0 mL of venipuncture blood was collected aseptically into sterile pediatric 

Isolator  microbial tubes (Wampole Laboratories, Princeton, USA) or directly 

inoculated into the pediatric blood culture bottle (Pediplus, Becton-Dickinson, 

Franklin Lakes, USA). Blood samples in the pediatric Isolator  microbial tubes 

were inoculated directly onto chocolate agar plates, while pediatric blood culture 

bottles were incubated in an automated BACTEC 9050 system (Becton-

Dickinson) for 4 days. Positive cultures were examined by Gram stain and sub-

cultured on blood agar, chocolate agar or MacConkey agar plates based on the 

Gram stain results.  

Susceptibility patterns of the bacterial isolates were determined using the 

disk diffusion method according to the Clinical Laboratory Standards Institute 

guidelines [64]. Bacterial isolates were tested against disks of erythromycin 

(15 μg), trimethoprim-sulfamethoxazole (1.25/23.75 μg), nalidixic acid (30 μg), 

tetracycline (30 μg), ampicillin-salbactum (10/10 μg), ciprofloxacin (5 μg), 

chloramphenicol (30 μg), oxacillin (1 μg), amoxicillin-clavulanic acid (20/10 μg), 

doxycycline (30 μg), cefotaxime-clavulanic acid (30/10 μg) and gentamicin 

(10 μg). Methicillin-resistant S. aureus (MRSA) was detected using oxacillin 

disk followed by vancomycin testing. Control S. aureus (ATCC 25923 and 

29213) strains were run concomitantly with the test organisms. For all of the 

microorganisms tested, resistance was defined according to the Clinical 

Laboratory Standards Institute guidelines [64]. The study was approved by the 

Kenya Medical Research Institute. 
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Glossary 

Three major constructs were assessed as defined: 

i. Functional data integrity: a 2D/3D data structure that included at least two 

variables which, together, included data from all cell types and described 

at least one biological function. This means that, collectively, the set (i) 

included data from L, M, and N, (ii) the data were structured in a way such 

that biological functions generated by multi-cellular interactions could be 

assessed (e.g., the L/M ratio), and (iii) higher-level biological functions 

(those that may result from interactions among interactions, such as the 

interplay between early and late responses could be measured (e.g., the 

simultaneous assessment of the N/L and M/N ratios). 

ii. Amplification: a data structure with numerical properties that 

enhancepattern detection by virtue of measuring two ratios at the same 

time, in which the same variable is assessed twice (the numerator of one 

ratio is the denominator of the other ratio). For instance, the simultaneous 

assessment of the N/L and M/N ratios includes the same variable twice 

(the N%, in this example). Notice that ‘amplifier’ indicators do not 

necessarily possess ‘functional data integrity’ (in this example, there is no 

L data). 

iii. Anchoring: a subset of functional data integrity in which two variables 

suffice to produce a single line of observations, when one leukocyte ratio 

and one leukocyte percentage are measured, in which the denominator of 

the ratio is the percentage being measured in another axis (e.g., the P/L 

vs. L %). Notice that ‘amplifier’ indicators, in 2D and, depending on the 

perspective considered, also in 3D plots, generate a single line of 

observations but do not necessarily produce amplification. 

 

Data analysis  

To generate a double-blind assessment, no researcher participated in all 

studies, and no researcher involved in data collection participated in data 

analysis. Plots and descriptive statistical tests were produced with Minitab 15, 

Minitab Inc., State College, PA, USA. 
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 Mastitis is one of the most prevalent infections in the dairy cattle industry, 

worldwide. Besides causing substantial economic losses, mastitis adversely 

affects dairy cow welfare (Menzies et al., 1995). Since approximately 70 to 80% 

of financial losses of this disease are caused by subclinical mastitis, this type of 

mastitis has a particularly high significance. The annual loss due to subclinical 

mastitis aggregated across all U.S. dairy cows was calculated to be 

approximately one billion dollar (Ott, 1999). Assuming that continuously 

increasing milk yields lead to more susceptible cows, the actual annual loss is 

probably even higher. Currently, the evaluation of udder health is based on 

somatic cell count (SCC) and bacteriological examination (Viguier et al., 2009). 

In this regard, a SCC threshold of 100,000 cells/ml in quarter foremilk samples 

is used to differentiate between healthy and diseased mammary glands 

(Harmon, 1994; DVG, 2002). However, it is well-known that SCC vary with 

status of lactation, age, stress of the animals, time and frequency of milking, 

season, and, mainly, udder infection status (Dohoo and Meek, 1982; Harmon, 

1994). In addition, bacteriological culture of foremilk samples can be false 

negative although the quarters are infected. Reasons could be, for example, 

intermittent pathogen shedding, presence of antimicrobials or other inhibitors in 

milk or ceased growth of the pathogens (Newbould and Neave, 1965; Hill et al., 

1978; Reiter, 1978; Sears et al., 1990). Recently, polymerase chain reaction 

has been proposed as an alternative to culture (Koskinen et al., 2009). 

However, even though polymerase chain reaction is a rapid test, this method is 

expensive and less sensitivite than bacterial culture (Paradis et al., 2012). The 

major problem of subclinical mastitis is that neither symptoms of the involved 

quarters (e.g., swelling or redness, flecks in milk) nor routine diagnostic 

methods (e.g., SCC, bacteriological examination) indicate the disease. 

The primary objective of this thesis was to analyze the immunological 

status of clinically healthy and subclinically infected bovine mammary glands by 

cell differentiation methods. This thesis should contribute to a more detailed 

understanding of subclinical mastitis by providing data regarding the 

relationship of immune cells in milk of affected quarters. 

 

The implementation of classical mastitis prevention programs (Neave et 

al., 1969) in combination with the introduction of penalty limits for bulk milk SCC 
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have led to substantial progress in controlling subclinical mastitis worldwide. For 

instance, the geometric bulk milk SCC in Hesse, Germany, decreased from 

255,000 to 200,000 cells/mL between 1993 and 2008 (HVL, 1994, 2009). The 

occurence of mastitis pathogens also changed. In Hesse, the prevalence of 

Staphylococcus aureus was reduced from 13.0% in 1995 to 2.9% in 2008 (LHL, 

2009). In contrast, coagulase-negative staphylococci are currently the most 

isolated pathogens from milk samples in many countries (Pitkälä et al., 2004; 

Piepers et al., 2007; Sampimon et al., 2009). Hence, it is worth knowing the 

current udder health situation in the dairy cow population. 

This thesis (2nd chapter) gave information about the udder health 

situation in a representative part of the dairy cow population in Hesse, 

Germany. The distribution of SCC, prevalence of mastitis pathogens, and the 

prevalence of mastitis pathogens in dependence of SCC were analyzed on the 

basis of quarter foremilk samples taken from 2000 to 2008. The results of this 

study demonstrated a proper level of udder health. Two-thirds of all quarter 

foremilk samples indicated SCC ≤100,000 cells/mL. About 52% of the samples 

analyzed were culture-positive. Prevalences of the mastitis pathogens detected 

in the Hessian survey were comparable to those obtained from Belgium 

(Piepers et al., 2007), Finland (Pitkälä et al., 2004), and the Netherlands 

(Sampimon et al., 2009). For the first time, detailed results about prevalences of 

mastitis pathogens in dependence of SCC were presented in the literature. 

Prevalences of mastitis pathogens were clearly lower in samples with SCC 

≤100,000 cells/mL than in samples with >100,000 cells/mL. Interestingly, major 

pathogens (Staphylococcus aureus, Streptococcus uberis) as well as minor 

pathogens (coagulase-negative staphylococci, Corynebacterium species) were 

detectable in milk samples with SCC starting from a level of 1,000 cells/mL. In a 

Dutch study, similar data were found but neither described nor discussed 

specifically (ten Napel et al., 2009). However, it is not clear whether the 

pathogens isolated from quarter foremilk samples with SCC values from 1,000 

to 100,000 cells/mL originated from contamination or whether they caused an 

intramammary infection. In any case, no signs of an intrammamary 

inflammation were visible based on SCC. Hence, differential cell counts (DCC) 

might be a better indicator than SCC for a profound evaluation of inflammation, 

especially at SCC levels ≤100,000 cells/mL, because the analysis of the 
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relationship of different cell types in milk (lymphocytes, macrophages, and 

polymorphonuclear neutrophilic neutrophils (PMNL)) is suitable for a detailed 

evaluation of the udder health status (Pillai et al., 2001; Rivas et al., 2001). 

 

The literature shows that milk DCC differ clearly between healthy and 

diseased quarters. In normal milk without any symptoms of mastitis lymphocyte 

proportions between 14 and 80%, macrophage proportions between 12 and 

46%, and those of PMNL between 6 and 50% were described (Rivas et al., 

2001; Merle et al., 2007; Koess and Hamann, 2008). In mastitis milk, PMNL 

proportions of up to 95% have been reported (Paape et al., 1979; Kehrli and 

Shuster, 1994). During various phases of inflammation SCC differs in total 

numbers, whereas DCC varies in composition of the cell populations involved 

(Nickerson, 1989). Therefore, in addition to SCC, determination of different 

types of immune cells present in milk is beneficial for describing the udder 

health status (Pillai et al., 2001; Rivas et al., 2001). However, till now little is 

known about DCC and the qualitative role of milk leukocytes in healthy 

mammary glands. One reason is probably that DCC in low-SCC milk is difficult 

to perform (Dosogne et al., 2003). 

Since inflammatory processes were suspected even within the SCC 

range of udder quarters classified as healthy according to current definitions 

(2nd chapter), a further objective of this thesis (3rd chapter) was the detailed 

evaluation of such quarters by microscopic DCC analysis. Reviewing the 

literature, this was the first study investigating cell populations in low-SCC milk 

in detail. Lymphocytes were found as the predominant cell population in milk of 

healthy mammary glands with proportions of up to 92%. In contrast, a previous 

study reported macrophages to be the predominant cell population in milk of 

healthy mammary glands (Lee et al., 1980). In our examinations, macrophages 

were the second dominant cell population in almost all samples tested in 

relationship to lymphocytes and PMNL. However, the differences to the results 

of Lee et al. (1980) might be explainable by different definitions of healthy 

mammary glands. While in our study milk with very low SCC values was 

analyzed, Lee et al. (1980) defined udder quarters as healthy based on 

negative bacteriological examinations and did not present any SCC values. Our 

data revealed PMNL as the dominant cell population in milk of diseased 
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quarters, as published previously (Leitner et al., 2000a; Merle et al., 2005; 

Koess and Hamann, 2008). The predominance of PMNL is an important 

indicator of inflammatory reactions (Pillai et al., 2001; Paape et al., 2002). 

Interestingly, in our examinations PMNL dominated already at SCC 

≥43,000 cells/mL suggesting that inflammatory processes appear already in the 

SCC range of healthy quarters. Factors that might have triggered the elevated 

PMNL proportions might be manifold. The mammary gland of a dairy cow is 

under constant pressure from udder pathogenic microorganisms in the 

environment. The elevated PMNL proportion could be evidence for the initial 

phase of an inflammation. In this regard it is also possible that PMNL are able 

to defend pathogens successfully and prevent mastitis. Although pathogens 

could not be isolated in such quarters, they might be infected nonetheless. 

Reasons for false negative bacteriological examinations could be, for example, 

intermittent pathogen shedding, presence of antimicrobials or other inhibitors in 

milk or ceased growth of the pathogens (Newbould and Neave, 1965; Hill et al., 

1978; Reiter, 1978; Sears et al., 1990). The interdependence of the individual 

udder quarters might also have triggered the elevated proportions of PMNL. 

Some authors suggested that individual udder quarters within a cow can be 

influenced by infections of neighboring quarters (Merle et al., 2007), whereas 

others did not find any evidence for an interdependence of udder quarters 

(Wever and Emanuelson, 1989) because they did not find DCC to be affected 

by the bacteriological status of adjacent quarters. Our data indicated no 

interactions between the individual udder quarters. According to Davis et al. 

(2008) stress could also be a factor triggering elevated PMNL percentages. 

Although we did not measure parameters related to stress, the influence in our 

study might be minimal because the animals analyzed were kept under optimal 

conditions and according to national guidelines. In addition, no obvious 

symptoms of stress (e.g., kicking during pre-milking preparation) were 

observed. Hence, this was the first study analyzing DCC of milk samples taken 

from mammary glands classified as healthy by SCC ≤100,000 cells/mL that 

indicated inflammatory reactions in those quarters. 

 

SCC is an undisputed and well-established criterion for the evaluation of 

udder health and milk quality. In addition to SCC, DCC can be used for a more 



  General Discussion 

 

 194 

detailed analysis of udder health status, as shown in chapter 3. However, the 

literature shows variations in the distribution of leukocytes in milk of non-

infected mammary glands. These variations were probably dependent on 

differences in methods, sampling, investigators (Schröder and Hamann, 2005), 

breeds (Leitner et al., 2003), stages of lactation (Vangroenweghe et al., 2001; 

Dosogne et al., 2003), and variable SCC. To reduce the influences of method 

and investigator, flow cytometry should be applied for cell differentiation. Due to 

the rapid characterization of a large number of cells as well as the definite 

identification of individual cell populations using specific antibodies, flow 

cytometric analysis gives more accurate results compared with microscopic 

analysis (Loken and Stall, 1982; Rivas et al., 2001; Dosogne et al., 2003; Koess 

and Hamann, 2008). Hence, another aim of this thesis (4th chapter) was to 

differentiate immune cells in milk of udder quarters classified as healthy based 

on SCC values of ≤100,000 cells/mL using flow cytometry. Reviewing the 

literature, this was the first study measuring simultaneously percentages of 

lymphocytes, macrophages, and PMNL by a flow cytometric method. Results of 

the microscopic cell differentiation study (chapter 3) were confirmed applying 

the advandced analysis technique. Lymphocytes also dominated with 

proportions of up to 88% in milk of healthy mammary glands. Again, 

macrophages were found as second predominant cell population in almost all 

samples tested in relation to lymphocytes and PMNL. Interestingly, in this study, 

inflammatory reactions could already be detected starting at an SCC level of 

9,000 cells/mL based on predominant percentages of PMNL. As discussed in 

chapter 3, the factors that might have triggered the elevated PMNL percentages 

might be manifold. At the time of examination pathogens could not be isolated 

from the involved quarters. As demonstrated above, bacteriological analysis 

could be false negative for different reasons. The data of the flow cytometric 

study indicated immunological interdependence as well as independence 

between the four udder quarters at low and high SCC levels. The factor stress 

that also might have triggered the elevated proportions of PMNL, might be 

minimal in this study for the same reasons as discussed above. Further 

analysis of the data revealed significant differences of cellular components in 

milk between culture-positive and culture-negative udder quarters. DCC results 

of quarters with the detection of major pathogens indicated an intramammary 
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infection and were in agreement with previous observations (Piccinini et al., 

1999). A new finding of our study was that even in case of the detection of 

minor pathogens, the percentages of lymphocytes and PMNL differed 

significantly from those in culture-negative quarters. Hence, DCC could be a 

helpful tool for interpretation whether the bacteria detected originated from 

contaminations of the skin, teat canal, or environment or whether they cause an 

intramammary infection. This is particularly relevant in quarters that are not 

noticeable by elevated SCC (>100,000 cells/mL). As suspected in the Hessian 

survey (chapter 2), the microscopic (chapter 3) as well as the flow cytometric 

analyses (chapter 4) could detect inflammatory reactions in udder quarters with 

SCC that were clearly below the current threshold of 100,000 cells/mL. 

 

At present, SCC and bacteriological analysis are the standard techniques 

for the evaluation of udder health (Viguier et al., 2009). However, SCC is low in 

the initial stage of inflammatory reaction, until the invading pathogen is 

recognized by immune and epithelial cells that release chemoattractants, thus 

stimulating migration of PMNL (Paape et al., 2002; Oviedo-Boyso et al., 2007; 

Koess and Hamann, 2008). This thesis confirmed that DCC are beneficial for 

describing the udder health status, even in low SCC milk (chapters 3 and 4), as 

suggested by previous studies (Pillai et al., 2001; Rivas et al., 2001). It is known 

that the course of mastitis has an influence on DCC. In the presence of acute 

mastitis (e.g., caused by Staphylococcus aureus or Escherichia coli) PMNL 

were found as the predominant cell type (Leitner et al., 2000a; Merle et al., 

2007; Koess and Hamann, 2008). In contrast, in chronic mastitis caused by 

Staphylococcus aureus or coagulase-negative staphylococci percentages of 

PMNL can be as low as that in uninfected quarters, whereas macrophage 

percentages are higher (Leitner et al., 2000a). Also, the analysis of DCC 

patterns in the presence of various pathogens revealed differences (Leitner et 

al., 2000a). While percentages of PMNL were high (73%) in quarters chronically 

infected with Streptococcus uberis, quarters with a chronic Staphylococcus 

aureus infection showed clearly lower PMNL percentages (42%). Therefore, 

another aim of this thesis (5th chapter) was to identify cytological parameters 

that could be used easily in the field for classifying udder quarters as healthy or 

diseased by comparion of cytobacteriological results with DCC. 
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Although flow cytometric analysis gives more accurate results compared 

with microscopic analysis (Loken and Stall, 1982; Rivas et al., 2001; Dosogne 

et al., 2003; Koess and Hamann, 2008), in this study DCC were determined by 

the cost-effective and routinely used light microscopic method. Animals were 

selected from three dairy herds with different prevalences of intramammary 

infection, which were caused by different etiological agents. While 

environmental pathogens were the causative agents of mastitis in herd A, 

contagious bacteria dominated in herds B and C with low and high 

diffusiveness, respectively. DCC patterns were significantly different among the 

three herds, as expected and in accordance with previous reports (chapter 4). 

Relative higher values of PMNL followed by lymphocytes and macrophages 

were found in herds A and B, suggesting that most infections were acute. In 

contrast, macrophages were the main cell population in herd C indicating 

chronic infections, as shown in a previous study (Sladek and Rysanek, 2009). 

To enable comparisons between cytobacteriological and DCC results, the 

current recommendations of DVG (2002) were used. Consequently, all samples 

analyzed were clustered into four health groups (N = normal secretion, 

SCC ≤100,000 cells/mL, bacteriological negative; LM = latent mastitis, SCC 

≤100,000 cells/mL, bacteriological positive; UM = unspecific mastitis, 

SCC >100,000 cells/mL, bacteriological negative; M = mastitis, SCC 

>100,000 cells/mL, bacteriological positive). Of the three cell populations, 

PMNL are known to strongly increase during the course of infection. 

Accordingly, PMNL were statistically lower in group N than in groups UM and M, 

but no difference was demonstrated between groups N and LM. The 

macrophage percentage was very similar in the four groups, because 

macrophages are associated with the late phase of infection (Leitner et al., 

2000a; Sladek and Rysanek, 2009) and are expected to increase in chronic 

infections, which were presumably at low levels in the cows of this study. 

Lymphocytes were the only individual cell population showing statistically 

different percentages between the healthy group (N) and all diseased groups 

(LM, UM, M). Especially, combinations of cell populations were evaluated to 

increase the discrimination power of DCC. Indeed, combining populations 

increased the F-values, indicating that a larger percentage of quarters would be 

correctly classified when that parameter was considered. Combining PMNL and 
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macrophages into phagocytes (Phag variable) increased F-values from 1.65 

and 15.54, respectively, to 32.64. Evaluating the logarithmic (log) Phag:Lym 

ratio, which includes all three cell populations, an F-value of 45.90 was found. 

All combinations of individual cell populations showed statistically significant 

differences between groups N and D. However, the best F-value of 48.23 was 

related to log PMNL:Lym ratio. One explanation would be that only the 

log PMNL:Lym ratio includes both cell populations which are statistically 

influenced by health groups but excludes macrophages. Chapter 5 clearly 

showed that combinations of cell populations are more suitable for 

differentiation between healthy and diseased udder quarters than single cell 

populations. Nevertheless, further studies for determination and validation of 

cutoff values of the individual cell populations as well as combined variables 

differentiating between healthy and diseased quarters should be conducted. 

 

As shown above, the percentage of each cell type can be widely variable 

in milk samples of healthy udder quarters. It is known that DCC patterns are 

mainly influenced by the course of mastitis and the causative agent (Leitner et 

al., 2000a). In addition, the effect of lactation stage and parity number should be 

taken into account (Vangroenweghe et al., 2001; Dosogne et al., 2003). Leitner 

et al. (2000b) evidenced a high repeatability for samples taken from the same 

cow in different stages of lactation and suggested that the leukocyte pattern in 

uninfected mammary glands is genetically controlled. However, so far, no 

information on short-term repeatability of DCC is available. Since the immune 

system is dynamic and the mammary gland is subjected to persistent stress 

during lactation, a basic knowledge of the cellular profile in healthy glands is 

fundamental to evaluate the applicability of DCC as tool in mastitis control 

programs. Hence, another aim of this thesis (6th chapter) was to investigate 

DCC in milk from healthy mammary quarters and to test whether the results are 

consistent on subsequent days. In addition, a cutoff value for log PMNL:Lym, 

which was the best ratio for differentiation between healthy and diseased 

quarters (chapter 5), should be established and verified under field conditions. 

In the first trial, quarter milk and blood samples were taken from eight 

healthy cows for five consecutive days. Milk samples were tested by SCC and 

bacteriological analysis, whereas DCC was performed on all blood and milk 
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samples by the more precise flow cytometric method. To reduce the influence 

of diseases or systemic pathologies unrelated to the mammary gland, in the first 

trial only animals from a herd with high health and hygiene standards 

considered to be free of contagious mastitis pathogens were selected. 

Additionally, blood samples were taken to check if eventual fluctuations in milk 

data could be related to systemic conditions. No influence of sampling day, 

parity, stage of lactation or quarter position could be found on either milk or 

blood DCC patterns. These findings suggest that DCC can be reliably applied in 

samples collected at different points in time in lactation to evaluate the health 

status of the mammary gland, even though single variations observed in a few 

samples may indicate misclassification. Hence, a cutoff value of 0.495 for log 

PMNL:Lym could be established to identify healthy or diseased quarters. For 

verification of this cutoff value, in a second trial 16 animals were randomly 

selected from a different herd and quarter milk samples were taken on three 

consecutive days. When the cutoff value was applied to the data along with 

SCC, high specificity and good sensitivity of 97.3% and 92.3%, respectively, 

were calculated. Out of the nine false-negative quarters, two had been 

considered as diseased based only on SCC, four were positive for 

Staphylococcus aureus, two for Prototheca species, and one for coagulase-

negative staphylococci. On the other hand, considering both SCC and DCC, 

only one quarter would be misclassified, increasing sensitivity of the method to 

97.3%, without any changes in specificity. Such quarter had very low SCC 

(1,000 cells/mL in all samplings), and Staphylococcus aureus was detected in 

low counts only at the first and second sampling (102 UFC/mL). Since the 

animal presented with two different Staphylococcus aureus-infected quarters 

shedding high numbers of bacteria, we speculated that bacteriological positivity 

of the other quarter could reflect a transient contamination of the teat canal that 

was adequately prevented from reaching the gland cistern by local defence 

mechanisms. Such teat canal contaminations have been previously reported 

and did not always correlate with intramammary infections (Zecconi et al., 

1994). In chapter 6 short-term repeatability of DCC patterns was shown and a 

cutoff value for log PMNL:Lym working under field conditions was found to 

differentiate between healthy and diseased udder quarters. 
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Lymphocytes were found as predominant cell population in milk of 

healthy udder quarters (Chapters 3, 4, 5, and 6). The predominance of these 

cells in healthy mammary glands suggests that lymphocytes play a significant 

role in the maintenance of the integrity of the mammary gland (Shafer-Weaver 

et al., 1996) and in host defense against infectious diseases of the mammary 

gland (Sordillo et al., 1991). There are two distinct subsets of lymphocytes that 

differ in function: T and B lymphocytes. While T lymphocytes regulate induction 

and suppression of immune responses (Nickerson, 1989), the main task of B 

cells is the production of antibodies against invading pathogens (Oviedo-Boyso 

et al., 2007). In one presented study (chapter 5) lymphocytes were the only 

individual cell population showing statistically different percentages between 

healthy quarters and all three kinds of diseased quarters; indicating that their 

percentages are susceptible to change. However, little is known about the 

immunological status of apparently healthy udder quarters classified by SCC 

≤100,000 cells/mL. Due to the predominance of lymphocytes in milk of healthy 

udder quarters and the clearly different functions of T and B lymphocytes, a 

further aim of this thesis (7th chapter) was the detailed analysis of the 

relationship of CD2+ T and CD21+ B lymphocytes in foremilk samples of 

clinically healthy and subclinically infected udder quarters using flow cytometry 

to check early changes of the immunological status of the mammary gland. 

Our examinations revealed noticeable high percentages of CD2+ T 

lymphocytes in milk of quarters showing SCC ≤100,000 cells/mL and two 

culture-negative results. In contrast, percentages in milk of diseased udder 

quarters were low. Percentages of CD21+ B lymphocytes were low in milk of 

culture-negative quarters with SCC ≤100,000 cells/mL and increased in milk of 

diseased quarters. The antidromic trend of T and B lymphocyte percentages in 

milk of healthy and diseased udder quarters led us to define a completely new 

variable – the CD2/CD21 index. Due to the specific functions of T and B 

lymphocytes, the percentage of CD2+ cells per CD21+ cells represents the 

interaction between cellular and humoral immune responses. While in view of 

lymphocytes cellular immune mechanisms dominate in milk of apparently 

healthy udder quarters, the role of the humoral immune response became 

intensified in diseased quarters. Furthermore, chapter 5 indicated that 

combinations of single cell populations increase the power to discriminate 
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between healthy and diseased udder quarters. Based on the results of our 

examinations a CD2/CD21 index of 10 was detected to be suitable for 

differentiation between unsuspicious and suspicious or diseased udder 

quarters. Severely diseased quarters with SCC >100,000 cells/mL containing 

major pathogens generally revealed CD2/CD21 indices <10. In contrast, 

CD2/CD21 indices >10 were generally found in quarters showing SCC 

≤100,000 cells/mL and two culture-negative results. In udder quarters 

containing minor pathogens (SCC ≤100,000 cells/mL or >100,000 cells/mL) 

CD2/CD21 indices <10 (n = 29) as well as >10 (n = 7) were found. However, it 

is not clear whether the minor pathogens detected in these quarters originated 

from teat canal colonization or whether they caused an intramammary infection 

(Devriese and De Keyser, 1980; Linde et al., 1980). The DCC data of four of the 

seven quarters with CD2/CD21 indices >10 supported an intramammary 

infection because proportions of granulocytes were 77-89%. The remaining 

three quarters indicated no inflammatory reactions (granulocyte proportions 24-

39%). However, the CD2/CD21 index of these seven quarters ranged between 

10.87 and 19.93 and should be seen as suspicious, at least in samples showing 

SCC >100,000 cells/mL and minor pathogens. The analysis of selectively 

chosen quarters that had SCC ≤100,000 cells/mL and major pathogens 

(Staphylococcus aureus) also showed CD2/CD21 indices <10. DCC patterns of 

these quarters revealed inflammatory reactions based on the predominance of 

PMNL. Hence, it can be speculated that the CD2/CD21 index is connected with 

the current or previous presence of pathogens in the mammary gland. 

However, we performed field studies and do not know the exact time of 

infection. Even though, in chapter 7 a potential new indicator for differentiation 

of unsuspicious and suspicious or diseased udder quarters was found. 

 

The literature shows that the rate of undetected infections remains 

markedly elevated and may be increasing (McBryde et al., 2009; Rerknimitr et 

al., 2010; Tàrnok et al., 2010). Pathogens that develop resistance to 

antimicrobials pose new challenges, such as methicillin- or multidrug-resistant 

Staphylococcus aureus (MRSA) infections, which, in the United States, cause 

more deaths than tuberculosis, AIDS, and viral hepatitis combined (Boucher 

and Corey, 2008). Therefore, improved characterization of infectious disease-
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related data patterns is required. Here, system biology and evolutionary biology 

may be considered. System biology may extract more information from the 

same data focusing on systems and their dynamics (Kitano, 2002a, b; 

Cedersund and Roll, 2009; Villoslada et al., 2009; Drack and Wolkenhauer, 

2011). To diminish data variability, evolutionary biology focuses on biological 

features well conserved in evolution (Macklem, 2008; Nesse and Stearns, 2008; 

Johnson, 2010; Luni et al., 2010). In this context, the investigation of feedback 

defined as process that involves an interaction between two or more elements 

(e.g., a microbe and a host) is crucial. Feedback can be designated positive 

when the activation or accumulation of one component leads to the activation or 

accumulation of another component, and negative when the activation or 

accumulation of the earliest component leads to the deactivation or depletion of 

the later component (Freeman, 2000). 

A further aim of this thesis (8th chapter) was to explore DCC data 

patterns of host-microbial interactions for improvement of disease diagnosis. 

Data collected in six bovine studies (chapters 3, 4, and 5; Leitner et al., 2000a; 

Anderson et al., 2010; Pilla et al., 2012), two human studies (not published yet), 

and one avian study (Jankowski, 2010) with viral, parasite, or bacterial agents 

were analyzed. In all studies the classic approach (e.g., percentages of an 

individual cell population) did not differentiate disease-positive from disease-

negative groups without overlapping. In contrast, the 3D, system 

biology:evolutionary biology-approach distinguished three (steady, positive, and 

negative) feedback phases, in which disease-negative data characterized the 

steady phase, and disease-positive data were found in the positive as well as in 

the negative phase. Furthermore, based on clear inflammatory DCC profiles the 

advanced data analysis identified cases of false negatives. This finding rejects 

the ‘gold standard’ hypothesis that there is an ideal microbial test, in 

accordance with previous studies (Feinstein, 1990; Grimes and Schulz, 2002). 

Also, 3D analyses distinguished two or more disease-positive stages negating 

both the binary hypothesis (‘only two data classes’) and the assumption that all 

disease-positive data points have similar meaning. One possible reason why 

those hypotheses were not empirically supported is that they do not account for 

temporal dynamics and/or data circularity (Milton et al., 1989; Hu et al., 2011). 

For prevention of false negative results, a specific test is needed to identify the 
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infecting microbe. However, while the ‘gold standard’ cannot solve this 

conundrum, the system biology:evolutionary biology-approach provides an 

alternative for its solution. In chapter 8 DCC patterns were structured and host-

microbial interactions could be assessed. 

 

In conclusion, this thesis contributed to a more detailed understanding of 

subclinical mastitis by providing new data regarding the relationship of milk 

immune cells in clinically healthy and subclinically infected bovine mammary 

glands. In addition, new concepts for data analysis and potential new tools for 

diagnosis of subclinical mastitis were described in this thesis. 
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Conclusions 

 
This thesis indicated a high standard of udder health in the Hessian dairy 

cow population analyzed because in 62% of all udder quarters SCC 

≤100,000 cells/mL were detected. In view of mastitis pathogens, prevalences 

were clearly lower in samples with SCC ≤100,000 cells/mL than in samples with 

>100,000 cells/mL confirming the 100,000 cells/mL threshold for differentiation 

between healthy and diseased mammary glands. Minor and major pathogens 

were detected even at a minimum of 1,000 cells/mL suggesting that 

inflammatory reactions appear already in the SCC range ≤100,000 cells/mL. 

Although SCC is an undisputed and well-established criterion for the evaluation 

of udder health, in addition to SCC, DCC can be used for a more detailed 

analysis of the udder health status. Analyzing DCC of udder quarters classified 

as healthy by SCC ≤100,000 cells/mL, inflammatory reactions were detectable 

at an SCC level of ≥43,000 cells/mL or ≥9,000 cells/mL due to predominating 

PMNL proportions in foremilk samples of the corresponding quarters applying 

microscopic or flow cytometric methods, respectively. These were the first 

examinations indicating inflammatory reactions in udder quarters with SCC that 

were clearly below the current threshold of 100,000 cells/mL. Further analyses 

revealed that DCC patterns differed significantly between herds depending on 

the causative mastitis pathogen as well as the diffusiveness of the bacteria. It 

was also shown that combinations of the individual cell populations improved 

the power of DCC to differentiate between healthy and diseased udder 

quarters. In this context, the best results being achieved using log PMNL:Lym 

ratio as variable. A further study revealed a cutoff value of 0.495 for 

log PMNL:Lym differentiating between healthy and diseased mammary glands 

with a high specificity and good sensitivity of 97.3% and 92.3%, respectively. 

The use of both cytometric DCC, in particular the log PMNL:Lym ratio, and SCC 

could represent an excellent diagnostic method to identify inflammatory 

processes in the mammary gland, avoiding bacteriological analysis. However, 

all DCC examinations discovered lymphocytes to be the predominant cell 

population in milk of healthy udder quarters. The detailed analysis of the 

lymphocyte subpopulations CD2+ T and CD21+ B lymphocytes revealed 
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significant different percentages of these cell populations in milk of healthy and 

diseased udder quarters. Hence, a new variable – the CD2/CD21 index – 

provides a trend for the characterization of udder health. Our examinations 

showed that a CD2/CD21 index of 10 may aid differentiation between 

unsuspicious and suspicious or diseased udder quarters. Detailed analyses 

indicated a connection between the CD2/CD21 index and the current or former 

presence of mastitis pathogens. Finally, applying advanced data analysis 

methods host-microbial interactions could be assessed. 3D data analysis 

distinguished three feedback phases: steady, positive, and negative. 

Furthermore, false-negative results of bacteriological analysis were detected 

based on spatial data patterns. The findings of this study may have broad 

applications including earlier diagnosis, differentiation of disease-positive 

classes, and lower rates of false-negative results. 
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Future prospects 

 
Further research in this field should monitor the development of udder 

health to detect changes of SCC levels and the spectrum of pathogens causing 

mastitis. In view of DCC analysis further studies should focus on longitudinal 

examinations of immune cells in milk of udder quarters with SCC 

≤100,000 cells/mL to investigate physiological variations of the DCC patterns. In 

this context a detailed analysis of quarters with SCC ≤100,000 cells/mL that 

reveal high percentages of PMNL is also crucial for a detailed characterization 

of factors triggering the elevated percentages of inflammatory cells. To confirm 

and refine the results gained in the studies on combinations of cell populations 

and cutoff values for an improved differentiation of healthy and diseased 

mammary glands, further studies with higher numbers of samples should be 

performed. Regarding the CD2/CD21 index longitudinal examinations with 

udder quarters specifically infected with major (e.g., Staphylococcus aureus) 

and minor pathogens (e.g., coagulase-negative staphylococci), respectively, are 

necessary for a more detailed characterization of the CD2/CD21 index. 

Concerning the advanced data analysis methods the data illustration may be 

improved by applying rotating 3D figures. Moreover, this study did not focus on 

the pathogenesis of any disease and therefore reproducibility of the findings 

should be explored in further studies. 
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