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 Introduction 1 

1 Introduction  

1.1 Transition Metal-Catalyzed C–H Bond Functionalization 

 

Sustainability was declared as one of the major goals within synthetic chemistry.1 The design of 

environmentally benign synthetic methods is guided by the ‘12 Principles of Green Chemistry’.2 

Besides safe and non-toxic processes, waste-prevention, as well as atom- and step-economy in 

combination with catalysis, are all essential requirements for sustainable organic synthesis. From this 

point of view, transition metal catalysis is an essential step into the desired direction. Thereby, the 

efficiency of carbon–carbon (C–C) or carbon–heteroatom (C–Het) bond formation can be 

considerably improved.  

 

For almost half a century, selective transition metal-catalyzed C–C bond formation reactions have 

attracted significant attention among various research groups around the world. Even in the field of 

industrial synthesis of pharmaceuticals, these transformations gain more and more attention over 

classical reaction routes.3 Certainly, one of the most famous transformations in this research area is 

the transition metal-catalyzed cross-coupling reaction.4  

Today, traditional cross-coupling chemistry is a powerful synthetic tool in preparative organic 

chemistry. This is, for instance, illustrated by the fact that Heck, Negishi and Suzuki have been 

awarded the Nobel Prize of Chemistry in 2010 for the palladium-catalyzed formation of C–C single 

bonds via cross-coupling chemistry. The major features of these reactions are presented in Scheme 

1.1. In general (for the cross-coupling), a (pseudo)halide as an electrophile and an organometallic 

species as a nucleophile are coupled via a Palladium (0)-Palladium (II)-catalytic cycle. The key steps 

include an oxidative addition, a transmetalation and a reductive elimination (Scheme 1.1, a). For 

Mizoroki-Heck-type couplings (Scheme 1.1, b) a mechanism consisting of a syn-insertion followed by 

-bond-rotation and final -H elimination is generally accepted.5  

                                                           
1
 Essen, M.; Metzger, J. O.; Schmidt, E.; Schneidewind, U. Angew. Chem. Int. Ed. 2002, 41, 414–436. 

2
 (a) Anastas, P. T.; Kirchhoff, M. M. Acc. Chem. Res. 2000, 35, 686–694. (b) Anastas, P. T.; Warner, J. C. Green 

Chemistry: Theory and Practice, Oxford University Press: Oxford, 1998, p. 30. 
3
 Busacca, C. A.; Fandrick, D. R.; Song, J. J.; Senanayake, C. H. Adv. Synth. Cat. 2011, 353, 1825–1864. 

4
 (a) Johansson Seechurn, C. C. C.; Kitching, M. O.; Colacot, T. J.; Snieckus, V. Angew. Chem. Int. Ed. 2012, 51, 
5062–5086. (b) Metal-Catalyzed Cross-Coupling Reactions (Eds. de Meijere, A.; Diederich, F.), 2

nd
 ed., Wiley-

VICHY: Weinheim, 2004. (c) Transition Metals for Organic Synthesis (Eds. Beller, M.; Bolm, C.), 2
nd

 ed., Wiley-
VCH: Weinheim, 2004. 

5
 Corbet, J.-P.; Mignani, G. Chem. Rev. 2006, 106, 2651–2710. 

http://onlinelibrary.wiley.com/doi/10.1002/adsc.v353.11/12/issuetoc


2  Introduction  
 

 

Scheme 1.1: General catalytic cycles for the cross-coupling (a) and the Mizoroki-Heck (b) reaction. 

 

The formation of stoichiometric amounts of potentially harmful metal salts as by-products and the 

necessity to use prefunctionalized substrates proves to be disadvantageous for the transition metal-

catalyzed cross-coupling reaction. To avoid the expensive prefunctionalization steps, transition metal-

catalyzed direct functionalizations of C–H bonds represent an excellent alternative (Scheme 1.2). 

 

Scheme 1.2: General comparison of transition metal-catalyzed transformations. 

 

During the last 20 years, direct C–H bond functionalization has become a complementary synthetic 

tool in organic chemistry, even in the field of the total synthesis of complex natural products and 

pharmaceuticals.6 

The classical synthetic routes towards the derivatization of arene would for example include 

electrophilic aromatic substitution (SE
Ar) or directed ortho-metalation (DoM)7 (see below: Chapter 

                                                           
6
 (a) Chen, D. Y.-K.; Youn, S. W. Chem. Eur. J. 2012, 18, 9452–9474. (b) Engle, K. M.; Mei, T.-S.; Wasa, M.; Yu, J.-

Q. Acc. Chem. Res. 2012, 45, 788–802. (c) Yamaguchi, J.; Yamaguchi, A. D.; Itami, K. Angew. Chem. Int. Ed. 
2012, 5, 8960–9009. (d) Tran, L. D.; Daugulis, O. Angew. Chem. Int. Ed. 2012, 51, 5188–5191. (e) McMurray, 
L.; O'Hara, F.; Gaunt, M. J. Chem. Soc. Rev. 2011, 40, 1885–1898. 

7
 Snieckus, V. Chem. Rev. 1990, 90, 879–933. 
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1.2). These reactions are often complicated by harsh reaction conditions and/or side-product 

formation. 

The site-selectivity of catalytic C–H bond functionalizations can be controlled by employing either the 

enhanced acidity of a specific heteroaromatic C–H bond in substrates of the type 1 or by the directing 

group (DG) approach for the conversion of substrates 4 into their ortho-functionalized derivatives 3 or 

5, respectively (Scheme 1.3, see also Chapter: 1.2).8 Stoichiometric amounts of bases are necessary in 

both cases. 

 

Scheme 1.3: Two variants for C–H bond functionalizations. 

The C–H bond metalation step can be accomplished by the active metal species LnM, according to 

four generally accepted mechanisms (Scheme 1.4). The results of computational studies of these 

mechanisms on different theoretical levels have been summarized by Eisenstein and co-workers.9 
  

 

Scheme 1.4: Possible mechanisms for C–H bond metalation by transition metal complexes. 

Oxidative addition (a) is a common process that can mainly be performed by electron-rich, low-valent 

complexes of late transition metals (Fe, Ru, Os, Ir, Pt, Re). Due to the impossibility of such oxidative 

transformations for early transition metals with d0-configuration, -bond metathesis (b) appears to 

be the predominant activation pathway for these metals. In a highly polar reaction medium, late 

transition metals (e.g. Pd, Pt) might metalate the C–H bond through an electrophilic substitution (c) 

                                                           
8
 (a) Colby, D. A.; Bergman, R. G.; Ellman, J. A. Chem. Rev. 2010, 110, 624–655. (b) For a review on removable 
DG’s see: Wang, C.; Huang, Y. Synlett 2013, 24, 145–149. 

9
 Balcells, D.; Clot, E.; Eisenstein, O. Chem. Rev. 2010, 110, 749–823. 
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replacing a former ligand on a metal atom with the organic substituent. Alkylidene or amido 

complexes of early transition metals further possess the possibility to perform the C–H bond 

activation via 1,2-additions (d).9,10 

Since the aromatic C–H bonds feature enhanced thermodynamic stabilities [DH289 (benzene) = 

112.9±0.5 kcal·mol-1)11 and low acidities [pKA (DMSO) = 44.7],12 marginal differences in reactivity were 

observed for the different C–H bonds within the same aromatic molecule. Therefore, different 

strategies have been probed in order to improve the selectivity of transition metal-catalyzed C–H 

functionalization reactions. Thus, site-selectivity can be achieved via chelation, employing Lewis basic 

directing groups (DG). Alternatively, this effect can be accomplished by the addition of a 

supplementary reaction partner, for example a base. Pioneering work in the field of stoichiometric 

base-assisted metalations has been accomplished by the groups of Shaw13  and Reutov14 in the 1970s. 

Concerning catalytic base-assisted metalations, it has been proposed that a bidentate base is 

operating by the concerted-metalation-deprotonation pathway (CMD, Fagnou)15 or by the ambiphilic 

metal-ligand activation (AMLA, Davies & Macgregor) mechanism.10 Both principles favor a six-

membered transition state including very little charge on the aromatic ring. Theoretical calculations 

on palladium- and iridium- catalyzed10,16 metalation mechanisms disclose that the metal-acetate 

complexes have an ambiphilic character due to an intramolecular electrophilic activation of a C–H 

bond followed by deprotonation with an internal base (Figure 1.1). Furthermore, the function of the 

transition metal center was also speculated about,15 as several irida-, rhoda- and ruthenacycles were 

isolated by Davies and co-workers in 2009 upon acetate-assisted C–H-activation reaction of 2-

phenylpyridine.17   

 

Figure 1.1: Possible transition states during concerted metalation-deprotonation (CMD) or ambiphilic metal-ligand 
activation (AMLA) pathways. 

                                                           
10

 Boutadla, Y.; Davies, D. L.; Macgregor, S. A.; Poblador-Bahamonde, A. I. Dalton Trans. 2009, 5820–5831. 
11

 Blanksby, S. J.; Ellison, G. B. Acc. Chem. Res. 2003, 36, 255–263. 
12

 Shen, K.; Fu, Y.; Li, J.-N.; Liu, L.; Guo, Q.-X. Tetrahedron 2007, 63, 1568–1576. 
13

 (a) Duff, J. M.; Shaw, B. L. J. Chem. Soc., Dalton Trans. 1972, 2219–2225. (b) Duff, J. M.; Mann, B. E.; Shaw, B. 
L.; Turtle, B. J. Chem. Soc., Dalton Trans. 1974, 139–145. (c) Gaunt, J. C.; Shaw, B. L. J. Organomet. Chem. 
1975, 102, 511–516.  

14
 Sokolov, V. I.; Troitskaya, L. L.; Reutov, O. A. J. Organomet. Chem. 1979, 182, 537–546. 

15
 Lapointe, D.; Fagnou, K. Chem. Lett. 2010, 39, 1118–1126. 

16
 Ess, D. H.; Bischof, S. M.; Oxgaard, J.; Periana, R. A.; Goddard, W. A., III Organometallics 2008, 27, 6440–6445. 

17
 Boutadla, Y.; Al-Duaij, O.; Davies, D. L.; Griffith, G. A.; Singh, K. Organometallics 2009, 28, 433–440. 
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The mode of action of monodentate anionic ligands has been explored by the research groups of 

Goddard as well as Gunnoe.18 DFT-studies favor an internal electrophilic substitution (IES) prior to 

traditional σ-bond metathesis (Figure 1.2). 

 

Figure 1.2: Proposed transition state during the internal electrophilic substitution (IES). 

During the last decades, the research interest in transition metal-catalyzed C–H bond 

functionalization as a tool for a variety of C–C bond forming reactions has increased rapidly, especially 

in the field of biaryl-synthesis.19  

Among other metals, ruthenium (II) catalysts not only include the remarkably broad substrate scope 

and the extraordinarily high chemo- and site-selectivity, as reflected by the outstanding functional 

group tolerance and excellent catalytic activity with water as the reaction medium,20 but also are 

significantly less expensive than other transition metal sources. Thus, in 2012, the prices of gold, 

platinum, rhodium, iridium, palladium and ruthenium were 1730, 1600, 1100, 1050, 669 and 110 US$ 

per troy oz, respectively.21  

The Ackermann group and others have focused on the application of ruthenium complexes for 

chelation-assisted direct arylations.19,22,23 Starting from easily available aryl chlorides as electrophiles 

and a ruthenium-complex derived from a (hetero-atom-substituted) secondary phosphine oxide 

[(HA)SPO], they have elaborated the preparative methods for ortho-selective direct mono- and bis-

                                                           
18

 (a) Oxgaard, J.; Trenn, W. J., III; Nielsen R. J.; Periana, R. A.; Goddard, W. A., III Organometallics 2007, 26, 
1565–1567. (b) Conner, D.; Jayaprakash, K. N.; Cundari, T. R.; Gunnoe, T. B. Organometallics 2004, 23, 2724–
2733. (c) for a review, see: Webb, J. R.; BolaÇo, T.; Gunnoe, T. B. Chem. Sus. Chem. 2011, 4, 37–49. 

19
 Selected reviews: (a) Ackermann, L.; Kapdi, A. R.; Potukuchi, H. K.; Kozhushkov, S. I. In Handbook of Green 
Chemistry (Ed. Li, C.-J.), Wiley-VCH: Weinheim, 2012, 259–305. (b) Kulkarni, A. A.;  Daugulis, O. Synthesis 
2009, 4087–4109; (c) Modern Arylation Methods (Ed.: Ackermann, L.), 1

st
 ed., Wiley-VCH: Weinheim, 2009. 

(d) Daugulis, O.; Do, H.-Q.; Shabashov, D. Acc. Chem. Res. 2009, 42, 1074–1086. (e) Alberico, D.; Scott, M. E.; 
Lautens, M. Chem. Rev. 2007, 107, 174–238. (f) Bellina, F.; Rossi R. Chem. Rev. 2010, 110, 1082–1146. (g) 
Seregin, I. V.; Gevorgyan, V. Chem. Soc. Rev. 2007, 36, 1173–1193. (h) Brückl, T.; Baxter, R. D.; Ishihara, Y.; 
Baran, P. S. Acc. Chem. Res. 2012, 45, 826–839. (i) Cho, S. H.; Kim, J. Y.; Kwak, J.; Chang, S. Chem. Soc. Rev. 
2011, 40, 5068–5083. 

20
 (a) Ackermann, L. Org. Lett. 2005, 7, 3123–3125. (b) Arockiam, P. B.; Bruneau, C.; Dixneuf, P. H. Chem. Rev. 
2012, 112, 5879–5918. 

21
 http://www.platinumgroupmetals.org/ 

22
 (a) Ackermann, L.; Vicente, R. Top. Curr. Chem. 2010, 292, 211–229. (b) Ackermann, L.; Althammer, A.; Born, 
R. Angew. Chem. Int. Ed. 2006, 45, 2619–2622. 

23
 (a) Oi, S.; Funayama, R.; Hattori, T.; Inoue, Y. Tetrahedron 2008, 64, 6051–6059; (b) Oi, S.; Ogino, Y.; Fukita, 

S.; Inoue, Y. Org. Lett. 2002, 4, 1783–1785; (c) Oi, S.; Fukita, S.; Hirata, N.; Watanuki, N.; Miyano, S.; Inoue, Y. 
Org Lett. 2001, 3, 2579–2581. 

http://www.platinumgroupmetals.org/
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arylation of 2-arylsubstituted pyridines, pyrazoles and ketimines. Even unprecedented direct arylation 

using tosylates as electrophiles appeared to be successful with a mono-selective outcome (Scheme 

1.5).22
 

 

Scheme 1.5: Ruthenium-catalyzed direct arylation with tosylate 7a as the electrophiles. 

The direct arylation could also be performed via initial one-pot in-situ tosylation of inexpensive 

phenol derivatives.24  

Intensive screening in less polar solvents revealed that sterically demanding carboxylic acids can act 

in a fashion comparable to the HASPO preligands (Scheme 1.6).25 

 

 

Scheme 1.6: Comparison of C–H metalation transition states between HASPO-preligands and carboxylates. 

Mechanistic studies could demonstrate that the direct arylation using carboxylic acids as additives 

proceeds via the in-situ formation of a ruthenium-carboxylate complex 12, which can perform 

reversible C–H bond functionalization with the substrate. An isolated cycloruthenated complex 14 

proved to be catalytically active and is thus expected to participate in the proposed catalytic cycle 

(Scheme 1.7).25,26 

                                                           
24

 (a) Ackermann, L.; Mulzer, M. Org. Lett. 2008, 10, 5043–5045; (b) Review: Kozhushkov, S. I.; Potukuchi, H. K.; 
Ackermann, L. Catal. Sci. Technol. 2013, in press. DOI: 10.1039/C2CY20505. 

25
 Ackermann, L.; Vicente, R.; Althammer, A. Org. Lett. 2008, 10, 2299–2302. 

26
 (a) Ackermann, L.; Vicente, R.; Potukuchi, H. K.; Pirovano, V. Org. Lett. 2010, 12, 5032–5035. For recent 
reports highlighting the participation of similar ruthenacycles 14 in ruthenium-catalyzed C–H bond 
functionalizations, see: (b) Li, B.; Feng, H.; Wang, N.; Ma, J.; Song, H.; Xu, S.; Wang, B. Chem. Eur. J. 2012, 18, 
12873–12879. (c) Li, B.; Roisnel, T.; Darcel, C.; Dixneuf, P. H. Dalton Trans. 2012, 41, 10934–10937. 
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Scheme 1.7: Proposed mechanism for carboxylate-assisted ruthenium-catalyzed direct arylation.  

 

In 2011, Seki reported an alternative catalytic system for the ruthenium-catalyzed direct arylation 

reactions. The use of inexpensive RuCl3·xH2O/PPh3 catalyst resulted in elaborated efficient protocols 

towards the synthesis of the biaryl unit 18 in angiotensin II receptor blockers like valsartan.27 Very 

recently, the group of Ackermann showed a carboxylate-assisted complementary ruthenium-

catalyzed procedure using mono-protected aryl-tetrazoles as substrate (Scheme 1.8).28 

 

 

Scheme 1.8: Ruthenium-catalyzed direct arylation towards the synthesis of pharmaceutically                                                   

important biaryl-structures 18. 

 

                                                           
27

 (a) Seki, M. ACS Catal. 2011, 1, 607–610. For RuCl3·xH2O as catalyst, see also: (b) Ackermann, L.; Althammer, 
A.; Born, R. Synlett 2007, 2833–2836. (c) Ackermann, L.; Althammer, A.; Born, R. Tetrahedron 2008, 64, 
6115–6124. 

28
 Diers, E.; Kumar, N. Y. P.; Mejuch, T.; Marek, I.; Ackermann, L. Tetrahedron 2013, in press, DOI:10.1016/ 
j.tet.2013.01.006. 

http://pubs.acs.org/action/doSearch?action=search&author=Seki%2C+Masahiko&qsSearchArea=author
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1.2 Site-Selectivity in C–C Bond Formations 

 

When employing classical synthetic methods, such as electrophilic aromatic substitution, the site-

selectivity of aromatic C–H bond functionalizations strongly relies on the substitution pattern of the 

substrate 19. Depending on the electronic and steric properties of these substituents, the substrate 

can get para- (21), ortho- (22) or meta-substituted (20)(Scheme 1.9).  

 

 

Scheme 1.9: Usual site-selectivity of the electrophilic aromatic substitution. 

The research aim of discovering reaction conditions that provide pathways which do not depend on 

the substitution pattern of the substrate, or in which one can directly functionalize a specific C–H 

bond remains to be of prime importance.29 One approach for such a site-selective insertion of a 

substituent is the use of main group metals in combination with directing groups. This so called 

‘Directed ortho Metalation’ (DoM) approach has been independently developed in the 1940ies by 

Gilman30 and Wittig31, and furnished usually ortho-functionalized products. Recently, Knochel could 

demonstrate that the use of DoM with organomagnesium compounds in combination with a variety 

of removable directed-metalation groups (DMG) could be employed for the functionalization of meta 

and para C–H bonds as well (Scheme 1.10).32,33  

 

Simultaneously, the group of Brown reported the site-selective meta-substitution using DoM 

applying organolithiums, and a removable sulfoxide group as DMG.34 Two simplified examples are 

shown in Scheme 1.10. 

 

                                                           
29

 Mahatthananchai, J.; Dumas, A. M.; Bode, J. W. Angew. Chem. Int. Ed. 2012, 51, 10954–10990.  
30

 Gilman, H.; Bebb, R.L. J. Am. Chem. Soc. 1939, 61, 109–112. 
31

 Wittig, G.; Fuhrmann, G. Chem. Ber. 1940, 73, 1197–1218. 
32

 Rohbogner, C. J.; Clososki, G. C.; Knochel, P. Angew. Chem. Int. Ed. 2008, 47, 1503–1507. 
33

 Monzón, G.; Tirotta, I.; Knochel, P. Angew. Chem. Int. Ed. 2012, 51, 10624–10627. 
34

 Flemming, J. P.; Berry, M. B.; Brown, J. M. Org. Biomol. Chem. 2008, 6, 1215–1221. 
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Scheme 1.10: Examples for site-selective C–H deprotonations via DoM. 

In spite of the generally high selectivities and efficiency of this DoM strategy, the necessity to use 

stoichiometric amounts of highly reactive main group metal compounds, such as n-BuLi, the low 

reaction temperatures and the need for the removal of the DMG group certainly restricts this 

approach from the viewpoint of step- and atom-economy.35 

 

As an opportunity to avoid disadvantageous stoichiometric amounts of main group metal sources as 

reactants, transition metal-catalyzed C–H bond functionalization could give access to site-selective 

incorporations of substituents into arenes.  

Due to its high ability for selective C–C bond formations, palladium, one of the most often applied 

transition metals in catalysis, has been studied intensively by the Sanford group. Thus, recently this 

group has published an overview on the predictive control of site-selectivities in oxidative palladium-

catalyzed transformations.36 The authors differentiate between three the types of control 

possibilities (Scheme 1.11): Substrate-based through directing groups (a), substrate-based through 

electronic properties (b), and catalyst-controlled (c). 
 

 

Scheme 1.11: Three possible ways to influence the regioselectivity of palladium-catalyzed C–H bond functionalization             

according to Sanford. 

                                                           
35

 Atom economy: (a) Trost, B. M. Science 1991, 254, 1471–1477. (b) Trost, B. M. Acc. Chem. Res. 2002, 35, 
695–705. 

36 
Neufeldt, S. R.; Sanford, M. S. Acc. Chem. Res. 2012, 45, 936–946. 
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These three presented possibilities have been used not only in oxidative couplings, but also in plenty 

of other transformations. The directing group approach thus usually leads to an ortho-

functionalization of the substrate. An innovative approach, using carboxylic acids (13) as traceless 

directing groups for formal meta-arylation, has been published in 2011 by Larossa (Scheme 1.12).37 

 

 

Scheme 1.12: Larossa’s formal meta-arylation. 

An important example of ortho-selective palladium-catalyzed transformation is the so called Catellani 

reaction, in which one can replace both hydrogen atoms in ortho-positions to an iodine substituent 

with diverse nucleophiles followed by Mizoroki-Heck-type reaction at the iodine location itself 

(Scheme 1.13).38  

 

Scheme 1.13: The Catellani-reaction in general. 

The corresponding cascade mechanism will not be discussed herein.38 However, it has to be 

mentioned that a catalytic or stoichiometric amount of norbornene is necessary and that the 

substrate scope is rather limited, since only iodo arenes (15a’), or recently published heteroarenes, 

can be used exclusively. 39,40 

Besides these approaches for site-selective transition metal-catalyzed functionalization reactions, a 

recent example for direct meta-selective palladium-catalyzed alkenylations using an end-on template 

have been reported by Yu and co-workers in 2012 (Scheme 1.14).41 

 

 

                                                           
37

 Cornella, J.; Righi, M.; Larossa, I. Angew. Chem. Int. Ed. 2011, 50, 9429–9432. 
38

 Martins, A.; Mariampillai, B.; Lautens, M. Top. Curr. Chem. 2010, 292, 1–34. 
39

 Catellani, M.; Frignani, F.; Rangoni, A. Angrew. Chem. Int. Ed. 1997, 36, 119–122. 
40

 Jiao, L.; Bach, T. J. Am. Chem. Soc. 2011, 133, 12990–12993. 
41

 (a) Leow, D.; Li, G.; Mei, T.-S.; Yu, J.-Q. Nature 2012, 486, 518–522; (b) Highlighted in: Truong, T.; Daugulis, O. 
Angew. Chem. Int. Ed. 2012, 51, 11677–11679.  
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Scheme 1.14: First example of direct meta-alkenylation as reported by Yu. 

This Fujiwara-Moritani-type reaction involves the formation of rigid six- or seven-membered cyclic 

transition states and the use of easily removable nitrile-containing directing groups. In 2009 Yu et al. 

have also reported an approach for meta-alkenylation of electron-deficient arenes, wherein the 

meta-selectivity was achieved not due to the meta-directing group-effect, but by applying sterically 

demanding pyridine ligands.42,43 

 

Nevertheless, only several meta-selective reactions catalyzed by other transition metals, than 

palladium, have been reported until now. In 2009, the Gaunt group has published their findings in 

the field of copper-catalyzed meta-arylations of anilides 38 (Scheme 1.15).44,45 

 

 

Scheme 1.15: Copper-catalyzed meta-arylation according to Gaunt. 

The reaction mechanism has been discussed controversially and  intensively,46 and in 2011 the group 

of Park has shown the reaction to occur in a meta-selective fashion also with heterogeneous 

recyclable copper catalyst [Cu/AlO(OH)], which was composed from metal nanoparticles.47 The 

reaction could proceed smoothly only by raising the temperature (80 °C) and by adding an over-

stoichiometric amount (2.0 equiv) of the arylating reagent. It is important to note that even in the 

absence of a copper-source a high conversion has been detected.  

                                                           
42

 Zhang, Y.-H.; Shi, B.-F.; Yu, J.-Q. J. Am. Chem. Soc. 2009, 131, 5072–5074. 
43

 For mechanistic DFT calculations, see: Zhang, S.; Shi, L.; Ding, Y. J. Am. Chem. Soc. 2011, 133, 20218–20229. 
44

 (a) Phipps, R. J.; Gaunt, M. J. Science 2009, 323, 1593–1597. (b) Highlighted in: Maleczka, R. E. Jr. Science 
2009, 323, 1573.  

45
 For meta-alkylation of aromatic -carbonyl compounds: Duong, H. A.; Gilligan, R. E.; Cooke, M. L.; Phipps, R. 
J.; Gaunt, M. J. Angew. Chem. Int. Ed. 2011, 50, 463–466 

46
 For mechanistic DFT calculations, see: (a) Zhang, S.-I.; Ding, Y. Chin. J. Chem. Phys. 2011, 24, 711–723; (b) 
Chen, B.; Hou, X.-L.; Li, Y.-X.; Wu, Y.-D. J. Am. Chem. Soc. 2011, 133, 7668–7671. 

47
 Young, E.; Park, J. Chem. Cat. Chem. 2011, 3, 1127–1129. 
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Simultaneously, Gaunt and co-workers reported also on the copper-catalyzed para-selective 

arylations of phenol and aniline derivatives.48 The influence of copper in this reaction for the site-

selective outcome can be discussed controversially and still remains under question, due to the fact 

that simple electrophilic aromatic substitution would lead to the observed para-selectivity as well. 

 

Another transition metal-catalyzed meta-selective functionalization of C–H bonds in simple arenes 40 

has been invented by the groups of Marder and Hartwig and consisted of a two-step one-pot 

procedure. In this particullar case, a stereoselective iridium-catalyzed borylation49 followed by a 

Suzuki-Miyaura-type cross-coupling reaction was applied (Scheme 1.16). This approach has been 

used for meta-selective arylations,50 alkylations, allylations, benzylations51 and halogenations.52 

 

 

Scheme 1.16: Two-step meta-selective alkylation of simple arenes 40. 

Obviously, although this transformation can be performed as a one-pot procedure, it needs various 

reagents and therefore should not be designated as an atom-economical reaction. 

 

Concerning the ruthenium-catalyzed regioselective C–H bond functionalization, only ortho-directed 

reactions, mainly arylations (see above, Chapter 1.1), have been known until recently. In 2011, Frost 

and co-workers have published the first example of a ruthenium-catalyzed meta-selective C–S bond 

formation reaction in sulfonylations of 2-phenylpyridines 6 (Scheme 1.17).53 The authors proposed a 

combined C–H activation/SE
Ar mechanism, details of which will be discussed below in chapter 1.1. 

 

 

Scheme 1.17: Ruthenium-catalyzed meta-selective sulfonylation by Frost et al.. 

                                                           
48

 Ciana, C.-L.; Phipps, R. J.; Brandt, J. R.; Meyer, F.-M.; Gaunt, M. J. Angew. Chem. Int. Ed. 2011, 50, 458–462. 
49

 Mkhalid, I. A. I.; Barnard, J. H.; Marder, T. B.; Murphy, J. M.; Hartwig, J. F. Chem. Rev. 2010, 110, 890–931 
50

 Morris, J.; Steel, P. G.; Marder, T. B. Synlett 2009, 147–150. 
51

 Robbins, D. W.; Hartwig, J. F. Angew. Chem. Int. Ed. 2012, 51, 933–937. 
52

 (a) Murphy, J. M.; Liao, X.; Hartwig, J. F. J. Am. Chem. Soc. 2007, 129, 15434–15435; (b) Partridge, B. M.; 
Hartwig, J. F. Org. Lett. 2013, 15, 140–143.  

53
 Saidi, O.; Marafie, J.; Ledger, A. E. W.; Liu, P. M.; Mahon, M. F.; Kociok-Köhn, G.; Whittlesey, M. K.; Frost, C. 
G. J. Am. Chem. Soc. 2011, 133, 19298–19301. 



 Introduction 13 

Nevertheless, the analogous meta-selective ruthenium-catalyzed direct C–C bond formation 

reactions still remains ellusive. 

 

1.3 Transition Metal-Catalyzed Alkylation Reactions 

 

Friedel-Crafts Alkylation 

 

Until now, the highly chemo- and regioselective introduction of alkyl chains on aromatic substrates 

remains a rather challeging objective. On industrial scale, the classical Friedel-Crafts chemistry is still 

the major player, although it involves the use of corrosive reagents, harsh reaction conditions and 

often undesired side-product formation.54 Scheme 1.18 demonstrates the alkylation of benzene (46) 

with ethylene (32b) affording ethylbenzene (47). This reaction is still one of the largest tonnage C–C 

bond forming processes in industry (ca. 27 Mt/a in 2007). 

 

 

Scheme 1.18: Friedel-Crafts alkylation of benzene. 

As generally accepted in SE
Ar-type chemistry, electron-donating substituents on the arene moeity 

favor further substitution by increasing the electron density of the aromatic ring and thus lead to 

oligoalkylation products. In addition, alkylated carbocations tend to undergo Wagner-Meerwein 

rearrangements, to form the most stable cations, thus leading to a decreased chemoselectivity. 

Unsatisfactory aspects of this reaction on industrial scale, such as plant corrosion and chloride-

containing waste formation, represent an additional problem. In spite of this, tremendous progress 

has been made in the field of Friedel-Crafts alkylation55 since the first communications56 in 1877. 

Beside Lewis acids (e.g. AlCl3, TiCl4, BF3 etc.), strong Brønsted acids (e.g. HF, H2SO4 etc.) have been 

used.  

                                                           
54

 Metal-Catalysis in Industrial Organic Processes (Eds.: Chiusoli, G. P.; Maitlis, P. M.), RSC: Cambridge, 2007, pp. 
163–200. 

55
 Rüping, M.; Nachtsheim, B. J. Beilstein J. Org. Syn. 2010, 6, 1–24. 

56
 (a) Friedel, C.; Crafts, J. M. Compt. Rend. 1877, 84, 1392–1450; (b) Friedel, C.; Crafts, J. M. J. Chem. Soc. 1877, 
32, 725–791. 
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The first publication of a catalytic Friedel-Crafts alkylation using Sc(OTf)3 as Lewis acid-catalyst has 

been reported in 1996.57 Still immense further developments are ongoing within stereo- and 

enatioselective catalytic Friedel-Crafts alkylation.58 However, to circumvent the disadvantages of the 

acid-catalyzed reactions one can either switch to heterogeneous catalysts (for example, acidic 

zeolites) or use homogeneous transition metal catalysts as a promising alternative. 

 

Cross-Coupling Chemistry  

 

With regard to homogenous catalysis, metal-catalyzed cross-coupling chemistry is an important 

alternative to acid-catalyzed reactions between arenes and alkyl halides.59 A general catalytic cycle is 

represented in Scheme 1.19. In this introduction, only selected examples of alkylations via cross-

coupling will be discussed. 

 

 

Scheme 1.19: General catalytic cycle for transition metal-catalyzed alkylation of arenes with alkyl halides. 

Transition metal-catalyzed cross-couplings with unactivated alkyl (pseudo)halides bearing -hydrogen 

atoms are not as easily accomplished as with aryl (pseudo)halides as electrophiles. On the one hand, 

these electrophiles may undergo competitive reactions like -hydrogen elimination, which lead to a 

decreased efficiency and selectivity. On the other hand, they are less prone to undergo the oxidative 

addition due to their electron-rich character.60 Of course, advantages of alkylations through 

traditional cross-coupling reactions can be listed: (a) Control of regioselectivity due to pre-

functionalization of arenes, (b) milder reaction conditions as compared to classical Friedel-Crafts 

                                                           
57

 Tsuchimoto, T.; Tobita, K.; Hiyama, T.; Fukuzawa, S.-I. Synlett 1996, 557–559. 
58

 Catalytic Asymmetric Friedel-Crafts Alkylations (Eds.: Bandini, M.; Umani-Ronchi, A.), Wyley-VCH: Weinheim, 
2009.  

59
 Reviews: (a) Jana, R.; Pathak, T. P.; Sigman, M. S. Chem. Rev. 2011, 111, 1417–1492. For the use of secondary 
alkyl halides, see: (b) Rudolph, A.; Lautens, M. Angew. Chem. Int. Ed. 2009, 48, 2656–2670. 

60
 Ackermann, L. Chem. Comm. 2010, 46, 4866–4877. 

http://pubs.acs.org/action/doSearch?action=search&author=Jana%2C+Ranjan&qsSearchArea=author
http://pubs.acs.org/action/doSearch?action=search&author=Pathak%2C+Tejas+P.&qsSearchArea=author
http://pubs.acs.org/action/doSearch?action=search&author=Sigman%2C+Matthew+S.&qsSearchArea=author
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chemistry and (c) a broad functional group tolerance.61 Until recently, most transition metals used in 

this type of chemistry were palladium, nickel, iron, copper and cobalt. 
 

The great potential of nickel-complexes as the catalyst for alkylations via cross-coupling reactions has 

recently been demonstrated by Xile Hu.62 After publishing several examples for primary and 

secondary alkyl halides as coupling-partners, the research groups of Biscoe and Fu finally reported on 

nickel-catalyzed Kumada-Corriu and Suzuki-Miyaura cross-couplings with tertiary alkyl halides (58) as 

the electrophiles (Scheme 1.20). Thus, Biscoe disclosed the employment of air- and moisture-stable 

NHC-preligands.63 However, the products 56a were contaminated with isomerized p-alkylanizoles. On 

the contrary, such isomerization was not detected by Fu and co-workers, but the reaction needed 

overstoichiometric amounts of tert-butoxides to achieve efficient transformation.64 
 

 

Scheme 1.20: Examples of nickel-catalyzed tert-alkylations via traditional cross-couplings. 

Mechanistically these nickel-catalyzed reactions were shown to proceed via radical pathways.65  

 

Furthermore, Fu et al. have made impressive progress within the field of nickel-catalyzed asymmetric 

alkylation-reactions. This group demonstrated the broad applicability of nickel catalysis for alkyl-alkyl 

                                                           
61

 (a) Modern Arylation Methods (Ed.: L. Ackermann), 1st ed., Wiley-VCH: Weinheim, 2009, pp. 155–181. For 
selected recent reviews on traditional cross-coupling reactions, see: (b) Li, H.; Johansson Seechurn, C. C. C.; 
Colacot, T. J. ACS Catal. 2012, 2, 1147−1164. (c) Shaikh, T. M.; Weng, C.-M.; Hong, F.-E. Coord. Chem. Rev. 
2012, 256, 771–803. (d) Chem. Soc. Rev. 2011, 40, Special Issue 10 "Cross coupling reactions in organic 
synthesis", 4877–5208. (e) Rosen, B. M.; Quasdorf, K. W.; Wilson, D. A.; Zhang, N.; Resmerita, A.-M.; Garg, N. 
K.; Percec, V. Chem. Rev. 2011, 111, 1346–1416. (f) Acc. Chem. Res. 2008, 41, Special Issue 11 "Cross 
Coupling", 1439–1564. 

62
 Hu, X. Chem. Sci. 2011, 2, 1867–1886. 

63
 Joshi-Pangu, A.; Wang, C.-Y; Biscoe, M. R. J. Am. Chem. Soc. 2011, 133, 8478–8481. 

64
 Zultanski, S. L.; Fu, G. C. J. Am. Chem. Soc., 2013, 135, 624–627. 

65
 Taylor, B. L. H.; Jarvo, E. R. Synlett 2011, 19, 2761–2765. 

http://pubs.acs.org/action/doSearch?action=search&author=Joshi%5C-Pangu%2C+Amruta&qsSearchArea=author
http://pubs.acs.org/action/doSearch?action=search&author=Wang%2C+Chao%5C-Yuan&qsSearchArea=author
http://pubs.acs.org/action/doSearch?action=search&author=Biscoe%2C+Mark+R.&qsSearchArea=author
http://pubs.acs.org/action/doSearch?action=search&author=Zultanski%2C+Susan+L.&qsSearchArea=author
http://pubs.acs.org/action/doSearch?action=search&author=Fu%2C+Gregory+C.&qsSearchArea=author
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Negishi66- and Suzuki-Miyaura-type67 couplings, while Hu and co-workers have published a 

diastereoselective Kumada-Corriu-type68 coupling in 2012 (Scheme 1.21). 

 

Scheme 1.21: Nickel-catalyzed stereoselective alkyl-alkyl Kumada-Corriu-type cross-coupling.
68

 

Palladium complexes as the catalyst has been studied most intensively,69 however, these results will 

not be discussed herein. Very recently there has also been some evidence of using cobalt70 and 

copper71 as catalysts by the groups of Nakamura, Liu and Hu. 

 

As an inexpensive alternative to the catalytic systems discussed above, iron complexes seem to be 

the most promising catalysts for the introduction of alkyl chains into arene moieties. Besides the 

classical (pseudo)nucleophiles like aryl halides, the groups of Cook72 and Garg73 have successively 

applied several phenol-based substrates, such as 7b and 15d in iron-catalyzed Kochi-like74 couplings 

(Scheme 1.22). 

                                                           
66

 (a) Binder, J. T.; Cordier, C. J.; Fu, G. C. J. Am. Chem. Soc. 2012, 134, 17003–17006. (b) Choi, J.; Fu, G. C. J. Am. 
Chem. Soc. 2012, 134, 9102–9105. (c) Oelke, A. J.; Sun, J.; Fu, G. C. J. Am. Chem. Soc. 2012, 134, 2966–2969. 
(d) Smith, S. W.; Fu, G. C. J. Am. Chem. Soc. 2008, 130, 12645–12647. 

67
 (a) Wilsily, A.; Tramutola, F.; Owston, N. A.; Fu, G. C. J. Am. Chem. Soc. 2012, 134, 5794–5797. (b) Zultanski S. 
L.; Fu, G. C. J. Am. Chem. Soc., 2011, 133, 15362–15364. (c) Saito, B.; Fu, G. C. J. Am. Chem. Soc. 2008, 130, 
6694–6695. (d) Lu, S.; Fu, G. C. Angew Chem. In. Ed. 2010, 49, 6676–6678. (e) Saito, B.; Fu, G. C. J. Am. Chem. 
Soc. 2007, 129, 9602–9603. 

68
 Perez Garcia, P.  M.; Di Franco, T.; Orsino, A.; Ren, P.; Hu, X. Org. Lett. 2012, 14, 4286–4289. 

69
 (a) Palladium in Organic Synthesis (Ed.: Tsuji, J.) Springer-Verlag: Berlin-Heidelberg, 2005, pp. 85–108. (b) 
Handbook of Organopalladium Chemistry for Organic Synthesis (Ed.: Negishi, E.), Wiley-Interscience: New 
York, 2002, pp. 597–618. 

70
 (a) Chen, Q.; Ilies, L.; Yoshikai, N.; Nakamura, E. Org. Lett. 2011, 13, 3232–3234. (b) Ilies, L.; Nakamura, E. J. 

Am. Chem. Soc. 2011, 133, 428–429. 
71

 (a) Yang, C.-T.; Zhang, Z.-Q.; Liang, J.; Liu, J.-H.; Lu, X.-Y.; Chen, H.-H.; Liu, L. J. Am. Chem. Soc. 2012, 134, 
11124–11127. (b) Ren, P.; Stern, L.-A.; Hu, X. Angew. Chem. Int. Ed. 2012, 51, 9110–9113.  

72
 Agrawal, T.; Cook, S. P. Org. Lett. 2013, 15, 96–99. 

73
 Silberstein, A. L.; Ramgren, S. D.; Garg, N. K. Org. Lett. 2012, 14, 3796–3799.  

74
 Tamura, M.; Kochi, J. K. J. Am. Chem. Soc. 1971, 93, 1487–1489. 
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Scheme 1.22: Iron-catalyzed alkylation of arenes using phenol-derived substrates 7b or 15d. 

Although these reactions give high yields and utilize easily accessible starting materials, like tosylates, 

and easy-to-prepare air-stable NHC-preligands, they still face the main obstacles of transition metal-

catalyzed cross-coupling chemistry in that they employ prefunctionalized substrates. However, 

certain progress has been made by several research groups to overcome these limitations discussed 

above in Chapter 1.1. 

 

Transition Metal-Catalyzed Alkylation via C–H Bond Functionalization 

 

Because of the disadvantages of classical cross-coupling chemistry, significant progress is expected in 

the development of direct C–H bond alkylations of arenes and heteroarenes as an environmentally 

benign and economically more attractive strategy. 

In contrast to the sufficiently well elaborated methods for transition metal-catalyzed direct C–H bond 

arylations (see above, Chapter 1.1), the direct introduction of non-aromatics, especially saturated 

substituents, has received significant less attention.  

 

 

Scheme 1.23: Direct intermolecular alkenylation (a), alkynylation (b) and alkylation (c) of arenes. 

Only few methods have been designed for direct alkenylation, alkynylation or even benzylation and 

alkylation using palladium, rhodium, ruthenium, nickel and copper catalysis (Scheme 1.23).75  

As indicated above, the present study is focused on the catalytic activity of ruthenium complexes. 

Among the most prominent examples obtained employing other transition metals, impressive 

                                                           
75

 (a) Messaoudi, S.; Brion, J.-D.; Alami, M. Eur. J. Org. Chem. 2010, 6495–6516.  
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progress in the catalytic direct alkylation of relatively acidic C–H bonds in azoles 62, as reported by 

the groups of Hu76,77 as well as of Satoh and Miura,78 should be mentioned. Thus, in 2010 Hu reported 

on the nickel/copper-catalyzed alkylations of heteroarenes using primary alkyl halides,77 and in 2012 

the similar reactions were performed using less expensive copper catalysts.76 Miura and Satoh 

employed palladium-allyl complexes with additional phosphine ligands for these transformations 

(Scheme 1.24). 78 

 

 

Scheme 1.24: Direct alkylation of acidic C–H bonds in benzo[d]oxazole (62). 

In both cases the authors demonstrated that a broad range of heterocycles could be selectively 

monoalkylated at the most acidic C–H bond and that a variety of alkyl halides (42, X = Cl, Br, I) was 

reactive under the reported reaction conditions. The main disadvantages herein is the necessity to 

use over-stoichiometric amounts of strong bases, like lithium tert-butoxide, and the impossibility to 

functionalize all non-acidic positions. A user-friendly modification of the nickel-catalyzed direct 

alkylation has been reported in 2011 by Ackermann et al. using [NiBr2(diglyme)] as the active 

catalyst.79  

In 2009, Fagnou reported on a palladium-catalyzed benzylation of heterocyclic compounds with 

benzyl chlorides.80 The group of Miura could also demonstrate that such a palladium-catalyzed 

benzylation could be performed using benzyl carbonates as reagents in the presence of NaOAc as the 

base.81 So far, the described methods strongly rely on the availability of a rather acidic C–H bond.  
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 Ren, P.; Salihu, I.; Scopelliti, R.; Hu, X. Org. Lett, 2012, 14, 1748-1751.  
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 Vechorkin, O.; Proust, V.; Hu, X. Angew. Chem. Int. Ed. 2010, 49, 3061−3064.  
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 Yao, T.; Hirano, K.; Satoh, T.; Miura, M. Chem. Eur. J. 2010, 16, 12307−12311. 
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 Ackermann, L.; Punji, B.; Song, W. Adv. Synth. Catal. 2011, 353, 3325–3329. 
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 Lapointe, D.; Fagnou, K. Org. Lett. 2009, 11, 4160–4163. 
81

 Mukai, T.; Hirano, K.; Satoh, T.; Miura, M. Org. Lett. 2010, 12, 1360–1363. See also: Ackermann, L.; Barfüßer, 
S.; Pospech, J. Org. Lett. 2010, 12, 724-726. 
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Early experiments on palladium-mediated ortho-alkylation of acetanilides (64) and aldimines 

employing stoichiometric quantities of palladium acetate have been made by Tremont and co-

workers in the 1980ies (Scheme 1.25).82,83  

 

 

Scheme 1.25: ortho-Methylation of acetanilide (4g) mediated by stoichiometric quantities of Pd(OAc)2,                                   

as reported by Tremont. 

In 2003, Buchwald elaborated on the catalytic intramolecular cyclisations of anilides 66 towards the 

synthesis of oxindoles 67, which can be considered as palladium-catalyzed intramolecular versions of 

direct alkylation.84 In 2008, the Chang group reported on an analogous synthesis of condensed 

pyrroloindoles 70 (Scheme 1.26).85 

 

                                       

Scheme 1.26: Palladium-catalyzed intramolecular direct alkylation reactions. 

In 2009, the group of Yu disclosed reaction conditions for the palladium-catalyzed ortho-alkylation on 

benzoic acids 13 with selected α,ω-alkyldichlorides or alkyl chlorides (Scheme 1.27). The reaction 
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proceeds via an intra- or an intermolecular fashion, after esterification of benzoic acids 13 in a one-

pot procedure.86 

 

 

Scheme 1.27: One-pot procedure for esterification/ortho-alkylation sequence in benzoic acids 13                                           

through palladium catalysis. 

Beside carboxyl n-pentyl directing groups, in 2008, Yu also demonstrated the possibility to utilize 2-

pyridyl directing groups and succeeded in an enatioselective alkylation in substrate 74 using mono-N-

protected amino acids (MPAA) 76 as chiral ligands (Scheme 1.28).87 

 

Scheme 1.28: Site- and eantio-selective palladium-catalyzed alkylation by Yu. 

Under these reaction conditions, they have also performed an enantioselective C(sp3)–C(sp3) bond 

formation, albeit with moderate yield and enantiomeric excess (38%, 37% ee). Later, in 2010, the Yu 

group has combined both concepts – the application of a carboxyl group as a DG and the 

enatioselective alkylation using chiral ligands – to accomplish a site- and enantio-selective Fujiwara-

Moritani alkenylation of sodium diphenylacetates 77 (Scheme 1.29).88 

 

 

Scheme 1.29: Site- and enantio-selective oxidative alkenylation with carboxylate as the directing group. 
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 (a) Shi, B.-F.; Maugel, N.; Zhang, Y.-H.; Yu, J.-Q. Angew. Chem. Int. Ed. 2008, 47, 4882–4886; (b) for 
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Very recently, Fu described a palladium-catalyzed direct alkylation of pyridine N-oxides 79 using the 

N-oxide moiety as the directing group and secondary alkyl bromides 42b as electrophiles (Scheme 

1.30).89 

 

Scheme 1.30: Palladium-catalyzed direct alkylation on pyridine N-oxides 79 with cyclohexyl bromide (42b). 

 

Ruthenium-Catalyzed Direct Alkylation of Arenes 

 

As this PhD thesis especially deals with ruthenium-catalyzed C–H bond functionalizations, the 

overview of ruthenium-catalyzed reactions that allow the attachment of certain alkyl groups to the 

aromatic substrate will be presented below.  

 

In 1986, the pioneering study by Lewis and Smith has disclosed the first atom-economical 

regioselective ortho-alkylation of simple phenol derivatives 81 with ethylene, via participation of an  

in-situ formed phosphite intermediate (Scheme 1.31).90,22 

 

 

Scheme 1.31: Ruthenium-catalyzed hydroarylation of phenols 81 with ethylene (32b)                                                                      

as reported by Lewis and Smith. 

 

In 1993, Murai, Chatani, Kakiuchi and co-workers reported the addition of various alkenes 32 to 

aromatic ketones 84 using ruthenium hydride complexes as the catalysts.91 Today, this hydroarylation 

reaction is often called the Murai-reaction (Scheme 1.32). 
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Scheme 1.32: Intermolecular hydroarylation of alkenes 32 with acetophenones 84 (Murai-reaction). 

 

The coordination to the ruthenium center by the carbonyl group oxygen promotes the ortho-C–H 

bond cleavage. Subsequent ruthenium coordination to alkene 32 followed by insertion into the Ru–H 

bond results in the hydroarylation, thereby giving access to anti-Markovnikov alkylation products 70.    

 

In 2010, the group of Williamson has demonstrated the application of the Murai-type alkylation 

towards benzyl alcohols. In this particular case, the ruthenium complex catalyzed two separate 

reactions, i. e. (i) alcohol oxidation to benzaldehyde by hydrogen transfer to an excess of alkene and 

(ii) C–H activation/alkene insertion. This reaction afforded the same product 85 (Scheme 1.32); 

however, in situ hydrogenation in the presence of formic acid as hydride source furnished the 

alkylated benzyl alcohols in high yields.92 The ruthenium-catalyzed regioselective direct alkylation of 

perylene bisimides – important class of dyes and pigments – at 2,5,8,11-positions, performed in 

cooperation of five Japanese research groups obviously demonstrated the user-friendly nature of the 

Murai-reaction.93 

 

However, the search for a more convenient pre-catalyst than ruthenium hydride complexes for the 

Murai reaction remains challenging. Thus, an intramolecular ruthenium (III)-catalyzed electrophilic 

hydro-arylation applying RuCl3/AgOTf as the catalytic system has been elaborated by the group of 

Sames in 2004,94 who have reported efficient formation of chromanes, tetralins, terpenoids and 

dihydrocoumarins via cyclisation of homo- and dihomoallylarenes. 

 

Darses and Genet published a new efficient procedure for the Murai reaction in 2009. This protocol 

operates with the stable, commercially available [RuCl2(p-cymene)]2 complex as the precatalyst in 

combination with a phosphine ligand and sodium formiate, to form the catalytically active hydride 

complex in situ.95  
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 Watson, A. J. A.; Maxwell, A. C.; Williams, J. M. J. Org. Lett. 2010, 12, 3856–3859. 
93

 Nakazono, S.; Imazaki, Y.; Yoo, H.; Yang, J.; Sasamori, T.; Tokitoh, N.; Cédric, T.; Kageyama, H.; Kim, D.;  
Shinokubo, H.; Osuka, A. Chem. Eur. J. 2009, 15, 7530–7533. 

94
 Youn, S. W.; Pastine, S. J.; Sames, D. Org. Lett. 2004, 6, 581–584. 

95
 Martinez, R.; Chevalier, R.; Darses, S.; Genet, J.-P. Angew. Chem. Int. Ed. 2006, 45, 8232–8235. 



 Introduction 23 

Very recently, Miura and Satoh developed a new procedure for a ruthenium-catalyzed 

hydroarylation of alkynes 88 using benzamides 86 or 2-phenylpyrazole (87) as hydroarylating agents 

and [RuCl2(p-cymene)]2/AgSbF6 as the catalytic system (Scheme 1.33).96 

 

 

Scheme 1.33: Ruthenium-catalyzed hydroarylation of alkynes 88. 

Moreover, Ackermann and co-workers reported on the ruthenium-catalyzed hydroarylation of 

methylenecyclopropanes 32d or unactivated alkenes 32 with 2-phenylpyridines 6 employing 

[RuCl2(cod)]n/phosphane and [RuCl2(p-cymene)]2/carboxylate as the catalysts. Hydroarylations of 

substrate 6 proceeded smoothly with both types of catalysts and were characterized by complete 

conservation of all cyclopropane rings in the products 91, while hydroarylation of simple alkenes 32 

required carboxylate assistance (Scheme 1.34).97 
 

 

Scheme 1.34: Ruthenium-catalyzed hydroarylation of alkenes 32 according to Ackermann et al. 

Another synthetic approach towards alkenylated arenes, besides the hydroarylation of alkynes 

(Scheme 1.33), was elaborated by Kakiuchi and Chatani using the ruthenium-catalyzed alkenylation 
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with alkenyl acetates or boronates 32e.98 This method could be applied to aromatic ketones 84a 

(Scheme 1.35) or 2-phenylheteroarenes with heteroarene as a nitrogen-containing directing group. 

 

 

Scheme 1.35: Ruthenium-catalyzed direct alkenylation with alkenyl boronates 32d as reported by Chatani and Kakiuchi. 

In 2005, Inoue’s group succeeded in an attempt of direct alkenylation of 2-aryloxazolines with alkenyl 

bromides. The resulting substituted arenes were isolated in moderate to excellent yields, but were 

contaminated with isomerized arylalkenes in all reported cases.99 In spite of this, the reaction 

appears to be promising as a highly step-economical, cost-efficient and sustainable process, and thus 

demands additional investigations. 

 

An example for the direct ruthenium-catalyzed ortho-allylation of arenes 6 has been described by Oi 

and Inoue in 2006 (Scheme 1.36).100 They have demonstrated a direct allylation that proceeds in high 

yields, but with formation of isomerized by-products, which they believe were formed via the 

reorganization of an σ-allyl intermediate to a π-allylruthenium complex prior to an C–H 

cycloruthenation. 

 

 

Scheme 1.36: Ruthenium-catalyzed allylation with acetates 95 as desribed by Oi and Inoue. 

 

Very recently, the group of Chatani reported also on a procedure for a direct alkynylation on 

substrates bearing a nitrogen-containing DG and using an inexpensive ruthenium (II) complex as the 

catalyst and caesium pivalate for carboxylate assistance in the C–H activation step.101 
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1.4 Transition Metal-Catalyzed Oxidative Couplings 

 

As discussed above, transition metal catalyzed direct functionalizations (see Chapter 1.1), such as 

direct arylations or alkylations, constitute an important and efficient synthetic method for the 

chemo- and site-selective C–C bond formation (see above in Chapter 1.1). To enhance the atom 

economy and the sustainability of transition metal-catalyzed transformations, oxidative methods are 

promising advancements due to their low waste production and no requirement for 

prefunctionalization of the substrates.  

 

Thus, in the 1960ies Fujiwara and Moritani have descibed the palladium-catalyzed oxidative Heck-

type cross-coupling reaction using various alkenes and arenes as coupling partners (Scheme 1.37).102 

Based on their pioneering work, a broad range of methodologies has been developed during the last 

decades. 

 

Scheme 1.37: Fujiwara-Moritani oxidative alkenylation. 

The principle of transition metal-catalyzed oxidative coupling has been extended to metals other 

than palladium, such as rhodium or gold, and was used for homo- or cross-dehydrogenative 

couplings (CDC) of variuos substrates (Scheme 1.38).103  

 

 

Scheme 1.38: Homo- and cross-dehydrogenative couplings. 

This approach was also found useful for the efficient C–H/Het–H bond functionalizations in an inter- 

or intramolecular fashion, thus allowing the one-pot preparation of synthetically and practically 
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useful heterocycles, such as substituted isoquinolines, isoquinolones, isocoumarins, α-pyrones and 2-

pyridones.104 

Further development of the Fujiwara-Moritani reaction105 resulted in an elaboration of a number of 

approaches for oxidative alkenylations catalyzed by various transition metals.102c-f While the earlier 

protocols essentially required (super)stoichiometric amounts of peroxides, along with strong acids 

and/or high reaction temperatures, an important improvement of the oxidative palladium-catalyzed 

alkenylation has been made by de Vries and van Leeuwen in 2002,106 who accomplished selective 

ortho-olefinations of anilides 38 at ambient temperature using n-butyl acrylate (32e) as a coupling 

partner (Scheme 1.39). 

 

Scheme 1.39: Palladium-catalyzed ortho-alkenylations of anilides 38 under mild reaction conditions. 

Among other directing groups, Yu recently expanded the substrate scope of this reaction to include 

aryl urea derivatives.107 Yu also reported on a complementary two-step method for the efficient 

synthesis of indolines. Beside nitrogen-containing directing groups, he presented in 2013 an oxidative 

alkenylation of aromatic alkyl ether 100 with weakly coordinating DG in excellent yield, while 

employing inexpensive MPAAs (76) as the ligands (Scheme 1.40).108  

 

 

Scheme 1.40: Palladium-catalyzed oxidative ortho-alkenylation with alkyl ether directing groups. 

In 2007, Satoh and Miura reported on the first rhodium-catalyzed oxidative alkenylation using easily 

accessible benzoic acid 13b as substrate and acrylates, acryl amides or nitriles as alkenylating reagent 
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(Scheme 1.41).109 Herein, a rhodacycle intermediate undergoes alkene insertion followed by -

hydride elimination to form the ortho-monovinylated benzoic acid. After a possible second oxidative 

alkenylation step (for acrylates 32a), the alkenylation products immediately underwent subsequent 

intramolecular oxa-Michael-reaction, affording divinylated products 102 along with side-product 103 

or isobenzofuran-1(3H)-ones 104, respectively.  

 

Scheme 1.41: First rhodium-catalyzed oxidative alkenylation by Satoh and Miura. 

A similar tandem rhodium-catalyzed oxidative olefination-Michael-addition between benzamides and 

alkenes with Ag2CO3 as the oxidant was reported in 2010 by the group of Li.110  

Not only ethyl acrylates, but a broad range of alkenes could be used. For example, Bergman and 

Ellman succeeded in the first direct oxidative alkenylation of O-methyl oximes 105 with a broad 

range of alkenes 32, including unactivated ones, employing a highly efficient and selective, yet rather 

expensive rhodium catalyst (Scheme 1.42).111  

 

 

Scheme 1.42: Rhodium-catalyzed oxidative alkenylation of O-methyl oximes 105 with alkenes 32. 

                                                           
109

 Ueura, K.; Satoh, T.; Miura M. J. Org. Chem. 2007, 72, 5362–5367. 
110

 Wang, F.; Song, G.; Li, X. Org. Lett. 2010, 12, 5430–5433. 
111

 Tsai, A. S.; Brasse, M.; Bergman, R. G.; Ellman, J. A. Org. Lett. 2011, 13, 540–542. 

http://pubs.acs.org/action/doSearch?action=search&author=Tsai%2C+Andy+S.&qsSearchArea=author
http://pubs.acs.org/action/doSearch?action=search&author=Brasse%2C+Mikae%CC%88l&qsSearchArea=author
http://pubs.acs.org/action/doSearch?action=search&author=Bergman%2C+Robert+G.&qsSearchArea=author
http://pubs.acs.org/action/doSearch?action=search&author=Ellman%2C+Jonathan+A.&qsSearchArea=author


28  Introduction  
 

Alkenylations of acetophenones and benzamides as substrates under comparable reaction conditions 

have been reported by Glorius and co-workers in 2010.112  

 

In 2001, Milstein discovered the first example of ruthenium-catalyzed oxidative coupling of arenes 

with olefins under an oxygen atmosphere and harsh reaction-conditions (Scheme 1.43).113 According 

to this protocol, moderate yields of up to 47% with low site-selectivities were obtained from 

substituted arenes and Michael acceptors, while the yields even with activated alkenes were rather 

low. 

 

Scheme 1.43: First report on ruthenium-catalyzed oxidative alkenylation by Milstein. 

In 2008, Inoue and Oi reported on a ruthenium-catalyzed oxidative homocoupling of arenes bearing 

nitrogen-containing directing groups in their attempted alkenylation with methallyl acetate.114 In this 

reaction methallyl acetate served as a hydrogen scavenger, and the homocoupled product was 

released via reductive elimination of a di-cycloruthenated intermediate. 

 

The group of Li reported in 2009 on the ruthenium-catalyzed oxidative homo-coupling of 2-

phenylpyridines 6 while employing stoichiometric amounts of iron (III) chloride as the oxidant.115 

Further, Ackermann et. al could isolate the homocoupling-products, such as 109, as the main 

reaction products (Scheme 1.44).116 These finding have been made during their studies towards 

carboxylate-assisted ruthenium-catalyzed direct arylations.  

 

 

Scheme 1.44: Ruthenium-catalyzed oxidative homo-coupling of phenyltetrazoles (108) reported by Ackermann et al.. 
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The researchers presented evidence that Ar–X, which normally acted as an arylating agent, in this 

particular case served as an oxidant, thus promoting the homocoupling. The reaction conditions were 

optimized to provide broad applicability and moderate to good yields for ortho-alkyl-substituted 

electron-rich substrates. Very recently, a rhodium- as well as a ruthenium-catalyzed oxidative cross-

dehydrogenative direct arylation have been published by You and co-workers using substrates with 

nitrogen-containing directing groups and 2-methylthiophenes as the coupling partner.117 

Revisiting conception of atom-economy and sustainability in organic synthesis, multiple oxidative 

annulations form the basis for an intelligent approach for diverse heterocycle syntheses. For 

example, a number of synthetically valuable protocols have been discovered on the basis of the 

important Larock-type heterocyle synthesis (Scheme 1.45).118  

 

Scheme 1.45: Intermolecular palladium-catalyzed annulation with alkynes 88 as reported by Larock. 

Further development demanded to bypass the well-known limitations of this methodology, such as 

the prefunctionalization of starting materials 15b. Thus, a one-pot combination of transition metal-

catalyzed C–H bond metalation and annulation steps has become a challenging research target 

today. Most procedures have been performed with rhodium catalysts and Cu(OAc)2•H2O as the 

oxidant.119 For example, Satoh and Miura have pioneered several practical applications of this 

synthetic strategy (Scheme 1.46).120  

 

 Scheme 1.46: Selected examples of oxidative rhodium-catalyzed annulations.  

                                                           
117

 Dong, J.; Long, Z.; Song, F.; Wu, N.; Guo, Q.; Lan, J.; You, J. Angew. Chem. Int. Ed. 2013, 52, 580–584. 
118

 (a) Larock, R. C.; Yum, E. K. J. Am. Chem. Soc. 1991, 113, 6689–6690; (b) Larock, R. C. Top. Organomet. Chem. 
2005, 14, 147–182. 

119
 Song, G.; Wang, F.; Li, X. Chem. Soc. Rev. 2012, 41, 3651–3678.  

120
 Satoh, T.; Miura, M. Chem. Eur. J. 2010, 16, 11212–11223, and references cited therein. 



30  Introduction  
 

A general reaction mechanism is presented in Scheme 1.47 for the formation of isocoumarins 114 via 

rhodium-catalyzed oxidative annulation.  

 

Scheme 1.47: General catalytic cycle for rhodium-catalyzed annulation for the synthesis of isocoumarins. 

The catalytic-cycle is initiated via the coordination of the rhodium (III) catalyst to the benzoate to 

form intermediate 111. After the subsequent formation of intermediate 112 via cyclorhodation, 

coordination of the alkyne moiety followed by alkyne insertion gives intermediate 113. Reductive 

elimination releases the isocoumarin 114 and forms a rhodium (I)-species, which undergoes 

reoxidation by the copper (II) source. 
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2 Objectives 

 

Efficient, chemo- and site-selective C–C bond formations are one of the major instruments in 

synthetic organic chemistry. Ongoing researches by the group of Prof. Ackermann and others showed 

that transition metal-catalyzed direct C–H bond functionalization is a powerful tool to develop 

sustainable pathways to meet these challenges. Especially ruthenium catalysts showed remarkable 

results within the field of direct arylation of (hetero)arenes. Particularly, in the presence of carboxylic 

acids as cocatalytic additives direct arylations occurred in high yields and in a site-selective fashion.22  

 

Recently, the unprecedented ruthenium-catalyzed alkylation of substituted arenes 6 via C–H bond 

functionalizations applying the challenging unactivated primary alkyl bromides 42a as electrophiles 

proved to be viable, in spite of only a small substrate scope had been examined (Scheme 2.1).121 

However, secondary alkyl halides provided only unsatisfactory results under similar reaction 

conditions. 

 

Scheme 2.1: Ruthenium-catalyzed direct ortho-alkylations with unactivated primary alkyl halides 42. 

 

Hence, a major focus in the presented work was set on the extension of the substrate scope and the 

development of first generally applicable ruthenium-catalyzed direct alkylations of arenes 4 with 

secondary alkyl halides 42b via C–H bond cleavages under non-acidic reaction conditions (Scheme 

2.2).  

 

Scheme 2.2: Ruthenium-catalyzed direct alkylation with secondary alkyl halides 42b under basic reaction conditions. 
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In order to elucidate the working mode of this in-situ generated catalytic system for alkylation 

reactions in details, preparation of the corresponding intermediate cycloruthenated complexes and 

experiments with isotopically labeled starting materials were envisioned, which will provide insight 

into the catalytic cycle of direct alkylations. 

 

Besides the functionalization of arenes with alkyl or aryl moieties, the sustainable heterocycle-

synthesis via C–H bond functionalizations still remains an under-explored field of research. Thus, 

several research groups around the world have exploited oxidative rhodium-catalyzed annulation 

reactions with alkynes to prepare a broad range of heteroarenes in an atom- and step-economic 

manner.  

 

Since less expensive ruthenium complexes are known to enable the challenging direct double C–H/ 

C–H bond arylations and alkenylations of arenes with ample scope, an additional part of this Ph.D. 

thesis was devoted to the development of unprecedented ruthenium-catalyzed annulation reactions 

via C–H/N–H bond functionalizations for the development of new sustainable and economical 

synthetic approaches to bioactive heterocycles 117 (Scheme 2.3).  

 

 

Scheme 2.3: Ruthenium-catalyzed oxidative annulation via C–H/N–H bond functionalizations for a                                       

sustainable heterocycle synthesis. 

 

Furthermore, examination of this new ruthenium-catalyzed reaction towards extension of its 

substrate scope and detailed mechanistic investigations, including intra- and intermolecular 

competition experiments, were planned in order to get insight into the catalysts’ mode of action. 
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3 Results and Discussion – Ruthenium-Catalyzed Direct Alkylation 

Reactions 

 

3.1 Ruthenium-Catalyzed Direct ortho-Alkylation 

 

Alkyl chains not only dramatically influence the lipophilicity of practically interesting organic 

compounds, but also affect the penetration rate of biologically active molecules through cell 

membranes.122 Due to this reasons, the site-selective C–C bond formation between alkyl and aryl 

groups is an important goal in synthetic organic chemistry. Complementary to traditional cross-

coupling chemistry, direct C–H bond functionalizations are getting more and more into the focus of 

researcher’s activity, however, still remain underdeveloped. The avoidance of a prefunctionalization 

of starting materials, minimized waste production and fewer side reactions make these transition 

metal-catalyzed reactions cost-efficient as well as step- and atom-economical.  

 

Since the research group of Prof. Ackermann made a lot of progress within the ruthenium-catalyzed 

direct arylation under carboxylate-assistence (see chapter 1.1), we became attracted by challenging 

direct alkylations. 

 

Until 2009, sparse reports on direct alkylations with unactivated alkyl halides as electrophiles 

prompted us to start our own investigations towards this direction keeping the carboxylate 

assistance effect in mind. An intensive screening for optimized reaction conditions by Novák, Vicente 

and Hofmann led to the first results on ortho-selective alkylation of 2-arylpyridines 6 and -pyrazoles 

87 under relatively mild reaction conditions (Scheme 3.1).121 

 

 

Scheme 3.1: Ruthenium-catalyzed direct alkylation of 2-arylpyridines 6 and -pyrazoles 87                                                      

according to Ackermann et al. 

Detailed optimization studies disclosed that sterically demanding carboxylic acids, such as 1-

adamantyl carboxylic acid (13c), increased the productivity of the reaction, while NHC or phosphine 

ligands furnished only poor isolated yields.  

                                                           
122

 Lipinski, C. A. Drug Discov. Today Technol. 2004, 1, 337–341. 
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Mechanistic studies excluded an a priori likely elimination/hydroarylation mechanism. Thus, simple 

alkenes did not form the alkylated products 93 and 118 under otherwise identical reaction 

conditions, and also alkylations with neopentyl bromide could be accomplished. The tolerance 

towards ester functionalities in the electrophilic reaction partner under these reaction conditions 

was observed as well.121  

The efficiency of this method for the benzylation of 2-aryloxazolines, -pyrazoles and -pyridines using 

benzyl chlorides 119 as inexpensive electrophiles was demonstrated by Petr Novák who obtained the 

desired benzylated products 120 in high yields (Scheme 3.2).123 

 

 

Scheme 3.2: Ruthenium-catalyzed direct benzylation by Novák. 

Our preliminary studies showed that a variety of ketimines 121 could be monoalkylated under 

slightly modified reaction conditions as well. Subsequent one-pot reduction under mild reaction 

conditions yielded the corresponding secondary amines 122 as the product (Scheme 3.3).121,124,125 

 

 

Scheme 3.3: Direct ruthenium-catalyzed ortho-alkylation of ketimines 121 and one-pot reduction. 

 

3.1.1  Synthesis of Starting Materials 

 

The standard substrates, which were not commercially available, were synthesized according to a 

published literature procedure without further optimization of the reaction conditions.126172 For the 

synthesis of 2-arylpyridines 6, a Kumada-Corriu cross-coupling approach was used. Various aryl 

                                                           
123

 Ackermann, L.; Novák, P. Org. Lett. 2009, 11, 4966–4969. 
124

 Ackermann, L.; Hofmann, N.; Vicente, R. Org. Lett. 2011, 13, 1875–1877. 
125

 Hofmann, N. Palladiumkatalysierte Intramolekulare-Arylierungen und Rutheniumkatalysierte Intermoleku-
lare Direkte Alkylierungen. Diplomathesis, Universität Göttingen, 2009. 

126
 Böhm, V. P. W.; Weskamp, T.; Gstöttmayr, C. W. K.; Herrmann, W. A.  Angew. Chem. Int. Ed. 2000, 39, 1602–
1604. 
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bromides 15 were converted into the Grignard compounds 123, which immediately were used for 

the nickel-catalyzed coupling with 2-halopyridines 124. As the ligand, N-heterocyclic carbene (NHC) 

HIPrCl (61) was employed (Table 3.1). 

 

Table 3.1: Kumada-Corriu cross-coupling for the synthesis of differently substituted 2-phenylpyridines 6. 

 

 

entry R
1 

R
2
 product 6 isolated yield

a 

1 4-OMe H 

 

94% 

 15b 124a 6ba  

2 4-F H 

 

75% 

 15c 124a 6ca  

3 3-F H 

 

66% 

 15d 124a 6da  

4 2-Me 4-Me 

 

88% 

 15e 124b 6ea  

5 2,4-OMe H 

 

69% 

 15f 124a 6fa  

6 2-OMe-4-F H 

 

33% 

 15g 124a 6ga  
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entry R
1 

R
2
 product 6 isolated yield

a 

7 3-NMe2 H 

 

74% 

 15h 124a 6ha  

8 4-t-Bu H 

 

75% 

 15i 124a 6ia  

9 2,3,4,5,6-D H 

 

64% 

 [D5]-15a 124a [D5]-6aa  

a
 Reaction conditions: bromoarene 15 (1.67 equiv), Mg turnings (1.73 equiv), anhydrous THF (2.5 M), 75 °C for 1 h then 

Ni(acac)2 (3.0 mol %), HIPrCl (61) (3.0 mol %), 2-halopyridine 124 (1.0 equiv), anhydrous THF (1.5 M) at 23 °C.  

With the exception of phenylpyridine 6ga, the yields for electron-poor as well as for electron-rich aryl 

bromides 15 were good to very good.  

Because of possible competitive side-reactions upon using Grignard compounds, the syntheses of 

starting materials with acetyl substituents were accomplished via palladium-catalyzed Suzuki-

Miyaura cross-coupling of easily accessible phenyl boronic acid (52e) with the appropriate 2-bromo-

n-acetylpyridine 124. In several particular cases indicated below, a reduction with inexpensive 

sodium borohydride followed by Williamson methylation with methyl iodide was furthermore 

performed (Scheme 3.4). 

 

 

Scheme 3.4: Suzuki-Miyaura cross-coupling for the synthesis of acetyl-substituted 2-phenylpyridines 6bb. 

 

Ketimines 122, which studied earlier for direct ruthenium-catalyzed alkylation,121,124,125 were 

synthesized from acetophenone derivatives 84 and anisidin (127) through dehydration with 4Å 

molecular sieves. The final purification has been achieved either by recrystallization or column 

chromatography on silica gel that was deactivated with triethylamine. 
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Scheme 3.5: Synthesis of ketimines 121. 

 

3.1.2 Direct ortho-Alkylation: Scope and Limitations 

 

Unprecedented ruthenium-catalyzed ortho-alkylations via C–H bond activation has preliminary been 

examined by Ackermann, Novák, Vicente and Hofmann in 2009.121 An intensive screening for 

optimized reaction conditions highlighted a combination of the easy accessible [RuCl2[p-cymene)]2 as 

the catalyst and 1-adamantyl carboxylic acid (13c) as the additive to be most efficient. Reactions in 

the presence of stoichiometric amounts of inexpensive potassium carbonate as the base in polar 

NMP as solvent furnished alkylated arylpyridines 93 and -pyrazoles 118 in up to 92% isolated yield. 

Alkyl chains ranging from n-butyl to n-tetradecyl, including neopentyl, could be ortho-incorporated 2-

phenylpyridines (6). Beside alkyl bromides 42a, the reactivity of alkyl iodides and chlorides have been 

tested as well, but only more expensive n-hexyl iodide proved to be as reactive as the corresponding 

bromide.121 

 

Commercially available NMP containes impurities of its synthetic precursor,-butyrolactone (128). 

The latter (or carboxylate resulting from its hydrolysis) acted as a soluble carboxylate source that 

enhanced the rate of direct arylations in the same extent as did KOAc.127 To disprove or to support 

the same effect in direct alkylation reactions, the latter were reproduced in non-polar solvent m-

xylene with inter alia NMP as the additive. The results are summarized in Table 3.1. 

 

Table 3.2: Studies for alternative additives. 

 

 

                                                           
127

 Ouellet, S. G.; Roy, A.; Molinaro, C.; Angelaud, R.; Marcoux, J.-F.; O'Shea, P. D.; Davies, I. W. J. Org. Chem. 
2011, 76, 1436–1439. 
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entry bromide 42a additive (equiv) product 93 isolated yielda 

1 n-Oct–Br 1-AdCO2H (0.3) 

 

66% 

 42aa 13c 93aa  

2 n-Oct–Br -butyrolacton (0.3) 

 

(21)b  

 42aa 128 93aa  

3 n-Hex–Br 
1-AdCO2H (0.3) + 

NaI (1.5) 
 

-- 

 42ab 13c 93ab  

4 n-Hex–Br 
1-AdCO2H (0.3) + 

KPF6 (0.3) 
 

-- 

 42ab 13c 93ab  

a
 Reaction conditions:  2-phenylpyridine (6aa) (0.5 mmol), alkyl bromide 42a (1.5 mmol), [RuCl2(p-cymene)]2 (2.5 mol %), 

additive (30 mol %), K2CO3 (1.0 mmol), m-xylene (2.0 mL), 120 °C, 20 h, yield of isolated product;                                                           

b
 conversion determined by GC-MS.  

The alkylation in m-xylene instead of NMP as the solvent under otherwise identical reaction 

conditions afforded 93aa in 66% isolated yield (entry 1) which is comparable to the previously 

published yield of 80%. This excludes a decisive role of NMP, or of its impurities, for the success of 

the reaction. Moreover, entry 2 obviously demonstrates that even pure -butyrolactone (128) as 

additive is not competent in m-xylene. Addition of sodium iodide (entry 3) as well as of cocatalytic 

amounts of potassium hexafluorophosphate (entry 3) completely shut down the catalytical activity of 

the ruthenium complex in spite of an expected acceleration due to a possible in situ Finkelstein-type 

reaction of the alkyl bromide (42a) or the formation of a more electrophilic, cationic ruthenium 

catalyst.128 

 

To prove the ortho-selectivity of the ruthenium-catalyzed direct alkylation with primary alkyl 

bromides, detailed 2D-NMR studies were conducted side by side with X-ray diffraction analysis of 

2(2-octylpheny)pyridinium oxalate (129)  (Figure 3.1). 

 

                                                           
128

 Ackermann, L.; Wang, L.; Wolfram R.; Lygin, A.V. Org. Lett. 2012, 14, 728–731. 
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Figure 3.1: ORTEP plots (50% probability thermal ellipsoids) of 2(2-octylpheny)pyridinium oxalate (129) in the crystal. All 

hydrogen atoms have been omitted for clarity. Numbering does not correspond to the IUPAC rules. 

To illustrate the versatility of this new method for the regioselective alkylation of arenes, the 

substrate scope was tested (table 3.3). Electron-rich, electron-deficient as well as sterically 

demanding substrates including amino- or carbonyl-substituted 2-phenylpyridines 6 were thus 

examined. 

  

Table 3.3: Scope of the ruthenium-catalyzed direct alkylation of substituted 2-phenylpyridines 6. 

 

 

 

entry substrate 6 bromide 42a product 93 isolated yielda 

1 

 

n-Hex–Br 

 

53%b 

[48%]c 

 6ba 42ab 93bb  

2 

 

n-Hex–Br -- -- 

 6fa 42ab   

3 

 

n-Oct–Br 

 

87% 

 6ja 42aa 93ja  
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entry substrate 6 bromide 42a product 93 isolated yielda 

4 

 

n-Hex–Br 

 

76%d 

 6ka 42ab 93kb  

5 

 

n-Hex–Br -- -- 

 6la 42ab   

6 
 

n-Hex–Br 
 

52%d 

 6ma 42ab 93mb  

7 
 

n-Hex–Br -- -- 

 6ab 42ab   

8 

 

n-Hex–Br 

 

60% 

 6bb 42ab 94bb  

9 

 

n-Hex–Br 

 

10% 

 125b 42ab 94bb  

10 

 

n-Hex–Br -- -- 

 126b 42ab   

a
 Reaction conditions:  6 (0.5 mmol), 42a (1.5 mmol), [RuCl2(p-cymene)]2 (2.5 mol %), 1-AdCO2H (13c) (30 mol %), K2CO3 

(1.0 mmol), m-xylene (2.0 mL), 120 °C, 20 h, yield of isolated product; 
b
 in NMP (2.0 mL);  

c
 MesCO2H (13a) (30 mol %) as the 

additive in NMP (2.0 mL);
 d

 at 100 °C. 
 

In accordance with our previously reported results,121 electron-donating groups, such as methyl or 

methoxy groups, afforded the desired product 93 in moderate yields (entry 1). A further increase of 

the electron density on the aromatic moiety leads to complete loss of reactivity (entry 2). In contrast, 

substrates bearing electron-withdrawing substituents furnished high yields of up to 87% of the 
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desired product (entries 3 and 4). Not surprisingly, pentafluorinated phenylpyridine 6la showed no 

reactivity (entry 5), since this would require a challenging C–F bond cleavage, which is a scarce 

reaction in ruthenium catalysis.129 Alkylation of trifluoromethylpyridine (6ma, entry 6) delivered the 

product 93mb in moderate yield, but with excellent site-selectivity. The alkylation proceeded at the 

less sterically hindered position, i.e. para to the CF3 substituent. 

An attempted examination of the influence of the pyridine substituents demonstrated that the 

second ortho-phenyl substituent in 2,6-diphenylpyridine (6ad) prevented the direct alkylation (entry 

7), probably due to steric interactions, which can impede the formation of intermediate 

ruthenacycles of the type 14 or 16 (Scheme 1.7). However, the electron-withdrawing acetyl moiety 

on the pyridine ring in 3-acetyl-6-phenylpyridine (6bb) afforded the desired product 94bb in 60% 

yield (entry 8). Surprisingly, the direct alkylation of substrate 125b furnished the same product 94bb, 

albeit in poor yield (entry 9), while the corresponding ether 126b showed no conversion at all (entry 

10). Hence, the ruthenium complex catalyzed two separate reactions, that is (i) the alcohol oxidation 

to the acetyl derivative and (ii) the C–H alkylation. A competition experiment between substrates 

126b and 6ba indicated no product formation (Scheme 3.6), which can be rationalized by substrate 

126b inhibiting the reaction. 

 

 

Scheme 3.6: Competition experiment between starting materials 126b and 6ba. 

 

The same result was obtained upon attempted alkylation of guanidine-type substrates 127. The 

reactions afforded no alkylated products (Scheme 3.7), probably because of the formation of a rather 

stable ruthenium complex prior to C–H bond functionalization. 

 

                                                           
129

 (a) Whittlesey, M. K.; Perutz, R. N.; Greener, B.; Moore, M. H. Chem. Commun. 1997, 187–188. (b) Kirkham, 
M. S.; Mahon, M. F.; Whittlesey, M. K. Chem. Commun. 2001, 813–814. Review: (c) Clot, E.; Eisenstein, O.; 
Jasim, N.; Macgregor, S. A.; McGrady, J. E.; R. Perutz, N. Acc. Chem. Res. 2011, 44, 333–348. 
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Scheme 3.7: Attempted direct alkylation of nitrogen-rich substrates 127. 

To test whether a free N–H-functionality is tolerated by this reaction, the chemical behaviour of 

substrate 128 was tested under the alkylating reaction conditions (Scheme 3.8). The alkylation 

proceeded with low conversion, funishing a mixture of two products formed in almost the same 

isolated yield. The substitution pattern in 129 has been determined via careful 2D-NMR analysis. 

Thus, compound 129 resulted from the desired direct C–H bond alkylation. The site-selective 

outcome of the alkylation product 129 might arise from the concerted action of the directing group 

and the higher acidity in -position to the nitrogen atom position of the pyrrole moiety. Pyrrole 130 

was a product of a N–H alkylation probably via nucleophilic substitution on hexyl bromide by the 

deprotonated substrate 128.130 

 

 

Scheme 3.8: Direct alkylation of (N–H)-free pyrrolopyridine (128). 

In our previous studies on the direct alkylation of ketimines 122, the possibility of replacing co-

catalytic amounts of 1-adamantyl carboxylic acid (13c) with overstoichiometric quantities of 

inexpensive 131 potassium acetate was demonstrated.125 Herein, this improvement was also tested for 

the alkylation of various 2-phenylpyridines 6 (Table 3.4).  

 

First of all, the competence of potassium pivalate in co-catalytic amounts as additive in the presence 

of additional 2 equivalents of K2CO3 was examined (entry 1, 51% yield). In spite of the somewhat 

lower yield, the level of efficiency was about the same as with 1-adamantyl carboxylic acid (13c) 

(Table 3.2, entry 1, 66% yield). Changing the additive to KOAc in the same cocatalytic amount, but 

without additional base, only a small amount of the alkylated product 93a could be isolated (entry 2).  

                                                           
130

 Lea, Z.-G.; Chen, Z.-C.; Hu, Y.; Zheng, Q.-G. Synthesis 2004, 1951–1954. 
131

 Price: Sigma-Aldrich.com, 12.01.13: KOAc, 1 kg  58.30 €; 1-AdCO2H, 100 g  160.00 €. 
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However, when applying 6.4 equivalents of KOAc, high conversion was detected and the yield 

drastically rose up to 76% (entry 3). The same almost held true for (trifluorophenyl)pyridine 6ja 

(entries 4 and 5), while for electron-rich substrates 6oa and 6ba the yield ranged from poor to 

moderate when using KOAc in overstoichiometric amounts (entries 6 and 7; see also Table 3.3,             

entry 1).  

 

Table 3.4: KOAc as the additive. 

 

entry substrate 6 bromide 42a 
additive 92 

(equiv) 
product 93 isolated yielda 

1 

 

n-Oct–Br KOPiv (0.3) 

 

51% 

 6aa 42aa  93aa  

2 

 

n-Oct–Br KOAc (0.3) 

 

9%b  

 6ca 42aa  93ca  

3 

 

n-Hex–Br KOAc (6.4) 

 

76% 

 6ca 42ab  93cb  

4 

 

n-Hex–Br KOAc (6.4) 

 

48% 

 6ja 42ab  93jb  

5 

 

n-Oct–Br KOAc (6.4) 

 

73% 

 6ja 42aa  93ja  
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entry substrate 6 bromide 42a 
additive 92 

(equiv) 
product 93 isolated yielda 

6 

 

n-Hex–Br KOAc (6.4) 

 

15% 

 6oa 42ab  93ob  

7 

 

n-Hex–Br KOAc (6.4) 

 

49% 

 6ba 42ab  93bb  

a
 Reaction conditions:  6 (0.5 mmol), 42a (1.5 mmol), [RuCl2(p-cymene)]2 (2.5 mol %), additive, K2CO3 (1.0 mmol), m-xylene 

(2.0 mL), 120 °C, 20 h, yield of isolated product; 
b
 no base, 100 °C. 

Furthermore, a catalytic system comprising [RuCl2(p-cymene)]2 and inexpensive KOAc was 

demonstrated to possess almost a high efficacy in the alkylation of (4-methoxyphenyl)pyrazol (87b) 

as well (Scheme 3.9). 

 

 

Scheme 3.9: Direct alkylation of (4-methoxyphenyl)pyrazol (87b) employing inexpensive KOAc as the additive. 

The opportunity to perform organic reactions with water as an inexpensive, environmentally benign, 

nontoxic reaction medium is attractive.132 The idea of potential tolerance of ruthenium-catalyzed 

transformations was postulated by Ackermann in his experiments on arylations with K2CO3 as the 

base.133a After this, a number of ruthenium-catalyzed reactions such as C–H/X–H-annulations with 

alkynes,131b,c direct oxidative alkenylations131d,e and direct arylations131f were successively carried out 

in water. The ruthenium-catalyzed 3-alkylations of indoles in water134 and the dehydrative alkylation 

                                                           
132

 Reviews: (a) Simon, M.-O.; Li, C.-J. Chem. Soc. Rev., 2012, 41, 1415–1427. (b) Organic Reactions in Water 
(ed.: Lindstorm, U. M.), Wiley-Blackwell: New York, 2007. 
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 (a) Ackermann, L. Org. Lett. 2005, 7, 3123–3125. (b) Ackermann, L.; Lygin, A. V. Org. Lett. 2012, 14, 764–767. 
(c) Ackermann, L; Fenner, S. Org. Lett. 2011, 13, 6548–6551. (d) Ackermann, L.; Wang, L.; Wolfram, R.; Lygin, 
A. V. Org. Lett. 2012, 14, 728–731. (e) Ackermann, L.; Pospech, J. Org. Lett. 2011, 13, 4153–4155. (f) 
Arockiam, P. B.; Fischmeister, C.; Bruneau, C.; Dixneuf, P. H. Angew. Chem. Int. Ed. 2010, 49, 6629–6632. 

134
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of phenols with alcohols135 have also been reported. However, ruthenium-catalyzed direct alkylation 

of arenes with alkyl halides in water had proven elusive. Indeed, as the bases were never pre-dried 

before employing in the ruthenium-catalyzed direct alkylation, it was necessary to examine, whether 

water could be used as the reaction medium. The results are summarized in Table 3.5.   

 

Table 3.5: Direct alkylation of substrates 6 or 87 employing water as the reaction medium. 

 

 

entry substrate  bromide 42a additive  product  isolated yielda 

1 

 

n-Hex–Br MesCO2H 

 

66% 

 6ca 42ab 13a 93cb  

2 

 

n-Oct–Br 1-AdCO2H 

 

66% 

 6ca 42aa 13c 93ca  

3 

 

n-Oct–Br KOAc  

 

60%b 

 6ca 42aa  93ca  

4 

 

n-Oct–Br 1-AdCO2H 

 

61% 

 6ba 42aa 13c 93ba  

5 

 

n-Oct–Br 1-AdCO2H 

 

62% 

 87a 42aa 13c 118a  

                                                           
135

 Walton, J. W.; Williams, J. M. J. Angew. Chem. Int. Ed. 2012, 51, 12166–12168. 
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a
 Reaction conditions:  6 or 87 (0.5 mmol), 42a (1.5 mmol), [RuCl2(p-cymene)]2 (2.5 mol %), additive (30 mol %), K2CO3 

(1.0 mmol), H2O (2.0 mL), 120 °C, 20 h, yield of isolated product; 
b
 KOAc (3.2 mmol) as the additive. 

 

Fortunately, while using distilled and degassed water as the reaction medium, electron-poor (entries 

1-3) and electron-rich (entry 4) substrates could be alkylated comparable high yield.  

The nature of the additive did not significantly affect the outcome of the reaction. Indeed, even 

superstoichiometric quantities of KOAc can be used as the additive with water as the solvent (entry 

3). 2-Phenylpyrazole 87a could also be alkylated in good yields under these reaction conditions   

(entry 5).  

 

To estimate, whether a solvent mixture could influence the degree of conversion, mixtures of m-

xylene or NMP and water were tested (Scheme 3.10). A mixture of water and m-xylene furnished 

essentially the same isolated yield of 93ca (68%) as in pure water (66%), while in mixtures with NMP 

the isolated yield slightly decreased (53%). Interestingly, the reactions run under neat conditions, 

that is in the absence of solvent, did not result in a dramatically decreased yield. However, due to 

agitation-effects of the reaction mixture, the latter protocol was subsequently not applied. 

 

 

Scheme 3.10: Solvent effects for the direct alkylation. 

 

A variety of other substrates was tested in the ruthenium-catalyzed direct alkylation reaction, but 

neither oxygen-containing directing groups (131-136) nor substrates that would rely on a 7-

membered ruthenacycle intermediate (137-141) were alkylated (Figure 3.2). 
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Figure 3.2: Unreactive substrates for the ruthenium-catalyzed direct ortho-alkylation. 

 

3.1.2.1 Ruthenium-Catalyzed Direct Allylation 

 

Thereafter, the alkylation with unsaturated bromides was investigated. In 2011, Ramana reported on 

a ruthenium-catalyzed direct propenylation of the pyridine ring in 2-phenylpyridine (6aa) under 

similar reaction conditions, applying allyl bromide (32g) (Scheme 3.11).136  

 

 

Scheme 3.11: Ruthenium-catalyzed direct propenylation of 2-phenylpyridine (6aa). 

Indeed, compound 145 was formed in comparable yield, as indicated by 1H-NMR spectra. However, it 

was not possible to separate the product 145 completely from the side-product, presumably allyl 

adamantilate, by column chromatography. According to Ramana and Gorya, without adamantyl 

carboxylic acid the yield of 145 stayed at 72%.136 Surprisingly, attempted reproduction of these 

results did not afford any propenylated phenylpyridine 145. Instead of this, 28% of the ortho-

allylated 2-phenylpyridine 93m has been isolated as sole product, albeit in low yield (Scheme 3.12). 

                                                           
136

 Goriya, Y.; Ramana, C. V.  Chem. Eur. J. 2012, 18, 13288–13292. 
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Scheme 3.12: Ruthenium-catalyzed direct allylation of 2-phenylpyridine (6aa). 

With freshly distilled allyl bromide (32g), the formation of this allylated product 93m could be 

detected even at 70 °C and without any additive. With water as a solvent, compound 93m was 

obtained in 20% isolated yield (Scheme 3.13). 

 

Scheme 3.13: Direct allylation of 2-phenylpyridin (6aa) (yields in brackets mean GC-MS-conversions of 6aa). 

 

3.1.3 Mechanistic Studies  

 

At the outset, the probability of a reaction pathway via initial dehydrobromination followed by 

hydroarylation according to Murai and co-workers,91 but under our optimized reaction conditions, 

was evaluated (Scheme 3.14).137 

 

 

Scheme 3.14: Attempted hydroarylation. 

The conversion of substrate 6aa to the desired alkylated product 93ab was not detected when using 

1-hexene (32f) as alkene, thus excluding a hydroarylation as a possible reaction pathway. To 

ascertain, whether a one-pot addition/direct alkylation sequence can be accomplished, the reaction 

was re-tested in the presence of potassium bromide and potassium bi carbonate as the additives 

(Scheme 3.15).  

                                                           
137

 Reaction was performed by Dr. R. Vicente. 



 Ruthenium-Catalyzed Direct ortho-Alkylation 49 

 

Scheme 3.15: Attempted alkylation via "one-pot" addition/direct alkylation sequence. 

Under these reaction conditions only a very low yield of 93k (12%) has been obtained, which 

excluded the one-pot addition/direct alkylation procedure as a viable alternative.  

Moreover, a ruthenium-catalyzed direct ortho-alkylation with ketimine 121a and 1-bromohexene 

32f could be accomplished in good yield and high chemoselectivity without the formation of cyclized 

products (Scheme 3.16). 

 

Scheme 3.16: Ruthenium-catalyzed direct alkylation with bromohexene 32f. 

3.1.3.1 Intramolecular Competition Experiments  

 

Intra- and intermolecular competitive direct alkylations of meta-substituted ketimines 121 as the 

substrates were performed with the aim (a) to evaluate the scope of these direct alkylations and (b) 

to shed light onto the mechanism of direct alkylations through intramolecular competition 

experiments, which can elucidate sterical and electronical aspects (Table 3.6).  
 

Table 3.6: Intramolecular competition experiments with meta-substituted ketimines 121. 

 

 

entry substrate 121 product 122 yield of 122a product 122’ yield of 122’a 

1 

  

74% -- -- 

 121b 122b    
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entry substrate 121 product 122 yield of 122a product 122’ yield of 122’a 

2 

  

20% 

 

38% 

 121c 122c  122c’  

3 

 

-- -- 

 

68% 

 121d   122d’  

4 

 

-- -- 

 

52%  

 121e   122e’  

a
 Reaction conditions:  121 (0.5 mmol), 42ab (1.5 mmol), [RuCl2(p-cymene)]2 (5.0 mol %), 1-AdCO2H (13c) (30 mol %), K2CO3 

(1.6 mmol), m-xylene (2.0 mL), 120 °C, 20 h, yield of isolated product. 

 

As was shown in earlier studies,124,125 electron-deficient substrates are more reactive in ruthenium-

catalyzed direct alkylation than are electron-rich ones. In the case of meta-substituted substrates, 

the same behavior was detected. A meta-fluoro substitution in substrate 121b resulted in 2-

alkylation (entry 1), which most probably resulted from the concerted action of the chelating effect 

of the imino moiety and the well-documented ortho-orienting influence of the fluorine 

substituents.138 Conversely, the larger meta-chlorine substituent in substrate 121d (entry 3) or 

methyl substituent in 121e (entry 4) directed the alkylations to the less hindered 5-position. As a 

comparison, the alkylation of the substrate 121c with a meta-methoxy substituent led to a mixture of 

the 2- (122c) and 5-substituted (122c’) products (entry 2). Formation of the former might be 

explained by a secondary chelating effect of the methoxy substituent. Electron-deficient substrates 

121b and 121d afforded very good yields (entries 1 and 3). 

 

3.1.3.2 Intermolecular Competition Experiments 

 

To establish the reactivity-order and to establish priorities for arenes with different substituents and 

directing groups, intermolecular competition experiments were subsequently carried out (Table 3.7).  

                                                           
138

 (a) Evans, M. E.; Burke, C. L.; Yaibuathes, S.; Clot, E.; Eisenstein, O.; Jones, W. D. J. Am. Chem. Soc. 2009, 131, 
13464–13473; (b)  lot,  .; M gret,  .;  isenstein,  .;  erut ,  .  . J. Am. Chem. Soc. 2009, 131, 7817–7827.  
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Table 3.7: Intermolecular competition experiments using substrates with various directing groups. 

 

 

entry 
substrate 

I 

substrate 

121 
product II 

yield of 

IIa 

product 

122/122’ 

yield of 

122/122’a 

1 

   

55% 

 

22% 

 6da 121b 93db  122b  

2 

   

15% 

 

42% 

 136a 121b 143a  122b  

3 

   

20% 

 

56% 

 121d 121b 122d’  122b  

4 

   

40% 

 

-- 

 121d 121e 122d’  122e’  

a
 Reaction conditions:  I and 121 (1.0 mmol of each), 42ab (0.5 mmol), [RuCl2(p-cymene)]2 (5.0 mol %),  1-AdCO2H (13c) 

(30 mol %), K2CO3 (1.6 mmol), m-xylene (4.0 mL), 120 °C, 20 h, yield of isolated product.  

Entries 1 and 2 clearly indicate that pyridyl (substrate 6da) is a more powerful directing group than 

the ketimine (substrate 121b), which itself is better than the oxazoline (substrate 136a). It has to be 

mentioned, that 2-aryloxazoline (136) did not afford any product under the standard reaction 

conditions in an individual reaction. This led to the assumption that the ketimine moeity also acts as 

a ligand in this transformation (entry 2). Competition experiments between electron-rich and 



52  Ruthenium-Catalyzed Direct ortho-Alkylation  
 

electron-poor ketimines (entries 3 and 4) illustrated that with-drawing substrates were significantly 

more reactive. 

 

The results of another series of intermolecular competition experiments, which did not require the 

additional in situ reduction step, are show in Table 3.8.  

 

Table 3.8: Intermolecular competition experiments with different directing groups. 

 

 
 

entry substrate I substrate II product P-I yield of P-Ia product P-II yield of P-IIa 

1 

   

24% -- -- 

 6aa 136 93ab    

2 

   

36% 

 

9% 

 6aa 87a 93ab  118a  

3 

   

31% -- -- 

 87a 136 118a    

4 

   

28% -- -- 

 6da 136b 93db    

5 

   

17% 

 

17% 

 6da 87c 93db  118c  
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entry substrate I substrate II product P-I yield of P-Ia product P-II yield of P-IIa 

6 

   

48% -- -- 

 87c 136b 118c    

a
 Reaction conditions:  I or II (1.0 mmol of each), 42ab (0.5 mmol), [RuCl2(p-cymene)]2 (2.5 mol %),  1-AdCO2H (13c) (30 mol 

%), K2CO3 (1.6 mmol), m-xylene (4.0 mL), 120 °C, 20 h, yield of isolated product. 

 

These results were in line with those summarized in Table 3.7 indicating the efficacy of directing 

groups to be in the following order: pyridine ≥ pyrazole > ketimine >>> oxazoline (Figure 3.3). 

 

 

Figure 3.3: Reactivity order for the direct ortho-alkylation derived from the results of competition                                     

experiments summarized in Table 3.7 and Table 3.8. 

 

The relative rates of ruthenium-catalyzed direct arylation and direct alkylation have been compared 

in the competition between bromobenzene (15a) and n-hexyl bromide (42ab) (Scheme 3.17). The 

reaction led to the formation of an inseparable mixture of mono- (143) and bis-arylated (144) 

products, while the alkylation product 93ab was not detected. This result indicates the direct 

arylation to be much faster than the direct alkylation reaction. 

 

Scheme 3.17: Competition between direct arylation and alkylation reactions. 
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3.1.3.3 Experiments with Deuterium-Labeled Substrates 

 

Previously reported studies by Dr. Rubén Vicente124 on D/H exchange gave strong evidence for a 

reversible C–H bond metalation step. As displayed in Scheme 3.18, the direct alkylation on 

deuterated substrate [D5]-6aa under optimized reaction conditions demonstrated 50% of H/D-

exchange in the ortho-position. It is supposed, that the non-predried K2CO3 is acting as an additional 

proton-source besides the carboxylic acid.  

 

Scheme 3.18: D/H-exchange experiment during direct alkylation of substrate ([D5]-6aa). 

The direct alkylation with [D2]-42ab showed no deuterium scrambling in the product (Scheme 3.19). 

This result supported once more the elimination/hydroarylation or the formation of carbene 

intermediates unlikely to be operative. 

 

Scheme 3.19: Direct alkylation with 1,1-dideuteriohexyl bromide ([D2]-42ab). 

 

3.1.3.4 Experiments with Ruthenacycle 14a  

 

Previous studies on the ruthenium-catalyzed direct arylation by the group of Prof. Ackermann have 

demonstrated the capability of the ruthenacycle 14a to catalyze the desired reaction.26a This complex 

has been synthesized and tested as the catalyst for the direct alkylation (Scheme 3.20). 
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Scheme 3.20: Ruthenium-catalyzed direct alkylation with ruthenacycle 14a as the catalyst. 

As shown in Scheme 3.20, the use of 5.0 mol % of the isolated complex 14a gave high yields of the 

alkylated product 93bb with both m-xylene as well as NMP as the solvent. Furthermore, without the 

base K2CO3 no conversion of the substrates occurred. These results lead to the assumption that 

complex 14a participates in the catalytic cycle and that a stoichiometric amount of base is necessary. 

  

3.1.3.5 Proposed Catalytic Cycle 

 

Based on the mechanistic studies discussed above, the following catalytic cycle was proposed to 

account for the chemo- and site-selective outcome of the ruthenium-catalyzed direct alkylation with 

unactivated primary alkyl halides (Scheme 3.21). 
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Scheme 3.21: Proposed catalytic cycle for direct ruthenium-catalyzed ortho-alkylation. 

This catalytic cycle initiates by the formation of a stable ruthenium (II) carboxylate complex 12, in 

analogy to the published precedent by Ackermann et al.26 This complex reversibly cyclometalates 

through a carboxylate-assisted deprotonation through intermediate 11, affording ruthenacycle 14. 

Thereafter, complex 14 reacts with unactivated primary alkyl bromide 42a via either oxidative 

addition or SET-type process to yield intermediate 146. Finally, reductive elimination regioselectively 

gives rise to the alkylated arene 93, and thereby regenerates the catalytically active species 12. 

Importantly, catalytic amounts of carboxylate not only dramatically accelerate the C–H bond 

activation step affording 14,139 but facilitate the  −  bond formation. Unfortunanely, the nature of 

the activation step with primary alkyl halides (42a) still remains unknown, as the corresponding 

experiments towards its elucidation were not yet successful. Also the nature of the rate-determining 

step – either the reductive elimination or the activation of the alkyl halide – still remains unknown.  

  

                                                           
139

 (a) Li, B.; Feng, H.; Wang, N.; Ma, J.; Song, H.; Xu, S.; Wang, B. Chem. Eur. J., 2012, 18, 12873–12879. (b) Li, 
B.; Roisnel, T.; Darcel, C.; Dixneuf, P. H. Dalton Trans. 2012, 41, 10934–10937. 
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3.2 Ruthenium-Catalyzed Direct meta-Alkylation  

3.2.1 Preliminary Observations 

 

As indicated in the introduction, the challenging ruthenium-catalyzed C–H direct alkylations with 

unactivated primary alkyl halides are an important objective, which appeared to be highly ortho-site-

selective. Nevertheless, in selected rare cases small quantities of a side-product were isolated (Table 

3.9). Careful 2D-NMR studies disclosed these by-products as being formed by an unprecedented 

ruthenium-catalyzed meta-functionalization. 
 

Table 3.9: Observation of meta-alkylated side-product 93c’. 

 

entry catalyst (mol%) solvent additive yielda of 93bb yielda of 93bb’ 

1 
[RuCl2(p-cymene)]2 

(2.5 mol%) 
H2O MesCO2H 45% 7% 

   13a   

2 
[RuCl2(p-cymene)]2             

(2.5 mol%) 
neat MesCO2H 40% 6% 

   13a   

3 
[RuCl2(p-cymene)]2  

(2.5 mol%) 
H2O - 

34% 

(1H-NMR ratio = 7.5:1.0) 

     

4 
[RuCl2(p-cymene)]2  

(2.5 mol%) 
m-xylene MesCO2H 

42% 

(1H-NMR ratio = 3.2:1.0) 

   13a  

5 14a (5.0 mol%) m-xylene 1-AdCO2H 64% 4% 

   13c   

a
 Reaction conditions:  6ba (0.5 mmol), 42ab (1.5 mmol), [Ru] (5.0 mol %), additive (30 mol %), K2CO3 (1.0 mmol), m-xylene 

(2.0 mL), 100 °C, 20 h, yield of isolated products. 

Thus, while performing the alkylation of electron rich substrate 6ba in water as the reaction medium 

(entry 1), the unexpected meta-substituted side-product 93bb’ was isolated in 7% yield. All attempts 
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to modify the reaction conditions to favor the formation of the meta-product were however 

unsuccessful. Thus, neither changing the solvent (entries 2 - 4) nor employing the highly active 

ruthenacycle 14a in combination with the most efficient additive 13c improved the yield of by-

product 93bb’, while these conditions accelerated the formation of the ortho-alkylated product 93bb 

(entry 5).  

 

Surprisingly, in a competition experiment between bromo- (42ab) and chloroalkane (42d) (Scheme 

3.22), the side-product 93bb’ could be isolated in comparable amounts as in entry 1, Table 3.9. This 

experiment again demonstrated the higher reactivity of bromoalkanes as electrophiles in the 

ruthenium-catalyzed direct alkylation reaction. 

 

 

Scheme 3.22: Isolation of meta-derivative 93c’ as a side product in a competition experiment. 

 

3.2.2 Optimization Studies for the Direct meta-Alkylation  

 

Since the direct alkylation with primary alkyl halides 42a could not yet be optimized to deliver only 

the meta-alkylated product, we first tested the effect of various reaction conditions on the 

challenging direct alkylation of arene 6aa with secondary alkyl halides 42b (Table 3.10). Inexpensive 

and readily available carboxylic acids, which appeared to be efficient cocatalysts for ruthenium-

catalyzed ortho-alkylations with primary alkyl bromides were first explored. 

 

Table 3.10: Optimization studies towards the optimal cocatalyst with 2-bromooctane (42ba). 
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entry additive yield of 147aa  entry additive yield of 147aa 

1 

 

56%  9 

 

60% 

 13c    13a  

2 

 

34%  10 

 

--
e;  f; g  

 13d    13a  

3 
 

--  11 TFA -- 

 13e    148  

4 
 

38%  12 TfOH 35% 

 13b    149  

5 

 

55%  13 MesCO2K 47% 

 13f      

6 
 

52%  14 CsOAc 45%
c 

 13g      

7 
 

46%  15 KOPiv 34%
d 

 13h      

8 

 

31%  16 KOAc 19%
b 

 13i      

a
 Reaction conditions: 6aa (0.5 mmol), 42ba (1.5 mmol), [RuCl2(p-cymene)]2 (2.5 mol %), additive (30 mol %), 1,4-dioxane 

(2.0 mL), 20 h, 100 °C; 
b
 KOAc (2.0 equiv), no K2CO3; 

c 
CsOAc (2.0 equiv), no K2CO3; 

d
 PivOK (2.0 equiv); 

e
 no K2CO3; 

f
 no 

[RuCl2(p-cymene)]2; 
g
 no additive.  

As a standard transformation, alkylation of 2-phenylpyridine (6aa) – one of the most active 

substrates in ortho-alkylations (Figure 3.3) – with challenging 2-bromooctane (42ba) has been 

selected. The reaction proceeded with most user-friendly [RuCl2(p-cymene)]2 as the ruthenium 
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source in the presence of potassium carbonate (2.0 equiv) in 1,4-dioxane. The latter was proven to 

be the best solvent for these alkylations.140  

 

According to 2D-NMR spectra, product 147aa could be determined to be rather meta- than ortho-

alkylated.  For the final prove of this unprecedented site-selectivity, the alkylation product 147aa was 

converted to its pyridium salt 148 employing oxalic acid. This salt has been crystallized by slow 

concentration of their solutions to afford crystals suitable for X-ray crystal structure analysis (Figure 

3.4).141  

                                                      

Figure 3.4 ORTEP plots (50% probability thermal ellipsoids) of 2-[2-(octan-2-yl)phenyl]pyridinium oxalate (148) in the 

crystal. All hydrogen atoms have been omitted for clarity. Numbering does not correspond to the IUPAC rules. 

 

The data from Table 3.10 obviously indicate that various aliphatic (entries 1 and 2), aromatic (entries 

4–9) and triflic acids (entry 12) as well as their salts (entries 13–16) showed a catalytic activity. 

Among them, 1-adamantyl (13c) (entry 1) and mesityl carboxylic acid (13a) (entry 9) gave the best 

yields, while phosphine-substituted (entry 3) and strong trifluoroacetic acids (entry 11) provided no 

alkylation. The same effect was observed in the absence of the base, the additive or the ruthenium 

catalyst (entry 10). Some carboxylates showed high activity, especially potassium mesityl carboxylate, 

delivered roughly 50% yield (entry 13); however, less than applying in-situ generation of this salt 

(entry 9). 

 

Besides, the reactivity of other electrophiles under these reaction conditions was examined (Scheme 

3.23). Unfortunately, neither alkyl iodides or chlorides nor tosylates showed any conversion in the 

attempted direct ruthenium-catalyzed alkylation. 

                                                           
140

 Preliminary screening for suitable solvents was performed in cooperation with Dr. R. Vicente. 
141

 For all other products synthesized by the ruthemiun-catalyzed direct alkylations with secondary alkyl 
bromides, the substitution pattern was verified applying 2D-NMR analysis and/or nOe-experiments. 
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Scheme 3.23: Screening of different leaving groups. 

 

As indicated above, a degassed aqueous medium was well accepted for the ruthenium-catalyzed 

direct alkylation with primary alkyl halides. Therefore, a solvent screening was performed to 

determine, if water is tolerated to the same extent within the direct meta-alkylation (Scheme 3.24). 

 

 

Scheme 3.24: Direct meta-alkylation in different reaction media. 

Under the standard reaction conditions applying 1,4-dioxane as the solvent, reaction of substrate 

6ba with 3-bromopentane (42bb) furnished compound 147bb in a good yield (63%), while in the 

absence of the carboxylic acid (13a) no product formation was observed. Employment of water as 

the reaction medium delivered 147bb in lower, but still good yield (50%), whereas a reaction in the 

absence of solvent afforded the best yield of 70%. Unfortunately, in further experiments the neat 

reaction conditions proved to be less suitable due to insufficient solubilities of several organic 

substrates. 

 

3.2.3 Direct meta-Alkylation: Scope & Limitations 

 

In order to explore, to which extend this new reaction type is user-friendly and applicable, various 

substrates 6 and secondary alkyl bromides 42b was tested under the optimized reaction conditions. 

First, the scope of secondary alkyl bromides was explored starting with cyclic aliphatic bromides 

(Table 3.11).  
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Table 3.11: Scope of meta-alkylation with cyclic secondary alkyl bromides. 

 

entry substrate 6 bromide 42b product 147 yield of 147a 

1 

 
 

 

76% 

 6aa 42bc 147ac  

2 

 
 

 

58% 

 6aa 42bd 147ad  

3 

 
 

 

10%b 

 6aa 42be 147ae  

4 

  
 

41% 

 6ba 42bf 147bf  

a
 Reaction conditions: 6 (0.5 mmol), 42b (1.5 mmol), [RuCl2(p-cymene)]2 (2.5 mol %), MesCO2H (13a) (30 mol %),                               

1,4-dioxane (2.0 mL), 20 h, 100 °C; 
b
 [RuCl2(p-cymene)]2 (5.0 mol %). 

In ruthenium-catalyzed alkylations of 2-phenylpyridine (6aa) with bromocycloalkanes 42bc–42bf, 

ranging from 7-membered cycloheptyl (42bc) to 3-membered cyclopropyl bromide (42be) decreasing 

in the ring size smoothly decreased the yield from 76 to 10%. This was not in line with the strain 

energies of the parent cyclic hydrocarbons cycloheptane, cyclohexane and cyclopropane, which are 

equal to 7.6, 1.4, 7.2 and 28.1 kcal·mol–1, respectively.142 However, this decreasing in yield appeared 

to be antithetic to the I-strain of corresponding bromides 42bc–42bf.143 "I-strain” is that change in 

internal strain of a ring compound which results from a change in the coordination number (and the 

                                                           
142

 Schleyer, P. von R.; Williams, J. E., Jr.; Blanchard, K. P. J. Am. Chem. Soc. 1970, 92, 2377–2386. 
143

 Brown, H. C.; Fletcher, R. S.; Johannesen, R. B. J. Am. Chem. Soc. 1951, 73, 212–221. 
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preferred bond angle) of a ring atom involved in the reaction"144 and can in the first approximation 

be characterized by activity of the cyclic bromides in nucleophilic substitution reactions. For example, 

standard substitution protocols employed in larger ring systems are completely prohibitive in 

cyclopropane analogs145 or are highly disfavored in cyclobutane derivatives due to significant s-

character.143 It should be mentioned that the formation of ring-opened products has not been 

detected. Sterically demanding substrate 42bf, which has been synthesized from the corresponding 

racemic -pinen, was only able to alkylate the electron-rich substrate 147bf (entry 4).  

 

The results of alkylations of 2-phenylpyridine (6aa) with acyclic secondary alkyl bromides 42b are 

presented in Table 3.12. 

 

Table 3.12: Scope of acyclic 2-bromoalkanes. 

 

entry bromide 42b product 147a isolated yielda 

1 
 

 

51% 

 42bg 147ag  

2 
 

 

42% 

 42bh 147ah  

3 
 

 

43% 

 42bi 147ai  

                                                           
144

 Brown, H. C.; Gerstein, M. J. Am. Chem. Soc. 1950, 72, 2926–2933. 
145

 Ryabchuk, P.; Rubina, M.; Xu, J.; Rubin, M. Org. Lett. 2012, 14, 1752–1755, and references cited therein. 
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entry bromide 42b product 147a isolated yielda 

4 
 

 

26% 

 42bb 147ab  

5 
 

 

60% 

 42ba 147aa  

a
 Reaction conditions: 6aa (0.5 mmol), 42b (1.5 mmol), [RuCl2(p-cymene)]2 (2.5 mol %), MesCO2H (13a) (30 mol %),                               

1,4-dioxane (2.0 mL), 20 h, 100 °C. 

Symmetric as well as unsymmetric secondary alkyl bromides were tested under the standard 

reaction conditions and provided results. Generally, the bromides 42ba and 42bg with longer 

hydrocarbon chains afforded better yield than homologous compounds 42bi and 42bh (entries 1 and 

2, entries 3 and 5). Comparing reactivities of 2-bromopentane (42bi) (entry 3) and of 3-

bromopentane (42bb) (entry 4) resulted in the assumption, that the position of the leaving group in 

bromides 42b influenced the conversion to some extend as well. 

As demonstrated above in Table 3.12 and Table 3.11, unsubstituted 2-phenylpyridine (6aa) itself was 

an appropriate substrate for the ruthenium-catalyzed direct meta-alkylation under mild reaction 

conditions. Furthermore, the influence of electron-donating and electron-withdrawing substituents 

in the phenyl moiety upon the efficiency of the alkylation was examined. The results of alkylations of 

electron-rich substrates (6) are shown in Table 3.13. 
 

Table 3.13: Scope and limitations with para-substituted electron-rich phenylpyridines. 

 

entry substrate 6 bromide 42b product 147  yield of 147a 

1 

 
 

 

62% 

 6ba 42bi 147bi  
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entry substrate 6 bromide 42b product 147  yield of 147a 

2 

 
 

 

70% 

 6ba 42bj 147bj  

3 

 
 

 

60% 

 6ba 42ba 147ba  

4 

 
 

 

56% 

 6ba 42bk 147bk  

5 

 
 

 

50% 

 6ba 42bg 147bg  

6 

 
 

 

55% 

 6oa 42ba 147oa  

7 

 
 

-- -- 

 6ia 42ba   

a
 Reaction conditions: 6 (0.5 mmol), 42b (1.5 mmol), [RuCl2(p-cymene)]2 (2.5 mol %), MesCO2H (13a) (30 mol %),                               

1,4-dioxane (2.0 mL), 20 h, 100 °C. 

In general it can be emphasized that 2-phenylpyridines 6 with electron-donating para-substituents, 

such as  methoxy or methyl, can be alkylated with a satisfying efficacy independently from the 

carbon chain length of the 2-bromoalkane 42b (entries 1 - 4, 6). Sterically more demanding 5-

bromononane (42bg) gave slightly lower yields (entry 5), whereas a very bulky tert-butyl substituent 

completely inhibited the desired alkylation (entry 7). 

The alkylation product 147ba was converted to its pyridium salt 149 employing hydrochloric acid. 

This salt was crystallized by slow evaporation of DCM/n-hexane to afford crystals suitable for X-ray 

crystal structure analysis (Figure 3.5).  
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Figure 3.5: ORTEP plots (50% probability thermal ellipsoids) of 2-[4-methoxy-2-(octan-2-yl)phenyl]pyridinium chloride (149) 

in the crystal. All hydrogen atoms have been omitted for clarity. Numbering does not correspond to the IUPAC rules. 

 

Subsequent examination of electron-deficient 2-phenylpyridines (Table 3.14) showed that steric 

aspects seemed to affect the yield to larger extent than electronic ones in this newly developed 

reaction type. Comparison of the results from Table 3.13 with those from Table 3.14 clearly indicated 

this observation. 

 

Table 3.14: meta-Alkylation of para-substituted electron-poor 2-phenylpyridines 6: Scope and limitations. 

 

entry substrate 6 bromide 42b product 147 yield of 147a 

1 

 

 

 

62% 

 6ca 42bj 147cj  

2 

 

 

 

56% 

 6ca 42ba 147ca  

3 

 

 

 

47% 

 6ca 42bb 147cb  
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entry substrate 6 bromide 42b product 147 yield of 147a 

4 

 

 

 

50% 

 6ca 42bg 147cg  

5 

 

 

 

55% 

 6ka 42bi 147ki  

6 

 

 
-- -- 

 6ja 42ba   

7 

 

 

 

63% 

 6pa 42bi 147pi  

8 

 

 
-- -- 

 6qa 42ba   

9 

 

 
-- -- 

 6ra 42bi   

a
 Reaction conditions: 6 (0.5 mmol), 42b (1.5 mmol), [RuCl2(p-cymene)]2 (2.5 mo l%), MesCO2H (13a) (30 mol %),                               

1,4-dioxane (2.0 mL), 20 h, 100 °C.  

2-(4-Fluorophenyl)pyridine (6ca) with decreased electron density of the arene moiety afforded good 

yields upon alkylation with various alkyl bromides 42b (entries 1 - 5), independently from the 

position of the bromine atom as well as from the carbon chain length in 42b. Not surprisingly that 

(trifluorophenyl)pyridine 6ja showed no reactivity (entry 6), as this would involve a C–F bond 

activation step, which is a scarce reaction type in ruthenium catalysis.129 

Not surprisingly, the nitrile group (entry 8) was not tolerated by this reaction, and the product 

formation was not detected. The chemical behavior of substrate 6pa with an ester functionality 

(entry 7) was of special interest because of two reasons. On the one hand, it demonstrated tolerance 
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of functional groups towards ruthenium-catalyzed alkylation under basic reaction conditions and, on 

the other hand, such meta-alkylated carboxylate 147pi cannot be synthesized through Friedel-Crafts 

alkylations. Notably, the substrate 6pa furnished alkylated compound 147pi as the sole product 

without conversion of the ester group. For the comparison, the corresponding free acid did not give 

rise to any formation of the desired product, but only formed an ester with the alkyl bromide (entry 

9). 

 

The scope of the ruthenium-catalyzed carboxylate-assisted direct ortho-alkylation of meta-

substituted ketimines 121 with n-hexyl bromide (42ab) has been discussed above (Table 3.6). 

Therefore, several meta-substituted arylpyridines 6 were alkylated with various 2-bromoalkanes 42b 

the optimized reaction conditions (Table 3.15). 

 

Table 3.15: Substrate scope for meta-alkylation of meta-substituted 2-phenylpyridines. 

 
 

entry substrate 6 bromide 42b product 147  yield of 147a  

1 

 
 

 

39% 

 6sa 42bi 147si  

2 

 
 

 

38% 

 6ta 42bi 147ti  

3 

 
 

 

40%b 

 6ua 42bi 147ui  

4 

 
 

-- -- 

 6ha 42ba   

5 

 
 

 

38%b 
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entry substrate 6 bromide 42b product 147  yield of 147a  

 6va 42bi 147vi  

6 

 
 

 

28%b 

 6da 42bi 147ai  

a
 Reaction conditions: 6 (0.5 mmol), 42b (1.5 mmol), [RuCl2(p-cymene)]2 (2.5 mol %), MesCO2H (13a) (30 mol %),                               

1,4-dioxane (2.0 mL), 20 h, 100 °C; 
b
 [RuCl2(p-cymene)]2 (5.0 mol %). 

The direct alkylation of meta-substituted 2-phenylpyridine 6 proceeded with moderate yields of the 

desired products 147 (entries 1–3, 5, 6). Table 3.15 indicates, that the yields were almost unaffected 

by the electronic properties of the substituents in the substrates 6. The lowest yield of 28% was 

obtained for electron-poor fluoro-substituted 2-phenylpyridine 6da (entry 6). Dimethylamin-

substituted arene 6ha completely failed in the direct alkylation (entry 4), presumably due to the 

formation of a stable ruthenium-complex.  

 

In contrast to meta-substituted arylpyridines, in the case of their ortho-substituted analogues, two 

possible products corresponding to the two free meta-positions can be formed. The results on the 

chemical behavior of a variety of substrates 6 are summarized in Table 3.16. 
 

Table 3.16: Substrate scope for meta-alkylation of ortho-substituted 2-phenylpyridines (6). 
 

 

entry substrate 6 bromide 42b product 147 product 147’ 
isolated yield 

ratio 147:147’a 

1 

 
 

  

19% 

za:za’ = 1.0:5.3 

 6za 42ba 147za 147za’  

2 

 
 

  

43% 

wa:wa’ = 

1.0:1.2 

 6wa 42ba 147wa 147wa’  
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entry substrate 6 bromide 42b product 147 product 147’ 
isolated yield 

ratio 147:147’a 

3 

 
 

  

60% 

xa:xa’ = 1.0:2.8 

 6xa 42ba 147xa 147xa’  

4 

 
 

  

32%b 

150:150’ = 

1.0:1.3 

 93a 42ba 150 150’  

5 

 
 

  

31%b 

151:151’ = 

1.0:1.2 

 93a 42bi 151 151’  

6 

 
 

-- -- -- 

 6ya 42ba    

7 

 

 

  

62%b 

ea:ea’ = 1.0:2.9 

 6ea 42ba 147ea 147ea’  
a
 Reaction conditions: 6 (0.5 mmol), 42b (1.5 mmol), [RuCl2(p-cymene)]2 (2.5 mol %), MesCO2H (13a) (30 mol %),                         

1,4-dioxane (2.0 mL), 20 h, 100 °C; see, experimental part for the isolated yields of each isomer;                                                             

b
 [RuCl2(p-cymene)]2 (5.0 mol %). 

 

No general preference was detected for one of the two free meta-positions for all substrates 6. Most 

substrate showed a slight priority for Only for the product 147’, with three neighboring substituents. 

Only for the ortho-fluoro substrate 6za the product 147za’ is clearly favoured, but the overall yield is 

unsatisfactory (entry 1). Yet, this electron-deficient substrate appeared to be less appropriate for 

alkylation than the electron-rich ones (entries 2–5). Among the latter, better yields were obtained for 

2-phenylpyridines with less sterically demanding substituents (entries 2 and 3) than for n-octyl-

substituted substrates 93a (entries 4 and 5). No transformation was observed upon attempted 

alkylation of ortho,ortho-dimethylated substrate 6ya (entry 6). In contrast to this, an additional 

methyl substituent on the pyridine ring did not influence the course of the alkylation (entry 7); an 

1:2.9 mixture of compounds 147ea and 147ea’ was isolated in good yield of 62% 
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As the next important step, a variety of different directing groups was examined. First, the influence 

of the substitution pattern on the pyridine moiety was investigated. For this purpose, a broad range 

of 2-phenylpyridines 6 with substituents on the directing group were tested in alkylation under the 

optimized reaction conditions (Table 3.17). 

 

Table 3.17 a: Substrate scope for meta-alkylation of 2-phenylpyridines substituted on the pyridine moieties. 

 

 
 

entry substrate 6 
bromide 

42b 
product 152 

yield of 

152a 
by-product 152’ 

yield of 

152’a 

1 

 
 

 

48% 

 

5% 

 6cb 42bj 152cj  152cj’  

2 

  

 

41%b 

 

11%b 

 6cb 42bi 152ci  152ci’  

3 

 
 

 

61% 

 

10% 

 6db 42bj 152dj  152dj’  

4 

  

 

38% 

 

6% 

 6eb 42bk 152ek  152ek’  



72  Ruthenium-Catalyzed Direct meta-Alkylation  
 

entry substrate 6 
bromide 

42b 
product 152 

yield of 

152a 
by-product 152’ 

yield of 

152’a 

5 

 
 

 

39% 

 

4% 

 6fb 42bk 152fk  152fk’  

a
 Reaction conditions: 6 (0.5 mmol), 42b (1.5 mmol), [RuCl2(p-cymene)]2 (2.5 mol %), MesCO2H (13a) (30 mol %),                               

1,4-dioxane (2.0 mL), 20 h, 100 °C; 
b 

[RuCl2(p-cymene)]2 (5.0 mol %). 

 

Table 3.17 b 

entry substrate 6 bromide 42b product 152 yield of 152a 

6 

 
 

 

33%b 

 6gb 42bi 152gi  

7 

 
 

 

30% 

 6eb 42bj 152ej  

8 

 
 

 

56% 

 6db 42ba 152da  

9 

 
 

 

56% 

 6fb 42bi 152fi  



 Ruthenium-Catalyzed Direct meta-Alkylation 73 

entry substrate 6 bromide 42b product 152 yield of 152a 

10 

 
 

 

43% 

 6fb 42ba 152fa  

11 

 
 

-- -- 

 6ab 42ba   

12 

 

 

 

(44%)c 

 6ib 42ba 152ia  

13 

 

 

 

33%b 

 6ec 42bi 152ei  

14 

 

 
-- -- 

 6d 42ba   

a
 Reaction conditions: 6 (0.5 mmol), 42b (1.5 mmol), [RuCl2(p-cymene)]2 (2.5 mol %), MesCO2H (13a) (30 mol %),                               

1,4-dioxane (2.0 mL), 20 h, 100 °C; 
b 

[RuCl2(p-cymene)]2 (5.0 mol %); 
c
 GC-MS conversion.  

Generally, substitution with methyl or methoxy groups on pyridine resulted in high conversions and 

moderate to good isolated yields (Table 3.17; entries 1 - 10). In several cases, including alkylations 

with cyclopentyl bromide (42bk) (Table 3.17; entries 4 and 5), formation of bis-alkylated products 

152’ in substantial amounts was detected (Table 3.17 a). 4-Methoxy and -methyl substituents 

(entries 6 and 7) decreased the reactivity of substrates 6 to some extent, while the second electron-

donating substituent onto the carbocyclic ring (entry 13) did not affect the yield. Most probably, the 

higher electron density on the nitrogen atom could influence the stability of the possible 

intermediate ruthenacycles thus hampering the C–H bond activation step, and this situation cannot 
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be improved by additional substituent in a carbocyclic ring (entry 13). In contrast to this, 5- (entry 8) 

and 3-methylated substrates (entries 9 and 10) gave high conversions and afforded products 152fa 

and 152fi in improved yields, whereas 5-fluorosubstituted 2-phenylpyridine 6ib demonstrated a 

reduced reactivity (entry 12). The substrate 6ab with a phenyl substituent in position 6 of the 

pyridine moiety (entry 11) and benzo[h]quinoline (6d) (entry 14) did not demonstrate any reactivity 

towards the desired alkylation. Presumably, sterical interactions and changing electron density on 

the ruthenium atom are capable to impede the formation of intermediate ruthenacycles in the 

former case, while rigidity of the skeleton of 6d completely excluded its meta-alkylation in the latter 

one. 
 

In contrast to 2-arylpyridines 6, meta-alkylation of arenes activated by directing groups with two 

nitrogen atoms normally required a higher catalyst loading. Thus, 2-phenylpyrimidine (153) gave high 

conversion when using 5.0 mol % of the ruthenium precursor under otherwise identical reaction 

conditions (Scheme 3.25). Surprisingly, relatively large amount of the bis-alkylated product 154’ was 

formed. 

 

 

Scheme 3.25: Ruthenium-catalyzed direct meta-alkylation of 2-phenylpyrimidine (153). 

Since the alkylation of 2-phenylpyrimidine (153) proved to be less chemoselective, substrates with 

other directing groups have been tested (Scheme 3.26 and Figure 3.6). 

 

 

Scheme 3.26: Examination of different nitrogen-containing directing groups. 
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Figure 3.6: Results for substrates with other DG und the conditions mentioned in Scheme 3.26. 

Summarizing the data from Figure 3.6, arenes with various directing groups, including unprotected 

imidazole (155), pyrazole (156) and N-methylated benzimidazole (157) proved to be reactive towards 

meta-alkylation under mild reaction conditions. The isolated yields could be raised up to 54% when 

applying 5.0 mol % of the ruthenium precatalyst. Nevertheless, pyridine is still considered to be the 

most efficient directing group. 

 

While previous results for the direct ortho-alkylation of electron-deficient ketimines 121 with primary 

alkyl bromides 42a afforded very good yields, the direct meta-alkylation of compound 121a with 

secondary alkyl bromides 42ba and 42bc delivered unsatisfactory yields (Scheme 3.27). 

 

 

Scheme 3.27: Attempted ruthenium-catalyzed direct meta-alkylation of ketimine 121a as the substrate. 

Among other potentially appropriate substrates 159–166 which were tested towards the direct 

ruthenium-catalyzed meta-alkylation with secondary alkyl bromides under the optimized reaction 

conditions (Figure 3.7), unfortunately, none of them demonstrated promising conversions to the 

desired alkylated product. 

 

Figure 3.7: Unreactive substrates for the ruthenium-catalyzed direct meta-alkylation. 
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3.2.4 Experiments towards Enantioselective Direct meta-Alkylation 

 

Upon this newly developed direct meta-selective ruthenium-catalyzed C–C bond forming process, a 

new stereogenic benzylic carbon centre is generated. Therefore, several experiments towards the 

enantioselective C–H bond functionalization were conducted. 

First, enantiomerically pure 2-bromooctane [(S)-42ba] was used as electrophile to determine 

whether the stereochemical information was retained (Scheme 3.28). 

 

 

Scheme 3.28: Ruthenium-catalyzed direct meta-alkylation with enantiopure (S)-42ba. 

The formation of the racemic product was determined under the optimized reaction conditions. A 

radical pathway or the formation of a planary carbo-cation species can be hypothesized. The yield of 

the racemic product (rac)-147ba in this experiment was in the same range as in the preparation with 

racemic 2-bromooctane (42ba) (Table 3.13). 

 

For further experiments, a separation of the two enantiomeric products of the alkylation reaction 

using preparative chiral HPLC-techniques was carried out. The structure and absolute configuration 

for arbitrary selected (R)-enantiomere of the compound 147bj was established by X-ray crystal 

structure analysis of its hydrochloride (Figure 3.8). 

 

Figure 3.8: ORTEP plots (50% probability thermal ellipsoids) of (R)-2-[4-methoxy-2-(hexan-2-yl)phenyl]pyridinium                  

chloride ((R)-167) in the crystal. Numbering does not correspond to the IUPAC rules. All hydrogen atoms have                            

been omitted for clarity. 
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To exclude racemization during the alkylation reaction, an enantioselective pure alkylation product 

(S)-147bj was submitted to the standard reaction conditions (Scheme 3.29). 

 

 

Scheme 3.29: Attempted racemization of (S)-147bj under standard reaction conditions. 

Under these reaction conditions, no racemization on the stereogenic centre was detected, according 

to results of HPLC analysis on chiral stationary phase. Such a configurative stability of stereogenic 

centre under the reaction conditions indicates the possibility to elaborate an enantioselective direct 

alkylation. 

Next, it was tested, whether a chiral solvent could give access to enantiomerically an enriched 

product 147ba. According to a published protocol,187187 enantiomerically pure benzyl ether (R)-168 

was synthesized and degassed several times applying the Freeze-Pump-Thaw degassing procedure. 

However, no product formation was detected through alkylation under these slightly modified 

reaction conditions (Scheme 3.30). 

 

Scheme 3.30: Attempted meta-alkylation of 6ba applying chiral solvent (R)-168. 

 

3.2.4.1 Chiral Amino Acid-derived Additives 

 

The invention of a enantioselective palladium-catalyzed direct alkylation employing mono-protected 

amino acids (MPAA) as chiral ligands by Yu has attracted considerable attention.87 

As these transformations afforded relatively high enantioselectivities and excellent yields, several 

MPAAs (76) were synthesized according to the published procedures and tested as additives for the 

ruthenium-catalyzed direct meta-alkylation (Table 3.18) together with chiral carboxylic acids 170, L-

172 and D-172 (entries 7, 9 and 10) with water or 1,4-dioxane as reaction medium.  
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Table 3.18: Screening for most efficient chiral additive. 

 

 

entry additive solvent yield of 147aa
a 

1 
 

H2O 53% 

 76b   

2 
 

H2O 73% 

 76c   

3 

 

H2O 36% 

 76d   

4 

 

H2O 48% 

 76e   

5 

 

H2O 20% 

 169   

6 

 

H2O 17% 

 76f   

7 
 

H2O 46% 

 76g   

8 

 

H2O -- 

 170   

9 

 
1,4-dioxane -- 

 171   
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entry additive solvent yield of 147aa
a 

10 

 

1,4-dioxane -- 

 L-172   

11 

 

1,4-dioxane -- 

 D-172   

12 

 
1,4-dioxane -- 

 173   

13 

 

1,4-dioxane -- 

 174   

14 

 

1,4-dioxane -- 

 76h   

a
 Reaction conditions: 6aa (0.5 mmol), 42ba (1.5 mmol), [RuCl2(p-cymene)]2 (2.5 mol %), additive (30 mol %),                                

solvent (2.0 mL), 20 h, 100 °C. 

 

Several chiral amino acid-derived additives were tested to determine their efficiency as co-catalyst. 

Mono-N-protected phenylalanine- and leucine-derived additives 76b-76e proved to give satisfactory 

results when using water as the solvent (entries 1 - 4). Among them, pivaloyl-protected leucine (76c) 

(entry 2) gave a better yield than the corresponding Boc-protected amino acid (76e) (entry 4). 

 The use of di-N-Boc-protected leucine 169 (entry 5) as well as of dipeptide 76f (entry 6) did not turn 

out to be beneficial. Free alcohol functionalities inhibited the reaction, and the product formation 

was observed neither with water nor with 1,4-dioxane as reaction medium (entries 8 - 10). The same 

result was obtained using unprotected proline (174), phenylalanine (173) and Boc-protected proline 

76h as ligands in 1,4-dioxane. 

 

Remarkably, upon alkylation of 2-phenylpyridine (6aa) as a standard substrate, MPAA 76c as a co-

catalyst afforded a higher yield (73%, entry 2) than mesityl carboxylic acid (13a) (60%, Table 3.10), 

but with water as the reaction medium. Because of this, several additional screening experiments 

with mono-protected leucine 76g towards optimization of the reaction conditions was performed. 

Thus, the influence of the reagents ratio was investigated (Scheme 3.31). 
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Scheme 3.31: Screening for the optimal ratio between 2-phenylpyridine (6aa) and 2-bromooctane (42ba). 

The results shown in Scheme 3.31 obviously indicate that the ratio of 1:3 still remains the most 

efficient also for MPAAs as co-catalysts. Furthermore, a screening of co-catalyst loading and reaction 

temperature was performed with this most efficient amino acid derivative 76c (Table 3.19). 

 

Table 3.19: Screening for optimal additive loading and reaction temperature. 

 

entry additive 76c [mol %] T [°C] isolated yield a 

1 5 100 -- 

2 10 100 -- 

3 20 100 54% 

5 30 100 73% 

6 30 40 -- 

7 30 60 51% 

8 30 80 60% 

a
 Reaction conditions: 6aa (0.5 mmol), 42ba (1.5 mmol), [RuCl2(p-cymene)]2 (2.5 mol %), H2O (2.0 mL), 20 h. 

 

Upon decreasing the cocatalyst loading to 20 mol%, the yield dropped to 54% (entry 3), while no 

conversion was detected applying less cocatalyst. It was also found that by rising the temperature to 

60 °C the reaction still furnished the desired product in good yield.  

An additional screening for solvents (Table 3.20) indicated no general rules for the optimal solvent. 

Thus, non-polar aromatic solvents (entries 2 and 5) appeared to be of similar efficacy as 1,4-dioxane 

(entry 1), while no transformation proceeded in non-polar n-hexane (entry 6), presumably because of 
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solubility problems, as well as in polar DMA (entry 3), t-AmOH (entry 4) or methanol (entry 7). 

Degassed water still represented the most efficient solvent, however, control experiments without 

base, additive or ruthenium gave negative results (entry 9). Alternatively, triethylamine as the 

organic base was tested (entry 10), however, with moderate success. 
 

Table 3.20: Solvent-screening with pivaloyl-protected leucine 76c as the additive. 

 

entry solvent T  isolated yield
a
  entry solvent T  isolated yield

a
 

1 1,4-dioxane 100 °C 61%  6 n-hexane 65 °C -- 

2 PhMe 100 °C 59%  7 MeOH 65 °C -- 

3 DMA 100 °C --  8 H2O 100 °C 73% 

4 t-AmOH 100 °C --  9 H2O 100 °C --
b, c, or d 

5 m-xylene 100 °C  50%  10 H2O 100 °C 32%
e 

a
 Reaction conditions: 6aa (0.5 mmol), 42ba (1.5 mmol), [RuCl2(p-cymene)]2 (2.5 mol%), H2O (2.0 mL), 20 h; 

b
 no catalyst;     

c
 no additive; 

d 
 no base; 

e
 NEt3 as base (2.0 equiv). 

Applying the optimized reaction conditions, the electron-rich substrates 6ba and 6ca can be alkylated 

with higher yields in comparison with electron-deficient one 6oa, which furnished only moderate 

yield (Scheme 3.32). With a sterically demanding, but electron-donating substituent the product 147 

can be obtained in a good yield, which was in the same range as with mesityl carboxylic acid (13a) as 

additive. 

 

Scheme 3.32: Examples for the direct meta-Alkylation with additive 76c. 
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Unfortunately, although in all reactions discussed above only enantiomerically pure L-amino acid 

derivatives were used, HPLC analysis on chiral stationary phase indicated exclusively the formation of 

racemic products without any enantiomeric excess. 

 

Lipschutz,146 Scarso147 and others have demonstrated the beneficial effect of phase transfer catalysts, 

such as polyoxyethanyl -tocopheryl sebacate (PTS), for transition metal-catalyzed cross-couplings or 

asymmetric Bayer-Villiger oxidation reactions in water. Potential activity of PTS as an additional co-

catalyst has also been tested in ruthenium-catalyzed direct meta-alkylation of 2-phenylpyridine (6aa) 

with pivaloyl-protected leucine (76c) as additive in water as a solvent (Scheme 3.33) 

 

 

Scheme 3.33: Examining the influence of phase transfer catalyst PTS in the                                                                                           

direct meta-alkylation with water as the solvent. 

Decreasing the yield about roughly one third indicated that the reaction presumably proceeded 

rather on water than in water.148  

 

 

 

 

 

                                                           
146

 Lipshutz, B. H.; Ghorai, S.; Leong, W. W. Y.; Taft, B. R.; Krogstad, D. V. J. Org. Chem. 2011, 76, 5061–5073. 
147

 Cavarzan, A.; Bianchini, G.; Sgarbossa, P.; Lefort, L.; Gladiali, S.; Scarso, A.; Giorgio Strukul, G. Chem. Eur. J. 
2009, 15, 7930–7939. 

148
 Reviews: (a) Butler, R. N.; Coyne, A. G. Chem. Rev. 2010, 110, 6302–6337. (b) Narayan, S.; Fokin, V. V.; 
Sharpless, K. B. In Organic Reactions in Water: Principles, Strategies and Applications (ed.: Lindström, U. M), 
Marcus Blackwell Publishing Ltd: N.-Y., 2007, pp. 350–365. 
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3.2.4.2 Phosphoric Acid Esters as Chiral Additives 

 

Since chiral MPAAs as additives afforded high yields of alkylated 2-phenylpyridines 147, but 

unfortunately only in racemic form, other prospective chiral acids were tested. One possibility is 

displayed by chiral phosphoric acids, which were used in numerous enantioselective transformations, 

for example in enantioselective organocatalytic reductive aminations.149 The phosphoric acids 175 

appeared to be suitable co-catalysts for the desired direct alkylations performing meta-C–H bond 

functionalization in a comparable fashion to carboxylic acids (Table 3.21).  

 

Table 3.21: Phosphoric acids as alternative additives for direct meta-alkylation. 

 

entry R additive isolated yield
a 

1 OMe 

 

27%
 

  175a  

2 OMe 

 

58% 

  175b  

3 H 

 

38% 

  175b  

4 H 

 

58% 

  175c  

   
 

 

                                                           
149

 Storer, R. I.; Carrera, D. E.; Ni, Y.; MacMillan, D. W. C. J. Am. Chem. Soc. 2006, 128, 84–86. 
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entry R additive isolated yield
a 

5 OMe 

 

77% 

  175c  

6 H H3PO4 24% 

a
 Reaction conditions: 6 (0.5 mmol), 42ba (1.5 mmol), [RuCl2(p-cymene)]2 (2.5 mol %), additive (30 mol %), H2O (2.0 mL),              

20 h, 100 °C.  

Thus, acyclic phosphoric acids 175b and 175c promoted efficient conversions and ensured high yields 

of 2-phenylpyridines 147aa and 147ba (entries 2, 4 and 5). Unfortunately, the application of 

enantiomerically pure (R)-BINOL-derived phosphoric acid 175a appeared not only to be less efficient, 

but resulted in the formation of racemic product, as indicated by HPLC analysis on chiral stationary 

phase (entry 1). 

 

3.2.5 Direct Ruthenium-Catalyzed meta-Benzylation 

 

Not only ruthenium-catalyzed alkylation with unactivated alkyl halides, but also direct benzylation 

represented an interesting objective. The pioneering studies by Ackermann and Novák demonstrated 

that arylpyridines 6 can easily be ortho-benzylated with primary benzyl chlorides 119 as inexpensive 

electrophiles. These carboxylate-assisted ruthenium-catalyzed C–H functionalizations afforded 

benzylated 2-phenylpyridines 120 in good yields under relatively mild conditions (Scheme 3.34).123  

 

 

Scheme 3.34: Ruthenium-catalyzed direct ortho-benzylation with p-chlorobenzyl chloride (119) according to                       

Ackermann and Novák. 

However, ruthenium-catalyzed benzylation reactions with secondary benzyl halides remained 

unknown until recently, when they were demonstrated to proceed in a meta-functionalization mode, 

similarly to alkylations with unactivated secondary alkyl bromides. The benzylation with (1-

bromopentyl)benzene (176) - prepared in two steps adopting published procedures - was tested for 

suitable reaction conditions (Scheme 3.35). 
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Scheme 3.35: Ruthenium-catalyzed benzylations with (1-bromopentyl)benzene (176). 

Among the two tested standard acidic additives for the direct benzylation with secondary benzyl 

bromide 176, 1-adamantyl- (13c) and mesityl carboxylic acid (13a), the latter again provided the 

highest conversion of the starting material 6. Several solvents were tested, PhMe, NMP, water or 1,4-

dioxane, and 1,4-dioxane prove to give the best isolated yields. For high conversions of the subtrate 

5 mol % of the ruthenium-catalyst were necessary.  

 

The meta-substitution mode in benzylations with secondary benzyl bromides was proved by careful 

2D-NMR studies of the isolated products 177.150 It has to be emphesized that in spite of the high GC-

MS conversion, the isolation of the desired product in a pure form turned out to be difficult. The 

reason for this are side-reactions of (1-bromopentyl)benzene (176), such as dimerization, as 

indicated by mass spectrometry analyses. These products were not isolated in a pure form. Several 

examples which demonstrated the limited scope of such direct meta-benzylations are presented in 

Table 3.22. 

 

Table 3.22: Scope of direct meta-benzylation with (1-bromopentyl)benzene (176). 

 

entry substrate 6 product 176 yield of 177
a 

1 

  

15% 

 6ba 177b  

                                                           
150

 For the detailed information, see: (a) Kuper, C. Bachelor thesis, Universität Göttingen, 2011; (b) Malzkuhn, S. 
Bachelor thesis, Universität Göttingen, 2012. 
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entry substrate 6 product 176 yield of 177
a 

2 

  

11%
b
 

 6ca 177c   

3 

 

-- -- 

 6xa   

4 

 

-- -- 

 6va   

5 

 
 

32% 

 6ua 177u  

6 

 

 

56% 

 6gb 177g  

7 

 

 

30% 

 

 6eb 177e  

8 

  

20% 

 6f 177f  

a
 Reaction conditions: 6 (0.5 mmol), 176 (1.5 mmol), [RuCl2(p-cymene)]2 (5.0 mol %), MesCO2H (13a) (30 mol %), H2O 

(2.0 mL), 20 h, 100 °C; 
b
 [RuCl2(p-cymene)]2 (2.5 mol %). 

Electron-donating or electron-withdrawing substituents at the para-position of the phenyl ring 

(entries 1, 2) influenced less the isolated yield than the substituents on the pyridine moiety (entries 
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7 - 9), while ortho-methyl (6xa) and meta-fluoro substituents (6va) seemed to inhibit the reaction 

(entry 3 and 4). Alternatively, methyl and methoxy substituents on the 4-position of pyridine 

appeared to favor the product formation to some extent (entries 6 - 8). meta-Methoxy-

phenylpyridine 6ua (entry 5) gave comparable yields for the meta-benzylated (32%) and for the 

meta-alkylated products (40%; see entry 3 in Table 3.15).  

 

Nevertheless, the reaction of ortho-methoxyphenylpyridine (6wa) not only afforded the benzylated 

products 177w and 177w’ in a lower isolated yield, but also with inverted regioselectivity, as 

compared to meta-alkylation of the same substrate (Scheme 3.36; entry 2 in Table 3.16). 

 

 

Scheme 3.36: Regioselectivity of the direct meta-benzylation of ortho-methoxyphenylpyridine 6wa: intramolecular 

competition experiment. 

 

3.2.6 Ruthenium-Catalyzed Direct Norbornylation 

 

exo-Bromonorbornane (42bl) is especially attractive for ruthenium-catalyzed direct alkylations, as 

application of this substrate allows to conclude, whether radical steps are involved in C–C bond 

forming process.151 Under the standard reaction conditions, alkylations with this bicyclic secondary 

alkyl bromide 42bl resulted in high GC-MS conversion, however, isolation of pure products was 

possible only in a few cases.  

Since para-fluoro- (6ca) and (para-methoxyphenyl)pyridine (6ba) appeared to be most reactive in 

reactions with unactivated secondary alkyl halides, they were selected for alkylations with exo-

norbornyl bromide 42bl as the electrophile (Scheme 3.37). 

                                                           
151

 Jahn, U. Top. Curr. Chem. 2012, 320, 121–189. 
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Scheme 3.37: Ruthenium-catalyzed Direct norbornylation of 2-phenylpyridines 6ba and 6ca. 

Quantitative conversion of substrates 6b was detected and the products of the direct alkylation were 

obtained in both reactions. Surprisingly, not only the expected meta-alkylated products 147bl and 

147cl, but also the ortho-norbornylated compounds 93bl and 93cl were isolated. The ortho-alkylation 

was to some extent preferable for fluoro-substituted 2-phenylpyridine 6ca, and almost equal 

amounts of the products were formed from the methoxy-substiututed substrate 6ba. Interestingly, 

when N-pivalyl-protected L-leucin (76c) was used as the additive, the meta/ortho ratio shifted from 

1:1 to 2:1 in favor of the meta-alkylated product 147bl.  

 

Notably, the alkylations proceeded with a retention of configuration of the norbornyl moiety. Thus, 

only diastereomers with the sterically less demanding exo-substituted bicycle[2.2.1]heptyl fragment 

were obtained in each case.152  

 

The catalytic cycle must differ to some extent from the catalytic cycle for secondary alkyl bromides. 

Indeed, the formation of ortho-norbornyl derivatives can be hardly interpreted via the proposed 

cooperative C–H-activation/SE
Ar mechanism (Scheme 3.49). A possible reaction pathway via initial 

dehydrobromination followed by hydroarylation according to the Murai-reaction was tested by 

performing the alkylation with norbornene (Scheme 3.38).  

                                                           
152

 For the discussion on reactivity of exo- and endo-substituted norbornanes see: Schreiner, P. R.; Schleyer, P. 
v. R.; Schaefer, H. F., III. J. Org. Chem. 1997, 62, 4216–4228. Steric substituent constants are equal to 4.98 
(exo-norbornyl) and 6.20 (endo-norbornyl). See: Beckhaus, H. D. Angew. Chem. Int. Ed. Engl., 1978, 17, 593–
594. 
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Scheme 3.38: Attempted norbornylation of 2-phenylpyridine (6aa) with norbornene (32h).  

Under the standard reaction conditions with freshly distilled norbornene, only a low conversion was 

observed applying GC-MS spectrometry. This almost completely excluded a hydroarylation as a 

dominating reaction pathway. However, it should be pointed out that in the absence of the 

ruthenium species or the cocatalyst, 2-phenylpyridine (6aa) remained completely unchanged. 

 

Since pyrazole could be used as a directing group for the ruthenium-catalyzed alkylations with 

primary and secondary alkyl bromides, the direct norbornylation of N-phenylpyrazole (87a) with exo-

bromonorbornane (42bl) was examined and disclosed to proceed with high efficacy (Scheme 3.39). 

 

 

Scheme 3.39: Direct ruthenium-catalyzed norbonylation of 2-phenylpyrazole (87a). 

Such an unexpectedly high site- and stereoselectivity of the reaction as well as exclusively high 

isolated yield of the product 118al was rather unexpected. 

 

3.2.7 Mechanistic Studies 

 

This newly discovered unexpected meta-selective direct ruthenium-catalyzed alkylations with 

secondary alkyl halides cannot proceed according to the same mechanism as the ortho-alkylations 

with primary alkyl halides. Elucidation of the possible reaction pathway needs mechanistic studies, 

such as intermolecular as well as intramolecular competition experiments, experiments with 

isotopically labeled starting materials and test reactions with special ruthenium complexes. 
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3.2.7.1 Competition Experiments 

 

Intermolecular competition experiments between para-substituted 2-phenylpyridines (6) were 

performed, in which a twofold excess of both substrates was treated with 2-bromooctane (42ba) as 

the limiting reagent under otherwise identical reaction conditions (Scheme 3.40). The GC-MS ratio of 

the products was in accordance with their yield determined by 1H NMR after workup.  

 

 

 

 

Scheme 3.40: Intermolecular competition experiment between substrates 6ba, 6ca and 6oa. 

 

Experiment A disclosed the electron-rich substrate 6ba to be more reactive in comparison to the 

fluoro-substituted one 6ca. The results of experiment B can show steric to be of relevance.153,154 

However, the well-known ortho-orienting inductive effect of the fluorine-substituent can also play a 

certain role.138 The results of competition in experiments A and C can also be explained by the 

chelating effect of the methoxy substituent in 6ba rather than by electronic or steric factors.  

                                                           
153

 Beckhaus, H. D. Angew. Chem. Int. Ed. Engl. 1978, 17, 593–594. 
154

 For comparable A-values/Conformational Energies for F: 0.25-0.42 kcal/mol; OMe: 0.55 - 0.75 kcal/mol; Me: 
1.74 kcal/mol, see: Stereochemistry of Organic Compounds (Eds.: Eliel, L. E.; Wilen, S. H.) Wiley: New York, 
1994, pp. 695-697. 
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The hierarchy of reactivity derived from these experiments is shown here: 
 

 

Figure 3.9: Substituents hierarchy as obtained from intermolecular competition experiments for meta-alkylation. 

Direct competition experiment between ortho- and meta-alkylation of 2-phenylpyridine (6aa) with 

primary and secondary alkyl bromides 42ba and 42ab, respectively, did not reveal any favorite 

(Scheme 3.41).155 The reaction rates appeared to be almost equal for primary as well as for secondary 

alkyl bromides, while still conserving the individual regioselectivity mode for each electrophile. 

 

 

Scheme 3.41: Direct competition between ruthenium-catalyzed meta- and ortho-alkylations. 

 

 

 

 

 

3.2.7.2 Experiments with Isotopically Labeled Substrates 

 

The determination of the kinetic isotope effect (KIE) is often used as a routine method to decide 

which is the the rate-determining or the product-determining step in a catalytic cycle.156 D/H-

exchange experiments with deuterium labeled substrates can thus provide valuable informations 

concerning the mechanistic course of a C–H bond functionalization reaction. 

 

 

Scheme 3.42. Direct meta-alkylation of (pentadeuteriophenyl)pyridine [D5]-6aa. 

                                                           
155

 Additionally, ortho-n-Octyl-substituted product 93aa has been isolated in 2% yield. 
156

 Simmons, E. M.; Hartwig, J. F. Angew. Chem. Int. Ed. 2012, 51, 3066–3072.  
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As shown in Scheme 3.42, the direct alkylation of deuterated 2-(pentadeuteriophenyl)pyridine ([D5]-

6aa) under the optimized reaction conditions showed almost 50% of D/H-exchange in the ortho-

position. However, the meta-Alkylation of 2-(pentadeuteriophenyl)pyridine ([D5]-6aa) afforded the 

meta-alkylated product [Dn]-147aa in a somewhat. Similar to the ortho-alkylation of [D5]-6aa with 

primary alkyl bromides (Scheme 3.18), a significant H/D-exchange in the ortho positions was 

observed to the same extent in both product [Dn]-147aa (42% and 47%) and the recovered starting 

material [Dn]-6aa (49%), as determined by 1H-NMR studies. This indicates a reversible C–H bond 

metalation step in the ortho-position to the directing group to proceed with comparable rates in 

both meta- and ortho-selective alkylations. While in the latter reaction such a C–H bond activation 

was considered as a necessary first step in the proposed catalytic cycle (Scheme 3.21), its 

involvement in the former can only be speculated about (see below). It is assumed that the 

potassium carbonate can also serve as proton-source for the H/D-exchange. 

 

To exclude the C–D activation step from the mechanistic examinations, meta-alkylation of (3,4,5-

trideuteriophenyl)pyridine ([D3]-6aa) was investigated. The latter has been prepared applying the 

ruthenium-catalyzed D/H-exchange in substrate [D5]-6aa as a preparative method (Scheme 3.43). 

 

 

Scheme 3.43: Preparation of (3,4,5-trideuteriophenyl)pyridine [D3]-6aa. 

Thus, employing the standard reaction conditions with water as the reaction medium, but in the 

absence of an organic halide, a regioselective D/H-exchange was accomplished in high yield.  

 

meta-Selective alkylation of the substrate [D3]-6aa under the optimized reaction conditions furnished 

compound [D2]-147ai in 52% isolated yield (Scheme 3.44), which was comparable with the result 

obtained applying the undeuterated substrate 6aa. Moreover, no further D/H-scrambling in the 

isolated product [D2]-147ai was observed. This allowed the assumption, that the C–C forming step 

might be not the rate-determining step in the reaction. 
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Scheme 3.44: Ruthenium-catalyzed direct meta-alkylation of (trideiteriophenyl)pyridine [D3]-6aa. 

To provide evidence to this hypothesis, an intermolecular competition experiment using 2-

phenylpyridines 6aa and [D3]-6aa in equimolar amounts was performed under the standard reaction 

conditions (Scheme 3.44). 

 

Scheme 3.45: Intermolecular competition experiment between undeuterated 2-phenylpyridine 6aa and [D3]-6aa.  

The slightly lower isolated yield of the meta-alkylated product [Dn]-147aa in this reaction was not 

surprising, as commonly observed when applying an excess of the arennes 6. Careful analysis of the 

1H-NMR spectra of the product [Dn]-147aa as well as of the recovered substrate [Dn]-6aa revealed 

both to be an 1:1 mixture of undeuterated and partially deuterated compounds. Moreover, no 

further H/D-scrambling was detected for both: Therefore, the KI  was determined to be ≈ 1. As a 

consequence, the C–H bond activation step can neither in the ortho- nor in the meta-position be 

rate-determining. 

 

3.2.7.3 Well-Defined Ruthenium (II) Complexes as the Catalysts 

 

Besides identifying the rate-determining step, the nature of the active ruthenium catalytst should 

also be elucidated prior to postulating a reaction mechanism. Thus, well-defined ruthenium (II) 

carboxylate complex 12 was prepared from [RuCl2(p-cymene)]2 and mesityl carboxylic acid (13a) in a 

simple one-step procedure,26a and was then applied under otherwise identical reaction conditions 

(Scheme 3.46) 



94  Ruthenium-Catalyzed Direct meta-Alkylation  
 

 

Scheme 3.46: Direct meta-alkylation with ruthenium (II) biscarboxylate complex 12. 

The reaction proceeded smoothly and gave aa improved yield of the product 147ba (71%) as 

compared to the in-situ [RuCl2(p-cymene)]2/MesCO2H system (60%; entry 3 in Table 3.12). This 

indicated an initial formation of carboxylates 12 from [RuCl2(p-cymene)]2 and MesCO2H as most 

probable initial reaction step. The in-situ formed carboxylate 12 might act as the active ruthenium 

catalyst. 

Furthermore, the ruthenacyclic carboxylate complex 14a was synthesized and examined in the 

reaction (Scheme 3.47). 

 

Scheme 3.47: Direct meta-alkylation with cycloruthenated carboxylate complex 14a. 

Without an additional co-catalysts, this complex 14a gave product 147ba in a comparable isolated 

yield as the simple carboxylate complex 12. This consequently suggests, that the cyclometalated 

species 14a is involved in the catalytic cycle.  

As a control experiment, another easily available ruthenacycle 178 of essentially the same structure, 

but without a carboxylate ligand, was used and did not deliver the alkylated product 147ba (Scheme 

3.48). 

 

Scheme 3.48: Direct meta-alkylation with cycloruthenated chloro complex 178. 
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However, upon employing the complex 178 in the presence of mesityl carboxylic acid (13a) as 

additive, isolation of 147ba in moderate yield was achieved. This indicated the crucial role of 

carboxylate assistance in the mechanism of meta-alkylations. 

 

3.2.7.4 Proposed Catalytic Cycle 

 

Based on the experimental studies summarized above and by comparison of the results obtained by 

Frost and co-workers on the ruthenium-catalyzed meta-sulfonylation,53 the possible mechanistic 

rationalization of regioselective meta-alkylation can be proposed (Scheme 3.49). This mechanism 

stated below can be described as followed. 

 

Scheme 3.49: Mechanistic proposals for the ruthenium-catalyzed direct meta-alkylation of 2-phenylpyridine (6aa) with 

secondary alkyl bromides (42b). 

Initially, the [RuCl2(p-cymene)]2 was converted into the ruthenium (II) carboxylate complex 12, which 

was coordinated by the nitrogen atom of the pyridine directing group. After the ruthenium centre 

was in close proximity to the ortho-C–H bond, a carboxylate-assisted reversible cyclometalation via 

transition state 11 occurred according to the AMLA mechanism. This resulted in the formation of the 
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corresponding cyclometalated ruthenium complex 14. In 1998 Coudret and co-workers have 

reported on stoichiometric electrophilic functionalization of similar ruthenacycles. 157 Remarkably, 

such complexes underwent selective halogenations, oxidative dimerizations and nitrations on the 

less sterically hindered reaction center, thus in meta-position to the pyridyl and the para-position to 

Ru–C -bond.  

 

Taking into account these results as well as the results of experiments with isotopically labeled 

starting materials, the next step in the catalytic cycle can be assumed to proceed through an 

electrophilic aromatic substitution-type mechanism. Finally, the re-aromatization step regenerates 

the active species and delivers the meta-alkylated product 147a, presumably via protodemetalation. 

It is still not fully clear, which of the two final steps – the formation of the Wheland-type 

intermediate 179158 or the re-aromatization step – is the rate-determining one. The exact mechanism 

of activation for the secondary alkyl bromide 42b must be elucidated as well; for example, a SET 

radical pathway can be considered. Since the enantioselective fashion of meta-alkylation still remains 

elusive, the formation of a planar carbocationic or radical intermediates from the secondary alkyl 

halide is not completely excluded.  

 

Recently, Johnson and co-workers reported on the Lewis acid-catalyzed shift of a phenyl group to the 

meta-position in substituted arenes.159 However, no transformation was detected upon attempted 

isomerization of the ortho-alkylated 2-phenylpyridine 147aa under the reported reaction conditions. 

 

 

 

  

 

 

 

                                                           
157

 Coudret, C.; Fraysse, S.; Launay, J.-P. Chem. Commun. 1998, 663–664; and references cited therein. 
158

 Wheland, G. W. J. Am. Chem. Soc. 1942, 64, 900–908. 
159

 Ajaz, A.; McLaughlin, E. C.; Skraba, S. L.; Thamatam, R.; Johnson, R. P. J. Org. Chem. 2012, 77, 9487–9495. 



 Ruthenium-Catalyzed Oxidative Annulations 97 

4 Ruthenium-Catalyzed Oxidative Transformations via C–H/N–H bond 

Cleavage 

 

Besides direct transition metal-catalyzed C–H bond functionalizations, oxidative transition metal-

catalyzed C–H/O–H or C–H/N–H bond functionalizations utilizing arenes or alkenes 88 under mild 

reaction conditions represent an even more sustainable strategy, since no prefunctionalization steps 

have to be performed and mild reaction conditions are possible (Scheme 4.1).104 

 

Scheme 4.1: Oxidative annulations by C–H/O–H or C–H/N–H bond functionalizations. 

Pioneering research in rhodium-catalysis was accomplished by the groups of Miura and Sato, Fagnou 

and Jones.120 These groups reported on efficient annulation reactions of alkynes by C–H/O–H or         

C–H/N–H bond functionalization catalyzed by rather efficient and selective, yet relatively expensive 

rhodium catalysts. In contrast, significantly less expensive ruthenium complexes previously not been 

exploited as catalysts for oxidative C–H/O–H or C–H/N–H bond functionalizations.101a,160 

 

4.1 Ruthenium-Catalyzed Oxidative Annulations 

 

As demonstrated by Satoh and Miura,120 benzamides 86 are suitable substrates for the rhodium-

catalyzed annulation with alkynes 88 via C–H/N–H bond cleavages, thereby giving sustainable excess 

to key structural motifs such as isoquinolones 180. 

 

The alternative ruthenium-based catalytic system for assembling the isoquinolinone skeleton along 

this route was examined by Ackermann, Lygin and Hofmann. Intensive studies towards optimization 

of this reaction indicated the conditions shown in Scheme 4.2 to be the most efficient.  

                                                           
160

 http://www.ebullionguide.com (17.01.13; average last 30 days): 1 ounce of ruthenium = 87.85 USD; 1 ounce 
of rhodium = 1081.90 USD. 
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Scheme 4.2: Optimized reaction conditions for the ruthenium-catalyzed oxidative synthesis of isoquinolone 180aa. 

 

Thus, it was disclosed that 5.0 mol % of [RuCl2(p-cymene)]2 in combination with copper acetate in 

stoichiometric amounts was a competent catalytic system for the oxidative annulation of alkynes 88 

with benzamides 86. Different oxidants, such as more expensive silver salts, demonstrated rather 

inhibiting than accelerating effects and afforded ring opened by-products. Detailed description of this 

newly developed ruthenium-catalyzed reaction required additional investigations to determine scope 

and limitations of these annulations as well as to explain its mode of action. 

 

4.1.1 Synthesis of starting materials 

 

A variety of starting materials was synthesized according to published protocols. Benzamides 86 were 

prepared from the corresponding carboxylic acids and differentially substituted alkynes 88 by 

classical organic methods or by transition metal-catalyzed Sonogashira-Hagihara coupling.161,162 The 

starting material synthesis will not be discussed within this context since no optimization of the 

reaction conditions was performed. 

 

4.1.2 Ruthenium-Catalyzed Synthesis of Isoquinolin-2-ones: Scope and Limitations 

 

N-methylbenzamide (86a) was treated with different symmetrically substituted alkynes 88, with 

electron-rich as well as electron-deficient arenes, under the previously optimized reaction 

conditions. (Scheme 4.3).   

                                                           
161 Mio, M. J.; Kopel, L. C.; Braun, J. B.; Gadzikwa, T. L.; Hull, K. L.; Brisbois, R. G.; Markworth, C. J.; Grieco, P. A. 

Org. Lett. 2002, 4, 3199–3202.  
162

 Goeschke, R.; Stutz, S.; Rasetti, V.; Cohen, N.-C.; Rahuel, J.; Rigollier, P.; Baum, H.-P.; Forgiarini, P.; Schnell, C. 
R.; Wagner, T.; Gruetter, M. G.; Fuhrer, W.; Schilling, W.; Cumin, F.; Wood, J. M.; Maibaum, J. J. Med. Chem. 
2007, 50, 4818−4831. 
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Scheme 4.3: Scope of annulation of N-methylbenzamide (86a) with symetrically substituted alkynes 88. 

According to these experiments, the electron density on the aryl substituents in alkynes 88 appeared 

to exert a minimal influence on the formation of the desired products 180ab – 180ad, as not only 

unsubstituted tolane (88a), but also electron-rich as well as electron-deficient alkynes 88b/88c and 

88d furnished isoquinolones 180ab – 180ad in rather high yields. These promising results prompted 

us to prove the applicability of unsymmetrically substituted alkynes in these cyclisations (Table 

4.1).163 

 

Table 4.1: Annulation of unsymetrically substituted alkynes 88 with N-methylbenzamide (86a). 

 

entry alkyne 88 product 180 product 180’ ratio 180:180’b combined yielda 

1 

 
 

 

1.0:7.2 80%  

 88e 180ae 180ae’    

2 

 
 

 

1.0:9.7 92%  

 88f 180af 180af’    

                                                           
163

 Ackermann, L.; Lygin, A. V.; Hofmann, N. Angew. Chem. Int. Ed. 2011, 50, 6379–6382. 
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entry alkyne 88 product 180 product 180’ ratio 180:180’b combined yielda 

3 

  
 

1.0:7.6 37%  

 88g 180ag 180ag’    

4 

 

-- 

 

-- 66% 

 88h  180ah’    

5 

 
  

1.0:1.4 58%c 

 88i 180ai 180ai’    

a
 Reaction conditions: 88 (0.5 mmol), 180 (1.0 mmol), [RuCl2(p-cymene)]2 (5.0 mol %), Cu(OAc)2

. 
H2O (2.0 equiv),                     

t-AmOH (2.0 mL), 22 h, 100 °C; 
b
 The ratios 180:180’ have been determined by nOe, if no separation could be acomplished;  

c
 Compounds 180ai and 180ai’ were isolated in pure form in 24 and 34% yield, respectively.  

The yields of isoquinolones 180 listed in Table 4.1 ranged from good to very good, except the 

cyclisation with fluorophenyl alkyne 88g (entry 3). It is noteworthy that the ruthenium-catalyzed 

annulation of unsymmetrically substituted Alk–CC–Ar 88 delivered mixtures of 4- (180a) and 3-

arylsubstituted (180a’) regioisomeric products in ratios from 1:10 (entry 2) to 1:7 (entry 1). A 

methoxy substituent in alkyne 88h resulted in a lower yield, but provided a better regioselectivity of 

the reaction (entry 4).  

 

Generally, symmetrically substituted dialkylalkynes 88 appeared to be rather suitable substrates for 

the oxidative annulations.163 The testing reaction of methyl-n-propyl alkyne (88i) with N-

methylbenzamide (86a) afforded the 3-n-propyl- (180ai’) and the 4-n-propylisoquinolone (180ai) in 

comparable quantities and in a ratio of 1.4:1.0 (entry 5). This observation is in accordance with the 

steric substituent constants, being equal to 0.89 (n-propyl) and 0.0 (methyl).153 

 

The reactivity of the enyne 88j under the optimized reaction conditions was of special interest, as 

such experiments could allow (i) to determine the general tolerance of enynes towards C–H/N–H 

bond functionalizations, (ii) to compare reactivity of a double and of a triple bond in 88j and (iii) to 
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open new horizons towards further functionalizations of the products 180. Several examples of 

variously substituted (cyclohexen-1-yl)alkynes were studied (Scheme 4.4). 

 

Scheme 4.4: Enynes 88j-88l as coupling partners for the ruthenium-catalyzed annulation                                                                    

with N-methylbenzamide (86a). 

 

Depending on the nature of the second substituent on the alkyne moiety, moderate to very good 

total yields of (cyclohexen-1-yl)isoquinolones 180aj - 180al were obtained from enynes 88j - 88l as 

cyclization partners. Importantly, while (cyclohexen-1-yl)phenylalkyne (88j) afforded the products 

180aj and 180aj’ in high total yield of 82%, but with poor regioselectivity in favor of 3-

phenylheterocycle 180aj’, the yields upon cyclizations with (cyclohexen-1-yl)alkylalkynes 88k and 88l 

were lower (41 and 56%, respectively). However, the latter two transformations demonstrated much 

better regioselectivity with the predominant formation of the 3-(cyclohexen-1-yl)isoquinolones 

180ak and 180al. This obviously indicates the very important function of a cyclohexen-1-yl 

substituent. While a double bond did not participate in the cyclization, cyclohexen-1-yl possessed 

almost the same regiochemistry-determining orienting power as an aryl substituent (see Table 4.1). 

 

4.1.3 Ruthenium-Catalyzed Synthesis of 2-Pyridones 

 

As this novel ruthenium-catalyzed oxidative annulation showed remarkable potential in the 

isoquinolone synthesis, other possible heterocycles syntheses were considered to be accomplished 

by this method. Since pyridone are omnipresent in a number of pharmaceuticals and biologically 

active natural products,164 this structural motif represented an intriguing synthetic target. Indeed, 

ruthenium-catalyzed oxidative annulations with alkynes via C–H/N–H bond functionalizations 

appeared to be possible also with acrylamides as the substrates. Importantly, no product formation 

was detected without the oxidant or in the absence of the ruthenium catalyst. To elaborate the 

                                                           
164

 (a) Jessen, H. J.; Gademann, K. Nat. Prod. Rep. 2010, 27, 1168–1185. (b) Nagle, P. S.; Pawar, Y. A.; Sonawane, 
A. E.; Bhosale, S. M.; More, D. H. Med. Chem. Res. 2012, 21, 1395–1402. (c) Tamura, R.; Yamada, Y.; Nakao, 
Y.; Hiyama, T. Angew. Chem. Int. Ed. 2012, 51, 5679–5682. 
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optimized reaction conditions for this transformation, cyclization of N-methyl methacrylamide (181a) 

with tolane (88a) was selected as the standard reaction (Scheme 4.5).165 

 

Scheme 4.5: Temperature optimization for ruthenium-catalyzed oxidative synthesis of 2-pyridone 182aa. 

 

Testing the influence of the reaction temperature upon the course of the annulation, the 

temperature of 120 °C was revealed to be optimal for this highly chemo-selective oxidative coupling 

(Scheme 4.5). Further experiments indicated that the amount of oxidant could be reduced with 

inverted ratio of N-methyl methacrylamide (181a) and tolane (88a). Only one equivalent of copper 

acetate is actually necessary to obtain product 182aa in very high yield (Scheme 4.6). 

 

Scheme 4.6: Effect of Cu(COA)2
.
H2O on the oxidative annulation. 

Since rhodium-catalyzed versions of this reaction were known to possess several limitations, such as 

low selectivities for unsymmetrically substituted alkynes or for N-substituted acrylamides with 

electron-withdrawing substituents, the scope and limitations of this novel ruthenium-catalyzed 

synthesis of 2-pyridones 182 was tested. First, oxidative cyclization of symmetrically diaryl-

substituted alkynes 88 with N-phenyl methacrylamide (181b) was studied (Table 4.2). 

 

Table 4.2: Synthesis of 2-pyridones 182 with symmetrically substituted diarylalkynes 88. 

 

                                                           
165

 Ackermann, L.; Lygin, A. V.; Hofmann, N. Org. Lett. 2011, 13, 3278–3281. 
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entry alkyne 88 product 182 yield of 182a 

1 
 

 

97% 

 88c 182bc  

2 

 

 

62% 

 88m 182bm  

3 
 

 

37% 

 88b 182bb  

4 
 

 

69% 

 88d 182bd  

5 
 

 

71% 

 88n 182bn  

6 
 

 

59% 

 88o 182bo  
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a
 Reaction conditions: 181b (1.0 mmol), 88o (0.5 mmol), [RuCl2(p-cymene)]2 (5.0 mol %), Cu(OAc)2

. 
H2O (1.0 equiv),                     

t-AmOH (2.0 mL), 20 h, 120 °C.  

A broad range of symmetrical diarylsubstituted alkynes 88 gave satisfactory results applying the 

optimized reaction conditions. Electron-rich (entries 1 - 3) as well as electron-deficient (entries 4 -6) 

alkynes could be annulated in high yields. The electron-rich di-p-tolylacetylene (88c) furnished 2-

pyridone 182bc in virtually quantitative yield, whereas the reaction with electron-rich, but sterically 

demanding alkyne 88m demonstrated a reduced efficiency (entries 1 and 2). Only the methoxy-

substituted substrate 88b afforded the corresponding product 182bb in moderate yield (entry 3). 

Good results were obtained in the annulation of diarylalkynes with electron-withdrawing 

substituents 88d and 88n (entry 4 and 5), and even a chloro-substituted starting material 88o was 

tolerated and showed no side-transformations, like direct arylations (entry 6).  

 

Symmetrical dialkylalkynes such as hex-3-yne (88p) and oct-4-yne (88q) proved to be feasible 

substrates for the ruthenium-catalyzed annulation as well (Scheme 4.7). 

 

Scheme 4.7: Symmetrical dialkylalkynes 88p and 88q as starting materials in ruthenium-catalyzed oxidative                                             

synthesis of 2-pyridones 182. 

Likewise, the potential application of unsymmetrically-substituted substrates was in the ruthenium-

catalyzed oxidative synthesis of 2-pyridones 182 (Table 4.3). 

 

Table 4.3: Ruthenium-catalyzed annulations of acrylamides 181 with unsymmetrically substituted alkynes 88. 

 
 

entry alkyne 88 product 182 product 182’ ratio 180:180’ combined yielda 

1 

  
 

1.8:1.0 61%b 

 88s 182as 182as’    
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entry alkyne 88 product 182 product 182’ ratio 180:180’ combined yielda 

2 

  
 

4.7: 1.0 25%c 

 88f 182bf 182bf’    

3 

 

-- -- -- -- 

 88t      

4 

 
 

 

1.0:5.5 42%c  

 88h 182bh 182bh’    

5 

 
  

1.0:2.3 41%c 

 88i 182bi 182bi’    

6 

  
 

1.0:1.0 53%d 

 88u 182bu 182bu’    

7 

  
 

1.0:7.4 40%c 

 88l 182bl 182bl’    

8 

 

-- --  -- 

 88v      
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entry alkyne 88 product 182 product 182’ ratio 180:180’ combined yielda 

9 

  

-- -- 15% 

 88w 182bw     

a
 Reaction conditions: 88 (1.0 mmol), 182 (0.5 mmol), [RuCl2(p-cymene)]2 (5.0 mol %), Cu(OAc)2

. 
H2O (1.0 equiv), t-AmOH 

(2.0 mL), 20 h, 120 °C; 
b
 Compounds 182as and 182as’ were isolated in pure form in 39% and 22% yield, respectively;  

c
 

ratios are calculated by comparision with 
1
H-NMR-spectra from pure isolated compounds; 

d
 Products 182bu and 182bu’ 

were isolated in pure form in 26% and 27% yield, respectively. 

 

Under these reaction conditions, the scope of unsymmetrically substituted alkynes 88 appeared to 

be rather limited. While 1-phenyl-1-propyne (88s) still gave a good total yield of the products 182as 

and 182as’, albeit with low regioselectivity (entry 1), increasing the size of the alkyl substituent 

dramatically decreased the conversion (entries 2, 3). Besides the poor regioselectivity, the separation 

of isomers was only possible in few rare cases (endries 1 and 6). Annulations with unsymetrical 

dialkylalkynes 88i and 88u were almost not regeoselective (entries 5 and 6), although the total yield 

of the products was still moderate. While the reactivity of 1-(cyclohexen-1-yl)-1-propyne (88l) (entry 

7)and methylalkylalkynes 88i (entry 5) was essentially the same as in the annulation with N-

methylbenzamide (86a) (see Scheme 4.4), acyclic enyne 88v did furnish the desired product (entry 8). 

However, carbonyl functionality on the acetylenic reactant was tolerated, albeit the isolated yield 

was rather low (entry 9).  

 

Besides the broad scope for the substitution pattern in the acrylamides 181 in their annulations with 

aryl-substituted alkynes, as was demonstrated by Ackermann, Lygin and co-workers,165 better 

versatility of these ruthenium-catalyzed oxidative syntheses of 2-pyridones 182 in comparison with 

the rhodium-catalyzed ones was illustrated by applying the challenging -methylacrylamides 181d 

and 181e with nitro or ester functionality, respectively (Table 4.4).  

 

Table 4.4: Some examples for the scope of acrylamides 181. 
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entry acrylamide 181 alkyne 88 product 182 yield of 182a 

1 
 

 

 

69% 

 181c 88a 182ca  

2 

 
 

 

91% 

 181d 88q 182dq  

3 

 
 

 

78% 

 181e 88q 182eq  

a
 Reaction conditions: 181 (1.0 mmol), 88 (0.5 mmol), [RuCl2(p-cymene)]2 (5.0 mol %), Cu(OAc)2

. 
H2O (1.0 equiv),                     

t-AmOH (2.0 mL), 20 h, 120 °C. 

The success of these oxidative C–H/N–H bond functionalizations was found to be highly depending 

upon the substitution mode on a double bond moiety in acrylamide. Thus, while annulations of α-

phenylacrylamide 181f with tolane (88a) furnished 2-pyridone 182fa in virtually quantitative yield 

(Scheme 4.8), an acceptable yield in the reaction of isomeric β-phenylacrylamide 181g (51%) could 

be obtained only when using a higher loading of the oxidant and prolonged heating. The 

unsubstituted acrylamide 181h demonstrated only poor conversion under the standard condition 

(Scheme 4.8).166 

 

 

 

 

 

 

 

 

 

 

                                                           
166

 Reactions performed by Dr. A. V. Lygin. 
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Scheme 4.8 a: Influence of the substitution on the double bond in acrylamide upon the efficiency of annulation. 

 
 

Scheme 4.8: Influence of the substitution on the double bond in acrylamide upon the efficiency of annulation. 

Furthermore, annulations of (E)-N,2-dimethylbut-2-enamide (181i) were tested with various solvents, 

reaction temperature and oxidants, as summarized in Table 4.5.  

  

Table 4.5: Optimization-studies for ,- dimethylsubstituted N-methylacrylamide 181i. 

 

 
 

entry solvent oxidant (equiv) T 
GC-

conversion 

yielda of  

182ia 182ia’ 

1 t-AmOH Cu(OAc)2 (0.1) 120 °C (40) --b 

2 t-AmOH Cu(OAc)2 (2.0) 120 °C (87) 57% 16% 

3 t-AmOH -- 120 °C (<5) -- 

4 t-AmOH air 120 °C (<5) -- 

5 t-AmOH AgOAc (2.0) 120 °C (65) --b 

6 MeOH Cu(OAc)2 (2.0) 70 °C (44) --b 

7 DME Cu(OAc)2 (2.0) 70 °C (<5) -- 

8 DME Benzochinone (2.0) 120 °C (<5) -- 

9 -- Pinacolone (2.0) 120 °C (<5) -- 

a
 Reaction conditions: 181i(1.0 mmol), 88a (0.5 mmol), [RuCl2(p-cymene)]2 (5.0 mol %), 22 h; 

b
 not determined. 

Interestingly, only the use of two equivalents of copper acetate gave a satisfactory yield (entry 2). 

Notably, compound 182ia’ was isolated in 16% yield as well. This ring-opened minor by-product 

resulted from hydroalkenylation of tolane (88a) under these conditions. 

 

Since this novel ruthenium-catalyzed annulation reactions appeared to be highly efficient in a variety 

of oxidative C–H/N–H bond functionalizations of differently substituted benzamides 86 and 
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acrylamides 181, the analogous C–H/O–H bond activations with readily available and inexpensive 

methacrylic acids 183 was put on the agenda (Scheme 4.9). 

 

Scheme 4.9: Ruthenium-catalyzed oxidative synthesis of -pyrones 184a via oxidative C–H/O–H bond functionalizations. 

Initial studies indicated that the expected a-pyrone 184a could be obtained in 48% isolated yield 

when using three equivalents of acrylic acid 183a already under non-optimized reaction conditions. 

Upon further developed of this project by the Ackermann group, this reaction was adopted towards 

the synthesis of variously substituted isocoumarines as well.167  

 

4.1.4 Mechanistic Studies  

 

To gain insight into the mechanistic course of the ruthenium-catalyzed oxidative annulation of 

alkynes 88 with benzamides 86 or acrylamides 181 via C–H/N–H bond cleavages, several 

intermolecular competition experiments were performed (Scheme 4.10).  

 

 

 

Scheme 4.10: Intermolecular competition experiment between diphenyl- (88a) and dialkylalkynes 88p and 88q. 

The competitive annulation of tolane (88a) and diethylacetylene (88p) with N-methylbenzamide 

(86a) (Scheme 4.10, top) or of tolane (88a) and di-n-propylacetylene (88q) with N-

                                                           
167

 (a) Ackermann, L.; Pospech, J.; Graczyk, K.; Rauch, K. Org. Lett. 2012, 14, 930–933. (b) Deponti, M.; 
Kozhushkov, S. I.; Yufit, D.; Ackermann, L. Org. Biomol. Chem. 2013, 11, 142–148. 



110  Ruthenium-Catalyzed Oxidative Annulations  
 

phenylmethacrylamide (181b) (Scheme 4.10, bottom) showed a predominant formation of the 

diphenylated product 180ap or 182ba, respectively. This might arise from stabilization of an 

intermediate due to conjugation effects (see below in Scheme 4.12). 

Intermolecular competition experiments on reactivity of electron-rich (88c) and electron-deficient 

alkynes (88d) towards N-phenylmethacrylamide (181b) clearly indicated the preferential conversion 

of the former one (Scheme 4.11). 

 

 

Scheme 4.11: Intermolecular competition with electron-rich rich (88d) and electron-deficient alkyne (88c). 

 

Moreover, benzamides with electron-deficient substituents were shown to be favored substrates for 

the oxidative annulation.163 This excluded the electrophilic activation of the C–H bond as a possible 

mechanistic step. Yet, experiments with isotopically labeled substrates and solvents indicated an 

irreversible C–H bond metalation step with a kH/kD ≈ 2.6,168 which was of comparable value as for the 

concerted acetate-assisted metalation.169 The necessity of such acetate assistance for the success of 

transformation was also supported in the course of optimization studies, as no product formation 

was observed in the absence of acetate (Table 4.5; entries 3, 4, 8 and 9). 

 

On the basis of these experimental observations, the following catalytic cycle for the ruthenium-

catalyzed carboxylate-assisted synthesis of isoquinolones 180 and 2-pyridones 182 via oxidative C–H/  

N–H bond functionalizations is proposed (Scheme 4.12).  

 

Initially, the ruthenium-dimer is expected to form an acetate complex 12b similar to those observed 

in the ruthenium-catalyzed carboxylate-assisted direct alkylation (see Scheme 3.21 and Scheme 

3.49). Subsequently, carboxylate-assisted irreversible C–H bond metalation via transition state 184 

with a loss of one molecule of acetic acid upon deprotonation of the amide group formed 

ruthenacycle 185. After coordination of alkyne 88, regioselective migratory insertion deliveres as the 

                                                           
168

 Experiments performed by Dr. A. V. Lygin. 
169

 For palladium-catalyzed acetate-assisted C–H metalation, see: Ryabov, A. D.; Sakodinskaya, I. K.; Yatsimirs-
ky, A. K. Dalton. Trans. 1985, 2629–2638. 
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key intermediate seven-membered rutenacycle 186. Surprisingly, to the best of our knowledge, no 

attempts to explain the mechanism and regioselectivity of this migratory insertion has thus far been 

untertaken, in spite of its prime importance for the general regioselectivity of the annulation. The 

intermediate 186 releases the desired product 181/182 through reductive elimination which is 

followed by subsequent re-oxidation of the resulting ruthenium (0) species core by the copper (II)-

acetate.  

 

Scheme 4.12: Proposed catalytic cycle for the ruthenium-catalyzed oxidative C–H/N–H bond functionalizations. 
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5 Summary and Outlook 

 

Within this thesis, the development of new synthetic methods has been guided in general by the 

principles of green chemistry. Among others, the atom- and step-economical ruthenium-catalyzed           

C–H bond functionalizations in non-toxic reaction media arguably constitute one of the most 

sustainable synthetic methods in preparative organic chemistry.  

 

In the first project, the main efforts were focused on the ruthenium-catalyzed direct alkylation with 

unactivated primary alkyl halides 42a under basic reaction conditions. The development of the 

generally applicable site-selective formation of C(alkyl)–C(aryl) bonds through direct C–H bond 

functionalizations was selected as a central goal of this project. Thus, the substrate scope was shown 

to include unsaturated electrophiles and acetyl-substituted phenylpyridines among others (Scheme 

5.1). 
 

 

Scheme 5.1: The ruthenium-catalyzed direct ortho-alkylation with primary alkyl halides 42a. 

 

The application of inexpensive KOAc as an additive in the direct alkylation of (p-fluorophenyl)pyridine 

(6ca) afforded the desired ortho-alkylated product 93cb in a high yield as well (Scheme 5.2). 

Furthermore, it was demonstrated that water could be employed as reaction medium. 
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Scheme 5.2: Carboxylate-assisted direct alkylation with inexpensive KOAc as additive. 

Mechanistic studies showed the higher reactivity of electron poor substrates. The following order of 

reactivity of different directing groups (DGs) was derived from intermolecular competition 

experiments (Scheme 5.3). 

 

Scheme 5.3: Order of reactivity for different DGs. 

Furthermore, ruthenacycle 14a was shown to be catalytically competent (Scheme 5.4). Detailed 

mechanistic studies suggest the catalytic cycle to involve a carboxylate-assisted reversible C–H bond 

activation followed by activation of the alkyl halide 42a and final reductive elimination. 

 

Scheme 5.4: Direct ortho-alkylation with cycloruthenated complex 14a as the catalyst. 

Future development of the ruthenium-catalyzed direct ortho-alkylations with unactivated primary 

alkyl halides should be focused on extending the substrate scope to include inter alia substrates with 

oxygen-containing directing groups. 

 

Subsequently, an unprecedented meta-selective direct alkylation with various cyclic as well as acyclic 

secondary alkyl bromides 42b as inexpensive electrophiles was devised (Scheme 5.5). 
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Scheme 5.5: Ruthenium-catalyzed direct meta-alkylation with secondary alkyl bromides 42b. 

 

 

Figure 5.1: Selected examples for the ruthenium-catalyzed direct meta-alkylation. 

A broad range of substrates, including ester-substituted arenes and different N-containing directing 

groups were capable of furnishing selectively meta-alkylated products. Detailed mechanistic studies 

were suggested of a reaction manifold, relying on the carboxylate-assisted ortho-C–H activation, and 

subsequent electrophilic aromatic-type substitution.   

 

Various protected amino acids 76 or phosphoric acid diesters 175 were shown to serve as effective 

ligands for the meta-selective direct alkylations, employing water as an environmentally benign 

reaction medium (Scheme 5.6). 
 

 
Scheme 5.6: Direct meta-alkylation using amino acid 76c or phosphoric acid diester 175c as cocatalyst on water. 

Further development of the ruthenium-catalyzed direct meta-alkylations with unactivated secondary 

alkyl bromides 42b should involve enantioselective transformations. As the first step towards 

achieving enantioselectivity, direct norbornylations bear great potential, which was already 

demonstrated by high exo-stereoselectivities but yet poor regioselectivities.  



116  Summary and Outlook  
 

Further, the future investigations of the ruthenium-catalyzed carboxylate-assisted direct meta-

alkylation should address understanding of the mode of action of the C–C bond forming step and the 

activation of the alkyl halide.   

 

In the final project of this thesis, unprecedented ruthenium-catalyzed oxidative alkyne annulations 

were developed (Scheme 5.7). Application of this new catalytic system allowed for the atom- and 

step-economical syntheses of isoquinolones 180 and 2-pyridones 182 in high yields and with ample 

scope. 

 

Scheme 5.7: Ruthenium-catalyzed oxidative annulation for the synthesis of isoquinolones 180 and 2-pyridones 182. 

Thus, variously substituted benzamides 86, acrylamides 181 and benzoic acids 183 were reacted with 

dialkyl- and diarylalkynes 88 furnishing the desired isoquinolones 180, 2-pyridones 182 or a-pyrones 

184, respectively, via ruthenium-catalyzed carboxylate-assisted C–H/N–H or C–H/O–H bond 

cleavage.* Since the regioselectivities with unsymmetrically-substituted alkynes remained rather 

poor, this methodology should be further developed in future studies, towards improving the 

regioselectivity and towards enlarging the scope for the use of terminal alkynes. 
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*After publication of the results presented herein, several further developments of this chemistry have 

been reported by the Ackermann group and others.170 

 

 

 

 

 

 

 

                                                           
170

 (a) Deponti, M.; Kozhushkov, S. I.; Yufit, D. S.; Ackermann, L. Org. Biomol. Chem. 2013, 11, 142–148. (b) 
Wang, L.; Ackermann, L. Org. Lett. 2013, 15, 176–179. (c) Li, B.; Wang, N.; Yujie, L.; Xu, S.; Wang, B. Org. Lett. 
2013, 15, 136–139. (d) Ma, W.; Graczyk, K.; Ackermann, L. Org. Lett. 2012, 14, 6318–6321. (e) Chidipudi, S. R.;  
Khan, I.; Lam, H. W. Angew. Chem. Int. Ed. 2012, 51, 12115–12119. (f) Zhao, P.; Wang, F.; Han, K.; Li, X. Org. 
Lett. 2012, 14, 5506–5509. (g) Kornhaaß, C.; Li, J.; Ackermann, L. J. Org. Chem. 2012, 77, 9190–9198. (h) 
Chinnagolla, R. K.; Jeganmohan, M. Eur. J. Org. Chem. 2012, 417–423. (i) Parthasarathy, K.; Senthilkumar, N.; 
Jayakumar, J.; Cheng, C.-H. Org. Lett. 2012, 14, 3478–3481. (j) Thirunavukkarasu, V. S.; Donati, M.; 
Ackermann, L. Org. Lett. 2012, 14, 3416–3419; (k) Chinnagolla, R. K.; Pimparkar, S.; Jeganmohan, M. Org. 
Lett. 2012, 14, 3032–3035. (l) Ackermann, L.; Lygin, A. V. Org. Lett. 2012, 14, 764–767. (m) Chinnagolla, R. K.; 
Jeganmohan, M. Chem. Commun. 2012, 48, 2030–2032. (m) Ackermann, L.; Pospech, J.; Graczyk, K.; Rauch, K. 
Org. Lett. 2012, 14, 930–933. (n) Ackermann, L.; Wang, L.; Lygin, A. V. Chem. Sci. 2012, 3, 177–180. (o) 
Ackermann, L.; Fenner, S. Org. Lett. 2011, 13, 6548–6551. (p) Li, B.; Feng, H.; Xu, S.; Wang, B. Chem. Eur. J. 
2011, 17, 12573–12577. 
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6 Experimental Section 

6.1 General Remarks 

 

All reactions involving moisture- or air-sensitive reagents or products were performed under a N2 

atmosphere using pre-dried glassware and standard Schlenk techniques. Syringes for handling of dry 

solvents were flushed with dry nitrogen threefold prior to use.  

 

Solvents 

 

All solvents for reactions involving moisture-sensitive reagents were dried, distilled and stored under 

inert atmosphere (argon or nitrogen) according to the following standard procedures.  

 

solvent drying method 

tert-Amylalcohol was stirred over sodium chips for 5 h at 120 °C and distilled under 

ambient pressure.  

Dichloromethan was purified using an solvent purification system (SPS) from MBRAUN. 

N,N-Dimethylformamide was dried over CaH2 for 8 h, degassed and distilled under reduced 

pressure.  

N-Methyl-2-pyrrolidone was stirred for 4 h at 150 °C over CaH2 and subsequently distilled under 

reduced pressure. 

Methanol was stirred over Mg chips for 3 h at 65 °C prior to distillation.  

Tetrahydrofuran was purified using an SPS solvent purification system from MBRAUN.  

Toluene was either predried over KH followed by distillation from sodium 

benzophenone ketyl or purified using a solvent purification system from 

MBRAUN.  

Water was degassed before its use applying repeated Freeze-Pump-Thaw 

degassing procedure.  

1,4-Dioxane was dried by distillation from sodium benzophenone ketyl.  

 

 

Vacuum 

 

The following pressures were measured on the used vacuum pump and were not corrected: 

membrane pump vacuum (MPV): 0.5 mbar, oil pump vacuum (OPV): 0.1 mbar. 
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Melting Points 

 

Melting points were measured using a Stuart® Melting Point Apparatus SMP3 from BARLOWORLD 

SCIENTIFIC. Reported values are uncorrected and are given as a range (M.r.), if the melting occurred 

not at a specific melting point (M.p.). 

 

Chromatography 

 

Analytical thin layer chromatography (TLC) was performed on 0.25 mm silica gel 60F-plates 

(MACHEREY-NAGEL) with 254 nm fluorescent indicator from MERCK. Plates were visualized under UV-

light and developed by treatment with a KMnO4 solution followed by careful applying a heat gun. 

Chromatographic purification of products was accomplished by flash column chromatography on 

MERCK silica gel, grade 60 (0.040–0.063 mm and 0.063–0.200 mm, 70–230 mesh astimated). 

 

High Performance Liquid Chromatography 

 

Preparative and analytical separations were performed on an HPLC-System from KNAUER (Smartline 

Pump 100, Dynamic Mixing Chamber, Injection- and Control-Valve, Smartline UV Detector 2500). 

Separation column ChiralPak IC (250  20 mm or 4.6  250 mm) from DAICEL CHEM. IND. (LTD) was 

used. Organic solvents of HPLC grade were employed. All samples were filtered through 

Polytetrafluorethylen Filter from ROTH (Ø 25 mm, 0.2 μm) or VWR (Ø 13 mm, 0.2 μm) prior to 

separation. 

 

Gas Chromatograpgy 

 

The conversion of the reactions was monitored applying coupled gas chromatography/mass 

spectrometry using G1800C GCDplus with mass detector HP 5971, 5890 Series II with mass detector 

HP 5972 from HEWLETT-PACKARD and 7890A GC-System with mass detector 5975C (Triplex-Axis-

Detector) from AGILENT TECHNOLOGIES equipped with HP-5MS columns (30 m  0.25 mm  0.25 m) 

were used. 

 

Nuclear Magnetic Resonance Spectroscopy 

 

Nuclear magnetic resonance (NMR) spectroscopy was performed at 300 or 600 MHz (1H-NMR), 75.5 

or 125 MHz (13C-NMR, APT) and 282 MHz (19F-NMR) on BRUKER AM 250, VARIAN Unity-300 and Inova 

500 instruments. Chemical shifts are reported as δ-values in ppm relative to the residual proton peak 

of the deuterated solvent or its carbon atom, respectively, or the standard trimethylsilyl (TMS) peak.  
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 1H-NMR 13C-NMR 

CDCl3 : 7.26 ppm 77.0 ppm 

DMSO-D6 : 2.49 ppm 49.5 ppm 

 

For characterization of the observed resonance multiplicities the following abbrevations were 

applied: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), dd (doublet of doublet), dt 

(doublet of triplet), or analogue representations. The coupling constants J are reported in Hertz (Hz). 

 

Infrared Spectroscopy 

 

Infrared spectra were recorded on a BRUKER Alpha-P ATR-spectrometer. Liquid probes have been 

measured as film and solid probes neat. Analysis of the spectral data has been done by using the 

OPUS 3.1 software from BRUKER, respectively OPUS 6. Absorption (~ ) is given in wave numbers               

(cm–1). Spectra were recorded in the range of 4000 to 400 cm–1.  

 

Mass Spectrometry 

 

EI- and EI-HR-MS spectra were measured on a Time-of-Flight mass spectrometer AccuTOF from JOEL. 

ESI-mass spectra were recorded on an Ion-Trap mass spectrometer LCQ from FINNIGAN or on a Time-

of-Flight mass spectrometer microTOF from BRUKER. ESI-HR-MS spectra were recorded on a BRUKER 

APEX IV or a BRUKER DALTONIC (7T, Transform Ion Cyclotron Resonance (FTICR)) mass spectrometer. 

The ratios of mass to charge are indicated, intensities relative to the base peak (I = 100) are written in 

parentheses. 

 

Optical Rotatory Power 

 

Optical rotations were measured with digital polarimeters PERKIN-ELMER 241 or JASCO P-2000 in a 1 

dm cell. The optical rotary powers α in the indicated solvents are given in ° at the indicated 

temperatures. 

 

Crystal Structure Analysis 

 

Crystals for X-ray diffraction crystals of compounds 129, 148, 149 and (R)-167 were obtained by slow 

evaporation of their solutions in DCM/n-octane. The single crystal X-ray data were collected on a 

BRUKER SMART-CCD 6000 diffractometer at 120.0(2) K using graphite monochromator with Mo-Kα 

radiation (λ = 0.71073 Å). All structures were solved by direct method and refined by full-matrix least 
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squares on F2 for all data. All non-hydrogen atoms were refined with anisotropic displacement 

parameters. H-atoms were located on the difference map and refined isotropically. Absolute 

configuration of the compound 147bj was determined on the basis of X-ray data. Crystal and data 

collection parameters are summarized in the Table S-1. 

 

Reagents 

 

Chemicals obtained from commercial sources with purity above 95% were used without further 

purification. 

 

The following compounds were synthesized according to known literature procedures and were pure 

by comparison with the published The analytical data: 

 

Alkyl halides (42b),171 2-phenylpyridines (various 6),172 3-methoxy-2-phenylpyridin (6cb),173 alkynes 

(88c-88o),174 complex [bis(2,4,6-trimethylbenzoyloxy)(p-cymene)-ruthenium(II)] (12) and complex 

{[5-methoxy-2-(pyridine-2-yl)phenyl](2,4,6-trimethylbenzoyloxy)(p-cymene)ruthenium(II)} (14a),175 

complex {[2-(pyridine-2-yl)phenyl](p-cymene)ruthenium(II)chloride} 178,176 amino acid derivatives 

(variuos 76),177 N-methylbenzamide (86a),178 (E)-N,2-dimethylbut-2-enamide (181i),179 pent-1-yn-1-

ylbenzene (88f),180 (E)-dodec-5-en-7-yne (88v),181 (cyclohex-1-en-1-ylethynyl)-benzene (88j),182 1-

methoxy-4-(prop-1-yn-1-yl)benzene (88h),183 1-(prop-1-yn-1-yl)cyclohex-1-ene (88l),184 (3S)-3-bromo-

2,6,6-trimethylbicyclo[3.1.1]heptanes (42bf),185 (R)-[(octan-2-yloxy)methyl]benzene (168),186 octan-2-

                                                           
171

 Sankaranarayanan, S.; Sharma, A.; Chattopadhyay, S. Tetrahedron: Asymmetry 2002, 13, 1373–1378. 
172

 Böhm, V. P. W.; Weskamp, T.; Gstöttmayr, C. W. K.; Herrmann, W. A.  Angew. Chem. Int. Ed. 2000, 39, 1602–
1604. 

173
 Finkentey, C.; Langhals, E.; Langhals, F. Chem. Ber. 1983, 116, 2394–2397. 

174
 Mio, M. J.; Kopel, L. C.; Braun, J. B.; Gadzikwa, T. L.; Hull, K. L.; Brisbois, R. G.; Markworth, C. J.; Grieco, P. A. 
Org. Lett. 2002, 4, 3199–3202. 

175
 Ackermann, L.; Vicente, R.; Potukuchi, H.K.;  Pirovano, V. Org. Lett. 2010, 12, 5032–5035. 

176
 Boutadla, Y.; Al-Duaij, O.; Davies, D. L.; Griffith, G. A.; Singh, K. Organometallics, 2009, 28, 433–440.  

177
 Shi, B.-F.; Maugel, N.; Zhang, Y.-H.; Yu, J.-Q. Angew.Chem. Int. Ed. 2008, 47, 4882–4886. 

178
 Dehmlow, E.V.; Winterfeldt, A. Z. Naturforsch. B 1989, 44, 455–458. 

179
 Beak, P.; Kempf, D. J.; Wilson, K. D. J. Am. Chem. Soc. 1985, 107, 4745–4756. 

180
 Freeburger, M. E.; Spialter, L. J. Org. Chem. 1970, 35, 652–657. 

181
 Yang,  C.; Nolan, S. P. J. Org. Chem. 2002, 67, 591–593. 

182
 Yoshida, M.; Hayashi, M.; Shishido, K. Org. Lett. 2007, 9, 1643–1646.  

183
 Zhang, Z.; Orita, A.; Mineyama, H.; Otera, J. Synlett 2007, 12, 1909–1912. 

184
 Tang, X.; Woodward, S.; Krause, N. Eur. J. Org. Chem. 2009, 17, 2836–2844. 

185
 Ranu, B. C.; Jana, R. Eur. J. Org. Chem. 2005, 755–758. 

186
 Dellaportas, P.; Jones, R. G.; Holder, S. J. Macromol. Rapid. Commun. 2002, 23, 99–103. 
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yl-4-methylbenzenesulfonate,187 2-iodooctane,188 2-chlorooctane,189 2-(1H-pyrrol-3-yl)-pyridine 

(128),190  

 

The following compounds were obtained by the generous courtesy of the persons named below: 

 

Dr. Alexander V. Lygin: 1,2-Bis(3,5-di-tert-butylphenyl)ethyne (88m), N-iso-propylmethacrylamide 

(181c), N-phenylmethacrylamide (181b) 

Dr. Benudhar Punji: 2-(3-n-Propoxyphenyl)pyridine (6sa), 2-(3-iso-propoxyphenyl)pyridine (6ta). 

Dipl.-Chem. Marvin Schinkel: 2-(3-Fluorophenyl)pyridine (3da), 2-(3-methoxyphenyl)pyridine (6ua), 

3-methoxy-2-phenylpyridine (6cb), 3-methyl-2-phenylpyridine (6db), 5-methyl-2-phenylpyridine 

(6fb), 2-(3-(trifluoromethyl)phenyl)pyridine (6ma), 5-fluoro-2-phenylpyridine (6ib), 2,5-

diphenylpyridine (6ab), 2-phenylpyrimidine (153),  

B.Sc. Christian Kuper: (1-Bromopentyl)benzene benzene (176). 

B.Sc. Sabine Malzkuhn: 4-(Pyridin-2-yl)benzonitrile benzene (6qa), 2-(4-methoxyphenyl)-4-

methylpyridine benzene (6f), (1-bromopentyl)benzene benzene (176).  

B.Sc. Michael Hendrich: 2-(2-Fluorophenyl)pyridine (6va).  

B.Sc. Kris Bielefeld: 2-(m-Tolyl)pyridine (6va’). 

Karsten Rauch: [RuCl2(p-cymene)]2. 

  

                                                           
187

 Jalalian, N.; Olofsson, B. Tetrahedron 2010, 66, 5793–5800. 
188

 Irifune, S.; Kibayashi, T.; Ishii, Y.; Ogawa, M. Synthesis 1988, 5, 366–369. 
189

 Bottoni, A.; Lombardo, M.; Neri, A.; Trombini, C. J. Org. Chem. 2003, 68, 3397–3405. 
190

 Smith, N. D.; Huang, D.; Cosford, N. D. P. Org. Lett. 2002, 4, 3537–3539. 
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6.2 General Procedures 

 

General procedure A:                   

Nickel-Catalyzed Kumada-Corriu Cross-Coupling for the Synthesis of 2-Phenyl-

pyridines 6 

 

Under vigorous stirring and an atmosphere of N2, a solution of bromoarene 15 (1.67 equiv) in 

anhydrous THF was added dropwise to the suspension of Mg turnings (1.73 equiv) in anhydrous THF 

(2.5 M with resp. to 15). The reaction mixture was stirred and heated at 75 °C for an additional 1 h. 

After cooling to ambient temperature, the obtained Grignard solution was added dropwise to the 

stirred ice-cold solution of Ni(acac)2 (3.0 mol %), HIPrCl (61) (3.0 mol %) and halopyridine 124 in 

anhydrous THF (1.5 M with resp. to 124) under an atmosphere of N2. The resulting solution was 

stirred at ambient temperature untill complete conversion of the starting material was detected by 

TLC. A saturated aqueous solution of NH4Cl (75 mL) was added, and the aqueous layer was extracted 

with EtOAc (3  75 mL). The combined organic layers were washed with brine (75 mL), dried over 

Na2SO4, filtered and concentrated under reduced pressure. The residue was purified by column 

chromatography on silica gel followed by Kugelrohr distillation to yield the desired product 6. 

 

General procedure B:     

Preparation of Ketimines 121191 

 

A solution of the ketone 84 (1.0 equiv) and para-methoxyaniline (127) (1.25 equiv) in PhMe (0.2 M 

with resp. to 84) with 4 Å MS (6 g/25 mL PhMe) was stirred and heated at 110 °C overnight. After 

cooling to ambient temperature, filtration, concentration under reduced pressure and purification by 

column chromatography on silica gel deactivated with NEt3 (10 vol % in n-hexane), eluent n-hexane, 

yielded the corresponding ketimines 121. 

 

General procedure C:  

Ruthenium-Catalyzed Direct ortho-Selective Alkylation  

 

A suspension of [RuCl2(p-cymene)]2 (2.5 mol %), AdCO2H (13c) (30 mol %), K2CO3 (2.0 equiv), 

respective substrate 6 (1.0 equiv) and primary alkyl bromide 42a (3.0 equiv) in m-xylene, if not 

otherwise specified (0.25 M with resp. to 6) was stirred at 120 °C for 20 h under N2. EtOAc (50 mL) 
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and H2O (50 mL) were added to the reaction mixture at ambient temperature. The separated 

aqueous phase was extracted with EtOAc (2 × 50 mL). The combined organic layers were washed 

with brine (50 mL), dried over Na2SO4 and concentrated in vacuo. The residue residue was purified by 

column chromatography on silica gel (n-hexane/EtOAc) to yield the desired product 93. 

 

General Procedure D:          

Ruthenium-Catalyzed Direct Alkylations of Ketimines 121 

 

A suspension of [RuCl2(p-cymene)]2 (2.5 mol %), 1-AdCO2H (13c) (30 mol %), K2CO3 (3.2 equiv), 

respective ketimine 121 (1.0 equiv) and alkyl bromide 42 (3.0 equiv) in m-xylene (0.25 M with resp. to 

121) was stirred under N2 for 20 h at 120 °C. A solution of ZnCl2 in THF (1.7 M, 1.0 equiv with resp. to 

121), NaBH3CN (2.0 equiv with resp. to 121) and MeOH (0.25 M with resp. to 121) were successively 

added to the reaction mixture at ambient temperature. The reaction mixture was stirred for an 

additional 16 h at ambient temperature and then distributed between between addition of Et2O (15 

mL) and sat. aq. K2CO3 (15 mL). The aqueous phase was extracted with Et2O (2 × 20 mL), the 

combined organic layers were dried over Na2SO4 and concentrated in vacuo. The residue was purified 

by column chromatography on silica gel. 

 

General procedure E:                              

Ruthenium-Catalyzed Direct meta-Selective Alkylation 

 

A suspension of [RuCl2(p-cymene)]2 (2.5 mol %), MesCO2H (13a) (30 mol %), K2CO3 (2.0 equiv), 

substrate 6 (1.0 equiv) and secondary alkyl bromide 42b (3.0 equiv) in 1,4-dioxane, if not otherwise 

specified (0.25 M with resp. to 6), was stirred at 100 °C for 20 h under N2. After cooling to ambient 

temperature, the reaction mixture was distributed between EtOAc (50 mL) and H2O (50 mL). The  

aqueous phase was extracted with EtOAc (2 × 50 mL), the combined organic layers were washed with 

brine (50 mL), dried over Na2SO4 and concentrated in vacuo. The residue was purified by column 

chromatography on silica gel (n-hexane/EtOAc) to yield the desired product 147. 

 

The general procedure F:    

Ruthenium-Catalyzed Annulation of Alkynes 88 with Benzamides 86 

 

A mixture of benzamide 86 (1.0 equiv), alkyne 88 (2.0 equiv), [RuCl2(p-cymene)]2 (5.0 mol %) and 

Cu(OAc)2·H2O (2.0 equiv) in t-AmOH (0.25 M with resp. to 86) was stirred at 100 °C for 22 h under N2 

atmosphere. After cooling the reaction mixture to ambient temperature, it was diluted with aq. NH3 

solution (75 mL, 1.0 wt%) and extracted with EtOAc (3  75 mL). The combined organic extracts were 



 Experimental Section 125 

washed with brine (50 mL) and dried over Na2SO4. After filtration and evaporation of the solvents in 

vacuo, the residue was purified by column chromatography on silica gel. 

 

The general procedure G:    

Ruthenium-Catalyzed Annulation of Alkynes 88 with Acrylamides 181 

 

A mixture of acrylamide (181) (2.0 equiv), alkyne (88) (1.0 equiv), [RuCl2(p-cymene)]2 (5.0 mol %) and 

Cu(OAc)2∙H2O (1.0 equiv) in t-AmOH (0.25 M with resp. to 88) was stirred under N2 atmosphere for 

20 h at 120 °C. At ambient temperature, the reaction mixture was diluted with saturated aq. NH4Cl 

solution (75 mL) and extracted with EtOAc (3  75 mL). The combined organic phase was washed 

with brine (50 mL) and dried over Na2SO4. After filtration and evaporation of the solvents in vacuo, 

the remaining residue was purified by column chromatography on silica gel. 
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7 Experimental Procedures and Analytical Data 

7.1 The Analytical Data for Starting Materials 

 

Synthesis of (S)-2-Bromooctane [(S)-42ba]171  

 

 

 

To the stirred solution of PPh3 (7.93 g, 30.2 mmol) in DCM (25 mL), Br2 (2.3 mL, 28 mmol) was added 

dropwise at 0 °C. After stirring for an additional 0.5 h at 0 °C, a solution of (R)-octan-2-ol (3.2 g, 

25 mmol) and pyridine (2.3 mL, 28 mmol) in DCM (12 mL) was added dropwise at 0 °C, and the 

mixture was stirred for an additional 3 h at ambient temperature. The reaction mixture was 

concentrated in vacuo, the residue was vigorously stirred with n-hexane (50 mL), filtered and 

concentrated again. This operation was repeated twice. Column chromatography of the residue on 

silica gel (eluent n-hexane) yielded the product [(S)-42ba] (3.53 g, 73%) as a colorless liquid. 

 

1H-NMR (300 MHz, CDCl3): δ = 4.14 (ddd, J = 8.1, 6.7, 5.3 Hz, 1H), 1.98-1.64 (m, 5H), 1.56-1.17 (m, 

8H), 0.88 (t, J = 5.8 Hz, 3H). 

13C-NMR (75 MHz, CDCl3): δ = 52.6 (CH), 41.8 (CH2), 32.3 (CH2), 29.2 (CH2), 28.3 (CH2), 27.0 (CH3), 23.2 

(CH2), 14.6 (CH3). 

[α23
D] = +34.4° (MeOH). 

MS (EI) m/z (relative intensity): 113 (26) [M–Br+], 71 (99), 57 (100), 43 (86).  

HR-MS (ESI) m/z calculated for C8H17Br–H+: 191.0435; found: 191.0444. 

The The analytical data are in accordance with those reported in the literature.192  

 

Synthesis of 2-(4-Methoxyphenyl)pyridine (6ba) 
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The general procedure  A was followed using 1-bromo-4-methoxybenzene (15b) (6.3 mL, 50 mmol) 

and 2-chloropyridine 124a) (3.52 g, 34.0 mmol). Purification by column chromatography (n-

hexane/EtOAc 5:1) followed by Kugelrohr distillation yielded 6ba (5.25 g, 94%) as a white solid. 

 

M.p.: 53 - 54 °C [Lit.: 53 - 55 °C].193 

1H-NMR (300 MHz, CDCl3):  = 8.69 (ddd, J = 4.8, 1.7, 1.0 Hz, 1H), 7.82-7.67 (m, 2H), 7.63-7.49 (m, 

2H), 7.38 (t, J = 7.9 Hz, 1H), 7.29-7.18 (m, 1H), 6.97 (ddd, J = 8.2, 2.6, 1.0 Hz, 1H), 3.90 (s, 3H). 

13C-NMR (75 MHz, CDCl3):  = 160.1 (Cq), 157.2 (Cq), 149.6 (CH), 140.9 (Cq), 137.0 (CH), 129.7 (CH), 

122.2 (CH), 120.7 (CH, 119.3 (CH), 115.1 (CH), 112.0 (CH), 55.4 (CH3). 

MS (EI) m/z (relative intensity): 184 (100) [M-H+], 154 (77), 140 (32), 115 (17), 78 (24). 

HR-MS (EI): m/z calculated for C12H12NO+: 186.0919; found: 186.0915. 

The analytical data are in accordance with those reported in the literature.193  

 

Synthesis of 2-(4-Fluorophenyl)pyridine (6ca)  

 

 

 

The general procedure  A was followed using 1-bromo-4-fluorobenzene (15c) (8.79 g, 50.0 mmol) and 

2-chloropyridine (124a) (3.39 g, 30.0 mmol). Purification by column chromatography (n-

hexane/EtOAc 5:1) followed by Kugelrohr distillation yielded 6ca (3.88 g, 75%) as a white solid. 

 

M.p.: 40 °C [Lit.: 38 - 39 °C].194 

1H-NMR (300 MHz, CDCl3):  = 8.53 (ddd, J = 4.8, 1.7, 0.9 Hz, 1H), 8.00-7.91 (m, 2H), 7.71 (ddd, J = 7.2, 

7.4, 1.7 Hz, 1H), 7.67-7.62 (m, 1H), 7.25-7.09 (m, 3H). 

13C-NMR (75 MHz, CDCl3):  = 163.3 (d, JC–F = 248 Hz, Cq), 156.3 (Cq), 149.5 (CH), 136.7 (CH), 135.4 (d, 

JC–F = 3 Hz, Cq), 128.6 (d, JC–F = 8 Hz, CH), 121.9 (CH), 120.1 (CH), 115.5 (d, JC–F = 22 Hz, CH). 

MS (EI) m/z (relative intensity): 173 (100) [M+], 146 (7), 121 (5), 75 (6). 

HR-MS (EI) m/z calculated for C11H8FN+: 173.0641; found: 173.0639. 

The analytical data are in accordance with those reported in the literature.194 
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Synthesis of 2-(3-Fluorophenyl)pyridine (6da)  

 

 

 

The general procedure  A was followed using 1-bromo-3-flourobenzene (15d) (8.86 g, 51.0 mmol) 

and 2-chloropyridine (124a) (3.37 g, 30.0 mmol). Purification by column chromatography (n-

hexane/EtOAc 5:1) followed by Kugelrohr distillation yielded 6da (3.43 g, 66%) as a colorless oil. 

 

1H-NMR (300 MHz, CDCl3):  = 8.68 (ddd, J = 4.8, 1.7, 0.9 Hz, 1H), 7.79-7.63 (m, 4H), 7.41 (ddd, J = 8.2, 

8.2, 6.0 Hz, 1H), 7.26 (ddd, JC–F = 6.7, 4.8, 1.5 Hz, 1H), 7.11 (ddd, J = 8.3, 2.6, 0.9 Hz, 1H). 

13C-NMR (75 MHz, CDCl3):   = 163.3 (d, JC–F = 245 Hz, Cq), 156.0 (d, JC–F = 3 Hz, Cq), 149.7 (CH), 141.7 

(d, JC–F = 8 Hz, Cq), 136.8 (CH), 130.2 (d, JC–F = 8 Hz, CH), 122.6 (CH), 122.4 (d, JC–F = 3 Hz, CH), 120.5 

(CH), 115.7 (d, JC–F = 21 Hz, CH), 113.8 (d, JC–F = 23 Hz, CH). 

MS (EI) m/z (relative intensity): 173 (100) [M+], 154 (11), 146 (15), 125 (8), 120 (9), 75 (7). 

HR-MS (EI): m/z calculated for C11H8FN+: 173.0641; found: 173.0642. 

The analytical data are in accordance with those reported in the literature.172 

 

Synthesis of 4-Methyl-2-(o-tolyl)pyridine (6eb)  

 

  

 

The general procedure  A was followed using 1-bromo-2-methylbenzene (15e) (1.05 g, 6.30 mmol) 

and 2-bromo-4-methylpyridine (124b) (0.59 g, 3.30 mmol). Purification by column chromatography 

(n-hexane/EtOAc 5:1) followed by Kugelrohr distillation yielded 6eb (0.53 g, 88%) as a colorless oil. 

 

1H-NMR (300 MHz, CDCl3): δ = 8.54 (dd, J = 5.1, 0.8 Hz, 1H), 7.41-7.34 (m, 1H), 7.30-7.23 (m, 3H), 

7.23-7.18 (m, 1H), 7.07 (ddd, J = 5.0, 1.7, 0.8 Hz, 1H), 2.40 (s, 3H), 2.36 (s, 3H). 

13C-NMR (75 MHz, CDCl3): δ = 160.1 (Cq), 149.1 (CH), 147.3 (Cq), 140.7 (Cq), 135.9 (Cq), 130.8 (CH), 

129.7 (CH), 128.3 (CH), 125.9 (CH), 125.1 (CH), 122.8 (CH), 21.3 (CH3), 20.4 (CH3). 

MS (EI) m/z (relative intensity): 183 (62) [M+], 167 (100), 152 (19), 115 (10), 89 (15).  

HR-MS (EI) m/z calculated for C13H13N
+: 183.1048; found: 183.1047. 
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The analytical data are in accordance with those reported in the literature.195  

 

Synthesis of 2-(2,4-Dimethoxyphenyl)pyridine (6fa)  

 

 

 

The general procedure  A was followed using 1-bromo-2,4-dimethoxybenzene (15f) (1.89 g, 

8.70 mmol) and 2-chloropyridine (124a) (0.69 g, 6.10 mmol). Purification by column chromatography 

(n-hexane/EtOAc 1:1) followed by Kugelrohr distillation yielded 6fa (0.91 g, 69%) as a colorless oil. 

 

1H-NMR (300 MHz, CDCl3): δ = 8.66 (ddd, J = 4.8, 1.8, 0.9 Hz, 1H), 7.92-7.72 (m, 2H), 7.66 (ddd, J = 8.1, 

7.4, 1.9 Hz, 1H), 7.15 (ddd, J = 7.4, 4.9, 1.2 Hz, 1H), 6.62 (dd, J = 8.5, 2.4 Hz, 1H), 6.56 (d, J = 2.4 Hz, 

1H), 3.86 (s, 3H), 3.85 (s, 3H). 

13C-NMR (75 MHz, CDCl3): δ = 161.0 (Cq), 157.8 (Cq), 155.5 (Cq), 148.9 (CH), 135.3 (CH), 131.7 (CH), 

124.4 (CH), 121.8 (Cq), 120.8 (CH), 104.9 (CH), 98.6 (CH), 55.3 (CH3), 55.2 (CH3). 

MS (EI) m/z (relative intensity): 214 (100) [M-H+], 200 (14), 185 (47), 170 (47), 142 (53), 80 (30).  

HR-MS (EI) m/z calculated for C13H13NO2-H
+: 214.0868; found: 214.0867. 

The analytical data are in accordance with those reported in the literature.196 

 

Synthesis of 2-(4-Fluoro-2-methoxyphenyl)pyridine (6ga)  

 

 

 

The general procedure  A was followed using 1-bromo-4-flouro-2-methoxybenzene (15g) (2.06 g, 

10.0 mmol) and 2-chloropyridine (124a) (1.14 g, 9.90 mmol). Purification by column chromatography 

(n-hexane/EtOAc 1:1) followed by Kugelrohr distillation yielded 6ga (0.67 g, 33%) as a colorless oil. 
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1H-NMR (300 MHz, CDCl3): δ = 8.67 (ddd, J = 4.9, 1.9, 1.0 Hz, 1H), 7.79-7.72 (m, 2H), 7.67 (ddd, J = 8.0, 

7.4, 1.9 Hz, 1H), 7.18 (ddd, J = 7.4, 4.9, 1.3 Hz, 1H), 6.85-6.55 (m, 2H), 3.83 (s, 3H). 

13C-NMR (126 MHz, CDCl3): δ = 164.0 (d, JC-F = 248 Hz, Cq), 158.2 (d, JC-F = 10 Hz, Cq), 155.3 (Cq), 149.5 

(CH), 135.8 (CH), 132.4 (d, JC-F = 10 Hz, CH), 125.3 (d, JC-F = 3 Hz, Cq), 124.9 (CH), 121.7 (CH), 107.6 (d, 

JC-F = 21 Hz, CH), 99.5 (d, JC-F = 26 Hz, CH), 55.9 (CH3). 

19F-NMR (282 MHz, CDCl3): δ = -109.40 - 111.63 (m). 

HR-MS (ESI) m/z calculated for C12H10FNO+H+: 204.0819; found: 204.0824. 

 

Synthesis of N,N-Dimethyl-3-(pyridin-2-yl)aniline (6ha)  

 

 

 

The general procedure  A was followed using 3-bromo-N,N-dimethylaniline (15h) (5.00 g, 25.0 mmol) 

and 2-chloropyridine (124a) (2.24 g, 19.8 mmol). Purification by column chromatography (n-

hexane/EtOAc 9:1) followed by Kugelrohr distillation yielded 6ha (2.92 g, 74%) as yellow oil. 

 

1H-NMR (300 MHz, CDCl3): δ = 8.77-8.54 (m, 1H), 7.81-7.68 (m, 2H), 7.45 (dd, J = 2.7, 1.6 Hz, 1H), 

7.39-7.17 (m, 3H), 6.84 (ddd, J = 8.0, 2.7, 1.2 Hz, 1H), 3.04 (s, 6H). 

13C-NMR (75 MHz, CDCl3): δ = 158.5 (Cq), 151.5 (Cq), 149.6 (CH), 140.3 (Cq), 137.5 (CH), 130.0 (CH), 

122.6 (CH), 121.6 (CH), 116.2 (CH), 114.2 (CH), 111.9 (CH), 41.4 (CH3). 

MS (EI) m/z (relative intensity): 198 (100) [M+], 183 (72), 168 (12), 154 (38), 127 (14), 91 (14), 43 (15).  

HR-MS (EI) m/z calculated for C13H14N2-H
+: 197.1079; found: 197.1081. 

The analytical data were in accordance with those reported in the literature.197 

 

Synthesis of 2-(4-tert-Butylphenyl)pyridine (6ia)  
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The general procedure  A was followed using 1-bromo-4-tert-butylbenzene (15i) (5.40 g, 25.3 mmol) 

and 2-chloropyridine (124a) (2.34 g, 20.7 mmol). Purification by column chromatography (n-

hexane/EtOAc 9:1) followed by Kugelrohr distillation yielded 6ia (3.3 g, 75%) as a colorless oil. 

 

1H-NMR (300 MHz, CDCl3): δ = 8.68 (dt, J = 4.9, 1.4 Hz, 1H), 8.00-7.83 (m, 2H), 7.78-7.64 (m, 2H), 7.58-

7.41 (m, 2H), 7.21 (ddd, J = 5.8, 4.9, 2.7 Hz, 1H), 1.36 (s, 9H). 

13C-NMR (75 MHz, CDCl3): δ = 157.6 (Cq), 152.3 (Cq), 149.7 (CH), 136.8 (CH), 136.7 (Cq), 126.7 (2xCH), 

125.9 (CH), 121.9 (CH), 120.5 (CH), 34.8 (Cq), 31.5 (CH3). 

MS (EI) m/z (relative intensity): 211 (24) [M+], 196 (100), 181 (10), 168 (11).  

HR-MS (ESI) m/z calculated for C15H17N
+: 211.1361; found: 211.1363. 

The analytical data are in accordance with those reported in the literature.198  

 

Synthesis of 2-(2,3,4,5,6-Pentadeuterophenyl)pyridin ([D5]-6aa) 

 

 

 

The general procedure  A was followed using 1-bromo-2,3,4,5,6-pentadeuterobenzene ([D5]-15a) 

(2.32 g, 14.3 mmol) and 2-chloropyridine (124a) (1.21 g, 10.7 mmol). Purification by column 

chromatography (n-hexane/EtOAc 5:1) followed by Kugelrohr distillation yielded [D5]-6aa (1.1 g, 64%) 

as a colorless oil. 

 

1H-NMR (300 MHz, CDCl3):  = 8.70 (ddd, J = 4.8, 1.4, 0.3, Hz, 1 H), 7.80-7.71 (m, 2 H), 7.25-7.21 (m, 

1H). 

13C-NMR (75 MHz, CDCl3):  = 156.9 (Cq), 149.2 (CH), 138.8 (Cq), 136.3 (CH), 128.0 (t, JC-D = 25 Hz, Cq), 

127.8 (t, JC-D = 25 Hz, CD), 126.1 (t, JC-D = 25 Hz, CD), 121.7 (CH), 120.1 (CH). 

HR-MS (EI) m/z calculated for C11H4D5N
+: 161.1127; found: 161.1122. 

The analytical data were in accordance with those reported in the literature.199 
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Synthesis of 4-(Pyridin-2-yl)pyrimidin-2-amine (127a)200  

 

 

 

A solution of guanidinine nitrate b (3.14 g, 25.0 mmol) in abs. EtOH (20 mL) was added to a stirred 

solution of pyridylpropenone a (3.5 g, 20.0 mmol) in boiling abs. EtOH (30 mL) and stirring was 

continued for 20 min. To this mixture Na (0.9 g, 40 mmol) in EtOH (20 mL) was added and the 

reaction mixture stirred at 80 °C for 16 h. The solution was allowed to cool to ambient temperature 

and the precipitate was removed by filtration followed by concentration of the filtrate under reduced 

pressure. After purification by column chromatography (EtOAc/DCM 95:5) the product 127a (1.72 g, 

50%) was isolated as a yellow solid.  

 

M.r.: 133 - 134 °C [Lit: 132 - 137 °C].200 

1H-NMR (300 MHz, CDCl3): δ = 8.69 (ddd, J = 4.8, 1.8, 0.9 Hz, 1H), 8.43 (d, J = 5.1 Hz, 1H), 8.31 (dt, J = 

7.9, 1.1 Hz, 1H), 7.80 (td, J = 7.8, 1.8 Hz, 1H), 7.62 (d, J = 5.2 Hz, 1H), 7.35 (ddd, J = 7.6, 4.8, 1.2 Hz, 

1H), 5.35 (s, 2H). 

13C-NMR (75 MHz, CDCl3): δ = 164.2 (Cq), 163.3 (Cq), 159.5 (CH), 154.5 (Cq), 149.6 (CH), 137.0 (CH), 

125.2 (CH), 121.6 (CH), 108.2 (CH). 

MS (EI) m/z (relative intensity): 172 (100) [M+], 145 (12), 131 (10), 103 (19), 79 (21).  

HR-MS (EI) m/z calculated for C9H8N4
+: 172.0749; found: 172.0746. 

The analytical data are in accordance with those reported in the literature.200 

 

Synthesis of N-Methyl-4-(pyridin-2-yl)-pyrimidin-2-amine (127b) & N,N-Dimethyl-4-(pyridin-2-yl)-

pyrimidin-2-amine (127c)  
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To a stirred solution of 127a (1.7 g, 10 mmol) in dry THF (50 mL) was added NaH (1.0 g, 25 mmol) in 

one portion. The reaction mixture was stirred for 8 h at ambient temperature. MeI (1.6 mL, 25 mmol) 

was added dropwise and the solution was stirred over night. After addition of aq. NH4Cl-solution 

(50 mL) and separation of the organic layer, the aq. layer was extracted with EtOAc (2 x 50 mL). The 

combined organic phase was washed with H2O (50 mL) and brine (50 mL) and then dried over 

anhydrous Na2SO4. After filtration and evaporation, column chromatography and Kugelrohr 

distillation gave 127b (0.48 g, 24%) and 127c (0.79 g, 43%) as yellow oils. 

 

 

 

(127b) 

1H-NMR (600 MHz, CDCl3): δ = 8.68 (ddd, J = 4.7, 1.8, 0.9 Hz, 1H), 8.43 (d, J = 5.1 Hz, 1H), 8.38 (d, J = 

7.9 Hz, 1H), 7.80 (td, J = 7.7, 1.8 Hz, 1H), 7.56 (d, J = 5.1 Hz, 1H), 7.34 (ddd, J = 7.5, 4.8, 1.2 Hz, 1H), 

5.37 (s, 1H), 3.06 (d, J = 5.0 Hz, 3H). 

13C-NMR (75 MHz, CDCl3): δ = 163.7 (Cq), 163.3 (Cq), 159.2 (CH), 155.0 (Cq), 149.4 (CH), 136.9 (CH), 

125.0 (CH), 121.5 (CH), 106.9 (CH), 28.6 (CH3). 

MS (EI) m/z (relative intensity): 186 (100) [M+], 157 (52), 130 (36), 105 (10), 79 (20).  

HR-MS (EI) m/z calculated for C10H10N4
+: 186.0905; found: 186.0903. 

 

 

 

(127c) 

1H-NMR (300 MHz, CDCl3): δ = 8.66 (ddd, J = 4.8, 1.8, 0.9 Hz, 1H), 8.46 (d, J = 5.1 Hz, 1H), 8.42 (dt, J = 

7.9, 1.1 Hz, 1H), 7.79 (td, J = 7.7, 1.8 Hz, 1H), 7.50 (d, J = 5.0 Hz, 1H), 7.33 (ddd, J = 7.5, 4.8, 1.2 Hz, 

1H), 3.26 (s, 6H). 

13C-NMR (75 MHz, CDCl3): δ = 163.5 (Cq), 162.9 (Cq), 159.3 (CH), 155.8 (Cq), 149.7 (CH), 137.3 (CH), 

125.3 (CH), 121.9 (CH), 105.7 (CH), 37.6 (2xCH3). 

MS (EI) m/z (relative intensity): 200 (100) [M+], 185 (67), 171 (79), 156 (36), 111 (14), 97 (21), 79 (25), 

69 (30), 57 (39), 43 (51).  

HR-MS (EI) m/z calculated for C11H12N4
+: 200.1062; found: 200.1068. 
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The analytical data are in accordance with those reported in the literature.201  

 

Synthesis of 1-(6-Bromopyridin-3-yl)ethanone (124z)   

 

 

 

To a stirred solution of 2,5-dibromopyridine (10.6 g, 44.7 mmol) in dry Et2O (200 mL) at -78 °C was 

added dropwise a solution of t-BuLi (1.6 M, 29 mL, 45 mmol) in n-pentane over 10 min. After 30 min 

of stirring at -78 °C, DMA (5.2 mL, 50 mmol) was added and stirring continued for 1.5 h. The resulting 

mixture was warmed to ambient temperature and poured into water (50 mL). The organic phase was 

washed with water (2 × 30 mL). The aqueous layer was extracted with Et2O (3 × 30 mL). The 

combined organic layers were dried over Na2SO4. Removal of the solvent under reduced pressure 

gave a yellow solid (4.1 g, 46%), which was used without further purification. 

 

M.r.: 127 - 128 °C [Lit.: 127 - 128 °C]. 

1H-NMR (300 MHz, CDCl3): δ = 8.89 (d, J = 2.5 Hz, 1H), 8.07 (dd, J = 8.3, 2.5 Hz, 1H), 7.76-7.52 (m, 1H), 

2.62 (s, 3H). 

13C-NMR (75 MHz, CDCl3): δ = 195.7 (Cq), 150.5 (CH), 147.1 (Cq), 137.8 (CH), 131.6 (Cq), 128.7 (CH), 

26.9 (CH3). 

MS (EI) m/z (relative intensity): 199 (35) [M+], 185 (100), 157 (48), 91 (43), 72 (39).  

HR-MS (EI) m/z calculated for C7H6BrNO+: 198.9633; found: 198.9633. 

The analytical data are in accordance with those reported in the literature.202 

 

Synthesis of 1-(6-Phenylpyridin-3-yl)ethanone (6ze)  

 

 

                                                           
201

 Muller, K.; Schubert, A.; Jozak, T.; Ahrens-Botzong, A.; Schnemann, V.; Thiel, W. R. Chem. Cat. Chem 2011, 3, 
887–892. 

202
 El-Deeb, I.M.; Lee, S. H. Bioorg. Med. Chem. 2010, 18, 3860–3874. 
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Pd(OAc)2 (80 mg, 0.35 mmol), PPh3 (0.08 g, 0.25 mmol), aq. solution of K2CO3 (2.0 M, 16 mL, 32 mmol) 

and distilled water (32 mL) were added to a degassed solution of 5-acetyl-6-bromopyridine (124z) 

(4.2 g, 21 mmol) and phenylboronic acid (52e) (3.22 g, 27.0 mmol) in 1-propanol (50 mL), and the 

mixture was refluxed over night. After cooling to ambient temperature, distilled water (50 mL) was 

added and the mixture was extracted with EtOAc (2 x 50 mL). The organic layer was dried over 

anhydrous Na2SO4, and the solvent was evaporated to give the crude ketone, which was purified by 

recrystallisation from MeOH/DCM to give 6ze (1.9 g, 46%) as colorless plates. 

 

M.p.: 119 °C [Lit.: 119 - 120 °C]. 

1H-NMR (300 MHz, CDCl3): δ = 9.23 (dd, J = 2.3, 0.9 Hz, 1H), 8.29 (dd, J = 8.4, 2.3 Hz, 1H), 8.10-8.02 

(m, 2H), 7.84 (dd, J = 8.4, 0.9 Hz, 1H), 7.59-7.43 (m, 3H), 2.66 (s, 3H). 

13C-NMR (75 MHz, CDCl3): δ = 197.0 (Cq), 161.5 (Cq), 150.7 (CH), 138.7 (Cq), 136.9 (CH), 131.2 (Cq), 

130.6 (CH), 129.5 (2xCH), 127.9 (2xCH), 120.7 (CH), 27.3 (CH3). 

MS (EI) m/z (relative intensity): 197 (68) [M+], 182 (100), 154 (45), 127 (50), 77 (23), 43 (29).  

HR-MS (EI) m/z calculated for C13H11NO+: 197.0841; found: 197.0837. 

The analytical data are in accordance with those reported in the literature.202  

 

Synthesis of 1-(6-Phenylpyridin-3-yl)ethanol (125b) 

 

 

 

NaBH4 (0.4 g , 10.6 mmol) was added portionwise to a stirred solution of 6xe (1.8 g, 9.1 mmol) in 

EtOH (10 mL). The reaction mixture was stirred at ambient temperature for 2 h. After evaporation 

the remaining residue was washed with brine (10 mL) and extracted with DCM (2 x 25 mL). The 

organic layer was dried over anhydrous Na2SO4 and filtered. After evaporation of the solvent 125xe 

could be isolated quantitatively as a yellow oil and was used without further purification. 

 

1H-NMR (300 MHz, CDCl3): δ = 8.53 (d, J = 2.2 Hz, 1H), 8.01-7.81 (m, 2H), 7.70 (dd, J = 8.3, 2.2 Hz, 1H), 

7.61 (dd, J = 8.2, 0.8 Hz, 1H), 7.49-7.32 (m, 3H), 4.88 (q, J = 6.6 Hz, 1H), 3.62 (s, 1H), 1.48 (d, J = 6.6 Hz, 

3H). 
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13C-NMR (75 MHz, CDCl3): δ = 156.6 (Cq), 147.3 (CH), 139.8 (Cq), 139.1 (CH), 134.2 (CH), 129.0 (CH), 

128.8 (CH), 127.0 (CH), 120.6 (CH), 67.7 (CH), 25.2 (CH3). 

MS (EI) m/z (relative intensity): 199 (45) [M+], 184 (100), 156 (52), 127 (10), 78 (11), 43 (11).  

HR-MS (EI) m/z calculated for C13H13NO+: 199.0997; found: 199.0992. 

 

Synthesis of 5-(1-Methoxyethyl)-2-phenylpyridine (126b) 

 

 

 

To a stirred solution of the respective alcohol 125xe (1.6 g, 8.0 mmol) in dry THF (25 mL) NaH (0.55 g 

of a 60% suspension in mineral oil, 13.5 mmol) was added in one portion. The reaction mixture was 

stirred for 8 h at ambient temperature. MeI (0.85 mL, 13.5 mmol) was added dropwise and the 

solution was stirred over night. After addition of aq. NH4Cl-solution (30 mL) and separation of the 

organic layer, the aq. layer was extracted with EtOAc (2 x 30 mL). The combined organic phase was 

washed with H2O (30 mL) and brine (30 mL) and was dried over anhydrous Na2SO4. Filtration, 

evaporation, column chromatography (n-hexane/EtOAc 3:2) and Kugelrohr distillation gave 126b 

(1.7 g, 99%) as a yellow oil. 

 

1H-NMR (300 MHz, CDCl3): δ = 8.61 (dd, J = 1.6 Hz, 1H), 8.07-7.91 (m, 2H), 7.73 (d, J = 1.6 Hz, 2H), 

7.53-7.36 (m, 3H), 4.39 (q, J = 6.5 Hz, 1H), 3.27 (s, 3H), 1.50 (d, J = 6.5 Hz, 3H). 

13C-NMR (75 MHz, CDCl3): δ = 157.1 (Cq), 148.3 (CH), 139.3 (Cq), 137.2 (Cq), 134.7 (CH), 129.0 (CH), 

128.9 (CH), 127.0 (CH), 120.6 (CH), 77.3 (CH), 56.7 (CH3), 23.7 (CH3). 

MS (EI) m/z (relative intensity): 213 (20) [M+], 198 (100), 182 (37), 154 (12), 127 (12), 43 (13).  

HR-MS (EI) m/z calculated for C14H15NO+: 213.1154; found: 213.1159. 

 

Synthesis of Methyl-4-(pyridin-2-yl)-benzoate (6pa)203  
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 Deshmukh, M.; Patil, S.; Banerjee, K.; Oulkar, D.; Shripanavar, D. Der Pharmacia Lettre 2011, 3, 264–266. 
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To a solution of 4-(pyridin-2-yl)benzoic acid (6ra) (0.80 g, 4.0 mmol) in MeOH (5.0 mL) conc. H2SO4 

(0.25 mL) was added and the reaction mixture was stirred at 70 °C for an additional 7 h. After 

completion of the reaction, the mixture was cooled to ambient temperature and neutralized with aq. 

NaHCO3 (25 mL). The remaining residue was extracted with chloroform (2  50 mL). The solvent was 

removed under reduced pressure to give 6pa (0.39 g, 46%) as an off-white solid.  

 

M.p.: 99 °C [Lit.: 98 - 99 °C].204 

1H-NMR (600 MHz, CDCl3): δ = 8.72 (ddd, J = 4.9, 1.4, 1.3 Hz, 1H), 8.26-8.10 (m, 2H), 8.09-8.00 (m, 

2H), 7.83-7.71 (m, 2H), 7.36-7.20 (m, 1H), 3.94 (s, 3H). 

13C-NMR (75 MHz, CDCl3): δ = 167.0 (Cq), 156.3 (Cq), 150.0 (CH), 143.6 (Cq), 137.1 (CH), 130.5 (Cq), 

130.2 (CH), 127.0 (CH), 123.0 (CH), 121.1 (CH), 52.3 (CH3). 

MS (EI) m/z (relative intensity): 213 (63) [M+], 182 (100), 154 (54), 127 (24), 77 (11).  

HR-MS (EI) m/z calculated for C13H11NO2
+: 213.0790; found: 213.0794. 

The analytical data are in accordance with those reported in the literature.204  

 

Synthesis of 4-(Pyridin-2-yl)benzoic acid (6ra) 

 

 

 

A solution of 2-p-tolylpyridine (6oa) (1.99 g, 11.8 mmol) and pyridine (5.9 mL) in water (30 mL) was 

heated at 100 °C. KMnO4 (5.88 g, 37.2 mmol) was added in one portion and the reaction mixture was 

stirred at 100 °C for an additional 5 h. After cooling to ambient temperature, the solution was filtered 

and the filtrate acidified with conc. aq. HCl to pH 5. Filtration and evaporation yielded 6ra (0.94 g, 

40%) as a white solid. 

 

M.p.: 241 °C. [Lit.: 236–238 °C].205 

1H-NMR (300 MHz, DMSO-d6): δ = 12.96 (s, 1H), 8.71 (d, J = 4.7 Hz, 1H), 8.49-7.65 (m, 6H), 7.41 (dd, J 

= 6.1, 6.1 Hz, 1H). 

                                                           
204

 Nunez, A.; Sanchez, A.; Burgos, C.; Alvarez-Builla, J. Tetrahedron 2004, 60, 6217–6224. 
205

 Bailey, T. R. Tetrahedron Lett. 1986, 27, 4407–4410. 
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13C-NMR (75 MHz, DMSO-d6): δ = 167.0 (Cq), 154.7 (Cq), 149.5 (CH), 142.3 (Cq), 137.5 (CH), 131.1 (Cq), 

129.6 (CH), 126.6 (CH), 123.3 (CH), 120.9 (CH). 

MS (EI) m/z (relative intensity): 199 (100) [M+], 182 (46), 154 (70), 127 (24).  

HR-MS (EI) m/z calculated for C12H9NO2
+: 199.0633; found: 199.0637. 

The analytical data were in accordance with those reported in the literature.206  

 

Synthesis of (E)-N-[1-(4-Fluorophenyl)ethylidene]-4-methoxyaniline (121a)  

 

 

 

The general procedure  B was followed using 4-fluoroacetophenone (0.71 g, 5.1 mmol) and anisidine 

(0.77 g, 6.3 mmol) in PhMe (25 mL). Purification by column chromatography (n-hexane) yielded 121a 

(0.75 g, 60%) as a yellow solid. 

 

M.r.: 75 - 81 °C. 

1H-NMR (300 MHz, CDCl3): δ = 7.97-7.92 (m, 2H), 7.09 (d, J = 8.6 Hz, 2H), 6.89 (dd, J = 9.0, 2.4 Hz, 2H), 

6.73 (ddd, J = 9.0, 2.4,2.4 Hz, 2H), 3.80 (s, 3H), 2.22 (s, 3H). 

13C-NMR (75 MHz, CDCl3): δ = 164.3 (Cq), 164.1 (d, JC-F = 259 Hz, Cq), 155.9 (Cq), 144.5 (Cq), 135.8 (Cq), 

129.1 (d, JC-F = 9 Hz, CH), 120.7 (CH), 115.1 (d, JC-F = 20 Hz, CH), 114.2 (CH), 55.5 (CH3), 17.3 (CH3). 

19F-NMR (282 MHz, CDCl3): δ = - 110.7 - -110.8 (m). 

IR (ATR): ~ = 3389, 2988, 2945, 2902, 2831, 1716, 1506, 1363, 1028, 840, 813, 729, 567cm-1. 

MS (EI) m/z (relative intensity): 243 (68) [M+], 228 (100), 213 (5), 185 (5), 77 (5). 

HR-MS (ESI) m/z calculated for C15H14FNO+H+: 244.1132; found: 244.1133. 

 

Synthesis of (E)-N-[1-(3-Fluorophenyl)ethylidene]-4-methoxyaniline (121b)  

 

 
 

                                                           
206

 Gong, Y.; Pauls, H. W. Synlett 2000, 829–831. 
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The general procedure  B was followed using 3-fluoroacetophenone (0.65 g, 4.7 mmol) and anisidine  

(0.79 g, 6.4 mmol) in PhMe (25 mL).  Purification by column chromatography (n-hexane) yielded 121b 

(0.71 g, 62%) as a yellow oil. 

1H-NMR (300 MHz, CDCl3): δ = 7.71-7.67 (m, 2H), 7.41-7.31 (m, 1H), 7.16-7.10 (m, 1H), 6.93-6.86 (m, 

2H), 6.76-6.72 (m, 2H), 3.79 (s, 3H), 2.22 (s, 3H). 

13C-NMR (75 MHz, CDCl3): δ = 164.2 (Cq), 162.8 (d, JC-F = 246 Hz, Cq), 156.1 (Cq), 144.2 (Cq), 142.0 (Cq), 

129.7 (CH), 122.7 (CH), 120.6 (CH), 117.1 (d, JC-F = 22 Hz, CH), 114.1 (d, JC-F = 23 Hz, CH), 113.8 (CH), 

55.4 (CH3), 17.3 (CH3). 

19F-NMR (282 MHz, CDCl3): δ = -113.00 - -113.21 (m). 

IR (ATR): ~ = 3071, 3036, 3000, 2954, 2910, 2835, 1690, 1631, 1586, 1503, 1442, 843, 755, 686 cm-1. 

MS (EI) m/z (relative intensity): 243 (61) [M+], 228 (100), 92 (15), 77 (19), 64 (16). 

HR-MS (ESI) m/z calculated for C15H14FNO+H+: 244.1138; found: 244.1133. 

The analytical data are in accordance with those reported in the literature.207  

 

Synthesis of (E)-4-Methoxy-N-[1-(3-methoxyphenyl)-ethylidene]aniline (121c) 

 

 

The general procedure  B was followed using 3-methoxyacetophenone (0.76 g, 5.1 mmol) and 

anisidine (0.79 g, 6.4 mmol) in PhMe (25 mL). Purification by column chromatography (n-hexane) 

yielded 121c (0.91 g, 70%) as an orange oil. 

 

1H-NMR (300 MHz, CDCl3): δ = 7.65-7.55 (m, 1H), 7.50-7.46 (m, 1H), 7.32 (dd, J = 8.0, 8.0 Hz, 1H), 

7.01-6.97 (m, 1H), 6.92-6.87 (m, 2H), 6.76-6.71 (m, 2H), 3.86 (s, 3H), 3.80 (s, 3H), 2.22 (s, 3H). 

13C-NMR (75 MHz, CDCl3): δ = 165.8 (Cq), 159.9 (Cq), 156.2 (Cq), 145.0 (Cq), 141.5 (Cq), 129.5 (CH), 

120.9 (CH), 120.0 (CH), 116.9 (CH), 114.5 (CH), 112.0 (CH), 55.7 (CH3), 55.6 (CH3), 17.7 (CH3). 

IR (ATR): ~ = 3069, 3033, 2969, 2912, 2840, 1735, 1692, 1635, 1592, 1506, 1235, 920, 806, 720 cm-1. 

MS (EI) m/z (relative intensity): 255 (19) [M+], 240 (24), 150 (62), 135 (100), 123 (26), 107 (36), 77 

(27). 

HR-MS (ESI) m/z calculated for C16H17NO2+H+: 256.1338; found: 256.1332. 

The analytical data were in accordance with those reported in the literature.208 

 

                                                           
207

 Lee, P. S.; Fujita, T.; Yoshikai, N. J. Am. Chem. Soc. 2011, 133, 17283–17295. 
208

 Moessner, C.; Bolm, C. Angew. Chem. Int. Ed. 2005, 44, 7564–7567. 
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Synthesis of (E)-N-[1-(3-Chlorophenyl)-ethylidene]-4-methoxyaniline (121d)  

 

 

 

The general procedure  B was followed using 3-chloroacetophenone (1.54 g, 10.0 mmol) and 

anisidine (1.55 g, 12.5 mmol) in PhMe (25 mL).  Purification by column chromatography (n-hexane) 

yielded 121d (1.45 g, 56%) as a yellow solid. 

 

M.r.: 66 °C [Lit.: 64 - 65 °C]. 

1H-NMR (300 MHz, CDCl3) δ = 7.97 (dd, J = 2.9, 2.3 Hz, 1H), 7.82 (ddd, J = 8.0, 1.7, 1.7 Hz, 1H), 7.49-

7.30 (m, 2H), 6.95-6.85 (m, 2H), 6.82-6.63 (m, 2H), 3.82 (s, 3H), 2.24 (s, 3H). 

13C-NMR (75 MHz, CDCl3) δ = 164.4 (Cq), 156.2 (Cq), 144.3 (Cq), 141.6 (Cq), 134.6 (Cq), 130.3 (CH), 129.6 

(CH), 127.4 (CH), 125.3 (CH), 120.8 (CH), 114.4 (CH), 55.5 (CH3), 17.4 (CH3). 

MS (EI) m/z (relative intensity): 259 (53) [M+], 244 (100), 148 (15), 92 (15), 64 (13), 43 (40).  

HR-MS (EI) m/z calculated for C15H14ClNO+: 259.0764; found: 259.0755. 

The analytical data are in accordance with those reported in the literature.209 

 

Synthesis of (E)-4-Methoxy-N-(1-m-tolylethylidene)aniline (121e) 

 

 

 

General procedure B was followed using 3-methylacetophenone (0.70 g, 5.2 mmol) and anisidine 

(0.78 g, 6.3 mmol) in PhMe (25 mL).  Purification by column chromatography (n-hexane) yielded 121e 

(0.59 g, 47%) as a yellow solid. 

 

M.p.: 59 - 61 °C. [Lit.: 60 - 62 °C].210  

1H-NMR (300 MHz, CDCl3): δ = 7.84 (s, 1H), 7.73 (d, J = 7.5 Hz, 1H), 7.37-7.21 (m, 2H), 6.90 (ddd, J = 

9.3, 2.2, 2.2 Hz, 2H), 6.77 (ddd, J = 9.3, 2.2, 2.2 Hz, 2H), 3.78 (s, 3H), 2.41 (s, 3H), 2.23 (s, 3H). 

                                                           
209

 Yoshikai, N.; Matsumoto, A.; Norinder, J.; Nakamura, E. Angew. Chem. Int. Ed. 2009, 48, 2925–2928. 
210

 Chen, F.; Ding, Z.; He, Y.; Qin, J.; Wang, T.; Fan, Q.-H. Tetrahedron 2012, 68, 5248–5257. 
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13C-NMR (75 MHz, CDCl3): δ = 165.5 (Cq), 155.6 (Cq), 144.5 (Cq), 139.4 (Cq), 137.6 (Cq), 130.8 (CH), 

127.9 (CH), 127.3 (CH), 124.1 (CH), 120.5 (CH), 113.9 (CH), 55.2 (CH3), 21.3 (CH3), 17.2 (CH3). 

IR (ATR): ~ = 2983, 2926, 2839, 1668, 1504, 1284, 1237, 1054, 1036, 840, 754, 695 cm-1. 

MS (EI) m/z (relative intensity): 239 (50) [M+], 224 (100), 148 (10), 92 (12), 77 (16), 64 (13). 

HR-MS (ESI) m/z calculated for C16H17NO+H+: 240.1383; found: 240.1383. 

The analytical data were in accordance with those reported in the literature.210 
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7.2 The Analytical Data for the Products of the Ruthenium-Catalyzed ortho-

Alkylation 

 

Synthesis of 2-(2-n-Octylphenyl)pyridine (93aa)  

 

 

The general procedure C was followed using 6aa (75.6 mg, 0.49 mmol), 42aa (291 mg, 1.51 mmol), 

[RuCl2(p-cymene)]2 (7.8 mg, 2.5 mol %) and 1-AdCO2H (13c) (27 mg, 0.15 mmol, 31 mol %) in m-

xylene (2.0 mL). Purification by column chromatography (n-hexane/EtOAc 15:1) yielded 93aa (86 mg, 

66%) as a colorless oil.  
 

The general procedure  C was followed using 6aa (81.6 mg, 0.53 mmol), 42aa (285 mg, 1.47 mmol) 

and [RuCl2(p-cymene)]2 (7.8 mg, 2.4 mol %) in m-xylene (2.0 mL) with KOPiv (20.7 mg, 0.15 mmol) 

and K2CO3 (138 g, 1.00 mmol). Purification by column chromatography (n-hexane/EtOAc 9:1) yielded 

93aa (72 mg, 51%). 

 

1H-NMR (300 MHz, CDCl3): δ = 8.68 (ddd, J = 4.9, 1.7, 0.9 Hz, 1H), 7.71 (td, J = 7.7, 1.8 Hz, 1H), 7.54-

7.02 (m, 6H), 2.75-2.67 (m, 2H), 1.46-1.43 (m, 2H), 1.36-0.98 (m, 10H), 0.85 (t, J = 7.0 Hz, 3H). 

13C-NMR (75 MHz, CDCl3): δ = 160.1 (Cq), 148.8 (CH), 140.5 (Cq), 140.1 (Cq), 135.7 (CH), 129.5 (CH), 

129.4 (CH), 128.0 (CH), 125.4 (CH), 123.8 (CH), 121.3 (CH), 32.8 (CH2), 31.7 (CH2), 31.1 (CH2), 29.3 

(CH2), 29.1 (CH2), 29.0 (CH2), 22.5 (CH2), 14.0 (CH3). 

IR (ATR): ~ = 3059, 2925, 2854, 1586, 1562, 1468, 1425, 751, 449, 420 cm-1.  

MS (EI) m/z (relative intensity): 267 (31) [M+], 182 (100), 167 (41). 

HR-MS (ESI) m/z calculated for C19H25N+H+: 268.2065; found: 268.2060. 

The analytical data are in accordance with those reported in the literature.121  

 

Synthesis of 2-(4-Methoxy-2-n-octylphenyl)-pyridine (93ba)  
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The general procedure  C was followed using 6ba (90.0 mg, 0.49 mmol), 42aa (285 mg, 1.47 mmol) 

and [RuCl2(p-cymene)]2 (7.9 mg, 2.6 mol %), in H2O (2.0 mL). Purification by column chromatography 

(n-hexane/EtOAc 9:1) yielded 93ba (88 mg, 61%) as a colorless oil. 

 

The general procedure  E was followed using [Ru(p-cymene)(MesCO2){2-(4-methoxyphenyl)pyridyl}] 

(14a) (15.3 mg,  5.0 mol %), K2CO3 (140 mg, 1.01 mmol), 6ba (95.2 mg, 0.52 mmol) and 42aa (284 mg, 

1.47 mmol) in NMP (2.0 mL). Purification by column chromatography (n-hexane/EtOAc 15:1) yielded 

93ba (91 mg, 59%) as a colorless oil. 

 

1H-NMR (300 MHz, CDCl3): δ = 8.66 (ddd, J = 4.9, 1.9, 1.0 Hz, 1H), 7.70 (dd, J = 7.7, 1.8 Hz, 1H), 7.40-

7.26 (m, 2H), 7.20 (ddd, J = 7.5, 4.9, 1.2 Hz, 1H), 6.96-6.63 (m, 2H), 3.83 (s, 3H), 2.80-2.56 (m, 2H), 

1.52-1.36 (m, 2H), 1.31-1.06 (m, 10H), 0.86 (t, J = 6.9 Hz, 3H). 

13C-NMR (75 MHz, CDCl3): δ = 159.8 (Cq), 159.2 (Cq), 149.4 (CH), 142.5 (Cq), 135.8 (CH), 133.0 (Cq), 

125.6 (CH), 121.6 (2xCH), 112.0 (2xCH), 55.3 (CH3), 33.9 (CH2), 32.0 (CH2), 31.1 (CH2), 29.6 (CH2), 29.3 

(CH2), 29.2 (CH2), 22.8 (CH2), 14.24 (CH3). 

IR (ATR): ~ = 3003, 2954, 2923, 1852, 1606, 1587, 1426, 1377, 1277, 1234, 786, 747 cm-1.  

MS (EI) m/z (relative intensity): 297 (56) [M+], 226 (12), 212 (100), 197 (41), 168 (12), 154 (22).  

HR-MS (ESI) m/z calculated for C20H27NO+: 297.2093; found: 297.2100. 

The analytical data are in accordance with those reported in the literature.Fehler! Textmarke nicht 

efiniert.  

 

Synthesis of 2-(2-n-Hexyl-4-methoxyphenyl)pyridine (93bb) and 2-(3-n-Hexyl-4-methoxyphenyl)-

pyridine (93bb’) 

 

 

 

The general procedure C was followed using [RuCl2(p-cymene)]2 (7.8 mg, 2.5 mol %), MesCO2H (13a) 

(24 mg, 0.15 mmol, 29 mol %), methoxyphenylpyridine 6ba (94.0 mg, 0.51 mmol) and 42ab (236 mg, 

1.43 mmol) in H2O (2.0 mL). Purification by column chromatography (n-hexane/EtOAc 15:1) yielded 

93bb (62 mg, 45%) and 93bb’ (9 mg, 7%) as colorless oils. 
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The general procedure C was followed using [RuCl2(p-cymene)]2 (7.8 mg, 2.5 mol %), 1-AdCO2H (13c) 

(24 mg, 0.15 mmol), 6ba (95.0 mg, 0.51 mmol) and 42ab (237 mg, 1.44 mmol) in NMP (2.0 mL). 

Purification by column chromatography (n-hexane/EtOAc 15:1) yielded 93bb (66 mg, 48%). 

 

The general procedure E was followed using [Ru(p-cymene)(MesCO2){2-(4-methoxyphenyl)pyridyl}] 

14a (15.3 mg,  5.0 mol%), K2CO3 (140 mg, 1.01 mmol), 6ba (97.7 mg, 0.53 mmol) and 42ab (278 mg, 

1.68 mmol) in m-xylene (2.0 mL). Purification by column chromatography (n-hexane/EtOAc 15:1) 

yielded 93bb (100 mg, 70%). 

 

The general procedure C was followed using [RuCl2(p-cymene)]2 (7.8 mg, 2.5 mol %), 6ba (94.5 mg, 

0.51 mmol) and 42ab (246 mg, 1.48 mmol) in m-xylene (2.0 mL) with KOAc (319 mg, 3.25 mmol). 

Purification by column chromatography (n-hexane/EtOAc 15:1) yielded 93bb (67 mg, 49%). 

 

 

 

(93bb) 

1H-NMR (600 MHz, CDCl3): δ = 8.63 (d, J = 4.7 Hz, 1H), 7.68 (ddd, J = 7.7, 1.9, 1.8 Hz, 1H), 7.32 (d, J = 

7.8 Hz, 1H), 7.27 (d, J = 8.4 Hz, 1H), 7.20-7.15 (m, 1H), 6.82 (d, J = 2.6 Hz, 1H), 6.78 (dd, J = 8.4, 2.7 Hz, 

1H), 3.82 (s, 3H), 2.75-2.62 (m, 2H), 1.49-1.34 (m, 2H), 1.22-1.07 (m, 6H), 0.79 (t, J = 7.1 Hz, 3H).  

13C-NMR (75 MHz, CDCl3): δ = 160.0 (Cq), 159.4 (Cq), 149.0 (CH), 142.4 (Cq), 135.9 (CH), 133.1 (Cq), 

131.0 (CH), 124.1 (CH), 121.2 (CH), 115.2 (CH), 110.9 (CH), 55.2 (CH3), 33.1 (CH2), 31.4 (CH2), 31.1 

(CH2), 29.0 (CH2), 22.4 (CH2), 14.0 (CH3).  

IR (ATR): ~ = 2927, 2855, 1587, 1505, 1465, 1427, 1280, 1236, 1162, 1045 cm-1.  

MS (EI) m/z (relative intensity): 269 (33) [M+], 226 (9), 212 (100), 197 (18), 154 (10).  

HR-MS (ESI) m/z calculated for C18H23NO+H+: 270.1858; found: 270.1852. 

The analytical data are in accordance with those reported in the literature.Fehler! Textmarke nicht 

efiniert. 
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(93bb’) 

 1H-NMR (600 MHz, CDCl3): δ = 8.63 (d, J = 4.6 Hz, 1H), 7.83-7.74 (m, 2H), 7.60-7.47 (m, 2H), 7.10 (m, 

1H), 6.90 (d, J = 8.2 Hz, 1H), 3.81 (s, 3H), 2.72-2.59 (m, 2H), 1.65-1.54 (m, 2H), 1.41-1.25 (m, 6H), 0.86 

(t, J = 7.0 Hz, 3H).  

13C-NMR (75 MHz, CDCl3): δ = 158.4 (Cq) , 157.4 (Cq), 149.4 (CH), 136.6 (CH), 131.7 (Cq), 131.5 (Cq), 

128.4 (CH), 125.4 (CH), 121.2 (CH), 119.9 (CH), 110.3 (CH), 55.4 (CH3), 31.8 (CH2), 30.4 (CH2), 29.9 

(CH2), 29.4 (CH2), 22.6 (CH2), 14.1 (CH3).  

IR (ATR): ~ = 3176, 3003, 2954, 1606, 1587, 1426, 1279, 1149, 1129, 1019 cm-1.  

MS (EI) m/z (relative intensity): 269 (77) [M+], 226 (16), 198 (100), 168 (65), 154 (19), 43 (15).  

HR-MS (ESI) m/z calculated for C18H23NO+: 269.1780; found: 269.1780. 

 

Synthesis of 2-(4-Fluoro-2-n-octylphenyl)pyridine (93ca)  

 

 

 

The general procedure C was followed using 6ca (120 mg, 0.69 mmol), 42aa (280 mg, 1.45 mmol), 

[RuCl2(p-cymene)]2 (8.0 mg, 1.9 mol %), KOAc (20.6 mg, 0.21 mmol, 30 mol %) and K2CO3 (190.7 mg, 

1.38 mmol) in H2O (2.0 mL). Purification by column chromatography (n-hexane/EtOAc 9:1) yielded 

93ca (118 mg, 60%) as a colorless oil. 

 

ortho-Alkylations of (p-fluorophenyl)pyridine (6ca) with n-octyl bromide according to The general 

procedure C in H2O, m-xylene/H2O (2.0 mL, 1:1), NMP/H2O (2.0 mL, 1:1) or neat furnished the 

product 93ca in 66, 68, 53 and 63% isolated yield, respectively. 

 

1H-NMR (300 MHz, CDCl3): δ = 8.71-8.56 (m, 1H), 7.71 (ddd, J = 7.7, 1.9, 1.8 Hz, 1H), 7.41-7.28 (m, 

2H), 7.26-7.16 (m, 1H), 7.06-6.86 (m, 2H), 2.74-2.58 (m, 2H), 1.55-1.32 (m, 2H), 1.31-1.07 (m, 10H), 

0.96-0.67 (m, 3H). 

13C-NMR (75 MHz, CDCl3): δ = 162.8 (d, JC-F = 247 Hz, Cq), 159.5 (Cq), 149.3 (CH) , 143.6 (d, JC-F = 7 Hz, 

Cq), 136.5 (d, JC-F = 3 Hz, Cq), 136.2 (CH), 131.5 (d, JC-F = 8 Hz, CH), 124.2 (CH), 121.8 (CH), 116.2 (d, JC-F 

= 21 Hz, CH), 112.6 (d, JC-F = 21 Hz, CH), 33.0 (d, JC-F = 2 Hz, CH), 31.9 (CH2), 31.0 (CH2), 31.0 (CH2), 29.4 

(CH2), 29.3 (CH2), 29.2 (CH2), 22.7 (CH2), 14.2 (CH3). 

19F-NMR (282 MHz, CDCl3): δ = -107.80 - -124.10 (m). 

IR (ATR): ~ = 2954, 2924, 2854, 1588, 1501, 1465, 1219, 1114, 870, 822, 747, 566 cm-1.  
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MS (EI) m/z (relative intensity): 285 (39) [M+], 256 (10), 214 (11), 200 (100), 185 (67).  

HR-MS (ESI) m/z calculated for C19H24FN+H+: 286.1971; found: 286.1970. 

 

Synthesis of 2-(4-Fluoro-2-n-hexylphenyl)pyridine (93cb)  

 

 

 

The general procedure  C was followed using 6ca (83.9 mg, 0.48 mmol), 42ab (247 mg, 1.50 mmol), 

[RuCl2(p-cymene)]2 (7.3 mg, 2.5 mol %), MesCO2H (13a) (24.3 mg, 0.15 mmol, 30 mol %) and K2CO3 

(139 mg, 1.01 mmol) in H2O (2.0 mL). Purification by column chromatography (n-hexane/EtOAc 9:1) 

yielded 93cb (82 mg, 66%) as a colorless oil. 

 

The general procedure  C was followed using 6ca (87.1 mg, 0.50 mmol), 42ab (255 mg, 1.54 mmol), 

[RuCl2(p-cymene)]2 (7.9 mg, 2.6 mol%), KOAc (314.1 mg, 3.2 mmol) and K2CO3 (138 mg, 1.00 mmol) in 

m-xylene (2.0 mL). Purification by column chromatography (n-hexane/EtOAc 9:1) yielded 93cb 

(98 mg, 76%). 

 

1H-NMR (300 MHz, CDCl3): δ = 8.65 (ddd, J = 4.8, 1.9, 0.9 Hz, 1H), 7.70 (ddd, J = 7.7, 1.8, 1.7 Hz, 1H), 

7.35-7.14 (m, 3H), 7.02-6.84 (m, 2H), 2.74-2.57 (m, 2H), 1.53-1.32 (m, 2H), 1.25-1.04 (m, 6H), 0.80 (t, 

J = 8.3 Hz, 3H). 

13C-NMR (75 MHz, CDCl3): δ = 162.8 (d, JC-F = 247 Hz, Cq), 159.5 (Cq), 149.3 (CH), 143.6 (d, JC-F = 8 Hz, 

Cq), 136.5 (d, JC-F = 3 Hz, Cq), 136.3 (CH), 131.5 (d, JC-F = 8 Hz, CH), 124.2 (CH), 121.8 (CH), 116.2 (d, JC-F 

= 21 Hz, CH), 112.7 (d, JC-F = 21 Hz, CH), 33.1 (d, JC-F = 1 Hz, CH2), 31.5 (CH2), 31.0 (CH2), 29.1 (CH2), 

22.6 (CH2), 14.1 (CH3). 

19F-NMR (282 MHz, CDCl3): δ = -114.28 - -114.60 (m). 

IR (ATR): ~ = 2955, 2926, 2856, 1608, 1588, 1465, 1427, 1269, 1150, 868, 822, 565 cm-1.  

MS (EI) m/z (relative intensity): 257 (42) [M+], 214 (16), 200 (100), 185 (64).  

HR-MS (EI) m/z calculated for C17H20FN-H+: 256.1502; found: 256.1503. 
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Synthesis of 2-(3,4,5-Trifluoro-2-n-octylphenyl)pyridine (93ja)  

 

 

 

The general procedure C was followed using 6ja (106 mg, 0.51 mmol), 42aa (295 mg, 1.53 mmol), 

[RuCl2(p-cymene)]2 (7.8 mg, 2.5 mol %), 1-AdCO2H (13c) (27.6 mg, 0.15 mmol, 30 mol %) and K2CO3 

(141 mg, 1.02 mmol)  in m-xylene (2.0 mL). Purification by column chromatography (n-hexane/EtOAc 

9:1) yielded 93ja (142 mg, 87%) as a colorless oil. 

 

The general procedure C was followed using 6ja (103 mg, 0.49 mmol), 42aa (280 mg, 1.45 mmol), 

[RuCl2(p-cymene)]2 (7.8 mg, 2.6 mol %), KOAc (320 mg, 3.26 mmol, 6.4 equiv) and K2CO3 (138 mg, 

1.00 mmol) in m-xylene (2.0 mL). Purification by column chromatography (n-hexane/EtOAc 9:1) 

yielded 93ja (115 mg, 73%). 

 

1H-NMR (300 MHz, CDCl3): δ = 8.74-8.58 (m, 1H), 7.75 (ddd, J = 7.7, 1.8, 1.7 Hz, 1H), 7.35-7.17 (m, 

2H), 6.98 (ddd, J = 10.6, 7.2, 2.2 Hz, 1H), 2.76-2.58 (m, 2H), 1.50-1.33 (m, 2H), 1.33-1.01 (m, 10H), 

0.84 (t, J = 7.5 Hz, 3H). 

13C-NMR (75 MHz, CDCl3) δ = 157.5 (d, JC-F = 3 Hz, Cq), 151.1 (ddd,  JC-F = 100, 10, 4 Hz, Cq), 149.5 (CH), 

147.8 (ddd, J = 100, 10, 4 Hz, Cq), 139.8 (ddd, JC-F = 252, 17, 15 Hz, Cq), 136.6 (CH), 136.4-135.7 (m, Cq), 

126.3 (ddd, JC-F = 14, 4, 1 Hz, Cq), 124.0 (CH), 122.6 (CH) , 113.3 (dd, JC-F = 18, 4 Hz, CH), 31.9 (CH2), 

30.1 (d, JC-F = 1 Hz, CH2), 29.4 (CH2), 29.2 (CH2), 29.1 (CH2), 25.7 (t, JC-F = 2 Hz, CH2), 22.7 (CH2), 14.1 

(CH3). 

19F-NMR (282 MHz, CDCl3): δ = -136.87 - -138.10 (m), -138.75 (ddd, J = 21, 11, 6 Hz), -160.99 (td, J = 

21, 7 Hz). 

IR (ATR): ~ = 3059, 2955, 2925, 2855, 1567, 1515, 1425, 1359, 1151, 1035, 792, 733 cm-1.  

MS (EI) m/z (relative intensity): 321 (41) [M+], 292 (10), 245 (12), 236 (100), 221 (76).  

HR-MS (EI) m/z calculated for C19H22F3N
+: 321.1704; found: 321.1703. 
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Synthesis of 2-(3,4,5-Trifluoro-2-n-hexylphenyl)pyridine (93jb)  

 

 

The general procedure  C was followed using 6ja (105 mg, 0.50 mmol), 42ab (259 mg, 1.57 mmol), 

[RuCl2(p-cymene)]2 (7.6 mg, 2.5 mol %), KOAc (314 mg, 3.20 mmol, 6.4 equiv) and K2CO3 (138 mg, 

1.00 mmol) in m-xylene (2.0 mL). Purification by column chromatography (n-hexane/EtOAc 9:1) 

yielded 93i (70 mg, 48%) as a colorless oil. 

 

1H-NMR (300 MHz, CDCl3): δ = 8.67 (ddd, J = 4.9, 1.9, 1.0 Hz, 1H), 7.76 (ddd, J = 7.8, 1.9, 1.8 Hz, 1H), 

7.39-7.26 (m, 2H), 6.99 (ddd, J = 10.5, 7.2, 2.2 Hz, 1H), 2.78-2.59 (m, 2H), 1.41 (ddd, J = 10.0, 7.5, 5.6 

Hz, 2H), 1.29-1.04 (m, 6H), 0.81 (t, J = 7.7 Hz, 3H). 

13C-NMR (75 MHz, CDCl3): δ = 157.5 (Cq), 150.5 (ddd, JC-F = 167, 10, 4 Hz, Cq), 149.5 (CH), 148.5 (ddd, 

JC-F = 168, 10, 4 Hz, Cq), 139.9 (ddd, JC-F = 252, 17, 15 Hz, Cq), 136.6 (CH), 136.2 (dt, JC-F = 7, 5 Hz, Cq), 

126.3 (ddd, JC-F = 14, 4, 1 Hz, Cq), 124.1 (CH), 122.6  (CH), 113.3 (dd, JC-F = 18, 4 Hz, CH), 31.4 (CH2), 

30.1 (CH2), 29.1 (CH2), 25.7 (CH2), 22.5 (CH2), 14.1 (CH3). 

19F-NMR (282 MHz, CDCl3): δ = -136.87 - -138.10 (m), -138.75 (ddd, J = 21, 11, 6 Hz), -160.99 (td, J = 

21, 7 Hz). 

IR (ATR): ~ = 2957, 2928, 2857, 1515, 1468, 1443, 1359, 1117, 1059, 791, 747, 665 cm-1.  

MS (EI) m/z (relative intensity): 292 (24) [M+], 250 (14), 236 (100), 221 (79).  

HR-MS (EI) m/z calculated for C17H18F3N-H+: 292.1313; found: 292.1324. 

 

Synthesis of 2-[2-n-Hexyl-4-(trifluoromethyl)phenyl]pyridine (93kb)  

 

 

 

The general procedure  C was followed using 6ka (113 mg, 0.51 mmol), 42ab (243 mg, 1.47 mmol), 

[RuCl2(p-cymene)]2 (7.8 mg, 2.5 mol %), 1-AdCO2H (13c) (28 mg, 0.15 mmol, 30 mol %) and K2CO3 

(141 mg, 1.02 mmol) in m-xylene (2.0 mL). Purification by column chromatography (n-hexane/EtOAc 

5:1) yielded 93ka (119 mg, 76%) as a colorless oil. 
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1H-NMR (300 MHz, CDCl3): δ = 8.79-8.56 (m, 1H), 7.77 (ddd, J = 7.7, 2.1, 0.9 Hz, 1H), 7.59-7.21 (m, 

5H), 2.80-2.64 (m, 2H), 1.56-1.34 (m, 2H), 1.31-1.04 (m, 6H), 0.81 (t, J = 7.7 Hz, 3H). 

13C-NMR (75 MHz, CDCl3): δ =  158.9 (Cq), 149.3 (CH), 143.6 (Cq), 141.8 (Cq), 136.3 (CH), 130.5 (q, JC-F = 

32 Hz, Cq), 130.1 (CH), 126.4 (d, J = 4 Hz, CH), 124.2 (q, JC-F = 272 Hz, Cq), 123.9 (CH), 122.5 (d, J = 4 Hz, 

CH), 122.2 (CH), 32.9 (CH2), 31.4 (CH2), 30.9 (CH2), 29.0 (CH2), 22.4 (CH2), 13.9 (CH3). 

19F-NMR (282 MHz, CDCl3): δ = -62.55 (s). 

IR (ATR): ~ = 2956, 2928, 2858, 1587, 1505, 1328, 1162, 1120, 1091, 791 cm-1.  

MS (ESI) m/z (relative intensity): 637 (20) [2M+Na+], 615 (80), 308 (100), 204 (26).  

HR-MS (ESI) m/z calculated for C18H20F3N+H+: 308.1621; found: 308.1625. 

 

Synthesis of 2-[2-n-Hexyl-5-(trifluoromethyl)phenyl]pyridine (93mb)  

 

 

 

The general procedure  C was followed using 6ma (110 mg, 0.49 mmol), 42ab (246 mg, 1.49 mmol), 

[RuCl2(p-cymene)]2 (7.5 mg, 2.5 mol %), 1-AdCO2H (13c) (28 mg, 0.15 mmol, 31 mol%) and K2CO3 

(138 mg, 1.00 mmol) in m-xylene (2.0 mL). Purification by column chromatography (n-hexane/EtOAc 

5:1) yielded 93f (79 mg, 52%) as a colorless oil. 

1H-NMR (300 MHz, CDCl3): δ = 8.77-8.62 (m, 1H), 7.75 (td, J = 7.7, 1.8 Hz, 1H), 7.63-7.49 (m, 2H), 7.38 

(t, J = 7.3 Hz, 2H), 7.32-7.18 (m, 1H), 2.72 (dd, J = 9.1, 6.7 Hz, 2H), 1.57-1.34 (m, 2H), 1.27-1.02 (m, 

6H), 0.80 (t, J = 6.6 Hz, 3H). 

13C-NMR (75 MHz, CDCl3): δ = 159.0 (Cq), 149.5 (CH), 145.2 (d, JC-F = 2 Hz, Cq), 140.9 (Cq), 136.5 (CH), 

130.3 (CH), 128.2 (q, JC-F = 32 Hz, Cq), 126.8 (q, JC-F = 4 Hz, CH), 125.0 (q, JC-F = 4 Hz, CH), 124.4 (q, JC-F = 

273 Hz, Cq), 124.2 (CH), 122.3 (CH), 33.0 (CH2), 31.5 (CH2), 31.1 (CH2), 29.1 (CH2), 22.6 (CH2), 14.1 

(CH3). 

19F-NMR (282 MHz, CDCl3): δ = -62.30 (s). 

IR (ATR): ~ = 2956, 2928, 2857, 1467, 1334, 1259, 1119, 1057, 747 cm-1.  

MS (ESI) m/z (relative intensity): 637 (81) [2M+Na+], 616 (100), 330 (64), 308 (54).  

HR-MS (ESI) m/z calculated for C18H20F3N+H+: 308.1621; found: 308.1619. 
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Synthesis of 2-(2-n-Hexyl-4-methylphenyl)pyridine (93ob)  

 

 

 

The general procedure  C was followed using 6oa (88.5 mg, 0.52 mmol), 42ab (250 mg, 1.51 mmol) 

and [RuCl2(p-cymene)]2 (8.0 mg, 2.5 mol %), KOAc (319 mg, 3.25 mmol) and K2CO3 (143 mg, 

1.04 mmol)  in m-xylene (2.0 mL). Purification by column chromatography (n-hexane/EtOAc 9:1) 

yielded 93ob (20 mg, 15%) as a colorless oil. 

 

1H-NMR (300 MHz, CDCl3): δ = 8.66 (ddd, J = 4.9, 1.8, 0.9 Hz, 1H), 7.70 (dt, J = 7.7, 1.9 Hz, 1H), 7.34 

(td, J = 7.8, 1.0 Hz, 1H), 7.25-7.17 (m, 2H), 7.12-7.03 (m, 2H), 2.66 (dd, J = 8.1, 7.8 Hz, 2H), 2.36 (s, 

3H), 1.48-1.37 (m, 2H), 1.26-1.10 (m, 6H), 0.81 (t, J = 6.5 Hz, 3H). 

13C-NMR (75 MHz, CDCl3): δ = 160.3 (Cq), 149.0 (CH), 140.6 (Cq), 137.9 (Cq), 137.5 (Cq), 135.9 (CH), 

130.4 (CH), 129.7 (CH), 126.4 (CH), 124.1 (CH), 121.3 (CH), 32.9 (CH2), 31.5 (CH2), 31.3 (CH2), 29.1 

(CH2), 22.5 (CH2), 21.2 (CH3), 14.0 (CH3). 

IR (ATR): ~ = 2954, 2925, 2855, 1613, 1586, 1466, 1426, 1026, 823, 787, 748 cm-1.  

MS (EI) m/z (relative intensity): 253 (20) [M+], 210 (4), 196 (100), 181 (45), 167 (10), 97 (5).  

HR-MS (ESI) m/z calculated for C18H23N+H+: 254.1909; found: 254.1902. 

The analytical data are in accordance with those reported in the literature.Fehler! Textmarke nicht 

efiniert.  

 

Synthesis of 1-[6-(2-n-Hexylphenyl)pyridin-3-yl]ethanone (94bb)  

 

 

 

The general procedure  C was followed using 6bb (94.5 mg, 0.48 mmol), 42ab (235 mg, 1.42 mmol), 

[RuCl2(p-cymene)]2 (7.8 mg, 2.7 mol %), 1-AdCO2H (13c) (28 mg, 0.15 mmol, 31 mol %) and K2CO3 

(133 mg, 0.96 mmol) in m-xylene (2.0 mL). Purification by column chromatography (n-hexane/EtOAc 

3:2) yielded 94bb (81 mg, 60%) as a light brown oil. 
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The general procedure  C was followed using 1-[6-(2-hexylphenyl)-pyridin-3-yl]-ethanol (125b) 

(101 mg, 0.51 mmol), 42ab (253 mg, 1.53 mmol), [RuCl2(p-cymene)]2 (7.8 mg, 2.5 mol %), 1-AdCO2H 

(13c) (28 mg, 0.15 mmol, 30 mol %) and K2CO3 (141 mg, 1.02 mmol) in m-xylene (2.0 mL). Purification 

by column chromatography (n-hexane/EtOAc 5:1 to 1:1) yielded 94bb (15 mg, 10%). 

 

1H-NMR (300 MHz, CDCl3): δ = 9.21 (dd, J = 2.3, 0.9 Hz, 1H), 8.27 (dd, J = 8.2, 2.3 Hz, 1H), 7.48 (dd, J = 

8.2, 0.9 Hz, 1H), 7.40-7.17 (m, 4H), 2.77-2.58 (m, 5H), 1.55-1.35 (m, 2H), 1.26-1.05 (m, 6H), 0.79 (t, J = 

6.8 Hz, 3H). 

13C-NMR (75 MHz, CDCl3): δ = 196.7 (Cq), 164.5 (Cq), 149.6 (CH), 141.1 (Cq), 139.4 (Cq), 135.8 (CH), 

130.3 (Cq), 130.1 (CH), 129.8 (CH), 129.1 (CH), 126.0 (CH), 124.1 (CH), 33.1 (CH2), 31.6 (CH2), 31.4 

(CH2), 29.2 (CH2), 26.8 (CH2), 22.6 (CH2), 14.1 (CH3). 

IR (ATR): ~ = 2954, 2925, 2855, 1686, 1588, 1550, 1466, 1371, 1259, 1087, 750 cm-1.  

MS (EI) m/z (relative intensity): 281 (26) [M+], 238 (10), 224 (100), 209 (30), 180 (10), 167 (14).  

HR-MS (EI) m/z calculated for C19H23NO+: 281.1780; found: 281.1777. 

 

Synthesis of 1-(2-n-Octylphenyl)-1H-pyrazole (118a) 

 

 

 

The general procedure  C was followed using 87a (72.1 mg, 0.50 mmol), 42aa (296 mg, 1.53 mmol), 

RuCl2(p-cymene)]2 (7.9 mg, 2.6 mol %), 1-AdCO2H (13c) (27.7 mg, 0.15 mmol, 30 mol %) and K2CO3 

(139 mg, 1.01 mmol)  in H2O (2.0 mL). Purification by column chromatography (n-hexane/EtOAc 9:1) 

yielded 118a (85 mg, 62%) as a colorless oil. 

 

1H-NMR (300 MHz, CDCl3): δ = 7.69 (d, J = 1.9 Hz, 1H), 7.55 (d, J = 2.3 Hz, 1H), 7.37-7.28 (m, 2H), 7.29-

7.20 (m, 2H), 6.41 (dd, J = 2.1, 2.1 Hz, 1H), 2.56-2.44 (m, 2H), 1.40 (s, 1H), 1.19 (d, J = 4.6 Hz, 11H), 

0.85 (t, J = 6.8 Hz, 3H). 

13C-NMR (75 MHz, CDCl3): δ = 140.2 (CH), 139.8 (Cq), 139.1 (Cq), 130.8 (CH), 130.4 (CH), 128.7 (CH), 

126.7 (CH), 126.5 (CH), 106.2 (CH), 31.9 (CH2), 31.4 (CH2), 30.7 (CH2), 29.5 (CH2), 29.3 (CH2), 29.2 

(CH2), 22.8 (CH2), 14.2 (CH3). 

IR (ATR): ~ = 2953, 2923, 2854, 1516, 1456, 1393, 1043, 938, 746, 623 cm-1.  

MS (EI) m/z (relative intensity): 256 (24) [M+], 185 (10), 171 (100), 158 (19), 130 (17).  

HR-MS (EI) m/z calculated for C17H24N2-H
+: 255.1861; found: 255.1860. 
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Synthesis of 1-(2-n-Hexyl-4-methoxyphenyl)-1H-pyrazole (118b)  

 

 

 

The general procedure  C was followed using 87b (86.9 mg, 0.50 mmol), 42ab (237 mg, 1.44 mmol), 

[RuCl2(p-cymene)]2 (7.3 mg, 2.4 mol %), KOAc (314 mg, 3.2 mmol, 6.4 equiv) and K2CO3 (138 mg, 

1.00 mmol) in m-xylene (2.0 mL). Purification by column chromatography (n-hexane/EtOAc 9:1) 

yielded 118b (67 mg, 52%) as a colorless oil. 

 

1H-NMR (300 MHz, CDCl3): δ = 7.68 (d, J = 1.8 Hz, 1H), 7.51 (dd, J = 2.3, 0.6 Hz, 1H), 7.20 (d, J = 8.6 Hz, 

1H), 6.83 (d, J = 2.8 Hz, 1H), 6.77 (dd, J = 8.6, 2.9 Hz, 1H), 6.40 (dd, J = 2.1, 2.0 Hz, 1H), 3.83 (s, 3H), 

2.51-2.40 (m, 2H), 1.51-1.33 (m, 2H), 1.33-1.08 (m, 6H), 0.83 (t, J = 7.5 Hz, 3H). 

13C-NMR (75 MHz, CDCl3): δ = 159.7 (Cq), 140.9 (Cq), 140.0 (CH), 133.2 (Cq), 131.1 (CH), 128.0 (CH), 

115.4 (CH), 111.4 (CH), 105.9 (CH), 55.6 (CH2), 31.6 (CH2), 31.6 (CH2), 30.6 (CH2), 29.2 (CH2), 22.6 

(CH2), 14.1 (CH3). 

IR (ATR): ~ = 2955, 2927, 2856, 1503, 1464, 1235, 1041, 943, 810, 747, 612 cm-1.  

MS (EI) m/z (relative intensity): 258 (62) [M+], 215 (19), 201 (100), 188 (28), 160 (14).  

HR-MS (ESI) m/z calculated for C16H22N2O
+: 258.1732; found: 258.1731. 

 

Synthesis of N-{1-[4-Fluoro-2-(hex-5-en-1-yl)phenyl]ethyl}-4-methoxyaniline (122a)  

 

 

                       

The general procedure  D was followed using 4-flouro-N-(1-phenylethylidene)-aniline (121a) (124 mg, 

0.51 mmol), 1-bromohex-5-ene (32f) (247 mg, 1.51 mmol), [RuCl2(p-cymene)]2 (7.8 mg, 2.5 mol %), 1-

AdCO2H (13c) (28 mg, 0.15 mmol, 30 mol %) in m-xylene (2.0 mL). Reduction and purification by 

column chromato-graphy (n-hexane/EtOAc 9:1) yielded 122a (104 mg, 62%) as a red oil.  
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1H-NMR (300 MHz, CDCl3): δ = 7.45 (dd, J = 8.5, 6.0 Hz, 1H), 6.95-6.76 (m, 2H), 6.76-6.59 (m, 2H), 6.46 

(d, J = 9.1 Hz, 2H), 5.82 (ddt, J = 16.9, 10.1, 6.7 Hz, 1H), 5.14-4.85 (m, 2H), 4.61 (q, J = 6.6 Hz, 1H), 3.71 

(s, 3H), 2.70 (td, J = 7.3, 3.9 Hz, 2H), 2.23-1.99 (m, 3H), 1.81-1.59 (m, 2H), 1.59-1.41 (m, 5H). 

13C-NMR (75 MHz, CDCl3): δ = 161.8 (d, JC-F = 244 Hz, Cq), 152.5 (Cq), 141.7 (d, JC-F = 7 Hz, Cq), 140.7 

(Cq), 138.7 (CH), 137.9 (Cq), 130.7 (CH), 127.0 (d, JC-F = 8 Hz, CH), 125.9 (CH), 116.0 (d, JC-F = 21 Hz, CH), 

115.1 (CH), 114.9 (CH), 114.8 (CH2), 113.3 (d, JC-F = 21 Hz, CH), 55.8 (CH3), 50.4 (CH), 33.7 (CH2), 32.0 

(CH2), 30.4 (CH2), 29.0 (CH2), 24.1 (CH3). 

19F-NMR (282 MHz, CDCl3) δ = -116.75 (s). 

MS (EI) m/z (relative intensity): 327 (10) [M+], 150 (28), 137 (57), 123 (100), 108 (24), 55 (23). 

HR-MS (EI) m/z calculated for C21H26FNO+: 327.1998; found: 327.2000. 

 

Synthesis of N-[1-(3-Fluoro-2-n-hexylphenyl)ethyl]-4-methoxyaniline (122b) 

 

 

 

The general procedure  D was followed using N-[1-(3-fluorophenyl)ethylidene]-4-methoxyaniline 

(121b) (122 mg, 0.50 mmol), 42ab (244 mg, 1.48 mmol), [RuCl2(p-cymene)]2 (7.7 mg, 2.5 mol %), 1-

AdCO2H (13c) (27 mg, 0.15 mmol, 30 mol %) in m-xylene (2.0 mL). Purification by column 

chromatography (n-hexane/EtOAc 9:1) yielded 122b (122 mg, 74%) as a colorless oil. 

 

1H-NMR (300 MHz, CDCl3): δ = 7.26 (d, J = 7.7 Hz, 1H), 7.11 (dd, J = 8.3, 6.1 Hz, 1H), 6.90 (ddd, J = 8.3, 

1.7, 1.7 Hz, 1H), 6.71 (d, J = 8.9 Hz, 2H), 6.44 (d, J = 8.9 Hz, 2H), 4.64 (q, J = 6.6 Hz, 1H), 3.71 (s, 3H), 

2.87-2.64 (m, 2H), 1.74-1.55 (m, 2H), 1.53-1.23 (m, 9H), 0.92 (t, J = 7.0 Hz, 3H).  

(N–H was not detected) 

13C-NMR (75 MHz, CDCl3): δ = 161.3 (d, JC-F = 243 Hz, Cq), 151.9 (Cq), 145.0 (Cq), 141.2 (Cq), 127.2 (d,   

JC-F = 8 Hz, CH), 126.8 (d, JC-F = 16 Hz, Cq), 120.4 (2xCH), 114.7 (2xCH), 114.4 (CH), 113.4 (d, JC-F = 22 Hz, 

CH), 55.7 (CH3), 50.2 (CH), 31.7 (CH2), 30.4 (CH2), 29.7 (CH2), 24.9 (CH2), 24.3 (CH3), 22.7 (CH2), 14.1 

(CH3).  

19F-NMR (282 MHz, CDCl3): δ = -117.75 - -117.54 (m).  

IR (ATR): ~ = 3403, 2960, 2930, 2871, 2859, 2244, 1579, 1512, 1464, 1238, 1040, 910, 739 cm-1.  

MS (EI) m/z (relative intensity): 329 (17) [M+], 314 (18), 150 (12), 136 (47), 123 (100), 108 (25). 

HR-MS (ESI) m/z calculated for C21H28FNO+H+: 330.2233; found: 330.2227. 
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Synthesis of N-[1-(2-n-Hexyl-5-methoxyphenyl)ethyl]-4-methoxyaniline (122c) and N-[1-(2-n-Hexyl-

3-methoxyphenyl)ethyl]-4-methoxyaniline (122c’) 

                   

The general procedure  D was followed using 4-methoxy-N-[1-(3-methoxyphenyl)ethylidene]aniline 

(121c) (117 mg, 0.46 mmol), 42ab (248 mg, 1.50 mmol), [RuCl2(p-cymene)]2 (7.0 mg, 2.5 mol %), 1-

AdCO2H (13c) (24.9 mg, 0.138 mmol, 30 mol %) in m-xylene (2.0 mL).  Purification by column 

chromatography (n-hexane/EtOAc 9:1) yielded 122c (60 mg, 38%) and 122c’ (31 mg, 20%) as 

colorless oils. 

 

 

 

(122c) 

1H-NMR (300 MHz, CDCl3): δ = 7.09 (d, J = 8.7 Hz, 1H), 7.02 (d, J = 2.8 Hz, 1H), 6.72 (dd, J = 8.7, 2.8 Hz, 

1H), 6.68 (d, J = 8.9 Hz, 2H), 6.43 (d, J = 8.9 Hz, 2H), 4.60 (q, J = 6.6 Hz, 1H), 3.73 (s, 3H), 3.69 (s, 3H), 

2.66 (dt, J = 8.7, 4.2 Hz, 2H), 1.71-1.56 (m, 2H), 1.45 (d, J = 6.6 Hz, 3H), 1.43-1.23 (m, 6H), 0.91 (t, J = 

6.9 Hz, 3H).  

13C-NMR (75 MHz, CDCl3): δ = 158.1 (Cq), 151.7 (Cq), 144.0 (Cq), 141.5 (Cq), 131.3 (Cq), 130.4 (CH), 

114.7 (CH), 114.3 (CH), 111.6 (CH), 110.6 (CH), 55.7 (CH3), 55.1 (CH3), 50.3 (CH), 31.8 (CH2), 31.5 (CH2), 

31.5 (CH2), 29.5 (CH2), 24.2 (CH3), 22.7 (CH2), 14.2 (CH3). 

IR (ATR): ~ = 2985, 2940, 2899, 1741, 1514, 1456, 1373, 1241, 1097, 1047, 847 cm-1.  

MS (EI) m/z (relative intensity): 341 (50) [M+], 326 (21), 227 (14), 218 (100), 175 (38), 149 (78), 123 

(39), 105 (17).  

HR-MS (EI) m/z calculated for C22H31NO2+H+: 342.2433; found: 342.2426. 

 

 

 

(122c’) 

 1H-NMR (300 MHz, CDCl3): δ = 7.12 (dd, J = 8.0, 7.7 Hz, 1H), 7.08 (dd, J =8.0, 1.5 Hz, 1H), 6.75 (dd, J = 

7.7, 1.5 Hz, 1H), 6.69 (d, J = 9.0 Hz, 2H), 6.47 (d, J = 9.0 Hz, 2H), 4.67 (q, J = 6.6 Hz, 1H), 3.82 (s, 3H), 

3.72 (s, 3H), 2.89-2.52 (m, 2H), 1.69-1.52 (m, 2H), 1.51-1.22 (m, 9H), 0.92 (t, J = 7.0 Hz, 3H).  
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13C-NMR (75 MHz, CDCl3): δ = 157.6 (Cq), 151.8 (Cq), 143.8 (Cq), 141.5 (Cq), 128.4 (Cq), 126.8 (CH), 

117.1 (CH), 114.7 (CH), 114.5 (CH), 108.7 (CH), 55.7 (CH3), 55.4 (CH3), 50.4 (CH), 31.7 (CH2), 29.9 (CH2),  

29.9 (CH2),  25.4 (CH2), 24.2(CH3), 22.6 (CH2), 14.1 (CH3).  

IR (ATR): ~ = 3396, 2954, 2926, 2856, 1581, 1465, 1372, 1231, 1177 cm-1.  

MS (EI) m/z (relative intensity): 341 (55) [M+], 326 (41), 218 (80), 157 (34), 149 (100), 123 (72), 108 

(24), 91 (21).  

HR-MS (EI) m/z calculated for C22H31NO2
+: 341.2355; found: 341.2363. 

 

Synthesis of N-[1-(5-Chloro-2-n-hexylphenyl)ethyl]-4-methoxyaniline (122d’) 

 

 

                 

The general procedure  D was followed using 4-methoxy-N-[1-(3-chlorophenyl)ethylidene]aniline 

(121d) (128 mg, 0.51 mmol), 42ab (243 mg, 1.47 mmol), [RuCl2(p-cymene)]2 (7.5 mg, 2.5 mol %), 1-

AdCO2H (13c) (27 mg, 0.15 mmol, 30 mol %) in m-xylene (2.0 mL).  Purification by column 

chromatography (n-hexane/EtOAc 9:1) yielded 122d’ (116 mg, 68%) as a colorless oil.  

 

1H-NMR (300 MHz, CDCl3): δ = 7.44 (d, J = 1.2 Hz, 1H), 7.14-7.10 (m, 2H), 6.69 (d, J = 9.0 Hz, 2H), 6.41 

(d, J = 9.0 Hz, 2H), 4.58 (q, J = 6.6 Hz, 1H), 3.69 (s, 3H), 2.75-2.59 (m, 2H), 1.77-1.54 (m, 2H), 1.49-1.19 

(m, 9H), 0.92-0.81 (m, 3H).  

13C-NMR (75 MHz, CDCl3): δ = 152.2 (Cq), 144.5 (Cq), 140.9 (Cq), 137.7 (Cq), 132.2 (Cq), 130.9 (CH), 

126.8 (CH), 125.2 (CH), 114.8 (CH), 114.7 (CH), 55.6 (CH3), 50.5 (CH), 31.7 (CH2), 31.6 (CH2), 31.0 (CH2), 

29.4 (CH2), 24.0 (CH2), 22.6 (CH2), 14.1 (CH3). 

IR (ATR): ~ = 3401, 2954, 2927, 2856, 1592, 1509, 1464, 1374, 1233, 1120, 1038, 815, 518 cm-1.  

MS (EI) m/z (relative intensity): 345 (60) [M+], 330 (59), 222 (33), 179 (22), 153 (65), 123 (100), 108 

(53), 43 (20).   

HR-MS (ESI): m/z calculated for C21H28ClNO+: 345.1859; found: 345.1860. 

 

Synthesis of N-[1-(2-n-Hexyl-5-methylphenyl)ethyl]-4-methoxyaniline (122e’) 
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The general procedure  D was followed using 4-methoxy-N-(1-m-tolylethylidene)aniline (121e) 

(130 mg, 0.54 mmol), 42ab (246 mg, 1.49 mmol), [RuCl2(p-cymene)]2 (7.9 mg, 2.4 mol %), 1-AdCO2H 

(13c) (28 mg, 0.15 mmol, 29 mol %) in m-xylene (2.0 mL). Purification by column chromatography (n-

hexane/EtOAc 9:1) yielded 122e’ (92 mg, 52%) as a colorless oil.  

 

1H-NMR (300 MHz, CDCl3): δ = 7.26 (d, J = 1.6 Hz, 1H), 7.06 (d, J = 7.7 Hz, 1H), 6.97 (dd, J = 7.7, 1.6 Hz, 

1H), 6.70 (d, J = 8.8 Hz, 2H), 6.46 (d, J = 8.8 Hz, 2H), 4.63 (q, J = 6.4 Hz, 1H), 3.69 (s, 3H), 2.73-2.62 (m, 

2H), 2.26 (s, 3H), 1.72-1.54 (m, 2H), 1.50-1.22 (m, 9H), 0.90 (t, J = 6.9 Hz, 3H).  

13C-NMR (75 MHz, CDCl3): δ = 151.7 (Cq), 142.2 (Cq), 141.6 (Cq), 136.2 (Cq), 135.6 (Cq), 129.4 (CH), 

127.4 (CH), 125.4 (CH), 114.7 (CH), 114.4 (CH), 55.8 (CH3), 50.2 (CH), 32.0 (CH2), 31.8 (CH2), 31.4 (CH2), 

29.6 (CH2), 24.1 (CH3), 22.7 (CH2), 21.3 (CH3), 14.2 (CH3).  

IR (ATR): ~ = 3395, 2955, 2928, 2856, 1511, 1464, 1305, 1236, 1168, 1039, 909, 818, 733, 647 cm-1.  

MS (EI) m/z (relative intensity): 325 (41) [M+], 310 (26), 202 (57), 159 (19), 133 (100), 123 (62).  

HR-MS (ESI): m/z calculated for C22H31NO+H+: 326.2484; found: 326.2478. 

 

Synthesis of 2-(2-n-Hexyl-1H-pyrrol-3-yl)pyridine (129) and 2-(1-n-Hexyl-1H-pyrrol-3-yl)pyridine 

(130) 

 

The general procedure  C was followed using 128 (74.0 mg, 0.51 mmol), 42ab (248 mg, 1.50 mmol), 

[RuCl2(p-cymene)]2 (7.7 mg, 2.5 mol %), 1-AdCO2H (13c) (28 mg, 0.15 mmol, 30 mol%) and K2CO3 

(141 mg, 1.02 mmol) in m-xylene (2.0 mL). Purification by column chromatography (n-hexane/EtOAc 

5:1) yielded 129 (18 mg, 15%) and 130 (17 mg, 15%) as a colorless oils. 

 

 

 

(129) 

1H-NMR (300 MHz, CDCl3): δ = 8.55 (ddd, J = 4.9, 1.9, 1.0 Hz, 1H), 8.21 (s, 1H), 7.66-7.51 (m, 1H), 7.39 

(dt, J = 8.0, 1.1 Hz, 1H), 6.99 (ddd, J = 7.4, 4.9, 1.2 Hz, 1H), 6.72-6.61 (m, 1H), 6.54 (t, J = 2.9 Hz, 1H), 

3.10-2.87 (m, 2H), 1.71-1.47 (m, 2H), 1.44-1.08 (m, 6H), 0.85 (t, J = 7.7 Hz, 3H). 

13C-NMR (75 MHz, CDCl3): δ = 156.8 (Cq), 149.7 (CH), 136.5 (CH), 132.9 (Cq), 121.3 (CH), 120.3 (Cq), 

120.0 (CH), 116.5 (CH), 109.1 (CH), 32.2 (CH2), 30.1 (CH2), 29.7 (CH2), 27.8 (CH2), 23.1 (CH2), 14.6 

(CH3). 

IR (ATR): ~ = 3227, 2924, 2854, 1692, 1588, 1497, 1465, 1424, 787, 740 cm-1.  
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HR-MS (ESI) m/z calculated for C15H20N2+H+: 229.1705; found: 229.1703. 

 

 

 

(130) 

1H-NMR (300 MHz, CDCl3): δ = 8.50 (ddd, J = 5.0, 1.8, 0.9 Hz, 1H), 7.68-7.52 (m, 1H), 7.44 (ddd, J = 8.0, 

1.1, 1.1 Hz, 1H), 7.31 (dd, J = 2.0, 2.0 Hz, 1H), 7.00 (ddd, J = 7.4, 4.9, 1.2 Hz, 1H), 6.67 (dd, J = 2.5, 

2.5 Hz, 1H), 6.60 (dd, J = 2.8, 1.8 Hz, 1H), 4.04-3.78 (m, 2H), 1.96-1.61 (m, 2H), 1.43-1.16 (m, 6H), 0.88 

(t, J = 7.7 Hz, 3H). 

13C-NMR (75 MHz, CDCl3): δ = 154.9 (Cq), 149.4 (CH), 136.4 (CH), 124.9 (Cq), 122.0 (CH), 120.1 (CH), 

120.0 (CH), 118.9 (CH), 106.6 (CH), 50.2 (CH2), 31.5 (CH2), 31.5 (CH2), 26.5 (CH2), 22.6 (CH2), 14.1 

(CH3). 

IR (ATR): ~ = 2928, 2857, 1701, 1590, 1544, 1466, 1400, 1365, 1234, 930, 769 cm-1.  

HR-MS (ESI) m/z calculated for C15H20N2+H+: 229.1705; found: 229.1704. 

 

Intermolecular Competition Experiments 

 

Intermolecular Competition Experiment with meta-substituted Ketimines (121e) & (121d) 

 

 

 

A suspension of [RuCl2(p‐cymene)]2 (15.4 mg, 25 mol, 3.9 mol %), 1‐AdCO2H (13c) (27.6 mg, 

0.15 mmol, 30 mol %), K2CO3 (225 mg, 1.62 mmol), 121d (254 mg, 0.98 mmol), 121e (224 mg, 0.94 

mmol) and 42ab (106 mg, 0.64 mmol) in m‐xylene (3.0 mL) was stirred under N2 for 20 h at 120 °C. A 

solution of ZnCl2 in THF (0.65 mL, 1.10 mmol, 1.7 M), NaBH3CN (126 mg, 2.00 mmol) and MeOH (4.0 

mL) was added to the cooled reaction mixture and the resulting mixture was stirred at ambient 

temperature. Analysis by GC showed that 122d’ and 122e’ were formed in a ratio of 4.4:1.0. Et2O (30 

mL) and sat. aq. K2CO3 (30 mL) were added to the cold reaction mixture. The separated aqueous 

phase was extracted with Et2O (2 × 40 mL). The combined organic layers were dried over Na2SO4 and 
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concentrated in vacuo. Purification by column chromatography on silica gel (n‐hexane/EtOAc 9:1) 

yielded 122d’ (88 mg, 40%) as a colorless oil.  

 

Intermolecular Competition Experiment with meta-substituted Ketimines (121b) & (121d) 

 

 

 

A suspension of [RuCl2(p‐cymene)]2 (15.0 mg, 25 mol, 4.3 mol %), 1‐Ad  2H (13c) (26.3 mg, 

0.15 mmol, 30 mol %), K2CO3 (226 mg, 1.64 mmol), 121d (244 mg, 1.00 mmol), 121b (252 mg, 

0.97 mmol) and 42ab (97 mg, 0.59 mmol) in m‐xylene (3.0 mL) was stirred under  2 for 20 h at 120 

°C. A solution of ZnCl2 in THF (0.65 mL, 1.10 mmol, 1.7 M), NaBH3CN (126 mg, 2.00 mmol) and MeOH 

(4.0 mL) was added to the cooled reaction mixture and the resulting mixture was stirred at ambient 

temperature. Analysis by GC showed that 122b and 122d’ were formed in a ratio of 3.2:1.0. Et2O 

(30 mL) and sat. aq. K2CO3 (30 mL) were added to the cold reaction mixture. The separated aqueous 

phase was extracted with Et2O (2 × 40 mL). The combined organic layers were dried over Na2SO4 and 

concentrated in vacuo. Purification by column chromatography on silica gel (n‐hexane/ t Ac 10:1) 

yielded 122b (107 mg, 56%) and 122d’ (42 mg, 20%) as a colorless oils. 

 

Intermolecular Competition Experiment between 1-Bromohexane (42ab) and 1-Chlorodecane (42d)  

 

 

 

The competition experiment between 42ab (250 mg, 1.52 mmol) and 42d (274 mg, 1.55 mmol) with 

[RuCl2[p-cymene)]2 (7.9 mg, 13 mol, 2.5 mol %), 1-AdCO2H (13c) (27.4 mg, 0.15 mmol, 30 mol %), 

K2CO3 (139 mg, 1.00 mmol) and 6ba (91.7 mg, 0.50 mmol) in m-xylene (3.0 mL) yielded after 

purification by column chromatography (n-hexane/EtOAc 9:1 to 3:1) 93bb (71 mg, 51%) and 93bb’ 

(9 mg, 7%). 
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Intermolecular Competition Experiment between 2-Phenylpyridine (6aa) and 1-Phenyl-1H-pyrazole 

(87a) 

 

 

 

The competition experiment between 87a (135 mg, 0.94 mmol) and 6aa (140 mg, 0.91 mmol) with 

[RuCl2[p-cymene)]2 (15.3 mg, 25 mol, 4.3 mol %), 1-AdCO2H (13c) (27.8 mg, 0.15 mmol, 30 mol %), 

K2CO3 (137 mg, 0.99 mmol) and 42ab (96.1 mg, 0.58 mmol) in m-xylene (3.0 mL) yielded after and 

purification by column chromatography (n-hexane/EtOAc 9:1) 118a (12 mg, 9%) and 93ab (50 mg, 

36%) as a colorless oils. 

 

 

 

(93ab)  

1H-NMR (300 MHz, CDCl3): δ = 8.71 (ddd, J = 4.9, 1.8, 1.0 Hz, 1H), 7.69 (td, J = 7.7, 1.8 Hz, 1H), 7.50-

7.07 (m, 6H), 2.72-2.64 (m, 2H), 1.57-1.29 (m, 2H), 1.29-0.99 (m, 6H), 0.80 (t, J = 6.8 Hz, 3H). 

13C-NMR (75 MHz, CDCl3): δ = 160.2 (Cq), 148.9 (CH), 140.6 (Cq), 140.2 (Cq), 135.8 (CH), 129.5 (CH), 

129.5 (CH), 128.1 (CH), 125.5 (CH), 123.9 (CH), 121.4 (CH), 32.7 (CH2), 31.3 (CH2), 31.0 (CH2), 28.9 

(CH2), 22.3 (CH2), 13.9 (CH3). 

IR (ATR): ~ = 3059, 2926, 2856, 1586, 1562, 1468, 1377, 795, 751, 474, 457, 441 cm-1.  

MS (EI) m/z (relative intensity): 239 (21) [M+], 182 (100), 167 (89). 

HR-MS (ESI) m/z calculated for C17H21N+H+: 240.1752; found: 240.1746. 

The analytical data are in accordance with those reported in the literature.121  

 

 

 

 (118a) 
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1H-NMR (300 MHz, CDCl3): δ = 7.71 (ddd, J = 1.8, 0.7, 0.7 Hz, 1H), 7.60-7.49 (m, 1H), 7.41-7.21 (m, 

4H), 6.51-6.31 (m, 1H), 2.61-2.45 (m, 2H), 1.51-1.31 (m, 2H), 1.31-1.11 (m, 6H), 0.84 (t, J = 7.4 Hz, 3H). 

13C-NMR (75 MHz, CDCl3): δ = 140.3 (CH), 139.8 (Cq), 139.1 (Cq), 130.8 (CH), 130.4 (CH), 128.7 (CH), 

126.8 (CH), 126.5 (CH), 106.2 (CH), 31.6 (CH2), 31.4 (CH2), 30.7 (CH2), 29.2 (CH2), 22.6 (CH2), 14.2 

(CH2). 

IR (ATR): ~ = 2955, 2925, 2856, 1516, 1498, 1418, 1394, 1043, 938, 746 cm-1.  

MS (EI) m/z (relative intensity): 228 (26) [M+], 171 (100), 158 (26), 130 (20), 43 (17).  

HR-MS (EI) m/z calculated for C15H20N2-H
+: 227.1548; found: 227.1549. 

 

Intermolecular Competition Experiment between 2-Phenylpyridine (6aa) and 2-Phenyl-4,5-

dihydrooxazole (136)  

 

 

 

The competition experiment between 6aa (149 mg, 0.96 mmol) and 136 (136 mg, 0.92 mmol) with 

[RuCl2[p-cymene)]2 (15.9 mg, 26 mol, 5.0 mol %) 1-AdCO2H (13c) (27.0 mg, 0.15 mmol, 30 mol %), 

K2CO3 (138 mg, 1.00 mmol) and 42ab (95.1 mg, 0.58 mmol) in m-xylene (3.0 mL) gave after 

purification by column chromatography (n-hexane/EtOAc 9:1) 93ab (33 mg, 24%) as a colorless oil. 

 

Intermolecular Competition Experiment between 2-Phenyl-4,5-dihydrooxazole (136) an 1-Phenyl-

1H-pyrazole (118a) 

 

 

 

The competition-experiment between 136 (138 mg, 0.94 mmol) and 87a (148 mg, 1.03 mmol) with 

[RuCl2[p-cymene)]2 (15.0 mg, 0.025 mmol, 4.5 mol %), 1-AdCO2H (13c) (26.8 mg, 0.15 mmol, 

30 mol %), K2CO3 (138 mg, 1.00 mmol) and 42ab (91.0 mg, 0.55 mmol) in m-xylene (3.0 mL) gave 
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after purification by column chromatography (n-hexane/EtOAc 9:1) 118a (39 mg, 31%) as a colorless 

oil. 

 

Intermolecular Competition Experiment between 1-(3-Fluorophenyl)-1H-pyrazole (87c) an 2-(3-

Fluorophenyl)pyridine (6da) 

 

 

 

The competition experiment between 87c (165 mg, 1.02 mmol) and 6da (175 mg, 1.00 mmol) with 

[RuCl2[p-cymene)]2 (15.1 mg, 0.025 mmol, 5.0 mol %), 1-AdCO2H (13c) (26.0 mg, 0.14 mmol, 

29 mol %), K2CO3 (144 mg,1.04 mmol) and 42ab (89.1 mg, 0.50 mmol) in m-xylene (3.0 mL) gave after 

purification by column chromatography (n-hexane/EtOAc 9:1) 93db (24 mg, 17%) and 118c (22 mg, 

17%) as colorless oils. 

 

 

 

(93db) 

1H-NMR (300 MHz, CDCl3): δ = 8.79-8.62 (m, 1H), 7.76 (dddd, J = 9.5, 7.6, 4.6, 2.3 Hz, 2H), 7.33-7.00 

(m, 4H), 2.79-2.58 (m, 2H), 1.56-1.35 (m, 2H), 1.33-1.00 (m, 6H), 0.81 (t, J = 6.7 Hz, 3H). 

13C-NMR (75 MHz, CDCl3): δ = 161.7 (d, JC-F = 244 Hz, Cq), 159.3 (d, JC-F = 3 Hz, Cq), 149.3 (CH), 142.7 (d, 

JC-F = 5 Hz, Cq), 136.3 (CH), 128.6 (d, JC-F = 16 Hz, Cq), 126.9 (d, JC-F = 9 Hz, CH), 125.5 (d, JC-F = 3 Hz, CH), 

124.2 (CH), 122.1 (CH), 115.2 (d, JC-F = 24 Hz, CH), 31.5 (CH2), 30.3 (CH2), 29.3 (CH2), 25.8 (d, JC-F = 3 Hz, 

CH2), 22.6  (CH2), 14.2 (CH3). 

19F-NMR (282 MHz, CDCl3): δ = -117.17 - -117.88 (m). 

IR (ATR): ~ = 2954, 2926, 2857, 1564, 1482, 1423, 1277, 991, 883, 772, 746, 700 cm-1.  

MS (EI) m/z (relative intensity): 257 (41) [M+], 214 (18), 200 (100), 185 (79), 157 (9).  

HR-MS (EI) m/z calculated for C17H20FN-H+: 256.1502; found: 256.1597. 
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(118c) 

1H-NMR (300 MHz, CDCl3): δ = 7.71 (d, J = 1.8 Hz, 1H), 7.60-7.52 (m, 1H), 7.28-7.16 (m, 1H), 7.16-7.02 

(m, 2H), 6.48-6.39 (m, 1H), 2.61-2.44 (m, 2H), 1.53-1.31 (m, 2H), 1.31-1.02 (m, 6H), 0.84 (t, J = 7.3 Hz, 

3H). 

13C-NMR (75 MHz, CDCl3): δ = 161.6 (d, JC-F = 246 Hz, Cq), 141.1 (d, JC-F = 7 Hz, Cq), 140.6 (CH), 130.9 

(CH), 127.4 (d, JC-F = 18 Hz, Cq), 127.0 (d, JC-F = 10 Hz, CH), 122.4 (d, JC-F = 4 Hz, CH), 115.6 (d, JC-F = 

23 Hz, CH), 106.5 (CH) , 31.4 (CH2) , 29.9 (d, JC-F = 1 Hz, CH2), 29.3 (CH2), 24.7 (d, JC-F = 3 Hz, CH2), 22.6 

(CH2), 14.1 (CH3). 

19F-NMR (282 MHz, CDCl3): δ = -114.64 - -116.37 (m). 

IR (ATR): ~ = 2956, 2927, 2857, 1517, 1480, 1393, 1240, 1042, 855, 788, 747, 622 cm-1.  

MS (EI) m/z (relative intensity): 246 (59) [M+], 203 (24), 189 (100), 176 (39), 148 (36), 135 (14).  

HR-MS (EI) m/z calculated for C15H19FN2
+: 246.1532; found: 246.1532. 

 

Intermolecular Competition Experiment between 1-(3-Fluorophenyl)-1H-pyrazole (87c) and 2-(3-

Fluorophenyl)-4,5-dihydrooxazole (136b) 

 

 

 

The competition experiment between 87c (161 mg, 0.99 mmol) and 136b (146 mg, 0.88 mmol) with 

[RuCl2[p-cymene)]2 (15.0 mg, 0.025 mmol, 4.6 mol %), 1-AdCO2H (13c) (26.7 mg, 0.15 mmol, 

30 mol %), K2CO3 (140 mg,1.03 mmol) and 42ab (82.2 mg, 0.54 mmol) in m-xylene (3.0 mL) gave after 

purification by column chromatography (n-hexane/EtOAc 9:1) 118c (59 mg, 48%) as a colorless oil. 
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Intermolecular Competition Experiment between 2-(3-Fluorophenyl)-4,5-dihydrooxazole (136b) & 

2-(3-Fluorophenyl)pyridine (6da)  

 

 

 

The competition experiment between 136b (158 mg, 0.96 mmol) and 6da (166 mg, 0.96 mmol) with 

[RuCl2[p-cymene)]2 (15.4 mg, 0.025 mmol, 4.5 mol %), 1-AdCO2H (13c) (27.1 mg, 0.15 mmol, 

30 mol %), K2CO3 (146 mg, 1.06 mmol) and 42ab (90.5 mg, 0.55 mmol) in m-xylene (3.0 mL) gave 

after purification by column chromatography (n-hexane/EtOAc 9:1 to 1:1) 93db (39 mg, 28%) as a 

colorless oil. 

 

Intermolecular Competition Experiment between 2-(3-Fluorophenyl)pyridine (6da) and (E)-N-[1-(3-

Fluorophenyl)ethylidene]-4-methoxyaniline (121b) 

 

 

 

The competition experiment between 121d (246 mg, 1.01 mmol) and 6da (182 mg, 1.05 mmol) with 

[RuCl2(p-cymene)]2 (15.1 mg, 0.025 mmol, 4.2 mol %), 1-AdCO2H (13c) (27.5 mg, 0.15 mmol, 

30 mol %), K2CO3 (141 mg, 1.02 mmol) and 42ab (101 mg, 0.61 mmol) in m-xylene (3.0 mL) gave after  

purification by column chromatography (n-hexane/EtOAc 9:1) 93db (87 mg, 55%) and 122b (44 mg, 

22%) as a colorless oils. 
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Intermolecular Competition Experiment between (E)-N-[1-(3-Fluorophenyl)ethylidene]-4-methoxy-

aniline (121b) and 2-(3-Fluorophenyl)-4,5-dihydrooxazole (136a)  

 

 

 

The competition experiment between 136a (165 mg, 1.00 mmol) and 121b (253 mg, 1.04 mmol) with 

[RuCl2[p-cymene)]2 (15.0 mg, 0.025 mmol, 4.2 mol %), 1-AdCO2H (27.0 mg, 0.15 mmol, 30 mol %), 

K2CO3 (139 mg, 1.01 mmol) and 42ab (99.0 mg, 0.60 mmol) in m-xylene (3.0 mL) gave after  

purification by column chromatography (n-hexane/EtOAc 9:1 to 1:1) 143a (22 mg, 15%) and 122b 

(83 mg, 42%) as a colorless oils. 

 

 

 

2-(3-Fluoro-2-n-hexylphenyl)-4,5-dihydrooxazole (143a) 

1H-NMR (300 MHz, CDCl3): δ = 7.58-7.48 (m, 1H), 7.22-7.03 (m, 2H), 4.49-4.29 (m, 2H), 4.15-3.97 (m, 

2H), 3.09-2.76 (m, 2H), 1.62-1.47 (m, 2H), 1.43-1.19 (m, 6H), 0.91-0.84 (m, 3H). 

13C-NMR (75 MHz, CDCl3): δ = 164.5 (d, JC-F = 3 Hz, Cq), 161.5 (d, JC-F = 243 Hz, Cq), 131.0 (d, JC-F = 18 Hz, 

Cq), 129.5 (d, JC-F = 5 Hz, Cq), 126.7 (d, JC-F = 9 Hz, CH), 125.8 (d, JC-F = 3 Hz, CH), 117.5 (d, JC-F = 24 Hz, 

CH), 67.3 (CH2), 55.5 (CH2), 31.7 (CH2), 30.4 (CH2), 29.5 (CH2), 26.2 (CH2), 22.7 (CH2), 14.2 (CH3). 

19F-NMR (282 MHz, CDCl3): δ = -116.94 - -117.32 (m). 

IR (ATR): ~ = 2954, 2928, 2857, 1646, 1512, 1454, 1352, 1254, 1085, 981, 797, 736 cm-1.  

MS (EI) m/z (relative intensity): 249 (29) [M+], 206 (25), 192 (100), 179 (32), 164 (23), 149 (65), 135 

(18), 123 (22), 109 (24).  

HR-MS (EI) m/z calculated for C15H20FNO+: 249.1529; found: 249.1520. 
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Products of Direct Allylation 

 

Synthesis of 2-(2-Allylphenyl)pyridine (93m)  

 

 

 

[RuCl2(p-cymene)]2 (7.8 mg, 13 mol, 2.9 mol %) was added to a suspension of 6aa (68.8 mg, 

0.44 mmol, 1.0 equiv) and K2CO3 (140 mg, 1.0 mmol, 2.0 equiv) in dry toluene (2 mL). The reaction 

mixture was degassed with N2 for 10 min and allyl bromide (32g) (300 mg, 2.48 mmol, 5.6 equiv) was 

added. The resulting solution was stirred for 20 h at 120 °C. The reaction mixture was poured into a 

mixture of diethyl ether and ice-cold water. The aqueous layer was extracted (3  5 mL) with diethyl 

ether. The combined organic layers were dried over Na2SO4 and concentrated under reduced 

pressure. The crude material was purified using column chromatography through silica gel (5% to 7% 

EtOAc in n-hexane) to afford compound 93m (24 mg, 28%) as a yellow oil. 

 

1H-NMR (300 MHz, CDCl3): δ = 8.67 (ddd, J = 4.9, 1.9, 1.0 Hz, 1H), 7.74-7.63 (m, 1H), 7.42-7.18 (m, 

6H), 6.01-5.67 (m, 1H), 5.04-4.75 (m, 2H), 3.47 (dt, J = 6.4, 1.6 Hz, 2H). 

13C-NMR (75 MHz, CDCl3): δ = 159.9 (Cq), 149.2 (CH), 140.5 (Cq), 137.8 (Cq), 137.7 (CH), 136.3 (CH), 

130.2 (CH), 130.0 (CH), 128.6 (CH), 126.4 (CH), 124.3 (CH), 121.9 (CH), 115.7 (CH2), 37.5 (CH2). 

IR (ATR): ~ = 3059, 3007, 2918, 1636, 1585, 1492, 1440, 1023, 989, 911, 746 cm-1.  

MS (EI) m/z (relative intensity): 194 (78) [M+], 180 (100), 167 (38), 154 (55), 43 (28).  

HR-MS (ESI) m/z calculated for C14H13N+H+: 196.1126; found: 196.1124. 

The analytical data are in accordance with those reported in the literature.211  

 

Attempted  Synthesis of (E)-2-Phenyl-6-(prop-1-en-1-yl)pyridine (145)Fehler! Textmarke nicht 

efiniert.136  

 

 

 

                                                           
211

 Oi, S.; Tanaka, Y.; Inoue, Y. Organometallics 2006, 25, 4773–4778. 



166  Experimental Procedures and Analytical Data  
 

Following a procedure by Ramana et al., [RuCl2(p-cymene)]2 (15.4 mg, 25 mol, 2.3 mol%) was added 

to a suspension of 6aa (167 mg, 1.08 mmol, 1.0 equiv), 1-AdCO2H (55.5 mg, 0.31 mmol, 29 mol%) and 

K2CO3 (277 mg, 2.00 mmol, 1.85 equiv) in dry toluene (5 mL). The reaction mixture was degassed 

with N2 for 10 min and allyl bromide (605 mg, 5.00 mmol, 4.6 equiv) was added. The resulting 

solution was stirred at 120 °C for 20 h. The reaction mixture was poured into a mixture of diethyl 

ether and ice-cold water. The aqueous layer was extracted (3 x 10 mL) with diethyl ether. The 

combined organic layers were dried over Na2SO4 and concentrated under reduced pressure. The 

crude material was purified twice by column chromatography through silica gel (5% to 7% EtOAc in n-

hexane) to afford compound 145 (149 mg, calc. 1H-NMR-yield: 69%) as a yellow oil including 

remainings of the formed allyl 1-adamantane-1-carboxylate. 

The NMR data were in accordance with those reported in the literature.136  
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7.3 Analytical Data for the Ruthenium-Catalyzed meta-Alkylation 

 

Synthesis of 2-[3-(Octan-2-yl)phenyl]pyridine (147aa)  

 

 

 

The general  procedure E was followed, using [RuCl2(p-cymene)]2 (7.90 mg, 0.013 mmol, 2.5 mol %), 

6aa (87.5 mg, 0.56 mmol), 2-bromooctane (42ba) (294 mg, 1.52 mmol), MesCO2H (13a) (25 mg, 

0.15 mmol, 26 mol%) and K2CO3 (138 mg, 1.00 mmol). After 20 h, purification by column 

chromatography (n-hexane/EtOAc 9:1) yielded 147aa (89 mg, 60%) as a colorless oil.  

 

The general procedure E with  (S)-3-methyl-2-pivalamidobutanoic acid (76a) (31.0 mg, 0.15 mmol, 

30 mol%) as additive in water (2 mL) at 100 °C gave 73% isolated yield. 

 

The general procedure E with di-nonan-3-yl hydrogen phosphate (175c) (54.0 mg, 0.17 mmol, 

34 mol%) as additive in water (2 mL) at 100 °C gave 58% isolated yield. 

 

1H-NMR (300 MHz, CDCl3): δ = 8.71 (dt, J = 4.8, 1.4 Hz, 1H), 7.85 (t, J = 1.8 Hz, 1H), 7.79 (dt, J = 7.7, 

1.5 Hz, 1H), 7.73 (dd, J = 4.1, 1.2 Hz, 2H), 7.40 (t, J = 7.7 Hz, 1H), 7.31-7.10 (m, 2H), 2.79 (qt, J = 7.1, 

7.0 Hz, 1H), 1.76-1.55 (m, 2H), 1.38-1.10 (m, 8H), 1.30 (d, J = 7.0 Hz, 3H), 0.86 (t, J = 7.0 Hz, 3H).  

13C-NMR (75 MHz, CDCl3): δ = 157.7 (Cq), 149.4 (CH), 148.5 (Cq), 139.1 (Cq), 136.8 (CH), 128.6 (CH), 

127.6 (CH), 125.7 (CH), 124.4 (CH), 121.9 (CH), 120.7 (CH), 40.1 (CH), 38.4 (CH2), 31.8 (CH2), 29.4 

(CH2), 27.7 (CH2), 22.6 (CH2), 22.3 (CH3), 14.0 (CH3).  

IR (ATR): 
~ = 2956, 2924, 2854, 1584, 1566, 1461, 1434, 772, 742, 700 cm-1.  

MS (EI) m/z (relative intensity): 267 (13) [M+], 196 (32), 182 (100), 167 (58), 78 (13).  

HRMS (EI) m/z calculated for C19H25N+H+: 268.2060; found: 268.2063. 

 

Synthesis of 2-[3-(Hexan-3-yl)phenyl]pyridine (147ab)  
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The general procedure E was followed, using [RuCl2(p-cymene)]2 (7.9 mg, 0.013 mmol, 2.5 mol %), 

MesCO2H (13a) (25 mg, 0.15 mmol, 30 mol %), 6aa (77.5 mg, 0.50 mmol) and 3-bromohexane (42bb) 

(242 mg, 1.47 mmol). After 20 h, purification by column chromatography (n-hexane/EtOAc 9:1) 

yielded 147bb (31 mg, 26%) as a colorless oil.  

 

1H-NMR (300 MHz, CDCl3): δ = 8.85-8.61 (m, 1H), 7.98-7.64 (m, 4H), 7.49-7.34 (m, 1H), 7.32-7.11 (m, 

2H), 2.53 (dt, J = 8.7, 5.8 Hz, 1H), 1.85-1.52 (m, 4H), 1.39-1.10 (m, 2H), 0.93-0.74 (m, 6H). 

13C-NMR (75 MHz, CDCl3): δ = 158.0 (Cq), 149.7 (CH), 146.8 (Cq), 139.4 (Cq), 136.7 (CH), 128.7 (CH), 

128.5 (CH), 126.6 (CH), 124.6 (CH), 122.0 (CH), 120.8 (CH), 47.9 (CH), 39.0 (CH2), 29.8 (CH2), 20.9 

(CH2), 14.3 (CH3), 12.4 (CH3). 

IR (ATR): 
~ = 3050, 2956, 2926, 2871, 1584, 1566, 1460, 1434, 769, 741 cm-1. 

MS (EI) m/z (relative intensity): 239 (24) [M+], 210 (58), 196 (68), 182 (21), 168 (100). 

HR-MS (ESI) m/z calculated for C17H21N+H+: 240.1752; found: 240.1747. 

 

Synthesis of 2-(3-Cycloheptylphenyl)pyridine (147ac)  

 

 

 

The general procedure E was followed, using [RuCl2(p-cymene)]2 (8.10 mg, 0.013 mmol, 2.5 mol %), 

MesCO2H (13a) (25 mg, 0.15 mmol, 29 mol %), 6aa (80.3 mg, 0.52 mmol) and bromocycloheptane 

(42bc) (270 mg, 1.52 mmol). After 20 h, purification by column chromatography (n-hexane/EtOAc 

9:1) yielded 147ac (99 mg, 76%) as a colorless oil.  

 

1H-NMR (300 MHz, CDCl3): δ = 8.68 (dd, J = 4.8, 1.4, 1.4 Hz, 1H), 7.84 (dd, J = 1.9, 1.8 Hz, 1H), 7.78-

7.65 (m, 3H), 7.36 (dd, J = 7.7, 7.7 Hz, 1H), 7.27-7.13 (m, 2H), 2.84-2.65 (m, 1H), 2.06-1.88 (m, 2H), 

1.88-1.47 (m, 10H).  

13C-NMR (75 MHz, CDCl3): δ = 158.0 (Cq), 150.7 (Cq), 149.7 (CH), 139.5 (Cq), 136.7 (CH), 128.8 (CH), 

127.5 (CH), 125.6 (CH), 124.3 (CH), 122.0 (CH), 120.8 (CH), 47.3 (CH), 37.0 (CH2), 28.0 (CH2), 27.4 

(CH2).  

IR (ATR): 
~ = 3059, 2918, 2852, 1584, 1564, 1460, 1434, 1151, 990, 769, 741, 699 cm-1.  

MS (EI) m/z (relative intensity): 251 (100) [M+], 236 (15), 222 (40), 208 (65), 194 (77), 182 (74), 169 

(75), 155 (38).  
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HRMS (ESI) m/z calculated for C18H21N-H+: 250.1596; found 250.1594. 

 

Synthesis of 2-(3-Cyclohexylphenyl)pyridine (147ad)  

 

 

 

The general  procedure E was followed, using [RuCl2(p-cymene)]2 (7.70 mg, 0.013 mmol, 2.3 mol %), 

MesCO2H (13a) (25 mg, 0.15 mmol, 27 mol %), 6aa (86.4 mg, 0.56 mmol) and bromocyclohexane 

(42bd) (271 mg, 1.66 mmol). After 20 h, purification by column chromatography (n-hexane/EtOAc 

9:1) yielded 147ad (77 mg, 58%) as a colorless oil.  

 

1H-NMR (300 MHz, CDCl3): δ = 8.70 (ddd, J = 4.8, 1.4, 1.4 Hz, 1H), 7.88 (dd, J = 1.8, 1.8 Hz, 1H), 7.82-

7.66 (m, 3H), 7.40 (dd, J = 7.4, 7.4 Hz, 1H), 7.31-7.24 (m, 1H), 7.24-7.17 (m, 1H), 2.60-2.61 (m, 1H), 

2.04-1.69 (m, 5H), 1.62-1.16 (m, 5H). 

13C-NMR (75 MHz, CDCl3): δ = 157.8 (Cq), 149.6 (CH), 148.6 (Cq), 139.3 (Cq), 136.6 (CH), 128.6 (CH), 

127.4 (CH), 125.6 (CH), 124.4 (CH), 121.9 (CH), 120.6 (CH), 44.7 (CH), 34.4 (CH2), 26.9 (CH2), 26.1 

(CH2). 

IR (ATR): 
~ = 3050, 2921, 2849, 1583, 1564, 1448, 1434, 1414, 1267, 882, 769, 698, 642, 613 cm-1. 

MS (EI) m/z (relative intensity): 237 (100) [M+], 208 (36), 194 (38), 182 (71), 169 (27), 155 (16). 

HR-MS (ESI) m/z calculated for C17H19N+H+: 238.1596; found: 238.1589. 

 

Synthesis of 2-(3-Cyclopropylphenyl)pyridine (147ae)  

 

 

 

The general procedure E was followed in a sealed tube, using [RuCl2(p-cymene)]2 (15.3 mg, 

0.025 mmol, 5.0 mol %), MesCO2H (13a) (25 mg, 0.15 mmol, 28 mol %), 6aa (82.3 mg, 0.53 mmol) 

and bromocyclopropane (42be) (189 mg, 1.56 mmol). After 20 h, purification by column 

chromatography (n-hexane/EtOAc 9:1) yielded 147ae (10 mg, 10%) as a colorless oil.  
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1H-NMR (300 MHz, CDCl3): δ = 8.72 (ddd, J = 4.9, 1.9, 1.0 Hz, 1H), 7.86-7.63 (m, 1H), 7.55 (dd, J = 7.8, 

1.2 Hz, 1H), 7.42 (ddd, J = 7.2, 1.5, 1.2 Hz, 1H), 7.37-7.15 (m, 3H), 7.00 (dd, J = 7.6, 1.4 Hz, 1H), 2.13-

1.96 (m, 1H), 0.89-0.74 (m, 2H), 0.74-0.58 (m, 2H). 

13C-NMR (75 MHz, CDCl3): δ = 159.7 (Cq), 149.1 (CH), 141.0 (CH), 140.9 (CH), 136.0 (CH), 129.6 (CH), 

128.5 (CH), 125.5 (CH), 124.7 (CH), 124.6 (CH), 121.6 (CH), 13.3 (CH), 9.3 (CH2). 

IR (ATR): 
~ = 3060, 3003, 1584, 1562, 1467, 1424, 1020, 899, 794, 746 cm-1. 

MS (EI) m/z (relative intensity): 194 (17) [M-H+], 180 (22), 167 (100), 139 (11). 

HR-MS (ESI) m/z calculated for C14H13N+H+: 196.1126; found: 196.1122. 

 

Synthesis of 2-[3-(Nonan-5-yl)phenyl]pyridine (147ag)  

 

 

 

The general  procedure E was followed, using [RuCl2(p-cymene)]2 (8.20 mg, 0.013 mmol, 2.6 mol %), 

MesCO2H (13a) (25 mg, 0.15 mmol, 30 mol%), 6aa (71.5 mg, 0.46 mmol) and 5-bromononane (42bg) 

(318 mg, 1.54 mmol). After 20 h, purification by column chromatography (n-hexane/EtOAc 5:1) 

yielded 147ag (66 mg, 51%) as a colorless oil.  

 

1H-NMR (300 MHz, CDCl3): δ = 8.68 (dd, J = 4.8, 1.4 Hz, 1H), 7.82-7.75 (m, 2H), 7.74-7.65 (m, 2H), 7.37 

(dd, J = 8.5, 7.6 Hz, 1H), 7.23-7.14 (m, 2H), 2.64-2.49 (m, 1H), 1.76-1.50 (m, 4H), 1.36-1.01 (m, 8H), 

0.81 (t, J = 7.0 Hz, 6H).  

13C-NMR (75 MHz, CDCl3): δ = 157.9 (Cq), 149.6 (CH), 147.0 (Cq), 139.2 (Cq), 136.6 (CH), 128.5 (CH), 

128.2 (CH), 126.3 (CH), 124.4 (CH), 121.9 (CH), 120.6 (CH), 46.2 (CH), 36.6 (CH2), 29.9 (CH2), 22.8 

(CH2), 14.0 (CH3).  

IR (ATR): 
~ = 2955, 2925, 2856, 1584, 1566, 1461, 1435, 1416, 770, 741 cm-1.  

MS (EI) m/z (relative intensity): 281 (56) [M+], 238 (25), 224 (100), 168 (82).  

HRMS (EI) m/z calculated for C20H27N
+: 281.2143; found: 281.2140. 
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Synthesis of 2-[3-(Pentan-3-yl)phenyl]pyridine (147ah)  

 

 

 

The general  procedure E was followed, using [RuCl2(p-cymene)]2 (8.00 mg, 0.013 mmol, 2.5 mol %), 

MesCO2H (13a) (27 mg, 0.15 mmol, 26 mol %), 6aa (87.0 mg, 0.56 mmol) and 3-bromopentane 

(42bh) (235 mg, 1.55 mmol). After 20 h, purification by column chromatography (n-hexane/EtOAc 

9:1) yielded 147ah (53 mg, 42%) as a colorless oil.  

 

1H-NMR (300 MHz, CDCl3): δ = 8.74-8.64 (m, 1H), 7.85-7.76 (m, 2H), 7.75-7.66 (m, 2H), 7.38 (dd, J = 

8.0, 8.0 Hz, 1H), 7.24-7.12 (m, 2H), 2.51-2.32 (m, 1H), 1.83-1.52 (m, 4H), 0.79 (t, J = 8.1 Hz, 6H). 

13C-NMR (75 MHz, CDCl3): δ = 158.0 (Cq), 149.7 (CH), 146.5 (Cq), 139.3 (Cq), 136.8 (CH), 128.7 (CH), 

128.5 (CH), 126.7 (CH), 124.6 (CH), 122.1 (CH), 120.8 (CH), 50.0 (CH), 29.4 (CH2), 12.4 (CH3). 

IR (ATR): 
~ = 3050, 2959, 2926, 2872, 1584, 1565, 1461, 1435, 1152, 767, 700 cm-1. 

MS (EI) m/z (relative intensity): 225 (29) [M+], 196 (100), 168 (30), 78 (10), 41 (14). 

HR-MS (ESI) m/z calculated for C16H19N+H+: 226.1596; found: 226.1593. 

 

Synthesis 2-[3-(Pentan-2-yl)phenyl]pyridine (147ai)  

 

 

 

An up-scaled version of The general procedure E with less catalyst loading was followed, using 

[RuCl2(p-cymene)]2 (14.6 mg, 0.024 mmol, 5.0 mol %), MesCO2H (13a) (24.6 mg, 0.15 mmol, 

30 mol %), K2CO3 (1.39 mg, 9.80 mmol), 6aa (0.75 g, 4.82 mmol) and 2-bromopentane (42bi) (2.32 g, 

15.4 mmol). After 48 h, purification by column chromatography (n-hexane/EtOAc 9:1) yielded 147ai 

(0.47 g, 43%) as a colorless oil.  

 

1H-NMR (300 MHz, CDCl3): δ = 8.70 (ddd, J = 5.0, 1.5, 1.4 Hz, 1H), 7.89-7.65 (m, 4H), 7.39 (ddd, J = 7.6, 

3.1, 3.0 Hz, 1H), 7.30-7.15 (m, 2H), 2.81 (qt, J = 7.0, 6.9 Hz, 1H), 1.77-1.48 (m, 2H), 1.40-1.11 (m, 2H), 

1.30 (d, J = 7.0 Hz, 3H),  0.88 (t, J = 7.3 Hz, 3H). 



172  Experimental Procedures and Analytical Data  
 

13C-NMR (75 MHz, CDCl3): δ = 157.9 (Cq), 149.7 (CH), 148.6 (Cq), 139.5 (Cq), 136.7 (CH), 128.8 (CH), 

127.7 (CH), 125.9 (CH), 124.5 (CH), 122.0 (CH), 120.7 (CH), 40.8 (CH2), 39.9 (CH), 22.4 (CH2), 21.0 

(CH3), 14.2 (CH3). 

IR (ATR): 
~ = 3049, 2956, 2927, 2870, 1603, 1584, 1461, 1434, 1415, 914, 771, 742, 699, 614 cm-1. 

MS (70 eV, EI) m/z (relative intensity): 225 (34) [M+], 196 (31), 182 (100), 167 (18), 154 (15), 77 (22), 

43 (20). 

HR-MS (ESI) m/z calculated for C16H19N
+: 225.1517; found: 225.1513. 

 

Synthesis of 2-[4-Methoxy-3-(octan-2-yl)phenyl]pyridine (147ba)  

 

 

 

The general procedure E was followed, using [RuCl2(p-cymene)]2 (7.30 mg, 0.012 mmol, 2.3 mol %), 

MesCO2H (13a) (24 mg, 0.15 mmol, 28 mol %), 6ba (95.0 mg, 0.51 mmol) and 2-bromooctane (42ba) 

(287 mg, 1.48 mmol). After 20 h, purification by column chromatography (n-hexane/EtOAc 9:1) 

yielded 147ba (91 mg, 60%) as a colorless oil.  

 

The general procedure E was followed, using [Ru(p-cymene)(MesCO2)2] (12) (15.0 mg, 0.027 mmol), 

6ba (96.2 mg, 0.52 mmol) and 2-bromooctane (42ba) (282 mg, 1.43 mmol). After 20 h, purification by 

column chromatography (n-hexane/EtOAc 9:1) yielded 147ba (110 mg, 71%).  

 

The general procedure E was followed, using [Ru(p-cymene)(MesCO2){2-(4-methoxy-phenyl)pyridyl}] 

(14a) (15.8 mg, 0.027 mmol, 5.0 mol %), 6ba (102.9 mg, 0.56 mmol) and 2-bromooctane (42ba) 

(300 mg, 1.55 mmol). After 20 h, purification by column chromatography (n-hexane/EtOAc 9:1) 

yielded 147ba (114 mg, 69%).  

 

The general procedure E was followed, using [Ru(p-cymene)(2-phenylpyridyl)Cl] (178) (10.9 mg, 

0.026 mmol, 2.5 mol %), MesCO2H (13a) (25.0 mg, 0.15 mmol, 30 mol %), 6ba (98.0 mg, 0.53 mmol) 

and 2-bromooctane (42ba) (300 mg, 1.55 mmol). After 20 h, purification by column chromatography 

(n-hexane/EtOAc 9:1 to 5:1) yielded 147ba (68 mg, 43%).  

 

The general procedure E with (S)-3-methyl-2-pivalamidobutanoic acid (76c) (31.0 mg, 0.15 mmol) in 

water (2.0 mL) gave compound 147ba in 77% isolated yield. 
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The general procedure E with dinona-3-yl hydrogen phosphate (175c) (54.0 mg, 0.17 mmol)  gave 

compound 147ba in 77% isolated yield. 

 

1H-NMR (300 MHz, CDCl3): δ = 8.66 (ddd, J = 4.4, 1.4, 1.0 Hz, 1H), 7.84 (d, J = 2.0 Hz, 1H), 7.80 (dt, J = 

8.5, 1.8 Hz, 1H), 7.75-7.63 (m, 2H), 7.19-7.11 (m, 1H), 6.94 (dd, J = 8.4, 1.2 Hz, 1H), 3.87 (s, 3H), 3.23 

(qt, J = 7.1, 6.9 Hz, 1H), 1.79-1.50 (m, 2H), 1.39-1.16 (m, 8H), 1.26 (d, J = 6.9 Hz, 3H), 0.86 (t, J = 

6.4 Hz, 3H).  

13C-NMR (75 MHz, CDCl3): δ = 158.0 (Cq), 157.6 (Cq), 149.4 (CH), 136.5 (Cq), 136.5 (CH), 131.7 (CH), 

125.5 (Cq), 125.2 (CH), 121.1 (CH), 119.9 (CH), 110.5 (CH), 55.5 (CH3), 37.1 (CH2), 32.1 (CH), 31.8 (CH2), 

29.4 (CH2), 27.7 (CH2), 22.6 (CH2), 20.9 (CH3), 14.1 (CH3).  

IR (ATR): 
~ = 2956, 2927, 2856, 1606, 1563, 1502, 1464, 1431, 1271, 1245, 781 cm-1.  

MS (EI) m/z (relative intensity): 297 (27) [M+], 212 (100), 197 (15), 167 (30).  

HRMS (EI) m/z calculated for C20H27NO+: 297.2093; found: 297.2094.  

 

Direct meta-Alkylation of 6ba using enantiopure (S)-42ba  

 

 

 

The general procedure E was followed, using [RuCl2(p-cymene)]2 (14.8 mg, 0.024 mmol, 5.0 mol %), 

6ba (94.8 mg, 0.51 mmol) and (S)-2-bromooctane (S)-42ba) (298 mg, 1.54 mmol). After 20 h, 

purification by column chromatography (n-hexane/EtOAc 9:1) yielded (rac)-147ba (81 mg, 53%) as a 

colorless oil. The racemization was confirmed by analytical HPLC on chiral stationary phase. 

 

Synthesis of 2-[3-(Hexan-3-yl)-4-methoxyphenyl]pyridine (147bb)  

 

 

 

The general procedure E was followed, using [RuCl2(p-cymene)]2 (8.10 mg, 0.013 mmol, 2.5 mol %), 

MesCO2H (13a) (26 mg, 0.13 mmol, 30 mol %), 6ba (92.4 mg, 0.50 mmol) and 3-bromohexane (42bb) 
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(242 mg, 1.46 mmol). After 20 h, purification by column chromatography (n-hexane/EtOAc 9:1) 

yielded 147bb (85 mg, 63%) as a colorless oil.  

 

The general procedure E in water (2.0 mL) gave 49% isolated yield. 

The general procedure E neat gave 70% isolated yield. 

 

The general procedure E was followed, using [Ru(p-cymene)(MesCO2)2] (12) (14.8 mg, 0.026 mmol, 

5.0 mol %), 6ba (98.3 mg, 0.53 mmol) and 3-bromohexane (42bb) (256 mg, 1.55 mmol). After 20 h, 

purification by column chromatography (n-hexane/EtOAc 9:1) yielded 147bb (84 mg, 60%).  

 

1H-NMR (300 MHz, CDCl3): δ = 8.66 (ddd, J = 4.9, 1.7, 1.2 Hz, 1H), 7.84-7.76 (m, 2H), 7.74-7.62 (m, 

2H), 7.15 (ddd, J = 6.7, 4.9, 2.0 Hz, 1H), 6.94 (d, J = 8.4 Hz, 1H), 3.85 (s, 3H), 3.13-2.98 (m, 1H), 1.80-

1.49 (m, 4H), 1.38-1.09 (m, 2H), 0.85 (t, J = 7.4 Hz, 3H), 0.80 (t, J = 7.4 Hz, 3H).  

13C-NMR (75 MHz, CDCl3): δ = 158.8 (Cq), 157.7 (Cq), 149.5 (CH), 136.5 (CH), 134.6 (Cq), 131.7 (Cq), 

126.2 (CH), 125.1 (CH), 121.2 (CH), 119.9 (CH), 110.6 (CH), 55.6 (CH3), 39.3 (CH), 37.7 (CH2), 28.5 

(CH2), 20.7 (CH2), 14.2 (CH3), 12.1 (CH3).  

IR (ATR): 
~ = 3003, 2956, 2870, 1605, 1585, 1502, 1462, 1430, 1242, 1028, 779 cm-1.  

MS (EI) m/z (relative intensity): 269 (61) [M+], 240 (32), 226 (84), 212 (24), 198 (100), 167 (34). 

HRMS (EI) m/z calculated for C18H23NO+: 269.1780; found: 269.1778. 

 

Synthesis of 2-{4-Methoxy-3-(2,6,6-trimethylbicyclo[3.1.1]heptan-3-yl)phenyl}pyridine (147bf) 

 

 

 

The general  procedure E was followed, using [RuCl2(p-cymene)]2 (7.60 mg, 0.013 mmol, 2.5 mol %), 

MesCO2H (13a) (25 mg, 0.15 mmol, 28 mol %), 6ba (96.7 mg, 0.52 mmol) and 3-bromo-2,6,6-

trimethylbicyclo[3.1.1]heptane (42bf) (332 mg, 1.53 mmol). After 20 h, purification by column 

chromatography (n-hexane/EtOAc 9:1) yielded 147bf (68 mg, 41%) as a colorless oil.  

 

1H-NMR (300 MHz, CDCl3): δ = 8.75-8.59 (m, 1H), 7.96 (d, J = 2.4 Hz, 1H), 7.80 (dd, J = 8.5, 2.3 Hz, 1H), 

7.76-7.63 (m, 2H), 7.23-7.12 (m, 1H), 6.95 (d, J = 8.5 Hz, 1H), 3.88 (s, 3H), 3.59 (dt, J = 8.2, 8.1 Hz, 1H), 



 Experimental Procedures and Analytical Data 175 

2.49-2.22 (m, 3H), 2.08-1.81 (m, 3H), 1.39 (d, J = 9.4 Hz, 1H), 1.29 (s, 3H), 1.22 (s, 3H), 0.98 (t, J = 

7.1 Hz, 3H). 

13C-NMR (75 MHz, CDCl3): δ = 158.6 (Cq), 157.6 (Cq), 149.5 (CH), 137.4 (Cq), 136.9 (CH), 131.9 (Cq), 

128.6 (CH), 125.5 (CH), 121.4 (CH), 120.1 (CH), 111.0 (CH), 55.6 (CH3), 48.7 (CH), 44.0 (CH), 42.5 (CH), 

39.5 (Cq), 37.6 (CH), 36.0 (CH2), 34.5 (CH2), 28.9 (CH3), 23.3 (CH3), 21.4 (CH3). 

IR (ATR): 
~ = 2899, 2869, 2836, 1723, 1586, 1463, 1440, 1270, 1244, 1128, 1029, 779, 600 cm-1. 

MS (EI) m/z (relative intensity): 321 (51) [M+], 290 (20), 266 (100), 252 (63), 238 (70), 222 (27), 211 

(83), 196 (32), 167 (26), 147 (43). 

HR-MS (EI) m/z calculated for C22H27NO+: 321.2093; found: 321.2105. 

 

Synthesis of 2-[4-Methoxy-3-(nonan-5-yl)phenyl]pyridine (147bg)  

 

 

 

The general procedure E was followed, using [RuCl2(p-cymene)]2 (7.70 mg, 0.013 mmol, 2.5 mol %), 

MesCO2H (13a) (25 mg, 0.15 mmol, 30 mol %),  6ba (92.5 mg, 0.50 mmol) and 5-bromononane (42bg) 

(312 mg, 1.51 mmol). After 20 h, purification by column chromatography (n-hexane/EtOAc 9:1) 

yielded 147bg (66 mg, 42%) as a colorless oil.  

 

1H-NMR (300 MHz, CDCl3): δ = 8.69-8.61 (m, 1H), 7.85-7.76 (m, 2H), 7.76-7.62 (m, 2H), 7.15 (ddd, J = 

6.6, 4.8, 1.9 Hz, 1H), 6.94 (d, J = 8.4 Hz, 1H), 3.85 (s, 3H), 3.19-3.04 (m, 1H), 1.72-1.59 (m, 4H), 1.38-

1.05 (m, 8H), 0.83 (t, J = 7.1 Hz, 6H). 

13C-NMR (75 MHz, CDCl3): δ = 158.7 (Cq), 157.7 (CH), 149.5 (CH), 136.5 (Cq), 135.1 (Cq), 131.7 (CH), 

126.2 (CH), 125.1 (CH), 121.1 (CH), 119.9 (CH), 110.7 (CH), 55.6 (CH3), 37.8 (CH), 35.5 (CH2), 29.8 

(CH2), 22.8 (CH2), 14.1 (CH3). 

IR (ATR): 
~ = 2954, 2927, 2856, 1586, 1502, 1463, 1431, 1269, 1242, 1028, 779 cm-1. 

MS (EI) m/z (relative intensity): 311 (32) [M+], 254 (76), 198 (100), 168 (27). 

HR-MS (EI) m/z calculated for C21H29NO+: 311.2249; found: 311.2251. 
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Synthesis of 2-[4-Methoxy-3-(pentan-2-yl)-phenyl]-pyridine (147bi)  

 

 

 

The general procedure E was followed, using [RuCl2(p-cymene)]2 (8.10 mg, 0.013 mmol, 2.5 mol %), 

MesCO2H (13a) (25 mg, 0.15 mmol, 29 mol %), 6ba (95.0 mg, 0.51 mmol) and 2-bromopentane (42bi) 

(223 mg, 1.48 mmol). After 20 h, purification by chromatography (n-hexane/EtOAc 9:1) yielded 147bi 

(81 mg, 62%) as a colorless oil.  

 

1H-NMR (300 MHz, CDCl3): δ = 8.66 (dt, J = 4.9, 1.5 Hz, 1H), 7.86 (d, J = 2.4 Hz, 1H), 7.80 (dd, J = 8.5, 

2.3 Hz, 1H), 7.75-7.54 (m, 2H), 7.15 (ddd, J = 6.1, 4.8, 2.5 Hz, 1H), 6.94 (d, J = 8.5 Hz, 1H), 3.87 (s, 3H), 

3.27 (qt, J = 7.1, 7.0 Hz, 1H), 1.82-1.46 (m, 2H), 1.42-1.15 (m, 2H), 1.27 (d, J = 7.0 Hz, 3H), 0.90 (t, J = 

7.3 Hz, 3H).  

13C-NMR (75 MHz, CDCl3): δ = 157.9 (Cq), 157.6 (CH), 149.4 (CH), 136.5 (Cq), 136.4 (CH), 131.7 (CH), 

125.5 (CH), 125.1 (CH), 121.1 (CH), 119.8 (CH), 110.5 (CH), 55.4 (CH3), 39.4 (CH2), 31.8 (CH), 20.8 

(CH2), 20.8 (CH3), 14.2 (CH3).  

IR (ATR): 
~ = 2956, 2929, 2869, 2837, 1584, 1501, 1462, 1243, 1158, 1028 cm-1.  

MS (EI) m/z (relative intensity): 255 (59) [M+], 212 (100), 197 (17), 167 (36).  

HRMS (EI) m/z calculated for C17H21NO+: 255.1623; found: 255.1623. 

 

Synthesis of 2-[3-(Hexan-2-yl)-4-methoxyphenyl]pyridine (147bj)  

 

 

 

The general procedure E was followed, using [RuCl2(p-cymene)]2 (7.70 mg, 0.013 mmol, 2.8 mol %), 

MesCO2H (13a) (26 mg, 0.15 mmol, 28 mol %), 6ba (98.4 mg, 0.53 mmol) and 2-bromohexane (42bj) 

(249 mg, 1.51 mmol). After 20 h, purification by column chromatography (n-hexane/EtOAc 9:1) 

yielded 147bj (100 mg, 70%) as a colorless oil.  
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The enantiomers of 147bj were separated using preparative chiral HPLC [column: Chiralpak IC: 

eluent: n-hexane/EtOAc 97:3, 15 ml/min; tret = 14.2 and 15.8 min]. The absolute configuration of the 

arbitrary selected enantiomer with tret = 14.2 min was established to be (R)-147bj by means of X-ray 

crystal structure analysis of its hydrochloride 149. 

 

1H-NMR (300 MHz, CDCl3): δ = 8.66 (dd, J = 4.8, 1.5 Hz, 1H), 7.84 (d, J = 2.4 Hz, 1H), 7.82-7.77 (m, 1H), 

7.75-7.64 (m, 2H), 7.16 (ddd, J = 6.4, 4.8, 1.5 Hz, 1H), 6.94 (dd, J = 8.5, 1.1 Hz, 1H), 3.87 (s, 3H), 3.22 

(qt, J = 7.0, 6.9 Hz, 1H), 1.81-1.47 (m, 2H), 1.42-1.09 (m, 4H), 1.26 (d, J = 7.0 Hz, 3H), 0.87 (t, J = 

7.0 Hz, 3H).  

13C-NMR (75 MHz, CDCl3): δ = 171.2 (Cq), 158.1 (Cq), 157.8 (Cq), 149.6 (CH), 136.6 (CH), 131.9 (Cq), 

125.7 (CH), 125.3 (CH), 121.3 (CH), 120.0 (CH), 110.7 (CH), 55.6 (CH3), 36.9 (CH2), 32.3 (CH), 30.1 

(CH2), 22.9 (CH2), 21.0 (CH3), 14.2 (CH3).  

IR (ATR): 
~ = 2956, 2927, 2869, 2857, 1585, 1501, 1462, 1242, 1156, 1028, 604 cm-1.  

MS (EI) m/z (relative intensity): 269 (55) [M+], 212 (100), 197 (23), 182 (11), 167 (36).  

HRMS (EI) m/z calculated for C18H23NO+: 269.1780; found: 269.1784. 

 

Attempted Racemisation of Compound (S)-(147bj) under Optimized Reaction Conditions 

 

 

 

Following the general procedure E with (S)-147bj (tret = 15.8 min)(20.0 mg, 0.07 mmol), MesCO2H 

(13a) (3.8 mg, 0.02 mmol, 31 mol%) and [RuCl2(p-cymene)]2 (1.3 mg, 2.8 mol%). Analysis by analytical 

HPLC on chiral stationary phase displayed no racemisation of (S)-147bj.  

 

Synthesis of 2-[4-Methoxy-3-(nonan-2-yl)phenyl]pyridine (147bk)  
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The general procedure E was followed, using [RuCl2(p-cymene)]2 (8.00 mg, 0.013 mmol, 2.5 mol %), 

MesCO2H (13a) (25 mg, 0.15 mmol, 30 mol %), 6ba (95.1 mg, 0.51 mmol) and 2-bromononane (42bk) 

(316 mg, 1.53 mmol). After 20 h, purification by column chromatography (n-hexane/EtOAc 9:1) 

yielded 147bk (89 mg, 56%) as a colorless oil.  

 

1H-NMR (300 MHz, CDCl3): δ = 8.66 (dd, J = 4.9, 1.5 Hz, 1H), 7.84 (d, J = 2.4 Hz, 1H), 7.80 (dd, J = 8.4, 

2.4 Hz, 1H), 7.74-7.65 (m, 2H), 7.15 (ddd, J = 6.7, 4.9, 2.1 Hz, 1H), 6.94 (d, J = 8.5 Hz, 1H), 3.87 (s, 3H), 

3.22 (qt, J = 7.1, 6.9 Hz, 1H), 1.78-1.46 (m, 2H), 1.33-1.16 (m, 10H), 1.26 (d, J = 6.9 Hz, 3H), 0.86 (t, J = 

6.6 Hz, 3H).  

13C-NMR (75 MHz, CDCl3): δ = 158.0 (Cq), 157.6 (Cq), 149.5 (CH), 136.5 (Cq), 136.5 (CH), 131.7 (Cq), 

125.5 (CH), 125.2 (CH), 121.2 (CH), 119.9 (CH), 110.5 (CH), 55.5 (CH3), 37.1 (CH2), 32.1 (CH), 31.9 

(CH2), 29.7 (CH2), 29.3 (CH2), 27.7 (CH2), 22.6 (CH2), 20.9 (CH3), 14.1 (CH3).  

IR (ATR): 
~ = 2956, 2924, 2854, 1606, 1585, 1563, 1501, 1463, 1028, 779, 740 cm-1.  

MS (EI) m/z (relative intensity): 311 (39) [M+], 226 (15), 212 (100), 198 (17), 167 (25).  

HRMS (EI) m/z calculated for C21H29NO+: 311.2249; found: 311.2254. 

 

Synthesis of 2-[4-Fluoro-3-(octan-2-yl)phenyl]pyridine (147ca)  

 

 

 

The general procedure E was followed, using [RuCl2(p-cymene)]2 (7.60 mg, 0.013 mmol, 2.4 mol %), 

MesCO2H (13a) (25 mg, 0.15 mmol, 29 mol %),  6ca (89.8 mg, 0.52 mmol) and 2-bromooctane (42ba) 

(291 mg, 1.51 mmol). After 20 h, purification by column chromatography (n-hexane/EtOAc 19:1 to 

5:1) yielded 147ca (83 mg, 56%) as a colorless oil.  

 

The general procedure E with (S)-3-methyl-2-pivalamidobutanoic acid (76c) (31.0 mg, 0.15 mmol, 

30 mol %) as additive in water (2 mL) at 100 °C gave 42% isolated yield. 

 

1H-NMR (300 MHz, CDCl3): δ = 8.68 (dt, J = 4.9, 1.3 Hz, 1H), 7.87 (dd, J = 7.2, 2.3 Hz, 1H), 7.79-7.62 (m, 

3H), 7.29-7.15 (m, 1H), 7.09 (dd, J = 10.1, 8.5 Hz, 1H), 3.11 (qt, J = 7.2, 7.1 Hz, 1H), 1.79-1.57 (m, 2H), 

1.41-1.12 (m, 8H), 1.31 (d, J = 7.1 Hz, 3H), 0.85 (t, J = 7.2 Hz, 3H).  

13C-NMR (75 MHz, CDCl3): δ = 161.6 (d, JC-F = 247 Hz, Cq), 156.9 (Cq), 149.6 (CH), 136.6 (CH), 135.4 (d, 

JC-F = 3 Hz, Cq), 134.7 (d, JC-F = 15 Hz, CH), 126.9 (d, JC-F = 6 Hz, CH), 125.8 (d, JC-F = 9 Hz, CH), 121.8 (CH), 
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120.3 (CH), 115.6 (d, JC-F = 24 Hz, CH), 37.1 (CH2), 33.0 (CH), 31.8 (CH2), 29.3 (CH2), 27.7 (CH2), 22.6 

(CH2), 20.9 (CH3), 14.0 (CH3).  

19F-NMR (282 MHz, CDCl3): δ = -117.62 - -119.83 (m).  

IR (ATR): 
~ = 2958, 2926, 2856, 1586, 1464, 1433, 1262, 1224, 825, 779 cm-1.  

MS (EI) m/z (relative intensity): 285 (14) [M+], 214 (31), 200 (100), 185 (50), 78 (17).  

HRMS (ESI) m/z calculated for C19H24FN+H+: 286.1971; measured: 286.1975. 

 

Synthesis of 2-[4-Fluoro-3-(hexan-3-yl)-phenyl]-pyridine (147cb)  

 

 
 

The general procedure E was followed, using [RuCl2(p-cymene)]2 (7.70 mg, 0.013 mmol, 2.5 mol %), 

MesCO2H (13a) (26 mg, 0.15 mmol, 30 mol %), 6ca (85.3 mg, 0.50 mmol) and 3-bromohexane (42bb) 

(252 mg, 1.52 mmol). After 20 h, purification by column chromatography (n-hexane/EtOAc 9:1) 

yielded 147cb (60 mg, 47%) as a colorless oil.  

 

1H-NMR (300 MHz, CDCl3): δ = 8.68 (ddd, J = 4.8, 1.8, 1.0 Hz, 1H), 7.86-7.64 (m, 4H), 7.20 (ddd, J = 7.0, 

4.8, 1.5 Hz, 1H), 7.09 (dd, J = 9.9, 8.5 Hz, 1H), 2.92 (dt, J = 8.8, 6.0 Hz, 1H), 1.85-1.56 (m, 4H), 1.29-

1.13 (m, 2H), 0.95-0.74 (m, 6H). 

13C-NMR (75 MHz, CDCl3): δ = 62.2 (d, JC-F = 247 Hz, Cq), 156.9 (Cq) , 149.6 (CH) , 136.6 (CH) , 135.4 (d, 

JC-F = 3 Hz, Cq), 132.8 (d, JC-F = 15 Hz, Cq), 127.4 (d, JC-F = 6 Hz, CH), 125.7 (d, JC-F = 9 Hz, CH), 121.8 (CH), 

120.3 (CH), 115.6 (d, JC-F = 24 Hz, CH), 40.2 (CH), 37.7 (d, JC-F = 2 Hz, CH2), 28.6 (d, JC-F = 1 Hz, CH2), 20.7 

(CH2), 14.1 (CH3), 12.2 (CH3). 

19F-NMR (282 MHz, CDCl3): δ = -117.53 - -119.88 (m). 

IR (ATR): 
~ = 3053, 2958, 2930, 2872, 1586, 1433, 1403, 1225, 778, 741 cm-1. 

MS (EI) m/z (relative intensity): 257 (23) [M+], 228 (36), 214 (41), 186 (100). 

HR-MS (ESI) m/z calculated for C17H20FN+Na+: 280.1477; found: 280.1472. 

 

Synthesis of 2-[4-Fluoro-3-(nonan-5-yl)phenyl]pyridine (147cg) 
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The general procedure E was followed, using [RuCl2(p-cymene)]2 (8.30 mg, 0.013 mmol, 2.6 mol %),  

MesCO2H (13a) (24 mg, 0.15 mmol, 28 mol %), 6ca (90.1 mg, 0.52 mmol) and 5-bromononane (42bg) 

(313 mg, 1.51 mmol). After 20 h, purification by column chromatography (n-hexane/EtOAc 5:1) 

yielded 147cg (78 mg, 50%) as a colorless oil.  

 

1H-NMR (300 MHz, CDCl3): δ = 8.66 (ddd, J = 4.8, 1.8, 1.0 Hz, 1H), 7.86-7.59 (m, 4H), 7.19 (ddd, J = 7.2, 

4.8, 1.5 Hz, 1H), 7.07 (dd, J = 9.9, 8.5 Hz, 1H), 3.05-2.84 (m, 1H), 1.73-1.56 (m, 4H), 1.37-1.03 (m, 8H), 

0.82 (t, J = 7.1 Hz, 6H).  

13C-NMR (75 MHz, CDCl3): δ = 162.0 (d, JC-F = 246.7 Hz, Cq), 156.9 (CH), 149.6 (CH), 136.7 (CH), 135.4 

(d, JC-F = 3.2 Hz, Cq), 133.2 (d, JC-F = 15.5 Hz, Cq), 127.4 (d, JC-F = 6.0 Hz, CH), 125.8 (d, JC-F = 8.7 Hz, CH), 

121.8 (CH), 120.3 (CH), 115.6 (d, JC-F = 24.2 Hz, CH), 38.7 (CH), 35.5 (CH2),  29.9 (CH2), 22.7 (CH2), 14.0 

(CH3).  

19F-NMR (282 MHz, CDCl3) δ = -118.34 (m).  

IR (ATR): 
~ = 2956, 2929, 2857, 1586, 1567, 1499, 1463, 1433, 1225, 825, 779 cm-1.  

MS (EI) m/z (relative intensity): 299 (18) [M+], 256 (11), 242 (100), 200 (14), 186 (69).  

HRMS (EI: m/z calculated for C20H26FN+: 299.2049; found 299.2059. 

 

Synthesis of 2-[4-Fluoro-3-(hexan-2-yl)phenyl]pyridine (147cj)  

 

 

 

The general procedure E was followed, using [RuCl2(p-cymene)]2 (7.70 mg, 0.013 mmol, 2.5 mol %), 

MesCO2H (13a) (25 mg, 0.15 mmol, 30 mol %), 6ca (87.3 mg, 0.50 mmol) and 2-bromohexane (42bj) 

(253 mg, 1.53 mmol). After 20 h, purification by column chromatography (n-hexane/EtOAc 7:1) 

yielded 147cj (80 mg, 62%) as a colorless oil.  

1H-NMR (300 MHz, CDCl3): δ = 8.68 (ddd, J = 4.9, 1.8, 1.0 Hz, 1H), 7.87 (dd, J = 7.2, 2.4 Hz, 1H), 7.80-

7.64 (m, 3H), 7.21 (ddd, J = 7.1, 4.9, 1.4 Hz, 1H), 7.09 (dd, J = 10.1, 8.5 Hz, 1H), 3.11 (qt, J = 7.1, 6.9 Hz, 

1H), 1.77-1.55 (m, 2H), 1.39-1.13 (m, 4H), 1.31 (d, J = 6.9 Hz, 3H), 0.87 (t, J = 7.1 Hz, 3H).  

13C-NMR (75 MHz, CDCl3): δ = 161.7 (d, JC-F = 247 Hz, Cq), 157.0 (Cq), 149.7 (CH), 136.8 (CH), 135.6 (d, 

JC-F = 3 Hz, Cq), 134.8 (d, JC-F = 15 Hz, Cq), 127.0 (d, JC-F = 6 Hz, CH), 125.9 (d, JC-F = 9 Hz, CH), 121.9 (CH), 

120.3 (CH), 115.7 (d, JC-F = 24 Hz, CH), 37.0 (CH2), 33.1 (CH), 30.0 (CH2), 22.8 (CH2), 21.0 (CH3), 14.1 

(CH3).  
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19F-NMR (282 MHz, CDCl3): δ = -117.64 - 119.88 (m).  

IR (ATR): 
~ = 2959, 2928, 2971, 2858, 1586, 1567, 1499, 1464, 1433, 1261, 1225, 1099, 779 cm-1.  

MS (EI) m/z (relative intensity): 257 (20) [M+], 214 (16), 200 (100), 185 (39).  

HRMS (EI) m/z calculated for C17H20FN+: 257.1580, found: 257.1576. 

 

Synthesis of 2-[3-Fluoro-5-(pentan-2-yl)phenyl]pyridine (147di)  

 

 

 

The general procedure E was followed, using [RuCl2(p-cymene)]2 (15.1 mg, 0.025 mmol, 5.0 mol %), 

MesCO2H (13a) (25 mg, 0.15 mmol, 31 mol %), 6da (83.7 mg, 0.48 mmol) and 2-bromopentane (42bi) 

(234 mg, 1.55 mmol). After 20 h, purification by column chromatography (n-hexane/EtOAc 9:1) 

yielded 147di (33 mg, 28%) as a colorless oil.  

 

1H-NMR (300 MHz, CDCl3): δ = 8.67 (ddd, J = 4.8, 1.8, 1.0 Hz, 1H), 7.77-7.65 (m, 2H), 7.61-7.57 (m, 1H), 7.48 

(ddd, J = 9.9, 2.5, 1.6 Hz, 1H), 7.22 (ddd, J = 7.2, 4.8, 1.5 Hz, 1H), 6.98-6.87 (m, 1H), 2.78 (qt, J = 7.1, 6.9 Hz, 

1H), 1.76-1.41 (m, 2H), 1.41-1.10 (m, 2H), 1.27 (d, J = 6.9 Hz, 3H), 0.86 (t, J = 7.3 Hz, 3H).  

13C-NMR (75 MHz, CDCl3): δ = 163.4 (d, JC-F = 245 Hz, Cq), 156.5 (d, JC-F = 3 Hz, Cq), 151.0 (d, JC-F = 7 Hz, 

Cq), 149.7 (CH), 141.3 (d, JC-F = 8 Hz, Cq), 136.8 (CH), 122.4 (CH), 121.4 (d, JC-F = 2 Hz, CH), 120.6 (CH), 

114.1 (d, JC-F = 21 Hz, CH), 111.2 (d, JC-F = 23 Hz, CH), 40.5 (CH2), 39.8 (d, JC-F = 2 Hz, CH), 22.1 (CH2), 

20.7 (CH3), 14.1 (CH3).  

19F-NMR (282 MHz, CDCl3): δ = -113.84 (t, J = 9.9 Hz).  

IR (ATR): ~ = 2958, 2929, 2872, 1718, 1585, 1438, 1439, 1265, 1171, 1082, 783, 543 cm-1.  

MS (EI) m/z (relative intensity): 243 (45) [M+], 214 (15), 200 (100), 185 (62), 164 (13), 146 (22).  

HRMS (EI) m/z calculated for C16H18FN+:  243.1423; found: 243.1424. 

 

2-[5-(Hexan-2-yl)-2-methylphenyl]-4-methylpyridine (147ea) and 2-[3-(Hexan-2-yl)-2-methyl-

phenyl]-4-methylpyridine (147ea’) 

 

The general procedure E was followed, using [RuCl2(p-cymene)]2 (15.3 mg, 0.025 mmol, 5.0 mol %), 

MesCO2H (13a) (25 mg, 0.15 mmol, 26 mol %), 6eb (105 mg, 0.57 mmol) and 2-bromohexane (42ba) 
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(251 mg, 1.52 mmol). After 20 h, purification by column chromatography (n-hexane/EtOAc 9:1) 

yielded 147ea (25 mg, 16%) and 147ea’ (70 mg, 46%) as a colorless oils.  

 

 

 

2-[5-(Hexan-2-yl)-2-methylphenyl]-4-methylpyridine (147ea) 

1H-NMR (300 MHz, CDCl3): δ = 8.54 (dd, J = 5.1, 0.7 Hz, 1H), 7.23-7.15 (m, 3H), 7.15-7.09 (m, 1H), 

7.09-7.02 (m, 1H), 2.68 (qt, J = 7.0, 6.9 Hz, 1H), 2.41 (s, 3H), 2.32 (s, 3H), 1.65-1.49 (m, 2H), 1.35-1.08 

(m, 4H), 1.26 (d, J = 6.9 Hz, 3H), 0.90-0.80 (m, 3H). 

13C-NMR (75 MHz, CDCl3): δ = 160.8 (Cq), 149.5 (CH), 147.6 (Cq), 146.0 (Cq), 140.9 (Cq), 133.5 (Cq), 

131.1 (CH), 128.8 (CH), 127.2 (CH), 125.6 (CH), 123.1 (CH), 40.1 (CH3), 38.7 (CH2), 30.6 (CH2), 23.4 

(CH2), 22.9 (CH3), 21.7 (CH), 20.4 (CH3), 14.6 (CH3). 

IR (ATR): 
~ = 2956, 2924, 2857, 1599, 1559, 1500, 1454, 1378, 886, 821 cm-1. 

MS (EI) m/z (relative intensity): 266 (100) [M-H+], 252 (13), 210 (75), 195 (36), 181 (14). 

HR-MS (ESI) m/z calculated for C19H25N-H+: 266.1909; found: 266.2064.  

 

 

 

2-[3-(Hexan-2-yl)-2-methylphenyl]-4-methylpyridine (147ea’) 

1H-NMR (300 MHz, CDCl3): δ = 8.53 (dd, J = 5.0, 0.8 Hz, 1H), 7.29-7.21 (m, 2H), 7.21-7.17 (m, 1H), 7.14 

(dd, J = 6.7, 2.3 Hz, 1H), 7.06 (ddd, J = 5.1, 1.7, 0.8 Hz, 1H), 3.07 (qt, J = 7.0, 6.9 Hz, 1H), 2.40 (d, J = 0.7 

Hz, 3H), 2.24 (s, 3H), 1.78-1.48 (m, 2H), 1.38-1.15 (m, 4H), 1.26 (d, J = 6.9 Hz, 3H), 0.89 (t, J = 6.9 Hz, 

3H). 

13C-NMR (75 MHz, CDCl3): δ = 161.2 (Cq), 148.8 (CH), 147.1 (Cq), 146.9 (Cq), 141.4 (Cq), 133.0 (Cq), 

127.0 (CH), 125.6 (CH), 125.4 (CH), 125.3 (CH), 122.5 (CH), 37.7 (CH2), 34.6 (CH3), 30.1 (CH2), 23.0 

(CH2), 21.9 (CH3), 21.2 (CH), 16.2 (CH3), 14.2 (CH3). 

IR (ATR): 
~ = 3049, 2957, 2925, 2858, 1601, 1557, 1458, 1377, 991, 826, 797, 727, 519 cm-1. 

MS (EI) m/z (relative intensity): 266 (35) [M-H+], 252 (27), 238 (30), 224 (100), 210 (70), 195 (25), 181 

(16). 



 Experimental Procedures and Analytical Data 183 

HR-MS (ESI) m/z calculated for C19H25N-H+: 266.1909; found: 266.1918. 

 

Synthesis of 2-[3-(Pentan-2-yl)-4-(trifluoromethyl)phenyl]pyridine (147ki) 

 

 

The general procedure E was followed, using [RuCl2(p-cymene)]2 (7.50 mg, 0.012 mmol, 2.3 mol %), 

MesCO2H (13a) (25 mg, 0.15 mmol, 30 mol %), 6ka (113 mg, 0.51 mmol) and 2-bromopentane (42bi) 

(218 mg, 1.45 mmol). After 20 h, purification by column chromatography (n-hexane/EtOAc 9:1) 

yielded 147ki (82 mg, 55%) as a colorless oil.  

 

1H-NMR (300 MHz, CDCl3): δ = 8.71 (d, J = 4.9 Hz, 1H), 8.07-8.04 (m, 1H), 7.85-7.80 (m, 1H), 7.80-7.70 (m, 

2H), 7.68 (d, J = 8.3 Hz, 2H), 7.26 (ddd, J = 7.1, 5.0, 2.0 Hz, 1H), 3.22 (qt, J = 6.8, 6.7 Hz, 1H), 1.84-1.50 (m, 

2H), 1.45-1.02 (m, 2H), 1.29 (d, J = 6.8 Hz, 3H), 0.86 (t, J = 7.3 Hz, 3H).  

13C-NMR (75 MHz, CDCl3): δ = 156.3 (Cq) 149.8 (CH), 147.9 (Cq), 142.7 (Cq), 136.8 (CH), 128.3 (q, JC-F = 

29.2 Hz, Cq), 126.0 (q, JC-F = 5.6 Hz, CH), 126.0 (CH), 124.7 (q, JC-F = 273.8 Hz, Cq), 124.0 (CH), 122.8 

(CH), 120.9 (CH), 40.5 (CH2), 34.6 (q, JC-F = 2.0 Hz, CH), 22.8 (CH3), 20.8 (CH2), 14.1 (CH3).  

19F-NMR (282 MHz, CDCl3): δ = -58.53 (m).  

IR (ATR): ~ = 2960, 2930, 2873, 1614, 1587, 1564, 1467, 1309, 1142, 1110, 1032, 781 cm-1.  

MS (EI) m/z (relative intensity): 293 (24) [M+], 264 (17), 250 (100), 230 (43), 224 (42), 210 (20).  

HRMS (ESI) m/z calculated for C17H18F3N
+: 293.1391; found: 293.1391. 

 

Synthesis of 2-[4-Methyl-3-(octan-2-yl)phenyl]pyridine (147oa) 

 

 

 

The general procedure E was followed, using [RuCl2(p-cymene)]2 (8.20 mg, 0.013 mmol, 2.6 mol %), 

MesCO2H (13a) (26 mg, 0.15 mmol, 30 mol %),  6oa (83.0 mg, 0.49 mmol) and 2-bromooctane (42ba) 

(283 mg, 1.47 mmol). After 20 h, purification by column chromatography (n-hexane/EtOAc 9:1) 

yielded 147oa (76 mg, 55%) as a colorless oil.  
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The general procedure E with (S)-3-methyl-2-pivalamidobutanoic acid (76c) (31.0 mg, 0.15 mmol, 

30 mol %) as additive in water (2 mL) at 100 °C gave 55% isolated yield. 

1H-NMR (300 MHz, CDCl3): δ = 8.70 (ddd, J = 6.4, 3.4, 2.1 Hz, 1H), 7.87 (d, J = 2.0 Hz, 1H), 7.74-7.68 

(m, 3H), 7.38-7.01 (m, 2H), 3.02 (qt, J = 7.1, 6.9 Hz, 1H), 2.38 (s, 3H), 1.79-1.54 (m, 2H), 1.42-1.01 (m, 

8H), 1.28 (d, J = 6.9 Hz, 3H), 0.87 (t, J = 6.0 Hz, 3H).  

13C-NMR (75 MHz, CDCl3): δ = 157.9 (Cq), 149.5 (CH), 146.5 (Cq), 137.3 (Cq), 136.5 (CH), 136.3 (Cq), 

130.5 (CH), 123.8 (CH), 123.8 (CH), 121.6 (CH), 120.3 (CH), 37.8 (CH2), 34.6 (CH3), 31.8 (CH2), 29.4 

(CH2), 27.8 (CH2), 22.6 (CH2), 21.5 (CH), 19.4 (CH3), 14.0 (CH3).  

IR (ATR): ~ = 2956, 2924, 2854, 1585, 1501, 1465, 909, 777, 732 cm-1.  

MS (EI) m/z (relative intensity): 281 (22) [M+], 210 (19), 196 (100), 181 (26), 40 (14).  

HRMS (ESI) m/z calculated for C20H27N+H+: 282.2222; found: 282.2216. 

 

Synthesis of Methyl 2-(pentan-2-yl)-4-(pyridin-2-yl)benzoate (147pi)  

 

 

 

The general procedure E was followed, using [RuCl2(p-cymene)]2 (7.8 mg, 0.013 mmol, 2.5 mol %), 

MesCO2H (13a) (25 mg, 0.15 mmol, 30 mol %), 6pa (109 mg, 0.51 mmol) and 2-bromopentane (42bi) 

(232 mg, 1.54 mmol). After 20 h, purification by column chromatography (n-hexane/EtOAc 9:1) 

yielded 147pi (91 mg, 63%) as a colorless oil.  

 

1H-NMR (300 MHz, CDCl3): δ = 8.70 (ddd, J = 4.8, 1.7, 1.0 Hz, 1H), 8.00 (dd, J = 1.1 Hz, 1H), 7.80 (d, J = 

1.1 Hz, 2H), 7.78-7.70 (m, 3H), 7.24 (ddd, J = 6.1, 4.8, 2.4 Hz, 1H), 3.89 (s, 3H), 3.64 (qt, J = 7.0, 6.9 Hz, 

1H), 1.81-1.49 (m, 2H), 1.43-1.11 (m, 2H), 1.30 (d, J = 6.9 Hz, 3H), 0.85 (t, J = 7.2 Hz, 3H).  

13C-NMR (75 MHz, CDCl3): δ = 168.7 (Cq), 156.6 (Cq), 149.7 (CH), 149.5 (Cq), 142.2 (Cq), 136.8 (CH), 

130.6 (Cq), 130.2 (CH), 125.3 (CH), 123.8 (CH), 122.6 (CH), 120.9 (CH), 52.0 (CH3), 40.6 (CH2), 34.5 

(CH), 22.1 (CH3), 20.8 (CH2), 14.1 (CH3).  

IR (ATR): 
~ = 2955, 2929, 2870, 1718, 1586, 1559, 1464, 1431, 1242, 1078, 772 cm-1.  

MS (EI) m/z (relative intensity): 283 (24) [M+], 252 (42), 240 (55), 222 (62), 208 (100), 180 (40), 167 

(19), 152 (14).  

HRMS (EI) m/z calculated for C18H21NO2
+: 283.1572; found: 283.1582. 
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Synthesis of 2-[3-(Hexan-2-yl)-5-n-propoxyphenyl]pyridine (147si)  

 

 

 

The general procedure E was followed, using [RuCl2(p-cymene)]2 (7.70 mg, 0.013 mmol, 2.5 mol %), 

MesCO2H (13a) (25mg, 0.15 mmol, 32 mol %), 6sa (104 mg, 0.47 mmol) and 2-bromohexane (42bi) 

(243 mg, 1.48 mmol). After 20 h, purification by column chromatography (n-hexane/EtOAc 5:1) 

yielded 147si (57 mg, 39%) as a colorless oil.  

 

1H-NMR (300 MHz, CDCl3): δ = 8.69 (ddd, J = 4.8, 1.4, 1.4 Hz, 1H), 7.78-7.68 (m, 2H), 7.45-7.35 (m, 

2H), 7.25-7.17 (m, 1H), 6.86-6.75 (m, 1H), 4.02 (t, J = 6.6 Hz, 2H), 2.73 (qt, J = 6.9, 6.9 Hz, 1H), 1.94-

1.76 (m, 2H), 1.71-1.48 (m, 2H), 1.37-1.14 (m, 4H), 1.28 (d, J = 6.9 Hz, 3H), 1.06 (t, J = 7.4 Hz, 3H), 0.86 

(t, J = 8.0 Hz, 3H). 

13C-NMR (75 MHz, CDCl3): δ = 159.6 (Cq), 157.7 (Cq) 150.0 (Cq), 149.5 (CH), 140.5 (Cq), 136.6 (CH), 

122.0 (CH), 120.7 (CH), 118.3 (CH), 114.4 (CH), 109.8 (CH), 69.5 (CH2), 40.2 (CH), 38.0 (CH2), 30.0 

(CH2), 22.8 (CH2), 22.7 (CH2), 22.3 (CH3), 14.0 (CH3), 10.6 (CH3). 

IR (ATR): 
~ = 2958, 2926, 2872, 1584, 1566, 1440, 1330, 1214, 1170, 1057, 993, 865, 782 cm-1. 

MS (EI) m/z (relative intensity): 297 (38) [M+], 254 (20), 241 (100), 198 (38), 183 (26). 

HR-MS (EI) m/z calculated for C20H27NO+: 297.2093; found: 297.2094. 

 

Synthesis of 2-[3-(Hexan-2-yl)-5-iso-propoxyphenyl]pyridine (147ti)  

 

 

 

The general procedure E was followed, using [RuCl2(p-cymene)]2 (7.90 mg, 0.013 mmol, 2.5 mol %), 

MesCO2H (13a) (24 mg, 0.15 mmol, 28 mol %), 6ta (114 mg, 0.53 mmol) and 2-bromohexane (42bi) 

(276 mg, 1.67 mmol). After 20 h, purification by column chromatography (n-hexane/EtOAc 5:1) 

yielded 147ti (60 mg, 38%) as a colorless oil.  
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1H-NMR (300 MHz, CDCl3): δ = 8.73-8.60 (m, 1H), 7.76-7.64 (m, 2H), 7.39-7.30 (m, 2H), 7.22-7.13 (m, 

1H), 6.77 (dd, J = 2.4, 1.6 Hz, 1H), 4.66 (hept, J = 6.0 Hz, 1H), 2.71 (qt, J = 7.1 Hz, 1H), 1.67-1.49 (m, 

2H), 1.35 (d, J = 6.1 Hz, 6H), 1.33-1.11 (m, 7H), 0.83 (t, J = 7.0 Hz, 3H). 

13C-NMR (75 MHz, CDCl3): δ = 158.3 (Cq), 157.7 (Cq), 150.1 (Cq), 149.5 (CH), 140.5 (Cq), 136.6 (CH), 

122.0 (CH), 120.7 (CH), 118.3(CH), 115.7 (CH), 111.4 (CH), 69.8 (CH), 40.2 (CH), 38.1 (CH2), 30.0 (CH2), 

22.8 (CH2), 22.2 (CH3), 22.1 (2xCH3), 14.03 (CH3).  

IR (ATR): 
~ = 2957, 2926, 2871, 2857, 1584, 1566, 1439, 1325, 1116, 993, 782 cm-1. 

MS (EI) m/z (relative intensity): 297 (29) [M+], 255 (15), 241 (21), 212 (21), 199 (100), 183 (29), 43 

(19). 

HR-MS (EI) m/z calculated for C20H27NO+: 297.2093; found: 297.2102. 

 

Synthesis of 2-(3-Methoxy-5-pentan-2-ylphenyl)pyridine (147ui)  

 

 

 

The general procedure E was followed, using [RuCl2(p-cymene)]2 (15 mg, 0.025 mmol, 5.0 mol %), 

MesCO2H (13a) (26 mg, 0.15 mmol, 32 mol %),  6ua (77.1 mg, 0.42 mmol) and 2-bromopentane 

(42bi) (227 mg, 1.50 mmol). After 20 h, purification by column chromatography (n-hexane/EtOAc 9:1) 

yielded 147ui (43 mg, 40%) as a colorless oil.  

 

1H-NMR (300 MHz, CDCl3): δ = 8.69 (d, J = 4.8 Hz, 1H), 7.79-7.68 (m, 2H), 7.39 (dd, J = 3.4, 1.9 Hz, 2H), 

7.23 (ddd, J = 6.8, 4.9, 2.3 Hz, 1H), 6.81 (s, 1H), 3.89 (s, 3H), 2.77 (qt, J = 7.1, 6.9 Hz, 1H), 1.70-1.49 (m, 

2H), 1.39-1.11 (m, 2H), 1.27 (d, J = 6.9 Hz, 3H), 0.88 (t, J = 7.3 Hz, 3H).  

13C-NMR (75 MHz, CDCl3): δ = 160.0 (Cq), 157.5 (Cq), 150.0 (Cq), 149.3 (CH), 140.4 (Cq), 136.6 (CH), 

122.0 (CH), 120.8 (CH), 118.4 (CH), 114.0 (CH), 109.1 (CH), 55.4 (CH), 40.6 (CH2), 40.0 (CH3), 22.3 

(CH3), 20.9 (CH2), 14.2 (CH3).  

IR (ATR): ~  = 2956, 2927, 2870, 1584, 1566, 1453, 1417, 1339, 1217, 1168, 1056, 864, 781cm-1.  

MS (EI) m/z (relative intensity): 255 (46) [M+], 213 (100), 197 (26), 182 (18), 168 (26), 154 (14).  

HRMS (EI) m/z calculated for C17H21NO+: 255.1623; found: 255.1626. 
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Synthesis of 2-[3-Methyl-5-(pentan-2-yl)phenyl]pyridine (147vi)  

 

 

 

The general procedure E was followed, using [RuCl2(p-cymene)]2 (16.0 mg, 0.026 mmol, 4.8 mol %), 

MesCO2H (13a) (25 mg, 0.15 mmol, 28 mol %),  6va (96.6 mg, 0.57 mmol) and 2-bromopentane 

(42bi) (229 mg, 1.52 mmol). After 20 h, purification by column chromatography (n-hexane/EtOAc 9:1) 

yielded 147vi (52 mg, 38%) as a colorless oil.  

 

1H-NMR (300 MHz, CDCl3): δ = 8.69 (ddd, J = 4.9, 1.4, 1.4 Hz, 1H), 7.79-7.66 (m, 2H), 7.65-7.55 (m, 

2H), 7.25-7.16 (m, 1H), 7.09-7.02 (m, 1H), 2.76 (qt, J = 7.0, 6.9 Hz, 1H), 2.42 (s, 3H), 1.71-1.48 (m, 2H), 

1.41-1.13 (m, 2H), 1.26 (d, J = 6.9 Hz, 3H),  0.88 (t, J = 7.3 Hz, 3H). 

13C-NMR (75 MHz, CDCl3): δ = 158.1 (Cq), 149.7 (CH), 148.6 (Cq), 139.5 (Cq), 138.4 (Cq), 136.8 (CH), 

128.6 (CH), 125.4 (CH), 123.1 (CH), 122.0 (CH), 120.9 (CH), 40.8 (CH2), 39.9 (CH3), 22.4 (CH3), 21.7 

(CH), 21.1 (CH2), 14.3 (CH3). 

IR (ATR): ~ = 2956, 2925, 2869, 1585, 1566, 1446, 1377, 991, 781, 742, 704, 671 cm-1. 

MS (EI) m/z (relative intensity): 239 (22) [M+], 210 (11), 196 (100), 181 (42), 167 (12). 

HR-MS (EI) m/z calculated for C17H21N
+: 239.1674; found: 239.1672. 

 

2-[2-Methoxy-3-(octan-2-yl)phenyl]pyridine (147wa’) and 2-[2-Methoxy-5-(octan-2-yl)phenyl]-

pyridine (147wa) 

  

The general procedure E was followed, using [RuCl2(p-cymene)]2 (8.00 mg, 0.013 mmol, 2.5 mol %), 

MesCO2H (13a) (25 mg, 0.15 mmol, 30 mol %), 6wa (90.3 mg, 0.49 mmol) and 42ba (293 mg, 

1.52 mmol). After 20 h, purification by chromatography (n-hexane/EtOAc 9:1) yielded a mixture of 

147wa and 147wa’ (1H-NMR ratio 147wa: 147wa’ = 1.0:2.1; 62 mg, 43%) as colorless oils. To get pure 

compounds some of the mixture was separated by HPLC (n-hexane/EtOAc = 97:3). 
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2-[2-Methoxy-3-(octan-2-yl)phenyl]pyridine (147wa’) 

1H-NMR (300 MHz, CDCl3): δ = 8.71 (ddd, J = 4.8, 1.8, 1.0 Hz, 1H), 7.84 (dd, J = 8.0, 1.2 Hz, 1H), 7.72 

(ddd, J = 7.4, 1.8, 1.0 Hz, 1H), 7.50 (dd, J = 7.4, 2.0 Hz, 1H), 7.35-7.07 (m, 3H), 3.41 (s, 3H), 3.29-3.20 

(m, 1H), 1.69-1.50 (m, 2H), 1.41-1.06 (m, 8H), 1.24 (d, J = 6.9 Hz, 3H), 0.86 (t, J = 6.6 Hz, 3H).  

13C-NMR (75 MHz, CDCl3): δ = 157.0 (Cq), 155.5 (Cq), 149.4 (CH), 141.3 (Cq), 135.9 (CH), 133.3 (Cq), 

128.5 (CH), 127.5 (CH), 124.5 (CH), 124.4 (CH), 121.7 (CH), 61.6 (CH3), 38.1 (CH2), 31.9 (CH2), 31.8 

(CH), 29.5 (CH2), 28.0 (CH2), 22.7 (CH2), 22.3 (CH3), 14.2 (CH3).  

IR (ATR): 
~ = 2956, 2925, 2855, 1586, 1452, 1430, 1217, 1008, 775, 746 cm-1.  

MS (EI) m/z (relative intensity): 297 (29) [M+], 282 (49), 226 (100), 212 (53), 196 (66), 184 (17), 167 

(30).  

HRMS (EI) m/z calculated for C20H27NO-H+: 296.2014; found: 296.2026. 

 

 

 

2-[2-Methoxy-5-(octan-2-yl)phenyl]pyridine (147wa) 

1H-NMR (300 MHz, CDCl3): δ = 8.69 (dd, J = 4.8, 1.9 Hz, 1H), 7.79 (d, J = 8.0 Hz, 1H), 7.73-7.61 (m, 1H), 

7.55 (d, J = 2.4 Hz, 1H), 7.23-7.11 (m, 2H), 6.92 (d, J = 8.5 Hz, 1H), 3.82 (s, 3H), 2.69 (qt, J = 7.1, 6.8 Hz, 

1H), 1.64-1.48 (m, 2H), 1.37-1.05 (m, 8H), 1.22 (d, J = 6.8 Hz, 3H), 0.84 (t, J = 6.9 Hz, 3H).  

13C-NMR (75 MHz, CDCl3): δ = 156.4 (Cq), 155.0 (Cq), 149.5 (Cq), 149.3 (CH), 140.6 (Cq), 135.6 (CH), 

129.8 (CH), 128.0 (CH), 125.2 (CH), 121.5 (CH), 111.4 (CH), 55.7 (CH3), 39.2 (CH), 38.6 (CH2), 31.8 

(CH2), 29.4 (CH2), 27.8 (CH2), 22.7 (CH2), 22.4 (CH3), 14.1 (CH3).  

IR (ATR): 
~ = 2955, 2924, 2854, 1586, 1500, 1462, 1238, 1061, 1027, 812, 746 cm-1.  

MS (EI) m/z (relative intensity): 297 (50) [M+], 226 (12), 212 (100), 197 (29), 183 (20), 167 (17), 80 

(25).  

HRMS (EI) m/z calculated for C20H27NO-H+: 296.2014; found: 296.2028. 

 

2-[5-(Hexan-2-yl)-2-methylphenyl]pyridine (147xa) and 2-[3-(Hexan-2-yl)-2-methylphenyl]pyridine 

(147xa’)  

 

The general procedure E was followed, using [RuCl2(p-cymene)]2 (8.30 mg, 0.013 mmol, 2.7 mol %), 

MesCO2H (13a) (24 mg, 0.15 mmol, 30 mol %), 6xa (76.2 mg, 0.45 mmol) and 42ba (242 mg, 
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1.47 mmol). After 20 h, purification by chromatography (n-hexane/EtOAc 9:1) yielded 147xa (18 mg, 

16%) and 147xa’ (51 mg, 44%) as colorless oils.  

  

 

 

2-[5-(Hexan-2-yl)-2-methylphenyl]pyridine (147xa)  

1H-NMR (300 MHz, CDCl3): δ = 8.70 (ddd, J = 4.9, 1.8, 0.9 Hz, 1H), 7.74 (ddd, J = 7.7, 1.9 Hz, 1H), 7.42-

7.37 (m, 1H), 7.24-7.17 (m, 3H), 7.13 (dd, J = 7.9, 1.9 Hz, 1H), 2.69 (qt, J = 7.0, 7.0 Hz, 1H), 2.32 (s, 3H), 

1.77-1.45 (m, 2H), 1.40-1.08 (m, 4H), 1.24 (d, J = 7.0 Hz, 3H), 0.85 (t, J = 6.7 Hz, 3H).  

13C-NMR (75 MHz, CDCl3): δ = 160.4 (Cq), 149.1 (CH), 145.5 (Cq), 140.2 (Cq), 136.0 (Cq), 132.9 (CH), 

130.6 (Cq), 128.3 (CH), 126.8 (CH), 124.1 (CH), 121.5 (CH), 39.5 (CH), 38.1 (CH2), 30.0 (CH2), 22.8 (CH2), 

22.3 (CH3), 19.8 (CH3), 14.0 (CH3).  

IR (ATR): 
~ = 2955, 2924, 2857, 1587, 1563, 1466, 1426, 894, 823, 792, 748, 639 cm-1.  

MS (EI) m/z (relative intensity): 252 (100) [M-H+], 196 (98), 181 (61), 167 (27).  

HRMS (EI) m/z calculated for C18H23N
+: 253.1830, found: 253.1826. 

 

 

 

2-[3-(Hexan-2-yl)-2-methylphenyl]pyridine (147xa’)  

1H-NMR (300 MHz, CDCl3): δ = 8.69 (ddd, J = 4.8, 1.9, 1.0 Hz, 1H), 7.72 (td, J = 7.7, 1.8 Hz, 1H), 7.37 

(dd, J = 7.9, 1.1 Hz, 1H), 7.32-7.19 (m, 3H), 7.16 (dd, J = 6.7, 2.3 Hz, 1H), 3.08 (qt, J = 7.0, 6.9 Hz, 1H), 

2.25 (s, 3H), 1.78-1.50 (m, 2H), 1.40-1.16 (m, 4H), 1.23 (d, J = 6.9 Hz, 3H), 0.87 (t, J = 6.7 Hz, 3H).  

13C-NMR (75 MHz, CDCl3): δ = 161.2 (Cq), 149.0 (CH), 146.8 (Cq), 141.2 (Cq), 135.9 (CH), 132.9 (Cq), 

126.9 (CH), 125.5 (CH), 125.3 (CH), 124.4 (CH), 121.3 (CH), 37.6 (CH2), 34.4 (CH), 30.0 (CH2), 22.9 

(CH2), 21.7 (CH3), 16.0 (CH3), 14.0 (CH3).  

IR (ATR): 
~ = 2957, 2926, 2857, 1580, 1563, 1458, 1422, 1377, 1002, 777, 748, 728 cm-1.  

MS (EI) m/z (relative intensity): 281 (50) [M+], 266 (21), 224 (20), 210 (100), 196 (75), 181 (33), 167 

(38), 84 (27), 41 (41).  

HRMS (ESI) m/z calculated for C18H23N+H+: 254.1909; found: 254.1911. 
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2-[2-Fluoro-5-(octan-2-yl)phenyl]pyridine (147za) and 2-[2-Fluoro-3-(octan-2-yl)phenyl]pyridine 

(147za’)  

 

The general procedure E was followed, using [RuCl2(p-cymene)]2 (7.70 mg, 0.013 mmol, 2.5 mol %), 

MesCO2H (13a) (25 mg, 0.15 mmol, 28 mol %), 6za (93.5 mg, 0.54 mmol) and 2-bromooctane (42ba) 

(297 mg, 1.54 mmol). After 20 h, purification by column chromatography (n-hexane/EtOAc 19:1) 

yielded 147za (4 mg, 3%) and 147za’ (24 mg, 16%) as colorless oils.  

 

 

 

2-[2-Fluoro-5-(octan-2-yl)phenyl]pyridine (147za) 

1H-NMR (300 MHz, CDCl3): δ = 8.71 (ddd, J = 4.8, 1.7, 1.1 Hz, 1H), 7.83-7.65 (m, 3H), 7.26-7.20 (m, 

1H), 7.20-7.12 (m, 1H), 7.06 (dd, J = 11.0, 8.4 Hz, 1H), 2.73 (qt, J = 7.1, 7.0 Hz, 1H), 1.71-1.46 (m, 2H), 

1.23 (dd, J = 6.3, 2.8 Hz, 8H), 1.26 (d, J = 7.0 Hz, 3H), 0.84 (d, J = 6.5 Hz, 3H). 

13C-NMR (75 MHz, CDCl3): δ = 159.0 (d, JC-F = 247 Hz, Cq), 154.1 (d, JC-F = 2 Hz, Cq), 150.0 (CH), 144.5 (d, 

JC-F = 4 Hz, Cq), 136.6 (CH), 129.7 (d, JC-F = 3 Hz, CH), 128.9 (d, JC-F = 8 Hz, CH), 127.2 (d, JC-F = 12 Hz, Cq), 

125.0 (d, JC-F = 9 Hz, CH), 122.6 (CH), 116.3 (d, JC-F = 23 Hz, CH), 39.9 (CH), 39.0 (CH2), 32.3 (CH2), 29.9 

(CH2), 28.2 (CH2), 23.1 (CH2), 22.8 (CH3), 14.6 (CH3). 

19F-NMR (282 MHz, CDCl3): δ = -111.79 - -137.55 (m). 

IR (ATR): 
~ = 2956, 2925, 2855, 1587, 1568, 1498, 1462, 1441, 1252, 1213, 821, 790, 744 cm-1. 

MS (EI) m/z (relative intensity): 285 (12) [M+], 214 (15), 200 (100), 185 (26). 

HR-MS (ESI) m/z calculated for C19H24FN+: 285.1893; found: 285.1892. 

 

 

 

2-[2-Fluoro-3-(octan-2-yl)phenyl]pyridine (147za’) 

1H-NMR (300 MHz, CDCl3): δ = 8.70 (ddd, J = 4.8, 1.5, 1.5 Hz, 1H), 7.79-7.64 (m, 3H), 7.30-7.14 (m, 

3H), 3.14 (qt, J = 7.0, 6.9 Hz, 1H), 1.69-1.50 (m, 2H), 1.35-1.12 (m, 8H), 1.27 (d, J = 6.9 Hz, 3H), 0.83 (t, 

J = 6.5 Hz, 3H). 
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13C-NMR (75 MHz, CDCl3): δ = 158.3 (d, JC-F = 248 Hz, Cq), 154.2 (d, JC-F = 2 Hz, Cq), 149.6 (CH), 136.1 

(CH), 135.0 (d, JC-F = 16 Hz, Cq), 128.4 (d, JC-F = 6 Hz, CH), 128.3 (d, JC-F = 3.2 Hz, Cq), 127.5 (d, JC-F = 

14 Hz, CH), 124.6 (d, JC-F = 8 Hz, CH), 124.2 (d, JC-F = 4 Hz, CH), 122.1 (CH), 37.3 (d, JC-F = 1 Hz, CH2), 32.4 

(d, JC-F = 3 Hz, CH), 31.8 (CH2), 29.3 (CH2), 27.6 (CH2), 22.6 (CH2), 21.1 (d, JC-F = 1 Hz, CH3), 14.0 (CH3). 

19F-NMR (283 MHz, CDCl3): δ = -124.49 - -124.61 (m). 

IR (ATR): 
~ = 2958, 2926, 2856, 1587, 1567, 1443, 1425, 1198, 1071, 822, 771, 742 cm-1. 

MS (EI) m/z (relative intensity): 285 (10) [M+], 214 (18), 200 (100), 185 (18). 

HR-MS (ESI) m/z calculated for C19H24FN+: 285.1893; found: 285.1888. 

 

2-[5-(Octan-2-yl)-2-(n-octyl)phenyl]pyridine (150) and 2-[3-(Octan-2-yl)-2-(n-octanyl)phenyl]-

pyridine (150’)  

 

The general procedure E was followed, using [RuCl2(p-cymene)]2 (16.0 mg, 0.027 mmol, 5.0 mol %), 

MesCO2H (13a) (25 mg, 0.15 mmol, 30 mol %), 93a (138 mg, 0.52 mmol) and 2-bromooctane (42ba) 

(284 mg, 1.47 mmol). After 20 h, purification by column chromatography (n-hexane/EtOAc 19:1) 

yielded 150 (28 mg, 14%) and 150’ (36 mg, 18%) as colorless oils.  

 

 

 

2-[5-(Octan-2-yl)-2-(n-octyl)phenyl]pyridine (150)  

1H-NMR (300 MHz, CDCl3): δ = 8.68 (ddd, J = 4.9, 1.9, 0.9 Hz, 1H), 7.73 (ddd, J = 7.7, 1.9, 1.9 Hz, 1H), 

7.37 (ddd, J = 7.8, 1.1, 1.0 Hz, 1H), 7.23 (dddd, J = 5.1, 3.2, 1.6, 1.6 Hz, 2H), 7.17-7.11 (m, 2H), 2.82-

2.56 (m, 3H), 1.68-1.37 (m, 4H), 1.37-1.03 (m, 21H), 0.91-0.76 (m, 6H). 

13C-NMR (75 MHz, CDCl3): δ = 160.8 (Cq), 149.2 (CH), 145.5 (Cq), 140.2 (Cq), 138.1 (Cq), 136.1 (CH), 

129.7 (CH), 128.5 (CH), 126.9 (CH), 124.3 (CH), 121.6 (CH), 39.7 (CH), 38.6 (CH2), 32.0 (CH2), 31.9 

(CH2), 31.8 (CH2), 29.6 (CH2), 29.6 (CH2), 29.4 (CH2), 29.4 (CH2), 27.9 (CH2), 22.8 (CH2), 22.8 (CH2), 22.2 

(CH2), 22.2 (CH2), 14.3 (CH3), 14.2 (CH3). 

IR (ATR): 
~ = 2955, 2923, 2853, 1587, 1563, 1466, 1426, 1271, 829, 793, 747 cm-1. 

MS (EI) m/z (relative intensity): 379 (12) [M+], 294 (100), 208 (14), 194 (22). 

HR-MS (EI) m/z calculated for C27H41N
+: 379.3239; found: 379.3233. 
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2-[3-(Octan-2-yl)-2-(n-octanyl)phenyl]pyridine (150’)  

1H-NMR (300 MHz, CDCl3): δ = 8.72-8.62 (m, 1H), 7.73 (ddd, J = 7.7, 1.8, 1.8 Hz, 1H), 7.36 (d, J = 7.7 

Hz, 1H), 7.24 (dd, J = 11.8, 7.7 Hz, 3H), 7.08 (dd, J = 7.1, 1.8 Hz, 1H), 3.03 (qt, J = 7.1, 7.0 Hz, 1H), 2.67-

2.52 (m, 2H), 1.71-1.49 (m, 2H), 1.49-1.01 (m, 23H), 0.87 (m, 6H). 

13C-NMR (75 MHz, CDCl3): δ = 162.2 (Cq), 149.3 (CH), 147.2 (Cq), 141.6 (Cq), 138.6 (Cq), 136.5 (CH), 

127.6 (CH), 126.4 (CH), 126.2 (CH), 124.8 (CH), 122.0 (CH), 39.1 (CH2), 34.6 (CH), 32.4 (CH2), 32.4 

(CH2), 31.9 (CH2), 30.4 (CH2), 30.1 (CH2), 29.6 (CH2), 29.6 (CH2), 29.5 (CH2), 28.5 (CH2), 23.3 (CH2), 23.2 

(CH2), 23.2 (CH3), 14.7 (CH3), 14.6 (CH3). 

IR (ATR): 
~ = 2956, 2922, 2853, 1582, 1563, 1458, 1420, 779, 747, 723 cm-1. 

MS (EI) m/z (relative intensity): 378 (100) [M-H+], 308 (78), 294 (41), 266 (21), 208 (48), 194 (50), 180 

(30), 43 (50). 

HR-MS (ESI) m/z calculated for C27H41N+H+: 380.3312; found: 380.3311. 

 

2-[2-(n-Octyl)-5-(pentan-2-yl)phenyl]pyridine (151) and 2-[2-(n-Octyl)-3-(pentan-2-yl)phenyl]-

pyridine (151’)  

 

The general procedure E was followed, using [RuCl2(p-cymene)]2 (15.0 mg, 0.025 mmol, 5.0 mol %), 

MesCO2H (13a) (25 mg, 0.15 mmol, 29 mol %), 93a (138 mg, 0.52 mmol) and 2-bromopentane (42bi) 

(236 mg, 1.56 mmol). After 20 h, purification by column chromatography (n-hexane/EtOAc 30:1) 

yielded 151 (25 mg, 14%) and 151’ (30 mg, 17%) as colorless oils.  

 

 

 

2-[2-(n-Octyl)-5-(pentan-2-yl)phenyl]pyridine (151) 

1H-NMR (300 MHz, CDCl3): δ = 8.73-8.63 (m, 1H), 7.73 (ddd, J = 7.5, 1.5, 1.5 Hz, 1H), 7.37 (d, J = 7.8 

Hz, 1H), 7.29-7.17 (m, 2H), 7.17-7.09 (m, 2H), 2.80-2.54 (m, 3H), 1.67-1.34 (m, 4H), 1.34-1.00 (m, 

15H), 0.91-0.77 (m, 6H). 
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13C-NMR (75 MHz, CDCl3): δ = 160.7 (Cq), 149.0 (CH), 145.2 (Cq), 140.1 (Cq), 138.0 (Cq), 135.9 (CH), 

129.5 (CH), 128.4 (CH), 126.8 (CH), 124.1 (CH), 121.4 (CH), 40.7 (CH2), 39.2 (CH), 32.6 (CH2), 31.8 

(CH2), 31.3 (CH2), 29.5 (CH2), 29.2 (CH2), 29.1 (CH2), 22.6 (CH2), 22.2 (CH2), 20.8 (CH2), 14.1 (CH3), 14.1 

(CH3). 

IR (ATR): 
~ = 2955, 2924, 2853, 1586, 1563, 1466, 1425, 1101, 897, 747 cm-1. 

MS (EI) m/z (relative intensity): 337 (31) [M+], 252 (100), 238 (15), 208 (17), 194 (34), 167 (15), 43 

(28). 

HR-MS (EI) m/z calculated for C24H35N
+: 337.2770; found: 337.2755. 

 

 

 

2-[2-(n-Octyl)-3-(pentan-2-yl)phenyl]pyridine (151’) 

1H-NMR (300 MHz, CDCl3): δ = 8.78-8.59 (m, 1H), 7.72 (td, J = 7.7, 1.9 Hz, 1H), 7.35 (dt, J = 7.8, 1.2 Hz, 

1H), 7.31-7.17 (m, 3H), 7.07 (dd, J = 7.2, 1.8 Hz, 1H), 3.05 (h, J = 7.0 Hz, 1H), 2.70-2.51 (m, 2H), 1.66-

1.52 (m, 2H), 1.49-1.00 (m, 17H), 0.96-0.79 (m, 6H). 

13C-NMR (75 MHz, CDCl3): δ = 161.6 (Cq), 148.8 (CH), 146.6 (Cq), 141.0 (Cq), 138.1 (Cq), 135.9 (CH), 

127.0 (CH), 125.9 (CH), 125.6 (CH), 124.2 (CH), 121.4 (CH), 40.9 (CH2), 33.8 (CH), 31.8 (CH2), 31.7 

(CH2), 31.3 (CH2), 29.8 (CH2), 29.1 (CH2), 29.0 (CH2), 28.9 (CH2), 22.6 (CH3), 21.0 (CH2), 14.3 (CH3), 14.1 

(CH3). 

IR (ATR): 
~ = 2956, 2923, 2853, 1581, 1563, 1457, 1421, 779, 747 cm-1. 

MS (EI) m/z (relative intensity): 336 (100) [M-H+], 308 (71), 294 (29), 266 (23), 252 (98), 208 (44), 194 

(54), 180 (30), 167 (33), 43 (31). 

HR-MS (EI) m/z calculated for C24H35N
+: 337.2770; found: 337.2766. 

 

Synthesis of 2-[3,5-Di(pentan-2-yl)phenyl]-3-methoxypyridine (152bi’) and 3-Methoxy-2-[3-

(pentan-2-yl)phenyl]pyridine (152bi)  

 

The general procedure E was followed, using [RuCl2(p-cymene)]2 (15.0 mg, 0.025 mmol, 4.0 mol %), 

MesCO2H (13a) (26 mg, 0.15 mmol, 24 mol %),  6cb (115 mg, 0.62 mmol) and 2-bromopentane (42bi) 

(255 mg, 1.69 mmol). After 20 h, purification by column chromatography (n-hexane/EtOAc 6:1) 

yielded 152bi’ (23 mg, 11%) and 152bi (65 mg, 41%) as colorless oils.  
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(152bi’) 

1H-NMR (300 MHz, CDCl3): δ = 8.32 (dd, J = 4.5, 1.5 Hz, 1H), 7.51 (d, J = 1.7 Hz, 2H), 7.30-7.14 (m, 2H), 

7.04-6.98 (m, 1H), 3.84 (s, 3H), 2.75 (qt, J = 7.0, 6.9 Hz, 2H), 1.71-1.45 (m, 4H), 1.38-1.14 (m, 4H), 1.27 

(d, J = 6.9 Hz, 6H), 0.87 (t, J = 7.3 Hz, 6H). 

13C-NMR (75 MHz, CDCl3): δ = 153.7 (Cq), 149.2 (Cq), 147.4 (Cq), 141.2 (CH), 128.4 (Cq), 126.1 (CH), 

125.7 (CH), 122.7 (CH), 118.7 (CH), 55.6 (CH3), 40.9 (CH), 39.8 (CH2), 22.3 (CH2), 21.0 (CH3), 14.3 (CH3). 

IR (ATR): 
~ = 2956, 2927, 2871, 1714, 1580, 1420, 1359, 1272, 1218, 1126, 1018, 768 cm-1. 

MS (EI) m/z (relative intensity): 325 (28) [M+], 296 (15), 282 (100), 238 (16), 212 (20), 196 (10). 

HR-MS (EI) m/z calculated for C22H31NO+: 325.2406; found: 325.2406. 

 

 

(152bi) 

1H-NMR (300 MHz, CDCl3): δ = 8.32 (dd, J = 4.5, 1.5 Hz, 1H), 7.81-7.65 (m, 2H), 7.36 (dd, J = 7.9, 

7.9 Hz, 1H), 7.32-7.13 (m, 3H), 3.85 (s, 3H), 2.78 (qt, J = 7.1, 6.9 Hz, 1H), 1.75-1.44 (m, 2H), 1.44-1.12 

(m, 2H), 1.26 (d, J = 6.9 Hz, 3H), 0.88 (t, J = 7.3 Hz, 3H). 

13C-NMR (75 MHz, CDCl3): δ = 153.5 (Cq), 148.6 (Cq), 147.4 (Cq), 141.2 (CH), 137.4 (Cq), 128.2 (CH), 

127.7 (CH), 126.9 (CH), 126.9 (CH), 122.7 (CH), 118.4 (CH), 55.4 (CH3), 40.7 (CH2), 39.7 (CH), 22.2 

(CH2), 20.8 (CH3), 14.1 (CH3). 

IR (ATR): 
~ = 3055, 3007, 2957, 2937, 2835, 1578, 1423, 1267, 1195, 1125, 1013, 737, 694 cm-1. 

MS (EI) m/z (relative intensity): 255 (34), 212 (100), 197 (56), 182 (37).  

HR-MS (EI) m/z calculated for C17H21NO+: 255.1623; found: 255.1617. 

 

Synthesis of 3-Methyl-2-[3-(octan-2-yl)phenyl]pyridine (152da)  
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The general procedure E was followed, using [RuCl2(p-cymene)]2 (8.00 mg, 0.013 mmol, 2.4 mol %), 

MesCO2H (13a) (25 mg, 0.15 mmol, 29 mol %), 6db (90.2 mg, 0.53 mmol) and 2-bromooctane (42ba) 

(282 mg, 1.46 mmol). After 20 h, purification by column chromatography (n-hexane/EtOAc 4:1) 

yielded 152da (84 mg, 56%) as a colorless oil.  

 

1H-NMR (300 MHz, CDCl3): δ = 8.57-8.45 (m, 1H), 7.57 (ddd, J = 7.7, 1.7, 0.8 Hz, 1H), 7.44-7.28 (m, 

3H), 7.28-7.12 (m, 2H), 2.73 (qt, J = 7.0, 6.9 Hz, 1H), 2.35 (s, 3H), 1.70-1.49 (m, 2H), 1.35-1.09 (m, 8H), 

1.24 (d, J = 6.9 Hz, 3H), 0.92-0.77 (t, J = 6.7 Hz, 3H).  

13C-NMR (75 MHz, CDCl3): δ = 159.4 (Cq), 148.0 (Cq), 147.2 (CH), 140.8 (Cq), 138.7 (CH), 131.2 (Cq), 

128.4 (CH), 128.0 (CH), 126.9 (CH), 126.7 (CH), 122.3 (CH), 40.4 (CH3), 38.9 (CH2), 32.3 (CH2), 29.9 

(CH2), 28.2 (CH2), 23.1 (CH2), 22.8 (CH), 20.6 (CH3), 14.6 (CH3).  

IR (ATR): 
~ = 2956, 2924, 2854, 1583, 1566, 1453, 1417, 1377, 1118, 786, 766, 708, 626 cm-1.  

MS (EI): m/z (relative intensity): 281 (28) [M]+, 210 (51), 196 (100), 181 (40), 168 (21).  

HRMS (EI) m/z calculated for C20H27N
+: 281.2143, found: 281.2143.  

 

Synthesis of 2-[3,5-Di(pentan-2-yl)phenyl]-3-methoxypyridine (152ci’) and 2-[3-(Pentan-2-yl)-

phenyl]-3-methoxypyridine (152ci)  

 

The general procedure E was followed, using [RuCl2(p-cymene)]2 (8.00 mg, 0.013 mmol, 2.5 mol %), 

MesCO2H (13a) (25 mg, 0.15 mmol, 30 mol %), 6cb (92.1 mg, 0.50 mmol) and 2-bromopentane (42bi) 

(250 mg, 1.51 mmol). After 20 h, purification by column chromatography (n-hexane/EtOAc 5:1) 

yielded 152ci’(8 mg, 5%) and 152ci (62 mg, 48%) as colorless oils.  

 

 

 

(152ci) 

1H-NMR (300 MHz, CDCl3): δ = 8.32 (dd, J = 4.5, 1.5 Hz, 1H), 7.75-7.67 (m, 2H), 7.41-7.32 (m, 1H), 

7.31-7.17 (m, 3H), 3.85 (s, 3H), 2.76 (qt, J = 7.0, 6.9 Hz, 1H), 1.73-1.50 (m, 2H), 1.37-1.10 (m, 4H), 1.28 

(d, J = 7.0 Hz, 3H), 0.85 (t, J = 6.8 Hz, 3H).  

13C-NMR (75 MHz, CDCl3): δ = 153.5 (Cq), 148.6 (Cq), 147.5 (Cq), 141.3 (CH), 137.5 (Cq), 128.1 (CH), 

127.7 (CH), 126.9 (CH), 126.8 (CH), 122.6 (CH), 118.4 (CH), 55.4 (CH3), 40.0 (CH), 38.1 (CH2), 29.9 

(CH2), 22.8 (CH2), 22.2 (CH3), 14.1 (CH3).  
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IR (ATR): 
~ = 3056, 2956, 2925, 2870, 2856, 1579, 1446, 1417, 1268, 1125, 1017, 802, 760, 703 cm-1.  

MS (EI) m/z (relative intensity): 269 (44) [M+], 226 (34), 212 (100), 196 (35), 182 (24), 167 (13), 154 

(11).  

HRMS (EI) m/z calculated for C18H23NO+: 269.1780; found: 269.1789. 

 

 

 

(152ci’) 

1H-NMR (300 MHz, CDCl3): δ = 8.31 (dd, J = 4.6, 1.5 Hz, 1H), 7.51 (d, J = 1.7 Hz, 2H), 7.31-7.14 (m, 2H), 

7.01 (dd, J = 1.8 Hz, 1H), 3.84 (s, 3H), 2.72 (qt, J = 7.0, 6.9 Hz, 2H), 1.74-1.44 (m, 4H), 1.44-1.10 (m, 

8H), 1.27 (d, J = 6.9 Hz, 6H), 0.85 (t, J = 6.9 Hz, 6H).  

13C-NMR (75 MHz, CDCl3): δ = 153.5 (Cq), 149.2 (Cq), 147.2 (Cq), 141.4 (CH), 137.7 (Cq), 125.9 (CH), 

125.6 (CH), 122.5 (CH), 118.4 (CH), 55.5 (CH3), 40.0 (CH), 38.2 (CH2), 30.0 (CH2), 22.8 (CH2), 22.2 (CH3), 

14.1 (CH3). 

IR (ATR): 
~ = 2955, 2925, 2870, 1580, 1457, 1420, 1273, 1181, 1126, 1018, 797 cm-1.  

MS (EI) m/z (relative intensity): 353 (33) [M+], 310 (23), 296 (100), 238 (11).  

HR-MS (EI) m/zcalculated for C24H35NO+: 353.2719; found: 353.2720. 

 

Synthesis of 2-[3,5-Di(hexan-2-yl)phenyl]-3-methylpyridine (152dj’) & 2-[3-(Hexan-2-yl)phenyl]-3-

methylpyridine (152dj)  

 

The general procedure E was followed, using [RuCl2(p-cymene)]2 (7.90 mg, 0.013 mmol, 2.5 mol %), 

MesCO2H (13a) (25 mg, 0.15 mmol, 30 mol %),  6db (87.0 mg, 0.51 mmol) and 2-bromohexane (42bj) 

(255 mg, 1.55 mmol). After 20 h, purification by column chromatography (n-hexane/EtOAc 9:1) 

yielded 152dj’ (18 mg, 10%) and 152dj (79 mg, 61%) as colorless oils.  

 

 

(152dj) 
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1H-NMR (300 MHz, CDCl3): δ = 8.54 (dd, J = 4.8, 1.8 Hz, 1H), 7.63-7.51 (m, 1H), 7.43-7.25 (m, 3H), 

7.25-7.09 (m, 2H), 2.75 (qt, J = 7.1, 6.9 Hz, 1H), 2.35 (s, 3H), 1.73-1.48 (m, 2H), 1.38-1.10 (m, 4H), 1.27 

(d, J = 6.9 Hz, 3H), 0.86 (t, J = 6.7 Hz, 3H).  

13C-NMR (75 MHz, CDCl3): δ = 159.1 (Cq), 147.7 (Cq), 146.9 (CH), 140.5 (Cq), 138.3 (CH), 130.8 (Cq), 

128.0 (CH), 127.6 (CH), 126.5 (CH), 126.3 (CH), 121.9 (CH), 39.9 (CH3), 38.1 (CH2), 29.9 (CH2), 22.7 

(CH2), 22.3 (CH), 20.1 (CH3), 14.0 (CH3).  

IR (ATR): 
~ = 3047, 2956, 2925, 2857, 1583, 1565, 1448, 1417, 1377, 1118, 900, 786, 765 cm-1.  

MS (EI) m/z (relative intensity): 253 (38) [M+], 210 (46), 196 (100), 181 (43), 168 (23).  

HRMS (EI) m/z calculated for C18H23N-H+: 252.1752; found: 252.1751. 

 

 

 

(152dj’) 

1H-NMR (300 MHz, CDCl3): δ = 8.59-8.48 (m, 1H), 7.57 (ddd, J = 7.7, 1.8, 0.9 Hz, 1H), 7.22-7.10 (dd, J = 

7.7, 4.8 Hz, 2H), 7.12 (d, J = 1.7 Hz, 1H), 7.00 (t, J = 1.8 Hz, 1H), 2.71 (qt, J = 7.0, 6.9 Hz, 2H), 2.33 (s, 

3H), 1.68-1.47 (m, 4H), 1.37-1.09 (m, 8H), 1.26 (d, J = 6.9 Hz, 6H), 0.92-0.80 (m, 6H).  

13C-NMR (75 MHz, CDCl3): δ = 159.7 (Cq), 147.5 (Cq), 146.8 (CH), 140.3 (Cq), 138.3 (CH), 130.8 (Cq), 

125.5 (CH), 124.9 (CH), 121.7 (CH), 39.9 (CH3), 38.2 (CH2), 30.0 (CH2), 22.7 (CH2), 22.3 (CH), 20.1 (CH3), 

14.0 (CH3).  

IR (ATR): 
~ = 2955, 2924, 2857, 1598, 1583, 1566, 1421, 1376, 716 cm-1.  

MS (EI) m/z (relative intensity): 337 (68) [M+], 294 (67), 280 (100), 252 (32), 222 (31), 196 (19), 181 

(11).  

HRMS (EI) m/z calculated for C24H35N-H+: 336.2691; found: 336.2702. 

 

Synthesis of 2-[3-Isopropoxy-5-(pentan-2-yl)phenyl]-4-methylpyridine (152ei)  
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The general procedure E was followed, using [RuCl2(p-cymene)]2 (15.2 mg, 0.025 mmol, 5.1 mol %), 

MesCO2H (13a) (24 mg, 0.15 mmol, 31 mol %), 6ec (109 mg, 0.48 mmol) and 2-bromopentane (42bi) 

(235 mg, 1.56 mmol). After 20 h, purification by column chromatography (n-hexane/EtOAc 19:1) 

yielded 152ei (47 mg, 33%) as a colorless oil.  

 

1H-NMR (300 MHz, CDCl3): δ = 8.53 (dd, J = 5.0, 0.7 Hz, 1H), 7.51 (ddd, J = 1.6, 0.8, 0.8 Hz, 1H), 7.37-

7.29 (m, 2H), 7.04 (ddd, J = 5.0, 1.6, 0.8 Hz, 1H), 6.78 (dd, J = 1.9, 1.9 Hz, 1H), 4.68 (hept, J = 6.0 Hz, 

1H), 2.75 (qt, J = 7.0, 6.9 Hz, 1H), 2.41 (s, 3H), 1.74-1.43 (m, 2H), 1.37 (d, J = 6.1 Hz, 6H), 1.31-1.10 (m, 

2H), 1.27 (d, J = 6.9 Hz, 3H), 0.87 (t, J = 7.3 Hz, 3H).  

13C-NMR (75 MHz, CDCl3): δ = 158.2 (Cq), 157.6 (Cq), 150.0 (Cq), 149.3 (CH), 147.6 (Cq), 140.7 (Cq), 

123.0 (CH), 121.7 (CH), 118.4 (CH), 115.6 (CH), 111.4 (CH), 69.8 (CH), 40.6 (CH2), 39.9 (CH), 22.2 (CH3), 

22.1 (CH3), 21.2 (CH3), 20.8 (CH2), 14.1 (CH3). 

IR (ATR): ~ = 2957, 2926, 2871, 2857, 1584, 1566, 1439, 1325, 1116, 993, 782 cm-1. 

MS (EI) m/z (relative intensity): 297 (20) [M+], 255 (32), 213 (100), 197 (21), 43 (47). 

HR-MS (EI) m/z calculated for C20H27NO+: 297.2093; found: 297.2086.   

 

Synthesis of 2-(3,5-Dicyclopentylphenyl)-4-methylpyridine (152ek’) & 2-(3-Cyclopentylphenyl)-4-

methylpyridine (152ek)  

 

The general procedure E was followed, using [RuCl2(p-cymene)]2 (16.3 mg, 0.027 mmol, 2.5 mol %), 

MesCO2H (13a) (52 mg, 0.31 mmol, 30 mol %), 6eb (166 mg, 0.98 mmol) and bromocyclopentane 

(42bk) (449 mg, 3.01 mmol). After 20 h, purification by column chromatography (n-hexane/EtOAc 

19:1) yielded 152ek’ (19 mg, 6%) and 152ek (88 mg, 38%) as colorless oils.  

 

 

 

(152ek) 

1H-NMR (300 MHz, CDCl3): δ = 8.55 (d, J = 5.0 Hz, 1H), 7.88 (d, J = 2.0 Hz, 1H), 7.84-7.68 (m, 1H), 7.62-

7.49 (m, 1H), 7.38 (dd, J = 7.6, 7.5 Hz, 1H), 7.34-7.27 (m, 1H), 7.15-6.97 (m, 1H), 3.21-2.94 (m, 1H), 

2.41 (s, 3H), 2.23-2.04 (m, 2H), 1.94-1.56 (m, 6H). 
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13C-NMR (75 MHz, CDCl3): δ = 157.7 (Cq), 149.3 (CH), 147.6 (Cq), 146.9 (Cq), 139.4 (Cq), 128.5 (CH), 

127.5 (CH), 125.8 (CH), 124.3 (CH), 122.9 (CH), 121.6 (CH), 46.1 (CH3), 34.6 (CH2), 25.5 (CH2), 21.2 

(CH). 

IR (ATR): 
~ = 3045, 2949, 2866, 1599, 1558, 1449, 825, 793, 698, 455 cm-1. 

MS (EI) m/z (relative intensity): 237 (29) [M+], 208 (48), 196 (100), 181 (14), 168 (22). 

HR-MS (EI) m/z calculated for C17H19N-H+: 236.1439; found: 236.1449. 

 

 

 

(152ek’) 

1H-NMR (300 MHz, CDCl3): δ = 8.52 (dd, J = 5.0, 0.8 Hz, 1H), 7.63 (d, J = 1.7 Hz, 2H), 7.57-7.45 (m, 1H), 

7.19-7.10 (m, 1H), 7.05-6.99 (m, 1H), 3.04 (dt, J = 9.7, 7.3 Hz, 2H), 2.40 (s, 3H), 2.14-2.03 (m, 4H), 

1.88-1.55 (m, 12H). 

13C-NMR (75 MHz, CDCl3): δ = 158.1 (Cq), 149.3 (CH), 147.5 (Cq), 146.8 (Cq), 139.4 (Cq), 126.6 (CH), 

123.3 (CH), 122.8 (CH), 121.7 (CH), 46.2 (CH3), 34.7 (CH2), 25.6 (CH2), 21.2 (CH). 

IR (ATR): 
~ = 2952, 2865, 1712, 1595, 1440, 1360, 1220, 876, 828, 529 cm-1. 

MS (EI) m/z (relative intensity): 305 (30) [M+], 277 (28), 264 (100), 208 (14), 43 (15). 

HR-MS (EI) m/z calculated for C22H27N
+: 305.2143; found: 305.2128. 

 

Synthesis of 5-Methyl-2-[3-(octan-2-yl)phenyl]pyridine (152fa)  

 

 

The general procedure E was followed, using [RuCl2(p-cymene)]2 (3.70 mg, 0.006 mmol, 2.5 mol %), 

MesCO2H (13a) (13 mg, 0.8 mmol, 29 mol %), 6hb (41.6 mg, 0.25 mmol) and 2-bromooctane (42ba) 

(151 mg, 0.78 mmol). After 20 h, purification by column chromatography (n-hexane/EtOAc 9:1) 

yielded 152ha (30 mg, 43%) as a colorless oil.  
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1H-NMR (300 MHz, CDCl3): δ = 8.52 (dd, J = 1.9, 0.9 Hz, 1H), 7.80 (d, J = 1.8 Hz, 1H), 7.75 (dd, J = 7.7, 

1.5 Hz, 1H), 7.63 (dd, J = 8.1, 0.8 Hz, 1H), 7.58-7.51 (m, 1H), 7.38 (d, J = 7.6 Hz, 1H), 7.22 (dd, J = 7.6, 

1.5 Hz, 1H), 2.77 (qt, J = 7.1, 6.9 Hz, 1H), 2.37 (s, 3H), 1.73-1.51 (m, 2H), 1.40-1.05 (m, 8H), 1.29 (d, J = 

6.9 Hz, 3H), 0.86 (t, J = 6.7 Hz, 3H).  

13C-NMR (75 MHz, CDCl3): δ = 155.1 (Cq), 149.9 (CH) 148.5 (Cq), 139.3 (CH), 137.2 (Cq), 131.4 (CH), 

128.6 (CH), 127.2 (CH), 125.5 (CH), 124.2 (CH), 120.2 (CH), 40.1 (CH3), 38.4 (CH2), 31.8 (CH2), 29.4 

(CH2), 27.7 (CH2), 22.6 (CH2), 22.3 (CH), 18.1 (CH3), 14.1 (CH3).  

IR (ATR): 
~ = 3061, 3032, 3001, 2922, 2862, 1475, 1444, 1378, 1027, 774, 734, 691 cm-1.  

MS (EI) m/z (relative intensity): 281 (48) [M+], 210 (37), 196 (100), 181 (60).  

HRMS (EI) m/z calculated for C20H27N
+: 281.2143; found: 281.2140. 

 

Synthesis of 5-Methyl-2-[3-(pentan-2-yl)phenyl]pyridine (152fi)  

 

 

 

The general procedure E was followed, using [RuCl2(p-cymene)]2 (8.10 mg, 0.013 mmol, 2.5 mol %), 

MesCO2H (13a) (23 mg, 0.14 mmol, 28 mol %), 6hb (86.5 mg, 0.51 mmol) and 2-bromopentane (42bi) 

(233 mg, 1.54 mmol). After 20 h, purification by column chromatography (n-hexane/EtOAc 9:1) 

yielded 152hi (68 mg, 56%) as a colorless oil.  

 

1H-NMR (300 MHz, CDCl3): δ = 8.53 (dd, J = 2.3, 1.1 Hz, 1H), 7.81 (t, J = 1.9 Hz, 1H), 7.75 (dt, J = 7.7, 

1.5 Hz, 1H), 7.63 (dd, J = 8.1, 0.9 Hz, 1H), 7.55 (dd, J = 7.9, 2.2 Hz, 1H), 7.38 (d, J = 7.6 Hz, 1H), 7.23 

(dd, J = 7.5, 1.5 Hz, 1H), 2.80 (qt, J = 7.0, 6.9 Hz, 1H), 2.37 (s, 3H), 1.74-1.48 (m, 2H), 1.41-1.12 (m, 

2H), 1.28 (d, J = 6.9 Hz, 3H), 0.88 (t, J = 7.3 Hz, 3H).  

13C-NMR (75 MHz, CDCl3): δ = 155.1 (Cq), 149.9 (CH), 148.4 (Cq), 139.3 (Cq), 137.2 (CH), 131.4 (Cq), 

128.6 (CH), 127.2 (CH), 125.5 (CH), 124.2 (CH), 120.1 (CH), 40.7 (CH2), 39.8 (CH3), 22.2 (CH2), 20.8 

(CH), 18.1 (CH3), 14.1 (CH3).  

IR (ATR): 
~ = 2956, 2925, 2870, 1600, 1564, 1470, 1429, 1377, 794, 701cm-1.  

MS (EI) m/z (relative intensity): 239 (41) [M+], 210 (14), 196 (100), 181 (59), 69 (10), 43 (24).  

HRMS (EI) m/z calculated for C17H21N
+: 239.1674; found: 239.1672. 
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Synthesis of 2-[3,5-Dicyclopentylphenyl]-5-methylpyridine (152fk’) & 2-(3-Cyclopentylphenyl)-5-

methylpyridine (152fk)  

 

The general procedure E was followed, using [RuCl2(p-cymene)]2 (14.2 mg, 0.023 mmol, 2.3 mol %), 

MesCO2H (13a) (50 mg, 0.29 mmol, 29 mol %), 6fb (176 mg, 1.04 mmol) and bromocyclopentane 

(42bk) (453 mg, 3.03 mmol). After 20 h, purification by column chromatography (n-hexane/EtOAc 

19:1) yielded 152fk’ (12 mg, 4%) and 152fk (96 mg, 39%) as a colorless oils.  

 

 

 

(152fk) 

1H-NMR (300 MHz, CDCl3): δ = 8.56-8.47 (m, 1H), 7.88 (dd, J = 1.9, 1.9 Hz, 1H), 7.75 (ddd, J = 7.6, 1.6, 

1.5 Hz, 1H), 7.62 (d, J = 7.9 Hz, 1H), 7.54 (dd, J = 8.0, 2.3 Hz, 1H), 7.39 (dd, J = 7.6, 7.6 Hz, 1H), 7.29 

(ddd, J = 7.7, 1.6, 1.6 Hz, 1H), 3.09 (dt, J = 9.3, 7.4 Hz, 1H), 2.37 (s, 3H), 2.19-2.02 (m, 2H), 1.94-1.57 

(m, 6H).  

13C-NMR (75 MHz, CDCl3): δ = 155.1 (Cq), 149.9 (CH), 146.9 (Cq), 139.3 (Cq), 137.2 (CH), 131.3 (Cq), 

128.5 (CH), 127.3 (CH), 125.6 (CH), 124.1 (CH), 120.1 (CH), 46.0 (CH), 34.6 (CH2), 25.5 (CH2), 18.1 

(CH3). 

IR (ATR): 
~ = 2950, 2866, 1600, 1564, 1470, 1429, 1377, 1223, 833, 792, 753, 699 cm-1. 

MS (EI) m/z (relative intensity): 237 (42) [M+], 208 (56), 196 (100), 169 (17). 

HR-MS (EI) m/z calculated for C17H19N
+: 237.1517; found: 237.1507. 

 

 

 

(152fk’) 

1H-NMR (300 MHz, CDCl3): δ = 8.51 (dd, J = 2.2, 1.0 Hz, 1H), 7.67-7.57 (m, 3H), 7.53 (dd, J = 8.1, 

2.2 Hz, 1H), 7.16 (dd, J = 1.7, 1.7 Hz, 1H), 3.14-2.96 (m, 2H), 2.36 (s, 3H), 2.20-2.00 (m, 4H), 1.93-1.51 

(m, 12H).  
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13C-NMR (75 MHz, CDCl3): δ =155.5 (Cq), 149.9 (CH), 146.8 (Cq), 139.3 (CH), 137.1 (Cq), 131.2 (CH), 

126.4 (CH), 123.1 (CH), 120.3 (Cq), 46.2 (CH), 34.7 (CH2), 25.6 (CH2), 18.2 (CH3). 

IR (ATR): 
~ = 2949, 2867, 1713, 1685, 1599, 1565, 1487, 1449, 1236, 1035, 831 cm-1. 

MS (EI) m/z (relative intensity): 305 (34) [M+], 277 (25), 264 (100), 236 (13), 208 (14), 43 (18). 

HR-MS (EI) m/z calculated for C22H27N
+: 305.2143; found: 305.2136. 

 

Synthesis of 4-Methoxy-2-[3-(pentan-2-yl)phenyl]pyridine (152gi)  

 

 

 

The general procedure E was followed, using [RuCl2(p-cymene)]2 (15.0 mg, 0.025 mmol, 5.0 mol %), 

MesCO2H (13a) (25 mg, 0.15 mmol, 26 mol %),  6gb (106 mg, 0.57 mmol) and 2-bromopentane (42bi) 

(225 mg, 1.49 mmol). After 20 h, purification by column chromatography (n-hexane/EtOAc 18:1) 

yielded 152gi (48 mg, 33%) as a colorless oil.  

 

1H-NMR (300 MHz, CDCl3): δ = 8.53 (d, J = 5.7 Hz, 1H), 7.80 (d, J = 1.9 Hz, 1H), 7.77-7.68 (m, 1H), 7.38 

(t, J = 7.6 Hz, 1H), 7.29-7.17 (m, 2H), 6.77 (dd, J = 5.7, 2.5 Hz, 1H), 3.91 (s, 3H), 2.80 (qt, J = 7.0, 6.9 Hz, 

1H), 1.72-1.48 (m, 2H), 1.37-1.11 (m, 2H), 1.28 (d, J = 6.9 Hz, 3H), 0.87 (t, J = 7.3 Hz, 3H).  

13C-NMR (75 MHz, CDCl3): δ = 166.3 (Cq), 159.6 (Cq), 150.8 (CH), 148.5 (Cq), 139.3 (Cq), 128.6 (CH), 

127.6 (CH), 125.8 (CH), 124.4 (CH), 107.9 (CH), 107.0 (CH), 55.1 (CH3), 40.6 (CH2), 39.8 (CH), 22.2 

(CH2), 20.8 (CH3), 14.1 (CH3).  

IR (ATR): 
~ = 2956, 2928, 2870, 1589, 1562, 1312, 1219, 1036, 797, 701 cm-1.  

MS (EI) m/z (relative intensity): 255 (15) [M+], 226 (14), 212 (100), 182 (17), 169 (14), 69 (16), 43 (28).  

HRMS (EI) m/z calculated for C17H21NO+: 255.1623; found: 255.1623. 

 

Synthesis of 2-[3,5-Di(pentan-2-yl)phenyl]pyrimidine (154’) and 2-[3-(Pentan-2-yl)phenyl]-

pyrimidine (154)  

 

The general procedure E was followed, using [RuCl2(p-cymene)]2 (15.2 mg, 0.025 mmol, 5.0 mol %), 

MesCO2H (13a) (25 mg, 0.15 mmol, 30 mol %),  153 (76.6 mg, 0.49 mmol) and 2-bromopentane 

(42bi) (229 mg, 1.52 mmol). After 20 h, purification by column chromatography (n-hexane/EtOAc 9:1) 

yielded 154’ (17 mg, 12%) and 154 (50 mg, 45%) as a colorless oils.   
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(154) 

1H-NMR (300 MHz, CDCl3): δ = 8.80 (d, J = 4.8 Hz, 2H), 8.28 (d, J = 1.6 Hz, 1H), 8.26 (dd, J = 5.7, 1.6 Hz, 

1H), 7.42 (dd, J = 7.7, 7.7 Hz, 1H), 7.32 (ddd, J = 7.6, 1.5, 1.4 Hz, 1H), 7.16 (t, J = 4.8 Hz, 1H), 2.82 (qt, J 

= 7.0 Hz, 1H), 1.76-1.49 (m, 2H), 1.42-1.07 (m, 2H), 1.30 (d, J = 6.9 Hz, 3H), 0.88 (t, J = 7.3 Hz, 3H).  

13C-NMR (75 MHz, CDCl3): δ = 165.1 (Cq), 157.3 (CH), 148.5 (Cq), 137.6 (Cq), 129.7 (CH), 128.7 (CH), 

126.9 (CH), 125.9 (CH), 119.1 (CH), 40.8 (CH2), 39.9 (CH), 22.4 (CH2), 21.0 (CH3), 14.3 (CH3).  

IR (ATR): 
~ = 2957, 2926, 2871, 1567, 1554, 1453, 1408, 1377, 785, 699, 635 cm-1.  

MS (EI) m/z (relative intensity): 226 (20) [M+], 183 (100), 168 (45), 103 (10), 58 (13), 43 (46).  

HRMS (ESI) m/z calculated for C15H18N2
+: 226.1470; found: 226.1461. 

 

 

 

(154’) 

1H-NMR (300 MHz, CDCl3): δ = 8.82 (d, J = 4.7 Hz, 2H), 8.09 (d, J = 1.7 Hz, 2H), 7.16 (t, J = 4.8 Hz, 1H), 

7.12 (t, J = 1.7 Hz, 1H), 2.79 (qt, J = 7.0, 6.9 Hz, 2H), 1.74-1.48 (m, 5H), 1.42-1.11 (m, 4H), 1.29 (d, J = 

6.9 Hz, 6H), 0.87 (t, J = 7.3 Hz, 6H).  

13C-NMR (75 MHz, CDCl3): δ = 165.9 (Cq), 157.7 (CH), 148.9 (Cq), 137.9 (Cq), 129.2 (CH), 124.9 (CH), 

119.4 (CH), 41.3 (CH2), 40.4 (CH3), 22.8 (CH), 21.4 (CH2), 14.7 (CH3).  

IR (ATR): 
~ = 2956, 2926, 2871, 1568, 1555, 1455, 1410, 809, 709 cm-1.  

MS (EI) m/z (relative intensity): 296 (24) [M+], 269 (11), 253 (100), 211 (18), 183 (27), 168 (15).  

HRMS (EI) m/z calculated for C20H28N2
+: 296.2252; found: 296.2257. 

 

Synthesis of 2-[3-(Pentan-2-yl)phenyl]-1H-imidazole (155)  
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The general procedure E was followed, using [RuCl2(p-cymene)]2 (15.4 mg, 0.025 mmol, 4.9 mol %), 

MesCO2H (13a) (24 mg, 0.15 mmol, 29 mol %),  2-phenyl-1H-imidazole (74.2 mg, 0.52 mmol) and 2-

bromopentane (42bi) (238 mg, 1.57 mmol). After 20 h, purification by column chromatography (n-

hexane/EtOAc 9:1) yielded 155 (49 mg, 44%) as a colorless oil. 

 

1H-NMR (300 MHz, CDCl3): δ = 7.92 (dd, J = 2.4, 0.6 Hz, 1H), 7.73 (dd, J = 1.7, 0.6 Hz, 1H), 7.57 (dd, J = 

1.9 Hz, 1H), 7.46 (ddd, J = 8.0, 2.2, 1.1 Hz, 1H), 7.36 (dd, J = 7.8 Hz, 1H), 7.12 (d, J = 7.6 Hz, 1H), 6.46 

(dd, J = 2.5, 1.8 Hz, 1H), 2.78 (qt, J = 7.0 Hz, 1H), 1.72-1.44 (m, 2H), 1.38-1.12 (m, 2H), 1.28 (d, J = 

6.9 Hz, 3H), 0.88 (t, J = 7.3 Hz, 3H).  

13C-NMR (75 MHz, CDCl3): δ = 149.9 (Cq), 141.0 (CH), 140.3 (Cq), 129.3 (CH), 127.0 (Cq), 125.4 (CH), 

118.3 (CH), 116.8 (CH), 107.5 (CH), 40.7 (CH2), 39.9 (CH), 22.3 (CH2), 20.9 (CH2), 14.2 (CH3).  

IR (ATR): 
~ = 2958, 2927, 2871, 1609, 1591, 1519, 1472, 1451, 1393, 1042, 787, 731, 698 cm-1.  

MS (EI) m/z (relative intensity): 214 (34) [M+], 171 (100), 157 (12), 144 (13), 103 (12), 77 (15).  

HRMS (EI) m/z calculated for C14H18N2
+: 214.1470; found: 214.1475. 

 

Synthesis of 1-[3-(Pentan-2-yl)phenyl]-1H-pyrazole (156)  

 

 

 

The general procedure E was followed, using [RuCl2(p-cymene)]2 (16.0 mg, 0.026 mmol, 4.8 mol %), 

MesCO2H (13a) (25 mg, 0.15 mmol, 27 mol %), 87a (83.8 mg, 0.58 mmol) and 2-bromopentane (42bi) 

(219 mg, 1.45 mmol). After 20 h, purification by column chromatography (n-hexane/EtOAc 10:1 to 

5:1) yielded 156 (54 mg, 43%) as a colorless oil.  

 

1H-NMR (300 MHz, CDCl3): δ = 7.93 (dd, J = 2.3, 0.6 Hz, 2H), 7.73 (d, J = 1.9 Hz, 1H), 7.56 (s, 1H), 7.46 

(ddd, J = 8.1, 2.2, 1.1 Hz, 1H), 7.36 (dd, J = 7.8, 7.8 Hz, 1H), 7.12 (d, J = 7.6 Hz, 1H), 6.46 (d, J = 2.0 Hz, 

1H), 2.78 (qt, J = 7.0, 6.9 Hz, 1H), 1.74-1.46 (m, 2H), 1.39-1.11 (m, 2H), 1.27 (d, J = 6.9 Hz, 3H), 0.88 (t, 

J = 7.4 Hz, 3H).  

13C-NMR (75 MHz, CDCl3): δ = 149.8 (Cq), 141.0 (CH), 140.3 (Cq), 129.3 (CH), 126.9 (CH), 125.3 (CH), 

118.3 (CH), 116.7 (CH), 107.5 (CH), 40.7 (CH2), 39.9 (CH3), 22.3 (CH), 20.9 (CH2), 14.2 (CH3).  

IR (ATR): 
~ = 2957, 2927, 2871, 1718, 1609, 1591, 1392, 1042, 787, 743 cm-1.  

MS (EI) m/z (relative intensity): 214 (59) [M+], 171 (100), 157 (13), 144 (14).  

HRMS (EI) m/z calculated for C14H18N2
+: 214.1470, found: 214.1468. 
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Synthesis of 1-Methyl-2-[3-(pentan-2-yl)phenyl]-1H-benzo[d]imidazole (157)  

 

 

 

The general procedure E was followed, using [RuCl2(p-cymene)]2 (16.0 mg, 0.026 mmol, 5.3 mol %), 

MesCO2H (13a) (25 mg, 0.15 mmol, 31 mol %),  1-methyl-2-phenyl-1H-benzo[d]imidazole (97.8 mg, 

0.47 mmol) and 2-bromopentane (42bi) (224 mg, 1.48 mmol). After 20 h, purification by column 

chromatography (n-hexane/EtOAc 9:1 to 3:1) yielded 157 (71 mg, 54%) as a colorless oil.  

 

1H-NMR (300 MHz, CDCl3): δ = 7.85-7.80 (m, 1H), 7.59 (dd, J = 1.7, 1.6 Hz, 1H), 7.52 (ddd, J = 7.6, 

1.6 Hz, 1H), 7.42 (dd, J = 7.8, 7.3 Hz, 1H), 7.39-7.27 (m, 4H), 3.83 (d, J = 1.3 Hz, 3H), 2.79 (qt, J = 7.1, 

7.0 Hz, 1H), 1.73-1.41 (m, 2H), 1.37-1.09 (m, 2H), 1.27 (d, J = 7.0 Hz, 3H), 0.87 (t, J = 7.3 Hz, 3H).  

13C-NMR (75 MHz, CDCl3): δ = 154.7 (Cq), 149.1 (Cq), 143.5 (Cq), 137.1 (Cq), 130.6 (Cq), 129.0 (CH), 

129.0 (CH), 128.9 (CH), 127.3 (CH), 123.2 (CH), 122.9 (CH), 120.3 (CH), 110.1 (CH), 41.1 (CH2), 40.2 

(CH3), 32.2 (CH3), 22.8 (CH), 21.4 (CH2), 14.7 (CH3).  

IR (ATR): 
~ = 3051, 2956, 2927, 2870, 1588, 1457, 1378, 1324, 1282, 801, 739, 704 cm-1.  

MS (EI) m/z (relative intensity): 278 (75) [M+], 249 (31), 235 (100), 220 (23), 205 (20), 77 (25).  

HRMS (EI) m/z calculated for C19H22N2
+: 278.1783; found: 278.1786. 

 

Synthesis of N-{1-[4-Fluoro-3-(hexan-2-yl)phenyl]ethyl}-4-methoxyaniline (158a)  

 

  

 

The general procedure D was followed, using [RuCl2(p-cymene)]2 (7.3 mg, 0.012 mmol, 2.4 mol %), 

MesCO2H (13a) (25 mg, 0.15 mmol, 30 mol %),  121a (123 mg, 0.51 mmol) and 2-bromohexane 

(42ba) (246 mg, 1.49 mmol). After 20 h, purification by column chromatography (n-hexane/EtOAc 

9:1) yielded 158a [32 mg, 19%; isolated as a set of diastereomers (DS1 ans DS2) in a ratio of 1:1] as a 

brown oil.  
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1H-NMR (300 MHz, CDCl3): δ = 7.13-6.98 (m, 3H), 6.84 (dd, J = 10.1, 8.3 Hz, 1H), 6.67-6.55 (m, 2H), 

6.44-6.30 (m, 2H), 4.29 (qd, J = 6.7, 1.8 Hz, 1H), 3.62 (d, J = 0.9 Hz, 3H), 2.93 (qt, J = 7.1, 7.0 Hz, 1H), 

1.64-1.30 (m, 6H), 1.30-0.91 (m, 3H),1.27 (d, J = 7.0 Hz, 3H), 0.86-0.63 (m, 3H). 

13C-NMR (75 MHz, CDCl3): δ = 159.9 (d, JC-F = 243 Hz, Cq), 152.3 (Cq), 141.6  (Cq), 140.9 (d, JC-F = 4 Hz, 

Cq), 134.4 (dd, JC-F = 15, 3 Hz, CH), 125.8 (dd, JC-F = 16, 6 Hz, CH), 124.4 (dd, JC-F = 8, 6 Hz, CH), 115.4 

(dd, JC-F = 23, 4 Hz, CH), 115.0 (d, JC-F = 3 Hz, CH), 114.9 (CH), 55.9 (CH3), 54.2 (DS2, CH), 54.1 (DS1, 

CH), 36.9 (DS2, CH2), 36.8 (DS1, CH2), 32.9 (DS2, CH), 32.7 (DS1, CH), 29.9 (DS2, CH2), 29.8 (DS1, CH2), 

25.1 (DS2, CH3), 25.0 (DS1, CH3), 22.8 (DS2, CH3), 22.7 (DS1, CH3), 21.2 (DS2, CH2), 21.1 (DS1, CH2), 

14.3 (DS2, CH3), 14.2 (DS1, CH3). 

19F-NMR (282 MHz, CDCl3): δ =-121.10 - - 123.33 (m), -123.35 - 125.15 (m). 

IR (ATR): ~ = 2958, 2928, 2871, 2859, 1684, 1509, 1461, 1233, 1104, 1035, 817, 517 cm-1. 

MS (EI) m/z (relative intensity): 329 (74) [M+], 314 (100), 270 (12), 254 (22), 148 (22), 77 (20). 

HR-MS (EI) m/z calculated for C21H28FNO+:  329.2155; found: 329.2154.   

 

Synthesis of N-[1-(3-Cycloheptyl-4-fluorophenyl)ethyl]-4-methoxyaniline (158c)  

 

  

 

The general procedure D was followed, using [RuCl2(p-cymene)]2 (8.1 mg, 0.013 mmol, 2.4 mol %), 

MesCO2H (13a) (25 mg, 0.15 mmol, 29 mol %), 121a (129 mg, 0.53 mmol) and bromocycloheptane 

(42bc) (268 mg, 1.51 mmol). After 20 h, purification by column chromatography (n-hexane/EtOAc 

9:1) yielded 158c (64 mg, 35%) as a brown oil.  

 

1H-NMR (300 MHz, CDCl3): δ = 7.21 (dd, J = 7.2, 2.4 Hz, 1H), 7.12 (ddd, J = 8.4, 5.0, 2.3 Hz, 1H), 6.92 

(dd, J = 10.2, 8.3 Hz, 1H), 6.75-6.68 (m, 2H), 6.52-6.45 (m, 2H), 4.37 (q, J = 6.7 Hz, 1H), 3.72 (s, 3H), 

2.98 (dt, J = 10.4, 3.5 Hz, 1H), 2.02-1.51 (m, 12H), 1.48 (d, J = 6.7 Hz, 3H). (N–H was not detected) 

13C-NMR (75 MHz, CDCl3): δ = 158.9 (d, JC-F = 243 Hz, Cq), 152.0  (Cq), 141.6 (Cq), 140.9 (d, JC-F = 3 Hz, 

Cq), 136.3 (d, JC-F = 15 Hz, Cq), 125.5 (d, JC-F = 6 Hz, CH), 124.0 (d, JC-F = 8 Hz, CH), 115.2 (d, JC-F = 24 Hz, 

CH), 114.7 (CH), 114.7  (CH), 55.7 (CH3), 54.0 (CH), 39.8 (CH), 39.7 (CH), 35.3 (CH2), 27.8 (CH2), 27.1 

(CH2), 25.0 (CH3). 

19F-NMR (282 MHz, CDCl3): δ = -121.55 - - 123.63 (m). 

IR (ATR): ~ = 3403, 2960, 2930, 2871, 2859, 2244, 1579, 1512, 1464, 1238, 1040, 910, 739 cm-1. 
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MS (EI) m/z (relative intensity): 341 (89) [M+], 326 (100), 270 (10), 254 (11), 148 (17), 92 (18), 77 (25). 

HR-MS (EI) m/z calculated for C22H28FNO +:  341.2155; found: 341.2159.   

 

Products of Direct Benzylation 

 

Synthesis of 2-[4-Methoxy-3-(1-phenylpentyl)phenyl]pyridine (177b) 

 

 

 

The general procedure E was followed, using [RuCl2(p-cymene)]2 (15.1 mg, 0.025 mmol, 4.5 mol %), 

MesCO2H (13a) (24 mg, 0.15 mmol, 27 mol %),  6ba (101 mg, 0.55 mmol) and (1-

bromopentyl)benzene (176) (344 mg, 1.51 mmol). After 20 h, purification by column chromatography 

(n-hexane/Et2O 19:1 to 9:1) yielded 177b (29 mg, 16%) as a colorless oil.  

 

1H-NMR (300 MHz, CDCl3): δ = 8.67-8.65 (m, 1H), 7.95-7.94 (m, 1H), 7.83 (dd, J = 8.5, 2.3 Hz, 1H), 

7.70-7.60 (m, 2H), 7.35-7.23 (m, 4H), 7.17-7.11 (m, 2H), 6.91 (t, J = 8.5 Hz, 1H), 4.43 (t, J = 8.0 Hz, 1H), 

3.80 (s, 3H), 2.19-2.05 (m, 2H), 1.44-1.24 (m, 4H), 0.89 (t, J = 6.8 Hz, 3H). 

13C-NMR (75 MHz, CDCl3): δ = 158.0 (Cq), 157.4 (Cq), 149.4 (CH), 145.1 (Cq), 136.5 (CH), 134.0 (Cq), 

131.6 (Cq), 128.1 (CH), 128.0 (CH), 126.2 (CH), 125.7 (CH), 125.6 (CH), 121.2 (CH), 119.9 (CH), 101.7 

(CH), 55.5 (CH3), 43.4 (CH), 34.7 (CH2), 30.2 (CH2), 22.7 (CH2), 14.0 (CH3). 

IR (ATR): 
~ = 3051, 2936, 2915, 1579, 1513, 1460, 1431, 775, 736, 717, 556, 485 cm-1. 

MS (EI) m/z (relative intensity): 331 (17) [M]+, 274 (100), 185 (12), 91 (74). 

HR-MS (ESI) m/z calculated for C23H25NO+: 331.1936; found: 331.1937. 

 

Synthesis of 2-[4-Fluoro-3-(1-phenylpentyl)phenyl]pyridine (177c)  

 

 

 

The general procedure E was followed, using [RuCl2(p-cymene)]2 (16 mg, 0.026 mmol, 5.3 mol %), 1-

AdCO2H (13c) (28 mg, 0.16 mmol,33 mol %), 6ca (85.1 mg, 0.49 mmol) and (1-bromopentyl)-benzene 
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(176) (357 mg, 1.57 mmol). After 20 h, purification by column chromatography (n-hexane/Et2O 9:1) 

yielded 177c (18 mg, 11%) as a colorless oil.  

 

1H-NMR (300 MHz, CDCl3): δ =  8.68 (dd, J = 4.6, 1.8 Hz, 1H), 8.03-8.83 (m, 1H), 7.85-7.56 (m, 3H), 

7.42-6.88 (m, 7H), 4.36-4.22 (m, 1H), 2.19-2.02 (m, 2H), 1.49-1.06 (m, 4H), 0.89 (t, J = 7.5 Hz, 3H). 

13C-NMR (75 MHz, CDCl3): δ =  161.6 (d, JC-F = 248 Hz, Cq), 156.9 (Cq), 149.7 (CH), 144.1 (Cq), 136.6 

(CH), 35.6 (d, JC-F = 4 Hz, Cq), 132.6 (d, JC-F = 15 Hz, Cq), 128.4 (CH), 128.0 (CH), 127.5 (d, JC-F = 5 Hz, CH), 

126.3 (d, JC-F = 9 Hz, CH), 126.2 (CH), 121.8 (CH), 120.2 (CH), 115.8 (d, JC-F = 24 Hz, CH), 44.1 (CH), 34.4 

(CH2), 30.2 (CH2), 22.6 (CH2), 13.9 (CH3). 

19F-NMR (282 MHz, CDCl3) δ = -117.4 - -117.5 (m). 

IR (ATR): 
~ = 2955, 2930, 2859, 1586, 1566, 1497, 1464, 1433, 1257, 1235, 1152, 780, 742 cm-1. 

MS (EI) m/z (relative intensity): 319 (36) [M+], 276 (15), 262 (100), 183 (14). 

HR-MS (ESI) m/z calculated for C22H22FN+: 319.1736; found: 319.1732. 

 

Synthesis of 4-Methyl-2-[3-(1-phenylpentyl)phenyl]pyridine (177e)  

 

 

The general procedure E was followed, using [RuCl2(p-cymene)]2 (15.3 mg, 0.025 mmol, 4.8 mol %), 

MesCO2H (13a) (25 mg, 0.15 mmol, 25 mol %),  6eb (104 mg, 0.61 mmol) and (1-

bromopentyl)benzene (176) (361 mg, 1.59 mmol). After 20 h, purification by column chromatography 

(n-hexane/Et2O 19:1) yielded 177e (58 mg, 30%) as a colorless oil.  

 

1H-NMR (300 MHz, CDCl3): δ = 8.51 (d, J = 5.0 Hz, 1H), 7.87-7.86 (m, 1H), 7.75-7.71 (m, 1H), 7.48-7.46 

(m, 1H), 7.34 (dd, J = 7.7, 7.7 Hz, 1H), 7.17-7.09 (m, 5H), 7.01-6.99 (m, 1H), 3.97 (t, J = 7.9 Hz, 1H), 

2.36 (s, 3H), 2.16-2.01 (m, 2H), 1.39-1.19 (m, 4H), 0.84 (t, J = 7.3 Hz, 3H). 

13C-NMR (75 MHz, CDCl3): δ = 157.6 (Cq), 149.4 (CH), 147.7 (Cq), 145.9 (Cq), 145.3 (Cq), 139.7 (Cq), 

128.8 (CH), 128.4 (CH), 128.3 (CH), 128.0 (CH), 126.8 (CH), 126.1 (CH), 124.8 (CH), 121.1 (CH), 121.7 

(CH), 51.7 (CH), 35.7 (CH2), 30.5 (CH2), 23.0 (CH2), 21.5 (CH3), 14.3 (CH3).  

IR (ATR): 
~ = 3025, 2927, 2858, 1599, 1493, 1379, 1032, 835, 699, 589 cm-1. 

MS (EI) m/z (relative intensity): 315 (20) [M]+, 258 (100), 242 (5), 165 (10), 91 (8). 

HR-MS (ESI) m/z calculated for C23H25NO+H+: 316.2065; found: 316.2060. 
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Synthesis of 2-(4-Methoxy-3-(1-phenylpentyl)phenyl)-4-methylpyridine (177f) 

 

 

 

The general procedure E was followed, using [RuCl2(p-cymene)]2 (15.8 mg, 0.026 mmol, 4.6 mol %), 

MesCO2H (13a) (24 mg, 0.15 mmol, 27 mol %),  6f (111 mg, 0.56 mmol) and (1-bromo-pentyl)-

benzene (176) (360 mg, 1.58 mmol). After 20 h, purification by column chromatography (n-

hexane/Et2O 19:1 to 9:1) yielded 177f (38 mg, 20%) as a white solid.  

M.r.: 109 - 110 °C. 

1H-NMR (300 MHz, CDCl3): δ = 8.52 (d, J = 5.0 Hz, 1H), 7.91-7.90 (m, 1H), 7.80 (dd, J = 8.5, 2.3 Hz, 1H), 

7.46-7.42 (m, 1H), 7.33-7.22 (m, 4H), 7.16-7.11 (m, 1H), 7.00-6.99 (m, 1H), 6.90 (d, J = 8.6 Hz, 1H), 

4.40 (t, J = 8.0 Hz, 1H), 3.81 (s, 3H), 2.40 (s, 3H), 2.14-2.07 (m, 2H), 1.40-1.23 (m, 4H), 0.87 (t, 

J = 6.8 Hz, 3H).  

13C-NMR (75 MHz, CDCl3): δ = 157.9 (Cq), 157.4 (Cq), 149.2 (CH), 147.5 (Cq), 145.2 (Cq), 133.9 (Cq), 

131.8 (CH), 128.2 (CH), 128.0 (Cq), 126.2 (CH), 125.7 (CH), 125.6 (CH), 122.3 (CH), 120.9 (CH), 110.8 

(CH), 55.6 (CH3), 43.4 (CH), 34.7 (CH2), 30.2 (CH2), 22.7 (CH2), 21.2 (CH3), 14.0 (CH3). 

IR (ATR): 
~ = 3082, 3025, 3000, 2928, 2858, 1602, 1557, 1500, 1278, 1245, 1202, 1132, 1028, 812, 

698, 413 cm-1.  

MS (EI) m/z (relative intensiy): 345 (29) [M]+, 288 (100), 272 (8), 91 (46). 

HR-MS (ESI) m/z calculated for C24H27NO+H+: 346.2171; found: 346.2165.  

 

Synthesis of 4-Methoxy-2-[3-(1-phenylpentyl)phenyl]pyridine (177g) 

 

 

 

The general procedure E was followed, using [RuCl2(p-cymene)]2 (15.8 mg, 0.026 mmol, 5.1 mol %), 

MesCO2H (13a) (24 mg, 0.15 mmol, 30 mol %),  6gb (88.2 mg, 0.48 mmol) and (1-bromopentyl)-

benzene (176) (338 mg, 1.49 mmol). After 20 h, purification by column chromatography (n-

hexane/Et2O 9:1) yielded 177g (89 mg, 56%) as a colorless oil.  
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1H-NMR (300 MHz, CDCl3): δ =  8.48 (d, J = 5.7 Hz, 1H), 7.86 (dd, J = 1.7, 1.6 Hz, 1H), 7.71 (ddd, J = 7.6, 

1.6, 1.6 Hz, 1H), 7.37-7.07 (m, 7H), 6.71 (dd, J = 5.9, 2.5 Hz, 1H), 4.13-4.05 (m, 1H), 4.00-3.91 (m, 1H), 

3.82 (s, 3H), 2.12-1.99 (m, 2H), 1.41-1.81 (m, 4H), 0.84 (t, J = 6.7 Hz, 3H). 

13C-NMR (75 MHz, CDCl3): δ =  166.3 (Cq), 159.3 (Cq), 150.8 (CH), 145.8 (Cq), 145.1 (Cq), 139.4 (Cq), 

128.7 (CH), 128.4 (CH), 128.3 (CH), 128.2 (CH), 127.9 (CH), 126.7 (CH), 126.0 (CH), 124.7 (CH), 107.9 

(CH), 107.3 (CH), 55.0 (CH3), 51.4 (CH), 35.4 (CH2), 30.2 (CH2), 14.0 (CH3). 

IR (ATR): 
~ = 3024, 2998, 2587, 1590, 1563, 1451, 1310, 1219, 1164, 1035, 989, 796 cm-1. 

MS (EI) m/z (relative intensity): 331 (11) [M+], 274 (100), 230 (7). 

HR-MS (ESI) m/z calculated for C23H25NO-H+: 330.1858; found: 330.1873. 

 

Synthesis of 2-[3-Methoxy-5-(1-phenylpentyl)phenyl]pyridine (177u) 

 

 

 

The general procedure E was followed, using [RuCl2(p-cymene)]2 (14.9 mg, 0.025 mmol, 4.9 mol %), 

MesCO2H (13a) (25 mg, 0.15 mmol, 26 mol %),  6ua (107 mg, 0.58 mmol) and (1-

bromopentyl)benzene (176) (339 mg, 1.49 mmol). After 20 h, purification by column chromatography 

(n-hexane/Et2O 9:1) yielded 177u (62 mg, 32%) as a colorless oil.  

 

1H-NMR (300 MHz, CDCl3): δ = 8.69-8.67 (m, 1H), 7.76-7.66 (m, 2H), 7.46-7.45 (m, 1H), 7.38-7.37 (m, 

1H), 7.29-7.26 (m, 6H), 6.87-6.86 (m, 1H), 3.95 (t, J = 8.1 Hz, 1H), 3.86 (s, 3H), 2.12-2.04 (m, 2H), 1.43-

1.22 (m, 4H), 0.87 (t, J = 6.7 Hz, 3H).  

13C-NMR (75 MHz, CDCl3): δ = 160.1 (Cq), 157.4 (Cq), 149.5 (CH), 147.3 (Cq), 145.0 (Cq), 140.7 (Cq), 

136.6 (CH), 128.3 (CH), 127.8 (CH), 126.0 (CH), 122.1 (CH), 120.7 (CH), 119.3 (CH), 115.0 (CH), 109.2 

(CH), 55.3 (CH3), 51.4 (CH), 35.4 (CH2), 30.2 (CH2), 22.7 (CH2), 14.0 (CH3). 

IR (ATR): 
~ = 3059, 3002, 2954, 1584, 1451, 1417, 1149, 867, 782, 703 cm-1. 

MS (ESI) m/z (relative intensity): 331 (31) [M+], 274 (100), 259 (52), 230 (42), 91 (34). 

HR-MS (ESI) m/z calculated for C23H25NO+: 331.1936; found: 331.1927. 
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2-[2-Methoxy-5-(1-phenylpentyl)phenyl]pyridine (177w) and 2-[2-Methoxy-3-(1-phenylpentyl)-

phenyl]pyridine (177w’)  

 

The general procedure E was followed, using [RuCl2(p-cymene)]2 (30 mg, 0.025 mmol, 2.5 mol %), 

MesCO2H (13a) (49 mg, 0.30 mmol, 30 mol %),  6wa (186 mg, 1.00 mmol) and (1-

bromopentyl)benzene (176) (676 mg, 2.98 mmol). After 20 h, purification by column chromatography 

(n-hexane/Et2O 19:1) yielded 177w (36 mg, 11%) and 177w’ (14 mg, 4%) as colorless oils.  

 

 

 

2-[2-Methoxy-5-(1-phenylpentyl)phenyl]pyridine (177w) 

1H-NMR (300 MHz, CDCl3): δ = 8.70 (ddd, J = 4.9, 1.9, 1.0 Hz, 1H), 7.77 (ddd, J = 8.0, 1.2, 1.2 Hz, 1H), 

7.71-7.63 (m, 2H), 7.33-7.10 (m, 7H), 6.92 (d, J = 8.5 Hz, 1H), 3.93 (t, J = 7.8 Hz, 1H), 3.81 (d, J = 1.1 Hz, 

3H), 2.12-1.97 (m, 2H), 1.43-1.16 (m, 4H), 0.86 (t, J = 7.4 Hz, 3H).  

13C-NMR (75 MHz, CDCl3): δ = 156.5 (Cq), 155.5 (Cq), 149.6 (CH), 145.8 (Cq), 138.2 (Cq), 135.7 (CH), 

130.9 (CH), 129.1 (Cq), 129.0 (CH), 128.6 (CH), 128.1 (CH), 126.1 (CH), 125.4 (CH), 121.8 (CH), 111.7 

(CH), 56.0 (CH3), 50.9 (CH), 36.0 (CH2), 30.8 (CH2), 23.1 (CH2), 14.4 (CH3). 

IR (ATR): 
~ = 2956, 2929, 2859, 1586, 1566, 1444, 1433, 1257, 1235, 1152, 782, 742, 464 cm-1. 

MS (EI) m/z (relative intensity): 331 (70) [M+], 288 (35), 258 (62), 240 (23), 230 (25), 91 (23). 

HR-MS (EI) m/z calculated for C23H25NO-H+: 330.1858; found: 330.1867. 

 

 

 

2-[2-Methoxy-3-(1-phenylpentyl)phenyl]pyridine (177w’) 

1H-NMR (300 MHz, CDCl3): δ =  8.68 (ddd, J = 4.9, 1.9, 1.0 Hz, 1H), 7.78 (ddd, J = 8.0, 1.2, 1.2 Hz, 1H), 

7.68 (ddd, J = 7.9, 7.4, 1.9 Hz, 1H), 7.51 (dd, J = 7.6, 1.8 Hz, 1H), 7.37 (dd, J = 7.8, 1.8 Hz, 1H), 7.31-

7.09 (m, 7H), 4.43 (t, J = 7.8 Hz, 1H), 3.14 (s, 3H), 2.02 (td, J = 9.0, 8.5, 7.1 Hz, 2H), 1.43-1.18 (m, 4H), 

0.86 (t, J = 7.0 Hz, 3H). 
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13C-NMR (75 MHz, CDCl3): δ = 157.1 (cq), 156.2 (Cq), 149.7 (CH), 145.7 (Cq), 138.7 (Cq), 136.2 (CH), 

133.7 (Cq), 129.4 (CH), 128.7 (CH), 128.4 (CH), 128.3 (CH), 126.0 (CH), 124.6 (CH), 124.4 (CH), 122.0 

(CH), 61.4 (CH3), 43.8 (CH), 35.8 (CH2), 30.5 (CH2), 22.9 (CH2), 14.2 (CH3).  

IR (ATR): 
~ = 2954, 2928, 2857, 1584, 1498, 1461, 1249, 1061, 1025, 745, 697 cm-1. 

MS (EI) m/z (relative intensity): 331 (17) [M+], 316 (21), 28 (60), 274 (100), 240 (32), 165 (16), 91 (32). 

HR-MS (EI) m/z calculated for C23H25NO+: 331.1936; found: 331.1933. 

 

 

 

Products of Direct Norbornylation 

 

Synthesis of 2-{3-[(1RS,2RS,4SR)-Bicyclo[2.2.1]heptan-2-yl]-4-methoxyphenyl}pyridine (exo-147bl) 

and 2-{2-[(1RS,2RS,4SR)-Bicyclo[2.2.1]heptan-2-yl]-4-methoxyphenyl}pyridine (exo-93bl) 

 

The general procedure E-1 was followed, using [RuCl2(p-cymene)]2 (8.3 mg, 0.013 mmol, 2.5 mol %), 

MesCO2H (13a) (24 mg, 0.15 mmol, 27 mol %),  6ba (103 mg, 0.56 mmol) and exo-2-

bromonorbornane (exo-42bl) (265 mg, 1.51 mmol). After 20 h, purification by column 

chromatography (n-hexane/EtOAc 9:1 to 4:1) yielded exo-147bl (51 mg, 33%) and exo-93bl (53 mg, 

34%) as colorless oils.  

 

 

 

(exo-147bl) 

1H-NMR (300 MHz, CDCl3): δ = 8.66 (ddd, J = 4.9, 1.8, 1.0 Hz, 1H), 7.86 (dd, J = 2.3, 0.7 Hz, 1H), 7.79 

(dd, J = 8.4, 2.3 Hz, 1H), 7.75-7.62 (m, 2H), 7.15 (ddd, J = 6.7, 4.9, 1.8 Hz, 1H), 6.92 (d, J = 8.5 Hz, 1H), 

3.88 (s, 3H), 3.10-2.96 (m, 1H), 2.45 (d, J = 3.5 Hz, 1H), 2.35 (q, J = 3.9, 3.0 Hz, 1H), 1.87-1.78 (m, 1H), 

1.70-1.49 (m, 3H), 1.50-1.18 (m, 4H). 
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13C-NMR (75 MHz, CDCl3): δ = 158.8 (Cq), 158.4 (Cq), 150.1 (CH), 137.1 (CH), 136.7 (Cq), 131.9 (Cq), 

125.6 (CH), 125.0 (CH), 121.7 (CH), 120.5 (CH), 110.8 (CH), 56.1 (CH3), 41.7 (CH), 41.1 (CH), 39.2 (CH2), 

37.5 (CH), 37.0 (CH2), 31.0 (CH2), 29.6 (CH2). 

IR (ATR): ~ = 2947, 2868, 1715, 1609, 1586, 1503, 1462, 1231, 1144, 790 cm-1. 

MS (EI) m/z (relative intensity): 279 (56) [M+], 250 (100), 223 (57), 210 (28), 167 (20). 

HR-MS (ESI) m/z calculated for C19H21NO+H+: 280.1701; found: 280.1700. 

 

 

 

(exo-93bl) 

1H-NMR (300 MHz, CDCl3): δ = 8.67 (ddd, J = 4.9, 1.9, 0.9 Hz, 1H), 7.71 (ddd, J = 7.7, 1.9, 1.9 Hz, 1H), 

7.32 (ddd, J = 7.9, 1.1, 1.0 Hz, 1H), 7.29-7.17 (m, 2H), 6.95 (d, J = 2.6 Hz, 1H), 6.77 (dd, J = 8.4, 2.6 Hz, 

1H), 3.84 (s, 3H), 3.06-2.94 (m, 1H), 2.42-2.32 (m, 1H), 2.32-2.19 (m, 1H), 1.70-1.60 (m, 1H), 1.57-1.25 

(m, 4H), 1.25-1.13 (m, 1H), 1.16-1.00 (m, 2H). 

13C-NMR (75 MHz, CDCl3): δ = 160.7 (Cq), 159.7 (Cq), 149.1 (CH), 147.2 (Cq), 136.1 (CH), 133.7 (Cq), 

131.1 (CH), 124.7 (CH), 121.4 (CH), 112.6 (CH), 109.7 (CH), 55.4 (CH3), 43.4 (CH), 42.8 (CH), 40.2 (CH2), 

37.0 (CH), 36.7 (CH2), 30.5 (CH2), 28.7 (CH2). 

IR (ATR): 
~ = 2948, 2868, 1605, 1561, 1462, 1426, 1279, 1224, 1166, 1040, 786, 747 cm-1. 

MS (EI) m/z (relative intensity): 279 (100) [M+], 248 (33), 212 (61), 198 (35), 167 (44). 

HR-MS (ESI) m/z calculated for C19H21NO+H+: 280.1701; found: 280.1697. 

 

Synthesis of 2-{2-((1RS,2RS,4SR)-Bicyclo[2.2.1]heptan-2-yl)-4-fluorophenyl}pyridine (exo-147cl) and 

2-{3-((1RS,2RS,4SR)-Bicyclo[2.2.1]heptan-2-yl)-4-fluorophenyl}pyridine (exo-93cl)  

 

The general procedure E was followed, using [RuCl2(p-cymene)]2 (8.3 mg, 0.013 mmol, 2.6 mol %), 

MesCO2H (13a) (25 mg, 0.15 mmol, 30 mol %), 6ca (87.1 mg, 0.50 mmol) and exo-2-

bromonorbornane (exo-42bl) (282 mg, 1.61 mmol). After 20 h, purification by column 

chromatography (n-hexane/EtOAc 9:1) yielded exo-147cl (42 mg, 31%) and exo-93cl (64 mg, 48%) as 

colorless oils.  
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(exo-93cl) 

1H-NMR (300 MHz, CDCl3): δ = 8.69 (s, 1H), 7.73 (ddd, J = 7.7, 1.9, 1.9 Hz, 1H), 7.37-7.20 (m, 3H), 7.10 

(dd, J = 11.1, 2.6 Hz, 1H), 6.92 (ddd, J = 8.3, 2.6, 2.6 Hz, 1H), 2.95 (dd, J = 9.0, 5.9 Hz, 1H), 2.36-2.29 

(m, 1H), 2.29-2.20 (m, 1H), 1.59 (dt, J = 9.9, 2.0 Hz, 1H), 1.53-1.30 (m, 4H), 1.20 (ddd, J = 9.9, 2.4, 

1.4 Hz, 1H), 1.14-0.99 (m, 2H). 

13C-NMR (75 MHz, CDCl3): δ = 162.9 (d, JC-F = 246 Hz, Cq), 160.0 (Cq), 149.3 (CH), 148.3 (d, JC-F = 7 Hz, 

Cq), 136.8 (d, JC-F = 3 Hz, Cq), 136.2 (CH), 131.5 (d, JC-F = 8 Hz, CH), 124.6 (CH), 121.8 (CH), 112.9 (d, JC-F 

= 22 Hz, CH), 112.1 (d, JC-F = 21 Hz, CH), 43.4 (d, JC-F = 1 Hz, CH), 42.8 (CH), 40.2 (CH2), 36.9 (CH), 36.6 

(CH2), 30.4 (CH2), 28.6 (CH2). 

19F-NMR (282 MHz, CDCl3): δ = -113.44 - -113.81 (m). 

IR (ATR): 
~ = 3051, 2949, 2869, 1586, 1462, 1426, 1274, 1212, 939, 787, 747, 591 cm-1.  

MS (ESI) m/z (relative intensity): 557 (92) [2M+Na+], 535 (100), 290 (71), 268 (75) [M+H+].  

HR-MS (ESI) m/z calculated for C18H18FN+H+: 268.1502; found: 268.1499. 

 

  

 

(exo-147cl) 

1H-NMR (300 MHz, CDCl3): δ = 8.32-8.05 (m, 1H), 7.42 (dd, J = 7.4, 2.3 Hz, 1H), 7.34-7.12 (m, 3H), 

6.85-6.69 (m, 1H), 6.62 (dd, J = 10.0, 8.4 Hz, 1H), 2.62-2.47 (m, 1H), 2.00 (d, J = 3.6 Hz, 1H), 1.93 (d, J = 

3.9 Hz, 1H), 1.38 (ddd, J = 11.7, 8.9, 2.2 Hz, 1H), 1.27-1.04 (m, 4H), 1.03-0.90 (m, 1H), 0.89-0.71 (m, 

2H). 

13C-NMR (75 MHz, CDCl3): δ = 161.8 (d, JC-F = 247 Hz, Cq), 157.2 (Cq), 149.7 (CH), 136.7 (CH), 135.2 (d, 

JC-F = 3 Hz, Cq), 134.6 (d, JC-F = 15 Hz, Cq), 125.8 (d, JC-F = 5 Hz, CH), 125.6 (d, JC-F = 9 Hz, CH), 121.9 (CH), 

120.4 (CH), 115.4 (d, JC-F = 23 Hz, CH), 41.8 (CH), 40.1 (d, JC-F = 2 Hz, CH), 38.4 (CH), 37.1 (CH2), 36.6 

(CH2), 30.6 (CH2), 29.1 (CH2). 

19F-NMR (282 MHz, CDCl3): δ = -116.21 - -116.64 (m). 

IR (ATR): 
~ = 2951, 2871, 1608, 1575, 1464, 1427, 1275, 788 cm-1.  
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MS (EI) m/z (relative intensity): 267 (38), [M+], 238 (100), 211 (76), 198 (64), 185 (62), 170 (24), 78 

(26).  

HR-MS (ESI) m/z calculated for C18H18FN+Na+: 290.1321; found: 290.1315. 

 

Synthesis of 1-{2-[(1RS,2RS,4SR)-Bicyclo[2.2.1]heptan-2-yl]phenyl}-1H-pyrazole (exo-118al)  

 

 

 

The general procedure E was followed, using [RuCl2(p-cymene)]2 (7.80 mg, 0.013 mmol, 2.3 mol %), 

MesCO2H (13a) (24 mg, 0.15 mmol, 27 mol %), 87a (81 mg, 0.56 mmol) and exo-2-bromonorbornane 

(exo-42bl) (265 mg, 1.51 mmol). After 20 h, purification by column chromatography (n-hexane/EtOAc 

9:1) yielded exo-118al (87 mg, 65%) as a colorless oil.  

 

1H-NMR (300 MHz, CDCl3): δ = 7.71 (d, J = 1.8 Hz, 1H), 7.54 (d, J = 2.3 Hz, 1H), 7.45-7.31 (m, 2H), 7.28-

7.17 (m, 2H), 6.41 (dd, J = 2.1, 2.1 Hz, 1H), 2.73-2.61 (m, 1H), 2.31 (dd, J = 3.4, 1.6 Hz, 1H), 2.28-2.20 

(m, 1H), 1.61-1.30 (m, 5H), 1.23-1.02 (m, 3H).  

13C-NMR (75 MHz, CDCl3): δ = 143.5 (Cq), 139.8 (CH), 139.4 (Cq), 130.8 (CH), 128.5 (CH), 126.9 (CH), 

126.3 (CH), 125.7 (CH), 105.7 (CH), 42.2 (CH), 41.3 (CH), 39.2 (CH2), 36.5 (CH), 36.1 (CH2), 30.1 (CH2), 

28.2 (CH2). 

IR (ATR): 
~ = 2950, 2869, 1515, 1493, 1453, 1393, 1328, 1042, 938, 745, 728, 623 cm-1. 

MS (EI) m/z (relative intensity): 238 (199) [M+], 209 (48), 197 (32), 182 (49), 144 (54), 115 (25), 77 

(57), 51 (44). 

HR-MS (ESI) m/z calculated for C16H18N2+Na+: 261.1368; found: 261.1366. 
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Mechanistic Studies 

 

Intermolecular Competition Experiment between 2-Bromooctane (42ba) and 1-Bromohexane 

(42ab)  

 

 

A suspension of [RuCl2(p-cymene)]2 (16.0 mg, 0.026 mmol, 2.6 mol %), MesCO2H (13a) (48.5 mg, 

0.30 mmol, 30 mol %), K2CO3 (277 mg, 2.00 mmol), 42ba (157 mg, 1.02 mmol), 42ab (375 mg, 

1.94 mmol) and 6aa (328 mg, 1.98 mmol) in dry 1,4-dioxane (4.0 mL) was stirred under N2 for 20 h at 

100 °C. EtOAc (50 mL) and H2O (50 mL) were added to the reaction mixture at ambient temperature. 

The separated aqueous phase was extracted with EtOAc (2 × 50 mL). The combined organic layers 

were washed with brine (50 mL), dried over Na2SO4 and concentrated in vacuo. The remaining 

residue was purified by column chromatography on silica gel (n-hexane/EtOAc 19:1) to yield 147aa 

(88 mg, 32%) and 93a (80 mg, 29%) as colorless oils.  

 

Intermolecular Competition Experiment between 2-(4-Methoxyphenyl)pyridine (6ba) & 2-(4-

Fluorophenyl)pyridine (6ca) 

 

 

 

A suspension of [RuCl2(p-cymene)]2 (15.9 mg, 0.026 mmol, 2.6 mol %), MesCO2H (13a) (50.1 mg, 

0.30 mmol, 30 mol %), K2CO3 (274 mg, 2.00 mmol), 6ba (370 mg, 2.00 mmol), 6ca (347 mg, 

2.00 mmol) and 42ba (200 mg, 1.04 mmol) in dry 1,4-dioxane (4.0 mL) was stirred under N2 for 20 h 

at 100 °C. EtOAc (50 mL) and H2O (50 mL) were added to the reaction mixture at ambient 

temperature. The separated aqueous phase was extracted with EtOAc (2 × 50 mL). The combined 

organic layers were washed with brine (50 mL), dried over Na2SO4 and concentrated in vacuo. The 
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remaining residue was purified by column chromatography on silica gel (n-hexane/EtOAc 19:1) to 

yield a mixture of 147ba and 147ca (18% conv.) in a ratio of 2.6:1.0 as determined by 1H-NMR 

spectroscopy.    

 

Intermolecular Competition Experiment between 2-(4-Methylphenyl)pyridine (6oa) & 2-(4-

Fluorophenyl)pyridine (6ca)  

 

 

 

A suspension of [RuCl2(p-cymene)]2 (15.5 mg, 0.025 mmol, 2.0 mol %), MesCO2H (50.0 mg, 

0.30 mmol, 23.6 mol %), K2CO3 (280 mg, 2.02 mmol), 6ca (374 mg, 2.02 mmol), 6oa (333 mg, 

1.97 mmol) and 42ba (245 mg, 1.27 mmol) in dry 1,4-dioxane (4 mL) was stirred under N2 for 20 h at 

100 °C. EtOAc (50 mL) and H2O (50 mL) were added to the reaction mixture at ambient temperature. 

The separated aqueous phase was extracted with EtOAc (2 × 50 mL). The combined organic layers 

were washed with brine (50 mL), dried over Na2SO4 and concentrated in vacuo. The remaining 

residue was purified by column chromatography on silica gel (n-hexane/EtOAc 19:1). Careful 1H-NMR 

analysis gave a NMR-yield of 24% for 147ca and 8% for 147oa.   

 

Intermolecular Competition Experiment between 2-(4-Methoxyphenyl)pyridine (6ba) & 2-(4-

Methylphenyl)pyridine (6oa)  

 

 

 

A suspension of [RuCl2(p-cymene)]2 (15.8 mg, 0.026 mmol, 2.8 mol %), MesCO2H (48.7 mg, 

0.30 mmol, 32 mol %), K2CO3 (277 mg, 2.00 mmol), 6ba (343 mg, 2.03 mmol), 6oa (372 mg, 

2.01 mmol) and 42ba (180 mg, 0.93 mmol) in dry 1,4-dioxane (4.0 mL) was stirred under N2 for 20 h 
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at 100 °C. EtOAc (50 mL) and H2O (50 mL) were added to the reaction mixture at ambient 

temperature. The separated aqueous phase was extracted with EtOAc (2 × 50 mL). The combined 

organic layers were washed with brine (50 mL), dried over Na2SO4 and concentrated in vacuo. The 

remaining residue was purified by column chromatography on silica gel (n-hexane/EtOAc 9:1) to yield 

a mixture of 147ba and 147oa (30% conv.) in a ratio of 2.8:1.0 as determined by 1H-NMR 

spectroscopy. 

 

Experiment with Deuterium-Labeled Phenylpyridine [D5]-6aa 

 

 

 

The general procedure E was followed, using [RuCl2(p-cymene)]2 (7.9 mg, 0.013 mmol, 2.5 mol %), 

MesCO2H (13a) (25 mg, 0.15 mmol, 23 mol %), [D5]-6aa (104 mg, 0.65 mmol) and 2-bromooctane 

(42ba) (288 mg, 1.49 mmol). After 20 h, purification by column chromatography (n-hexane/EtOAc 

19:1) yielded [Dn]-147aa (50 mg, 29%) and reisolated [Dn]-6aa (55 mg, 54%) as colorless oils.  
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Experiments with Deuterium-Labeled 2-(3,4,5-Trideuterophenyl)pyridine ([D3]-6aa) 

 

Synthesis of 2-(3,4,5-Trideuterophenyl)pyridine ([D3]-6aa)  

 

 

 

A suspension of [RuCl2(p-cymene)]2 (73.0 mg, 0.119 mmol, 2.5 mol %), MesCO2H (13a) (244 mg, 

1.49 mmol, 31 mol %), K2CO3 (1.36 mg, 9.86 mmol) and [D5]-6aa (0.78 g 4.84 mmol) in degassed H2O 

(20 mL) was stirred under N2 for 20 h at 100 °C. EtOAc (50 mL) and H2O (50 mL) were added to the 

reaction mixture at ambient temperature. The separated aqueous phase was extracted with EtOAc 

(2 × 50 mL). The combined organic layers were washed with brine (50 mL), dried over Na2SO4 and 

concentrated in vacuo. The remaining residue was purified by column chromatography on silica gel 

(n-hexane/EtOAc 5:1) and Kugelrohr-distillation to yield [D3]-6aa (0.56 g, 73%) as a colorless oil. 
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1H-NMR (300 MHz, CDCl3): δ = 8.74-8.65 (m, 1H), 8.00 (s, 2H), 7.82-7.69 (m, 2H), 7.29-7.18 (m, 1H).  

13C-NMR (75 MHz, CDCl3): δ = 157.4 (Cq), 149.6 (CH), 139.3 (Cq), 136.7 (CH), 128.3 (Cq), 128.0 (Cq) 

126.8 (CH), 122.1 (CH), 120.5 (CH).  

IR (ATR): ~ = 3053, 3003, 2272, 2256, 1582, 1472, 1420, 783, 741, 610 cm-1.  

MS (EI) m/z (relative intensity): 158 (100) [M+], 129 (12), 78 (14), 71 (12), 57 (29), 43 (60).  

HR-MS (ESI) m/z calculated for C11H6D3N+H+: 159.1002; found: 159.0995. 

 

 

 

 

Synthesis of 2-[4,5-Dideutero-3-(pentan-2-yl)phenyl]pyridine ([D2]-147ai) 

 

 

 

The general procedure E was followed, using [RuCl2(p-cymene)]2 (16.3 mg, 0.027 mmol, 5.2 mol %),  

MesCO2H (13a) (25 mg, 0.15 mmol, 29 mol %), [D3]-6aa (82.4 mg, 0.52 mmol) and 2-bromopentane 

(42bi) (219 mg, 1.45 mmol). After 20 h, purification by column chromatography (n-hexane/EtOAc 9:1) 

yielded [D2]-147ai  (61 mg, 52%) as a colorless oil.  

 

1H-NMR (300 MHz, CDCl3): δ = 8.71 (ddd, J = 4.8, 1.4, 1.4 Hz, 1H), 7.86 (d, J = 1.9 Hz, 1H), 7.79 (d, J = 

1.8 Hz, 1H), 7.76-7.67 (m, 2H), 7.25-7.15 (m, 1H), 2.82 (qt, J = 7.0, 6.9 Hz, 1H), 1.75-1.49 (m, 2H), 1.41-

1.12 (m, 2H), 1.26 (d, J = 6.9 Hz, 3H),  0.90 (t, J = 7.2 Hz, 3H). 
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13C-NMR (126 MHz, CDCl3): δ = 158.0 (Cq), 149.7 (CH), 148.5  (Cq), 139.5 (Cq), 136.7 (CH), 128.4 (t, JC-D 

= 24 Hz, Cq), 127.3 (t, JC-D = 24 Hz, Cq), 125.9 (CH), 124.4 (CH), 122.0 (CH), 120.8 (CH), 40.8 (CH2), 39.9 

(CH) , 22.4 (CH2), 21.0 (CH3), 14.3 (CH3).  

IR (ATR): 
~ = 2957, 2927, 2871, 1585, 1560, 1472, 1426, 907, 782, 732, 587 cm-1. 

MS (EI) m/z (relative intensity): 227 (37) [M+], 198 (11), 184 (100), 169 (54), 78 (11). 

HR-MS (ESI) m/z calculated for C16H17D2N
+: 227.1643; found: 227.1641. 

 

 

Intermolecular Competition Experiment between 2-(3,4,5-Trideuterophenyl)pyridine ([D3]-6aa) and 

2-Phenylpyridine (6aa) 

 

 

 

A suspension of [RuCl2(p-cymene)]2 (7.90 mg, 0.013 mmol, 2.5 mol %), MesCO2H (25.3 mg, 

0.15 mmol, 30 mol %), K2CO3 (139 mg, 1.01 mmol, 2.0 equiv), 6aa (162 mg, 1.05 mmol), [D3]-6aa 

(155 mg 0.93 mmol) and 42ba (106 mg, 0.55 mmol) in 1,4-dioxane (4.0 mL) was stirred under N2 for 
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20 h at 100 °C. EtOAc (50 mL) and H2O (50 mL) were added to the reaction mixture at ambient 

temperature. The separated aqueous phase was extracted with EtOAc (2 × 50 mL). The combined 

organic layers were washed with brine (50 mL), dried over Na2SO4 and concentrated in vacuo. The 

remaining residue was purified by column chromatography on silica gel (n-hexane/EtOAc 19:1) to 

yield a mixture of [D0]-147aa and [D2]-147aa (1H-NMR ratio 1:1, 38 mg, 26%) and a mixture of re-

isolated [D0]-6aa and [D3]-6aa (1H-NMR ratio 1:1, 47 mg, 46%). 
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7.4 The Analytical Data for the Ruthenium-Catalyzed Oxidative Annulations  

 

Synthesis of 3,4-Bis(4-methoxyphenyl)-2-methylisoquinolin-1(2H)-one (180ab) 

 

 

 

The general  procedure  F was followed using [RuCl2(p-cymene)]2 (15 mg, 0.025 mmol, 5.0 mol %),    

N-methylbenzamide (86a) (68.0 mg, 0.50 mmol) and 1,2-bis(4-methoxyphenyl)ethyne (88b) 

(194.8 mg, 0.82 mmol). After 22 h, purification by column chromatography (n-hexane/EtOAc 3:1) 

gave 180ab (104 mg, 56%) as an orange solid.  

 

M.r.: 160 - 162 °C.  

1H-NMR (300 MHz, CDCl3): δ = 8.54 (dd, J = 7.8, 1.7 Hz, 1H), 7.59- 7.41 (m, 2H), 7.20- 7.14 (m, 1H), 

7.09-6.90 (m, 4H), 6.84-6.69 (m, 4H), 3.76 (s, 6H), 3.35 (s, 3H).  

13C-NMR (75 MHz, CDCl3): δ = 162.8 (Cq), 159.1 (Cq), 158.1 (Cq), 141.3 (Cq), 137.5 (Cq), 132.5 (CH), 

131.9 (CH), 131.1 (CH), 128.9 (Cq), 127.8 (CH), 127.6 (Cq), 126.4 (CH), 125.3 (CH), 124.9 (Cq), 118.7 

(Cq), 113.6 (CH), 113.4 (CH), 55.1 (CH3), 55.1 (CH3), 34.3 (CH3).  

IR (ATR): 
~ = 3002, 2957, 2925, 2853, 1788, 1644, 1506, 1328, 1291, 1173, 862, 731 cm-1.  

MS (EI) m/z (relative intensity): 371 (100) [M+], 355 (11), 267 (9), 239 (16), 165 (12), 135 (16).  

HR-MS (EI) m/z calculated for C24H21NO3
+: 371.1521; found: 371.1515. 

The spectral data were in accordance with those reported in the literature.212 

 

Synthesis of 2-Methyl-3,4-di-p-tolylisoquinolin-1(2H)-one (180ac) 

 

 

                                                           
212

 Hyster, T. K.; Rovis, T. J. Am. Chem. Soc. 2010, 132, 10565–10569. 
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The general  procedure  F was followed using [RuCl2(p-cymene)]2 (15 mg, 0.025 mmol, 5.0 mol %),  N-

methylbenzamide (86a) (66.7 mg, 0.49 mmol) and 1,2-di-p-tolylethyne (88c)  (207.1 mg, 1.00 mmol). 

After 22 h, purification by column chromatography (n-hexane/EtOAc 4:1) gave 180ac (118 mg, 71%) 

as a white solid. 

 

M.r.: 194 - 197 °C.  

1H-NMR (300 MHz, CDCl3): δ = 8.53 (d, J = 7.1 Hz, 1H), 7.54-7.39 (m, 2H), 7.07-6.85 (m, 9H), 3.30 (s, 

3H), 2.26 (s, 6H).  

13C-NMR (75 MHz, CDCl3): δ = 162.8 (Cq), 141.3 (Cq), 137.8 (Cq), 137.4 (Cq),  136.2 (Cq),  133.5 (Cq),  

132.3 (Cq),  131.9 (CH), 131.3 (CH), 129.7 (CH), 128.9 (CH), 128.6 (CH), 127.7 (CH), 126.4 (CH), 125.4 

(CH), 124.9 (Cq), 118.7 (Cq), 34.3 (CH3), 21.2 (CH3), 21.2 (CH3).  

IR (ATR): 
~ = 3022, 2947, 2919, 2863, 1640, 1480, 1284, 1022, 996, 817, 705, 690 cm–1.  

MS (EI) m/z (relative intensity): 339 (100) [M+], 246 (8), 178 (12), 132 (17), 91 (13).  

HR-MS (EI) m/z calculated for C24H21NO+: 339.1623; found: 339.1617. 

 

Synthesis of 3,4-Bis(4-fluorophenyl)-2-methylisoquinolin-1(2H)-one  (180ad) 

 

 

 

The general  procedure  F was followed using [RuCl2(p-cymene)]2 (15 mg, 0.025 mmol, 5.0 mol %),  N-

methylbenzamide (86a) (66.6 mg, 0.49 mmol) and 1,2-bis(4-fluorophenyl)ethyne (88d)  (217.1 mg, 

1.01 mmol). After 22 h, purification by column chromato-graphy (n-hexane/EtOAc 3:1) gave 180ad 

(107 mg, 61%) as a white solid. 

 

M.r.: 172 - 173 °C.  

1H-NMR (300 MHz, CDCl3): δ = 8.54 (d, J = 7.2 Hz, 1H), 7.56-7.45 (m, 2H), 6.99 (m, 9H), 3.33 (s, 3H).  

13C-NMR (75 MHz, CDCl3): δ = 162.6 (Cq), 162.2 (d, JC-F = 248 Hz, Cq), 161.6 (d, JC-F = 244 Hz, Cq), 140.5 

(Cq), 136.93 (Cq), 133.0 (d, JC-F = 8 Hz, CH), 132.2 (Cq), 131.7 (d, JC-F = 9 Hz, CH), 131.0 (d, JC-F = 3 Hz, Cq), 

130.7 (CH), 127.9 (CH), 126.9 (CH), 125.1 (CH), 125.0 (Cq), 118.2(Cq), 115.5 (d, JC-F = 21 Hz, CH), 115.2 

(d, JC-F = 20 Hz, CH), 34.3 (CH3).  

19F-NMR (283 MHz, CDCl3): δ = -112.0 - -112.2 (m), - 114.7 - -115.1 (m).  
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IR (ATR): 
~ = 3058, 3040, 2855, 1639, 1603, 1224, 1159, 1054, 866, 771, 728, 701, 688 cm–1.  

MS (EI) m/z (relative intensity): 346 (100) [M-H+], 303 (8), 250 (10), 183 (14), 136 (12), 95 (13).  

HR-MS (EI) m/z calculated for C22H14F2NO-H+: 346.1043; found: 346.1043. 

 

Synthesis of 4-Ethyl-2-methyl-3-phenylisoquinolin-1(2H)-one (180ae) and 3-Ethyl-2-methyl-4-

phenylisoquinolin-1(2H)-one (180ae’) 

 

The general  procedure F was followed using [RuCl2(p-cymene)]2 (15 mg, 0.025 mmol, 5.0 mol %), N-

methylbenzamide (86a) (68.1 mg, 0.50 mmol) and but-1-yn-1-ylbenzene (88e) (140 mg, 1.07 mmol). 

After 22 h, purification by column chromatography (n-hexane/EtOAc 9:1 to 4:1) yielded 180ae and 

180ae’ as a mixture (106 mg, 80%, ratio 7.2:1.0 by 1H-NMR) and was isolated as a grey solid. (NMR 

spectra were analyzed only for the major regioisomer 180ae’). 

 

         &     

        (180ae)                       (180ae’) 

 

Major isomer:  

 

 

(180ae’) 

1H-NMR (300 MHz, CDCl3): δ = 8.52 (ddd, J = 8.1, 1.5, 0.7 Hz, 1H), 7.76-7.58 (m, 2H), 7.54-7.30 (m, 

4H), 7.28-7.19 (m, 2H), 3.19 (s, 3H), 2.39 (q, J = 7.5 Hz, 2H), 1.01 (t, J = 7.4 Hz, 3H). 

13C-NMR (75 MHz, CDCl3): δ = 162.3 (Cq), 140.0 (Cq), 135.9 (Cq), 135.4 (Cq), 131.9 (CH), 128.9 (CH), 

128.8 (CH), 128.6 (CH), 128.2 (CH), 126.1 (CH), 125.5 (Cq), 123.0 (CH), 116.4 (Cq), 33.9 (CH3), 21.4 

(CH2), 14.7 (CH3). 

IR (ATR): 
~ = 2965, 2929, 2872, 1643, 1556, 1328, 761, 700, 656, 534 cm-1. 

MS (EI) m/z (relative intensity): 263 (77) [M+], 248 (100), 233 (20), 178 (11), 77 (13).  

HR-MS (EI) m/z calculated for C18H17NO+: 263.1310; found: 263.1308. 
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Synthesis of 2-Methyl-3-phenyl-4-n-propylisoquinolin-1(2H)-one (180af’) & 2-Methyl-4-phenyl-3-n-

propylisoquinolin-1(2H)-one (180af) 

 

The general  procedure  F was followed using [RuCl2(p-cymene)]2 (16 mg, 0.026 mmol, 5.1 mol %),   

N-methylbenzamide (86a) (67.5 mg, 0.50 mmol) and pent-1-yn-1-ylbenzene (88f) (155 mg, 

1.07 mmol). After 22 h, purification by column chromatography (n-hexane/EtOAc 4:1) yielded 180af’ 

and 180af as a mixture (128 mg, 92%, ratio 9.7:1.0 by 1H-NMR) as a white solid.( NMR spectra were 

analyzed only for the major regioisomer 180af’.) 

 

  &   

  (180af)                       (180af’) 

 

Major isomer:  

 

 

(180af’) 

1H-NMR (300 MHz, CDCl3): δ = 8.50 (dd, J = 7.8, 1.0 Hz, 1H), 7.68-7.53 (m, 2H), 7.49-7.32 (m, 4H), 7.21 

(dd, J = 7.5, 2.0 Hz, 2H), 3.18 (s, 3H), 2.37-2.23 (m, 2H), 1.53-1.31 (m, 2H), 0.74 (t, J = 7.3 Hz, 3H). 

13C-NMR (75 MHz, CDCl3): δ = 162.2 (Cq), 140.2 (Cq), 136.1 (Cq), 135.4 (Cq), 131.8 (CH), 129.0 (CH), 

128.7 (CH), 128.5 (CH), 128.1 (CH), 126.0 (CH), 125.4 (Cq), 123.0 (CH), 115.1 (Cq), 33.9 (CH3), 30.4 

(CH2), 23.5 (CH2), 14.1 (CH3).  

IR (ATR): 
~ = 2953, 2869, 1640, 1588, 1486, 1328, 1072, 1031, 765, 702, 437 cm–1. 

MS (EI) m/z (relative intensity): 277 (43) [M+], 248 (100), 233 (15), 178 (9), 77 (9).  

HR-MS (EI): m/z calculated for C19H19NO+: 277.1467; found: 277.1466. 

 

Synthesis of 3-(4-Fluorophenyl)-4-n-hexyl-2-methylisoquinolin-1(2H)-one (180ag) and 4-(4-Fluoro-

phenyl)-3-n-hexyl-2-methylisoquinolin-1(2H)-one (180ag’) 

 

The general  procedure  F was followed using [RuCl2(p-cymene)]2 (15 mg, 0.025 mmol, 5.0 mol %),  N-

methylbenzamide (86a) (68.1 mg, 0.50 mmol) and 1-fluoro-4-(oct-1-ynyl)benzene (88g) (261 mg, 
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1.23 mmol). After 22 h, purification by column chromatography (n-hexane/EtOAc 5:1 to 3:1) yielded 

180ag and 180ag’ as a mixture (62 mg, 37%, ratio 7.6:1.0 by 1H-NMR) as a brown oil. (NMR spectra 

were analyzed only for the major regioisomer 180ag’.) 

 

      &  

          (180ag’)                       (180ag) 

 

Major isomer:  

 

 

(180ag’) 

1H-NMR (300 MHz, CDCl3): δ = 8.53 (dd, J = 8.1, 1.1 Hz, 1H), 7.72-7.65 (m, 2H), 7.55-7.45 (m, 1H), 

7.31-7.14 (m, 4H), 3.23 (s, 3H), 2.41-2.30 (m, 2H), 1.54-1.31 (m, 2H), 1.31-1.02 (m, 6H), 0.82 (t, J = 

6.9 Hz, 3H). 

13C-NMR (75 MHz, CDCl3): δ = 162.7 (d, JC-F = 249 Hz, Cq), 162.4 (Cq), 139.1 (Cq), 136.1 (Cq), 132.1 (CH), 

131.5 (d, JC-F = 4 Hz, Cq), 131.1 (d, JC-F = 8 Hz, CH), 128.3 (CH), 126.4 (CH), 125.6 (Cq), 123.2 (CH), 116.0 

(d, JC-F = 22 Hz, CH), 116.0 (Cq), 34.0 (CH3), 31.2 (CH2), 30.2 (CH2), 29.4 (CH2), 28.4 (CH2), 22.4 (CH2), 

13.9 (CH3). 

IR (ATR): 
~ = 2954, 2927, 2860, 1641, 1590, 1330, 1219, 1160, 858, 776, 708, 542 cm–1. 

MS (EI) m/z (relative intensity): 337 (53) [M+], 280 (15), 266 (100), 251 (22), 196 (10). 

HR-MS (EI) m/z calculated for C22H24FNO+: 337.1842; found: 337.1839. 

 

Synthesis of 3-(4-Methoxyphenyl)-2,4-dimethylisoquinolin-1(2H)-one (180ah’) 
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The general  procedure  F was followed using [RuCl2(p-cymene)]2 (15 mg, 0.025 mmol, 4.8 mol %),   

N-methylbenzamide (86a) (70.0 mg, 0.52 mmol) and 1-methoxy-4-(prop-1-ynyl)benzene (88h) 

(144.6 mg, 0.99 mmol). After 22 h, purification by column chromatography (n-hexane/EtOAc 4:1 to 

2:1) yielded 180ah’ (96 mg, 66%) as a yellow oil. 

 

1H-NMR (300 MHz, CDCl3): δ = 8.50 (d, J = 8.0 Hz, 1H), 7.72- 7.58 (m, 2H), 7.53- 7.39 (m, 1H), 7.21-

7.08 (m, 2H), 7.06-6.92 (m, 2H), 3.84 (s, 3H), 3.25 (s, 3H), 2.01 (s, 3H).  

13C-NMR (75 MHz, CDCl3): δ = 162.5 (Cq), 159.6 (Cq), 140.0 (Cq), 137.0 (Cq), 131.9 (CH), 130.5 (CH), 

128.0 (CH), 128.0 (Cq), 126.2 (CH), 125.2 (Cq), 123.1 (CH), 114.2 (CH), 110.7 (Cq), 55.2 (CH3), 34.1 

(CH3), 14.8 (CH3).  

IR (ATR): 
~ = 3038, 2985, 2952, 2935, 1642, 1449, 1411, 1342, 1107, 1029, 693, 639 cm–1. 

MS (EI) m/z (relative intensity): 278 (100) [M-H+], 263 (53), 248 (20), 220 (11), 178 (10), 165 (11), 148 

(19), 86 (15), 77 (16).  

HR-MS (EI) m/z calculated for C18H17NO2
+: 279.1259; found: 279.1263. 

 

 

 

Synthesis of 2,4-Dimethyl-3-propylisoquinolin-1(2H)-one (180ai) and 2,3-Dimethyl-4-propylisoqui-

nolin-1(2H)-one (180ai’)  

 

The general  procedure  F was followed using [RuCl2(p-cymene)]2 (15 mg, 0.025 mmol, 4.9 mol %)N-

methylbenzamide (86a) (68.7 mg, 0.51 mmol) and hex-2-yne (88i) (89.3 mg, 1.09 mmol). After 22 h, 

purification by column chromatography (n-hexane/EtOAc 4:1) yielded 180ai (26 mg, 24%) as a light 

brown oil and 180ai’ (37 mg, 34%) as a white solid. 

 

 

 

(180ai) 

1H-NMR (300 MHz, CDCl3): δ = 8.43 (d, J = 8.0 Hz, 1H), 7.62 (d, J = 3.4 Hz, 2H), 7.46- 7.34 (m, 1H), 3.65 

(s, 3H), 2.80-2.69 (m, 2H), 2.30 (s, 3H), 1.68-1.51 (m, 2H), 1.05 (t, J = 7.3 Hz, 3H).  
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13C-NMR (75 MHz, CDCl3): δ = 163.0 (Cq), 139.7 (Cq), 137.1 (Cq), 131.9 (CH), 128.1 (CH), 125.7 (CH), 

124.5 (Cq), 122.6 (CH), 108.9 (Cq), 32.0 (CH2), 31.3 (CH3), 22.1 (CH2), 14.0 (CH3), 13.6 (CH3).  

IR (ATR): 
~ = 3069, 2961, 2931, 2872, 1772, 1642, 1589, 1486, 1457, 1413, 1370, 1323, 1188, 1075, 

1028, 962, 885, 764, 693, 606, 424 cm–1.  

MS (EI) m/z (relative intensity): 215 (100) [M+], 200 (88), 11 (80), 172 (30), 156 (34), 147 (40), 129 

(24), 115 (28), 102 (50), 77 (28).  

HR-MS (EI) m/z calculated for C14H17NO+: 215.1310; found: 215.1315. 

 

 

 

(180ai’) 

M.r.: 86 - 88 °C.  

1H-NMR (300 MHz, CDCl3): δ = 8.44 (d, J = 8.0 Hz, 1H), 7.69-7.52 (m, 2H), 7.45-7.32 (m, 1H), 3.62 (s, 

3H), 2.80-2.59 (m, 2H), 2.38 (s, 3H), 1.69-1.42 (m, 2H), 1.01 (t, J = 7.3 Hz, 3H). 

13C-NMR (75 MHz, CDCl3): δ = 162.7 (Cq), 136.4 (Cq), 135.9 (Cq), 131.9 (CH), 128.3 (CH), 125.5 (CH), 

124.6 (Cq), 122.4 (CH), 113.9 (Cq), 31.6 (CH3), 29.8 (CH2), 23.1 (CH2), 16.7 (CH3), 14.1 (CH3).  

IR (ATR): 
~ = 3070, 2953, 2934, 2871, 1724, 1642, 1555, 1457, 1412, 1323, 1029, 699 cm–1. 

MS (EI: m/z (relative intensity): 215 (36) [M+], 187 (100), n158 (11), 115 (11), 56 (14). 

HR-MS (EI) m/z calculated for C14H17NO+: 215.1310; found: 215.1307. 

 

Synthesis of 4-(Cyclohex-1-en-1-yl)-2-methyl-3-phenylisoquinolin-1(2H)-one (180aj) & 3-(Cyclohex-

1-en-1-yl)-2-methyl-4-phenylisoquinolin-1(2H)-one (180aj’)  

 

The general  procedure  F was followed using [RuCl2(p-cymene)]2 (15 mg, 0.025 mmol, 5.1 mol %),  N-

methylbenzamide (86a) (68.8 mg, 0.51 mmol) and cyclohex-1-en-1-ylethynylbenzene (88j) (177 mg, 

0.97 mmol). After 22 h, purification by column chromatography (n-hexane/EtOAc: 3:1 to 2:1) yielded 

180aj and 180aj’ as an inseperable mixture (42 mg, 26%, ratio by 1H-NMR 1.0:1.3) as an orange oil.  

 

   &  

    (180aj)                     (180aj’) 
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1H-NMR (300 MHz, CDCl3): δ = 8.52-8.29 (m, 2H), 7.65-6.91 (m, 18H), 5.61-5.51 (m, 1H), 5.52-5.41 (m, 

1H), 3.52 (s, 4H), 3.23 (s, 3H), 2.15-1.86 (m, 7H), 1.86-1.38 (m, 7H), 1.38-1.03 (m, 3H). 

Assignment of the resonances was not possible due to their overlapping. 

13C-NMR (75.5 MHz, CDCl3): δ = 162.5 (Cq), 162.3 (Cq), 143.0 (Cq), 139.5 (Cq), 137.2 (Cq), 136.8 (Cq), 

136.2 (Cq), 135.0 (Cq), 132.7 (Cq), 132.4 (CH), 132.0 (Cq), 132.0 (CH), 131.8 (CH), 131.6 (CH), 130.9 

(CH), 130.5 (CH), 130.0 (CH), 128.4 (CH), 128.1 (CH), 128.0 (CH), 127.9 (CH), 127.8 (CH), 127.6 (CH), 

127.6 (CH), 127.3 (CH), 126.8 (CH), 126.2 (CH), 125.9 (CH), 125.0 (CH), 124.8 (Cq), 124.5 (CH), 124.1 

(Cq), 120.8 (Cq), 117.2 (Cq), 34.2 (CH3), 32.9 (CH3), 30.3 (CH2), 29.4 (CH2), 25.2 (CH2), 24.8 (CH2), 22.7 

(CH2), 22.1 (CH2), 21.7 (CH2), 21.3 (CH2).  

IR (ATR): 
~ = 2939, 2860, 1642, 1606, 1481, 1327, 1026, 777, 756, 702 cm–1. 

MS (EI) m/z (relative intensity): 315 (100) [M+], 286 (29), 272 (33), 258 (11), 165 (12), 105 (17). 

HR-MS (ESI) m/z calculated for C22H21NO+H+: 316.1701; found: 316.1696. 

 

Synthesis of 4-n-Butyl-3-(cyclohex-1-en-1-yl)-2-methylisoquinolin-1(2H)-one (180ak) & 3-n-Butyl-4-

(cyclohex-1-en-1-yl)-2-methylisoquinolin-1(2H)-one (180ak’)  

 

The general  procedure  F was followed using [RuCl2(p-cymene)]2 (15 mg, 0.025 mmol, 5.0 mol %), N-

methylbenzamide (86a) (68.8 mg, 0.51 mmol) and 1-(hex-1-yn-1-yl)-cyclohex-1-ene (88k) (177 mg, 

1.10 mmol). After 22 h, purification by column chromatography (n-hexane/EtOAc 5:1) yielded 180ak 

and 180ak’ as an inseperable mixture (70 mg, 46%, ratio det. by 1H-NMR 10:1.0) which was isolated 

as an orange oil. (NMR spectra were analyzed only for the major regioisomer 180ak.) 

 

   &  

      (180ak)                     (180ak’) 

 

Major regeoisomer: 
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(180ak) 

1H-NMR (300 MHz, CDCl3): δ = 8.47 (dd, J = 8.0, 1.1 Hz, 1H), 7.69-7.59 (m, 2H), 7.43 (ddd, J = 8.1, 5.0, 

3.2 Hz, 1H), 5.81 (dd, J = 3.7, 2.0 Hz, 1H), 3.52 (s, 3H), 2.81-2.61 (m, 1H), 2.61-2.44 (m, 1H), 2.33-2.04 

(m, 4H), 1.94-1.65 (m, 4H), 1.52-1.33 (m, 3H), 0.96 (t, J = 7.0 Hz, 3H). 

13C-NMR (75.5 MHz, CDCl3): δ = 162.5 (Cq), 142.0 (Cq), 136.6 (Cq), 132.9 (Cq), 131.7 (CH), 130.5 (CH), 

128.0 (CH), 125.8 (CH), 124.9 (Cq), 123.0 (CH), 114.0 (Cq), 33.2 (CH3), 32.6 (CH2), 29.3 (CH2), 28.0 (CH2), 

25.1 (CH2), 23.0 (CH2), 22.4 (CH2), 21.6 (CH2), 13.8 (CH3). 

IR (ATR): 
~ = 3357, 2829, 2859, 1643, 1584, 1555, 1335, 1070, 770, 701 cm–1. 

MS (EI) m/z (relative intensity): 295 (53) [M+], 252 (100), 210 (26), 197 (10), 162 (10). 

HR-MS (EI) m/z calculated for C20H25NO+: 295.1936; found: 295.1942. 

 

Synthesis of 3-Cyclohexenyl-2,4-Dimethylisoquinolin-1(2H)-one  (180al) 

 

 

 

The general  procedure F was followed using [RuCl2(p-cymene)]2 (31 mg, 0.051 mmol, 10 mol %), N-

methylbenzamide (86a) (69.0 mg, 0.51 mmol) and 1-(prop-1-ynyl)cyclohex-1-ene (88l) (126 mg, 

1.05 mmol). After 22 h, purification by column chroma-tography (n-hexane/EtOAc: 2:1) yielded 180al 

(72 mg, 56%) as an orange oil.  

 

1H-NMR (300 MHz, CDCl3): δ = 8.47 (d, J = 8.3 Hz, 1H), 7.77-7.56 (m, 2H), 7.55-7.36 (m, 1H), 5.86-5.71 

(m, 1H), 3.52 (s, 3H), 2.31-2.18 (m, 5H), 2.17-2.05 (m, 2H), 1.76 (s, 4H).  

13C-NMR (75.5 MHz, CDCl3): δ = 162.7 (Cq), 142.1 (Cq), 137.3 (Cq), 133.4 (Cq), 131.8 (CH), 130.8 (CH), 

127.9 (CH), 125.9 (CH), 124.8 (Cq), 123.0 (CH), 108.5 (Cq), 32.7 (CH3), 29.1 (CH2), 25.2 (CH2), 22.5 (CH2), 

21.7 (CH2), 14.2 (CH).  

IR (ATR): 
~ = 2925, 2858, 2836, 1639, 1588, 1486, 1414, 1341, 1323, 1188, 1030, 919, 765, 728, 694, 

644, 564, 424 cm–1. 

MS (EI) m/z (relative intensity): 253 (100) [M+], 238 (22), 224 (38), 210 (59), 196 (27), 165 (10), 128 

(8), 115 (10), 77 (16). 

HR-MS (EI) m/z calculated for C17H19NO+: 253.1467; found: 253.1458. 
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Synthesis of 1,3-Dimethyl-5,6-diphenylpyridin-2(1H)-one (182aa) 

 

 

 

The general  procedure  G was followed using [RuCl2(p-cymene)]2 (15 mg, 0.025 mmol, 5.0 mol %), N-

methylmethacrylamide (181a) (111 mg, 1.12 mmol) and 1,2-diphenylethyne (88a) (89.0 mg, 

0.50 mmol). Purification by column chromatography (EtOAc) yielded 182aa (126 mg, 92%) as a white 

solid.  

 

M.p.: 135 °C 

1H-NMR (300 MHz, CDCl3): δ = 7.32 (d, J = 1.0 Hz, 1H), 7.30-7.23 (m, 3H), 7.12-7.03 (m, 5H), 6.95-6.88 

(m, 2H), 3.32 (s, 3H), 2.23 (d, J = 1.0 Hz, 3H).  

13C-NMR (75 MHz, CDCl3): δ = 163.1 (Cq), 144.0 (Cq), 139.0 (CH), 138.7 (Cq), 134.5 (Cq), 133.9 (CH), 

131.2 (CH), 130.0 (CH), 129.5 (CH), 128.6 (CH), 127.8 (Cq), 126.2 (CH), 119.9 (Cq), 34.7 (CH3), 17.3 

(CH3). 

IR (ATR): 
~ = 3057, 2921, 1646, 1597, 1490, 1416, 765, 699 cm-1. 

MS (EI) m/z (relative intensity): 274 (100) [M-H+], 246 (15), 118 (16), 77 (33), 43 (29). 

HR-MS (EI) m/z calculated for C19H16NO+: 274.1232, found 274.1238. 

 

Synthesis of 5,6-Diethyl-3-methyl-1-phenylpyridine-2(1H)-one (182ap) 

 

 

 

The general  procedure  G was followed using [RuCl2(p-cymene)]2 (16 mg, 0.026 mmol, 5.3 mol %),  

N-phenylmethacrylamide (181a) (162 mg, 1.00 mmol) and hex-3-yne (88p) (40.0 mg, 0.49 mmol). 

Purification by column chromatography (n-hexane/EtOAc 1:1) yielded 182ap (60 mg, 51%) as a 

brown solid.  

 

M.p.: 93 °C.  

1H-NMR (300 MHz, CDCl3): δ = 7.53-7.33 (m, 3H), 7.21-7.08 (m, 3H), 2.41 (q, J = 7.5 Hz, 2H), 2.29 (q,    

J = 7.5 Hz, 2H), 2.11 (d, J = 0.8 Hz, 3H), 1.18 (t, J = 7.5 Hz, 3H), 0.87 (t, J = 7.5 Hz, 3H).  
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13C-NMR (75 MHz, CDCl3): δ = 163.5 (Cq), 144.4 (Cq), 139.6 (Cq), 139.5 (CH), 129.3 (CH), 128.5 (CH), 

128.3 (CH), 127.1 (Cq), 117.7 (Cq), 23.9 (CH2), 22.9 (CH2), 16.9 (CH3), 15.5 (CH3), 13.8 (CH3).  

IR (ATR): 
~ = 2968, 2930, 1646, 1542, 1315, 773, 695 cm-1.  

MS (EI) m/z (relative intensity): 241 (100) [M+], 226 (96), 198 (83), 77 (47), 58 (21), 51 (24), 43 (93).  

HR-MS (EI) m/z calculated for C16H19NO+: 241.1467; found: 241.1461. 

 

Synthesis of 3-Methyl-1-phenyl-5,6-di-n-propylpyridin-2(1H)-one (182aq) 

 

 

 

The general  procedure  G was followed using [RuCl2(p-cymene)]2 (15 mg, 0.025 mmol, 4.9 mol %),  

N-phenylmethacrylamide (181a) (161 mg, 1.00 mmol) and oct-4-yne (88q) (54.0 mg, 0.49 mmol). 

Purification by column chromatography (n-hexane/EtOAc 1:1 to EtOAc) yielded 182aq (80 mg, 61%) 

as a grey solid.  

M.p.: 99 °C.  

1H-NMR (300 MHz, CDCl3): δ = 7.53-7.36 (m, 3H), 7.21-7.15 (m, 2H), 7.13 (s, 1H), 2.35 (dd, J = 8.8, 

6.8 Hz, 2H), 2.26-2.15 (m, 2H), 2.12 (d, J = 0.8 Hz, 3H), 1.66-1.48 (m, 2H), 1.39-1.23 (m, 2H), 0.98 (t, J = 

7.3 Hz, 3H), 0.66 (t, J = 7.3 Hz, 3H).  

13C-NMR (75 MHz, CDCl3): δ = 163.5 (Cq), 143.4 (Cq), 139.9 (CH), 139.6 (Cq), 129.2 (CH), 128.4 (CH), 

128.2 (CH), 126.8 (Cq), 116.5 (Cq), 33.0 (CH2), 31.8 (CH2), 24.1 (CH2), 22.6 (CH2), 16.9 (CH3), 14.0 (CH3), 

14.0 (CH3). 

IR (ATR): 
~ = 3295, 3053, 1646, 1605, 1541, 696 cm-1.  

MS (EI) m/z (relative intensity): 269 (47) [M+], 240 (100), 211 (25), 77 (32), 43 (20).  

HR-MS (EI) m/z calculated for C18H23NO+: 269.1780; found: 269.1782. 

 

Synthesis of 1,3,5-Trimethyl-6-phenylpyridin-2(1H)-one (182as) and 1,3,6-Trimethyl-5-phenyl-

pyridin-2(1H)-one (182as’)  

 

The general  procedure G was followed using [RuCl2(p-cymene)]2 (15 mg, 0.025 mmol, 5.0 mol %),   

N-methylmethacrylamide (181a) (101 mg, 1.02 mmol) and prop-1-yn-1-ylbenzene (88s) (62.4 mg, 

0.54 mmol). Purification by column chromatography (n-hexane/EtOAc 1:1) yielded 182as (45 mg, 

39%) and 182as’ (25 mg, 22%) as white solids.  
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(182as) 

M.p.: 104 °C.  

1H-NMR (300 MHz, CDCl3): δ = 7.55-7.37 (m, 3H), 7.22-7.06 (m, 3H), 3.22 (s, 3H), 2.19 (s, 3H), 1.76 (s, 

3H). 

13C-NMR (75 MHz, CDCl3): δ = 163.5 (Cq), 144.2 (Cq), 140.2 (CH), 135.8 (Cq), 129.6 (CH), 129.5 (CH), 

129.3 (CH), 128.2 (Cq), 113.5 (Cq), 35.0 (CH3), 18.3 (CH3), 17.8 (CH3). 

IR (ATR): ~ = 2975, 2944, 1643, 1591, 1555, 1254, 1017, 929, 764, 706, 500 cm-1.  

MS (EI) m/z (relative intensity): 212 (100) [M-H+], 197 (12), 184 (35), 77 (17).  

HR-MS (EI) m/z calculated for C14H15NO-H+: 212.1075; found: 212.1073. 

 

 

(182as’) 

M.r.: 77 - 79 °C.   

1H-NMR (300 MHz, CDCl3): δ = 7.45-7.28 (m, 3H), 7.28-7.12 (m, 3H), 3.64 (s, 3H), 2.28 (s, 3H), 2.17 (s, 

3H). 

13C-NMR (75 MHz, CDCl3): δ = 163.4 (Cq), 140.2 (Cq), 139.6 (Cq), 138.7 (CH), 129.6 (CH), 128.4 (CH), 

127.0 (CH), 125.5 (Cq), 119.7 (Cq), 31.9 (CH3), 18.2 (CH3), 17.2 (CH3). 

IR (ATR): ~ = 2917, 1639, 1593, 1549, 1416, 1286, 1152, 912, 779, 712, 512 cm-1.  

MS (EI) m/z (relative intensity): 212 (100) [M-H+], 184 (44), 128 (17), 77 (10), 56 (20).  

HR-MS (EI) m/z calculated for C14H15NO-H+: 212.1075; found: 212.1081. 

 

Synthesis of 5,6-Bis(4-methoxyphenyl)-3-methyl-1-phenylpyridin-2(1H)-one (182bb) 
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The general  procedure  G was followed using [RuCl2(p-cymene)]2 (15 mg, 0.025 mmol, 4.9 mol %),  

N-phenylmethacrylamide (181b) (161 mg, 1.00 mmol) and 1,2-bis(4-methoxyphenyl)-ethyne (88b) 

(121 mg, 0.51 mmol). Purification by column chromatography (n-hexane/EtOAc 1:1 to EtOAc) yielded 

182bb (75 mg, 37%) as a brown oil.  

 

1H-NMR (300 MHz, CDCl3): δ = 7.40 (s, 1H), 7.27-7.07 (m, 3H), 7.05-6.98 (m, 2H), 6.90 (d, J = 8.3 Hz, 

2H), 6.72 (d, J = 8.8 Hz, 2H), 6.66 (d, J = 8.8 Hz, 2H), 6.46 (d, J = 9.2 Hz, 2H), 3.71 (s, 3H), 3.62 (s, 3H), 

2.24 (s, 3H).  

13C-NMR (75 MHz, CDCl3): δ = 163.1 (Cq), 158.5 (Cq), 157.9 (Cq), 143.3 (Cq), 140.1 (CH), 139.6 (Cq), 

132.2 (CH), 131.2 (Cq), 130.6 (CH), 129.1 (CH), 128.7 (CH), 128.5 (Cq), 127.4 (CH), 126.7 (Cq), 119.5 

(Cq), 113.3 (CH), 112.9 (CH), 55.1 (CH3), 54.9 (CH3), 17.2 (CH3).  

IR (ATR): 
~ = 2933, 2836, 1649, 1609, 1454, 1288, 1027, 831 cm-1.  

MS (EI) m/z (relative intensity): 397 (100) [M+], 369 (25), 354 (27), 210 (18), 77 (39).  

HR-MS (EI) m/z calculated for C26H23NO3
+: 397.1678; found: 397.1671. 

 

Synthesis of 3-Methyl-1-phenyl-5,6-di-p-tolylpyridin-2(1H)-one (182bc) 

 

 

 

The general  procedure  G was followed using [RuCl2(p-cymene)]2 (15 mg, 0.025 mmol, 5.0 mol %),  

N-phenylmethacrylamide (181b) (164 mg, 1.02 mmol) and 1,2-di-p-tolylethyne (88c) (101 mg, 

0.49 mmol). Purification by column chromatography (n-hexane/EtOAc 1:1) yielded 182bc (174 mg, 

97%) as a white solid.  

 

M.p.: 168 °C.  

1H-NMR (300 MHz, CDCl3): δ = 7.44-7.39 (s, 1H), 7.22-7.08 (m, 3H), 7.04-6.98 (m, 2H), 6.96-6.84 (m, 

4H), 6.76-6.68 (m, 4H), 2.25 (s, 3H), 2.23 (s, 3H), 2.11 (s, 3H). 

 13C-NMR (75 MHz, CDCl3): δ = 163.0 (Cq), 143.7 (Cq), 140.2 (CH), 139.5 (Cq), 137.2 (Cq), 135.9 (Cq), 

135.8 (Cq), 131.3 (Cq), 130.8 (CH), 129.3 (CH), 129.1 (CH), 128.7 (Cq), 128.6 (CH), 128.4 (CH), 128.1 

(CH), 127.4 (CH), 119.6 (Cq), 21.1 (CH3), 21.0 (CH3), 17.2 (CH3).  

IR (ATR): 
~ = 3032, 2921, 1652, 1614, 1503, 1293, 818, 725 cm-1.  

MS (EI) m/z (relative intensity): 365 (100) [M+], 337 (29), 194 (19), 77 (37), 43 (23).  
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HR-MS (EI) m/z calculated for C26H23NO+: 365.1780; found: 365.1783. 

 

Synthesis of 5,6-Bis(4-fluorophenyl)-3-methyl-1-phenylpyridin-2(1H)-one (182bd) 

 

 

 

The general  procedure G was followed using [RuCl2(p-cymene)]2 (16 mg, 0.026 mmol, 5.0 mol %), N-

phenylmethacrylamide (181b) (160 mg, 0.99 mmol) and 1,2-bis(4-fluorophenyl)-ethyne (88d) 

(108 mg, 0.50 mmol). Purification by column chromatography (n-hexane/EtOAc 1:1 to EtOAc) yielded 

182bd (129 mg, 69%) as an off-white solid. 

 

M.p.: 188 °C.  

1H-NMR (300 MHz, CDCl3): δ = 7.41 (t, J = 3.8 Hz, 1H), 7.30-7.09 (m, 3H), 6.97 (m, 4H), 6.89-6.75 (m, 

4H), 6.75-6.59 (m, 2H), 2.27 (s, 3H).  

13C-NMR (75 MHz, CDCl3): δ = 162.9 (Cq), 161.8 (d, JC-F  = 248 Hz, Cq), 161.4 (d, JC-F  = 247 Hz, Cq), 142.7 

(Cq), 139.6 (CH), 139.2 (Cq), 134.4 (d, JC-F  = 3 Hz, Cq), 132.8 (d, JC-F  = 8 Hz, 2xCH), 131.1 (d, JC-F  = 8 Hz, 

2xCH), 130.2 (d, JC-F  = 4 Hz, Cq), 129.6 (Cq), 129.1 (CH), 128.7 (CH), 127.8 (CH), 119.0 (Cq), 115.1 (d, JC-F 

= 16 Hz, CH), 114.8 (d, JC-F  = 17 Hz, CH), 17.2 (CH3) .
  

19F-NMR (283 MHz, CDCl3): δ = -112.4 (m), -115.6 (m).  

IR (ATR): 
~ = 3056, 2920, 1647, 1596, 1544, 1489, 1207, 765 cm–1.  

MS (EI) m/z (relative intensity): 373 (88) [M+], 345 (32), 198 (23), 146 (23), 77 (100), 51 (29).  

HR-MS (EI) m/z calculated for C24H17F2NO+: 373.1278; found: 373.1279. 

 

Synthesis of the Mixture of 3-Methyl-1,6-diphenyl-5-propylpyridin-2(1H)-one (182bf’) and  3-

Methyl-1,5-diphenyl-6-propylpyridin-2(1H)-one (182bf)  

 

The general  procedure  G was followed using [RuCl2(p-cymene)]2 (16 mg, 0.026 mmol, 4.1 mol %), N-

phenylmethacrylamide (181b) (164 mg, 1.02 mmol) and pent-1-yn-1-ylbenzene (88f) (91.1 mg, 

0.63 mmol). Purification by column chromatography (n-hexane/EtOAc 1:1) yielded a mixture of 182bf 

and 182bf’ (48 mg, 25%) as a slightly brown oil (ratio by 1H-NMR 4.7:1.0).  
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       &   

           (182bf)                    (182bf’) 

 

1H-NMR (300 MHz, CDCl3): δ = 7.57-7.30 (m, 2H), 7.32-7.22 (m, 3H), 7.23-7.04 (m, 9H), 7.04-6.91 (m, 

6H), 2.23 (d, J = 1.0 Hz, 5H), 2.16 (d, J = 1.0 Hz, 1H), 2.13-2.02 (m, 4H), 1.51-1.35 (m, 4H), 1.27-1.10 

(m, 1H), 0.79 (t, J = 7.3 Hz, 4H), 0.43 (t, J = 7.3 Hz, 1H). 

13C-NMR (75 MHz, CDCl3): δ = 163.6 (Cq), 162.7 (Cq), 144.4 (Cq), 143.2 (Cq), 139.9 (CH), 139.6 (Cq), 

139.3 (CH), 139.1 (Cq), 134.2 (Cq), 130.1 (CH), 129.4 (CH), 129.2 (CH), 129.0 (CH), 128.9 (Cq), 128.5 

(CH), 128.4 (CH), 128.3 (CH), 127.7 (CH), 127.6 (CH), 127.3 (CH), 127.0 (CH), 126.6 (Cq), 119.5 (Cq), 

117.6 (Cq), 33.2 (CH2), 32.6 (CH2), 24.0 (CH2), 22.6 (CH2), 17.3 (CH2), 16.9 (CH2), 13.9 (CH3). 

NMR spectra for the mixture of regioisomers have been presented here (NMR-ratio is determined via 

comparison with comparable substituted pure products.) 

IR (ATR): ~ = 2961, 2928, 2871, 1710, 1652, 1609, 1546, 1361, 1220, 756, 695, 528 cm-1.  

MS (EI) m/z (relative intensity): 303 (66) [M+], 274 (100), 246 (19), 180 (17), 128 (12), 77 (45).  

HR-MS (ESI) m/z calculated for C21H21NO+H+: 304.1701; found: 304.1696. 

 

 

Synthesis of the Mixture of 6-(4-Methoxyphenyl)-3,5-dimethyl-1-phenylpyridin-2(1H)-one (182bh) 

and 5-(4-Methoxyphenyl)-3,6-dimethyl-1-phenylpyridin-2(1H)-one (182bh’)  

 

The general  procedure  G was followed using [RuCl2(p-cymene)]2 (15 mg, 0.025 mmol, 5.0 mol %),  

N-phenylmethacrylamide (181b) (162 mg, 1.00 mmol) and 1-methoxy-4-(prop-1-yn-1-yl)-benzene 

(88h) (72.7 mg, 0.50 mmol). Purification by column chromatography (n-hexane/EtOAc 1:1) yielded a 

mixture of 182bh and 182bh’ (64 mg, 42%), which could not be separated any further and has been 

isolated as slightly yellow oil (ratio by 1H-NMR = 1.0:5.5).  

  &  

     (182bh)                            (182bh’) 
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1H-NMR (300 MHz, CDCl3): δ = 7.57-7.39 (m, 2H), 7.28-7.15 (m, 8H), 7.12 (d, J = 7.2 Hz, 1H), 7.00-6.91 

(m, 3H), 6.88 (d, J = 8.7 Hz, 2H), 6.67 (d, J = 8.7 Hz, 3H), 3.84 (s, 1H), 3.71 (s, 5H), 2.21 (s, 5H), 2.17 (s, 

1H), 1.87 (s, 1H), 1.86 (s, 5H). 

13C-NMR (75 MHz, CDCl3): δ = 162.9 (Cq), 161.7 (Cq), 158.8 (Cq), 158.6 (Cq), 143.0 (Cq), 140.4 (CH), 

139.9 (CH), 139.9 (Cq), 139.9 (Cq), 139.8 (Cq), 131.5 (Cq), 131.2 (CH), 130.6 (CH), 129.6 (CH), 129.0 

(CH), 128.7 (Cq), 128.5 (CH), 128.4 (CH), 128.0 (CH), 127.4 (CH), 127.0 (Cq), 126.7 (Cq), 119.0 (Cq), 

113.8 (CH), 113.2 (CH), 113.1 (Cq), 55.3 (CH3), 55.0 (CH3), 19.2 (CH3), 17.8 (CH3), 17.1 (CH3), 16.8 (CH3). 

NMR spectra for the mixture of regioisomers have been presented here (NMR-ratio is determined via 

comparison with comparable substituted pure products.) 

IR (ATR): ~ = 2946, 2917, 2836, 1649, 1606, 1504, 1242, 1030, 841, 694 cm-1.  

MS (EI) m/z (relative intensity): 305 (100) [M+H+], 290 (23), 277 (32), 262 (38), 77 (30). 

HR-MS (EI) m/z calculated for C20H19NO2-H
+: 304.1338; found: 304.1337. 

 

Synthesis of the mixture of 3,5-Dimethyl-1-phenyl-6-propylpyridin-2(1H)-one (182bi) and 3,6-

Dimethyl-1-phenyl-5-propylpyridin-2(1H)-one (182bi’)  

 

The general  procedure  G was followed using [RuCl2(p-cymene)]2 (15 mg, 0.025 mmol, 3.7 mol %), N-

phenylmethacrylamide (181b) (159 mg, 0.99 mmol) and hex-2-yne (88i) (56.1 mg, 0.68 mmol). 

Purification by column chromatography (n-hexane/EtOAc 1:1) yielded a mixture of 182bi and 182bi’ 

(68 mg, 42%) as slightly yellow oil (ratio by 1H-NMR = 1.0:2.3).  

 

  &  

    (182bi)                      (182bi’) 

 

1H-NMR (300 MHz, CDCl3): δ = 7.46 (dtd, J = 15.0, 7.4, 1.7 Hz, 6H), 7.22-7.07 (m, 6H), 2.44-2.31 (m, 

2H), 2.25-2.15 (m, 2H), 2.15-2.05 (m, 9H), 1.87 (s, 3H), 1.62-1.45 (m, 2H), 1.41-1.23 (m, 2H), 0.96 (t, J 

= 7.3 Hz, 3H), 0.69 (t, J = 7.3 Hz, 3H). 

13C-NMR (75 MHz, CDCl3): δ = 165.7 (Cq), 163.5 (Cq), 143.6 (Cq), 141.0 (CH), 140.1 (CH), 140.1 (Cq), 

139.5 (Cq), 139.1 (Cq), 130.8 (CH), 129.5 (CH), 129.2 (CH), 128.4 (CH), 128.3 (CH), 128.2 (CH), 128.0 

(Cq), 126.6 (Cq), 116.8 (Cq), 111.6 (Cq), 33.8 (CH2), 32.3 (CH2), 23.7 (CH2), 21.6 (CH2), 17.3 (CH3), 17.1 

(CH3), 16.8 (CH3), 16.8 (CH3), 14.0 (CH3), 13.8 (CH3). 

NMR spectra for the mixture of regioisomers have been presented here (NMR-ratio is determined via 

comparison with comparable substituted pure products.) 
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IR (ATR): ~ = 2960, 2929, 2870, 1647, 1602, 1547, 1487, 1293, 1072, 758, 695 cm-1.  

MS (EI) m/z (relative intensity): 241 (44), 212 (100), 184 (27), 118 (16), 77 (38), 43 (23). 

HR-MS (EI) m/z calculated for C16H19NO+: 241.1467; found: 241.1464. 

 

Synthesis of the Mixture of 6-(Cyclohex-1-en-1-yl)-3,5-dimethyl-1-phenylpyridin-2(1H)-one (182bl) 

and 5-(Cyclohex-1-en-1-yl)-3,6-dimethyl-1-phenylpyridin-2(1H)-one (182bl’)  

 

The general  procedure  G was followed using [RuCl2(p-cymene)]2 (17 mg, 0.026 mmol, 3.7 mol %), N-

phenylmethacrylamide (181b) (161 mg, 1.00 mmol) and 1-(prop-1-yn-1-yl)-cyclohex-1-ene (88l) 

(84.1 mg, 0.70 mmol). Purification by column chromatography (n-hexane/EtOAc 1:1 to 100% EtOAc) 

yielded a mixture of 182bl and 182bl’ (73 mg, 40%) which could not be further purified and was 

isolated as slightly yellow solid (ratio by 1H-NMR = 1.0:7.4).  

 

    &  

      (182bl)                     (182bl’) 

 

1H-NMR (300 MHz, CDCl3): δ = 7.40-7.30 (m, 3H), 7.22-7.13 (m, 2H), 7.10-7.00 (m, 1H), 5.56-5.51 (m, 

1H), 2.14 (s, 3H), 2.00 (s, 3H), 1.87-1.67 (m, 1H), 1.66-1.51 (m, 1H), 1.49-1.32 (m, 2H), 1.28-1.12 (m, 

2H), 1.11-0.97 (m, 2H). 

13C-NMR (75 MHz, CDCl3): δ = 163.0 (Cq), 145.4 (Cq), 140.7 (CH), 139.6 (Cq), 132.5 (CH), 132.3 (Cq), 

130.1 (CH), 128.4 (CH), 128.3 (CH), 128.3 (CH), 127.7 (CH), 121.6 (Cq), 111.1 (Cq), 28.7 (CH2), 24.9 

(CH2), 22.1 (CH2), 21.4 (CH2), 17.2 (CH3), 17.0 (CH3). 

NMR spectra for the mixture of regioisomers have been presented here (NMR-ratio is determined via 

comparison with comparable substituted pure products.) 

IR (ATR): ~ = 2935, 2916, 2850, 2648, 1610, 1546, 1287, 908, 764, 692, 462 cm-1.  

MS (EI) m/z (relative intensity): 279 (100) [M+], 250 (53), 208 (17), 77 (45), 43 (29). 

HR-MS (EI) m/z calculated for C19H21NO-H+: 278.1545; found: 278.1549.  
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Synthesis of 5,6-Bis(3,5-di-tert-butylphenyl)-3-methyl-1-phenylpyridin-2(1H)-one (182bm) 

 

 

 

The general  procedure  G was followed using [RuCl2(p-cymene)]2 (16 mg, 0.026 mmol, 5.1 mol %), N-

phenylmethacrylamide (181b) (164 mg, 1.02 mmol) and 1,2-bis(3,5-di-tert-butyl-phenyl)ethyne 

(88m) (201 mg, 0.50 mmol). Purification by column chroma-tography (n-hexane/ t Ac: 5/1 → 2/1) 

yielded 182bm (173 mg, 62%) as an ivory solid.  

 

M.p.: 215 °C.  

1H-NMR (300 MHz, CDCl3): δ = 7.51 (d, J = 1.1 Hz, 1H), 7.21-7.05 (m, 4H), 7.05-6.99 (m, 2H), 6.90 (dd,  

J = 1.8, 1.8 Hz, 1H), 6.81 (d, J = 1.8 Hz, 2H), 6.56 (d, J = 1.8 Hz, 2H), 2.28 (d, J = 1.0 Hz, 3H), 1.11 (s, 

18H), 0.94 (s, 18H).  

13C-NMR (75 MHz, CDCl3): δ = 163.1 (Cq), 150.2 (Cq), 149.7 (Cq), 145.1 (Cq), 139.9 (CH), 139.7 (Cq), 

138.2 (Cq), 133.4 (Cq), 129.1 (CH), 128.4 (CH), 128.4 (Cq), 127.2 (CH), 125.9 (CH), 124.1 (CH), 120.7 

(Cq), 120.5 (CH), 119.8 (CH), 34.6 (Cq), 34.4 (Cq), 31.4 (CH3), 31.1 (CH3), 17.2 (CH3).  

IR (ATR): 
~ = 2962, 1655, 1594, 1538, 1362, 875, 719, 699 cm-1.  

MS (EI) m/z (relative intensity): 546 (80) [M-Me+], 504 (92), 474 (85), 276 (75), 57 (100).  

HR-MS (EI) m/z calculated for C40H51NO+Na+:  584.3868; found: 584.3863. 

 

Synthesis of 3-Methyl-1-phenyl-5,6-bis{4-(trifluoromethyl)phenyl}pyridin-2(1H)-one (182bn) 

 

 

 

The general  procedure  G was followed using [RuCl2(p-cymene)]2 (15 mg, 0.025 mmol, 4.8 mol %),  

N-phenylmethacrylamide (181b) (164 mg, 1.02 mmol) and 1,2-bis(4-trifluoromethylphenyl)ethyne 

(88n) (162 mg, 0.52 mmol). Purification by column chroma-tography (n-hexane/EtOAc 1:1) yielded 

188bn (175 mg, 71%) as an off-white solid.  
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M.p.: 158 °C. 

1H-NMR (300 MHz, CDCl3): δ = 7.41 (d, J = 1.1 Hz, 2H), 7.38 (s, 1H), 7.28-7.12 (m, 5H), 7.09 (d, J = 

8.7 Hz, 2H), 7.04-6.94 (m, 4H), 2.27 (s, 3H).  

13C-NMR (75 MHz, CDCl3): δ = 162.7 (Cq), 142.5 (Cq), 141.8 (Cq), 139.1 (CH), 138.7 (Cq), 137.4 (Cq), 

131.3 (CH), 130.5 (Cq), 130.1 (d, JC-F = 31 Hz, CH), 130.0 (CH), 129.8 (CH), 129.0 (d, JC-F = 31 Hz, CH), 

129.0 (CH), 128.8 (CH), 125.1 (d, JC–F = 10 Hz, CH), 124.8 (q, JC-F = 57 Hz, Cq), 124.7 (d, JC-F = 11 Hz, CH), 

122.6 (d, JC-F = 58 Hz, Cq), 118.6 (Cq), 17.2 (CH3).  

19F-NMR (283 MHz, CDCl3): δ = -62.6 (s), -63.0 (s).  

IR (ATR): 
~ = 2922, 1652, 1545, 1321, 1082, 1061, 846 cm-1.  

MS (EI) m/z (relative intensity): 473 (100) [M+], 445 (20), 77 (60), 43 (55).  

HR-MS (EI) m/z calculated for C26H17F6NO+: 473.1214; found: 473.1217. 

 

Synthesis of 5,6-Bis-(4-chlorophenyl)-3-methyl-1-phenylpyridin-2(1H)-one (182bo) 

 

 

 

The general  procedure  G was followed using [RuCl2(p-cymene)]2 (15 mg, 0.025 mmol, 5.0 mol %), N-

phenylmethacrylamide (181b) (164 mg, 1.02 mmol) and 1,2-bis(4-chlorophenyl)ethyne  (88o) 

(124 mg, 0.50 mmol). Purification by column chromatography (n-hexane/EtOAc 1:1) yielded 182bo 

(121 mg, 59%) as a white solid.  

 

M.p.: 193 °C. 

1H-NMR (300 MHz, CDCl3): δ = 7.37 (d, J = 1.1 Hz, 1H), 7.27-7.07 (m, 5H), 7.03-6.85 (m, 6H), 6.75 (d, J 

= 9.1 Hz, 2H), 2.24 (d, J = 1.1 Hz, 3H).  

13C-NMR (75 MHz, CDCl3): δ = 162.8 (Cq), 142.5 (Cq), 139.4 (CH), 138.9 (Cq), 136.7 (Cq), 133.9 (Cq), 

132.6 (Cq), 132.4 (Cq), 132.2 (CH), 130.8 (CH), 129.8 (Cq), 129.0 (CH), 128.8 (CH), 128.3 (CH), 128.0 

(CH), 127.9 (CH), 118.7 (Cq), 17.2 (CH3).  

IR (ATR): 
~ = 3077, 2915, 1645, 1487, 1124, 694 cm-1.  

MS (EI) m/z (relative intensity): 405 (62) [M+], 377 (20), 214 (16), 127 (16), 77 (100), 51 (28).  

HR-MS (EI) m/z calculated for C24H17Cl2NO+: 405.0687; found: 405.0690.  

The spectral data were in accordance with those reported in the literature.  
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Synthesis of 5-Ethyl-6-(2-methoxyethyl)-3-methyl-1-phenylpyridin-2(1H)-one (182bu’) and 6-Ethyl-

5-(2-methoxyethyl)-3-methyl-1-phenylpyridin-2(1H)-one (182bu)  

 

The general  procedure  G was followed using [RuCl2(p-cymene)]2 (16 mg, 0.026 mmol, 4.3 mol %),  

N-phenylmethacrylamide (181b) (159 mg, 0.99 mmol) and 1-methoxyhex-3-yne (88u) (67.0 mg, 

0.60 mmol). Purification by column chromatography (n-hexane/EtOAc 1:1) yielded 182bu (42 mg, 

26%) as yellow oil and 182bu’ (43 mg, 27%) as white solid.  

 

 

 

(182bu) 

1H-NMR (300 MHz, CDCl3): δ = 7.55-7.34 (m, 3H), 7.24-7.09 (m, 3H), 3.58-3.47 (m, 2H), 3.37 (s, 3H), 

2.67 (t, J = 7.1 Hz, 2H), 2.33 (q, J = 7.5 Hz, 2H), 2.11 (s, 3H), 0.90 (t, J = 7.5 Hz, 3H). 

13C-NMR (75 MHz, CDCl3): δ = 163.7 (Cq), 145.9 (Cq), 140.1 (CH), 139.6 (Cq), 129.5 (CH), 128.6 (CH), 

128.5 (CH), 127.2 (Cq), 112.7 (Cq), 73.0 (CH2), 59.0 (CH3), 31.3 (CH2), 23.2 (CH2), 17.0 (CH3), 13.8 (CH3). 

IR (ATR): ~ = 2965, 2922, 2876, 2808, 1649, 1605, 1550, 1382, 1195, 1115, 964, 924, 758, 699 cm-1.  

MS (EI) m/z (relative intensity): 271 (69) [M+], 256 (100), 240 (16), 226 (73), 198 (36), 77 (50).  

HR-MS (EI) m/z calculated for C17H21NO2
+: 271.1572; found: 271.1577. 

 

 

 

(182bu’) 

M.r.: 107 °C. 

1H-NMR (300 MHz, CDCl3): δ = 7.56-7.35 (m, 3H), 7.22-7.12 (m, 3H), 3.25 (t, J = 7.4 Hz, 2H), 3.11 (s, 

3H), 2.61 (t, J = 7.9 Hz, 2H), 2.46 (q, J = 7.5 Hz, 2H), 2.13 (s, 3H), 1.18 (t, J = 7.5 Hz, 3H). 

13C-NMR (75 MHz, CDCl3): δ = 163.7 (Cq), 139.6 (Cq), 139.5 (CH), 138.8 (Cq), 129.6 (CH), 128.7 (CH), 

128.7 (CH), 128.2 (Cq), 119.6 (Cq), 70.8 (CH2), 58.5 (CH3), 30.1 (CH2), 24.3 (CH2), 17.1 (CH3), 15.5 (CH3). 

IR (ATR): ~ = 3450, 2977, 2927, 2876, 1710, 1651, 1609, 1544, 1363, 1111, 759, 699 cm-1.  

MS (EI) m/z (relative intensity): 271 (40) [M+], 226 (100), 211 (14), 132 (19), 77 (27), 45 (37).  
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HR-MS (EI) m/z calculated for C17H21NO2
+: 271.1572; found: 271.1573. 

 

Synthesis of 5-Benzoyl-6-butyl-3-methyl-1-phenylpyridin-2(1H)-one (182bw)  

 

 

 

The general  procedure  G was followed using [RuCl2(p-cymene)]2 (15 mg, 0.025 mmol, 4.9 mol %),  

N-phenylmethacrylamide (181b) (163 mg, 1.01 mmol) and 1-phenylhept-2-yn-1-one (88w) (95 mg, 

0.51 mmol). Purification by column chromatography (n-hexane/EtOAc 2:1) yielded 182bw (27 mg, 

15%) as slightly brown oil.  

 

1H-NMR (300 MHz, CDCl3): δ = 7.82-7.73 (m, 2H), 7.65-7.41 (m, 5H), 7.32-7.19 (m, 4H), 2.59-2.39 (m, 

2H), 2.09 (s, 3H), 1.45-1.27 (m, 2H), 0.98 (h, J = 7.3 Hz, 2H), 0.56 (t, J = 7.3 Hz, 3H). 

13C-NMR (75 MHz, CDCl3): δ = 195.4 (Cq), 163.9 (Cq), 152.9 (Cq), 138.5 (Cq), 138.4 (Cq), 137.9 (CH), 

133.0 (CH), 129.9 (CH), 129.7 (CH), 129.1 (CH), 128.7 (CH), 128.5 (CH), 125.7 (Cq), 116.5 (Cq), 31.9 

(CH2), 30.5 (CH2), 22.6 (CH2), 17.0 (CH3), 13.3 (CH3). 

IR (ATR): ~ = 3496, 2959, 2929, 2874, 1708, 1638, 1360, 1220, 910, 759, 697, 529 cm-1.  

MS (EI) m/z (relative intensity): 345 (47) [M+], 302 (64), 274 (23), 105 (100), 77 (77), 51 (17), 43 (62).  

HR-MS (EI) m/z calculated for C23H23NO2
+: 345.1729; found: 345.1725. 

 

 

 

Synthesis of 1-Isopropyl-3-methyl-5,6-diphenylpyridin-2(1H)-one (182ca) 
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The general  procedure  G was followed using [RuCl2(p-cymene)]2 (15 mg, 0.025 mmol, 5.0 mol %), N-

isopropylmethacrylamide (181c) (124 mg, 0.98 mmol) and 1,2-diphenylethyne (88a) (89.0 mg, 

0.50 mmol). Purification by column chromatography (n-hexane/EtOAc: 1:1 to EtOAc) yielded 182ca 

(105 mg, 69%) as a yellow solid.  

 

M.p.: 171 °C. 

1H-NMR (300 MHz, CDCl3): δ = 7.32-7.22 (m, 4H), 7.15-7.01 (m, 5H), 6.96-6.86 (m, 2H), 4.22-4.06 (m, 

1H), 2.20 (d, J = 0.6 Hz, 3H), 1.54 (d, J = 6.8 Hz, 6H). 

13C-NMR (75 MHz, CDCl3): δ = 163.3 (Cq), 144.2 (Cq), 139.2 (Cq), 138.5 (CH), 135.2 (Cq), 129.8 (CH), 

129.5 (CH), 129.4 (Cq), 128.4 (CH), 128.2 (CH), 127.6 (CH), 126.0 (CH), 120.1 (Cq), 53.9 (CH3), 19.3 (CH), 

17.0 (CH3). 

IR (ATR): 
~ = 2968, 1640, 1608, 1490, 1372, 763, 704 cm–1. 

MS (EI) m/z (relative intensity): 302 (31) [M-H+], 261 (100), 215 (20), 43 (17). 

HR-MS (EI) m/z calculated for C21H21NO-H+: 302.1545; found: 302.1553. 

 

Synthesis of 3-Methyl-1-(4-nitrophenyl)-5,6-dipropylpyridin-2(1H)-one (182dq) 

 

 

 

The general  procedure  G was followed using [RuCl2(p-cymene)]2 (10 mg, 0.016 mmol, 4.9 mol %),  

N-(4-nitrophenyl)-methacrylamide (181d) (135 mg, 0.65 mmol) and oct-4-yne (88q) (35.0 mg, 

0.32 mmol). Purification by column chromatography (n-hexane/EtOAc 1:1) yielded 182dq (92 mg, 

91%) as a yellow solid.  

 

M.p.: 105 °C.  

1H-NMR (300 MHz, CDCl3): δ = 8.35 (d, J = 9.0 Hz, 2H), 7.38 (d, J = 9.0 Hz, 2H), 7.15 (d, J = 1.1 Hz, 1H), 

2.41-2.26 (m, 2H), 2.23-2.14 (m, 2H), 2.10 (d, J = 1.0 Hz, 3H), 1.64-1.48 (m, 2H), 1.36-1.20 (m, 2H), 

0.98 (t, J = 7.3 Hz, 3H), 0.68 (t, J = 7.3 Hz, 3H).  

13C-NMR (75 MHz, CDCl3): δ = 163.2 (Cq), 147.5 (Cq), 145.5 (Cq), 142.2 (Cq), 140.6 (CH), 130.1 (CH), 

127.3 (Cq), 124.7 (CH), 117.4 (Cq), 32.9 (CH2), 31.7 (CH2), 24.1 (CH2), 22.6 (CH2), 16.8 (CH3), 14.0 (CH3), 

14.0 (CH3).  

IR (ATR): 
~ = 3057, 2921, 1646, 1597, 1490, 1416, 765, 699 cm-1.  

MS (EI) m/z (relative intensity): 314 (48) [M+], 285 (100), 239 (16), 210 (20), 43 (18).  
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HR-MS (EI) m/z calculated for C18H22N2O3
+: 314.1630; found: 314.1641. 

 

Synthesis of Ethyl 4-[3-Methyl-2-oxo-5,6-di-n-propylpyridin–1(2H)-yl]benzoate (182eq) 

 

 

 

The general  procedure  G was followed using [RuCl2(p-cymene)]2 (15 mg, 0.025 mmol, 5.0 mol %),  

ethyl 4-methacrylamidobenzoate (181e) (239 mg, 1.02 mmol) and oct-4-yne (88q) (55.0 mg, 

0.50 mmol). Purification by column chromatography (n-hexane/EtOAc 1:1) yielded 182eq (133 mg, 

78%) as a yellow solid.  

 

M.p.: 88 °C.  

1H-NMR (300 MHz, CDCl3): δ = 8.15 (d, J = 8.5 Hz, 2H), 7.25 (d, J = 8.5 Hz, 2H), 7.12 (d, J = 1.1 Hz, 1H), 

4.39 (q, J = 7.1 Hz, 2H), 2.38-2.26 (m, 2H), 2.23-2.12 (m, 2H), 2.09 (d, J = 1.0 Hz, 3H), 1.63-1.44 (m, 

2H), 1.39 (t, J = 7.1 Hz, 3H), 1.34-1.17 (m, 2H), 0.96 (t, J = 7.3 Hz, 3H), 0.66 (t, J = 7.2 Hz, 3H).  

13C-NMR (75 MHz, CDCl3): δ = 165.8 (Cq), 163.3 (Cq), 143.8 (Cq), 142.8 (Cq), 140.2 (CH), 130.6 (CH), 

130.5 (Cq), 128.8 (CH), 127.0 (Cq), 116.9 (Cq), 61.2 (CH2), 32.9 (CH2), 31.7 (CH2), 24.1 (CH2), 22.7 (CH2), 

16.8 (CH3), 14.3 (CH3), 14.0 (CH3), 14.0 (CH3).  

IR (ATR): 
~ = 2959, 2870, 1713, 1649, 1543, 1269, 1100, 768 cm-1.  

MS (EI): m/z (relative intensity) 341 (40) [M+], 312 (100), 285 (28), 210 (15).  

HR-MS (EI) m/z calculated for C21H27NO3
+: 341.1991, found 341.1993. 

 

Synthesis of 1,3,4-Trimethyl-5,6-diphenylpyridin-2(1H)-one (182ia) and (2Z,4E)-N,2,3-Trimethyl-4,5-

diphenyl-penta-2,4-dienamide (182ia’)  

 

 

 

The general  procedure  G was followed using (E)-N,2-dimethylbut-2-enamide (181i) (125 mg, 

1.11 mmol), 1,2-diphenylethyne (88a) (89.0 mg, 0.50 mmol), [RuCl2(p-cymene)]2 (16 mg, 0.026 mmol, 

5.0 mol %) and Cu(OAc)2
.H2O (200 mg, 1.00 mmol, 2.0 equiv) in t-AmOH (2.0 mL). Purification by 
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column chromatography (n-hexane/EtOAc 4:1) yielded 182ia (82 mg, 57%) as a bright brown solid 

and 182ia’ (23 mg, 16%) as a colorless oil. 

 

 

 

1,3,4-Trimethyl-5,6-diphenylpyridin-2(1H)-one (182ia)  

M.p.: 167 °C.  

1H-NMR (300 MHz, CDCl3): δ = 7.21-7.01 (m, 6H), 7.01-6.94 (m, 2H), 6.93-6.84 (m, 2H), 3.25 (s, 3H), 

2.22 (s, 3H), 1.88 (s, 3H).  

13C-NMR (75 MHz, CDCl3): δ = 162.6 (Cq), 145.0 (Cq), 143.3 (Cq), 138.0 (Cq), 134.9 (Cq), 130.9 (CH), 

129.5 (CH), 128.1 (CH), 127.9 (CH), 127.7 (CH), 126.5 (CH), 124.7 (Cq), 122.1 (Cq), 34.7 (CH3), 18.2 

(CH3), 13.4 (CH3).  

IR (ATR): 
~ = 3305, 3052, 2943, 1634, 1582, 1441, 763, 703 cm-1.  

MS (EI) m/z (relative intensity): 288 [M-H+] (100), 260 (18), 115 (12), 77 (24), 43 (44).  

HR-MS (EI) m/z calculated for C20H19NO-H+: 288.1388; found: 288.1398. 

 

 

 

(2Z,4E)-N,2,3-Trimethyl-4,5-diphenyl-penta-2,4-dienamide (182ia’)  

1H-NMR (300 MHz, CDCl3): δ = 7.28-7.20 (m, 3H), 7.17-7.05 (m, 5H), 7.01-6.93 (m, 2H), 6.61 (s, 1H), 

5.64 (br s, 1H), 2.66 (d, J = 4.9 Hz, 3H), 1.98 (d, J = 1.0 Hz, 3H), 1.71 (d, J = 1.0 Hz, 3H) .          

13C-NMR (75 MHz, CDCl3): δ = 172.7 (Cq), 143.0 (Cq), 139.0 (Cq), 138.2 (Cq), 137.0 (Cq), 132.0 (Cq), 130.0 

(CH), 129.4 (CH), 128.7 (CH), 128.1 (CH), 128.0 (CH), 127.6 (CH), 126.9 (CH), 26.4 (CH3), 18.4 (CH3), 

16.8 (CH3).  

IR (ATR): 
~ = 3307, 2960, 1655, 1448, 1247, 756, 698 cm-1.  

MS (EI): m/z (relative intensity) 291 [M+] (100), 233 (84), 214 (96), 202 (44), 91 (33), 77 (50).  

HR-MS (EI) m/z calculated for C20H21NO+: 291.1623; found: 291.1620. 
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Synthesis of 3-Methyl-5,6-diphenyl-2H-pyran-2-one (184a)  

 

 

 

The general  procedure  G was followed using [RuCl2(p-cymene)]2 (15 mg, 0.025 mmol, 5.0 mol %), 

methacrylic acid (183a) (148 mg, 1.72 mmol, 3.44 equiv) and 1,2-diphenylethyne (88a) (89.5 mg, 

0.50 mmol). Purification by column chromatography (n-hexane/EtOAc 3:1) yielded 184a (63 mg, 48%) 

as slightly yellow oil.  

 

1H-NMR (300 MHz, CDCl3): δ = 7.34 (t, J = 1.6 Hz, 1H), 7.32-7.27 (m, 4H), 7.25 (ddd, J = 5.0, 2.1, 

1.0 Hz, 2H), 7.24-7.19 (m, 2H), 7.18-7.14 (m, 2H), 2.18 (d, J = 1.3 Hz, 3H).  

13C-NMR (75 MHz, CDCl3): δ = 163.1 (Cq), 155.4 (Cq), 144.0 (CH), 136.6 (Cq), 132.2 (Cq), 129.5 (CH), 

129.2 (CH), 129.1 (CH), 128.9 (CH), 128.1 (CH), 127.7 (CH), 123.7 (Cq), 128.0 (Cq), 16.5 (CH3).  

IR (ATR): ~ = 1708, 1550, 1488, 1443, 1173, 1050, 949, 764, 693, 574 cm-1.  

MS (EI) m/z (relative intensity): 262 (100) [M+], 234 (87), 191 (46), 129 (37), 105 (82), 77 (98), 51 (30).  

HR-MS (EI) m/z calculated for C18H14O2
+: 262.0994; found: 262.1000.  

The The analytical data were in accordance with those reported in the literature.213 

 

Intermolecular Competition Experiment between Alkynes 88a and 88p 

 

 

 

A mixture of N-methylbenzamide (86a) (69.9 mg, 0.52 mmol), 88a (180 mg, 1.01 mmol), 88p 

(77.0 mg, 0.94 mmol), [RuCl2(p-cymene)]2 (16.0 mg, 0.026 mmol, 5.0 mol %) and Cu(OAc)∙H2O 

(202 mg, 1.01 mmol) in t-AmOH (4.0 mL) was stirred at 100 °C for 22 h. At ambient temperature, the 

reaction mixture was diluted with aq. NH4Cl (75 mL) and extracted with EtOAc (3 x 75 mL). After 

filtration and evaporation of the solvents in vacuo, the crude product was purified by column 

chromatography on silica gel (n-hexane/EtOAc 3:1) to yield 180ap (79 mg, 49%) as a colorless solid. 

                                                           
213

 Mochida, S.; Hirano, K.; Satoh, T.; Miura, M. J. Org. Chem. 2009, 74, 6295–6298. 
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(180ap)  

M.r.: 246 - 247 °C.  

1H-NMR (300 MHz, CDCl3): δ = 8.57 (d, J = 4.8 Hz, 1H), 7.52 (m, 2H), 7.28-7.05 (m, 11H), 3.36 (s, 3H). 

13C-NMR (75 MHz, CDCl3): δ = 162.7 (Cq), 141.2 (Cq), 137.2 (Cq), 136.5 (Cq), 135.1 (Cq), 132.0 (CH), 

131.5 (CH), 129.9 (CH), 128.2 (CH), 128.2 (CH), 127.9 (CH), 127.8 (CH), 126.8 (CH), 126.6 (CH), 125.3 

(CH), 124.9 (Cq), 118.8 (Cq), 34.3 (CH3).  

IR (ATR): 
~ = 1646, 1604, 1552, 1489, 1414, 1176, 1074, 1025, 924, 781 cm–1.  

MS (EI) m/z (relative intensity): 311 (100) [M+], 165 (7), 77 (8).  

HR-MS (EI) m/z calculated for C22H17NO+: 311.1310; found: 311.1311.  

The The analytical data are in accordance with those reported in the literature.212 

 

Intermolecular Competition Experiment between Alkynes 88a and 88q 

 

 

 

A mixture of N-phenylmethacrylamide (181b) (81 mg, 0.50 mmol), 88a (179 mg, 1.00 mmol), 88q 

(114 mg, 1.01 mmol), [RuCl2(p-cymene)]2 (15.3 mg, 5.0 mol%) and Cu(OAc)2∙H2O (100 mg, 0.50 mmol) 

in t-AmOH (4.0 mL) was stirred at 120 °C for 20 h. At ambient temperature, the reaction mixture was 

diluted with aq. NH4Cl (75 mL) and extracted with EtOAc (3 x 75 mL). After filtration and evaporation 

of the solvents in vacuo, the crude product was purified by column chromatography on silica gel (n-

hexane/EtOAc 3:1 to EtOAc) to yield 182ba (67 mg, 40%) and 182bg (29 mg, 22%) as white solids.  

 

Intermolecular Competition Experiment between Alkynes 88c and 88d 
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A mixture of N-phenylmethacrylamide (181b) (85.0 mg, 0.53 mmol), 88c (214 mg, 1.00 mmol), 88d 

(208 mg, 1.01 mmol), [RuCl2(p-cymene)]2 (15.3 mg, 5.0 mol%) and Cu(OAc)2∙H2O (100 mg, 0.50 mmol) 

in t-AmOH (4.0 mL) was stirred at 120 °C for 20 h. At ambient temperature, the reaction mixture was 

diluted with aq. NH4Cl (75 mL) and extracted with EtOAc (3 x 75 mL). After filtration and evaporation 

of the solvents in vacuo, the crude product was purified by column chromatography on silica gel (n-

hexane/EtOAc 1:1) to yield 182bd (59 mg, 30%) and 182bc (79 mg, 41%) as white solids. 
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7.5 Crystallographic Details  

 

Preparation of 2-Arylpyridinium Oxalates (129) and (149).  

 

To a stirred solution of (2-n-octylphenyl)pyridine (93aa) or 2-[3-(octan-2-yl)phenyl]pyridine (147aa)       

(1 equiv), in a mixture of DCM and one drop of MeOH, a solution of anhydrous oxalic acid (1 equiv) in 

DCM was added in one portion at ambient temperature. After an additional stirring for 10 min, the 

reaction mixture was concentrated under reduced pressure. The residue was dissolved with DCM/n-

octane mixture and filtered. Slow evaporation of this solution at ambient  temperature afforded 

crystals suitable for X-ray diffractometry. 

 

2-(2-n-Octylphenyl)pyridinium Oxalate (129)  

 

 

 

M.r.: 82 - 84 °C. 

1H-NMR (300 MHz, CDCl3): δ = 11.10 (s, 1H), 9.00 (s, 1H), 8.29 (t, J = 7.5 Hz, 1H), 7.74 (d, J = 7.9 Hz, 

1H), 7.56-7.42 (m, 1H), 7.36 (dd, J = 9.9, 7.4 Hz, 3H), 2.71-2.50 (m, 2H), 1.57-1.35 (m, 2H), 1.21 (d, J = 

27.7 Hz, 12H), 0.85 (t, J = 6.1 Hz, 3H). 

13C-NMR (126 MHz, CDCl3): δ = 162.3 (Cq), 158.1 (Cq), 146.3 (CH), 141.2 (Cq), 140.1 (CH), 130.2 (Cq), 

130.1 (CH), 130.1 (CH), 130.1 (CH), 126.3 (CH), 126.2 (CH), 123.2 (CH), 33.0 (CH2), 31.9 (CH2), 31.2 

(CH2), 29.4 (CH2), 29.3 (CH2), 29.2 (CH2), 22.7 (CH2), 14.1 (CH3). 

HR-MS (ESI) m/z calculated for C21H27NO4-C2O4H
+: 268.2065; found: 268.2060. 

 

2-[3-(Octan-2-yl)phenyl]pyridinium Oxalate (149)  

 

 

 

M.r.: 84 - 85 °C. 



 Experimental Procedures and Analytical Data 251 

1H-NMR (300 MHz, CDCl3): δ = 8.89 (s, 1H), 8.14 (dd, J = 7.8, 7.8 Hz, 1H), 7.93 (d, J = 8.0 Hz, 1H), 7.85-

7.71 (m, 2H), 7.63-7.51 (m, 1H), 7.48 (dd, J = 7.6, 7.6 Hz, 1H), 7.37 (d, J = 7.6 Hz, 1H), 2.79 (qt, J = 7.1, 

7.0 Hz, 1H), 1.73-1.50 (m, 2H), 1.42-1.11 (m, 8H), 1.26 (d, J = 7.0 Hz, 3H), 0.85 (t, J = 5.9 Hz, 3H). 

13C-NMR (126 MHz, CDCl3): δ = 162.7 (Cq), 156.2 (Cq), 150.0 (Cq), 145.9 (CH), 142.0 (CH), 130.5 (CH), 

129.9 (CH), 127.0 (CH), 125.8 (CH), 123.6 (CH), 123.7 (CH), 40.4 (CH), 38.7 (CH2), 32.1 (CH2), 28.0 

(CH2), 23.0 (CH2), 22.6 (CH2), 22.5 (CH3), 14.4 (CH3). 

MS (EI) m/z (relative intensity): 267 (22) [M-Oxalat+], 196 (20), 182 (100), 167 (52), 43 (13).  

HR-MS (EI) m/z calculated for C21H27NO4-C2H2O4
+: 267.1987; found: 267.1996. 

 

 

Preparation of 2-Arylpyridinium Chlorides (149) and ((R)-167).  

 

To a stirred solution of 2-[4-methoxy-3-(octan-2-yl)-phenyl]pyridine (147ba) or enantiomerically pure 

(R)-2-[3-(hexan-2-yl)-4-methoxyphenyl]pyridine [(R)-147bj], in a mixture of DCM and one drop of 

MeOH, a concentrated aqueous solution of HCl (1 equiv) was added in one portion at ambient 

temperature. After an additional stirring for 10 min, the reaction mixture was concentrated under 

reduced pressure. The residue was dissolved with DCM/n-octane mixture and filtered. Slow 

evaporation of this solution at ambient temperature afforded crystals suitable for X-ray 

diffractometry. 

 

2-[4-Methoxy-3-(octan-2-yl)-phenyl]pyridinium Chloride (148)  

 

  

 

M.r.: 93 - 95 °C. 

1H-NMR (300 MHz, CDCl3): δ = 8.89 (d, J = 5.8 Hz, 1H), 8.37-8.20 (m, 2H), 8.03 (d, J = 8.1 Hz, 1H), 7.88 

(d, J = 2.6 Hz, 1H), 7.66 (ddd, J = 7.2, 5.9, 1.1 Hz, 1H), 7.10 (d, J = 8.7 Hz, 1H), 3.92 (s, 3H), 3.24 (qt, J = 

7.1, 7.0 Hz, 1H), 1.81-1.43 (m, 4H), 1.42-1.07 (m, 6H), 1.27 (d, J = 7.0 Hz, 3H), 0.85 (t, J = 6.6 Hz, 3H). 

13C-NMR (126 MHz, CDCl3): δ = 161.2 (Cq), 153.1 (Cq), 144.7 (CH), 141.8 (CH), 138.4 (Cq), 128.1 (CH), 

127.0 (CH), 123.6 (CH), 122.7 (CH), 121.7 (Cq), 111.8 (CH), 55.9 (CH3), 37.2 (CH2), 32.3 (CH), 32.1 (CH2), 

29.6 (CH2), 27.8 (CH2), 22.9 (CH2), 21.0 (CH3), 14.3 (CH3). 

MS (EI) m/z (relative intensity): 297 (41) [M-HCl+], 212 (100), 197 (17), 167 (30). 

HR-MS (EI) m/z calculated for C20H28ClNO-HCl+: 297.2093; found: 297.2088. 
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(R)-2-[3-(Hexan-2-yl)-4-methoxyphenyl]pyridinium chloride ((R)-167) 

 

 

 

1H-NMR (300 MHz, CDCl3): δ = 8.87 (d, J = 5.7 Hz, 1H), 8.37-8.20 (m, 2H), 8.03 (d, J = 8.1 Hz, 1H), 7.88 

(d, J = 2.6 Hz, 1H), 7.66 (ddd, J = 7.2, 5.9, 1.1 Hz, 1H), 7.08 (d, J = 8.6 Hz, 1H), 3.92 (s, 3H), 3.24 (qt, J = 

7.1, 7.0 Hz, 1H), 1.79-1.43 (m, 2H), 1.42-1.07 (m, 4H), 1.27 (d, J = 7.0 Hz, 3H), 0.85 (t, J = 6.7 Hz, 3H). 

13C-NMR (126 MHz, CDCl3): δ = 161.2 (Cq), 153.1 (Cq), 144.7 (CH), 141.8 (CH), 138.4 (Cq), 128.1 (CH), 

127.0 (CH), 123.6 (CH), 122.7 (CH), 121.7 (Cq), 111.8 (CH), 55.9 (CH3), 37.2 (CH2), 32.3 (CH), 29.6 (CH2), 

22.9 (CH2), 21.0 (CH3), 14.3 (CH3). 

MS (EI) m/z (relative intensity): 269 (41) [M-HCl+], 184 (100), 197 (22). 

HR-MS (EI) m/z calculated for C18H24ClNO-HCl+: 269.1780; found: 269.1783. 

 

 

Table S-1. Crystal and data collection parameters for compounds 129, 148, 149 and (R)-167 

Compound 129 148 149 (R)-167 

Empirical 

formula 

C19H26N
+ x 

C2HO4
- x 

C2H2O4 

C20H28NO+ x 

Cl- x 

H2O 

[C19H26N]+ x  

[C2O4H]- x       

0.5 [C2O4H2] 

C18H24ClNO x 

0.5 H2O 

Molecular 

mass [g/mol] 
447.47 351.90 402.45 314.84 

Temperature 

[K] 
120 120 120 100.0 

Crystal 

system 
monoclinic triclinic triclinic monoclinic 

Space group C2/c P-1 P-1 C2 

a [Å] 32.502(5) 4.9785(3) 5.6937(7) 34.0337(19) 

b [Å] 14.839(2) 8.7894(5) 10.2647(12) 5.5726(3) 

c [Å] 9.7776(14) 22.6643(14) 19.007(2) 18.2007(11) 

α [°] 90.00 87.606(2) 95.608(4) 90.00 

β [°] 106.084(4) 86.998(2) 97.574(4) 90.524(2) 
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Compound 129 148 149 (R)-167 

γ [°] 90.00 77.422(2) 97.614(4) 90.00 

Volume [Å3] 4531.2(11) 966.15(10) 1083.9(2) 3451.7(3) 

Z 8 2 2 8 

Dcalc 

[mg/mm3] 
1.312 1.210 1.233 1.212 

μ [mm-1] 0.099 0.209 0.090 1.971 

F(000) 1904.0 380.0 430.0 1352.0 

Crystal 

size/mm3 
0.48 × 0.12 × 0.04 0.42 × 0.12 × 0.09 0.44 × 0.06 × 0.001 0.38 × 0.02 × 0.01 

2Θ range for 

data 

collection 

3.04 to 55° 3.6 to 58° 4.04 to 52° 4.86 to 120° 

Index ranges 

-42 ≤ h ≤ 42, 

-19 ≤   ≤ 19, 

-12 ≤ l ≤ 12 

-6 ≤ h ≤ 6, 

-11 ≤   ≤ 11, 

-30 ≤ l ≤ 30 

-7 ≤ h ≤ 7, 

-11 ≤   ≤ 12, 

-23 ≤ l ≤ 23 

-35 ≤ h ≤ 38, 

-6 ≤   ≤ 5, 

-19 ≤ l ≤ 19 

Reflections 

collected 
22812 15955 8319 8125 

Independent 

reflections 

5206 

[R(int) = 0.2062] 

5106 

[R(int) = 0.0320] 

4213 

[R(int) = 0.0566] 

4131 

[R(int) = 0.0503] 

Data/ 

restraints/  

parameters 

5206/0/406 5106/0/337 4213/0/306 4131/1/588 

GoF 0.972 1.013 0.983 1.022 

Final R 

indexes  

[I>2σ (I)] 

R1 = 0.0727, 

wR2 = 0.1144 

R1 = 0.0421, 

wR2 = 0.1057 

R1 = 0.0756, 

wR2 = 0.1886 

R1 = 0.0523, 

wR2 = 0.1241 

Final R 

indexes  

[all data] 

R1 = 0.1694, 

wR2 = 0.1314 

R1 = 0.0576, 

wR2 = 0.1164 

R1 = 0.1452, 

wR2 = 0.2204 

R1 = 0.0681, 

wR2 = 0.1323 
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More detailed illustrations of the different molecular structures of compounds 129, 148, 149 and (R)-

167 in the crystals including fragments of molecular packings and H-bondings are presented below.  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.1: Molecular structure of 129 in the crystals. Thermal ellipsoids are shown at 50% probability. 

              

 

Figure 7.2: Fragment of the molecular packing in extended unit cell of 129; space group C2/c. 
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Table S-2 Fractional Atomic Coordinates (×10
4
) and Equivalent Isotropic Displacement Parameters (Å

2
×10

3
) for 129. Ueq is 

defined as 1/3 of the trace of the orthogonalised UIJ tensor. 
Atom x y z U(eq) 

N1 6874.6(9) 2772.9(14) 1881(3) 30.5(6) 
C1 7147.0(12) 2258.1(17) 1393(4) 35.3(8) 
C2 7046.8(12) 2026.8(19) -13(4) 37.8(8) 
C3 6670.9(12) 2331(2) -895(4) 41.0(9) 
C4 6397.3(12) 2842(2) -383(4) 37.8(8) 
C5 6498.4(10) 3056.0(17) 1032(3) 32.0(8) 
C6 6221.6(10) 3614.4(18) 1689(3) 33.2(8) 
C7 6150.6(11) 4510(2) 1238(4) 39.4(9) 
C8 5890.2(12) 5045(2) 1797(4) 45.3(10) 
C9 5697.6(12) 4713(2) 2761(4) 48.7(10) 

C10 5765.4(12) 3825(2) 3205(4) 44.3(9) 
C11 6026.7(10) 3259.3(18) 2683(3) 34.2(8) 
C12 6076.8(12) 2277.6(19) 3148(4) 37.0(8) 
C13 5760.3(13) 1652.0(19) 2159(4) 40.7(9) 
C14 5837.8(13) 662(2) 2591(4) 41.8(9) 
C15 5526.5(13) 33(2) 1570(5) 45(1) 
C16 5623.8(12) -958(2) 1916(4) 42.6(9) 
C17 5294.4(13) -1568(2) 967(4) 42.1(9) 
C18 5377.0(12) -2576(2) 1292(4) 41.9(9) 
C19 5027.9(14) -3167(2) 373(5) 50.6(10) 
O5 6964.9(7) 1876.7(12) 6205(2) 35.9(6) 
O6 6965.8(7) 1005.5(12) 4349(2) 35.1(5) 
O7 6951.5(7) 463.2(13) 7779(2) 38.3(6) 
O8 6671.7(8) -355.3(12) 5817(2) 46.9(7) 
C3S 6933.7(10) 1112.4(17) 5548(3) 31.3(7) 
C4S 6839.2(11) 313.8(17) 6421(4) 32.8(8) 
O1 7055.5(8) 5499.0(11) 4891(2) 45.9(6) 
O2 7164.9(7) 4557.2(12) 3227(2) 34.8(6) 
O3 7096.7(7) 4010.1(11) 6622(2) 37.8(6) 
O4 7060.6(7) 3162.4(11) 4720(2) 33.8(5) 
C1S 7098.5(10) 4758.4(17) 4458(3) 31.2(7) 
C2S 7089.4(10) 3918.0(17) 5374(3) 29.5(7) 

 

Table S-3 Anisotropic Displacement Parameters (Å
2
×10

3
) for 129. The Anisotropic displacement factor exponent takes the 

form: -2π
2
[h

2
a*

2
U11+...+2hka×b×U12] 

Atom U11 U22 U33 U23 U13 U12 

N1 37.8(17) 16.7(11) 38.7(16) 1.2(11) 13.1(14) 1.9(12) 
C1 40(2) 14.5(13) 53(2) 0.3(15) 15.8(19) 2.3(15) 
C2 47(2) 19.1(15) 51(2) -7.9(15) 19(2) -5.2(15) 
C3 50(2) 29.5(17) 45(2) -8.4(17) 16(2) -8.8(17) 
C4 33(2) 31.8(17) 43(2) -0.2(15) 2.6(18) -0.8(16) 
C5 39(2) 17.6(13) 41(2) 5.2(13) 13.5(17) -2.0(13) 
C6 37(2) 19.9(14) 41.9(19) -3.5(13) 10.5(16) -0.4(13) 
C7 43(2) 23.9(16) 52(2) 2.4(15) 15.1(19) 4.0(15) 
C8 55(3) 23.9(16) 57(2) 0.5(16) 15(2) 7.0(16) 
C9 46(2) 40.5(19) 59(3) -5.0(18) 13(2) 15.6(17) 

C10 50(2) 35.3(18) 51(2) -6.0(17) 20(2) 4.0(17) 
C11 36(2) 24.1(15) 42(2) -0.6(14) 10.8(16) 2.5(14) 
C12 39(2) 25.6(15) 46(2) 5.2(15) 10.0(18) 0.8(15) 
C13 44(2) 24.0(16) 52(2) 3.9(15) 9(2) 3.0(15) 
C14 44(2) 26.4(16) 53(2) 5.4(15) 10(2) 0.4(16) 
C15 44(2) 25.1(16) 66(3) 5.3(16) 13(2) 3.0(16) 
C16 39(2) 26.2(16) 59(3) -0.9(17) 9(2) 3.1(16) 
C17 42(2) 26.0(17) 58(3) 3.1(16) 14(2) 6.5(15) 
C18 41(2) 23.0(16) 61(3) 1.7(16) 13(2) 3.6(15) 
C19 50(3) 28.2(18) 72(3) -2.2(19) 15(2) 3.2(18) 
O5 54.3(15) 12.5(9) 43.7(13) -0.7(9) 18.4(12) 2.2(9) 
O6 49.1(15) 16.9(10) 41.8(13) -0.6(9) 17.1(12) 3.5(9) 
O7 57.6(16) 19.1(10) 38.9(15) -1.4(10) 14.6(12) -6.3(10) 
O8 74.4(18) 17.9(10) 49.6(15) -3.5(10) 19.2(13) -9.9(11) 
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C3S 40(2) 15.3(13) 40(2) 0.9(13) 12.9(17) 1.8(13) 
C4S 41(2) 13.2(13) 43(2) -1.7(14) 10.1(16) 2.6(13) 
O1 76.5(18) 11.9(10) 56.5(15) -0.4(10) 30.2(14) 5.2(11) 
O2 51.0(15) 17.4(10) 38.9(14) 2.8(10) 17.2(12) 2.8(10) 
O3 59.7(16) 16.2(10) 40.6(14) 1.7(10) 19.0(12) 0.6(10) 
O4 50.4(14) 12.8(9) 38.8(13) -3.0(9) 13.3(11) 0.4(9) 
C1S 35.2(19) 18.1(14) 41(2) 0.8(13) 12.0(16) 1.0(13) 
C2S 35.5(18) 15.6(14) 39(2) 1.1(13) 12.7(16) 2.1(13) 

 

Table S-4 Bond Lengths for 129. 
Atom Atom Length/Å 

 
Atom Atom Length/Å 

N1 C1 1.352(4) 
 

C14 C15 1.527(5) 
N1 C5 1.341(4) 

 
C15 C16 1.522(4) 

C1 C2 1.366(5) 
 

C16 C17 1.508(5) 
C2 C3 1.363(5) 

 
C17 C18 1.538(4) 

C3 C4 1.365(5) 
 

C18 C19 1.516(5) 
C4 C5 1.368(5) 

 
O5 C3S 1.293(3) 

C5 C6 1.493(4) 
 

O6 C3S 1.216(3) 
C6 C7 1.398(4) 

 
O7 C4S 1.295(4) 

C6 C11 1.402(4) 
 

O8 C4S 1.205(3) 
C7 C8 1.379(5) 

 
C3S C4S 1.540(4) 

C8 C9 1.359(5) 
 

O1 C1S 1.200(3) 
C9 C10 1.386(4) 

 
O2 C1S 1.314(4) 

C10 C11 1.388(4) 
 

O3 C2S 1.222(3) 
C11 C12 1.521(4) 

 
O4 C2S 1.281(3) 

C12 C13 1.518(5) 
 

C1S C2S 1.540(4) 
C13 C14 1.531(4) 

    
 

Table S-5 Bond Angles for 129. 
Atom Atom Atom Angle/˚  Atom Atom Atom Angle/˚ 

C5 N1 C1 122.2(3)  C12 C13 C14 112.4(3) 
N1 C1 C2 120.0(3)  C15 C14 C13 112.2(3) 
C3 C2 C1 118.4(3)  C16 C15 C14 112.7(3) 
C2 C3 C4 120.8(4)  C17 C16 C15 112.0(3) 
C3 C4 C5 120.1(3)  C16 C17 C18 113.8(3) 
N1 C5 C4 118.4(3)  C19 C18 C17 112.4(3) 
N1 C5 C6 117.6(3)  O5 C3S C4S 113.6(3) 
C4 C5 C6 124.0(3)  O6 C3S O5 125.3(3) 
C7 C6 C5 117.3(3)  O6 C3S C4S 121.2(2) 
C7 C6 C11 120.6(3)  O7 C4S C3S 113.2(2) 

C11 C6 C5 122.1(2)  O8 C4S O7 127.1(3) 
C8 C7 C6 119.2(3)  O8 C4S C3S 119.7(3) 
C9 C8 C7 121.2(3)  O1 C1S O2 126.6(3) 
C8 C9 C10 119.8(3)  O1 C1S C2S 120.9(3) 
C9 C10 C11 121.3(4)  O2 C1S C2S 112.5(2) 
C6 C11 C12 122.4(3)  O3 C2S O4 125.1(3) 

C10 C11 C6 117.9(3)  O3 C2S C1S 119.5(2) 
C10 C11 C12 119.6(3)  O4 C2S C1S 115.4(3) 
C13 C12 C11 113.4(3)      

 

Table S-6 Hydrogen Bonds for 129. 
D H A d(D-H)/Å d(H-A)/Å d(D-A)/Å D-H-A/° 

N1 H1 O4 1.08(4) 1.70(4) 2.735(3) 158(3) 
O7 H7A O6

1
 0.99(4) 1.70(4) 2.659(3) 162(4) 

O2 H2A O3
2
 0.92(3) 1.70(3) 2.615(3) 170(3) 

O5 H5 O4 0.99(5) 1.48(5) 2.469(3) 174(5) 
1
+X,-Y,1/2+Z; 

2
+X,1-Y,-1/2+Z 
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Table S-7 Torsion Angles for 129. 
A B C D Angle/˚ 

N1 C5 C6 C11 -67.9(4) 

 

Table S-8 Hydrogen Atom Coordinates (Å×10
4
) and Isotropic Displacement Parameters (Å

2
×10

3
) for 129. 

Atom x y z U(eq) 

H1A 7422(9) 2106(16) 2110(30) 21(7) 
H1 7016(12) 2990(20) 2960(40) 71(12) 
H3 6602(13) 2190(20) -1820(40) 66(13) 
H2 7250(10) 1651(19) -400(30) 44(9) 
H4 6135(9) 3010(15) -1010(30) 14(7) 
H7 6318(10) 4693(18) 560(30) 37(9) 
H8 5878(10) 5650(20) 1450(30) 40(9) 
H9 5477(12) 5080(20) 3210(40) 71(11) 

H10 5610(12) 3600(20) 3900(40) 61(11) 
H12A 6053(10) 2244(19) 4250(40) 48(9) 
H12B 6391(10) 2057(17) 3320(30) 31(8) 
H13A 5449(12) 1850(20) 2000(40) 60(11) 
H13B 5789(13) 1700(20) 1190(40) 72(13) 
H14A 5812(10) 572(17) 3650(30) 34(8) 
H14B 6120(11) 550(20) 2590(30) 45(10) 
H15A 5257(12) 110(20) 1730(40) 48(10) 
H15B 5565(11) 160(20) 450(40) 59(10) 
H16A 5626(10) -1053(19) 2990(40) 49(10) 
H16B 5906(10) -1125(18) 1810(30) 34(8) 
H17A 4992(11) -1435(18) 960(30) 37(9) 
H17B 5313(11) -1460(20) -70(40) 49(10) 
H18A 5391(11) -2650(20) 2450(40) 54(10) 
H18B 5655(10) -2743(17) 1160(30) 27(8) 
H19A 4995(10) -3050(19) -790(40) 40(9) 
H19B 4775(12) -3000(20) 600(30) 46(10) 
H19C 5075(11) -3810(20) 600(30) 53(10) 
H7A 6900(13) -50(30) 8360(40) 78(13) 
H2A 7147(11) 5020(20) 2590(40) 58(11) 
H5 7008(17) 2370(30) 5570(60) 140(20) 

 

 

Beside an oxalate every cell includes another molecule of oxalic acid. 

These molecules are bound to each other through H-bonding on 

connect between two layers. Theses layers include the hydrophobic 

aliphatic chains. This compound could possibly be used as phase 

transfer catalyst, which should be further examined. The resolution of 

the structure is not perfect since the crystals have not been of higher 

quality.  
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Figure 7.3 Molecular structure of 149 in the crystal. Thermal ellipsoids are shown at 50% probability. 

 

 

Figure 7.4: Fragment of the molecular packing in extended unit cell of 149; space group P-1. 

 

Table S-9 Fractional Atomic Coordinates (×10
4
) and Equivalent Isotropic Displacement Parameters (Å

2
×10

3
) for 149. Ueq is 

defined as 1/3 of of the trace of the orthogonalised UIJ tensor. 
Atom x y z U(eq) 

N1 -790(5) 6899(3) 1146.3(17) 30.7(7) 
C1 -413(6) 8087(3) 1547(2) 32.1(9) 
C2 -2090(7) 8923(4) 1407(3) 36.9(10) 
C3 -4043(6) 8556(4) 898(2) 35.2(9) 
C4 -4365(7) 7327(4) 501(2) 37.6(10) 
C5 -2678(6) 6526(4) 638(2) 34.4(9) 
C6 1747(7) 8437(4) 2092(2) 38.5(10) 
C7 2780(8) 7468(5) 2440(2) 46.9(11) 
C8 4828(9) 7806(6) 2956(2) 60.8(14) 
C9 5873(10) 9124(6) 3104(3) 62.9(14) 

C10 4847(9) 10067(5) 2765(3) 56.9(12) 
C11 2792(8) 9749(4) 2274(2) 44.1(10) 
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C12 5858(11) 6745(6) 3349(3) 75.3(17) 
C13 6750(12) 5750(6) 2898(3) 88(2) 
C14 4411(12) 6331(6) 3886(3) 84.8(19) 
C15 3494(12) 7261(6) 4368(3) 85.5(19) 
C16 2102(12) 6758(6) 4914(4) 94(2) 
C17 1041(13) 7634(7) 5379(3) 95(2) 
C18 -386(13) 7049(7) 5913(4) 105(2) 
C19 -592(14) 7878(8) 6356(4) 119(3) 
O1 2183(4) 4992(2) 1189.3(15) 40.3(7) 
O2 3384(4) 3061(2) 1373.9(14) 31.8(6) 
O3 -2299(4) 3987(2) 1261.3(15) 35.4(7) 
O4 -1018(4) 2271(2) 1761.8(14) 35.9(7) 
C1S 1823(6) 3834(3) 1325(2) 27.9(8) 
C2S -693(6) 3259(3) 1471(2) 28.2(8) 
O5 -2164(4) 9278(2) -715.6(14) 32.7(6) 
O6 824(4) 8427(2) -111.2(14) 32.5(6) 
C3S -311(6) 9311(3) -219.8(19) 26.1(8) 

 

 

Table S-10 Anisotropic Displacement Parameters (Å
2
×10

3
) for 149. The Anisotropic displacement factor exponent takes 

the form: -2π
2
[h

2
a*

2
U11+...+2hka×b×U12] 

Atom U11 U22 U33 U23 U13 U12 

N1 30.0(17) 14.9(15) 50.8(19) 11.0(14) 9.8(15) 6.7(12) 
C1 31.7(19) 23.0(19) 46(2) 12.4(17) 14.7(17) 4.2(15) 
C2 38(2) 19(2) 59(3) 9(2) 21(2) 8.3(17) 
C3 25.6(19) 26(2) 60(3) 17.3(19) 13.0(19) 8.1(15) 
C4 27(2) 24(2) 63(3) 17.4(19) 8(2) -0.4(16) 
C5 28(2) 17(2) 58(3) 8.5(19) 7.9(19) 0.7(15) 
C6 40(2) 37(2) 45(2) 10.9(18) 14.2(19) 14.2(17) 
C7 56(3) 40(3) 51(3) 10(2) 11(2) 19(2) 
C8 63(3) 80(4) 49(3) 16(3) 7(2) 40(3) 
C9 61(3) 70(4) 54(3) -5(3) -3(3) 19(3) 

C10 54(3) 56(3) 55(3) -4(3) -1(2) 5(2) 
C11 46(2) 36(2) 49(3) 1(2) 4(2) 4.8(19) 
C12 93(4) 85(4) 59(3) 25(3) 8(3) 44(3) 
C13 104(5) 78(4) 105(4) 40(4) 37(4) 53(4) 
C14 100(5) 67(4) 104(5) 39(4) 32(4) 35(3) 
C15 114(5) 95(5) 63(3) 29(3) 23(3) 48(4) 
C16 103(5) 75(4) 121(5) 40(4) 43(4) 31(4) 
C17 123(5) 116(6) 63(4) 18(4) 27(4) 62(5) 
C18 107(5) 85(5) 145(6) 39(5) 48(5) 39(4) 
C19 131(7) 135(7) 99(5) -5(5) 31(5) 46(6) 
O1 24.2(13) 17.7(13) 81(2) 15.9(13) 10.6(13) 1.4(10) 
O2 17.1(12) 15.7(12) 62.6(17) 4.8(11) 4.8(11) 2.9(9) 
O3 16.4(12) 21.4(13) 71.9(19) 15.7(12) 10.7(12) 3.8(9) 
O4 28.1(13) 21.4(13) 62.0(17) 16.7(12) 11.8(12) 3.2(10) 
C1S 16.4(16) 17.2(17) 48(2) 3.5(15) 2.1(15) -3.0(13) 
C2S 19.1(17) 17.3(17) 49(2) 4.9(16) 6.6(15) 4.2(13) 
O5 31.1(14) 15.5(13) 51.8(17) 6.7(12) 2.4(12) 5.7(10) 
O6 27.8(13) 15.8(12) 56.0(16) 9.1(11) 8.1(11) 5.9(10) 
C3S 21.7(17) 17.3(17) 41(2) 7.6(15) 8.7(16) 1.8(13) 

 

Table S-11 Bond Lengths for 149. 
Atom Atom Length/Å Atom Atom Length/Å 

N1 C1 1.348(5) C12 C14 1.454(8) 
N1 C5 1.334(5) C14 C15 1.453(8) 
C1 C2 1.384(5) C15 C16 1.478(8) 
C1 C6 1.480(6) C16 C17 1.445(8) 
C2 C3 1.359(6) C17 C18 1.503(8) 
C3 C4 1.383(6) C18 C19 1.439(9) 
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Table S-11 Bond Lengths for 149. 
Atom Atom Length/Å Atom Atom Length/Å 

C4 C5 1.361(5) O1 C1S 1.238(4) 
C6 C7 1.398(5) O2 C1S 1.267(4) 
C6 C11 1.389(6) O3 C2S 1.302(4) 
C7 C8 1.402(7) O4 C2S 1.206(4) 
C8 C9 1.390(7) C1S C2S 1.546(4) 
C8 C12 1.516(6) O5 C3S 1.313(4) 
C9 C10 1.366(7) O6 C3S 1.200(4) 

C10 C11 1.378(6) C3S C3S
1
 1.543(7) 

C12 C13 1.455(7)    
1
-X,2-Y,-Z 

 

Table S-12 Bond Angles for 149. 
Atom Atom Atom Angle/˚ Atom Atom Atom Angle/˚ 

C5 N1 C1 122.7(3) C13 C12 C8 114.8(4) 
N1 C1 C2 116.8(4) C14 C12 C8 111.2(4) 
N1 C1 C6 119.4(3) C14 C12 C13 119.3(5) 
C2 C1 C6 123.8(4) C15 C14 C12 122.9(5) 
C3 C2 C1 121.6(4) C14 C15 C16 119.4(5) 
C2 C3 C4 119.7(4) C17 C16 C15 121.5(5) 
C5 C4 C3 117.9(4) C16 C17 C18 118.5(6) 
N1 C5 C4 121.4(4) C19 C18 C17 120.1(6) 
C7 C6 C1 121.3(4) O1 C1S O2 125.3(3) 

C11 C6 C1 120.4(3) O1 C1S C2S 119.0(3) 
C11 C6 C7 118.3(4) O2 C1S C2S 115.7(3) 
C6 C7 C8 121.0(5) O3 C2S C1S 111.7(3) 
C7 C8 C12 120.1(5) O4 C2S O3 126.6(3) 
C9 C8 C7 119.0(4) O4 C2S C1S 121.7(3) 
C9 C8 C12 120.9(5) O5 C3S C3S

1
 110.7(3) 

C10 C9 C8 119.7(5) O6 C3S O5 126.7(3) 
C9 C10 C11 121.7(5) O6 C3S C3S

1
 122.5(4) 

C10 C11 C6 120.3(4)     
1
-X,2-Y,-Z 

 

Table S-13 Hydrogen Bonds for 149. 
D H A d(D-H)/Å d(H-A)/Å d(D-A)/Å D-H-A/° 

N1 H1 O1 1.03(4) 1.75(4) 2.753(4) 165(3) 
O3 H3A O2

1
 0.82 1.79 2.560(3) 156.6 

O5 H5A O2
2
 0.88(5) 1.71(6) 2.560(3) 161(5) 

1
-1+X,+Y,+Z; 

2
-X,1-Y,-Z 

 

Table S-14 Hydrogen Atom Coordinates (Å×10
4
) and Isotropic Displacement Parameters (Å

2
×10

3
) for 149. 

Atom x y z U(eq) 

H12 7324 7231 3636 90 
H13A 5426 5204 2597 132 

H13B 7612 5211 3193 132 
H13C 7799 6178 2607 132 
H14A 3035 5728 3634 102 
H14B 5345 5812 4183 102 
H15A 2493 7759 4077 103 
H15B 4850 7884 4616 103 
H16A 814 6092 4665 112 
H16B 3145 6303 5218 112 
H17A 3 8101 5080 114 
H17B 2320 8290 5641 114 
H18A -1588 6349 5653 126 
H18B 688 6632 6229 126 
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Table S-14 Hydrogen Atom Coordinates (Å×10
4
) and Isotropic Displacement Parameters (Å

2
×10

3
) for 149. 

Atom x y z U(eq) 

H19A -2457 8422 6066 179 
H19B -433 8430 6712 179 
H19C -2689 7333 6586 179 

H1 420(70) 6260(40) 1250(20) 44(11) 
H2 -1940(50) 9540(30) 1634(16) 6(9) 
H3 -5200(60) 9240(40) 743(18) 33(9) 
H4 -5560(70) 7030(40) 112(19) 30(10) 
H5 -2650(60) 5820(40) 364(18) 21(9) 
H7 1980(60) 6630(40) 2344(18) 26(10) 
H9 7270(90) 9290(50) 3530(30) 66(14) 

H10 5660(90) 10930(50) 2950(30) 67(15) 
H11 2050(100) 10460(60) 2090(30) 85(17) 
H3A -3543 3750 1417 53 
H5A -2240(90) 8470(50) -920(30) 75(17) 

 

 

 

 

 

 

 

 

 

Figure 7.5: Molecular structure of 148 in the crystal. Thermal ellipsoids are shown at 50% probability. 

 

Figure 7.6: Fragment of the molecular packing in extended unit cell of 148; space group P-1. 
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Table S-15 Fractional Atomic Coordinates (×10
4
) and Equivalent Isotropic Displacement Parameters (Å

2
×10

3
) for 148. Ueq 

is defined as 1/3 of the trace of the orthogonalised UIJ tensor. 
Atom x y z U(eq) 

O1 10730(2) 5862.1(12) 7061.5(5) 29.6(2) 
N1 1109(2) 8659.9(14) 8949.3(5) 21.7(2) 
C1 1967(3) 7185.7(15) 8765.0(6) 20.1(3) 
C2 617(3) 6070.0(17) 9022.5(6) 23.4(3) 
C3 -1521(3) 6493.0(18) 9436.9(7) 26.1(3) 
C4 -2359(3) 8031.4(19) 9601.8(7) 28.1(3) 
C5 -983(3) 9104.4(18) 9349.1(7) 25.9(3) 
C6 4224(3) 6837.1(16) 8312.5(6) 20.9(3) 
C7 5078(3) 8020.1(16) 7962.7(6) 21.9(3) 
C8 7224(3) 7692.9(16) 7540.2(6) 22.5(3) 
C9 8595(3) 6130.8(17) 7474.3(6) 23.2(3) 

C10 7785(3) 4948.9(17) 7817.3(6) 25.0(3) 
C11 5599(3) 5300.5(16) 8226.3(6) 24.1(3) 
C12 12179(4) 4285(2) 6992.1(8) 34.5(4) 
C13 7958(3) 8975.0(17) 7133.7(6) 25.1(3) 
C14 5910(3) 9389.2(18) 6637.6(7) 28.1(3) 
C15 5667(3) 8052.5(19) 6251.4(7) 29.5(3) 
C16 3687(4) 8592(2) 5757.8(7) 32.6(3) 
C17 3431(4) 7320(2) 5342.1(7) 36.0(4) 
C18 1439(4) 7925(3) 4856.5(8) 42.5(4) 
C19 1290(6) 6721(4) 4404.6(11) 62.4(6) 
C20 8084(4) 10447.8(19) 7462.2(8) 30.3(3) 

O1W 7014(3) 12950.0(14) 9496.5(6) 37.1(3) 
Cl1 2673.2(7) 11819.5(4) 8719.00(16) 27.23(11) 

  
 
 
 

Table S-16 Anisotropic Displacement Parameters (Å
2
×10

3
) for 148. The Anisotropic displacement factor exponent takes 

the form: -2π
2
[h

2
a*

2
U11+...+2hka×b×U12] 

Atom U11 U22 U33 U23 U13 U12 

O1 29.4(5) 27.3(5) 30.5(6) -4.9(4) 5.6(4) -3.2(4) 
N1 24.5(6) 19.4(6) 22.6(6) -0.7(4) -0.8(4) -8.1(4) 
C1 23.2(6) 18.7(6) 19.2(6) 1.0(5) -4.7(5) -5.7(5) 
C2 26.5(7) 21.1(7) 24.4(7) 1.4(5) -4.3(5) -8.9(5) 
C3 27.4(7) 27.8(7) 25.7(7) 5.3(6) -2.9(6) -12.2(6) 
C4 27.0(7) 32.9(8) 25.1(7) -0.9(6) 2.0(6) -9.2(6) 
C5 29.2(7) 22.5(7) 26.4(7) -4.5(5) 1.0(6) -6.5(6) 
C6 23.2(7) 21.3(6) 19.3(6) -0.5(5) -2.9(5) -6.9(5) 
C7 25.3(7) 17.6(6) 22.6(6) 0.5(5) -2.3(5) -4.2(5) 
C8 24.5(7) 21.5(6) 22.2(6) 0.3(5) -2.0(5) -6.6(5) 
C9 23.1(7) 25.2(7) 21.4(6) -3.8(5) -0.8(5) -5.2(5) 

C10 30.5(7) 19.0(6) 24.5(7) -2.5(5) -3.3(6) -2.6(5) 
C11 31.4(7) 19.3(6) 22.6(7) 0.6(5) -3.8(6) -7.1(5) 
C12 33.2(8) 30.0(8) 38.9(9) -11.8(7) 4.5(7) -3.2(7) 
C13 26.0(7) 24.7(7) 24.7(7) 0.9(5) 2.9(5) -6.8(5) 
C14 31.8(8) 27.1(7) 25.6(7) 3.9(6) -0.5(6) -7.8(6) 
C15 32.0(8) 32.7(8) 23.8(7) 1.8(6) -1.8(6) -7.4(6) 
C16 34.8(9) 38.6(9) 24.8(7) 2.0(6) -2.0(6) -9.3(7) 
C17 38.5(9) 42.9(10) 26.8(8) -1.3(7) -1.6(7) -9.3(7) 
C18 50.1(11) 55.0(12) 26.0(8) -0.7(8) -6.3(8) -18.2(9) 
C19 76.7(18) 76.0(17) 39.5(12) -13.3(11) -11.4(12) -23.4(14) 
C20 34.7(8) 26.7(7) 31.2(8) 0.9(6) 0.6(7) -11.0(6) 

O1W 37.2(7) 35.8(6) 39.7(7) 0.4(5) 1.3(5) -11.7(5) 
Cl1 30.21(19) 19.62(17) 33.5(2) -2.79(13) 2.47(14) -9.59(13) 
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Table S-17 Bond Lengths for 148. 
Atom Atom Length/Å Atom Atom Length/Å 

O1 C9 1.3660(17) C8 C9 1.4041(19) 
O1 C12 1.4271(19) C8 C13 1.5196(19) 
N1 C1 1.3495(17) C9 C10 1.389(2) 
N1 C5 1.3461(19) C10 C11 1.382(2) 
C1 C2 1.3970(19) C13 C14 1.536(2) 
C1 C6 1.4712(19) C13 C20 1.534(2) 
C2 C3 1.381(2) C14 C15 1.523(2) 
C3 C4 1.386(2) C15 C16 1.522(2) 
C4 C5 1.372(2) C16 C17 1.522(2) 
C6 C7 1.4066(19) C17 C18 1.521(3) 
C6 C11 1.3916(19) C18 C19 1.519(3) 
C7 C8 1.387(2) 

   
  

Table S-18 Bond Angles for 148. 
Atom Atom Atom Angle/˚ Atom Atom Atom Angle/˚ 

C9 O1 C12 117.33(12) C9 C8 C13 120.78(13) 
C5 N1 C1 123.86(12) O1 C9 C8 116.30(12) 
N1 C1 C2 116.86(13) O1 C9 C10 123.05(13) 
N1 C1 C6 119.34(12) C10 C9 C8 120.65(13) 
C2 C1 C6 123.80(13) C11 C10 C9 120.12(13) 
C3 C2 C1 120.43(14) C10 C11 C6 120.90(13) 
C2 C3 C4 120.37(14) C8 C13 C14 110.38(12) 
C5 C4 C3 118.24(14) C8 C13 C20 113.00(12) 
N1 C5 C4 120.22(14) C20 C13 C14 109.97(13) 
C7 C6 C1 121.92(12) C15 C14 C13 116.03(13) 

C11 C6 C1 119.87(12) C16 C15 C14 112.07(13) 
C11 C6 C7 118.20(13) C15 C16 C17 114.63(15) 
C8 C7 C6 121.93(13) C18 C17 C16 112.38(16) 
C7 C8 C9 118.16(13) C19 C18 C17 114.0(2) 
C7 C8 C13 120.95(12) 

    
  
 

Table S-19 Hydrogen Bonds for 148. 
D H A d(D-H)/Å d(H-A)/Å d(D-A)/Å D-H-A/° 

N1 H1 Cl1 0.87(2) 2.23(2) 3.0610(12) 159.5(17) 
O1W H1WA Cl1

1
 1.02(3) 2.23(3) 3.2309(14) 168(2) 

O1W H1WB Cl1 1.05(4) 2.15(4) 3.2004(14) 175(3) 
1
1+X,+Y,+Z 

  
Table S-20 Hydrogen Atom Coordinates (Å×10

4
) and Isotropic Displacement Parameters (Å

2
×10

3
) for 148. 

Atom x y z U(eq) 

H1 1880(40) 9420(20) 8822(9) 36(5) 
H2 1150(40) 5050(20) 8903(8) 29(4) 
H3 -2390(40) 5740(20) 9597(8) 28(4) 
H4 -3840(40) 8400(20) 9880(9) 34(5) 
H5 -1390(40) 10120(20) 9433(8) 30(5) 
H7 4130(40) 9060(20) 8003(8) 27(4) 

H10 8750(40) 3910(20) 7780(8) 33(5) 
H11 5110(40) 4490(20) 8454(8) 29(4) 

H12A 13670(50) 4390(30) 6696(10) 52(6) 
H12B 10920(40) 3640(20) 6859(8) 32(5) 
H12C 13000(40) 3840(20) 7372(9) 41(5) 
H13 9810(40) 8550(20) 6950(8) 31(5) 

H14A 6500(40) 10240(20) 6371(9) 35(5) 
H14B 4030(40) 9860(20) 6826(8) 32(5) 
H15A 7510(40) 7560(20) 6063(9) 37(5) 
H15B 5080(40) 7180(20) 6494(8) 34(5) 
H16A 4300(40) 9470(20) 5512(8) 36(5) 
H16B 1780(40) 9050(20) 5938(8) 32(5) 
H17A 2900(40) 6420(20) 5565(9) 41(5) 
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Table S-20 Hydrogen Atom Coordinates (Å×10
4
) and Isotropic Displacement Parameters (Å

2
×10

3
) for 148. 

Atom x y z U(eq) 

H17B 5220(50) 6840(30) 5174(10) 50(6) 
H18A 2000(50) 8860(30) 4622(11) 60(7) 
H18B -500(50) 8290(30) 5053(10) 57(7) 
H19A -70(70) 7190(40) 4112(15) 100(11) 
H19B 720(50) 5810(30) 4583(11) 63(7) 
H19C 3290(60) 6370(30) 4195(13) 86(9) 
H20A 6310(40) 10970(20) 7646(8) 29(4) 
H20B 9210(40) 10320(20) 7793(9) 34(5) 
H20C 8720(40) 11210(30) 7183(10) 51(6) 

H1WA 8820(60) 12750(30) 9254(12) 72(8) 
H1WB 5630(70) 12620(40) 9218(15) 109(11) 

 

On the basis of X-ray data, the absolute configuration of the compound (R)-

147bj was determined. Hydrochloride (R)-167 is arranged as a hemihydra-

te. 

 

 

 

 

 

 

 

 

Figure 7.7: Molecular structure of (R)-167 in the crystal including the interesting H-bonding. Thermal ellipsoids are shown at 

50% probability. 

 

Figure 7.8: Fragment of the molecular packing in extended unit cell of (R)-167; space group C2.  
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Table S-21 Fractional Atomic Coordinates (×10
4
) and Equivalent Isotropic Displacement Parameters (Å

2
×10

3
) for 167. Ueq 

is defined as 1/3 of the trace of the orthogonalised UIJ tensor. 
Atom x y z U(eq) 

Cl1 -192.4(3) 1970(3) 8719.5(7) 33.1(4) 
Cl2 2366.8(3) 644(2) 8653.1(7) 32.1(4) 
O1 1303.6(9) 6279(6) 6656.0(19) 32.1(10) 
N1 497.5(11) -1276(8) 8813(2) 25.6(10) 
C1 875.6(13) -1136(9) 8594(3) 23.5(12) 
C2 1132.8(15) -2883(11) 8847(3) 28.0(12) 
C3 1005.8(16) -4671(11) 9309(3) 32.6(14) 
C4 612.4(16) -4791(11) 9512(3) 33.0(14) 
C5 365.3(15) -3057(12) 9250(3) 31.4(13) 
C6 989.4(13) 814(10) 8093(3) 24.2(12) 
C7 714.9(14) 1993(11) 7640(3) 26.2(12) 
C8 820.4(13) 3775(10) 7151(3) 24.6(12) 
C9 1214.6(14) 4441(10) 7132(3) 24.8(13) 

C10 1493.6(14) 3349(10) 7575(3) 27.0(13) 
C11 1379.4(14) 1525(11) 8047(3) 29.5(14) 
C12 1698.3(16) 7167(14) 6651(4) 38.4(15) 
C13 513.0(14) 4788(10) 6627(3) 25.7(13) 
C14 172.3(16) 5997(12) 7024(3) 29.1(14) 
C15 366.3(14) 2849(10) 6089(3) 25.8(13) 
C16 688.4(15) 1472(11) 5690(3) 27.5(14) 
C17 533.0(15) -348(11) 5159(3) 30.2(14) 
C18 852.2(17) -1857(12) 4793(4) 33.4(14) 
O2 3846.1(9) 6143(6) 6809.9(17) 25.2(9) 
N2 3151.4(10) -1597(8) 9050(2) 20(1) 
C21 3524.9(13) -1374(9) 8784(2) 19.1(11) 
C22 3797.8(14) -3046(10) 9007(3) 23.0(11) 
C23 3690.7(15) -4866(10) 9480(3) 26.5(13) 
C24 3310.7(14) -5043(10) 9735(3) 24.7(12) 
C25 3045.0(15) -3338(11) 9511(3) 27.7(13) 
C26 3610.0(12) 567(10) 8260(2) 18.6(11) 
C27 3317.6(13) 1661(10) 7835(3) 22.6(12) 
C28 3394.4(12) 3469(10) 7335(2) 20.6(11) 
C29 3785.1(13) 4251(9) 7283(3) 23.5(12) 
C30 4079.7(15) 3170(10) 7693(3) 25.0(13) 
C31 3997.9(13) 1336(9) 8174(3) 22.5(13) 
C32 4233.3(16) 7076(13) 6769(3) 30.1(13) 
C33 3064.0(13) 4478(10) 6860(3) 23.8(12) 
C34 2767.9(16) 5835(12) 7336(3) 28.9(12) 
C35 2859.0(14) 2563(10) 6399(3) 24.4(13) 
C36 3128.3(16) 1089(11) 5904(3) 26.1(13) 
C37 2912.7(16) -612(11) 5400(3) 28.6(13) 
C38 3188.5(18) -2128(12) 4937(4) 34.8(15) 
O3 2024.4(10) 5626(9) 9179(2) 37(1) 

 
Table S-22 Anisotropic Displacement Parameters (Å

2
×10

3
) for 167. The Anisotropic displacement factor exponent takes 

the form: -2π
2
[h

2
a*

2
U11+...+2hka×b×U12] 

Atom U11 U22 U33 U23 U13 U12 

Cl1 16.8(6) 39.4(8) 43.1(8) -1.6(7) -3.5(5) 4.3(6) 
Cl2 19.9(6) 36.9(8) 39.6(8) 4.5(7) 3.1(5) 8.4(6) 
O1 23.3(18) 37(3) 36(2) 1.1(18) 0.8(15) -8.4(16) 
N1 18(2) 31(3) 28(3) -1(2) -6.3(19) -1(2) 
C1 21(3) 31(3) 19(3) -6(2) -5(2) 6(2) 
C2 30(3) 31(3) 22(3) -7(3) -7(2) 3(3) 
C3 42(3) 31(4) 24(3) -10(3) -12(3) 3(3) 
C4 37(3) 35(4) 27(3) 1(3) -7(3) -4(3) 
C5 28(3) 34(3) 32(3) 3(3) -7(2) -6(3) 
C6 22(3) 32(3) 19(3) -5(3) 0(2) 5(2) 
C7 15(3) 39(3) 25(3) -5(3) -2(2) 1(3) 
C8 18(2) 33(3) 23(3) -3(3) 2(2) -1(2) 
C9 28(3) 27(3) 19(3) -4(2) 5(2) -2(3) 
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Table S-22 Anisotropic Displacement Parameters (Å
2
×10

3
) for 167. The Anisotropic displacement factor exponent takes 

the form: -2π
2
[h

2
a*

2
U11+...+2hka×b×U12] 

C10 15(3) 35(3) 31(3) -3(3) 4(2) 1(3) 
C11 22(3) 41(4) 25(3) -4(3) -4(2) 10(3) 
C12 27(3) 49(4) 39(4) -5(4) 5(3) -11(3) 
C13 22(3) 29(3) 26(3) 3(3) 1(2) -7(2) 
C14 22(3) 35(4) 29(3) 3(3) -3(3) 5(3) 
C15 22(3) 31(3) 24(3) 2(3) -2(2) -3(3) 
C16 19(3) 31(4) 32(3) 1(3) -1(2) -4(3) 
C17 22(3) 41(4) 28(3) 9(3) -4(3) 2(3) 
C18 35(3) 38(4) 27(4) 1(3) -2(3) 14(3) 
O2 26.1(18) 22(2) 27(2) 4.7(15) 2.4(15) -4.9(15) 
N2 14(2) 23(2) 22(2) -3(2) -1.7(17) 4(2) 
C21 18(2) 27(3) 12(3) -4(2) -3(2) 1(2) 
C22 17(3) 28(3) 23(3) 1(3) -5(2) -4(3) 
C23 23(3) 27(4) 29(3) -5(3) -8(2) 4(3) 
C24 26(3) 29(3) 18(3) 1(2) -2(2) 2(2) 
C25 20(3) 38(4) 25(3) -1(3) 2(2) -3(3) 
C26 20(2) 23(3) 14(3) 2(2) -1.2(19) 0(2) 
C27 14(3) 30(3) 24(3) -3(3) 2(2) -2(3) 
C28 21(2) 29(3) 12(3) -2(2) -5(2) -1(2) 
C29 27(3) 26(3) 18(3) 0(2) 1(2) -2(3) 
C30 18(3) 31(3) 26(3) -4(3) 3(2) -2(3) 
C31 18(2) 28(4) 22(3) 1(2) -1(2) 1(2) 
C32 28(3) 32(4) 30(4) 4(3) 5(3) -10(3) 
C33 22(3) 26(3) 23(3) 2(2) -4(2) -4(2) 
C34 34(3) 29(3) 23(3) -1(3) -10(2) 6(3) 
C35 21(3) 33(4) 19(3) 1(2) -2(2) 3(2) 
C36 26(3) 27(4) 26(3) 4(3) -3(3) 1(3) 
C37 29(3) 29(3) 27(3) 2(3) -3(3) 5(3) 
C38 40(3) 37(4) 26(4) -8(3) -4(3) 10(3) 
O3 29(2) 37(2) 45(2) -14(2) 5.7(17) 0(2) 

 
Table S-23 Bond Lengths for 167. 

Atom Atom Length/Å 
 

Atom Atom Length/Å 

O1 C9 1.377(6) 
 

O2 C29 1.378(6) 
O1 C12 1.431(6) 

 
O2 C32 1.419(6) 

N1 C1 1.353(6) 
 

N2 C21 1.370(6) 
N1 C5 1.351(7) 

 
N2 C25 1.335(7) 

C1 C2 1.385(7) 
 

C21 C22 1.374(7) 
C1 C6 1.473(7) 

 
C21 C26 1.472(7) 

C2 C3 1.376(8) 
 

C22 C23 1.381(7) 
C3 C4 1.394(8) 

 
C23 C24 1.381(7) 

C4 C5 1.364(8) 
 

C24 C25 1.371(8) 
C6 C7 1.404(7) 

 
C26 C27 1.396(7) 

C6 C11 1.389(7) 
 

C26 C31 1.398(6) 
C7 C8 1.383(7) 

 
C27 C28 1.383(7) 

C8 C9 1.392(6) 
 

C28 C29 1.404(6) 
C8 C13 1.519(7) 

 
C28 C33 1.520(6) 

C9 C10 1.380(7) 
 

C29 C30 1.383(7) 
C10 C11 1.389(8) 

 
C30 C31 1.375(7) 

C13 C14 1.529(7) 
 

C33 C34 1.534(7) 
C13 C15 1.538(7) 

 
C33 C35 1.523(7) 

C15 C16 1.527(7) 
 

C35 C36 1.531(7) 
C16 C17 1.494(8) 

 
C36 C37 1.505(8) 

C17 C18 1.531(7) 
 

C37 C38 1.522(8) 

 
Table S-24 Bond Angles for 167. 

Atom Atom Atom Angle/˚  Atom Atom Atom Angle/˚ 

C9 O1 C12 118.2(4)  C29 O2 C32 117.3(4) 
C5 N1 C1 122.6(5)  C25 N2 C21 123.1(4) 
N1 C1 C2 117.5(5)  N2 C21 C22 117.5(5) 
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Table S-24 Bond Angles for 167. 
Atom Atom Atom Angle/˚  Atom Atom Atom Angle/˚ 

N1 C1 C6 118.8(4)  N2 C21 C26 118.9(4) 
C2 C1 C6 123.7(5)  C22 C21 C26 123.6(4) 
C3 C2 C1 120.7(5)  C21 C22 C23 120.0(5) 
C2 C3 C4 120.3(6)  C22 C23 C24 121.0(5) 
C5 C4 C3 117.6(6)  C25 C24 C23 117.9(5) 
N1 C5 C4 121.2(5)  N2 C25 C24 120.6(5) 
C7 C6 C1 122.1(4)  C27 C26 C21 122.5(4) 

C11 C6 C1 120.3(5)  C27 C26 C31 118.2(5) 
C11 C6 C7 117.6(5)  C31 C26 C21 119.3(4) 
C8 C7 C6 122.6(5)  C28 C27 C26 123.0(4) 
C7 C8 C9 117.6(5)  C27 C28 C29 117.1(4) 
C7 C8 C13 119.3(4)  C27 C28 C33 120.0(4) 
C9 C8 C13 123.0(5)  C29 C28 C33 122.9(4) 
O1 C9 C8 115.5(4)  O2 C29 C28 115.4(4) 
O1 C9 C10 122.7(4)  O2 C29 C30 123.9(4) 
C10 C9 C8 121.8(5)  C30 C29 C28 120.7(5) 
C9 C10 C11 119.2(5)  C31 C30 C29 121.1(5) 
C6 C11 C10 121.2(5)  C30 C31 C26 119.8(5) 
C8 C13 C14 112.8(4)  C28 C33 C34 110.4(4) 
C8 C13 C15 110.9(4)  C28 C33 C35 112.8(4) 

C14 C13 C15 111.6(4)  C35 C33 C34 110.9(4) 
C16 C15 C13 115.2(4)  C33 C35 C36 115.3(4) 
C17 C16 C15 113.4(4)  C37 C36 C35 113.9(4) 
C16 C17 C18 113.9(5)  C36 C37 C38 112.8(5) 

 
 

Table S-25 Hydrogen Bonds for 167. 
D H A d(D-H)/Å d(H-A)/Å d(D-A)/Å D-H-A/° 

N1 H1 Cl1 0.97(6) 2.03(6) 2.968(4) 161(5) 
N2 H2A Cl2 1.01(5) 2.08(5) 3.029(4) 156(4) 
O3 H3A Cl2 0.97(5) 2.20(5) 3.162(5) 175(4) 
O3 H3B Cl2

1
 1.04(7) 2.16(7) 3.180(5) 167(5) 

1
+X,1+Y,+Z 

 
 

Table S-26 Hydrogen Atom Coordinates (Å×10
4
) and Isotropic Displacement Parameters (Å

2
×10

3
) for 167. 

Atom x y z U(eq) 

H1 312(15) 20(110) 8730(30) 45(17) 
H5 101(14) -2870(100) 9360(20) 35(15) 
H2 1392(14) -2800(100) 8700(20) 30(14) 
H3 1188(15) -6010(110) 9460(30) 45(17) 
H4 474(19) -5980(130) 9790(40) 70(20) 
H7 468(12) 1550(80) 7640(20) 13(12) 

H10 1758(13) 3900(80) 7510(20) 15(12) 
H11 1554(15) 640(110) 8300(30) 38(16) 

H12A 1688(14) 8610(110) 6310(30) 41(16) 
H12B 1769(12) 7760(80) 7110(30) 16(14) 
H12C 1888(15) 5820(120) 6530(30) 48(17) 
H13 639(12) 5730(90) 6310(20) 12(12) 

H14A -14(14) 6580(100) 6660(30) 33(14) 
H14B 33(12) 4900(90) 7350(20) 14(12) 
H14C 257(17) 7260(130) 7330(30) 60(20) 
H15A 191(12) 1650(90) 6370(20) 24(13) 
H15B 179(16) 3660(120) 5770(30) 54(18) 
H16A 846(15) 2690(110) 5440(30) 38(16) 
H16B 835(17) 650(130) 5990(30) 60(20) 
H17A 382(14) 420(110) 4780(30) 35(15) 
H17B 332(13) -1360(90) 5380(20) 18(12) 
H18A 723(13) -3170(100) 4390(30) 35(14) 
H18B 987(13) -2510(90) 5160(30) 19(14) 
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Table S-26 Hydrogen Atom Coordinates (Å×10
4
) and Isotropic Displacement Parameters (Å

2
×10

3
) for 167. 

Atom x y z U(eq) 

H18C 1030(20) -1050(170) 4480(40) 110(30) 
H2A 2929(13) -430(90) 8970(20) 29(14) 
H27 3082(17) 1160(120) 7880(30) 70(20) 
H22 4063(14) -2920(100) 8870(20) 29(13) 
H23 3853(13) -5940(90) 9590(30) 21(15) 
H24 3229(12) -6410(100) 10080(30) 24(13) 
H25 2769(14) -3150(90) 9640(20) 24(12) 
H30 4299(13) 3800(80) 7670(20) 11(13) 
H31 4206(12) 330(90) 8470(20) 17(11) 

H32A 4327(12) 7660(90) 7280(30) 19(13) 
H32B 4238(14) 8230(110) 6430(30) 33(16) 
H32C 4404(13) 5940(90) 6600(30) 19(14) 
H33 3187(13) 5790(90) 6520(20) 23(12) 

H34A 2881(12) 7210(90) 7660(20) 24(13) 
H34B 2637(15) 4510(110) 7650(30) 49(17) 
H34C 2565(13) 6540(90) 6980(30) 26(13) 
H35A 2703(13) 1480(90) 6720(30) 27(14) 
H35B 2639(15) 3370(110) 6130(30) 41(16) 
H36A 3280(16) 1890(120) 5600(30) 48(18) 
H36B 3291(16) 280(120) 6170(30) 50(19) 
H37A 2742(11) -1470(80) 5710(20) 6(11) 
H37B 2751(13) 390(100) 5150(30) 21(13) 
H38A 3057(14) -3160(110) 4590(30) 36(15) 
H38B 3368(18) -1190(140) 4580(40) 80(20) 
H38C 3348(16) -3150(110) 5250(30) 47(17) 
H3A 2112(13) 4070(100) 9010(20) 16(13) 
H3B 2167(17) 7110(130) 8970(30) 60(20) 
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7.6 Selected HMBC-Spectra  

 

HMBC 93bb 
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HMBC 93bb’ 
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HMBC 122b 
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HMBC 122c 
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HMBC 122c’ 
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HMBC 122d 
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HMBC 122e 
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HMBC 147aa 
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HMBC 147ba 
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HMBC 147bi 
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HMBC 147ca 
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HMBC 147ki 
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HMBC 147oa 
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HMBC 147pi 
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HMBC 147si 
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HMBC 147ui 
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HMBC 147wa 
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HMBC 147wa‘ 
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HMBC 147xa 
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HMBC 147xa‘ 
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HMBC 152cj 
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HMBC 152dj 
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HMBC 152gi 
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HMBC 152fa 
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HMBC 154 
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HMBC 155 

 - 
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HMBC 156 
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HMBC 157 
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HMBC 93bl 
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HMBC 147bl 
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HMBC 118al 
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8 List of Abbreviations 

(HA)SPO  (heteroatom) substituted secondary  
(Het)Ar  (hetero)arene 
[M+]  molecular ion peak  
2D  two dimensional 
2-Py  2-pyridyl 
Å  Angström 
acac  acetyl acetonate 
Ad  adamantyl 
Alk  alkyl 
AMLA  ambiphilic metal-ligand activation 
AmOH  amyl alcohol 
APT  attached proton test 
aq.  aqueous 
Ar  aryl 
B2Pin2  bis(pinacolato)diboron  
BINOL  1,1'-binaphthol 
Bn  benzyl 
BQ  benzochinone 
Bu  butyl 
Boc tert-butyloxycarbonyl 
ca.  circa 
calc.  calculated 
cat. catalytic 
CCD  charge coupled device 
CDC  circular dichroism chromatography 
CMD  concerted metalation deprotonation 
cod  1,5-cyclooctadien 
Cp  cyclopentadienyl 

 chemical shift 
DCE  1,2-dichloroethane 
DCM  dichloromethane 
Dec  decyl 
DFT  density functional theory 
DG  directing group 
DH

289  
dissociation enthalphie at 289 K 

diglyme  1-methoxy-2-(2-methoxyethoxy)ethane 
DMA  N,N-dimethylacetamid 
DMG  directed metalation group 
DMSO   dimethyl sulfoxide 
DoM  directed ortho metalation 
dppf  1,1′- bis(diphenylphosphino)ferrocen 
dr  diastereomeric ratio 
dtbpy  4,4'-di-tert-butyl bipyridine 
E

+  
electrophile 

Ed.  editor  
EDG  electron donating group 
ee  enantiomeric excess 
EI  electron ionization 
equiv  equivalent 
ESI  electronspray ionization  
et al.  et alia 
Et  ethyl 
eV  electron-Volt 
EWG  electron withdrawing group 
FTICR  Fourier transform ion cyclotron resonance 
g  gramm 

GC  gas chromatography 
Gly  glycine 
GoF  goodness of fit 
h  hours 
Hept  heptyl 
Het  hetero 
Hex  hexyl 
HFIP  1,1,1,3,3,3-hexafluoro-2-propanol 
HMBC  heteronuclear multiple bond 
 correlation  
HR  high resolution 
Hz  Hertz 
I  intensity 
i-  iso- 
i.e.  id est 
IPr   1,3-bis(2,6-diisopropylphenyl)  
IR  infrared spectroscopy 
isol.  isolated 
IUPAC  International Union of Pure and Applied 
 Chemistry 
J  coupling constant 
K  Kelvin 
KIE  kinetic isotope effect 
L  ligand 
M  metal 
M  molar 
m  multiplett 
M.p.  melting point 
M.r.  melting range 
m/z  mass-to-charge ratio 
Me  methyl 
MeCN  acetonitrile 
Mes  mesityl 
mg  milligram 
MHz  megahertz 
min  minute 
mL  milliliter 

m  micrometer 
TMP  2,2,6,6-tetramethylpiperidine 
tol  tolyl 
Ts  para-toluenesulfonyl  
TS  transition state 
Val    valine 
wt%  weight by volume 
X  (pseudo)halide 
X-ray     roentgen-spectroscopy 
mm  millimeter 
m- meta- 
mmol  millimol 
MPAA  monoprotected amino acid 
MPV  membrane pump vacuum 
MS  mass spectrometry 
MS  molecular sieves 
Mt/a  million tonnes per year 
MTBE  methyl tert-butyl ether 
N2  nitrogen 



 List of Abbreviations 301 

 
 
NHC  nitrogen-containing heterocyclic  
nm  nanometer 
NMR  nuclear magnetic resonance 
n- normal- 
nOe  nuclear overhauser effect 
Nu

-  
nucleophile 

Ø  average 
Oct  octyl 
o- ortho- 
OPV  oil pump vacuum 
ORTEP  oak ridge thermal-ellipsoid plot program 
Pent  pentyl 
PG  protecting group 
Ph  phenyl 
PhMe  toluene 
Piv  pivaloyl 
pKA  logarithmic acid dissociation constant 
PMP  para-methoxyphenyl 
p- para- 
PPh3  triphenylphosphine 
ppm  parts per million 
Pr  propyl 
PTC  phase transfer catalyst 
PTS  polyoxyethanyl α-tocopheryl sebacate 
Py  pyridine 
R  rest 
sat.  saturated 
SE

Ar  
electrophilic aromatic substitution 

SET  single electron transfer 
SIMes 1,3-bis(2,4,6-trimethylphenyl)-
 imidazolin-2- ylidene 
T  temperature 
t-  tert- 
t  time 
Tf  trifluoromethanesulfonyl 
TFA  trifluoroacetic acid 
THF  tetrahydrofuran 
TLC  thin layer chromatography 
TM  transition metal 
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